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CHAPTER I.

SPEEDS AND FEEDS OF MACHINE TOOLS.

In designing machine tools of any type, be it a lathe, milling

machine, grinding machine, etc., aside from the correct proportioning

of the parts, and the introduction of convenient means for rapidly

producing certain motions, a very important factor is to be taken into

consideration, that is, the correct proportioning of the speeds and feeds

of these various machines. Before entering into an explanation of the

method which is to be set forth later, we will explain some of the

preliminary considerations which are to be met by the designer. Sup

posing a problem of designing a lathe be presented; it follows, at once,

that certain conditions limiting the problem are also given. These

limiting conditions may be considered as the size and material of the

piece to be turned.

We consider the material of a piece to be machined as a limiting

condition for the reason that a lathe turning wood must run at a

different speed from one turning brass, and the latter at a different

speed from a lathe turning iron or steel. Then, again, in turning a

small piece, our machine will revolve faster than in turning a large

piece. The speeds required for machining advantageously the different

materials, according to the different diameters, may be termed "surface

speeds." Roughly speaking, the surface speeds for the different

materials vary within comparatively narrow limits. We may assume

the following speeds for the following materials (using carbon steel

cutting tools) :

Cast iron 30 to 45 feet per minute.

SteeJ 20 to 25 feet per minute.

Wrought iron 30 feet per minute.

Brass 40 to 60 feet per minute.

For cast iron as found in Europe, we may assume 20 to 35 feet per

minute; this lower figure is due to the fact that European cast iron

is considerably harder.

The surface speeds above given are, of course, approximate, and it

is left to the judgment of the designer to modify them according to

the special given conditions. These surface speeds for cutting metal

are the same whether the piece to be cut revolves, or the cutting tool

revolves around the piece, or, as in a planer, the cutting tool moves

in a straight line along or over the work. Therefore, the surface

speeds in a general sense hold good for all types of machines, such as

milling machines, lathes, gear-cutting machines, drilling machines,

planers, etc.

Suppose that a problem is given requiring that a lathe be designed

to turn both cast iron and steel, and to turn pieces from one-half inch
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4 MACHINE TOOL DRIVES

to twelve inches in diameter. Simple calculation will show us that

a piece of work one-half inch In diameter, and having a surface speed

of 30 feet per minute, as would be suitable for cast iron, must make

230 revolutions per minute. A piece of steel, which is 12 inches in

diameter, with" a surface speed of 20 feet per minute, must make 6.5

revolutions per minute approximately. It follows that the lathe to con

form to the conditions imposed, must have speeds of the spindle vary

ing from 6.5 to 230 revolutions per minute. These are the maximum

and minimum speeds required. To meet the varying conditions of

intermediate diameters, the lathe will be constructed to give a certain

number of speeds. The lathe, probably, will be back-geared and have

a four-, five-, or six-step cone.

In a correct design these various speeds must have a fixed relation

to each other. For reasons explained in Chapter II, these speeds must

form a geometrical progression, and the problem briefly stated is this:

"The speeds (the slowest and fastest being given) are to be propor

tioned in such a manner that they will form a geometrical progression."

The ratio of the gearing is also to be found. A geometrical progression

in a series of numbers is a progressive increase or decrease in each

successive number by the same multiplier or divisor at each step, as

3, 9, 27, 81, etc.

To treat the problem algebraically let there be

n — number of required speeds,

a = slowest speed,

6 = fastest speed,

d — number of speeds of cone,

n—1 = number of stops or intervals in the progression of required

speeds,

f= ratio of geometrical progression, or factor wherewith to mul

tiply any speed to get the next higher.

Algebraically expressed, the various speeds, therefore, form the fol

lowing series:

a, af, af, ap af-\ a/—>

The last, or fastest speed, is expressed by a/"-1 and also by the letter b.

Therefore, a/"-1 = b, or

6

= —, and / :

a

Suppose we have, as an example, a lathe with a four-speed cone,

triple geared. In this case we would have four speeds for the cone,

four more speeds for the cone with back-gears, and still four more

speeds with triple-gears; therefore, in all, twelve speeds. Assuming a

as the slowest speed in this case, & would be expressed by af1, and the

series, therefore, beginning with the fastest speed, would run

af11, af, af af, af, a.

The four fastest speeds, which are obtainable by means of the cone

alone would be

af, af", af, af.

"-' 1 b

= Na
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Dividing each of the four members of this series by f, we obtain

the following series:

af, af, af, af,

as the speeds of cone with back-gears.

Again dividing the series of speeds of the cone af1 to af by f X f =

f we obtain the series

af, af, af, a,

as the series of speeds of cone with triple-gears.

We have, therefore, in this way accounted for all the twelve speeds

that the combination given is capable of, and it is now very evident

that the ratio of the back-gears must be f, or, in general, f, if d =

number of speeds of cone, and the ratio of triple-gears f (or, in gen

eral, f<i).

By carrying this example still further, we would find that the ratio

of quadruple-gears would be fd.

We can summarize the preceding statements, and put them in a more

convenient form for calculation by writing:

Ig of ratio of back-gears = dIgf

Ig of ratio of triple-gears = 2dIgf

Ig of ratio of quadruple-gears = 3dIg f

The problem, with this consideration, therefore, is solved. An exam

ple will be worked out below.

We will now consider a complication of the problem which very

often occurs. Should the overhead work of the drive in consideration

have two speeds, then we will obtain double the number of available

speeds for the machine, and this number of speeds may be expressed

by 2n, in order to conform to the nomenclature used above. This

modified problem is treated just as the problem above, and the series

of speeds is found as in the first case, and we have as a factor

2°-' 1 6"

/= J-
N a

We must consider now that one-half the obtained speeds are due to

the first overhead speed, the other half to the second.

In writing the odd numbers of speeds found in one line, and the even

numbers of speeds in another, we obtain the following two series:

a, af, af* a/-"-4. a/2°-s

a/, a/3. a/6 af '"-3, a/8"-1

In examining these two series, we will find that they are both

geometrical progressions, and furthermore, that both progressions have

the same factor, and calling this factor, /„ we have

h = f,

and the ratio of the two counter-shaft speeds is equal to f, because to

obtain any speed in the second series we multiply the corresponding

speed in the first series by f. The two series in our case are due to

the two overhead speeds. We need to concern ourselves with only one

(either one of the two series), and without going again through the
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explanation for the first case, it is very evident that we will arrive at

the following conclusions:

Ig of ratio of back-gears = dig f,

Ig of ratio of triple-gears = 2d Ig f,

Ig of ratio of quadruple-gears = Zd Ig fi

Having in this way obtained all the desired speeds and the ratios of

the gears, it is a simple matter for the designer to determine the

actual diameters of the various steps for the cone and for the gears.

To do so he has at his disposal various methods,* which need not be

explained here. The main thing for him to have is a geometrical

progression of speeds, as a foundation for his design.

Problem 1. A Triple-Geared Lathe.

Suppose the following example to be given: Proportion the speeds

and find the gear ratio of a six-step cone, triple-geared lathe; slowest

speed, 0.75 revolution per minute; fastest, 117 revolutions per minute.

This example of a six-step cone, triple-geared, will give us eighteen

available speeds. Using our previous notation, n = 18, n—1 = 17, o =

0.75, and 6 = 117; .therefore

17 ~irf _ 17 J

N 0.75 N

156

The slowest speed being given, we multiply it by the factor f to

obtain the next higher, and this one in turn is again multiplied by the

COMPLETE CALCULATION OF CONE PULLEY SPEEDS.

Ig 0.75 = 0.8750613

Ig f= 0.1290073

— 1 1.0361270 = Ig 10.867

0.1290073

0.0040686 = Jg 1.009

0.1290073

1.1651343 = Ig 14.626

0.1290073

0.1330759:

0.1290073

0.2620832;

0.1290073

0.3910905:

0.1290073

0.5200978:

0.1290073

0.6491051:

0.1290073

0.7781124:

0.1290073

0.9071197:

0.1290073

. Ig 1.358

:Ig 1.828

.Ig 2.461

-.Ig 3.312

-Ig 4.457

.Ig 5.999

-Ig 8.074

1.2941416 =

0.1290073

1.4231489 :

0.1290073

1.5521562:

0.1290073

1.6811635:

0.1290073

1.S101708:

0.1290073

1.9391781:

0.1290073

2.0681854:

.Ig 19.685

: Ig 26.494

-Ig 35.658

-Ig 47.991

■-Ig 64.591

--Ig 86.932

: Ig 117.000

* See Machinery's Reference Series, No. 14, Details of Machine Tool Design, Chap

ters I and II.
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factor f, and so on, until we have reached the highest speed 6. The

17th root of 156 is easiest found by the use of logarithms.

We have

Ig 156 = 2.1931246

Ig f = 1/17 Ig 156 = 0.1290073

f= 1.3459

Now we follow out the multiplication by finding the logarithm of

0.75, the slowest speed, adding to it the logarithm of the factor f to

obtain the logarithm of the next higher speed; and adding the logarithm

of factor f to the sum of these two logarithms' will give us the log

arithm of the next higher speed. By looking up the numbers for these

logarithms, we find these speeds to be 1.009 and 1.358. The complete

calculation is given in tabulated form on the previous page.

Now, for example, the number of speeds of cone d equals 6, and

according to our formula, the logarithm of the ratio of the back-

gears = d Ig f, and the logarithm of the ratio of the triple-gears =

2d Ig f. Expressed in figures we have:

Igf = 0.1290073 X 6 = 0.7740438, and the ratio of the back-gears =

5.9435. Further, 12 Ig f = 1.5480876, and the ratio of the triple-gears =

35.325.

Problem 2.—Lathe with two Counter-shaft Speeds.

Suppose the following example is given: Proportion the speeds and

find the gear-ratio of a four-step cone, back-geared, two speeds to

counter-shaft; slowest speed, 25 revolutions per minute; fastest speed,

500 revolutions per minute.

In this case n= 8 ; 2 n = 16 ; and, consequently,

16|~500 isp-

/=nI^= nI 20 = 1-221

In following out the calculation as shown in Problem 1, we obtain

the following series of sixteen speeds:

1) 25.00 5) 55.58 9) 123.54 13) 274.64

2) 30.53 6) 67.86 10) 150.85 14) 335.35

3) 37.28 7) 82.86 11) 184.20 15) 409.48

4) 45.51 8) 101.18 12) 224.92 16) 500.00

Of these sixteen speeds, eight are due to one over-head work speed;

the other eight are due to the second over-head work speed. We write

the odd and even speeds in two series, as below:

First Series. Second Series.

1) 25.00 2) 30.53

3) 37.28 4) 45.51

5) 55.58 6) 67.86

7) 82.86 8) 101.18

9) 123.54 10) 150.85

11) 184.20 12) 224.92

13) 274.64 14) 335.35

15) 409.48 16) 500.00

In order to find the ratio of the back-gears, we can use either one

of these two series, and as explained above, f, = P. We therefore
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have 1.221' = fu and further 4 X Ig U = ratio of back-gears. From

this the ratio of the back-gears = 4.9418. We also know that the ratio

of counter-shaft speeds = f= 1.221.

This method of geometrically proportioning speeds in machine drives,

which has been explained at length, will be found, after one or two

applications, a rather simple one. But its usefulness is not limited to

the proportioning of speeds in machine drives, as it can also be applied

to the proportioning of feeds. . »

Feeds for Machine Tools.

Before proceeding to apply this method to geometrically proportion

ing feeds in machines, a few remarks on feeds may not be out of

place. By feeds are understood the advances of table, carriage, or

work, in relation to the revolutions of the machine spindle. Feeds

may be expressed in inches per minute or inches per revolution of

spindle. In a table given below, feeds for different machines are given

in inches for one revolution per spindle, where not otherwise specified.

This table is supposed to represent modern practice, with carbon steel

cutting tools, but the figures given, of course, represent general experi

ence, and special cases, no doubt, will often modify them considerably.

Feed, Inches.

Plain milling machine 0.005-0.2

Large plain milling machine 0.010 - 0.3

Universal milling machine 0.003 - 0.2

Large universal milling machine 0.003 - 0.25

Automatic gear cutter, small 0.005 - 0.1

Drills (spindle-feed) 0.004-0.02

Planing machine (traverse feed) 0.005-0.7

Slotting machine (feed of work) 0.005-0.2

Drilling long holes in spindles (per revolution

of drill) , 0.003-0.01

Lathes, feed for roughing 56-80 turns per inch.

Lathes, feed for finishing 112 turns per inch.

Universal Grinding Machine.

Surface speed of emery-wheel, 4,000-7,000 feet per minute. Traverse

of platen or wheel, 2 to 32 inches per minute; the fast feeds are for

cast iron. Surface speed of work on centers, 130-160 feet per minute.

For internal work use the following surface speeds of emery-wheel

(highest nominal speeds), with no allowance for slip of belt; lowest

nominal speed about 40 per cent less. Any speed between should be

obtainable.

Diameter of Wheel. Feet per Minute.

1 5/8 3,600

1 2,750

3/4 2,100

7/16 1,450

1/4 1,100

Surface Grinding Machine.

Surface speed of emery wheel, 4,000-7,000 feet per minute. Table
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speed per minute, 8-15 feet. Cross feed to one traverse of platen, 0.005-

0.2 inch. Cross feed to one revolution of hand-wheel, 0.25 inch.

Problem 3 —The Feeds of a Milling Machine.

The problem of proportioning the feeds of different machines varies

In each case, although always embodying similar principles. It is,

therefore, proposed to take a typical case and apply the method to the

problem presented, and in this way explain the advantages of the

particular method referred to. .

 

3Iachlnery,y. ¥.

Fig. 1. General View of Milling Machine, having Cone Pulley Feed.

In Fig. 1 is given an outline drawing of a milling machine. The

type selected is not one of the latest designs, because it is easier to

comprehend the principles involved in a type such as shown. The

application of the principles, however, is, with few modifications, the

same for the most modern gear-feed types, as for the one shown. The

problem in this case will be the following: Given the fastest and

slowest feeds per one revolution of main spindle, proportion the
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required feeds in such a manner that they will form a geometrical

progression. Cones D and E as well as pulleys X and Y can be trans

posed.

The main data with which we have to concern ourselves about this

machine may be assumed to be as follows: lead screw, four threads

per inch, single; advance of screw per one revolution, 0.25 inch;

largest feed wanted, 0.25 (equal to one revolution of screw); smallest

feed wanted, 0.005 inch (equal to 1/50 revolution of screw) ; for one

revolution of screw, shaft P (see Fig. 1) makes thirty revolutions;

for 1/50 revolution of screw, shaft P makes 30 -f- 50 = 0.6 revolutions.

The ratio of revolutions between the screw and shaft P is therefore

in our example as 1 to 30; that is, given the revolutions of shaft P

we divide this number by 30 to obtain the revolutions of the screw.

The revolutions of the screw multiplied by the lead L (in this case

equal to 0.25) gives the advance for given revolutions of P. Let

V= ratio of train from P to screw,

L = lead of screw,

RT — revolutions of shaft P per one revolution of spindle,

•p = advance or feed of screw per one revolution of spindle, ex

pressed in inches.

We have

P =— (1)

Vp

R„= - (2)

L

If now n equals the numbers of feeds wanted, we obtain for f, the

factor wherewith to multiply each feed to get the next higher feed,

in which 6 is the fastest, and a, the slowest speed of shaft P. That is,

in the present case

.Rp maximum = 30 = b.

Rv minimum = 0.6 = a.

The problem in our case stated that cones D and E, as well as pul

leys X and Y could be transposed. The cones have four steps, and

transposing them gives us eight speeds. Pulleys X and Y being also

transposable gives, therefore, 2 X 8 = 16 speeds. The numerical value

for f is therefore in our case,

15|~30~ 16l~"

f=\ — = \ 50

The maximum and the minimum speeds of shaft P per one revolu

tion of spindle of machine, as well as the number of steps required,

being known, we now readily obtain a geometrical series with the mini

mum speed of shaft P as a beginning, and the maximum speed as the
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last step. The numerical values that follow are found exactly in the

same way as the values for the different speeds of a lathe drive as

already shown. The required speeds of shaft P are then:

1) 0.6 5) 1.70 9) 4.83 13) 13.72

2) 0.78 6) 2.21 10) 6.27 14) 17.81

3) 1.01 7) 2.87 11) 8.14 15) 23.11

4) 1.31 8) 3.72 12) 10.57 16) 30.00

The value of p, in our case, becomes, according to formula (1),

P =

iJp X 0.25

30

= 0.0083 i?p

in which Rf, the number of revolutions of shaft P, has the different

values found above. By substituting these values of i?p, we obtain the

following feeds, which are the feeds of the lead screw per one turn

of machine spindle.

1) 0.6 X 0.0083 = 0.005 inches 9)

2) 0.78 X 0.0083 = 0.0065 " 10)

3) 1.01 X 0.0083 = 0.0084 " 11)

4) 1.31 X 0.0083 = 0.0109 " 12)

5) 1.70 X 0.0083 = 0.0141 " 13)

6) 2.21 X 0.0083 = 0.0183 " 14)

7) 2.87 X 0.0083 = 0.0238 " 15)

8) 3.72 X 0.0083 = 0.0308 " 16)

4.83 X 0.0083 = 0.0400 inches

6.27 X 0.0083 = 0.0520

8.14 X 0.0083 = 0.0677

10.57 X 0.0083 = 0.0877

13.72 X 0.0083 = 0.1138

17.81 X 0.0083 = 0.1513

23.11 X 0.0083 = 0.1918

30.00 X 0.0083 = 0.2500

We now write the speeds found for shaft P in two columns, one con

taining the odd numbers and the other the even numbers, in this

manner:

1) 0.6 2) 0.78

3) 1.01 4) 1.31

5) 1.70 6) 2.21

7) 2.87 8) 3.72

9) 4.83 10) 6.27

11) 8.14 12) 10.57

13) 13.72 14) 17.81

15) 23.11 16) 30.00

The series of speeds in each column forms a geometrical progression,

and we assume that the speeds in the first column are due to the posi

tion of the pulleys X and Y as sjiown in the outline drawing, Fig. 1,

and that the speeds in the second column are due to a reversed posi

tion of X and Y. That is to say, the speeds in the second column

above are obtained after having changed Y to X and X to Y. As these

speeds in the second column are equal to the speeds in the first column

multiplied by factor f. it follows that the two speeds of shaft R are

to each other as 1 is to f. Assuming these two speeds to be m and n,

the proportion exists,

m : »=1 : f (3)

Supposing x and y to represent the diameters of the respective pul

leys; it will be evident that
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x

1 X x = my ; or, m = — (4)

V

V

1 X y = nx ; or, n — — (5)

x

Substituting the values (4) and (5) in formula (3) we have

x y y x y y y1

- :- = l :f, or f = - : - = - X - = — (6)

y x x y x x x1

The value of f being known, we have in formula (6) an expression

of the relation which the diameters of the pulleys X and Y must bear

to each other. Putting this formula into a more handy shape we find

V'

from /=: —

y» = fx>, ory = V/^8 (7)

y» ly,

— , or x = \ -

f X /

V
,t8 = -, or x = \\ - (8)

/

In using either (7) or (8), and assuming one diameter, the other

one is easily found. The remaining part of the problem, that is, to find

the diameters of the cone, is now a simple matter.

CHAPTER II.

MACHINE TOOL DRIVES.

The present chapter contains considerable matter already treated

in Chapter I. In order to make the present chapter a complete whole

by itself, it has, however, been considered advisable to repeat such

statements and formulas as are necessary to fully comprehend the

somewhat different treatment of the subject presented in this chapter.

One of the first problems encountered in the design of a new machine

tool is that of laying out the drive. The importance of a properly

proportioned drive is coming more and more to be recognized. The

use of high-speed steels, and the extra high pressure under which

modern manufacturing is carried on, precludes the use of any but the

most modern and efficient drive.

The drive selected may be one of the following different kinds,

depending on the conditions surrounding the case in hand: We may

make the drive to consist of cone pulleys only; we may use cone pul

leys in conjunction with one or more sets of gears; or we may make

our drive to consist of gears only, depending on one pulley, which

runs at a constant speed, for our power. If the conditions will allow,

we may use an electric motor, either independently or in connection

with suitable gearing.
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After having selected the form which our drive is to take and the

amount of power to be delivered, which we will assume has been

decided upon, we may turn our energies to the problem of arranging

the successive speeds at which our machine is to be driven. As most

machines requiring the kind of drive with which we are here con

cerned have spindles which either revolve the work, or a cutting tool

that has to be worked at certain predetermined speeds dependent on

the peripheral speed of the work or cutter, a natural question to be

asked at this point Is, "What is the law governing the progression

of these speeds?"

As an example to show what relation these speeds must bear to one

another, let us suppose that we have five pieces of work to turn in a

lathe, their diameters being 1, 2, 5, 10, and 20 inches respectively.

In order that the surface speed may be the same in each case we must

revolve the one:inch piece twice as fast as the two-inch piece, because

the circumference varies directly as the diameter, so that a two-inch

piece would be twice as great in circumference as the one-Inch piece.

The five-inch piece would revolve only one-fifth as fast as the one-inch

piece; the 10-inch piece l/10th, the 20-inch piece l/20th. We have

seen that the addition of one inch to the diameter of the one-inch

piece reduces the speed 100 per cent. If we add one inch to the two-

inch piece we reduce the speed 50 per cent, and similarly one inch

added to the 5-, 10-, and 20-inch pieces reduces the speed 20, 10, and 5

per cent respectively. From this we see that the speed must vary

inversely with the diameter for any given surface speed. It also

shows that the speeds differ by small increments at the slow speeds,

the increment gradually increasing as the speed increases. Speeds

laid out in accordance with the rules of geometrical progression fulfill

the requirements of the above conditions.

If we multiply a number by a multiplier, then multiply the product

by the same multiplier, and continue the operation a definite number

of times, we have in the products obtained a series of numbers which

are said to be in geometrical progression. Thus 1, 2, 4, 8, 16, 32, 64

are in geometrical progression, since each number is equal to the one

preceding, multiplied by 2, which is called the ratio. The above may

be expressed algebraically by the following formula:

where 6 is a term or number which is the nth term from o which is

the first term in the series. The term r is the ratio or constant mul

tiplier.

If we are given the maximum and minimum of a range of speeds

we may find the ratio by the following formula, when the number of

speeds is given:

As most cases in which we would use this formula would require the

use of logarithms, we will express the above as

b = a r n—J
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Log 6 — Log a

Log r =

n— 1

Let us suppose we are designing a drive which is to give a range of

18 spindle speeds, from 10 to 223 revolutions per minute. Now* the

first thing to be done is to find the ratio r, which, by the above formula

is found to be 1.20, and by continued multiplication, the series is

found to be 10, 12, 14.4, 17.25, 20.7, 24.85, 29.8, 35.8, 43, 51.6, 62, 74.4,

89.4, 107, 129, 155, 186, 223.

Our drive can be made to consist of one of the many forms just

mentioned. As the cone and back-gear is the most common form, and

fills the conditions well, we will choose that style drive for the case

in hand. We may have a cone of six steps, double back-gears and one

counter-shaft speed, such as would be used in lathe designs, or we may

use a cone with three steps, double back-gears and two counter-shaft

speeds as is used in milling machines. This latter plan will he followed

in our present case.

There are two methods of arranging the counter-shaft speeds. First,

by shifting the machine belt over the entire range of the cone before

changing the counter-shaft speed; and second, by changing the counter

shaft speed after each shift of the machine belt. The method used

will have a very important effect on the design of the cone. The cone

resulting from the former practice will be quite "flat," with very small

difference in the diameter of the steps, while the use of the second

method will produce a cone which will have a steep incline of diam

eters. Some favor one, some the other. The controlling point in

favor of the first method is the appearance of the cone obtained.

We will first design our drive with the conditions of the first method

in view; that is, we will arrange our counter-shaft speeds so that the

full range of the cone is covered before changing the counter-shaft

speed, thus obtaining the flat cone. Tabulating the speeds in respect

to the way they are obtained, we have

Cone.

Open. Belt.
Small Ratio Back

Gears in.

Large Ratio Back
Gears in.

Fast
Counter.

Slow
Counter.

Fast
Counter.

Slow
Counter.

Fast
Counter.

Slow
Counter.

43. 1

1

Step 1

Step 2

Step 3

223

186

155

129.

107.

89.4

74.4 24.85 14.4

62 35.8' 20.7 12.

51.6 29.8 17.25 10.

1 2 3 4 5 6

From the above table we may obtain the ratio of the two sets of

back-gears, the counter-shaft speeds, and the speeds off each step of

the cone.

The ratio of the large ratio back-gears is found by dividing one term

in column 2 by a corresponding term in column 6. The ratio of the

small ratio gears is found by dividing a term in column 2 by a corre
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sponding term in column 4. The ratio of counter-shaft speeds is

obtained by dividing a term in column b by a corresponding term in

column 6; and the ratio of speeds off each step of the cone, by dividing

the term corresponding to step 1 in any column by a term correspond

ing to step 2 or 3, as desired, from the same column. The results for

the present case are as follows:

Ratio of large ratio gears is _ 8.94 to 1

Ratio of small ratio gears is 2.98 to 1

Ratio of counter-shaft, speeds is 1.725 to 1

Ratio of speeds off step 1 to those off step 2 1.2 to 1

Ratio of speeds off step 1 to those off step 3 1.44 to 1

The matter of designing the cone seems to cause trouble for a good

many, if we are to judge by the results obtained, which are various in

LARGE GEAR RATIO =8.94  

SMALL GEAR RATIO =2.98 -

9.95" 7
 

 

LOOSE ON SPINDLE,
BELT

LOCKED TO SPINDLE
WHEN GEARS ARE THROWN OUT

Pifif. 3. Two Methods of Laying out the*Cone for a Double Back-Geared Spindle.

any collection of machine tools, even in those of modern design. It

is possible to design a cone so as to obtain speeds in strict accordance

with the geometrical series. In most cases the counter-shaft cone and

the one on the machine are made from the same pattern, so that it is

necessary that the diameters be the same for both cones, and since

the belt is shifted from one step to another, its length must be kept
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constant. This is accomplished by having the sum of diameters of

corresponding steps equal.

We will take as the large diameter of the cone, 15 inches. The ratio

of the speeds off step 1 and step 3 is 1.44 to 1. This ratio also equals

DXD

where D is the diameter of largest step and d is the diameter

dXd

of smallest step. Making them .opposite terms in an equation we get,

DXD D*

1.44 = — —

dXd 'd2

or 1.44 X <P = D-

j ~W I X 15

d = = = 12.5 inches, diameter of small step.

\ 1.44 N 1.44

The sum of the corresponding diameters on the cones is 15 + 12.5 =

27.5.

Since this is a three-step cone the middle steps must be equal. There-

27.5

fore = 13.75 = diameter of middle step. We found that the ratio

2

of the speeds off first and second step is 1.2. Let us examine the above

figures to see that the diameter of the middle step is correct. Thus,

15 13.75

— X . = 1.2,

12.5 13.75

which is the correct ratio. This cone is shown in full lines in Fig. 2.

Let us now figure the diameter of the back-gears. We will assume

that the smallest diameter possible for the small gears in the set is

5 inches. In order to keep the gears down as small as possible we will

take this figure as the diameter of the small gear here. It is general

practice, though obviously not compulsory, to make the two trains in

a set of back gears equal as to ratio and diameters. When double

back gears are used, the large ratio set is made with two trains of

similar ratio. The small ratio set is then composed of two trains of

gears whose ratios are unlike. The ratio of each train in the large

ratio set, if taken as similar, is equal to the square root of the whole

ratio; thus, in our drive we have \/8.94 = 2.98, and from this the large

gear is 5 X 2.98 = 14.9 inches in diameter. The ratio of the small

ratio set is equal to 2.98, and as one train of gears in the double back

gear arrangement is common to both sets, the remaining train in the

small ratio set must be of equal diameters, or 5 + 14.9 — 2 = 9.95

inches, as shown in Fig. 2. These figures will have to be slightly al

tered in order to adapt them to a standard pitch for the teeth, which

part of the subject we will not deal with here.

In order to be able to compare the results of the two different meth

ods of selecting counter-shaft speeds mentioned above, let us figure out

the dimensions of a drive with counter-shaft speeds arranged according

to the second method.

Proceeding in a manner similar to that pursued for the case treated

above, we may tabulate the speeds as shown in the table on next page.
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Cone.

Open Belt.
Small Ratio
Gears in.

Large Ratio
Gears in.

Past
Counter
Speed.

Slow
Counter
Speed.

Fast
Counter
' Speed.

Slow
Counter
Speed.

Fast
Counter
Speed.

Slow
Counter
Speed.

Step 1 223

155

107

186.

129.

89.4

74.4

51 6

62.

43.

29.8

24.85

17.25

12.

20.7

14.4

10.

Step2.

Step 3. ... 35.8

1 2 3 4 5 6

The various ratios are:

Large ratio gears 8.94 to 1

Small ratio gears. 2.98 to 1

Counter-shaft speeds 1.2 to 1

Speeds off step 1 to those off step 2 1.44 to 1

Speeds off step 1 to those off step 3 2.07 to 1

The cone dimensions are figured in the same manner as before

and are 10.4 inches for step 1; 12.7 for step 2; 15 for step 3. This cone

is shown dotted in Fig. 2.

We are now in a position to compare the results given by the two

methods above referred to. Let us make the first comparison from

the point of view of power delivered by the belt. It is well-known

that the power of a belt is directly proportional to the speed at which

it runs. This fact gives us an easy means of comparing our two de

signs. We will do this by charting the speed in feet per minute of the

belt when running on the different steps of the two cones for each

spindle speed. This has been done in Fig. 3, where the full line? show

the curve for the first method, and the dotted lines show that for the

second method. The curves at the left are those for the slow counter

speeds, while at the right are seen those for the fast counter speeds.

Attention is called to the great difference in power delivered between

the two counter speeds in the first case, while the two sets of curves

for the second method lie close together. Also, note the gain in power

at speeds obtained through the slow counter in the second case. The

power lost in the second case on the fast counter speeds will not be

felt so much, for the same principle applies here as it does to the

strength of beams, bridges, etc., viz., a chain is no stronger than its

weakest link.

The constant-speed pulley drive has become quite a common feature

in machine tool design, and has become quite a strong favorite with

many. Had our machine been provided with a drive of this design,

we would have had a curve on the chart as shown by the vertical full

line. The power delivered by the belt would have been constant

throughout the full range of speed. This curve also applies to the

raptor drive, when a constant-speed motor, or a variable-speed motor of

the Held control type, is used, although slight modifications would

have to be made for the decrease in efficiency at the extremes of the
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speed range of the latter type motor, which would cause a slight bend

in the curve, making it convex toward the right. Motors using the

multiple-voltage system, or the obsolete armature resistance control,

would show curves quite as irregular as those from the cone and back-

gear drive.

Another method of comparison is by charting the pull or torque at

the spindle for each spindle speed. This is done in Fig. 4, where the
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Fig- 3. Variation in Belt Speeds for Various Methods of Driving.

constant speed pulley drive is shown by the full line, and is used as a

comparator by which to compare the results of the two drives treated

above. This figure is self-explanatory and will not need to be inter

preted, but attention may be called to how much better the drive of

the second case follows the ideal line than does that of the first method.

This chart also shows how very close a cone and double back-gear

drive comes to the constant belt-speed drive with equal power at all

speeds.

Much has been said about the relative values of the two styles of

cone pulleys treated above, but the charts given herewith will no

doubt surprise some, and may be the means of turning them in favor
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of the second method. The only good point the first method has over

the second is in the appearance of the cone which has, apparently,

powerful lines, which are, however, misleading, as has been shown.

Another disadvantage of the first method is the wide ratio of the

Pull at Srindle In Inch - Pound3
 

Machinery, A", Y.

Fifif. 4. Comparison of Torques for Various Methods of Driving.

counter-shaft speeds, where, in order to get sufficient power out of

the slow speed counter-shaft belt, we must have the high-speed pulley

running at almost prohibitive speed, which soon tells, and as loose

pulleys are a source of annoyance when their speed is moderate, trouble

is sure to appear when the limit of speed is approached.



CHAPTER III.

GEARED OR SINGLE PULLEY DRIVES.

Whether the geared drive, so called in order to distinguish it from

the belt drive used with stepped cone pulleys, originated with some ma

chine tool builder who was desirous of improving a given machine, or

whether it was first suggested by a machine tool user in an endeavor

to secure better facilities for machine operation, would be interesting

to know, but difficult to determine.

Whatever the origin, the geared drive is a response to a demand for

a better method of speed variation than could be obtained from

stepped pulleys and a movable belt. The gradually growing demand for

more powerful machine drives in the past has led to the widening of

belts to the maximum point consistent with a desirable number of

steps of the pulley, and the ease of belt shifting. The limiting point

for belt width may be said to be reached when a belt can no longer

be shifted easily by hand. For some machines, notably lathes, the

maximum diameters of the driving pulleys are generally limited by

conditions inherent in the machine themselves.

Back-gears were in many instances increased in ratio to make up

for what could not be had by further increase of belt widths or pulley

diameters, until in some cases the gap between speeds obtained di

rectly by the belt and those obtained through the back gears became too

great. When such conditions were reached, obviously, the next sugges

tion involved the combination of a constant speed belt of such a width

and operated at such a speed as to give the requisite. power, in con

nection with some combination of gears to be used for obtaining the'

desired variation in speeds. Such a combination is, in fact, a rever

sion of type; a going back to a system of driving formerly much used

by foreign builders of machine tools. Many foreign builders ob

jected to the use of stepped pulleys, considering their use as a devia

tion from, or, as being contrary to, good mechanical practice, prefer

ring in many cases to secure speed variation by means of separate

changeable gears. The objectionable feature of such a system did not

suit American ideas, hence the early adoption of stepped pulleys and a

movable belt as a means of quickly effecting changes even though the

device was and is still considered by some designers as anomalous or

paradoxical from the standpoint of pure mechanics. The substitution

of the variable speed geared drive for the stepped pulley drive is there

fore not due to any inherent defect in the stepped pulley so much

as to its limitations as previously mentioned, and to a desire for im

proved facilities for quickly obtaining speed variations.

For belt-driven machines that require a variable speed, the geared

drive will probably come more into use whenever its adoption will be

justified from a productive or a commercial standpoint. Whatever
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defects may be existent in any of its varied forms will be tolerated just

as long as it meets and fulfills required conditions.

As a device of utility the geared drive has passed the point where it

might by some have been considered as a fad. As a matter of fact,

scarcely any new device representing a radical departure from gen

erally accepted design and practice has ever been brought out that

was not considered a fad by some one. The history of machine tool

progress has shown that the fad of yesterday has frequently become

the custom or necessity of to-day. Extreme conservatism will see a

fad where progress views an undeveloped success. One drawback to

the general adoption of any geared drive is its cost, and this will deter

mine in most cases whether it or a belt drive shall be used; it is a

matter requiring careful judgment to determine the point where the

results obtained justify the added expense.

It is, however, with very few exceptions, the opinion among builders

and users of machine tools that the single pulley drive will largely su

persede the cone drive. Still for certain conditions it is doubtful whether

we will find anything better than our old servant, the cone. The two prin

cipal advantages possessed by the single pulley drive are: First, a

great increase in the power that can be delivered to the cutting tool

owing to the high initial belt speed. The belt speed always being con

stant, the power is practically the same when running on high or low

speeds. The cone acts inversely in this respect; that is, as the diameter

of the work increases, for a given cutting speed, the power decreases.

As a second advantage, the speed changes being made with levers, any

speed can be quickly obtained.

To these might be added several other advantages. The tool can

be belted direct from the lineshaft; no counter-shaft is required;

floor space can be economized. It gives longer life to the driving belt;

cone belts are comparatively short-lived, especially when working to

their full capacity. There are, however, some disadvantages to be

encountered. Any device of this nature, where all the speed changes

are obtained through gears, is bound to be more or less complicated.

The first cost, as mentioned, is greater. There is also more waste of

power through friction losses. A geared drive requires more atten

tion, break-downs are liable to occur, and for some classes of work

it cannot furnish the smooth drive obtained with the cone. Most of

these objections, however, should be offset by the increased production

obtained.

To the designer the problem presented is one of obtaining an ideal

variable speed device, something that mechanics have been seeking

for years with but poor success, and it is doubtful whether we will

get anything as good for this purpose as the variable speed motor in

combination with double friction back-gears and a friction head.

There are, it is true, some very creditable all-gear drives on the mar

ket in which the problem has been attacked in various ways. Still

there is ample room for something better. The ideal single pulley

drive should embody the following conditions.

1. There should be sufficient speed changes to divide the total range
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into increments of say between 10 and 15 per cent.

2. The entire range of speeds should be obtained without stopping

the machine.

3. Any speed desired should be obtained without making all the

intermediate changes between the present and desired speed.

4. All the speeds should be obtained within the tool itself, and no

auxiliary counter-shaft or speed variators should be used.

5. Only the gears through which the speed is actually being obtained

should be engaged at one time.

6. The least possible number of shafts, gears and levers should be

used.

There are few subjects in machine design which admit of so many

combinations, arrangements and devices. In Figs. 5 to 10, inclusive,

are shown some examples taken at random from a large collection. All

of these, except Fig. 10, have the number of teeth and the speeds

marked. Each has some good points, but none of them possesses all the

points referred to above. The only reason for showing them is to

show what a vast number of designs can be devised. One of them,

that shown in Fig. 5, has been built, a number of machines have been

running for over a year, and they give very good results. In Fig. 11

is shown the way the Wea was worked out, as applied to a 20-inch Le

Blond lathe.

The design for the headstock shown in Fig. 11 needs little explana

tion since the drawing shows the parts quite clearly. The friction

clutch on the driving-shaft Z, which alternately engages pinions H and

J, is of the familiar type used in the Le Blond double back-geared

milling machine. Sliding collar D, operated by handle S, moves the

double tapered key E either to the right or left as may be desired, rais

ing either wedge W or W, which in turn expand rings X or Y within

the recess in either of the two cups, F and F'. Either of two rates of

speed is thus given to quill gear K and the two gears L and M keyed

to it. On the spindle is a triple sliding gear which may be moved to

engage P with M, 0 with L (as shown in the drawing) or N with E,

thus giving three changes of speed when operated by lever T. The six

speeds obtained by the manipulation of levers S and T are doubled by

throwing in the back-gears, giving 12 speeds in all.

In comparing the merits of a series of gear drive arrangements

like those shown in Figs. 5 to 10, one might apply the "point" system

in determining the most suitable one. The number of points that are

to be assigned to a device for perfectly fulfilling any one of the var

ious requirements would be a matter requiring nice discrimination.

So the method outlined below is to be taken as being suggestive, rather

than authoritative. The first requirement is that there shall be suf

ficient speed changes to divide the total range into increments of be

tween 10 and 15 per cent. The six schemes proposed do not all, unfor

tunately for our proposal, take in the same range of speed; consider

ing, however, that they were each to be designed to give from 9 to 240

revolutions per minute to the spindle, as in case Fig. 5, and that a 15

per cent increment is to be allowed, the number of changes required
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can be- found in the usual way by dividing the logarithm of 27— the

total speed ratio required (240 -f- 9 = 27)—by the logarithm of 1.15,

which is the ratio of the geometric series desired. This gives 24 speeds,

about, as needed to meet the requirements. Suppose we assign 15

points to a machine having 24 speeds. Let us set this down in its

proper place in the suggested table given below. For the second

qualification, that the machine shall not have to be stopped, we

may assign 20 points to the ideal machine. The principle of "selective"

control is assigned 10 points. The fourth consideration, requiring that

all speeds shall be obtained within the tool itself is a positive require

ment. If it is not met, the mechanism is out of the contest, so this

question need not be considered in our table of points. Fifteen points

are suggested for the requirement that the gears not in use shall not

be running in mesh. The sixth requirement reads "The least possible

number of shafts, gears and levers should be used." It is suggested

A SUGGESTED TABULATION OP THE MERITS OF THE VARIOUS DRIVES

PROPOSED.

Requirements.
Perfect
Design.

No. I No. 2 No. 3 No. 4 No. 5 No. 6

No. of changes required com

pared with No. obtained. . 15 8 8 8 8 10 15

20 14 14 14 14 14 14

"Selective" control 10 7 7 7 7 7 7

Gears not in use, must not

15 13 13 13 15 15 13

Ratio of No. of changes to •

• No. of movements 20 15 15 15 13 12 14

Ratio of No. of changes to

20 10 9 9 9 16 18

100 67 66 66 66 74 81

that this be divided, giving 20 points to the question of the ratio of the

number of changes obtained to the number of movements required of

the operator to obtain them, and giving the same number of points

to express the ratio of the number of changes obtained to the number

of gears used in obtaining them. The sum of these points added to

gether is 100, which may be considered as representing the ideal de

sign.

In filling out the table, since Fig. 5 has only 12 speeds or half

the number required, we will give it only one-half the number of

points, dealing similarly with the other designs up to No. 6, in Fig. 10,

which is perfect in this respect. The machine has to be stopped to

throw in back-gears. Assuming that this would not have to be done in

70 per cent of the changes, we get a uniform value of 14 for this consid

eration for all the cases. The feature of selective control is only about

two-thirds realized in any of these designs, since the triple sliding gear

used in all of them, in moving from one extreme to the other, passes

through an intermediate position which is not required at the time.
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We may therefore assign the value 7 to each of these designs on this

account. As to the question whether the gears not in use are running

idly in mesh, all the designs are nearly perfect. The values set down

in this table are suggested by this consideration. In considering the

number of movements required to effect the number of changes ob

tained, the throwing in of the back-gear is credited with four motions,

the stopping of the machine, unlocking of the spindle from the gear,

the throwing in of the back-gears, and the starting of the machine.

The 20 points of the ideal machine are then multiplied by each of the

ratios obtained by dividing the number of changes by the number of

movements, and the number of points found are set down as shown.

For the last item, twice as many changes as there are gears employed

is taken as a maximum which can probably not be exceeded. With this

as a standard, the ratio obtained by dividing the number of changes

by the number of gears used is employed to calculate the number of

points. Adding the number of points obtained in each column we find

that No. 1 has 67, No. 2, 3, and 4 each have 66, while No. 5 has 74, and

No. 6, 81.

The comparison has been undertaken in this way with the under

standing that all the arrangements are susceptible of being embodied

in a practicable design. That arrangement No. 6 is practicable is

strongly to be doubted. The number of teeth in the various gears

used are not given, and it is far from probable that one could obtain

with this arrangement a series of speeds in geometrical progression

by moving in regular order the three levers required. Nos. 4 and 5,

while otherwise well arranged, are open to the objection that sliding

gears rotating at high rates of speed are used. This, if valid, consti

tuted a disqualifying objection similar to that mentioned in relation

to the fourth requirement. The first three cases in which a friction

clutch instead of sliding gears is used on the driving shaft are there

fore much to be preferred for this reason. Of these first three cases,

our tabulation shows that case No. 1 has a slight advantage, and Fig.

11, in which this arrangement has been applied to a 20-inch lathe

headstock, shows that the scheme is a simple and satisfactory one, so

far, at least, as one can judge from a drawing.



CHAPTER IV.

DRIVES FOR HIGH-SPEED CUTTING TOOLS.

What has been considered in the past as marvelous in the perform

ance of high-duty cutting tools may now be compared with the proved

results of air-hardening cutting tools. The metallurgist has proved

to us, and a great many machine tool builders have satisfied themselves

by practical experiment, that the high-speed cutting steels are at our

service, but they must be properly shod if they are to be used to the

best advantage. Some concerns who have experimented with the high

speed steels, and who anticipated much, have failed through lack of

a proper analysis of the conditions which accompany the use of the

high-speed cutting steels. It takes but a moment's reflection to con

vince one of the absurdity of trying to get as effective a fire from a six-

inch as from a thirteen-inch gun, even though the .same explosive

charge is used in both.

Some viewed this unusual commotion about the high-speed cutting

steels as being somewhat fanatical or a fad which would rage for a

time, and then die a natural death, as many others have done. True,

this was not the first high-duty cutting steel which had been advanced

with enormous claims of efficiency. Mushet steel had been on the mar

ket for several years, and the great things predicted for it did not

fully meet everybody's expectations. The chief reason for this was

its far too limited use in a great many cases, on account of its being

expensive, difficult to forge, grind, and to get a satisfactorily finished

surface with it, and the failure of the machine to stand up to the

chip it could take. Then again, when Mushet steel was introduced,

competition among machine tool builders for increased product from

their machines did not begin to compare with that which now exists

with firms which more than . ever are on an intensely manufacturing

basis. Manufacturing plants of any considerable size using metal cut

ting tools are bidding nowadays for >special machinery of the simplest

form to augment the output of a single product, and not comparatively

complicated combination tools, designed for many operations on many

pieces, and which save considerable room and first cost of installation,

but are of necessity inconvenient, and unsuitable for high-duty ser

vice.

The complaint which has been made by some that the new high

speed cutting steels are unfit for finishing surfaces cannot be consist

ently sustained. The modernly-designed manufacturing grinder has

unquestionably proved to be the proper tool for finishing surfaces

from the rough; and undoubtedly, and beyond peradventure, the

grinder is the natural running mate for the high-duty turning lathe

and planer; and it seems probable that, instead of the grinder being

a rarity and a luxury in shops, as a sort of tool-room machine, it
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will be as much in evidence for manufacturing purposes as the more

commonly-known machine tools of the present, or more bo.

The innovations of the day in machine tool evolution are in most

remarkable harmony and synchronism. The electric motor, which is fast

developing the independent machine drive, demands a high speed for

maximum efficiency of the motor; and what do we find contemporane

ously developed but the high-speed cutting steels, the practicable com

mercial grinder, and the comparatively high-speed non-stroke milling

machine to supersede the comparatively slow multi-stroke planer?

Unquestionably, there never has been in the whole history of the

machine tool business such an opportunity for the enterprising cap

italist, the engineer, and the designer, to invest their money, brains and

skill in a type of machine tools that will be as different from the pres

ent type of machine tools as the nineteentth century lathe is from the

simple and crude Egyptian lathe of tradition.

The development of the cutting or producing end of the machine

appears to be further advanced than the driving end. The direct

motor drive without inter-connecting belts, chains, and gears is un

doubtedly the simplest, most convenient, and most effective. The motor

which is most desired has not been designed, but it should be a com

paratively slow-speed motor having high efficiency, whose speeds vary

by infinitesimal steps between its minimum and maximum limits,

fully as simple as the "commutatorless" type, and with far higher

pressures than are now used. In the meantime, during the process

of development, we shall have to be content with the usual compound

ing elements between the motor and the driving spindle; but these

compounding elements, in order to keep up with the procession, will

naturally undergo revolutionary changes in design.

The silent chain drive and the high-speed motor are mutual help

mates; geared variable speed devices and single-speed induction motors

are well wedded, but cone pulleys are practically just beginning to

receive that examination and attention which can fit them for the ser

vice of higher speeds.

In the case of a turning lathe, as would naturally be expected, we

are very much limited in the range of the sizes of pieces that can be

turned—if we maintain an efficient range of speeds and sufficient diam

eters and widths of pulleys for surface speeds of belts—unless we use

an abnormally ponderous cone pulley, which is entirely out of the

question. To make this point clear, it may be well to analyze a spe

cific case. We will assume that the lathe is designed with a four-

stepped cone and with "front-gears" (the speed ratios of front-gears are

figured the same as back-gears, but their thrust at the front box is

opposite in direction to that of the back-gears and to the lifting effect

of the tool, as it properly should be), two countershaft speeds, and

for cutting 30-point carbon steel at a speed of 100 feet per minute with

a chip of 5/16 by 3/32 inch cross section. It is furthermore assumed

that the work and cutting tool are rigidly supported, and that the cut

ting tool has the proper amount of rake for Jeast resistance and a

fair amount of endurance.
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Calculation of Cutting Force of Tool, and Speed of Belt.

In order to make absolute computations of the required diameters,

we should hare reliable data on the amount of cutting force at the

cutting edge of the tool when cutting the various metals at high

speeds, reliable data for the best efficiency of the redesigned machine,

and the approximate distance between the centers of the driving spin

dle and counter-shaft. Several experiments were made by Hartig, and

subsequently by others, on the horse-power required at the cutting edge

of a tool when cutting various metals at slow speeds with the ordinary

tempered steels. The horse-power was determined by multiplying the

weight of chips turned off per hour by a constant whose value varied

with the degree of hardness of the metal cut and the conditions of

the cutting edge of the tool. The average of the several constants for

about 30-point carbon steel seems to be about 0.035.

Hartig's expression is given in the formula

H. P. = cW = 0.035 XfXBXtiXiXfX 0.28 X 60 (9)

and the usual expression for horse power is given in the form,

F 8 F X tr X D X n

H. P. — = (10)

33000 33000 X 12

in which

H. P. = horse power absorbed at the cutting edge of tool,

c = constant 0.035.

W= weight of chips per hour.

D = mean diameter of the area turned off per hour,

n = revolutions per minute.

d = depth of chip,

f = thickness of chip.

0.28 = assumed average weight per cubic inch of 30-point carbon

steel.

F = force at cutting edge of tool.

8 = distance through which force F acts.

Equating (9) and (10),

F = 0.035 X 0.28 X 60 X 33000 X 12 X d X t = 232850 dt.

Since the chip assumed to be cut is 5/16 by 3/32 inch cross section,

then the force at the cutting tool is

F = 232850 X 5/16 X 3/32 inch = 6820 pounds.

If the cutting speed is 100 feet per minute then the work at the tool

W=6820 X 100 = 682000 foot-pounds.

If the efficiency of the machine is assumed at 85 per cent, then the

effective work of the belt must be

682000 X 100

W= =802500 foot-pounds.

85

We will assume that a 5-inch double belt is the practical limit for the

belt which can be conveniently used on the machine, and that the ef

fective pull is 70 pounds per inch width when wrapped around a cast
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iron pulley with a contact surface of 180 degrees. The total effective

pull is then

5 X 70 = 350 pounds.

Since our belt must deliver 802500 foot-pounds per minute, its velocity

will be

802500

V= = 2295 feet per minute, approximately,

350

which must be proportional to the diameters of the cone pulleys and

the counter-shaft speeds, which are obtained as follows.

It is customary to consider speeds in a series of geometrical pro

gression if the most efficient and convenient range of speeds is desired.

The constant multiplier will then be

l

r = ^—^ in which (11)

r = constant multiplier.

I = maximum R. P. M. of spindle.

o = minimum R. P. M. of spindle.

«, =: number of speeds.

Let it be assumed that the lathe is designed to turn sizes from 1 to 6

inches. The corresponding maximum and minimum revolutions per

minute for the cutting speed 100 feet per minute are 382 and 62, ap

proximately. Then from (11)

/382\ ^

r=u)

1

logr=— log 6.16

15

r = 1.128

The whole series of speeds in geometrical progression and the diam

eters of stock, which will approximately correspond, if a cutting speed

of 100 feet per minute be used, is given in the following table:

SPEEDS DIAMETER SPEEDS DIAMETER

IN R.P.M. OF STOCK IN R.P.M. OF STOCK

388 1 s
I- " 145 W

u.
<338 . m 128 3

300 ui S s 113

865 101 3^ o

m 89

o

'I235 a o cc
o

808
ui a
a ui

o
t- 78 i'A o

184 ss i 69 O

163 s 62 6 m

Industrial Pi f, A'.J\

In Pig. 12, assume that the counter-shaft and spindle cone pulleys

are the same size, as is usually the case for the engine lathe. Let

Dl — diameter of largest step.

Dt = diameter of smallest step.

n' = slowest speed of countershaft.
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Ni = fastest speed of spindle to correspond with slowest counter

shaft speed.

2V4 = slowest speed of spindle' without back-gears to correspond

with slowest countershaft speed.

Let = r (12)

Dt

Dt 1

Then

Dt r

n' X r = N1

1
»' X —= AT,

r

(13)

(14)

(15)

C.S. CONE

PULLEY

^PINDLE CONE

PULLEY

N4

Pig 12.

InduatnnI I>rt*», K. Y.

Combining (14) and (15),

Substituting in (16) the proper speeds taken from the table,

(16)

Prom (14)

: V145 X 101 = 121

145

121

y

-=1.199

Substituting in (17) the value of V and »',

2295 X 12

Dt = = 72% inches.

3.14 X 121

From (12)

Dx = r X Z>4

Substituting in (18) the value of r and

= 1.199 X 72% = 87 inches.

(17)

(18)
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The front gear ratio from spindle cone speed to driving spindle speed

. 145

will be = 1.629.

89

Since the values of the constants used in computing the force at the

cutting tool were taken from experiments made with slow cutting

speeds, and would be considered low in view of the fact, noted by some,

that the work at the tool for high speeds increases in far greater pro

portion than the increased cutting speeds; and since the assumed 70

pounds per inch width for effective pull at the belt is quite liberal, it

is clear that the pulleys are practically at a minimum size under the

conditions assumed. It is therefore convincingly apparent that' for

the ordinary back-geared head, belts can be of no avail for high-speed

cutting except for extremely limited ranges of diameters of stock.

If the diameters of the pulleys are reduced by speeding up the belts

and gearing down the spindle, nothing is availed in most cases but an

added and useless expense, since every compounding element is a loan

for a mortgage whose interest rates sometimes increase pretty nearly

in a geometrical progression.






