
CENTS

B 3 D16 ?Sb

USE OF FORMULAS
IN MECHANICS

APPLICATIONS TO ENGINEERING PROBLEMS
LEVERS-STRENGTH OF BEAMS

THIRD REVISED EDITION

MACHINERY'S RET ERENCE BOOK NO. 19

PUBLISHED BY MACHINERY. NEW YORK





MACHINERY'S REFERENCE SERIES

EACH NUMBER IS A UNIT IN A SERIES ON ELECTRICAL AND
STEAM ENGINEERING DRAWING AND MACHINE

DESIGN AND SHOP PRACTICE

NUMBER 19

USE OF FORMULAS
IN MECHANICS

THIRD REVISED EDITION

CONTENTS

General Remarks on Self-Education and the Use of

Formulas, by C. F. BLAKE - 3

The Use of Formulas in Mechanics, by ERIK OBERG - 7

Principles of Moments as Applied to the Lever, by LESTER
G. FRENCH - - 20

The Center of Gravity, by BENJ. F. LA RUE 31

The First Principles of the Strength -of Beams,, by. C. F.

BLAKE - - - .
:
./ :'*' : vl, V:'- - 39

Copyri -ht, 1910. The Industrial Press, Publishers of MACHINERY.
49-55 Lafayette Street, New York City



Students whose knowledge of elementary arithmetic and its applica-

tion to simple problems is too limited for intelligent study of this

treatise, are advised to first study MACHINERY'S Jig Sheets 5A to 15A,

inclusive, Common Fractions and Decimals; MACHINERY'S Reference

Series No. 18, Shop Arithmetic for the Machinist; and No. 52, Advanced

Shop Arithmetic for the Machinist.

In preparing the second edition of this book, the chapter on graphi-

cal methods of solving problems, contained in the first edition, was

omitted, and in its place a chapter containing solutions of twenty-four

mechanical problems selected from many different fields of mechanical

engineering, were introduced. This substitution, it is believed, greatly

enhanced the value of the book, and met with the approval of readers

especially interested in the use of formulas in mechanics. In the pres-

ent the third edition, this feature has, therefore, been retained.



CHAPTER I

GENERAL REMARKS ON SELF-EDUCATION AND
THE USE OF FORMULAS*

There are several ways of obtaining an education: The easiest and,

until recent years, the usual way is to begin at the age of seven and

continue steadily at school till the age of twenty-four, at father's ex-

pense. It is a fortunate fact that education is by no means unattain-

able otherwise; indeed many of the greatest and most widely useful

educations the world has known have been obtained almost without a

look at the inside of a school. A second method, quite modern, is

the correspondence school most excellent in many respects, yet not

completing the available ways of obtaining an education. The final

method is that of self-education. Nearly every successful man in engi-

neering must necessarily obtain a very large share of his education in

this manner, no matter what his general educational facilities have

been; and it is for the purpose of explaining the possibilities of this

method, and to plant the seed of self-help, that this and the follow-

ing chapters have been written. They are divided into five heads deal-

ing with the following subjects:

1. Present introduction, explaining general methods to be followed,

and the principles of the use of formulas.

2. Examples of the use of formulas in mechanics.

3. The application of formulas to the solution of problems involv-

ing the principles of levers and moments, showing the simplicity of

the form and application of the formulas.

4. The application of formulas in finding the center of gravity of

geometrical figures.

5. The elements of the theory of the strength of materials, and the

use of formulas in calculations of strength of beams.
It is the aim of these chapters to start the ambitious young man of

sufficient grit upon a path which, if rightly followed, will in the future

surely place him on par with those more fortunate men of his age who
have enjoyed a college education, and to leave him in a position to

continue to read and study and to understand the technical discussion

and articles on design which appear in the technical press.

Engineering education does not consist in knowing things mechani-
cal far from it. It consists largely in knowing where to find techni-

cal literature upon any given subject when it is wanted, and knowing
how to read it when it is found. Therefore, the first thing needed by
our student is a place to store his newly acquired knowledge, aside

from his head. The first attempt in this line of the author of this

chapter, was a book having black canvas covers and a flexible back.

Tapes were provided to lace in the leaves, which were made of fairly

* MACHINERY, October, 1905.
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4 No. 19 USE OF FORMULAS IN MECHANICS

heavy cardboard, perforated for the tapes, and having a flexible strip

along the perforated edge to enable the leaves to turn back properly.

Twenty-six alphabet leaves were made similar to those in dictionaries

and memorandum books, and a supply of extra leaves kept on hand.

Clippings from papers and catalogues were pasted on blank leaves

and inserted under the proper letter, also notes and formulas received

from others were written in, making the book a record of past work
and study. The book, finally becoming too large to be convenient and

too small to hold everything to be preserved, gave way to the card

index and filing case.*

Having provided a systematic way to file our clippings, we are ready
to consider the sources of the same. First subscribe for one or two
of the leading technical journals devoted to your line of work. Make
a practice of sending for catalogues of machinery manufacturers, and
file them in the filing box. Many catalogues present, besides the goods

manufactured, tables and data of value. If you can clip out these

tables and file them in the card index without destroying the catalogue,

do so; if not, make an entry in the card index to show where they

may be found, before filing the catalogue. Always write your name in

the catalogues, for as the file grows, you will find demands upon it

from others, and this will aid in keeping the file intact. Remember
that a catalogue received implies confidence on the part of the sender

that it will eventually prove of use to him by bringing his goods before

possible purchasers, and for this reason, as well as for your own con-

venience, all catalogues received should be listed and filed.

Duplicate clippings, such as tables, may often be exchanged with

others, and thus our files are enlarged. This is not meant to encourage
a mere mania for collecting far from it. We should so study all

data filed as to understand it at the time, and if found difficult, make
such notes as will readily recall the study to our minds in the future.

Mathematical Signs and Expressions

The first thing to be done in preparation for study, and for reading
the technical papers, is to become familiar with the engineering lan-

guage. The spoken engineering language is of course the native tongue
of the country, with, however, plenty of new words to master; but the

written engineering language consists very largely of symbols, so like

those of higher mathematics in appearance as often to discourage the

beginner from further efforts. In the written engineering language,

rules, instead of being written in the native tongue, are expressed by
combinations of these symbols, and when so expressed are called for-

mulas.

Now, the mathematician, when deriving a formula, uses the same

symbols as the engineer when writing a formula, and if we accept the

work of the mathematician as correct, we need pay no attention to the

use of these symbols in deriving formulas, but give our attention to

learning to read the symbolic language of the engineer with sufficient

* See MACHINERY'S Reference Series No. 2, Drafting-Room Practice, second
edition, page 44 : Card Index for the Draftsman's Individual Records.
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ease to enable us to follow the operations called for by any formula

we may wish to use.

The following table exhibits in the first column the symbols most

frequently met with; in the second column the arithmetical equivalent

of the symbols is given, assuming that a= 2 and 6 = 4 ; in the third

column the symbols are expressed in English to give the proper method
of reading the symbols.

TABLE 1. COMMON MATHEMATICAL SIGNS

a equals 2 b equals 4

2 + 4= 6 a plus 6 equals c

4 2 = 2 & minus a equals d

. _ Q a times & equals e, or
a& equals e

2 X 6= 12 a times a plus & equals /

6 divided by a equals h, or
6 over a equals h

2 < 4 a is less than &

4 > 2 & is greater than a

12 C & is to a as / is to c
b divided by a equals / divided by e

& over a equals / over c

2x2= 4 a square equals &*

4X4X4= 64 & cube equals k

>/ 4= 2 square root of & equals a

^8= 2 cube root of e equals a

Examples of Formulas

Let us now take the simple case of finding the area of a circle whose
diameter we know. Expressed in English the rule is: Multiply the

diameter by itself, then multiply the resulting product by 0.7854. Thr
result is the area of the circle. If the diameter is expressed in inches,

the area will be expressed in square inches. The corresponding mathe-

matical expression is

A= 0.7854 d- (1)

where A= the area in square inches,

d= the diameter in inches.

Note that d- simply means d X d.

Now, to solve this expression for a particular case, suppose we wish
to know the area of a circle nine inches in diameter. We simply sub-

stitute for d 2 its numerical value, and perform the indicated operation,

thus:

A= 0.7854 x 9 x 9= 0.7854 X 81= 63.617 square inches.

* For a more complete explanation of the meaning of square and square root,
and cube and cube root, see MACHINERY'S Reference Series No. 52, Advanced
Shop Arithmetic for tho Machinist, or MACHINERY'S Jig Sheets No. 19A, Square
Root, and No. 20A. Cube Root.



6 No. 19 USE OF FORMULAS IN MECPIANICS

Take as another example the formula for the indicated horse-power
of an engine:

PL AN
H.P.= (2)

33,000

where P= the mean effective pressure in pounds per square inch,

L= the length of stroke in feet,

A= the area of the piston in square inches,

2V= the number of strokes per minute.

Note that PLAN simply means P X L X A X N*
The whole information as to how to determine the indicated horse-

power of an engine is given in a very small space in the formula,
while to write the same in English would require considerable of the

space at our disposal.

Take the case of an 8 X 10-inch engine running at 100 revolutions

per minute under 125 pounds mean effective pressure; here we have:

P= 125 pounds,

10 inches
L= = 0.833 feet,

12

A= 0.7854 x 8 X 8= 50.26 square inches,

N= 100 rev. per min. X 2= 200.

Then,
125 X 0.833 X 50.26 X 200

H. P.= = 31.7

33,000

Right-angled Triangles

In right-angled triangles,f if we call the side opposite the right angle

a, and the sides forming the right angle & and c, then the following

formula expresses the relationship between the three sides:

a= A/ b2 + c2 (3)

Assume, for example, that in a right-angled triangle one of the sides

forming the right angle is 8 inches long, and the other side forming
the right angle is 6 inches. What is the length of the side opposite

the right angle?
If we insert the given dimensions in the formula above, we have :

a=v/82 + 6 2=V 64 + 36=N/100'= 10.

The side opposite the right angle, thus, is 10 inches long.

* See MACHINERY'S Reference Series No. 52, Advanced Shop Arithmetic for
the Machinist, or MACHINERY'S Jig Sheet No. 16A, Use of Formulas.

t See MACHINERY'S Jig Sheet No. 21A, Squares, Rectangles, Triangles, etc.

For a more complete treatment of the right-angled triangle see MACHINERY'S
Reference Series No. 52, Advanced Shop Arithmetic for the Machinist, and No. 54,
Solution of Triangles.



CHAPTER II

THE USE OF FORMULAS IN MECHANICS

The use of formulas for solving problems in mechanics can best be

made clear by actual examples. In the present chapter, therefore, a

number of problems have been solved, showing the methods employed,

and the manner in which the formulas taken from hand books and

reference works are used.

Problem 1. A metal ball falls from the top of a tower 300 feet high.

How long a time will be required before it reaches the ground?
The formula by means of which this problem is solved is:*

~2~h

(4)

in which = time in seconds,

h=i height in feet,

g= acceleration due to gravity= 32.16 feet.

Inserting the known values of h and g in the formula, we have:

-J
2 X 300

t= .
-= v 18.66= 4.32 seconds.

32.16

Problem 2. What is the velocity of the ball in the previous example
when it reaches the ground?
The formula for finding the velocity is:

(5)

in which v= velocity in feet per second, and h and g denote the same
quantities as in Problem 1. Inserting the values of g and h in the for-

mula, we have:

v= \/ 2 X 32.16 X 300= ^/ 19,296'= 139 feet, nearly.

Problem 3. A projectile is fired from a 12-inch gun vertically into

the air. It strikes the ground, coming down, exactly 1 minute and 40

seconds after it left the muzzle. Disregarding air resistance, what
height did the projectile reach? What was its velocity when leaving
the muzzle? And what is the energy of the projectile when it strikes

the ground, if its weight is assumed to be 600 pounds?
The time required for the projectile to reach its greatest height is

one-half of the total time for the upward and downward journey.

Thus, in 50 seconds, the projectile has reached the point where its

velocity is zero, and where it begins to fall. The formula for finding
the height reached is:

gt*
h= (6)

* See MACHINERY'S Reference Series No. 5, First Principles of Theoretical
Mechanics, page 34, second edition.
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in which h, g and t denote the same quantities as in Problem 1. In-

serting the known values, we have:

32.16 X 50 2 32.16 X 2,500
h= = = 40,200 feet,

2 2

40,200
or = 7.6 miles, approximately.

5,280

The velocity of the projectile when leaving the muzzle is the same
as the velocity acquired when again reaching the ground. This veloc-

ity is found by the formula :

v= gt= 32.16 X 50= 1,608 feet per second. (7)

The energy of the projectile when it strikes the ground equals its

v/eight multiplied by the distance through which it has fallen. If W=
weight, and E= energy, we have:

E=W X ft == 600 X 40,200= 24,120,000 foot-pounds. (8)

Another formula for the energy is as follows:

Wv*
E . (9)

2*7

This formula, with the values of W, v and g inserted, will, of course,

give the same result.

600 X 1,608 600 X 2,585,664
J0= = = 24,120,000 foot-pounds.

2 X 32.16 2 X 32.16

If, upon reaching
1 the ground, the projectile buries itself to a depth

of 8 feet, what is the average force of the blow with which it strikes

the ground? The average force of the blow equals the energy divided

by the distance d in which it is used up, plus the weight of the pro-

jectile, or if F~ average force of blow:

E 24,120,000
F \-W= h 600= 3,015,600 pounds. (10)

d 8

Problem 4. A drop hammer weighing 300 pounds falls through a

distance of 3 feet. What is the stored or kinetic energy of the hammer
when it strikes the work, and what is the average force with which it

delivers the blow, if, on striking the work, it compresses it % inch?

From Formula (8) given in 'Problem 3, we have:

E=W X n= 300 X 3 = 900 foot-pounds.

The distance d in which this energy is used up equals % inch or

% -f- 12= 0.04 foot. Therefore, from Formula (10) the average force

is:

E 900
F= h W= h 300= 22,500 + 300= 22,800 pounds.

d 0.04

Problem 5. Find the stress in the rim of a fly-wheel, 5 feet mean

diameter, made of cast iron, the rim being 2 inches wide by 4 inches

deep, if the fly-wheel rotates at a velocity of 200 revolutions per min-

ute.
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The formula for the stress in the rim is :
*

8= 0.00005427 WRra
(11)

in which 8= stress in pounds on the rim section,

TV= weight of rim in pounds,

J2= mean radius in feet, and

r= revolutions per minute.

We know that the mean diameter of the fly-wheel is 5 feet; there-

fore, 12= 2.5 feet; r is given as 200; but we must find the value of

TV before we can apply Formula (11).

The weight TV of the rim equals its volume or content in cubic

inches multiplied by the weight of cast iron per one cubic inch. The
volume of the rim equals the cross-sectional area of the rim multiplied

by the circumference of the circle having for radius the mean radius of

the flywheel; expressed as a formula:

V= 2R X 3.1416 X a X &.

in which V= the volume of the rim, in cubic inches, R== the mean
radius, in inches, o= the width, and 6= the depth of the rim, in

inches. Substituting the values in this formula, we have:

V= 2 X 30 X 3.1416 X 2 X 4= 1,508 cubic inches.

One cubic inch of cast iron weighs 0.26 pound. The weight of the

rim then is:

TV= 1,508 X 0.26= 392 pounds.

We can now substitute the values in Formula (11) :

flf= 0.00005427 X 392 X 2.5 X 2002= 2,127 pounds.

The multiplication above can be carried out by the use of logarithms
as follows:f

log 0.00005427 =5.73456

log 392 = 2.59329

log 2.5= 0.39794

2 X log 200= 4.60206

logfif= 3.32785

Hence S= 2,127 pounds.

Problem 6. The cylinder of a steam engine is 16 inches in diameter,
and the length of the piston stroke 20 inches. The mean effective pres-

sure of the steam on the piston is 110 pounds per square inch, and
the number of revolutions per minute of the engine fly-wheel is 80.

What is the power of the engine in indicated horse-power?
The formula for the horse-power of engine has been given in Chap-

ter I, page 6:

PLAN
H.P.= (2)

33,000

in which P= mean effective pressure in pounds per square inch,

* See MACHINERY'S Reference Series No. 40, Fly-Wheels, page 19, first edition.
t See MACHINERY'S Reference Series No. 53, Use of Logarithms and Logarithmic

Tables.
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L length of stroke in feet,

A.= area of piston in square inches,

N= number of strokes of piston per minute.

20
In the given problem Pi=110; L (in feet) = = 12/3; A, the area

12

of the piston in square inches = 16* x 0.7854 = 256 x 0.7854 = 201.06;

and N, the number of strokes of piston per minute = 2 x revolutions

of fly-wheel = 2 X 80 = 160. Substituting these values in the formula,
we have:

110 X 1 2/3 X 201.06 X 160
H. P.= = 178.72.

33,000

Problem 7. It is required to determine the diameter of cylinder and

length of stroke of a steam engine to deliver 150 horse-power. The
mean steam pressure is 75 pounds; the number of strokes per minute
is 120. The length of the stroke is to be 1.4 times the diameter of the

. cylinder.

First insert in the horse-power Formula (2) the known values:

75 X I/ X A X 120 3 X L X A
150= = .

33,000 11

The last expression Is found by cancellation.

Assume now that the diameter of the cylinder in inches equals D.

1.4 D
Then L= = 0.117 D, according to the requirements in the prob-

12

lem; the divisor 12 is introduced to change the inches to feet, L being
in feet in the horse-power formula. The area A= D* X 0.7854. If we
insert these values in the last expression in our formula, we have:

3 X 0.117 D X 0.7854 Da 0.2757 Z)
s

150= =
11 11

0.2757 D8= 150 X 11 = 1,650

1,650
*

I 1,650

;
D=J =^5984.8= 18.15N 0.27570.2757

The diameter of the cylinder, thus, should be about 18*4 inches, and

the length of the stroke 18.15 X 1.4= 25.41, or, say, 25% inches.

Problem 8. Find the horse-power required for compressing 10 cubic

reet of air per second from 1 to 12 atmospheres, including the work
of expulsion from the cylinder. Frictional and other losses are dis-

regarded.

The formula for the work, W, in foot-pounds, required for compres-

sion and expulsion of 1 cubic foot of air from p x to p n atmospheres is:

ter-i^=3.463^ I I 1 -11x14.7x144 (12)
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In the given problem p t =1; pn= 12; and as we are to compress 10

cubic feet instead of one, we must multiply the whole expression by 10.

Thus:

-- * X U.7 X 144 X 10K
12 \ o.2 T
--

1
*

I X U.

= 3.463 X (12-29
_

1) X 14.7 X 144 X 10.

The value of the expression 12-a* can be found only by the use of

logarithms.*

log 12= 1.07918.

log 120-29 1.07918 X 0.29= 0.31296.

120.29 = 2.056, and 120-29 1=1.056.

Hence:

W= 3.463 X 1.056 X 14.7 X 144 X 10= 77,410 foot-pounds.

This last result may be found by ordinary multiplication, or, more

quickly, by logarithms as follows:

log 3.463= 0.53945

log 1.056= 0.02366

log 14.7 =1.16732

log 144 =2.15836

log 10 =1.00000

logW= 4.88879 W= 77,410.

As a horse-power equals 550 foot-pounds per second, the horse-power

required for compressing 10 cubic feet of air from 1 to 12 atmospheres

equals:

77,410
H. P.=-= 151 horse-power.

550

Problem 9. It is required to lift a weight weighing 1 ton by means
of a screw having a lead of % inch. A lever passing through the head
of the screw, and extending 4 feet out from the center, is provided at

its outer end with a handle. How great a force must be applied at

this handle to lift the required weight, friction being disregarded?
Let the weight to be lifted, in pounds, be W', the force applied at the

end of the lever, F; the lead of the screw, Z; and the length of the lever,

in inches, r. The distance passed through by force F times this force

must equal the distance weight W is lifted times the weight, or, ex-

pressed as a formula:

F X 2r X 3.1416=W X I. (13)

This formula is based on the fact that during one revolution of the

screw and handle, force F acts through a distance equal to the circum-

ference of the circle described by the handle, while the weight W is

lifted an amount equal to the lead of the screw. If we insert the given
values in the formula above, we have:

* See MACHINERY'S Reference Series No. 53, Use of Logarithms and Logarithmic
Tables.
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F X 2 X 48 X 3.1416= 2,000 X %
F X 301.59 = 1,000

1,000
F= = 3.3 pounds.

301.59

It will be seen that by the given arrangement a force of 3.3 pounds
would be sufficient to lift a ton. Friction, however, has not been con-

sidered in this problem, and as the frictional resistance in machines

using screws for conveying power is considerable, the actual force re-

quired would be a great deal more than 3.3 pounds.
Assume that is required to find the power if friction is considered.

In this case we must know the diameter of the screw and the form
of the thread. We will assume that the thread is square, and that the

diameter of the screw is 3 inches. The depth of a %-inch lead square
thread is *4 inch. The pitch diameter of the screw is, therefore, 3

U = 2% inches.

The formula for finding the force required at the end of the handle

is:

/ 4- tan a R
Q=W X

1 / tan a r

in which Q= force at end of handle, in pounds,
TV= weight to be lifted= 2,000 pounds,

/= coefficient of friction,

a= angle of helix of the thread at the pitch diameter,
R= pitch radius of screw in inches= 1% inch,

r= length of handle in inches= 48.

lead 0.5

tana= = = 0.058.

3.1416 X Pitch diam. 3.1416 X 2.75

The coefficient of friction, /, may be assumed to be 0.15. If we now
insert the known values in the formula, we have:

0.15 + 0.058 1.375

Q = 2,000 X X =12.02 pounds,
1 0.15X0.058 48

or nearly four times as much as when friction was not considered.

Problem 10. Determine the length of the main bearing of a large

horizontal steam engine. The diameter of the crank-shaft is 10 inches,

and the weight of the shaft, fly-wheel, crank-pin and other moving
parts that may be supported by the bearings is 60,000 pounds. Assume
that two-thirds of this weight, or 40,000 pounds, comes on the main
bearing. The engine runs at 80 revolutions per minute.

The length of the main bearing of an engine may be found by the

formula:*

W / K
L = 1^+-| (14)PK\ D*

* See MACHINERY'S Reference Series No. 11, Bearings, page 11, first edition.
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in which L = length of bearing in inches,

W= load on bearing in pounds,

P= maximum safe unit pressure on bearing at a very slow

speed,

E constant depending upon the method of oiling and care

which the journal is likely to get,

2V= number of revolutions per minute,

D= diameter of bearing in inches.

The safe unit pressure P for shaft bearings is 400 pounds; the factor

K varies from 700 to 2,000. In this case, assume first-class care and

drop-feed lubrication, in which case K= 1,000. The other quantities

given are W= 40,000, N= 80, and D= 10.

Inserting these values in Formula (14), gives us:

(1000\

1

804- )=-
10 / 10

40,000
L = I 80 -\ 1 = (80 + 100) = 18 inches.

400 X 1000

Problem 11. What is the carrying capacity of a helical spring hav-

ing an outside diameter of 5 inches, made from %-inch round steel?

The tensile stress per square inch of section of spring must not exceed

80,000 pounds.
The formula for the carrying capacity of helical springs is:*

Sd*
P= (15)

2.55 D

in which P= safe carrying capacity,

8= safe tensile stress per square inch,

d= diameter of wire,

D= mean diameter of spring= outside diameter minus diam-

eter of wire.

In the given problem 5= 80,000; d= V2 ',
and D= 5 y2 = 4y2 . If

these values are inserted in Formula (15) we have:

80,000 X 0.5 3
10,000

P = 87i pounds.
2.55 X 4.5 11.475

Problem 12. Find the weight of steam that will flow in one minute

through a pipe 100 feet in length and 2 inches in diameter, if the

initial pressure is 40 pounds (absolute) per square inch and the ter-

minal or delivery pressure 35 pounds (absolute).

The formula for finding the weight of steam under the above condi-

tions is: |

(P-Pi)d
(16)

\W(P-.= <N 1
in which W= pounds of steam per minute,

c= constant= 52.7 for a 2-inch pipe,

* See MACHINERY'S Data Sheet No. 22, July, 1903, Formulas for Coil Springs.
t See MACHINERY'S Data Sheet No. 109, March, 1909, Steam Pipe Sizes fr

Heating Systems.
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w= weight per cubic foot of steam at initial pressure, in

pounds,
P= initial pressure in pounds per square inch,

P1
= terminal pressure in pounds per square inch,

d= diameter of pipe in inches,
L= length of pipe in feet.

In the present problem, c= 52.7; to= 0.0972 (obtained from tables

in standard hand books); P= 40; P1==35; d= 2; and L= 100. In-

serting these values in Formula (16) gives:

0.0972 X (40 35) X 25

= 52.7V 0.1555 == 20.76 pounds.
100

Problem 13. Find the tractive power of a simple locomotive having
22-inch cylinder diameters, 26-inch stroke, a boiler pressure of 200

pounds, and 60-inch diameter driving wheels.

The formula for the tractive force of a locomotive is :
*

0.85 Pd*s
T= (17)

D
in which T= tractive force in pounds,

P= boiler pressure in pounds per square inch,

d= diameter of cylinders in inches,

s= length of stroke in inches,

D= diameter of driving wheels.

Inserting the known values in Formula (17), gives:

0.85 X 200 X 22a X 26
T= = 35,655 pounds.

60

Problem 14. Find the diameter of the cylinders of a simple loco-

motive, having a tractive force of 30,000 pounds; length of stroke, 22

inches; diameter of driving wheels, 57 inches; and boiler pressure, 180

pounds.
The formula for the cylinder diameter is:f

.

i:JT XD
(18)

P X 0.85 X s

In which the letters denote the same quantities as in Formula (17).

If we insert the known values T= 30,000; D= 57; P= 180; and s=
22, in Formula (18), we have:

I 30,000 X 57

d= . =V 508.02= 22.54 inches,N 180 X 0.85 X 22

or, approximately, 22% inches diameter,

Problem 15. Find the thickness of a cast iron cylinder to withstand

a pressure of 1,000 pounds per square inch; the inside diameter of the

cylinder is to be 10 inches, and the maximum allowable fiber stress

per square inch 4,000 pounds.

* See MACHINERY'S Data Sheet No. 79, Constants for Calculating Tractive
Force.

t See MACHINERY'S Reference Series No. 27, Locomotive Design, page 7.
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The thickness is found by the following formula:*

D/ S + P \

= - I J 1 1 (19).
2 \N S-P 1

in which t= thickness of cylinder wall in inches,

D= inside diameter of cylinder in inches,

P= working pressure in pounds per square inch,

8= allowable fiber stress in pounds per square inch

Inserting the given values In Formula (19), we have:

10 / I 4000 -f 1000 \=( I- --11 =
2 \N 4000 - 1000 /

_
t = - --11 = 5 N 1.667-1) =

2 \N 4000 - 1000 /

5 (1.29 1) =5 X 0.29= 1.45, or say 1% inch.

Problem 16. How many cubic feet of air does a disk fan, 30 inches

in diameter, deliver when running at a speed of 500 revolutions per
minute?

The answer to this problem is found by the following formula :f

C= 0.6 DRA, (20 1

In which C= cubic feet of air delivered per minute,
D= diameter of fan in feet,

R= revolutions per minute,

A= area of fan in square feet.

30
In the given problem D, in feet = = 2.5; R 500; and A = D' X

12

0.7854 = 2.5 X 0.7854 = 4.909. Inserting these values in Formula

(20), we have:

(7= 0.6 X 2.5 X 500 X 4.909= 3,681.75 cubic feet.

Problem 17. What should be the weight of an 8-foot mean diameter

fly-wheel, in pounds, for a two-cylinder, single-acting gas engine of 120

brake horse-power used in an electric lighting plant with continuous

current generators, if the engine makes 300 revolutions per minute?

The following formula,} by Mr. R. E. Mathot, may be used for solv-

ing this problem:

10.75 N
P=K- (21)

D*an3

in which P= the weight of the rim, without arms or hub, in tons,

K= coefficient varying with the type of engine = 21,000 for a

two-cylinder single-acting engine,

N= brake horse-power of engine,

D= mean diameter of fly-wheel, in feet,

a= amount of allowable variation= 1/50 for electric lighting

by continuous current,

n= number of revolutions per minute.

* See MACHINERY'S Reference Series No. 17, Strength of Cylinders, page 21,
Orst edition.

t See MACHINERY'S Reference Series No. 39, Fans, Ventilation and Heating,
page 24.

$ See MACHINERY'S Reference Series No. 40, Fly-Wheels, page 20, first edition.
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In the given problem, where IT= 21,000, N= 120, Z>= 8, a= 0.02,

and n= 300, we have:
10.75 X 120

P= 21,000 X--= 0.78 ton.

8* X 0.02 X 300*

Expressed in pounds the weight of the rim equals 0.78 X 2,000=
1,560 pounds.
Problem 18. Find the thickness of the piston for a steam engine hav-

ing a cylinder diameter of 20 inches and a length of stroke of 24 inches.

The following formula may be used for finding the thickness of the

piston :
*

T=A/L XD (22)

In which T= thickness of piston in inches,

L= length of stroke in inches,

D= diameter of cylinder in inches.

Inserting the given values in this formula, we have:

T= > 24 X 20=V 48 -

The fourth root of 480 can be most easily found by logarithms.!

log 480

logT=-.

4

log 480= 2.68124; 2.68124 ~ 4= 0.67031.

log T= 0.67031; T= 4.68 inches.

Problem 19. Find the average horse-power required for taking a

chip in a lathe 5/16 inch deep with a feed of 5/32 inch per revolution.

The material cut is a bar of 30-point carbon steel, 4 inches in diameter,
and is turned at a speed of 40 revolutions per minute.

A formula for finding the horse-power for turning in a lathe, based

upon the experiments of Hartig, is as follows:^

H. P.= 0.035 X 3.1416 XDXnXdXtx 0.28 X 60 (23)

in which H. P.= horse-power required for turning,

D= mean diameter of piece turned,

n= revolutions per minute,
d= depth of cut,

t= thickness of chip = feed per revolution.

In the problem given, D = outside diameter minus depth of cut =
4 5/16= 311/16; n = 40; d = 5/16; and t = 5/32. If we insert

these values in the given formula, we have:

H. P. =0.035 X 3.1416 X 3.6875 X 40 X 0.3125 X 0.1562 X 0.28 X 60=
13.3.

Problem 20. What horse-power may safely be transmitted by a 3

inches wide, machine-cut spur gear of 16-inch pitch diameter having
64 teeth, made of cast iron and running at a velocity of 120 revolutions

per minute?

* See MACHINERY'S Data Sheet No. 120, Steam Engine Desijm.
t See MACHINERY'S Reference Series JNo. 53, Use of Logarithms and Loga-

rithmic Tables.
% See MACHINERY'S Reference Series No. 16, Machine Tool Drives, page 29,

first edition.
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The formulas for the solution of this problem are as follows:*

(24)

(25)

(26)

\

(27>
33,000

in which V= velocity in feet per minute at pitch diameter,

D= pitch diameter in inches,

R= revolutions per minute,

S= allowable unit stress of material at given velocity,

8, = allowable static unit stress of material,

W= maximum safe tangential load, in pounds, at pitch diam-

eter,

Y= factor dependent upon pitch and form of tooth,

F= width of face of gear,

P= diametral pitch.

H. P. = horse-power transmitted,

The known values to be inserted in the given formulas are D= 16,.

12= 120, 8e (for cast iron, assumed) =6,000, F= 3; Y (for 64 teeth,

standard form) =0.36; and P= 64-^-16= 4. If we insert these val-

ues, as required, in the Formulas (24) to (27), and insert the values-

obtained in each formula in the next succeeding one, we have:

7= 0.262 X 16 X 120= 503 feet.

600
S== 6,000 X = 3,264 pounds per square inch.

600 + 503

3,264 X 3 X 0.36

W= = 881 pounds.
4

881 X 503
H. P.= = 13.4 horse-power.

33,000

Problem 21. The initial absolute pressure of the steam in a steam

engine cylinder is 120 pounds; the length of the stroke is 26 inches,,

the clearance l 1
/^ inch, and the period of admission, measured from

the beginning of the stroke, 8 inches. Find the mean effective pres-

sure.

The mean effective pressure is found by the formula:

P(l-fhyp.logfl)
P= (28)

R
in which p= mean effective pressure in pounds per square inch,

P= initial absolute pressure in pounds per square inch,

* See MACHINERY'S Reference Series No. 15, Spur Gearing, page 29, second
edition.
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R= ratio of expansion, which in turn is found from the for-

mula:

L + C
R=- (29)

l + C

in which L= length of stroke in inches,

1= period of admission in inches,

C= clearance in inches.

The given values are P= 120; L= 26; Z= 8; and (7= 1%. By in-

serting the latter three values in Formula (29), we have:

26 + 1% 27.5

R -=-= 2.89.

8 + 1% 9.5

If we now insert the value of P and the found value of R in For-

mula (28), we have:

120 (1 + hyp. log 2.89)

2.89

The hyperbolic logarithm (hyp. log.) must be found from tables

giving its value.* The hyperbolic logarithm for 2.89 is 1.0613. Insert-

ing this value in our formula, we have:

120 (1 + 1-0613) 120 X 2.0613

p=-=-= 85.6 Ibs. per square inch.

2.89 2.89

Problem 22. It is required to pump 12 cubic feet of water per min-

ute with a centrifugal pump, raising it 35 feet, 15 feet by suction

and 20 by discharge pressure. What will be the diameter of suction

and discharge pipe required?

According to a formula by Fink:

= 0.36 -J (30)

In which Q =. quantity of water, in cubic feet, pumped per minute,

g= acceleration due to gravity= 32.16,

h= height of suction in feet,

7^= height of discharge in feet,

d= diameter of suction and discharge pipe, in feet.

Inserting the known values in Formula (30) we have:

= 6 -36
NJ'

12 I 12
- = 0.36 1

- = 0.36 X 0.5 = 0.18,

2x32.16(15 + 20) 47.45

approximately.

A pipe 0.18 foot, or 2 inches, in diameter would be required.

Problem 23. What is the average pressure on the tool when turning

hard cast iron, taking a chip % inch deep with 1/16 inch feed per

revolution?

* See MACHINERY'S Reference Series No. 53, Use of Logarithms and Loga-
rithmic Tables.
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The formula given by F. W. Taylor for finding the pressure on the

tool is:*

P= CD**F* (31)

in which P= average pressure on tool in pounds,
C= a constant= 69,000 for hard cast iron,

D= depth of cut in inches,

jF= feed per revolution, in inches.

Inserting the known values in this formula, we have:

P= 69,000 X 0.125** X 0.062
1

To find the values of the two last expressions in the product above,

we must make use of logarithms. f The whole product is also most

easily found by means of logarithms.

14

log 0.125 1.09691; X 1.09691 = 1.15712
15

3

log 0.062 =2.79239; X 2.79239=1.09429
4

log 69,000= 4.83885

log P= 3.09026

Hence, P= 1,231 pounds.
Problem 24. Find the diameter of shaft required to transmit 60

horse-power at 300 revolutions per minute, if the maximum safe stress

of the material of which the shaft is made is 10,000 pounds per square
inch.

The formula for finding the diameter of shaft is:

321,400 X H.P.
d= J (32)

R8
in which <L= diameter of shaft in inches,

H.P.= horse-power to be transmitted,
R= revolutions per minute,
= safe shearing stress of material of which shaft is made.

If we insert the given values in Formula (32), we have:

8
I 321,400 X 60

d== I = 1^6.428= 1.86 inch.
N 300 X 10,000

The diameter of the shaft may, therefore, be made, say, 1% inch di-

ameter.

* See MACHINERY. Juno, 1907, engineering edition, page 568.
t See MACHINERY'S Reference Series No. 53, Use of Logarithms and Loga-

rithmic Tables.



CHAPTER III

PRINCIPLE OP MOMENTS AS APPLIED TO THE
LEVER*

The lever is the simplest element of a machine, and the principles

of its action are of a simple nature. There is no reason why anyone
who chooses to devote a little time to study should not be able to

master these principles, and having done this, he will have gone a

long way toward mastering the principles of all the elements that make

up a machine.

Webster defines a lever as "a bar of metal, wood or other substance,

used to exert a pressure or to sustain a weight, at one point at its

length, by receiving a force or power at a second, and turning at a third

on a fixed point called a fulcrum. It is of three kinds, according as

either the fulcrum F, the weight W, or the power P, respectively, is

situated between the other two." This is the usual definition of a

lever as it is found in most books on mechanics and physics, and

attention should be called to certain points about it that could easily

lead a beginner astray and cause confusion at the outset. It is always
best to start with a clear idea of a subject, so that there will be no

uncertainty to begin with.

In Fig. 1 is a lever, in which, according to the definition, W is a

weight acting at one point, P is the power or force acting at another

point to raise the weight W, as indicated by the arrow, and F is the

fulcrum on which the lever turns. That part of the lever between

the weight and the fulcrum is called the "weight arm," and that part

between the fulcrum and the power is called the "power fcrm." It

will be noted that the fulcrum in Fig. 1 is located between the weight

and power. In Figs. 2 and 3, however, are two levers in which the

arrangement is different, the weight being placed between the power
and fulcrum in Fig. 2, and the power placed between the weight and

fulcrum in Fig. 3. These three figures illustrate the first, second, and

third kinds of lever, as above defined.

The objections to this definition of the lever are, in the first place,

the use of the word "power" for the force applied at the end of the

lever to raise the weight. "Power" has a totally different meaning
from "force," and takes into account not only force, but time and

distance. A force is merely a push or pull, such as is exercised by the

hand, and this is the kind of effort that is always required to raise

a weight or overcome any other resistance. In the reference letters

of the illustrations, therefore, we will let P stand for a push or a pull,

as the case may be, instead of for the word "power." Hereafter, also,

instead of calling the resistance to be overcome the "weight," we will

* MACHINERY, October and November, 1898.
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call it the "resistance" and represent it by the letter R. A lever may
have to overcome a number of resistances besides that of raising a

weight, such as the resistance of friction, of a coiled spring, or of the

pressure of steam, and the term "resistance" implies this better than

the term "weight."

Finally, regarding the three kinds of levers mentioned above, there

is no necessity for trying to separate levers into any number of classes,

or for trying to remember to which class they belong in the solution of

examples. All levers depend upon the same principles, which are simple

w

Figs. 1 and 2

and easily understood, and all that is necessary is to first master these

principles without regard to the relative position of the applied force,
the resistance, or the fulcrum.

The Moment of a Force

We have seen what is meant by the term "force," and the next thing
to learn is what the moment of a force is. When a force acts at a
point on a lever, that is, when that point is given a push or a pull, the

tendency is to cause the lever to turn about its fulcrum. This tendency

Fiff. 3

depends first upon the strength of the force acting and second upon
the perpendicular distance from the line of action of the force to the

fulcrum. If either the strength of the push or pull exerted by the

force, or the perpendicular distance of its line of action from the ful-

crum, is changed, the tendency of the force to rotate the lever will be

greater or less, as the case may be. The rotative effect of any force

thus depends upon both the strength and the distance, and is measured
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by their product, this product being called the moment of the force.

The moment of force, therefore, is the measure of the turning effect

of that force, and is found by multiplying the force by the perpendicu-
lar distance from its line of action to the fulcrum. If the force be
measured in pounds and the distance in feet, the moment will be in

foot-pounds; if the force be in pounds and the distance in inches, the

moment will be inch-pounds; if the force be in tons and the distance

in feet, the moment will be in foot-tons, etc. The foot-pounds measure-
ment is the most commonly used, however.

This subject of moments is important in fact, the most important
in the whole subject of levers and in order to fix it firmly in the mind,
it will be helpful to have some common fact or operation that will

illustrate it, and that can be referred to in solving complicated exam-

ples in which the application of the principle may not be entirely
clear.

There is one kind of lever that is very familiar to every mechanic,
and that is the wrench. We will select the wrench, therefore, to illus-

trate the subject of moments, and having once grasped the principle as

applied to the wrench, no mechanic will be likely to have trouble with
its other applications.

m
,

Machinery, X.r.

Fig. 4

Fig. 4 represents a box wrench, and, as is often done in work of a

heavy character, a hole is punched in the outer end of the handle, into

which a chain or rope can be hooked or fastened to assist in screwing
the bolt or nut "home." Suppose the wrench is being used to screw up
a nut, as shown in Fig. 4, and that the pull P on the rope is in the

direction shown by the arrow, or in the direction of the line m n. The
tendency of this pull to turn the wrench and nut will then be meas-
ured by the pull P in pounds, multiplied by the distance L in feet

measured from the fulcrum at the center of the bolt, to the line

mn, the distance being taken in the direction of a line at right angles
or perpendicular to the line m n. This product gives the effect of the

pull P in foot-pounds, and is called the moment of this force. Thus,
if the pull P is 300 pounds, and the length L is 4 feet, the moment of

the force P is 300 X 4= 1,200 foot-pounds, and this is the measure of

the turning effect of this force.

The reason why this is so will be evident if we consider another

case shown in Fig. 5. Here the wrench has been placed in a new
position, ready for another turn, and the pull P acts in the same direc-

tion as before, along the line mn. Now, anybody who has used a

wrench knows that with the same pull a greater effect will be pro-
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duced with the wrench as placed in Fig. 4 than as placed in Fig. 5,

although in each case the hook is at the same distance (4 feet) from

the fulcrum F. The direct distance, however, of the point of applica-

tion of the force from the fulcrum does not necessarily have any influ-

ence on the effectiveness of this force in moving the lever. The only

distance that can be considered is the perpendicular distance from the

line along which the force acts to the fulcrum, and this distance is

greater in Fig. 4 than in Fig. 5, and in the former the force of 300

pounds has a greater leverage than in the latter. In Fig. 5 the meas-

ure of the rotative effect is the pull P, which is 300 pounds, times

the distance L, which in this case measures 2 feet, or 300 X 2= 600

foot-pounds. The distance L, as before, is measured at right angles to

Maehin*ry,tt.r.

Pig. 5

the line m n, and if the rope had extended along the line c d, instead

of the line m n, L would have been measured at right angles to the

line c d, as indicated by the line Lt .

The True Lever"Arm
The distance L in Figs. 4 and 5 is called the lever arm. Ordinarily

the arm of a lever is understood to mean that part of the lever that

lies between the fulcrum and the point where the force is applied, or

between the fulcrum and the point where the resistance takes place;
and such it is in a strict sense if the lever arm is straight and the

force acts at right angles to the lever. But in Fig. 5 the true length
of the lever arm is the distance L, and not the length of the handle of

the wrench, because L is the effective length acting, in the position
shown. The true lever arm, therefore, is the perpendicular distance

from the line of action of the force to the fulcrum.
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A familiar example of the moment of a force is to be had in the

action of the foot in pedaling a bicycle. When the crank has passed
the upper center, and the foot is ready for the downward push, it will

require a much greater effort to drive the wheel ahead than when the

crank is at right angles to the direction of the motion of the foot.

The crank, of course, is of the same length whatever its position; but

considered as a lever, the length of its arm varies from nothing at the

upper center, to the full length of the crank at the extreme forward

movement of the foot. The moment of the force exerted by the foot,

therefore, gradually increases from nothing at the upper part of the

stroke to the greatest amount at the forward position.

Still another illustration is to be had in the curved crank shown in

:Fig. 6. The crank turns about the point F, and a rod is attached at

Machinery,

Pig. 6

the outer end which pushes in the direction shown by line m n. Draw-

ing this dotted line m n through the point at which the push is applied

and in the direction in which the push is exerted, we have L, which is

drawn at right angles to m n. as the length of the lever arm, and the

moment of the force is the length L multiplied by the force P.

The Principle of Moment

Thus far the illustrations that have been used have pertained to

what might be called single-armed levers. We have considered only the

forces acting without regard to the resistance that had to be over-

come, and the levers themselves have been more of the nature of a

crank than of a lever, though it is not always easy to make a distinc-

tion between the two. It is evident, however, that wherever a force is

exerted, there must also be a resistance, as otherwise no initial force

would be required to create motion. In the case of the wrench, the

resistance was the friction between the threads of the bolt and nut

acting at the end of a lever arm equal to the radius of the bolt; and
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in the case of the bicycle crank, the resistance was at the rim of the

bicycle wheel, the lever arm in this case being more complicated be-

cause of the sprockets and chain.

In Fig. 7 is shown a bell-crank lever pivoted at the fulcrum F.

A pull P is exerted along the rod at the left, and this is balanced by
another pull along the rod at the right, which acts as a resistance to

the force P. To determine the relative rotative effects of the pull P
and the resistance R, we must determine the moments of these two

forces. To find the moment of P, draw a line m n through the point

of the lever at which P takes effect, and in the direction of the line in

which it acts. Then draw the line L from the fulcrum F and at right

angles to the line m n. This will be the true lever arm, and the

. 7

moment of P will be the product of P and the length L. To find the

moment of R, draw the line c d through the point of application of R
and in the direction of R. Then draw the line D of a length equal to

the perpendicular distance from F to line c d. This will be the true

lever arm for R, and the moment of R will be the product of R and
the distance D.

Since the moment of P measures the rotative effect of this force and
the moment of R measures the rotative effect of the resistance, it is

clear that if the lever is to balance, these two moments must be equal.

If L is longer than D, as it is in this case, then R must be enough
greater than P to make up for this, or otherwise the lever would begin
to turn about F. This, in substance, is all there is to the principle of

moments. The principle states that, if a body is to be in equilibrium,

the sum of the moments of the forces which tend to turn it in one

direction about a point is equal to the sum of the moments that tend

to turn it in the opposite direction about the same point. In other

words, if a body is to balance about a point, the opposing moments
must be equal.

Calculation of Simple Levers

We will now be ready to solve examples of the lever by the aid

of tfie principle of moments, and we will first consider that the weight
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of the lever may be neglected, and that there are only two forces act-

ing the push or pull which is applied to the lever, and the resistance

overcome, these being balanced, of course, by the pressure at the

fulcrum, which, in reality, is another force, but which need not be

considered for the present, at least.

In Fig. 8 is shown a lever supported on the fulcrum F. At one end
a push, P, of 10 pounds, is exerted, and at the other end is a resistance

R, in the shape of a 100-pound weight. The distance from F to P is

40 inches, and from F to R, 4 inches. The principle of moments states

that when a lever is in balance, the moment of the force tending to

turn it in one direction must equal the moment of the force tending
to turn it in the opposite direction. In Fig. 8 the moment of force P
about fulcrum F, tending to depress the left-hand end of the lever, is

10 X 40= 400 inch-pounds, and the moment of force R is 100 X 4= 400

inch-pounds also, so that the lever is in balance.

I

I

P=10

100
^

Machinery, N.F.

Vlg. B

Now, suppose that we had P, R, and the distance from F to R given

in Fig. 8, and that we wanted to find the distance from F to P, which

we will call x. By the principle of moments we have,

Moment of P= 10 x x,

Moment of R= 100 X 4= 400.

But these moments are equal; hence, 10X#= 400, and what we
have to do is to find the value of x. It is clear that, if ten times the

distance x= 400, the distance x must be 1/10 of 400, and all we have

to do is to divide 400 \>y 10, giving 40 inches as the distance x.

Again, suppose it were desired to find the resistance R, the other

quantities being known. For convenience we will take the moment of

R first, because this contains an undetermined value. This is always

a good rule to follow.

Moment of R 4XR. (It makes no difference whether the 4 or

the R is written first, but it is usual to write the figure first.)

Moment of P= 10 X 40= 400,

400
Then 4 X J?= 400, and R== = 100 pounds.

4

These simple examples contain all that need be known to solve lever

problems where there are only two forces acting; but to make the

subject still clearer, a more general example will be taken.
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In Fig. 9 the lever shown is pivoted at F, which serves as the ful-

crum. A push P is exerted by the rod at the right, which receives its

motion from the cam and roller, as indicated. This push acts to over-

come a resistance R, which acts along the rod seen at the left, and

which may be supposed to consist of the resistance of the spring coiled

around the rod, and of any piece of mechanism that this rod may have

to operate. Let it be required to find how great a push, P, is necessary

to overcome a resistance, R, of 250 pounds. The first thing is to find

the length of the true lever arms, since without these the moments
cannot be determined. To do this, first draw lines through the points

on the lever at which the forces act, and in the direction in which

they act. Thus, the force P acts at the point C, and the line D H indi-

cates the position and direction of this force. Likewise the force R

Fig. 9

acts at point B, and line A B indicates the position and direction of

force R.

Now, the lever arm of force P is the perpendicular distance from F
to line D H, and the lever arm of force R is the perpendicular distance

from F to line A B. Assume that these distances measure 8 and 16

inches, respectively. Then,
Moment of P= 8 X P.

Moment of R= 250 X 16= 4,000.

4,000
8 X P= 4,000 ; and P= = 5.00 pounds.

8

Example. Suppose P= 400, J2=rl50, and the short arm = 6 inches.

What is the length of the long arm? Answer 16 inches.

The safety valve in Fig. 10 is an example of a lever in which there

are three forces to be considered, if we take into account the weight
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of the lever, which is quite essential to do. The valve at V is acted

upon by the pressure of the steam, tending to raise it. This pressure

constitutes the push P upon the lever, which is resisted by the sus-

pended weight R, and the weight of the lever, which we will call R t .

The weight of the lever is effective at the point G, the center of gravity

of the lever. This point can be found by balancing the lever on a knife

edge, the center of gravity being directly over the knife edge. The

fulcrum of the lever is at F, and the lever arms for R, R^ and P are

marked A, B, and C, respectively.

Example 1. Assume that A= 30 inches, B= 14 inches, (7= 3 inches,

Fig. 10

.R= 20 pounds, and ^= 8 pounds. Find what pressure of steam the

valve will carry.

Moment of P= 3 X P,

Moment of R= 20 X 30= 600,

Moment of Rf= 8 X 14= 112.

For the valve to balance, the moment of P must be equal to the sum
of the moments of R and Rlt for the moment of P tends to raise the

lever, and the other moments tend to hold it down. Adding the mo-
ments of R and Rlt therefore, we have 600 -f 112= 712, and this must

712
balance the moment of P or 3 X P. Hence, 3 X P= 712, and P=

3

e= 237 1/3 pounds. This last part of the operation is like the work of

the previous examples. The 237 1/3 pounds is the total pressure upon
the valve, and to obtain the pressure per square inch that can be

carried, we have simply to divide 237 1/3 by the area of the valve. To
be theoretically exact, the weight of the valve and stem should be

added to the figure 237 1/3.

Example 2. Suppose it were desired to carry a total pressure upon
the valve of 300 pounds. With the other dimensions remaining as
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before, how heavy a weight R would have to be provided? Again, tak-

ing moments, we have,

Moment of R = 30 X R,
Moment of R^= 8 X 14 = 112,

Moment of P = 300 X 3= 900.

The sum of the first two moments must equal the last one, but we
cannot add them as they stand, because we do not yet know what the

first one is. Hence we will indicate the addition as follows:

30 X R + 112 900.

Those who have had a little practice with formulas will have no

trouble with finding the value of R; but for the benefit of those who
have not, it can be said that we subtract the 112 from 900 and

proceed as in the other examples. Thus, 900 112= 788, whence

788
R= = 26 4/15 pounds.

30

The following explanation will make the reason for subtracting 112

from 900 clear. We have found that the moment of R is 788; of R lt

112; and of P, 900. Now, if 788 added to 112 equals 900, 900 must be

112 greater than 788, and 788 must be equal to 900 with 112 subtracted

from it. Again, taking the formula as we have it, if 30 X R plus 112

equals 900, 30 X -R must equal 900 with 112 subtracted from it.

Calculation of Compound Levers

It often happens that it is necessary to use two or more levers con-

nected one to the other in a series, where it would not be convenient

to obtain the desired multiplication with a single lever, or where it is

necessary to distribute the forces acting. In such cases the levers are

called compound levers, and their application is found in testing ma-

chines, car brakes, printing presses, and many other machines and
devices. Probably the most familiar example is that of a pair of

scales, and we will take this to illustrate the method of making the

calculations for compound levers.

In Fig. 11 is a diagram showing an arrangement of levers that might
be used for platform scales. The fulcrums of the various levers are in

each case marked F. The scale platform is at E, bearing at each end
on levers C and D, and loaded at the center with 1,000 pounds. A pres-

sure of 500 pounds, therefore, is transmitted to lever C at a point 6

inches from the fulcrum, and 500 to lever D. As lever D is propor-

tioned exactly the same as that part of lever C to the left of the center

line of the weight that is, as the distance from F to L in each case is

exactly 4 feet, and the short arms are each 6 inches long it follows

that the final effect is the same as though the whole 1,000 pounds acted

at a point 6 inches from the fulcrum F of the lever C.

Continuing through the various connections, the right-hand end of C
pulls down on the lever B at a point 8 inches from its fulcrum, and
this in turn pulls down on the scale beam A at a point 4 inches to the

left of its fulcrum, and lifts the weight R. Question: What weight at

7? is required to balance the 1,000 pounds on the platform, assuming
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that the system of levers is in balance so that there is no unbalanced

weight to be considered? This is always provided for by a counter-

poise on the scale beam.

The best way to solve any example of compound levers is to first

determine the number of multiplications of each lever. Lever A has

arms 40 and 4 inches long, and multiplies 10 times; lever B multiplies

4 times; and lever C, 25 times. Each lever multiplies in the same

direction; that is, it tends to increase the force acting when we start

at point R. Hence, the total multiplication is 10 X 4 X 25= 1,000, and

------32 -----

Ft

Machlnery, S.T.

Fig. 11

thus one pound at R would balance the 1,000 pounds on the platform.

It may be asked whether with this arrangement the weighing of the

scale would not be altered should the weight be moved to the dotted

position shown in Fig. 11. A little thought will show that it would

not. We have seen that the reduction from both points a and & to

point d is 25 to 1, and it can make no difference whether 500 pounds

acts at both a and 6, or whether, for example, 300 pounds acts at

a and 700 at 6, the total 1,000 pounds being reduced 25 to 1 in either

case.



CHAPTER IV

THE CENTER OP GRAVITY*

The force of gravity is exerted upon every one of the particles

composing a body. The number of gravity forces acting upon a body
may therefore be considered equal to the number of particles com-

posing it. The sum or resultant of these individual forces constitutes

the aggregate gravity of the body; and that point in the body at

which may be applied a single resultant force that will have an effect

the same as that of all the gravity forces acting upon its separate

particles, is the center of gravity of the body. The center of gravity

of a body will, therefore, be given by the position of the resultant of

all the gravity forces acting upon its particles. If a body is sup-

ported upon its center of gravity, it will be in equilibrium in any
position, and will have no tendency to rotate. This is, in substance,

a definition that is sometimes given for the center of gravity.

Each one of the gravity forces acting upon the particles of a body,

except those forces whose lines of action pass through its center of

gravity, is producing a moment, and has a rotative effect. The lever

arm of each moment is the perpendicular distance between the line of

action of the force and the center of gravity of the body. Every such

moment tends to produce rotation in the body, and as rotation is not

produced when the body is supported upon its center of gravity, it

follows that the center of gravity of a body is that point at which
the moments of all the gravity forces acting upon its particles balance

each other, or, in other words, at which the resultant moment of all

the gravity forces is zero. This fact may be made use of in deter-

mining the position of the center of gravity. Different methods are

employed for finding the center of gravity, according to the form of

the body, or the arrangement of the system of bodies, for which it is

to be found. Some of these methods will now be explained.

Center of Gravity of Lines

The word line, as here used, means a material line; that is, a homo-

geneous body of given length, having a uniform and very smaU trans-

verse section, such as a fine wire. A theoretical line would, of course,

have no width or thickness, and consequently, no mass and no gravity.

Single, Straight Line

The center of gravity of a straight line is at its middle point. If

we conceive the line to be composed of uniform individual particles,

the gravity of each particle will be the same; and the distance of

each particle on one side of the middle point, from that point, will be
the same as that of the corresponding particle on the opposite side.

* MACHINERY, September and October, 1898.
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Hence, the moments of all the gravity forces acting upon the parti-

cles, taken about the middle point of the line, will balance, and that

point will, therefore, be the center of gravity of the line. A straight

line will balance upon its middle point; if supported upon that point,

it will be in equilibrium in any position, and will have no tendency
to rotate.

Two Straight Lines of Different Length

Let A B and C D, Fig. 12, be two straight lines of any lengths and

having any positions with respect to each other. The center of gravity
of each line is at its middle point, as and 0^ If these two centers

of gravity be connected by the straight line 0^ the center at gravity

of the system will be somewhere on this line. Draw the line B l

equal and parallel to Ox B = y2 A B; on the opposite side of C Oj lay

off on the line B A, & length of C^ equal to C= % C D, and draw

BiCj. The point g, where the lines 0^ and Bi intersect, will be

Machinery,N.T.

Fig. 12

the center of gravity of lines A B and G D. If the given lines are

parallel, B^ is simply laid off on D prolonged. The distance O x g

may also be calculated; it is given by the equation:

C D X G!

AB + CD
Perimeter of the Triangle

Let ABC, Fig. 13, be any plane triangle, in which D, E and F are

the centers of gravity of the three respective sides. Join any two of

these centers, as D and E, and on this line determine, by the method

just explained, the center of gravity c of the two sides joined. To do

this, join E and F; the line E F will be equal and parallel to C D;
then lay off D E^ equal to C E; the intersection c of the lines D E
and E! F will be the center of gravity of the sides B C and C A. Now
lay off FB 1

= y2 A E -f % BD and draw E B^, the intersection g of

the lines E B and c F will be the center of gravity of the three sides,

or perimeter, of the triangle.

Circular Arc

Let ABC, Fig. 14, be the arc of a circle whose center is at 0; A C
is the chord and B is the middle point of the arc. The center of

gravity of the arc will be at some point g on the radius B, at such

distance from that
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AC XBO
ABC

Center of Gravity of Plane Surfaces

A theoretical surface has no thickness, and, therefore, no mass and
no gravity. In mechanical problems, however, it is often necessary to

find the center of gravity of a plane figure, or, more correctly, that

point in its surface corresponding to what would be the center of

gravity of the figure, were it a material body of uniform thickness.

As here used, therefore, the word surface may be taken to mean a

material surface, such as a very thin, homogeneous plate of a piece

of cardboard.

Axis of Symmetry
If a plane figure can be divided by a straight line in such a manner

that the two parts of the figure will exactly coincide when folded

together along the line, the line so dividing the figure is called an

Fig. 14

axis of symmetry. The diameter of a circle and the diagonal of a

square are axes of symmetry for those figures.

The center of gravity of a plane figure having an axis of symmetry,
must lie on such axis; if the figure has more than one axis of sym-

metry, the center of gravity must be at the intersection of the axes.

Let A B, Fig. 15, be a diameter of a circle whose center is at 0; it is

also an axis of symmetry, for, if folded along this diameter, the two

parts of the circle will exactly coincide. If, now, we consider the area

of the circle to be composed of straight lines perpendicular to A B,

which are not shown in the figure, the diameter A B will bisect each

line; in other words, it will pass through the center of gravity of each

line composing the area of the circle. Hence, the center of gravity of

the entire system of lines composing the area of the circle, which will

be the center of gravity of the circle itself, must be some point on the

diameter A B. In like manner it can be shown that the center of grav-

ity of the circle must lie on any other diameter, as the diameter C D.

Consequently, the center of gravity of the circle must be at the center



34 No. 19 USE OF FORMULAS IN MECHANICS

0, the only point common to all diameters. That the center of gravity
of the circle is at the geometrical center of^ the figure is so evident

as to scarcely require proof; but the circle serves as a very simple

example to illustrate the process of reasoning, which applies to any
plane figure having two axes of symmetry, such as a circle, ellipse,

rectangle, rhombus, equilateral triangle, square, or any regular poly-

gon, and also to the perimeters of such figures.

Center of Gravity of Parts of Circles

Semicircle. The center of gravity is located on its axis of symmetry,
at a distance of 0.4244r from the center of the circle, r being the radius

of the circle.

Sector of a Circle. The center of gravity is located on its axis of

symmetry, at a distance x from the center of the circle, the value of

x being given by the equation:

2cr

31

in which c is the chord and r the radius of the circle, and 7 the length
of the arc.

Quadrant of a Circle. The center of gravity is located on its axis of

symmetry, at a distance of 0.4244r from each radial side, or 0.6002r

from the center of the circle, r being the radius of the circle.

Segment of a Circle. The center of gravity is located on its axis of

symmetry, at a distance x from the center of the circle, the value of

x being given by the equation:

c*

~12o'

in which c is the chord and a the area of the segment.

Other Surfaces with Curved Outlines

Parabolic Surface. The center of gravity is located on its axis of

symmetry, at 2/5 the length of the axis from the base.

Semi-parabolic Surface. The center of gravity is located at 2/5 of

the length of the axis of the parabola from the base, and % the length
of the semi-base from the axis.

Surface of a Hemisphere. The center of gravity is located at the

middle of its axis or center radius.

Gravity Axis

It is not necessary, however, for a plane figure to have two, or even

one, axis of symmetry, in order that its center of gravity may be deter-

mined. Any plane figure can be balanced upon a knife edge. The

position of the knife edge will be defined by a straight line in such a

position that the moments of all the gravity forces acting upon the

particles composing the surface on one side of the line will just balance

the moments of those on the other side. This line, about which the

moments of the gravity forces balance, will here be called a gravity

axis. By a process of reasoning analogous to that employed in finding
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the center of gravity of the circle, it can be shown that every gravity
axis of a plane figure contains the center of gravity of the figure.

Consequently, the intersection of any two gravity axes determines the

position of its center of gravity. It should be noticed that in many
practical problems it is necessary to find the position of a gravity axis

only, the exact center of gravity not being required.

Triangle

Let ABC, Fig. 16, be any triangle; the line C D extends from the

vertex C to the middle of the opposite side. If we imagine the area

of the triangle to be composed of straight lines parallel to the base A B,
each of these parallel lines will be bisected by the line CD; that is,

the line C D will pass through the center of gravity of each of the

parallel lines. Every line composing the area of the triangle, and,

consequently, the triangle as a whole, will just balance upon the line

Machinery,N.Y.

Fig. 16 Pig. 17

C D, which will be a gravity axis of the triangle. If, also, a line be

drawn from any other vertex of the triangle to the middle of the

opposite side, as the line A E, it will also be a gravity axis. As the

center of gravity must lie on both these gravity axes, it must be at

their intersection g. It is not necessary, however, to draw more than
one gravity axis, in order to determine the position of the center of

gravity of a triangle. If a line be drawn from any vertex to the

middle of the opposite side, the center of gravity of the triangle will

be on this line and at two-thirds the length of the line from the vertex.

Thus, the center of gravity g, Fig. 16, is at two-thirds the length of

AE from A, two-thirds the length ofBF from B, and two-thirds the

length of C D from C; its position may be located on any one of the

lines.

Trapezium

There are several quite satisfactory methods for finding the center

of gravity of a trapezium. The following simple method is probably
as expeditious as any, and, as it depends upon the method just ex-

plained for finding the center of gravity of a triangle, and is readily
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connected with that method, it has the advantage of being easily

remembered.

Let A B C D, Fig. 17, be any four-sided plane figure. Consider it

first to be divided into the two triangles ABC and ADC. The points

E, F, G, and H are the centers of the respective sides, the common side

A C not being drawn. The intersection c of the lines A F and C E is

the center of gravity of the triangle ABC, and, similarly, the inter-

section <?! of the lines A G and C H is the center of gravity of the

triangle ADC. The line c cx connecting these two centers of gravity,

will be a gravity axis of the entire figure. The trapezium is then

considered to be divided into the triangles BAD and BCD, and, by a

similar construction, the position of the gravity axis c'c" is deter-

mined. The intersection g of these two gravity axes will be the center

of gravity of the trapezium.

Fig. 19

For this construction, it is not necessary to draw the entire portion

of each constructional line, as shown in the figure, but only such

portions of the lines as are necessary to locate their intersections.

Some may prefer the construction shown in Fig. 18; it is the same as

that shown in Fig. 17, except that only one gravity axis is drawn for

each triangle, and the center of gravity of the triangle located at two-

thirds the length of the axis from its vertex.

Trapezoid

If the figure is a trapezoid, the following construction, taken from

"Trautwine's Engineer's Pocket Book," is a very simple method of

finding its center of gravity. Let A B C D, Fig. 19, be any trapezoid

for which the center of gravity is to be found. Prolong the two paral-

lel sides in opposite directions, making each prolongation equal to the

other side, and join the extremities of the prolongations by a straight

line; also join the centers of the parallel sides. The intersections of

these lines will be the center of gravity of the figure. Thus, in the

figure, A A l is made equal to D C, and C Cl equal to A B, and the
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extremities of the prolongations joined by the line A^d, while the

line 00! joins the centers of the parallel sides; the intersection g of

the lines A^ and O x is the center of gravity of the trapezoid.

Irreg-ular Figure

The center of gravity of any irregular figure bounded by straight

lines may be found by dividing it into triangles, finding the center of

gravity of each triangle, and then finding the center of gravity of the

system of triangles, the area of each being considered to be concen-

Machinery.N.Y.

Fig. 20

trated at its center of gravity. For finding the center of gravity of

the system of triangles, the method of rectangular co-ordinates may
be employed. Let ABODE F, Fig. 20, be any irregular figure bounded

by straight lines. By the lines AC, AD, and AE the figure can be

divided into the four triangles ABC, A CD, ADE, and AE F, whose
centers of gravity, ylt g2 , gs , and g4 may be found by the method ex-

plained for triangles. Draw the vertical and horizontal axes OY and

OX, intersecting at 0; these may be any vertical and horizontal lines,

but it is generally convenient to draw them through the left-hand

and lower extremities of the figure, as shown; X is the axis of
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abscissas and Y is the axis of ordinates. The lines xlf x2, xt, and x^

are, respectively, the abscissas of the centers of gravity from the axis

of ordinates; and the line ylf y, y3l and yt are, respectively, the ordi-

nates of the same points, or their perpendicular distances from the axis

of abscissas. If d, o-j, a, and at represent the areas of the four respec-

tive triangles, then the abscissa x to the center of gravity g of the en-

tire figure will be given by the equation:

a1xl -f CM?, + OzX3 + atxt

x
d -f a, -f a, + o4

and the ordinate y to the same point will be given by the equation:

Oi2/i -f a22/2 + a32/3 -f a4y<

i + d -f as + a.

This method applies to any figure or system of figures, either sepa

rate or joined, that can be divided into triangles or other simpler fig-

ures such that their centers of gravity and areas can be determined.

It will also apply to a system of weights or solid bodies.

Center of Gravity of Solid Bodies

The center of gravity of a sphere, spheroid, cylinder, cylindrical

ring, cube, prism, parallelopipedon or any polyhedron is at the geo-

metrical center of each body.

The center of gfavity of a cylinder or prism is at the middle point

of a line joining the centers of gravity of its parallel surfaces.

The center of gravity of a hemisphere is on its axis, or radius per-

pendicular to its base, at % length of the radius from the center of

the sphere.

The center of gravity of a right cone or right pyramid is in the line

joining the vertex with the center of gravity of the base, at % the

length of the line from the base.

If a body be suspended freely at a point other than its center of

gravity, its center of gravity will be vertically below the point of sus-

pension. This principle affords an easy method of finding the center

of gravity of any body, as described in the second method for finding

experimentally the center of gravity of any plane figure.



CHAPTER V

THE FIRST PRINCIPLES OP THE STRENGTH
OP BEAMS*

Having mastered the written engineering language sufficiently to

deal successfully with formulas, the next step is to make the acquaint-

ance of such engineering terms as are most frequently met with. Fore-

most among these are the terms relating to the strength of materials,

and more especially the strength of beams.

If a bar is laid across two supports as in Fig. 21, and a weight placed

in the center of it, we shall, if the bar be limber, witness the bending
of the bar as shown, or as expressed in engineering terms, the deflec-

tion of the bar. It is obvious that the stiffer the bar, the less the

deflection, and that a bar might be so lacking in stiffness as to actually

break when the weight is placed upon it. Now the bar may lack stiff-

ness from one or two causes; it may be that its dimensions are not

well proportioned, or it may be made of soft and pliable materials.

Sometimes both these causes are combined in the same bar. If the

bar does not break when the weight is placed upon it, we must admit

three facts; first, that the weight bends the bar; second, that the bar

resists the bending; third, that the bar is able to resist the bending
because it is large enough and made of stiff enough material.

Important Definitions

The bending effect that the weight has upon the bar is called the

bending moment upon the bar due to the weight. The ability of the

bar to resist the bending is called the moment of resistance of the

bar. How these names first came into use the author does not know;
perhaps there is no explanation, but the reader must not confuse the

terms with any period of time because of the word moment. Time
has nothing whatever to do with the strength of the bar, or the effect

of the load upon it, except for such materials as wood, when loaded

near to the limit of endurance.

In Fig. 21, the point at which the greatest bending occurs is directly

under the weight, and we say the bending moment is maximum at

this point, and the moment of resistance of the bar must equal the

maximum bending moment at this point in the bar. In using the

term bending moment, the engineer usually means the maximum bend-

ing moment, because this has the greatest bending effect upon the bar,

and we shall hereafter drop the word maximum.

MACHINERY, November, 1U05.
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Relation between Bending* Moment and Moment of Resistance

If now we let M = the bending moment on the bar, and R the

moment of resistance of the bar, we can express the relation of the

two as given above thus:

M= R (33)

We said that the maximum bending moment was under the weight,

and if the weight is placed further along on the bar, nearer one sup-

port than the other, the maximum bending moment will move with

the weight. Also, if the bar is differently supported, the maximum
bending moment will be at another point. For all cases of frequent

occurrence, engineers have tables of formulas giving the position and

amount of the maximum bending moment, so that it is only necessary

to find in the tables the same case as the one we are considering, and

TABLE 2. BENDING MOMENT OF BEAMS UNDBR VARIOUS SYSTEMS
OP LOADING

W = total load.

I = length of beam in inches.

J = moment of inertia.

Z section factor.

.,
Beam fixed at one end and

case i lib $ loaded at the other.
Max. bending moment at point

P|<----i
---

*j of support -Wl.
Beam supported at both ends._Q_ Single load in middle.

I i Max. bending moment at mid--
die of beam

taking the formula there given, substitute for the letters the corre-

sponding dimensions in our case, and we have a numerical expression

for the bending moment. The formulas given in these tables consist

of combinations of dimensions measured along the bar, and weights

of the loads on the bar. If, when substituting values for letters in

the formula, loads are taken in tons, and distances in feet, the bending

moment will be expressed in foot-tons, while if loads are taken in

pounds and distances in inches, the usual custom, the bending moment.

will be expressed in inch-pounds.

Table 2 is a small portion of such a table as may be found in any
book on machine design in any drafting-room or factory, as well as

in all the handbooks issued by the steel mills.

So much for the first member of our equation, the bending moment
on the bar. We have already seen that the bar offers resistance to

bending by reason of two things: its dimensions, and the character of

its material, and we should expect to find both dimensions and

materials accounted for in the formula for the moment of resistance

of any bar. This is just what the formula for the moment of resist-

ance does. It is composed of two parts or terms, one of which

expresses the resisting effect of the material of the bar, and the other
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expressing the resisting effect possessed by the bar because of its shape

and size. Let us investigate each term by itself, taking first the resist-

ing effect of the material.

Tension and Compression Stresses

Let the reader take an ordinary rubber eraser of the form shown
in Fig. 22, and bend it as shown in Fig. 23. While holding the eraser

in the best position, draw a sharp knife across the top side. The cut

immediately spreads out in the form of a V as shown at a. Draw the

knife a second time through the same cut and the V spreads a little

more. Now draw the knife across the bottom. The cut immediately
closes up as at &. Draw the knife a second time across the same cut

and it will still close up completely. In making the second cut on

this side it may be necessary to release the eraser from the bent posi-

tion, because the closing cut grips the knife blade and makes cutting

difficult, but the cut will close, upon again bending the rubber.

_--C.Q.

Having made the two cuts a and ft, reverse the bend in the eraser

and witness the closing of cut a and the opening of cut Z>. Now if

you are a careful experimenter, you can start two such cuts as a and
& directly opposite each other, and by cutting each one the same
amount each time, you can succeed in bringing them nearly together
in the center as shown at c. Of course, it will be impossible to bring
them quite together, because that would cut the eraser apart, but by
a little care you can satisfy yourself of these facts: that the portion
of the eraser above the center line xx separates when cut; and that

the portion below the line closes when cut. Reversing the bend of

the eraser as before reverses the behavior of the cuts, but observe that

whichever way the eraser is bent, the opening cuts are to be found

on the convex side, and the closing cuts on the concave side.

We know that all material (engineering and building material at

least) is composed of fibers, and we must conclude from the behavior

of our eraser that all the fibers on the convex side of. the line x x
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are stretched when the eraser is bent, while the fibers on the concave

side of x x are compressed. Since the cut through the stretched fibers

opens like a V, we may conclude that those fibers lying at the top of

the V are stretched more before the cutting than those lying at the

point of the V. A careful examination of the cut made through the

compressed fibers will show that at the outer portion of the cut, the

edges are raised slightly, while at the inner portion, near the center

of the eraser, the edges are not raised. We can account for this only

by assuming that the fibers at the outer portion are more compressed
than those near the center of the eraser.

Having performed these experiments and noted the results, we must
admit the following facts: 1st, that half the fibers of a bent bar are

in compression while the other half are stretched, or, as engineers say,

are in tension; 2nd, that the amount of compression or tension is

greatest at the outer portion of the bar, and diminishes towards the

center of the bar; 3rd, that it follows from this, as well as from

experiments with cut c, that there must be a line through the center

of the bar where the fibers are neither in compression nor tension.

TABLE 3. STRENGTH OP MATERIALS FOUNDS PER SQUARE INCH.

MATERALS.
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experiments with the cuts while bending the eraser thus, we shall find

that everything witnessed before holds good for this case also. If we
look for a reason for the greater force required to bend the eraser in

the direction of its greater thickness, we shall find it in the fact

previously observed, that the fibers are more stretched or compressed
the further they are from the center line x x, and thus they present

greater resistance to bending. The line x x is called the neutral axis,

because on it the fibers are neutral, being neither stretched nor com-

pressed, and the fibers at the outer portion of the bar are called the

extreme fibers, because they are furthest removed from the neutral

axis x x.

The second term of the moment of resistance, taking account of the

shape and size of the bar, is called the section factor, sometimes also

TABLE 4. VALUES OP I (MOMENT OP INERTIA) AND Z (SECTION FACTOR)
FOR VARIOUS SECTIONS.

Section. / Z Area.

bh* bh*
M 'ft bh

Caeel, 12 6

+By\-(B-b)a* I
~rm r

-
4F.1 ft.

Case II. *_11

called the section modulus, Z, and is given in all hand books in the

shape of tables for different shapes of beams, in the style shown in

Table 4.

The neutral axis x x is not always in the center of the bar, but it al-

ways passes through the center of gravity of the cross section of the bar.

Center of Gravity

Here we shall have to digress for a moment, since it is the inten-

tion to leave no term unexplained. The reader may best become
acquainted with the center of gravity in the following manner: Cut
out of stiff cardboard the shape of the cross section of the bar, and
balance it over a sharp edge, in a manner as shown in Fig. 24. Draw a
line across the card corresponding to the edge over which it is bal-

anced. Repeat the experiment, turning the card around on the edge,

and, balancing it a second time, draw another line. The intersection of

these two lines will be the center of gravity of the section of the

beam. If the experiment has been done with sufficient care, the card

may be balanced upon a sharp point placed at the intersection of the

two lines, just as if the entire material of the card were placed verti-

cally above the point. A definition frequently met with is : The center

of gravity is that point at which the entire weight of a body may be

considered as concentrated.
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Another way of finding the center of gravity is to suspend the card

by a fine thread alongside of a plumb line, and when the card and
line have come to rest, mark the position of the plumb line on the

card. Turn the card around, and suspend a second time from a differ-

ent point, and mark the position of the plumb line again. Where the

two marks of the plumb line cross will be the center of gravity of the

figure. No matter from how many points the card may be suspended,
the plumb line will always be found to pass through the center of

gravity. A line in the center of the beam directly opposite the center

of gravity thus found will be the neutral axis.

Equation for Bending1 Moment

If we now take the equation expressing the relation of the bending
moment on the bar to the moment of resistance of the bar, and use

the symbols for the two parts of the moment of resistance, we shall

have

M=zR= fZ.

Some tables do not give the section factors Z for all sections directly,

I
but say it is , and therefore we must understand this expression.

V
The denominator y of the fraction is the distance from the neutral

axis xx iQ the extreme fiber of the bar, see Fig. 25, and the numerator

1 is what is called by engineers the moment of inertia of the section

of the bar. Here again there is a chance for confusion because of the

use of the word inertia.

Moment of Inertia

The term moment of inertia was originally employed when compar-

ing the energies of rotating bodies. We know that a moving body

possesses energy due to that property of matter which engineers call

inertia. Inertia is not a force; it is simply resistance, and is due to

the incapability of a dead body to move, or of a moving body to

change its velocity or direction without the application of some exter-

nal force. Now the number of foot-pounds of energy possessed by
a moving body is equal to % M V2

,
where M is the mass of the body,

and y its velocity in feet per second. A moving body then, must be

acted upon by an external force before it can be brought to rest. A
rotating body is simply a very large number of particles moving in

circular paths about an axis called the axis of rotation. Each mov-

ing particle, therefore, possesses energy due to its inertia, and the

energy of each particle is equal to % m v, where m is the mass of the

particle, and v its velocity in feet per second. But the energy varies

as m v2
,
because simply dividing by 2 does not change the relative

values. It is also obvious that the circumferential velocity of each

particle varies as the distance from the axis of rotation, which dis-

tance or radius we call r. Hence, substituting r for v, the energy of

each particle varies as m r-. Suppose we imagine that the whole mass

of the rotating piece, that is, the sum of all the small particles m, is

concentrated in a circle that is of such diameter that the energy pos-
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sessed by the entire mass is the same as before. The radius of this

imaginary circle is called the radius of gyration, and is usually desig-

nated by the letter r. Now we may say that Mr2
,
where M stands

for the whole mass, is a measure of the energy of the rotating piece.

This expression M r2 is given the name moment of inertia, each particle

of which the rotating body is composed possessing a turning moment
about the axis of rotation, due to its motion and inertia.

When it was discovered that the flexure of a beam depended upon
the value ar- (where a is the area of the cross section of the bar, and

r2 is the mean of the squares of the distances of the infinite number
of small areas into which the area of the section may be supposed to

be divided, from the center of gravity of the section) or1 was seen

to be similar to the expression Mr2
, which, in connection with the

rotating bodies, had already become known as the moment of inertia;

so, very carelessly on the part of those who first committed the error,

it was said that the flexure of a beam varied as its moment of inertia,

not because inertia has anything to do with it, for, of course, it has

not, but because a r2
,
the expression for the moment of resistance to

flexure, happened to vary in the same way as the moment of inertia

M r3 of the same body when rotating about its center of gravity.

The moment of inertia of a bar may be calculated by several meth-

ods, but the table in hand books give it for all usual shapes of sec-

tions, and we will not attempt the calculation here.

Universal Formula for Bending Strength of Beams

Since we are sometimes able to find in tables only the moment of

inertia of a bar, and not the section factor, we must bring our formula

one step further, thus:

/
M= R= fZ= f (34)

y
or

I M
Z= = (35)

y 1

and here we have the formula for determining the size required for

any beam.

For beams in which the center of gravity is not the center of the

beam, there will be two values of y, one of which we will denote as

y c , being the distance from the neutral axis to the extreme fibers in

compression, and the other as yit being the distance from the neutral

axis to the extreme fibers in tension, see Fig. 25.

In some materials the ability of the fibers to resist tension is about

equal to their ability to resist compression, while in other materials

there may be great inequality in this direction, some being much
stronger in tension than in compression, while others are stronger in

compression than in tension. In such a material we shall have two

values of /, which we will denote as / and /t for compression and

tension, respectively.
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Ultimate and Safe Stresses

Some tables on the strength of materials give what is called the

ultimate or breaking strength of the materials, while other tables give

the safe working strength of materials.

When using the latter tables, the values given are to be substituted

directly for /c and / t in the formula. Since it would not do to have

the material of which a beam is made strained up to the breaking

point, we must, when using the former tables, make use of a factor

of safety. This factor of safety is a divisor by which the breaking

strength of a beam is divided to allow a margin of strength in the

beam. The divisor varies from 2 to 10, and the proper use of different

divisors is given in the text books.

To illustrate, the breaking strength of steel may be given as 80,000

80,000
pounds per square inch, and = 16,000. If we substitute 16,000

5

for / in the formula, we shall be working out our results with a factor

of safety of 5, and the beam should not actually break until loaded

with five times the load designed for. As a matter of fact, the beam
would become badly bent long before five times the load could be

placed upon it.

Limit of Elasticity

We have seen that all material deflects under the influence of a load,

and we suppose that the elasticity of the material causes it to spring

back to its original condition when the load is removed. This is true

within limits, but there is a point somewhere between the safe load

and the breaking load at which, when the load is gradually increased,

the beam becomes strained beyond its power to return to its original

condition upon the load being removed. This point is variously called

the limit of elasticity, the yield point, the point of permanent set.

Practical Examples

Let us now take up two examples illustrating the ground we have

just passed over, and the use of the tables.

Example 1. A rectangular steel bar, 2 inches thick, is built into a

wall as in Fig. 26, and is to hold a load of 3,000 pounds at its outer

end, 36 inches from the wall. We wish to know the required depth

to make the beam.

1st. Consider the bending moment on the beam. According to Case

1, Table 2, the bending moment is

M= Wl.

For our case we know W and we know Z, and substituting these for

the letters in the formula gives us

M= 36 X 3,000= 108,000 inch-pounds.

2d. Consider the permissible fiber stress in the steel bar. Table 3

gives the safe working strength of steel as 16,000 pounds per square

inch.

3d. Using Formula (35) we can find the value of the section factor

for our beam. We know the bending moment and we know the fiber
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stress, so substituting these for the letters in the formula we get

M 108,000Z~ = = 6.75.

/ 16,000

4th. Find the section of our beam in Table 4, Case 1, where we find

that the section factor is

bh*

6

We know Z and we know b, so substituting these values for the let-

ters, we get
2 X ft

1

6.75= .

6

If we multiply both sides of this equation by 6, we shall not change
its value, but shall get

6 X 6.75= 2 X W.

Fig. 27

If we now divide both sides by 2, we shall not change its value, but

shall get
6 X 6.75 = ft

2= 20.25.

5th. We can most conveniently find the square root of 20.25 from a

table of squares and roots which may be found in any hand book.

This square root is 4.5, and we thus find that

ft= 4.5 inches.

If we make the beam 2 inches thick by 4.5 inches deep by 36 inches

long, it will support a load of 3,000 pounds at its free end, and the

fibers will be strained to 16,000 pounds per square inch.

Example 2. Let us undertake to design a suspension beam like Fig.

27 to carry ten tons, the material to be cast iron. The proposed section

of the beam is more complicated than that of the previous example,
and we cannot obtain a result quite so directly.

1st. Inspect the proposed beam to locate the compression and ten-

sion flanges. We find the compression flange is on top and the tension

flange on the bottom, and we mark them c and t respectively.

2d. Table 3 shows us that cast iron is stronger in compression than

in tension, hence we conclude that we should have more metal on the
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tension side than on the compression side, and accordingly we place

the section with the heavy side down.

3d. Assume a section by making the best guess possible as to the

dimensions shown heavy in the figure. Cut out this section of card-

board, and find the location of the neutral axis x x as previously ex-

plained. Now fill in the figures shown light by measuring the card-

board section.

4th. Find the section in Table 4. Here we find that before we can

get the section factor of the beam we must get the moment of inertia

of the beam. Substitute the dimensions of our section for the letters

of the formula given in Table 4, and we shall get

(0.75 X 8.8 3
) -f (10 X 3.7s

) (10 0.75) 3.2s

3

511.1 + 506.5 (9.25 X 3.2*)

3

1017.6303.12 714.48 = 238.

3 3

5th. Now divide the moment of inertia just found by the distances

of the extreme fibers from the neutral axis, that is, by yc and y t , and

we get

I 238
Zc= = = 27, the section factor for the compression side.

2/c 8.8

I 238
Z t= = = 64.3, the section factor for the tension side.

V\ 3.7

6th. Inspect Table 2 and find the bending moment on the beam ac-

cording to Case 2; substituting the dimensions of the beam, and the

load to be carried, in the formula given, we have

W I 20,000 X 72

M== = = 360,000 inch-pounds.
4 4

7th. Dividing the bending moment just found by the section factors

found in the 5th step, will give the fiber stress on the beam according

to Formula (35), thus

360,000
=13,333 pounds per square inch on the compression side.

27

360,000= 5,600 pounds per square inch on the tension side.

64.3

The latter is too high, so another guess must be made, making the

section heavier on the tension side. Then the steps 3, 4, 5 and 7 must

be repeated, and if the fiber stress then comes below 3,000 pounds per

square inch, the section will be right.
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