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PREFACE TO FIRST EDITION

IN writing this book I have tried to provide a text-book of the

more elementary properties of determinants, matrices, and

algebraic forms. The sections on determinants and matrices,

Parts I and II of the book, are, to some extent, suitable either

for undergraduates or for boys in their last year at school.

Part III is suitable for study at a university and is not intended

to be read at school.

The book as a whole is written primarily for undergraduates.

University teaching in mathematics should, in my view, provide

at least two things. The first is a broad basis of knowledge

comprising such theories and theorems in any one branch of

mathematics as are of constant application in other branches.

The second is incentive and opportunity to acquire a detailed

knowledge of some one branch of mathematics. The books

available make reasonable provision for the latter, especially

if the student has, as he should have, a working knowledge of at

least one foreign language. But we are deplorably lacking in

books that cut down each topic, I will not say to a minimum,
but to something that may reasonably be reckoned as an

essential part of an undergraduate's mathematical education.

Accordingly, I have written this book on the same general

plan as that adopted in my book on convergence. I have

included topics commonly required for a university honours

course in pure and applied mathematics : I have excluded topics

appropriate to post-graduate or to highly specialized courses

of study.

Some of the books to which I am indebted may well serve as

a guide for my readers to further algebraic reading. Without

pretending that the list exhausts my indebtedness to others,

I may note the following: Scott and Matthews, Theory of

Determinants
; Bocher, Introduction to Higher Algebra ; Dickson,

Modern Algebraic Theories
; Aitken, Determinants and Matrices

;

Turnbull, The Theory of Determinants, Matrices, and Invariants',

Elliott, Introduction to the Algebra of Quantics ; Turnbull and

Aitken, The Theory of Canonical Matrices', Salmon, Modern
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Higher Algebra (though the
* modern' refers to some sixty years

back) ;
Burnside and Panton, Theory of Equations. Further,

though the reference will be useless to my readers, I gratefully

acknowledge my debt to Professor E. T. Whittaker, whose in-

valuable
*

research lectures' on matrices I studied at Edinburgh

many years ago.

The omissions from this book are many. I hope they are, all

of them, deliberate. It would have been easy to fit in something

about the theory of equations and eliminants, or to digress at

one of several possible points in order to introduce the notion of

a group, or to enlarge upon number rings and fields so as to

give some hint of modern abstract algebra. A book written

expressly for undergraduates and dealing with one or more of

these topics would be a valuable addition to our stock of

university text-books, but I think little is to be gained by
references to such subjects when it is not intended to develop

them seriously.

In part, the book was read, while still in manuscript, by my
friend and colleague, the late Mr. J. Hodgkinson, whose excel-

lent lectures on Algebra will be remembered by many Oxford

men. In the exacting task of reading proofs and checking

references I have again received invaluable help from Professor

E. T. Copson, who has read all the proofs once and checked

nearly all the examples. I am deeply grateful to him for this

work and, in particular, for the criticisms which have enabled

me to remove some notable faults from the text.

Finally, I wish to thank the staff of the University Press, both

on its publishing and its printing side, for their excellent work

on this book. I have been concerned with the printing ofmathe-

matical work (mostly that of other people !) for many years, and

I still marvel at the patience and skill that go to the printing of

a mathematical book or periodical.

W. L. F.

HERTFORD COLLEGE, OXFORD,

September 1940.
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PART I

PRELIMINARY NOTE; CHAPTERS ON
DETERMINANTS

PRELIMINARY NOTE
1. Number
In its initial stages algebra is little more than a generaliza-

tion of elementary arithmetic. It deals only with the positive

integers, 1, 2, 3,... . We can all remember the type of problem
that began 'let x be the number of eggs', and if x came to 3| we
knew we were wrong.

In later stages x is permitted to be negative or zero, to be the

ratio of two integers, and then to be any real number either

rational, such as 3 J or J, or irrational, such as 77 or V3. Finally,

with the solution of the quadratic equation, x is permitted to be

a complex number, such as 2-\-3i.

The numbers used in this book may be either real or complex
and we shall assume that readers have studied, to a greater or

a lesser extent, the precise definitions of these numbers and

the rules governing their addition, subtraction, multiplication,

and division.

2. Number rings

Consider the set of numbers

0, 1, 2, .... (1)

Let r, s denote numbers selected from (1). Then, whether r and

s denote the same or different numbers, the numbers

r+, rs, rxs

all belong to (1). This property of the set (1) is shared by other

sets of numbers. For example,

all numbers of the form a~\-b^J6, (2)

where a and b belong to (1), have the same property; if r and s

belong to (2), then so do r+s, rs, and r X 6'. A set of numbers

1laving this property is called a KING of numbers.
4702 B



2 PRELIMINARY NOTE

3. Number fields

3.1. Consider the set of numbers comprising and every

number of the form p/q, where p and q belong to (1) and q is not

zero, that is to say,

the set of all rational real numbers. (3)

Let r,s denote numbers selected from (3). Then, when s is not

zero, whether r and s denote the same or different numbers,

the numbers
r+g> r_s> rxs> r^s

all belong to the set (3).

This property characterizes what is called a FIELD of numbers.

The property is shared by the following sets, among many
others :

the set of all complex numbers; (4)

the set of all real numbers (rational and irrational); (5)

the set of all numbers of the form p+q^JS, where p and

q belong to (3). (6)

Each of the sets (4), (5), and (6) constitutes a field.

DEFINITION. A set of numbers, real or complex, is said toform a

FIELD OF NUMBERS when, if r and s belong to the set and s is not

zero
>

r+s, rs, rxs, r-^-s

also belong to the set.

Notice that the set (1) is not a field; for, whereas it contains

the numbers 1 and 2, it does not contain the number |.

3.2. Most of the propositions in this book presuppose that

the work is carried out within a field ofnumbers; what particular

field is usually of little consequence.
In the early part of the book this aspect of the matter need

not be emphasized: in some of the later chapters the essence of

the theorem is that all the operations envisaged by the theorem

can be carried out within the confines of any given field of

numbers.

In this preliminary note we wish to do no more than give a
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formal definition of a field of numbers and to familiarize the

reader with the concept.

4. Matrices

A set ofmn numbers, real or complex, arranged in an array of

m columns and n rows is called a matrix. Thus

22 *2m

is a matrix. When m = n we speak of a square matrix oforder n.

Associated with any given square matrix of order n there are

a number of algebraical entities. The matrix written above,

with m = n, is associated

(i) with the determinant

*2n

nl

(ii) with the form

2 2 *,**
r-l

of degree 2 in the n variables xv x2 ,..., xn \

(iii) with the bilinear form

I I ars^ys

in the 2n variables x
l9 ..., xn and yl9 ..., yn \

(iv) with the Hermitian form

2 2 Or^r^
r=l s=l

where rra and fs are conjugate complex numbers;

(v) with the linear transformations



4 PRELIMINARY NOTE

The theories of the matrix and of its associated forms are

closely knit together. The plan of expounding these theories

that I have adopted is, roughly, this: Part I develops properties

of the determinant; Part II develops the algebra of matrices,

referring back to Part I for any result about determinants that

may be needed; Part III develops the theory of the other

associated forms.



CHAPTER I

ELEMENTARY PROPERTIES OF DETERMINANTS

1. Introduction

1.1. In the following chapters it is assumed that most

readers will already be familiar with determinants of the second

and third orders. On the other hand, no theorems about such

determinants are assumed, so that the account given here is

complete in itself.

Until the middle of the last century the use of determinant

notation was practically unknown, but once introduced it

gained such popularity that it is now employed in almost every

branch of mathematics. The theory has been developed to such

an extent that few mathematicians would pretend to a know-

ledge of the whole of it. On the other hand, the range of theory

that is of constant application in other branches of mathematics

is relatively small, and it is this restricted range that the book

covers.

1.2. Determinants of the second and third orders.

Determinants are, in origin, closely connected with the solu-

tion of linear equations.

Suppose that the two equations

a^x+b^j = 0, a
2 x+b 2 y =

are satisfied by a pair of numbers x and y, one of them, at least,

being different from zero. Then

b
2(a l x-\-b l y)~b l (a 2 x~\-b2 y)

= 0,

and so (a l
b2~a 2 b l )x

= 0.

Similarly, (n L
b
2

a2^i)# ~ 0> an(l so a i^z az^i
~

0.

The number a^b^a^b^ is a simple example of a determinant;

it is usually written as

a
i

a
2

The term a
l b2 is referred to as 'the leading diagonal'. Since

there are two rows and two columns, the determinant is said

to be 'of order two', or 'of the second order'.
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The determinant has one obvious property. If, in (1), we

interchange simultaneously a
x
and b

l9
a2 and 62 ,

we get

b
l
a
2

b
2
a

i instead of c^
1
b2 #2^1-

That is, the interchange of two columns of (1) reproduces the

same terms, namely a
l
b2 and (i

2 b lt
but in a different order and

wifrh the opposite signs.

Again, let numbers #, y y
and z, not all zero, satisfy the three

equations a.x+b.y+c.z = 0, (2)

a
2x+b2y+c2 z

= 0, (3)

^x-}-b3 y+c^z = 0; (4)

then, from equations (3) and (4),

(a2 63 a^b2)x (b2 c3 b3 c2)z = 0,

(a2 63 a
3
b2)y (c2 a3 c.^a2 )z

= 0,

and so, from equation (2),

Z{a1 (b2 c3-b^c2)+b 1 (c2 a3 c3 a2)+c1(a2 b3 a3 b2 )}
= 0.

We denote the coefficient of z, which may be written as

a
l ^2 C3 a

i ^3 C2~t"a2 ^3 Cl a
2 ^1 C3+ a3 ^1 C2 a3 ^2 C

l>

by A; so that our result is zA = 0.

By similar working we can show that

zA = 0, i/A = 0.

Since x, y, and z are not all zero, A = 0.

The number A is usually written as

! 6L

2 b2

3 63

in which form it is referred to as a 'determinant of order three'

or a 'determinant of the third order
5

. The term ax 62
c3 is

referred to as 'the leading diagonal'.

1.3. It is thus suggested that, associated with n linear

equations in n variables, say

<*>iX+bl y+...+kl z
= 0,

a
2x+b2 y+...+k2 z

= 0,
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there is a certain function of the coefficients which must be

zero if all the equations are to be satisfied by a set of values

x, 2/,...,
z which are not all zero. It is suggested that this

function of the coefficients may be conveniently denoted by

x b l .

in which form it may be referred to as a determinant of order n,

and #! 62 kn called the leading diagonal.

Just as we formed a determinant of order three (in 1.2) by

using determinants of order two, so we could form a deter-

minant of order four by using those of order three, and proceed

step by step to a definition of a determinant of order n. But this

is not the only possible procedure and we shall arrive at our

definition by another path.

We shall first observe certain properties of determinants of

the third order and then define a determinant of order n in

such a way that these properties are preserved for deter-

minants of every order.

1 .4. Note on definitions. There are many different ways of defining

a determinant of order n, though all the definitions lead to the same

result in the end. The only particular merit we claim for our own defini-

tion is that it is easily reconcilable with any of the others, and so makes

reference to other books a simple matter.

1.5. Properties of determinants of order three. As we

have seen in 1.2, the determinant

b (

stands for the expression

(1)

The following facts are all but self-evident:

(I) The expression (1) is of the form



8 ELEMENTARY PROPERTIES OF DETERMINANTS

wherein the sum is taken over the six possible ways of assigning

to r, s, t the values 1, 2, 3 in some order and without repetition.

(II) The leading diagonal term a^b^c^ is prefixed by +.

(III) As with the determinant of order 2 (1.2), the inter-

change of any two letters throughout the expression (1) repro-

duces the same set of terms, but in a different order and with

the opposite signs prefixed to them. For example, when a and b

are interchanged! in (1), we get

which consists of the terms of (1), but in a different order and

with the opposite signs prefixed.

2. Determinants of order n

2.1. Having observed (1.5) three essential properties of a

determinant of the third order, we now define a determinant

of order n.

DEFINITION. The determinant

1
b
i Ji *

2 b, . . J2 fca (1)

n b
,i jn kn

is that function of the a's, b '<$,..., k's which satisfies the three

conditions:

(I) it is an expression of the form

2 ia/A-"^0> (2)

ivherein the sum is taken over the n\ possible ways of assigning

to r, s,..., 6 the values 1, 2,..., n in some order, and without

repetition;

(II) the leading diagonal term, a
l b^...kn ,

is prefixed by the

sign +;

(III) the sign prefixed to any other term is such that the inter-

change of any two letters^, throughout (2) reproduces the same

t Throughout we use the phrase 'interchange a and 6* to denote the

simultaneous interchanges a t and b l9 a2 and 62 as and &3 , ..., an and bn .

J See previous footnote. The interchange of p and </, say, means the

simultaneous interchanges

p and qi t p2 and y^,..., p fi
and qn .
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set of terms, but in a different order of occurrence, and with

the opposite signs prefixed.

Before proceeding we must prove^that the definition yields

one function of the a's, 6's,..., &'s and one only. The proof that

follows is divided into four main steps.

First step. Let the letters a, 6,..., k, which correspond to the

columns of (1), be written down in any order, say

..., d, g, a, ..., p, ..., q, .... (A)

An interchange of two letters that stand next to each other is

called an ADJACENT INTERCHANGE. Take any two letters p and

q, having, say, m letters between them in the order (A). By
w+1 adjacent interchanges, in each of which p is moved one

place to the right, we reach a stage at which p comes next

after q\ by m further adjacent interchanges, in each of which q

is moved one place to the left, we reach a stage at which the

order (A) is reproduced save that p and q have changed places.

This stage has been reached by means of 2m+l adjacent

interchanges.

Now if, in (2), we change all the signs 2m-\-l times, we end

with signs opposite to our initial signs. Accordingly, if the

condition (III) of the definition is satisfied for adjacent inter-

changes of letters, it is automatically satisfied for every inter-

change of letters.

Second step. The conditions (I), (II), (III) fix the value of

the determinant (of the second order)

to be al b2
a2 b l . For, by (I) and (II), the value must be

and, by (III), the interchange of a and 6 must change the signs,

so that we cannot have al b2+a2 bl .

Third step. Assume, then, that the conditions (I), (II), (III)

are sufficient to fix the value of a determinant of order n 1.

4702 C
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By (I), the determinant An contains a set of terms in which a

has the suffix 1
;
this set of terms is

<*i2b8 Ct...ke9 (3)

wherein, by (I), as applied to An ,

(i) the sum is taken over the (nI)\ possible ways of

assigning to $, ,..., 6 the values 2, 3,..., n in some order

and without repetition.

Moreover, by (II), as applied to Aw ,

(ii) the term 62
c3 . . . kn is prefixed by + .

Finally, by (III), as applied to A
rt ,

(iii) an interchange of any two of the letters 6, c,..., k changes
the signs throughout (3).

Hence, by our hypothesis that the conditions (I), (II), (III)

fix the value of a determinant of order n 1, the terms of (2) in

which a has the suffix 1 are given by

(3 a)

This, on our assumption that a determinant of order nl is

defined by the conditions (I) , (II) , (III) ,
fixes the signs of all

terms in (2) that contain a
1
b
2t a^g,..., abn .

Fourth step. The interchange of a and b in (2) must, by
condition (III), change all the signs in (2). Hence the terms of

(2) in which 6 has the suffix 1 are given by

(3b)

for (3 b) fixes the sign of a term fi^c, ... kQ to be the opposite of

the sign of the term a
l
b8 cl

... kg in (3 a).

The adjacent interchanges 6 with c, c with rf, ..., j with k

now show that (2) must take the form
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63 C3 . .

-...+ (-!)"-

bn

a3 63

an bn Jn

(4)

That is to say, if conditions (I), (II), (III) define uniquely a

determinant of order n 1, then they define uniquely a deter-

minant of order n. But they do define uniquely a determinant

of order 2, and hence, by induction, they define uniquely a

determinant ofany order.

2.2. Rule for determining the sign of a given term.

If in a term a
r bs ...k there are X

}1
suffixes less than n that

come after n, we say that there are \
tl
inversions with respect

to n. For example, in the term a
2 b3 c^dlJ

there is one inversion

with respect to 4. Similarly, if there are An-1 suffixes less than

n 1 that come after n 1, we say that there are Xn _ l inversions

with respect to n 1
;
and so on. The sum

is called the total number of inversions of suffixes. Thus, with

n = 6 and the term
a b c d e f (5}

A6 2, since the suffixes 1 and 5 come after 6,

A5
= 0, since no suffix less than 5 comes after 5,

A4
= 3, since the suffixes 3, 2, 1 come after 4,

A3 = 2, A
2
=

1, Aj
= 0;

the total number of inversions is 2+3+2+1 = 8.

If ar b8 ... k0 has X
fl
inversions with respect to n, then, leaving

the order of the suffixes 1, 2,... f n 1 unchanged, we can make
n to be the suffix of the nth letter of the alphabet by Xn adjacent

interchanges of letters and, on restoring alphabetical order,

make n the last suffix. For example, in (5), where Xn = 2, the
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two adjacent interchanges / with e and / with d give, in

succession, h rf f h f J

On restoring alphabetical order in the last form, we have

a^b3 c2 dl e5fBt in which the suffixes 4, 3, 2, 1, 5 are in their

original order, as in (5), and the suffix 6 comes at the end.

Similarly, when n has been made the last suffix, A^_x adjacent

interchanges of letters followed by a restoration of alphabetical
order will then make n 1 the (n l)th suffix; and so on.

Thus A1+A2+---+An adjacent interchanges of letters make
the term a

r
b8 ...ke coincide with a

l
b2 ...kn . By (III), the sign

to be prefixed to any term of (2) is (1)^, where N, i.e.

Ai+A2+...+An ,
is the total number of inversions of suffixes.

2.3. The number N may also be arrived at in another way.
Let 1 ^ m ^ n. In the term

a
r b8 ...k

let there be
jjim suffixes greater than m that come before m.

Then the suffix m comes after each of these ^m greater suffixes

and, in evaluating N, accounts for one inversion with respect
to each of them. It follows that

n

3. Properties of a determinant

3.1. THEOREM 1. The determinant Aw o/ 2.1 can be expanded
in either of the farms

(i) I(-l)Nar bs ...kg ,

where N is the total number of inversions in the suffixes r, ,..., 0;

(ii) a,

bn Cn

This theorem has been proved in 2.

h
h
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THEOREM 2. A determinant is unaltered in value when rows

and columns are interchanged; that is to say

1 b l . . ^
O 00 . . fC<\

By Theorem 1, the second determinant is

2 (-!)%&. .. (7)

where a, /?,...,
/c are the letters a, 6,..., & in some order and Jf is

the total number of inversions of letters.

[There are /xn inversions with respect to k in ajS.../c if there

are fin letters after k that come before k in the alphabet; and so

on: ^i+^2+*--+M/i *s the total number of inversions of letters.]

Now consider any one term of (7), say

(-l)
M

i A> *
(
8 )

If we write the product with its letters in alphabetical order,

we get a term of the form

(-\)Uar b8 ...jt ke . (9)

In (8) there are \in letters that come after k, so that in (9) there

are pn suffixes greater than that come before 8. Thej*e are

Fn-i letters that come before j in the alphabet but after it in

(8), so there are ^n _^ suffixes greater than t that come before

it in (9); and so on. It follows from 2.3 that M, which is

defined as 2 /*n> *s equal to N, where N is the total number of

inversions of suffixes in (9).

Thus (7), which is the expansion of the second determinant

of the enunciation, may also be written as

2(-i)%A-^>
which is, by Theorem 1, the expansion of the first determinant

of the enunciation; and Theorem 2 is proved.

THEOREM 3. The interchange of two columns, or of two rows,

in a determinant multiplies the value of the determinant by I.

It follows at once from (III) of the definition of An that an

interchange of two columns, i.e. an interchange of two letters,

multiplies the determinant by 1 .
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Hence also, by Theorem 2, an interchange of two rows

multiplies the determinant by 1 .

COROLLARY. .// a column (roiv) is moved past an even number

of Columns (rows), then the value of the determinant is unaltered;

in particular

6i

6,

d,

d,

d,

bt di

If a column (row) is moved past an odd number of columns

(rows), then the value of the determinant is thereby multiplied

by -l.

For a column can be moved past an even (odd) number of

columns by an even (odd) number of adjacent interchanges.

In the particular example, abed can be changed into cabd

by lirst interchanging 6 and c, giving ticbd, and then inter-

changing a and c.

3.11. The expansion (ii) of Theorem 1 is usually referred to

as the expansion by the first row. By the corollary of Theorem

3, there is a similar expansion by any other row. For example,

a* A2 c2

a$ 63 3

a4 64 c4

r/
2 fc2

C
2 ^2

4 &4 C4 d4

and, on expanding the second determinant by its first row, the

first determinant is seen to be equal to

bl c
l
d

l

a b

Similarly, we may show that the first determinant may be

written as

bl Cj dl

63 c3 dz

ax cl d
l

a3 c3 ci!3

!
bl d

l
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Again, by Theorem 2, we may turn columns into rows and

rows into columns without changing the value of the deter-

minant. Hence there are corresponding expansions of the

determinant by each of its columns.

We shall return to this point in Chapter II, 1.

3.2. THEOREM 4. // a determinant has two columns, or two

rows, identical, its value is zero.

The interchange of the two identical columns, or rows,

leaves its value unaltered. But, by Theorem 3, if its value is x,

its value after the interchange of the two columns, or rows,

is -~x. Hence x = x, or 2x 0.

THEOREM 5. // each element of one column, or row, is multi-

plied by a factor K, the value of the determinant is thereby multi-

plied by K.

This is an immediate corollary of the definition, for

b ... k = K ab ...k.

3.3. THEOREM 6. The determinant of order n,

is equal to the sum of the 2 n determinants corresponding to the

2 n different ways of choosing one letter from each column; in

particular,

is the sum of the four determinants

a
2 62

b
i

This again is obvious from the definition; for

is the algebraic sum of the 2" summations typified by taking

one term from each bracket.
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3.4. THEOREM 7. The value of a determinant is unaltered if

to each element of one column (or row) is added a constant

multiple of the corresponding element of another column (or row);

in particular,

a,+A62

Proof. Let the determinant be AH of 2.1, x and ?/ the letters

of two distinct columns of A. Let be the determinant

formed from An by replacing each xr of the x column by
xr -{-\yr ,

where A is independent of r. Then, by Theofem 1,

aj b
v . xt .

a
z 62 2/2 2/2

*n %n 2/n

But the second of these is zero since, by Theorem 5, it is A times

a determinant which has two columns identical. Hence A^ = A
;i

.

COROLLARIES OF THEOREM 7. There are many extensions of

Theorem 7. For example, by repeated applications ofTheorem 7

it can be proved that

We may add to each column (or row) of a determinant fixed

multiples of the SUBSEQUENT columns (or rows) and leave the value

of the determinant unaltered; in particular,

i 61 <

o 60 C

63+^3

There is a similar corollary with PRECEDING instead of SUBSE-

QUENT.

Another extension ofTheorem 7 is

We may add multiples of any ONE column (or row) to every other

column (or row) and leave the value of the determinant unaltered; in

particular,

a3

b
1

a
2+A62
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There are many others. But experience rather than set rule

is the better guide for further extensions. The practice of

adding multiples of columns or rows at random is liable to lead

to error unless each step is checked for validity by appeal to

Theorem 6. For example,

a
l -\-Xb1

a
2+A62

A==

is, by Theorem 6,

A63 MC3 v

all the other determinants envisaged by Theorem 6, such as

A6

being zero in virtue of Theorems 4 and 5. Hence the deter-

minant A is equal to

NOTE. One of the more curious errors into which one is led by adding

multiples of rows at random is a fallacious proof that A = 0. In the

example just given, 'subtract second column from first, add second and

third, add first and third', corresponds toA= l,/Lt
= l,i/ = l,a choice

of values that will (wrongly, of course) 'prove' that A = 0: the mani-

pulation of the columns has not left the value unaltered, but multiplied

the determinant by a zero factor, 1-f A/zv.

3.5. Applications of Theorems 1-7. As a convenient

notation for the application of Theorem 7 and its corollaries,

we shall use

to denote that, starting from a determinant An ,
we form a new

determinant A^ whose kth row is obtained by taking I times the
4702
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first row plus ra times the second row plus... plus t times the

nth row ofAn . The notation

refers to a similar process applied to columns.

EXAMPLES I

1. Find the value of

A = 87 42 3

45 18 7

50 17 3

91 9 6

-1
4

-5

The working that follows is an illustration of how one may deal with

an isolated numerical determinant. For a systematic method of com-

puting determinants (one which reduces the order of the determinant

from, say, 6 to 5, from 5 to 4, from 4 to 3, from 3 to 2) the reader is

referred to Whittaker and Robinson, The Calculus of Observations

(London, 1926), chapter v.

On writing c{
= c

l 2ca c3 , Cg
= c3 -f-3c4,

by Theorem I. On expanding the third-order determinants,

A = -42{2(30)-13(-24)+ 67(-95+ 48)}-f

+{2(102-f 108)- 13(108- 171)4-67(~ 216-323)}, etc.

2. Prove thatf

1 1 1

. a

yot.

On taking c = ca clf c'3
= c3 c2 , the determinant becomes

1

a j8 a y~]3
fo y(a-j3) a(j3-y)

t This determinant, and others that occur in this set of examples, can be
evaluated quickly by using the Remainder Theorem. Here they are intended

as exercises on 1-3.
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which, by Theorems 1 and 5, is equal to

19

i.e.

3. Prove that

A ^ (a-S)
2 = 0.(-/J) (<x-y)

2

/ O \2 A iQ \2 /O SS\2(D a) \j ID y) v/3 0/

(y
_

a)
2

(y_)i o (y-8)
2

(8-a)2
(8-j8)

2
(8-y)

2

When we have studied the multiplication of determinants wo shall

see (Examples IV, 2) that the given determinant is 'obviously' zero,

being the product of two determinants each having a column of zeros.

But, at present, we treat it as an exercise on Theorem 7. Take

r(
= ^ 7*2

and remove the factor a
/?
from r( (Theorem 5),

r% r%~ rz and remove the factor
/3 y from r'^

r's
= r3 r4 and remove the factor y 8 from rj.

Then A/(a-)8)(j8-y)(y-S) is equal to

-y 0-fy-28
y-8

In this take c{
=

c^- c2 , c.^
= c 2

c3 ,
c3 = c3 c4 and remove the factors

/? a, y /?,
8 y; it becomes

(j8-a)(y-j8)(8-y) 2 2

2 2

2 2

-a- 28-jS-y S-y

2 a+j3-28
2 )3+y-28
2 y-8

becomesIn the last determinant take r[ r^ r^ r'2 = ^2
~ r300 a-y00 j8-8

2 22 y-8
2S-a- 28-jS-y 8-y

which, on expanding by the first row, is zero since the determinant of

order 3 that multiplies a y is one with a complete row of zeros.

4. Prove that

(a-j8)
3

(a-y)
3

(j8-a)
3

(j8-y)
3

(y-<*)
3

(y-0)
3 o

= 0.
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\S&. Prove that

ft y
2

y2

]8+y y+a a+,

HINT. Take r'3 r^r*
\/ 6. Prove that

1

a

1 1 1

ft y 8

y+ 8 8+ a a+/?
8 a y

= 0.

7. Prove that

/

r-<** .

HINT. Use Theorem 6.

8. Prove that

2
-)8

2 a2-y2 8-82

jS
2

y
2

ft
2 82

2_^2 Q y
2 ~g2

2_^2 2_y
2

= 0.

a-f-y a4~8

\/ 9. Prove that

1 1 1

)3 y

2a a-

j8+ a 2j8 j8+y

y+ a y+jS 2y y+ 8

8+y 28

=?= 0.

y8a
a2

j8
2

y
2 82

10. Prove that

A ^ 6 c

-a d e

-b -d Of
c e /

The determinant may be evaluated directly if we consider it as

a bl ct

a2 b2 c2

3 63 C3

4 64 C4

whose expansion is 2 (~ l)^ar^ ce^u ^ne value of N being determined

by the rule of 2.2. There are, however, a number of zero terms in the

expansion of A. The non-zero terms are

a2
/

2
[a2 &!C4 c?3 and so is prefixed by ( I)

2
],

6 2e2 , c2d2
, each prefixed by +,
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two terms aebf [one a2 64 cr rf3 , the other a3 6X c4 e/2 and so each prefixed

by(-l)3
],

two terms adfc prefixed by -f- , and two terms cdbe each prefixed by .

Hence A = a2
/ 2+ &2e2 -f c

2^2- 2aebf+ 2afcd
- 2becd.

1, Prove that the expansion of

c b d

c a e

b a /
d e /

is a2d2
-f 6

2e2
-f- c

2
/

2
2bcef 2cafd

V/12. Prove that the expansion of

1

2/
2

1 1

y
l

is

/1 3. (Harder.) Express the determinantbed
x-\-c d a

b

x-\~c

as a product of factors.

HINT. Two linear factors x+ a+c(b-{-d) and one quadratic factor.

14. From a determinant A, of order 4, a new determinant A' is

formed by taking

c{
=

Cj-f- Ac2 , Ca
= c2 -f^c3 , 3

= c3+ vcl9 ci
= c4 .

Prove that A' =

4. Notation for determinants

The determinant A
rt
of 2.1 is sufficiently indicated by its

leading diagonal and it is often written as (a<ib2 c3 ...kn ).

The use of the double suffix notation, which we used on p. 3

of the Preliminary Note, enables one to abbreviate still further.

The determinant that has a
ra as the element in the rth row

and the 5th column may be written as \ars \.

Sometimes a determinant is sufficiently indicated by its first
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row; thus (a>ib 2
c3 ...kn ) may be indicated by |a1 6 1

c
1 ...i1 |,

but

the notation is liable to misinterpretation.

5. Standard types of determinant

5.1. The product of differences: alternants.

THEOREM 8. The determinant

a3 j8
3

y
3 S3

a2
ft* y

2 S2

oc /3 y S1111
is equal to (oc /?)(a y)(a 8)(j8 y)()S 8)(y S); the correspond-

ing determinant of order n, namely (oc
n~ l

^
n~"

... 1), is equal to the

product of the differences that can be formed from the letters

a, /?,...,
K appearing in the determinant, due regard being paid

to alphabetical order in the factors. Such determinants are called

ALTERNANTS.

On expanding A4 ,
we see that it may be regarded

(a) as a homogeneous polynomial of degree 6 in the variables

a, j8, y, 8, the coefficients being 1
\

(b) as a non-homogeneous polynomial of highest degree 3 in

a, the coefficients of the powers of a being functions of

The determinant vanishes when OL =
j8,

since it then has two

columns identical. Hence, by the Remainder Theorem applied

to a polynomial in a, the determinant has a factor a
/?. By

a similar argument, the difference of any two of a, j3, y, 8 is a

facto? of A4 , so that

Since A4 is a homogeneous polynomial of degree 6 in a, /?, y, S,

the factor K must be independent of a, j8, y, 8 and so is a

numerical constant. The coefficient of a3
/J
2
y on the right-hand

side of (10) is K, and in A4 it is 1. Hence K = 1 and

The last product is conveniently written as (>/?, y>S)> and
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the corresponding product of differences of the n letters

a, /?,...,
K as (a, /?,..., *). This last product contains

factors and the degree of the determinant (a
n~1

j3
/l"2

... 1) is

also (n~ l)+(r& 2
)+ ..,+ !, so that the argument used for A4

is readily extended to An .

'5.2. The circulant.

THEOREM 9. The determinant

A ==

^e product is taken over the n-th roots of unity. Such a

determinant is called a CIRCULANT.

Let w be any one of the n numbers

2kn
,

. . 2&7T 7 , . rt .

a)k
= cos--J-^sm- (A;

= l,2,...,n).
n n

In A replace the first column cx by a new column c[, where

c =

This leaves the value of A unaltered.

The first column of the new determinant is, on using the fact

that aj
n = 1 and writing a1+a2 co+...+an a)

n-1 = a,

a
1+a2 a)+a3 aj

2+...+aH o}n
- 1 = a,

Hence the first column of the new determinant has a factor
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a = a
1+a2 a>+...-fan aj

w-1
, which is therefore (Theorem 5) a

factor of A. This is true for cu = o^ (A;
= 1, 2,. ..,?&), so that

A = Jf (o1+aa cu
Jb+...+aw a>2-

1
). (11)

Moreover, since A and JJ are homogeneous of degree n in the

variables a
lt
a
2 ,...,

an ,
the factorK must be independent of these

variables and so is a numerical constant. Comparing the

coefficients of aj on the two sides of (1 1), we see that K = 1.

6. Odd and even permutations
6.1. The n numbers r, 5,..., 6 are said to be a PERMUTATION

of 1, 2,..,, n if they consist of 1, 2,..., w- in some order. We can

obtain the order r, 5,..., from the order 1, 2,..., n by suitable

interchanges of pairs; but the set of interchanges leading from

the one order to the other is not unique. For example,

432615 becomes 123456 after the interchanges denoted by

/4 3 2 6 1 5\ /I 3 2 6 4 5\ /I 2 3 6 4 5\ II 2 3 4 6 5\

\1 3 2 6 4 5J' \1 2 3 6 4 5/
?

\1 2 3 4 6 5/' \1 2 3 4 5 6/'

whereby we first put 1 in the first place, then 2 in the second

place, and so on. But we may arrive at the same final result by
first putting 6 in the sixth place, then 5 in the fifth, and so on:

or we can proceed solely by adjacent interchanges, beginning by

/4 3 2 6 1 5\ /4 3 2 1 6 5\

\4 3 2 1 6 5/' \4 3 1 2 6 5/'

as first steps towards moving 1 into the first place. In fact, as

the reader will see for himself, there is a wide variety of sets of

interchanges that will ultimately change 432615 into 123456.
Now suppose that there are K interchanges in any ONE way

of going from r
t 5,,.., 6 to 1, 2,..., n. Then, by condition III in

the definition of a determinant (vide 2.1), the term ar b8 ...tc0

in the expansion of An
=

(a1 62 "-^n) *s prefixed by the sign

( 1)^. But, as we have proved, the definition of An by the

conditions I, II, III is unique. Hence the sign to be prefixed

to any given term is uniquely determined, and therefore the

sign (1)^ must be the same whatever set of interchanges is

used in going from r, $,..., to 1, 2,..., nl Thus, if one way of
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going from r, 5,..., 6 to 1, 2,..., n involves an odd (even) number

of interchanges, so does every way of going from r, 5,..., d

to 1, 2,...,?i.

Accordingly, every permutation may be characterized either

as EVEN, when the change from it to the standard order 1, 2,..., n

can be effected by an even number of interchanges, or as ODD,

when the change from it to the standard order 1, 2,..., n can

be effected by an odd number of interchanges.

6.2. It can be proved, without reference to determinants,

that, if one way of changing from r, 5,..., 6 to 1, 2,..., n involves

an odd (even) number of interchanges, so does every way of

effecting the same result. When this has been done it is

legitimate to define An = (a\b2 ...kn )
as a

r &s ...&0, where

the plus or minus sign is prefixed to a term according as its

suffixes form an even or an odd permutation of 1, 2,..., n.

This is, in fact, one of the common ways of defining a deter-

minant.

7. Differentiation

When the elements of a determinant are functions of a

variable x, the rule for obtaining its differential coefficient is as

follows. If A denotes the determinant

and the elements are functions of x, d&/dx is the sum of the

n determinants obtained by differentiating the elements of

one row (Or column) of A and leaving the elements of the other

nI rows (or columns) unaltered. For example,

x

X

x

2x

a;
3

X 1

x

2x
4702
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The proof of the rule follows at once from Theorem 1
; since

the usual rules for differentiating a product give

Since, for example,

V(-D^
-4 dx dx

k,

dx

k

dk/dx is the sum of n determinants, in each of which one row

consists of differential coefficients of a row of A and the remain-

ing Ti1 rows consist of the corresponding rows of A.

V/l. Prove that

1 y+ a

1 a+jS a

EXAMPLES II

1 a a2

l' y f
HINT. Take c'2

== c2 ^Cj,, cj
= c3 ^jC^ where sr

= ar
+j3

r+yr
.

y/2.
Prove that

1
ft y

1 y aj

a (y-h)
2

. 3. Prove that

J 4. Prove that each of the determinants of the fourth order whose
first rows are (i) 1, j8+y-f 8, a2

, a3
; (ii) 1, a, jS

2+y2
-f S

2
, y8, is equal to

if(a,j8,y,8). Write down other determinants that equal

6. Prove that the 'skew
1

circulant

-a,
where a> runs through the n roots of 1.
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6. Prove that the circulant of order 2n whose first row is

a ai a3 ... a2n

is the product of a circulant of order n (with first row ai+an+l ,

aa++8) and a skew circulant of order n (with first row ax an+lf
aa-an+2 ,...).

7. Prove that the circulant of the fourth order with a first row
to

9. By putting x = t/"
1 in Example 8 and expanding in powers of y,

show that nHj) 9 the sum of homogeneous products of al9 a2,..., a
rt
of

degree p, is equal to

HINT. The first three factors are obtained as in Theorem 8. The

degree of the determinant in a, /?, y is /owr; so the remaining factor

must be linear in a, ]8, y and it must be unaltered by the interchange

of any two letters (for both the determinant and the product of the

first three factors are altered in sign by such an interchange).

Alternatively, consider the coefficient of 82 in the alternant (a,/?, y, S).

11. Prove that

03

1

y*

12. Extend the results of Examples 10 and 11 to determinants of

higher order.



CHAPTER II

THE MINORS OF A DETERMINANT

1 . First minors

1.1. In the determinant of order n,

the determinant of order n I obtained by deleting the row

and the column containing ar is called the minor of a
r ; and so

for other letters. Such minors are called FIRST MINORS; the

determinant of order n 2 obtained by deleting the two rows

with suffixes r, s and the two columns with letters a, b is called

a SECOND MINOR; and so on for third, fourth,... minors. We
shall denote the first minors by ar , j8r ,... .

We can expand A
/t by any row or column (Chap. I, 3.11);

for example, on expanding by the first column,

A* = ia1-a2a2 +...+ (-l)^-
1a

/l /i , (1]

or, on expanding by the second row,

An = _a2 a2+&2&-...+ (-l)^2 *2 . (2;

1.2. The above notation requires a careful consideration

of sign in its use and it is more convenient to introduce

CO-FACTORS. They are defined as the numbers

Ar,Br,...,Kr (r=l,2,...,n)

such that An
= a

i A 1+a2 A 2 -}-...+an A n

these being the expansions of Am by its various columns, and

= an An+bn Bn+...+knKn ,

these being the expansions of Aw by its various rows.
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It follows from the definition that Ar ,
B

ry ... are obtained by

prefixing a suitable sign to ar , /?r ,... .

1.3. It is a simple matter to determine the sign for any

particular minor. For example, to determine whether C2 is

+)>2 or y2 we observe that, on interchanging the first two

rows of An ,

o 69 I

b, k,

a3

a

while, by the definition of the co-factors

so that C2
= y2 .

Or again, to determine whether D3 is +S3 or S3 we observe

that An is unaltered (Theorem 3, Corollary) if we move the third

row up until it becomes thf first row, so that, on expanding by
the first row of the determinant so formed,

But An

and so /)3 S3 .

1.4. If we use the double suffix notation (Chap. I, 4), the

co-factor A rs of ars in \ars \ is, by the procedure of 1.3, ( l)
r+s~ 2

times the minor of a
rs ;

that is, A rs
is

( l)
r+s times the deter-

minant obtained by deleting the rth row and 5th column.

2. We have seen in 1 that, with Aw
=

If we replace the rth row of An , namely

(3)

by as bs ... A:s ,

where s is one of the numbers 1, 2,..., w, other than r, we thereby

get a determinant having two rows a
s bs ... ks ;

that is, we get a

determinant equal to zero. But A r ,
Br ,...,

K
r are unaffected by
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such a change in the rth row of An . Hence, for the new deter-

minant, (3) takes the form

Q = asA r+bs
Br+...+ksKr (4)

A corresponding result for columns may be proved in the

same way, and the results summed up thus:

The sum of elements of a row (or column) multiplied by their

awn co-factors is A; the sum of elements of a row multiplied by the

corresponding co-factors of another row is zero; the sum of ele-

ments of a column multiplied by the corresponding co-factors of

another column is zero.

We also state these important facts as a theorem.

THEOREM 10. The determinant A ~ (al b
2 ... kn ) may be

expanded by any row or by any column: such expansions take

one of the forms
& = a

f
A r+br Br+...+krKr , (5)

A = x^Xi+XzX2+...+xnXn , (6)

where r is any one of the numbers 1, 2,..., n and x is any one of

the letters a, 6, . . .
,
k. Moreover,

Q = a8A r+b3 Er+...+ks
K

r) (7)

= y1Xl+y2X2+...+ytl
Xn , (8)

where r, s are two different numbers taken from 1, 2,..., n and

x, y are two different letters taken from a, 6,..., k.

3. Preface to 4-6

We come now to a group of problems that depend for their

full discussion on the implications of 'rank' in a matrix. This

full discussion is deferred to Chapter VIII. But even the more

elementary aspects of these problems are of considerable

importance and these are set out in 4-6.

4. The solution of non-homogeneous linear equations

4.1. The equations

a
l x+b ly+c^ = 0, a

2x+b2 y+c2 z
=

are said to be homogeneous linear equations in x, y, z; the

equations a^x+b^y = c
ly

a2x+b2 y = c2

are said to be non-homogeneous linear equations in x, y.



THE MINORS OF A DETERMINANT 31

4.2. If it is possible to choose a set of values for z, ?/,..., t so

that the m equations

a
rx+br y+...+kr t = lr (r

= l,2,...,ra)

are all satisfied, these equations are said to be CONSISTENT. If

it is not possible so to choose the values of x, /,..., ,
the equa-

tions are said to be INCONSISTENT. For example, x+y = 2,

x y = 0, 3x 2y = 1 are consistent, since all three equations

are satisfied when x = 1, y = 1; on the other hand, x+y = 2,

xy = 0, 3x~2y = 6 are inconsistent.

4.3. Consider the n non-homogeneous linear equations, in

the n variables x, y,..., t,

arz+br y+...+kr
t = lr (r

- 1,2,.. .,71). (9)

Let A (a 1
b2 ...kn )

and let An Bn ... be the co-factors of

a
r ,
bn ... in A.

Since, by Theorem 10, J a
r
A r
= A, 2 br

A r
=

0,..., the result

of multiplying each equation (9) by its corresponding A r and

adding is

that is, A# = (/!
6
2
c3 ... in ), (10)

the determinant obtained by writing I for a in A.

Similarly, the result of multiplying each equation (9) by its

corresponding Br and adding is

Ay - liB!+...+ln Bn = (a,l2 c3 ... fcj, (11)

and so on.

When A ^ the equations (9) have a unique solution given

by (10), (11), and their analogues. In words, the solution is

* A . x is equal to the determinant obtained by putting I for a in A;

A.?/ is equal to the determinant obtained by putting I for b in A;

and so on'.f

When A = the non-homogeneous equations (9) are incon-

sistent unless each of the determinants on the right-hand sides

of (10), (11), and their analogues is also zero. When all such

determinants are zero the equations (9) may or may not be con-

sistent: we defer consideration of the problem to a later chapter.

f Some readers may already be familiar with different forms of setting out

this result the differences of form are unimportant.
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5. The solution of homogeneous linear equations

THEOREM 11. A necessary and sufficient condition that values,

not all zero, may be assigned to the n variables x, ?/,..., t so that

the n homogeneous equations

a
r x+br y+...+kr t = (r

-
l,2,...,n) (12)

hold simultaneously is (al b2 ... kn )
= 0.

5.1. NECESSARY. Let equations (12) be satisfied by values

of#, ?/,..., not all zero. LetA^E (al b
2 ...&) and let A r ,

JBr ,... be

the co-factors of ar ,
br ,...

in A. Multiply each equation (12) by its

corresponding A r and add; the result is, as in 4.3, A# == 0.

Similarly, AT/ = 0, Az = 0,..., A = 0. But, by hypothesis, at

least one of x, ?/,..., t is not zero and therefore A must be zero.

5.2. SUFFICIENT. Let A = 0.

5.21. In the first place suppose, further, that A^^to.
Omit r = 1 from (12) and consider the nl eqxiations

bry+cr z+ ...+ kr t = -ar x (r
=

2,3,...,rc), (13)

where the determinant of the coefficients on the left is Av

Then, proceeding exactly as in 4.3, but with the determinant

A
l
in place of A, we obtain

Az =
(b2 3 d4 ... kn)x = C^x,

and so on. Hence the set ofvalues

x = A& y = B^, z = C^f, ...,

where ^ ^ 0, is a set, not all zero (since A^ ^ 0), satisfying the

equations (13). But

1 4 1+61 51+... = A = 0,

and hence this set of values also satisfies the omitted equation

corresponding to r = I. This proves that A = is a sufficient

condition for our result to hold provided also that A ^ 0.

If A l
= and some other first minor, say C89 is not zero, an

interchange of the letters a and c, of the letters x and z, and of

the suffixes 1 and s will give the equations (12) in a slightly

changed notation and, in this new notation, A l (the C8 of the

old notation) is not zero. It follows that if A = and if any one
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first minor of A is not zero, values, not all zero, may be assigned

to x, y,..., t so that equations (12) are all satisfied.

5.22. Suppose now that A = arid that every first minor of

A is zero; or, proceeding to the general case, suppose that all

minors with more than R rows and columns vanish, but that at

least one minor with R rows and dplumns does not vanish.

Change the notation (by interchanging
letters and interchang-

ing suffixes) so that one non-vanishing minor of R rows is the

first minor of a in the determinant (ax
62 ... en+l ), where e

denotes the (JK+lJth letter of the alphabet.

Consider, instead of (12), the R+l equations

a
r x+br y+...+er \ = (r

= 1,2,..., R+l), (12')

where A denotes the (/?+l)th variable of the set x, y,... . The

determinant A' EE (a^ b2 ... eR+l )
= 0, by hypothesis, while the

minor of at
in A' is not zero, also by hypothesis. Hence, by

5.21, the equations (12') are satisfied when

* = 4i, y=B^ ..., A = J0;, (14)

where A[, B[,.,. are the minors of a
l9

61} ... in A'. Moreover,

A[ 7-0.

Further, if E+ 1 < r < n,

being the determinant formed by putting ar ,
b
ry ... for av blt ... in

A', is a determinant of order JR+1 formed from the coefficients

of the equations (12); as such its value is, by our hypothesis,

zero. Hence the values (14) satisfy not only (12
7

), but also

arx+br y+...+er X = (R+l < r < n).

Hence the n equations (12) are satisfied if we put the values (14)

for x, y,..., A and the value zero for all variables in (12) other

than these. Moreover, the value of a; in (14) is not zero.

6. The minors of a zero determinant

THEOREM 12. //A = 0,

4702
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If A = and if, further, no first minor of A is zero, the co-

factors of the r-ih row (column) are proportional to those of the

s-ih row (column); that is,

A r = ^ = = K'

"A. BS

-
~K;

Consider the n equations

arx+br y+...+kr t = (r=l,2,...,n). (15)

They are satisfied by x = Av y = B
l9 ..., t = K^, for, by

Theorem 10,

a
1
^ 1+61 51+...+i1 1̂

= A = 0,

arA l+br B1+...+krK1
=

(r
= 2,3,...,n).

Now let s be any one of the numbers 2, 3,..., n, and consider

the Ti1 equations

bry+cr z+...+kr t = -a
r
x (r ^ s).

Proceeding as in 4.3, but with the determinant A8 in place of

A, we obtain

(&! c2 ... kn)y = (al
c2 ... kn )x,

(6i c2 ... kn )z = (6X 2 d3 ... iw )a;,

and so on, there being no suffix s. That is, we have

A 8 y = Bs x, A
s z
= Cs x, ....

These equations hold whenever x, y,..., t satisfy the equations

(15), and therefore hold when

x = Av y = Bv ..., t = Kv
Hence -4^! = ^^, AS C1

= A 1 C8 , .... (16)

The same method of proof holds when we take

x = A r , y=Sr , ..., t = K,,

with r 7^ 1, as a solution of (15). Hence our general theorem is

proved.

If n first minor is zero, we may divide the equation

A r
B8
= A s

B
r by A 8

B
8 , etc., and so obtain

dr 5: -~^r (17)
A 7?

*" V' V
if

/A
8

B8 K8
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Working with columns instead of rows, we have

_J: 2 = =-

and so for other columns.

EXAMPLES III

*
1 . By solving the equations

arx+ br
y+ crz+ dr

t = ar
(r
= 0, 1,2, 3),

prove that

2 {^\{a~
C

c){a~d}
ar= <*' <

r = ' l > *> 3) "

a

Obtain identities in o, 6, c, d by considering the coefficients of powers
of a.

%/2. If A denotes the determinant

a h g
h b f
9 f c

and G, F, C are the co-factors of g, f, c in A, prove that

aG2 -\-2hFG+bF2
-}-2gGC-\-2fFC-}-cC

2 = <7A.

HINT. Use aG -\-hF-\-gC 0, etc.

3. If the determinant A of Example 2 is equal to zero, prove that

EC = F2
, GH = AF,..., and hence that, when C -f- 0,

Prove also that, if a,..., h are real numbers and C is negative, jbhen

so also are A and B. [A = be /
2

, F = ghaf, etc.]

v/ 4. Prove that the three lines whose cartesian equations are

ar x+br y+cr
- (r = l,2,3)

are concurrent or parallel if (Oi&2 c3)
= 0-

HINT. Make equations homogeneous and use Theorem 1 1 .

5. Find the conditions that the four planes whose cartesian equations

are ar x-\-br y-\~cT z-\-dr (r
= 1, 2, 3, 4) should have a finite point in

common.

6. Prove that the equation of the circle cutting the three given circles

x*+y*+ 2grx+2fr y+ cr
= (r = 1, 2, 3)

orthogonally is

ffi A

03

0.
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By writing the last equation as

!+ y = 0,

prove that the circle in question is the locus of the point whose polars

with respect to the three given circles are concurrent.

7. Express in determinantal form the condition that four given
circles may have a common orthogonal circle.

8. Write down ,

P

1

3 3
y

3 XZ

as a product of factors, and, by considering the minors of x, x2 in the

determinant and the coefficients of x, x2 in the product of the factors,

evaluate the determinants of Examples 10, 11 on p. 27.

9. Extend the results of Example 8 to determinants of higher orders.

7. Laplace's expansion of a determinant

7.1. The determinant

can be expressed in the form

^(-lfar ba ct
...ke , (18)

where the sum is taken over the n\ ways of assigning to r, 5,...,

the values 1, 2,..., n in some order and N is the total number of

inversions in the suffixes r
y s,...,6.

We now show that the expansions of An by its rows and

columns are but special cases of a more general procedure. The

terms in (18) that contain ap b
q , when p and q are fixed, con-

stitute a sum
ap b

q(AB)pq = ap b
q^ct

...ke (19)

in which the sum is taken over the (n 2)! ways of assigning

to ,..., 6 the values 1, 2,..., n, in some order, excluding p and q.

Also, an interchange of any two letters throughout (19) will

reproduce the same set of terms, but with opposite signs pre-
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fixed, since this is true of (18). Hence, by the definition of a

determinant, either + (AB)pq or (AB)pq is equal to the deter-

minant of order n 2 obtained by deleting from Aw the first and

second columns and also the pth and qth rows. Denote this

determinant by its leading diagonal, say (ct
du ...k0), where

, u,..., 6 are 1, 2,..., n in that order but excluding p and q.

Again, since (18) contains a set of terms ap b
q(AB)pq and an

interchange of a and 6 leaves (AB)pq unaltered, it follows

(from the definition of a determinant) that (18) also contains

a set of terms a
q
bp(AB)pq . Thus (18) contains a set of terms

(ap b
q
-a

q
bp)(AB)pq .

But we have seen that (AB)pq = (ct
d u ...ke ), and the deter-

minant ap b
q

a
q
bp may be denoted by (ap b

q ), so that a typical

set of terms in (18) is

(<*p b
q)(ci

d u ...ke ).

Moreover, all the terms of (18) are accounted for if we take all

possible pairs of numbers p, q from 1, 2,..., n. Hence

An
= IKA)M-^)>

where the sum is taken over all possible pairs p, q.

In this form the fixing of the sign is a simple matter, for the

leading diagonal term ap b
q
of the determinant (ap b

q )
is pre-

fixed by plus, as is the leading diagonal term c
t
d u ...k0 of the

determinant (ct
du ...ko). Hence, on comparison with (18),

A = 2(-l)*(aA)M-^)> (20)

where

(i) the sum is taken over all possible pairs p, q,

(ii) t, u y ..., 6 are 1, 2,..., n in that order but excluding p and q,

(iii) N is the total number of inversions of suffixes in

p, q, t,u,..., 0.

The sum (20) is called the expansion ofA ;lby its first two columns.

7.2. When once the argument of 7.1 has been grasped it is

intuitive that the argument extends to expansions such as

.ke ) 9 (21)

and so on. We leave the elaboration to the reader.
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The expansion (20) is called an expansion of A
/t by second

minors, (21) an expansion by third minors, (22) an expansion

by fourth minors, and so on.

Various modifications of 7.1 are often used. In 7.1 we

expanded A ;l by its first two columns: we may, in fact, expand
it by any two (or more) columns or rows. For example, Aw is

equal to

Co

as we see by interchanging a and c and also 6 and d. The

Laplace expansion of the latter determinant by its first two

columns may be considered as the Laplace expansion of Aw by
its third and fourth columns.

7.3. Determination of sign in a Laplace expansion

The procedure of p. 29, 1.4, enables us to calculate with ease

the sign appropriate to a given term of a Laplace expansion.

Consider the determinant A = |ars |,
that is, the determinant

having a
rs as the element in its rth row and sth column, and

its Laplace expansion by the

This expansion is of the form

and s
2
th columns (sl < s

2 ).

(23)

where (i) A(rl9 r2
'

9
8
l9
82 ) denotes the determinant obtained by

deleting the rx th and r2 th rows as also the ^th and s2 th

columns of A, and (ii) the summation is taken over all possible

pairs rv r2 (rx < r
2 ).

Now, by 1.4 (p. 29), the terms in the expansion of A that

involve a
fi8i

are given by

where A(r1 ;51 ) is the determinant obtained by deleting the rx th

row and ^th column of A. Moreover, since rl < r2 and ^ < s2 ,

the element ar^ appears in the (r2 l)th row and (s2 l)th
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column of A^;^); hence the terms in the expansion o

that involve a
r^ St

are given by

for &(rv r
2 ]sv s

2 ) is obtained from A^
and column containing #

riSa

Thus the expansion of A contains the term

by deleting the row

and therefore the Laplace expansion of A contains the term

( 1 Nri+ri-Ui+Sa

(24)

That is to say, the sign to be prefixed to a term in the Laplace

expansion is ( l)
a

,
where a is the sum of the row and column

numbers of the elements appearing in the first factor of the term.

The rule, proved above for expansions by second minors,

easily extends to Laplace expansions by third, fourth,..., minors.

7.4. As an exercise to ensure that the import of (20) has been grasped,
the reader should check the following expansions of determinants.

a2 62 c2

a3 63 c3

3

ci *i

The signs are, by (20), those of the leading diagonal term products

Alternatively, the signs are, by (24),

c2 d2 e2

c3 ds e3

c4 c?4 e.

The sign is most easily fixed by (24), which gives it to be ( l)
l+5+1+2

.
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'(in) -
6 2 Ca &2

Ci

ca

c3

c4 &4

^4

whcro Aj ^ (a 2 &3 c4 ), A a
== (0364^), A3

-E (a^b l c2 ) t and A\ is the co-

factor of ar in Aa
.



CHAPTER III

THE PRODUCT OF TWO DETERMINANTS

1 . The summation convention

It is an established convention that a sum such as

ar br (1)

may be denoted by the single term

The convention is that when a literal suffix is repeated in the

single term (as here r is repeated) then the single term shall

represent the sum of all the terms that correspond to different

values of r. The convention is applicable only when, by the

context, one knows the range of values of the suffix. In what

follows \^e suppose that each suffix has the range of values

Further examples of the convention are

n
ars xs ,

which denotes 2 a
rs xsy (3)

8 = 1

n
an bjs>

which denotes 2 a
rj ^s> W

n n
ars xr xs ,

which denotes 2 ^L ars xr xs- (^)
r =l 8=1

In the last example both r and s are repeated and so we must

sum with regard to both of them.

The repeated suffix is often called a 'DUMMY SUFFIX', a curious,

but almost universal, term for a suffix whose presence implies

the summation. The nomenclature is appropriate because the

meaning of the symbol as a whole does not depend on what

letter is used for the 'dummy'; for example, both

a
rs
x
s

and a
rj x^

stand for the same thing, namely,
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f Any suffix that is not repeated is called a 'FREE SUFFIX'. On
most occasions when we are using the summation convention,

W* regfird W. (6)

not as a single expression in which r has a fixed value, but as a

typical one of the n expressions
n

^ars xs (r= l,2,...,n).
5 = 1

Thus, in (6), r is to be thought of as a suffix free to take any one

of the values 1, 2,..., n; and no further summation of all such

expressions is implied.

In the next section we use the convention in considering

linear transformations of a set of n linear equations.

2. Consider n variables x
i (i

=
1, 2,..., n) and the ft linear formsf

a
ri
x

t (r
=

l,2,...,n). (7)

When we substitute

Xt
=

*>isX, (<=l,2,,..,n), (8)

the forms (7) become

a
ri
b
i8
X

8 (r=l,2,...,n). (9)

Now consider the n equations

where c
rs

E= a
ri
b

ia
. (11)

If the determinant! \crg \

= 0, then (10) is satisfied by a set

of values Xi (i
= 1, 2,...,?i) which are not all zero (Theorem 11).

But, when the X
i satisfy equations (10), we have the n

equations ^ =^^ = ^^ = Q> (12)

and so

EITHER all the x
i
are zero,

OB the determinant \ara \

is zero (Theorem 11).

f The reader who is unfamiliar with the summation convention is recom-

mended to write the next few lines in full and to pick out the coefficient of

X9 in n / n

2
i-l

{ Compare Chap. I, 4 (p. 21).
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In the former case the n equations

t>x. = o

are satisfied by a set of values .X^ which are not all zero; that

is, \bra \

= 0.

Hence if \crs \

= 0, at least one of the determinants \ar8 \,

\brs \

is zero.

The determinant \crs \,
i.e. \ari b is \,

is of degree n in the a's

and of degree n in the ft's, and so it is indicated that

|cr,|
= *Klx|6J, (13)

where k is independent of the a's and 6's.

By considering the particular case ara
= when r --

s,

arr
= 1, it is indicated that

|cl = l|X|6w |. (14)

The foregoing is an indication rather than a proof of the

important theorem contained in (14). In the next section we

give two proofs of this theorem. Of the two proofs, the second

is perhaps the easier; it is certainly the more artificial.

3. Proofs of the rule for multiplying determinants
/*

THEOREM 13. Let \afit \ 9 \bra \

be two determinants of order n;

then their product is the determinant |crj, where

3.1 . First proof a proof that uses the double suffix notation.

In this proof, we shall use only the Greek letter a as a dummy
suffix implying summation: a repeated Roman letter will not

imply summation. Thus

a
lOL

b
0il

stands for a
11

6 11+a12 6 2i+--

a
lr
brl stands for the single term; e.g. if r 2, it stands for

a12 fc21 .

Consider the determinant \cpq \

written in the form
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and pick out the coefficient of

in the expansion of this determinant. This we can do by con-

sidering all alx other than alr to be zero, all a2x other than a2s

to be zero, and so on. Doing this, we see that the terms of \cpq \

that contain (15) as a factor are given byf

alr brl a
ir
br2

a
2s bs2

anz bzl anz bz2

2s bsn

anz bzn

brl br2

bsl bs2

l Z2 '
z

Unless the numbers r, 5,..., z are all different, the *&' deter-

minant is zero, having two rows identical. When r, $,..., z are

the numbers 1, 2,..., n in some order, the '6' determinant is

equal to (l)N \bpq \,
whereN is the total number of inversions of

the suffixes in r, 5,..., z (p. 11, 2.2, applied to rows). Hence

where the summation is taken over the n\ ways of assigning

tor, 5,..., z the values 1, 2,..., n in some order and N is the

total number of inversions of the suffixes r, 5,..., z. But the

factor multiplying \bpq \

in (16) is merely the expanded form of

|a |,
so that

*
pq

3.2. Second proof a proof that uses a single suffix notation.

Consider, in the first place,

A =

Then

(17)

t Note that air bn stands for a single term.
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as we see by using Laplace's method and expanding the deter-

minant by its last two columns.

In the determinant (17) take

using the notation of p. 17, 3.5. Then (17) becomes

a
1 1+6 1

a
2 aij81+6 1 ]

AA' =

1

-1

and so, on expanding the last determinant by its first two

columns, _ _
(18)

The argument extends readily to determinants of order n.

Let A = (al
b
2 ...kn ), A' = (a^ *n )- The determinant

! ki . .

kn

1

in which the bottom left-hand quarter has 1 in each element

of its principal diagonal and elsewhere, is unaltered if we

write

*
= r2+a2

rn +1+b2 rn+2+...+k2 r2H ,

Hence
r =

. .

.

.

I

Ki
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When we expand the last determinant by its first n columns,

the only non-zero term is (for sign see p. 39, 7.3)

-10.0
-1

. -1
= (_l)n

an !+ ...-

Moreover, 2n is an even number and so the sign to be prefixed

to the determinant is always the plus sign. Hence

ln *n a
/i

Kn

which is another way of stating Theorem 13.

(19)

4. Other ways of multiplying determinants

The rule contained in Theorem 13 is sometimes called the

matrix^ rule or the rule for multiplication of rows by columns. In

forming the first row of the determinant on the right of (19) we

multiply the elements of the first row of A by the elements

of the successive columns of A'; in forming the second row

of the determinant we multiply the elements of the second

row of A by the elements of the successive columns of A'. The

process is most easily fixed in the mind by considering (18).

A determinant is unaltered in value if rows and columns are

interchanged, and so we can at once deduce from (18) that, if

A' =
A*

then (18) may also be written in the forms

AA' =

AA' =

(20)

(21)

f See Chapter VI.
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In (20) the elements of the rows of A are multiplied by the

elements of the rows of A'; in (21) the elements of the columns

of A are multiplied by the elements of the columns of A'. The

first of these is referred to as multiplication by rows, the second

as multiplication by columns.

The extension to determinants of order n is immediate:

several examples of the process occur later in the book. In the

examples that follow multiplication is by rows: this is a matter

of taste, and many writers use multiplication by columns or by
the matrix rule. There is, however, much economy of thought if

one consistently uses the same method whenever possible.

EXAMPLES IV

A number of interesting results can be obtained by applying the rules

for multiplying determinants to particular examples. We shall arrange
the examples in groups and we shall indicate the method of solution

for at least one example in each group.

1. (<*-y)
2

o

The determinant is the product by rows of the two determinants

y
2

2a 1

1

1

-2)8

-2y

1 a a2

ft

7 y
2

By Theorem 8, tlx) first of these is equal to 2(/? y)(y a)(a /?)
and the

second to
(j8 y)(y a)(a ]8).

[In applying Theorem 8 we write down the product of the differences

and adjust the numerical constant by considering the diagonal term of

the determinant.]

\/2. The determinant of Example 3, p. 19, is the product by rows of the

two determinants

and so is zero.

3. Prove that the determinant of order n which has (ar ag )* as the

element in the rth row and 5th column is zero when n > 3.

4. Evaluate the determinant of order n which has (or a,)
3 as the

element in the rth row and 5th column: (i) when n = 4, (ii) when
n > 4.
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'5. Extend the results of Examples 3 and 4 to higher powers of ar a8 .

/6. (Harder.) Prove that

(a-x)3
(a-?/)

3 (a-z)3 a3

(6 x)
3

(b 2/)
3

(6 z)
3 63

(c x)
3

(c y)
3

(c z)
3 c3

x3
y
3 z3

= 9a6rx^/z(6 c)(c~a)(a b)(y z)(z x)(x y).

7. (Harder.) Prove that

(a-x)
2

(a-?/)
2 (a-z)

2 a2

(b x)
2

(6 i/)
2

(b-z)
2 62

(c-x)
2

(c-y)
2

(c-z)
2 c2

is zero when k = 1, 2 and evaluate it when k and when k > 3.

u8. Prove that, if sr
= ar

+jS
r+yr+8r

, then

1 1

a
ft

a

I

8

82

S3

Hence (by Theorem 8) prove that the first determinant is equal to the

product of the squares of the differences of a, , y, 8; i.e. {(a,/?,y, 8)}
2

.

^ 9. Prove that (x a)(x j3)(x y)(x 8) is a factor of

A ==

1 X X2 X3 X4

and find the other factor.

Solution. The arrangement of the elements sr in A indicates the pro-

duct by rows (vide Example 8) of

1 1 1

8

S2

83

1 1 1

y
4

i

8

82

83

8*

If we have anything but O's in the first four places of the last row of

A!, then we shall get unwanted terms in the last row of the product

A! A 2 . So we try 0, 0, 0, 0, 1 as the last row of A! and then it is not

hard to see that, in order to give A! A 2
= A, the last column of A 2 must

be \j x, x2
, x3

, x4
.

The factors of A follow from Theorem 8.
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'. Prove that, when sr = ar
-}-jS

r
-hy

r
,

111
ft y

111
y

a3
j8

3
y

3

Note how the sequence of indices in the columns of the first deter-

minant affects the sequence of suffixes in the columns of the last

determinant.

v/11. Find the factors of

52 54 SS

SA So So

*1 *2 3 *8

1 X*

where sr
= ar

-f
r
-fy

r
.

12. Extend the results of Examples 8-11 to determinants of higher
orders.

13. Multiply the determinants of the fourth order whose rows are

given by

*H2/
2
r
- 2*r -22/r 1; 1 xr yr x*

r+ y*

and r = 1, 2, 3, 4. Hence prove that the determinant |o r ,,|,
where

or,
= (xr

x
a )

z+ (yr yaY> zero whenever the four points (<Kr,yT ) are

concyclic.

14. Find a relation between the mutual distances of five points on

a sphere.

15. By considering the product of two determinants of the form

a+ ib c-}~id

-(cid) a ib

prove that the product of a sum of four squares by a sum of four squares

is itself a sum of four squares.

16. Express a3
-f 6

3+ c3 3a6c as a circulant (p. 23, 5.2) of order

three and hence prove that (a*+ bs+ c*-3abc)(A*+ B3+C*-3ABC)
may be written in the form X3+F3+ Z3 3XYZ.

Prove, further, that if A = a2
6c, B = 62

ca, C = c2 a&, then

17. If X
of(x,y);Sn
and that

4702

-hy, Y = hx-\ by; (x^y^, (x2;y2 ) two sets of values

ti+ yiY19 Sl2 XiXt -\-yl
Y2t etc.; prove that*S\a

= S2l

Sn
/* 6

H
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ISA. (Harder.) Using the summation convention, let S^.ars x
rxs

,

where a:
1

,
x2

,..., x n are n independent variables (and not powers of x),

be a given quadratic form in n variables. Let Xr^ a
rs x%; AjU

= xr

^Xr^
wliere (rrj, a^,..., x%), A = !,. ^> denotes n sets of values of the variables

or
1
, x2

,..., xn
. Prove that

18s. (Easier.) Extend the result of Example 17 to three variables

(.r, T/, z) and the coordinates of three points in space, (xlt y lt z^), (xz , i/ 2 z 2 ),

5. Multiplication of arrays

5.1. First take two arrays

y\

in which the number of columns exceeds the number of rows,

and multiply them by rows in the manner of multiplying

determinants. The result is the determinant

A =
(1)

If we expand A and pick out the terms involving, say,

A 72 we see ^ia^ they are /^yo^jCg b
2
c
1 ). Similarly, the terms

in P*yi are (bl c2 b2 cl ). Hence A contains a term

where (b 1
c2 ) denotes the determinant formed by the last two

columns of the first array in (A) and (^72) the corresponding

determinant formed from the second array.

It follows that A, when expanded, contains terms

(ftiC2 )(j81 y2 )+ (c 1 a2)(y1 a2 )+ (a1 62)(a1 j88 ); (2)

moreover (2) accounts for all terms that can possibly arise from

the expansion of A. Hence A is equal to the sum of terms in

(2); that is, the sum of all the products of corresponding deter-

minants of order two that can be formed from the arrays in (A).

Now consider a, b,...,k,...,t, supposing k to be the nth letter

and t the Nth, where n < JV; consider also a corresponding

notation in Greek letters.
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The determinant, of order n, that is obtained on multiplying

by rows the two arrays

IS

a
/i *n ^n

A EE

(3)

This determinant, when expanded, contains a term (put all

letters after k, the nth letter, equal to zero)

(4)

which is the product of the two determinants (a l
b
2 ... kn )

and

(! j82
... Kn ). Moreover (4) includes every term in the expansion

of A containing the. letters a, 6,..., k and no other roman letter.

Thus the full expansion of A consists of a sum of such products,

the number of such products being
NC

tt ,
the number of ways of

choosing n distinct letters from N given letters. We have there-

fore proved the following theorem.

THEOREM 14. The determinant A, of order n, which is obtained

on multiplying by rows two arrays that have N columns and n

roles, where n < N, is the sum of all the products of corresponding

determinants of order n that can be formed from the two arrays.

5.2. THEOREM 15. The determinant of order n which is

obtained on multiplying by rows two arrays that have N columns

and n rows, where n > N, is equal to zero.

The determinant so formed is, in fact, the product by rows

of the two zero determinants of order n that one obtains on

adding (nN) columns of ciphers to each array. For example,
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is obtained on multiplying by rows the two arrays

a
z bz

! ft

<*3

and is also obtained on multiplying by rows the two zero

determinants

*3 *>3 ft

EXAMPLES V
1. The arrays

1 000 1

1

*J+ 2/J -2.r4 -2</4 1 1 *4 2/4

have 5 rows and 4 columns. By Theorem 15, the determinant obtained

on multiplying them by rows vanishes identically. Show that this result

gives a relation connecting the mutual distances of any four points in

a plane.

2. Obtain the corresponding relation for five points in space.

3. If a, )3, y,... are the roots of an equation of degree n, and if sr

denotes the sum of the rth powers of the roots, prove that

HINT. Compare Example 8, p. 48, and Theorem 14.

4. Obtain identities by evaluating (in two ways) the determinant

obtained on squaring (by rows) the arrays

(i) a b c (ii) abed
a' b' c' a' b' c' d f

5. In the notation usually adopted for conies, let

S ^axz+ ...+ 2fyz+ ...,

X ^ ax+ hy+gz, Y == hx+ by+fz, Z ^ gx+fy-\-cz t
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let A t B,..., H be the co-factors of a, 6,..., h in the discriminant of S.

Let =
2/iZ2 2/2 2i *?

= Zi#2 22 ^i = ^12/2 ^22/1- Then

Solution. The determinant is

which is the product of arrays

*i 2/i 2 i

t 2/a z2

and so is

But (Yj Z 2 ), when written in full, is

2 F2

x2+ byi +/z2

which is the product of arrays

x
l y L Zi h b f

*2 2/2 Z 2 9 f C

and so is ^4f 4-//7y-|-G.
Hence the initial determinant is the sum of three terms of the type

6. The multiplication of determinants of different orders

It is sometimes useful to be able to write down the product
of a determinant of order n by a determinant of order m. The

methodf of doing so is sufficiently exemplified by considering

the product of (a^ 62
c3 ) by (^ /?2 ),

We see that the result is true by considering the first and last

determinants when expanded by their last columns. The first

member of the above equation is

I learnt this method from Professor A. L. Dixon.
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while the second is, by the rule for multiplying two determinants

of the same order,

the signs having the same arrangement in both summations.

A further example is

d,

4 ^4 C4 ^4

X ft

a result which becomes evident on considering the Laplace

expansion of the last determinant by its third and fourth

columns.

The reader may prefer the following method:

3

X ft

ft #2 &2 C2

a3 63 c3

X o

1

3 al+ *3ft a
3 a2

This is, perhaps, easier if a little less elegant.



CHAPTER IV

JACOBI'S THEOREM AND ITS EXTENSIONS

I . Jacobi's theorem

THEOREM 16. Let A r ,
B

r ,... denote the co-factors of an 6r ,... in

a determinant A _ , , ,
xa = (al

o2 ... /c
)t ).

Then A' == (A 1
B

2 ... Kn )
= A"- 1

.

Ifwe multiply by rows the two determinants

A -- a
t

b
l

. . X'
t

an bn

A' = A, B, . .

B
we obtain AA' = A . .

A . .

. . A

for a
r A 8+br B8+ ...-{- krK8 is equal to zero when r -- s and is

equal to A when r = s.

Hence AA' A 71
,

so that, when A ^ 0, A' = A 71- 1
.

But when A is zero, A' is also zero. For, by Theorem 12, if

A = 0, then A r Bs A s Br
= 0, so that the Laplace expansion

of A' by its first two columns is a sum of zeros.

Hence when A = 0, A' = = A 71- 1
.

DEFINITION. A' is called the ADJUGATE determinant of A.

THEOREM 17. With the notation of Theorem 16, the co-factor of

A
l in A' is equal to 1A /l~ 2

; and so for other letters and suffixes.

When we multiply by rows the two determinants
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we obtain

A
a.

. . A

wherein all terms to the left of and below the leading diagonal

are zero. Thus

A B9 . . K

When A = 0, this gives the result stated in the theorem. When
A = 0, the result follows by the argument used when we con-

sidered A' in Theorem 16; each Br Cs
B8 Cr is zero.

Moreover, if we wish to consider the minor of Jr in A', where

J is the 5th letter of the alphabet, we multiply by rows

(1)

where the j's occur in the rth row and the only other non-zero

terms are A's in the leading diagonal. The value of (1) is

2. General form of Jacobi's theorem

2.1. Complementary minors. In a determinant A, of

order n, the elements of any given r rows and r columns, where

r < n, form a minor of the determinant. When these same rows

and columns are excluded from A, the elements that are left form
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a determinant of order n r, which, when the appropriate sign

is prefixed, is called the complementary minor of the original

minor. The sign to be prefixed is determined by the rule that

a Laplace expansion shall always be of the form

where yn^r is the minor complementary to ^r . Thus, in

*2 c2 d2
(1)

the complementary minor of

is

since the Laplace expansion of (1) by its first and third columns

involves the term +(d1 C3)(b2 d4 ).

THEOREM 18. With the notation of Theorem 16, let $Jlr be a

minor of A' having r rows and columns and let yn_r be the comple-

mentary minor of the corresponding minor of A. Then

CYT> Ar 1 /O\
MJf = v Z\ . l5)T / fl ~~T

^"^
\ /

In particular, if A is the determinant (1) above, then t in the

usual notation for co-factors,

A.

Let us first dispose of the easy particular cases of the theorem.

If r = 1, (3) is merely the definition of a first minor; for example,

A l in (1) above is, by definition, the determinant (b2 c3 d4 ).

If r > 1 and A = 0, then also 9Wr
= 0, as we see by Theorem 12.

Accordingly, (3) is true whenever r ~ 1 and whenever A 0.

It remains to prove that (3) is true when r > 1 and A ^ 0.

So let r > 1, A ^ 0; further, let /zr be the minor of A whose

elements correspond in row and column to those elements of

A' that compose 2Rr . Then, by the definition of complementary

minor, due regard being paid to the sign, one Laplace expansion
4702 j
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of A must contain the term

in the form
r-

Hence A may be written

other

elements

other

elements

It is thus sufficient to prove the theorem when 9W is formed from

the first r rows and first r columns of A'; this we now do.

Let -4,..., E be the first r letters, and let JP,..., K be the next

n r letters of the alphabet. When we form the product

AI . . E FI . . Aj_ X

. . 1 . .

. . . . 1 an . . en fn . . kn

where the last nr elements of the leading diagonal of the first

determinant are 1 's and all other elements of the last nr rows

are O's, we obtain

A . . . .

. . A . .

/I fr fr+l fn

If If bKr *>+! Kn

That is to say,

and so (3) is true whenever r > 1 and A ^ 0.



CHAPTER V

SYMMETRICAL AND SKEW-SYMMETRICAL
DETERMINANTS

1. The determinant \an \
is said to be symmetrical if ars

= aw
for every r and s.

The determinant \ars \
is said to be skew-symmetrical if

ar8
= aw for every r and s. It is an immediate consequence

of the definition that the elements in the leading diagonal of

such a determinant must all be zero, for a^ = #..

2. THEOREM 19. A skew-symmetrical determinant of odd order

has the value zero.
*

The value of a determinant is unaltered when rows and

columns are interchanged. In a skew-symmetrical deter-

minant such an interchange is equivalent to multiplying each

row of the original determinant by 1, that is, to multiply-

ing the whole determinant by (l)n
. Hence the value of

a skew-symmetrical determinant of order n is unaltered when

it is multiplied by ( l)
w

;
and if n is odd, this value must

be zero.

3. Before considering determinants of even order we shall

examine the first minors of a skew-symmetrical determinant of

odd order.

Let Ar8 denote the co-factor of ara ,
the element in the rth

row and 5th column of |arg |,
a skew-symmetrical deter-

minant of odd order; then Ara is ( l)*-
1^, that is,

A^ = Ar8 . For An and Av differ only in considering column

for row and row for column in A, and, as we have seen

in 2, a column of A is (1) times the corresponding row;

moreover, in forming Ars we take the elements of n1
rows of A.

4. We require yet another preliminary result: this time one

that is often useful in other connexions.
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THEOREM 20. The determinant

au
a22

s

(1)

(2)

ra is the co-factor of a^ in \ars \.

The one term of the expansion that involves no X and no

Y is \ars \S. The term involving Xr Ys is obtained by putting

S, all X other than JCr ,
and all Y other than 7, to be zero. Doing

this, we see that the coefficient ofXrYs is A rs . But, consider-

ing the Laplace expansion of (1) by its rth and (n-fl)th rows,

we see that the coefficients of Xr
YH and of ars S are of opposite

sign. Hence the coefficient of Xr
Y
s is A rs . Moreover, when

A is expanded as in Theorem 1 (i) every term must involve

either S or a product XrYs . Hence (2) accounts for all the

terms in the expansion of A.

5. THEOREM 21. A skew-symmetrical determinant of order 2n is

the square of a polynomial function^fits elements.

In Theorem 20, let \ars \

be a skew-symmetrical determinant

of order 2?i 1
;
as such, its value is zero (Theorem 19). Further,

let Yr = Xr ,
S = 0, so that the determinant (1) of Theorem 20

is now a skew-symmetrical determinant of order 2n. Its value is

ZA rs
XrXs . (3)

Since \ars \

= 0, A rsA sr
= A rrA ss (Theorem 12), or A*s

= A rrA ss ,

and A rl/An = AJA ls ,
or A rs

= A lrAJA tl . Hence (3) is

(Z1 V4 11 Z2 V4 22 ...iV4nB ), (4)

where the sign preceding Xr is (1)^, chosen so that

Now ^4n ,..., A nn are themselves skew-symmetrical deter-

minants of order 2n 2, and if we suppose that each is the

square of a polynomial function of its elements, of degree n 1,
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then (4) will be the square of a polynomial function of degree n.

Hence our theorem is true for a determinant of order 2n if it is

true for one of order 2n 2.

But
an

-n
= a?

and is a perfect square. Hence our theorem is true when n = 1.

It follows by induction that the theorem is true for all

integer values of n.

6. The Pfaffian

A polynomial whose square is equal to a skew-symmetrical
determinant of even order is called a Pfaffian. Its properties

and relations to determinants have been widely studied.

Here we give merely sufficient references for the reader to

study the subject if he so desires. The study of Pfaffians,

interesting though it may be, is too special in its appeal to

warrant its inclusion in this book.

G. SALMON, Lessons Introductory to the Modern Higher Algebra (Dublin,

1885), Lesson V.

S. BARNARD and J. M. CHILD, Higher Algebra (London, 1936), chapter ix,

22.

Sir T. MUIR, Contributions to the History of Determinants, vols. i-iv

(London, 1890-1930). This history covers every topic of deter-

minant theory; it is delightfully written and can be recommended
as a reference to anyone who is seriously interested. It is too

detailed and exacting for the beginner.

EXAMPLES VI (MISCELLANEOUS)

1. Prove that

where A rs is the co-factor of ars in \ara \.

If a rs a8r and \ar8 \

= 0, prove that the above quadratic form may
be written as . A v .



62 EXAMPLES VI

n n
2. If S = 2 2,an xr xt ,

r-i i-i
that

ar$ , and A; < n, prove

a
fct

is independent of a?!, *..., xk .

HINT. Use Example 1, consider BJ/dxu , and use Theorem 10.

3. A! = (at 6,c4 ), A a
= (oa &4 ci) AS = (a4 6 1 cl ) A4

= (^6,03), and

A} is the co-factor of ar in A,. Prove that A\ = A\, that A\ A\,

and that

JS J3 Al21 1 -^a -^j

B? BJ B\

C\ CJ (7}

= 0,

BJ BJ

Cl C\

HINT. B\C\ B\C\ = a4 A$ (by Theorem 17): use Theorem 10.

4. A is a determinant of order n, ar, a typical element of A, A ri the

co-factor of afj in A, and A 7^ 0. Prove that

=

whenever

an+x

+x

= 0.

6. Prove that

1 sin a cos a sin2a cos2a

1 sin/? cos/? sin 2/9 cos2j8
1 siny cosy sin2y cos2y
1 sin 8 cos 8 sin 28 cos 28

1 sine cose sin2e cos2e

with a proper arrangement of the signs of the differences.

6. Prove that if A = |ari |
and the summation convention be used

(Greek letters only being used as dummies), then the results of Theorem
10 may be expressed as

t^r = = ar^A tti
when r =56 a,

&**A mr = A = Qr-A*.. when r = *.
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Prove also that if n variables x are related to n variables X by the

transformation X̂r
= r*

then &x8
= A^X^

7. Prove Theorem 9 by forming the product of the given circulant

by the determinant (o^, 0*3,..., o>J), where Wi 9 ... t a)n are distinct nth roots

of unity.

8. Prove that, if fr(a) = gr(a) hr(a) when r = 1, 2, 3, then the

determinant

whose elements are polynomials in x, contains (x a)
2 as a factor.

HINT. Consider a determinant with c{ = c^ c,, c^ = c, ca and use

the remainder theorem.

9. If the elements of a determinant are polynomials in x, and if r

columns (rows) become equal when x o, then the determinant has

(xa)r~ l as a factor.

10. Verify Theorem 9 when n = 5, ox
= a4

= a5
= 1, a, = a, and

as
= a1 by independent proofs that both determinant and product are

equal to
(o

i+o+ 3) (a_ l)4(a + 3a3+ 4a + 2a-f 1).
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CHAPTER VI

DEFINITIONS AND ELEMENTARY PROPERTIES

1. Linear substitutions
'

We can think of n numbers, real or complex, either as separate

entities xlt #
2 ,..., xn or as a single entity x that can be broken

up into its n separate pieces (or components) if we wish to do

so. For example, in ordinary three-dimensional space, given
a set of axes through and a point P determined by its

coordinates with respect to those axes, we can think of the

vector OP (or of the point P) and denote it by x, or we can

give prominence to the components x
ly x^ #3 of the vector along

the axes and write x as (xv x2,x^).

When we are thinking of x as a single entity we shall refer to

it as a 'number'. This is merely*a slight extension of a common

practice in dealing with a complex number z, which is, in fact,

a pair of real numbers x, y."\

Now suppose that two 'numbers' x, with components xl9 x2 ,... y

xn ,
and X, with components XI9 X2 ,...,

Xn ,
are connected by

a set of n equations

Xr
= arl xl+ar2 x2+...+arn xn (r

=
1,..., n), (I)

wherein the a
rs

are given constants.

[For example, consider a change of axes in coordinate geo-

metry where the xr and Xr are the components of the same

vector referred to different sets of axes.]

Introduce the notation A for the set of n2 numbers, real or

complex, n n nan aia . . aln

and understand by the notation Ax a 'number' whose components
are given by the expressions on the right-hand side of equations

(1). Then the equations (1) can be written symbolically as

X = Ax. (2)

f Cf. G. H. Hardy, Pure Mathematics, chap. iii.
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The reader will find that, with but little practice, the sym-
bolical equation (2) will be all that it is necessary to write when

equations such as (1) are under consideration.

2. Linear substitutions as a guide to matrix addition

It is a familiar fact of vector geometry that the sum of a

vector JT, with components Xv X2 , JT3 , and a vector Yy
with

components Yly Y2 ,
73 , is a vector Z, or X+Y, with components

Consider now a 'number' x and a related 'number' X given by

X = Ax, (2)

where A has the same meaning as in 1. Take, further, a second

'number' Y given by Y = Bx (3)

where B symbolizes the set of n2 numbers

6n 618 . . bln

bnl bn* bnn

and (3) is the symbolic form of the n equations

Yr = ^*l+&r2*2+-"+&rn#n (
r = *> 2i-i n)'

We naturally, by comparison with vectors in a plane or in

space, denote by X-\-Y the 'number
9

with components Xr+Yr .

But

Xr+Yr
= (arl+6rlK+(ar2+6r^a+...+ (arn+&rnK,

and so we can write

X+Y = (A+B)x

provided that we interpret A+B to be the set of n2 numbers

i2+ii2 aln+bln

anl+bnl an2+ ftn2 ann+bnn

We are thus led to the idea of defining the sum of two symbols
such as A and J5. This idea we consider with more precision

in the next section.
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3. Matrices

3.1. The sets symbolized by A and B in the previous section

have as many rows as columns. In the definition that follows

we do not impose this restriction, but admit sets wherein
,
the

number of rows may differ from the number of columns.

DEFINITION 1. An array of mn numbers, real or complex, the

array having m rows and n columns,

hi ai2 am
k>t tfoo . . a9~

-aml am2 a

is called a MATRIX. When m = n the array is called a SQUARE

MATRIX of order n.

In writing, a matrix is frequently denoted by a single letter

A, or a, or by any other symbol one cares to choose. For

example, a common notation for the matrix of the definition

is [arj. The square bracket is merely a conventional symbol

(to mark the fact that we are not considering a determinant)

and is conveniently read as 'the matrix'.

As we have seen, the idea of matrices comes from linear

substitutions, such as those considered in 2. But there is one

important difference between the A of 2 and the A that

denotes a matrix. In substitutions, A is thought of as operating

on some 'number* x. The definition of a matrix deliberately

omits this notion of A in relation to something else, and so

leaves matrix notation open to a wider interpretation.

3.2. We now introduce a number of definitions that will

make precise the meaning to be attached to such symbols as

A+ B, AB, 2A, when A and B denote matrices.

DEFINITION 2. Two matrices A, B are CONFORMABLE FOR

ADDITION when each has the same number of rows and each has

the same number of columns.

DEFINITION 3. ADDITION. The sum of a matrix A, with an

element a
r8 in its r-th row and s-th column, and a matrix B, with

an dement brt in its r-ih row and s-th column, is defined only when
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A, B are conformable for addition and is then defined as the matrix

having a
rs -\-brs as the element in its r-th row and s-th column.

The sum is denoted by A-}-B.

The matrices
T^i]' [

a
i 1

[aj U2 OJ

are distinct; the first cannot be added to a square matrix of

order 2, but the second can; e.g.

K Ol+ rfri cJ - K+&I ql.

[a2 OJ [62 cj L
a2+ 6

2 C2J

DEFINITION 4. The matrix A is that matrix whose elements

are those of A multiplied by I.

DEFINITION 5. SUBTRACTION. A~B is defined as A~}-(B).
It is called the difference of the two matrices.

For example, the matrix A where A is the one-rowed

matrix [a, b] is, by definition, the matrix [~a, b]. Again, by
Definition 5,

a
i

*

c i (

and this, by Definition 3, is equal to

x
c2 i

DEFINITION 6. ^1 matrix having every element zero is called

a NULL MATRIX, and is written 0.

DEFINITION 7. The matrices A and B are said to be equal, and

we write A B, when the two matrices are conformable for addi-

tion and each element of A is equal to the corresponding element

ofB.

It follows from Definitions 6 and 7 that 'A = B' and

'A BW mean the same thing, namely, each a
r3 is equal to

the corresponding brs .

DEFINITION 8. MULTIPLICATION BY A NUMBER. When r is

a number, real or complex, and A is a matrix, rA is defined to

be the matrix each element of which is r times the corresponding

element of A.
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For example, if

A = "! bjl, then 3.4 = ^ 36

In virtue of Definitions 3, 5, and 8, we are justified in writing

2A instead of A-\-A,

3A instead of 5A 2A,

and so on. By an easy extension, which we shall leave to the

reader, we can consider the sum of several matrices and write,

for example, (4-\-i)A instead of A+A+A-\-(l-\-i)A.

3.3. Further, since the addition and subtraction of matrices

is based directly on the addition and subtraction of their

elements, which are real or complex numbers, the laws* that

govern addition in ordinary algebra also govern the addition

of matrices. The laws that govern addition and subtraction in

algebra are : (i) the associative law, of which an example is

(a+b)+c = a+(b+c),

either sum being denoted by a+b+c;

(ii) the commutative law, of which an example is

a-\-b b+a;

(iii) the distributive law, of which examples are

r(a+6) = ra+r&, (a 6) = a-\~b.

The matrix equation (A+ B)+ C = A+(B+C) is an imme-

diate consequence of (a-\-b)-\-c
=

a-\-(b-\-c), where the small

letters denote the elements standing in, say, the rth row and

5th column of the matrices A, B, C ;
and either sum is denoted

by A-\-B-\-C. Similarly, the matrix equation A-{-B = B-\-A

is an immediate consequence of a-{-b = b+a. Thus the asso-

ciative and commutative laws are satisfied for addition and

subtraction, and we may correctly write

A+B+(C+D) = A+B+C+D

and so on.

On the other hand, although we may write

r(A+ B) = rA+rB
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when r is a number, real or complex, on the ground that

r(a+b) = ra+rb

when r* a, b are numbers, real or complex, we have not yet

assigned meanings to symbols such as R(A-}-B), RA 3
RB when

It, A, B are all matrices. This we shall do in the sections that

follow.

4. Linear substitutions as a guide to matrix multiplica-
tion

Consider the equations

y\ = 611 z1+612 z2 ,

2/2
= 621*1+628 *a>

where the a and b are given constants. They enable us to

express xl9 x2 in terms of the a, 6, and Zj, z2 ;
in fact,

If we introduce the notation of 1, we may write the equa-

tions(l)as x==Ay> y=Bz (lft)

We can go direct from x to z and write

x=zABz, (2 a)

provided we interpret AB in such* a way that (2 a) is the sym-
bolic form of equations (2); that is, we must interpret AB to

be the matrix

2 621 0n&12+a12 622
~|. ^

2
621 a21 612+a22 622J

This gives us a direct lead to the formal definition of the

product AB of two matrices A and B. But before we give this

formal definition it will be convenient to define the 'scalar pro-

duct' of two 'numbers'.

5. The scalar product or inner product of two numbers
DEFINITION 9. Let x, y be two 'numbers', in the sense of 1,

having components xly #2 ,..., xn and ylt y2 ,..., yn . Then
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is called the INNER PRODUCT or the SCALAR PRODUCT of the two

numbers. If the two numbers have m, n components respectively

and m ^ n, the inner product is not defined.

In using this definition for descriptive purposes, we shall

permit ourselves a certain degree of freedom in what we call

a 'number'. Thus, in dealing with two matrices [ars] and [6rJ,

we shall speak of

as the inner product of the first row of [ars] by the second

column of [brs]. That is to say, we think of the first row of

[ar8] as a 'number' having components (an ,
a12 ,.--> aln ) and of

the second column of [brs\ as a 'number' having components

6. Matrix multiplication

6.1. DEFINITION 10. Two matrices A, B are CONFORMABLE

FOR THE PRODUCT AB when the number of columns in A is

emial to the number of rows in B.

DEFINITION 11. PRODUCT. The product AB is defined only

when the matrices A, B are conformable for this product: it is

then defined as the matrix ivhose element in the i-th row and k-th

column is the inner product of the i-th row ofA by the k-th column

of B.

It is an immediate consequencef of the definition that AB
has as many rows as A and as many columns as B.

The best way of seeing the necessity of having the matrices

conformal is to try the process of multiplication on two non-

conformable matrices. Thus, if

A = Ki, B=
p1 Cl i,

UJ [b2 cj

AB cannot be defined. For a row of A consists of one letter

and a column of B consists of two letters, so that we cannot

f The reader is recommended to work out a few products for himself. One
or two examples follow in 6.1, 6.3.

470'J
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form the inner products required by the definition. On the

other hand, BA = fa ^l.fa
L&2 d U2J

a matrix having 2 rows and 1 column.
V %'

6.2. THEOREM J2. The matrix AB is, in general, distinctfrom
the matrix BA.

As we have just seen, we can form both AB and BA only

if the number of columns of A is equal to the number of rows

of B and the number of columns of B is equal to the number of

rows of A. When these products are formed the elements in

the ith row and &th column are, respectively,

in AB, the inner product of the ith row of A by the kth

column of B\
in BA, the inner product of the ith row of B by the 4th

column of A.

Consequently, the matrix AB is not, in general, the sa4l
matrix as BA.

6.3. Pre -multiplication and post-multiplication. Since

AB and BA are usually distinct, there can be no precision in

the phrase 'multiply A by B' until it is clear whether it shall

mean AB or BA. Accordingly, we introduce the termsf post-

multiplication and pre-multiplication (and thereafter avoid the

use of such lengthy words as much as we can!). The matrix A
post-multiplied by B is the matrix AB\ the matrix A pre-

multiplied by B is the matrix BA.

Some simple examples of multiplication are

Lc ^J lP ^J

h glx pi
=

pw;-|-Ay+0z"|.
b f\ \y\ l^x-i-by-^fzl

f c\ LzJ [gz+fy+cz]

Sometimes one uses the terms fore and aft instead of pre and post.
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6.4. The distributive law for multiplication. One of the

laws that govern the product of complex numbers is the dis-

tributive law, of which an illustration is a(6+c) = ab--ac. This

law also governs the algebra of matrices.

For convenience of setting out the work we shall consider

only square matrices of a given order n t
and we shall use A, Bt

...

to denote [aifc], [6ifc],...
.

We recall that the notation [aik] sets down the element that

is in the tth row and the kth column of the matrix so denoted.

Accordingly, by Definition 11,

In this notation we may write

=
[aik]x([bik]+[cik])

=
[
aik\ X [

bik+ c
ik] (Definition 3)

(Definition 11)

3 )

= AB+AC (Definition 11).

Similarly, we may prove that

6.5. The associative law for multiplication. Another law

that governs the product of complex numbers is the associative

law, of which an illustration is (ab)c a(6c), either being com-

monly denoted by the symbol abc.

We shall now consider the corresponding relations between

three square matrices A, B, C> each of order n. We shall show

that
(AB)C = A(BC)

and thereafter we shall use the symbol ABC to denote either

of them.

Let B = [6ifc],
C = [cik] and let EC = [yik], where, by

Definition 11,

"* 1
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Then A(BC) is a matrix whose element in the ith row and

kth column is n n n

,

* i ^ i

Similarly, let AB = [j8/A;], where, by Definition 11,

Then (^4 B)C is a matrix whose element in the ith row and

kth column is n n n

<i
b
il
c
at

. (2)

But the expression (2) gives the same terms as (1), though
in a different order of arrangement; for example, the term

corresponding to I 2, j = 3 in (1) is the same as the term

corresponding to I 3, j 2 in (2).

Hence A(BC) = (AB)C and we may use the symbol ABC
to denote either.

We use A 2
, A*,... to denote AA, AAA, etc.

6.6. The summation convention. When once the prin-

ciple involved in the previous work has been grasped, it is best

to use the summation convention (Chapter III), whereby
n

b
i}

c
jk

denotes ^bit
c
ik

.

By extension,
n n

au bv c
jk

denotes j 2 a
i/
6
fl
c#

and once the forms (1) and (2) of 6.5 have been studied, it

becomes clear that any repeated suffix in such an expression is

a 'dummy' and may be replaced by any other; for example,

Moreover, the use of the convention makes obvious the law

of formation of the elements of a product ABC...Z\ this pro-

duct of matrices is, in fact,

[
a

il
b
li

cim- z
ik\>

the i, k being the only suffixes that are not dummies.
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7. The commutative law for multiplication

7.1. The third law that governs the multiplication of com-

plex numbers is the commutative law, of which an example is

ab = ba. As we have seen (Theorem 22), this law does not hold

for matrices. There is, however, an important exception.

DEFINITION 12. The square matrix of order n that has unity

in its leading diagonal places and zero elsewhere is called THE

UNIT MATRIX of order n. It is denoted by /.

The number n of rows and columns in / is usually clear from

the context and it is rarely necessary to use distinct symbols
for unit matrices of different orders.

Let C be a square matrix of order n and I the unit matrix of

order n; then 1C CI C

Also / = /a = /3 = ....

Hence / has the properties of unity in ordinary algebra. Just

as we replace 1 X x and a; X 1 by a; in ordinary algebra, so we

replace /X C and Cx I by C in the algebra of matrices.

Further, if Jc is any number, real or complex, kl . C C . kl

and each is equal to the matrix kC.

7.2. It may also be noted that if A is a matrix of'ft rows,

B a matrix of n columns, and / the unit matrix of order n,

then IA = A and BI = B, even though A and B are not

square matrices. If A is not square, A and / are not con-

formable for the product AI.

8. The division law

Ordinary algebra is governed also by the division law, which

states that when the product xy is zero, either x or y, or both,

must be zero. This law does not govern matrix products. Use

to denote the null matrix. Then AO = OA = 0, but the

equation AB = does not necessarily imply that A or B is

the null matrix. For instance, if

A = [a 61, B= F b 2b 1,

OJ [-a 2a\
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the product AB is the zero matrix, although neither A nor B
is the zero matrix.

Again, AB may be zero and BA not zero. For example, if

A= [a 61, B= F 6a 61, B= F 6 01,

o Oj [a Oj

TO 01, BA = f ab 62 1.

[O OJ [-a2
-a6j

AB={Q 01, BA =

9. Summary of previous sections

We have shown that the symbols A, J3,..., representing

matrices, may be added, multiplied, and, in a large measure,

manipulated as though they represented ordinary numbers.

The points of difference between ordinary numbers a, 6 and

matrices A, #are

(i) whereas ab = 6a, AB is not usually the same as BA\

(ii) whereas ab = implies that either a or 6 (or both) is

zero, the equation AB = does not necessarily imply
that either A or B is zero. We shall return to this point

in Theorem 29.

10. The determinant of a square matrix

10.1. When A is a square matrix, the determinant that has

the same elements as the matrix, and in the same places, is

called the determinant of the matrix. It is usually denoted by

1-4 1

. Thus, if A has the element aik in the ith row and kth

column, so that A = [aik] 9 then \A\ denotes the determinant

K-*l-

It is an immediate consequence of Theorem 13, that ifA and

B are square matrices of order n, and if AB is the product of

the two matrices, the determinant of the matrix AB is equal to the

product of the determinants of the matrices A and, B; that is,

\AB\ = \A\x\B\.

Equally, \BA\ = \B\x\A\.

Since \A\ and \B\ are numbers, the commutative law holds for

their product and \A\ X \B\ = \B\ X \A\.
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Thus \AB |

=
|
BA

|, although the matrix AB is not the same

as the matrix BA. This is due to the fact that the value of

a determinant is unaltered when rows and columns are inter-

changed, whereas such an interchange does not leave a general

matrix unaltered.

10.2. The beginner should note that in the equation

\AB\ = |-4 1
x \B\, of 10.1, both A and B are matrices. It is

not true that \kA \

= k\A |,
where k is a number.

For simplicity of statement, let us suppose A to be a square

matrix of order three and let us suppose that k = 2. The

theorem
'\A =

2\A\. The

'\A+ B\ = \A\+\B\'

is manifestly false (Theorem 6, p. 15) and so \2A\

true theorem is easily found. We have

A =
i 22

a!3

^23

33J

say, so that

2A = 2a12

^22

(Definition 8).

2a,*3i 2a32 2a33J

Hence |2^4|
= &\A\.

The same is evident on applying 10.1 to the matrix product

21 x A, where 21 is twice the unit matrix of order three and so is

[2

01.

020
2J

EXAMPLES VII

Examples 1-4 are intended as a kind of mental arithmetic.

1. Find the matrix A +B when

(i) A = Fl 21, =
[5 61;

U 4j 17 8J

(ii) A=\l -1
2 -2

L3 -3

(iii) A = [I 2

=
[3

-3
4 -4

3], B = [4 6 6].
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Ana. (i) [6 81, (ii) F4 -41, (iii) [5 7 9].f 6 81, (ii) F4 -41,
L10 12J 6 -6

L8 -8j

2. Is it possible to define the matrix A +B when

(i) A has 3 rows, B has 4 rows,

(ii) A has 3 columns, D has 4 columns,

(iii) A has 3 rows, B has 3 columns ?

Ans. (i), (ii), No; (iii) only if A has 3 columns and B 3 rows.

3. Is it possible to define the matrix BA and the matrix AB when

A, B have the properties of Example 2?

Ans. AB (i) if A has 4 cols.; (ii) if B has 3 rows; (iii) depends on the-

number of columns of A and the number of rows of B.

BA (i) if B has 3 cols.; (ii) if A has 4 rows; (iii) always.

4. Form the products AB and .R4 when

(i) A^\l 11, B=\l 21; (ii) A =
\l

21, B = F4 51.

LI 1J 13 4J L2 3J 15 6j

Examples 5-8 deal with quaternions in their matrix form.

5. If i denotes *J( l) and /, i, j, k are defined as

i 01, t=ri 01, y=ro n, &-ro *i,

O ij Lo -J L-i oj it oj

then ij
=

A:, j& = i, ki = j; ji = k, kj = i, ik = j.

Further, i2 = ;
2 = k2 = /.

6. If $ = o/+ 6i+ c/-f dfc, C' = al bi cj dk, a, 6, c, d being

numbers, real or complex, then

QQ' = (a*+ 62+ c2+ d2
)/.

7. If P = aJ+jSi+x/H-SA;, P' - al-pi-yy-Sk, a, j9, y, 8 being

numbers, real or complex, then

QPP'Q' = g.(a
2
+j8

2+y2
-fS^/.Q'

- Q
/

.(a
8
+]8

8+y2+ S 8
)/ [see 7]

= Q'p'pg.

8. Prove the results of Example 5 when /, i, j, k are respectively

1
0-|,

i- 1 I, r 1 Oi, r l-i

0100 -1000 001 00-10
0010 00011 -1000 0100
oooiJ LooioJ Lo-iooJ L-ioooJ
9. By considering the matrices

I = ri 01, t = r o n,
Lo ij l-i oj
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together with matrices al-\-bi, albi, where a, 6 are real numbers, show
that the usual complex number may be regarded as a sum of matrices

whose elements are real numbers. In particular, show that

(a/-f &i)(c/-Mt) = (oc-6d)/-h(ad+6c)i.

10. Prove that

[x y z].ra h 0].p]
= [ax+&t/

a+ cz*+ZJyz+ 2gzx+ 2hxy],

\h
b

f\ \y\
19 f c\ \z\

that is, the usual quadratic form as a matrix having only one row and
one column.

11. Prove that the matrix equation

A*-B* = (A-B)(A+ B)

is true only ifAB = BA and that aA 2+ 2hAB+bB2 cannot, in general,

be written as the product of two linear factors unleashB = BA.

12. If Aj, A2 are numbers, real or complex, and A is a square matrix

of order n, then

where / is the unit matrix of order n.

HINT. The R.H.S. is ^'-A^I-A^+AiA,/2
(by the distributive

law).

13. If/(A) = PtX
n+PiX*^l+...+pn > where prt X are numbers, and if

f(A) denotes the matrix

then /(A) = p^(A -Ai I)...(A -Aw 1),

where Ap ..., An are the roots of the equation /(A) = 0.

14. If B = X4-f/i/, where A and /* are numbers, then BA AB.

The use of submatrices

15. The matrix P rp^ plt pl9l

?i P Pn\
LPti Pat 2>3J

may be denoted by [Pu Pltl,

LPfl Pj
where PU denotes r^n pltl, Plf denotes

Ptl denotes |>81 pn], Pu denotes

4709 M
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Prove that, if Q, Qn , etc., refer to like matrices with qilc
instead of p ilc >

then p+Q =

NOTE. The first 'column' of PQ as it is written above is merely
a shorthand for the first two columns of the product PQ when it

is obtained directly from [> ifc ] X [gfa].

16. Prove Example 8 by putting for 1 and i in Example 6 the two-

rowed matrices of Example 9.

17. If each Pr8 and QT8 is a matrix of two rows and two columns,

prove that, when r = 1, 2, 3, s = 1, 2, 3,

-i

Elementary transformations of a matrix

18. Iy is the matrix obtained by interchanging the z'th and yth rows

of the unit matrix /. Prove that the effect of pre-multiplying a square

matrix A by I
i}

will be the interchange of two rows of A> and of post-

multiplying by Jjj, the interchange of two columns of A.

Deduce that 72

j
= /, Ivk lkj l^ = Ikj.

19. IfH= I+[hij] 9 the unit matrix supplemented by an element h

in the position indicated, then HA affects A by replacing row$ by

rowi-J-ftroWj and AH affects A by replacing colv
- by col.j+ Acol.j.

20. If H is a matrix of order n obtained from the unit matrix by
replacing the rth unity in the principal diagonal by fc, then HA is the

result of multiplying the rth row of A by k, and AH is the result of

multiplying the rth column of A by k.

Examples on matrix multiplication

21. Prove that the product of the two matrices

[cos

2 cos sin 01,
["

cos2
< cos

<f>
sin <l

cos sin sin2
J Lcos^sin^ sin2

^ J

is zero when and
(/>

differ by an odd multiple of JTT.

22. When (A1,A2,A3 ) and (jtiit^Ms) are tne direction cosines of two

lines I and m, prove that the product

A2
A,A2 AAi

A! At A} A 2 A3

AiAa A2 A3 A J

is zero if and only if the lines I and m are perpendicular.

23. Prove that L2 L when denotes the first matrix of Example 22.



CHAPTER VII

RELATED MATRICES

1. The transpose of a matrix

1.1. DEFINITION 13. IfA is a matrix ofn columns, the matrix

which, for r 1, 2,..., n, has the r-th column of A as its r-th row

is called the TRANSPOSE or A (or the TRANSPOSED MATRIX OF A).

It is denoted by A' ,

If A = A', A is said to be SYMMETRICAL.

The definition applies to all rectangular matrices. For

example,

is the transpose of [1 3n 3 si,

[2 4 ej

for the rows of the one are the columns of the other.

When we are considering square matrices of order n we shall,

throughout this chapter, denote the matrix by writing down

the element in the ith row and kth column. In this notation,

if A =
[a ik], then A' = [aki ]',

for the element in the ith row

and kth column of A' is that in the kth row and ith column

of A.

1.2. THEOREM 23. LAW OF REVERSAL FOR A TRANSPOSE. //
A and B are square matrices of order n,

(ABY = B'A';

that is to say, the transpose of the product AB is the product of

the transposes in the reverse order.

In the notation indicated in 1.1, let

A -
[a ik],

B = [b ikl

so that A ( =
[ttfcj,

B' = [bki ].

Then, denoting a matrix by the element in the ith row and

kth column, and using the summation convention, we have

AB =
[a ti

b
ikl (AB)' = {a kl b^.
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Now the ith row of Bf
is bu ,

b2i ,... 9
bni and the kth column of

A' is akv flfc2>"'> &kn> the inn^r product of the two is

Hence, on reverting to the use of the summation convention,

the product of the matrices B f and A' is given by

B'A' =

COEOLLAKY. // A, ,..., K are square matrices of order n, the

transpose of the product AB...K is the product K'...B'A'.

By the theorem,

(ABCy = C'(AB)'

= C'B'A',

and so, step by step, for any number of matrices.

2. The Kronecker delta

The symbol S
ifc

is defined by the equations

Bik = when i ^ Ic, Sik = 1 when i = k.

It is a particular instance of a class of symbols that is exten-

sively used in tensor calculus. In matrix algebra it is often

convenient to use [8ik] to denote the unit matrix, which, as we

have already said, has 1 in the leading diagonal positions (when
i = k) and zero elsewhere.

3. The adjoint matrix and the reciprocal matrix

3.1. Transformations as a guide to a correct definition.

Let 'numbers' X and x be connected by the equation

X = Ax, (1)

where A symbolizes a matrix [aik\.

When A = \aik \ ^ 0, x can be expressed uniquely in terms

ofX (Chapter II, 4.3); for when we multiply each equation

X
i
= aik xk (la)
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by the co-factor A
i(
and sum for i = 1, 2,..., n, we obtain

(Theorem 10)

That is, x
t
== T (

t-i

or *,
= (^w/A)**. (? a)

fc=i

Thus we may write equations (2 a) in the symbolic form

* - A~1X, (2)

which is the natural complement of (1), provided we interpret

A"1 to mean the matrix [A ki/&].

3.2. Formal definitions. Let A = [aik] be a square matrix

of order n\ let A, or \A\ 9
denote the determinant \aik \;

and let

^ir, denote the co-factor of a
r8

in A.

DEFINITION 14. A = [aijfc]
is a SINGULAR MATRIX i/ A == 0;

i i* an ORDINARY MATRIX or a NON-SINGULAR MATRIX if A =56 0.

DEFINITION 15. TAe matrix [A ki] is the ADJOINT, or the

ADJUGATB, MATRIX O/ [aik].

DEFINITION 16. When [aife] is a non-singular matrix, the

matrix [A ki/&] is THE RECIPROCAL MATRIX of [aik],

Notice that, in the last two definitions, it is Aki and not A ik

that is to be found in the ith row and fcth column of the matrix.

3.3. Properties of the reciprocal matrix. The reason for

the name c

the reciprocal matrix' may be found in the properties

to be enunciated in Theorems 24 and 25.

THEOREM 24. // [aik] is a non-singular square matrix of order

n and if Ar8 is the co-factor of ars in A = \aik \,
then

Mx[4K/A] = /, (i)

and [A k{/&]x[aik] = I, (2)

where I is the unit matrix of order n.
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The element in the ith row and kth column of the product

which (by Theorem 10,f p. 30) is zero when i ^ k and is unity

when i = k. Thus the product is [Sik]
= /. Hence (1) is proved.

Similarly, using now the sum convention, we have

and so (2) is proved.

3.4. In virtue of Theorem 24 we are justified, when A denotes

M' in

for we have shown by (1) and (2) of Theorem 24 that, with

such a notation,

-i - / and A~*A - /.

That is to say, a matrix multiplied by its reciprocal is equal

to unity (the unit matrix).

But, though we have shown that A~l is a reciprocal of A,

we have not yet shown that it is the only reciprocal. This we

do in Theorem 25.

THEOREM 25. // A is a non-singular square matrix, there is

only one matrix which, when multiplied by A, gives the unit

matrix.

Let R be any matrix such that AR / and let A~l denote

the matrix [A ki/&]. Then, by Theorem 24, AA~l = I, and hence

A(B-A-i) = AR-AA-1 = /-/ = 0.

It follows that (note the next two steps)

A- lA(R-A~ l
)
= A~ l .Q = (p. 75, 6.5),

that is (by (2) of Theorem 24),

I(R-A-i) = 0, i.e.R-A-l =
(p. 77, 7.1).

Hence, if AR /, R must be A' 1
.

f For the precise form uaed here compare Example 6, p. G2.
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Similarly, if RA = /, we have

(R-A-i)A = RA-A~ 1A = /-/ = 0,

and so (R-A~l)AA- 1 = Q.A-1 = 0;

that is (R~A~ l
)I = 0, i.e. R-A~l = 0,

Hence, if RA ~ I, R must be A~l
.

3.5. In virtue of Theorem 25 we are justified in speaking of

A' 1 not merely as a reciprocal of A, but as the reciprocal of A.

Moreover, the reciprocal of the reciprocal ofA is A itself, or,

in symbols, (A-
1
)"

1 = A.

For since, by Theorem 24, AA~l = A~1A /, it follows that

A is a reciprocal of A~ l
and, by Theorem 25, it must be the

reciprocal.

4. The index law for matrices

We have already used the notations A 2
,
^4 3

,... to stand for

AA, AA A,... . When r and s are positive integers it is inherent

in the notation that

A r X A 8 Ar
+*.

When A~ l denotes the reciprocal ofA and s is a positive integer,

we use the notation A'8 to denote (A'
1
)
8

. With this notation

we may write A r xA 8 = Ar+s
(
1

)

whenever r, s are positive or negative integers, provided that

A Q
is interpreted as /.

We shall not prove (1) in every case; a proof of (1) when

r > 0, s = t, and t > r > will be enough to show the

method.

Let t = r+k, where k > 0. Then

A TA-* = A rA~r~k = A rA-rA~k
.

But AA-1 = I (Theorem 24),

and, when r > 1,

ArA~r = A r~lAA- lA-r+ l = ^4r- 1/^-r+1 = .4 r
-1.4-r+1

,

so that -4 r,4-r = A lA~l = I.

Hence A rA~* = IA~k = ^4-fc = ^l r
-'.
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Similarly, we may prove that

(A*)
9 = A" (2)

whenever r and s are positive or negative integers.

5. The law of reversal for reciprocals

THEOREM 26. The reciprocal of a product of factors is the

product of the reciprocals of the factors in the reverse order; in

particular,

(ABC)~l = C-lB~lA-\

(A-*B-*)-* = BA.

Proof. For a product of two factors, we have

(B-*A~
l
).(AB) = B-1A-*AB (p. 75, 6.5)

= B-*B = I (p. 77, 7.1).

Hence B~lA~l
is a reciprocal of AB and, by Theorem 25, it

must be the reciprocal of AB.
For a product of three factors, we then have

and so on for any number of factors.

THEOREM 27. The operations of reciprocating and transposing

are commutative; that is,

(A')~
l = (A-

1
)'.

Proof. The matrix A-1
is, by definition,

BO that (A-
1
)'
= [Aikl&\.

Moreover, A' = [aM]

and so, by the definition of a product and the results of

Theorem 10, A'^-iy 1 [8<j /.

Hence (A~
1
)' is-a reciprocal of A' and, by Theorem 25, it must

be the reciprocal.
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6. Singular matrices

If A is a singular matrix, its determinant is zero and so we

cannot form the reciprocal of A, though we can, of course, form

the adjugate, or adjoint, matrix. Moreover,

THEOREM 28. The product of a singular matrix by its adjoint

is the zero matrix.

Proof. If A [aik \
and \aik \

= 0, then

both when i 7^ k and when i = k. Hence the products

Of*] X [
A ki] and

[
A ki\ x [*]

are both of them null matrices.

7. The division law for non-singular matrices

7.1. THEOREM 29. (i) // the matrix A is non-singular, the

equation A B = implies B = 0.

(ii) // Me matrix B is non-singular, the equation AB
implies ^4 0.

Proof, (i) Since the matrix ^4 is non-singular, it has a reci-

procal A* 1
,
and A" 1A = I.

Since AB = 0, it follows that

But A~ 1AB = IB = B, and so B 0.

(ii) Since B is non-singular, it has a reciprocal B~ l
,
and

Since ^4 7? ~ 0, it follows that

ABB- 1 - Ox B- 1 - 0.

But ABB' 1 = AI = A, and so ^4 = 0. .

7.2. The division law for matrices thus takes the form

'// AB 0, Mew. eiMer -4 = 0, or JB = 0, or BOJ?H ^

are singular matrices.'

4702 N
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7.3. THEOREM 30. // A is a given matrix and B is a non-

singular matrix (both being square matrices of order n), there is

one and only one matrix X such that

A = BX, (1)

and there is one and only one matrix Y such that

A = YB. (2)

Moreover, X = B^A, Y = AB~*.

Proof. We see at once that X = B~1A satisfies (1); for

BB~1A == IA = A. Moreover, if A = BE,

- BR-A = B(R-B~*A) y

and = B-

so that RB-*A is the zero matrix.

Similarly, Y = ^4 J5-1 is the only matrix that satisfies (2),

7.4. The theorem remains true in certain circumstances when

A and B are not square matrices of the same order.

COROLLARY. // A is a matrix of m rows and n columns, B
a non-singular square matrix of order m, then

has the unique solution X = B~1A .

If A is a matrix of m rows and n columns, C a non-singular

square matrix of order n 9 then

has the unique solution Y = AC"1
.

Since jB'1 has m columns and A has m rows, B~l and A are

conformable for the product B~1A, which is a matrix ofm rows

and n columns. Also

B.B-^A = IA=A,
where / is the unit matrix of order m.

Further, if A = BR, R must be a matrix of m rows and

n columns, and the first part of the corollary may be proved
as we proved the theorem.
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The second part of the corollary may be proved in the same

way.

7.5. The corollary is particularly useful in writing down
the solution of linear equations. If A = [a^] is a non-singular

matrix of order n, the set of equations

n
b
i
=

lL aik xk (
= l,...,rc) (3)

fc-1

may be written in the matrix form b = Ax, where 6, x stand

for matrices with a single column.

The set of equations

bt= i>2/* (i
= l,...,n) (4)

fc-i

may be written in the matrix form b' = y'A y where 6', y' stand

for matrices with a single row.

The solutions of the sets of equations are

x = A~l
b, y'

= b'A~l
.

An interesting application is given in Example 11, p. 92.

EXAMPLES VIII

1. When A =Ta h gl, B = r*t *, *31,

b f\ \vi y*

g f c\ Ui *

form the products AB, BA, A'B' 9 B'A' and verify the result enunciated

in Theorem 23, p. 83.

HINT. Use X = ax+hy+gz, Y = hx+by+fz, Z = gx+fy+cz.

2. Form these products when A, B are square matrices of order 2,

neither being symmetrical.

3. When A, B are the matrices of Example 1, form the matrices A~l
,

B"1 and verify by direct evaluations that (AB)~l = B^A'1
.

4. Prove Theorem 27, that (A')~
l = (A'

1
)', by considering Theorem

23 in the particular case when B A~l
.

5. Prove that the product of a matrix by its transpose is a sym-
metrical matrix.

HINT. Use Theorem 23 and consider the transpose of the matrix AA' .

6. The product of the matrix [c* 4jfc ] by its adjoint is equal to Ja^l/.
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Use of submatrices (compare Example 15, p. 81)

7. Let L FA 11, M ~
f/x 11, N =

|>], where A, p, v are non-zeroFA 11, M ~
f/x 11,

LO AJ LO /J

HINT. In view of Theorem 25, the last part is proved by showing
that the product of A and the last matrix is /.

8. Prove that if f(A) p A n+p l
A n~ l+ ...+p n , where p ,..., pn are

numbers, then/(^4) may bo written as a matrix

\f(L)

f(M)
f(N)\

and that, when/(^4) is non-singular, {f(A)}~
1 or l/f(A) can be written

in the same matrix form, but with !//(), l//(Af), l/f(N) instead of

f(L),f(M),f(N).
9. If/(^4), g(A) are two polynomials in A and if g(A) is non-singular,

prove the extension of Example 8 in which/ is replaced by//gr.

Miscellaneous exercises

10. Solve equations (4), p. 91, in the two forms

y - (A')-*b, y' = b'A^

and then, using Theorem 23, prove that

(A
1

)-
1 - (A- 1

)'.

11. A is a non-singular matrix of order n, x and y are single-column
matrices with n rows, V and m' are single-row matrices with n columns;

y Ax, Vx m'y.

Prove that m' = T^- 1
, m = (^l-

1
)^.

3

Interpret this result when a linear transformation 2/^
= 2 aik xk

k = l

(i
= l, 2, 3) changes I

i
x

l ~{-I2 xz ~}-I3 x3 into m
1 yl -\-m2 y2 -\-mz yz and

(^,^0,^3), (2/i)2/22/a) arc regarded as homogeneous point-coordinates in

a plane.

12. If the elements a lk of A are real, and if AA '

0, then .4 = 0.

13. The elements a lk of A are complex, the elements dlk of A are the

conjugate complexes of a
ifc , arid AA' = 0. Prove that ^L == J" = 0.

14. ^4 and J5 are square matrices of the same order; A is symmetrical.
Prove that B'AB is symmetrical. [Chapter X, 4.1, contains a proof
of this.]



CHAPTER VIII

THE RANK OF A MATRIX

[Section 6 is of less general interest than the remainder of the chapter.

It may well be omitted on a first reading.]

1. Definition of rank

1.1. The minors of a matrix. Suppose we are given any
matrix A, whether square or not. From this matrix delete all

elements save those in a certain r rows and r columns. When
r > 1, the elements that remain form a square matrix of order

r and the determinant of this matrix is called a minor of A of

order r. Each individual element of A is, when considered

in this connexion, called a minor of A of order 1. For

example,

the determinant is a minor of

of order 2; a, 6,... are minors of order 1.

1.2. Now any minor of order r-\-l (r ^l) can be expanded

by its iirst row (Theorem 1) and so can be written as a sum of

multiples of minors of order r. Hence, if every minor of order r

is zero, then every minor of order r+1 must also be zero.

The converse is not true; for instance, in the example given

in 1.1, the only minor of order 3 is the determinant that con-

tains all the elements of the matrix, and this is zero if a = b,

d = e, and g = h; but the minor aigc, of order 2, is not

necessarily zero.

1.3. Rank. Unless every single element of a matrix A is

zero, there will be at least one set of minors of the same order

which do not all vanish. For any given matrix with n rows and

m columns, other than the matrix with every element zero,

there is, by the argument of 1.2, a definite positive integer p

such that

EITHER p is less than both m and n, not all minors of order

p vanish, but all minors of order p+1 vanish,
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OR p is equal to| min(m, n), not all minors of order p vanish,

and no minor of order p+ 1 can be formed from the matrix.

This number p is called the RANK of the matrix. But the

definition can be made much more compact and we shall take

as our working definition the following:

DEFINITION 17. A matrix has rank r when r is the largest

integer for which the statement 'not ALL minors of order r are

zero
'

is valid.

For a non-singular square matrix of order n, the rank is n\

for a singular square matrix of order n, the rank is less than n.

It is sometimes convenient to consider the null matrix, all

of whose elements are zero, as being of zero rank.

2. Linear dependence

2.1. In the remainder of this chapter we shall be concerned

with linear dependence and its contrary, linear independence;

in particular, we shall be concerned with the possibility of

expressing one row of a matrix as a sum of multiples of certain

other rows. We first make precise the meanings we shall attach

to these terms.

Let alt ..., am be 'numbers', in the sense of Chapter VI, each

having n components, real or complex numbers. Let the com-

ponents be * v * *^
(au ,..., aln ), ...,. (aml ,..., amn ).

Let F be any fieldJ of numbers. Then al9 ..., am are said to be

linearly dependent with respect to F if there is an equation

Zll+-+Cm = 0. (1)

wherein all the I's belong to F and not all of them are zero.

The equation (1) implies the n equations

^alr+...+/m amr -0 (r
= l,...,n).

The contrary of linear dependence with respect to F is linear

independence with respect to P.

The 'number' at is said to be a SUM OF MULTIPLES of the

f When m = n, min(m, n) m = n ;

when m 7^ n, min(m, n) = the smaller of m and n.

J Compare Preliminary Note, p. 2.



THE RANK OF A MATRIX 95

'numbers
9

a2 ,...,
am with respect to F if there is an equation of

the form i \ \ i /o\
1
=

l* a2+-~+ lm am> (
2

)

wherein all the J's belong to F. The equation (2) implies the

n equations

*lr
= Jr+-+'m amr ('

= If-i )-

2.2. Unless the contrary is stated we shall take F to be the

field of all numbers, real or complex. Moreover, we shall use

the phrases 'linearly dependent', 'linearly independent', 'is a

sum of multiples' to imply that each property holds with

respect to the field of all numbers, real or complex. For

example, 'the "number" a is a sum of multiples of the "numbers"

b and c* will imply an equation of the form a = Z1 6-f/2 c, where

/! and 12 are not necessarily integers but may be any numbers,

real or complex.
As on previous occasions, we shall allow ourselves a wide

interpretation of what we shall call a 'number'-, for example, in

Theorem 31, which follows, we consider each row of a matrix

as a 'numbet'.

3. Rank and linear dependence
3.1. THEOREM 31. If A is a matrix of rank r, where r ^ 1,

and if A has more than r rows, we can select r rows of A and

express every other row as the sum of multiples of these r rows.

Let A have m rows and n columns. Then there are two

possibilities to be considered: either (i) r = n and m > n, or

(ii) r < n and, also, r < m.

(i) Let r = n and m > n.

There is at least one non-zero determinant of order n that

can be formed from A. Taking letters for columns and suffixes

for rows, let us label the elements of A so that one such non-

zero determinant is denoted by

A ==
6,

bn . . kn

With this labelling, let n+0 be the suffix of any other row.
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Then (Chap. II, 4.3) the n equations

a
l
l
l+a2

l
2+...+an ln

= an+$9

2+-+Mn = bn+6)
(1)

have a unique solution in Zlf Z2 ,...,
ln given by

and so on. Hence the rowf with suffix n-{-9 can be expressed

as a sum of multiples of the n rows of A that occur in A. This

proves the theorem when r = n < m.

Notice that the argument breaks down if A 0.

(ii) Let r < n and, also, r < m.

There is at least one non-zero minor of order r. As in (i), take

letters for columns and suffixes for rows, and label the elements

of A so that one non-zero minor of order r is denoted by

M = a
x b l . . Pi

^ b2 . . p2

'r
br Pr

With this labelling, let the remaining rows of A have suffixes

r+1, r+2,..., m.

Consider now the determinant

ar+0

where 6 is any integer from 1 to m- r and where oc is the letter

of ANY column of A.

If a is one of the letters a,..., >, then D has two columns

identical and so is zero.

If a is not one of the letters a,..., p, then D is a minor of

A of order r+1; and since the rank of A is r
y
D is again zero.

f Using pt
to denote the row whose letters have suffix tt we may write

equations (1) asn
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Hence D is zero when a is the letter of ANY column of A,
and if we expand D by its last column, we obtain the equation

^r

ar^+A1 a1+A2 a2+...+Ar ar
= 0, (2)

where M ^ and where M, Aj,..., A^ are all independent of ex.

Hence (2) expresses the row with suffix r-\-Q as a sum of

multiples of the r rows in M
; symbolically,

AI A2 Ar-~~
This proves the theorem when r is less than m and less than n.

Notice that the argument breaks down ifM = 0.

3.2. THEOREM 32. // A is a matrix of rank r, it is impossible

to select q rows of A ,
where q < r, and to express every other row

as a sum of multiples of these q rows.

Suppose that, contrary to the theorem, we can select q rows

of A and then express every other row as a sum of multiples

of them.

Using suffixes for rows and letters for columns, let us label

the elements of A so that the selected q rows are denoted by

Pit /2>---> /V Then, for k = 1,..., m, where m is the number of

rows in A, there are constants Xtk such that

Pk = *lkPl+ +\kPq> (3 )

for if k = 1,..., q, (3) is satisfied when \k
= 8

/fc ,

and if k > q, (3) expresses our hypothesis in symbols.

Now consider ANY (arbitrary) minor of A of order r. Let the

letters of its columns be a,..., 6 and let the suffixes of its rows

be &!,..., kr . Then this minor is

which is the product by rows of the two determinants

v
*. o

e. en o .

each of which has r q columns of zeros.

4708 O
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Accordingly, if our supposition were true, every minor of A
of order r would be zero. But this is not so, for since the rank

of A is r
,
there is at least one minor of A of order r that is not

zero. Hence our supposition is not true and the theorem is

established.

4. Non-homogeneous linear equations

4.1. We now consider

n

^ait
x

i
= b

i (i
=

l,..., m), (1)
*=i

a set of m linear equations in n unknowns, xv ..., xn . Such a set

of equations may either be consistent, that is, at least one set of

values of x may be found to satisfy all the equations, or they

may be inconsistent, that is, no set of values of x can be found

to satisfy all the equations. To determine whether the equa-

tions are consistent or inconsistent we consider the matrices

A = a . . aln "I, B ==n . . ln u bl

We call B the augmented matrix of A.

Let the ranks of A, B be r, r' respectively. Then, since every

minor of A is a minor of B, either r = r' or r < r'
[if
A has

a non-zero minor of order r, then so has B\ but the converse

is not necessarily true].

We shall prove that the equations are consistent when r r'

and are inconsistent when r < r'.

4.2. Let r < r'. Since r' ^ m, r < m. We can select r rows

of A and express every other row of A as a sum of multiples

of these r rows.

Let us number the equations (1) so that the selected r rows

become the rows with suffixes 1,..., r. Then we have equations

of the form

a
r+0,i

=

wherein the A's are independent of t.

Let us now make the hypothesis that the equations (1) are
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consistent. Then, on multiplying (2) by x
i
and summing from

t = 1 to t = n, we get

br+e
= *ie*>i+-+\e*>r

- (3)

The equations., (2) and (3) together imply that we can express

any row of B as a sum of multiples of the first r rows, which

is contrary to the fact that the rank of B is r' (Theorem 32).

Hence the equations (1) cannot be consistent.

4.3. Let r' = r. If r = ra, (1) may be written as (5) below.

If r < ra, we can select r rows of B and express every other

row as a sum of multiples of these r rows. As before, number

the equations so that these r rows correspond to i = 1,..., r.

Then every set of x that satisfies

%axt
= b

t (
=

l,...,r) (4)
t 1

satisfies all the equations of (1).

Now let a denote the matrix of the coefficients of x in (4).

Then, as we shall prove, at least one minor of a of order r must

have a value distinct from zero. For, since the kth row of A
can be written as N

\ \ \AlkPl+'"+ *rkPr>

every minor of A of order r is the product of a determinant

l^ifc'l by a determinant \a ik \,
wherein i has the values 1,..., r

(put q = r in the work of 3.2); that is, every minor of A of

order r has a minor of a of order r as a- factor. But at least

one minor of A of order r is not zero and hence one minor of

a of order r is not zero.

Let the suffixes of the variables x be numbered so that the

first r columns of a yield a non-zero minor of order r. Then,

in this notation, the equations (4) become

r n
au xt

=
&, J auxi (*

= l>> r), (5)
e=i *=r+i

wherein the determinant of the coefficients on the left-hand

side is not zero. The summation on the right-hand side is

present only when n > r.

If n > r, we may give xr+v ..., xn arbitrary values and then

solve equations (5) uniquely for xv ...
t
xr . Hence, if r = r' and
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n > r, the equations (1) are consistent and certain sets of n r

of the variables x can be given arbitrary values, f

If n = r, the equations (5), and so also the equations (1), are

consistent and have a unique solution. This unique solution

may be written symbolically (Chap. VII, 7.5) as

x = A?b,

where A : is the matrix of the coefficients on the left-hand side

of (5), 6 is the single-column matrix with elements bv ..., bn >

and x is the single^column matrix with elements x
l3

...
9
xn .

5. Homogeneous linear equations

The equations

t

IaXi = V (*
=

!,..., HI), (6)

which form a set of m homogeneous equations in n unknowns

a?!,...,
xn , may be considered as an example of equations (1)

when all the b
i
are zero. The results of 4 are immediately

applicable.

Since all 6^ are zero, the rank of B is equal to the rank of A,

and so equations (6) are always consistent. But if r, the rank

of A, is equal to n, then, in the notation of 4.3, the only

solution of equations (6) is given by

x = A^b, 6 = 0.

Hence, when r = n the only solution of (6) is given by x = 0,

that is, xl
= x2

= ... = xn = 0.

When r < n we can, as when we obtained equations (5) of

4.3, reduce the solution of (6) to the solution of

r n

2 ,!*,= au xt (t
=

1,..., r), (7)
t~i <=r-fl

wherein the determinant of the coefficients on the left-hand

side is not zero.J In this case, all solutions of (6) are given by

f Not all sets ofnr of the variables may be given arbitrary values; the

criterion is that the coefficients of the remaining r variables should provide
a non-zero determinant of order r.

J The notation of (7) is not necessarily that of (6): the labelling of the

elements ofA and the numbering of the variables x has followed the procedure
laid down in 4.3.
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assigning arbitrary values to xr+l ,..., xn and then solving (7) for

#!,..., xr . Once the values of xr+v ..., xn have been assigned, the

equations (7) determine xv ..., xr uniquely.

In particular, if there are more variables than equations,

i.e. n > w, then r < n and the equations have a solution other

than x
l
= ... = xn 0.

6. Fundamental sets of solutions

6.1. When r, the rank of A, is less than n, we obtain n r

distinct solutions of equations (6) by solving equations (7) for

the nr sets of values

== 0> Xr+2
(8)

*n = 0, Xn = 0, ..., #n = 1.

We shall use X to denote the single-column matrix whose ele-

ments are xv ..., xn . The particular solutions of (6) obtained

from the sets of values (8) we denote by

X* (* = l,2,...,n-r). (9)

As we shall prove in 6.2, the general solution X of (6), which

is obtained by giving #rfl ,..., xn arbitrary values in (7), is

furnished by the formula

X=Yaw*Xfc
. (10)

fc = l

That is to say, (a) every solution of (6) is a sum of multiples

of the particular solutions X^. Moreover, (6) no one X^ is a sum
of multiples of the other X^.. A set of solutions that has the

properties (a) and (6) is called a FUNDAMENTAL SET OF SOLU-

TIONS.

There is more than one fundamental set of solutions. If we

replace the numbers on the right of the equality signs in (8) by
the elements of any non-singular matrix of order nr, we are

led to a fundamental set of solutions of (6). If we replace these

numbers by the elements of a singular matrix of order nr,
we are led to nr solutions of (6) that do not form a funda-

mental set of solutions. This we shall prove in 6.4.
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6.2. Proof f of the statements made in 6.1. We are

concerned with a set of ra homogeneous linear equations in n

unknowns when the matrix of the coefficients is of rank r and

r < n. As we have seen, every solution of such a set is a solu-

tion of a set of equations that may be written in the form

r n
^ n ~ \ n <r (i 1 r\ C7\
Z^^u^i JL

u a xt \* 1v? ";> {/

wherein the determinant of the coefficients on the left-hand

side is not zero. We shall, therefore, no longer consider the

original equations but shall consider only (7).

As in 6.1, we use X to denote xv ..., xn considered as the

row elements of a matrix of one column, XA. to denote the

particular solutions of equations (7) obtained from the sets of

values (8). Further, we use lk to denote the kill column of (8)

considered as a one-column matrix, that is, Ik has unity in its

kth row and zero in the remainingnr 1 rows. Let A
l denote

the matrix of the coefficients on the left-hand side of equations

(7) and let A^ 1 denote the reciprocal of A v
In one step of the proof we use XJJ+

5 to denote xa ,..., xa+8
considered as the elements of a one-column matrix.

The general solution of (7) is obtained by giving arbitrary
values to xr+1 ,..., xn and then solving the equations (uniquely,
since A l is non-singular) for x

l9 ..., x
r . This solution may be

symbolized, on using the device of sub-matrices, as

X-

But the last matrix is

Xr+k

t Many readers will prefer to omit these proofs, at least on a first reading.
The remainder of 6 does not make easy reading for a beginner.
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and so we have proved that every solution of (7) may be repre-

sented by the formula

X^lVfcX*. (10)

6.3. A fundamental set contains n r solutions*

6.31. We first prove that a set of less than nr solutions

cannot form a fundamental set.

Let Ylv .., Yp ,
where p < nr, be any p distinct solutions of

(7). Suppose, contrary to what we wish to prove, that Y
t
- form

a fundamental set. Then there are constants \ ik such that

X*
=.!/.*

Y, (k = I,..., n-r),

where the X^. are the solutions of 6.1 (9). By Theorem 31

applied to the matrix [A/A.],
whose rank cannot exceed p, we

can express every X fc
as a sum of multiples of p of them (at

most). But, as we see from the table of values (8), this is

impossible; and so our supposition is not a true one and the

Y^ cannot form a fundamental set.

6.32. We next prove that in any set of more than nr solu-

tions one solution (at least) is a sum of multiples of the re-

mainder.

Let Yj,..., Yp ,
where p > nr, be any p distinct solutions of

(7). Then, by (10),

where pik is the value of xr+k in Y
t
-. Exactly as in 6.31, we

can express every Y; as a sum of multiples of nr of them

(at most).

6.33. It follows from the definition of a fundamental set and

from 6.31 and 6.32 that a fundamental set must contain nr
solutions.

6.4. Proof of statements made in 6.1 (continued).

6.41. If [cik] is a non-singular matrix of order nr, and if

X^ is the solution of (7) obtained by taking the values

xr+l ciV xr+2 ~ C
i2> >

xn
~
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then, by what we have proved in 6.2,

n r

On solving these equations (Chap. VII, 3.1), we get

where [yik] is the reciprocal of [cik\.

Hence, by (10), every solution of (7) may be written in the

form n-r n-r
X = xr+i 2, yik Xfc

1=1 fc=l

V

Moreover, it is not possible to express any one X^ as a sum

of multiples of the remainder. For if it were, (11) would give

equations of the formf

and these equations, by the argument of 6.31, would imply
that one X

f
could be expressed as a sum of multiples of the

others.

Hence the solutions XJ form a fundamental set.

6.42. If [cik] is a singular matrix of order n r, then, with

a suitable labelling of its elements, there are constants X&8 such

that
p

c
p+8,k

= 2
8 1

where p is the rank of the matrix, and so p < n r.

But, by (10),

and

t We have supposed the solutions to be labelled so that XJ,_r can be written

as a sum of multiples of the rest.
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Hence there is an equation

and so the XJ cannot form a fundamental set of solutions.

6.5. A set of solutions such that no one can be expressed

as a sum of multiples of the others is said to be LINEARLY

INDEPENDENT.

By what we have proved in 6.41 and 6.42, a set of solutions

that is derived from a non-singular matrix [cik\ is linearly

independent and a set of solutions that is derived from a singu-

lar matrix [cik] is not linearly independent.

Accordingly, if a set of n r solutions is linearly independent,

it must be derived from a non-singular matrix [c ik] and so, by
6.41, such a set of solutions is a fundamental set.

Hence, any linearly independent set of n r solutions is a

fundamental set.

Moreover, any set of n r solutions that is not linearly in-

dependent is not a fundamental set, for it must be derived from

a singular matrix [c tk ~\.

EXAMPLES IX

Devices to reduce the calculations when finding the rank of a
matrix

1. Prove that the rank of a matrix is unaltered by any of the following

changes in the elements of the matrix :

(i) the interchange of two rows (columns),

(ii) the multiplication of a row (column) by a non-zero constant,

(iii) the addition of any two rows.

HINT. Finding the rank depends upon showing which minors of the

matrix are non-zero determinants. Or, more compactly, use Examples
VII, 18-20, and Theorem 34 of Chapter IX.

2. When every minor of [a ik ] of order r-f-1 that contains the first

r rows and r columns is zero, prove that there are constants A^ such

that the kth row of [aik] is given by

Pk = 2 \kPi-
i-l

Prove (by the method of 3.2, or otherwise) that every minor of [aik ]

of order r+ 1 is then zero.
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3. By using Example 2, prove that if a minor of order r is non-zero

and if every minor obtained by bordering it with the elements from an

arbitrary column and an arbitrary row are zero, then the rank of the

matrix is r.

4. Rule for symmetric square matrices. If a principal minor of

order r is non-zero and all principal minors of order r-f- 1 are zero, then

the rank of the matrix is r. (See p. 108.)

Prove the rule by establishing the following results for

(i) If A ik denotes the co-factor of aik in

(7 =

U a*r a8, a
t

tl
air a

t$
a

i

then A88A it A^^L^ MC, where M is the complementary minor of88it
atg att at9

ast in C (Theorem 18).

(ii) If every (7 = and every corresponding A 88
= 0, then every

Ait = Atg = and (Example 2) every minor of the complete matrix

[aik] of order r+1 is zero.

(iii) If all principal minors of orders r-f 1 and r -f 2 are zero, then the

rank is r or less. (May be proved by induction.)

Numerical examples

5. Find the ranks of the matrices

(i)

(iii)

[1347],
2458
3 1 2 3J

2 1 3

5 8 1

658
(iv)

.3872.
Ans. (i) 3, (ii) 2, (iii) 4, (iv) 2.

Geometrical applications

6. The homogeneous coordinates of a point in a plane are (x,y,z).

Prove that the three points (xr , yr , zr ), r = 1, 2, 3, are collinear or non-

collinear according as tho rank of the matrix

is 2 or 3.
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7. The coordinates of an arbitrary point can be written (with the

notation of Example 6) in the form

provided that the points 1, 2, 3 are not collinear.

HINT. Consider the matrix of 4 rows and 3 columns and use

Theorem 31.

8. Give the analogues of Examples 6 and 7 for the homogeneous
coordinates (x, y, z, w) of a point in three-dimensional space.

9. The configuration of three planes in space, whose cartesian equa-

a
ilL x+ aia t/-f ai8 z = b

{ (i
= 1, 2, 3),

is determined by the ranks of the matrices A =s [aik ] and the augmented
matrix B (4.1). Check the following results.

(i) When \aijc \
^ 0, the rank of A is 3 and the three planes meet in

a finite point.

(ii) When the rank of A is 2 and the rank of B is 3, the planes have

no finite point of intersection.

The planes are all parallel only if every A ik is zero, when the rank

of A is 1. When the rank of A is 2,

either (a) no two planes are parallel,

or (b) two are parallel and the third not.

Since |a^|
= 0,

(Theorem 12), and if the planes 2 and 3 intersect, their line of inter-

section has direction cosines proportional to An , -4 ia , A lz . Hence in

(a) the planes meet in three parallel lines and in (b) the third plane

meets the two parallel planes in a pair of parallel lines.

The configuration is three planes forming a triangular prism; as a

special case, two faces of the prism may be parallel.

(iii) When the rank of A is 2 and the rank of B is 2, one equation

is a sum of multiples of the other two. The planes given by these two

equations are not parallel (or the rank of A would be 1), and so the

configuration is three planes having a common line of intersection.

(iv) When the rank ofA is 1 and the rank of B 10 2, the three planes
are parallel.

(v) When the rank of A is 1 and the rank of B is 1, all three equa-

tions represent one and the same plane.
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10. Prove that the rectangular cartesian coordinates (X19 X2 , J 3 ) of

the orthogonal projection of (xl9 x2 , #3 ) on a line through the origin having
direction cosines (Jlf J2 , Z3 ) are given by

Ma h
i l\ h

LMa Mi
where X, x are single column matrices.

11. If L denotes the matrix in Example 10, and M denotes a corre-

sponding m matrix, styo.w that

X2 - L and M 2 = M
and that the point (L-\-M)x is the projection of # on a line in the plane
of the lines I and m if and only if I and in are perpendicular.

NOTE. A 'principal minor' is obtained by deleting corresponding rows

and columns.



CHAPTER IX

DETERMINANTS ASSOCIATED WITH MATRICES

1. The rank of a product of matrices

1.1. Suppose that A is a matrix of n columns, and B a matrix

of n rows, so that the product A B can be formed. When A has

n^ rows and B has n2 columns, the product AB has n^ rows

and n2 columns.

If aik ,
b ik are typical elements of A, B,

Cik
==

is a typical element of A B.

Any /-rowed minor of AB may, with a suitable labelling of

the elements, be denoted by

21 U22

When / = n (this assumes that n^ ^ n, n2 ^ n), A is the

product by rows of the two determinants

# . . a.*m

*nl in

bnl

- bnn

that is, A is the product of a /-rowed minor of A by a /-rowed

minor of B.

When / ^ n, A is the product by rows of the two arrays

ii - am bn - bm

% aln U ' nf

Hence (Theorem 15), when / > n, A is zero; and when / < w,

A is the sum of all the products of corresponding determinants

of order t that can be formed from the two arrays (Theorem 14).

Hence every minor of AB of order greater than n is zero, and

every minor of order / ^ n is the sum of products of a /-rowed

minor of A by a /-rowed minor of B.
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Accordingly,

THEOREM 33. The rank of a product AB cannot exceed the

rank of either factor.

For, by what we have shown, (i) every minor of AB with

more than n rows is zero, and the ranks of A and B cannot

exceed n, (ii) every minor of AB of order t < n is the product

or the sum of products of minors of A and B of order t. If all

the minors of A or if all the minors of B of order r are zero,

then so are all minors of AB of order r.

1 ,2. There is one type of multiplication which gives a theorem

of a more precise character.

THEOREM 34. // A has m rows and n columns and B is a non-

singular square matrix of order n, then A and AB have the same

rank; and if C is a non-singular square matrix of order m, then

A and CA have the same rank.

If the rank of A is r and the rank of AB is
/>, then/o ^ r.

But A = AB . B~l and so r, the rank of A, cannot exceed p and

n, which are the ranks of the factors AB and B"1
. Hence p = r.

The proof for CA is similar.

2. The characteristic equation; latent roots

2.1. Associated with every square matrix A of order n is the

matrix A A/, where / is the unit matrix of order n and A is

any number, real or complex. In full, this matrix is

ran A a12 . . aln
a21 a22 A . . a2n

an\ an2 ' ' ann~~

The determinant of this matrix is of the form

/(A)
= (-l)

n
(X
n+pl X

n-l+...+pn ), (1)

where the pr are polynomials in the n2 elements aik . The roots

of the equation /(A)
= 0, that is, of

\A-\I\ = 0, (2)

are called the LATENT ROOTS of the matrix A and the equation

itself is called the CHARACTERISTIC EQUATION of A.
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2.2. THEOREM 35. Every square matrix satisfies its own

characteristic equation; that is, if

then A"+pl A*-
l
+...+pn_lA+pn I = 0.

The adjoint matrix of A XI, say J5, is a matrix whose ele-

ments are polynomials in X of degree n 1 or less, the coeffi-

cients of the various ^powers of A being polynomials in the aik .

Such a matrix can be written as

1 A-i, (3)

where the Br are matrices whose elements are polynomials in

the aik .

Now, by Theorem 24, the product of a matrix by its ad-

joint = determinant of the matrix x unit matrix. Hence

(A-\I)B = \A-\I\xI

on using the notation of (1). Since B is given by (3), we have

This equation is true for all values of A and we may therefore

equate coefficients! of A; this gives us

.i =(-!)"!>!/,

We may regard the equation as the conspectus of the n2
equations

l+ ...+ JPll)ali (t, k = 1,..., n),

so that the equating of coefficients is really the ordinary algebraical procedure
of equating coefficients, but doing it n8 times for each power of A.
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Hence we have

= AnI+An-lp1 I+...+A.Pn.1 I+pn I
= (-l)-{-A-Bn.1+A^(-Bn_ ll+ABn_1)+...+

+A(-B +AB1)+AB }

= 0.

2.3. If A!, A2 ,..., An are the latent roots of the matrix A, so

that
\A-XI\ = (-1)(A-A1)(A-A8)...(X-AI.)

it follows that (Example 13, p. 81),

(A-XilKA-Xtl^A-Xtl) = A+Pl A-*+...+pn I = 0.

It does not follow that any one of the matrices A Xr I is the

zero matrix.

3. A theorem on determinants and latent roots

3.1. THEOREM 36. // g(t) is a polynomial in t, and A is a

square matrix, then the determinant of the matrix g(A) is equal to

the product

where Xv A2,..., An are the latent roots of A.

Let g(t)
= c(t-tj...(t-tm ),

so that g(A) = c(AtiI)...(Atm I).

Then, by Chapter VI, 10,

r=l

The theorem also holds when g(A) is a rational function

ffi(A)/g2(A) provided that g2(A) is non-singular.

3.2. Further, let g^A) and g2(A) be two polynomials in the

matrix A, g2(A) being non-singular. Then the matrix

that is
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is a rational function of A with a non-singular denominator

g2(A ). Applying the theorem to this function we obtain, on

writing g^A^g^A) = g(A),

r-l

From this follows an important result:

THEOREM 36. COROLLARY. // Alv .., \ are the latent roots of

the matrix A and g(A) is of the form gl(A)/g2(A), where glt g2 are

polynomials and g2(A) is non-singular, the latent roots of the

matrix g(A) are given by g(\).

4. Equivalent matrices

4.1. Elementary transformations of a matrix to stan-

dard form.

DEFINITION 18. The ELEMENTARY TRANSFORMATIONS of a

matrix are

(i) the interchange of two rows or columns,

(ii) the multiplication of each element of a row (or column) by
a constant other than zero,

(iii) the addition to the elements of one row (or column) of a

constant multiple of the elements ofanother row (or column).

Let A be a matrix of rank r. Then, as we shall prove, it can

be changed by elementary transformations into a matrix of the

form 7
I'

o"J

where / denotes the unit matrix of order r and the zeros denote

null matrices, in general rectangular.

In the first place,f elementary transformations of type (i)

replace A by a matrix such that the minor formed by the

elements common to its first r rows and r columns is not equal

to zero. Next, we can express any other row of A as a sum of

multiples of these r rows; subtraction of these multiples of the

r rows from the row in question will ther6fore give a row of

zeros. These transformations, of type (iii), leave the rank of the

t The argument that follows is based on Chapter VIII, 3.

4702
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matrix unaltered (cf. Examples IX, 1) and the matrix now

before us is of the form

P
o o

where P denotes a matrix, of r rows and columns, such that

\P\ 7^0, and the zeros denote null matrices.

By working with columns where before we worked with rows,

this can be transformed by elementary transformations, of type

(iii), to
F P 1

h'-of
Finally, suppose P is, in full,

Q-\ U-t C"| . K

^2

Then, again by elementary transformations of types (i) and

(iii), P can be changed successively to

and so, step by step, to a matrix having zeros in all places other

than the principal diagonal and non-zeros| in that diagonal.

A final series of elementary transformations, of type (ii),

presents us with /, the unit matrix of order r.

4.2. As Examples VII, 18-20, show, the transformations

envisaged in 4.1 can be performed by pre- and post-multiplica-

tion ofA by non-singular matrices. Hence we have proved that

t If a diagonal element were zero the rank of P would be less than r: all

these transformations leave the rank unaltered.
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when A is a matrix of rank r
}
there are non-singular matrices

B and C such that r>* ^ _r/

where Tr denotes the unit matrix of order r bordered by null

matrices.

4.3. DEFINITION 19. Two matrices are EQUIVALENT if it is

possible to pass from one to the other by a chain of elementary

transformations.

If A! and A 2 are equivalent, they have the same rank and

there are non-singular matrices Bl9
J3

2 ,
Cv C2 such that

BIA 1 C1
= /;- B2

A 2 C2 .

From this it follows that

Ai = B^BtA&C^
- LA 2 M,

say, where L = B 1B2 and so is non-singular, and M = C2 (7f
l

and is also non-singular.

Accordingly, when two matrices are equivalent each can be

obtained from the other through pre- and post-multiplication

by non-singular matrices.

Conversely, if A 2 is of rank r, L and M are non-singular

matrices, and

then, as we shall prove, we can pass from A 2 to A l9
or from

A! to A 2 , by elementary transformations. Both A 2 and A l are

of rank r (Theorem 34). We can, as we saw in 4.1, pass from

A 2 to Tr by elementary transformations; we can pass from A l

to TT by elementary transformations and so, by using the inverse

operations, we can pass from I'r to A l by elementary trans-

formations. Hence we can pass from A 2 to Av or from A to

A
2y by elementary transformations.

4.4. The detailed study of equivalent matrices is of funda-

mental importance in the more advanced theory. Here we

have done no more than outline some of the immediate con-

sequences of the definition.|

f The reader who intends to pursue the subject seriously should consult

H. W. Turnbull and A. C. Aitken, An Introduction to the Theory of Canonical

Matrices (London and Glasgow, 1932).





PART III

LINEAR AND QUADRATIC FORMS;
INVARIANTS AND COVARIANTS





CHAPTER X

ALGEBRAIC FORMS: LINEAR TRANSFORMATIONS

1. Number fields

We recall the definition of a number field given in the pre-

liminary note.

DEFINITION 1. A set of numbers, real or complex, is called

a FIELD of numbers, or a number field, when, if r and s belong

to the set and s is not zero,

r+s, rs, rxs, r~s

also belong to tKe set.

Typical examples of number fields are

(i) the field of all rational real numbers (gr say);

(ii) the field of all real numbers;

(iii) the field of all numbers of the form a+6V5, where a and

b are rational real numbers;

(iv) the field of all complex numbers.

Every number field must contain each and every number

that is contained in $r (example (i) above); it must contain 1,

since it contains the quotient a/a, where a is any number of

the set; it must contain 0, 2, and every integer, since it contains

the difference 1 1, the sum 1+ 1, and so on; it must contain

every fraction, since it contains the quotient of any one integer

by another.

2. Linear and quadratic forms

2.1. Let g be any field of numbers and let a^, b^,...
be deter-

minate numbers of the field; that is, we suppose their valuefi

to be fixed. Let xr , yr ,... denote numbers that are not to be

thought of as fixed, but as free to be any, arbitrary, numbers

from a field g1?
not necessarily the same as g. The numbers

aip &#> we call CONSTANTS in g; the symbols xr , yr,... we call

VARIABLES in $v
An expression such as
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is said to be a LINEAR FORM in the variables x^ ;
an expression

SUCh as m n

is said to be a BILINEAR FORM in the variables xi
and y$\ an

expression such as

.jJX^i^ (% = %) (3)

is said to be a QUADRATIC FORM in the variables a^. In each

case, when we wish to stress the fact that the constants a^

belong to a certain field, g say, we refer to the form as one

with coefficients in g.

A form in which the variables are necessarily real numbers

is said to be a 'FORM IN REAL VARIABLES'; one in which both

coefficients and variables are necessarily real numbers is said

to be a 'REAL FORM'.

2.2. It should be noticed that the term 'quadratic form' is

used of (3) only when a^ = a^. This restriction of usage is

dictated by experience, which shows that the consequent theory

is more compact when such a restriction is imposed.

The restriction is, however, more apparent than real: for an

expression such as n

wherein by is not always the same as 6^, is identical with the

quadratic form

when we define the a's by means of the equations

For example, x*+3xy+2y2 is a quadratic form in the two

variables x and y, having coefficients

On = 1, a22
= 2 i2

= a2i
= i

2.3. Matrices associated with linear and quadratic
forms. The symmetrical square matrix A ==

[a^], having a^
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in its ith row and jth column, is associated with the quadratic

form (3): it is symmetrical because a^ a^-,
and so A = A'

,

the transpose of A.

In the sequel it will frequently be necessary to bear in mind

that the matrix associated with any quadratic form is a sym-
metrical matrix.

We also associate with the bilinear form (2) the matrix [a^]

of m rows and n columns; and with the linear form (1) we

associate the single-row matrix [<%>> ^l- More generally,

we associate with the m linear forms

the matrix [a^] of m rows and n columns.

2.4. Notation. We denote the associated matrix [ai} ]
of any

one of (2), (3), or (4) by the single letter A. We may then

conveniently abbreviate

the bilinear form (2) to A(x,y),

the quadratic form (3) to A(x,x),

and the m linear forms (4) to Ax.

The first two of these are merely shorthand notations; the third,

though it also can be so regarded, is better envisaged as the

product of the matrix A by the matrix x, a single-column matrix

having xl9 ..., xn as elements: the matrix product Ax, which has

as many rows as A and as many columns as x, is then a single
-

column matrix of m rows having the m linear forms as its

elements.

2.5. Matrix expressions for quadratic and bilinear

forms. As in 2.4, let x denote a single-column matrix with

elements xv ...
9
xn : then x', the transpose of x

}
is a single-row

matrix with elements xv ..., xn .

Let A denote the matrix of the quadratic form 2 2 ars xr xs-

Then Ax is the single-column matrix having

as the element in its rth row, and x'Ax is a matrix of one row
4702 B
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(the number of rows of x') and one column (the number of

columns of Ax), the single element being

Thus the quadratic form is represented by the single-element

matrix x'Ax.

Similarly, when x and y are single-column matrices having

#!,..., xn and
2/lv .., yn as row elements, the bilinear form (2) is

represented by the single-element matrix x'Ay.

2.6. DEFINITION 2. The DISCRIMINANT of the quadratic form

2 1>0^ (# = *)
i=i j=i

is Ae determinant of its coefficients, namely \a^\.

3. Linear transformations

3.1. The set of equations

Xi=2* av x* (*
= I.-, w), (1)

wherein the a^ are given constants and the Xj are variables, is

said to be a linear transformation connecting the variables Xj and

the variables X^ When the a
tj

are constants in a given field 5
we say that the transformation has coefficients in JJ; when the

a^ are real numbers we say that the transformation is real.

DEFINITION 3. The determinant |a^|,
whose elements are the

coefficients a^ of the transformation (I), is called the MODULUS OF

THE TRANSFORMATION.

DEFINITION 4. A transformation is said to be NON-SINGULAR

when its modulus is not zero, and is said to be SINGULAR when

its modulus is zero.

We sometimes speak of (1) as a transformation from the

x
i
to the Xi ; or, briefly, x -> X.

3.2. The transformation (1) is most conveniently written as

X = Ax, (2)

a matrix equation in which X and x denote single-column

matrices with elements Xv ..., Xn and x
l9

...
9
xn respectively,
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A denotes the matrix (a^), and Ax denotes the product of the

two matrices A and x.

When A is a non-singular matrix, it has a reciprocal A"1

(Chap. VII, 3) and

A-^X = A~*Ax = x, (3)

which expresses x directly in terms of X. Also (.4~
1
)~

1 = A,

and so, with a non-singular transformation, it is immaterial

whether it be given in the form x -> X or in the form X -> x.

Moreover, when X = Ax, given any X whatsoever, there is one

and only one corresponding x, and it is given by x = A~1X.

When A is a singular matrix, there are X for which no corre-

sponding x can be defined. For in such a case, r, the rank of

the matrix A, is less than n, and we can select r rows of A and

express every row as a sum of multiples of these rows (Theorem

31). Thus, the rows being suitably numbered, (1) gives relations

**=i*w*< (k = r+l,...,n), (4)

wherein the lki are constants, and so the set Xlt ..., Xn is limited

to such sets as will satisfy (4): a set of X that does not satisfy

(4) will give no corresponding set/ of x. For example, in the

linear transformation

(2

3\

),
the pair X, Y must satisfy

4 6/

the relation 2X = Y\ for any pair X, Y that does not satisfy

this relation, there is no corresponding pair x, y.

3.3. The product of two transformations. Let x, y, z be

'numbers' (Chap. VI, 1), each with n components, and let all

suffixes be understood to run from 1 to n. Use the summation

convention. Then the transformation

may be written as a matrix equation x ~ Ay (3.2), and the

transformation , /9 \

Vi
= b

jk
zk (

z
>

may be written as a matrix equation y = Bz.
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If in (1) we substitute for y in terms of z, we obtain

*i
=

*ifok*k> (3)

which is a transformation whose matrix is the product AB
(compare Chap. VI, 4). Thus the result of two successive

transformations x = Ay and y = Bz may be written as

x == ABz.

Since AB is the product of the two matrices, we adopt a

similar nomenclature for the transformations themselves.

DEFINITION 5. The transformation x = ABz is called the

PRODUCT OF THE TWO TRANSFORMATIONS X = Ay, y Bz. [It

is the result of the successive transformations x = Ay, y Bz.]

The modulus of the transformation (3) is the determinant

\

a
ijbjk\>

^at *s
>
the product of the two determinants \A\ and

\B\. Similarly, if we have three transformations in succession,

x = Ay, y = Bz, z = Cu,

the resulting transformation is x = ABCu and the modulus of

this transformation is the product of the three moduli \A\, \B\,

and
| <7|; and so for any finite number of transformations.

4. Transformations of quadratic and bilinear forms

4.1. Consider a given transformation

*i
=

TL*>ikXk (t
= l,...,n) (1)

*=i

and a given quadratic form
n n

A(x,x) = 2 2 a
ij
x

i
x
j (

au
= a

ji)- (
2

)

i=l j=l

When we substitute in (2) the values of xv ..., xn given by (1),

we obtain a quadratic expression in Xv ... y Xn . This quadratic

expression is said to be a transformation of (2) by (1), or the

result of applying (1) to the form (2).

THEOREM 37. // a transformation x = BX is applied to a

quadratic form A(x,x), the result is a quadratic form C(X,X)
whose matrix C is given by

C = B'AB,

where B' is the transpose of B.
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First proof a proof that depends entirely on matrix theory.

The form A(x,x) is given by the matrix product x'Ax (com-

pare 2.5). By hypothesis, x = BX, and this implies x' = X'B'

(Theorem 23). Hence, by the associative law of multiplication,

x'Ax = X'B'ABX

= X'CX, (3)

where C denotes the matrix B'AB.

Moreover, (3) is not merely a quadratic expression in

Jf
1? ..., Xn >

but is, in fact, a quadratic form having c^
=

c^.

To prove this we observe that, when G = B'AB,

C' = B'A'B (Theorem 23, Corollary)

= B'AB (since A = A')

= C;

that is to say, c^
=

c^.

Second proof a proof that depends mainly on the use of the

summation convention.

Let all suffixes run from 1 to n and use the summation con-

vention throughout. Then the quadratic form is

aa xi
x
i (

aa = a
jt)- (

4
)

The transformation x
t
= bikXk (5)

expresses (4) in the form

cklXkXt
. (6)

We may calculate the values of the c's by carrying out the

actual substitutions for the x in terms of the X. We have

a
ij
x

i
x
j
= a

ij
bikXk bjl

X
l

so that ckl
= buaybfl

where b'ki
= bik is the element in the kih row and ith

column of B'. Hence the matrix C of (6) is equal to the

matrix product B'AB.

Moreover, ckl
= clk \ for, since a

ti
= a

jt ,
we have
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and, since both i and j are dummies,

bik aji
bji== b

jk
a
ij
bu>

which is the same sum as bu atj
b
jk

or clk . Thus (6) is a quadratic

form, having cw = c
lk .

4.2. THEOREM 38. // transformations x = CX
9 y = BY are

applied to a bilinear form A(x,y), the result is a bilinear form

D(Xy Y) whose matrix D is given by

D = C'AE,

where C' is the transpose of C.

First proof. As in the first proof of Theorem 37, we write

the bilinear form as a matrix product, namely x'Ay. It follows

at once, since x' X'C', that

x'Ay = X'C'ABY = X'DY,

where D = C'AB.

4.3. Second proof. This proof is given chiefly to show how

much detail is avoided by the use of matrices: it will also serve

as a proof in the most elementary form obtainable.

The bilinear form

may be written as
m

X
' V

~~i-l-
' " tt

Transform the y's by putting

y/
= 2V/C (j

= i,-, *),
fc = l

n n
so that ^ = 2 a# 2 ^fc ^ik

m
and -4(*,y) = 2

i= l ,

The matrix of this bilinear form in x and Y has for its element

in the ith row and kth column

,

This matrix is therefore AB, where A is
[ctik] and B is [bik\.
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Again, transform the x 's in (1) by putting
m

x
i
= 2 cikxk (*'

= 1 v-, )> (3)
fc = l

and leave the t/'s unchanged. Then
m n

n m m

= 1 2(Ic< fc **%- (4)
fc-i/=ri=i '

m
The sum ]T c

ifc
a# ^s ^^e inner product of the ith row of

clm

by the jth column of

aml

Now (5) is the transpose of

that is, of (7, the matrix of the transformation (3), while (6) is

the matrix A of the bilinear form (1). Hence the matrix of the

bilinear form (4) is C'A.

The theorem follows on applying the two transformations in

succession.

4.4. The discriminant of a quadratic form.

THEOREM 39. Let a quadratic form

be transformed by a linear transformation
n

%i
= 2 likXk (*'

= 1
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whose modulus, that is, the determinant \lik \,
is equal to M; let

the resulting quadratic form be

.2 JU;Z,Z, (^ = C
fi ). (2)

1=1 J=l

Then the discriminant of (2) is M2 times the discriminant of (1);

in symbols
|co |

=
Jf|a,,|. (3)

The content of this theorem is usefully abbreviated to the

statement 'WHEN A QUADRATIC FORM is CHANGED TO NEW

VARIABLES, THE DISCRIMINANT IS MULTIPLIED BY THE SQUARE

OF THE MODULUS OF THE TRANSFORMATION '.

The result is an immediate corollary of Theorem 37. By that

theorem, the matrix of the form (2) is C = L'AL, where L is

the matrix of the transformation. The discriminant of (2), that

is, the determinant \C\, is given (Chap. VI, 10) by the product

of the three determinants \L'\, \A\, and \L\.

But \L\ = M, and since the value of a determinant is

unaltered when rows and columns are interchanged, \L'\ is

also equal to M . Hence

This theorem is of fundamental importance ;
it will be used

many times in the chapters that follow.

5. Hermitian forms

5.1. In its most common interpretation a HERMITIAN BI-

LINEAR FORM is given by

.2 |>tf*<
1 1 J 1

wherein the coefficients a^ belong to the field of complex num-

bers and are such that

The bar denotes, as in the theory of the complex variable, the

conjugate complex; that is, if z = a+ij8, where a and j8 are real,

then z = a ifi.
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The matrix A of the coefficients of the form (1) satisfies the

condition A' = A (2)

Any matrix A that satisfies (2) is said to be a HERMITIAN

MATRIX.

5.2. A form such as

is said to be a HERMITIAN FORM.

The theory of these forms is very similar to that of ordinary

bilinear and quadratic forms. Theorems concerning Hermitian

forms appear as examples at the end of this and later chapters.

6. Cogredient and contragredient sets

6.1. When two sets of variables xv ..., xn and yl9 ..., yn are

related to two other sets Xv ..., Xn and Yv ... y
Yn by the same

transformation, say
x - AX, y = AY,

then the two sets x and y (equally, X and Y) are said to be

cogredient sets of variables.

If a set z
l9

...
9
zn is related to a set Zv ...

y
Zn by a transforma-

tion whose matrix is the reciprocal of the transpose of A, that is,

2 = (A')~
1
Z, or Z = A'z,

then the sets x and z (equally, X and Z) are said to be contra-

gredient sets of variables.

Examples of cogredient sets readily occur. A transformation

in plane analytical geometry from one triangle of reference to

another is of the type

x

(I)

The sets of variables (xl9 y^ zj and (x2 , j/2 ,
z2 ), regarded as the

coordinates of two distinct points, are cogredient sets: the

coordinates of the two points referred to the new triangle

of reference are (X 19
Y
ly ZJ and (X2 ,

72 ,
Z2),

and each is

obtained by putting in the appropriate suffix in the equa-

tions (1).
4702 S
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Analytical geometry also furnishes an important example of

oontragredient sets. Let

lx+rny+nz = (2)

be regarded as the equation of a given line ex in a system of

homogeneous point-coordinates (x, y, z) with respect to a given

triangle of reference. Then the line (tangential) coordinates of

a are (I, m, n). Take a new triangle of reference and suppose

that (1) is the transformation for the point-coordinates. Then

(2) becomes LX+MY+NZ = 0,

whcre L = I

M = w^+WgW-fwZgTfc, f (3)

N =

The matrix of the coefficients of I, m, n in (3) is the transpose

of the matrix of the coefficients of X, Y, Z in (1). Hence point-

coordinates (x, y, z) and line-coordinates (I, m, n) are contra-

gredient variables when the triangle of reference is changed.

[Notice that (1) is X, 7, Z -> x, y, z wrhilst (3) is /, m, n->

L, M, N.}
The notation of the foregoing becomes more compact when

we consider n dimensions, a point x with coordinates (xl9 ... 9
xn ) y

and a 'flat' I with coordinates (J1} ..., ln ). The transformation

x = AX of the point-coordinates entails the transformation

L = A'l of the tangential coordinates.

6.2. Another example of contragredient sets, one that con-

tains the previous example as a particular case, is provided by
differential operators. Let F(xl9 ...

9
xn )

be expressed as a func-

tion of X l9
...

9
Xn by means of the transformation x AX,

where A denotes the matrix [#]. Then

dF
___ ^ 6F dxj __ ^ dF

That is to say, in matrix form, if x = AX 9

dX dx

Accordingly, the x
i
and the d/dxt form contragredient sets.
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7. The characteristic equation of a transformation

7.1. Consider the transformation X = Ax or, in full,

*<=i^ (
=

l,...,n). (I)
i = i

Is it possible to assign values to the variables x so that

^X",. Xx
t (i

=
1,..., ft), where A is independent of i? ff such

a result is to hold, we must have

n
Xx

i =Jf
a

ij
x
j (i

= l
y ...,n), (2)

and this demands (Theorem 11), when one of x
l9 ..., xn differs

from zero, that A be a root of the equation

A(\)
= au-A a12 . . aln - 0.

(3)

a
7il

an2 ' unn '

This equation is called the CHARACTERISTIC EQUATION of the

transformation (1) ; any root of the equation is called a CHARAC-

TERISTIC NUMBER or a LATENT ROOT of the transformation.

If A is a characteristic number, there is a set of numbers

#!,..., xn ,
not all zero (Theorem 11), that satisfy equations (2).

Let A A
1?

a characteristic number. If the determinant A(XJ
is of rank (nl), there is a unique corresponding set of ratios,

that satisfies (2). If the rank of the determinant A(X l )
is n 2

or less, the set of ratios is not unique (Chap. VIII, 5).

A set of ratios that satisfies (2) when A is equal to a charac-

teristic number A
r ,

is called a POLE CORRESPONDING TO Ar
.

7.2. If (^,^0,^3) and (XV X2,X3 )
are homogeneous co-

ordinates referred to a given triangle of reference in a plane,

then (1), with |^4| 7^0, may be regarded as a method of

generating a one-to-one correspondence between the variable

point (x lt
x

2,x3 )
and the variable point (XV X 2,X3 ). A pole

of the transformation is then a point which corresponds to

itself.
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We shall not elaborate the geometrical implications*)* of such

transformations; a few examples are given on the next page.

EXAMPLES X
1. Prove that all numbers of the form a-f &V3, where a and 6 are

integers (or zero), constitute a ring; and that all numbers of the form

a-f 6V3, where a and 6 are the ratios of integers (or zero) constitute a

field.

2. Express ax*-\~%hxy-}-by
2 as a quadratic form (in accordance with

the definition of 2,1) and show that its discriminant is ab h2
( 2.6).

3. Write down the transformation which is the product of the two

transformations

.

z = Z3 +w3 7?+na )
= \3 X+fjL3 Y+VsZ )

4. Prove that, in solid geometry, if i^j^lq and i a , J 2 , k2 are two unit

frames of reference for cartesian coordinates and if, for r = 1,2,

if A j r
= k

f , j r A k, = ir , k, A ir
-

j r ,

then the transformation of coordinates has unit modulus.

[Omit if the vector notation is not known.]

5. Verify Theorem 37, when the original quadratic form is

and the transformation is x = l^X-^m^^ y l2 X-{-m 2 Y, by actual

substitution on the one hand and the evaluation of the matrix product

(B'AB of the theorem) on the other.

6. Verify Theorem 38, by the method of Example 5, when the

bilinear form is

7. The homogeneous coordinates of the points Z), E, F referred to

ABC as triangle of reference are (x^y^z^ (#2 2/2 22) an(l (x^y^^)-
Prove that, if (l,m,n} are line-coordinates referred to ABC and

(L,M , N) are line-coordinates referred to DEF, then

AZ = XiL+XtM+XaN, etc.,

where A is the determinant l^t/a^al anc* Xf9 ... are the co -factors of

xrt ... in A.

HINT. First obtain the transformation x, y, z > X, Y, Z and then

use 6.1.

f Cf. R. M. Winger, An Introduction to Protective Geometry (New York,

1922), or, for homogeneous coordinates in three dimensions, G. Darboux,

Principes de gtomttrie analytique (Gauthier-Villars, Paris, 1917).
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8. In the transformation X Ax, now variables Y and y, deiined by

y=Bx, Y = BX (|B|ytO),

are introduced. Prove that the transformation Y > y is given by
Y = Ct/, where C = BAB" 1

.

9. The transformations # = JB-X", y = -B^ change the Hermitianf
a

lj
x

i yj (with A' A) into c^-X^Iy. Prove that

C =

10. Prove that the transformation x BX, together with its conju-

gate complex x BX, changes a^x^Xj (A' = A) into c^X^Xj (C
f

C),

where C = B'AB.

11. The elements of the matrices A and JB belong to a given field ft.

Prove that, if the quadratic form A (x, x) is transformed by the non-

singular transformation x = BX (or by X Bx) into C(X,X), then

every coefficient of C belongs to ft.

12. Prove that, if each xr denotes a complex variable and a
rs
are com-

plex numbers such that ars a8r (r 1,..., n; 8 = 1,..., n), the Hermitian

form ars
x

r xs
is a real number.

[Examples 13-16 are geometrical in character.]

13. Prove that, if the points in a plane are transformed by the-

scheme
, y' =

then every straight line transforms into a straight line. Prove also that

there are in general three points that are transformed into themselves

and three lines that are transformed into themselves.

Find the conditions to be satisfied by the coefficients in order that

every point on a given line may be transformed into itself.

14. Show that the transformation of Example 13 can, in general, by a

change of triangle of reference be reduced to the form

X' = aX, Y' - J8F, Z,' = yZ.

Hence, or otherwise, show that the transformation is a homology (plane

perspective, collineation) if a value of A can be found which will make

a
l A &i c

l

2 ^2 ^ ca

o3 63 c3 A
of rank one.

HINT. When the determinant is of rank one there is a line I such that

every point of it corresponds to itself. In such a case any two correspond-

ing lines must intersect on /.

f The summation convention is employed in Examples 9, 10, and 12.
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15. Obtain the equations giving, in two dimensions, the homology

(collincation, plane perspective) in which the point (x{ f y{ 9 z{) is the

centre and the hne (l[, 1%, 1$) the axis of the homology.

16. Points in a plane are transformed by the scheme

x' = px+a(\x+fjLy-\~vz) t

Find the points and lines that are transformed into themselves.

Show also that the transformation is involutory (i.e. two applications

of it restore a figure to its original position) if and only if

2/>+oA+j8/i+yi> = 0.

[Remember that (kx' t ky', kz') is the same point as (z',y',z').]



CHAPTER XI

THE POSITIVE-DEFINITE FORM

1. Definite real forms

1.1. DEFINITION 6. The real quadratic form

.2 JXj*<*j (y = /<)

is said to be POSITIVE-DEFINITE if it is positive for every set of

real values of x^..., xn other than the set X L
x2 ... x

fl
= 0.

It is said to be NEGATIVE-DEFINITE if it is negative for every set

of real values of #!,..., xn other than x = x2
= ... = xn = 0.

For example, 3a-f+ 2j-| is positive-definite, while ^x\~2x\ is

not positive-definite; the first is positive for every pair of real

values of x
l
and x2 except the pair x

l
= 0, x2 0; the second

is positive when x
l
= x2

=
1, but it is negative when x

l
= 1

and #2
= 2, and is zero when xl

= V2 and x2 ^3.

An example of a real form that can never be negative but

is not positive-definite, according to the definition, is given by

This quadratic form is zero when x = 2, x2
= 3, and x3

= 0,

and so it does not come within the scope of Definition 6. The

point of excluding such a form from the definition is that,

whereas it appears as a function of three variables, xl9
x2 ,

o?3 ,

it is essentially a function of two variables, namely,

X
l
= 3xl-2x2 ,

X2
= x3 .

A positive-definite form in one set of variables is still a

positive-definite form when expressed in a new set of variables,

provided only that the twro sets are connected by a real non-

singular transformation. This we now prove.

THEOREM 40. A real positive-definite form in the n variables

#!,..., .r,,
is (i positive-definite form in the n variables X^..., Xn

provided that (he two sets of variables are connected by a real,

nun~si/tf/ul(ir transformation.

Let the positive-definite form be B(x,x) }
and let the real



136 THE POSITIVE-DEFINITE FORM

non-singular transformation be X = Ax. Then x = A~1X. Let

B(x, x) become C(X y X) when expressed in terms of X.

Since B(x, x) is positive-definite, C(X , X) is positive for every

X save that which corresponds to x = 0. But X = -4#, where

.4 is a non-singular matrix, and so X = if and only if x = 0.

Hence C(X , JT) is positive for every X other than Jf 0.

NOTE. The equation # = is a matrix equation, x being a single-

column matrix whose elements are xl9 ...,xn .

1.2. The most obvious type of positive-definite form in n

variables is 2 ,
, 2

( Q]all xl l I
ann xn \

arr -> UJ'

We now show that every positive-definite form in n variables

is a transformation of this obvious type.

THEOREM 41. Every real positive-definite form, B(x, x), can be

transformed by a real transformation of unit modulus into a form

wherein each crr is positive.

The manipulations that follow are typical of others that occur

in later work. Here we give them in detail; later we shall refer

back to this section and omit as many of the details as clarity

permits.

Let the given positive-definite form be

B(x,x) = 22 byx^ (by
= b

it )

r=l r<8

The terms of (1) that involve xl are

6ii^i+2612 ^1 ^2+...+26ln a;1
^n . (2)

Moreover, since (1) is positive-definite, it is positive when x
l
= 1

and x2
= ... = xn = 0; hence 6n > 0. Accordingly, the terms

(2) may be written as|

t It is essential to this step that bn is not zero.
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and so, if

"11 n
Xr
= xr (r = 2,..., ),

(3)

we have

B(x,x) = &nXf+ a quadratic form in X2 ,..., X^

Xr
X

8 , (4)

say.

The transformation (3) is non-singular, the determinant of

the transformation being

1 b12/bn . . biJbi
1 . .

. . 1

Hence (Theorem 40) the form (4) in X is positive-definite and

j822 > (put X2
= 1, Xr

= when r ^ 2).

Working as before, we have

J22 P22

+ a quadratic form in X3 ,..., Xn .

Let this quadratic form in X3 ,..., Xn be 2 2 yrs^r^sJ ^hen, on

writing
T71

Y"J
l ^1>

/Q /?
/ xr

[
/-*23 V" i^ [ P2n V
fe ^22

7r
- Xr (r

= 3,..., n),

we have

;. (6)

(5)

The transformation (5) is of unit modulus and so, by Theorem

40 applied to the form (4), form (6) is positive-definite and

y33 > (put F8 = 1, rr = when r ^ 3).

Working as before, we obtain as our next form

a quadratic form in Z4 ,..., Zn , (7)

wherein 6U , j322 , y33 are positive. As a preparation for the next
4702
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step, the coefficient of Z\ can be shown to be positive by proving
that (7) is a positive-definite form. Moreover, we have

Ai2
J22

= *8+
733 733

Proceeding step by step in this way, we finally obtain

B(X,X) = 6
1if+022fS+y333+'--+*/m2 (

8 )

wherein 6ll5 ..., Knn are positive, and

= x+ b*x+_+ b* x

f - x + +&x
2
- x*+...+

J22

Xn,

We have thus transformed B(x,x) into (8), which is of the

form required by the theorem; moreover, the transformation

x -> | is (9), which is of unit modulus.

2. Necessary and sufficient conditions for a positive-

definite form

2.1. THEOREM 42. A set of necessary and sufficient conditions

that the real quadratic form

2 **<** (1)

be positive-definite is

n > 0, an a12 a
'In

^nl
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If the form is positive-definite, then, as in 1.2, there is a

transformation

~ar~ n9
P22

of unit modulus, whereby the form is transformed into

.+ Knn Xl (2)

and in this form an , /?22 ,..., *nn are a^ positive. The discriminant

of the form (2) is an j822 ... Knn . Hence, by Theorem 39,

and so is positive.

Now consider (1) when xn
= 0. By the previous argument

applied to a form in the nl variables xv ...
9
xn_v

aln _^ = an j822 ... to nl terms

an-I,n-l

and so is positive.

Similarly, on putting xn
= and xn_l

=
0,

an j822 ... to n 2 terms,

and so on. Hence the given set of conditions is necessary.

Conversely, if the set of conditions holds, then, in the first

place, an > and we may write, as in 1.2,

A(x,x) = au *

-f a quadratic form in x2 ,..., xn

X2X3+..., (3)
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say, where

Aj = %i-\
--

#2 ' i ~ ^N'
an an

Z* = ** (fc > 1).

Before we can proceed we must prove that /?22 is positive.

Consider the form and transformation when xk
~ for k > 2.

The discriminant of the form (3) is then au j322 ,
the modulus

of the transformation is unity, and the discriminant of

is au a22 af2 . Hence, by Theorem 39 applied to a form in the

two variables x and x2 only,

ailr22 ~ ttll tt22
tt
!2>

and so is positive by hypothesis. Hence /?22 is positive, and we

may write (3) as

au 7f-f j322 7|+ a quadratic form in 73 ,..., Yn ,

where v v
*i = A

i>

7
2
= -3L 2+^Xa+...+ - Jfn ,

P22 P22

7
fc
= ^

fc (A->2).

That is, we may write

A(x,x) - a11 Yl+p22 Yt+ Y33 Yl+...+ 2YuY3 Y4 +..., (4)

where !! and jS22 are positive.

Consider the forms (3), (4) and the transformation from X to

Y when xk
~ for k > 3. The discriminant of (4) is an /?22 y33 ,

the modulus of the transformation is unity, and the discri-

minant of (3) is
13

which is positive by hypothesis. Hence, by Theorem 39 applied

to a form in the three variables x
lt
x2 ,

#3 only, the product
an ^22 733 ^s e(lual t ^he determinant (5), and so is positive.

Accordingly, y33 is positive.

We may proceed thus, step by step, to the result that, when
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the set of conditions is satisfied, we may write A (x y x) in the

lorm _ V9 i o V 9. i

j

V2 /A\

wherein an , j822 ,..., KHU are positive and

*n Mi

P22
(7)

The form (6) Ls positive-definite in X
ly ..., Xn and, since the

transformation (7) is non-singular, A(x } x) is positive-definite in

x
ly

...
y
xn (Theorem 40).

2.2. We have considered the variables in the order xv x^... y

xn and we have begun with an . We might have considered the

variables in the order xny x
tl
_ly

...
y
x

l
and begun with ann . We

should then have obtained a different set of necessary and

sufficient conditions, namely,

n,n n,n-l

a
n-l,n

an-l,n-l

Equally, any permutation of the order of the variables will

give rise to a set of necessary and sufficient conditions.

2.3. The form A (x, x) is negative-definite if the form

{ A(x,x)} is positive-definite. Accordingly, the form A(x y x)

is negative-definite if and only if

< 0,

i *22 i

*32 ^33

EXAMPLES XI

I . Provo that oaoh of tho (quadratic forms

(i) at-M-35y
a +ll= 2+ 34?/s,

(ii) 6a-
2
-f 49^/

2
-f 5 lz*~ S2yz -f 2Qzx-4xy

is positive -definite, but that

(iii)

is not.
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2. Prove that if

3 3^22 on xr
x

t (ars
= asr )

r-i -i

is a positive-defmite form, then

where K is a positive-definite form in r
2 , :r3 whose discriminant is an

times the discriminant of F.

HINT. Use the transformation X = a^x^a^x^-a^x^ X2
=

x%,

Xz :rs and Theorem 39.

3. Prove that the discriminant of the quadratic form in .r, y, z

F (al x-\-b l y-}-cl zf^-(a2 x-}-b2 y-}-c2 z)
2

is the square (by rows) of a determinant whose columns are

al^l ClJ a2^2 C2> 0,0,0.

4. Extension of Example 3. Prove that a sum of squares of r distinct

linear forms in n variables is a quadratic form in n variables of zero

discriminant whenever r < n.

5. Harder. Prove also that the rank of such a discriminant is, in

general, equal to r: and that the exception to the general rule arises

when the r distinct forms are not linearly independent.

6. Prove that the discriminant of

is not zero unless the forms

n

2 <**, (r
^ l,...,w)

=-!

are linearly dependent.

HINT. Compare Examples 3 and 4.

7. Prove that the discriminant of the quadratic form

^(xr~xsY (r,s = l,...,n)
r^s

is of rank n1.
8. If/(#!,..., #n)

is a function of n variables, /, denotes

denotes d2
f/8xi

dx
j
evaluated at xr ar (r = l,...,n), prove that / has a

minimum at xr
= otr provided that 22/wfi6 1S a positive-definite

form and each /j is zero. Write down conditions that /(#, y) may be a

minimum at the point x == a, y ft.

9. By Example 12, p. 133, a Hermitian form has a real value for every
set of values of the variables. It is said to be positive-definite when
this value is positive for every set of values of the variables other than

iCj =...= xn = 0. Prove Theorem 40 for a positive-definite Hermitian

form and any non-singular transformation.
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10. Prove that a positive-definite Hermitian form can be transformed

by a transformation of unit modulus into a form

cu -Xi -X\+ ... +cnnxn%n

wherein each crr is positive.
HINT. Compare the proof ofTheorem 4 1 .

11. The determinant \A \

== [a^j is called the discriminant of the

Hermitian form 22 a
O'
xi^' Remembering that a Hermitian form is

characterized by the matrix equation A' = A, it follows, by considering
the determinant equation

1*1= M'l- Ml.
that the discriminant is real.

Prove the analogue of Theorem 42 for Hermitian forms.

12. Prove, by analogy with Example 3, that the discriminant of the

Hermitian form pj _ XX-\~YY

where X = c^tf-f b^y^c^z, Y = a 2 x-\-b^y-\- c2 z,

is zero.

Obtain the corresponding analogues of Examples 4, 5, and 6.



CHAPTER XII

THE CHARACTERISTIC EQUATION AND
CANONICAL FORMS

1. The A equation of two quadratic forms

1.1. We have seen that the discriminant of a quadratic form

A(x,x) is multiplied by M2 when the variables x are changed
to variables X by a transformation of modulusM (Theorem 39).

If A(x,x) and C(x, x) are any two distinct quadratic forms

in n variables and A is an arbitrary parameter, the discriminant

of the form A(x, x) \C(x,x) is likewise multiplied by M2 when

the variables are submitted to a transformation of modulus M.

Hence, if a transformation

j = 1
\

b
ij\
=

changes ^ars
xr
x
89 %crs

x
r
xs into 2<xr8XrXs , 2,YrsXrXs >

tllen

The equation \A XC\ = 0, or, in full,

-Ac11 &1 / -o,

,fl Ac
7fl

. . ann Acw

is called THE A EQUATION OF THE TWO FORMS.

What we have said above may be summarized in the theorem :

THEOREM 43. The roots of the A equation of any two quadratic

forms in n variables are unaltered by a non-singular linear trans-

formation.

The coefficient of each power Ar
(r
= 0, 1,..., n) is multiplied

by the square of the modulus of the transformation.

1 .2. The A equation ofA (x, x) and the form x\+ . . . +x% is called

THE CHARACTERISTIC EQUATION of A. In full, the equation is

A a!2

a<><> )

= 0.

^2n

'"nl
a'n2
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The roots of this equation are called the LATENT ROOTS of the

matrix A. The equation itself may be denoted by \A XI\ = 0,

where / is the unit matrix of order n.

The term independent of A is the determinant la^l, so that

the characteristic equation has no zero root when \aik \ ^ 0.

When \aik \

= 0, so that the rank of the matrix [aik] is r < n>

there is at least one zero latent root; as we shall prove later,

there are then nr zero roots.

2. The reality of the latent roots

2.1. THEOREM 44. // [c ik] is the matrix of a positive-definite

form C(x,x) and [aik]
is any symmetrical matrix with real ele-

ments, all the roots of the A equation

#11 CU #12 C12

# ^ # ^2

*nl

are real.

'2i
A ^22 22

i c

=

Let A be any root of the equation. Then the determinant

vanishes and (Theorem 11) there are numbers Zv Z2 ,..., Zn ,
not

all zero, such that

58
=

(r
= !,...,);

8 = 1

n n

that is, ^ZCrs^s = Z, ar8^8 (r
= l,...,n). (1)

Multiply each equation (1) by Zr ,
the conjugate complex! of

Zr ,
and add the results. If Zr

= Xr+iYr ,
where Xr and Yr are

real, we obtain terms of two distinct types, namely,

ZrZr
= (Xr+iYr)(Xr-~iYr )

=

ZrZ8+Zr
Z

8
= (Xr+iYr)(Xs-iY8)+(Xr-iYr)(Xs+iYJ

= 2(XrX8+YrY8).

f When Z = X+iY, Z = X-iY; i = V(-l), X and Y real.

4702
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Hence the result of the operation is

A( I UXr
2+7r

2)+2 | crs(XrX8+YrY8 )}
l r = l r<S '

-
{l<*rr(X

2
r+ Y*)+ 2 an(Xr

X
a+Yr Y8

)),

or, on using an obvious notation,

X{C(X,X)+ C(Y,Y)} = A(X,X)+A(Y,Y). (2)

Since, by hypothesis, C(x, x) is positive-definite and since the

numbers Zr
= Xr+iYr (r = 1,..., n) are not all zero, the coeffi-

cient of A in equation (2) is positive. Moreover, since each a lk

is real, the right-hand side of (2) is real and hence A must be real.

NOTE. If the coefficient of A in (2) were zero, then (2) would tell us

nothing about the reality of A. It is to preclude this that we require

C(x, x) to be positive-definite.

COROLLARY. // both A(x,x) and C(x,x) are positive-definite

forms, every root of the given equation is positive.

2.2. When crr
= 1 and c

r3
=

(r ^ s), the form C(x,x) is

zf+xl+'-'+^n and is positive-definite. Thus Theorem 44 con-

tains, as a special case, the following theorem, one that has

a variety of applications in different parts of mathematics.

THEOREM 45. When [aik]
is any symmetrical matrix with real

elements, every root A of the equation \AXI\ = 0, that is, of

in A a12 . . aln
a21 a22~~^ ' ' a2n

anl an2 ' ' ann-
is real.

When [a^] is the matrix of a positive-definite form, every root

is positive.

3. Canonical forms

3.1. In this section we prove that, if A =
[aik] is a square

matrix of order n and rank r, then there is a non-singular

transformation from variables #lv .., xn to variables Xv ..., Xn

that changes A (x, x) into

*
r , (3)
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where gv ..., gr are distinct from zero. We show, further, that

if the a
ik are elements in a particular field F (such as the field

of real numbers), then so are the coefficients of the transforma-

tion and the resulting g t
. We call (3) a CANONICAL FORM.

The first step in the proof is to show that any given quadratic

form can be transformed into one whose coefficient of x\ is not

zero. This is done in 3.2 and 3.3.

3,2. Elementary transformations. We shall have occa-

sion to use two particular types of transformation.

TYPE I. The transformation

x
l
= X

r ,
xr
= Xv x

8
= X

8 (5 ^ 1, r)

is non-singular; its modulus is 1, as is seen by writing the

determinant in full and interchanging the first and rth columns.

Moreover, each coefficient of the transformation is either 1 or 0,

and so belongs to every field of numbers F.

If in the quadratic form J J ars xr xs one f the numbers

a ii>---> tf/,,1
is not zero, then either an ^ or a suitable trans-

formation of type I will change the quadratic form into

II
\b
nXr

X
S9
wherein 6U = 0.

If, in the quadratic form ]T 2 a
rs xr xs>

a^ the numbers an ,...,

ann are zero, but one number ars (r ^ s) is not zero, then a

suitable transformation of type I will change the form into

2 2 ^rs %rX8 >
wherein every bn is zero but one of the numbers

6 12 ,..., bln is not zero.

TYPE II. The transformation in n variables

x^Xi+X,, x^Xi-X., x
t
= X

t (t=8,l)

is non-singular. Its modulus is the determinant which

(i) in the first row, has 1 in the first and 5th columns and

elsewhere,

(ii) in the 5th row, has 1 in the first, 1 in the 5th, and in

every other column,

(iii) in the tth row (t ^ s, 1) has 1 in the principal diagonal

position and elsewhere.

The value of such a determinant is 2. Moreover, each element
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of the determinant is 1, 0, or 1 and so belongs to every field

of numbers F.

If, in the quadratic form 2 br8
xr x8 ,

all the numbers 6n ,...,

bnn are zero, but one bl8 is not zero, then a suitable transforma-

tion of type II will express the form as 2 2, cra-^r^ wherein

cn is not zero.

3.3. The first step towards the canonical form. The

foregoing elementary transformations enable us to transform

every quadratic form into one in which au is not zero. For

consider any given form

A(x,x)~% ^ars xr xs (ars = aj. (1)
r=l s=l

If one a^ is not zero, a transformation of type I changes

(1) into a form B(X, X) in which 6n is not zero.

If every arr is zero but at least one ars is not zero, a trans-

formation of type I followed by one of type II changes (1) into

a form C(Y y Y) in which cn is not zero. The product of these

two transformations changes (1) directly into C(Y,Y) and the

modulus of this transformation is 2.

We summarize these results in a theorem.

THEOREM 46. Every quadratic form A(x, x), with coefficients

in a given field F, and having one a
rs not zero, can be transformed

by a non-singular transformation with coefficients in F into a form

B(X, X) whose coefficient fcn is not zero.

3.4. Proof of the main theorem.

DEFINITION 7. The rank of a quadratic form is defined to be

the rank of the matrix of its coefficients.

THEOREM 47. A quadratic form in n variables and of rank r,

with coefficients in a given field F, can be transformed by a non-

singular transformation, with coefficients in F, into the form

1 ZJ+...+ rZ, (1)

where ocv ..., ar are numbers in F and no one of them is equal

to zero.

n n

Let the form be ^ 2 a
ij
x

i
x
j\

an^ let A denote the matrix
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[%]. If every a^ is zero, the rank of A is zero and there is

nothing to prove.

If one a^ is not zero (Theorem 46), there is a non-singular

transformation with coefficients in F that changes A (x, x) into

where c^ ^ 0. This may be written as

and the non-singular transformation, with coefficients in F,

Y
l
=

-X"i<-)
-- JT2+...H --^ n >

i i

Y^X, (=2,...,*),

enables us to write -4(#, #) as

Moreover, the transformation direct from x to y is the pro-

duct of the separate transformations employed; hence it is non-

singular and has its coefficients in F, and every b is in F.

If every b
tj

in (2) is zero, then (2) reduces to the form (1);

the question of rank we defer until the end.

If one by is not zero, we may change the form ] 2 ^ ^i Yf

in n1 variables in the same way as we have just changed the

original form in n variables. We may thus show that there is

a non-singular transformation

Z
i
= Ilii

Y
i (i=2,...,n), (3)

j = 2

with coefficients in F, which enables us to write

where 2 7^ ^- The equations (3), together with Fx
= Zj, con-

stitute a non-singular transformation of the n variables Yl9 ...,Yn

into 2
15 ..., Zn . Hence there is a non-singular transformation,
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the product of all the transformations so far employed, which

has coefficients in F and changes A(x y x) into

c^ZJ+^ZS+i JU,Z,Z,, (4)
i = 3 j = 3

wherein j ^ and a2 ^ 0, and every c is in F.

On proceeding in this way, one of two things must happen.
Either we arrive at a form

*l Xl+...+*kXl+ 2 I dtjXtX,, (5)
i=T+i y=/c-f i

wherein k < n, ax ^ 0,..., a^. ^ 0, but every d^ = 0, in which

case (5) reduces to

or we arrive after n steps at a form

1 xi+...+*H x*.

In either circumstance we arrive at a final form

(*<n) (6)

by a product of transformations each of which is non-singular

and has its coefficients in the given field F.

It remains to prove that the number k in (6) is equal to r,

the rank of the matrix A. Let B denote the transformation

whereby we pass from A(x,x) to the form

I o.z?. (?)
1-1+ 1

Then the matrix of (7) is (Theorem 37) B'AB. Since B is non-

singular, the matrix B'AB has the same rank as A (Theorem

34), that is, r. But the matrix of the quadratic form (7) con-

sists of alv .., ak in the first k places of the principal diagonal

and zero elsewhere, so that its rank is k. Hence k = r.

COROLLARY. // A(x, x) is a quadratic form in n variables, with

its coefficients in a given field F, and if its discriminant is zero,

it can be transformed by a non-singular transformation, with

coefficients in F, into a form (in n~l variables at most)

where c^,..., ocn^ are numbers in F.

This corollary is, of course, merely a partial statement of the
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theorem itself; since the discriminant of A(x,x) is zero, the rank

of the form is n I or less. We state the corollary with a view

to its immediate use in the next section, wherein F is the field

of real numbers.

4. The simultaneous reduction of two real quadratic
forms

THEOREM 48. Let A(x, x), C(x,x) be two real quadratic forms
in n variables and let C(x, x) be positive-definite. Then there is

a real, non-singular transformation that expresses the two forms as

where A
1} ..., A^ are the roots of \A-~\C\ = and are all real

The roots of \A~XC \

= are all real (Theorem 44). Let X
l

be any one root. Then A(x,x) Xl C(x,x) is a real quadratic
form whose discriminant is zero and so (Theorem 47, Corollary)
there is a real non-singular transformation from xv ..., xn to

F!,..., Yn such that

where the a's are real numbers. Let this same transformation,
when applied to C(x, x), give

C(x,x)=i Jy^r,. (1)
i =U = l

Then we have, for an arbitrary A,

. A(x,x)XC(x,x) = A(x,x)-Xl C(x,x)+(X1-X)C(x,x)

,. (2)

Since C(x, x) is positive-definite in the variables x, it is also

positive-definite in the variables 7 (Theorem 40). Hence yu is

positive and we may use the transformation

This enables us to write (2) in the form (Chap. XI, 1.2)

A(x,x)-W(x,x) = ^(Z2,...,Zn)+(A1-A){yu ZJ+0(Zlf ...,

where
<f>
and $ are real quadratic forms in Z2 ,..., Zn .
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Since this holds for an arbitrary value of A, we have

A(x 9 x) =
(3)

where 6 and
tfj
denote quadratic forms in Z2 ,..., Zn .

This is the first step towards the forms we wish to establish.

Before we proceed to the next step we observe two things:

(i) ifj
is a positive-definite form in thenl variables Z2 ,..., Zn \

for

is obtained by a non-singular transformation from the form (1),

which is positive-definite in Y
l9

...
9
Yn .

(ii) The roots of |0 A^| = 0, together with A = At ,
account

for all the roots of \A--\C\ = 0; for the forms (3) derive from

A(x y x) and G(x, x) by a non-singular transformation and so

(Theorem 43) the roots of

|(Aiyu-Ayu)ZJ+0-M - 0,

that is, of

. . = o,

o *- **-,
are the roots of \A \C\ = 0. If Ax

is a repeated root of

I^ACI = 0, then \ is also a root of \B A0| = 0.

Thus we may, by using the first step with 6 and
ifi

in place

of A and C, reduce 0, $ to forms

( }

where 2 is positive, A2 is a root of \AXC\, and the transforma-

tion between Z2 ,..., Zn and C/2 ,..., Un is real and non-singular.

When we adjoin the equation C/j
= Zl we have a real, non-

singular transformation between Zv ...
9
Zn and Uly

...
y
Un . Hence

there is a real non-singular transformation (the product of all

transformations so far used) from xl9 ..., xn to Ul9 ..., Un such that

C(x,x)=
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where o^ and a2 are positive; Aj and A2
are roots, not necessarily

distinct, of \A-XC\\ f and F are real quadratic forms. As at

the first stage, we can show that F is positive-definite and that

the roots of \fXF\ = together with Xl and A2 account for

all the roots of \AXC\ = 0.

Thus we may proceed step by step to the reduction of A(x, x)

and C(x, x) by real non-singular transformations to the two

formS
A(x,x) = X

l
a

l
Y*+Xt*tYl+...+Xn <*n Yl

c(x,x)= ai rf+ 2 n+...+ an Y*,

wherein each
^
is positive and A

1? ..., Xn account for all the roots

of \AXC\ = 0.

Finally, the real transformation

X
r
= V,.y,

gives the required result, namely,

A(x,x) = X

5. Orthogonal transformations

If, in Theorem 48, the positive-definite form is xl+ +?%,
the transformation envisaged by the theorem transforms

#?+ ...+* into XI+...+ X*. Such a transformation is called

an ORTHOGONAL TRANSFORMATFON. We shall examine such

transformations in Chapter XIII; we shall see that they are

necessarily non-singular. Meanwhile, we note an important

theorem.

THEOREM 49. A real quadratic form A(x, x) in n variables can

be reduced by a real orthogonal transformation to the form

where A
15 ..., Xn account for all the roots of \A A/| = 0. More-

over, all the roots are real.

The proof consists in writing rrf-f-...+aft
for C(x, x) in

Theorem 48. [See also Cha])ter XV, .'*.]

6. The number of non-zero latent roots

If B is the matrix of the orthogonal transformation whereby

A(x, x) is reduced to the form

AX X\+ . . .+ Xn X%, (
1
)

4702 x
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then (Theorem 37) E'AE is the matrix of the form (1) and

this has Xv ..., Xn in its leading diagonal and zero elsewhere. Its

rank is the number of A's that are not zero. But since B is

non-singular, the rank of B'AB is equal to the rank of A.

Hence the rank of A is equal to the number of non-zero roots of

the characteristic equation \A \I\ = 0.

7. The signature of a quadratic form

7.1. As we proved in Theorem 47 (3.4), a real quadratic

form of rank r can be transformed by a real non-singular trans-

formation into the form

wherein a^..., ar are real and not zero.

As a glance at 3.3 will show, there are, in general, many
different ways of effecting such a reduction; even at the first

step we have a wide choice as to which non-zero a
rs
we select

to become the non-zero 6U or cn ,
as the case may be.

The theorem we shall now prove establishes the fact that,

starting from the one given form A (#, #), the number of positive

a's and the number of negative a's in (1) is independent of the

method of reduction.

THEOREM 50. // a given real quadratic form of rank r is

reduced by two real, non-singular transformations, B and B2 say,

to the farms
ai *+...+,**, (2)

/?1 y?+...+/?r y*, (3)

the number of positive a's is equal to the number ofpositive fi's and

the number of negative a's is equal to the number of negative j3's.

Let n be the number of variables x
l9

...
9
xn in the initial quad-

ratic form; let p, be the number of positive a's and v the number

of positive jB's. Let the variables X, Y be so numbered that

the positive a's and jS's
come first. Then, since (2) and (3) are

transformations of the same initial form, we have

-...-^*. (4)
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Now suppose, contrary to the theorem, that /x > v. Then

the n+vfji equations

^ = 0, ..., F,= 0, ^ = 0, ..., Xn = Q (5)

are homogeneous equations in the n variables! #1? ..., xn . There

are less equations than there are variables and so (Chap. VIII,

5) the equations have a solution x
1
=

1? ..., xn = n in which

i>> n are not a^ zero -

Let X'r ,
Y'r be the values of Xr ,

Yr when x = . Then, from

(4) and (5),

which is impossible unless each X' and Y' is zero.

Hence either we have a contradiction or

Xl
= 0, ..., -2^

= 0,
|

,

6)
and, from (5), X'^ = 0, ..., X'n = 0. j

v '

But (6) means that the n equations

-**! ^j > "^n > v /

say ik xk
fc^i

in full, have a solution x
r
= ^r in which

1} ..., fn are not all

zero; this, in turn, means that the determinant \lik \

= 0, which

is a contradiction of the hypothesis that the transformation

is non-singular.

Hence the assumption that /x > / leads to a contradiction.

Similarly, the assumption that v > /z leads to a contradiction.

Accordingly, /^
= v and the theorem is proved.

7.2. One of the ways of reducing a form of rank r is by the

orthogonal transformation of Theorem 49. This gives the form

where Als ..., A,,
are the non-zero roots of the characteristic

equation.

Hence the number of positive a's, or /J's, in Theorem 50 is

the number of positive latent roots of the form.

f Each X and Y is a linear form in xlf ... 9 xn .
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7.3. We have proved that, associated with every quadratic

form are two numbers P and JV, the number of positive and

of negative coefficients in any canonical form. The sum of P
and N is the rank of the form.

DEFINITION 8. The numberPN is called the SIGNATURE of

the form.

7.4. We conclude with a theorem which states that any two

quadratic forms having the same rank and signature are, in

a certain sense, EQUIVALENT.

THEOREM 51. Let A^x, x), A 2 (y, y) be two real quadratic forms

having the same rank r and the same signature s. Then there is

a real non-singular transformation x = By that transforms

AI(X,X) into A 2(y,y).

When Ai(x,x) is reduced to its canonical form it becomes

^Xl+.-.+cipXl-p^Xfa-...-^*, (1)

where the a's and /Ts are positive, where
JJL
= i(s+r) 9

and

where the transformation from x to X is real and non-singular.

The real transformation

changes (1) to f?+...+^-^i-...-fr (2)

There is, then, a real non-singular transformation, say

x C\, that changes A^(x y x) into (2).

Equally, there is a real non-singular transformation, say

y = Cf

2 1, that changes A 2(y,y) into (2). Or, on considering the

reciprocal process, (2) is changed into A 2(y,y) by the trans-

formation = C2
l
y. Hence

3 = ^0-10

changes A^x.x) into A 2(y,y).

EXAMPLES XII

1. Two forms A(x, x) and C(x, x) have

aT8
= cra when r 1,..., k and 8 1,..., n.

Prove that the A equation of the two forms has k roots equal to unity.
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2. Write down the A equation of the two forms ax2
-f 2hxy+ by

2 and

a'x2
-\-2h'xy-{-b'y

2 and prove, by elementary methods, that the roots

are real when a > and ab h2 > 0.

HINT. Let

= a(a?

The condition for real roots in A becomes

(ab'+ a'b-2tih')
2 -4(ab-h2

)(a'b'-h'
2
) > 0,

which can be written as

aV^-a^-ftX^-ftMft-a,) > 0.

When ab h2 > 0, ax and /3t
are conjugate complexes and the result can

be proved by writing c^ y-j-i8, ^ y iS.

In fact, the A roots are real save when alt ftl9 a.2 , /?2 are real and the

roots with suffix 1 separate those with suffix 2.

3. Prove that the latent roots of the matrix A , where

A(x 9 x) =-
foe?

are all positive.

4. Prove that when

A(x,x) =
two latent roots are positive and one is negative.

5. ^ 2 ar,xr x,; Xr
=

lk

X,
<*kk

xk X,

ak-i.k
xk

By subtracting from the last row multiplies of the other rows and then,

for Ak , by subtracting from the last column multiples of the other

columns, prove that A k and fk are independent of the variables xt ... 9 xk
when k < n. Prove also that A n ^ 0.

6. With the notation of Example 5, and with

n . . alk

show, by means of Theorem 18 applied to A k , that

7. Uso the result of Example 6 and the result A n of Example 5 to

prove that, when no Dk is zero,
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Consider what happens when the rank, r, of A is less than n and

>!,..., Dr are all distinct from zero.

y/'S.
Transform 4cca x3 -f- 2#3^ -f 6^ x2 into a form 22 ara^r-^ with

an i=. 0, and hence (by the method of Chap. XI, 1.2) find a canonical

form and the signature of the form.

9. Show, by means of Example 4, that

4x1+ 9*2+ 2*1 -h 8*2 *3 -f 6*3 *! -f 6*! *2

is of rank 3 and signature 1. Verify Theorem 60 for any two independent
reductions of this form to a canonical form.

10. Prove that a quadratic form is the product of two linear factors if

and only if its rank does not exceed 2.

HINT. Use Theorem 47.

13. trove that the discriminant of a Hermitian form A(x,x), when it

is transformed to new variables by means of transformations x = BX,
x = BX, is multiplied by \B\x\B\.
Deduce the analogue of Theorems 43 and 44 for Hermitian forms.

12. Prove that, if A is a Hermitian matrix, then all the roots of

\A XI
|

= are real.

HINT. Compare Theorem 45 and use

n

C(x t x) = 2,xr xr .

r-l

13. Prove the analogues of Theorems 46 and 47 for Hermitian forms.

14. A(x,x), C(x,x) are Hermitian forms, of which C is positive-

definite. Prove that there is a non-singular transformation that expresses

the two forms as

A!Xl
X

1 4- ... -fAnXn 3Tn , X
l
Xl+ ... -fXnXnt

where A^...,^ are the roots of \A-\C\ and are all real.

15. An example of some importance in analytical dynamics.^ Show
that when a quadratic form in m-\-n variables,

2T = ^ara xr xt (arB = a^),

is expressed in terms of lf ..., m , #m+i-., #m+n where r dT/dxr , there

are no terms involving the product of a by an x.

Solution. The result is easily proved by careful manipulation. Use

the summation convention: let the range of r and s be 1,..., m; let the

range of u and t be m-f 1,..., m+n. Then 2T may be expressed as

2T = art xr x8+ 2aru xr yu+aut yu ytt

where, as an additional distinguishing mark, we have written y instead

of a: whenever the suffix exceeds m.

We are to express T in terms of the y's and new variables f, given by

t Cf. Lamb, Higher Mechanics, 77: The Routhian function. I owe this

example to Mr. J. Hodgkinson.
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Multiply by A8r , the co-factor of asr in A = |ara |,
a determinant of order

w, and add: we got9 o

Now 2T =
=

2AT =

where ^(i/, y) denotes a quadratic form in the t/'s only.

But, since ar8
= a8T , we also have A 8r

= A r8 . Thus the term multiply-

ing yu in the above may be written as

ruAT8 8 a8UA 8r r ,

and this is zero, since both r and 8 are dummy suffixes. Hence, 2T may
be written in the form

2T = (AJAfafr+b^vt
whore r, a run from 1 to m and u, t run fromm+ 1 to m+n.



CHAPTER XIII

ORTHOGONAL TRANSFORMATIONS

1. Definition and elementary properties

1.1. We recall the definition of the previous chapter.

DEFINITION 9. A transformation x AX that transforms

a;2_|_ ...-f#2 into XI+...+X* is called an ORTHOGONAL TRANS-

FORMATION. The matrix A is called an ORTHOGONAL MATRIX.

The best-known example of such a transformation occurs in

analytical geometry. When (x, y, z) are the coordinates of a

point P referred to rectangular axes Ox, Oy, Oz and (X, Y, Z)

are its coordinates referred to rectangular axes OX
, OY, OZ,

whose direction-cosines with regard to the former axes are

(llt m l9 n^, (/2 ,
m 2 ,

7? 2 ), (?3 ,
w 3 ,

# 3 ), the two sets of coordinates

are connected by the equations

Moreover, z 2
+?/

2+z2 - X*+Y*+Z2 - OP2
.

1.2. The matrix of an orthogonal transformation must have

some special property. This is readily obtained.

If A =
[ar8] is an orthogonal matrix, and x = AX,

for every set of values of the variables Xr
. Hence

= 1 (*
= !,..., n),

tns anl
=

(s i~~ t).

These are the relations that mark an orthogonal matrix: they
are equivalent to the matrix equation

A'A = /, (2)

as is seen by forming the matrix product A'A.
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1.3. When (2) is satisfied A' is the reciprocal of A (Theorem

25), so that AA' is also equal to the unit matrix, and from this

fact follow the relations (by writing AA' in full)

}=
( ^ I).

When n = 3 and the transformation is the change of axes

noted in 1.1, the relations (1) and (3) take the well-known

forms = l, Z1m1+Z2m2+Z3m3
- 0,

and so on.

1.4. We now give four theorems that embody important

properties of an orthogonal matrix.

THEOREM 52. A necessary and sufficient condition for a square

matrix A to be orthogonal is AA' = /.

This theorem follows at once from the work of 1.2, 1.3.

COROLLARY. Every orthogonal transformation is non-singular.

THEOREM 53. The. product of two orthogonal transformations

is an orthogonal transformation.

Let x = AX, X = BY be orthogonal transformations. Then

AA' = /, BB' = /.

Hence (AB)(AB)' = ABB'A' (Theorem 23)

= AIA'

= AA' = /,

and the theorem is proved.

THEOREM 54. The modulus of an orthogonal transformation is

either +1 or 1.

IfAA' = I and \A\ is the determinant of the matrix A, then

\A\.\A'\ =1. But \A'\ = \A\, and hence 1-4 1

1 = 1.

THEOREM 55. If X is a latent root of an orthogonal transforma-

tion, then so is I/A.

Let A be an orthogonal matrix; then AA' = 7, and so

A 1 = A-*. (4)
4702
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By Theorem 36, Corollary, the characteristic (latent) roots

of A' are the reciprocals of those of A. But the characteristic

equation of A' is a determinant which, on interchanging its

rows and columns, becomes the characteristic equation of A.

Hence the n latent roots of A are the reciprocals of the n

latent roots of A, and the theorem follows, (An alternative

proof is given in Example 6, p. 168.)

2. The standard form of an orthogonal matrix

2.1. In order that A may be an orthogonal matrix the equa-

tions (1) of 1.2 must be satisfied. There are

n(n 1) __ n(n-\-l)

of these equations. There are n2 elements in A. We may there-

fore expectf that the number of independent constants neces-

sary to define A completely will be

n

If the general orthogonal matrix of order n is to be expressed

in terms of some other type of matrix, we must look for a matrix

that has \n(n-~ 1) independent elements. Such a matrix is the

skew-symmetric matrix of order n\ that is,

For example, when n = 3,

has 1+ 2 = 3 independent elements, namely, those lying above

the leading diagonal. The number of such elements in the

general case is

| The method of counting constants indicates what results to expect: ifc

rarely proves those results, and in the crude form we have used above it

certainly proves nothing.
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THEOREM 56. // $ is a skew-symmetric matrix of order n, then,

provided that I+S is non-singular,

= (I-S)(I+8)-i

is an orthogonal matrix of order n.

Since S is skew-symmetric,

s f - -5, (i-sy - i+s, (i+sy = /-s
;

and when I+S is non-singular it has a reciprocal (I+S)- 1
.

Hence the non-singular matrix O being defined by

we have
0' = {(/+ fl)-i}'(/- )' (Theorem 23)

= (2S)~ l(I+S) (Theorem 27)

and 00' - (I-S)(I+S)-
l(I-S)~

l
(f+S). (5)

Now / $ and I+S are commutative,! and, by hypothesis,

I+S is non-singular. HenceJ

and, from (5),

00' - (I+S)-
l
(I

Hence is an orthogonal matrix (Theorem 52).

NOTE. When the elements ofS are real, I+S cannot be singular. This

fact, proved as a lemma in 2.2, was well known to Cayley, who dis-

covered Theorem 56.

2.2. LEMMA. // S is a real skew-symmetric matrix, I+S is

non-singular.

Consider the determinant A obtained by writing down S and

replacing the zeros of the principal diagonal by x\ e.g., with

71-3,
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The differential coefficient of A with respect to x is the sum of

n determinants (Chap. I, 7), each of which is equal to a skew-

symmetric determinant of order n 1 when x = 0. Thus, when

n = 3,

dA
dx

and the latter become skew-symmetric determinants of order 2

when x = 0.

Differentiating again, in the general case, we see that d2
&/dx

2

is the sum of n(n 1) determinants each of which is equal to

a skew-symmetric determinant of order n 2 when x = 0; and

so on.

By Maclaurin's theorem, we then have

A = AO+Z 2 +*2 2 +...+x, (6)
1 2

where A is a skew-symmetric determinant of order n, 2 a sum
i

of skew-symmetric determinants of order n 1, and so on.

But a skew-symmetric determinant of odd order is equal to

zero and one of even order is a perfect square (Theorems 19, 21).

Hence _ __ __ __

(7)
n even

n odd

A = P +a2P
8+~.+a,

A - xPl+x*P3+...+x,

where P
,
P

l9 ... are either squares or the sums of squares, and

so P
,
Plv .. are, in general, positive and, though they may be

zero in special cases, they cannot be negative.

The lemma follows on putting x = 1.

2.3. THEOREM 57. Every real orthogonal matrix A can be

expressed in the form

J(I-S)(I+S)-* 9

where S is a skew-symmetric matrix and J is a matrix having i 1

in each diagonal place arid zero elsewhere.

As a preliminary to the proof we establish a lemma that is

true for all square matrices, orthogonal or not.
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LEMMA. Given a square matrix A it is possible to choose a

matrix J, having i 1 in each diagonal place and zero elsewhere,

so that 1 is not a latent root of the matrix JA.

Multiplication by J merely changes the signs of the elements

of a matrix row by row; e.g.

"1 . . "IFa,, a a1Ql = F a

-i
11 a

a,21

12

-22 - C

-a,o ia32 a33J L W31 1*32
"~"

"33J

Bearing this in mind, we see that, either the lemma is true or,

for every possible combination of row signs, we must have

= 0.

(8)

But we can show that (8) is impossible. Suppose it is true.

Then, adding the two forms of (8), (i) with plus in the first row,

(ii) with minus in the first row, we obtain

=
(9)

a2n .... ann+l

for every possible combination of row signs. We can proceed

by a like argument, reducing the order of the determinant by

unity at each step, until we arrive at 0^+1 = 0: but it is

impossible to have both -\-ann -\- 1 = and ann -\- 1 = 0. Hence

(8) cannot be true.

2,4. Proof of Theorem 57. Let A be a given orthogonal

matrix with real elements. If A has a latent root 1, let

J
V
A = A : be a matrix whose latent roots are all different from

1, where Jt is of the same type as the J of the lemma.

Now Jj is non-singular and its reciprocal Jf
* is also a matrix

having 1 in the diagonal places and zero elsewhere, so that

where J = /f
* and is of the type required by Theorem 57.

Moreover, A
l9 being derived from A by a change of signs of
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certain rows, is orthogonal and we have chosen it so that the

matrix A^I is non-singular. Hence it remains to prove that

when A l
is a.real orthogonal matrix such that -4 1+/ is non-

singular, we can choose a skew-symmetric matrix S so that

To do this, let

8 = (I-AJV+AJ-*. (10)

The matrices on the right of (10) are commutativef and we

may write, without ambiguity,

T 4 1 A'
* ' *

Further, A l
A f

l
= A'1A l

= /, since A l
is orthogonal. Thus A l

and A( are commutative and we may work with Av A(, and /

as though they were ordinary numbers and so obtain, on using

the relation A l
A'l = /,

2I-2A
1
A'1 r\

Hence, when S is defined by (10), we have S = S'; that is,

S is a skew-symmetric matrix. Moreover, from (10),

and so, since I+S is non-singularJ and / S, I+S are com-

mutative, we have

Al =(I-S)(I+S)-\ (12)

the order|| of the two matrices on the right of (12) being

immaterial.

We have thus proved the theorem.

2.4. Combining Theorems 56 and 57 in so far as they relate

to matrices with real elements we see that

'// S is a real skew-symmetric matrix, then

A = J(I-S)(I+S)-1

t Compare the footnote on p. 163. J Compare 2. 2.

|| Compare the footnote on p. 163.
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is a real orthogonal matrix, and every real orthogonal matrix can

be so written.'

2.5. THEOREM 58. The latent roots of a real orthogonal matrix

are of unit modulus.

Let [ars] be a real orthogonal matrix. Then (Chap. X, 7),

if A is a latent root of the matrix, the equations

Xx
r
== arl x1+ ...+arn xn (r

=
l,...,n) (13)

have a solution a;
1 ,...,

xn other than x ... xn = 0.

These x are not necessarily real, but since ara is real we also

have, on taking the conjugate complex of (13),

Xx
r
= a

rl xl+...+ani x fl (r
=

1,..., n).

By using the orthogonal relations (1) of 1, we have

r-l r=l

But not all of #
15 ..., xn are zero, and therefore ^xr

x
r > 0.

Hence AA = 1, which proves the theorem.

EXAMPLES XIII

1. Prove that the matrix

r-i 4 i i

4 -* i 4

4 4-44
Li i 4 -4J

is orthogonal. Find its latent roots and verify that Theorems 54, 55, and

58 hold for this matrix.

J 2. Prove that the matrix

[45
i i

Ll
-
i -I

is orthogonal.

3. Prove that when

-c -61,
-a\

a I
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'l+a*-62-c* 2(c-a6) 2(ac

-2(c-j-a&) 2(a-6c)

l-f.aa_{_&2+ c2 l +al+ fci+ ct I_}_a2_|_62+ c2

6) 2(o+6c) 1-a2

.l+aa
-f&

2+c2

Hence find the general orthogonal transformation of three variables.f

4. A given symmetric matrix is denoted byA ; XfAX is the quadratic
form associated with A; S is a skew-symmetric matrix such that I-j-SA

is non-singular. Prove that, when SA = AS and

_ J-<^
F>

5. (Harder. )J Prove that, when ^L is symmetric, <S skew-symmetric,
and/? = (^4-f A^)-

1^-^),
tf'^ + S)/? = A + S, R'(A-S)R = A-S;

R'AE = A, R'SR = fif.

Prove also that, when X = RY,

X'AX = F'^F.

6. Prove Theorem 55 by the following method. Let A be an ortho-

gonal matrix. Multiply the determinant \A \I\ by \A\ and, in the

resulting determinant, put A' = I/A.

7. A transformation x = UX, x UX which makes

is called a unitary transformation. Prove that the mark of a unitary
transformation is the matrix equation UU' = /.

8. Prove that the product of two unitary transformations is itself

unitary.

9. Prove that the modulusM of a unitary transformation satisfies the

equation MM = /.

10. Prove that each latent root of a unitary transformation is of the

form ei<x
, where a is real.

f Compare Lamb, Higher Mechanics, chapter i, examples 20 and 21, where

the transformation is obtained from kinematical considerations.

J These results are proved in Turnbull, Theory of Determinants, Matrices,

and Invariants.



CHAPTER XIV

INVARIANTS AND COVAR1ANTS

1. Introduction

1.1. A detailed study of invariants and covariants is not

possible in a single chapter of a small book. Such a study

requires a complete book, and books devoted exclusively to

that study already exist. All we attempt here is to introduce

the ideas and to develop them sufficiently for the reader to be

able to employ them, be it in algebra or in analytical geometry.

1.2. We have already encountered certain invariants. In

Theorem 39 we proved that when the variables of a quadratic

form are changed by a linear transformation, the discriminant

of the form is multiplied by the square of the modulus of the

transformation. Multiplication by a power of the modulus, not

necessarily the square, as a result of a linear transformation is

the mark of what is called an '

invariant'. Strictly speaking, the

word should mean something that does not change at all
;
it is,

in fact, applied to anything whose only change after a linear

transformation of the variables is multiplication by a power of

the modulus of the transformation. Anything that does not

change at all after a linear transformation of the variables is

called an 'ABSOLUTE INVARIANT'.

1.3. Definition of an algebraic form. Before we can give

a precise definition of invariant' we must explain certain tech-

nical terms that arise.

DEFINITION 10. A sum of terms, each of degree k in the n

variables x, ?/,..., t,

wherein the a's are arbitrary constants and the sum is taken over

all integer or zero sets of values of ex, )S,..., A which satisfy the

conditions

O^a^k, ..., O^A<&, a+p+...+X = k, (2)

is called an ALGEBRAIC FORM of degree k in the variables x, ?/,..., t.

4702
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For instance, ax2+2hxy+by2 is an algebraic form of degree

2 in # and y, and

n\ * /x
r-r/ xi^y 3

)

r\(n r)l
o

is an algebraic form of degree n in x and y.

The multinomial coefficients k\ /a! ... A! in (1) and the binomial

coefficients n!/r!(n >)! in (3) are not essential, but they lead

to considerable simplifications in the resulting theory of the

forms.

1.4. Notations. We shall use F(a, x) and similar notations,

such as (f>(b,X), to denote an algebraic form; in the notation

F(a,x) the single a symbolizes the various constants in (1) and

(3) and the single x symbolizes the variables. If we wish to

mark the degree k and the number of variables n, we shall use

F(a,x)
k
n .

An alternative notation is

(

\//v \71 IA \

0' 1.5***? fl/\ 9 fy / 9 \ /

which is used to denote the form (3), and

(n WIT* ^i or \a ] (oc y i

which is used to denote the form (1). In this notation the index

marks the degree of the form, while the number of variables is

either shown explicitly, as in (4), or is inferred from the context.

Clarendon type, such as x or X, will be used to denote single-

column matrices with n rows, the elements in the rows of x or

X being the variables of whatever algebraic forms are under

discussion.

The standard linear transformation from variables xv ...
9
xn

to variables Xv ...
y
Xn , namely,

xr
= lrlXl+...+lrnXn (r

=
1,..., n), (5)

will be denoted by x = MX, (6)

M denoting the matrix of the coefficients lrs in (5). As in pre-

vious chapters, \M\ will denote the determinant whose elements

are the elements of the matrix M .
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On making the substitutions (5) in a form

F(a,x) = (a...)(xl ,... 9
xn )'<, (7)

we obtain a form of degree k in X
l9

...
9
Xn : this form we denote by

G(A,X) = (A ,...)(Xlt ..,,Xn )". (8)

The constants A in (8) depend on the constants a in (7) and

on the coefficients l
rs

. By its mode of derivation,

for all values of the variables x. For example, let

F(a,x) = an xl+2al2 xl
x2+a22 x%,

Xi = l-ft Xi~\-li2X 2 j
X2
~ ^21^1 I ^22^

then

F(a,x)
~ G(A,X)

where An = #11^

In the sequel, the last thing we shall wish to do will be to

calculate the actual expressions for the A's in terms of the a's:

it will be sufficient for us to reflect that they could be calculated

if necessary and to remember, at times, that the A 's are linear

in the a's.

1.5. Definition of an invariant.

DEFINITION 11. A function of the coefficients a of the algebraic

form F(a, x) is said to be an invariant of the form if, whatever the

matrix M of (6) may be, the same function of the coefficients A
of the form G(A,X) is equal to the original function (of the coeffi-

cients a) multiplied by a power of the determinant \M\, the power

of \M |

in question being independent of M.

For instance, in the example of 1.4,

a result that may be proved either by laborious calculation

or by an appeal to Theorem 39. Hence, in accordance with

Definition 11, an a
22~ai2 *s an invariant of the algebraic form
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Again, we may consider not merely one form F(a,x) and its

transform G(A,X), but several forms F^a, #),..., Fr (a, x) and

their transforms G^A, X),..., Gr(A,X): as before, we write

G
r(A,X) for the result of substituting for x in terms of X in

F
r(a,x), the substitution being given by x MX.

DEFINITION 12. A function of the coefficients a of a number of

algebraic forms Fr(a,x) is said to be an invariant (sometimes a

joint-invariant) of the forms if, whatever the matrix M of the

transformation x MX, the same function of the coefficients A of

the resulting forms Gr(A,X) is equal to the original function (of the

coefficients a) multiplied by a certain power of the determinant \M\.

For example, if

F^a, x) = a
l x+b l y, F2(a y x) = a

2 x+b2 y, (9)

and the transformation x = JfX is, in full,

so that
y =

F2(a } x) G2(A,X) = (a2 al+b
we see that

= a
l ocl+b l

(

X
(11)

Hence, in accordance with Definition 12, a
l b 2 a

2 b l is a joint-

invariant of the two forms a
1 x-\-b l y, a2 x-\-b2 y.

This example is but a simple case of the rule for forming the

'product' of two transformations: if we think of (9) as the trans-

formation from variables Fl and F2 to variables x and y, and

(10) as the transformation from x and y to X and Y, then (11)

is merely a statement of the result proved in 3.3 of Chapter X.

1.6. Covariants. An invariant is a function of the coeffi-

cients only. Certain functions which depend both on the

coefficients and on the variables of a form F(a, x), or of a num-

ber of forms Fr (a, x), share with invariants the property of being
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unaltered, save for multiplication by a power of \M\, when the

variables are changed by a substitution x = MX. Such func-

tions are called COVARIANTS.

For example, let u and v be forms in the variables x and y.

In these, make the substitutions

x = l^X+m^Y, y = L
2X+m 2 Y,

so that u, v are expressed in terms of X arid Y. Then we have,

by the rules of differential calculus,

du du T du

du
,

dv
j
dv dv

r> \r 1 ,, I 2 T"~" J

du
,

"dy

dv dv

(12)

a^ __

?
~~ m

^x
2

dy' dY
~ "

V1
dx

l

""*dy*

The rules for multiplying determinants show at once that

du du

dX dY

dv dv

~dX dY

The import of (12) is best seen if we write it in full. Let

1 n 9 \

(13)

and, when expressed in terms of X, Y,

u = AtX n+nAiX- lY+...+A n Yn
9

Then (12) asserts that

X

The function

depending on the constants a
r ,

b
r of the forms u, v and on the

variables x, y, is, apart from the factor l^m^l^m^ unaltered
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when the constants ar , br are replaced by the constants A r , Br

and the variables x, y replaced by the variables X, Y. Accord-

ingly, we say that (14) is a covariant of the forms u, v.

1.7. Note on the definitions. When an invariant is defined as

4 a function of the coefficients a, of a form F(a,x) t which is equal to

the same function of the coefficients A, of the transform G(A,X),

multiplied by a factor that depends only on the constants of the trans-

formation',

it can be proved that the factor in question must be a power of the

modulus of the transformation.

In the present, elementary, treatment of the subject we have left

aside the possibility of the factor being other than a power of \M\. It

is, however, a point of some interest to note that the wider definition

can be adopted with the same ultimate restriction on the nature of the

factor, namely, to be a power of the modulus.

2. Examples of invariants and covariants

2.1. Jacobians. Let u, v,..., w be n forms in the n variables

x, y,..., z. The determinant

u,,

wx

w,,

where ux ,
uy ,... denote dujdx, dujdy,..., is called the Jacobian of

the n forms. It is usually written as

It is, as an extension of the argument of 1.6 will show, a

covariant of the forms u, v,..., w, and if x = JfX,
0/ ^

^U^Vy^jW) ^
i~ . IT' \ i

2.2. Hessians. Let u be a form in the variables x, y,..., z

and let uxx ,
uxy >... denote d2

u/dx
2
, d2

u/dx8y,... . Then the deter-

minant
it 11uxx uxy
uvx uvv

wxz

^yz
(2)
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is called the Hessian of u and is a covariant of u\ in fact, if we

symbolize (2) as H(u;x), we may prove that

H(u\X) = \M\*H(u;x). (3)

For, by considering the Jacobian of the forms ux ,
u
yy ..., and

calling them uv u^..., we find that 2.1 gives

(4)

But

and if

then

n _ 8u

y = m1X+wa F+...,

__ a_ a_

Hence xx
YX UYZ

UZX UZY

X
UxY UyY

as may be seen by multiplying the last two determinants by
rows and applying (5). That is to say,

,. Y\ I M I

D2>"-
,Aj Mil ^ r,

a(A,r,...)

which, on using (4), yields

H(u',X)= \M\*H(u\x).
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2.3, Eliminant of linear forms. When the forms u,v,...,w

of 2.1 are linear in the variables we obtain the result that the

determinant \af8 \

of the linear forms

arl x1+...+arn xn (r = 1,..., n)

is an invariant. It is sometimes called the ELIMINANT of the

forms. As we have seen in Theorem 11, the vanishing of

the eliminant is a necessary and sufficient condition for the

equations ^^...^^ =
(r
=

1,..., )

to have a solution other than x
1

... = x
tl

0.

2.4. Discriminants of quadratic forms. When the form

u of 2.2 is a quadratic form, its Hessian is independent of the

variables and so is ar invariant. When

r8 ,we have 32
u/8xr

dx
s
= 2ar

so that the Hessian of (6) is, apart from a power of 2, the

determinant \ars \ 9 namely, the discriminant of the quadratic

form.

This provides an alternative proof of Theorem 39.

2.5. Invariants and covariants of a binary cubic. A form

in two variables is usually called a binary form : thus the general

binary cubic is ^3+3,^+3^2+^3. (7)

We can write down one covariant and deduce from it a second

covariant and one invariant. The Hessian of (7) is (2.2) a

covariant; it is, apart from numerical factors,

a2x+a3 y

i.e. ( 2 a?)#
2+K 3 ax a2)xy+ (ax

tf3 afty*. (8)

The discriminant of (8) is an invariant of (8): we may expect

to find (we prove a general theorem later, 3.6) that it is an

invariant of (7) also.f The discriminant is

a a2 a\ K^a^
i(a a3 a^) a^a^

(9)

f The reader will clarify his ideas if ho writes down the precise meaning of

the phrases *is an invariant of (7)', 'is an invariant of (8)'.
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Again, the Jacobian of (7) and (8), which we may expectf
to be a covariant of (7) itself, is, apart from numerical factors,

a x2+ 2a
xxy+a2 y

2 a
x x

2+ 2a
2 xy+a3 y

2

2(aQ a2 al)x+ (a az~a^ a2)y (a a3 a
x
a

2)x+2(a1 a3 a\

i.e. (GQ &3 3&Q&! <

-f- 3(2&J #3 ctQ a2
a3 a

l a^xy
2
-}- (3ax

&
2
a3 a a| 2a

2)y
3

. (10)

At a later stage we shall show that an algebraical relation

connects (7), (8), (9), and (10). Meanwhile we note an interesting

(and in the advanced theory, an important) fact concerning the

coefficients of the covariants (8) and (10).

If we write

cQ x*-{-cl xy-{-lc2 y
2 for a quadratic covariant,

c 3+c1
a;

2
?/+-c2 :r?/

2
-|-- c3 y

3 for a cubic covariant,
2t Lt . o

and so on for covariants of higher degree, the coefficients cr are

not a disordered set of numbers, as a first glance at (10) would

suggest, but are given in terms of c by means of the formula

_ / a d d

where p is the degree of the form u. Thus, when we start with

the cubic (7), for which p = 3, and take the covariant (8), so

that CQ #o a2~ av we

and
da

2

and the whole covariant (8) is thus derived, by differentiations,

from its leading term (aQ a2 a\)x
z

.

Exercise. Prove that when (10) is written as

c a;
3+ cx

x2
y+ Jca xy*+ Jc3 y

3
,

t Compare 3.6, 3.7.

4702
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2.6. A method of forming joint -invariants. Let

u = F(a,x) == (aQ ,... 9
am )(xl9

...
9
xn )

k
9 (12)

and suppose we know that a certain polynomial function of the

a's, say // \
' J

0(a ,...,aJ,

is an invariant of F(a,x). That is to say, when we substitute

x = JfX in (12) we obtain a form

u - 0(A 9 X) = (Ao 9
...

9
Am)(Xl9 ...

9
Xn )* 9 (13)

and we suppose that the a of (12) and the A of (13) satisfy

the relation

where s is some fixed constant, independent of the matrix M.

Now (12) typifies any form of degree k in the n variables

a?!,..., xn ,
and (14) may be regarded as a statement concerning

the coefficients of any such form. Thus, if

v = F(a' y x) = ((*Q 9
...

9
a'm)(xl9

...
9
xn )

k
9

is transformed by x J/X into

v = G(A',X) = (A' ,...,A'm)(X 1,...,Xn )",

the coefficients a', A' satisfy the relation

4(A^..,A'm)= \M\^(a' ,...,a'm }. (15)

Equally, when A is an arbitrary constant, u-\-\v is a form of

degree k in the variables xv ...
y
xn . It may be written as

(aQ+Xa' ,... 9
am+A<l )(.r 1 ,..., xn )

k

and, after the transformation x = MX, it becomes

(A ,..., Am)(X l9 ..., Xn )

k
+\(A'..., A'm)(Xl9 ...

9
Xn )" 9

that is, (A +\A^ 9
...

9
Am+XA'm)(Xl9

...
9
Xn )

k
.

Just as (15) may be regarded as being a mere change of

notation in (14), so, by considering the invariant
</>
of the form

u-\-Xv 9
we have

4(A Q+XA^.. 9
A m+XA'm)= \M\<f>(a Q+Xa^... 9

am+Xa'm ) 9 (16)

which is a mere change of notation in (14).

Now each side of (16) is a polynomial in A whose coefficients

are functions of the A, a, and \M\\ moreover, (16) is true for
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all values of A and so the coefficients of A, A, A2
,... on each side

of (16) are equal. Hence the coefficient of each power of A in

the expansion of

<f>(a Q+Xa^... y
am+\am )

is a joint-invariant of u and v, for if this coefficient is

<f>r(
aQi-"> am > %>> am)>

then (16) gives

<f>r(A Q ,..., A m , AQ,..., A'J = \M |

s
^rK,..., am , <,..., a'm ). (17)

The rules of the differential calculus enable us to formulate

the coefficients of the powers of A quite simply. Write

Then

b dX dbm dX

= i$+-+^c)6 dbm

and the value of (18) when A = is given by

Hence, by Maclaurin's theorem,

<f>(aQ+Xa^..., am+Xa in )

(o
1 \

oj +...+<4 U(a ,...,a
d

c*a,,,/

the expansion terminating after a certain point since

^(a +Aao,-> m+Aam)

is a polynomial in A. Hence, remembering the result (17), we

have

(a ,...,aJ. (20)
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EXAMPLES XIV A

Examples 1-4 can bo worked by straightforward algebra and without

appeal to any general theorem. In these examples the transformation

is taken to be 7 v , ^ , v , vx = liX+niiY, y = l 2X+m2 Y,

and so \M\ is equal to ^m^ l^m^ forms ax+ by, ax2+ 2bxy+cy
2 are

transformed into ^Y-f#F, .4X2
-f 2J5.YF-f-<7F

2
; and so for other

forms.

1. Prove that ab'a'b is an invariant (joint-invariant) of the forms

ax-}- by, a'x-\-b'y.

Ans. AB'A'B =
|Af |(a&'-a'&).

2. Prove that ab'2 2ba'b'+ca'
2 is an invariant of the forms

ax 2+ 2bxy-\-cy
2

, a'x+b'y.

Ans. AB' 2 -2BA'B'-{-CA' 2 = \M\
2
(ab'

2 -2ba'b'+ca'2
).

3. Prove that ab'+ a'b 2hh' is an invariant of the two quadratic
forms ax 2+ 2hxy -f by

2
, a'x

2
-f 2h'xy -f 6'?/

2
.

4wa. AB'+A'B-2HH' =
|Af |

2
(a6

/+a'6-2M /

).

4. Prove that &'(a:r-}-fo/) a'(frr-f-C2/) is a covariant of the two forms

ax2
-f- 2fa'2/ -j- cy

2
, a'o: -f- b'y.

Ans. B'(AX+ BY)-A'(BX+CY) = \M\{b'(ax+ by)-a'(bx+ cy)}.

The remaining examples are not intended to be proved by sheer

substitution.

5. Prove the result of Example 4 by considering the Jacobian of the

two forms ax2
-\-2bxy+ cy

2
, a'x-\-b'y.

6. Prove that (ab
f

a'b)x
2+ (ac

f

a'c)xy+ (bc' b'c)y
2 is the Jacobian

of the forms ax2
-f- 2bxy+ cy

2
, a'x

2+ 2b'xy -f c'y
2

.

7. Prove the result of Example 1 by considering the Jacobian of the

forms ax+ by, a'x+ b'y.

8. Prove that ^(bl c^ b 2 c l )(ax-{-hy-\-gz) is the Jacobian (and so a

covariant) of the three forms

Examples 9-12 are exercises on 2.6.

9. Prove the result of Example 3 by first showing that abh2 is an

invariant of ax2
-f 2hxy -f by

2
.

10. Prove the result of Example 2 by considering the joint-invariant

of ax 2+ 2hxy+ by
2 and (a'x+ b'y)*.

11. Prove that abc-{-2fghaf
2

bg
2 ch2

, i.e. the determinant

A =SH a h g
h b f
9 f

is an invariant of the quadratic form ax2+ by
2 +cz2+ 2fyz+2gzx-\-2hxy,

and find two joint-invariants of this form and ofthe form a'x2+ ...+ 2h'xy.
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NOTE. These joint-invariants, usually denoted by 0, 0',

= a'A+b'B+c'C+2f'F+ 2g'Q+ 2h'H,

0' = aA'+ bB'+ cC' + 2JF'+ 2gG'-ir 2hH\

where A, A',... denote co-factors of a, a',... in the discriminants A, A',

are of some importance in analytical geometry. Compare Somerville,

Analytical Conies, chapter xx.

12. Find a joint-invariant of the quadratic form

ax*+ by*+ cz* -f 2fyz+ 2gzx -f 2hxy

and the linear form Ix -\-my-\-nz. What is the geometrical significance

of this joint-invariant ?
,

Prove that the second joint-invariant, indicated by 0' of Example 11,

is identically zero.

13. Prove that

I* Im m*
211' lm f

l'm 2mm f

I'* I'm' m'*

= (Im'-l'm)*.

14. Prove that

dx*dy

is a covariant of a form u whose degree exceeds 4 and an invariant of a

form u of degree 4.

HINT. Multiplication by the determinant of Example 13 gives a

determinant whose first row is [x = IX -\-mY, y I'

Compare 2.2: here (/ -f l'~)

A multiplication of the determinant just obtained by that of Example
1 3 will give a determinant whose first row is

Hence x = JkfX multiplies the initial determinant by \M |

6
.

1 5. Prove that ace -f 2bcd ad2 b*e c3 , i.e.

a b c

b c d
c d e

is an invariant of (o,6,c,d, e,)(x,2/)
4

.
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16. Prove that

yyxx vxy v
<>

'xx wxy

is a covariant of tl'ie forms ti, v, w.

HINT. The multiplying factor is |M|
3

.

3. Properties of invariants

3.1. Invariants are homogeneous forms in the coeffi-

cients. Let 7(a ,..., am ) be an invariant of

u = (a ,..., am)(xv ..., xn )

k
.

Let the transformation x = -MX change u into

Then, whatever M may be,

I(A Q ,... 9
Am)= W/(a0> ...,aJ, (1)

the index s being independent of M.
Consider the transformation

xl
=

AJtj, #
2
= AJT2 , ..., xn = A-X"n ,

wherein \M\ = A71
.

Since ^ is homogeneous and of degree A; in xv ...
y
xn ,

tlie values

of ^4 ,..., Am are, for this particular transformation,

a \k
, ..., am Afc

.

Hence (1) becomes

7(a A*,..., am A*) - A/(a0> ..., aj. (2)

That is to say, / is a homogeneous*)* function of its arguments
a ,..., am and, if its degree is q, XkQ = A"*, a result which proves,

further, that s is given in terms of fc, q, and w by

s kq/n.

3.2. Weight: binary forms. In the binary form

aQ x
k+kal x

k~l
y+...+ak y

k

the suffix of each coefficient is called its WEIGHT and the

weight of a product of coefficients is defined to be the sum of

t The result is a well-known one. If the reader does not know the result, a

proof can be obtained by assuming that / is the sum of Il9 /2 ,..., each homo-

geneous and of degrees ql9 g2 "- and then showing that the assumption con-

tradicts (2).



INVARIANTS AND COVARIANTS 183

the weights of its constituent factors. Thus a* a% a\, . . is of weight

A polynomial form in the coefficients is said to be ISOBARIC

when each term has the same weight. Thus a a
2 a\ is isobaric,

for a a
2 is of weight 0+2, and af is of weight 2x1; we refer

to the whole expression a a
2 af as being of weight 2, the

phrase implying that each term is of that weight.

3,3. Invariants of binary forms are isobaric. Let

/(a ,.,., ak )
be an invariant of

r--o

and let / be a polynomial of degree q in ,..., ak . Let the

transformation x = MX change u into

K-'Y'. (4). r .

\ (kr)\

Then, by 3.1 (there being now two variables, so that n = 2),

I(A ,..., A k )
= \M\^I(a ,...,ak ) (5)

whatever the matrix M may be.

Consider the transformation

x = X, y = XY,

for which \M\ A. The values of -4 ,..., A k are, for this parti-

cular transformation,

a
,

a
x A, ..., a

r A
r

, ..., ak \
k

.

That is, the power of A associated with each coefficient A is equal

to the weight of the coefficient. Thus, for this particular trans-

formation, the left-hand side of (5) is a polynomial in A such

that the coefficient of a power A"' is a function of the a's of

weight w. But the right-hand side of (5) is merely

A^/(a ,...,aJ, (6)

since, for this particular transformation, \M\ = A. Hence the

only power of A that can occur on the left-hand side of (5) is

and its coefficient must be a function of the a's of weight

Moreover, since the left-hand and the right-hand side of
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(5) are identical, this coefficient of A*** on the left of (5) must

be /K,..., ak ).

Hence /(a ,..,, ak) is of weight \kq.

3.4. Notice that the weight of a polynomial in the a's must

be an integer, so that we have, when 7(a ,..., ak )
is & polynomial

invariant of a binary form,

(a ,..., ak ), (7)

and \kq = weight of a polynomial = an integer.

Accordingly, the 8 of (7) must be an integer.

3.5. Weight: forms in more than two variables. In Jie

form (1.3)

the suffix A (corresponding to the power of xn in the term) is

called the weight of the coefficient a^tMt\
and the weight of

a product of coefficients is defined to be the sum of the weights

of its constituent factors.

Let I(a) denote a polynomial invariant of (8) of degree q in

the a's. Let the transformation x = J/X change (8) into

^ (9)

Then, by 3.1, I(A) - \M\**lI(a) (10)

whatever the matrix M may be.

Consider the particular transformation

x
l
= Xl9 ..., #w _i = Xn-i> xn A^n>

for which \M\ = A. Then, by a repetition of the argument of

3.3, we can prove that /(a) must be isobaric and of weight

kq/n. Moreover, since the weight is necessarily an integer, kq/n

must be an integer.

EXAMPLES XIV B

Examples 2-4 are the extensions to covariants of results already

proved for invariants. The proofs of the latter need only slight modi-

fication.
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1. If C(a,x) is a covariant of a given form u, and <7(a, x) is a sum of

algebraic forms of different degrees, say

C(a,x) = C1(a,a;r + ...+Cr(a,*)
tlr

',

where the index m denotes degree in the variables, then each separate
term (7(a, x) is itself a covariant.

HINT. Since <7(a, x) is a covariant,

C(A 9 X) = \M\
8
C(a,x).

Put x
l /,..., rrn for #!,..., #n and, consequently, .X\ ,..., JY"n for Xlt ..., Xn .

The result is

^ C
T(A 9 X)*'F

t' =
|Af |* 2 Or(a,^)^^.

r r

Each side is a polynomial in t arid we may equate coefficients of liko

powers of t.

2. A covariant of degree w in t3ie variables is homogeneous in the

coefficients.

HINT. The particular transformation

x
l
= \Xly ..., xn XXn

gives, as in 3.1, C(aA
fc

, X)w = \nsC(a,x)*>,

i.e. A-^C^oA*, ic)
OT == ArwO(a, a)

w

This proves the required result and, further, shows that, if C is of degree

q in the coefficients a, *
kq _ \ n8 \w

or &# ns-\-m.

3. If in a covariant of a binary form in x, y we consider x to have

weight unity and y to have weight zero (x
2 of weight 2, etc.), then a

covariant C(a,x)
m

, of degree q in the coefficients a, is isobaric and of

weight ^(kq-\- m).

HINT. Consider the particular transformation, x X t y = AF and

follow the line of argument of 3.3.

4. If in a covariant of a form in xlt ... 9 xn we consider xl9 ... t
xn_ l to

have unit weight and xn to have zero weight (x^^x^ of weight 2, etc.),

then a covariant C(a, x)
w

, of degree q in the coefficients a, is isobaric

and of weight {kq -f (n 1 )w}jn.

HINT. Compare 3. 5.

3.6. Invariants of a covariant. Let u(a, x)^ be a given

form of degree k in the n variables xv ..., xn . Let C(a y x) be

a covariant of u, of degree w in the variables and of degree q

in the coefficients a. The coefficients in C(a,x) are not the

actual a's of ^ but homogeneous functions of them.
4702
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The transformation x JSfX changes u(a, x) into u(A, X)
and, since C is a covariant, there is an s such that

Thus the transformation changes C(a,x) into \M \~
8C(A,X)m .

But C is a homogeneous function of degree q in the a's, and

so also in the A'a. Hence

C(a,x)> = \M\-*C(A,X)* = C(A\M\-8
!<*,X). (11)

Now suppose that I(b) is an invariant of v(b,x), a form of

degree w in n variables. That is, if the coefficients are indi-

cated by B when v is expressed in terms of X, there is a t for

wllich
\M\<I(b). (12)

Take v(b,x) to be the covariant C(a,x}
w

\
then (11) shows

that the corresponding B are the coefficients of the terms in

C(A\M\-l*,X).
If I(b) is of degree r in the 6, then when expressed in terms

of a it is /!(a), a function homogeneous and of degree rq in the

coefficients a. Moreover, (12) gives

Il(A\M\-i)=.\M\'Il(a),

or, on using the fact that I is homogeneous and of degree rq

in the a
'

That is, II(CL) is an invariant of the original form u(a,x).

The generalities of the foregoing work are not easy to follow.

The reader should study them in relation to the particular

example which we now give; it is taken from 2.5.

has a covariant

C(a y x)
2 =

(aQ a2 al)x
2+(aQ a3 a

1

Being the Hessian of u, this covariant has a multiplying factor

\M\*\ that is to say,

or (.%-^+..^_ + ..., (Ha)

which corresponds to (11) above.
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But if x J/X changes the quadratic form

into BQ X*+ 2BlXY+B2
72

,

then BQ B2-Bl= |J/|
2
(6 62-6f). (12a)

Take for the 6's the coefficients of (11 a) and we see that

which proves that (9) of 2.5 is an invariant of the cubic

a

3.7. Covariants of a covariant. A slight extension of the

argument of 3.6, using a covariant C(b, x)
w'

of a form of degree

w in n variables where 3.6 uses /(&), will prove that C(b,x)
w '

gives rise to a covariant of the original form u(a,x).

3.8. Irreducible invariants and covariants. If I(a) is an

invariant of a form u(a,x)^ it is immediately obvious, from the

definition of an invariant, that the square, cube,... of I(a) are

also invariants of u. Thus there is an unlimited number of

invariants; and so for covariants.

On the other hand, there is, for a given form u, only a finite

number of invariants which cannot be expressed rationally and

integrally in terms of invariants of equal or lower degree.

Equally, there is only a finite number of covariants which can-

not be expressed rationally and integrally in terms of invariants

and covariants of equal or lower degree in the coefficients of u.

Invariants or covariants which cannot be so expressed are called

irreducible. The theorem may then be stated

6 The number of irreducible covariants and invariants of a given

form is finite.'

This theorem and its extension to the joint covariants and

invariants of any given system of forms is sometimes called the

Gordan-Hilbert theorem. Its proof is beyond the scope of the

present book.

Even among the irreducible covariants and invariants there

may be an algebraical relation of such a kind that no one of
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its terms can be expressed as a rational and integral function

of the rest. For example, a cubic u has three irreducible co-

variants, itself, a covariant (?, and a covariant H\ it has one

irreducible invariant A: there is a relation connecting these

four, namely,

We shall prove this relation in 4.3.

4. Canonical forms

4.1. Binary cubics. Readers will be familiar with the device

of considering ax2
~\-2hxy-^-by

2 in the form aX2
-\-bl Y 2

,
obtained

by writing

(^x-\--
a

2

a

and making the substitution X x+(h/a)y, Y y. The

general quadratic form was considered in Theorem 47, p. 148.

We now show that the cubic

(1)

may, in general, be written as pX'*-\-qY*\ the exceptions are

cubics that contain a squared factor.

There are several ways of proving this: the method that

follows is, perhaps, the most direct. We pose the problem

'Is it possible to find p, q, a, /?
so that (1) is identically

equal to
p(x+y)*+q(x+py)*r (2)

It is possible if, having chosen a and /?, we can then choose

p and q to satisfy the four equations

p+q = a
, p<x+qP = a

l

= a

For general values of a
,
a

1?
a
2 ,
a3 these four equations cannot

be consistent if ex
j8.

We shall proceed, at first, on the

assumption a =
^3.

The third equation of (3) follows from the first two if we can

choose P, Q so that, simultaneously,

= 0.
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The fourth equation of (3) follows from the second and third

if P, Q also satisfy

^+Pa2+Qa, = 0, ot(oc
2+P*+Q) = 0, p(p*+P0+Q) = 0.

That is, the third and fourth equations are linear consequences

of the first two if a, /?
are the roots of

t
2+Pt+Q = 0,

where P, Q are determined from the two equations

a
2+Pa^+QaQ

= 0,

3+Pa 2+ 001 = 0.

This means that a, j3 are the roots of

(a a
2-afX

2+(a1
a
2
-a a

3X+(a 1
a
3-a|) =

and, provided they are distinct, p, q can then be determined

from the first two equations of (3).

Thus (1) can be expressed in the form (2) provided that

(al
a
2
~a a 3 )

2-4(a a
2-al)(a 1

a3-a 2
) (4)

is not zero, this condition being necessary to ensure that a is

not equal to $.

We may readily see what cubics are excluded by the pro-

vision that (4) is not zero. If (4) is zero, the two quadratics

a x2+2a1 xy+a2 y
2

,

a
l
x2+2a 2 xy+a3 y

2

have a common linear factor ;| hence

aQ x
2+2al xy+a 2 y

2
,

a
Q x

3+3a l
x2y+^a2 xy

2+a3 y
3

have a common linear factor, and so the latter has a repeated

linear factor. Such a cubic may be written as X2
Y, where X

and Y are linear in x and y.

f The reader will more readily recognize the argument in the form

a x2+ 2a lx+a2
= 0, a l x

z+ 2a2 x-\-az
=

have a common root ; hence

O x2
-f2a1 a;+a2

= 0, a *8
-f ^a^-^Za^x-^-a^ =

have a common root, and so the latter has a repeated root. Every root common
to F(x) = and F'(x] is a repeated root of the former.
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4.2. Binary quartics. The quartic

(a0v ..,a4)(^?/)
4

(5)

has four linear factors. By combining these in pairs we may
write (5) as the product of two quadratic factors, say

aoX
2+2h'xy+b

f

y
2
, a"x2

+2h"xy+b"y
2

. (6)

Let us, at first, preclude quartics that have a squared factor,

linear in x and y. Then, by a linear transformation, not neces-

sarily real, we may write the factors (6) in the formsf

By applying Theorem 48, without insisting on the transforma-

tion being real, we can write these in the forms

X*+X*, X.Xl+^X*. (7)

Moreover, since we are precluding quartics that have a squared

linear factor, neither A
t
nor A2 is zero, and the quartic may be

written as

or, on making a final substitution

.A. = AJ.AJ,

we may write the quartic as

(8)

This is the canonical form for the general quartic. A quartic

having a squared factor, hitherto excluded from our discussion,

may be written as

4.3. Application of canonical forms. Relations among
the invariants and covariants of a form are fairly easy to detect

when the canonical form is considered. For example, the cubic

u = a x3+3al
x2y+3a2 xy

2+a3 y*

is known (2.5) to have

a covariant H = (aQ a2-al)x*+... [(8) of 2.5],

a covariant G (aga3 3a a1 a2+2af)a;
3
+... [(10) of 2.5],

and an invariant

A = (a a3--a1
a
2 )

2
--4(a a

2 af)(a1
a3--a

2
).

f We have merely to identify the two distinct factors of a'x* -f 2h'xy -f b'y*

with X+iY and X-iY.
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Unless A the cubic can, by the transformation X =
x-\-oty,

Y = x-{-/3y of 4.1, be expressed as

u = pX*+qY*.

In these variables the covariants H and G become

#1 ^ PIXY, 0, - p*qX*-pq*Y* y

while A! = p*q*.

It is at once obvious that

Now, \M\ being the modulus of the transformation x J/X,

fli
= \M |

2#, (?!

The factor ofH is |Af |

a because H is a Hessian. The factor |M|
3 of (7

is most easily determined by considering the transformation x A^Y,

y = AF, which gives A = A3
,..., A% = a3 A

3
, so that

and the multiplying factor is A6
, or \M\

A
.

The factor |M|
6 of A may bo determined in the same way.

Accordingly, we have proved that, unless A = 0,

A^2 = 2+4#3
. (9)

If A = 0, the cubic can be written as X 2
Y, a form for which

both G and // are zero.

5. Geometrical invariants

5.1. Projective invariants. Let a point P, having homo-

geneous coordinates x, y, z (say areal, or trilinear, to be definite)

referred to a triangle ABC in a plane TT, be projected into the

point P' in the plane TT'. Let A'B'C' be the projection on TT' of

AEG and let x', y
1

', z' be the homogeneous coordinates of P'

referred to A'B'C' . Then, as many books on analytical geo-

metry prove (in one form or another), there are constants I, ra, n

such that
a

. = fa/j y = my', z = nz'.
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Let X, F, Z be the homogeneous coordinates of P' referred

to a triangle, in TT', other than A'B'C'. Then there are relations

x ^

y'
= X

2 X+fjL2 Y+v2 Z,

z' = A3 *+/i3 7+1/3 Z.

Thus the projection of a figure in TT on to a plane IT' gives

rise to a transformation of the type

x =- liX+miY+n^Z,
'

y = f2X+m2 7+na Z, (1)

z = Z3X+w3 y+n3 Z, ,

wherein, since x = 0, y = Q, z ~ are not concurrent lines,

the determinant (/x
ra

2
n3 )

is not zero.

Thus projection leads to the type of transformation we have

been considering in the earlier sections of the chapter. Geo-

metrical properties of figures that are unaltered by projection

(projective properties) may be expected to correspond to in-

variants or covariants of algebraic forms and, conversely, any
invariant or covariant of algebraic forms may be expected to

correspond to some projective property of a geometrical figure.

The binary transformation

x = liX+m^Y, y = l2X+m 2 Y, (2)

may be considered as the form taken by (1) when only lines

through the vertex C of the original triangle of reference are

in question; for such an equation as ax2+2hxy+by2 corre-

sponds to a pair of lines through (7; it becomes

AX*+2HXY+BY* = 0,

say, after transformation by (2), which is a pair of lines through
a vertex of the triangle of reference in the projected figure.

We shall not attempt any systematic development of the

geometrical approach to invariant theory: we give merely a few

isolated examples.

The cross-ratio of a pencil of four lines is unaltered by pro-

jection: the condition that the two pairs of lines

ax2
+2hxy+by*, a'x*+2h

f

xy+b'y
2
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should form a harmonic pencil is ab'+a'b2hh' = 0: this repre-

sents a property that is unaltered by projection and, as we
should expect, ab'-}-a'b2hh' is an invariant of the two alge-

braic forms. Again, we may expect the cross-ratio of the four

lmes ** 22 ** =
to indicate some of the invariants of the quartic. The condition

that the four lines form a harmonic pencil is

J HE ace+2bcd-ad'--b*e-~c* =

and, as we have seen (Example 15, p. 181), J is an invariant

of the quartic. The condition that the four lines form an equi-

harmonic pencil, i.e. that the first and fourth of the cross-ratios

P l ~P P P-~ l

(the six values arising from the permutations of the order of the

lines) are equal, is

Zc 2 = 0.

Moreover, / is an invariant of the quartic.

Again, in geometry, the Hessian of a given curve is the locus

of a point whose polar conic with respect to the curve is a pair

of lines: the locus meets the curve only at the inflexions and

multiple points of the curve. Now proper conies project into

proper conies, line-pairs into line-pairs, points of inflexion into

points of inflexion, and multiple points into multiple points.

Thus all the geometrical marks of a Hessian are unaltered by

projection and, as we should expect in such circumstances, the

Hessian proves to be a covariant of an algebraic form. Simi-

larly, the Jacobian of three curves is the locus of a point whose

polar lines with respect to the three curves are concurrent; thus

its geometrical definition turns upon projective properties of

the curves and, as we should expect, the Jacobian of any three

algebraic forms is a covariant.

In view of their close connexion with the geometry of pro-

jection, the invariants and covariants we have hitherto been

considering are sometimes called projective invariants and Co-

variants.
4702 c c
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5.2. Metrical invariants. The orthogonal transformation

(3)

wherein (l^m^n^, (/2,ra2 ,ri2 ), and (lB,m3,n3 )
are the direction-

cosines of three mutually perpendicular lines, is a particular

type of linear transformation. It leaves unchanged certain

functions of the coefficients of

ax2+by2+cz2+2fyz+ 2gzx+ 2hxy (4)

which are not invariant under the general linear transformation.

If (3) transforms (4) into

alX2+bl Y2+cl Z2+2fl YZ+2g1 ZX+2hl XY, (5)

we have, since (3) also transforms x2+y2
-}-z

2 into X2
-{-Y

2+Z2
,

the values of A for which (4) X(x
2+y2+z2

) is a pair of linear

factors are the values of A for which (5)
- \(X2+Y2+Z2

)
is

a pair of linear factors. These values of A are given by

a A h g

h b-\ f

9 f c-A

= 0,

bl A A
Cj A

-0,

respectively. By equating the coefficients of powers of A in the

two equations we obtain

a+b+c = ai+bi+Cv

A+B+C - Ai+Bi+Ct (A = fee-/
2

, etc.),

where A is the discriminant of the form (4). That is to say,

a+6+c, bc+ca-}-ab~f
2~g2~h2 are invariant under orthogonal

transformation; they are not invariant under the general linear

transformation. On the other hand, the discriminant A is an

invariant of the form for all linear transformations.

The orthogonal transformation (3) is equivalent to a change
from one set of rectangular axes of reference to another set of

rectangular axes. It leaves unaltered all properties of a geo-
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metrical figure that depend solely on measurement. For

example,

is an invariant of the linear forms

Xx+py+vz,

under any orthogonal transformation: for (6) is the cosine of

the angle between the two planes. Such examples have but

little algebraic interest.

6. Arithmetic and other invariants

6.1. There are certain integers associated with algebraic

forms (or curves) that are obviously unchanged when the

variables undergo the transformation x = MX. Such are the

degree of the curve, the number of intersections of a curve with

its Hessian, and so on. One of the less obviousf of these arith-

metic invariants, as they are called, is the rank of the matrix

formed by the coordinates of a number of points.

Let the components of x be x, ?/,..., z, n in number. Let m
points (or particular values of x) be given; say

(a?!,..., Zi), ..., (#m ,..., zm ).

Then the rank of the matrix

is unaltered by any non-singular linear transformation

Suppose the matrix is of rank r (< m). Then (Theorem 31)

we can choose r rows and express the others as sums of multiples

of these r rows. For convenience of writing, suppose all rows

after the rth can be expressed as sums of multiples of the first

r rows. Then there are constants A
lfc,..., A^ such that, for any

letter t of x,..., z,

r. (1)

f This also is obvious to anyone with some knowledge of n-dimensional

geometry.
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The transformation x = MX has an inverse X = M~ lx or,

in full, say J = cu *+...+cllt *,

Z = cnl x+...+cnn z.

Putting in suffixes for particular points

(Xv ..., ZJ, ..., (-2Tm ,..., Zm ),

and supposing that t is the jth letter of x, y,..., z, we have

By (1), the coefficient of each of
c^,..., c^ is zero and hence

(1) implies Tr+k = Xlk T1+ ...+\rkTr . (2)

Conversely, as we see by using x ~ MX where in the foregoing

we have used X = M~l
x, (2) implies (1). By Theorems 31 and

32, it follows that the ranks of the two matrices

are equal.

6.2. Transvectants. We conclude with an application to

binary forms of invariants which are derived from the con-

sideration of particular values of the variables.

Let (#!,2/i), (#2>2/2) ^e ^wo cogredient pairs of variables (x,y)

each subject to the transformation

x - IX+mY, y = VX+m'Y, (3)

wherein \M \

= lm' I'm. Then

8 3 ,, 3 ^

the transformation being contragredient to (3) (compare Chap.

X,6.2).

If now the operators -

-,
-

-,
- -

,
~- operate on a function

dA di dA 01
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ofXlt ri( X2 ,
Yz and these are taken aa independent variables,

we have

8 d 8 d

1
dY2 dY^ dX2

+rV 8y

n r it \l & & d d \== (Im'-l'm )[
- ---

).^ dt/2 a*/! <fc2/

/A .

(4)

Hence (4) is an invariant operator.

Let t^, vl be binary forms ^, v when we put x = x
l9 y = y^

u2 ,
v2 the same forms u, v when we put x = x2 , y y%\ U^V^

and t/2 , Ta the corresponding forms when ^, v are expressed in

terms of X, Y and the particular values Xl9 Y^ and X2 ,
Y2 are

introduced. Then, operating on the product U^V^ we have

and so on. That is, for any integer /*,

r
2 +

1^ a*^- 1

These results are true for all pairs (asj,^) and (x2,y2 )> We
may, then, replace both pairs by (x, y) and so obtain the

theorem that

&udrv dru drv
(5)

'-1
dtf'&y

r dxr~ l
dy

is a covariant (possibly an invariant) of the two forms u and v.

It is called the rth transvectant of u and v.

Finally, when we take v = u in (5), we obtain covariants of

the single form u.
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This method can be made the basis of a systematic attack

on the invariants and covariants of a given set of forms.

7. Further reading

The present chapter has done no more than sketch some of

the elementary results from which the theory of invariants and

covariants starts. The following books deal more fully with

the subject:

E. B. ELLIOTT, An Introduction to the Algebra of Quantics (Oxford, 1896).

GRACE and YOUNG, The Algebra of Invariants (Cambridge, 1902).

WEITZENBOCK, Invariantentheorie (Gr6ningen, 1923).

H. W. TUBNBULL, The Theory of Determinants, Matrices, and Invariants

(Glasgow, 1928).

EXAMPLES XIV c

1. Write down the most general function of the coefficients in

aQ x
3
-^-3al x

2
y-i-3a2 xy

2
-{-a3 y

3 which is (i) homogeneous and of degree 2

in the coefficients, isobaric, and of weight 3; (ii) homogeneous and of

degree 3 in the coefficients, isobaric, and of weight 4.

HINT, (i) Three is the sum of 3 and or of 2 and 1; the only terms

possible are numerical multiples of o a3 and al aa .

Ans. <xa a3 -f/faia2 where a, J3
are numerical constants.

2. What is the weight of the invariant

/ s= ae 4bd-{-3c
2 of the quartic (a,b,c,d,e)(x,y)*1

HINT. Rewrite the quartic as (a ,...,a4 )(o;,2/)
4

.

3. What is the weight of the discriminant \ar8 \

of the quadratic form

u x\+ a22 x\+a33 x\+ 2a12 xl x2+ 2a23 x2 #3 -f 2a31 x3 xl ?

HINT. Rewrite the form as

2 Ztfw*'-'-'**'
summed for a-f fi~\-y

= 2. Thus an = 2.o.o a23
== a

o. 1. 1*

4. Write down the Jacobian of ax2+ 2hxy+ by
2

, a'x
2
-f 2h'xy+ b'y

2 and
deduce from it ( 3.6) that

(ab'-a'b)*+ 4(ah'-a'h)(bh'-b'h)

is a joint-invariant of the two forms.

6. Verify the theorem *When I is an invariant of the form

(a<...,an)(x,y)
n

9
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in so far as it relates to (i) the discriminant of a quadratic form, (ii) the

invariant A ( 4.3) of a cubic, (iii) the invariants 7, J ( 5.1) of a quartic.

6. Show that the general cubic ax*+ 3bx2
y-\-3cxy

2
+dy* can be re-

duced to the canonical formAX3+DY3
by the substitutionX = px+qy,

Y = p'x-\-q'y, where the Hessian of the cubic is

(ac~b*)x
2+(ad-bc)xy+(bd-c

2
)y

2 = (px+qy)(p'x+q'y).

HINT. The Hessian of AX*+3BX*Y+3CXY*+DY* reduces to

XY: i.e. AC = B\ BD = C2
. Prove that, ifA ^ 0, either B - C =

or the form is a cube; if A = 0, then B C = and the Hessian is

identically zero.

7. Find the equation of the double lines of the involution determined

by the two line-pairs

ax*+ 2hxy+by
2 = 0, a'x*+ 2h'xy+b'y* =

and prove that it corresponds to a covariant of the two forms.

HINT. If the line-pair is a
x
x2+ 2hL xy+ bl y

2
0, then, by the usual

condition frr harmonic conjugates,

ab^ a
l
b~2hh

l
= 0, a'b

l+a l
b'~2h'hl

= 0.

8. If two conies S, *S" are such that a triangle can be inscribed in /S"

and circumscribed to S, then the invariants (Example 11, p. 180)

A, 0, 0', A' satisfy the relation 2 = 4A0' independently of the choice of

triangle of reference*

HINT. Consider the equations of the conies in the forms

S s 2Fmn+2Gml+ 2Hlm = 0,

S' = 2fyz+ 2g'zx+ 2h'xy = 0.

The general result follows by linear transformation.

9. Prove that the rank of the matrix of the coefficients ar8 of m linear

form8
an*i+ ."+arn*n (r

= l,... f m)

in n variables is an arithmetic invariant.

10. Prove that if (xr , yr , zr )
are transformed into (Xr , Yr ,

Zr ) by x = MX,
then the determinant \xl y2

z3 \

is an invariant.

11. Prove that the nth transvectant of two forms

(a ,..., an )(z, t/)
n

, (6 ,..,, bn )(x, y)
n

is linear in the coefficients of each form and is a joint-invariant of the two

forms. It is called the lineo-linear invariant.

Ans. a 6n na
1
6w_1+ in(n I)a2 6n_ 2 +... .

12. Prove, by Theorems 34 and 37, that the rank of a quadratic form

is unaltered by any non-singular linear transformation of the variables.



CHAPTER XV

LATENT VECTORS

1. Introduction

1.1. Vectors in three dimensions. In three-dimensional

geometry, with rectangular axes 0j, O 2 ,
and Of3 ,

a vector

=-. OP has components
(bl> b2> b3/>

these being the coordinates of P with respect to the axes. The

length of the vector t* is

151
- V(f+!+#) (!)

and the direction-cosines of the vector are

ii i is

!5T 151' I5i'

Two vectors, with components (f^^^a) ant^
*)
with com-

ponents (??!, 772, 7/3 ), are orthogonal if

l*h+^2+^3^U. (2)

Finally, if e
1?

e2 ,
and e3 have components

(1,0,0), (0,1,0), and (0,0,1),

a vector with components ( 19 2 , f3 ) may be written as

g = lie^^e.+^eg.

Also, each of the vectors e^ e 2 ,
e3 is of unit length, by (1), and the

three vectors are, by (2), mutually orthogonal. They are, of

course, unit vectors along the axes.

1.2. Single-column matrices. A purely algebraical pre-

sentation of these details is available to us if we use a single-

column matrix to represent a vector.

A vector OP is represented by a single-column matrix ^ whose

elements are
1? 2 , 3 . The length of the vector is defined to be

The condition for two vectors to be orthogonal now takes a purely
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matrix form. The transpose
'
of is a single-row matrix with

elements 9 ,
and

is a single-element matrix

The condition for \ and yj
to be orthogonal is, in matrix notation,

S'Y)
= 0. (2)

The matrices e
1?

e
2 ,

e3 are defined by

ea
= PI* e3== PI;

they are mutually orthogonal and

5 = fi ei+^2 e

The change from three dimensions to ?i dimensions is im-

mediate. With n variables, a vector is a single-column matrix

with elements t t t
Sl b2'"-> bw

The length of the vector is DEFINED to be

and when || = 1 the vector is said to be a unit vector.

Two vectors ^ and
yj

are said to be orthogonal when

fi'h+&'h+--l-,'? =
> (4)

which, in matrix notation, may be expressed in either of the two

formst 5'^ = 0, yj'5
==

- (
5

)

In the same notation, when J- is a unit vector

5'5 = I-

Here, and later, 1 denotes the unit single-element matrix.

Finally, we define the unit vector er as the single-column

matrix which has unity in the rth row and zero elsewhere. With

f Note the order of multiplication ;
wo (;an form the product AB only when

the number of columns of A is equal to the number of rows ofB (of. p. 73) and

hence we cannot form the products *)'
or TQ^'-

4702 D d
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this notation the n vectors er (r
=

l,...,?i) are mutually ortho-

gonaland ^

1.3. Orthogonal matrices. In this subsection we use xr

to denote a vector, or single-column matrix, with elements

*^lr> *^2r>*"> *^/tr*

THEOREM 59. Let x l9 x2 ,..., x ;l
6e mutually orthogonal unit

vectors. Then the square matrix X whose columns are the n vectors

xlt x2 ,..., x ;l
is an orthogonal matrix.

Proof. Let X' be the transpose of X. Then the product X'X is

The element in the rth row and <sth column of the product is, on

using the summation convention,

X
otr
X

OLS-

When s = r this is unity, since x
r

is a unit vector; and when

s ^ r this is zero, since the vectors xr and x3 are orthogonal.

Hence Y'J = /

the unit matrix of order n, and so X is an orthogonal matrix.

Aliter. (The same proof in different words.)

X is a matrix whose columns are

Xj,..., Xg,..., X^,

while X' is a matrix whose rows are

The element in the rth row and sth column of the product X'X
is xj,xa (strictly the numerical value in this single-element

matrix).

Let r ^ s\ then x'r \3 0, since x
r and xa are orthogonal.

Let r = si then x'r xa x^ xs
= 1, since x

8
is a unit vector

Hence JSC'Ji = / and X is an orthogonal matrix.



LATENT VECTORS 203

COROLLARY. In the transformation yj X'%, or % = Xri,

[X
f = X~ l

]
let

yj
= yr

t^en = x
r

. TAeri yr e
r

.

Proof. Let 7 be the square matrix whose columns are J^,..., y,r

Then, since yr
= X'xr and the columns of X are x^..., xn ,

Y = X'X = /.

Since the columns of / are e1 ,...,en ,
the result is established.

1.4. Linear dependence. As in 1.3, xr
denotes a vector

with elements
*lr" *'2r>"*> ^nr'

The vectors x^..., xm are linearly dependent if there are numbers

lv ... t
lmJ not all zero, for which

f
1
x

1+ ...+ /m xm -=0. (1)

If (
1
) is true only when I

1 ,...,lm are all zero, the vectors are linearly

independent.

LEMMA 1 . Ofany set ofvectors at most n are linearly independent.

Proof. Let there be given n-\-k vectors. Let A be a matrix

having these vectors as columns. The rank r ofA cannot exceed

n and, by Theorem 31 (with columns for rows) we can select r

columns of A and express the others as sums of multiples of the

selected r columns.

Aliter. Let xv ..., xn be any given set of linearly independent

vectors; say n

x, - 2>r5
er (5- l,...,n). (2)

rl

The determinant \X \ \xrs \ ^ 0, since the given vectors are

not linearly dependent. Let Xr8 be the cofactor ofxr3
in X

; then,

from (2),

2Xr,xa
= JTe

r (r=l,...,n). (3)
=i

Any vector xp (p > n) must be of the form

n -

X
/> 2, Xrp er>

r= l

and therefore, by (3), must be a sum of multiples of the vectors
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LEMMA 2. Any n mutually orthogonal unit vectors are linearly

independent.

Proof. Let x
l9 ...,xn be mutually orthogonal unit vectors.

Suppose there are numerical multiples k
r
for which

*
1
x

1+ ...+ fc
ll
x

ll
= 0. (4)

Pre-multiply by x^, where s is any one of l,...,n. Then

M;X, = >

and hence, since x^xs
= 1, ks 0.

Hence (4) is true only when

ix
- ... - kn = 0.

Aliter. By Theorem 59, X'X = 7 and hence the determinant

|X| = 1. The columns x^.^x^ of X are therefore linearly

independent.

2. Latent vectors

2.1. Definition. We begin by proving a result indicated,

but not worked to its logical conclusion, in an earlier chapter.*)*

THEOREM 60. Let A be a given square matrix of n rows and

columns and A a numerical constant. The matrix equation

4x = Ax, (1)

in which x is a single-column matrix of n elements, has a solution

with at least one element of x not zero if and only ifX is a root of the

equation \A-\I\ = 0. (2)

Proof. If the elements of x are
l9 2 ,..., n the matrix equation

(1) is equivalent to the n equations
n

.2 atf^
= A& (*

= 1>-, tt).

These linear equations in the n variables fls ...,^w have a non-

zero solution if and only ifA is a root of the equation [Theorem 1 1
]

an A a12

&9.1 #22 A22

- 0, (3)

and (3) is merely (2) written in full.

t Chapter X, 7.
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DEFINITION. The roots in X of \A XI
\

= are the latent roots of

the matrix A
;
when \ is a latent root, a non-zero vector x satisfying

Ax Ax

is a LATENT VECTOR of A corresponding to the root A.

2.2. THEOREM 61 . Let x r
and x

s
be latent vectors that correspond

to two distinct latent roots Ar and Xs of a matrix A . Then

(i) xr
and xs are always linearly independent, and

(ii) when A is symmetrical, x
r and xs are orthogonal.

Proof. By hypothesis,

Ax
r
= A

r
xr ,

Ax8
= X

8
x8 . (1)

(i) Let k
r ,

k8 be numbers for which

kr x;+k8 x, = 0. (2)

Then, since Axs
= X

s
x

s , (2) gives

Ak
r
xr
^ ~Xs(ks xs )

= Xs(kr
x

r ),

and so, by (1), k
r
X
r
x

r
= k

r
X
s xr

.

That is to say, when (2) holds,

Av(A,.-A5)xr
- 0.

By hypothesis xr is a non-zero vector and A
r ^ Xs . Hence

kr
= and (2) reduces to k

s
xs 0. But, by hypothesis, X8 is a

non-zero vector and therefore ks
= 0.

Hence (2) is true only if kr
= ks 0; accordingly, xr

and xs

are linearly independent vectors.

(ii) Let A' A. Then, by the first equation in (1),

x'8 Axr
= x^Ar xr . (3)

The transpose of the second equation in (
1

) gives

x
9
A X

s
x

g ,

and from this, since A' A,

x'
s
Ax

r
= X8 x'8 xr . (4)

From (3) and (4), (Ar-A,)X; xr
- 0,

and so, since the numerical multiplier Ar
X
s ^ 0, x!^ xr

= 0.

Hence xr and X8 are orthogonal vectors.
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3. Application to quadratic forms

We have already seen that (cf. Theorem 49, p. 153):

A real quadratic form %'A% in the n variables lv .., n can be

reduced by a real orthogonal transformation

to the form A
1 T/f+A2 ?7|+ ...+A /, 77* ,

wherein A
1 ,...,An are the n roots of \A-\I\ = 0.

We now show that the latent vectors ofA provide the columns

of the transforming matrix X.

3.1. When A has n distinct latent roots.

THEOREM 62. Let A be a real symmetrical matrix having n

distinct latent roots \^...,\n . Then there are n distinct rml unit

latent vectors x
1 ,...,x /l corresponding to these roots. If X is the

square matrix whose columns are X
1 ,...,

xn ,
the transformation

from variables !,...,, to variables ^i,.'-^n ^ a ?eal orthogonal

transformation and

Proof. The roots Xv ...,X n are necessarily real (Theorem 45)

and so the elements of a latent vector x
r satisfying

^4x
r
-A

r
x

r (1)

can be found in terms of real numbersf and, if the length of any
one such vector is k, the vector k~ lx

r
is a real unit vector satis-

fying (1 ). Hence there are n real unit latent vectors x^..., x n ,
and

the matrix X having these vectors in its n columns has real

numbers as its elements.

Again, by Theorem 61, xr is orthogonal to X8 when r -- s and,

since each is a unit vector,

x
r x = Sra , (2)

where or8 when r -^ s and 8rr
= 1 (r

=
l,...,n). As in the

f When x
r
is a solution and a is any number, real or complex, xf is also a

solution. For our present purposes, we leave aside all complex values of a.
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proof of Theorem 59, the element in the rth row and 5th column

of the product X'X is 8rg ;
whence

X'X = /

and X is an orthogonal matrix.

The transformation Xyj gives

%A$ = n'X'AXn (3)

and the discriminant of the form in the variables T^,.--, y n *s the

matrix X'AX. Now the columns ofAX are Ax ly
...

y
Ax n ,

and

these, from (1), are AjX^.-jA^x^. Hence

(i) the rows of X' are xi,..., x^,

(ii) the columns of AX are A
x
xlv .., A /?

xn and the element in

the rth row and 5th column of X'AX is the numerical value of

Xr^s X ~ \ Xr Xs
==

^a"rs>

by (2). Thus X'AX has X
l9 ...,X n as its elements in the principal

diagonal and zero elsewhere. The form ^
f

(X'AX)m is therefore

3.2. When .4 has repeated latent roots. It is in fact true

that, whether \AXI\ has repeated roots or has all its

roots distinct, there are always n mutually orthogonal real unit

latent vectors x
1} ..., xn of the SYMMETRICAL matrix A and, X being

the matrix with these vectors as columns, the transformation Xv\

is a real orthogonal transformation that gives

wherein Aj,..., \n are the n roots (some of them possibly equal) of the

characteristic equation \A~ A/| = 0.

The proof will not be given here. The fundamental difficulty

is to provef that, when \ (say) is a fc-ple root of \A-\I\ = 0,

there are k linearly independent latent vectors corresponding

to Aj. The setting up of a system of n mutually orthogonal unit

f Quart. J. Math. (Oxford) 18 (1947) 183-5 gives a proof by J. A. Todd;
another treatment is given, ibid., pp. 186-92, by W. L. Ferrar. Numerical

examples are easily dealt with by actually finding the vectors ; see Examples
XV, 11 and 14.
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vectors is then effected by Schmidt's orthogonalization processf

or by the equivalent process illustrated below.

Let y lt y2 , y3 be three given real linearly independent vectors.

Choose A^ so that k^ y t
is a unit vector and let X1

k
l yr Choose

the constant a so that

x^ya+KXj - 0; (1)

that is, since x'x \ L
= 1, oc = xi v2-J

Since y2 and x
t
are linearly independent, the vector y2+aX 1

is not zero and has a non-zero length, 12 say. Put

Then X2 is a unit vector and, by (1), it is orthogonal to x t .

Now determine ft
and y so that

x'ifra+jfrq+yxa) = (2)

and x
/

2(y3+^x1+yx2 )
- 0. (3)

That is, since x
x
and x 2 are orthogonal,

= -xiy3 , y = -x'2 y3 .

The vector y3+j8x 1+yX2 ^ 0, since the vectors y lf y2 , y3 are

linearly independent; it has a non-zero length ?3 and with

we have a unit vector which, by (2) and (3), is orthogonal to x x

and x
2

. Thus the three x vectors are mutually orthogonal unit

vectors.

Moreover, if y 1? y 2 , y3 are latent vectors corresponding to the

latent root A of a matrix A, so that

- Ay4 , yly2
- Ay2 , Ay3

= Ay3 ,

then also

:= AXi, -/I X 2
:L-r: AX 2 ,

and x
r ,

X 2 ,
X3 are mutually orthogonal unit latent vectors

corresponding to the root A.

t W. L. Ferrar, Finite Matrices, Theorem 29, p. 139.

J More precisely, a is the numerical value of the element in the single-entry

matrix xjyz
. Both XjXj and xjy 2 are single-entry matrices.
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4. Collineation

Let ^ be a single-column matrix with elements 1 ,..., ri
and

so for other letters. Let these elements be the current coordinates

of a point in a system of n homogeneous coordinates and let A
be a given square matrix of order n. Then the matrix relation

y = -Ax (1)

expresses a relation between the variable point x and the variable

point y.

Now let the coordinate system be changed from to Y) by
means of a transformation

5 = Ti,

where T is a non-singular square matrix. The new coordinates,

X and Y, of the points x and y are then given by

x = TX, y = T Y.

In the new coordinate system the relation (
1

) is expressed by

TY = ATX
or, since T is non-singular, by

Y = T~1ATX. (2)

The effect of replacing A in
(
1
) by a matrix of the type T~ 1A T

amounts to considering the same geometrical relation expressed

in a different coordinate system. The study of such replace-

ments, A by T~ 1AT, is important in projective geometry. Here

we shall prove only one theorem, the analogue of Theorem 62.

4.1. When the latent roots of A are all distinct.

THEOREM 63. Let the square matrix A , of order n, have n distinct

latent roots Xlt ...,Xn and lettv ...,tn be corresponding latent vectors.

Let T be the square matrix having these vectors as columns. Then"\

(i) T is non-singular,

(ii) T-*AT = di*g(Xl ,...,XH ).

Proof, (i) We prove that T is non-singular by showing that

tlt ...,tn are linearly independent*.

f The NOTATION diag(Alv .., An ) indicates a matrix whose elements are

Alf ..., An in the principal diagonal and zero everywhere else.

4702 E 6



210 LATENT VECTORS

Let &!,...,& be numbers for which

,i
= 0. (1)

Then, since Atn = A
/t
t H ,

A(kl tl+...+kn_l t n_l )
= AJMi+ .-.+ AV-iVi).

That is, since Atr
= Ar t

r for r = l,...,n 1,

MAi-AJ^+.-.+^n-ifAn-i-AJt^, - 0.

Since Aj,,...^,, are all different, this is

CiMi+ '-'+'n-A-iVi^O, (2)

wherein all the numbers r^...,_! are non-zero.

A repetition of the same argument with n 1 for w gives

wherein dv ...
t
dn _ 2 are non-zero. Further repetitions lead, step

by step, to
aiMl = 0, a^O.

By hypothesis, tj is a non-zero vector and therefore k
v
= 0.

We can repeat the same argument to show that a linear rela-

tion

implies k2
=

;
and so on until we obtain the result that

(
1
) holds

only if ____ __ _ AKl K2 ... Kn U.

This proves that tlv ..,tn are linearly independent and, these

being the columns of T, the rank of T is n and T is non-singular.

(ii) Moreover, the columns ofAT are

A1 t1 ,...,An tn .

Hencef AT = 77

xdiag(A 1 ,..., AJ

and it at once follows that

4.2. When the latent roots are not all distinct. If A
is not symmetrical, it does not follow that a A?-ple root of

\A A/
1

= gives rise to k linearly independent latent vectors.

f If necessary, work out the matrix product

a * 'is! X F Al 1'
/81 * t tA Aa

^i ttt aJ LO A,J
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If it so happens that A has n linearly independent latent vectors

tj,...,
tn and T has these vectors as columns, then, as in the proof

of the theorem,

whether the A's are distinct or not.

On the other hand, not all square matrices of order n have n

linearly independent latent vectors. We illustrate by simple

examples.
A = \* 1V

LO J

The characteristic equation is (a A)
2 = and a latent vector x,

with components xl
and #2 ,

must satisfy Ax ax; that is,

From the first of these, x2 and the only non-zero vectors

to satisfy Ax <*x are numerical multiples of

|0

(ii) Let A =
\oc

A latent vector x must again satisfy Ax = ocx. This now re-

quires merely
a.x

l
~ ocx

lt OLX%
= ax2 .

The two linearly independent vectors

and, indeed, all vectors of the form ^
1
e
1+x2 e2 are latent

vectors of A .

5. Commutative matrices and latent vectors

Two matrices A and B may or may not commute; they may
or may not have common latent vectors. We conclude this

chapter with two relatively simple theorems that connect the

two possibilities. Throughout we take A and B to be square
matrices of order n.
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5.1. Let A and B ha\e n linearly independent latent vectors

in common, say t
l9 ...,tn . Let T be the square matrix having

these vectors as columns.

Then tlv .., t
tl
are latent vectors of A corresponding to latent

roots Aj,..., A rt , say, ofA
; they are latent vectors of B correspond-

ing to latent roots ^4,. ..,/* say, of B. As in 4.1 (ii), p. 210,

the columns of AT are Ar tr (r
=

l,...,n),

the columns of BT are p,r tr (r l,...,n),

and, with the notation

L = diag(A1 ,...,Aw ),

^T- TL,

That is T~1AT - L, T~*BT - If.

It follows that

T~ 1ATT- 1BT = LM = ML - T~ 1BTT- 1AT,

so that T' 1ABT = T~ 1BAT
and, on pre-multiplying by T and post-multiplying by

We have accordingly proved

THEOREM '64. Two matrices of order n with n linearly indepen-

dent latent vectors in common are commutative.

5.2. Now suppose that AB = BA. Let t be a latent vector

of A corresponding to a latent root A of A. Then At = At and

ABt = BAt = BXt - XBt. (1)

When B is non-singular Bt ^ and is a latent vector of A

corresponding to A. [J5t would imply t = B~ lBt = 0.]

If every latent vector ofA corresponding to A is a multiple of

t, then Bt is a multiple of t, say

Bt - Art,

and t is a latent vector of B corresponding to the latent root

k of B.

If there are m, but not more than m,f linearly independent

latent vectors of A corresponding to the latent root A, say

MV> t
/;j ,

t By 1.4, m < n.
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then, since Atr
= Atr (r

= l,...,m),

provided that kl9 ...,km are not all zero,

Mi+ .-.+ Mi,, (2)

is a latent vector of A corresponding to A. By our hypothesis

that there are not more than in such vectors which are linearly

independent, every latent vector of A corresponding to A is of

the form (2).

As in (1), ABtr
= XBtf (r

= l,...,m)

so that Bt
r
is a latent vector ofA corresponding to A; it is there-

fore of the form (2). Hence there are constants ksr such that

For any constants I
l9 ... t

lm ,

in mm m / m \

B I i,t,
- 1 1, 1 M. = 2(2 >A,Kr-1 r=l s = l -l Wl 7

Let be a latent root of the matrix

K - cn . . . lclm

km \ kmm.

Then there are numbers /!,...,'/ (
n t a h* zero) for which

j lr ksr =-- dls (s !,..., m)
r-l

and, with this choice of the /
r ,

Hence 6 is a latent root of B and 2 ^ *r *s a latent vector of B

corresponding to 0; it is also a latent vector of A corresponding

to A. We have thus provedf

THEOREM 65. Let A, B be square matrices of order n; let
|B\ ^

and let AB = BA . Then to each distinct latent root A of A corre-

sponds at least one latent vector of A which is also a latent vector

of B.

f For a comprehensive treatment of commutative matrices and their

common latent vectors see S. N. Afriat, Quart. J. Math. (2) o (19o4) 82-85.

4702 E'C2
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EXAMPLES XV
1. Referred to rectangular axes Oxyz the direction cosines of OX, OY,

OZ are (l^m^nj, (I2rm2,n2 ), (/3,W3,n3 ). The vectors OX, OY, OZ are

mutually orthogonal. Show that

/!

12 2 "2

is an orthogonal matrix.

2. Four vectors have elements

(a,a,a,a), (6, -6,6, -6), (c,0, -c,0), (0,d,0, -d).

Verify that they are mutually orthogonal and find positive values of

a, 6, c, d that make these vectors columns of an orthogonal matrix.

3. The vectors x and y are orthogonal and T is an orthogonal matrix.

Prove that X = Tx and Y Ty are orthogonal vectors.

4. The vectors a and b have components (1,2,3,4) and (2,3,4,5).

Find *, so that b
t
= b+ fc

t
a

is orthogonal to a.

Given c = (1,0,0, 1) and d = (0,0, 1,0), find constants l lt m lt / 2 , w 2,n 2

for which, when c^ = c-f l
l
ly

l fm 1 a, d
t
= d + Z 2 c 1 -Hm 2

b
1 + n

a a, the

four vectors a, b x , c 1 , d t
are mutually orthogonal.

5. The columns of a square matrix A are four vectors a
1 ,...,a 4 and

A'A = diag(a?,a?,ai,aj).

Show that the matrix whose columns are

af^!,...,^
1

!^
is an orthogonal matrix.

6. Prove that the vectors with elements

(l,-2,3), (0,1, -2), (0,0,1)

are latent vectors of the matrix whose columns are

(1,2, -2), (0,2,2), (0,0,3).

7. Find the latent roots and latent vectors of the matrices

1
0],

1

-2 2 3J

showing (i) that the first has only two linearly independent latent vectors;

(ii) that the second has three linearly independent latent vectors

li
= (1,0,1), 12

= (0,1,-1), 1,
= (0,0,1) and that k^ +k^ is a

latent vector for any values of the constants kv and fcr
8. Prove that, if x is a latent vector ofA corresponding to a latent root

A of A and C = TAT~ l
, then

CTx = TMx = ATx
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and Tx. is a latent vector of C corresponding to a latent root A of C. Show
also that, if x and y an 4

linearly independent, so also are Tx and 7
7

y.

9. Find three unit latent vectors of the symmetrical matrix

[2

01

-3 1

1 -3J
in the form

<>'. KU)- K-i)
and deduce the orthogonal transformation whereby

2.r2 -3?/
2 --3z 2

-{-2//2
- 2X 2-2F2-4Z2

.

10. (Harder "f) Find an orthogonal transformation from vannblcs

x, y, z to variables X, Y, Z whereby

2yz+ 2zx-{ 2xy = 2X 2-Y*-Z*.

11. Prove that the latent roots of the discriminant of the quadratic

form

are -1, -1, 2.

Prove that, corresponding to A 1,

(i) (x, y,z) is a latent vector whenever .<; -f 2/~i~ 2
~

(^ ;

(ii) (1,- 1,0) and (1,0, 1) are linearly independent and that

( 1 , 1,0) and (\-\-k t -~k % \) are orthogonal when k J ;

V2'~V2'

are orthogonal unit latent vectors.

Prove that a unit latent vector corresponding to A = 2 is

- (-L .1 U"
WS'VS'VS/'

Verify that when T is he matrix having a, b, C as columns and x ~ TX,
where x r= (x,y,z) and X = (X,Y 9 Z),

12. Prove that a:
--

Z, y F, z ~ X is an orthogonal transformation.

With n variables xl9 ...,xn , show that

x
l
= ^Ca , xa

= A^, ..., .rn
= X K ,

\vhero a,]8,..../c is a permutation of l,2,...,n, is an orthogonal transforma-

tion.

13. Find an orthogonal transformation x ~ TX. which gives

2yz+2zx = (Fa-Z2
)V2.

14. Whenr = 1,2,3, = 2, 3, 4 and

X'.4X =2^ ^r^'
r<

t Example 1 1 ia the samo sum broken down into a step-by-step solution.
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prove that the latent roots of A are 1, 1, 1, 3 and that

(1,0,0, -1), (0,1, -1,0), (1,-1,-1,1), (1,1,1,1)

are mutually orthogonal latent vectors of A .

Find the matrix T whose columns are unit vectors parallel to the above

(i.e. numerical multiples of thorn) and show that, when x ~- TX,
mr' J . _ V 3 V2 Y 2 -l ^V2
A. *~\. A. ~ V ^ ji\. 2 * * 3 i" V-.V 4.

15. Show that there is an orthogonal transformationf x TX whereby

16. A square matrix A, of order n, has n mutually orthogonal unit

latent vectors. Prove that A is symmetrical.
17. Find the latent vectors of the matrices

[1

6
1], [-2 -1 -51.

120 1 2 1

3J L3 1 6J

18. The matrix A has latent vectors

(1,0,0), (1,1,0), (1,2,3)

corresponding to the latent roots A = 1 , 0, 1 . The matrix B has the

same latent vectors corresponding to the latent roots /x
= 1,2,3. Find

the elements of A and B and verify that A B =- BA .

19. The square matrices A and B are of order n; A has n distinct latent

roots A1 ,...,AW and B has non-zero latent roots /i 1 ,...,/x n , not necessarily

distinct; and AB BA. Prove that there is a matrix T for which

- diag(A1 ,...,A n ),

HINTS AND ANSWERS

2. a = 6= i, c = d = 1/V2; these give unit vectors.

3. Work out XT.
4. *!

- -J; lj
- -i, mt

- -
J; /,

= J, ma
= 0, na

= ~iV; cf. 3.2.

6. A =-- 1,2,3.

7. (i) A = 1,1,3; vectors (0, 1, 1), (0,0,1).

9. A ~ 2, 2, 4; use Theorem 62.

12. x = TX gives x'/x - X'T'/TX = X'T'J^. The given trans-

formation gives J x2 ^ 2 X2
; therefore T'T = /.

13. A = 0, i^2; unit latent vectors are

(
l JL <A /

x L
-1\ f

1 1 - \

W2 f

""V2' /' V2'2'V2/' \2'2' V2/'

Use Theorem 62.

t The actual transformation is not asked for: too tedious to be worth the

pains.
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16. Let tlv ..,t n be the vectors and T have the t\s as columns.

As in 4.1, T~ 1AT = d'mg(\lf ... t \ n ). But T~ l = T and so

TAT = diag(Xlt ...,X n ).

A diagonal matrix is its own transpose and so

T'AT = (T'AT)' = T'A'T and A = A'.

17. (i) A = -1,3,4; vectors (3, -1,0), (1,1, -4), (2,1,0).

(ii) A - 1,2,3; vectors (2, -I,- 1), (1, 1,
-

1), (1. 0,
-

1).

is. A = n -i
0],

B = n i 01.

-j 2 f

LO -1J LO 3J

19. A has n linearly independent latent vectors (Theorem 63), which

are also latent vectors of B (Theorem 65). Finish as in proof of Theorem

64.
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