THE HORSE IISOTREATMENTIIN HEAITHOODISEASE

JOHN A. SEAVERNS

TUFTS UNIVERSITY LIERARIES

THE HORSE

ITS TREATMENT IN HEALTH AND DISEASE

SKN HAKKIV(is 1

ITS TREATMENT IN HEALTH AND DISEASE

With A complete guide To breeding TRAINING AND MANAGEMENT

Edited by

Prof. J. WORTLEY AXE, M.R.C.V.s.

Late Lecturer at the kioyal Vetermary Colioge, ant at the Agntultura Colleges of Inwnton and Wye Cher Vetermary Inspecter to the surrey County (ouncol

Author of " The Mare and Foal" "Abontion in Cattle" " Anthrax marm Sinck"

" Lithotomy or the Removal of Sitone from the Pladeler of the Horse'

DIVISIONAL VOLUME IX

contents

DIVISIMNA.-VOLUME IX

Section NI- WAlitiNTY (Contimuel)

Tagt
I'ATENT I)EFECTS (C'mflinued) $11: 3$
 111
GorNoNESS $11!$
Vhes 1:1

HIsmoli of Holse-shomet 429
Anatony and l'hysiolaty of tien Foot $13:$
Internal Stimeture of Ifoof 1:3.)
(xiowth of Itoof $1: 39$
Cartilage $1: 3 ;$
The Fros $1: 3$
Phepration of Feet for shoelng f: 以
shoes 111
Material 111
Weight 112
Thickness 112
Width 118
The Foot simface of Nhoes 11:
(iromul Surfact $11: 3$
"Calkius" 111
Torepieces 111
Noils ant Nail-holes $4+t$
Irrpared Barima (15)
Marhine-made shoes 111
Fittin: Nhoes 111
Care in Fitting $11 i j$
Paze
Circunfrratial Fitting 147
Smface Fitting Hs
Hot amel（obld Fittings $+43$
Clips 143
NibliN：ON THE ぶHOE 4.0
にばロH1N： 4.51
 4.12
Nails 453
（＇lijs 4．9．）
Cheren Pressure of the shoe 4．：
＂Cuttings＂or＂haterfering＂ $4 . \therefore$
Orer－reach 4.77
Clacking on Forging 45
SETHN NLH．－TIE TRANSTT OF HORSES
ЧE．（＇．1RTAAGE 461
biet 418
Medicines 413
Horse Fuats $46: 3$
LANI（ARABAGE $4!4$
SECTION XIY．－THE ILORSE AND ITS POSITION IN THE ANHDAL WOHLI
The Ihnise qf the Presexy and the Past 471
Speldi Featioes in stacotute 4×4
Bomy Flamework 4R．
Mascular System 490
The Ine：us $4!2$
Cindory $4!9$
size 496
The Ans 496
Zeboras 496
内kin Markintis AND Chbusitues of the Folse $+97$
skin Darkmgs 497
Callositues（CImstunts aml Ergots） 500
 508
fonsil Ancentors ois the Horse 509
SECTION XV．－THE HISTORY OF THE IIORSE
Horses of the lint lase
Hornが Toは ） 11
The（inecian Horene 5： 1
The Horisen af lode 50：
The Homper of Anid ANin Africi 碞
The Aral，and the Band i： 1
Tile Horse in Britain 53：
GLOSSALY 551
INDEX 56：3

ILLUSTRATIONS

DIVINけNAL-VOLCNE IX

FULIAMME PLATES

1'ルe
SKIN MAKKINGS-I (monnt) Frontispirec
Hamenfy Mare, Lame Revinthay (mhme) 111
 1 !
NELN Markivis-II (malmer) 51)
 508
 $\therefore 10$
 sonie of fis ANompolis
 514
 ANoEsTOR of Tine llome 20
 5:4
The Jombey drabidn -The (ionmbion Ahablan 5in
 5:B

TEXT ILLUSTRATHONS

Divers Shapes of Shoes		Burtrum's Tethering Apparatus	6
Strmal Foot: front view		Bones of the Foot of in Odd-toed and	
The Wath of the Foot: Hoof showing Insensitive Lamine, \&e.		an Even-toed Animal	76
The Sensitive Foot: Side Vi		and llorse	26
The Sensitive Foot: Sole and Frog	5	Section of Finger of Man	
Lateral Cartiages, de., of the Foot	437	Section of Foot of Horse	
Under surface of the Coth-Bone, showing its Position within the Hoof		Foot of Man and Foot of llorse Compared in Natural Positions	
Orergrown F	439	(positions resersed) - -	9
Well-preportioned and Ill-proportioned Feet - - - - -		Side View of skull of Man, with the hone remosed soras to show the whole	
A lared-ront sole	+41	of the teeth	1
A "Seated" Foot Surface	3	Nide View of the skoll of the llorse,	
A lial Foot Smface	43	ith the hone removed so as to	
Rodway lrou thoe with I oulde Grooves	44.3	show the whole of the teeth and	
A "Concave" (romud surface	43	nesal bone	19
Calkins	14	Seetion of Inwonn hacioor of Adult	
Naitholes	44	llarse	
Wrongly-plared Nail-holes -	15	Crlypturtm refirulntus, restored from the	
L'itch fom Nailholes for Quarters	4)	remanis exhibited in the Natural	
Witeh for Nailhole for 'loe-		Hhstory Mnseum, South Kimsing	
shom l'itted short at the Heel	17	ton	19
An " Gated" Heed		Platar Surfaed of the Foot of- 1 , Man:	
how with Level Bearing		B, loge and r, Horse - - -	,0
choe lmitating at Wenn (irommlsmiane	115	A large chestmot from a cant mare-	
Frost-mals	1.7	Ereot froms stme animal-bare pateh	
erl sharps to he serewed into Shoes whrn requited?		from fore leg of an ass-bare pateh from frotus of mare	
hreeyphnter shoe	5	Sections of Chestunt and Ergot of	
Siat Crack, showing Method of Paring the Cumst	4.6	Horse and Bime Pateh of Ass Thper Monars of Fossil Ancestors of	507
Shore for C'utting, showing Position on		the Horse	511
Werot		Short-and Long-cowned Motar Teeth	511
hown for (${ }^{\text {atting }}$	45	Ladlins and C'han of Fossil Aneestors of	
Over-raching, Forging, and C'lacking-	4.7	the Horse	5

It should be noticed that, as the law now stands, a written wamanty can be varied by parole evidence (frace c. Kay, 3 B. v. A. 313, 183:).

A distinction should ako be drawn between patent defects, which are the defects of disease, accident, \&c., and such as are in the mature of natural malfommations.

These latter are patent, and may seriously interfere with a horse's action, as where it is cow-hocked, lot a waranty will not cover them. Whether curby hocks are a matural malformation or not is a mont-point, and in Brown e. Elkingtom ($8,7 \mathrm{v}$. W. 13:2, 1841) the jury, umder the judge's direction, found for the tefendant on the ground that curby liocks are not, like splints, symptoms of disease, but malformation for which the seller is not liable.

One question that naturatly suggests itself in comnection with this subject of patent defects is, what is the position of dealers in respect of it? These, it is clear from their speeial traming, are better able to judge of, and would be ruicker to notice, defects than an ordinary or unskilled person, and defects that would not be patent to the latter might be so to them. The answer is that the law makes no distinction between skilled and unskilled persons in respect of patent defects, but the former are placed in the same favomable position as the latter in this respect. And rightly, as a man's special skill should not be pleaded to his disadvantage. Of course, where lefects are so patent as to he obvious to any one, neither a dealer nor a private person would be protected by a warranty. Many defects are obvious to any one, as, for instance, broken knees and severe lameness. Vice, too, can hardly be conceated. Very often, however, a waranty is impugned when the buyer only is in fault. A horse that was perfectly free from vice when sold may be rendered vicious by eruel or improper treatment; or a horse that was perfectly quict to ride or drive in the hands of its former owner may become restive from want of exercise and from high feeding.

Defects, of course, that are not patent may be covered by a waranty; but so indeterminable is the law of patent defects as applied to horse waranty, that many dealers refuse to give waranties either absolutely or for more than a certain time. We have ahready shown that a waranty given by Messrs. Tattersall at their weekly sales at Allert Gate extends only to two days, and a common waranty from Horncastle Fair lasts twenty-eight days.

DEALERS AND PRIVATE PERSONS AND OTIIERS

We have already had occasion to motice the position of dealers as compared with private persons in treating of patent defects.

In this relation the law makes no distinction between dealers ant nomdealers, and hence the former in this respect oreupy a decidedly farourable position by reason of their special knowlenge.

In other resperts. however, dealers are placed at a di-artumtare so. by the statute, 29 Car. 2 C.. 7 . $-1 .$, it is emacted that no tradesman. artifirer, workman labomer, or other person whatsever shall do of taretered
 Lord's Days, or any part thereof (works of mecessity and charity only excepterl): and that every person of the age of fomteen years offembing in the promises (that is, in the aforesairl provisions) shall forfeit five shillings. Under this statute it has been held that a home-rlealer eamot sur for a breach of warlanty made on the sale of a home which he purehased on a Sumblay (Femmell \therefore Rimber, 5 li. v. U. 406). A sale. however. on a Sundar, whech is not made by the seller or his agent in the exercise of his ordinctry callin!, is not roid either at common law or muter the athore
 1. Ratunt. 131. 1808); and in Bhoxsome \therefore Wrilliems it was hekt that at person who had bought a horse of a dealer, waranted somul, on a Sumday, but did not know that the vemdor was a dealer and exercising his ordinary
 (4 Bing. 84, 1827) is important. hecause in it the judges douloted the decision in Bhoxsome \therefore. Wrilliams, ant refered with high ipproval to the case of Femnell ε. Ridler. Horse-tealers, famers and others therefore, whose ardimary calling, or part of whose ordinary calling, it may be to sell horses, shonld he careful not to sell or give a wamanty upon a Sunday. Otherwise they are liable to have the sale repudiated, and the horse retumed upon their hands: or they may find themselves the defendants in an action for brearh of wamanty to which they will hase no defence.

Another respect in which deaters differ from private persons is that of agency.

In some eases an agent is madonlitedly able to give a warranty. Whether he is or is not so able depends upon the nature of the agener and upon the position of the principal. Horse-dealers and others conld hardly earry on their trate unless they were able to delegate their anthority to a representatise. Such a representative would be known
as a general agent, and, in the absence of express notice to a purchaser. would have power to do all that is gencrally done in carying on such a trade. So the keeper of a livery stable is liable to an action for brach of warmanty upon a waranty given by his servant, thongh he hat expressly given such servant instructions not to warant, for the pubhe is not supposed to know of any private armagement hetween primeipal and agent, where the latter is acting within the general scope of his anthority.

This last reservation is important, as where an agent does any art, which does not form a part of his ruties or employment as an agent,
 Mowairl \therefore Shewrarl, L.R. (.P. 148. 1866.) So too the servant of a private person, who is entrusted with the sale of a horse at a fair or other public mart, would appear to have power to warant and bind his principal by such warranty, as it is usual, in the comse of hosiness. for the person in possession to have such power. (Brady \because. Tortel, 9 C.B., N.S. 592, 1861: Alexender r. Gilson, こ Cimph. 555, 1811; Brooks e. Hassal, 49 L.T' 569, 1883.) Except, however, in such a case, the servant of a private person, who has been instructed to sell and deliver a horse on a particnlar occasion, is not thereby athorized to give a waranty; and if a buyer takes a wamanty from such servant, he will have to prove, in order to bind the principal, that the servant was authorized to give such warmanty. (Brady r. Todd, vide supra.) It should be noticed that in both the cases instanced above, where the principal is bound by the act of the agent, he is so bound by general custom or usage--in the case of the dealer, becanse the agent is a general agent, who, in conducting his principal's business, has a genemally muderstoort power to grant waranties; in the case of the private owner, becanse it is eustomary for a person in possession of a horse at a fair or public mart, and entrusted with the sale of such horse, to possess all the powers of the owner, including that of warmaty. He would not in this ase be a general agent, but rather a special agent with general powers. In $n o$ other case, however, would such a presmmption be allowed as against a private owner, as it is no part of his business to sell horses, nor ean his servant be assmmed to have the powers necessary in the case of a horse-dealer for the conduct of his business.

Where an anctioneer is instrurted to sell, he may be the agent of both buyer and seller for the purpose of signing the memorandum contemplated by the statute of frauds (29 Cirr. \because C. 3).

Whether he is so or not, however, depends somewhat on eiremmstances. Where the sale takes place at a private place, he is the agent of the seller
only, and wherever the place of sale may be, he only hecomes the agent of the bnyer on the fall of the hammer (Harlow e. Marrisom, 28 L.J. : B. 18, 1858). There is no neel to give a written authority to an anctioneer. The mere act of sending a horse to a repository for the sale of horses would be taken as an implied authority to sell, am an owner would be bound by a boneffele sale even without his express eonsent. "An anctioneer has a possession compled with an interest in goods which he is employed to sell, not a bare custorly, like a servant on shoman. There is no difference whether the sale he on the premises of the owner or at a pullic antion-room; for the premises of the owner an actual possession is given to the anctioneer and his servants by the owner, not merely an authority to sell. I have said a possession coupled with an interest; hot an anctioneer has also a special property in him with a lien for the charges of the sale, the commission with the anction duty, which he is bound to pay." (Wilson, Justice, in Willirms e. Millington, I.H.. Bl. 81, 1788.)

Where a horse is sold at a repository on the condition that, if it does not answer the warranty given with it, it may be retmod within a certain time, the anctioneer is statute-holder between the seller and purchaser, and the money paid by the latter does not rest in the seller until such time has elapsed. The purchase-money, until such time has elapsed, should be retained by the auctionecr. A mistescription of horse put up for sale by the anctioneer will ritiate a sale, and may even amount to frand, as if a horse be wrongly described as the property of a certain gentleman deceased, or as belonging to a certain stud. Where, too, it is expressed in the conditions of the sale that "the highest bidder shall be the purchaser, and if a dispute arise, it shall be deeided by a majority of the persons present", it would be framdulent for the seller to hid either himself or by an agent.

Puthing also is illegal, and if the buyer finds it out, the seller camot recover the price (Pitmore r. Moorl, 5 Bingham, N.C. 97, 1838). This point was fully considered in Crourler r. Austin (3 Binghan, 368, 1826). This action was hought to recover the price of a horse sold at Aldrilge's Repository, where one of the conditions of sale was that eath horse should be sold to the highest bidder. The seller had employed his groom to rum up) the price of the horse, and the hayer, having diseovered this, refused to take it. The plantiff was non-suited. Auctioneers have also a lien (or clams) upom horses sold by them for their commission and charges (Robinsom \therefore. Putter, 4 E. v. B. 954, 1855; Willitems i. Milliugton, v. supra;
 sentations are put into the mouth of the anctioneer, the seller camot recover the price (Muray r. Mam, : Exch. 538, 1848).

Generally, it may be stated that a sale in a fair or morket overt is binding upon all persons claming any property in the thing sold. In the country, market overt is only held upon certain fixed days, in a place specially set apart for the purpose; lut shops are not market overt. In the city of London every shop is market overt for the class of goods usually sold there, and every day, except Sunday, is a maket day. In the case of horses, the general rule as regards sales in market overt are somewhat modified by statute. The first statute dealing with the question was passed in 1555 (\because v. 3 P。v. M.C. 7), and this was followed in 1.589 by another (31 Elir. C. 12). They provide inter alire that, in all fairs and markets overt where horses are sold, a toll-keeper shall he appointed to keep the place from ten oblock in the morning till sunset, and to take tolls for all horses. Such toll-keeper was further required to enter the names, descriptions, and addresses of buyers and sellers in a hook kept for the purpore, together with a full description of the horses sold. These statutes were mainly directed against horse-stealing, and practically effected their oljject.

It should be noticed here that a sale at a repository outside the city of London is not a sale in market overt (See e. Bayes, 18 C.B. 599, 1856).

Another class of persons who are liable to the laws of warranty are joh-masters. When a job-master lets ont a horse or carriage for any particular purpose, he is taken to have waranted it for that purpose.

This reservation is important, an such liability ecases if the hirer has used the horse for any other purpose than that for which it is let out.

Thus, if a horse is let out for riding, the hirer must not put it into harness; if he does so, and an accident thereby happens, he, and not the owner, is liable.

Generally, also, if the hirer keeps the horse for a longer period than that for which it is hired, he is responsible. With these exceptions, however, and certain others which I shall presently notice, the letter is responsible for every accident and loss which he cannot prove to have heen due to the positive negligence of the hirer (Cooper r. Brortom, 3 Camp. 5, 1810). What constitutes negligence in contemplation of law is not capable perhaps of exact definition.

Some acts, however, are clearly negligent.
Thus, in driving on the wrong side of the roat, one is bound to exereise more than ordinary care to aroid a collision; if one do not exercise such care, and an aceicent happens, one will clearly be liable for such accident on the ground of negligence. So, too, a hirer has been hedd liable for "overdriving" a horse (H'alley r. Holt, 35 L.'T., N.S., 630, 1876).

But where a horse is returned with booken knees the letter must prove negliguce in the liirer (Cooper © Buntom, s. supra).

If a lomse fall ill during the liring. and the hirer pressrines for it himself ant the horse dies, he is liable, hut not if he calls in a farrier (Dectue a. Krate. 3 (imp. 4, 1811); ako. if a horse hecome exhausted and refluse its foot, the hirer mast discontinue the use of it (Bray C. Maine. Gow. 1, and
 port an ation for negligence the me is that there must bee anne attirmative proof of negligence: where the evidence does not on th prove which party faikel to take poper care the phantiff will fail in his action. Further, if there has been contributory neghence, that is if in aceident alleged to bave been cansed loy the negligence of the defentant would not have happened hut for negligence on the part of the plaintift, the latter could not recover. The owner is also hemul to supply strong and proper harness where a horse is employed to dran any velicle, and is liable if any
 P. 69:3). It was there stated that " if a person driving along the road camot pull up becanse his reins break, that will be no gromel of defence, ats he is lomul to have proper tackle ". It was also decided in this case that "a fiot-passenger has a right to cross a lighway, amed perons driving carriages along the road are liable if they do not take care, so as to aroid driving against the foot-passengers who are crossing the roan". They are also loumed "to drive slowly, cantionsly, and carefully orer a crossing for foot-passmoers", while a comelative duty is cast upon the foot-pawengers "to use due care and caution in going upon a crossing, wo as not recklessly to get among the cariages (Williams r. Richarels. 3 C. v. K. S.). "The rule", however, "as to the proper side of the road does not apply with reopect to frot-pasengers; and ate regards foot-passenger, the emiages may go on whichever side thes please" (Cotterill c. Tut! f).

Where a job-master lets horses by the lay, week, or jolb, and also supphes the wiver, he is generally responsible for all the injuries resulting from carcless driving: at, however, the lirer supplies the driver, he would appear to be responsible for any aceident or los arising from ne gigence or wint of skill in such driver (Croft ro Alisom, 4 B. v. Ald. 590) Where, howerer, the letter supplies the driver, the hirer may make himedf resomsible under wertain ciremstances, as whe he takes upon himself the actmal management of the horses, or directs the driver to do something mansmal or improper. in conserflence of whicl an :weident happens (Qumemon i. Burwitt. (; M. v. IV., 507).

The mere fant of the limer sitting on the box-seat alongside the driver will mot. however. as commonly suppose , relieve the latter of responsi-
bility. Of course, if an accident happens throngh a servant exceeding or not acting within the scope of his duties, the master is not liable. What acts are and what are not within the sope of the servant's employment it is not always easy to determine, and is a question that must necessarily depend to a large extent upon the facts of each particular ase.

SOUNDNESS

What is meant by soundness has been variously stated in works upon the horse and also in decided cases. According to Baron Parke in Kiddell \because Burnard, "the word 'sound' means what it expresses, namely. that the animal is sond and free from discase at the time it is warranted to be sound"; and in the same case Baron Alderson says, "the word 'sound' means somnd, and the only qualification of which it is susceptible arises from the purpose for which the warranty is given. If, for instance, a horse is purchased to le used in a given way, the word 'somul' means that the animal is useful for that purpose, and 'unsound' means that he at the time of sale is affected with something which will have the effect of impeding that use." Such may be taken to embody the legal detinition of somndness.

Positive detinitions are, however, rarely satisfactory, and for practical purposes a negative defintion, that is a detinition of msonndness, is at once easicr and hetter. "Stonehenge" gives the definition of unsoundness as "the existence of disease or alteration of structure which does or will impair the horse's natural usefuhess". Unsoundness, therefore, would appear to be caused hy disease ar alteration of structure either actually or prospectively impairing a horse's usefulness. The diseases that constitute unsoundness we shall presently consider; what is meant by "alteration of structure" may be disposed of at once. A sound horse has been defined as " a horse in perfect health, with perfect action or motion of all its limbs and organs". Not that, to be sound, a horse must exactly fulfil these reruirements-very few horses do-but a horse may be said to be perfect in health and limb withont being ideally perfect. A horse, for instance, with some natural malformation may be perfectly sound. as already intimated, since natmal malformation does not constitute unsoundness and yet not be perfect in such a sense. A horse. howerer, that had been "nerved" would not he sound. In Best i: Oshome (R. v. M. 290), where a horse moved sommlly enough, but had been "nerved" to cure it of laneness, Mr. Justice Best remarks: "Sound means perfect, and a horse deprived of a useful nerve is imperfect, and has not that capacity for service which is stipulated for in a warranty of soundness".

It remains further to ronsider what diseases or defects do, and what do not, constitute manominest. It will dear the ground if we deal with the latter class first.

Bog spavins are caused by spran or hard work, and in the slighter cases do not constitute msommlness. If, lowever, they canse lameness, the ease is otherwise, thongh lameness alone amounts to monomelnes. Spavins generally we shall have oceasion to consider later.

Broken knees, when the joint is not so injured as to impair its action, do not amount to mosomdness.

Capped hocks and elbows do not reuder a horse unsound, so long' as they do not canse lameness or interfere in any way with the action of the joints.

Contraction of the foot is not in itself a mark of mommlness. It is, however, frequently a result of unsoundness, as of navicular disease, and will then amonnt to momomdness.

We may here also conveniently notice rings on the hoof. These are sometimes regarled as marks of unsoumhess, though they are not necessamily so.

When a horse suffers from a disorder the growth of the loof becomes less active, resulting in the formation of a groove, amd then, when the horse is turned out to grass, healthy growth is renewerl, thus causing a ring. Blisters, too, if used periolically, will canse a rapid growth of the hoof for the time, and a series of lings will result as a ronserpence.

Curby hocks are not unsommeness. In the celelrated case of Brom v Elkington ($8 \mathrm{M} . \mathrm{v}$. W. 182), Lord Alinger remarked that "i delect in the formation of the horse, which had not oceasioned lameness at the time of sale, thongh it might render the animal more liable to be lame at some future time, was no breach of wamanty". This view was upheld ly the Court of Exeheruer, which refused to grant a new trial.

Cutting is not msomdness, unless the horse is lame from it at the time of rale. It is, in fact, often the result of had shoeing.

Soreness of the joints arises from overwork and is not aceounted unsounthess.

Splints do not amonnt in every case to msomdness, lont only when they cause, or he their size, form, or position are likely to cause, lameness. The leading case on splints is Margetson x. Wright, to which we have already had ocrasion to refer.

Thoroughpin in a moderate degree would not appear to amount to unsoundness. As this, however, is a matter of opinion, it is mowise to warrant a horse sound if suffering from this disease.

Thrush, when only a consequence of mismanagement, and not cansed
loy any disease or defect in the horse, will not be held to amount to masoundness.

Windgalls uswally arise from overwork, and when of small size and mproductive of lameness, do not constitnte mnsoundness.

We now come to consider those diseases or forms, or stages of disease, which do constitute unsoundness.

Blindness.-All forms or degrees of blindness which impair a horse's usefulness amoment to unsoundness.

Bog spavins, when so severe as to interfere with the action of the joint, amount to unsomedness.

Breaking down.-A horse is said to be broken down when through an extraordinary strain on the sinews and tendons of the leg it has become temporarily lame, and the part affected is swollen and intlamed. The swelling may sometimes be so reduced as to pass monoticed by an ordinary buyer, but a broken-rlown horse is undonbtedly unsound.

Broken Knees.-These, when the injury is only slight and superficial, do not, as already intimated, render a horse unsound; but when the knees have been so badly broken as to allow the syovia, or joint-oil as it is called, to escape, or when the skin over the knees has become so thickened, in consepuence, as to impede their action, the horse will be unsound. The latter lind of monsondness, however, occurs more especially when a homse has been thrown down repeatedly, or when the injury has been deep and severe.

Cataract constitutes momomess in every stage of the disease.
Cold.-This is msomndness, and will vitiate a waranty of soundness if the horse is suffering from a cold at the time of sale.

Corns, which generally occur in the fore-feet, are usually held to be a mark of mosondness, and if they canse, or are likely to canse, lameness. are so. It, however, they are superficial and only of a tritling nature, they would not apparently amomet to msomblness. In an aggratated form, or in any of their more serious developments, they would monestionalily amomet to unsomblness.

Coughs.-A cough will renter a horse unsound, that is, of course, if the horse had it at the time of sale. To avoid monecessary litigation, however, it shonld be observed that horses ame specially hable to acpuire this ailment, and if they do so at any period after sale, there can be no return for breach of warranty.

Curbs are accomnted unsoundness, even though there be no laneness. A horse with a curb, sold under a gencral warmanty, can he at one retumed; if, however, the curb be pointed ont at the time of sale, it will be a case of special warranty, and the buyer must be upon his guard. Curby hocks have already been noticed.

Farcy, a disease identieal with glanders, renders a horse unsound.
Fever in the Feet, Founder, or Laminitis alters the structure of the font, and therefore amounts to masoundness. This disease alone, apart from other eonsiderations, renders a horse unsomm, becanse the laminie are so afferted by the disease that a horse which "all be proved to have suffered from it is most likely to fall lame if put to work. Dropping and bulging of the sole of the foot and displacement of the bones is often a result of laminitis.

Glanders is a most serions disease, sometimes confounded with strimgles. A horse sold with glanders should be at once retumed and the purehase-money demanded back. ${ }^{1}$ It the seller can be proved to have known of the existence of the diseave, the buyer may also rerover damages. A horse with glanders must not be resoli, hat destroyed.

Grease, a skin disease grmerally affecting the heel of the foot. and which will be fomm dealt with elsewhere, constitutes a horse misomul.

Mange, a parasitic skin disease which is generally appurent, amounts to unsoundiness.

Megrims, or fits, renders a horse unsomm.
Navicular disease, a disease of the foot, known in its advancer stage as "grogginess", renders a horse mound.

A "nerved" horse is masound on two gromils; by reason of the disease for which it was "nerved", aml as being structurally imperfect through the nerves having been severed. A "nerved" horse may le able to work, but is at any time liable to become useless on account of the defect.

Ophthalmia is unsoundness. If it has previonsly existed and again manifests itself soon after purclase, it is most likely of constitutional origin. Evidence of its presence Jy a competent veterinay surgeon will be sufficient to chable the buyer to rescind the contract.

Ossification of any of the structures adjacent to the joints, and therefore ossification of the lateral cartilages, constitutes unsominness.

Pumiced foot is msoundness, as being evidence of laminitis.
Quidding, being an indication of disease or defect in the month, is mosoundness.

Quittor, a chronic abscess of the fort, is unsoundness. It is generally accompanied ley more or less lameness, which, as already stated, would alone constitute unsommeness.

Ring-bones and Side-bones, both large and small, render a horse misound.

[^0]Roaring and whistling, as evidence of contraction of the entrance to the air-passages, render a horse unsonnd; in other words, they arr evidence of a structural defect, and a roare or whistler is therefore manome. This was decided in Onstow \because. Eames (\because Starkie, N.P.C. 81) .

Ruptures of all linds render a horse monsound.
Sand-cracks. wr eracks in the hoof of a horse, sometimes extenting from the sole to the coronet, constitute masommenes. They have heen ahrealy noticed in treating of "patent defects", aml would apparently only invalidate a waranty where the buyer has no power of inspertion.

Seedy-toe, which appears as a hole or cavity in the howf, is a form of msomodness. False-quarter, or sand-cracks in an aquarated form, would elearly amount to momomenes. The remank as to warmanty in cases of sand-crack would apply botli to "seedy-toe" and " false-puarter".

Spavin (bone).-A sparined horse has been held to loe msomme,
 and honters, howerer, have sparins, which in no way impere thein action or inconvenience them.

If a spavin camsed lameness, it wonld undonbtedly render a horse unsomm. "Bog" and "blood spavins" have alrealy been noticed.

Strangles, an infections fever affecting the throat, which is very hkely to lay the seeds of roaring and whistling, amounts to masounhtess.

Stringhalt, a peculiar jerliy action of the hind-legs, will render a horse unsound. It should be observed that horses with this disease, though msound, are not incapacitated for any lind of work.

Thickening of the back sinews, or suspensory liganent, will, when appreciable, constitute a horse unsound.

The diseases above noticed, it will be observed, apply for the most part to the feet and legs. They constitute, in fict, in the vast majority of cases, the grounds on which horses are retmed for alleged brench of waranty. There are, however, other diseases not so easily discoverahle which amomet to msomdness. Generally, it may be stated that all dheases of the intermal organs constitute msommess, though they are frempently so subtle as to defy detection. Of these it will be suftieient to notice a ferw to which the horse is more especially liable. Colie and wipes are selfevident, as the hoise that suffers from them is convalsed with womy: hut chronic nephritis, on inflammation of the kidners, is less apparnt, but mone ingidoons. We may abso notice rgstitis, or inflammation of the hathore, spasm of the weth of the bledder, stome ine the bladder, and diedretes, all or any of which diseases will render a hore unsonnd for the purposes of waranty, as will any acote or chronic aiment of the other inportant organs of the body

VICES

Besides diseases and defects which amount to unsoundness, there are rertain faults which will entitle a buyer to return a horse when warsanted "free from vice". Of course, it must be clear that such fatuls existed at the time of sale, and are not the result of subsequent mismanaement or unskilfulnest. The first we shall have occasion to notice is:-

Biting.-A biter is manifestly vicious, as leing dangeroms to those who have octasion to approach it. From the great power in a horse's jaw it is capable of intlicting terrible injuries.

Bolting, or ruming away, is also held to he a vice, if hatituat. It is open to question, however, whether a home that has run away once would not be likely to do so again if a falvourable opportunity offered.

Crib-biting, as tending to injure a horse, is sometimes held to be a viee. If it has that effect, it mondoubedly is a vice. Many devices have been tried to cure this habit, with more or less success. One, adopted by a well-known sportsman, is a slung berr in front of the manger, which slips andey from the horse as often as he attempts to ghaw it.

Kicking.--This is a very bad and dengerous hatit, and a confirmed kirker is unquestionaldy a vicious anmal. It is, however, not at all an mmanal thing for a high-mettled or even a docile horse to develop a hathit of kicking, in conserfuence of mismanagement or cruelty, which before purchase was perfectly free from the viee. Thus a young horse warranted "quict to ride and drive", after being lejt in the stable a long time and too highly feed, may, on being put into hamess, run away, though it hat neser shown a temteney to do so before; or kick the dashboard to pieces and upset the rehicle, from being mrgel mphill with sticks. Before retuming a horse, therefore, for the alloged rice of kicking, it is always desindle to ascertain, first, whether the horse is a confimed kirker: and serondly, if it be so, how it acquired such a habit. Kicking when " merely a moke of letting off superthons spirit" is, of course, not a vice.

Rearing, if it has become a hatit, is most dangerous, as the horse may fall hackwands upon and kill its rider. In this stage it is pronably incmrable, and is a vice. ln a raw, mbroken solt, however, it could hardly be accomted a rice.

Restiveness, in the sense of refusing to go in the direction desired, is a returnable vice.

Shying, when a confirmed habit, is a vice.
Weaving in the stable, or an uneasy moving of the head from site to side. like a wild heast in his cage, is a rice.

We may conveniently sum up this brief enmmeration of ailments amounting to mosoundness and retmonle vices with the definition laid down in Elton \because. Brogden (4 Camp. $\because 81$): "If at the time of sate the horse has any disease which either actnally does diminish the natmal usefulness of the animal, so as to make him less capable of work of any description, or which in its ordinary progress will diminish the natural usefulness of the animal, this is unsoundness; or if the horse las, either from disease or accident, undergone any alteration of stmeture that either actually does at the time, or in its ordinary effects will diminsh the natural nsefulness of a horse, such a horse is menomurl".

It should also be borne in mind that ailments to amount to unsoundness need not be permanent or incmable. It is sufficient if the borse is affected by such aiment at the time of sale; or even, acording to the decision in the leading case of Margetson v. Wright, to which we have already had occasion to refer, if the homse las the seeds of momome ness in him at the time of sale. Even if a horse which was meomel at the time of sale, recovers before action is brought, this is no defence to such action.

We may conveniently close this chapter witl a few remarks as to the proper course to be adopted where a horse is believed not to answer to its warranty.

If there can be no mistake about its masoumduess, and that such unsoundness existed at the time of sale, it should be at once returned, with a letter demanding back the purchase-money. It is, however, always desirable to obtain independent veterinary testimony, written if possible, or the opinion of an expert, previous to returning the horse. Such return should also be accompanied by a copy of the veterinary surgeon's report, or the expert's opinion. If the seller refuses to take the horse back, it may be sold, and he may he sued for any deficiency between the price realized at such sale and the priee originally paid for it, together with any expenses to which the buyer may have been thereby put. Of course, there must be no monecessary delay in returning the animal, as the law does not aid those who sleep upon their rights.

No definite time is fixed by law for the return, amd each case most be governed more or less by its own peruliar incidents; but genembly, in the absence of any stated time, as where the horse has not heen sold subject to the rules obtaining at some fair or repository for the sale of horses, eight days inclusive may be taken to be a reasomable limit.

If the horse is very valuable, legal aid shoukl be sought, amb ation will then be taken in one of the superior courts, but many cases of warranty will naturally come within the jurisdiction of the county courts,
and in that case the plaintiff may desire to conduct his own case. In this latter event he can olotain all necessary information respecting the usnal formalities from the ofticials of the conrt lolonging to the district in which he lives. A few sugestions, however, will not be out of phace. All original letters or docmments should be carefully preserved, together with the warranty, if whitten. He should also write out a detaled statement of his clam, of which he shonh make three copies, one for his own use, one for sembe on the defendant, and the thind to be attacherl to the phant note. He shoukl also serve a notiee upon the defendant to produce all letters and documents bearing upon the case. The plaintiff shonld then consider what witnesses he reguires to prove his rase, and if he hats reason to thank that any of them will not come wilhingly, he should subpena them. Ilis statement in conet should be a phain and mavarnished retting-out of the facts, ehronologically armaged, up to the discovery and proof of brearh of wamanty. The defence met mp may be a direct denial of the allegations of the phametifl, or that surh alleged breach is the plaintiff"s own fandt.

If the wartanty is in writing, the case will, of comse, be much simplified, as the comet will be in posession of the exart terms. If the warranty is not in writing. the plantifl wonh be careful to give the exact terms of the wamanty, since, as already stated, there are many representations which do not amount to, or constitute part of, a warranty.

A written certificate of somdness or memomess, it is to be ohserved, is only of use in conrt for the purpose of correcting evidence, and the person wiving such certificate should be in court, so that the party to whom surh certificate is arlverse may have a opportunity of cross-examining him. A written waranty, as already stated, need not be stamped. Whether, howerer, a lorse is to be sold witl a waranty or not, the intending purchaser should le careful to overhaul him before a hargan is strock, as, where there is full power of inspection, the maxim coceat emptor", "at pmehaser's risk", will apply, where there is a warranty in iespect of patent defects, and where there is no waranty, meonditionally.

HORSE-SHOEING

Section XII.-HORSE-SHOEING

HISTORY OF HORSE-SHOEING

The adoption of horseshoeing marks an adranced stage of civilization in a country. Geod roads are essential to social and commercial development, and goorl rouls necessitate horse-shering. Lutil artificial roads are mate and generally alopted, the horse's houf is able to withstand the wear of tolembly long journers. Between the time of no shoes and the era of shoes fixed by mails a long period of slow evolution intervened. In the days of Xemphon horses were mot shod either for civil on military purposes. The amies of Alexamder suffered from the effects of wear mono the feet of their horses. and we are toh that a avalry was left behind, owing to the damaged state of the howses hoofs. I fiom of samblal woven of urass is the earliest protection for the horse's foot recorded, and it was not constantly nsed, but only employed on horses that were too lame to travel withont some temporaty cover for the worn or broken hoof. Probally the next stage in hoof-protection would be the use of leather, as less cumbersome than the saludals made from vegetable fibre. Then we pasis to the use of metal plates to strengthen the sandals, and next to metal phates attached by leather thongs.

Metal shoes for contimous wear, fixen by mails, came gradually into use in Enrope between the fifth and nintly centmries. As skilled workmen would be required to make and fix them, it may be concluded that at first only horses employed for military or court puposes would be generally shod. Then the horses nsed for trattic in towns would be shod, and at hard roads extended, so would the art of shoeing spread along them for the protection of the feet of horses used for carrying goods or passengers.

There is no accomnt of the art in this country prior to the Conguest, when William of Normands gare to Simon St. Liz, one of his followers. the town of Northampton aul the hundred of Filkley, then valued at $\mathfrak{£ 4 0}$ per ammm, to provide shoes for his horses. In Brooks Cretulongue of Errors, page 65, it is stated that "he appointed Henry de Ferrers
to be superintendent of the shoeing smiths; and his descendants the Earls of Ferres bore six horse-shoes on the quarterings of their arms. At Gakham, in Rutlantshire, the seat of the family, a singulan chstom long previlled. If any baron of the realm passed through the place, he was to forfeit one of his horse's shoes unless he chose to redeem it by a fine. The forfeited shoc, or one made in its place was fixed mon the castle gates, inseribed with his mame. In consequence of this custom the gates became in time covered with numerous shoes, some of them of musnal size, and others gilt, se."

From its introduction loy the Comploror, to the time of Elizatheth, we have little recorded aceount of the shoeing art, hat that it was mot neglected we may be certain, as one of the old City of Lomen Ginilds -the Worshipful Company of Farriors - was founded as early as $1: 360$.

The first work in the English langnige which contains any detailen acoment of shoeing is that of Bhmmerille, puhlished in 1609 . In this work, illustrations are given of shoes for general and sperial purposes, and for somid and msomel feet. These shoes (fig. 62:) are very simila in outline to those now used, hat are heary and clumsy, and wanting in some of the little details which are neressaly to make them most useful and confortahle. The homeshoe of Quen Elizabeth's time was merely a bar of irm atome twice as wide as it was thick tumed to the outline of the howf, amb sumplied with mail-holes pourhed through its sulstince. In 165^{4} the Worshipful Company of Farreps ohtamed from Chates 11 a Charter of hemporation which gave them controlling powers over all farriests within the rity of London and for seven miles around. The of the reasons for granting the charter was that "horses were serionsly injured ly the oprations of persons makilled in the :ut ". In this reign farriess not only slom but doctored the horse, and were the recognizal :ttemelants on sidk and injured amimals.

In the eighteenth century further progress had heen made, ind more than one useful treatise was pullished. Two of the most pactical writers were Gimer amb Clark, who hat moticed the imjury done to flat feet by the meven hearings of a flat shoe. They conseruently berellet off a portion of the foot surface of the shoe, so that only its outer portion cane in contact with the hoof. . Whst lefore the close of the century a Frenth veterinarian amised in England and founded the Roval Veterinary Conlege. Clarles Vial de Sainhel only lived a short while after establishing the colloge, but during that time he reintroduced a shoe flat on the foot surface and conmare towards the gromd. The sumesor of Sambel at the Veterinary Collew was a surgeon named Colman, who took great interest in the horse's foot and shoeing. He publisherl two
volumes-one on the anatomy of the foot, with coloured plates, and one on the principles of shoeing. About the same time a sporting gentleman, Strickland Freeman, issued a book on horse-shoeing. It is difticult to say whether his or Coleman's illustrations were the more artistic and eorrect. Both were excellent, but it must he confessed that the principles

Fig. (iz3.-Divers Shapes of Shees
A, A shoe for a perfect horse. B, limder shom for same. © For a that-fout or promiserl horse. J, For a falecenarter, shoe with the inside turned outwarl to show the shoulderings. F, Fore-shot for interfering,
 vice. I, A joint shoe to widen and straighten at pleasme. k, A shoe with a welt or border. L, ithoe with rings to make a horse lift his fuet.
of fariery laid down by Freeman were better than those of his scientific rival.

Between 1800 and 1830 the swhect of horse-shering fonm many exponents. Bracy Clark, Goodwin, Mooreoft, and Chery kept up a continnons disenssion, which doultless did much to improve the art, but which introduced some very mifortmate theories. followed hy evil practices. Flat shoes and "seated" shoes were offered as panaceas for all kinds of feet. Narrow shoes were pitted against wide shoes, whort against long. Frog pressure and short shoes were tried and disaraled. Soles were parel thin, and frogs trimmed to farour elasticity. Shous
were made with linges to allow expansion, and heated gmarels took place as to the position and direction which nails and mail-holes should take. Earch authority pledged limself to some special form of show or method of applying it as the only one sulathle for all feet. Few, if any, seemed to grasp the fact that horses' feet differed widely in form and substance, and that the lest general principles depended largety for success upon the careful performance of every detail.

From 1830 to 1860 mot much was written abont horse-shoeing. Fariers followed their own line, and mather looked akkace at theories and principles. The actual manall work was remarkably well done in the large towns, that too much attention was given to the prochuction of the shoe, whilst the preparation of the fiont was negleeted sate for the neat and smart apparance shown by the whole operation. The hoof was pared and rasped as though it were an inamimatre boock, with the result that it was more fitted for a tahle omament than a basis of support for a horse travelling over romgh mants. To the late Alr. Joseph Gamgee helongs the chicf medit of the more sensible methotis antopeted to-day. From 1860 to 1870 he never ceased to wite :mbll trach that a horse-shoe was wanted to protect a loof from wear, that the hoof shomlal le left as strong as powiblo compatihe with its proper proportions, and that the fitting of a sloce to the foot shomh he exact, whilst every foot shouk the treated accomling to its own special reguiremente. He was ably seconded in his endeavours by 1h. G. Fleming and other veteminams, with the result that correct principles are now quite moderstood and faily widely adopted. During the last decale a new departwe hats heem made in sone eomaties. The technical eduation committee have recognized the importance of horse-sloeing as a craft, and an enteavour is being made to improve the art by lectures and by paratical demonstrations with a travelling forge and an efficient instructor. Now that apprenticeship has fallen into desuctude, this practical instruction is the only way in which many districts can offer farsitities for young workmen to see the best work and to have it explained to them.

Few owners of horses appreciate the importance of the best shoeing, which can only be done with time and care. Low-priced work means low-priced lahour, :and the hurry necessary to oltain a living by it quite prevents men from giving the attention to details which is essential to good shocing, exen when kowledge of principles and manal skill exist. The aim of this article is to afford owners of horses such mformation th will enable them to know good from bad shoeing, or at imy rate to impress them with the fact that the art is an important and difficult one, worth much more attention than it obtains.

ANATOAY ANI) PIISSOLOGY OF TULE FOOT

Some knowledge of the structure of the foot and of its finctions is necessary to am materstanding of the principles of horse-shocing. The hoof is only a layer of hom covering very sensitive parts and affording a base of support for the limh. A damaged hoof camot properly potect the parts within, and a deformed hoof plames the whole limb at a disadvantage even as a colnmis of support-much more so as a propeling organ, when great effort is refuined for dranght, or quitk movements for pace.

The loof is not a regular geometrical figme it is an megnar one (fig. G:4), and this irregular form must be followed in shoeing. If the two from feet be looked at on the gromed it will be seen that they are similar in form and size, that the imer surface is more upright than the onter, amd that the hoof is much higher in front than behind.

The Wall (fig. 625) is the part of the horn forming the front and sides of the hoof. It grows downwats from the eomonet, end as it slopes forward ame is constantly growing, there is a continuous Jengtheming of the toe. 'The efliact of excessive growth is therefore to bing the

Fig, 62t.-Normal Font: front view, showing slopes of (A) onter wall :and (B) inner wall bearime surface of the foot out of proper relation to the leg, and all overgrown feet atford a diandrantageons position for the borse stamding or moving. When a horse is shot his hoof amtmones growing, and if the show he retamed too long, the hoof gets dieprofortionate amd may anse either stmmbling or injury to the temtons. The angle at whish the front of the wall slopes is a usefut guide to the proportions of the hoot. It whould he about 45 degrees. When the toe is too long the wall shopes too moch, when the heels are two high the front of the wall is too upight (fig. 631). The wall is thikew at the toe than at the heels, and as this variation is gradual from front to back, so mals may be driven into it witl less danger towards the toe. The wall does not vary in thirkness vertically, so a good workman may safely drive a nail to any reacomble height in its sulstance. The
outer layer of the wall is the hardest, and thas most capable of resisting wear. It protects the deeper layers, and hy preventing evaporation keeps them tough and pliant. The evil of rasping is that the exposed hom soon becomes hard, and a repetition or excess of the process renders the hoof hrittle.

When the under surface of the foot is examined, the sole, frog, and hars are seen.

The sole forms the lager portion of the thoor of the hoof. It is concave, and firmly attached to the border of the wall. (Jn a smootli, level

Fig. 62: - Thuc Watl of the Foot: Hoof showing Insensitive Laminze, sc.

A, Periphic horn-hand. B, Coronary gronve. C. Insensitive laminse. D, Homy sole. E, Horny frog. surface only the outer pertion of the sole-that whirh is immediately conmeeter with the watl-takes a direet bearing. But the sole sustains its share of the weight of the horse just as an areh suports weight althomgh resting only on it. alnitment.

The frog is the prominent trimgular-shalped mases of horn situated at the bark part of the moder surface of the hoof. It extemds forward to a point reaching more than half-way to the toe. Its prominent surface is broken by a depression which shouk be hallow. but which is ton often a narow, Hepp fissure. On earh side of the frog is a apace menating it from the hars. This pace permits lateral yielding when weight in plated upon the frog. It must not le supposed that the frog is an extra thick mass of horn resting on a level sensitive font. Its prominent parts and its depressions follow exactly a simblar fomation of the sensitive structure moter it, and the whole should be left in its full strength. The form of this division of the hoof suggests its use, which is to form a catch when the foot comes to the ground, and so increase the secmity of foothold. The structure of the frog is a tomgh elastic horn, and as the bark of the foot comes to the gromed first during progression, the frog is well constituted to break concussion.

The bars are the ridges of horn which rum on each side of the frog forwards from the heels. They are formed by a turning-in of the wall at
its posterior extremity. Between the bars and the wall are enclosed the extremities of the sole, which are often injured by a badly-fitted shoe, especially upon the imner side, and the resulting bruse is called a "corn". The bars assist in preserving the wint of the foot at the heels. and when ent away by the farrier, permit contraction of the hoof.

Bats, sole, frog, and wall form one continmons hormy covering to the foot. By long maceration in water they can be separated, hut in a healthy living foot they are all firmly muited so as to form a sound hoof. Each division should be kept in its most perfect comeli-

Fis. figi-The Sensitive Foot: Side Viem
A, Skin. A', thin tevend of hairs. B, l'eripolic band. c, Cumary cushion. D, sensitive lamime. tion, hemase any longeontinued defect of one is certain to affeet the other injurionsly if the wall at the heels be left too high, the frog soon shrinks and wastes. If the sole he cut away and weakened, the wall has to support maided an excess of weight, and it becomes broken and diseased. Wall, sole, and frog mast he kept proportionate if the proper relations of the whole hoof are to he maintained.

Internal Structure of Hoof. - Al-

 thongh the hoof is a firm. strong, protecting covering to the sensitive foot within it. very serions injury to the horse results from defects in its structure which are often overlooked. These will he appreciated more readily when it is known that within the hoof is a particularly delicate and complex arangement. When a loof is removed with care, a beantifnl, sensitive structure is exposed, having a rontour exactly matching

Fig. fi27.-The rencitive Foot: Sole :anl Frug

A, Median cleft of theshy frog. B, Lamine of the bars. c, Velvety tissue of the frog. D, Velvety tissue of the sole. the imer surface of the hoof (figs. 626,627). The imer surface of the wall is covered with rows of thin, horny plates rmming from above downwards parallel to each other, all sloping forwards
like the finer of the wall. The corresponding portion of the sensitive foot presents lundreds of similar parallel projecting leaves of sott, velvety, fibrous tisus. These are called the sensitive lamine, and in the living foot are dovetaled between the homy lamine of the wall so as $t 0$ afford a firm. serure attachment letween the two. The sensitive frog and sole are firmly attached to the corresponding homy parts, hat instead of phates the comecting metium here in a mass of little paillie, so closely arranged as to give a velvety appaname and feel to the exposed sumface. This sensitive layer, lemown to farbers as "the quick", is bomtifully supplied with nerves and hood-vessels. Just where the hair meets the hom-the part called l_{y} horsemen the coronet-is a very important structure, seen when the hoof is detached. This is a prominent ring or band extending romed the foot and covered with very large papille. From it the wall grows, and injuries to it are followed ly serious defects in the hom. Not only to surll casily-recognized conditions as "sand-rack" and "falsequarter" follow injuries to the coronet, but all the defective fualities of hom, such ans are found in dry, hittle hoofs. proced from the coronet. So also to the rings and irregularities oftem noticer on the frome of the loof.

Growth of Hoof. -The wall grows downard from the coronet at the sate of about an inch in three montlis. It is constantly growing, and when protered from wear ly a shoe, som ranses a dispropertionate hoof. If allowed to grow, it may even pwace deformity. Remembering this, horse-owners will understand how neressany it is that no shoes shomld he worn more than about a month without the superthons growth of horn heing removed from the hoof. Fam horses in inlle seasons are often growly neglected ley being furced to stimb in shoes attanded to hoofs so overgrown ats to phace the foot quite out of ite proper ratative position to the limb.

Young homes that have never bern shon are often ingured be being allowed to rom in yards or small soft pastures where the hoof is mot matually wom down. Thwir feet herome so wergrown and di.pmoportionste that the limbs are ingured and joints twioted jermanently. Even foals should be attemed to hey the farrer when their howfo heeome avergrom. So paring is necessary. All that is wanted is the remosal of the exress of wall with a rasp. This neressary attention would frepuently make all the difference between grool feet and limbs and had ones.

Cartilage. - It is monecessaly to enter more into detail as to the anatomy of the foot. Within the sensitive layer just noticed are the hones, and attached to them the tendons which move the limb in progression. There are two structures, however, which must he mentioned. The chief ' wome of the foot-the cottin-hone-which gives the gencral form to the hoof, does not extend throughout its whole interior. It forms the
basis of the front and sides of the hoof, lint towards the heets is replemed on cach side by pates of gristle or cartilage (fig. (i28). This mastix material can be felt at the imer and onter sides of the eoronet throngh the skin of the living horse. When diseased and converted into bone it forms the so-called side-bones, which sometimes canse lameness, and always destroy the natural elasticity of the foot. These cartilages, replacing bone at the back prarts of the foot, give resiliency to the hoof, and so prevent roneussion.

The Frog.-lf we examine the under surface of the foot, we find another provision agamst jar, for whilst the sole rests upon a bony hasis, the

Fig. ©iOs-Lateral Cartilages, \&c., of the Foot

 Henhy leaves. G, fection of skin. H, fleshy fros. I, Horny fros. J, Horny sole. frog does not (fig. 6:29). The body of the cottin-hone only extemds backwards to abont an inch past the point of the frog. lt there divides into two processes whish extemb nearly to the heek, but leaving between them a large space which is filled by a pad of elastio. material, over which the frog rests. This arangement permits the frog great freedom of movement, and gives to the hack portion of the hoof the special feature of elasticity so necessary to its function of lneaking comonssion when the foot comes to the eromme dming progressom. The front part of the foot, by the thickness and harthess of the wall, aml by the rigid hasis of bone within. is specially fitted to suntain the strain which is placed poon it when the toe takes the welolat of the lorse, as it doss in all forward movements. The lark part of the foot, by

Fig. fist. - ITader Surfae of the CofinBone, showing its I'omitum within the 110.uf
S. Wherlis. B, hensitive:abl jusencitive laminte. © Wall of lamf 1 , 11 umy frome its thimer and more elastic horn, ley its prominent and soft frog, and by the partial sulstitution of artilage for bone as its imer hasis, in specially endowed for receiving its first impart with the ground during progression. That the foot may preserve its functions intact the hoof most he mantamed in its leest form. No parts must
the defective, and all must be proportionate. A foot denuded of horn may have its sensitive portions injured, and a frot covered by an excessive or disproportionate hoof may so destroy the balance of the limb as to canse grave lesions, resulting in lameness.

Shoeing is necessary to protert the foot ley preventing wear of hoof. but shoeing hy preventing wear leats inevitably to excessive growth of hom. Good shoeing, then, entails regular remoral of shese and systematio reduction of the wergrowth of horn. Before a shoe can be properly phaced upon a foot, the hoof must he prepared for it, and this operation repuires for its skilful performance a kowledge of the nomal form of a lemsers foot, of the poper popartion of its varions pats, and some idea of the right relative position of the foot to the limb.

PREPARATION OF FEET FOR SHOEING

The first step in the opreation of sho ing a horse is to prepare the hoof for the whes. As a rule the how is owerowne and the farrice has to redure it to proper proportions. ILe has alsw to produce a leved hearing surface unon which a shoe can rest seemely. The first pluestion to determine is , what is the natual bearing surfare of the hoof! On soft ground the whole lower surface of a herof takes a bearing, because the ground yields, and allows the frog. sole, and lower border of wall all to take weight. On hard gromm this is mot so. The sole is arded, and on a hevel surfare only rests on its abutment with the wall. If we examine the worn part of an mishod foot we find that the horder of the wall, with a little of the sole to whirh it is romecterl, is marked bey rontact with the ground, and that the froy also shows evincolee of watr. As a whe is conly to protect the hoof these parts are imdicated as the natural learing surfaces. and we follow mature in attempting to protuce a similar surface bey artificial means. With a maty the fartier removes so mach of the lower horder of the wall as will rethere the foot to a proportionate form. He use- his rasp so that a level hearing is formen from the herl to the toe. He must leave an much horn on the foot as is mecessary to protect it from injury and he had hetter err on the side of leaving too much rather than too little. Some hoofs are so orergrown that their retuction with a rasp is tedions, and a layer of hom all round the circmoferne of the wall is more easily removed with a hammer and steel blade known as a "tocing kmife". Properly nised on a strong foot this method is moljectionable, but on weak, soft feet it is liable to abose by removal of too much hom. The whole of the sureeflnows hom mast never be taken away with the "toeing knife", as it does not leave a level hearing
surface. The rasp is to be used to finish the process, and as it only obtains a level by further removal of horn, sutficient must be left for it to work on. But a level surface is not the only am a farier bas to keep in mind. It may be prodnced with such exactuess that a level shoe rests on it perfectly, and yet the hoof may be altogether ont of propertion. Both siden of the hoof must be left of the same lieinlat, and if the sules of a foot when it comes to a farrier he of merual height, it is evident that one side monst be reduced more than the other to shtam a proper form. Agan, it is rear that if the foot be level on both sides, a man may fasp away more hom fiom ons patt than another and so cause a disproportion. Carelessues in the bow of a rasp frepuently learls to mevembes of the bearing surface. Fromi the position in which a foot is lecld on or letween the knese of a farmer, some portions of the hoof are more easily reached with the rasp than others. The left foot sulfers ley over-retuetion of the outside and inside toe, the right foot at the inciule heel and outwide toe A left-hamded man is lialbe to injure feet in just the opposite positions. It is equally possible to over-lower both heels or only the tore Even when the smrface is ruite even from heel to toe

Fig. 630, - Wrererom Foot
ab, Olal base of wergrown fout. oft. Letvel surface olitansed by lowering the heel hore than the twe bot Level surface ohtamed ly lowering the toe more than the heel. ir, laper angle for new sudface. on hooth sides of the lioof. the foot may reman disproportionate. The heels may he left too high or the toe too long, and the projer adjustment of these two extremities of a hoof is the most difficult and most frequently-neglected part of the prearation of a froot. 'The great canse of difficulty is the fact that horses' feet are not of definite form, and that much ham may lee done by attempting to carve a foot to some illeal stambard.
some feet have natmally high hecls, which can only be ratuced to a shapely pattem ly weakenm! their structure. Some feet have maturally low heels, and some have long toes. which must not le interfered with (fig. 631). As a rule, when the overgrown wall is reduced to the level of the sole, very little more horn need be removed. The effects of lowering the heek are to lengthen the bearing surface backwards and to increase the slope of the wall in front. Too much horn at the heels tends to straighten the foot and to lift the fiog form contact with the gromme. It in always desirable that the frog should touch the groum, but when it in wasted no attempt to let it down by over-lowering the heels should he mate.

When a hoof is excessively sloped in front and the toe long, it would be injurions to shorten the toe by raning the under surfice of the foot. Such a hoof is properly treated by directly shortening the toe with a ratsp applied to its border.

When a hoof presents. broken horn on the lower border of the wall, it is necessary not to allow a shoe to rest on it. Broken horn cannot suppent weight, and when it yieds may cause injury to the sensitive part., and atways ranses shoes to lecome loose. Broken horn should be removed unless it can lee left in a position offering no hearing for a shoe. When a foot is insufficiently covered with horn, either as the result of excessive wear from work withont shoes or as the effert of previous removal by a farrier, great care is necessary to produce the hest bearing surface. As

Fig. 631 . Well-proportioned and Ill-promortionel Feet
A, Fuot too long and heel too low. B, Well-shater foot. C. Hech too high,
a rule the puartors of a foot are most broken, and the heels may he trusten to take most bearing.

The ath should never be pared out with the object of making it concave and mooth (fig. (i:32). All that is necessary is to remove the loose thakes of horn which are naturally being exfoliated. No part of the sole will stand meven pressure loy a shoe, and therefore it must be lowered fully to the level of the wall. The border of the sole, just within the wall, may properly he used ats hearing suface, but only in conjun tion with the wall. Where the latter is hoken away, no attempt should lee makle to use the sole as a supprit for a shoe. On that feet care must le takinh, esperially at the toe that the sole in not left umduly prominent. At the heels in all feet the angle of sole between the har and wall should be left less prominent than the wall, or meven pressure will take place and calse a corn. The old mothod of scooping out the sole of the foot till it presented a saucer shape not ouly left the homy covering ton thin to protect the semsitive parts within. lout it destroved the bearing surface for a shoe by leaving the cirrumference of the hoof a mere narrow ridge. The bearing surface should be as wile as possible, and include not only the wall but the border of the sole.

The frog should not le touched. The broken and ragged portions invite removal, lut are better left. They do no harm, and their remosal nearly always leads to further loss of hom which is wanted.

The bars shouk not be cut away, but when they are very prominent may he so rednced that they take no direct bearing on a shoe wacept at the extreme point where they meet the wall. This extreme point of the bearing surface of a foot is very often injured. What is alled "opeming the heels" is a favourite operation with some men. It consists in cutting away a wergeshaped piece of horn from each side of the frog and from the point of the wall. It is altogether evil in its effects, for whilst giving a delusive appearance of width to the heels, it robs the fort of some learing surface and fatours contraction.

To repeat shortly the rules for preparing

Fig. 632.-A Pireal-out sole a foot:- With a raip form a level hearing surface for the shoe from heel to toe: keep both siles of the hoof of the same height: see that the length of the tue ame the height of the heets are proportionate; let the frog and lars alone; remove from the sole only stach portions as are loose or may receive undue pressure from a level shoe; finally mun the rap hohtly round the circumference of the hoof, so that no shay edge be left which is useless to suport weight and might be broken.

SHOES

Probably the earliest shoes fixed by nails to a horse's foot were thin iron plates, simitar to those now used by Arabs and Turks. The mails were flat-headed, and so soon as the head wore off, the shoe wouk be loose. Un grass land or soft roats this arrangement would aflord a fair amount of protection, ind the shoe would last a long time by merely refixing it with fresh mails. One of the first improvements would be to increase the thickness of the shoe, and to form the head of the nail so that it might be conntersunk into the iron of the shoe and thas afford longer wear.

The great essential in all shoes is that they shall protect the hoof from wear and do no harm to the horse. They should be of sufticient substance to wear three or four weeks, and they should afford a good secme foothold on the surfaces over which a horse travels.

Material.-The best material for horse-shoes is undoubtedly good
malleable iron. Steel is too harl, and favours slipping on stone pavements. Cast-iron is lorittle.

Weight.-A shoe should be as light as possible, provided it affords fom weeks wear.

Thickness.-No shoe should be much more than half an inch thick, as the greater the thickness the more the frog is raised from a bearing on the gromm. Very thick shoes remer it difficult to make the mail-holes of the best size and form.

Width. The older shoes were atl made wide apmarently with the idea that the sole needed protertion. A weak, thin sole, expecially when travelling over loose, sharp stomes, may need some extra cover, but a somed sole which has not been roblet of hom liy the fartier needs no protertion from the shoe. The witth of a shoe should depend simply npen the amome of iron necessary to afford four wecks' wear. If a narow she wears out too soon it is heter to distribute the additional ammut of iron reeruired in width than in incereased thickness. A shoe shouid not lar the same width thronghout; it should be widest at ther toe and gradually decrease towads the heels, as this provides the extra amount of iron where it is most wanted for wear.

The Foot Surface of Shoes. A shoe has two surfaces-one applied to the lowf, the other for contart with the groumd. Both may be fuite flat. but there are conditions which govem the choice of form and remer alvisable some sariations. The smrfaee which is applied to the foot must rorrespom with the hearing surface on the hoof. (h) all somml. well-formed feet a shoe with a flat surface is the best. The foot surface of himel shoes is always male that, ats is that of namow shoes for either hind or fores. So long as thessole of a foot is concave no meven pressure (am result from a flat-surfaced shoe, lont when the sole is flat or comex there is danger of uneven pressure. Some from feet present this defect. amd to provide a safe form of foot surface a shoe is "seated" (fig. $6: 3: 3$). This me:ms that the imme half, or more of the foot surface is levelled so that hearing is contined to the Hat outer portion of the shere. This form of shoe is reery commonly used, esperjally when the shoe is a wide ome. l'ougerly made, this foot surface is a safe and useful one. When the onter level portion is made too narrow, nseful bearing surface is lost; when it is left a little wider than the wall it is molijectionathle. A very loal fous surface is formed by bevelling the iron so that it slopes from the onter to the imer ciremencrence of the shoe (fig. 634). Such a surface affionts no lerel resting-place for the hoof, and when it is attachen to a foot may canse lameness loy shoeding the wall inwards. At the heeds the foot sirface should always be left Hat, and the seating of a shoc should
eease about an ineh or an inch and a half in front of the extremities of the shoe.

The ground surface may vary in form without affecting the foot in any way. The chaf variations are such as afford some pecial means of increasing the security of foothok, and of providing against injury to the

Fig. 633. - A "Seated" Font Surface

Fig 1i84.-A Bat Foot Surface
horse. I that smface broken only by aroove or holes for mals. is often used. Rilges or grooves are sometimes added for the perfal purpose of affording better grip of the rom surface. 'Transerse growes Weaken a shoe and cause it to break more casily than longitulinal ones. What is komw an Rodway irom is rolled in hare, having on the monme surface two grooves and three ridges (fig. 6.35). Into the onter groove the

Fig. 685. - Rombay Iron Shoe with Doulle Grooves

Fig. 63t.-A "Concave" Gromml surface
mails are driven. No better form of shoe exists for hamesn work, provided it affords the necessary wear; lut this is just where it fails for the heavier class of horse.

The hmating-shoe is concave on the ground surface with a grocre for the malls round its outer horder (fig. 636). This is a grood form for barks and other hight horses, as it aflords very firm foothoh, expecially upon the erass and soft roads.
"Calkins" are the turned-down extremities of shoes, which would probally be called heels by non-horsey folk. Projecting as they do from a half to one inch, they affiord the most effectual stop or catch where the surface is such that they can sink into it. For the hind shoes of hunters they are quite indispensable, and they are most nseful for other classes of hense on soft roads. On some paved streets, where the stones are set with a space between them, calkins affion the hest foothohl, lout on harrl, smouth surfaces, such as asphalt, they are quite useless. To provite against wear, calkins are often made too high. Excessive

Too high Fig. 1937.-Calkins height can be avoided by making the caikin spuare, and so providing for wear with a lower projection. The evils of calkins are that they put the foot out of its normal position by raising the heel. This the the is suljected to disproportimate wear, the frog is kept from contact with the gromod, and to some extent the muscles of the limb are placed at a disadraintage for action.

Toe-pieces. - la Scotland and the north of England heavy horses are shod hoth fore and hind with calkins and toe-pieces. This form of groum surface on a shoe has some adrantagen for horses that only work at a walking-pace and have heary loads to move. The toe-piece consists of a portion of a square bar of iron wekled acrose the toe of a shoe. This, with ralkins, maken the shoe more level, and so preserves the proper relative position of foot to limb. The toe-piece affords foot-

Fig. 638.-Nail-holes hold to the front of the shoe just as calkins do to the back of it, and the combination enables a lighter shoe to be used. It is a good system for railway shunt horses and for animals dragging heavy wagons over paved streets, if the paving-stones have spaces between them in which the toe-piece can find lodgment.

Nails and Nail-holes.-As soon as the head of a mail is worn off, the shoe becomes loose, therefore a Hat-headed mail such as a camenter drives into wood is of no use to a farrier. The horse-shoe nail head must be comutermuk into the shoe so that it wears with the shoe aml may retain it in pesition until guite worn out. The nail has a wedge-shaped head. It has a flat shank, because the thickness of the wall into which it is driven is limited. The hole in the shoe must be made to fit the head of the mail, and as the size of mail most suitable for a hoof varies considerably, it is necessary to make the mail-holes in a shoe very care-

fially correspond to the head of the proper sized nail. Nearly all hind shoes and some front ones are provided with nail-holes by stamping throngh them a series of fons-sided tapered holes of the size derfuired. Most fore-shoes are "fullereal", i.e. a groove is smbs romed the shoe close to the onter edire, and throngh this the holes for mails are afterwards punched. Both methods admit of nails being easily driven with satety. The number of nail-holes really required to retain a shoe should vary with the size of shoe. Never mone than eight are refuired. Usually sesen are sufficient for the largest shoe. Simall shoen are safely retained by six.

Fig. pid! - Wrongly-]laced Nail-holes The position of mal-holes is important. The wall at the hees is thin, and therefore if soom hold of the front portion of the foot can be taken it is unwise to drive any mails at the back part. Sailholes shonld not be too near to the outer edge of a shoe, as when the mail is thiven insutherent hold is afforded it, and the hoof is likely to lee split.

Still more important is it that mallholes shonld mot bre placem tor far from the ronter elge of a shoe, as then a nail is fored to approdeh too near the sensitive structures within the hoof. The mat-lones at the toe may be a little "roase", lout the holes at the heels

Fig. 640. - Pitel for Nathohes for Quaters must be "fine". The "pitch" or direction of a nail-lme is important, because it controls to a great extent the direction in which a mail an be driven through it. The satient "piteln" for a nail-lowle is straight thromgh the shoe, lont the

Fie. Bifl.- liteh for Noul-hule for Toe holes at the toc shonld have a little inclination inwarls, as the wall at the corvesponding part of the houf sopes eonsidembly, and the mail must follow its direction.

Prepared Bar-iron.-Formerly only plan four-sided bans were supplied for farriers. Now manufatmrers roll bars with that or seated foot suffaces and with varions foms of ground surface. 'These preared bars only refuire to be "ut into poper fongtha, tarmed romnd, and holes punched for mails to form a rery wool shoe. For harness horses the double-rrooved (Rodway) bar is very handy and very serviceable. For

[^1]hmoters, bars can be had ready fullered and coneaved. For hind shoes of hunters a very good prepared bar is made, which, being rounded on two edges, affords a shoe without trouble that guards against over-reaches.

Machine-made Shoes. - All sorts of shoes are now supplied realy for mailing on, made cntirely by machinery. For front feet these shoes are all that is wanted, but for himd feet the hest hand-made are still unequalled. No doubt engineering skill will soon be able to supply a hind shoe which will last a month on a hard-wearing horse and yet not be heary and cumbersome. There will be a large demand for such a shoe when it appears.

FITTING SHOES

Care in Fitting.-Very few horse-owners appreciate the importance of care ind exactness in fitting shoes to horses' feet, and yet this part of the operation of shoeing may render a perfectly-formed shoe an instrument of torture, and cost the owner more than the price of a hundred sets of shoes.

Too much care in fitting the shoe to the foot camot be taken, and as care means time, the folly of valuing shoeing by its cheapness will be evident. Cheap work is tone ly unskilled men or hy skilled men in a hurry. Under either condition it canot be careful and exact, therefore the horse suffers. One reason why had shoeing is tolerated is that its evils are not always immediately indicated, and then the results are credited to other calses. Quite a third of the ill effects to horses legs that are supposed to be due to hard work are really the result of injury to the fect. The grosser injuries cause acute lameness and are detected, but the finer injuries cause only tenderness and diseomfort, which is overlooker, and so continued for months. The efferts are seen in bent knees. shot fetlocks, loss of action, and a shuftling gait, which combined shorten the profitalle working lives of horses hy years. And yet horseowners will invite this for the supposed economy of eight or ten shillings a year on their shoeing bill!

Having brought the hoof to the best form and proportions, the farrier selects a shoe suitahle for it in size, weight, and shape. His next duty is to alter it so that in every detail it shall be exactly adapted to the foot upon which it is to be mailed - in other words, he "fits" it to the foot. There are two distinct objects to be achieved in fitting. First, to make the outer borler of the shoe correspond to the circumference of the wall. Second. to make its foot sumface rest evenly and dosely on the bearing surface of the foot. Fect differ in shape; some are nearly
round, others nearly oval, whilst many are very irregular, but they are never geometrical figures. Were there a definite form, shoes might he east in a mond and applied withont special fitting. The more ignorant of the hundreds of inventors of horse-shoes are quite maware of this, and hence the stupid lout phansible claim that their shoe " may be fitted to the foot by a groom or stableman". The fact is, every shoe must he fitted to the foot upon which it is to be fixed, and in this is the great art of the farrier's trade.

Circumferential Fitting is the adaptation of the shoe to the length and breadth of the hoof, so that the wall of the font may rest firmly upou the shoe throughout its whole bearing surface. In producing this "fit" attention must he paid to the nail-holes, so that they are lnought into the safest and lest position for the nails to be driven through into the horn. The outer border of the shoe should correapond exactly with the circumference of the wall all round, except perhaps at the heels. In horses doing fast work the shoe should the fitted elose, even at the heeks, and especially on the insile of the foot. The onter side of

Fig. 64:. - Shoe Fitted Short it the Heel the foot may be always fitted a little "fuller" or wider than the inside. The hearier horses may have the heels of a shoe fitted wider than the hoof, and this especially when calkins are nsed. because a firmer lase of support is given loy a shoe when the heels are wide than when they are namow. A shoe should always he fitted full to the foot, i.e. not within the edge of the wall. When shoes are fitted close, and natness of appearance valued as lighly as sound work, there is a tendency for men to make the foot fit the shoe. This is done by roughly and carelessly approximating the border of shoe to the border of foot, keeping the shoe a little within the elge of the wall, and, after mailing it on, levelling the work by rasping away any prominent hom. In some strong, well-grown feet this may do no harm, but it is a bad habit, certain to do injury when a weak foot is being operated on. The length of a shoe is important. It should be the full length of the bearing surface of the foot. When longer it may injure the horse's elhow when he lies down, amb on the front foot may be struck hy the hind shoe and pulled oft. The fore shoes of hunters are always fitted short to avoil this (fig. 64:2), but in many cases they are unnecessarily short. A short shoe is ohjectionable for many reasons-it loses some of the natural bearing of the foot, it is likely to eause a corn by bruising the sole at the heel, and it carrics forward, out of its proper relative position to the limb, the lase upon
which the horse stands. On a himd foot there is no excuse for fitting it shoe short. It stands no risk of being pulled off ly another foot, it (amont injure any part of the limb when the hosse lies down, and so the hind shoe should alwas he longer than the foot, expecially when calkins

Fig. 843. -An "Eased" Heel me used.

Surface fitting is the imlaptation of the plane foot surface of the shoe to the level bearing sirface of the foot. The shoe should rest evenly upon the hoof from toe to heel, the pressmre being miform thronghout. Should either the foot or the shoe not le level some parts lose bearing, and others sustain an meren and excessive hearing. It is not uncommon to find a shoe fitted so that its centre is higher than either heel or toe. Such a shop rests unevenly on the puarters of the foot, and as the wall is there weak, we often fimb the hom lorken as the result of excessive bearing. Flat feet present the sole more prominently at the toe tham

Fig. 644. -Shoe with Level Bearing at other parts, and therefore care is remuired, when fitting shoes to them. that the imer edge of the toe of the shoe shonkt not bear upon this jart. Special care mast always be taken to avoid any modur or meven pressure by the heeln of a shoe upon the angle of sole between the wall and the hals. When the hom of the wall is detarbed from the sole or hadly hroken, it mast be relieved of all hearing either hy lowering it with the lasp or by fitting the shoe so that there is no contact between the two. I very injurions methot of fitting shoes followed upon an erroneons theory to the

Fig, 645, - Shoe lmitating a Worn firmmi-surface effect that the heels were umable to stamd their share of bearing as well as other parts of the wall. With a riew to save the heels of the foot, shoes were what is called "eased" or "pming" at their extremities (fig. 643). This system of fitting left a space between shoe and forit at the heels into whicla the blade of a knife might be passed, and the spare extemded forwand from an inch to an ind and a half.

The fact is that the heek will stand, and they reguire, all the bearing a leved shoe ran affort. The "eased" heel is altogether an mjorions thing. It loses bearing surface, and concentrates pressure on the spot where
foot and shoe eome into contact. Insteal of affording ease, it caluses an on-and-off pressure every time the foot is brought to the ground during progression. The surface fit of a shoe should be an even and level one firom toe to heel.

Hot and Cold Fitting. -Shoes may be fitted either hot or cold. If fitted colk, exactness can only be attained by the same long process that is adopted by an engincer who has to fit together two pieces of metal. All shoes have to be altered to fit a foot properly, and they cammen easily be altered cold. That exactness of fit camot be obtaned by cold fitting is amply proved by the mumber of loose shoes that oceur when it is practised, to say nothing of the injury to horses' feet from meven pressure. An iron shoe is easily altered when hot, and this advantage requires the accompaniment of very grave disadvantages before it can be shown that it is wrong. Comnterbanemg disadrantages do not exist. and therefore all argment is in favour of hot fitting, in addition to the weight of miversality of practice. Wot fitting facilitates the exactuess of fit, it decreases the time necessary for fitting, it does no ham to the hoof, and it umboubtedly results in grater security of the shoe. (Opponents assert that hot fitting leads to excessive burning of horn, but this is only an abme of the method, and roes not oceme in the hands of a goor farier. When a skilled workman has selected a suitable shoe he heats it in the fire, rompares it with the foot, alters it on the mavil, and then applies it to the hoof for a few reconds. Wherever the shoe touches the horn it leaves a mak, and thus shows all irregularities. If the horn is at fault a tomel with the rasp corrects it, if the shoe is at fault it is taken back to the anvil and altered. In this way exactness of fit is soon attamed and the hoof uninjured. The abose of hot fitting takes plare when a hot shoe is retamed on the foot matil it beds itself into the horn. There is no excuse for this practice, whel is a sign of sherenty work, ant may be a source of injury to the horse.

Clips are thin projections drawn from the iron of the shoe at the toe or quarters for the purpose of giving stability to the sho when on the foot. By many persons they are looked upon as essential for the presention of shoes shifting on the foot. (On some honses, from peculiarty of gat. shoes have a tendeney to shift inwards. This may be prevented by a chip on the outside of the shoe. The tendency of a foot to slip forwath on a shoe is rare, and yet clips are in Britain always nsed on the tore of the shoe. The fact is, the toe-rlip assists the farmer to fit the shoe, and it gives stearliness to it whilst the first mal or two are being driven. Clips shonld not he long and narow, hut rather wide and short They should be thin, and drawn with an inclination corresponfing to the
portion of wall agamst which they are to rest. Too often a large piece of hom is dug out of the toe to make room for the clip. This is altogether mmecessary, as all that is required is to form a level surface on the hom with a rasp, so that the clip may lie evenly and not project. When the shoe is nailed on the foot a few taps with the hammer are reguired to leave the clip close, lout the violent hammering too often seen is dangerons, and usually due to the elip having been batly drawn.

When two side dips are used and both excessively hammered, lameness results from the pressure on the wall.

NAlling on the shoe

Nearly all horse-shoe nails are now made ly machmery. They are well matle, somud in structure, properly pointed, and with hearls of a uniform size and shape. The machine-made nails are certanly better than the hand-made, and no fault can he found with them so long as the iron from which they are manufactured is good. A horse-shoe mail must be made of the very best iron, or it will break and cause shoes to be lost. According to the size of a foot so is the thickness of horn, and mails are chosen to suit this. Too large a mail breaks the hom, too small a one fails to hold the shoe on. The direction in whieh a nail is driven is very much controlled by the form of the nail-holes in the shoe. When a fanier finds that he camot drive a mal with safety he should either have the shoe altered or decline to drive the nail. The direction which a mail takes in the hom is recognized by the somm and "feel" clicited by the hammer. In a thin foot it is a delicate operation, but in a strong hoof there is no risk whatever. The heads of mails when driven should fit the holes or fullering of the shoe. A small portion of the head shonla be visible when the nail is driven home. When the head is only flush with the sumface of the shoe. and visibly does not fill the hole, the shoe is likely soon to lie loose.

When a nail is driven though the hoof, its point is turned down and wrung off, so that a protruling portion is left. This is called a clinch. Inst under it a notrh is mate in the wall with a rasp, and the clinch gently hammered down into it. A stroke or two of the rasp levels the whole and leaves the clinches smooth. Excessive rasping weakens the clinches and destroys the secmrity of the shoe. When the shoeing is finished the clinches should been alout equidistant from eaeh other, with a good hold of the wall, and rather higher at the toe than at the heel.

ROUGHING

In winter some addition to the ordinary shoe is necessary to prevent horses from slipping on ice and snow. In Great Britain the weather is so changeable that a regular provision for frost is seldom made. as it is in countries where ice and snow prevail for weeks or months at a stretch. Here our roals are covered with ice and snow with very little motice, and may be free again in a day or two. Horse-owners therefore provide

Fig. 646. - Frost-nails
temporary arrangements to meet the short, oceasional spells of slippery weather. The most temporary method of affording foothold is hy the use of what are called frost-mails. These appliances are very similar to the ordinary horse-shoe nail but with a larger head, and brought to a sharp, point or to a chisel-alge. The smaller ones may be drisen into the holes from which a nail has been removed. The larger are only used at the heels in an extra hole epecially provided for them. These holes are punched through the heels of the shoe, which is fitted a little wider tham usmal, so that a frost-mail when driven does not enter the hoof at all, but passes through the shoe, and is fixed by heing twisted over the shoe. Frost-nails are very useful for an emergency, but not for continned use.

When frosty weather looks as though it were to continue for some
time, horses are "roughed" or "harped". The shoes are taken off heated in the fire, and the heets turned down so as to form a sharp projection that will cut into ice or frozen snow, and so give firm foothold. (on hame roads this sharp projection soon beromes worn away, and the process of roughing has to be repeated. This repeated removal of shoes injures the feet, mot onty bey the driving of mails through old holes. but by the shortening of the shoe, necessitated by the ronghing. So injurions is repeater roughing. that a hetter but more expensive methou is now adopted by all sensible men who have homes of value that must continue at work during frost and smow. From about the middle of November to the middle of Mareh sufficient frost to render roads unsafe may at any time appear. To meet this the shoes, before being pat on, are furnished with holes at the heels, or both at toe and heel. These holes

Fige, 647. -Steel Sharis to be Serewed into Shoes when required
are made with a thread, into which movable steel sharps can be sorewed when wanted. 'To keep the holes clear a cork may be serewed into them, or better still, whare steel phos may be used during ordinary weather. and reptaced hy the sharps when frost arrives. No removal of shone is rerpured hy this method, amt no sharp projections need be left in the shoes when the horses are in the stable.

INJURIES FROM SHOEING

When a horse has a goorl foot ant shoumg is poperly done. nu ham to the horse results from the refetition of the operation every month for his whole lifetme. Areidents may happen, but to greak of moeing as "a necessary ern" convers a very incorject notion of its ralne. To do the work without shoes that is now done ly horses with shos wombl refuire twenty times the number of horses at present in use. and more than half of the whole wond low lame at frequent intervals fiom injury due to wear of the hoof. The British army keep rery strict motes of everything whim canses a horse to be matit for duty. The strengeth on in aretage is 16,000 horses, amt the injuries from shoeing only 150
per annmm, of which 50 are due to mails. These statistics show momistakably that army-shoeing is carefully done, and there is no reason why the work shouk not be done equally well in civil life. The direct injurias resulting from shoeing may be clasied mater three heads-- those resulting from nails, those from clips, and those from inegular presome of the shoe.

Nails.-Lamenes may be raused by a mal being driven too near the sensitive foot withont abolnte penctation of the "quick". "This cause of lameness is called "a bind". and may not be evident for a day or two, or even a week, after the time of shocing. In evory laneness of the horse which camot be accomed for hy a visible lesion the foot shond be examined, amb expecially when it is noticed within a few dans of shoeing. To deteet a foot-lameness the shoe monst be remowed and the hoof tested all over by firmly pressing it with pincers. When a " bind" is detected liefore lameness is very acnte, removal of the offembing mail, rest. and warm fomentation are sufticient to prevent further injury. When a "hind" is allowed to continne, inflammation is set up in the foot, and pus may form. Then a serions condition exists which reguires veterinary attemance. Another fomm of injury results firm a nail being driven directly into the semitive finot. This is nsmally followed by immediate lameness. but its wavity depends umon the extent of injury. and uron whether the nal males with it any dint or septie material. As a rule the farmer knows when her has "stabled" or "pridede" a horse. and withdraws the offemting mail at wnee. If suppration does not follow a prick its aflects are very temporary, lat the formation of matter within the hoof leals to very mare resmlts. in some cases to a fatal termination. Continmed work is the greatest agravation of injuris cansed by hails, and therefore all sum cases should be attemded to at once, and rest strietly enforect.

Clips may canse lanenesi hy heing hammered down tog tightly. The most serions injury tracable to clips orans from a shoe beroming boose and only partially detached from the foot. so as to jermit a lowe to tread on the clip. A large punctured womm results, which may entanger the ammal's life. Rest and jorfect deanliness are essential to reworry.

Uneven Pressure of the Shoe anses the sensitive foot to leyome lnowsed. The mole of a flat foot is frequently hruised bey presime of the shoe just behind the toe. When detected arly enough removal of preswer is all that is necessary. The most common seat of injury, due to bruinng by the shor, is the immer hed of the fore foot. This is known ats a "com". lat is in uo way analogons to the rondition on loman fect described by the same word. I ""om" in the horse is simply a broise of the sensitive foot resulting from meven pressure hy the hed of the
shoe. The injury causes lameness, and is accompanied by staining of the hom ly effused blood undemeath. An open, that foot is most liable to corn, and the shoe most likely to catuse it is one that is fitted too short and too close. Even a well-fitted shoe may cause a corn when it is allowed to remain on the foot too long. As the hoof grows the shoe is carrice forwarl, and the extremity of the iron is shifted fiom its safe bearing on the wall to a position which allows it to impinge on the seat of the corn. The excessive retention of sloes frequently leats to their being forced ontwards, and then the moner heel is brought over the sole on the inside, and brasing results.

The gravity of a com depends upon the sensitive sole. In slight cases removal of the shoe and its reatjostment, so that no pressure on
 the brnised part can ocemr, is sutfieient to ensure a return of soundness. Sometimes a day or two's rest and warm fomentation of the foot are necessary. In more aggravated cases it is right to suspect the formation of matter at the bruised part, and as this is a serions rondition within the hoof, it is necessary to pare away all the discoloured horn, and thas afford an opening through which matter may escape. In cases of corn where the discoloration of hom is not very great, and where lameness is not excessive, it is inadrisable to rut away all the horn over the bruised part. Hom takes time to wow again, amd its alsence spoils the bearing surface of the foot. In very many cases a simple hroise, that would have recovered in a few days loy merely relieving the pressure of the shoe, is made a souree of injury and of recurrent lameness by the unnecessary removal of all the horn between the wall and the bar. When a slight corn is found with slight laneness, relief of pressure is easily given by cotting off the inmer heel of the shoe, thas forming what is called a three-puarter shoe. This removal of iron is a safer and better plan than removal of horn.

Uneven pressure by a shoe may take place at other parts of the hoof. A badly-fitted shoe very frequently hears disproportionately on the quarters, and the wall becomes weak and broken. In such a case relief is given either by lowering the wall or by adjusting the shoe so that heets and toes for a time afford the only bearing.

In all cases where a separation exists between the sole and wall, hearing must be avoided, as the wall, when monpported by a firmly-
comected sole, is unahle to sustain its share of weight. In cases of "seedy-toe" this must be remembered. Where a "sand-crack" exists, pressure should be removed from the wall. If the sand-crack be at the toe a good plan is to draw two clips on the shoe, one on each side of the crack, and then to lower the wall between the clips so that it has no contact with the shoe. With a sand-cratk at the toe the heels should

Fig. 644.-Sand Crack, showing Method of l^{2} aring the Erust
a, Bearing relieved at wrong place by "spinging" the heel. b. Horn removed to prevent presure
be kept low and no calkins used, as the higher the heel is raised the more pressure is thrown upon the front portion of the foot. When a arack exists at the quarters the wall just under the crack must he removed from bearing, but it is of the greatest importance that the hecl of the shoe shonld have elose contact with its horn behind the crack.
"Cutting" or "Interfering" are the terms applied to the act of striking the fetlock of one limb with the shoe of the opposite limb. Every horse-owner imagines such an accident to lee the fault of the farrier, and every farier fancies he has a system of preventing or curing such injury. I must, of eomse, allow that the shoe inflicts the blow, hat I am quite convinced it is a passive agent, and that in 95 per cent of cases no fault of the shoe, either in form or fit, can be shown to have occasioned the injury. "Cutting" is practically confined to young horses out of condition, or to old horses suffering from dehility. It may also take

Fig. 6\%0. - Shoe for Cutting, howing Position on the Foot place in tired horses. (If course, a shoe excessively prominent on its inside will facilitate injury to the opposite fetlock, and it is therefore right to fit the shoe close with a view to prevent or cure cutting. It is not right. however, in any case to rasp away the whole of the wall on the inside toe, and such a proceeding never yet stopped a horse from cutting. It refuires ahout two months to get a green horse sufficiently into condition to stop him hittime his legs. During this time he should wear pads or "Yorkshire boots". This
shoes may he fitted close, but the wall of his foot should not be damaged. As le gets into condition he will cease striking his fetlocks, and whatever curious form of shoe he happens to wear when he begins to go strong and clemly will get the credit of a cure, although it had nothing to do with the change.

The hind fetlocks suffer more from cutting than the fore. This is due to the different form of shoe used fuite as much as to the form and action of the limb. The hind shoe has calkins whith interfere with the proper relative position of the foot to the limb, and so cause imperfection in the gait. Nothing so speedily stops cutting behind as momoval of callins and the use of a level shoe. It is not the calkin that hits

the opposite fetlock. In very few ases is the heel of a shoe the offending part. It is the inside toe which strikes, and this proves that the injury results from defective action and not from prominence of the shoe.

It has been found that a threp-puarter shene does good in cutting. It does so, not becanse the heel was the offending part, hat because the movement of the foot is moditied by the altered form of the shoe. The practice of raising one side of the foot higher than the other for the prevention of cutting is rey widely adopterl, and plasible theories are fromed as to its effects. Sometimes it is argued that the injured fetlock is thrown farther ontwards, and sometimes that the offending foot is mate to move farther away from the opposite leg. The practice is not always successful, and the theory wants a true basis of facts. Not one horse in a thonsand "cuts" when in good condition, and nearly every horse does when out of condition. Patence, goorl feeding, and regular work are better treatment for entting than all the usual alterations of foot and shoe.

Over-reach is an injury to the heel of a front foot by the shoe of the hind foot of the same side. It is not the outer edge of the hind whoe which strikes, it is the edge on the inner ciremmerence of the toe of the shoe. To prevent orer-reaching, the hind shoe must be waltered that the offending part is romded off. As the accident only occurs

Fig. 60 ? - Over-reaching, Forging, and Clacking

1. Toe of hind shoe, showing the edge which cuts the hee of fore fout. $\quad-2$, Toe of hind shoe, showing rounded inside border. B, 'Toe of fore shoe, showing places struck in furging. 4, Toe of hind shoe, showngry the elge which strikes the fore shoe. 5, loe of hind shoe with inner border bevelled off.
during the fastest paces it is confined to humters and trotters, two classes of horses which ought always to be shod with hind shoes having rounded edges on their imer tor circmonference.

Clacking, or Forging, is the noise made ley horses trotting when the hind shoe strikes the fore. It is not the lieel of the front shoe that is struck, but the surface of the shoe just behind the toe. so that the foot is in the air at the time of striking. The part of the hind shoe
that strikes is not the extreme point of the toe, but the edge on either side of the toe. Young hoves out of condition, and long-stepping, careless goers, are usmally the mimals that "forge". To prevent it the front shoe is made concave on the ground surface, and the calkins may be remover from the himl shoes. Quite as important as alteration of the shoe is alteration of the horse's gait. He should not be driven "past his pace", and he shouht le mate to go up to his bit. Patience, comlition. :mal coachmanship are as necessary to stop" "clacking" as a good fimier.

THE TRANSIT OF HORSES

Section XIII.-THE TRANSIT OF HORSES

SEA CARRLAGE

There is every reason to suppose that the horse was very early in the wordds history compelled to camy mam, but when the latter first devised means for the converance of horses is not known.

Potentates both areat and little were from the earliest times the recipients of presents in the shiape of horses from distant lamds. and sea carriage appears to have long preceded the home-hox upon wheels.

Ships (apmble of convering Hamibal's elephants from Carthage to the Spanish peninsula may well have carried horses, lnut they do not receive any mention in connection with that great general's dispesition of the sea forces which landed mon Mediternean shores, to dispute with Rome for the mastery of the world.

Viewing the shipping arangements of to-day, one can scarcely believe there has been much improvement, save in the matter of rentilation.

The great passenger ships by which private individuals usually consey favourite horses offer no secial accommolation: there are no stalls or permanent fittings on the P'eninsular and Oriental Company's steamers, for instance, although they freduently cary horses of great value, both east and west. The site usmally assigned to horses is in the ship's waist, where the greatest amount of protection from the weather is ensured. Here they are conclosed in a narrow wooden box some 7 feet 1,0 feet $: 3$ inches, the sides of which are 6 feet ligh. At one end is a door whence the mannere can be removed, and outside the other end a small manger fits into iron slots. Berom a little trap-door ou a level with the floor there is no provision made for dramage. The mine escapes from the box an best it may, finding its way from the deck to the seuppers, and out througl, the holes provided on all vessels for the escape of water. The horse is not led aboard as in the regular cattle ships, but is boxed on the guay, and then, by means of slings attached to semicirenar iron bars plated equidistant above him and from the ends of his prison, he is rased ly the stem crane or derrick, and lifted aboard as deftly as might be a lady's bandoox. In VoL. 111.
this position he has sometimes to remain the whole of the voyage. In cold and fonl weather a tarpaulin is thrown over the box as it stands on the open deck. Horses bound for the East suffer more from the heat in the Red sea than from the inclement weather so often experienced in the Chamel and the Bay of Biscay. It is therefore necessary, in exporting horses to India and other hot climates, to make special arrangements with regard to clothing. In this journey a change from wam to light cool rugs will be reguired on reaching Port Said, and if practieable the howes should be remosed to the cool and sheltered side of the ship, which in this "asse will be the pert how. When weather permits : alsantage should be taken of every asailahbe opportmity to give cxercise on deck, so that any undue filling of the legs may be obviated, and relief afforded from the cramp and fatigue of long standing. It will the well, tho. to bear in mind that mond relief from the discomfort arising out of these canses may be atforded by the repeated aplication of friction to the surface of the body and vigorous hand-rubhing of the legs. Exeept when the amimal is at exercise bandages should be worn and applied with a fair amoment of tightness, so as to support the joints and shews and prevent swelling.

The vessels which hring an many horses from America camy them between decks. A mumber of stalls alout the same wilth as the box previonsly described are arranged on both siles of the ship, the animals facing inwark. They are not simg, but the length of the stall is not sufficient to include the head and neck, which protrules over the gangway, and it is therefore impossible for an animal to get down. Each animal is fastened with the nsual halter or head-stall. which is long enough to permit him to feed from the level of the deck or Hoor of the gingway, where the mutritions alfalfa hay is strmb.

The stout planking that rme breast-high in front of the stalls is serewed up with bolts, and, in case of a sick amimal having to be removed, it must needs be cut aray for a space. The plamks which divide the stalls are made to drop into iron receptarles, and have only to be lifted out when the horses arrve at their destination. To prevent slipping there are bars across the floor of the stalls, hat no leedding is provided, as being monecessary and likely to linder drainage. A gutter is provided in those vessels specially constructed for the transatlantic horse trak and that it effectually carries away the wine may be presumed from the comparatively pure air and freetom from ammonia which prevails on these shipe on arrival with a cato of live stock.

The arrangements for disembarkation leave a gool deal to be desired, the movable gangways being too long, and most of the animals strike their polls and at first refuse to mount the ladder. Another shoot or portalle
gangway over the ship's side enables them to reach terora firmu, which they do with evident satisfaction, for thongh they are often amped, and oceasionally the victims of fever in the feet, one cannot have associated with horses on a royage withont observing the pleasure they display on once more getting ashore.

Diet.-Dict on ship-board refuires to be carefully arljusted. Bran and sweet hay should form the ataple food; a little corn may be added, but the less the better. A dally allowance of 4 or 5 lh . of carots will keep tha horly cool and the bowels in fire action, besides which they are a wholesome and refreshing addition to dry aliment.

In passing through hot rimates horses shonld he watered at least fonr times a day, and occasional sponging of the face will add materially to their comfort.

Medicines.-When long sea joumess have to be taken by valuable horses every provision shomb he mate for dealing with diseases and accidents which may occur on the royage, and finll instructions should be given to the attembant how to act in certain emergencies. Among other things he shouk be furnished with a dinical thermoneter, and exereised in its use before starting. Suitable needles, arbolized thread and cord, shouk also be provided for stitching up wounds, as well as a stock of antiseptic wool for dressing them in the course of subsequent treatment.

These, together with the following list of medicines, will be found to meet all the ordinary requirements likely to arise in the course of a voyage:-

Nitrate of Potash Powders. Physic Bills. Fever Iranghts. Colic Dranghts. Cough Balls.

> Mustard.
> Antiseptic Lotion for Wounds.
> Stimulating Embrocation for Sprains. - Tar of Vaseline.

> Pot of Zine Ointment.

In some horses of excitalle temperament it may be found necessury to inject a little morphia beneath the skin now and again until they settle down to their new mode of life.

Necessity may not arise for the use of any of the more active medicines, but where horses are confined for long periods in a standing posture a little nitrate of potash powder given in the food every second or third day will be found of distinct advantage in correcting any tendeney that may arise to filling of the legs.

Horse Boats.-On short voyages, like that from the mainlamel to the Isle of Wight, horses are conveyed in barge-like boats with a floating phatform at the stern, corresponding to the tail-board of a cart. Howerer calm the sea or river to be crossed, there is always a difticulty in getting horses
abomal, as they intuitively dislike an matable platform, and an old stager has to be kept as a " leader" to induce novices to follow.
(Ince on boad they are patked rosely together, and linked as well as fastemed singly to the bulwarks.
llorses taking a long sea voyage should have their hind shoes removed, and tips applied to the fore-feet.

LANT) (ARIRIGE

Horses are caried on land in "floats", railway boxes, and trumbi. The first vary in different districts, Jut the main primeiple is that of a box on low wheels, in which sick or injured homes may le carted. Entrance to these useful converances is obtained fiom behime, where the doors, on heing let down, forms a gangay with rery slight aseent, along which the horse is led into the float.

The hase-hox familiar to most thatellers, at least from the outside, is divided into three compartments, every portion of which appeas to have bren desighed with the sperial ohjert of making the mont alarming noises calculaten to frighten the immates.

The same description applies with eren oreater foree to the doors. which open upon the platform, or "dock" as it is called. It is too heary for a nam to het it down stembly, and the tratlitions of the rallway would be altugether viohated if it were not allowed to fatl with great violence ron the siming. Everything about a home-bos comes molone with a jerk and rlosis with a bang. Some horses absolately refuce to enter a box of the kinul, and much might be done to rember them less feasome to those matarnstomed to travel.

The rommster is frightened at the ontret by the somod of his feet on the wooden frame door, which might just as well be "dead somnded" hy an intervoning substance that would alsorl, sound. or an india-mbher Hone. The means of securing horses when in the box is also objectionalle.

In this connection Professor Axe, whiting in the Live Stork Journal Almment. observes:-" No one having acpuantance with the constrmetion of onr horse-hoses during the past thinty years will fail to reconize how very meagre have been the alterations and improvements which have been effected in them dming that period: hut what is still more important is the striking want of miformity, and obvionsly dangerous methors, which continne to be paractised thoughout the rations systems in the fistening or tethering of travelling horses.
"That our ratway companies, with all the experience before them. shomb have faited to develop a reamably safe system out of the half-dozen
methots or more now in rogue is hy no means reasming to the horseowning public, and so long as such divided opinions and practices exist, so long may we expect acciolents to continue, and litigante to prese the advantages of one system in order to fix hane on amother.
" ha tethering horses in boxes the general practice at present alopted is to emgage two stont ropes and a heal-stall. The fomer are tied in varions ways, not only in the revice of different companies, but also in difterent loxes lelonging to the same eompany. The more common armand ment is to have an 'upper' and a 'lower' rope. 'These in some companies have a regulation bength of $: 3$ feet for the former and 1 foot 10 incles for the latter, while in others the length of rope to be allowed is left very much to the discretion of the ponter. When adjusted, one end of each rope is attached to the right or left side of the head-stall below: the other ende belonging to the long rope, is amied upward to one side, and securely tied to an iron ring immerlately beneath the roof above: while the still loose end of the short rope on the apmosite side is in some cases attarhed low down to the partition in front, in others to a ring in the manger-hoard, and in a thind to a ring in front of the manger.
"Another system is to mon both ropes from the liead-stall through a ring in the last-mamed position, and then fasten them to the front end of the los right and left of the horse's head. In some boxes only a single rope is cmployed, in which case one end is attached to the chim-strap of the head-stall amd the other to a G-llo. weight, which keeps the rope tant through : hole in the manger-hourd.
" It will be seen from this that, in all these methorls of tethering, the ropes, in one form or another, are mate to rest on or mar the manger or manser-hoarel, as the case may be, and consequently within reach of the horse's feet whenever he is disposed to place them there. It is no rare ocemrence for exritable and refractory ammals to land their fore-timbs in this position. even when the head is tied down within 6 inches of the manger-ring, and by entanghing themselves in the ropes, to suffer severe, if not fatat, damage; indeed, this is the great somree of misehief in commeetion with our horse tratfic by real.
"An ingenions and simple devier for correcting this matisfactory state of things, and one in which I have taken a pactical interest, has been designed hy Mr. Bartrm, late vetermary ofticer to the Milland Railway Company, who have already reognized its merits and hromgt it into use. The appliance consists of a rope, one end of which is attached to a ring in front of the nose-bamd hy means of a spring hook working on a swivet. The rope then passes upward, and over an adjustable pulloy-whed fixed in a slot in the partition between the stall and the couper. Attiched to
its other end is a small weight, surmounted liy a spiral spring, and confmed in a small lox (fig. 653). By this armagement only one rope is engaged in the tying, and that is entirely removed from possible contact with the feet. lnstend of the horse heing hound down by the head, he enjoys comparative freedom and comfort, and indeed such an amount of liberty as will enable him to recover himself from thy awkward position in which he may, from restiveness or other cause, become involved. Another conspichous ant important advantage of the fastemings of this appliance is that, whould he

Fig. A承. - Bartrum's 'Tethering Alparatus
fail to free himself. he can be net at liberty at onee, throngh the doon of the coupr. hey removing the spring hook from the ring in the nose-trant. These and other solid advantages are presentel by the Bartrum levice, which promise to do away with much of that suffering and loss which attem the tramit of horses by rail."

Another sorious objection to home-boses is that the parding which prevents injury to the skin is not removalle for pupmese of aisinfertion or ordinary cleansing, hence the danger of infections disense even if the ntmost care were axereded. The osture from the last inmate commonly remains, despite Rale 15 (Tramsit Order, Animats Act), which repuires that the whiche shall be thoroughly chamsed accoming to opecified directions therein contained. Neglect to comply with these orders carries
certain-or, sather, meertain-penalties, since the ralway servants habitually disregard them.

Besides the horse-hox there is the ordinary truck, which dealers, ever ready to accept additional risk in order to effert an eronomy, usually employ to convey their purclases on the often long jommeys from fairs and markets. The truck is better cleansed and kept in a much more wholesome condition than the more expensive hox, as for some reason the Animals Orders in comection with attle are more respected, and these conveyances are frequently whitewashed and otherwise disinferted.

They hold some half-dozen horses, and the ohject of the consignor in packing then as dosely as possible is to prevent them from kicking one another. In the use of the horse-bon there is no rule as to laving the hind shoes off, hut it is a sort of lex non seripter of the truck, and usually insisted upon on board ship, but not on so-called horse "hoats".

There is a sperial order issued by the Board of Agriculture with regard to watering horses on railway joumeys by which the respective companies are made responsible, but owners have heen prosecuted for not feeding animals on the joumey while beyond their own control and detained on the roal hy some failure on the part of the cariers to deliver withim reasonable time.

THE HORSE AND ITS POSITION IN THE ANLMAL WORLD

.

SEction XIV.-THE HORSE AND ITS POSITION IN THE ANIMAL WORLD

THE HORSE OE THE PRESENT AND TIIE PAST

From the investigations of geologists we have leamed the fact that the horse is descended from ancestors which existed in long-past agor of the world's history, and which were very different in many resperts from the ammal so familiar to us. Probably it will be rery generally thought that it is late in the day to attempt to questiom, or cren to lefemt, the teachings of geology, and the kimbed subject of palseontology, of the science of extinct amimal and regetable life. At one perioxl, howerer, not so remote as to be ont of the recollection of many of the readers of torday, the suggestion that the remains of ammals and plants were to le fomm in certain "petrifactions", dug up from the depthe of the earth, was met by opposition which was as violent as it was honest and ignoment.

Education has made rapid striden in all directions since the day of merely umreasoned opposition to the advance of science; and it may perhaps be said that the majority has elanged its front, and is now either in farour of investigation and receptive to its resultr, on at least aceepts them without any great effort, possibly it may he with some degree of indifference, but in any ase no longer opposes them. Un cither an-mpution it will be no more than fair to the reader who may not be a seientiot, and it will at the same time be inoffensive to the geologist ant prateontologist, for whom the remanks are not intended. if we state in a few concise sentences the broad principles on which those experts lase their argment. and conclusions.

In the first place it may be observel that it is now well known that rocks of different sorts constitute what is callerl the cross of the earththat is, the superficial portion accessible to hman observation-ant what is more significant, that these socks are not for the most part haipsenl together in disregard of order, but are aranged in a certain sumesoion
of beds, or strata, from helow upwards. 'The lowest rocks bear evident signs of the action of heat, and not being amonged in layers or strata, are distinguished as unstratified rocks, being also more or less crystalliure. The higher rocks, above those more ancient igneons rocks, whether hard or soft, were originally deposited from water in the form of sediment, and hence are called sertimentary or anneous rocks. These are stratified, and in them the remains of amimals and plants are found more or less abundantly, such remains being abient from the igneous rocks. The name fowsil: is now familiar to everyone as applied to the remains of anmals and plants found in rocks, and this term ako includes markings, such as footprints and casts or impressions left on originally soft clay on which the object has rested or in which it has been enclosed.

To the discoveries of the geologist the maturalist applies the same mental processes which he uses in everyday life. He can see impressions which have been left on the sea-shore, footmarks of men and beasts on the sands, and, olserving the marks, he realizes at onee the existence of the different creatures that made them. A skull or a leg-lone dug , up from a stone cuarry or gravel-pit may attract his notice, and ly the application of his knowledge of anatomy he can decide whether the part once belonged to a man or to in ox, a pig or a horse, and with added special knowledge he will go beyond this and define the formation from which it came, and form some idea of the period which has elapsed since it was deposited. In like manner the geologist sees how river banks and seawalls are washed away year by year, and in other places how hollows are gradually filled by sedimentary deposits, which are left to harden into rocks, and hy the exercise of his ordinary intelligence he comprehends how the strata in the carth's crust have been formed in succession by similarly slow and often-interrupted actions going on throngh long ages. It is of no arail to tell the palreontologist that the impressions of amimals feet, and the marks of shells and skeletons of liirds and beasts and fishes, wre not what they seem to him, but only "petrifactions", or" fossils", curious enough and highly interesting indeed, hut in no way connected with living creatures of a former period, when all the while his senses of sight and touch inform him to the contrary. He can compare the fossil bone of many thonsand years ago with the corresponding hones of the amimats of to-day and mark the close relation between them. In fact, he is aware that often. in comparing the later fossil remains with specimens of similar parts of recent origin which have been buried close to the latest fossils, he finds a difficulty in distinguishing between them. In short, the scientist olserves and reasons exartly as other people do. Of his facts he is as sure as any enurier into ereryday common things can be of his and like
him he excreises his intellect and imagimation in trawing tonclusions trom the facts which come moler his observation.

It is true that some difference may exist between the mental processes of the expert and those of the unscientific observer, but it is only one of degree. The scientist is a tramed, ant therefore a keen investigator, and his imagination is active as well as atical. small matters which an ordinary looker-on may pass hy the expert seizes and does not allow to escape motil he has cxhansted their teaching. The method of Zadig is the one which he, perhaps meonscionsly, adopts in all his enquiries. What that method is most people know, hut as it may have been known and forgotten, it may he well to follow Huxley's example in his lectures on evolution and quote the short story of the sage entire.

According to Voltaire, Zadig, whose country, indeed whose cxistence, is problematical, twelt on the banks of the Euphates and ocoupied his lonely life in the close study of mature. Thas by degrees be artuited a marvellonsly keen power of olservation and profoum sagacity, of which the following example may be given:-
"One day walking near a woorl," so the story is told, " he saw hastening that way one of the queen's chief eunuchs, followed be a troop of othicjals. who appenred to be in the greatest anxicty, rmming hither and thither, like men distraught, in search of some lost treasure.
" Young mim, eried the emmeh, "have you seen the queen's dog!" Zadig answered modestly, 'A bitch, l think, not a dow.' ' Quite right,' replied the emnch; and Zadig continned, A rery small spaniel, who has lately had puppies: she limps with the left foreleg, and has very long ears.' 'Ah! you have seen her', then,' said the breathless emuch. .No.' answered Zadig,' I have not seen her' and l really was not aware that the queen possessed a ppaniel.'
"By an odd coincidence, at the very same time the handsoment horse in the king's stables broke away from his groom in the Babylonim phans. The grand luntsman amd all his staff were seeking the horse with as much anxiety as the eunuch and his people the spaniel ; ant the grand huntman asked Zatig if he had not seen the ling's horse go that way.
""A first-rate galloper, smah-hoofed. 5 feet high, tail $3 \frac{1}{2}$ feet long: cheek-pieces of the bit of twenty-three-carnt gold; shoes silrer?' said Zadig.
" Which way did he go? Where is he !’ cried the grand huntsman.
"' I have not seen anything of the horse, and I never heard of him before,' replied Zadig.
"The grand huntsman and the chief emuch made sure that Zadig had stolen both the king's horse and the queen's spaniel, so they haled him
before the High Court of Desterhom, which at once condemned him to the knont and transportation for life to Siberia. But the sentence was hardly pronounced when the lost horse and spaniel were found. So the judges were under the painful necessity of reconsidering their decision, but they fined Zadig four hundred ounces of gold for saying he had seen that which lue had not seen.
"The first thing was to pay the fine; afterwards Zandig was permitted to men lis defence to the court, which he did in the following terms:-
.. Stals of justice, abyses of knowledge, mirors of truth whose gravity is as that of lead, whose inflexibility is as that of iron. who rival the diamond in clearness, and possess mo little atfinity with wold; since I am permitted to address your august assembly, I swear by Omuzd that I have never wen the respectahle lady dog of the quen, nor belned the sacrosanet home of the king of king
... This is what happened. I was taking a walk towards the little wool near which 1 subsequently hat the honour to meet the renerable rhief cunuch and the most illustrious grand huntman. I noticed the track of an mimal in the samb, and it was easy to see that it was that of a small dog. Lang faint streaks upon the little alevations of sand between the fonomands convinced me that it wis a she dog with pendent dugs, showing that she must have han puppies not many days since. Other scmpings of the sand which always lay close to the marks of the fore-paws indicated that she hand very long ears; and as the imprint of one foot wis alwars fainter them those of the other three, I judged that the lady dog of our angust yuech was, if I may venture to say so a little lame.
... With respect to the horse of the king of kings, permit me to observe that. wambering through the paths which traserse the wood l noticed the marks of horse-shoes. Ther were all equidistant. 'Ah!' said l, 'this is a famoun galloner.' In a narrow valley only 7 feet wide the dust upon the trunks of the trees wals a little disturbed at $3 \frac{1}{2}$ feet from the middle of the path. "This horse, said I to myself, 'had at tail 31 feet long, and lashing it from one side to the other he has swept away the dust.' Brambes of the trees met orerhead at the height of 5 feet, and muder them I saw newly-fallen leaves; so I knew that the horse had brished some of the branches and was therefore 5 feet high. As to his lit, it must have been made of twenty-threc-carat gold, for he had rubbed it agrinst a stone which had turned out to be a touchstone; with the properties of which 1 im familiar lex experiment. Lastly, by the marks which his shoes left upon pebbles of another kind I was led to think that his shoes were of fine silver.'
"All the judges admired Zarlig's profound and subtle diseernment;
and the fame of it reached even the king and the fueen. From the anteroom to the presence-chamber Zadig's name was in everybody's mouth; and although many of the magi were of opinion that he ought to be lount as a sorcerer, the king commanded that the fom hundred ounces of gold which he had been fined should be restored to him. So the officers of the court went in state with the fom humbed omees; only they retained three hundred and minety-eight for legal expenses, and their serants expected fees."

That the methorl of Zatig is the methor which is pursmed by all reasoning men must be evilent from thas illustration. In Zarlig's case the method was exhibited in a condition of the highest refinement, amt since his time, and possibly before it, has been patctised by many, the untutored sarage among them, who never heard the philosoners name. ln considering the facts and argments on the development of the horse, which is the subject of the following pages, the reader is invited to hing Zadig's methor to bear, and that he may begin with a clear molerstanding of the object which will be kept in view thronghout it is stated in plain trams in the following proposition.

The horse of the present time may be taced, thongh a long line of fossil remains of ancestral forms, back to the first diseovered hoofed mammals in the earliest heds (Eocene) of the Tertiary formation. ${ }^{1}$

The relation between the fossil remains and the present living animal is the more easily shown in the case of the horse, and its immerliate relatives the varieties of the ass, zebra, and quagga, the the we all maked by special characters, most of which can be very readily recognized in the fossil specimens of the progenitors of the race whith have been brought to light in the course of geological explorations.

Before noticing the particular features of the equine group, it will be necessary to define the position which its members occupy in nature.

The whole of the Equide or horse family belong to the Vertebrate kinglom and to the class Mammalia, which is separated by old witers into two great orders or divisions, the Unguluta or hoofed mammals, ant the Uuguiculata, including all ammals with claws. This classification originated with John Ray in his Symopsis Methodied Animatiom, publisheal in 1693. Sir William Flower in his work on the horse remarks on the artificial eharacter of the mode of division. but adds that some portion of the system has survived, especially the group Ungulata, which has been resuscitated of late years and used as a convenient designation for the gromp of quadruperls that are distinctively hoofed.

[^2]Ungulate mammak are described by sir IV. Flower as animals which are eminently qualified for a life on land, and in the main for a vegetable diet. Their molar teeth have broad crowns with tuberculated or ridged grimding surfaces, and they have a perfect set of milk teeth, which are changed for permanent ones as the ammals advance towarls maturity. A very important point in their anatomy is the absence of collar-bones

Fig. $654-1$, Diakram representing the Bones of the Right Fore-
 Bunes of the Foot of an Even-toed Artionactyle Amimal. c. The Carpis or Wrist (knee of quadruped), consisting of two rows of bones
'The unper row comxists of e, cuneiform; l, hnar : aml s, seapheit; the lwwer row d, unciform; m, magnom; and fd, trapezonl; with the trituezinm, tm, heland the cuneiform. 'The sharled parts of the bones in A are those that are now present in the horse: in be, those that are present in the ox. In five-toed mammals the digits are numbered one to five, beginning from the inner site of the limb. Digit No. I in the upper or fore extremity is the thmm (fullow), and in the hind or lower extremity the great toe (hellox); the other digits are distinguished by the figures II, III, IV, and V. (clavicles). Their tues are covered with homy material! which usually entlowes them completely, forming broad blunt mails or hoofs.

Cuvier, and after him Owen, distinguished two well-marked gronns of mugulates, the fossil remains of which are fomed thonghout the Tertiary perion, the Artiodactyla or even-toed, and the Perissentectyla or odd-toed animals, looth still represented hy living forms.

To realize the significance of these divisions it must be bonse in mind that the number of toes in mammals is limited to five on each extremity. Each toe is the end of a series of lomes starting from a compound joint, the carpus or wrist in the front or upper extremity (amm or fore-leg), and the tarsus: or heel in the hind or lower extremity. To the series of bones the name diyits is applied to express either fingers or toes, and the term phalanges is used to indicate the separate bones of which the digits are composed.

The amexel diagram, with the description taken from Professor Sir W. Flower's work, will make the alore remarks intelligille.

So far all is quite simple; but it happens in nature, and it may also occur by chance, that one or more of the digits may be missing. Still the hologist is expected to decide from those which remain whether the
animal belonged to the odd-toed or even-toed group, and it will shortly appear that it is most essential that there should be no risk of error in the conclusion arrived at.

It will be seen by referming to fig. 654 that there is a makent difference in the armagement of the digits in the two figures in the diagram. In the first figure, a, whirh may be taken to represent the foot of an early ancestor of the horse, the fire eligits are shown. The shaded parts are the bones which are to he found in the horse now existing. The special feature of the perissodractyls or odd-toed animal is the one large middle digit, the third in situation. In the next figure, B, representing the foot of the ox, the plan of construction is that of the artioductyle or even-toed group. The first digit is not present, even in the most ancient members of the group, the second and fifth are absent or rudimentary in the recent members, and instead of one darge middle digit there are two of equal size. These are distinct, and form the so-called cloven hoof of the ox, which is, in fict, constituted of the two middle digits, the third and fourth in situation. The shaded parts of the lones in the second and fifth digits in the diagram show the portions which remain in the foot of the ox.

Even a tyro in the science of amatomy will be able to muderstand the value of the indications afforded hy the midnlle ligit.on digits in assigning to the animal to which they belong its proper position in the order Ungulata. For further illustration it may be assmmed that the bones of the foot of an imaginary animal are in question, and it is granted that the animal is an ungulate mammal, and must therefore belong to the odd-toed or even-toed group. To detemine which, the enquirer proceds to examine the hones of the extremities helow the canpus or wrist, otherwise called the lonee, and the tarsus or heel, known as the hock in pradrupeds. Finding below these joints one large digit, no matter what other bones are present or absent, it is at once decided that the anmal is one of the perissodrectyle or odd-toed mammals. If, howerer, there are two equal digits, it is as certain that the ammal is one of the artiorlactyle or even-toed mammals.

Applying this scheme to the horse, it will be evident that as there is "one big digit", consisting of four phalanges extending from the knee or hock to the toe, on the hoof-covered tip of which the honse stands, the animal must be classed with the perissodactyles or odd-toed, and also with the Solidnugula or simgle-hoofed mammals.

Attached to the back of the one big digit of the horse, the leg-lone, camon or shank bone as it is sometimes called, are the well-known splint-hones, one on each side, reaching from the knee or hock to a point vol. 111.
about two-thirds of the length of the first of the phalanges. It ean hardly be doubted that these splint-bones are the vestiges or representatives of the second and fourth digits seen in the remote ancestors of our horses. What has become of the first and fifth digits is a question to whid no convincing answer has yet been given. Certain horny excresences, termed corns or rhestmots, situated on the imer side of the legs above the linees and at the lower part of the hocks, and also the homy growths foum at the bark of the fethock joints, partly or entirely conceater be the long hair which is usmally abomant in that part, have been booked upon as the rudiments of the missing digits; but there are some facts connected with their sitation in the limbs which do not support this view. Whatever may be their true place in the ammal economy, these homy growth have always attracted attention, and much speculation has been indulged in as to their meaning. At the least it may be said of them that they serve to identify the members of the equine family, and to some extent aid in separating the varions members of the group one from the other. In their trpieal form the chestnuts on the hime and fore extremities are chanateristic of Eq日"'s calallus-the sidentifie name of the horse. Asses and zebras have them in a much-modified form on the fore limbs only. The excrescences (ergots) at the back of the fetlock are as in the horse.

The amatomical chatacters of the growths will be described more parrticularly in comection with some other spectalities of the horse when the general structure of the animal is considered.

At this point it will be convenient to pause for a moment to note the genemal damater of the evidence which has been produced.

The preceding remarks have enahled us to ascertain with some exactuess the place of the horse in nature, and we have further noted some of the more prominent perial characters of the Equide in their relations to the lossil remanns of extinct mimals in which those special featmes had a more perfectly-tleveloped form, suggesting that in those animals they formed an artively useful and essential part of their organization.

At this early stage of the investigation it is not intencled to suggest that the evidence which has already been advanced is in itself sutticient to prove that the horse is a descendant of some remote ungulate mammal which had fire perfect digits instend of the "one lig digit" by which it is now distinguished. On the contrary, many more ficts have to be brought forwarl and carefinly analysed before that proposition ean be considered as proved.

Huxley, in his lectures on evolution, delivered in New York in 1876, observes that the occurrence of historial fiats is sad to he demonstrated when the evidence is of such a character as to render the assmmption that
they did not happen improbable in the lighest degree. It is requisite, therefore, to consider the evidence bearing on the evolution of the hore, and it will render the sulject all the more easy of comprehension if an attempt be made to explain what the word evolution is intended to express.

At the outset it may be remarked that the doctrine of evolution is mot exactly new. "The great theory of evolution", writes Mr. Hutchinson in The Creatures of Other Days, " was first dimly suggested by Giredk philosophers, such as Anaximander (b.c. 610), who may have derived the ilea from Egyptian, Babylonian, or Hindn smmess; then revived in a more seientific form by Lamarck last century. ln reeent years it has heen placed on a truly scientifie basis by the illustrious Charles Darwin, and is now generally accepted by naturalists. Indeed it is hard in these days to escape being an evolutionist, so abundant is the evidence in firwou of the doctrine, especially that derived fiom a study of extinct animals."

Husley writes in reference to molntion as the acting force in the past history of Nature, "that at any compratively late period of past time. an imaginary spectator would have met with a state of thing very simila to that which now obtains; but that the likeness of the past to the present would gradually become less and less, in proportion to the remoteness of his period of observation from the present day. Preceding the forms of life which now exist, the observer would see animals and plants not ilentical with them but like them, their differences increasing with their antiquity, and at the same time hecoming simpler and simpler; until finally the world of life would present nothing but that undifferentieted protoplasmic matter, which, so far as our present knowledge goes, is the common foundation of all vital activity!" To all of which the reader, according to his views, may urge the series of objections which lave from the first been formulated and overruled. How is it possible, it may be asked, that a mass of protoplasmic matter-a simple, jelly-like mass, giving hardly any evidence of life-can, mader the influence of corying, conditions of enciroment, become resolved into plants and animals, adrancing steadily from the lowest forms to the lighest? Clearly, the answer comes; the possibility camot be disputed, the changes are going on perpetnally under our eyes. Take the seed of a plant, or, better still, the orum of an animal, and place it under favourable conditions, and the process of evolution hegins and goes on to its completion. Structures are snceessively evolved without any interference from withont, until a miniature man, or a lower animal, or a plant is formed. It is very interesting to observe that in the process of development, as Von Baer found, every organim in its earliest stages has the greatest number of characters in common with all other organisms in their earliest stages,
and at a stage somewhat later, its structure is like the structures displayed at corresponding phases ly a less extensive multitude of organims. At each sulsequent stage features are acpuired which successively distinguish the embryo from groups of embryos which it previously resembled, thus step by step dimmishing the chass of embros which it still revembles. and finally the class is narrowed to the species of which it is a member. The embryo of a bird or a rabbit has at one time in its revelopment charaters resembling those of the embryo of the fish-structures representing gill-clefts, for example. In the human embryo, it is only after exhibiting successive changes characteristic of the organzation of lowar amimals that it at last assumes the form proper to man.

To the matmalist many instances will readily oceur of remakalle changes of form during the evolution of an animal from the ovim to the matmre stage. Steenstrupp, the Dimish natmmist, in 1845 smmarizer the process of development in the Meduse, Entozoa, and others of the lower anmals, under the title of "Altermation of Generations", which le described as " the remarkable and till now inexplicable natmal phenomenon of an animal producing an offering, which at no time resembles its parent; but which, on the other hand, itself brings forth a progeny which returns in its form and nature to the parent animal: so that the maternal anmal does not meet with its resemblanee in its own hrood, lut in its descemtants of the second, third, or fourth generation." This remarkalle form of evolution is exhibited in the reproductive process of the parasite the liver Hnke (Distoma hepaticmm) in the most striking manner. The parent flake provides the ovom, and there its responsibility seems to ceare. Hatrhing takes place in any moist spot or stagmant pool. The product, however, is not a young fluke, but a long, thim embryo, having no resemblance to the parent. Soon. however. this undergoes a change into a cyst, or sort of bag, in the interior of which are developed more atvanced organioms known ats redir, and in them, again, still more advanced tailed cercroin appear, which are nearest to the form of the floke, and only await entrance into the body of a warm-blooded ammal to acquire their perfect form and thes prove their descent from their original parent. (See p. 260 of this volume.)

Equally remarkable transformations ocem during the development of the embryo in the higher animals, but these oo within the organism of the parent, or otherwise while the young ammal is enclosed in the shell of the egg. lt is, howerer, possible to imagine that the chenges which ocur in the embryo, which is hidden from sight, ts in the egg of the hird or the uterus of the mammalian, might be dieplaved to view, as it is in some of the Eutozon and other anmals lower in the seale of life. What a wonderful
series of phenomena would be exhibited! Instead of sitting on her eggs for weeks, the common hen would find her brood at the expination of a few days hatched but papahly unfinished, very unlike the chickens to which she had heen accustomed. The young living heings would present some of the characteristics of the mammal, but they wouk also, in certain parts of their organism, show structures comecting them with reptiles, and, in the arrangement of the hood-ressels, they would run the risk of being classerl among fishes.

Day by day almost impereeptible changes would be distinguished by the critical observer, and gradually the mamad living thing would assert its claim to be accepted as a hirl, and finally the expert would decide, without the least chance of making a hunder, to which particular species, gemos, and variety of birds the mysterions creature belonged. In like manner it might be supposed, for the sake of illustration, that the mare, instead of producing a foal at the end of several months, would give binth at an earlier period to an minfinshed organism in which some of the characteristics of the lower Vertehrata would be recognized, those of the reptile or the fish, for example. Gradually advancing day ly day, the young organism would exhibit in turn, in the cirenlatory system especially, some of the features lectonging to the lind, and passing through the changes which mark certain phases in the organization of the lower mammals, it would arrive at the stage of perfect development and assume the form of the parent.

In reply to the very easy and obvions criticism that the above description is absurd, and that the processes refered to conld not possibly take place, it may be observed that nothing has been advanced of a hypothetical chatracter. All the changes or metamorphoses referred to do constantly oecmr, and the only liberty which has been taken has been that of supposing them to lie visible. Facts which are invisille to the ondinary ohserver, but perfectly distinet to the skilled microscopist, have been assumel to oceur in such a prosition that they might be recognized by the unaided eye. The facts are not the less real hecanse they do not present themselves in a palpable form. In the stuly of embryology all these changes are recognized, but they are visible only by the aid of the microscope. If they formed part of the ordinary olservation of the breeder of stock, as they do of the investigations of the scientist, the mysterions doctrine of evolution wonld lose its glamome, and hecome one phase of mere commonplace expericnce.

Replying to some of the oljections which have been urged against the doctrine of evolution, the late Herbert Speneer deals with two forms of criticiam which have often been adranced, one relating to the obwions ant armitted fact that the process of erotving a new species has never bean
seen, and the other to the difficonlty which is based on the ground of the extent of time which would necessarily be required for the development of highly-organized living creatmes out of a mass of gelly-like potoplasm.

Un the first point he quotes from the late Lord Salishury's address to the British Association, in which the speaker says that no man or succession of men have ever observed the whole process in any single case, and certainly $n o$ man has recorded the observation. In reply, Herbert Spencer quotes from an essily which was published many years ago in pre-Darwinian days, in which the anthor remarks: "In a delate upon the development hypothesis lately narrated to me by a friend, one of tlee disputants was described as arguing that in, in all om experience, we know of no such phenomenon as trammatation of species, it is mmphosophical to assmme that thansmatation of species ever takes place. Had I been present, I think that, passing over his assertion, which is open to criticism, I should have replied that, as in all our experience we had never known a species crecter, it was hy his own showing mphilosophical to assume that any -pecies crer had been created."

Thus, supposing the two hypotheses-special creation and evolution hy natural selection-are to be tested l y the directly-observed fircts assigned in their support, then, if the hypothesis of evolution by natural selection is to he rejected hecause there are no directly-observed facts which prove it, the hypothesis of special creation must be rejected for the same reason. In fact, it wonld be impossible to arrive at any conclusion by snch a line of argument.

On the snhject of the time which wonld be required for the evolntion of a living being of alvanced type, the difficulty is thas cogently proponnted. "If we think of the vast distance over which Darwin conducts ns, from the jelly-fish lying on the primeval beach to man as we know him now. if we reflect that the prodigious changes requisite to transform one into the other are marle up of a chan of gencrations earh arlvacing hy minute variation from the form of its predecessor, and if we further reflect that these successive changes are so minnte that, in the course of om historical period-say thee thonsand years-this progressive variation has not adranced by a single step perceptible to om eyes, in respect to man or the animals or plants with which man is familiar, we shall admit that for a change so vast, of which the smallest link is longer than our recorder history, the biologists are making no exturagant elam when they demand at least many hundred millions of years for the accomplishment of the stupendons process." In reply to this Ilerbert Speneer, setting aside the statement that the jellyfish is a remote aneestor of man, (potes again from a portion of the essay previonsly referred to where the witer, after admitting that those who
know nothing of the science of life may natmally think the hypothesis that all races of beings, man inclusive, may in process of time have heen evolved from the simplest momad a "ludicrous one", continues: " But for the physiologist who knows that every individual being is so evolved, who knows further that in their earliest condition the gems of all plants and animals whatever are so similar that there is no appreciable distinction among them which wonld enable it to he determined whether any partienlar moleenle is the germ of a Conferva or of an Oak, of a Zoophyte or of a ' Nan'—for him to make a difficulty of the matter is inexcusable. Surely if a single cell, when sulpeeted to certain influences, becomes a man in the space of twenty years, there is nothing absurd in the hypothesis that moder ectain other influences a cell may in the course of millions of years give origin to the hmman race."

In regard to the time required for the alleged evolntionary changes, he aceepts Lord Kelvin's proposition to the effect that, "life camot have existed on the earth for more than a hundred million years". At the same time it is pointed out that the proposition is open to donbt. Other geologists, quoted by Huxley in his lectmes on evolution, assert that five hundred million years were occupied in the completion of the Tertiary formations, and in that case the period may be talien as the measure of the duration of the evolution of the horse; but the lecturer goes on to suggest that he is not much concerned about the discrepancies in ealeulations as to time, the ehief point of enquiry being " is it a fact that erolution took place?" That question being answered, the time required for the process may be left to be determined by the physicist and the astronomer.

Herbert Spencer, however, waiving all criticism, accepts the lower estimate of one hundred million years as the time required, and proceeds to compare the changes in the development of the embryo with the evolutionary changes, as exhibited in the Tertiary formation, in regard to their extent and the time oceupied by them.
"The nine months of human gestation, more exactly stated, is 280 days, that is 6720 homs or 403,200 mimutes. Thas, then, the total change from the meleated eell constituting the hmman ovm to the developed structures of the infant just born, is divisible into 403,200 changes eath occupying a minnte. No one of these changes is apprectable hy the eye or evell hy a micrometer:" Tuming to the other member of the comparison, the writer proceeds to contrast the evolution of a man from a pimitise protosoon with the evolution of the infant from the protoplasm in the cell of the haman ovmm. In doing this he smpposes the developmental changes from the jellyfish to the man to be equal in their number to those gone throngh ley the fretus. And in order to amive at a result he divides $100,000,000$ years
by 403,200 changes, a simple sum which gives in its quotient a period of nearly 250 years as the interval available for an amount of change equal to that which the foetus undergoes in a minate. If, instead of the human ovum, the ovum of a rabbit hat been taken for comparison, the contrast in point of time wonld have been of necessity more striking, as similar changes to those which occur in the haman ovom luring nine months take place in that of the rabbit in a few weeks.

It will be observed that the argument is not directed to the proof that man was evolved from a jelly-fish or other primitive protozoon, hat rather to the filct of there having been according to the lowest estimate ample time for the process, seemg that in the ordinary course of things a child is evolved from a mass of protoplasm in a few months, and arlvances to the condition of a man in the course of some twenty years.

Enough has been said to leave no room for reasonable doult that whatcere may be its limitation, evolution is a natural process, the successive steps of which may be observed and recognized, as in the examples which have been given.

It is, of course, open to anyone to oppose the proposition that every existing organism, animal and phant, was developed from some original and undifferentiated protoplasmic matter, just as the fretus is developed from a microscopic speck of protoplasm. Nor is it required for the present purpose that the proposition should be accepted. It cannot be denied, on the other hand, that under the influence of changes in the cnviromment certain important alterations of form and function do happen, and are indicated by the presence among existing beings of organs and parts which are so placed as to be devoid of any functional value, while a comparison of them with similar and more developed parts in extinct races necessarily leads to the presumption that they may be, and most probably are, radimentary or restigial remains modified by the laws of heredity and the influence of natural and artificial selection.

Leaving now the general for the particular, the question which presents itself relates to the facts which are offered by the anatomist and the pakeontologist, in regard to structure and conformation, hearing upon the statement that the horse may be traced through a long line of estinct mammals back to the earliest mammals of the Tertiary period.

SPECIAL FEATURES IN STRUCTURE

The horse is generally deseribed as a remarkable animal, at once exhibiting perfection of mechanism. complete balance of form, as well as beanty of outline. Professor Sir Wr. Flower lays great stress on the
specialiaction of the horse, that is, the modification of its structure from the average type of quadruped to mect some special requirement. The horse is a favourite sulject for the crolutionist, as illustrating probably more satisfactorily than any other mammal the truth of the doctrine of evolution. In particular, various rudimentary and apparently useless parts. are met with in the horse which correspond to fully-developed structures found in other mammals. Such rutimentary structures in amimals may either be in process of growth or the may have the character of restigient remmins; that is, they may be structures that have degenerated from a former more perfect state of development and are now only vestiges of what they once were. In the horse most of the rubimentary structures and parts appear to be in the restigial condition, and the discoveries in the geological history of the horse all point to that conclusion.

Although the horse as it now exists may be looked upon as one of the most recent among animals from the point of view of the geologist and naturalist, from the historian's point of view its antiquity is "onsideralle. since it ean be tracel hack almost to the begiming of the historic period. According to Dr. George Fleming, the lonse was domesticated anong the Egyptians nearly 2000 years b.c: The Persians. Greeks, and homans used the horse for ordinary work and in war not only to carry the rielers, hut also for the even more useful purpose of being lamessed to chariots, with which the armed wariors were accustomed to attack. (See the chapters on the History of the Horse.) That the horse is specially adapted for the purpose of supporting weight and also for rapid movement, we might conclude even from an inspection of the skeleton, which with all its delicacy of outline is so adjusted, that great strength is combined with perfect elasticity.

Bony Framework.-The accompanying illustration (fig. 655) will show that in many respects it is possible to compare the hony framework of the horse with that of man, in whose structure the highest trje of anatomical mechanism is exhibited.

For the general reader the most interesting feature in the illustration will he the arrangement of the joints of the limbs of the horse in comparison with those of man, and a very little stmy of the engraving will corrert some popular emors, sucll, for instance, as refer to the position of the knee of the horse. The red knee of the anmal is, in the phraseology of the horseman, the stiffe-joint, and the joint which is usually called the knee of the horse is in reality the wrist. The letters in the illu-tration indiate the true shoulder, ellow, wrist, hip, knee, and ankle in both man and hore.

Commencing with the fore parts of the skeleton. we will first notice the
joint which is callerl the wrist or cropms, the knee of the horse as it is wrongly named. In this two rows of small hones are armaged, ats ean be sem in the figure, between the am-bone above and the shank-bones below, the latter consisting of one large bone and two small splint-bones attached to it. ln man the wreponding arrangement eonduces to a very important end a reries of movements in the hand and arm which are

 (stifle-juint in the horse); a, ankle (hoek-juint in the lomee).
mechanically impossil)le in the lose, notwithstanding the apparent similarity of structme.

The hame of man constantly perfoms the movements of flesion and extension, as they are called (these heing hinge-like motions with extensive lateral movement), and in ablition almost perfect rotation, at least to the extent of twothirls of the rirele. (On the other haml, the horse's wrist or knce is only capable of flexion and extension.

Nearly the sanc degree and exatety the same variety of movenent are
possible in the elbow-joint of man, while in the horse, owing to the rudimentary form of the second hone of the arm (the ulua), no lateral or rotatory motion can take place. The movement is purely hinge-like.

Another marked peculiarity is observed in the comection of the shonlderblade (scapula) with the trunk. In man the junction is effered be a bone known as the collar-lione (or clavicle), which extends from the shonderbone near the shoulder-joint to the first rib on each side. 'The horse has no vestige of a collar-bone; the shoulder-blade (serpuld) is joined to the trunk only by means of the muscles whicly are attached to it, so that the fore part of the horse's hody is suspended by the aid of muscular bants between the two fore-legs.

An examination of the hinder limbs will show that the general plan of construction is nearly the same in both man and horse, as far as the joints are concerned. The hip-joint, the stifle (the true lince) with the floating bone or knee-cap (patella), and the hock (ankle of man) are almost identical in mechanical arrangement.

With regard to the hock-jont it may be observed that the two rows of small bones are placed as in the ankle of man, but the morement of the joint is purely hinge-like, and experjence proves that the two rows of small bones may be cemented together, and to the camon-hones and splint-hones below them, by bony deposits in old horses without causing any defect in the action-to a sufficient extent, at least, to le noticed. ln fact, the provision for perfectly complete flexion in the look-joint is serured by the mode of junction of the bones called tihia amd astragalus (sec tig. 658). The so-called cushion bones do not appear to contsilnte much, if anything, to the molility of the joint, in the flexion and extension of which the small bones are largely concerned.

Below the knee in front, and the hock behind, legins the hand and foot respectively. The one large digit in each extremity, composed of what we called the metacarpal and metratarsal bones; the rudimentary second and fourth digits (the splint-bones) attached to them, and reaching two-thirds of their length, and the thee following phalanges. constitute the true hand and foot. The horse, in fact, stands on those parts which in man form respectively the tip of the middle finger and the point of the middle toe, both of which are capperl with an investing hoof instead of a mail.

The next illustration shows the exact relation between the finger of man and the reputed foot of the horse. How very close the anatomical relation is will be at once evident.

The chief anatomical difference between the fingers of man and the foot of the horse (which represents the ent of the middle finger) consists in the presence of-(1) a eomplete homy box or hoof, which covers the wein in
the horse; (2) the three Hoating bones or sesamoids, of which two are attached to the back of the lower end of the metacarpal bone and one navicular behind the last phalanx, or rather between it and the articular ent of the bone immediately above it, the coronal hone or short pastern.

Fig. 656. - Section of Finger of Man

1. Metacarpal bone.
2. First phalanx.
3. Second phalanx.
4. Third or ungual phalanx (pedal bone of horse).
(5-i; wantingr).
5. Temion of extensor muscles.
6. T'indon of superticial flexor (flexor perforatus).
7. Tendon of deep flexor (flexor perforans).

11 and I4. Derma or true skin.
15. Nail (imperfect hoof of horse).
17. Fibro-fatty eushion of end of tinger.
18. Fibrofatty cushon of $f^{\text {ralm }}$ behind metacarpal phatangeal joint.
19. Thickened epirlermal covering of the same.

Fig. 657.-Section of Foot of Horse

1. Metacarpal bone.
2. First phalanx.
3. Second phalanx.
4. Third or ungual phalanx
5. One of the upper sesamoid bones.
6. Lower sesamoid or navieular bone.
7. Tendon of extensor muscle.
8. Temdon of superficial Hexor (Hexor perforatus).
9. Tendon of deep flexor (flexor perforans).
10. Short flexor or sispensory ligament of the fetlock.
11. Derma or true skin continued into
12. Coronary cushion.

13,14 . Villous portion of the hoof matrix.
15. 1100 f .
16. The heel.
17. Plantar enshion.
18. Fibro-fatty eushion of the fetlack.
19. Horny excrescence or spur (ergot).

In the human hand two sesamoid bones are found where the thumb articulates with the first metacarpal bone on the inner or palm surface. None exists elsewhere in the hand.

When we give full weight to the points of difference in the fore-limh of the horse, as compared with the upper (fore) extremity of man, the simitarity in the detals of the plan of construction in both man and horse must seem far more striking than the variations, and this fact. taken in
comnection with the marked difference in the position and geneml functions of the fore extremities in each subject, is certainly more suggestive of evolution than of special design. Unless on the theory of evolution from remote ancestors, it is indeed wintelligible that all the bones of the carpus (wrist) of man, conducing as they do to the greatest perfection of complicated movements, should be represented in the same joint (knee) of the horse, but so modified in their arrangement as to permit of $n 0$ more than a simple hinge-like motion, which is quite effectually provided for in other hingejoints by the adaptation of two bones only. And aginn, some of the digits

Fig. 655. - Foot of Man and Foot of 11 orse C'ompared in Natural Positions
(Note position of ground surface in each case.)
A, Tibia. B, Astragitus. ©, Calcis. n, Senhloid. E, Internal cunciform. F, Splint-hone fa vestige of End uetatarsal). G, Cannon bone, or 3rd metatarsal. 1, 2,3 , Fhalanges.
of man, one of the fire-fingered and five-toed mammals, are represented in the horse by undeveloped structures or rudiments which serve no useful purpose, as the horse wallis on the tip of a single finger and a single toe; in the foot of man, on the contrary, the whole of the bones from the anklejoint are brought into use, forming the plantar surface or sole. Such a modification of structure in the lower animal can be muderstood only on the assmoption that it was the result of a gradual process of development through which the five-toed frot of the horse's remote ancestons was in couse of ages transformed to the one-toed foot of the horse as we now know it. A very pronounced series of chamges it must be allowed, the true claracter of which will be more easily melerstood by reference to figs. 658 and 659 , taken by permission of the Royal Aglicultural Society from an article on the strueture of the horse's foot by Professor sir Geo. T. Brown, and published in the Society's Toumal, 1891.

In fig. 658 both man and horse have the foot placed as it is in nature.

Man presents the entire under surfaces of the bones of the tarsus (hoek of the horse), with the metatarsal bones and the four phalanges, to the ground surface. while the horse stands on the fourth or terminal phalans. Fig. 659 shows the positions reversed; the foot of the man has the points of the toes on the ground in a position corresponding to that which is matural in the horse and the horse is supposed to be in the impossible position of having the whole of the bones from the point of the hock to the last phalame of the toe on the groumd as in the foot of the man. The teaching of the diagram is that for the horse to exhibit a perfect foot, the bones below the carpus (knee) and the tarsus (hock) would have to be included

Fig. 654. - Foot of Man and Foot of Horse Compared (positions reversed)
(Note prosition of ground surface in each case.)
The names of the several bones are given below fig. 655 on the preceding Inge
in the structures of the organ; instead of this being the case, it is ohvious that what is called the foot of the horse only includes the two last phalanges.

It will be noticed in comparing the alove illustrations with the skeletons in fig. 655 , page 486, that in man the bones of the leg (the tilia and fibula) up to the knee, and the thigh-bone (femur) from the knee to the hip-joint, form a column which is neary a straight line. The limbs of the horse, on the contrary, present very decided angles at several points, chiefly at the shoulder, elbow, hip, stifle, and hock joints; and also from the fetlock-joints to the ground surface, an arrangement which is eminently calculated to give freedom of movement, and at the same time lessen the effect of concussion.

Muscular System.-The bones of the skeleton form the framework of the body. .Joints are obviously arranged to admit of motion, they
do not originate it. That function is relegated to the muscles, which form the masses of flesh covering the bones. Muscular tissue possesses the peculiar property of contraction, and the effect of contraetion is to pull the parts to which muscles are attached nearer to each other.

As nearly all the joints of the horse are simply hinge-joints capable only of flexion and extension, it would be expected that only flexor and extensor muscles would be required. It is a fact, however, which Sir W. Flower comments on in his work on the horse, that many more muscles exist in the limbs of the animal than would be thought necessary for the very simple functions which they have to perform. It would appear that the reduction of bones to a rutimentary condition, as in the case of the ulna and the fibula, or their entire loss, as in the tase of four of the toes, has taken place more thoroughly than, and in advance of, that of the muscles which were originally connected with these bones, many of which linger, as it were, behind, though with new relations and uses, sometimes in a most recluced, and almost, if not quite, functionless condition, and sometimes even with completely changed structure.

Dr. G. E. Dobson remarks in this connection that if no other evidence were obtainable of the descent of the horse from fire-toed ancestors, the condition of the muscles of the foot would be a sufficient indication.

Most of the muscles of the forearm of the five-toed mammal are still represented in the extremities of the horse; the proper extensor even of the fifth digit survives, although both its position and special function have been completely altered.

In the hind-limbs of the horse thif two Hexors of the great toe and the next one are both present with well-developed tendons united in the foot, as in the greater number of five-toed mammals.
"In the human hand there are fifteen muscles which have special functions in the complicated movements of the organ. Only five of them remain in the horse, four in a very reduced condition, two interosei, and two lumbricales. The fifth musele, a short Hexor musele, called in man the first pamar interosseous, is referred to as a remarkable instance of a structure not becoming rudimentary and useless, but being completely diverted from its original purpose, its function and its structure also being ehanged. In the horse the moditied muscle is entirely transformed, and in its new form is known as the suspensory ligament-a strong fibrous band lying at the hack of the camon-hone, being attuchet to its upper extremity, and dividing at the lower end into two portions which spread over the fetloek-joint and are inserted partly into the sesamoid hones and partly into the extensor tendon on the first phalanx."

[^3]The most interesting point, however, remarks II. D. J. Cumingham, in comection with its structure is that it hears its history on its face. Almost invariably two thin streaks of striated muscular fibre are to be found on its superficial surface, leading down to the two inferior divisions. On examining its deep surface two very distinct strands of pink, Heshy tissue are always observed extending throughout the entire length of the ligament. These consist in each case of short oblique striated fibres, and are presumed to represent the two heads of the muscle called the

Fig. te0. - Side View of Skull of Man, with the lone removed so as to show the whole of the teeth
z, Zygomatic arch; n, nasal bone; 0 , ornit; t, temporal fossa ; $o c$, occipital conlyle; f, external auditory opening; g, elenoil fossa for articulation of the lower jaw; co, coronoid process of lower jaw; is and i^{2}, incisor teeth: c, canine; $p m^{2}$ and $p m^{2}$, premolar teeth; $m^{1} m^{2} m^{3}$, the three molar teeth. flexor brevis, not yet converted into fibrons tissue. It is hardly necessary to snggest that muscular fibre in such a form and position, and with such smrromdings, camot possess any functional value, that is, does not serse any really nseful cud. Indeed, it can only be looked upon as a vestigial tissue which is slowly passing away.

The Head. - Proceding from the consideration of the bones of the limbs we will next give particular attention to the head, mainly on accomit of the tecth. These, although in the popular riew they are looked upon merely as organs for masticating food, and for this purpose are divided into front and back tecth or incisors and molars, do really possess very special features, by the aid of which the naturatist is cmabled to determine the family or order to which animals belong.

The exploit of the palaontologist in constructing the model of an extinct animal from a single fossil bone or tooth is often accepted as a trick of sleight-of-hand, more calculated to amuse than to instruct, but when all the facts are known there is really nothing very wonderful in the procedure. Anyone, for example, who is fimiliar with the form of the teeth of the shark could hardly make a mistake in their identification, and if a fossilized tooth of a shark were placed in his hand he would at once, in imagination, construct the amimal to which the tooth
belonged-in fact, it would be impossible for him to aroid doingso. In like manner other characteristic structures and organs are in themselves indisputable evidence of their origin, and to the natmalist the realization of the form of an anmal upon such evidence is a mere invohntary and quite spontancons mental process sareely attended with any eflort.

To understand the value of the evidence afforled by the teeth and certain hones of the skull of the horse as comecting the existing anmal with its remote ancestors, it will be necessary to consider some of the most salient features of those structures, premising that no more than a cursory view can be taken out of respect for the patience of the reader.

If we compare the sknll of man with that of the lorse it will at once be evident that the difference of form is very marked, as shown in the two illustrations (fige 660 and 661) from Sir W. Flower's book.

The letters of reference in the two figures are the same in both, and indicate the same bones. The remarkable difference in form of the two skulls is due to the variation

Fig. 661. -Sile View of the Skull of the llorse, with the bone removel so as to show the whole of the tecth and nasal bone

2, Nasal hone; 0 , orbit; z, zygomatie arch; t, temporal fossa; or, occipital condyle; $e m$, external aulitory opening of glenois fossa for articulation of the lower jaw; $i^{1} i^{2} i^{3}$, three incisor teeth; c, canine; $f m^{\prime}$, the situation of the first rulimentary premolar, which has been lost in the lower, lut which is present in the upper jaw: $j^{\prime} m^{2} p^{3} m^{3} m^{4}$, the three fully-developed premolar teeth; $m^{1} m^{2} m^{3}$, the three true molar teeth. in size and shiple of the separate pieces of bone of which the cranial and facial dinsions of the skull are composed.

Most noticeable is the vast difference in size of the cranimm of man as compared with that of the horse. There is no difficulty in recognizing the fact that the facial division of the horse's skull, the part which is mainly used for the mastication of the food. is developed enomously out of proportion to the cranial division in which the brain is logedthe centre of whatever degree of intelligence the animal may possess, and the source of some of the most important nerves. In man the conditions are exactly the opposite. The cranimm is of immense capacity compared with the insignificant proportions of the facial bones yet it vis. III.
is a fact that there are the same number of bones and a similar arrangement of them, and in short a general uniformity of the plan of construction in hotly cases, varied in detals moter the influence, it may be presumed. of the comblions of existence.

With regard to the teeth of the horse some points of considerable interest have to be moticed. It has already been stated that the horse has six front teeth or incisors, mamed more correctly, from their flat surfares, mipers. in eath jaw, four eanine teeth (tosks) in the male, two on each sille. top and bottom, while in the female the tusks are absent or are in a rudimentary combition. There are also six molars on each side, top and bottom. 'The last three of these are specially distinguished as the molars, those in front heing lnown is parmolnes. To these must be added the first premolars, eye-tecth or wolves-teeth. in the upper jaw, Which are in a ruthmentary state, and have disappeared entirely from the lower jaw. In the ancient mgulate mammals the first premolars were fairly well developed teeth, making a row of seven instead of six molars. After a gradual dinimution in size, which may be traced in the fossilized remains of the maglates of the tertiary formation, these teeth are represented in the horse of the present time only by the small conical teeth in front of each of the first well-dereloped molins of the ирие jan: These teeth (the eye-teeth) -which, as is well known, were once (and are still by some) looked upon as a tatuse of hlindness, and were always punched out as soon as discovered-are undoubtedly therefore restigial remains, and in course of time may cease to appear altogether in the horse's mouth. They are usually got rid of between two and three years of age, when the two first molars are exclanged for the second teeth or permanent molars.

Between the comer incisors and the first molars is a clear unoccupied space. the diostemu, popularly alled the bas: This toothless space did not exist in the most ancient mammals, but in the primitive equine mogulates there were some indications of it, and the feature becomes more and more distinct thongh the whole series of horse-like amimals. What circumstances led to the change, or what olject is gained by it, is not lnown, luat in the horse the space in the lower jaw is taken advantage of for the purpose of aldusting the bit. The incisors and molars of the horse are remarkable for their complicated structure. Three materials of elifferent degrees of density may be distinguished in their formation. Of these the least dense is known as the crosta petrosa or cementum; the next in hardness forms the hulk of the tooth, and is called dentine; the hardest of the three is the enamel whirh covers the dentine. following it in all its convolutions. The erusta petrosa
covers the root of the tooth; it eonsists of lamellaterl bone tissue with latomse and ranalienli, but without haversian camals. It is cosereal with periostemm, which is also reflected on to the walls of the alveolar cavity.

In the incisor tooth of the home there is moxemal dentine: the crown of the tooth is emmel ame crusta petrosa (fis. 6i62). In the motar tootlo aftiars are different; rusta petrosa, clentine, and enamel all rome to the surface, and it is owing to the differnt degrem of hamenes of these substances that the neeresary ronghes of surfere is mantained, whe the chown is worm away by hase.

Not only do the three strmetmes of the teeth acemmphish an inuportant purpose in the pramation of the foom for digestion, hut owing to rariation

Fig. titie.-sice. tion of Cnworn Incisor of Arlult llorse.
a, Wentine: ${ }^{\prime}$, Enantel; c, ('ementum; 1, Pulp' cavity. of colom they perent a rameteristic apmentmer which, taken in comnection with the form of the teetla, constituten a distimuishong frature in the Eiquide on lomse family casily recognized amb quite relialble.

With the ahove seeteln of some of the semerial parts of the skeketon of the homs it will be convenient to procese to the examination of wane other chanacteristics which are exhibiterl ly the amintal.

Colour may attract the attention of an observer even more than variations in size and ontline, and in many instances the peraliarities whirla are resennized on the surface are more definite, and reatamly to the ordinary observer mone intelligible, than the evidence which the anatomist obtans firm a dose examination of internal parts.

For "xample, some six on seven species of the equine family may be distinguished ty mere inspection of the matings on certain parts of the skin, the armogenent of the hair of the mane and the tail, the size and the shape of the feet, the length of the ears, and the existence or the alsence of small lorny callosities on the fore amd hind extremities.

The lonse (Eypuss collofllis, as it is known to maturalists) in variomsty colomed, and to the observint eve has very emious markings often efots or stripes here and there. On the tail the hair is long, ind grows firm the root to the tip of the organ, anmmig it completely. The mane also is eminently "hatacteristic, especially that part of it, the forelom. which hangs between the ears over the forehear.

Peculiar makings are also fremently seen in the form of a spot, light or date in colon', on the centre of the forehear. This mate varies in form, is circular or oval, elongated or lozenge-shiped, amt somatimes occmpies a considerable space, foming a kind of shield over the whole front of the face. Blase or rofer is the term given to this mark.

Size.-One homse differs from another not only in the chamateristics described, Int even to a mmeh grater extent in size. Comparing the smallest pit pony of thirty-six inches with the camiage or the cart horse of eighteen or mineteen hands. it in often diflicult to realize that both belong to the same species. Nevertheless the apparently widely difierent amimats we in atl essential features. excepting in size the same. The vast differeme in bmak is largely due to the efforts of the heerler in applying the principle of artitial selection. Pit ponies are repuirer to work in mines where the seams are only a few feet high: large hores are wanted for special work or for apearance. Both recpuirements most lee met, and the skill of the breeder, aided by climate and by form. is equal to the demand.

The Ass. - Next to the horse (Equats caballus) comes the ass (Epmos cesinus) with its varicties, which inchode the zelnas. Nitmralists attiom that really widd horses are bate, i.e. horses which have desended directly from parents which have never been domesticated. Wihd asses, on the contraly, are eommon in many pats of the world-in diriea, in Svia, in Persia. in Tartary, in Tibet, up to the frontier of Clana.

Thotgh assen have a general resembance to callh other, they still differ so fir in size, in form, and in shate of colour or of markings as to justify their division into three varicties.

The domestie ass presents some featnes which require notioe Its size varies in different comotries, as aloo loes its colour. The tabl is bare of long hairs, excepting the tuft at the ent. The ears are longer in comparison with its head than those of the horse, and there are no callosities lelow the how foint as there are in the horse. There is ermmonly a dark stripe ruming vertically from the top of the shoulder, and another damer in colour extending along the middle of the batk. and occasionally there are transerse markings on the legs.

Zebras (Equ"s Eebra) belong to the group of striped ames. There are several varieties, which are distinguished by the length of the ears, by the fulness of the tail and the mane, ly the colom and the armarement of the stripes, ly the absence of the callosities on the hind-leg, and by the existence of a modified fomm on the fore-legs. Guagon (Eymus querg!ac) are really modified zebmes, from which they are chietty distinguished by the roncentration of the stripes on the head and the neck, the makings hemg less and less distinct from the shoulders back to the hamaches. Which are perfectly free from stripes. All the varieties of the ass atgee in laving the hony callosities in a modified form only on the fore-legs. With requad to these boxies, which have attracted su much attention and led to so much diversity of opinion as to their mature and
uses in the animal economy, something has to be said in comnection with the subject of coloration and skin-mankings, of which these curious bodies form an important part.

SKIN MARKINGS AND CALLOSITIES OF TILE HORSE

Skin Markings.- Dr. E. Bonavia, in a recent work entitled Stombes in Erolution of Amimols, takes a deeidedly original view of the matme of the skin morkings, such as spots, rosettes, and stripes on the booties of varions mammals. He holds that the action of the nerve-centres has more to de with the remarkable varations of coloms and of markings in animals than matmal selection has: and thre can imled be no donjot that the nervous system does operate largely in detemming rolom in some eases, hecanse the fat has been demonstrated. Jamos devire of putting straked rods in view of the flock whith he was attenting. in order to secure a liberal proportion of straked ammals for his wwn shate, was lal pably successful, and more recent experime has shown, to the breeder's cost and imnoyance, that the detemining effect of colouss on the imagimation of animals though the eyenight is often marked. Further, Dr: Bonavia shown in momerons illustrations how easy it is for pots to he resolved into rosettes and these to be fused together so as to form striper. I visit to the mbllertion of stuffed ammals in the Natural History Museum, Lomlon, would make all this quite rlear, wen to the untraned eye; and an extension of the enquiry to the reptile room might assint in disposing of a good deal of the hesitation whiml might he folt in acepting Dr. Bomaria's rather startling suggestion that all the makimgs spoken of and othere yet to be considered, are to be explained hy refermin them to what he deems to be the real origin of marked mammals the amour-plated ancestor of the ammallo, of whirh family the illustration (fig. 663) will atford it grome example.

In the figme the reduction of size necesarily disturbs the inmpersion of similaty of makings in the variously spoted mammals and the amarillo, but anyone looking at the loge rampace of an amadillo in the Natural History Museum conld hardy fail to see an excellent pattern for the marking of many spotted and speckled creatures.

Dr. Bomavia sums nu his views of the nature of roloration of mammaks m a few short sentences.
" Alyptorlonts, or other armonred mammals," lee writes, "were the origimals from which all mammals are desernded. The jagnar has retained the most primitive trpe of coloration due to the daraters of the ancestral amomr-plates-a sort of picturation of the carapare after it hard been got rid of entirely.

* All other sooted mammalia, whether marked longitudinally. trimsvermely, or diagonally, are modifications of the jaguar.
"stripes, whether longitulinal, transerse, or diagomal, are fusions of lines. of spots, or of rosettes: withess the spotting of certain chectahs, of "ertain homes, and of "ertain tigers with twin stripes.".

In the self-coloned mammals, Dr. Bonavia contends, there is avidently a total whiteration of all ppecial markings, thongh they now and then turn

 Sontlakemingtom
 crossing in the merverentres.
lroceeding to the subject of coloration as it affers the homes. the animal which is most immediately meder considmation, it is at least very remarkable to observe the curious mixture of coloms in roan, pielahd, skewhald, grey, and dappled horses-the last term indicating a peenliar pattern incerpertive of colon, as the dappling orrus in bay, brown, grey, and dumcoloned horses.

It appears from the experionee of beeders that dappled foals are unknown, the pereuliar marking appars as the amimal gets older, and it must he adnitted that in the figures in the accompanying plate (LXVIII)

MR. ARHOLR'S TEAM OF DAPPLED (jlREIS

the light spots are singularly suggestive of the plates on the carapace of a large armadillo. In fact, the markings are exactly what would be expected to remain if the amom-phates became loose and ultimately fell off, leaving on the skin only the impression of their ontlines.

No proof of such a change having taken place in the course of ages can be offered, probably none exists, lint it may at least be urged that there wonld be nothing very remarkable in the change, given that the doctrine of evolntion is true. On this point Dr. Bonavia remarks that it wonk he as idle to suppose that the bony plates of the amadillo, the hide phates of the rhinoceros, and the pictme plate of the horse are all so tike each other by mere accident, as it wonkl be to smgest that the seven cervial vortebne or neck bones, whieh they possess in common, came to them by chance.

Markings on the face of the horse, before referred to, in the varied forms of the so-called blase or racr, which are ahwas present to a greater or a less extent, rarying in size and in colon, can be accounted for on the same primeiple, as also may smilar patches of colour or absence of colour in other parts of the body, romed the eyes, on the nose, and on the lower pats of the extremities. And it is also the case that the mper portions of the borly are commonly of a darker colour than the moder portions. All these rambions, accomding to Wr. Bonavia, may be explained, if his theory that the horse is descended from an amonr-plated ancestor is comect. The lighter roloms would indicate the parts from which the armonr-plates hat first disappeared, leaving only the pietures behind them, and it wonld matmally happen that the most movable parts, or those most subject to friction, womld first get free from the hard plates which, while they protected the parts they covered, woud at the same time impair their motion. Thus the eyelids, the limbs, and the terminal extremities would be most likely to be freed earlier than the upper parts of the body, and on the same principle the friction which the alrominal region wonld suffer, when the animal was lying on the groumb, would tend to assist the removal of the armons. The fart of the front of the head being most exposed to mbling against branches of thees and other projecting bodies wouk arrount for loss of amour from that part.

That the process of removal of the amour-plates must have heen a gradnal one, originated and modified by changes in the conditions of life, cannot be donbted : and, in addition, natural selection, alsolutely mehecked by any restaining influences, would mevitably conduce to vaions alterations in the size and the shape of the pieture-mankings, exactly as artificial selection does in the present day, with the recognized exceptions which from time to time upset the breeder's calculations though the operation of the law of atavism, or reversion to some ancestral type. It does not, however, at all times ocenr to the breeder so strongly as it might, that a red calf, or
one of any other colour, instead of the expected black one, or a foal with a large white blaze when only a small spot was desired, is not a freak of nature but the consequence of a sternly enforced law of heredity which never dies, although it may seem to slumber now and again.

Callosities (Chestnuts and Ergots).-Of all the peeuliar markings which have been referred to, the most rmarkable and least explicable are the homy growths or callosities on the imner sides of the kegs and the backs of the fetlock-joints of horses and their allies. It has been remarked by an American maturalist "that whoever discovers the meaning of the horse's callosities will become famous among naturatists all the world over". Why so much thought amd speculation has been deroted to these bodies is not at all easy to moderstand. They are so placed inside the forearm and at the lower and back part of the hind-leg, just below the hock and behind the fetlocks, that they are quite out of the way. They are never affected by or connected with any disease, and when they grow long enough to be maghtly, as they sometimes do, the shoeing-smith pares them down with his knife, just as he pares the sole of the foot. In size the horny structures vary from that of a hazel-nut to that of an oval mass nearly 3 inches long and $1 \frac{1}{2}$ inch brod in the eentre in coarse-bred horses. Their shape is most commonly an elongated oval, those in the fore-legs being larger ind more distinctly pear-shaped than those in the hind-legs. Some of the carlier veterinary writers-Snape (1687), Bracken (1739). Gibson (1751). Blane, and also James White (1802) - do not mention the chestnuts, although Gibson figures them in his phates of the limhs of the horse in the fore-arm, but not in the hand-legs.

In a later edition (1830) Blane ascribes to the chestnuts a fanciful value as adjuncts to the generative organs of the stallion, apparently disregarding the fact that they are quite as well developed in the mare. Chanvean, in his Comproratior Aurtomy (1873), refers to the chestnuts as hitle horny oval or round plates found in the horse in the imner face of the foream, and at the upper extremity of the imer surface of the metatarsal bone. They are composed of a mass of epithelial cells, arranged in tubes like the horn of the loof. "In solipeds," it is said, " the chestnut is the representative of the thumb.
"In fine-bred horses this horny production is much less developed than in coarser breeds. It is always smaller in the hind-limbs.
${ }^{66}$ In the hind-leg's and the fore-legs we also find a similar but smaller horny mass growing from the skin in the tuft of hair hehind the fetlock, and named the ergot. Like the chestnut, it bears the same relative development in fine-bred and in coarse-bred horses." This is all that Chaurean has to say on the sulbject.

Sir William Flower combats the view which has been very generally arcepted, that the callositios are the remains of the first digits, and his argment is well worth attention. After a roncise dereription of the skin, with its inner layer of interlacing fibres, homb-vessels and nerves, and glands and follicles, constituting the the skin, and the layer of fattened cells which form a protecting layer of insensitive structure-the epidermis or cuticle, - the author refers to the hairy eont of the horse, with its varieties of tine and coarse hairs; the "rhestmots" are deseribed as "mallenders" amd "sallenders", with the remark that they are treated as a disease hy the ohler veterinary witers. It is true that these words are used by ancient and morem veterinary witers to indicate an emptive affertion in the bend of the knee-joints and hoek-joints respectively, hut the tems have never heen applied by them to the homy excrescences called chesthuts or callosities.

Sir W. Flower's chief oljection to the view that the rhestnuts are rmbimentary digits is based on the fact that in the ease of the excrescences Which are most constant-those on the fore-limb-the position which they oceupy on the foream, at some distance above the knee, is fuite inconsistent with the theory that they represent the thmons.

Sir W'. Flower rondludes "that the callosities belong to a numerous class of special modifirations of particular parts of the skin surface which owor in many animals, the use of which is in most cases remarkally whecure. Bare spots, thickened patches or callosities, and tufts of clongated or molified hair, often asonciated with groups of peculiar glands, are very common in various parts of the body. hat especially in the limhs of many mugulates. and to this category the chestmuts of the horse undoubtedly belong."

A somewhat similar homy exeresence has ahready been mentioned as existing at the back of the fetlock of the horse, hidden loy the tuft of long hairs which give the name feetlock or fetlock to the joint. To this exerescence, owing to its growth orasionally in the form of a spm, the term ergot is applied, and with regard to its signifinance Sir W. Flower suggests that it correspomls to the foot-pads of anmals which walk more or less on the pratm and the sole. As no one has previously offered any explanation of the uses of the horny growths at the back of the fetlocks, it will be interesting to give Sir W. Flower's description verbatim. "If we look at the palms of our own hands (which, as shown before, correspond with the hinder surface of the froe-limb, of the horse below the so-called knee) we see slight prominences just behind the root of each finger and opposite the knuckles at the back of the hand, which mank the position of the joint between the metarapal bones and the first phalanges of the digits. Over these, especially when the palm is sulyect to pressure and firiction from hard mamat latrour, the
epidermis is thickened. The sole of the foot presents exactly the same arrangement.
" In such an animal as a dog or a cat, in which this part of the foot comes to the ground in walking, there is a large, tribobed, prominent, hare pad, composed of a thick, fitty enshion covered with hardencd epidermis, gencrally of a hack colour. There are also smatler pads in front of this on the ander suffare of each of the toes, but the large one corresponds with the coalesced three middle prominences of the human palm or sole just noticed.
"In the horse's nearest relatives, the tapir and rhinoceros, the same arrangement holds good. There is a harge pard moder the fore part of the middle of the foot, which in these animals rests on the gromm, and there is also a hard sole under each toe. Now the crgot of the horse clearly, both loy structure and position, comesponds to the palmar or the plantar pads of those anmals whirh watk more or less on the palm and the sole.
"Owing to the morlified position of the horse's foot, standing only on the emb of the last joint of the one toe, this part of the font no longer comes to the ground, and yet the pad, with its bare and thickened epidermic coverng, greatly shrmken in dimensions, ant concealed among the long hair aromn, and now apparently nseless in the economy of the amimal, remains as an eloguent testimony to the mity of the horse's structure with that of other mammals, and its probiable descent from a more generatized form for the well-heing of whose life this strncture was necessary."

In the illustration (fig. 664) the position of the parts described is shown.
ln the description quoted, the reference to the ergot of the horse's fetlock-representing the pahar or phatar pad-as heing daracterized by .. its hare and thickened epidermic covering greatly shrmanen" does not comsey an idea of its trme structure. The excrescence, both in the horse and in the ass, is a decided prominence, and in identionl in its minate structure with the hoof of the horse, as will shortly appar, while the palmar and the phantar pads of man and the dog are correctly desembed as "thickened epilermie covering" "puite distinct from hoof horn.

A areful examination of specimens which have been obtamed for the particular purnse of ascertaning what are the structural relations between the callosities and the ergots of the horse tribe and the plantar and the palmar pals in man and the dog has led to some very interesting results.

The several parts refered to may, for convenience, be considered in the first place as they appear to the unaded eye of the observer. After which their minute structure will be more easily explained.

Han has no distinct pads beyond those which have been described as hardened cuticle, the result of pressme and of friction affocting certain prominent parts of the soles of the faet and the palms of the hands. These

SKIN MARKINGS-II
points are indicated in the human feet a in fig. 66t by the letter: " b c. To the maided eye the parts refered to are apparently covered with a hard mass of euticle, and a microscopic examination confirms this conchnsion.

In the dog the palmar and the plantar pads are underneath the fore-feet and the liund-feet r , fig. gG4. Two fatty curhions form the bulk of earch part, and the surfice of the skin covering the enshions is all extremely beantiful structure, to which the use of the term hardened epidermic covering, although strictly correct, certainly does very scant justice.

Looking at the surface of any one of the parls muderucath the foot of the dog, when it is freen? from the halitnal coating of dirt, the observer will he strurk by its tessellated or chequered appearance. A series of columns or cones will he distinguished. with the points direrted. in .the natural powition of the foot, downwards to the ground surface of the part.

The plantar pad of the

Fig. 6if. - Plantar Surface of the Foot of s, Man; 1, [ho: © Il me
The mall letters n, h, and indicate the correnpumbur pints of the three. These points are in man at the centre of the leel ", the protnletance at the joint of the thiri or millle toe h, and in the sentre of the mildite tue e. In the dog at the back of the peint of the bock in, which loes not come in contact with the gronal hwing on the !"xition of the limb, also on the centre pad b, and on the contre of the thirt tore c. In the hase in the centre of the point of the lock ", on the ergot h, and near the centre of the frog e. foot of man is composed of cpidermie scales, forming a nearly smooth covering to the masitive and rascular skin.

Among the horse tribe there are no developed palmar or plantar pats; the remains of these are indicated in c of fig. 664 . If, howerer, the crgots
are to be accepted as the rudiments of the plantar pads in the primeval honse, it must not be forgotten that they riffer in structure from the pads of animals in which pads are essential organs of progression, as the ergots are distinetly horny structures and not merely hardened euticle.

Ergots are constantly present in horses and in asses; in the latter inderd they are relatively broaler than in the horse, although they do not often protrude quite as far above the skin. After maceration the homy growths are easily pulled off, and even a maked-eye inspeetion sutfices to prove their identity with hom of the sole or coronary smeface of the foot.

Chestnuts or callosities are met with in different forms and in varier positions in the several members of the equine family. In the lowse, breerling exercises some considerable influence on their development, and in their earliest condition in the fuetus they are not at all like the horny excrescences which they afterwards become, but, on the eontrary, comespond strictly to the description given of them in the other equide, i.e. bare patches of skin with a thickened epidermic covering. It is interesting to note, however. that their true nature is at once ascertaned by microscopir examination.

Among asses, chestnuts are nanally found in the distinctly molified form described-i.e. bare patches of skin, often rather larger and more circular in form than the chestnnts of the horse, -and to the maked eye are covered with thickened epidermis. It may be arlited, however, that in some specimens of chestnuts recently obtained from asses the horny substances projected something like $\frac{1}{4}$ of an inch above the surfice of the skin, in fact they were larger than some which have been hately obtamed from the legs of well-bred horses.
ln the following illustrations (fig. 665) are represented a chestunt from the fore-leg of a cart mare and one of the ergots from the fetlock joint also specimens of a chestmut or bare pateh from the fore-leg of an ass and one fiom the fore-leg of a foutus of a mare at about the eighth month of gestation.

To the maked eye the chestmuts of the ass and those of the fretus of the mare are identical in appearace, differing altogether from the chestnuts of the adult horse; but under the microscope the three forms are seen to be essentially the same in their minute structure (Plate LNDX).

That all the cuticular appendages, hair, nail, and horn, are composed of epidemic cells arranged in various ways is quite well known. To assert, therefore, in respect to any of the structures, that they are hardened, condensed, or modified aticle is correct; at the same time the statement is not sufficiently definite from the point of view of the scientific encpurer.

Cuticle or epidermis is arranged in the mamer of the tiles or the slates on the ronf of a huilding, each cell representing a tile.

Horn is formed by the secretion of cells romm a cone or rillus projecting from the underlying vascular membrane, amb assumes in conserpene the form of hollow filmes closely felted together.

Hair is developet in a similar mamer from a papilla at the botom of a small depression or forlicle, the chief difference being that weh of

 of an ass. D, bare patch from futus of mare. All ahout $\frac{g}{3}$ of natmalseale. $"$, Chenthot; b, Erqut.
the hairs is distinct. They wre not felted together or aranged in massen, as in horn.

Nail is also formed from a villous membrame, the fibres leing very fine, and densely cowded together, constituting in extremely haril structure.

Although hoof, hair, and nail are all composed of the same elements, the difference in their arangement is so distinctive that a tyro in the we of the microscope finds it a perfectly casy task to recognize and to nanse the several structures when placed hefore him.

The present enguiry is to ascortain the structure of those pecoliar formations on the legs of the horse family, known as chestnnts, ergots, and bare patehes of cuticle, and atso of the parts described as phantar and pathar pats in man and certan amimals, with the view to placing them in the dasses of substance to which they respectively belong.
l'ehaps the most simple way of performing the task will be to clasify the several structures at the commencement, and then to show by description and illustration how the dassification has been amived at

Proveding on this plan, the structure classed as horn with include all the growtho known as chestnuts, ergots, and bare patehes of hardened cuticle, notwithstanding the derided variations of form whirh they present to the maled eye.

In the mext class-" Modified epidemic covering" - monst be placed all the varicties of plantar and palmar pads.

Taking the chestmats or ergots of the horse first, both in the adult and in the feetus near the time of lirth, there is no difficulty in showing that they are homy strmetures. The sections, both transerse and vertical, exhblited in the following diagrams (fig. G66) and in Plate LXIX place the matter beyond doubt, and it will be interesting to compare the different sections with the ohjerts as they appear to the naked eye in fig. 665, A, B, C, D. The bare patches covered with hardened cuticle in the ass, and the simitar bare patches in the foetus of the mare, are, as perionsly stated, both ifuite distinctly true homy structures developed from a villoms membrane, exactly as the perfectly fomed horny excrescences (chestmot-) are in the adult.

After maceration in water in the case of the chestnuts of the ass, and without any preparation in those of the fietal horse, or of the foal at birth, the epidemic covering may be striped off, and with a pocket lens the secreting membane thas exposel may be seen covered with villi. The thin layer which has been stripped from it may by the sane instrument be resolved into a fine plate of hom identical with the loon of the sole. Transerse and vortial sections muder the microscope show all the details of the structures, the sudden thansition from ordinary skin to the villons sereting membane and the homy covering on the surface. All these pants are imbleated in the figures referred to, which may be taken to represent the mimnte structure of the organs exhilited in fig. $665, \mathrm{~A}, \mathrm{~b}, \mathrm{c}, \mathrm{b}$.

Sertions of the ergot in the horse and in the ass exhilnt exactly the same intimate structure. In fact they differ only in the size and form of the homy growth. No further proof ean be required in support of the statement that chestmots and ergots, whether they appear as homy exeresences or as bare patches of hardened euticle, are in their minute
structure identical with hoof horn, and further, that the membrane from which they are developed is a vasulat sillous membrane, precisely imathgens to the villons membane of the emonary surface and sole of the horse's foot, which has alreaty been deseribed and figured on ph. tiat and $4: 35$ of this wolume.

These fants wouk haw rensisted momakly well with the the ory of their being remmants of digits, were it not for the cogent objections which

Fig. 666. Sections of thestaut and Erest of Ilorse and lare Patela of A:s

 3 , suboutaneous tissue. U, Section through hald pateh of ass: or, the bare patel; ; h, skin- 1 . homy layer of eprdermis; 2, malpighan (mueous) laver of ephlermis; 3, ferma; 4, subcutaneous tiswe.
have been urged aganst that riew. λ s it is, the identity of structme in the homy growths and the hom of the font does not temd to assist in the attempt to assign to them any special eromomy, or in any way to indicate what functions they might have possessed in their mone develned condition.

Plantar parls are represented in fig. 6ift, A, B (P . 503) in man :mat dog, and their comesponding positions in the leg and foon of the lumse are indicated at o in the same figure. It has been stated already that these
pads in man are really hamened conticle, excessively thick portions of the cuticle in fact.

In the foot of the dog, howerer, both on the surface and in section, the strueture differs from the thickened cuticle of man's land and foot, and also from true horn. Lurleed, the minute anatoms of the orman exhilgits a most perfect trpe of the transition or change from cuticle to horn. S'ee llate LXIX.)

In the case of the dog the plantar and palmar pads are in perfect form and active function. In man, however, they are more or lese acridental or rudimentary. The palmar pathe, or thowe on the patm of the hand, depend for their develoment on the amoment of manal work done, and they vanish when that work ceases, while the wowth of the plantar pads is checked hy the devices of divilization, including shoes and stockings, and the use of varions modes of locomotion in place of the natmal arts of mmmo and walking.

FALSE Nostrils and gUTTURAL PoLCIEs

Two peculiaritics in the amatomy of the horse ret remain to be considered. The Forlse Nostriks, as ther are called, and the rinttrad Pouches.

It is generally known to borsemen that the horse breathes solely throngh the nostrils, owing to the great deptla of the soft palate, which entirely cuts off the eavity of the month from the openimg into the breathing tubes. In compensation the nostrils are Hexible and the opening on each side is large enough to ammit all the air which the amimel refuires for breathing moder all conditions, which inchole violent exertion and a high rate of sped. A curious pouch, 3 or 4 inches deep, cone shaped, hatimg its aper pointing upwards, and known as the false nostril, exists at the entrance to the nasal chambers on each side. No nse can be fonmer for this cavity. The tapir has the same structure in a more highly developed form, and it also exists in the rhinoceros.

To discover the seal significance of this peculiar sac is now imposible; most probahly it was an inportant organ in some of the earlier hoofed manmals, but mompily the conservative curth only preserves in a fossil state the bonses and like resistant strurtures. Ill that might be learned from even badler-kent soft parts has been lost to ms. lont the organ as we now find it in the three ammals named is valuable as comecting the creatures of to-day with those of other times.

Guttural pourhos (Vol. I. p. 505) are cavities at the bark of the month, also commmicating with the air-passages, and with a canal which enters

MHCROSCOPIC STRUCTERE OF PLANTAR PADS, CHESTNUTS, AND ERGOT

1. Section of Plantar Pad of Man (20 dianneters).

2 . Section of Plantar Fad of I \log (25 dianmetars).
3. Chestmut of Fintus of Mare, Eatly stage (180 diameters).
4. Chestnut of Fistus of Mare, approaching maturity (3) diameters).
5. Thansverse section of ("hestaut of Alult homse (12 diameters).
(6. Lomgitudinal seation of Chestnot of Adult Horse (l2 diameters).
7. Lumgitudinal sedion of Front of Horse (12 dimmeters).
*** Fand smetion shaw the hony corerins, the serveting vill, alud the soft underying tisibes.

MLROSCOPLC STRUCIURE OF PLANTAR PADS, (AHSINUIS, ANL FRGOI
the internal eas, ealled the Eustachian tube. The guttural ponches do not now appear to have any special function, and to the veterinary surgeon they are a source of anxiety in many cases, as they are liable to become diseased from the lodgment of foreign substances in them. Fometimes they are the seats of purulent leposits, and now and then become distended with air.

Alogether. so far as the horse of domestication is eonmened, they might apparently he dispensed with, notwithstanding their value as relice of a long-past order of things.

FOSSLL ANCESTORS OF THE IUORSE

The preceding remarks on the sperial characters of some portions of the horse's structure, and on the presence of organs and parts which have now no obvions use or function, have cleared the way for a brief enquiry into the evolution of the horse. Organs which are now gradually becoming rudimentary and useless must have once formed essential parts of the animal's structure; and in their present state it may be said of them that their existence camot be satisfactorily accounted for except on the assumption that they were trasmitted from remote ancestors in gradually modified forms, becoming less and less definite in character as they became either obstructive or monecessiry to the animal in its different surroundings and new mode of life.

The doctrine of evolution has alreaty heen illustrated by reference to the process of generation in the higher and lower forms of life. Changes in the small mass of "umlifferentiated (that is, formess and jelly-like) protoplasm" in the human ovmm (egg) have heen wen to result in the development of a mature limman form; and almost ikentical changes in a mieroscopie cell in the orm of other animals have also been refered to.

No hesitation is permissible in respect to the facts of evolution which have been described. Wonderful in truth they are, unbelievable, perhaps. to many, but nevertheless commonplace facts to the man of science, who has had the faculty of wonder obsensed and dimmed by incessant repetition of the marvellons in his daily work, and who can no longer take refuge in doubt, hecause the evidence fores him altogether out of the region of doubt.

Continuing the investigation in the direction of the previons remaks, evidence has now to be produced from the discoveries of geology to justify the assertion that the modern horse had its origin in the remote past in ancestors the history of which can he traced from the earliest leds of the Tertiary formation up to deposits of a comparatively recent date. vis. III.

In dealing with this part of the subject two courses are open, cither to trace the horse from its present comdition lackwards to the first-discovered hoofed mammal in the lower Eocene, or to begin at the hegiming and follow the changes in size and arangement of his rarions organs in sncessive mentations of horse-like animals, each series becoming more and more like the horse, until, in the recent deposits, the differences are ahmost ohsured hy similarities, and finally vanish altogether. The latter course will probably be the more interesting and inteligible.

It has been well said that the lorse is an amimal the evolution of which from the Eocene to the Pleistocene may loe compared to a chain in which there is scarcely a missing link.

Starting with the carliest hoofed mammal yet discovered, which, though not a direct ancestor of the horse. las certain special characteristics in common with it-the anmal known as the Phenacodus deserves notice. The first specimen was dug up, by Professor Cope from the Eocene marl on Bear River, Wyoming. and the restored skeleton of the amimal is represented in Plate LXX.

The lighter shaded portions of the figure indiate the places where missing portions of lones have necessitated restorations. No important bones are alsent, although, as necessarily happens in fossil specimens, some displacement of parts has occurred.

A glance at the skeleton of the Phenacodus will show that it belongs to the perissodactyle or odd-toed mammals, and that the third digit is distinctly larger than the rest. It is not to be muderstoon that the anmal here shown is to be taken for the primeval horse, but it has several characteristics in common not only with the horse but also with the chinoceros and tapir, which lead us to conchde that these amimals are all descended from nearly allied ancestors, of which the I'henacolus may be taken as a representative.

In the later Eocene and the formations overlying it the remans of hoofed mammals are found exhibiting remarkable changes in their teeth and in the arrangement of the bones of that part of the extremities which is rightly called the foot, the bones below the joints called the carpus or wrist and tarsus or ankle in man, the knee and hoek of the horse (see Plate LXXI). From the five-tom Phenamodns the change to four, thece, and then one (with momentary splint bones) is seen to lave gone on with remarkable regularity, an indicated in the illustrations.

In the flate the extremities of the limbs have all been drawn to the same scale. sh as to show their relative sizes. fig. 1 representing the fore- and lind-feet of the Phenafodus alreaty mentioned-an amal ahout as large as a fox-whilst fig. 7 represents those of the horse of the present day.

SKELETON OF PHENACUUUS

SKEIEION OF PIRUIOROHIDPPU

The worn or exposed surfaces of the npper molar teeth of five of these fossil animals and of the horse are reprevented in fis. 665; in omer that the development from the romparatively simple structme of the tooth of the Hyrat-
 cotherimm to the complirated details of the teeth of the Hipparion atmi honse may be more remtily followed, those figures are drawn of the same size, although in mature there is a gradinal increase in size as well as in com-

". Hyracotherium; ", Nesohispms: e, Anchitherinm: 1. Protohippus: i, Hipuarion; j, Horse - 1, dentine:
\because enamel: \because, crusta petrusa. plexity. Of these examples the first thee belong to the brachydont or shorterowned class, of which a side view is given at ", fig. 668, whilst the teeth of the Protohippus and Hipparion show on mbance towards the state of hypsodont or high-crowned teeth (l, fig. 668) which eulminates in the horse (c, in the same figure).

Next in chronolowical order to the Phenacodus mention must be mate of the Hyracotherium and the Eohippus, also from the Eocene, which are, so fiar as is at present known, the earliest direct ancestors of the horse, the former in the old, the latter in the New World. They may, inded, be varieties of the same amimal, and they are described as heing about the size of a fox. In the fore-feet there were four well-developed toes and the rudiment of another, the himefeet had three toes, as represented in the Protorohippus (fig. 2, Plate LXXl), which marlis the next step in the order of de-

Fig. 6ts. -Short - and Long-crowned slolar 'leceth
a, Anchitherium; b, Hinparion; ι, llorse. velopment. The change which has taken place in the later ammat, as will he seen by reference to the figure, consists only in the loss of the rudiment of the first digit, learing secomd,
thind, fourth, and fifth digits. It will be olserved that the third or middle digit is the largest of the four, representing in fact what hats previonsly been termen the one hig digit of the horse

The Protorohippus has a well-teveloped nhas a well-aleredoped fibnia, and shot-rowned grinders of simple patterm.

Comparing its skelon (lato LXX) with that of the honse we see that there is a general concexondenm in growe and deliaty of outline in the two amimats.

The next hawings (fig. : Phate LXXI) repesent the fore and hind-feet of the Mexohiphas, from the Lower Miocene immerliately suereeding the Eocene in which the Potonohippus was fomd. In comparing this set of figures with thuse last deseriberl, it will be seen that only there prominent digits remain in both the forr- and himd-feet, the fifth digit

Fig. bit9.- Ladius (R) and Ulua (e) of Fossil Ancestors of the Horse, showing the gratual dimination in relative size of the ulna (not to seate). 1, 1'henocomas; 2, Protorohippus; 3. Mesohipprs; 4. Miohipuns (Anchitherium) ; 5, Frotohippus; is, Horse.
being reduced to a very sember rudiment. In this anmal the what (fig. G69) is well dereloped, but the fibula has berome quite rulimentary; the forms of the molar teeth have not molergone very considerale "hang".

In the Xiohippus, the contemporary of the Anchitlerium of Enope, the extremities remann nearly as in the Mesohippus. The what has the lower part greatly reduced; the other limb-hones remain nearly the s:mes.

Tou the Nionene periond also hedongs the Merychippus, found thenghont a large portion of North Ameriea, which is remartable in that in the youns condition it has the short-erowned, mermented teeth of its ancestors, while the arlult animal has the long-erowned and cemented teeth of its suceresoms.

Proceding mpards to the lrotohippos and its near relative the Enropean Itpparion from the Lower Plioreme, it appears that the rhanges ${ }^{-1}$ hirfly refate to the ulna, which in thes amimals has decreased comsiderably in length. only reaching to the millle of the radius. The two

COMPARISON OF THE FORE ANL HINL FEET OF THE HORSE
WHH THOSE OF SOME OF ITS ANCESTORS
extra toes in the fore- amd hind-feet still reman, but they are evidently shrinking in size. The dhanges in the molar teeth are also rery consirlerable. As will be seen on reference to fig. 668, the teeth are paswing from the brachydont or short-chowned to the hyperdont or high-rowned variety, a change which goes on progressively in correspondence with the sanishing of the extrat ligits. In the upper molars of the Hipparion there is a distinctive feature whith is at once recogized by the anatomist, In the presence of an interion colnom of dentine completely isolated from the rest of the mass, as shown in the section of the upper molar (e. fig. 667) rlase to the bottom, in the form of a white oral pot surrounded by a double line.

There ean be no donlt that the Jlipparion was remarkably like a horse, though possibly not a lirect ancestor. It was somewhat smaller than the Wild Mongolian Horse, of which in illustration is given on Plate LXXlll, and differed from it in the presence of the rxtra digits, which were, nevertheless, becoming rudimentary. The animal evidently used only the single hoof, the extra tors being some distance off the ground surface. It may be remarked that some of the speries of Protolippus are said to have been as large as an ass; thin in partionamly the ase with the Eurnpean Ilipparion.

Proceding from the Lower Plowene to the ' Pper, the lliohippos is met with, in which the extra ligits have become entirely mimentary, closely approaching in form the splint lones as they are found now in the limbs of the horse. 'The lower phatanges and the hoofs of the extra digits which were depicted in the Protohippus have entirely vanished. 'The nha amd the fibula are rery mond the same as we find them in the horse, the molar teeth are assmming a more equine chamoter.

The next step is to the Pleistocene and recent strata in which the fossil remains of the true horse are fomml. Some of the fossil types have, however, peonlanities of their own, such as the large nasal development of the Hippidium from sonth Amerian, figured in Plate EXXII. The extra toes, the ulna, and the fibula are now in their present rudimentary form, the molar teeth show the chameteristic hypsodont type, am the anterior separate column of rentine has entirely disappeared in the upper molars. The history of the evolution of the horse, so fiar as the eviduce furmished by geological researehes is avaibable, is thas amplete, and surely a more commerted and comsistent story wis never constructer.

According to promise, the chain of events in the destent of Equas cabrallus has been traced along its many links from the most distant, the Eohippus of the Lower Eocene, to the modern horse found in rermet geological deposits.

For the rest of the story of the horse no further demand will be made on the reader's patience or imagination. An active or perhaps a despairing mind may indulge in gloomy anticipations of a time when the Equels calballus, no longer necessary for man, will gradnally disappear, and be known to future enquirers only throngh the science of paleontology.

SKULL' OE SOAE ANCENTORS OF THE HORSE

1. Protorohipmas venticolus.
\therefore Mesohippus lairdi.
2. Hipparion gracilis.
3. Owhippidinm Mimizi (an extinct South American horse).
4. Aral Horse

A is a cavity for a face glaml, and is very marked in Hipparion (3) and (huchappidiun (t), while a vestige of it remains in the Arab horse (in). It is absent from some lireeds of living horses.
ls is the remarkably lome nasal slit which is a rety noticeable feature of Onohippidium (4).

SKULLS OF SOME ANCESIORS OF THE HORSE

THE HIs'TORY OF THE HORSE

section XV.-THE HISTORY OF THE HORSE

HORSES OF THE PAST

Mention of the horse's existence is to be fomm in Chinese tradition, which records that during the reign of Ilwang-te, who lived before the Hood, "Chariots, horses, and bullocks hequm to be used", and that the same emperor extricated his amy "when hewildered in a mist" through the ageney of a manetic pole attanched to his chariot, "which always pointed to the south ".

The ancient Chinese work known as the Shoo-King speaks of Yaou, who lived before and after the flood, as riding in a crimson hatiot drawn by white horses; and Yn, the person employed ly Yaon in perfecting the great work of removing the foor and restoring order to the empire, thas narrates how he accomplished the task: "The deluge rose high and spread wide as the spacions vanlt of hearen. buried hills and covered momutams with its waters, into which the common people, astomished to stupefiction, sank. I travelled on dry lam in a chariot, on water in a boat, in miry phees on a sledge, and dimbed the sides of hills by means of spikes in my shoes. I went from monntain to mountain felling trees, fed the perple on raw food, formed a passige for the waters of the seat on every part of the empire by catting nine distinct berls and preparing whmels to combuct them to the rivers. The waters having subsided, I tanght the people to plongh and sow, who, while the derastating effects of the food contimert, were eonstrained to eat moncoked food, and in this way the people were fed, and 10,000 provinces restored to order and prosperity" (Kidd's Chimr).

The quotations tend to prove that the horse had been snlijected to domestication, had been used for purposes of pageants and of war. hefore the flood, and had assisted the Chinese in clearig the immonted provinces of the waters that bronght ahout the dehge 2348 years b.c. (hinese tradition may be considered of too legendary a nature to be worthy of belief. The criticisms of the past temd to prove that this was the gemeral opinion of the leamed world, but dming the nimetenth rentury grological peacach has opened our eyes by demonstrating the vast antifuity of the earth and
the existence of man on it during thousands of years hefore the time of Adran, and as such is the case there is not so much difticulty in believing the Chinese tradition of their 75.000 years of national existence. lf, therefore, it has been provel that man inhabited the globe at this early period75,000 years ago.-we can easily mulerstand that the human family has descended from ancestors of pre-Adamic origin, and that the tradition of the vast antiquity of the Clinese race, and of the subjugation of the hore during the antedilurim period, is more worthe of credence than the authors who wrote during the eighternth century suspertel. It must, howerer, he admitted that legends camot be received as authentic records of the past, neither are the statements handed down to us in ancient history atwars incapable of refutation. Sometimes they are fathes composed after the manner of Plato, hat ahwas muler the influence of religions sentiment, and in this particular Arabian literature is conspichous. For instance, we reat: "When Altah willed to erate the home. he said to the south wint, "Comlense thyself: I will that a rreature shomb proceed from thee". Then came the angel fabriel and took a handful of this matter and presented it to Allah, who formen of it a dark-hay and a dank-chestmut horse." It is also related by many Arabian historims "that after the time of Alam the horse, like many other ammals, lived in a wild state, and was first subjugated by lshmael, the son of Almam; hat that the horses trained by him lost much of their purity, exeepting one stock, whose nobleness was preserved by Solomon, the son of Davil". There is a tradition that some Arals of the Szel tribe went to Jerusalem to congratulate Solomon on his marriage with the Queen of Sheha. Ilaving fulfilled their mission, they addressed him this: "0, I'rophet of Allah. our country is far distant. and our provisions are exhansted; thou art a great ling, hestow upon us wherewith to take us home". Solomon thereupon gave orders to bring from his stables a magnificent stallion, deseemed from the Ishmadel stuck. and then dismiseed them with these words: "Behohl the provisions I bestow upon you for sour journey. When hunger assails you, gather fuel, light a fire, plare your best rider on this horse, and arm him with a stout lance. Ilardly will you hate collected your wood and kindmed your flame when you will see him return with the produce of successful chase din, and may. Allah cover you with His hessing." The Azed took their departure. At their first halt they did as Solomon had preseribed, and neither zehra, gazelle, nor ostrich could escape them. Thas enlightened as to the value of the animal presented to them by the son of David, these Arals on their return home devoter him to foal-getting, and by carefully selecting dams at length obtained the breed to which, out of gratitude, they gave the name of Zad-el-Rakeb-the support of the horseman. This is the
stock whose high renown spread at a later period throngh the whole world.

The importance of the Eastern horse no horseman will dispute. inn the investigation of equine pedigrees will show how largely the Aral horse has rontributed to the perfection of almont every hreed of horse in existence, which has been effected by the impression he made upon indigenons stock.

It is thought that the use of the ass and the camel precented that of the horse. Such might hare been the case, but we mast remember that during the early historic perion the a mimals were used for different purposes, the ass and the camel to carry lurdens-mmely, tents amb their furniture. When Jacob took his departure from Laban, his grons, wives, and children were placed on the batks of camels, and his sons convered the eorn they obtained from Egypt on asses: yet at the same time Jacob and his sons recognized that horses possessed fralities that rendered them valuable, for we real: "They hrought their cattle unto lowpht, and Joseph gave them bread in exchange for horses and for the flocks and the rattle of the herds", de. The pastomal life which Jacol and his soms emoned did not necessitate the me of the spirited horse, which in early times wats employed almost exclusively for war, and whose hoofs, previonsty to the discovery of the art of shoeing. wonk have worn down to the duidk during those long journers which the ass and the camel were apable of perfoming with imponity. But the nervous temperament, showy action, and activity of movement marked the horse out as a likely assistant in hattle, and as a conspicuons feature at pageants; and thas we learn that when . Foseph carried his father's horly to Camann, he "had with lim a large company of chariots and horsemen", which held a comspionous position in the funcral procession. This is the first time the seripture mentions the sulyugation of the horse, but there is little dombt that he had been employed los the Egyptians long before this perion, and for many years afterwards the hreeding of horses was encouraged. This resulted in the production of a fine stock, which Pharaoh was able to select from, when he pursued the lsmelites across the Red Sea, with "six hundred chosen chariots, amb all the chariots of Egypt". But before this period commmitios of men had collected together to form mations. Shont the year 2217 bir. Nimmod is supposed to have fomded the Babylonian Empire and Assur the Assyrian monarchy, and these states, accomding to Ctesias, had studied sojence and art, fashioned implements of war, yoked horses to the rhariot, and harl trained the charger to undergo the fatigues of battle, before Mones was horm (1571 B.c.). Althongh such was the case, history does not murb assist us in determining the class of horse that was employed during these periods, nor does it inform us whether the horse was found wild in
these localities, or was imported from (hima or from other distant lands in the East; nor do we know whether horses emanated from one centre or many, nor whether they were distributal over Asia, Africa, and Europe at one amd the sume time, thes forming distinct thongh distant groups of equine commmaties from which by frectuent interomese the vious beeth of horses have been propagated. At the same time it must be anmitted that the early accomits given of the horse's existence are someWhat leqembary, and it is not matil after consulting the Soliptmes that we remive any athentir infomation on this rexed subjert, aml this tow only of a very fragmentary mature. The beatiful deseription of the warhome wiven us by Tob proves that the home was very early appreciated ly Eastern peoples, and in no language have his merits heen panted with such force and anthusiasm: "Hast thon given the horse strength? last thon elothed lis neek with thometer? Canst thou make him afraid as a grasshoper? the glory of his nostribs is temble. He parweth in the valley, and rejoiceth in lis strength: he geeth on to meet the armed men. He moketh at fear, and is not atfichoted; meither tmoth le back from the sword. The ghiver rattleth against hime the ghitering spear and the sheld. We swalloweth the gromm with fiereness and rage; meither believeth ha that it is the some of the trimpet. He sath among the trmupets, Ila, ha! am he smetheth the batthe afir off. the thmoter of the "antains, and the shouting." Althongh it is said that the dews did not make much nse of carahy in battle, owing, perhaps, to the momntanous comblition of the combtry, we leam that Golomon imported both chariots and horses from Eigypt, and lept a vast momber of them- 40.000 stalls for his mathot homes, 12,000 homes for his cavalry, and 1400 chamots of watr, amd these, we are tohl. were nsed more for purpose of display than of war. Such may have been the case, and the tamong messure sent by Rahshakeh to Hezekiah, that if he should sem him zoot hoses be wouk not be able to pat $\quad-000$ rivers on them, tends to confim this opinion; lout the Camanites, with whom the lsaelites were constantly at War, possesed a vast momber of them, and the Philistines, we real, marked aganst Saul with 30,000 horsemen and elmiots. Other mations --thu Egyptims and the Greeks-rehed much upon the support of horses both in attack and in retreat. so that in Africa, in Asia, and in Emrope the distribution of the equine race had been commenced early. As civilization atvanmed, the demame for homes increased, and the extemsive propagation of them herame a necessity Moreorer, wars lotween mations ansed them to be dispersed thronghout the varons regins of the then known word, where ly momingling with intigenons breeds, new types were produced.

PRJEVALSKY゙ゝ MONGOIIAN W'IID HORSE

RESTORATION OF HHE FUUR-IUED ANCESIUR OF HHE HORSE Proborohappus senticolus

THE GREClAN HORSE

The Greeks, like the Jews, no doult derived their knowledge of the horse from the Egyptians, lut neither Eqyptians nor Jews have hamed down to us ally autlentic information relative to the cultivation of horses, a subject with which Gremian litmatme abounts. Consermently it is from Greek anthors that our prinary knowletge of eybine lore minst lo. olitained, althongh previons to this period the Bathonian. the Ascyrian, and the byyptian empires flomished, and the ancient momments discovered in these commtries prove that the herse had not heen used for agricultural or domestic purposes, hat that his services had heen confined to the chase, to pageants, aml to war. Traditions, poems, and myths constitute among ancient nations part of their historical resources, ant Homer, Hesiod, and other anthors have handed down to us most valhable information relative to the maners, customs, and warlike parsuits of the ancient Grecks. Homer describes the various labours of farming. plonghing with oxen and mules, sowing, reaping, and treading out corn ly oxen on the threshing floor, and also describes the many varions duties of the herdsman, but we fail to diseorer that the horse had at this period been employed for agricultural parposes. During the Trojan war cavaly did not form a banch of (irecian military organization, lont chariose and harses were convered in the ships that sailed to Troy at the traditional date of 1194 to 1184 B.e. The mited Gremian princes, who modertook this famons expedition under the command of Agamemnon, sailed, accorting to Homer, with 1186 shipe and 100.000 men, and the ships conveged horses and chariots in which they fought in hattle: lout no mention is made of cavalry horses, and consequently it may be inferred that at this time they hand not been devoted to this servire.

Aerorthg to Greek legend Chirm the Thessaliam, supposed to have been an Egyptian, was the first person who monnted the horse; and there is no dombt that the unfaniliar appearance of a man on momednek gave rise to the fable of the Centans, a race of lomgs half-man, halfhorse. said to have anciently inhabited Thessaly. From the famons war said to have been "arried on between the Lapithee and the Contanms we may conclude that at a date as carty as 960 b.e: the Thessalians neat cavalry in war. Chariots and horsmen were known to several mations before this period-the Babylomians, the Assyrians, and the Egyptians hant mate use of them,-but the Greeks clam that Erichthomius, who was lame, was the first inventor of a carriage which he buitt for his own persmal convenience, and of horse and chariot racing, which was first inamguated
at the Panathentea, the festival hedn in homour of Minerva, $1.506 \mathrm{~B} . \mathrm{C}$. But the horse had been ridden long hefore this date loy Babylonians, by Assyrians, and by Egyptians, and atoo by the lescendants of Jshmael, if we phace iny faith in tradition. If "himen was the first to mount a firecian hose, there is every reason to believe that the Arabians for ages previonsly had been accomphished apestrians.

I'p to this date the demand for homes han been created by the chase, by pagemens, and by war, but the work han not to grow much older before an ine entive occurred in the inangmation of the (Hympir ganes. These are said to have been first celebrated in Greece in $145: 3$ b.c., hat it was mot
 these games, that they becance a word-famed national institution. The horse did not, however, make his appearance in the hippodrome until the 23 nd Olympiad, 680 bsc. when he was ridden, and it was not metil the 25th Olympiad that he was yoked to the chariot, and his speed and power of embance were tested in harness, after which chatiot-racing becalue a dominant pantime of the Grecks. The Olympic games comprised horse, chariot, and man racing, leaping, throwing the discos, wrestling, and boxing, and for these sports eparate areas were set apart: the stadium for the contests in raming and wrestling, the hippodrome for horse and chariot racing, \&e. Amongst all these games horse-racing and chariot-racing were the most popular, and they embaced vanious forms of efort: the chariot rare with mules, with mares (Lamsanias), the chariot race with matured horses, with fomr forls, and with two foals, and there was also a horse race, in which hoys rode.

The hippodrome of Greere possessed the same influcuce as the British turf now exercises in the production of good horses. For performance at these games fleet horses were imported from all parts of the world, studs were established, training-stables built, and ruming-tracks laid down with an much cagerness hy the ancient Greek as by the British owner of race-homes at the present day, and conseqnently Greece, from its corticst days, became conspicuous as a horse-breeding combry. Tarstus describes the celebrated breed of horses that existed at Areatis, and the surronding abntry is mentioned by 1 omer as forming in extensive grazing-ground firourable to the propagation and development of homes. Diotorus Sirulus states that in ancient times Macedonia "abommed in horses anme all comitries in firece". and that at the roval stur in Pella 300 stallions and 30,000 mares were kept. Straho also informs us that the Cimplatocians paid an ammal tribute to the lersime of " 1500 horsen, $\because 000$ mules amd 50,000 sheep".

Yet, although Grece was al large horse-rearing comntry, and horses
were extensively used in dangerons rontests at the hipporlrome, she seems to have nsed them only sparmoly on the day of batth, and then only when yoked to chariots; but caralry, which fomed a most important military force of the Persians and other neighbouring nations, was by the Greeks long almost rntirely neglecter.

It appears, according to Herodotus, that up to the year 490 b.c. the Greeks possessed no cavalry, and at the begimning of the Pelopomesian
 -20 were hired scythian howmen. And even down to the time of Demosthenes this corps was not numerially increased, hut it was the duty of the two hipparchs who rommanded this force to see that it was kept up to its full force of 1000 .

At the battle of Marathon (b.c. 490) the Greeks usert no wavaly, while the lersian army comprised 100,000 foot and 10,000 cavalry. It seems difficult to understand why the Greeks did not employ cavalry in battle, surrounded as they were by nations who mate grat use of this branch of the service in times of war. Yet, maided hy atrahy, they routed the [ersians at Marathon, and on other occasions they hard heaten their enemies without the aid of this ansiliary, and instances had oceured where chariots had catused confasion and disaster. Xerxes' amy which passed over the Hellespont, according to Herodotus consisted of infintry 170 myriads, of cavaly 8 myriads, extlusive of chariots and camels. In this expedition fifty-sis different mations took part, the infantry of which appens to have been little better than a rabhe, whose vast numbers, rowned together on the hattle-field, interfored with the action of the Gavalry and put them into confusion. Marathon, Platiea, and Mycale are witnesses of like dilemmas. The war-chariots ronla not act upon meven and broken ground, ant thus, being rentered inalablle of acting, lecame dangerous impediments. Another reason why the Greels did not employ cavahy might have been the rough and stony ground over which their amies han to mard, over roads whose smfares wore down their horses' hoofs so low ats to anse them to heronne sore and amost incapable of locomotion. For short joumeys and perfommere in the hippodrome the tracks were laid down with soft material, so that horses could run over their 4 -mile courses with impunity; hut over hard roads during arduous and prolonged marthes their hoof hom comstantly wore down to the quick, when the sufferess had to le left in the rear. It is evident that although the horse was not, in the early part of firecian history, used extensively as a war-horse, he was highly ustecmed as a hunter, for pageants, for racing in the hippotrome, and for purposes of pleasure, and the pens of the greatest-minded Greeks were devoted to
the marration of his qualifications and the means to be adopted so as to protect hum from discase and injury and to preserve him in health.

The writings of the Athenian general and historian Xenophon prove to what a high degree of perfection the horse at this day had amived, and the attention he required to keep him in somm condition. The retreat of the 10,000 Creeks, after their defeat ly the Persians muler Cyrus, 401 B.c.. shows that in his day Grecian cavalry han become an important banch of their military orwanization. At this period Xenophon hat the same difficulties to contem with as previous horse-owners had complaned of , namely the wearing away of the horses' hoofs during long and protracted jonmeys over rough and stony roads, and for this reason he preseribes treatment calculated to harden the mushod hoof, hy causing horses to stamd upon rough stone stable-floors, ind upon similaly constructed pasement when groomed outside the stable. He adds: "Those horses whose hoof" are hardened with exereise will be as superior on rongh gromed to those which are not habitnated to it, as persons who are sound in their limbs to those who are lame". Xenophon ako has described the points of a goor horse, and the breeding, rearing, and treatment of young horses; from which it is evident that at this period horses were used not only for the sports of the hippodrome am for lanting, but abo for war; lout as yet they had not been used as beasts of burden, neither han they been yoked to the plough nor engiged in laming operations-the mule, the camel, and the ox performed these wryices.

Athough Greek authors have described the capacities in which hores were employed, they have not given us pictures of the varions equine brends which it is matural to imawine sumomed them. Senophom certainly has described the horse of his day, and the friezes of the Parthenon now at the British Muscum (Plate LNXIV) give us an idea of one equine type. lint not of the many which must have existed during the flomrishing days of ancient Greere. At the same time the Greatan horse might have heen of one type the one linked to the chaniot might have been of the same breed as the one on which the trooper role in battle, -and if such was the case it must be accounted for on the supposition that the Grecian stock was of Arahian dearent, for the statuary of horses diseovered in the ruins of Nimeveh gives portraitures of these mimats very smima to the Grecian horses represented in the Elgin mimbles, and consequently both might have originated from a common stock and birthplace. Buflom comsidered that Arabia was the centre from which the horse sprags, and this has been the generally acepted opinion. This subject will he reemed to when writing on Arabian horses: lat it suffice for the present to give the opinion of an rminent anthority "It is genemally supposed from the omission of all mention of horses white

ASSIRIAN HORSES

GREEK HORSE
the lstaclites were in Arabia that this country, which has since hecome so relebrated for them, was at that time entirely without them. The proof is, howerer, of an entirely negative chanacter, though I roufess that it is as groul as any of that nature can well he Dudeed 600 years later Ambia could not in athy way have been celehnated for her horses, for Rolomon, whilst he resorted to her for silver and gold, mounted his arvalry from Egypt. Yet the latter comntry rould samcely have heen the mative land of the horse, not possessing the extemsive platins which are so peculiarly suited to his existence in a widd state, and it is considered probable that he was introduced from the central regions of Africa, which are undoubtedy the native plains of the quagga, the zebat, and some other congeners of the horse, but where, curionsly enough, he is not found in a wild state." -Stonchenge on the Ilorse.

These arguments are based on the supposition that the various equine races emanated from one common stock, if not from one pair. But if we acrept the theory that different varieties originated in several regions of the world, whether by creation or by evolution, it can easily be molerstood that horses of more than one type existed at one and the same time, and inhabited countries situated at long distances one fiom the other, each comntry possessing a distinct stock of its own, upon which homes imported from Africa or Arabia, by intermingling, were sure to produce a good aros. 'Tradition tells us, and history lemb its athority to the assertion, that in the carliest ages of the world A frica was conspicnons for a relehrated breed of horses. No doubt the sahara was the birthplace of the barb, which in the past gave as excellent impression to the equine stock of ancient mations as its desecudants, the Oriental horses of the Stuat equeln, did in the prodaction of the British thoronghbred. It is possible that the harb and the arah may have descomed from the same stock, but they may have been distinct breeds; and this seems most likely to have been the arse, als the Assyriams possessed horses, chariots, and horsemen at the same time as the Egyptians.

THE HORSES OF ROME

The Romans appear not to have been an equestrian mation, though they are said to have possessed a body of cavalry soon after the founding of the eity by Romulus (752 b.e.). It is well known that they relied almost entirely on their infantry in the day of battle, and that their horse soldiems were in most instances no match against the cavalry of their encmice. They could not withstand the onslaught of the Numidian and Parthian horse, and hatd to suceumb to the cavalry of Macedonia and Epirus. We vis. III.
consequently learn that liome relied more npon mercenary cavalry than "pon her own, ant in the time of Cesar this force consisted of emxiliary

 hat dixappeared before Marius: its last mention is in the fanish canpaign of 140 b.e. amd after the . Jnguthan wan it vanished entirely. Even the Italian cavalry had been for long unalde to eope with the enemies of Rome; it had been defeated ly Hamibal in Italy, and seipio only won Kama by the cavahy of Jassinisa. It vanished completely in the social ward and after that foreign troops- (iands, spaniares. Thracians, and Africams-were taken into the servie in larger numbers than before." It will be monnecessary to refer further to the matire-hed equine troper of Rome.

Yet although the mative Roman horse was not a conspicuous charger, be was a beast of burden, and in this capacity became most useful to the postal service which was instituted for the purpose of transmitting letters, parces, and baggage of every kind throughout the vast Roman empire. This important state department required for the execution of its duties sereral kinds of ammals, namely horses, mules, asses, and oxen, which were ridelen or employed in drawing vehicles laden with light or heary goods and in the delivering of letters, pareels, \&e. at their respective destinations. This serviee was divided into two branches, the one for light and the other for heary traffir. Yet had it not been for the existence of the splemedid rombs thoughout the Roman teritories, whirh comected the remotest parts of the empire with Rome, the postal service never conld have become so important an institution.

At this time a vast road tratfic necessitated the employment of thousands of horses, the remand for which most have been great and have operated as an incentive to the production of the general ntility horse. This type of lorse was in most instances the descemdant of mative stock, and was the clase of amimal aldaped for heary vehicular traftic; but he conh not perform with sucers in the arema, neither was he good enough for atheres. At circus exhihitions homes ohtamed from foreign sonrces, especially from Asia, ahwars powed themselves to be facile principes.

The Cimens Publicus caused the employment of thonsands of horses, and consedumaty created a demand which was responded to by the importation and extansive propagation of horses; but a greater incentive even than this far-reaching rom traffic existed in the amphitheatre, which represented the bate-conse. Where chariot and homse racing formed the learling sort of patrician lomme.
 by Romulus. They consisted in wresthog ruming. fighting. home-raming,
and chariot-racing. For the latter pastime swift horses from all parts of the world were rought for ber men who devoted their time and moner to the pmomotion of this sport.

The equestrian exereise in the airens, for which the liontan wore en

 in later times from C'aphatorit. Ther homes intembed for this sport were mot broken in matil there years old, and were mot hacel matil the comphtion of their fifth year; and in romsergemore of this wise treatment we fime that
 was a wimber of 100 maces was rallerl Contermerios. In the inseription of Diorles at hase maned Thsous is montionm as the winner of fög mars, ant others were evell more sucessful. The drivers of ehariots were originally of a low elass and often slaves: fet when they won races the stares received their freedom. and the wimers generally were handsomely rewarded.

Cmble the Empire especially after C'algula and Nero hat momed the chariot, the patridims combesemded to contend in the arema, amb many deseriptinns of races have been hamed down to us which reveal how grat was the rivaly between familes and fartions in order to gan viotories at the cirens. Horse-racing and chariot-racing in the Roman cirens wert condheted very much mpon the same principles as horse-rasing at the present day: advertiscments of race-mectings phatarded in large letters were exposed in comspicuous phaces, as the disoneries at Pompeii prove; cards of the baces, on which the names of the starteres, riders, and drivers appeared, were sold; fortunes were won and lost; hetting enslaved jatridian and plebeian ablike; intrigue and villany cormpted the public mind, bibes secomed a wimer, poison put an emb to the career of a dangerons faronste, and Caligula is said to have removed hy iniquitons means the hest driver of his rivals' horses. 'This hrief deseription in sutficient to prove how great
 that such wats the wase we lean from the fint that Marins had a stud farm Where he " lored Moorish horses for the corens" "In 1878, in a vilatge of Ohed Atmenia, in Ageria, some elaborato monatic pavements were forme in
 bern a great hreeder of homes for the einos. Persection riows of tha trainings stables are reperented on thase moxales ond other pietures shme

Thar hase hed on Roman soil for perfoming at the cireus were of forejon extration. The native hame hat proved himself inferion th the homes of lepsia and firpere on the hattle-fiede, and in the arenal he had
given way to the importations from Spain and Caplandoria. All the rombtries named, it will lo seen, owed their exellenre to ond somee, to the horses of Africa, which lad no rival matil the descembants of the Barlo and Arals, represented in the British thomohbed, became kinge of the equine race. Cabs also romesented inother institution which amsed horses to be in demand. The homan eab was a two-whered vehirle (apable of wating two persons besides the driver, and was drawn by one of two homes or mules. These vehichs were stationed about Rome, and were kept for hime on the graat roals. Ciedro mentions a case where a messenger travelled 56 miles in ten hous orer these highways. From the forgong we learn the varions uses in which the horses of home had leen employed, and although the Ceras Pablems and veien (cabs) demanded the assistance of strong horses, we find that the Latin anthors who wrote anjointly on the tillage of the soil and the treatment of ammals never mention the lomse as having been engaged in agrienltmal operations. Virgil, in his foorgics, discourses about trees and cops, but tells more abont the cultivation of hees than amy other anmal, and devotes only a very small pace to the consideration of efuine lore. Vegetius (a late Latin writur) gives descriptions of the various lmeeds of horses that existed in ltaly, and imbeates the different kinds of labour they lad to perform, but the finm-horse is not inclumed in his cataloger. For the rimen, le writes: "The Spansh home excels all others, even the Sioilian, althomgh Afriean homes are the swiftest of any. For the sarlalle above all the Persian horses are the easiest in cartinge and most soft in step, afterwards come the Ammenian, nor shonld the horses of Siejly and Epirns be despised, though not equal to them in deportment nor in form." For chariots he recommends the Cappadocian horse: for war that of the THus, which breed he thas describes: "The horse of the llmas is known from all other breeds by the great emring outward of the front of the head, hy his prominent eyes, small nostrils, broarl jaws, stiff nerk, mane reaching to the knees, wide riles which stand out, hollow hack, tail opious with long and curly hairs, stout shanks. small fetlocks, large and spreading hoofs, hollow flanks, angular borly with projecting points of bone, length which exceeds his height, helly when it is empty and when the horse is ont of condition haging low, hones everywhere large, agreable leanness of appearance which contributes to lim rather a grace than a defomity, gentle and cantions temper, and by his patient endurance of the wounds and casualties of was". For the saddle, nwing to thein easy gat. he prefers Persian horses, which" in stature and fashion are much the same as other kinds, hut the great difference consists in their walking with a grace peculiar to them, for their steps are very short and fregucut, and this makes riding delightful : nor can they be taught it by
art, lout it appears to be the pure gift of nature. With the Persian horse it is ascertaned that his step is more pleasant in proportion as it is shorter; in long journeys his patience is very moluring. his temper is hanghty; unless he is sulolued hy continued exercise, he is apt to la vicious amd stubhom; neverthetess he in smable and intelligent, and, what is smo prising, in impetnonity he does not lose sight of propriety, In lis carriage his neek is curved ats a bow, amd this brimgs lios clin to tomeln his hreast."

Thas durmeg the age in which Vegetios lived it semme that horsen of various breeds existed on Roman toritury, and were used for many useful
 even at this period horses had mot heen roked to the plough, the ormpat tion of the fimm-horse poper hat not commenced; his spirited nature hat hitherto exemped him from agrioultural labour. which was performed by the monles and the oxen, aml fon this peason murlo attention was hestowol om these last-mamed ammals. Indead, a law was edateded to protert than, amed so serere was it that death wisis the jualty for abming them. The weming down of the hoof-hom of mashod homes might have prevented their being nsed for the probonged lathor of the phomh, or their light build might not hate alapted them for drawing heary hardens, which the lethatgice disperitions of the ox and mule remared them capable of performine with comparative case: but for war amb chase the hose demaned an important factor, and whaterer incaparitated him from these use received the diligent attention of the liomans. The gratest evil they dreared were injuries to his mshod feet. To prevent such aceidents, sandals and other font armatures were prescriberl.

Thre Latin athors who wote on this subject to a great extent ropied the writigs of Grecian anthors, expecially in the treatment of equine diseases and the meathe to be aldopend in onder to hamen the hoofs of their unshorl horses. For instance, Xemophon alvises that the hest way to hamen horses hoofs in to callase them comatantly to be implanted on hard stones. Colmaella, with the same motive in view, shagests in the plate of hated stomes the ase of galk hatald for horses to stame oms.

Not only did the Romans attempet to protect their horses feet from injury, hy applying sandals, de., ant ly adoptimg measures calculated to hamen them; they also laid down thow mighty highway, the lioman romls, which were so constructed as to masmer smooth surfaces oper which their lorses might pass.

The existence of these romb anabled the Romens to extend their conquests, for they were thas hrought in contact with mations who possensed horses which were better adapted for war than their own, and which, as hefore stated, although they were smaller than those of ltaly, were more
agile, and consequently possessed the facility of rallying and retreating with greater rapidity than the somewhat bigger-framed Roman horse. This breed appars to have been ohtained originally from Etruria, amd it was ${ }^{11}$ pon horses of this kinglom that Romulus mounted his equitrs or cavalry. These were also the anmals which supplied the circos with its first equine performers, and the battle-fied with its charger; and there is little doubt but that the size of the Roman lonse was derived from the Etriscan. Confirmation of this assertion is afforded by the discovery in an Etruscan graveyard of a wall-panting on whirh horses are depicted so large as to be quite ont of proportion to the car to which they are attached. Whether the carriage is dawn ton small, on the horsen too lange, camot now be determined, but the pieture, as it exists. suggests that the Etruscan horse at that date was a large amimal. During the incursions made by the Romans into Germany and into Gimb large horses were foumb, and in Bararia and the neighbourhood large horse-shoes have been exhomed from tumnli. The Germans are represented Jey Tacitns as a hig race of men possessed of ereat hodily strength, who devoted their life ahoost exclusively to martial exercises and lanting, in the performance of which they required large horses to cary them. These facts to a certain degree show that an indigenons hreed of large horses existed in mid-Enrope. which hy ammixture assisted in develophog the tommanent horse, and ultimately in the production of the British wasoner. A lare beed of horses also existed in Spain before it was compuered by the Dows, amb these were probably the descendants of the horses on which the solliers of Hamibal at the lattle of Camme were momoted. In other parts of the world there is no evidener of the existence of large horses; in fact they seem gencrally to have been small, for the horse-shoes excavated from tammi evidently hare been wom by ponies not $1 \pm$ hands hish. and experience teaches us that the horse becomes smatl as he approtehes the tropies and the Actie resions, hat that in a medimm temperature, like that of mid-Europe, he gains size, and. if he is combined with Arah blow, he gains photk and enturano ako. In Asia, Africa, and Nortle Emone the native breeds of horses remain small, as they were in the past; and (iesar, when he invaded om comotry fomm only an indigenoms tave of mall ponios. England is mow the possestor of the finest lorses in the world, both large and small. but she obtaned the materials from which they were bred from foreign countries-size from Flanters and Lombardy, and quality and clegance of form from Africa and Arabial.

THE HORSE OF ASAA AND AFRICA

THE ARAB AND THE BARB

Both Africa and Arabia dain to have been the birthplace of the great Eastern race of horses. Some say that Afrim gave the horse to Aralnia, and others that the Arabians migrated to Africa. Such migration, aceording to Eusebius, did occur. He informs us that some of the early descendants of Cush settled on lands on the castern side of the Red Sea, and gradually moved to the sontly of Arabia, whence they crossed the sea and transphated themselves into Ethopia. The Ethopians, we are told, agreed in many points with the Aralian Coshites, and were believed by most Asiatic mations in the time of Tosephus to have originated from the same somce. At the period when these Drabians passed over into Afrian, namely, dming the time the lsames were in Egypt, other Afriman matives besides the Egyptians possessed homes, and hattles had heen fonght with chariots and horsemen before these Arabians arrived in Africa. Comsequently horses must have been faitly well distributed on African soil before their introduction into Ethopia by the Cnshites. Of course the idea of migration has resulted from the belief that the equine species originated from a single pair. It may le thought that it matters little whene the horse originated. hut in reality it is most important. For if the vaious amimals emanated from single pairs, the horse from one stallion and one mare, then we have to acomut for the distribution of varieties and how different efnine types have been developed; whereas if we accept the theory of the exolution of several varicties in different regions of the whobe, it will not be difficult to understand how, hy intereomse between different types of the same speries, distinct hreds have been bronglat into wistence. That this mode of develomment has taken plaw dning the historiw perion is evilent: wo know how the large homes of mid-Enome have been inproved hy commerce with those of the East, how the hoblsy the race-horse of Queen Elizabeth's time. ly intermingling with the Aral, has lod to the ultimate protuction of the Enghish thoronghbred, and how thonsants of vears before this perient, this grat Easom hed was somblat ater ber
 by Eigytians-for his gualifications as a hunter and at chanint hores. 'Thes Africinh horse was introduced into the hipperbome by the dreekn : ind into the circus by the Romans, and at the present day the great perfomers in the lonting-field and on the turf are descendants of the Barl) or the Arabian.

There is no doubt that horses of the highest qualifications have through all ages come from tropical, or at least warm regions, and the Arab horse is believed by many to have been the parent of the equine race, or at least to have been the first domesticated raiety.

Although the Arahs clam their descent from lshmacl, it must be remembered that many provinces in this country had been inhabited before Hagar was banisholl to the desert ly Abraham. Joktan ruled over Yemen, and his yomgest son, Jorham, fomded, it is said, the kingdom of Hejaz, while his posterity "kept the thone mutil the time of Ishmael". Conserquently Islmael, when he lived in the wilderness of Paran, was in contart with a settled and somewhat rivilized pojulation, who possessed horses, and who most likely had suhjugated them: for we know that on the eastern side of Arabia the Bahymians and the Assyrians had employed horses in battle, and that the wild life the Arabs led, owing to the nature of the country, indured them in their carliest days to train lorses for honting and martial pursuits. The pretiction that their hame should be against every man, and every man's hand against theirs, las been fulfilled. From the time of this utterance to the present day the Arabs have lived hy attacking and phondering caravans which pass through the desert, and this they could not have accomplished so casily had they not possessed swift horses to overtake the travellers, of to escape by mpid flight from foes too strong for them to overome. This descrt life was, therefore, a great incentive to the production of the world-fimed Arab, whose services from the most anciont times every civilized nation has acquired, either bey purchase or hy eapture in war. Both Greece and Rome hired Arabian and African cavalry to assist them in their conguests, and on more than one occasion the onslanght of these splendid lorses and horsemen converted a threatened defeat into victory. The anciliaries also of other nations who assisted the Romans in the battle-field rode uron horses who owed their excellence to the result of a cross between their native hreeds and the Aral.

The Persims, carly in their history, obtained from the desert horses which, by intermingling with the indigenons stock of the comentr, produced a breed second only to their half-brothers the Aralians, whose desicendants formed the magnificent Persian horse so celebrated in history for its brilliant exploits in time of war. The same story coutd be repeated of other nations whose cavalry was composed of horses in whose veins flowed the blood of the Arah. When the Saracens extended their dominion by conguest, the distribution of their horses in the varions conquered comentries still further assisted in the diffusion of Arab blood among the many native equine races. In fact, it was propagated in the East and in the West
in the train of the Arabs who subsequently penetrated to the limits of the known world.

Ifter the introdnction of lamism. new Jussmlman invasions extended the fame of Araly horses to ltaly, to Spain, and even to France, where. without doubt, they have left traces of their bloorl. But the event which mon than any other filled Africa with Arah horses was the invasion of Sidi-Oklat, and still later the sucressive invasions of the fifth and sixth centuries after the Hegira. It was not until the dars of Mohammed that the important qualifications of the Arab were fully recognized. By the Arabs the horse is considered to be a divine gift, amd his protection and kind usage to be a divine dnty; blessings also are to attend those who keep horses. "Whosoever keeps and trains a horse for the cause of Allah is counted among those who give alms day and night: publicly or in secret he shatl have his reward. All his sins shall be forgiven and never shall dishonowr his heart."

The Mohammedan conquests extended from the centre of Asia to the westem verge of Africa, and a great part of Spain was long held by the Moors or the Arabs. In all the territorice they acquired by the sword, there the Arab horse alwas left his impression on native stork, or remamed in such reyions to perpetuate, monallied by admixture, the purity of his mee. In no eountry is this so ohservable as in Spain; for in this rountry, when Emopean nations possessed only very indifferent erpuine stock, Spain was celehrated for her splendid breed of horses. No doubt these animals had been obtamed from the hoors dmang their 800 years' possession of Andalusia, during which period the Arab horse had conreyed his goor qualities to the mares of the surounding country. The jennet, donbtless, is at descendant of these horses, but previonsly to the oceupation of Andalusia hy the Saracens, two breeds of horses existed in Spain: one, the anrient war-horse, which Gervase Markham and the Duke of Neweastle considered in their days the best charger and most accomplished menage horse, "an amimal univalled in war and not to be excelled in equestrian exercises": the other, the horse indigenous to the country, used in ancient times as a beast of burclen. to carry packs like the mnle, the descendants of this breed being still used in the same capacity as their ancestors. Both these breeds had been improved by interomse with the Aral horse dming the domination of the Moors. But previonsly to this date an improvement had been effected by the introduction of Eastern blood, and when the Dnke of Newastle enlogized the Spansh horse he praised not the native-bred horse. but a breed which derived much of its excellence from relationship, with the drab, Honian, a Nestorian physician at Bagrarl, 850 A.b., brought out editions
of Aristotle, Plato, Hippocmeses, Galen, and others, and also hographies of celebrated horses in which the pedigres of these animats are clearly traced back lor thonsands of years, their performances narrated, and their services remdered to their masters in battle and in the chase recorderl, the highest paise always heing bestowed mpon the descendants of the mares ridden by the prophet in his Hight from Meca to Medina, It is not to be womdered at that Mohammed valned the horses of the desert so highly when we consider the services they remleref to thein masters in war, and that, withont their assistaner, the vast Johammedan conguests conld not have been secured. The horse conseguently became an object of the utmost respert, and means were resorted to in order to ensure that the Arah horse, in all his purity of descent, whould he hamded down to posterity. It is owing to his purity of hood that this animal, both in the past and in the present. has made such a usefnt stockgetter. No other horse in the word (am be depended upon to stanp his likeness on his progeny as the Arab, and it is for this reason he has improved the various breeds of horses throughout the world. It is thought hy many that the Bath is a better horse amd a more celehrated sire than the Arab, and in this opinion Arabian authorities agree; but they do not ronsider that this anmal forms a distinct breed, on? that he has descemed from drabs which wore imported into Africa, and in that comery produced ottispring superior to those grown in Arabia.

Accomats of the migration of the Arab horse mo Africa, and thence into other parts of the worl, tend to show that European horses hare derived their best qualifications more from the Barb than the Arab, ier. from the region of the Shama and it certamly is the beed that hoth in prose and verse is the most highly prased. But whether they are booth of the sime descent is not of much importance, since one fact is patent, namely, that from both loreeds Enropean homen hase ohtamed those "hamenterises derigmated quality amd high breal. There is little coubt that it was wath Batbary horses the Soors invaded Spain, and that during the many years they remaned there the hoforl of the Pant was commmanated to ber mative herefte, frem which arosese the jemet amb the reldmated Spanish war-hense anose. The exploits of these innprosed haeds have been handed down to us both by Spansh and by Arabian anthom: We are tohd of their feats of daring ant their spondid perfomances amb to what a great extent the smiles of the fair sex and their commondation moded the equestrians to deeds of valour. These wore the diys of chivalry and of a divilization introtheed into Ambatusia bey
 he the expution of the Moors and the dews, who, nevertheleas, left behind

IHE ISARIEY AR ABIAN

them bbraries, and among other things interesting manuseripts on equitation and the treatment of horses, and these bave been hamded hawn to us aither directly or through the medimm of spmish literature. On the departure of the Moors most of their property was eonfismatert. Their horses, from which neither love nor money would pat them, were erized or sold for a tentl of their value. These remained in Stain, and from Spain many of their descendants were distribnted over Europe, and son after found their way into Englam?.

THE IIORSE IN BRITAIN

Before the commencement of the Christian era Rome, which had become "mistress of the work", (xtembed her rompluests in Asia and in Afriea, and ultimately reached the shores of treat Britam. The landing of Cesalr was hotly opmed by the britons with a strong force of avalry, wheh they furiously hove betwem the rame of the chemy, diseharging their darts, ws they rusherl abog. with such dexterity as to intlict comsiderable loss on the invanders. In lis accome of the invarion of Britain, Cevall writes: "When they engenged the horse they left their ehariots to fight on fors, their charioteas in the mantime retimer and placing themselves so that their masters, if oreppwered hy mombers, might readily find them amd have an casy retreat. By this manner of fighting, they had both the speed of the lyorse and the stearliness of the foot, and they were hy daily practice so expert that they rould stop their horses on a sterp descent, thongh in finld areer, turn then in a narow compass, rum along the pole. sit upn the yoke, and from thence, with incredible fuirkness, return to their chariots." This is the first historical acconnt we have of the existence of horses in Britain. Whether these ammals were indigenons to the soil. or whether they wre descemants of horses imported hy other nations, surle the the Pheniedans who, it in salul, traded with the britons an eally an the Thojan War, ammot l_{x} aseertamed. Neither are wo able to diseover their exate type: we only know that they were small. As the horse-shons fommd in Roman aml in Saxon tumuli wore only of at size sutfieient to fit small hoofs, aml as the size of tho shoe imbieates to a ereat extent the size of the animal whose foot during life it hend proterter, it is deanomble to assume that the origimal breats of Britioh hores wore smatl. In all nothern countrise of Eurner the imbigenous equine bums have alwiys been represented by dimimative beeds of pronis. The domestieation of the horse has lod to his improvement, and the knowlenter of man has assinted in secming his promessive develoment, expecially
by judicions crossing and by the carcful selection of parents. During the time the Romans were extending their conquests in Britain distinct evidenee is afforded, not only of the vast mmber of horses that existed in the comntry, but also of the large importation of them by the liomans. When in 54 b.c. Cevar landed a second time in Enghand, he brought With him 20,000 foot and a very powerful body of casalry, with which le defeated the petty prince Calwallon in every action. So numerons were the horse of the Britons, howerer, that their learler was able to bring 4000 chatriots to impede the Roman advance. The imported Roman horses no dombt were of a mixed breed, whose ancestral line of descent during rentmies hat been improved hy careful supervision; conserpently these animals, being much harge than the native ponies. would be catable by intercourse between them of producing "fiesh crosses of enod blool" in which both great quality and size might he anticipated. Doring the 400 vears the Roman sway continned, horses from the Continent were constantly landed on our shores, and British ponies were also tramported to Rome. Subsecuent to the departure of the Romans from Britain the invasions of other nations led to the further introduction of foreign horses. Saxom and Dimish horses fomm their way into this country, and thas bairl the foundation for the production of improred breeds. Little specific mention is made of the British horse until 631, when Bede informs us that the prelates, who had previously performed their joumeys on foot, at this date rode on horsebark, and always used mares instead of horses as a mark of limmility.

When Judith, the danghter of Charles the Badd, king of France, came to this comntry on her marliage with Ethelwolf. we lean she was attembed by momerous horsemen who rorle "magnificent Spanish horses"; but it is not matil the reign of Alfred the Great, the fourtl son of Ethelwolf, that we obtain any distanct information that horses received expecial care, or that their propagation was intelligently supervised. This prince was well qualified to imagumate this important business, as he had visited liome, where he met many leamed chmehmen and others, from whom he received not only his early lessons in religion and in secular matters, lut also in eguestrian exeroses, in which the patrician Roman routh took a great delight. 'This youthful visit to Rome paced him in a position to make constant observations, and particularly conceming the varions breeds of horses, from among which those most conspienous for their beanty and other qualifications conld be selected. There is now doulat the pastimes indulged in by the Romans did not eseape the notire of Alfred, and when he arrived at man's estate he was possessed of such knowledge as enabled him to inangurate a system of horse-
breeding, and assisted him in making selections from among those foreigns honses which he had admired on the Comtinent, with a riew to mate them with the indigenons hreeds of Britan. Alfred was mot only a large importer of horses, but also imposed laws ralculated th oprate in improving indigenoms heeds: and in order to emsme that his mambatex whould be thoronghly carried into effect he appointed a stud-errome or master of the horse, who received the title of Ilorse Thane. The duty of this officer was to superintend the breeding, training, and mamagement in health and in disease of the roval horses. Dming this reign horses both foreign and native were bought and soll. but it was not mutil Athebtane ascended the throne. 925 A.b., that lomse-dealing became a rast commereial pursuit. Laws were elacted derignel to regulate the price and otherwise to protect purchasers ageinst fiamb. If a horse were destroyed or lost through medigence, the owner was entitled to "thirty shillings compensation, for a mare or colt, twenty shillings, for an matraned mare, sixty pence, for a mule or an ass, twelve shillings". Athelstane was a large importer of foreign hoses, but he would mot allow English horses to leave the country, proving that at this early date the value of British breets was recognized, and therefore their expertation was prohibited by law. The importation of Continental horses was encouraged, and nothing gave Athelstane so much pleasme as the receipt of presents in the shape of horses. We read: "sumby princes sought lis atliante and friendship, and sent him rich presents, the finest horses, with golder firniture," de. These are siald to have bech "ruming homes", poblably nays of moderate size, adtapted for purposes of display, of hunting. and of chariot-racing, which sports represented the pastimes of this periorl. Athelstane evidently lighly valued these presents, for in his will he enmerates and makes a disposition of them: "Those given me ley Thurhand, together with those given me by liefhand," \&e. During this reign it is evident that momerons horses existed in Cireat Britain. innd that intelligent measures had been adopted to cance their propagation and their improvencont, ind to prevent my decrease in their number: moreover, the law prohibiting their exportation was rigormsly enforect. buring the following reigns it was the function of the horse thane to superintend the cultivation and the propagation of homses. When Willian the Conqueror landed on British territory he brought with him from Nomandy a large amy, comsisting of archers. light and hoary armed infintry and caralry, and the smperionity of the Noman horse mo donlot largely contributed to William's victory at the battle of Hastings. The history of this memorate event shows us that the Noman bomses landed on these shores remained permanently in this country, inn contributed
to the incrase of British stock and to the improvement of the mative breds. William, at the battle of Mastinge, rode a Spamish charger, and the Bareux tapestry depiets some of the equine types that were imported on this recarim; all the boats of the invaling army are full of homes. "Every knight has at small jons, on wheh he rides without amomr. whilat the great war-horee is led hy a muire." Thus history reconds rertan exat efuine types that were landed on these shones hy Willian. Hhe eharger, mont hely, was a fimmish jennet, and the cavaly on both sides were small, even those that were voked to the dhariots; but the great hore \quad gon which the knight entered the combat make his tirst apparance on the British coast at llastings. From this impontation the tournment hose atose, and, centuries after, the heavy carthonse. The grat horse was strictly a war-horse, and was used also for parade and for display, but light horses were emplosed in the chase. The Conqueror. Who was devoted to this pastime, lad many villages waste in order to secmre large open plains for his faromite porsuit of honting, and no doabt the chase was the eadle in which the future racer was primarily mursed. At this period Roger de Belesme, Eart of Shrewshury, in order to improve the existing type of horse then in the comntry, introdneed Glanish stallions into his Welsh estate of Powisland. The excellent fualifications of these ammals are recorded hy Girad dus Cambrensis, and their praises are celebrated by the poet Drayton. The Norman mohen who settled in England distributed hoth large and small horses thronghout their newly acguired possessions, and during the Plantagenet dynaty horses from the East and from Lombardy were landed on these shores. Benanger describes these horses as being adapted "for war purposes and rxhbition of public assemblies, of which horses are alwass an essential and ornamental part". As yet horses had not heen attached to the plough. oxen having heen employed in the art of hushandry. and even up to a very recent period the horse had been exemped from this serviec. At the time of the Norman Congnest the horse had heen emploged in agricultural lathom, however, as the Bayemx tapestry gives a picture of a man driving a horse drawing a harow. la the reign of Henry I two hoses of Barbary were imported into this country, one being presented to the king and the other to the chureh of St. Andrews, loy Alexander the First of seotlamt. This in the first notice we have of oriental horses having been imported into Great Britain. Youatt sars that wome authors have arserted that from these two horses spung the English thomoghed a statement which he thiuks "is devoid of foundation". This mat or maty not be the ase but if they were Barbe on Arabians they eertany were of the right breed from whith race-horses conld be produced.

ECIIPSE

FH.YING (CHIILERS

 Were parmber for male. "Erery Fribar, wapt shme fertival intervers. thene is a fine sight of homes hought to he sold. Many of the rity come to buy or look on, to wit, barons, knighto, earls, and citizume It is a folasiont thing to behold the homen there, all way amt Henk, moving "f and down, some on the anble aml wame on the trot, whide latter pare, althomgh rongher to the riture, is letter suited to men whe heat ams. There are yet colts, ignomat of the britile, which pramme and bomed ant give caty sogn of spirit and courage; theme are abo managel war-horses, of elegant shape, full of fire, and giving evory evidence of a genemos amd noble temper; horses abo fon the cant, drate amd plough are to be fomm here."

The tournament on the Continent lan heen for many years a pastime with warrors, but the love of hanting to which the English nobles were devoted delared its heroming a british institution matil the time of Ilenry 1I. At this time Fitz-stephen tells n s that on erery Friday in lent a tommament was held at Smithfield, where romg Londoners amed and mounted on lorses perfomed a variety of warlike evolutions, and from this age the tommament ruled supreme both in England and on the Continent until the rejon of Queen Elizabeth, when the race-comse gradually pushed out of existence this ancient pastime. The toumament was not established in England mitil sixty years after the Norman conquest, but from the weomet of Stephambes of Canterhmy it is evident that dming the reign of Hemry Il varions equine breds were dommon in England, the charger or tommament horse being spoken of as distinct from the cart-homse. These amimath were the descendants of imported Soman lorses and were remesentativer of an improvement that had been inpmessed upon mative stock ley the judieions selection of farents moler the supervinion of their owners. During the Plantagenet dyasty the whas berame the incentive which led to the propagation of swift horses, and in the same way the tommambat operated in masing the pordation of the ereat lome a and ennseguently we find that during the reign of King dohn the develoment of the great hase was contimed. We rearl that this monarde imported ond hmmed stallioms from Flambers, amd, as the tommament was at this perionl as orat mationat institution. Wr may presme that these animals were destined for perfonn-
 valme at mon these horses dmmon this reign is indicated he a fine that King
 horses ". but falling moder the kings displeasme was combemmed to pay
a fine of ten lorses, each worth thinty marks, about $\mathfrak{E} 300$ of on prent eumency. These were the days when lange horses were in request, and when kings and nobles vied with eath other in attempting to procure by importation and by breeding maniticent pecimens of the "grat" horae, amd also lighter bred amimals for the dase. Soon after Edward It aremoded the throne we find a commisson is given to one Byade Bomarentme for twenty war-homses and twelve dranght homes to be purchased in lombarly. John we lhokelow, in 1807. bears testimony to the enre this prince bestowed on horses and the zeal with which he attempted their innporement. Elward $1 \|$ was an ardent supporter of the tommament and the chase, and wamly encouraged the importane and hreeding of light and heavy horses. It is recorled that this monareh purchased fifty Spanish stallions for 1000 marks, and imported tiom France four great horses, for whith he paid Comit Hainault 25,000 flomins. This prince abo introduced homesracing, in which sport Spansh horses seem to have been engaged. amd thone anmals whith performed on the turf were named rmming-homes. lhangthis reign the various hereds of horses were separated into dasses, catch breed heing distinguishet by a mame indicating the use in which rach respective class was employed. Iaths also were enacted to perent dishonest dealing and to control prices; and as the laws were principally diocted aganst owners residing in Linoohshire, Cambridgeshime amd Iorkshire, we "an pereeive that even then these counties were comsidered favoured localities for breeding and reaing horses. The equine importations mentioned above consisted of large horses from Flanders amd fiom Lombardy, and of light ones whose ancestors had been bred in Afrim on in Arabia; and it is from these two breeds that our mee-horses, hanters, amd heary wagoners have hy gradual and progressue development derived their origin.

The Crusates offered an opportunity to the wamiors who left this country for the Holy Land. to note the excellence of the horses ridulen ly the Saracens, and on their retmon to this country they brought with them many Asiatic horses, which hecame the progenitors of that stock whose descendants in the days of the first Stuart and later were conspienous on the race-couse. These lorses most likely had descended from the stock with which Mohammed and his followers hat waged war, and were represented by Bumbs, ly Arabs, by lersians, and ly Turks. They were small, as they are to this day, i.e not more than $14 \frac{1}{2}$ hamb high, hut from these ammals the English pony gained size and the charger quaty. For the tommone the light Arah-looking horses imported by the Crusaters wond have been useless. For this pastime heary horses were obtamed. and it was from intermixture between these two types that yuality was acquired and greater size
induced. Upon such steeds the warriors of old faced their enemies in the battle-field and on the tilting-ground, eneased in amom so weighty that it sometimes demanded the assistance of two scuires to mount them. Chargers of great size were imported by Anglo-Normans, by Plantagencts, and by Tudors from Flanders and from Lombardy, and Chancer gives a distinct pieture of this breed when he depiets its grand confomation in the following verse:-

> "For it so high was, so broad and long, So well proportionet for to be so strong, Right as it were a steed of Lombardy".

After the time of Richard the Finst there is litthe to record of importance relative to the breeding, rearing, amd importation of horses, mutil the reign of Richard the Thirl, when we leam for the first time that doring 1483 post-horses and stages were first introduced, and that horses were specially employed in this service. Soon after the first Thdor ascended the throne we are put in possession of interesting facts relative to the treatment and disposition of horses hy Polydore Virgil, who tells us how cattle and horses howsed over English pastures and rommon bands, and that hores, both mares and entire horses, were mingled together, which eansed so much ronfusion and disorder that Hemry VFl enacted that no entire horse should be pastured out on fields or common lands. This law aused such horses to be kept within boumls and tied in stalls, whenee the mame "stallion" or "stalled one" was applied to the entire honse. The inconrenience of this enactment in cansing so many horses to be stabled led to their emaseulation. Which from this date became a common pratice. The exportation of stallions and of mares of less value than six shillings and eightpence was prohihited, hut the importation of foreign horses was wamly encouraged as previously. Hen'y V'lll, like his father, paid particular attention to the raising and the improvement of horses, and it is evident from the laws that were passed during his reign that small horses were too numerons. In his endeavour to obtain a stronger and better type of ammal a law was enacted that no stallion less than 15 hands high amd no mare less than 13 hands should run wild in the country. A colt two years old and under $11 \frac{1}{2}$ hands high was not allowed to run on any moor, forest, or common where mares were pastured; and at Michaehastide the neighbouring magistrates were ordered to drive all forests and commons, and not only to destroy such stallions, but also "all mblikely tits whether mares or foals".

Other enactments were passed during this reign with a view to obtain more powerful horses. It was enjoined that crery bishop and duke was to keep seven entire horses, each ahove three years old and not less than vol. 11 I .

It hands high; those failing to ohey this law were sulyected to heary penalties. Every clergyman holding a benefice of $£ 100$ per annum, and all those whose wives wore French hoods or velvet bomnets, were liable to a fine of $£ 20$ unless they kept one stallion "and kept and rote upon stallions not less than 15 hands ligh". Edward VI passed a law prohibiting the importation of stallions less than 14 and mares less than 13 hands high, amh horse-stealing was made a felony. It is certain, therefore, that in 15.50 great attention was bestowed by Englishnen in attempting to secure a better type of horse than had previously existed in the romntry. Yet the progress to perfection was very gradual, since we learn from Bhandeville, who lived in the diys of Elizabeth, that two classes of horses existed, "very indifferent, strong, slow, heary-dranght horses, or light and weak". Moreover, it is a notorious fact that during this reign horses were scarce. Whether this was owing to the destruction of the " mblikely tits" or some other causes cannot be detemined, but history informs us of the seanty and meagre display the British cavalry made at Tilbury Fort when assembled there to be inspected by Elizabeth; and Carew in his Mistory of Cormurall suggests that it was to the wholesale slaughter-laws of Henry VIII that the almost total loss of small horses was attributable, "fomerly so common in that part of England and Wales".

During the Plantagenet and the Thdor periods two classes of horses existed in England, "ruming horses" as they were called, and war or toumament chargers; but the great horse of the past was as inferior to the Shire horse of to-ray as the Barbs and Arabians of the Stuart epoch would be to the thoroughbreds of this era. During the reign of the first Tudor the demand for great horses was on the wane; battles lueing fonght with artillery rendered heary inmour defenceless, and led to the employment of amour of a lighter description. This, however, was only partially adopted, and then more for omament than use. Ladies of ligh rank who hat been accustomed to ride by the side of gentlemen on pillions soon discontimued this practice after the apparance of carrages, which were introduced by the Earl of Arundel in 1580. Heavy horses, no doubt, were primarily attached to these cumbous vehicles. Thein novelty attracted the attention of the rich, which ultimately led to better designs in the construction of coaches, and ats they were made to decrease in weight the demand for lighter horses increased. During Elizabeth's reign the days of the tommament were drawing to a close, ronsequently one of the incentives to the propagation of heavy horses was vanishing away. Whether the discontimance of this pastime or the introduction of carriages assisted in causing the decrease in the horse supply which was noticed in the scanty display of ravalry at Tilbury Fort, it is impossible to determine. We know that at
this time private race-meetings were instituted, to be followed later by pulitic ones, and that "nags" were in demand, and although cariages had been introduced they were used only to a very limited extent. Ben Jonson tells ns how the grandees rate on horselack to the theatres, amb that when the great Shakespare Hed to Lombon, from terror of a criminal prosecution, his first expentient was to wait at the doors of theatres and hodel the horses of those who had no servants, in weder that they might be in reatiness for their whers after the performance. In this capacity he became so ronspicuous for his rareful attention that in a short time all who alighted called for William Shakepeare, and sabcely anyone was trusted with a horse if William's services could be ohtamed. Accorlingly he hired boys to act under his orders, who were called shakepeare's boys, and for years afterwards those who took rharge of horses at the doors of theatren were known as Shakespeare's boys.

At this period a more artive breed of horses began to be propagated as the effect of canses previously marrated, such as the disuse of heary amomr. This gave rise to the cultivation of light "nags", the existence of which, a year after the Spanish Armada, Sir John Smythe deplores. He writes: "Their horsemen, serving on horseback with lances or any other weapon, think themselves well amed with some kind of heal-piece and a collar, on a deformed, high-bellied beast ". As the ocenpation of the great toumament horse was "going", its propagation in great measme was discontinued; yet an incentive to the breeding of stout horses still existed, as such anmals were required to draw the lumbering and heavy vehicles of this era across countries and plains, over had roads or where none existed. During the Stuart dynasty consigmments of large horses continued to be imported from Flanders and Northem Europe, together with Barhs, Turks, Persians, and Arabs, which hy intemisture with our native breeds and between themselves succeerted in forming the ancestral stocks from which all British equine breeds have manated.

The British cart-horse's descont can be traced from the great horse originally imported from Flanders and Lombardy, but much improved since those days by judicious crossing and careful selection of parents. The Stuarts first introduced quality, but size was wanting; for when William III ascended the throne, and sought to drain the Lincomshire Fens, he found that the British earthorse of this date was not strong enough for the task imposed upon him; consequently he imported large Dutch horses (the old Lincolnshire Blacks). The Dukes of Ancaster also hrought over to this country similar lreeds from Holland. This was the first step of any note which gave an impetus to the improvement of our coarser equine stock, and formed the main root from which our eart-horses have proceded. Our
grandfathers have told us how their fathers expatiated on the merits of those horses, of their size and feats of strength, how the blacks with white legs and blazes were most esteemed. These animals or their descendants in time became located all over England, and thus a good cross of fresh hood found its way to the descendants of the old tommament horse and procured that inerease in size and strength for which our present breed of cart-horses are so celchraterl.

During Elizabeth's reign horse-racing was in vogue, but it was only of a private nature. Natches against time and trials of speed between two hoves represented the racing of this period. It was left for James I to introduce into England the sport he had previonsly established in sootland. He inaugurated races at Gatterley, in Yorkshire; at Croydon, and at 'Theobalds at Enfield Chase. He entourged every kind of horsemanship, the importation of foreign horses, especially of a racing type, and was the first to land upon our shores a pure-hred Arabian, which he bought of a merchant named Markham for $£ 500$. This animal turned ont a failure, and well it might, if the description given of him hy the Duke of Newcastle in his treatise on horsemanship was correct, "a little honey, bay horse of ordinary shape and almost worthless": but James, nothing daunted, purchased of Pace, afterwards stur-master to Cromwell, a horse hought from the north coast of Africa, and known as the White Tork. The example set by . Jmes was followed by his friends. The first Duke of Buckingham imported the Hehmsley Turk, and Lord Fairfax the Moroceo Barlh. From this date improvement in our breed of higlit horses commenced. But although Eastern horses were in demand to effect this object, their qualifications had only been partially recognized, for we find Gervase llarkham stating" the true English-hred horse to be superior to those of any other country. I do daily find in my experience that the virtne, goodness, bolrness, swiftness. and endurance of our true-bred English horses is equal to any race of horses whatsoever. For swiftness, what nation has brought forth the horse which has exceeded the English? When the hest Barbaries that ever were were in their prime. I saw them overeome by a black hohby at Salistmry, and yet that back hobby was overcome by a horse called Valentine. whieh Valentine neither in hunting or roming was ever equalled, yet was a painbred English horse hoth ly dam and syre." From this quotation it can be seen that amomg native stock good specimens existed. upon which the imported Oriental hood was about to give its impression of further excellence. These were the days when the love of racing created the demand for swift horses, and the turf an incentive to their importation and propagation. At this epoch the most successfu\} perfommers on the turf, both horses and mares, were distinguished from eommon stock by being classified
as professional race-horses, and public race-meetings were formally gazetted as at this day.

In the time of Charles I the importation and breeding of swift horses continued, for supplying both the turf and the hunting-field with good performers. The order of the day was for fast gallopers, who were rapidly supplanting the tournament horse, and to so great an extent as to have caused the presentation of a momorial to the king complaining of the great dimination of stout and powerful horses "fit for the defence of the country", and urging that measures should be adopted in order to encourage the propagation " of this useful and important type of horse". To promote the object sought, a law was enacted but never was put into execution, and consequently became a dead letter. It was impossible, therefore, to keep up, a large supply, as the demand for this class of horse had considerably diminished. The turf had usurped the occupation of the tilting-yard, and the great horse had been supplanted hy the racer. At the same time a necessity still remained for the prodnction of weighteariers to draw vehicles laden with heavy goods, and to carry men in amour-for even at this date armour formed no inconsiderable portion of the trooper's miform,-and consequently a demand for " stout and powerful horses" still existed, but not to so great an extent as chring the Tudor era. During the civil was racing was neglected, but the importance of cavalry horses exercised a powerfal influence in causing the production of horses possessing hoth strength and ativity, and to the development of this type Cromwell gave his attention. He raised a cavalry regiment, the best in existence at that date, composed of powerful yeomen and stout horses. He on two occasions (February 24 , 1654, and April 8, 1658) prohibited horse-racing, declaring all persons of What "estate, quality, or degree soever, who should appoint or assist at race-meetmgs, breakers of the public peace, and further requiring all civil and military authorities to seize all the race-horses and spectators"; but he generally encouraged the hreeding of stout, active horses, with a view to procuring animals with peed and codurance. which he recognized were more useful on the march and on the hattle-field than those ehargers wheh possessed "mere bone and bulk". It can, therefore, he seen that during the Commonwealth the demand for cavalry horses was the incentive which led to the production of animals possessing bulk combinced with artivity, and this result was ohtamed from erosses between the weightearier and racer of this era. Thus a new trpe of horse was created, namely the active cavalry horse, whose descendants at a later date drew the heary springless vehicles of our forefathers over rotten and almost impassable rouls.

Although during the stormy days of eivil war, horse-memg had been neglected, after the third Stuart was crowned king this sport hecame a
national institution. The Mery Monarh was the ereatest supporter of the turf England has are known. He not only enouraged and patronized the race-courses already in existence, but he also alded to those established by his father at IIyde Park, Newmarket, and at other places that at Datehet Mead, near Windsor, being the most celehated. Newmarket hecame his favourite resort. There he built a palace and large stables, which he filled with Eastern horses obtaned by his Master of the Morse for breeding purposes. These animals were Ambians and Bathe both stallions and mares, which latter and akse some of their pronduce were alled royal mares. During this reign Oriental horses were mumeronsly imported, and racing began to assume an improved charater. Treatises on horses were issued from the press, and one on horsemanship, published by the Duke of Neweastle gives descriptions of various foreign horses, and advice relative to breeding them for specific purposes-for war, the menare and the torf.- and he selects the Barb as his irleal of what a horse shonlat be. He writes: "The Barhary horses I freely contess are my favourites; 1 allow preference as to shape, strength, matmal air, and dorility. Momentam Barls are horses of the best comage: many of them hear marks of womms they have received from lions." The same author ako suggests how an improvement can be effected upon native stock bey eareful selection of parents. "The best stallion is a well-chosen Barh or beantiful Spanish horse. Some people believe that a Barb or Jemet prodnces too small a breed. There is no fear of having a horse too small in England, since the moisture of the climate and fatness of the land rather produces horses too large. In choice of breating mares I would ardise you to take either a well-shaped Spamish or Neapolitan: when these are not easily ohtained, then a beatiful English mare of good colour and well marked." Previonsly th this reign we may asoume that wiming mares and stallions were mated in order to secore and perpetuate a race of Hyers; but when the imported Arals and Barbs were discovered to be faster on the turf than the native stock. they were introduced to the harem with a view of prowring in the oftipring that turn of sped which was rommon to the foreign horses. This combination resulted in success, which was primarily effected by such horses as Dodsworth Pace's White 'Turk, and momerons other Barhs and Arabians, whose stock in later reigns laid the foundation from which the superiority of the English horse arose. Inring the short reign of James 11 there is little about horses worth mentioning. Oriental horses were still imported. The Lister Turls was hought to England by the Dake of Berwick, being taken at the siege of Buda. This horse was the sire of many celehmated horses: Smake, Brisk, Comykins, de. The king was deroted to honting, and kept a large stud of homters. Je is said to have been a fine horseman, and for this
reason the hish gate him the name "Shamms-na-cappul" (James of the horses).

William III was an enthusiastic horseman and lover of the memage horse. He built a riding-school, in which it pleased him to le an inspector of equestrian exercises. He also was a great supporter of the turf. and kept a magnificent stud of Griental horses, and thus assisted in the gralual improvement in the hreeds of horses that had been commenced hy tames 1. During this reign the Byerley Tomk was brought to this country. 'This ammal was Captain Byerley's charger during William's was in Ireland, amb was the sire of Spite, Black Hearty, Grasshoper, \&r. Queen Anme gave every encouragement to horse-raring. She kept rate-horses, which were entered for prizes in her own name; she added also sereral phates in different parts of the kingdom. The importation of (hiental horses had now become quite a mereantile pursuit. Numerous Barts. Turks, and Arabs were landed on our shores, but the most conspicnons of them was the bartey Arabian, whicl was hronght to this comery from Aleppo in 1715 , the year after George I came to the throne. This aminal was the sire of Flying Chiders, the fastest home over a long distance that ever san; that is if his record be correct, which asserts that he ran over a course at Newmarket, a distance of 3 miles 6 fulongs and 98 yards, in 6 minutes and 40 seconds, the Beacon course of 4 miles 1 fulong and 138 yards $i n 7$ minutes and 30 seconds, and also could rum a mile in a little over one minute. This remarkable record of speed may be too good to he true, but whether exaggerated or not, it is certain that this animal was the fastest horse of his day, and that from him the thoroughbred has derived a large proportion of its present excellence.

In 1725 another celehrated horse, the Godolphin Arahian, amived in this country, and from him have descended most of the notable horses now on the turf. In tracing the descent of thoronghoned liorses it will be observed that they emanate from thee distinct somes: "The Darley Arabian, 1720 , from whom descended Childers, Sruirt. Marske, Edipse, King Fergus. Hambletonian; the Byorley Turk, 1689, whente came Jig, Partner, Tartar, Herod, Mightyer, Sir Peter, Woonpecker, Buzzam; aml the Gonlolphin Arahian, 1725, whence ame Cade. Matrham. (omductor, Trumpeter, Sorcerer, Dr. Syntax. From the first somer onr present stallions are Orlando, Wetherbit, Cossack, King Tom, Jerdington, Touchstons. Stockwell, Voltigeur, and Rataplan. From the serond, Sweetmeat, Alam,
 Arabian, Nutwith, West Australian, Sir Tatton Sykes. Tomboy, and Mebbome. Wetherbit, Tomboy, and the Doctor are the eighth woss from the Arab; Bradsman, Touchstone, amd Melhorne the ninth; West Aus-
tralian, Surplice, Voltigeur, Kingston, Chanticleer, and Fishemman the tenth; Cossack, Ignoramus, Pehon, Tadmor, Ellington, Longhow, are the eleventh generation." Florizel II, Persimmon, and Diamond Jubilee, three brothers by St. Simon ont of Perdita II, bred by His Majesty King Edward Vll, are among the living representatives of these famous sires. On the female side the royal mares consisted chictly of importations of Barlis from the north coast of Africa when Tangiers was moder the British Hag, but many of them were English bred, and were selerted beeause they had been successful performers on the turf. The late Admiral Rous was of opinion that the English race-horse has destended from "pure-bred Arabs", untanted by English blood, and whose pedigree might be traced for two thoustud years - the true offipring of Arabia Deserta, - and the greater size and height that the produce of these anmals attamed to he ascrined to the climatic influence of "these damp. foggy islands". assisted hy jurlicious management and mood "pasture". But does on knowledge of the past history of the horse warrant us in accepting this assertion as a fact! Do not the writings of the Duke of Newcastle adrise crossing with a fine English "mare": and do not other sentences show that intermingling with different breeds was resorted to by our forefathers as the best means by which to improve the then existing British race-horse? The armiral attributes the superiority that the race-horse of the Stuart era obtained to our "damp. foggy chmate", combined with good pasture and judicious management; and although he speaks of the first cross as producing our primary first-chass race-horse, in the next sentence he asserts that the Turks. Bubs, and royal mares were pure Arabians, "pure Eastem exotics, without a drop of English blood in their reins".

If climate and good pasture caused all the improvement which it is allowed did occur, how was it that previonsly to the days of the Stuarts the lenefits derived from climatic influence had not been recognized by the Tudors? If enviromment alone was eapable of producing ereater size in our equine races. what need had Henry V'llI to pass a law ordering the destruction of small horses and "all mblikely tits", when the same "fog and damp" was ready to promote the same increase of size which we are asked to helieve was the sole canse of the change? Every physiologist knows the benefit that arises from a "good cross of fresh blood". Almost all the breeds of domestic anmals have been bronght to their present excellence, not by continnous breeding in a direet line in the same fimily, but by judicions mot-crossing ame it was by the adoption of this system at the outset that the British thoroughlmed has been produced.

In 1618 Mirhael Barrett had noticed the henefit that arose from crossbreeding. He writes: "Although the Spanish jemet, and Lrish hobby and
the Arabian courser are held ly Maister Blundeville and Maister Markham to be the chief for sacing and neat action, there is the bastard stallion begotten by one of them on onr English mares which doth exceed either of them in swiftness and toughness".

Of course it is impossible at this distance of time to trace distinctly the pedigree of the horses and mares imported during the Stuart epoch, althongh it is certain that to these importations the superiority in om breeds is attributable. Some of the royal mares were purehased in IIungary, but Admiral Rous thinks the majority came from Moroco, and that the Barls were brought during the sixth century from Arabia, when the satacens overan and conquered Northem Africa. That all these were highly hred and were of Eastern origin cannot be doubted, and their introduction into this country resulted in the improvement of native breeds and in dereloping the British thoroughbred.

Writers in the past bear testimony to this fact, and cite instances and describe the processes that hase heen atopted in their attempts to improve present or establish new lneeds. Clive, "On the good effects of crossing", writes: "We are told that the great improvement in the lneed of horses in England arose from the crossing with those diminutive stallions, Barbs and Arabians, and the introduction of mares from lianders into this country was the source of improvement in the breed of "art-lorses.
" When the Asiatic horses were mated with native-lned English mares, there was size on one side and superior quality on the other, the mare exhibiting size and greater development of bon and muscle, but lacking that 'density of fibre' and vital energy which was possessed hy the Barb in an eminent degree. From such combination it might be anticipated that the oftisning would grow to greater size than the sire and would show as it arived at maturity a good proportion of the Eastern horse's quality. And this is exactly what did take place. Animals of se and quality were obtained from the first crosses. and from the Stuart eporh to the present day onr race-horses have, decade by decade. increased in height. In 1780 the Oriental horse was denounced, and it was the opinion of sportsmon at this date that the immediate merossed descendants of Eastern horses had of late years, almost withont exception, proved so deficient that breerers would $n 0$ more hare secourse to them than the famer would to the natmal oat, which is little better than a weed, to produce a sample that shouk rival that of his neighbours in the market. Were the finest Eastern horse that conk be procmed hrought to the starting-post at Newmarket, with the arlvantage of English training to boot, he would have no chance at ant weight or for any distance with even a serond-rate English race-lorse." From this quotation wee learn that the cross-bred English racer was a gustier racer on
the turf than the pure-bred Barl, or Arabian, proving how great had been the influence of the incorporation of the old English blood with that of the Eastern horse. The celebrated horses, the Daley and Godolphin Arahians, impressed upon the British racing stock a vigour. a power, and a physical development which has been handed down though succeeding generations "from sire to son". The great Eastern horse, to which we owe so much, has preserved through thonsmads of years a distinet line of descent from the days when Ninus, King of Assyria (2227 b.c.), marshafled his chariots and horses in lattle and Pharaoh pursued the Israelites to the Red Sea (1401 b.c.). This breed of horses, whose existence at the above dates is recorded, were the primogenitors of the Barb and Arabian, who have through countless ages improved the various indigenons species of the world; and at the present day the quality, whenever noticed in foreign horses, has atways been obtained directly from the Arab or indirectly from the British thorough-bred. which has impressed his likeness on all our existing breeds from the col to the cart-horse, to which the Amerjean trotter is indelted for much of his excellence, and which, into whatever country he enters, is acknowledged to be king of the equine race.

GLOSSARY

A

Abrus (Gr. oforos, pretty). Indian liguotice, the steds of Abus prectorius or wilh lipurice:

Abscess (Lat. whecessus, a separation of matter), a collection of pus in some of the wryans or parts of the body, the result of local inflammation.

Absorbent (Lat. uhsorbere, tor surk in), a drug or medicine that poolnees absurpion of diseased tissue.

Acetabulum (Lat., a shatl enj), the cavity int, which the head of the femur or thigh-kme fits and in which it moses.

Actinomyces (in. ahti, a ray, and mytes, mushromm), a rayed fungus.

Acute (Lat. uchtus, sharp), pertaming to disease having a rapiol and severe onset, progress, and termination.

Adenoid (Gr. aden, gland. anl cidos, appearance), resembling a gland.

Æstrum (Gr. oistros, gadty), the heat ir rut of amimals; the sensation wceurring at the time nf coition.

Afferent (Lat, affirens, earying to), carrying smathing to a centre; hace, andied to those nerves which couluct influences to the central nervons system.

Ala (Lat., a wing), a mane of varions wing-shaped parts.

Alveolus (Lat.), the bony socket of a tonth.
Amaurosis (Gr. ameneres, dark). partial or total loss of rivion.

Amide (enmomit), a white crystalline solid often capable of combining with brith acids and bases.

Amphiarthrosis (Gir. maphi, around, and urthron. a joint), a joint in whith there is a dise of fibsoeartilare between the ends of the bones: it cojogus a limited movencont.
Amylolytic (tir. "minlon, stareh, and lusis, solutiom). effecting the digestion of starch.

Amylopsin (6ir. "moy/on, starch, and opsis, apmat. ance), a ferment said to exist in phateratm.

Anæmia (Gir. an. pric., and haintw, blowd), defieiency or thinmes of bleod.

Anæsthesia (ivr. (emuisthesit), want of feeling, a nervons disease.
Anæsthetic (Gr. 'm. priv.. and uisthasis, furling) a sulstance that $y^{\text {monduces }}$ insensibility th feeling li athe jam.
Anchylosis. Ankylosis (Gr. ankylos, a stiff juint). unian of the bomes forming a joint, reaulting in astetl juint.

Aneurism (Gy. ancurysum, widemines a dilatation or u idening in the conse of an artery.
Animalcule (Lat. mimolonlum, a minite mimal). a microsempir animal.
Anodyne (Gir. "n, pitw, and ofyne. pain), a medicine that relieses pain.

Anthrax (Gr. minthax, a emal, or carbmele) a fatal dinease due to the bacillus of anthrax.

Antidote (Gr. mati, agsimst, and Jidomi, to wive), a drug that prevente or combteracts the action of puschas.
Antipyretic (fir, enti, agranst, and pyretos, ferer). an agent which reduces the temperature in feser.

Antiseptic (Gir, anth, against, and siphes, putrid), an agent which prevents putrefaction.
 spasm). an asent that relieven yam.

Anus (Lat.), the fundament, the pasterior ofening of the lareve bowel.

Aorta (Gir. come ${ }^{\text {) , the largest artery of the buly. }}$ It arises from the heart, and diviles ints the anterion and posterion asita.

Aphthæ (tir. aphthai, an eroption). smadl white spots or vesicles becurring in the month, mone espor dially seen in young animats.

Aponeurotic (Gir. 'tp", from, muron, tendon), 1 ertaining to a lroad fibrob membane of temben fros ceeding fram a muscle, wred to bind down tembnas.

Apophysis (Gr. apo, from, and phyvis. grenth), a process of lane produced from a stparate wentre of (riowth.

Apoplexy (Gr. "tupteriu, as strikine down) lase of consciousness from breakage of ressets in the hain.

Aqueduct (Lat, "fun, water: ductus, a leadiner). applied to duets and eanals in varione parts of the 1xuly.

Arthrodia (Gr. entherdiut, a kind of juint) a joint permitting a ghiding movement.

Ascites (fir. ashites, a kiml of drops: askos, it bag) an alburmal accumblation of serons floud in the cavity of the belly: dropsy of the belly.

Ascococcus (Gire ashos, a leather hay: holikne, a
 surmonded by tongl, thick. gelatimas envelopens.

Aseptic (tir. ". piris, and spotos, putrid), free from pathogenic !acteria or stitic matter.

Aspergillus (1,it, aspryyre, tu satter), a willo of fungi.

Asphyxia (Gre, a, prix., and sphysis, the [m]n). sutheration, the effect produced by dejuvian the lunge of : air.

Assimilation (L, at. otsimilnter, to make like), the. transformation of fond inta a combitim in which it may be used up in the nutrition of the buly.
 which the tibial rests.

Astringent (Lat, ul, to: striutpr, t., limit). an
 hatmorrhape or darduta.

Atavism (Lat, whens, a formfother), the ralugear. ance of an anomaly in an indicilasal whene mone sh less remote prosenitons wre similarly affectal, but in whase immediate ancestors it had nut leen shawn.

Atlas (from the fabulous Atlas that supported the earth), the first bone of the cervical or neck vertebre, supproting the hearl.
Atrophy (Gr. netrophia, wint of nourishment), loss of weidht, size, and function of an organ.
Auricle (Lat. anvirula, the outer ear), the name for the two superior casities of the heart.

B

Bacillus (Lat. bucilhem, a small roct), a natme for varinus microsenpic organisms or microbe of a rodlike form, sume of them assuciated with tertain diseases.

Bacterium (Gri, baliterion, a little stick), a senus of short cylindrical fission fungi; a bacillus. Set above.
Basilar (Gr. basis, base), pertaining to the base. usually of the skull.
Biceps (Lat. his, twice: mput, the head), a term applied to several two-headed muselts.

Bicipital (Lat, hi, two; cuphe, the head), lertaining to the biceps muscle.
Biologist (Gr. bios, life, and logos, discoume), one who is a student of life forms.
Bishoping, the act of carving a cavity in the crown of a tonth and making it black by heat, for the purpose of making an old home appear yomes.
Blepharitis (Gr. Ulipheron, the eyelid, and itis, inflammation), inflammation of the eyelid.
Blepharophimosis (Gr. Hopharon, the eyelit. and phimösis, a shutting 41\%, ennstriction on manowing of the opening of the eyelids.

Brachial (Lat. brachium, the arm), pertaining to the "pleer arm.
Bruit (Fr., a noise of report), at term uned to desis. nate the specific sounds of auseultation.
Bubonocele (fir. houltin, the uroin, and kete, tumour), inguinal hema. of hemia in the groin.

Buccal (Lat. hucca, the theek), pretaining to the cheek.

Bulla (Lat. bullu, a bubble), a bleh ar blister.

C

Calcaneus (Lat., the heel), the heel-bone; in veterinary anatomy, the lone which forms the juint of the lowek.

Calculus (Lat, dim. of whix, a small intone), a stonelike enncretion fumb in the Wadder and sme other organs.
Callosity (Lat. callus. hard shim), al hard, thickened
 of the homy layer.
Capillary (Lat. capillws. a hair), a minute bloodvessel connecting arteric- with vins.
Carbohydrate (Lat. merln, wal; (ir. hudor. Water), as substance contaming carbon with hydroen and axygen in the pmontinn to form water.

Carboluria (methetis. and Gr. ourm, urine), the presence of carbalie aeid in the wrime.
Cardiac (Gr. Romern, the heart), pertaining ton the heart.
Caries (Lat. mrios motmment) (harnie inflammation of bome. followed l y j pus formation amb death of the purt.
Cariniform (Lat. corinu, keel; forma, shaje), atplied to the kied-like cartilase in front of the herant-lume.
Carotids (Gr. Renotures). the principal right and left arteries of thr neck.

Carpus (Gis liorams, wrist), the eiuht bones wollectively formine the wrist: the kiee of the hares.
Caruncula myrtiformes Lait. vorunculn, a car-
uncle; myrtam, a myrtle berry), projecting membranes near the aritice of the vagina-the remains of the hymen.

Casein (Lat. ruspum, cheese), the substance precipitated from milk on the application of an acid or rembet.

Cataplasm (Cir. kutaphesma, a prultice), a poultice.
Cavernous (Lat. curerm, a case), having hollow spaces.
Cellulitis LLat. rellulf, a small cell; itis. inflammatimb, a diffuse inflammation of celluhar tisaue.
Cellulose (Lat. cellula, a little cell), wood fibre, the principal ingredient of the cell membrane of all plants. Cement, Cementum (Lat. comchtha, a rough stone). the crusta petrosia or outer crust of the teeth next the rewit.

Centimeter (Lat. contum, a humfred), a humiredth part of a meter, wr ahout twafitho of :an Eayliah inch. Cerebritis (Lat. cerchom, the brain: Gr. Ltis, inflammation), inflamation of the brain.
Chestnuts, the wal-shaped horny massex situated on the inner side of the legso of horses, below the hacks and atove the knees.

Cholesterin (Gir. rhote, bile, and steros, smlid), a glistening white substance fomid in bile and nervons tissue.
Chorea (Gr. thoreit, daneing). a nerwus disorder, characterized by comvalsive twitehing of muscles, especially of the limbs.

Choroid (Gr. whorion, a membrant), the second nuter or vascular coat of the eye.
Chronic (tir. chronos. time), long comtinued, now of Inw gress.
Chyle (Gr. chulus, juice), the milk-white flum absurbed ty the lactomats during digestion.
Chyme (Gir. Mhmos, juice), fowd an it leaves the stomach after it has undergme digestion.
Cilia (Lat. cilium, the eyelid or eyclash), the eyelashes: the minute hair-like processen an certain cells. Circumvallate (hat, siremmeallere, to surround with a wall), surmunderl with a wall or prominence.
Clitoris (Gr. kleitoris, Clitoris), the lamalngue of the penis in the male, a small body situated at the entrance to the varina.
Coccidia (Gr. kokkos, a berry), minute wal strmetures with a thick capsule and emare gramhar eontents, freguently fome in the liver of the rabbit.

Coccus (in. kokhos, a berry) a apherical lacterium, a micoredratis.

Coccyx (Gir. hohem), a netice of bomes formine the terminal purtion of the sinal colnmm.

Cochlea (Lat. mehlew, at suil-shell), at eavity of the intermal tar resembling a small shell.
Coition (Lat. eqier, tw chme thgether), the act uf sexmal comection.
Collapse (Lat. wolloh, tw fall together). extreme depresoion and prostration from falure of netwons force. as in shock, liem mrthage, de.
Comminution (Lat. comurnuere, tolncak tor pieces), the lireakige of a bone into neteral framents.

Commissure (Lat, pommittor, to mite), at joining of unitines thenether the line of junction of two parts. Complemental (Lat. momphmentume, that which empletes or fills un": the air that can still be inhaled after urdinary inmpation.

Congenital (Lat, con, tugether: gremitus, bomi), existing at birth.
Contagion (Lat, contetion, cemtineter. th touch), the provess by which a ryecitic distase is commminated letwetn amimals, either be direct omatat or by ueans of an intermediato agent.

Convulsion (Lat, iomburio, fomm romellere to cons. (ubse), a seneral paroxym of inshontary musculat antraction.

Co-ordination (Lat. com, together: ordimare, to regulatel, the harmonious activity and projer sequence of operations of the various organs of the body.

Copulation (Lat. copularf. to couple), the act of sexual interechase.

Coracoid (Gr. Lortex, a crow, and idos, likenesst, a heak-shaped process of the scapula.

Cornea (Lat. corneas, horny), the transparent anterior portion of the eyeball.

Cornu (Lat. cormu, it hom, pl. cornmei), a name alplied to any excrescence resembling a horn.

Coronet (Fr. cormettr, dim. of corome, a eroma), the steond phalam, wr cormet lane.

Corpora lutea (Lat. pl. of corpus, a burly; lultas, yellow), the yellow rints seen in the orary, rlae tor thange in the blood clots if the Graatian follicle.

Corpora nigra (Latt. HI. wf compus, a boly; nigrs. black), the masses of biack piement attached to the mmer border of the iris.

Corpuscle (Iat, corpustulum. dia. of corpus, a bonly), any small momil or oxal body, as the minate corpuscles of the blood.

Cortical (Lat. cortox, bark), pertaininer to the outer or surface part of an urgan.

Cranjum (Gr. krenion, the skull), the cavity that contains the brain.

Creatin (Gr. Krats, Hesh), a neutral Mranie substance that oecurs in the animal orgimism especially in the juice of museles.

Crusta (lat.. a crust), a thin Jayer of bone coverins the fang of a touth.

Cryptorchid IGr. Ryphtos, hidlen, and orchis, tes. ticle), a home with one or both testicles which hatse not descembed.

Cuboid (lir. Aylogs, a cube, and eidus, resemblance). a bone of the hork joint.

Culde-sac (Fr. cul, the luttom: de, of: suer, bas). a passage cloned at one end: a closed bas or sat:

Cuneiform (Lat. com us, at wedge), having the form of a wedge, said of a bone entering into the formation of the knet juint.

Cyst (Gr. Rystis a jouch), a cavity containing fluid surrounded by a capisule.

D

Dartos (Gr. didrtos. flayed), a contractile fibrous layer leneath the skin of the serotum.

Defecation (I att. defecore-rio from, fuet, dreors). the selaration of dregs on lees; the discharere of fieces.

Deglutition (Lat. diglutitio. at swallowing), the at of swallowing.

Delirium (Lat. dilirinm, mathess), impared action of the brain, characterized by mental disomer, as stargerinergit. \&e.

Deltoid (Lat. delta, the Greek letter $D_{\text {, and }}$ ides, likeness), having the shape of a delta or a triangular form.

Dentine (Lat. dens, a tooth), the bomy structure of the tooth, lyime under the enamel of the ernown, amb the cementum of the root.

Deodorizer (Lat. de, priv.: oflor a smell), a substance that destroys offensive udours.

Dermatology (Gr, dermet, skin: loqmes, (likoursp), the science of the skin in health and disease.

Desquamation (Lat. desquecmert-de, from, sqummo, a scale), the exfoliation or falling uff of cutule in scales.

Dextrin (Lat. derter, right), the solulJe matter into which starch is couverted by diastase ur by certain acids.

Diagnosis (Gr. din. throurh, and amösis, knowledure), the interpretation of a discase from its symptoms.

Diagnostician, one skilled in makine diagmase.
Diapedesis (lir. dimperdesis, a jumping throush), the passatge of the eells of the Dhool, enpecially the white "nes, through the walls of the vessels.

Diaphragm (Gr. diophruefme, a partition wall). the midriff, that is, the muncollo-membramoun partition that separates the ulut from the ahdomen.

Diaphysis (Gr. diu, lxtween: physi, urnwth), the middle jart or shaft of a longe bone.

Diarthrodia, Diarthrosis (Gir. dir. thentiglnut, :nd arthrosis, articulation), a form uf articulation ur jaint allowing extensive mowement.

Diastema (lir. dinstema, a distance), a space or cleft; an interval between different kinds of teeth.

Diathesis (Gre. dimthrsis-diet, thrmorh, and titheme. to armone), a conefition of the henty in whach it is liable to certain disease.

Dicrotic (Gr. dihrotos, domale heating), having a (louble leat of the heart.

Diphtheritic, relating to diphtheria.
Diplococci (fir. difloms donbles and kokhos, herry). a mierncoecus whome rmmoled bodies are found two and two.

Dipterous (Gr. dis, two, and pheron. at wing), twowinged, as a fly or as seerl.

Discus proligerus 1 ir . dishos a dise: Lat. proles. offiming : gerere t" learl, the elevated cells of the memhrana tramblont of the wom.

Disinfectant (Lat. Nis. new. inficere, to infect), an arent that lentross diveare germs, and arreets fermentathon and phtrefaction.

Distoma (cir. dis, houble, and stomet, is monthi. a wenus of trematude parasitic worms; we of them, the liver-fluke, is colmman in theers.

Diverticulum (List. liverter, tor thrn aside), a small himil puch or cul-de sace, branchines from some organ.

Dyscrasia (fro. dy, Bate, and krexis, combinatinn). an abhommal state of the blood due to gemeral disease.
 or latwored breathing anisig from various causes.

E

Echinococeus (Gr. frhinos, a sea nrchirı, and hokhos, a berry), same as Echinoroorus vetrinorum, a parasite of the tape-wom kind affecting domestic animals.

Écraseur (Fr.), an instrument uned in the amputation of piarts.

Ectoparasite (Gre elfos, mutside. and purasifos, a parasite), a parasite that lises on the exteriner of its hant.

Ectropium (Gr. , hi, out, and trepein, to turn), an eversion or turning out of the eyelid.

Efferent (Lat. fiferems, carrying from), applited to those newes which comduct inipulas from the central nervous system to smate tissut: aptited to vessels carrying flud frem some centre.

Electuary (Lat. decturtinn, ant electuary), a soit or pasty confection containmos sonue drag.

Embolism (Gre embolos, an empmas), whotruction of an artery from a hood clot or emblulas.

Embryo (irir, embryon), the fertilized wrm of an amimal.

Emollient (Lat. rmallirt. t" suften), a substance used to suften the skin, or tur suthe an irritated] internal surface.

Emphysema (Gr. curhharetin, tu inflate), an almormal collection of air in the commective tisobe of a part.

Emulsion (Lat. wenlqe". (mm/smm. to milk out), water or wher liquiel in which mil in minute sutbdisisimen of its pratioles is suppended.

Emunctory（Lat．fmangerf，to blow the nuse，to wipe ont）．：ny orean that aids in carrying off waste matters from the budy．

Enamel，the vitrenus or glassy substante of the esown of the teeth．

Endarteritis（Gr．endon，within，ami urterin，artery； itis，inflammation），inflammation of the inmermost eonat of an artery．

Endermic（Cry．on，in，and domm，the skin），relating tu the alministration of medicines hy robbine throurh the skin．

Endocarditis（Gir．cudou，within，herdie，the heart， aml atis，inflammation），inthammation of the lininss membrance of the heart．

Endometritis（lir．rmfon，within，metro，the womb， and itis，inflammation），infammation of the internal layers of the uterus．

Endoparasite（fir．mulon，within，ant parnsitos，a parasitel，a parasite living within the londy of its bunst．

Endosteum（Gr．indou，within，amd ostrom，bonte）， the vascular mentmane limine the interion of a bone that contains marrow．

Ensiform（Lat．cusis，a sword；formue furm）， shaped like a sword．
 sion or doublines in of the eveling．

Environment（Fr．meironuer，to smomad），the general conditions by which amamals hapren tu be surrounded．

Enzootic（Gr．en，in，and sūou，animal），a disease to which letasts are liably in a certain district．

Enzyme（isic ch，in，and symé，leaven），any ferment found within the livine organism．

Epididymis（Gr．cpi，upon，and dielymos．testicle）， the small budy lyine alowe the testin．

Epileptic（Gr．epileptikos，epilepsis，a laying bodd of t，pertaining to or of the nature of epilepsy or a sudden attack of mummeitusness．

Epiphysis（epi，upon，and phycin，to grow），a pro． ceso of bone attacher to a bont for a time by cartilage． hut simon becoming ussified．

Epistaxis（Cir．＇pistaxin，to distil），hemomrhage or beveling from the mose．

Epithelium（Gr．tpiapom，and thetr．niplle）the outel cellular cosering of the skin and monows mem． brames that line the cavities and camals of the amimal borly．

Epizootic（Gr．ipi，upon：Sōn，animal），a ton－ tagious or senerally prevalent dimeane that may at times affect animals．

Equilibrium（Lat．arpues，evpal：librta，tralante），an even balance of a body．

Equinia（Lat．cquos，a horse），nlamifrs，farey，a cum－ tagions disease affecting the horse and ass and tom－ munitalsle to man．

Ergot（Fr．ergot，pur），the bomy projections situ． ated behind the fetlocks of the horse．

Erythema（ryithemor，a homsh），redness of the skin that is renmed by pressure．

Esophagus（Gr．oisophteros－oise in，to rarry，and phayrin，to eat），the tube extenting from the mouth to the stomach：the gullet．

Ethmoid（fir．Ethmor，a siese，and idos，likeness）． the bone seprating the nasal cavities from the cranium．

Etiology（fir．citio，a caust，and loyos，dincomrse）． dretrine or theory as to the cause of a distase．

Eucalyptus（Gr．An，well；kulyutrin，to（ower），a mance of varions Anstralian trees，expecially the blut gum－tren，that ly distillation yielals a eamphor which is hiohly atutuepric．

Exanthema（ir．fanthéme，eruption），an truption ＂In⿻日土 the skin．

Excito－motor，pertaining to berves that excite mo． tion，apert from the aldenn of the whll．
Excrementitious（fat．cacermore corotum，to sepra． ratef，pertainmes ta feces or exerentent．

Exomphalus（Gr．Ax，wot，and omphalos，navel）， mobilimal hermia，undue prominence of the navel．

Expectant（Lat．ecpechor．to look mot for），appliter to a plan of treatment which awaits the develomment of symptoms that wonlid justafy interfermee．

Extensor（Lat．），a muscle for extending or stretell． ing rut．

Extrinsic（Lat．extrinsceus，from without），extermal， nutward．

F

Farcy－bud，a nombar swelling beakiner out into an where in entanders or fartey．

Ferment（Lat．firmontum，yeast），any micra－organ． ism or wher substane capable of produting the decomposition of laree puantities of centain other substances by a proketsio of formontation．

Fibril（dim．of Lat．nitra，a fibre），a small fibre： commomly applied to minute nerve and masenlar filaments．

Fibrin（Lat．fibra．a tibre），a substance common in animal hoties，and reatily obtaned from comgulated blood in a stringe form．

Fibrinogen（Lat．gibra，a tilre，and Gre genmen，to promeee），one of the prinepral elements in the forma－ tion of tibrin．

Fistula（Lat．，a pipe），an abonmal tube－like pas． sace in the lundy．

Foramen（Latt forme，to lierce），a passage or arpen－ ing，especially such as exist in bromes．Foramen lacerum basis cranii，a larue oftoming at the base of the skull，between the basilar jrocess of the occiput and the temporal bones．

Formic acid（Lat．formich，an ant），an acid obtaned from ants，nettles，the shoots of the pine and various animal secretions．

Frenum（Lat．，a curb），a liganent formed of various tissums that checks the movement of an msan．

Frenzy（G1．phrenes，the mind），extreme and violent manit．

Frontal（Lat．frontrlis，of the foreheal），apldied tis the superior lone of the face．

Fungus（Lat．funtus，a tradstomi），a plant of the class Fungi，which are parasitie plants without stems． leaves，or ronts，made up of cetls without chlorophyll or green colouring matter．

Funicular（Lat．fumes a cord），having a cord－likt strueture or shape．

G

Ganglion（Trr．y／umlion，a knot），a small nervous centre or knot in which nerves meet，comected with ather tentres．

Gastrocnemius（Gr．！festrir，stomach，aml kn̄̄é， lens），a muscle of the lew havines two heads，and form． inf part of the calf in mats．

Germ（Lat．！／t ruen．sulis，offohoot，embryo），（a）a protion of matter haviner at tendency to ansume a livine form，an embryoi (b) a niorobe th bacterinm．

Glanders，a contasions disease more expecially affectinu horses，but sometimes conmonicated to man and some felines．Alse called Equinia．

Glaucoma（ir．alonhos，sea－sreen），a thease of the tye．giving rise to a bolging or hardening of the eye ball．

Glomerulus（Lat．dim，of glomus，a ball），a toil uf arterial hood－vessels projecting into the widened end of each uriniferoun tuhule．

Glycogen (Gr. glykys, sweet, and gemann. ty. $1^{\text {mo }}$ duce), a white amorphous powder occurring in the blood and the bair of animals.

Graaflan follicle (Grouf) a Wutch anatomist; Lat. folliculus, a little sac), a name given to little saces in which ova mature in the wary of mammals; an orisice.

Gracilis (Lat., slender), a muscle pheed superficially on the imer part of the thigh.

Granulation (Lat. grenulum, dim. of grenum, a grain), fleshy outgrowthe by which wounds are re1mired.

Gregarina (Lat. grer, a herd), a gemus of patasitic protozoa of very simple nature.

Gubernaculum testis (Lat.), the cord attached above the lower end of the epididymis to direct the descent of the testicle in fretal life.

Guttural (Lat. gutturalis, from gettur, the throat), pertaining to the throat: in the home, the large airsacs lying behind the phargns are termed the guttural pouches.

H

Habitat (Lat. habitare, to dwell), the natural 1 ,cality and gemsaphical range of an animat or plant.

Hæmoglobia (Gir. hwina, blond: Lat, glolus, a round body), a collome or crystalline subatance existing in the corpuscles of the blood, to which their red colnur is due.

Hæmoglobinuria (from hemoglobin, and Gr. veror, urine), the presence of the red colouring matter of the bisod in the urine. See abouve entry.

Hæmoptysis (Gr. heima, blood, and ptyein, to spit), discharge of blood from the stomach.

Helminth (Gr. helmins, worm), an intestinal worm.
Hemiplegia (Gr. hemi, half, and plège, stroke), paralysis of one side of the body.

Hepatic (Gr. héputhos, hemer, liver), pertaming to the liver.

Heredity (Lat. hereditas, from heres, in heir), the transmission of qualities or conditions possessed by the parent to the offipring.

Herniotome (Lat. heruif, hemia; Gr. tomos, cutting), a hernia knife.

Herniotomy (Lat. hernia, hermia: tomuein, to cent), an operation for the relief of hernia by section of the constriction.

Herpes (Gr. hetrees, herpein, to creep), an acute disease of the skin in whing groups of vesicles appear on a pateh of infammation.

Hiatus (Lat. hiore, to sape), is bank space ar "peninc, as the hiatus aorticus.

Humerus (Lat.), the bune of the upper arm; in the horse, the bone between the knee and shoulder.

Hyaloid (Gr. hyalos, glass, and eides, likeness), transparent like glass.

Hydatid (Gr. hydutis), a sort of bag or sac containing fluid, being the form which a tape-worm may assume within an animal body; an echinococeus.

Hydrogen (Gr. hutor, water, and $/ f$ emman, to produee), a gas occurring in nature chiefly in water, which consists of hydrogen and oxysen.

Hydrophobia (Gr. teydür, water, and phobos, dread), it symptom of rabies comsisting of an inability to swallow water.

Hygiene (Gr. hymirinos, good for health), the science of the laws of health.

Hymen (Gr. hymen, membrane), a fold of mucous membrane at the entrance to the vagina.

Hyoid (Gr. hyocides, similar to the Greek letter $\mathrm{U}_{\text {psilon or our letter Y }} \mathrm{Y}$) a term applied to various parts in anatomy, from their peculiar shape.

Hyperæmia (Gr. hyper, over, and haina, blood), a condition of congestion or excess of blood.

Hyperæsthesia ("ri. hyper, over, and aisthesis, sensation), exalted sensibility of the skin.
Hypertrophy (Gr. humer, wer, and trophe. nurishment), excessive growth in the size of an organ.

Hypnotic (Gr. hyphos, slet y^{2}), pertaining to slete): a remedy that causes sleter.
Hypodermic (Gry hypo, under, and derma, the skin), pertaining to the introduction of medicines beneath the skin.

I

Icterus (Gr. ihferos, jaundice), jatundice.
Idiopathic (Gr. idius, own, iml juthos, lisease), not consequent on or depmont upon another distase, but having a known ur recognizerl anst of its own.

Idiosyncrasy (Gr. id $\overline{\text { Ios }}$, own, syn, tugether, hresio. a mixing), the special temperament pertainines tos a person or an animal.

Ilium (Lat.), the haunch bone "r part of the innos. minate bone neat the backbome.

Incisors (Lat. imeidror, to cut), the cutting teeth, the six most anterior teeth in each jaw.

Incubation (Lat. incubert, to sit on ergs), the period which elapses between the implantinas of the contagion and the develomment of a disease.

Indigenous (Lat. indu, in ; yegnere, to beget), native, not exotic.

Indolent (Lat. in, wot; folere, to feel gain), bainlese ur sluggish, applied to uleers, tumours, \&c.

In extremis (Lat. in, in ; ertromess, lant), a term implyine extreme danger, or at the mint of death.

Inflammation (Lat. inftommetio, a burning), a condition in which there is an abormal accumulation of blend. with maltiplication of the cells of the tissue or orgin, attended with heat. pain, and swelling of the part.

Infundibulum (Lat. infundere, to pour int(o), the funmel-like depremion on the crown of a tooth.

Infusoria (Lat. Bufusmm, an infusion), a class of mieroscopic elliated potozoa, beins minute organisms found in thuids.

Inguinal (Lat. inmuen, the smoin), pertainmer to the gruin; inguimal cand, the cinal whieh cmitains the spermatic cord in the male, and the round liganent in the female.

Innominate (Lat. is, withont; nomen, a name), the term given to an irregular-shaped bone, the os inuo. minutum, fominer the sitles and flom of the pelvis.

Insemination (Lat. inseminure, to flant seed), the intruduction of the semen of the male into the uterus of the female.

Insuffation (Lat. io. in: sufflere to puff), blowing any powder upon a surface or inta a cavity.

Integument (Lat. integuncuturn-in, upnn, togert, to eover), an outer layer on covering especially the skin.

Intercostal (Lat. inter, between: fosto, it rib), apmied to the space betwen the ribs.

Intercurrent (Lat. intrr, luetween; rerrere, to rua), applied to a diseane arising during the existence of another flisease in the same :minal.

Intermaxillary (Lat. inter, hetween : mafill/, jaw. bone). hotween the maxilary or ulper jaw-hmes.

Intertrigo (Lat, inter, between : terere, to rulb), an eruptiom or soreness of the skin productel by frietion.

Intervertebral (Lat. inter, hetween; probori, : bone of the spine), between the vertebnit.

Intralobular (Lat, irtere, within: lobelas. a lobale), applied to vessels prassing into the lobules of the liser.

Intrinsic (Lat. intrinsecus, on the inside), inherent, inwark.

Intussusception (Lat. intus, within: suscipere, to receivel, andginatom or doublime inward of one part of the intestine within another pat.

Iris (Gr. iris, a moloured hato or circle), the anterior purtion of the vascular tissue of the eye, surromending the purnil.

Ischium (Gr. ischion, hip), the bone forming the posterine part of the os innominatum.

Isthmus (Gir. isthmos, isthmus), the neck or constricted part of an moran.

.J

Jugular (Lat, inenlum, throat), protaining to the thrat. expecially to two lares: veins of the throat.

K

Keratoma (Gr. hy rus, hom), a homotmmotir : ald plied more especially to a srowth from the lanof of the horse.

Kilogram (Fr, kilogramm. Gr. rhilioi, rne thousaml, and frammut, a eraint, a Fremeh standarl weight, one thousind grams or 2.2 pounds avoirdupois.

L

Labial (Lat. /uhimm, a lip), pertaininer to the lips.
Lachrymal Lat. lurrymer, a tear), havinur reference tor the ornans setreting teras.
Lacteals (Lat. luc, milk), the lymphatice or vessels of the small intestine that take up the chyle.

Lamella (Lat. dim. of luminet, a plate), a term apllied to a thin male or plate of tixane, as the lamela uf the fint of the larse.

Laminitis (Gr. lumim, plate: itis, intlammation), inflammation of tle laminar of the howse's foot.

Lampas (Fr . Lemputs, lannpas), atheshy swelling loehind the upper incisur teeth in the lornes.
Larval (Lat. luriou, a ghont), gertanime to this comdition uf a larva, the latra beiner the carly form of an animal gnite different from the full-growis form.

Lecithin (Gir. lokithos, yolk of rewt. a nitrogramons substance acearrinx widely thoushout the buxly.

Leptothrix (Gr. Leptos, thin, and fhrix. hair), a gemus of hacteria whase elements form stmight fila ments often of wreat lemeth.

Leucin (ir , buh゙s, white), a crystalline mintance oceurring in the panereas, pleen, thymms ghan, and othe: parts of the looly.

Lichen (ix. Leichēn, a lichen), a min diseate in which there is an truption of whirl papales.

Lingual (Lat. limpue, tomgue), lertaming to no shaped like the tomsue.

Lithontriptic (Gr. lithos, stone. thrypte in, tu crush). applied to an instrument for crushing stone in the bladiler.

Lithotomy (fir. lithos, stontw, temmill, to cint), cuttime into the neck of the blalder to remose a calculas ar stone.

Lithotrity (Gr. lithos, stome: Lat. terere, tw rub), the pleration of crushones at stome in the bladmer by means of a lithotrite or crushing instrument, ame remosing it piecemeal.

Lohule (Lat. lobulus, a lobe), a small lobe or division uf an orcan.

Lumbricalis (Lat. lumbicots, a worm), a name of certain mall museles in the hambs and feet.

Lunare (1,ist. (wme, moon), a bunt of the carpus.
Lupus (1att, a whlf), a chrmic Bretast of the skin Whacterized lyy the develnpment of modules of gramu. lation tissute.

Lymph (Lat. lymphat, clear water), a colourless Huid atlied to bloud, and contained in sessels ealled lymphuties.

Lymphangitis (Lat. limpha, lymph; Gir. anqcion, vessel. itis, inflammation), inflammation of a lymphatic vecsel.

Lymphatic temperament, a combition of system characterized by talbly museles, slumgh character. and a pedisposition to diseaves of a low typut.

M

Macule (Lat. mucule, a ant). discoloration of the Nin dut to hyperemia or extravasation of blond, or t" pimmentation of the skin.

Malar (Lat. mulu, chetk), bertatiming to thee cheek we cheek-lome.
Malarial (It. mulve eria, banl air). pertanines to malaria, a feverinh elisease commom in many marshy districts.

Malic acid (Lait. mulum, an alple), an accil formed in many plants anf their fruit-n!ples, mapes, de.

Mallein (Lat, mutlews, farcy), a Huid oltanerl from the bacillus mallei- the miceromeranion of whenters.
Malleolus (Lat, (lim. of molloze. latmmer), a process of bone havines a hammer-like shape.
 a gradual, gentral deteriomation in stremoth, with markel emaciation.

Massage (Fr, from (ir, mosse in, to knead), rubling, knewlines and other manipulations of the suprertial parts of the lody.

Mastoid (Gr. mastos, hreast : cides, shape), hasines the shape of the hreast on of a mple, applied to a gart of the temporal bune.

Meatus (Lat, muere to Haw or pass), a passage duct, or canal.

Meconium (tir, mikimion, lit. prlyy jucto), the first fectal dincharges of the new bom.

Mediastinum (Latt. mulio sthm, tus stame in tlat middle , a midhle portion or septum serasating adjacent parts.

Medulla (Lat. medulla, marrow), atructure en-- losed in another structur", like the marrow of lome.

Medullated (latt. metullo, marmow), furming it medulla, as nerve fibres enclosed in a medollary sheath.

Megacoccus (Gr. metus, laree, and hokkos a berry), a largesized romaled lacterium on enects: "lloned to a mieruenceus.

Megastoma (Gir. mituls, large: stomu, al month), it ゅemus of infusurians.

Megrims (Fr. mínainc: Lat. heminomia), nemalgit of one halle of the hearl.

Melanosis (Gr. molas, melun, blakk), a genteral tendency to the drposit of black pisment in various parts of the booly, mustly seen in srey horses.

Membrana nictitans. See Victitutiny mrmbutur.
Meningitis (fir. mémins, membrane, and itis. in Hammation), inflammation of the membranes of the Inain or spinal cont.

Merismopedia ((ir, merismos, divisiom: meis, ehild). a lacterima maltiplyins bex rectangular division, thus forming a group of from cells in one plane.

Mesentery (Gr. mesos, midhle, and euteron, lowel), a foll of pritonerum comberting the small intestine (1) the spine and lowerng it in plate.

Mesorchium ((ir. mesos, middle: wrokis, testicle) a fold of prituneum containing the fotal testicle lofore its desceut.

Metacarpal (Gr. metukeruion. wrist). pertaiming to the two bones between the knee and the fetlock joint of the horse.

Metro-peritonitis (Gir, mētr, womb), peritmitis, secondary to intlammation of the womb),

Miasma (Gr. mitincin, to jullute), a term batving reference to serma generated in marahy districts.

Microbe ((ir mikens, and bios, life), a wostable ar wher micorargmina, often a disease germ.

Micrococcus (Gr, mikrow, mall, and kokikn, beryy at micra-minalism having minute rombled dements, isulaterl. united in twas or in lage numbers. "r dispused in chaplets.

Microstoma (Gr. mikros, small, and stome, mmuth), almormal smalliess of the mouth.

Micturition (Lat, mitheritio, micturm, t, ${ }^{\text {nass }}$ water), the aet of passing watet.

Mitral (Lat, mitwo matre), resembling al mitres sail of a valve in the leart hasing two than.

Modus operandi (Lat.), the mamer of operating or procectines.

Molar (Latt, mold, a millstme), uriminus me chewing: in the herse, relating to the twenty-fun large tere th.

Monorchid (fre, momos, single, and owhis, testicle), an animal in whan only one texticle has descemert into the semitum.

Morphology (Gr. morphe. fomm, and hofos, disworse), the lnanch of shence pertaining to from amb struture

Motor (Lat, worere, to mone), at term applied to at chas ne nerves which transmit the prote of motime to certain mascles.

Mucus (Lat.) a shat of slimy or viscib thuil secreted by membranes that line the montly, intentines, ofohonce calleel mocoas mondrunes-ind sutvins as a lubricant.

Mutualism (Lat. muturs, recipmeal), the livins tergether of orsmisins for motnal alvantaze; symbinsio.

Myelitis (Gir, my olos, marrow, and itie, intammattions). intlammation of the pinal corel.

Myocarditis (fir. mys. miscle, and kurfire, heart: itis, inflamasatim), inflammation of the museular tiesue of the leart.

Myopic (Gris myein, to close, and ops, cye), marsightet.

N

Nausea (Lat, musoti: Gr. mrusit, starsicknem), sickness of the stomach, with indlantion to womit.

Navicular (1,at, numiculie, a little ship), relatims th the macienlar benf. at lume in the font of the harse. aul to the symowal membane of the noricolew joint.
Necrosis (iv. whonsis, from nekron, deal), death of a large purtion of any timate.
 a thread: aphed to centain parasitic woms.

Neoplasm (ifr. new, new; plasma, form), a new srowth or tumour.

Neurectomy (Gr. ncurou, nerse, eh, wht, tomí, a (atting), the "peration of exciniug or cottime nut part of a nerve.

Neurilemma (Gr. nehrm, nerve, and Ifmnu, husk), the outer sheath of a nerve.

Neuro-keratine (Gir. numor, nerve, and lit ros, hom), an whatance found in commection with sonne nerves.
 epilensy; it functimal disease of the nevers an nerve centres.
Neurotomy (fir, nemron, nerve, and tomé. a cutting), divisim of a merve.

Nictitating membrane, a piece of cartilate in the inner canthas or ample of the eye, unal to dinnlace foreign matere from the surfice of the comasa.
 mentitie rlassifiemtion of diseane.

Nucleus (Lat, welens. from mes, mat, a small budy sithated in the midde of a cell.

Vin. 111.

Obturator (Lat. ohturere to stene uplo a part that
 Mis the How of the jelos.

Occipital (Lat. weiputhlis, wecipital), pertaining to the weceiput.
Occiput (Lat, elb, againt ; enpur, the leanl), the lack or himer part of the heal in man, and the entreamuling fart an animals.
Edema (tir. vidēus, viltin, t"rwell), at swelliner

 sitie fungi forming white disethe of the vine: Jiflime allicens, found in throll on the tomate.
 beatl), the large process at the hash of the what

Olein (Lat, demm, cil), a constituent of fot combpaserb of aleac acin imul alyertis.

Omentum (Lat.), a fold of the 1 revimenn comect. ins the :1hmoninal rineta.
Ophthalmia (Gr. ofhthelmais, eye), mflammatwon of the eye.

Ophthalmic (Gr. ophthetmens, ey\%, pertaining to the eye.

Orchitis (rir, ormios, testis, and itis. inflammationt) intanmantion of the testiole.

Osteo-porosis (Gr. astom, bome, and pores, in wer). a lismate of the bone which canes it to expand amel to swrll.

Ostitis ((ir. asteon, bunt; ition inflammation), inthammation of bone.

Ovariotomy (Lat. metrum, wary; (ir. tmar, a (cutting), the surgieal remwal of an wary.
 indivilual ovim: a Gratatian fullicle.

Oxalis (Gr. motis, simel), a sume of phants, the Wound-whel, contaming bedic nemel.

Oxyuris (Gr. neys, sharl'; mere, tail), a gemme of nemathele parasitie worms fomad in the intestines.

Ozone (fir. ozin, to smell), an active oxidizing agent mosesing antiseptic pronerties.

P

Palatine (Lat. pulatum. palate), bithumine th the palate, as the palatine lume.

Palmitin (Lat. pmenn, phlm-thee), at chastitnemt of amimal and veqetalle fats.

Palpation (Lat, peifurte. to $\mathrm{f}+\boldsymbol{+ 1}$). the manipulation of :1 part with the himm ur finuers.

Papilla (Lat, a millle), any soft comical eminemer. such :the the minde.
 ciremmeribed atevation of the akin,

Paracentesis (Gr, phra, he inta, and hatesis, pumethre), tapming a cavity of the beoly, ats in the rast of dxany.
 of faculty in nerves, with comseraint lom of action in munirles.
 faralysis of the wisterin hale of the ludy.
 of life of a paraite; infestation ly pamitus.
 might puratysis.

Parietal (1att, puristulis, pries. at wall). 1"ertaining to the walls of :t bung cavity.

Pari passu (Lat.) sirle lay side. With mpal promess.
 the enp: as thee paretid fland (which secteres satival) purotisl arterises. ke .

Parotitis (fir. purm, beside, oas, ear, and itis, in flammation), mflammation of the parotid olamb.

Paroxysm (hir. furm, lnside, aml orf, sharb), is fit

Parturition (Lat. portritio. patcrive, to brime forth), the ant of wiving lirth to ymumb

Patella (Jat., dim, of putime, dinh), the knee- ap! ot small stsinnoid lame in frome of the stifle (where the thish and lege formes anticulate).

Pathogenic (Gir. puthos. disease, aml grnum, to

Pathognomy (dir. pulhos, disease and qumat. at sisul, the sernore of the signs by which dinctase is

 that harach of medleal selemee which tre to of the moditication of function and chamge of strutturn caused by dineases.
 fommel in all plants.

Pectineus (Lat, feten, a commb, a mosele dew ly placed in the imme prate of the thiesto

Pelvis (Lat. protis, a hain), the homy eavity of the forsterion fart of the trmak, in which are montainud the rectum, linalder, and wenital weans.

Pentadactylous (lit. pente five and sloblylus. finger), having tise fincers.

Pentastoma (fis. puitr, five, and stomul. bunth), it gams of womblite paratites.

Pepsin (1f: fifsis, digestion), the ditef cligestive Jrimeiple of the eratric juice.

Peptone (lire petwin, to digest). a prombet of the action of the wastric juice on albuminons sulstamets. by whirla they are tendered soluble and eapable uf heing alswhed.

Perforans (Lat. per. throush; former, to lores), apt plial to muscless whone tendinn prases between the tendon of other monseles.
 apllited to momislex whose tendom is disided in witer to allow amother tembon me structure to fass tlathert.

Pericardium (lis. peri, avound, and hardiot, the

 berwern the amms and the sorotum in the mate, mall the ammen winina in the female.

Periosteotomy (lir. puri, aroms, ustrom. bones, and tome (antingl), incinime into the jeriontemm.

Periostemm (lir. Juri, amombl, and astoon, hant), a tibous bemblome conering bomes.

Peristalsis (lis. puri. amomi. and stelsis. comstriction), tha peedias iemmionlat mosement of the intestimes and other tubular oryane earrying omwards their comentio.

Peroneus (tit: fromi, the tomgue of a molitat, a manele sithatiod int the ontex sule of the tibna wion bume.
 plexus of meree sitnated on the buter side of the faxe and rosembline at grase's fort.

Pessary (fir: Juswes, a pestary), an instrmment placed in the vanimato lowd the uterons in prition.

Petechix (It. Juhechit), a wame for minll romal

Phagocytes (i'r. phomill, to eat, and kutus, cell), cells which take mp amb diesest the molnhle frarts of sarions athor cells. organisms, and excretion products: white bernl.corpumely.

Phalangeal, fortaming to the fondanes.
Phalanx, Jl. Phalanges (tir. Phalonx, one of the bomen of the finecos wome tom the harve. applied to the large (1) small pastion, and the forst bome.

Pharyngitis (Gr. phuryma, fharyns, amt itis, inHammat!en), inthamation of the phatym.
 the jemis within the perepace so that the glans penis. "amment he "xpmed.

Phlebitis (lis. phlfpe, vin ; itis, inflammation), inHammations of a rein.

Phlegmatic (tir. phommotions, like phlegho), the

 - liaphratu.
 diaras.
 sembling a leat int shane alplital to at small romma lman of the laces.

Pityriasis (Gil. pifyona, lorani, a disease of the ckin chaturterized by therexfliathon of hatalike ssalts.

Plantar Iant. pleruturis. plemme, seble of thet funt). pertanime to the sole of the fust.

Plasma (tir. plexum, a thine formed ar mondend). the flam part of the hlomd and lymph.

Pneumogastric (Gy. fore zemōn, lume ind yhester. stomadi), relatiner to the lomse and stomath.

Polypus (lis. fulys, maty, am? funes, fant), a tmoners fomme chitefly on mucons membrantes, the the note. uterns, hamber. \&e.

Popliteus (Latt. penlex, lam), the ham wr hinder prit of the linte joint.

Portal (Lat, portu, gate), relatines to that fart uf an mean thrumh which the homb-vessels enter.

Post partum (Lat, past, after: furtus, linth), fol. lowing jacturition.
 furnersing powers mot yet manifenterl in artim or effect.

Predisposing (Lat. prot, lefure ; disponere, tu disposelo apmlien! to that comblition of the bonty which rembeys an ammal especially liable tocobtrate diatane.

Prehension (Lat. promblere to weige), the aet of taking lumt of an seizing.

Premolar (Lat, prete before ; molu, millstonte), situateal in front of the maline teeth.

Prognosis (Gry pro, lefore, and tmoisis, knowledget, ath "pinim of the course and termination of a disease lased uman a tombideration of its symptoms.

Prophylaxis (Gr. prophymancim. to lite J) suard thefore). [revention or warding off of limase.

Prostate (fir. postutes. prostate). the bame of a alaml mituated in frome of the wontlo of the bamber.

Protagon (Gr. proitos, first, amd a!fein, to lad), a

Proteid (Gr. protos, tirst), a wemeral term for the alluminous and albominomed ematituents of the or ganism.

Protoplasm (fir, prōtos, first: plosmu, anything formed on movded). the slomy alluminoid material resembling white of ege, conatitatiog the basis of linum flimit or amimal cells: living natter in its simplest furm.

Protozoa (Gr: prötos, first; simen. ammal), ther Jowest flass of the ammal limgtom, which comsint of mimple crlls ar monties of cells.

Prurigo (Lat. provire, to itch). a chmonc japular intimmation of the skin attemded with severe itching.
 thiner montaled). a new erowth or tumbur.

Psoriasis (Cir, pame, the itch), a chronic disease of the kin. diatinesuished by the presence of white soales on at red bame ; dry tetter.

Psorosperms (Gr. perit, the iteh; spermm, setd), a name for the eperozona.

Pterygoid (Cir. ptery. wing: (idos, shapet), wing* shithed.

Ptomaine (Gr. ptoma, corpse), any of the toxic or pminmans sulnstances resulting from the decompmition or decaly af ammal matter.

Ptyalin (tirs, ptyton, saliva), a ferment found in
 sumar.

Pubis (lat.), the as pubis on phbic lwat at the lower part of the atdomen and connerted with the gelsis.

Pupa (Lat. pupe, at doll) the secmad statee of do.
 eomplete metamomphas: the chrysalis.
 lieht in the bris of the eye.

Purpura (lat. putpurat, an rupitom of purplu "pts in the skin. Purpura hæmorrhagica. an ansitvated form of phana extendmer wes tha whole landy.

Pylorus (tir falaros, wateke+der), the rutlet in opening of the stomach into the chombentan.
 shaped : a termaproded tor a mascle wathon the felvin.

R

Racemose (List. racemers, a bunch of grapest, hating a shape resemblom a bunch of uraperis.

Radius (1,at, rimelies, it statfi, rotl, sanke), whe of thet two larige bontes of the forearm: in tle lomse, a bonte of the foreter between the humerns and the knee.

Receptive (Iat, recipere, to receve), hatsing the quality for revervims.

Rectum (Lat, rectus, straght), that prsterior fart of the larese intestime.

Recurrent (Lat, repurvere, to rum batel), returingreaphearine.

Reflex (Lat. retecus, thrown back), ayplied to the ation of aport unom the aphlication of at stimulas to mather ame distant part.

Regurgitation (Lat. Ve, acrain; guryitorer to cur gitf), an ertactation or throwing Jack.

Renal (lat. ramels-ren, a kidney), jertaning to thw kilntys.

Repellent (fatt, mpellere to repel), laving the powtr turatul montid 1 nucesses.

Rete mucosum (Lat. reti, turt; maches, mutous), the lower linyer of living celk in the epidemmis.

Rhizome (bir. Fhron. roat), a subteramean stems haviner roots at its modes amb a bud at its apex.

Rugæ (Lat., wrinkles), foldings of (reaninus of an orath, as in the Hatous membrante of the stomach. は".

Rumination (Lat. reminar, to (l)ew the "ud). the chewing of the cod, the returning of the ford from the stomach and its remastication.

S

Saccharomyces (Gr. succhutron, sugar, and mphe's, fomsus), a umicellular vegetable orgaminn simatar to the yeast plont,

Sacrum (fat, seerer, saceed), at tringular bone com. posed of five pietes (vertebre), forming a portion of the bertehral cohmon (spine or backionet, ambl beloneinge to the peelvis.

Sagittal (Lat. sesgitta, an arrow), reforring to the suture uniting the paretal bones.
Sanguine (Lat. sunyuis, bloud), apmbied to an active, energetic disjmition.

Sapid (Iat. supere, to taste), capable of being tasted: having taste or havour.

Sarcinococcus (Lat. serfina, a bundle), at mam+" of round or ovoil bacteria dividing in three directions, producing cubic masses of various sizes.

Sarcolemma (Gr. saror, flesh, and lemm, husk), the membrane that envelops at masle filore.

Sartorius (Jat. simitor, tailow) is loner slantiex maxde situated on the innex and front part of the thinh.
 bone of the knee

 etilumed serumb, bloxl, wh wines,

Schneiderian membrane (fronn : libiman anate-

Scirrhus (irs. Akirrhos, at tumbm), atand of "ancer, a harel anmer.
 disame in wheh thes kial lacomats atitl :mul hand.
 white, "pathe, coat of the eg".

Scrotum (Lat.), the pendeli romaninine the testiclex.

Sebaceous (Lat, sobum, sine fat), pataminh tor the fat-stereting glamels of the kim.

Semiology (Gir. smethet, sign; loyos. diseomarse), all that is known in wobatel to the symptomisi of datake.
 tor a clasis of nerves which tramant semsation to certan [arts.

Septic (Cir. septetos, putrefying), relatines to putrefactinn.
 condition of the blowd indaced by the absomption of sentse promets.

Septum (Lat.), a partition on divjsjon wall sedaratome one cavity from anothor.

Sesamoid (Lat. sésthum, it lind of seed, and cirlos,
 Irness situated in temdons ahout joints. and others similarly situated.

Sinus (Iate simis. a curse fold, or landow), a loblow exiantion, recesion or fueket in ally structure.
 fatty mumatace secreted lyy the sebatmons plands of the preprice:

Spasmodic (Gis. spusmotes), hatring the nature of a consulsion ur spasm.

Spavin, a disease of bones in whibh an enlargement apleats on the inner and lower part of the baek joint.

Specific (I, at. species, necies: firmor, tomake), that whimblintinguinhes a thang, m maken of of the precies of which it is.

Specific gravity, the motamord woricht of a substance compared with that of an eypall volume of anotlere taken an a stamdsud.

Spermatic (Cir. spermutihos-smrmu, , metd), relatiner to the semen.

Spermatozoa (Grespermu, Semon ; z-mm, :Hmmal), the exsential elements of fecmmiation.

Sphenoid (Gr. sphen, wetlge, and : iblus, likromens), wedue-shaped, relatines to the shemoid lanc, an impartant lante of the skull.
 masele surrohming and enclowing the writice theh as the amus.

Spirillum (Lat. spirillum, a curl), a bateterium whose
 twos.

Splint. apmiterd to a bony excrescence on the camm lomene of the lhorse.

Sporadic (dis. spormbitos, seattired), apllied tu disethes which may spremd. but which are not ephdemice, and meour here and there.

Sporozoa (Gr, sporn. sted, and zoom, an animal). it class of parasitic protozoa.

Squamous (Lat, squemosus, sealy, squamo. a scalte). a skin dusease in which is scaly condition exists.

Staphyline (tis. sfoplath, the uvala). pertaminer to the wola or the palate.

Staphylococeus (fir: stephytc. lmonch of grapex. :mod kokkes. lemy), a miconerocus of which for the mont bart the indivinmal food in a culture are sulitary.

Staphyloma (lis. stuphyli, bunch of grapes), a ivivine way or bindeine of the contera

Steapsin (tir. vadr. fat), a ferment which resolves fats intaspervine and thetr corresponding fatty ache.

Stearin (1 i . sfour. fat), al substance contamad in fat and componed of stearice aled and wlyerme.

Sterility (Last. sterilis, barren), the eonthtion of an amimal whant when it is meapable of repondue. ince itself.

Sterilize (Lat. sterilis, barren). tor render aterile wh haren: to destroy the vitality of feme and present thair remanlaction.

Stertorous (Late sfortore, to shore), beathing with a shurines senmal.

Stethoscope (Gir. stathos, lreast: shopein, tor ix. amine), an instrunatat throngh which the wrans of preathime, and the heart and ateries, are examind as to their sommds.

Stomatitis (Gir: stomu, numth; itis, influmationo). inflammation of the mouth.

Strangles (fix. strmofte, a halter). an infoctiondiseate of the air pranomes, especially of the natal
 a suppmative andition of the sulmaxillary and other glamus.

Streptococcus (irr. stremtes, twisted: kolkos, a bery), a groms of mideromsi in which the cored are armered instrines or chaplets.

Streptothrix (tir. wheptos, twinted; thrier, the haid). an "rear of fung the cells of which mite inta simple on hanchine threads.
 an almomat contraction of a duct or passibete from extepual presura, of as a result of inthammation on other chathere

Strumous (lat. strmmosis, strmum, scrofala), haviner the matme of acoofula.

Styloid (fir. stylus, pillar), remembling it Aephetr eqlinelrical exlmom.

Subcarpal (hat, suh, muler: Cir. kurpos. the wrint). situated mader the carlus or wrist: the wrist of the houre is spoken of as the knee.

Sublobular (lat. sub, multer: foluthes a lolinle). sitmated hegeath at lumber

Submaxillary (Latt. sub, umber: mareill., jaw-lnme). lying lemeath the fower natyilla or juw-lwhe

Sudoriparons (liat. suder. sweat: purere. to (haret). perkluoing or secrether abeat.

Suffrago Lat, suffirero. lonck!, the luck; os suffor. finis. the hanio of the lant.

Supplemental (Lart. sumbe morntmm), Rplied tor the air that can atill he exhalel after womary expimation.

Suspensory (Lat, sut, whter: pember, to hamer) : structure hy whin another gart hanes.

Symbiosis (lir. stm, almer with aml bios. lifu), the mtimate ashetation of loving organismas, whe of which i- nevecsery to the other.

Symbiotes (tir. stu. With, biow, life), a sumall latal. ate infortinct the bin of latmer
 ins youpathy ar comsentanemas activity.
 a of the two pular handen symplavio pulios.

Synarthrosis (fir. sun, kusther, and whorom, joint). a fumm wif junt in whicla the bones ate innowably mited tuculmer

Syncope (Gr. symbpé, a cuttiner short), a mwomine or faintins, at tempurary mangentom of the functions of respuration and circolation.

Synovial (irr. sym, turether, and Lat. ozam, exar). relatime to the symovia, which is a latricatiner liquid comnected with a joint.

Synthesis (Gr. symthesis-sym. witl: tithemi, t" place), in chemistry, the furmation artiticially of a componal by combinine its compument elements.

Systole (Gr. sysfote, (whtaction), the contraction uf the heart and arterien, hy which the baod is propelled aloneg the vemels.

T

Tænia (Gir tuinit. a band) a flat parante compoed of a number of flat sexements: a tape-wome

Tænia echinococcus (fir faimit, a band: cchimos.
 beneth.

Tænia perfoliata (fr. twinio, a hemel: Lat. fur. though: fulum, a leaf), a tape-woma companed of fansemtice semments. increasing in size fusterinty.

Trenia plicata (fir. tuinies, at hand: Lat, pieere, tor folll), a tape-worm :lowe $3 \frac{1}{2}$ in, lomer and $\frac{3}{5} \mathrm{in}$. wille.

Tarsus (Gr. turses, tarsus), the instep of man. the hock of the larse.

Taxis (lir. thris. moter: tassime to amangel. the retuminer of a prolapaed stiveture as a hemia of the uterus. ly the hand.

Telegony (Gr. tedt. afar: fome, afteluing), the in-
 sequent whe throush the simme lams.

Temperament (Lat. tupperme ntant), dixpssitiom.
 predominance of one orotio of comotitutional functions "rer others in an inuliuchat.

Tendo Achillis, the tendom the the eastrocmemain, monelo camnerted with the heel; the temron that is rat in hamstringing.

Tenotomy (Gir, tomon, temton; temmin, to ent). an
 fommity of the limb.

Tetanus (fire tetemos. fine in. to stretch). a cumbtinusus ofasmadie contraterion of maseles.
 sceppic oremaion disiderl into fund elemento.

Therapeutic (fir, the relunthes, curines). pertainines (1) therapution whe the of hatime farative.
 - Hent and to celtain weame comtamad within it.

Thrombosis (fir. thremblos, (lot), at "hit of hawed fommed within the feant or hamel-scesels, ambleaming an olstruction to the cireulation.

Thrush, a parasitic stomatotis futsontinu difluse

 discharıe.

Tidal air, the pmantity of ar talien in duriner phiet breathins.

Tourniquet (Fr. tonrmer. tu tum), an instrument fom cmatralling the circolation of limal in at hand. resel by meins of comprasaion.
 I'rinemines.

Trachea (6is, trochriu, a winnlupe) the wintlipue.
 the laryns to the limes.

Tracheotomy (Gir. Dremede. tracheal, and tome, cuttimes. removal of a portion of the trachea, or inciaion into the trachear.

Trapezoid (Gry. trepeza, a table, and cillos, firm), one of the bones of the knee.

Traumatic (lis. treumatikos-fectmot, at womm), callaral ly a wound ar injury.

Trichiasis (iv. thei, a hatir), abmomal linection of the eytashes, producing friction and inflammatime of the elobe.

Tricophyton (iry, therio, a lair, and f/haton, a plant). a - I'ricophemen fonsurens is what can-es 1 ingworm.

Tricuspid (Lat. tes, thoue; cuspis, print), hatiner thate chaps as the tricoloplathe bin the abotio amp Pulammary artery.

Trismus (fir: trismos, triath, to entanh), slasm of the mascles of mastieation, lowked jaw.

Trochanter (tis. trublemter, trembes, a whel or
 and sules of the fomur on thigh-lome:

Trocblea (fir. tourhilm, a wherel wr pulley), it patt hasine the mature of a palley.

Trypsin (Gr, tripsis, a rublingh, a subatace which
 creatic juice.

Tuber (Lat. tube c_{0} a bump is swellinst, at thiskenes] In'tian of an untereroumb stema, as the jatato.

Tuberculin (Lat. eubrealua, s tulnoley, aty.

 infortane lisease corremanding to what as cmammoly
 dixcovererel hy Kach in luse.

Turbinated (Lat. turho, at tol), thlwhaled.
Tympany (lir, tifmetrom, Jrumi, distension of :th

 in panmeatie digestion, a decomposition frometuct if prateils.

U

Una (Lat, a cubit), the small bome of the fortarm of horse's furebeg, its companion bome being the ruthe. Umbilicus (Litt.), the navel.

Urea (Gir. fomm, urine), the chief solit tomstituent. of the wine.

Urethra (ins. omedher, wrethat), the eanal extemdime
from the hadder to the +ad of the gmons, thmonh which the nrine is diechatryen?
 Pante of the skin thameterizell by wheals.

Y

Vaccinia Last. cucert, comb, wayjux.
Valvulitis (Lat. malculo, a small salve, itis, intammation), intlammation of the values uf the letart.
 blatations: abommally dilaterl, an a win.

Vegetations (Lat. ciquitio, my er, to grows), a mamm

 for the two larse veins entorine the heart.

Ventricle (Iat, tutriculus. Ama, of whter, a belly),

Vertigo (Lat. corter, tor turn) giddinmes diazimes.s. Vesicle (lat, mesiot, bluhlew meliotur), al small blister-like formation.
 myontes similar to Sjmallam.

Virus (Lat.), a punabl that callama a morbind pocess

Vitreous humour (Lat, vitum, \&las: hemom, fluil), the transpatent wratiollike sulstance that fills the Imaterier chamber ut the "ye

Volition (Lat, colitio, will), At-t+rmination to atte: at willime to do oin not to dow sumething.

Vomer (Lat., a phomatherth, the lame situated in the maddle of the wombs.
 bart of the genital blasouge.

X

Xiphoid (Gir, diphes, sword: illos, like), swort.
 the stermam.

Z

Zygomatic (Gr. zy, 2yginnt ur chetk-bone.

I N D EX

A

Abdomen or Belly－

Wreathing peculiar to pleurisy，ii，i4， 15. Confurmation and defects，i，3，iti，if． 02，9r，102：cavity med mustlea， 1 ， 338．341；pancreas and tumic， $\mathrm{i}, 24 \mathrm{t}$ ； 11， 335 ．
Distencion or uwellint，i，283．200， 2023 303．301，311，317，i1，13，25

Hemerthage vyiphomes， 502.
Auseles，ii．335－338：rempiruthry ust：； to2：rupture，1，324．
N゙erves－dintilutaon，i， 377 －
Pail－dimmitere indrasted hy，i，270，272， $274,275,278,279,233,282,288,259$, 21，0． $21,1,203,35 \% 475$
Foulicing and mastad planters，iii，：2， 33.

Fregnancy and farturiton－signa，de． 11i，2r4，204，272．
Ring ，abdanimal－firm，疋c．，i，17：ii，
 321， 323
Show－horse＂＂let down＂belly－treat men，iii，3ro， 3 ？．

Tuberculosis iftecting duing af，ii， 51.
［See alon Stumach；for apectal lamase see its nome．］
Abdominal aorta－formation，i．$\{\leqslant 5$ ，
Abdominal ascites Ancter．
Abducentes newes from
Abductor muscles－．．．tw，\＆． 4, it，ish
Aberdeenshire Clydesdales－urign，心e，1，b，
Abortion－c．uses and treatment， $16 . \sin$

 203，zov，＝100， 217.
Abscesses
Antiseptics whil antringents for，ii，fis， 45
As acmat min of－lume and jumt lis
 cappeal cilaw，bilew，fand lowk，of
 Faralyeí，$i, 423$ ；hatata of porntud duet，ìe，$i, 252,2 t \rightarrow 221$ ；heart
 i． 344.31° ．hever inflommathm，i ， 305 Zob：mantumy whons and whler． i1． 59.95 ，nte peme and testive，ii， E1，Sn．Thema， $1,12,481,482$

 afermon－1．255． 250 ， 257 than
 Lanze ablammatton，i，253．ventral he： 1112.4 ，1， 325.

Furms and cawes－brain anl poll exil wherenes，i，foi：is， 431 ：evelicks，ii， 1－feet，11，375，379，ziri，inmblers，
 wither， $11,435,435$ ．
Pointure of alacess－dencration，i， 26 ： 11,431
Pusbure and wond－puinming causing． 1，220： $21,401,410$.
fon in urine the ta， $\mathrm{i}, 34$
Smanes commomeatmg whth，ii， $428,+33^{2}$

Absorbent System－

Definmwn and wee， $1,425 .+26$.

stuture，Se．if like al aml lymphatis systemaml al．med，i．$+20-+30$ ；bluod cirs［mate finmontin，i，+3
Acari－dinemen due to，ii， 1 42，：ć3．
Acariasis and it treatment， $11,100-16$ ．
Accelerating nerves of beont，i，＋13
Accelerator mrinæ muncle af perin，is， 7a，of uretlor．1，1i． 72.
Accessory flexor mumbe if fort and l＇miern， $11,34^{\circ}$
Accidental dislocations－－ither，R．．． ii． 346,314
Accidents bint wid and wenlec，ii， 477
 ＂．t1rath iin， $117,1^{2}+$

Acetabulum folm amble fetion cromer

Acetic acid－meatranal mees，ini，I

Acidity of toman l_{1}－remecher， $3 i_{2} 44^{2}$ ，for Acids－

Anternic and atrinzent fonmertion amb

 1，．＇15， 47.

Acorns－p，inm by，就，111，114，w5，w
Acquired dislocation fitm，\＆，in，if
Acquired rupture ，la mination，\＆ 1， 315 ．
Actinomyces in bool catanes diame 111，103．
Actinomycetes lenciptinn，ii，sfo．
Action in breach of wartule，※c． colnse to fullow， $161,+2 \frac{2}{5},+26$ ．

Action of a horse－

All extion and bereo，i， 122
As symptom of fludues，if，az2：bane alseases，is，24h， $207,218,216$, cmbt．

 4the in bladder，1． 357.

 homern，1，141：llalem，1， 2001

 171：addale homer，i，147，14 ：Shreen
 Xirg．जhure wath humen， 1,134
Carriage of heal and meek，$i, 4 i, 47$, fid Cart－home drawise a loat， 1,18, Es
Confrmation of tarnin purts afiectang

Feforme actan and injarien form ine that title

Action of muscles Home suc．ramer

Acute diseases Jelimitin，i． 213 ．
Adductor muscles ，finus（ina，ii，wif

Adhesion of wounds－methul价heal． 1112．18，$+4+4$

Adventitia ul matries， 1.11
Estrum or heat．1 18，m，\＆，A2，1月

Afferent nerve－fibres fism，i，

African horses－hintols，$\dot{\alpha} \mathbf{\alpha} \mathrm{C}, 111,525$

 111．

Age of a horse

luthlay onl wher sulutus，iii，3ns：

Age of a horse－Cont．
 218：1i，223． $236,274,=285$.
Longevity of lireel， $1,147,198,20 n$ ， 20t， 207.
Medicinal demer acurding tri，iii， 12.
［see alwoute whit Hursen］
Agents in sale of huree－warranty rezus．

Agricultnral or farm horses
breed and thest mence（levelani hays，1，1，2，xa，：Clydendaton， 1 180，wa，f，wat luelaind haren， 1.

 i．10．4．197，143，14\％，zono
Clansificatum a leasy bumen，i，172．

Frod－compusibum abl amomt．太c，iii， 80，yo，347：mdificrent feedns，i，277．
Histury on munthe of the thorve，nii，gat， $524.528,520,538$.
Overgrowsh of humf，in， 4 活．
Koyal mereve in lotedane，i， 172
Working more durme unkling，i，287
\｛See alhathe Dobught Harnes．$\}$
Ailments clased as ansommdness and vice－list，de，ifi， $420-420$.
Air and Atmosphere
Ar－procure lontue ly horse and man，i ， 488
Amechant per harse，iii，7h，78，79：tick henses， $111,1{ }^{2} 2$.
H，reathong wes， $\mathbf{x}, 487,493$ ：after respira－

 lung．i． $48^{8} 3,484$
 $i_{r}=28 ;$ ex，мm
Contamination sloe to statle and breath－

Disease due to impure atr，sio， i, ars． $2 \mathrm{I} 4,216,222,47$ ，ii， $11 ;$ ii） 152 ．
 ii1．3214， 331.
Air－cells reapisaturntices and formation， i，486，487：dilation，11， 12
Air－passages－dıug fin，ii，4h8－470：iii，
 i，470－47－irntation callan：fllew moma，14， 7.
Alæ－cuftin－linnce，ii，zeos：montrils，i， 0.
Albnmen－abtringent conkulatans， ii ，

Albnminoids of henive ant in foost，ini， 87．5．a：dipembility，14．an， $9=$ ，
Alcohol lismils．anet，affect ont，is，the：
 poimomig and antulate，iii，50，52，

Ale for mares after foalinge，iii， 227.

Alfred the Great－horse lreeding，nii，
Algæ in watcy，iii，127－820
Alimentary Canal－alisarlient sprom conne then，1，4：5：Fromeren of forsd thrumgh， $1,2 \neq 1,247$ we alsul Ibigen

Alkalne in inte－imal diemotion，$i_{+}=45$ ，
Alkaline preparations－fir dicetion，
Alkalinity of the ham！－drust fore re－ ducing ，in，4s－4－1
Allah－creation，what care of the horse，iii．
Allantoid sac－－finmation，iii， 251
Allantois membrane－firmation，iii，
Almaine horses－type，$i, 175,176$ ， 177 ．

Aloes－lisen and dmer，wi，r． 0 ；for shos hiren，ill，str，preparation ath gas

Aloin－medicmal uیe，iii， 1 ；doses，iii． 9
Alteration of structures－exflanation of term in＂arranty，19， 1 Ig
Alteratives as modu ine－action and ex． ．unfle，in， 12, kinds acturg on thane change．11，452－454：mercury w－e， il， 400 ：plescrapitions for balls or pumbers，1i． 15,16 ，show harses，iij，

Alternate generation－pucess of，\＆ic II．254－20\％，450．
Alum meuficinal nies，Re．，ii，+30, ， 55, 45ti，in，1－dose，in．प्रi Golution ins wres，i，2．43．
Alumina－compnumblused in medteine， $11,455,45 \%$
Aluminiuns－medicmal mace， ii ，tit
 ettect of frotured teeth，i， 3 ，
Amaurosis－carwes and detection，in，122， 12：111， 5 I．
Amber tinge in eyc，ii， $110,117$.
Amble－firmo of moston，iti，195． 107.
Ambulance－first ，ide directions，\＆c．，is， ＋37，4，3，4＋1
American boil－treatment，ii， 150,151 ．
American horse－pox or blseave－bature，

American horses－bueeding and im－ 104t．11011，1，153，14t：207，208：Fowil roman，and latary，w，510，550：if－ lnst ．．．iil，314．araming andereatment．

American＂pink－eye＂－nıture，ii， 31 ．
Ammonia and Ammonium－medicinal
 antulute nsea，iil，52，56，57，of
Amnion membrane－firmatum，iii， 250 ．
Amœba－furmation，dineasen due ta，athd Amphiarthrosis joints－form，\＆c．，ii，
Amputation of peris，ii，$\varepsilon_{3}, \varepsilon_{5}$ ．
Amyl，nitrite of - medicinal wes，ii， 457， 4
Amylolytic action in aligestinn，$i, 244$.
Amylopsin in digentinn， $1, ~$ aft
Anæmia and it tre，ament，\＆e，$i, 478$ 48：in， 5 y：lemert sombla in，i， 450 ．
Anæsthesia low． 1 and general，ii，$\$ 79$
Anæsthetics and their une ，ii， 430,470 ： II．IA，tóy；fir nervals system，is，

Anaphrodisiacs－medicinal uses，iii， 12. Ancestors of the horse－forsil remains and ormis，Ht，17．5，500－513；from fince tor one thal firit，iif，\＆on，tat head athl teeth firmation．iat，4， $2-$ 407：mash and colnthine in，tor－ Gore ser alow toter biach breedsng， I＇enturect，l－tezany．
Anchitheriun－－fowil remains of，iii， 512 ．
 Ancient Britons borses used by，； 154，17ン1 174；ini， 535
Anconeus muscle－furm，\＆ ，ii， 330 ． Andersch＇s ganglion on cranial nerse

Aneurism－cruves and results， $1,475,473$ 474， $477,478: 31,174$
Angina pectoris in homen，i，f6u：drucs
Angle of the ilium－frature，$i i, 2560-259$
Animal body－componilma（f，$i i, 87$ ．
Animal matrix in lnme，ii， 175
Animal remains in carth＇s crust，iii，47， 472

Animal world－the horse and its posi－ （1）14，111，471－513
Animals Act－1ra12it regulations，iil，\downarrow 65，
Animals and esolution，iii，286， 287
Aniseed－menlocilal wher，ii， 474 ：in， 1 dusen，ail， 9.
Annnlar cartilage uf car． $2 \mathrm{i}, 10$.
Anodynes whe alicir uves，i，290，224，313： 11，21，111，12．
Antacids and their uses，ii， $4+0,4=0:$ iii，
Anterior aorta－furm，$\& c_{-}, i_{1}+48,49$.
Anterior crural nerve－iorm， 1,402 ．
Anterior deep pectoral mnscle Nerse to，，nd torn of．1，39\％；11， 327
Anterior extremity id body，i，if．
Anterior gluteal nerves－formation，1，
Anterior llgament of huek，if， 273.
Anterior limb－－ee tore Limb
Anterior maxillary hones－form，it． 180：Aratille，il，24：
Anterior mesenteric artery－diseaves if， $\mathrm{i}, 471,477$ ； 11,174 ．dantrabuich if． $1,44^{5}$
Anterior radial artery－form，$i, 4+9$ ．
Anterior surface of head，i，8－10．
Anterior tibial artery－liom，i， 453
Anterior tibial nerve formation，\＆c．
Anthemmintics an their mses，itr， 12,132
 ma by vermat－hiller，in， $45,53,57$,

Anthrax and if：treatment，\＆c．，ii，$\downarrow 1-\downarrow 3$ ：
 Contasian and hactera camane \mathbf{i} ， 223．224．225020：form in motmana－
 thon，1，221；harse sickmess smularity，
Antidotes th pusoming－action and ev－
 metomy，samt of mblate，ii， 4^{30} ： bambon ditit tily preventing use of， i，275（fir silechat pman，see utites Aremic，Le：ul．NC．
Antifebrin－merli，mal user，ii，+50
Antihydrotics－action abd examiles，iii，
Antimony anl it wes，ii， $453 ; 475,472$ ：

Antiperiodics and their nses．iii， 13
Antipyretics or febrifuce－－their uses，
Antipyrin－
Antiseptics－action，lッ心，\＆c，ii，420－

 1－1，1：1，18：liz＝merime hemor－ rloige，ii，bu，wimbits mid ulecre，ii， 385\％，407，＋1 t，＋2u－422，427
Antispasmodics and thew wes， 14.40 ；
Antitoxic serum for titamas，ii， 40.
Anti－vivisection Act－hmwledge of

 $445,4+40,+55$ ；haeave，$i, f^{t} 5,+71$,
472：

Aortic arch－firmathun and diveave，i ， 451，47＝
Aortic sigmoid－smand due thension of $1,44^{\circ}$ ．
Aortic valves－dineme，i， $465,47 \mathrm{~T}, 472$ ，
Aperient medicines－abuse of，ii， 44^{2}
Aphrodisiacs and their uses，iii． 13.
Aphthre and its tieatment，$i, 250-252$ ； drugs used， $\mathrm{iif}_{1} 2,3,5$

Aponeurotic tendons and comections， 11，3ot， 323,335 ．
Apophyses of bone－formation， 3,178 ，
Apoplexy and its treatment，i， 4 f 2 ：orher calnes，i，220，222，308：heart affected by，i，4i7．
Appetite－divorders affecting，$i, 272,275$ ii，Q：drue improving，ii，45：Food imbucing．iii，94，140－142 ：poisoring sympt \quad ни，113，47．
Appliances－see Instrument：
Aqueductus sylvil of brain，$i_{1} 38_{4}$
Aqueous humour of eye－formation． 11，105，107：gratuma caluses，11， 123.
Arab horses and blood－
Ancient pedigree，＂familes＂，and hime tory，1，201，202：111，318，519．524， 525，528，530，531－535．
Belici on creation，and care by Arabians， iii， $518,533$.
Britinh thoroughbreds－origin and crossea，i，200， 203 ：iii， $53^{8,} 540,544$, 546，549，550．
Conformation，colour，and merits，i，fo， 201－205．
Crosmes－Cleveland tiays，i，124，128： hantern and saddele hornes，i， 138, 341．148，440：Perchersns，1， 205 ： Folates，1，If 3，1e5，10t
Decertion by breetera， $\mathrm{i}, 200,207,203$ ．
1 llustrations，i．294；i． 412 ；face furm． i， 40
Stud mapected Ly Lady Blunt at Hail， 1，202， 203.
Arachnold of brain and spine－formation， 1． 380,384
Arbor vitz of brain，is 385 ．
Arch of vertebræ－fracture， ii $_{+} 235$ ．
Arched back－appearance and defect， 1．57；feter cansing．it．98．
Arched crest－appearance，$i, 28$.
Arched face－afterance，$i_{4} 4$ ．
Arched neck－appearance，©c．i，45，47， 48.

Architecture of stables－（see stable）．
＂Ard Patrick＂－thoroughbred where i， i， 108.
Areca nut－dose，iii， 9.
Arm－（we Foreatm）．
Armadillo－hore－origin and history，iii， 447． 494
Armour carned ly wht wat－horsea，\＆c i，175： $\mathbf{1 1 1}, 542,542.545$
Armoured mammals－origin of mark fium，12．，497．449．
Army horses－－see titlé Coulry，Nili． tase llat
Arnica－medirinaluses，iii，i：doses，iii，
Aromatic spirit of ammonia－stmm－ dant 11－4．， 11,450 ：dose． 111, ？．
Arseniates of iron and copper medrmal 114en， $11,447,453.472 ; 111$ ， 1：doset， 113 ，
Arsenic－as calnstic，ii， 143,155 ；medi． cimal uses，ii， 453 ：iii，1， $2, \ldots$, for various diease， $1,500: 11,{ }^{14},{ }^{1} 48$ ，
421：pmoning liy，and anticuter， 448：i11．48－50：gantritis dut to，in 27.

Arsenious acid and oxide－medicinal uses，ii，453：11，1，2；drisen，iii，g．
Arteria innominata－formation，$\hat{i}_{,} 449$ ．
Arterial blood－composition，\＆c．，i， 489.
Arterial circle－＂circle of Willis＂，for－ mation， $14=1$
Arterial hemorrhage－canses， $\mathbb{E c}, \mathrm{i}$ ， 501， 202.
Arteries and veins－
A．organs of circulation－formation，\＆e．， 1，441－444．
Capiliaries and connections， $\mathbf{i}, 44^{\text {h }}$ ． Chiof arteries and veim and their dis． Cofhotion，i， $4+7$－45？
Cold and heat effect：，iii， 136 ．

Arteries and veins
A）organ of circulatron－Cornt． systemic arteres－dintribution and ране．，$i, 448$－453．
lileedme from－artect，\＆c，i．501－503： 11．400， $437-439$ see also title Bleedins or \mathbf{H} emerrhage
Dweases－ancurism，i，477，artertic and
 detectum，i． 4 te thromansin－－thate and of jugular vem，, $473+77$ sce also Bleoti Diseanc．

 ［1，wher，1．3：7．hanter，i1．176：eye， i．，tō：limis． 1,300, zu＇：liser，i，

For precial anten or vein see its title， as Iorta，Jumular Vell，\＆R．］
Arteritis of ateries－treatment，$i, 481$ ．
Arthritis or jaint－ill－furms of divease， $3 i$ 285－2t8：wipin of jomb divease，ii， 280：－ymptome of liser inflommation i， 300 ；of phenmonia．i， 7.
Arthroda joints－formion，ii，26z
Arthropedes－furms of paranites，si，rim
Articular angles of hind hmil， $\mathrm{i}, \varepsilon_{2}, \varepsilon_{4}$
Articular cartilage of knee，ii，ra7
Articular foramen in Lone structure，ii
Articular processes of vertebræ－ ligament atid mucle comectums， in，2ris．324．

Articulations vec Jomit，Juint diseasen， Swain－atucial joint，cee ut wathe
Artificial grasses hay made from，wi
Artificial insemination－process of
Artificial ventilation of stable：in 74－7n．
Artificiality in the wores，iii， 313
Artiodactyla or even－toed animal，iis， 475.477.
＂Artist＂－shentunt hunter illus．），ii，45t．
Arytenoid cartilages－formation，\＆c．，

Arytenold muscles－forms，发c，ii， $3: 7$ Arytenoideus muscle－fism，\＆c, ，$i i$ ， 317.

Asafæetida－nuedicmal mes，and dase，iii，
Ascarides－infenting imtevinke，ij， 370 171；drug devernsins，131，8
Ascites，abdominal－－c．unce，treatment，
Ascococcus firmation，Ne，i， 220 ．
Ascot Races－finmuct of，i，ini．
Aseptic probe ter wound－，i3， $4^{3} 4$
Aseptic treatment of whund． 11,408,
 dressing， 11,45
Ash in bualy and finct．iii， an $_{7}$ ，Bio．
Asia－hintory of hance of，111，531－535．

Asphalt fir conh－hombe flyurs，iii，33．4．
Asphyxia－causce，Ne．i，404， 507
Asses－ancient いとく，iii， 5 whanders，ii，
 aii， $47^{8}, 42,504,50+1,507$ ；tomath worme，ii，ren，＂－qume im，1，：55．
Assoctation a furm of parawtum，ii， rio．
Asternal ribs－Enrmation and ：explra－ tory 14e，i，＋1：
Asthma and it theatment，it， 11 ；drugs for in， $4^{\text {bis．}}, 47 \%$ II．

Astringents actug on twite hanc．，ii，

Athelstane and loore－hoceding， 11, ； 37.
Atheroma－symptoms，\＆$c, 1,47^{2}, 47$ ：
Atlas bone－from，\＆c．，ii，180，נ居， 21
Atlo－axoid articulation furm，it，is．
Atmosphere－see Ais

 155：of wder， 11,1,
Atropia and atropine malloimil men
Attendants in vick hurechーdutme \＆c 111，․ 143， 154.
Attitude a sact of divease，， 11,145
Auctioneer warsints ，mid the sale of haster， $111,415.41$

Auditory nerves－furmatum，dt， 1
 case，1，4＇4，Faliture，1，470，canchure，

Auriculo－ventricular valves

Auscultationderdetection of limenclitio． 11． 2 ；compention uf hurkn，11，t，beart
 new，18，56．velems，11， 14
Axe，Prof．－wh hamw glotumat．

Axillary artery－formation，忍r．，i，\＆
Axillary nerve－firmation，$i, 405$
Axillary region namelen and nerves chmerted witi， $1,7,72,327$.
Axis or dentata bune anci juns
以＂tom，
Ayrshire Clydesdales－ngin，\＆c．，i，
Azoturia－alalymin of urine amil nuinture
 salts usen，mi，4；we of term，11，＝u．

B

Bacilli－Btacrustion of i，zef，of atmerion，

 lymphanglar，い．so bo．fowl，has，
 Wpheheris，anl womme，i，22．N1，＋ 4t $\because:$ tuberallanis．II

Back－breeding intitnco ant cimins
 $497,444.513$
Back－raking－direction，ni，if．

Backing of horses－exumbmation for，

 afticterl liy，anol rlamicatann of ins．

Bad doers－weak 1ikertum，11．zנu
Bad habits－as stable vice in，ii， $3+1-2 \neq 3$ ．

Baker＇s horses lnalle t＂＂～ume＂，i，zoo．
Bakewell era of heavy hroe hrecding．
Ball－and－socket joints－form，\＆．c．，is． 2 C 2

Balling＂iron＂and＂gun＂for giving phyc，14， 20
Balls of physic－faith in，ii．44z：for
 me．il． $445,4 t^{\text {n }}:$ fteparathon and admimutraluon，is， $4+4-44^{5}$ ： 11 ．to
 areme m， 11,45
Balsams of Peru and Tolu－medicinal
Balsams of sulphur，\＆c，－nses，ii，＋74
Bamboo ss twher，in，$=6$ ．

Bandages

Abcilents－maelit articlen in，in 43,430 ．
Applation and preparamm，iii，36－38．
lime disessei treatment，1i， $20{ }^{\circ}, 203,218$
Fractures－fore－lez，in，： $11-2,33$ ，humerns i1，244，245；J．4w，13，242．linces，is 247．423：mesmajal bnater，b， 24 phatern，if，250．rallan，1i， 247 ．
Harser tearme－eninection，in， 34 r．
Hanters and mudly lesm，in，13＂， 310
Sick horses wanth．Min，itz．
Sprams，wounth，\＆，ii，224，20t，zg6．

$$
7+38 b \cdot 418
$$

［See also Pombticen．］
Barbary horses－rigigin and history of the＂bant＂，131，525，528，531－535． lirituh thameblarede cromes，de iis， $538,539,544,545,54^{\prime}, 55 \%$
Bare patches of km－furmation
Bar－iron－preparet？fir theming，iii． 445 ．
Barley as food－compusitsul and pre
 liken，ni，
＂Barley Harvest＂famuly of Cleveland いが，1，に
Barley straw－a find，iin，1rき；for bed
Barley－water－as antin，ite，iii， 45
Barrenness－＇hee－terblity
Bars of foot－（in） ．in，and sutting of
 thre，ini， $\mathrm{t}^{2} 4$
Bars of jaw－atase lw lan aine，1， 29

Barton－Fillette clipming－mathas，ini．

Basilar process of woipme lunze，in，\quad \＆
Bastard strangles in millow，is， 4 ．

 l．and li．1s＝

Bean－straw a，find，in．
Bearing－rein
lae tw, i. all it, in.

Bed－sores－－presentmon，ii，wo
Bees lummine by umment，sec．if． 414
Bees＇－wax fratur！ルハー，ii，z4ァ．
Beetroot－a inalid diet，in，-7
Belgic stallions ineetine fom，i， 178 ，

 f．in wher cline Mi．i．No

Belly－isec title Abstomen
Benzolc acid－medromalnse，iii，z, o．
Benzoin－medicinal uce，ii， 4 fo， 471.
Blcarbonate－medicinal wes of potash 11． $44^{8}, 472 ;$ Fintanilm，iii，z－dones， iii， $9 ;$ of suda，11， $442,450,472$ sudiam，ii．，a－山м⿰亻
Biceps femoris muscle inrm，心．ij， 3．4：tracture and dialimation effect， ii． $2+5$ ． 351
Biceps of man－blew．l，math morle lirn1，11， 329.
Bichloride of mercury－me？，ii， $4^{\text {E8．}}$
Bictpital groove－firm，Kl，ii，rg4 145，220．Ypath etfent，it．203．
Bicusprd valve of heent，：， 4 is

Bile and bile－ducts－drong afirding．
 tibe wes， $1,240,24,24^{2}$ ；liver din andern the twe 1，302，304，305． 300 307：｜hatonste minneme i，313， 314 erbethom，ansing comstipatim， $1,284$. whe aftected by，י，it3．
Bilious temperament－dicease dsposi tivn，1， 2 te
Biniodide of mercury－uses，ij，$\{2:$
Bioplasm of parasites， i ，ff．
Birthdays－nge and teeth tent，iii， 303.
Births－see Foak，Parturition
Bishoping wf teeth，iii， 343

Bistoury fir lithotony，\＆ $\mathrm{c}, \mathrm{i}, \mathrm{j}^{t} 2 \mathrm{a}, 3^{80}$ ．
Bites－1，hior due tit，in，it
Biting－vice ami warsuly，in， 424.
Bits－care and kinde ，if． $111,357-259$ ：dist ease andel trombleshlue 41, i，151， 152,

 trammer．211．301．an－humters，in． ＊

Bitter tonics fir senmula，n，quri， 47 s ．
Black antimony and uphm－medi

Black horses－c．aly ty ber and omgin，i
Blackleg disease－innorgatinn，jii， 151
Black pepper－nocitimal מ৯c，iis，2． 0

Black Vulcan＂frice mal hamomr， 1

Bladder

Contormithos，berve ral urmary mea， female ii，7．4．7n

bivardec of and dienthe hamber－

 （14．1．1．ミ4．：retenton of hrime：1，252：

 cembales，11，re：4able in the Whater c th．at tale

Bladders in tin，is， $1:-$

Blade－bone－ace．S（aptula）

Blanket weed in uater，ni， $1=7$ ．
Blastodermic membrane in kuculinu

Bleeders－on shm，is． $15{ }^{\circ} \mathrm{c}, 15$

Bleeding or Hemorrhage

Accidents and first and，it $+37-+30$
Floody ntrac and it a causer，i，34－． 348.
Oruge fir，12， $44^{9}, 454,450,42,463$, $4^{h} 4,4 \ln _{8}, 1111,6,7,8,14$
Due 1 －，，moplew， 1.412 ：branamd frac－ ture，1， 407 ：in． 234 dyentery，i，z90； face umber and frature， 11,239 ： liver and luent rupture，$i, 200,310$ ，
 53．－hill theellug，ii， 15% 159．warts， 11，154．ǐ9．weat：band－vessels，\＆c． 1，5ut，まu：

Luncuandreapirntory alam，i，501－503： 11， 1 c
 183.

I＇revention of death be－structure of arteries and vems．\＆\＆，1，44 i． 445
Woumite and thear treatment．is，foz， 408－450．
［hee ako tate Bhot，lhoot lettime
Blepharitis ciliaris of eychoi，i\＆，It $\$$ ．
Blepharophimosis of the ey eldan，i，：14．

Blindness

Cance－bonctamour，i．fry：Laturact． 11．122：eyetecth，i ，332：111t 3000 ． 4H4：leal funamme，iii，5s：cutic nerve，※心．Ii，117，122，123
Merection and torts，ii，122，123：ear mavements， 1,43
Mom－lindnes， 11,1 ，u－113：heraduy of ii， $1 \geq 1$ ．
Pusubility of reatoraturn of sight，ii， 121
Comemberes and warranty，in，s．
Blistering－doctions ank jupherations，
 temotomr，114， 570 thy thal manth．

 （1）， 11 ．
Blisters－atme anthrox and domine
 skm，i ， 247 ． $\mathrm{is}, 137$.
Blood
Aur banren in，due to reapiratina，is 4いいまり。
Finge murnbment，ii，1－Fi，177， 200
Carculatan beart and land－verech＇

 and belle，hant－vewel

 440－45．17）．We wister lifeed－

 1．1t1い1． 1.54

 17．＋，－范 7.

Re－giratury proces cheet，i，b 4．5－4日。
Shim influetree，and diseates doe tor，it， 130．131， $13 \mathrm{~m}, 127$.
Thee efle titles Blewding of Hem mhage，

Blood－clot－beslmi nunnds，ii，wos．
Blood diseases and disorders

 312，โymphanatha， 11023 ，skin affec．
 tetanms eflects． $1,40$.

Blood diseases and disorders－ICont． Deseribution－disordered，1i，457，458．
Evercise and the cancen of diseave，i， 216 ． Hamo－glabuman－analyis，Ne．ii，26i－ 20：treatment，\＆c．，ii，29－3r：iracture confuntow，w，$\because 37$ ．
Purpura hamorthagica，11，24，25，r45： bleeding more a feature，1， 503
Pus due to brain abscess，is tog．
［Sce alno Blood－poisoning，Pyannia．］
Blood－fibrine powders for sick harses，ili，
Blood－letting－forapnplexy，i，41z；brain and staggern，$i, 27 \mathrm{r}, 407$ ；éntertis， 1 ， 294，exhaunted horves，ii，t：eve－sem， ii，15：lammitia，in，337：plethora，
 sale firt i， 433 ，thromboss due 10,1 ， 473．474，475．
Blood－poisoning－
Causes and effect－bone diseases，ii， 241 ； cansration，ini，17f：cusermag dimeare． in， 53 ，fiod，ilf，101，Mremion of rectum，i ，zoz：joim dinease，i ， 284 ； jugular vein atmeemes，i，477．Kadney dheme，$i, 34$ s：parturient fever，ii， 97：pleuriny and pacumonia， $1,7,14$ ． Skis erupthms，ii， $142.147:$ stranglen， ii， 41 ，udder inthimmation， 12,47 ．
 417
Forms of repuctemia or blood－pitoming i， $7^{\mathrm{S}} \mathrm{t}, \mathrm{f}^{2} \mathrm{z}$ ．
Quibile tare，ii， 451
Blood－spots ral skin，ii，24，25，155，555，
Blood－stained discharges canser： \＆… of fanll ，at wouth，11，213：hout
 ii， 8 ：skin，11， 25.
Blood tonics－action，\＆c．，ii，447，f4＊＊
Blood－vessels
Absornthon of forel－115en，1，4： B．2
As neans of circhlation－utw ture，or
 their disuhwtom，1，447－4た3
Causen or effect of broken remseln anll rulture，i，34？，347，412，420；crat kend
 ii，228，233， 555,202 ：Wumblh，ii， 44 ， 418
1rog．acting upar，in，454，457，4，2－464．
Nervmis control uf．i，374．
Faranitic influmber，i，ar s：ia， 174
Structure－in hadder，i．z3T：lanes，in 175，177，194，200，lirith and whue，

Weaknen caning hemunhoge，i， 501
Bloody urine－camee omel trentment，is $352,34^{\circ}, 344,31 \%, 40,342,7 E 0,3=6 ;$ i1， 475 ：1ii， 60.
Blowing－tather ancl dinease sponptoms
Blows ar cause of elmeace，i，zan
Blue－green algæ in watu，14，127， 126 ．
Blueness of membrane－catuse，\＆\＆，ii．
Blue pill－medicimal wem，ii，， 2 ，
Bluestone－methe inal unca，nif，
Bluetong－a form wh hrac－achness，ii， 55 ．
Board of Agriculture－epinctic lym－ phangitin，ii．74． 0 ．5．
Boats for horse－tran－it，iii， 4 itz．
Body－conformation and defects，i，co，os， gent，
 Qq：mitrstan ant combtution．1ii． 87，water constuments，in，119， 120 ， 124.

Bog－spavin and in weatment，ii，216， 200 291；wher withencer，ii， 278 ， 209 ． 357． 35 S：unsommetues and warranty in， $384,420,4=1$.
Bolled barley－prefuration，iii， 23.
Boiled roots as invalid die：t，iin， 27 ．
Boller－stable fittings， $\operatorname{iin}, 322,323,332$ ， $33+.337$.
Bolls on skin，ii，150， 151 ．
Bolting of food－rats preparation，iii．
Bolting vice－wamaity，iii，＋2＋．
Bolus for physic bails，1i，444．131， 18.
Bone－ash in the body，iii， 87 ．

Bones

Aral，merit Co 2 ，202， 203 ．
Blood circhlaton meam，ii，176， 177.
Clasification and mumber in a horse，ii， 177．178．
Conposition and thowth of lone，ii， 175 175．178，203；luefine finth，14． 255.

Inseaser－food am！water influence，ini， 103． 123.124 ，inme lincave wagin，in， 280， 231 ：met．acarpal fucromtuls on sore hims，נi，214，220；necrum and carime ii，2s：214：moteo－pormis bis
 or in bammatur，permatitin，ii，203－ 212：rimg－bone and shatur，ii，205－206 ヶpavin，6，2：6－2：8．

 ii，21：tubercuboin， 11, et．
Wodel of hoof and limb thones， $\mathrm{ii}_{2} 4 \mathrm{~g}$ ．
Muscles and tendim athachment，$i, 33-$ 35：11， 300.
Whl and exen－tned animals，iii， 47 万． 4777°
I＇ho－phorns uses，6， $4+0$ ．
Protectan of bram and spine from injury， i， 370,380
Structure－anlever，i，33－35：af fore－lec． i．17，20：11，ro2－197，hand lea，i，23： ii 203－205：Julsis，ni Juz：जheletull

 180：upecial feiture if horee entro ture iii， 4 ？5－wo：durax of thent bones，ii．1．f－tersuman or breat Lume，it，rue，Blow alm costat carti－
 and fartionbar sertethee，13，170－1．
foee alon titee Dhalocatums，Framures．

Bone－spavin－limm and treatmon，ii，
 iii． $25_{5}, 4$－
Bony growths－causing diesase，i，orp，

月lиencer，14，124．
Boots－for c，mber，m，zaz；befective artim

＂Border Lass＂－fraturel spamat bnnes，13． 250 ．
Boric or boracic acid melabtic usc－
 duser，ii， 4.
Bot－fly－isfectima atoma h，in．shion 17n：
 4 語。
Bottles used in giving mellicine，int，－1 Bourgelat＇s whint for fruturen，in，-47 ． Bowed knees and legs－cance，mus－ cles，心．e alle terl，1，74，80：16， 203
Bowed tendon－defect and moround
Bowels－luee titlea linturtinas，Intlamma toon，Dhatrutina，Kupture
Boxes－sce Loose Roves：
＂Bozra＂－Arab mare tilust），1， 204
Brachial artery and veins－finmation， 1，447，449．uperation，ini，175．
Brachial plexus of nerves－tormation．
Bracken for bedding，isi， 357.
Brackets for harness rym，in． 332.
Brain
Blood supply，i， 3^{380} ．
Connectron wh thane，ii， 1 \＆．
Disearch－abucess and commurse i， 428.
 appplevy． $1,+12$ ．wetisifn and men－ mgetar，1，405－4．7．whllar premure

 jugular semb chamion chact．i，

 thackenng of memberane ，1，4：7
Druse affectung， $\mathrm{ii}, 4+3,4+3,1,2$,
Parasites，de，infertmg，14， $807,174,1750$ Protection or ant mjury－lume formata m，

 380：arteries，i，4iT， $45 \therefore$ ，apmanes．
 37, f（2t11，i11． 257, ，angha， $1.23 x$
$300 ;$ weight，i ，
Sital spot－＂nepong lise thine，i，fit
［See alina Cerebram，Cerebelhum，Cramb เ！n！］
Bran－ar，fud，compuntion，起，iai，6or

Bran disease－tratment，ii，137， 152.
Bran mashes－prequation，do．，its．an
Bran poultice－puqutration，$\alpha \mathrm{C}, 111,29$
Brandy as a nimutamp，\＆，2w，11，4
Brass fittings in 4.171 es， 14, ， 24

Breakdown－hlue th tracture， 11,251 ，

Breaking－in－ت七e liaininz
Breast and breast－bolle vermum contrmathon and tieterta， 1,10 ， 1 ， commerins，ii，ar， 327 \＆ 40
 t！い，11．1 11．．．．．
Breast collar fur we fombers，ii，whe
Breast presentation in Imturtion，in，
Breathing we nt！－V，piratiml is

Breech orn
Breeching－strap－madimi
Breeding－
Aimband zencr．hhapmireamentwif a thel．
 i $11,211-31$

Culnur and than marling－－minfences， 111，40：＋＋ 13.
Creation if the lasere and coty histury in，51\％，5－2，524，525，＝－9，536．
Crasting－sond intlatncen if．iii， 342.

Breeding－$C \mathrm{Cmt}$
Lvilution and other influences，iii， 286 ． $\therefore 8$.
Food and water－huring pregnancy，bii， 208－210，215－217，2fi5．2th：after burth，111，227，228，285：band－rearing and weaning of fisth，use of cow＇s milk，iii，222－220．
Head formatuon indicating origin， i ，zbr
Hetizht lmatestinns，$i, 94,45$.

Xathry of mares and service of sires，iii 13， 5 5，210，24－2：4，2r2，247， 208 artificial imecmana（1）．9），in，232－234．
＂rymus uf getherathon－see Reproduc （いい）
Fomatromamited from parento，iiii， 243 244， 537.
K゙ute if urowth uf horse，iii，23ni－298 before－lirth，ini，288－295；after birhh 11i．294－24
Shee alol titler Fivals，Mares，Stalliome Heredtary lhe．be⿱，Mintory of the Howe，lawn，I＇mortition and lreg mancy，Remoductans．Sewal Inter coluret，betility：for spectal breed see tubs Arilo．Clydeadias．\＆e．］
Brewers＇grains an foud，iii， 80,107
Brewers＇horses futty livers of，i， 308
Bricks for bealiles，in． $60,70,325.326$
Bridles－kind，and taces，ni，353． 350 metheme of ctufurmation，$i_{1}+3 .+5$ prill evil due to， $11,43 a, 432$
Bridoon bits－mees，i，151，152，iii． 313 ．
Brisket－strmetme，i， 6.
British horses－histury，iii， 530,535 5 so．Sice alno 1 tele 1 lwiouglibrets R－nghい，－utill
Brittle bones－friture luability，ii， 223 ，
Brittle hoofs－arnce，iii， 304.43 litter alleeting，iii， 39 ：blelly feet．

Broken bones，\＆e－seetitles Fretures， haces，Neek，spine，for－pectal bone

Broken wind and it tratment，ii． 12 14：ini，U5：anthem thatincthon，ii，IT chagh dae to，it 10,472 ：dietary
 413．472：1ii， 15
Bromides uf futwinm．wrdum，and ammanam－Medn mal ases， ii, t 48 ． 477．1：i， $2:$ dinec，ini．
Bromine，salts of action（an nervins

Bronchial affections－bleeding luna
 and nomes，11，1，111．3：eatarrh tent and Irnes，12．：9，thu ini， 3, chands
 lathon，bhumbitio．
Bronchial arteries－fomm，\＆c，$i_{,}+52$,
Bronchial plexus and nerve comections，
Bronchial tubes disurder，ii， t, j ，
Bronchioles bwnutimandmen，i， 4 ．6．
Bronchitis ．mel its treatment，ii． $1-4$
 1．7，30，11：0．tigh dac ta，is，18：1ii，

Broom tops fir ther miflumation，$i, z 08$.
Brown water in samd－comporition，

Bruit of heant due th disease，$i_{1} 400$.

Brunner，glands of indisevtion，$i_{1}, 245$
Brusbes tor ¿rmomme， $11,134,135$
Brushing as aceatove action．in， 306 examinatim for soundmers，效，mi 374．375． 380
Bubonocele－symptoms，\＆c．，i，zs 8.
Buccal glands－formation，i， 230 ．
Buccal nerve－fumatim，\＆心．i， 393
Buccinator muscle form，Nc，ti， ． 309
Buffed clot of blomel，i，ats
Bulb．The－of nerwhe syntem，deserip．
Bulb，The ufpems，vermelace，de．．ii，7o
Bulla on skin，in，1：7，1qu
Bullous inflammation of kin， $1 i, 1+4$
Bump of locality in humes－stren； and falure，it，+ 做， 4
Burgundy pitch flit fractured jaw，ii
Burnett＇s fluid－unc，anel nature off ； 50：11，44\％＋ 88.
Burning the bars－cruelty，l．ew，ithe remitr． 1,254 ．
Burns and scalds－rlige fir，iii．3．5 yelids atfocterl hy，II，fre，ita．
Burnt alum and ith wees，ii，42， 45°
Burnt hay－effects af，211，21\％，352， 353 ．
Burrowing mite cannug vin dinease， \＆ C ，ii， 14,267
＂Bury Victor Chief＂－1，ireeding and price，※e．，1，185．113，24t
Butter－antilute uncs，：in，is．
Butter of antimony pmaning by．iis
Buttock－ionfirm nion sul Ionzth mea－ virements from，1．a2，br，y5． 0

Button－hole stitch for whomds，ii．\＆m
Buying of horses gratrater if whus bece，Ne．bee utlen Examination．
＂Byerley Turk＂liantry and devend ant，i, ：1ı：jii， 547

C

Cabbage componitim，III，So．
Cab－horses－fuedins，in，o：
Cabs Roman origin anf ハッハ，in，＝
Cæcunl of meterne，i． 237 ，woms in，ii．
Cæliac axis of mota， $\mathrm{i}, 422$
Cake food dinewe dur（．．．in．I
Calabar bean－methintul nsec． 1 i .432
Calcaneo－cuboid ligament

Calcaneum or calcis－bome formation．
 mumale combeentum，ii．it．
Calcareous degeneration of heart
 1hmuglıin，11， 358.
Calcareous deposits－in brains ansing

Calcic carbonate in mine，i． 353.354
Calcis bone－sec（alcabemon

 kilners，i，son， 371 bewanre sta 83：salivary dhets，1，2t｜z－265：urine indications．i，34．318，351， 353 ； vescal calenlas endan ame com－

 title stunce in the bladeler．）

Calf－knees－cance，mid recusery，i．it II， 303.
Calkins－defectise action due to，ii， 347. 1in， 45 ；forms and urer，if，fot in， 44.

Callosities－orizin and furm，iii，500－508； un inses and zublas， $1 i, ~+46$.
Callous formations－fircured pantern， 13，250：junt ambluylucis，if，283： speedy cutting，ii，4－1：mleers，ii， $+2 n, 427$
Calomel－medicimal wes，ii， 488 ；iii． 3 ：
Calumba－mealicinal isesa，ii，4t． 466 ： done， 111 ，
Camphor－medicimol uses，ii，$f=4$ ，$q^{\text {no }}$ ， 470，471，472，11，3：chase，111， 0.
Camphorated oil－meduinaluses． 11.4 an Canadian origin uf Morgan lurses， 1,

Canaliculi in bone strmetme，ii， $12 \boldsymbol{1}, 172$.
Canals m eye stracture，ii，w，
Cancellated tissue in bunte，ni，19xi， 177.
Cancer－as a liveace uf horse，ir．156： fracture calling，ii，224，peninglatis， ii．ε_{3} ．
Canine teeth－formuti，m，i，ri， 230 ii，
Caninus muscle－form，\＆c．ii，308． 309. Canker of feet ．nnl its trentment，ii， $381-$ 383 ，lrugs，©．e．，fir，11，45t；in， $2:$ horn ，中ppearathe，ii，133：unsound． ness，iii． 382
Canon and canon－bone metacarpuッ－ combermatines ond defecth， $\mathrm{i}, 20,75-$ $75.87,88,10: 311,107: 111,477$ ，diso tanes of thone－，11，200．210， 113 ：di5－ placement，1， 222 ；fellink junt for－ indtum，ii．272， 27 i：flactures，i1， 223 ， zat，22y．z30；grometh lufore birth． 19i．203：museles abel merrums，i，21； ii， $30,3: 32,34: 34,3+5:$ sumdnens exammann，16，376，377，span of chach hyamens，it， 295
Canter－actinn and forms，iii．3．55－108： jumpiner frum．iii，log．
Cantharides－dinemsen dine to mee，ise i， 34＂， $3+7$ ，350：14，+75 ：mednemal wes
 iny ly，in，co．
Cantbus if eye－firm，ii，tot
Capillaries－a¢ orgatr of circulation，i ．

Capillary bemorrhage duc to weak．
Capped elb 14：11，35 ，in．it：：111mumbers and

Capped hock and is treatment，ii，1．2－

Capped knee and trenment，ii．קini－zia． Capsicunt－medrcinal wes，ii，qu2：aluses，

Capsular cataract fonmation，ii．3－0
Capsular ligaments－junt formathon， 21，274，eltw，telloch．cornmet，and
 i．$=74-273$ ：interspinn ii，2ris：jum ：nul temprol twine，n，
 ii，en7；theumatic effecte， $11_{4}=80^{\circ}$ ： thanher jomin，in， 270
Capsules－aftianeya，i，334．335：ruthre
Caput magnum，banum，and medium of tricel－mancle，ii．sio
Caraway seeds－luse，ni． 9
Carbohydrates－clawed a，fomils，i，242 constivent，\＆\＆，in fisud，in， 8 \＆ 89 ，

Carbolic acid－anticentic and medicimal Hes，ii． 470.4 4． 4 iii，z． 0,155 for duns，$i, 202:$ inhalathem of，i1，＋75 prisunimg effect－，ii， $1=0,130: 1 i i,+7$ ， 43.

Carboluria－causes，\＆．c．，of，ii， 420 ．
Carbon dioxide－in air，nii，78：lung dis charge and actinn of Lloud，, 437 448,494 ；respiratury usta，\＆c．， $482,483,480,400,401$ ；ventilation effects，i， 495.
Carbonate（medicinal ares of ammoni um and ammonta，11， 459 ：114．3．of iron， $11,447,450 ;$ of linle， $11,450,457$ potath，ii， 44^{8} ；hod．in， 449 ：1ii， 61 rinc，ii， 455 ；doses，iii，or
Carbonate of lime in stone of bladder， 1， 355
Carbonic acid－see Carbon Iboxider
Carbuncles－antiseptic，for，i1， 421 ．
Carcasses of animals died of anthrax－ destruction，ii． 43 ．
Cardanoms－uses amd dose，ii， 457 ：in．
Cardboard for fracture support， 11,261
Cardiac region of stomach，i，z3\＆heart disease detection，i， 45^{8} ， $4^{\text {the }}$ ．far alysis due us digitalis，14， $4^{\text {tit．}}$
Carditis－a furm of beart dinease，i， 454
Caries of bone－causes．N．．ii，212－2r4 390：thberculusis ciassed as，ni， 51 ．
Cariniform cartilage of breast－bome，ii， 190.

Carminatives－medicinal uses， 31,40 i11， 13 －
Carotid arteries of neck，i，13，3，, 45 I moscle veparatima jugular vein，ii， 321 ：pulse near，in， 240.
Carotid plexuses－furmation，$i, 3,6$ ．
Carpal articulation－form，\＆c．，ii，271．
Carpo＝metacarpal articulation－ furm，心c，11，27．
Carpus－formation，\＆c．，ii，196，271，272； ini， 436 ．（See also Knee．）
Carriage horses－breeding for，iii，sof breeds uned，1， $125,120,128,132,208$ ， 209，210；feeding，iii，23：physic，ii， 445．See alwo Harness Hurses
Carriage of a horse－head inflnencen $1,43.46$ ；neck affecting． $1,43-51$ ． slow and harnesm horses，111，312，3， 3 － （See alio tilles Action，Defectine Actbul．）
Carriage of horses－（see Transil）．
Carriages－intrudinction and uses，iii，52J． $528,542,543$
Carriage－washing stand－structure， iii， 335.
Carron oil and its weゼs，iai，3，5．
Carrots as food，iii，Sq，01，90．115． 351 spectal diet，in，26，27．211． 463
Cart horses－sec Drawhe Hormes
Cartilages－lone growth，ii， 178 ；chest， i．63，64：ear，1，ro：ii，310，3r1：foot， iii，436；fure－limb，ii．142，194，198 hind－limb，ii，zoz：jounl structure and diseases，ii， $262,280,28 \mathrm{I}, 286$ loose cartilares causing dinease，ii．
 quittor treatment， $\mathrm{ii}_{5} .380$ ，miss and sternum，ii，rgo，tqr：side bremes due to nssification，ii， 387 ；tithe－juint，ii， 275；trachea，i， 485 ；vom＇r bone，ii， 188.

Cartilaginous quittor－form，\＆c．，ii， 379
Carunculæ myrtiformes af hymen， 11， 75.
Cascarilla bark－115es，ii， 466
Caseous degeneration a form of thber－ culosla，11， 50.
Casting－for operations，methrid and hobbles，iii， 150,100, 16iz．abe，tion， 172，177，182：frattures，ii，225．220 256,26 ， 202 ：injuries and firat aid， ii， 424,437
Castor－oil－uses and dose，ii，444；iii， 9.
Castors on fore－Jimb，i，iq．

Castration operation

Advantages，necessity，and age，iii， 7 r 172

Castration operation－Cont．）
（Casting ind pretimonary preparations，
Casting and preimanary preparations， 111，172，173． 170.
Dhatacen following，and reduction of latuility to disease， $10,60,80,81$.
Herma treatment， $1,318,319,320,323$.
Methods and instrmments－by actual Calutery，14，160，172－174，by caustic clamph－E゙uvered and nimcovered operations，i，321．323；iii，175，176： ly standing uperatiom，111，170，177： by tur－ios and ligature，isi，r74， 175.
 of uperations，table，dic．，111， $1801-158$.
Casts un urme，i， 343
Catalepsy amd it trealment，i， 410 ，
Cataplasms－use，हer．，i，474．in， 30
Cataract－forms，callsen，and detection， i1，108，119－122，123：14，370；heredi－ tary＇，11，2IS：－pot minhthen fir，11， 110；unsonndiess and warlanty， 11 ， 302： $111,366,370,421$.
Catarroal affections－climate effect，i， 222；conmmon farm of cold，$i_{4} 497$ ： drugs，\＆e．，used，w， $448,454,4+8$, 485 ： 111,3 ，B：mfluenza dintmothon， 11，33，32；Hasal catarth $1,400-501$ pmemmona complication，ii， 8 ；thin infammation，ii， $145-148$ ；strangles a form of catarrb， $11,30.40$
Catechau－medirinal uses， $11,455:$ iii， 3 dones，i11， 17.
Catgut for navel－\tring ii，288；for wond statchiug．ii， 4 It， 415,410
Catheter－－operation in pashing．ij， 7^{5} ， 72 ： 111，I77－180：the 111 virlous dibensen． i， 352,357 ．ii， $20,30,250$.
Cattle－foods and digestion，iii， $88,8 Q$ ，un， 97：glomelers and Jymphangitis，
 104．105．10ri；silage fir，111，wo． 117. water for，iin， $120,130$.
Cattle plague－cative，发c，i， 223 ．
Caudal branches of nerves from spine，i ， 38.
Cauliflower growths in valvitar dis． ease， $1,464$.
Causes of disease－clasification，\＆c． 1,214 ；the action of barteria，i ，225－ disposios sfrevitic．\＆c
Caustic alkalles prisoming and anti． dutes，iis．45．48．52．
Caustic clamps for cantration， $3 i=175$, 170．111 standing，in，a fis
Caustics－acian，Ex．used．i1．433． 468. 48_{4} ：iii，13，for fuittar and cantier． ii． 280,383 ：fir warts，is， 155 ：lip trouliles due to，$i, z 4$ ．
Cautery－application and mes，iii，tern， iñ：for castration，in，172－174： fistulous withers，is， 434 ，hemanhoge， i，503：quittor，ii， 380 ：एenn amputa tion，i1． 85 ；poll evil，11，431：ring－ hone，ii，co6；sand crack，ii， 367 ： nlcers，14．427
Cavalry－ancient histury and usen．ili， $522,531,523,524,525,530,532$ liritiah early history，iii． 535,53 ， 527． $54^{2}, 545$
Caveat emptor－sale of hories and
Cavernous plexuses formation， $1,37^{3}$
Cavesson for hunters，ju， 307.
Cavity of the belly－minscles and form of ii， $338,34 \mathrm{t}$ ．
Ceilings－stable structure，i1i，320，323．
Cells－bacteria description，i，226：in im－ pregnation．RC．111，243，240．250． 257：struchare uf hladder， \mathbf{i} ， 337. kudneys， i ， 3 又土，liver aud f．otty liver． i， $239,308,300$ saliva，$i, 232$ ，wino． ＂1tle
Cellulitis－canmes，ii，зriz， 387,307,
Cellulose in fuou，iii，ofi，97，48，roo．
Cement for utable walls and Hloors，iii， 70 ， 325，3206，327．334．

Cementum of teeth，iii， 404
Centaurs－origin of half－horee half－man， iii． 521
Centenarius－horse termed，mi， 527.
Central canal if tyimal cord，i．${ }^{3} 82$
Centre of gravity in at hures，i， $28-3 /$ iii， 1 22－144．
Cephalic artery－firmativa，i．$+40.43^{3}$
Cercaria and ：nternate generatuon．\＆o 111，2tio， 45
Cereals－foud properkich abll anals wis，i 24 ，243，111， 345
Cerebellum dinea－e camsing giddine ※c，i，405：pranection from impry i． 370, Go．4ruture amd werven， 1

Cerebral arteries forming mincrnal c．ли 11d．i， 451.
Cerebral disorders－see title liran blseast
Cerebral nerves－orignin and names，
Cerebritis and it treatment，$i, 405-407$
Cerebro－spinal meningitis－furm， Nc．，1，423－425
Cerebro－spinal system and nerves －bee title N゙ervoms No：tem
Cerebrum fommatimand mersen，i ， 38 s－
 30 sce aso Firam．
Certificates of soundness ．．nee War ranty
Cervical crest and groove of neck．i，
Cervical nerves－structure， $\mathbb{K}, ~ i, 375$. 76,38 ， 397.
Cervical panniculus muscle－form．
Cervical trapezius muscle－fornı，心L
Cervical vertebræ－firmation，ii． 179 ， fer：frathrex，ii，235：lisament and muscle commewions，11，－h5，31 S－320 32下，322：［m］evil affecture，ii．， 430 ．
Cervico－auricularis muscles－forms of， $11,312$.
Cess－pools im stable drainage，1ї， 320,329 Cestodes causing laver line ackes， $1,313$.
Chaff as food－amomnt andmistures，iii， 13，107，i12．344－340． 353
Chain for twing of hornce in ut．alle，iif
Chain snaffe－tyme af，iii，358，359．
Chalk medirinal whe4，if， 457 ；i1i， 3 ：il water，14，122，131．
Chamois leather as a plater．in， 4
Chanomile medicimal 1 与є́a，ii， 400,474
Channel of the nexk，i_{*} ．
Channels in shble dramage，ini， 328.
Chapman＇s horse－wame fir frick－horse
Chapped heels－applications for，ii， 455 111， 4.
Chapped skin－c．unses，ii， 127.
Character in brewding，in，2コ2，213．
Charcoal as an antidtte．ini， 38
Chargers－arigim of hornes，ni，531，547，

Chariot－racing inawquraton and his

Chariots for war，N．－Ine if Jmares ili， $517,514,521,521,527,524,523$

Charlier system of sheximg tor speelly cuttera，in， $4^{(0)}, 40$
＂Cheadle Jumbo＂－meavurememts．
Check ligament of G ． 1 mon， 1,75 ；muscles nhserthon，ii，323，332：pronin，se ii，294，34f；wanmones examinatmon ii．， 3 en
Cheek and cheek－bone－fmmatma， 11， 111,165 ithtula， 13, a 29 ；mancles ii， 308 ．

Chemical canses of disease．i，220
Chemical changes the t＂Dacteria， i ，
Chemical composition and stimuli of or thorax
Chest or thorax
lionen and comformation，$i, ~ z, ~ 14, ~ 62-64 ~$

 64－tin：Jrarruw chent efferts，if， $4 \infty 0$ タココ，11，1リ」
 10，17：lemmтh．me，1，502：ii， 10 Fumeftued ，t parfornted chest，it，xo， 255：taleceralims，in， 51 ：worms，ii， 17t．Sive alvo namen isf dimeakes，at Asthma，Jivincluta，de．
Examination fot beart alinease，\＆e，i ， 4io，tu6．
Muscles connected willa，ii， $327,327,3370$
Ponlabing，\＆c．，in，z2， 3,0
Reggiracory functioms，\＆ir．i，401－404： Preabing eapacity aftected by con－ formation，$i, 30$, tip
Chest－founder－a form of navicular dis ease， 11.380
Chestnut colouring of Irabs $^{2} ; 205$. of suffiolk hurses，$i, 345,106,199$.
Chestnut hunter＂．Iutint＂illust．，ii 450.

Chestnuts on limbu－formatimandurigin． $\mathrm{i}_{+} 10: \mathrm{ii}_{\mathrm{F}}, 137: 111,500-\mathrm{g}_{15}^{5}$ ；an dizit remtelll，ハ！，4－
Chewing uf food－ubserwation Con, i． 233 ． $24^{+3}, 247$ ．
Chiasma uf upter nerve，i， 302
Chilled water for ack hores，iii． 142.
Chills－（lrugs used，iii， 3 （see also Cold
Chin－cunfurmation，i，12：foll and first aid drections， $\mathrm{ii}_{1}+3$ 3
Chin groove－โnitum，i，12
Chinese history on the lurse，iii， 517 ，
Chinosol for wouncl，ii， $4=1$
Chloral hydrate－им minal naes，ii， $475,4^{7} 7.111,3,0:$ jus mang and ant
Chlorate of potash and potassium medicin．al usex，14， $44,4+7,1 i i, 3 i$ いいだ，41，中
Chloric ether－medicimal uses，iii， 3 ： duscs，in， 10.
Chloride（medscimal smč）of ammonimm， i，$\ddagger 59$ ．iii，z：of melcuty， 13, is 10 onta and sodimm， $1,44,41,4$ ：zinc． ii， $45 n$ ： $11 ., 4$.
Chlorinated lime as a dininfectant，ii， 4s＇s，medicmal tone，iii，
Chlorine gas for diminfertion，ii， 487 ；iii，
Chloroform－fracure treament，ii，22g，

Chlorophyll－green algæ in water，iii， 127.128.

Choking and itutreatment，$i, 265-267$ ：ase
 larym，太心．preveming cluaking．i． 480.

Cholera－water cambins，in， 130.
Cholesterin is himol，i， 432,435 ．
Chologogues and their waec，iii， 13 ．
Chorda dorsalis－firm，iii， 250,255 ．
Chorda tympani nerve uf face，$i, 233$ ．
Chorea and its treatment，$;$ ， 40,41 ； Urag，iis，3．
Chorion at uvam－fumations，isi， 251 ．
Chorium of akin，$i_{1}, 124,12 n$ ．
Choroid plexus of lanala，i，zit．adema or tumonrs of，$t_{+}+1 f,+t s,+10$

Chorotd tunic of eye，ii，105，106，107； diseme uf veins，i1， $2 \geq 4$
Chromic acid－medminal uner， 14,7 ．
Chronic diseases－tefinution，i，213： temperatients lable ti，, ，is
Chyle 11 ． 1 burbent system，i， $4 \geqslant 7.428,4=9$ ， +30 ．
Chyme in intestinal digestl（1）， $\mathrm{i}, 245,246$.
Cilia processes of traches， $1,4^{2}$
Ciliary processes of eyc， $11,115,1105$ ．
Cinchona meducimal wes，is， 451,452, 4＇7．111，4：doなen，111，4． 11.
Cinchonine－medrima！ure，is．
Circle of Wallis－f，rmathon of arteries， 1， 45 I
Circulation system and organs－
 $215,214,=13,=21,11,+57,45^{3}: 111$,
 tet，47t． 477 i poimuning effecth，ili， 44． 45 ：ist hores stimalation，nit， 14i：interus inverhion，in，wor
Emberan and fixtus growlt，ui，255－25－．
Meclamman of the curcuiatimn $1,43^{2}$ dia－ R1，m of 1,450 ．
Irevention of death by hemorrhage， $\mathrm{i}^{\text {，}}$ ＋4
I＇ulse ，and bloud－pressure，$i_{1}+4$－ 445 ； ii ， 14․ 147．
 1：1nash dineases，hiloud－ressel， Heart．
Circumferential fitting in hoeing，iii， 47% ．
Circumflex nerve－furmation，i，foi
Circus horses－diseascs due th training． 1ii，zoz；Koman uses，in，52ti，527． $523,530,531$.
Cirrhosis of liver， i ，zo7：fatty liver inthence，i ，zos．
Citrate of iron and ammoninm medicinal use，ii，447．duce，1ii，og
Cítric acid－dose，iii，o．
Clacking of shoes－（see Forging
Clamps and clamping－for catration． 111，173－177；hermia，i．317，321．322， 325：fir sand crack，ii， 367 ．
Claws－formation， ii ，1ラT，rał：clansifica－ tion of animali by， 11,475
Clean－cut wounds－form and treat－ mem，ii， H $^{2} 2$, ＋10
Cleaning horses－isee titch lironming， Wathingl．
Cleanliness in the stable，iii， $327,327$.
Cleansing of wounds－methods，ii， 400． 415.
Cleft of frog－discharge from，and wound to，ii，373． 385.
Cleveland Bay＂Speciality＂（ 5002 ）－il－ line uf，I， 253
Cleveland Bays
Conformation，tamina，and action，i， 131－133．
C＇romer－hackner，i，：30，131：Scoutioh ently beecling．i ， 188 ：thorowigh hiterin，$i_{4} 127,128$ ．Vorkshire wach 10ヶ
Harnes horse qualifatations，$i, 152,153$.
Ohlentur hs compared with，i，wos．
Orgin，waca，and dintricta baedines， i ， 125－128．
Stud－book mitroduction，太 ©．，i，120， 1 30．
Clever jumpers－methusts，iii， 200.
Climate－as canse of disease，$i_{1}=13,222$ ， 202；brecture anriza intuencea，iii． $530,534,532,535,54^{4}, 548$.
Clinches wed in shoeing，iii， 450 ．
Clinker bricks fir stable thonrs，iii， 326.
Clipping and clippers for grooning， 111，137．133，300．
Clips for shoes．iii， $44!$ ；inguries from， 111.453

Clitoris of vulva，$i, 18, i 1,74,75$
Close－coupled head－form，i，44，45．

Closets－fur stablemen，ini， 335 ．
Clothing adnatility of， $1 \mathrm{it}, 135$ ：imfec－ thill and dh－mfecton means， 11,350 ， 151．14，24，152，41，k hurnes，11i，24． 14：4lif－lust hersen，in，\＆en，eear－ mathe lonses，wis．341．tmang thurses，ili， 303
Cloths－fir wimmadresume，dianfectinn
Clots of blood cauning applevy，1．4： artetuen whistuctura， $1,4^{*} 3$ ，wdema
 hemurrbatice， 11 ，
Clotting of blood－－ce（uavalation of ye cataract－firm，iii． 370
Clover in fiond，int，Eo．of，tion sis． 251，i52，hir mivalid clet，in，：ri．

Clydesdale horses

Confomation．leading charmera and aethon，\＆C，i，1，d－1y3，homlder f．rom，i， 7
Early brecding，arizin，and dineluctuon， i ， 18ti－1G2， 193
Gathoway，lyrulure，and other straith of， i，190，112．
Ilfuntrations of stallions， $\mathfrak{i}, 280$ ：ii，z28．
shire vesemblunce and crusesen，i，180， 190， 101.
Gnffulks comparel with，i，194，1fti．
Title of＂Lanarknhise＂applied to，i, r 89
Clysters－admumstration and user， i_{2} 281： iii， 34.
Coach horses－Cleveland Ihays，$i, 8=0$ ， iz\＆，harness and hunter ineedme， 1 ． 136．152．：53：Perchemms，$i_{,}=05$ ． tate ，math harese i，177，20h；sum－ froth 4，i，195：Yorkhire breet，i，133－

Coach－house－structure，iii，334 plans， 111，．320－3＊＊．
Coaches－trnim of，iii， 543 ．
Coagulation of the blood．$i_{1}+35,+35$ ； preventurn if liemurhata by， 1,445 ． matmonas we to，1，472，474．
Coalesce in wambehealing，ii， 405.
Coal－tar－matineptic uses，ii，+2 r．
Coaptation of wommb－means，\＆c，in， 410，42： 42,43 ．whelien， 11,418 419.

Coarse conformation of head，i ， 37 if whhers， $1,52,54$ ，manumbtrien，

Coats－litituring，iii，38，39：drage affect－ ing，ii，453，474，＋31，mustarsl plan－ ters（hn，1ii，33．temperathre aftethes， ill，zina，imiters tranling，in，z10 wathing in dineare，iii， 35 see aho titles（lipping，frasmang． Simsemg，Har，btarng cont
Coats of atterics，i．442；of eye，in， 104. 105
Cobs－heught，and distinction from pumes， i．44，153，15S．
Cocaine－metimal nem，ii， $475.470,4^{\circ}$ ？ $3:$ III，＋fer operatients，in，ion，ines．
Cocci of bacteria rell formation，$i, 220$ ．
Coccidia form of phrantes，in， 101,1 tio．
Coccygeal arteries and nerves－for－ แиі＂！1，1，378，402．
Coccygeal bones or vertebræ－furms，
Coceyx－sec Lail．
Cod liver oil－medicinal uses，iii， 4 ： dilues，iti， 9 ．
Codeia－medicinal uses，ii， 480
Cod－wax in theath－removal，©c．，ii，84． Coffin bone－（see Pedal bone
Cognizable forms of diseane，$i, z 19$
Coins as medicine werghs，in，is．
Colchicum－medicinal dones，iii，9， 11 ： polmonge by，iii，62， 104.
Cold－rommon ailment，i, ， 97 ，ine toclip－ ping．戈．，iii，136，138：whsommaness

Cold（Cont．）－
and warranty，ili，42t．See also Catarmal affectums
Cold applications－aヶtringent purper
 III，55：tor varions dineanth，I． 412 ．
11， $208,220,+38,+34$ ：poultices cold． （13，20．
Cold，climatic－ruses of dine ase ，i， 217.
 121：Finmes cmdurance．1，156，w111－ ar efted 1，3：a
Cold fitting in hocins ini． $4 t^{2}$
Cold \because ．warmth in tables－sentilation，
Cold－water injections for werm hemonhase，11，cu
Cold－water irrigation－for bone dis－ e．ther，1i，208，218． 302 ，capped hock in， 36 ：c cinl，ii，zoz：frature is， 238 jomut symontis，it，zô3．Laminativ，ii， 378．sire hom，in，220；spraim，it， 201，240，247，301，354；wind－galla， 1i． 559 ．Watman，21， 4,8
Coldness of body du th painoming int disease，iit，47，54． $142,2+3$
Colic－
C．uses，forms，and treathent yhat rmodic culac．i．27－281：Alatulent，i． $28 \mathrm{I}-28_{4}$ ．＂heat and wind sucking calsime，iii，tos，r．40
Distinction from enteratic，ropture，ar heart patm．1，293，2950409
1）rugs and remedies for， 11, tion 4^{+0} ， $4^{6 \pi}$ ． 477，401， $4^{8} 5$ ：iii，3，后，7．8：pres rup． （imn frit dramghts，iii，18：moloding lectum．ili． 34.
Symptoms or reaults of other diveases－ andhrax，ii，+2 ：artetits i： 471 ： cribing and wind－ancking i， 4 t．
 tion，$i, 207$ ：inserncen if rectum， i， 301．liver and kidneys，$i, 307.349$ parturient fever，ii， 08 ：poinming． iii，47：mpsure，$i, 205:$ तथ． duphragm， $\mathrm{i}, 313$ ：worms，ii， 171.
Unsumedress and warranty，iii， 423 ．
Collapse and syncope fomting－ callec：11，222：is， $158,44^{\circ}$ reme dies， $\mathrm{in}_{1}+58,477$ ．
Collar－bone－alosence in horse and un－ gulate manmals，iii，476． 4^{87}
Collar－holder fur harness mom，iii， 332. Collar pressure．\＆e，calsing dineare． i．220；｜unl－，ii，150， 15 s ；erothema， ii．I45：distulous withers，ii， 432 gidduens i， 407×409 ，sare shoulders． \＆o．11． $145,435.476$ ：tumatrs and mle：r，i， $415:$ 11， 426.
Collateral ganglia of sympathetic
Collisions firntaddirections， $11,437-439$ frature diw to， $11,254,201$
Collodion－castration use．aii， 185
Colon of intentime，i，236，237，238
Colour of a horse－mestral and ner－ vou minelues，iii，＋97．4u8 diges－ tion and water influmes，iii，iro， 130；dintinction of hore famly，iii， 495－447：washing light－ctlunred horses，iii， 137.
Colts－dronn， i ，31：encloanre of penis， \＆c，$n, 81,82$ iatentimal obseructun， i， 206 ；lip and wart trnable $, \mathbf{i}, 243^{\text {：}}$ teeth ，lıenllang．\＆co，i，32t．See ：llso Cashotbini．
＂Coming Four＂－ace inducations，we if term，ith， 303 ．
Commensalism－a form of purastism， ii， 1 to．
Comminuted fracture－form and treat－ ment，it，221，225，22h，228，233，249．
Commissure of witic nerses，$i, 302$.
Commissures egrey and white，of brain，
Common adder causing poisoned
Compact tissue in bone，ii， 176 ．

Companionship
Compensating points in \quad mfum， 1 ，

Compensation for shater and farey in，
Complemental air in lireathina，i， 443
Complete dislocation－firm，11，\＆ \boldsymbol{t}^{6}
Complete fracture firm， $1, ~ 2=1,2-5$
Complexus muscle form，se，ii．13
Compound fracture firm，$\underset{\text { co，} 11,22}{ }$
Compresses－fin bis．parin，ii，zon． thurughpill，in，दूQ，wllth，it，z：
Compressor coccygis muscle－firm．
Compressor urethræ muscle－furm， 11.71

Compulsory keeping of horses 114．tut haw，114，54
Concave shoe form，dil ，iii， 443
Concentrated food alonger：s diet，hii，
Conception tee Jmpreghatum）．
Conchal cartilage if eir，14． $310,311$.
Concrete－fur stahde flonk，心．c．，ni， 326 ，
Concretions fumatum internal，is 300：diference if blath of stanes． 1．209：لamaler due 10，1， 270 ，206： pals in zuttural puecher，i，504－507， water miluchte，an，bat．
Concussion bram，diwe to fractured thnes，if．231． 23 ，hnee protetion， ib．147：stre hams the to， 11 ，aw： span，l cord，teatting in paralysis， ii， $236,2,37$ ．
＂Condition＂－nes of teras＂bad condi－ tun＂，＂flealers comdition＂，心c， 1 ， 457： $11,4+5,+46$.
Conditioning balla and pawders，\＆c．
 alfombin！ly，iii，215．237：cansen and signt of discase， $1,221,272,275$ ， 1 ， Qoo：iii，ras：fit condition recugnition． i11． $332,310:$ fink dhet，iii，224，225： fecding improvement，iii，92，93．141；
 improvement，ii，t？？trathing of thorunghared．\＆\＆C．，ini，301，305，300．
Condyles if wamm bome，ii， $1,1,8_{4}$ ， 189，108，1y，201：minture effects， ii． 244.260 ．
Condy＇s fluid－atmeptic unes，ii． 406.
＂Confidence＂pex）－perligree． $\mathrm{i}^{2} 1=2$ ．
＂Confidence＂Iroylav＂，153，hacknev 4．alli，n illust．），i， 172
Conformation and defects

A prediponing cane of sincane．i． 24 biones as levera，i．az－zn．
lireeding pretantions fir weak puinte， \＆ $\mathrm{C}, \mathrm{iii}, 21$ ．
Centre if erany．．and equalimian，i，28－ 31：1i1．142－144
Cumpenatime fuints for lefects，bists， \＆C．i．1，10103
I efer cise whim due to，ii． $308,39 \mathrm{a}, 400$ I thatrimention of weight of bods，i，ut－Gz． Height，length，ame welth，wat－q8．Fhl partiomof height tulength，ant heat

Musclen in relation to power and upeed， i， $31-33$.
Sownilness and warranty，iij． $375,415-$ 413． $420-123$
sperial features and oricin of a murse． iii， $7^{3}+407$.
［For sperial part or organ see its name －recial breed，see their tules．？
Congenital diseases and formation eve 1 rivt k ， 11 ．flomdong ii． 88 fion inequalities，i ．Er：hernia or raghure，$i, 315,3$ aí $318,322,323$ ；

Congenital diseases（omt

Congestion exifement and excrom

 ＂Fatue．1．© 54
Conglomerate calculus－4quaratice
Conical teeth twrmatim，111．4＇4
Conium－medn mal we－in，1－2 4

Conjugatæ $川$ water，$川, 1$,
Conjunctiva of eye a！，い4．11（2－110，velantrom comtal 11，1r2．ir：flethenat anid lomer ＊Chters elfect i f
Conjunctivitis am！1t ©reument，11． 114.

Connemara ponies－form，ㄷ．．．i， 1,8

 tumb of bram dewriter．t， 4 －6， $4=4$ af frachured－hall 11 ．．it
Constipation mo it trentinnt，i，eto

 294，300．13，104，111．19
Constitution wht trainury comaider， tom，12i，3611．34．4．
Constitutional diseases titect
 weed．Purpura firemarlongea， R＇hemmatィい！
Constrictor muscles－fum，ii，；ow
Constrictor nerves－intluence en fisud． 1．+44 ．
Consumption－nee Thatercalosin
Contagious diseases d．ぃнticutim

 3． $13.23,24$ danture or
 11． 42,44 ．M1，athan，111，if Matme ii，r68：mbcrular funtorans，1．
 350． 151 ，vire thratat，1．254，thmit

 Fevers，filander am！hares．lulea
 Gumales．Jetamu
Continental horses ace tithe I wregen furnes，also matuen af wamben ir

Contractile substance of 1 mat li，in
Contraction of arteries in ，whitum， 1． 41 ：
Contraction of foot anace treatment
 raction of muscle or tendon

 regard Fwwer ami 4umd，i．ot twal
 ing．in ：
Control of horses during uperations， means of revtranle，iii， $15^{\prime \prime-}$－tro．
Contused wounds and their treatment， 1i．403，．412，113：4pectly chtemé

Conveyance of harses we Transit
Convolutions of bata subnance， $\boldsymbol{i}, 384$ ，
Convulsions－causes，in foti， 4 to，，to ： drugs， 1, ， H_{3} ：iii， 2 ， 3 ，heart and lemurrhage comptrmis， $\mathrm{i}_{1} 4^{\circ h 7}$ ．soz i1，58；sheet－dip cffects，11，：2u．
Cooked food as dict，mi，3qt．
Cooling drinks－preparatwo，iii， 28 ．
Cooling medicines actug un blowid，ii， $450-452$
Co－ordinating nerve centres－form． ． 389 ．
Copaiba－medicinal unes and sime，ii， $470,471.434,1110$
Copper－mehtinal wac，in．454．$+55^{\circ}$ primatag bs， 14 ，4 5 ．
Copulation－slineave sule $20,16,52,53$, 8o：herm，eatues，b，1o，peras as
 pregnancy，hii， 230 ．
Coraco－humeralis muscle－form，\＆c． ii． 320 ．
Coracoid process－of scapmla，and mus－
Cord－fir caveration，iii， 175
Cordials－preseriptions for medicine，iii， $15,87,18$.
Corn－as food，ini，on，i18．347；with hay as cole diet，iii， $344-34 \mathrm{th}$ ． 347 ．See abo uten Gram， dits．）
Cornea of eve，i，w：ii，104，105：amber tince canse，i，if 115－117：examination for dinease and somndness．ii． 1 ！o：iii， 3^{68} ： growths from，ii， 118 ．
Corner teeth－form and wear，iii， 308 ， 399， 400 ， 401 ：space near，iii， 494.
Corns－eanses and treatment， $1,374-376$ ： iii． $425,453,454$ ；canker due to ii， 38r：flat feet eftect，i，82：remains
 cantion，iii．，101：monumhess and warranty，iii， $4 \geq 1$ ．
Cornu of spine－formation，$i, 382$
Cornua of tongue bone，ii，189：mus． cler，1i， $3: 3$
Coronal process of coffin－lonte，ii， 200.
Coronary arteries of heart，$i, 448$
Coronary cushion of carunet－furm and divense，ii， 383
Coronet conformation and hones， $\mathrm{i}, 21$ ． $2 \exists$ it， 14% ． 273 ：iin． 4 3h：corn and or mittur strikme due to defectise aetion，in， 30t．398：herpes disease，in， 140. pricks and wounels，if， 287 ：sand crask，ii， $3^{\text {fin }}$ ：seesly the，ii， $370,37 \mathrm{r}$ ： thelly feet，ii，zes：side－hnet above． ii． 387 ；somdness exammatan，iii， 38 上．Billth aftectme， $11,3^{8} 3-385$
Coronoid process of j．w－bone，ii，rey frocture，ii． 240
Corpora cavernosa of penis， $\mathrm{ii}, 70$ ．
Corpora nigra of rye，ii，lok，107，iii， उ64；examination，u， 1 to
Corpora quadrigemina of the pons，
Corpora striata of 1main，i，38，zno．
Corpus luteum of nvum，ii，so．
Corpus spongiosum of penis，ii，－o．
Corpuscles of blood－compnsition，\＆c i．43r－434．diapedenh proces． 1 434． 44^{5} ：dugu afferting，ii． $447,44^{8}$ ． 40， 450 ：symptoms of diveines，i ，
Corrosive polsons－list aml tratment 1ff furbonme hr．iiii． 4^{n-54}
Corrosive sublimate－antiontic and
Costal carthlages of riln，i，ís，b4：ii，
Costo－sternal ligaments firm，\＆c，

Costo－vertebral，and costo－sternal Crossing of horses－see alle liretu articulations uf rikn，ii，at 7
＂Cottager＂－steeple chising records，i， 124.

Cotton cake an food，iii， 80,34, i4，itis． Cotylold cavity of coxa， 3 i， 274
Cotyloid ligament－hp－jnine firmation 4． 275
Couching for catnact，ii，ret
Cough calmichand treatment，n，is．dur inti fordmg，ii，t，12，dras，11， 454
 15．17．＂suo bore in cough＂，and

 $501,11,2,4,8,10,12,40,51,111,14$ mbermblac－and warranty， $11 i, 421$
Counter－irritants－wses and example H， $4^{\text {tul．}}$ III， 4 ．
Coupling of head and nech surions furnls，i，44－46．
Covered operation in cactration，i， 321 ill， 175
Covered surface drains for stables iii， $8_{4}-8$
Covering disease－see Malnfie du Coit／．
Covert backs－hreeding，i, m
Cow－hocks－defect of confumation，i 80：in haness hrives and pinies，i． 151，： 7 ：：－prain due tu，ri，28q；war ranty，iii．+13 ．
Cow－pox due to grease bineace，ii． $1+0$. til
Cow＇s milk for fonl－rearing，iii，22\＆， 225 ，
Coxæ of pelvis－formatm，\＆i．．i， 58 ， 59．i1，102．274．
Coxo－femoral articulation，ii， $27 \mathrm{H}, 275$.
Cracked heels－cames，treitment．\＆c 13．423－455．111．＋8，tin：remedies for．

Cracked hoof－term＂samel crack＂ished
Cracked mouth and lips－canse，\＆c．
Cracks of skin－causes，ii， $1=7$
Crade for fractures，\＆ $\mathcal{Q} \mathrm{C}, \mathrm{ii}, a_{4}:$ iii， 30 ．
Cramp due to lead poisoning，iii， 57.
Cranial nerves－names，seructure and functurns，$i, 391-307$
Craniuns－fromation and bones wf．i，\＆ ii，1 3－180：in，403，fracthrer，11，234： mascles connection，is，lit，ar

Cream horses－origin，lireeding，ぶc．，i，
Creasote－amtiseptic and medicimal ther． in， 485 ：ini， 4 ．doseヶ，mi，q：jomoming in，iii，4i
Creatinine from kidneys，i， 333
Creation of the borse－history and therries，ii1，518，525， 57 t ．
Creation v．evolution－cinims．\＆c， iii． $482-484$ ．
Crepitus fur fracture detection，ii．205： false crepitus，ii，22f，diffirulties in ulna，senamoid，and pelyin fracenes， ii．245．252，258．
Crest，arched－formation，$i, 28$
Crib－biting causes and correction，i ． 413－415：iii，327，337，34：：trubles due $1: 2, \mathbf{i}, 247,272,322:$ unumblnens and wartanty， $11,1 \neq 9,424$
Crico－arytenoid muscles－punterior and lateral forms．©c．，ii， 317
Crico－pharyngeus muscle－form．\＆c，
Crico－thyrold muscle－firm，尤．，ii， 317.

Cricoid cartilage of larym，i， 4 s．
Criminal offence－frand and warranty if horves，nii， 411.
Crops prmened in green state－silage methed，in，athent
min．lelegrny－for succal breeds see their names
Crotcbets used in parturitun，iii，283， Croton－oil－affecting thadler，i． 3 y：dose， III，Q：puinning by，in， 4 ，
Croup－confimation and defeeta，$i, 25$, 58－tio，102： 11,153 ；heisht thensure． ment－，Ne．，i．4i－05，111，288， 207
 ii． $201,329$.
Croup disease consing ayply li：，i， 445 ．
Croup plexuses nerve－ 1 irmulis． $\mathrm{i}, 375$ ，
Crucial ligaments of witle－junt，ii，
Crura cerebri－formation，i， 383 ．
Cruræ of penis－furm．ii， 70.
Crural nerve－fornation，i， 4
Crural region－mancles，ii，345－343．
Crushing the stone in thadder dinorder． 1， 365.306.
Crust of tbe earth－furmation，iii，47．
Crusta of teeth，iii． 404.
Cruteh for parturition aid，iii， 283 ．
Cryptococcus catuing epizontic fymph－ angitis，it，37，54，60， 18 ．
Cryptorcbids－animale termed，i．17，iii， 184：castration see that bule
Crystalline lens if eve，in，105，108． dseases affecting，i1，117，119，120； soumdnem of，iii， $3 \div 9$
Crystals in blood hemoglohin．i，433： 211 urime，$i, 345,34$ ．
Cubebs－dine，iii，g．
Cubic air－space per horce－st，ble struc－

Cuboid bone－form，求c，ii，204， 278
Cumberland Clydesdales－brecd，i ，
Cunean tenotomy－positan．Sc．，iii，
Cuneiform bones－af fole－lmb or hnce， n，103．197；of hird－lum or hock，it， 204：mancles mertion．11， 344 ．
Cupped clot of blond，i． 4 th
Curb and it treatment，i，co，ii， $300-302$ ： beredit．ary，14，215；umandues and wartuty，iii， $353,384,4=\mathrm{I}$ ．
Curb bits－ivjes and uses，iii． 339.
Curby hocks－conformation and camses， i．Sn．co：ii．30：mboundues and ＂arranty，iii，＋13，＋20，42
Curry－comb－a callec of crib－biting，i ， 414．for mange，11，1m8，firm for crommim，iii， $134,135$.
Curvator coccygis muscle－f．rm，\＆c． ii， $72 r$ ．
Curve of back－enofirmation，i．5＂，57．
Curve of ribs－conformation，i．Ef
Cusbion bones－from and uec，ini， 487
Cutaneous－plliferous growths froms cornea if eve， 11,118 ．
Cutaneous quittor－form，\＆c，ii，379．
Cuticle of shin，ii，124，125；iii，504，505： wound healms，ii， 405 ．
Cutis of skin，ii，ran
Cuts－a canse of disense，i，22o．
Cutting－a form if lefective action，it，
 injurn and pevention，iii，455： smondues and warranty，in， 4 zo．
Cutting the bars of foot－effect．，\＆c．， 11i，435．4．4．
Cyanide of mercury and canze for ＂omand drewing，i1，412，412． 413 ．
Cystic calculus formed round tick，i．
Cystic ovary－furm and removal．\＆c， ii，78，70，102：iii，183．184， 220 ．
Cystic worms in intestines and liver，ii， ：7ン－174

Cystitis and it，treatment，$i_{\text {，}} 340$ ；un－ －ombluess and warranty，ui，$f=3$.
Cysts in caped kwee，ii， 361 ：liver，i，315：
 184， 22.9

D

Dale pony－appearance，心c．i．itu．
Damaged oats－recozntion， $111,347,348$ ．
Damp－diseases dne to，it， $1,7,20,54,55$, 214：fuat rearmzeftect，i，112；stable

Dandruff－grwomans ol wat，ini，$x^{3} 35$
Dandy－brush for eronming，in，I is
＂Danegelt＂ 174 －－hackney tallhw（ 1 －
Danegelt strain－hreedins prejntem y ，
Dappled horse－aricm of markmes，in，
＂Darley Arabian＂－hisury，cromes． ant tescembuts，i，111，115，1－8．15， 547． 530.
＂Dart＂family of Cleachand lay＂，i， 120 ．
Dartmoor pony－listiry，brecdinz，and conformation， $\mathrm{i}, 12 \mathrm{ser}$
Dartmoor pony stallion＂Coldfinder＂ （illust．，i． 190
Dartos of strutum，11，07，i8；iii．175．
Darwin in herehtiry dineases，i．2s7：on

Dead bone－rwill wil effect－in， 431,432 －अuns Wue the if， 428 ．
Dealer＇s condition－explauation of erm，u， 44^{+i} ．heart affections due to， ． 408.
Dealers am warranty law ，iii，fi4－4 patemt lefects，113，＋13．
Death－ai hired horses，lisublity，iif， 418 ce athon Murtahty
Debility－canes of condition，i，215，21f， 2：7，i1，102；consthatim and bowe 11：glander and farcy ii，at beart anmadi in，$i,+50$ ：reproductwon organs tfiected by，ii，82，8z，ε_{4} ．
Decayed teeth－treatment，Kc．i， 330.
Deceit in sale of horses－warranty regulathas，\＆C，in，4or－417．
Decidna vera，reflexa，and serutima in merma，hi，253．
Decomposition－camen of disease，i， $22+$ antineptich arresting．11： $483 ;$ dilation of stemath atgin of， $\mathbf{i}, 277$. woumd privathed by，n， 103.
Decoration of stables，bij， 3 ra．
Deep flexor of foot－furm，太c．，of mus． le， $11,345^{\circ}$
Deep flexor tendon－operation，iit， 1 ．
Deep glutens muscle－iorm，\＆c．，ii， 339 ．
Deep muscles of neck and trunk－

Deep pectoral muscles－forms，\＆c． 1．	

Defective action miniuries from－dish－ ligg．i．122；interlerime font in con－ t．ut with favt，brushing and cutting． ii，36h－208；werreach and forying． ii， 300^{-2}－ 10 ：rpedy cutting．ii， $400-$ 403－．．．thue correcting，iit， $455-45^{8}$ stimghalt or ierking limbe，ii， 395.
Defective ventilation－see Ventila tioll．
Defects of conformation－（see Con－ formation）．
Deformities－contraction fonceles and limto deformates． $12,3+5.347$－＂pera－ tious firs．iii，1nis－171：cow－hocks，i，So， 1nı：futh at birth，in，a2t：fordines dificulty，iit， 27 ：$:$ fiont，i，74，75．\＆s 11． 34 3， 313 ．i4．4：ni， 4 n，kneer：i． 74 $75 ; 11,302-305 i$ parrue munth，i ， 33 ；
righ or crypurehids．sii， 194 ，ronch back，i．s7：matmadneso and war－ r．anty，iit， $275.412 .419,420$ sce also title Conformation and deferts． Vol．III．

Degeneration einer due | 1, |
| :--- |
| $1,475,475$ |

Deglutition of fixil frocer，i，23ł．
Delirium－due to lorais inflamatom，i 4a；maligentma，i，271；1upture，i，

Delivery of foal－nee Porturition．
Deltoid muscle－fimm， $20.5,11,32 \mathrm{~S}$ ．
Demulcents－me lin mal uee，iif， 13.
Denmark＂${ }^{177}$ petlaree，, its．
Dental canal and nerves firmation，
Dental operations，Ne．We Teeth）
Dentata－－e．Inに
Dentine feccel），Mi，4．4．4． \mathbf{H}_{5}^{5}
Deodorizers－－racpat，thme wed，ii， 440 ，

Depressant drugs wetinc an lange and Depressor coccygis muscle－form，

Depressor labii inferiarin and superiori furnh al maseles， 11 ．30，30，
Depressor muscles－actumand diatinc thun， 11, ．1＂4， 307.
Derma of skin，ii， $12 n$ ．
Dermatology－adsancen and clas－ifica－ （in），11，1zt， 1 ．
Dermoid cyst－formation，Ne，ii， 103.
Descent of the horse－see Hi－tury，
Development of arganisms－evulut

Development of the horse－isee lirnotl
Dew－ladengrass－horse－sickness caused M，11．54．55．56．
Dextrin in duvertum，i， 24
Diabetes and it treatment，i， 34^{5} ；war－ follty，14i，4．3．
Diacetate of lead－medicmal uses，ii， $4^{\text {b }} 4$.
Diagnosis of disease－dehinitions，； 24，ill，144，185；genetal syrptom－ and exammation，m，145－150；medi－ une and ith tre，in，＋42－444；skin dee．1ヶé，ii，135，： 3 ．
Diagnostic symptons of llietase，iif， 144， $1+5$－
＂Diamond Jubilee＂－dercent，iin， $5+3$ ．
Diapedesis process in liment，i， $434,44^{\circ}$
Diaphoretics－14en，ii，472；iis， 1 z．
Diaphragm or midriff－furmation and

Diaphragnatic nerve formation，i，
Diaphysis－growtly of bone，ii， 178 ．
Diarrhœea and itc creatment，i．286－289：
 Ne．11，$+48,450,454,+55,+55_{1},+57$. 40： 8 ， 227：hunter，in， $149:$ synpt ms if varime discances，i， $272,366,471,47^{2}$ ， 47：iii， 149.
Diarthrodial joints－forms，ii，262， 279 ．
Diastatic action in digestinn，i，24．
Diastema－formatimand ane，iii，494，
Diastolic sound if leart in disease，i ， 459.4^{40}.
Dicrotic wave of herrt，i，＋f；diagran， iti， 14 ．
Diet－see tites Ingmetin．Ingentive dis－
Digastricus muscle－firm，\＆，ii， 313,
Digestion and Digestive Systemı
Absurlent syrem inthence，and thids acting upom， $\mathrm{i}, 426,427,430$.

Digestion and Digestive System

Alimentary，camat．its appendace，ami Wrk in dice－thth， $1,2212,=30$ ；

1月nd－upply and the influence of meals， 1.44
 44^{5}.
Ingentablity and mutrate value wa
 かもーテレィ．

 we a ausk，11，4to．
Miving of fuchlo ．tul］find given firat－ eltert，m，s1く，1t．

 sidelatholls，11， 4^{\prime}
［See aho tille F and and dict．］
Digestive Diseases and Injuries－
Lilatiual ant tupture of the tumb，u，i ， $270-27=$
Foodam woter athe if hivence，i ，25， 2W；11，51：14，12．1，102，12： 205.

Lipe，month，timguc，and falate aflee मinm，1，：47－254
 1ヶy－ 175
IOBons－effect of，in，tit．
Reatum inverum，i，301－303．
Salivation，or pryalism，1． 276
Signe of diveaveーrencmutuns，in，140， 199.
Stume calcali mad wher watetiman－
 i，2riz－2h5
Temperamentes lialle tor disease， $\mathrm{i}, 218$ ．

Varion dineanes afectetl hy digmenve disorder－inthin，11，11：bn when

［See alar title Condic．Commapatnm， Diarrtuca，bywentery．Futentic． Bintritio，hadigentum，Liser，sutuer Furgation，＇leeth 1
Digital arteries－formotinn，i． 450.453

Digitalin－medicimal unes，ui，fro．
Digitalis－medicimal wes，ni，431，fro
 and antudute，mi， 50,4
Digits and the evidutimo of the borse，nii， $285,288,476-478,511,512,513 ;$
compored with batul m，m，iii， 487
 $501,507$.
Dikkopaard－ziekte furm of lume－aick－ beas，ii，55，50， 57
Dilatator nerves－inthomece an foul i， 443 ．
Dilation－uf arterim，i_{1} 477：heres，and
 atomath－chrame ihhatmon，1， 276.
Dilator for lithotomy， $2,363,3^{\text {ris }}$
Dilator muscles－distinctivn，is， 305 ： roarms due tw， $\mathrm{i}, 5 \mathrm{~s}$ ．
Dilator naris muscles－－hateralis，an－ terlur，shperiur，ami mberbur torllis，

Diluted acids－as licmative tomios，is 407． Ho $^{\circ}$ ，medulat une of rathlis antulute
Diluted liquid ammonia－mees， $\mathrm{ji}, 45$
Diphtheria－latillin ant wure，1，228：

Discus proligerus of un 114，11， 79
Disease

 1－4ージ

 S＂lls try－

Diseased ammals－e．．．．．l．Hawen
Dished face ，中l mantern i，fi， 5
Dishing finfty ．t tum，6． 1 ．
Dishonesty in aly if hame waranty

 4it $+\quad$＋ 11 ．
Disinfection of stables，ís．finling

Dislocation or displacement of bones

Displacement of heart ihtalm，i ，

Distension of belly

Divine gift hrore tombibered 50 by A1，1れ，in

Divisions of a horse，$i, 2 \sim 4$ ：varinus
Docnments an sule in hurne－une in breach al w．alt．1nt，111，4．2n
Dog－tooth pea－pronsonulig by，wi， $5^{8-t i v .}$

Dogs－c．lfaract if eje， $\mathrm{n}, \mathrm{j}=\mathbf{2}, 122$ ；font－

 Wurbis，th，17t．K．t1t之 anll the lowt

Domestication of the horse－listorv：

Doors of stables © \＆rmoture，ifi．

Dorsal arteries
Dorsal nerves
Dorsaltrapezims muscle form，11，－22
Dorsal vertebre of spine．

Dorso－lmmbat purti 1ム．1114日，16．
Doses
Double bridle
Dourme disease
Dover＇s powder
Down at the hip

at the hop 1 mase Ro．，i，：5：
Diainage
Drainatge of stables wet sialdes
Drainage tube firs hthotomy， 1 ，

Drain－pipe with Map．Fis－hables，11．

Dram plis in hall－compent－af in，fti

Draught bullocks fur farm wink，נ，	$-\quad$

Drauglit or Cart Horses
 1：月．111．142．

 172．जullilda，I，14．

ットに ij，

［J＂T－fevial lemed，sete th name ？
Draughts prew rigitama amel whanistra－

 11，प
Draughts in stalilen－meremitur，Re． 17，71－7．1，80，81，3r19
Drenching－admmintathonafthe drenchs，

 $11,+11,+12+20-+22,+5-+2$
Dried bracken hir beddinc．11， 357

－103． 111.0

Driving－defertive actwn due t．ii un：

 rimty lans athis acoldenty， $14,4 \%$ g Horses

 H14

Dropsy and dropsical swellings

Drıs
 ！．1！1！

Drum appearance of belly－caunes，i
Duct of Stenson－f wm i, \ldots

Ductus arteriosus Botalli－formatian，
Ductus venosus and arteriosus in
Dulcamara－nuethomal uses，if， $4: \approx$
Dung or Fæces，and Manure

 \＆IJ，\＆1 1 mornten whlleatel uth， 1

Flattonet appowamee due bo stone， $1,248$.

kemmoll ty hant feer rectum，i，2， ©

 B－\therefore ： $5,3,3$

Dunpaxrd－ziehte－a form of horae－sich． new， 11.55

Dust aircontammatina， 114,7 fi， 77 ，hroken ＂sul＂all Fulmonay daeace pre－
 11．114，以1twming of evat，113，134－137： laryuglth i，masen，i， 508.
Duteh forms if burve－sichiness，ii， 55 ．
Dutch horses－L＇risish horse improve ment，11i， 543,544

Dwarfing of borses－evalution infle． luce，11，250． 287.
Dynamical symptoms of 山seane，isi， 145.

Dysentery and it treatment．i，290－202：
Dyspepsia－isee Indygestion，

E

Ear wed fir heart disease detection，i，
Ears hlecthag．i，cos．©

 is，iti，smaske and varthaze． 11 ，

Earth manums uf，and exatome of man

Eastern blood in lackney and parla
 1し6．11才． 2 ，
Eastern horses
East Friseland breel of horsc，i，zo
Easton＇s syrup－mediomal ures．1i， 478

Echiuococcosis of her－－1athen，i， 31
Echmococeus veterinorum infering lincer，andia and ith treathent，i， 410
Eclampsia and it treathent，i， 410
 534， 547
Écraseurs 1，1－tratinm，iii，177，175，ret；
Ecthyma bla dien ios lucruan lumeran form it it
Ecto－parasites，4it．entu－，and ende

Eetropium ：mbl it Weatment，ii， $112-114$
Eczema and it tientment．H． 1 qui－t

Education ：ll betemmory acience，if， $4+2$
Efferent nerves－6om，i， $37+356$ ．
Efferent vessel in kiuseys，i，33n．
Egg bandages－mees，ic，iii， 3^{8}
Eggs an mwalid det，in，25，1＋1；use as atichite，in， 45 ．
Egyptiau beans ane an ford，iii， 34 ．
Egyptian horses－listury，ili．51．520，
Eight－year－old－teeth，ms．30， 400.
Ejaculatory duct of tentick，ii， $07,69$.

Elbow and elbow－joint cappel，i， 19 ii， $3 \times 4,14$, ti．Chermathen and defetth．：14．71．72 is，195，845． 270 116，157；flacturme，16，221，245；beight att，ani zrowth meanmembents，i ，yo： iii，288，244，295－248．mameler：ii， 370．331．233：Dyemm：authrthaffect－ ine， 11,287 ．
Elbow－pad－firm，and lıes，ii，зrio．
Electric fan fur venthating utalles，iii， 75 ． Electricity－nervom ntimulus，\＆c．，use uf， $1,385,387$.
Electuarles－Aruge and administration it． 455, i11， $3,18,21$ ：for month ani thrist，i， 250 ，258，508：for lunge，si， 3． 9.
Ellesmere，Earl of－Shire horse prices
Elliman＇s plawhic 1，all，ii， 445
Eltham stud－lintury，i， 1 so．

Embolism－arte：nti－and atheroma symp

Embrocations atwhon，\＆e，iit， 47

Embryo and fotus－ilvelupment，Lrme

Embryos of insects，\＆．．whmate
 fler mothemes， $\operatorname{in} .4$

Emir Ibu Rashid Arannalmata by
Emmenagogues ，md thir mes，in． $1: 1$

Emprosthotonos tetanus finm，ii，＋7
Emulsification of land in dggenion，：
Enamel of weth，i．An；in，flet，tas

Enclosure il the penis，is，s．
Endarteritis deformans－чудг＂иыை．
Endemic diseases－Lhasificatima and hather 1 murmurs in leart dis．
colse，1，fri：
Endocarditis and it treatmens，i． 4 ，

Endo－metritis unl its treatment，de．．
Endostenm in lume atrucure，ii，дフгi， 20 多
Endostitis a form of labe inflamation，
Endothelium of fonal copillarics，i ， 44^{\prime}

Enemas－－ce 1 vjectanm
Enemata malicise mod rind given by，
English Breeds of Horses
cimformotin，政，（leweland lays

 11；S．Smalane wheh lwanca，i， 133^{-} 125.

LSee alon tuten＇luveland Bons，Iherr

Engorgement－we titten Liver，Stons－ h．Lud：
Enlargement of abdomen the
Enlargement of glands of $\boldsymbol{u}_{\boldsymbol{m}}, \mathrm{i}_{1}, \boldsymbol{i}_{7}$
Enlargement of heart－lictulim，i，

Enlargement of penis toctment．\＆c．
Enlargements－ulnter of charges for rednesum of，hi，\＆
Ensiform cartilage of ireast－bunc，ii，
Ensilage an furl prontinn，\＆C．，iii， 80，115－1：8．
Entertis and ity trentment，i， $292-294$ drise fir，iti， 6
Entlre horses－vec stalliuns）．
Entozoa develuppuent，iii， 4 8o
Entropium and はn tie．tment，if，いた
Environment－inthence oll lireeding，心．, iii， $256,287,184,4^{8}+548$
Enzootic diseases definitum and annes， $\mathrm{i}, 213,223$.
Eocene formation horic origin，iii， 475，509，510，513．

Epidemic diseases intitratmon amb
Epidermis ，it the 4h3u，21，124．125
Epididymis

Epiglotids flaym formatinn，品，i，

Epiphyses
Epistaxis
Epithelial cells f 11 mot
Epithelial lamellee ，fho．

Epizootic diseases

Epizootic lymplangitis hon illm and

 pevent

Epsom salts muis， 12,01 unt

Equine locomotion－wite ham， Leucanntim，Amememb

Equas asinus－fiethat themen，m，fyt Equus caballus－－中h whime of temm．

Erector coceygis muscle fimm，\＆
Erector penis muscle－Finm，：

Ergotin－dose iin
Ergots of fethah jume，i，18，z1；ib，
Eruptions－Lwermb diecme，i．с，pil

 374 seealowhin lanema

Erythema and it trentment，13．1 1,148
 ：112： $11,14 \%$

 31．3． 7 \＆．बいど，111，1．
Ethmoid bone－frm，\＆－，

 13\％，1\％
Etruscan hince hintury，iin， 570.

European horses limtins，ice，nii， 534.
Enstachian tube furmotbm，213，50：
Even－toed animals－chasaticutim，in， $4 t$.
Evergreens－poiwnin；by，iii， $55,5^{n}$
Evolution－
As natural process．ami cortamatimen 1
 and detence of theory，1u，48：－484．
Egviratment and inher mithences in develiqment of uvam，13， $255,47 \%$ ． $480-43$.

Evolution itomi

I ensil andecthen of the haree，inf，500． 510 ， 51
Generatam and ebalation， $11,257-261$ ， 254，287，
 14． 15
Jelly lint and ons in of mam，iin，258， 479. $4^{\circ}-1,4^{8}$ 3．
 If Zadig athl the lint inge S．．．． 19 ， 47：－475．
Rate of emoth，if horne，ill．．8ro．

shim manhing and colomag－maltarace， 131．$\$ 07,44$
＂ 1 me equared to prondme いい m，＋2＂＋＋
Ewart，Prof．，will teleguy，ni，240， 241 ．

Ewe－neck

Examination as to Soludness， $\mathbb{\text { E }}$ ．－
A．tim，and wiml，in，374．ibs
Defer bof conformatran and defomitues． 13， 375
（ienesal examination sond for eraptive

Inopertina by maver－barrany regula

Introductary，aml prelminmry oberva－ ticms，in，305－3．7
special parts－eyce，nowe，and month， iii， $369-3$ ：0：head， 31 ． $370-372$ ：legs and feer，hin， 3 riozezo
Training womderatons，ail， 301
［See alw，wele Waramty．］

Examimations for disease

 us int aeneral yympmand Mortem．
Excitement－as cause of disease，i，2rs heart rupture， 1,470 ，phethura i，+50 ： shew horse． 111,31
Exciting causes of disease danifi－
 calles and mbluencer， $1,20-24$ ： fracturen and joults，11，222，224，279．
Excoriations un win，ii， 137.
Excrescences－－te firumth
Excreta sec Doma and L＇rime）
Excretory ducts witche，11，615，66
Exercise and exertion－ar and wood alluenter，i，quo：ambe of alterace， i．214．210， 217,222 ，matemention，
 470．treatment of pextant mate，
 shoralder shas and lumamis，in， 51 ， 378 ，thow lun－ns， 117 ，i19，she horem，in，If：tritter thaning in， 34－306：wrate affectad by exeline， 1， 337 ．
Exmoor ponies－appearance，\＆i
Exomphalus ant it，ereatment， 1,365
Exostoses and their trentment， $\mathrm{i},+1 \%$ ．

 pretummin， $11,8:$ thberculoss， $\mathbf{i 1}$, ， 5 ．
Expiration of breathing，i．$+02,4 z:$ asthmat dittululy， 11, 11：muncles A－wnting in，in，323，324．34．335，336．
Exportation of horses early frolibi－ th川い，1，17： 617 ．
Expression of face．Sr．it gride to （en！umamelle f，41．
Exsiccated alnm and iron－nubicimal

Extension movements in locomution， 185， $14+4$

Extensor muscles－actusi，se，i， 19.

 i3，332，fromethre eflerty，ii，24．wal． formations，ŇC．，she 214，in， 313.304. ＋t．
Extensor tendons－fッル心，心．i． 20 Fedis temlame iin 3í， 343 ，contrac－ tion cill－may detapmaty，11， $34^{\prime \prime}$ ． 347.

Exterior of a horse ，小sisemas，funints and M，imes， $1,2-4$ ，blen， 1, t a， 14.
 4－12，hateand and mfen mit resuma，

 or lomil lismb，i ．za．nuper lund as

External carotid artery－finm，i，45 External deep ligament of houl：jumt

External flexor of metacarpus

 mande firm，ii， 331 ．Extermal gemital organs－wee title

External iliac artery－furm，i，45 2
External intercostal muscles fomm
External oblique muscle of abdomen．
External popliteal nerve－form．i， 403
External respiration－form of，i， 4.5
External saphenous nerve－forma－ （ius），404
External tuberosity of hamerи，ii． 204.
Extinct horses－remann aml lastory， 111，471－404，569－513，517－520
Extracts of varwinding－－doses，iii，ic
Extravasation of blood－a furm 啨 hellm，rhage，i，501．502，ii， 150.
Extrenities of a Horse

Coldnew thue to diveane，m， 143 ．
 211：fratures，ii，z25，jomth，if．270 mange，11，107：sprain，11， 25 w ．
Names and structure，$i, 2,3: 1$ lomes，ii． 177．178：fince extemity and mareler． 1．13－22：ni． 228 －333：herd regs．nh， 4－s；ponternir and anteriur citremi－ wes and limb，i，15，10， 22
Extrinsic causes of d৯eme，i，214．215．
Eye and Eyelids，太c．－
firt anel mjume－first anl，\＆c，is， 430 ： 111， 157
Diseares－reet tites Eye disearer，Ryelid duene：

 miphirmg whlt，1i，+5 t
Examimatho if，$i, 11: 11,103,100-111:$
 37 0 ， 122 ．
Head protion，\＆ci，affectmg sight，i． 45. 45；16． $7^{8}, 82$ ．
 407.

1＇masites inferting，ij，175．
l＇oixoning symptum，iiis． 47.
btructure，i．S， 11 －Bisssions，nustles． and matment，ii，w－to5．308 hornid tume and eltany proceres，

Tumprament julsed by，i， 4
Eye diseases， $\begin{gathered}\text { e } \\ \text {－．ir ．and lont } \\ \text { in }\end{gathered}$

Eye diseases－Cont． exammation for divease，monound－ neco．onel warranty，1，11，is，114－111；

 ii．12： 124 lectedury eftell．in．
 tetamin， $11,4 \%$ acen mave，ie－ mus．l！aii，is，tery luct atul watery

处，（1）
Eyelid diseases，i．，112 1.0 ．4tmon and

F

Face and facial region－confinmation．
 10ヶ2． in，शV：hambonch ond injurier，in，

 she thage，1．470：11，if．trephang．

Face cradle fon fromenjon，ni， 24 ．
Facial nerve centre and nerves－

Facial paralysis anel it treatment，i，
Fæces－－ее I иын

Fairs whe the lan of warranty，\＆c．，iii．
Fallen horses firstaid directions，n ．
Falling of the hips
Fallopian tubes frmatumand ubernc． 11日，11，77．．0．1i，$\because 4$
False auchylosis－firm ir，in， 285
False mostrils－urigin，form，amd uses，
False quarter calnes，iii，\＆un （mates．an

False ribs－furmation if，12，tat
False statements $\|$－wole of lumes wartanty and fratul，im．f ： 0,41 ．

Farcin de bceuf ambaty w efrootic 1ymintusill，，b，0．11
Farcy－：1pquarab，e illunt，if．1，hwinc－ tion from chander，if，33，at，fiom

 see alow tutle bilamlet and burey．
Farcy buds－fimmatmon，Ne．，is．＊
Farm horses－see Agmellema bisaes）
Farmer＇s Glory＂－＂ぃ1世 口f Clescland liny．1，120．
Farmers carly lireceding of hosecs，an－
 oid．hathiey and hantern breedug． 1．11：114． 1 jo．142：bulle of horses and sartamy law，ini， 44
Farmyard ponds－watcr elfects，iii， 130 ．
Farriers－Wior lanful Company founda－

Fascia thene in whund，remmsat，\＆c．ii， 4．3：उympturn of fiatulation witlers， ii，$+3 i=+34$
Fast traveller－Morgan horee ia，i．20；， Fastening of horses－lluring transit，

Fasting lefure＂hratsons，11，162．
Fat－forming glands of kin．ii，125．126．

Fatigue carsmo ¢prain，ii，354．
Fats－in hamb and lundr，i，＋35：iii，87： in froul and dizentron， $1,241,=45:$ 13，54，4n，47，18，120．
Fattening of anamals－（see Condutiomine
Fatty disease wf heart－deceneration amb matrathon， $2 \cdot+7.4+15-473$
Fatty liver and ith treatment，i， 30 E．
Faults set title－Comiormanmaml de． feats，Hefective Action，Vicen
Feather－on（＇lydendeles，1， 102 ：Shires，
1，151，\＆\＆：Mllillus， 1,107
Features preculat to a hurne－spectal
Febrifures－
Feeding－see Fuod
Feelers on lips and mostrif；$i, 5$ ． 0
Feet

 grawthe and｜acd，ill，501－504，5015
 274：molel uf hwn，NC．11， 492. murcles，31．：32．，333，343，3＋5
Evelntion amel fiall temans five thed hanes， $\mathbb{N}, ~ 111,200,47^{0-47 .} 4: 4$. ＋11．511，512，51
（Gronmang ami healdiy condition，iii， 97 65，135－137，1：
Framg into manger－correctom，iii， 34^{2}
 $375,37+38 \mathrm{n},+20,+21,422$

ditho litlen Honf，Patern，Shres］
Feet Diseases and lnjuries

Defarmatice，comtran ted feet，© $\mathrm{C}, \mathrm{i}, \mathrm{s}$ ．

labeharech anaed lys surions diseame 11， 37 ： $37+.374,38:, 35,364,425$. $4-5$

［mblicins direamms，in，zo．31．

$205-i 57,4^{2} \div 4^{2} 4,4=8$
Somminco anl warranty－ee Fet
Guind datane fever in the fret，in，

 wenc，（1athom， 1 himh．Vilints ）
Feetlock－meaning of term，i，2t：m， $30 t$
Fell pony－atratmee and
Female genital organs－＇hee tith にぐいうがいい
Fenoral artery－iomation， $8,0,1,453$
Femoro－tibial juint and lisament，ni
Femur bone－comfurmatim，$i_{1}=2,8_{3}, \varepsilon_{5}$ ；

Fences－jumging nucthod，mi， 20 ．
Fenugreek－muetiminal ines，1i1，15，17
Fermentation－a cance win theome，i
 tenar，i． 227
Ferments produred in digestiun，i． 234.
Fetlock and Fetlock－joint
Cunhorm than ami defe：t5．i．21．75．76， Tu． 11,1 ， 141 ：maffamationt： 11 ． colneltigus， $14,332,333,3+3.3+5$

Fetlock and Fetlock－joint
 zot，zen，zor．305：laml，\＆en and

 11． 255.357
 Fous whathe－due we defothe ation．

 effocta，im，45．7．pale imfatum． m1，147，1．；bee aloo trition Con

Telliperatate，for pectal fiver，see it nume
Fever in the feet amil 心．trentment，if．

Fibres－lante structure，ii，zas．muscle
 （1）－rimil．h，2us nerse mbren set that tatle
Fibrillæ if mucho，is，
Fibrine or blood an fonder for sith

Fibro－cartilages jomm－thucture，is

Fibroma and ir treument，ii， 155 ．
Fibrous tissue，む゙c．meuring caume 1． 470 ．1umt diveane，ii，－ol：haer tafmule rupture，i，ams zio，sheatho of

Fibula Anfumathow，i，zi． 85 ；in，203，
Fields dininfectim，un，rat．See also

Filaria romity divence，14．उ7t． 175
Filled legs－atuci，twothem．\＆c，ii．

Fillings on foot detectian and［ratal，
Filters for ram－water，iis．3e．
Fiugers of man tompurnem wath fuot
Fireplaces and fires－statile wumbure
＂
Fireway 249＂perligree，i，t
Fireway＂We．t＇，milke．ti＇s recurds．

First－aid to－ith ．und impured－：rrale

First inter－phalangial artionlawn，in，
First phalanx fint lank，ii，wh

Fistulous wounds ．mid theis treatment

Fit condation nu．anme if term，ii，\＆t
Fits－a la home ambag，i，att，epileprat
 somblace amb warranty，ma，tis．

Five－toed animals lotece exmution

Five－year－olds hmmer what，ur．Gig：

Fixed joints－furmation， 11,274 ．

Flank cific：

Flannel bandages fir mably lés．iin，
shathres watmith，115，it：
Flaps in talde itr．maдge，…，
Flat bones dacupthin，\＆i，， $11,175,17^{\circ}$

Flat－worms－in mbertimer，11，112，172－ 174.

 193， 307 dring lin， $11,4^{\prime 15, q^{\prime \prime}, ~ 114, ~}$
Flatulent colic and it treatment，i， 28.

Fleant－nse cauning thrombtats，1，4：5．4，
Flenting＇s moture of white done．wh，
Flemish horses－hachaty dur］｜rack
 hlifer and clgatendale erimen，

Fleshy head
Flexion movements in lummゃн，iii，
Flexor muscles－action，\＆, ，i，ii．

Flexor muscles forms，\＆－hrathi，

 i． 345 ：fuedin pertinamb muscle，ii
 Sinisele，11，3i1，i4．t．
Flexor tendons 子eमfanm and perfan

Flies huren intereal wnh，u，t
Floating bones fuxm ．this user，11，Whe

Flooding
Floors for staken．nt
Flowers of sulphur
Fluid measure fir mantund maco．in，if
Fluids $4^{\prime \prime}$ ．जe latumat and slatave，is

 anturn ell see aluo witie l hathate
Fluke－worms $\therefore 15.11,3$
Flushing of sable irams，M，＂．
＂Flying Childers＂dehemt ．11．\} lik
＂Flying Fox＂tlluve of the walathed，

mper	Food and Diet
Flying trot ．n tum uf．41， 105	Fecerlme bevtem
Foaling－box ，leammer abll latating， 	
Foals	
11	Kertum loud mijo
，1	
小al 1	1.
	\％．
	1．1，2： 11818 ai，
	1 hamee matur．al fin
$\text { 13. } \therefore 1418$	
N．a．tatrag mameatute dressmg，ת．	$\therefore 1$
Jecth trmanaly and milk keeth，sa．	${ }^{1}$
$\text { 1. } 1 \text { 等, } 11,+1$	
mat mouth－suc	
	11.
『＂リ	
er	
der－room	－6＂ah，It，＇t．plethas．
al membranes fimatum of，ni，	
S weetute limbry mid betus．	
ollicles uf uv．ny	
entations \quad ．Hut．4भ｜	
ana，canal of	
odd and Diet	Foot－nctelet．
$\because \because \text { 以. }$	Foot and mouth disease
me\％．	ot surface 1 ．
hesun? , and manse of entos -tane,	oramen dextrum and simstrum
	ranmen lacerum ．n law it akull．i．
 ¿［16．17，11	ramen magnum
19，	11.
	ramen of Monro than tan
い口	
	reing wellalltu
	Forearm \qquad 107. due： 11181 1．
	11
 	Fore extremitres

Forehead－crmfurmation am！defocts， ，
 l＇al ebld，see that tule

Fore－Limbs－

1Finterang．Bu．＇／．

 ．and bulute

（i5emth belime tantlo．III．

Lymphath semela，it，1，a

Foreign Bodies

Foreign breeds of horses－vee tith

Forelock ，llew！，，

 Forks－

Fossil horses
Fossilized teeth

Foster－mothers
Foundation stock
Founder

Four－year－olds
Fowler＇s solution

Foxy oats
Fractures or Broken Bones

Fractures or Broken Bones－Cont．
Wetting procedure， $11,228-233$ ．
＇leeth－treatment，i，330；ii，230－242．
Vestetres or spine，11，235，230－¢prain Ahtanction，al， 24 b
［For ypecial brones see thoir manes，at Jaw，Velsw，kiba，LTh．1，do Gute Fure－limls，Itamblomla．
Fraud in sale of horse－leg．wifences ．＂！ll waranty， $11,408,409-11$ ．
Free－moving joints－firm，心．心．ii，$=62$, ：79．diseate， $11,27 \% 252$.
French breeds of hornec．i， 205 ．
French suture needle frir wombl，n，
Frenzy duetulirum intionmation，i，fut

 $1: 1$.
Fright cinted if horeco durng．ii，：iz．
Frœulum of torguc，i，z．
Frog of foot－．11．thmy，ini， $434 .+37$ ；

 womuls to，to t＋1．Froke an

Front limbs－isee linectimbo

Frontal cranial nerve finm，i， 303.
Frontal sinuses－f，rm，i，b．ii，seth thature eftectio，it，af，zis．
Frost－bites cansing fuatton，11， 379 ．
Frost－nails used in cuxemz， 114,451
Froth－wee koum at moms

Fullered fore－shoes－method，iii，$+t=$ ． 447.

Fumigation－see tille Inhalation and twnestion．
Fundus of bladder－atums in，i， 35 ， 5 ， 5
Fundus of eye－aplearmce， 11,110

 120－124．
Fungous growths andeet，ii， 36 ，

Furred tongue che to liver，：，zo：
Furrow of torsion in lintm． $11 \mathrm{c}, ~ 21, ~ 11 \mathrm{at}$ ． waw，le contrecturn，

C

Gag－fractured jow the tw，ii，239：physin Liven liy，sii．
Gag－bit－use w，ni，
Gait vee Actime
Gaits，shortened cumpenatinc pernt．
Gall－bladder mot perens in a burse， 1,
Galled back－tmue uf， $\mathrm{i}, 220$ ．
Gallic acid－mathim．al unes，ii． 455 ；in，
Galloping－equathanm，wotion and forma $1,3,2$ traininge，bis，yqu，sta，zoti，rempspor

 or dinemen due $50,12,17,1 \% 21 \% 354$. （1， Bis $^{2}+\infty$
Galloway horses－（＇lybledite brectime

Galloway pony useer won by Mr samela，1，ran

Gamboge－pwnmay i，y，wi，to
Game－bunting borses－freventum of howe athrom，11，5．

Ganglia－binm strmare and fumいいか，i，

 semputheth merser，1，i8t． 175

 fhaturient fever t．allety，12，21，42
Gangrenous pneumonia the t＂： enza，il．
Gargles and them Hec，in，＋1，Arog Firs

Gaskin camtinmunnll，1，22，22，Bo，－6．
Gasserian ganghon if cramal mexes，
Gastric artery fumatum，i，：52．
Gastric digestion and juice comp－

 fir weretmin of，D，D．

Gastric plexus－fomm，iom，i． ：$_{67}$

Gastrocnemil tendons－－pr．un，it．\＆

Gemelli muscie
General examination
General symptoms of limete lethio
 （ion for，ill 1f＝－15，
General warranty sum of，iii，sit．
Generation alturate pancen ant mlat

Generatuve or genital organs

Genio－hyo－glossus muscle
Genio－hyoideus muscle finm，di．．is
Gentian－modi mal inco．ii，th t．fefi．ai t：duce，11， $11,11$.
Geology bancufarment an！pat，iii．
German boil form，\＆．．．．．
German horses dhanlutim and 19 M．
 210． 45,4
Germinal vesicle and spot 14．$-47, \therefore 4$.

 deatmenmon， 11, tu \＆ $1,+8 t$

 （10．9）us， 11
Giddiness－hme to fram，1，，＇5，weztum

Gin
Ginger midumat wer， $11,4 t^{-1}+2$ an．

Glanders and Farcy

 ©\＆，2l＂，1－

 Mon－

 111， 15 ․

 5．Hambiare－eye，18，12．is in， 10

 1）

Glass callmine thel injum ：1．
Glass of the eye font lan war，ii．由s．

Gliding joints furniz，\＆，11，．＂：．．
Globus major and minor ．，lenti，it．
Gloss－anthrax－－mat

Glossopharyngeal nerve and amec （1い2い，1．
 lue．．＂11：：
Glottis of larynx， $1,+$＝manh wan．
Glue bandages we－，in ，m．．

Gluteal nerves hummom，1，
Gluteus muscles finm．
Glycerine
Glycerine of carbolic achd
$\mathrm{II}_{\mathrm{r}} 1$－+
Glycogen（＂）

＂Godolphin Aiabian＂ha－1＂．mb

Good stable
Goose－grease
Goose－rump
Goubanx and Barrier an minmanm

 suth helolt，lemath，ant nexght，1，9r， पy2．195，41，157，y4．

Goulard＇s extract－a，a lotinn，ii，+5
 Arthriti－
Gowing＇s prortustimi manmsent，iit， 283
Graafian follicles uf w．try，ii， 78.70 .80 ．

Gracilis muscle－finm，心，： 11.3.
Graiu as food－chnise，moture，©e．，ibi

 （1），in，anz see alsu ittles Curn，
ins of P
保 Parane hentimene，it
Granolithic paving firstable，iii，327
Granulation shese cusered with，ii， 420，427：wamiluculuge and hragy
 tinnue ill stome it thediler． 2.358.
Grass bee tithe brueture and Grow
Grass－woven shoes－11ヶセ） 14,420 ．
Gravel－（ace sture
Gravity－see Centre if grawity
Gray powder－－mernimal twe，ii， 488.
Gray substance of Lrans abl spinc，i， 36， 3 3．3，304． 387
Grazing（see J＇mbure＇
Grease disease E．flues，Sc．，ii， 107 ，
 443，151，114． $471475 \cdot 113,7$ ；horse－
 Cather，II．3St，1msumadress and

Great anterior cranial nerve－for
Great crural nerve formations，i ，$\%$
Great horse－mizh ，wit hatory．i，If s7n，170，150，111， $530.5+\cdots, 5+3$.
Great hyo－glossus muscle－furm，\＆c．
Great metatarsal artery furmation，
Great portal vein－－cisculatien thenugh． 1． 4
Great spianchnic nerve－form，i． 37 n．
Grecian horses limpoly，\＆゙，iii， 520 ，
Green food－cumm＂nisitm anl advan－

Green paints cam－ing pmanminc，m． 4
Green scum
Gregarines－fumn of parmite，3，jos．
Grinders月．،mmitum du
Grinding of food－－teeth and maser
Gripes cante ：mul（ratutan，i， $2-8-28$ ；

Gristle－stuctur if fane，fome．XL，in，
Grogginess athm ut uncmbud funt，hin，
 14t．ex．mamama for wambuen．

Grooms－mathacıtwas and manaдenem，
Grooves in thom－unce，\＆r．，iii，447， 445 ．
Grooves in trentr－nere ebdence．iii，qon，
Ground surface of hoces，ini，it

Growth of the horse
devel pment of frchont amel fut tytue No，in，

 late leefore linth，ini，202－295；rate

Growths linhe dincoser，in，205，20f：

 ansta divese， $1,4+4+272,47:$ J hose

 iti，zed．vinnum dramer due is，i ，

 14，1t：，zu．masce，111，227，270：sick hinree．：113，1＋1，
Grunting－a test iff wame i，51
Guarantee in whntume see dide Lammation，Wialanty ．

Guinea－pigs mmendotum for various
Macince， $19,37,3,42,450$
Gullet－ibhtraction，i，2n5．
Gullies for stakle tramace， $\operatorname{mi}, 85,8$ ． ．
Gum acacia medicmal wnea，wi， 5 ， 1 ，

 blyenes dive tor fullais．11．51．B18－ flanied，due ta teeth． $2,226,330$
 d⿲e丨匕，и， 21
Gustatory nerve fromatmo． $\mathrm{i}, \mathrm{za}_{4}$
Gut－whe eflect inn，1， 7 ， 205 ：hermia

 fur twith flame．1．izs

Guttural pouches from，and alseate due thaths in，i，54．545，513，113，508

H

Habits，bad－are Viuen

Hackney Horses

 131：Whlentamphan and Ibltemen．

 13－13：
Illushatmas－mare，i，zoi，thlams，i， 30，172，10t．tet th，i1i，3，es．
Hackney pony－unturame anl wicin，
 ${ }^{2} 71$.
Hacks－conform，tin，\＆\＆，i， $147-1+10$ Aratn ，1．latwin hokk，1， 203 hrow

Hamatenesis a linm wh herdme， 5 ，
Hæmatinics－－medume：tietmed，3，＋47．
Hematograph tromag phlve water，in， 14
Hæmatopinus on hall，it， 1,6
Hæmaturia and in wentment， $\mathrm{i}, 247,34^{3}$
Hæmoglobin－in blucul，i， 7 za， 43 ；atr change， $\mathrm{i}, 48 \mathrm{~m}$ ．mime， $1,34$.

Hæmo－globinuria and it treatment

 toms metaleti）fir 11,$2 ; 7$ ．
Hæmophilia and its treatment，i． 501
Hæmoptysis Nencription and treatment，
Hæmorrhage－e lilethas
Hæmorrhaglc diathesis and th treat ment，11，15s， 150
Hall－Arals stait at，2，2022．204，205
Hair－compuntum and Eromith， 11,125 ear， 1 ，uran，I．：lir sum

 155：remiw．1］f，wumato omblbiter
 in ilmeanc，in，35．sec，dans tales Coat，leather，heammet at
Hair follicles－－trmeture and secreamma． 11，：27，12ti， 1 31
Hairy growths un eye， 1,118
Half－man half－horse－t．ıble（нй of．：14， 52
Halt－and－go－lame due to ${ }^{\prime x}$ peedycust 11． 40 ．
Halters－for 4tull， 112, z：t：uperatums 1in，157，tramm，trotter，14，314
Hampton Court stud－frumdurms．i， 110.

Hamstrings－cenfurmatnan，i．2z． 85

Hand－gallop firm if，in，Juti， 197
Hand－rearing of foals， $1,287.11,222-$
Hands－cleancins for oferathomo，\＆e，b， $4-1,484.47 \cdot 4^{2} \cdot 34,4,154,182$, trmare tumbleml wis fuis horve，in， 4 H． $501-514$ ．
Hanoverian horses－mama，atrat
 1． 320.
Hard ground e，momb diveate，it，sor．
Hard liver－catuce if，i， 307
Hard－mouths－ponlucton comenis lap trmbller，i，ats．
Hard palate－itucture，i． 7
 whenng．III，12：－1．1． 131.

 adju－tment chatice and wre wif，

Harness Horses
Fitceding and momes，i， 152,352 ，iin，ano tanmarian of lintah and firetgat

 Mhasam，1，207，horblure conch－ horse，i， 1 ž．
Conformation，artant and tranng，i ， 144－152，ii，320．iii，3210－28
I Bivases enmmins th－lirain thmours，i，
 －hmalders，11．+35.
Whastration of $19 \mathrm{pe}, \mathrm{i}, 202$ ．
Shoes sumtalite， $13,443,+45$
Harness pony－une of typu，i，itio．
Harness room－structure，\＆c，hi，33t－ 333．337：plann，111．320－324
＂Harold＂－shite n tallion illunt，$i, 08$ ．
Harold strain－breeding frepotency，iii，

Haunch and bones \rightarrow conformation，\＆ 1，15，y8；mumbe compectam，is． 325 ， 33ti，330，340：Fmint furition and fracture，1， $5: 11,222,223:$＂samking of＂catsec，ke．，i， 15 ：sitting on due

Haversian canals in bones，ii， $176,10 \%$ ．
Haw of eye－atmuture and cammathom， 1．11．12：11，103，104，109，110；in，
Hay
A．fund－ammant，cumpuntion，kank，i， $2+1,-45: 111.80,03.07,68,49,110$
 247．W1．पू，G1，कn，प7，wa，118；hent
 anl long lay incole diet，in，343， 340 ． －pecial det for braken－wind，in， 13 ，
leddlang then，uis， 355 ．
Chewong，and loukng due to， $\mathrm{i}, 233,266$ ．
lheases due thliad hav，1，221，273，34tis 1i，42；11i，102，104，pulsoning，in，Uz．
Otenturm in hav，i，224，225，228
Hay bacillus－dincuveriec，se，i，224．
Hay－lofts 4rmeture，\＆，in． 320,322,
Hay－racks－stalde fittinss，in，3：7
Hay tea－preparatinn，219， 27 ．
Hayes，Capt．－wh cunformation．i， 4^{2} ， 43，55，57，62，65，55，70，77，un bane
Head－
A．a unt wi mea－nrement fur body pro－ Futions， 4, giter
1：1rth preventations，ni，274，274－2S2
Carringeand pmition，$i, 46$ of tham and 1．arimens hames：iii． $352,513:$ dreaser mothenced ty，i．47， 50. mfluence on wejgit of body dinententom，1，9x，yz．
Comfirmatom，i，2，3，4．A－1mptersating

 and hoft galta， $1,8-12$ ．firm of head
 lued i ， 8 lenth propmuma，
 i．402，tit illabler，in，307－710，318 320：sfrectal fentrires，int，tu2－405．
Commection ur conglang to wech，\＆\＆
 Lle connelotho．13，18－35．

Girowth tale，11i， 607

Sorkin：a catre uf full evil，ii，tiob
Auclling due tur hame iekness，11，55， 56

Headache－howen－uffermg finm．it，tis
Head－stall firs hase thetmage ini，

Healing of wounds－natmat processen． n，＋54－407．412
Health－defmition，degrees，and hyeionit primifle，i 213： $10,64,65$ ．fineo
Hearing－luna commeded with，in，18 ${ }^{\text {a }}$
 ．and cortiluger，11，3n：here dinn Earn）
Heart

Anatomy，wethe，anl functions，i， 43 fi

 dheram．ili， 148 ，sonmed dise to fumaning，вii， 57.
Drug－and esamuatan see Heart dine eames

Heart Diseases，心

Clasoncatha，and mdificrence shown by

Comsideratumo wh fatholay and yeneral

lorag affecting heat．18， $5=2,497$ ：an

Endatement，atiflay，and rugture． i ． 4 5
 1，454－1－8，ditmoultes and mothum． 1．$+5 \begin{gathered}5-+51\end{gathered}$
Folty digenematum and imforation， 1. $4+77-+70$
Intlamanathon of heare at perirathen

 stature mg＂arent ， 1, fot．

Valumbr waemen，1．t54，4is：laver affected by，b，zal
Varmbs liseace affecting heart，or re－

 ranged，1，45e，157，458，duppox，Re．， 1， 310,311 ，s1， 459 ，Milled legs，in， 704． 315 ．J wht atterted， 11,300 ．

Heat a calment livetse，i，zmi，21p，222： Find unthence，in，ise 105,100 ；

 semminaten of heare，\＆e．is，ást
 ＂ater panthatuon，bi， $1=1$
Heat，period of－Lece E－tram
Heating apparatus for staliles，\＆o
Heavy horses－llanle．two Hurant title lhanght or $1.11 t$ Hares，yrecha！beeed，seex Clyden
＂Hedon Squire＂－bluw vaceens of，i，

 $181,+40,+16,4+1,4+, 457$, anmane

Heels of shoes－finm，in，＋1t
Height of a Horse

K，te of gromth，：1i，\＆y，
kuaring intluemed hey， 1, ent
Borimm trealv traln．1．201，202
 heary buren imsomer，i，tond Hus

 Hhace i，174， $175,178,12,1$ ，

Helminths－follom and limesers dine of

＂Helmsley Turz＂－latwi，1，111：nii，
Hemiplegia aml 11－－ymitumo 必し，i，\＆20
Hemlock methrinal we 16．4．is doser．
Hemorrhage－ज．．．トleman
Hemorrhages（11），1m，11， $\mathrm{I}=0,1 \mathrm{i} 8$

Hemp－－ee lndian liemp
Henbane－matamal nec，i，fol；in，ro．
Henle，loop of formation，\＆i．．，i，it
Henry Vll and VIII lnowe loseedme．
Hepatic artery and vein form．

Hepatic plexus－birmatm，, ， 7

Hepatitis
Hereditary Diseases mul Influences

 112，5\％0．
Cambes of diverne，i，14． 217
Imeases－blendmig from mane，i ，of

 and wervinh hation in tre anlepoy 1．411，eve Allo mans， 11 ，110，

 aind whathme．I san，belly bert，！
 attectiank，11， $133,1+$ alic．ont．07 nimgation athe thematipan，on， －
＂Hermit＂ 3 o：－－

Hermia－jecinitum，i，315．Suce also Ruptare
Herniotomy fill liernia，$i, ~ z=1$
Herpes ult the k kn，1i，14．
Herpetic ringworm
Hiatus aorticus of eli．1phra\％＂，3， 45 r
High blowing ami it tratmemt，n, ，

High neurectomy－methoi，\＆iz．w，
High ring－bone－furm of ulean，in，zuF
High stepping traming．ルi，，т
Hilum ，if ovary，1， 78,7,
Hilus whitw i
Hind Limbs and Extremities
Acti＂n－in stanm：or lonh，
 45
Binutcrin：ini，
Fody－weight liverilmtana，i，w．

> (1)
werver，urterse ，wad mand

lineases vee trlte 1 mm
Fractura！lame ii
poutalyas, io

Functurn of the Imales，i， 1 t．
 Lirth，19，－14 4

Hinge joints turm，ick，in，the： $11 i, 441$
Hip and Hip－jont

 gancut and mu－tlen，11．－－7．275．33＊ 4 4 ． $3+2$.

Hyoideus transversus muscle－form， ※c．in． 31
Hyoscyamus for lungs，ii， 470,47 ．
Hyoscyamus－medicmal uses，in． 474. 4
Hypertrophies－skm Jineasen，it， 254
Hypertrophy of heate，i，465－47．
Hypnotics－medicinal uses，ii， 47 鬲，$\$ 77$. III， 1
Hypochondriac portions of ablonimal cavity，11， 3
Hypodermic syringe for injections
Hypogastric portion if abutanal
Hypoglossal nerve－desctiption，i，370．
Hyposulphites－mellcinal uses of smia， 11，+49.450 ，niphur，it，+90 ．
Hyracotherium－fomil remains，iii， 510 ，
Hysteria－bermo－globiuria termed，ii，

I

Ice－fire lirain bisorders，$i, 275$ fir be momblaze of mose and luns－a，sto． 11， 10
Ichthyosis an！！is caune ，彐2．．．is， 153 154：helenty mbluente，11，13\％ 140.
Icterus and in tre．1memt， $1,304$.
Idiopathic pericarditis－form，i，462．
Idiopatbic symptoms if diseave，iii， 14
Idiopathic tetanus form，ii．＋5．4ri
nleo－crecal valve uf intestme， 1,237 ．
lliac arteries－furm，i，452：dscabe，i． 474．475；ii， 237.
Hliac portions of abduminal casity，ii，
Hac thrombosis－cinse，symptums， （kc．，i，474．
Iliaco－mnscular nerve branches firmaturn， 1 ，be
Iliacns muscle firm，忍e．，ii， 325 ．
Ilio－femoral artery furmation，$i, 452$
Ilio－lumbar artery－f，manthen，i， 452
Ilium－formistion， $\mathbb{E} \mathrm{c}, \mathrm{i}, \mathrm{T}: 14,1,2$
 ｜1．atm｜，
Illuess，sudden－ducetions，ii，＋37－441
Immediate union metbon of womd－ W，ilume，11．+4
Immovable joints－furm．\＆c．ii．as
Impacted fracture－firm and treat．
Impetigo－ilrwis for，1ii，1，e
Impregnation－lwacens，and change in心！1！lue 1＂，in， 4 ＇－74， $261-264$

Impregnation－tube－nce uf，in，2n：
Impressions and impulses due w
 iflect，i，420
 luranzlobede，1，Joy．
Incised wounds－their treatment，it，
Incisor teeth－－form，wem，th，\＆o．i，6，
 M4．temintary teeti，hii．Ma－35 ＂ear abel maines in，iiis，ios－tras Ir．ectire imt
 111． 1 tc．
India－Araht hen in，i，202．parante in－ festing hurseo，ii， $17+$ ．

Indian hemp merlimal wes，in， $\boldsymbol{q}^{8} 2$ in，5，10， 11 ：formang by，in，54．
Indian pea－puisoning by，ini，58－60．
Indian pease 心 finkl，nii， 350.
Indian vetches ：In ford danger of iii．

 27，3：لhrug，ii， $44^{8}, 4+4,+2,0,4^{5} 5$.

 it9：water eitecta，11． 1 ：
Individual hygiene detmatom if term．
 ©
Indolent ulcers ams they treatment，in

Indolent wounds－dirngh，in， 4 ．
Infectious Diseases

 4，terintir and recesmitron，iii， 150 15
Mathemes ris mantmance of atrengeh， ［10， 150,551
Preventin and approwinn－aeneral

Colefinv－mase afteted by fial sire， ：11， 4
Varman divenen whinh are infections， i ，
 111，＋ $7,261,1$
 422，
［See atw eitlen Cimtagionm Itiseasen Ferem lombulation：for pecial diserme see 11 hame．
Infective ulcers than，\＆c．，it，fir
Inferior cervical ganglion－－atatuture． ac．．．
rior extremity of head

Inferior Iaryngeal nerves finnomm，
Inferior lumbar region mumben，in，
Inferior maxillary bone－firm，is． $1=8$ Inferior maxillary joint－ 1.1 m ，ii， r है Inferior maxillary nerve－fom，i，

Inferior region of body－thtuture，i，
Inferjor sesamoid ligament－furm，

 i，fo5－tri7，＋1 lantied lieels，ii，

 bemina，i ， 3 an，to 3 ，jalle mad

 243，2キ1－25：：librr，1，05－305；l1112

 ，4．an；skin daeanm owe 11 al lite 1werh，i，330：tempe lament la bile t．

 252，254－257，507：14n whambeヶs alli warranty，iii，42s：womme，11， 408.

 eye＂． 1,21
 blubler．

 11，35 r_{1}
 Presnami，Num
mfra－orbital nerve－lırm．．14n ， Infraspinatus muscle $[\ldots m, \ldots \ldots$,

Iufundibulum on tecti，iii． 3×5

 Inhalation and fumgation－fur list．11－

 e．かった 61，： 5
Inbibitory uerves alf hart，：44！
Injections and Enemas
 116，I \＆，二厶，

 1．-27 ．

 Fons at bithl，ait

 50\％：

 iii， $4=2-4=8$.
In－knees－detect．i，7t．Tラ．
Inoculation in intert114n dinesues，iiit．
 014d

Insalivation if ford dicestive process， ，213， 44, teetla mbence，i， $32 r$ ．
Insects－con ong ifmane，in， 78 ，horae acknow，${ }^{11}$ ， 35,50 ，Fotminnes of
 divesten，11，142，1＂お．－ther，atai drugn mothung．1，24，250，252，11，

Insemination artificial proces，iii． 23 ，
Inseminator
Insensitive laminæ if fort， $11 \mathrm{i}_{\mathrm{v}}+3+$
Insipidus diabetes and it treatment． 1． 245.
Inspection when see Exammation．
Inspiration of breathing，i， 402,403 astlan．，cumeltan，in．12：maceles

Instruments and appliances－anti－ sertici，ancl chansans of，n， $425, q^{8} 4$ ，

 aids，int，cu2－－84，firms，119，seno， 167. arommine and clipmina，ii，134， 135 ，

 reatradls，：11，156－1m0：utaries re－
 rampro in，zh7，tome wh blater，i．
 172，hush lapm and shears， $1,3 z y$ ．
 tramemt ace as manc，at Cutheter， Troxhow，※心．
Insufflator fur masal catarith， i ，soo
Integument－Inee Mkm
Intelligence－henllwondumanu nervous 1ヵnlıencer， $1,34.374$
Interarticular fibro－cartilages of witle jumt，ii，ze
Intercepting tank in stable drainage．
Inter－condyloid fossa of ligigh bine．
Intercostal arteries famation and
Intercostal muscles furmithon and

Interlobular veins of liser， $1,2+2$
Intermaxillary space of heut，i， 12.
Internal carotid artery－ 1 mmatron，
Internal flexor of the：metuarpus full1，成1 ． 11
Internal iliac artery fomatmon． 1
Internal intercostal muscles－form， （C．，11，；is．
Internal ligaments if hook－jome，is，
Internal maleolus atitina，ii， 37 ．
Internal oblique muscle wh whom，
Internal organs mmomalyen and ＂arr．mit，111，42
Internal popliteal nerve formation．
Internal pterygoid muscle and

Internal respmation－firmof，； 483.
Internal saphenousnerve－－formatim，
Interual tuberosity of humerum．i．ro4．
Inter－osseous arteries furmathm，
Inter－osseous ligaments if huce joint． －phalangial articulations
fullm，A1， $11, .73$.
Interrupted sutures for wand－stitch ing，11，41t

Intersesamoid ligament of ferlock． juint，11，：72
Inter－spinous ligaments－trink con－ nections， 11 ．
Intertransversales colli muscles－ furns，※́c．， 11,31
Intertransverse muscles of lum firm，道．， 11 ，sto
Intervertebral articulations of the trumh，In．\＆
Intervertebral foramina of spmal culมा1ม，11， 180
lntestines
I Neseription and digeston proces in，\＆e． i，235－238， $245-247,27 \therefore$ ，thew of bile 1，240；final at birth，1ii，220：laeteal －y＇4em whil．1．＋27：munde stricture， 11，300．Wertes，i， 230

 1．204，247：forewn bulien，i，274：in
 reatum，i，zar：whtructum，i ，zon－ 208，sos：phene in bowel，b．2usi
 poromine and poet－mortem appear авесе，ill． $45,46,47,48$ ． $5+$ ：raptare， 1，205．tuheranlus， 19 ． 51 ，hleratiom， 1，200，3od．
Drugs ，tfeathog，ii，$+54,455,456,4=-$ ＋$^{14} 44^{4}, 477,48,483: 111,4,8,13$ 14.

Unswminen and warratty of ibternal

［See alon tition Colle，Cimstiphtom，Itiar－

Intoxication erutic furm and poramang． 1． 4 度； 111,53
Intralobular vein fliser．i． 2 fo
Intra－membranous and insr－caribla

Intra－tracheal injections－adminis tastin，if Urme hy，1ar，18，e1，fom

Intra－venous injections aमminita thul of malicme lis，m，ta，z2：hos burne－acknes，ii， 57 ；fasturvent fever．II，wh，bon．
Intrinsic causes uf Jincanc， $\mathrm{B}_{2} 21+20$ ．
In－turned hoeks defect of i，so．
Invalid food－himets，requtatism．and

Invalid horses ee tink Ins．almit ons． Xurnmer batillume
Inversion（h）halder，i，271－2．3．rellum，
 10：dhses fur，ii， 773,48 ．
Involuntary muscle－form of，ij．zos，
lodides－merlicinal mon ant actim，is

 III．5，10：sulphar，：11，s．fto fte
lome medinal mea，is，yeo：iii，s

Iodism－andianns producing，$i \mathbf{i},+\infty$ ．

Ipecacuanba－mericimal nses，is，fro

Iris of eye furm，mumbe htres，and dich

Irish horses an lunters，i，137，138：in，
lrish ponies aflearmee，\＆o，； 168 ．
Iron－me．li，inal wer，ii， $447,4+8,454.45$ ， iil， $1,7,0,10,11 \mathrm{i}$ in antulute， $11,50$.
Iron fur homesthoes，ni，＋42．

Iron pipes，\＆c．，ined for stable drums in， $8 \mathrm{~B}, \mathrm{~B}$ ． 5 ．
Iron splint for fure－limb fractures，in， 247
Iron stable fittings－ust of，in，ro，
Irons－fior contration，iii，：73，for firing 111． 1 ำ．
Irreducible hermia－deuription，i， 16
Irregular bones formarion of， $3,1 / 7$.
Irritant poisons－list，and treatment of

Irritants an melanere，18， 14 ，
Irritation－uf badier，remedies，$i i,+75$
 4
Ischial tuberosity of hutoch．：，22 manele connlethush， $11,34^{5}, 34^{\mathrm{r}}, 34^{2}$
Ischio－nrethral muscle－асти，$, 1,7,2$
Ischium of pelvis－formation，w， 1 yz fracture，：1，257．$=50$ ．
Isolation minfections dicease，ini， 140
Isolation－boxes disinfection and struc． fire，i！．154－1：6，320－324
Itching due t．barley diet，iii， 3ª $_{4}$ ，bed
 dhe．wen athil uther symptoms，in． 1 ＋h 141．155，104，157，druge reliewng， iii，e：stampng caused by，iii， 341 ．

J

Jaborandi－medicinal uses，iii， 5, to．
Jacob－hmer．litedme，\＆e，iii，tu7．5rg．
Jacobson，nerve of－unsiu，\＆尺．i．395
James I ．נnl horncorating．נn，54t．
Jaundice and its weament，$i, 304$
Jaw and jaw－bones－confurmation．i

 fracture and fate cradle， $11,2: 0-242$ jum，in，at5．matacle comactunn，ii，
 1．1，w：wumdue cxammation，sii $370,37:$ ；swelling due the varmu
 10．I Oucked Jaw，see Tetanas
 （13，：5 $, 47^{\prime} 4,4^{3} 3,+b^{2}$
Jennet dewont ham harse，iii， 523.534 Jerking of limbs due th strinchadt，ii，

Jibbing lue tulnow dineave，ii，zt
Job－masters lan of warraty．© © ，iii，
Job＇s ile ratmon if wa dorsen，in，5：0． Joint ill vec himent．
Joint oil
Joints and Articulations－anatnmy he山！ent．di．．．．
Clan－limath and furms of juinta，ii，zhe，
Fetlonk，camme：and cottin jorints，ii 272－274
Chands cambins nexilihty of 11,127
Hean！jainto，is，－tiz．hacad with neck，ii， ざワーシャッ，
H_{f} cire
Hock－jnimt if tursos articulators，ii， $-77-27 \boldsymbol{n}$
Joint onl fere．Symus ia
Lomg－and bun－jnintedness－anociation between， 1.80

Shoukter，cltom，and knee junts，ii，
Spectinl featurem in tracture as conpraiced

Stithe－jonit ur temonubial，and tabio－ Blulat，is．275－377．
Tumber or brindal jonte $\mathrm{ii}, 2 \mathrm{t} 6$.
＇Truルh ．utiulatins，ij，＝03－2tis
Warranty whe somdnens， $\mathrm{iii}, 420$ ．

Joints，Muscles，Tendons，and Liga

 ments－dmestre ，and mimeres－Accilents and lirst amb， $\mathrm{ii}_{\mathrm{r}} 43 \mathrm{~b}$ ．
meakiown of haments ar sinews，$i i$ ， 251． 35 ．
Capred elbnw，huee，nud hock，ii，359－淮。
Causes and smptome of jomet diseaser，

Contantum and quas of muscle－
 culn， $1,27 \mathrm{~B}, \mathrm{~m}$ rubses and tetams． 11． $4=1$
Defetine atmon－c．ance of efonghalt． （1），11，365．зari．
Whell leas or wetem，ii，zut lymphan aith ar need， 11.22.
Fistula and pus annimemocies－causes．

 2：4，2\％2 $27,251,252,257$ ：dith． culty of sethag hase wherge masctas．
 lis thackuess of masele，in，24？．2tt． 254
Hammegluhnurat ehert（1）rimablar

 $4+3,4 \pi$
Hermbe the be mplate of muancular stam ture，S． 324
 vilin，ii，－82－284．
Louse cartilages，or groweba in joints， 1 ， 2ど，＝85
Poralysin and effecte，i， 418,419 urme retentim．1，853：What movement predmed by drues $11,47 \%$
Poultumg derectums，iii，31， 32 ．
koab back dine to weak musclen， $\mathbf{i}, 57$ ．

Warting if maseles doe to dinease．i． 311；11，30
［See aloo thates Atwhylenio．Artaritis or ＂Juint 111 ＂，lane dacaver．binsed kuees，Curth，linducations，Fruc． tures．Kmockine wer，Rhemma fism，Aracills，Thronghuin，Winel．々．1小．］
Judging horses acquiring knowledge for， $\mathbf{i}, 27$.
Jugular ganglion－furmation， $\mathbf{i}, 395$ ．
Jugular vein of neck．i，13：bleeding，i， 271：i1．377；alroge injectom，14， examinather for soundrew，iii， 372 ： mosele separating carotid artery，il， 321：obstraction and thrambosic，is， 473，475－477．rulue near，4． 402 ：iii． $14^{\text {t．}}$
Jumping－action，forms，and hunters H，anme，iii，J00－202，305，309；croup formation，i．58：musten ined 1 I ，ii， 324：reathing miracure，ii， 235. $23^{42}, 24^{8}, 243$ ，werneach，in， 305 ． ypatas，i1，280，247，354，thrum－ benis．i， 474.
Janiper－modicinal mes，ii，474．oil dose， ili，iu．

K

Kairin medicimal 1 rec，in． 450
Keeper of the Barbary horses－origin ftite， i, s ，
Kell in scrotum due to herma，i， 310.
Keratitis and it treatment，ii， $115,1+6$
Kerato－hyoid muscle－frim，i， 31 ；
Keratoma and treatment，in， 272 ．
Key bit for bumer，ini， 307 ．
Kicking at miehs and in 4．allen，ili． 140 341．mance

 thon at＂fretatims．13，34．159；war． ranty， 1 m, ，2．t．

Kidneys
Conformatime sust fumetions，i ， $333-336$ ： nersen ．mel arterice， $1,377,44^{\circ}$ ．

 3t3，i4t．tume or caltulate 1．24 470， 77 t Heme miluthons，1． 34
 481．111，i．C．untharite ，1hase 11，＋／3
Efteen of Nincime－dimmea，

 1．から，11，51
Warranty in to cumblan．ni．tiz．
King＇s interest in houmblitad rearme and Jumbi．1，Jw－12．
 （untit｜＂ris．ise．，1．141\％．1＋1
Kino－medumal unc，リ． 4 55
Kintyre Clydesdales
Knees and Knee－joint
 ness larsen，1，1：1，1：2，15：atetectary

 13．1yt．
Bandaging，in． 37.
 102，107．147．hnecesp alat jamts． 23：11，201，202， $912,171,272,275$
 18131， $111,8^{85-457, ~ 4.4 . ~}$
Howed hase ond wher defelts，i，74，75 11，303－305：in．375．Trum tendency， i2， 20
firoken kuces，1i．4：2，4：3，437：fraud and Warranty， $18,+30,42,420,421$
Capped huecs，b，zou fiz．
Fractire of bomes，it．247．
firowth mennuements table，Re，iii， 297.

Goundoess ：umel waramis，in，372， 374 $375,370,33_{3} 3,41,418,420,4-1$.
Spran uf hgament．Me，ロ，244． 354
Sprong knee cumdnim．1，74，17，37
stable vices－iojurnes，ini， 342.
Various dineases affi－then arthritic，ii 280，287：matlentern ． 1 Int allomder． ii， 157 ，splime． 11 ． 207 ＂reatran fors iii，114，smel alllh，u， 555
Knives－fur cavmatm， $112,172,185:$ nemr ntumy，hii， 1 tha，watice remisal，iii，

Knuckle－bone sec Astaz．lun
Knuckling over at fedmehs．\＆eames 1）， $53,297,245,347,355, ~ 114$ usund ncos，іii， 372.
Koch＇s dineuvery if tulacrale lacillas，ii 50：We of antmeptuc． 11.48 ．

Kreatin and kreatinine in wrine， 1 ， $3+1,342$ ．

L

Labia－structure ．mil glands，i，：8，73，74．

Labour pains in forlone，in，27w，alnes
 10，11，57， 11
Laceration of＂．，li小，及．11＊，＂f mиッ

Lachrymal bone linm，©．，ii， 187
Lachrymal fossa，sac，and duct－－for－

Lachrymal gland of eye－diseases，in， 114

Lachrymal nerve Cormutum， $\mathrm{i}_{\text {，}}^{\text {：}}$

Lady＇s hack Aralsment－1．．s：

＂Lamb，the＂huglit．©．．．，＇s．
Lamellar portion fles．ncmentm nucha．

Lameness

 341.

Fracturen c．anims． 1 i ．

 nersage，ni，101，24，105
 $3 \div 0.307$
Thoeing callums，in， $4=1$ ：$f=$

 16．2ur
Sympenss uf barnme divente－－where is， $282:$ hammendelanma，in，ald

 ii，us．
Consumbluen and warranty examion tum fon and dincomen producimes， 13 ．

Lamina if tiese brne，n．a＇e．
Laminæ dorsalis and ventrales－ furmatiom，m，z＝t．
Laminx of hair and horm fum，ii， 132，132，114．1：4． $435 \cdot+6$ ，dinemes

 37＊Other wame amb womler i，ह2．

Lampas－－cather，thatmemt．\＆，\＆F
Lanarkshire miginuflybudator，i，no
Lancet－we for lamul－

Land－fur lirechms amel rearmig，i，it \therefore ．

Land carriage of horses fambtio

Lanoline a an wimm，14．42
Large horses of Sonlanl hworv．\＆e．

Large metacarpal bone fumat＂m，
Large pastern bone furm，tunl．11，wh
Laryngeal nerves firm，tum，i，

 a－1
Larynx winturation，bunc－and men

 i，507．509， 511,512 ；sombltues，in．
380， 380.

Latches fur luore－boner，nif，zes．
Lateral crico－arytenoid muscle－

Lateral ligaments of virnme jimes，is
Lateral region of body， 1 ，it．
Lateral surface of hanlu，1，10－12．
Lateral ventricle wflrom，i．3． 4
Lateralis sterni muscle furm，\＆\＆
Lathyrus sativa in firmi，ini，s：on．
Latissimus dorsi neree，omi muscle，i，

Laws． $187.111,5.7,54.5511,542,515$

 infectan．jil．15：le2thathan fur
 swhidnes wo Whatraty

Lead compress fur silhu， 11,384
Lead－poisoning init it calisec，Ne．，is

 hanter tramins．in，as
Leather shoes $11 \sim \mathrm{c}, \mathrm{iii}, \mathrm{f}=\mathrm{O}$ ．
＂Leave his legs behind him＂－con－

Lecithin in bluelt，i．＋i．+i 5
＂Leedes Arabian＂．Jiitım，i， 11 ．
Left heart－struture，出 ．．．．i．+37.
Left portions if inmmanal carity，ii
Left surface of hexd，i．1o．
Leg ur veamit thigh of himill limblean

Legs eeutites Fine－huln，Had－hmbs， Jimatm
Length of a horse heterminations，ic．

Lenticular cataract firmation，ii，$\tau=0$
Lentils is fimsi，ini，：r－rit．
Let down at belly－blatment of shaw licises，แi．उ10，：m．
Letters an wate if lanse一naranty，尺e．

Lencocytes－in Lhand，i，fit，in urine，
Leucorrlioea amil th treatment．ii．पz．
Levator muscles－dintimtim，No．，ii，
 304．ii．is，cimtarame，ii．33t，lahii shferjuris allel oleqple nowi，is，zos．

Levers in catume lommantion－bonos，\＆ic． 1，33－32，118，145：：14．

 4.7

Lichen wif thin，ii， 148
Licking the wall wit stale－a sign of
Lieberkühnian follicles of istestine，
 tion，iii，47，\＆3，\＆ 4 ．

Ligaments－

lineanew and injuries－see title Jomens，

Ibsplatement of bane prevented by，ii，
Ligamentum muchat－see that tule
 $387,3 t 8$
Strmatite of canon，i ， 55 ，7fi，fine limb， 1，．．．it，wa，2z3，Ne，1，i，12．1．4 teva aml fint，is，art．penim and

 －1r．um－
Ligamentum nuchæ Bursment mul

Ligatures－fun catinat（1），112，1－5，herm，

Light

Light－coloured horses－bedininr，iii，
 ind wi，II． 1 ： 7
Lighting of stables－vee htablen
Limbs Conformation，

F＇athea an har－see Fixatleer
I lexthe and eatelasiun－buber ．1shinting 112，1i，20

Crammins，w，ishug，EC，in，48，135－137， 138
Hewht ytumutinac，amb weizhe of body

lenethams rate of arowth hefire bith

Model of bour and limis，ii，qua．
Soundnes and fiom examination and

Special sermente amb conmbinon to man，iii，＋85－40，al manclen，in， 401．＋42
［hee alan titles Fure－imin，\}find lumbs. Acturs，Locommthon ।
Limbs－Diseases and Injuries
foblaging，blaterins，ims fitma，iii，

lone diveases，di，zun，207，214，17．210
Delective actum injuries，if，ub－402：in， 455－453．
Enlarechent or shelline due to drapy i．311，filted lés，ii，314．2imuler om？farcy．ii，3th，law themae， 1 at：
 thancitis，in．22－2 fore rlienmatiom，
 for chellings，is．44． 3 in， $1,7$.
lerhimg and seringhatt．1． 4 Ir ii．305：iij 215，3＾7．274．42

＇peratima－for contraction amentericht comar，iit，108－174，fir bameaving， iii，ma，raz：meals for rentsmat，iii， 157． 156.
Faraluin ami cripriling ramecs，i， 385 ；if －6，30，230，237，208
Prubliene ditectims，iai，3R． 32.

Variun dieases affecting limbe，ii，az－ 24，tiv，62，04，147，142，157，210，376．
 Frathres，Lameners，Amaing fir slece ind parts uf lomb，see tutles Feet， Knces，㣽
Lime－a＾a medicine，ij，448，450；iii，5． 9 ： antidute，iii， $45,51,52$ ．＂hthe＂for． mation inthelicm，$i, 39=3 t^{+}, 354$ ： iii，124，whin mitimumtims blice te， ii， $1+3$ ；water teat，ini，131， 132.

Lime jnice．\＆ic－an antidote，ivi， 5 s， 52.
Limit of confusion skm a－organ of tu11， $11,11,1,-7,1,2$
Limited warranty－firm of，nii，\＆fi．
Lincolnshire horses－liっtiry，式，in， 54
Lincolnshire Lad II（1．fis pedaree，

Lineæ transversæ of ：（b）micm， 11,20
Linen bandages user，
Lingual glands and nerves－ilescrip．

Lining membrane fomt intlumm．
Linseed and cake a－funl．mp．．．it．m
 F．11，112，55，
Linseed mashes－frepurui．．．．© ，iii

Linseed poultice－preforatson，and ＂1：11 lr，4，आ1， 20.
Linseed tea wrparation，iii，：7． 114
Lips

 141：stumathis partulins， 13,4 at
 24． 5.
Twitch appljatinn，iij， 153.
Liquid ammona－as thmutant，ii， 450 punturng lis． 14.52
Liquid food－aune uf diacane．i．z2，
Liquid medicines admimatratum，แ1，
Liquor arsenicalis－mes，N．．i．$\$ 57$
Liquor folliculi afewar：ii， 70.
Liquorice－11が，an medrome．iif．15，17

＂Lister Turk＂－history，jii．str
Lister＇s antiseptic system firw

Lister＇s strong mixture fit wnand tre atment，ii．flu，f
Lithotomy operation－see stume bu the hilatiter
Lithotomy tube－uses，心c，i ，min
Lithotripsy operation ald imstrmenth，
Lithotrite－unes，\＆o，i， 36
Litter sec liedung
Liver
Cimultion balls effect on，ii，the
Cimformatina and llamene ハ上e，i．238－

Liver Diseases and Injuries
Aluhanimal，whates－drught．1，310－312．
（Lugenturn uf liver，i， 303.
Draza ，thectang，ii，f50，415－4ris，408： 111，
Fatty and raptured lives， i ， $308-310,470$ Infl－mmation or hepatitas，i．3－5－308． J．umblise，icteros，the yeldaw，i， 304. Mustard phanters over hecer，iii， 34 ． Sigan of diveave，iii，${ }^{1}+9$.
Spanme of the diaphragom，i． 312
Temperaments lizble to divease， i ，ais．
Tuberculonis and bacillus affecting liver， ii，so， 51 ．

Liver Diseases and Injuries－C Com．
Vitn us dweme ，lue w，de－dianthea． i，220．d上embedmordera，i，272， 202 307；filleal les．，11， 3 r．4：〈65：gidh
 heath，11，S4．Shal Jweanes．11， 139.
 10ye 171，173， 874 ，313－315，genera Elun ot，113，2DO， 2 ril， 400
Liverpool bit－typre and we，ni， 350.
Livery stable owners－law of warranty ぶし．，111，＋15．417．＋1．．

 113，101，
Lobelia－medい mal meが，1i． 472
Lobules－w lisen，i， 232.24 ．of athaty

Lobulus Spigellif purtion，i，zic．
Local authorities－hacose ręuhations，

$$
13,37.44 .
$$

Local diseases
Local dropsy ul whently，u， $8,8,8$
Local inflammations of the thin．ii 1 paralysis 1， $4=$
Local symptoms of dincsuc－defintion 114． 144.
Locality himpe if．it a heme．n，tis

Lock－jaw sectimm
Locomotion，Equine
Hones in lexema，and effect of ，arr， 1,33 35，440
Foutponts of s．atime phues，11s．207．
Forma sul funtina in amble，conter．

Speed and centre of erasity，de．，i， 23 30．111，142－14
［See alootiten Actum，Husements．］

Loins－conform．ation and defert，i，it 5 ， 57，102：bunte and fracture， 18,17 235，230．lumbar nersen，10 37．5． 177
 179，iso nfram，il，－4う．
London regnlations int－talde matter－ in，8：，子 35 ．bale uil hurnes and war ratly，111，＋17
Long bones ilecriptimand owifiration 11，177，170，frature sethmis，18，z2 230.

Long conformation－of lisk， 1,54

Long low huse－apmeatuce，Ac，i，g9．
Longevity of aeain H．mmer lunce，i，
Longissimus dorsi muscle－from，\＆c $11.300,323,3+4$.
Longitudinal fracture－firm，太心，it 221， 222.
Longus colli muscle－form，尺e．，in， 322
Loose cartilages \boldsymbol{w} jumtヶ，小，新
Loose－boxes
fieddnat cavimg heat and mjury，iii， 356 ．
Care if henters in，ini，3ro，mule amb lial，iil，255，268， 285 ，whe hisuen， in，23，24． 43 ：trutters， 1 is． 31
Comeyance of hornes－by land and rail， iii， 46 4－457：by sea，ini， 4 br． 4^{52} ．
Infection，disinfection，and secupation afterw，rli，in，153，55t－15h．
Shoes for minnals in，in，1 39.

Loose－boxes－Cunt

 337.
＂Lord Derby＂ 115 －hathnes vallime H14－1，1，17：
＂Lord Derby 1I＇＂ 41 §－｜
 blunt ． 1 ，
Lost dog and horse stuy if Zufig．

Lousiness－－ver liac
Low in frout－c af amatjon amb efter
Low neurectomy methat，ice sii．ms 1＂き，10t
Low ring－bone firmitiln ac， 14,2 ．
Low withers－hou bter．f．， $3=4$
L－shaped stables 14.14, de，11． 22.
Lucerne hay cimjutum，政．．．in，b．

Lumbar arteries－witnartin， $1,+53$ ．
Lumbar muscles of wferiur region，si．
Lumbar nerves formatm，in，i
Lumbar portions of abdumand cans．
Lumbar rheumatism－symitnom，乐 13． I
Lumbar vertebræ or spine firm，

Lumbo－aortic plexus fimation，
Lumbo－sacral plexus－brmatin． ＋2，－5）
Lumbricales muscle－furmi，领，ii， 33
Lumps nu nkin， $11,1: 7,1$ th．

Lunar caustic
Lunging in hunter tr．mong．in．in 7,30
Lungs

formand tar
452－4 4．4． 4 ． 1 ．

 fommatron，112，二小
Diveame amd injum－－vee title Inomg

Lungs－Liseases and Injuries－
 1\％ 1
lirohell wisd，ii，12－14．与oumal for detee． tus，i． 400.
Prome hitm and athema，ii，1－1，i1
Clawificution and general combler，tum－ 11， 1.
Congentum and intlammation phenm． mia．13，5－10，lewrealtected i， 457. ＋b：
 lint and sucthang remedes， 15,470 472.

Enbalism of lunes，i， 473 ：ii， 14
Hhastathons of disomes affictug， $1 i, 34$ 42． 14.
Pleurisy＂I pleuritio，ii，14－17．

Lungs Diseases and lnjuries
 \therefore 二小．
 311．A．－4． 14.

Lying down

Lympli

Lymphatic anmals docone lalat：ay．
Lymphatic glands and system

Lymphocytes in わいmi，，\＆+
Lysol for womme，1，f2s

M

Machine－made shoes nua，ini．中1
Maculæ

 111， $1 \cdots$
Magnesium，sulphate of ev 1 ，min
Maize as food

Malar bone fulloum！A．．．in， $1:=17$ ？
Malarial fevers
Male fern－dsa，m，m
Male organs of generation－mec k － ramuluther．
Male pelvis－nterite ui ：$+\mathrm{t}=$
Male teeth－sumber，：
Malformations vee luslonmtar
 5－15
Mallenders

Malleolus ointic．is
Malpighi，capsule of tum，t！m，心．
Malpresentations in｜ra｜thas in，27 －7．．flem，い1，2－
Malt liquors
Malt sprouts ．心． 13 ，

Mammaliau ovunt－fitmotum aml fer

Mammary glands－minnmatw + ＋nt lebehump118，1．12，17：14．44， 335 ；

 alum，ii，＋it．Nexmun effecth，H1， 226．（See aly M1／k

Mammitis－treatment，\＆c．ii． $02-07$
Man conmpariorin of wheleten if lowne，in，

 Cimbtum milaences． $\mathrm{S}_{\mathrm{C}} \mathrm{C}$ ，M，257， $=55^{5}, 479,482-4^{-}$.
Mane

 Mangel－wnrzel prablans by，in，引。

Mangolds－Fund uner，in，弓る
Manholes－in halile irmanget $111,85,86$ ，

Manure veellun

Mares
Hlintering whale＂ －n veavon＂，ins，34
 hathere－atherobt lawa：1，173，I7t
 177：hackucys，i，115．119，harnest hurech，i，15：，153：linatery，i， 125, $135,176,140,142,143:$ prines，i，157， Sit， $101,1+13,163,171:$ hirt， 1 $17 \pm .174 .177 .178$ ，（1！lunt） 111,268 －nttonks， 1, TM
Care and fornt，Ad．，iff in fobl maren，in， 208－210．215－218，204－2 2to：allet toon．1， $2 S_{5}$ ；weanthg aftor fresh servi，．， 11, 2ы5．workine durnme sulhlmg atlel precratacy，1，286， 287 111，217，254
Catheter masertion and uses， $13 i, 177,179$.

Cirobdin if forals－mdnemLe of mates，in， 247，218．
Hatimg and impregnation，in，21 $3-215$
 artaficial immeminatam，ni，231－34 cantharider atsone． 111, ers：mothebse of firy ble ofl flather of afrorg．mat $230-2+5$ ．
Pcriod for fulaliz，iii， 2 ？
Stone in bhadder，or venial calculas， 1 ． 3^{-18}
Tronblenome mates，remosel of ，wemes iii， $180-1+$

 Lesual Interaurse，Simblang uf Fnala．］
Market sales of horses－warranty a＜ 10, iii， 417.
＂Markham Arabian＂－mıtery，ぶ 1, ITC， 1 m.
zings－form and rotin of special makk nn holses，心．，（131，f05，45 500： 1 181 Clewhenty buyy 1．127，132：

Marrow of unne，ii， 175
Marsh lands fever ，，114er，111， 7 名
Marston－shire horee，puce，1， $\mathbf{3} 5$
Thartingale－une fir lourness aml how horver，i，15r，iii， 313
Masculine features riftel at cantra
Massage drome bumbtud ly a＝ 36
Masseter muscle form，心．in，zous． Masseteric nerve formatmin，, $70\{$

 24．$\quad+7$ ．1пиperfact elfect，i， 272 ， 2ta，or．lim ut pumer and diffictity athe t ，dincas＇s， $1,430,504,11,44,45$
 fimaten inhinthay in，1， 305.16 ， 10,

Mastoid process of tompural lymin，ii，
Mastoido－auricularis muscle－form，
Mastoido－humeralis muscle

Materials fis stabte sructure，in
Mating of mares－－wectev litcerting Haren

Maxillary articulation－－inn，ii， 185
Maxillary bones－tw
品，
Maxillary nerves firm．

Means of restraint lureey daraner

Mechanical apparatus－bowed knees．

Mechanical causes of dincine，i， 210
Meconium plugging fertum of fuals，i ， 3.4

Median nerve and brameloe formation，
Median neurectomy－methus，起，iii， 1at． $102,104,105$
Mediastinum testis $-\mathrm{f}_{\mathrm{u}} \mathrm{rm}$, n，firi，bit．
Medicinal plants－aperarame of il
Medicines and Drugs
Act：on andunen， $\mathrm{ai}, 1+1+1+$ line ofdrus． iii，：－ह．therafeutwa！actom of medi chen，ui， $12-14$
Adminintation ame preparation of physur

 ＋1，refunal hiraes，meath of fore 114． $111.157,158$
Antisepthe and watmit treatarent，it， $420-$ $4=2,4+2-4$
Usean：Whe tu aluane of druge，$i,=72$ ， 27！，260：11，84．143． 473,475 ．
Waseh，memures，and weinhts formous trige－lint ol，111，9－12．
Eatcrand remadien－garales，haments NL．：2 1，＋1－43
For atting on tivsur chanes－alteratives

For lonisd，affecting mutrition of entire

 i1． $450-452$ ．

Fig heart and hlmbl－vencll，in，457－462．
Fur kidneys：Dabluer，and genterative ET：ans，ii，473－475．
Fat lamas alud sit passayen，ii． 768 －472．
For nexumas sestem－hypurdics，tomics， and stmmulamts，ji， $47^{\text {n }}-47^{8}$ ：anies thetas alld aladylles， $11,479-483$ ．
For him and＂t－weating＇，ii，47x 473
for stam，h，ligratue－ystem，bowels，

Jufecturs alinciben－little value of，iii．
Incellatheoms Irug－firs varions ablment is． 7_{5}^{3}－ 401 ．
 Anetathetios．
J＇minthr ator Pbanaling－eet that title．
 pritume，111，55，11；fumders，111， 10 17．（trataglits，ii1， 18.

Mediciues and Drugs－Cont．

Ireatment of preghant mares，11，ito Ghp－board horses． $111,4+3$ ．hlow
 ※゙c．，in， 316.
［3or vecha！druga．\＆．．we their names．］
Medulla，whd mealisliary cassty and fra－

Medulla oblongata－furmation，\＆c．，i，
Medullary sheath，\＆c．，uf nervertiuses，
Megacocci uf lacteria， $1, ~=20$.
Megastoma－if f111，w wrm，ii，1óg．
Megrims－nee Verticu

Mellitus diabetes and treatmunt，i， 34 ．
Membrana decidua in merm，14，－53．
Membrana granulosa－firm．n1， $2+3$

Membranes－bive ，小urn uf ai，tou；bonce stankute ant！drecanc，a，170，208； Lr．ant－theleewhí if．1．487：heart

 i， $235_{0}, 23^{\prime \prime}$ ，lenne dMeanes，ii，1，jrol－

 11tcm－dumbs ：yeatatinn，112，252，253． tee also Nutous tuembranč．
Memory of a lume，i，jus，ii， $434,440$.
Meningitis－of brain．i，405－407；spmal and cerebun－unnal finms， $1,718,423$ 425，drag fr， $11,+77$.
Mental nerve fommann，i，394．fracture effect，i1，240．
Menthol－antineptic uses，ii． 487.
Mercurial poisoning－cauncs，\＆c．ii． 4．s： 111 ＋+
Mercury and preparations－ased meticmallz，心．e．，11，454， 480,455 ； 111．3n 5－dmes，iif，子u：proisuning und いuturite，แ1，中8：11，45．
Merismopedia uf hacterin，i，225．
＂Mesaoud＂－Arab villion illust，ii，
Mesenteric arteries－－formation and diveanes aftectmg，i，$+48,+52,471$ ，

Mesentery of intestine．$i, ~=36$ ；hermi．
Mesohippns－－fional remain and horse का！ 111 in， 51
Mesorchinm of tevic，ii，ós．
Metacarpal arteries formation，i， 450 ．
Metacarpal bones shin or vplint lionceat －furmathm，dc．1， $20,75,11,1197-$ 20n，ili， 47% ． 478.487 ，fommer IVes and tumil remobns，118，＋77，478，511，
 210，215 280，214，fatiture，H．223． 248：jnint finmatun，11，276，27－2
Metacarpal periostitis ad its treat－ ment，\＆
Metacarpi muscles－fioms，i， 330,331 ，
Metacarpo－phalangial articulation，ii，
Metacarpus－чее（anom
Metal shoes－monodution，iii， $4=9$
Metallic sutures．ふ心．，fir wounds，ii， ＋19．
Metatarsal artery－formation，i，453．
Metatarsal bones－formation，\＆ E ， i ， 01,$278 ; 111,487$.
Metritis and its treatment，\＆c．，ii，Sg－n， ज力，，多：iii． 180
Metro－peritonitis and its treatment，
Microbes and micro－organisms see （）ratainils．
Micrococei－fumation． $\mathbb{E}, i, 226,2 q$ ．
Microscopical discoveries on culuses of dredve，1，224－220．

Microstoma－a form of worm，ii， 369
Middle cervical ganglion－formatmon， 370
Middle flexor of metacarpus or canon －muncle form，©c．，II， 331.
Middle gluteus muscle－firm，\＆c，，i，
Midriff－ane［ Hiaphragmi．
Military Horses－
Arr－cpace ill stabler，in． 80 ．
Dineake ireatment－epizootic lymphan－ ：llis，ii，of：hurve atckne5s，it，53－58．
Histury un，i， 170 ，zuo．
Maize diet，iii， 1 s．
Shoeing－history and injuries，in， 429 ， 452.

Water ammant，jif， t 20
thee atou tite Cassitry．War．
Milk－absorption by kins，if， 130 ：antidite nsen，ini，45：foal－fearme with cow＇s milk，iii，224，225：－ 1 ck hasees diet． 1ii． 25.141.
Milk of mares－alum fir tryang ap，ii，

 i， 225 ．refunal of inare tor feet ford． 11，94：smpprewhe connen，11，00，930 orilerad nulk，$i, 251,285,280,287$ ， 288， 289.
Milk－glands－see Mamnsury glands／．
Milk－syphon－use of．it，g5．
Milk teeth－apparance，\＆\＆，ia，303． 47n：hedhay canturg tongue inform． Matin，心．e．，1，252，325．
Milky streaks 山cross eye－disease signs， in，1201；111， $3^{n i s}$ ．
Mill－dust for bedtling，iii， 350.
Millers＇horses hable to＂stone＂，$i, 300$ ．
Mineral acids－fined and＂ligestion，, 242．mednthal effert，心．e．，1i，454， 807．parmoting effett，in， 4^{8}
Mineral matter in bune，ii， 575 ．
Mineral poisons and their effects，ii， 403：in， 4^{8}
Mines－contamination of air in，iii， 76,77
Miocene formation hurse wrigit，iii， 512.

Miohippus－fomil remana，and loorse orgin，1ii，512．
＂Mischief＂，－York hire toach horse（i）．

Misrepresentations and frated in sale if hornes，warrality，mi， 410 ．
Mistakes in sale of horsen－warranty regulations，\＆e．，in，too．
Mites rausing skin diveases，ii，165，166－
Mitral valves－sonnds and direase，i ， $400,404,455$.
Mixed concretions form，\＆c．，$i, 300$.
Mixed food－advantages and uses，iii， $343-340$ ．
Mixed hemorrhage－causec，\＆c．，i，son．
Mixed joints form，\＆c．ii， 203
Modern horses－descent and prosition in animal world，iin，$\$ 71-484$ ．
Mohammedan belkef and uses of horse， iii，533，534．
Moisture in tissues－diring＂،zo－ turin＂，1i，27；in health，ii，28；in hoor，in， 340 ．
Molar glands－description，\＆．c．，i， 230. Molar teeth－furm，defects，anil growth， i，6， $230,327-320,332:$ iii， 3 范． 390 ， 307－391． 470,49, uf 1 emporary teeth， ini， $394-395$ ：fracture and decay，i． 330， 331.
Monads－gemration of，iii， 259.
Monday morning disease－causes，
Mongolian horse－appearance，\＆c．，it
 pusoning by，1ii， 63
Vol．III．

Monorchid－ileacriptwen of，iii， 184.
Monro，foramen of -11 bran， 1,38 ．
Moon－blindness and it cause，de，in， 116－118， 121
Moorish horses－linstury，wi，$s=7,530$ ，
Morbid conditions a cign of dieease，i ， ：3， $21+$
Morgan horses－apwarance，（ungin， ぶc．，1， 207.
Morphia－injectums and medicmal wes i，250， $303,11,10,42,111,5,4,3$ dusco，iii，io Aractire eething，ii，

Morphine，acetate of－elone，m，o．
Mortality dise to c．struthen， 14,186 ： eproutic lymphangnss， 11 ．01， 03 ： intluenza and phetumanta，it， 32,33 ：
 turient fever， 11,99 worm 111 yubly anlumals，ii， 172.
Mortification of reproduction orgam，if
Mosquitoes causing hurse－sickness，ii，55， 5：paration－wh as protection ugabse，

Moss－litter－11se of，iii． 138, I 34.
Motion－gurglme sound duriug，11， 71 nerves of motiont， $\mathrm{i}, 342,347$ ，para y．hs and catues，1，410．11，230， 23.17 ［See ，dhe tathe locumotion，Bave ［hent：］
Motor nerves－formation，$, 374,385,386$ ．
Motores oculi nerves－Cormaticut，i， 385
Motores oculorumnerves formation， （sc．，1，392， 347
Mould cansing diseave， $1,216,221$ ：ii， 1 ，
Mouldy hay－effect of，iii，102，35 $2,35,3$
Moulting－arsemic wes，11，454；rheu－ matull durng， 11,21
Mountain ponies－breeding lands for iii， 210 ．
Mouth
Conformatisn and examination，i，5，6－8： $111,371,372$ ．bones and civity，in， 183．185，187：deformuty，＂parrot month＂，i， 331 ．harners horses，i ， 151，muscles，44，307－300，314．
Ducharges－hleeding cances and aid，ii， 10， 470 ：freth and foam，11，50，213： suliva seretion，\＆Co，1， 258 ．
Druge for mouth－washes，\＆e．，ii，50．455， $457,4^{8} 4,4^{85}$ ，in，2，7，5．applacution of mouth wanher，and poisming treat－ ment，13，41， 52.
Eruption and disease－facial paralysis， 14，\＆23：fung or paranten，13， 109 ：
 stomatatis and throwh aphenes， 249－252；II，4\％， 50 ．
Poivonag effects．ii，46，47， 52 ．
Spuce letucen teeth－formation of，iii， 390， 494
Mouth－gag for physic giving，iii， 20.

Movements－

Abuorbent system affecting muscular movement， $1,420$.
Slindness and it tests，ii， 123 ．
Centre of glavify and equilibrum of a loorse，1，28－3t：ini，192－194
Excitablity denoted by ears，i，42， 43 ．
Muncles in relation to pooter and speed i， $31,3=$ ．
Xervons system and train influences，is 372，374，zuo diseares alfotemg anwer of mincment， \boldsymbol{i}_{1} 405：reflex movements，i， $388,38 \mathrm{~m}$ ．
Poisonng effects，iii， 54 ．
Unsteady－due to heart，i，458．－taggers， i．268，thrombosis， $1,474$.
［See also siftec Action，I Pefecture authon． I．ocamutim．Mution，\＆© J
Mucous casts and mucus in urine，i ， 3．5，Fustonng 41gnc，111，47， 48.
Mucous glands－deserption，i，232．

Mucous membranes－bladder，1，337； drugs allethig，i1，454：14，2，13； entitu－urnary organs disease，\＆c． 14t．345：intesthes，1，230．liver dinurders，i，303，304，307，proisusing and diseate signts，in， 45,145 ： tumach， $1,235, \quad 27.3$ ．
Mud－growming of wat，\＆C．，mi，534－137，
Mud fever－canseц， $\mathrm{Re}^{2}, 11,139,144,145$, 156，111，115－1 67 ．remedes and pre－
 See aro tatle l－子uphangutis．）
Mule feet－formatom and adsantages， ii， 343.
Mulling of horses－early pratuce，iii，
Multiplication processes in genera
Mumps in hirese，i， 250
Muscles and Muscular System
Actinn，crigits，and mertion if mascles， 11． 3 u0．
Appearance illunta．：1，399，398： $1 \mathrm{i}, 310$ ， 34． 326.
Atwhehtellt twhen－tendurs for，ii，zob．
lirenthing ube＇s，\＆c．，$i_{1} 442$.
Comporitman and kinds of muscles and fibse， $11,305,304-k r e a t 11$ and gly－ a ogets in mancle，$i, 34,490$.
Ingentive inthences，i， 235,240 ．
Liseates and injuries－lsee title Joints， Muscles，\＆ s^{c} ，diseases）．
Irugiaffecting，ii， $440,478,481 ;$ iii， 6,53 ．
Exammation for soundnes4，iti， 373 ．
In relation tis power and speed，$i, 31,32$ ； 1ii，193：to lucommbion．i．33－35；iii， 191.

Mninture in tibsue－analy－is，\＆e，ii，27， $2 S$.
Nersous and ahourbent syctemafficting muxcular musement， $\mathrm{i}, 373 \cdot 374.429$.
Regions－－axiltury，ii，327：hyoid，si，312； lombar．it，3²4：pharyngeal，11， 315 c．upular，i， 328.
Skeletor attachments，i，53：ii， 178, s80．
spectal functions and uructure an com－ pased with man1，111，＋90－442．
Sprains－（see that title）．
［Fir muscles of spectal urgan or part， see itstifle，as Abumen，Fore limba， Nech，\＆゙c．；firs paritular muscle see it $\frac{1}{}$ bame． 1
Musculo－cutaneous nerve－－form，i， 404.

Musculo－spiral nerve－form，i，$\ddagger \infty$ ．
Musgrave＇s－guters fur stablec，iii，329： hurne－tying in table
Mustard－medicinsll 1hes，111， 0.
Mustard plasters．Nc．－preparating and application，wi，33；for varnins uses， $11,4+2,409,471$ ，wriation due to，and quentron in use，11，3，7．
Mutualism－a formuf paratithm，ii， 160. Muzzle for preventing bed－esting，iii， 139. Muzzle of head．i， 5 ，warts and lip troubles， $\mathbf{i}, 248$.
Mydriatics and their uses，iii， 14 ．
Myelitis，spinal－catnes， $\mathrm{k}_{\mathrm{c}}, \mathrm{i}, 418$
Mylo－hyoid muscle－finm，\＆c．，11，312，
Mylo－hyoidean nerve－furin，i， 24.
Myocarditis and its treatment，\＆o，i， $4)^{4}, 458$
Myotics and ther uses，1ii，I4．
Myrrh－medicinal usea，in，471：in， 6.

N

Nags－risen rif．i，113，118；jii，543
Nails as skin apmendages，14，131，133： i11，504． 505.
Nails in foot－divenen and mjurles by 11，210， $253,385,403,412,413 ; 111,453$ ．

Nails and nailing of of shoes，iit， 444 450，451，minuries，ini， 45
Nape of head－sec Pull
Narcotic poisons aml treatment of

Narcotics 13mb ued as，in．476， 4 3r．
Narrow conformation－of breast，i，is
 milluences，mis． 10.
Nasal bones－furmation，i，a：ii， 186 fimbl remains． 111 ，513：muscles at－ twhel th，in，30： 309
Nasal catarrh or gleet－caunce，treat－

 catrachan，in，18n，sommdnes exam Hathon，14， 371
Nasal duct pusition，i ，in
Nasal nerve－formatwon，1． 303
Nasal peak finmatwon，i，o；in，isó．
Nasal process frature of maxillary lume thrulafi，11， 24
Natural ventilation－use of term，\＆c． i， $4^{\text {th }}$
Navel and umbilical opening

 arthrum，ii，280，287－280，heparati in at linth，и1，270，271．
Navicular bone furmation，i，22：ii，
 allent114， 11.38 万．
Navicular disease its treatment． \mathcal{R} c． 11，zor an 3 ：1rature ama uther ufferth．

 ＂arranty， 11 ， $370,302,4: 2$
Navicular ligaments－coffir－joint，it，
Navicularthritis see Nosicular dinease）．
Near side explanatwo of term，1，3．
Neck－
Carriage and conpling of head and neck． 1． $44^{-41 \cdot}+4-51$ ：11．2rip－2fu
Comfirmatmu atul lıne $1,12,13.47$,

 munclés，11，318－322，32r：nerves，i，
 18a．＂Eraht of hudy infmented Liy lengeth， 1_{3} ， 1
Dineaces and mjanien ifforting covering

Neck cradle \quad ed after bostcrine，iii， 30
Neck presentations in parturition，iii．

 in－ $3 H_{3} 51$
Needles tamsing heart diseane，i，qfo．
Needles for hemaia，i ， 18 ，lithontroms，i ，

 ii， $418,41 \mathrm{~g}$
Negative symptoms if tlinease，iii． 445 ．
Nematodes cimang dint ane，No．，ii，ito， 171，172，374，alragn deveroying，ini，

Nerve－cells combunition and uses，i．375． 378,28 in
Nerve energy or stimnlus－Exameration， Nic．， $1,37.3,387,388$ ，heart aldm， 1 ， 441；11， 458
Nerve－fibres－composition and uses，i ， $375,278,370,385,28 i 5.387,44$.
Nerve tonics and + timblants－drugs used， ii． $448,477,478 ; 111,6$.

Nerves and Nervous System－
As conential to hife．．and compration of nerve than！＂，©゙．．．1． $3723.37^{\circ}, 3^{8} 7$ ，in mancles，II． 3.5
Bhood supply，i，374．378，380
Cetebru－4ymal syhem，i，373．378；nerver ten 10107 sacralplevas，a，40－
 spmal cuft，th an the bult， pems．and hat

 nutles of dmesmen

 ＋77，478． 111 ．
Fumblame ane stmali of the syotem，if
 12． 45° ：improbtors anel impontion

 をかり，心と．1．4み
Plewnendfersen fismation，\＆c．，i．zus．
 75：mersce in cownent，durad． g1ロリ5， $1,3753-8$
 Hosme．fur pathentar berse，see its

Nervous Diseases and Influences－
dffeltom clawed under，$i, 405$.
Aphalesy ant cuntroke，i，412．
litecting influencen－coltmr and narl

 222．28，$, ~ i 11,54,144$ ，shecki， \mathbf{i} ， 220. temperathat，1．218，54t，it， 477. teमl！etature， i, 2иの， 217.
Cerelnitio or limain influmation，i ， 405^{-} 4
trils－luting，wind－uching，and weasing， 1．＋13－+15 ．
ligentase damplers and bativa sectetion， i．232，233，258，cantritio，$i, 274$

lruza－see title Nerses）
Epilepsy，echumpria，and chorea， $\mathrm{i}_{\text {，for }}$ ， $41 r$.
Fracture and sprain influcnces，is，ane， 2：3．258，202：protecthan of nerves Prrim injurtes，$i, 3$ zo．
6ilduew，nuerims，or bettign，i，407－400 Heart diseate detce tion difficultes，$i, 450$ ．
I iss effener－sece I＇aralywio．
 － 111,4, i，423－4．5：子小illal，i， 41 ，
Agelitio and epma！inflmmation．i，is 8
Parasites dufenting new e－centres，11，174．
Joisming effects，ili， 54
St．Vitus dance and stimghaft，i， 411 ii， 305.
Glasm of haphracm，i． 313
1 umumarsalation chan main，lume，\＆e．

Thamalates amal waranty－＂nersed

Varion dineate asmiated with ner－ solanes－anchan，i，470；anthma， ii， 11 ．collaphe，is，in7：cungh，i1． 14 ．
 1．507． 510.511 ：Shindrewer，1t． 120 roarimg and whinting，$i, 511$ ：tel．anta， i1， 45,48 ．
Nervous temperament of horec，i ， $218,511: 11,47 \%$ ．haterme reatria． tons，iin， 39 ．feeding and traming consaberations，iih，44， 302
Nettle－rash－waces and treatment，ii， $1+3.145,140$

Neural arch of ヶpinal columa，ii，179． 180
Neuralgia causung valusa dimendera，i．：．58．
Neurilemma of nerve－filires， 1,370 ．
Neurokeratin of nerse（issta，i， 387
Neurosis of skin，it， $15^{\text {fin }}$ ．
Neurotomy or neurectomy－alsam thagea，methode，and matrumenth for ＂umperving－12，10t－804 fur Hant－ cular thatae．II，ius，attereffects and detection， $114,1{ }^{14} 5,3: 5,377,464$.

New Forest－extent，and pons－Lreedme 13．I．106．anc
New Forest pony－wisin，н中earame
 400， 4

Newminsters－rearims and trammine

＂Nimrod＂wh hanter gualifuations，i
Nippers－ee Iminar teeth
Nitrates－medwinal wee of ambl，ii，中fis； mercury， $11,4=8$, futanl， $11,44^{2}, 4^{2} 2$
 in．10：polsumby lig．in， 53 ．
Nitre for glos cy kin， 11,453
 i；duses．ini，a
Nitrogen－in air，iib， 3_{32} in froud．i_{2} 2．4．
Nitrogenous foods－salue，\＆̌e．，mi，sif，
Nitro－glycerine－medti inal wen，ii， 463
 474：211．7．duber，111， 10.
Noab－Arab horen chosen bw，i， 201 Chinese lastory on The Flood，ini， 517.

Nocard，Prof．－on glanders and farcy．if matalie dal cutt，ii．52：valvular dinease，i， 705.
Nœud vital of brain，i ，tu4
Non－articular bones－forms，ii， 178 ．

Non－striated muscle firm of，i，зоб．
Norman Conquest and horne hitury， 145：111，537． 53^{3}
Nose and Nostrils
Hilceding． $2,501,503,504$ ；ii， 20 ；firm aid，ii， 439 ；hereditiry cause， 11,158 ， 150.

Confurmation and examiatation，$i, 0,10$ ， 30， 483 ；ii， 1 Eri；false mostril，i．io： i11． 50^{7} ；fuesil remanls，111， 517, muccles，i1，307－300．
Discharges－due to catorrh ，i． $407,4,8$ 409．Ganders， 11 ．31：horverwhter， it，$j 6$ ，influenza，ii， 32 ；lanct．nt ro：Furpura hembuliogiuat．it． 2 stranglen，ii． 40

Eammation as to fumdnen，nii，siou 371.

Injections，and inhalation by nose－tage． 1．2no：11，47t：Im needmat mone， B ，
 hame－swhenes．ni， 5 5，use of ．hmm． ii， 456.
Ohtunction causing rearing， $\mathrm{j}, \mathrm{5r}$
Prking－out nuse a sign of diseare，i ， 260 ． 206.

Nosology－definitiom of，i，214
Nuclei at nerve centres，i． 380
Nucleus and nucleolus of nerse cells． i． $37^{8}, 370$
Nursing－－aid and attendant＂dister，ii， 381，442：iii，23，24，141，154 cleoth． ing，water，and food for lumee，iii， 24－28；unloadine rectum per hand iii，34．35：various application－wed III．iii， 41,42 ：wathing the horse． iii， 35 See alon tatles hindages， Poultices，Sick－horses，Slings．）
Nut－galls－medicinal uses，ii， 455 ．

Nutrient artery in bones，ii， 176 ．
Nutrition of body－detinitum，ard use of fined，111，57．102：billue of varime
 iii，252，253．257，keath mantename． ni，tri；medicance afterting blund． C． $11,44^{t}-152$ ：alterativen，ii， $4=2$ ulects due tw delert of，21．to
Nutritive value of warman fori－cable， sac．，Bil．$q^{t a-101 .} 102$.
Nux vomica－medinal whes．in， 475 178．111，h－duses，111，10， 11 ：poisen－ ing by，is1， 57

O

Oak bark mellimal wea，it，455，hin，ro 14 anulate，111，＝1．
Oat－hair concretions－form，i，zoo．
Oatmeal－and－water shoud，in， 28
Oatmeal gruel preproratim，※．e．，iii， 27 ．
Oat－straw an fird，in， 354 ：for bedding 111， 354
Oats as food－amome and adsantagen i． $2+1,-43:$ is， $93,107,3+5,3+3^{\circ}$
 97．W，us；digevability，\＆\＆，1ii，wo
 －trudinn，i．zazi di－eave due tho 1 221．11， $4^{2}, 111,104$ hise alled tath il （1）

Obesity lireedingand sterility influenced ا心，111，265，210，237－
Objective symptoms of dinease，iii， $1+5$ ．
Oblique fracture－firm，\＆c．it，22t， 222 ， 11 vanous bunes，11，220， 249.

Oblique muscles of eye，ii，$: \frac{1}{4}$ ．
Oblique pasterns－f．rm，太c．，I，So
Oblique processes of spinal column，in，
Obliquus abdominis externan and in termm manelen finms．\＆c， $1 \mathrm{~B}, 336$
Obliquus capitis uperior and inferior

Observation－－puwer as evulution，iit． 47a：～tony of Zat and the lost ant maln，ini，473－475
Obstruction－choknar and qullet，i，ztis． 2nn：chrculathun，due t ，deeanes of thmach，coln，a donstation cauven，i，277， 282 ar eye tears． 11

 5．10．Matendinal notrmetion， 1, zoti－ 300，i1，171；liver，caubing dromy，1，
 shin，11，127，－terility catuen，II．229：
 801． 350 ，357：the of catbeter－pre－ candina，iil，1－8．See alsu Foreign budies
Obturator artery－formation，i． 452.
Obturator externus and internus muscles firms，Ne．，ii， $51=$
Obturator foramen of pelvis，ii， 192.
Obturator nerve simmation，$i, 403$.
Occipital artery formation，\＆ $\mathbb{C}, 1,451$
Occipital condyles and the support of head ant neak，it，181，184，266．
Occipital crest f heat，i， 4
Occipital or acciput bone－firm，\＆c．， in，184．fruture，i1，224
Occipito－atloid articulation－form， Sic，ii．2ri7－2rg．
Occipito－styloid muscle－form，起， ii， 314
Occult spavin－formy if disease，ii，216； tumamdness，iii， 385 ．
Occupation a cause of disease，$i, 213$ ．

Odd hocks defert，in， 38
Odd－toed animals－horseorigin，\＆c．
Odontoid process uf axm，11，181，2h3．
Edema of lironn or dunni plenis．

 $114,427$.

Esophagus

Estrus equi and hremorrhoidalis 1atectur
Offers－eally unch wifmen，\＆ic，i，173
Off－side－exthnatimat of tenlm，i_{3} ．
Offspring revertine back in breedng vee bant l，rectha：

Oil－cake minul，iii，8y，of
Oil globules if liser，i， 230 ，zog．
Oils－lifative pancmen and emuhifica－

 i，24，ii． 453
Ointments－apmation，尽c，in， $4=$ for

Old horses hhacimb of nomach，$i, 27 b$
 stold if selthmand hterth，1，zol．11． 100：intentinat abetraction，i， 230. liver millamatom，i，mat，eciema of theath，if．84．purturition defficulty， iii，272．273．Reeth and dge test，in，
＂old Traveller＂－lireeding history， 1 123
Oldenburgh horse－－中pearame．\＆c．，i．
Oleate of zinc and mercury，medi cullal thes， 11,45 ， 4 ，
Olecranon process of wha， 11, ， 46 frocture， 11,34
tu， $11.330,334$.
Olfactory nerves and bullm－form and wes， $1,3^{85}, 3^{311}, 4^{4} 4$ ：banke coll－ ret tell with，ii，a Sor， 5 s
Olympic games insmциration，and use it horser ．tl， $111,52^{2}$
Omenta of ctomach，i，ass hemia causes．
One－toed animals homeorigin from
Opacity of eye dreare symptomb．it， 10＊，115，117，120．examinatunl for． 19． 58 ， 3
Open surface drains $f_{\text {r }}$ vtaliten，iii，
Opening the heels－in hbeirg，iii， 44 ． Operations
 480， $487,45 \mathrm{~h}, 111,3,4,151,157,1 \mathrm{mof}$ rentorative 11 ，alloma，in， 45% bee alorate Anæorbetco．
Contrif of harses and meane of restraine． 111，1引1－16．
Defirmed limim and contracted tendons， 171，16is－171
Depriving certain fat of wemation－tam－ nersmg methrs，ill，11 1－100
 me：h．an＂，al wh， $11+282-28$ ，we of firce， $111,284$.
Lameness and foot diveaser，iii， 166,107 Shuev and lucinu－（see that title）．
Table for，in， 160
Urine removal，iii，277－180．
［bee alon tilde－Ansethetio Catration， Catheter，Collery，Firmes litho tomy，Nomuthons，Ovarintomy， ＂Stone＂，Terutumys．I
＂Ophelia＂－－hackney mure ilhat
Ophthalmia－firtun ：ani\} treatment, ii,
 funty，ili， 05,425
Ophthalmic nerve and branches halmoscope
Opbthalmoscope－whe of，ii，16，113，
Opisthotomos tetanus forn1 on，ii， 47 ．

 tenthal dinurder，i
 is．iil．

 12z，i11，\％है．
Optic thalami of hram，i，323，384．． 23.
Optical appliances liar čanilana 1 eye．11，100－111，1fa，doliunaly in

Oral evidence and warraty resulatnom 111，45， $407-40$ ． 4124
Orbicularis oris－form of macl：on
Orbicularis palpebrarum muscle it eyeln，11， 3
Orbit－catur－fimatim，i，1r，it，23：1：－ eye andithny， 11,103
Orbital arch and process－Furmation． 1．11：11，154：fature aftecting，w

Orbital maxillary nerves－furmation，
Orchitis an 1 it，treathent，$i=$ ， 8 ．
Organic acios and frud digestinn，$i, 24 ;$
Organic bodies－combtutution of，iii， 87 ．
Organic life－nervoam sybtem of，i． 374
Organic matter an busc，in， 175
Organisms Cenms，Numbere No
Ar－befare and after revplathe，i，tri7 compenitnon and pillutan un tathe？ \＆c．，i11，72，7．，131，1 32．
Antiseptics，danfectunts，and irrags le
 in！ $2,3,13$－table howng atremeth， ii， 4 告， 45 ．
Cabsen of dineare，i．214，210，223， 24

Figenton and fome fortur infontila． 1 16．11，1ty－175．111，102 104，the ill

Dine．sen dise th anthran，in， $41,42,4$ ．

 315：Wuth Afric on howerkiano
 pit．Wumb and partarent lever，n， 10， 97.

Gentratwon and exhlution kromth，\＆

 qeneratur，i, \ldots
Hymicare dentruction of，ini， 15
Stamine for examillatull，i，5t，fio
 120，132．dinesue maluthe：11，1：4－

Voums intented hy，ii，4ori，457．418．4： 2, 41
［See ahos thlen lacterin，liarmition fur special organion，vec minto．
 and other mfluelleer，ins，som．
Orifices of stumach and intertines，$i_{+} 234$ ． 235，238－rupture，1， 315

Origin of muscles－rlescrition of term，
Origin of the horse－wee title An－

＂Orme＂trity－quedigrec，i ，112：tmene infl．ammatum come， $\mathrm{i}, 252,325$
＂Ormonde＂－shent measite mentits，i ， f_{5}
Orohippus fixst rem，3m，118，515，51：，
Os calcis see（＇alcaneum

Os coronx furm of lane and jome，ii
 it．it＇， 47.
Os femoris－tham uf brime，di，sol vece alat 1 huh
Os hyoides furm of lume，i，n，in，is．
Os magnum brone of fore－limbe，n．393．
Os metacarpi magnum－form of lione．
Os naviculare from of tume，is，ifs，arch
Os pedis－firm of leme， 11,14 i，ru4．mus－ cle mareston， $11,332,333,3+3$ ．
OS suffraginis lune fumation，it， 10 र 148，dher，Me，，ffectl！e，ii，210， 11.14

Os uteri externum of wterns，ii， 76
Osmosis process in lareeling， 111,252 ， 254：th lunel vilution，1，4：7．
Ossa innominata of pelvis， $3 \mathrm{i}, 183,102$.
Osslfication of bones，in， 178 －uf thull，
 before birth，bii， 255 ：conformathin able action catuing，i， 80 ；ii， 307 frature inflnences，ii，223， 248 ：joint diveave，ii， 28 ；vide－bunen and lika－ ments， $\boldsymbol{i}, 387,385: y m a n e d$ monele
 all warranty，in，4ze
Osteo－porosis and in 4 ynptmms，\＆c． 11，214－21t；fracture dilue to，ii，224，

Oetitis and ith featment，in，208，210－212．
Ottorhægia a furn of bleeding，i ，so1．
Outer maleolus of tihia－ligaments athubed tio，11． 277.
Ovaries cometrot tim and ligaments，ii， 77－70：alterb，b，452；developatent If ota 1m，111，24h． 248 ：remosal－

 2riz．See aloutitles Cfstic warien， O七七ו．
Ovariotomy in trublesente mares，iii，
Overreach in wfertive wetm，ii，308： imauser，and thene fire chrection，

Ovisacs of ovary，is， 78,72 ．
Ovum，human－seselepment if，iii， 251 ，
Ovun of mare formatum and ferrliza．

Oxalate of lime in eatholus or stone， 354．in wiste， $1,345,34$ th
Oxalic acid－in mine，$i, 34^{\text {n．}}$ ，mismone $19,14,51$.
Oxaluria smd it，camse，心夊c，i， 3.45
Oxen－chohmg，i，afs：digestive powers，

Ox－gall in jemmelice treatment，i ， 305.
Oxide of zinc meali，inal wes，ii， 4 ge
Oxidizing agents－antsemtic，ii， 421 ．
Oxygen－in air，in， 172 ．wheer purntica （14，14，！M
Oxyurus curvula infintar intentmes ： 1,1
Ozena－tallmé，\＆c， i, quy ：dum nes， 11． 450

P

Pacing－form if motion，lii， 105
Pacing stallion＂htar B＇ointer＂（illust． ${ }^{1}$ ， 2 ，th
Tтиии木 I｜\｜llat－
Pack horses－apmarmine， $\mathbb{\alpha} \mathrm{c}, \mathrm{i}, 123$

Paddocks firthurnughlireds，$i, 182$
Pads in formuinu if froot m，an and ani

Pain controll of hance harata，it， 4 if

Paint－priatmolin ly，in，＋1
Palate－cimfarmatim）i，7．conceramm，
 gharnit manth cifect， 1 ，
Palatine bones of f．cce，ii． 187
Palatine nerves firmatoon， 1,393
Palatine process of j，iw－lwmes，ii， 186.
Palato－glossus muscle－linm，\＆e．，иі，
Palato－pharyngeus muscle－form，
Palmar pad－formattull，iii．502－504，50h
Palpation test fut hopey，i，зыг
Palpebronasal nerve fomi，i， 393
Palpitation of heart，i． 407 ． 4 tis，clue （1）lrany and ，miemar，1，313， 47 sumed musthen for，i，31
Pancreas deariptint，omd herestiscuse i， $241,245,24 t$, brume athe ting，$i i$ ， 20ti：worme in duct， $11,171$.
Panniculus carnosus muscle－firm， \＆c．，11， $3: 5$
Papillæ of foot，iii， 4 ； 6 ：of shin，ii， 125 12ti：\＆rumetho callumg divease，ii，372 381
Papules－om akin，ii，137， $147,148$.
Paracentesis fur whoy theatment，i，
Paraffin－oil in fretection abrimet mos yиitues，if． 58 ，
Paragoric elixir－medicinal uses，ii， 4 fio．

Paralysis－

llefinituly sf term，i． 4 to
1）rage M－remediers，it，foo：iii，f：cam
 －light musemem，ii， 478

Forms of cerchral，sumal，and meve
 mellmitis，i，br．ecremoospman

Prachire efterth－hack，lirelten or
 himblyarters，in， $23^{6}, 237$, jaw and lip．11，24の，thul，i1，234．
l．arym afiectiml，i，507．5nm， 5 m；ii． 17.
Litter or belling fon，iii，ad．

I＇se of cathere⿻ in，iii， 170
Farimu cance or remen hludiler，i， 248：comerng diverace，if 53 hatrm ghthamas，ii，en．imligectum and

 banclas．1，pas．rabrime and whint hag．i．fun，sam， 5 ：，houldier slop． in．S5ac，thromlenか，1，47：wrine and

See aho Facinl pablysis，Leval gara－ いいい 1
Paramecium emenation of，iii． 250 ．
Paraphymosis and th the．tmmat，if，So．
Paraplegia and its canse，©心．．．i．421：in，

Parasites and Diseases due to
Alternate generawn uf warma，Nc，iii， 250， 261 ．
Cause of Jiveave，in，וfy ankoma，i， 478，474．ancursm， $\mathbf{i}, 477$ ．alterie and verne，$i, 475,472$ ：culk，i，$=79$ harbuea and byenters，i ，zet，ant epalepay，i ，f11，rparontac lymphath

 tue，it，37 リ．
Circulatos y yntem，himul，and eser，if 174． 175
 terme used．it， 1 eq－＂＇

 $8_{8}^{-1} \cdot 4^{5}=44^{4}+4-5,4^{2}+441,116=75$
 102－104， 125.

Parental influences \quad Lsechang，in．
Paresis of the latuel， $\mathbf{i}, ~$ ath
Parietal bones furnla，i1， $1 \mathrm{~S}_{\mathrm{f}}$ ：fracture，
Parieto－auricularis extermus and in erman musclè forma，\＆，ii．311， 312.

Paring the crust in sand cract，m． $\$ 55$（Aee alsu tite shaer and hore－

Park hacks－amparmete，\＆c．，i，ifs，
Parole evidence and wirruity regula tinlm，19，405，497－404，＋13，42h
Parotid duct－fintula of，1，2ti－ifi3，12， 429
Parotid glands－furmatuen and we，i，

Parotido－auricularis muscle furm，
Parotitis and it treatment，i．s5a－26t．
Parrot mouth－rlefurmity，i． 331
Partial dislocation－i，rm \＆\＆，in， $3 t^{k}$, 34.

Partial fracture－nature and treatment． 11．221，225，244，24．
Parts of a horse－mame and dasioms，
Parturient fever－1auce furn

Parturition and Pregnancy

 ние．11，273．2082
After－birth－remos．l，\＆c．，ii，58，in，220， 291，253，270，271
Artificial msemmatim，ill，2：1－234．
Ifirth of fual，1ii，21， 2 －222，2ho－－71；，liffi－ cult delacery，ill，ニファージ sent，110114，m ，274－270，of beanh， 11.
 force，in， $28 \geq-284$ ．
Care and foul of in fual mares，iis，wis－ ewne 25－218， $228,244-20 \mathrm{n}$, alter foaling，iii， $22 f i-228,285$ ．
Mruge ankining，\＆c．，ii．449，451，4n3． 475.

Expmoin of paway ant mucles assint－

First cigns of preguanc and foaling，iii， 2riz，2r $+264,270$
（irow th if embryo and fuetus，iii，249－ 257，28S－205．
lmpreamian and hange in onm， i ， 74，80．111，245－244，24．1－2f4．
＂Slifung the fual＂，in，so7．

Parturition and Pregnancy－Cont．
Time for urypme of foaln， $14,219,285$ ．
Varinu disease lue to，i，218－anæmu， i，479．Harthea， i ， 285 ：Alooding心̛．，ii，87：iii，260－2fig ：hermia， 1 324，tuammary glands， 4,94 ，inham－ mation of badder and womb，i． $340:$ in．Eu，vo．UI：meram of Walder，i， 51：rectum，i，zo1：uterus，11， 100 juints ynovies，ii，290：partunent fever wee that title
［See alontuten Embryo and fietus，Foals， Nlares，C＇teran or Wiomb．］
Past horses－ancentors，furms，and hiv thry，iil，471－484，509－513，517－520
Pasterns
Confinmatim ind benes，i．21，79－81，ii， 148，199：compenating points，i， 103 ： jonith furmation，ii， 772,273 ：142， ments，ii，274，mesturements from 1，11：mukele connections，1i，331，3i2， 333． $343,344.345$.
Dincane alfecting，\＆e．－bone－hpavin，is， 217：brokenknees，ii， 422 ；hurse－fos． ii，＋3．whts，in，z10：ring－bone， 11 205．206．strmgh．alt，it， 345.
Displacement or divocatson，ii，222，349， 352.

Fracture and efferts，1i，205．223，224．226．

Pasteur－bucten，reseatches，i，225，ごロ
Pasture and Grass
Adsisability of turnmes hurses ont to arass，111．45
A，fom compmition and properties，i，
 and a wht，ini．307，310：presmam mater，and fuals afterwards，in， 20 年， 215．228．265，260，283：suck horne： iii．©6．use of ellalage or＂plited＂ ，r．m，iii， $115-118$.
Dinemen due to ur treated by－anamin． 1．474，ath thax，ii， 42,43 ：＂bighead＂， 11，214．Culac，i，283：drmper，i， 310 ： h．e．tw，globmuria，ii，20：horeench－ nem．ii，54，55， 5^{8} ，indizentinn．1，272： hever．$i, 308,309$ ．farmathe diveaves －1161 worme，ii，151，172，174．प416 in

11 minfection after dineme，nit，т50
1 and best fir lireediug，11i，207，208，210， 217． 548
lame ，and the smarces of calouls，i ，ag8，
Framoing combrated un，iil．51，53，for．
 157，162，103：ill， 541.
Suahry and dibeane catura，fii，rod．
share and the care of feet during pantar． mら，111，139
Teeth and urmary effects，i， $327,338$.
［hee Alo．Hay，Cluser，Re．］
Patella conformution，\＆C，i，23：14．202， 351：12i， 4 87：hislucation，11，240． 351 35 ；junt firmatum，in， $275,27^{7}$ ． muser comection，in． 34 ． $3+1$

Patellar ligaments of sthe．jumt．ii，
Patent defects－warranty sestritions，心c．，in，＋11－ł1
Pathetici nerves－finmo，i， $385,342$.
Pathognomonic symptoms of disease， iii， 145 ．
Pathology－1］efinition and ocope，i， 213, \therefore it．hearl diseaser，i，433－458，tio．
Paving of stable Hoors，iii，32ti，327．
Pawing in at，tble－correction，iii， $3 \not 42$ ．
Peak if tie ellow，ii， 105 ．
Pearl barley as cooling drink，iai， 28
Peas－an ford，iii，80，112－1it，digenti－ hility，i．273．in，ys．
Pease ar r．ond，iii，zso．
Peat－moss as bedding，1i1，24，356．

Pectineus muscle firm，\＆c．， $4,3+\mathrm{r}$ ．
Pectoral muscles firms， $\mathcal{S e}$, in． 327 nerve commerted with，$i, 399$ ．
Pedal artery－formatuon，i， 453 ．
Pedal or coffin bone－form and jount， 1，22，11，140．201．27，\＄41，21，+10 ， finmite，ii，in ：17 ther fumour

Pedigrees

Anctent hintury and origh of horsen，ill． 518．511． 533.534
Famman horen－Cimfitence and Fire－ anay， $\mathrm{i}, 12 \mathrm{~L}_{1}$ 123：Denmark and Lord 1）erta 11,1, 115，imu．Hermut and（rome，i，aro， 1 ir；ppeciality， 1, 128，hoockuclland St Smom，1，114． 115.

Recurla，\＆c，－Mrabo，$i, 201,202$ ，Cleve－ land IVas，i，128－1 30，＂（reanm and
 114，115：hunter，i，135，Noreans， 1．207，Sulfolk，1，144，145：York－ shive conch harser，1．1it－
 time surrees，111，547．548， 549.
Peduncles of lirain，i， 385 ．
Pelham bit une it，in，358， 350 ．
Pelias berus ramang prinned wound． ii． 415 ．
Pelodera Axei caning reety toce is． 370
Pelvis－bune and contarmation，i，53， 50 $8 z, 83,84$ ii，rur，ryz：femaie ar－ teries and caty＇，i，452： $11,103$. Fricture，11，225，225，255t－300．Motle in， $325,3+19,341,3+2$ ，nerses，i， 377.
Pelvis of kidney firm and wes，$i, 33+$ ．
Penis－angatation or ratratim，ii， 85 iii，173：catheter masersan，ini．177 170：Confurmuth an！we，i，i8：Li Gut71；cuerme dreane，11．52，53： canchane and inabilaty th withdraw ii，Eo，z^{2} ，hignamits，munclen and timic，11．7？，73．\｛35：phatyble，11， 85 urinary tube，i ，ss 3.
Pepper－medicimal unch，ii，की
 if，lhne，111， 10

Pepsine in ducatan，i．235，245
Peptic gland－firm，Ne，i，2it．$=35$ ．
Percheron horse－中pwarte，\＆e．
Perchloride mellicinal use if unn，iii． 45r，nlew uly，in， 4^{85} ， 488 －dines，iii．

Percussion fur detection cif heart dincare．
Perforans and perforatus muscles and teudons see Flequr fiet foranm，©
Pericarditis ams it etreatment，i，q1－triz．
Pericardium of heart，i， $4 \sqrt{6}$ ；dineane and inflatmmathem，1，454，457，teo， ＋5：－4＂
Perineal needle for lithotona， i ，зbí．
Perineum－wofnrmatim，is r5，16 ＂trane＂affer 14e， i ，zris．
Periodic ophthalmia amblite treatment， i1， 110 ity ．
Periosteotomy fur aplints，ii，za， 3 ．
Periosteum of hone，ii， 17 Fr, ane ，1line caneら affesthig， $11,207,24,21,210$ ， ii， 233.
Periostitis and in treatment，ii，2，8－210 metacarp，al furm，ii，214， 220
Peripheral paralysis－furm，\＆c．i， 420
Perissodactyla ur odl－toed animals iii， $470,477,510,511$,

Peristalsis food in stomach，i ．
Peristaltic action of buwel－－drug attertus， $1,4^{8} 3$ ；1i， 13.
Peritoneum of lwer，i， 233 ．stmmath and miestanes， $1,235,=26$ ．Merms atul intlammutuon，11，77，g9，y 3 tentis，14，05．
Peritonitis－alac：and＂turqung＂caus－

Permanent teeth form，Ne．sii，jes，
Permanganate of potash antiveptic
Peroneus muscle frm，心．，in， 34
Peroxide of bydrogell ハー．14 anticerts 11． 421
Peroxide of iron whantime，iii， 50 ．
Persian horses husury and mes，nii，
Persimmon＂－descent，iii， 54^{3} ．
Perspiration and phechy hweats－－hees bweating．
Peruvian bark－medicinal usce，ii， 407
Pessaries bladder treatment，dragh that
Petrifactions－hurse remams in， 116,471 ，
Petrous temporal bones－furnutinn and jnmes，in，i84， $1: 5,266$
Phagedænic ulcer－firm，icc，ii， 427
Phagocytes in blood corpmeles，$i, 4,7$
Phalanx offore－limb and fixut formath，in，心．c．i，22；ii，198－200，272，274：111， \＄76．in comyatmint witi man，m，

Pharyngeal nerves－finm，i， 395,3
Pharyngeal region mumbles af，in，315，
Pharyngitis and if treatment．i．254－ 257：almeen and Ius due e0，1，257， 54
Pharynx－ctufindintusi，i，5，220；mus－ cler，ii．315，3rn：undruction catnomg hohing， 1 ，soth
Phenacetin－mednimul usen，ii， 450 ．
Phenacodus form anl luse wigin，iii， 51.

Phenic acid，\＆e．forme of carbulic acid， 11． 484
＂Phenomena＂hackiey recond，i， 117.
Phlebitis－reatment，© ，i，475－477．
Phosphates of lime，iron，Ac．－uses， 11． $447.442 .111,10$
Phosphoric acid－diц＂Metive mee，ii．4．7．
Phosphorus－medicimal veer．in，fy：

Photography－fumen in an inn in，ini， $1 y^{2}$ ，
Phrenic artery－finmatum，i． 152.
Phrenic nerve－fimmatmon，i，va．

Phymosis and it weatment，b，zo
Physic－ce ueler imalh，Meanmes and

Physiology－of fisot fur thema，ini， $422-$ 4 ；wigestation ami palturitum，in，

Physostigma venenosum－appear－
Pia mater bram and swate formatiom，

Picturation of animals hasee mark－

Piebald horses－colour and markinca，
Pigeon－toe－c．misec and diadmalifuation，
Pigmy horses－evilution and brecding． i11， 284,287
Piles－remedies for，ii， 4 tiz．
Pillar reins \mathfrak{f} ， t loroken b．neen，ii， 423 ： for fractured jaw，© © c．，ii，241， 243.

Pillars of the diaphragm－position．
Pillions in riting－early uses，iii， 542
Pills－adminimetatim，si， 19 ．
Pilocarpine－medicinal nser，in，4？ 3
Pimento－medicinal uses，111．7， 1 m
Pimples in akin，in，137：nowite whw ber c．11sem，11，＋1，12，43， 107.
Pink eye－a furn of mhluenz．，i1，子1．
Pins fore closine watuds．ni．417，478．
Dipes tur stalle dratrage，in，sito 320.
Pisiform wh hien，i2，rifi， $14^{\prime \prime}, 197$ ，mavele
Pit ponies－mes ill，fur
Pitch for thoe－mak，in．+45
Pitch－plaster fir fractures，is，2nos，2tion fre wind－2alli． 14 ． 357 ．Freatation． Nc．ini． 4.
Pits on pressure－hae of tions，ii，3tht
Pitting of skin due（1）small pres，111， 150
Pitytiasis and it trentment，11，152．
Pivot joints－ficm，心㇒，ii，2tiz．
Placenta fomation，in，251，253：re mbual，14．88；in，220，270， 271.
Plain and easy snaffle type uf，in．
Plans for scalle ntruture，iii，320－323．
Plantar arteries firm，i，453．1i， 200
Plantar foramina uf coffi－bune，ii， 200 ．
Plantar nerves formatum，i．q＂；；ii， 200；औlanuln and mjury，i1，342， 397. operation．in，wiot 10 ．
Plantar pads－firmation，\＆e，iii，503， $504,500,508$.
Plant world－purantes from，ii，sti．
Plants－an form，c．mang alineme and polson，i，27 \＆181，roz， 104 ：medi－
 water fimitication and Imilutan，ah， 1－7－120
Plasma of blood－compmestion and amaly4h，1，4iO，431，tit，435：a3r changer，1．for．eve nomblament， 1 ，

Plaster for stathe walls，iii，
Plaster of Paris－fir frocture，ii，232； preparatron，\＆c，iii．ab
Plasters－aphlicatim and lines，iin， 42
 $241,245,247$, E60， $2+$ of wound．

Plastic inflammations if the tim，in． 14，14u

Pleistocene－finul remainn if horsen，iib，
Plenum system of ventatuット，11．75．
Plethora and it－treatment，i．\＆
Pleura of lungs，$i, 4$ th ，Whences and mincture， 11 ．
Pleurisy or pleuritis and it elmatment，
 in，254，255，mallein ．wid muatind uses，in．30．111．
Pleuro－pnemmonia－cause，ctill heart complicathen， $1,223,402$ ．the of

Pleurosthotonus tetanus form of
Plexuses of nerves－Finmation， 1, zes．
Ploughing－aprom of masche and houl－
Plugging if ilisec alterves，in．it．of

Pnemogastric nerve－furm s．

Pneumonia and it treatment，is．f－ro， 18，よ． ii． 32.35, h，wtural raln eflest，si， 254． 255 ．inthence of climate，1．222：

Point of the elbow fracture，ii， 245 ． Point of the haunch or $\mathrm{l}_{21} \mathrm{p}, \mathrm{i}, 15$ ； 13 ，
Point of the nock－comformation，$i, 22$ ． 87，11．H2．cow－hmes and capped firech，1，\＆$, 11,3^{\text {toz }}$ ，fracture，il， $2=1$ 2ft，atiz．mutheter incertion，ii， 344.

Pointing of feet－is navicular dinease 11， 302 ：mumdibeco lefect，111．307
Points for feelane the puse，mi．If
Points of a horse dsimith，mat namen， 1，2－4：cmpenatum funta，i ，sol－

Poisons and Poisoning

 anoth ，und habibty of anmers，In，+3. 50.

Cummen－ymproms，and what to dis in pothomine，13i，43－40
bisease camen－chemsesl anl uperific，i ，

 41．42．406，407．414．＂Atter，in， $4^{\text {t．}}$
Diseanevelitero－dysentery，1，zot，enter 1tic，1，202，gentratio，i， $27.4,25$ ，pas alymin，1， 420 ，parturit ut fever，ii．．is： pyennc arthrits， 11,287 ；rhewnatam． 11，2u：tetand ii，qu，4？tongue m． Hammation，i， 252
 cake fivol，in， 115, h．is，in，62，Indant ur dog－tmeth pea，ant vethe a III，58－ oo
Forms if minons，their treatment，aml antaduen－Larmine or arratat
 131， $54-$－bo．Fur apectal persion，nee it．

＂Orme＂cave－langue hillammation，is
twerdose of（hlural－recovery，in， 477.
 131，theranes due $10,11,135,130, \mathbf{1} 2$, 143
Sting of wapp and incerta，iii，br．
l＇race componturl， 1 ，
Vomition－differnty in proplacing $\mathrm{i}, 27$ i11，44，45，47，4．． 4

Poland horses－early serteli cronses， 1
Poll，The－firmation，i ，fifuture，ii，aif．
Poll evil atel it trement．\＆c，if， 4

Pollock＇s whetric furceps the，iii，zi＂q．
＂Polonius＂awn－hachasy stallion il． hat ， 1

Polypus－lucart aliewtel whth，i，454：h．11

 anil，it， 455.
Ponds miminhinh water，1：1，12t，I25，12t
Ponies and Pony－breeding
Inatinetim ． zrcupuif wistes，i，O1，15，154，15\％，

IValution indmencea，ni，－Et， 287 ．
F＂uak－＂uldme＂and ather lereching princtplea，1，155－157，1f1．
 zen；undmanthlty of ataing ont Commen lamk，1，154，157，162，1＋15
 13，21to
Heght and we rentrictum， $\mathrm{i}, 94.154$. 155，158，1i1， 40

Ponies and Pony－breeding－Cont．）
Hatory on orvin and size，iii， 450,530 ， $535,535.538,54 \mathrm{c}$
Mange and parantes on，ii，r88， 175
stallinn sllunt．，iii， 143
Teeth formation，in，290，39t， $4 \times 3,402$.
［For special breed see ！Martmon，Rx mour，New lorent，Webli，de．
Pons，The－uf nervolu－y
Popliteal artery formaton，idc．． 1,453 ．
Popliteal nerves－firmation，i，4，3，404．
Popliteus muscle form，\＆c．，ii，：45．
Poppy－heads mednimal uses，i，it．
Porous bones due tw dreave，ii，2：1，214．
Portal vein－liser numetare，i，234
Porte－cord in difficult phrturstion，111， 27 r．
 and se trank． 111,1 io
Portio dura nerve firmatiom，1，仙
Portland cement for stable Hッいい。月．
Position for ctalle，iii， 15
Position of horse influemeng dimb buthen of budy－wetiht．1，1＋1．92；
 ing，trotting，dec．aee Locimution．
Position of horse in the amimal world，
Positive symptoms of dicease，iii， $1+5$ ．
Posterior bowel－see kectum？
Posterior crico－arytenoid muscle－ erior deep pectoral muscle－
Posterior durn， $\mathbb{d c}, n, \cdots$
Posterior extremity of body．i． 15 ，
Posterior gluteal nerves－－furmatim， 4．
Posterior ligament and junts－t ture，
Posterior palatine nerve－formathon，
Posterior presentations in furlug，ini
Posterior radial artery－firm，1．\＆to
Posterior surface ，flicad，i_{1} ，
Posterior tibial artery－firm，1， 453 ．
Posterior tibial nerve firm，i，f．\downarrow

Post－mortem appearances－afem an thrs，in，t2，t3．Wantl dale tw fur

 57．105：tetants，14，40：tuher minn 11． $5:$
Post－mortem examinations
Honm ther min met
Post sphincter muscle－lorm，\＆ $\mathfrak{N}, 13$ ，
Potash and potassium－－mannan

 mal amblute，in．
Potassio－tartrate of antimony－
Potatoes－compritin：allil unce av find 111，Sp， $11=$ ：clagetalality，in，01，1az 47：Hworest elve tu。1， 2828.28
 111．101． 115
Poultice－boot－fomm，Ac，11i， 30
Poultices and Poulticing－
 33． 10 ，armus［atat－of body：hii，31，

Pasmanma treatmems guentun of ex－ termal applicatuma，i．с．

Poultices and Poulticing－（Cont．）
Poisoning treatment，iii， 60
Varions dienases－crached heels，ii， 425 ： enterti，i，294．Kintrits，1． 275, hamurghmura，in，29：mestmal obstruth，i，247，kithey dineate，
 504 ．pandy 200 ，pellin，theath，and tentucle，ii， $83,8_{7}$ ；pleurny，ii， 10 ．

 urine retention， $\mathrm{i}, 352$ ：wentral her man，1，325
Poupart＇s ligament－formation，\＆ ii， 3.36 galls－mediciaal uses，ii，+55 ．
Powdered galls－medicinal uses， $1,+55$ ． 16，17：hood－fibme provers，iit， 141：：nse of arsenic，dangeri，11． 453 ，
Power－frod influence，ini，gh，100，mancle and lever wann ！n relation to power， 1．3r－34；hewht influence，i，94，leas of puwer see Paralymin
Precipitated powders，chalk，\＆c－ medicimal men．11，488，490；111． 3 ．
Precursory symptoms of dineane detimum， 111, tat．
Predisposing causes of disease－clith stficathen and definitum，NC．．i ， 21.4 ， 215；barious inthunces， i ，2r5－2t ${ }^{-2}$ ．
Predisposing causes of fractures，ii，
Pregnancy－vee title I＇arturituon and Pregrancy
Prehension，muscles of－－desciption． ii， 307.
Prehistoric horses－ewhutivn，iii， 2 éb．
Premature births－camen and treat ment，care of fual－，dil，ili，221，222， 207－2ny
Premises－daninfections after infectime diseases， 11 i ． 154156.
Premolar teeth－structure，iii，＋44．
Premonitory symptoms of diseave definition，31，174
Preparation of food see Food－fced－ ing．alno livaled tixel．
Prepotency in breeting，nocd of，iii， 212 ． Prepuce－ee bheatl．
Prescriptions see title Medicines and Lhug
Present types of horses－descont and

Preservation of green foods－alage method，iii，iry－is
Pressure－air，borne liy harse and man． i，tes；bandaging c．ne，iil．3n tance

 of term， 11, ， 6 ：stue salmag in－ jurres，：3i， 44^{8} ．44，45s
Pricked ears－mmsclen wh play，in，z11．
Pricks－iff feet，is， $3 \mathbf{3}^{5} 5-3^{5} 7$ ，ander amb smuk hat to，in，jou， 428 ；plometured wunch，in， 403
Primary adhesion methal of wound healime 1,404
Primary teeth－ace Makk teeth
Primeval horses－＇see Fombl
＂Prince of Wales＂（i；－clyaleadale breeding from，i，rul
Private persons－postich an the wat rantur，1is，4it－48
Prize horses－see Show hurses
Probang for treatment of choking，i ，an？
Processes－of cranium and face brance，ii， 18．， 185 ，t＇sni，wre limht bones．it， 1ub，am：lacteal ynten，i，t：7． nervefilires，i ，70．trum articma－
 fimble and trambserne procescon，ii， $172,100,181,142$
Profile of head－conformating，i，39－4 ．
Profuse staling aml it treatment， 1 ， 346，mut－gall une ，11，＋i5

Prognosis of dinease lefinition，i，214： skin diserses， 11,134
Prognostic symptoms of disease，iii， 144.

Proliferous cysts－form if，n ， 102 ．
Prophylaxis of dincon－lyggiene effect， mi，th．
Propulsion ventilation lig：iin， 75.
Prostate gland and yusturn of arethra． 1，71：emargemelt，Nic，1，351， 357 we of catheter， 13,17
Protagon of merve thane．i．\＆b7．
Proteids fonds and digetive action， i ， 245，24n，in budy，119， 7 ．
Protohippus－fimil remains and horse иには14，113，512． 513.
Protoplasm of nervis sylem，i．373， 378， 357 ：devehpment ial hef from，in，

Protozoa－lencriptm ．．．am！generatan，ii 17．in，250：diactace dive t1，ii，52

Protozoon－evolution of iman from，ini，
Protrusion of cornea， $31,15,116$ ．
Proud flesh－antieptics and drugn re－
 laryox ami rearma，i，512，sand ratk，it，zob：stome in bladder，i， 358. uli ery，i1，+27 ；Wounds， 11 ， 700 ．See also（irnw the
Provender see Food
Provender room－structure，\＆c．，iii． $320-$ 324． 333.
Prurigo and its treatmont，ii， 149 ，druge 111， 7.
Pruritus－nature，and neurusis form，ii， 14．15e1 druge，int 1，2：stampung due tu，iii， 341
Prussic acid－medic mal mees，iii，7， 9
Psammowa tumolurs in brain．$i, 415$ ．
Pseudo－farcy－horse pox mitaken fur 3． $14=$
Psoas magnus and parvus muscles － 1, rin，de． $11,3=4,325$ ．
Psoriasis andistreatment，ii， 152 ，drmen ili，s，lureditary＇mflectue，i．， 130 ，
Psoroptes un skincamsing mange，ji，re6．
Psorosperius inferting the skin，ii，if．
Pterygoid bones of ime，ii， 183 ．
Pterygoid muscle werve of．i． 304
Pterygoid processes wheme bone
Pterygoideus internus and exter－ nus thams if mancler，n
Pterygo－pharyngeus muscle $1 . \mathrm{rm}$ ，
Ptomaine poisoning m buscs，aii，qi
Ptyalin in linemorn，i，tis． 44.
Ptyalism and itstreatment， 1,25
Pubio－femoral ligameut of husoms．
Pubio－femoral muscles－forms，求．
 257．mamlen ammeliuns，b． 341.42

Pudic artery fromation， 1,45
Puffing in male of horeč－illecrality，iii，for
Pulleys for lingine．iii，4o， 41.
Pulling up wadsenly a cause of frazared 4：17n．2，18， 245
Pulmonary affections－aporlexy af－ feeturg heart，i． 457 empmain the－
 ii． 407 ；Masentan and plethan．i ，
 catom，is，a dater ath maturd

 temprature，E．e．tio，24．Sere alow tullés Athma，Rrunchitic，Lomge， （the Ambana，se．）

Pulmonary arteries，veins，and valves－－1urmaten and wen，i，4i7， $45^{8}, 44^{2}, 44^{3}, 47$ ，wintrmilime wif vares，i， $4^{\text {tn }}$ ，summ due to achan of，i， 44°
Pulmonary heart form．\＆c，i， 437 Pulmonary plexus－firmation，i，，ith． Pulse

Descripthan and forma in beath and dim．

 4＇2，＋13．404，747，470．
Posmband－smptuma，in．47．54．57， 4

 chatis in，z，combertum of hangon，it，

Pamiced foot momedness amil war－ futy，แ1，422．
Pump water caming divease，iii， 1 ＂．
Pumped－out horses treatment，i，
Punches，Suffolk－appearance，\＆e，i，
Punching for wind texting，iii， 386,
Puncture for hone dneave，n，208，fur lymplangita， 21,23 ，for fus in ght－

Punctured lungs or chest－calmes Alde eflects．1，$\ddagger 12$, ii，10，25t，255，
Punctured wounds and theirtreatnent， 11 ， 10 s． 43
Pupil of eye－confirmation，i ， 1 ，ii，roti， 1．7．（h）eath ath evamont！川， 11 ，
 if． 4 11，ini， 2,14 ，homblues tunth，in，

Purchase of horse watranty and ex－
 ntite
Purgatives or Aperients－

Foal－at bith，ini，220，224．
Puimmang treatment，iil，5r，52，53：re－ －trmitions，111，53，54，5n，59，5．4，013， 6．
Preparation and prearation for halls

Purpura hemotrhagica and its treat－

 50．in z2．，dhas lined，13，445，456．

Pus or Matter－
As chance of dincetere，i．22t
A－trancent cofect ，in，13，45t
Distrenen alfecteal with bume rlisemes．

 प．
 throut alfomm，tu川，1，zas：thrm－
 344． 34.

Woant－hexheng agest s．ii，4uri， 412.
［Sce，when titien Nbscesses，Fistuh， limmonrs．］

Pustules on skin，i1，137，150：dressing buning．in，4：1，hincoper symp－ lims，11， $43,141,14$
Putrefaction－agents，atresting，ii， 48_{3}
Pyæmia and jth cansen，最c， $\mathrm{i}, 409$ ，48， 4^{82} ．due to thrombosi and atrangles， i，477，ii， 42 ，twound painoming．it． 407，joilts aftected atter，ii， 282.
Pyæmic arthritis and its teatment，ii， 287，285．＂navel il＂resulting from， i1， 280.
Pylorus and orifice of whmarh， $\mathrm{i}, 234$ 235．236；actull in dheention，1，243： closure and tummars，i，248， 2700,277
Pyramidal process of an pedis－mus cles mertion，is， 3
Pyriformis muscle－firm，\＆c，ii， 342
Pyro－catechin－w wne，1， 339.
Pyrogenic fever－a form of strangles， 11． 39.

Q

Quadratus femoris muscle－form，
Quadratus lumborum muscle－form， N．c．，it， 326
Quaggas－crosn－breeding；with mare，iii， 239：special features and orign，iii， ＋10， 525 ．
Qualified warranty－form：of，iii， 400 ，
Quarantine minfections diseases，iii， 152.
Quarters－comformation，$i, 22,80$ ，of crasp，de，1，58－bu：defomity due to fracture，ii，257：eczema，11， 148 ； length determmation，i，97． 08 ，spa－ vin in straight quatere，ii， 217 ： sounduess examinatsm，13，373，374．
Quassia－medicinal uses，ii，qís．
Quick of foot－formation， $1 i i,+35$ ；prick and mjurtes，ii， 385 ，by thoeing，1it．

Quicksilver－medicimal uses ii， 48.
Quidding the food－minth and teeth womble cannms，i， 240,330 ：un

Quiet to ride and drive－kicking due （1）treatmen ，ble purchase，in， $2=4$.
Quilled suture for wound－stitching，i i， 417.418.

Quinidine－medicmal met，ii， 452.
Quinine－medicinaluヶeヶ，11，＋51，iii．\＆，II
Quittor and its treatment，it． 37^{8-381} 435．drum，in．$\therefore 4$ ．camber and villawhe to，ii，301，28：mok mand
 sommeness and wannaty，in，378，422．

R

Rabies of the horse，ii，it
Race on face－furm， \mathcal{N}, ，iii， $475,490$.

Race－horses－

Condition－use of term，is．445．
Comelitum or phycio balla，in， $44^{\text {h }}$
Conformation－brent，i，fu：canam，i， 76 cmup，$i, 59$ ，to；fore．nm，$i, 73$ ；hind． lamb，$i, 8_{3}$ ，height and chent mea－ surements，i，e5．an．94：hack，i，88： neck，1，50：pastern，i，80：humlders and muscles，i， 60 ．thigh，i， 85
Diseasca and injurie－common to，i ， 2 o： bleeding nove and thom，$i, 50 z: ~ i i$, 158，150：hone dineare or＂rore shmu＂，1i，200，210，220：comgentions of hane，ii．5，filled legs， 11,30 ； fractures，ii，235，23h，24！；roang．
－，10，511，spratis，11，204，205．354．
Evolution influences， 14,287
Merits and traiming－of Arabs，i，203， 204；of thoroughimeds，1，107－113： 113，304－307．
Origin of the race horse，iii， 531

Race－horses－Cont．
stable－－structure，iii， 33^{8}
Water supply in Amerua and in England， 111，々2．
［sce also utte Thoronghtiresto．］
Racemose glands－form，\＆e，i， 230.
Races and racing－fommlanm，wn－ dinct and thase testa，de，i, in7－1m carly hintory，iii， $522,524,527,5: 1$ ， $534,542,543,544,547,547$ ，prohiti－ twin by Cromweli，m，545，trotting． i，117，118，111，313，314
Racks fur utables，ni， 327
Radial arteries and veins－forma 4ки，1，447，444
Radial ligament－sprain，is， 204
Radial nerve－furmatom，i， 400
Radial portion of flexur peelis perforans
Radio－carpal articulation－form，\＆c． ii， 27 r ．
Radius－conformation，i，10，72：ii， 105, 1ut：fracture，in，246：mhammation， in，212；miscle comection，11， 330 ，

Railway borse－boxes－infection and cleansug，iii，15z；－tructure and draw backs，iii，464－467．
Rain－water－comporitun，\＆c，i， 224 111，121，122：filtrather and storage， iiI，125， 333°
Rape－cake－composition and ue，iii，so， $11+$
Rape－oil－ m physic ball，ii，fi4．
Rarefying ostitis－furm of diseane，ii，
Rasping－ef foot，esil effect and method for shoung，11，304．111，434． 438,439 ， 31：of seeth，$i, 3$ at
Rat tails discome，$i, 148$
Rate of growthmahurs－seedirowth）．
Ready－made physic balls－mature of i1， 44.4.
Rearing－croup nuscles，Se．，ascinting 111，i，58；11，324，329，330， $440,3+1$ mean－of checking，ai，15s，warranty， iii． 424.
Rearing of foals－see fisals）
Recapitulation and honse－lreeding，iii，
Receipts fur sale of horses－forms，\＆c． i11，405．425．
Recti muscles of eye，ii，ro4．
Rectified spirit－dove，in，ro
Recto－vaginal ligament，in， 77.
Rectum cminmation，sic．，i，237，238；
 \＆c．，iii，S，12；5xammentin fis hernia．
 botis，i，475．memsan，i，30：－203：

 aution，in，41；andmetme per hand and lefore operatmon，6，271， 281. 284．12．34．35，181，184．
Rectus muscles－alndimimis，ii，\quad ： 3 h， c．ants anticns，majer and minnt．si， 321：caphti lateralio，in，z22：cunstis motiche，najar and mimer，ii，320：
Recurrent disease－defmitim，$i, 213$ ，
Recurrent nerve－formation， i ，zob．
Recurrent ophthalmia and its treat－ กem， 1 ，1th－114，exmmation for iii，stis．
Recurrent rheumatism－tretment，ii，
Red corpuscles of blood，i． 432,433 i an－changes in，i， $4=0$ ，changer due to dかeale， 1,478 ． 14,24 ，drugh aftect ing． $31.447,4+8,449,450$.
Red oxide of mercury－ияen，in， 488.
＂Red Robin＂－druught stallon 1750 price，1， 188
Red worms in arteritis，i． 471 ．
Rediæ and alternate generation，iii， 260 ， 480.

Redness of eyelids－－cause，ii， 114
Redness of skin－vee Erythema
Reduced iron－medicmal mer，ii i_{147}
Reducible hernia－dencriptum，i， 315.
Reflex action of nerwas \mathfrak{t}－t：91， $\mathbf{i}, 388$ ， 389；manclen comtrul，in，zon
Reflex epilepsy－form of， $1,4^{2}, 4^{17}$
Reflex paralysis－form of，$i,+21$ ．
Refusing to go in direction desired－ warranty and se．e，ini，424．
Reins－intluence on carriate of neck， $\mathrm{i}, 49$ seealn Hearncr remb
Relaxation stitches for wouml，i1， 419
Reliance castrator ：ue，it，17\％，177．
Remains of horses－piat typer and fonsils，111，471－4＋50y－513．517－520．
Remedies for ailments we citle Medicines and Irrmen
Renal arteries and veins firmation and wee， $1,334,335,453$
Renal calculus－in hidney，1， 370.
Renal plexus－firmatu，11，i，；i77．
Repeller－used u，foaling，14， $28,3$.
Repositories－warranty regulatuon，\＆c． ili，416， 41%
Representations that are not warmaty， 1ii，407－109．
Representatives selling horses warally as to，11i，414－47
Reproduction and evolution iii，257－ $2 \mathrm{Ch}, 280,287$ ．ahternate gemerimban， ifi，259－2 гіт．
Reproduction Organs－Anatomy，\＆c． fetmile：－
Changen movam due to impuegation， ill，245－240，2n1－この4．
Develapment and rate of growth of cm－ hryn， m, a49－257，208－205．
Lalia，chitoris，valva，lymen，bima and pasage，1， 18 ：ii，73－7n，finting diti－ cults，iii， 273.
Muscular fibres，ii， 74,75
Dary and ovum，ir， 78 －80
Urinary monage and urethra，ii，74，75， 76 ．
Utertis or womb and attachments，ii，75－ 78.

Reproduction Organs－Anatomy H1，
Fnumeration ：mel appeamace，it， 84, f 5
［uguinal camal and gland satmance， it ， D5． 016.
Penis，prepuce or＇＂＇heath＂，i，13：ii，60， 20－muscles．ii． 73.
Spermatic cond，corothin or parse．and verulat remmales，ai．to－ton．
Testisles，testh，and tanica aldugines， i ， 17：13． $54,05,06$.
U＇rethra and openings．ii，71－－musclea of， 11．72， 73 ．
Reproduction Organs Diseases，心c．
Cantatiman and Charintmy see thme tules
Catheter invertinn and unes，iii，177－180． Coverine divane，or malathe du cont，ii， $5=, 80,8$.
Itrag aflecturs，ii，475，475，479， 481 ．
Emptom dere to banola，ii， $3 \downarrow 1$ ．
Female－cheti wary，it，ros．Hondme
 Su－42，47，us of wagmal pessige，it
 ros parturent fever，© $\mathbb{X}, ~ i, ~ 07-$ rex：matder thatider．ii．पi－47： ＂whites＂or leweurbivea．ii，w2
Male－．．cmparative immumits．is．So premin and sheath－entbmare and malality w watheran，H．8in，ěz Cenleme on drupsy，if，ε_{9} ；pharalysis ared amputation of pem，in， 85 ；tes thles intlammation， $\mathrm{i}, 80$ ．
Stenlity cames，iii，220， 230 ．
Residual air in breathing，i， 473.
Resin－medicimal nsec，11，474．13， 10.
Resistance to disease－obmerbations， ii，443．
Resorcin－antineptic uses，ii， 4 is

Respiration or Breathing－

Act of，and descripton of intermal and external respiration，i ， $482-48+$ ；mum－ ber of breaths taken by a horse， 1 ， 4.4.

Aur and its compoxition，\＆．c．，i， $487,493:$ iii，132；after respuration，1，40 493. iii． 7^{00-78} ，79：aur－changen in the blood，1， $489-4 y 1$ ；impure air causme diseabe，i，210，222，ventilation，i， 405－477．
Amome of aur required per horse ini， 76. 73゙。析
Confunantionaffecting－breastand chest， i，U2，03，04．furehead．1，33，neotrols and jaw，i， 0,41 ；false mostral，in， 5ab．
Effectu of revpration－gases，\＆c．，i，482， $483,487-441,111,70-78,79$.
Foals at burth，14，220，285；prematurely burn，112， 221.
Formanm and wes of limge，laryinx， tra，he：a，branch，and air－4elh，$i, 48$－ fisp；cheht，tihs，and dhophragns，ace．， i，ful－4y，mancles，ii，zo8；nerven，i， 383， 444 ：skill functulls，11，129， 13 x ．
Hycienic condations necenary for，mi． 67.

Soundacsu－cxammation of wind，iii， 3^{85} ．
Water evaluratum，iii， 120 ．
Respiratory Diseases and Influ－ ences
Asphyaja ur suffication， $1, \$ 94$
bleedng－internal and from nuse，$i, 50$－ 503.

Froken wind as distunct from asthma，ii， 11． 12
Etonchitis and arthma，ii， $\mathrm{t}-\mathrm{A}$, it
Catarth or cold，1，497－－nasal catarrh or glect，i，499－50：
Caumenand diagnosis for signs of dineace， i，210，222，260：i11，140，14， 149 ：for formolning，112，47，
Clonking due to uhstructaon，$i, 266$
Colligh and higl，blowing，ii， 18 ， 19.
 surthing．\＆
Pus in gutural pruchec， i ，504－507．
bymptemin in variunin diecaves－beart，i ， 457，457，407，hermai，1，320，horse－ athens，11，5ti，muligesturn，i，270； induenz．s．11．32．pleurny，in． t^{4} ：
 tet．ullu，it， 4 ，tiongue mifommation，
ee alhat title－Larynx，Lenig dineases， Kuaring，Tulerculonel
Restiveness－warrunty as to，iii， 424.
Restraining nerves of heart，i，4d1．
Restraint of horses－during medicine culmmintrults，111，58－22；during

Rete mucosum－of skim，ii，125， 132.
Rete testis formamion of duct－ii，tri，б̈．
Retention of urine－catuen，\＆c，i，350－ 353：wathirawal by catheter，ini，177－
Retina of eye－f（itm，\＆c，ii， 107 ．
Retractor muscles－ani，i，238；bulbi uf eye， 11,104 ：costa，ii， 324 ：penin， ii， 73.
Return of horses－warranty regulations，心．し．，ill，405， $425,4=6$.
Reverting back in breeding－laee titles tach－brectug，Telerony
Rheumatism and Rheumatic Affec－ tions
Callues anif treatment of rhemmatiom，ii，
 zish，it theumstamal tetanus，in， 47 ．

 wimles．tlls，11， 356
Drugs fir， $2 i, 452,46 \mathrm{r}$ ：ini，2，3－for rhetr－ matic lumon，11， 490.
Inlu－nie of ace，i． 218.

Rhododendron－pusioning lsy，iii， 56 ．
Rhomboideus muscle－furm，ii， 3 ： 8 ； merve commeted，1， 3 ya．
Ribbed－up horse－defecta，i，os，diges

Ribs－confurmation and bones，i，50， 57. （41，t．3－n5：11，189．141－cimpuration and dinease of bone，is， $175,-13$ ： fracture， $1 i, 25$ ， $22 n, 2214,254$ jomit． or articnlatom of，in，wo，dor， 207 ？ mustles and comectim，1．03；ii，
 C1， 1, f＋1－4 93.

Ridge ventilation ustablen，ni， 3 亿．
Riding－early hintury on，ill，521，522，528． 555． $5.42,543,547$ ：mand gement of 417．124 Sec alon titlen Hanters， ${ }^{\text {＋}}$ saldle horses
Right heart－structure， $\mathbb{R c}, \mathrm{i}, 437$
Right portions of alodominal cavity，ii，
Right surface of head－structure，i，ro．
Rigidity of body－drug producing，it， 475.

Rigors or shivering－in Whod prison－ ing， $1,4^{51}$ ，hrethehiti，i_{2} 2，catarrh， i． 498 ，dymentery，i，2g1，entesitis，i ， 243 b buncy disease，1，34，Jymphan－ guta，ii．22，parturient teser，i1，08， Fleuriny，11，14．fosomme，13，47，
 Hammatlow，… sumblies．211，374，hereduty of，in， 214． 215
Rigs or ridglings dexcription of，$i, 38$, III，fut，cautratum wee that thele
Ring－bone－c．mиси and treatment， 14．205，250；wtith firm，in， 211 heredtary，iii．215：＇peration for，in， 1in；anmmodness and waranty，ii， 302：i11， 378 ， 422.
Rings－－1 lasme wristure，in，177，on honds． moreundnem，ice， $13,420,435$,
Ringworm anif in treatment，ii，i40，163－

 in， 5,8
Rise－mabituty tu，the to braken or braincd liak＇，in，zus．
＂Rising Star＂－suffoll：prize， $\mathrm{i}, \mathrm{ta} 3$.
River water as dumbins water，wh，12s，

Roach back－aptertrume \＆，，1，57，60．
Road acrifent and lirat ant，11，477－4＋1
 Roman rosidsand usen nil homes，in． 52n． $5=0$ ．
Roan horses－chdur curicin，iin，qus．
Roaring and whistling s．alses and
 mathen，i，\＆1，4t，th diveaven，i，zho
 tinewm，ii，19；＂her，tom for，causing larmbiti－， $1,507,509$ ．uthermbinests

Rock water－ancdヶヶヶ，iii， 122,123 ．
Rocks－：mimal remams in，ï，47r， 472
Rod for preventing tearing of howe elothes， iii， 342.
Rodent nleer－form of， 1,15 ．
Rodway bar－iron fir aneing，iii， 445 ．
Rodway iron shoe－turn），心̌し，iii， 443.
Rokeby Fuchsia－chanmom shatemare flust．．i．1：＂5
Roman horses hintory，\＆c，iii，525－ $530.535,5$ ith 2
Roman nose aypearame，i，ir
 hursen oll， $111,5 \pm 0,52 y$.

Roots－as food， $111,80.07,115$ ，fir preg． natht mares， 16, zos，wh honner， 16 ， 27．proultacen minde trom，an，en，al
Ropes fir shfuratwh teatment，in，352，

Rosettes ：o markmes， 11, ＋97，4y
Roughing of sinee，sil，4it
Rouleaux ：＂Whocl，i，\＆
Round ligament if haf－jumn， 11,275 ．
Round worms－firm and dremen dise t1， 11,102, t＂4， 170,171 ，Arug ile stroyme．wn， 1.
＂Royal Albert＂ 1885 perlagree，\＆ 8 ．
Royal Commission an lowse lateethy

 1，4＂， $1+1$.
Royal cream horses－itngin，¿゙c．，i，
Royal Interest in Horse－breeding
Clydentale，i，ist，187．liackney athel
 and fremumb， 1, If，14，Shae and war howes．1，172－175，thormuth

Early lintury on，16，525－541，Tinlas

Rubefacients and twir wes，w，I4
Rugæe ，fbladder，i． 337 ．
Rugs－chatine effecta， $12,422,425$ ，homen
 and paitues， $11,10,15$ ，w，32，suk threve clotham，m， 4 4．
＂Ruler＂ 2453 －Suffolk at，llown illast
Rum pony－urigin，firtu，心e，i，IÉy．
Rump bone vec sactum
Run＂lis＂amd＂hath＂－tratining uf thatwethredh， 111 ，
Run down－huses sumemalaitity， $1 i, 477$ ．
Runaway horses mifure，ii，\＆ψ° warrauty，14，\＄4
Running horses－e．．11ly whe，iii， 577,
Running sores due whme diseare， 11 ， 13．Gee athat tathes fistula，fistu－

Ruptures or Hernia

A defimten of berma and hinds of rup－ tllés．2．3：5
Hikedmer nume， 1,514
Firambluad－venel），i，＋1：，4：
Furmo of berman abl teratmont－exom－

 nes examanatum ．110 watranty，w， 375，42：
Heart ruiture，i， 47

Ligamente，temdom，and munder．ii，

Lave rupture，i，zus．ite．
Lang－laraken wind de＂tw，ii，12．

Stomandi，i，2t7 inetrectun ame tha－ twn absing，$i, 270,271$ ，277．bamit．

Unsountreme und warrants，iii．372．4：3．

 grama，1，17．Haverat of bidulter，is． 372．Ateribe bemarh，ap，w．

Rutting－vee（twtrum）．
Rye and grass－a，finn，i．$+311,80$
 427． $111,14,11$.

S

Saccharated carhonate of lime insulute， 111551.
Saccharated iron medicinal wes．it 47－htuc．M1． 1
Saccharine compounds afoml．i．ait．
Saccharomycetes－dew 11．thm，ii，sin．
Sacral artery formation，$i, 452$ ．
Sacral nerves and plexus－foms，isc． ${ }^{1}, 375-577$, ． $1,4 \cdots$
Sacro coccygeal division of sertebrit

$$
11,171 \text {, : }
$$

Sacro－iliac ligament comections，it 204．3i3．
Sacrum surismation anct lumes， i_{a} I 5 58：11，17．180，162，cimuluction with
 14，323，324，42ri，34．
Saddle－divenen dine to prewure，\＆c，； $20.11,+6,432$
Saddle－backed horse－appearance and tletect，1， 57
Saddle galls，© calke－i， 220 ，ii， $4=0$ ， 432．we if tran an wh 11,45
Saddle holders－iyper，14，332， 333.

Saddle Horses

Anctent hators，iii，5＝1，522，528，535
breed not ristmot，exeept in America， 147.

Ereealsused and merien if Arals，$i, 203$ ： hat knes and hachor，$i, 12=2,147^{-144}$ Hohteims，i，20\％，210；ynch hormes，i 124． 125.
Confurmation，antion，\＆B，i，147－3to af track，1，55．crounh i，54，00，hireminn，

rumber with thamughted or Arab itumel，1， 4 \％1＋
trachured hack，amb mavienlar disease hatuby．in，255， 301.
Traming，©゙イ．，iii，201，307－310，312， 340
Warm，aty－harcibhosec，Ne，iii，417，424．
［siec utso tate Hantore．］
Saddle room－fitting， $\mathcal{E C}$ ，int，331－333．
Sainfoin hay combumitm， 11,110, In
St．Albans rimal vatis fambution， 1. ， 10 ．

St．Simon strain berdmis prequtern III． 21
St．Vitus＇dance ant un tratancont． 1.412 ＋1
Sale of horses nee Wimrmory，alay F

Salicine

Salicylate of soda and sodiun medi－

Saline aperieuts and 115 s, in，$\{4,45$ 471：for liver，
Saliva－actinn in ，lysivition，

 dinesatel it fintmeal，W．It Zan，
 Stanatit ethict
Salivary calculi－Homation amb re－ menal，1，4：－
Salivary glands or ducts－itenriptm：

Salivation and in twomem，i． 258 ：inal

Sallanders ami it cance，ii， $157,55^{8}$ remedy，11，46．＂＂hestunts＂as．mi，

Salt－mednemal fric of common salt，ii， 47：int，oz：on ruad cathang disease 3i．424．Witer commbincot，mi， 122
Salted horses－immunity from hurse－ い14 k！e？It， 54
Saltpetre－wer，and duac．181，之， 20.

 Q ermus dries，in，44，＋54， 477
Sal volatile－sumulant 11 es， $11,4 \%$
Sand tor bedding，ini， 357.
Sandals wed at huen， 11.420 ．
Sand crack and iis treatment，ii．3F5－367 13， $43^{\text {n }}$ ：Canher ami whatis due the in．

＂Sandflake＂－arthk 1．1｜Masemimation，fil，
Sanitas rim antereptic，ii． 437.
Sanitation foadurg amel mak busen，N，
 rhemmatiom dhl fistlachz．influenced hy，11，2n， 32, wathate of silk hothen in．i5．ace also mite Veterimary hysiene
Santonin－lowe，iii， 10 ．
Saphenous nerves－firmation．i，403， 4n」
Saponification of oils and f，1ts in dugen－ ［13，11，1，242， 24^{0}
Saprophytes－water purification，iii， $1=7$
Sarcinacoccus－firmattom，践，i， 220 ．
Sarcolenma ，immele fibre。ii， 305.
Sarcoptes calnang m．mec，in，in？
Sarcoptic mange－tratment，ice，ii， $149,107$.
Sarcous element of muncle fibrilla，ii， 305 ．
Sartorius muscle－firm，\＆̊c， $1 i_{2} 3+1$
Savin－eflect ant uterana，ii， 475
Saw－dust as hediling，wi． 24.355.
Scabs－rimiwum amd momse，ii，1rit，whis．
 407． 457.
Scalenus muscle－ $1, \ldots$ ，\＆c，ii，ふマニ．
Scales im shin， $1,127,152$.

Scandinavian cross if levelamd bay．
Scaphord hone and lyamente eonnec
Scapula or blade－bone finm，i， 10 ．

Scapular cartilage－f，मmation，ii， 1 ？
Scapnlar regions－munles of，ii． 328.
Scapulo－humeral joint－form，\＆c．，ii，
Scapulo－humeralis gracilis muscle
Scapulo－mlnaris muscle－furn，太心．
Scarification in funct in reatm inver．
 n．＇\cdot＂wheath， $\mathbf{i}=14,838$ ut

Scarring walle 1 w at methoul ofwomd－化相には，11，f4．4．4．7．
＂Sceptre＂．trav law uibhbreal filly il （1un），i，il

Schlemm，canal of wese，ii， 10 ．
Schleswig horses appearance，\＆c，
Scliwann－white subatance of，$i, 37$ ．
Sciatic nerves and fibres－furmation

Scirrhous cord－examination for，iii，373＊ Scirrhus－a furm of tuberculosis，it， 50.
Sclerotic feye－anatomy and examina－ t111，i，11，11，104，105，107， 109.
Scoop for litherripoy，i， $3^{5} 7$ ， $3^{4,8}$
Scotland－early hivtory on horeebreed－
 thina，2，174 ratims mattuled in，i， 119：118．54．
Scraper for gromming．in．Ist．
Scraping mitatile－vice of，ni， 342.
Scratching whmelinezu due to，ii， 140
Scriptural references th the we of howses，111，518，514．520． 532.
Scrofula－a form of utromglè， 11 ， 39.
Scrotal hernia ant it treatment，i，322－ 324；heredutary，i， 310.
Scrotum－couftombtom，i，17．n，n7，res； ＂rey mamen $\mathbf{i n}, \mathrm{i}, 7 \mathrm{f}$ ，herma and C．15trat11m，1．314，320．322，11．173， 176：maklen inteation，ii，zat，sper－ mathe cordand terthes＂not dona＂ iil，i1， 07 ： 11, ， 8 ．
Scurfy skin due tw currycumb，iii， 135 ，
Scutiform cartilage 1 f tar．in， 310
Scuto－auricularis externus and in－ ternus－finmbutmmele，11，311，312．
Sea carriage of horses－failities，det．．

Sea－weed－medicmal ue»，ii， 48 ．
Seated shoes－form and heta，mi， 44^{2} ， 443.

Sebaceous glands－of sheath，i，18，in， 7r，ol skin，11，22f， 131
Sebiparous glands of k in， $11,120$.
Second inter－phalangial articula－ t10n－Hittn，\＆L．，11，273
Second phalanx bone of fite－limb lomntlun，11， 34
Second thigh－confimation and hones，
 and lols．
Secretion－a calue uf diseane，i． 222 of

Secretory nerves－ilencruptiom，it， 374 ．
Sedative drugs－atmb，ぶс．，iii， 14 ：
 Hervels bytctat，11，470， $477,47,5-403$.
Seeds is het，i，241， 242 ．
Seedy toe and tratment，ii．3es－37，

Segmentation－rinees in breedins iii
Self－fixing base for \＆ 11 －pillars，iti．： $2=4$
Selling of horses－Luar．unce ，t Ginmines vee batien Ex．mamatrom W．arr．an！
Semen－we hominal tuml
Semilunar cartilages if unte jumt，ii． unar crest if athm－bume．ii．200．
Semilunar gauglion of dorat nerbe，

Seminembranosus muscle firm， ic．， 11 ． 1 ．
Seminal ducts－twmation，太心，it．Fo，
Seminal fluid or semen ennsevance，

Semiology－alchmition，i． 2 な．
Semispinalis of lach and luins－form．
Semitendinosus muscle－form，\＆c
 ＊12， 1 ，meveraffected by ffactire， ii，zaz：paralyw uf semation，i，410： 11．272；skin puwers，\＆C．．ii，127．128． 150：depmaties eatain part if semsa－ tum－uprathe：vee Neurotoms

Sense，organs of－fictal formation，iii， 257．Nervolts sysem and merven at fecting， $1,373,374,385,380,391$ ： farantes infesting， $1 i, 174,173$ ior special urgan，see its name）．
Sensibility－lace Cunscionaness
Sensible perspiration－nature of，it， 130.

Sensitive laminæ if fout，in， 435,4 ， 4

Sensory impressions of nervotrs syblell，
Sensory nerves and fibres．
Septicæmia and it treatment， due $1:-\mathrm{Castratum,11,174}$. glebinusta， $1 i, 27$ ．to stanglen， $11,+6$ to wound－paineminag and imerubec， $11_{\text {，}}$
 แflammetnom，i， 464
Septic glossitis－dintiotion，ii，far
Septic infection and intoxication forms and tathes of dmeare， $1,2: 7$ $41,11,406$.
Septic pneumonia－calnes，\＆c，ii， 7
Septic poisoning and organisnis causes，if diseane， $1,210,220,237$
 4un，＋14，＋21：micers，dradz．is，t2 wamb 1athemmation alld partindent feser，11，yo，97，i， 8
Septum nasi vomer lone，si，is 3.
Septum pectiniforme fems，ij， 70
Serous abscess－duetc capped houck，it

Serous covering of itterus－form，ii， 77
Serous fluid－in dropez，i， 310, willit． i． 354 ，woundt，11，41
Serous gland－dencription，i，23＝
Serratus anticus and posticus mus－ cles－formis，i．323．
Serratus magnus muscle－fom．\＆c， i1，333：is，trtire affecting，in， 255 ； Hericto， $1,309$.
Serum in blood，$i,+35 i$ diseave liate tos
 ＋1．
Servants elrising and accidents liabilits， iti， $41^{\circ}, 4^{4} 9$ sale of hanes by，aml
 Attenktants，（itumas．）
Service season－ammiker of naves，sum？ condutmom of viren 13，111，224－230 period and indrations， 111 ， refical of mares cos wrea，jii． 23t isee alog titles lircedng，Sexas． intercolarne），
Sesamoid bones－f．rmatim，\＆c．i．：－
 －pram，is，25uース5こ，20ミ；jubt and

Setoning and setons fir bone lineater．

Settiug of fractures，
 fromec，il，2f1
Seven－year－old－teeth of，in． 3 ， 4 m ．
Sewage fungus－in wiotu，in， $1 \sim$ r， 127
Sewage gas－liseane cawsen， $111,78,82$ ，

Sex a，cimbe of dmeance，$i, 214,218$ ，ii，So．
Sexual intercourse－diemats dhse th，

Shafts fin bomilating atables，iii．is，
Shakespeare tahing charge of hornen．ni．

Shamus－na－cappul－meaning of citle． 111， 547 ．
Shank bone－formation，iii， 477
Sharp withers－character of，i， 52.
Sharpening of hoc, s1：， 552 ．
Sheath of muscle－fibre－conponi－ t1111，11，305．
Sheath of penis comfurmatim and

 ii，\＆\％wellang tue whrate and
 （ut， $15.3 \begin{gathered}8 \\ 8\end{gathered}$

Sheep－dip－1，oivan by，i1，120，131，i11，4e， 49.

Shelly feet and libeir treatment， $3 i, 367$ ． S：1msuundache，316， 379.
Shelters for homes wif thagrasc，iii，as．
Shetland ponies－appearance， \mathbb{S} ．i ， 1 t．8．234，evalutamin and breedling．iii， с 5.5 ， 28.
Shifting－pieces in bt，lde－4tallh，iii，324，
Shin bones－diseaver，is，210， 21 i． See aln titles Camma，Metacarpal． Gure shims
Shipment of morses－faculities，diet， ※ㄷ．．iii．＋51－404
Shire Horse Society－work of，i． 182, $\mathrm{U}_{4}, 1^{2}$ Soct
Shire Horses
lirecding－ancentry and caly hintory，$i_{\text {，}}$
 i，178－180；frement hireeding．Ne，$i_{\text {，}}$ 180－182；telésnhy influentes．111，241， 242.

Clausification，and price paid for，i，172， 185.

Clyderdale crases and reatmhtance．i ISe，100， 191
Confurnation ahent ant blombler，is is． fo：dele：th am！＂feather＇，i，iscin
 $\mathrm{i}_{1} 102184$.
 stillimas．
Suffith veculgaticd whl，1，19t，Tit

Shock
 iti，fi，i i rimiture ctiel
Shoes and Shoeing
 reallit，11， $275,3+2,4$

 423．4＋1．m．ne：int，mondern and －pecial typres， $114,4+1-4+1$ ．
Healthy Fect－Jresenatum，bii，if，o8．

［rack amal womoll if fect and their

Kongling of thatpemats，113， 451

Shoes and Shoeing Comt
special treatment farsoms hotrec amol hachs， 111, z1コ：lomenes at gr．m． 111
 4．7．travelhnis harses，ub，fri7，wot ［世5
Specially firmed homes wr treathemo，， 4＋1－40：fir entroted and 11.1

 wlitis，ii，
Shoots for laty，de，i
Short conformation whak， $1, \ldots-50$,

Shoulder and Shoulder－joint

 （1）1），1，t4， $70,11,15,320, \ldots, 2 m$, 332， 235.

 sprail and shp，11，293， 356 ．Where， 1i．4－5
Shoulter actiun，i，$+7,121$, i 2, in，iso，
Show＂condition＂the：animg of term．
 11． $4=2 .+53$
Show horses－brculine ulvace ami hach Lreedaig．111，•18，－12，－1 -15 ，

 ratity，14， 4×3
Sialogogues ．lıel thoin llect，ini，it
Sibhing in pors brectling， $1,1=1$, ，tho

 t115：i11，14－－ 4 4，154

Sick－nursing
Sickening for something－y゙matumb
Sickle hocks
Side－bones

Side－line

 atitchane．11．41：．4yr．
Silky hair on luy
Silver merlicim，

Simple fracture－form，\＆c．，ii，22t，225，
Simple ophthalmia and its treatment， Simple sutures for wound－stitching，ii．

Sinnle ulcer firm and tratment，ii，
Sinews，back－sprain or laseakdown，it，
Singeing unctloods，hii，137．3rio
single－hoofed animals－fous forma． tum，b1． 477.
Sinking of haunch bones－causer，
Sinuses fintuln m nomanand wither，ii
 Fluxime， 11_{4} tit，pill erst， $11,+70$
＂Sir George＂pony－tallom，breeding． Ne，1，15゙，17，illus，in，143
＂Sir Horace＂－jmmy atalhun，price，\＆c．， 1， 170
Sires－see Stallitom
Sites－fur tablec，iii，ou．70，206，207，319，
Six－year－old tecth of，ini， 399
Size of horses－champterintics and his tory of the linme， $14,496,530$ ；cli－ matic intlucmese $14.530,535,5+6$. 54．bee aho title Height
Skeleton－．ppe：itame and buncs of horse and m．14，i1，17n， $77^{3}, 121,45-40 ;$

Skewbald horses－cifnr，iii，qus
Skewers－fir medient， $11,438,+39$ ：for herni．t，i，，12．
Skin
A－external concring of budy，ii，azt．
1tare patelien formaliom，11i，504，500．

Gintration atter treatment，ini， 180
Cutiole or epidermin，and cuti or derma． 11．1．1－1．ta
Inmatmen if hai，hurn，chonemute，\＆c． 1i．：31－123．in．504， 500.
Ghand fat－tuming abl sheat ciands． and harf falliclec，11，125－127，： 3 r．
Ghomy skin－atuse of dells for，is is i4q．ii，147，tit，drose produchag，

 111．De，rue 1：4 $4^{-1,17}$
Injectuman mimer vee bubcutaneom in－ Jettions
Mathins：anisin and firmo of sermpes，

I＇mitumat frewatuma，wh，

Usee at fromeabe enserine and as wegan ul Cusk h．ne r27．fin abourpo

 indry，it． 1 it．

Fhere alon thele－Staring cosu，Sweating ］
Skin Diseases，心－
（havith atan ond ceneral misurations
 152

Irama，hotuln，de，11， $7-2,453-$ abure comang dheave $2,3 A^{2}$ ，ifu，is，14．

Skin Diseases，\＆c．－Cout．
Eruptisus and divchargen due o divease Theedng and hemarshage，i， 501 ： 11，24，25，150，158，corveram dineare，
 Do－03：hatula，at ten：glanders and fircy．in，30，37．hure pon ar wamba，

Eruptinam the tis assecta，bloodfuoman， ※心．，11，it
Fye growels－tonechatal fromations八七．．11，tは．
Genersl a mate and treatment，ii，： $38-140$ ．

Hypertruphaen wath and atrmbite sembe tecaty．16，154， 155

 rhal，in， $1+1$ ！

Insplecton for disease， $111,374$.
Mallender and allandersonlega， $\mathrm{ii}, 157$ ．
N゙ew furmatso－cancer，心．e．и， 150° ．
Not attented woth emphon diagnonin． II． 1 ； 0
Farannic divenses and catmes，ii， $1+0,1 \mathrm{~B}_{3}$

 affecting．12， 15 f
Lerine and daleter affersal for actisity

Whang av corathe thent，iit，

Skull and bones（linsomatmon，ii，183：

 of．1，30，11，18，185．18．
Slack in the loin apresime，i，57，65．
Slaughter of horses－－am tent law can

Sleep－drug maluルは，1i，47t， 478 ；แ
 prematurely－innt finala，i13，2zt．
Sleepy staggers ind it treatment，i．
Slings and slonging－dnectinn ami maternil，311，w，f1，for corppet and

 terule， 13.
Slipping－hnems pecantums in winter，
Slipping the foal－calinen and treat
Sloping conformation－it crimp，i． 58

 shim aboughing，1． $47 ; i i_{1} 251=32$ ， $233 .+$ as：mhler．ii，45，06：wher
 oundres－dhe the，ni，372．
Small heads cuformotion，$i, 38$
Small liyo－glossus muscle if tongive
Small intestine－dercipuinn and uses，
Small－pox hgnっuf．12i． 150.
Small stables－Flans，\＆i．，iu， 32.
Smashed bone－form of fracture， 1,221
Smegma in theath．ii． 74
Smell－nerves off，i，205，201， 8$^{8}+$ ii， 388 tent of water and air，Mi，131， 133.

Smithfield horse sales－－histury，in
Smooth calculi in hadder，$i, 359$ ．
Smoothing－iron for pheunomat， $11,10$.
Snaffles－typen of，wi， $30 \%, 358,350$.
Snake－bites canming puisoned wounds， 11． H 14 ． 415 ．
Sneezing－due tu cuturth，is，tak．
＂Snorer＂pony mare，price，\＆\＆，i，i－1．
Snorting－due tw indigection． $1,2,0$.
Snow－cau－mi crahed hech，is， $4{ }^{2}+$ akin dincsone，ii，sta
Soap medicuml mes，ii， $47+$ ，kin crup tion－due $80,11,1+2$
Soap liniment fir water tent，ini， 13 r
Society of Improvers，1．dinhargh－
Soda and sodium－medicinal unes，ni， $445-450,452,477: 16,2$, è doser， 111． $0,10,11$ ：Fishomine and antedute，

Soft bones－anues，$\&<, i i, 21+2 \mathrm{n}$ ； dring fir，in， 400.
Soft food for hoomen in traning，ini． 303.
Soft palate－furmation，1，7．
Soft soap－r．ming akin eruptim，is， $1 \neq 2$ ： in fhysic talls，ii，44t，in， 15, iti： wahming of sholl dreares，mii， 35 ．
Soft warts－treatment，心．
Soft waters amaly，is，\＆c．，ini，122， 123.
Solar ganglion of durnal nerve，1， 377 ．
Solar plexus beneath auta， 1 ， 377 ．
Sole of foot－－anatnmy and prephramik for shatelyg．11．＋34，＋40，44，pared－
 ii．䛠1．＂drop＂cannes，ii，377： Frich－an！womal to．it， $385-387$ remmal cauning ondractum，it， 394 ： нияoundners． $111,381,382$
Soleus muscle－furm，\＆c，ii，34＋
Solidungula－mamanaln（haned an，iis，
Solomon－harses hegt $\mathrm{h}_{1} \mathrm{y}^{\prime}$ ，iif． 515,520,
Solution of arsenic－Fee Fublers；
Solutions of various drugs－medi－

Solvents fir＂shate＂，i，зo．
Somerset pastures－dいeate cillme，m，
Something the matter－symptum of distare，11，1＋f
Soot as an authlote，ini， 53 ．
Soothing medicines－hir heart，ii． 452 401 ．hanley and bloukter，w．4it． 4＊5：｜unc－and air pawnico，I1，4：1， 4，＝：nersuln system，1i，475，＋77．
Soporifies and their wee whd achon，
Sore lips－ance．\＆c．，i．247， 48
Soreness of joints warraity，iii， 420 ．
Sore shins and their treatment，ai，zro，

Sore shoulders amo ther treanmene ii， 435.420

Sore throat and it tocatmene，i ，254－257； due tw brometata，is，b，lirgugitio，i， 597：50，shatugles，h do：drugs， antiserucs amb checthares for．ii， 4i＝． $455.48: 121,3,5,4,21$ ：moneard and fotuluce wer，iii，0，31，32， 33 ．
Sores－rmmine，the th hone dwe：ne，ii， 213．See alho titien ristala，Skin I＇seasen－eruptioms．）
Sound
Hireathanz－dincase symptoms，ii，2，5．§， 12， 14.
Crepitu－ill frathere．if．225． 226
Lar mumeles and caralages foll trans－ mission of， H_{t} 引il．
Gurglang during motion－cause，ii， 71 ．

Sound－Cont．）

Heati antron in health and disease，i ， $440,45+, 450,400,463,45,407,469$. 47－ancenaa， $1,459.479$.
Nerben nemible to．1， $3^{8} 3.387$
Sound fur lishotripsy，i，zis．
Soundness－ailnents disqualifying， 1,
 in， $420-423,+25 x+2 n$ ．dehnitions of 425 ：future mmoundans and lank， iii．＋0．412．420；hagh blowere numd condtion，it，10．ih，140：vight Cua－ dition，ii，rea：theroughbed，i． 153 ． tranng combderations，in，sot，the
 her ，Ino dulen Lammation，War ranty：
Soup for suk horsec，\＆c，iii，4． 141.
Sour silage－freparation，\＆e．，1u．In7
South African horse sickness causer，and moder of infectron，il．．． tums，furms，and treatment， $11,55-58$.
South African war－herne－dweave ofp－ pearance durnma．ib， 59.
South＇s rational shoe for－peedy cut－ ter，in， 40 ．
Spanish－fly poisoning by，ill，bo．
Spanish horses－hintury and croses，i， 187：in， $528,530,533,534.535 .530$, $53^{8}, 546$ ．
Spasmodic colic and treament，i．2，8－8

Spasms－air pamater．drugh relicsing，ui， 472：int，3．ayhysia．1．4y5，deat phragn，i， 3 R2，larync， $1,507,512.11$ 17，is，heart and druge，i， 4 rig，if，
 $45,40,47,48$ ，warrality an tu， 211 ． 423.

Spavin forms and treatment．ii，216－218 240，201；curb furm，ii， 300 ：drug fur． sii，S：hiring． $\mathbf{n i}, 167$ ，ligament affected，
 and warrdny，i1，302：14，307，3e4． 385．420，421， 423 ．
Spavin－punch fir firing，ni， 167.
Special features in stricture of a hores． 11i，484－497．
Special warranty－form，\＆c．，iii，＋ 07
＂Speciality＂$|1502|$－Cleveland bay， pedturee and illu－t．，i， 128,258
Specific diseases and fevers－cathen uf diseare．i，21，．222，223；ii， 271 ； drus． 111,3 ，a，kin eruptions due to 11．I40－142：miteramfective，ii， 427.
Specific drugs wed in veterinary prace tue．II，442，＋90．
Specks on eye due to cataract，ii，ng，
Speed and pace in locomotion，iii，roz－ 144，confurmation aftecting， $1,62,72$ ． 78，85．80；museles m relation to， 1 31．32．34；quallifation and training
 thoroughbreuts and trutters，iii， 30 ․ ． 314
Speedy cutting as defective action，ii， $400-402$.
Spermatic arteries and vein－form．
 cantration，in， 174
Spermatic cord－anatomy，ii，67．en－ larsed glandw，i，17：hernia．\＆゙い． 318，320，321．See also Cantration）
Spermatic fluid－isee Seminal flud．
Spermatozoa comtact with mum，ini， 245，attificial incemination，iii， 231

Sperm－cell impreqnation of ovim，ni，
Sphenoid bone－form，ii，185，fracture．
Spheno－palatine nerve－form，a， 393

Sphincter muscles－formation，\＆c．，i， 15，240，3：9 11，73，75．paralyが， i ， 10．421：いuntidnes．11． 373.
Sphygmograph－for tentuls pulse，iii． $1406.147,14$
Spices－for combrimmg，bi，q4i，inducin？ appetite，in，u4．
Spinal accessory nerve wigh and
Spinal Diseases and Injuries
tirwhen or tractured vertelite．is，
 dottivents，

 af cord，1， 4 to ecrebro－spinat firm i，＋2i－4－3
Myelicis or mhanmation of chrd iself，i ， 4^{18} ．
Nersum dactane effello，b，to5．
loaralyis and ats cames，i，t21，ii， 23 b， 237＊in epinal camal of ponites， 1 i ，
＂aromstes in epinal camal of puniter，it，
Proulticins the back．int． 32.
P＇rotectima of cord form injurses，i．379． 350.

Soft bonce due tu usteo－purnos－，ii，zró．
Tecantus effector，in，+7 ．
Spinalis colli muscle－fism，in， 319
Spine Vertebral Column and Back
Arteries and bloud supply．i，380， 440 ， 451，＋5 2
tione vertelsax and conformation af lack，i．3．13，14，15．55－58，380－382； ii．179－182．compenathinfordefect， i，102，ᄂhmal canal，i，382；14， 174.
Curd or marrow tomponition and func－ tion－i，378， $380-382,388$ ， $389 ;$ i1， 179 ．
Diseace and injuich－inee tutce Spinal Ibrease and lyinuren．
Emhirgo and foutus growth，iii，250，255．
Eruptions，炎e．on back－boik and ulcers，11．150，151．42ń：fistulens wheres．ii，433，434 riagworm．ii， 104.

Jointh and ligamerat of vertehrat，ii，263， 279：rib cummetron，ii，206， 267 ？ stifte－juint，ii，276，277，trimk， 11 203－265．
I．ength mesurements． $1,66,47$ ．
Muncles and comection back and Joim，ii，322－324，336；fure－lımbs，ii， 32＊．nbr，11，334．nech attachmems． ii． $315-320$ ．
Nerver－furms and functins，$i, 380-38_{2}$ 307．30＇s：lumbu－s．ectal pleath，i． ＋02－ұ05；reflex movements，dc． 1, 368.389 ：sympathetic gatighia，1，374． 375.

Procenes uf vertebrat－furmacins．ii． 170. 180，18r，182：miscle commeturns， 11.
Spine of scapula bone form，ii， 193°
Spirilla rif tonterin firm，i． 229 ．
Spirits of camphor－uど，11，4
Spirits of nitrous ether－uses and d＂いes，111，7． 10.
Spirits as stimulants．ii． 460 ；in accidente， N＇L．ii， 470,440
Spiroptera infestine stomach，ii， 160.
Splanchnic nerves forms，i，3nt． 3^{*-}
Spleen－nerve and arteries， $\mathrm{i}, 377,+48$ ： stion tinearen dine to，12， 139 ；tuber culssi＞attee the is，引1．
Splenic artery firmmino，i，452
Splenic fever we Inthras
Splenic plexus－fomation，i， 377
Splenius muscle atod camections，in，
Splint bones（set Metacaryal bunes）

Splinters of wood is eye，if．3．

Splints－lume civeace， $11,20^{r}-20 i-$ drasing m．5．\＆，wher camee and form－is

 $4 \times$
Splints for fractures $11, \quad, \quad, 27, \ldots+7$ varwim｜x，

Split pasterns－i，
Split－up quarters and thigh－ap－

 124
Spongy bones hae tudinathe，in，z11，the

Spontaneous epilepsy rommon，1， 110 ．
Spontaneous generation if matruber． 1． 225

Sporadic disease－defintmm，1．24s．
Sporocyst－f，rmatinn wif，111，
Sporozoa－firms and dieswen due th，＂1， 161． 1 ig．

Spots－an anta，i， 472 e esc－Mul winl－
 lyल and latuth，1，it，24 perint matimes，41，447－5［ms see alace title，Filusdaposh，whullweme
Sprains－Jime，＇Tendurs．Ligamemes and Musles－
A）camse uf diseate，Re．i，ze＇off ath－
 divlueathon，in，349．jome deemec，in

Definitions，and aucation of pratal or Strath，11，201，20，2．

Examination for sondnem， 111,880
Firstaid directums，$i i, 4$ ． 4 ．
Ceneral cames and rombum，ii．250， 290：gatlophaf，in，1gy，hereditary， iii， 215
Particular sprain－lack amewn of ＂1reakdewn＂，is．$z=$ ，theck and suspenory haments，it，251， 252,
 mimelem，in，2uz，200．pertormon and
 figanent，ii，zy．Wratued hach，is 208.

Planters in thatgen foir，isi，ti

Sprays fir mas，al catarrh，1，tho
Spring hook for hotitler，111，sho

Sprinter and thuronghbred cunditin，ini，
Sprusg heels in shoeing， $1: 1$, it
Squamæe and ：quanous inthomatum if shin，ii，137， 152
Squamous eczema－firm uf，ir，r，e
Squamous temporal bone－turn，ubl muncles from，11，1ef．：11
Squills－medicmal ucs，11，4＇儿，111，15，17

Stablemen－aparsments atructure，in，
Stable Management
Accidens－first alul，si， 48 ．
Complete superaman－impartance of iii， 339－34．
Dreases of staplet？himes－bonsel and
 presentun，11．42

Hyzumic seatment of cout，icet．\＆e， 111．1／33 ${ }^{-1} 40$.

Stable Management－（Cont．）
fnestimbediscates dwintection and pre－

 142．intluenaa， $\boldsymbol{i}_{0} 32$ ；nabal cutarrh， i， $5 \mathbf{C o}$ ，shin discases，ii，150，151，14，5．
Treatment of－larsees in traiming，aii，3ri； thantern dfter wurk， 311 ， 304 ，31m，

 （See alon）l＇s ramums

 4．an，1emperature．
Stable Structure
Chome if site and materala，111， 19,70
Ciachanmac，fooldguse，and carringe w．1nh－4t．3411，111，364．335．
I batnate cmorncthan and bentems，in， こ．

 chantry stablec，ni，b2，si，elt．
Flonng wheh dipelince with hanage， 111， 3.37.
Cieneral dewntions，acemmahation，and moternils mated，mit， $310,326,343$.
Hariess and fudder romms，in，331－333．
Horses ill traning－accommonation，in， 314， 304
Lighemg and puastion of wancluss，ias，70， 71.
l＇lant，iii，z20－323：a grom at athe，111，3：3： illuse．，in，324．
Special serncture fir talt－bamen，eram

Ventulatur and wif tace－common de wes ：and direstion of ant chrrents， 111，71－74，79，326，330，331：arthinal

Water sufthy，m，sef
Barel and hatrmes，cic，111，334． 335.
［See also titlen Luose bines，hrk blosens． nt．alls．］

Stage－coaches－homben fur，i．145， 2050
Staggering－due to ．melmat，ii， 42 ：he．ant

 111， 17.
Staggers－canse and trestment，i ， 2 Eis 270,406
Stagnant pools－puniti，，tin，iii， 127
Staining of organisms－methixls，in，
Stakes－whand camed liy，in．4．9．+1
Staling－lsee titlen Urne，alwo ketemtan
Stallions and Sires－
breedme and wazin of varines breche－

 152，：53；bumter，b，10k，135，132，

Castration－see that title）．
（Geheter imertom and wea，ni．177－180 ］efinition of term＂stallhm＂，ini， 541 binguatifyme whent，－lant of，it， 202.
 i1， $475,4780,111,4.7,900$

Stallions and Sires－－Cont．
Early mating and service limitations，

Gencrative organs－sce tutle Kepro－ dactmon urgan－amatomy and das cases）．
Growth of off－pring－minluence，ill．297， zys．
Herma or rupture，i， $3 \mathrm{~B}, 310,320,323$
 （rintera，j．．fi：（leveland holy，b，

 thatushamed， $\mathrm{i}, 3,3 \cdots, 32$ ，hart share cuals lowse，in，ant
Inliffernce to mase，ili，235，2．36．
Ithlyate of bint we un mares－apimums un tulegny，13，－34－245．
Pennd af patmerty，ill．Atoz
Pomy lacedang and＂－ildang＂，j，sto．
 Gh Commun land $1,154,157,162$.

U．e of atifin inl ismemmation，ini， 232.
Wirhane in larin，wi． 17 r．
Stalls in stables，顺－ronseructiom， 111，70，324，3：5，377．328．，i37：dram－
 phab，in，320－34：rankay buen
 tyms－3n arrangements，ini， 328,4050
Stamping in stablesmerrection，in，343．
Stamps un warrantice，iii，4．5．\＆－4
Standing－diveases due 10, it， 7 grit $^{2} 364$.

Standing leap－methind，jib，sco
Standing operation for castration，ilii． 17家， 177.
Stands over－knee fomation，, ， 4
Staphyline glands－furm，\＆．c．，i． 230.
Staphyline nerve－furmsion，i， $3 \geqslant 7$
Staphylococcus frmation，\＆c，i，\because it
Staphyloma and its theamemt，ii，is．
Starch－fuod propertion abd digevilihus： 1，243，242：11i，87，80，yo，91，96，use iss antidute，in 53
Starch bandages fur frachures，ii， 250 ： juepuratwn，in． 38.
Staring coat－diseases causing，i，su7， 30．1． $311,498,499.11 .40 .111,145$ pumemis symptoms，min，47：water （anbing，14， 123.
Starvation at chme if ineake，$i, 222$ ．

State coach horses－de－chptin，\＆c， i， $177,201,207$
Statical symptoms uf dienease，iii， $1+5$
Stealing of horses－－intwit law on，in，
Steam inlialation－\｛sce hilahation
Steapsin－－in divention，1， 24° ．
Stearin－m
Steel－fur hurse－shoses，in， $4+2$ ．

Steel sharps－［（1）shicen，111，452
Steeplechasing－1ramang methads，ni，
Stenson，duct of fistula of，i_{2} zńs．
Steps walking．iii，194， 197.
Sterility and 1 a amsec，© 6 ，iii， 220,230 ： due to cyct wary，ii，noz：to neek If luterna，in，zh3；to nitesity，ini． 216 servate and nem， $116,180,230_{1}, 237$.
Sternal articulations and cmblach 11，2n7． 334
Sterno－maxhlaris muscle－form，\＆e．， 11， 3.1 ．

Sterno－thyro－hyoideus muscle－ form，心，is，in
Sternum－see lireant
Stethoscope for heart dinease detection，
Stick－Lallung chahing，i ，aris，zeif；stone al Lladiter， $5,374,373$.
Stiffness dae toglatmern ind farcy，it， 3 th

 ， 418
Stifle and joint（1，firmatim，i．27．85．

Stimulants－

lucidents and exhombeal hassen－－uber d， $1,{ }_{2},+39,+40$

 herses， $11,477,47^{\circ}$ ，stantath athl Iner，in，4 $515,403$.
Invalue dict，an， 25 ．
＂I reatmeat of al plesy， 1,413 ．anhma，

 ri4：punpan hemorrhagua， 11,25 ； spatal of thaphagm，3，33，super． phrsatholl，1，240．
Stings of insects，\＆drus allayng pain，ur， 7 ．munth and tangue in－
 and vieath attectollo，H_{0} ह1，da，
 ili， 03.
Stitching of wounds－－directions and Hitclee lined， $11,411,412,+16-414:$
 fistal．s trestatient，h，anz．
Stock medicines kept in studh，in，444， 44°
Stocking ullirecting stanl，iii，210－213
＂Stockwell＂dith－peligrec，1，114．

Stomach

bhend suffly licfore and after medts， i ，
Gimfimathan and digestive unte，i ，us

 dizertun，,$-44+245$ ．Mum anas lust artelen，1，377．448．
Worm and parnite－inferenge， 1, soo－

Sree aloretitle Aldumen ur Jieily．$]$
Stomach bot and sts effects，if，at 12170 ．
Stomach Diseases and Disorders
fle chme or hamatemesis，i ， 51
（ ongh due to，ii，18；remely，11，470
bilatun and rupture， 2.2781278 ，indi－
 chaning，in， 95 ．vanting dae to， 1 ，

1hage and tomion，ii，$+5 \mathrm{t}, 457,460,454$ $4^{18}, 470,47^{3}, 111,5,6,7$.
Finghembent and nerloaded，i，27s ather eather and senthe，1，ofe，eru， $270,274,278,470 ; 114,101,102$

 58，Fort mantem，aptarane er，24，54 55.
＂Stazgers＂，a form urimdigentom，i， 208 ， 270.406.

Stumathis，or munth intammation， $1,=49$.
［Sce also titles（instrition，lobigention， Uiceraten．
Stomatitis（simple）and its treatment，
Stomatitis pustulosa contagiosa Wheramiee md treatment，：1， 4^{8-50} distaction from ghaders， 11 ， 50

Stone in the Bladder
Analysa wid compontron of calculas and urne，i，353－350，子u，发c，in unas i． 344,345 ．
Formathon and calses of stomer i_{2} 220， 2us， 354 ， $300-17$ ．in mares，$i, 3 t 0^{\circ}$.
Gencral urmftumat dagnums and treat

Inflammatmon due ter，i， 3 t9
Internal remedies adi solvents，$i, 360$
Operitim if lithotomy－geneal prejar uthins，\＆e．i， $3^{\text {ris }}-3^{r} 3$ exphang the
 $3 t \cdot-300$.
Operatent af lithotriphy of combing 1 32：0－208．
Thamour distincti＋4，i，357． 35
Warranty as to， $31 .+2 z_{0}$
Stone pipes，心s，fin draim，ini．85，it
Stone solvents mid llew use＇s， $1,50$.
Stone walls－－jwnimg metbols，his，zen
Stones IAndy wanc Ine $11,1,34^{8}$ ：can－ crequms mit atmer，B ，zent，interemal whatructum，i，sen．s．hanory duct， 3 ， 203－2t5：firtulathe tw， 2 at ．See

Stoneworts w water，1i， $1=0$
Stop－noose used in furtuitum，in， 283.
Stopping of feet，iis，ti8， 139
Storax－medıciual uヶeю，1，，270，471
Stots－use of oxen anl meanily of term， i． 173 ．
Stoves for stable heatine， 14,334
Straight conformation－uf batk，i， 57. crenty，：，55：tace， 1,40, nect． 1,47 48：shonlders，i， 70.
Straight muscle of abumen－firm， Ne，it， $335,336$.
Straight muscle of thigh－furm，\＆c． or sprain－definition，\＆

Strainilig－taunini mrersion of rectum am！utcrus，1，？i：it，roo；kiducy dincine，i，it 8 ，ropture and heans． i， 315.324
Stramonium－medicinal wses，\＆e．it $+9 .+70$
Strangles－
Causes，forms，and treatment，i， $2=4,48 \mathrm{~s}$ ，
 mallein text，14，30：5upmetrma，th， 152， 544
Drugn used，ii，487：nii，3r 4＋í， 7
Genesal remarks，anel terms uned，ii， 30
 11， $2:$ heart，i_{2} fit ；пnasal catarth， 1, 470；juint dmeasen，ji， 280,282 ，28ri， Inver，i，zoz；parytd glands mflam matain，i．25！；fuchmomit，bi， 7 ， purfura，ii，24． 145 ：Pus actmata turs，1，504，500：rhewmationl，13．
 and luryugitis，$i, 255,257,507$ ．
Warawty ，18，unnundnes－，iii，q23
Strangulated rupture or hernia－

Strangulation penic atul ：he．th，i， 83 respuratin，i，20，2，444
Strangury due to nee of cancharmes，ii．
Strapping－up línbs，\＆c．，instrerations． i11， 157
Stratified rocks animal remsins in，in． 472.

Straw－as food，compositim．Se，nii，Bio， 01，197，90，112，254：for leddmg ami hutsen eatug，in，24， 1 i8， 130,245, 354,355 ：wisps for gronmals，111， 134.
Stream water camsing di＞cobe．\＆c，in， 125． 127.
Streptococel as cause of dincuase，i，2zt， 226：ii， 4 ．
Striated and non－striated niuscle－ description of，ii，305， 300 ．

Stringhalt and it teatment，i， 41 ，ii，
 3n7．3グ中，423
Stripes in shim markincs，in，457－501 154es and zethas diceime 1801，118，quen
Strokes due to puraly is，b，＋o
Strongylus armatus and tetracan－ thus－dinessee due to， $\mathrm{i}, 47 \mathrm{t}, 477$. 470：11，171，172，174
Strongylus axei in stumach，ii，sif
Strophanthus－medicmal une，is， 45 ， $4^{t / 1 .}$
＂Stroxton Tom＂ 15372 lay hame allume．，, 2an
Structure of a horse－ince Conforma
Structures－aticr．mbn and nasificatim．

Strychnia－medocinal une：is，$+5,578$
 lue to il． 47
Stud books or records
－＇leyelaml

 stems，$i, 200$ lannter，$i, 1=514$ ， Bukure comb homes，：I 34
Stud for breeding aims，beets，able frmmatmen tock，良e，in，205－213
 mer，i，158－tho．thee winn tates

Stumbling－due to confumatroll，$i, 45$,
 $341,+2 z$ ．
Stye in cye，ii， $1: 2$.
Stylo－glossus muscle－form．\＆c．，is，
Stylo－hyoid muscle－furm，\＆．．．in， 36
Stylo－maxillaris muscle firm，\＆c．， 1， 31
Stylo－pharyngeus muscle－furm，\＆． ．
Styloid processes of occiphat and tom 1＇ulal bunč，14，144， 185.
Styptics and their usec， $11,45^{\circ i}$ ：iii，I 4 ill ：acodents，ii， 43 ．
Subcarpal arch of arterses，i， 450
Subcarpal ligament of fure limb，i，zo．
Subcutaneous injections－adminisera
 uneel，ii， 454, f90，$^{81} 1,483:$ in， $6,14 \mathrm{~m}$, maltein tent， $4,35,37,38$ ，39．primem－ mg ly，ai， 4
Subcutaneous thoracic nerve－fur－

Subcutaneous tissue connlitim in

Subjective symptoms ol diveare，in，
Sublimed sulphur－medicial иヶея，ii，

Sublingual glands fomman，\＆e．，
Sublobular veins－fiserntron thre，i， 4
Submaxillary glands－fim， 2is，231．Enlorsement due to din

Subscapularis muscle fum，\＆\＆ii．
Subscapulo－hyoideus muscle－lirm， ふ．c．is， 321
Subzygomatic nerve－－format！，
Suckling of foals－combtipation anil harthea rhange，$i, 285.280 .2077$ 288，280：Afficultien due to thrmhts is
 udder attention，in，226．weaning
 during，i，287．｜see olvo Mall．
Suckling teeth－see Milk（eeth）．

Sudoric sweat－furm of，is， 130
Sudorifies druan lame！！，14，11，472．
Sudoriparous glands－furmatum，心̌ 11，12n．127，

Suffolk Horses

Comparman wath sharen amble inderhative
 Ahlennig $1=10$.

Ilmathtion of atallom，
Suffolk Stud－book Association

 4．35：in urlue． $1,34 \%$

Sulphides and smiphites mealw．11．t｜ ほどって，！
Sulphocarbolate of sodium－medi－ moll visen，m，S．
Sulphocarbolates of soda and zine心 intmeptc，i． 48 ．
Sulphur－meelo inal wes，di，fiat tur iil， $5,7,8$ ，promine dianfated lay in， 155.
Sulphurated antimony－meduis．l いどら，1月．§，い！
Sulphurated potash－macdicmal unes， i1， 4×3.31
Sulphuretted hydrogen－॥еся，ii，\＆21 －talile ，＂r cumanumatlem，w， $7^{8,82}$
Sulphuric acid－medrimal and wher

 III． 45,4 ， 51.
Sulphuric ether－medicmal ues，iai，a，
Snlphurous acid mechmol an！anti－
 diven，ni，！
Sunday－warmaty rexulutums，sute of lurneh，ex．．II，＋14
Sun rays－disomurv due 1 is， $1,407,112$ ．
Superficial ligament in lwith－jnut，n．
Superficial muscles－Mquarnmer if

Superficial temporal nerve－ 1 nam
Superior cervical gaughon ヶum tow，b，\％r．
Superior extremity of lean），i，\＆
Superior maxillary bones if f．c．ii．
Superior maxillary cranial nerves
Supernumerary teeth presence of，$i_{\text {，}}$
Superpurgation and it drentment，i，
 Supplemental air in brentime，b，4．43．
Support in equilibrum of al lotive，b，引
Suppositories－imertion madmes．in，＋1．
Suppression of infectious disease－
Suppurating corn－form，\＆c．，ii， 375 ．

Suppurating lymphangitis－form of，
Suppuration－nee tutle Pun ar Matter．
Suppurative inflammations of shin， in．150，153．
Supra－carpal ligament－spran，ii，こq，
Supra－condyloid fossa fi．1tes，ii， 195.
Supra－orbit of eye，i，it
Supra－orbital nerve－formation，i， 363
Supra－scapular nerve－firm，i， 304 shmalder slip due to mjurs，in， 350 ．
Supraspinatus muscle－form．\＆ 2 ．in，
Supra－spinous ligament－trumik con－ Metcturn，11．20．4． 204

Surface drainage and ghttern on vables，
Surface fitting，\＆，in theing，ni，\＆t2 443.44° ．
Surfaces of head－strinture of parts，i， 8－12．
Surgical instruments－जee lantm． ments，for vereal matrmant ned its 11．anc）．
Surra parasite infentug luelim homes． 11.174

Suspenders for slinging，ini， 40,41 ．
Suspensory ligament of fore limb－ furm，\＆，1，20，75，75．74；11，190． 273：former wes and wrmoture，in， 401，472；Yrowill of，ii，251，252．205． iii． 380 ；manumders and watranty， 11i， 380,423 ．
Suspensory ligaments of peni and sheath furn1，\＆c．， $11,71,72,335$ ．
Suture forceps for wound－sththing，ii．
Suture needles for wound－stitching，ii． 475,414
Sutures for wound stirchinge 11,4 bob－413，
 11，+ 法．
Swabs of wool for wand－dressing，it． $+15$
Swallowing－chohing and presentun，i，
 313．310，317；vannus diverves allect－ 113g．i．251，253，257，200，534， 508, 114 4．
Swan neek－form，\＆c，i，47， 48 ．
Sway－backed horse－caunch of defect．i，
Sweat glands of k in－furms and action， 11，126．127，130， 131.
Sweating or Perspiration，ind Patchy Swent：－
Climping the cuat for，iii，137， 13 h．
Drug：producing and checking，ii，472， $473,4^{8} 5: 11 i, 5,7,13$
Nerbus inflıenter．i， 389 ：ii， 1 zo．

Sympum of limper，\＆c．－3athrax，ii， 42．cungeved lange，ii， 5 dabetes． i．347．Enterth，1．20．：fraw tured ver－ tebre，in，z3t，ghanathan，ii， 44 ：
 273：minerion of uterus，in，ror：kid－ ney duc．me，i，z4＂，lamimit，in， 377 ： l．arymus，i，508：liver rupure，$i_{\text {，}}$ 310，puinomine，in，47．ruptire of in－

 merine hemorihise， 11,88 ，wombs ith－ A．，imimation，11，40
Training of thorongliturals and tretters， 11．404－307， 316.
Urimaly effiction， \mathbf{i} 377＊
Ventilatimen atferting，$i, 497$
Swedes as firot，11i，\％， 115 ，
Sweet birch－medicinal wer，ii， $4 \leq \sim$

Sweet spirit of nitre－dose，iii， 10.
 1， 185

Swellings

Food tansing，in，${ }^{\prime}$

John dicenen， $11,241,282,283,286,287$
Male irgans of requmbuctun，ii है， 82 ．

Jungure md palute，जunlen，i，252， 254.
Varmon dreater caming mellmgen and

 1， 325 ：harueかuknem， 11 ．Fi，with

 marihagica．21，24，25，＇purtor，11， 379．rhetrmatman，11，20，こと：－datary
 i． 4% ，erranicico 11,45
Swine fever－came，dic，
Swinging bars a－－talle fitumgs， 11 ， 237
Symbiosis af frrm uf paravitいm，a，ito
Symbiotic mange－ヶymptumis， $\mathfrak{c i c}$, ， 107.

Symmetry of a hirne，$i, 28,4 \mathrm{x}, 11 \mathrm{y}, 121$.
Sympathetic nerves－herre whluence， 11，$+5^{\circ}$ ．limbar comane Rolla：i，402 allwa vee，$, ~ 232,233$ see also tite Neramasytem
Symphysis pubis of pelvi，ii， 102.
Symplepharon of eye，u，114．
Symptomatic epilepsy－furmmi，i， 110
 11， 45.
Symptoms of disease atce lwayel．
Synarthrosis joints－finin，心．．．．，in，etiz．
Syncope－see collape
Synovia or joint－oil m jums，ii，zinz：
 charge ur frubture，it， 247
Synovial articulations of rib，ii，191， 260：tungue，11，ztif．
Synovial bursee－elescription of，in， 307.
Synovial membrane of juint－com pontion of tendons，ii．3ofis dinetres
 355，356．Whene cartulager，ii， E $_{4}$ ．
Synovitis and it，treatment，i， 28_{2-284} ．
Syphilis and coverng dicerne similarity， ＂，52．
Syringes and syringing antiveptics for， 11,421 ；antificial imemimation， iii，23！－234：malle in tuot，is，3．t．Ukit injections，iii，21．Sece shos atle lu－ jections
Systemic arteries－divtrihution and names， $1,44^{9}-453$
Systemic heart strucure，\＆c，i， 43 ．
Systemic veins－（irculation throngh，i，
Systems of feeding－see Furd
Systems of horse－training－general methods，iii，sor－iat． heart－teseripthm， $\mathrm{i}_{6} 434,440,454$ ． 450：dagana，in， 14%

T

Tactile papillæ of akin，ii，$r=6$
Tænia echinococcus inferting liver，尺c．1，313，314，11， 174.
Tænia perfoliata，picata，and mamil－ latha in interthes，in，192，173．

Tail or coccyx－bones and seructure，i． 15． $11,132,170,183,192 ;$ befure
 borth，min，201，292；exammation fir
 calsing elew．aim，n，4h tyong and whankes durng oferations，1， 366 ； 114， 174
Taking－off in junping，it．sy．
Tank in stable dranase，in， 330
Tannic acid and tannin－medicinal
 pomon antiduce．II．三人．
Tanno－gelatin cornjunllon，ii，＋54．
Tape used in pull enh，u，tiz．
 174．liver mfented wath，1，314．35：
 uf，111，zto，zhis
Tapping－for oulic，i，fory draps，i， 3n：for liver mitumantiont io ato fir pletrisy，ii， $10,17$.
Tar－dremillz far thrmht，in， 77 ：whadmg in harestakness，14， 50 ，medremat आッくら， $11,471$.
Tarsus－（see Hock．
Tartar emetic－dure，iii，то
Tartrate of iron and potash－medi－ cinal uses， $12,4+7,44^{8}$
Taste－nerven of， $1,385,301,394$ ：water tent， $111,13 \mathrm{t}$.
Tattersall＇s sales－warranties，de．，in． 400,413
Taxis for hernia， $\mathrm{i}, 32 \mathrm{r}, 323$.
Tears from eye－ntcretion，N゙c．，ii．H2， $113,114,175$
Teat－sypbon－twe of，ii， 96 ．
Teats and ndder－cleansing，iii，222， 227：derebpment ansd diveasen af－ fecting，u，os－97：glycerine uses，iii， 4：pregnamey sixic，in，zft：spung－ ing in＂thrash＂，1，25T，25＂；wean－ ing effect－，iii， $2=6$ ．
Technical education－home－shoeing， 14，432．veternary medvine，ii，44．
Teeth－
Advent of horse dentist，i，325，331： ＂Orme＂case influellice，$i, 3 \geq 5$ ．
Age－trichs and birthdays，1ii，302． 393.
Conformation and changer due to age， $i_{1} b_{i} 220,230,326: 114,389-302,494:$ of＂malk＂and tempurars teeth，in， 393－306：of permanent vet，iii，34b－
 features and identification uses，ifi， 402－＋95．
Dreanes and irrecularitien，i，325－327 decay or carces．parrut manith and wolves teth，i．330－33；，bllimg．i． 331：loose in sachets，11．20t2，molar teeth，apecial detects，i．：27－329： numerical excess and deticienty， 327.

Diseases due to condump uf，i，218： conmest on of palte， 1 ，254．indises－ then，1，272：imhlamathen of mouth， tongue，and thriat，$i_{1}=40,252,253$ ， 255：haval catarsh， $1,499$.
Eammination for soundaens，iil． 372.
Frod and parasites cauling doease，iii， 103
Formation of artery and nerve supplying sensatizin，\＆io．i．393，3Ct：ii， 88 ． of jaw－bone and muster，11，180，187， 180，308， 309.
Fractured jaw ensing divplacement， Sc．ii，230－242．
Hostury and origin of tle horse－fussil teeth．\＆C．，111，476，510，511，512，513．
Illusts of dentitum at varimus ages，iii， $390,304,396,400,402$.
Stable vices injuring，ui，y 40
Wear effects，iii，309，401， 495 ．
［See also Model of＇leeth－separate panuphlet ］
Teeth rasps and shears－uses，\＆e． i．329：11， 242.

Telegony in Lueedug opmions on effect Testicles cimt．
 Huences． 11 ．+ ．
Temper and temperament－diveave callee， $1,214,217,216$ ，hedd，face： ant citr zutles．1， $30,41,42,43$ ：
 aderatuon，iil， $301,34+305$
Temperature，climatic－minuence on hreeding ami wae of hornes，Hi， 531 ． $532,535,5 t^{5}, 548$.
Temperature of Body
Lanses of diseane and nervous stimulus， i， $214.216,217.387$.
Mhd leverand the cause of mhammation． 113， $\mathbf{t} 76$
Reduction－by alcohol，ii， 400 ；by dugga， 1i． $443,447,450,452 ; 111,7$, é， $23:$ by sweating，ii， $130,13 \mathrm{x}, 472,473$
Sick horsen－regulation，ibi， $142,2+3$ ．
Sympons in dinease－blood folsomins， 1，481 dycontery，i ，zax：horbe the k－ ness，ii，st，57，58；parturnent ferer， ii， 08 ，flemray， 11,14 ；patum man， ii， 8 ，fisiemic，urthrits，ii，287，rhen－

Temperature of stables－inlluence and inamagement，an，Fira，fir bech－ chutis．Ne，in， 2,3 ，y，for sub－the， iii， 27,24 ，lir thaming hornem，
303 ，warmin，
in cold in venthbion， iii， $7^{n}, 80,8 \mathrm{~s}$ ．
Temperature of water for sick ani－

Tempero－maxillary articulation of le of head－lirmation，i ，ro．
Temple of head－firmation，i ，yo．
Temporal artery Temporal bones cranim，ii，184，185： jumt with jotw，ii，205，musclea，i， jen 2 ， 34：11，310， 311.
Temporalis muscle－form，\＆c．，in， 310
Tempcrary teeth－formation，\＆c．，in，
Tendinous quittor－form，\＆c， $\mathrm{if}, 379$
Tendo Achilles－form，i，23；fracture effecth，11，202 thoroughpur，en－ largement，ii， 357 ．
Tendons
Attalhment of muscles tor bomes，use
 dinbacemen of bones prevention，14， 222， 223 ．
Conformation－of abdomen and hip－joint．
 of tendums，1．75，76，77；fure limb． bnce，and arm，i，Jo，20；i．，1gr． hind－limb，$i, 23$ ．
Injutien due to broken and fractured bineen，is，247， $422,4-3$ ；tio Wound ，

$$
\text { ii. } 413 .
$$

［For diseases see tirle Joints，Muncles， and I codons diseases．For sprans see Sprains；fur special tendon see its name $]$
＂Tennis Ball＂－hunter illust．，1，2I4．
Tenotomy uses and methods of ropera－ fion，iii，168－171；localities for，iii，

Tensor palati muscle－action and fır11．11，188，310
Tensor vaginæ femoris muscle－ furm，心㇒．，11， 339.
Tentaculæ hair growths，ii， 132 ．
Ten－year－olds teeth of，iii， $400,401$.
Teres minor and major muscles furms，\＆c．，ii， 328,329 ，nerve to，i 399.

Termination of disease－prognosis，i ， 2t．
Tertiary formation－horse hintory，iih． $475,4^{83}, 4^{8} 4,494,509,510$.
Testicles
Anatomy and glands，\＆e，i，17；ii， 65. to，dencent diagram，ii，fy muscles insertun．11， 330.

Vill．Ill．

C．Intathom－bee that title ．

 finm，in，b4，Wanshing doe th drugs， 11． 175.
 （ウ，11，11．174．17

 45，5．
Tetanns and is thentnent．\＆C．in， $43-48$ hacillus ar worme of， $11,171,482$
 soundrest and duchimig，111， 37 ．
Tethering of wavellag homen means Ne． 111.4 4－4it．
Therapentic symptoms of disedse，in， $1+1$.
Therapeutical action rif mednomes，
Thickening of membranes，sc． turam，1，417：lestre wave and wathe i， $454.4^{5} 3,4^{2} 4 \times 4^{p, 1}:$ juciolar vella， 1 475－47．Iymphath chandis，11，23＋24： smew，hack－anmunndness and war retnby，iii， 4^{2}
Thigh and Thigh－bone
Cunfornation athd defects，$i .22,83,8_{5}$ ，
 i，1012，103；juint wath h．1．，11，274 nerven，arterien，and moscles，$i, 8_{4}$ 85， $300,348.11 .334$.
Dressing after cabtratim，iii， 174 ．
Fracture and settong ditheulty，15，224． 225． 224.
Lacerated munclen camsing stringlatt，in， 205．
Thin horses－aymente，and want of hesh． 111， 44
Third phalanx bone of fore－limb，ii， 192. Third ventricle of hoin，i． 35 ，
Thirst－an yuntum of dinenne，ii， 2, 44 wh horse ＂eatmell， $11,142$.
Thompson＇s Black Horse－origin of （lydesdales，i，run．
Thoracic aorta－furmation，$i, 45$ ．
Thoracic duct of aturbent syntem，i ， $4 \div 5$.
Thoracic nerve firmation，i ， 400.
Thorax－sec（＇hent

Thoroughbreds

Anciegt and modern types－comparimon， Nc，i， 107,100
Arabs＂speed ngainst，$i, 203$.
 $112,113: 111,528,531,538,539,540$, 54． $547,548.541,550-1714 \mathrm{le}$ ． 51 houck frum three diatumit sumbes， $31,547$. 548
Cunfurmation－of canom，i ， 7 hend and face，$i, 36,4$ ；wither－and shmalers， i，52，6g．
Croswes－Arah，i，200，2ny．204．Cleve． lanel bays，1，127，120，hatieys，i ， 115：huntera，1，138，！ 3 ，13．130．
 i，157，158，sers，1\％1，Ittid，tha，Itis． sadder hulsce， $1,148,1$ fy， orkstare costuh harsect，1，133， 54
Dinqualifying alment，for sires，12， 302.

א＇ug bone and curl li．tbilaty，ii，205．300．
Teeth at varimus age ，llusts．），bii， 390 ， 324.

Trainmg methods and erials，1，112， 113. 115，304－307
［see also titlen Fedigrees，Kisce hurnes．］
Thoroughpin and it treatment，is $357-$ 350．Lusomadness and wathaty， 271 ，
Thread－w orms mfentucy then nkin，ii， 163
Three－quarter shoe－form and Liecs． iii， $454,450$.

Three－year－olds as hunters，iii．308； matble．Th，－1，－14．2350 23，ratc of growit，tathes，Ne，112，245－24．7．

Throat－furmatmon 2．5：Danselec，ii．21O，
 also tuthen Neck，I arsm，Pharymx．
Throat diseases and disorders－ab－

 ＂I sartogh clachate，in wof is，ir 40 ．

 Thrombosis－ilime，amd uf jughiar wem， 1， $47+477$ fratural berbelne cma fotmeice with， 1,2

Throwing back 131 liceedblys bee ticle liack lrecthas
Throwing of rider hy lamaters training Frectutiosin，at，zoms．
Thrush－of feet，in． 373 inllucine of

 for，ii， $45^{5}, 485: 31.7 .7$ ．hamblites and warranty， $11,3=\therefore$ far
Thymol as an atherptio，ii，as
Thyro－arytenoid muscle－1osm，\＆c 13，317．
 Thyro－pharyngeus muscle－form．

Thyroid cartilage uf kryus，i， qug．$_{\text {hig }}$
Tibia－cumfurnatwon of thagh amblyen
 － 58 ． $1.275,-28$ ，musule con－ nections．11．332，34＇． 34 ，：4
Tibial aponeurosis mumble actun，ii，
Tibial artery firmatum， $\left.\mathrm{i}_{4}+5\right\}$

Tibial spine－finmatin，い，20z．
Tibio－fibular articulation－form．Se， ii． 277 ，
Tibio－tarsal joint fammonn， \mathbb{k} ，is 263.

Tic－nersous labit deseribect ab，i_{1} 4 3 ．
Ticks－on skur， $1 i, 16 \mathrm{~h}$ ．
Tidal air－in breathing，$i, f 1:$
Tied－in hocks－curb cull－č，i\＆． 301 ．
Til cake－comfonstion，ni，114．
Tiles for sables，in， 19,81, \＆

Time tests－in racina，i，$\ldots, 1 \mathrm{t}$

Tinctures of $\sqrt{\text { armon }}$ drogig dsisen，1u， 11.
Tinn，zonule of ineyc，ii．Icin．
Tissue respiration－mum 1 ，$, 4,4$
 health and repoir if tiantue．ill，tit

 4，202：Wutcer is buds［－blstitnett ii，114，1．0，124，Womude ambl heat ing，11， 4 ก3， 407 －bhe of 1,114 crs， 11 ， 100.

Tobacco－medicinal uncs，ii，491．482．
Tobin＇s stable ventilution，ini，is1．
Toe，seedy－seee Seedy un
Toe－clips in shueing，in，t\＆＇
Toe－pieces for タール
Toeing knife－use wf．18，\＆
Toes ancient conformothon，ind classifi－
 Fect of $111-$ and wht turned then，I，
 iii．37天：fructure effuts， $11,252,558$ ， alse tules I ect，11 uide

Tongue

（Coufinmatim and bone， 1,6 ；ii， 385 ．189： manclerand enmections，ii，312－314， ：15，310，321；nerves，i，380，397．
Howemees and disonder－furred，dhe to lseer，1，203：miflammathon of tungue．
 harne－sichne－s， $\mathrm{ii}, 55$ ，of pubsuling． 118． 47
False thague in fisal，iii，25r．
Injurlen－firse aid，ii，+38 ：use of alum， 11， 45 ．whe witwith，wi， 157
Shan－emalhility，in，128．
Tonics action，esample and prescrip． ［140，111，14，1r，17，18，fir blood，in， $-4+2+43$ ，heat，ii， $45 \%, 4$ ho，nerses， i1． $477,4^{-5}$ ，thmach and digestion， it， $406, y^{17} 7$, trib 2
＇Tool－house sable verncture，nii，33
Tootbless space in month－use，\＆c． iii， 49.
Top－line of body－i，3；structure of nect，发．，1，12－15
Torsion to arrese hleeding，ii，fog：for とaverathoill，in，1\％
Touch skillanorkan of，ii，127． 13 r
Tournament horses－uricin and uses． mi， 5 4， $534,540,541,543,545$.
Tourniquet for arrest of bleeding，ii． foy，fir meurectony，iti，เбд．
Towels dwinfectum of，in，+25 ．
Town horses－Clydendale and sumalhs merlis，$i, 112,103,104.109 .200$ diveases common to， $\mathrm{i}, 272,246,300$
Town－stables－removal of dnas，regula－ H3n，Nic，11i，82，83，84．
Toxic agents－formang effects，iii，+5
Toxic fluid b．icteria producing，$i, z 28$ ．
＂Toxic tetanus firm of，ii， 47
Trace－harness－unduing on fallen horses． ii， 441 ．
Trachea－（nee Wimdpipe
Trachelo－mastoideus muscle－form，
Tracheotomy－for laryngitis，i，509；for phemming，in，52，50，62．
Trails of sarinas paces moconotion，iii，
Trainiug and Breaking－in Horses－
fincral－IpHication of whip and bit amd of crutem，iii，301－303：frod and ＂Her，1a，302，303；grooming，sta－ bling，Ne．，14．， 30 3， 304.
Hard mouth due to training，$i, 248$ ．
Meamu of restraint，iii，157， 158.
Show homen and hamess homes，iii，310－ ＜ 3.
Spectal breeds humers，iii，307－310． theromphbreds，int，301－307，trutters． iin，313－316．
［Sec olthe Dhmentication．］
Tramway horses－amount of ford per hay，111，if7，influemza or pink eye
 54．－table for，it， 327.
Transit of horses－facibtie and dien， she，hy land，in，＋4－4i7，by rea，ini，

Transversalis abdominis muscle hirm，se， 11,33
Transversalis costarum muscle－ frrm，Nic．， 11,124
Transverse fracture－firm，\＆c，ii， $221 . \therefore 2 ;$ uf varions bones，ii， 240 ，

Transverse muscle of abdomen－ Tumt © ，11，i35 is
Transverse perinei muscle－action on Mrethra．It． 72
Transverse processes of vertebræ．

Trapezium bone of knee，ii， 10 －
Trapezius muscle－f．rm，\＆c，in， 322

Trapezoid bone of kinee，ii，193， 197.
Traps an atable dramage，ini，öt，85， 80 ， $320,330$.
Traumatic epilepsy form，$i, 410,413$
Traumatic tetanus form，if，it，$+5-$
Travelling of horsen vee I＇ramit
Travis－nsed in operations，ni，158， 157
Treacle in poultices， $1 i_{4}$ 2\％

Trembling－divene vemptom－$i, 4^{\text {bun }}$ t4，B8，heart stmmant－for， 11,45 है pubsoming call－wは，iit， 47
Trepanning or Trephining fractored fromint bone，In，zu，nusal，for cat tarrli，i，500， 5 cm ．
Triachiasis－of eyelid，ii，if 4
Trials of race tromec，ain，zof
Triangularis sterni muscle－form， （4．，il，334
Triceps extensor cubiti muscle
Trichodectes－1n thin，in，ion
Trichophyton tonsuraus cansing ring （wirm，11，1h3，1n4
Tricks ：m treth tur ate，in， 302,303
Tricuspid valve of hewrt，i，is．
Trigeminal nerves－firmation，\＆ C ，
Tripping ，wer title，Ih，fective actim， fismblици
Trismus tetanus form of．ii． 47
＂Triumph II＂－puk hathe illust，i．
Trochanter creat and small－of hu nerus，ii， 194
Trochanter major and munir if thish bone，ii，201：fracture effect，it，ino muscle cimmerthm，it，z2o，it
Trochanteric fossa－fimation．\＆c．，ii． 201， 342,343
Trochar－for relief of cullic，$i, 282,283$ ．
Trochlea－of thich－bune，11，zot．
Trocblearis－if eye，ii， 104
Trotters－destent，iii，550；illunts，ait． 314；theing，iii，457；thamma and general treatment，iii， $313-2 \mathrm{~m}$ ，wht Aupply，iii，302．hee also American horses．）
Trotting－actim and forme，iii，115，ro7， of（＂hdendales，i ，baz，honkneys，i， Trn－118，121，122，linntera，1，14． pack homece，1，124．lemetrerons，b 20n，shiren，$i, ~$ a 4 ，hrow and harneny
 propalarty，in，31 3,314
Troughs cleashing prec．moms，iii， 200 ： stable lutimgc．iif， 327.
Trucks for transit of hornes， $101,414,467$.
True ancbylosis－form of，ii， 28 ．
True hock joint－finmatwon，ii， 202,
 pavin of ii，zuc
True ribs－formation of，ii，icr．
True skig－furmatum and inflammation． 1．12ヶ，131，14
True vertebre uf ypinal colnmm，ii， 170. Truak division，nni stomethe $\mathrm{i}, 2,3$ ； A．17 at chent and abdoment，i，tiz
 262－2ris：muncle and commertums， i， 53 iii， 326,334 ：：mply of homel to मerver， $\mathrm{i}, 3 \mathrm{~B}$ の
Trusses for thenthasin，ii．20s：hernia， i ， 317：uterus insersion，ii， 10
Trypanosoma equipedum cauning durine，ii，
Trypsin in digestion， i, a_{4} ．
Tsetse fly catrine divease，iii， 7^{8}
Tubercle bacillus saning divease，ii，
Tubercle in bone formation，ii，191，194，
Tubercula ，in $4 . n$, ni， 137.

Tuberculin produced by bacteria，$i_{1}, 228$ Tuberculosis－rанее，арреагани，and syintutuma，2，223，224，11，42， 50 52． ing，wher temm wed，11，50． 51 ．Whe uf tuberulin，i，228．wirmur com－ placathosis， $\mathrm{i}_{1} 4^{n} 4:$ ha，50，139．Wounds treatment， $11,421,422$ ．
Tuberosities of bones－humerus，ii， 104：1schium fracture，ii，257．Cibar ligamenrs，ii， 277,278
Tubes for ventulating stabler，iii， 72
Tubuli seminiferi of testicle gland，ii，
Tubuli uriniferi－firmatim，ぷc．，i，
Tucked－up appearance－a iqn of dı－ ease， $1,17,252$ ，show horser， 11, ， 31 ．
Tumours
Cathed by disease，presulte，and worma． 1，21t，220：ii，1\％10， 171 ，by foud and water，in， $103,124$.
listimerion of stone or calcului，i ， 3 º 358， $3^{6 \pi}$ ．
Forms and treatment－aneurim，i， 473 ； brain and craminm，i，$+1+\$ 15$ ，eye， ii，115，110；barn of feet，in，3－2； larsma，i． 507 ，sos：sure homldera，in，
 stomach and intentunes due to worms， \＆， ii, roly， 171
Sterility due to iii， 220 ．
sympsems or causes of direase－capped eltrow and knee，ii， 350,3 ro，ion： dulaton of stumach，$i^{2} 277$ ，glader and farcy，ii，36：intevemal cobernc－ tion， 1, zar．myersino of bladder，i， 372：liver and jaundice，i， 304 ：pemi－ enclosure， 1,81, parady心． 1, f $_{20}$ ， t23：roarins，i，51t，whtuker divedee， i，465：bertago．i，to8．
Tunic of abdomen description，ii． 335 ． Tunica albuginea－firm，求，ii，or Tunica fibrosa and granulosa of

Tunica vaginalis，\＆ \mathbb{E} ，of testis，ii， 65 cauratom and hernia treatment， $\mathrm{i}_{\text {，}}$ 321.

Tunica vasculosa－formatinn，ii， 66.
Tunics of arteries－formation，$i, 44 z$
Tunics of eye firm，\＆c．，if， 104,105
Turbinated bones offace－－form，ii， 88.
Turmeric as sid to appetite，ini，of．
Turnips－as food，compromion，\＆c，iii， 89．115．350，dineate due to frizen thrmips，13，104．Fonlace Mati．111，
 \＄－4．il of，iii，n dove，iii， 10 ； powoning by，ili， 00
Tusks in male hursec，iii，300，305，30ti， 308， 400,434
Tuson＇s physic ball formula，ii，＋44．
Twins－foaling difficulty，iii，＝73， 282 ．
Twisted snaffle－type of，iii， $358,250$.
Twisted suture for wound－spteching， $11,117$.
Twists of bowel－calise，\＆c．，i， 207
Twitches for aperationc，\＆c，ini，159，15＂，
Twitching due to heart dinease， $\mathrm{i}, 458$ ．
Two or more persons crnbpiring to defrand in sale of a hime，iin， 41 ．
Two－storied stables structure，iii， 338.
Two－year－olds－Vreeding and mating capacities，iii，213．234，23ti， 260 ； racing prohilition，$i, 107,108$, rate of growsth，\＆C．，iil，245－207，tetth of，iii， $305,396,307$ trimine humters，iii， 307,309 ，thorughbeds， iii， 306.
Tying－in of cancur tendman and hock，i ．
Tying of horses－during operations，iii， IT：7：in tables，iif， 328 ，in trantat． iii． rins $^{\text {tin }}$
Tympanitis cansing heart rupture，1，470．

Typloid fever caubing rongestim of funs，it， 5 ，inod durnag，ini，i43 water at calise if，in，1：4．

U

Udder－see me teats and udder
Ulceration and Ulcers
Intiveritus and drugs firs ii， $4=1,418$,
 311， I $_{1} 5.8$.
Forms uf ulcers and general weathent．
 for ，in uleer，115， 37 t ．
Orzam，iffected with ulceration－pladeder， 3．jo：bowel， i_{2} 200．eychels．mater． H，int， 115 ：larym， 1,507 ，50，

 ot lnonchath membebue， $11,10$.

 －thmahalt， $11,315:$ Bathutis，21， 41
 flacture，11， 245 ， 24^{4}, jninht，13， 276

Ulnar nerve formatmon，i_{1} \＆divinus
Ulnar portion of flexor pedis per－ forans munle， 14 ，
Umbilical arteries infictus，iii， 256 ．
Umbilical cord and opening
Umbilical hernia and th teatment，i，
Umbilical vesicle formitiom，iii， 250,
Unciform bone of hnec．及，w2 wh．

Uncovered operation of cantration，ini， 175， 170 ．
Underground drainage if stablen，isi，
＂Under himself behind＂canfuma－

＂Under himiself in front＂－сопин＂．
Undifferentiated protoplasml－乡emer－ ative chatres， $11,474,4+5,50$
Undulating face－ajpeat．unce．i\＆\＆

Ungulate mamnals－veserimni，※九． iH， $475,47^{\text {th }}$ ．tecth，111，＋17
Uninterrupted suture for wntidl－tan h－ $11 \mathrm{n} .11,{ }^{11}$
University instruction in vetcrinary meth ine－emarhs， $81,442$.
Unloading rectum－－ece kertmri．
Unnerved horses－exammatm，fir

 nee Neluntully．
Unsoundness－wo tite F ：amination

Unstable equilibrinm at a huree，i ，：o．
Unstitehed condition the t．spain uf ciadons，11，2gh
Upper aspect of body－hyrline，trinc
Upright conformation fect and pas

Upright dislocation firm，dic．，in，z\＆ Urachats－irmmation if，in，2～土．
Urea ill \｛｜nn\}, $i, 755,+35$ ，licea＜ph dlue
 －4 4tem．$t, 421,400$ ．4we at zlamis

 441，342， 353
Ureters firm ami uses．1， 733.33% ， 141 ． いいだ，1，ごき

Urethra and Urethral Canal
Furme and uses，i, \ldots, \ldots ．female
 athe maxeles， $61, \quad 1-73$
Dalatite da Gut，wr corering itsecane ．hecthrs，in． 53 ．
OMatruction due to atmote in flablers 357， 35 ；diatme the urethan，de．．

 351， 353 －
Cie nf cathicter，iai， 1
Urethral tube－firmman为，it．Jt．
Uric acid－in libmul，i，$f=$ ．in urate and
Urine and Urinary Apparatus

 －alar timune and munclen， $1.317,3$ ， 7二，33ヵ， $3=7$
（．alone wi bealiliv urane，i，34－，34？81，
 c．ane， $11.47+$
Ciloured ann thick mrine dur to dineane

 －itt．340；watulatreatell wht car lole aewl，in， 420
Comprontimi ablel patatity if thme－

 \＃，औ1

 34 3,3 f
 motarides aml \｛．f．， 4 2
 3ii，18io
Stable air amb｜raforate compuleratomas iii，$-E, E \therefore,-$

 1．tures ii． $1=2$
 181， 177^{-1}－

 Hrin，－t．llame stome．
Uriniferous tubules－formoitar，心

Uterine arteries－smation．，

Uterus or Womb

Uterus or Womb（imt
 113．

（irmsth at eanlryonal ferlu ves Em－ Liry＂
Kemual uister－birth， $111,-770,275$

I

Vaccination and vaccine－infeth in of
Vachette clam
Vagina and vasinal passage

 ine．bul 1a－e it theter，n．wh，for
 tatal frateか，い1，221－234．
Vaginascope－
Vaginitis athe it therement，及1，25， 1
Vagus nerve－finmition，AC，1， 385 ，

Valves hout stomome and tombla，s ，

Valvular diseases cames ampurar－

 3． $4^{2}+4+5 . \neq-6$
valvulatis－a tirn wi indianmation of leatt i． $4^{8} \mathrm{t}$

Varicose veins－－thmmlwnin c．mane i ，
Varieties of the horse－］Míaが．i．

 liret

Variolous diseases merlmmal treat ment，it， 44
Variolous eruption m lithit，is，fi

 11． 1.7.
Vascular system laterlame fume and

Vaseline ，at atiment，Hi，\＆
Vastus externus and intermus mus－ cles •
Vegetable acids
Veins－mew tutle fotwim and Vems

Vence vorticose of ryc，ii．＂
Venesectioll－－Itsand－1time
Venice turpentine fir tran thred fism，is，
Venous blood and systenn witinmi

Ventilation－

liteathans frow exa－nered and regulation

Jiseane caned by detwhe ventathon， 1，222，14，24－
ant．box ventalation，14．a3．
stable management whl itmeture，i． 495
 reatnent， $\mathrm{i}, 5 \mathrm{at}$ ，firm of statles， inl $3=$
Ventral hernia anil is treatment， 1.324
Ventral laminæ
Ventricle of latrux
Ventricles of brain－\quad mif．rmatcon，；
Ventricles of heart－crufurmatim，i． 438，dihatamanmmion， 454 ．दrawth
 －truction ehects， $1,40 \mathrm{~b}$ ．
Veratrium－mediend lisen，is， 470
Verdigris as an anturptic in castration 14，173， 174
Vermicides and vermifuges－－sec in the montic
Vermin－killers－f＂iwning of horses by， $111,4,53,57,58$
Verrucæ－sue Wurt
Vertebre and vertebral column－ 4ee spine，atho tule＇s ！himal，Lim iar \＆ic．）．
Vertebral arteries－furmatinn，\＆c．，i

Vertigo or megrims and in treatment．

 rants， 131,4
Vesical calculi－isee tutle Stone in the bludeler
Vesicants in hutering，iii，io

 －ymptoms diveares， $11.4+53,13$. な． $1+$
Vesico－vaginal fistula－finm，is， 420.
Vesico－vaginal ligament near utern
Vesicule seminales－f．1matm，尽c
Vesicular calculus－wer ston in the
Vestigial remains of hareis－er，hutwn theorles， 16 ． t^{3}
Vetches－as furd，cumpmainom，\＆e，im，

Veterinary College，Royal－founda－
Veterinary Hygiene and Hygienic Conditions
Applicatnan，and aeneral convelerations， 11． $4+2$ ：iil，extro．
Condutions of thealet，in，，it，hiz－cordinary

Diveave－due f ，bul conditions， $\mathbf{i}, 778$ ， 4So：hygience arquied to diseanel animat，iin，14n－ $\mathbf{I t q}_{4}$ ：sims and
 presention and huprominn，iii，152－

 ＋゙ら，
 management，blalde tructure，Ven－ ［1）atom］
Veterinary science－twhical and uni－ berste matmenesy in． $\mathrm{ii}_{4}+42$.
Vibrios a form of bacterna，$i, 227$.

Vices and nervons habits－car and
 ＋15：1ii， $140,3+1-34$ i． $42+4$ in，mhar
 ness and warranty，in 307, fiz， $424-4=6$ ．
Vicious mares－removal of uvaries，in．

 harn．11．ј33；ui，505，wn human wum， $1 i{ }^{2} 25$ ．
Villitis and it－treatment，ii， $38.3-25$
Vinegar－dine，m．11．une in wetidents． Ae，in，+ o，An ande， 11, to
Virulent diseases tatre and trom－ 11154191，1，210，
Virus－an c．ube of diveace． 11，52： 111,1 164，151，155， 111 witllod

Vision－see trle－f．ye sheranca，Iyen．
Vital activity－bimmdanm and ebuln．

Vital capacity in hwounde，i．fow．
Vital spot＂riestimg rapmatwor，t，fat．
Vitality am！the cansen of ducase，i， 216
Vitelline membrane in｜reeding．ant
Vitellus if inum， 11
Vitreous humour ：1 the ege cimfor
 183， $11,117,12$
 and antidute， 111, ane $^{\text {th }}$
Voice－ugan of，i， 4 t．+
Volatile oils－fisul cammanctle \mathbf{i} ， 243
Voltaire un，Zadis，methud of cbserwat ti101，111，＋73－475
Volume of the bead，i ．
Voluntary muscles－deaription and nosembent，1，is， $3 \therefore 11$ ins，zoti，

Volvox globator in water，111，128， 129
Vomer－furm of hone．if．1hen
Vomiting－causer，rariev，amal difin ultien in．i，235， 688,275 ，matidnten we and In inomum，iii，$+4 .+5.47,4,0$, ，due th indigentom and rupture，1． 270 ． 271，278．stmmlants med，12，4io．
Vulva－comfurmation，i，w．i．i，it．
 $5:-41,0$ ．Fowime and mbersmon of

IV

Walker＇s face cradte for fracturet jaw if． $2+1$ ．
 1127：of Clydendalen，3，1192， 1022 hatheye，i ， 123 ，hunters，$i, 14^{\text {n }}$ ， shises，i，ε_{4} ．Suffulk i．in．cquali

 Walls of stable－strwe ware，炎，i，tuo

Walthan royal stud fumblum，i ，
Want a rib－appearmce of hime，$i, 57$

War Horses

diment himiny and user， $110,485,517$, 514．520，528，523． $527,525,528,52$ 2， 530，531，532，53i，5i4．
 III． $535,53 n, 537,542.545,550$, Crint
 173，Werent of Ley，ami hhire，i_{1}
 агm，
［See alno bule Cavalry，Charints，Mili－ d．tey horner．］

Warmth v．cold in stables，iii，$-\boldsymbol{r}, \mathrm{Sa}$, ， 1 Warranty of Horses－

Ifefect that are fratent，il．f11－f1，＋14，
lefintimo allud forms ved，nit，405－40\％ 41\％42 天， 4 － 0.

 f．11ty，111，f17 tGy

 neme，handmas．
Warts and their treatment，ii，ify， 155

 4．
Washing of horses－wblowtilin and frocishen，ctlle of mat feber．A． 115． $1: 2$ 1～

Washing of railway humemsen，ii
Washing－places．No．in stalle yonl－

Washy horses firmation of whthes 1．55：mbluection and dianhea，i． $-7-267$.
Wasps－athen causing intiammation and
 iit． 11
Waste from body－attion of thill and
 1it，tif：water eherted，wh，res
Wasting dretwartertio，i，4ケ，wherme

 （1in1，14，372， 373 ．
Water
As arink－amount yer day，and amaksis． i，241，243．273：14，120：dagentive 14，ind before meils，ni，11\％，1：M
 2r u．zote：rentirative in actibents， S． $1 \mathrm{i}, 440$ mek har－en，in， $7+142:$

Body comothems－and requirements，iii，
 124
Fireathing pocem and thets，i．fol
 12－12x：anthrux， 11 ：+2 ：colbe 1．$=79$
 11，282：nette－rath，14，it5．14t1，curle mblader，i，35t．superpareatum，i， 2 S 4.
Compuition，purity，and impurition of rans and ether watets， $11,1=1-123$ dineare monences，iii，124－12ti：ex
 ral practuen if puratication， 111 ， 120 o－ 129．＇19．nnom in and hatenic de －thetlut）j，2et．11，101：1it，15
Hated water－dinease inflectece，in， 123, 1これ。
Health mantenance，iii， $66,6-$
In fivel－pretcentage of，iii， 80 ．
Phosic preparation usec，ii，at5
Puswong ly，and foblatem of water，ili， 4． 204.
Rabnes in these一thirst，ii，4t
Shin sembibility and aberpothon，in， 128 ， － 120 ．
Stafile supply and fitting，14， 33 i－pots， 14． $327,328,337$.
Storage systems，i11，125， 126.

Water－Cont
Swimming in water，\＆c－diseases due to，i，292．i1．14， 45
Treatment in indigention and gastritis， i ． 273,27 h： ：phelumonia，ii，ب̣．
Urime combuturat，\＆c．，i， $337,33^{3}, 342$.
Water bath－fur physic，ii，445－
Water bladders－on kin，ii， 137 ．
Water－pots－－able fithus．，iii， $327,3 \geq 8$ ，
Water wash－for meuronis，ii． 156.
Waterhouse＇s urntem of stalble ventula－ 1011，i11， 331.
Weak fore－legs－appearance，$i, b \delta$ ．
Weak points－ioreedang precautions，ini， ${ }^{2} 3$.
Weak ulcers－form and treament，ii，
Weakness due to heart diveme，i， 465.
Weaning of fuals，iii，225，220：American trutter：，31， 324
Wear－ch．mge of tecth dine to，iii， 390 ， 401,402
Weather as cauce of disease，$i, 213,222$,
Weaving as a vice， $1,4!3-415 ; 1 i 1$, 140： warranty，iii．\＆it
Wedge－lieel shoe for uprain of back －flumw，11，35．5， 355
＂Wedgwood＂－snlfolk measurements ci．i，IU7
Weed disease－see Lymphanguis．
Weed killers－рoimulizy by，111． fin $^{2} 40$
Weeds causing water contamination，ini，
Weight of a horse－conformation and
 locomettoun and datribation，ibs，rat． 194：leser itction and functams of limbe，1，33．34， 97 ，stamling pusitum， iii，wh：weisht for houters，i，I 35 ， 143：andile hurses，i, 4fy：Suftilk i， 20 ，
Weights for various drugs，\＆c，iii， 11,12
Weights in traning show hores，iii， 31 ．
＂Well let down＂alsieh conformatim， i． 85 ．
＂Well ribhed up＂conformation，i， 55 ， 14
Well－water purne amb analysis，ふC iis．122，124，1， 5
Welsh pony－oncin，atpuarance，心c．，i，
Westmoreland pony－－origin，appear－ ance，de．1， 107.
Wetting of food to mince appetite，in， 94
Weymouth bridle－t y｜ic uf，iii， 358,359 ．
Whalebone probe for luthotonys，i． 353
What to do in cases of poisoning， 11 ． 4t， 45.
＂What＇s Wanted＂ 3332 －pedigree． ふく．，1， 17 万．
Wheals on kin，ii， $\mathbf{3}$ б．
Wheat－an food，comporition，\＆c_{n}, i， $2+2$, \therefore 43：iii，80．100，249．Imistmaty cansed by dresung． $11,49$.
Wbeat－straw－as food，iii． 8 o .47, th， 112，354，for beddure，iii， 354.
Wheezing due to bronchitis and whthma，
Whip－dinliseation treatment，ii，352；eye mintry，ii，11：traming nses，his，jou， 315
Whip－rack－fitius：iii， 332 ．
Whip－worm－in intevtnes，ii， 171.
Whisky－accident and stimulant uses， it，4．po，tro：［ir catic，$i, 28 \mathrm{~s}$ ，ex－ bausted hormes，ii，O ，mares after foaling，iii， 227 ：Hmeumomat and pleuriss，it，9， 16.
Whistling－see Roaring and W＂hi＊ting）．
Whistling by grooms during grouming， 111， 1 35．
White arsenic－medicinal uses，$i i, 453$ ．

White corpuscles of blood－compont Hith，we．i． $432,434,46 ;$ ch．11gge dive to dmex me，ii， $2+$
White horses－origin，breedug，太心．， 1,
White line across eye dise to injury ii．1il
White line of abdomen－form，太c． 11， 335
White markings on sulfills，i，wh
White of the eye－wee milerutic）．
White spots on eye dheme igna，iii，
White substance of Sohwann－－perve stucture， $1,379$.
White substance of spine and hrain， $\mathrm{i}, 38 \mathrm{~T}, 382,333,305,387$.
＂White Turk＂ －hattry，114．stt
White worm in intersimes， $11,170,571$ ．

Whitewash－in an midute，iii， 5 r：for reable walls，ini， 3 ： 8
Width－confirmatum and iketerminatwin， i，g8，of chest，i，co，of crimp，i，58， 34 ．
Wild horses－Arabnam hutary（an，wi， 518 forsel remains of Manc．llan hume． iii．513：natural findi，1．24T；r．arty of． $11,4.46$
Will power of a hote，i，388，390，muts－ cles control，ii， 305.
Williant the Conqueror＂（2343） pedigree．\＆c．，i，iss
Williams，Prof．，on warin disestes，
 －7）， $34,15=281$ ．
Willow bark－medicinat uses，ii，452．
Wilson pony－breedine，sppearance，and pricer，i，155，101，170， 171.
Wilson＇s muscle of arethra，ii， 73.
Winan＇s trotters ，illuts．，iii．314
Wind and the ventilation of stables，in， 72，73．
Wind of horse examination of sound．
Wind－galls－forms and treatmens，ii， 35之－i57：unsoundness and warranty． iit． 281,421
Wind－sucking－causes and treatmerst，i， $414-715: 11,400.111,140,343$ ： $1111-$ －4tum！new，bii， 540.
Winded anmats－tratment in tield．
Windows－atable stucture and sentila lín，iii，70，71－74，71，8c，81，330，

Windpipe or Trachea－
Formation and uses， $1,13,48$－mascles commeeted．ji． $3 \boldsymbol{1}$ ， 321 ．
Injectimm－veelntra－trodioalinjectoms） Muntard planters on，iii， 33.
Treatmont in diseane，\＆o．－laryngitis ann！tratheotomy， $\mathrm{i}, 509$ ；roarmer and
 intlammaikn and wpeline， 1,253 ： ulcerntum etfects and appearamee； 11 ， $10,31$.
Windsor stud－fiundation，i．tio．
Wings of coffin－bone，ii， 200.
Winser＇s gullies and irap for stable drailuge， $11.85,330$.
Winter－green－medicintal uses，ii， $45=$
Wire－fir womad－stitching，i1，fut，fi3 injuries due to， $11,286,+13$ ．
Wisps if straw for growming，iii，ist
Witch－hazel－medrinal tsecs，ii， 463.

Withers－

Conformmition and forms，i，13．5？－55
 whatuecs and mesabrement faldem NC．i，92，0；－95：i11，288．24．－247： mande comnertwons，$i, 53:$ ii，322．
 ii． $150,151,42 n$ ，dintulime wither，11， 432－ti4．rongwirm and mange，${ }^{3}$ ， 104．10．7．wromg intlers，$i, 2 z 0 ; 116,1$.

Withers－ant
Fractares in resmon as，ii，z36．
Potilticallč，il1，3t， 32.
Rate of growth after birth，iii．295－20． Wolves＇teeth－harmatum，sc．，i，33＝ 111， 3 nu，itu 494.
Womb－see L＇erms or Wh onmls
Wood－mangur and infenthan liy，ini，1：4，
 i1．3．4． 225 ．
 Word of mouth－wizrauty regilawn ins．

Work formb rezulatan，心o，darsma， 11 ，
 fir pintumbar wurt． 113. treallment of preghinit mares，11月，： 17 ．

Working power－fooll intheme，in，vo，

Worms

Deseripton and frome uf，ii． 250 ．that

 hlice of arvertic， 111.4

 arterus and wem v！－c：ancy， 1 ，+1 auph，i1，13：eve ii，17s：indize tion，i，273；stedly tose，ii，a7e，is ！ yimal furalysis，i． $4=\mathrm{t}$ ；tetuma， 11 45.
 Ne：for－feetal whan see it－title．J
Wounded animals first ail．\＆，ib， 4：7－14t．
Wounds and their Treatment－
Antineptus and druse bor，ii， 4 ert $\$=1$ ， $+5^{1,}, 45,480,48,4^{2192} 111,2,3141^{1}$ ，
 11． 40 － $10 \mathrm{DO},+15$
Closing and cheansing，ii，qri，of dino
 firnt－aid， $11,437-\$ 34$, shtolhes，needtes．心と， $11,+16-+11$
Feet wounds－danger and clean－ing，ii， $380,381$.
Formm wif inciced，lactated，contwent， pumetired，and fansmed wounla， 11 ． 4，2，qus：special trewtment for，ii， $410-+14$

Syntutoms or causes of tivease blomal－
 gitio，1i，59，bo．es：fiat tured 11m，u．

 tetantar and danger of dresaing． 11, $45,46,47$.
Sue aino tutes Toraken kneen，Cramed
 photemr，Sintes．Clecers
Wrist of horse and man－compuriven， i11， $4^{\circ} 5,480,4^{11}$
Written warranties－forns．太心．．iii．千口今口 4 T i， $4=0$ ．
Wrung withers or houlders－caubc sul drugnt i．בza：iii， 1
＂Wykeham Mahel＂sud foal illunt．＇， 14， $2+0$

X

Xeroderma－kin liveme，ii，：53．
Xiphoid cartilage if treast bome，it．
Xiphoid region－conlmm．ation，1， 91

Y	Yellows，The－causes，treatment，\＆c．，i ， 304. Yew poisoning and its treatment，iii， 55 ，	Zebras－cross in horse－breeding，iii， 241 ； horny growths，iii， 478 ；origin，iii， 525：4pecial features an distinct from hurnes，in， 4 ，
Nt．，111．320－324，334，335．．	Yolk of ovum－formation，\＆c．，ii，79，80．	Zinc－medicmal use，ii， 454.456 ：iii，4．7，
Yearlings contruthor，11i．172：furcing firr sale，i，iog．112．1r3．rate of 	Yorkshire boots－nse in＂cutting＂，iii， 455	8－duce，iil，10，in sulphu carbolates an antiseptic？， $11, \mathrm{f}_{\mathrm{f}}$ ，poisoning by， iii，+6.
teenta if．111，39三，3ge；traning－ humtera．11． 307,308 ，thoronghberds． ill，ぶき，11，itt	and crusses， Sc, ，1，133－135：as hames and harness horses，i， $13 \mathrm{~F}_{\mathrm{m}}$	Zinc gauze for wound dressing，ii， 4 ： ， 412
Yellow discoloration the to her， $\mathrm{i}_{\text {t }}$ 303．204，：307．	152：coniparison with Oldenburghs， 1，208；illestration of，ii， 101.	Zona pellucida ，if nvum，ii， 79. Zonule of Tinn an eye，ii，ros．
Yellow fluid dne bis linse－sichners，ii， 56 ． Yellow masses 111 glamin due to tuber－ culonis．14． 51.	7	Zygomatic arch－furmation，ii，187； pulse near artery，iii， 140. Zygomatic process of temporal bone，
Yellow oxide of mernury－use， $\mathrm{ii}^{\text {a }}$ 48，	Zad－el－Rakeb breed of horses－origin，	ii， 885.
Yellow scabs due to rincworm，ii， 105		Zygomatico－auricularis muscle－
Yellow worm infesting intestines，ii， \mathbf{x}_{7} ， 171.	Zadig and the uturs of the lust dog and horse，ill， $4^{+7-4^{2}}=$	lum，N．c．，1i， 31. Zygomaticus muscle－finm．\＆e ．ii．：o 3

'

Webster Family Library of Veterinary Medicine Cummings School of Veterinary Medicine at Tufts University 200 Westboro Road North Grafton. MA 01536
n

[^0]: ${ }^{1}$ Nutice to the vendor must loe given. recent law freventing the leading of a glandered horse through a thomoughfare except under special commations.

[^1]: Vol, III.

[^2]: ${ }^{1}$ The Tertiary is the third of the great life-periods known to geologists, being followed ly the Post-tertiary of Quaternary, to which present-day life belongs.

[^3]: ${ }^{1}$ Others have been disesvered in later dissections.

