
U& DEPARTMENT OF COMMERCE • £
r

iwironmen1!al Science S





Mathematical

Geodesy



Courtesy of Foster Morrison



Martin Hotine

1898-1968

Martin Hotine's death on November 12, 1968,

ended a brilliant career; his energetic leadership

in geodesy will be missed. Although seriously ill,

his drive and enthusiasm enabled him to complete

the manuscript of this monograph, Mathematical

Geodesy— a fitting climax to a lifetime of geodetic

research and application.

During the 50-year span of Martin Hotine's

professional career, he provided numerous valuable

contributions of lasting significance to basic re-

search and practical applications of geodesy.

Among the many achievements from his surveying

and mapping career in England, two contributions

are most outstanding— the retriangulation of

Great Britain under his direction from 1935 until

its completion in 1962, and the surveys and mapping
of underdeveloped countries, initiated and directed

by him in 1946 and still continuing with his high

standards of accuracy. Martin Hotine was truly a

builder of worldwide geodetic networks.

A firm belief in international geodetic coopera-

tion was one of Martin Hotine's convictions. This

was manifested by his leadership of the Common-
wealth Survey Officers Conferences from 1955 to

1963, by his intense participation in the general

assemblies of the International Association of

Geodesy, and most notably by his collaboration

with Professor Antonio Marussi of Italy in the

formation of three symposia on three-dimensional

and mathematical geodesy. He was heavily involved

in the program planning for the fourth symposium
to be held in May 1969.

Many significant theoretical contributions to

the science of geodesy were made by Martin

Hotine. He expanded the classical theoretical

limitations of the current geodetic horizon by

insisting on a unified three-dimensional approach

to geodetic measurements and principles, and by

applying the most relevant mathematical tools,

such as the tensor calculus, to exploit these con-

cepts properly. Many of the papers on these sub-

jects never appeared in print. However, by being

presented at various international meetings, they

were well publicized and proved very influential

in their impact on other geodesists.

It was thus fortunate that while employed at

ESSA, Martin Hotine was able to combine and
expand these ideas, formulated over the years,

into this treatise on mathematical geodesy. In

recognition of his service to the United States

Government, Martin Hotine was awarded posthu-

mously the Gold Medal of the Department of

Commerce "for highly distinguished and productive

authorship of exceptional quality and extraordinary

importance to science: for outstanding leadership

in assisting ESSA in formalizing its geodetic

research program." Mrs. Hotine accepted the award
at the American Embassy in London on January 24,

1969.
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Foreword

In 1963, Martin Hotine completed a distinguished career of government

service — both military and civil — in Great Britain. He attained the military rank

of Brigadier, and later as a civil servant he was Director of the Directorate of

Overseas Surveys and Advisor on Surveys to the Secretary of the Department of

Technical Cooperation. In November 1963. he accepted an invitation of Rear

Admiral H. Arnold Karo, Director of the U.S. Coast and Geodetic Survey, to join

his scientific staff as a research geodesist. When ESSA was formed in 1965.

Martin Hotine became a member of the Earth Sciences Laboratories in Boulder,

where he remained until his return to England in August 1968. During these 5 years

in the United States, Martin Hotine devoted his attention to new concepts in the

geodetic sciences and continued the work that led to his recognition as one of

the world's foremost authorities on geodesy.

To compile scientific thought within a particular specialty of any discipline

is never an easy task. Only an individual who has a proficiency in his field gained

through years of practical experience and one who is dedicated to the advancement

of science would undertake such a difficult task. Martin Hotine was such an in-

dividual, and the result of his efforts provides a foundation in basic theory and

current thought in mathematical geodesy and another step from which the science

of geodesy can progress.

ESSA is highly honored and extremely fortunate to be able to include this

volume in its monograph series. The purpose of this series is to add authoritative

information to the depository of total scientific knowledge. Mathematical Geodesy

is such a treatise.

Robert M. White

Administrator
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Preface

This book is an attempt to free geodesy from its centuries-long bondage in

two dimensions. This does not mean that any geodesist, from Eratosthenes to

modern contenders for the title, has ever considered the Earth to be flat; the

two dimensions, such as latitude and longitude, have always been non-Euclidian

and have been taken as coordinates on a curved reference surface. It has been

usual, nevertheless, to project points from the topographic surface of the Earth

to the reference surface and thereafter to work entirely between points on the

reference surface. The third dimension of height above the reference surface is,

after all, small compared with the mean radius of the Earth; this fact has made it

possible to avoid any precise definition of the actual process of projection or of

the exact location and orientation of the reference surface in relation to points

on the topographic surface. The main process of projecting the line of observa-

tion into curves of normal section on the reference surface (usually a spheroid

or ellipsoid of revolution), combining these curves into a spheroidal geodesic,

and solving geodesic triangles does give sufficiently accurate results from fairly

simple formulas over short lines. Unfortunately, the process involves an element

of indiscipline which could bring the subject into disrepute; for example, the

author's own interest was aroused some years ago by an argument in print between

two leading European geodesists on the correct application of Laplace azimuth

adjustment, between points not located on the reference surface, which showed
that neither geodesist had clearly defined what he meant by a geodetic azimuth

at points in space. The classical process could not, in any case, deal with the

longer lines of observation in flare triangulation, stellar triangulation, and now
satellite triangulation without excessive complication; it is actually simpler to

consider the line of observation as a line in three dimensions and to carry out all

computations and network adjustments in three dimensions.

It can be said that one form of the classical process was first introduced

for the reduction of a survey of Hanover, Germany, by the celebrated Karl Fried-

rich Gauss who also introduced the differential geometry of curved surfaces.

There is little doubt that Gauss, faced with modern geodetic problems, would

have antedated Ricci and others by extending his differential geometry to three

or more dimensions. The first geodetic application of these extended methods

was made in 1949, far too many years after Gauss, by Marussi of the University

of Trieste. (See, Marussi (1949), "Fondements de Geometrie Differentielle Absolue

du Champ Potentiel Terrestre," Bulletin Geodesique, new series, no. 14, pp.

411-439.)

Cartesian coordinates in three dimensional space are not suitable for all

geodetic processes. We are led inevitably to consider more general curvilinear

systems, and to publish a book requiring the differential geometry of such systems

without using the tensor calculus (including vector calculus in index notation)

would indeed be an archaism. Unfortunately, very few geodesists have yet studied
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this important branch of mathematics, and the older generation is now unlikely

ever to do so.

Geodesists are by no means alone in their conservatism. Most new and ad-

vanced texts on mathematical physics are still being published in the old dot-and-

cross boldface-type vector notation, which is peculiarly suitable for only a very

few applications; this notation is much more restricted than the use of index

notation even for vectors considered as first-order tensors. Index notation is a

practical necessity for tensors of higher order than the second: for the derivation

of results, particularly those involving differentiation, which are true in any
coordinate system; for generalized curvilinear coordinate systems and other

applications requiring a mixture of both vectors and higher order tensors; and for

the notion of curved space required not only in relativity but also in such applica-

tions as generalized conformal transformations. Nevertheless, physicists have
still to acquire the no less difficult dot-and-cross boldface-type vector and dyadic

notation for use in the more elementary applications. For more advanced work,

they also need index notation which would serve all purposes. The waste of effort

involved in using one notation for first-order tensors and an altogether different

notation when tensors of higher order are required should be avoided in geodesy,

which already requires the use of higher order tensors in quite elementary

applications.

It is still possible to obtain a master's degree in mathematics at most uni-

versities without any knowledge of the tensor calculus, but we may expect less

conservatism in the future now that the subject is being taught to undergraduates

in some universities and is being included in a growing number of special courses

in applied mathematics. Moreover, many simplified texts have been made avail-

able since Eddington in 1923 sought a wide English-speaking audience with his

Mathematical Theory of Relativity.

Part I of this book attempts to introduce tensor calculus to geodesists and to

cover the ground required for present and foreseeable future geodetic applica-

tions. It has been written only after searching the readily available literature in

the hope of recommending instead a single text containing all the required material

and written by someone with teaching experience. It is not surprising that none

suitable for the purpose could be found among the many excellent books which

are now available. Many of these books are naturally written to cover in outline a

wide range of applications, and those that specialize are usually relativity-oriented.

Moreover, most books on the subject have been written by mathematicians who
are compelled to treat the subject rigorously; whereas the geodesist, who has to

keep up to date in many other areas, is prepared to take much on trust, and is

able to do so because he deals only with such well-behaved functions as Newtonian

potentials in free space or with very regular functions suitable as coordinates.

Even so, the treatment in Part I, necessarily compressed in a book which is re-

quired to cover even in outline the entire ground of theoretical geodesy, may
prove too difficult for the beginner. It is recommended that he read a more ele-

mentary account of the broad basis of the subject first; for example, the first 83

pages of Spain's (1953) Tensor Calculus or Chapters 2 and 5 of Lawden's (1968,

2d ed.) An Introduction to Tensor Calculus and Relativity. It is always better to

read two books on a subject, one more general than the other, instead of one

specialized book twice. Much, but by no means all, of the subject matter of Part I

is covered by McConnell's (1931) Applications of the Absolute Differential Calculus

(also published in a 1957 Dover edition as Applications of Tensor Analysis). The
reader who requires a more elegant and rigorous treatment — and some geodesists

demand rigor— might read Guggenheimer's (1963) Differential Geometry.

Part I was first drafted as a collection of formulas to save the reader from the

annoyance of continual reference to several other books and also to include some
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formulas which are not to be found readily, if at all, in books or papers. By the

time the formulas and the notation had been explained, the manuscript had reached
perhaps half of its present size; it was then decided to derive, or at least indicate

how to derive, the results and to expand the explanation of some points likely

to prove difficult. In the writer's experience, for example, most geodesists shy

at the notion of covariance and contravariance, which seems to be the counterpart

of the Euclidian pons asinorum, perhaps because geodesists usually acquire some
knowledge of statistics in which covariance means something quite different.

In these days of aids to rapid reading, the expert need lose no time over such
elementary exposition, but he is, nevertheless, advised to skim through Part I,

if his knowledge is rusty, to get the feel of the notation and the conventions.

The temptation to include indefinite metrics, requiring little more explanation

and leading straight into relativity, has been resisted. Apart from measurements
based on the position of stars, geodetic measurements have not yet been made
beyond the Moon and relativistic corrections for high velocities in the solar system
can be, if necessary, applied quite simply without much knowledge of relativity

theory. (See, for example, Walker, in a letter to Nature, v. 168, December 1, 1951,

pp. 961-962.) The methods used in relativity, like the tensor calculus itself, may,
nevertheless, become important to the research geodesist who, if he knows or

acquires Part I will have no difficulty in extracting keen enjoyment from Synge
and Schild's (1949) Tensor Calculus, to prepare himself for Synge's two master-
pieces on relativity.

Some consideration has also been given to including in Part I a short account
of more general deformations of space than the conformal transformations of

Chapter 10. This will come, together perhaps with some geodetic excursions into

non-Riemannian geometry, but the geodetic application of this subject is still

young and publication in book form would probably be premature. Meanwhile,
some account has been given in §30-19 of a method of systematically deforming
one member of a general family of surfaces into another member of the family

for a particular application.

Part II deals with coordinate systems of special interest in geodesy. In

Chapter 12, the properties of a general class of three-dimensional systems are

developed from a single-valued, continuous and differentiable scalar N which
serves as one coordinate, while the other two coordinates are defined by the

direction of the gradient of N. In Chapters 15 through 18, the scalar N is restricted

to provide simpler systems, whose properties can then be derived at once from

the general results of Chapter 12. Transformations between members of the

general class for different values of /V are treated in Chapter 19. Another advan-

tage of treating the subject in this way is that the scalar N can also be given

a physical meaning (for example, the gravitational potential in Chapter 20) so

that Chapter 12 also provides the geometry of the gravitational field.

In case it should be required to transfer the values of point functions from a

point in space to a particular /V-surface, which is the rigorous counterpart of sev-

eral operations of classical geodesy, methods of transfer along the isozenithals

(the /V-coordinate lines) and along the normals to the TV-surfaces are worked out

for each coordinate system in Part II, following a general discussion in Chapters

13 and 14. The process is connected intimately with Gaussian spherical representa-

tion, which is developed in this context, following a more general discussion in

Chapter 11, and is extended to nonspherical representation in Chapter 13. Such
methods of projection are seldom any simpler than three-dimensional methods,

although they are put to occasional special use in Part III, but it is as well that the

process should be more fully understood in the future.

Part III deals with the main geodetic applications of the mathematics in Parts

I and II. Geometry, which used to mean literally the science of Earth measure-
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merits, is no longer confined to geodesy, but there is, nevertheless, still a con-

siderable overlap, more so perhaps than the overlap with physics, and we cannot

expect a rigid division between the two subjects. For example, the differential

geometry of Chapter 12 contains all the metrical properties of the gravitational

field used in geodesy if we restrict one coordinate in accordance with a physical

law. As another example, the transformation between two members of a class of

coordinate systems in Chapter 19 includes the process of switching between

geodetic and astronomical systems. Part III simply attempts to show how these

mathematical concepts can be used today in attacking the main problems in

geodesy. The treatment is not complete; for example, nothing is included on the

formation and solution of normal equations in least-square adjustments, which are

adequately treated in existing literature. Nor does the treatment cover all pos-

sible applications; few geodesists have so far worked on these fines, and future

developments may be considerable. For example, the reader cannot expect to

learn all about so-called physical geodesy (which in fact is again mostly geometry)

from Chapters 29 and 30, although it is hoped that he will acquire a clear idea of

the basic theory which will enable him to follow the considerable literature of

the subject more easily and critically. The same applies to satellite geodesy in

earlier chapters.

Manipulative skill in any branch of mathematics cannot be obtained by

reading alone. In most cases, the work has been shortened by omitting several

steps leading to a result, but full references are given to enable the reader to fill

in the missing steps, if he so desires. It is hoped that this procedure will serve the

purpose of the examples and problems in textbooks which would be quite out

of place here. The experts, no doubt, will omit the whole procedure and will

take the results on trust.

References to other publications are given only as required by the text.

They do not provide anything like a complete bibliography or any indication of

priority or relative importance. For example, Marussis classical paper noted earlier

in this preface is referenced only once in the text, although it can be considered

the foundation stone of modern theoretical geodesy. However, the reader who looks

at the references, particularly those to books, will soon find that he has access

through them to a considerable bibliography.

The question of credits and priorities is particularly difficult in this subject.

Classical results are given a nametag to help identify them in the literature, but

the name is that normally associated with the result in English, without attempt-

ing to assess priority between, for example, Gauss, Green, and Ostrogradskii.

Some of the named results seem almost trivial when derived by modern methods,

but it is hoped this will not dim the luster of great men who unearthed them
with less serviceable tools. Credit is also given, when known, for particular recent

results, but such credits are few because not many geodesists as yet have worked
in this area. To offset what must seem like cavalier treatment, no priority is

claimed for any results, although it is believed that some are new, either in con-

tent or in presentation.

The title of the book requires some explanation. An attempt has been made
to cover only the basic mathematical discipline of geodesy, excluding such spe-

cialized matters as routine computer programs and including only such references

to instrumentation and field (or laboratory) procedures as may be necessary to

a full appreciation of the underlying theory. The book accordingly bears much
the same relation to the whole of geodesy as numerous books entitled "Mathe-

matical Physics" do to the whole of physics. Various alternatives have been con-

sidered and rejected; for example, the title would be some variant of "Higher

Geodesy" if published on the European continent, but the content of the book

is quite different from any other book bearing that title.
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The terminology and symbolism used in the book cannot be expected to com-

mand universal acceptance. For example, there is a growing tendency in geodesy

to call an ellipsoid of revolution simply an ellipsoid and to reserve the term sphe-

roid for an equipotential surface of the standard gravitational field. This conven-

tion can cause confusion whenever reference is made to mathematical literature

in English where a spheroid is defined geometrically as an ellipsoid of revolution

and an ellipsoid in general means a quartic with three unequal axes; for example,

the treatment of spheroidal and ellipsoidal harmonics in Hobson's standard

work on the subject is based on this definition, which is clearly stated in the

Van Nostrand (1968, 3d ed.) publication, Mathematics Dictionary, edited by

James and James. In a mainly mathematical book, it has accordingly been decided

to retain the mathematical convention, which incidentally is also used by most

English-speaking geodesists. In much the same way, the physical sign convention

has been used for a Newtonian potential, although the fact that the potential is

invariably negative in terrestrial applications has led most geodesists to change

the sign. No good can come through willfully discarding scientific conventions

universally accepted in a parent subject which has every right to prescribe the

convention. Adoption of the physical convention for potential not only facilitates

reference to the literature of physics, but also accords better with the geometrical

basis of this book.

Most geodesists use the symbol A for longitude. However, in a book using

vectors, there is an overriding need for an orthogonal triad A,-, fx, , v r frequently

used in mathematical literature. In the geodetic applications, A r is associated

with longitude, but it is not the gradient of the longitude as the use of A for the

scalar longitude would imply. The symbol a>, usually associated with a rotation,

is accordingly used for longitude. Whenever possible, however, the symbolism

most generally adopted by the best literature in a particular branch of the subject

has been used to facilitate wider reading although this often results in using

the same symbol for different purposes in different chapters. The Index of Sym-
bols at the end of the book indicates the general use of a symbol, any departure

from which is invariably noted in the text. For example, a and f3 are generally

used for azimuth and zenith distance, which differ in different coordinate systems,

but the context will show which coordinate system is being used. The same applies

to latitude and longitude, and this arrangement enables us to dispense with

special symbolism for particular coordinate systems, such as spherical (geo-

centric) and spheroidal (geodetic) systems. Following standard mathematical

conventions in English, right-handed systems are used throughout the book,

and sign conventions are adopted to conform. In general, some warning or com-

ment is given in the text whenever there is a departure from standard mathe-

matical or physical conventions in the geodetic literature; for example, the use

of left-handed systems imported from photogrammetry into satellite triangula-

tion.

To facilitate reference, summaries of main formulas are collected as a Sum-
mary of Formulas at the end of the book. In some cases, a particular chapter

suggests a particular arrangement; for example, some formulas in the summary for

Chapter 17 are obtained by specializing the results of earlier chapters at sight and
are not given in the text of Chapter 17, although they do apply to the subject matter

of Chapter 17. The best way of using the Summary of Formulas is to look first at the

chapter headings or subheadings for the required subject matter. Each equation

in the index carries a reference to the text which gives the derivation and sym-

bolism. Back references in the text are always to the text, but a reference to the

Summary of Formulas may be sufficient and quicker; however, if the back refer-

ence is not given in the index, it will be necessary to refer to the text.

It is difficult to make adequate acknowledgment covering a lifetime of study,

discussion, and collaboration. The author's main source of inspiration in the sub-
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ject of this book has been Professor Antonio Marussi of the University of Trieste,

not only for the range and originality of his ideas but also for continual advice

and encouragement. The book and its writer owe much to the two official reviewers,

Mr. Bernard H. Chovitz of the Earth Sciences Laboratories of ESSA and Professor

Ivan I. Mueller of the Ohio State University, for careful reading and checking

and for many improvements. In addition, specialist reviews and information have

been freely provided by Professor Arne Bjerhammar and his associates of the

Royal Institute of Technology, Stockholm; Mr. Robert H. Hanson of the Earth

Sciences Laboratories of ESSA; Dr. Karl-Rudolf Koch of the Ohio State University;

Professor Helmut Moritz of the Technical University of Berlin; Mr. F. Foster Mor-

rison of the Earth Sciences Laboratories of ESSA; Mr. Allen J. Pope of the Coast

and Geodetic Survey of ESSA; Professor Erik Tengstrom of the University of

Uppsala; Dr. Moody C. Thompson of the Institute for Telecommunication Sciences

of ESSA; and Mr. John Wright of the Directorate of Overseas Surveys of Great

Britain. None of these distinquished men, especially neither of the official re-

viewers, is responsible for any remaining errors and omissions.

The difficult and unrewarding task of editing such a specialized book has been
successfully undertaken throughout by Mr. John R. Bernick. The index has been
compiled by Jean S. Campbell. The production coordination of the publication

has been accomplished by Mr. Edward W. Koehler and the manuscript has been
marked for printing by Miss Lila Paavola and Mrs. Helen Hoener.

Last, but far from least, the manuscript has been typed and retyped most

expeditiously and efficiently by Mrs. Nancy Durazzo and Mrs. Judy Shore.

August 1968 Martin Hotine
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CHAPTER 1

Vectors

CARTESIAN VECTORS

1. Geometrically, a length in a certain direction

defines a vector OP. In ordinary three-dimensional

space, we can, for instance, take as the origin

of a rectangular Cartesian coordinate system and

specify the vector completely by the three coordi-

nates of P. Or, if we wish to define a number of

vectors at different points in the space, we can take

a fixed origin and define the vector by the differences

in rectangular coordinates over the length OP, that

is, by the orthogonal projection of OP on the co-

ordinate axes. These three quantities, known as

the rectangular Cartesian components of the vector,

will depend on the choice of coordinate system; but

the sum of their squares will be the square of the

length OP, which does not depend on the coordinate

system. If the vector is of unit length, or if we divide

the components by the length, the components

become the direction cosines of the direction OP,

and the vector is known as a unit vector.

2. The matter becomes more complicated when
we consider inclined coordinate axes. For the

present, we shall continue to consider a Cartesian

system; that is, a system in which the coordinates

are actual lengths along straight coordinate axes.

For ease of illustration, we shall consider a vector

OP in relation to coordinate axes OX, OY (fig. 1) in

two dimensions, but similar conclusions will apply

in three or more dimensions. We can still specify

the vector by its orthogonal projections OQ. OR on

the coordinate axes, in which case the components
of a unit vector in the direction OP will still be the

direction cosines of OP. We call these covariant

components and write

l^=OQ = OP cos 0,

1.01 k= OR = OP cos 02,

making use of index notation l\, l-> for the com-

ponents.

3. Alternatively, we could specify the vector com-

pletely by taking the differences in coordinates

OS, OT as components, which we shall call the

contravariant components. We distinguish them
from the covariant components by using super-

script indices and write

n=OS = OP sin 0,/sin (0, + 2)

1.02 [i =OT= OP sin 0,/sin (0, + d>).

Figure 1.

We can no longer square and add either set of

components as a means of obtaining the length or

magnitude of the vector, but the above formulas
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lead at once to the result

/'/, +PU= Of*.

As a form of shorthand whose value will become
more apparent later, we can write this as

1.03 l
a
la=OP2

in which we use the summation convention. When-
ever a superscript and a subscript index are the

same, we assume that this index takes all possible

values (in this case a=l, 2), and the results are

then summed.

4. Next, suppose we have two vectors OL, OM
(fig. 2), and that the angles giving the direction of

equally well in three dimensions. A simpler method
is to assume that

Figure 2.

OM are distinguished by overbars. We have

Pm
] + I

2m 2 =lam a

= OL OM (sin 0> cos 0, + sin 0, cos 2 )

sin (0, + 0,)

= OL OM cos 0,

and we can obtain the same result from lam a
. We

call this the scalar product of the two vectors and

write

1.04 l
a
r lam a = OL -OM cos d.

Or, to phrase this in words, the scalar product is the

product of the two magnitudes and of the cosine of

the angle between the two vectors. The scalar prod-

uct of two perpendicular vectors is clearly zero. Also,

Equation 1.03 is a special case of Equation 1.04 in

which the two vectors coincide.

5. The reader with an inclination for spherical

trigonometry can verify that Equation 1.04 holds

I' m, (r=l, 2, 3)

has the same value in all coordinate systems — or, in

other words, is invariant under coordinate transfor-

mations—as we found l
am a to be in two dimensions,

and to evaluate the expression in a special coordi-

nate system. We choose OX to coincide with OL
and leave OY, OZ arbitrary. In that case, l

x — OL
and /

2
, I

3 are both zero because the y- and z-coordi-

nates do not change in the direction OL. Conse-

quently, we have

l'm r = OL m1
= OL-OM cos 0.

By choosing a coordinate axis along OM, we find

that l,-m
r

is the same so that we have

1.05 /' l rm r=OL-OM cos 0.

6. Throughout this book, we shall adopt Greek
indices for the two-dimensional components of

vectors and Roman indices for three dimensions.

The index notation for a vector /' need not be con-

fused with the rth-power of a quantity /. The context

will usually distinguish between the two without

explanation, but in cases where confusion could

arise, we shall use and shall describe special nota-

tion for a power index. In the same way, numerical

subscripts will often be used to distinguish certain

quantities. Covariant vectors will usually have a

literal subscript; but if a numerical subscript has

to be used for a particular component, attention will,

if necessary, be called to the fact.

7. It will be clear from the definitions of the

covariant and contravariant components of a vector

that the two sets of components are equal in rectan-

gular Cartesian coordinates, but are not equal in

inclined Cartesian coordinates. By introducing the

two sets of components, however, we have been
able to ensure that such results as Equation 1.05

apply in both rectangular and inclined Cartesian

coordinates.

VECTORS IN CURVILINEAR
COORDINATES

8. We have now to generalize the matter still

further by considering curvilinear coordinate sys-

tems. Through each point in some region of three-

dimensional space, there will still be three unique

coordinate lines along each of which only one co-

ordinate varies, the other two being constant; but

the coordinate lines may be curved as well as
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inclined, and will not, as a rule, be parallel to the

directions of the corresponding coordinate lines

at other points. The space itself may be curved,

like the surface of a sphere in two dimensions, and
in that case, the space can only be described in

curvilinear coordinates; we should be unable to

find a Cartesian system which would give the posi-

tions of points in an extended region of the space.

Finally, a curvilinear coordinate will no longer

necessarily be an actual length measured along a

coordinate line, as in the case of Cartesian coordi-

nates, although lengths and coordinates must
obviously be related in some way because a dis-

placement over a given length in a certain direction

must involve a unique change in coordinates.

9. This relation, which may vary from point to

point, is expressed by the metric or line element of

the space; the square of an element of length (Is

in a small neighborhood of a point can be expressed

in terms of the changes in coordinates dxr over

the element of length by a relation of the form

1.07

1.06 ds 2 = g„ dx'dx* (r, 5 = 1 , 2 , 3).

We assume that the summation convention is used

in this formula, which accordingly may contain

nine coefficients gn in three dimensions to go with

all possible combinations of the coordinates. We
do not need, however, more than six and can take

g,s as symmetrical so that we have gw— gzi, for

example. We can then expand Equation 1.06 as

ds 2 = gt i(dx
x
)- + gn(dx2

)
2 + #«(<&3

)
2

+ 2gndx ldx2 + 2gndx ldx* + 2g23dx1dxi
.

Throughout this book, we shall use only what are

known as positive-definite metrics; that is, for any
real and nonzero displacement dx r

, the value of the

quadratic form in Equation 1.06 is positive and not

zero. Only in this way can the form represent the

square of a real element of length. Relativity metrics

in four dimensions, on the other hand, are usually

indefinite, in the sense that ds2 may be zero without

all the dxr being zero.

10. The numbers grs (totaling nine, of which six

may have different values) will vary continuously

from point to point, but will be defined uniquely

at each point for a particular coordinate system;

in other words, they will be functions of the coordi-

nates xr
, or functions of position. This array of

numbers is known as the metric tensor, for reasons

which will appear later. In rectangular Cartesian

coordinates, the metric must reduce to the Pythag-

orean form

ds- = (dx)- + (dy)- + (dz)-

= (dx 1

r' + Uix 2
)

2 + (dx :i

)

in which case we have

g„=\ (r=«); (r^s).

In inclined Cartesian coordinates, the grs (r ^ 5) are

functions of the angles enclosed by the coordinate

axes and are therefore the same at all points, but

are not zero.

11. As a simple example of curvilinear coordi-

nates, we take spherical polar coordinates (to, c/>, r),

defined by

x= r cos (/> cos to

y— r cos
<f>

sin to

z = r sin <fi.

By straight differentiation and substitution in

Equation 1.07, we have the metric

ds'2 = (r- cos 2
<f>)dto'

2 + r2 c/c/>2 + dr2
,

and the components of the metric tensor are

gu = r 2 cos 2
(f> ; g22 = r 2

; g33 = 1

grs= (r^s).

The co-coordinate lines, along which c/> and r are

constant, are circles parallel to the .vy-plane and
centered on the z-axis; the (^-coordinate lines are

circles centered on the Cartesian origin whose
planes contain the z-axis; and the r-coordinate lines

are radial lines from the Cartesian origin. Alter-

natively, we can say that the co-coordinate surfaces
(over any one of which o> is a constant) are planes
containing the z-axis, the ^-coordinate surfaces

are cones whose common axis is the z-axis. and the

r-coordinate surfaces are spheres centering on the

Cartesian origin. In a Cartesian system, all the

coordinate lines would be straight and all the co-

ordinate surfaces would be planes.

12. Over short distances, we can, nevertheless,

consider that the coordinate lines are straight in a

curvilinear system. By analogy with the Cartesian

definition, we still can say that a small change in

coordinates

dx' (r=l,2,3)

represents the three contravariant components of a

small vector of length ds, and that in the limit, the

ratios

dx r

ds
1.08 (r=l,2, 3)

are the contravariant components of a unit vector
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l
r

. Although we are no longer dealing with finite

lengths, it is easy to see that this definition of a

contravariant unit vector agrees with the Cartesian

definition. We can also define a nonunit vector of

magnitude A, in the same direction as the unit

vector l
r

, as

1.09 1/ = \l r

without contradicting the Cartesian conception,

although we may no longer be able to interpret A

as a finite length.

13. The covariant components, however, need

lurther consideration because they were defined

in Cartesian coordinates as lengths along the axes.

By dividing Equation 1.06 by ds2 and substituting

Equation 1.08, we have

1.10 grsl
r
l
S=h

To preserve the Cartesian conception of a covariant

vector as far as possible, we may use Equation

1.05 and write for a unit vector

1.11 Ws =i.

However, if both Equations 1.10 and 1.11 are to

hold for all directions at a point, that is, for arbi-

trary values of the contravariant components I
s

,

we must have

1.12 k = grsl
r

as the definition of the covariant components of a

unit vector. From Equation 1.09, we have also

grsL rLs= Xlgrsl
r
l
s=K2

.

However, to preserve the Cartesian conception

corresponding to Equation 1.05, this must equal

L,L r so that a general covariant vector can be
written as

1.13 L, = grsL s = A/,..

Comparing this with Equation 1.09, we see that

multiplication by grs and use of the summation
convention have lowered the indices of the vector

Equation 1.09. It is easy to see that the same opera-

tion would lower the free (not summed) index in

any vector equation.

14. We now consider whether the above definition

of a generalized covariant vector agrees completely

with the Cartesian conception, in the sense that a

Cartesian system provides a special case. For ease

of illustration, we shall again consider the case of

two dimensions. In figure 3, we take a small dis-

placement of length ds, made up of displacements

of length va\ Xdx x and va^dx2 along the coordinate

axes, obtained, respectively, by making dx 2 = and
(/x' = in the metric

ds 2 = an(dx> )

2 + 2a v,dx
ldx2 + a 2 >(dx

2
)

2
.

From the figure, we have at once

ds 2 = au(dx l

)

2 + a 2 >(dx
2

)

2

+ 2Va~7iVa^>dx ] dx2 cos (0, + 2 ).

By comparing these two forms of the metric, we have

1.14 cos (0, + &) = «i2/Va„a22 .

Figure 3.

Using the generalized definition of the covariant

components la of OP and evaluating dx l/ds, etc.,

from triangles in figure 3, we have

/. = a,^ = a„ ( dx'/ds )+a v>( dx2
/ds )

1.15

Von sin 6-2

sin (0, + 2)

«n cos

+
a v. sin 6\

/gZ sin ( 0, + d-2

)

on substitution of an from Equation 1.14 and expan-

sion. In the same way, we have

1.16 I, an cos 02-

If the coordinate system were Cartesian (fl n = « 22 =l),

this would agree exactly with Equations 1.01 for a

unit vector. We can obtain the same result in three

dimensions. We can accordingly claim to have

generalized the conception of contravariant and

covariant vectors for a general curvilinear coordi-

nate system and to have shown that previous results

in Cartesian coordinates are merely special cases.
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15. It will be noted that we use the symbol

(tan (a,/3=l,2)

for the metric tensor in a two-dimensional space

instead of the three-dimensional

adopt this convention as standard.

We shall

16. We are now able to conclude in much the

same way that Equation 1.05 holds equally well in

curvilinear coordinates. If L'\ Mr are two vectors in

the directions of unit vectors /'. m' and of magni-

tudes A, fM, we can write

L,M' = grsLrMs = \/xgrsl
rms

= kfjc/'m,

1.17 = K/jl. cos 6

where 6 is the angle between the two vectors. This

generalizes the scalar product of two vectors, which

again is zero for two perpendicular vectors.

TRANSFORMATION OF VECTORS

17. We now consider the effect on the components
of a vector when the coordinate system is changed.

We shall denote the new coordinates xr and the

new components by overbars. For a contravariant

unit vector, we have at once

1.18 Jr
_dx^_ (W dx" _ dx?

ds dxs ds dxs

in which, of course, the summation convention is

applied to the index 5, and we have used the chain

rule of elementary calculus. The same formula
clearly will apply to nonunit vectors L'\ L s

.

18. In the case of a covariant vector, we form the

scalar product with an arbitrary vector A'. The
result is an invariant, which has the same value

in either coordinate system, because it depends
only on the magnitudes of the two vectors and the

angle between them so that we may write

7rA ''= /,.A s= /,. (dxs/dxr)A r
,

using Equation 1.18 for the vector A r
._ Since this

relation holds for any arbitrary vector A'\ we must
have

1.19
8 Xs

dxr

which is the required transformation. The same
formula will apply to nonunit vectors Lr , Ls .

19. We could define a vector as a set of three

quantities (in three dimensions) which transform

in this way. To illustrate the point, we take a con-

tinuous differentiable scalar N; that is, a real num-
ber which has a unique value at all points of a region

of space and can therefore be considered a function

of the coordinates. The scalar /V is also an invariant

whose value at a particular point is the same what-

ever the coordinate system. Most physical quan-

tities, such as potential or gravity, are scalar

invariants. We differentiate N with respect to each

coordinate xr and write

Nr= dN/dx r
.

But because N is an invariant {N = N), we can write

- _ SN _ dN _ dN dx s _ fix"
A • £*W / V /• _ — ~ — n — z

dx r dxr dx" dxr dx r
vs

so that Nr transforms like a covariant vector and

can be taken as a covariant vector. It is called the

gradient of N. Because TV is differentiable, there

will be some directions /'' in which N is constant

so that we have

Nrl
r=dN/ds= 0.

The gradient of N is accordingly perpendicular to

all such directions. If /V is constant over a surface,

its gradient is perpendicular to all surface direc-

tions at a point and is therefore in the direction of

the unit normal v, to the surface. We can then write

1.21 Nr = nvr

where n is the magnitude of the gradient vector.

In this discussion, we have, of course, assumed

that at least some of the derivatives of /V exist,

even though N itself may be zero; otherwise, the

gradient of N and therefore v, would be undefined.

The assumption is justified in the case of surfaces

dealt with in this book.

20. If, in three dimensions, we know the com-

ponents in both coordinate systems of three mutually

perpendicular unit vectors A.,, fJ-r. v r . we can derive

the set of transformation factors from the formulas

dx rldxs = XrXs + fx'fJLs + xFvs

1 .22 dxrldx s= \ rK + nrjZs + vrvs .

To verify these formulas, we multiply the first equa-

tion by Av
, for example, use Equation 1.11 and the

fact that the scalar product of two perpendicular

vectors is zero, and so recover Equation 1.18.
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21. We can also show that the scalar product of

any two vectors is an invariant,

1.23 74 rB< =
d^A^B<=8l4 >i

B< = A<B< = A rB r
.

dx r ox'

Here we have used the Kronecker delta

1.24

8f=l (s = t)

Sf = (5 9*0

so that the only value of s which contributes to the

summation is f, and we accordingly may write t fors

in Equation 1.23. We have also used the chain rule

in partial differentiation, that is,

dxs dxr_ dxs
__ £ S

Bx r dx' dx'

22. We shall often want to set up a right-handed

set of three vectors K, \x, , vr in three dimensions.

If the three vectors are mutually orthogonal, we say

that the set is right handed in the order given if their

directions are the same as the usual right-handed

conventions for the (x, y, z) coordinate axes of a

rectangular Cartesian coordinate system. If, for

example, the direction of vr is toward the reader, the

set in figure 4 is right handed in the order k r , fi r , v r .

& *xr

Figure 4.

However, it is not necessary for the vectors to be

orthogonal, so long as the rotation from one vector

to another is in the same general sense. Looking

along A,, for instance, vr must be to the right of fir .

We shall arrange for the coordinate axes, even

curvilinear, to be a right-handed system in the order

U\ x-, x3
) or (1, 2, 3).



CHAPTER 2

Tensors

GENERAL RULES

1. A matrix or set of quantities, defined in a par-

ticular coordinate system in 3-dimensional space,

such as

An (r, 5=1, 2,3),

is considered as a tensor if it transforms like a vector

for each index so that we have

2.01
- _ dxp c)x<i

dx r dx i"i

in which the summation convention applies to the

indices p, q. We may have covariant tensors like

the above, or contravariant tensors like

2.02

or mixed tensors like

2.03

- dx'' dx s

A rs = — Am
dxf chxi

'

dx r dx"
Ar— A p
s dxP dx s "

and we may have any number of indices. The order

of the tensor is the number of free (not summed)
indices; all the above examples being of the second

order. A vector is accordingly a first-order tensor,

and an invariant is a tensor of zero order.

2. It is evident from the transformation formulas

that, if all the components of a tensor at a point are

zero in one coordinate system, they are all zero in

any other coordinate system. This implies, for

instance, that the tensor equation

A rs=0

We shall see later that all tensor equations have this

property.

3. It will also be apparent from the formulas that

a tensor transformation is transitive. If we transform

from a coordinate system (a) to another (b), and then

to a third (c), the result will be the same as a trans-

formation direct from (a) to (c).

4. We can add tensors of the same order and

type. For example, the sum of two mixed third-

order tensors

Alt+Br
sl

is obtained by adding corresponding components,

such as

Al3 +Ph,
to provide the corresponding component of the sum

so that we can write

2.04 Qt=A r
st+ B r

t
(r,s,t=l,2,S).

If we multiply this equation across by the appro-

priate transformation factors, we have

d*!i <**i i£l rr - 4k + m - n<
6X 1 dx 1

(ix

in which the components of the transformed sum

are obtained in the same way by adding corre-

sponding components of the transformed tensors.

The sum accordingly obeys the transformation law

for tensors and is therefore a tensor.

is true in any coordinate system, if it is true in one. 5. We can similarly multiply two tensors, not
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necessarily of the same order and type, and can

show that the result is a tensor of higher order. We
can write the product, for example, as

2.05 Qt =-A stBr

in which all the indices are free, and can obtain each

component, for instance,

of the product by multiplying the components

A2S , BK

6. If an upper and lower index of a product are

the same, then we must apply the summation con-

vention, and the result will be a contracted tensor

of lower order containing only the remaining free

indices. For instance, we have

2.06 Cs=A stB<

in which each component of the contracted product

is now obtained as, for example (in three dimensions),

Ci =AuB l +A VzB
2+A 13Bs

.

We can prove the tensor character of the contracted

product Equation 2.06 as follows,

AstB^AjkB^-4~ d
^,

dxs dx' dx

OX* '

dxj

=A,^~
dx?

= Cj
dx*

dx*

7. Any letter can be chosen for a summation or

dummy index, so long as it is not one of the free

indices, because it will, in any case, assume all

values during the summation. We can accordingly

alter or can exchange dummy indices as, for

example,

A r
stBsC> = AjfsB'Cs = A'^Bi'C",

so long as we do not confuse them with the free

indices (r in this example).

8. It is evident that any scalar formed by tensor

contraction will be an invariant, whose value will

be the same in any coordinate system.

9. A tensor is said to be symmetric in two indices,

both upper or both lower, if it remains the same on

interchanging those two indices. For example, if

At = A r

then the tensor is symmetric in the second- and

third-covariant indices. If its value remains the

same but the sign changes, for example,

B>xlu = -B<xu„
then it is said to be skew-symmetric or antisymmetric

in the two indices. These properties are retained

on change of coordinates because, for example, all

components of the tensors

(A^-A^
t )

or (fl;„, + £;;„)

are zero in one coordinate system and must there-

fore be zero in any other.

10. Any second-order tensor can be expressed

as a sum of a symmetric and a skew-symmetric
tensor, as is evident from the identity

A ,„= ±(A „ +Asr)+ \{A ,„ -A sr ),

the first tensor within parentheses being symmetric

and the second being skew-symmetric.

11. If we contract the product of a symmetric

tensor A rs and a skew-symmetric tensor 5jrs on the

symmetric and skew-symmetric indices, the result

will be zero because

B> rsA r8=— BJS'A ,T = — BJrsA rs

on interchanging the dummy indices so that we
have

B^An-O.

12. The relations, Equations 2.04, 2.05, and 2.06,

are examples of tensor equations. If we take any

such equation relating the components of tensors

in one system of coordinates and multiply across

by the transformation factors for the free indices

as was done, for example, with Equation 2.04, we
see at once that the same equation holds between
components in the transformed coordinate system.

In other words, if a tensor equation is true in one

coordinate system, it is true in any coordinate sys-

tem. This fact is of fundamental importance in all

applications of the subject, particularly the physical

applications, because a physical law must, from

its very nature, be independent of a man-chosen

coordinate system and so is best expressed in tensor

form. We can very often set up a tensor equation

in a simple coordinate system, for instance Car-

tesian, and immediately can assert that it is true

in a complicated system, whereas it would be very

difficult to find it or to prove it in the complicated
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system alone; we have merely to make quite sure

that all the terms in the equation are tensors.

TENSOR CHARACTER

13. Tests for tensor character are for this reason

most important. Ultimately, these must require the

set of quantities in question to obey the transforma-

tion law, but we can derive some simple rules to

avoid having to resort to the transformation law in

each case. If, for example, the given set of quan-

tities form an invariant when contracted to a scalar

with arbitrary nonzero vectors, then it will be a

tensor. In that case, we have, for example,

arsA rBs = arsA rBs = ajkAWk

in which ars is the set under test and A'\ Bs are

arbitrary vectors. Transforming the vectors, we have

_ dxJ dx K'\

«rs-ajk——)A >B» = 0.
dx' dxr /

In three dimensions, this is an equation with nine

arbitrary coefficients A lB 2
, etc., connecting the

nine components of the matrix within parentheses.

Nine or more of these equations containing different

values of the arbitrary coefficients can only be satis-

fied if each component of the matrix within paren-

theses is zero, that is.

a r . *jk
Bx> dx k

dx r dxs

which proves the tensor character of ars - We could

not say this if A' , B* were the same vector because

we should have then only six independent coeffi-

cients connecting the nine components of the matrix.

We could, however, interchange the indices r, 5

and add the result to provide an equation of the

form

^ _ dxJ dx k
_ dxJ dxJ

V
' dxr dx"

]
dxs dx r

A rAs=

in which there are now six distinct components
of the matrix and six arbitrary coefficients (A 1

)
2

,

A 1

A'-, etc. We now can say that

ars+ asr= a.jk t~z
dxJ dx" . _ dxJ dxk

(Ojk

dx r dxs dx* dx r

dxJ dx k

dx r dxs
ik})

on interchanging the dummy indices j, k in the last

term. This shows that

{ars+ aSr)

is a tensor, and so is ars if ars and dji; are symmetric,
that is, if

ars= asr

in all coordinate systems. In that case, ars is a

tensor if it forms an invariant with only one arbitrary

nonzero vector.

14. It is evident from the working that, instead of
two arbitrary vectors A'\ B\ we could equally well

have used an arbitrary tensor Crs
; and that this could

be an arbitrary symmetric tensor when ars is sym-
metric in all coordinate systems. Moreover, it is not
necessary that the operation of contraction should
result in an invariant. It is sufficient if contraction
with an arbitrary vector results in a tensor, but the
proof of this, on much the same lines as above, is

left to the reader.

15. We must now prove that the metric tensor is
in fact a tensor. From Equation 1.17, we can say
that if L r

, Ms are arbitrary vectors, we have

grsLrMs= grsL rMs

because the magnitudes of the vectors and the angle
between them are obviously unaffected by the
choice of coordinate system. Therefore, #,„ forms an
invariant with any two arbitrary vectors (even
though not the same invariant for different vectors),
and is accordingly a tensor. Again, the square of the
line element ds 2

is clearly independent of the
coordinate system so that

glsdxrdxs

is an invariant for an arbitrary small vector dx r
.

Because grs is symmetric in all coordinate systems,
it is therefore a tensor. Yet again, we have from
Equation 1.13, in the case of an arbitrary vector L r

,

grsLs=Lr ,

and this again shows that grs is a tensor.

16. The Kronecker delta is a mixed tensor because

dx" dx* _ dx" dx r _ dx" __ j,

s
dx r dx,"

~
dx r dx"

~
dx"

~ 9

straight from the transformation law.

17. Now suppose that we have a mutually or-

thogonal triad of unit vectors (V, fi
r

, v r
) and con-

sider the tensor

X r\s+ fX'/JLs+P'l's.

In rectangular Cartesian coordinates whose axes
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are in the direction of these vectors, their com-

ponents are

V or \s (1,0,0)

fx
r or fis (0, 1, 0)

vr or vs (0, 0, 1),

and we can see in this Cartesian system that

2.07 V'\, + ix'ix* + vrvs = 8J

.

But this is a tensor equation because we have seen

above that the right-hand side is a tensor and the

left-hand side is formed by the multiplication of

vectors. Consequently, this equation is true in any

coordinates for any orthogonal triad of vectors.

THE ASSOCIATED METRIC TENSOR

18. If, in the same Cartesian system, we con-

sider the tensor

k,ks + /U,r/Xs + VjVs,

we find that it is equivalent to the metric tensor

grs, which in this system is unity for r — s and is

zero for r # s. Consequently, we can say that the

tensor equation

2.08 grs = krks + IXrjXs + V, Vs

is true for the metric tensor in any coordinates for

any orthogonal triad. If we know the components
of such a triad in any coordinate system, we can

find the components of the metric tensor in the same
coordinates at once.

19. Using the same triad of unit vectors, we now
inquire what meaning should be attached to the

tensor

2.09 k'k' + fx'ix' + v r
v'

If we multiply Equations 2.08 and 2.09 and remem-
ber that the vectors are unit perpendicular vectors

so that k'Ki = 1, A''/u.,=0, etc., we have

grtgrs = A'A.s- + fi'fJLs + v'vx = 8L

Next, we multiply this equation by Gks
, the cofactor

of gkS in the determinant formed by the components
of the metric tensor which we shall denote by g.

Using the ordinary rules for expanding a deter-

minant and applying the summation convention,

we then have

so that

2.10

gr'8krg=8 tsGks= Gk

S*'= G*7*

which enables us to calculate all the components

of this tensor from the components of the metric

tensor. We see from Equation 2.09 that g*' is a

tensor and is symmetric. It is called the associated

or conjugate metric tensor.

We can easily show that the determinant of the

associated tensor is 1/^.

In deriving these results, we have assumed that g
is not zero. It can be shown ' that in the case of

the positive-definite metrics used throughout this

book, g is positive and never zero.

20. We can use the associated tensor to raise the

index of a vector and to determine its contravariant

from the covariant components in the same way as

we use the metric tensor to lower the indices. An
arbitrary vector Lr , whose Cartesian components
relative to the axes (kr , fx,-, vr) are (a, 6, c), can

be written as

L, — akr + bfJL, + cvr

or

L r =ak r + b/jL
r + cv'\

both of which are vector equations true for any

coordinates. If, in a general coordinate system, we
multiply the first of these equations by Equation

2.09, we have

2.11 g
rlL r =ak' + bix' + cp' = L'.

which raises the index of the vector.

21. The process is not confined to vectors, and
we can raise or lower the indices of tensors in the

same way. By the ordinary multiplication rules for

tensors, we have, for example,

g
r*A rt = £?,

where B is some tensor of the type and order indi-

cated. If we multiply this across by gSk and sum. we
have

8kArt=Akt= gskBst=Ckt ,

for instance, in which all components of A and C
are equal so that they are the same tensor. The re-

sult of raising an index and then of lowering it again
is similar to recovering the original tensor; there-

fore, we are justified in considering B as simply
another form of A, just as the covariant and con-
travariant components are considered as describ-
ing the same vector. We may accordingly write

grsA rl = A s
. t .

But. because An is not, in general, the same as

'Levi-Civita (1926), The Absolute Differential Calculus, 90.
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At,-, we must be careful to leave a space or a dot to

show from where the raised index came so that it

may be returned later to the right place. If there is

likely to be any confusion, it is best to write any

tensor so that no superscript is vertically above a

subscript.

THE PERMUTATION SYMBOLS
IN THREE DIMENSIONS

22. We now introduce a system ers t
or e'*' in three

dimensions, defined as follows:

(a) When any two indices are the same, the sys-

tem is zero — for example. e
m= 0.

(b) When the arrangement of indices is 123, or

the cyclic order 231 or 312 — that is, an even per-

mutation of 123 — it is + 1

.

(c) In all other cases, that is, an odd permutation

of 123, it is — 1— for example. e~
,:i = — 1.

In short, the systems are skew-symmetric in any

two indices.

23. If A\. is a term in any third-order determinant,

the superscript being the row and the subscript the

column, it is not difficult to verify that the value of

the determinant A is given in terms of these e-

systems by the formula

2.12 Aerst
= eijkA\. A{A^,

using, as always, the summation convention. If the

terms of the determinant are the tensor transfor-

mation matrix, this is

2.13-
dx 1'

dx"
erst — ?ijk

<-")%' ()XJ dx

dx 1 ' dxs dx 1

i,

But the values of the e-systems are the same in all

coordinates and, in consequence, the left-hand

side cannot, in general, be e rs i- The e-systems are

accordingly not absolute tensors, although systems

which transform like Equation 2.13 are often called

relative tensors.

24. We now take the unbarred coordinates to be

rectangular Cartesian. The metric tensor of the

transformed space is

_ _dx» dx"

ox' ox''

By taking the determinant of this and using the

ordinary rule for the multiplication of determinants

ith = 1, we find that

2 Throughout this book, side-line notation will be used, as

here, for determinants. In a few cases, which will be clear from

the context, side lining may indicate an absolute value.

dx 1 '

dx r
= Vg.

Consequently, if we write

2.14 e,,, = V^fe,,,,

we can make Equation 2.13 into

trsl

dx' dxj dx 1'

dx'' dxs dx'

so that for this transformation from Cartesian to

general coordinates, the covariant e-system be-

haves like an absolute tensor. But if ers/ is a tensor

in one general coordinate system, it is a tensor in

any other. In much the same way, using the fact

that the determinant of the associated tensor g
rs

is l/g, we can show that

2.15 ers'=ers<lVg

is an absolute tensor.

25. We can write Equation 2.12 for the expansion

of a determinant in the alternative form

2.16
or

S\A = e^ers'A irAjsAkt

BlAlg=e iJ'>ers>A irAjSAklt

which shows that if A,,- is a tensor, then A\g is an

absolute invariant which has the same value in

any coordinate system.

26. We can also write cofactors A"' of the deter-

minant in the form

2.17 2lA ir =e''Jke rs'AJSAkt ,

which can easily be verified from the ordinary rules.

Equation 2.17 shows that if AjS is a tensor, then

A' r
lg is an absolute tensor. We have met one ex-

ample of this in the metric tensor itself.

GENERALIZED KRONECKER DELTAS

27. Next, we introduce a generalized Kronecker

delta formed by multiplying e-systems and defined

as

2.18 llllll
:583

28. If we contract on. for instance, the indices

(/. /). we have yet another form of the Kronecker
delta defined as

2.19 8T = d's'ljl" = d'M ' + 8'sW
2 + 8'M

:i

in which we have, of course, applied the summation
convention. By combining Equations 2.18 and 2.19

and using the rules for the e-system, we can verify

without difficulty that Equation 2.19 equals
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(a) + 1 when (m, n) and (5, i) are the same two

numbers in the same order (m ¥> n and t¥>s), for

example,

811=81! =+ 1:

(1)) —1 when (m, n) and (s, t) are the same two

numbers in the opposite order (m^n and t^s),

for example.

8i? = 8?i = -l: and>1\ "13

(c) otherwise zero.

If we contract a tensor with this 8-system, it is not

difficult to verify such results as

2.20 §TAmn,>=A st,-A tsl)

2.21 8%nA s
.[p
=A™-A™.

29. We can further contract Equation 2.19 into

the ordinary two-index Kronecker delta, but, in this

case, to square with the previous definition in Equa-

tions 1.24, we shall need a factor of (V2) so that

2.22 8r=j8j|3i"=H8lfl
1 + 8SS*+ 8a?),

which can easily be verified.

VECTOR PRODUCTS

30. We shall often meet a contracted product of

the e-systems with two vectors, and shall now con-

sider what this means.

We revert to the mutually orthogonal triad of vectors

(A.,, fxr , v>) discussed above, and again take these

temporarily as rectangular Cartesian axes as in

§ 2-17. Then the tensor equations

\ r
' — e™'fisVt M = ers'vsk< : v r = € rs'Ksfx,

2.23

are evidently true in these coordinates and are

accordingly true in any coordinate system, as we

have seen in § 2-12.

We now take a unit vector /u..s in the plane of /Lt.s and

vs , and making an angle with vs so that

JJLK = IJL* sin 6+ vs cos 0,

we evaluate

ers'jj<iVi = ers
'/xsvi sin 6+ e

rs,vsvi cos 0.

But all components of the last term are zero in the

Cartesian system, owing to the skew-symmetry of

the e-systems, and must therefore be zero in any

coordinate system. We may therefore write

Mathematical Geodesy

But fxs , V( are quite general unit vectors, and A'' is

perpendicular to both. Instead of these unit vectors,

we can also introduce nonunit vectors As , B, of

magnitudes a, b and write

2.24 erstAsB t
= (ab sin 0)kr

in which A' is a unit vector perpendicular to both

A s and B,. If we go back over the derivation, we see

that A.', A s , B, must be a right-handed system in

that order like A'', /jls , Vt, even though two of them
are no longer orthogonal. The expression on the

left of Equation 2.24 is a generalized vector product

in tensor notation. Its components in Cartesian

coordinates become the usual definition of a vector

product of Cartesian vectors.

31. If we multiply Equation 2.24 by a third vector

C r and contract, we have

2.25 es"'A sB,C r = abc sin sin cf>

e
rs

'JAsvt = K r sin 0.

in which (/> is the angle C r makes with the plane of

As , B,. The expression on the left of Equation 2.25

is known as a scalar triple product. For the product

to be positive, the three vectors must be right-

handed in the order of the e-system indices. If any
two of the vectors have the same direction, the

scalar triple product will be zero because either

or 4> will be zero. This also follows from §2-11.

32. It is evident from Equation 2.25 that, if

(A,, jtir, vr ) is any right-handed mutually orthog-

onal triad of unit vectors, we have

2.26 ent\rmvt=l.

The sign of this product will be changed if any two

of the vectors are interchanged; the product will be

zero if any two of the vectors are the same. We can

accordingly express the e-systems as products of

the three vectors as follows,

ers
> = k'( /a

s
v> - Vsix

l

) + i*
r

( vs
k' - AV

)

2.27 +vr(ksfjL
t

-fj.
skt

),

with a covariant equation obtained by simply lower

ing all the indices.

33. By multiplying two tensors of the form Equa

tion 2.27 and contracting with the metric tensor

we have

grifi
rSteijk -

(

^.sy _ ptfj/l
) (

jjjjjl. — yjp a-

)

+ two similar terms.

Multiplying this out and using Equation 2.09, w«

have finally

2.28 v^ci'ttpUk = psjptk — gskgjt
!,-,€ e :gVg-
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with a similar equation obtained by raising or lower-

ing each index.

THE PERMUTATION SYMBOLS AND
THE METRIC TENSOR IN TWO
DIMENSIONS

34. One advantage of the tensor calculus is that

if we have a tensor equation in three dimensions,

for instance, then it is likely that a similar equation

exists in two or four or any number of dimensions.

In many cases, the equation will be exactly the

same with the Greek indices of two dimensions as

it is in the Roman indices of three dimensions.

The reason for this is that the defining and trans-

formation equations of tensors are of the same form

in any number of dimensions. Thus corresponding

to Equation 2.01, for example, we should have

229 A°>=»M> An (a, /3, y, 5=1, 2).

35. There will, of course, be fewer components
in two dimensions because fewer numbers can be

' assigned to the indices, and this may affect the

form of the tensor. For instance, we cannot have

ealiy (a, /3, 7=1,2)

1 defined in the same way as the e-systems in three

dimensions because all its components would be

j
zero. We can, however, have

e
u/j

, e.,0 (a, j8=l, 2)

defined in the same way, that is.

eaP: Pa/32.30 e°"
5 = eQp/V« : e„(j= V(k>„p

in which a is the determinant of the two-dimensional

metric tensor aan and the eap- or ^-systems are

defined as equal to

(a) zero if a = /3,

(b) +1 if (a, /3) = (1, 2), and

(c) -1 if (a, /3)= (2, 1).

36. By analogy with Equation 2.26, we should
' expect

I

2.31 6°*A«tfi/B=l,

if (ka , /JLfs) are any two mutually orthogonal vectors

I

in the order of the coordinates (1, 2), just as the

I triad (A,, fxr , vr ) in three dimensions is arranged

in order of the coordinates (1, 2, 3) to give a right-

i handed system. The rotation of \Q to jx^ must be in

|

the same direction as the rotation of the x'-co-

I

ordinate line to the x2-coordinate line. We may also

! expect, using the same arguments as for Equation

2.27, that the following tensor equations should

hold.

-.«H: AV'-iU,"\0

2.32

37. Both Equations 2.31 and 2.32 can easily be

verified, remembering that as tensor equations we
have only to verify them in one particular coordi-

nate system. If we take A", yfi as unit vectors in the

directions of the coordinate lines in the orthogonal

metric

ds2= an {dx l

)
2+ a22 {dx

2
)
2

,

their components are

ka =(llVa7u0) fX
a=(Q,!

2.33 A„=(V^.O) /a„=(0, vfl2

and Equations 2.31 and 2.32 are verified at once.

38. In this same coordinate system, defining

aaP as the cofactor of aa ji in the determinant |au#|,

divided by the value of the determinant a — ana>>,

we can at once verify that

2.34

2.35

2.36

aaji
= KAn + ij-cx/j-h

,«£: A"A« + fjL
a
yfi

a at3auy — kaky + IA
a
lXy = 8"

correspond to the three-dimensional Equations

2.08 and 2.09. Since these are tensor equations, they

are true in any coordinate system and for any pair

of orthogonal vectors. It should be noted that we
have not appealed to Cartesian coordinates (in the

plane) in order to prove them.

39. The equations in Equations 2.32 are of par-

ticular importance because, given a surface vector

A„, we can define an orthogonal surface vector in

terms of it as

2.37 Mjtf= ^nka
, etc.

40. As in three dimensions, we can form general-

ized Kronecker deltas from products of the e-

systems, that is,

2.38 6^=6°%^,

and we can contract this to

2.39 8«
a§= d\§+m= 8$,

which defines the ordinary Kronecker delta (Equa-

tions 1.24), that is,

Sg=l (a = /3)

2.40 8g= (a#/8).
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41. Corresponding to Equation 2.20, we have also, A/a is a surface invariant, having the same valu

for example, in any coordinate system. The cofactors are given b

2.41 SftAaitor^Aysvr—Asypir 2.43 A e#=ef**eP*Ay»,

in which A is any tensor. which shows that if ^4ys is a surface tensor, then s

is A a®\a. If Ayh is the metric tensor, then we hav

42. Corresponding to Equation 2.16, we have for 2.44 aa& = e^e^ays.

the expansion of a second-order determinant , . ,
• i na tensor equation in which we can raise and low<

2.42 2U = eayeiihA aliAyh ^ indices to obtain also

which shows that if A an is a surface tensor, then 2.45 a un
= euye#gaY8 .



CHAPTER 3

Covariant Differentiation

THE CHRISTOFFEL SYMBOLS

1. We have considered a tensor as a set of point

functions denned at a number of discrete points in

space, and we must now consider how its compo-

nents vary from point to point — in other words, how
to differentiate a tensor with respect to a small dis-

placement of the coordinates dxr
. The differentials

of a general tensor must clearly involve the dif-

ferentials of the metric tensor whose components
will also vary, in general, from point to point. We
shall see that the analysis inevitably leads to the

following grouping of differentials of the metric

tensor, requiring the special symbols on the left,

3.01

3.02

#, *]
_ i (dgjk dgik dgij

2
\dx' dx> dxk

These special symbols are known as the Christojfel

symbols of the first and second kinds, respectively.

We note that both Christoffel symbols are symmetric

in (i,j).

In Cartesian coordinates, all components of the

! metric tensor are constants and therefore all the
' Christoffel symbols are zero.

2. In the case of a transformation from Cartesian

i coordinates (overbarred), we have

ftA' = g»
dx'" dx"

' dxJ dxk

in which the gm >i are constants; and by direct dif-

ferentiation and substitution, we find that

3.03 r
.. ,-,_- d-x"' dx"

l lJ • "J glllll - ;-, : ^ ..•

dx'dxJ dx'~

306-963 0-69—

3

Multiplying this across by

n -,JX '' dx'

6 dx"dx'J
'

we have after some simplification

d-x'" dx 1

3.04 r/f-
J

dx'dxJ dx'

3. We can now take a field of parallel unit vectors

A r whose Cartesian components (still denoted by

overbars) are the same at any point in space and
are given by

A'" = A' —

-

ox'

If we differentiate this equation with respect to each

of the coordinates xJ in turn, then no matter what

the corresponding change in the Cartesian co-

ordinates may be, the differentials of the constant

Cartesian components on the left will be zero; we
may write the complete set of resulting equations as

aA' dx'" . .. B 2
x'" A—r

: +

A

1 —t-—.= 0.
dxJ dx' dx'dx>

If we multiply this result across by dx'/dx'" and
use Equation 3.04, we have

3.05 — +n.A' = o,
dxJ 'J

which are the differentia] equations of a set of par-

allel vectors A 1 in general coordinates. In much the

same way, by differentiating

Ai = ——A m ,

dx'

17
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ha\we nave

dA;_ r)
2
x'" -7 ._ d2Xm dxl

dxj dx'dx> dx'dxJ dxm

so that

3.06 ^-r/x=o,
dxJ

which is the eovariant form of Equation 3.05.

COVARIANT DERIVATIVES

4. Next, we take a general vector field A' (defined

in some way at all points of a region of space),

which may vary in both magnitude and direction

from point to point. We also define an arbitrary set

of unit parallel vectors A; over the same region as,

for instance, a field of unit vectors all parallel to a

Cartesian axis. We differentiate the scalar product

of the two vectors with respect to each coordinate

xj and use Equation 3.06 to give

a.rJ dxJ J

dxJ jA
/

on changing the dummy indices. But we have al-

ready seen in § 1—19 that the differentials of an in-

variant form a eovariant vector, so that the left-hand

side of this equation is a eovariant vector as is also

the right-hand side. Because A\ is arbitrary, this

means that the expression within the parentheses

is a mixed tensor. This we call the eovariant de-

rivative of the contravariant vector A.' with respect

to the coordinate xK which we write as

3.07
dxJ Jk

In exactly the same way, we can find the eovariant

derivative of the eovariant vector A, as

3.08
dxJ

n,xz.

Covariant derivatives are sometimes distinguished

from other tensors by writing a comma or a bar

before the index of differentiation, thus

A„ hlJ-

But we shall not do this where the context clearly

indicates that the tensor has been formed by co-

variant differentiation, or where the distinction is

immaterial.

5. We can similarly derive an expression for the

covariant derivative of a tensor of any order or

type by reduction to an invariant with a number of

arbitrary parallel vector fields. For example, or-

dinary differentiation of the invariant

k'
slA,BsO

will show that the covariant derivative of the tensor

is

3.09
r)A''

ul .y

The rule is to place each index of the original tensor

inside a Christoffel symbol at the same level. The
sign of the Christoffel symbol is positive for a trans-

ferred contravariant index and is negative for a

transferred covariant index. The place of the trans-

ferred index is taken by a dummy (summation)

index (J) , which must also be inserted at the oppo-

site level in the Christoffel symbol. The Christoffel

symbol is completed with the derivative index (u in

the above example).

6. The covariant derivative of the gradient of a

scalar
(f)

can be written as

3.10
dx' dxs

which is evidently symmetric in (r, 5) because the

Christoffel symbols are symmetric in these indices

and the ordinary derivatives commute. We can

accordingly write in this case

3.11 <l>r,s—<t>s,r.

7. Compared with ordinary differentiation of the

separate components, the great advantage of co
variant differentiation is that it results in a tensor
If we differentiate a tensor equation covariantly, we
get another tensor equation which remains true
any coordinate system and retains all the oth
advantages of working in tensors.

m
er

8. The Christoffel symbols are not tensors, evei

though their addition to the ordinary derivatives

which are not tensors either, produces a derivec

tensor of a higher order. From Equations 3.0]

and 3.02, it is clear that the Christoffel symbols
are all zero in Cartesian coordinates; if they were
components of a tensor, they would have to be

zero in all coordinate systems. That this is not so
we can observe from Equation 3.04.

The fact that all the Christoffel symbols are zen
in Cartesian coordinates implies that covarian

derivatives become ordinary derivatives in Car
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tesian coordinates. This fact is apparent at once

from Equation 3.09.

which are usually known as the curl of the original

vector. Accordingly, we take Equation 3.15 as the

curl of a vector in <ieneral coordinates.

DIFFERENTIAL INVARIANTS

9. Suppose we form the second covariant de-

rivative of a scalar F, or the first covariant deriva-

tive of its gradient F ,-, and then contract the

derivative with the associated metric tensor to

form the invariant

g rsF rS ,

which, as an invariant, will have the same value

in all coordinate systems. In rectangular Cartesian

coordinates (x, y, z),

grs—l
( r= s) and g'* = {r^s)

and the covariant derivatives become ordinary

derivatives so that the invariant is

d 2F d 2F d 2F
dx 2 dy 2 dz 2 '

This is well known as the Laplacian of F, which
' we shall write as AF. Accordingly, in any coordi-

:
nate system, we can write

3.12 £LF= g rsFrs= Ffs ,

whether F, is a general vector or the gradient of

a scalar. If it is a general vector, the Laplacian is

called its divergence.

10. Other differential invariants, which we shall

meet often, are given with their Cartesian equiva-

lents as

*" "' ->• ^HiMr
V(F,G)=g>-sFrGs

3.14
dF
dx *Mm) +(£)(f

11. Again, if F, is a vector and we expand the
icontravariant vector

3.15 rs,Fts

in rectangular Cartesian coordinates {x ]

we have a vector whose components are

dF:i dF,

dx 2 dx :i

dF\

dxs

dF-,

dx 1

dF, dF,

dx* dx 2

RULES FOR COVARIANT
DIFFERENTIATION

12. A few rules for covariant differentiation may
be noted rapidly. Since all components of the tensor

are zero in Cartesian coordinates where the €,-si

are constants, they must be zero also in any co-

ordinates, which means that the e-systems, covariant

and contravariant, behave as constants under
covariant differentiation. For the same reason, the

metric tensor and its associate and the Kronecker
deltas behave as constants.

13. Expansion of these results leads to a number
of useful formulas. For example, we have

ens, « = =~^T ~~ rf«e**s - r&eua - r£uem-

=^f-v^(n„+riu+r3
3
u)

so that

3.16
a (In yj)

dx"
All'

which enables us to write the divergence of a

vector F i in the form

3.17 —.(V^F'),
Vg*

or the Laplacian of a scalar F in the form

3.18 af=4=tL (V^tf.,).
y/ldx

14. The sum or products of tensors can be dif-

ferentiated covariantly by the same rules as those

for ordinary differentiation. To establish this fact,

we have only to remember that covariant differ-

entiation is the same as ordinary differentiation in

Cartesian coordinates. Thus, the product

Ap
q
B$,

differentiated covariantly, is

(Ai'Ri)„ = A>> Ri+A>>Ri
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This, with ordinary differentials, is clearly the By raising and lowering indices in the first term
correct result in Cartesian coordinates and must we find that

also be true in any coordinates because it is a

tensor equation.
3.19 l,,sl'=0.

Similarly, if /', j
r are two unit perpendicular vec

15. If /' is any unit vector, we have from Equation
tors

'
then we have

1.11

/'7, = 1;

differentiating this covariantly, we have

l'j,=0

and

3.20 lr,sj
r=-jr,slr

.

These two simple equations will be in constant use



CHAPTER 4

Intrinsic Properties of Curves

CURVES IN THREE DIMENSIONS

1. We have determined the covariant derivatives

with respect to each coordinate, which means that

the tensor being differentiated must be defined in

space. If the tensor is merely defined along a line,

we can use the same formulas (as if we were dealing

with a family or congruence of lines in space) and
can restrict their application to a particular line

by contracting with the unit tangent vector of the

line. For example, the differential of a tensor A r
st

along a curve whose unit tangent is /" is

4.01 A r
sltU l" = A>

s ,, u (dx"/dl)

where dl is the arc element of the curve. This is

known as the intrinsic derivative of the tensor,

with respect to the arc length of the curve, and is

written as

-(A'',).

In place of the arc element, we could use equally

well any parameter (q) defined along the curve

because this parameter would be some function

of the arc. In that case,

8q
(A r

s( )

would be the intrinsic derivative with respect to

the parameter.

2. The intrinsic derivative of the unit tangent

itself is

I,,1 s

and is called the vector curvature of the line; it

represents the arc rate-of-change in the tangent

vector along the line and so is a generalization of

the notion of curvature for plane curves. If the

vector curvature is zero throughout, the curve is

said to be a geodesic of the space — that is, a straight

line in flat space — although it would not necessarily

be "straight'" in a curved space, such as a curved

two-dimensional surface.

3. We can write the vector curvature as

4.02 /,•*/* = xmr

in which m, is a unit vector, known as the principal

normal to the curve. The magnitude of the vector

curvature is the scalar invariant

X = /,.s-m'7*.

and is known as the first or principal curvature,

or simply the curvature of the curve. If we multiply

Equation 4.02 by g"l, and use Equation 3.19,

we have

Xg
rtltmr= lrsl

rls=

which shows that unless X= 0< tne principal normal

is perpendicular to the unit tangent. If x
= 0, tne

curve is a geodesic, and its principal normal is

indeterminate.

4. In the case of a curve in three dimensions, we
can associate another unit vector n, with the curve,
such that (/,, mr , n,) form a mutually orthogonal
right-handed system. This third vector, known as

the binormal, is perpendicular to the osculating
plane of the curve defined by /, and m, and will

therefore remain parallel to itself along a plane
curve. However, if the curve is not a plane but a

twisted curve, the binormal will not remain parallel
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to itself but will have an intrinsic derivative

which is a vector and can therefore be written in

the form

4.03 nrs l
s=— rpr

where t is the magnitude of the unit vector p, (the

negative sign is simply a convention). If we take

(/,-, mr , rii) as temporary coordinate axes, it is

clear that p, must be expressible as

Pr^Alr + Bnir + Cn,

in which A, B, C are the components of pr . Using

Equation 3.20, we then have

— tA =— Tp,l' = n,J r
l
s —— lrsn '7 s

,

which from Equation 4.02 is zero because n' is

perpendicular to m r
; also we have

— tC'=— rprn r= n, snr
l
s

,

which is zero from Equation 3.19. Because r.is

not, in general, zero, we have

and thus

A = C=

p,•= m,

,

both being unit vectors. We may accordingly re-

write Equation 4.03 as

4.04 nrsl
s=—rmr ,

The magnitude t of this vector is called the second

curvature or torsion of the curve.

5. The variation of the principal normal along

the curve is settled by the variation of the tangent

and binormal because, by definition, the principal

normal remains perpendicular to both. We cannot,

therefore, obtain an independent expression for

the variation of the principal normal, but it is,

nevertheless, useful to express the variation in

terms of Equations 4.02 and 4.04. Proceeding on

the same lines as above, we write

mrs l
s=Clr+Dmr+Enr

in which D is zero from Equation 3.19 and

C= mrs l
s l

r = — Irsm '/"' = — x

from Equations 3.20 and 4.02. Also, we have

E— m, sn r
l
s=— n, xm '7 s' = t,

so that we have finally

4.05 mrs l
s=— xlr+ rn,:

The three Equations 4.02, 4.04, and 4.05, two of

which are independent, are known as the Frenet

equations of the curve and are collected for easier

reference as

/,,/* = Xm <

m,-J s=— X^' +Tft,

4.06 nrsl
s=—Tmr .

CURVES IN TWO DIMENSIONS

6. In the case of a curve contained wholly on a

surface, the vector curvature can similarly bt

defined as

4.07 la^=<TJa (a,)8=l,2)

in which the covariant derivative of the unit tangent

la is taken with respect to the two-dimensional

surface metric. If we multiply Equation 4.07 b>

/" and use the two-dimensional form of Equation

3.19, we find that the unit surface vector ja is

perpendicular to the unit tangent la and is known
as the normal to the curve. The magnitude cr oi

the vector curvature is called the geodesic curvature

of the curve. If cr is zero, the curve is called £

geodesic of the surface, paralleling the definitior

of a three-dimensional geodesic in §4—2. We mus
remember, however, that the curve is also a curve

in the surrounding space and will have a first

principal curvature in three dimensions as wel

as geodesic curvature in two dimensions. The

curve will not be a geodesic of the surrounding

space unless its principal curvature is zero. W<
shall see later that the principal curvature an<

geodesic curvature are related; but for the present

we shall consider only the intrinsic curvatun

properties of surface curves and shall defer con

sideration of them as curves in the surrounding

space.

7. If we confine our attention to the surface alom

it is clear that the curve can have no surface b

normal because there is no surface directh

perpendicular to both la and ja - The only indepenc

ent Frenet equation is accordingly Equation 4.01

We can, however, derive a useful dependent equc

tion in much the same way as we derived the secon

Frenet equation in 3-space from the other twt

We write

jafiP^Ala+Bj*

and note at once that B = from the two-dimension;
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form of Equation 3.19. Further, we use Equation

3.20 and find that

from Equation 4.07, so that finally we have

4.08 /<*/*=- <rZ«.

8. Suppose that /„ is defined over some finite

region of the surface as the unit tangent to a family

of curves. The unit tangent to the orthogonal

trajectories of the family will be 7',,. In that case,

the ja can be differentiated over the surface and

will have a geodesic curvature cr* defined as

4.09 jalij
li= — (T*la.

In obtaining this equation from Equation 4.07, we
must preserve the same sense of the rotation from

la to ja for the rotation from ja to its normal, which

is accordingly minus /„. Corresponding to Equation

4.08, we have also

4.10 Llif = +(T*ja.

We can finally express lap and jap as products of

vectors in the form

4.11

lati=<jjalli+(T*jaJll

jaf}=— Crlal/3— (T*laj[3,

remembering that, because of Equation 3.19, there

can be no /«-terms in, for example, the expansion

of/a/3 .

9. If, as we shall assume throughout, the rotation

from /„ to ja is made in the same sense as the

rotation from the x 1
- to the Jt

2-coordinate line and
we use Equations 2.31 or 2.32, then we have

4.12

eaHaP
= <r

cr





CHAPTER 5

Intrinsic Curvature of Space

THE CURVATURE TENSOR

1. We shall consider briefly the second covariant

derivatives of a vector \, , that is,

k,
, St-

In flat space, defined as a space which can be

expressed in Cartesian coordinates, the resulting

third-order tensor reduces to the ordinary deriva-

tives of the components,

32K
dx sdx'

in Cartesian coordinates; and because the ordinary

derivatives commute, we can write

5.01 K, st = kr,

as a tensor equation, which is true in any coordinates

but applies only in flat space.

2. It is possible to conceive a space which is not

flat, in the sense that it cannot be expressed over

a finite region in Cartesian coordinates. For exam-

ple, in two dimensions, the surface of a sphere is

not flat, and the relative positions of points on such

a surface cannot be described in Cartesian co-

ordinates as they can be on a plane. The line

element or metric of the space is, nevertheless,

still expressible by means of a symmetric covariant

tensor of the second order. A space with this form
of metric is known as a Riemannian space; it may
be flat or curved, and of any number of dimensions.

3. We first consider whether the second covariant

derivatives of a vector commute in such a space.

a (dk,

dx k \dxJ H/*

d (dki

dxJ \dx k -n*

R'.U^i

We have

X. ., = dA.Q_
r . — rm\.

Interchanging (j, k) , subtracting, and remembering

the symmetrical property of the Christoffel symbols,

we have

^.j*-^.«-sii [t5 -W - n* (£* - r^x,

dxk
r»-AA/

5.02

if, after some simplification and change of dummy
indices, we write

5.03 «!^=^n,-^-r;J+ r ;xr^-i>u,.

Because A/ is an arbitrary vector and the left-hand

side of Equation 5.02 is a third-order tensor, then

it follows that Equation 5.03 is a fourth-order tensor,

known as the Riemann-Christoffel or curvature

tensor. If the space is flat, there exists a Cartesian

coordinate system in which all the Christoffel sym-

bols in Equation 5.03 are zero: therefore, all com-

ponents of the Riemann-Christoffel tensor are

zero. All components of this tensor are then zero

in any coordinate system. The vanishing of the

Riemann-Christoffel tensor is accordingly a neces-

sary condition for flat space, and it can be shown
that the vanishing of the tensor is also a sufficient

condition.

4. From Equation 5.03, we can see at once that

the tensor is skew-symmetric in (/, k) so that

25
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we have

5.04 K?y*=- R>.
ikj.

Further, by straight substitution, we can also show
that

5.05 R l
.m +R l

.jki +R l
. kij

in which the three lower indices are given a cyclic

permutation.

5. There is also a covariant form of the Riemann-

Christoffel tensor, obtained by lowering the super-

script and written as

5.06 Rmijk— glm Rl ijk

With a little manipulation, the covariant tensor

can be written in either of the following forms,

R

5.07

or

m ijk =7-7 [ik, m]—— [ij, m
\

dx J dx K

+ r\j[mk,l\-r\ k[mj,l]

R m Ijk

d'2gmk .

d 2
gij d 2g, dh

5.08

dx'dxi dx"'c)x k dx idxk dx'"dxJ

g™{[mk,p][ij,q]-[mj,p][ik,q]}

in which the Christoffel symbols are given by
Equations 3.01 and 3.02. The covariant form has

the same properties as the mixed form in Equations

5.04 and 5.05 with the superscript lowered. In

addition, the covariant form is skew-symmetric
in the first two indices (m, i) and symmetric with

respect to the two pairs of indices, that is,

5.09 R 111 ijk— Rjl

LOCALLY CARTESIAN SYSTEMS

6. In earlier sections, we have derived a number of

results such as Equations 2.23 by assuming a

Cartesian coordinate system; the question arises

whether these results are true only in flat space.

It is apparent from Equation 5.03 that the curvature

of the space enters the question only when we dif-

ferentiate the Christoffel symbols — that is, when
we compare their values at different points in

space. There is nothing to stop our choosing a co-

ordinate system in which the Christoffel symbols

are zero at one particular point; it is only when we
insist on these symbols remaining zero at all other

points that we require the space to be flat. A co-

ordinate system in which all the Christoffel symbols

are zero at one point of the space is known as i

locally Cartesian system. In such a system, th(

curvature tensor would be

Ri =JL Y' ——T>
•'•>* dxJ ik dxk &

but only at the origin, or the point where th(

Christoffel symbols are zero. If the space is curved

the symbols are not, in general, zero elsewhere

and we should use the full formula of Equation 5.0^

for the curvature tensor.

7. Clearly, any result obtained by applying ;

Cartesian system to tensor point functions, sue!

as those in Equation 2.05, is valid because we couk
have obtained the same result by choosing a localb

Cartesian system at the point under consideration

Any results containing the first covariant derivative;

of a tensor (or the second covariant derivatives of i

scalar) are valid because they do not contain de

rivatives of the Christoffel symbols. In short, al

results, given prior to this chapter, are valid it

curved space. We cannot, however, verify a tensoi

equation containing higher covariant derivatives

by an appeal to Cartesian coordinates unless the

space is flat.

8. In a locally Cartesian system, the first ordinar

derivatives of components of the metric tensor arc

zero at the origin of the system because the Christof

fel symbols and the covariant derivatives of thi

metric tensor are zero. We can accordingly say tha

the system is Cartesian to a first order, or in tin

immediate neighborhood of the origin where thi

Christoffel symbols are zero.

9. Fermi 1 has proved further that a locall

Cartesian system need not be confined to the neigh

borhood of one point assigned beforehand; it i

possible to choose a Cartesian system in curvei

space which applies in the immediate neighbor

hood of all points of a given line assigned before

hand. This extension is sometimes useful.

SPECIAL FORMS OF THE
CURVATURE TENSOR

10. It can be shown 2 that the number of inde

pendent components of the covariant curvatur

tensor in a space of N dimensions is

1 Levi-Civita (1926), The Absolute Differential Calculus, 16'

2 See for example. Synge and Scliild (corrected reprint of 1964

Tensor Calculus, original ed. of 1949. 86.
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5.10 /V
2 (/V

2 -l)/12.

This means that in three dimensions there are only

six independent components; thus, all the curvature

properties should be expressible in terms of a

simpler symmetric second-order tensor formed by

contracting the full curvature tensor.

11. One such contraction, known as the Ricci

tensor, is formed by contracting the first and last

indices, thus we have

5.11 R ij= g"<kR mijk= R':ijk .

Using the symmetrical and skew-symmetrical

properties of the curvature tensor, this can also be

written as

gmkRimkj =gmkRhjim = Rji,

which shows that the Ricci tensor is symmetric.

The tensor has therefore six independent compo-

nents and can represent all the curvature proper-

ties of 3-space.

By direct contraction of Equation 5.03 on the indices

(/, A;) and use of Equation 3.16, we can write the

Ricci tensor as

5.12 Rt,~£j\~ r<ij+ njp-u-IW

in which the first and last terms are

ml

dS (iny5)_
r
a02v£= ^

dx'dxJ ,J dxm
J

dx'dx*

In this last expression, g is the determinant of the

j

metric tensor which is obviously not an invariant,

|

although in a particular coordinate system, the

I
determinant will be a function of the coordinates;

and we can accordingly take its gradient and second

covariant derivative.

12. Another contraction of the curvature tensor

in three dimensions is

5.13 S"^= W"" i e ('JkR ll,ijK:

If we multiply this by

tprstqtu

and use Equation 2.20 and the skew-symmetrical

properties of the curvature tensor, we have an

alternative form

5.14 eprSeq<uSP"=Rrstu.

We can also write Equation 5.13 as

S«= i ei>mievkRjkmi = S<&,

showing that the tensor is symmetric with six in-

dependent components, which again can represent

all the curvature properties of 3-space. We shall

call this the Lame tensor because, when all of its

components are set equal to zero in flat 3-space, the

tensor gives the well-known six Lame equations

which must be satisfied by the metric of any co-

ordinate system in flat 3-space.

13. We shall finally relate the Ricci and Lame
tensors from Equations 5.11 and 5.14 as

Rij=gmkepmVegjljSP9

= g"lke lllip ekqjSPi

= {giqgl>j-gijgl>q)S"",

using Equation 2.28, so that if S is the contraction

gpqSn,

5.15

we nave

R'j— Su — Sgij.

CURVATURE IN TWO DIMENSIONS

14. The idea of curved space is difficult because

we are accustomed to think of "space" as the

ordinary Euclidian flat space of three dimensions.

We are more familiar with curved spaces of two

dimensions, or curved "surfaces," because we can

measure the curvature from the outside. As far as

the tensor calculus is concerned, there is no essen-

tial difference between spaces of two- and three- or

ra-dimensions, except in the number of components

which tensors can have in such spaces. A curved

space of two dimensions has intrinsic curvature

properties which do not depend on outside measure-

ments. We can define the curvature tensor of two-

dimensional curved space, as in Equation 5.03.

by simply substituting Greek indices for Roman and

restricting them to the numbers (1, 2). However,

reference to Equation 5.10 will show that in two

dimensions, the curvature tensor has only one inde-

pendent component. The intrinsic curvature prop-

erties of a two-dimensional surface can accordingly

be completely exhibited by an invariant, just as

those of a 3-space can be completely specified by

the six independent components of a symmetric

second-order tensor. We denote this invariant by

K and call it the Gaussian or specific curvature of

the surface, defined by the following contraction

of the curvature tensor,

5.16 K= W^Rapys,

corresponding to Equation 5.13.



28 Mathematical Geodes

15. We could, of course, have contracted the

curvature tensor in another manner and so have

defined K differently; but, if we had used a sym-

metric tensor, such as aa® in the same way as e"'
3

,

the result would have been zero because of the

skew-symmetry of the curvature tensor. By substi-

tuting for the e-systems from Equations 2.30 and

using the skew-symmetry of the curvature tensor,

we can reduce Equation 5.16 to

5.17 K=Rm2la,

which, in conjunction with Equation 5.07 or 5.08,

enables us to calculate K for any given metric. The
sheer labor of substitution is lightened if we choose

orthogonal coordinates, so that ai> = and the

metric is

ds 2 = a xx (dx')
2 + aT1 (dx

i
)

2
.

In that case, if we form the Christoffel symbols

directly from the definitions of Equation 3.01 and

substitute in Equation 5.08, we can express the

result as

K =

5.18

1

2 Va
c) { 1 da->., \ _d_ /_!_ dan

dx1 VVa dx1
I dx2 \Va dx2

16. Multiplying Equation 5.16 by e(p e, rT and using

Equations 2.40, we have

5.19 R<

as an alternative expression which is sometimes

useful. If we contract this equation to form the

Ricci tensor in two dimensions and use Equations

2.32 and 2.34 for two arbitrary orthogonal vectors

ka ,
/jLa , we have

Rpa = KatT
{ k t fJL f>

— IXtk,, ) ( ka-fJh — (J^rK)

=— K(\pKr+ fJiplAo)

5.20 =-Ka,t-ptr-

We could accordingly have defined K by contract-

ing the Ricci tensor as

5.21 a»»R (lir
= -K8l = -2K,

which gives us another way of calculating A.' from

the two-dimensional equivalent of Equation 5.12.

17. Corresponding to Equation 5.02, we have for

an arbitrary vector Aa ,

5.22 Aa , py — A„, y^ = ksR°a^y= K^RfraPY-

If we substitute Equation 5.19 and use Equation

2.36, we have

5.23 A«. py — ka . yp— KfJLa€py

in which ixa is the usual vector orthogonal to AQ .

we multiply this by e^ and use Equation 2.38, w
have after some interchange of dummy indice

5.24 ^yka,py=Ktla .

These equations enable us to interchange indice

in the second covariant derivatives of surfac
vectors.

18. It should be noted that in this chapter w
have derived only properties of a surface whic
depend on the metric tensor and its derivative:

Such properties are called intrinsic. They usual]

have counterparts in the intrinsic properties <

spaces of more than two dimensions, which is on
of the great advantages of the tensor calculus,

surface can also have extrinsic properties, derive
from the space in which it is embedded. We sha
consider these properties later.

RIEMANNIAN CURVATURE

19. We can simplify the notion of curvature of

general space by considering the curvature of su

faces within it.

We take a pair of unit orthogonal vectors Kr
,
/x

a point P in the space and let the pair define

section of the space, so that any other unit vect

in the section is given in terms of a parameter 6

the relation

1

l
r=X r sin + i*

r cos d.

The geodesies of the space in all these direction

/', will form a definite surface whose Gaussic

curvature is called the Riemannian curvature oft!

space for the section defined by A.'', fx
1

. If the spa<

is flat, all the geodesies would be straight lines; ar

the Gaussian curvature of all the section planes

zero, so that the Riemannian curvature for all se

tions would be zero.

Working from this definition, it can be shown 3 th

the Riemannian curvature of the section, define

by the unit orthogonal vectors (A', fl
r
) , is given 1

5.25 C= R miJk K'"iJL
ikJ

t
jL
k

.

20. In two dimensions, the only "section" of tl

space in this sense is the space itself; and the ge

desic surface formed by geodesies of the space

that is, by geodesies of the surface — is again tl

3 Levi-Civita, op. cit. supra note 1, 196.
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surface itself. Accordingly, we may write the Rie-

mannian curvature as

Evaluating this invariant for the special coordinate

system of Equations 2.33 gives

C=K=Rm»la t

which agrees with Equation 5.17. This result does

not, of course, prove the more general formula of

Equation 5.25, but does demonstrate the consistency

of Equation 5.25.

21. Now suppose that in three dimensions we
complete the orthogonal triad with a third vector

vr , such that (A.', fi
r

, vr) is a right-handed system.

If we multiply Equation 5.14 by Xr
/j,

sX t
fJL

u and use

Equations 2.23, we have

Swvpvq= RrttuKrH*KlLu

so that the Riemannian curvature in three dimen-

sions can be written in terms of the Lame tensor as

5.26 C = SPiVpVq = S^i'i'i'".

It should be noted that the geodesic surface, whose
Gaussian curvature is C, is now formed by all the

geodesies perpendicular to the direction v**. It can

be shown 4 that, in general, there will be three

mutually orthogonal principal directions at a point

which give rise in this way to stationary (usually

maximum or minimum) values of the Riemannian

curvature known as the principal curvatures. The
analogy with a curved surface will become clear

later. We can also consider the Riemannian curva-

ture as analogous to inertia or strain, the only

difference being the nature of the tensor Spq .

4 Ibid., 201.

kl





CHAPTER 6

Extrinsic Properties of Surfaces

FORMS OF SURFACE EQUATIONS

1. We have considered the intrinsic properties

of surfaces as two-dimensional spaces in their own
right. We have now to consider the properties of

the same surfaces when embedded in space of

three dimensions.

2. The link between the two sets of properties

i will be an infinitesimal displacement on the sur-

i face, which can be described either as dx r in the

! space coordinates or as dx" in the surface coordi-

nates, following the convention introduced in § 1—6

and §2-34. The two are related by the ordinary

formula for total differentiation

6.01
dx r

dx r= t— dxa

dxa

! in which the partial derivatives are considered as

\

known from the equations of the surface, so that

i each space coordinate is expressed in terms of the

!
two surface coordinates — either explicitly or im-

plicitly. For example, the equations of a spherical

surface of constant radius r are given in terms of

latitude ((f)) and longitude (co) as

x = r cos
(f)

cos co

y= r cos 4> sin o)

z = r sin <£>.

In these equations, the x r are (x, y, z) and the xa

are (o», (/>). We can obtain the dx rldxa by direct dif-

ferentiation as, for example,

a*.

d<}>'

r sin (/) cos u>.

3. These partial derivatives occur so often that

1

it is usual to give them the special symbol

6.02
dx r

Bxa
'

Evidently, the set of these quantities will transform

like a contravariant space vector for each value of

a and like a covariant surface vector for each
value of r. This last point can be illustrated by con-

sidering each space coordinate as a scalar defined

over the surface, in which case the corresponding

x'a becomes the surface gradient of the scalar.

4. The equations of a surface in relation to the

surrounding space may be given in one of three

forms. The first, or Gauss' form, expresses each

space coordinate as some function of the two sur-

face coordinates (it1 , u 1
) . In symbols, this form is

usually shown as

6.03 x'=x'{u\u2
) (r=l, 2, 3),

much as the equations of a sphere are expressed

above.

5. The second, or Monge's form, expresses one

space coordinate as a function of the other two as,

for example,

6.04 x*=f(x\x2
),

which similarly imposes a restriction on what points

of the space can form the surface. We could take

(x1
, x2

) as surface coordinates, in which case the

form is equivalent to the Gauss form

x :! =/(«', u 2
)

X' = w

31
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If, for example, the surface is given by

z=f(x, y)

in rectangular Cartesian coordinates, then y or u2

is constant over the xz-plane, and the x- or u 1 -surface

coordinate lines are accordingly the intersection of

the surface with the xz-planes. We then have

x3
1
= dfldu1= df/dx

and similarly

x :

l = dfldu
2 = 8fldy,

while the other components are given by

*£= $; (r=l,2).

It should be noted, however, that this last equation

is not a tensor equation, but is merely a relation

between some components of the tensor x'a in a

particular coordinate system. We cannot manipu-

late this last equation as a tensor equation by, for

example, taking its covariant derivative.

6. This device of taking two of the space co-

ordinates as surface coordinates often leads quickly

to simple results, and we shall use this device

throughout Part II. We lose no generality by doing

so, but we must check the results for tensor charac-

ter, as in the case of x'a above, before manipulating

the results further as tensors.

7. The third form of surface equation expresses

some functional relation between the three space

coordinates, which are accordingly restricted in

value at points on the surface. In this case, we may
write

6.05 f(xKx2
, x3)=N

in which TV is a constant over the surface. By as-

signing different values to N, we should have differ-

ent surfaces which would, nevertheless, have some
properties in common, dictated by the form of the

function/. This third form, or its equivalent

fix1
, x

2,x\N) = 0,

is accordingly most useful when we are required to

express a family of surfaces. If we are not given

the surface coordinates in terms of the space co-

ordinates, we could, as in Monge's form, take

x1
, x2 as surface coordinates. By partial differ-

entiation of Equation 6.05 over the surface with

x 2 and x1
, respectively, constant, we then have

^-+^x3=
dx 1 dx3 '

^ +-^ = 0,
dx2 dx3 2

which give the x 3
; the other components are givei

as before by

8: (r=l,2),

8. Finally, we could take N in Equation 6.05 as

one of the space coordinates. The other two space

coordinates, which could be adopted as surface

coordinates on the family of constant /V-surfaces

must then be chosen in such a way that they car

vary independently of N and of each other; this

implies that the gradient of each coordinate must

be perpendicular to the other two coordinate lines

This arrangement is adopted for Part II, where i

will be explained in greater detail.

9. The functions in the three forms of surface

equations and their derivatives must satisfy certair

conditions if the functions are to represent a rea

nondegenerate surface, and even then there ma}

be singular points on the surface. 1 This need not

present too much of a problem because the sur

faces with which we shall be dealing will eithei

satisfy these conditions or will be prescribed as

existing surfaces by the physical conditions.

THE METRIC TENSORS

10. We can easily relate the space and surfaci

metric tensors, gn and a a0, by considering a smal

surface line element ds. Considered as a displace

ment in space, this is

ds 2 = grsdx rdxs= grsX^dxfdx

in which we have used Equations 6.01 and 6.02

But considered as a displacement on the surface

it is

ds 2= aa(idx
adxli

,

and because the two invariant displacements ar<

the same for any arbitrary dx" and the tensor

multiplying the dx" are symmetric, we must have
as in § 2-13,

6.06 aap=grsx^x%.

SURFACE VECTORS

11. If we suppose that the changes in coordinate

in Equation 6.01 take place over an arc length ds i

1 See, for example, Kreyszig (revised reprint of 1964), Diffe

ential Geometry, English ed. of 1959, 1-117. This is a fre

translation of "Differentialgeometrie," printed in 1957 in Math
matik und ihre Anwendungen in Phvsik und Technik, series I

v. 25, 1-143.
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the direction of a unit surface vector whose space

components are /' and whose surface components

are l
a and then divide Equation 6.01 by ds, we have

6.07 l
r= x'J

a
.

which relates the space and surface contravariant

components of any unit surface vector. If we mul-

tiply Equation 6.07 by gnXfc and use Equation 6.06,

we have

6.08 lsxf)= aapla =lfi ,

which relates the covariant components.

12. We have seen that the x'a are equivalent to

the contravariant space components and the co-

variant surface components of a surface vector and

must therefore be expressible in terms of any two

mutually orthogonal surface vectors /' or la and/ or

ja . We can easily verify from Equations 6.07 and

6.08 that this expression is

6.09 x r
a = l'ia +j'ja .

We note that the two vectors in this tensor equation

are quite arbitrary. If we know the space and sur-

face components of any two orthogonal unit surface

vectors in a particular coordinate system, then we
have all the x'a in the same system.

THE UNIT NORMAL

from a closed surface, that is, away from the region

of space enclosed by the surface. We shall consider

that the two surface vectors in Equation 6.09 form

a right-handed orthogonal triad with vT in the order

(/', j'\ vr) , and the rotation from /' to/ is in the

same sense as the rotation of the positive direction

of the ^-surface coordinate line toward the x2 -

surface coordinate line. The diagram (fig. 5) illus-

trates the situation if the paper represents a tangent

plane to the surface and if the unit normal points

toward the reader.

14. We are now able to obtain a relation between
the contravariant metric tensors corresponding
to Equation 6.06. Using Equations 2.09 and 2.35,

we have

grs= l
r
l
s+jr

j
s+ vrvs

6.10 =o"%^+vV.

15. Next, we shall express the unit normal in

terms of the x'a . Using Equations 2.27 and 2.32.

we have

V).erst = isjt -jslt =^ ( laf -jap )

6.11

Multiplying this by e,Kt and using Equations 2.19

and 2.22, we have

13. We shall normally be dealing with closed

surfaces, and we denote the unit vector normal to

the surface by vr and define its direction as outward

(increasing)

6.12 .
= i &»5 G

upeJM(X'X&,

l'orl
1

(increasing)

Figure 5.

showing that p,„ besides being a covariant space
vector, is a surface invariant: its components do not

change if the surface coordinates are transformed
independently of the space coordinates.

SURFACE COVARIANT DERIVATIVES

16. All the formulas in Chapter 3 on covariant

differentiation can be obtained in exactly the same
way in two dimensions, in regard to the differentia-

tion of tensors which are defined only on the sur-

face. We have only to form the surface Christoffel

symbols from the metric a (,# instead of gn and to

restrict the indices (a, (3) to (1, 2). In cases where
we used locally Cartesian coordinates x' in the

course of a proof, we now use locally Cartesian

coordinates x a
in two dimensions, when all com-

ponents of the metric tensor aati will be constants

at the point considered. The metric tensor a a$ and

306-692 0-69—

4
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its associated tensor a a/3
, the e-systems e01® and ea/3,

and the Kronecker deltas all behave as constants

under covariant differentiation in two dimensions,

just as their counterparts did in three dimensions.

We can immediately write down, for instance, the

counterpart of the Equation 3.16 as

d (In Vo)

6.14

6.13
dxa

rg*.

17. In the case of tensors defined in space, the

procedure is much the same. First, we differentiate

the tensors covariantly with the respect to the space

metric g, s in order to discover the variation of the

tensor for a change in the space coordinates dx r
;

and then second, we restrict this change to a dis-

placement on the surface, just as we did along a line

in §4-1. For example, the change in a space tensor

A rs for a change in the space coordinates dx' is

A,s,t dx'.

But if the change in the space coordinates results

from a displacement on the surface corresponding

to a change dxa in the surface coordinates, this is

^ rs > t XaO?A .

We call the new tensor

Ars, I Xl

a ,

the surface covariant derivatives of the space tensor

A,-s with respect to the surface coordinates xa .

18. It is at once evident that grs , g
rs

, e'
s
', ergt and

all the Kronecker deltas formed from the three-

index e-systems behave as constants under surface

covariant differentiation. For example, the surface

covariant derivative of g, s is

grslX'a=

because g, st is zero.

19. As an example, we take the surface covariant

derivative of x'a with respect to .r , which we shall

write as x'ap, from the tensor Equation 6.09,

xr= lrla+fja .

We then have

x af]
= l

r
SX%la + l'l«lS+j

r
sXJija +fjaf}.

By expanding the covariant derivatives and re-

arranging terms, this expression becomes

£p (lrla+j%) + r
t̂
(ina +j%)x^-Typ(lrly+fJy)

so that finally we have

Xa0 dxa()Xli *tXaXh ' 2/3-*>y

in which the space Christoffel symbols formec
from grs are given Roman indices; and the sur

face Christoffel symbols formed from aa/3 are giver

Greek indices. It should be noted that x'ali is sym
metric in the Greek indices.

20. The rules for surface covariant differentiation

of mixed space and surface tensors are illustrated

by Equation 6.14 for the tensor x'a . To obtain the

terms containing the space Christoffel symbols, we
simply treat the tensor as a space tensor with re-

spect to each of its Roman indices and hold the

Greek indices fixed. If we are differentiating with

respect to the surface coordinate x7 , we complete

the term with xy in which u is a dummy index ap-

pearing also in the space Christoffel symbol. The
terms containing surface Christoffel symbols are

obtained by treating the tensor as a surface tensoi

with respect to each of its Greek indices while hold-

ing the Roman indices fixed. Thus, the surface

covariant derivative of Agfa is

l ap. y 4- V r //'« Y»+ Vs Art Yu
>

l tu /1
a)3xy '

ltU ^afixy

Toy^s! /3T^ aS'

21. It is of no consequence if a space tensor i<

defined over one surface only, such as the surfac<

vector whose space components are /'', or the

vector v r normal to one given surface. We can a

ways suppose that the given surface belongs t

some family of surfaces in which case, for example
the vr would become a unit vector field, differen

tiable in any direction in space. When we multipl

by x'a , we restrict the variation to displacements o

one particular surface, and we can forget the othe

members of the family. We have already used thi

device to find the variation of tensors defined alon

a line in Chapter 4.

22. We shall often denote surface covariant dii

ferentiation,with or without a comma, by simply

adding a Greek subscript, particularly when all tb

Roman indices are superscripts, for example,

Va V a V -S xa vsxa .

The commas will be dropped if it is clear from tb

context or from the usage that covariant differ

entiation is involved.
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THE GAUSS EQUATIONS

23. If we take the surface covariant derivative

of Equation 6.06, we have

grsx r
ayx%+

g

rsx r
axfa,

= 0.

By cyclic permutation of the free surface indices

(a, /3, y), we have also

grSX r
paXy+grSX^Xya=

grSXy Xs
a+grsXyXs

a0=O.

Adding the first two, subtracting the third, and

remembering that x„p is symmetric in (a, /3) and

thatg,.s is symmetric, we have

6.15 grsX r
ayX%=0.

If we consider the space coordinates, it is apparent

from Equation 6.09 that xfe is an arbitrary surface

vector: therefore. x%y must be a space vector in the

direction of the normal. We can then write

6.16 X'ny=b«yv'

in which bay is evidently a symmetric surface tensor

! like x'ay. These equations are usually known as the

Gauss equations of the surface (not a very distinc-

i tive name in this subject), and the tensor buy is

j
known as the second fundamental form of the sur-

face. (The metric tensor aay is sometimes known

as the first fundamental form.) We shall see later

that the second fundamental form settles the

extrinsic curvatures of the surface.

THE WEINGARTEN EQUATIONS

24. We take next the surface covariant derivative

of Equation 6.10 as

= a" [x r
ayX% + X^Xfa) + V'yl'X + V'Vy.

If we multiply this by vx and use Equation 3.19, we
shall have

VsVy= VsV\Xy =

and, from Equation 6.09,

^|= 0,

|so that finally, using Equation 6.16, we have

6.17 vy
=- aaVbpyx'a .

These equations, giving the surface derivatives of

the normal, are known as the Weingarten equations

)f the surface. They give rise to a thirdfundamental

form of the surface which we define as

If we substitute Equation 6.17 and use Equations

6.06 and 2.36, we have also

Caii= ayhb„ybn?,.

25. We shall see later that the three fundamental

forms a (I|8, 6a#, cap are not independent; correspond-

ing components are connected by a linear relation.

26. If we contract the Weingarten Equation 6.17

withg,,,jtg, we have

gi*l'yX$, = — a^bjiya^f, = — 8fbny= — byf>

as an alternative expression for the second fun-

damental form. Comparable expressions for all

three fundamental forms are collected here for

easy reference as

««£ = grsX r
aX%

bafS
=— grsX r

aV%

6.18 cu/s = grsv r
av%= a^baybps.

THE MAINARDI-CODAZZI EQUATIONS

27. We have so far not considered the sort ot

space in which the surface is embedded: it could

be either curved or flat. As we have seen, this

question involves the second covariant derivatives

of a space vector, for which we shall take the unit

normal.

28. We start with the relation i>,x'a = 0, obtainable

from Equation 6.09. because v v is perpendicular

to all surface vectors. Taking the surface covariant

derivative and using Equation 6.16, we have

6.19 Vrsx r
ax

s
p
=-bap;

differentiating again, we have

6.20 v,stx'ax
s
(i
Xy+ VrsX'a v

s
bny- >atiy

in which we have used Equations 3.19 and 6.16.

We shall now interchange (/3, y). In the first term,

we can also interchange (5, /) if the space is flat

because, as we have seen in Equation 5.01,

vn Vris,

so that the first term remains unchanged. The
second term also remains unchanged because buy

is symmetric. We conclude therefore that if the
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space in the immediate neighborhood of the surface

is flat, we have

6.21 bafjy — bayp-

These are known as the Mainardi-Codazzi equa-

tions. Owing to the symmetry of the 6a#, there are

only two independent equations, namely,

6112= 6121

6*u= 62*1.

We have shown that the Mainardi-Codazzi equa-

tions are necessary conditions for the surface to

be embedded in flat space. They can take various

forms, which we shall derive later, sometimes by
considering the second covariant derivatives of

space vectors other than v,; but all these forms

are equivalent to the simple relation in Equation

6.21 between the surface covariant derivatives

of the bap.

29. It should be noted that while the ba(iy are

first covariant derivatives of the surface tensor

bafi, it is evident from the Gauss Equation 6.16 or

from Equation 6.20 that they are connected with

the second derivatives of space vectors and, for

this reason, are affected by the curvature of the

surrounding space.

In flat space, the surface tensor bapy is symmetric

in any two indices because of the Codazzi Equation

6.21 and also because bap is symmetric.

30. However, if the surface is embedded in space

whose curvature tensor is Rurst, we can use Equa-

tion 5.02 and make the necessary modifications in

working from Equation 6.20 to show that the

"Mainardi-Codazzi" equations would then take

the form

6.22 bapy— bay$ — R urstV
uX r

aX
!

ji
Xy

This equation reduces to Equation 6.21 when the

space is flat. If the curvature tensor is specified,

as it usually will be by the conditions of the problem,

then these equations, although different, are just

as restrictive as Equation 6.21.

THE GAUSSIAN CURVATURE

31. We shall see later that the bap determine the

curvatures of the surface, so that there must be a

relation between the bap and the intrinsic curvature

of the surface considered as a space of two dimen-
sions—that is, the Gaussian or specific curvature

which we defined in Equation 5.16.

We start with Equation 6.08 for an arbitrary uni

surface vector

/ = / x 1

and take its surface covariant derivative

6.23 lap= lrsxr
ax$,+ {l,V)ba0 ,

the last term being zero because /, is perpendicula

to vr
. Again, we differentiate and have

6.24 lupy= IrslX'aX^x'y+ lrsX r
aXpy + lrsxspV'bay.

If we interchange (/3, y), the first term on the righ

remains the same if the surrounding space is fla

because, in that case, we have lrst
=

lrts from Equa

tion 5.01. The second term remains the same any

way because x%y is symmetric in (/3, y). We thei

have

Lpy — hyp = lvSv rx%bay — IrsVxfybap

6.25 =- prsx^x%bayls+ v r!ix'h xyb alil\

using Equations 3.19 and 6.07. If we now introduc

Equations 6.19 and 5.22, we have

R?>«iiyl
h = {baybah— bhybap)l b

Because /
s

is arbitrary, we have also

6.26 KesaCpy = Rbapy— (6„y6#s — b?>ybap) ,

the only nonzero form of which, introducing Equc

tion 5.17, is

6.27 aK=Rin2= 6,1622- (6,2)
2= b.

In Equation 6.27, we write b for the determinar

of the b tt0, while a is as usual the determinant

the metric tensor aap. This remarkable result relate

the baji to the expression of K or Rim in terms

differentials of the aap (for example, Equation 5.18

This result is again due to Gauss and is in fac

equivalent to his "theorema egregium." The fori

b = R\2\2,

when expanded, is sometimes known as the Gam
characteristic equation.

32. It should be noted, however, that this rest

is true only if the surface is embedded in flat spac

If we make the necessary modifications and fro

Equation 5.02 use

/,,,-/,,, = /?,„,,/».

we find that for a surface embedded in space who

curvature tensor is Rurst, the combination of Eqi
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tion 6.26 with Equation 5.19 would be

K.€&a£0Y — /?fia/ay— baybps

6.28

bf,yba/i + RUrstX*X*X
l$*-y.

The Gaussian curvature K, being intrinsic to the

surface, is the same whether the space is curved
or flat. We conclude therefore that the ban must
change with the curvature of the space. We shall

consider this further in §8-19 through §8-26.

33. According to a theorem of Bonnet, any six

quantities aa^ and &„#, together with their deriva-

tives, which satisfy the Gauss characteristic equa-

tion and the two Mainardi-Codazzi equations,

determine a surface uniquely except for its position

and orientation in space. The theorem is usually

proved for a surface in flat space,2 but is obviously

true also in curved space, provided the curvature

tensor is specified and the full Codazzi and Gauss
equations, Equations 6.22 and 6.28, are used. We
cannot expect therefore to derive any other in-

dependent properties of a surface; indeed, some
of the quantities we have already derived, such

as the ca0, cannot be independent. They are,

nevertheless, useful tools, so long as we do not

expect them to unearth a completely new result

which could not be obtained otherwise.

2 See, for instance, Forsyth (reprint of 1920), Lectures on the

Differential Geometry of Curves and Surfaces, original ed. of

1912,51.





CHAPTER 7

Extrinsic Properties of Surface

Curves

THE TANGENT VECTORS

1. We shall now investigate the properties of

surface curves considered both as curves on the

surface and in space. The unit tangent to the curve

will be either /' or /", depending on whether we
consider the unit tangent to be a space or a surface

vector, and the orthogonal surface vector will be j
r

or j
a as in figure 5 (see §6-13). As before, we shall

also consider, as we can do without any loss of

generality, that the two vectors are the unit tangents,

respectively, to a family of surface curves and to

their orthogonal trajectories, defined in some way
over a finite region of the surface, in which case we
can differentiate the vectors with respect to the

surface coordinates without confining our attention

to one particular curve.

CURVATURE

2. As in Equation 6.07, the space and surface

components of the unit tangent are connected by

l
r= x rJa

.

We differentiate this with respect to the surface

coordinate x13 and use Equation 6.16 to obtain

l
r
sx$= vr(ba0l

a
)+ xrl<$.

In the last term, we substitute Equation 6.09 for x'a

and introduce the (intrinsic) geodesic curvatures cr,

a* of the /„-curves and of their ja-trajectories from
Equations 4.11. We then have

7.01 l
r
sx&=v r(balil

a)+jr
(<rh+ or*Ji3).

We are now able to introduce the principal normal
mr and the curvature \ of l

r considered as a curve

in space from Equations 4.06; we do so by contract-

ing the last equation with I
13

. We then have

7.02 l^ls= xmr=(bapl
al^vr+ajr

,

which shows that the principal normal to the space
curve lies in the plane containing the surface normal
v r and j' . Moreover, /' must be perpendicular to

this plane because /' is perpendicular to all three

space vectors in Equation 7.02, so that the plane also

contains the binormal n'\ The situation is shown
with the appropriate conventions in figure 6, which

represents the plane perpendicular to /'.

Figure 6.

39
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If 6, as shown in figure 6, is the positive rotation

from m' to vr about /
r

, then we have at once from

Equations 3.20 and 7.02

7.03 lrsvrls=-vrsl
r
ls=bafil

al^= x cos 6= k

7.04 /,s//s = (7=xsin0.

From this last equation and Equation 4.07, it is

evident that

for any pair of surface vectors. This expression is

a special case of a more general proposition which

we shall obtain in Equation 8.25.

3. Equations 7.03 and 7.04 are usually attributed

to Meusnier. The quantity k in the first equation

depends only on bap, which is a surface tensor point

function, and on the direction /
a

; it does not depend
on the curvature of any particular curve in this

direction. Consequently, the quantity k is the same
for all surface curves in this initial direction (l

a
)

and is therefore a property of the surface in this

direction. It is called the normal curvature of the

surface in the direction l
a

.

4. If the curve l
a

is a geodesic of the surface, as

previously defined by o~ = in §4-6, then because

it is not, in general, a geodesic also of the space,

X ¥" 0, we must have 6=0. The principal normal to

a surface geodesic accordingly coincides with the

surface normal. Also from the first Meusnier equa-

tion, we determine that the normal curvature of the

surface in a given direction is the space curvature

of the geodesic in that direction.

TORSION

5. We have now to consider the torsion t of the

curve /'. From figure 6, we can express the binormal

as

Ur— Vr sill 0—jr COS 6,

and by differentiating this along the curve (arc

element ds), we have, using Equations 4.06,

nrsLs—— TTnr z= Vrsl
s sin 6—jrsls cos 6

+ (v r cos d+jr sin 0)(d0lds).

If we contract with j' (or v r
), we have

7.05 t+ (ddlds)=-vrsj
r
l
s

.

Contraction with /'' would give us nothing new, but

if we contract Equation 6.19 with l
ap or l&j

a
, we

have, because ban is symmetric.

7.06 prsjns = Vrj,j S = _ b alil"f.

Combining these last two equations, we have

7.07 T+(dd/ds)=bavl
ajli

.

But the expression on the right, like 6 Q|H/
Qf

/'
3 = /

depends only on the direction l
a and not on an

particular curve in this direction, and so expresse
a property of the surface in the direction l

a which i

the same for all curves in that direction. For th

geodesic in the direction l
a

, we have = 0, so tha

the expression on the right of Equation 7.07 is th

space torsion of this geodesic. For this reason, th<

expression on the right of Equation 7.07 is known a

the geodesic torsion (/) of the surface in the direc

tion l
a

. Collecting all the relevant formulas, we hav

t = r+( ddlds ) = b ali I
ap = balij

aP

7.08 =-vrsl
rj*=-vrjnK

6. The geodesic torsion in the direction j
a

i

similarly

b atij«(-lt) = -t,

so that the sum of the geodesic torsions in any tw

perpendicular directions is zero.

7. From Equations 7.03 and 7.08, we obtain at one

a useful formula for the intrinsic change of the un
normal vector along a line whose unit tangent is /

7.09 vrs l
s - klr — tjr,

having noted that the vector on the left can have n

i', -component because of Equation 3.19, togeth<

with the corresponding two-dimensional formula

7.10 ba/3l
l3=+ kla+ tja .

8. If the normal curvature in the /'-direction

k*, the corresponding equation to Equation 7.]

for the direction j& is

7.11 b ulif=k*ja + tla .

In deriving this equation, we have used the fa

that the geodesic torsion in the direction/3
is mini

t: also that the direction corresponding to ja
Equation 7.10 is now minus la . Equations 7.10 ar

7.11 lead to the explicit expression of the secor

fundamental form in terms of any two orthogon

surface vectors as

7. 1 2 bap = klJts + t ( lajfi +jjp) + k *jcj ,

which may easily be verified by contracting wil

/" and f in turn. This last equation may be cor

pared with the corresponding formula for tl



Extrinsic Properties of Surface Curves 41

metric tensor in Equation 2.34, that is,

7.13 a«0=ljp+jajti-

We can also obtain the corresponding formula for

the third fundamental form by substituting two

equations of the form of Equation 7.12 in Equations

6.18, and we find without difficulty that

c ali
= (k2+ t2)lal& + 2Ht ( IJu +jjfi ) + (k*2+ t

2
)jah

7.14

in which, anticipating the next section, we have

written 2H for (k + k*).

CURVATURE INVARIANTS

9. From Equations 2.35 and 7.12, it is easy to

form the invariant

7.15 aal}baf)= k+ k*= 2H,

which no longer depends on the particular pair of

orthogonal directions /«, ;'«. We conclude that the

sum of the normal curvatures for any pair of orthog-

onal directions is the same, and we call H the mean
curvature of the surface.

10. To relate the normal curvatures in flat space

to the Gaussian intrinsic curvature of the surface,

we need to find the determinant b from Equation

7.12 for substitution in Equation 6.27. The simplest

way of doing this is to take /
a

, j
a as orthogonal co-

ordinate axes, in which case we have, as in Equa-

tions 2.33,

la=(Va7i,0) ;«= (0,

and, from Equation 7.12,

6n = A'«n, b\> = t\a\\\a

so that we have

7. 16 b= {kk* - t-)ana-,-> = (kk* - t-)a

and finally

7.17 K=kk*-t*.

We conclude that the right-hand side of Equation

7.17 must be the same for any pair of orthogonal

directions because K is an invariant which has the

same value in any coordinate system, not only in

the temporary system used above.

11. The same temporary coordinate system ap-

plied to Equation 7.14 gives

cn = (k2 + t
2 )a u

cv> = 2HtVci7iVa^

C22 = (k* 2 + t
2
)a-, 2 ,

bii

leading to the determinant

c= (kk*-t 2
)
2a= aK2

.

Because K is a surface invariant, so is c/a which
accordingly has the same value in any coordinate

system. We can then write

7.18 K=bla = c/b = (kk*-f2
)

and can assert that these relations are true in any
coordinate system and for any pair of orthogonal
directions.

12. An alternative formula for the mean curvature
can be found at once from Equations 7.03 and 2.09

as

7.19 2H= -v[ r ,

which is the negative of the divergence of the unit

normal.

13. The components of the three fundamental
forms are not independent, but are related by means
of the curvature invariants. From Equations 7.12,

7.13, and 7.14, we find at once that

7.20 Kaap — 2Hba + Cap = 0.

PRINCIPAL CURVATURES

14. We consider next the maxima and minima of

the normal curvature for different directions around

a fixed point. For this purpose, we take a pair of

fixed unit orthogonal surface vectors A a
, Ba

at the

point. If l
a makes an angle a with Aa

, we can write

l
a = A a cos a + Ba sin a

j
a = — A a sin a + Ba cos a;

and if we differentiate the components with respect

to a as a parameter, we have

dla

—r-—— A a sin a + Ba cos a=ja
.

da

Now we differentiate the normal curvature

k=buliM>K

keeping bap constant because we are merely going

to alter direction, not position. For stationary values

of A', we must have

ba0J
all3+baf}l

af= O,

or, because bap is symmetric, we have

bafij
a
l
e =t = 0.

But if t is zero in the /"-direction, it must also be
zero in the /"-direction because we have seen that
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the sum of the geodesic torsions in the two directions

is zero. We conclude, in general, that there are two

orthogonal directions in which the geodesic tor-

sions are zero, and the normal curvatures are either

a maximum or a minimum. 1 Moreover, proceeding

on the above lines, or differentiating (2H) which

is the same for all pairs of directions, we find that

cPk

da 1
'

d2k*

which shows that the normal curvature is a maxi-

mum in one direction and a minimum in the other.

We call these directions the principal directions

u cv , va , and the corresponding normal curvatures

the principal curvatures K\, /o>.

15. Because t = for the principal directions, the

curvature invariants can be expressed as

7.21

7.22

2H= K] + K-2

K= K\K-i.

1 For a more rigorous solution, not confined to two dimensions,

see Levi-Civita (1926), The Absolute Differential Calculus, 204.

The three fundamental forms become

7.23 a c<0=UaU1j + va viJ

7.24 ba0= KlUaUp~\- K'VaVp

7.25 Cap= K%UaU0+ K%VaV0.

From Equation 7.09, we can also write

7.26 VrsUs=— K\Ur

7.27 v, sv
s=— K2vr .

16. The curves which are tangential to the princ

pal directions throughout their length are known ,

lines of curvature. If vr , vr are the unit surfa(

normals at two points separated by a short distanc

<& along a line of curvature us
, we have to a fir

order

vr= v r + v,sU*ds . v, — K\U rds

which shows that the three vectors vr , vr , and ur ai

coplanar. Consequently, successive surface norma
along a line of curvature intersect. In the case of ar

other curve, they would generally be skew.



CHAPTER 8

Further Extrinsic Properties of

Curves and Surfaces

THE CONTRAVARIANT 804
FUNDAMENTAL FORMS

1. We now consider a set of quantities b 01® de-

fined as the cofactors of bap in the expansion of the

determinant \ba&\ divided by the value b of the

determinant, in the same way as the associated

metric tensor a a$ is related to the determinant

\aa$\. The b a(i can also be considered as consti-

tuting the inverse of the matrix bap- We shall show
that b ali

is a surface tensor, although it is not the

tensor formed by raising the indices of b ap, that is,

2. From the definition and Equation 2.43, we have

bbaH=e«Yel3Sbys; 8.07

and dividing this by a, we have

8.01 K6^ = e"^86yS ,

which shows at once that ba^ is a surface tensor o.Oo

because K is an absolute invariant. We can expand
this last equation from Equations 2.32 and 7.12 as

8.02 Kb"i3= k*lali3 -t(laf+ja lfi ) + kjaf,

reducing, if we take /", j
a as the principal directions 8.09

u a
, va , to

8.03 Kb^=-KiUau^+Kivav^.

3. If we define c ali in the same way as the cofactor

of c«ts in the expansion of the determinant \cap\
divided by c, or as the inverse of the matrix cap, then
we have similarly

43

K 2cafi = eaYepscys,

which shows that c a/j
is a tensor and, using Equation

7.14, expands to

K2c^=(k*2+ t
2)la^-2Ht(laf+ja lP)

+ (k 2 + t
2
)j
af

8.05 =Kfu Q^+KJV'?A

4. We have already found an expression in Equa-

tion 2.35 for the contravariant first fundamental

form (the metric tensor) as

8.06 a"® = l
aiv +j a

j
li = W'u^ + v«v li

and can derive the contravariant form of Equation

7.20 by simple substitution as

, a/3. 2Hbrt+ Kcrt= Q.

5. From the definitions, we have, as for any

matrix and its inverse,

b aPbay=8% and crtCay= 8^,

which enable us to switch between the fundamental

forms. For instance, if we contract Equations 6.18

with b^ and rearrange indices, we have

b a>3ci3y= a a>ib ay-

Thus, Weingartens formula in Equation 6.17 can

be written either as

8.10 b a0v > =— artx'p

or as

8.11 c^^-i^.
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If we contract this last equation with grsXy and use

Equations 6.18, we have

8.12 C^bffy=b a
^affy,

which is a reciprocal form of Equation 8.09.

6. Use of the above formulas, together with

Equations 7.20 and 8.07, gives us without difficulty

the following alternative formulas for the curvature

invariants,

8. 13 2H= a^bafi = b^Ca,! = KC#bafi= Kb^aan

8.14 a^cali = K 2c af*a
ali= (4H 2 -2K) = k't + k\.

7. The main advantage of the formulas in this

section is that one or the other of the forms may be

simple in a particular coordinate system, or may be

constant under some transformation, such as

spherical representation, in which case we can often

achieve a simple result quickly by switching into

the favorable form.

COVARIANT DERIVATIVES OF
FUNDAMENTAL FORMS

THE

8. The covariant derivative of the first funda-

mental form (the metric tensor) is zero as we have

seen in § 6—16. Consequently, by differentiating

Equation 2.34, we have

8.15 ( UaUjj ) y = — ( VaVn ) y

for any pair of perpendicular unit surface vectors,

although we shall use this equation only for the

principal directions {u a , va ) to simplify differentia-

tion of the other fundamental forms.

9. We now differentiate Equation 7.24, use Equa-

tions 8.15 and 4.11, and obtain after some manipu-

lation

baffy = ( K\ ) yUaU.$ + ( Ki. ) yVaV$

8.16 + (#C] — K-z) (<TUy+ <T*Vy) (uaVfj+ Vallf})

in which k\, <j (k>, o- *) are, respectively, the prin-

cipal curvature and geodesic curvature of the lines

of curvature ua , (va )- We may note that the lines

of curvature are defined at any point on the surface,

other than at singular points (such as an umbilic

where the normal curvature is the same in all

directions and the principal directions are accord-

ingly indeterminate) or on special surfaces (such

as the sphere where all points are umbilics). Con-

sequently, Ki, K-i are functions whose values are, in

general, defined at every point and may accordingly

be differentiated with respect to the surface coordi

nates: for example, in Equation 8.16, we have

(Ki)y= 3ici/a*r.

10. Differentiating Equation 7.25 in the same way
we have

Caliy= (lC?) yUaUn + («!) yVaVji

8.17 + (Ki
—

Ki) (<TUy+(T*Vy) ( UaVp + VaUp )

;

and similarly from Equations 8.03 and 8.05, w
have

b%={llKi)yUarii + (l/^yt/V3

8.18 + (HK l -\lK2)(<TUy+(T*Vy)(ualJ3 + Vaue)

C??y=(\lKi)yU aU ll + ( 1/k| )yVaVP

8.19 + (llKi-\lKl)(crUy+<T*Vy)(U avti + Va uti ).

11. From the above formulas, we may easil

derive contractions which are sometimes useful

such as

a<#bafiy= (2H)y

bapba&y= (In K) y

C^b aliy = -(2HIK)y

8.20

a^caliy={W>-2K)y

ba»Cafry=(4H)y

ca^y = 2(ln K)y.

12. We can obtain more complicated expression:

in terms of any pair of orthogonal vectors (/a , ja]

defined in some way over the surface, by differ

entiating Equation 7.12, etc.; but we shall find

more convenient to obtain particular contractions

such as

when required.

13. The Codazzi equations for flat space (EqiK

tion 6.21) can be rewritten as

8.21 *ybapy = b aljy ( U?Vy~^«Y
) =

because ba&y is symmetric in (/3, y). If we contrac

Equation 8.16 accordingly and separate the resul

ing vector equation, we have

8.22

(k\ — K>)a= (ki )yvy

(k\ — K>)cr* — (K2)yuy ,

which are an alternative form of the Codazzi eqm
tions. We can obtain another form in terms of an

two orthogonal unit vectors /<,, ja by differentiatin

Equation 7.12, and shall do so later by a differer

method. The result.

8.23

(T(L-k*) = (k)yjy-(t)yl y -2t(T*

a* (k-k*) = (k*)y/ y -(t)yjy + 2t(T,
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is merely stated at this place for the sake of com-

pleteness. In these formulas, k, t, <j are the normal

curvature, geodesic torsion, and geodesic curvature

of la, necessarily considered as belonging to a

family of curves defined in some way over the sur-

face, while k*, o- *, and minus t refer to ja in the

usual right-handed system (/,-, jr , vr).

RELATION BETWEEN SURFACE AND
SPACE TENSORS

14. We have seen in Equation 6.08 that if F r is a

surface vector, its space and surface components

are related by the equation

8.24 V r%a. * Of*

The same equation holds true if F, is the gradient

of a scalar F because, by definition, we then have

dF dx r

dx r dx" dxa
'

It is also true if F, is any space vector, as long as

Fa is interpreted as the orthogonal projection of F,

on the surface. In that case, F, is expressible in

terms of any two orthogonal surface vectors and

the unit normal as

Fr= Alr+ Bjr+Cvr\

and contracting this with xa , we have

FrXa= Ala+ Bjtt,

which is clearly a surface vector having the same
components on /„, j„ as the space vector has.

15. Surface covariant differentiation of Equation

8.24, with respect to the x^-coordinate (assuming as

usual that F r is defined over some finite region of

the surface), and use of Equation 6.16 give

8.25 Frsx^ = Fan - F,-x'
ali
= Fafi -(Frv

r
) b ali

in which Frs is taken with respect to the space

metric and Fap with respect to the surface metric.

If F, is a surface vector, the last term is zero.

16. If we contract this result with the principal

directions u a . v^ (for which t = baliu
avli = 0), we have

8.26 Frsll'V
s = FaliU"^.

17. If we contract Equation 8.25 with aa!i and use

Equations 6.10 and 7.15, we have

8.27 F! r= F?«-2H(F rv>) + Frsv
rvs

connecting the space and surface divergences of

the vector F,. If F is a scalar, F'r and F% are its space

and surface Laplacians. We can rewrite the last

term as

8.28 Frsv rvs= {Frv^sif-Frivlv')

in which VgV8 is the vector curvature of the normal.

The vector curvature must be a surface vector be-

cause its normal component vrvlv
s

is zero from

Equation 3.19, so that we may write

v'sV
s = Xw>

in which x IS the curvature of the normal and wr
is

a unit surface vector. If F is a scalar and ds is the

arc element along the normal, Equation 8.28

becomes

F,.,VV = d-F/ds- - x ( FrW) ,

so that Equation 8.27 can be written as

8.29 AF = ~KF-2H(dFlds)+d-Flds 2 -
x (FrW)

where the surface Laplacian (taken with respect to

the surface metric) is given an overbar. If F is con-

stant over the surface, the last term is zero and the

surface Laplacian is also zero.

18. We can connect the space and surface in-

variants of the type in Equation 3.14 by using

Equation 6.10. We have

V (F, G) = grsFrGs = a^x^FrGs + v'^Ff^

8.30 = V(F, G) + dF\ (dG

yds J \ds

assuming in this case that both F and G are scalars.

EXTENSION TO CURVED SPACE

19. In Equation 6.28, we derived an equation

connecting the intrinsic curvature K of a surface

with the baps and the curvature tensor of the sur-

rounding space. We deferred further consideration

of this equation until we had developed the con-

nection between the 6„^s and the extrinsic curva-

ture of the surface and of surface curves.

20. We take the usual pair of orthogonal surface

vectors l
a

, j
a

, together with the normal curvatures

A-, k* in those directions and the geodesic torsion t

in the direction /", and contract Equation 6.28 with

Using Equations 2.31, 6.07, and 5.25, we then have

8.31 K= (kk* -

1

2
) + C

in which C is the Riemannian curvature of the space
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for the section (l
a

„ j"). Because K and C are in-

variants which are independent of the particular

surface directions, so also is {kk*— t
2
). Indeed, we

have already proved in Equations 7.16 and 7.18 that

8.32 (AA*-f 2
)
= 6/«=(c/«)^.

The last two members of this equation are independ-

ent of direction and from §2-42 are also invariants.

We are, however, no longer entitled to equate Equa-
tion 8.32 to the intrinsic curvature of the surface

if C is not zero. Nevertheless*, it is clear from Equa-
tion 8.31 that all the equations containing K, which

we have derived in Chapters 7 and 8, are still true

provided that we write (K — C) for K.

21. From the definition of Riemannian curvature

in §5—19, we know that C is the intrinsic or Gaus-

sian curvature of the surface, formed by the space

geodesies which are tangent to our surface at the

point under consideration. Equation 8.31 then sug-

gests that the normal curvatures of the surface

are in some way connected with space geodesies

tangential to the surface. We will investigate this

suggestion.

22. We use a rectangular locally Cartesian co-

ordinate system with an origin at the point P under

consideration, x :i-axis in the direction of the surface

normal v'\ and x'-axis tangential to the surface in

the initial direction of a surface curve /'. The unit

tangent to a space geodesic, emanating from P
initially in the same direction, is g

r
. The situation

is shown in figure 7 which represents the (x
1
-, x :i

-)

*~x
geodesic

surface

surface

Figure 7.

coordinate surface. The /'"- and ^'-curves, initially

in this surface, will not, however, remain in the

coordinate surface. We shall determine now the

coordinates of neighboring points to P on these

curves. For a small displacement ds along the /'

curve, we have the Taylor expansion

8.33 dx r=l rds + Hl';J s )(ds) 2

in which it is understood that the coefficients an

to have their values at P. In the Cartesian system

the coefficient of ?(ds) 2
is, of course,

d-x r

ds2 '

but it will be simpler to retain the general tenso

notation.

The change in coordinates along the space geodesi

for an equal distance ds is to a second order

dx r= g
rds . . . +

because g'^gs = 0. Because we have made g
r =l

at P, the difference in coordinates to a second orde

is

dx'-dxr= r(/f, /•)(&)*.

The difference in x'-coordinates is then

Hv,l';s !
s)(ds) 2 p,j>i°)(dsy2 =H(dsy2

where k is the normal curvature of the surface i

the direction /' as defined in Equation 7.03 and use

throughout this book.

If j
r

is as usual the surface vector perpendicular t

/' at P, then the difference in the x2-coordinates i

I (./,/:;• I
s )(ds) 2=+M irsjns )(ds) 2 =i<r(ds) 2

where cr is the geodesic curvature of /'' as define

in Equation 7.04 and used throughout this boo]

There is no second-order difference in the x

coordinates because

/,/:,./* =o.

If x IS tne space curvature of the surface curve

from Equations 7.03 and 7.04, the total departui

of the curve from the space geodesic is according

which is evidently the same as the total departui

of the curve from a straight line tangent in flat spac

23. All our notions about the curvature of su

faces and surface curves thus apply to curved span
as long as we consider departures from the tangei

space geodesies. All we need do is to generalia

the straight tangents and tangent planes of ordinal

flat space to geodesic tangents and geodes

surfaces.

24. In the same way, we can easily show that tl

geodesic curvature of a surface curve in two c

mensions is measurable as a linear departure fro
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the tangent geodesic. This is the same generaliza-

tion applied to the ordinary notion of the curvature

of plane curves.

25. We do not need to consider geodesic torsion

in this context because we could replace (kk* — t
2
)

in Equation 8.31 by the product (k\k>) of the prin-

cipal normal curvatures, without affecting either

K or C in that equation.

26. Special forms of the Codazzi equations, which

have been obtained from the flat space form in

Equation 6.21, would need restatement to include

the extra term in the full Equation 6.22. It does

not seem, however, that any general conclusions

can be drawn from Equation 6.22 without knowl-

edge of the curvature tensor in particular cases.

We shall provide an illustration in §10-29 of the

use of a particular form of the curvature tensor.





CHAPTER 9

Areas and Volumes

ELEMENTS OF AREA AND VOLUME

1. We shall require an expression for the area

of the small near-parallelogram formed by succes-

sive coordinate lines on a surface. For short lengths

ds\, ds-z along the coordinate lines, the area is

(dsi)(ds2 ) sin 6

where 6 is the angle between the coordinate lines

j
as shown in figure 8. But, if the unit vectors in the

9.01 dS=Vadx ] dx

Figure 8.

coordinate directions are Aft,, A$
;

and if fi
a is a

unit vector perpendicular to K"u , then we have

Sin d=/Jiii\f2) =€ali\('1)k^)

= V~a(dx'lds l )(dx 1
lds-1 ),

using Equations 2.37 and 2.30, so that finally the
element of area is

306-962 0-69—

5

2. For a similar element of volume in three dimen-

sions, we have

{ds\)( ds-z ) ( dsa ) sin 6 sin
(J)

where
(f)

is the angle which the A.
(

'

3)
-coordinate line

makes with the plane of A
(

'

n and A.
(

'

2I
. But in this

case, it is clear from the expression in Equation

2.25 for a scalar triple product that we have

sin sin </> = €rs<A-fi)Xf2)X{3)

= Vg(dx'lds x ) {dx
2
lds2)(dx3lds3 ),

so that finally the required element of volume is

9.02 dV=V}dx' dx*dx3
.

SURFACE AND CONTOUR INTEGRALS

3. We shall use only one integral sign for con-

tour, surface, and volume integrals, distinguishing

them by the suffixes C, S, and V, respectively.

We state, without proof or consideration of its

limitations, 1 a textbook formula attributable (in

most English texts) to Green. If U\, U-> are two

scalars, we have

9.03
dU2 dUi

dxdy (Uidx+U-zdy)
is \ dx dy i jc

in which the double integral on the left is taken

' The reader with no previous knowledge of this section

should read Springer(1962), Tensor and Vector Analysis, 147-199,

where the elementary theory is clearly explained. The treatment

in this section generally follows Brand (1947). Vector and Tensor

Analysis translated, with variations, into index notation.

49
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over a closed region of the (x-, y-) plane and the

line or contour integral on the right is taken around

the closed boundary of the region. If ds is an element

of the length of the contour, if dS is an element

of area, and if we take Ui, U-i to be the components
of a vector Fa , then this formula can be written

in the tensor form

9.04 [ €
a$F

li . a dS=[ FJads

in which /" is the unit tangent to the contour. It

is clear that in this invariant form the equation

holds true in any coordinates — not necessarily

Cartesian. Moreover, because only the first co-

variant derivative of the vector is involved, it is

immaterial whether the space is flat or curved,

even though we derived the result from a plane

formula in Cartesian coordinates. The formula

accordingly holds for any curved surface, provided

that Fa is defined and its covariant derivatives

exist over the closed region S. The same conditions

relating to connectivity (which are usually satisfied

in the geodetic applications) must apply on the

curved surface as on the plane.

4. To obtain the correct signs in either formula,

we must describe the contour in such a direction

that I" generally rotates in the same sense as from

the x- to the y-coordinate line (or, in general coor-

dinates, from the u l
- to the ^'-coordinate line). The

sense of description is as shown in figure 9, which

Figure 9.

also shows our usual convention for the perpendicu-

lar vector j". The normal to the surface (vr ) is

toward the reader.

5. If we expand Equation 9.04 in general surface

coordinates u\ ur, we have, using Equation 9.01

and the symmetry of the Christoffel symbols,

fdFt dfV905
' "i? dU-2

duhhr [F l du l + F2du 2

which is the same form as Equation 9.03.

6. To extend these results to three dimension

we consider the following expression and us

Equation 6.11. The tensor Ttjk can be of any ord<

and type, but we shall assume Cartesian spac

coordinates so that covariant and ordinary deriv

tives are the same, and we then have

elmnviTijk , m = e
aPx%x%TUk , m

= (llVa)ea^d(Tijk)ldu
a

1
f
dx" dTjjk dx" c)Tijk \

\/a \du 2 du 1 du 1 c)u 2
I

1 f d fdx" \ 3/3*" \\

V^W'W Iljk
) au»W y

*/J

Next, we multiply by dS=vadu ldu 2 and integra

over some region S of the surface bounded by

closed contour C. Using Equation 9.05, we ha^

9.06 =
|
TUkl»ds

in which /" is the unit tangent vector to the contou

The boundary contour can be any closed curve

space spanned by any surface, subject to the usu

conditions. We have proved this formula f

Cartesian space coordinates and for the comp
nents of T,jk in Cartesian coordinates, which meai

also that the space must be flat. If, however, v

reduce the equation to an invariant form contai

ing only first covariant derivatives, then both the:

limitations will disappear. For example, if Tijk is

space vector Fn , we then have

p,e lm»F„, mdS= F„l"ds9.07

in which the two integrands are, respectively, tl

normal component of the curl (Equation 3.15)

the vector and its component along the bounda

contour. This is the tensor form of Stokes' theoret

true in any coordinate system — in flat or curv<

three-dimensional space. Moreover, we can expe

a similar formula to hold true in any number
dimensions. In four dimensions, we should ne<

different forms of the permutation symbols, whi<
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we shall not discuss in this chapter. 2 However,

in two dimensions, we should expect

e
aVF« adS= FJads

in which Fa is now a surface vector, and if we use

Equations 6.11 and 8.25, we find at once that this

is so. We have in fact recovered Equation 9.04.

7. If the surface is closed, it can be considered

as divided into two parts by a closed contour. The
contour integral will have the same value but

opposite signs for the two parts of the surface, so

that over the whole closed surface, we have

9.08 vielmnFn,mdS= Q.

8. If we are prepared to continue working in

Cartesian space coordinates, we can derive a num-

ber of other formulas from the basic Equation 9.06.

We can. for instance, multiply by enM which are

constants in Cartesian coordinates and can therefore

go under the integral signs. The surface integrand

is then

Ft'"'l>iT-;Ojjnfl-i ijk, in v„T,ii * ijk- , </ VqTijk,»

and we have

9.09 {v„Tijk,q—VgTijk,i,)dS= I e llt„,Tuk l"ds,

which is no less general than the basic Equation

9.06 and may be considered as an alternative.

9. If, for example, we take a contravariant vector

G q for the general tensor T-,jk , we have at once

9.10
J

( vuG% - vqG% ) dS =
J

<-„ttqG«l
nds

for the contour integral of the vector product

of a general vector with the unit tangent to the

contour. Springer :i uses this result to provide

an interesting comparison, obtaining the result

first in the old dot-and-cross notation and then
deriving the same result in index notation in order to

interpret the dot-and-cross result!

10. We can also use Equation 9.09 to introduce

the perpendicular surface vector j,, (see fig. 9) by

taking the general tensor Tyk in the form v qU)k-

2 See Synge and Schild (corrected reprint of 1964). Tensor
Calculus, original ed. of 1949, 240-281.

''Springer, op. cit. supra note 1, 196.

Using Equation 3.19, we have for the surface

integrand

l
'i'
v '!<iUji< + Vi>v'dijk,

,,
— Ujk, i>.

But from Equation 6.10. we have

If we substitute this and Equation 7.19, the surface

integrand becomes

- 2HvltU}k ~ a^g^x^Ujk, q .

We now multiply this result by g1'1 and can do the

same to the contour integrand because the g1 ' 1 are

constants in Cartesian space coordinates. The final

result is

9.11 £ (2Hv'UJk+ a^x^Ujk, Q)dS= -
j fUjkds

which, because Ujk is a general tensor not neces-

sarily of the second order, is just as general as either

Equation 9.06 or 9.09.

11. As an example of the use of this last result,

we take U;i,- to be the gradient of a scalar <j)i and
contract to

[ {2//U>'</>' ) + a^xfrfa,, „} dS= -j j'(f>,ds.

Using Equation 8.25, we can further reduce this to

9.12 A(t>dS = - cpu'ds

in which the Laplacian is taken with respect to the

surface metric. In the same way as we obtained

Equation 9.08, we conclude that over any closed

surface

9.13
/.
A(MS = 0.

VOLUME AND SURFACE INTEGRALS

12. We shall now consider the triple integration

of a tensor Tijk, m over a closed region I of 3-space

bounded by a closed surface S. Again, we assume
Cartesian coordinates in flat space, and we suppose

that an arbitrary field of parallel unit vectors A'"

is defined over the region in much the same way as

one of the Cartesian coordinate vectors would be de-

fined. We suppose further that A'" is the axis of an

elementary prism of constant cross-sectional area

dcr running through the region, and that dl is an

element of length in the direction A'". We then
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have by integrating along the prism, all components

ofA" 1 being constant,

J
Tijk , mdV=j Tm ,
Tm,mdV=\ :

dTUk dx>

dxm dl
dlda

9.14
J

[Tijkl'idcr

in which the integrand is now the difference in

values of Ty* on the boundary surface at the two

ends of the prism. But, if an element of area of the

boundary surface is dS and if the exterior or out-

ward-drawn unit normal to the boundary surface

is i>m, we then have

d<r=vmA mdS

at the (2) end of the prism and

do-=—vmAmdS

at the (1) end of the prism. By adding Equations

9.14 for all the elementary prisms required to fill

the region, we can write

A' Tm , m dV-- Tjjkv,, A'"dS

TijkVmdS

because the components of the parallel vectors

A'" are constant over the whole region in Cartesian

coordinates. But A 1" is an arbitrary vector field,

and so we have

9.15 Tijk.mdV TijkVmdS.

Because we are working in Cartesian space co-

ordinates, we can raise any of the indices of Tijk,

which can be of any order or type.

13. Again, we can remove the limitation to

Cartesian coordinates in flat space if we form

invariants containing only first covariant derivatives.

For example, if we make the tensor T-,jk a contra-

variant vector F"\ then we have

9.16 dV F'"v„ ldS= FmvmdS

which is the tensor form of the divergence theorem.

Or, if F'" are the contravariant components g""'^>r

of the gradient of a scalar $ and if ds is an element

of length along the surface normal, then the last

equation becomes

9.17 f (A<}>)dV= j (d<f>lds)dS,

which seems to have been given originally t

Causs.

14. Again, if we make

F'" = g'""((}>l}jn)

where c/>, i// are any two scalars, then Equation 9.j

becomes

9.18
J

{V(c/>, ^)+cf)Ai)j}dV=
J

4>(dMds)d

which is usually attributed to Green. If we inte

change $ and t// and subtract, we have

9.19
JrH

»-m}*r-lfc*-,*)4
which is a form of Green much used in potenti

theory, where one of the scalars is often taken <

the reciprocal of the radius vector.

15. The intrinsic invariance of the Gauss equatk

(Equation 9.17) suggests that we could also wri

in two dimensions

Ac/>dS = 4>«v ads

in which va is now a surface vector, normal ar

outward-drawn to the contour, and the Laplach

is taken with respect to the surface metric. In fac

we have obtained this result as Equation 9.12

which j
1 or j

a
is the inward-drawn normal to tl

contour (fig. 9) and is therefore the same as mini

va . The two-scalar forms of Equations 9.18 ai

9.19 are similarly valid in two dimensions

between surface and contour integrals.

16. If we are prepared to continue working

Cartesian coordinates, then, as in the case

surface and contour integrals, we can obtain mai

other formulas by giving the basic tensor Tijk

Equation 9.15 special forms. An instructive examp
is to give it the form

€""'S
F.,, ,-,

in which case the closed surface integral vanish

because of Equation 9.08. The volume integr

therefore vanishes over any arbitrary volum
which means that its integrand

t r s, rm
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must be zero. Although this is an invariant which case the tensor is symmetric in the two covariant

allows us to use any coordinate system, we cannot indices. We then have

generalize the result to curved space because it mTsF _,„„.,F _ c ,.msF -_ cmrsv
. . j j • .• TV/ fc r s, mi t rs.nir — c r s, mi — c r s , mi-,

contains second covariant derivatives. We must

therefore consider that the space is flat, in which so that the volume integrand is zero, as it should be.

ha





CHAPTER 10

Conformal Transformation of Space

METRICAL RELATIONS

1. We now consider the transformation of a space

whose metric is ds 2 to another space whose metric is

| 10.01 ds 2 = m 2ds 2

in which m is a scalar function of position — contin-

uous, single-valued, and differentiable over some
finite region. The function m must also be an in-

I variant because ds 2 and ds 2 are invariants in

j
Riemannian space. We shall call this function the

j

scale factor because it multiplies infinitesimal

lengths in the one space to obtain the corresponding

lengths in the other.

2. We shall also assume that there is a one-to-one

correspondence of points over some region of the

two spaces. This relation means that the coordinates

of points in one space are single-valued functions

of the coordinates of corresponding points in the

other; for instance, we have

x= f(x,y,z),

which implies further that the x r can be transformed

to the x r and are therefore possible coordinates

in the overbarred space. We shall take the coor-

|

dinates to be the same in both spaces. In that case,

if Equation 10.01 is to hold true for all corresponding

directions around a point, the two metric tensors

will be related by

10.02 grs=m-gr

We then have the following relations between the

determinants of the metric tensors and between
the associated tensors,

10.03 \grs\ = m6
\grs \

in three dimensions, and

10.04 grs= m-2grs
.

3. We can also relate the Christcffel symbols

straight from the definitions,

m '' [ij, k] = [ij, A] + gin ( In m ), + gJk (In //; )

,

10.05 -gtjQn m) k

f(j
= r'u + 8! ( In m )j + 8j ( In m ) ,

- gijg"< ( In m ) k

10.06

in which 8', etc., are Kronecker deltas and (In in),

is the gradient of the natural logarithm of the

scale factor.

4. Finally, we can relate the two curvature tensors

straight from the definition in Equations 5.03 and

5.06, and after some manipulation, the result will be

m-'zRqrst
— Rqrst = mgQS ( 1/m) ,-, — mgql ( 1/m )

,

.,.

— mgrs (\lm) qt+ mgrt (1/m) (/ .,

10.07 +m 2
( grsgql

- grtgqs )V ( 1lm )

in which V(l//n) is the differential invariant from

Equation 3.13, that is,

S7(llm)=grs (llm),.(llm) s ;

and the expressions (l/m) rt, etc.. are second co-

variant derivatives of (1/m). The equations in

Equation 10.07 are known as the Finzi equations. 1

1 Levi-Civita (1926). The Absolute Differential Calculus.

229-232.

55
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THE CURVATURE TENSOR IN THREE
DIMENSIONS

5. By contracting the curvature tensors in Equa-
tion 10.07 with gQ' or m^g9', we obtain a relation

between the Ricci tensors, which, as we have seen
in §5-11, are sufficient to describe the curvature

of 3-space. The result, introducing the Laplacian

Am = grsmrs

and using the identity

10.08 Am= 2m3V(l//n)-m2A (1/m),

is

10.09 Rrs-Rrs=-m(llm)rs+ (Ilm)(Am)grs .

6. We can also relate the Lame tensors in three

dimensions by means of Equation 5.13. Using the

identity

10.10 A(\n m) =- mMl/m) + m-V (1/m)

and lowering indices, the result is

10.11 Srs —Srs=— m(llm) rs
— (A In m )gls .

7. If both spaces are flat, then the left-hand side

of the last equation is zero, and the scale factor

must satisfy six second-order differential equations.

Using rectangular Cartesian coordinates and sub-

stituting Equation 10.10, we see that three of

these equations are of the form

a 2 (1/m)

dxdy

and three are of the form

d 2 (l/m)
,
BHl/m) Wd(llm]

~~ m
c)x- ar2

+
d(l/m)\ 2

+

dx / \ By

d (1/m )VI
dz

It can be shown 2 that the only nontrivial transfor-

mations which satisfy all six equations are inversions

with respect to a sphere. If the curvatures of both

spaces were to be specified without being zero,

the scale factor similarly would have to satisfy

six equations, and the choice of scale factor would

similarly be restricted so that very few transforma-

tions would be available. We shall usually be com-

pelled by the nature of the problem to make one

2 See, for example, Forsyth (reprint of 1920), Lectures on the

Differential Geometry of Curves and Surfaces, original ed. of

1912,428.

space flat, but there is no need to make the othe

space flat or to specify its curvature. Nor do w
have to attribute any physical significance to th

other space; we can consider it simply as a mathi

matical device. We can then take the scale facte

to be any continuous differentiable function an

let it settle the curvature of the space in accordanc

with Equations 10.09 and 10.11. If, for instance, th

unbarred space is flat, then we have S r .s
= 0, and th

metric tensor and covariant derivatives on the rigl

of Equation 10.11 are all taken with respect to th

metric of the flat space. For the present, howeve
we shall keep the discussion quite general and n<

assume that either space is flat.

TRANSFORMATION OF TENSORS

8. Unit contravariant vectors in correspondir

directions can easily be related because we ai

using the same coordinates for both spaces. We hai

10.12 l'--

dx r

ds

1 dx
''

-Mr
m ds

and, for the covariant components,

10.13 Ir= grJ s= {m2grs)(m-Hs
) = ml r .

9. It is evident that the scalar product of ai

two unit vectors remains the same on transform

tion so that angles between corresponding directioi

are preserved. Small corresponding figures will 1

similar, differing only in scale, which, howeve

will vary from point to point. The transformatic

is called conformal for this reason.

10. In the case of a nonunit vector field, we con

say that the magnitude is a function of the (

ordinates and remains the same on transformati

so that nonunit vectors would transform in t

same way as Equations 10.12 and 10.13. A tense

which can be expressed as a sum of products

vectors, would also transform in the same w;

but the power of m would, in accordance wi

Equations 10.12 and 10.13. be the number of (

variant indices less the number of contravaria

indices, for instance,

A?st=m2A?gt.

But it must be noted that all this refers only

tensor point functions. It does not apply to c

variant derivatives which involve a difference

the values of a vector or tensor at two points whe
m may have different values. Covariant derivativ

must accordingly contain derivatives of m and m
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also contain derivatives of the magnitudes of

nonunit vectors.

11. We can relate the covariant derivatives of

unit vectors by differentiating Equations 10.12 and

10.13 and by using the relation between the Christof-

fel symbols in Equation 10.06, the results being

10.14 m- 1
7,., , = /,-, , - (In m) , I, + grs (In m) ,/<

10.15 /»/;;. = l
r
tS+ d r

s (
In m) tl'-g''(\n m) t ls .

The second equation can be shown to be equiv-

alent to the first by multiplying the equation by

(m--gl(,) = grq-

Higher derivatives can be related in the same way

as required.

12. If
(f)

is a scalar defined to have the same value

at corresponding points, such as the scale factor

or a common coordinate, then the second covariant

derivative of the scalar will be

4>r

= <f>rs
— 4>r ( In m) s — 4>* ( In m ) ,• + grs*7 ( In m , </> )

,

10.16

the differential invariant V being as defined in

Equation 3.14. We multiply by m'1g
rs = g

rit to obtain

the Laplacian invariants

10.17 m-&(p = A(p + (8?- 2)V (In m,0).

Note that in two dimensions the last term is zero,

whereas in three dimensions, we have

10.18 m-A</> = A(/) + V(lnm,<£).

CURVATURE AND TORSION OF
CORRESPONDING LINES

13. We shall now consider a curve whose unit

tangent, normal, and binormal are /,, pr , qr . In

the transformed space, the unit tangent, normal,

and binormal are lr , nr , b r . The two tangents /, , l r

are corresponding directions because the two

curves correspond. However, we cannot say that

nr , br , corresponding to n r , b r , will be the same as

pr , q, because we have no reason to suppose that

the normals and binormals are corresponding direc-

tions. From the conformal or angle-true properties

of the transformation, we can, however, say that

n r , b, will be perpendicular to each other and to /,

.

The uncertainty in the correspondence is thereby

reduced to one angle between n, and p,, which

we shall have to determine. The situation is as

shown in figure 10, which represents a plane (or

transformed
normal

binormal

transformed

binormal r

'r

Figure 10.

"section" 3 in curved space) perpendicular to /,

.

14. The vector curvatures of the corresponding

lines lr , A are related by Equations 10.14 and

10.12 as

10.19 lrs l
s= lrsl

s- (In m), + {(ln m)t /'}/,,

We can also write

(In m),= {(ln m),l'} /,.+ { (In m),p<}p,

+'{(In m) t q
t

}qr ,

and if x- X are tne IWO principal curvatures, we
then have

Xn,=mxn, ={x~ (hi m),p'}

p

r— {(\n m),q'}q r .

10.20

But from figure 10, we have

n,— (cos 6)p, + (sin 6)q,

and so

mx cos 9= x~ (In rn) t
p'

10.21 mx sin 0=- (In m),q',

which determine both x and 0.

15. If the transformed curve is a geodesic, we
then have x~0- The first equation of Equations

10.21 then shows that the principal curvature x

3 A "section" in curved space is defined by a pair of vectors.

p r , q, for instance, and is such that any other vector in the sec-

tion can be expressed linearly in terms of p, . q, If /, is per-

pendicular to p r , qr, then all vectors in the section are perpen-

dicular to l r . See also §5-19.

IB
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of the curve in the unbarred space is the arc rate

of change of (In m) in the direction of the principal

normal to the curve. The second equation of Equa-

tions 10.21 shows that the scale factor remains

constant for a small displacement in the direction

of the binomial to the curve.

16. In regard to the torsion of a general curve,

we differentiate the equation

n rp r— cos 6

along the line and have, if ds is the arc element,

nrsp r
ls=— nr

pr
s
l s— sin 9(d6/ds)

= -?!,(- xl'+rq 1

)
- sin d(dd/ds)

=- t sin 0- sin d(ddlds),

using the Frenet equations in Equations 4.06 and
introducing the torsion r. Next, we transform the

expression on the left to the barred space by means
of Equations 10.14 and 10.12 to have

{m _1
rc /s -f- (In m) ,ns—

g

rs {\n m)tn t

}p
rls

= mhrsp
r
l
s

= m(-yjr + rb r )p
r

— — mf sin #,

again using the second Frenet Equations 4.06

and introducing the torsion f of the transformed

curve. We have finally

10.22 mf = r+ (dd/ds).

By differentiating Equations 10.21, we have after

some manipulation

mxidd/ds) = — sin d(dxlds) +T(\nm),n'

10.23 +m(llm) rsb
r
l s ;

and by eliminating (dd/ds) with Equation 10.22,

we have

m-xf= XTCOS 6 — sin d(dxlds) + m ( l/m),-x6
r
/
s

.

10.24

We have also the following equation connecting

the arc rate of change of the two curvatures along

the line,

m 2 (dx/ds) = cos 9{c>xlds) — r(ln m),b'

10.25 + m(l/m),,n'K

17. The curvature of space enters the equations

for the torsion (but not for the curvature) because

(dx/ds) involves second covariant derivatives. Tl

second covariant derivative of the scale factor ah

involves the curvature of the two spaces. We ha\

in fact from Equations 10.09 and 10.11

- m{\ jm ) ls b>/« = (Rrs ~ R rs ) b'ls

= (§„-sn)bn:

18. A useful way of checking results in a co

respondence between two spaces is to interchan^

the spaces. We can transfer the overbars in e

equation, such as Equation 10.14, provided v

write (1/m) for m; and we then have

/»/,,,= /,.,+ (In m)rT, — gn(ln m),l',

which is easily shown to be equivalent to tr

original equation. In the case of Equation 10.2

we shall also have to change the sign of 6 becaus

the rotation from the normal to the transforme

normal has the opposite sense in the barred spac

Moreover, instead of //, we must write the norm
in the barred space, that is. h': and instead of <;

we must write the binomial in the barred spac

that is, b'. We then have

(l/m)X cos Q~X~^~ ( m m )th'

(l/m)x sin 0=— (In m) t b*

or

mX = X cos $
—

( m '")'"'

10.26 x sin 0=— (In m)tb',

which are equivalent to the original equation

A check on Equations 10.23 and 10.24 is mo
difficult, but can be applied using only results whic

have already been given — such as Equation 10.1

TRANSFORMATION OF SURFACE
NORMALS

19. A continuous differentiable scalar TV in

space of three dimensions will define a family

surfaces, over each of which N is constant. F
example,

N=f(x,y,z)

defines a surface containing all the points f

which /V has a particular constant value: differe

members of the family will be obtained by assignii

different constant values to N. But /V is consta

in directions perpendicular to its gradient, so th

the gradient of /V must lie in the direction of tl

normal to that surface of the family which pass

through the point under consideration. Excludii
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singular points where the

vector, we can write

ijradient of /V is a mil

10.27 Nr nvr

in which v r is the unit surface normal and n is the

magnitude of the gradient vector. We take the

covariant derivative of Equation 10.27 and divide

by n to give

(lln)Nrs= vrs+ vr (lnn) s .

Because N is a scalar, its second covariant deriva-

tive is a symmetric tensor; thus, we can interchange

(r, 5) and subtract to find that

10.28 Vn vsr -\- vs (\n n In n

If we contract this equation with v s and use Equation

3.19, which makes vSrV* zero, we have

i 10.29 vrsv
s = ( In n ) r

— vr ( In n) sv
s

I Finally, we compare this result with Equation 10.19

I
and conclude that a scale factor of n will transform

J

the space conformally to another space in which

I the surface normals become a family of geodesies.

J

Because of the conformal property of the trans-

formation, these geodesies will be normal to the

transformed /V-surfaces. Moreover, an element of

length along a transformed geodesic will be

ds = nds = {Nrv')ds = Nrdx' dN.

The length of a geodesic intercepted between

two /V-surfaces Ni and N-> will accordingly be

(N-> — N\) and will be the same for all geodesies

between these two surfaces. For this reason,

the transformed /V-surfaces are known as geodesic

parallels.

20. Conversely, if there exists a family of geo-

desies and geodesic parallels, expressible by a

scalar /V, in a conformal transformation with scale

factor n, then we can say that the relation

Nr= nvr

jmust hold true between the corresponding lines

land surfaces in the untransformed space.

21. If we write

n= m.f(N)

in which f(N) is an arbitrary, continuous, dif-

ferentiate, and nonvanishing function of N and if

we substitute in Equation 10.29, we have

VrsV s— (In m) r— tv(ln m) s v s

AN)
Vrf{N)

AN)
(N,v).

The last two terms cancel by virtue of Equation

10.27. Comparing this result with Equation 10.29,

we conclude that the scale factor can well be n

multiplied by an arbitrary function of /V.

TRANSFORMATION OF SURFACES

22. It should be noted that we have nowhere
assumed that either space is flat; the curvature

of the space does not arise until we assign particular

values to the curvature tensor or until we introduce

the second covariant derivatives of vectors. More-

over, all the above properties are intrinsic to the

space, being based solely on the metric tensor and

its derivatives. We can accordingly use all the

above tensor formulas with Greek indices for

transformations between curved surfaces con-

sidered as two-dimensional spaces, provided we
do not use results, such as Equation 10.09, which

are valid only in three dimensions. We have, for

instance,

aai3=m-a LXli

\a„p\ = m 4 \aa(j\

10.30 ««*= m -a a/3

and all of Equations 10.05, 10.06, 10.07, 10.12,

10.13, 10.14, 10.15, 10.16, and 10.17 are valid.

23. Because there is only one component of the

curvature tensor in two dimensions, we can simplify

the Finzi equations of Equation 10.07 which are.

in two dimensions,

m--R upy?>— Rafjy?,= maay(llm)p8— maas{llm)py

— mafiy{l/m)as + maps{ilm)ay

+ m -
( a,fjyaa8 — a^aay )V ( 1/m)

where the invariant V is now taken with respect to

the surface metric aap. We contract with aay=m-a ay

and use Equations 5.19 and 2.45 to have

Kaps — Kaps = mamMl/rn) — m-a^V( 1/m I.

If we substitute

a/38 = m-aps

and use the identity

A(ln m)=-mA(l/m)+m 2V(l/m).

we have finally as the sole curvature equation

10.31 A(ln m)=K-mlK

in which, of course, the Laplacian is taken with

respect to the unbarred surface metric. This is a
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well-known formula in the theory of conformal map
projections, attributed by Marussi 4 to Souslow

(1898). If the Gaussian curvatures of the two surfaces

are given, then this formula is a differential equation

which the scale factor must satisfy. Alternatively,

we could choose the scale factor and one surface,

in which case the Gaussian curvature of the other

surface is settled by Equation 10.31. If one surface

is a plane, then we have

10.32 M\nm)=K

in which the Laplacian and, of course, the Gaussian

curvature refer to the curved surface.

GEODESIC CURVATURES

24. In two dimensions, Equation 10.19 becomes

a-ja= orja — (In m)a + { (In m)pl®}la

in which cr, & are, respectively, the geodesic curva-

tures of the curve L and of its transform; andja,ja
are perpendicular to la and to its transform in the

usual sense of figure 5 in § 6-13. But in this case,

ja, yu , which are both surface vectors, must corre-

spond because of the conformal property of the

transformation. (Note that in three dimensions, we
could not say that the two principal normals cor-

respond.) So, from the two dimensional form of

Equation 10.13, we have

ja= mja ,

and the above equation reduces to

10.33 a—ma=Qsim)cja
.

If <r= 0, this is equivalent to a well-known formula

in the theory of map projections, 1
" attributable to

Schols.

All the properties of two-dimensional transforma-

tions naturally hold true for corresponding surfaces

in a three-dimensional transformation. The Gaussian

curvatures of the corresponding /V-surfaces of the

last section must, for example, satisfy Equation

10.31.

4 Marussi (1957), "Sulle rappresentazioni fra superfici definite

mediante la forma quadratica che ne determina il modulo di

deformazione," Festschrift zum 75. Geburtstag von Prof. Dr.

C. F. Baeschlin, 201-210. Reprint available from Istituto di

Topografia e Geodesia dell' Universita di Trieste as Pubblica-

zione No. 33.

5 See also Taucer (1954), "Alcune considerazioni sul teorema

di Schols," Bollettino di Geodesia e Scienze Affini, v. 13, no. 2,

159-162. Reprint available from Istituto di Topografia e Geodesia

dell' Universita di Trieste as Pubblicazione No. 16.

EXTRINSIC PROPERTIES
OF CORRESPONDING SURFACES
IN CONFORMAL SPACE

25. It is clear from the defining Equation 10.02

that conformal transformations are based solely

on the metric tensor and its derivatives and there-

fore lead only to intrinsic properties. We cannot

expect to derive any more conformal properties

of surfaces from their extrinsic properties, even if

the surfaces are embedded in conformal space.

Nevertheless, this is a useful alternative approach,

which, at the least, can serve as a check.

26. Because the coordinates are the same in both

spaces, we can write

10.34 xl=xr
a .

In order to relate the second and third fundamental

forms, we need an expression for v'a . By expansion

and use of Equations 10.06 and 10.12, we have

10.35 mv'a —v'a+ nxa

where we have used the special symbol

10.36 n = (\nm) rV

for the arc rate of change of (In m) along the surface

normal. This special symbol should not be confused

with the "re" in the general gradient Equation 10.27

as used extensively elsewhere in this book.

27. The second and third fundamental forms

follow as

10.37 Tn- ] oai3
=— m- Lgrsx^= b ali — na a/i

10.38 Cap = grsVaV% = can — 2nbap + n 2a ap,

and the normal curvatures and geodesic torsion in

the usual orthogonal directions are

10.39 mk = mbaul
aP = k-n

10.40 mk* = mbav] a
]

li = k*-n

10.41 mt = mbafil a
jl3 = t

10.42 mHkk* -~t 2
)
= (kk* - a - 2Hn + n 1

.

28. But from Equation 10.31, we have

m-K = K-M\n m),

all with respect to the surface metric; and subtract-

ing Equation 10.42 from this expression and using

Equation 8.31, we have

10.43 m-C= C-{M\n m)-2Hn + n 2
}

for the Riemannian curvatures perpendicular to

the surface normals.
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We can verify this last equation by contracting

Equation 10.11 with v''v
s as

m 2C — C=- m{\lm)rsv
rvs - A(ln m),

all with respect to the space metric. With some

manipulation and use of Equations 8.27 and 10.10,

we can reduce this to Equation 10.43. However, we
have added nothing new, but have confirmed a

number of other results.

29. From Equation 10.41, we conclude that the

principal directions correspond. Accordingly, we

can write Equation 8.16 for the barred surface and

transform the right hand side to obtain a relation

between the bapy's. Or, we can take ordinary dif-

ferentials of Equation 10.37, for example,

= baffY+rf,ybl^+l%ba !i.

and transform the Christoffel symbols by the two-

dimensional form of Equation 10.06. The result in

either case is

m- x

batiy — bapy = aHvni( llm)s,v
sxy

— V (In m)abpy
«0Y

10.44 + « Sf (ln m)( ^ a aljbyh

afjy

in which we have used the summation symbol for

the sum of terms with cyclic permutation of the

indices (a, j8, y), for example,

V (In m)abpy= {\n m)abpy+Q.n m)pbya + (In m)ybap.

a/37

The summation terms drop out if we interchange

(/3, y) and subtract, as we shall do when we form

the Codazzi equations.

Next, we contract the Finzi equations in Equation

10.07 with

and have

m~ ' RqrstVq XaXpXy ~RqrslV1x'xfrx'y

10.45 =— maapillm)qtvqx4 + maay(llm)qSvqxs
.

By inspection, we can see that Equations 10.44

and 10.45 satisfy the full Codazzi equations of Equa-

tion 6.22 — another useful verification.

THE GAUSS-BONNET THEOREM

30. The properties of conformal transformations

enable us, as one example, to establish easily an

important result relating to the angles of closed

figures drawn on a surface.

We suppose that one of the surfaces is a plane

(K=0) so that Equation 10.32 holds true, and we
then integrate Equation 10.33 around correspond-

ing closed contours whose unit tangents are /„, la .

This amounts to multiplying Equation 10.33 by

ds = (llm)ds and integrating. We have

I crds — I ads = I (In m)aj"ds

10.46 -L

A(ln m)dS

KdS,

using Equation 9.12 in converting from the contour

to the surface integral, which has to be taken over

the whole area of the surface enclosed by the con-

tour. In the plane, the geodesic curvature of the

contour becomes the ordinary curvature of a plane

curve, and the contour integral is the total angle

swept out by the tangent to the contour in describ-

ing the contour. If the contour is continuous, this

angle is 2tt; for any continuous contour on the

curved surface, we have accordingly

10.47 1°*+
J.
KdS = 2tt.

But if the contour in the plane has a corner enclos-

ing an angle 9, then the tangent at that corner will

turn (77 — 6) without any contribution from the con-

tour integral. If there are n such corners, then we
have

crds = 2tt — mr + V 6„

.

The angles enclosed by the corners of the corre-

sponding contour on the curved surface will be the

same because of the conformal property of the

transformation, and we have finally

10.48 f ads+ ( KdS = 2TT-mr + y2 0„.

In the case of a triangle with curved sides enclosing

angles A, B, C, this is

10.49 I <rds+\ KdS = A + B + C-ir:

and if the sides are geodesies, this is

10.50 KdS = A + B + C-7T.

This last equation is the exact form of an approxi-

mate formula used in classical geodesy for calcu-

lating "spherical excess."





CHAPTER 11

Spherical Representation

DEFINITIONS

1. We can "represent" one surface on another

by denning a correspondence between points on

the two surfaces, so that to any figure drawn on

the one surface, there corresponds a figure on the

other surface. The conformal transformations be-

tween surfaces considered in the last chapter are

a special class of such representation because they

result in small corresponding figures being similar.

The idea of representing a curved surface on a

plane, as another example, is common in the theory

of map projections; but whereas few map projec-

tions can be constructed by means of geometrical

projection, they can all be defined by setting up a

correspondence of points on the Earth and on the

map, so that there is one and only one point on the

map corresponding to or representing a given point

on the Earth.

2. In this chapter, we shall consider the represen-

tation of a given surface on a sphere of unit radius,

as first proposed by Gauss who defined the cor-

respondence of points by making the normals to

the two surfaces parallel at corresponding points.

If the normals at two different points on the given

surface are parallel and in the same sense, this

means that both points would be represented by

the same point on the sphere. To make the corre-

spondence unique, we shall exclude regions of the

given surface containing such points.

3. We shall assume that both surfaces are em-

bedded in the same flat space, which means that

we can choose Cartesian space coordinates and

can use the same Cartesian axes for both surfaces.

In later applications, we shall find this important.

Without any loss of generality, we can, moreover,

take the origin of Cartesian coordinates as the center

of the sphere; in which case, the following vector

equation holds true in Cartesian coordinates be-

tween corresponding points on the two surfaces,

11.01 v r= p' = v r

where v r
is the unit normal to the given surface and

p' is the position vector of the corresponding point

on the sphere. All quantities relating to the sphere

will be denoted by overbars. We choose surface

coordinates (xa ) to be the same for both surfaces at

corresponding points; for instance, the latitude and
longitude will be the same in relation to the same
Cartesian axes because the two normals are parallel.

Moreover, because any surface coordinates must

be some single-valued functions of latitude and
longitude, we can take the surface coordinates to

be the same for both surfaces without specifying

what they are. The ordinary derivatives of Equation

11.01 with respect to a surface coordinate will

then be the same as the surface covariant derivative

because the space coordinates are Cartesian and
the space Christoffel symbols are accordingly zero.

The following equations therefore hold true in

space Cartesian coordinates,

n.02 w;=pi=x/;=^,

provided that both surfaces are referred to the same
surface coordinates xa

.

FUNDAMENTAL FORMS
OF THE SURFACES

4. The metric tensor on the sphere is accordingly

obtained from Equation 6.06 as

11.03 aap= grsX'aX$= grsKH= Cafj,

63
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and the second and third forms for the sphere are

given by Equations 6.18 as

1 1 .04 bali ~ — grsX'VJi= - grsKV$=— c«/3 = ~ ««/3

11.05 Cap= grsKH= grsVT
aV$= Ca = aap.

From Equation 7.18, we find that the determinant

of the metric tensor is given by

11.06 Iflctfl— \cap\ = K2 \aai3\=K\bap\,

and thus from Equations 11.04 and 11.05, we have

11.07 n<*P-. -"0: .6«e=c'tf.

5. The fact that the third fundamental form is the

same for both surfaces is of considerable impor-

tance. For example, we have from Equation 6.17

(Weingarten's formula), using Equation 8.09,

vr
a =- a^banx^= - bPycapx$

and so

11.08

in which, it must be repeated, the space coordinates

are Cartesian and the surface coordinates are the

same for both surfaces. This means that all compo-

nents of the tensor on the left are unaltered on

spherical representation.

CORRESPONDING SURFACE VECTORS

6. Because the surface coordinates are the same
for the two surfaces, a difference in coordinates

between corresponding points will also be the same.

The element of length (ds) between the two points

will not, however, be the same; but to a first order,

we can connect two unit vectors (/", l
a

) as follows,

11.09 dxa= l
ads = dxa = Jads.

The covariant components will then be connected by

11.10 lads= aaii1
li d's = Ca^ds.

By multiplying Equations 11.09 and 11.10, con-

tracting, and using Equation 7.14, we have the

square of the line element as

11.11 ds' =(c„el*l»)ds-= (k2 + t*)ds*

where k and t are, respectively, the normal curva-

ture and geodesic torsion of the given surface in

the direction l
a

. The spherical representation is

not therefore, in general, conformal because the

scale factor (ds/ds) is not the same for all directions

at a point.

7. If the scale factor (ds/ds) in the direction l
a

is m, then from Equation 11.09, we have

11.12 l
a = mla

,

always assuming that the same coordinates are

used for the surface and for the spherical

representation.

In regard to the covariant components, we have

from Equations 11.10 and 7.14

11.13 m In = capl" = mHn + 2Htj& .

Another formula connecting covariant components

may be found as follows. From Equations 2.30, we

have

11.14 eap=(alcyi*e ali =€aiiIK

with the contravariant form

11.14A eaP=Keali
.

If we multiply Equations 11.12 and 11.14 and use

Equations 2.32, we have

11.15 jp= (mlK)%

in which ju, jp are unit vectors perpendicular to

/", 7", respectively. It should be noted, however,

that jp is not, in general, the spherical representa-

tion ofjn because the representation is not conformal

and a pair of perpendicular vectors will not neces-

sarily remain perpendicular in the spherical

representation.

THE PRINCIPAL DIRECTIONS

8. We shall now consider two directions at ;

point given by two small differences in surfac*

coordinates dxa and {dx^), which, as before, wil

be the same for both surfaces. From Equation 7.20

we have

Kaaudx^dx13
)
- 2Hbaiidx

a{dx^) + candxa(dx^ = 0.

11.16

If the two directions are orthogonal on the giver

surface, the first term is zero; and if the two direc

tions are to remain orthogonal in the spherica

representation (aaf3
= cafi), then the third term mus

also be zero. The remaining term is, in general

zero only if

balidx
a(dxV) = 0.

in which case the orthogonal directions dxa
, (dx&

must also be principal directions. On the sphere

any pair of orthogonal directions can be considerec

principal directions; and we conclude that the prin
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cipal directions (or lines of curvature) are, in gen-

eral, the only directions (or curves) which remain

orthogonal on spherical representation.

Moreover, the normals at consecutive points on

a line of curvature intersect, and the plane con-

taining the normals must be parallel to the corre-

sponding plane because the consecutive normals

are parallel in the spherical representation. Con-

sequently, a principal direction is parallel in space

to its spherical representation.

9. We could satisfy Equation 7.20 without making

dxa , U/jc
8

) the principal directions if 2H were zero."

In that case, the square of the scale factor in a

direction /" would be

capl"P>=-KaaiilaP=-K,

which is the same for all directions at a point, so

that the spherical representation would be con-

formal. But in this case, we are restricted to a special

class of surfaces whose mean curvature H is zero.

Such surfaces are known as minimal surfaces.

They are of considerable importance in the physics

of soap bubbles and in the minima of double in-

tegrals, but do not appear to have any present

application in geodesy.

10. If the principal directions of the given surface

are ua , v& (the principal curvatures are K\, Kj. re-

spectively), then t = for these directions, and the

scale factor for the //"-direction reduces to

11.17 ds/ds = VKJ.

We shall consider that corresponding elements of

length are in the same sense so that the scale factor

is essentially positive. Throughout this book, we
shall be dealing with convex surfaces whose radii

of normal curvature run inward in the opposite

sense to the outward-drawn normal and will there-

fore be numerically negative when com [tilted in

accordance with the usual sign conventions from
formulas given in this book. Consequently, we must
take the negative square root in Equation 11.17

and write

11.18 lis I (Is = — K\.

The scale factor in the /'"-direction will similarly

be — k>. In this case, Equations 11.12 and 11.13

reduce to

11.19

11.20

Kiir

— Ki V

ua-

vv-

UplKi

V/jIk-2

SCALE FACTOR AND DIRECTIONS
REFERRED TO THE PRINCIPAL
DIRECTIONS

11. If the unit surface vector /" makes an angle

t// with the principal direction u", then an alternative

expression for the square of the scale factor ( in

)

in the direction l
a
is from Equation 7.25

m'2 = (dslds)- — cafjl
a
l
li= K\ cos- t/> + kt, sin 1'

\\i.

11.21

From this equation and from Equations 11.12 and

11.19, we can obtain expressions for i//. the angle

between the spherical representations of /". //".

as follows.

cos \\i = /"/"/„ = — k i
l"u a ( ds/ds )

_ — K\ COS l//

11.22
\k\ cos- \\t-\-K7, sin- t//)'-

and similarly, we have

— ki sin (//

11.23 sin(//=/"fv
k] cos- i/> + K.7 sin 2 (//)'-'

from which

11.24 tan t//= {k>Ik\ ) tan i//.

The sense of <// is that of a positive rotation from
//" to /" about the outward-drawn normal, as shown
in figure 11.

Figure 1 1.

CHRISTOFFEL SYMROLS

12. We are now able to derive an important

formula connecting the surface Christoffel symbols
at corresponding points of the two surfaces. By
taking ordinary derivatives with respect to a

surface coordinate x1* of the Equation 11.02 and
by remembering that the space coordinates are

306-692 0-69—

6
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Cartesian, we have

11.25 ^+r^=*^+f^.
By surface covariant differentiation of the Wein-

garten formula (Equation 6.17), we have also

11.26

together with

11.27

'all' ayS bapyx£ — ca0V r

*«« = ba/3V
r — — CajiV'

in which we have used Equations 6.16, 11.04, and

11.01. Substitution in Equation 11.25 gives

11.28 ( r& - fZp ) vy = a vtbapyx's

.

Contraction with grsx\ gives

1 1.29 ( r^-ty^by€=-ay6bafffait=-bapt .

Contraction with b ( >' and some rearrangement of

indices give finally

11.30 T^-T^=-b^bm .

The Christoffel symbols in the spherical representa-

tion are usually very easy to evaluate in a given

coordinate system, so that we have now a compact

formula for the Christoffel symbols of any given

surface, which we shall have frequent occasion

to use. We note from Equation 11.04 that because

bap=— aat),
we must have 6a^g = 0, so that Equation

11.30 reduces further to the statement that the

quantities

H.31 ryp+ b^bapa

are unaltered on spherical representation.

REPRESENTATION OF A FAMILY
OF SURFACES

13. If we have a family of surfaces defined over

a certain region of space, for example, by assigning

different values to a scalar N which is constant

over each surface as discussed in §10-19, then

the surface normals will also be defined over the

region. In general, as we shall see in the next

chapter, there will be a family of lines — to be

known as the isozenithals — along any one of which

the surface normals are parallel. The spherical

representation of an isozenithal is accordingly a

point. We can, moreover, draw a figure on any one

of the /V-surfaces and project it down the iso-

zenithals onto the other surfaces of the family.

The original figure and its isozenithal projections

will all have the same spherical representation.

Moreover, any set of quantities, such as those in

Equation 11.31 which have the same values at

corresponding points in the spherical representa-

tion, will also have the same value at isozenithally

projected points. Their differentials along the iso-

zenithals will be zero.

We shall carry the question of spherical representa-

tion further in the next two chapters by using a

special coordinate system, which, nevertheless,

produces quite general results.
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CHAPTER 12

The (co, <£>, TV) Coordinate System

DEFINITIONS

1. We shall now consider a special, but quite

general, coordinate system, generated by a con-

tinuous differentiable scalar function of position

TV in three-dimensional space,. Points having a

particular value of N, for instance C, will lie on a

surface N=C; for different values of C, we shall

have a family of surfaces. We take A as one co-

ordinate of the system. But, ifN is specified through-

out some region of space, then so is the magnitude

{n) and direction (v r ) of its gradient (AV) because,

by definition, we have

12.001 Nr= nvr

The direction of v r in relation to three fixed Car-

tesian axes in flat space will define two independent

scalars, which can take the form of longitude (co)

and latitude {(f)).
We shall take these as the other

two coordinates. Each of these scalars generates

a family of surfaces distinct from the /V-surfaces

and from one another. The position of a point in

space can accordingly be defined as the intersection

of three surfaces, one from each of the to, (/>, and

A families over which each of the three coordinates

has an assigned value, in much the same way as

the position of a point in Cartesian coordinates

(a, 6, c) can be defined as the intersection of three

planes x — a, y—b,z — c. In the more general case,

the coordinate surfaces are curved; each coordinate^

line — that is, the line of intersection of two coordi-

nate surfaces along which only the third coordinate

varies — will also be curved. The three coordinate

lines passing through a point will not, as a rule, be

orthogonal, nor will they be parallel to the coordinate

lines at any other point.

It will be assumed throughout this chapter that

(&>, c/>) are the A-surfaee coordinates as well as

two of the space coordinates so that, with the

notation of Equation 6.02, we have

x2 = 0: x li = 8 li

In some cases, this leads to results which are

clearly only true in this coordinate system because

they relate only some of the components of tensors.

In other cases, we shall derive relations connecting

all the components of tensors. These will accord-

ingly be tensor equations, true in any coordinates,

which can be differentiated covariantly and manipu-

lated generally as tensors even though they were

derived in a special coordinate system.

SIGN CONVENTIONS

2. There is some advantage in making the (co,

(f), N) system right handed in the sense that (x, y. z)

is conventionally right handed, as discussed in

§1-22. If we look along the positive direction of

an TV-coordinate line, then the positive direction

of the c£-line is to the right of the positive direction

of the cu-line; a similar rule applies to the cyclic

permutations (c/>Aw), {Noi(j>). A positive rotation

about the A-coordinate line will be clockwise when
we look outward along the positive direction of the

A-coordinate line. We could say therefore that the

co-line can be rotated positively about the A-line

toward the (/>-line.

3. We shall later identify A with the gravitational

potential, or geopotential, or some standard poten-

tial. The A-surfaces will be the level or equipotential

surfaces: the n will be the gravitional force "g."

M
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The positive direction of A, following the ordinary

physical convention, will be toward the zenith even

though this will make N negative in the geodetic

applications. For Equation 12.001 to hold true — and

in such applications as conformal transformation

it is desirable that the equation should hold true

in this positive form — we must also draw the positive

direction of the normal to the A-surfaces toward

the zenith; this accords with the usual mathematical

convention of an outward-drawn normal to a closed

surface. We have finally to make the (oj, $, A)
system right handed in that order; to do this, we
must make longitude positive toward the east if

we are to adopt the almost universal convention

of making latitude positive toward the north. This

accords with the European convention and with

astronomical conventions for right ascension and

local time (but not hour angle, which is reckoned

positive toward the west). It also makes longitude

a positive rotation in the mathematical sense about

the northward axis of rotation of the Earth. It

does not accord with geodetic practice in the United

States where it is customary to make west longitudes

positive, no doubt for reasons of historical develop-

ment, although some Agencies in the United States

adopt the more usual eastward convention. On the

whole, the balance of advantage seems to lie with

positive longitudes east. Any country using the

opposite convention has merely to change the sign

of longitude, or difference in longitude, wherever
it occurs in any formula in this book; the same
applies to south latitudes.

4. In the proposed convention, longitude will be

the first coordinate, whereas the almost universal

convention is to list latitude first. However, this

should cause no confusion. We consider longitude

to be the first coordinate in a right-handed system

(at, 0, A= 1,2,3) in the derivation of mathematical

formulas, but the results can, of course, be listed

in any convenient order.

5. A positive rotation about the zenithal direction

iv r ) in the mathematical sense will be from north

to west, whereas the almost universal geodetic

convention for azimuth (a) is from north to east.

The only way of reconciling the two would be to

adopt an inward-drawn normal to the TV-surfaces;

this could lead to serious confusion in cases where
formulas are taken straight from standard mathe-

matical works. However, we can avoid confusion

by giving azimuth its own convention and by re-

membering that azimuth is a negative mathematical

rotation in cases where it is derived that way.

6. In another geodetic application, we shall neec

to identify A with "height." By universal conven

tion, this is positive in the zenith direction; this

then agrees with the proposed convention for A,

7. The conventions which will be adopted through-

out this book are illustrated in the diagram (fig. 12);

north

positive

(CO, N constant)

east

co positive

(</>, N constant)

Figure 12.

the zenith direction (v r ) or the gradient of A is

toward the reader. In an unsymmetrical field, the

u>- and </>-coordinate lines will not run exactly to

the east and north, but they will, nevertheless, run

in those general directions. In the same way, the

A-coordinate line — that is, the direction in which

a>, 4> are constant — will not coincide, in general,

with vr- The other two vectors A.,, /a, on the diagram

lie in the plane of the paper and will now be defined.

THE BASE VECTORS

8. Next, we set up three mutually orthogonal unit

parallel vector fields A'\ B'\ C r to serve as the axes

of a right-handed Cartesian coordinate system

(x, y, z). This assumes that we are working in flat

three-dimensional space because such a coordinate

system would not otherwise be possible. In Carte-

sian coordinates, the components of these vectors

would be

A r= (1. 0. 0)

12.002

B r = (0, 1, 0)

C' = (0. 0. 1).

but we shall often require their components in

other coordinate systems. The vectors are constant
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in the sense that their Cartesian components are

the same throughout the region of space considered.

Their components will not be the same at all points

in other coordinate systems, but because they are

parallel at all points, their covariant derivatives,

from Equations 3.05 and 3.06, will be zero in all

systems. We shall later identify these vectors

physically — for example, in some applications

C r will be parallel to the axis of rotation of the

Earth with its positive direction toward the north—
but for the present, the vectors simply provide a

fixed Cartesian reference system.

9. We also introduce a local system of mutually

orthogonal unit vectors k'\ fx
r

, v'\ right handed in

that order. As before, v r
is the zenith direction or

the outward-drawn unit normal to the A-surface

passing through the point under consideration. We
define /jl

1 ' as coplanar with v T and a parallel to C r
,

and call it the direction of the meridian; the positive

direction of /x' will be roughly in the direction of

the (^-coordinate line, and because /x'' is perpendicu-

lar to v'\ it will be tangential to the /V-surface. The

vector X r simply completes the orthogonal triad. It

will also be an TV-surface vector, roughly in the direc-

tion of the aj-coordinate line, and will be called the

parallel direction to accord as nearly as possible

with ordinary geographical terms. It is easy to see

that A.' will be parallel to a plane containing A r

and B' because it is perpendicular to the plane of

fx
r and v r

, and is therefore perpendicular to Cr
.

10. Next, we define longitude (co) and latitude

(c/>) in terms of the direction cosines of the unit

normal v r by means of the following scalar products,

12.003

12.004

12.005

COS
<f)

cos co — VrA r

cos cf) sin en = v rB'

sin c/> = vr C'\

The arrangement is illustrated by figure 13 in

which the meridian plane is the plane of the paper,

except for the vectors A'\ B'

.

11. We define azimuth (a) as a rotation about

v T from
rx

r toward A.', as shown in figure 12. A unit

A-surfaee vector /'' in azimuth a is accordingly

given by

12.006 /' = V sin a+/x' cos a.

The use of the term azimuth suggests that the

A-surfaces are level in the geodetic sense; in the

main geodetic applications, this will be so. We do
not yet, however, identify the A-surfaces with level

Figure 13.

or equipotential surfaces: and in this chapter, the

term azimuth is to be understood in a wider sense.

With the same object of avoiding multiplication of

terms and on the same analogy, we shall sometimes

refer to the direction of the normal vr as the zenith

and to an angle measured from the zenith as a

zenith distance. A unit vector in azimuth a and

zenith distance B will be given by the vector

equation

/'=A/ sin a sin /3 + yu.' cos a sin B+v r cos B,

12.007

which can easily be verified from the direction

cosines of /'' relative to the (A/, jjl'\ v r
) axes.

RELATIONS BETWEEN BASE
VECTORS

12. We can now express one set of vectors in

terms of the others, through their direction cosines,

as follows.

\r—~A r sin oo + B, cos to

ri r= — A r sin 4> cos co —

B

r sin c/> sin oo + C r cos cf)

vr= A r cos (/) cos oo+ B, cos c/> sin oo + C r sin </).

12.008

In these vector equations, we can simply raise all

the indices to obtain the contravariant components.

13. If we consider the Cartesian coordinate x to

be a scalar function of position, then its gradient is

xr=A r ,
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a vector equation which is true in any coordinate

system. We can solve the covariant form of the

Equations 12.008 for Ar ,
etc., and obtain the

reverse formulas

x,— A,— — \ r sin o» — [A,- sin </> cos to

+ v r cos cf> cos to

yr = B r —kr cos w — /JL, sin </> sin to

+ v r cos cfi sin a>

12.009 Z r=C r — fir COS
<f)
+ V r sill <£.

14. To obtain Cartesian coordinates in the

(A', /x', i'') system, which we shall denote by over-

bars (x, etc.) from (A'\ B' . C') and vice versa, we
need only contract with the position vector equation

f)r = Pr— (pit)r

where (p<>), is the position vector of the (\
r

, fi'\ v')

origin. Thus, Equations 12.008 give

x = — (x — xo) sin to+ (y — yn) cos to

y=— (x — xo) sin cf> cos to

— (y— Vo) sin sin to + (z — za) cos (/)

i= {x— xo) cos cos to

12.010 + (y
—

Jo) cos 4> sin w+ (z — Zo) sin </>,

and Equations 12.009 give

(x — xo) ~— x sin to — y sin </> cos to +z cos cos to

(y— yo) — x cos a» — y sin sin o» +z cos $ sin to

(z — Zo) —y cos + z sin </>.

12.011

15. We may also note that the (A.', fx'\ vr) system

can be obtained from the {A'\ B'\ Cr
) system by the

following rotations:

First, (i7r + to) about the 3-axis C' which brings A r

into parallelism with A.'; and,

Second, (i^r— (f>)
about the new 1-axis A.'' which

brings C' into parallelism with v r
. Accordingly, we

may substitute the following matrix equation for

Equations 12.008.

/K\ l\ W- sin to cos to {\lA\
\

/JL, \= sin </) cos
<f)

|l — cos 0) — sin <w II Br ]•

\vr/ \0 —cos (j) sin (j)/

12.012

o 1/ \Cr,

In this equation, as in Equations 12.008, we may
substitute components of the vectors in any one
coordinate system. The same rotation matrices in

the same order may be used on the position vectors

to reproduce Equations 12.010.

The inverse transformation equivalent to Equations

12.009, which may also be used instead of Equations

12.011. is obtained by transposing the orthogonal

rotation matrices as follows,

/Ar\ /-sin to -cos to 0\ /l \ A,\

I Br 1= 1 cos to — sin to I sin —cos </> fx r )

\CrJ \ 1/ \0 COS 4> Sill cf) J \vr)

12.013

A very convenient, special notation for rotation

matrices will often be found in the literature. A
positive rotation of d about each coordinate axis —
positive in the usual mathematical sense illustrated

in § 12-2 and § 12-5 -is denoted by

/I OX
Ri(0)= cos 6 sin

\ -sing cos e)

I cos d -sin 6\

R2 (6»)= 1

\ sin 6 cos d J

I
cos 9 sin 6 \

R3(0)=(-sin0 cos 6 ]

\ 1 /

Using braces notation {A r , B r , Cr } for column
matrices, Equation 12.012 would then be written

{A,, fir, vr}= Ri(br-<lt)B*(br+a>){Ar, Br , Cr }.

12.012A

In these formulas, the axes are rotated and points

in the space are held fixed; if the axes were fixed,

the rotations would have opposite signs. To avoid

any possible confusion, the few rotation matrices

required in this book will be written in full.

DERIVATIVES OF THE BASE
VECTORS

16. If we take the covariant derivative of the

first equation of Equations 12.008 and remember
that A r , B r , Cr are constant under covariant differ-

entiation, we have

krs~ (~A r COS CO —

B

r sin to)tos

12.014 = (fl r Sin 4> — Vr COS (/))to.s
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by substituting the other equations of Equations

12.008; in the same way, we have

12.015 firs — — sin
<f) krOJa — V r <t>x

12.016 Vrs = cos </> \ r0)s + fir(f>s -

In these expressions, w.s , </>s are the gradients of the

coordinates considered as scalars. They are not

necessarily surface vectors. But if we take (w, </>) to

be the /V-surface coordinates as well as two of the

space coordinates, then the (1, 2) components

Wo, 4>a will be the surface gradients. In the (w, (/>, N)
system, we have

,=82 0s ~°1,

but if we do not make this substitution, then the

above tensor equations are true in any coordinate

system.

17. By covariant differentiation of the basic

gradient equation

we have

12.017

Nr— nvr

Nrs~ ns v r -\- nvsr .

But because N is a scalar, Nrs is a symmetrical

tensor by Equation 3.11. Interchanging r, 5 and

subtracting, we have

12.018 nsvr + n V,-s — Jtr Vs + 'I vsr .

Multiplying by vs and noting that vsrvs= because

vs is a unit vector (Equation 3.19), we have

12.019 n VrsV*—n r —{ nsv
s
) v r .

But the vector n r is expressible in terms of three

orthogonal vectors as

nr— (ns\s )X, + (nsfi
s)(ir+ (ris^Vr

so that Equation 12.019 reduces, after division by n,

to

12.020 vrsvs = {(In ra)s\s}Ar+{(ln n).,^8}^,

showing that the principal normals to the vr are

N- surface vectors. We shall write the arc rate of

change of (In n) in the parallel and meridian direc-

tion as yi, y2 , respectively, so that this last equation

can be written as

12.021 VrsV
s— 7l A/- + 72 Air,

showing that the curvature of the normal is

(7i + 7f)
1/2 The principal normal to the curve is in

azimuth arctan (71/72); the binomial, along which n

is constant, is a surface vector in azimuth arctan

(-72/71)-

18. It should be noted that krs is a space tensor

taken in relation to the space metric. It will, never-

theless, have (1, 2) components which can be written

as

Aa/3= (fJ-a Sin
<f)
— Va COS (f>)(Dti.

Again, if (a>, <j>) are surface coordinates, we know
from Equation 8.25 that ka(i is also the correspond-

ing surface tensor. We shall see later that va —
in (a», (/), TV) coordinates so that we have

12.022 kafi— /JLaOifi Sin (f),

whether it is considered to be a surface tensor or

the (1, 2) components of a space tensor.

In the same way,

12.023 rla/3—— ka (j)fj Sin
(f>

is either a surface tensor or the (1,2) components
of a space tensor in (co, <£, TV) coordinates, provided

(oj, (f>) are taken as surface coordinates.

19. We can see from Equation 6.19 that the (1, 2)

components of the space tensor vrs, again in the

(to, (/>, N) system with (oj, 4>) as surface coordinates,

are given by

12.024 vap = — bafj

where 6Q/3
— the second fundamental form of the

surface — is a surface tensor. Here again, we could

say that va$ is a surface tensor because bap is a

surface tensor, and the va$ are also the (1, 2) com-

ponents of a space tensor.

Equations 12.022 and 12.023 are, however, surface

tensor equations, but Equation 12.024 is merely a

relation expressing some components of the space

tensor v rs . If we want to manipulate Equation 12.024

further, we should have to generalize it first as

VrsX'aXg — ~ ba0.

CONTRAVARIANT COMPONENTS
OF THE BASE VECTORS

20. If we differentiate the defining Equation

12.005 covariantly and remember that C r
is a con-

stant vector, we have

(COS (f))(f)s— v rsC r

= vrs (/JL
r cos (f)

+ v r sin 4> )

= W r.,/X
r COS (/>.

in the derivation of which we have used Equations
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12.009 and 3.19, with v r a unit vector, so that finally

we have

12.025 4>s = VrsHr= - VrsVr -

21. In the same way, by covariant differentiation

of Equations 12.003 or 12.004, we have

12.026 (cos <f>)ajs =vrsk
r = -k rsv

r
;

by repeating Equation 12.001 to complete the series,

we have also

12.027 Ns= nvs .

22. In addition, we have already found in Equa-
tion 12.021 a formula for the vector curvature of the

normal to any family of /V-surfaces,

prs i'
s = {(In n)sks}kr+ {(In vI^/jl,-

12.028 =y
l
K r + y-,fjLr .

23. Now, if {dk) is an element of length in the

A.
r-direction, then the contravariant components of

A r in the (oo, </>, N) system are, by definition and by

using Equations 12.026, 12.025, and 12.027,

A r= (aw/ax, d<f>/dk, dN/dk)

= (ws\s
, <f>s

ks
, Nsks

)

= (seC<j> Vrskrks
, Vrsks

/JL
r

, 0)

12.029 =(-ki sec
<f>,

-tu 0)

where k\ is, from Equation 7.03, the normal curva-

ture of the iV-surface in the direction of the parallel,

and where t\ is, from Equation 7.08, the geodesic

torsion of the /V-surface in the same direction.

(The geodesic torsion of the A^-surface in the direc-

tion of the meridian is, of course, minus t\.)

24. In the same way, we have

fi
r= (dcoldn, d4>ld/x, dN/dfi)

= (sec
(f) Vrsk

r
fX,

s
, VrslJi

r
fl

s
, 0)

12.030 =(-h sec<f>, -fe,0)

where k% is the normal curvature of the TV-surface

in the direction of the meridian.

25. To complete the triad, we need similarly to

evaluate the components of v r
. Writing (ds) for an

element of length in the direction of the normal, we
have from Equations 12.026, 12.025, 12.027, and
12.021

12.031 d<j)lds = VrstSvs= {h\ rc)s/A
s= y2

12.032 cos </> doj/ds = VrskV = (In n)sks = yi

12.033 dNlds=Nsvs= n

so that we have finally

12.034 vr—(j\ sec (/>, y2 , n).

26. Without any loss of generality, we can tak<

(oj, 4>) as coordinates in the TV-surfaces as well ai

two of the space coordinates. We shall as usual us<

Greek indices restricted to the values (1, 2) fo

surface vectors and tensors; it is then evident fron

the definition that the components of A", /jl", con

sidered as surface vectors, are

12.035 ka = (-ki sec
<f>, -h)

12.036 fi
a= (-?, sec (/>, -A,).

27. Collecting results for easier reference, we havi

k' = (-Ai sec (j>, —tu 0)

/jl' = (—ti sec </>. -k>, 0)

12.037 v r = (yi sec {^), y%, n) ,

with the same (1, 2) components for the surfao

vectors A", /x" in (w, $) coordinates.

28. All contravariant and, as we shall see, al

covariant components of the base vectors cai

accordingly be written in terms of the five second
order quantities k\, &2, h, yj , yL>. which we shall cal

the curvature parameters of the space or of the field

We have seen in Equation 12.021 that yi, y2 defini

the curvature of the normals: we shall see in th<

section commencing with § 12-36 that ki, A 2 , t

completely define the curvature properties of tin

A^-surfaces.

COVARIANT COMPONENTS OF THE
BASE VECTORS

29. Next, we find the covariant components fron

Equation 2.07

k'ks + IJL
r
IJis+V

r
Vs = 8's

in which Si" is the Kronecker delta.

For r=3. we have at once

nvs — Sis,

which gives the components of the normal as

12.038 vs =(0, 0, 1/n).

30. For r= 1, 2 ; s— 1, we have the two equation

— (Ai sec <f>)ki — (t x sec 4>)jjl x
= 1

— t\k\ — A"2ju.i =0:

and writing K for (AiA 2 — t'i), which we have seen
Equation 7.17 is the Gaussian or specific curvatur

of the A-surface in flat space, we can solve these las

equations to provide the 1-components as follows

ki =— ki cos 4>/K

/JLi = + t\ COS (f>/K.
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31. In the same way for r=l, 2 ; 5 = 2, we have

the equations

—
(/,i sec <£) k>— (t\ see </>)^t-j =

—
/ 1 \j - A2JU2 = 1 -

which can be solved for the 2-components

k-, = + tJK

lx> = — kilK.

32. For r— 1. 2 ; s = 3, we have

— (/i sec (/))A;s — (/i sec 0)/u,n + yi sec $/h = 0,

— *,\3-^3 + 72/n = 0,

from which we have

A.A :!
= (tt 2 y\ —tiy2 )ln

12.039 K
t
i3 =(kiy-2-t 1yi )ln;

or, substituting for yi, y. from Equation 12.021. we
have

12.040

K\3 =- (lln) s {k2ks-tlfx
s
)

Kfis=- (lln)A- tiks+ ki/J,
s
)

Again, substituting the above values for Ai, /u-i,

etc., we have

A.( cos </> = (l/n) s (kik
s+ fAi fJL* + ^1 ^

s

)

= (l/n).8f

= d(lln)lda>

and

jU-3 — (lln)s(k-2 ks + fX-2 fJL
S + V-iVs

)

= (l/n),8S

= d(l/n)/d(f>.

33. Collecting results, we have

12.041 Kkr=(—k2 cos </>. + ti, /v sec <£ d(l/n)/dw)

12.042 K/jL, = (+t x cos (/>. -/,,. Kd(lln)ld<j>),

with the alternative expressions in Equations

12.039 and 12.040 for the 3-components, and

12.043 vr= (0, 0, 1/n).

34. We can similarly find the covariant compo-

nents \a , jtta, considered as surface vectors from the

two-dimensional formula

and have finally

12.044 Kk a =(-ki cos <j>, +/,)

12.045 Kju,Q = ( + / 1 cos 0, - A , )

.

which are the same as the (1, 2) components of the

space vectors.

35. The gradients of the coordinates can now be

expressed in terms of the base vectors A., , /xr , v, by

means of the following formulas,

12.046 (cos 4>)o), — —kjk, — ti/jL,--\-y\vr

12.047 <*>,- = - t
x k r - kii*r + yn'r.

and we have also

12.048 (In n) l =yik l +yiHr+{(\n n) svs}vr ;

because these gradients are vector equations, not

merely relations between some components of

vectors in a special coordinate system, they are

true in any coordinates — provided w, <£> are con-

sidered to be scalars.

CURVATURES OF THE iV-SURFACES

36. The three quantities A,, k-i, and t\ — respec-

tively, the normal curvatures of an A-surface in the

direction of the parallel and the meridian, and the

geodesic torsion in the direction of the parallel —
enable us to determine the normal curvature and
geodesic torsion in any azimuth (a). A unit surface

vector in this azimuth will be

Ifi—ku sin a + (jlu cos a:

a unit vector in the perpendicular direction, ob-

tained by a positive right-handed rotation of /# about

the normal, will be

jii
— —kij cos a + fxp sin a.

The normal curvature in the direction /#, using space

coordinates, will be

k= -Vrsl'ls

= — vrsk rks sin 2 a —2p,^'f^" si'1 a cos a

— VrsfL
r
fL

s cos 2 a

= k\ sin 2 a + 'lt\ sin a cos a+ k-> cos 2 a:

12.049

the geodesic torsion in the direction /# will be

t=-vrs l
rj*

= Visk
rks sin a cos a— vrsk

r
fi

s (sin2 a — cos 2 a)

{ k-i
— A

1
) sin a cos a — t\ ( cos 2 a — sin 2 a)

12.050
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37. The geodesic torsion in a principal direction

is zero so that the azimuth {A) of the principal

directions is given by

12.051 tan 2A=+2t1/(k2-k1 ).

38. The principal curvatures (ki in azimuth A
and K-i in azimuth (A — \tt)) are then given by

Equation 12.049 as

K\ = A i sin- A + 2t\ sin A cos A + A2 cos- /i

K2 = k\ cos- /4 — 2?i sin A cos /4 + A 2 sin2
,4

12.052

so that the mean curvature is

12.053 ff=i(Ki + K4)=i(ifc, + fe) f

as we should expect, because it is the same for any

two perpendicular directions.

39. We have also

( K, — k_> ) = ( hi — k\ ) cos 1A + 2ti sin 2A

= (/.-,-/„) sec 2A

12.054 = 2;,cosec2//,

using Equation 12.051.

40. The Gauss or specific curvature of the surface

is then

K=KiK2=Uki + fa)
2-Uh-k2 )

2 sec2 2A

12.055 =hk2-tl

as we should expect from Equation 7.17.

41. We can also recast Equation 12.049 to give

the normal curvature in any azimuth (a) as

12.056 k= Ki cos 2 {A-a) + K-i sin 2 (A -a)

and the geodesic torsion in azimuth (a) as

12.057 t =H Kl -K2 ) sin2(A-a).

By putting a= ^TT, or zero, in these last two equa-

tions, we have also

A i
= K\ sin 2 A + k-i cos 2 A

ki — K\ cos 2 A + k> sin2 A

12.058 u= (ki — k2 ) sin A cos A,

showing that, instead of the three curvature param-

eters k\, k2 , h, we could equally well use ki, k>. A.

42. If k, t, a are the normal curvature, geodesic

torsion, and azimuth in the direction of a general

unit surface vector /' and if A*. — t, {a— %rr) refer

to a perpendicular unit surface vector/, then from

Equations 12.049 and 12.050, we have

k = k\ sin 2 a + 2t\ sin a cos a + A'2 cos 2 a

t= (ko — ki) sin a cos a — Mcos 2 a — sin 2 a)

k* — k\ cos 2 a — 2ti sin a cos a + k-y sin 2 a.

12.059

From these equations and Equations 12.046 an
12.047, if dL dj are elements of length in the tw

directions, we easily derive

(cos <f>)d(o/dl=— ky sin a—

t

x cos a

= — A' sin a + t cos a

d(f)/dl — — t\ sin a — k> cos a

=— A cos a~t sin a

(cos cf>)do)/dj= A', cos a — fi sin a

= A cos a— £ sin a

d4>/dj—t\ cos a— A"2 sin a

12.060 = — A* sin a — f cos a.

which enable us to rewrite Equations 12.046 an
12.047 as

(cos 4>)cOi = (— k sin a + t cos a)/,-

12.061 + (A* cos a — t sin a)jr + y\Vr

</)/• = — ( A cos a -I- f sin a ) /,

12.062 — (A* sin a+ f cos a)j,- + jiv,-.

GEODESIC CURVATURES

43. Because the geodesic curvature of a surfac

curve is intrinsic and does not depend on the su

rounding space, we can use surface coordinate

throughout to express it. We wish to determine th

geodesic curvature (cr) of an /V-surface curve i

azimuth a whose unit tangent vector is

Ip = A/i sin a + nn cos a;

and. we shall also require the geodesic curvatur

(cr*) of the usual orthogonal vector

jti
= —kfj cos ac + iAp sin a.

We shall assume as often before that lp,jf} refer t

a family of surface curves and their orthogon;

trajectories.

By direct surface covariant differentiation, we hav

ltiy
= kpy sin a-\- (ipy cos a—j^ay

12.063 —jji{(x)y sin — ay)

.

using Equations 12.022 and 12.023. Equating thi
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to the first equation of Equations 4.11, we find that

12.064 crly + (j*jy— toy sin 4> — ay:

if the arc element in the direction ly is dl. this

reduces to

12.065 <T=sm<f>(d<oldl) — (da/dl).

44. For the parallel trace, that is, for a surface

curve whose tangent is throughout in the parallel

direction, we have a— In and da/d/ = 0; while

from Equation 12.029, we have d(o/dl = — Ai sec (/>

so that the geodesic curvature of the parallel trace

is given by

12.066 <j\ = — A] tan (/>.

45. Similarly for the meridian trace, we have

a = and da/d/ = 0: while from Equation 12.030,

we have d(o/dl — — ti sec (j) so that the geodesic

curvature of the meridian trace is given by

12.067 o-> = -ti tan
<f>.

46. We can now express the geodesic curvature

of any surface curve ly in azimuth a in terms of

o~i , cr-> as

cr= (sin (f>)coy(ky sin a + /xy cos a) — (da/dl)

= CTi sin a + cr> cos a — [dajdl)

12.068

in which dl is the arc element in the direction ly .

47. By equating Equation 12.065 or 12.068 to

zero, we have the differential equation of the surface

geodesies. It has usually been assumed in classical

geodesy that the form of the equation derived from

Equation 12.065, that is, da— (sin <f))doj, applies

only to a surface of revolution; indeed, it has been

stated that a reference spheroid was originally

chosen for this purpose. Nevertheless, the equation

is true for the geodesies on any surface.

48. In particular. Equation 12.067 enables us to

say that the meridian trace is a geodesic if, and only

if, f, = 0, and thus is also a line of curvature; it

would then be also a plane curve because its space

torsion (Equation 7.08) would be zero. The surface

normals would also be plane curves because they

are coplanar with the meridian and the fixed Car-

tesian axis Cr
. Moreover, we can say by contracting

Equations 12.046 and 12.047 that the meridian and

parallel traces are then $- and to-coordinate lines.

Finally, to would not vary in the meridian plane,

which contains the normal; and so. from Equation

12.032. we have yi = 0. All these conditions occur

when the field is symmetric about an axis parallel

to C .

49. We may note now that the parallel trace is a

plane curve anyway, even iff, is not zero; its vector

curvature from Equation 12.014 is

k lsk
s — {—Ar cos w — Br sin w)a».sA s

'

= (Ai sec (f>)
(A r cos a> + B, sin ai)

,

its principal normal is accordingly

— [A r cos (o + B r sin to)

,

and its binormal is C, which is a constant vector.

The angle 6 between the principal normal and the

surface normal is given by Equations 12.009 as

cos 6 = — cos
(f)

so that we have
0=7T- 0.

Finally. Equation 7.08 gives the space torsion as

h - ( dd/dk) =h+( d<j}/dX )
= 0,

using Equation 12.029. Again, we have proved that

A.'' is a plane curve.

THE METRIC TENSOR
50. We can now obtain the covariant and con-

travariant components of the metric tensor from

the formulas, Equations 2.08 and 2.09, as

grx = K A..s- + flr.fls + VrVs

g rs = \ rks + rl
r
rl

s +V rV s
.

Components of the surface metric tensor are

similarly given by Equations 2.34 and 2.35 as

<2<*/a
= kakfi+ iXcixn

aa^= kakP+ fjL
a
fi^.

Using (<o, (/>) as both surface and space coordinates

and substituting the vector components from

Equations 12.041, etc., we have

#n = «ii = (kl + t'i ) cos- <t>/K-

ftvi = (i\i = — 2Hti cos 4>/ls.-

gl2 = 0,22= (kj+fi)/K 2

#13
= h 3(l/n) ti cos d{\/n)

K do; K 34)

= -[yi{k'i-\-fj)-2Hy2ti]l{nK
2 sec <f>)

_ £i sec
<f»

d(l/n) kj d(\/n)
g2A ~ K do; K 8<f)

= -[y-2 (ki + t'i)-2Hyit1]lnK i

g33 — sec- </>

d(lln]
t

d(Hn

dto / V d<j)

= [yf(*i+*?) + yi(*f+t?)

-4Ht iyiy2 + K 2]l(n*K 2
)

12.069 =sec-/3//!-

I

* -
n-
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in which (3 is the zenith distance of the isozenithal.

In this last result, we have anticipated Equation

12.098.

51. The determinants of the metric tensors by

direct expansion are

12.070 g-=cos- 0/ (n-K
2
); a — cos'2 4>IK 2

.

52. Components of the contravariant space

metric tensor are

g
u = {k 2 + t

2 + y
2

) sec- <b

g
i2 — (y\y-i + '2.Hti) sec <b

g
22 =(kl+t 2 + yj)

g13 = nyi sec cb

ny-z

12.071

53. Contravariant components of the surface

metric tensor are

a u =(k 2 + t
2

) sec 2
</>

a vl = 2Ht\ sec
(f>

12.072 a 22 =(k 2
. + t

2
).

54. The determinants of the associated tensors

are

12.073 ri2K 2 sec- </> ; \a
a
^\ —K 2 sec'2 $,

which are, as they should be, the reciprocals of

the covariant determinants.

SECOND FUNDAMENTAL FORM
OF THE iV-SURFACES

55. By contracting Equation 12.016 with x r
ax\ and

using Equation 6.19, we have

12.074 — ba[3
= (COS (\))ka(tili-\- IXafylS

from which, assuming as usual that o», (b are also

surface coordinates, we have

baji
= — (COS <f>ku £M, M'2>

12.075 = (fa cos 2 <j>IK,-ti cos <f>/K, fajK).

56. The determinant of the form by direct cal-

culation is

from which the contravariant form (from §8-1) is

12.077 b afi = (/u sec 2
0, h sec </>. fa).

57. We have already seen in Equation 12.024 that

12.078 bali
— —Vali

in which it is understood that va/i are components

of the space tensor vrs taken in relation to the

space metric.

58. By combining Equation 12.075 with Equations

12.044 and 12.045, we can write

12.079 b\a —~ (cos 4>)ka \ b-ia —— Mq,

which are frequently useful relations; also, we have

12.080 b u> = -(sec(f>)\a
; b'

la=-fia
.

59. Yet, another useful formula can be obtained

by noting from Equation 12.016 that in these co-

ordinates we have v,:i = 0. We then have from

Equations 12.020 and 12.024

12.081

12.082

(In n) a=VrSv
sx r

a

=— bajjV
13

v a = — b ali {\n n)^.

12.076 b = cos 2
(j>IK

THIRD FUNDAMENTAL FORM
OF THE IV-SURFACES

60. There are several ways of computing the

third form cap; perhaps the simplest being from

the formula in Equation 7.20

Can = 2Hbaii
— Ka au

so that we have

cu= {h + fa)fa cos 2 4>IK- (k'i + t
2

) cos 2
<})IK

= cos 2
(b

cn= —{ki + fa)ti cos <f>IK+ 2Ht1 cos 4>IK

=

c22 =(A, + A2)A I
//v-(A- 2 + ?

2 )/A'

= 1,

and collecting results we have

12.083 ca/3=(cos
2

tf>, 0, 1).

The determinant is

12.084 c=cos 2
(/>.
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agreeing with Equations 7.18 and 12.076; the con-

travariant form is accordingly

12.085 c«0=(sec 2 0, 0, 1).

It may be noted that if we take the determinant

of the defining Equations 6.18,

by the ordinary rule for multiplying determinants,

we have

b 2= ac,

a relation which is accordingly true in any coordi-

nate system, as we may see also from Equation

7.18. It can easily be verified from the (w, (j>, A)
values in Equations 12.070, 12.076, and 12.084.

THE COORDINATE DIRECTIONS

Longitude

61. From the metric, an element of length in the

to-coordinate direction (dfj>, dN zero) is vgudco.

The contravariant components of a unit vector in

this direction are accordingly

12.086 i
r =(l/Vfti, 0, 0),

and its azimuth a\ will be given by

cos ai = i
r
fAr= hi (k'i+ t\yt2

12.087 sin ai= irkr = -hl(kl+ tl)
1 l2

.

62. Using Equations 12.058 in which A is the

azimuth of the Ki-principal direction, we find

without difficulty that

(Af+*?)
1/2= (k! sin2 A + k'{ cos- A) 1 '-

— m-2, for instance,

I
so that we have

cos a.\ = ( K\ — Ko ) sin A cos A/nio

1

12.088 sin ai = — (k2 sin 2 A + ki cos- A) /mo

sin (A — oc\ ) = Ki cos A\m%

12.089 cos (A- at) =- Ki sin A/m.

Latitude

63. In the same way, the contravariant com-

ponents of a unit vector in the (^-coordinate direc-

tion are

12.090 /=(o, i/V^, 0),

and its azimuth a2 will be given by

cos a2 =j r
(jL, - = — /.,/(/.i + /i )

,;2

12.091 sin a2=jr\T =W(A? + *i)
1/2

-

Again, using Equations 12.058, we have

( k'i + t\ ) "- =
( k\ sin- A + k\ cos 2 A )

ll -

= mi, for instance,

cos a-i — — (k\ sin 2 A + k-i cos 2 A) /mi

12.092 sin a>= (ki — k>) sin A cos A/nii

sin (A — a>) = — ki sin A/nii

12.093 cos (A — a>) = — k2 cos A\m x .

64. Now consider the spherical representation

of the A-surface in which the surface coordinates

(to, (/>) will be the same because the normals at

corresponding points are parallel. It is evident

that the ^-coordinate line is represented by the

spherical meridian, which is parallel in space to

the meridian direction fx' on the surface. We have

also seen in Chapter 11 that a principal direction

and its spherical representation are parallel in

space. Consequently, the angle (A — a->) on the

surface corresponds to A on the sphere; from
Equation 11.24, we have

tan A = (k2/ki) tan (A — a2 )

,

which verifies Equations 12.093.

65. In the same way, the angle (A — at) on the

surface corresponds to (A— iir) on the sphere so

that we have

— cot A= (k-j/kti) tan (A — ai),

which verifies Equations 12.089.

66. The fact that the (w, 4>) coordinate lines are

represented by the spherical meridians and parallels

again shows that the representation is not as a rule

conformal because the coordinate lines are not,

in general, orthogonal. It is clear from Equations

12.087 and 12.091, or from a12 in Equations 12.069,

that the coordinate lines will be orthogonal if, and
only if, £i = 0, corresponding to the axially sym-
metrical case.

67. The metric of the spherical representation

in these coordinates will be

12.094 ds 1 = cos 2
4> dto- + d<f>'\

so that the scale factor (dsjds) in the direction of
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the to-coordinate line will be

V(cos- <t>la u )
= Kl ( kl + t\

)

1/2 = Kim,

and in the direction of the (^-coordinate line will be

V(l/«22 )= Kj{k\ + t\yi* = Kim,

in which m\, m> have been defined in connection

with Equations 12.092 and 12.088.

The Isozenithal

68. A unit vector in the /V-coordinate direction

(a). (j> constant) is similarly given by

12.095 ft
r =(0, 0, 1/Vgfc),

and its azimuth (a) and zenith distance (j8) will be

given by

sin a sin fi= k rk,= {sec <j> d ( lln)ldio}lvga3

cos a sin /3= k r
fJLr = {d(l/n)/d<j!>}/Vg33

cos /3= k rvr= {Iln)/Vgs3

12.096

or

sin a tan (3 — — (see </))d(ln n)/dco

12.097 cos a tan/3=— d(ln n)/d#.

69. Because co and </> are constant along this line,

it is evident from Equations 12.008 that the V at

all points along the line are parallel; and so are the

(A
1 and vr. The whole triad of vectors can be trans-

ported parallel to itself along the line, which we
shall call the isozenithal because the zenith direc-

tion v r is the same at all points along any one such

line. Another way of expressing the parallel trans-

port of these vectors is to state that there is no

intrinsic change in their components along the line,

or in tensor notation

12.098 \rgk s = flrgk* = vrsks — 0.

These tensor equations are, of course, true in any

coordinates.

and differentiate it covariantly as

12.099 Nrs=nsvr+ nvrs .

The Laplacian of N in space is then

A/V= grsNrs = n*v s + ngrsvrs

and the last term from Equation 7.19 is equal

{—2Hn), so that we have finally

12.100 &N=dnlds— 2Hn

in which ds is an element of length along the norms
This last equation will be recognized as an exa>

form of a formula usually attributed to Bruns i

applications where /V is the geopotential and n

gravity, but we see that it is simply a geometric

property of any family of surfaces.

71. From Equations 12.025 and 12.026, togethc

with Equation 12.099, we have — without difficulty

-

the following generally useful relations,

12.101 ( cos <\>) o)s= ( 1/re)Nrs\r

12.102 4),=(l//2)/V,,M
'-

12.103 ns =Nrsvr
\

differentiating the first covariantly. we have wit

some substitution

(cos (f))o)st= (sin </>

)

u),s(t>t
—

- (In n),(cos </>)cos

+ (Hn)Nrst\r+ (sin
<f>)<]>scot

— (In n) K ( cos 4>)a)t.

We note that because /V is a scalar in flat space, i

third covariant derivative is symmetrical in any tw

indices so that we have

^'/V,,,,= (^W,,),= (A/V),.

We also introduce the symbol V for a differenti

invariant from Equation 3.14, such that we ha^

V(a>, <f>)
=g' s

(i),(f)s : V(oj) =g rs
a),(Os. etc.

and finally obtain

(cos c/>)Aw = 2 sin
(f>

V(oj, 4>) —2 cos
(f>
V (w. In /

12.104 -f- (!/«)( A/V ) r K
r

.

LAPLACIANS OF THE COORDINATES

70. For some applications, we need formulas

for the Laplacian of each coordinate, particularly

that of N and its derivatives. We start with the

gradient equation

Nr=nvr

72. In the same way, we have

A<£ = — 2V(</>. In n) —sin </> cos (f)V(a))

12.105 +(1//0(A/V),
/
Lt''.

These last two equations are of particular val

in this form in applications where A/V is a constc

because the last terms are then zero.



The (o>, (/>, N) Coordinate System 81

73. From Equations 12.103, 12.099, and 12.016,

we have also

An = re{cos 2
(f>
V(o>) + V(0)}+ ( A/V),V.

12.106

74. We can easily find the V invariants from

Equations 12.046, 12.047, and 12.048 in terms of

the five parameters of the space, but first we need

to find an alternative expression for the third

component of (In n) r , taking account of Equation

12.100. We have

12.107 (In n) rv
r = (l/n)dnlds = 2H+ (AN)/n

so that Equation 12.048 becomes

{lnn)r=yikr+y2fU+ {2H+(AN)ln}vr .

12.108

We then have from Equations 12.046, etc.,

12.109 cos-' 4> V(<u)=jfcf+ t?+ y
2

12.110 V(<M=A!+«5 + yi

12.111 cos</> V((o, (f>)=2Ht l
+ y 1y2

cos V(o>, In n)=-k 1y l —tiy*+ 2Hyi+ (yiAN)ln

12.112 =A'2y,-/,y,+ (yiAN)ln

V(<£, In n)=-f,y,-Ayy2 + 2//y2 + (y2AN)/n

12.113 =A' 1y2
-/

1y 1 +(y2A/V)//j.

We have also

cos- 4> V(w)+V({/>) = (A 1 + A 2 )

L'-2(A 1 A-2-^)

+ y i + yi

= 4//--2A'+ (y?+yl)

12.114 =Ki+ Kl+(yf+ yl),

which is the sum of the squares of the principal

curvatures of the /V-surface plus the square of the

principal curvature of the normal, all at the point

under consideration. An alternative expression for

the Laplacian of n is accordingly

(Hn)An =W1 -2K+ (yf+ yf)

12.115 + (l/n) (AN) rv
r

.

75. All the previously mentioned formulas in

this section refer to the space invariants. We can

easily find the surface invariants of w and (b (de-

noted by overbars) from the (1, 2) components of

306-962 0-69—

7

Equations 12.026 and 12.025

12.116 (COS <f))Q)a—- bapX*3

12.117 0«=-6«*/li*.

which are surface tensor equations. By surface

covariant differentiation of Equation 12.116, we
have, using Equation 12.022,

(cos (j))(t)ay
= (sin <f>)o>u</>y — bapy\& — bau(x^a)y sin c/>

so that we have

(cos 0)A&)= (sin <£)V((u, #) -a^ba/fyk

+ (sin (b)V(a), <b)

12.118 = 2(sin0)V(a>, cb)-(2H) aK
a

with

12.119 V(o),<b)=2Htisec<f>;

similarly, we have

12.120 A^ =- (sin
<J>

cos 0)V(a) - {2H) u^ a

with

12.121 V(ft)) = (A? + tf) sec2
<£.

76. We cannot differentiate Equation 12.081,

(In n) a = — baiiv®,

in the same way because this equation is simply

a relation involving selected components of the

space vector v r in a special coordinate system; it

is not a surface tensor equation because v 13 is not

a surface vector.

We shall, however, find in Equation 14.28 an ex-

pression for the surface Laplacian of n, which can

easily be put into the following form, comparable

with Equation 12.115, as

(Hn)An~= (4H 2 -2K) + 2(yi + yj)-d{2H)lds

12.122

in which 5 is again the arc length of the normal.

It should be noted that this, unlike the space
invariant, does not depend on AN.

77. The surface Laplacian of N is, of course,

zero because ^V is constant over the surface.

THE CHRISTOFFEL SYMBOLS

78. We can compute the Christoffel symbols

straight from the definitions and the components of

the metric tensor or from transformation formulas;

but, because we know the components of the base
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vectors and have formulas for the covariant deriva-

tives of the coordinates, it is possible to take various

shortcuts which are more instructive.

79. For example, we can express the tensor Nrs as

/v,,=-ryv,=-ns ;

by covariant differentiation of the gradient equation

Nr = n vr ,

we have

12.123 Nn= ngVr+nvn .

We have also, from Equation 12.016, i/,3 = 0; from
Equation 12.024, we have vap=— bais- By simple

substitution, we can then obtain all the distinct

Christoffel symbols with superscript 3 as follows,

Tin = nbap ;

12.124

TL = n3 d(ln n)ldN.

80. To evaluate the symbols which have a sub-

script 3 but no superscript 3, we shall make use of a

device which is frequently useful in other directions.

We can express a Christoffel symbol in terms of the

components of any three mutually orthogonal

vectors by means of the following formula, which

can easily be verified by multiplying kj, fXj, Vj in turn.

12.125

kl = 77 ^J + 777 f* + 77 vJ

dxl dx' ^ dx'

—
( kklk> + /Jik IIJL

J + VklVj ) .

If (Xr , fjbr , Vr) have their usual significance in this

chapter and 1= 3, then the whole term within

parentheses vanishes because of Equations 12.014,

12.015, and 12.016; thus we have

yet
1

fc3

"

dN dN * dN

12.126
dka

d/JL
a dva

' dN
Vk,

the last line being obtained by differentiating the

identity

kkka + tX k /JL
a +Pl< V

a =8k\

For A = j8(^3) we have from Equations 12.079

and 12.080

1
/33 ^7-b la + —Fr b-a

dN dN

dN

12.127 : — buy
dbay

dN'

We shall show in Equation 12.144 how this symbol

can be expressed in terms of n and iV-surface

tensors.

81. For k—S, using Equations 12.041, etc., we
have

r„ dHl/n) t1 „ dHl/n) ,., d(lln) , ,.
xr-=-^v b]a~^dW b M ^(ln n)>>

which simplifies without difficulty to

d 2(ln n)
12.128 r?3

= (l/n)6^
BjfidN

82. The remaining symbols are all of the form

_ dkq
~ dx®

12.129
dxP

ix
y — a)p sin (f)(/Jiak

y — kafxy)+ ba^v"

on substituting Equations 12.022, 12.023, and 12.024.

In evaluating this expression, we can make use ol

the symmetry of the Christoffel symbol in the sub-

scripts. For example, if either a or /8= 2, then we

can eliminate the whole of the third term by taking

)6= 2. The expressions on the right, obtained b>

interchanging a and /3, can be made identical by

using the Mainardi-Codazzi equations of the /V

surfaces, which we shall consider in the nexl

section.

83. We can apply the general formula of Equatior

12.125 in two dimensions and write

12.130 lfl* dx* dx*
^+-^' kapky — fJLaplJ?

in which the Christoffel symbol must now be take:

in relation to the surface metric; kap, fxap are sui

face tensors. By subtraction from Equation 12.12?

we have

Tl (space)

12.131

Tin (surface) =— va$v

= ba&vy

because, as we have seen in Equations 12.022 am
12.023, the tensors A a/3 , ^ta/3 can be considered eithe
as surface tensors or as components of space ten

sors in these coordinates. This last result is o
frequent use.

THE MAINARDI-CODAZZI EQUATION*

84. The two Mainardi-Codazzi equations of a
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surface may be considered as conditions of integra-

bility, or from § 6-27 as conditions for the surface

to be embedded in flat space. In either case, use

must be made of the fact that the Christoffel

symbols are symmetrical in the two subscripts

because this is a distinguishing mark of Riemannian

geometry, arising from the nature of the metric

tensor.

85. If we are given a set of functions aap, bap-,

does a surface exist for which these functions are

the appropriate fundamental forms? To prove that

a surface does exist in the neighborhood of a point

where the aa and ba$ are given, we must be able to

integrate the Weingarten and Gauss equations

(Equations 6.17 and 6.16)

vr
a=— a^bayx r

p

x^=bu0v
r

:

it can be shown that the necessary conditions for

this are the Mainardi-Codazzi equations. For our

purposes, we shall always start with a family of

surfaces — definable in nature over finite regions by

other means — so that these equations may be

considered as properties of the geometry or of the

space.

86. If we take the surface covariant derivative of a

surface vector Xa , we have

then a necessary condition for the Christoffel

symbol to be symmetrical in a, /3 is

12.132 \afi
~ kite = dKJdxfi ~ dXpldx?.

For a given superscript, there is only one Christoffel

symbol in two dimensions with dissimilar subscripts

and therefore only two such symbols in all. It will

accordingly be sufficient to satisfy Equation 12.132

for one other independent vector fjLa so that we have

12.133 llafi
— flpa = dfJLjdx13 — dflpldxa.

Both equations are satisfied identically unless a
and /3 are different; so it will be sufficient to make
B'=l, )3= 2, and to substitute Equations 12.022

and 12.023 to obtain

— /jl-2 sin <£= d\i/d<£ — dAo/dto

X.2 sin <b= dfill d<f>
— d/x2/do>,

which reduce on substitution of Equations 12.079 to

db\\ld<f> — dbvilda) + bw tan </> + 62 2 sin (b cos </>=

12.134

It should be noted that in deriving these formulas,

we have used Equations 12.022 and 12.023, which

were themselves derived on the assumption that

the space is flat through use of the Cartesian vectors

A r , Br , Cr .

Equations 12.134 and 12.135 are the Mainardi-

Codazzi equations of the /V-surfaces in (w, cb, N)
coordinates. They can be expressed in several other

equivalent forms, but for the present, we shall be

content with them as they stand.

87. If, instead of the surface vectors A.,, fx, , we
take the space Cartesian vectors A,, B r . Cr whose
covariant derivatives are zero, then, so far as the

TV-surfaces are concerned, we have to satisfy the

following equations to ensure that the appropriate

Christoffel symbols are symmetrical.

dAJd^dAilda) : dBJd^dBzlda) :

dd/d^dCz/do)

in which A\, etc., are components in (oj, cb, N). If

we obtain A\, etc., from Equations 12.009 by substi-

tuting the (o>, (/>, N) components of \r , etc., from
Equation 12.041, then these conditions give exactly

the same results as Equations 12.134 and 12.135 — no
more and no less. Moreover, it is evident from Equa-
tions 12.009, etc.. that the above conditions are

equivalent to

d2x d 2x 'cry by dzz o-z

12.135 dbvzld<f> — dbz-ildu) — b Vi tan
(f)
— 0.

debdo) dtod4> "

d4>d(t) d(od(f>
'

defcdeo Swdcf)'

which are well-known integrability conditions for

the existence of the Cartesian coordinates (x, y, z).

This demonstration goes part of the way toward
justifying the statement made in § 12-84 and § 6-27
that the Mainardi-Codazzi equations are conditions

for a given surface to be embedded in flat space.

If the surface is embedded in curved space, the

Mainardi-Codazzi equations or integrability condi-

tions take the different form of Equation 6.22.

88. We have so far considered only the /V-surfaces,

but there must similarly be two equations for each

of the other coordinate surfaces. We need not, how-

ever, consider these surfaces specifically. We shall

derive the same answer more easily if we form equa-

tions similar to Equation 12.132 for three independ-

ent space vectors and if we substitute such relations

as Equations 12.014, 12.015, and 12.016 which apply

only in flat space.

89. First, we consider the equation

12.136 Vrs~ VSr = d Vr/dxs — d Vsjdx
r
,

and then substitute Equation 12.016 and the (w, (f>.
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TV) components of v r - For r— 1, 5 = 2, the equation is

satisfied identically. For r= 1,5 = 3 and r=2, 5 = 3,

we have

A 3 cos 4> = d(l/n)lda) ; /M3 = d ( l/n)/d<£,

obtained before in Equations 12.041 and 12.042.

90. The equation

12.137 k rs - ksr = d k rldx
s - d kg/dxr

for r=l, 5 = 2 gives Equation 12.134, and for

r— 1. 5 = 3 gives

— /A3 sin + 1^3 cos
<f>
= dkildN— dk:ild(D,

which, on substitution of Equations 12.079, 12.042,

and 12.043, reduces to

db u d 2 (l/n)
, , , d(l/n ) cos 2

"Trr= ;

—

~, r" Sin rf) COS <f) ;
—

dN dor ^ ^ d<f) n

12.138

For r = 2, 5 = 3, we have similarly

= dk2/dN-dk3 /d<l>

or

12.139
a6 12 a

2 (i/«; — tan
(f)

d(lln)

dcodN d(od(f)

both of which are new.

91. The equation

P-rs — fJLsr = d/Xrldxs ~ d/Xsldx
r

for r=l, 5 = 2 gives Equation 12.135, and for

r—1, 5 = 3 gives Equation 12.139. For r=2, 5 = 3,

we have

V;i = dfJi-z/dN — dfJLsldcf)

or

12.140
db-22 d

2 (l/n) 1

d<f>
2 n

92. There are accordingly only three independent

Mainardi-Codazzi equations for the space in addi-

tion to the two for the /V-surfaces — a total of five

out of a maximum of six. The coordinate system is,

nevertheless, perfectly general, except that the

/V-surfaces are generated by a scalar, which means
that the equation

Nrs — nsVr + TlVrs ~ H-rVs + n,Vsr

must apply because /YVs is symmetrical in r and s.

This symmetrical relation serves to satisfy Equation

12.136. We are not therefore missing one of the six

equations; we have already included it.

93. Next, we shall put the Equations 12.138,

12.139, and 12.140 in tensor form. From Equation

11.03, the metric of the spherical representation of

an /V-surfaee in (oj, <j>) coordinates is

12.141 ds 2 = cafidx
adxV = cos2

<f> dco2 + d<$>
2

,

using Equation 12.083. It is easy to show by direct

calculation from the definitions that the only non-

zero Christoffel symbols in this metric are

12.142 T\ = sin </> cos <f> ; r}
2
= -tan</>.

By inspection, we can now write the Equations

12.138, 12.139, and 12.140 in the form

io uo dbati ^ d
2 (l/n) — d(l/ra) ca/3lJ" 1*6

dN~ dx?dxP
+ L

<# dx y ~T ;

substituting Equation 11.30, we have

dbali
12.144

dN L+^-a-T
in which the second covariant derivative of (1/ra)

is taken with respect to the metric of the /V-surface.

Each term of the right-hand side of this equation is

a surface tensor; therefore, the left-hand side must

be a surface tensor.

94. The foregoing analysis has been given in some
detail because it is important to ensure that we have

not overlooked any essential relation in the differ-

ential geometry of the space, such as an omitted

Mainardi-Codazzi equation. Moreover, we require

Equation 12.144 to show how the Christoffel sym-

bols of Equation 12.127,

dbpy
r%3 = b°y

dN
can be expressed in terms of n and surface tensors —
as in the case of all other Christoffel symbols with

a fixed 3-index.

ALTERNATIVE DERIVATION OF THE
MAINARDI-CODAZZI EQUATIONS

95. In view of the fundamental importance of the

three additional space equations in Equation 12.144

we shall now approach them from a different direc

tion and, at the same time, shall derive some gen
erally useful formulas.

We take one particular /V-surface and draw the

tangent plane at a point P (fig. 14). We drop a

perpendicular OQ on the tangent plane from the

Cartesian origin 0, and denote the length of this

perpendicular by p. The vector OQ is according!)

of magnitude p and of direction vr, while the vectoi

OP is the position vector p r
. The coordinates

(&>, </), p) may be known as tangential coordinates.
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isozenithal

Figure 14.

We have at once

12.145 p= prvr ;

taking the surface covariant derivative of this, we
have also

12.146

Pa = grsXaV
r + p rV

r
a

= PrVa ,

the remaining term being zero because of the

orthogonality of x s
a and v T as space vectors. We

have also used the fact that the tensor equation

prs
=

grs is true in Cartesian, and therefore in any

coordinates.

Again, taking the surface tensor derivative of

Equation 12.146, we have

PaH = grsX
sV r

a + p r V
r
aji

= — b a(j + p r{b
yb

bal3bV^ — Ca$V
r
)

in which we have used Equations 11.26 and 8.10.

With some slight rearrangement and use of Equa-

tions 12.146 and 12.145, we have

baii = — Pali + by8ba opy — pCafi

12.147
dx adx^

+ rZi}Py-pca0

where we have used Equation 11.30; the (overbarred)

Christoffel symbols of the spherical representation

have values from Equations 12.142 in (o», <£)

coordinates.

96. Next, we differentiate this last expression

along the isozenithal at P. The tangent plane moves
parallel to itself because the direction of the normal
is unaltered; for the same reason, the spherical

representation remains unaltered. Consequently,
the Christoffel symbols in Equation 12.147 remain

constant, as is otherwise obvious from Equations

12.142, because they are functions of cf> only. Again,

the caji from Equation 12.083 are constant during

the differentiation. If the unit isozenithal vector is

kr and if the displacement along the isozenithal is

ds, then we have

dN = Nrk
rds — nvrk

rds = n cos (3 ds = ndp

so that we may write

12.148
dp = l

dN n

This result also could have been obtained from the

third component of the space covariant derivative

of Equation 12.145 in (gj, <j>, N).

Ordinary partial differentiation of Equation 12.147

accordingly gives us

dba0

dN
'12.149

3S(1/n)
+TzJ±) -*

d^dxP a/3 n/y

which is precisely the same as Equation 12.143 or

12.144. In deriving this equation, we have made use

of the properties of the Cartesian position vector

and of the constant components of Cartesian vectors

during spherical representation. In other words, we

have assumed that the space is flat, but have as-

sumed nothing else; this again illustrates the two

ways of considering the Mainardi-Codazzi equations.

97. We can also show by ordinary partial differ-

entiation of Equation 12.147, with respect to surface

coordinates, that we have

d bqjj d buy

dxy dxP
'12.150 r^bys+rtybps.

which on expansion is easily shown to be equivalent

to the Codazzi equations of the A^-surface in Equa-

tions 12.134 and 12.135. Accordingly, we can say

that Equation 12.147 is an integral of all five Codazzi

equations, which are automatically satisfied every

time we use Equation 12.147. A more compact form

of Equation 12.147 is

12.151 —ba = Pat}+ pCap

in which the overbar indicates that the second

covariant derivative of p is taken with respect to the

metric of the spherical representation of the

A-surface.

HIGHER DERIVATIVES OF THE
BASE VECTORS

98. Now that we have formulas for the Christoffel

symbols and for the Mainardi-Codazzi equations,

we can without difficulty find expressions for the

higher derivatives of the base vectors in these co-

ordinates. First, however, we shall collect some
formulas for the first derivatives.



86

From Equations 12.014, etc., we have at once

12.152 \r3 —,Atr3 = VrZ= 0.

The only nonzero components containing a 3-index
are accordingly k3a , etc.; by substitution in Equa-
tions 12.014, 12.041, etc., we have at once

12.153 A:la— sin
djlln) cos

<f> \ s]

3(/> n

12.154 ^-tan^ftjjj
doj

12.155 i*«=(l/ii)a .

99. The only other nonzero components have been
obtained before in Equations 12.022, 12.023, and
12.024, but are collected for easy reference as

follows,

12.156 kafi— (J-aOJp sin <j)

12.157 fjLap
== — ka<t)p sin 4>

12.158 Va0—— baf).

100. Components of the second covariant deriva-

tives may now be obtained straight from the defi-

nition. For example, we have

Kp3 = dkap/dN— r^Kfj — r^3
\ar

= (up sin 4>) (dfia/dN) — r%3/jLy(O0 sin (/>

— r^
3
/jiao)y sin </>

in which the first two terms cancel because /xa3 = 0.

In the same way, using the fact that the second and
third indices are interchangeable in flat space, we
have

K#a= A.a3/3
= -(sin 4))iLab

ly (dbpyldN)

&a&i= l*aW= (s,m 4>)kab
ly
(dbffyldN)

12.159 Poj93 = V*30= d bap/dN

in which we can substitute Equation 12.143 or

12.144 for dbpy/dN.

In much the same way, we find

Aa.i.3 = -n3kay =fjLa(l/n) tan As {a 2
(ln n)/dxsdN}

fia33=— Tl3 fJiay=— ka (l/n) tan A6 {r*-(ln n)/dxsdN}

i'a-s-s =-n3 vay=a/n){dHln n)/dx adN}.

12.160

We can also find by direct covariant differentiation

and by use of Equation 12.131 that

12.161 va$y= — ba0y — 6/jy(ln n)a ;

other components can be found similarly when
required.

Mathematical Geodesy

THE MARUSSI TENSOR

101. It is now clear that the second and higher

order metrical properties of the system can be

written in terms of the five curvature parameters

(Ai. ki, t\, yi, jz) and their derivatives. But the entire

system has been generated from a single scalar A
whose covariant derivatives must be related to the

curvature parameters. To show this, we have onl)

to contract the tensor Equation 12.017,

Nrs=nsVr+ nVrs,

with the base vectors to obtain

Nrskrks= -nk!

NrsjJ-'' jJL
S = ~ Tlk%

Nn\r
fi

,= -nti

Nrsk
rvs=nyi

NrsfSv* =rey2

12.162 Nrsv'v
s = n(ln n

)sv
s

in which we have used only definitions and Equa
tion 12.028. Apart from the factor n, all the param

eters on the right are accordingly the components

of the symmetric tensor Nrs . This fact was firsl

noticed by Marussi ' in the case where TV is a gravi

tational potential as well as a generalized coordinate

102. As we shall see later, the case of a Newtonian

gravitational field simply involves assigning a par-

ticular value to the Laplacian of A\

AN=Nrs(k
rks + IU,

r
/JL

s + V rPs
)

12.163 =-n(k 1 + h->) + n(\n n)sv
s

,

so that the law of gravity eliminates one of the

components of Nrs , leaving us with the other five.

In a local Cartesian system (x, y, z) with axes (k'\

jx'\ vr
), we have

Nrskrks= d-N/dx2

12.164 Nrsk
r
ix

s = d 2Nldxdy. etc.

The parameters are usually given in this par

ticular form in the literature, except that the x-axis

is sometimes /x'

.

THE POSITION VECTOR

103. We have seen in § 12-95 that the perpen

dicular p from the Cartesian origin to the tangen

plane of an /V-surface is of special significance h

1 Marussi (1949), "Fondements de Geometrie Differentieli

Absolue du Champ Potentiel Terrestre," Bulletin Geodesique

new series, no. 14, 411-439.
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this coordinate system. Because p is the scalar

product of the position vector p, and the unit nor-

mal v'\ the question naturally arises whether we can

express the other components of the position vector

in terms of p. We can express any vector in terms

of the orthogonal triad k, ., p,r , vr , and so can write

12.165 p,-= qk,+ rfjL,- + pv r

in which the scalars q, r have to be determined.

104. In rectangular Cartesian coordinates, the

components of p r are (x, y, z): it is easy to verify

from Equation 1.07 that in these coordinates

12.166 &
which is a tensor equation true in any coordinates.

If we take the covariant derivative of Equation

12.165 and substitute Equations 12.014, 12.015, and
12.016, we have

grs= {qs~{r sin (/j)o).s + (p cos (fj)o>.s }A.,-

+ {rs + (q sin 0)w.s + p</).s }p,-

+ {Ps~(q cos (j>)(os -~r(f)s}vr ;

contracting this in turn with A' , pf, v'\ we have the

equivalent three vector equations

ks=qs— (r sin (j))<o lt + (p cos </>)<wx

ps =rs + {q sin (f))cox + p<ps

12.167 vs=

p

s— (q cos <f>) o)s
—

r<f>„.

105. Evaluation of the third of these equations in

(oj, (/>, TV) coordinates gives at once

dpldw= q cos ; dpld<j>=r ; dp/dN=l/n ;

12.168

substitution of these values in the first two equations

of Equations 12.167, together with the (co, </), N)
components of Xs , p,s , enables us to recover Equation

12.147, which, as we have seen in § 12-97, is an

integral of the Codazzi equations.

We can finally rewrite Equation 12.165 as

12.169 pr=(sec(f>)(dpld(0)kr+ (dpld(l>)p,r+pvr.

106. The same result could have been obtained

from Equations 12.145 and 12.016, but it is of some
interest to obtain the result by this alternative route,

and at the same time to verify Equation 12.147.

107. If the equations of one of the /V-surfaces are

given in the Gaussian form of Equation 6.03 as

xr=xr
((o, (f>)

where the xr are Cartesian space coordinates

(x, y, z), then we can easily find p and its derivatives

from the formulas

p — p,-v '
= x cos 4> cos co + y cos 4> s ' n &> + z sin

<f)

12.170

dp/d(f)=prp.
r=—x sin 4> cos o»—y sin

(f)
sin co+z cos (/>

12.171

(sec </>)dp/da> = pA'=— x sin ut + y cos o>

12.172

in which we have used Equations 12.008.

108. Otherwise, if a surface is given in the form

12.173 N=f(x, y, z) = constant,

then by evaluating the gradient Equation 12.001 in

Cartesian coordinates, we have

n cos 4> cos (x> — df/dx

n cos (/> sin aj = dfldy

n sin
(f>
= dfjdz12.174

with

n2= (df/dx)
2 + (df/dy)

2 + (dflBz)
2

.

These equations are sufficient to express p and its

derivatives in terms of (x, y, z); together with

Equation 12.173, these equations may serve to ex-

press (x, y, z) in terms (a>, </)), that is, to recast the

equation of the surface into the Gaussian form. By
substitution in Equations 12.170, etc., we have

dp

12.175

It should be noted, however, that n in these equa-

tions refers to the family in Equation 12.173 for

different values of N. There are other families to

which a given surface could belong, and the form
of one given surface does not settle the value of n

on that surface.

109. We have so far considered the position

vectors of points in one particular TV-surface. One
of the basic operations of geodesy is, however, to

determine the relative positions of the two ends of

a line in space, which is equivalent to finding a

relation between the position vectors at the two

np-= x(dfldx) + v(dfldy)

+ z(df/dz )

dx) + (!)

2

P69 (« dx dzj

+(!)(-' dy
-
y
V)

y
dzj

n(dpldco) == -x(dfld} + yidf/dx
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ends. If one end of the line (of length 5 and unit

tangent vector /') is distinguished by overbars,

then the equation

p> = p> + sl>+h 2
(lr

s
ls ) + }sHW s)J'+.

12.176

is true in Cartesian coordinates where it reduces to

a Taylor expansion for each Cartesian coordinate.

If p
r is interpreted as drawn through the barred

point parallel to its current direction and length so

that its Cartesian components remain the same
during the parallel transport, then Equation 12.176

can be considered as an equation between vectors

all at the barred point. It is accordingly true between
such parallel vectors in any coordinates, provided,

of course, that the Taylor expansion is valid. We
may also lower the r-index by contracting with

grk, in which case pk become the covariant com-

ponents of the parallel vector.

110. If the line is straight, then Equation 12.176

reduces to

12.177 p
r = p'+sl>\

which is an elementary vector equation either be-

tween the Cartesian components or between the

components in any coordinates of vectors drawn
equal and parallel to p

r
, p

r
, 7 r through any point in

space.

111. The expression in Equation 12.169 of the

position vector in terms of the base vectors is im-

portant because we are usually concerned with the

terminal azimuths a and zenith distances /3 of the

line. For example, if we contract Equation 12.177

with /, and note that l r= l r for a straight line in Car-

tesian coordinates and in the invariant scalar

products, we find that the length s is equal to the

difference in the values of

(sec(f))(dpldco)sma sin/3+(dp/d$)cos a sin/3+p cos/3

at the two ends. This depends on knowing the value

of p and its derivatives for the two TV-surfaces. The
problem then arises how to transfer such functions

from one /V-surface to another, usually along the

isozenithals. We shall see how to do this in later

chapters, both in a general (a>, (f),
N) system and in

simpler coordinate systems which can be used to

linearize the problem.



CHAPTER 13

Spherical Representation

in (<o,
<J>,
N)

GENERAL

1. Some properties of the spherical representa-

tion of surfaces, over and above those derived in

Chapter 11, can be obtained most simply in the

special coordinate system of the last chapter; we
are now able to do this.

CURVATURES AND AZIMUTHS

2. We have seen in § 11-8 that a principal direc-

tion of the surface is parallel in space to its spherical

image. The meridian planes at corresponding points

are parallel because they contain the parallel nor-

mals and parallels to the common C'-axis. Accord-

ingly, the meridian directions at corresponding

points are parallel, and therefore the azimuth A of

a principal direction is unaltered in the spherical

representation.

3. If a, a are, respectively, the azimuth of a line

on the surface and the azimuth of the corresponding
line on the sphere, and if i//, ifj are the angles (in the

sense of fig. 11, Chapter 11) between these corre-

sponding directions and the principal direction

whose azimuth is A, then we have

13.01 (A — «)= «// ; [A — a) = «/>.

4. The normal curvature A in azimuth a is then

from Equation 12.056

k = K\ cos ijj sin (A — a) + k-2 sin i)j sin (A — a)

— — m cos i/J cos (A — a) — m sin ip sin (A — a)

=—m cos (A— a) cos {A—a)
—m sin {A— a) sin {A— a)

= — m cos (a — a)

13.02

in which m is the scale factor for the direction a,

that is, {k
2 + t

2
)

112 from Equation 11.21, and we have

used Equations 11.22 and 11.23.

5. Similarly, from Equation 12.057, the geodesic

torsion in azimuth a is

13.03 m sin [a — a)

which shows that the two azimuths are the same

only if the direction considered is a principal

direction.

6. Direct expressions for the azimuths are easily

obtained from the last two equations as

m cos a=— k cos a — t sin a

=— ko cos a — 1\ sin a

13.04 =d<f>/ds,

in the second line of which we have used Equations

12.060 while ds is the arc element in azimuth a;

similarly, we have

m sin a — — k sin a + t cos a

13.05

=— ki sin a — t\ cos a

= (cos 4>)dwlds.

89
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These equations give us the spherical azimuth and

scale factor in terms of the three curvature param-

eters ku k>, tt of the surface.

7. For the (^-coordinate direction, we have

a = a2 and a = so that Equation 13.05 gives

13.06 ta.na2 =—tilki — tlk,

agreeing with Equations 12.091, which, substi-

tuted in the Equations 13.02 and 13.03, give

k=Kk1/(k
2
l+ t

2
1 )

t= -Khl(k\ + t\)

13.07 m = KI(kHt2
] V 12

.

8. For the co-coordinate direction, we have

a = d\ and a = ^7r so that Equation 13.04 gives

13.08 tan ai = -k2lt\=— k/t,

agreeing with Equations 12.087, which, substituted

in the Equations 13.02 and 13.03, give

k=Kk2l{k\+ t\)

t= KtJ(k2 + t
2

)

13.09 m = KI(k2 + t
2 yi°-.

GEODESIC CURVATURES

9. The geodesic curvature of a surface curve

whose unit tangent is /" is derived from Equation

12.065 as

<j= (o)fi sin 4> — an)^:

for the corresponding curve in the spherical repre-

sentation, (to, c/>) remaining the same, we have

<t= ((op sin 4> — au)l e
.

But if m is the scale factor in the direction l
a

, that

is, {k 2 + t
2

)

11
'

2
, we have from Equation 11.12

and finally

ma— a — (a-a)tsft

'P\ d(t/k
13.10

dl

in which dl is an element of length in the direction

/". The last line in this equation is obtained by differ-

entiation of

tan (a— a) — tjk

from Equations 13.02 and 13.03.

10. We see at once that a geodesic of the surface

(cr= 0) cannot correspond to a great circle (cr= 0)

unless (t/k) is constant along the curve. This

would usually imply that f = so that the curve

would also have to be a line of curvature. Even in

the symmetrical case when the meridian geodesies

are lines of curvature, they would, in general, be

the only geodesies to correspond with great circles.

11. If we multiply Equation 13.10 by the element
of length ds=(l/m)ds of a closed continuous contour
and then integrate Equation 13.10 around corre-

sponding contours, we have

I ads— I ads —

because the total change in azimuth around each
contour is 2 77-. We conclude from Equation 10.47 that

KdS

is the same over corresponding areas; we shall see

in Equation 13.14 that this is true.

12. Equation 13.10 reduces in the case of the lines

of curvature (t = 0) to

a— ma.

If as usual the lines of curvature are

Ua , O-', KU A

v
a

, a", K2, (A —jtt)

then we have

13.11 a =Kicr ; Kia

COVARIANT DERIVATIVES

13. We suppose as usual that la are the unit

tangents to a family of surface curves and thatja are

tangential to their orthogonal trajectories. This

involves no loss of generality in dealing with one

particular curve because any given curve can be

considered a member of some family. For example,

it is well known that any surface curve can generate

a family of geodesic parallels, in which case the

ja would be tangential to a family of geodesies.

From Equation 12.063. we have

laii=j\x(o)n sin
<f>
— au)

and the corresponding equation

Iat3=fa{a>i3 sin <j>
— dtp)

in which ja is perpendicular to la on the sphere, but
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does not necessarily correspond toja - Nevertheless,

from Equation 11.15, we have

ja =(m/K)ja ;

the required relation follows at once as

(mlK)lap = laf)
+ja(ct — a)p

'k-\ d(tlk)
13.12 — latf+ja

dx*

14. If F is a scalar defined over a region of the

surface, it must be some function of (to, (j>) and can

be regarded as having the same value at the corre-

sponding point on the sphere. For its second co-

variant derivative, we have

FaP=
;>-F

-IV:

and

Using Equation 11.30, we then have

13.13 Fap-Fa^b^bafisFy.

EXPANSION IN SPHERICAL
HARMONICS

15. If K is the Gaussian curvature of an /V-surface

and if dS is an element of area of the surface, then

in (a;, (}>) coordinates, we have

13.14 KdS = KVa do)d<l>= (cos (j>)da>d<j)= dS,

using Equations 9.01 and 12.070 and writing

dS for the corresponding element of area in the

spherical representation. If we integrate over a

closed area of the surface, then

KdS

is evidently the total corresponding area on the unit

sphere, or is the solid angle enclosed by parallels to

the surface normals around the boundary.

16. If F is a scalar defined over an /V-surface as

a function of (to, <f>), it can be considered as having

the same value at corresponding points of the

spherical representation where (to, (f>) are the same.
It can accordingly be expanded in spherical har-

monics u,i of (to, (/>) as

13.15 F= V a„u,i

in which the coefficients a„ are constant over the

sphere or over the /V-surfaee. Moreover, since all

points on the same isozenithal will have the same
spherical representation and the same (to, (/>), F can

be a scalar defined over some region of space, in

which case the a„ will be functions of N at most,

always assuming that the resulting series is

convergent.

17. We can also write

13.16 FIK=^b, lu„

in which case the coefficients b„ for a particular

/V-surface can be obtained in the usual way by

integrating over that surface and by using Equation

13.14. All the operations of spherical harmonic

analysis, usually carried out in spherical polar co-

ordinates over a sphere, can be generalized in this

way for a family of /V-surfaces. Ordinary spherical

harmonic analysis is, in fact, a particular case (K= 1)

of this generalization.

DOUBLE SPHERICAL
REPRESENTATION

18. We shall now consider the case of two sur-

faces having a common spherical representation,

which implies that the surface normals are parallel

at corresponding points on the two surfaces. This

definition would enable us to represent one surface

directly on the other without a spherical inter-

mediary; but if we retain the conception of a common
spherical representation, we shall be able to use all

the spherical results without having to rederive the

geometry again. As in ordinary spherical represen-

tation, we use the same surface coordinates and the

same Cartesian space system.

19. As an illustration, suppose we draw a figure

on one of the /V-surfaces of a (to, 4>, N) system and

then project it down the isozenithals to another N-

surface of the same family. The two figures will

clearly have a common spherical representation,

and are accordingly in this form of correspondence.

We shall call this process isozenithal projection.

20. In the more general case, not restricted to

two surfaces of the same family, we denote quan-

tities related to the second surface with a star,

and can then write equations corresponding to

Equations 13.04 and 13.05 as

13.17 m* cos a =— A? cos a* — t* sin a*

13.18 m* sin a=— k* sin a* — t* cos a*

in which the same spherical azimuth a is retained
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for the common corresponding direction on the

sphere. Division of these equations into Equations

13.04 and 13.05 then gives

13.19

13.23

m k2 cos a + 1 1 sin a
m* k* cos a* + t* sin a*

Ai sin a + ti cos a

k* sin a* + t* cos a*

in which m/m* is the scale factor multiplying an
element of length on the unstarred surface to

obtain the corresponding length on the starred

surface. Solution of these equations gives us

13.20

13.21

where

tan a = -

tan cr

a + b tana*

c + G?tan a*

a + c tan a

b + d tan a

a=(k2tt-t lk$) ; b=(k2kf-titt)

c=(htf-kiki) ; d^ihki-kttt)

13.22 ad-bc = KK*.

It is easy to verify from Equations 13.06 and 13.08

that the coordinate directions satisfy these formulas,

and so are corresponding directions.

21. The unstarred surface will often be a refer-

ence surface which can be taken as symmetrical

about the Cartesian z-axis, in which case fi =
and the remaining curvature parameters become
the principal curvatures #ci, k-i. In that case, we
have

Ki _ t* + k* tan a*

ki k* + t* tan a*

which is a simple generalization of the formula

for the spherical azimuth a, obtainable directly

from Equations 13.04 and 13.05 as

t* + k* tan a*
13.24 tan a =

k* + tf tan a*

22. It should be noted that the functions a, b, c, d
are the same for all directions at a point, but vary

from point to point. Without a knowledge of the

curvature parameters, either by calculation on a

given surface or by measurement, the transforma-

tion cannot be effected. Once we have calculated

the corresponding azimuth a*, the scale factor

follows from Equation 13.19, with the following

alternative formulas connecting the scale factor

and corresponding azimuths,

(m/m*)K* sin a* = — (a cos a + c sin a)

(m/m*)K* cos a* — (b cos a+ d sin a)

(m*lm)K sin a = {a cos a* + b sin a*)

13.25 (m* Im)K cos a =— (ccos a* + of sin a*).

23. All the spherical formulas in Chapter 11,

which depend on the scale factor or on direction,

can now easily be modified for the more general

case. Tensor point functions, such as Equations

11.08 and 11.31 which are unaltered on spherical

representation, will also have the same value on a

more general surface, provided, of course, that the

metric of that surface is used in (a>, (/>) coordinates.



CHAPTER 14

Isozenithal Differentiation

DEFINITION

1. Chapters 11 and 13 dealt only with integral

relationships between two surfaces having a com-
mon spherical representation. In the case of iso-

zenithal projection of TV-surfaces, this meant that

the two /V-surfaces could be separated by any finite

distance measured along the isozenithals. For

example, the scale factor multiplying an element

of length on the unstarred surface would be

k 2 + f1

k**+ t*

whatever the separation of the two surfaces. How-
ever, such formulas are not often of much practical

use because we do not know the curvature param-

eters of both surfaces. We may know the curvature

parameters on one surface and may have to derive

them on another by means of a Taylor series; the

same applies to any other metrical quantities de-

fined or measured on one of the surfaces. For this

purpose, we need to know the derivatives of these

quantities along the isozenithals — or what amounts
to the same thing, their ordinary partial derivatives

with respect to /V— because the other two coordi-

nates (c«j, 4>) will be constant during the change.

2. In this chapter, we shall obtain such deriva-

tives for most of the metrical quantities of the

surfaces. The geodetic applications, such as projec-

tion from points on the topographic surface to the

geoid, are not likely to be carried over considerable

distances along the isozenithals; for this reason,

we shall find first derivatives only. Higher deriva-

tives could be obtained in much the same way,
but would naturally be far more complicated.

3. Any quantities in the common spherical

representation of the /V-surfaces would, of course,

be unchanged during the process, and their iso-

zenithal derivatives are accordingly zero. For

example, we have at once, from the definition of

the representation or from Equation 11.01,

provided the space coordinates are Cartesian.

DIFFERENTIATION OF THE
FUNDAMENTAL FORMS

4. We have already seen in Equations 12.143 and

12.144 that three of the five Mainardi-Codazzi

equations of a system of A-surfaces can be written

in the form of isozenithal derivatives of the second

fundamental form

dban ^ d
2
(l/ft) — djl/n) cali

dxadx(i Iff dxy ndN

14.01
r

b^ba,us
V

tl/y n

in which the overbarred Christoffel symbols are

taken in the metric of the spherical representation;

the only nonzero values from Equations 12.142 are

14.02 r^= sin (/> cos
<f> ; rj

2
= — tan $.

We shall find that the isozenithal derivatives of most

other metric quantities can be expressed in terms of

dbapldN, and thus stem from the Codazzi equations.

5. We begin with the metric tensor of an A-surface

whose components are seen from Equations 12.069

to be the same as the (1,2) components of the space

93
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metric tensor in (a>, <£, N) coordinates where the

surface coordinates are (&>, (f>).
We then have

daafildN=dgaijldN

= g^s + r^
3gr0+ r^3

g-Qr .

Because all components of the covariant derivative

of the metric tensor are zero and because H^
is zero in these coordinates, this reduces to

daa0/dN= rv
3 af3y+rv3 aay

14.03 = bysafsy(dbaSldN) + bv*a ay (db^ldN) ,

using Equation 12.127.

6. From the ordinary expression for the derivative

of a determinant, we have also

5 (In a)ldN=aa^(daalildN)

= 2b^(dbafildN)

= 26 (In b)/dN.

But the specific curvature of the A^-surface from
Equation 7.18 is

K = b/a-

substituting the logarithmic differential of this, we
have finally

14.04 d(ln a)/dN=2d(ln b)/dN=-2d(ln K)/dN.

We can verify this result by noting from Equation
12.070 that

Kb — K2a — cos 2
</>,

which is constant along an isozenithal.

As in Equation 9.01, an element of surface area is

dS = Va dojd(f)

;

because the coordinates w, </> are constant along the

isozenithals, we have

14.05
d(dS)_ d(\nK)

dN dN
dS,

using Equation 14.04.

This shows that KdS is constant under isozenithal

differentiation, as we should expect from § 13-15.

7. By differentiating the identity

we find without difficulty that

da a'ildN= - a^a^days/dN

14.06 =- {aayb^+ a^baS)(dbyS/dN);

and, to complete the picture in regard to the

second fundamental form, we have

14.07 db^ldN=-bayb^{dbySldN).

8. The third fundamental form is easy because
all its components are, at most, functions of latitude

only, and are constant along the isozenithals so that

we have

14.08
dN

= dcali

' dN'

9. We shall also require derivatives of the surface

permutation symbols

e„/j = Vae«)5; €ati =ea0/Va.

Using Equation 14.04, we have at once

14.09 de„itldN=-eafid (In K)/dN

14.10 Bea'3ldN= + ealid(\n K)ldN.

10. Note that Kea& and e
a/3

/A. behave as constants

under isozenithal differentiation: because the

specific curvature of a sphere is unity, the follow-

ing relations hold true in spherical representation,

14.11 e an
= Keaa ; i^= e^/K

where the overbars refer to the metric of the sphere.

DIFFERENTIATION OF SURFACE
CHRISTOFFEL SYMBOUS

11. If we are working in flat space, the most

direct way of obtaining derivatives of the Christoffel

symbols is to equate to zero certain components

of the Riemann-Christoffel space tensor. We have,

for instance,

14.12
_d_

~ yy
* fiY

—
a ^y 1 jiZ l pyl m3~ l 03 1 ay

where we have dropped from the summation those

symbols which are zero in (co, 4>, N) coordinates.

All the symbols in this expression are space sym-

bols; we need to replace those containing only

Greek indices by surface symbols, denoted by an

overbar, from the relation in Equation 12.131 so that

we have

14.13 ^h= ^h + hyva
-

To differentiate this expression, we use

d{va )ldN=v%-Yhv r

because v§ = 0. Using Equations 12.124 and 12.127,

we have

3(y ) --r^rg3 -r^(r^-r^)+rg3(rgy-rgy ).

From this equation and Equations 14.13 and 14.12,
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we then have

-i n

i_fo = fa —f^r r« _J_ r« per

But we have already seen from Equations 12.127

and 12.144 that T^.
A is a surface tensor, and the

right-hand side of this last equation is its surface

covariant derivative with respect to xy . We may
accordingly write the last equation as

dNjy

symmetrical in any two indices; we have finally,

with some rearrangement of indices,

14.14 '
I 6/38 dN

12. This remarkable result shows that although

the surface Christoffel symbols are not themselves

surface tensors, their isozenithal derivatives are

surface tensors. In the final result, we have dropped

the overbar because there is no longer any confusion

with the corresponding space symbols, but we must

remember that we are differentiating the surface

symbol in Equation 14.14.

It is evident that Equation 14.14 is symmetrical in

(/3, y) so that we have

14.15 (rg
3K=(r?3)0.

DIFFERENTIATION OF b apy

13. We interpolate now, because it follows directly

from the last section, a result which will be required

later. We have seen in Equation 11.31 that the

quantities

r%y +

b

a6b fm
have the same values at corresponding points on a

surface and in its spherical representation, which
imply that this expression is constant under iso-

zenithal differentiation. Using Equations 14.14

and 14.07, we have

, (dbaf>\
, /dbaS\— O/tifiy -~TT —
Oflfi —

—

\dN

The third term is

•bmb°w°
d^+ baS

d
j^=o.

db*'7 dba8
+ bmb°>>bparjfi-=b(iyS -^-,

which cancels with the first term because bum is

14.16
dbayy , , /db>'°

dN
bapbfja

dN

in which the final index denotes surface covariant

differentiation.

DIFFERENTIATION OF VECTORS
DEFINED IN SPACE

14. We take a unit surface vector l
r in azimuth a

which is defined in space, such as the meridian

direction or a principal direction of the TV-surface

through the point under consideration. The usual

perpendicular surface vector j
r in azimuth {a — \tt)

is defined as perpendicular to /', and must therefore

remain perpendicular to /'" after differentiation.

Because the space vector equations

/, = Xr sin a + /jl, cos a

jr = — k r cos a + jXr sin a

are to remain true after the process, we may differ-

entiate them covariantly along the isozenithal, that

is, with respect to N. Remembering from Equation

12.098 that X.r3 = firS= 0, we then have

lr3= -jr{daldN)

14.17 jr, = l r (daldN)

with similar contravariant equations. The change in

azimuth in these equations refers to changes in the

vectors as defined in space; it does not refer to the

change of direction which would be obtained by

projecting the two ends of the vector down the iso-

zenithals. We shall consider this case in § 14-25.

15. We could expand Equations 14.17 with r— /3

and substitute Equations 12.124, 12.127. and
12.128 for the Christoffel symbols, thus deriving

expressions for the differentials of the components.

However, in this case, we are able to use covariant

differentiation; we shall find it simpler to do so as a

means of obtaining changes in the normal curvatures

A' (of lr) and k* (of jr), together with the change in

the geodesic torsion t (of /, •). We have, for example.

vrsl
r
j
s= -t;

differentiating this covariantly along the isozenithal

gives, with Equations 14.17,

Vrs3l
r
j
s -vTsj

r
j
s (daldN) + pJ r

i
s (da/dN) = -Bt/dN.

In (oj, (/>, N) coordinates and using Equations 12.159,

the first term is (BbanldN)laf so that we have

14.18 (db a^/dN)Iap =(k- k*
) (da/dN) -dt/dN:
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in much the same way, we have

14.19 (dbavldN)I
a lti = -2t(dal8N)-dkldN

14.20 (dbai3ldN)j
af = + 2t(daldN)-dk*ldN.

16. Before substituting for dbapldN from the

Mainardi-Codazzi Equation 14.01, we need to work
on the middle term of the latter, that is, on

bvsbaps(lln}y= (lln)baj}8V
s

,

using Equation 12.082. We have

WV" = (baiil
aj'3 )s ~Ms/ ~ b ali l

a
j§

= dtldxs + (k-k*)((TU + a*js)

14.21 =dt/dx8+(k- k*)(m sin (b- an)

in which cr, a* are the geodesic curvatures of

/

a ,y'^,

respectively; in deriving the equation, we have used

Equations 4.11, 7.08, and 12.064. Similarly, we have

14.22 bonsM* = dkldx5 - 2t(als + a*js)

14.23 baPSj
aP= dk*ldx8+ 2t(a-ls+a-*js).

17. Now, if F is any scalar or component of a

tensor, we have

(dF/dx?)vs= (dF/dxr)vr- (dFldN)v*

14.24 ={dF/ds)-n(dFldN)

in which ds is the arc element in the direction of the

normal; so then we have from Equation 14.21, using

Equation 12.032,

bysba0Sl
ap ( 1 In ) y = ( 1/n ) baful

a
j
f'v*

= (Hn)(dtlds-ndt/dN)

+ (1/n) (*-**)

X (y, tan (b-da/ds + nda/dN).

Substituting in Equations 14.01 and 14.18 and using

Equation 7.14, we have finally

dtlds = n{\ln) ali l
af + 2Ht

14.25 — (A-
— A-*)(y, tan <f>-da/ds);

similarly from Equations 14.22 and 14.23, we have

d k/ds = n(lln) aflW+ ( k
2 + t? )

14.26 +2t(yi tan <b — dalds)

dk*/ds - n ( 1/n

)

a/tj-jfi + (k* 2 + t- )

14.27 —2t(yi tan (b — da/ds).

In all three expressions, the covariant derivative

(l/ra)ajB is taken with respect to the surface metric.

Adding the last two equations gives

in which A(l/rc) is the surface Laplacian. Multiply-

ing the first equation by (
— 2?), the second by k*,

and the third by k, using Equation 8.02 and adding,

we have

14.29 a (In K)lds = nbaH\ln) ali +2H.

Multiplying the first equation by (— 4>Ht), the second
by (k*2+ t

2
), and the third by (k2+ t

2
), using

Equation 8.04 and adding, we have

14.30 d(2HIK)lds = -ncamin) ati
-2.

ISOZENITHAL AND NORMAL
DIFFERENTIATION

18. The last six equations, giving variations along

the normals, are somewhat simpler than the corre-

sponding variations along the isozenithals.

We can, however, relate normal and isozenithal

differentiation by Equation 14.24 or by means of the

following formula. If F is any scalar or particular

component of a tensor, defined in space and there-

fore also on the A^-surfaces. we have

dF/ds = F,v r

= F3v
:i+Fa v

a

= n(dFidN)+ yi sec <MdF/dw) + y2 (dF/d(/>).

14.31

Or, if we use Equation 12.082, we have

14.32 dFlds= n(dF/dN)-Wa (ln n)p.

In applying these formulas, it is important to realize

that the /V-surfaces must be the same for both oper-

ations. If we use Equation 14.31, then the (co, (j>)

coordinates must also be the same; we are compar-

ing the variation in F along two different fines (the

isozenithal and the normal) in the same (oj, (/>, N)

system. If we use the second Equation 14.32, the

/V-surfaces must still be the same; but the surface

coordinates need not be the same because the last

term is a surface invariant, unless F is a com-

ponent of a surface tensor, in which case we must

use the same surface coordinates.

On this basis, for example, we have from Equation

14.28

14.28 d(2H)/ds = nM\ln) + (4H2 -2K)

d{2H)ldN = A(lln) + (\ln)(<iH2 -2K)

14.33 -b*(2H) a (Un)f,.
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DIFFERENTIATION OF THE
CURVATURE PARAMETERS

19. If we take l
a

, j
p in Equations 14.18, etc., to

be the parallel and meridian directions A", fjifi,

which are to remain the parallel and meridian direc-

tions after differentiation, then a is and remains

either zero or \tt\ Equations 14.18 through 14.23

become

dhldN=-(dbapldN)X
a
fJ,
p

dk ildN=-(dbat
3ldN)KaK'i

|

14.34 dk2ldN= -(dba0ldN)fji
a^

6a(3sA.
a
|Li^= dt\ldx6+ (ki — k>)u)h sin cb

b«(j^aki3= dk i ldx
d — 2tim sin

14.35 baps(M
c'^ ==dkildxf

' + 2t l (x}f) sin 0,

giving the variations of the curvature parameters

along the isozenithal and reducing, as in the last

j

section, to the following variations along the normals,

BtilBs = n{lln)apk
a
fjfi + 2Ht i

— y.fAi — A:2 ) tan

Bkjds = n(l/n)a0kak» + (kj + t\) + 2y, t, tan

dk-ilds=n(\ln)aJnx
a
iJLi

i + (kl + t\) — 2y l t\ tan (/>.

14.36

The equations for the invariants 2//, K, 2H/K are,

of course, the same as Equations 14.28 through

14.30.

20. We have seen that dbap/dN is a surface tensor

so that we can express it as a sum of products of

surface vectors. From Equations 14.34, we have at

once

-dbaii/dN= (dkll8N)kak^+ (BtJSN) (K tfl0+ (Lakp)

14.37 +(dkt/dN)iLafip.

Accordingly, for example, we have

d(2H)/dN = - a<*(dbapldN)

14.38

= Mlln)-b^(2H) a(lln)p

+ UM(4# 2 -2/0,

using Equation 14.01 which requires the Laplacian

to be taken in the surface metric. This agrees with

Equation 14.33.

21. The remaining two parameters y%, y-i are best

differentiated from

y, = (ln n),k r

72= (In n)r(JL
r

,

306-962 0-69—

8

from which we have at once, because \£— M'3=0,

r')y,/d/V=(ln ri)cak
a

14.39 dy2ldN=(lh n)aSfi
a

.

Alternatively, we may take the covariant derivative

of Equation 12.021,

t,

r.s^
S= 7lA,+y-/Lt,-.

to derive

dyijdN= vrszkrvs= vrzsk
rvs

;

using the fact that iv:s = 0, this formula reduces

with the help of Equation 12.016 to

14.40 9y | I8N= - T%sVsVrak
lr = - P,s

^' COS (j)

and similarly to

14.41 ay,/d/V=-fVs
.

We could have obtained the same results by ordinary

differentiation of the (1, 2) components of vr in

Equation 12.034.

DIFFERENTIATION OF THE
PRINCIPAL CURVATURES

22. If I", j& in Equations 14.18, etc., are tangent

to the lines of curvature u c\ v&, then we have t=0
throughout; Equations 14.18 through 14.23 become

(k, - k>) (dA/dN)= {dba0/dN)uav^

dK 1/dN=- {dba0ldN)uau^

14.42 dK->ldN= - (dbapldWiPvP

ba08U
aVP= {k, — K2)(a>s sin <j>—As)

balihU
alft= c)K\ld\h

14.43 bap8V
avl3 =dK-zldxs ,

leading to the following variations along the normals

14.44 (k, - k2) (y, tan <b - dA/ds)= n{l/n)a&uav^

14.45

14.46

c)K\l'ds = n(lln)aijU
auP+ k\

dK->lds= n(lln)afjV
a
vli + K$

in which the covariant derivatives are taken in

the surface metric. Equations 14.43 could have been

obtained by contracting Equation 8.16 and by using

Equation 12.064.

23. The surface tensor dbapldN can be expressed

as

db ali/dN = - (dKildN)uaUp

+ (Ki— Kt)(dAldN)( uavn + vaU0

)

14.47 - (dK2ldN)va vv.
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the equations for the invariants can be obtained

directly from this as

d(2H)ldN=-aaHdba$ldN)

3 (In K)ldN= -baHdbalildN)

14.48 d(2HIK)ldN=caHdbavldN).

PROJECTION OF SURFACE VECTORS

24. In the last few sections, we have considered

vectors and the parameters associated with them,

which can be considered as point functions in that

the vectors are uniquely defined at all points of all

the TV-surfaces within a region of space; we have

arranged for the vectors to retain their definition

after isozenithal differentiation. For example, the

principal directions are, in general, uniquely defined

at points in space by the form of the TV-surfaces,

that is, by the form of the scalar point-function TV

and its derivatives. We have found expressions for

the change in azimuth and curvature in the principal

directions on the assumption that they remain

principal directions during the change.

25. We now consider surface vectors which are

not so defined; we shall obtain expressions for the

changes associated with these vectors as they are

projected an infinitesimal distance down the iso-

zenithals. The two ends of a vector subjected to this

process each move down isozenithals to a neighbor-

ing TV-surface, the surface coordinates (ai, (/>) of both

ends remaining unchanged. The length of the vector

will change as a rule, but we shall find it convenient

to correct for this and to find expressions connecting

unit vectors in the projected directions.

26. We must be careful not to differentiate such

expressions as

containing two related vectors, because this would

tend to hold the relation during the change with the

result that neither would, in general, be projected

in the sense we are considering. We should differ-

entiate expressions containing only the one vector

which we wish to project, together with point func-

tions. For example, we could recast the preceding

formula with the help of Equations 2.32 as

14.49 t^-baftPeMy

before differentiating. We can, of course, restore the

related (perpendicular) vector j® after differentiation.

27. The process will involve ordinary partial

differentiation with respect to TV of various compo-

nents of tensor functions. We could use covariant

differentiation only if it were possible to write the

formula in terms of space components. For ex-

ample, covariant differentiation of aaa with respect

to TV is meaningless, but we can replace aan in

these coordinates by gan and can take the covariant

derivative ga03, as indeed we did in deriving Equa-

tion 14.03. We must, of course, use one sort of

differentiation throughout an operation.

28. Because the spherical representation is

unchanged by this form of projection, we can take

any formula connecting elements on an TV-surface

and on the unit sphere, and then can differentiate

with the spherical elements fixed. We have had an

example of this in § 14-3. As another example,

we found in Equation 11.08 that if the space co-

ordinates are Cartesian and the surface coordinates

are the same for both surfaces, then

bal3x'a

is unaltered on spherical representation. Differen-

tiating with respect to TV, we have

(dba>3ldN)x r
a + b af3 (dx r

aldN) =

from which we have

dx'aldN= -ba^{db^ldN)x
,

y

= bBy(dbaeldN)Xy

14.50 =1^7,

using Equation 12.127.

Again, if the space coordinates are Cartesian, we
know from Equation 11.02 that v'a is unaltered on

spherical representation, and therefore we have

14.51 BvraldN=0.

We can also write

rv$V'afJ
= dv'aldX13 -

in space Cartesian coordinates because the space

Christoffel symbols are then zero. Differentiating

this and using Equation 14.14, we have

14.52 dvr
apldN=-(rHa)i3Vy.

Length

29. If 8s is the length of a small TV-surface vector,

the corresponding length in the spherical represen-

tation (scale factor m) is from Equation 11.11

8s= (k?+t2yi28s= m8s

in which k , t are the normal curvature and geodesic

torsion in the direction of the vector. Differentiating

this isozenithally, Ss remaining fixed, we have
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8 (In 8s) _ 3 (In to) _

dN dN
8{\n (k2 + t

2)^}

dN
14.53

30. An alternative expression may be obtained as

follows. If the element 8s corresponds to a differ-

ence of surface coordinates 8xa in the direction of

the unit vector /'", we have

8s'
1 = aafj8xa8xP;

differentiating this, we have

d (In 8s) _ , ddafidx 01 dx13

dN - BN ds ds

i da«£ ,am
1 dN

14.54

= l
ab^yly(dbafildN)

using Equations 14.03 and 12.127.

31. We have seen in Equations 14.48 that

-d(laK) IdN= b^ ( dbap/dN) = Tf,.,

,

using the contraction of Equation 12.127. We may
write further

- f)(ln K)/dN=Tfa8<*= rZS{l
aly+ja

jy),

if j" is the usual surface vector perpendicular to /"

and if we remember that r&5 is a surface tensor. If

we add this last result to

14.55 3(liim)/3#=-r&(ZaZy),

obtainable from Equations 14.53 and 14.54, we have

14.56 d{ln(mlK)}ldN=Tya3j
a
jy.

But it m* is the scale factor in the ^"-direction, we
have also

14.57

and so

14.58

3(ln m*)ldN=-ry3j
a
jy

d{lnmm*IK)ldN=0.

But this last relation is true only to a first order. We
cannot differentiate it again or assert that (mm*/K)
is constant over a finite length of the isozenithal

because the two directions do not, in general, re-

main perpendicular when projected down the

isozenithal.

Contravariant Components

32. If we use the same surface coordinates, for

instance (w, </>), for the /V-surfaces and the sphere,
we have found in Equation 11.12. relating the con-
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travariant components of a unit surface vector and

the corresponding unit vector in the spherical rep-

resentation, that

(1/to)/<*= 7".

Differentiating this, we have at once

dla/dN=la
{d In m/dN)

= /"{<? in {k'
z +t2yi2/dN}

14.59 =-Wa

in which m is the scale factor of the representation,

and we have used Equations 14.53 and 14.54.

Azimuth

33. The space components of a unit surface vector
/' in azimuth a and of its perpendicular^" in azimuth

(a— \tt) are given by

/' = V sin a + fx
r cos a

j
r= —K r cos a + /a' sin a.

If the space coordinates are Cartesian, then all

components of A', fx' are functions of (a>, 4>) only,

and are therefore constant under isozenithal dif-

ferentiation so that we have

dlrldN={\r cos a — fi' sin a){c)ajdN)

14.60 =-jr(da/dN).

34. We now differentiate the equation

l' = l
axL

using Equations 14.59 and 14.50. and find that

-j r(da/dN)=lr
(d In m/dN)+r&ilaXy.

Multiplication by /, gives Equation 14.55 again, and

multiplication by jr gives

14.61 (daldN)=-T&la
jv.

Note that this is not the same as Equations 14.17.

The change in azimuth in the perpendicular direc-

tion /'' is similarly

14.62 (da*ldN)=ry3j-Iy

and

d(a + a*)ldN= r^(eyfi
/«/ fi + € yfi./"/

8
)

14.63 = rz3eySa
aS

.

Note that this is a point function which is the same
for all directions at a point. Consequently, the

change in mean azimuth of a pair of perpendicular

directions is the same for all pairs.
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Covariant Components

35. If we differentiate the equation

in which the space coordinates are Cartesian,

in the same way we have

dlaldN = -jr(daldN)x r
a+ Ty

3 x
r
yl r

14.64 =-ja(daldN)+n3ly

in which we can substitute Equations 14.61 and

12.127 and ultimately Equation 14.01 to show the

result in terms of (1/rc) and surface tensors. How-

ever, we shall usually be content to leave the

results in terms of the Christoffel symbols rg3

or in a form which can readily be translated into

these symbols.

Curvatures

36. The simplest way of differentiating the curva-

tures in the direction l
a

is to differentiate Equa-

tions 13.02 and 13.03 in which a, the azimuth

of the spherical representation of I", is held fixed.

We have at once

14.65 d'kldN=k{d(\n m)ldN}-t(daldN)

14.66 dtldN=t{30n m)/dN} + k(daldN)

in which we can as usual substitute Equations 14.55

and 14.61. We have also an alternative expression

for the variation in azimuth from these equations,

14.67
da _ A

2 d(tlk)

dN~ m- dN

37. It may be emphasized again that the ex-

pressions give the changes in k, f, etc., between

a direction on an /V-surface and the projected

direction on the next surface. Suppose, for ex-

ample, that we start with a principal direction

(t = 0). Equations 14.65 and 14.66 then give the

change in normal curvature and geodesic torsion

resulting from projection of the principal direc-

tion down the isozenithals onto the neighboring

surface. If the projected direction is to remain a

principal direction, then we must also have

df/d/V = 0, in which case we have da/dN=0 from

Equation 14.67. From Equation 14.61, we then

have

r%3Uavy =

in which u", va are as usual the principal direc-

tions. With the help of Equations 12.127 and

8.03, we can show that this is equivalent to

14.68 (dbanldN)uav^ =
as the condition for the principal directions tc

project as principal directions. It is clear from

Equation 14.01 that this condition implies a spe

cial relationship between n and surface tensors

which would restrict the form of N. We must

conclude therefore that principal directions, ir

general, do not project isozenithally as principa

directions.

38. To obtain the variation in geodesic curva

ture of isozenithally projected curves, we car

differentiate Equation 13.10 in the form

&- (l/m)cr= (1/m) (a-'a)^,

holding the spherical elements cr, a constant

The result, after some simplification, is

Bct _ d (In m)

dN~^
14.69

d 2a
a

dN dx 8N
P

in which we should substitute Equation 14.55 anc

the differential of Equation 14.61 or 14.67. Tc

verify this, the reader is invited to obtain the

same result without spherical representation

but with greater labor, by differentiating

(T = -lalie
anyP-

Covariant Derivatives

39. To find the variation in the surface covarian

derivatives of isozenithally projected curves, w»

can similarly differentiate Equation 13.12. Alter

natively, we can differentiate Equation 12.063 ii

the form

lap—— €ayly ((i)p sin
<f)
— ap),

the result in either case being

14.70 ¥$=lofi

a{]n{mlK)}
dN dN -Ja

d 2a
dxPdN

The reader may find it instructive to obtain this

same result by straight differentiation of the ordi

nary formula for a covariant derivative, corre

sponding to Equation 3.08 in two dimensions
using Equations 14.14 and 14.64.

40. We have seen in Equations 12.127 and 12.144

that r& is a surface tensor; therefore, dct/dN ir

Equation 14.61 is a surface invariant. We conclude

from Equation 14.70 that 3lapldN is a surface

tensor; Equation 14.70 is a tensor equation, true ir
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any surface coordinates to the extent that these the defining equation

coordinates can be transformed while retaining

N fixed. p. = JLL [>« Fy.

41. If F is a scalar, defined in space and there- The result in either case is

fore over any /V-surface, we can find the isozenithal

variation of its second surface covariant deriva- i/i 71 dr „/j _ [dF\1471 "TaT
-

\Jat ) ~irL)0Fy-
tive Fay by differentiating either Equation 13.13 or dN \dN/ ap





CHAPTER 15

Normal Coordinate Systems

GENERAL

1. In the (to, </>, N) system, the (at, (j>) surface

coordinates are not, in general, constant along

the normals to the A-surfaces so that the normals

are not the /V-coordinate lines. The gradients

of (co, (/)), considered as space vectors, are not

contained within the TV-surfaces as is evident

from Equations 12.046 and 12.047. We shall now

consider how to overcome these complications by

adopting surface coordinates, which are defined

to be constant along a normal, so that the normals

are the /V-coordinate lines. The geometry of the

system will be simpler and can often be used to

derive quickly results in the form of invariants or

tensor equations which are true in any coordi-

nates. However, the surface coordinates are not

directly measurable throughout a region of space;

the system is accordingly of direct practical use

only when we are interested in the immediate

neighborhood of one particular surface.

2. As usual, we start with a scalar A', single-

valued, continuous, and differentiable through-

out some region of space, and make it one coordi-

nate of the system. The family of A-surfaces,

over each of which /V is a constant, is accord-

ingly one family of coordinate surfaces. The
gradient of A is

15.01 Nr
- nv,

in which vr are unit tangents to the normals or the

orthogonal trajectories of the /V-surfaces.

We have seen in § 10-19 that a scale factor of

n will transform the space conformally to a curved

space in which the normals become a family of

geodesies and the A-surfaces become a family

of geodesic parallels. An element of length along

the geodesic normals will be dN: it is well known '

that the metric of the curved space can then be

expressed in the quasi-Pythagorean form

ds 1 = d atidx
adxiiJrdN- (a, 0=1, 2)

in which the dxa are the other two coordinates.

We transform this expression back to the original

space with scale factor {1/n) and have as the metric

of the original space

15.02 ds- = a audxadx* + ( UnYdN1

in which we have retained the same coordinates xa ,

whatever they may be. This merely demonstrates

the possibility of a metric in this form; we have

now to examine it and to find all we can about

the xa .

THE METRIC TENSOR

3. We can write the metric tensor in the abbre-

viated form

15.03 grs = (a ap, l/« 2
),

the determinant of which is

15.04 g=(lln°-)a.

See. for instance. Eisenhart (1926). Riemannian Geometry. 57.

103
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leading to the associated tensor

15.05 g
n = (a

l#, n 2
),

as we may easily verify from the definition in § 2-19.

4. The cosine of the angle between the gradients

of x 1 and /V is proportional to

gr'xlNs = g
13 = 0.

Consequently, the gradient of x 1
is perpendicular

to the gradient of N, that is, toy r , and must be there-

fore a surface vector. Similarly, the gradient of

x 2
is a surface vector. Both ^"-coordinates are thus

constant along the normals, which must therefore

be the /V-coordinate lines.

5. In much the same way, we can prove from the

absence of ^-components in the metric tensor

that the % "-coordinate lines are perpendicular to

the /V-coordinate fine, and must therefore lie in

the /V-surfaces.

6. As usual, we take the x a as surface coordinates

and as two of the space coordinates so that

15.06 8 r

7. One possible way, and indeed so far as we
know the only way, of defining the £ "-coordinates

further is as follows. Through a point P in space,

we draw a line or trajectory which is normal to all

the TV-surfaces. The intersection of this line with a

particular /V-surface, which we shall call the base

surface, is Q. The coordinates of Q on the base

surface are taken as the x "-coordinates of P. Evi-

dently, all points on the same normal have the same
x a

, and the x a can be used as surface coordinates

on the other /V-surfaces. In this way, we can meet

all the preceding requirements of a metric in the

form of Equation 15.02. We shall assume that co-

ordinates have been chosen in this manner, but we
shall leave open for the present the particular choice

of coordinates on the base surface.

8. It should be noted that we have defined the

^"-coordinates as functions of position only on the

base surface. We can transform them in two di-

mensions on the base surface, in which case their

values will be settled at any point in space. We can

also transform the ^"-coordinates at any point in

space by taking the /V-surface through the point

as base surface. We cannot, in general, choose

latitude and longitude, defined in §12-10, as co-

ordinates in this system because they are not

constant along the normals, unless the normals are

straight. This would be a special case with which

we shall deal in Chapter 17. We could, however
choose latitude and longitude on one particulai

base surface, even if the normals are not straight.

9. Because we have not so far specified the actua

surface coordinates, even on the base surface, we

cannot specify the surface metric tensor a a n. Noi

can we determine the second and third fundamental

forms b ap, c a fi
of the /V-surfaces as we did in the

(a>, (j), N) system where all three coordinates were

completely specified in space. These three forms

must vary between surfaces and must therefore

be dependent on N. We shall derive expressions

later for this which will enable us to calculate the

aa p, b ap, and c a /j on any surface from the cor

responding components on the base surface.

COMPONENTS OF THE NORMAL
AND OF SURFACE VECTORS

10. From the basic gradient equation for N
that is,

Nr = nv r ,

we can find the covariant components of the unit

normal at once because, whatever the (1, 2) coordi

nates, TV does not change when differentiated witl

respect to them. We then write

15.07 IV = (0,0, 1/ra).

The (1, 2) contravariant components must also be

zero because the (1, 2) coordinates do not chang(

along the normal. Also, we have v rv
r = 1 because

v r is a unit vector so that we can write

15.08 W = (0,0, n).

11. We shall also require expressions for the

surface tensor derivative of the unit normal. Wein
garten's formula in Equation 6.17 becomes

15.09 v'a = ~ aii ^baiix
r
y
=- a*vb apty

so that we have

15.10 v
l = 0- v% = - a<*v b fjy = - b a

y cvy

,

using Equation 8.09.

12. Because any surface vector lr is perpendiculai

to vr , we may write

t rv
r = and l

rvr = 0;

expanding these formulas from Equations 15.0'

and 15.08, we see at once that both the covarian

and contravariant 3-components of any surface

vector are zero in this system.
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THE CHRISTOFFEL SYMBOLS

13. Because gap= (ia0 and the x "-coordinates

are the same on the surface and in space, it is

evident that the Christoffel symbols of the first

kind,

[«0,y],

are the same whether they are computed from the

space metric or the surface metric. In regard to

the Christoffel symbols of the second kind con-

taining no 3-index, we consider the space symbols

r& =gry
[<*P, r] =^8

[«/3, 8] = a >8
[«/3, 8] - T&

taken in relation to the surface metric. In deriving

this result, we have used g 3y = and gyS= ayS
.

Consequently, all Christoffel symbols containing

no 3-index are the same whether they refer to the

space or to the surface metric, and we have no

need to differentiate between the two. Their actual

values, as in the case of the metric tensor from

which they are derived, will depend on what co-

ordinates are adopted for the base surface. Once
the Christoffel symbols are settled for the base

surface, we should be able to find them at other

points in space; we shall later derive formulas for

this.

14. Symbols containing a 3-index can be obtained

by expanding Equations 15.10. We have

and

= dv 3/dx a + Y?a v
r = dnldx" + nY§a

a aybpy = dv a/dx^ + r# v r = nTfe .

Because the covariant derivatives of all com-
ponents of the metric tensor are zero, we have

ga3P = = dgcjdx 13 - YSugar ~ Y^grZ

=-Y y
li
aay-Y^gzz

= (l/n)ay%saay-T^(Hn 2
),

using one of the preceding results and gas— 0,

so that we have

r«0 = nbaji.

In the same way from g333 , we obtain r 3
3
3 ; from

£a33, we obtain Y§3 . Collecting results, we can list

all the symbols containing one or more 3-indices as

r3<3 f (lln 2
)a ^(ln n )p Yfe=-( 1/n )a**bfry

T 3 = nbafi ; Yl =- (In n )a ; r3
3
3
=- d (In n )/dN

.

15.11

15. In the last symbol, if <ls is the arc element

along the normal, we have

15.12
_d_

dN /;/ ris

because the other two coordinates are constant

along the normal. This relation is, of course, true

only in this particular coordinate system. To avoid

confusion with results in Chapter 14 where d/d/V im-

plied differentiation along the isozenithal and not

along the normal, we shall usually express the re-

sults of normal differentiation in the form d Ids.

VARIATION OF THE METRIC TENSOR
ALONG THE NORMAL

16. In the last section, we have not used the fact

that the covariant derivatives of all components of

the metric tensor are zero. To complete the picture

in regard to derivatives containing one or more
3-indices, we need to evaluate ga^ which alone

will provide a fresh result, although the others

furnish useful checks. We have

ga)33 ~ = bgaalbN— Y£3grp ~ Y r£ar

= daapldN - r& Offy - I>
3
aaY

= daapldN+(lln )a>86a8a^+ (1/n )ay%saay

= daa(ildN+2(lln)baf}

so that

15.13 da uplds =— 2baf).

Given the second fundamental form of the base

surface, we can accordingly extend all components

of the surface metric tensor along a normal by a

Taylor expansion — at any rate to a first order. We
shall show later how to obtain the higher derivatives.

17. By expanding g°g3 similarly or by differentiat-

ing

a^aai3
= 8y

along the normal, we find that

da a(i

15.14
ds

la^a^bys-

Using Equations 8.07 and 8.09, the last equation

can be written in the alternative form

15.15
da af:

ds
=ma^-2Kb^.

II
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18. By the ordinary rules for differentiating a

determinant, we have also

15.16 ^™) = a<*^ = -4//.
ds 3s

19. We can now differentiate the permutation

symbols

e«/3 = eapV a ;
:«fl = e afl/Va

to have

15.17

deap

ds

ds

— — 2Heaji

= + 2HeaP,

which should be compared with the results in

Equations 14.09 and 14.10 for differentiation along

the isozenithals.

SPACE DERIVATIVES
OF THE NORMAL

20. In the (a>, </>, N) system, we found that the

covariant derivatives of the meridian, parallel, and
normal vectors were most useful. In this system,

we have not yet defined any surface vectors in

relation to the surrounding space, but we can now
find the covariant derivatives of the normal by sub-

stitution of the preceding results in the defining

formula

v rs = dv rldx
s -ain)r?s .

We find that

15.18 Vad — ~ ba/3 ,

as it should, because this result in Equation 6.19

depended only on making the surface coordinates

x a two of the space coordinates.

Also, we have

Vaz =— (l/«)a

15.19 ^33 = 0.

By substitution in Equation 11.26, we have in these

coordinates

15.20

15.21 08.

21. In the (w, c6, N) system, we obtained all the

Mainardi-Codazzi equations by considering the

first covariant derivatives of three vectors in Hat

space. In this system, we have defined only one
vector field, the normal; its first derivatives given
in the last section do not include any condition that

the space must be flat. We can, however, apply the

alternative condition that the second covariant

derivatives of an arbitrary vector must be symmetri-
cal in the last two indices in flat space, as in Equa-
tion 5.01. In this case, we have

15.22 Vrst = V rts .

At this stage, we use this formula as a necessary
condition without asserting that it is sufficient to

use only one vector field.

22. We consider first the components containing

no 3-index,

Vapy='dVa^'dXy — r&yVrP — T rpyVar

=-dba0idxy+Tiybsp+r^baS+r^(i/n) a

= — ba0y — btr/(\n n) a .

15.23

We interchange
(J3, y) and subtract in order to

satisfy Equation 15.22 so that

15.24 bapy=bayi3,

which are the most general forms of the Codazzi
equations for the /V-surfaces in Equation 6.21.

23. JNext, we evaluate

l'cxji:i
= dVapldN—Y^VrH — FfeVar

=-Bba0idN+ri.,byli
+ry

3
bay+ri

l3
(iin) a

= -BbafildN- (l/«)ay86as^- (Vn)a?*bi}8bay

— (In n) (lln) a

=— dba0ldN— 2capln — (In n)p(lln) a

and also

Vasfi = — d
2 {l[n) ldxadxP — T r

a/3vr3 — T'^Va,-

=-dzain)d^dx^+ ryp (lln)y+ ry(lln) a

+ Tfobay

= — {1/ n) a/3 — can/ n — (In n)p(l/n) a

in which the overbar implies that the covarian!

derivative has been taken with respect to the sur

face metric. Applying Equation 15.22, we have

finally

THE MAINARDI-CODAZZI EQUATIONS 15.25
ds n/aii

Ca0,

which should be compared with the corresponding

Codazzi equations for the (o>, </>, N) system ir
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Equation 12.144. This gives us, in general, three

independent equations, making a total of five with

the Codazzi equations for the /V-surfaces in Equation

15.24. As shown in the (w, <£, N) system, five is all

we can expect in the case of a family of coordinate

surfaces derived from a given scalar N. Indeed, we
can derive no fresh relations from Equation 15.22

for any other values of (r, 5, t). We conclude there-

fore that the relation in Equation 15.22 is sufficient

to ensure that the space is flat. We could directly

ensure that the space is flat by equating to zero all

the Riemann-Christoffel symbols of Equation 5.03

for the metric

ds 2 = aa0dxadx'i + ( l/n
2)dN2

;

or, what amounts to the same thing in three dimen-

sions, we could equate to zero the six independent

components of the contracted Ricci tensor of

Equation 5.12. This gives us six equations, but we
find that only five are independent in this metric

and that they are the same as the five equations

obtained far more simply above.

NORMAL DIFFERENTIATION

The Fundamental Forms

24. We have already shown how to differentiate

aan and ban along the normals and incidentally how
to obtain the second derivative of aa#. To carry the

expansion further, we need to find an expression

for dCaplds in terms of the fundamental forms of the

base surface and of n. If we differentiate the ordi-

nary formula

Can = a^baybps

and use Equations 15.14 and 15.25, we have

Scalds = 2a^ab 'Tbp<Tbuybtih - ayScayb^ - aybbaycm
+ na^biisUJiilay + nay8bay(Hn)nf,.

If we make use of ay8bas = bydca6 from Equation 8.09

and interchange some summation indices, we find

that the first three terms on the right cancel and we

1

uy [~
,

tl/ab

have fina IK

O"

15.26
dcaf)_
ds

nay8bay |

\n/l3b
+ III c*h

25. By differentiating

baybali
= 8y

we have

dba>i _
ds

- b"yb^
dbyh

ds

15.27 — -nbayb^(- + (
,ali.

\n/ ys

similarly, we have

15.28 —= -nbayc^(-) -nb^c^l-
ds \n/vft \n/ys

which completes the differentiation of all the fun-

damental forms.

26. The differentials of the surface invariants are

now easily found. Using Equation 6.27, we have

d(\nK) _ d(lnb) d(\na)

ds ds ds

ds

= nbaf>(-) +2H.
\'l/al3

15.29

Also, we have

d(2H) d(a a»baii )

ds ds

da"* db at= ba0——+a ali—

—

ds ds

2a a<ica8+nA(lln)-a al3ca is

15.30 = nA(TM+(4tf2 -2K)

in which the overbar implies that the Laplacian

of (1//;) is taken with respect to the surface metric.

In addition, we have

d(2H/K) dib^aap)

ds

15.31

ds

,a/3

a/3

27. These last three invariant equations are,

of course, true in any surface coordinates, and can
be evaluated, if we wish, by substituting (a>, </>)

values of «"", b a/i
, cttfi

, and (l/n)a0 . In fact, we have
already obtained them from (o», <t>, N) coordinates

as Equations 14.28, 14.29, and 14.30.

The Christoflfel Symbols

28. Using Equation 15.13 for the normal deriva-

tive of the surface metric tensor, we can differ-

entiate the equation which defines the surface
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Christoffel symbols, that is,

aa8I>=[j3y, 8]

_ j_ (
daps days _ dapA

__2
\^7 ^ a*8 /'

Alternatively, as we did in the (co, (/>, N) system,

we can equate the

n iuy

components of the Riemann-Christoffel tensor of

the flat space to zero and can use expressions ap-

propriate to this (normal) system of coordinates

for the Christoffel symbols. In either case, we ob-

tain after some manipulation

dry
dS

15.32

-aa6bpy6 + aaBb0b {\n n)y

+ aa8 fey8 (hi n)ts— aa&bpy{\n n)i

The more compact expression obtained in Equa-

tion 14.14 for (oj, (f>,
N) coordinates does not, how-

ever, hold in normal coordinates.

The bafiy

29. Nor can we obtain

d(bauy)lds

in these coordinates by the shortcut used in (a», (/>,

N) because points along the normals, as distinct

from the isozenithals, do not have the same- spher-

ical representation. We can, however, differentiate

the defining equation

, _ d(baii)
gOapV— 7 1 ayOS/3

_
1 pyOSa,

after some manipulation and use of the identity

capy=aSebasybp( + abl babbpty,

obtained by covariant differentiation of Equations

6.18, we find that

d(bapy)/ds= n(i/n)ai3Y— cap(ln n) y

— Cpy{\n n) a — cya (ln n)p

15.33 +a8€ (ln n) e (bayb sp+ bpybsa)

in which the overbar denotes covariant differentia-

tion with respect to the surface metric.

30. If we interchange /3 and y and subtract the

result from Equation 15.33, the left-hand side be-

comes zero by virtue of the Codazzi equations, and

we have

At first sight, this shows a relation between n and
surface tensors which is required in order to ensure

that the Codazzi equations are satisfied on all the

/V-surfaces. However, we can see from Equations

5.22 and 6.26 that it is an identity true not only for

n, but also for any scalar.

31. From Equation 15.33, we can derive

a«y*Z=n a{y iln)}
-(*H*-2K){\nn)y

ds oxy

b<*^=nb<*W\ -2H(\nn,y
ds \nlapy

lfe*b£L=vr ..,:[ •

i _ 2(lnnK
ds n/<*$y

15.34

n(l/n) apy — n (I In) ayp = a8* (In n) e (bafibys— baybp?,).

which can be verified by differentiating Equations

8.20 and by using formulas already given in this

chapter.

Other Point Functions

32. There are no equations for the differentials

of the point functions

X'a ; Va ; V'ap

in these coordinates corresponding to Equations

11.08, 14.50, 14.51, and 14.52 because the vr are not

constant along the normals, even in Cartesian

space coordinates. If required, differentials of these

quantities should be obtained in normal space

coordinates by differentiating Equations 15.06,

15.10, 15.20, and 15.21, using formulas which have

now been given.

The differentials of any other functions which are

defined in space, such as

can be obtained by covariant differentiation along

the normal and by evaluation either in these coordi-

nates or in (o>, 0, N) because the result will be an

invariant true in any coordinates.

Differentiation of Vectors Defined
in Space

33. We take as usual a pair of unit orthogonal

surface vectors l'\ j
r (l'\j'\ ^'right-handed) which

are defined in space as vector functions of position.

They could, for example, be the meridian and paral-

lel directions defined in the usual way from the

normal to the /V-surface and from the Cartesian

vectors; but in this case, the latitude and longitude



Normal Coordinate Systems 109

would be functions of position and not coordinates,

except possibly on the base surface. The two vec-

tors could also be the unit tangents to the lines of

curvature of the /V-surfaces, which similarly are

uniquely defined at a point and, in consequence,

constitute a vector field in space.

34. If a, k, t are the azimuth, normal curvature,

and geodesic torsion in the direction l
r and if k* is

the normal curvature in the direction f, then all

these quantities are point functions; Equations

14.25 through 14.27 hold equally well for changes in

these functions along the normals, even though they

were obtained in (w, </), N) coordinates. The only

tensor functions in these equations are surface

invariants which have the same value in any surface

coordinates. We assume, of course, that the N-

surfaces and the Cartesian vectors are the same in

both cases, as we can do without any loss of

generality.

35. In the same way, the formulas of Equations

14.36 apply as they stand in this system and give

|
the normal variation of the curvature parameters

j
k\, A 2 , t\ of the meridians and parallels; Equations

14.44 through 14.46 give the normal variation of the
1

principal curvatures and the azimuth of the prin-

;
cipal directions.

36. We can obtain these results by a different

route and, at the same time, can obtain some other

formulas which we shall require later. We assume
that the /V-surfaces are the same in both the (w, $,

N) system and in this normal system of coordinates,

and that the Cartesian vectors of the two systems

are the same. In that case, the meridian and parallel

vectors /i
r

, A r
at any point in space are the same,

although they will not, of course, have the same
components. The vector equation

firsV*=— yi tan </> \T— y-iVr ,

obtainable from Equations 12.015 and 12.034 in

{(o, </>, /V) coordinates, is true in any coordinates.

If we expand it in normal coordinates, we find that

the equation for r=3 is an identity; we are left then

with

ds
yi tan (/> Aa + nF^/x^

=— y\ tan (j> Kx — bapfJL
13

= — (y, tan
<f>
+ ti)\a— k2fi,a ,

which gives us the ordinary differential of the

meridian vector along the normal. The meridian

vector remains the meridian vector and is not

projected down the normals to the next /V-surface.

In the same way and collecting the last equation,

we have

d^I'ds = - ( y i tan </>-/,) A" + k2fi
a

dfJLalds = — (yi tan
(f>
+ /, ) A„ — k>n. lx

Bka/3s={y l
tan </> + /, )/x" + A,A"

15.35 dAa/ds=(y, tan </>-/, )//,„- A, A„.

We can now differentiate the equation

A, = baPk
a\^,

using Equation 15.25 and the preceding formulas,

and can obtain the second equation of Equations

14.36. The other two equations of Equations 14.36

follow similarly.

37. In general, if /, (in azimuth a) and y, (in azi-

muth a — jtt) are any pair of orthogonal unit sur-

face vectors, we have

lr—k, sin a + /ji,- cos a

jr — — k, cos a + fx, sin a,

which are defined in space and have to preserve

their identity under normal differentiation; or, if

/, is such a vector and \i j, is defined perpendicular

to it, then we may write

IrsV*— Argvs sin a + fJL rsV
s cos a—jr (da/ds)

—jr (y\ tan 4> — da/ds) — v,\y x sina + y-j cos a),

using Equations 12.014 and 12.015. Proceeding as

for Equations 15.35, we find that

dlalds=— kla+ja (yi tan
<f>
— t — da/ds)

15.36 dlalds^kla +ja
(y ]

tan
(f>
+ t— da/ds)

in which k, t are the normal curvature and geodesic

torsion in the /"-direction. These two equations

cover all four equations of Equations 15.35 as the

special case da/ds = 0.

38. For the principal directions (f = 0), u a
(in

azimuth A. principal curvature Kj), and v" (in

azimuth A— In. principal curvature k->). we have

at once

dujds — — K\U a + i' (,(yi tan
(fc
— BA/ds)

dua/ds = +K 1
u a + i>

a
(yi tan

<f>
— dA /ds)

dva/ds = -K-,va -ua (y ] tan
<f>
— dA/ds)

15.37 dva/ds = + K-,r
a -ua

(yi tan <j>-dA/ds) •

From these equations, we can derive Equations

14.44 through 14.46 by normal differentiation of

K\ = bapu ^
k> = baptPvf*

= bapuavft -
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NORMAL PROJECTION OF SURFACE
VECTORS

39. We have now to consider, just as we did in

isozenithal projection, the effect of projecting a

surface vector from one /V-surface to another down
the normals. In this case, we shall not be able to

derive any assistance from the spherical represen-

tation, unless the normals happen to be straight,

because projected figures will not have the same
spherical representation. Some of the formulas are,

nevertheless, simpler. We shall not be able to obtain

closed integral formulas any more than we could

in isozenithal projection, and we shall again derive

the first-order changes only. Changes of a higher

order can be obtained when required by successive

differentiation and substitution in a Taylor series.

Length

40. A first-order element of length 81 on an TV-

surface is given by

(5/)
2 = fl a/j8x

a8.^

in which 8xa are changes in the surface coordinates

over the element. Because the surface coordinates

remain constant along the normals in this system,

we may differentiate and use Equation 15.13 to

obtain

8(ln8/)

ds
bat

8xa \ /8*0

81 \8I

15.38 =-k
in the limit when 8/ becomes infinitesimal. Of
course, A is the normal curvature of the /V-surface

in the direction of the length element.

41. An element of area on an /V-surface is given

by

8S=Vci:8xa8x<3 ,

which can be differentiated with the help of Equa-
tion 15.16 to give

15.39
a(ln 8S)

ds
2H.

Components

42. The change in surface coordinates over a

small length 81 of a unit surface vector /" is given by

8xa = l
a8l;

differentiating this with the aid of Equation 15.38.

we have

0=8l(dl a/ds-kl a
).

Because 81 is not zero, we have

dla

15.40
ds

kla -

43. In regard to the covariant components, the

simplest course in these coordinates is to differ-

entiate

and to obtain

dla,

ds'

L= a apl

2baf,P + kaaeP

= -2(kla+tja)+kla

15.41 =-kla~2tja

in which t is the geodesic torsion of the surface in

the direction /„, andya is as usual a unit surface vec-

tor perpendicular to la - It should be noted that

ja will not, in general, project as a perpendicular

vector. We cannot therefore differentiate Equation

15.41 again and use a formula corresponding to

Equation 15.41 for the differential of ja because

to do so would require ja to be defined as perpen-

dicular to /„, not only on one surface, but on pro-

jection to the next surface. As in the case of iso-

zenithal projection, we need to recast Equation

15.41 in the form

15.42 ^= -kla+ 2teafiP
ds

before differentiating again. In this way, we re-

tain ja as an auxiliary perpendicular vector, but do

not project it.

Azimuth

44. To obtain the change in azimuth a of the

vector /" on projection, we can differentiate

cos a = l^fJL/j

in which /xp is the meridian direction. We must not,

however, project the meridian direction by using

Equation 15.41, but must ensure that it remains the

meridian direction by using Equations 15.35. With

that proviso, we have

— sin a(da/ds) = k cos a — (yi tan
<f>
+ ti) sin a

— k-z cos a,

which, with the help of the second equation of Equa-

tions 12.060, reduces to

15.43 dac/ds = t + y l tan
<f>



Normal Coordinate Systems 111

where as usual t is the geodesic torsion in the

direction /„.

This result may be obtained in a variety of other

ways, for example, by differentiating

sin a = afiyl^k7 .

45. If we project a principal direction (t — in

Equation 15.43), the projected direction is not

necessarily a principal direction of the new A
surface. If it is, then we may write

dA/ds = y\ tan <b

in which A is the azimuth of a principal direction

defined in space, that is, the azimuth of a principal

direction not on one particular TV-surface only, but

on the neighboring /V-surfaces as well. In that case,

we see from Equation 14.44 that

tt<V= 0,
\n/af3

which is a restriction on the form of the /V-surfaces

in order that their principal directions may project

into principal directions. We shall see in the next

chapter that this result has an important place in

the theory of triply orthogonal coordinate systems.

Curvatures

46. Differentiation of

k=ba/3 l
aie

leads directly to

dk/ds = n(lln) apMt3 - Cafil
a
lp + 2kbaPM^

15.44 =n(lln) alil
al^+(k 2 -t 2

),

using Equations 15.25, 15.40, and 7.14.

47. In order to differentiate

t = b ajij
aI^

we must differentiate j
a

, not as a direction which

is to be projected, but as an auxiliary vector per-

pendicular to I
13 as

ds

d(e°fL

15.45

35

= 2Hja+ €^(klp+ 2tjp )

= k*ja+ 2tla
,

using Equations 15.17 and 15.41 and denoting the

normal curvature in the direction of j
a by k*. It can

be seen that if we had projected j
a and used Equa-

tion 15.40, we should have the first term only, and

the result would be in error unless l
a

is a principal

direction (t — 0). Using Equation 7.14, we now have

dt/ds = n ( 1/n ) af}j
alP- 2Ht + k*t + 2kt + kt

15.46 =n(l/n) alij
alV+2kt.

Covariant Derivatives

48. As in the corresponding case of isozenithal

projection, we now consider, but without any loss

of generality, that /„ is the unit tangent to afamily

of curves defined in some way over a region of a

particular /V-surface. This enables us to consider the

azimuth a as a differentiable function of position.

We write the covariant derivative in the form used

in isozenithal projection (see § 14-38) as

15.47 latj
= — eayl y (oin sin </>

— ap).

Although this equation was obtained in (co. $, A)

coordinates, it is, nevertheless, a surface tensor

equation true in any coordinates, provided we treat

a), (/) as scalar functions of position and not as coor-

dinates. Because we are now dealing with the same

A-surfaces and with the same Cartesian axes, it is

evident that a>, (/>, as originally defined in the (a>,

0, A) system, will have the same values; we can

use Equations 12.032 and 12.031 and write

dtr)/ds= yi sec 4> ' dc/>/ds = -y2 -

49. We first differentiate the term within paren-

theses in Equation 15.47 and note that second

derivatives, with respect to x 13 and A, commute.

Also in these coordinates, we have

ds~"dN

so that we have, for example,

d ( 1 do)\ d (j\ sec (/>

ds
'

_daA
" dx^\n ds dxP \

Using Equation 15.43, we then have

d(cou sin 4> — ap) . d !y\ sec 4>= n sin 7—§
its

d (t-\-j\ tan (b

15.48

+ y-> cos <{) (Da

+ t(\n n)n— tp

on expansion. Using Equations 12.061. 12.062. and
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8.02, we can rewrite the first two terms as

— yi<foj+ (j-i cos 0)0)^=/^ (In n) y {tly — kjy )

+ jti(\n n)y{k*lv-tj*)

= kbyh (lnn) y{Uj -j
l>
l
l3 }

= kbyHln n)y€S[}

15.49 =Qn,

for instance, which shows that these two terms are

a point function and that the only way a particular

direction enters Equation 15.48 is through the geo-

desic torsion. Using Equation 8.01. we can also

express the last relation as

15.50 Qu = €y»eb 'Tb f><T (\n n) yew = e
ya (\n n)ybap.

50. We can now differentiate Equation 15.47

without difficulty and find that

^=-2Hl^+ klap+ja{Q +t(]n.n) p -tp}
ds

15.51 =-k*la0 +ja{Q^+ t(ln n)[j-ti3}.

In addition to the expressions given previously

for Q(3, we also find after some manipulation that

15.52 jaQn = b ali {\n n) y l y - 6#6 ( In n)Jh
.

It is instructive to obtain the same result, rather

more laboriously, by direct differentiation of the

defining equation

lafi
=dUdx^-Ty ly,

using formulas which have already been given

51. If la is the surface gradient of a scalar /

defined in space, then, as in §14-40. we find

'" -n(-
d

-f) + F y {b aliy-bay(\nn) li

ds \n ds/u/3

15.53 — buy (In n ) a + bap (In n ) y }

where Fy= a ybF and covariant derivatives are taker

with respect to the surface metric.

Geodesic Curvature

52. To find the change in the geodesic curvatur

cr of la on projection, we differentiate the Equatioi

12.065,

(T= {top sin
(fr
— an)! 1*,

which again is true in any surface coordinates fo

the same TV-surfaces. Using Equation 15.48 and th

first line of Equation 15.49. we find

do-/ds = Zo-+(ln n)y(tl y -kjy
) + t(\n n)^— t^

= k(T + 2t(\n n)nl^-k{\n n)fjP— tpl*.

15.54



CHAPTER 16

Triply Orthogonal Systems

GENERAL

1. It is evident that the geometry of a normal

coordinate system is simpler, than the geometry of

the general (o>,(£,/V) system. As we shall see, the

latter system has- the advantage that all three co-

ordinates are directly measurable quantities in

many geodetic applications, whereas two of them
in the normal system must be inferred from their

values on a particular A-surface. Nevertheless, the

normal system is of considerable theoretical value

because it enables us to derive certain general

results more simply than in other systems. We shall

now inquire whether it is possible to achieve still

greater simplification by adopting orthogonal sur-

face coordinates in a normal system, in which case

all three coordinate lines would be mutually per-

pendicular and, in addition, would have the same
direction as the gradients of the scalar coordinates.

THE DARBOUX EQUATION

2. A small displacement on a surface can be

written as 8x a where x a are the surface coordinates

because this displacement amounts to a small

change in the coordinates x a over the line con-

sidered. If it is a displacement along a coordinate

line, then a is either 1 or 2, but we prefer to keep
the notation general and still write it as 8x a

. The
displacement 8x a can be considered a small contra-

variant surface vector.

Now consider two small displacements 8x a
, Sx®

along the surface coordinate lines and choose

orthogonal surface coordinates on the base surface

so that, on the base surface, we have

16.01 a ap8x a8xfi = Q.

If the coordinate lines are to remain orthogonal on

the next /V-surface, infinitesimally close to the base

surface, then there must be no change in this re-

lation as we proceed from one surface to the other.

In other words, the differential of Equation 16.01

along the normal arc element (is must be zero.

During this change, the 8x a
, S.f^ remain the same

because, by definition, the surface coordinates

are constant along the normals in a normal coordi-

nate system. Accordingly, we may write

{da anlds)8x
a8x'3= 0;

from Equation 15.13, this is equivalent to

16.02 bali8x
a8x0 = O.

In this equation, we can replace 8x a
, 8x# by the

unit vectors u a
, v® in the coordinate directions

simply by dividing by the lengths or magnitudes of

the two displacements so that

baliU
aV li = 0,

which shows that the geodesic torsion in the co-

ordinate directions must be zero and therefore the

coordinate lines on the base surface must be the

lines of curvature. This is a well known, necessary

condition, originally due to Dupin, for triply orthog-

onal systems. It is not, however, sufficient to ensure

orthogonality throughout a finite region of space.

For this to be possible, the coordinate lines must re-

main fines of curvature on the surface next to the

base surface. The situation on this next surface will

then be the same as on the base surface; we can

repeat the process to build up the entire field. In

other words, the differential of Equation 16.02 along

113
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the normals must be zero; using Equation 15.25,

we must have

n(\ln Udx^x^ - Ca08xadx& = 0.

But because the displacements 8x a
, dx® are in the

principal directions, the second term is zero by
Equation 7.25 so that we have finally

16.03 (l/n)a0uV= O.

We can choose any one of the /V-surfaces as the

base surface so that this condition must apply to

all of them. Moreover, it is evident from Equation

8.26 that the condition is equivalent to

16.04 [lln)rsurv s=

in space, simply because (1/n) is a scalar. The form

of the scalar /V settles not only n at any point in

space, but also the principal directions of the N-
surfaces. Accordingly, the condition of Equation

16.04 restricts the form of N, which must arise from

a solution of Equation 16.04 in order to be one co-

ordinate of a triply orthogonal system.

3. The Equation 16.03 or 16.04 is equivalent to

what is usually known as the Darboux equation in

classical differential geometry; it is given by such

writers as Bianchi and Forsyth in several more
complicated forms. Forsyth l gives a Cartesian

version of the Darboux equation, which is equivalent

to the invariant form of Equation 16.04, although

he does not derive it in the same way.

4. Referring to Equation 14.44, we find that

Equation 16.03 is equivalent to

(ki — K2)(yi tan(/>-d,4/ds) = 0.

Unless Ki = K2,'in which case the TV-surfaces are

spheres whose lines of curvature are indefinite,

the Darboux equation can accordingly be expressed

as

16.05 d.4/ds = yi tan $.

5. In the case of a field symmetrical about the

Cartesian C r-axis, we have seen in §12-48 that the

meridians are principal directions {A — every-

where) and j\ = so that each side of this last

equation is zero. Accordingly, the /V-surfaces in

such a symmetrical case are certainly possible

triple orthogonals, but the Equation 16.05 then is

oversatisfied; we may conclude that some non-

symmetrical surfaces are also possible triple

orthogonals. One such case is a family of confocal

triaxial ellipsoids as is well known.

SOLUTIONS OF THE DARBOUX
EQUATION

6. Because ua , v& must be the coordinate direc

tions in a triply orthogonal coordinate system
Equation 16.03 can be written as

(l/n)i2=

in the surface metric; this can be expanded as

Uft , d
2 (l/n) d(lln)

, ^ 9 d(lln)

dx Ydx- dx 1 dx l

This is a second-order linear partial differentia

equation in the two independent variables x 1 anc

x 2
, known usually in the theory of differentia

equations as Laplace's equation (not to be cpnfusec

with the Laplace equation used in potential theory)

7. Equation 16.06 is also known as Laplace's

equation in classical differential geometry 2 where

it arises because three particular solutions of the

equation are the Cartesian space coordinates

(x, y, 2). We can very easily show, for example

that x satisfies Equation 16.03 by using Equatior

6.16 when we have

(x) afiU
aVP = V Xba^UaV&=

in which v x
is the x-Cartesian component of the

unit normal to the surface. In the same way, the

equation is satisfied by y and z.

8. We can also show that Equation 16.06 is

satisfied by r2 = grsp
r
p

s in which r is the radius

vector and p
r

is the position vector of a curren

point on the surface. By surface covariant dif

ferentiation, we have

(r2 ) a=2grsxZps

( r
2

) au = 2grsXlpp s + 'IgrsX^

= 2 ( grsv r
p

s
) ban + 2aap ;

and so we have

(r2 ) a/3uV=0,

provided only that u a
, v® are the principal directions

9. Moreover, because any function ofA is constan

under surface covariant differentiation, we can sa;

at once that Equation 16.03 or 16.04 is satisfied b;

16.07 a + bx + cy+ dz + er2

in which a, b, c, d, e are arbitrary functions of N
This is a very general solution of the equation, bu

1 Forsyth (reprint of 1920), Lectures on the Differential Geometry

of Curves and Surfaces, original ed. of 1912, 437. Ibid., 69.
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still not the most general solution which would 10. It may help the reader to find his way through

require two arbitrary functions, not of N only but the considerable classical literature on the subject

of all three coordinates. This result, first obtained if he realizes that the surface tensor equation

by Darboux, is also derived by Forsyth.3 Anyone r, a li
_n

who doubts the value of the tensor calculus in such

problems should compare the classical derivations in which F is a scalar and the two vectors are the

with the derivation given here. principal directions, is called Laplace's equation

when F is x, y, or z and is called the Darboux
3 Ibid., 447. equation when F is (l/n).





CHAPTER 17

The ( co, <$>, h) Coordinate System

GENERAL DESCRIPTION
OF THE SYSTEM

1. We have so far considered special coordinate

systems in which a given family of /V-surfaces are

coordinate surfaces without applying any restriction

on the form of the scalar /V, other than continuity

and differentiability. We now choose N to make the

function n— the magnitude of the gradient of /V—

a

constant which, without any real loss of generality,

we can make unity. The form of the /V-surfaces is

then no longer as one chooses, but, as we shall

see, one of the surfaces can still be chosen arbi-

trarily. This coordinate system is accordingly of

value when we are concerned with space in the

immediate vicinity of a given surface, which can

be chosen to provide a close approximation to actual

physical conditions. The geometry of the system is

much simpler than that of the more general sys-

tems so far considered, and by suitable choice of

surface can be made even more simple. We can

also use the system to derive easily some valuable

properties of surfaces in general.

2. In most current geodetic applications of this

system, one of the surfaces is chosen to be a sphe-

roid whose minor axis lies in the Cartesian (^-di-

rection and whose dimensions are chosen to make
it a good approximation to an equipotential surface

of the gravitational field. In such a system, it is

possible to calculate finite distances and direc-

tions by means of closed formulas and so to linear-

ize the observation equations for measures which
are necessarily made in the less regular gravitational

field. The problem usually involves a transformation

of one /V-system into another; a spheroidal (o>, $, h)

system (known as the geodetic system) into a

(cu, (/>, N) system (known as the astronomical sys-

tem) in which the /V-surfaces are gravitational

equipotential or level surfaces modified by the

rotation of the Earth.

3. In the present chapter, however, we shall

derive general formulas which do not involve the

choice of a spheroid as a special case. The results

can then be used for other applications, such as the

choice of the geoid as a surface in this coordinate

system. Modification of these more general results

to the special choice of a spheroid as base surface

is a very simple matter which will be treated in

the next chapter.

4. The basic gradient equation for the coordinate

N with n= 1 becomes

17.01 NT=Vr ,

which can be differentiated covariantly as

17.02 Nrs=vrs ,

showing that the tensor vrs , like Nrs, must be

symmetrical. The vector curvature of the normals

is then

17.03 vrs v
s= vsrvs=

because vs is a unit vector. See Equation 3.19.

Consequently, we find from §4-2 that the normals

are space geodesies, that is. straight lines in flat

space. If h is a length measured along the normal,

we have from Equation 17.01

dN/dh=Nrv r=l

so that we can take N as /( — measured from one

particular /V-surface which we shall call the base

surface. It is evident that equal lengths of the

117



118 Mathematical Geodesy

straight normals are intercepted by two particular

/V-surfaces which are, for this reason, known as

parallel surfaces.

5. Because n — 1 , it follows at once from Equations

12.097 that the isozenithals are the same as the

normals. The (o», <b, N) and the normal coordinate

systems become the same; we can derive the

properties of this special system from either the

(cj, <b, N) or the normal system, whichever is easier,

simply by making n=\ and N=h. Because latitude

and longitude, as defined in the (oj, c/>, N) system,

will be constant along the isozenithal-normals,

we can use them as coordinates — not only on the

base surface, but also in space.

6. It is evident that the Darboux equation of

Equation 16.04 is satisfied if n is a constant so

that we could choose triply orthogonal coordinates.

In general, however, we could not use in that case

latitude and longitude. We would have to refer the

base surface to its lines of curvature and to define

the resulting coordinates as constant along the

normals, just as we did in the normal system.

We have already seen from aVz in Equations

12.069 that the oj- and ^-coordinate lines are not

orthogonal unless ri = 0, corresponding to the

axially symmetrical system discussed in §12-48.

In that case, but not otherwise, the a»- and cMines

also would be the fines of curvature, and we could

take latitude and longitude, together with h, as

triply orthogonal coordinates.

7. For the present, however, we shall retain a

general nonsymmetrical form for the base surface;

unless otherwise stated, we shall assume that the

surface coordinates are latitude and longitude. We
can then use all the surface formulas in the (o», (b, N)
system, that is, any formula not containing TV or n.

In fact, the whole system becomes a special case

of the (co, (/), N) system or the normal system with

n= l, N=h, and ds= dh. However, we shall find

that some useful integral relationships can also be

obtained in this special system which are not

available in the general (o», c/>, N) system.

THE FUNDAMENTAL FORMS

8. The space metric in these coordinates, ob-

tained by making n=l in the normal system of

Equations 15.03 and 15.05, is

17.04 ds 2 = a afidx
adx» + dh 2

,

with the associated tensor

17.05 g
rs =(a a^l).

It is evident that a a/3 and aan are also components oi

the h -surface metric, if as usual we make the

surface coordinates two of the space coordinates

This will be done throughout this chapter in whicl

also, as stated previously, the surface coordinates

will be latitude and longitude.

9. The components of the metric tensor wil

depend on h. As in the normal system Equatior

15.13, we have

17.06 daa0ldh=-2bap;

from either Equation 15.25 or 14.01, we have

17.07 dbanldh=—Cap.

The third fundamental form, as in Equation 14.08

is constant along the isozenithal-normal so that we

Jiave

17.08 dcapldh=0.

10. If overbars refer to the base surface where

h = 0, we have accordingly the following integral

relations,

17.09 aa f3
= aai3

— 2hbai3 + h 2
Ca/3

17.10 bat3=b~af3— hCal3

17.11 Ca0=Cap,

enabling us to find all three fundamental forms al

any point in space from values at the foot of the

normal on the base surface — that is, from values at

points on the base surface having the same latitude

and longitude as the point in space.

11. The components of the three surface forms

in terms of the three curvature parameters (ki,

k>, ti) of the h-surfaces are as given in the (co, $, N)

system, namely,

an = {k\ + ti) cos- cb/K 2 bn = h cos 2
4>l

K

a Vi = — 2Ht\ cos (b/K- bn=— h cos <J>/K

a-i2 = (ki + t\)IK? b22 = k xIK

17.12 ca/3= (cos 2
<b, 0, 1):

12. If we denote the corresponding components

on the base surface by overbars and substitute ir

Equation 17.10, we have

hlK=%fK-h

hlK=Tt/K

17.13 kilK=IilK-h,

which enable us to find the three curvature param

eters at any point in space, given their values

on the base surface. Multiplying the first and thirc
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equations and subtracting the square of the second,

we have

17.14 l/K=HK-(2HIK)h+ h2

or

17.15 K/K = (1-/;ki)(1-/(k2 ),

using the principal curvatures K\, k-i. Also by adding

the first and third equations of Equations 17.13,

we have

17.16 2HIK=2H/K-2h,

which relate the curvature invariants of the

A -surfaces.

13. We can also find without difficulty that

17.17 a^lK 2 = Ti^jK2 ~2h Pi*IK + h 2c^

17.18 b^lK = b^lK - hc^

17.19 c*v = c«0

from the contravariant components

o»= {k\+ t\) sec2
(f)

bn= ki sec2
<j>

a vl — 2Ht\ sec (b b V2 = t x sec <b

ai2 ={kl+t\) b22 = k,

17.20 c^=(sec2 0.0, 1).

14. In regard to the determinants of the three

forms, we have from Equations 12.070, 12.076,

and 12.084

cos2
<b — K 2a — Kb — c,

and because <b is constant along a normal in these

coordinates, we have

17.21
a = b

2

= K:

u b
2 K 2

15. Because we can take any one of the /i-surfaces

as base surface, we can interchange the overbars

in any of the preceding formulas, provided we also

change the sign of h. For example,

a^/K2 = a^/K2 + 2hba^/K+ h 2ca»

gives us the base metric tensor in terms of the three

forms of the /i-surface. This device is a useful check

even when not required to generate new formulas.

16. We can differentiate any of these integral

formulas along the normal. For example, Equation

17.14 becomes

-(HK)(d In K/dh)= -2HIK+ 2h;

in the neighborhood of the base surface h = 0, this is

d(\nK)/dh = 2H.

But because we may take any surface of the family

as base surface, we can drop the overbars and write

17.22 d(\nK)/dh = 2H.

THE BASE VECTORS

17. Components of the base vectors are given at

once by making n=\ in the (a>, </>, N) formulas,

such as in Equations 12.037,

17.23 kr=(-ki sec (b, -tu Q)

17.24 fx,
r=(-t 1 sec <b, -k2 , 0)

17.25 v< = (0,0,1)

17.26 £Xr =(-A:2Cos <b, +*i,0)

17.27 Kpr=(+h cos (b, -ki,0)

17.28 vr={0, 0, 1).

Because any surface vector can be expressed in

terms of kr , fir , it follows that the 3-components,

covariant and contravariant, of all surface vectors

are zero. The surface components are the first two-

space components.
We have also from Equations 12.046 and 12.047

17.29 (cos <b)(D r=— kik, — t\ix r

17.30 (br=-tikr-k2fJir .

18. In regard to the derivatives of the base vectors,

we have, as in Equations 12.022, 12.023, 12.024, and
12.074,

ka — i*-cfiL>p sin <b

fxa/3
= — kaOip sin <b

17.31 Va = — ba$ — (COS 4>)ka(x>n + IAa4>H-

whether the components of ka$. iAa& are taken in

the space metric or in the surface metric. The only

nonzero components containing a 3-index are from

Equations 12.014, etc.,

17.32 A.3J = — cos <b : fin—~i-

19. As in (to, <f),
N) , all three base vectors remain

parallel if translated along an isozenithal-normal.

20. Second derivatives of the base vectors can be

found at once from Equations 12.159 and 12.160 or

by direct calculation. For instance, we have

17.33

kap:i — A.aIi/3 = Sin <b /J<ab
lyC0y

Va33 = 0.
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THE PRINCIPAL DIRECTIONS AND
CURVATURES

21. It follows at once from Equations 17.13 that

ti/(*i-fe)= &/(Ai-fe),

and therefore from Equation 12.051 we have

A=A
so that the azimuth of a principal direction remains

the same at all points along a normal. We could

accordingly take the principal directions at a point

as the meridian and parallel directions in a tem-

porary coordinate system, in which case Equations

17.13 would apply to the principal curvatures Ki,

k-z as

17.34

or

17.35

K 2IK=K2IK-h

Kl/K=K1IK-h

aiK l)=aiK l)-h

(1/k2)= (1/k2)-/i.

(The geodesic torsions are, of course, zero for the

principal directions.) These last two equations

reduce to a statement that the principal radii of

curvature at points on the same normal differ by h.

We must remember, however, that in the case of

surfaces which are convex to the outward-drawn

normal, such as we normally encounter in geodesy,

the radii of curvature are negative, whereas h is

positive along the outward-drawn normal.

22. Another way of viewing this matter is to con-

sider the surface-normals at neighboring points

along a line of curvature. We know that the normals

then intersect in the center of curvature. Also,

corresponding points on different /i-surfaces will

have the same straight normals. Consequently,

the center of curvature will be the same at corre-

sponding points on the lines of curvature of all the

A-surfaces, which proves the previously mentioned

statement about the principal radii of curvature.

We can also say that the total angle swept out by

the surface-normal along a line of curvature is the

same between corresponding points on all the

/i-surfaces.

THE CHRISTOFFEL SYMBOLS

23. Because vy = in these coordinates, we can

see at once from Equation 12.131 that

is the same for both the space and surface metrics,

just as it is in normal coordinates.

24. Again, by making n=l in the (a>, c/>, N)
formulas, we find that the only nonzero symbols

containing a 3-index are

1 a/3 bad

17.36 FSB = - b^Cffy = ~ a^bey= V%

LAPLACIANS OF THE COORDINATES

25. Because N=h and ra=l, we have at once

from Equation 12.100

17.37 Mi 2H-

from Equations 12.104 and 12.105, we have

17.38 (cos c/>)Aw = 2(sin 0)V(a>, <j>)
— (2H)aka

17.39 A</> = -(sin c/> cos ()))V(o))-(2H)aiJL
a

with

1 7.40 V(o>, <f>)
= a vl = 2Ht x sec

<f>

17.41 V(w) = an = {k'i + t'i) sec 2
<j>,

using Equations 17.20.

It should be noted that the space Laplacians in

Equations 17.38 and 17.39 are the same as the

surface Laplacians, obtained in (a>, c/>, N) coordinates

as Equations 12.118 and 12.120. Although we have

defined the coordinates {co, c/>) in the same way for

both systems, they do not have the same values

at any point in space because the two normals do

not have the same direction. Consequently, the

space Laplacians are different in the two systems.

We can, however, choose any one of the TV-surfaces

as base surface in the (a>, c/>, h) system; and on that

surface, (oj, c/>) will be the same. Consequently, the

surface Laplacians will be the same in the two

systems.

26. The general Equation 8.29, for converting the

surface Laplacian of a scalar to the space Laplacian

becomes in these coordinates

17.42
dF d-F

dn da-

rn which the surface Laplacian is denoted by an

overbar. This equation shows again that the space

and surface Laplacians of the coordinates (w, c/>

are the same in this system.

Using Equation 17.22, we may express Equation

17.42 in the alternative form

17.43 &F = AF+ K^{- ,

dF
K dh
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CHANGE OF SCALE AND AZIMUTH
IN NORMAL PROJECTION

27. Projection from one A-surface to the base

surface down the isozenithal-normals requires the

surface coordinates (&>, <f>)
to be the same for a

point and its projection. We consider a displace-

ment on the current surface given by a change

dxa in surface coordinates over an element of length

ds in the direction of a unit vector /
a

: the corre-

sponding quantities, projected on the base surface,

are denoted by overbars. Accordingly, we have

l
ads= dxa=dxa=lads.

If now we multiply the three Equations 17.09, 17.10,

and 17.11 by {dxadx ti
), we have at once

(dslds)
2 =l-2hk + h 2 (k 2 + P)

(dslds) 2k=k-h(k1 + t-)

17.44 (dslds) 2(k- + f-) = k- + t-

in which k, t are the normal curvature and geodesic

torsion of the base surface in the projected direc-

tion. The last of these formulas applies to isozenithal

projection in the general coordinates (w, (/>, N) and
could be obtained from the formula for spherical

representation, but the other two formulas are

peculiar to the (o», $, h ) system.

28. Following Equations 13.04 and 13.05, we can

j
also relate azimuths on the two surfaces as follows,

(dslds)(k cos a + t sin a) =— c)(/>/r')s

= (k cos a 4- t sin a)

{ds/ds) (k sin a — t cos a) =— cos
(f)

dco/ds

17.45 = (k sin a — t cos a);

if the change in azimuth on projection is

Aa = (a — a),

we have the equivalent equations

(ds/ds) k — (k cos Aa + t sin Aa)

17.46 (ds/ds)t = (—k sin Aa + t cos Aa).

The only solution of the first of these equations

which will also satisfy the first two equations of

Equations 17.44 is

17.47

(ds/ds) sin Aa = — ht

(ds/ds) cos Aa = ( 1 — hk

in which case the second equation of Equations
17.46 reduces to

Combined with the third equation of Equations

17.44, this shows that

17.49 t/(k2 + t
2

)

is unaltered on projection; we can verify this fact

by differentiation, using formulas given in the

Summary of Formulas.

29. In all the preceding equations, we can inter-

change the overbars; the interchange is equivalent

to taking the unbarred surface as the base surface,

provided we also change the sign of h and Aa. For

example, from Equations 17.47, we have

17.50 tan Aa
hi -ht

(l-hk) {1 + hky

from Equations 17.44, we have

17.51 (ds/ds) 2=l + 2hk+ h2 (k2+ t
2
).

This device, applied to the first equation of Equa-

tions 17.47, enables us to verify Equation 17.48.

THE ^-DIFFERENTIATION

30. Some formulas for differentiating the compo-

nents of surface tensors, etc., along the straight

normals have been given in previous sections ol

this chapter. Many more can be obtained from the

collected formulas in the Summary of Formulas for

Chapters 14 and 15, whichever is easier, simply

by substituting n=l, N = h, ds = dh. This fact

results in drastic simplification. For example,

from Equations 14.14, 17.07, and 8.09, we have

dfr
lftY

'

•I

17.52

from Equations 14.16 and 14.07, we have

dbaffy

pf>y-

17.53
dh

bapbn,AaP'
T)y=0,

showing that bapy has the same components at all

points along a straight normal.

31. Again, from Equation 14.71 or 15.53, we have

for the surface covariant derivatives of a scalar F

17.54
dh

-r) +a^F,ba^y .

fin j a/i

17.48 (dslds) 2
t = t.

This last equation contracts to

aF«0_T(d?
tih \ dh )

17.55 .<* a; r l+V(2#, F)
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in which the overbars indicate surface invariants.

Using Equation 15.15, we then have after a little

manipulation

^fp= A
(jp)

+ V(2#, F) + 4//AF - 2Kb^Fa0 .

17.56

32. In some cases, we could obtain such results

quickly and directly in (oi, </), h) coordinates, but

by deriving in this way, we have them as a byproduct

of work already done in the more complicated co-

ordinate systems.

Collected formulas obtained from those given in

the Summary of Formulas for Chapters 14 and 15 are

also included in the Summary of Formulas for this

chapter under /i-differentiation without further

proof, together with some integral formulas which

have either been obtained previously or can be veri-

fied easily. There are no corresponding integral for-

mulas in the (a>, <b, N) or normal coordinate systems.

EXAMPLES OF ^-DIFFERENTIATION

33. The process of differentiating a surface tensor

equation along the normals is equivalent to assert-

ing that a similar formula holds true between the

projected quantities on the neighboring /j-surface.

We do not restrict the form of a surface by using

it as a base surface in a (w, </>, h) system, provided

that adjacent normals do not intersect within the

region of space considered; if they do, the (a», <b)

coordinates of the point of intersection then would

not be single valued. We can usually avoid this, at

any rate over some finite area of the surface, by

choosing the positive /i-direction in the direction

of divergent normals.

34. Consequently, any surface tensor equation

which is true on any regular surface can be differ-

entiated along the normals by means of the formulas

given in the Summary of Formulas under /(-differen-

tiation. The result, possibly with the help of the origi-

nal equation, will either be an identity— in which

case the original equation is verified— or will be

some new relation between surface tensors or in-

variants. If any limits are imposed in the original

equation, such as a closed contour, then it is

assumed that these limits are projected onto the

neighboring h -surface.

35. As an illustration of the process, we shall

consider the two-dimensional tensor form of Stokes'

theorem in Equation 9.04,

J
LTads=j eaH0adS,

in which la is an arbitrary unit surface vector fielc

defined on and within the contour and ra is the uni

tangent vector to the contour. We note first, witl

the help of formulas given in the Summary ol

Formulas under h -differentiation, that we have

d (e^dS ) /dh = 2He^dS - 2Hea^dS =

so that (e al3dS) is constant under normal differ

entiation. So (rads) also is constant because it is

equal to a change in surface coordinates along the

contours. Consequently, we have at once

(k!a + 2tja )T
ads=

I
eaP{k%a +jp(dtldx^)}dS

c Js

in which k, t refer to the /"-direction and k* to the

perpendicular /afield. Next, we transform each o:

the contour integrals to area integrals. For example
we have

klaT
ads lrHklnUdS

{ke^lpa + e^ItiUlkldx^jdS.

The final area integrand, after some manipulatior

with Equations 2.32, 4.11, etc., becomes

17.57 o- ( k- k* ) + 2ta * + tpP - kfijf*

in which cr, <x* are the geodesic curvatures of /",/

and tfj, kp are the differentials of t, k with respect t]

the ^-coordinate. Because l
a

is a surface vecto:

field, t and k are point functions which can be

differentiated in any direction. The area over whicl

this integral is taken is quite arbitrary, and becaus<

the result is identically zero, then the integrand o

Equation 17.57 must be zero. At first, this does no

look likely, but reference to Equations 14.22 ane

14.21 will show that the integrand is equivalent t(

-b aliyl
aPjy + ba^lafly,

which vanishes because of the Codazzi Equatior

6.21,

bapy— bay$.

36. The equation

17.58 a(k-k*) + 2ta* + t
fi
l^ -knP = Q

for an arbitrary orthogonal mesh l
a
,j

a together witl

the corresponding equation for the y
a-direction

17.59 a*(k* - k)+ 2ta--W + &|/0=O
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are accordingly equivalent to the Codazzi equations

of a surface. In deriving Equation 17.59 from Equa-

tion 17.58 for the y
a-curves, for which the geodesic

curvature and torsion are cr* and minus t and the

normal curvature is k* , we must remember that the

new y'a-direction is minus l". In this direction of the

/"-curves, the geodesic curvature is minus cr, but

the normal curvature is + A\

37. For the lines of curvature {ua , if), t— and

Equations 17.58 and 17.59 reduce to

17.60

{K, —K>)(T=(Ki)aVa

(Ki-Kl)(T* = (K2)aU
a

which have been already given in Equations 8.22

as special forms of the Codazzi equations.

38. As another example, consider the two-

dimensional divergence theorem in the form of

Equation 9.12,

17.61
j(

Fajads =
j(

Fa e
a%ds =

j
Faea%ds= \ AFdS,

in which F is an arbitrary scalar defined on and in

the immediate neighborhood of the surface. As
before, to ensure that the unit surface vector nor-

mal to the contour stays that way after differentia-

tion instead of becoming the projected direction,

we have written it in the form (e^lp) where /# is the

unit vector tangent to the contour. After normal

differentiation, the contour integrand becomes

(dFldh) ae
af3h + 2HFa eaHi3

- Fae^ (kk + 2t//» ) - Faea%k

and the area integrand becomes

&{dFldh)+V(2H, F)+2HAF-2Kb<^FaP .

The first contour integral cancels the first area

integral by the divergence theorem for the scalar

(dF/dh). The second contour integral, transformed

to an area integral, becomes

1
aF*(2HF*)pdS,

the integrand of which is

V(2H,F)+2HAF.

This last formula cancels the second and third

terms of the main area integrand: we are left with

Kb^FafidS = [ Fae^ ( kk + tin ) ds

= Fat^bfiylvds

17.62

[

=
J

(-kFaja+tFJa )ds

=- { KbtFajpds,

using Equations 7.12 and 8.02.

To verify this, we could differentiate again, using

the second form of the contour integral, which

does not contain jp explicitly, and remembering
that (KdS) is constant under normal differentiation.

The result is an identity.

We cannot take the third form of the contour integral

and transform this by the divergence and Stokes'

theorems because k, t refer to the boundary curve

only and are not defined over the area. We could
;

however, transform the second contour integral

by Stokes' theorem. Or, we can transform the last

form of the contour integral by the divergence

theorem to an area integral whose integrand is

ay^Kb^FaapS )y.

Because aps is constant under covariant differentia-

tion, this last expression is

(K&#Fah=Kbr*Fcfi+ (Kbr*)^

Combining this last equation with the original

Equation 17.62 for an arbitrary area, we must have

(X6«*)/,F„= 0;

and because F is arbitrary, this means that

17.63 (Kb*)p= Q.

Or, using Equation 8.01, we have

(e«^86yS ) p= = eove^bysp
,

which is so because 6-ys/s is symmetrical in (6. /3) by

virtue of the Codazzi equations of the surface.

Again, we have verified the process and have

checked a number of other results on the way. The
form of the Codazzi equations in Equation 17.63

is sometimes useful and, although easy to verify,

might otherwise have escaped notice.

If we differentiate Equation 8.02 covariantly, use

Equation 4.11, and substitute in Equation 17.63, we
obtain the Codazzi equations in the form of Equa-

tions 17.58 and 17.59.
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THE POSITION VECTOR

39. If p' is the position vector at a point in space

and p
r

is the position vector of the projected point

on the base surface, then

17.64 p
r = p

r +hv r

is evidently true in Cartesian coordinates or be-

tween parallel vectors at a single point in space.

Equation 12.169, written for the projected point on

the base surface, is

17.65 p
r = (sec

<f>
dplda>)\' + (dp/d<f>)p r + pv r

in which p is the perpendicular from the origin onto

the tangent plane to the base surface at the projected

point. The base vectors k r
, £L

r
, v r are parallel to

Xr
,
p'\ v r (see § 17—19) so that we may drop the

overbars on these vectors in Cartesian coordinates.

Substituting in Equation 17.64, we have

p' = (sec 4> dplda))k r + (dpld(f>)p
r + (p + h)v r

,

17.66

an equation between vectors at the same point ir

space which, although derived in Cartesian coordi

nates, is true in any coordinates.

Contracting Equation 17.64 with v r=vr , we have

also

17.67 p = p + h.



CHAPTER 18

Symmetrical (co, <j), h) Systems

DEFINITION

i. We shall now introduce a minimum simpli-

fication into the general (co, (f>,
h) system by making

the parameter t\ zero at all points of the base sur-

face, in which case it is clear from Equations 17.13

that t\ will be zero at all points in the region of space

covered by the coordinate system. As we have seen

in § 12-48, the meridian and parallel traces on

any h -surface are then the latitude- and longitude-

coordinate lines which are accordingly orthogonal;

it is clear from § 17-6 that the (a>, <f>,
h) system is

triply orthogonal. The w,
(f>

coordinate lines are

lines of curvature, and the parameters Ai, A2 are

the principal curvatures Ki, k2 of the h -surfaces. In

addition to being the </) -coordinate fines, the merid-

ian traces are h -surface geodesies and plane curves

(see § 12-48).

2. Later, we shall introduce an extra condition,

requiring the h -surfaces to be surfaces of revolution

about a C r-axis passing through the Cartesian origin.

This does not affect the differential geometry of

the field; the condition arises through the choice

of constants of integration of the Codazzi equations.

direction to the outward-drawn normal. Accordingly,

we make R\, Ri positive by writing

/?i = -1Mi = -1/k 1

18.01 /? 2 = -1/A2 = -1/k 2 .

in which case we have from Equations 17.13

R x
= R x + h

18.02 R 2 = R, + h.

These equations enable us to express the radii of

curvature of the h -surfaces at any point in space in

terms of their values on the base surface at a point

having the same latitude and longitude. See also

§ 17-22.

COLLECTED FORMULAS

4. Most of the formulas for this coordinate

system can be obtained simply by making fi = in

the formulas of Chapter 17 or by making /i = 0,

7i= 1, N—h, yi = y2 = in the formulas of Chapter

12. Nevertheless, we shall list for easy reference

certain formulas relating to this system and shall

give a reference on the right to the original formula.

PRINCIPAL RADII OF CURVATURE The Fundamental Forms

3. We shall find it simpler at this stage to intro-

duce the principal radii of curvature Ri, R 2 in the

parallel and meridian directions in place of the
principal curvatures Ki = k x and k2 = A2 . The closed
surfaces, which mostly concern us, will have
negative curvature in the usual conventions because
the centers of curvature will lie in the opposite

5. Components of the metric tensor and of the

three fundamental forms are given by

18.03

18.04

grs = (aa0 , 1) grs = (aaf}, 1)

17.04; 17.05

aai3= { (/?! + h) 2 cos 2
</>, 0, (R 2 + h)*}

125
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18.05

18.06

18.07

18.08

18.09

bap={-(Ri+ h) COS 2
</>, 0, -(R 2 + h)}

17.12

cap= {cos- <£,G, 1}

a^ = {sec2
<f)/(Ri + h) 2

, 0, l/(tf 2 + M 2
}

&«*=={- sec* 0/(Ri+ fc),O,-l/(iR»+ fc)}

17.20

c«^={sec-(/), 0, 1}.

The Base Vectors

6. Components of the base vectors and principal

directions are

A' = «' = {sec (frKRi + h), 0, 0}

/x
r=vr = {0, ll(Rt+ h),0}

18.10 v r= {0,0,1} 17.23, etc.

K r = ur={(R\ + h) cos </>, 0, 0}

/x,= »,. = {0, (Ri + h), 0}

18.11 Pr= {0,0,1}.

The surface components of A', ^x' , A,-, /jl, are the

same as the first two space components.

7. For the gradients of the coordinates, we have

18.12 (cos (b)(or=krKRi+ h) 17.29

18.13 (j> r =fJLrl(R2 + h). 17.30

8. A unit vector /'" in azimuth a and zenith dis-

tance /3 is

/' = A.'' sin a sin (3 + /jl' cos a sin (3 + v' cos /3;

its components are

, _ (sec (/) sin a sin j3 cos a sin /3 1

/,-= { (/?i + h)cos 4> sin a sin /3.

18.14 (&+ A) cos asin/3, cos /3}.

Derivatives of Base Vectors

9. The only nonzero components are

18.15 \>i=(R> + h) sin 4> : A :! ,

18.16 /u-ii—
— (Ri + h) sin $ cos <b

cos

17.31

jU,32 = — 1

17.32

18.17 v 11 =(R l + h) cos 2
(f> : v22 = R 2 + h.

The components A 2 i. A<-ii have the same values i:

the surface and space metrics.

Surface Curvatures

10. Normal curvature and geodesic torsion i:

azimuth a are

18.18

18.19

-k=l/R

= sin 2 al(Ri + h)+ cos- a/(R-, + h)

12.04

t=
(&-/?,) sin a cos a

(R x + h)(R-, + h)

The meridians /u/' or 1/ are geodesies. 12.06
Geodesic curvature of the parallels A'" or u r

is

18.20 <r,= tan <£/(#, + A). 12.06'

Geodesic curvature in azimuth a. arc element dl i

18.21 o-=tan sin a/ (R t + h) - cla/dl.

12.06!

Codazzi Equations

11. The Codazzi equations for all the /i-surface

reduce to these two,

18.22

18.23

c)R
x

r)(j)

(Ri-Rz) tan cf>

dR 2

da)
0,

12.13

12.13

because h cancels on substitution in Equation

12.134 and 12.135, and we can accordingly drop th

overbars. The remaining Codazzi equations of th

space are

18.24
ah

=-Caf3, 12.14

which are satisfied by expressing the fundament;

forms as in Equations 18.05 and 18.06.

12. Over a particular surface, Equation 18.2

shows that R> is a function of latitude only. Thi

implies that all the meridians of the surface, whic

we have seen are plane curves, must be supe

imposable in much the same way as two circle

of the same radius can be superimposed. Thi

condition is met if we take the h -surfaces as surface

of revolution about the C'-axis passing through th

Cartesian origin; it will be sufficient for our purpose

to do so, although this restriction is not require

by the differential relations. If the /(-surface
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are surfaces of revolution, then the parallels are

circles of radius Ri cos $ (§12-49); Ri over a

particular surface is also a function of latitude

only.

Again, this condition is not necessary to satisfy

the differential relations. The other Codazzi Equa-

tion 18.22 would be satisfied if

#i = g((/>) + sec(f) j{(o)

where g{<fr) is some function of latitude and j(o))

is an arbitrary function of longitude. If the /(-sur-

faces are of revolution, then the arbitrary function

of longitude resulting from the integration of the

Codazzi Equation 18.22 is zero. The integral of

this equation is then

18.25 -/Ri cos <}> = — \
R> sin </> d<}>.

The Position Vector

13. In Equation 12.169, we found an equation for

the position vector in terms of the perpendicular p
from the Cartesian origin to the tangent plane of

an /V-surface. If the /V-surfaces are of revolution

about the C r-axis through the Cartesian origin,

then from considerations of symmetry, we have

dpi day = 0;

thus we obtain from Equation 12.172

18.26 x sin w = y cos co-

in this case, we find from § 12-49 that the radius

of the parallel is

18.27 U- + y-

)

1/2 = - 1/ (A-i sec 0)=/?i cos
<f>

so that from Equations 18.26 and 18.27 we can write

•% = /?! COS(f) cos (O

18.28 y=R\ cos (j) sin oj.

14. As we proceed northward along a meridian

over the closed surface, we have

18.29 dz=- (cot <j>)d(Ri cos <l>).

Using Equation 18.25 or integrating by parts, we
can then express the z-coordinate with a suitable

choice of limits in any of the three following forms,

z= I Ry cos 4> d$

=— R\ cos 4> cot
<f>
~ R i cos 4> cosec 2

</> dcf>

= /?isin0— I (Ri — R>) sec 4> d<$>-

Substituting these forms and Equations 18.28 in

12.170 and 12.171, we have

p = R\ cos 2
4> + sin 4> I R; cos (j> d<f)

= — sin </>
J
R\ cos 4> cosec 2

(/> dcf)

18.31 =Ri -sin
\
(/?,-/?-) sec

<f> d<f)

dp/dff) = — R\ sin 4> cos <f>
+ cos 4> I R> cos 4> d(j>

— — Ri cot (j)
— cos

(f)
\ R\ cos

(f)
cosec 2 $ d(f>

= — cos 4> I (Ri —R2) sec 4> dcj).

18.32

15. The last four sets of equations apply to any

surface of revolution and therefore to the h -sur-

faces of any axially symmetrical system. If we
distinguish these equations by overbars on /? u
R>, and p, they apply to the base surface in a sym-

metrical (w, 0, h) system. The position vector of

any point in space in this system is then given by

Equation 17.66 as

18.33 p
r
=(dpld(f>)ix>-(p + h)i> r

.

Christoflfel Symbols

16. The only nonzero symbols are

r 2
,
= (« 1 + /J ) sin cos <f>l (R2+ h)

ri2=-(R-> + h) tan <£/(£, + A)

18.34 r ., _ aln (R., + h )

12.129

18.30

all in the surface or space metric, and

n\ =-(/?,+/*) cos 2
(/>

n,=-(R-2 + h)

ri3 =n(R t +h)

18.35 rf, = !/(/?,+ *). 17.36

Higher Derivatives of Base Vectors

17. Second derivatives of the base vectors can

be found direct from Equations 18.15, 18.16, 18.17,

together with the Christoffel symbols in Equations

18.34 and 18.35, or by substitution in previous
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formulas. For example, we have

18.36 k2i3=-(R 2 + h) sin<i>l(Ri + h),

12.159

with all other kap3 zero: we have

18.37 jLtn3= sin0cos
<f>, 12.159

with all other /i,a^3 zero; and we have

18.38 Vaf33
= -Cal3 12.159

18.39 Xa33= /U«33= ^«33= 12.160

18.40 vapy=-bapy 12.161

Vapy=8l8l(R 1 )y cos 2
<))+ Sld%(R2 )y

18.41 + (Ri -R>) sin cf) cos 0(8^+6^)8^.

8.16

Laplacians of the Coordinates

18. As in Equation 17.37, we have

18.42 Mi=-2H;

also in the symmetrical (a»,
(f>, h) system, we have

18.43 V(co, <f))=0 17.40

18.44 (cos2 0)V(<») = l/(#1+ /i)
2

, 17.41

leading to

18.45 Aw = 17.38

because both principal curvatures and thus (2H)
are independent of a», and therefore constant in

the A.' -direction. We have also

A<£ = -tan <PI(R 1 + h) 2 -(2H) afx
a

tan </> 1 dR 2

any surface is obtained at once from Equations 13.0^

and 13.05 as

18.46
(Ri+ h)(R2+ h) (R2+ h) 3 dt\>'

17.39

The second (alternative) expression may be ob-

tained either by manipulating the first, or direct

from the defining equation

using components of the metric tensor and the

Christoffel symbols already given.

The surface and space Laplacians of oj and
(f)

are

the same.

SURFACE GEODESICS

19. If a is the azimuth of its spherical repre-

sentation, the differential equation of any curve on

cos
(f)

dco

d(}>

tan a—

18.47

&i sin a + t\ cos a

k-z cos a + t\ sin a

k sin a — t cos a

k cos a + t sin a

If the curve is a geodesic of the surface, we hav<

also from § 12-47

18.48 da= sin
<f>
dw

along the curve so that

da k\ sin a + ti cos a
cot (}>

18.49

dc/> k-z cos a+ ti sin a

_k sin a — t cos a

k cos a-\- 1 sin a

If hi, k-z, t\ are specified as functions of a>, <£ anc

if we then assume that the curve belongs to somi

family of geodesies defined over some region o

the surface, we can integrate this equatioi

numerically.

20. In the case we are considering Ui =
ki, ki functions of 4> only), the equation become:

the ordinary differential equation

cot a da= {Ro/Ri) tan <j> d<j)

= -{(R l -R>)IR i } tan </> d$+ tan <j> d<\>

=- (1/'Ri)XdRil d<f>)d(f) + tan <£ d<f>,

using the Codazzi Equation 18.22.

This integrates to

18.50 R\ cos </> sin a = constant

or

18.51 (^i + h) cos (/> sin a= constant

as the general equation of geodesies on an axiall

symmetrical /?-surface. It is a generalization c

the result usually known as Clairaut's theorem i

classical geodesy.

21. The normal projection of a geodesic, even i

an axially symmetrical system, is not, in genera

a geodesic on any other h-suriace. For this to b

true, it is clear from Equation 15.54 that the gee

desic torsion would have to be constant along th

curve.

22. The general equation of a surface geodesi

whose unit tangent is la is, from Equation 4.0'

18.52 /„^= 0.

If we evaluate this equation in the symmetries
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(&>, <b, h) system of this chapter and use the Chris-

toffel symbols given in the last section, we can show
that the equation for a=\ leads to the Clairaut

Equation 18.51, while the equation for a = 2 reduces

to

da dui
-~r= sin <b -T-,
ds ds

with ds as the arc element of the curve, which is

equivalent to Equation 18.48. The Clairaut equation

is accordingly a complete first integral of both

Equations 18.52.

THE SPHEROIDAL BASE

23. We now suppose, as a special case, that the

base surface of a symmetrical (w, </>, h) system is a

spheroid so that the meridian section is an ellipse

of semimajor axis a and eccentricity e. The semi-

minor axis b is the Cartesian z-axis; we define the

complementary eccentricity e as

18.53 = b/a =+(l-e2
)

]

24. The principal radii of curvature in and per-

pendicular to the meridian (variously known in the

literature as M, N or p, v, respectively) are well

known as

R->(=M= p) = ae'
1 (l-e2 sin 1 <b)-W

18.54 =e--R3Ja 2

18.55 R l (=N=p) = a{l-e2 sin 2 0)" 1/2
,

which are compatible with Equation 18.22. Indeed,

we could have defined R-> as Equation 18.54, or any

other required function of cb, and have determined

Rt from Equation 18.25.

25. From any of the Equations 18.30, 18.31, and
18.32, we now find

18.56 z = ~e-R\ sin <b

18.57 P = a 2/R l

18.58 dp/d(j)=-e 2Ri sin <b cos cb.

26. By evaluating Equation 17.64 in Cartesian

coordinates and using Equations 18.28, we can

express the Cartesian coordinates of any point in

space as

x= x~\-h cos <b cos o)= (R\ + h) cos (b cos w

y=y-\-h cos (b sin co = (/?i + h) cos (b sin co

z= z + h sin <b = (e
2Ri + h) sin (b,

18.59

while from Equation 18.33, the position vector is

p'=-{e2
Rx sin <b cos <b)n r + (a2lRi+ h)vr

.

18.60

These last two equations enable us to express the

whole field in terms of one of the principal radii of

curvature of the base surface. We can use any of

the formulas of Chapter 17 by making ti= 0,

ki=— 1/Ri, ko = —llR.2 and by using the spheroidal

values of Ri, R 2 from Equations 18.54 and 18.55;

or, we can use any of the formulas of this chapter

simply by using the appropriate values of Ri (or R>).

306-692 0-69— 10





CHAPTER 19

Transformations Between TV-Systems

GENERAL REMARKS

1. Transformations between coordinate sys-

tems arise in geodesy mainly from the practical

necessity to linearize computations. The general

(to, <£, N) system, in which N is interpreted as

the gravitational potential and the effect of the

Earth's rotation is included, is most useful for theo-

retical investigations and is closely related to most

systems of measurement; for example, the vr in

this system are then the directions of the astro-

nomical zenith or plumbline and so enter directly

into astronomical observations and into the measure-

ment of horizontal and vertical angles. Neverthe-

less, we have little numerical knowledge as yet

of the curvature parameters in this system; ulti-

mately, if they become known in sufficient detail,

the curvature parameters will probably be too

irregular to provide a practical basis for calcula-

tion over finite distances. It is usual therefore

to work in the simpler (to, ^>, h) system (N=h)
with a regular base surface and to transform the

observations accordingly. Moreover, we usually

make the base surface a spheroid, which is a close

approximation to an actual equipotential surface,

so as to ensure that first-order transformation —
leading to linear observational equations — shall

be sufficient.

2. An alternative would be to use a regular

(to, (/>, N) system, representing a standard gravi-

tational field in which one of the equipotential

TV-surfaces is a spheroid— approximating closely

to a selected equipotential surface in nature.

Calculations over finite distances in such a sys-

tem, although possible, are not as simple as in the

(to, </>, h) system. For certain purposes, we need

a standard or model gravitational field, but there

seems to be no advantage in making all of the

field's equipotentials the coordinate surfaces of

the geometric system. Instead, we can calculate

the standard gravitational elements at positions

given in (to, (/>, h) coordinates, an operation which
again amounts to coordinate transformation.

3. We shall continue to assume, as we have

done throughout this book, that the TV-systems

share a common Cartesian system whose C'-

axis is parallel to the physical axis of rotation of

the Earth at a particular epoch; we shall derive

conditions which ensure this arrangement. It

may be thought that an unnecessary and an arbi-

trary restriction thereby is introduced, but this is

not so. We cannot transform from one system to

another without completely relating the two in

some way; the adoption of a third system, common
to the two, introduces no more conditions than are

necessary and sufficient for this purpose. The
adoption of a common Cartesian system can also

be used to ensure that the space remains flat

during the transformation.

4. In addition to specifying the n's (the magni-

tudes of the scalar gradients Nr ), we shall relate the

base vectors in the two systems. We do this by

means of vector equations, true in either coordinate

system. The same vector equations will then hold

between parallel vectors at other points in space

because, in that case, the equations will be true in

Cartesian coordinates at the new point — and thus

in any coordinates at the new point. The same equa-

tions will accordingly serve to relate the base

vectors and other vectors associated with them,

either

131
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(a) at the- same point in space after a coordinate

transformation, or,

(b) at a different point in space in the same
coordinate system, in which case the relation will

hold true between parallel vectors.

The changes in coordinates in case (a) will usually

be small in practice; whereas, in case (b), they may
be large. To take advantage of both possibilities,

we shall accordingly derive quite general trans-

formation formulas not confined to first-order

changes. Quantities in the second /V-system (or at

the second point in space in the same /V-system)

will be denoted by overbars.

DIRECTIONS

5. We shall first deal with transformation of

directions; for this purpose, it will be convenient

to define a few auxiliary angles on the spherical

diagram in figure 15. A radius vector of the sphere

Figure 15.

is drawn parallel to a direction in space (such as one

of the normals v r
); the point P where the radius cuts

the sphere can accordingly be said to represent the

direction (vr). The normal at the other point in

space or in the other coordinate system is repre-

sented by P. The Q represents a fixed direction l
r

during transformation or a parallel direction at the

overbarred point. The C represents the common
Cartesian axis so that the latitudes c6, c/> and the

difference in longitude 8a>=(a> — to) are as shown

in the diagram. The great circle PP or arc-length

a— arc cos {v rvr ) is simply an auxiliary, and so are

the angles a*, a*. The azimuths (a, a) and zenith

distances (/3, /3) of the fixed direction Q (or of the

parallel directions Q) are as shown.

6. The PP' and PP' are_ quadrants so that the

vectors represented by P' , P' are ^-surface vectors

in the plane containing the normal and C'; these

vectors are accordingly by definition fi
r

, yT. The
P'P' defines another auxiliary angle t. The remain

ing base vectors A.'", V (not shown in the diagram

are, respectively, the poles (to the right in the

diagram) of great circles PCP' and PCP'.

7. The following formulas, collected for eas}

reference, are obtainable from scalar and vectoi

products or by ordinary spherical trigonometry

from the triangles CPP, CP'P'

,

cos cr = sin c6 sin c/> + cos c6 cos c6 cos 8a;

19.01

cos t — cos (/> cos
(f>
+ sin c6 sin c/> cos Soj

19.02 = sin a* sin a* + cos a* cos a* cos cr

cos 8co = cos a* cos a*

19.03 +sin a* sin d* cos cr

sin
(f>

sin 8(o= — sin a* cos a*

19.04 +cos a* sin a* cos cr

sin <£ sin 8w = cos a* sin a*

19.05 sin a cos a ' cos cr

sin cr cos a* = cos </) sin <£

19.06 — sin
(f>

cos <£ cos 8a>

sin cr cos a*=— sin (/> cos

19.07 + cos
(f)

sin
(f)

cos 8co

19.08 sin cr sin a* = cos </> sin 8io

19.09 sin cr sin a* = cos cf) sin 8co

cos
(f)

cos a*=— sin (/> sin cr

19.10 +cos (/> cos cr cos a*

cos
<f>

cos a*= sin <£ sin cr

19.11 + cos cos cr cos a*

cos <£ cos 8<o— cos cf> cos cr

19.12 — sin c6 sin cr cos a*
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19.13

19.14

19.15

cos
(f>

cos 8a> = cos <£ cos cr

+ sin <j) sin cr cos a*

cot a* sin 8a> = cos $ tan <£

— sin cos 8co

cot a* sin 8to = — cos tan c6

+ sin ^ cos Soo,

together with the following differential relations,

sin cr da* = sin a* cos cr d4> + cos $ cos a* c/(8oo)

19.16 —cos (/> sec <£ sin a* d<$>

sin cr da* = sin a* sec <j> cos c/c6

19.17 + cos
(f)

cos a*c/(8co) — sin a* cos cr c/<£

dcr = — cos a* c/<£

19.18 +cos (/> sin a* c/(8co) + cos a* d§.

Several of the preceding formulas may be obtained

or verified by changing the symbolism between

the two ends of the line or between the two co-

ordinate systems, that is, by interchanging the

overbars and by changing the signs of Sco and cr.

BASE VECTORS

8. We can obtain scalar products of the base

vectors from the spherical diagram in figure 15.

For example, k r kr
is the cosine of the angle between

the great circles PCP' and PCP' , that is, cos 8co_.

Again, v, k r
is the sine of the perpendicular from P

to the greaj^ circle PCP', that is, sin a* sin cr or

sin Sco cos c6. Proceeding in this way, we obtain one

set of base vectors in terms of the other set as

kr

cos 8(o sin $ sin Sco

[— sin (/> sin 8co cos t

^cos </> sin 8(D sin cr cos a*

19.19

— cos 4> sin 8o)

— sin cr cos a*

cos cr

9. Next, we shall derive this same result in terms

of the rotation matrices of § 12-15. Writing

19.20 <D

1

sin
(f) COS

(f>

— cos
(f)

sin c6

/ — sin (i) cos 0)

19.21 Q= -cosfi) -sinco

V 1

19.22 Q = <Ml,

all of which are orthogonal matrices, together with

the transpose

19.23 QT=ilT<PT ,

and using Equations 12.012 and 12.013, we have at

once

{kr , fir, Vr}=Q{Ar,Br,Cr }

19.24 =QQr
{\r, fir, Vr}

in which the braces signify as usual a column
"vector" in the matrix sense. This vector equation

holds true for each of the components of the base
vectors, covariant or contravariant, in any one
coordinate system. Comparing this result with

Equation 19.19, we have

/ cos 8(1) sin </> sin 8(o —cos
(f>

sin 8w N

QQ7 =|— sin (j) sin 8(d cos t — sin cr cos a"

\cos 4> sin 8a) sin cr cos a* cos cr

19.25

we can easily verify this equation by multiplying

out the Q-matrices. For easy reference, we add the

full expression for Q,

/ — sin co cos co \

Q = I
— sin </> cos co — sin sin co cos c6 I.

\cos (j) cos a) cos </> sin (o sin c6/

19.26

AZIMUTHS AND ZENITH DISTANCES

10. The arbitrary unit vector l
r

in figure 15 can
be expressed in the following alternative forms

l
r= k r sin a sin/3+ ix

r cos a sin /3+ v r cos /3

= k r sin a sin ^3+ /u/cos a sin/3 + v r cos /3:

using these forms to contract the vector Equation

19.24, we have

{sin a sin /3, cos a sin /3, cos /3}

19.27 =QQ 7'{sin a sin /3, cos a sin /3. cos /3}.

Only two of these three equations for cv. /3 are

independent because each term is equivalent to

the component of a unit vector so that an identity

would result from squaring and adding the equa-

tions.
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11. Equation 19.27 gives the azimuth and zenith

distance of a vector in the transformed (barred)

coordinates. The equations also relate the azimuths

and zenith distances of two parallel vectors in the

same coordinate system at two different points in

space so that it is immaterial whether the changes

result from coordinate transformation or from

parallel transport — or both.

12. In particular, Equation 19.27 can refer to

the straight line joining two points in space in any

(oj, (/), A) coordinate system. The equation would

enable us to determine any two of the seven quan-

tities a, (3, a, /S, </>, <£, 8a> from the other five. For

example, if a, /3, a, f3, (f>
are measured or given,

we can determine
(f) and 8w and so can build up

a latitude and azimuth traverse without measuring

any more latitudes, although error would be likely

to accumulate through the effect of residual (un-

corrected) atmospheric refraction on (3, f3. At the

other extreme, if a, a, 0, $, 5w are measured, then

we could determine /3, (3 and so could evaluate the

refraction. Whatever we do, we must take account

ol the fact that these seven quantities are related.

ORIENTATION CONDITIONS

13. If we transform from one /V-system to an-

other, the seven quantities in the last section

cannot be independently chosen, but they must
satisfy two conditions — equivalent to the two

independent equations in Equation 19.27 — to

ensure parallelism of the Cartesian axes.

The most common case in practice arises when the

changes in {(o, <f)) coordinates are small. If we write

4> = cj) + 8(f> as we have already written to = w + Saj,

then it is easy to show to a first order that Equation

19.25 or 19.26 gives

14. If f3 is nearly 90° so that the line is almost

horizontal, the first equation reduces to

19.30 8a = sin
(f>
Sw,

sm<f)8a>

-sin 8w

cos 4> 8cd 8(f)

where I as usual is the unit matrix, and Equation
19.27 then reduces to the following two independent

equations, connecting the first-order changes in

latitude, longitude, azimuth, and zenith distance,

8a — sin(/> 8oj+ cot (3 (sin a 8<f>
— cos a cos (f> 8co)

8(3 —— cos<f> sin a 8w — cos a 8(f).

19.29

which is independent of the direction chosen as a

fixed line in the two coordinate systems and is

simply a difference in the azimuths of all nearly

horizontal lines emanating from the same point.

This is the so-called Laplace equation of classical

geodesy, which alone is used in the hope of preserv

ing orientation of the Cartesian axes. But even il

(3 — 90° is on all observed lines emanating from a

point, this fact does nothing to satisfy the second

condition of Equations 19.29, which does not

depend on (3 at all and cannot therefore be satisfied

by choosing favorable values of /3. Satisfaction ol

the equations of Equations 19.29 for a particulai

(a, /3) ensures that the Cartesian components ol

the corresponding direction are the same in both

coordinate systems; but this fact is not sufficient

to ensure parallelism of the Cartesian axes because

it would still be possible to rotate either system

about the (a, (3) direction without any effect on its

Cartesian components. To ensure parallelism of the

Cartesian axes, we need to satisfy both Equations

19.29 for two different directions.

15. It is clear therefore that the simple Laplace

azimuth Equation 19.30 does not preserve orienta

tion at a single point during a change of A-coordi

nate systems, such as the change from an astro

nomical (o>, <f), A) system to a standard gravitationa

field or to a geodetic (w, <f),
h ) system. It is some

times claimed that the repeated application o:

Equation 19.30 at different points connected b)

triangulation would not only ensure correct initia

orientation, but would also preserve orientatior

throughout the network, even though the seconc

necessary condition in Equation 19.29 is ignorec

everywhere. No doubt, it would be sufficient t(

satisfy one of the conditions of Equations 19.2^

at two or more widely separated points insteac

of both at one point, provided the points are rigidly

connected by error-free triangulation; but it ii

difficult to see how this procedure can initiate anc

preserve correct orientation as well as serve t<

adjust the intervening triangulation. The mos
that can reasonably be said is that if the on(

condition of Equation 19.30 is applied at a numbei

of points during the adjustment of a triangulation

the condition will tend to be satisfied at intermediate

points; but that fact does not imply that the adjustec

triangulation is also properly oriented everywhere

It should be said, however, that, until recently

no other course has been open to the triangulator
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19.31

Owing to the effect of atmospheric refraction on

zenith distances, the triangulator could not satisfy

both conditions of Equations 19.29 to the same
degree of accuracy; the satisfaction of one condition

may have some beneficial effect.

THE R AND S MATRICES

16. We now introduce the matrices of (to, </>, N)
components of the base vectors from §12-27 and

§12-33,

A 1 A 2 A 3 \ y—faseccfr —tj

Of;
| /x

1
ix

2
/a

3 = I — f, sec - k 2

v 1 v 2 v 3 / \ yi sec
(f) y2 n

/Ai A2 ^3N

S = l Hi jx 2 fx.i

Vi v-i vs/

I— k2 cos (j>IK tijK sec
<f> 3 ( I/72 ) /dco\

= 1 hcosQlK -ki/K d(l/n)/d(()

V (1/n)

19.32

Because the base vectors are unit orthogonal vectors

so that, for example, A'A r =l, k r
(JL r= 0, etc., we

have also

19.33 RS T=SR r =I

in which I as usual is the unit matrix; thus, we have

R-!= S r

19.34 S
- x = Rr

17. We also define

R= (A 1

, . . .) = (— Ai sec</>, . . .)

and S similarly as the corresponding matrices in

the (to, 0, N) system, that is, the matrices of the

(to, 4>, N) components of the base vectors of the

barred system. It should be noted from Equation

19.24 that

OQ rR

does not give R; it gives the (to, c/>, N) components
of the base vectors of the barred system. To trans-

form these components to (to, (/>, TV) components,
we use the vector transformation formula of

Equation 1.18, equivalent to postmultiplying by
the transpose of the transformation matrix of Equa-

tion 19.37 in §19-21. To verify this, we have

R = OQR(R OQS)' = OQ'RS QO R = R,

using Equation 19.33 and the fact that the Q's
are orthogonal matrices.

18. If one of the systems is a symmetric (o>, c/>, h)

system, the corresponding R and S matrices become
diagonal; this introduces a considerable simplifica-

tion into all matrix equations containing R and S.

The necessary modifications can be made at sight,

using the results of Chapter 18.

TENSOR TRANSFORMATION
MATRICES

19. To transform vectors and tensors between
Cartesian and (o», c/>, N) coordinate systems, we
need the partial differentials dx/d(o, BN/By, etc.

These are all components of the Cartesian vectors

A r , etc., in the (to, 4>, N) system. For example, we
have from Equations 12.009

A r= (Bx/Bo), Bx/Btf), Bx/BN),

while the contravariant components give

A r= (Bo/Bx, 3<f)/Bx, BNlBx).

If we use Equation 12.013 and substitute the

(oj, <p, N) components of the base vectors, we then
have the complete matrix of transformation factors

as

'BxjBoi dxld(j) Bx/Bl

By/B(D By/B4> By/BN
)

»Az/dto Bz/B<f) BzjBN,

I

A
t
A 2 A,\

B x B2 B :i

\C, Ci c

= q ts.

19.35

The Jacobian of the transformation is

|0
7
'||S| = |S| =e^\ tfijvk= V\gi7\= cos (])l(nK).

20. In the same way, the inverse transformation is

/Bto/Bx B(f>/3x BN/Bx\ /A 1 A 2 A 3
\

B(o/By B(f>/3y BN/By = I B 1 B 2 B 3 = Q/R
>Bco/Bz B4>lBz BNlBzl \C l C 2 C*l

19.36

with the Jacobian (nK sec (f>).

21. To transform between (to, </>, N) systems, we
have, for example,

dto_dto Bx_ dto dy
,
dto Bz_

dto Bx dto By dto Bz B(o
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so that

(dcoldu) da)/d<t> dwldN\

dj>lda> d4>ld<)> dfrdN )=(Q rR) 7lQ 7S

dN/dai dN/d<t> dN/dN/

19.37 = RTQQTS

PARALLEL TRANSPORT OF VECTORS

22. To obtain the (w, (f>, N) components of parallel

vectors (/
r

, l
r
) at two different points in space (one

point overbarred), we can use the vector equation

at the barred point

l r = A r (A sl°) +B r(Bs l°) +C r(Cs l°),

which expresses the equality of Cartesian compo-
nents at the two points. We have

7»\ lA^mC^jAtAzAAll 1
]

i*\=Ia*b*c*\IbiB%bAu %

l73/ \a 3 b 3 c3I \ciC2 c3 / \i*l

= (QTR) 5rQ IS{/ 1
,/

2,Z8 }

= R rQO TS{/ 1
,/ 2 ,/ 3

}

19.38 = R TQQ r{sina sin/3, cos a sin/3, cos/3}

if a, /3 are the azimuth and zenith distance of l
r

.

This equation is easily verified from Equation 19.27.

The covariant components are similarly given by

{llJ2J3 } = s TQQ TR{iui2,k}

19.39 = S rQQ/{sin a sin /3, cos a sin j8, cos /8}.
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formation, such as the direction between two ground

stations, then the component of deflection in that

direction is

19.41 A r
/ r = cos /3 — cos /3

where /3, (5 are the astronomical and geodetic zenith

distances, respectively. This relation is rigorously

true even for large deflections.

25. The definition does, however, agree with

the usual first-order conventions in classical

geodesy. For small changes in coordinates, we have

at once from Equations 19.24 and 19.28

19.42 k r=v r-v r =(cos())8a))k r + (i8(t>)fji
r

in which b<\> = <\>
—

<\> is the astronomical minus the

geodetic latitude; similarly, 6w = o> — a> is the

astronomical minus the geodetic longitude of the

point under consideration. To a first order, the

meridian and parallel components of the deflection

vector are accordingly 8<£ and cos 4> da> as in the

classical conception.

26. We can express the deflection vector rigor-

ously from Equations 19.24 and 19.25 as

A r = (cos$ sin 8to)\ r

19.43 + (sino- cosa*)fx r -2 sin 2 (o-/2)i^ r
,

which holds true also for the change in the v 1

between two widely separated points, if we ust

Cartesian coordinates or if we interpret v r in th(

usual way as a parallel vector at the unbarred point

THE DEFLECTION VECTOR

23. We define the deflection vector A r as the

change in the v r on transformation between ./V-

systems so that we have

19.40 ^=v r—v J

In the usual geodetic application, the overbarred

vector will refer to the astronomical (w, </>, N)
system with N interpreted as the geopotential,

that is, the gravitational potential with allowance

for the Earth's rotation. The unbarred vector will

refer to the geodetic system, usually an (to, <£, h)

system with a spheroidal base.

24. The definition does not require the change

of coordinates to be small. For example, if l r is a

unit vector which remains fixed during the trans-

CHANGE IN COORDINATES

27. Another way of viewing this question is tc

consider the differences in the coordinates them

selves,

Sto = w — (o

8(f>
= 4> — 4>

8N=N-N,

as a measure of "deflection," with an appropriat<

choice of unit for the /V's. This method is some

times useful in considering changes in the "deflec

tions" between two points in the field; and for thi

purpose, we require their gradients.



Transformations Between N-Systems 137

28. Using Equation 19.31, Equations 12.046,

12.047, and 12.001 can be put in the matrix form

{(Or , 4>r , Nr} = R r{A r , flr , Vr }

= R TQQ T{\ r ,(jLr ,pr }

= R TQQ TS{a>r ,<t> r,Nr }

19.44 =S- 1QQ 7S{o> r,0r,^r}

in which we have used Equations 19.24 and 19.34

so that

{(8o») r , (8<j>) r , (8N)r}=(S- 1QQTS-l){0>r,<t>r,Nr}

19.45 =(R TQQ T-R T){K, f
jLr , vr}.

29. In evaluating Equation 19.45 for small 8cu,

8(j), we can use Equation 19.28; but there is no

guarantee that the changes in the curvatures in

the R or S matrices will also be small.

30. If we complete the three vector equations

in Equation 19.45 and contract in turn with kr
,

ix
r

, v r
, then, if elements of length in the direction

of the base vectors are dk, d/x, dv, we have

fd(8<o) d(8a>) d(8a>Y

M=

19.46

dk dfi dv

d(8<f>)

dk

d(8<{>)

dfJb

d(8(f>)

dv

d(8N) d(8N) d(8N)

R TQQ T -RT
,

dk dfi dv

giving components of the "deflections" in the

directions of the base vectors.

31. By transposing the equation

M = R TQQ T-R T
,

we have

19.47 R + M r= QQ rR=(QQ r
)

7 R,

which gives us a relation between the R's; from

this, we have a relation between the parameters

Ai, kz, ti, ji, 72 and the components of the

"deflections."

32. We may also require the components of the

"deflections" in the direction of a unit vector

l
r=k r sin a sin/3 + /it

r cos a sin/3 + v r cos ^3

in azimuth a, zenith distance /3, and arc element dl.

Contracting Equation 19.45 with /
r

, we have at once

d(8(o) d (80) di8NY]

dl ' dl ' dl J

= (R r0Q T— R r){sina sin/3, cosa sin /3, cos /3}-

19.48

33. It is clear from Equation 19.44 that

Q TS{w r , r , Nr } =Q rS{(L r , 4>r , Nr }

is an invariant which has the same value in any
(oj, (/>, iV) system; it is useful to inquire what this

invariant may be. Using Equation 19.35, we have

/AiAzAsUaA

Q TS{(O r ,(f>r,Nr} = Ui B2 B3 \Ur

\C l C2 cJ\Nrj

/o) r (dx/do)) + (f, r(dxld(f))+ Nr (dx/dN\

19.49

= {xr , yr , Zr }

= {Ar,Br,Cr},

using Equations 12.009. The invariant is accord-

ingly the common Cartesian system.
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CHAPTER 20

The Newtonian Gravitational Field

SUMMARY OF MECHANICAL
PRINCIPLES

1. In this chapter, we shall show that the geometry
of the Newtonian gravitational field can be treated

as a special case of a (o», (/>, N) coordinate system

in which N is the potential, the TV-surfaces are

equipotentials, and the form of N is restricted by
the Newtonian law of gravitation.

The Central Field

2. In a gravitational field set up by a single

particle of mass m, the force of attraction on
another particle of unit mass at a distance r from
the first particle is, by Newton's law,

Gm/r 2

in which G is the gravitational constant. The direc-

tion of the force is toward the massive particle

along the line joining the two particles. The particle

of unit mass is usually known as a test particle

because the notion of such a particle serves to

materialize the gravitational force and so helps

us to explore the field; there must be at least two
particles in the field for Newtonian gravitation to

have any meaning.

3. The potential is usually defined physically as

the negative of the work done by the force of attrac-

tion on a test particle of unit mass in moving
the test particle from an infinite distance to the

distance r from the massive particle or the positive

work which must somehow be done against the

force of attraction to remove the test particle to an

infinite distance. The potential in a field set up by a

single particle of mass m is accordingly

20.01
/:

Gm , , , Gm— X (-dr)= ,

which is opposite in sign to the usual geodetic

convention. We shall, however, use the physical

convention, which accords better with mathematical

conventions. The work done by the force of attrac-

tion in moving the test particle from infinity is

considered to be stored as available energy, known
as potential energy, which is accordingly the nega-

tive of the potential.

4. The equipotential surfaces in a central field

set up by a single massive particle are evidently

spheres centered on the attracting particle; the

outward-drawn unit normal to the equipotential

surfaces is the gradient of r, that is, rs . If we take

N as the potential, then by covariant differentiation

of Equation 20.01, we have

20.02 Ns— nvs= (Gm/r 2 )rs

in which /?, the "distance function" of the family

of /V-surfaces obtained from Equation 12.001, is

seen to be the magnitude of the attracting force

whose direction is — vs . Differentiating Equation

20.02 again, we have

Nst
-

2Gm . Gm—r- rs r, + -r- rst

2Gm
Vs Vf

Gm
v$t-

If we contract this equation with the metric tensor

g
st and use Equation 7.19, together with the fact

143
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that the mean curvature H of the spherical TV-

surfaces is (— 1/r), we find that the potential satisfies

the Laplace equation

20.03 AN= g
rsNrs =

which, expanded in Cartesian coordinates, is

20.04
d*N d2N d 2N

=(]
8x 2 dy 2 dz 2

It is an essential part of the Newtonian system

that the space should be flat and unbounded be-

cause the expressions of force and potential

require r to be a finite radial distance measured
in a straight line; the field must extend to infinity

to satisfy Equation 20.01. Accordingly, we can use

simple Euclidean geometry and can choose Car-

tesian coordinates.

5. If Fs is the force vector of magnitude Gm/r 2

and direction — rs or — vs , then Equation 20.02 is

equivalent to

20.05 Fs=-Ns=-nvs ,

which means that the force vector is the negative

gradient of the potential. Accordingly, the field is

completely specified if we know the scalar potential

N at each point of the field; we shall find that this

statement applies also to more complicated fields.

Superposition of Fields

6. In dealing with the geometrical properties of

more complicated fields, we shall continue to

use the symbols /V and n, respectively, for the

potential and the magnitude of the gravitational

force — in place of the more usual symbols V (or W)
and g— because this will enable us to use all of

the more general formulas of Part II as they stand.

However, we shall also use V (or W) and g in ex-

pressing final results or when the physical properties

of the field predominate.

7. We can generalize the simple central field set

up by a single massive particle to the more compli-

cated field set up by any number of massive particles

in an attracting body of finite dimensions by

invoking the principle of superposition, which

simply states that the total effect on the test particle

will be the sum of the effects arising from each

individual massive particle. The total potential

will be the sum of the individual potentials

^ — Gm/r;

the total potential will satisfy the Laplace equation

because each term in the summation satisfies the

invariant form of the Laplace Equation 20.03,

regardless of the coordinate system. We do not,

for example, require the origin of Cartesian coor-

dinates to be at an attracting particle as in § 20-4;
the origin could be at the test particle or anywhere
else, and the Laplacian property would still hold

true.

8. The forces of attraction, unlike the scalar

potentials, have direction as well as magnitude and
would have to be added vectorially. But it is evident

that the vector Equation 20.05 still holds true (and

holds in any coordinates) between the gradient of

the total potential and the vector sum — or result-

ant—of the individual force vectors, even though

the potential no longer has the simple form —Gm/r
and the magnitude n of the resultant force is no

longer Gm/r2
. The direction vr of the gradient of

the potential N is no longer the radial direction

from a Cartesian origin, but is the unit normal to

the equipotential surface or /V-surface passing

through the test particle, as in Equation 1.21.

If the attracting body is the Earth, vr is the direction

of the zenith at the test particle or at the point

under consideration, and — vs is the direction of

the plumbline or the direction of the resultant force.

The Effeet of Rotation

9. All the previously mentioned conclusions apply

to the attraction of a static body. The Earth, how-

ever, rotates, which means that particles attached

to it, or resting on it, are subject to centrifugal

force acting generally against the gravitational

attraction. Because the effects of the two forces

are, for the most part, indistinguishable, it is usual

to combine them into a single force called "gravity.'

The scalar whose gradient is equivalent to the re-

sultant force of gravity, including the centrifugal

force, is known as the geopotential.

10. We shall consider the rotation of the Earth

in more detail in § 21-55 through § 21-59; for the

present, it will be sufficient to assume rotation with

uniform angular velocity o> about a physical axis

which we shall suppose is fixed in the Earth. The
direction of this physical axis is not fixed in relation

to the stars, but that does not at present concern

us. It will be shown in § 21-56 that the center of

mass, which we shall choose as Cartesian origin,

must lie on the physical axis of rotation, which we
shall choose as z-axis of coordinates, unit vector

Cr - The other Cartesian vectors A r , B, (fig. 16) are
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*~B r

Figure 16.

fixed in space, not in the Earth, in the sense that

they do not rotate with the Earth. The linear velocity

vector of a point P at a distance d from the z-axis

is then

20.06 cod(B, cos ayt — A, sin cot)

in which t is the time which has elapsed since the

point P crossed thexz-plane. The acceleration vector

is the intrinsic time derivative of the velocity vector,

that is,

— co
2d(B r sin cot + Ar cos cot) =— co

2 (xA r + yB r )

= — co
2 (xxr + yyr )

20.07 =— 2 0J
2 {X

2 + y
2
)r

We can consider this expression to be the force,

acting on a test particle of unit mass required to

maintain the particle on the Earth's surface. The
force is directed inward and must come from the

force of attraction whose inward sense is

— TtVr=—Nr .

If we assume that the residual force is derived from

a geopotential M with the same conventions as

for N, then we must have

-Mr=-Nr +$d> 2 (x 2+ y
2
)r.

Integrating this equation, subject to the condition

that there is no rotational effect on the axis

(x = y= 0), we have

M= N-hco 2 (x 2 + y
2

)

20.08 = N-hco 2d 2
.

The geopotential at P of a particle of mass m at

the origin is, for example,

— Gm/r— 2(o 2d 2
.

The Laplacian of Equation 20.08 is

because A/V = so that the geopotential is not a

harmonic function whose Laplacian would be zero.

We may note, however, that the Laplacian of the

geopotential, in addition to being independent of

the coordinate system, is also independent of the

location of the rotation axis.

11. Reverting to the original notation, we can say

that the basic gradient equation

Nr = nv r

represents the Newtonian gravitational field of

the rotating Earth if N is the geopotential, as defined

in §20—9, if n is "gravity," and if v r is the outward-

drawn normal to the TV-surfaces, that is, the level

surfaces of the combined attraction and rotation.

The unit normal vr is accordingly the direction of

the astronomical zenith as revealed by instrumental

spirit levels. The remaining coordinates (co,
(f>)

of a (co, cf>, N) system are the astronomical longitude

and latitude in relation to the physical axis of

rotation, which we have assumed is fixed in the

Earth, and in relation to an initial meridian plane

defined by the physical axis and by the zenith at

some fixed point on the Earth's surface. The New-
tonian law of gravity is expressed by the condition

A/V = -2oo 2
,

and this alone distinguishes the system from any
other (to, cf>, N) system. Subject to this condition,

the general geometry of a {co, cf>, N) system, as

developed in Part II, applies in its entirety.

12. In the basic geometry of the (co, cf>, N) system,

we consider the Cartesian axes A r , B r to be fixed

in relation to all points belonging to the system,

that is, fixed in the Earth and rotating with the Earth.

We can derive from figure 16 the following relations

between the A,,B r axes, revolving like the point P,

and the inertial A r , B, axes, which are fixed in space,

20.10

A,—A r cos cot + B, sin wt

B,= — A, sin cot + B, cos cot.

In these equations, t is the time which has elapsed

since the two sets of axes coincided. So far as the

condition

AN-- 2co'
2

20.09 AM =

is concerned, it does not matter whether we consider

the point P as moving in relation to the fixed axes

A r , B_, or the axes A r , B, as moving in relation to

Ar , B r because the condition is invariant and is

therefore unaffected by the choice of coordinate

system. We could say that substitution of the geo-

306-962 0-69— 11
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potential for the static attraction has had the effect

of reducing the whole system to rest.

13. If we are dealing with an object such as an

artificial satellite, which is not attached to the

rotating Earth, then, in the absence of any other

impressed force, the only force acting on the

satellite would be the gradient of the attraction

potential —Vr , and the Newtonian condition would

be AV=0. In accordance with Newton's second

law, the equations of motion of a satellite of unit

mass relative to fixed axes Ar , B r , C r would be

20.11
52
p r _ 8vr _ y

8t2 8t

the left-hand member of which is the acceleration

vector— that is, the second intrinsic time derivative

of the position vector p,. The second member of

Equation 20.11 is the intrinsic time derivative of the

velocity vector of the satellite relative to the fixed

axes A r , B r , Cr - The attraction potential at a fixed

point in space would not be constant, but would
generally vary with time as the unsymmetrical

field rotates with the Earth. The coordinates of

terrestrial observation stations or tracking stations

would also change with time.

14. If we refer the motion of the satellite to

rotating axes, Ar , B,, C r fixed in the Earth, the

equations of motion will include three forces:

The force of attraction — Vr ; the centrifugal or

centripetal force in Equation 20.07 which, being the

gradient of a scalar, can be combined with — Vr as

the force of "gravity" arising from the geopotential;

and the Coriolis force which is twice the vector

product of the angular rotation vector (a/= a)Cs
) and

the apparent velocity vector vr of the satellite rela-

tive to the moving axes A r , Br , C, • We have

20.12
8v r

8t
Wr-2e rst (cbC

s
)v'

in which W is the geopotential. To offset the extra

complication in the equations of motion, the geo-

potential would be a function of coordinates in the

(A r , B r , Cr ) system only and would not vary with

time. The coordinates of tracking stations in the

same system would also be independent of time.

The equations of satellite motion referred to rotating

axes are considered more fully in Chapter 28.

THE POISSON EQUATION

15. If the test particle or the point P at which the

potential is required were to coincide with a massive

particle, then the potential arising from the massive

particle would be infinite and could no longer be

added to the potential set up by other particles.

Therefore, all the preceding argument would break

down. In particular, we could not say that the La-

placian of the total potential at points inside or on

matter is zero. The difficulty can be overcome by

some limiting process involving the temporary

removal of matter to form a cavity whose dimensions

are finally reduced indefinitely. However, we shall

approach the problem by a different route more in

line with modern geodetic applications. This route

indicates more clearly what assumptions are being

made.

16. We consider first the field set up by a single

particle of mass m at a point O (fig. 17) and suppose

Figure 17.

that is surrounded by an arbitrary closed surface

S. At a point on the surface whose position vectoi

from O is ps , the force vector is

Fs -(-r;„ i
/r2 )(ps/r),

directed toward O. We shall apply the divergence

theorem (§ 9—13) to this vector. If vs is the outward

drawn unit normal to the closed surface, then the

surface integral in the divergence theorem will be

J

FrV'dS =-
j
(Gm/r2

) cos y dS

=— I GmdCl =— 4tirGm

where dfl is the element of solid angle subtendec

at O by the element of surface area dS. If the ele

mentary cone (dfl) is extended and cuts the surface

again, it would have to do so twice more as we car
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see from figure 17; the corresponding extra con-

tributions to the surface integral would cancel so

that the form of the surface is immaterial as long

as it is closed. If the mass m is outside the surface,

then the elementary cone would cut the surface

twice (or an even number of times); again, the con-

tributions to the integral would cancel, although

the force Fr on the surface arising from this external

mass would not be zero. Applying the principle

of superposition to all the masses inside and out-

side the surface, we can accordingly say that

20.13
/
Frv

rdS =-4mGM.

In this result, due to Gauss, Fr is the vector sum of

all forces at a point on the surface arising from all

masses inside and outside the surface S; M is the

sum of all masses inside the surface. If, instead of a

number of discrete masses, we have a continuous

distribution of matter, we can write

M I pdv

where p is the density of a volume element dv and

the integral is taken over the whole volume enclosed

by the surface S. Transforming the first member
of Equation 20.13 by the divergence theorem and

using Equation 20.05, we have

g
rsFrsdv = -\ ANdv = -47rG pdv

or

I
[bN-4rrGp)dv = 0.

\
But the initial closed surface S (and therefore its

i enclosed volume) is quite arbitrary, so the inte-

;

grand of this last integral must be zero at all points

of the volume; we then have

i 20.14 A/V= 47rGp

in which p is the density at the point where the La-

placian of the potential is taken. In deriving this

result, which is known as Poisson's equation, we
use only the inverse square law of force and the

principle of superposition and make no other

assumptions at all.

17. Also, we verify that at any point in empty

space (p = 0), we have

A/V=0.

The potential at points attached to a body rotating

with constant angular velocity w about the z-axis

was modified in Equation 20.08 by subtracting

ior^ + y
2

)

from the static potential; we must do the same for

points within the rotating body. The full Poisson

equation modified for rotation is accordingly

20.15 AM= 4.jtGp-26j-

in which M represents the geopotential.

18. If we cross from a region of empty space into

a region occupied by matter, the potential must

satisfy Laplace's equation on one side of the sur-

face—separating the two regions — and Poisson's

equation on the other side. We conclude that some
of the second derivatives of the potential at least

are discontinuous across such a surface. A similar

conclusion applies to a surface within the attracting

body, if the density is discontinuous across the

surface. In that case, we can form Equation 20.15

for two points close to and on opposite sides of the

surface and subtract: the discontinuities in the

second derivatives are then equal to 4-TrGp where p
is the difference in density across the surface.

The Newtonian System— General Remarks

19. The Newtonian system has received massive

support from observations on the outer planets in

the solar system, which indicates that the inverse

square law at least is true to within the precision

of modern observations. The system does not ac-

count for the observed advance in the perihelion

of Mercury, the nearest planet to the Sun. How-
ever, this discrepancy has been accounted for by

high-velocity relativistic effects, which are not at

present (1968) measurable and are unlikely ever to

be significant in the case of near-Earth satellites.

In short, the system has been amply verified in the

case of a few near-spherical attracting bodies whose
dimensions are small compared with their distances

apart, in which case the principle of superposition

is involved to a limited extent only. But it has

never been demonstrated to the degree of accuracy

now attainable that this principle of superposition

applies close to, or actually on, a large unsym-

metrical mass such as the Earth. An opportunity to

do so may arise in reconciling results from satellites

with those from ground observations. There are

already indications, through the consistency ob-

tained in results from satellites at different heights,

that the effect of any departure from the principle

becomes inappreciable at satellite distances from

the Earth.
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GEOMETRY OF THE FIELD

20. It is clear from Equations 20.05 and 12.001

that the field can be represented by the coordinate

system of Chapter 12. In this coordinate system,

N is the potential, the /V-surfaces are equipotentials,

n is the magnitude of the resultant force, and vr is

the unit normal to the /V-surfaces — the negative

direction of the resultant force — and the unit

tangent to the lines of force. The unit normal vT

is also the apparent vertical and defines the (w, (f>)

coordinates, that is, the longitude and latitude of

the apparent vertical in relation to Cartesian axes

fixed in the Earth in accordance with Equations

12.003, 12.004, and 12.005. The Cartesian z-axis

coincides with, or is at least parallel to, the axis

of rotation.

21. The Newtonian law of gravity is necessarily

and sufficiently expressed by making A/V

(a) zero in a static field at points not occupied by
matter; or

(b) — 2d>- in a field rotating with constant angular

velocity di; or

(c) ^irGp at points in a static field occupied by

matter of density p, G being the gravitational con-

stant; or

(d) {4f7rGp — 2d)'-) in the rotating field at points

occupied by matter.

Subject to whichever of these restrictions is ap-

propriate in a particular region of space and with

the connotation of symbols given in the preceding

section, all the geometrical relations in Chapters 12

and 13 apply to the gravitational field; these relations

give us at once, for example, the curvature proper-

ties of the equipotential surfaces and of the lines of

force, together with the properties of lines traced

on the equipotential surfaces and in space. There
is no need to repeat all the formulas of Chapters 12

and 13; indeed, it will be found that most of the

formulas do not contain A/V, and so do not need any

modification at all.

22. We shall be concerned mostly with a rotating

field in regions of space not occupied by matter,

in which case the formula

20.19 Acf)=— sin
(f>

cos (f>
V(w) — 2V((/>, In n)

20.16 A/V= -2d> 2

will apply. The only formulas in Chapters 12 and

13 which contain A/V are Equations 12.100, 12.104,

12.105, 12.106, 12.112, 12.113, and 12.115. Assum-
ing that d) and therefore A/V are constant, these

equations reduce to

20.17 -2u 2 = (dnlds)-2Hn

20.18 Aw = 2 tan <j> V(o>, 0)-2V(co, In n)

{lln)An = cos2
4> V(w)+V(0)

20.20 =K? + Ki + (y? + yi)

20.21 cos $V(o>, In n)= k2ji — t xy2 — 2wry x \n

20.22 V(0, In n)=k,y2 -t xy x -2(b2
y2ln.

However, the last five of these equations, although

useful, are not independent, but can all be derived

from Equation 20.17 with the help of other relations

given in Chapter 12. For example, by differentiating

the logarithmic form of Equation 20.17, that is,

20.23 d(ln n)jds= Q.n n)r v
r = 2H-2(b2

ln

in the parallel direction X s
, we obtain after some

manipulation

dyjds =(2H)aka + 4dry,/n

20.24 +yiy2 tan (/) + y2 fi
—

yife,

which can be shown to be equivalent to Equation

20.18, using nothing but relations given in Chapter

12. In the same way, by differentiating Equation

20.23 in the meridian direction (jl
s

, we find that

dy2lds = (2H)atJL
a + 4d> 2

y2/n

20.25 — y
2
tan (/> + y^i — y2 A;i

,

which can be proved equivalent to Equation 20.19.

Differentiation in the normal direction v r leads tc

Equation 20.20, although we do not obtain any rela

tion in this case which has not already been given

in Chapter 12. The remaining Equations 20.21 and

20.22 follow directly from Equation 20.17 withoul

differentiation. Equation 20.17 or 20.23 is usually

known as Brans' equation if n is interpreted as

gravity at a point in a rotating field and if H is the

mean curvature of the equipotential surface passing

through the same point.

23. We conclude that no independent geometrical

relations other than Equation 20.17 have been

introduced by applying the law of gravity, and that

Equations 20.16 and 20.17 must therefore be equiva-

lent. Indeed, we can write

-2d>- = AN= {nvr ) r= nrvr+nvr
r= (dnlds)—2Hn

20.26

in which we have used Equation 7.19. We can say

that either Equation 20.16 or 20.17 is a sufficient

expression of the law of gravity. We may note that

Equation 20.17 gives us an expression for the

variation of gravity along the lines of force: the law

of gravity tells us nothing in general about the

variation of gravity over an equipotential surface,

although we may be able to deduce this geometri-

cally in special cases.
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24. For example, if the equipotential surfaces are

all concentric spheres of radius r(H=—l/r), the

gravitational equation becomes

2n

r

()n

dr
2dr

or

Bjnr2
)

Br
= -2wV,

which can be integrated to

nr2 = — iforr
! +/(co, <j>)

or

dN
Br
=— #co-r +

/(w, 0)

and can be integrated again to

N=-Wr2 -f(o). (f>)lr+g(o),(f)).

But N is constant over the spheres and must there-

fore be a function of r only so that the arbitrary

functions /(w, </>), g((o. 4>) are at most constants.

Gravity (n) is accordingly constant over an equi-

potential surface, as it would be in the case of a

nonrotating field with spherical equipotentials,

although the magnitude of gravity is different in the

rotating field.

25. If we know the form of one equipotential

surface and the variation of gravity over that surface,

we can build the whole field along either the nor-

mals or the isozenithals. If we work along the iso-

zenithals, we shall need to recast the gravitational

equation, with the help of Equation 14.32, into

the form

d(Un)
1,1$ 1\3

\n n/pdN

20.27

Next, we differentiate the Codazzi equations in the

form of Equation 12.143 with respect to N, using

the fact that all the coefficients in Equation 12.143

are constant during the differentiation. Substitution

of the gravitational equation in the result of this last

operation gives us the second isozenithal derivative

of ban in terms solely of surface functions or surface

derivatives of (1/n), which are presumed known or

calculable on the starting surface. Repetition of the

process gives us higher isozenithal derivatives of

6a/3 in the neighborhood of the starting surface and
leads to a Taylor expansion for baa along the

isozenithals.

The other fundamental forms and metrical proper-

ties of the equipotential surfaces can be expanded

similarly from formulas for isozenithal differentia-

tion given in Chapter 14. For example, we could

obtain successive differentials oiba& from Equation
14.07 and then of aap from Equation 14.03. The
formulas soon become very complicated in the

case of a general starting surface, but in practice,

it would not be necessary to carry the process very

far. The first differentials can be obtained from the

Codazzi Equation 12.143 simply by knowing the

variation of gravity over the starting surface; the

law of gravity enters only in the second and higher

differentials.

26. We could similarly expand the elements of

the starting surface along the normals instead of

along the isozenithals. In that case, we should

work in the normal coordinates of Chapter 15. The
Codazzi Equations 15.25 now contain covariant

derivatives which would have to be differentiated

by Equation 15.53; the can are no longer constants,

but would have to be differentiated by Equation

15.26. Otherwise, the procedure is much the same
as expansion along the isozenithals, remembering
that in these coordinates

_B_

BN~

i a_
t

n ds'

differentials with respect to N, not with respect to s,

commute with differentials with respect to the

surface coordinates.

FLUX OF GRAVITATIONAL FORCE

27. The common normals, or orthogonal trajec-

tories, of the equipotential surfaces are also known
as lines of force because the tangent to such a line

indicates the direction of the resultant force in

accordance with the generalized form of Equation

20.05. A volume of small cross-sectional area 8S,

bounded by lines of force, is called a tube of force.

The cross-sectional areas of a tube of force, where
the tube crosses different equipotential surfaces,

are evidently related by the normal projection sys-

tem of § 15-39; and from Equation 15.39, we have

20.28
r'Kln 8S)

Bs
= -2H

in which as usual ds is an element of length along

the normal and H is the mean curvature of the equi-

potential surface. Substitution of this last equation

in the gravitational Equation 20.26 gives

B{\n(n8S)} = kN
ds n

ft!
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or

20.29
d(n8S)

ds
= (AN)8S.

We now introduce a quantity known as the flux of

force across the area 8S, and define this quantity as

Frv
rdS

in which F, is the force vector and vr is the unit

normal to the element of area 8S. In the case we are

now considering, the generalized form of Equation

20.05 shows that the flux is

f=-n'8S;

we can rewrite Equation 20.29 as

20.30 df/ds = -(MV)8S.

In this equation, the positive direction of ds is that of

vs in Equation 20.05, that is, against the direction

of the force. Consequently, the rate of change of

flux along a tube of force in the direction of the force

is + (A/V) 8S in which A/V takes one of the Newtonian

values given in §20-21, depending on whether the

field is rotating and on whether the tube contains

matter in the small area under consideration. All

of the preceding is simply an alternative statement

of the Newtonian law of gravity. In particular, we
may note that the flux is constant along a tube not

containing matter in a static field; because this is

true for any number of adjacent tubes, there is no

need for the tube to be of small cross-sectional area.

Again, if the tube does not contain matter in a static

field, the cross-sectional area of the tube is inversely

proportional to the magnitude or intensity n of the

force.

28. Another and more usual way of considering

the flux is to apply the divergence theorem to a

finite length of a tube of force between equipotential

surfaces. From Equation 9.16, we have

20.31 Frv
r8S = - ANdV

Jv

in which vr
is now the unit normal to the surface of

the tube. The contributions of the sides of the tube

to the surface integral are zero because vr at points

on the sides is perpendicular to the force vector; we
are left with the contributions of the ends. Now
suppose that one end of the tube is held fixed and

that the other end is extended a short length ds,

ending on another equipotential surface. The
resulting increase in the area integral is evidently

d(F,i> r8S)

ds
ds

d(n8S)

ds
ds

ds
ds,

and the increase in the volume integral is

-(AN)8Sds.

Because the divergence theorem still holds tru

for the extended tube, we may equate these tw

increases to have

(df/ds)ds = -(AN)8Sds;

and because ds, although small, is arbitrary, we hav

df/ds=-(AN)8S,

which is the same as Equation 20.30, obtained sole]

by differential methods.

MEASUREMENT OF THE
PARAMETERS

29. We have seen in Chapter 12 how the geometr
of the field depends on the curvature parameter
(ki, k-i, t\, yi, y2 ) and on (In n)rv

r
, which are direct!

related to the six components of the symmetri

Marussi tensor Nrs by Equations 12.162. The law c

gravity expressed by Equation 20.23, which ca

be written as

20.32 (In n

)

r i/
r = (A'! + A-2 )- 2w2/n,

provides one relation between the six parameters

the question naturally arises whether we can obtai

other relations by direct measurement. One poss

bility is the Eiitvos torsion balance, which consist

essentially of two masses A, B (fig. 18) suspende

o

Al
m

i"r

D B

Figure 18.

at different levels from a horizontal bar. The ba

itself is suspended by a wire whose torsion, arisin

from the unequal effects of gravity on the tw

masses, can be accurately measured.
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30. We suppose that the line AB is of length 2/ in

azimuth a and zenith distance B and that the two

masses (m) are equal. The unit vector in the direc-

tion AB is from Equation 12.007

/' = A' sin a sin B + /j.' cos a sin B + vr cos B.

20.33

A unit equipotential surface vector perpendicular

to the plane of /'' and v r
is, with the usual right-

handed convention,

20.34 y = — A.'' cos a + /u,'' sin a.

|

If TV is the geopotential at B, the force on B is

— wNr : the turning moment of this force about CD is

- mNrf XDB=-(ml sin B)Nrj
r

.

Similarly, the turning moment about CD in the

same sense arising from the force on A is

+ (ml sin B)Nrj
r

in which A^ is the geopotential at A, so that the

resultant torque is

(ml sin p)(Nr-Nr)j
r=- (2ml- sin B)Nrsj

r
l*

20.35

because (Nr—Nr ) can be considered the intrinsic

change in Nr in the direction (— l
r

) over a distance

(21). Expanding Equation 20.35 with Equations 20.33

and 20.34 and using Equations 12.162, we have

finally the resultant torque as

— (2ml2 sin 2 /3)rc{(fa — fa) sin a cos a

+ ti(cos2 a — sin'- a)

20.36 —J] cos a cot B + y2 sin a cot B}.

31. Measurement in several azimuths will

!
accordingly determine (fa — fa), t\, j\, y> and some

\

instrumental constants, but will not separate fa

j

and A L>. To do this, we need an additional form of

|

measurement. As one possibility, Marussi in 1947

i suggested measurement of the torsion about the

|

horizontal axis j'\ but no instrument has yet (1968)

!
been constructed on these lines. In principle,

j

Marussi's suggestion is equivalent to the classical

method of an inclined balance. The Haalck hori-

zontal pendulum is still another possibility which

|
has not yet materialized as a field instrument. The

1 only practicable method at present seems to be a

]

direct measure of the vertical gradient of gravity

with a gravimeter, leading to evaluation of (fa + fa)

from Equation 20.32, but this has not so far produced
results comparable in accuracy with the torsion

balance. No doubt, the problem will not remain

j
unsolved much longer.

32. An alternative expression for the torque can

be obtained from Equations 20.35 and 12.017 as

- (2m/ 2 sin 0) (nsv
r + ni>rs )j

r
l
s

20.37 =- (2mnl 2 sin B) (vrgj
r
l»)

because vr andy r are perpendicular. By using Equa-

tions 7.08, 10.29, and 20.34, we can express the

torque as

20.38 = (2mnl 2 sin B){t sin B-(\n n)rj
r cos B\

20.39

(2mnl 2 sin B){t sin B + y t cos a cos B

— y-i sin a cos B}

in which t is the geodesic torsion of the equipotential

surface in the azimuth of the line joining the masses.

We can eliminate the term containing t, leaving

only the horizontal gradients of gravity yx , y-> to be

determined, by adding an observation in azimuth

(1 77+ a).

33. Eotvos himself introduced a double torsion

balance with parallel beams and hanging weights

at opposite ends, while modern instruments have

incorporated photographic recording and automatic

azimuth-change. However, the principles remain

the same.

34. The torsion balance has been used extensively

in geophysical prospecting to determine differences

in gravity from measured (yi. y%) and standard

values of the vertical gradient, but the instrument

has been superseded for this purpose by sensitive

gravimeters which are easier to use. Geodesists,

other than Eotvos himself who experimented on the

Hungarian plains, have never used the torsion

balance extensively because the instrument is

extremely sensitive to the attraction of masses in

the immediate neighborhood, and is accordingly not

considered to give sufficiently representative values

for the locality. Recent work '
2 on the interpolation

of deflections of the vertical with the torsion bal-

ance has, for example, involved all-round leveling

of the sites within 100 meters of the instrument.

In addition, due precautions have to be taken to

exclude the effect of such temporary masses as

wandering cattle: the effect of the observer's mass
is usually eliminated by photographic recording

and automatic operation.

1 Mueller (1963), "Geodesy and the Torsion Balance," Pro-

ceedings of the American Society of Civil Engineers, Journal of
the Surveying and Mapping Division, v. 89, no. SU3, 123-155.

2 Mueller (1966), "Interpolation of Deflections of the Vertical

by Means of a Torsion Balance," Bulletin Geodesique, new series,

no. 80, 171-174.





CHAPTER 21

The Potential in Spherical

Harmonics

GENERALIZED HARMONIC
FUNCTIONS

1. Suppose that H is any continuous, differ-

entiable scalar function of position and that the

nth-order tensor

21.001 Hrst ...(n)

is formed by n successive covariant differentiations

of//; the notation indicating that there are rc-indices

r, s, t . . .. The tensor equation

nils . . . (h)
= first in).

in which any two indices have been interchanged, is

clearly true in Cartesian coordinates when the

covariant derivatives become ordinary commutable
derivatives, and is therefore true in any coordinate

system in flat space. The nth-order tensor Equation

21.001 is accordingly symmetrical in any two indices

and has therefore

i(*+l)(n+ 2)

distinct components at most.

2. Next, suppose that H is a harmonic function.

The Laplacian of the tensor Equation 21.001 is then

gJ kHrst . . . (»)jA- = (g
jkHjk )rst . . . (n)=

so that all components of the tensor Equation 21.001

are harmonic functions.

3. We may similarly write

21.002 grsHr
St . . . („)= (g

rStf rs )< . . . („> = 0.

The contracted tensor in this equation is of order

(/; — 2) and has at most

H(n-2) + l}{(n-2)+2}=in(n-l)

distinct components. When H is harmonic, there

are accordingly

hi(n-l)

relations, such as Equation 21.002, between the

components of the original tensor in Equation

21.001, which can therefore have

iO+l)(n+ 2)-i/i(/i-l) = (2n+l)

independent components at most.

4. We now form an invariant

21.003 »//,,,

in which the contracting tensor is constant under

covariant differentiation; that is, all components
of the contracting tensor are absolute constants

in Cartesian coordinates, and are the transforms of

Cartesian constants in other coordinate systems.

The resulting summation will contain at most

(2n+l) independent harmonic functions, so that

the contracting tensor should be chosen to introduce

no more than (2n+ 1) Cartesian constants, and may
therefore be chosen in the form

21.004 CL rM*N' . QMHrst

in which C is an arbitrary constant and the L' are

n arbitrary fixed unit vectors, each contributing two

independent constant Cartesian components. This

last result, as an invariant, is true in any coordinate

153
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system provided the vectors L' are fixed — that is,

provided their covariant derivatives are zero.

5. If the elements of length in the direction of the

fixed vectors L r
, Ms are dl, dm, etc., we can rewrite

Equation 21.004 as

CM°N< . . . QM(HrL%
. . . in)

21.005

= CM'N' .

d

£><">

dl L \n-\)

c
dq

d d d „
dn dm dl

which shows that the same result would be obtained

by successive differentiation of H along each of the

arbitrary fixed vectors in turn.

6. We have now succeeded in generating (2n + 1)

independent harmonic functions from a single

initial function H , all of the same order n. The result

of adding these functions with (2n + 1) arbitrary

constants is to provide a more generalized harmonic

function; we can obviously express a still more
general harmonic function K by adding similar

groups of higher and lower order as

21.006 2 A ' ™Hrst (n),

with corresponding expressions for the alternative

forms. Equations 21.004 and 21.005, of the constants.

We can extend this result into an infinite series,

provided H and the components of the contracting

tensors are chosen to make the resulting series

convergent. The question then arises whether any
harmonic function K can be expressed in terms of

another harmonic function H. This is true in the

special case where H=\jr and where the coordi-

nate system is Cartesian, in which case we shall see

that the derivatives of H are solid spherical har-

monics; we could reasonably suppose, without

formal proof, that it would be true in the more
general case when fewer restrictions are applied.

7. If K in Equation 21.006 is to be a Newtonian

potential, then we can reasonably expect that the

leading, or absolute, undifferentiated term in Equa-

tion 21.006 would be of the form (1/r) because this

is the simplest form of Newtonian potential. In

that case, H would be (1/r). This fact was first

noticed by James Clerk Maxwell, 1 who showed that

n -differentiations of 1/r, as in Equation 21.005,

generated all the nth-degree spherical harmonics.

We shall derive this result more simply for a New-

1 Maxwell (1881), A Treatise on Electricity and Magnetism,
2d ed., v. I, 179-214.

tonian gravitational potential, and at the same time

shall provide a physical interpretation of the con
trading tensors in Equation 21.006.

8. We shall find that a convergent series for th<

Newtonian potential in the form of Equatioi

21.006 with H= 1/r may not always be possible; w<

are led to consider an alternative expansion h

homogeneous polynomials in the tensor form

21.007 7 = ££,,, (h)P''PV
•An)

in which p' is the position vector, whose Cartesiai

components are (x,y,z), and Brst ... is a contracting

tensor symmetrical in any two indices and witl

constant Cartesian components. We notice that th<

covariant derivative of the position vector is givei

by the Kronecker delta (§ 1-21), that is.

P
r
. k = %

in Cartesian coordinates: and because this resul

is a tensor equation, it is true in any coordinates

Covariant differentiation of Equation 21.007 thei

gives

7a =2 nBrst . . . (»)8/>
s'p'

•
p""

=2 nBkst wPs
P

l

P
{
"~ u

'-

and the second derivative is

Ju = ^n(n-l)Bu, . . . <n)p
l

• P
(
"- 2)

so that the Laplacian is given by

A7=^'7w=X n(n-WB*it
. . . wp' • • • P

u, ~

21.008

Accordingly, if J is to be harmonic for all com
ponents of the position vectors at all points of somi

finite domain, then we must have

21.009 g^'Bk-u

for the coefficients of each polynomial in Equatioi

21.007 of degree two and higher. As in § 21-3, thesi

harmonic conditions, together with the symmetri

cality in any two indices, restrict the number o

independent polynomials of the nth-degree ii

Equation 21.007 to (2n + l). We have then mereb

to substitute spherical polar coordinates for th<

(x, y, z) Cartesian components of the position vector:

in Equation 21.007 to obtain after some manipula

tion an expansion in spherical harmonics. It i

well known that all the nth-degree spherica



The Potential in Spherical Harmonics 155

harmonics can be represented in this way by homo-

geneous polynomials of the nth-degree.

THE NEWTONIAN POTENTIAL
AT DISTANT POINTS

9. We shall now find the Newtonian potential

at a point P (fig. 19) in empty space (often described

X
sphere of

convergence

Figure 19.

as "free air") outside an attracting body of irregular

shape and irregular mass distribution such as the

Earth. Two cases are of particular importance:

(a) When P is farther from the origin O of the

coordinate system than all points of the attracting

body, and

(b) when P is nearer to the origin than some or

all points of the attracting body.

We shall deal with the first case now, and the

second case later.

10. We shall suppose first that the attracting body

consists of discrete particles, and shall then show
that results in the same form would be obtained

for a continuous distribution of matter.

11. The potential at P, arising from an elementary

particle of mass m at Q (omitting for the present the

gravitational constant G), is

- mjPQ=-m(r2 -2rf cos y + r
2 )" 1 '-

=
i l + -cos y+

.

r r
-I P„(cosy)

21.010

by definition of the Legendre functions or zonal

harmonics P,
(
(cos y). This series, like the geometric

power series which dominates it, is absolutely and

uniformly convergent if r > r; and, in that case, we
may add to it term-by-term the similar series repre-

senting the contribution to the potential at P
which arises from the other particles of the attract-

ing body. If r > r for all particles of the body, it is

evident that P must lie outside a sphere centered on

the origin which just contains all the particles: and

we shall accordingly call this the sphere of conver-

gence for this case. Otherwise, some particles may
set up divergent series which cannot be added
term-by-term to the other series. In special cases,

the final series might be convergent inside the

sphere, which just encloses all the matter, because

the elementary divergent series cancels in the sum
or is otherwise insignificant, but this would have

to be proved by considering the convergence of the

final series. In any case, we have not said that the

final series is necessarily divergent on or inside

the sphere of convergence, but only that it is cer-

tainly convergent outside this sphere. Because

r is the same for all particles, the total potential

V at P, after replacing the gravitational constant G,

would then be given by

V_M 2,mr cos y
G~~r~ r

2

~S.mr"P„(cos y)
4 .

21.011

in which M is the total mass of the attracting body
and the summations are carried out over all

particles.

The Potential in Maxwell's Form

12. We shall first recast Equation 21.011 in the

tensor form involving successive differentials of

(1/r), and shall relate the coefficients in this expan-

sion to the mass distribution. Later, we shall obtain

the more usual expansion in spherical harmonics
related to a fixed Cartesian coordinate system. For
some purposes, one form is more convenient than

the other, and we need both.

13. If we take OQ (fig. 19) as a temporary axis

of z and use the well-known formula -

d"

clz"

-)"n\
P„ (cos y),

we find from Equation 21.011 that the nth-degree

term in the potential arisingfrom a single particle rh

- Hobson (1931). The Theory of Spherical and Ellipsoidal

Harmonics, 15-16.



156 Mathematical Geodesy

{-) nrhfn d" (\

is

re! dz" \r

Because the unit vector vs toward the particle and
in the direction of the temporary z-axis is constant

during differentiation at P of (1/r), we can rewrite

this last expression in the tensor form

(-)"mr» /r

re! \rjst;
vsv'v" -,(«)

(HI

which is no longer dependent on a particular co-

ordinate system involving a single particle, so that

we can sum this expression over all particles. We
have also

Vs= xs
/f,

if xs are rectangular Cartesian coordinates of the

particle m in any fixed system with origin 0, so that

the reth-degree term in the total potential at P is

finally

(-)"
Jstu

n\ \r/stu . . . (>n

where

21.012 Istu <" ) =^mx sx tx u
. . . xin>

.

This last expression is evidently a tensor because
it is formed by the multiplication and addition of

of position vectors Xs
. We shall call this tensor the

nth-order inertia tensor because its value depends
solely on the mass distribution within the attracting

body and on the position within the body of the point

O chosen as origin. We can similarly define inertia

tensors of the first, second, third, etc., orders as

21.013

21.014

21.015

P=^mx s

/.s' =V fhx sx'

Jstu —V mx sx'x l

in which, of course, the summation is carried out

over all particles. The inertia tensor of zero order

is simply the total mass (M) of the body

21.016 ^m= M.

With these conventions, we can finally rewrite

Equation 21.011 as

.K= ft± ptu... M (l
(»)•

21.017
It is understood that when re = 0, the inertia tensor
is M and (1/r) is undifferentiated; in addition, as

usual re! is interpreted as unity when re = 0. The
expression

... (H)

signifies the nth-covariant derivative of (1/r) suc-

cessively with respect to the coordinates xs
, x''.

x" . . .. In Cartesian coordinates, the covarian

derivatives become, of course, ordinary derivatives

and are then combined with the Cartesian form

(Equation 21.012) of the inertia tensors.

14. So far, the inertia tensors have been definec

only at, and in relation to, a particular origin

although we shall later derive expressions for theii

components at a different origin where (1/r) and its

derivatives would also be different. When the inerth

tensors are contracted with other tensors, as ir

Equation 21.017, we should use values of the con

tracting tensors at the origin, or else express the

contracting tensors as sums and products of vectors

and use parallel vectors through the origin. We
should also use values of the metric tensor at the

origin in conjunction with the inertia tensors. Nc

difficulty arises if we use Cartesian coordinates

because the components of parallel vectors and oi

the metric tensor are then the same at all points

in space.

Continuous Distribution of Matter

15. We can consider that the attracting bodj

consists of a continuous distribution of matter o

density p per unit volume instead of a system o

discrete particles. In that case, we have only t(

write

21.018 m = pdv

for the mass contained in an element of volume di

and replace the summation sign by a volume o:

triple integral taken over the whole body, so that

for example, we have

21 019 Jrst ...<„)= pp
r
p

sp< . . . p
0l)dv

in which p' is the position vector of the element o

volume — that is, in Cartesian coordinates

p
r= x r

.

The density p can, of course, vary from point t<

point, but because it is supposed to have a definite

value at a point, the density can be considered ;

function of position, that is, of (x, y, z). The densit;

need not. however, be a continuous function in the
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mathematical sense because we could integrate

over subvolumes bounded by discontinuities and

add the results: this result will be clear if we
consider the original distribution of an aggregate

of particles, which need not have been all of the

same mass and indeed could have been separated

by empty space. In some cases, we shall find it more
convenient to deal with a system of particles, and

in other cases with a continuous distribution. There

is, however, no essential difference between the

two cases, which are quite simply related by use of

Equation 21.018 and by integration instead of

summation, whether we are dealing with inertia

tensors or with any other formulas in this chapter

that relate to the mass distribution.

Successive Derivatives of (1/r)

16. In order to use the basic Equation 21.017 for

the potential, we shall require formulas for the

successive derivatives of (1/r) which are intimately

connected with the unit position vector vs of the

point P where the formula gives the potential

(fig. 19). The vector vs is in fact the gradient of

the radius vector r, so that we have

21.020 v, = r„.

and

21.021 @L~@*
giving the first d erivatives of (1/r).

17. Throughout this chapter, (oj, (/>) will be the

longitude and latitude of the radius vector OP, that

is, the geocentric longitude and latitude, unless

otherwise stated. We can accordingly consider vs

to be the unit normal to the r-surfaces (spheres) in

a symmetrical (a>, <£, r) coordinate system. From
Equations 18.12 and 18.13, we then have

(cos (f))(os= kslr

(f>s
= t^s/r;

and from Equations 12.016 and 2.08, we have

vst = (\s \r + /xs/if)/r

21.022 =(gst-vsvt)lr,

so that the second covariant derivative of (1/r) is

from Equation 21.021

(l/r)s, = (2/r!)iw-(l/r>s,

21.023 =(Svsvt -gst)lT*.

The third derivative, using the last two equations, is

(1/r ).,,„= (-3lr4 ){3PsP,-gst)i',
l

+ (1/r4 ) {ZgsuV, + d>gtu vs — bvsvtvu )

2

1

.024 = (3/H ) (gstvu + gtuVs + gusvt ~ 5vsvtvu )

;

proceeding in this manner, we find without diffi-

culty that the nth-derivative is given by

(-)"(l/r)w ,,sr .,, (
„,r"

+1

1 -3-5 . . . (2n-l)
VpVqVrVgVt V(n)

{gpqVrVsVt V(n)}

(2/i-l)

,
{gliqgrsVt V(n)}

(2n-l)(2n-3)

21.025 ...

in which the symbol

{gpqVrVs V, . . . !>(„>}

implies that the indices are permuted cyclically

in all different ways, allowing for the symmetry
of the metric tensor g,iq , and the results are summed
as in Equation 21.024. At each successive term in

the expansion, we drop two 'Vs" which we replace

by one "g" The final term contains one 'V if n is

odd, but otherwise all "g's."

18. Equation 21.025 can also be obtained by suc-

cessive covariant differentiation of the identity

x2 + f + z
2 = r\

remembering that all components of the tensors

X/>q
. . ., Yi>q . . ., Zpq . . . are zero in any coordinate sys-

tem because all the components are zero in Car-

tesian coordinates. For example, we have

xxp + yy„+ zzp = p„= rvp= - r
:!

( 1 jr
) ,, ,

which is equivalent to Equation 21.021. Also, we
have

XqXp + jqj,, + ZqZp= gPq = 3r4
( l/r)

/; ( 1/r),, - r
:!

( l/r)M ,

which is equivalent to Equation 21.023, and

= -12rMl/r) /) (l/r),(l/r)., + 3rM(l/r)
/
„(l/r).,

+ (l/r)„s.(l/r) /
,+ (l/r) sp (l/r) g}-r3 (l/r)w ,

which is equivalent to Equation 21.024.

19. The number of terms in the symbol

{gpqV rVs Vt . . . V(n)}

is n(n — l)/2, obtained by taking two indices at a

time from «, regardless of order. The same opera-
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tion, applied to the remaining (n — 2) indices in

each term, gives

{(/i-2)(n-3)/2} Xn(n-l)/2

as the number of terms in the second symbol

{gpqgrsVt V(n)}.

But half of these terms are the same as the other

half, for example,

gpqgrsVt . V(n)= grsgpqVt V(n),

so that finally the number of dissimilar terms in the

second symbol is

n{n-l)(n-2)(n-3)l(2 • 4),

and in the third symbol is

n("-U(rc-2)(n-3)U-4)U-5)/(2-4-6),

and so on.

20. We shall usually contract Equation 21.025

with an nth-order contravariant tensor which is

symmetric in any two indices. Each term in a par-

ticular braces symbol will make the same contri-

bution to the resulting invariant, so that in such

cases we can rewrite Equation 21.025 as

(-)"(l/rW.,, (/nr"^

1 -3-5 . . . (2n-l)
= VpVqVrVgVt . . . V(n)

n (n— 1

)

gpqVrVsVt2(2n-l)

n(n-l)(n-2)(n-3)
2-4(2/i-l)(2n-3)

V(n)

gpqgrsVt V(n)

21.026

21. As some verification of this last formula, we
take the latitude and longitude of the direction OP
as ((f), cj) with respect to rectangular Cartesian axes

and take O as origin. Then the Cartesian compo-

nents of the unit vector vv are as usual

(cos (p cos oj, cos 4> sin oj, sin $),

and we have also

gpq=l(j>= q) ; gl)Q
= 0(p^q).

Substitution in Equation 21.026 and use of the

usual expansion for P„(x) in powers of x then give

us at once

vr/333 . . . do dzn \rj r"
+1

21.027

This equation recovers our starting point in §21-13
In the same way, we have

P„(cos
(f> COS (X))© (')

_(-)"«!

r«+i

21.028

(7) .(b) dy" !')
(-)*n !

21.029

/'/((cos </> sin co).

Corresponding formulas for mixed derivatives are

however, less simple as we shall see.

22. Equation 21.026 is a purely geometrical rela

tion. If we multiply by r" and note that rvp = pp , the

position vector of P whose distance from the origii

is r in the direction v,,, and if we also contract wit!

an arbitrary constant tensor Apqr (n) symmetru
in any two indices, then the first term on the righ

becomes a homogeneous polynomial of the nth

degree

21.030 /„(*, y, z)=APir (n)
Pl'PqPr POO

The Laplacian of this last equation, as we have

already seen in Equation 21.008, is

kf^nin-^APi' ai)
gIIQpr

again taking the Laplacian, we have

k% = n(n-l)(n-2)(n-3)

x Apqrst < " )

gpqgrsPt

P(H-2i;

. P(n-A)

so that the right-hand side of Equation 21.026 cai

be written as

1

r
2A

2(2/i-l)

r4A2

+
2-4(2n-l)(2n-3)

while the left-hand side is

fn (x, y, 2)

(»)/•'

1-3 .

We can also write

Apqrst . (n) dlr] pqrst

(2n-l)

( " ) /n, a*'ay'aJ(r

in which /„ is the same function of the operator

d/dx, etc., sls f„(x, y, z) is of the Cartesian coord

nates of P in Equation 21.030. The final result is

classical theorem of very general application du

to Hobson,3

Hobson, op. cit. supra note 2, 127-129.
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RV
1 -3 . . . {2n-\) J "\dx dy dzj \rh

d d d\/\

+ r*A2

21.031

2(2« — 1) 2-4(2n-l).(2n-3)

, . . /»(*, y, z).

23. Hobson's formula is frequently useful as a

means of expressing the successive derivatives of

(1/r) in spherical harmonics. Suppose, for example,

we want to express (l/r)n 2 , then the corresponding

polynomial is

f3(x, y, z)= x2
y;

and we have

-r7 (I

1-3-5

— (r3/5) (5 cos3
</) cos2

a> sin (o

— cos <f>
sin o»)

— (r^/S^cos (/> sin w(5 cos2
(f>
— 1)

— 5 cos3
</> sin3w}

= (r3/5){i cos (f)
sin a>(l — 5 sin 2

(f>)

+ f cos3
</> sin 3ct)}

= (r75)M/^(sin4>) sin w

+ ^/^(sin <t>) sin 3w}

so that finally

^(l/r)n2-

2

P\( sin $) sin <y— i/^(sin</>) sin 3w.

21.032

We can be certain that the result must be in terms

of harmonic functions. The process is assisted if

we first convert powers of the sine or cosine of the

longitude into multiple angles.

The Potential in Spherical Harmonics

24. If we return to the basic Equation 21.011

and figure 19, we see that the coefficient of (l/r" +1 ),

that is,

V mfnPn { cos y),

is a function of the position of the mass point Q in

relation to a temporarily fixed direction OP and of

the distribution of mass, and so must be expressible

in terms of the inertia tensors for a particular origin.

We now seek to express this function alternatively

jin terms of spherical harmonics.

25. If the latitude and longitude of the mass point

are overbarred and of the point P are unbarred,

we have

cos y = sin c/> sin <j>+ cos cf) cos </> cos ( w — o>

)

21.033

and by the ordinary addition formula

P,,(cos y) =P„(sin <£)P„(sin <£)

+2^ in

7 /*!?'( sin ) P"' ( sin <J>)

21.034

(n+m)\

X {cos mw cos mw+ sin raw sin moi)

We can accordingly rewrite Equation 21.011 to

give the potential in the form

V
Y= 2 2 ^'<"( sm <t>){C»»> cos mw

n = o m=0

21.035 +S„sinmaj}/r« +l

in which the term independent of longitude is

21.036 C„oPS(sin0) = C„oP„(sin<£),

provided that

C,,u =
1

£mf"P n {sm 4>)

(nvi \n — ill i : „ 7 .

Cnm = 22smr"-——-7/T(sin <p) cos ma)

21.037 Snm= 2^ihfn

(n-\- m

(n-m)l

(n+ m)\
P" 1 (sin 4>) sin raw

in which m can be any integer between unity and

n inclusive, and {n — m)\ is interpreted as unity if

m — n. The summation in these expressions is not,

however, taken over these values of m as in Equation

21.034, but is taken over all mass points in the

attracting body. Accordingly, the C's and S's are

constants for a particular body and depend only

on the mass distribution. Like the inertia tensors,

to which we shall relate them later, the Cs and

S's can be calculated if we know or postulate the

mass distribution. Conversely, a knowledge of the

C's and S's or of the components of the inertia

tensors, obtained by observation or measurement,

will provide information about the mass distribu-

tion, although the C's and S's and the inertia tensors

do not determine the mass distribution uniquely.

26. If a is a constant, such as the radius of a

sphere centered on the origin and enclosing all

the matter, we can multiply Equation 21.035 by
a" without affecting the convergence of the series,

provided we also divide the C's and S's by a". This
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device will also ensure the convergence of the

series in Equations 21.037, and of the correspond-

ing integrals in the case of continuous distributions.

The size of the C's and S's will depend largely on

m, and to render them more readily comparable,

it is usual to adopt normalized functions instead;

one such scheme, due to Kaula,4
is to use the

following overbarred coefficients

C„o= C„ /(2n+l) 1/2

t> nm \ (n+ m)l 1/2 (CH

Jinn 1 _2(2n + l)(n- /rc)!_ \Sn

21.038 m^O,

which in effect reduce the coefficients to about the

same comparable size as their root mean square

values over a sphere. The dimensions of the

constants need some consideration. The dimensions

of the potential, defined as work done on a particle

of unit mass, are L-T-. From the formula Gm/r
for the potential, the dimensions of the gravitational

constant G are LAM T - and the dimensions of

V/G are L~ [ M. Consequently, the dimensions of

the C„,„, Sum in Equation 21.035 must be L"M,
which is verified by Equations 21.037. If, however,

we multiply Equation 21.035 by G and alter the

constants accordingly, the dimensions of the

constants would be L" + 1 {L2T~ 2
).

Relations Between the Constants

27. It will be clear from Equation 21.026 that the

nth-degree term in the inertial form of the potential.

Equation 21.017, consists of l/r" +1 multiplied by

quantities which are independent of r; similarly,

so does the nth-degree term of the spherical har-

monic form of the potential, Equation 21.035. Both

forms of the potential must hold for all values of r

outside the sphere of convergence; we may accord-

ingly equate the nth-degree terms in the two Equa-

tions 21.017 and 21.035. That is not to say, however,

that individual terms within the nth-degree are

equal; only the sums of these individual terms, com-

prising the whole of the nth-degree terms, are the

same. We conclude that the C's and S's in Equa-

tions 21.037 are expressible in terms of inertia

tensors of the same nth-degree.

28. The simplest way of expressing this result

is to expand the C's and S's as Cartesian polynomials

4 Kaula (1959), "Statistical and Harmonic Analysis of Gravity,'

Journal of Geophysical Research, v. 64, 2410.

from the usual formulas

1-3-5 . . . (2n-l)
P„(sin </>)

=

. 7 n(n — 1) . , „7
8111

^~2(2^T) Sin
' -'*

n(n-l)(n-2)(n-3) .+
2-4(2n-l)(2n-3)

sin (
"- 4)

(/>

21.039

P'^sin (j>)

(2n)! cos'"
<f>

2"n\{n-m)\

sin'"-'"^
(n — m ) (n — m — 1

)

Jn-m-Z)
•4>

2(2n-l)

n — m) (n
.

— m — 1) (n — m — 2) (n — m —3
2-4(2n-l)(2n-3)

X sin'
Ui-m-4)J, —

21.040
... _ m(m — \) ,,„_.,,- . 2 _

,

cos ma)= cos'"o> —
}

cos' -'&> sin- w+

21.041

sin ma> = m cos( '" _1,
d; sin d>

m(m-\)(m-2)
1!

cos(m-3) o) sin3 a> +

21.042

and to substitute the relations

x = r cos (6 cos oi

y= f cos
<f>

sin ti>

z = f sin </>

X- -)-y2 + 2 L> =f2
.

For example, we have

C;13 = 2^mr3 X (1/6!)

'6\ cos3
4>\
-1 [1] [cos3

to — 3 cos a) sin2
a>]

233!

=l 27V m{x 3— 3xy2
)

= 2T(/>"-3/ 122
).

29. In this way, we find that the complete set

of relations for the second and third orders ai

c20 =/33 -w '+/--)

C„=/' 3

S,,=/23

C22 = i(/"-/22
)

21.043
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and
C3o=i333 -!(/U3+/223

)

C31 = /133 -i(/m + /122 )

s,,=/- :i:i -i(/" 2 +/-22
)

C :! , = {(/" :i -/22:!
)

21.044 s,,=^(MU2 -r122
).

30. To find more general relations, we rewrite

the last two equations of Equations 21.037 in the

complex form

t> am i lo a in Z
(n + m)l

(2n)!

2mf<"-m) P™(sin 0) (re
io>)"

2,rh{x + if)"

=<«-»i-2)

2 (
"- 1) n!(n + m)!

(n — m) (n — m — 1 ) _.,

2(2/i - 1

)

r"
Z

(n— m)(n— m — l)(n — m — 2)(n — m — 3)

2 -4(2n-l)(2n-3)
+

21.045 x f4£(n-m-4).

on substituting Equation 21.040. The result is a

combination of components of the nth-order inertia

tensor which can be written down at once after

expanding (x + iy) m . Terms containing

r

2 will appear

as

a Jrspqk . . {n)= J\ \}><i . . .(«)_(_ jllpq . . . in) _|_ p:ipq . . An)

and terms containing r4 will appear as

grsgtJrstuk -- An)
,

and so on. For example, we have

C-ii + iSu
8!

8-4!5!
^m(x+iy) -3

3-2..,

2-7

leading to

21.046

;7{/l333_|(/m3+ /2213+ /3313)

-fi/2333_^(/H23 +p223 + /3323)}

C41
= /3313_|(/

ni3+ /2213)

541== 73323 _|mi23+ /2223)
#

Apart from the factor of 2 in Equations 21.037, the

zonal terms C„ can also be obtained from the

general Equation 21.045 simply by making m = 0.
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Otherwise, we can use Equation 21.039 and write

1-3-5 . . . (2/i-l)
"

Cno = ^ '

21.047
n{n — l) -,_,„_.,,,— r-z" -'+ .

2(2n-l]

31. We have seen in §21-4 that the number of

independent terms of the nth-degree is (2n+l) at

most, and there are indeed (2n + l) of the Cnm and

Sam- The inertia tensor of the nth-degree, never-

theless, has i(n + 1) (n + 2) distinct components, and
we might expect to find

i(n+l)(/i+2)-(2/i+l)=|7z(n-l)

relations between these components. There are no

such relations. The explanation is that the number
of independent functions

(llr)^ <«>

is restricted by the Laplace equation to (2n + l);

the number of components of the inertia tensor is

not so restricted. For example, the Laplace equation

in Cartesian coordinates applied to terms of the

second degree is

(l/r)n + (l/r)te+ (l/r)»= 0,

and we can write the sum of the corresponding terms

in the potential as

In air)u +P2air}22+P3airh3

= (/H-/33)
(1/r)]l + (/22_/33) (1/r)22i

Consequently, we shall obtain the same result for

the sum of the second-degree terms in the potential

if we take as coefficients

{I
n

)= In -P3

(/
22

)
= /---/:i:i

(/.«)=

(/'-) = /'-

(/23
)
= /23

(/13)= J13.

We do not reduce the number of components of

the inertia tensor by this device, but we do reduce

the number of separate terms to the requisite five.

The same derivation applies to the nth-order terms

where the hi(n — 1) relations

(l/r)iu«...
(«)+(l/rWu (llr), oo=

are introduced by differentiating the Laplace

equation (n — 2) times. As we shall see later, the

number of components of the inertia tensor can

be reduced by a suitable choice of coordinate axes.

J06-962 0-69— 12



162 Mathematical Geodesy

but in that case, the number of C's and S's is also

reduced.

32. For these reasons, it is not possible to express

each component of the inertia tensor explicitly in

terms of the C's and S's. We can see from Equa-

tions 21.037 that the C's and S's are linear combina-

tions of harmonic functions; therefore, any linear

combination of these terms must also be a har-

monic function. Each component of the inertia

tensor is, however, a homogeneous polynomial by

definition in Equation 21.012, and not all poly-

nomials are harmonic functions. The most we can

do is to express certain combinations of the com-
ponents of an nth-order inertia tensor, which happen
to be harmonic functions, in terms of C no, C„m , and

S„m . This procedure will reduce the number of

independent relations to (2n + l).

33. For example, the third-degree polynomial

(y
3 — 3yz2

) is harmonic and can therefore be ex-

pressed in terms of solid spherical harmonics as

(y
3 — 3yz2

) = r3 (cos3
4> sin3

u>

— 3 cos
<f>

sin2
<f>

sin ou)

= — r3
{fO^

>

3 (sm 0) sm 3g>

+ 2P3 (sin (f>) sin a>};

multiplying this equation by the mass of the particle

at (x, y, z) and summing with the aid of Equations
21.037," we have

/222 -3/233 = -6S33-3S31 .

Proceeding in this way for the other six basic third-

degree harmonic polynomials

(xy2 — xz2
) , (yz2 — yx2

), {zx
2 — zy2 )

,

(x3 — Sxy2 ) , (z
3 — 3zx2

) , xyz,

we have for the complete third-order set

/122 -/133 = -6C33-C31

/233 -/1,2 = -6S33 + S31

/113 -/223 = 4C23

/in- 3/122 = 24C33

/222 -3/233 = -6S33 -3S31

/333_ 3/U3= C30-6C32

21.048 /123 = 2S32 ,

agreeing with the reverse set in Equations 21.044.

The harmonic polynomials are suggested by Equa-

tions 21.044. For example,

C32 = i(/» 3 -/223
)

shows that (x2
z— y

2
z) is harmonic, and we obtain

two others by permuting x, y, 2. In the same way,

C33 =^(/m -3/122
)

shows that {x3 — Zxy2 ) is harmonic with two others

by permutation, and finally

S32 = i/
123

gives the remaining basic harmonic as xyz. The
remaining harmonics in Equations 21.044 are linear

combinations of the basic set of seven. For example,

C3 „ = /333 -f(/113 + /223 )

shows that

J-Kxh + fz)

is harmonic, but this can be expressed as

(z
3 -3zx2 )+i(zx2 -zy2

).

34 For the sake of completeness, we give the

reverse second-order set as

7 11 -/ 22 = 4C22

/22_/33 = _ C20 _2C22

/ 12 = 2S22

/ 13 = c21

21.049 / 23 = S21 .

Again, the basic harmonics are suggested by Equa-

tions 21.043 as (x 2 — y
2

) and xy with permutations.

Invariance

35. If we define the Newtonian potential at a

point as the negative of the work done by the force

of attraction in moving a particle from an infinite

distance to the point P, then it is clear that the

potential depends only on the position off in rela-

tion to the attracting body, not on the choice of

a particular coordinate system. In other words,

the potential must be a scalar invariant. We arrive

at the same conclusion if we define the potential

as a scalar whose gradient is the resultant force of

attraction; the attraction vector at P must also be

independent of the coordinate system, although

its components will, of course, depend on the co-

ordinate system. Again, we can define the potential

as a scalar whose Laplacian is zero outside matter

and which behaves like (1/r) at great distances

from the attracting body; we have seen that the

Laplacian is invariant, and if it is required to have

a defined (zero) value — independent of the coordi-

nate system — at all points in free space, then the

original scalar potential must also be an invariant.
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That is not to say, however, that every mathematical

expression for the potential is necessarily invariant;

we should test the expression for invariance and

so ensure that it is a valid representation of the

physical definitions. For example, we have added
the principle of superposition to the physical

definition of the potential which arises from a

particle in deriving Equation 21.011, and if this

were to result in noninvariance, then the principle

could not possibly be true. Some of the mathe-

matical processes could also introduce nonin-

variance, especially when we work in a particular

coordinate system. Accordingly, we shall now test

the basic Equation 21.017 for invariance.

36. From the tensor form of the potential in

Equation 21.017, we can see at once that each group

of terms of the same order is invariant under co-

ordinate transformations which do not change the

Cartesian origin because, in that case, (1/r) does

not change and the inertia tensors remain the same
even though their components change. Accordingly,

Equation 21.017 is invariant for rotations of the

coordinate axes.

37. Next, we consider the effect on the potential

at P (fig. 20) of shifting the origin from to On. The

Figure 20.

position vector of 0o in the old system is p ('J
in a

direction making an angle y with OP, and the mag-

nitude 00o of the change is m. Quantities related

to the new system are denoted by overbars, for

example, 0«/> = r; an overbarred inertia tensor

signifies that its values are to be taken at the point

() . We must show that we have

3C (_ \ II I 1£U_ 7-...(„,'
r /Sill ...(«)

21.050 ~ n\ \r Liu ...(»»

for arbitrary values of the vector p/,.

38. As in Equation 21.010, we have

F-r{l-2(r()/r)cosy, )
+ (r„//) 2

}
1 /2

4= -{l+ — P(cosy ( >)

r r [ r

21.051 r "I ;

provided that r < r. We have also to ensure that

P lies outside the new sphere of convergence

(fig. 19), centered on O , so that both series in

Equation 21.050 may be convergent. Because terms

of the same order in either series are invariant

for rotations of the coordinate axes, we can take

00o as the old z-axis without any loss of generality.

We then follow § 21-13 and rewrite Equations

21.051 as

1 = 1

r r

21.052

d (I

dz\r
+ .

m\ dz'

in which the derivatives refer to virtual displace-

ments of the point P. This expression is similar,

apart from signs, to a Taylor expansion for (1/r)

along 00o. However, it should not be confused with

a Taylor expansion, which would require (1/r)

to be defined along 00o and would require values

of the derivatives at 0. If the unit vector along the

z-axis, 00o, is a p
, then we have

*£©""" pX

and because p^ and cr p are fixed during displace-

ments of P, we may similarly write

dz 1
pM- Fo

(m)

so that Equation 21.052 may be rewritten in tensor

form as

1 = 1

r r

21.053

+
m< PM- Pi)

(in)

in which the mth-order term has m vectors, p#,

and m successive covariant derivatives of (1/r).

These covariant derivatives still refer to displace-

ments of P with O, O fixed. We can accordingly

differentiate Equation 21.053 further for displace-
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ments of P, with p# a fixed vector, and obtain

1\ (V\

which becomes on exchanging dummy indices

',/"/ slu ...(h) \r/stu . . .in)

m=i m: \r/ ,„,.. . {m)stu . . . («)•

21.054

39. We have now to evaluate the inertia tensors

at (). If p' ,
p' are the position vectors from O and

On, respectively, to a particle of mass m, then we
have

p
s= p*-pg

in which pfi is, as before, the vector OUu. The second-

order inertia tensor at 0» is then

Ist =Yjnpsp<

=2/" (p
s ~ p» ) ( p' ~ pi> )

21.055 =/s'-pg/'-p^+Mpgp|i

in which M is the total mass. If later we contract

with a covariant symmetric tensor such as (l/f)st,

then this last expression may be written as

2 1 .056 Ist = Ist - 2pg/' + Mpiipf,.

In the same way, the nth-order inertia tensor is

Jstu ...00 =^m ( p
s _

p
*

) (p
f_

pQ (p
u_

p „

)

21.057 . . . (p^-pk"),

and if this last equation is to be contracted with a

covariant tensor symmetrical in any two indices,

it can be written as

JStU . . . ill) = JStU . . .
ill) — Jlp*J l " ("- 1 >

+i/i(/i-l)p8p£/«- -<"-2)

21.058 . . . (-)"Mpf,p,',p!i . . . pi,"
1

.

40. Multiplication and contraction of the two

Equations 21.054 and 21.058 now show that we have

/•lu... 00 (T) = js„i...i,i) L\ + _ _

\r/stu . . . in) \r/stu . . . in)

21.059

the remaining terms on the right all contain the

arbitrary vector p#. The term containing one vec-

tor pg is

v / pstu

- nltu • •
• (

(«) \rjstu

dx"
Jstu . . . ill)

r/stu . . . in)

+ njtu... i,,-n (±
\T)tu . . . in).

21.060 Pi
dx" )"

where — (V/G)(„) signifies the /?th-term in the ex-

pansion of Equation 21.017. If the term in Equation

21.060 is to be invariant for arbitrary p{,\ then the

term within brackets in the last expression must be

constant or zero, which, in general, is not the case. If.

however, we multiply Equation 21.059 by (— )"/n ! and

sum from 77 = to /z = °o, then the term containing

p^ becomes zero, provided that —{VjG)x is zero

as it must be because the series for — {VjG) is

convergent. The potential given by Equation 21.017

is then invariant, at least to a first order, although

each term or group of terms is not invariant. In

the same way, the term in Equation 21.059 contain-

ing two vectors is

d 2

PoPo
dx»dx"

21.061

(-)"

V)
(
V
\

I*

(V\ 11

G/in) \Ghn- \G/(„_2)J.

. ill)

which again becomes zero if, and only if, we mul

tiply by ( — )"/«! and sum. The same result is ob

tained for terms of higher degree, and we conclud<

therefore that the potential as given by Equatioi

21.017 is invariant although each sum of terms o

the same order is not invariant under change o

origin as is the case for rotations. We may note alsi

that the proof depends on summing the complet

series; if we omit any numerically significant term

the truncated series would not necessarily be in

variant. We conclude also that the expression

the potential in spherical harmonics is invarian

to the same extent because groups of terms of th

same degree in (1/r) are equivalent in the tw

expressions.

The First-Order Inertia Tensor

41. We have seen in Equation 21.016 that tb

inertia tensor of zero order is the total (scalar

mass (M) of the attracting body, and we shall noA

investigate some properties of the higher orde

inertia tensors.

42. If jcg are the Cartesian coordinates of th

center of mass of the body, then by definition of th
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center of mass, we have from Equation 21.013

2

1

.062A 7s =2 mxs= Mo$,

or, in terms of position vectors,

2 1 .062B Is =X mp s= Mpl

If the origin O of Cartesian coordinates is at the

center of mass, then p;
s

j is a null vector and all

components of the first-order inertia tensor are

zero. In that case, the first-order terms (n = l),

-/s d/r) s ,

in the Equation 21.017 for the potential are all zero.

Conversely, if all these three terms are absent in

the expression for the potential, then all components
of p% must be zero because the derivatives of (1/r)

are not, in general, zero. In that case, the origin of

the coordinate system is at the center of mass.

I.
5 If the latitude and longitude of pr , with the direc-

tion OP, are (</>, oj), we can at once expand Equa-

tion 21.065 as

Ioi' = I — P 1 cos 2
(j) cos2

(x> — P2 cos2
4> sin2

o>

— 733 sin2 (/>
— 2/12 cos2

(p sin o» cos <o

— 2/13 sin
(f)

cos 4> cos a>

— 272:i sin
<f)

cos 4> sin o».

21.066

45. The off-diagonal components of the inertia

tensor

712 = Zjihxy

/13= 2^mxz

21.067 /23=£myz"

are usually known as products of inertia.8

The Second-Order Inertia Tensor

43. We shall next consider some properties ol

the second-order inertia tensor

21.063 Ps = ^mx rx s =^mp r
p

s
,

and of the corresponding terms in the potential.

We shall also relate this tensor to the moments and

products of inertia as usually defined.

44. Returning to figure 19, we note first that the

invariant grsI
rs

, evaluated in Cartesian coordinates

(grs is the same at the origin as at all other points),

is

2 1 .064 / = grjrs =2"'£V.sp
r
p

s = >] fhr-

and is also

Psvr vs =2/7fp
r

p
stviAf =^m~r2 cos2

y.

Therefore, the moment of inertia about the axis

OP (unit vector vr) as usually defined is

lor =%jh{QRf=^h\r* sin2 y = Ps
(g,-S

- vrvs)

21.065 =Irs(krks +(Jbrfls)

where A.,, p., are any orthogonal unit vectors per-

pendicular to vr , and we have used Equation 2.08.

It follows that the sum of the moments of inertia

about any three mutually orthogonal axes through

the origin is

In(k rkx + p,ps ) + /
rs
(prp., + VrVs)

+ Ps
(VrVs + Kks )

= 2grJr° = 27,

which is another way of considering the invariant

46. The moment of inertia about an axis depends

on the position and direction of the axis. In deriving

Equations 21.065 and 21.066, we have in fact

assumed that the axis passes through the origin

because we have used values of the inertia tensor

appropriate to the origin. If we transfer the origin

to the center of mass, whose position vector is p£,

and use Equation 21.055 with I' = Mp' , we have for

the moment of inertia about a parallel axis through

5 There is some confusion in the literature as to the definition

of the "inertia tensor." Our second-order inertia tensor is the

same as McConnell's inertia tensor (see McConnell (Blackie ed.

of 1931, corrected 1936), Applications of the Absolute Differential

Calculus, or (Dover ed. of 1957). Applications of Tensor Analysis,

233). On the other hand, what Goldstein calls the inertia tensor

(see Goldstein (1950), Classical Mechanics. 149) is equivalent

in our notation to

(Igrs -Irs
).

which, as we can see from Equation 21.065, gives the moment of

inertia about an axis whose unit vector is vr by direct contraction

with t'rfs- If 5>r is the angular velocity vector, then the angular

momentum vector in our notation is

(Igrs ~Irs
)lOr.

relative to an origin at the center of mass; the kinetic energy of

rotation is

i(Ig,s -Irs
)(I)r(I)s.

Accordingly, the Goldstein convention suits these dynamical

operations slightly better, but the McConnell convention is

almost mandatory for our present purposes, particularly in con-

nection with the higher order tensors.

6 Goldstein's definition of products of inertia (Goldstein.

op. cit. supra note 5, 145) is the negative of ours because of

the difference in definition of the inertia tensor. The Goldstein

convention is. however, unusual.

*
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the center of mass

Irs {grs—V rVs ) =Irs
(grs—V rVs ) —Mp r

^pl{grS
— V rVs )

21.068 =I0P -Md2

where d is the perpendicular distance of the center

of mass from the original axis OP, a result that is

well known. Because Md2
is positive, it follows that

the moment of inertia about an axis through the

center of mass is less than the moment of inertia

about any parallel axis.

47. In much the same way as we investigated

the maximum and minimum curvatures of a surface

in § 7-14, we now consider the directions of axes

about which the moments of inertia are a maximum
or a minimum, or at least have stationary values.

To obtain these directions, we differentiate Equation

21.065 for a change in the unit vector vr , keeping

the origin and therefore / and/rs fixed. The condition

for lop to have a stationary value about the axis vr

then is

lrsA rVs=

in which A r is a unit vector perpendicular to vs .

But if the moment of inertia is to be stationary about

the axis vs , regardless of the direction in which we
shift vs , then A r must be an arbitrary unit vector

perpendicular to vs . We may express A r by means of

a single parameter 6 in relation to two fixed vectors

A.,-, fAr, both perpendicular to vs , as

A r = k r cos 9+ pr sin 9

so that the stationary condition becomes

IrskrVs cos 9 + I rsprvs sin 9 =

for all values of 9; this condition requires both

Irs
k,.vs =

21.069 IrsfirVs= 0.

48. If the moment of inertia about A, is also to be

stationary, we must have also

IrsV rks=0

21.070 /'->As = 0,

the first of which is automatically satisfied by the

previous condition lrsk rvs = because /rs is sym-

metrical. From Equations 21.069 and 21.070, we
then have

Irsk,ps =

IrSV,ps = 0,

which show that the moment of inertia about the

third axis /xs is also stationary. The three perpen-

dicular axes about which the moments of inertia

are stationary are known as principal axes of inertia,

and the corresponding moments are principal

moments of inertia. If the principal axes are taken

as rectangular Cartesian coordinate axes, then the

condition Equations 21.069 and 21.070 are equiva-

lent to stating that the products of inertia are zero,

that is,

I12=2jmxy=

723 =Smyi =

21.071 7
13 = Em.ri = 0.

In other words, the matrix Irs has been diagonalized

by taking the principal axes as coordinate lines.

We know that a symmetric tensor I
rs in three dimen-

sions can always be diagonalized, and we may there-

fore reasonably infer the general existence of

principal axes of inertia. There are in fact three

principal axes passing through any point. If the

z-axis is a principal axis, but the other two coordi-

nate axes are not, then we still have from Equations

21.069

21.072

/13 =

723 = 0;

conversely, if these two equations are satisfied,

then the 2-axis is a principal axis of inertia.

49. We have seen in §21-45 that the moment of

inertia about an axis through the center of mass

is less than about any parallel axis; we shall now
consider this question further. We can see from

Equation 21.055 that the change in the inertia tensor

for a small displacement dr in the direction of a

unit vector ks is

^= -k*I'-\'I\
dr

which is zero at the center of mass because all

components of/' are zero at that point; therefore, all

components of the second-order inertia tensor are

stationary at the center of mass. At the center of

mass, we have also from Equation 21.055

d2
I"'

which is essentially positive when s = t, making

these components a minimum, but which can be

negative in certain directions for the nondiagonal

components 5 ¥= t. Next, we take the principal

axes of inertia at the center of mass as coordinate

axes A r , B,, C r so that we have

IstAsBt
= IstA sC, = Is%Ct =

at the center of mass. These relations must also
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hold at points near the center of mass because the

inertia tensor is stationary and A r , B,, C, are con-

stant vectors. We conclude that for small displace-

ments from the center of mass, the principal axes

of inertia remain parallel to their directions at the

center of mass. Moreover, there are now no non-

diagonal components at or near the center of mass;

we conclude that the remaining three components

of the inertia tensor are all a minimum at the center

of mass, compared with their values at neighboring

points.

50. We shall now express the second-order term

in the potential Equation 21.017 in terms of moments
of inertia. Using Equation 21.023, we have

iIst (llr) st=Pt (3vsVt-gst)K2rs )

=-Ist(3gst-3vsvt -2gst)l(2r>)

21.073 =(2/-3/„/.)/(2r s

)

from Equation 21.065. The OP is the radius vector

from the origin to the point P at which the potential

is taken, and Iqp is the moment of inertia of the at-

tracting body about OP as axis. The same result

can be obtained less simply by using the second-

degree term in spherical harmonics in Equation

21.035 and by substituting Equations 21.043 and
21.066.

51. Equation 21.073 is a generalization of a formula

due to MacCullagh. The equation is usually ob-

tained in the special case when the origin is at the

center of mass; but it will be clear from our method

of derivation, which does not introduce the center

of mass, that the same result is true for any origin,

provided the moments of inertia are taken with

respect to axes passing through that origin.

52. Next, we shall suppose that the z-axis is a

principal axis of inertia without requiring the other

coordinate axes also to be principal axes, and we
shall consider what difference this makes to the

second-order term in the potential. We have at

once from Equations 21.072 and 21.043

21.074 /•- :! =s,,=o.

Expressed in spherical harmonics from Equation

21.035, for example, the second-degree term multi-

plied by r' is reduced to

C20P2(sin c/>) + CW^(sin 0) cos 2w

21.075 + S-.P2
(sin

<f>)
sin 2w:

we can readily verify this result from Equations

21.066 and 21.043. The Czr and S2] -terms are

simply missing, and this is true for any origin.

53. If all three coordinate axes are principal axes

of inertia, then, in addition, we have from Equa-
tions 21.071 and 21.043

/'- = 2S-w = 0;

the second-degree term in the potential (multiplied

by r :i

) further reduces to

21.076 C20P2 (sin (/>) +CwP2 (sin 0) cos 2w.

In this case, if A, B, C are the three principal mo-

ments of inertia, we have from Equation 21.065

A=Ix=I-In =P2 +I33

B= I
!I
= I-I22 = P" + I"

C=h =7-733= 711 + /22

21.077 I=i(A + B+ C);

therefore, from Equations 21.043 we have

C20= (I-C)-iC =h(A + B)-C

21.078 C22=i{I-A-I+B)=UB-A),
and the second-degree term can be written as

&(A+B)-C}P2 (sin0)

21.079 +i(fi-^)7>|(sin^)cos2o>.

54. II the body itself and the distribution of mass
in it are symmetrical about the z-axis, then

In=\fhx2
, which is equivalent to the moment of

inertia about the yz-plane, is obviously the same
wherever we take the y-axis; the same applies to

722 =^ my2
. We could interchange the x- and y-axes

without effect on 7" and 722 , and we conclude that

in this symmetrical case

p 1 _ 722

If, in addition, the z-axis is a principal axis, then it

is evident from Equations 21.077 that

A = B.

The moment of inertia is the same about any axis

in the xy-plane, and any pair of perpendicular axes

in the ncy-plane are principal axes of inertia. In this

case, we have also from Equations 21.078

C20=A-C
C22= 0,

and the second-degree term in the potential (mul-

tiplied by r3 ) reduces further to the single zonal

harmonic

21.080 (A-C)P* (sin<*>).
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which is the form generally used for the attraction

of planets on their satellites when the satellites are

distant enough for the planet to be considered ro-

tationally symmetrical and for the higher order

terms in the potential to be neglected. These as-

sumptions are, of course, too drastic in the case

of near-Earth satellites and for the general expres-

sion of the Earth's gravitational field to the degree

of accuracy now attainable.

ROTATION OF THE EARTH

55. It can be shown that the rotation of a rigid

body is stable about a principal axis of greatest

moment of inertia: if the motion is slightly disturbed,

the axis of rotation will describe a cone about the

principal axis. 7 The same is true of an elastic body,

except that the period of disturbed oscillation will

be different. 8 In the case of the Earth, the period of

this oscillation (the Eulerian free nutation or the

Chandler wobble) can be computed theoretically

at about 14 months; this oscillation is confirmed by

measurements of variation of latitude over long

periods. The amplitude, which has similarly been

observed, depends on the nature and duration of the

disturbance and on damping effects, but does not

seem to exceed one- or two-tenths of a second of

arc. In addition, there are small annual variations

of about the same magnitude caused by shifts of

mass resulting, for example, from seasonal weather

changes. 9 The conclusion seems to be that the

instantaneous axis of rotation coincides with a

principal axis (of greatest inertia) to within a few
tenths of a second of arc. It may eventually be

possible to provide worthwhile corrections for this

variation from data provided by the International

Polar Motion Service (prior to 1962, known as the

International Latitude Service), but meanwhile the

effect seems to be negligible for our present pur-

poses. We have seen that the whole group of terms

of the same degree in the potential is invariant

under rotations of the coordinate system; the only

effect of such errors in orientation (these errors

are, in any case, small) is to change the magnitude

of some terms at the expense of others of the same
degree.

56. We can easily show that the center of mass

7 Routh (Dover ed. of 1955), The Advanced Part of a Treatise

on the Dynamics of a System of Rigid Bodies, original 6th ed. of

1905, 86-130 (especially § 155, 101-102).
8 Jeffr ys (1959), The Earth; Its Origin, History, and Physical

Constitution, 4th ed., 211-229 (especially § 7.04, 216-218).
!l For a complete discussion of this entire question, see Munk

and MacDonald (1960), The Rotation of the Earth, A Geophysical
Discussion.

must lie on the axis of rotation of a freely rotating

body. If we take the axis of rotation as z-axis, then

we have seen in §20-10 that the Cartesian com-
ponents of centrifugal force on a particle of mass
m at (x, y, z) for uniform angular velocity u> would be

(md> 2
x, mary, 0).

Because the rotation is free, there is no force acting

on the axis to balance any resultant of these centrif-

ugal forces, and we must therefore have

mx- Vmy-

summed over all masses. We find from Equation

21.061 that the center of mass must lie on the axis

of rotation.

57. In § 19-13, we considered means of setting

up a coordinate system whose z-axis is parallel to

the axis of rotation. This can be done, and it is of

fundamental importance that it should be done,

although all major survey systems are not oriented

in this way as yet. Satellite triangulation using stellar

photography automatically ensures and preserves

such an orientation for a worldwide coordinate

system, but we have no geometrical means of setting

up a coordinate system whose z-axis coincides with

the axis of rotation. If the z-axis is parallel to the

axis of rotation but does not coincide with it, then

the first-degree terms are not absent in the harmonic

series for the potential because the center of mass
does not lie on the z-axis and is not therefore the

origin of coordinates. We have seen, nevertheless,

in § 21-48 that if the z-axis is reasonably close to

the axis of rotation, then it is also a principal axis

of inertia within the limits of the Chandler wobble

and seasonal variations. In accordance with

§21-51. therefore the Cm- and S^i-terms must

be omitted from the potential series even though

first-degree terms are present.

58. If the z-axis coincides with the axis of rotation,

then all three first-degree terms and the C 2 r and

Sai-terms must be omitted from the potential series.

Conversely, if we set up a series in which these

terms are omitted, then § 21-41 and § 21-47

together with the dynamical considerations in

§ 21-54, allow us to assert that the z-axis and the

axis of rotation coincide. If we use this form of the

potential series in the equations of motion of s

satellite, we must ensure that the tracking stations

are located in the same coordinate system. If the

coordinates of the tracking stations are in the

"parallel" system of § 21-57, then we must include

origin corrections in the observation equations

which, provided the observations are sufficient!)
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widespread, will accordingly determine the position

of the center of mass in the tracking system. In

short, angular measurements, which must include

astronomical observations, will enable us to set

up the z-axis parallel to the axis of rotation. Coin-

cidence of the two axes, through location of the

center of mass, can be assured only by global

measures of gravity or potential.

59. We have seen in Equation 20.08 that the

total potential or geopotential is obtained by

adding

-id> 2 (*
2+y2

)

to the attraction potential, that is, to

MG
r

to allow for the centrifugal force on points attached

to the rotating Earth. In deriving this result, we
assumed that we have x — y=Q on the axis of

rotation — or, in other words, that the z-axis coincides

with the axis of rotation — so that the rotation term

in the form — %<b 2 (x 2 + y
2

) is valid only in such a

coordinate system. If the attraction potential is

expressed as a harmonic series with no first-order

terms and no C%i, S-zi terms, then this condition is

satisfied; the rotation term in the form — \ a)
2 (x 2 + y

2
)

is the correct form to use with such a series.

THE NEWTONIAN POTENTIAL
AT NEAR POINTS

60. We have now to consider the case, illustrated

in figure 21, when the point P at which the potential

is required is nearer to the origin of coordinates

than any point of the attracting body. We shall for

the present choose an origin outside the body.

61. As before, the potential at P arising from an

elementary particle of mass m at Q (omitting for the

present the gravitational constant G) is

- m/PQ = - m (

r

2 - 2/r cos y + r 2 ) " "2

1 +— cos y
r '

21.081 + . . .U) Pnicosy). . .

}.

This series is absolutely and uniformly convergent

if r < r; for this to hold true for all particles in the

body, P must lie within a sphere of convergence

centered on the origin and just touching the at-

tracting body at S. In that case, we may add series

corresponding to Equation 21.081 for all particles

and obtain the potential V arising from the whole
body in the form

in

21.082

mr cos y
r 2

We notice at once that the first term is— Vo/G where

Vo is the total potential at the origin, and we pro-

ceed to evaluate the remaining terms. For the

second term, we have

X
mr cos y

r2

mvs(rv s
) m j'.s

Figure 2 1.

in which p
s is the position vector OP off, and the

coefficient of p" (when multiplied by G ) is evidently

the resultant vector force exerted by the whole

body on a particle of unit mass at the origin O. The
whole term is accordingly r multiplied by the re-

solved part of this total force in the direction OP.
Alternatively, we can write this second term in

the form

-(Vs )oP
sIG

in which (^s)o is the gradient of the potential at 0.

62. Now the potential at the point O arising from

m is —Gfh\r. If we consider for the moment that

Q is fixed and O variable, we can take covariant

derivatives of this element of potential at as

— (Gm/r) s,„ . .
.=— Gm(\lr) s,„ . . ..

and we can add these elementary tensors to have

21.083 (Vstu . ..)o=-^Gm(llf) stu .

.

..
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It is understood that the covariant derivatives of

(1/f) refer to virtual displacements of relative to

a temporary fixed origin Q, and in that case Equation

21.025 applies with overbars. For example, consider-

ing the second covariant derivatives and using

Equation 21.023, we have

21.084

and

-(Vtt)olG='2irh(5PlP,-gdlT»

(Vsdop'p'IG^miSvsVt-g^^v^lr3

= ^>r2 (3 cos-7-l)/f3

= 2^mr2P-Acosy)lf :i

so that the third term in the series of Equation

21.082 is

-KMoP'V/G;

proceeding in this manner, we may verify that

Equation 21.082 can be rewritten in the form

Vp=V + (Vs ) p
s+ HVst)op s

p
t+ • •

21.085 +^(F.s.,... („))„pV. . . p
l ">+.

. ..

But this is simply the Taylor expansion of the

potential function over a distance r in the direction

OP. Equation 21.085 is convergent within the same
domain as the equivalent series in Equation 21.082,

and we conclude that the potential can be expressed

by means of a convergent Taylor series within the

sphere of convergence specified in connection

with figure 21.

Expression in Spherical riarnionics

63. Returning to Equation 21.082 and using the

Addition theorem Equation 21.034 for the Legendre

functions, we find as before that the potential can

be expressed in the form

V * n

—^=2] X r"Pn (sm <f>){[Cnm J cos mco
" n = m =

21.086 + [Snm] sin mco}

,

provided that

[£<«>] =2 7^7777
P»(si"&

[C ]=2% _
(f+1)

/" "
m

!|
n'(sin<£) cos mco

[S,„„] = 22 _
(f+n7 I 7,; P;,"(sin0) sin mai

in which the summations are carried out over all

particles m(tf), to) in the attracting body. To dis-

tinguish these coefficients from those obtained in

Equations 21.037, we have enclosed the coefficients

of Equations 21.086 and 21.087 in brackets.

64. If a is a constant, such as the radius of the

sphere of convergence, we can divide Equation

21.086 by a", provided that we multiply the C"s

and S's by a". This device ensures the convergence

of the series in Equations 21.087 and of the cor-

responding integrals in the case of continuous dis-

tributions. The coefficients can be normalized in

accordance with Equations 21.038.

65. To express the Cs and S's in terms of the

coefficients of the Taylor series (Equation 21.085),

that is, in terms of successive differentials of the

potential at the origin, we use Equation 21.083

and convert the differentials of (1/r) to spherical

harmonics as explained in §21-22. For example,

using Equation 21.032, we have

-(Vu2hlG= ^mair)u2

— 2^4 ]
2 fU s ^n 4>) sinw

— iP|(sin(/>) sin 3to\

21.088 =3[53i]-90[533].

The zonal coefficients can be found ai once Irom

Equation 21.027 as

(F333
. . . (« ))o/G= ^m(l/r

)

333 (»i

=2 7^717 ™P '' (sin^
21.089

r ( " + 1) (n + m)!

21.087

= (-)"« ![C,..].

66. Proceeding in this way, we find that

-VolG=[C00 ]

~(V1)olG=-[Cn ]

- (V2 ) /G=- [S„]

21.090 - (K3)o/C=- [Co]

-(F,,)o/C=-[Co]+6[Ca]

-(F22 ) /G=-[Co]-6[C2 ]

-(V:is )olG= 2[Ci0 ]

-(F12 )o/G= 6[S22 ]

-(Fi3)o/Cf=3[C]

21.091 -(FM ) /G= 3[&i]
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21.092

-(^ii)o/G=9[C31]-90[C33]

-(^2i)o/G= 3[C31]+90[C33]

-( VXil ) /G=- 12 [C:„]

-(*m)o/G=3[S31 ]-90[S33 ]

-(^22 )o/G= 9[S31]+90[S33 ]

-(V332 ) /G= -12[S-n ]

-(Fn 3)o/G=3[C.,o]-30[C32 ]

-(F223)o/G=3[C30]+30[C32 ]

-(r333 ) /G=-6[C30 ]

-(F,23)o/G=-30[S32].

Only five of the second-order terms and seven of

the third-order terms are independent because of

the relations provided by the Laplace equation and

its derivatives

(Pn)o+(T22 )o + (^33)0|=0

Tnr)o+(T22r)o+(JW)o = (r=l,2,3).

67. The reverse formulas can be found by ex-

pressing the C's and S's as (necessarily harmonic)

homogeneous polynomials and by substituting the

homogeneous polynomial as f(x, y, z) in Hobson's

formula (Equation 21.031) in which all the La-

placian terms will be zero. For example, we have

[Cm]= eV 2~ Piisin (f> ) cos 2o>

=|V- sin </> cos 2
(j) (cos

2
a> — sin 2 w )

=^f7
{xH-yH)

=-^2™{(l/rln3 -(l/r>223 }

= +<k{(Vn:MG-(V223 )olG}.

The second- and third-order reversals are easy

enough to obtain directly from Equations 21.091

and 21.092, and so are not written down, but this

more general method may be necessary for the

higher orders. A general formula has been given

in Equation 21.089 for the zonal terms, and we can

readily obtain a general formula for the tesseral

terms on the same lines as Equation 21.045, using

r^. n , • rr. i -, t-l m fa — fH ) ! r> . T

(2n)!

2"-'n!(« + m)!

X

Ijdkr^+W

, ,
[n — m )(n —m— 1) ,

?(n-m)

—

tl^n-m-2)
2(2/1 — 1)

+ . . . .

After expanding (jt + iy)"\ we can substitute for

each polynomial

m

the corresponding term derived from Hobson's
formula (Equation 21.031), that is,

(1 ,(Fm ...(p) . . </'))<>/£,
1 -3. . .(2n _i)^ 1»---«' Jffl2 ---w>333

and finally separate the real and imaginary parts.

68. Powers of f cancel in relating the two sets of

constants, just as they did in relating the Ps with

the C's and S's in the formulas for the potential at

distant points. We cannot, however, relate the con-

stants in the two formulas for the potential at near

and distant points, even if both series were con-

vergent over the same region, because the fs ap-

pear in different places and vary during summation
over the entire mass. A comparison of Equations

21.037 and 21.087, in which the C's and S's have

different meanings, will make this statement clear.

Invariance

69. It is evident from the tensor form of Equation

21.085 that each group of terms

^(Vst . . . ooJbpV • • • pM

is invariant under rotation of the coordinate axes,

provided the origin does not change. If the origin

changes and the point P remains within the new
sphere of convergence, then the new Taylor expan-

sion from the new origin remains convergent.

The values of (Vsi . . . („)) at the new origin and the

position vector of P will become different tensors

so that the group of terms is no longer invariant on

change of origin. However, we can show, almost

exactly as in the section on invariance of the poten-

tial at distant points (§21-35), that the sum of all

terms in the new series remains the same, provided

the term of infinite order in the original series is
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zero, which must be so if the series is convergent.

The situation on invariance is accordingly exactly

the same as for the potential at distant points.

ANALYTIC CONTINUATION

70. We have seen that Equation 21.017 or its

spherical harmonic equivalent may be divergent

at points inside a sphere centered on the origin,

which just encloses all the matter, and so may not

represent the potential at most points on the Earth's

surface. This would mean that values of the co-

efficients Cnm, etc., obtained from observations on
artificial satellites — the must convenient and ac-

curate method for evaluating at least the lower

harmonics — could not properly be used in conjunc-

tion with observations on the ground. We might

expect to overcome the difficulty by using Equation
21.017 to evaluate all the successive differentials

of the potential at a point P outside the sphere of

convergence of Equation 21.017 (fig. 22). These

Figure 22.

successive differentials of the potential are then

substituted in the Taylor series (Equation 21.085),

which we have seen is the same by groups of terms

of the same degree as the series derived from the

law of Newtonian attraction. This latter series is

convergent within a sphere centered on P which
just touches the attracting body atS, and the equiv-

alent Taylor series is accordingly convergent within

the same sphere PS. The whole process is equivalent

to the standard operation of analytic continuation

within this sphere.

71. Symbolically, the process leads to the follow-

ing expression for the potential at a point 7" (fig. 22),

within the sphere of convergence PS, whose posi-

tion vector PT relative to P as origin is pp
,

_^= y f .LL^'V...(„>(T)
G »lTo^6 m! " ! \rJstu...(„)P9r...(m)

21.093 x P»p«p' . . . p
cn).

In this formula, inertia tensors are taken with

respect to the origin O from which Equation 21.017

for the potential at P was evaluated; all the (m + n)

derivatives of (1/r) refer to changes in (l/OP) for

virtual displacements of P or for changes in the

coordinates off, with O fixed.

72. Equation 21.093 can be written as an infinite

matrix

M(llr) -/*(l/r), +Hst
(llr)st • . .

M{llr)pPP -Pair)spp" + !/*'( l/r),,pp" . . .

W0-lr)PqpPp9 -ys
{llr)spgpppg +Hst(Hr)stpgpPpi . . .

21.094

in which the inertia tensor of zero order is the total

mass M. The first row summed represents the po-

tential at P. The second row summed is the first

derivative of the potential at P contracted with

the fixed bounded vector p1', and so on. The fact

that the series in Equation 21.093 is convergent

implies that the matrix is convergent if the rows

are summed first. On the other hand, if we sum the

columns first (and this process is not necessarily

valid), then it can be shown that the final result

would be

21.095
Vt

G
)"

n'. \OTLtu (»)

in which the derivatives are now evaluated at T.

But this last Equation 21.095 is the same as Equa-

tion 21.017 evaluated at T; if Equation 21.095 cor-

rectly represents the potential at 7\ then Equation

21.017 must be convergent at T even though T
lies inside the sphere of convergence of Equation

21.017 (fig. 19). The convergence of Equation 21.017

at T accordingly depends on whether interchanging

the order of summation in Equation 21.093 is valid.

The necessary and sufficient conditions for the

interchange to be valid do not yet appear to have

been established rigorously, but the question may
be considered in general terms by taking Equation

21.093 for a point K on PT (fig. 22), which lies out-

side the sphere of convergence of Equation 21.017.

In that case, Equation 21.017 certainly represents

the potential at K, and the summation interchange

in Equation 21.093 is valid at K. But the two con-
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tinuation series (Equation 21.093) for K and for

T— both of which are convergent — must also have

the same properties of absolute and uniform con-

vergence because the coefficients of the vectors are

the potential at P and derivatives of the potential

at P, and are therefore the same for both series.

The only difference between the two series is the

magnitude, not the direction, of the contracting

vector p1'; this does not affect the convergence of

either series. Accordingly, if the necessary and suf-

ficient conditions for the summation interchange

depend solely on convergence properties, then these

conditions would seem to be satisfied at T as well

as at K. However, this demonstration is a long way
from a formal proof, and there is another factor

which we shall now consider.

73. Proof of convergence of Equation 21.093,

obtained in § 21-62, depends on absence of matter

within the sphere PS. This proof would not neces-

sarily be valid if there is an alternative distribution

of matter, which is nearer to P than the actual

distribution and gives the same potential and deriv-

atives of the potential at P as the actual distribution.

According to Kellogg, 1 " there is always such an

alternative distribution which could invalidate the

whole process of analytical continuation in this

case. The question has been considered from a

different angle by Moritz," who concludes that the

series is divergent, but his demonstration is also

a long way from a formal proof. More research is

needed on this controversial question of con-

vergence, which cannot yet be considered as

definitely settled. In particular, it may be that the

series at points on the topographic surface, although

divergent, can be truncated at a certain number
of terms to give a better answer than a formally

convergent series would give for the same number

of terms.

THE POTENTIAL AT INTERNAL
POINTS

74. For some purposes, it is desirable to have

formulas for the potential at points inside the Earth,

developed from the same geometrical definition

of a Newtonian potential, although the physical

meaning of the result may be doubted. We have no

means of inserting a test particle or of making any

measurements at such points; therefore, we have

10 Kellogg (1929), Foundations of Potential Theory, 197.

" Moritz (1961), "L'ber die Konvergenz der Kugelfunktion-
sentwieklung fur das Aussenraumpotential an der Erdober-
flache," Osterreichischen Zeitschrift fur Vermessungswesen, v. 49,
no. 1, 1-5.

no experimental verification of the law of Newtonian

attraction so close to the attracting matter.

75. We draw a sphere, centered on the origin O,

which passes through the point P (fig. 23) where we

Figure 23.

require the potential. There will be matter outside

this sphere, where we shall add a subscript E, as

well as inside, where we shall add a subscript /. The
contribution to the potential at P arising from the

internal matter can be expressed as a convergent

series in the form of Equation 21.035 in which the

summations or integrations in the Cs and S's are

carried out over all the internal matter. We write

the resulting coefficients as

(Cn(l)/, (C,nn)l, (Siiiii)l-

The contribution to the potential at P arising from

the external matter can be expressed as a con-

vergent series in the form of Equation 21.086 in

which the summations or integrations in the C's

and S's are now carried out over all the external

matter. We write the resulting coefficients as

|_C„i>J/.;, [ChioJa', LSh/mJ/i

in which the brackets indicate that Equations 21.087

are to be used.

The potential at P is then

V x »
— — = V V P'H (sin (f>) {Cnm cos mo) + S nm sin mu>}
"

11 = », =

where we have

21.096 C = (Cnm )il^'+i)+ rn [C ],•

and a similar formula for S„,„-

76. We can rewrite this last formula as

CHm= (C„„i ) /+£/^"
+,) -(C„w ) JS/H" +1) +r''[C„m ] £

21.097
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in which (Cnm)i+E are the result of summing or inte-

grating over the entire mass in Equations 21.037.

The (Cnm)i+E are also the coefficients of a spherical

harmonic series which would be obtained by obser-

vation on distant points such as artificial satellites.

We may consider the remaining terms in Equation
21.097, that is,

21.098 -(Cnm)El^l^+rn [Cnm} E ,

as a correction '- which must be added to the first

term, obtained from satellites, in order to give the

corresponding coefficient in the potential at the

internal point. If we proceed in this manner, we do
not need to know or to assume the mass distribution

or densities at points inside the sphere passing
through P in figure 23.

77. In deriving the preceding formulas, we have

assumed that both series for the internal and ex-

ternal contributions to the potential at P are con-

vergent actually on their respective spheres of

convergence, an assumption which is not neces-

sarily true. Moreover, the contribution to the

potential at P becomes infinite for masses infinitesi-

mally close to P, and we have no right to add the

corresponding elementary series to the others. We
can overcome this difficulty by the usual device of

supposing that a thin spherical shell of matter of

radii (r+ e) and (r— e) is removed. We can then show
that the contribution of the removed matter to

(C„w)/^" + " and r"[Cnm] for all n is negligible when e

is reduced indefinitely.

ALTERNATIVE EXPRESSION OF THE
EXTERNAL POTENTIAL

78. We have seen that all the harmonics of the

external potential can be obtained by repeated

differentiation of the primitive (1/r), that is, the

potential of degree zero among the resulting har-

monics. Another form of the primitive potential

is, however, indicated in a formula by Hobson 1:i

m/2

21.099
Pg'(sin

<f>)= (-)" d"

r I r + z

'-' Equivalent formulas for the correction have been obtained

in 1966 by A. H. Cook (see Cook (1967) "The Determination of

the External Gravity Field of the Earth From Observations of

Artificial Satellites," The Geophysical Journal of the Royal
Astronomical Society, v. 13, 297-312) and by F. Foster Morrison

(Validity of the Expansion for the Potential Near the Surface of
the Earth, paper not yet published). The latter paper was read

at the 6th Western National Meeting of the American Geo-

physical Union, Los Angeles, Calif., September 7, 1966.

13 Hobson, op. cit. supra note 2, 106-107. Note, however, that

Hobson's f,'," is (
— y» times our P'», which is the more usual

convention.

which degenerates to Equation 21.027 for m =
and has the advantage that it can generate all the

required harmonics by differentiation with respect

to z only. We may note that any function of the

longitude at is constant under differentiation with

respect to z because tan a)= y/x, so that we have

PJ!'(sin <f> ) /cos moi]

f('H

21.100

sin mxo

- )" d"

— m)\ dz"

' fr— z]
"'/Vcos m(o\

r+ z\ \sin mw)

This last formula shows that the Newtonian attrac-

tion potential, which we have seen is expressible

as a sum of the Legendre functions on the left

(Equation 21.035), is equally well expressed by a

sum of the derivatives on the right. The resulting

series will converge in the same way as the spherical

harmonic series; the two series are in fact equiva-

lent term-by-term.

79. At this stage, we introduce the spherical

isometric latitude i//, defined by the following ex-

pressions which are easily shown to be equivalent

e^= cosh i//+ sinh t//= sec <f>+ tan </>= tan (rn-+ !(/>)

1 + sin </> /l + sin (/)^
!/ -

cos 4>

21.101
1 — sin <p

We can also verify by differentiation that

21.102 i//=
J

seecpdd),

from which the isometric latitude or Mercator lati-

tude derives its name in the theory of map projec-

tions. Equation 21.100 can now easily be cast into

the form

fi" (sin <ft) ,„„„_ (-)" <9"

21.103
(n-m)l dz" 7>

m(ij/-(cu)

in which we can change the sign of o» independently

of the latitude functions to have also

Pll (sin <f>)

fin + l)

(-)" d"

(n-m)\ dz"

-»l(i|i+/aj)

21.104

80. The appearance of the complex variable

{ifj+io)) in these equations suggests an analogy

with the theory of orthomorphic or conformal map
projections, which arises in the following way. The
Laplace equation

d 2V
s " dx rdx s * grsr*s vk=o
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in spherical polar coordinates can easily be written

from formulas in Chapter 18 by substituting

(Ri + h)= (R-2+ h) = r. The metric tensor is given

by Equations 18.03, etc., the Christoffel symbols

are given by Equations 18.34, etc., and the final

equation expands to

sec2
(ft d

2V
,

1 d
2V

,

d 2V tan ± §V+ 2 dV_
r
2

d<p r dr
-+— ^-+ -

dor r
2

dcf)'- dr 2
0,

which for r constant reduces to

,
,.

, ,dV\ ,a 2^_ ncos 4>^ (cos (ft^r)+^-0_d_

d<j>

or

21.105
d
2V

|

d
2V

di//
2 dor

= 0.

Equation 21.105 is a well-known equation, satisfied

by either coordinate (x, y) of any conformal pro-

jection of the sphere or by the complex variable

(x + iy). The general solution of Equation 21.105 —
that is, all solutions of the Laplace equation not

containing r— is well known to be

21.106 V=f(i}j+ia>)+g(ilj-iw)

in which /, g are arbitrary functions. Instead of

1/r, we could take

21.107 V =j{f(^+ i<o)+g(t}t-ia))},

which is easily verified to be harmonic, as the

primitive potential; we differentiate this expression

successively by any or all of (x, y, z) to obtain more
general harmonic functions. We should, neverthe-

less, have to choose /and g to contain a parameter
(such as m in Equation 21.103), one value of which
would reduce the functions / and g to constants so

that Equation 21.107 can contain the primitive

Newtonian potential (1/r). This alternative form of

the primitive potential is sometimes 14 given as

21.107A MM^KMt 11
+z r

which is easily shown to be equivalent to Equa-
tion 21.107.

The (£, 17, 2) System

81. In manipulating these alternative forms of the

potential, it is sometimes advisable to transform

M See, for example, Bateman (Dover ed. of 1944), Partial

Differential Equations of Mathematical Physics, original ed. of

1932, 357.

the coordinates to (£, 77, z) where

£ = x + iy= r cos <t>e""

17 = x — iy= r cos (f>e~'
w

.

The following relations are easily verified,

r
2=^ + z

2

21.108

21.109

0<l>+iu

e Uo= (£/t7) ,/2

e*=(r+z)/(£ri) 1l2

e^""= (r+z)lri = tjl(r— z)

e*- i»=(r+z)l£=ril(r-z)

iLL— i 2L

d£~ 2
r

dr -_! £
3tj 1

21.110 — =
dz r

d(ih+ico) 1 ,, .

,—-i- i =— p-{ili+iw) .

dg 2r

d(i//-ico)_ 1 ,,,,_„.

dt; 2r

d(ifj + iu>)_ 1 ,

_

dr) 2r dr) 2r

d(\jj+ i(o) 1 . d( (//
—

i to ) _ 1

dz

21.111

21.112

2—=—-i —
d£ dx dy

d _ d d

dr) dx dy

82. The metric in these coordinates is

ds 2 = dx2+df + dz2

= (dx+ idy) {dx — idy) + dz2

21.113 =d^dr}-Tdz2

so that the only nonzero components of the metric

tensor are

*» -i gss - 1 ; \g\

r
i2= 2 ; ^=1.

All Christoffel symbols are zero, and the Laplacian

is accordingly

21.114 A = 4
d 2

d^_

d{dr)
+

dz2

which shows that any function of £ only, or of rj

only, is harmonic. This property introduces some
simplification in the use of Hobson's formula (Equa-
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tion 21.031) in these variables because any function

of £ or 77 can be treated as a constant on the right-

hand side of this equation. A corresponding sim-

plification is also introduced into Equations 21.025

and 21.026, which are tensor equations true in these

or in any other coordinates, because there are only

two nonzero components of the metric tensor. Using

Equations 21.111, etc., we can also show that \p, a>

and any function of (t/> + ia>) or (1//
— i(o) are harmonic,

as is clear from Equation 21.106.

83. Using the relations in § 21-81, we can obtain

the following formulas

21.115 2 j- (7 e-"^-^ =-^ (± e-<'"-w-->)

21.116 2
JL (- p-mUH-iw))=— (- e-(m.+XM+iu)

d£ V J dz\r

d (I
21 117 2— (— e~m(̂ ~imA :=~ [— e_(!" ""'' '""

21 118 2— (- e
- m{ '*' +io' )

)
= ——

(
-e "" ""'' " !

dr) \r / dz \r

which enable us to differentiate Equations 21.103

and 21.104 with respect to £ and 17, to switch into

a higher differential with respect to z, and then

to move into a Legendre polynomial of higher

degree. For example, we have

d_
f
Pi?(sin </>) „

afl r<»
+1 >

(—)n+l gn+1 AA „-(m-l)(ii-icu)

(n-m)!3z" +1 \r

and by rewriting Equation 21.103 for the (n + l)th-

degree and (m — l)th-order, we have also

An+2.)

(-) n+1 ^«+l
-(m-ll(i|/-!tu)

{n-m + 2)\dz" +1 \r

therefore, together with three other similarly

derived equations, we have finally

2 i_ \pi^r& ein

dt; [ r+"
+1)

(n—m+ 2){n— m+1) .

+2)
r

e'""
J)

21.119

3_ f
Pg(sin <£) _„„,.,] /^(sin ^) ,m+lW

d£ I r( " +1)
i

,-(?i+2)

3 [ P',?(sin 0) ^„_

21.121

2)(n m + 1
)
^ e

" j(m— l)(u

a
[
P;;'(sin 4>) .

21.122

P;;W(sin 0) &
^n+2)

Formulas corresponding to Equations 21.119 and
21.122 have been given by Bateman,15 and the other

two formulas can be obtained from them by chang-
ing the signs of a» and y. If we separate real and
imaginary parts, it will be found that Equations
21.119 and 21.121 are equivalent as are Equations
21.120 and 21.122 also.

By differentiating Equations 21.103 and 21.104 with
respect to z, we have in much the same way

d fP;,"(sin <$>) ,
, l vPg+1(sin-<ft) +im(u— \n — m + 1

p±imw
dz[ r*

n+1)
J

K
' H»+ 2 »

21.123

We shall require these equations for later use in

order to express the gravitational force. They
could, of course, be obtained by direct differentia-

tion with some considerable manipulation.

MAXWELLS THEORY OF POLES

84. We have seen in § 21-4 that any given nth-

degree spherical harmonic can be expressed as

21.124 CLHl«Nr
. . . (1/rW.. .00

where Lp, etc., are n unit vectors and C is a scalar.

The unit vectors are known as the axes of the har-

monic; parallels to the unit vectors through the

origin cut the sphere of radius r in the poles of the

harmonic. If we know the poles, then the harmonic

is obtained by simply contracting Equation 21.025

with CLPMq
. . .; the result will contain the cosines

{Lpvp ) of the angles between the axes (D3
) and the

unit position vector (vp ) of the point where the har-

monic is to be evaluated, as well as the cosines

(gpQLpM'1
) of the angles between pairs of axes. This

is equivalent to Maxwell's own result. 16 For example,

the third-degree harmonic at P with poles L, M, N is

i
AD>M<iNr(llr)j)Qr=3(cos LM cos NP

+ cos MN cos LP

+ cos LN cos MP
- 5 cos LP cos MP cos NP).

21.120

15 Bateman, op. cit. supra note 14, ex. 2, 361.

16 Hobson, op. cit. supra note 2, 131.
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85. The axes are known 17 for the Legendre har-

monics of degree n and order m,

P',f(sin 4>) /cos mw
r<"

+1) \sin mat

There are (n — m) axes coincident with the axis

of 2, and the remaining waxes are equally spaced

in the .vy-plane at intervals of Trim. If A r
, B r

, C r are

as usual the (x, y, z) coordinate axes, then the axes of

n"(sin (/))

,-(« + !>
cos mco

are

(a) Q>C*CT
. . .

0"-'n) and

(b) (modd) Ai{A k cos (trim) + Bk sin (ttIM)}

(m — 1 )77

A (m) cos
m

, n , , . (m— 1)77
+ £<'"> sin- —

y, or
in

-) (m even) \AJ cos h/?* sin -—

[

[ Zm Zm)

\Ak cosl^+ B* sin ^4
zm zm]

/4
(m) cos

21.125

The axes of

(2m -l)7r

2m

n . .

.
(2m -1)77

+ #<m) sin ——
Zm

ggKgin ) .—;——— sin mix)
jin+i)

are the same with (m odd) and (m even) interchanged,

that is,

(m even) (a)+ (6)

21.126 (modd) (a)+(c).

The scalar C in Equation 21.124 is

(-)"2'"- 1

(m odd: cos mco, sin mw) (_)(m-i)/2

(/? — m)!

(_)n2 m -l
(m even: cos mw) (— )">>'1

(n — rn)l

(— )«2m- 1

(m even: sin mco) ~^
^77^

(_)(m-2)/2
(n-m)\

21.127

' 7 Ibid., 132-135. An interesting derivation is also given by
-Hilbert and Courant (Interscience ed. of 1953), Methods of
Mathematical Physics, original ed. of 1924, v. I, 510-521.

The axes of the zonal harmonic

P„(sin
<f>)

can be seen from Equation 21.027 to be all C'\ and

the scalar is (
— )"/"!•

86. The determination of the n poles or axes

of a general harmonic of the nth-degree with arbi-

trary coefficients C,,m, Smn for the Legendre har-

monics is a matter of considerable difficulty, and

the authorities seem to be content with proving

the existence of a unique solution if all the poles

are to be real. 18 The standard method converts the

spherical harmonic to a homogeneous polynomial

fn (x, y, z), as explained in §21-27 and §21-29.

The polynomial, which is, of course, a harmonic

function, is then substituted in Equation 21.031

to give

- VH r(2n + 1)

f4aZ, T7j» Tz)(z)
=Mx, y, z)'

1 • 3 . . . (2n-iy"\dx' df dzj\r

21.128

If f(n-2)(x, y, z) is an arbitrary homogeneous
polynomial of degree (n — 2), we note that

(x2+ y*+z2
)f(n-2) (x,y,z)

can be added to the right-hand side of Equation

21.128 without affecting the left side because the

resulting additional term on the left would be in

the form of

/<«-
d d d

\dx2 dy2 dzT -\dx dy dz/\r,

which is zero by virtue of the Laplace equation

The next step is to factorize

21.129 fn (x, y, z) + (x2 + y
2 + z

2
)fUl ., )

(x, y, z)

into

(atx + biy + ciz)(a 2x-\- b-ry+c-iz) . . . ,

in which case the left-hand side of Equation 21.128

can be put into the form

d , d d
(i\— + bi— + ci—
dx dy dz

CD'Mi.
pq- (n)

' Hobson, op. cit. supra note 2, 135-136.

306-962 0-69— 13
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where («i, 61, Ci) are proportional to the Cartesian

components of the axis LP, etc. The scalar C is

the product of all the moduli (a
2 + b\ + c?)

1 ' 2
. The

difficulty lies in factorizing Equation 21.129 when
each separate term in the expression has an

arbitrary coefficient.

87. It is sometimes better to work in terms of the

inertia tensors, which should be easier to break

down into vectors. For example, we can see at

once from Equation 21.062 that the single axis

of the first-degree harmonics is in the direction of

the center of mass (distant r from the origin),

and the scalar is Mrn . In regard to the second-

degree harmonics, we can, without any loss of gen-

erality, take the principal axes of inertia as co-

ordinate axes (A r
, Br

, Cr
), in which case we have

seen in Equations 21.071 and 21.077 that the in-

ertia tensor can be written as

/"« = (I-A)ApAi+ (I-B)B»B" + (I-OCpC"

where A, B, C are the principal moments of in-

ertia and I— i(A + 5 + C). The total second-degree

potential is then given by

U"q{Hr)m=h{{I-A)AvA*

21.130 +(/-fl)5^ + (/-C)C'0}(l/r)
/„/ ;

this result is unaffected if we add any multiple

of

AiA«+B"B>i + 0>C»

to the inertia tensor because

(APA* + Bi>Bi + C»C«) ( \jr)pq =

by virtue of the Laplace equation. We can use this

fact to eliminate one term from Equation 21.130,

but if the remainder is to be split into real factors,

the two remaining terms must be opposite in sign.

If C > B > A, we accordingly subtract

= |(/ - B) (A»A« + B»Bi + C"C") (l/r)pq

from Equation 21.130 and have

iP'"(\lr)lltl
= U(B-A]A"A"-(C-B)aO}(llr)

l)(l .

21.131

This last equation factorizes to

H(B-A)^Ap+(C-Byi20>}{(B-A) l i 2Ao

~{C-B)^C}{\lr) liq

so that the two axes are parallel to

21.132 (B

-

A) 1 '2Ap ± (C

-

BV'2Ck
,

which can be verified from results previously

given- such as Equations 21.023. 21.073, and 21.066.

This result (Equation 21.132) does not require

the principal axes of inertia to be the coordinate

axes. The expression for the potential in Equation

21.131 is an invariant which has the same value

in any coordinate system having the same origin.

If the attracting body is symmetrical about the C-

axis, we have seen in §21-53 that A = B, so that

both axes coincide with Cp
.

88. If the mass distribution is known, then all

components of all the inertia tensors can be cal-

culated, but only in this sense is there any depend-

ence between inertia tensors of different order.

The only known "recursion" formula connecting

the inertia tensors is a differential relation for

change of origin obtainable from Equation 21.057,

the symmetric form of which is Equation 21.058.

We could, nevertheless, use the methods of § 21-87

to find the axes of the higher order tensors. Pro-

ceeding as in §21—46, we might look for three

preferred orthogonal directions, which would not

necessarily be the principal axes of inertia related

to the second-order tensor but would contract the

tensor to zero as in Equation 21.069. The expres-

sion of the potential in terms of these preferred

vectors, and of certain components associated

with these preferred vectors, corresponding to

Equation 21.130, would then contain fewer terms:

these terms could be still further reduced by adding

multiples of differentials of the Laplace equa-

tion, such as

(A'A* X' + B rB* X< +CO X') ( 1/r) ,,., =

in which X' is an arbitrary vector, until finally

the result can be split into linear factors, of which

there would be n in the case of the nth-order

tensor. We can be assured that such a result

exists, if only we can find it, and the result con-

taining real axes would be unique. Further re-

search is needed on this question, which might

also result in more knowledge of the nature and

properties of the inertia tensors.

89. An apparent advantage of expressing the

potential in the polar form of Equation 21.124

instead of in Legendre harmonics is that we ob-

tain expressions of the same form by differen-

tiation. For example, the component of the grav-

itational force, arising from the potential in Equa-

tion 21.124, in the direction of a fixed unit vector

A"' is

CD'M"N> . . . y . . . (1/r),,,,,.... „....<„+,),

21.133
which is evidently a harmonic of degree (n + 1)
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with the same scalar C and the same axes as the

corresponding nth-degree term in the potential

plus the additional axis k"'. This facility is, how-

ever, mainly of theoretical use as indicating the

nature of the harmonics in the gravitational force

because of the difficulty in locating the poles of

the general harmonics in the potential. Much the

same theoretical advantage is obtained by using

the inertial form of the potential in Equation

21.017, as we have done in investigating invariance

and analytic continuation. For practical purposes,

however, we require formulas in Legendre har-

monics at least for the first differentials.

REPRESENTATION OF GRAVITY

90. Attempts, which have been made to express

gravity (g) in Legendre harmonics, have not met with

much success because g is not a harmonic function.

Like most other functions, g can be expressed over

a sphere in surface spherical harmonics of the

geocentric latitude and longitude. For that matter.

g can be expressed in spherical harmonics of the

latitude and longitude of the normal to any surface,

as we can see at once if we consider the spherical

representation of the surface in § 13-16. For ex-

ample, we can express g over an equipotential

surface in terms of spherical harmonics of the

astronomical latitude and longitude. We cannot

express g as a series of solid harmonic functions

of any sort. However, we can express the component
of the gravitational force in any fixed direction,

such as a Cartesian coordinate axis, in solid har-

monics; and if we do so in three fixed directions, we
shall have expressions which give us the direction

as well as the magnitude of the gravitational force.

91. Addition and subtraction of Equations 21.119
and 21.120 and use of Equations 21.112, followed

by separation into real and imaginary parts, give

d \ P,"'(sin
<f>) ( cos mco

dy

Pi," ( sin
(f) ) / cos mco

sin mco

dx r ( n + i )

(n

sin mco

m + 2)(n-m+ 1 )P» 1^ ( sin cf>)

cos (m — l)a)

sin {m — \)co

P»'+V(sin(/)) /cos (m+l)co

r ( " + 2)
\ sin (m+l)co

21.134

(n-m+ 2) (n-m+ 1 )P»»-f ( sin

sin (m — \)co

cos (m — I) co

P'n+x ( sin </))/ — sin (m + \)oj

cos (m+ 1 )o» /'
4

d
(

-'c)
g cos cp COS CO

dx \ G

d
(

, G,
1 g cos cp sin co

dy \ ' G

which are to be multiplied by the appropriate

constants Cnm, Sum in the potential formula and
summed to give the differentials of the total potential

(-V/G). But if (co, cf>) are the astronomical longitude

and latitude, we have

21.135

we can write finally

g cos
(ft

cos co ^ ^ "v^'ViUin <ft)

G Z, Z, r(»+2>
» = (» m=o

X (C{n+ i). in cos mco

21.136 +S(n + \),m sin mco)

where

C(„ + i).fi
=

2 n{n +l)C,n

C(H + n, i = — C„o + \ n (n — 1 )C,r >

S(n+i), i=in(n — l)S /)2

G(n+1), m 2 Gn, (m—l)

+ 2 (n— m+ 1) (n— m)C„,(m+ i)

S(n+1), m
~~

2 J», (m-i)

+ | {n — m + l)(n — m)Sn,(in + \)

(m= 2,3, . . . (n-1

G(n + i ), „
:

S(n + 1 ), «
"

G(i, + i), (h + i)
:

S(n + 1), (» + l)
:

21.137

2 Gn, (w— l)

:

2 ill, («-l)

2 ^ n , n

— i S
2 "J II . II •
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In deriving this result, the Legendre functions

on the right of Equations 21.134 for m = contain

(n + l)(n + 2)P;U(sin<t>),

which must be transformed to

-/>,', + ,
(sin (ft)

in accordance with the usual formula. Alternatively,

we could obtain the term m — in Equations 21.134

by direct differentiation as

d_ / P„(sin (ft) \_ ?
^» + i(sin (ft) cos w

dx \ r ( " + 1
» / r ( " + 2)

92. In the same wav, we have

g cos
(ft

sin qj ^ ^ (S,
1 P'^i (sin 0)

X(C(n+l), m COS fflft)

21.138

where

'<Sr„(H+D, m sin mftjj

C'(»+l),(| = 5«(/J+ 1)5,M

Coi+D, i
= 2«(« — 1)5„ 2

S(»+D. i
=— C„i) — ^n(n — 1)C„2

f C(«+ l), »i 2>J;/,(lli-l)

+ i(ra — m+l)(« — m)S„, (m+1 ,

0( n + 1 ) , m zd n, ( hi — l

)

— Un — m+1) (n— m)C„,(m+i)

(i»=2,3, . . . (n-1))

m« + i), « —~$Sn, (n-i)

•3(ll+l), II
~ 2"C(»-1)

C(ll+1), («+l)— 2S/1, „

5( ii + 1 » , < h + 1 1
= jC,i , „

.

21.139

93. Derived in the same way from Equation

21.123, the third component of the gravitational

force is

d ( V\_g sin
(ft

Bz\ G G
* »

+
' P»'+ ,(sin<ft)

.2^ Zrf r(« + 2)
11 = 111 =

21.140 X (C(„ + i), ,„ cos ma» + S(„ + ,), ,„ sin mot)

where

C(,i+i), h,=— (n — ra + 1 )Cnm

21.141 S(n+i), »»=— (re—m+ 1)S„,„.

Equations 21.136, 21.138, and 21.140 give the com-

ponents of the gravitational force in the positive

direction of the coordinate axes, that is, outward,

whereas the positive direction of the gravitational

force according to Equation 20.05 is inward. We
should therefore change the sign of g in order to

obtain values in accordance with our normal con-

ventions. Also, the equations apply only to an

external potential in the form

^, " Pji'(sin (ft) (r .

2a Za oiTY)
— (Gum cos mu) + b„m sin mai),

although corresponding formulas for potential in

the interior form

^ ^ r"P;"( sin <ft) (C„m cos ma> + S lim sin mxo)
11 = m = <>

can be found.

Rotating Field

94. If the field is rotating about the z-axis with

angular velocity d) and if ((ft, o>) are to refer to the

direction of the total gravitational force, then

instead of (-V/G) in Equations 21.135 and 21.140,

we should have

-VIG+'2U-(x- + y-)IG.

To the right-hand side of Equation 21.136 we

should add

21.142
<j)-x o)-rf](sin (ft) cos w

and to the right-hand side of Equation 21.138 we

should add

21.143
h)-y orrP](sin (ft)

sin w

~G
=

G~~
_

'

Equation 21.140 is unaffected.

CURVATURES OF THE FIELD

95. The second Cartesian differentials of the

potential in spherical harmonics are easily found

by a second application of Equations 21.137, 21.139,

and 21.141. Each differentiation results in harmonics

which are one degree higher and may contain

tesseral harmonics of greater or lesser order. For

this reason, it is desirable to list the zonal and

first-order tesseral harmonics separately instead
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of attempting to include them in a general formula; in the case of the second differentials, we shall, for the

same reason, list the first- and second-order harmonics separately. There is no need, however, to list sepa-

rately the harmonics of highest order, such as C(n+ij,n, C<«+i>,<«+n in Equations 21.137, because these har-

monics can be derived from the general formula for C(«+i), ml we must remember that the order of a harmonic

cannot exceed its degree so that the term containing C„, (m+i) must be omitted if (m + 1 ) exceeds n. In any

case, the coefficient t(n — m+ l)(n — m) becomes zero for m = n or m= n+ 1. We shall find that similar con-

siderations apply to the second differentials.

96. The second Cartesian differentials of the potential are, of course, harmonic functions which can be

written, for example, in the form

a2 (V\ ^ '!£* P|;'+2 (sin <ft) 5 s .

~~
Y~-\Tl 2j 2j ui+3) ^oi+-2). >» cos mat+ o(/,+2), »i sin mw).
OX \W H_ ffl=0

T

If this result is obtained by differentiating Equation 21.136, then Equations 21.137 tell us that

t>(H+L'i, m= 2M«+i >, (»i-i)"r 2(ti tn + 2) (n Tn~r l)Li(n+i), (m+\)i

and substituting Equations 21.137 for the coefficients of the first differential with respect tm, we have for

m > 2,

€(„+>), m= \C„, (»i-2)
— i(n — m+ 2)(n —m+ 1)C„,„

+ Un -m + 2)(n-m+l){ —%C,im + \(n - m) (n —m— 1 )C„, (m+i)}

= \C n , (»t-2)
—

i(/i —m+ 1) (ra — /n+ 2)C„„,

2 1 . 144 + i(n -m— 1) (n — m) {n— m+ 1) (n —m+ 2)C„, (MI+2 ).

If m were 1 or 2, we should have substituted instead the zonal or first-order harmonics given earlier in Equa-

tions 21.137. A complete list of all the harmonics in all six second differentials are given as follows:

i)x- \ G CiH+t), o = - Un + 1) {n+ 2 )C,„> -f i(n— l)n(n+ 1) (n+ 2 )CH2

C(„ +2) . i=-|n(n + DC„,+i(n -2) (n - 1 )n(n+ l)C„
:i

§(*+»). i
=—in(n + 1 JS„, + i(n - 2) (n - 1 )n(n + 1 )S,a

Cu,+2), -2 = hCno-kn (n- 1 )C„2 + }(/i -3) (n-2) (n- 1 )nC,n

S(„+2), 2 = —i»(n— 1 )S„2 + t(» — 3) (n— 2) (n — 1 )nS„ 4

C
,

(M+2), m= ^C«
> o«-2)

—
i(ft
—w+l)(n—7n+2)C»w+i(7i—m— l)(n — m)(n—m + l){n —m+ 2)C„, (,„+•>)

S(«+2), m=4S„,(,„-2i— 2('? — m+ l)(« — m+2)S„m+|(n —m — l)(n—m)(^—m+ l)(/? —m+ 2)S„. (,„+.>)

21.145 (m>2)

ay- V 6'
C(» +a) , o = -i(w + 1) (n + 2)C„„ - 2-U* - 1 )«(n + 1) (n+ 2)CH2

C(„+2 ), i=-in(n+l)C„i-i(n-2)(n-l)«(n+l)CH:i

S(H+ 2), i
= -in(n + l)S,n ~i(n - 2) {n -l)n\n + l)S„ :i

C(/(+ 2), 2 =-iC„ -in(n - 1 )C„-> - £(/i -3) (ra-2) (n- 1 )raC,M

S(»+2), 2=—\n{n— 1 )Sn2 — !(rc— 3) (n— 2) (n— 1 )nS„.j

C(,, + i).ni
= — \C„, („,->)—h{n—m-\-\)(n — m-\-2)C,im —\(n —m— \ )(n—m)(n—m+1 ){n — m+2)C„,o»+2>

S(»+2), w=—iS H ,(m-2)
—

2(" —m+ l)(/i—m+ 2)S„,„—7<n —m — l)(n — m)(n—m+l)(n—m+ 2)S ,,,(,„+>)

21.146 (m>2)
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21.147

C(W+2),o= (« + 1)(" + 2)G„ ( >

C(„+-i), i
— /i(77+ l)C„i

S(„+2), i
= 77(7! + l)S /n

C'( /,+2),2
= n(n —l)C,r>

S(„+-2),-> = n(n — 1)S„2

C(W+2),»i= (« — m + l)(n— m+ 2)C„,

S(H+ 2), »/= (/i—m+ 1) (n — m + 2)5,,^

(m>2)

-^— (-^): C0(+2),o= i(Ai-l)n(n+l)(ra+ 2)SH2
d%dy \ G/

C
(„ + 2), , =-ire(n + 1 )S„, +i(re - 2) (n- 1 )n(n + 1 )S„ :!

S(„+a), i =-i«(n + 1 )G„, -\{n-2) (n - 1 )n(n + 1 )C„:i

C(H+ 2), 2 = {(/J — 3) (n — 2) (n — 1 )«S„ 4

S(M+ 2), 2 = iCo — i(«
—

3) (ti
—

2) (n — l)nC«j

C(« + 2), m= — iS„, (M,-2) + i(n — 772 — 1 ) (n — m) (/i — m + 1 ) (n — m + 2)S„, {m+z)

S(,i+2), m— iC„, (»,_2) — \(n —m — l)(n — m)(n — m+l)(n— m+ 2 ]C„,
( ,H+L>,

21.148 (77! > 2)

dvd~ \

_
r)

: C(H+2).o=—i«(n+ l)(7i+ 2)S„i

G(„+2), i= — 2(7? — 1)77(77 + 1)S„2

S(« +S ), ,
= (n + 1 )G,„> + 2-(/i - 1 Mu + 1 )C»2

C(«+2), 2 = — 2""S„i — i(n — 2) (n — DtjShu

S(H+2), 2 =277C„i +?(7?— 2) (7! — 1 )nC„:i

C(H+ 2)lW=— 1(77 — 777 + 2 ]S„,
( H( -i) — z(« — 77i) (7; — 777+ 1)(« — 771+ 2)S„,

(HH-i)

5(h+2), Hl=i(77 — 777 + 2)C„, (,„-|) + i(n — 777) (ll ~ 777 + 1 ) (77 — 777 + 2 )C„. („,+ 1

)

21.149 {m>2 )
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d2 ( V
dzdx \ G

C(W+ 2), o =—ln(n + 1 ) (/i + 2)C„,

C(»+2), i
= (n+ l)C„(i — 5(n — 1 )h(h + 1)C„>

S(„+2), i =—i(n— 1 )«(« + l)S„-j

C(H+2 ), 2= i/iC
,

„i
— A(« — 2){n — l)nC„3

S(h+2), 2=inSwi — i(u —2) (n— l)nS„3

C(h+2), m = l(«
—

"' + 2 )Cn,(m- 1)
— i(n — m) (n — m + 1 )(n — m + 2)C», (Wl+l)

Soi+2), m=2(n — m +2)Sh ,(hj-i)— i(/i— m)(n — m + l)(n— m+ 2)SHl (H,+i)

21.150 (m>2).

The Laplace equation

r).V-U;/ rV\67 r)z-V67

is satisfied by each harmonic of the same degree and order; also, the mixed derivatives d 2/clxdy or 3 2/dydx

give the same result, although the first differential is not the same in both cases.

97. Second differentials of the geopotential W are given by

d 2 (W\ d 2 (V O)

dx 2 \G) Bx 2 \G) C

dy 2 \G) dy 2\Gj G

from Equation 20.08. There is no difference between the other second differentials of W and V.

98. We have finally the six Cartesian components of the Marussi tensor JF;> , which can be contracted

with the base vectors A.'', fx
r
, vr of the equipotential surfaces to give us the six curvature parameters of the

field, as in Equations 12.162. The Cartesian components of the base vectors are given by Equations 12.008

in which <p, o> are the latitude and longitude of the line of force, obtainable together with gravity g from

Equations 21.136, 21.138, and 21.140. To avoid confusion with the geocentric latitude and longitude in the

spherical harmonics, we shall overbar the latitude and longitude of the line of force — that is, the astronomical

latitude and longitude — from Equations 12.008. For example, the median curvature k> is given by

§L(E
d\-\ G

u , - 3 2
/

sin-m cos- a) :

d.X- \

21 • , - ^ (Wsin-0 sin- w— 77

/~»r»c 22 2 d2 (W\co*+J?\g)

, . ,7 . - - d 2 (W\— z sin*1® sin to cos 10 —v
Bxdy \ G

J

+ 9c" A 1 ~ d
'

Z

(
W

\+ z sin0 cos cpsin o>
—— —
aydz \G /

21.152 +2 sincj) cos $cos oj

dzdx \G
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with similar equations which can be written at

once for the other parameters.

DETERMINATION OF THE POTENTIAL
IN SPHERICAL HARMONICS

99. The advantage of using Equations 21.136,

21.138,_and 21.140 for g cos
(f>

cos o>, g cos cf> sin w,

g sin (/>, compared with expressions for g, is that

these equations are spherical harmonic series in

the usual form and are linear in the Cnm, Snm of

the potential. Accordingly, we may use these three

equations as linear observation equations to

determine the Cnm -, Snm to the limit of computer
capacity from sufficient and widespread measure-

ments of g, (f>, u>; time will be saved in the com-

putation of the coefficients of the Cnm, S„m from the

positions of the observing stations. In these equa-

tion,
(f>

and o) are astronomical latitude and longi-

tude, but it would not usually be necessary to

make astronomical measurements at every gravity

station in an intensive local survey; it would be

sufficient to apply regional deflections to geodetic

values. The lower harmonics could not be deter-

mined in this way from regional surveys, but are

already well determined from satellites. The
satellite values should be substituted in the equa-

tions, leaving the higher harmonics to be determined

from regional surveys.

100. The same considerations apply to Equation

21.152 and to similar expressions for the other

curvature parameters. These equations are also

linear in the coefficients Cnm, S„m of the potential

and could be used as observation equations in

conjunction with Equations 21.136, 21.138, and

21.140. The curvature parameters, other than the

vertical gradient of gravity, can already be meas-

ured to a high degree of accuracy and might be

of value in the determination of the higher har-

monics in local or regional surveys. This has not

yet been done, and further research is required

to explore the practical possibilities.

MAGNETIC ANALOGY

101. If we take a small magnet QQ' (fig. 24) of

pole strength p situated inside the Earth, then in

accordance with the usual geophysical convention,

the negative pole will be at Q nearest the north

and the positive direction of the axis (unit vector

Ls
) will be QQ' . The magnetic potential at an

external point P, writing fjb
= p XQQ' for the mag-

Figure 24.

nitude of the magnetic moment, will be

QQ' V r
'
l

^)s
LS

21.153

in the limit when QQ' —> 0, and the magnet becomes
a dipole. In this expression, c is a constant depend-

ing on the units employed. The differentiation of

(1//) refers to displacement of Q relative to a fixed

origin at P so that the gradient of r is in the direction

PQ. The magnetic potential at P can then be

written as

CfJL T
cp

-7 rsL s = f cos y.

102. In deriving this formula, we have assumed

unit permeability of the medium between the dipole

and P. We are not proposing to determine the actual

external magnetic field of a dipole buried in the

Earth; all we want to do is to set up a mathematical

model analogous to the gravitational field, and in

doing so we can make any stated assumptions, such

as a completely permeable medium. The reason

for this assumption is that we shall later super-

impose the fields of dipoles in different locations,

and the analogy would break down if the per-

meability changed.

103. Instead of the dipole, we shall now suppose

that we have a particle of mass m at Q. The gravita-

tional potential at P will be {—Gm/r), and the

component of force at P in a direction parallel to

QQ' will be

-{-Gmlr) sLs

in which the gradient of r is now in the direction

QP because the differentiation must be carried

out by displacement of P relative to a fixed origin

at Q. The component of force at P parallel to QQ'

is accordingly

Gm T—— i"sL
:

r-

Gm
cos y,
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which is exactly the same as the potential of the

dipole if we make cp = Gm. Subject to this relation

and to the assumption of unit permeability, the

component of the gravitational force in a given

direction is the same as the potential of a dipole

situated at the mass point and oriented in the

same direction.

104. If we set up dipoles at all other mass points

with the same proportion of mass to magnitude of

magnetic moment and with the same orientation,

the total magnetic potential at P will be the same
as the component in the same direction of the

total gravitational force exerted by the whole

body at P. Moreover, the same conclusion will

evidently apply to a continuous dipole distribution

and to a continuous mass distribution, provided

the dipoles are oriented in the same direction.

Finally, we could set up at each mass point a cluster

of three dipoles of equal moment, oriented in the

direction of the coordinate axes, and so obtain all

three components of the gravitational force. The
scalar magnetic potential of such an arrangement

could not, however, represent the vector gravita-

tional force field, and there would be no physical

correspondence.

105. Nevertheless, the correspondence between

magnetic potential and the component of gravita-

tional force in a fixed direction of magnetization

is established, and a similar correspondence clearly

exists between successive differentials of these

scalar quantities in fixed directions — such as the

coordinate axes. Thus, components of magnetic

force correspond generally to second differentials

of the gravitational potential so that magnetometer

and torsion balance measurements correspond.

This is not to say that the actual magnetic field

of the Earth can be used to derive the gravitational

field, or vice versa, but merely that methods applied

to the one field can often be applied to the other.

Torsion balance interpretation formulas are, for

example, used in the calculation of magnetic

anomalies. 1 " We might also expect that frequencies

in harmonic analysis of the magnetic field would
generally be one higher than the harmonics of the

gravitational field in relation to the noise level,

although the amplitudes might differ widely.

Multipole Representation

106. We note that the magnetic potential in

Equation 21.153 of a dipole situated at the origin

,!l Heiland (1940), Geophysical Exploration, 393.

is proportional to the first-degree terms in the polar

form of the gravitational potential (Equation

21.124). We shall now show that the higher degree

terms can be represented by multipoles at the origin.

We reverse the direction of the axis of the original

dipole at Q in figure 24, transfer it to figure 25, and

add another dipole at R in the direction of the unit

vector M'. This second dipole has the same mag-

netic moment in magnitude (jx) and direction (L")

as the original dipole at Q. The magnetic potential

at P, arising from the whole arrangement, is then

- cfx( 1 IrjJL s + c/x( IIr )sL
s

.

We now define a quantity v — pXQR in much
the same way as we have defined p = pXQQ\
and suppose that v remains finite (because p. in-

creases) when QR is decreased indefinitely. The
limiting arrangement is known as a quadrupole

Figure 25.

of moment v, and its potential at p is

T

*{GK l s= M-l L°M>

If L\ M' are the axes and (cv) is the scalar of the

second harmonics of the gravitational potential

(-V/G), then the latter is represented by the po-

tential of the quadrupole. In the same way. we can

set up another quadrupole at a point S in the di-

rection QS = N". The limiting potential of this

arrangement, when QS decreases indefinitely while

v X QS remains finite, will be proportional to

(l/r),,„LW/V",

that is, to the third harmonics of the gravitational

field if L\ M', N" are chosen as the axes of these

harmonics, and so on.

107. The multipole analogy is mostly of theoret-

ical use for indicating possible applications of

electromagnetic methods in the gravitational field,

and vice versa. For example. Maxwell introduced
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1
it has suggested

ional field in the ine
found his theory of use, not only in itself, but also 21.017.

his theory of poles in connection with electro- because it has suggested representation of the
magnetic problems, but we have, nevertheless. gravitational field in the inertial form of Equation



CHAPTER 22

The Potential in Spheroidal

Harmonics

THE COORDINATE SYSTEM

1. In this chapter, we shall first develop a special

coordinate system; the /V-surfaces of this system
are all oblate spheroids formed by rotating a family

of confocal ellipses about their common minor
axis, which we shall choose as the Cartesian

C r-axis. Later, we shall obtain by standard methods
a general solution in these coordinates of the

Laplace equation which can represent a general

attraction potential, and we shall investigate the

corresponding mass distribution.

2. There are currently two main gravimetric

uses of this spheroidal coordinate system: The
expression of the potential in spheroidal coordinates

has less restrictive properties of formal convergence

than the corresponding expression in spherical

harmonics, and leads also to an exact formulation

of the standard gravitational field to be considered

in Chapter 23. The coordinate system itself and the

properties of the meridian ellipse on which it is

based, nevertheless, have other uses, and the

system will be considered in more detail than is

necessary for the immediate gravimetric purposes.

THE MERIDIAN ELLIPSE

3. Any meridian plane containing the axis of

rotation cuts each spheroid of the family in an
ellipse as shown in figure 26. We begin by collecting,

without proof, some well-known properties of this

ellipse. We denote the equatorial radius or semi-

major axis CA — CA' by a, and the polar radius or

semiminor axis CP = -CP' by b. The two foci S, S'

are located on the major axis at CS — CS' — ae where

e is the eccentricity of the ellipse. If is any point

on the ellipse, then we have

22.01 SO + S'0 = 2a

so that S'P = SP — a. It is usual in classical geodesy

to define a complementary eccentricity as b/a or

(1 —

e

2
)
1/2

, and yet another eccentricity as ae/b.

Instead, we shall introduce the auxiliary angle

a = S'PC, in which case the three eccentricities

become sin a, cos a, and tan a, respectively.

4. A circle on A'A as diameter is known as the

auxiliary circle. We can consider the ellipse as

formed from this circle by shortening all ordinates

parallel to the minor axis in the ratio b/a so that

we have

22.02 ON/0'N=bla = cosa.

The tangents to the ellipse and to the auxiliary

circle meet on the major axis at T. The angle

OCT is known as the reduced latitude u.

5. The normal OGH to the ellipse at O makes an

angle
(f>

with the major axis, which is evidently the

latitude of the spheroidal normal as usually defined

throughout this book. We shall call this latitude

the spheroidal latitude and shall use the same
symbol for it as we used in Chapters 12 and 21

187
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Figure 26.

for different but similar quantities. The context

serves to avoid confusion. The spheroidal longitude

is, in the same way, denoted by o» and is the angle

between the meridian plane of figure 26 and the

meridian plane through an origin such as Green-

wich, with the same conventions as in § 12-7. We
have not yet identified the spheroid with an equi-

potential surface, in which case the spheroidal

latitude would be also the latitude of the line of

force at points on the spheroid: or, with the base

surface of the coordinate system of § 18-23 used

for the description of geodetic positions, in which

case the spheroidal latitude would be the geodetic

latitude of points in space. For the present, we are

dealing with the spheroid solely in its ordinary

mathematical sense as an ellipsoid of revolution.

6. It can be shown that the normal bisects the

angle SOS' , and the half-angle (3 is given by

22.03

or

sin (3 = sin a sin (j>

tan /3 = tan a sin u.

From the fact that the tangents at O, 0' intersect

at T on the major axis, we infer that

22.04 tan u = cos a tan $,

leading to other formulas connecting the reduced

and spheroidal latitudes as follows,

sin u — cos a sec (3 sin 4>

22.05 = cos a sin (f>l (I
— sin' a sin- (j))

11
'

1

cos u = sec j8 cos </>

22.06 = cos 0/(1- sin- a sin- (fr)

1 ' 1

22.07 (1 — sin 2 a sin 2
</>)(l — sin-'a cos 2 u) = cos 2 a

22.08 (1 — sin 2 a cos 2 u) cos a sec /3.

7. In this chapter, we shall denote the principal

radii of curvature of the spheroid by p (the radius

of curvature of the plane elliptic meridian) and

v (the principal radius of curvature perpendicular

to the meridian). We found in §12-49 that the

radius of curvature of the parallel of latitude is

— 1 / ( A: i sec </>), which in this case is v cos (/> and is
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evidently OM in figure 26, for any surface of

revolution. Consequently, we have v = OH in

figure 26 and

22.09 ^cos</) = acos« = OM=CA'

so that we have

v = a cos u sec (/> = a sec (3

= a sec a/(l + tan 2 a cos 2
<b)

112

— a/ (I — sin- a sin 2
</>)

1/2

= a sec a{\ — sin 2 a cos 2 «) 1/2

22.10 =a-l{a- cos 2 + b 1 sin 2
(/>)

l/2
.

If dm is an element of length of the meridian

ellipse, then by projecting small corresponding

arcs of the auxiliary circle (a, du) and of the ellipse

[dm) on the major axis, we have

sin cf) dm — p sin $ d<b = a sin u du:

by differentiating Equation 22.04, we have

22.11

so that

22.12

sec 2 u du = cos a sec 2
<f>

deb

p — a cos 2 a sec'5

/3

= a sec a/(l + tan 2 a cos 2
</>)

:,/2

= a cos 2 al{l — sin 2 a sin 2
<£)

:!/2

= a sec a{\ — sin 2 a cos 2 u) 3/2
,

together with the following differential relations

which are often useful,

22.13 dfi/dcb — sin a cos u

22.14 d/3/du — tan a cos 2
/3 cos u

22.15 d(\n p)/d(b — 3 sin a tan a sin u cos u

22.16 d(v cos 4>)/d({) — — p sin </>

22.17 cfti; sin (f>)ld<^ — p sec 2 a cos </>

22.18 dv/d(f>= {v-p) tan 0.

The last equation is equivalent to the sole Codazzi

equation of the spheroid as derived in Equation
18.22.

8. The principal curvatures k\, k> are —1/v and
— 1/p so that the curvature invariants are

22.19

K= ll(pv)

2H = -(Hp+llv).

9. In the case of the Kepler ellipse used in or-

bital geometry, the origin of rectangular coordi-

nates (<7i, q>) is taken as a focus S (fig. 26), and the

angle TSO is known as the true anomaly f. The
reduced latitude u is known as the eccentric anom-
aly E. By relating rectangular coordinates in the

two systems — origin S and origin C— we have at once

q x
= OS sin/= b sin E = a{\ — e

2
)

1/2 sin E

q> — OS cosf— (a cos E — ae) — a (cos E — e);

22.20

by squaring and adding, we have

r=OS = a(l-ecosE).

From the last two equations, we have

(1-e 2
)

[1+ e cosf)

so that

22.21 r=OS = a(l-ecos£) =

(1 — e cos E)

a(l-e-)

1 + ecos/V

These equations are sometimes useful in branches

of geodesy other than satellite geodesy.

10. The three-dimensional Cartesian coordinates

of — considered as a point on the meridian

ellipse whose longitude is w — with respect to the

usual axes are

x = CN cos (o — a cos u cos oj

— (ae ) cosec a cos u cos at

y= CN sin to — a cos u sin w

— (ae) cosec a cos u sin a>

z= ON=(b/a)0'N=b sin u= (ae) cot a sin u,

22.22

from which we may obtain the radius vector CO as

r=(ae)(cos 2 u + cot 2 a) ,/2

= (ae )(cos u + i cot a )

1/2(cos u— i cot a )

,/2
.

22.23

The tangent of the geocentric latitude OCS is

given by

22.24
U 2 + y 2

)

1/2
= cos a tan u.

SPHEROIDAL COORDINATES

11. It is evident that a is a constant over the one

spheroid we have been considering, and would be
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a different constant over any other spheroid. We
now consider a family of confocal spheroids for

which CS — CS' — ae (fig. 26) is the same for all,

so that (ae) is an absolute constant in space. It is

then clear from Equations 22.22 that, instead of

(x, y, z), we could equally well take (a>, u, a) as

space coordinates, in which case the confocal

spheroids will be the constant a coordinate surfaces.

The other two space coordinates, which as usual

we shall also use as surface coordinates on the

spheroids, will be the longitude and reduced latitude

with reference to the particular spheroid passing

through the point in space under consideration.

12. By differentiating Equations 22.22, we find

after some manipulation that the metric of the

space in the coordinates (w, «, a) is

ds 2 — dx 2 + dy2 + dz 2

— (a- cos- u)d(i)-+ (v 2 cos- a)du 2

22.25 +(v- cot- a) da 2
:

the only nonzero components of the associated

metric tensor are

normal, we have

g
u — 1/ (a 2 cos 2 u) ; l/{v 2 cos 2 a) ;

22.26 g
33 = 1/(V2 cot 2a).

The coordinate system is accordingly triply orthogo-

nal, and the surface coordinates (w, a) are constant

along the spheroidal normals. Consequently, the

coordinate system is a normal system with a

spheroidal base, and all formulas of Chapter 15

apply with N— a and with the spheroidal latitude

(/> converted to the reduced latitude u by means
of the formulas given in the last section. We can,

however, retain the spheroidal latitude and the

principal radii of curvature, etc., as functions,

which are defined in relation to the spheroid passing

through a point in space, as long as we remember
that they are now functions of the two variables

(u, a).

13. We shall require the differentials of some of

the spheroidal quantities — in particular a and v —
along the normals before we can substitute in the

formulas of Chapter 15. The basic gradient Equa-

tion 15.01 is now

22.27 a r — nv r

where n has its usual geometric significance and
vr is the unit outward-drawn normal to the spheroids,

not to be confused with the gradient, which we
shall not require, of the radius of curvature v. If

ds is an element of length along the outward-drawn

da = nds,

while differentiations along the normal and with

respect to a are related by

d_ = l 3_.

da n ds
22.28

From Equations 15.03 and 22.25, we have at once

22.29
tan a

We have taken the negative sign for rc. which
appears in the metric only as 1/n 2

, in order to

make the positive direction of the a-coordinate

outward in spite of the fact that a decreases

numerically outward, and so we preserve the

right-handed system used throughout this book
in the order (co, u, a)= (1, 2, 3). This device enables

us to use all formulas in Chapter 15 as they stand.

14. By differentiating

sin a— (ae) /a

with, of course, (ae) constant, we have

3 (In o)_ _ _ d(ln a)._l
22.30

da
--— cot a ;

ds

in which a is the semimajor axis of the coordinate

spheroid, not to be confused wiih the determinant

of the surface metric. By differentiating Equations

22.03 and 22.04 with u constant and simplifying,

we have also

22.31

22.32

dP a a.—= sec a cos p sin <p
da

d±
da

tan a sin 4> cos (/>;

then by differentiating other relations in the last

section, we have

22.33

22.34

22.35

d In (p cos (/>) _ d In (a cos u)

5a da
cot a

d In v

da
'-— cot a-\- tan a sin 2

(f>

—-
—"=— cot a — 2 tan a + 3 tan a sin 2

d>.
da

By differentiating the metric tensor in accordance

with Equation 15.13, we have the components of

the second fundamental form of the spheroids as

22.36 ba/3 — (— v cos 2
</), 0, — a 2

/v).
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From Equation 7.20, we have after some manipula-

tion

22.37 Ca/3= (COS 2
(f), 0, a 2K),

15. The nonzero Christoffel symbols containing

a 3-index follow at once from Equations 15.11 as

T/.j =— cot a

r|3=— a-j(v- sin a cos a)=— 1/inp)

r|., = — sec a sin (/> cos (/>

rj !

,

= tan a cos- (/>

r|2= (a 2 tan aVt' 2

d Inn 1 3 In n a-
I 3

d
3
= —= — cot a r-7-

oa n ds

n\p v) n

„.. i) In n . .

1 ^2
= : = sin a tan a sin (p cos cp.

v sin a cos a

(Hi

22.38

The remaining space symbols, which are the same
as the surface symbols, are obtained directly from
the surface metric as

r,
1

.,
=— tan u

If, = sec a sin cf) cos (f>

rj = sm a tan a sin cos (})
= — d In « r) In v

ihi <)ii

22.39

16. The components of the surface tensor

\njap

are required in many of the formulas of Chapter 15

to compute variation along the normals. We can

easily obtain these components either from the

Codazzi Equation 15.25 or by direct covariant dif-

ferentiation, using the values of the Christoffel

symbols given in Equations 22.38 and 22.39, as

n (1/n )n =— tan 2 a sin 2
(/> cos 2

</>

n(l//i)i2 =

n(lln)>-2 — tan2 a cos 2c/>(l — sin2 a sin 2
4>)

22.40 =tan 2 a cos 2
/3 cos 2(/>.

THE POTENTIAL IN SPHEROIDAL
COORDINATES

17. We can readily expand the Laplacian of a

scalar V,

&V=gr
'Vrs,

in spheroidal coordinates either by using Equation

3.18 or by expanding the covariant derivative and

using values of the Christoffel symbols given in

Equations 22.38 and 22.39. The result in either

case is

(v 2 cos2 (f>)AV= ^J1
d'

zV
dco 2

+ sec2 a cos2
<$> sec u— \ cos u

du

dV
du

22.41 + tan2 a cos2
(f>

d
2V

da 2

in which we must make AF=0, if V \s to be harmonic

and so to represent a Newtonian potential. For rea-

sons which will become apparent later, we change
the independent variables in the resulting partial

differential equation to

22.42

so that we have

p — sin u

q — i cot a

8 d—= cos u —
d u dp

—=— i cosec^ a —

;

doc dq

the differential equation becomes then

r
._d 2V , 2

d f n .,. dV\
U——^+sec- a cos2 —

\
(1—p

2
) —\

d(o 2 dp [ dp)

— sec2 a cos2
4> — \ (\ — q

2
)
—

dq dq

We propose to obtain solutions analogous to the

expression for the attraction potential in spherical

harmonics, that is, in the so-called "normal" form

22.43 V=ilPQ

in which H, P, Q are, respectively, functions of

<o, p, q only. If we substitute Equation 22.43 in the

differential equation and divide by ftPQ, we have

1 iPCl . sec2 a cos2
d> d \

,

.. ,, dP0=n^ +
p -dlA

{l ' ir)
^P

22.44
sec2 a cos2

d> d f
. , ,. dQ

Q--Tq Y x
- q) Tq
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The last two terms in this equation are independent

of longitude co and the first term is a function of (o

only, so that if the equation is to hold for all values

of co, we must have

22.45
1 am,
ft dco2

m

in which m is an arbitrary constant. If A and B are

constants of integration, the general solution of

Equation 22.45 is

22.46 Q,=A cos ma) + B sin raw.

Combining Equations 22.44 and 22.45, we have

= m2 cos 2 a sec 2

= m2
( 1 — sin 2 a cos 2 u ) sec 2 u

1 d jn 2
. dP\ 1 d

,

(l-p 2
) {\-q2Y

using Equations 22.06, 22.07, and 22.42. The vari-

ables in this last equation are now completely

separated, and we can write

m
PdP [

[i p
' dpi (1-p2

)

m"

<?dgl
9 '^J (l-g2

)

=~n(n+ l)

in which n is an arbitrary constant because the first

member is at most a function of p only, and because

the second member is at most a function of q only;

the two members cannot be the same for all values

of p and q unless they are constant. The P and Q
must now satisfy similar ordinary differential

equations of the form

dx
(1-x2

)

dy

dx
\+ ln(n + 1

(l-*2
)

0:

if C, D, E, F are constants of integration, the

general solutions l are

22.47

P= CP%(p)+DQ%(p)

Q = EP™(q) + FQlHq)

where P„\ G"" are the associated Legendre functions

of the first and second kinds. The expansions of the

G"n's in the usual forms, which we shall often need

1 Hobson (1931), The Theory of Spherical and Ellipsoidal

Harmonics, 89.

to use, are

2"n\n\
[

1 (n+l)(/i + 2)

(2/7 + 1)! [q" +1 2(2n + 3) q

(n+ l)(n + 2)(n + 3)(w+4) 1

(J " (q}
(2n + l)!\q»+^ 2(2n+-

1_
n+3

+ -

2-4- (2n + 3)(2n + 5)

22.48

and

w g ) = (-r
2
"r<!l

n+
1 ?,

)!
(i- 9

')"/»
(2/i+ 1:

+
(n + m + l)(n+ m + 2) 1

2(2// + 3)

+ (n + fw + l)(/i + m + 2)(/i + m + 3)(n + m + 4)

2-4- (2n + 3) (2// + 5)

22.49 x
1 +.

these series are convergent only if we have

\q\ > 1. Consequently, it is advisable to include

Qn(q) = Qn(i cot a) in our solution only when we
have cot a > 1, that is, when we have b > ae for

the coordinate spheroid through the point under
consideration. 2 For the same reason, we cannot

include (?'"(sin u) if we require u to be zero. For the

external potential (at great distances from the

Cartesian origin), we take D = E= in the general

solution, Equations 22.47, to give the potential in

the form

y «. n

— -~= ^ ^ Qn(i cot a)P^(sin u)(A„m cos mw
h=0 m=0

+ B„m sin mw)
22.50

in which we have amalgamated the constants in

Equations 22.47 with those in Equation 22.46, and
we have included the gravitational constant G.

Equation 22.50 corresponds to Equation 21.035,

which we know to be sufficiently general. On the

other hand, if we require an expression for the

internal potential which has to be valid at and near

2 No matter how we express Q',','{i cot a), we cannot include it

in the potential if cot a is small. If we differentiate this function

in the direction of the normal to a coordinate spheroid and use

Equations 22.28 and 22.29, we have

dQ',?{i cot a)

ds

n + 1
Q',','(i cot a)

i{n — m + 1) tan a
Qn+Ai cot a)

which becomes infinite for cot a = 0, that is, for points on the

limiting "spheroid" formed by rotating the interfocal line. The

function will not therefore serve as part of a Newtonian potential

in such a region.
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the Cartesian origin, we must make D = F=Q in

Equations 22.47 to give

y * n

-77= V V TO cot a)P!f'(sin u)([A„m ] cos moj
n=o m=0

r ,

+ Ld„,„J sin mw),
22.51

which corresponds to Equation 21.086. All quanti-

ties in these last two equations are dimensionless

except V, A nm - Bnm \ we conclude that the dimensions

of Anm, B„m are the same as those of VjG, that is,

L W.

18. The first three Legendre functions of the

second kind in our notation are

Qu(i cot a) — — ia

Q\ (i cot a) — a cot a—

I

Q>{i cot a) = 2i(a + 3a cot- a — 3 cot a);

22.52

the remainder can be found from the recursion

formula

(n+l)QH+l -(2n+l)i cot aQn + nQ„-i = 0.

22.53

To derive the associated functions, we use Ferrers'

definition, even though the argument is imaginary,

so that we have

n,„/- s ,„ d'"Q„(i cot a)
C? 'U cot a) = cosec'" a —— ——

—

d(i cot a)'"

22.54

19. In most of the literature on spheroidal har-

monics, the third coordinate is r\ where we have

sinh rj = cot a

with other relations which can easily be derived

from Equation 21.101. This alternative, however,

loses the advantage of the simple geometrical

interpretation of a given by figure 26.

THE MASS DISTRIBUTION

20. To relate the A nm, B„„, in the general formula

for the potential to the mass distribution, we require

an expression in spheroidal coordinates for the

elementary potential at (w, u, a) arising from a single

particle of mass m at (w, u, a): in short, we require

an expression for the reciprocal of the distance

between the two points. We shall deal with the case

illustrated by figure 19, Chapter 21, to find the ex-

ternal potential when the origin is inside the body.

and for this purpose Equation 22.50 is appropriate.

The case illustrated by figure 21, Chapter 21, can

be dealt with similarly by using Equation 22.51.

21. The reciprocal of the distance (1/ro) between
two points in spheroidal coordinates is itself a

potential function, and must therefore be expres-

sible in the form of Equation 22.50 in which the

constants A>,m, Bnm will be functions of the coordi-

nates of the overbarred point. Moreover, if we inter-

change the overbars, we can expect the formula to

change to the form of Equation 22.51. By taking a

temporary origin for longitude at the barred point,

we see that the longitude term must take the form

Anm cos mio) — a>) + Bum sin m (&> — a»):

and because the field is symmetrical in longitude

so that l/r() does not change if the signs of both w
and d) are changed, the B„m must be zero. These
considerations are satisfied by the form

1

ro 2 2 Qn(i cot a)P„'(i cot a)P|!'(sin u)P»'(sin u)

X Anm cos m (a> — a>).

and in fact the final formula, due to Heine, is

—=i y (2re +i) Q„(i cot a)P„(i cot a)P „(sin a)

(n— m)\X P„(sin a)+ 22(-)"
\(n + m)l

X Q'»(i cot a)P%(i cot a)P^"(sin u

22.55 xP{;'(sin u)cos m(a)— a>)

A rigorous proof is given by Hobson.'5

22. If we multiply Equation 22.55 by the mass

m of the particle at the overbarred point and sum
over the whole mass of the attracting body, we find

that the constants in Equation 22.50 are given by

. „ i(2n + 1) _ _ . _. _
A m) =2_

l

~ ~~ m"nU cot a)r„(sin u)

A„,

Bn,

22.56

2

ae

2i(2n + l) n — m)l\-

n+ m)\
iP'"(i cot a)

xP;;'(sin u)
cos rnw

sin mw

'' Hobson, op. cit. supra note 1. 430. Hobson's conventions for

the associated Legendre functions are different, but make no

difference in this case. Hobson omits the overall factor i necessary

to give real values of r».

306-962 0-69— 14
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in which to can be any integer between unity and n

inclusive, and (n — to)! is to be interpreted as unity

if we have m — n. These equations correspond to

Equations 21.037 in spherical harmonics. As in

§ 21—15, we can replace m by pdv where p is the

density at the overbarred point and dv is an element

of volume. The summation is then replaced, in the

case of a continuous distribution of matter, by a

volume integral taken over the whole attracting

body.

CONVERGENCE

23. The series in Equation 22.55 converges 4
if

we have a > a. which implies that the overbarred

mass point must lie within the coordinate spheroid

passing through the unbarred point (o>, //, a) where

the potential is sought. If this condition is to apply

to all mass points, then the point where the potential

is sought must lie outside the coordinate spheroid

which just encloses all the matter. Moreover, the

spheroid enclosing all the matter must have b > ae

so that we have cot a > 1, if the external potential

is to be expressed by Equation 22.50. In that case,

all the individual particle series can be multiplied

by the particle mass and added term-by-term, and

the resulting series for the total potential will con-

verge. As in §21-11, we cannot say, however, that

convergence of all the individual particle series is

necessary, although it is certainly sufficient.

24. The sphere of convergence of §21-11 and

figure 19, Chapter 21, is accordingly replaced by a

spheroid of convergence if we express the potential

in spheroidal coordinates, and the conditions are

otherwise exactly the same. In the case of the actual

Earth, it is possible to choose a coordinate spheroid

which just encloses all the matter and is generally

much nearer to the topographic surface than any

sphere that also encloses all the matter. Accordingly,

we can say that the expression of the potential of

the Earth in spheroidal harmonics can be made
certainly convergent much nearer to the topographic

surface than the potential expressed in spherical

harmonics.

RELATIONS BETWEEN SPHERICAL
AND SPHEROIDAL COEFFICIENTS

25. For the same mass distribution, Equations

21.035 and 22.50 for the potential in spherical and

spheroidal harmonics, respectively, must give the

same answer at all points in space where both series

are convergent. Accordingly, there must be some

4 Ibid., 430.

relation between the Cnm, S,im and the A nm , Bnm .

To obtain this relation, we make use of a formula,

due to Blades,5 which, in our present notation and

with a slight modification arising from changing

the sign z and therefore of u also, is

1 f
n
p tx cos t + y sin t — iz\ /cos mt\

,

277 J-rr " \ ae ) \sin mt)

- (n - "0!
, )n+mpm{i cot a)P ,n {s[n B, /cos rm>

(n+m)\ sin mw

22.57

The corresponding formula 6 for the spherical har-

monics of the geocentric latitude (cp) and longitude

(to), as used throughout Chapter 21, is

J_
2tt

(x cos t + y sin t — ii

'cos mt\ dt

vsin mt)

n<
- /"»-»V«P»<(sin </>) f

COS mW
\

)'. \sin m<o/
22.58

(n + m)

The spherical and spheroidal longitudes (to) are the

same in these last two equations because both

systems are symmetrical about the same axis — the

axis of rotation of the Earth — and have the same
Cartesian axes. We consider that (w,

<f>,
r) and

(oj, //, a) represent the same point where a mass
m is situated. We can expand

x cos t + v sin t iz
Pn

in Equation 22.57 in powers of

(x cos t + y sin t— iz),

and substitute Equation 22.58. The result is mul-

tiplied by m, summed over the whole attracting

body, and Equations 21.037 and 22.56 for the co-

efficients Cnm, Snm and Anm, Bnm are substituted.

The final result after some simplification is

An%

B,n,

1-3-5 (2/i + D
(7! + to)!

m)(n—m— 1)

1

+

+ -

2-(2n-l) (a

— m)(n—m— l)(n-

Jnn

t>(«-2), m)

S(;,-2), m)

2)(n-m-B)

1

(ae)"-

2 -4(2/i — l)(2/i

J(n-4), m i

3)

22.59

5 Whittaker and Watson (reprint of 1963), A Course of Modern

Analysis, 4th ed. of 1927. 403. A simple proof of the formula

with the usual difference in conventions is given by Hobson,

op. cit. supra note 1, 423.
6 Whittaker and Watson, op. cit. supra note 5, 392. In this case,

a change in the sign of z is not required.
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The same formula gives the zonal coefficients A n0

in terms of Cn0 , C(n-z),o . . . simply by making m = 0.

26. The reverse formula for C«m , Snm in terms of

A nm , Bnm is obtained by expanding

(x cos t + y sin t — iz\"

in Equation 22.58 in terms of the Legendre functions

(x cos t+ y sin / — iz\
P„

Pn-

(l(>

x cos t+ y sin t — iz

etc., for substitution in Equation 22.57. The result

after simplification is

„„+„+,, /C,„A = (ae)»+Hn-m)l
1-3-5 (2ra+ l)

(n+ m)l (An

2n + \ (n+ m--2)1
2 (n — m--2)!

]

(2n + l)(2n-l) (n + m--4)!
2-4 (n— m--4)!

(2n+ l)(2n-l)(2n-3) (n+ m--6)!
2-4-6 (n — m--6)!

(n— m) ! \Z? n ,„

A(n-2), in

B(„-2), m

A(„-4), m

o(n-4), m

^(n-6), m

t>(„-6), in

22.60

The same formula gives the zonal coefficients C„ ( >

simply by making m— Q.

Equations 22.59 and 22.60 enable us, for example,

to transform rapidly an expression for the potential

in an area where this expression is certainly con-

vergent. The corresponding expression in spheroidal

harmonics is then certainly convergent almost to

the topographic surface.

27. We are now able to relate the spheroidal

Anm, Bnm to components of the inertia tensors

by means of formulas given for the Cnm , Snm in

§ 21-28 through § 21-34, and, in particular, to

the total mass, to the center of mass, and to the

moments of inertia of the attracting body.

Zero-Order Inertia Tensor

28. From Equations 21.016, 21.037, and 22.60, we
have the inertia tensor of zero order as the total

mass M where

22.61 M = C(m = -i(ae)Am ,

which shows that the coefficient Aqo is imaginary.

29. The leading term (m= 0, n — 0) in Equation
22.50 for the potential is

22.62 A oQo(i cot a) = — iaA 00 = Ma/(ae)
,

which is not the same as the leading term in the

spherical harmonic expression (M/r). However, the

two terms become nearly the same at great dis-

tances from the attracting body where the co-

ordinate spheroids become nearly spheres of radius

/' and a ~ (ae)/r.

First-Order Inertia Tensor

30. From Equations 21.061, 21.037, and 22.60,

the Cartesian coordinates of the center of mass are

I'IM=(CnlM,SnlM,CiolM)

22.63 ^hiae)^Maer%-Haer%).

Consequently, if the origin of spheroidal coordi-

nates—that is, the common center of the coordinate

spheroids — is at the center of mass, then we have

An=Bn=Aio= 0,

and all the first-degree harmonics are absent from

the expression of the potential in spheroidal har-

monics. Conversely, if these harmonics are missing,

the origin is at the center of mass as shown in

§ 21-42.

Second-Order Inertia Tensor

31. From Equations 21.043 and 22.60, we have

C2o=I33 -i(In +rz2)=ii(ae)3 (iAi0+A o)

C21 =/«=f (ae) 3
^2i

S21 = /23 =t(ae) 3
fi2]

C22 = i (/"-/'--) =-%i(aeyiA 22

S22=4/12=-f i(ae) 3£22

22.64

from which we can draw much the same conclu-

sions as in § 21—52 and § 21-53. For example, if

the z-axis — the minor axis of the coordinate sphe-

roids—is a principal axis of inertia, then we have

A 2l = Bn = 0.

If all three Cartesian axes are principal axes, then,

in addition, we have

B22= 0;

certain relations between the three principal

moments of inertia are then given by Equations

21.078 and 22.64. If the distribution of mass is
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symmetrical about thez-axis, then we have

A-12 = 0.

The same conclusions, as were drawn in § 21-57

and § 21—58 regarding the omission of certain

terms in the spherical harmonic expression of the

potential, apply similarly to the expression in

spheroidal harmonics.

THE POTENTIAL AT NEAR
AND INTERNAL POINTS

32. If the point P at which the potential is re-

quired is nearer to the origin of coordinates than

any point of the attracting body, we consider that P
is at the overbarred point in Equation 22.55 and

the particle of mass m is situated at the unbarred

point. In that case, the series will remain con-

vergent because a is still greater than a. We
must also take the potential in the form of Equa-

tion 22.51, in which we now suppose that the

coordinates (w, u, a) are overbarred. Proceeding

as in § 22-22, we then find that

IAo] = X -fhQ„(i cot a)P„(sin u)
ae

[Bum]
^ 2t(2re+i;

ae

!\2

(n+ m)l
m

22.65 X(?i?(i cot a)P%(sm u)
cos moj

sin moj

in which we have finally overbarred the mass
point to correspond with Equations 22.56, so

that Equation 22.51 may be used as it stands for

the potential. As usual, the summations are taken

over the whole mass of the attracting body and

can be replaced by volume integrals in the case of

continuous density distributions. The equations

for the potential and the mass distribution cor-

respond to Equations 21.086 and 21.087 in spheri-

cal harmonics. We may note that the only differ-

ence from the formulas for the potential at distant

points in Equations 22.56 consists of an inter-

change between Legendre functions of the first

and second kinds in much the same way as the

corresponding difference in spherical harmonics

consists of an interchange between r" and l/r" +1
.

33. The spheroidal harmonics

P','!(i cot a )/>',!' (sin u)
cos mw
sin met)

in Equation 22.51, for the potential at points near

the origin, can be transformed to spherical har-

monics in the form
^cos mco\

sin mwj
r"P;?(sin (/>)

by the method of § 22-25, without assuming that

the mass distribution remains the same. This

transformation illustrates the fact that the po-

tential given by either Equation 22.50 or 22.51,

or by either of the corresponding series in spheri-

cal harmonics, does not uniquely settle the mass

distribution; the same external or internal poten-

tial can arise from a variety of mass distributions.

To settle the mass distribution, we require knowl-

edge of the potential at all points throughout

space which cannot be provided by a single series

divergent in some areas.

34. In the same way, it must be possible to trans-

form the spheroidal harmonics

^ ,

.

, r. • , /cos mu>\
Q'S (i cot a)PX (sin u) .

\sin fflto/

in Equation 22.50, for the potential at distant points,

to spherical harmonics in the form

1

p;:'(sin</>)
cos ma>

sin mw

We have so far achieved this transformation only

by assuming the same mass distribution. It is more
difficult to effect the transformation without mak-

ing any assumption about the mass distribution,

although Jeffery 7 has given a formula correspond-

ing to Blades" Equation 22.57 which could be used

for the purpose. However, there is no need in any

current geodetic application to suppose that the

mass distribution changes during the transforma-

tion.

DIFFERENTIAL FORM
OF THE POTENTIAL

35. It is evident from Equation 22.41 that a is

a harmonic function. Also, we have seen in § 22-29

that a behaves like (ae)/r at great distances and

is accordingly proportional to the Newtonian po-

tential of some finite mass distribution. Accord-

ingly, we infer from § 21-6 and § 21-7 that

22.66
V

n—0

(«) (a),st on

7 Whittaker and Watson, op. cit. supra note 5, 403, and Hob-

son, op. cit. supra note 1. 424.
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represents the Newtonian potential of a general

mass distribution, provided the Js are arbitrary

and are constant under covariant differentiation.

Equation 22.66 corresponds to Maxwell's form

of the potential as expressed in Equation 21.017.

36. We have seen in § 21-27 that the sum of

all terms of the same degree is the same whether

the potential is expressed in general spherical

harmonics or in Maxwells form. For example,

the three first differentials of (1/r) are the first-

degree spherical harmonics. There is no such

simple relation between even the first differen-

tials of (a) and first-degree spheroidal harmonics.

For example, it can be shown that we have

( ae ) i)a\i)z = £ (2n + 1 )Q„ ( i cot a )P„ ( sin //

)

22.67 (n odd only).

which is a spheroidal harmonic although not solely

of the first degree. The other differentials must
similarly be expressible in spheroidal harmonics
because they are harmonic functions, but the ex-

pressions become progressively more complicated.

Equation 22.66 is not therefore of much use for

deriving spheroidal harmonic properties of the

potential, but the expression of the potential in

this compact form can be of use in theoretical

investigations.





CHAPTER 23

The Standard Gravity Field

FIELD MODELS

1. To facilitate calculation of directions and
distances between widely separated points in the

gravity field, we require a mathematical model of

the field which shall be near enough to the actual

field for us to form first-order or linear observa-

tion equations. In much the same way, it is useful

to have a model or standard field in which it is

easy to compute the potential and derivatives of

the potential, so that we can confine our attention

to the small departures from the model encoun-

tered in actual measurement. Departures from the

mathematical model are known as anomalies,

disturbances, and deflections; the smaller we can
make these departures, without sacrificing the

simplicity and regularity of the mathematical model,

the better. The model field is often called the nor-

mal field in the literature; however, the word
"standard" describes the situation at least as well,

and the word "normal" is already overworked in

a book which also deals with the differential geom-
etry of families of surfaces whose normals define

a vector field. Standard gravity is usually denoted
by y in the literature: we shall use this convention

later when actual gravity appears in the same
formulas. In this chapter, we shall be dealing en-

tirely with standard gravity; we shall use the ordi-

nary symbol "g" to avoid confusion with the

curvature parameters yj, y>, which appear later

in the chapter. Standard potential is usually

denoted by U in the literature, either for the at-

traction potential or the geopotential, and we
shall follow this convention in later chapters when
the actual potential is used in the same formula:

in this chapter, there is no ambiguity in continuing

to use V or W for the potential of the particular

standard field.

SYMMETRICAL MODELS

2. An obvious simplification of the general ex-

pression for the potential would be to suppose that

the field is symmetrical about the z-axis of rotation,

thereby making all the tesseral harmonics anoma-

lous. In that case, the model potential is independent

of longitude and is given in spherical harmonics as

9 , ni
r= y Co/MsiiKft) jd^ (*- + /')

G ,^o r" + 1 G

in which, as always in spherical harmonic expres-

sions in this book,
(f)

is the geocentric latitude or

latitude of the radius vector. Moreover, the longitude

of the line of force in the model (w in Equations

21.136 and 21.138) is the same as the geocentric

longitude. There will be no zonal harmonics in

Equations 21.136 and 21.138, and the only tesseral

harmonics will be of the first order so that Equations

21.136 and 21.138, corrected for rotation, reduce to

the single equation

g cos (t>= ]£ ——-P^-iisin <)>)— a>
2rP\(sm (/>).

n=0 r

23.02

There will be no tesseral harmonics in Equation

21.140, which is unaffected by rotation and becomes

23.03 g sin $= f
(n+

^f
C"° PH+1 (sin *).

n=0 r

As noted in §21-93, Equations 21.136, 21.138. and

199
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21.140 give the outward components of the gravita-

tional force, which is, nevertheless, positive inward.

We have accordingly introduced an overall change

of sign in Equations 23.02 and 23.03 in order that

g may be positive.

3. Alternative gravity formulas can be given in

terms of (<£ — $), which might be termed the deflec-

tion in latitude with respect to a central field, by

combining the last two equations, \llcr sonic

manipulation involving well-known properties of

the Legendre functions, we have

# sin (<£-<£) =-|^P>(sin</>)

23.04 + 6)
2 r sin

(f>
cos </>

gcos (</>-(£)= 2) ^i P„(sin<f>)

23.05 — G)
2 r cos 2 0.

At any point where the direction of the line of force

is radial, the first of these equations is zero and the

second gives g direct. For example, this situation

would occur at the poles in a symmetrical field. In

that case, the first equation is identically zero be-

cause we have P/,(1) = 0, and the second could be

obtained by radial differentiation of the potential

in Equation 23.01.

4. A further simplification would be to make the

model also symmetrical about the equatorial plane,

in which case the Cno in Equations 23.01, 23.02,

23.03, 23.04, and 23.05 would become zero for n odd.

After omitting all the tesseral harmonics and the

zonal harmonics of odd degree, we might as well

omit all the zonal harmonics beyond the fourth or

even the second degree. However, the most con-

venient coordinate system for geometrical purposes

is a (a», </>, h) system with a spheroidal base. We
must be able to relate the geometric and gravimetric

systems and, the simplest way of doing this is to

make the base spheroid of the geometrical system

the same as an equipotential surface of the gravi-

metric system. We shall accordingly investigate this

type of model next, instead of an arbitrarily trun-

cated spherical harmonic model.

field is chosen as nearly as possible to fit the geoid,

that is, the actual equipotential surface nearest to

Mean Sea Level. The minor axis of the spheroid is

oriented parallel to the axis of rotation of the

Earth. Ideally, the minor axis should coincide with

the axis of rotation, and the center of the spheroid

should coincide with the center of mass of the

Earth so as to provide also a unique worldwide

geometric reference system, as discussed in § 21-57

and § 21-58.

6. The model field rotates with the same angular

velocity o> as the actual Earth. Whenever we need

to consider the mass distribution which gives rise

to the model or standard potential, we suppose that

the total mass in the model is the same as the total

mass M of the actual Earth, although the mass can-

not, of course, be distributed in the same way.

7. The problem of developing such a model

field would already have been solved if the field

were static. We have seen in § 22-33 that the sphe-

roidal coordinate a is proportional to a Newtonian

potential and is constant over each of the coordi-

nate spheroids, one of which can be chosen to

approximate the geoid. The potential would be

given by Equation 22.62 as

23.06
V= Ma
G ae

"

and gravity by Equations 22.28 and 22.29 as

GM tan a
23.07

{ae)v

so that gv would be constant over any one equi-

potential surface.

8. However, we are not concerned with a static

field: the case we have to consider is a field rotating

with uniform angular velocity d». In that case,

it is still possible to arrange for the geopotential

to be constant over one of the coordinate surfaces

of a spheroidal coordinate system. The other co-

ordinate spheroids will not, however, be equipoten-

tial surfaces.

THE SPHEROIDAL MODEL

5. The model most often used for gravimetric

purposes consists of an axially symmetrical field in

which one equipotential surface is an oblate sphe-

roid. This spheroidal equipotential of the model

THE STANDARD POTENTIAL IN
SPHEROIDAL HARMONICS

9. The geopotential W in a field rotating with

constant angular velocity G> is obtained from Equa-

tions 20.08 and 22.22 as
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-W= -V+\6i 2 {x 2 + y
2

)

=— V+\ o)
2a 2 cos 2 u

23.08 =-J/+iw-a 2 -iw 2 a 2 /
3
2 (sinw),

assuming that the axis of rotation coincides with

the minor axes of the coordinate spheroids. If we
assume also that the standard or model field is

axially symmetric so that the potential is inde-

pendent of longitude, then we have m = in Equa-

tion 22.50 for the attraction potential V, and we have

— W= V GA noQn(i cot a)P„{sin u)+ ^w 2a 2

n =

23.09 -iw 2a 2P2 (sinu).

The geopotential on one particular coordinate

spheroid, for which we have a = ao, a — ao, is

— Wi)= GA {mQ (i cot oco)+ i 6)-al

+ GAioQi(i cot aii)fi(sin u )

+ {GA-zoQ-Ai cot an)— ia) 2a7
(
}P2(sin u)

+ GAMQ3 (i cot aoJ/^sin u

)

+ . . . ;

if the geopotential is to be a constant over this

spheroid for all values of u, we must have

— Wi) = GA iWQ»{i cot ao)+ i&)
2ag

,4,o =

GA2oQz{i cota )
=iw 2

a'5

23.10 ^„ = (n>2).

The first of these results, combined with Equation

22.62, gives the potential on the base spheroid

(a = ao) in terms of the dimensions of that spheroid

and the total mass M as

23.11 -r = GMao/(a (( sina„)+ iw 2a 2
.

It is usually supposed that the total mass is con-

tained within the base spheroid, so that the potential

on and outside the base spheroid may be repre-

sented by a convergent series in Equation 23.09,

in accordance with §22-23. If this series was not

convergent, we could not have proceeded beyond
Equation 23.09.

10. From Equations 23.10, we have also

GA 2o = ioD
2a 2

)
IQ2(i cot a )

23.12
iiG) 2

a'l

using Equations 22.52. The coefficient iA 2o can

accordingly be computed definitely for a particular

base spheroid. Finally, the geopotential can be

written in the spheroidal coordinates (u, a) as

-W=GMa/(ae)+GA 20Q2 (i cot a)P2 (sin u)

23.13 +{Wa 2-Wa 2P2 ( sin «)}

in which (ae)=ao sin «o is an absolute constant,

while we have

23.14 a = ao sin ao cosec a.

The term within braces in Equation 23.13 arises

from rotation, and is equally well expressed by

W(x2 + f).

We may note that if we have d> = 0, the potential is

the same as we obtained for the static case in

Equation 23.06.

THE STANDARD POTENTIAL IN
SPHERICAL HARMONICS

11. For the same mass distribution, whatever that

may be, the spherical and spheroidal coefficients

are related by Equation 22.60, which in the sym-

metrical case (m = 0) takes the form

{ae \" +1 nl

3-5 .. . (2n+ i;

'

. 2n + 1

23.15

A( n- 2 ),

. (2/i + l)(2n-l) ,
~x—: A( n .

2-4 o +

Because the only nonzero spheroidal coefficients

are A 2$ and A 00, the Co are zero if n is odd, as we
should expect from the equatorial symmetry of the

model. We can rewrite the last equation, after

considering the terms of lowest degree in the A's, as

23.16 Cn
(_)(»/2)+l( Qe )n+l

(n+l)
iAc

niA no

U + 3)J

in which n is to have only even values. To reflect

this restriction to even values, we may write

(2/i — 2) for n so that

C(2n-
{~)"{ae) 2n - 1

(2n~2), Q-

(2/7-1)
iA oa +

(2n-2)iA 20

(2/i+

V

23.17

3 cot a — a ( 1 + 3 cot2 a )

in which the range of n is from unity to infinity.

The geopotential, including the rotation term, can
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now be written in the form

G

W * (2n+ l)iA 00 +(2n-2)iA 20

H = l

(2n-l)(2n + l)

i<u
2
(*

2 + y
2

23.18 x (

%1
2
" - P2n-2 (sin </>)+- ^

in which $ is the geocentric latitude. For substitu-

tion in this equation, we have A20 from Equation

23.12 and

23.19 A 00= iMI(ae)

from Equation 22.61.

12. We can check this result' by considering the

potential along the z-axis where figure 26, Chapter

22, shows that we have cot a= zl(ae) and sin u = 1

.

In that case, we have from Equation 23.13

-77 =— tan" 1 — +^20<?2 -
G ae \z I \ae

which can easily be expanded as

6' ^ l

' (2n-l)(2n + l) \z)

From this last formula, the expansion in spherical

harmonics, given in Equation 23.18, follows after

restoring the rotation term.

STANDARD GRAVITY ON THE
EQUIPOTENTIAL SPHEROID

13. From Equations 20.05, 22.28, and 22.29, the

magnitude of the component of gravity in the direc-

tion of the inward-drawn normal to a coordinate

spheroid will be

tan a dW , . .\

gn
= (//constant)

v c)a

where a and v are evaluated with respect to the

coordinate spheroid in question. Differentiating

Equation 23.13 and using Equations 22.30, we have

23.20 gn=
tanoL

{J + Lp2isinu)}

where J, L are constant over the coordinate spheroid

and are given by

J = GM/(oe)-fw 2« 2 cot a

L — — iGA 2o cosec a Q\ (
/' cot a ) + fw 2a 2 cot a

23.21

in which we have introduced the Legendre func-

tions defined by Equation 22.54. At the pole of the

coordinate spheroid, we have v — a 2
lb and sin u—\

so that

23.22 gp= {b tan a/a 2
){J + L}.

On the equator of the coordinate spheroid, we have

v = a and sin u — so that

23.23 ge= (tan ala){J — ^L}.

Considerations of symmetry show that the normal

component of gravity at the poles and on the equator

is the same as the total gravity at such points.

Somigj'iana's Formula

14. From the last two equations, we have

{gpjb) sin2 u+ (ge/a) cos2 u— (tan a/a 2
)

x{J + LP-,(»\nu)}

= g„vla 2

on substituting Equation 23.20. Using Equations

22.05, 22.06, and 22.10, this last equation is easily

put into the form

9 o 9± _ _ age cos 2
<f) + bgP sin2

</>"•^ 8" (a 2 cos2
(/)+ 6

2
sin 2

(/))
,/2

in which </> is the latitude of the normal to the

coordinate spheroid; a, b are the semiaxes of the

coordinate spheroid; and ge , gp are the values of

gravity on the equator and at the poles of the

coordinate spheroid. The formula, due originally to

Somigliana, gives the component of gravity normal

to the coordinate spheroid in latitude 4>. If the

coordinate spheroid is the base equipotential sur-

face of the standard field, then g„ is the total force

of gravity, but the formula is of more general

application and gives one component of gravity

normal to the coordinate spheroid at any point in

space.

Clairaut's Formula

15. With some manipulation and use of Equation

23.12, we may rewrite L in Equations 23.21 as

3L (or cot a){a 2
Q>{i cot a u )

— af
t
Q>{i cot a)}

23.25

Q-2 (i cot a„)

ia>
2a$Qi(i cos a)

Q2 (i cot a )

From Equations 23.22 and 23.23, we have also

23.26
gp ge_ tan a 3L

a 2
X

2
;

b a
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on the base (equipotential) spheroid (a = au), this is

gp ge _ (o-Qi{i cot go)
23.27

(i cot a{))Q-2{i cot «<>)

which, if we use the expansion in Equation 22.48,

reduces to

it
b

.&-J«»(i. tan L
aor 2^ tan4 «„ + .).

23.28

If we omit the small terms in tan a», this equation

reduces to the classical Clairaut equation. It should

be noted that Equation 23.28 applies only on the

equipotential spheroid. The corresponding equation

at other points in space is Equation 23.26 with

Equation 23.25.

Pizetti's Formula

16. From the metric in spheroidal coordinates in

Equation 22.25. an element of area dS of a coordi-

nate spheroid is

dS = av cos a cos u du d<o= av cos a d(s'm u)du).

Integrating Equation 23.20 over the spheroid, we
have

g„dS = I ae{J + LP-2 (sin u)}d(sin u)doj

23.29 ^jraej.

Next, we eliminate L between Equations 23.22 and

23.23 in much the same way as we eliminated ./ to

obtain Clairaut's formula. We have

a b

3J tan a _ 3aeJ _ <\?iraej

a 2 arb v

where v is the volume of the coordinate spheroid.

Also, from Equations 23.21, we have

4naeJ = \ttGM - 2& 2v23.31

so that

23.32 (—+¥)v=l gndS = \ttGM- 2oj 2v .

This last equation applies to any of the coordinate

spheroids, provided g„ is the component of gravity

in the direction of the inward-drawn normal to the

spheroid. From Equation 20.05, we have

where ds is an element of length along the outward-

drawn normal and W is the potential given by Equa-

tion 23.13. The divergence theorem of Equation

9.17 <rives

gndS :

dW
ds

dS= MVdV=^irGM-2u> 2v,

using Equation 20.15. In this equation, M is the total

mass contained within the coordinate spheroid over

whose surface we have integrated. The last two

members of Equation 23.32 are compatible there-

fore if, and only if, the coordinate spheroid we have

been considering contains all the mass. In that

case, we can rewrite Equation 23.32 as

23.33 h—— 4-nGp— 2ar
a b

in which p is the average density obtained by di-

viding the total mass by the volume of the coordi-

nate spheroid. This result is due to Pizetti; it holds

true, not only for the equipotential spheroid, but

also for any coordinate spheroid enclosing all the

mass.

General Remarks on Gravity

17. If we know the dimensions of the equipoten-

tial spheroid, then ge and g,, are directly related

by the Clairaut Equation 23.28; we need to know
only one of these quantities, for example, ge . The
Somigliana Equation 23.24 then gives us gravity at

any point of the equipotential spheroid in terms of

this one constant ge, which is directly related to the

average density or total mass by means of the

Pizetti Equation 23.33. Provided d> is known, the

three Equations 23.28, 23.24, and 23.33 accordingly

allow us to express gravity on the equipotential

spheroid — of known a and b— in terms of a single

constant: either the total mass, or gravity on the

equator, or gravity at any point. Several approxi-

mate formulas are given in the literature, all of

which can be derived from these three exact equa-

tions; the degree of approximation involved appears

in the derivation. The exact equations are not,

however, more difficult to compute. Some formulas

are given in terms of the flattening of the spheroid,

f= (a — b)/a; of the gravitational flattening,

(g,,
— ge)lge : and of the ratio of centrifugal force on

the equator to standard gravity on the equator,

q = a)
2alge . For example, the Somigliana Equation

23.24 can easily be expanded in the form

23.34 g=ge ( \+B 2 sin 2
(b + B, sin 2

2</> + . . .).

If we omit tan 4 a and higher powers in Equation
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23.28, the coefficients become

B,=-f+U-Hqf+^q2

23.35 R^ip-kqf,

omitting P, qp, and higher powers.

18. The international gravity formula, adopted

in 1930, is in the form of Equation 23.34. However,

ge and B2 do not have their theoretical values for a

spheroid of given dimensions, enclosing a given

mass, but were obtained empirically from gravity

measurements. The #4-term was obtained theo-

retically, but is not in line with modern ideas of the

flattening. The 1966 international values of the

constants were

ge= 978.049 cm./sec. 2

B2 = 0.0052884

23.36 Bi=- 0.0000059.

Values recommended by the International Associa-

tion of Geodesy in 1967, and also by the Interna-

tional Astronomical Union, are

ge = 978.031 cm./sec. 2

B 2 = 0.0053024

B 4 = - 0.0000059.

19. In the same way, there are many classical

formulas expressing the coefficients of the second-

and fourth-spherical harmonics of the standard

potential in terms of e or / and q (which usually

appears as m) to various degrees of accuracy; the

usual line of development is to add second- and

third-order terms to Clairaut's first-order result.

However, it is as easy, if not easier, to compute the

coefficients of the second, fourth, or any harmonic

from the exact formula given as Equation 23.18.

STANDARD GRAVITY IN SPACE

20. Because the standard geopotential is inde-

pendent of longitude, there is no component of

gravity in the direction of the parallels of latitude

of the coordinate spheroids. To find the meridian

component, we note that the metric in Equation

22.25 gives an element of length along the meridian

of the coordinate spheroid as

(i> cos a)du.

Accordingly, the magnitude of the northward com-

ponent of gravity in the direction of the meridian is

1 dW
gin

v cos a du

3 sin u cos u

v cos a
[GA 20Q2 (i cot a) — 3ora 2

],

23.37

which is zero (as it should be) on the equipotential

spheroid, where the terms in brackets become zero

by Equation 23.12. The meridian component is also

zero at the poles and on the equators of the coordi-

nate spheroids where u is \tt or zero.

21. At other points in space, we can combine
normal gravity g„, given by the Somigliana Equa-

tion 23.24, with the meridian component g,„, given

by Equation 23.37, to give both the magnitude

and direction of the total gravitational force. If

(f)
is the latitude of the spheroidal normal, then the

latitude of the line of force is

23.38 (j>- tarn- 1
(gm/gn);

and the magnitude of the total force is

23.39 g=(g 2
l + g2yi2_

STANDARD GRAVITY IN SPHERICAL
HARMONICS

22. It is necessary for some purposes and con-

venient for others to have standard gravity ex-

pressed in spherical harmonics. Because the field

is axially symmetric, Equations 23.02 and 23.03

apply; and because the field is equatorially sym-

metric, the rc-odd terms are zero. Accordingly, we
write (2n — 2) for n and substitute for the Cs from

Equation 23.17 to obtain

t A rt ,„ (2n + \)iA {M +(2n-2)iA 2o

g cos d>= 2 (A-)"
{2n-l)(2n + l)

23.40 x

M = l

(ae) 2"- 1

P|„_i(sin (f))
— a)-r cos

(f>

t v> r< \» (2n + 1)L4qq+ (2n — 2)/,4 20**n*=2G(-) ^^
23.41 x %, P2„-i(sin0)

in which (/> is the geocentric latitude and $ is the

latitude of the line of force.

23. From Equations 23.04 and 23.05, we have

similarly
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B**U>-ti-\GH n +

(2»-l)(2fc+l)

(ae) 2 " -1

X
.,„ P,'w-a(8iP0)

23.42

gcos ($ — </>) = ^ G(

23.43

+ a)
1 r sin ^> cos <£

(2n + 1 )i^oo + (2n - 2)i^2o

H = 1

(ae) 2 "" 1

(2/i+l)

X P>„-2 (sin 0)— a;
2
r cos 2 $.

The difference in the two latitudes (</>
— (/>) can be

considered the "deflection" in latitude of the

standard field relative to a centrally symmetrical

gravitational field. There is, of course, no cor-

responding deflection in longitude.

24. On the equator of the base spheroid, for ex-

ample, we have <£ = (/> = 0, and either Equation

23.40 or 23.43 reduces to

ge =-w2a-^ G
(2n + 1 Moo + (2n — 2)iA 2n {ae

)

(2/1+1) a

23.44
1-3-5 . . . (2re-3)

2-4-6
. (2re-2)

CURVATURES OF THE FIELD

25. The curvature parameters of the field can be

evaluated in any coordinate system from Equations

12.162 by contracting the Marussi tensor, in this

case Wrs where W is the standard geopotential.

However, evaluation of the parameters in spheroidal

coordinates is not simple, even though the potential

in spheroidal coordinates includes only two terms.

The covariant derivatives of the potential are found

by successive differentiation of Equation 23.13

and by use of the Christoffel symbols in Equations

22.38 and 22.39. The covariant derivatives are then

contracted with the base vectors of the equipotential

surfaces, which can be found from the matrix

equation

1

[X.' 1
= 1 cos (</> — (/>) —sin

((f)
—

(f>)

v / \0 sin ((/) — (/>) cos (4> — (j))

23.45

T/(i>cos(/>)

l/(v cos a)

where 4> is the latitude of the line of force obtained

from Equations 23.40 and 23.41, $ is the latitude

of the normal to the coordinate spheroid, and the

other quantities v, a also refer to the coordinate

spheroid.

Curvatures in Spherical Harmonics

26. An alternative method is to evaluate the

Marussi invariants of Equations 12.162 in the fixed

Cartesian system, as explained in general in § 21-95

through § 21-98. Components of the tensor Nrs or

Wrs become ordinary differentials of the geopoten-

tial with respect to Cartesian coordinates; these

components are easily obtained from Equations

21.145 through 21.150.

27. In the case we are considering, the only

nonzero harmonic coefficients in the attraction

potential V are Cno, and the only nonzero harmonic

coefficients in the first differentials are obtained

from Equations 21.137, 21.139, and 21.141 as

_B_IV"
dx\G M„ + i), 1

— CnO

8

23.46

By \ G I

'

A (Y.
dz\G

J(«+ I ), 1
— Gnl)

M«+l),() — (/l + l)C)iO-

The only nonzero harmonic coefficients in the

second differentials are given by Equations 21.145

through 21.150 as

C(w+2), o= — 2 (n+ l)(n+2)C„

C(n+ 2), 2
=

2 CjK)

C(n+2),0=— !(n+l)(/l+2)Cfto

C(n + 2), -2
= — 2 Cm)

C(" + 2),..= (n + l)(n+ 2)C„

B-

Bx 1 (I

b-

dy* [l

B-

Bz- (i

B-

(

V
cBxBy

B-

ByBz \ G

a 2 IV
dzdx \G

23.47

0(n + 2). 2 — 2 C»(>

S(n +2), i
— (n + 1 )C„o

C(n +2), i
— (n+ 1 )C„n-



206 Mathematical Geodesy

28. Allowing for the rotation term in the geo-

potential from Equations 21.151 and substituting

in Equations 21.152 for <b= a), we have

23.48 + CP' +2 (sin 0)+£P 2
+2 (sin 0)}

where

A = or sin 2

B = (n+l)(n + 2)(cos-4>-h sin 2
0)

C=— (ti+ 1) sin 20

23.49 Z)=isin 2
0,

and the Co are given by Equation 23.16. To re-

fleet the fact that the only nonzero values of C,,»

occur when n is even, we can substitute {2n — 2)

for n in Equation 23.48 and in the coefficients

B, C, and can use Equation 23.17 for the C(2n-2),o-

As always in spherical harmonic expressions,

is the geocentric latitude in Equation 23.48 and

is the latitude of the line of force, computed,

together with g, from Equations 23.40 and 23.41.

29. The remaining nonzero parameters are given

by formulas similar to Equation 23.48, but with the

following coefficients

for gki: A = co
2

B = -i(n+l)(n + 2)

c=o
23.50 D=-i
for gy 2 : A =i&> 2 sin 20

fl = -f(n+l)(n + 2) sin 20

C =— (n + 1) cos 20

23.51 Z) = isin20

for &
ds

A = — ft)
2 COS 2

fi = -(n+l)(n + 2)(sin 2 0-|cos 2 0)

C=— (n+ 1) sin 20

23.52 Z) = -icos2
0.

From Equation 12.021, the curvature of the lines of

force is y% because we have y\ = in this case.

Equations 23.52, giving the variation in gravity

along the lines of force, provide a rigorous form of

the "free air" or height correction to the value of

gravity on the equipotential spheroid. At points

close to the equipotential spheroid, the correction

would be given with sufficient accuracy by Equation

20.17, which in this case reduces to

dg /l
.

1

23.53
ds

2ft,
2

at points near the spheroidal equipotential; the cor-

rection is often still further simplified by taking

p and i' as a mean radius of the Earth.

30. As a check, we find that the law of gravity in

the form of Equation 20.17, that is,

dg/ds -g(ki+ k2)=-2a) 2
,

is satisfied by each harmonic in Equation 23.48

formed for each of the appropriate parameters.

The remaining parameters ti, yi are found to be

zero, as they should be in the symmetrical field

we are considering. We can also use these results

to determine gravity at points where the curvature

is known. For example, on the equator of the

equipotential spheroid, h\ —— 1/a, and we then have

-SL =^ + G f _^1L
{
_i (n+ l)(„ + 2)P n + 2 (0)

-hPU-AO)}

.•- + G £ <-) (n + 2)/2
L/,(i . . I'd "5 (n+1)

2-4-6 n

with n even. Because n is even, we can rewrite

this equation with (2n — 2) instead of n as

ge_-,. r ^ t

.„ C(2 „- 2) ,„ 1-3-5. .(2/i-D---»HCJH ^^ X
2-4-6.. .(2n-2)'

which agrees with Equation 23.44 if C(2n-2), o is

substituted from Equation 23.17.

31. Another interesting comparison arises from

the fact that — 1/ki for any surface of revolution is

the length of the normal intercepted by the axis

of rotation. Consequently, — (1/Ai)cos0 for the

equipotential surface is the perpendicular distance

between the point under consideration and the axis

of rotation; this distance isrcos0 where is the

geocentric latitude. Substitution in Equation 23.48

for gk] and use of Equations 23.50 give

gcos(f)=— &r rcos0

+ G y^1

T [2-(n + l)(n + 2)cos0/>
, l + 2 (sin0)

n = '

+ 2 cos P'n+2 (sin 0)]

=-w 2 rcos0 + G ]T -^PLt (sin0).
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applying some well-known properties of the Leg-

endre functions. If we write (2n — 2) for n and sub-

stitute for C(2n-2),o from Equation 23.17, this last

result becomes Equation 23.40.

32. This method of determining the curvature

parameters is rigorous and can be applied at any

distance from the equipotential spheroid to any

required degree of accuracy. However, for many
purposes, it will be sufficient to use first-order

formulas close to the spheroidal equipotential;

we shall now investigate this third method, due

originally to Marussi.

Curvatures in the Neighborhood
of the Equipotential Spheroid

33. The curvature parameters at points in the

neighborhood of the equipotential spheroid can

also be found by Taylor expansions along the

normals or isozenithals. 1 For example, in this sym-

metrical case, we have from Equations 12.075

and 12.143, with N or JFas the standard geopotential.

d fl\ , , dbu , d(l/g) 1

dW\kJ ^ ^dN
tan</)

<ty g

dW\k2) dN '
d<f)- g

or, if the principal radii of curvature of the equi-

potential surface are v, p, we have

dv cHl/g)
—^}=— tan <t>

——

—

dW ^ ddj

23.54
dKUg) 1

which can be evaluated on the base spheroid from

Equation 23.24 or 23.34. The expansions to a first

order along the isozenithals follow from the initial

spheroidal values of p, v.

34. We can expand along the normals by using

Equation 14.32, which in this case becomes

'See also Marussi (1950), "Sulla variazione con l'altezza dei

raggi di curvatura principali nella teoria di Somigliana," Bol-

lettino di Geodesia e Scienze Affini, v. 9, 3-9. Marussi does not use

the physical convention for the sign of the potential.

~ 8 dNds

„„ d(lng) d

d(f> d<f)

23.55 g
\d(\ng) d

:g:iIr/ p'dW ft<f> d(f>

'

35. The variation along the normal of the other

nonzero parameter yo can most easily be found by

direct substitution in Equation 20.25; in this case,

that equation becomes, for points on the equipoten-

tial spheroid,

23.56
p d<p\p v

with

_d(hig)
Y1

pd<f>

+
4d)-y..» ll

v

where 4> is the latitude of the normal to the spheroid.

THE GRAVITY FIELD IN GEODETIC
COORDINATES

36. If we are given the position of a point in

geodetic coordinates (oj, 0, h) and if we require

the potential or its derivatives at the point, the

simplest procedure is to convert the geodetic to

geocentric coordinates and then to use spherical

harmonic expressions for the potential or its deriva-

tives. The geodetic and Cartesian coordinates are

related by Equations 18.59, which in our present

notation become

x= ( v + h ) cos 4> cos a>

y— (v-\- h) cos <$> sin a»

23.57 z— {v cos- a-\-h) sin

where v, a refer to the base spheroid of the geo-

detic system. The geodetic and geocentric longi-

tudes are the same; if $, r are the geocentric

latitude and radius vector, we have

23.58

r cos </> = ( i' + h ) cos d)

r sin (/>= (v cos- a + h) sin $.

The same procedure applies to both a general

field and the standard field; the only difference

is in the formulas for the potential and its deriva-

tives, whether for those formulas given in Chapter
21 or for those given in this chapter.





CHAPTER 24

Atmospheric Refraction

GENERAL REMARKS

1. Almost all geodetic measurements of direction

and distance are necessarily made through the

Earth's atmosphere, which refracts the line of

observation into a complicated space curve. The
universal practice is to remove the effect of refrac-

tion by applying corrections to the observations,

the effect of which is to replace the curved line of

observation by the straight chord joining the end
points of the line. In following this procedure, we
shall begin with a rigorous treatment, which may
become necessary in future developments, and then

introduce progressive approximations that are

justified by our present inability to measure com-

pletely the refractive index and its gradient, even

at the two end points.

Atmospheric refraction is particularly important

in the three-dimensional methods used throughout

this book, although no method of reducing the

observations can overcome uncertainty in the

refraction; three-dimensional methods are no better

and no worse in this respect than any other. Ac-

cordingly, we shall treat the subject fully and, in

addition to the rigorous theoretical treatment, we
shall give some account of the empirical methods
in current use.

2. The geometrical corrections depend on the

curvature and torsion of the refracted ray, which

in turn depend on the first and second covariant

derivatives of the index of refraction. The first

approximation will accordingly be to choose a

geodetic model atmosphere, which, in most cases,

allows us to ignore the torsion of the ray and fixes

the direction of the gradient of the index, leaving us

with the problem of measuring the magnitude of the

gradient. The index of refraction itself can be found

from measurements of temperature, pressure, and

humidity, but in the present state-of-the-art some
further assumptions are necessary to establish the

magnitude of the gradient of the index. However,

the meteorologists may before long be able to

supply, in addition to such field measurements as

may be possible, a sufficiently accurate model of

the actual atmosphere at the time and in the lo-

cality of the observations. In that case, the method

of reduction may switch to numerical integration of

the rigorous equations of the ray. Moritz, 1 for ex-

ample, proposes a direct solution of the eikonal

Equation 24.05. In addition, programs are well

advanced to measure by two-wavelength techniques

the total effect of refraction over the observed line

at the time of observation; the theoretical basis of

these methods also will be examined in this chapter.

THE LAWS OF REFRACTION

3. The basic physical law for studying the propa-

gation of light or other electromagnetic waves in a

refracting medium is known as Fermafs principle

which states that light, for example, will follow that

path between two fixed points involving the least

traveltime t. Moreover, the refractive index jjl of the

medium is related to the velocity v of light in the

medium by the equation

24.01 p = c/v

1 Moritz (1967), "Application of the Conformal Theory of

Refraction," Proceedings of the International Symposium
Figure of the Earth and Refraction, Vienna, Austria, March
14-17, 1967. 323-334.
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in which c is the constant velocity of light in a

vacuum. Accordingly, if ds is an element of length

along the path, we have

24.02 pds = (c/v)ds = cdt.

The optical path length or eikonal is defined as

(ct) and denoted by S so that we have

24.03 ct- pds.

This integral has to be a minimum along the actual

path, compared with any other path joining two
fixed terminals. The integral in Equation 24.03 is

taken along the actual path.

4. We may also consider a family of light rays

emitted in all directions from a point source at the

same instant. After a given time t, the fight will

arrive at a surface known as a geometrical wave
front; for different values of t, we shall have a family

of surfaces S = ct= constant. The integral

pds

will have the same value over the actual path

between the source and a given S-surface.

5. We suppose that the medium is isotropic, but

not necessarily homogeneous, so that p is a point

function, having a definite value at each point of

the space considered. In that case, we can transform

the space conformally to a curved space with scale

factor p as in § 10-19. Because of the minimum
principle in Equation 24.03, the rays become geo-

desies of the curved space and S becomes the

length of any of these geodesies between the source

and the transform of the S-surface. The geometrical

wave fronts accordingly transform to geodesic

parallels, and the rays are normal to the wave fronts

in both the transformed and untransformed spaces

because of the conformal properties of the trans-

formation. As in § 10-20, we can say that the basic

gradient equation

24.04 S r = pi.

holds true in the untransformed space. In this

equation, /,• is the unit tangent to a light ray, or the

unit normal to the wave front. Equation 24.04 is

fundamental in geometrical optics, and can be

reconciled with wave theory even though it has been

derived geometrically. Born and Wolf, for example,

derive the equation for short wavelengths both

from the Maxwell equations and from the electro-

magnetic wave equations, and then use the equation

to prove Fermat's principle.- The expression of the

space in Equation 24.04 by means of a single scalar

S and the direction of its gradient, which we have
seen in Chapter 12 can be made the basis of a gen-

eral coordinate system, is equivalent to Fermat's

principle and to other physical laws based on a simi-

lar minimum or variational principle, simply by

giving the symbols an appropriate connotation.

6. Contraction of Equation 24.04 with g
rsSs=pgrs

ls

gives

24.05 S7S=grsSrSs =(JL
2

.

This equation is generally known as the eikonal

equation.

7. Instead of a point source, we could equally well

have considered a family of rays perpendicular

to any given surface, whose transform could initiate

a family of geodesic parallels in the curved con-

formal space. In either case, the gradient Equation

24.04 holds true, and we have already developed

completely the geometry of the rays and of the wave
fronts in Chapters 12, 13, and 14. To use any of the

results in these chapters, all we need do is to change
the notation from (N, n, v r ) to (S, p, lr ).

8. In particular, Equation 12.020 tells us at once

that the principal normal to a ray is an S-surface

vector, the principal curvature of the ray is the arc

rate of change of (In p) in the direction of the princi-

pal normal, and there is no change of (In p) in the

direction of the binormal. These results agree with

§ 10-15. If the principal normal, binormal, and

curvature of the ray are m'\ n'\ x~ we have

24.06

(In p) rm r= x

(In p),-n
r =0.

DIFFERENTIAL EQUATION
OF THE REFRACTED RAY

9. We can eliminate the scalar S from Equation
24.04 by covariant differentiation along the ray.

Using the fact that Srs= Ssr-, we have

(pi,) sl
s = Srsl* = Ssrl

s=
(
pi* ) rl

S = fJLr+pUs
.

The last term is zero by Equation 3.19 because

/.s is a unit vector, so that the intrinsic derivative of

(pi,) along the ray is

8(plr )24.07
55

Pr

- Born and Wolf (1964), Principles of Optics; Electromagnetic

Theory of Propagation, Interference and Diffraction of Light,

2drev.ed., 110-115, 128.
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in which p r is the gradient of the refractive index.

This equation is equivalent to either Equation 24.03

or 24.04. For example, if we expand the intrinsic

derivative, we have

(/X.s/
S

)/, + plrsl
s=:

Pr-

This equation contains the same information as

Equations 24.06, obtained by transforming the basic

gradient Equation 24.04 which we have seen is

equivalent to Fermat's principle.

THE SPHERICALLY SYMMETRICAL
MEDIUM

10. An important particular solution of Equa-

tion 24.07 is obtained by considering the variation

along the ray of the vector product

e
rst

(ixls)p t

in which pt is the position vector. We have

8 (e'-y/sp, ) _.,,, §( pi,)

8s
=£'

8s
p, + e rstplsptk l«

24.08 = e rst
fispt+erst

filslt,

if we remember that p^- is the metric tensor g^--

The last term is the vector product of two parallel

vectors and is therefore zero. For the same reason,

the preceding term also is zero if ps is parallel to

the position vector, that is, if p. is a function of the

radius vector r only. But the left side of the equa-

tion is a tensor, all of whose components are now
shown to be zero. We can say therefore that if

p is a function of r only, we have

8(erstplspt)
24.09

85
=

in Cartesian coordinates. The Christoffel symbols

are zero, and the equation can be immediately

integrated along the ray to show that

24.10 perst
lspt=(p,r sin p)q

r

is constant along the ray where /3 is the angle be-

tween the ray and the radius vector whose length

is r. The vector q
r

is a unit vector perpendicular

to both /, and p r so that q
r

is perpendicular to the

plane — containing /, and p, — which passes through

the origin. Because q' is a constant vector, this

plane must remain fixed, and the ray must be a

plane curve lying wholly within the plane con-

taining the source, the origin, and the initial direc-

tion of the ray. The origin must be the center of

symmetry for p, which could not otherwise be a

function of r only: the refractive index p can,

however, be any continuous function of r. The con-

stant p -surfaces are spheres centered on the origin.

It is clear also from Equation 24.10 that along any

ray in this medium we have

24.11 pr sin ft
— constant.

GEOMETRY OF FLAT CURVES

11. A refracted ray in the actual atmosphere will

approximate to a straight line, and is best treated

as a Taylor expansion from one end. Quantities at

the other end of the line will be denoted by over-

bars. If F is any continuous, differentiable scalar

and if s is the arc length of the ray from the unbarred

end, then the Taylor expansion is

1

ds

24.12

ds
2

d^F

ds3
+ k°-^r)s* +

If the unit tangent, normal, and binormal of the

ray are /
r

, m r
, n r

, if the curvature and torsion of the

ray are x, T, and if we use the Frenet Equations 4.06,

we have

dF/ds = F rl
r

d 2Flds 2 =(Fr l
r
)sl

s= F rsl
r
l
s + xF rm r

d3Flds 3 = F rstl
r
l
s
l> + 2>XFrsm

r
l
s

24.13 +(dxlds)F rm r + xFr(rn r-xl r
).

These successive differentials are evaluated at the

unbarred end of the line.

12. Next, we suppose that F is any one of the

Cartesian coordinates (x, y, z). All components of

the tensors F rs , Frst, etc., are then zero in Car-

tesian coordinates, and are therefore zero in any

coordinate system. The invariant F,m r becomes, for

example x rm r= A rm r
, which is the x-component of

the vector mr
. If p

r
is the position vector, Equations

24.12 and 24.13 in Cartesian coordinates become

p
r= p

r + sl r + $s 2xm r

24.14 +ss 3
{-x 2

/
r +(dx/ds)m r+ XTn r}+ - . .,

which as a vector equation is true at the unbarred
point in any coordinates if we consider a parallel to

p
r through the unbarred point. Also, the equation

is true for any curve which is sufficiently flat

(X, t small) for the Taylor series to be convergent.

It should be noted that x< t, (d\/ds) and all the
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vectors except p
r have their values at the unbarred

point.

13. The difference of the two position vectors

p
r and p

r
is the chord vector whose magnitude and

unit vector will be denoted by (5), kr so that we have

(p>- Pnis={(s)is}k>-

= l
r (i-ixz

s
2

)

+ ni
r
{iXs + :k(dxlds)s

2
}

24.15 +n'-(iX™ 2
),

correct to a second order in the small quantities

X, t. Taking the modulus of this last vector equation

to the same degree of accuracy, we have

{ (s)/s}
2 = 1 -iXV + ix

2
*
2 = 1 -tVx2* 2

24.16 (s)ls=l-iix2
s
2

so that the correction to the arc length s to obtain

the chord length (5) is

24.17 .
_J_ V

'

2
S
3

24 A A
•

14. The angle 8 between the chord and the

principal normal is given by

24.18

cos 8 = is{x + iT^s}

omitting second derivatives of the curvature, if X3 is

the curvature at a point one-third the way along the

ray. Equation 24.17 shows that the factor (s)/s can

be dropped without affecting the result to a second

order. The simple "one-third" rule in this subject

seems to have been introduced first by de Graaff-

Hunter. Equation 24.14 shows clearly that it holds

true, for both plane and twisted curves, as far as

the third-order terms in s 3 in the Taylor expansion

along the line; this is the highest degree of accuracy

we can attain without introducing second derivatives

of the curvature. The validity of the Taylor expan-

sion depends on the existence of successive deriva-

tives of x- For example, Equation 24.18 would not

give the correct answer at a point well outside the

effective atmosphere (x
= 0; dxlds— 0) over a line

extending to the surface of the Earth.

15. Dufour 3 obtains a different formula for the

angle (Itt— 8) between the chord and the tangent

at the starting point of a plane curve. In our present

notation, his formula is

:1 Dufour (1952), "Etude Generale de la Correction Angulaire

Finie (Reduction a la Corde) Pour une Courbe Quelconque

Tracee sur le Plan ou sur la Sphere," Bulletin Geodesique,

new series, no. 25, 359-374.

24.19 $77-8=^1 {(s)-s} Xds.

The integral is taken over the whole curve from the

unbarred to the overbarred end, and the chord

length (5) is considered a constant during the

integration. It will be shown in § 25-16 that, if F is

any scalar, the expansion

24.20 (F-F)= U(F' + F')+ ^sHF"-F")

is correct to a fourth order where the superscripts

refer to successive derivatives of F with respect to

the arc length s. If we take F as the indefinite

integral

(5)
{(5)— 5} xds

and substitute in Equation 24.20, Dufour's formula

becomes

Tr-d=hx+^s 2
\iz+

i_J^x,x^_x_
\ ds (s) (5

To compare this with Equation 24.18, we shall have

to introduce the approximations

dX

cos 8 = 2 tt — 8

when Dufour's formula becomes the same as

Equation 24.18 with the factor (s)/s dropped. The
approximations involve only terms of the third

order in s
:!

. Accordingly, we may say that to a sec-

ond order the two formulas are equivalent, and

either may be used as more convenient. There is

no reason to suppose that Dufour's formula is any

more accurate than the simple "one-third" rule,

which holds true for twisted as well as plane

curves.

16. The angle e between the chord and the bi-

normal is given by

24.21 {{s)/s} cos e = ixT52

in which the factor {(s)/s} can be ignored. But

sx and st are of the same order as the radian

measure of the angles swept out in the whole

course of the ray by the normal and the binormal,

respectively; in the case of a flat curve, sx and st

are small quantities so that 8 and e must be nearly

90°. Compared with cos 8, which is a first-order

quantity, cos e is a second-order quantity and can

often be ignored.
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ARC-TO-CHORD CORRECTIONS

17. The basic physical law of refraction as ex-

pressed by Equations 24.06 does not directly

introduce the torsion, which must, nevertheless,

be expressible in terms of derivatives of (In fx) and

in the direction of the ray if the law is to be sufficient

to settle the course of the ray. To investigate this

matter further, we set up a (w, </>, N) coordinate

system in which we have /V=ln /x, as we can do if

the field is to be defined uniquely at all points by

(In /x) and its derivatives. In this system, the bi-

nomial n' to any ray must be an /V-surface vector

to satisfy Equations 24.06, and is therefore per-

pendicular to both the ray /' and to the /V-surface

normal v'\ Any other vector perpendicular to the

binomial, such as the principal normal m'\ must

accordingly lie in the plane of/' and vr
. If a, B are

the azimuth and zenith distance of the ray in this

coordinate system, the azimuth and zenith distance

of the principal normal will be a, B + ^tt; we can

write then

/' = V sin a sin B + fx' cos a sin B

+ v r cos B

m 1 — k 1 sin a cos B + /x
r cos a cos B

— v r sin B

24.22 n r=—

\

r cos a+(x r sin a

in which the base vectors A.' , fx'\ v v have their usual

significance in a (w, $, N) coordinate system.

18. To determine the torsion of the ray. we con-

tract the third of the Frenet equations in Equations

4.06 with vr to obtain

t= nrsP
r
l
s cosec B

=— Vrsirls cosec )6, using Equation 3.20

= (k> — ki ) sin a cos a— ti( cos 1' a — sin2 a)

+ (yi cos a — y-> sin a) cot B

24.23

in which the parameters have their usual signifi-

cance in a (oi, <£, IV) system, and we have substi-

tuted Equations 24.22, 12.016, 12.046, etc. We may
note from Equation 12.050 that the first two terms

in Equation 24.23 are the geodesic torsion of the

fi= constant surface in the azimuth of the ray. In

the third term, (— yi cos a+ y2 sin a) is the com-

ponent—in the direction of the binomial— of the

vector curvature of the normal to the /x = constant

surface. We can therefore rewrite Equation 24.23

in the alternative form

24.24 T— t— VrsU'v* cot B.

The basic gradient equation of the coordinate

system is

24.25 (In fx)r=— qvr

in which q, corresponding to n in a general (o>, <fr,
N)

system, is the magnitude of the gradient vector

(In jx) r - We can therefore express the curvature of

the ray in the form

24.26 X = (ln ix),m' = q sin ft-

If we specify the initial direction of the ray, the

(In fi) field settles the initial curvature and tor-

sion of the ray and will enable us to trace the course

of the ray throughout.

19. If we differentiate (In /jL),n
r = covariantly

along the ray and use the third of the Frenet equa-

tions in Equations 4.06, we have

24.27 XT= (ln fi)„n
r
l*

as an alternative expression for the torsion.

20. If (a), (jS) are the azimuth and zenith dis-

tance of the chord in the (a>, </>, In /x ) system, we
can combine Equations 24.15 and 24.22 to give

{ (5 )/s } sin {a ) sin (fB )
= A sin a sin /3

+ B sin a cos fi
— C cos a

{ (s )js } cos (a ) sin (/3 )
= A cos a sin /3

+ B cos a cos fB + C sin a

24.28 { (s )ls } cos (B)=A cos p - B sin

in which

s=M* +
*(f7M =i*

24.29 (s)/s=l-^x'V-

where Xs is the curvature at a point one-third the

way along the ray. An alternative expression ob-

tained from the first two equations of Equations

24.28 is

24.30 tan{(a)-a}=-
.
—- — ,

A sin B+ B cos )8

which gives us a direct arc-to-chord correction for

azimuth. If we can neglect C, there is no azimuth
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correction, and the arc-to-chord correction for

zenith distance would be given by

24.31 {{s)ls} sin {(/3)-j3} = fi.

Otherwise, we can compute the zenith distance

correction from the third equation of Equations

24.28.

/i-surfaces in this system are straight so that the

zenith directions are unrefracted. We do not as

yet make any assumptions about the magnitude q
of the gradient of (In p). The only assumption we
have made so far relates to the direction of the gra-

dient of (In p), which will not usually differ from an
exact gravitational model by more than a few min-
utes of arc.

THE GEODETIC MODEL
ATMOSPHERE

21. Investigation of the form of the refracted

ray could be carried without any difficulty to terms
of higher order on the same lines, but we should

then be involved with higher differentials of the

curvature and torsion which we have no hope of

measuring. Moreover, the (In p ) pattern may
change rapidly with time. For these reasons, we
require an atmospheric model, which makes as

few assumptions as possible and leaves room for

such measurements as we can make, such as

measurements of temperature, pressure, and
humidity at the two ends of the line.

22. One possible assumption is that the model
atmosphere is in static equilibrium, which might
be approximately so in settled weather conditions

during the afternoon. This would mean that the

isopycnics — or surfaces of equal density— which
are nearly the same as the surfaces of equal re-

fractive index, are gravitational equipotentials:

the gradient of (In p) is accordingly in the direc-

tion of the astronomical nadir. In that case, vr

in Equation 24.25 is the unit normal to the equi-

potential surfaces: the torsion of the ray can be
calculated from Equation 24.24, which now con-

tains nothing but gravitational parameters and
the astronomical azimuth and zenith distance of

the ray. Equations 24.28 and 24.29 give arc-to-

chord corrections as corrections to the observed
astronomical azimuth and zenith distance of the ray,

provided that we also assume or can measure q,

the magnitude of the gradient of (In p), for sub-
stitution in Equation 24.26.

23. However, the present state of measurement
of the gravitational parameters and of (/ hardly

justifies the use of an exact gravitational model,
which itself rests on the unreal assumption of static

equilibrium. We shall accordingly use a simpler

model in which the isopycnics are A-surfaces

in the geodetic (w, cf>, h) coordinate system, so

that the gradient of (In p) is everywhere in the

direction of the geodetic nadir. The normals to the

ARC-TO-CHORD CORRECTIONS-
GEODETIC MODEL

24. If the refractive index is to be considered

constant over the geodetic h -surfaces, then it

follows from Equation 24.24 that the torsion t of

the refracted ray is simply the geodesic torsion

of the /(-surface through the point under considera-

tion in the geodetic azimuth a of the ray. From
Equation 18.19, we have

24.32 _ (p — v) sin a cos a

(p + h)(v+ h)

in which we have written p, v for the principal

curvatures of the base spheroid in the meridian

and parallel directions, respectively. We shall

know, or can infer, the curvature \ of the ray from

measurements to be described later, and we shall

also know, at least roughly, the length s of the ray.

We can therefore compute the quantities A, B, C,

(s)/s from Equations 24.29. Next, we compute the

arc-to-chord azimuth correction from Equation

24.30, using the zenith distance /3 of the ray at the

end where we are correcting the azimuth. If the

azimuth correction is significant, we determine

the zenith distance of the chord from the third

equation of Equations 24.28. If the azimuth correc-

tion is not significant, and it will seldom be sig-

nificant, we obtain the arc-to-chord zenith distance

correction from Equation 24.31. Finally, the geo-

metrical arc-to-chord distance correction is obtained

from Equation 24.17 as

i ., .,

To the degree of accuracy we are working, this

last correction should be the same if computed
from simultaneous observations for the curvature

at either end of the line; if not, the two corrections

can be meaned. This is not to say, however, that

the curvature x ' s assumed the same at both ends.

25. The system can be simplified if we make some
further assumptions. For example, we can assume
that t can be neglected compared with \- this

assumption can easily be justified for a whole
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series of observations by rough computation of t

from Equation 24.32 compared with an average

value of x- The ray is then a plane curve; there

is no azimuth correction. Equation 24.21 shows

that the chord is perpendicular to the binormal.

The arc-to-chord correction for zenith distance A/3,

known as the angle of refraction, is obtained from

Equation 24.31, dropping the factor (s)/s, as

24.33 A/3=isx£

where X3 ' s the curvature at a point one-third the

way along the ray.

26. If we make the further assumption that x
is the same at all points of the ray, then the angle

of refraction is the same at both ends of the ray

and is given by

24.34 W=isX :

as we should expect, because the ray is now a

circular arc and sx is the angle in radian measure,

subtended at the center of the circle by the ray.

The ratio of x> assumed constant over the ray, to

a mean curvature of the Earth, expressed as the

reciprocal of a constant radius /?, is defined as the

coefficient of refraction 4 / so that we have

24.35 /=x*.

However, this notion is merely a matter of nomencla-

ture and does not introduce any new approximation.

If x is constant over the ray, so is /. Indeed, it is

frequently assumed that /is a constant for all rays

at a given time, and even for all rays at all times

within the afternoon period of minimum refraction.

For optical wavelengths,/ varies at different times

and places between about 0.10 and 0.15; for micro-

waves, /is more likely to be 0.25, depending much
more on the humidity.

27. If we merely assume that x (°r /) is constant

along a particular line and that simultaneous meas-

urements are made of zenith distances /3, /3, then

Equation 25.39 shows that, to a fourth order, the

error in height difference arising from refraction is

T2S-x(sin/3 — sin/3) — -pV s
:i

x cos/3(/c sin/3 + x)

24.36

where k is the normal curvature of the /i-surface

in the azimuth of the line, and we have anticipated

4 In the literature of surveying, the coefficient of refraction is

usually denoted by k, which in this book is mainly used for the

normal curvature of a surface. Sometimes the coefficient is

defined as 1 aR.

from Equations 24.40 that

24.37 dplds=(k sin /3+ x).

For most rays between terrestrial stations, /3 is

nearly 90° and the effect of refraction in Equation

24.36 can be entirely neglected. In fact, the assump-

tion of uniform curvature, combined with simul-

taneous reciprocal measurement of zenith distances

at the two ends of the line, provides surprisingly

accurate results, especially during the afternoon

period of minimum refraction. We can, moreover,

use the reciprocal observations of /3 and /3 to

determine x (or/). We have

/3 - j8 - s(dpids) = s ( k sin /3 + x)

•

If we assume that /3 is nearly 90° and write k=—l/R
where R is a mean radius of the Earth, we have

p-p=(slR)(f-l)

24.38 /=1 +(«/«) 08-/3)

in which /3, /3 are, of course, in radian measure.

The sum of the measured vertical angles at the two

ends of the line (elevations positive) equals (/3 — /3).

28. For the methods of adjustment to be de-

scribed in later chapters, only arc-to-chord correc-

tions (as described in this chapter) should be
applied, together with the velocity correction in

electronic distance measurement (considered in

the following section). We do not require any other

corrections, such as "reductions to sea level" or

to any supposed equivalent curve on the base

spheroid.

VELOCITY CORRECTION

29. All electronic distance measurement sys-

tems in current use measure the time taken by
either light waves or microwaves to travel in air

over the distance to be measured and back. If t is

one-half this measured time, then we have from
Equation 24.03

ct fxds

in which c is the constant velocity of propagation in

a vacuum and the integral is taken over the actual

path from the emitting point P to the distant

point P.

30. If we return to Equation 24.20 and substi-

tute for F the indefinite integral

ixds ,
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then (F— F) is the definite integral

fxas

.

Also, we have F' = jx, F' ~= fx and

F"=~—= ix(\n p ),l
'*= /x(ln p )rv

r cos (3
as

=— fx(\n (x)rm' cot /8 = — /xx cot /3

in which we have used Equations 24.22 and 24.06

and the fact that there is no change in the refrac-

tive index in the A.'- and jx' -directions, which lie

in the constant h -surface and therefore in the con-

stant p-surface of the geodetic model. In the last

equation, /3 is the geodetic zenith distance of the

refracted ray and x is the curvature of the ray. We
have finally

24.39 ct= i s(ji+ fi)+A s
2
((xx cot /3 - fix cot /3).

This equation is very easily solved for s from a pre-

liminary value, obtained by dividing ct by the mean
index. The preliminary value is then used to eval-

uate the second-order term, which under various

disguises is usually known as the "second velocity

correction" or as the "velocity component of the

curvature correction."

31. For example, we have

cos /3— v rl
r

- sin /3(dp/ds )
= vrsl

r
l
s + v r l

rJ s

24.40 =-£sin2 /3-xsin/3

in which k is the normal curvature of the /(-surface,

so that to a first order, we have

(cot /3 — cot (3 )
=— 5 cosec2

/3 (d/3/ds )

—— s (k cosec fi + x cosec2
/3 ).

If, in evaluating this small correction, we consider

that we have /x— fx—l and that x is constant along

the fine, then the velocity correction, considered

as an additive correction to the preliminary value

of 5, is

Y2 s 3 x (k cosec /3 + x cosec2
/3 )

.

If there is no considerable difference in height

over the fine, cosec fi is nearly unity; if we confuse
— \jk with a mean radius R of the Earth and write

/= xR for the coefficient of refraction, the cor-

rection becomes finally

which is the form given by Saastamoinen 5 or

Hijpcke.6 The correction can further be combined
with the geometrical curvature correction (Equa-

tion 24.17) as

24.41A Agi/(2-/).

Saastamoinen 7 combines this result with a further

chord correction to sea level, which we do not

require.

32. In microwave measurements, it is usual to

assume /= 0.25. For precise Geodimeter measure-

ments, Saastamoinen recommends evaluating the

coefficient of refraction by Equations 24.38 from

reciprocal zenith distances or from vertical angles

measured at the same time as the Geodimeter
observations. But if any such special measurements
are to be made, the reciprocal zenith distances

/3, 180°— /3 can enter the precise Equation 24.39

without any of the mass assumptions made in

deriving Equations 24.40 or 24.41. For substitution

in the precise formula, fx and jx will be known from

temperature and pressure measurements at the

two ends. The end curvatures are obtained by differ-

entiation, as we shall see, and will depend on lapse

rates of temperature and humidity.

THE EQUATION OF STATE

33. We have next to consider how the refrac-

tive index and its gradient may be measured or

otherwise determined in order that the curvature

of the ray may be deduced and substituted in

formulas for the arc-to-chord and velocity correc-

tions. This is always necessary in the case of

electronic distance measurements, and may be

necessary in the case of zenith distance measure-

ments when there is a considerable difference in

height over the line and the assumption of con-

stant curvature no longer holds. For this purpose,

we shall require certain physical laws affecting

the behavior of gases: these laws are collected

here for easy reference.

34. At low pressures p and high temperatures T on

the Kelvin (°K.) or absolute scale, p and T are

related to the density p of a gas by the perfect,

24.41 -w^i/(l-/),

5 Saastamoinen (1964), "Curvature Correction in Electronic

Distance Measurements," Bulletin Geodesique, new series,

no. 73, 265-269.
6 Hiipcke (1964), Uber die Bahnkriimmung Elektromagnetischer

Wellen und Ihren Einfluss auf die Streckenmessungen,"

Zeitschrift fur Vermessungswesen, no. 89, 183—200.
7 Saastamoinen, loc. cit. supra note 5.
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or ideal, gas law as

24.42 P = cpT

in which c is a constant for a particular gas.

35. Another required physical law, which is

very nearly in agreement with the latest ideas on

the subject if p, is .nearly unity, is that the refrac-

tivity, defined as (p — 1), is proportional to the

density p of the medium for a particular wavelength

of radiation so that we have

24.43 (p — l)/p = constant,

although the value of the "constant'" will depend

to some extent on the wavelength, as we shall see

later.

36. Because of the difficulty of measuring den-

sities in the field, we need to replace p by other

quantities, such as the pressure and temperature,

which can more easily be measured. If there is

to be no vertical movement of the atmosphere,

and this, of course, is an assumption, then the

change in pressure (dp) between the top and bot-

tom of a column of air of unit cross-sectional area

must equal the weight of air in the column so that

we have

24.44 dp — — pgdh

in which dh is the height of the column and g is

gravity.

Equations for Moist Air

37. We shall see later that dry air behaves very

nearly as a perfect gas, whose equation of state

is Equation 24.42, in which the gas constant is

24.45 c= 2.8704 X 10H
c.g.s. units. 8

If we suppose that moist air also behaves as a per-

fect gas and that both dry and moist air obey

Dalton's law of partial pressures, then the equation

of state for moist air
!)

is

24.46 , V-^fU
in which p, T, p are the pressure, absolute tem-

perature, and density of the moist air, and where
c is the gas constant for dry air,

e= 0.62197 is the ratio 10 of the molecular weight

of water vapor to that of dry air, and

8 Smithsonian Institution (1951), Smithsonian Meteorological

Tables, 6th rev. ed., 280.
9 Ibid., 295.
10

Ibid., 332.

r is the mixing ratio (grams of water vapor per

gram of dry air).

38. In terms of the vapor pressure " e, we have

e _ r

p r+e'

Equation 24.46, after we eliminate r, becomes

cpT cpT
2447 P ~

1 - ( 1 - e) (e/p) " 1 - 0.37803(e/p)
'

39. If it is necessary to consider departures of

moist air, and of the dry air in a mixture, from a

perfect gas, the Smithsonian Meteorological Tables 12

provide the necessary modifications to the formulas

and tables, but this refinement is not necessary in

current geodetic practice.

Integration of Equation of State

40. Combining Equations 24.44 and 24.47, we
have

24.48
dp_ {l-0.37803(elp)}gdh

p cT

which gives, on approximate integration between
limits denoted by subscripts 1 to 2,

In ft)= J^-{1-
0.37803 (e/p) m}(A2-M

24.49

where the subscript m refers to a mean value over

the interval. For routine use, the natural logarithm

is converted to base 10 by means of the relation

log,,, (—) = 0.43429 In (^A-

41. Equation 24.49 is usually known as the hyp-

sometric formula, which is normally used to obtain

a difference in height from simultaneous measure-

ments of p, e, and T at the two ends of a line and

by substitution of a mean of the two end values

for (elp)m and Tm . Mean gravity gm is obtained

sufficiently and accurately by application of the

free-air height correction to the international

gravity formula at an initially estimated halfway

point. Saastamoinen l:! proposes the use of the

"Ibid., 347.
vl Ibid., 295-317.

1:1 Saastamoinen (1965). "On the Determination of the Refrac-

tive Index of Electromagnetic Waves in Mountainous Terrain."

Survey Review, no. 135, 11-13.
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hypsometric formula to obtain, from a large known
difference of height in mountainous country, a value

of Tm , which he claims is better than the mean of

measured temperatures at the two ends. This value

of Tm is used to obtain a mean value of the index of

refraction over the line from Equations 24.54 and
24.57 for use in the reduction of precise Geodimeter
measurements. In the case of optical wavelengths,

uncertainty in e and (e/p),,, is of little importance.

42. An alternative integral of Equation 24.48 in

terms of the temperature lapse rate

l = -dT/dh

is frequently useful in the form

In (^) = {1 - 0.37803 ( e/p ) m } ^~ In &
24.50

A knowledge of the actual mean lapse rate is of

particular importance in the case of lines covering

a considerable difference in altitude, and thus a

considerable range of temperature and pressure. 14

This tormula should give a better answer than

(Tz-TJIh,

even when the difference in height h is accurately

known.

INDEX OF REFRACTION-OPTICAL
WAVELENGTHS

43. The refractivity for a gas, defined as (/a— 1),

depends not only on the density and composition

of the gas, but also on the wavelength of the light.

The dependence on the wavelength A is expressed

by an experimentally determined dispersion for-

mula, which is naturally subject to continual

minor improvements, such as those recently sum-

marized by Edlen. 15 The formula adopted by the

International Association of Geodesy in 1960

is in the Cauchy form of

{(AS
- 1 ) x 10 7 = 2876.04 + 16.288A" 2 + 0. 136A 4

24.51

in which k is the wavelength in microns (10 _t!

meters) of monochromatic light in a vacuum.
The constants in the formula are due to Barrell and

Sears. 16 The formula applies to "standard air" at

a temperature of °C, with a pressure of 760 mm.,
Hg., and with a carbon dioxide content of 0.03 per-

cent. More recent determinations, which are usu-
ally expressed in terms of the wave number (de-

fined as the reciprocal of the wavelength in microns)
and in a different form, suggest that the Barrell

and Sears result is correct to better than one part

in 10 7
.

44. The Barrell and Sears formula gives the re-

fractivity in terms of the wavelength of monochro-

matic light. However, the measurement of dis-

tances in such instruments as the Geodimeter
implies the use of a group of waves of slightly

different wavelengths, which have slightly differ-

ent velocities of propagation in a refracting medium.
In such cases, it is appropriate to use a group

velocity, compounded from the individual waves,

or, what is equivalent, a group index of refraction

given by the formula 1T

24.52

so that we have

dfJLs

(llc,-1) x 107 = 2876.04+ (3 x 16.288R -

24.53 +(5x0.136)\- 4

from Equation 24.51. This formula should be used

in preference to Equation 24.51, even for lasers

in a refracting medium. If a true monochromatic
source ever becomes available, the formula should

still be used if the light is modulated.

45. Measurements are not, of course, made in a

"standard atmosphere,"' and we have to allow for

the effect of different temperatures and pressures

and for a different composition of the air. particu-

larly the inclusion of water vapor. The formula lx

14 See, for example, Rainsford (1955), "Trigonometric Heights

and Refraction," Empire Survey Revieiv, no. 98, 164—177.

15 Edlen (1966), "The Refractive Index of Air," Metrologia,

v. 2, 71-80.

16 Barrell and Sears (1939), "The Refraction and Dispersion of

Air for the Visible Spectrum," Philosophical Transactions of
the Royal Society of London, Series A, v. 238. 1-64. The con-

stants in the international formula, Equation 24.51, have been
derived by substituting t = 0°C. and p=760 mm., in Barrell and

Sears' Equation (7.7), 52.

17 See Born and Wolf, op. cit. supra note 2, 19-21.

'"International Association of Geodesy (1963). Report ofl.A.G.

Special Study Group No. 19 on Electronic Distance Measurement
1960-1963, 2-3. This is the second report of the SSG19: the

first report, delivered at the 1960 Xllth General Assembly in

Helsinki, Finland, has been incorporated in the proceedings of

that Assembly (Secretariat of the International Association of

Geodesy (1962), Travaux de I'Association Internationale de

Geodesie, Tome 21, 62-64). The finally adopted formulas are

given in Resolution 9 of the 1963 XHIth General Assembly in

Berkeley. Calif, (see Secretary General of the International

Union of Geodesy and Geophysics (1965). Comptes Rendus de

la XIIIe Assemblee Generates de I'U.G.G.I., 159-160).
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adopted by the International Association of Geodesy

in 1960 is a slightly simplified version of a formula

due to Barrell and Sears iy and is

24.54 _ 1)=i^(M(fi-D
55 X 10V

(l + at) \760/ (l + at)

where

p.— actual refractive index,

pa — group refractive index calculated from

Equation 24.53,

t= temperature of the air in °C,

p — total atmospheric pressure in mm., Hg.,

e = partial pressure of water vapor content in

mm., Hg.,

a — temperature coefficient of refractivity of air

(or the coefficient of thermal expansion),

(0.003661).

46. The full 1938 Barrell and Sears formula

in the notation and units of the International

Association of Geodesy formula, Equations 24.51

and 24.54, is

(p - 1 ) 106 = [ 0.378125 + 0.0021414X-2

+ 0.00001793X- 4
]

p{l+ (1.049 -0.0157f)p x lO"6
}

X'
(l + at)

24.55 - [0.0624 -0.000680A- 2
] X

l + at)

Barrell and Sears themselves suggest simpli-

fication of the vapor pressure (last) term to the

form given in the international formula, except

that their recommended value of the constant

is 55.6 instead of 55. The constants in the disper-

sion formula — the content of the first brackets —
become the same as in the international formula

for p= 760mm., t= 0, and e — 0. After making this

adjustment, the international formula drops the

term (1.049— 0.0157t)p X 10"6
, which indicates a

slight departure of dry air from the ideal gas law

Equation 24.42. Dry air in the international for-

mula, as thus modified, obeys the ideal gas law,

provided Equation 24.43 takes the form

24.56
(p-l)_ C(PG-1)

p 760a '

which, together with Equation 24.53, exhibits

the dependence on the wavelength of the "con-
stant" in Equation 24.43. In deriving this result,

we have used the fact that

24.57 (l + at)=aT

where T is in °K. According to the latest determi-

nation, °K. equal °C. plus 273.16, which exactly

fit this last formula if a = 0.003661. Equation 24.57

can be said to define the Kelvin scale.

INDEX OF REFRACTION -
MICROWAVES

47. Although a number of slightly simpler for-

mulas have been extensively used for the refrac-

tion of radio waves employed in such instruments

as the Tellurometer, the formula adopted by the

International Association of Geodesy in 1960 is

due to Essen and Froome20 and is

103.49
(p-1) X106 =—^— (p-e)+-

86.26 5748 \

1 + ^^J e

24.58

where
T— temperature in °K. (°C. plus 273.16),

p= atmospheric pressure in mm., Hg.,

e— partial pressure of water vapor in mm., Hg.

48. In place of the first term on the right, the

original Essen and Froome formula contains the

two terms

103.49 177.4

—f Pl+ m P-2

in which p\, p> are, respectively, the partial pres-

sures of dry air and carbon dioxide, so that the

international formula assumes no carbon dioxide

content. In view of the very small proportion of car-

bon dioxide generally present in the atmosphere,

Essen and Froome themselves consider that the

effect can be neglected. We can therefore make p-i

zero, and substitute (p — e) for p\ if p is the total

measured pressure.

49. Interestingly, the first term in the Essen and
Froome formula is simply an expression of the ideal

gas law for dry air, if the density is assumed to be
proportional to (p — 1) and if the electrically deter-

mined experimental value of 288.15 X 10~ H
is sub-

stituted for (p— 1) at 0° C, with a pressure of one
atmosphere. The formula also reflects the fact that

water vapor behaves as an ideal gas at any one tem-

perature. The effect of water vapor on the refraction

of microwaves is much greater than on the refraction

19 Barrell and Sears, op. cit. supra note 16, Equation (7.7), 52.

20 Essen and Froome (1951), "The Refractive Indices and Di-

electric Constants of Air and its Principal Constituents at 24,000
Mc/s," Proceedings of the Physical Society of London, Series
B, v. 64, 862-875.
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of optical waves, and the vapor pressure needs to

be measured about as accurately as the total

pressure.

50. Although short by radio standards, the micro-

waves in common use for distance measurement are

much longer than optical wavelengths. The effect

of different wavelengths in a dispersion formula,

which, on theoretical grounds, could not differ much
from Equation 24.51, would be very small: there is

no sensible effect of group velocity. It is interesting

to note that the dispersion Equation 24.51 for a

wavelength of 1.25 cm., which is too long to have any

appreciable effect, gives (p — 1)= 0.00028760 for

standard air. The experimentally determined figure

of Essen and Froome is 0.00028815. Essen and

Froome performed their measurements at a fre-

quency of 24,000 Mc/s. [MHzJ (wavelength 1.25 cm.),

and they estimated that their results held true for

all wavelengths above 7 mm.

MEASUREMENT OF REFRACTIVE
INDEX

51. Determination of p from Equation 24.54 or

24.58 depends on measurements of temperature,

pressure, and humidity, which can normally be

made only at the two ends of the line. Sufficiently

accurate measures of pressure and humidity can be

made without difficulty, even if this is not always

done in current practice. Humidity is usually ob-

tained from wet-and-dry-bulb temperatures, from

which the vapor pressure can be derived from for-

mulas and tables given in the Smithsonian Meteoro-

logical Tables? 1 Sometimes data may be in the form

of relative humidity, considered equal to

100eM,

where ew is the saturation vapor pressure over water

at the dry-bulb temperature. 22

52. The accurate measurement of air tempera-

ture requires fairly elaborate precautions 2:i which

are not always employed. Angus-Leppan 24 has

found that radiation intensity, as measured by

"black-bulb" thermometers placed on the ground

at the observing station, is a more reliable indicator

21 Smithsoniam Institution, op. cit. supra note 8, 365-369.
22 Ibid., 350-359.
23 See Angus-Leppan (1961), "A Study of Refraction in the

Lower Atmosphere," Empire Survey Review, no. 120. 62-69;

no. 121, 107-119; and no. 122, 166-177. In addition to experi-

mental results, these three papers provide a useful summary of

the subject.
24 Ibid.

of refraction than air temperature measured by

ordinary thermometers: but more work is required

before the appropriate modifications can be made to

Equations 24.54 and 24.58, which in their present

form require the actual air temperature.

CURVATURE

53. The curvature of the ray is found by simply

differentiating Equation 24.54 or 24.58 and using

Equation 24.26. For example, if we differentiate

Equation 24.54 with respect to geodetic height h in

the geodetic model atmosphere, we have

sin (3 dp

p dh

sin /3

p(l + at)
{p — l)a

dt p<; — 1 dp

dh 760 dh

24.59 + 55X10-
dh

with a similar equation for microwaves from Equa-

tion 24.58. We can substitute

24.60
dp

dh
pg- 91.

from Equations 24.44 and 24.42 on the assumption

that the moist air behaves as a perfect gas. The
determination of curvature then depends on a knowl-

edge of the lapse rates — dt/dh, —de/dh, which we
shall consider more fully in the next section.

Approximate Formula — Optical Waves

54. An approximate formula for curvature of

optical paths, based on the assumption that we have

e = 0, is often used. In that case. Equations 24.59

and 24.60 reduce to

24.61
l/n-DsinjS

pT dh c

in which T is the absolute temperature; here,

we have used Equations 24.57 and 24.54 for e= 0.

In most cases, we shall already have computed p.,

and there will be no need to introduce any more
approximations. Bomford 25 derives a formula in

this form without using the international Equation

24.54 for p. However, we have seen in § 24-46 that

the international formula for e = is simply an

expression with appropriate constants of the perfect

25 Bomford (1962), Geodesy, 2d ed.. 212.
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gas law, which Bomford does use, so that Bomford's

result must be equivalent to Equation 24.61 with

some further assumptions. We can combine Equa-
tions 24.61 and 24.54 for e = as

24.62
(fi(;— 1) sin /3 p

760/jLa T2

dZ+ 8
dh c

which should be equivalent to Bomford's

24.63 X=16-5
/' dT

dh
' 0.0334

where p is in millibars, T is in °K., h is in meters, and

X is in seconds per meter. To reconcile the two

formulas, we can use the definition

1 millibar= 0.750062 mm., Hg. (standard). 2 *

Bomford makes the additional assumption that

/3 = 90° and also makes reasonable assumptions for

fie, /x, and g. Such assumptions are not necessary

if we use Equation 24.61 in which c is the gas con-

stant for dry air (2.8704 X 10 K in c.g.s. units). We
can use any realistic value for g, such as the inter-

national formula with a free-air height correction.

55. The question arises whether neglect of

humidity in these approximate formulas is justified

or whether it has been too readily assumed that,

because humidity has little effect on the refractive

index for optical waves, the effect is equally small

on the curvature — that is, on the first differential

of the index. As an example, we take e as the satura-

tion vapor pressure over water at 15° C, which is

about 13 mm., Hg.; p is 760 mm., Hg.; and (jjl ( ,

•
— 1)

is 0.00028. The humidity term in Equation 24.54 is

then about 0.25 percent of the pressure term and

can certainly be neglected. For substitution in the

curvature Equation 24.59, we calculate de/dh from

Equation 24.64 as — 1/210 mm. of pressure per

meter of height. The omitted humidity term within

the brackets of Equation 24.61 is then

55X1Q-9

210

760T

0.00028//

which is about (-0.25 X 10 3 )°K. per meter. If

the temperature lapse rate is 0.0055 °K. per meter,

which is an average figure, the omitted humidity

term is accordingly equivalent to an error of about

5 percent in the temperature lapse rate. At present,

we are unlikely to know the lapse rate within 5 per-

cent, but humidity may become more significant

in the future.

LAPSE RATES

56. We have seen that the curvature and thus

the arc-to-chord and velocity corrections depend
on the vertical gradients of temperature and vapor
pressure. Sufficiently representative values of these

quantities cannot at present be obtained by direct

measurement near the ground. We shall now fill

in the present state of our knowledge of these

quantities.

Humidity

57. All that seems to be known at present about

the lapse rate of vapor pressure (—de/dh) is an

empirical formula by Hann,27 determined in 1915 as

e/c„=10- /! /6300

where e is the vapor pressure at a height of h-

meters above sea level and e () is the vapor pressure

at sea level. Differentiating logarithmically, we have

24.64
de_

dh 6300 x 0.43429

26 Smithsonian Institution, op. cit. supra note 8, 13.

Temperature

58. Some idea of the possible values of the tem-

perature lapse rate can be obtained from Equation

24.63. If we have dT/dh = - 0.0334 °C. per meter,

then the ray is straight. If dT/dh has an even greater

negative value than that figure, the ray will curve

upward; we know from the common observation of

mirage conditions, which do not by any means occur

only in deserts, that this condition is possible close

to superheated ground. Also, we know that tempera-

ture inversions are frequent, especially on clear

nights, and, in that case, dT/dh would be positive

and the ray would be very strongly curved. We can-

not expect to obtain accurate results by assuming
that dT/dh is constant at all times and at all places.

Accordingly, we shall consider first whether the

lapse rate can be assumed constant at certain times,

such as the afternoon period of minimum refraction.

The Adiabatic Lapse Rate

59. Much consideration has been given to the

lapse rate associated with the adiabatic expansion

of air.28 The theory assumes that a given volume of

27
Ibid., 204.

28 For example, de Graaff-Hunter (1913). "Formulae for Atmos-
pheric Refraction and Their Application to Terrestrial Refraction

and Geodesy," Survey of India Professional Paper No. 14, 1-1 14.



222 Mathematical Geodesy

air is heated mainly by radiation from the ground,

not by direct solar radiation, and then rises, without

acquiring or losing any more heat, to an equilibrium

height where its temperature is settled by the out-

side pressure. We may expect the process to be
complete during the afternoon, that is, around the

period of observed minimum refraction.

60. Absolute temperature (T) and pressure (p)

in an adiabatic expansion of dry air are related to

some initial temperature (T ) and pressure (po) by

the equation 29

24.65 TJT= (pn/p)
5

where 8 is the ratio of the gas constant for dry air to

the specific heat of dry air at constant pressure. We
can take 8 as 2/7. If we differentiate this equation

logarithmically with respect to height and use Equa-

tions 24.44 and 24.42, we have

}_dT

T dh
'
z\dp
p dh Tc

so that the adiabatic lapse rate, in a very suitable

form for substitution in Equation 24.61, is given by

dT=_ 2 g
dh

7
c

Using the value for g/c in Equation 24.63, the lapse

rate (—dT/dh) is very nearly 0.01° C. per meter.

Unfortunately, this is almost double what is usually

found during the period of minimum refraction from

reciprocal vertical angle measurements. The reason

for this condition may be that there is some delay in

reaching adiabatic equilibrium, if indeed it is ever

reached. Also, the adiabatic assumption may be

invalidated by acquisition of latent heat through

condensation. Whatever the reason, this value of

the lapse rate is no longer used.

Other Constant Lapse Rates

61. Either of the two standard atmospheres in

common use 30 employs a lapse rate of 0.0065° C.

per meter, which seems too high to fit geodetic

observations at minimum refraction. For such pur-

poses, a rate of 0.0055° C. is usually assumed, but

there are considerable departures from this figure

at different seasons and heights, especially near

the ground. Attempts to measure the local lapse

rate at a ground station by taking temperatures

over a known height difference have seldom given

29 Smithsonian Institution, op. cit. supra note 8, 308.
30 Ibid., 265-268.

satisfactory results, partly because of the difficulty

of accurately measuring the small difference of

air temperatures without elaborate precautions

and partly because such local measurements would
not be sufficiently representative of the air actually

traversed by the ray.

Recent Work

62. Because the assumption of a constant tem-

perature lapse rate appears too drastic, even at

restricted times, various attempts have been made
to find formulas, other than the simple adiabatic

formula, for the variation of temperature with height

(h) and time {t). One such formula,31 based on eddy
conductivity K of the atmosphere, is

T=TQ -lh+Ae~bh sin (qt-bh)

b2 = ql(2K)

in which / is a mean lapse rate and e~bh
is an ex-

ponential damping factor. Other formulas contain-

ing more harmonics have been proposed on much
the same basis. Unfortunately, the eddy con-

ductivity K, which was expected to be constant,

is known now to be even more erratic than the

lapse rate.

63. More recently, Levallois and de Masson
d'Autume 32 have proposed a formula in the form

T= To ~ lh + e-»h
f{t - hIV) + (b(t)

in which V is a velocity of upward transfer of heat;

these geodesists obtained the form of the periodic

functions and the constants from large numbers

of meteorological observations covering a consid-

erable range of altitude and time.

64. Angus-Leppan 33 finds that formulas of the

same type fit the observations within a restricted

range of heights in other localities, but the con-

stants vary considerably with locality; the practical

use of the method seems to be restricted until more

work has been done in a particular area.

65. Meanwhile, the more developed meteor-

ological services could no doubt provide a reason-

able estimate of lapse rate at given heights and

times within a particular locality— for example, by

31 Sutton (1949), Atmospheric Turbulence, 1st ed., 33, 40.

32 Levallois and de Masson d'Autume (1953), "Ltude sur la

Refraction Geodesique et le Nivellement Barometrique,"

lnstitut Geographique National, 1-112.

33 Angus-Leppan, loc. cit. supra note 23.
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interpolation from radiosonde records — particularly

where the observed rays cover a considerable range

in height; undoubtedly, such facilities will increase.

For rays between points at about the same height,

it is very doubtful if our present knowledge has

progressed much beyond the simple assumption

of constant curvature over the path, and the deter-

mination of that curvature from reciprocal vertical

angles. The lapse rate, used in conjunction with

Equation 24.61, is mainly required for rays covering

a considerable difference of height when the

assumption of constant curvature is no longer valid;

but for that purpose, we require representative

values of the lapse rate at the two ends of the ray.

If this information is not available, then the simple

assumption of constant curvature would have to

be made also in this case.

ASTRONOMICAL REFRACTION

66. We have so far considered terrestrial ob-

servations where measurements of temperature,

pressure, and humidity can be made at the ends

of the line and used to sample the actual refractive

index. The gradient of the index, necessary to

establish the curvature of the ray, cannot in the

present state-of-the-art be directly measured, and
we have to rely on more-or-less plausible atmos-

pherical models to provide the necessary lapse

rates. In the case of observations to stars or satel-

lites, the ray passes through the effective atmos-

phere, and it becomes necessary to develop a more
complete atmospheric model based on measure-

ments at one end only of the ray.

67. In all investigations of astronomical re-

fraction so far made, a spherically symmetrical

model is assumed leading to Equation 24.11; the

various investigations which have been made differ

only in the assumed radial variation of the index

of refraction, or of density, or of temperature, and
in the methods used for the further integration of

Equation 24.11. A good historical summary is given

by Newcomb.34 The latest investigation, using a

discontinuous radial variation of temperature in

line with modern meteorology, is due to Garfinkel,35

but even so the values of the atmospheric param-

34 Newcomb (Dover ed. of 1960), A Compendium of Spherical
Astronomy With its Applications to the Determination and Re-
duction of Positions of the Fixed Stars, original ed. of 1906,
173-224.

35 Garfinkel (1944), "An Investigation in the Theory of As-

tronomical Refraction ," The Astronomical Journal, v. 50, 169-179.

Also, Garfinkel (1967), "Astronomical Refraction in a Polytropic

Atmosphere," The Astronomical Journal, v. 72, 235-254.

eters are subject to continual revision as more data

become available.

68. In the spherically symmetrical case, we
have from Equation 24.11

24.66 sin /3
p {)r() sin /3n

where /3 is the angle between the ray and the radius

vector, and the zero subscripts refer to the ground

station. Because the gradient of (In p) is radial and

because the ray is a plane curve, the curvature is

24.67 x= (ln/x)rOTr ={V(ln/u,)} 1/2 sin /3;

we have the variation of refraction along the ray as

24.68 3(ln fi)lds = tin p),l r = - {V(ln /a)} 1 ' 2 cos j8.

The total angle of refraction is

Jx*—

J

tan £
d(\n p)

ds
ds

24.69 FA
p'

p r sin /So

-1/2

<l(\n p)

on substitution of the last three equations. In the

case of astronomical refraction, the limits of inte-

gration are between the ground station and the end
of the effective atmosphere, that is, between p»
and 1. The assumed model atmosphere gives p as

a function of r, directly or indirectly, and the final

integration can always be carried out numerically

no matter how complicated the model.

69. An important case arises in satellite tri-

angulation when the satellite (S in fig. 27) is photo-

graphed against a background of stars. The apparent

direction of the satellite from the ground station

P is PS'. If the satellite is outside the effective

atmosphere, the outward continuation ST' of the

ray to the satellite is straight, and a parallel PT to

ST' gives the total astronomical refraction as S'PT.

To simplify the argument, we can assume that 7"

is a star whose true direction is PT. If the satellite

is assumed to have the same direction as the star,

its true position would lie on PT, whereas in fact,

the true position is at S. Accordingly, the zenith

distance of the satellite, as calculated from the true

position of the background star 7". must be cor-

rected by the angle cr.

70. If we assume that the satellite is at the ef-

fective limit of the atmosphere so that SP is curved

and ST' is straight, then Equation 24.33 applies,
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Figure 27.

and we have

24.70 <T = USP) X2

where X2 is the curvature of the ray at two-thirds

the way along PS. The total atmospheric refrac-

tion is

24.71 <r+i(SP) Xi

where \i is the curvature of the ray at one-third

the way along PS at which point the air is much
denser. The correction angle <x is accordingly much
less than the astronomical refraction. We can

obtain cr direct from Equation 24.70, if we first

calculate the radius vector from the center C of

an assumed spherical Earth to the "two-thirds"

point of PS, and then use appropriate model values

in Equations 24.66 and 24.67. However, we have

assumed that the satellite is at the effective limit

of the atmosphere; a further correction, to be ob-

tained from the geometry of the figure, would be

required if the satellite is well outside the effec-

tive atmosphere at some point on ST'

.

71. As an alternative, we can calculate the total

atmospheric refraction and use Equation 24.71

to obtain cr. In that case, we should calculate \i

at one-third the distance to the limit of the effective

atmosphere in the direction PS, even if the satellite

lies well outside this limit. In effect, as we have

seen in §24-15, Dufour 36 uses this method to

establish quite simple formulas both for the at-

mospheric refraction and for the satellite correc-

tion, using an exponential atmospheric model.

72. Hellmut Schmid 37 obtains an extremely

simple formula that can be translated into our

present notation in radian measure as

24.72

where

cr :

2.33 tan_/3o
x w

(SP) COS 0o

^x
273

1
16

W
760 T

36 Dufour (1964), "Choix de Formules de la Refraction At

mospherique Pour les Observations par Chambres Balistiques,'

Bulletin Geodesique, new series, no. 73, 217-229.
37 Schmid (1963), "The Influence of Atmospheric Refractior

on Directions Measured to and from a Satellite," GIMRADA
Research Note No. JO, 1-17.
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in which p in mm., Hg. and T in °K. are the pressure

and temperature at the ground station. In deriving

this formula, Schmid finds that a is insensitive to

changes in both the astronomical refraction and

the distance to the satellite, unless /3 is larger than

would be tolerated in practice.

MEASUREMENT OF REFRACTION

Distance Measurement

73. Bender and Owens 38 have described the

use of a two-wavelength method for eliminating the

effect of refraction in electronic distance measure-

ments with optical wavelengths. The theory of the

method is simple. From Equation 24.03, the one-

way 39 optical path length is given by

ct =
I pds

in which p. is the actual refractive index from

Equation 24.54, using a standard group index p.(,

where applicable, and the integral is taken over

the actual path. The measured time of travel is t,

so that we may consider S as the measured dis-

tance, if the velocity of light in a vacuum C is used

in conjunction with the measured time. The geo-

metrical path length is, however,

h
so that

A= (fJL-l)ds

represents a correction which must be subtracted

from the measured distance S to obtain the geo-

metrical distance, both distances being measured
along the curved path. If measurements are made
with two wavelengths denoted by subscripts R
and 5, we have two equations

l)ds

(pK — l)ds,

38 Bender and Owens (1965), "Correction of Optical Distance

Measurements for the Fluctuating Atmospheric Index of Refrac-

tion," Journal of Geophysical Research, v. 70, 2461-2462. See
also, Owens (1967), "Recent Progress in Optical Distance

Measurements: Lasers and Atmospheric Dispersion," Proceed-

ings of the International Symposium Figure of the Earth and
Refraction, Vienna, Austria, March 14-17, 1967. 153-161.

39 The measured time in such instruments as the Geodimeter
refers to the two-way path, and would have to be halved.

which can be subtracted to give

24.73 &B-&R= ]A(tiR - l)ds,

where

A = (Ph-Pu)I(PR— 1).

Bender and Owens quote Erickson as having shown
experimentally that A is independent of atmos-

pheric density and is only weakly dependent on

atmospheric composition, so that A may be evalu-

ated for the particular wavelengths and for approxi-

mate actual atmospheric conditions in the Barrell

and Sears Equations 24.53 and 24.54. The A is

then considered constant during the path integration

so that we have

24.74 AB -AR—A I {flR
— l)ds=AAR .

The difference (AB — A«) is measured; A« is calcu-

lated from Equation 24.74 and subtracted from the

measured distance with wavelength R to give the

geometrical path length.

74. The assumption that A is only weakly de-

pendent on atmospheric composition, particularly

the water vapor content, is justified by Barrell and

Sears as well as by Erickson, but only in the case

of optical wavelengths. The effect of water vapor

on microwaves can be seen from the Essen and
Froome formula to be much greater. Nevertheless,

Thompson and Wood 40 have shown that, to the

accuracy now being sought, the neglect of water

vapor pressure can be serious, even in the case of

optical wavelengths, and should be corrected.

Moreover, the correction can be seen from the

full Barrell and Sears formula, Equation 24.55, to

be partly dependent on the wavelength and should

therefore be evaluated from this full formula for

two-wavelength techniques. Thompson 41 has also

suggested measurement at three wavelengths (two

optical and one microwave) to account more com-

pletely for the water vapor effect.

75. The method corrects only for the effect of

40 Thompson, M. C, Jr., and Wood, L. E. (1967), "The Use of

Atmospheric Dispersion for the Refractive Index Correction of

Optical Distance Measurements," Electromagnetic Distance

Measurement, 165-172. A symposium held in Oxford. England,

under the auspices of IAG Special Study Group No. 19. Sep-

tember 6-11, 1965.
41 Thompson, M. C, Jr. (1967), "A Radio-Optical Dispersion

Technique for Higher-Order Correction of Optical Distance

Measurements," Proceedings of the International Symposium
Figure of the Earth and Refraction, Vienna, Austria. March
14-17, 1967, 161-163.

306-962 0-69— 16
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refraction on the velocity of light. A correction for

the curvature of the geometrical path must be ap-

plied separately to derive the chord distance.

Angle of Refraction

76. It is possible to measure the difference in

angles of refraction for two known wavelengths

and thus to determine the angle of refraction for

any other wavelength. The method seems to have

been proposed originally by Nabauer some decades

ago, but is now becoming a practical possibility

through the introduction, mainly by Tengstriim,42

of modern interferometer measurements.

77. A general formula for the dependence of

the refractive index on atmospheric conditions is

24.75 n=l+A(fjL(;-l)+B

where A is a function of temperature and pressure

and B is a function of temperature and water vapor

pressure. The Barrell and Sears formula is, for

example, in this form with values of A and B given

by Equation 24.54. If m is an element of length along

the normal to the ray. the curvature is then given by

[fig- 1) (dA/dm) + (dB/dm)
X l+Aifm-D+B

the total angle of refraction swept out by the tangent

to the ray is

24.76

where

A/3=djL,,-l)P+Q

h (dA/dm)

Q

+ A(/JL<;-l)+B

(dB/dm)

ds

ds.
1+A(iig-1)+B

integrated over the whole length of the ray. The
denominator of the integrands is /x, which differs

very little from unity, and is assumed not to change

significantly when the standard refractive index

ja<; is changed for a different wavelength in accord-

ance with Equation 24.53. The other terms of the

integrands are atmospheric parameters, which are

justifiably assumed constant because the measure-

ments at different wavelengths are made simul-

42 Tengstriim (1967). "Elimination of Refraction at Vertical

Angle Measurements, Using Lasers of Different Wavelengths,"

Proceedings of the International Symposium Figure of the Earth

and Refraction, Vienna, Austria, March 14-17, 1967, 292-303.

taneously and because the two paths cannot be

very different. Accordingly, for two different wave-

lengths denoted by subscripts R and B, we shall

have two equations

(AB)h=((igr-1)P+Q

24.77 (AB) B =(fJLGB-l)P+ Q
in which /xr,«, (Man are obtained for the actual wave-

lengths from either Equation 24.51 or 24.53, de-

pending on whether a phase or group velocity is

appropriate in the circumstances of measurement.

By subtraction, we have

24.78 (AB)b- (Aj3)«= (fiGB- lKm)P,

which determines P if (A/3)« — (A/3)« is known by

simultaneous measurements at both ends of the

line. We cannot, however, determine the humidity

term Q, the effect of which is fortunately small in

the case of optical wavelengths and must either

be ignored or estimated. A similar situation must

arise in the Bender-Owens proposal, probably in

the assumption that A of Equation 24.73 is constant.

78. For any other wavelength, such as a mean
wavelength of daylight or of a luminous beacon, we
can obtain the total angle of refraction from an

equation similar to Equation 24.76. The result will

be between one and two orders of magnitude larger

than the difference ( A/3) /;
— (A/3)k, which must

accordingly be measured to a very high degree of

accuracy.

79. Tengstriim proposes to obtain the separate

angles of refraction at each end. instead of the total

angle of refraction, by a slight extension of the

method. He considers that the tangent to the ray

must be parallel to the chord at one intermediate

point at least, which is certainly the case if the ray

is assumed to be a continuous plane curve: he forms

Equation 24.76 between the nearest such point R
and the observing station O. The two integrals P
and Q must now be taken over the path OR, and

A/3 will be the angle of refraction at O. If it is as

sumed that the point R is the same for both wave-

lengths, which is no more drastic than the earlier

assumption that the two paths are approximately

the same, then two equations similar to Equation

24.77 can be formed, the integral P can be elimi

nated, and the integral Q can be estimated frorr

conditions nearer to the observing station 0. The

angle of refraction at for any wavelength is in this

way determined solely from measurements at



CHAPTER 25

The Line of Observation

GENERAL REMARKS

1. Apart from the effects of atmospheric refrac-

tion, geodetic measurements of angles, distances,

and directions are invariably made along straight

lines in three-dimensional flat space. For example,

the path in electronic distance measurements, which

have replaced direct measurements by Invar tapes

or wires, is necessarily curved slightly by refraction,

but the universal practice is to reduce the measure-

ment to the straight-line distance on the best avail-

able refraction data before using the resulting

straight-line distance for the determination of

positions. In the same way, an optical instrument,

which is used for the measurement of angles or

directions, such as a theodolite, is necessarily

sighted along the tangent to an optical path curved

by refraction. Here again, it is necessary to correct

the measurement to the straight-chord direction

before proceeding further or else to ignore the

effects of refraction altogether. The final results

will be vitiated by the extent to which refraction

has been ignored or imperfectly corrected. There

is no preferred method of computation which will

overcome this defect, although unfounded claims

are still occasionally made that classical or two-

dimensional methods have an advantage in this

respect.

2. For example, it is usual in classical geodesy

to assume that the tangent to the refracted ray lies

in the plane of normal section, that is, the plane

containing the spheroidal normal of the geodetic

coordinate system at the observing station and the

position of the station sighted. But this plane also

contains the straight line joining the two stations,

and so far as subsequent methods of reduction

utilizing only such planes are concerned, the line

of observation might have been assumed to be

straight. This fact is even more obvious when we
consider that the two planes of normal section at

the two stations are. in general, not the same, and

the only line common to them is the straight line

in space joining the two stations. The remaining

operations of classical geodesy — corrections of

observed directions for "geoidal tilt" and elevation

of the station sighted, replacement of the two

curves of normal section by a spheroidal geodesic,

and solution of geodesic triangles on the spheroid

of reference — are purely geometrical. Exactly the

same positions on the spheroid of reference would

be obtained more simply and directly by consider-

ing the line of observation to be a straight line in

three-dimensional space.

3. The effect of refraction on the determination

of relative elevations is, of course, much greater:

as we have seen in Chapter 24, more drastic as-

sumptions have to be made until it becomes pos-

sible to make more complete measurements of

refraction effects. For this reason, calculations for

differences in height are made separately in classical

geodesy in the belief that positions on the reference

spheroid would be vitiated in a three-dimensional

computation. This question will become clearer

when we come to the adjustment of space networks

in Chapter 26. Meanwhile, it is sufficient to say that

a similar separation can be effected, if required,

in a three-dimensional adjustment by using ap-

propriate coordinates.

GENERAL EQUATIONS OF THE LINE

4. We have seen in § 4-2 that the contravariant

equation of a geodesic in three-dimensional space.

227
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that is, of a straight line in three-dimensional flat

space, is

25.01 /';./
s = (r=l, 2,3;

or

25.02
ds
+ TrJs

l'=

where /'' is the unit tangent to the line. These three

equations can be integrated, numerically or other-

wise, in any coordinate system for which the

Christoffel symbols are given to provide the three

contravariant components of the unit tangent,

which can be further integrated to provide the

changes in coordinates along the line.

5. In Cartesian coordinates, for example, the

Christoffel symbols are all zero, and Equation 25.02

tells us that all three Cartesian components of the

unit tangent are constant along the line so that

changes in coordinates are proportional to the

length s of the line. The constant components of

the unit tangent are the direction cosines of the

line (a, b, c): the changes in Cartesian coordinates

are given by

x — x = sa

y— y= sb

25.03 z-z=sc,

or, expressed in terms of the position vectors p',

p' at the two ends of the line as

25.04 p'-p'=5/'',

a vector equation which holds true in any coordi-

nates—provided it is applied to parallel vectors

at the same point in space.

6. The fact that a solution of the problem exists

in Cartesian coordinates shows that a first integral

in any coordinates of the tensor Equation 25.01

can be obtained simply by transforming the Car-

tesian tangent vector (a, b, c). If Cartesian coordi-

nates and components are overbarred, then the

covariant components of the unit tangent in a

general (to, c/>, N) coordinate system are given by

lr= (dxsldxr%
= ax, + by,- + czr

— \r(
— a sin (o + b cos co)

+ fJLr( ~ a sin
(f)

cos co — b sin cf> sin co + c cos c/>)

-\-v,\ + a cos 4> cos &>+6 cos
<f>

sin co+c sin c/>),

25.05

using Equations 12.009. If the azimuth and zenith

distance of the line in relation to the /V-surface

normal are a, (B, we then have from Equation 12.007

sin a sin /3 =— a sin oj + b cos co

cos a sin /3 =— a sin cos (o — b sin c/> sin co

+ c cos <j)

cos /3 = + a cos <j> cos co + b cos c/> sin co

25.06 +csin<£

in which a, 6, c can be considered as constants of

integration. Only two of these equations are inde-

pendent because /, is a unit vector and a 2+b-+ c'
1= l.

We obtain an identity by squaring and adding the

three equations.

7. The (oj, </>, N) components of the unit tangent

are now given by substitution of the appropriate

components of the base vectors V. \,. etc., from

Equations 12.037. 12.041, etc., in Equation 25.05.

We have

(sec (f>)li
=— (ki/K) sin a sin /3

+ (ti/K) cos a sin /3

1-2= (ti/K) sin a sin /3

— {k\/K) cos a sin fi

ls= — sec cp sin a sin p

25.07

and

a(i/n . cos j8
,

— cos a sin tH

(cos c/))/
1 =— &i sin a sin /3

—
1\ cos a sin /3 + yi cos /3

l
2 = — t] sin a sin /3

— A'j cos a sin /3 + y-2 cos (3

25.08 /
:! =ncoSi8

in which, of course, a, /3 have the values given by

Equations 25.06. An alternative expression for the

third covariant component is obtained from Equa-

tions 12.097 as

25.09 l3 =(Un) sec/3 cos &

in which f3 is the zenith distance of the isozenithal

k r and cos d"=/,A'.

8. In terms of the Q-matrix of Equation 19.26

we can rewrite Equations 25.06 in the form

{sin a sin jS, cos a sin /3, cos fi}
= Q{a, b, c},

25.10
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which implies that

Q 7 {sin a sin/3, cos a sin/3, cos/3}= {<v, b, <}

25.11

is constant along the line and verifies Equation

19.27. The last matrix equation expanded for

reference is

a — — sin a» sin a sin B

— sin (b cos oj cos a sin B

+ cos (b cos o) cos (3

b — cos a> sin a sin /3

— sin (/> sin a) cos a sin /3

+ cos (/> sin a; cos /3

25.12 c= cos (/> cos a sin /3 + sin cb cos /3.

THE LINE IN GEODETIC
COORDINATES

9. Using Equations 25.03, we can also write

{5 sin a sin /3, s cos a sin B, s cos /3}

25.13 =Q{(x-x), (y-y), (z-z)},

which enables us to calculate azimuth, zenith dis-

tance, and length of the line if we are given the

latitude and longitude of one end of the line and the

Cartesian coordinates of both ends. This equation

holds true in any (a>, </), N) coordinate system, pro-

vided a, /3, a), 4> all refer to the same system. We
cannot, however, proceed further unless we know
the relationship between the Cartesian and (w, (b, N)
coordinates, that is, unless we specify the particular

(o>, (b- N) system. The simplest results will be ob-

tained if we can express (x, y, 2) directly in terms of

(oj, (/>, N) because, in that case. Equation 25.13

would lead to closed formulas for {s, a, B) in terms

of (at, (b, N). To provide such formulas, we should

integrate Equations 12.009, having first substituted

the components of the base vectors from Equations

12.041, etc., and this would hardly be possible in

the case of a general (w, c/>, N) system. However,

reference to Equation 17.64 shows that we can do

so in a (oj, </>, h) system, provided the equation of

the base surface is expressible in the Gaussian form

of Equation 6.03. We could then rewrite Equation

17.64 in Cartesian coordinates as

X= *o(0), (/>) + /* cos <p cos (O

y=yo(o>, cb) + h cos 4> sin a>

25.14 2 = zo(o), (/>) + /* sin (/>,

substitute in Equation 25.13, and so obtain closed

formulas for s, a, fi. In Equations 25.14, Xo, yo,zo are

the Cartesian coordinates at the foot of the normal
to the base surface (/i = 0), and are functions of

{(1), (b) only.

10. Greater simplicity can be achieved if we
use a symmetrical (a>, (b, h) system, as discussed in

Chapter 18, leading to the Cartesian Equations
18.28 and 18.30. Still greater simplicity results

from the use of a spheroid as base surface because
Equation 18.30 is then integrable and the Cartesian

coordinates are given explicitly by Equations 18.59.

To avoid confusion with the overbars, which in this

chapter we shall reserve for quantities at the far

end of the line, we rewrite Equations 18.59 in terms

of v— the principal radius of curvature of the base

spheroid perpendicular to the meridian — as

x — (i>-\~h) cos 4> cos oj

y—(v + h) cos (b sin oj

2 = (e-j^+/i)sin <j)={v+h)s'm (b — erv sin (b

25.15

in which e is the eccentricity of the base spheroid

and e 2= (l —

e

2
). Latitude and longitude {(b, a>) in

these formulas refer to the straight normals to the

base spheroid. It is apparent from the first two

equations of Equations 25.15, or from Equations

18.28 in the case of a more general symmetrical

system, that v is also the length of the normal,

intercepted between the base surface and the z-axis

of symmetry. We shall in the future refer to the

(o». </), h) system, defined by Equations 25.15, as the

geodetic coordinate system.

11. In the geodetic system, p (the radius of

curvature of the meridian) and v are principal radii

of curvature of the base spheroid because the

parameter t\ is zero in a symmetrical system, and

the principal radii of an /z-surface are given by

Equations 18.02 and 18.01 as

(v + h)=-Ukt

25.16

(p + h)=-llkt

(p + h)(p + h) = \IK.

In any (oj, (b, h) system, we also have n = l so that

components of the unit vector of the straight line

in the geodetic system are obtained from Equations

25.07 and 25.08 as

lr= { {v+ h) cos (b sin a sin /3.

(p + h) cos a sin /3. cos /3}

„_ ,_ , f sin a sin B sec <b cos a sin B
25.17 v =

1
—;— ,—r^ ,

— ——r^

—

.cosB
> + h] (P + h
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in which a, ft have the values given by Equations

25.06. These results agree with Equations 18.14.

Reverse Problem

12. Substitution of Equations 25.15 in Equation

25.13 gives

{s sin a sin ft, 5 cos a sin ft, s cos ft}

= Q{x,y,z}-Q{x,y,z}

= (i> + h )Q{cos
<f>

cos a>, cos </> sin w, sin <f)}

-eV sin 4>Q{0, 0, 1}

— (f+ h )Q{cos (j> cos w, cos 4> shi w - s in <A)

+ e
2
^ sin 0Q{O, 0, 1}

= (i^+^){sin cr sin a*, sin cr cos a*, cos cr}

-(v+ h){0, 0, 1}

— e
2 (v sin § — v sin $){0, cos 0, sin <£}.

25.18

using the auxiliary angles defined in the same nota-

tion in Equations 19.01, etc. These equations solve

what is usually known as the "reverse problem" by

enabling us to compute (5, a, ft) directly from the

geodetic coordinates of the two ends of the line.

If preferred, we could, of course, have computed
Cartesian coordinates of the two ends from Equa-

tions 25.15 for substitution in Equation 25.13.

13. The azimuth and zenith distance at the far

or barred end of the line (produced) are very easily

obtairfed by interchanging overbars and changing

the sign of 5 and cr so that we have

{5 sin a sin ft, 5 cos a sin ft, 5 cos ft}

= Q{x, y, z} — Q{x, y, z}

{v+ h){sin a sin a*, sin cr cos cos cr

+ (v+ h){0, 0, 1}

— e-(i> sin
<f>
— v sin (f>){0, cos </>, sin $}.

25.19

In particular, we notice that we have

s sin a sin ft
= (v+ A)sin cr sin 6c*

— {v + h)cos $ sin (a) — at),

and from Equation 25.18, we have

5 sin of sin j8 = (i> + h)sin a sin a*

= (i> + h) cos 4> sin (a» — a>)

so that

25.20 (i> + A)cos sin a sin /3

has the same value at the two ends of the line, and
is therefore constant along the line. It is of some
interest to compare this last equation with the gen-

eralized Clairaut Equation 18.51 for geodesies on
the A-surfaces, which in this notation is

(v + h) cos
<f)

sin a = constant.

This relation between the straight line in space and
the surface geodesic could be used as a link with

classical methods. Also, we may note from Equa-
tions 25.17 that

[v+ h)cos
(f)

sin a sin ft

is the covariant component A of the line in the

geodetic system. The fact that this component is

constant along the line may be verified from the

covariant form of Equation 25.01, using the Chris-

toffel symbols in Equations 18.34 and 18.35.

Direct Problem

14. If we are given s, a),
<f>,

h, a, (3 and we re-

quire d>, (/>, h, d, jS— which is usually known as

the "direct" problem— then we can rewrite Equa-

tion 25.13 as

{x, y, z} = {x, y, 2}

+ QT{s sin a sin ft, s cos a sin ft, s cos ft}

= {x, y, 2} +s{a, b, c}

,

25.21
which enables us to compute x , y, z directly. From
Equations 25.15, we then have at once

25.22 tanw = y/i,

but some process of iteration is necessary to deter-

mine (/>, h from

{v+ h)cos (/> = (.?- + y-yl'1

and

25.23 (e-^ + /i)sin <j> = z,

starting with an approximate value

tan 4> = zl{e-(x- + y
2

)

il-}.

Azimuth and zenith distance then follow from Equa
tion 19.27. Chovitz ' has shown that iteration wil

not always converge if we have e 2 ^ 2, but this case

does not arise in the present context.

15. Alternatively, we can use one of the differ

1 Chovitz (1967), On the Use of Iterative Procedures in Geodetu

Applications (unpublished manuscript). The paper was reac

at the 48th Annual Meeting of the American Geophysical Union

Washington, D.C., April 17, 1967.
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ential methods developed in the next two chapters.

From Equations 27.19 and 27.20, we have, for

example,

{(v + h) cos 4> da), (p + h)d(j>,dh}

25.24 =A{ds, sdfiu, — s sin (3 dao}

in which the overbars refer to the far end of the line

and ds, rf/3o, dan are corrections to length, zenith

distance, and azimuth at the near end of the line

associated with changes doj, d(f>, dh in the coordi-

nates of the far end. The matrix A is obtained from

the azimuth a and from the zenith distance /3 of the

line produced at the far end as

(sin a sin /} sin a cos /3 —cos a\

cos a sin /3 cos a cos (3 sin a •

cos jQ -sin/3 /

25.25

To apply this method, we start with assumed ap-

proximate coordinates a>, (/>, h at the far end, and

compute s, a, /3, a, /3 from Equations 25.18 and

25.19. We are given "observed" values of 5, a, f3,

and we substitute observed minus computed values

as ds, dao, d[3o in Equation 25.24, which directly

gives corrections dco, d<$>, dh to the initial approxi-

mate values. The whole process is then repeated as

necessary to obtain results of the desired accuracy.

TAYLOR EXPANSION
ALONG THE LINE

16. Subject to the usual conditions of differen-

tiability and convergence, which we shall assume
are satisfied by intuitive physical considerations in

the cases we are going to discuss, or at least are

justified by results, we can expand a scalar function

of position F along a line of finite length s as

(F-F) = sF'+h 2F"+h :iF'

25.26

+ ^js4F""

in which the overbar refers to the value of the

function at the far end of the line, and the super-

scripts mean successive derivatives with respect

to 5. Quantities without overbars, F and its succes-

sive derivatives, are supposed to be evaluated at the

near end of the line. If the derivatives are measured
in the same sense of the line at the far end, that is,

in the direction of the line produced, then the corre-

sponding expansion from the far end of the line is

obtained by interchanging overbars and changing

the sign of s as

(F-F)=sF'-h 2F"+h*F'"-^s AF"" +

25.27

In the mean, we have

(F-F)=h(F'+F')+h 2(F"-F")

+^ss (F'"+F'")

25.28 +^snF""-F"")+ ....

The derivatives can be considered as functions of

position, defined at all points along the line, and can

similarly be expanded as

(F'-F')=sF"+h 2F'"+h :iF""+ . . .

= sF"-h 2F'"+h :iF""~ . . .

so that we have

= s(F"-F")+h 2 (F"' + F"')

25.29 +h :i(F""-F"")+ . . .;

while by direct expansion, as in Equation 25.28,

we have

0=(F"-F")+h(F"'+F"')

25.30 +h 2(F""-F"")+ ....

Multiplying Equations 25.29 and 25.30 by —is and

T2S
2

, respectively, and adding to Equation 25.28,

we can eliminate the third- and fourth-order terms

and can say that

25.31 (F-F)=h(F'+F')+-ks 2(F"-F")

is correct to a fourth order. We could, of course,

have eliminated the second-order term instead of

the third to the same degree of accuracy, but did

not do so because it will usually be possible to

measure the second order, but not the third-order

terms. Also, we could have eliminated the third- and

fifth-order terms instead of the third and fourth,

but this would have no effect on the second-order

term. We could continue the process by adding

equations similar to Equations 25.29 and 25.30,

starting with fourth-order terms, and so could

eliminate more terms of still higher order, but this

also would have no effect on the second-order terms.

We may conclude that Equation 25.31 gives us the

best possible second-order approximation in cases

where we have values of the derivatives at both

ends of the line.

EXPANSION OF THE GRAVITATIONAL
POTENTIAL

17. For the sake of greater generality, we shall

assume in this case that the line is curved and that

its binormal is an equipotential surface vector. In

the case of a refracted ray, this relation is equivalent

to the assumption that the isopycnics are level
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equipotential surfaces. The principal normal (m r
)

to the curved line then lies in the plane of normal

section, as shown in figure 28, where we have also

Figure 28.

shown a unit equipotential surface vector q
r in the

same azimuth as the line l
r

. We then have

l
r = q

r sin (3 + v r cos /3

m r = q
r cos (3 — v r sin f3.

The first differential of the potential along the line is

dlV/ds =Nr l
r = nvrl

r = n cos (3

in which we identify N with the geopotential and n

with gravity. The second differential is

d2Nlds 2 =(Nrl>y s

= Nrsl
r
l
s + Nrl

r
sl

S

— (nsvr + nvrs )l
r
l
s + xnprm

r

in which \ is the principal curvature of the line so

that we have

(lln)d 2N/ds 2 = (\n n)s l
s cos j8

+ vrs(q
r sin (3) (q

s sin (3 + Vs cos /3)

= — k sin2
/3 — x sin j3

+ 2 (In n)sq
s sin /3 cos /3

25.32 + (In n)sv
s cos2

/3

where /r is the normal curvature of the equipoten-

tial surface in the azimuth of the line and where the

zenith distance (3 of the line is measured from the

plumbline to the refracted ray. While k is always

negative,2 \ is usually positive, so that curvature

and refraction have opposite effects in the deter-

mination of the second-order terms of the potential.

The final Taylor expansion is

(N- IV)ln = scos(3 +h 2{- k sin 2
(3 - x sin /3

+ 2(ln n)sq
s sin (3 cos f3

25.33 +(ln n)s^cos 2
/3}.

18. We have seen in § 20-31 that (In n)sv*, the

vertical gradient of gravity, is not at present meas-

urable to a high degree of accuracy. However, from

Equation 20.17, we have

25.34 (In n)sv
s = 2H-2fo 2

ln,

which shows that the vertical gradient is of the

same order as the normal curvatures of the equi-

potential surface. The zenith distance f3 will nor-

mally be near ^77, so that the last term on the right

of Equation 25.32 will usually be small compared
with the first term. Even so, we should require a

knowledge of the vertical gradient in order to deter-

mine k from torsion balance measurements. Subject

to these considerations, everything in Equation

25.33, except the refraction curvatures, can be

measured at both ends of the line; by substitution

in Equation 25.31, we can determine either the

difference in potential or a relation between the

refraction curvatures. It is noteworthy that the

effect of refraction cancels if n\ sin (3 is the same at

both ends of the line. Because n sin (3 is usually

nearly the same at the two ends, this fact means
that to a fourth order in the expansion of the poten-

tial, the effect of refraction depends solely on the

difference in curvature of the ray at the two ends.

19. The difference of potential to a first order is

25.35 N-N= h(n cos (3 + h cos /3).

If gravity n at the two ends is assumed to be the

same, then we have

N-N
25.36 is(cos f3 + cos (3);

this equation is the difference in "height" which

would be obtained by the ordinary surveying process

of calculating "trigonometric heights" from re-

ciprocal vertical angles measured from the plumb-

line. This process accordingly gives heights related

to the first-order difference of potential, comparable

with results which would be obtained from spiril

2 Otherwise, two adjacent plumblines could intersect in air at

points which would have double values of astronomic latitude

and longitude. This is contrary to experience.
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leveling, within the limits of approximation and of

the observing procedure. This first-order result is

unaffected by refraction, which is a second-order

effect, provided that /3, J3 refer to the same ray,

that is, to observations taken at the same time.

EXPANSION OF GEODETIC HEIGHTS

20. Equations 25.32 and 25.33, before the intro-

duction of Equation 25.34, hold true in any (o>, (/>, N)
system. In the geodetic (&>, </>, h) system, we have

n — \ so that

dh/ds = cos /3

25.37 ^^-Asin^-xsin^

in which /3 is now the zenith distance of the refracted

line from the geodetic (spheroidal) normal and k is

the normal curvature of the /?-surface in the azimuth

of the line. From Equation 18.18, we have

25.38 , _ sin2 a cos2 a

(v+ h) (p + h)

21. Including the effect of refraction, the differ-

ence in geodetic heights is given by Equation 25.31

as

h — h—\s{ cos /8 + cos /3

)

+ 1
1
2S

2
(A

:

sin2
i
8 + x sin fi

25.39 -k sin2 £-x sin/3),

correct to a fourth order. It should be noted that

j8, /3 must be measured simultaneously because the

changing refraction would alter the curvature of the

line between observations; the formula has been

derived on the assumption that /3, /3 refer to a single

state of the line. In accordance with the convention

adopted throughout this book, /3 is the zenith

distance of the line produced. The observed zenith

distance at the overbarred end will be (180° — /3).

22. As in the case of the potential, we find that

the effect of refraction cancels if x sin /3 is the same
at the two ends of the line. Apart from the effects

of refraction, the formula obtained from Equation

25.31 for the difference in geodetic heights is ex-

tremely accurate. For example, over a line 80

kilometers long in the worst azimuth, the error in

height is no more than 3 mm. in 2,700 meters, that

is, about one part in a million, compared with exact

calculation from formulas given earlier in this chap-

ter. The second-order terms in this example amount
to 138 mm.

EXPANSION OF LATITUDE
AND LONGITUDE

23. Geodetic latitude and longitude may be

expanded along the line in much the same way as

geodetic heights. For example, the expansion of

longitude in radian measure to a second-order along

a straight line is

25.40 a> — co = si' + h-ojr.j'l*

in which we have

25.41

and

/'
da)

ds
'

sin a sin fi

(v+ h)cos <j>

iwj ri*=-mj r
i
s

_ sin a sin /3(sin </> cos a sin ^3— cos (/> cos /3

)

25.42
(v + h)'

1 cos 2
4>

using values of the Christoffel symbols given in

Equations 18.34 and 18.35. Calculation of the ter-

minal coordinates in this way seldom is justified

in comparison with the exact methods given in

§ 25-14 and § 25-15, but the first-order expansions

are sometimes useful to give preliminary values.

Equations 25.41 and 25.42 are, of course, evaluated

at the unbarred end of the line.

ASTRO-GEODETIC LEVELING
24. In this section, we shall enclose quantities

related to the astronomical system in parentheses,

while quantities not in parentheses are related to

the geodetic system. Quantities at the far end of a

line, whose unit vector is /'' and length is s, will

as usual be overbarred. In § 19-23, we defined

the vector deflection as

A' = (vr ) —vr

and showed that, to a first order, this definition is

equivalent to the classical first-order notions of

deflection. The component of deflection in the di-

rection l
r

is accordingly

A = A'7 r =(cos/3) -cos/3.

At the far end of the line, the component is

A = A'7,.= (cos /3) -cos /3

so that, using Equations 25.36 and 25.39, we have

£s(A+ A)=M(cos)3) + (cos/3)}

— is{ cos /3 + cos /3}

= (l/n){N-N}-{h-h}

25.43 = rise in "trigonometric heights'" minus

the rise in geodetic height along the

line, all to a first order.
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25. The components of deflection A are obtained

to a first order from Equation 19.42 as

25.44

A = A r
/, = (cos (/> 8a>) sin a sin /3

+ (§</>) cos a sin (3

in which So», for example, is the astronomic minus
the geodetic longitude. The astronomic coordinate

is directly measured, and the geodetic coordinate is

carried forward by calculation along the sides of a

triangulation or traverse. Starting from known or

assumed values of (N/n — h), we can accordingly

derive values of (N/n — h) at all other points. If N
is the potential relative to the potential of the geoid,

then N/n is roughly the depth of the geoid below the

observing station, and (N/n — h) is roughly the local

separation of geoid and spheroid. The approxima-

tions involved are, however, equivalent to the

assumption that the deflections are the same at a

point on the topographic surface as the deflections

would be if measurable at a point "vertically"

below on the geoid or spheroid. This assumption

would require the actual plumblines to have the

same curvature as the geodetic normals. At points

not much above the geoid (or spheroid) in gravita-

tionally undisturbed country, the approximation

might be justified; but in other circumstances, the

accumulation of error could be serious, and the

results should be accepted with reservation until

such time as they can be checked by other methods.

DEFLECTIONS BY TORSION
BALANCE MEASUREMENTS

26. We have seen that deflections of the vertical,

relating the normals to the third coordinate surfaces

of two (a», </>, TV) systems, usually the astronomic

system and a geodetic (o», (/>, h) system with a

spheroidal base, can be obtained by direct astro-

nomical measurement of latitude and longitude (or

azimuth) and by comparison with the geodetic

coordinates extended from an origin by triangulation

or traverse. The results are, of course, affected by

accumulation of error in the triangulation or trav-

erse. Relative deflections can also be obtained, or

at least interpolated, from measurement of zenith

distances, but the results in this case may be vitiated

by uncertainty in atmospheric refraction. The two

methods may be combined in the adjustment of a

space network, as we shall see in Chapter 26.

27. A third method is to integrate gravity anom-
alies over large areas surrounding the point where
the deflection is required. For accurate results,

gravity measurements should be made over the

entire globe; even so, the results would be vitiated

by smoothing the actual measures of gravity.

28. A fourth method, which we shall now con-

sider, uses the torsion balance as originally pro-

posed by Eotviis — the inventor of the balance — and
since used by Mueller and a few others. Some of

the disadvantages of this method, mentioned in

§20-34, restrict its use to rather flat terrain where
the deflections are of least interest and where
simplified formulas are justifiable. With a view to

the possibility of a more extended future use of

the instrument or of a much improved modern
gravity sensor, we shall consider the basic theory

rigorously so that the nature of any approximations

made may be fully understood.

29. We shall adopt exactly the same notation

as in the spherical figure 15. Chapter 19. The nor-

mals to the equipotential surfaces at the two observ-

ing stations P, P will be v r and V; the fixed vector
/'", represented in the spherical diagramby Q, will

be the unit vector of the straight line PP. In addi-

tion, we shall require a unit vector m r normal to

the plane containing vT and /'. that is, perpendicular

to the plane of normal section at P. This vector

m r
is shown in the spherical figure 29 as the pole

of the great circle PQ. In the same way, the unit

vector m r
is perpendicular to the plane of normal

section_ at P and is shown as the pole of the great

circle PQ in figure 29. The angle between the two

planes of normal section is shown as A in figure 29.

All other quantities shown in figure 15, Chapter 19,

will be required and are connected by Equations

19.01 through 19.18.

30. We shall now consider the integral

25.45 Vrs(m' cosec f$
— m r cosec /3)lsds

along the line PP. The reason for considering an

integral in this form will appear later. In this

integral, vT is the normal to the equipotential

surface at the current point and ds is an element of

length of PP so that we have

I
sds = dxs -

The vector in parentheses is evidently constan

during the integration, so that we have the value

of the integral as

/;
{vr (m r cosec /3 — m r cosec f3)} sdx li

25.46

= [i>,(m r cosec /3 — mr cosec /?)]','

= sin 6 cosec /3 + sin 8 cosec (3

= 2 sin K



The Line of Observation 235

(P)v
T

(Q)l
1

Figure 29.

where 0, are as shown in figure 29.

31. The next step is to obtain an approximate

value of the integral in Equation 25.45 — in terms of

the gravitational parameters at the two ends of the

line — by evaluating the integrand at P and P and
by meaning the results on the assumption that the

integrand varies uniformly along the line. Less

approximate methods of integration, such as the

use of Equation 25.31 with F equal to the indefinite

integral of Equation 25.45, would require measure-
ment of the gradients of the gravitational parameters
which is not at present possible. For our immediate
purpose, it will be easier to evaluate the integrand

in the alternative form

(cosec (3 cosec (i)i>rs €rpq {v
l)
+ v,/ )lQl

s
,

obtained by using the relations

e rp%/v = (sin/8)m r

crpQl„vq = (sin j8 )m
r

.

The value of the integrand at P is accordingly

(cosec /3 cosec P)vrte
rpq (vp+ Vp)lql

l

in which v„ is taken as translated to P by parallel

displacement whose components are accordingly
given by Equation 19.19, so that we have

(vp+ Vp) =(cos $ sin 6o>)A
;
, + (sin cr cos a*)/jLp

+ (1 + cos cr)vp

= (sin cr sin a*)Kp + (sin a cos a*)fip

+ (1 + cos cr)vp,
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using Equation 19.09. We have also

lq
= \q sin a sin /J + \xq cos a sin /3 + I'q cos /3.

Some labor may be saved by evaluating

e™(vp+ vp)lq

first and ignoring terms in vT because we have

VrsV
r = 0.

The curvature parameters are introduced from

Equations 12.016, 12.046, and 12.047 as

h =— vrt\rk*

k-i =— PrsfJi' IX
s

ti=— V rsk
r
IJL

s —— Vrs/A
r\S

25.47 y2 = v, six
rvs

;

we have finally for the value of the integrand at P,

Ip=+ ki sin /3 cosec f3 {sin a cos a(l + cos cr)

— sin a cot /3 sin cr cos a*}

— A'2 sin /3 cosec fl {sin a cos a(l + cos cr)

— cos a cot /3 sin cr sin a*}

+ fi sin /3 cosec /3 {(cos2 a — sin2 a) ( 1 + cos cr)

— cot /3 sin cr cos (a + a*)}

— y i cos /3 cosec /3 { cos a ( 1 + cos cr

)

— cot /3 sin cr cos a*}

+ y2 cos /3 cosec (5 {sin a( 1 + cos cr)

25.48 — cot /3 sin a sin a*}.

The value of the integrand at P is very easily ob-

tained by interchanging overbars in this formula

and changing the sign of cr so that we have

Ip= Jti sin /3 cosec fi {sin a cos «(1 + cos cr)

+ sin a cot /3 sin cr cos a*},

etc.

From Equation 25.46, we then have

25.49 s(IP + Ip)=4. sin K

where 5 is the length PP of the line. The sole as-

sumption made in the derivation of this result is

that the integrand varies uniformly along the line.

Otherwise, all the formulas are exact and, in addi-

tion to the five parameters, require five of the seven

observable quantities (/>, c/>, 8&>, a, (3, a, (3 from

which all other required quantities can be calcu-

lated from Equations 19.01, etc., in accordance
with §19-12.

32. In practice, /3 will be somewhere near 90°

and sin cr will be small so that the second terms

within the braces of Equation 25.48 will be very

small compared with the first terms, and we may
usually write

// — sin fi cosec /8 (1 + cos a)

X { (A'i — k2 ) sin a cos a + t\ (cos2 a— sin2 a)

25.50 — yi cos a cot /3 + y-i sin a cot /3}
-

In this form, the curvature parameters (A"i — k-z),

t\, yi, y-i may be obtained from torsion balance

measurements. In fact, reference to Equation 20.36

will show that the expression within braces could be

obtained by a single torsion balance reading if it

were possible to set the line joining the weights

in the azimuth and zenith distance of PP. Similar

results for measurements at P are obtained by

interchanging overbars in Equation 25.50, if we
remember that, in accordance with our usual

convention, a, /3 refer to the line PP produced
through P, and not to the back direction PP.

33. A further approximation may often be made
in cases where /3 and J3 are nearly \-n by writing

Ir — ( 1 + cos cr ) { ( A'i
— k-z ) sin a cos a

25.51 + Mcos 2 a — sin2 a)}-

Moreover, in these approximate formulas, it will

usually be sufficient to evaluate cv, /3, cr, s from

geodetic coordinates without making astronomical

observations. From Equation 12.050, we can see

that //• in this last result is directly proportional

to the geodesic torsion of the equipotential surface

in the azimuth of the line.

34. If the equipotential surfaces were spheres,

then PP and the normals at P and P would be

coplanar, so that /'', v'\ v r in figure 29 would lie

on the same great circle and A. would be zero. The
magnitude of A, obtained from Equation 25.49, is

accordingly an indication of the departure of the

field from spherical symmetry.

35. So far, we have been working entirely in

astronomical coordinates, but the formulas apply

equally well in any other (w, (/>, N) coordinate sys-

tem, provided we substitute appropriate values of

the curvature parameters. We shall normally work
in the geodetic (o>, </), h) system with a spheroidal

base, as discussed in § 18-20. In that case, we can

evaluate the integrand Ip from whichever equation

of Equation 25.48, 25.50, or 25.51 is appropriate

simply by substituting k\=— 1/v, k-z = —\lp, fi = 0.
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71 — 72 — 0. The azimuths and zenith distances, etc.,

should now properly be computed from the geodetic

coordinates of P and P, but in practice, the co-

efficients of the curvature parameters will be suf-

ficiently accurate if computed in either system of

coordinates. We can similarly evaluate If> in geo-

detic coordinates; by substitution in Equation 25.49,

we have a geodetic value for A. which we shall write

as k(,. We shall write k\ for the value of X, obtained

in the astronomical system from torsion balance

measures of the gravitational parameters. The
geodetic value k (; is the angle between two planes,

one containing the line PP and the geodetic normal
at P and the other containing PP and the geodetic

normal at P; we have, of course, assumed through-

out that the positions of P and P remain fixed in

space, whatever coordinate system is used to

describe these positions.

36. We can now obtain a first-order relation

between (k A — ka) and the deflections at P and P.

For this purpose, we consider changes d(f>, doo

in the latitude and longitude of P in the triangle

CPQ of figure 15, Chapter 19. We have seen in

§ 19-4 that d$>, d(o can arise from either a change

in the coordinate system or a change in the posi-

tion of P. In this case, we consider that dcf), dio

arise from a change in the coordinate system, with

P and P fixed, so that the vector l
r (Q) as well as

the axis of rotation C' are fixed. In the spherical

triangle PCQ, we have

sin Q — cos 4> sin oc cosec CQ.

Logarithmic differentiation of this equation with

CQ fixed gives

cot Q dQ — — tan <$> d<f>+ cot a da

— c?a>(cot a sin cf>
— cot a cos a cot /3 cos cf>)

+ d(f)(cos a cot/3 — tan 06)

on substitution of Equations 19.29. Division by

cot Q — cosec a sin ft tan <£ — cot a cos /3

gives us finally

dQ— (cos a cosec /3 cos 4>)da> — (sin a cosec (3)d(f>.

If we start with geodetic coordinates ax. . <f>(;,
the

changes dco, dxf> to the astronomical system cu 1

,

(/m are (oj.i — o»c), (4>a~4><:) and

dQ= (cm 1

— coo) cos a cosec /3 cos cf>

—
((f) a

— 4><; ) sin a cosec /3

,

with a similar equation

dQ— (riU— air;) cos a cosec ft cos
(f>

— (4>a — <$><:) sin a cosec /S

arising from a change in the coordinates of P.

In this equation, <5, /3 refer as usual to PP pro-

duced, and (o>,4 — wr,), {4>a~4>g) are the deflections

at P. The difference is

dQ-dQ=QA-QG- {Qa-Qg)

= (Qa-~Qa)-{Q<;-Q<,)

= kA ~ kr,

so that we have finally

(A..4
— ka) = — cos a. cosec /3 cos (goi — (be)

+ sin a cosec f3 (4>a — 4>a)

+ cos a cosec (3 cos c/> (om — &>(,)

25.52 — sin a cosec /3 (0i — 4>r,)

.

This single relation, which is in the nature of an

observation equation, does not, of course, deter-

mine the four deflections at both ends of the line.

Observations at the three vertices of a triangle

would give us three equations connecting six un-

known deflections. A fourth point would add two

more equations and two extra unknowns, while

a crossed quadrilateral would provide six equations

for eight unknowns. In theory, a strong network
would eventually provide sufficient and even

redundant equations to determine the deflections

at all points. Nevertheless, the main application of

the method is likely to be the interpolation of de-

flections between known values, which could

be substituted in the observation equations, such as

Equation 25.52, before solution.





CHAPTER 26

Internal Adjustment of Networks

GENERAL REMARKS

1. In this chapter, we shall consider the forma-

tion of differential observation equations for most

of the usual systems of geodetic measurement,

including, in some cases, the derivation of finite for-

mulas that may be necessary to provide computed
values. Differentiation of such formulas leads to

the observation equations. Instrumentation and
observation procedures will be considered only to

the very limited extent necessary to understand

the nature of the resulting measurements insofar

as this affects the formation of the observation

equations. We shall not deal with the formation

and solution of normal equations from the obser-

vation equations; these matters are not peculiar to

geodesy and are best studied in the standard litera-

ture. The old distinction between adjustment by

observation and condition equations is ignored; any

fixed condition can always be turned into an obser-

vation equation by differentiation and given a very

large weight in the solution. The order in which
various systems are treated and the amount of space

devoted to each system have nothing to do with

relative importance, but have been decided partly

by history and mainly by simplicity and continuity

of explanation. Line-crossing techniques are given

last, for example, because they introduce a mini-

mum principle not required in any of the other

systems. Lunar methods are discussed after stellar

triangulation and satellite triangulation, not because
lunar methods are later and more sophisticated,

but simply because they require less explana-

tion in that order. In every case, only enough
detail is given to provide a full understanding of

the method in the general context of this book.

Satellite triangulation, for example, which grows

in sophistication every week, will eventually need
to be presented in a separate book when the rate

of growth slows down enough for a detailed de-

scription to remain in date long enough to justify

publication in print.

THE TRIANGLE IN SPACE

2. If we are given the geodetic coordinates

(a), </>, h) of a Point 1 (fig. 30) and have also the

Figure 30.

geodetic azimuth, zenith distance, and distance

(«i2, )3i2, 5i2>^>f Point 2 from Point 1, we can com-

pute (a), <£, h, «i2, /3i2) at Point 2 from formulas

given in this chapter. If we are also given (ai 3 , /3 J3 )

239
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at Point 1 and (a^s, ^23) at Point 2, then the posi-

tion of Point 3 can be found by intersection, but in

order to compute the position of Point 3, we have to

solve the triangle 123 for the two sides (513, 52.5).

We can always do this by computing the angles

312 and 123 from azimuths and zenith distances, by

deducing the third angle 231, and then by applying

the rule of sines. For example, we have

cos 312 = cos /3i2 cos /3i3

26.01 + sin /3i2 sin j8m cos (ai2
—

CK13).

We are here dealing with computations in geodetic

coordinates; the as and j8s are referred to the

geodetic or spheroidal normal and are assumed to

be free of error. Later in this chapter, we shall relate

the geodetic quantities to .actual measurements,

necessarily referred to the astronomical zenith and

subjected to atmospheric refraction and observa-

tional error; but for the present, we are merely

discussing operations in the geodetic coordinate

system on the assumption that we are given a con-

sistent set of quantities in that system. In that case,

the two lines in space, 13 and 23, will intersect in

a unique Point 3, whose position will be the same
whether it is computed from Point 1 or from Point 2.

3. Alternatively, we obtain direct expressions

for the sides (513, 523) in a convenient matrix form.

The basic vector equation of the triangle is

26.02 5,2/(2 +523^3 -5l3^3
= 0,

which expresses the condition that there shall be

no change in the Cartesian coordinates of the Point 1

on proceeding around the triangle. As a relation

between vectors, Equation 26.02 is true in any

coordinates, provided that parallels to the vectors

are considered at a single point in space. If we
substitute the Cartesian components of the three

vectors in Equation 26.02 and use Equation 25.11,

we have

Si2QT{sin ttio sin /3i2, cos aV2 sin /3y>* cos ySi 2 }

+ 52sO
r{sin «23 sin ^23, cos 0:23 sin /S23, cos ^23}

— 5i3Qr{sin a vi sin /3K5, cos a yi sin /3 K), cos /3k?} =

26.03

in which overbarred quantities refer to Point 2 and

all other quantities refer to Point 1. We thus have

two independent equations to determine 5 )3 and

523. We can eliminate S13 and so directly determine

S23 if we first premultiply Equation 26.03 by Q and

then by (cos a )3 . —sin 0:13. 0), which gives us

S12 (cos «i3, — sin «i3, 0)

X {sin a v > sin /812. cos «i2 sin /3i2. cos fivi)

— ~"523 (cos ai3, — sin 0:13. 0)

X QQr{sin a23 sin /32 .3. cos a 2 3 sin /3 23, cos ^23}

26.04

This entire operation is equivalent to contraction

of Equation 26.02 with m,, a unit /(-surface vector

at Point 1 perpendicular to /J3, so that we have

m,—K r cos CK13 — /jl, sin an.

In the same way, if we premultiply Equation 26.03

by Q and then by (cos 0:23, —sin 0:23, 0),we have

5i2 (COS «23,
~

~ Sin «23, 0)

X QQr{sin a\2 sin /3i2, cos a Vi sin /612, cos /3il>}

= 5i3 (COS «23, —Sin CX23. 0)

x QQT
{ sin a, 3 sin 1813. cos ai3 sin (3 v.l cos ^8,3}.

26.05

The matrix QQT
is given by Equation 19.25, with

auxiliary angles as in Equations 19.01, etc., and

contains only latitudes and longitudes of Points 2

(overbarred) and 1.

4. The triangle can also be solved by the differ-

ential method given in § 2.5-15 from initial approxi-

mate values of the geodetic coordinates of Point 3.

but in this case, the correction to length ds would

be unknown. Thus, for the line 13. we have three

equations connecting four unknowns: three cor-

rections to t he coordinates of Point 3 and one

correction to the length 13. The line 23 adds

three equations and only one more unknown:

the correction to the length 23. Accordingly,

we have six equations connecting five unknowns,

and the problem is soluble with a complete check

if the data are consistent. If the data are incon-

sistent or refer to a different coordinate system,

we must treat the triangle as part of a network

by methods described in the following sections.

VARIATION OF POSITION

5. We shall now consider first-order changes in

the components of the straight-line unit vector

/' arising from changes dx' , dx' in the coordinates

of the two ends of the line. If we suppose that we
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are working in Cartesian coordinates, then we

have from Equation 25.04

26.06 sl
r= x r -x'\

which can he differentiated as

26.07 sd{l r
) + l

rds = dx' -dx r -

We know from Equation 3.19 that the differential

of a unit vector, which remains a unit vector after

the change is a small vector perpendicular to the

original vector so that d(l') is perpendicular to

/''; if we contract Equation 26.07 with /, (or /,,

which has the same Cartesian components at the

far end of the line), we have

26.08 ds = l,dx' — l rdx'

giving us the change in the length of the line aris-

ing from dx r and dx' . But dx'\ dx' are small vec-

tors at the two ends of the line, and this last equa-

tion is accordingly an invariant equation which

is true in any coordinates, even though we derived

the equation in Cartesian coordinates. We can

substitute the changes in any coordinates for dx'\

dx'\ provided that we substitute the covariant com-

ponents of / r , /r in the same coordinate system.

6. Elimination of ds between Equations 26.07

and 26.08 gives

sd(l') = dx r - dx' - ( lsdxs - lsdxs
) I'

= {dxs -dxs
)(8

r
s
-lr

ls )

26.09 = (dxs— dxs)(msmr -\-nsnr ) ,

using Equation 2.07 and denoting by m'\ n' any
perpendicular vectors which form a right-handed

orthogonal triad with /'". If m.s , hs are parallel vec-

tors at the overbarred end of the line, we can re-

write this last equation as

sd(l') — (msdxs — msdxs )m r + (hsdxs —

n

sdxs )n'\

26.10

which again shows that d(l') is perpendicular to

l
r because it is in the plane of m r and n r

. Moreover,

Equation 26.10 is a vector equation with invariant

coefficients, holding true in any coordinate system.

VARIATION OF POSITION IN
GEODETIC COORDINATES

7. If the azimuth and zenith distance of /'" are

a, /3, we have from Equation 12.007

/' = A'' sin a sin f3 + /jl'' cos a sin /3 + vr cos /3.

26.11

Differentiation of this equation for changes in

a;, (f>,
a, f3 and use of Equations 12.008 or 12.014,

etc., give

d(l') = (fx
r sin </> d(o — p' cos

<f>
dw) sin a sin (3

— (Xr sin da>+ u'dcj)) cos a sin /3

+ (V cos
(f>

dco + fx'dcf)) cos (3

+ m'dfi — n' sin (3 da

26.12

in which we have written

m' — A' sin a cos /3 + /u/' cos a cos /3 — vr sin (3

n'= — A' cos a + jx' sin a
26.13

so that the azimuth and zenith distance of m r are

(a, T7T + /3) and of n r are (§7r+ a, 277"). It is evident

that (/', m'\ n') form a right-handed orthogonal

triad and that m'\ n r can accordingly be used in

Equation 26.10. Also, it must be possible to express

d(lr) in Equation 26.12 completely in terms of

m'\ n 1
' because d(lr), being perpendicular to /',

must lie in the plane of m 1 and nr
. Indeed, we find

after some manipulation

d(l') = m'{efy3+cos <£ sin a Joj+cos a d<i>}

+ n'{— sin (3 da+(sin <f>
sin /3

— cos <j) cos a cos f3)doj

26. 14 + sin a cos f3 dcf)}.

Equating coefficients of m' and n r in this last equa-

tion with the corresponding coefficients in Equation

26.10, we have

sdf3 — m sdx s—m sdxs' — s cos $ sin a daj — s cos a d(j>

26.15

s sin {3 da = — h.^dx- + nsdxs

+ s(sin sin /3 — cos <$> cos a cos (3)da>

26.16 +5 sin a cos (3 drf>,

giving the changes in azimuth and zenith distance

at the unbarred end of the line that arise from

changes of da), d(f), dh and dco, d(f), dh at the two

ends, provided that we use the (a>, </), h) compo-

nents of m.s and n s as given by Equations 26.13 and

provided ms , n x are the (w, <£, h) components of

parallel vectors at the overbarred end of the line.

306-962 0-69— 17
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8. From Equations 19.32 and 26.13, we have

{mi , m-2, m.i} = Sr{sin a cos /3, cos a cos /3,

-sin0}

{«i, n 2 , n-j} = Sr{— cos a, sin a, 0};

26.17

and from Equation 19.39. we have

{mi, m-2, m :! } = STQQr {sin a cos /3, cos a cos ^3,

-sin/3}

{n,, hi, ft.?} = SrQQr{— cos a, sin a, 0}-

26.18

These equations hold true in any (a>, $, N) system.

In the geodetic system, substitution of

-ki = ll(v + h), -k-z = l/(p + h), f,=0, n=\
in Equations 19.31 and 19.32 and use of Equa-
tions 19.34 give

/sec </>/>+ A) 0\
R=(Sr)-> = ll(p+ h)

\ 1/

I (v+ h) cos 0\
26.19 S= (p+ h)

\ 1/

so that we may write

m, m-2
m3

{v+ h) cos<£ ' (p + A)

= {sin a cos j8,cos a cos /3, — sin /6}

ft-i

{v + h) cost/)' (p + h)"
1

26.20 =
{
—cos a, sin a, 0}

and

m
i

m2

(v+ h) cos<j>'
(p+ ^)'

= QQ 7'{ sin a cos /3,cos a cos /3, — sin f3}

n2
-, "3

l(^+/?)cos0 (p + h)

= QQ7'{— cos a, sin a, 0}-

26.21

The matrix QQr
, set forth in Equation 19.25.

depends solely on the terminal latitudes and

longitudes.

9. Some checks may be applied at this stage.

Because the right-hand sides of Equations 26.21

consist of orthogonal matrices and a unit vector,

we can premultiply each side by its transpose and

obtain

+ 7^
(v+ h) 2 cos- (/> (p+ h)

;+ m%= 1

,

26.22

with a similar equation for the components of

hr , together with comparable equations without the

overbars for the components of m r and n r . In

Equations 26.15 and 26.16. we may note that an

alteration in the origin of longitudes could have no

effect on these equations because of the longitudinal

symmetry of the geodetic coordinate system. The
longitude terms must accordingly reduce to some
multiple of (da> — d(o), or, in other words, the co-

efficients of da) and do) must be equal in Equations

26.15 and 26.16. Extracting the da), d<a terms from

these equations, we have

fhi = m x + s cos </> sin a

h\ =ni + s (sin 4> sin /3 — cos
(f>

cos a cos fi),

26.23

which can be verified algebraically from Equations

19.27. 25.18, and 25.21. For reasons which will

appear in the next section, we do not, however,

use these relations to simplify Equations 26.15

and 26.16 at this time.

OBSERVATION EQUATIONS IN
GEODETIC COORDINATES

Horizontal and Vertical Angles

10. We start with approximate geodetic posi-

tions (a>, </>, ft), computed roughly from formulas

given in Chapter 25. In the case of a triangulation,

we may first have to compute the unmeasured side-

lengths from Equations 26.04 and 26.05. If the posi-

tion of a point is computed from more than one

other point, the mean can be accepted. The approx-

imate coordinates are then used to compute

accurately s, a, /3, a, /3 from Equations 25.18 and

and 25.19, and thus to compute the components of

the vectors m r , n r , m r , n r from Equations 26.20 and

26.21. If we could measure geodetic azimuths and

zenith distances, Equations 26.15 and 26.16 would

become the observation equations by substituting

"observed minus computed" values for da and d/3.
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and could be solved in the usual way to provide

corrections dxs
, dx" to the initial geodetic coordi-

nates. However, observations for azimuth and zenith

distance are necessarily made in relation to the

physical plumbline or astronomical zenith, and we
must, in addition, correct the geodetic a, /3 by

adding Equations 19.29 to effect a transformation

to the astronomical system. In Equations 19.29,

Sou, 8(f) will accordingly be the astronomical minus

the corrected geodetic coordinates, with longitude

positive eastward and latitude positive northward

as in figure 12. Chapter 12. In Equations 26.15 and

26.16, dco, d(f) will be the corrected minus the

initially computed geodetic coordinates. Conse-

quently, (8co+dw), {8(f> + d<f>) will be the astro-

nomical minus the initially computed geodetic

coordinates.

11. Two further corrections are necessary. If

no astronomical azimuth has been measured, an

initial direction for the astronomical meridian must

be assumed, and we must add a station correction

Aa to the assumed astronomical azimuth (or sub-

tract Aa from the calculated azimuth). To reduce

the observed zenith distance to the straight line

on which Equation 26.15 is based, we must also add

the angle of refraction A/3 to the observed zenith

distance (or subtract A/3 from the calculated zenith

distance).

12. Application of Equations 19.29 and the cor-

rections Aa, A/3 to Equations 26.15 and 26.16 give

us the following observation equations,

(Observed Minus Computed) Zenith Distance

=— A/3 + fh\d6)ls + rh-zdfyls + m 3dn/s

— mida>ls — models — m^dh/s

— (do) + 8u>) cos c/> sin a— (d(f> + 8(f)) cos a

26.24

(Observed Minus Computed) Azimuth

= — Aa — h\do) (cosec fl)ls — n 2 d(f) (cosec /3)/s

— n3dh (cosec /3)/s

+ nido) (cosec /3)/s + n2 d(f) (cosec /3)/s

+ nadh (cosec /3)/s

+ (da) + 8w)(sin 4> — cos </> cos a cot /3)

+ (d(f) + 8(f)) sin a cot /3.

26.25
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Reverse Equations

13. If measurements have been made at the other

end of the line, as will almost always be the case,

we must form observation equations for the reverse

direction for which the vectors m r , n r , mr , n r are

not the same. The same equations, nevertheless,

hold true if we remember that the initial azimuth

and zenith distance are now (180° + a) and (180° — /3)

and will already have been computed. If we retain

the same overbarred notation for what is now the

initial point, the matrix QQ T remains unaltered;

the vector components at the new initial point are

given by Equations 26.20 as

m. in-.

m3
(v+ h) cos (f)' {p + h

— { sin a cos )8, cos a cos /3, — sin 0}

Til

TT» "3
(v + h) cos (/>' (p + h

26.26 = {cos a, — sin a, 0} ,

while the components at the new far point are given

by Equations 26.21 as

J
ni\ m 2 ]

\{v+h) cos0' (p + h)'
m '

A

\

=QQ r{sin a cos /3, cos a. cos /3, —sin fi}

I

Tl\ Hi
n3

(v+ h) cos 0' (p + h)

~QQ T
{ cos a, — sin a, 0}

26.27

in which we may substitute for QQ T the transpose

of the original matrix QQ T
. The advantage of pro-

ceeding in this manner is that the vectors for the

reverse direction are easy to compute and refer to

the same points as for the forward direction. We
must make the same substitutions for azimuth and

zenith distance in the remaining terms and remem-
ber that the initial point is now overbarred. The
full observation equations for the reverse direction

are then

(Observed Minus Computed) Zenith Distance

= — A/3 — fnidw/s — m>d(f)l s — m3dhls

+ m\do)ls + m 2d(f>ls + m 3dhls

+ (dti) + 8a)) cos 4> sin a

+ (d($> + 8(f)) cos a

26.28
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(Observed Minus Computed) Azimuth

=— Aa + fiida) (cosec ft)/s + n 2d4> (cosec ft ) Is

+ fizdh (cosec ft) Is

— riida) (cosec ft)ls — n 2d^> (cosec ft) Is

— nzdh (cosec ft) Is

+ (do + 80) (sin </>
— cos

(f>
cos a cot ft)

+ {d<J) + 8<f)) sin a cot ft

26.29

in which the components of fn r , m r , n r , n r are now
given by Equations 26.26 and 26.27. The angle of

refraction A/3, the station correction to azimuths

A~a, and the deflections 8oj, 8$ at the barred point

are new unknowns which are not related to Aft,

Aa, 8w, 8<j>.

General Considerations Affecting

the Angular Equations

14. If an astronomical longitude has been meas-

ured, then (do + 8o), which is the astronomical

minus the initial approximate geodetic longitude,

is known. The corresponding terms in the observa-

tion equations can be computed and added to the

absolute terms. This procedure does not ignore the

possibility of random error in the measured astro-

nomical longitude, which would appear in the

residuals. If an astronomical longitude has not been

measured, it may be advisable to assume one from

the general values of deflections in the area. In

that case, the corresponding terms in the observa-

tion equations can be computed with the assumed
value and added to the absolute terms. We should,

however, retain terms — do\ cos
(f>

sin a and

dcui (sin </>
— cos 4> cos a cot ft) in which d(x)\ is a

correction to the assumed astronomical longitude

to be found from the solution. Exactly the same pro-

cedure should be followed for the (d(}) + 8(l)) terms.

15. Apart from numerical considerations, no

reason exists why (do + 80), (d(f)-\- 8(f>) should not

be considered as independent unknowns and

evaluated by the solution, even though the terms

contain the independent unknowns do, d(f). Such
a combination of unknowns does not invalidate any

principle of least squares. 1 We can finally deter-

mine the deflections 8o, 8(f) by subtracting do, d<p.

The adjustment will not, however, be very strong

unless frequent astronomical measures are made.

1 See Thompson, E. H. (1962), "The Theory of the Method of

Least Squares," The Photogrammetric Record, v. 4, 61.

16. If astronomical azimuth is measured, then the

Aa-term is dropped, and any random error in the

measurement appears in the residuals. This pro-

cedure reduces the number of unknowns in the

azimuth equations to the same extent as a meas-

urement of astronomical latitude or longitude, and
suggests that, except for the purpose of fixing an

origin, astronomical longitudes could be replaced

by astronomical azimuths, which are much easier

to measure precisely.

17. When it becomes possible to measure the

angle of refraction, A/3 can similarly be added to

the absolute term. Meanwhile, we cannot treat the

angle of refraction A/3 as completely unknown at

both ends of all lines if the /3-equations are to make
any contribution to the solution. Some assumptions

must be made. For example, we have seen in Chap-

ter 24 that, unless the two stations are at very dif-

ferent heights, the angle of refraction can reasonably

be assumed to be the same at the two ends of the

line. In that case, A/3 could be eliminated by sub-

tracting the observation equation for the reverse

direction of the line from the equation for the

forward direction before solution. This method

would have advantages when reciprocal observa-

tions have been made at both ends of the line at

the same time.

18. Another possibility is to express A/3 as some

function of the length 5 of the line and to assume

that the constants in the expression are the same
for all lines observed from the same station at

about the same time. The solution would then

determine the constants, provided there are not too

many of them. The simplest assumption, which can

give quite good results, is that A/3 is directly pro-

portional to s or to some fixed power of s: in that

case, there will be only one constant per station to

determine. Zenith distances should be observed

along all rays in rapid succession, but the results

could be meaned with similar sets taken at a

different time.

19. Owing to uncertainty in the refraction, the

/3-equations should properly be given less weight.

However, interaction between the a- and /3-equa-

tions in normal terrestrial triangulation is so

limited that weighting has little effect; indeed, the

two sets of equations might be solved separately.

The coefficients of do, dcf), do, d4> in the /3-equations

are all small so that these terms could be omitted

in a first solution. The main function of the ft-

equations, controlled by frequent astronomical

observations, is to interpolate deflections and to
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determine dh, dh. The coefficients of these un-

knowns in the a-equations are, however, small so

that fairly large errors in these coefficients would

have little effect on the determination of du>, d(j>,

da>, d(\> from the a-equations. The one exception

is the term (du) + 8w) sin c/> in the azimuth equa-

tion; it can be inferred from Equation 19.30 that

uncertainty in this term would mainly affect the

determination of Aa.

20. In the case of lines radiating from the origin,

da), d(f), dh are all zero, and astronomical longitude,

latitude, and azimuth should be measured so that

the 8fe», 5(f>, Aa terms can be evaluated. (If astro-

nomical values are accepted as the initial geodetic

elements, then 8a>, 8(f), Aa would all be zero.) The
effect of this procedure on at least two lines will

be to ensure proper orientation of the geodetic

coordinate system by satisfying Equations 19.29.

The inclusion of frequent astronomical observa-

tions will similarly preserve orientation of the

geodetic system.

Lengths

21. The observation equation in geodetic coordi-

nates for a measured distance between stations is

given at once by substituting Equations 25.17 and
25.20 in Equation 26.08 as

(Observed Minus Computed) Distance

= (v+ h ) cos (j) sin a sin fi(da) — dot)

+ (p + h) cos a sin f3 d(f> + cos /3 dh

— (p + h) cos a sin ft dcf) — cos /3 dh

.

26.30

The equation should be divided by a constant of

the same order as the average side-length in the
network so that the equation may have roughly the

same dimensions as the a- and /3-equations. The
length and angular equations may, of course, be
weighted differently if there is reason to do so.

Present (1968) experience suggests that electronic

distance measurements are generally of about the
same order of accuracy as the best angular measure-
ments and that relative weighting is unnecessary.

22. The only correction required in electronic

distance measurements is for refraction; the cor-

rection reduces the actual measurement to the

straight air-line distance between the two stations.

Spirit Levels

23. If the two ends of the line are connected by
spirit levels, it is possible to construct a first-order

observation equation to reflect the measurement
and to include the equation in the general adjust-

ment of the network. The observing procedure
virtually frees the spirit leveling from the effects

of atmospheric refraction and makes the inclusion
of such observation equations in the network ad-

justment of considerable value.

24. The right-hand side of the /3-Equations 26.24

and 26.28 without the refraction terms A/3, A/3

can be considered as a correction to the computed
straight-line geodetic zenith distance, arising from
changes in the end coordinates and from the

change from the geodetic to the astronomical

zenith. Consequently, the "observed" zenith dis-

tance in these equations, apart from observational

error, is the zenith distance of the straight line

measured from the astronomical zenith. To a first

order. Equation 25.36 relates these "observed"
zenith distances (/3), (j3) to the rise h t in spirit

levels from the unbarred to the barred end of the

line, except that the zenith distance at the barred

point in Equation 25.36 refers to the line produced.
In our present notation, Equation 25.36 becomes

fc,=£s{cos (/3)+cos [180°- (£)]}

"*M(j8)-G8)}

because the two zenith distances are nearly 90°. If

we subtract Equation 26.24 for the forward direc-

tion from Equation 26.28 for the reverse direction,

the left-hand side of the resulting equation will be

'computed zenith\ /computed zenith\
2/(,

+ distance at

\unbarred end

distance at

\barred end

26.31

The computed zenith distance at the barred end

will be 180° — /3 where /3 will have been computed
from the initial approximate geodetic coordinates

by Equation 25.19. The right-hand side of the final

observation equation is similarly derived as Equa-

tion 26.28 minus Equation 26.24 without the A/3, A/3

terms.

25. We have used only a first-order formula for
the difference in potential (or spirit levels), whereas
the spirit levels will usually have been measured to

a high degree of accuracy which we have not used.
However, the effect on all the unknowns except dh,
dh will be small, and we should expect to evaluate
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dh, dh within the limits only of the first-order as-

sumption and not to the degree of accuracy of pre-

cise spirit leveling. If the required data are available,

we could first remove the second-order terms from

the measured spirit levels by using Equations 25.33,

in which the x _term should be omitted because, in

this case, we are expanding the potential along the

straight line. In many cases, it would be sufficient to

use geodetic curvatures and standard gravity in

the evaluation of the second-order terms. If allow-

ance is made for the second-order terms in this way,

the adjustment should provide better values of the

geodetic heights.

Initial Values

26. Before the observation equations can be

formed, we must have approximate values for the

geodetic coordinates of all points in the network.

These approximate values can be obtained from

formulas given in Chapter 25. Alternatively, we
can start with very rough positions, obtained from

maps or triangulation charts, and solve some of the

observation equations themselves for corrections

to the initial positions. For this purpose, we could

ignore minor terms, such as deflections in the

azimuth equations, and substitute as best we can

for the angle of refraction and for deflections in the

zenith-distance eauations.

OBSERVATION EQUATIONS IN
CARTESIAN COORDINATES

27. The invariant terms in the observation Equa-

tions 26.24, 26.25, and 26.30 and the equation for

spirit levels, that is,

m,dx'\ m,dx r
, h rdxr

, n rdx r
, l rdx r

, l rdx r
,

can, of course, be evaluated in any coordinate sys-

tem; all that is needed is to evaluate the compo-
nents of the vectors in the proposed system. In

this case, the unknowns dx r
, dxr will be corrections

to the end coordinates, not in the geodetic system

(o>, 4>, h), but in the system which has been used to

evaluate the vector components. If, for example,

we evaluate these invariant terms in Cartesian co-

ordinates, the parallel vectors /,, mr , h r will have

the same components as /,, m r , n r , and the invariant

terms in Equation 26.24, for example, become

mi(dx — dx)ls, m,2(dy— dy)ls, m 3(dz — dz)/s.

This does not mean, however, that we have reduced

the number of unknowns which will appear in dif-

ferent combinations in the observation equations

for adjacent lines. Nevertheless, with the exception

of the length Equation 26.08, we cannot express in

Cartesian coordinates all the observation equations

so far discussed because azimuth, zenith distance,

and the astronomical latitude and longitude cannot

be expressed simply and solely in Cartesian co-

ordinates. We have to find the geodetic coordinates

of points, even to express the Cartesian components
of the vectors, and we have finally to convert the

Cartesian results to the geodetic system. Thus, the

only overall advantage of working in Cartesian

coordinates in the cases so far considered seems to

be that the more elementary Cartesian system is

easier to understand than a curvilinear system.

This conclusion applies only to observation equa-

tions so far discussed for use in connection with

horizontal and vertical angular measurements,

distances, levels, and astronomical measures.

Other forms of measurement, as we shall see, may
indicate different coordinate systems.

28. When required, the Cartesian components of

the vectors /,-, m r , n, are very easily found from

Equations 12.013 and 19.22, that is, from

26.32 [A r , B,, C,} = Qr
{\,, n,, v,}.

The Cartesian components (a, b, c) of /, in azimuth

a, zenith distance /3 are found by contracting this

last equation with /' as

{a, b, c} = Q'{sin a sin f3, cos a sin /3, cos /3},

26.33

which agrees with Equations 25.11 and 25.12. The

Cartesian components of m, in azimuth a, zenith

distance (z7r+ j8) are given by

26.34 Q'{sin a cos f3, cos a cos j8, —sin /3}:

the Cartesian components of n, in azimuth (|ir+ a),

zenith distance \tt are given by

26.35 QT{— cos a, sin a, 0}.

FLARE TRIANGULATION

29. So far, we have considered only observations

made at intervisible ground stations, whereas

observations from ground stations that are not

intervisible to elevated beacons that cannot be

occupied have received much attention in recent

years. The object is to increase the distance be-

tween ground stations so as to provide a more open

network quickly or to bridge wide water gaps. One

such system, used, for example, by W. E. Browne
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to bridge the Straits of Florida, is to make simul-

taneous observations from ground stations to

parachute flares dropped from aircraft.

30. Whenever observations to the flare consist of

horizontal and vertical angular measurements in

relation to the astronomical zenith, the observation

Equations 26.24 and 26.25 can be used as given. In

this case, we start with an approximate position for

the flare as well as for the ground stations which

we are required to fix; we form two observation

equations for each line, containing corrections to

the coordinates of the flare and of the ground station

as well as the astronomical and refraction correc-

tions. There are, of course, no corrections to the

coordinates of known ground stations in these equa-

tions. For simultaneous 2 observation of one position

of one flare from three known ground stations and

one unknown ground station, we have, for example,

eight equations between six unknowns, assuming

that full astronomical observations have been made
at all ground stations and that valid corrections

have been made for refraction. Theoretically, we
have enough equations to fix the unknown station,

and the equations might prove to be sufficient in

practice if the stations covered a considerable

range in altitude. However, it is usual to observe

several flares in widely separated positions from the

same ground stations, including several unknown
stations, and also to make several observations to

the same flare as it falls, treating the position of the

flare as unknown for every such additional observa-

tion. In this way, we can form enough observation

equations to dispense with astronomical measures,

if necessary. The determination of geodetic heights

from vertical angles is weaker than from reciprocal

observations between ground stations because only

one end of each line can be occupied. However, if

the flares are dropped roughly midway between
the known and unknown ground stations, residual

errors of refraction tend to cancel as between the

heights of ground stations, although the (unwanted)

flare heights are seriously affected. Additional ob-

servation equations can, of course, be formed and
used in the adjustment for observations between
such ground stations as may be intervisible.

STELLAR TRIANGULATION

31. Simultaneous photography from two or more
ground stations of a luminous beacon — a rocket

2 The observations are synchronized by radio signals. In some
systems, the circle readings are photographed by small cameras
operated by the radio signals, and all the observer need do is

to keep the flare continuously intersected.

flash or a flare dropped from an aircraft — against

a background of stars was first proposed and ex-

tensively used by Vaisala in Finland about 1946.

In principle, the direction to the beacon is inter-

polated by measurements on the photographic plate

from the known right ascensions and declinations

of the background stars; a single photograph can

be considered an observation for the right ascen-

sion and declination of the beacon. A simultaneous

observation from a second ground station gives the

orientation of the plane containing the beacon and

the two ground stations. Two such planes for two

different positions of the beacon intersect in the

line joining the two ground stations, whose direction

is accordingly determined in the right ascension-

declination system. This direction is, of course,

"absolute" in the sense that it does not depend
on the local direction of the plumbline, which would

be the case if horizontal and vertical angles were

measured.

32. To develop the theory in more detail, we shall

use the same Earth-fixed, right-handed orthogonal

triad of unit Cartesian vectors A r
, B r

, Cr as set up

in § 12-8 and § 12-10 to define latitude and longi-

tude. As usual, C r
is parallel to the Earth's axis of

rotation, the plane A r
, C determines the origin of

longitude or hour angle, and B' completes the right-

handed triad Ar
, B r

, C r
. We define the declination

(D) of a unit space vector L r as the angle between

L r and the plane A r
, B' — positive north. This defini-

tion follows the usual astronomical convention.

The origin-hour angle (H) of the vector L r
is defined

as the angle between the planes A r
, C and //, C —

positive in the direction of a positive right-handed

rotation about C r
, that is, positive eastward from

A r toward B r
. This definition reverses the sign of

the usual astronomical convention for the hour

angle, which is positive westward, but enables us

to adhere to normal mathematical conventions as

used throughout this book, and to relate declination

and origin-hour angle directly to latitude and longi-

tude (which also is positive east). It will then be

apparent that Equations 12.003, 12.004, and 12.005

hold equally well for declination D and origin-hour

angle H in relation to the vector L'\ which can

accordingly be expressed as

Z/ = (cos D cos H)A r + (cos D sin H)B r + (sin D)Cr
.

26.36

The origin-hour angle H is the right ascension of

the direction L r minus the local sidereal time at the

origin, both expressed in angular measure. The
local sidereal time at the origin is the Greenwich
sidereal time plus the astronomical longitude of
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the origin relative to Greenwich, measured as always

positive eastward.

33. The right ascension and declination from a

ground station to the beacon at a given time,

obtained from plate measurements, give H, D for

substitution in Equation 26.36. (We shall defer a

description of the process until we deal with the

modern techniques of satellite triangulation in

§26-43.) A simultaneous observation from another

ground station provides a similar equation for the

unit vector L 1 from the second station to the beacon.

We know that the unit vector joining the ground

stations is coplanar with V and L'\ a fact which

gives us one relation between the hour angle and

declination of the line joining the ground stations.

Repetition of the whole process from the same
two ground stations to another position of the

beacon will then determine //, D for the line

joining the ground stations.

34. The situation is illustrated by the spherical

diagram, figure 31, in which the unit vectors to the

Figure 31.

beacon are represented by L'\ L' and a unit vector

perpendicular to the plane of L'\ V is G"\ the pole

of the great circle L'D . The unit vector of the line

joining the ground stations is shown as G'\ neces-

sarily on the great circle L'L' because the three

vectors are coplanar. The hour angle and declina-

tion of G" are obtained from the triangle Z/-pole-()'

in figure 31, and then Equation 26.36 gives

Q'= A '(sin H cos a — sin D cos H sin a)

+ B'{— cos H cos a — sin D sin H sin a)

+ C 1 (cos D sin a)

26.37

in which the quantities within parentheses are the

Cartesian components of G" and must therefore have
the same values at all points of the great circle

L'L'G '. We can, of course, compute a from the ele-

ments //, D, H, D of figure 31 so that these com-
ponents (/, m, n) are known. If (//), {D) are the

origin-hour angle and declination of G'\ the line

joining the ground stations, we then have

sin (//) cos (a)— sin (D) cos (//) sin (a) = I

— cos (H) cos (a)— sin (D) sin (//) sin (a) = m

26.38 cos (D) sin (a) = n,

two equations of which are independent. From the

second position of the beacon, when {a) becomes
(a*), we have similarly two independent equations

connecting (//), (D). and (a*) which are easily

solved to determine (//), (D), (a), and {a*).

The difference (a) — (a*) is the angle between
the planes containing the ground stations and one
angle each of the beacon positions. The magnitude
ol this "angle of cut" is a measure of the geometrical

accuracy of the result.

35. We could compute (//), (D) in this manner
for each pair of simultaneous observations to the

beacon and use the results as observed values in

a system of observation equations. However,

(H) and (D) are a long way from the actual obser-

vations, which are measures of rectangular coordi-

nates on the photographic plates. Moreover, it

would be difficult to ensure a proper weighting of

such derived "observations," especially when
simultaneous observations are made from more

than two ground stations or when it is difficult

to select pairs of observations with a good "angle

of cut" without using the same observation twice.

For these reasons, it will usually be better to form

observation equations for each observed direction

to the beacon; we shall now do this.

Observation Equations for Directions

36. If H, D are the origin-hour angle and declina-

tion to the beacon — unit vector // — we define two

auxiliary unit vectors M r (origin-hour angle //,

declination D — ^tt) and /V' (origin-hour angle

H + ^tt, declination zero) as

M' = (sin D cos H)A' +(sin D sin H)B r -(cos D)C r

26.39

26.40 /V = - (sin H)A r + (cos H)B r
.

The triad L r
, M r

, /V
r

is right-handed in that order.

Because the Cartesian vectors A r
, B'\ C r are fixed.
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we can then differentiate Equation 26.36 to have

26.41 d(L r
)
=-M rdD + (cos D)NrdH.

Substituting in Equation 26.10, where the triad

/
r

, mr
, n r

is any right-handed unit orthogonal set,

and equating coefficients of M r
, N r give us the

observation equations

26.42 sdD =-Msdx s + Msdx s

26.43 (5 cos D)dH = Nsdx s -Nsdx s

in which dxs
, dx s are, respectively, corrections to

initial approximate coordinates of the ground

station and of the beacon, whose declination and

origin-hour angle are D, H in the direction from the

unbarred (ground) to the overbarred (beacon) end

of the line. The components of the auxiliary vectors

Ms , Ns (and of the parallel vectors Ms , Ns at the

beacon end of the line) are computed from Equations

26.39 and 26.40 in the same coordinate system as

dx s
, dx s

. On the left-hand side of the observation

equations, 5 is the length of the line computed from

the approximate end coordinates and dD, for

example, is the measured declination minus the

declination computed from the approximate end
coordinates.

37. The observation equations must necessarily

contain corrections to the initial approximate posi-

tion of the beacon, which we do not usually require.

These unwanted corrections can, however, be elimi-

nated at some suitable stage — either before or

during the formation of the normal equations.

Time Correction

38. In relating the photographic image of the

beacon to the stars, we are in effect observing the

right ascension of the beacon in the system of the

star catalog. The observed origin-hour angle is then

obtained by subtracting, from the right ascension

of the satellite, the local sidereal time at the origin

of the instant when the beacon was photographed,
while the computed origin-hour angle is obtained
from the approximate end coordinates of the line.

If, however, we do not know the precise local

sidereal time of the observation, then we must
assume an approximate value to, which must be
corrected to (to + dt). This assumption amounts
to adding a time correction dt, expressed in radian

measure like dx/s, to the right-hand side of Equa-
tion 26.43 and to evaluating this extra unknown
together with the corrections to the end coordinates

of the line in the solution of the observation equa-
tions. The time correction dt would, however, be
the same for all stations engaged in the simul-

taneous observation of the beacon because it is a

correction to the assumed local sidereal time of

the observation at the origin, which is common to

all stations. This correction could also be the clock

correction to one particular (master) station clock

used to define / () . An additional clock correction

would have to be included for every other station

clock which has not been synchronized to the

master clock.

Observation Equations in Cartesian
Coordinates

39. In this case, there is evidently some ad-

vantage of working in Cartesian coordinates. From
Equation 26.36, we have at once the difference in

Cartesian coordinates of the two ends of the line

referred to the axes A 1
', B' , C'\

26.44

x — x— s cos D cos H

y— y—s cos D sin H

z— z = s sin D.

The Cartesian components of the auxiliary vec-

tors from Equations 26.39 and 26.40 are

M r = M r = (sin D cos H, sin D sin H- cos D)

Nr = Nr = (- sin H, cos H, 0)

26.45

so that the observation equations become

(Observed Minus Computed) Declination

=— sin D cos H (dx-dx)ls

— sin D sin H (dy-dy)ls

+ cos D (dz~— dz)ls

26.46

(Observed Minus Computed) Origin-Hour Angle

= — sec D sin H {dx — dx)/s

+ sec D cos H (dy— dy)/s.

26.47

Equations 26.44 are used to obtain computed values

of s, H, D from initial approximate values of the

end Cartesian coordinates. Either these values of

H, D or the observed values may be used for the

coefficients on the right of the observation equations.

40. Approximate positions of the ground stations

will usually be more accurately known than the

position of the beacon. In that case, we could form
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Equations 26.44 for the other ground station, solve

with Equations 26.44 to determine the two dis-

tances to the beacon, and thus obtain the approxi-

mate position of the beacon from the observed

values of hour angles and declinations. Once we
have decided on the approximate positions, we
must, of course, use them in Equations 26.44 to

obtain accurate "computed" values of D and H. A
similar procedure can be followed if the observation

equations are formed in geodetic or geocentric

coordinates.

Observation Equations in Other
Coordinate Systems

41. The observation equations can be solved to

give corrections to geodetic coordinates instead

of Cartesian coordinates by substituting the geodetic

components of the auxiliary vectors in the observa-

tion Equations 26.42 and 26.43. From Equation

26.39, we have

Mx
= (sin D cos //, sin D sin //, -cos D){A S , Bs , Cs },

which, by using Equation 19.35, can be written as

(M, , M2 , M3 )
= (sin D cos H, sin D sin H, — cos D)

26.48 x Q'S,

an equation holding true in any (a>, 4>, N) coordinate

system, provided the appropriate S-matrix is used

from Equation 19.32. In geodetic coordinates, the

S-matrix is

/ (v+ h) cos
(f>

0\

(p + h) ,

V 1/

while Q' is obtained from Equation 19.26. Ex-

pansion of Equation 26.48 then gives

M\= (v + h) cos cf> sinD sin (H — cu)

M2 = - (p + h ) {sin sin D cos (H-oj)

+ cos
(f>
cos D}

Mx — cos 4> sin D cos (H— <y) — sin $ cos D.

26.49

At the beacon, the components of the parallel vector

Ms , for which D, H are the same, are given by

(Mi,M->,Ms )= (sin D cos //, sin D sin H, - cos D)

26.50 X Q'S;

this equation expands to give the same result as

Equations 26.49, provided v, p, h, <f>, a) are over-

barred. This fact means simply that the approxi-

mate values of these five quantities at the beacon

must be substituted in Equations 26.49. In the

same way, we have

26.51 (NuN2,Ns)= (-smH,cosH,0)Q TS,

which expands to

N\ = (v + h) cos
(f>
cos (H — o»)

A^2 = (p + h ) sin </) sin (H — o»

)

26.52 iVa=-cos0 sin (#-<o).

Components of Ns are obtained by substitution of

the approximate values of v, p, h, c/>, oj at the

beacon in Equations 26.52.

42. The observation equations can also be written

in geocentric coordinates, which are more closely

related to the observed right ascensions and dec-

linations. In that case, the Ar-surfaces are spheres

of radius r centered on the origin, and latitude and
longitude refer not to the astronomical or geodetic

zenith, but to the radius vector. Because Equations

26.48 and 26.51 hold .true in any (o>, (f), N) system,

we have merely to substitute r for (v+h) or (p+ h)

in Equations 26.49 and 26.52 and interpret (a>, <f>)

as the geocentric longitude and latitude. If com-

putation is to be done directly from Equations 26.48,

etc., in matrix form, the appropriate S-matrix is now

r cos </>

r

1

and Q 7
is given by Equation 19.26 for the geocen-

tric latitude and longitude.

SATELLITE TRIANGULATION

-

DIRECTIONS

43. Although there are other means of fixing

positions by observations on near-Earth artificial

satellites, we shall understand the term "satellite

triangulation'" to mean stellar triangulation using

the satellite as a beacon, which either emits flashes

on command or reflects sunlight. In the latter case

of a passive balloonlike satellite, accurate timing

is necessary and can be obtained to ensure that

observations from two or more ground camera

stations are automatically synchronized. If the

same "instantaneous" flash or series of flashes is

observed by several ground stations, the event still

has to be timed, but less accurate timing is neces-

sary because the stars, which are required to de-

termine the orientation of the camera, move more
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slowly than the satellite; synchronization of the

observation to the satellite is achieved by the flashes

themselves. Although some tracking cameras are

sidereally mounted so that the stars appear as point

images while a continuously illuminated satellite

appears as a trail, we shall consider only the case

of rigidly fixed cameras so that both the stars and

a continuously illuminated satellite form trails on

the photographic plate. The trails are "chopped"

by shutter closures at accurately recorded times

when the image of the star or satellite is con-

sidered to be at the break in the trail. Before the

operation, the camera is set in altitude and azimuth

from predicted orbital data so that the satellite

trail will pass close to the center of the plate. The

star trails are chopped in a distinctive manner be-

fore and after the satellite pass, and between passes.

Measurement of the plate coordinates of the breaks

in the star trails determines the orientation of the

camera and of the photographic plate as well as a

number of calibration parameters, and gives assur-

ance that the camera has not moved between star

calibrations. Finally, the known orientation and

calibration enable the direction to the satellite to

be computed from plate coordinates of breaks in

the satellite trail. Variations in procedure do not

seriously affect the method of reducing the ob-

servations now to be given in barest outline. For

example, the only difference in the case of a flash-

ing satellite is that measurements are made to

point images and not to trail breaks. There are

considerably fewer images to measure with a flash-

ing satellite; whereas, a continuously illuminated

satellite can be chopped all the way across the

plate until it ceases to be illuminated by the Sun.

Choice of Coortlinate Systems

44. The first step is to determine the direction of

the camera axis in a specified Cartesian coordinate

system. There are three main possibilities:

(a) An inertial system whose z-axis is parallel to

the axis of rotation of the Earth and whose xz-plane

defines the origin of right ascensions.

(b) An Earth-fixed system, as used so far through-

out this book, whose z-axis is parallel to the axis of

rotation of the Earth and whose xz-plane defines the

origin of astronomical longitudes. The base vectors

in this system in our usual notation are A'\ B'\ C'\

as defined in Chapter 12; we shall denote coordi-

nates in this system by (X, Y, Z). The relation

between this system and the inertial system are

described in § 26-32.

(c) A "local" (X, Y, Z) system in which the geo-

centric latitude and longitude of the Z-direction

are (<f>, to) and the origin in the (X , Y, Z) Earth-

fixed system is {X», F<>, Z»). The P-direction will be

northward in the plane containing the Z-direction

and the axis of rotation. The ^-direction will be

eastward in accordance with our normal right-

handed conventions. The coordinate axes are

accordingly (A.'', /x' , v r
) in a spherically symmetric

(to, 4>, N) system; by contracting Equation 12.013

with a position vector from the new origin, we have

('X—Xo\ /—sin to —cos to

Y — Yo 1= 1 cos to —sin oi

z-zj \ o oi
/l

X sin cf) — cos (/>

\0 cos 4> sin
<f)

26.53 N{X,Y,Z}.

In this application, (Xo, Y , Z () ) is the camera sta-

tion and (to, 4>) are approximately the geocentric

coordinates of the camera station in the (X, Y, Z)

system. However, both (Xo, Yo, Z ) and (to, (/>) are

independent. We can consider that (to, (/>) are

two fixed parameters whose values are chosen to be

approximately the geocentric coordinates of the

camera station in order to facilitate the application

of corrections for astronomical refraction. As we
have seen in Chapter 24, these fixed parameters are

presently based on a spherically symmetric model

atmosphere. Indeed, this coordinate system is

introduced solely for the purpose of evaluating and

applying refraction corrections.

45. The direction of the camera axis and the orien-

tation of the plate can be determined in any of these

three systems, provided the star directions are

transformed to the same system. If we use the iner-

tial system, updated places derived from the star

catalogs can be used after correction for precession,

nutation, annual and diurnal aberration, and astro-

nomical refraction; the camera orientation will be

in terms of right ascension and declination, as also

will be the direction to the satellite. In this case, we
shall have to transform to an Earth-fixed system

before combining results from different stations at

different times.

46. If we use the Earth-fixed system for camera

calibration, we shall have to convert right ascen-

sions to origin-hour angles by subtracting the local

sidereal time at the origin, which means that we
must be in a position to apply clock corrections
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before we start, although the observation equations

could be modified to include time corrections similar

to those given in § 26-38. Alternatively, we could

set up a temporary Earth-fixed system with an ap-

proximate sidereal time and apply a final correction

by means of a longitude rotation of the coordinate

system into the definitive Earth-fixed system. The

final correction could be applied in conjunction with

rotations for polar movement, which will be dis-

cussed in § 26-62. The camera orientation and

direction to the satellite will be determined in terms

of declination and origin-hour angle. There will be

no need to transform to any other system for the

network adjustment.

47. If we use the "local" system, we must, in

addition, transform the declinations D and origin-

hour angles H of the stars to azimuths a and zenith

distances /3 in the local system by means of the

relation

sin a sin p\ /cos D cos H

1 cos a sin/3 =NT lcosD sin//

cos /8 / V sin Z)

which is easily obtained from Equation 26.53. We
shall then obtain the camera orientation and direc-

tion to the satellite in terms of azimuth and zenith

distance, and shall transform to the fixed-Earth

system for the network adjustment by means of

the inverse of Equation 26.54. As explained in

§ 26-44(c), we must use the same approximate

values of the geocentric coordinates (oj, (/>) of the

camera station in the matrix N for both direct and

inverse transformations.

48. The local system is perhaps most often used

for the star calibration. As a means of wider illus-

tration, we shall, nevertheless, start with the Earth-

fixed system and transform only the updated places

of the stars to the local system in order to evaluate

and to apply refraction corrections, while still

determining the camera orientation and direction

to the satellite in the Earth-fixed system. This

system would require less modification if a different

method of refraction correction is introduced later;

but in any case, once any of the systems is fully

understood, it is a simple matter to derive the equa-

tions for any other system.

The Basic Photogrammetric Equations

49. If Hc , Dc are the origin-hour angle and declina-

tion of the camera axis, it will be clear from Equation

12.012 that

gives the Cartesian coordinates of the point (X, Y, Z)

in a system whose z-axis is the camera axis and

whose y-axis lies in the plane of the z-axis and the

original Cr-axis. On the photographic plate in the

Northern Hemisphere, the y-axis joins the principal

point (where the camera axis cuts the plate) to the

photographic image of the celestial North Pole.

The x- or y-axes, from which measurements are

made on the plate, are, however, given by fixed

fiducial marks in the camera; to effect a final rota-

tion to this plate system, we introduce a positive

rotation k, known as the swing, about the camera
axis by premultiplication with the matrix

COS K sin k &
- sin k COS K

1

Also, we change the X, Y, Z origin to the camera

station (Xq, Fo, Z ) by replacing the vector {X, Y, Z}
with {(X-Xo), (Y-Y ), (Z-Z )}. In the result,

we shall have coordinates of the original object

point (X, Y, Z) in the new system, and we have next

to find the corresponding coordinates of the photo-

graphic image. If A is the distance from the camera

to the object point and if d is the distance from the

internal perspective center to the photographic

image of the point, then we must reduce the

transformed coordinates of the object point in the

ratio d/A to obtain the coordinates of the image

point. Finally, we can change the origin of plate

coordinates so that coordinates relative to the

camera axis become {(x — x ), (y— yo),/} where

(x , yo) are the plate coordinates of the principal

point in the new system. In an undistorted perspec-

tive, the camera axis — supposedly perpendicular

to the plate — cuts the plate in the principal point.

The principal distance f is the length of the per-

pendicular between the internal perspective center

and the principal point. The final transformation is

expressed as

2655 (yH^-z,
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where the rotation matrix is given by

(cos k sin k 0\

— sin k cos k

1/

/l \ /- sin //( cos Hc ON

X sin /), cos Dc 1

1

— cos Hc — sin //,

\0 - cos Dc sin Dc/ \ 1/

26.56

and

dV {x-x )

2 +(y-y )

2 +P
(X-XQ )

2 +(Y-Y )
2 +(Z-Z V

This equation gives (x, y, /) in the same general

sense as (X, Y, Z) for small rotations so that x, y
are considered to be measured on a positive print

covering the object space. If we measure coordi-

nates on the original negative — emulsion side up — in

relation to the same fiducial mark as the positive

^-direction, then we would measure (x, —y) and

should change the sign of y before insertion in Equa-

tion 26.53. This rule, of course, assumes normal

right-handed coordinate conventions.

50. An alternative form of Equation 26.55 is useful

in the present application. If we write the expanded
rotation matrix as

/win m\i /»i:s

26.57 M= mi X nin m23

yn-.u rn-M m.33

and eliminate d/A, we have

x— Xp_ m u (X — Xu) + m vl(Y— F») + m v.\{Z — Z»)

/ ~ mn(X-Xn ) + m-AY- ft) + rmdZ-Za )

y- y„ = m-n (X -Xn)+ m 21(Y -F„) + mT,(Z - Z„)

/ m-n(X-Xo)+ mS2(Y-Yo)+ mss(Z-Zo)

'

26.58

Equations 26.58 are equivalent to the original equa-
tions, only two of which are independent, because
the scale factor d/A. has the effect of reducing the

vectors in Equation 26.55 to unit vectors, while all

the rotation matrices are orthogonal.

51. Equation 26.55 or Equations 26.58 are usually

known as the projective equations of photogram-
metry or as the conditions of collinearity. In deriv-

ing these_equations as coordinate transformations,

we have, indeed, assumed collinearity of the image
and object points and of the perspective center, so

that either set of equations represents an undis-

torted perspective. Many different conventions for

the rotation angles and coordinate systems are used

in photogrammetric literature, including some left-

handed systems, but the formulas can be reconciled

with the normal mathematical conventions used
throughout this book by reversing the signs of some
coordinates and the directions of some rotations;

in whatever order the rotations are made, the final

matrix M, connecting the same two coordinate

systems, must be the same.

Calibration

52. The process of obtaining the orientation of

the camera and certain camera constants is very

similar to the method of camera calibration from

stars described, with a full bibliography, in the

Manual of Photogrammetry. 3

53. If the object photographed is a star of declina-

tion D and origin-hour angle //, we can write

f

X-XJ\ /rcosDcosH

! - Y = r cos D sin H

Z —ZJ \ r sin D

in which r is very large, but is cancelled by A.

Equation 26.55 for stars is accordingly

/cos D cos HX Xo

1

:>%..:;.*b
'

, \
y-y„ j=M I cos D !-!.. 7

/ / \ sin

with the alternative form from Equations 26.58 of

x — xn _ m.\\ cos D cos //+;»i 2 cos D sin H+niy.j sin D

f m.n cos D cos H+HI32 cos D sin H+m :ia sin D

y— y _ m>\ cos D cos H+m^z cos D sin H+m^ sin D
f m :u cos D cos H+m.12 cos D sin H-\-m-.a sin D

26.60

54. Theoretically, these equations are soluble for

k, Dc , Hc , x , y , / from three stars, but even then

the solution would not be simple because the equa-

tions are not linear in the unknowns. In practice,

we require the use of more than three stars to

achieve precise results, and we shall have to in-

crease the number of unknowns to allow for the fact

that we are not dealing with an undistorted perspec-

3 American Society of Photogrammetry (1966), Manual of
Photogrammetry, 3d ed., v. 1, 180-194.
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tive. Accordingly, the next step is to form differential

observation equations in the usual way by partial

differentiation of Equations 26.60 with respect to all

six unknowns and the measured (x, y) . In the

result, dx, for example, will be the measured

x minus the computed x, obtained by substituting

preliminary values of the unknowns in the first

equation of Equations 26.60. We are then able to

solve a large number of such observation equations,

formed for a large number of stars and appropriately

weighted, by the usual least-square processes to

provide corrections a?k, dDc , etc., to the preliminary

values of the unknowns.

55. We can also add other unknown parameters

to the observation equations before solution by

expressing their effect on the measured {x, y). For

example, considerations of symmetry indicate that

the radial lens distortion can be expressed as

Ar= for*+ *,/*+ for7

in which Ar is the outward displacement from a true

perspective position, r is the radius vector from the

principal point, and k\, fo, k3 are unknown param-

eters to be derived from the calibration. From
similar triangles, we have

A* Ay

(x — xo) (y— yo) r
k^ + kz^ + k^r6 .

The component A.x of the distortion must, for

example, be subtracted from the measured x to give

the value of x which would be measured on an un-

distorted photograph. But the observed x in the

observation equation is measured on a true undis-

torted perspective. Accordingly, if we insert the

actual measured x in the observation equation, we
must subtract

A*= (x -xo) ( Ai/
2 + A-2r» + for

6
)

from the (observed minus computed) x in the origi-

nal equation, and similarly must do the same for y.

This relation adds three unknowns to each observa-

tion equation.

56. In addition to the use of three parameters to

determine the radial lens distortion, it is usual in

current practice to introduce parameters to allow

for

(a) nonperpendicularity of the coordinate axes

and other sources of error in the plate-measuring

instrument;

(b) difference in scale in the x- and y-directions

arising from emulsion creep, which is equivalent to

the determination of two principal distances; and
(c) lens deviation or decentering, nonradial dis-

tortion (involving five extra parameters), and cor-

rection for nonperpendicularity of the optical axis

and the plate.

Residual Atmospheric Refraction

57. We have not yet included any correction to

the apparent places of the stars for astronomical

refraction. One possibility is to convert the apparent

places from hour angle and declination to approxi-

mate azimuth and zenith distance by Equation

26.54, using approximate values $, w of the geo-

centric latitude and longitude of the camera station.

The zenith distances are then corrected for refrac-

tion from tables, and the corrected star positions

are converted back to hour angle and declination,

using the same values o/$, oj, before insertion into

Equations 26.60 where H, D would then be held

constant during differentiation. Errors in the

assumed values of <£, o», affecting only the refrac-

tion correction through the corresponding error in

zenith distance, are of little consequence. However,

it is usual in current practice to determine residual

refraction parameters — in much the same way as

lens distortion and other parameters — from the

solution of the calibration observation equations.

For this purpose, we simply combine Equations

26.54 and 26.59 to give

x — Xa

1

sin a sin /3

2\ y~y» =MN cos a sin/3

/ ] \ cos/3

in which the rotation matrix is now

"ii "12 n^

\\ \ n lx n-2-2 "23
|

n31 n :vl n33 ,

whose components are obtained from Equations

26.56 and 26.53 and contain k, Dc , Hc , oj, <\>. Equa-

tions 26.60 become

x — x _ n n sin a sin fi
+ n v2 cos a sin /3 + "i;s cos /3

/ n3 \ sin a sin /3 + ";s2 cos a sin fi + n-.w cos ft

y— y»_ n-2\ sin a sin /3 + "22 cos a sin fi + nij cos /3

/ "si sin a sin (3 + ";i2 cos a sin (5 -f nA3 cos /3

26.62

In forming the observation equations by differen-

tiation, we hold co, 0, a fixed and equate d/3 to the

expression for the refraction correction. If we insert

apparent zenith distances into Equations 26.62

to derive the computed (x, y), d/3 will be the (true

minus apparent) zenith distance, which is the same
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as the normal convention for refraction. The sign

of dft is of little importance, however, because a

wrong sign would simply result in reversed signs

for the parameters in the refraction equation, which

we shall now consider.

58. The expression for astronomical refraction,

introduced by Hellmut Schmid, is

T*iW[Ki tani0+K2 tan :! $0

+ £:, tarrHfl+ k tan 7
£0]

where the refraction is in seconds of arc, and

r=*/273.16,

t = observed temperature at camera station

in °C,

r=/y(76or2
),

Po= observed pressure at camera station

in mm., Hg.,

tan = O.1147618r'/ 2 tan 0,

j8= apparent zenith distance.

The formula is to some extent empirical, but does

follow Garfinkers theory (§ 24-67) by using a modi-

fied zenith distance in the classical expansion in

powers of the tangent. In fact, the formula fits

Garfinkel's model very accurately for zenith

distances of less than 75°. In using the formula for

satellite triangulation, the four parameters K\, Kz,

K.u Ka are determined at each calibration from the

observation equations.

Direction to Satellite

59. The camera calibration provides data for

correcting the (x, y) coordinates of each satellite

image through the now-known parameters for vari-

ous distortions, etc., listed in § 26-55 and § 26-56,

and for atmospheric refraction. Also, a correction

should be applied for differential aberration, that is,

for the traveltime of light to the camera station from

the satellite in relation to the stars. In addition, the

parallax correction (Equation 24.72) for differential

refraction has to be applied in a sense opposite to

the astronomical refraction. Finally, a correction is

applied for phase angle, arising from unsymmetrical

illumination of a passive satellite by the Sun.

60. In current (1968) U.S. Coast and Geodetic

Survey practice on the worldwide satellite triangu-

lation, the next step is to reduce all the satellite

images, which are exposed (or chopped) at equal

intervals of time on each pass, to a single equivalent

or "fictitious" image. Other organizations naturally

use somewhat different procedures, especially

when there are fewer images, but the principles are

much the same. The reduction to a single "ficti-

tious" image is done by fitting the corrected x- and

y-coordinates of the images separately to poly-

nomial functions of time, usually of the fifth order.

A time is then selected for all simultaneous obser-

vations of the satellite involving two or more plates,

so that the satellite image at that time would have

been formed as near as possible to the center of

each plate. The actual (x, y) of the satellite at this

selected time is then computed from the polynomial,

after applying clock corrections and after adding

the time that light takes to travel from the satellite

to the camera. The result is equivalent to a single

meaned position of the satellite, simultaneously

observed from two or more ground stations, at a

given time.

Net Adjustment

61. The origin-hour angle H and declination D of

the satellite at this mean position may now be

computed from the inverse of Equation 26.59,

that is,

(cos D cos H\ /(x—Xo)ld\

cos D sin // =M' (y-y„)ld\

sin/) / \ fid )

where we have d2 = {x — x»)
z -\- (y— yo)

2+/2
, using,

of course, the calibrated values of k, Hc , Dc , Xo,

yo, f. If the difference in scale for x and y is signifi-

cant, (x — Xu) and {y— y») could first be corrected

to a mean /.

62. We have so far worked in coordinate systems,

oriented with respect to the actual "instantaneous"

pole or rotation at the time of observation. If polar

movements, as discussed in § 21-55, are found to

be significant, the coordinate system could be

changed at this stage by applying the appropriate

rotation matrices to the left-hand side of Equation

26.63, or by applying the transpose of these rotation

matrices to the right-hand side, with consequent

modification of MT
.

63. Explicit formulas in terms of the components
of the original matrix M of Equation 26.57 are

tan// =

tan D = sin HX

= cos//X

26.64

m,->(x — go) + m>>(y— y<») + m-.viif)

mn(x—xo)+ m2i(y—yo)+ m3 i(j)

m v. i(x — x i )) + m>i(y— yu) + m-.^f)

mvi(x — Xo) + m-zziy— y») + m^if)

miaU- *(>) + m-2-Ay— y») + mM{f)

m u (x — Xt)) + m-2i(y— y») + mM (f)
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64. Observation equations for the network can
now be formed exactly as, for example, in §26-36
and combined with duly weighted equations for

such measured distances, etc., as are to be included

in the adjustment of the network.

65. An alternative method is to form observation

equations for the net adjustment by differentiating

Equations 26.58 with respect to x, y, X, F, Z,

Xo, Fi>, Zo, holding all other quantities fixed by the

calibration and thus deriving corrections to initial

approximate positions of the satellite (X, F, Z) and

of the ground station (AH, F», Z»). Corrections to

the satellite position are not, of course, required for

triangulation purposes and can be eliminated during

the solution.

66. The choice between the two methods does not

involve any question of principle; we are entitled to

consider that (H, D) are observed as much as the

averaged (x, y). A decision will, no doubt, rest on

what programs are available; if, for example, pro-

grams designed primarily for photogrammetric

purposes are available, the choice will probably fall

on the second method.

SATELLITE TRIANGULATION

-

DISTANCES

Observation Equations

67. If electronic distance measurements are made
to the satellite from ground stations, the observation

Equation 26.08 can be used in any coordinates; we
have simply to assume initial coordinates for the

satellite and for the ground station, and then use

these coordinates to compute components of the

unit vector joining the two ends of the line in the

same system. In Cartesian coordinates, for example,

if quantities at the satellite are overbarred, we have

(Observed Minus Computed) Distance

= (dx — dx) (x — x)/s+ (dy — dy) (y — y)/s

+ (dz— dz) (z — z)/s.

26.65

68. To derive the observation equations in any
(oj, </), N) system, we have, for a unit vector in azi-

muth a, zenith distance /3,

/, = K, sin a sin /3 + /jl, cos a sin /3+ v,- cos /3

so that, using Equations 25.13 and 19.32, we can
write

s{h, h, h) = ST{s sin a sin /3, 5 cos a sin y8, 5 cos /3}

26.66 =STQl{x,y,z}-{x,y,z}y,

by interchanging the overbars and by reversinj

the sign of 5, we have for the components at th<

satellite

26.67 s{lu k, l3}^STQUx,y,z}-{x,y,z}].

In any (to, (/), IV) coordinates, Q is obtained fror

Equation 19.26. In geodetic coordinates, we sub

stitute Equations 25.15 for (x, y, 2) or use Equation:

25.18 and 25.19. The S-matrix is given by

'U' + ZOcos (/> 0^

!
ip + h)

1/

69. In geocentric coordinates, which are oftei

the most suitable in dealing with satellites, we havi

x = r cos
(f)

cos co

y= r cos $ sin a>

z = r sin c/>:

the S-matrix is given by

(r cos 4) 0\

>
!

I r 0|-

ly

70. In some systems, such as SECOR, only dis

tance measurements are made and must be mad
simultaneously from a number of ground stations

For example, if simultaneous measurements ar

made from four ground stations and the position

of three ground stations are known, we have onl

four observation equations and six unknowns,

observations are made from the same ground sti

tions to another, widely different position of th

satellite, we add four equations and only thre

unknowns — that is, corrections to the secon

position of the satellite — so that the problem c

fixing the position of the unknown ground statio

becomes soluble from three satellite positions. I

practice, many observations are made over a Ion

period to many satellite positions.

Net Adjustment

71. Observation equations for distances can b

combined with observation equations for directions

only if simultaneous measurements are made to th

same position of the satellite. However, it is pos

sible to form normal equations separately for th

direction and distance measurements. The two set

of normal equations could be appropriately weighte*

and solved together, but the extent to which such
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combined adjustment could be done without vitiat-

ing the more accurate measurements would re-

quire statistical study in each case.

72. If distances are measured in conjunction with

directions, the same coordinate system would have

to be used for both sets of observation equations. If

distances are measured separately, there would be

some advantage in using the simpler Cartesian form

of the observation equations. Simultaneous meas-

urement of both distance and direction would give

the complete vector to the satellite and, by sub-

traction, would give the complete vector between

ground stations, which could be treated as an obser-

vation without deriving corrections to the satellite

position. Each such ground vector would provide

two observation equations for direction and one

observation equation for distance.

LUNAR OBSERVATIONS

73. We can fix positions on the Earth by photo-

graphing the Moon against a background of stars,

in much the same way as by photography of any

other Earth satellite. One difficulty is that the stars

and the Moon require different exposures, but this

difficulty has been successfully overcome by the

Markowitz moon-camera, designed for and widely

used during and following the International Geo-

physical Year 1957-58. The camera is equatorially

mounted to hold the exposure of the stellar back-

ground. Moonlight is reduced by a parallel-plate

filter which can be rotated, in much the same way
as the parallel-plate micrometer of a precise

surveying level, to hold the photographic image of

the Moon fixed in relation to the stars. The time of an

observation is considered to occur when the rotating

filter introduces no relative displacement between

the Moon and the stars. Another difficulty arises

from irregularities in the Moon's limb; these irregu-

larities have always limited the accuracy of geodetic

observations, such as the determination of longitude

from lunar occultations of stars. Improved knowl-

edge of the topography of the Moon may before long

enable us to correct these irregularities; meanwhile,

the Markowitz system reduces the effect of these

irregularities by obtaining the right ascension (or

hour angle) and declination of the Moon's center

from photographic measurement of a large number
of stars. Apart from the fact that the Moon costs

nothing to launch, a considerable advantage of

the system is that the elements of the Moon's orbit

are accurately known; this advantage makes simul-

taneous observation unnecessary, although the

observation must be accurately timed. Photography

of the Moon in at least two different positions from

the same station will fix the position of that station

in all three coordinates, relative to the center of

mass of the Earth. At this time (1968), the results

will be of lower accuracy than those obtainable

from artificial satellites, but this fact may not be

always true.

74. The Ephemeris'* gives the right ascension ol

the Moon. We shall reduce the right ascension to

origin-hour angle by subtracting the local sidereal

time at the origin, which may, of course, be one of

the points we propose to fix. The origin-hour angle

will be the longitude a» in a geocentric system whose

zero of longitude is the plane parallel to the axis

of rotation of the Earth and parallel to the astro-

nomical zenith at the origin. The listed declination

of the Moon will be the same as its geocentric lati-

tude (£. In addition, the Ephemeris gives us the

parallax tt of the Moon's center; the parallax being

related to the radius vector r from the center of

mass of the Earth by the formula

26.68 r=etcosec7r

in which (/ is an assumed equatorial radius of the

Earth.

75. As usual, we start with initial approximate

values of (w, $, r) for the Moon at the time of

observation and also of (w, </>, r) for the ground
station in the same geocentric (spherical polar)

coordinate system. The origin of longitudes co is

the plane containing the axis of rotation and the

astronomical zenith at the station selected as origin.

The approximate values (oj, (/>, r) are used to find

computed values H, D, s of the origin-hour angle,

declination, and length of the line joining the ground

station to the Moon's center from the equations

5 cos D cos H = r cos cos aj — r cos <p cos a>

s cos D sin H—r cos (j) sin a> — r cos $ sin a>

26.69 s sin D— r sin $ — r sin
<fi,

obtained by projecting the line on the three Car-

tesian axes. Subtraction of these computed values of

H, D from the values obtained by measurement of

the photographic plate gives us the (ID, dH of the

observation Equations 26.42 and 26.43 in which we
must use the geocentric components of the auxiliary

' See, lor example, U.S. Naval Observatory (1966). The Ameri-

can Ephemeris and Nautical Almanac for the Year 1968, or Royal

Greenwich Observatory (1966). The Astronomical Ephemeris.

Beginning with the editions lor 1960. both publications are uni-

fied, but issued separately as a joint publication by the United

Kingdom and the United States.

306-962 0-69— 18
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vectors, as given by Equations 26.49 and 26.52, with

r= (v+ h) = (p+ h). The final observation equa-

tions will be in the form

(Observed Minus Computed) Declination

of the Line Joining the Ground Station to

the Moon's Center

= -M
i dwls - M->d<j>ls - M-idr/s

+M x du)ls + M-zd(f>ls + Msdr/s

26.70

(Observed Minus Computed) Right Ascension

(or Origin-Hour Angle) of the Same Line

= Nt sec Ddw/s

+ N; sec Dd^/s + N-.i sec Ddr/s

— N] sec Ddoj/s

—N2 sec Dd<j>/s —N:i sec Ddr/s.

26.71

It is assumed that the local sidereal time at the

origin for the instant of observation is accurately

known so that in this case there is no need to in-

clude a time correction in the second observation

equation.

76. If the position of the Moon really were ac-

curately known at the instant of observation, we
could put dco, d(\>, dr equal to zero in these equa-

tions. Unfortunately, we cannot be sure that the

Universal Time of the observation is exactly the

same as the Ephemeris Time used as an argument

in the Lunar Ephemeris; there is a difference, which

varies slowly, between the two times. The simplest

way to overcome the difficulty is to envisage a

correction dt to the time of observation, to find

doi/dt, etc., from the tabular differences, and to

replace da), etc., in the observation equations by

(d(bldt)dt. This procedure reduces the number of

unknowns by two. The four unknowns dt, da), dxj),

dr can be determined from observations to two

widely separated positions of the Moon, provided

dt can be taken as the same for both. In practice,

the Moon will be photographed in many positions

from several ground stations; it may also be pos-

sible to derive corrections to the orbital elements,

or to the position of the Moon's center, by expressing

dxij, etc., in terms of these elements.

77. Another difficulty arises from the indefinite-

ness of the constant d in Equation 26.68. However,

we can take d as unity, thereby reducing the scale

of the whole model so that we finally determine the

radius vector of a ground station as rjd. We must
also start with an approximate value of rjd, then s

in Equations 26.69 becomes s/d. A measured ter-

restrial distance between ground stations would
then serve to scale the model and to determine the

constant d.

LINE-CROSSING TECHNIQUES

78. As a final example of the formation of differ-

ential observation equations, we shall consider such

systems as hiran where slant radar ranges are

measured from two ground stations (Si, S->) to an

aircraft (A ) flying a straight-and-level course across

the line joining the two ground stations, which are

usually not intervisible. Continuous measurements

are made during the crossing; the minimum sum
of the two ranges, corrected for refraction, is used

to determine the distance between the two ground

stations. It is assumed in the usual method of

reduction that the minimum position occurs when
the plane SiAS-z is vertical at A. The limitations of

this assumption can be seen at once by considering

the aircraft course as tangential to a prolate spheroid

whose foci are Si, S>. The sum {S\P-\- PS->) is the

same for any point P on this spheroid and is less

than for any point Q on the straight aircraft course

external to the spheroid, so that the minimum posi-

tion occurs at the point of contact of the course

with the spheroid. The usual assumption is accord-

ingly justified only if (a) the aircraft course is per-

pendicular to S1S2 (this situation is usually not the

case), or (b) the aircraft crosses in the midway
position. The problem can, however, be solved

simply and rigorously in three dimensions with-

out making any such assumptions.

79. We shall denote values of quantities at the

aircraft position A by an overbar, and at the ground

station S-> by a double overbar. The coordinates of

Si, A, So are then x'\ x'\ x' . Unit vectors in the

directions S\A, AS-> are p
1
', q'\ and the unit aircraft

course vector is a'\ Parallel vectors at the three

points are denoted by appropriate overbars; for

example, parallels to the course vector at Si, A, S->.

respectively, are a' , a' , a'. The slant ranges S\A,

AS->, corrected for refraction, are u, v.

80. Equation 26.08 for the variation of the two

slant ranges is then

26.72

26.73

du= p rdx r — p rdx r

dv= qrdxr — q rdx r
.
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To establish the minimum position, we first assume
that Si, S2 are fixed and that the aircraft alone moves
by dx r

, while dx r
, dx' are zero. At the minimum posi-

tion, we have also du-\~dv = so that the minimum
condition is

26.74 p rdx r — q rdx r

But dx r
is proportional to the contravariant course

vector a r
, which reduces the minimum condition to

26.75 p r(i
r — Qra r — cos P = cos Q

where P and Q are the angles that the aircraft

course makes with S\A and AS2 , respectively. The
equality of these angles is the correct minimum
condition.

81. Next, we suppose that the aircraft course

a r remains fixed, and we seek corrections dxr
,

dxr
, dx r to initial approximate positions of Si, A, S2.

The correction positions of the three points must

satisfy the minimum condition, Equation 26.75.

The changes in cos P, cos Q arising from dx r
,

dx r
, dx r are given by

u X {final (cos P) minus initial (cos P)}

— ud(cos P)— ud(a rp
r

)
= ua rd(p

r
)

= a,(dx r — dx r)— (cos P)du

where we have used Equation 26.07 and

v X {final (cos Q) minus initial (cos Q)}

= vd(cos Q) = vd{a rq
r

)
— va rd(q

r
)

= a r{dx
r — dx r

)
— (cos Q)dv.

Subtraction of these two equations, after equating

the final values of cos P and cos Q to satisfy the

minimum condition, gives

initial (cos Q) minus initial (cos P)

u \u V

26.76
1 = _ du n ,

dv _
a rdx r cos P-\ cos (J

v a v

in which cos P, cos Q are initial values computed
from the initial approximate coordinates and du

(or dv) is the observed minus the computed value of

u (or v). The P, Q, u, v and the components of the

vectors need to be accurately computed even though

the aircraft course is only roughly known. Equations

26.76, 26.72, and 26.73 can be used either as con-

dition equations or as observation equations in

conjunction with any other measurements which

may have been made to connect Si, S2. If one end

of the line is fixed, for example Si, then we have

dx r — 0, and the equations are somewhat simplified.

82. Although the equations are true in any co-

ordinate system, provided components of the vectors

in the same system are used, it will be usual to

work in geodetic coordinates. Azimuths, zenith

distances, and distances between the initial approx-

imate positions of the ground stations and the air-

craft are computed from Equations 25.18. We can

then expand Equations 26.72 and 26.73 exactly as

in Equation 26.30. If the azimuth of the level air-

craft course is A, then we have

ci\ = (v + h) cos 4> sin A

a2 — {p + h) cos A

a3 = 0,

and components of the parallel vectors a r , a r are

found as often before from Equation 19.39. Lastly,

if a, /8 are the azimuth and zenith distance from

Si to A and if a, (5 refer as usual to the same direc-

tion at A in the same sense, then we have

cos P — p
ra r — sin A sin a sin /3 + cos A cos a sin /3

26.77 =sin/8 cos (A — a),

with a similar equation for cos Q.

83. If the only measurements connecting the

ground stations are aircraft crossings, it will be

impossible to determine corrections to geodetic

heights, and the terms containing dh, dh, dh must

be dropped. In a simple trilateration, for example,

where a third ground point is to be fixed from two

known points, there would be only the three Equa-

tions 26.72, 26.73, and 26.76 for each of the two

sides; these six equations could do no more than

determine corrections to the latitudes and longi-

tudes of the third point and of the two aircraft posi-

tions. Even though we do not require the aircraft

positions, corrections to them must, of course, be

left in the equations. The result is not very sensitive

to height changes, but the omission of the dh -terms

must to some extent affect the determination of

latitude and longitude; this omission must be ac-

counted as a weakness of the method.

84. If the initial approximate positions are within

15 seconds of the truth, and this degree of approxi-

mation can usually be arranged by rough spherical

computation and by placing the aircraft along the

line in simple proportion to the measured ranges,

then a single solution provides results correct to

about 2 feet. In a test case of a single trilateral.
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deliberately rough initial values of latitude and solution gave results within 0.025 second of correc

longitude of the unknown ground station proved values. Movements of the aircraft are not very sensi

to be, respectively, 8 minutes and 5 minutes adrift, tive. Equation 26.76 is soon satisfied; when tha

and the initial aircraft position was 3 minutes adrift. situation occurs, the corrections to the aircraf

The first solution averaged about 14 seconds adrift, position have the same coefficients in the remaining

the largest difference being 47 seconds in the longi- equations because of Equation 26.74, and thus cai

tude of the unknown ground station. The second be eliminated.



CHAPTER 27

External Adjustment of Networks

CHANGE OF SPHEROID

1. If we retain the same origin and the same
Cartesian vectors, it is evident that the (x, y, z)

coordinates of all points in space will be unchanged.

To derive the changes in geodetic coordinates result-

ing from changes da, de in the major axis and in the

eccentricity of the base spheroid, we will need to

differentiate Equations 25.15 for dx= dy= dz = 0.

Because we have tan (d — y/x, there will be no change
in longitude, and so we will need to differentiate only

(*
2 + y

2
)

1/2 = (v+ h) cos 4> and

27.01 z = (e
2 v + h) sin(/>,

with x, y, z constant. In the last equation, e is the

complementary eccentricity given by e 2 = 1 — e 2
.

2. From Equations 18.55 and 18.54, we have

dv/da = v/a

dv/de = {ele
2
)p sin2 $;

from Equations 22.16, 22.17, and 22.18, we have

d(v cos 4>)/d(}> —— p sin (/>

d{v sin ()))lr)<p = p cos (/>/e
2

dv/d(f) — (v — p) tan cj>.

Differentiation of Equations 27.01 then gives

(p + h) sin
<f) d(f)

— cos
(f>
dh

27.02 = (via) cos
(f)

da + (e/e2 )p sin2
</> cos de

and

0= {e2(v — p) tan
(f>

sin
(f)
+ e 2v cos

(f)
+ h cos (f>}d<f)

+ sin
<f> dh + (v/a)e2 sin </> da

+ {ep sin3 4> — 2ev sin (f>}de.

The last equation, with the help of Equations 18.54

and 18.55, simplifies to

(p + h) cos
<f> d(f> + sin 4> dh

=—{v/a)e 2
sincf) da+ (e/e2 ) (p cos2 <f>+ve2

) sin (/> de;

27.03

Equations 27.02 and 27.03 are readily solved to give

finally

dw=

(p + h )d(f> = {e
2v/a) sin cos </> da

+ (e/e2 )(p + ve2
) sin <j> cos $ de

27.04 dh = -(a/v)da+ ev sin2
c/> de.

If preferred, we can include the flattening

f=(a-b)la=(l-e)

instead of the eccentricity by using the relation

df= (e/e)de.

CHANGE OF ORIGIN

3. Next, we introduce a change (dXo, dY^, dZ,))

in the Cartesian origin, involving a corresponding

translation of the base spheroid in the geodetic

coordinate system. The effect will be the same if

we keep the Cartesian origin and the spheroid fixed

and if we alter the Cartesian coordinates of each

point in space by (
— dXo, — dY , —dZn ). The cor-

responding changes in the geodetic coordinates

could then be found by differentiating Equations

25.15, with a, e fixed, and by solving the resulting

three equations for dco, d<$>, dh. However, we can in

this case obtain directly the changes in geodetic

coordinates from results already given.

261
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4. We have, for example,

dco dco dco
aa>=— —— oAq — -— diQ—— dZ

ax ay oz

=-A 1dX -B 1dY -C 1dZ<
)

where A 1
, B 1

, C 1 are the 1-components of the Car-

tesian vectors in geodetic coordinates; similarly,

we have

dcf>
=-A 2dX - B2dYn - C2dZ

dh =- A 3dX - B*dY - C3dZ .

Using the notation of Equation 19.36, we then have

{dco, deb, dh}=-(QTR)T{dX , dY , dZo]

27.05 =-RTQ{dX , dY , dZ },

an equation which would be true in any (a>, cf>, N)
system, with the appropriate values of the matrices

from Equations 19.26 and 19.31. In geodetic co-

ordinates, we have

Rr=R
l/{(v + h)cosc})} '.)\

llip + h) 0|;

1>

expansion of Equation 27.05 gives

(v + h) cos <j) dco = (sin co)dX — (cos co)dYo

(p + h )dcf> = (sin </> cos co)dX + (sin
<f)

sin co)dY

— (cos cf))dZ

dh =— (cos cf> cos co)dXo

27.06 — (cos</> sinco)dY — (sin cf>)dZo.

If there is both a change of spheroid and a change

of origin, these first-order results should be added to

Equations 27.04. We may write Equations 27.06

in matrix form as

{(v + h) cos cj) dco, (p + h)dcb, dh}

27.07 =-Q{dX , dYQ , dZ }

where Q is given by Equation 19.26. If the new
spheroid is to be parallel to the old at the origin,

then we have dco = dcb — in the observation Equa-

tion 27.07 for the origin.

CHANGES OF CARTESIAN AXES

5. It has been assumed throughout this book that

all (co, (/>, N) systems — in particular, the astronom-

ical and geodetic systems — share the same Car-

tesian axes, which in the geodetic applications are

physically related to the axis of rotation of the Earth
and to the astronomical meridian at a fixed datum

or origin. The conditions to ensure common
Cartesian axes at the origin of a survey have been

investigated in § 19-13 through § 19-15; this

situation will be continuously preserved if frequent

astronomical observations are made throughout a

network which has been adjusted by using the

observation equations developed in § 26-12. If

this procedure has been followed, there should be

no need to consider reorientation of the Cartesian

axes. Unfortunately, many surveys of considerable

extent have not followed this rigorous procedure.

At most, a few Laplace azimuths have been used in

the adjustment; as we have seen in § 19-14 and

§ 19-15, this procedure is not sufficient to ensure

correct orientation. Whenever it becomes necessary

to join two such surveys or to adjust them into a

correctly oriented system, we should include orien-

tation parameters to allow for a change of Cartesian

axes and for a corresponding change in the orienta-

tion of the base spheroid of the geodetic coordinate

system.

6. Large rotations of the coordinate axes must be

made in a prescribed order to provide unique

results, although the many ways of prescribing the

order can lead to some confusion. For our purposes,

it would be advantageous to adopt the most common
definition of Euler's angles because these angles

are used in celestial mechanics and in satellite

geodesy. 1 Unfortunately, two of the three Eulei

angles are indistinguishable in the case of small

rotations which concern us in the present appli-

cation. On the other hand, small rotations can be

made in any order and compounded as vectors so

that we have no need to specify the order. Never-

theless, we prescribe an order required for large

rotations so that the results may be used for othei

applications.

7. We begin with one set of Cartesiaji axe

(A r
, B\ C r

) and derive others (A\ B\ C r
) by

right-handed rotations, which are positive if clock-

wise, when looking outward from the origin along

the positive direction of the axis of rotation, as

follows:

First, a rotation of a>i about the x-axis, A r
,

Second, a rotation of C02 about the new y-axis, and

Third, a rotation of (03 about the new z-axis.

The combined effect of these three independent

rotations is described by the following product

matrix, which premultiplies the initial vectors

(A r
, B r

, C r
) or the initial Cartesian coordinate

vector (x, y, z) to obtain the final vectors {A r
, B r

, C r
)

or (x, y, 2). The product matrix is

See Kaula (1966), Theory of Satellite Geodesy, 17-18.
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27.08

COS £03 Sin CO3

M =
|

- sin to3 cos o>3

cos o>2
— sin oj 2

1

sin co> cos (1)2

cos toi sin o»i

— sin wi cos oj]

which expands to

cos co 2 cos a*) (c° s w i s in ^3+ sin co, sin co2 cos co :i )
(sincoi sin (1)3— cos coi sin co 2 cos a) :i )

17.09
i
—cos co2 sin 0)3 (cos o>i cos 0*3 — sin a»i sin co 2 sin co3 ) (sincoi cos CO3 + COS coi sin a> L> sin C03)

J

sin (1)2 ~ s ' n w i cos u)> cos coi cos 0)2

For small rotations, the expanded matrix reduces to

1 CO3 — co>

2 7J<li> 1 i-o>3 1 CO,

co 2 — COi 1

It may be noted that M is an orthogonal matrix

because its three component matrices are orthogo-

nal, so that the inverse transformation is given by

the transpose MT
. The approximate matrix N is

not orthogonal, but the inverse will, nevertheless,

be given by Nr
, which is the approximate form of

Mr
. Because of the antisymmetric properties of N,

the transpose N r is equivalent to rotations (— coi,

— 0)2, — cos) which restore the original situation.

8. Next, we have to find the changes in the

geodetic coordinates of a point (co,
<f>,

h) resulting

from these rotations. If the new Cartesian coordi-

nates of the point are (x, y, z) , we have

{i, j, 2} = N{.r, y, 2}

;

the change in Cartesian coordinates is given by

{dx, dy, dz} = N{x, y, z} — I{x, y, z}

27.11 =N {x, y, 2}

where I is the identity matrix and

27.12 N :

W.( -co

-C03 0)]

C02 — COi

But, from Equation 27.07 in which the changes of

coordinates of the point are {— dXo, —dYn , —dZo},
we have

{(v + h) cosc/)c7co, (p + h)d4>, dh} = Q{dx, dy, dz}

27.13 -QN„{x, y,z}.

Expanding and substituting for the Cartesian

coordinates from Equations 25.15, we have after

some simplification

{v+ h) cos
(f)
do>=— a)a{v+ h) cos c/>

+ (coi cos C0 + CO2 sin co)

X (ez
i> + h) sin c/>

(p + /; )d(f) = (0)2 cos co — coi sin co)

X (h + a 2
/p)

dh = (co 2 cos co — coi sin co)

27.14 X (e
2 v sin c/) cos c/>),

which are in a suitable form to add to Equations

27.04 and 27.06 in those cases where there are

changes in the shape and size of the base spheroid,

in the Cartesian origin, and in the orientation of the

Cartesian axes.

9. An interesting alternative way of deriving the

same result is to start with the equation

{A r,Br,Cr} = N{Ar,Br,Cr}

or with the equation

{ (Ar-Ar), (B-Br), (C,.-C,)} = T$ {A r , Br , C,}

= NoCr{Xr , fir, V,}

from Equations 12.013 and 19.23. If we contract this

last equation with a position vector p' and use

Equation 12.169, we have

{dx, dy, c/z}=N Qr{(sec c/>)(dp/do)), dp/d<fi,p}

in which p is the perpendicular from the origin to

the tangent plane to the /V-surface (or /; -surface in

geodetic coordinates) through the point under con-

sideration. Using Equation 27.07, we have

{{v+ h) cos 4> da>, (p + h)d<f). dh}

27.15 =QN„Qr{(sec <f>){dpld<o), dpld<f>, p}

in which QN QT contains only the three rotation

angles and the latitude and longitude, while the

last vector contains the spheroidal elements. From
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Equations 12.170, etc., in geodetic coordinates,

we have

p — (v+ h) cos2
4> + (e2v+ h) sin2

(f>

={h+ a2/v)

dp/dcf) —— e2v sin </> cos <j)

27.16 dp/d(o = 0.

Equation 27.15 then directly expands to Equations

27.14.

CHANGE OF SCALE
AND ORIENTATION

10. We have now dealt with all possible changes

in the basic geodetic coordinate system and with

the effect of such changes on the coordinates of all

points in a network. In addition to the initial choice

of a discordant system of geodetic coordinates,

the network itself may have systematic errors of

scale and orientation for which an allowance should

be made before we adjust the network to adjacent

work or into the fixed system of a worldwide tri-

angulation. Any discrepancies in the coordinates

of common points should then be due to random
error, which can be reduced in a subsequent adjust-

ment by least squares, provided we have enough

common points.

11. Most of the systematic error in scale of a

network could be eliminated by altering the size

of the base spheroid in the geodetic coordinate

system, that is, by evaluating the parameter da in

observation equations which include Equations

27.04. However, this procedure would vitiate the

height dimension and would result in some inac-

curacy even in a two-dimensional adjustment which

ignores geodetic heights, especially if the network

covers a considerable area. The size of the base

spheroid will almost always be known, and the

effect of a change da to another spheroid of known
size can be evaluated and removed by means of

Equations 27.04 before the formation of the obser-

vation equations. In much the same way, the effect

of a systematic orientation error in the network

could be concealed by evaluating false values of the

rotation parameters wi, &)•>, (03, but this procedure

would be even more unsound. We shall accordingly

investigate separately the effect of systematic error

of scale and orientation within the network by hold-

ing the origin fixed, or by holding some central

point of the network fixed if there is no origin. We
shall choose as parameters (a) a proportional

scale change ds/s, where 5 is the straight-line dis-

tance of the point under consideration from the

origin, and (b) changes da , dft;, in the azimuth and

zenith distance at the origin of the straight line to

the point under consideration. The parameters

dsjs, da , dfto will, of course, be given the same
values for all lines radiating from the origin. The
straight-line distances, azimuths, and zenith dis-

tances of all points from the origin are first computed
from Equation 25.18 in which the unbarred point is

the origin, and are used in the coefficients of the

observation equations that we shall now form.

12. We could simply differentiate Equation 25.18,

with the unbarred origin and therefore the matrix Q
fixed; we could then obtain three equations con-

necting ds/s, da = da , dft — dft with changes

da>, d(j>, dh in the geodetic coordinates of the point

under consideration. These three equations could
then be solved to give da>, d(f>, dh explicitly in terms
of the parameters ds/s, dao, dfto. However, we shall

find it more instructive to proceed from first

principles and to derive the results in matrix form.

13. We make dx r
, da), dcf) all zero in Equations

26.07 and 26.14 and obtain

l
r

( ds/s ) + m r
dfto — n r sin ft da — dxr

/s.

27.17

In this equation, dx r are corrections to the Car-

tesian coordinates of the point under consideration

arising from changes da , dfto in the azimuth a
and zenith distance ft of l

r
. The auxiliary vectors

m r
, n r are defined by Equations 26.13; we must

use the Cartesian components of all vectors in

Equation 27.17, which is a vector equation only in

Cartesian coordinates because of the derivation

of Equation 27.17 from Equation 26.06. If we form

the orthogonal matrix

/sin a sin ft sin a cos ft
— cos a

A= cos a sin ft cos a cos ft sin a

V cos ft
— sin ft

27.18

and if we refer to Equations 26.33, 26.34, and 26.35,

we find that the matrix of Cartesian components of

/'', m r
, n r

is

QrA

where Q is as usual given by Equation 19.26. Ac-

cordingly, the left-hand side of Equation 27.17 can

be written in matrix form as

QTA{ds/s, dfto, - sin ft da };

from Equation 27.07 in which we must substitute
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dx for — dX , etc., the right-hand side is

QT{(l> + h) cos0 da>, (p+ h)d<j>, dh}/s

so that we have finally

{(v+ h) cos dco, (p + h)d<f>, dh}

27.19 =sQQTA{dsls, dp ,
- sin (3 da }.

The overbars in this last equation refer to the point

under consideration, while the unbarred quantities

and da , dfio refer to the origin. The matrix QQT
is

given by Equation 19.25; by using Equation 19.27

for each of the three vectors l
r

, m r
, n'\ we can write

27.20 QOrA=A
where A is the same matrix as A but formed from

the azimuth and zenith distance at the overbarred

point, that is, at the point under consideration. If O is

the origin, we must as usual form this matrix by

using the azimuth and zenith distance at P of the

line OP produced, which could have been computed
just as easily from Equation 25.19 as the azimuth

and zenith distance at O. The parameters da ,

df3 still refer to the origin, but once the parameters

are known, they can be substituted in the same
equation to give the changes in coordinates of other

points which have not been used in the adjustment,

regardless of their actual meaning. We can ac-

cordingly drop the overbars and rewrite Equation

27.19 as

{(v+ h) cos da, (p + h)d<f>, dh}

27.21 = sA{ds/s, dp ,-sin ft da },

provided we form the matrix A from the azimuth a
and zenith distance /3 at the point P under considera-
tion of the line OP produced. In this final form, the

equation is suitable for combining with the equa-
tions for changes in the geodetic coordinate system.

EXTENSION TO ASTRONOMICAL
COORDINATES

14. Most of the preceding analysis applies equally

well to a general (o>,
(f>, N) system, including the

astronomical system in which N is the geopotential,

provided we use the more general R-matrices given

in Equation 19.31. The derivation of Equation 27.05,

for example, shows that for changes (dx, dy, dz) in

the Cartesian coordinates of a point, we have

27.22 {dw, d<f>, dN} = RTQ{dx, dy, dz}

where

A'i sec 4> —ti sec (/> y r sec (/>\

K'
I

-t, -k2 y2

n

and is given by Equation 19.26. Equation 27.22

gives, for example, the changes in (a», 4>, N) co-

ordinates for an origin shift of (dXo, dYn , dZo) by
simply substituting dx=—dXo, etc.

15. The change in (a>,
<f>, N) coordinates, arising

from operation of the rotation matrix N (Equation

27.12) on the Cartesian axes, is obtained from Equa-
tions 27.11 as

27.23 [dot, d<j>, dN} = RrQN {*, y, z}.

To apply this result, we must know the Cartesian

coordinates of the point; in the case of a general

(0, at, N) system, there are no such integral for-

mulas as Equations 25.15. However, the Cartesian

coordinates appear only in the coefficients of the

first-order rotations a>i, w 2 , w :i , and approximate
values would suffice.

16. The result of changes in the scale and orienta-

tion of the network corresponding to Equation 27.21

is similarly given by

{da>, d<f>, dN}=sRTA{ds/s, d/3„, - sin /3 da }.

27.24

To apply this equation in the astronomical system,

we need to know the length s and the astronomical

azimuth and zenith distance at the point P under

consideration of the line OP produced, where is

the origin. Approximate values, such as geodetic

values, would suffice, corrected if possible for the

deflection at P.

17. There is, of course, no corresponding equation

to reflect changes da, de in the base-spheroid

parameters, which arise solely from the special

choice of a (w, (f),
h) system. We make such a spe-

cial choice in the case of a general (a>, cf>, N) sys-

tem by identifying N, for example, with the geo-

potential, which settles all the components of the

R-matrices at their actual physical values. To apply

the system, we accordingly need values of gravity

and of the curvature parameters at all points of the

network.

ADJUSTMENT PROCEDURE

18. The total change in the geodetic coordinates

(d(o, d(f), dh) arising from application of the four

sets of parameters (da, de), (dX , dY , dZ ),

(a>i, (o>, w.i), and (ds/s, dfia , da ) in Equations 27.04.

27.06, 27.14, and 27.21 can be obtained by adding
these equations. This procedure assumes that the

parameters are independent and that second-order
effects can be either neglected or removed by some
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process of iteration, although in some cases, the

parameters, especially the rotations, will be strongly

correlated (see §27-27). In the result, we have three

equations for each point containing 11 parameters.

In most cases, the two spheroids will be known so

that the {da, de) terms can be computed and re-

moved from the equations. For the remainder of

this section, we shall assume that this procedure

has been followed and that we are left with three

equations for each point containing nine parameters.

19. We shall consider the case of two adjacent

networks which are to be adjusted into sympathy

through common points. If one network (overbarred)

is held fixed, we substitute

d(o — 0) — (o,

etc., for the difference in coordinates of each com-

mon point and solve for the parameters to correct

the unbarred system. All the coefficient matrices

are computed in the unbarred system. We need

at least three common points for a solution; if

there are more points, the equations can be treated

as observation equations and appropriately weighted

in a least-squares adjustment. For a stable solution,

the common points must, of course, be widely

separated.

20. If neither network is to be held fixed, we sup-

pose that the final values of the coordinates will

be oj*, etc. We can then form equations in each net-

work, whose absolute terms are a>* — o> and oj* — to,

and subtract these equations in pairs to eliminate

o)*. We are left with three equations for each com-
mon point containing 18 independent parameters,

and we shall need at least six common points. An
extension of the same procedure would enable us

to connect several networks.

21. We have supposed that all three geodetic

coordinates of each common point are known in

both adjacent systems. Unfortunately, geodetic

heights will seldom be known. Vertical angles, con-

trolled by frequent astronomical observations as

proposed in Chapter 26, have not been measured
in several major triangulations because of the

(excessive) fear of the effects of atmospheric re-

fraction and in the expectation that the stations

would be connected by lines of spirit levels. How-
ever, for economic reasons, spirit leveling has for

the most part been confined to roads, and triangula-

tion stations sited on hills still have no accurate

heights. Where accurate vertical angles have been
measured, there are usually too few astronomical ob-

servations to provide adequate geodetic heights, and

the vertical angles have been reduced as indicated

in §25-19 to provide a first-order approximation to

spirit levels.

22. If spirit levels, or an approximation to spirit

levels, are available for the common points, the

best procedure would be to replace the d/i-equations

by c/A-equations, formed as in § 27-14, using geo-

detic values of (o», </>) in the coefficients and the best

possible values of the gravitational parameters in

the R-matrix. An additional parameter may be
required to allow for difference of level datums in

the networks. The unknown parameters are other-

wise the same in the o?/V-equations, which can
accordingly be used in conjunction with the dw,

d(f> geodetic equations.

23. If no adequate heights are available in any

defined system for the common points, no valid

adjustment is possible; the points of the network

are, in fact, located in three-dimensional space,

and we cannot expect to achieve a rational answer

by arbitrarily stripping a dimension, even though

such procedures have been common in classical

geodesy. The most we can do is to drop the dh-

equations and to solve for the unknown parameters

from the dw, d(f) equations only, using the best

available values for h in the coefficients. In that

case, we should need at least 50 percent more com-
mon points, and even so we could not expect to

derive valid values for some of the parameters.

For example, dX t) , dY», dZ f) would probably be ficti-

tious because we should not have taken any definite

steps toward positioning the spheroids. It would

be better to defer the adjustment altogether until

adequate observations have been made.

FIGURE OF THE EARTH

24. In modern language, the old problem of deter-

mining a "Figure of the Earth" becomes the prob-

lem of finding a geodetic coordinate system which

best fits the astronomical system. The problem is

very easily solved if we substitute the astronomical

minus the geodetic longitude (or latitude) for do)

(or d(j)) in the observation equations of this chapter

and retain the parameters da, de of Equations 27.04.

All the points used in the adjustment should be in

the same network, although the network may have

been formed by joining adjacent networks as pro-

posed in the last section. In addition to da, de,

other parameters may be included in the adjust-

ment, depending on the kind of network we are

using.
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25. The parameters {dXo, dY», dZ») should nor-

mally be included in order to locate the origin of

the final system as near as possible at the center of

figure; we should be unable to locate the origin at

the center of mass by any geometrical adjustment.

However, if we know the positions of some of the

stations of the network in relation to the center of

mass, whether by lunar observations as described

in Chapter 26 or by dynamic observations to arti-

ficial satellites, we can relate the origin derived

from the geometrical adjustment to the center of

mass and so can shift the origin to the center of

mass. For example, if the geocentric coordinates

of a point in relation to the center of mass as origin

are (w, $, r) and if the geodetic coordinates of the

same point are (oj, (f>,
h), then

dx= (v-\- h) cos (/> cos a) — r cos </> cos 6j

dy— (t> + h) cos (/> sin oj — r cos $ sin o»

27.25 dz= (e
2v+ h) sin

<f>
— r sin $

give the coordinates of the center of mass from the

origin of the geodetic system. Mean values of the

shift from a number of points should ultimately

provide a close result. As always, we require the

geocentric and geodetic systems to share the same
Cartesian axes. If we know dx, dy, dz from Equa-

tions 27.25, then we can substitute dx=dX», etc.,

in the observation equations and so can derive a

geodetic system whose origin is the center of mass.

26. The Cartesian rotations (oji, oh, oj.s) should

be included in the observation equations if we have

any reason to suspect the initial orientation of the

network. These rotations should not be included in

a passive satellite triangulation network where
every line, apart from observational error, has been

correctly oriented.

27. Scale and orientation parameters (dsjs, dfio,

dao) could be included, but would be confused with

da and (ct>i, a>>, ai.-s) unless the network is of great

extent. These parameters should not be included

in a worldwide satellite triangulation network which

has been closed and internally adjusted, but should

be included in the adjustment of an existing triangu-

lation to satellite control.

28. We have so far considered only the observa-

tion equations for latitude and longitude in deter-

mining a Figure of the Earth. The question arises

whether we also can include equations for the third

dimension. If we know the geopotential at points of

the network, whether by spirit leveling or by other

means, we can find a point whose geodetic coordi-

nates are (a>, $, h) where the standard potential has

the same value. If h is the geodetic height of the

network point, we could write (h — h) for dh in an

observational equation. Inclusion of this equation

in the adjustment would result in values of the

parameters which would minimize (h—h) as well

as the astronomical minus the geodetic latitude and

longitude. The adjustment would thus bring the

standard gravitational field into closer accord with

actuality.

29. There are, of course, certain advantages in

adopting a geodetic system close to the astronomical

system. It is convenient to confuse the two systems

within allowable limits of error for such purposes

as small-scale mapping; it is essential that first-

order transformations between the two systems

should be sufficiently accurate for even the most

refined geodetic work. However, there are serious

practical and economic disadvantages in changing

the geodetic system too often. The next justifiable

occasion to make the change may well be on com-

pletion of the worldwide satellite triangulation.





CHAPTER 28

Dynamic Satellite Geodesy

GENERAL REMARKS

1. The static use of artificial satellites as elevated

beacons has been described in § 26-43 through

§ 26-72. In addition, it is possible to derive much
geodetic information by observing and analyzing

the motion of the satellite in orbit. The lower har-

monics of the gravitational field can be obtained

more accurately from satellites than by any other

method, until it becomes possible to cover the entire

globe with gravity observations to a high degree of

accuracy and with uniform density; corrections to

the positions of tracking stations may be obtained

in a worldwide reference system, supplementing

direct geometrical fixation by satellite triangulation;

and the origin of the reference system can be

located at the center of mass of the Earth, which is

impossible by any other method until gravity surveys

are completed over the entire globe. But to obtain

all this information, as well as the changing elements

of the satellite orbits from a growing number of

satellites, necessarily involves some complexity.

2. Methods initially were taken from the astrono-

mers—who did not have quite the same problem of

a close satellite of an unsymmetrical rotating parent

body — with the result that considerable extensions

and modifications have been found necessary. As in

astronomical calculations, analytical methods,

which must, nevertheless, be studied to gain any

understanding of the problem, are giving way to

numerical and statistical methods, using larger

computers on more sophisticated programs. Against

this background of rapid development and of grow-

ing complexity, the most explanation which can be

provided in one chapter is a fairly detailed account

of the basic equations and elementary theory, fol-

lowed by notes in bare outline on current methods

of solution.

EQUATIONS OF MOTION

-

INERTIAL AXES

3. Newton's second law of motion for a particle

of mass m is usually expressed in Cartesian coordi-

nates as

d 2x_ d(mv,,)
28.001

dt 2
dt

=FX

with two similar equations for the other coordinates

y and z. In these equations, the derivatives are with

respect to time t, which is assumed to be independ-

ent of the space coordinates: vx , Fx are, respec-

tively, the x-components of the velocity (dx/dt) and

of the applied force. If the equations are to hold in

the same Cartesian system over some finite region

of space, then that space must be flat (§ 5-2). More-

over, if the Cartesian equations of motion are to

express a law of nature, these equations must be

invariant with respect to manmade coordinate

transformations; it can be shown that the equations

are invariant, provided the mass does not change

either with time or with the coordinate system and
provided the two sets of Cartesian axes are fixed or,

at most, are moving relative to each other with a

constant velocity of translation. The equations do

not hold true in any coordinate system if one set

of axes is accelerating (or rotating) with respect to

the other set.

4. A coordinate or reference system which is

either fixed or moving with a constant velocity of

269
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translation is known as an inertial system; we can

say that Equation 28.001 holds true only in such a

system. The inertial system which most concerns

us in satellite geodesy has the z-axis parallel to, and

in the northward direction of, the Earth's axis of ro-

tation; the x-axis is parallel to the plane of the Earth's

orbit around the Sun— the plane of the ecliptic— in

the direction of the vernal equinox. We must also

specify a time or epoch and must correct our obser-

vations accordingly because the axis of rotation and

the ecliptic vary slightly in time, mainly as a result

of lunar and planetary perturbations. Even then, we
cannot say that we have a true inertial system. A
recent description of the astronomical determination

of an inertial frame of reference has been given by

Wayman. 1 Nevertheless, it has been said that the

only valid definition of an inertial system is one

which would make Newton's laws true, and because

these laws are not true on the cosmic scale, there is

no such thing as an inertial system. However, for

our present purposes, the concept is a good approxi-

mation. We shall also assume that the origin of the

inertial system is the center of mass of the Earth,

in which case as we have seen in § 21—42 that first-

degree harmonics must necessarily be absent from

the expression of the Earth's potential in spherical

harmonics derived from the Cartesian inertial

system.

5. To express Equation 28.001 in a general coordi-

nate system x'\ we must first generalize the velocity

vector. In (overbarred) Cartesian coordinates, the

contravariant velocity vector is dx s/dt, expressing

the time-rate of change of each coordinate. By the

ordinary transformation law, the velocity vector in

any other coordinate system (unbarred) is then

28.002
dx r

dx s
Vs -

dxr dx s

dxs dt

dx
dt

ds dx'

dt ds
vl'

where v= ds/dt is the linear velocity, ds is the arc

element of the path of motion or orbit, and l
r

is the

unit tangent to the path of motion. The covariant

velocity vector is obtained by simply lowering the

indices in the first and last members of Equation

28.002. In Cartesian coordinates, the velocity vector

is also the time-rate of change of the position vector

p'\ and we may generalize this statement to

28.003 -u~ vl

with a covariant equation obtained by lowering the

indices, provided that we now take the intrinsic

derivative (§4-1) of the position vector. Because

1 Wayman (1966), "Determination of the Inertial Frame of

Reference," The Quarterly Journal of the Royal Astronomical

Society, v. 7, 138-156.

Equation 28.003 is a tensor equation which is true

in Cartesian coordinates, it is true in any coordinate

system.

6. The equations of motion can now be general-

ized to

28.004 m
§ 2

p,

8t 2

8vr 8(mvl,)

8t 8t
= F r

where F, is the applied force vector and (mvl r) is

defined as the momentum vector. Equation 28.004

reduces to Equation 28.001 and to the two similar

equations in Cartesian coordinates, as a tensor

equation, Equation 28.004 is therefore true in any
coordinate system derived from an inertial system.

If we consider F, to be the force per unit mass or,

alternatively, if we consider that we are dealing with

a particle of unit mass, we may drop the m in the

last equation and write

28.005
8-p, _ 8vr _ 8 ( vl,-

)

8t 2
_
"o7~ 8t

Fr ,

which expresses the acceleration vector. If the

applied force is derived from a scalar potential V,

we have

Fr=-Vr

from the generalization of Equation 20.05; we can

write

8 2
pr= 8v, = 8(vl,)

8t
2
~28.006

8t 8t
F,=-Vr .

7. The tensor Equation 28.006 can be written in

yet another form more suitable for expanding the

equations of motion in a particular coordinate sys-

tem. We have

Vr= Fr

8(vl,) = d(vl r )

8t dt

= d(vl r )

dt

_ d(vlr)

dt

- nb (vis)
cW
dt

~ Th v
2
gxqM«

[rk, q]vH"l h

d(vlr)

dt

. i
(dgrq

|

dgkq
2
\ dxk dxr

dx" J

d(vlr)
1
(dgrq

|

?>gkq

\ dxk dx''dt

dgrq

dx k
v
2M k
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on interchanging the dummy indices (k, q) in the

last term and by using Equations 28.002, 3.02, and

3.01. Finally, we have

~~_ ir i- d I dxs
\ , dgkq dxk dx'i

28.007 -V^Fr^grs-^)-^-^-^,
which enables us to write at once the components

of force in any coordinate system from the metric

alone.

8. For example, suppose that we wish to work in

the symmetrical (a», </>, h) coordinate system of

Chapter 18. By direct substitution of the metric

given in Equations 18.03 and 18.04, we have

dV d

do) dt
{(/?, + h) 2

cos 2
4><i>)

dV- d t(3 , L\2l\ i
d{{Ri + h)- cos- <f>} ...

. d{(R-, + h) 2
} ..,

--*
dj ^

dV d ,;, , d{(Ri + h) 2 cos 2 d>}
.,

-Jh
=

dt
{h]-t

Th
w "

,
d{(R., + h)-} :,~-

Th
*'

28.008

in which we have adopted the usual convention of

denoting differentiations with respect to time by

dots, for example, co = dco\dt. Equations 28.008

apply to any choice of axially symmetrical base sur-

face whose principal radii of curvature R\, R.2 are

functions of the latitude cf> only. To obtain the equa-

tions in geodetic coordinates with a spheroidal base,

we have only to use the special values of Ru Rz
given by Equations 18.55 and 18.54. We can also

obtain the equations in spherical polar coordinates

by choosing a spherical base surface of radius

r - R, = R,

so that we have

(Ri + h)= (R2+ h)= r,

the radius vector of the point under consideration.

Expansion of Equations 28.008 in this case give

immediately the well-known formulas

dV d
, 2 , , .,=— (r* cos- <p o»)

aa> dt

\i/ j

—TT= T" < r2</>)+ rl sm 4> cos <b a)'
2

d(p dt

28.009 -^=r-rcos 2
<i)a)

2 -;f.
dr

v v

EQUATIONS OF MOTION

-

MOVING AXES

9. Next, we shall suppose that the motion of the

particle or satellite is referred to the usual Car-

tesian axes A r , B r , C r , fixed in the Earth but rotating

around the C,-axis with constant angular velocity

a> relative to the inertial axes A r , B r , C r (C r— Cr ).

If t is elapsed time since the two sets of axes

coincided, we have from Equations 20.10

A r= A r cos cot + B, sin cot

28.010

B r= — A r sin cot + B, cos cot

Cr=Cr.

Because ordinary and covariant differentiation are

the same in Cartesian coordinates and because
A,-, B,, Cr are fixed, we have

dA r

dt

28.011

>B, :

(IB,

dt
= — coA,

dCr

dt
0.

10. The position vector of a satellite at (x, y, z)

in the moving system is

p,=xAr+ yBr +zCr ;

using Equations 28.011, the absolute velocity vector

relative to the inertial axes is

C

-^ = xAr + yB,+zC,+co(xBr-yAr),

the last two terms arising from the motion of the

axes and the first three terms giving the apparent

velocity vector v r relative to the moving axes. In

the same way, the absolute acceleration vector

is given by

*'%= (xAr+ 9Br+ zCr)
dt*

+ 2co(xBr-yAr)-cb2 (xA r + yB r ).

We may equate the absolute acceleration to the

applied force vector per unit mass F, by Newton's
second law. The first group of terms in parentheses

on the right is the apparent acceleration relative

to the moving axes; this group can be expressed in

tensor form as 8?v/o7 in which v, is the apparent

velocity vector. The second group of terms can be

written as the vector product

2a>erpqC l'vQ ,

if we remember that covariant and contravariant

components are the same in rectangular Cartesian

coordinates. The third group of terms is the gradient
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of — i(L-(x- + y-); this group can be written as

— icir (x'- + y-),-,

using Equations 12.009.

We have finally

8v,
28.012 F r = -^+2(be ll)qCi'v"-^a>

2 (x2+ y
2
) r .

This last equation is a tensor equation which holds

true in any coordinate system transformed from the

moving A,-, Br , C, system, if we note that (x'
2 + y'2

)

is the square of the distance of the satellite from
the axis of rotation and is therefore an invariant

under such transformations. Moreover, the vector

C 1 ' symbolizes any axis of rotation and need no

longer have anything to do with the coordinate

system. It will be seen that Equation 28.012 differs

from the Newtonian equations of motion relative

to inertial axes by the addition of the last two terms

on the right. The first of these terms is known as

the Coriolis force (or acceleration); the second

is known as the centripetal force. However, these

are fictitious forces arising from the motion of the

axes, unlike the applied force F r , the idea being

that if we "correct" the applied force by the

Coriolis and centripetal "forces," the ordinary

Newtonian equations of motion apply to the ap-

parent velocity. Another way of handling the matter

is to forget that the axes are rotating and to use

Equation 28.012 instead of Equation 28.005. It may
be emphasized that the covariant velocity vector

v,—vl r is not the gradient of the scalar velocity v,

whether in an inertial or moving coordinate system.

The scalar velocity v has so far been defined only

as dsjdt along the orbit and can have a gradient

only along the orbit. At the end of this chapter,

we shall define the scalar velocity of a family of

orbits in space, but meanwhile there need be no

confusion.

11. If the impressed force F, is derived from a

scalar potential V, we have

Fr =~Vr

from the generalization of Equation 20.05. Also, if

W is the geopotential defined in § 20-10, we have

Wr=Vr-W{x 2 + f),

from Equation 20.08, so that Equation 28.012 in this

case can be written as

28.013 -W l =^r + 2u€ n>qC»v«.
ot

If the Coriolis force — the last term on the right —
could be written as the gradient of a scalar S, then

the equations of motion would take the norma
Newtonian form with a potential (W+S). However
this is generally impossible; the Newtonian equa
tions of motion simply do not apply to acceleratinj

or moving axes even with a modified potential.

12. The equations of motion in Cartesian coordi

nates, referred to the Earth-fixed A r , B, , C, system

are easily obtained by contracting Equation 28.011

successively with A'\ Br
, and C'\ which are constan

vectors in this system so that the x-component o

the applied force is, for example,

F,=F,A'=A ,.
82
p r

8t2
2a>erp9A rCPv"- d)

2xxrA'

8HA r
p r )

8t
2

dx q

— 2d)Bq —TT — (xTX

d x dy
,= —rz— 2o» — a>-x.

dt 2 dt

The three equations of motion are then

x — 2a>y= Fx+ co
2x — —'dW\'dx

y+ 2(hx = Fy + d)
2y= -dW/dy

28.014 z =FZ =-dWjdz.

The last three members of these equations assume

that the impressed force can be expressed as th(

gradient of a scalar potential — V, in which case W
is the geopotential.

INERTIAL AXES-FIRST INTEGRALS

13. It is apparent from Equation 28.002 that th

magnitude of the velocity vector v r is v because /

is a unit vector. Accordingly, we have

V'Vy= V 2
,

which can be differentiated intrinsically to giv

d(v 2
) 8v r 8v r

dt
v

8t-
+ v

'-8t-

8v,

"o7
?rsV

s
8v^

8t

8vr 8(grsV>)

8vr 8t;.v

28.015 2v
8v r

"o7'
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remembering that the metric tensor grs is constant

under covariant or intrinsic differentiation.

14. If we take the equations of motion in the form

of Equation 28.006 as

28.016
ot ~ Vr '

contract with the contravariant velocity vector

vr=dxr/dt, and use Equation 28.015, we have

8v r , d(v'2 )

28.017 ^--i-y- dx'
v —

' dt
'

The total time differential of V is

dV_ dV dx r dV_ dx r dV
28.018 -^-j^-dj+Tt~ Vr

~dT
Jr
Tv

if V does not contain the time explicitly (dV/dt= 0),

we can write Equation 28.017 as

d
28.019

dt
(h 2 +V)=0,

which shows that

28.020 H*=hz+ V

is a constant of the motion and provides a first

integral of the equations of motion. The potential

V, as we have seen in § 20—3, can be considered

a form of energy; whereas (it'
2
), remembering that

we are dealing with a particle of unit mass, is the

kinetic energy of the particle. We say that (%v2+ V)

represents the total energy of the particle, which

is conserved during the motion. The integral (kv
2+ V)

is sometimes known in the literature as the vis viva.

15. If, on the other hand, the potential is time-

dependent in the sense that its expression contains

the time explicitly, then there is generally no simple

law of conservation of energy. In that case, if we
add Equations 28.017 and 28.018 and integrate, we
have

28.021 fa
2+V CdV

J dt
dt + constant;

the integral on the right cannot generally be evalu-

ated unless we can express V completely in terms

of the single time variable. Equation 28.021 can, in

some cases, be solved by successive approxima-

tion; as we shall see in § 28-91, the equation can be

given a definite expression in the case of a uniformly

rotating, attracting body such as the Earth.

16. The attraction potential of the Earth is not

symmetrical about the axis of rotation and will

therefore contain tesseral harmonics when ex-

pressed in spherical harmonics related to Earth-

fixed, but rotating, axes A,-, B r , C,- The longitude

oj in the spherical harmonics is related to the inertial

longitude o> by the relation

28.022 OJ — OJ — (Ot,

if t is the elapsed time since the two sets of axes

coincided and if oj is the constant angular velocity

of rotation, as we can see at once from figure 16,

Chapter 20. To express the potential in spherical

harmonics related to the inertial system, as we must

do if we are going to use Newtonian equations of

motion, we can substitute Equation 28.022, for ex-

ample, in Equation 21.035, which would then con-

tain the time explicitly. Another way of considering

this matter is to note that the field at a fixed point

in inertial space will vary with time as the Earth

rotates; the potential is time-dependent, whether

we express the potential in spherical harmonics or

in any other coordinate system derived from the

inertial system. We conclude that Equation 28.021,

and not Equation 28.020, holds true in this case.

17. Another law which might assist a solution of

the equations of motion is the conservation of angu-

lar momentum. In figure 32, the origin is at S, the

Figure 32.

satellite is at O, and the unit tangent /, to the orbit

is as shown in the plane of the paper. The line SQ
is perpendicular to the tangent; the magnitude of

the angular momentum or moment of momentum
for unit mass is defined as

v(SQ)=vr sin B,

which is the magnitude of the vector product

28.023 erst
psv, = ve rst

ps l, = erst
pspt,

known as the angular momentum vector, whose
direction is perpendicular to the plane of the paper

306-962 0-69— 19
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and toward the reader. If we assume that both the

magnitude and direction of this vector must be

constant in time to satisfy a conservation law, we
have

erst
psvt= constant.

Obviously, this law cannot be a universal law of

nature because it depends on the origin S of the

coordinate system through the position vector ps .

To determine the circumstances in which the sup-

posed law can apply, we differentiate intrinsically

with respect to time, remembering that we have

8psl8t=vs and that the vector product of two paral-

lel or identical vectors is zero. The result, using

Equation 28.005, is

28.024 e'*'p,F, = 0,

which implies that the force — or the gradient of the

potential— must be parallel to the position vector.

In the case we are considering, this result restricts

the potential to the elementary form GM/r; (vr sin (3)

is then constant. Also, the orbit must lie entirely in

a plane passing through the origin, that is, the plane

of the paper in figure 32, because the angular mo-

mentum vector is normal to this plane and is a con-

stant vector. There is a clear analogy with the

situation discussed in § 24-10 for the path of a light

ray in a spherically symmetrical refracting medium,

an analogy first noted by Newton 2 himself.

18. We shall now indicate briefly that the same
situation would occur if the supposed law required

the magnitude, but not the direction, of the angular

momentum vector to be constant in time. In that

case, we have

€ rsl
psvt€ rpqp

pvQ— constant;

by intrinsic time differentiation, we have after some
manipulation and use of Equations 2.18, 2.19, and
2.21

28.025 PpVqpPv«=PqVppl>V*.

We now set up the usual triad (A. r , Pr, vr ) of parallel,

meridian, and normal vectors in a spherical polar

(w, c/>, r) system. The gradient vector of the poten-

tial, like any other vector, can be expressed in

terms of the triad as

28.026 Vq
= lkq+ mpq+ nvq.

If the azimuth and zenith distance of the orbit in

the (to, </>, r) system are a, /3, we have

vq=vlq=v(X q sin a sin (5+ pq cos a sin r3~\-v
q cos /3)

and also

pq=rvq
.

Substitution in Equation 28.025 gives after some
manipulation

vr2 sin (3(1 sin a+ m cos a) = 0,

which clearly cannot be satisfied for a general orbit

(a, (3 arbitrary) unless we have l = m — 0, again

requiring Vq in Equation 28.026 to be parallel to the

position vector. In this case also, angular momentum
is conserved only in an elementary potential field

GM/r. The orbit is then plane, and

28.027 vr sin (3 = constant

is an integral of the equations of motion.

MOVING AXES-FIRST INTEGRALS

19. In our present problem, the geopotential W
in Equation 28.013 does not contain the time ex-

plicitly. For example, the attraction potential in

spherical harmonics given by Equation 21.035 con-

tains only spherical polar coordinates derived from

the Earth-fixed Ar , Br , Cr system, and the same
applies to the expression of the potential in any

other coordinates derived from the A r , B r , Cr sys-

tem. The centripetal part ldi
2 (x

2 + y
2

) of the geopo-

tential contains only rectangular coordinates in the

A r , B r , C r system. The total time differential of the

geopotential is accordingly

dW_ dx?

dt
Wr

dt

'

If we contract Equation 28.013 with the velocity vec

tor v r= dx'/dt, the Coriolis force is eliminated. Usin^

Equation 28.015 and integrating with respect te

time as in § 28-14, we have

28.028 h;2 + W'= constant

- Quoted by Forsyth (Dover ed. of 1960). Calculus of Variations,

original ed. of 1926, 256-257.

as a first integral even though the geopotentia

contains tesseral harmonics. In this expression, i

is the magnitude of the apparent velocity relative

to the rotating axes fixed in the Earth. We shal

consider in § 28-87 and § 28-88 how to transforn

this result to the inertial system, and so to obtair

a first integral of the inertial equations of motion

20. The rotating system can be considered ar

inertial system in which the ordinary Newtoniar

equations of motion would apply, if we interpret the

impressed force as the gradient of the geopotentia
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plus the Coriolis force. Therefore, we cannot

expect angular momentum to be conserved in the

rotating system unless the total force, thus com-

pounded, is directed toward the origin. As we
found from Equation 28.024, we should require

in which k is a scalar; this equation cannot possibly

be satisfied for general values of Wr and v9 , any more

than Equation 28.024 could be satisfied by general

values of the potential. Accordingly, no first integral

can be derived from a conservative law of angular

momentum except in special cases.

THE LAGRANGIAN

21. In an inertial system, the space coordinates

are independent of time — an essential feature of the

Newtonian system — and are therefore independent

also of the velocity components. Generally, we can

associate any velocity components with any space

coordinates, although the two sets of variables will,

of course, be related for a particular orbit. Instead

of considering our present problem in terms of

three space variables and of their variation with

time, we can consider the problem in terms of

seven independent variables (x, y, z, x, y, z, t),

which can be transformed in various ways, and we
derive solutions of the equations of motion for

particular orbits in the form of relations between

these seven variables. A complete solution, for

example, would consist of x, y, z as functions of time

from which x, y, z could be obtained by differentia-

tion or, alternatively, A, y, z as functions of time from

which x, y, z could be obtained by integration.

22. Next, we introduce an expression

28.029 L* = Ux2 + y
2 + z2 )-V(x, y, z, t),

known as the Lagrangian , in which (±, y, z, x, y, z, t)

are considered as independent variables. The first

term on the right is the kinetic energy, and V is a

scalar potential. We then have

d /dL*

dt \ dx

dx

dt dx

dL*

dx

using the Cartesian form of Equation 28.006 for

the equations of motion in a scalar potential field,

plus two similar equations for y and z which are

equivalent to the Newtonian equations of motion.

These three equations can be put into index form
as

28.030
d /dL*

dt \dq r

dL*

dq r "

which is a tensor equation only if the coordinates

and the transforming factors

dq r

dq s

dq r

dqs

are independent of time. The equations of motion

may be written in this Lagrangian form for the posi-

tions and velocities of any number of particles in a

general dynamic system.

THE CANONICAL EQUATIONS

23. Although a first integral of the inertial equa-

tions of motion in the form of Equation 28.020 will

not generally exist, there will, nevertheless, be a

quantity H* — known as the Hamiltonian — given by

28.031 H*= h>
2 +V.

The H* will be constant in time in accordance with

Equation 28.020, only if the applied force is the

gradient of a scalar, —V, which does not explicitly

contain the time. However, in the general circum-

stances of our problem, H* can be written in

Cartesian coordinates in the form

28.032 H*= i(x2+ f
2+ z2 ) + V(x, y, z, t)

,

containing seven variables. Differentiation with

respect to these variables and substitution in the

Cartesian form of Equation 28.006 give three sets

of equations of the form

dx

dx

dt

dH*

dx

dV
dx

dx

which can be written in index notation as

dH^_= dx^ dH* _ dxr
=

dt
;28.033

dx r dx' dt

These last sets of equations are evidently equivalent

to the Newtonian equations of motion, except that

we now have six first-order equations connecting
the six variables x r

, x r and the time, instead of three

second-order equations connecting the x r and the

time. The symmetrical first-order form of the equa-
tions of motion in Equations 28.033 is known as the

canonical form. We shall see later that these

equations can be transformed to others having the

same form by a suitable change of variables.

24. The canonical form of the equations of motion
has been derived from and is equivalent to the iner-

tial equations. We can derive a similar canonical

form for the equations, referred to moving (Earth-

fixed) axes from Equations 28.014, only if the

Coriolis force can be expressed as the gradient of a
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scalar which could be used to modify the Hamil-

tonian. Generally, this is not possible. Otherwise,

the most we can do is to transform back to the

inertial system (jto, yo, 20) by the relations

x = Xo cos Git + yo sin tot

y= — xo sin tot + yo cos cot

28.034 z = z

in which t is the time since the two sets of axes

coincided. We can then write the canonical equa-

tions in the variables (xo, yo, Zo, xo, jo, zo, t) and can

transform to other canonical variables, as will be
explained later.

THE KEPLER ELLIPSE

25. If the attracting body were a single particle of

mass M situated at the origin of inertial coordinates

or, alternatively, a sphere of uniform density and
total mass M centered on the origin, then the

external potential from Equation 20.01 would be

minus (GM)/r, which in this chapter we shall

denote as minus fx/r. In that case, the equations of

motion of a satellite can be integrated easily and
completely from the first integrals already obtained.

The potential is not time-dependent; therefore,

Equation 28.020 holds true as

28.035 h)
2 -filr=H*

with H* the constant energy of the system. The
angular momentum is also constant from § 28-17,

and we can write

28.036 vrsin(3 = N

in which fi (fig. 32) is the zenith distance of the orbit

in a spherical polar coordinate system. Also, we
know from §28-17 that the orbit is a plane curve.

If (r, /) (fig. 33) are polar coordinates in this plane

and ds is an element of length of the orbit, then for

any orbit, we have

dr/ds = cos fi

28.037 rdf/ds=smP;

multiplying these equations by the linear velocity

v — ds/dt, we have
r— v cos /3

28.038 rf
= v sin (3

which, substituted in Equations 28.035 and 28.036,

give

r*f=N

28.039 (r)
2 + (rj)

2 = v
2 = 2(iJLlr+H*).

These equations could also have been obtained from

Equations 28.009 for motion in a plane by substi-

tuting V=— [x\r, = 0, to=f and integrating.

26. Eliminating fin Equations 28.039, we have

2/x N2\ 1/2

K+&HM)r
which is directly integrable to give r as a function

of time. However, we require the equation of the

orbit in polar coordinates as a relation between r

and/, for which purpose we substitute

r
dfdt~dfV) df\r) df\r N)

The equation can now be integrated as a standard

form to give

in which / is a constant of integration. Comparing

this last equation with Equation 22.21, we see that

the orbit is an ellipse, one of whose foci S is at the

origin. If / is measured from the nearest point A
of the major axis (fig. 26, Chapter 22), known as

perigee in this subject, then we have/o=0. The
semimajor axis a and eccentricity e of the ellipse are

then obtained by comparison with Equation 22.21

and are given by

Ml
'N2all-

a(l-e2
) N\ N2

from which we have

28.040 yV=V/xa(l-e2
)
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28.041 H*=-fi/2a;

also, from Equation 28.035 we have

28.042 v2 = fji(---)=^~
\r a) ar

where r' is the radius vector to the other focus.

27. The constant TV is customarily expressed in a

different way. An element of area swept out by the

radius vector to the satellite is ir
2
^/, so that the

first equation of Equations 28.039 expresses the

fact that the time-rate of change of this area is

constant, which is Kepler's second law. Moreover,

if T is the time required to describe the whole orbit

from perigee to perigee, the total area of the

ellipse is

Trab = TTa
2 (l-e2

)
l l2 -

JO
\rfdt

But if n, known as the mean motion, is the mean
angular velocity of description of the orbit over a

complete revolution, then we have

2tt
28.043

combining the last two equations with Equation

28.040. we have

28.044 =^2
c

-3/2

which expresses Kepler's third law. In terms of «,

Equation 28.040 becomes

28.045 A^=V
)
Lta(l-e2

)
= na 2 (l-e2

)

1 /2
.

28. Next, we introduce the eccentric anomaly E,

which is the same as the reduced latitude u for the

meridian ellipse of figure 26, Chapter 22. By
differentiating the purely geometric Equation 22.21

along the ellipse {a, e fixed) with respect to time, we
have

dr . dE ae{l- e
2

) sin f df r*e sin / N-r-=ae sin E —r=—-—, :—
ttt" ,

=
dt dt (1 + ecos/) 2 dt a(l-e2

) r
2

28.046

Using Equations 22.20, 28.045, and 22.21, the last

two members of Equation 28.046 reduce to

28.047 f=~= n " jTvdt r (1 — e cos E)

which integrates to

(E — e sin E) = n(t — t () )

where to is a constant of integration equal to the
time of passing perigee (£= 0). The right-hand side

of this equation is defined as the mean anomaly M,
giving the position of the satellite as if it were
moving at the mean angular velocity n about the

focus or origin. We have finally

28.048 (E-e sin E)=n(t-t )=M,

usually known in the literature as Kepler's equation.

29. We have now completed the dynamical ex-

amination of the elliptic orbit, although we also can

use any of the purely geometrical relations for an

ellipse, as given in § 22-3 through § 22-10, in which
case the notation may require some translation.

For example, we shall use /3 in this chapter for the

"zenith distance" of the orbit, relative to the focal

radius vector as the zenith direction, shown in

figures 32 and 33. This symbol is the complement
of the angle /3, shown in figure 26, Chapter 22, and
used in Chapter 22 as the angle between the normal
to the ellipse and either focal radius vector. We
shall also use a as the azimuth of the orbit in this

chapter, whereas a is an elliptic constant in Chapter

22. For example, the second equation of Equations

22.03, translated into our present notation, gives

the zenith distance of the orbit in the form

28.049 cot (3

e sin E
(l- e2)l/2

which can also be obtained in the equivalent form

«« n~^ n e sin/ re sin/
28.050 cot0=-— —7,= -r, T\

(1 + e cos/) a(l — ez
)

from Equations 28.037 and 28.046 — the two forms

being shown to be equivalent from Equations 22.20

and 22.21. Equation 22.21 is repeated for con-

venience as

28.051 r= a(l — e cos E)— -

a(l-e2
)

1 + e cos/)

The rectangular coordinates of the satellite in the

plane of the Kepler ellipse are repeated from Equa-
tions 22.20 as

q\ = r cos /= a(cos E — e)

28.JD52 q-i = r sin /=a(l-e2 )»/2 sin E.

We have also from Equations 28.038, 28.046, and
28.045

28.053
^c 1/2e sin/ _fM ll2a ll2e sin E

V COS P— a i/2 (1 _ e2)l/2~
~y~

which, together with Equation 28.050, gives

,_yV_At 1/2a 1/2(l-e2
)

1/2
/n

1/2
(l + e cos/)

v sin (3

28.054
a l/2

(1
_ e2)l/
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Other useful formulas, easily verified, are

cos/+ e

28.055

cos E =

cos /=

1 + e cos/

cos E— e

\ — e cos E

, ixH\ + 2e cos f+e2
)

/x(l + ecos£)

28.056

The components of velocity in and perpendicular

to the semimajor axis are

na sin/ na2 sin E
v cos (f+P)= qi-

v sin (f+/3)=q1
-

28.057

(l- e2)i/2 r

na(e + cos/) _ /?« 2(1—

e

2
)

1/2 cos E
(1-e2

)

1 '2 r

30. In the centrally symmetric field we are con

sidering, the orbital characteristics (a, e, r, v,f, M
etc.) will evidently be the same whatever the

attitude of the orbital plane in a three-dimensiona

coordinate system. Nevertheless, even in this

special case, we must define the orbital plane if w(

are to locate the satellite in the inertial system or h

any system. To do this, we introduce three angula

elements H, i, w as shown in the spherical diagram

figure 34. The inertial system specified in § 28~ z

is shown as X, Y, Z, the origin being lettered S t<

agree with figure 33 and to indicate that the origii

is a focus of the Kepler ellipse. The point Z is th<

North Pole of the axis of rotation; the great circli

XY represents the plane of the Equator. Th<

satellite is represented at moving in the directioi

shown in figure 34; the great circle PAO represent:

the orbital plane intersecting the Equator at P
which is known as the ascending node for the direc

tion of motion shown. The descending node is 180

direction of motion

(satellite) Equator

(ascending node)

Figure 34.



Dynamic Satellite Geodesy 279

in longitude away from P, and the line SP is known
as the line of nodes. The line SA is the direction to

perigee, already defined as the point on the major

axis nearest S. The other end of the major axis is

known as apogee. The angle Cl = XP is accordingly

the right ascension of the ascending node or longi-

tude of the ascending node in the inertial system;

i is the orbital inclination; and w = PA is known as

the argument ofperigee, usually denoted in the liter-

ature by oj, which, however, is required throughout

this book for various forms of longitude. We also

use the term longitude in the geodetic sense as

measured in the equatorial plane, whereas astrono-

mers often measure longitude, wholly or partly, in

the plane of the ecliptic.

Auxiliary Vectors

31. We shall require certain unit vectors which

are shown in both figure 33, representing the plane

of the ellipse, and figure 34. The unit radius vector

to the satellite is shown as r s= p
s/r. The unit tan-

gent to the orbit, represented at l
r in figure 34, is

the direction of the radius Sl r
; the representative

point l
r must lie in the great circle representing the

orbital plane. The angle between l
r and r

r
, shown as

j8, is the zenith distance of the orbit relative to a

spherical polar system of coordinates. The azimuth

of the orbit in the same system is the spherical

angle a. Unit vectors t
r

, m r in the orbital plane

perpendicular, respectively, to rr , l
r are as shown in

both figures 33 and 34. Finally, a unit vector nr

perpendicular to the orbital plane, shown in both

figures 33 and 34, is used to complete either of the

right-handed triads (l
r

, m r
. n r

) or (rr
, t' . n r

). In

figure 34, nr
is the pole of the orbital plane.

32. From figure 33, representing the plane of the

orbit, we have

28.058

l
k = r* cos /3 + t

k sin /3

n k — — rk sin /3 + t
k cos f3

.

In terms of the usual meridian, parallel, and normal

vectors (p
k

, kk , vk ) of the spherical polar coordinate

system, the vectors are easily found to be

l
k = kk sin a sin /3 + p.

k cos a sin fi + vk cos /3

mk = kk sin a cos /3 + pk cos a cos (3 — vk sin /3

n k = — kk cos a+ fi,
k sin a

r* = vk

t
k = kk sin a + fx

k cos a.

28.059

Inertial Cartesian components are

(cos (iv+f) cos Cl — sin (w+f) sin Cl cos i\

cos (w+f) sin il+sin (w+f) cos Cl cos i I

sin (w+f) sin i J

28.060

/—sin (w+f) cos Cl — cos (w+f) sin Cl cos i\

t
k — I — sin ( w +f) sin Cl + cos ( w +f) cos Cl cos i

28.061

28.062

cos (w+f) sin i

(sin Cl sin i \

— cos Cl sin i

cos i I

28.063
(cos (w+f+fi) cos Cl — sin (w+f+fi) sin Cl cos i

N

cos (w+f+P) sin Cl+ sin (w+f+ ft) cos Cl cos i

sin (w+f+fi) sin i
t

28.064 nr

sin ( w +f+ /3 ) cos Cl — cos ( w +f+ (3) sin Cl cos i\

sin (w+f+ /3) sin Cl+ cos (w+f+ /3) cos Cl cos i
J,

cos (w+f+fi) sin i J

as we can easily verify by expressing the scalar products of each vector with the Cartesian vectors A r
, B r

,

Cr in terms of elements of spherical triangles in figure 34.

33. We can obtain alternative formulas in much the same way as we did from § 12-15 by applying the

following positive rotations to the inertial (A k
, Bk

, Ck
) system:

(a) First, Cl about the z-axis,

(b) Second, i about the new x-axis, and

(c) Third, (w+f) about the new z-axis.
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The result is

28.065

cos (w+f) sin (w+f)
— sin (w+f) cos (w+f)

K{Ak,Bk,Ck}

Mathematical Geodesy

\

cos i sin i

— sin i cos i/

cos fi sin fl

— sin fl cos fl

1

cos (w+f) cos ft — sin («;+/) sin fl cos i cos

I

—sin (w+f) cos fl — cos (w+f) sin fl cos t —sin

sin 17 sin i

28.066

Because the component matrices of K and therefore

28.067 {A k,Bk,Ck}--

34. By putting/= in Equation 28.065, we obtain

a triad of vectors (j
r

, k r
, n r

) in which j
r (the %-axis)

is the unit radius vector to perigee and kr (the y-

axis) is in the orbital plane. We have

{f,kr,nr} = Kf=o{A r,Br,Cr};

contracting this equation with the position vector

of the satellite, we have

(w+f) sin fl+sin (w+f) cos fl cos i sin i sin (w+f)

(w+f) sin fl + cos (w+f) cos Cl cos i sin i cos (w+f)

— cos O sin i cos i /

K itself are orthogonal matrices, we can also write

= K7{r fe
, tK nk }.

28.068 { 91,92,0} =K/=0{x, y, z)

where q\, qz are given by Equations 28.052 and

x, y, z are the inertial coordinates of the satellite.

The reverse equation is

28.069 {x, y, z} = K$=0 {qu q2 , 0}

,

which enables us to express the inertial coordinates

in terms of orbital elements. By splitting the third

rotation (w+f) in Equation 28.065 into two suc-

cessive rotations, we have also

cos/ sin/ 0^

1^
j -sin/ cos/ |.k, „

1

28.070 =FK/= o

35. In deriving Equation 28.065, if the third ro-

tation were (w+f+/3), it is clear from figure 34

that we should arrive at the triad {lk , mk
, nk} . By

substituting (w+f+f3) for (w+f), we accordingly

have

28.071 { IK m k
, n k } = Kw+f+e { A\ Bk\ Ck

}

and a corresponding inverse. Moreover, by applying

a fourth rotation of /3 about the z-axis to Equation

28.065, we have

28.072 Kw+f+0
:

cos p sin /3 '

sin B cos B ) K.

h

36. The velocity vector is given by

p
k = vlk = (v cos B, v sin /S, 0)K{Ak

, Bk
, Ck

};

28.073

the three Cartesian components of the velocit

vector are given by

p
k (Ak , Bk , Ck ) = (p

kA k , p
kBk , p

kCk) = (x, y, z)

28.074 =(t> cosiS, v s\n B, 0)K

in which we can substitute Equations 28.053 an

28.054 and so can obtain the velocity vector and it

components in terms of the orbital elements. W
can, of course, transpose the last equation as

{x, y, z} = KT{v cos /3, v sin B, 0}

= Kf=0FT{v cos B, v sin B, 0}

28.075 =KJ=0 {i; cos (f+B), v sin (f+B), 0]

using the transpose of Equation 28.070. But th

last vector in this equation evidently gives the com

ponents of the velocity vector vlk in and perpendicu

lar to the radius vector to perigee, that is,

{v cos (f+B), v sin (f+B), 0} = {vl rjr , vl rk r , vl rn r }

= {9i,92,0},

so that finally we have

28.076 {*, y, z}=K$=0{ qi , q2 ,Q}.
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Comparison of this result with Equation 28.069

shows that the matrix K/=o can be considered as

constant during time differentiation, as we should

expect in a Kepler ellipse because the components

of the matrix are all constant. This result holds

true for the osculating ellipse of a perturbed orbit,

as we shall see in § 28-40.

37. The latitude and longitude of the satellite in a

spherical polar system, based on the inertial Car-

tesian system, are marked as ((/>, &)) in figure 34,

and the following spherical relations will often be

found useful,

28.077 cos i= cos (/> sin a

28.078 cos (w+f) = cos 4> cos (a> — Cl)

sin (w+f) — sin ( ct> — fl) cosec a= sin
(f)

cosec i

28.079

cos a = tan (/> cot (w+f) = sin <b sin a cot (d> — fl)

= sin i cos ( ci) — Cl ) = sin i sec </> cos (w+f).

28.080

PERTURBED ORBITS

38. If the mass M of a heavy particle located at

the origin or if the total mass of a homogeneous
sphere centered on the origin is the same as the

total mass of the actual Earth, then for the sym-

metrical potential we have been considering,

CM
r

is the first and largest term in the expansion of the

actual potential expressed by Equation 21.035 in

spherical harmonics. We can write the actual

potential as

28.081 V=n/r+R

so that R represents all the terms which must be

added to p\r to give the true potential, whether or

not R is expressed in spherical harmonics. More-

over, R may contain other small gravitational

potentials contributed by the Sun and the Moon.
The effect of dissipative and discontinuous forces,

such as atmospheric drag and solar radiation pres-

sure which cannot be expressed as continuous

derivatives of a scalar potential, cannot be included

in R; separate treatment is required. We have seen

that if R were zero, the orbit would be a Kepler

ellipse, defined as an unperturbed orbit. Accord-

ingly, R is a measure of the departure of the actual

perturbed orbit from a Kepler ellipse; we call

minus R the perturbing or disturbing potential and

call the gradient Ri< the disturbing force.

39. If we are given the position, and the magnitude

and direction of the velocity of a satellite at a given

time, then it is possible to find a unique Kepler

orbit in which the satellite would have the same

position and velocity. The position and direction of

motion (or direction of the velocity vector) of the

satellite, together with the origin of inertial coordi-

nates, settle uniquely the plane of a Kepler orbit.

Within this plane, we are given the radius vector r,

the zenith distance /3 relative to the radius vector

as zenith, and the linear velocity v. These three

quantities enable us to determine uniquely a, e, and

/ from Equations 28.042, 28.054, and 28.053, and

so to specify a Kepler ellipse in which the satellite

would have the same position and velocity, in magni-

tude and direction, as in the actual orbit; the true

anomaly f applied to the direction of the radius

vector settles the direction of the major axis, and

a, e settle the size and shape of the ellipse. Another

way of considering this matter is to note that the

satellite has six degrees offreedom; that is, we can

choose arbitrarily three position coordinates and

three components of velocity. Having chosen these

six quantities, we can find six, and no more than six

Kepler elements Cl, i, w,f, a, e which are necessary

and sufficient to establish the same instantaneous

motion in a Kepler orbit. The Kepler ellipse which

satisfies these conditions is known as the osculating

ellipse. (However, this is an incorrect description

because the two orbits do not have more than two-

point contact.) Instead of the true anomaly /, we
may choose either the eccentric or the mean anom-

aly (E or M) to describe the position of the satel-

lite within the osculating ellipse. There are some
advantages in choosing the mean anomaly M. It is

sometimes stated, although this is not a very

realistic approach to the problem, that the satellite

would travel in the osculating ellipse if at any time

all perturbing forces were removed.

40. We can say that such relations as Equation

28.076 are true for a perturbed orbit (although de-

rived for a Kepler orbit), provided osculating ele-

ments are used in such equations, because nothing

more is involved than the elements and velocity

components which are the same for the actual and

osculating orbits. The energy (which is —p/2a in

the osculating orbit) is not the same for the two

orbits; the kinetic energy is the same, but the po-

tential energy differs by the perturbing potential.

The accelerations are not the same because the

components of force are not the same. Accordingly,
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the satellite will depart from a plane osculating

orbit and will follow a more complicated curve in

space under the action of the more complicated

forces. Nevertheless, at any subsequent time, we
can fit another osculating ellipse to the actual orbit,

so that we can describe the actual motion by means

of time differentials of the osculating elements

rather than by changes in the actual position and

velocity of the satellite. In the next section, we
derive expressions for the time differentials of the

osculating elements, leading to another form of the

equations of motion.

VARIATION OF THE ELEMENTS

41. We shall suppose that the total force Fr per

unit mass is composed of a central force — directed

toward the origin or focus of the osculating ellipse

and of magnitude /x/r
2 — together with a disturbing

force R r , so that we have

28.082 Pr + Rr

The central force, if acting alone, would maintain

the satellite in the Kepler ellipse, although R r may,

of course, have a central component in addition.

In cases where the disturbing force is the gradient

of a scalar, Equation 28.081 differentiated shows

that R r is the gradient of the scalar R; but in this

section, we shall assume Fr and R r to be forces

which are not necessarily derived from a scalar

potential.

42. The linear acceleration in the direction of the

orbit is the component of total force in that direc-

tion, giving

28.083
dv

dt
Frlr=-^^+Rrlr.

As in Equation 28.003, the velocity vector is

p
r —vlr

; from Equation 28.015, we have

oo noA d[f) n dr &(prP
r
)

28.084 -Vi=2r-r=— =2prp
r = 2pr{vl r

)

at dt ot

dr
28.085 -j

t

= p rp
rlr=v cos p.

Semimajor Axis

43. To obtain the time differentials of the ele-

ments, we differentiate any suitable Kepler equation

without holding any of the elements fixed. For

example, if we differentiate Equation 28.042 with

respect to time, we have

n dv 2u,dr.u, da
2v~r=—-V-r+ -^ -77;

dt r
2 dt dt'

Equations 28.083 and 28.085 then give

28.086

As we should expect, if there is no perturbing force,

the semimajor axis a remains constant; whereas, in

the presence of a perturbing force R r , this last

equation gives the rate of change of a between twc

successive osculating ellipses.

44. From figure 33 or 34, either of which illus

trates the osculating ellipse as well as a Keplei

ellipse, we have

/r = r r cos p + t
r sm £

so that an alternative equation is

^ =^{e sin/(Rrrn+^f 1̂ (R rr)},

28.087

using Equations 28.053, 28.054, and 28.045.

Angular Momentum

45. As in §28-17, we can write the angulai

momentum vector as

28.088 (vr sin /3)rc
r =/W= e

r™pppg

in which n r
is the unit vector normal to the plan*

of the osculating ellipse. Differentiating intrinsically

with respect to time, we have

"' V
nT+N §£= e™PpPq+ e™pppq .

dt 8t

The first term on the right is the vector product o

two parallel vectors and is therefore zero. Th<

equations of motion can be written in the form

Pq= Fq= -^Pq + Rq

so that the last equation becomes

dN Ar
dn r

-

a7
nr+Nw=e^PpFq

28.089

^e™PpPq+6™PpRq

= e rP0p
pR q
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because the vector product of two parallel vectors

again is zero. Because nr is a unit vector, as in

Equation 3.19, 8n r/8t must be perpendicular to n r

and must therefore be coplanar with rr and f in

figure 33 so that we can write

8n r
.

contracting with rr , we have

on

Qr-,

_i r
8Ar

8t r*" 8t r " 8t

1 8n>
n r

l r

because n r and l
r are perpendicular. In deriving this

result, we have used the fact that p, and n r are

perpendicular so that we have

Prrt
r =0,

and by intrinsic differentiation, we have

on r

"67

8p r

~o7

Substitution in Equation 28.089 and successive

contraction with n r and t r yield

28.090 — = e rPin rpPR Q =rR q
ti,

using the formula for a vector product given in

Equation 2.24. Also, we have

so that

28.091

NQ = e
r
""t rppR (l

^-rR q
n<i

8n r r n
8t N

As we found in §28-17, both the magnitude and

direction of the angular momentum vector are con-

stant in unperturbed motion (R q
= 0).

lar vectors rQ , t Q as

<fe_ a l/2(l- e2)l/2

dt
~

p.
1 '2

28.093

by substituting

{sinfifRq)

+ (cos/+cos E)(t<*Rq)

li= rt cos/3+ *« sin/3

and by using Equations 28.053, 28.054, and 28.051.

An expression in terms of the perpendicular vectors

lq , m q can be obtained similarly as

de_ (1-e 2
) [

2 cos E(I«R q ) smE(m<>Rg)

dt~~ v I (l_ e2)l/2

28.094

Zenith Distance

47. Although the zenith distance ($ is not one of

the usual six osculating elements, its variation is

sometimes useful and is easily found by differen-

tiating

N= vr sin ^3

and by using Equations 28.090, 28.083, 28.085.

and 28.042. We have then

28.095
dt

Aisin/3( \ + r(miR
q ).

In this last equation, (3, of course, varies even in

an unperturbed orbit where its variation is given by
the first term on the right.

Eccentricity

46. We are now able to find the variation of the

eccentricity e by differentiating Equation 28.045,

that is,

N 2 = fxa(l-e2
).

Substituting Equations 28.090 and 28.086 in the

result, we have

(k_
l n .^ da ., dN

dt~
^-^{l-e^-^-N-^

28.092 ={va2(l-e*){l«Rq)-Nr (t<iRq)},

which can be expressed in terms of the perpendicu-

True Anomaly

48. Although only one of the anomalies (f, E,

or M) may be taken as one of the six elements, it

is convenient to have time derivatives of all three.

These three time derivations may be obtained by

straight differentiation of any elliptic formula con-

taining any other quantities whose time deriva-

tives have already been found. The time derivative

of the true anomaly is, for example, easily obtained

by differentiating Equation 28.051 in the form

N 2

(1 + e cos/*) =—
fir

and by using Equations 28.093, 28.090, and 28.085.
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We have after some manipulation the alternative

expressions

df_ N
|

(N cosf)(R qr")

dt r 2 /xe

7V(2 - cos2/- cos E cos f)(R Qt« )

tie sin/

/V
,

(N cos/HiV")

28.096

* /xe

(N sinfKRqt*)
J

28.097

/xe L a(l —

e

2

N (2 sinf)(R ql«)

r 2 ev

(cos E + e)(R Q
mi)

ev

in which the term

/V /A^a^d - e 2
)
1/2 _ n(l + e cos/)2

28.098
r
2-

a 2
(1
_ ecos £)2- (l- e 2)3/2

is evidently the unperturbed rate of change, as we
have already found in Equation 28.046.

Eccentric Anomaly

49. In the same way, by differentiating

r = a(l— e cos E)

and by using Equations 28.085, 28.087, and 28.093,

we have

dE na a 1 l2 (cosf-e)(R r r
r

)

dt

28.099

28.100

e/x
1 '2

(a 1 !2 sin E) {2-

e

2 + e cosf)(R r t
r

)

e/x^d-e2
)

1 '2

na (2sinf)(R,l r
)

r ' veil-e 2
)
1 '2

(l-e 2
)

1 ' 2 cos E(R rm r
)

ve

in which the term

na n

r (1 — e cos E)

is the unperturbed rate, as already found in Equa-

tion 28.047.

Mean Anomaly

50. By differentiating the defining equation

M = E-esinE

and by using Equations 28.099 and 28.093 oi

Equations 28.100 and 28.092, we have after some
manipulation

dM { ( 1 - e 2
) cos/- 2er/a} (R r r

r
)

—jr=n-\
at nae

28.101
{ (1 -

e

2
)

1 '2 sin £(2 + e cos/)} (Rrt
r
)

nae

= n +
{a(l-e 2

) cos/-2er}(/? r r
r
)

e/x 1/2a 1/2

28.102
{ (I -

e

2
) sinf}(R rtnf

a +
efJL^a 1 '2 V"

' l-e 2

2sin£(l + ecos/+e 2 )(r? r /
r

)

ev

28.103
(l-e 2

)
1/Vcos/(/? rm r

)

vae

in which the unperturbed value is the mean motion

„ = At
l/2Q -3/2

as defined.

Inclination

51. Variation of the orbital inclination i is ob-

tained by contracting Equation 28.091 with the

Cartesian vector C r
. Remembering that the fixed

vector C r
is constant under covariant differentia-

tion, we have

8n r 8{C rn
r

) d(cosi) r
Crw=—8r=—dT=-N {R«nq)tCr -

From the spherical triangle C r
t
rP in figure 34, we

have

t
rC r = sin (w+/+ 90°) sin i = cos (w +/) sin i

so that we have finally

28.104 jt
=jj(Rgn«) cos (w+f).

Right Ascension of the Ascending Node

52. If we contract Equation 28.091 similarly with

the fixed Cartesian vector A r
, we have

8(n rA r ) d(sinflsini) r -

"ira—dt
—

=-x {R «
n9)trA r

and

t
rAr= cos H cos (w+/+ 90°)

— sin Ct sin (w+/+ 90°) cos i

—— cos fl sin (w +f)

— sin fl cos (w +f) cos i

.
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Substitution of Equation 28.104 yields

28. 105
(

-r = Wi (Rqn
q
) sin (w+f) cosec i,

at J\

showing that the variation of both i and Cl depends

on the component of force perpendicular to the

osculating orbital plane.

Argument of Perigee

53. The scalar product of the unit vectors A r and

r
r= p

r/r in figure 34 gives

(\lr)A rp
r— cos ft cos (w+f)— sin Q sin (w+f) cos i.

Differentiation of this equation with respect to time

gives on the left side

v cos/3 - v -
,

v cos/3
A,;

+ -A r (r'"cosjS + fsin/S)

v sin/3

r

v sin/3

Art'

(— cos n sin [w+f

— sinH cos (u/+/) cos i),

and gives on the right side

(—sin fl cos (w+f)~ cosO sin («;+/) cos i)(d£l/dt)

— (cos O sin (10+/)

+ sin H cos (u) +/ ) cos i ) idw/dt + dfjdt)

+ sin fl sin (w +f) sin i [di/dt );

substituting

di/dt = cot (w +f) sin i [dCl/dt )

from Equations 28.104 and 28.105, we have finally

28.106

dw df_v sin /3

/V= ^ — iy (RQnq
) sin («;+/) cot /'.

Subtraction of df/dt in Equation 28.096 or 28.097

gives dw/dt explicitly in terms of three components
of the disturbing force. For example, we have

dw _ (N cosf)(R q
ri)

dt
~

+ 1 +

28.107

fie

(Nsmf)(R qt«)

fie \ a(\ — e2 )

r sin (w+f) cot i(R,,n Q

THE GAUSS EQUATIONS

54. Time derivatives of the six elements in terms

of the disturbing force components R r r
r

. R r t
r

,

R,n r— usually known in the literature as R, S, W or

S, T, W with various sign conventions — were first

given by Gauss. However, it is convenient to have

these components in vector form which can easily

be transformed to the alternative and sometimes

simpler set R r l
r

, R rm r
, R rn

r
. If we neglect the

effect of atmospheric rotation, the drag of the

atmosphere will be against the direction /' and

will have no component in directions m r
, n r

; ex-

pressions in terms of this alternative set accord-

ingly show at a glance which perturbations are

least likely to be affected by drag. For example,

the effect on da/dt is total; perturbation of the semi-

major axis is accordingly of more use for studying

drag than for determining the gravitational field.

On the other hand, di/dt and dil/dt are virtually

drag-free in a nonrotating atmosphere, although

drag effects do appear in second-order terms

through the other elements. In some derivations,

the disturbing force R Q is restricted to the gradient

of a scalar potential, which is unnecessary and con-

fusing. It will be clear from the derivation given

in this section that the disturbing force need not

be conservative and that the equations hold equally

true for dissipative forces or even for such dis-

continuous forces as radiation pressure, provided

the equations are integrated between points of

discontinuity.

55. The six first-order Gauss equations are exact

alternatives to the three Newtonian second-order

differential equations of motion given earlier in

various forms. First integrals of the Newtonian

equations of motion would give the three compo-

nents of velocity; second integrals would give the

three coordinates of the satellite. Solution of the

Gauss equations would give all six osculating ele-

ments from which components of velocity and

coordinates could be calculated by the ordinary

formulas for the Kepler ellipse.

DERIVATIVES WITH RESPECT
TO THE ELEMENTS

56. In cases where the force F r is the gradient

of a scalar F, we shall require the partial derivatives

of F with respect to the elements {a, e, i. M, w, il).

The partial derivative dF/da, for example, implies

that the other five elements e, i. M, w. il are

constant during the differentiation. The process

can in places be simplified if we consider / or E
constant instead of M\ a glance at Equations 28.048
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and 28.055 shows that we can always do this,

except when we are evaluating dFjde. Although

we shall usually identify F as the negative of a

scalar potential, whether the actual potential or a

disturbing potential, the equations obtained in

this section hold true if F is any scalar whatsoever

defined in relation to the orbit; this fact will be

clear from the derivation in each case. We shall

also require partial derivatives of the velocity vec-

tor; the method of obtaining these derivatives will

be explained in each case.

Semimajor Axis

57. If we suppose that a alone varies and if in

this case / remains constant, the only possible

virtual displacement of the satellite is radial and

proportional to the change da in a; the osculating

ellipse remains in the same plane and is simply

enlarged in the ratio da/a. The vector displace-

ment is accordingly

28.108
(da \

and we have

28.109
dF _r{F r r

r)_F rp
r

da a a

58. To determine the change in the velocity

vector between the two osculating ellipses, we have

by differentiating Equation 28.042

dv_ 2fx dr ix _ 2fx ix

da r 2 da a' ar

v*_

a

because the enlargement of the osculating ellipse

implies that we have dr/r= da/a. If the radius vec-

tor to a consecutive point is r, then we have

dr/r= dr/r. Also, it is clear from similar triangles

that the direction of the unit tangent l
r
is unaltered

by enlargement of the osculating ellipse. The
derivative of the velocity vector is then

dp r

da

28.110

d(vl r
)

da

dl r
,
dv

v-—I

Z
r

da da

vl r_ p
r

2a~ 2a

In deriving this equation, we have assumed that

the components of l
r have not changed during a

parallel displacement. Accordingly, the equation

holds true only in Cartesian coordinates, as will

also be the case for the other partial derivatives.

The corresponding equation in terms of the vectors

r r
, t

r
is obtained from Equations 28.058, 28.053,

and 28.054 as

,1/2

28.111

Eccentricity

59. In this case, we must take special precautions

to ensure that M, and not / or E, is constant while

e varies. Differentiation of Equation 28.048 with M
constant relates the changes in e and E by

28.112 dE
sin E de

(1 — e cosE)'

The change in the radius vector is then obtained

by differentiating Equation 28.051 with a constant.

We have

dr= — a cos E de + ae sin E dE —— a cosfde

28.113

on substituting Equation 28.112, simplifying, and

using Equations 28.052. The change in the true

anomaly /is then obtained by differentiating either

of Equations 28.052, and after some simplification

is given by

28.114 rdf= la sin/+
(1
_ e 2) J

de

The total vector displacement of the satellite,

which must occur in the plane of the osculating

ellipse in relation to a fixed major axis because

fl, i, w are constant, is then

— (a cos/)r r +( a sin/+
r sin/

(1
de;

28.115

the required partial derivative is

(acos/)(Frr
r
)+ (a+YZ^s) (F r t

r
) sin/

dF

de'

28.116

60. The partial derivative of the unit tangent

l
r

is easily found by differentiating Equation

28.063 to be

dl r
r d(f+P)-^—~m r—

;

de de
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by differentiating Equation 28.042, we have

dv_ H dr _/jia cosf

de r
2 de

in which we have used Equation 28.113. The
derivative of the velocity vector is accordingly

d(vl r
) fiacos/

, r ,
d{f+P) .—-—=

;

—

r-\ vm r
.

de vr* de

From Equations 28.057, we have

tan {f+ /3) = - (1 - e 2
)

1 ' 2 col E

.

Differentiation and use of Equation 28.112 give

after some manipulation

W+P)
de

n 2a 4 sin E f e cos E
.-+-

(1
,2U/2

fxa sin/
1 +

l_ e 2)i/2 (l- ec0sE]

re cos E
Vr" a(\ — e 2

so that we have finally

dp r d(vl r
)

de de

ua [ , _, , /, ,
recos/sX . .

28.117

A somewhat simpler expression in terms of the

r r
, t

r vectors can easily be obtained as

28.118
dp r

de ~r(l

V
{— r

r sin/+£ r cos E} .

61. It may be noted that these last two vector

equations hold true in any Cartesian coordinate

system whose transformation factors are constants

in space and are therefore independent of the ele-

ments e, etc. For example, in the plane of the

osculating orbit, the components of the vectors in

Equation 28.118 are

rr = (cos/, sin/, 0)

t
r= (-sin/, cos/, 0)

so that we have

d<7i_ A/ sin/
f

t-~rJl^^) {c°sf+COsE}

N
de r(l-e2

)

{— sin2 /+ cos E cos /}

.

28.119

which may be verified by direct differentiation of

Equations 28.052.

Mean Anomaly

62. If the mean anomaly alone varies, the only

possible virtual displacement of the satellite is

tangential to the (fixed) osculating ellipse. By
differentiating Equation 28.048 for constant a (and

therefore n) and for constant to, we have

dM = ndt= (nlv)ds

where ds is the magnitude of the displacement.

The vector displacement is accordingly

(vjn)lrdM,

and the partial derivative is

1

28.120
BF _v
d~M~n

{Fr (Frp r
).

By substituting

l
r = /'• cos /3 + V sin $

and Equations 28.053 and 28.054, we have the

alternative equation

dF (ae sinf)(Frrr ) a{\ + e cos/) (Frt
r
)

dM

28.121

(l_ e2)l/2 (l_ e2)l/2

63. The partial derivative of the velocity vector

can be found in the same way as for the eccentricity.

However, in this case, the only possible displace-

ment is along the fixed osculating ellipse, and we
may accordingly consider that the virtual motion

is unperturbed. We have

dp'\= d(vl r
) = l dp\

dM dM n dt
' JL

nr3
JL
nr2

28.122

using the unperturbed equations of motion with

R r = and p r = F, in Equation 28.082.

Inclination

64. In this case, the virtual displacement of the

satellite arises from a rotation of di about the fine

of nodes, everything else remaining fixed. The vector

displacement is

r sin (w+f)n rdi,

and the partial derivative is

dF
28.123

di
r sin (w+f) (F rn

r
)

.

65. From Equations 28.042 and 28.051, it is evi-
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dent that we have dv/di — O; by differentiating

Equation 28.063, we have

dlr

7^= sin (w+f+fi)n r

so that the derivative of the velocity vector is

dpr_ d(vlr) _
di

28.124

di
v sin (w+f+ f3)n

r

= —rj- { cos ( w -\-f) + e cost^} .

Right Ascension of the Ascending Node

66. The virtual displacement arises solely from

a rotation dCl about the inertial Cr
-axis. If the posi-

tion vector of the satellite is p
r

, the vector displace-

ment is then

e rstCsp td£l.

We can express Cs in terms of the orthogonal triad

(rs , ts , ns ) as

Cs = sin i sin (w+f)rs

+ sin i cos (w+f)ts + (cos i)ns ,

which is easily verified by forming scalar products

and by using spherical relations obtained at sight

from figure 34. The vector displacement is then

{— r sin i cos (w+f)n r + (r cos i)tr}dfl,

and the partial derivative is

= (r cos i) (F rt
r

) —r sin i cos (w+f) (F,n r
).

28.125

67. The derivative of the velocity vector is

dD,
V

dil

— cos {w+f+ (3) sin fl — sin (w+f+fi) cos O cos i

' v
|

cos (w+/+ )8) cos O — sin (w+f+ /3) sin ft cos i

= (v cos i)m r — v sin i cos (w+f+ (3)n r

N= ,, _ 2
, {— cos i ( 1 + e cos f)rr + ( e cos i sin /)

f

r

28.126 + [sin i sin (w+/) + e sin i sin w]n r
}.

Argument of Perigee

68. In this case, the plane and the shape and size

of the osculating ellipse remain fixed. The whole

ellipse, and with it the position of the satellite, is

given a rotation dw about the unit vector n r per-

pendicular to the osculating plane. The virtual

displacement of the satellite is

e rs
'nsp tdw= rtrdw,

and the partial derivative is

dF
28.127

dw
rFrtr .

69. The derivative of the velocity vector is

d£ dl r

aw dw

28.128 =- {-(l-e2
)

1'V+(e sin£)r}.

Relations Between Partial Derivatives

70. All six partial derivatives of a scalar F with

respect to the six elements cannot be independent

because they can all be expressed in terms of the

three components of the scalar gradient Frr
r

,

Frt
r

, F rn r
. Accordingly, there must be three rela-

tions between the partial derivatives, obtainable

by equating alternative expressions for each of the

three components. For example, after some manipu-

lation, we can express the partial derivatives with

respect to each (a, e, i) in terms of the partial

derivatives with respect to (M, w, fi) as

. rt
dF r(l-e 2 y'2 dF

(ae sin/)
da a dM

-
( 1 + e cos f)

—
dw

dF dF
{e(l -e 2

)
1 '2 sin E}« (e+ cos E) ^~

de dw

dF_

dM
+ (l-e2

)

1 /2 (e-cos£)

.
,

. dF dF . .dF
Sin l COt [W+f) -—=— T7T+ cos i

-

—

oi ail dw

28.129

Derivatives of Cartesian Coordinates

71. We have seen in §28-56 that F (as used in

Equations 28.109 through 28.129) may be any scalar.

For example, if in Equation 28.123 we take F as

the inertial Cartesian coordinate x, then F r is the

Cartesian vector A r (fig. 34) and F rn
r

is the Car-

tesian ^-component of the vector nr , with similar

results for the other coordinates (y and z). Com-
bining the three resulting equations, we can say
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that the following vector equation — in which p' is

the position vector of the satellite — holds true in

Cartesian coordinates,

dpr

-rr-=r sin (w Jrf)n r
.

di

In the same way, the complete set of partial deriva-

tives of the position vector can be written at once as

dp r p r rrr

da a a

J^
= ~(a cosf)f+ (a+Y^j ''sin/

dpr

-— =rsin (w+f)n r

a i

dp r _ ( ae sin f) r
r a ( 1 + e cos f)t

r
_g^

dM (l-e 2
)

1 ' 2

8p r

- +
(l-e2

)

1211/2

dw
rt

r

from which individual components may be obtained

by substituting Cartesian components given in

Equations 28.060, 28.061, and 28.062. For example,

we have

dx_

di

p si n ft

N
{cos (w+f) + e cos w}

.

73. As in the case of the scalar equations, not all

equations of Equations 28.131 are independent. We
can, for example, solve either the first three equa-

tions or the second three equations for the three

vectors r
r

, t
r
', n r

, and can equate the results to ob-

tain three relations between partial derivatives of

the velocity vector. Corresponding to Equations

28.130, we have

(2aesinf) &- = {l -eWl -e 2 cos 2 £) &&
da dm

a (I — *2l

It

dp r

dw

dp r

28.130 ttt= (r cos i)t r — r sin i cos (w+f)n r
.

oil

Individual derivatives can, of course, be obtained

from Equations 28.130 by substituting Cartesian

components given in Equations 28.060, 28.061, and

28.062. For example, we have

dx T—= -{cos (w+ f) cos ft — sin (w + f) sinftcosj).
da a

72. It is convenient at this stage to collect and to

compare the partial derivatives of the velocity vector

with respect to the elements in terms of the vectors

rr , t
r

, n r
. From Equations 28.111 through 28.128,

we have

dp r _ p 112

da 2a 1 '2 r
{(e sin E)rr + (I -e2

)
1/2

t
r
}

dpr
_

N
de r(l-e2

)

^— {— rr sin /+ t
r cos E}

dp r _ pn r

di
~ N { cos (w +f) + e cos w]

dp'

dM
prr

nr2

dp r
_

dw
vmr= p^a

1 '2
, (l-e2)l/2rr +(e

dp r _ N
t"(l + e cos f)rr

dCt o(l- e
2
)

{ C°S

+ (e cos i sin f)tr

+ [sin i sin (w+f)

28.131 + e sin i sin w]n r
}

306-962 0-69—20

{e(l-e 2
)

1 /2 sin£'} ^=cos£^
de dw

+ (l-e2yi*(e-cosE)
dp r

dM

Tsin i sin (w + f) +e sin i sin w~\ -f+
di

{ cos (w +f) + e cos w)

28.132
Bpr ;MCOS I

dil dw

74. If we differentiate with respect to time along

the osculating ellipse, considered fixed (a, e, i, w,

ft constant), we have from Equations 28.038, 28.060,

28.061, and 28.062

dt
v cos /3

df v sin (3 _W
dt r r

2

dt dt

dt r _ df
r

dt dt

dt
28.133

By differentiating in this way the right-hand sides

of Equations 28.130, we obtain after a little manipu-

lation the right-hand sides of Equations 28.131,

except in the case of the d/da-equation. We conclude

that, with this exception, time derivatives commute
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with partial derivatives with respect to the elements,

although the reason for this is not immediately

obvious; we could not have assumed that time dif-

ferences remain the same in a different orbit, formed

by variation of the elements. However, if 5 is any
orbital element other than a, we have

A (A
ds \dt ds\ dM

— n -,— n
dsdM dMds

dM \ds

A(A
dt Ids

using Equations 28.048 and 28.044; whereas, we
have

da

a 2 dn_d_ d 2

dadM
+
da dM~ n

dadM a dM

which does not commute but is easily verified from

Equations 28.130 and 28.131 for components of the

position vector.

75. Kaula 3 simply and elegantly obtains results

which are equivalent to Equations 28.130 and 28.131

by forming and differentiating coordinate transfor-

mation matrices, such as Equation 28.069. There

are, however, advantages in deriving and exhibiting

these equations in vectors: In some cases, the re-

sults are simpler; the same formulas can be used

to find the derivatives of quantities other than coor-

dinates and velocity components, such as the deriva-

tives of a disturbing potential, and the geometrical

meaning of the derivatives is more evident. Both

methods are likely to be required in future

developments.

THE LAGRANGE PLANETARY
EQUATIONS

76. If the scalar F in Equations 28.109 through

28.127 is the negative of the perturbing potential,

that is, R, we can combine these equations with the

time derivatives in Equations 28.086 through 28.107

and write

da_ 2 dR

dt
~ na dM

28.134 ^r=

de

dt

di

dt

dM
dt

dw
~di~

dn
dt

(l-e 2)dR (l-e 2
)

l '2 dR

na 2
e dM na 2

e

cot i dR cosec i dR

dw

N dw

2 dR

n dn
(l-e 2)dR

na da na 2e

N dR cot i dR
/xae de N
cosec i dR

de

di

N di

dN= dR

dt dw

8n r

=
8t

dR

N sin (w+f) di

28.135

dt r
2

N
(xae

dR

de

dE na
I

1
f

dR ae{\ + e cos f)dR
dt

3S

r
1

2na el

^

de

e
2

.

(1-

iin fdR)

e
2

) da

(1 dw

The first six of these first-order equations are th

Lagrange planetary equations, and are equivaler

to either the six first-order Gauss equations or th

three second-order Newtonian equations of motioi

CURVATURE AND TORSION
OF THE ORBIT

77. If we expand the equations of motion i

the form of Equation 28.006, we have

28.136
d
£)ir+ v 2u^ Fr

Contraction with l
r gives the linear acceleratio

dv
28.137

dt
Fr l

f

3 Kaula (1966), Theory of Satellite Geodesy, 67-68.

as in Equation 28.083; contraction with m r
, th

principal normal to the orbit, gives

28.138 v 2
x = F r fh

r

in which x is the curvature of the orbit, and w
have used the Frenet Equations 4.06. It should b

noted that m r
is not necessarily in the plane of th

"osculating" ellipse, which has only first-ord«

contact with the orbit, and that m r does not nece:

sarily coincide with m r in figure 33. Nevertheles:

m r must lie in the plane of m r and n r because m
is perpendicular to /

r
, and we can accordingly writ

28.139 m r — m r cos y + n r siny

so that we have

28.140 v 2x= (Frm r
) cosy+ (F r n

r
) siny.

If rl
r

is the binormal to the orbit, completing th

right-handed orthogonal triad (/
r

, m r
, n r

), we mus
have from figure 35

28.141 n r — n r cosy— m r siny.

The two vectors m r
, n r are as shown in figure 3

or 34.
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Figure 35.

78. If we contract the basic Equation 28.136 with

the binomial fl
r

, we have

28.142

so that

28.143

28.144

28.145

F r ri
r = 0= (F,n r

) cosy— (F,m r
) sin y

Frnr

tan y-
F,m>

Frm r — v 2
x cos y— (/jl sin /3) I

r

2+Rrm r

F r n
r — v

2
x sin y= R rnT

in which we have used Equations 28.140 and 28.082

for the disturbing force R r . These equations enable
us to find both y and x from the force components.

In an unperturbed orbit (/? r = 0), we have y= 0;

the radius of curvature is

1_ v 2 r 2 _ r(2-r/a)

X /u.sin/3 sin/3

= r cosec /3(1 + cos E) — a cosec /3( 1 — e 2 cos 2 E)

in terms of the Kepler elements. Allowing for

difference in notation, this last equation is easily

verified from Equation 22.12 as the radius of

curvature of an ellipse.

79. For the perturbed curvature vector, we can
now rewrite Equation 28.136 as

v
2
xm, = F r -(Fshlr

= (Fsm s)m r + (Fs n s)n r

28.146 (tL^A+ Rsm$\ m>. + {Rsn s)nr .

80. The torsion (t) of the orbit involves deriva-

tives of the force. For example, by taking the covari-

ant derivative of Equation 28.142 along the orbit

and by using the third equation of the Frenet

Equations 4.06, we have

28.147 Frsn 'I
s = jF rm r = v'

z
xT

after substituting Equation 28.138. We can also

differentiate Equation 28.141 covariantly along the

orbit and can substitute Equation 28.139 to give

— Tm r = n rs l
s cos y—m rs l

s sin y — m r (dyjds)

in which ds is the arc element (—vdt) of the orbit.

Contracting this last equation with m, and using

Equations 28.139 and 3.19, we have

28.148 t = (dyl ds) — n rsm r
l
s

.

There are various ways of evaluating the invariant

on the right. An interesting method is to use Equa-

tions 28.062 and 28.064 and to evaluate in Cartesian

coordinates from

rls r
d'lr

im rsm rr — m 1 —r-
dt

= — sin (M7+/+/3) sin i

cos (w+f+fB) -j-

dil

dt

= -jy(Rqn«)cosP

by substituting Equations 28.105 and 28.104. Using

Equations 28.145 and 28.054, we have finally

n rsm r
l
s = — x sin y cot fi

28.149 r=(dy/ds)+ x sin y cot /3.

Evaluation of (dy/ds) by differentiating Equation

28.143 or Equations 28.144 and 28.145 along the

orbit again introduces derivatives of the force or

second derivatives of a perturbing potential. The
torsion of an unperturbed orbit (y= 0) is, of course,

zero.

THE DELAUNAY VARIABLES

81. Instead of the elements (a, e, i), it is some-

times convenient to use three new variables

G=Vixa(l-e 2)=N

H = V fxa{\ — e
2 )cos i=N cos i,
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first introduced by Delaunay, and still retain the

other three elements (M, w, ft). Unfortunately,

every one of these symbols (L, G, //), which are

standard in the literature, also means something

else, sometimes in the same chapter of the litera-

ture. It is also usual in this context to use (/, g, h)

instead of (M, w, ft), the better to exhibit their

relationship to (L, G, H). To avoid confusion, so

far as possible, we have used L*, H* for the La-

grangian and Hamiltonian. The Delaunay variables

are not used outside this chapter and are unlikely

to be confused with other meanings — of G, g, h,'

for example — used elsewhere.

Time Derivatives

82. The time derivatives of the new variables

are easily obtained by direct differentiation and by

use of the formulas for da/dt, dejdt, di/dt already

given. We can also relate the results to partial

derivatives given in § 28-56 through § 28-76,

remembering that in those sections F is any scalar

defined in relation to the orbit, such as the dis-

turbing potential R. We have

dL , fi^da ,
(1*1*20* „ , vR r l'

-vR r l
r =

dt

28.150

a 1 '2 dt .1/2 V dM'

using Equations 28.086 and 28.120; we have

dG dN „ dR
-j-T=-r=r.R»<«=-r—

,

dt dt aw
28.151 -7-=

using Equations 28.090 and 28.127; and we have

dH .dN „ . .di
—j- — cos i —, N sin i —r
dt dt dt

= (r cos i)R q t q — r sin i cos {w-\-f)R q n
q

»»" =%
using Equations 28.090, 28.104, and 28.125.

83. We can also express the time derivatives of

(M, w, ft), already obtained, in terms of partial

derivatives of the disturbing potential R with re-

spect to the new variables (L, G, //). For this pur-

pose, we need partial derivatives of (a, e, i) with

respect to (L, G, H). We have

a— L 2
l(i

28.153

G 2 = L 2 (l-e :

H = G cos i.

For partial derivatives with respect to L, we mui

have H, G constant (as well as M, w, ft) so that i :

constant and

2L(l-e 2 )dL-2eL 2de= 0,

giving, together with the first equation of Equatior

28.153,

da 21 be (1-e 2
)

dL fx, dL eL

28.154

in the same way, we have

da _ de _ G
~b~G~

; ~d~G~~eT2 '

TL=*

di _ cot i

~d~G~~G~

28.155

da

28.156

1

0; ^=0; —=-
dG dH G sin i

84. Next, we have by the ordinary chain rul

dR_dadR ctedR di_dR

dL dL da dL de dL di

2Lr n (l-e2 )f= (R rr
r)+-—r-

1 \- (a cosf)R rr
r

ix a eL
[

28.157 + [a + 1-e R rt
r sin/

j

using Equations 28.154, 28.109, and 28.116; b

inspection of Equation 28.102, this is

28.158
dR__dM
bL~ dt

+n -

In the same way, we have

GdR

dG
=—jW~(a cosf)R rr

r + la + y__-J2) Rrf sin/

r cot i sin (w+f)(R rn
r )/G\

dw
~~~dt"

28.159

using Equations 28.116, 28.123, and 28.107. Als»

we have

dR r sin (w +/ )(R rn
r

) _ dVL

dt
'28.160 dH G sin i

using Equations 28.123 and 28.105.
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Canonical Equations

85. In this section, we have defined R as the

scalar whose gradient is the disturbing force /?,••

To ensure correct signs, we integrate Equation

28.082 and obtain

28.161 V=(fi/r)+R

where V is the total potential; therefore, R is, for

example, the sum of all the terms in the spherical

harmonic expansion of the potential given in

Equation 21.035 which must be added to /x/r,

thus agreeing with Equation 28.081.

86. The Hamiltonian H* (not to be confused with

the Delaunay variable //), as defined by Equation
28.031, is

28.162 H* =W2 -(fJi/r)-R.

We can substitute Equation 28.042 for v because

the actual velocity is equal to the velocity in the

osculating ellipse so that we have

28.163 //* =——
2a

-/? =
2L 2

R

in which L is the Delaunay variable V fxa. Also, we
have

dH*_fjL2 dR dR

dL' L3 dL
n

BL'

whereas, the partial differentials of H* with respect

to the other five Delaunay variables are the same as

the partials of (—/?). By substitution in Equations

28.150, 28.151, 28.152, 28.158, 28.159, and 28.160

and writing (/, g, h) for (M, w, CL), we have

dL dH* dG_
dt

dH*

dg
'

dH dH*

dt dl
'

dt dh

dl dH* dg dH* dh dH*
dt dL

'

dt dG
'

dt dH

28.164

These six equations are in the canonical form of

Equations 28.033, with (/, g, h) replacing the Car-

tesian coordinates (x, y, z) and with (L, G, H) re-

placing the momenta (x, y, z) . The Hamiltonian has

the same value, that is, jv2 + V, whether the Hamil-
tonian is expressed in Cartesian or Delaunay
variables.

FIRST INTEGRALS OF THE
EQUATIONS OF MOTION- FURTHER
GENERAL CONSIDERATIONS

87. We shall now consider further the Equation

28.028, that is,

28.165 kv2+W= constant,

which was obtained as a first integral of the equa-

tions of motion relative to the uniformly rotating

axes A r
, B r

, C r fixed in the Earth. To avoid con-

fusion, we have overbarred all quantities related

to this system so that V is the apparent velocity of

the satellite relative to axes rotating with constant

angular velocity &>, and

W=V-W<P
is the geopotential. Also, Vis the attraction potential

and d is the distance of the satellite from the axis

of rotation, as obtained in § 20-10. But the attraction

potential, as a physical invariant, has the same value

in both the inertial and rotating systems. Also, d has

the same value if the axis of rotation is the Cr-axis

common to both systems, as we have assumed
throughout this book. Accordingly, the geopotential

retains the same value on transformation to the

inertialsystem; we can drop the overbars from

V and W.

88. If p
r

is the inertial position vector, the appar-

ent velocity vector relative to the rotating axes is

p
r- (a)d)\ r

where k r
is the usual unit vector in the direction

of the parallel of spherical polar latitude. The
magnitude of the apparent velocity is given by

V2 = (P
r - (C0d)\ r )(p,- (C0d)k r )

= p
r
p r - 2(d)d)p rkr + a)

2(P

= v
2 -2(o)d)v! rk r + w2d2

— v
2 — 2((od)v sin a sin /3 + a>

2d2
,

using Equations 28.003 and 28.059. Substituting this

result in Equation 28.165, we find that

if
2+ V— (a)d)v sin a sin /3 = constant

applies in the inertial system. Using the fact that

we have d—r cos (/>, together with Equations 28.077

and 28.054, we can also write

28.166

where N as usual is Vpa(\ — e
2
). This equation

must be a first integral of the inertial equations of
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motion, equivalent in this case of uniform rotation

to Equation 28.021. We can also write

28.167
/

dV
dt

dt= coN cos i + constant.

Equation 28.166 can be considered as an expression

of the law of conservation of energy in this case and

will, in the future, be referred to as the energy

integral in our particular problem. It will be noted

that (N cos i) in the correcting term is the same as

the Delaunay variable H.

89. Equation 28.167 leads us to consider the time

variation of (TV cos i). Using Equations 28.090 and

28.104, we have

d(N cos i)

dt

28.168

rRq{t
q cos i — n q sin i cos (u>+f)}

(r cos (f))R Q
ki

by substituting Equations 28.059 and 28.077, and
the last term of Equation 28.080. But {Rq

Ki) is the

component of disturbing force in the direction of

the parallel and is zero only if the resultant disturb-

ing force lies in the plane of the meridian, which
would require the field to be axially symmetric. Also,

(r cos cpjRqk9 is the moment of this force component
about the axis of rotation. We conclude that (N cos i)

is the axial component of the angular momentum
vector, which can be verified from Equation 28.023,

if we take

TV cos i = e rstC,pspt

d(N cos i)

jt

= e
rslCrpsp< = e rstCrPsF t

= e
rstC rpsR t

28.169

because the central component of force does not

contribute to the vector product, and we are there-

fore left with the disturbing force Ri. We have
finally

d{N cos i)

dt
= re rs(C rrsR<= (r cos </>)X'/?„

agreeing with Equation 28.168.

90. We can now verify Equation 28.167 and thus

Equation 28.166. If the potential is expressed in the

form

— ^=X Tfl P'n'( COS <t>)(Cnm COS mCD + Snm sin ni(o)

in which co is the geodetic longitude and in the

form

co= co — cot

where co is the inertial longitude and t is elapse

time since the inertial and geodetic meridiai

coincided, then we have at once

dV . dR .
' CO -r—= ioRq\9 (r COS cf>)

dV
dt

-co
3co dco

because we have — V= pLJr-r R and therefoi

dVldco = — dRldco. From Equation 28.168, we ha^

28.170 —

=

dV . d{N cos i)

dt <° dt

which is equivalent to Equation 28.167.

91. We find therefore that (N cos i) is a constai

of the motion, and thus an integral of the equatioi

of motion, only if the field is axially symmetric, :

which case (N cos i) is clearly an integral of tl

equations of motion relative to either the inerti

or the rotating axes. In the case of an axially syi

metrical field (tesseral harmonics absent), we ha 1

both

28.171 h2+V= constant

28.172 N cos i = constant;

whereas, in the case of an unsymmetrical field, \

have only

28.173 W+V—toN cos inconstant,

or, using Equations 28.169, we have

28.174 iv
2 + V—Gbe rstC,pspt = constant.

92. An alternative way of looking at the syr

metrical field is of some interest. If the disturbii

force is axially symmetric, it can be expressed I

Rr = AC,+Bp r

where A, B are scalars, but not necessarily constant

In that case, we can see at once from the vect

product in Equation 28.125 that we have dR/dil = [

therefore, we have dH/dt — from Equation 28.LC

where H is the Delaunay variable (iV cos i). A
cordingly, we have verified that (N cos i) is

constant of the motion in an axially symmetric

field. A canonical variable, such as Cl = h in th

case, which makes the associated variable

constant in this way, is said to be ignorable.

INTEGRATION OF THE GAUSS
EQUATIONS

93. A standard method of solving differenti

equations is to find an exact solution in a speci

case which is close to the actual problem; f<

example, the exact solution of our present proble:
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for the main term —fi/r in the potential is the

Kepler ellipse. This exact solution results in a num-

ber of arbitrary constants which, in this case, are

six Kepler elements from the three second-order

equations of motion or the equivalent six first-

order equations. We then obtain more general

solutions by writing equations for the (small)

variations of the constants required to accommodate

the difference between the exact and actual prob-

lems—in this case, the perturbing potential— and we

solve these equations by successive approximation.

Astronomers can claim to have invented this pertur-

bation method for this particular purpose, but it is

now very generally applied to most of the equations

of mathematical physics, usually in the form of an

integral equation. A clear introduction to the sub-

ject, supported by further references, has been given

by the Jeffreys. 4

94. The first Gauss Equation 28.086 can be

written as

fjb da _ dx r_dR
L

dR_

2a2 dt~ r
dt dt dt

in which dR/dt is the total differential of the dis-

turbing potential, containing explicit time. Inte-

grating this equation, we have

~2a~ R+ jl^
But the velocity in the actual and osculating orbits

is the same so that Equation 28.042 holds true as

r la

we have also from Equation 28.081

dt — constant.

so that

V=^+R
r

\v2 V It-*-
J dt

constant;

or, using Equation 28.167, we have

V— ojN cos i — constant.1„2.
iV

which is the same as the energy integral Equation

28.166. The first Gauss equation is accordingly

equivalent to the energy integral, and will give us

no more information.

95. To illustrate the general method of solution,

we shall consider Equation 28.105 for the right

ascension of the ascending node, perturbed by the

4 Jeffreys and Jeffreys (reprint of 1962), Methods of Mathe-

matical Physics, 3d ed. of 1956, 493-495.
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second zonal harmonic of the gravitational field, as

lxC> ()P> ( sin <{> ) _ /xC2o

28.175 R
r3 2H5

(3 sin 2 0-1)

where C20 has the meaning assigned in Chapter 21.

Using Equations 28.059 in a spherical polar coordi-

nate system, we first find the invariant

R<,n q =
sin a dR

3/xCio

r4
sin

(f>
cos (}> sin a

3/XC20
• / 1 r\=——— sin (w+j) sin 1 cos 1

by substituting Equations 28.077 and 28.079 so

that we have

dCl iixC'o . » > , ~
28.176 ~ir=

Nf3
sin- (w+J) cos /.

To integrate this equation, we must first transform

to a single variable of the osculating ellipse, either

t or/, or M, or E\ the obvious choice in this case is

the true anomaly/. Using the unperturbed relation

d_= dfd_^Nd_
dt dt df r

2 df
28.177

from Equation 28.098 and substituting the last

member of Equation 28.051, we have

d£l_r^dn

df~N dt

_3fxC2»(l + e cos/) sin
2 (w+f) cos i

ywi-e2
)

{ 1 — cos ( 2w + 2/) + e cos /
3C20 cos I

2a2(l-e 2
)

2

— \e cos (2w + 3f) —\e cos (2w+f)} :

28.178

To obtain a first-order result, already implicit in the

use of the unperturbed Equation 28.177, we assume
that the elements a, e, w, i are unchanged during

the integration; we then integrate over a complete

revolution from/ to/o + 2-7T. The resulting first-order

change Aifl (not to be confused with the Laplacian)

in the nodal longitude is

28.179 A^ 37rC20 cos i

a 2 {\-e2
)
2

'

Or, adopting an alternative form of the constant C20

whereby we have

28.180 Cn0 = -(a e )»J„
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in which ae is a mean radius of the Earth, we have

3-n-a
2 cos ij%

28.181 AxO= — — •

a* ( 1 — e*

)

z

By the same process, we have for the other elements

Aia =

A ie =

Aii=
drraUi

Aiw= 2t"\~
€J

\\2 (1
—

4 sin2 i)
gt (1 — e

i
)

i

(dM \ 37ralfo

\~dT~
n
)
* = a«(l-e»)»/»

(1 ~* Si"2

°-

28.182

The perturbation of the mean anomaly requires

some explanation. If carried from perigee to

perigee using Equation 28.043, the integral on the

left would be the total change in M minus 2tt, on

the same assumption as for the other first-order

perturbations that a and therefore n are constant

during the integration; otherwise, the last equation

is not strictly correct. There is little or no effect on

the first-order perturbations whether we integrate

from perigee to perigee or between ascending nodes,

but the distinction does affect and does complicate

the second-order perturbations.

96. First-order or linear perturbations Aift, etc.,

of the elements caused by each higher harmonic

can be calculated in the same way; the results can

be added to give the final perturbation Aft as a

series containing only the first powers, of the gravi-

tational constants Cnm , S„m . If we make enough
measurements of the perturbations on different

satellites so as to introduce different values of the

coefficients of the Cnm , Snm, we can accordingly

solve the resulting equations for some of the lower

order Cnm, S nm, assuming that the effect of the higher

harmonics on satellites, whose perigee heights are

large, can be neglected. The process of integration

over a complete revolution will remove some of the

higher tesseral harmonics; all the tesseral harmonics

will be eliminated if observations of the change in

the elements are averaged over a complete day. The
method has, in fact, been used most extensively to

determine a few of the lower zonal harmonics after

suitable corrections for lunisolar perturbations,

atmospheric drag, and radiation pressure — the last

two of which are small in the case of heavy, compact,

high-altitude satellites suitable for determination

of the gravitational field.

97. It will be found that the coefficients of J2,

74 , Je, . are much larger than the coefficients c

73, Js, • • • in the series for Am; and Aft; these pei

turbations are accordingly used mostly for the detei

mination of the even harmonics. The Ae- an
Aj'-perturbations are best used for the determinatio

of the odd harmonics, and can also be used for th

higher even harmonics

y

4 ,i6, . . . . The integratio

of Equation 28.178 over a complete revolution ha

removed the short-period terms, consisting t

constants multiplied by sines or cosines of angle

containing multiples of the true anomaly /. Th
resulting first-order perturbations— averaged ove

a complete revolution, caused by J2, and give

in Equations 28.181 and 28.182 — do not contai

any periodic terms (because Ai = 0) and are know
as secular terms, the effect of which increase

steadily with time. From Equations 28.182, w
see that the argument of perigee w changes seci

larly so that perigee will eventually complet

a whole revolution in the orbit. For this reasor

terms containing sines and cosines of w, whic

appear in the perturbations caused by som
higher harmonics, are known as long-period terms

98. First-order perturbation byA of the argumen

of perigee, Aim; in Equations 28.182, becomes zer

for an inclination given by sin2
i = | or cos2 i=]

Close to this critical inclination, perigee oscillate

instead of precessing secularly. This case ha

attracted much attention, but seems to be of im

portance in geodetic applications only insofar as th

critical inclination slightly limits the use of pertui

bation in perigee.

99. The Kepler elements are not very suitabl

for orbits having small inclination or eccentricit

because then ft, w, M and their perturbations ar

not well defined. The difficulty, which has bee

encountered in a different context in § 27—6, ma
be overcome by using suitable combinations c

the elements as variables.

100. As long ago as 1884, Helmert determine

J2 from the orbit of the Moon, using a formul

comparable with A^ in Equation 28.181, afte

allowance for the large perturbation of the Moon'
orbit by the Sun. However, the accuracy of th

result, which depends on {a e/a)
2

, is much greate

from nearer artificial satellites even though th

higher harmonics have more effect.

Second-Order Perturbations

101. In common with other perturbation method
of solving differential equations, integration
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the Gauss equations runs into trouble when one

of the perturbing terms, in this case Cm or J2 , is

much larger than the other terms. It is well estab-

lished that C2o is about one thousand times larger

than any of the other C„m , Snm', second-order

perturbations containing C| or 7| have about the

same magnitude as first-order perturbations caused

by the other Cnm , S„m - Consequently, we cannot

hope to obtain values of the other harmonics

unless we includes ./f-terms and possibly also such

terms as J2J3, etc. To do this, we must not con-

tinue to assume that elements occurring in the

coefficients of Equation 28.178, for example, are

constant during the integration, and we must use

a perturbed relation instead of Equation 28.177.

The process will be illustrated by the same example

as used for the first-order perturbations, that is,

perturbation of ft by the second zonal harmonic.

102. We begin with Equation 28.176 and consider

necessary modifications arising from the incon-

stancy of w. We have

d(d£l/dt)da
dt~~

idn

~{dt

(dCl

~\dt

dw

6ju-C2q

dw

sin (w+f) cos (w +f) cos i dw

28.183

in which the term in braces is the same as we have

used on the assumption that the elements are con-

stant. From Equations 28.175 and 28.059, we have

dR
R rr

r=—
dr

3/jlC2

2r*
(3 sin 2 0-1)

cosa dR_3/jLC2o . ,A r f
— zt ——-,— sin © cos ffl cos a

r a<p r4

_ 3fxC>o

r4
sin {w+f) cos (w+f) sin 2

i,

using Equation 28.079 and the last term of Equa-

tions 28.080. Substitution in Equation 28.096 then

gives an equation of the form

df
dt
=4u- 3C20X

2ea2(\-e2

in which I is a function containing e, sin2
i, and

trigonometric functions of multiples of w and /.

To a first order in C20, we can write

dl=j^( SC20X
df N\ 2ea2(l-e2

),

combining this equation with Equation 28.183, we
have

dn = r^idil)

df N[dt\

r2 6/jlC2 h

N Nr^

r2 3C20X

sin {w+f) cos (w+f) cos i dw

dCl

N2ea 2(l-e2
) [dt

in which we have omitted the term containing

Cf , leading to a third-order term. Integration around

a complete revolution will give, for the first term

on the right,

J N{dt\
A,ft,

already evaluated in Equation 28.181. The second-

order perturbation to be added to Aifi will accord-

ingly be

6/u,C2o sin {w+f) cos {w+f) cos i

A,ft =-
[ Nr^

+
J 2ea 2(l-e2

) N\dt\ dJ -

In these integrals, we have to substitute Equation

28.178 and a corresponding equation for dw/df,

and then convert to trigonometric functions of

multiple angles. During the evaluation of these

second-order integrals we can consider the ele-

ments constant, just as we did in the evaluation of

the first-order integrals to find the first-order per-

turbation Aifl, so that the integration follows the

same lines as the integration of Equation 28.178.

103. In addition, we have to include terms in

Equation 28.183, such as

d(dVLldt)

de
de,

to allow for variation in the other elements; each

such term would lead to a second-order integral

containing, for example, de/df These terms have

to be evaluated, even though the first-order pertur-

bation Aie taken between limits is zero.

104. First- and second-order perturbations for a

number of harmonics have been derived by Merson,"'

5 Merson (1961), "The Motion of a Satellite in an Axi-sym-

metric Gravitational Field," Geophysical Journal of the Royal

Astronomical Society, v. 4, 17-52.
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Kozai," Zhongolovitch and Pellinen,7 and others.

The algebraic equations, even those of the final

results, are involved: the labor required to obtain

these equations must have been immense. It is

probable that the method has served its purpose

in the evaluation of a few low zonal harmonics and
that future developments will be more in the direc-

tion of numerical integration. Meanwhile, other

attempts have been made to avoid the complexity

introduced by the magnitude of J >.

INTEGRATION OF THE LAGRANGE
EQUATIONS

105. The Lagrange Equations 28.134 require the

disturbing potential R to be expressed in terms of

the elements (a, e, i, M, w, fl). This expression has

been given by Kaula 8 in the form

ixa ", " x

R»m = ~nTi^l Fnmp(i) 2 G»i»i(e)
p=0 q=- x

28.184 XSnmpa(w, M, ft, 6)

where R„m is the harmonic of order m and degree

n in the disturbing potential R, and

j in

re inn
n-m even

_ Jnm_ n-m odd

-1-
O n in

n - m even

_^ nm_ n - m odd

28.185

cos [(n — 2p)w

+ (n-2p + q)M + m{CL-d)]

sin [(n — 2p)w

+ (n-2p + q)M+m(n-d)].

Also, d is the sidereal time at the origin of longi-

tude—for example, Greenwich — in the original

expression for the potential in spherical harmonics.

The angle (ft — 6) is accordingly the (Greenwich)
longitude of the ascending node. The terms F„mP{i)
and C/jqie) are known functions, respectively, of

the inclination and eccentricity, which appear in the

literature of classical astronomy, and have been tab-

ulated for a number of harmonics by Kaula. 9 The
symbol a e is a mean radius of the Earth, the inclusion

of which requires the Cnm , Snm of Chapter 21 to be
divided by a n

e before substitution in Equation 28.185.

It is hardly necessary to say that Equations 28.184

6 Kozai (1959). "The Motion of a Close Earth Satellite," The
Astronomical Journal, v. 64, 367-377.

7 Zhongolovitch and Pellinen^ (1962), "Mean Elements of

Artificial Earth Satellites," Biulleten' Instituta Teoreticheskot

Astronomii, v. 8, 381-395.
8 Kaula, op. cit. supra note 3, 37.

9 Ibid., 34-35, 38.

and 28.185 are merely indicial equations and have r

tensor significance any more than the constants Cm
Snm- Transformation of the ordinary expression of tr

potential in spherical harmonics to the pole of th

osculating orbital plane is not difficult; the con

plexity arises almost entirely from the use of M i.

one of the elements rather than a purely geometric;

quantity such as/, but this complexity is necessai

if we expect to use the canonical Equations 28.16'

106. Because the Lagrange equations, like th

Gauss equations, are linear, we can substitute di

ferentials of individual harmonics R nm on the rigl

side of these equations and can integrate term-b;

term. For example, the contribution to dil/dt of on

term Rmnpq in the double summation of Equatio

28.184, substituted in the last equation of Equatior

28.134, is

28.186
dn 1 ^ n

e dF HI

dt N sin i a"' di
{riipqOnnpqunmpqi

which can be integrated to find the first-order (

linear perturbation on much the same assumptior

as are made for the integration of the Gauss equ:

dons. In this case, we assume that (a, e, i) are coi

stant during the integration and that w—dw/d
M= dMjdt, Cl — dflldt are also constant, whic

implies that iv, M, Cl have either unperturbed (

average values obtainable from the correspondin

Lagrange equations. The only variable in Equatio

28.186 is then Snmpq', we have

Jnmpqdt

_ C S,imi>qd{(n-2p)w+(n-2p + q)M+m(n-d)
J {n-2p)w+(n-2p + q)M + m{Cl-0)

O i nil jig

{n-2p)iv+ (n-2p + q)M+m(Ct-d)

where Smnpq is the integral of Snmpq in Equatio
28.185, with respect to the argument [n—2p)\
+ (n-2p + q)M+m{n-0). In this result, = d> i

the constant rate of rotation of the Earth. The fine

contribution to the change in the element is

LAl Lnlll

1 fxa;

X sin i a'

x2 [dF,impldi)G„pqSin

28.187
2p)w+ (n-2p + q)M+ m(fi-e)

In this equation, n is, of course, an index and nc

the mean motion.
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107. First-order perturbations are found to be the

same as those obtainable from the Gauss equations.

The second-order perturbations may be obtained in

much the same way, allowing for variation in (a, e,

i, iv, M, Cl), but are just as complicated and just as

necessary.

Resonance

108. If the denominator

{n-2p)w+ (n-2p+ q)M+ m((l-d)

of equations, such as Equation 28.187, for the first-

order perturbations is near zero, the corresponding

term in the perturbation will become very large

and the first-order theory will break down. These

cases are of considerable importance in the orbits

of geostationary communications satellites and in

the accurate determination of some higher har-

monics. One case, considered by Kaula, 1 " occurs

when
w-rM + (l-0

is nearly zero; this situation can happen for certain

terms in the disturbing function SmnpQ of Equation

28.185. Another case arises when the ratio of the

mean motion of the satellite (M) to the Earth's rota-

tion rate (9) is nearly equal to

m/(n —2p + q)

because, for such a term, the denominator will con-

tain only the small perturbations iv, Cl. The orbit is

then said to be commensurable. There is already a

large and rapid growing literature on the subject by
such authors as Allan, Anderle, Morando, Wagner,
and Yionoulis. One of the latest, which gives reason-

ably full references to earlier work, is a paper by
Gedeon, Douglas, and Palmiter."

INTEGRATION OF THE CANONICAL
EQUATIONS

Contact Transformations

109. In this book, we have so far used only point

transformations, either to a different set of coordi-

nates or to a point in another space related by
one-to-one correspondence. We now briefly con-
sider contact transformations, whereby both the

coordinates of a point and a vector associated with
the point are transformed in such a way that the

10
Ibid., 49-56.

"Gedeon, Douglas, and Palmiter (1967), "Resonance Effects
on Eccentric Satellite Orbits," The Journal of the Astronomical
Sciences, v. XIV, no. 4, 147-157.

canonical form of equations connecting the coordi-

nates and components is preserved. The transfor-

mation from the six independent variables (x, y, z,

x, y, z) in Equations 28.033 to the Delaunay variables

(L, G, H, I, g, h) in Equations 28.164 is a contact

transformation. For our present purposes, we need

to consider the position and velocity of a single

particle only in three-dimensional space with six

independent variables. However, the same methods
apply to dynamical systems consisting of any num-
ber of particles, each of which will contribute three

coordinates and three components of velocity or

momenta. The transformed variables may no longer

represent position and velocity separately — the

Delaunay variables do not — although the trans-

formed variables are sufficient to determine position

and velocity either directly or by another transforma-

tion. Nevertheless, it is usual to call three of the

variables coordinates and to call the other three

momenta to fix their position in the canonical equa-

tions with the correct sign. We shall denote coordi-

nates by q
r and momenta by p, so that the canonical

equations are, as in Equations 28.033,

28.188
. i)H* dH*

in which it is assumed that the Hamiltonian H* can

be expressed as a function of p r , q
r and of the time t

.

In writing these equations, we have used index

notation and can use the summation convention,

but the canonical equations are generally not tensor

equations because the variables do not transform

in the same way.
The total time differential of the Hamiltonian is

dH* dH* dH*

dt Jp~ p ' +W Q
' +

i)H*

~~dT

in which the first two terms on the right cancel by

Equations 28.188. If the Hamiltonian does not

contain the time explicitly (dH*/dt = 0), then we
have dH*/dt = 0; the Hamiltonian is a constant of

the motion and therefore an integral of the equations

of motion.

110. A contact transformation to new variables

Q r
. P> will result in the canonical equations

dK* t 9K*
28.189 Qr=

dPr

Pr
dQ r

in which the new Hamiltonian K* expressed in

terms of P,, Q r need not necessarily have the same
value as //*. It can be shown ,2 that the transforma-

12 A fuller treatment of the subject for different forms of the

transforming function is given by Goldstein (1950), Classical

Mechanics, 237-243.
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tion equations from Equations 28.188 and 28.189 are

28.190

BS „ dS

dq r V dPr
'

dt

in which the transforming function S may be a

function of time and is a function of the mixed
variables q

r
, Pr , so that we have

28.191 S=f(qr,Pr,t).

There are alternative transformations in which S
can be a function of other variables, for example

q
r

, Q r , but this form in Equations 28.190 and 28.191

is the most useful for our present purposes. The
Hamiltonian remains unchanged in value, even
though expressed in terms of different variables,

if the transforming function does not explicitly

contain the time.

The Hamilton-Jacobi Equation

111. Next, we seek a contact transformation which
will make the new Hamiltonian K* zero so that we
have

H*(qr,pr, *)+ ?7= 0;
at

or, using the transforming equation p r — dS/dq r
,

we have

28.192 V oq r
) dt

known as the Hamilton-Jacobi equation. If we can

solve this last equation for S, the whole problem is

solved because the new canonical Equations 28.189

then show that the new Pr , Q r
- are arbitrary con-

stants of the motion a r , /3
r

. The transforming func-

tion in Equation 28.191 can then be written

S=f(q r
, a r , t);

the transforming Equations 28.190 become

dS(qr
, a r , t)

Pr

28.193 Q r
^f3

r ^

dq r

dS(qr
, a r , t)

c)a r

which enable us to express p r and q' as functions

of ar , /3
r and t. We can finally choose the arbitrary

constants ar , (5
r to fit given values of p r , q

r
at a

given time, that is, to fit the starting conditions in

the orbit. The coordinates and momenta p r , q
r are

then calculable at any later time.

112. In the form of Equation 28.192, the Hamilton-

Jacobi equation applies to general dynamical prob-

lems containing any number of coordinates q
r

. F
our particular problem of a single particle in thn
dimensions, we can use Equation 28.032 for tl

Hamiltonian in Cartesian coordinates and write tl

equation as

V(x,y,z,,)-H'{(^)\(
a -

oz) J dt[\dxj \dy,

or, using Equation 3.13, we have

28.194 V+WS + f- = 0.
at

But this last equation is a space invariant whk
holds true in any space coordinates, provided v

can write the potential V in the same coordinat*

and provided the space coordinates in S are ind

pendent of time — as we are entitled to assume in ai

Newtonian system. If the associated metric tensi

of the coordinate system is <?
rs

, all we need do is

use Equation 3.13 and write

28.195 VS = g
rsS rSs .

113. If the potential does not contain explk

time t, the Hamilton-Jacobi Equation 28.194 c<

evidently be satisfied without any other loss

generality by

28.196 S=W*-ait

in which W* is a scalar not containing explicit tin

and ai is an arbitrary constant; W* is not to 1

confused with the geopotential. The equation thi

becomes

28.197 H* = V +WW* = a ] .

We can consider W* as the transforming functk

(replacing S in § 28-111 and § 28-112) for a conta

transformation which makes the new Hamiltonk

the same as the old (because dW*ldt = tii), bo

being equal to the constant a.\. The new canonic

Equations 28.189 are then

Pr= =

which integrates to

28.198 P,=a,,

a set of constants, one of which may be taken ;

a.\\ we have
da\ dai

Q' =
dP r da r

8f,

using the Kronecker delta. This last equation i

tegrates to

28.199 O r=8 r
1
t + r

3'
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in which /3' are arbitrary constants. All the new
coordinates and momenta are constants except

Q^t + p
1

.

|

Combining these results with the transforming

Equations 28.190 and with the transforming func-

tion W* instead of S, we have finally

28.200

Pr=a,

K*=H* = a,

i)W*

da,-

This ^-transformation, where W* is time-inde-

pendent and the Hamiltonian is unchanged and a

constant of the motion, is quite different from the

S-transformation where the transforming function

is time-dependent and the new Hamiltonian is

zero. Nevertheless, both Equations 28.194 and

28.197 are known as the Hamilton-Jacobi equation;

S is known as Hamilton's principal function and

W* is known as Hamilton's characteristic function.

114. The Hamilton-Jacobi equation in the time-

i independent form of Equation 28.197 can be

\
solved exactly in a few coordinate systems, pro-

vided the equation can be separated into three

ordinary differential equations, each containing only

one variable, in much the same way as the Laplace
I equation was solved in spheroidal coordinates in

§22-17. For example, the equation can be solved

in spherical polar coordinates for the unperturbed

potential — /u/r; the transformed coordinates and
momenta Qr

, Pr are then found to be the Delaunay
variables. Plummer 13 gives a complete solution.

The Vinti Potential

115. Vinti 14 has shown that the Hamilton-Jacobi

Equation 28.197, in the case of a time-independent

potential, is separable in the spheroidal coordinates

of §22-10 and §22-11, provided the potential has

the form

bu cot a — b\ sin u

cot- a + sin2 u

13 Plummer (Dover ed. of 1960), An Introductory Treatise on

Dynamical Astronomy, original ed. of 1918, 142.

14 Vinti (1959), "New Method of Solution for Unretarded

I

Satellite Orbits," Journal of Research of the National Bureau of
Standards, Section B, v. 63, 105-116; (1961), "Mean Motions in

Conditionally Periodic Separable Systems," v. 65, 131-135;

(1961), "Theory of an Accurate Intermediary Orbit for Satellite

Astronomy," v. 65, 169-201; and (1962), "Intermediary Equa-
torial Orbits of an Artificial Satellite," v. 66, 5-13.

in which 6 ( >, b\ are arbitrary constants and the

constant (ae) of the spheroidal coordinate system —
not to be confused with the Kepler elements of any

orbit — is also available as an arbitrary constant.

For equatorial symmetry, the potential does not

change for ± u, and 6, must be zero. The potential

is then

6ii cot a Ubo \ib,

cot 2 a + sin 2 u i cot a — sin u i cot a + sin u
'

which can be expanded to within a scale constant

by Heine's Theorem 15 as

X

ibu V (2n + l)Q n (i cot a)P„(sin u) (n even).

11 =

This result is transformed to spherical harmonics —
for the same mass distribution, whatever that may
be — by Equation 23.15 as

(ae (ae) :i

n . .
,

(ae) 5
n . ,

ion r^— "•>(sind>H—rr- "-j(sin <&)
\ ir ir ir1

We may choose the harmonic of zero order to be
— fx/r as usual if we make

28.201 &«, = -—:
ae

then, the potential is

-^{l-(f)
2

p,(sin0) + (f)V,(sm0)

Also, we can make the second zonal harmonic the

same as in the actual potential of the Earth, if we
use Equation 28.180 and make

28.202 (ae) 2 = -C>»=+ a?J-2 ,

which is Vinti's convention, so that finally the

potential is

-fll- (yj hP* (sin </,) + (yV J\P, (sin
<f>)

a,
^/Msin</>) +

28.203

It is of interest to note that Equation 28.202 leads

to a real spheroidal coordinate system only if Jo

(in Vinti's convention) is positive or if C»o (in our

convention of Equation 21.035) is negative, but in

the case of the actual Earth, this condition is met.

116. The transforming function W* is obtained

from the solution of the Hamilton-Jacobi equation

15 Whittaker and Watson (reprint of 1962), A Course of Modern
Analysis, 4th ed. of 1927, 321.
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by Vinti in the form of elliptic integrals containing

the constant momenta a, •, which appear during the

process of separation; W* is differentiated with

respect to these constants to provide the trans-

formed coordinates Q r from Equations 28.200 also

in the form of elliptic integrals. The constants ar ,

/3' describe the motion completely in much the same
way as initial values of the Delaunay variables do

for the potential — fx/r, although not as simply. Nor
are the constants a,-, fi

1 as easily related to the

Kepler elements, although this relation has been
accomplished by Izsak 16 and Vinti. 17 The solution

completely takes care of the large second zonal

harmonic which causes trouble in the integration

of the Gauss and Lagrange equations, but first-

order perturbation methods are still necessary to

evaluate the higher harmonics. The higher zonal

harmonics are evaluated as differences from the

corresponding harmonics in the Vinti potential.

The von Zeipel Transformation

117. Instead of making the transformed Hamil-

tonian zero as in § 28-111, the von Zeipel transfor-

mation of the canonical equations successively

eliminates the time and the Delaunay angular vari-

ables from the Hamiltonian. In the final transforma-

tion represented by Equations 28.189, for example,

the dK*ldQ r are zero; therefore, the final momenta
P r are arbitrary constants. Working backward from

the now-known P r and Q r
, we can, at any rate

theoretically, recover the original p r , q
r in terms of

arbitrary constants which can be related to the

starting conditions. The method has been used to

account for the lower-order zonal harmonics, and is

complicated enough in this favorable symmetrical

case where explicit time and one Delaunay coordi-

nate are absent in the initial Hamiltonian. (We have

seen in Equation 28.172 that, in this axially sym-

metrical case, the Delaunay variable H = N cos i is

constant in time; therefore, the Hamiltonian in

Equations 28.164 cannot contain the Delaunay

coordinate h — il.) An outline description, covering

only the C2o- or y 2-disturbing potential, is given by

16 Izsak (1960), "A Theory of Satellite Motion About an Oblate

Planet. I. A Second-Order Solution of Vinti's Dynamical Prob-

lem," Smithsonian Institution Astrophysical Observatory. Re-

search in Space Science. Special Report No. 52.
17 Vinti (1961), "The Formulae for an Accurate Intermediary

Orbit of an Artificial Satellite," The Astronomical Journal,

v. 66, 514-516; and (1966), "Invariant Properties of the Spheroidal

Potential of an Oblate Planet," Journal of Research of the

National Bureau of Standards, Section B, v. 70, 1-16.

Kaula; 18 a fuller description, including the applic

tion to other zonal harmonics, is given by Brouwer.

DIFFERENTIAL OBSERVATION
EQUATIONS - DIRECTION
AND RANGE

118. A solution, which is more in line with curre

geodetic practice, is to assume an approxima
orbit in much the same way as we start with appro:

mate positions in a geodetic network adjustmei

The "computed" value of an observed quantity

then obtained from this approximate model ai

enters the observed minus computed side of

differential observation equation. On the other si'

of the equation are various terms giving the effe

on the observed quantity of the application of C(

rections to the approximate orbital elements. The
terms are broken down into corrections to the gra

tational constants assumed in the approximate orb

together with a number of parameters in exprt

sions for the drag, etc., which the solution is requin

to provide. The observation equations at differe

times to a number of satellites are then solved 1

least squares for the corrections and parametei

The method differs only from a normal geodet

adjustment in that the observations are made
different times to a moving object, so that the coel

cients of the corrections will usually contain t

time of observation. The approximate orbit

usually a Kepler ellipse perturbed by the larj

C20- or Jo-gravitational term; this orbit ensures th

corrections to the gravitational constants will 1

uniformly small.

119. The most useful observations to artific:

satellites for geodetic purposes consist of:

(a) photography of the satellite against a stell

background with, for example, the Baker-Nui

tracking cameras or the BC—4 cameras used f

satellite triangulation, as described in §26-

through § 26-66;

(b) ranging by radio; or, optical-distance measut

ment to the satellite using lasers; and

(c) range-rate measurement by Doppler-trackii

systems or by continuous range measurement.

Other methods, such as measurement of horizo

tal and vertical angles to the satellite at a kno\

time by kinetheodolite, for example, are general

less accurate, but the appropriate observation equ

18 Kaula, op. cit. supra note 3, 43-49.
19 Brouwer (1959), "Solution of the Problem of Artific

Satellite Theory Without Drag," The Astronomical Journ
v. 64, 378-397.
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tions can easily be formed if required by suitable

modification of equations given in Chapter 26.

120. The reduction of photographic observations

has already been fully treated in §26-43 through

§ 26-66, although fewer refinements are usually

required in orbital analysis. The end result consists

of observational equations connecting observed

minus computed plate or film measurements — or

deduced right ascensions and declinations — with

corrections to the Cartesian coordinates of the

i
satellite and of the ground-tracking station, such as

Equations 26.46 and 26.47. For range observations,

\
we can use Equation 26.65. Although these equa-

tions were drawn up for the Earth-fixed A'\ B' , C'

j

system, the equations apply equally well in the

:
inertial A r

, fi
r

, C r system, provided we replace the

origin-hour angle H (as defined in § 26-32) by

[H + 9) where 9 is the sidereal time at the origin of

longitudes in the Earth-fixed system — in other

words, if we interpret H as right ascension. The

i
inertial coordinates of the tracking station change

as the Earth rotates and are different for each obser-

! vation. To derive corrections to the Earth-fixed

!
coordinates dxo, dyo of the tracking station, we must

,

replace the inertial coordinates x, y of the tracking

station in the modified Equations 26.46, 26.47, and

i
26.65 by

28.204

28.205

x\_ /cos — sin 9\ Axo

07 \sin 9 cos 9 / \yoJ

and must replace the inertial differentials dx, dy by

dx\ _ /cos 9 — sin 0\ /dxu

ydy) \sin 9 cos 9 ) \dyo

We can replace 9 by d)t in which w is the rotation

rate of the Earth and t is elapsed time since the

initial meridians of the Earth-fixed and inertial

systems coincided. These transformations do not

alter the Cartesian origin. Accordingly, if first

harmonics are omitted from the expression for the

potential used in forming the observation equations,

the corrections dxo, dyo to be found by solving the

observation equations will give the final coordinates

of the tracking station in relation to the center of

mass as origin, as we have seen in § 21—42.

121. We are not interested in obtaining correc-

tions to initial values of the inertial coordinates

{x
r or p') of the satellite, which also would be quite

different for each observation. Instead, we seek

corrections to approximate values of the orbital

elements (a, e, i, M, w, H), which would have been

used to compute x 1 ' from Equation 28.069 and so

to obtain the computed value of the observed direc-

tion or range. The orbital elements (other than M)
vary much more slowly than the Cartesian coordi-

nates, and can be considered constant in first-order

observational equations covering observations over

considerable periods of time. Accordingly, we re-

place dx, for example, by

dx =— da + — de + . . .

da de

and use Equations 28.130 for the dx/da, etc. More-

over, the corrections da, etc., to the orbital elements

are themselves composed of:

(a) Corrections dao to the values assumed for

the approximate orbit. If the approximate orbit

takes account of certain perturbations, such as

C-n) or J>, then the osculating elements of the ap-

proximate orbit will vary with time. Integration of

the approximate orbit will give values of the ele-

ments do at a particular time to- If the time of

observation t is very different, we may have to

replace the correction dan in the observation equa-

tions by
dao+ (daldt)o(t— t ),

using the Gauss equations for (da/3t), etc., at to;

that is, we have to substitute a<>, etc., in the Gauss

equations.

(b) Corrections arising from the Earth's gravi-

tational perturbations. These may be obtained from

the integrated Lagrange equations, such as Equa-

tion 28.187, by partial differentiation with respect

to the Cum, S ini ,. The results will contain sine or

cosine terms with arguments

{n -2p)w+ (n -2p + q)M + m(il- 9).

Again, the elements will vary with time if the

approximate orbit is not a Kepler ellipse (M will

do so anyway). However, if the correcting terms

are small, we can write the argument as

(n - 2p) (ivo + wkt)+ (n -2p + q) (Mo + MAt

)

+ m{Clo— do+ (il-d)kt}

where the zero suffix denotes the initial approximate

value of the element at to, At is the time of the

observation since to, and w, M, fi are considered

constant; C->o or J> is now well enough known to be

included in the approximate orbit, in which case the

remaining terms, such as

da
dCn ,

dC„,

could then include such higher zonal and tesseral

harmonics as can be handled by computer capacity.

(c) Other corrections to the elements arising from

atmospheric drag, radiation pressure, and lunisolar
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perturbations. These corrections will be considered

very briefly in the following three sections.

Drag

122. Correction terms to the Gauss or Lagrange
equations for d, e, w< and M have been given by
Sterne 20 and applied by Izsak 21 to an atmospheric
model in which the density decreases exponen-
tially with height. More realistic high-altitude

atmospheric models derived from satellite obser-

vations, which among other solar effects show a

large diurnal bulge toward the Sun with a pro-

nounced lag caused by the Earth's rotation, have
been described by Jacchia,22 by King-Hele,23 and
by Priester, Roemer, and Volland. 24 The results

can be used to provide first-order corrections,

such as

Aa = oAf,

to the preliminary values a<> of the elements.

However, it has been shown by Kaula 25 that the

principal effect is a perturbation AM of the mean
anomaly which can be described by a few terms of

a polynomial in time as

AM = p(At) 2 + q(At) s + ....

Kaula also obtains the drag perturbations Aa, Ae,

Aw, AO in terms of the same coefficients p, q,

which can accordingly be considered as parameters

or unknowns in the observation equations in much
the same way as the atmospheric parameters

Ki, K2 , K3 , K4 (§26-58) are determined in the

solution of the observation equations in satellite

triangulation.

Radiation Pressure

123. Solar radiation pressure as a nongravitational

force can have a considerable effect on the large,

light, balloonlike satellites used for satellite tri-

angulation, but, in that case, a correction is required

20 Sterne (1959), "Effect of the Rotation of a Planetary Atmos-

phere Upon the Orbit of a Close Satellite," ARS [American

Rocket Society] Journal, v. 29, 777-782.
21 Izsak (1960), "Periodic Drag Perturbations of Artificial

Satellites," The Astronomical Journal, v. 65, 355—357.
22 Jacchia (1960), "A Variable Atmospheric-Density Model from

Satellite Accelerations," Journal of Geophysical Research, v. 65,

2775-2782.
23 King-Hele (1964), Theory ofSatellite Orbits in an Atmosphere.
24 Priester, Roemer, and Volland (1967), "The Physical Be-

havior of the Upper Atmosphere Deduced from Satellite Drag
Data," Space Science Reviews, v. 6, 707-780.

25 Kaula, op. cit. supra note 3, 57-59.

only for orbital prediction. The effect is much le:

on small, heavy satellites suitable for the dete

mination of the gravitational field, but, nevertheles

some allowance must usually be made. The satefli

is affected only in sunlight; this intermittent effe

requires in practice some form of numerical int

gration or harmonic analysis designed to incluc

discontinuity. The effect can then be integrate

over the time covered by a batch of observation

and can be applied as a correction to the ao, en, et(

adopted as constant for the batch. A comple
treatment has been given by, among other

Musen 26 and by Walters, Koskela, and Arsenault.

Lunisolar Perturbations

124. We have thus far considered only the attra

tion exerted by the Earth on the satellite, and v

have justifiably assumed that the attraction exertf

by the small satellite on the Earth has no effect (

the motion of the Earth. However, if we introduce

massive body such as the Sun into the system, tl

effect on the motion of the Earth relative to tl

satellite is by no means negligible. The force

attraction on the Earth is GMsMEjr
2 where Ms , I\

are, respectively, the masses of the Sun and tl

Earth and where r (fig. 36) is the distance betwet

Sun

Earth

satellite

Figure 36.

the two bodies. We have assumed, as we can <

because of the great distance r, that the Earth ca

for this purpose, be represented by a point mass

its center of mass (or a uniform sphere centen

26 Musen (1960), "The Influence of the Solar Radiation Pr

sure on the Motion of an Artificial Satellite," Journal of &
physical Research, v. 65, 1391-1396.

27 Walters, Koskela, and Arsenault (1961), "Solar Radiati

Pressure Perturbations," Handbook of Astronautical En.

neering, 8-33, 8-34.
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on the center of mass of the Earth). The Earth,

along with the origin of the "inertial" coordinate

system we have used throughout this book, is now
subjected to an acceleration of GM.s/r

L> toward the

Sun; the coordinate system is no longer inertial,

and the Newtonian equations of motion do not

apply. However, we can restore the inertial system

by applying an equal and opposite acceleration to

all bodies in the system without affecting their

relative motion. The satellite (of unit mass) is then

subject to the following forces or accelerations:

(a) the attraction Fa of the Earth, whatever that

may be (we do not assume that this force is directed

toward the center of mass of the Earth);

(b) the attraction of the Sun GMs/r2 toward the

center of mass of the Sun; and

(c) an acceleration of GMs/r
2

,
parallel to the direc-

tion of the Earth from the Sun, required to cancel

the acceleration of the coordinate system.

The disturbing force on the satellite is the vector

sum of (b) and (c), that is,

28.206 c«« m-f
which is equivalent to a disturbing potential at the

satellite of

-GMS

as we can see at once by taking the negative gradient

of the latter expression at the satellite with p~j fixed.

Expansion of the disturbing potential, as in Equa-

tion 21.010, gives

GMs(,,r— 1 +- cos w
r \ r

+ . . . — Pn (COS l//)

r"

— — COS l//

GMS I f- „—=- (1+-P-2 (COS l//) +

The term not containing ijj drops out on differen-

tiation of the potential to form the equations of

motion; the remaining terms of the order (l/r !

) are

small, even though Ms is large.

125. Perturbation of the satellite by any number
of other bodies, such as the Moon, can be handled
by adding accelerations in the same way. Because
the Newtonian equations of motion are linear, we
can achieve the same result by considering the

effect of each body in turn. The disturbing potential

in each case can be expanded in spherical harmon-
ics related to the inertial system, as in Equation
21.035, and so in terms of the orbital elements of

the satellite and of the Sun (or Moon) in a double

series similar to Equation 28.184. The full expansion

has been given by Kaula.28 The same methods can
then be used as for perturbations of the satellite

by terms in the Earth's potential. However, it is now
more usual to integrate the Cartesian equations of

motion numerically for each small perturbation,

using Equation 28.206.

DIFFERENTIAL OBSERVATION
EQUATIONS-RANGE RATE

126. Continuous measurement of range to the

satellite provides a measure of range rate. The
range rate is also related to the Doppler frequency

of signals emitted by the moving satellite and re-

ceived by a ground station, after correction for

atmospheric refraction and ionospheric refraction

by a two-wavelength technique, although the large

number of Doppler observations made on even a

short orbital arc requires special initial treatment.

Accordingly, we need a form of observation equa-

tion for the time rate of change of range, which we
shall denote as P. If the inertial position vectors to

the satellite and to the tracking station are p
r

,

p
r

, and if the range and unit vector from the tracking

station to the satellite are s, u r so that we have

28.207 su

then the range rate is the component of relative

velocity in the direction u r
, giving

28.208 P=(p'-p'>,.

Proceeding exactly as in § 26-5 and § 26-6, we find

that we have

sdP= (dp'-dp')(p,-p,)

28.209 + (pkPr + qkq,)(p
k -p k )(dp r - dp>)

in which pk, qk are any unit vectors forming a

right-handed orthogonal triad (uk, pk, qk) with

Uk— for example, the m r , n r of §26-7 and §26-8
evaluated in spherical polar coordinates. The posi-

tion and velocity vectors of the satellite p,. p
k

are given by Equations 28.130 and 28.131 in terms

of the orbital elements. Position and velocity vec-

tors of the tracking station are easily obtained in

terms of Earth-fixed coordinates (.to, yo, Zo) from
Equation 28.204 in the form

'cos d)t — sin wt

28.210 p —\ sin wt

\

COS d)t

28 Kaula (1962), "Development of the Lunar and Solar Dis-

turbing Functions for a Close Satellite," The Astronomical

Journal, v. 67, 300-303.
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28.211

/— sin ojt — cos G)t 0\

p' = a> cos (bt — sin wf
J
pg

characteristic of the family to be the same constar

energy ai or the Hamiltonian

where t is elapsed time since the inertial and

Earth-fixed meridians coincided.

127. Finally, we must express corrections to the

position and velocity of the satellite in terms of

corrections to the orbital elements as

dp>=^da + d^de+. . .

da de

dp' = da + -— de + . . .

,

da de

and then substitute Equations 28.130 and 28.131.

As in the case of the observation equations for

direction and range, da, etc., are then expressed in

terms of da^, dC,,,),, dS„,n, etc. Corrections to the

position and velocity of the tracking station are

expressed in terms of corrections to the Earth-fixed

coordinates p$ by differentiating Equations 28.210

and 28.211 with the time fixed.

128. As in the case of the observation equations

for direction and range, the omission of first-degree

gravitational harmonics will ensure that corrections

to the position of tracking stations are derived in an

inertial or Earth-fixed system whose origin is located

at the center of mass of the Earth. We have seen in

§ 21-57 that C2 r and S 2] -harmonics should also be

omitted, although for test purposes these harmonics

are sometimes included and the results are com-

pared with the theoretical zero. The large number
of Doppler observations, which can be made on

short arcs, makes this form of measurement par-

ticularly suitable, and indeed essential, for the

determination of the tesseral harmonics.

THE VARIATIONAL METHOD

129. We shall now consider a different approach
which yields no fresh results, but affords a deeper

insight into the whole problem. So far, we have

considered only one orbit, and have defined the

linear velocity in this orbit alone. Now we consider

velocity as a scalar in three dimensions, defined in

some way in a domain surrounding the orbit; this

we can do by supposing that the orbit is one of a

family, all of whose members have some charac-

teristic in common. We shall assume a time-inde-

pendent potential V and shall choose the common

28.212 fr
2+V=ai

Because the potential V is defined in space, so is 1

we can introduce the space gradient v r of v, which i

not to be confused with the velocity vector vi

in one of the orbits.

130. We can also transform the orbit space cor

formally with scale factor v to a space in which th

line element is ds so that we have

28.213 ds= vds:

the velocity vector transforms to

28.214 l r =vl r

in accordance with Equation 10.13, provided we us

the same coordinate system in both spaces. Thi

transformation implies that the point correspondin

to the satellite is traveling in the overbarred cor

formal space with velocity /,., that is, with constan

(unit) linear velocity. We might suppose therefor

that the line corresponding to the orbit is a geodesi

of the conformal space, just as the free path of

point moving with uniform velocity in ordinary spac

is a straight line. At present, we introduce thi

geodesic property as a reasonable hypothesis; late

we shall show that it is equivalent to Newton'
second law.

131. It is evident that all members of the family c

orbits will transform in the same way to a family

geodesies, which will cut orthogonally a family

geodesic parallel surfaces generated by assignm

different (constant) values to a scalar M*, as ii

§ 10-19 and § 10-20. Given the family of geodesies

it is always possible to construct one surface whicl

cuts the family orthogonally; the other geodesi'

parallels are then constructed by joining points a

equal distances along the geodesies from th

initial surface.

132. We can now use any of the results in Chapte
10. Corresponding to Equation 10.27, the equations

of the orbits can be written in the vector form

28.215 M* = vl r =l,.

From this last equation, we have

dM*
ds

=M*l' = l

so that M* is the distance between geodesii

parallel surfaces (M* — constant) measured alonj

the geodesies, as we found in § 10-19. We cai
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rewrite Equation 28.213 as

M*= [ vds= I
////.

Because the length of a geodesic is, in general, less

than the length of any other neighboring curve join-

ing two fixed points, we can say that the value of the

integral

vds v
2dt

between two fixed points on an orbit is less if taken

along the orbit than along any neighboring path

between the fixed points. This is the classical princi-

ple of least action, which is now seen to be equiva-

lent to the geodesic property in the conformal

transformation. We can call M*, integrated along a

section of the orbit, the action.

133. The acceleration vector is given by intrinsic

differentiation of Equation 28.215 as

8(vl r ) Ml dxs

vM*ls

ot
rs

dt

Because M* is a scalar, we have M*
s
= M*

r
and also

8(vlr)

8t
= vM*ls =v(vls ),l

S = W r + V
2
lsrl

s

in which the last term is zero by Equation 3.19, so

that we have

28.216
8t

VVr (h2
), Vr

by using Equation 28.212; this last equation is

Newton's second law as expressed in Equation

28.006 (in which, however, v r is the velocity vector

and is not the gradient of the linear velocity). Ac-

cordingly, the geodesic principle, the principle of

least action, and Newton's second law are all three

equivalent.

134. Another way of demonstrating the equiva-

lence of the principle of least action and Newton's
second law is to write

= «, + /_*

where L* is the Lagrangian, defined in Equation

28.029, and cti is the constant energy of Equation
28.212. The principle of least action is accordingly

equivalent to the assertion that

(a i +L*)dt
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is a minimum for the actual orbit, compared with

any neighboring curve between the same points.

The Euler-Lagrange equations in the calculus of

variations, expressing the condition for this integral

to be a minimum, are the same as the Lagrangian

equations of motion in Equation 28.030, which we
have seen are equivalent to the Newtonian equa-

tions of motion.

135. Equation 28.216 can also be written as

8(vl r )

~8T
= Vr

in which vr is the gradient of v and s is the arc

length of the orbit. This last equation is entirely

analogous to Equation 24.07 for the path of a light

ray in a medium of refractive index /a. Instead of

v in the dynamical problem, we write c/v from Equa-
tion 24.01 in the optical problem. We are not at

present concerned to reconcile these two problems
further.

136. From Equation 28.215, we have

28.217 VM*= grsM?M?= v2
grslrLs= v2

because l r is a unit vector. This result should be

compared with the eikonal Equation 24.05 in the

optical analogy. Substituting Equation 28.217 in

Equation 28.212, we have

this equation is the Hamilton-Jacobi Equation 28.197

for a time-independent potential, if we takeM*, with

any of its various meanings, as the transforming

function or Hamilton's characteristic function in

the Hamilton-Jacobi theory. Moreover, in all cases

where we can solve the Hamilton-Jacobi equation

for M*, we can differentiate the result in any co-

ordinate system, can substitute in Equation 28.215,

and can obtain components of the velocity vector

in the same system as a complete first integral of

the equations of motion. This approach offers a more

geometrical alternative to the canonical solution.

137. Unfortunately, there seems to be no obvious

way within the framework of Riemannian three-

dimensional geometry to extend this conception

to time-dependent potentials. For example, in the

geodetic case of a uniformly rotating unsymmetrical

field, we could replace Equation 28.212 by Equation

28.174 as a means of defining scalar velocity; but

this course at once introduces a preferred direction

as well, that is, the tangent to the orbit, which takes

the problem out of point transformations into con-

tact transformations. On the other hand, if we
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replace Equation 28.212 by Equation 28.028, that not lead to the correct equations of motion referred

is, by the first integral of the equations of motion to rotating axes. The fact remains that the whol
referred to rotating axes, we are able to define scalar conception of least action as we have defined it i

velocity in the rotating space without the introduc- Newtonian, and the equations of motion referrei

tion of a preferred direction, but this course does to accelerated (rotating) axes are not Newtonian.



CHAPTER 29

Integration of Gravity Anomalies

The Poisson-Stokes Approach

GENERAL REMARKS

1. In 1849, Stokes produced his classical paper '

on the determination of the potential at points on a

nearly spherical surface by integrating values of

gravity or gravity anomalies over that surface. Much
work has been done by geodesists on the extension

and application of Stokes
1

result to such problems as

determining the form of the geoid and the deflection

of the vertical — with the object of transforming

astronomical to geodetic coordinates — which has

resulted in a considerable literature where the

basic equations are not always proved or critically

examined. As in Chapter 28, we shall accordingly

concentrate on deriving the basic equations, and

shall indicate methods of solution in bare outline

only. Some modern applications are based on even

earlier work by Poisson who determined the poten-

tial in a field external to a sphere from given bound-

ary values of the potential over that sphere. A
considerable simplification of the subject results

from deriving Poisson's and Stokes' integrals by the

same method, and we shall therefore approach the

subject in this way.

SURFACE INTEGRALS OF SPHERICAL
HARMONICS

2. We shall require and shall collect here for easy

reference some well-known formulas for the inte-

grals of products of spherical harmonics over the

surface of a sphere of unit radius or over the whole

1 Stokes (1849), "On the Variation of Gravity at the Surface of

the Earth," Transactions of the Cambridge Philosophical
Society, v. 8, 672-695.

solid angle subtended at the origin. If dCl is an ele-

ment of solid angle, if d<p, dio are, respectively,

elements of (geocentric) latitude and longitude in a

spherical polar coordinate system, and if Y is the

integrand, these two equivalent forms of integra-

tion can be written as

29 .01
J
Ydil=

\ I

' Y cos cp dxpdw.

We shall also use the following abbreviations for

spherical harmonics,

{«"'} = P{
l

"(sin 4>)(Cnm cos mo)-\-Snm sin mio)

29.02

{&'"} =P"'(sin <p) (C„m cos mco+ Snm sin mco)

,

29.03

including the case m— as

29.04 {«„} = Cn0Pn (
sin </)).

In these expressions, the braces are intended to

show that «™ is not necessarily a tensor and that the

summation convention is not applied to the index m
on the right side of Equations 29.02 and 29.03.

Summation will be indicated as, for example,

£ 2 {<<} or X K"}-
n=0 m=0 n, in

3. The following results are then easily derivable

from the standard mathematical texts.

/
{<} {u p

Q}dn = if (m, p) are different

29.05 or if (n, q) are different.

309
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The only nonzero values of the integral are

2tt (n + m)\
{uZ}{ag}(Kl=-

{In + 1) (n — m)l

29.06

and

(/re 5^0)

/

477
{u„} {u„}dO,=

""
CnoCno (m= 0).

(2n + 1)

29.07

Special cases of these formulas are easily obtained

by giving the C's and S's particular values, for

example,

[Pj?(sin 4>) cos mQ)fdO.= I [Pjftsin 0) sin mwpdH

2tt (n + m)!
/

(2/i + l) fa-ro)!

29.08

29.09

(m#0)

[P,
(
(sin0)]2dft:

47T

(2/i + l)

4. Another important integral can be obtained

more directly than in most of the literature. In

figure 37, P is a. fixed point in (geocentric) longitude

Figure 37.

and latitude (w, t/>), P is a current point at (&>, 0),

and the angular distance between the two is given by

cos \\f= sin </> sin t/> + cos 4> cos <$> cos (ft) — to).

The expression {u%} is the value at P of a spherical

harmonic, defined over the whole solid angle, and

we require the value of the integral

/
{uJ , }P„(cos ip)dCl.

Using the expression for {u%} given by Equation

29.02 and the Addition theorem for P„{cos \Ji) in

terms of c/>, t/>, etc., and taking ((/>, co) as constant

during the integration, we find without difficulty

on using Equation 29.08, that we have

/

477 _

{ u%}P»(cos \p)dCl= -—-— P;;! (sin d>)(Cnm cos mw
Zn+ 1

+Snm sin mo>)

29.10
47T

2n+l {<}?

where {«{,"}/> is the value of the spherical harmonic

at P. This result also holds for m = 0.

SERIES EXPANSIONS

5. The summations of some infinite series con

taining Legendre functions are required in this

subject and are easily obtained from the following

welbknown formula, which is often considered to b<

the defining equation of the Legendre functions

29.11
(1-2* cos ijj+ k2)^ „?

k "P " {cos W;

This equation is absolutely and uniformly con

vergent if * < 1 (see, for example, § 21-11). Usually

* is considered a constant, but because the equatior

is true for all values of * < 1, we can consider £ to b<

an independent variable — independent, that is, o

i// — so that the equation can be differentiated wit!

respect to k.

6. If we differentiate Equation 29.11 with respec

to *, multiply the result by 2k, and add to thi

original equation, we have

29.12

which can be expressed in the equivalent form

£ (2n+l)k"- 2Pn (cosip)=j:2
(l-*2

)

(1-2* cos »// + *2
)
3'

— 1—3* cos xp

Integration of this equation with respect to /

between the limits *, 0, using the standard form

contained in most tables of integrals, gives

IJ^-'/VcosW
1 1-6* cos i// + 3*2

k k$> 1 '2

-3 cos <// In (2-2* cos t// + 2cp»/2
)
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in which, for brevity, we have written

29.13 <*> = (1-2A cos ifj + k 2
).

j
After expansion and some manipulation, the value

! of the expression within brackets for A = is found

to be
(5 cos i// — 3 cos i)j In 4)

so that we have finally

x (2n + 1

)

— k — 5A2 cos t//

— A ( 1 — 6A cos t// + 3A 2 )/cp'/2

29.14 -3A2 cos i/; In |(1 -A cos t// + <t>
,/2

).

7. The basic Equation 29.11, considered as a

power series in A, can be differentiated term-by-

term, and the differentiated series has the same
radius of convergence A < 1. The subsequent opera-

tions of deriving Equation 29.12 do not affect

convergence, and Equation 29.12 is accordingly

convergent for A < 1. The series in Equation 29.14

is also convergent for A < 1 because each term is

less than the corresponding term in Equation 29.12.

8. The case A = 1 requires some proof, which we
shall not consider, of at least conditional con-

vergence, except at the point i//=0. Assuming such

a degree of convergence, Equation 29.14 reduces to

£o (n-\)

29.15

1—5 cos \\i— (2 — 3 cos i//) cosec i»//

— 3 cos i// In ( sin \\\j + sin2
ji// )

.

known in gravimetric geodesy as Stokes' function,

with the symbol S(i|/). For a particular value of A

,

which we shall consider in §29-31, the expression

in Equation 29.14 is known as Pizzetti's extension

of Stokes' function. However, the even more
general Equation 29.14 is simply an identity, al-

though this identity does have important applications

in gravimetry.

9. We shall also require two other expansions

which can easily be obtained by integration of

Equation 29.11, using the identity

(2/7 + 1 = 2
1

(n+1) " (n+ 1

These expansions, which are similar to Equations
29.14 and 29.15, are

29.16

* (2n+ 11
S(*. «/») = £ \

'

*»»/>„ (cos
' ( n + 1

)

4> I/2 + A — cos i//

11=

2A

4)1/2

in which 4> is given by Equation 29.13, and

29.17

£0 (»+D

cosec ^— In (1 + cosec h\t).

1 — cos i//

These modified functions are convergent to the

same extent as Equations 29.14 and 29.15.

INTRODUCTION OF THE STANDARD
FIELD

Potential Anomaly

10. If the actual potential is W and if the standard

potential — usually the potential of the standard

field described in Chapter 23 — is £/, the difference

29.18 T=W-U
is known as the potential anomaly. Because the

actual and standard fields are supposed to be ro-

tating about the same axis with the same angular

velocity w. the terms in the geopotentials containing

oj cancel; and it is immaterial whether W', U are

both attraction potentials or both geopotentials.

In either case, the potential anomaly T is harmonic.

By suitable choice of the standard field, T can be

made a small quantity more amenable to approxi-

mate solutions. In the literature, T is usually called

the disturbing potential, which is too easily confused

with the disturbing or perturbing potential affecting

satellite orbits (§28-38).

Curvature and Deflection

11. At a point P in space (fig. 38). the unit normals

to the actual and standard equipotential surfaces,

respectively, are v r
. v r

. The unit vector v r
in figure

38, which is not necessarily in the same plane as

v r
, V, is the unit normal to the coordinate surface

through P. We shall assume in this section that

l>
r refers to the geodetic (o», <f>, h) system in which

the meridian and parallel vectors will be denoted by

jji
r,k r

. We shall also assume that the standard

field is as described in Chapter 23 and that the

equipotential spheroid coincides with the base

spheroid of the coordinate system. From Equation

19.42, we then have in the notation of figure 38

&r =vr_=r ^ ( cos ^ ft^r _|_ (§^)^r _ ^r + £
=

r

29.19

where A r
is the astronomical minus the geodetic

deflection vector and 8a» (8$) is the astronomical
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(actual field)

(standard field)

base coordinate surface

Figure 38.

minus the geodetic longitude (latitude). In this

equation, 8w, 8(f) are supposed to be small, and the

equation holds true to the first order in these quan-

tities. The first-order meridian and parallel compo-
nents of deflection are denoted by £, 17, as usual

in the literature.

12. We shall call the angle k between vT and y rthe

standard curvature correction because it arises from

the curvature of the standard line of force when the

base coordinate surface is a standard equipotential.

There are several ways of finding k from the geom-

etry of the standard field. One method is to convert

the geodetic coordinates of P to geocentric coordi-

nates, compute the latitude of the standard line of

force (i>
r

) at the same time as standard gravity from

Equations 23.40 and 23.41, and subtract from the

geodetic latitude of P to obtain the curvature cor-

rection k. With the sign convention of figure 38,

we then have

29.20 V r= l>
r cos k — /JL

r sin K.

The meridian component of standard gravity y,

given by g„i in Equation 23.37 for a spheroidal field, is

Ur jJL
r=yv rji

r = — y sin k,

which is another way of computing k. If the base

coordinate surface is a standard equipotential, k

is zero on that surface and is also zero along the

axes of symmetry of the standard field.

Gradient of the Potential Anomaly

13. By differentiating the scalar Equation 29.18

we have

29.21 Tr=Wr—Ur= gVr — yv r

where W', U are now considered to be geopotentials

and g, y are, respectively, actual and standarc

gravity. In this equation, we have used Equatior

20.05 and the physical definition of the potentia

(§20-3). Equations 29.19 and 29.20 enable us tc

express the gradient of the potential anomaly ir

terms of the geodetic parallel, meridian, and norma
vectors as

Tr=(gr))X r + (gt; + y sin K)fI r -\-{g— y cos x)v r .

29.22

This equation is exact within the first-order defini

tion of (£, rj). At points not too far removed from tht

Earth's surface, the curvature correction k will be

no larger than the deflection components, and te

the same degree of accuracy we can write

29.23 Tr **(gr))\r+g(g+K)lJLr+(g— y)Vr.

Equations 29.22 and 29.23 hold true for any (co, c6, h

coordinate system, provided that X r , jx r , v T are th<

parallel, meridian, and normal vectors of the systen

and provided that the deflections and curvature

correction refer to the same system. For example

in a spherical polar system, v r is the unit radius

vector and Equation 29.19 gives £, 17 as the meridiar

and parallel components of the astronomical zenitl

in the spherical polar system. The vector X r is the

same in the spherical polar system as in the geo

detic system, but the meridian vector jxr is not the

same; the deflection component 17 is the same, bu

(£ + k) is not the same; and if k is ignored, as usua

in the literature, then the meridian deflection £ is

not the same.

Gravity Disturbance

14. We define the gravity disturbance at the poin

P as

29.24 gD=g-y.

Equation 29.23 then shows that we have

29.25 gD=Trv
r =dT/dh;

that is, the gravity disturbance is the componen
of the gradient of the potential anomaly in the direc

tion of the geodetic normal. In the literature, the
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gravity disturbance is usually denoted by 8g,

which, however, might be confused in this book with

any increment of g.

15. If the potential anomaly is expressible in

spherical harmonics as

T= ^ {r»! }/r" +1 ,

n , m

then the radial component of the gradient is

ar= _ (n + i){r»'|

dr *-> r n+2
n, m

The geodetic normal can be considered as not far

removed from the radius vector in the case of the

Earth, and the gravity disturbance will, in any case,

be a small quantity if the standard field has been

chosen close to the actual field. Subject to these

approximations, we can combine the last equation

with Equation 29.25 and can write

29.26 go^~^ (n + \){T™}lr»+ 2
.

Gravity Anomaly

16. The actual potential at P (fig. 38) is WP .

From formulas given in Chapter 23 or from tables

based on these formulas, we can find a number of

points where the standard potential U is equal to

Wp, and we choose such a point B in the direction

of the geodetic normal v r so that Wp= Ub- The
gravity anomaly is then defined as

29.27 gA = gP — JB ,

and the length BP = l
!

is known as the height

anomaly. The gravity anomaly g.\ is usually denoted

by A^r, which can, however, be confused in this book

with a Laplacian. To a first order, we have

WP = Tp + Up = TP + UB + (dU/dh) B £,,

and because Wp = Un, this equation reduces to

Tp^-{dUldh) Bl

If we ignore the distinction between v r and i>
r

,

which means neglecting the curvature correction,

we have

29.28 7V --?«£,

usually known as Brans' equation. Very often this

equation is approximated further by assuming that

7b = Jp, so that at any point in space we have

29.29 T^-yl

17. Next, we combine Equations 29.24 and 29.25

to give to first-order accuracy

(bt\ /ay
gp — yp = gp — yH I

gA i= gA +

dh/ B

dy\ T

Bh a Jh

We assume further that PB is small and ignore the

distinction between P and B in this last equation,

which becomes then for any point in space

8T (8 In y\

dh \ dh
29.30 gA

Equation 29.30 is usually known in the literature

as the "fundamental equation of physical geodesy."

All the approximations in this formula are covered

by the single assumption that the potential anomaly

T is small. One further approximation is often made.

If we ignore the centrifugal part of the standard

potential, which is then harmonic, and confuse

v r with vr
(fig. 38), we have from Equation 20.17

d In y
i)h

2H

where H is the mean curvature of the standard

equipotential surface. Moreover, the standard field

differs little from a spherically symmetrical field

in which we have 2H = — 2/r, so that we can write

29.31
dT 2T

dr r

We should obtain the same result from Equation

29.30 by assuming that the standard field is static

and spherically symmetrical with a potential of

minus p,jr.

18. If T is expressed in spherical harmonics as

T= X {T','!}lr"
+1

n, in

where {T"'} is given by Equation 29.02, substitution

in Equation 29.31 gives for each harmonic

\{gAW
l}=-

29.32

(n + \){T»>}
,

2{r;;<} (n-l){7^}

This formula was first obtained by Stokes,2 who
made equivalent but different assumptions in

deriving it. Summing over m, n, we have

29.33 gA
(H-i){r»'}

2j r« + 2

2 Stokes, op. cit. supra note 1, 693.
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19. Various interpretations are given to the points

P, B in figure 38, subject to the requirement Wp= Ub-

For example, P is often a point on the geoid andfi is

a point on the standard spheroidal equipotential,

an interpretation which implies that the geoid and
spheroid must have the same potential. In that case,

measurements of gravity made on the topographic

surface are reduced to corresponding values at P
on the geoid by making various assumptions about

crustal densities.3 The value of standard gravity

at B on the spheroid is subtracted to give the

gravity anomaly. In Chapter 30, we shall take P
as a point on the topographic surface of the Earth,

in which case the locus of the point B is a surface

named by Hirvonen the telluroid. To compute the

gravity anomaly in this case, Wp would have to be

measured by spirit leveling.

20. We may wonder why the more complicated

gravity anomaly is used in preference to the simpler,

and more logically geometrical, gravity disturbance

which compares the two fields at the same point

in space. One reason is that, in the earlier applica-

tions, P is a point on the geoid and tables of standard

gravity are required only for points on the equipo-

tential spheroid to compute the gravity anomaly.

Another reason is that the geodetic height h is

initially known only approximately— in fact, one of

the objects of the whole exercise is to find h — so that

we cannot calculate standard gravity accurately

at P. These arguments are less significant today

when standard gravity is readily calculable at any

point in space and when h can be, and usually is,

found by successive approximation. If the gravity

disturbance is used, some iterative procedure,

starting with approximate values of geodetic

heights, would be necessary and would probably

require more computation than the use of the gravity

anomaly; there is no certainty that the operation

would converge, but this has not yet (1968) been

fully investigated. Equation 29.30 for the gravity

anomaly has the form of one of the boundary condi-

tions of classical potential theory, and this fact

has probably attracted theoretical investigators.

However, Equation 29.25 is a much simpler bound-

ary condition and is more accurate.

THE SPHERICAL STANDARD FIELD

21. It will be apparent throughout this chapter

and Chapter 30 that this branch of geodesy could

be simplified by using spherical polar coordinates

3 See also § 29-42. For full details, see Heiskanen and Moritz

(1967), Physical Geodesy, 126-159.

and a spherically symmetrical standard field in

stead of the geodetic system. If all the standan

equipotentials are to be spheres, we can eliminat

the leading term in the attraction potential from th

potential anomaly by suitable choice of constant

in the formulas of § 20-24, but we cannot eliminati

the centrifugal term. However, we can eliminati

both terms by making one equipotential surface
j

sphere which coincides with the base surface of th

spherical polar system (r= R). In that case, th

standard geopotential is symmetrical about th

z-axis and is given by Equation 23.01 as

- U=
2_, T^l 1" 5 «J

2r2 - i oo
2r2P2{sm 0).

n = '

29.34

If the geopotential is to be constant (C/o) for al

values of the spherical polar latitude 4> over th

base sphere (r=/?), we must have

-£/ =GCoo//?+id)2/?2

29.35 Q=GC20/R3 -i&2R2
,

and all other C„ must be zero. For the leading ten
to be the same as the leading term in the actu£

potential, we must have Coo equal to M — the tot£

mass of the Earth. The centrifugal terms will canc«

in the potential anomaly if the origin of spheric*

polar coordinates lies on the axis of rotation. Th
first harmonics (absent in the standard potentia

will not appear in the potential anomaly if th

origin is located at the actual center of gravit)

this condition is compatible with cancellation c

the centrifugal terms. If the standard geopotentis

Uo of the base sphere is to be equal to the actuc

geopotential Wo of the geoid, this requirement woul
settle the value of R in accordance with the firs

equation of Equations 29.35. Standard gravity ani

the latitude of the tangent to the standard line o

force, and thus the curvature correction, are give:

by Equations 23.02 and 23.03 or by Equations 23.0

and 23.05. All the formulas and remarks in the las

four subsections (§29-11 through §29-20) apply i

we use the elements of this spherical system ii

place of the geodetic system, provided we use oni

complete system or the other. The disadvantagi

of this spherical system, compared with the usi

of geodetic coordinates and a spheroidal standan

field, is that the anomalies and meridian deflec

tions are generally larger, although probably stil

within the limits of the usual first-order assumptions

there is not the same necessity in this branch o

geodesy as there is in satellite geodesy (§28-101

to provide a model field which eliminates most o

the second harmonics. We could, of course, choose
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a sphere as base coordinate surface and a spheroid

as standard equipotential, but, in that case, the

angle k in figure 38 will be large in mid-latitudes, and

Equations 29.25 and 29.30 for the gravity disturb-

ance and the gravity anomaly might no longer be

sufficiently accurate; nothing would be gained.

POISSON'S INTEGRAL

22. We shall now suppose that values of a har-

monic function H are given at all points Q (fig. 39)

Figure 39.

on the surface of a sphere of radius R. We suppose

that H is defined at all points outside as well as on

the sphere, and we must find the value of the har-

monic function at a point P outside the sphere at a

distance r from the center of the sphere. The
angle between OQ and OP is shown as i// in figure

39, and the distance PQ is shown as /.

23. First, we put k = R/r in Equation 29.12 to give

29.36
(r

2 -R 2
)

/
3

R"
£ (2n+l)^

I P„(cos«J0

Next, we suppose that H is expressible as a con-

vergent series of spherical harmonics with O as

origin so that we have

29.37 ff«=2
J]

{H"}IR*+K

Multiplying these last two equations, integrating

over the whole solid angle, and using Equation 29.10

on the right-hand side give

29.38
(n-R 2

) HQdn=2 2
4ttK" {//;;'},

R ,H

in which we have interchanged the order of summa-
tion and integration on the right, and {//"'}.s is the

value of the spherical harmonic {//"'} at S on the

radius vector to P (fig. 39). Because P is fixed during

the integration, r and the spherical radius R are both

constant during the integration. But {//"'} contains

only geocentric latitude and longitude, which are

the same at P and S, so that we have

Moreover, the value of H at P is

71 = 1)1 = 1)

so that Equation 29.38 reduces finally to

29.39 H„ =lj^^H<ldn.

known as Poisson's integral.

24. This important result enables us, for example,

to determine the attraction potential Hp at any point

in space external to a sphere from the boundary
values Hq of the attraction potential on the sphere.

We have assumed that H is expressible in a con-

vergent series of spherical harmonics in the space

external to the sphere, which, as we have seen in

§21-11, implies that the sphere contains all the

mass. Poisson's integral may be obtained without

using spherical harmonics,4 but the potential must

be assumed to be regular outside the sphere, which

again is equivalent to the assumption that there

are no masses outside the sphere.

25. Equation 29.39 applies to any harmonic func-

tion H which is regular outside the sphere, and many
useful formulas may be derived by giving H spe-

cial values. For example, if H is the reciprocal of

the radius vector, we have, in the notation of fig-

ure 39,

R f (r-R 2
) dil
' R ;

1

47T P

4 See, for example, Bateman (Dover ed. of 1944), Partial Dif-

ferential Equations of Mathematical Physics, original ed. of

1932, 367-368. Bateman obtains Poisson's integral by using the

Green's function for a sphere.
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and because r, R are both constant during the in-

tegration, we have

29.40
4-7T 4tt _ f

dil

r(PT) 2 ~] I
3r(^-R 2

)

where PT is the length of the tangent to the sphere

from the point P.

26. If the point P lies inside the sphere, then for

Equation 29.12 to be convergent, we must make
k = r/R; and in place of Equation 29.36, we have

29.36A
R-

jT-=2 (2»+D^r/Vcosi«.

We now deal with harmonic functions of the form
r n{H™ }, defined on the sphere as

29.37A //Q=^ R n{H™}

instead of Equation 29.37; and proceeding as in

§29-23, we find that Poisson's integral for this

case is

29.39A *-£/
R f (R 2 -r*)

/
:i

HQdVL

instead of Equation 29.39. In physical geodesy,

we are not very interested in this case, which can,

however, lead to some useful geometrical results.

For example, each Cartesian coordinate — that is,

each Cartesian component of the position vector

p
r — is harmonic and regular inside the sphere, and
we have

29.41 Pp
R f (R 2 - r2 )

4ttJ P p
r
QdQ,;

contracting this equation with (p,)p, which is con-

stant during the integration, we have

R2
f (R 2 — r2 )

29.42 r=£-
,,

cos <// dfl.
4tt J r

27. The Cartesian derivatives of a harmonic

potential V are also harmonic so that we have in

Cartesian coordinates

29.43 (Vr )P =
R(r2 -R 2

)

4-rr
joWJ

da
3

If v r is the direction of the potential gradient and

g is the gravitational force, this last equation is

. R(r2 -R 2
)

r da
igvr)P =—^— J frrh-p-;

and because (vr)p is constant during the integra-

tion, we have

29.44 gP =
R(r2 -R 2

)

477

f dCt

J
gn(vr )Q{v

r
)P—

If V is the potential anomaly, it would be assume
to a usual degree of accuracy that vr is radial, an

therefore (vr )Q(v
r

)P = cos t//. However, the formu]

is exact only if vr is the direction and g is the maj
nitude of the gradient of V.

28. If we assume that the harmonic potential

is expressible in spherical harmonics as

29.45 r=2 J {V'»}lr«^
n = m =

on and outside the sphere, which is equivalent 1

assuming that there are no masses outside tl

sphere, then the radial component of the gradiei

of V, denoted by g, is given by

g
dr 2j 2j r r»+i"'

,1=0 m=o '
'

or

29.46 rg= -JT J (n + l){r»'}/r» +1
.

«=o »,=0

But each term of the series on the right is a harmon
function, and therefore rg is a harmonic functioi

Substitution in Poisson's integral, Equation 29.3'

gives

29.47
R 2

(r
2-R 2

)

4rrr

dn.

which is exact only for the radial component of tl

gradient of V . If V— l/r, Equation 29.47 gives

1 = (r
2 -R 2

) [dO,

r
2

4ttt J /
:i

as we found in Equation 29.40. But if V= 1/

Equation 29.44 gives

1 _(r 2 -/? 2
) ("cos (//

47rft /
:!

dfL.

These last two equations must accordingly be equi

alent, and in fact we can prove from Equations 29.2

and 29.09 that we have

R J P
ai1

J P '

which reconciles the two equations.

29. If the potential anomaly is expressible i

spherical harmonics on and outside the spher>

which will be the case if both the actual and standai

potentials can be so expressed, it follows from Equ
tion 29.33 or 29.26 that rg.\ or rgi> is harmonic so th;

Equation 29.47 holds true for the gravity anoma
or for the gravity disturbance as

29.48 (gA)p=
R 2

(r
2 -R 2

4-rrr

r , . da
I (gA)Q—

tP
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This last equation is usually known as the upward
continuation integral because it enables us to cal-

culate the gravity anomaly (or gravity disturbance)

at any point in space by numerical integration, if

we have values of the gravity anomaly (or gravity

disturbance) at a large number of points on a

sphere.

STOKES' INTEGRAL

30. If we multiply Equation 29.15 for the Stokes'

function S(i//) by a bounded function, such as the

gravity anomaly g.\ in Equation 29.33, we have

so/,) g,=-jj;
{

?"*i)
p» (cos w

11= 2 ^ '

x ^ A (P-1HT?}
x
2j L rp+2
p=0 m=0

assuming that g.\ is expressible as a convergent

j

series of spherical harmonics. Integrating this

equation over the whole solid angle or the sphere

!in figure 39, noting that the terms of the product on

(the right are zero unless p— n (Equation 29.05),

and using Equation 29.10, we have

n J Tm\

SWr)(ft)Q<m«-4ir2 X ^ff
n = 2 )« =

where {T%'}s is the value of the harmonic {T',"}

at S on the radius vector OP (fig. 39). But we have

29.49
„=2 m=Q

omitting the first- and zero-degree harmonics, so

that we then have

29.50 Ts=—^j SW(gA) Qdn,

known as Stokes' integral, which enables us to find

the potential anomaly by numerical integration of

gravity anomalies over the sphere, using Stokes'

function S(<//) given by Equation 29.15. At the point

S(i//=0), Stokes' function becomes infinite, and

special methods of integration are necessary in the

immediate vicinity of the point S. 5

31. A similar operation on Equation 29.14 gives

/

x " 4,7rk" + 1 iT'"\^

11=2 m=0

5 Detailed methods of integration are given in Heiskanen and
Moritz, op. cit. supra note 3, 117-123.

If we substitute k = R/r (fig. 39) and note that we
have

n=2 m=0

omitting the first- and zero-degree harmonics, we
then have

29.51 TP £/*«'. «/>) («i )<,</",

known as Pizzetti's extension of Stokes' integral,

which enables us to find the potential anomaly at

any point in space by numerical integration of

gravity anomalies over the sphere, using Equation

29.14 for the special value k = R/r.

32. The Stokes' functions S(<//), S(k\ ijj) do not

contain terms for n = 0, 1, sometimes known as the

"forbidden" harmonics. The term for n = \ would

be infinite and cannot be included; the term for

n — could be included but is conventionally

omitted. Equation 29.49, used to derive the Stokes'

integral, shows then that the potential anomaly

obtained from the Stokes' integral cannot contain

zero- or first-degree harmonics, which means that

these harmonics must be the same, or zero, in the

actual and standard potentials. For the zero-degree

harmonics to be the same, we must assume the same
total mass (§21-41); for the first-degree harmonics

to be the same, we must assume that the two mass
distributions have the same center of mass

(§21-42) — as we have already assumed, but usually

with less effect, in supposing that the centrifugal

terms in the geopotential are the same. There are

no present means of accurately ensuring either of

these conditions or of satisfying the condition

Wp=Uq, required in the definition of the gravity

anomaly by Equation 29.27. Considerable ingenuity

has accordingly been applied to correcting the

results after Stokes' integration 6 has been carried

out over the entire globe. Equation 29.33 shows

further that the gravity anomalies used in Stokes'

integration should not contain either of the "for-

bidden" harmonics n — 0, 1, although analysis of

the observed gravity data does not necessarily

indicate absence of these harmonics. 7

33. We can similarly obtain integral formulas for

the gravity disturbance gn instead of the gravity

anomaly g.\ if we use Equations 29.17, 29.16, and

29.26. It will be found that the Stokes' integral,

6 Ibid.. 98-111.
7 See Lambert (1957), "Inadmissible Spherical Harmonies in

the Expansion of Gravity Anomalies," Festschrift zum 75.

Geburtstag von Prof. Dr. C. F. Baeschlin, 149-154.
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Equation 29.50, holds true if we use the simpler

function S (i//), given by Equation 29.17, instead of

the Stokes' function S(i//). Pizzetti's extension,

Equation 29.51, holds true if we use the modified

function S{R/r. ijj), obtained from Equation 29.16,

for k= R/r. Use of the gravity disturbance instead

of the gravity anomaly avoids trouble over the "for-

bidden" harmonics because the modified functions

S((//), S(R/r, \p) do not require suppression of the

terms n= 0, 1 nor do we have to satisfy the con-

dition Wp=Uq, required in the definition of the

gravity anomaly by Equation 29.27.

34. Brans' Equation 29.28 enables us to find the

separation between an actual equipotential surface

and a standard equipotential surface if both sur-

faces have the same potential number. This sep-

aration (usually denoted by N) is

29.52 N=~j S(R/r, <//)(£, Mil

in which G is any reasonable value of standard

gravity near the point P. If P is on the geoid or

equipotential spheroid, we make R — r, and the

corresponding formula for the separation of geoid

and spheroid is then

29.53 N=£-js(ijj)(gA ) (ldn,

always assuming that the potential of the geoid is

equal to the potential of the spheroid. The same
formulas apply to the gravity disturbance, provided

we use the modified functions S(R/r, i//), and S(t//)

given by Equations 29.16 and 29.17.

DEFLECTION OF THE VERTICAL

35. If we refer to figure 39 and differentiate the

equation

l
2 = i* + R 2 -2rR cos <//

covariantly for a displacement of P with Q fixed,

we have after some simplification

29.54 lr= rr cos P+ \l/r (r sin /3)

in which /3 is the angle OPQ — that is, the zenith

distance of the direction QP in the spherical polar

(w, 0, r) system. If we take ^ as a temporary
Cartesian origin and QP as the JC-axis, the com-

ponents of the vector /,• are

/r = (dl/dx, 0, 0) = (dl/dl, 0, 0) = (1, 0, 0)

so that /, is a unit vector in this temporary Car-

tesian system and therefore in any system. Also,

r r is a unit vector, being the unit normal v r

the spherical polar system. Equation 29.54 the

shows that (np r ) is a unit vector perpendicular

rr . Moreover, if a is the spherical polar azimul

at P of the direction QP, we have as usual

lr = A. r sin a sin /3 + fxr cos a sin /B+ rr cos /3

29.55

in which k r , fx r are the parallel and meridian vecto:

in the spherical polar system. Combining Equatioi

29.54 and 29.55, we have

29.56 nfj r — X,- sin a + fxr cos a.

36. Next, we differentiate Equation 29.51 c

variantly for a displacement of P with Q fixed

give

BS
(Tr)i 1

477 J \dr
rr +^ri/>r) (gA ) Qdn.

Contracting this equation in turn with the spheric

polar parallel and meridian vectors at P (which ai

fixed during the surface integration) and usir

Equation 29.23 for a spherical polar system, v

have

gv
4tttJ

as
sin a(gA )Qcin

29.57 S^+x)=-
r̂J^ cosoc{gA ) Qdn

where we have also used Equation 29.56. The:

equations, with k assumed to be zero, were ori

inally given by Vening-Meinesz; the function dS/di

obtained by straight differentiation of the Stoke

function, Equation 29.15, is usually known as tl

Vening-Meinesz function. However, in the for

given by Equations 29.57, the equations hold tn

for Pizzetti's extension of the Stokes' function ai

also hold true for the integration of gravity di

turbances (instead of gravity anomalies), provid(

the modified functions S, given by Equation 29.

or 29.17, are used. The azimuth a in Equatioi

29.57 refers to the azimuth at P of the directk

QP. If we use the azimuth of the direction Pi

we must change both the minus signs in Equatioi

29.57 to plus.

37. However, we must realize that Equations 29.i

give the first-order meridian and parallel cor

ponents of deflection (£, t?) at the point P in relatk

to a geocentric spherical polar system; the secor

equation does not, as discussed in §29-13, give tl

meridian deflection in relation to the geodetic sy

tern, and the difference may be quite considerabl
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Ti> at P. Because r and / (fig. 39) are functions which

can be considered as defined at Q in the same way

as at P and because Q is fixed for a displacement

of P, we have

<r->'-£
2r S^-S^

which, on substitution of Equation 29.54, becomes

(Tr)p=
R^ ( rj2r 3(r2 -ff 2

) cos ft

3(r2 -/?-) sin ft

I
4

rip,

Contraction with the spherical polar meridian,

parallel, and normal (/>) vectors at P (which are

constant during the surface integration) and use

of Equations 29.23 and 29.56 give

gt

g-T)

3R(r- — R-) f sin (3 cos a

4tt

3R(r2-R 2
) [ sin (3 sin a

(gi>)r

29.58

R_

47T

4rr

2r 3(r--/? 2 )cosj8

/ /'

TQ dil

TQ dfl

TQ dfL.

It is by no means easy to discern this fact in the

maze of approximations usually made in deriving

the Vening-Meinesz integrals. The difficulty arises

not so much from first-order approximations as

from the nature and multiplicity of first-order

approximations.

38. The assumption that k is zero in the Vening-

Meinesz form of Equations 29.57 is in order if we
are dealing solely with points on the base coordinate

sphere, which is taken as a standard equipotential.

Otherwise k should be computed for the standard

field described in §29-21. The usual assumption

that k is zero everywhere implies that all the stand-

ard equipotential surfaces are spheres, and this

interpretation is possible only if the standard field

is not rotating. A nonrotating standard field is

incompatible with the definition of the potential

anomaly and with the harmonic properties of the

potential anomaly on which the entire theory is

based, although a nonrotating standard field is

assumed in deriving the approximate formula for

the gravity anomaly in Equation 29.31.

39. We do not obtain deflections in the geodetic

system from the Vening-Meinesz integrals by using

gravity anomalies computed for a spheroidal

standard field, although the effect may well be dis-

guised by doing so. It is true that in the derivation

of the Stokes and Pizzetti Equations 29.50 and 29.51

from which the Vening-Meinesz equations are ob-

tained by differentiation, the gravity anomalies

are merely assumed to be any function related to a

harmonic function by Equation 29.32. Neverthe-

less, as soon as we identify this harmonic function

with the potential anomaly, we introduce a stand-

ard field; for example, the use of the approximate

formula for the gravity anomaly in terms of the po-

tential anomaly, Equation 29.31, introduces a

spherical nonrotating standard field, which we must

use if we are to be consistent. It is better to use the

spherically symmetrical rotating standard field

described in §29-21, especially in the more accu-

rate formulas containing the gravity disturbance,

and so retain the harmonic properties of the poten-

tial anomaly. Such a standard field lies within

legitimate first-order approximation in this branch

of geodesy (unlike the potential disturbance of

satellite geodesy, discussed in §28-101), and the

resulting geocentric deflections can very easily

be converted to geodetic deflections.

GRAVITY AND DEFLECTION FROM
POISSONS INTEGRAL

40. We are now able to differentiate Poisson's

integral, Equation 29.39, for the potential anomaly Heiskanen and Moritz, op. cit. supra note 3, 37-39.

Tudil.

These equations give the geocentric deflections

and gravity disturbance, relative to a spherically

symmetrical standard field, at any point in space

from given values of the potential anomaly over

the reference sphere. The only assumption made
is that the geocentric deflections are of the first

order. The equations do not determine gravity and
deflection at points on the reference sphere (r— R)
any more than the original Poisson equation

determines potential, although the third equation

does apply on the sphere, apart from the singularity

in the neighborhood of P(l = 0). Heiskanen and
Moritz * remove this singularity by an ingenious

device which we shall consider next.

41. The third equation of Equations 29.58 applies

to any potential function T and the radial component
of its gradient. If we apply this equation in space

to the potential function —Rjr, which becomes
— 1 on the sphere, we have

3

dr

R R
r2

R
477- [I

2r 3(r--R-) cos p
! dft:
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multiplying this equation by Tp, which remains

constant during the surface integration, and

adding to the third equation of Equations 29.58,

we have

m„
2r 3(r 2 -/?-) cos/3

l
:i r

29.59 x {Tu -T,.)dil.

Next, we make the substitution r= R + h, where h

is small, and find that the contribution of the

second term in the integrand over a small area

in the neighborhood off is approximately

6Rh cos/3 / f)r\ (ttI- \ ^ 6ttcos 2
j8 / ST

Z
4 \dl)\R2 )^ R \dl

which becomes zero in the limit when P lies on the

sphere. The contribution of the second term is

zero everywhere else for r— R, so that when P lies

on the sphere we have

8T\
.
Tp=& ( (TQ-TP )

' R 2t7
29.60

dr ! da.

The contribution of a small area in the neighborhood

ofP to the area integral is

<f)(^)(£)-
which remains finite as Z

-*0, so that there is no

singularity at P in Equation 29.60.

EXTENSION TO A SPHEROIDAL
BASE SURFACE

42. The commonest application of the formulas

given in this chapter is to find the separation be-

tween the geoid and the standard spheroidal equi-

potential surface having the same potential number
as the geoid. Usually the spheroid is also the

geodetic coordinate base surface. In that case,

the point P (in fig. 39 and §29-14) is on the geoid,

Q is on the spheroid, and h is the required separation

which enables us to locate the geoid with reference

to the spheroid. To compute the gravity anomaly

from Equation 29.27, we require gravity on the

geoid where it cannot usually be measured. Re-

duction of the value of gravity measured on the

topographic surface to the value of gravity on the

geoid requires, in the first place, a knowledge of

where the geoid is in relation to the topographic

surface — that is, the height of the topographic sur-

face above the geoid. Moreover, all the formulas

in this chapter require the potential to be regular

(or, as an equivalent condition, require the potentia

to be expressible in spherical harmonics) on an
outside the surface of integration — in this case

the geoid— which implies that this surface mug
contain all the attracting matter. Numerous ai

tempts have been made to solve this problem b

calculating the effect on gravity of removing a

masses external to the geoid, using various Ivj

potheses relating to the mass and density distribi

tion. The operation usually shifts the position c

the geoid itself to what is known as the co-geoid o

regularized geoid for a particular hypothesis. Nex
the separation h is calculated by Stokes' integratio

of reduced gravity anomalies over the co-geoid b

Equation 29.53. Finally, the effect on h of replacin

the external masses is calculated. Fortunateb

much of the error in the hypotheses is removed b

using the same hypotheses for the replacement c

the external masses. A good account of the variou

processes has been given by Heiskanen an

Moritz. 9

43. A further difficulty arises from the fact th;

all the formulas in this chapter, including Stoke

integral, require integration not over the irregul;

geoid or co-geoid but over a sphere. Stokes 10 hin

self shows that his formula is valid to a high degre

of accuracy for nearly spherical surfaces. In tl

hope of improving Stokes' results, Zagrebin 11 mod
fied Stokes' integral for a spheroidal, in place of

spherical, reference surface. Some errors i

Zagrebin's results were later corrected by Bjerhar

mar,12 using a different method. The results aj

complicated, and the conclusion is that there

little or no difference in the potential (or separ

tion), as Stokes himself showed, but a considerab

difference in the Vening-Meinesz integrals for d>

flection. The difference may, however, arise i

part from misinterpretation of the Vening-Meines

integrals, as discussed in §29-37. We shall no

consider a simpler method of approaching th

problem.

9 See Heiskanen and Moritz, loc. cit. supra note 3.

10 Stokes, loc. cit. supra note 1.

11 Zagrebin (1956), "Die Theorie des Regularisierten Geoid;

Geoddtischen Instituts, Potsdam, Veroffentlichungen no.

1-129. This is a German translation of an article that origina

appeared in a Soviet journal. See (1952), "Teoriia Regulia

zirovannogo Geoida," Trudy Instituta Teoreticheskot Astronom

v. 1,87-222.
12 Bjerhammar (1962), "On an Explicit Solution of the Gra

metric Boundary Value Problem for an Ellipsoidal Surface

Reference," The Royal Institute of Technology, Geodesy Di

sion, Stockholm, 1-95, and (1966), "On the Determination

the Shape of the Geoid and the Shape of the Earth From
Ellipsoidal Surface of Reference," Bulletin Geodesique, m
series, no. 81, 235-265.
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44. The simplicity of using a spherical base co-

ordinate surface, as in Poisson's and Stokes'

integrals, arises not only from the fact that the radius

vector— the third coordinate — is constant during

the surface integration, but also from the fact that

functions of the radius vector in the potential and

gravity anomalies depend only on the degree n and

not on the order m of the spherical harmonics used

to express the potential anomaly. We can obtain

some, but not all, of this advantage by integrating

over a base spheroid in the spheroidal coordinates

of Chapter 22. The potential anomaly can be ex-

pressed in spheroidal coordinates (a>, u, a) by

Equation 22.50 as

-77C=2 2 <?™(icota)P™(sinu)
« = /» = ()

29.61 X {Anm cos mo) + B„m sin mw};

the gravity disturbance gn on the base spheroid is

then obtained from Equations 29.25, 22.28, and
22.29 as

dT tanadT
gD =Ts

= -

v da

G tana » " _

2 2 'l cosec2 a)Q™ (i cot a)
h = m =

29.62 X P'" (sin u ){A„„, cos ma) + B„m sin mio]

.

The {m, n) harmonics are accordingly related by
the equation

O m
'(i rot rv)

{ (gov)™} = i tan a cosec 2 a %" . { T™}
(J "'{i cola)

ra
i tana{(n + !)(/ cot a)Q™(i cot a)}

Q%(i cot a)

+ Hana{-(n-m + l jO*
fi

cot a )}
f

£>™ (i cot a)

=-(n+ l){r)»}

i tan a(n — m + 1 )Q"'
+ . (i cot ct

)

0%(i cot a)

by summation over m, n, we have

0™ (i cot a

TO:

^, A i tan q(/t - m + 1 )(?™+ ,
(t cot a

)

,

n = o w =

29.63

which is an extension of Equation 29.26, except
that the harmonics are now in terms of the reduced

latitude u and not the geocentric latitude. We
multiply this last equation by the modified Stokes'

function, Equation 29.17,

=,, * 2rc+l

n= n

= cosec ^ i//— In (1 +cosec|i/>)

where cos ip is now calculated from the reduced
latitudes u, u as

cos )//=sin a sin « + cos w cos u cos(o> — cu),

29.64

and integrate over the whole solid angle

dfl = cos « dudoj.

We then have

4tt7V

j tan a(n — m+ \)Q'
l

"
+l {i cot a)

Q™(i col a)

XS(x},){T>»}dn

gDv)S(ip)dn=-

-fltJ h = m = (

29.65

which is an extension of Stokes' integral for the

gravity disturbance. From Equation 22.49, we have

Q™+1 (i cot a)= (-Y"(n + m + l)

Q'Jti cot a) (2n + 3)icota
1 +

1

i cot a

and the integral on the right side of Equation

29.65 becomes

2 2
n = o m =

29.66

(-rtan 2 a(n + m+l)(n-m + l)

(2rc + 3)

xSty){Tf}dn,

ignoring the fourth and higher powers of tan a,

which is roughly the eccentricity of the base

spheroid. This last integral can accordingly be

considered as a correction to the Stokes' integral

to allow for the gravity disturbance being given

over a spheroid instead of over a sphere. The cor-

rection is of the second order in the eccentricity.

The other difference from the Stokes' integral in

Equation 29.65 — the use of the principal radius

v instead of a mean spherical radius R — is also a

second-order effect, so that the spherical Stokes'

integral holds true for integration of gravity dis-

turbances over a spheroid to a first order in the

eccentricity, provided we use the reduced latitude

and, in effect, integrate over the auxiliary sphere.

45. To calculate the correction in Equation 29.66,

we need to expand a first approximation to the

306-962 0-69— 22
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potential anomaly in spheroidal harmonies, con-

verted if necessary from spherical harmonics by
Equation 22.59. However, in practice, the zero-

and first-degree harmonics are usually assumed to

be absent in the potential anomaly because the

total mass and center of mass are assumed to be

the same in the actual and standard fields. We
need usually consider only the comparatively

large second-degree zonal harmonic for which
the correcting term in Equation 29.66 is

-(9/7) tan 2 a
j
{T2 } (5/3)P,(cos <//)<#!

= -(15/7) tan2 a(47r/5){r2 }p

= - (1277/7) tan2 a{T2 },

using Equation 29.10. The second-degree zonal

harmonic, in the actual potential and therefore

in the potential anomaly, is already (1968) well

known.

46. A formula in terms of the gravity anomaly

g,\ instead of the gravity disturbance go may be

obtained from Equation 29.30, which in our present

notation gives

/ d In y

On the base equipotential spheroid, the Bruns'

Equation 20.23 in our present notation gives

d In y
ds

V 2tt>V

p y

= — 2 — sin2 a cos 2 u — 2a) 2
p/y

to a second order in the eccentricity, using Equa-

tions 22.10 and 22.12. It is usual, as in the approxi-

mate formula for the gravity anomaly (Equation

29.31), to ignore the centrifugal term when mul-

tiplied by the small potential anomaly. However,

the magnitude of this term in the last equation is

about 1/150, which is about the square of the

eccentricity, so that we have no right to ignore

this term in working to a second order. Equation

29.63 can now be replaced by

^=-2 2 ("-Dim
n = o »i = o

y: II

+ V V sin 2 a cos 2 u{T"'}
ii = in =

+ jr j (2s»wy){r»}

_ Y -A i tan a(n-m + j )(?;,"+ i(i cot a) , ,

,1 = i) m = o
Q%(i cot a)

29.67

When multiplied by the Stokes' function

£(</>) = if^/Mcos.//),
n —

2

where cos i// is given by Equation 29.64, and ir

tegrated over the whole solid angle, this las

equation gives an extension of Stokes' integrz

similar to Equation 29.65 with three correctin

terms on the right which can be evaluated numer
cally for the main second-degree zonal harmoni
as in § 29—43. In evaluating the centrifugal correct

ing term, it is reasonable to assume that (2a) 2
vl~)

is constant at its mean value, which is about 1/145

47. Equations 29.65 and the corresponding equ;

tion for the gravity anomaly are in the form (

integral equations whose solution gives the potenti;

anomaly at a particular point P on the spheroic

this form best illustrates the analogy with th

Stokes' integrals for the sphere. However, thes

integral equations are exactly equivalent to th

system of linear equations in Equations 29.63 an

29.67, expressing the gravity disturbance or anomal

as an infinite series of spheroidal harmonics c

the potential anomaly. We cannot, of course, solv

an infinite number of these equations for the coeff

cients A,,,,,, B,„„ of Equation 29.61 any more tha

we can evaluate the integrals in the integral equ;

tions for all points of the spheroid; the most w
can do is to integrate numerically the gravity di;

turbance or anomaly at a number of discrete point;

which represent average conditions in the localit

and are well spaced over the spheroid. In much th

same way, we can suppose that the potenti;

anomaly is sufficiently well represented by a finit

number of the coefficients Anm, B„m in Equatio

29.61, and we can solve Equation 29.63 or 29.6

for these coefficients. The number of coefficient

for which we can solve will naturally be bmite

by computer capacity; we must, of course, hav

at least as many observations for g/> or g.\ as ur

known coefficients, preferably many more so the

we may solve the observation equations derive

from Equation 29.63 or 29.67 by least square;

The advantage of this method is that we are nc

limited to points on the spheroid; we can substitut

all three coordinates of the observation points i

the coefficients of the unknown A nm , B„m in Equ;

tions 29.63 and 29.67, and have no need of Pizzet

extensions to the integral Equation 29.65 or th

corresponding equation for the gravity anomal;

The same method can be used in geocentric c<

ordinates to solve Equation 29.26 or 29.33 for th

Cnm, Snm of the potential anomaly expressed i

spherical harmonics. In § 29-49, we shall conside

yet another application of this method.



Integration of Gravity Anomalies — The Poisson-Stokes Approach 323

BJERHAMMARS METHOD

48. Realizing the essential simplicity of the

classical spherical approach, Bjerhammar,13 in

one of the most modern methods, uses a spherical

Figure 40.

reference surface completely embedded in the

Earth (fig. 40). He then uses the upward continua-

tion integral in Equation 29.48, that is,

29.68 (gA)l
R*(r*-R*) C(gA ) Q

\-rrr /
:i

dn,

first, to determine values of the gravity anomaly

(^)q on the reference surface from measured
values (gA)p on the topographic surface, and
second, to determine values in the external field

generally from values on the reference surface.

The first operation involves inversion or solution

of the integral Equation 29.68 and results in quan-

tities which can no longer be physically identified

with gravity anomalies because of the intervening

matter, but do, nevertheless, satisfy the integral

equation. The method is applicable without modi-

fication to gravity disturbances or to any function

derivable from Poisson's integral in the same way
as Equation 29.48. Once the gravity anomaly, or

preferably the gravity disturbance, has been found
at points in the external field, it is a simple matter

to compute actual gravity at such points; the result

could be compared with, and be used to supplement,

13 Bjerhammar (1962), "Gravity Reduction to a Spherical
Surface," Technical Report, The Royal Institute of Technology,
Geodesy Division, Stockholm, 1-2, and (1964), "A New Theory
of Geodetic Gravity," Kungliga Tekniska Hogskolans Handlingar,
Stockholm, no. 243, 3-76. Details are provided in several other
publications of The Royal Institute of Technology.

gravity determination from satellites. The external

potential could be found by harmonic analysis of

gravity, followed by integration or by Stokes'

integration.

49. The integral Equation 29.68 can be solved

approximately by the standard method of trans-

formation to a finite number of simultaneous linear

equations. 14 For example, we can express (gA)Q
approximately over the reference sphere by a

sufficient number of spherical harmonics as

29.69

even if the

continuities,

form

n , in

function (gA)o. contains simple dis-

Expressing Equation 29.36 in the

re=0

and substituting in the integral Equation 29.68.

we have

Ml *Z i2n

^
1}

2{»v}Pn(coS +)<m

29.70 =2 ££{«#}*.
II, III

using Equation 29.10. For each point P where

gravity is measured or averaged on the topographic

surface, we have one linear Equation 29.70 con-

necting a finite number of the spherical harmonic

coefficients C„m, Snm in {«"'} by Equation 29.02.

Given enough observations, we can solve these

equations for the Cnm , Snm by least squares, thereby

fitting the function (gA)q in Equation 29.69 in a

reasonable way to the observed values on the

topographic surface. There is no need to exclude

the "forbidden" harmonics n = 0, 1 from the ex-

pression for (gA)<i- Convergence difficulties, caused

by matter external to the reference sphere and

discussed in § 12-73, do not arise because we are

not dealing with an infinite series of spherical

harmonics, but are concerned solely to find a finite

series which fits a finite number of observations.

50. Members of the Stockholm school '' have pro-

posed various other polynomial representations of

14 For a clear introduction to the method, see Jeffreys and
Jeffreys (reprint of 1962), Methods of Mathematical Physics,

3d ed. of 1956, 167-168.

15 See, for example, among other publications of The Royal
Institute of Technology, Reit (1967), "On the Numerical Solution

of the Gravimetrical Integral Equation of Bjerhammar." The

Royal Institute of Technology, Geodesy Division, Stockholm.
1-36.



324 Mathematical Geodesy

the function (gVi)q as alternatives to expression in

spherical harmonics by Equation 29.69. One pro-

posal is to use a finite series in powers of the topo-

graphic height h above the point Q, that is,

(&*)«=2 c " 1'"-

n

Substitution of this series in the integral Equation

29.68 gives

29.71 (gA )p= ^c„
h" R 2

(r
2 -R 2

)

dfi,

the integrals in which equation can be evaluated

numerically. The resulting system of linear equa-

tions is then solved for the coefficients c n . Anomalies

{g\)i> on the topographic surface or in the external

field appear also as power series in h, an interpreta-

tion which implies that gravity anomalies are con-

stant over level plains. But this result is contrary

to experience, as members of the Stockholm school

themselves realize; variations in the anomalies over

the Gangetic Plain in India have, for example,

yielded valuable geophysical results, and the same
could be said for many large oilfields. However,

representation of (gA)a by a power series serves

well to illustrate the principles of the method, which

can be applied to more sophisticated polynomials.

51. An alternative method of solving the integral

Equation 29.68 has been given by Moritz. 16 From
Equation 29.40, we have

R 2

= R 2
{r

2 -R 2
)

f
dQ.

r
2 ~ 477T J l

:i
'

If we multiply this equation by (gA)s — the value of

the gravity anomaly at S in figure 39— which is a

constant during the surface integration, and sub-

tract from Equation 29.68, we have

R 2— {gA )s = (gA)p-
R 2

(r
2 -R 2

) ( (gA )Q-(gA)i

4tt/- P
da.

The factor (R 2
/r

2
) on the left is near unity and is

ignored, and the last equation is then solved for

(g.\)s by iteration. For the first approximation, the

anomalies (g.-Oa, (g\)s on the sphere in the surface

integral are taken to be their observed values on the

topographic surface. Second approximations to the

values on the sphere — for example, {gA)s on the

left — are then obtained from the integral equation

and are used in the surface integral to obtain a

third approximation. Similar iterative methods

have been proposed in various publications of the

16 Heiskanen and Moritz, op. cit. supra note 3, 318.

Stockholm school, including Bjerhammar's first

paper on the subject, published in 1962.

52. The method is based on Poisson's integral

which requires an absence of matter outside the

reference sphere if the quantities gA are to be

interpreted as gravity anomalies. It is possible ir

the case of many mass distributions to remove

matter external to the reference sphere and to adc

matter inside the reference sphere without effec

on the total mass, on the center of mass, or on the

external field, but there is no guarantee that this is

possible in the case of such an irregular body as

the Earth; if it were possible, the (g.-i)y would ther

be gravity anomalies of the alternative mass dis

tribution in which all the matter external to the

reference sphere has been removed. The existence

of a solution of the integral Equation 29.68 coulc

then certainly be justified on physical grounds

We have no need to interpret values of (gA)o. on the

reference sphere as gravity anomalies. We coule

consider (£a)q simply a function defined on the

reference sphere which, when substituted in the

integral Equation 29.68, correctly reproduces the

observed quantities (g^)/-, but we still have to shov

that such a function can be found by solving the

integral equation and is expressible to sufficien

accuracy by a practicable number of terms. Fo:

example, there are considerable fluctuations in the

anomalies over the topographic surface which coule

lead to even more violent fluctuations of the (^)q

requiring a very large number of polynomial terms

for adequate representation. Failing justificatioi

on physical grounds by an alternative mass dis

tribution, the only way of settling the question is

by numerical trials on simulated and unfavorably

irregular mass distributions. Members of the Stock

holm school are still (1968) engaged in such trials

but their results so far seem to indicate that the

method will be satisfactory when applied to the

actual Earth and will be as good as any other method

in addition to being much simpler.

THE EQUIVALENT SPHERICAL
LAYER

53. We know that the external potential of a soli<

body can arise from an infinite variety of mas
distributions, and the question arises whether w<

can replace the actual mass distribution by a coat

ing of density ex spread over a given surface withou

effect on the external potential. In some moden
geodetic applications, such replacement is assumee

possible for any surface; we shall consider this
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generalization in more detail in § 30-55. In this

chapter, we shall consider, as an introduction to

the more general case, the classical problem of

whether, and in what circumstances, the mass

distribution of a given external potential can be

replaced by a surface density cr spread over a

sphere. An obvious advantage would be that we can

then obtain any required elements of the external

field straight from the surface mass distribution by

surface integration. In fact, we can obtain alter-

native, but equivalent, forms of all the integral

formulas in this chapter, no more and no less, and

the alternatives are subject to the same limitations.

54. Any bounded function, including functions

with simple discontinuities, can be represented

over the surface of a sphere in a series of spherical

harmonics; we can accordingly express a surface

density cr in geocentric coordinates (w, (j)) as

x II

cr= V V f*I"(sin 4>) {c lim cos mo)+ snm sin mcj}

11= lll = ()

29.72

where c,,m, $nm are constants. If (IS is an element of

area of the spherical surface, the corresponding

element of mass is <xdS; we can then obtain the

Ipnm, S,m of the external attraction potential from

Equations 21.037. For example, we have

C„o = R [ crP„(sin <f>)dS

r ui = 2tt r<2) = + 7r/2'

= R" + - o-fMsin 4>) cos cb dcoaty.
Jo,=o J<t>=-irl2

If we substitute Equation 29.72 for cr, the variables

are found to be separable and in accordance with

the ordinary rules for integration of trigonometric

and Legendre functions: we have then

r _ 4ttR" +1

{In + 1)

Integration of the other two equations of Equations

21.037 in the same way shows that the same rela-

tion holds between the other coefficients, and we
can write

29.73
d ah 4tt/\

, " +2 (cn

(2n + l) \s„

If V is the external potential, we can write this

equation in the notation of § 29-2 and with the

physical definition of the potential as

29.74 w 4ttR" +2

(2n+l)
{<'}

which can be summed over in and // to give the

required relation between the potential and the

surface density. It is assumed that units have been

chosen to make the gravitational constant G unity

in Equation 21.035. However, Equation 29.74 would

hold true if we consider cr to be the density multi-

plied by the gravitational constant.

55. If we are given the surface density in spheri-

cal harmonics, the potential is obtained as a series

of spherical harmonics, convergent right down to the

surface of the sphere, which in this case is the

sphere of convergence defined in §21-11. However,

if we preassign values to C„m , Sum to represent the

attraction potential of an actual body, such as the

Earth, the corresponding series of solid harmonics

is certainly convergent only outside the sphere of

convergence for that body; it is only in that domain
that the equivalent spherical coating, given by Equa-
tion 29.74, can be said to give rise to the actual

potential of the Earth. Equation 29.74 is accordingly

limited in the same way as the expression of the

actual potential in spherical harmonics, no more
and no less. Subject to this limitation on Equation

29.74, we can always use Ecjuation 29.74 to find a

spherical coating which will give rise to the actual

potential.

56. The total mass M of the coating is

29.75 o-dS= 47rfl
2c o= M=Coo,

in agreement with Equation 29.73. Moreover, if the

origin is at the center of mass of the actual body

so that the first harmonics Cm. Cn, Su are zero, so

then are Cm. Cn, andsn zero, and the center of mass
of the coating is at the same origin. Equation 29.73

automatically ensures that the actual body and the

coating have the same center of mass, whether this

common center of mass is at the origin or not.

57. The potential at P (fig. 39), arising from the

element of mass (rdS — (rR2dCl at Q, is

-aR'dnil:

the total potential at P is accordingly

<tR 2

29.76 //
/

dn,

which is easily verified from Equations 29.74,

29.11 (for k= Rlr), and 29.10. This formula is an

alternative to Poisson's integral.

58. As another example, the vector force at P
(fig. 39), arising from the coating, is the negative of
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the potential gradient at P by the generalization of

Equation 20.05; and so we have

29.77 (Vr),> = +
crR 2

I
2

i,dn

where /, is a unit vector in the direction QP given by

Equations 29.54 and 29.55. This equation can be

contracted with the meridian, parallel, and normal

vectors (which remain fixed during the integration)

in the spherical polar system at P to give three

components of force and thus the magnitude and

direction of the total force. If V is the potential

anomaly, the magnitude of the total force to a high

degree of accuracy is the gravity disturbance.

59. Another formula, frequently found in the

literature, connects the gravity anomaly g.\ with the

density o" of a spherical coating, giving rise to the

potential anomaly T. Both T and g\ have their values

on the sphere. From Equations 29.74 and 29.32

we have

(2-7TO- — g,\)

29.78

1 2
H=0 m=0

_3JT
2R

(2» + l)

2R" +1 ra
(»-l)

Rn+2 ra

in which we have also used Equations 29.33 am
29.45. A similar formula for the gravity disturbanct

gi> on the sphere is obtained from Equation 29.26 a:

T_

2R
29.79 (2tt<t — gD )

These formulas are subject to the usual limitatioi

of absence of matter outside the sphere and to th(

first-order assumptions inherent in Equations 29. 3(

and 29.32 for the gravity anomaly. Equation 29.7?

is often applied to the co-geoid as being sufficienth

near a sphere.



CHAPTER 30

Integration of Gravity Anomalies—
The Green-Molodenskii Approach

GENERAL REMARKS

1. In the last chapter, we considered the integra-

tion of gravity disturbances and gravity anomalies

over regular mathematical surfaces which are no

more complicated than a spheroid. We cannot,

however, measure gravity on such a reference

surface, and so are compelled to reduce measure-

ments of gravity actually made on the topographic

surface of the Earth, or derived from satellites, to

calculated values which would be obtained on the

reference surface if we could measure them on the

reference surface. The calculation, which is de-

scribed in outline in §29—42, must assume some
distribution of mass in the Earth's crust. To avoid

making any such assumptions about crustal densi-

ties, which are certainly a source of weakness in

the method, much work has been done, mainly by

Molodenskii 1 and his associates, on the formation

and solution of integral equations requiring integra-

tion of the anomalies, not over a regular mathe-

matical surface, but over the actual topographic

surface where the measurements are made.

2. Unfortunately, this imaginative conception

introduces other, and perhaps equivalent, diffi-

1 A fairly complete summary and bibliography are given in

Molodenskii, Eremeev, and Yurkina (1960), "Methods for Study
of the External Gravitational Field and Figure of the Earth,"
1-248. Translated from "Metod Izueheniya Vneshnego Gravi-

tatsionnogo Polya i Figury Zemli," in Trudy Tsentral'nogo

Nauchno-Issledovatel'skogo Instituta Geodezii, Aeros"emki i

Kartografii, no. 131, 3-251, and published in 1962 by the Israel

Program for Scientific Translations for the National Science
Foundation and the U.S. Department of Commerce.

culties. In dealing with such regular surfaces as

spheres and spheroids or Newtonian equipotentials

in free air, we have not been bothered much by

questions of continuity, but this situation is no

longer true in the case of the highly irregular

topographic surface of the Earth. For the proper

application of Green's theorem (for example.

Equation 9.19), which is used throughout this branch
of geodesy, the unit normal vector of the surface

should vary continuously over the surface; in addi-

tion, any function used in Green's theorem should

have continuous first derivatives on and outside the

surface as well as continuous second derivatives

outside the surface. These last conditions are satis-

fied in the case of the topographic surface by gravi-

tational potentials, but are not necessarily satisfied

by the distance between two points, one or both of

which lie on the surface. Some smoothing of the

surface is accordingly necessary; in mountainous

regions, smoothing will usually involve at least some
of the density assumptions which the method seeks

to avoid. Moreover, Molodenskii's integrals contain

the slopes of the topographic surface relative to the

astronomical or geodetic zenith, and if these slopes

are excessive, the integrals will not converge; again,

some smoothing of the surface is necessary in

mountainous regions.

3. Recognizing these limitations, de Graaff-

Hunter 2 has proposed the introduction of a Model

2 de Graaff-Hunter (1960), "The Shape of the Earth's Surface
Expressed in Terms of Gravity at Ground Level," Bulletin

Geodesique, new series, no. 56, 191-200.
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Earth, obtained by smoothing the actual topography

and defined in relation to the topography, not in

relation to the coordinate base surface; the surface

of the Model Earth, for example, coincides with

Mean Sea Level in ocean areas. The slopes of the

Model Earth do not exceed one percent by much,
and the surface is sufficiently continuous for the

application of Green's theorem. Unfortunately, it

is necessary to reduce measurements of gravity and

potential made on the topographic surface to equiva

lent values on the surface of the Model Earth; this

reduction requires crustal density assumptions be-

tween the topographic surface and the Model
Earth which are similar to those required in reduc-

tions to the geoid, although not as extensive. Mem-
bers of the Russian school, who require the

equivalent of such reductions only in mountainous

areas, consider that this degree of smoothing is

unnecessary; the subject is still (1968) controversial.

4. The positions of points on the topographic

surface, and therefore the form of the topographic

surface, are known at present (1968) only in a

relative sense, not in a single worldwide coordinate

system. Geometrical heights, such as the third

coordinate in the geodetic (w, $, h) system or in a

spherical polar system, are mostly unknown even,

in a relative sense. Available heights are usually

obtained from spirit leveling or vertical angle

measurements, which, as we have seen in §25-19,

give, in combination with gravity measurements,

an approximation to the geopotential. The main

object of the global integration of gravity anomalies

is to determine deflections and geometrical heights,

which are not vitiated by errors of atmospheric

refraction, and so to simplify the more precise cal-

culation of distances and directions by making
possible the transformation to geodetic coordinates

from measurable astronomical coordinates. In this

sense, gravimetric methods are in direct competition

with satellite methods, which provide positions in a

worldwide geometrical coordinate system without

requiring measurement of astronomical latitude,

longitude, and potential. A disadvantage of the

gravimetric method is the difficulty of obtaining

sufficiently dense and accurate gravity measure-

ments over the oceans and over the polar regions,

while satellite methods are unlikely to be an econom-

ical means of fixing dense networks on land.

Gravimetric methods may accordingly be most use-

fully employed in the future on regional or local

surveys in conjunction with surface triangulation,

trilateration, or traverse. Little work has so far been

done on these lines, but no doubt the general

principles of methods described in Chapters 29 and

30 for global gravimetric surveys will still apply t(

surveys of more limited extent. For example, th<

low harmonics of the potential may be determinec

globally from satellites while the higher harmonic:

are obtained from regional ground gravimetric

surveys — both being used to determine deflection!

for substitution in the observation Equations 26.2^

and 26.25 of ground networks.

5. We cannot obtain an answer to these problem

by simply integrating gravity anomalies over th<

unknown topographic surface as Stokes did over ,

known sphere. Some extra data are required, and

in practice, it is assumed that both gravity and geo

potential are measured. This requirement consti

tutes another serious disadvantage of the gravi

metric method. At present (1968), accurate measure

ments of potential, obtained from spirit levelin;

in conjunction with gravity measurements, exis

only in developed areas along roads or railroads am
would be very costly in mountainous areas. Vertica

angle measurements, which would provide at leas

approximate values of potential differences, ar>

missing in many of the main triangulation network

of the world through fear of the effects of atmos

pheric refraction and through the unrealized hop*

that heights would eventually be provided b

spirit leveling. It may be easier to remedy thi

deficiency in regional, rather than in global, gravi

metric surveys.

6. The usual method of utilizing the potential ha

already been given in § 29-16 (fig. 38), but is re

stated now for convenience in a slightly differen

notation. In figure 41, Q is a current point on th

(normal to S-surface)

p-r (normal to

coordinate surfaces)

S-surface

base coordinate

surface

Figure 41.
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S-surface, which is either the topographic surface

smoothed as necessary or the Model Earth. In this

chapter, we shall be dealing solely with (to, </>, //)

coordinate systems, usually the spheroidal geodetic

system: and v r
is the straight normal through Q to

the /i-coordinate surfaces. The point B on this

normal is chosen to make the actual potential at

Q{Wq) equal to the standard potential at B(Un).

Because W is supposed to be known at all points of

the S-surface, the locus of the point B is a known
surface and is called the telluroid if S is the topo-

graphic surface, or the terroid if S is the Model

Earth surface. The height anomaly BQ = £, and the

gravity anomaly ga — jB are as defined in §29-16.

The unit normal to the S-surface is shown in

figure 41 as v'\

7. As usual, we shall provide full derivations of

the basic equations, which are not easy to find ex-

pressed in simple terms in the literature, and an

outline only of the methods for approximating and

solving the basic equations; descriptions of these

methods are all too prolific in the literature. First,

however, we must investigate some geometrical

properties of the S-surface in (to, </>, h) coordinates

to avoid breaking the argument later.

THE S-SURFACE IN (to, <f>, h)

COORDINATES

8. The longitude and latitude (to, <f>)
are constant

along the straight /(-surface normal CQ (fig. 41) and

therefore have definite values at Q so that (to, c/>)

can be taken as S-surface coordinates. Coordinates

of the space in which S is embedded will be taken

as the (o>, </), /;) system. The equation of the S-sur-

face can then be expressed in Monge's form

(§ 6-5) as

30.01 hQ =f(b>, </>).

The x'a of the surface (§ 6-5) are then given by

30.02 x%=fa \ x'a=K (r=l,2)

in which fa is the derivative of the scalar / with

respect to xa
, that is, with respect to to or cb,

and Sq is the Kronecker delta. It should be empha-
sized that / is interpreted as a height only on the

S-surface; otherwise, /is simply a function of (to, (f>).

The Metric Tensor

9. Substitution of the space metric tensor (Equa-

tion 17.04) in Equation 6.06 gives the metric tensor

of the S-surface as

in which the overbar refers to the coordinate

A-surface passing through Q (fig. 41), not to the base

coordinate surface (A = 0) as in Equation 17.09,

which, however, enables us to evaluate aaB in terms

of the fundamental forms of the base surface. The
determinant of the metric tensor by direct calcu-

lation is

a=(d11 +/?)(a22 +/!)-(a12+/1/2 ) 2

= a + aanf\ + aa upx
+ 2aa12

fxf2

=a(i+W)
30.04 =a(l + V/).

The invariant V/(§3-9) is a surface invariant ob-

tained from the metric of the h -surface passing

through Q. but because / is a function of (to, (f>)

only,/j = 0, and the invariant has the same value as

the space invariant V/.

The Unit Normal

10. We can obtain the covariant components of

the unit normal to the S-surface by giving dissimilar

values to the indices s and t in Equation 6.11. For

example, for 5 = 2, r= 3, we have

^e 123= e2^= e
21
/i

which, using Equations 2.15, 17.05, and 2.30, gives

Vl = -(a/a)"2
/,;

obtaining the other components in the same way,

we have

30.05 vr=(ala) ll*{-fi, -/2 , 1}.

Raising the index with the space metric tensor in

Equation 17.05 gives the contravariant components
as

v' = {fl"i'i. a22V2, c.i}

30.06 =(dla.yl*{-anfu -a22/2 ,l}-

But vr
is a unit vector, and we must have

1 = v,V = {ala){& l

f\ + a22
fi + 1

}

- (d/a) (1+ V/j,

agreeing with Equation 30.04. But from Equation

17.28, the unit normal v r to the /i-surface is (0, 0, 1);

if /3 is the angle between the two normals, as in

figure 41, we have

cos /3= v,v''= {a/a) 11
'

1

30.03 aaB— aaB +fafe

so that

30.07 aid

30.08

1 + V/= 1 + V/= sec 2
(3

V/= V/ = tan 2
(3.
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Moreover, by making the space indices both 3 in

Equation 6.10 for the S-surface, we have

l = a^fcfp+ (ala)

or

30.09 V.s/= sin 2
f3
= V/cos 2

(3 = V/'cos2
j8

in which the invariant V.s is obtained from the

S-surface metric. All the Equations 30.01 through

30.09 hold true in a general (o>, $, h) system whose
properties are given in Chapter 17.

11. The angle (3 is the zenith distance in the

(&>, 4>, h) coordinate system of the S-surface normal
and is also the maximum slope of the tangent plane

to the S-surface in relation to the coordinate /(-sur-

face, which usually will be the geodetic horizontal.

If the azimuth of the direction of maximum slope

is a, we can write the unit normal v, of the S-surface

in terms of the usual parallel, meridian, and normal

vectors {k r , fir, v>) as

v r — k r sin a sin f3 + pL r cos a sin
f3 + v r cos /3.

30.10

In a general (w, (/>, h) system, we can use Equations

17.26, 17.27, 17.28, and 17.13 to find the components
of v r in terms of h and the curvatures of the base

coordinate surface; we can compare the results with

Equation 30.05 and so can express fi,f-> in terms of

a, (3. For a spheroidal base surface with principal

radii of curvature p, v, we can use Equations 18.11

and can express the unit normal to the S-surface as

v r = {(v + h) cos 4> sin a sin (3,

30.11 (p + h) cos a sin/3, cos 0}

so that we have

f\ —— (v+ h) cos <$> sin a tan (3

30.12 fz =-(p+ h) cos a tan /3.

In these equations, h is the geodetic height of the

point Q on the S-surface (fig. 41). Instead of working
in terms of the azimuth and zenith distance of the

maximum slope, it is usual in the literature to make
sin a tan /3 — — tan f3> and cos a tan j3 = — tan

f3\

where /3i, y8-2 are, respectively, the inclinations to the

geodetic horizontal in north-south, east-west

direction of the tangent plane to the S-surface.

However, by working in terms of the azimuth a and
zenith distance (3 of the normal to the S-surface, with

the sign conventions used throughout this book, we
avoid any ambiguity as to whether an inclination or

slope of the tangent plane means an elevation or

depression.

The Associated Tensor

12. The associated metric tensor of the S-surfaci

is given by Equations 2.44 and 2.30 as

= (ala)eaye^(ayS +fyfs)

30.13 = cos2 /3{a^ + i^e^fyfs}.

An alternative expression is obtained from Equatioi

6.10 for the S-surface immersed in (w, </>, h) space
By giving the indices r, 5 in Equation 6.10 th<

surface values y, 8, we have

30.14 cF^a^ + i^8
,

which can be shown to be equivalent to Equatioi

30.13.

Normal Gradients

13. The component of the gradient of a scalar 1

along the normal to the S-surface is given by

dF

ds

30.15

= Frv
r = cos ,3(- anfiFi - d22f2F2 + F3 )

cos/3Jj|-V(F,/-)

on substituting Equations 30.06 and 30.07. Th
invariant V(F, /) is obtained from the metric o

the h -surface passing through Q, and it may be mori

convenient to calculate the S-surface invariant

From the definition of the invariant in Equatioi

3.14, it is evident that the space invariant V(F,/) i

the same as the A-surface invariant because / i

a function of a), <j> only. But if we set up anothe

(u>, (f),
h) coordinate system with S as a base surfac

and use the metric in Equation 17.05, the S-surfac

invariant \/s(F,f) is given by

30.16 V(F,/) = V.s-(F,/)+ (dFlds)(df/ds),

whatever the surface coordinates on S may be

Substituting/ for F in Equation 30.15 and remem
bering that dfldh — because /is a function of w, (j

only, we have

30.17 df/ds =-V/ cos j8 =— sin /3 tan (3,

using Equation 30.08. From the last two equations

we then have

V(F,/) =V(F,/) = V5 (F,/)-sin tan (3 (dF/ds)

substituting in Equation 30.15, we have finally

30.18 f= 6ec^{f-Vs (F,/)}.

Equations 30.15 and 30.18 have been obtained in i
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slightly different form by Moritz,3 whose D(F,f) is

V.s-(F, f) cos2
(3 and is accordingly an S-surface

invariant, although not the standard invariant used

here. Moritz' D(F,f) is, however, the same as our

/i-surface invariant V(F, /) or V(F, /). We can

replace /by h in the S-surface invariant of Equation

30.18, but we are not entitled to do so in Equation

30.15 for the reasons given in §30-8.

The Invariant V(T, f)

14. Next, we evaluate the invariants in Equations

30.15 and 30.18 when the arbitrary scalar F is taken

as the potential anomaly T. We have already seen

that the A-surface invariant in Equation 30.15 is

the same as the space invariant, and therefore can

be evaluated in the (o>, <f>,
h) space system as

30.19 V(T,f)=V(T,f)=gM(Wp-Up)fq.

If the components of standard gravity in the direc-

tions (X r
, fl

r
, V) of the coordinate system are (yi,

72, 7.3), the second term is

-(7A9+72A9 +73»*9/g

in which the last term is zero because vQ =(0, 0, 1)

and/3 = 0. In a symmetrical standard field 71 = 0,

and the remaining term in the case of a spheroidal

field is

30.20 -yi^qfq = -y2JJ:
2fi=yi cos a tan /8,

using Equations 18.10 and 30.12. The component

72 is the gm of Equation 23.37. This term is ignored

altogether in the literature on the assumption that

there is no meridian component of standard gravity

close to the spheroidal equipotential, but 72 can

easily be computed and allowed for in extreme

cases.

15. If, as in § 19-23, we define the vector deflec

tion A9 as

A«=(jW) — pi

in which (v Q
) , v q are, respectively, the unit vectors

in the direction of the astronomical zenith and of the

normal to the geodetic coordinate system, then again

v9fq=0, and the first term on the right side of

Equation 30.19 is to a first order

g(v«)fq=g&%= (g cos <f, 8a>)k%+ (g84>)fiifq

=— (g cos
<f)

8io) sin a tan /3

— (g8<j>) cos a tan /3,

3 Moritz (1964), The Boundary Value Problem of Physical
Geodesy. Report No. 46 of the Institute of Geodesy, Photogram-
metry and Cartography, The Ohio State University Research
Foundation, Columbus, Ohio, 1-66. Republished with the same
title in 1965 in the Annates Academice Scientiarum Fennicce,
series A. III. Geologica-Geographica, no. 83, 1-48.

using Equations 19.42, 18.10, and 30.12. In this

equation, 8(0 (8dj) is the astronomical minus the

geodetic longitude (latitude). In terms of the usual

components of deflection £=8$, 17= cos (p 8w, we
can finally write Equation 30.19 as

V(7\/) = V(7\/)=-grjsina tan /8

30.21 - (g£-y2 ) cos a. tan /3

in which 72 is the meridian component of standard

gravity obtainable from Equation 23.37 (not to be

confused with the curvature parameter 72 of either

a general (co, c/>, N) system or the gravitational field

as defined in § 12-17).

16. The use of Equation 30.15 and of the h -surface

invariant V(7\ f) accordingly requires a knowledge

of the deflection components f , rj. Suitable choice

of a reference spheroid would make £, 17, and /3

small in flat country. In mountainous country,

measurement of vertical angles in a triangulation

network, combined with an open astronomical

control, would provide sufficiently accurate deflec-

tions by methods discussed in Chapter 26. Never-

theless, it is a defect of the method to require a

knowledge of deflections, in addition to potential

and gravity, at all stations. For this reason, Moloden-

skii uses Equation 30.18 with the S-surface invariant

V.v(F, /) , which we shall evaluate next. However,

Molodenskii 4 and Moritz 5 (following Molodenskii)

use a special form of invariant instead of the stand-

ard form of two-dimensional tensor invariants

without reaping any apparent advantage. For ex-

ample, Molodenskii's S-surface invariant A»/ for

the function / of Equation 30.01 can be shown, not

without some difficulty, to be

A2/= sec2
/8 A/

where A/ is the ordinary S-surface Laplacian a a,ifap.
We shall use the ordinary tensor invariants through-

out this chapter, and we shall find that the gain in

simplicity is considerable.

The Invariant VS (T, f)

17. If we substitute Equation 30.18 for F=T
in the basic integral equation for the potential

4 Molodenskii. Eremeev. and Yurkina, op. cit. supra note 1,

81-85.
5 Moritz, op. cit. supra note 3, 20. See also Moritz (1966).

Linear Solutions ofthe Geodetic Boundary-Value Problem. Report
No. 79 of the Department of Geodetic Science. The Ohio State

University Research Foundation, Columbus, Ohio. 21-22.

Republished with the same title in 1968 in Deutsche Geodatische
Kommission bei der Bayerischen Akademie der Wissenschaften,

series A, no. 58, 16-18.
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anomaly, which we shall derive as Equation 30.50,

we find that the term containing the S-surface

invariant Vs(T,f) is

30.22 Vs(T,f) sec B/l.

This term accordingly contains differentials of

T which must be removed if the integral equation

is to be linear in T. We propose to do this by trans-

forming the term with the two-dimensional form of

Green's Equation 9.18; that is, for any two scalars

(/>, (//, we have

{V(</>, i//) + c£Ai//}r/S = <t>ifj«j
ads30.23

connecting the surface integral on the left side

with the contour integral on the right side, in which

j
a

is a unit surface vector, normal and outward-

drawn to the contour (away from the area covered

by the surface integral). Using the same argument

as in § 9—7, we can say also that over any closed

surface, we have

30.24 {V(</>, ijj) + <j)Ai}j}dS =

in which the invariants are two-dimensional surface

invariants. From the definition V((/>, i//) = a"^,^
of the first-order invariant, we can rewrite Equation

30.22 as

V5 (7\/)= v, ,f)-TVs
I

,-,/
/ cos B \lcosB' J

J
v s

\l cos B"

If we integrate this last equation over the closed

S-surface and use Equation 30.24, we have

Vs(T,f)

I cos B
dS

T
I cos B

TVs

A/as

i

,f)dS,30.25
\l cos B

which removes differentials of T from the integral

equation.

18. Next, we must express the S-surface Laplacian

A/ in terms of known or measurable quantities. If

we continue to overbar all quantities related to the

coordinate h -surface passing through the point Q
of figure 41, we have

30.26 VrX' =/«,

using Equation 17.28 for the components of vr (the

unit normal to the /i-surface) and Equations 30.02.

Taking the tensor derivative of this last equation

over the S-surface, we have

VrsXlpcl+VrXlp^fap.

According to § 17-18, there are no 3-components of

Vrs in a (o», cf), h) coordinate system, and va =— bai3.

From Equation 6.16, we have also x r
ap
= bapv

r so that

we have

30.27 — Oap+baP COS B=fa/3

connecting the second fundamental forms of the

/i-surface and the S-surface. Contracting this last

equation with Equation 30.14 and using Equation

8.13, we have

30.28 Af=2H cos (3-2H+bafip
a i>fi

,

the last two terms of which can be evaluated from

Equation 30.06 or 30.10 in any particular (o>, (f), h)

coordinate system. In the geodetic system with

principal curvatures p, v of the base spheroid in and

perpendicular to the meridian. Equations 30.10

and 18.10 give components of the unit normal to

the S-surface as

,
sec d> sin a sin B cos a sin B 1

v r—
i

;
——n ,

—;——r^— , cos B\
(v + h) ' (p + h)

which, together with Equations 18.01, 18.02, and

18.05, give the last two terms of Equation 30.28 as

1
-+-

1 sin2 a sin2 B cos 2 a sin2 B

(v + h) (p+ h) (p + h) (p + h)

so that Equation 30.28 finally becomes

A/=2// cos0
(1 — sin2 a sin2 B)

(v+ h)

30.29
(1 — cos 2 a sin2 B)

(p + h)

In addition to the azimuth a and zenith distance B
of the normal to the S-surface, that is, the direction

and magnitude of the maximum slope of the tangent

plane to the S-surface, this equation also contains

the mean curvature H of the S-surface. There is

no way of avoiding some expression for the curva-

ture of the S-surface in a formula for A/, and this

limitation must be considered the price for avoiding

inclusion of the deflection components £, 17. If the

S-surface is the actual surface of the Earth, (2H) may
be obtained by estimating the sum of normal curva-

tures in two perpendicular directions from contoured

maps.

Deformation of the S-Surface

19. Next, we consider a family of surfaces ob-

tained by progressive deformation of the S-surface;

each member of the family is obtained by reducing

the /i-coordinates of points on the S-surface in the

constant ratio k while retaining the (oj,
(f>)

coordi-
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nates so that corresponding points between two

members of the family lie on the same normal to

the /i-coordinate surfaces. For k=l, the member of

the family is evidently the original S-surface; for

k = 0, the member is the base coordinate surface.

We can take any relation obtained in this section

for the S-surface and simply substitute kh for h to

obtain the corresponding relation for the deformed

surface. If we enclose quantities relating to the

deformed surface in parentheses, we have, for

example, from Equations 30.01 and 30.02

30.30

30.31

(/) =¥

(fa)=kfa .

20. In particular, we shall require the azimuth (a)

and zenith distance (/3) of the line of greatest slope

on the deformed surface relative to the normal of

the h -coordinate surface. From Equations 30.12,

we have in geodetic coordinates

(v+ kh) sin (a) tan (j3)=— (/i) sec

= k(v+ h) sin a tan (3

(p + kh) cos (a) tan ( J
8)=-(/2 )

30.32 =k{p + h) cos a tan /3.

In spherical polar coordinates (p=v = R), these

equations reduce to

(a) —

a

30.33 ,„, k(R + h)
tan 08)= p , ,,/ tan/8;

R + kh

if we neglect h/R, the last equation becomes

30.34 tan ()3) — k tan (3.

21. We shall also require an expression for the

distance (/) between two points (P) and (Q) on the

deformed surface. Quantities relating to Q are over-

barred. From either Equation 25.18 or 25.19, after

some manipulation with the formulas given in

§ 19-7, we have in geodetic coordinates

U)
2 ^(i>+kh)2 -2(v+kh)(v + kh) cos cr+(v+kh)2

— 2e 2k(v sin 4> ~ v sin <f))(h sin 4> — h sin cj>)

+ {e
4 — 2e2

)(i> sin 4> — v sin </>)
2

30.35

where a is the angle between the spherical repre-

sentation of the points (P) and (Q). For the azimuth

(a) and zenith distance (j8) of the direction (P){Q)

at (()), we have from Equation 25.19

(/) sin (a) sin (/3) = (v + kh) sin a sin a*

(I) cos (a) sin (j8)= (v-\- kh) sin <x cos a*

— e2 cos <j)(i> sin <\>
~ v sin </>)

(/) cos 08) =— (y+ kh) cos ar+(v+ kh)

30.36 — e2 sin 4>{v sin c/> — v sin </>)

where cr and a* are functions of the geodetic lati-

tude and longitude of corresponding points of the

deformed surfaces given by Equations 19.01, 19.07,

and 19.08. In spherical polar coordinates {y=v—R,
e= 0), Equations 30.35 and 30.36 reduce to

</)
2 = 4 sin2 ^(R + kh)(R + kh) + k2(h-h)2

= H 1 +
k(h+ h), k2hh

R
+

R?)+*m-hf

30.37

where we have written t// for <r and l,> for 2/? sin ?i//

(/r = 0) to agree with the notation of Chapter 29.

We have also

(/) sin (a) sin (J3)=(R + kh) sin iff sin a*

= (R + kh) cos sin (a> — w)

(/) cos (a) sin ()8)= (/? + kh) sin i/* cos a*

= (R + kh) (— sin 4> cos (/>

+ cos 4> sin (^

X cos (a) — a>))

(I) cos (j8) = (R+ kh )-{R + kh) cos

30.38 =2sin2 iiK#+ M)+ &(£-/i).

APPLICATION OF GREEN'S THEOREM

22. In this section, we shall apply Green's theorem
in the form of Equation 9.19 to a volume bounded in

part by an arbitrary surface S (fig. 42), which is

somewhere near the actual surface of the Earth E,

and shall obtain an expression for the potential at

a point P on S. Later, we shall make S coincide with

the actual surface of the Earth, but for the present

we consider the more general case where there are

masses external toS. One of the scalars in Equation

9.19 will be the reciprocal of the distance (1//) from

the fixed point P to a current point Q within the

volume, and the other scalar will be f(the attraction

potential at Q) so that Equation 9.19 becomes

ds \l J I els
-'*)->

30.39
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Figure 42.

in which dv is an element of volume and ds is the arc

element in the direction of the normal to S, drawn
outward from the volume considered.

23. In the first place, we shall consider the internal

volume bounded by S, and shall consider only the

attraction potential V\ arising from the matter out-

side S (shaded in fig. 42) so that mathematically we
may suppose all the matter inside S has been re-

moved. But in applying Equation 30.39 to this case,

we notice that the surface integrand at least

becomes infinite when / = 0, that is, when Q coin-

cides with P, as it must do for some, part of the

integration; therefore, we cannot apply Equation

30.39 as it stands to the whole region bounded byS.
To overcome this difficulty, we remove a small hemi-

sphere 2 <>f radius e, centered on P, from the

volume enclosed by S and integrate over the remain-

ing volume, the surface S minus 2, and the curved

surface of 2. For this area and volume, Equation

30.39 becomes

u r,
ds\l) I ds)

30.40

d /l

ds\l

1

'/

I ds

LV^tdv

dS

Throughout the volume, both 1// and l\ are har-

monic and the volume integral is zero. Next, we
consider the surface integral over 2. If (V,) is an

average value of V\ over 2 and if dil is an element
of solid angle at P, the first term is

(V>
1 <d

, ,„ „ .,.,

Tl
— Xe1dn=+ 27r(Vi

I 05

because / = eonI and dl/ds is minus 1 on 2. (Note

that for the proper application of Green's theorem,
as derived in § 9-12 through § 9-14, the positive

direction of ds must be in the direction of the

normal to the boundary surface exterior to the vol-

ume over which the volume integral is taken, as

shown in fig. 42.) In the second term of the integral

over 2, dVj/ds is the normal component of the force

of attraction arising from V\\ for physical reasons,

this force must be finite and have a maximum value

{dVi/ds) over 2 so that the second term is less than

ds

1

e-dQ. '-7T€

ds

which is zero in the limit when e—»0. The average

value (Ti) of \\ on 2 becomes in the limit the poten-

tial I ip at P. We may also consider that the remain-

ing surface integral is taken over the whole surface

except at the actual point P, although it will require

special treatment in the immediate neighborhood
of P as in the case of Stokes' integral (§29-30).

Equation 30.40 finally becomes

30.41 -2ttI77/ j/. '
,

d_

ds I ds
dS.

24. In deriving this result, we have assumed that

the volume integrand in Equation 30.40 remains

finite as e^O, or in other words, the volume

integral

FiA AVr dv

taken over the hemisphere becomes zero as e^ 0.

Throughout the small volume, bounded by the

hemisphere 2 and the continuation of the surface

S, AV\, by Poisson's Equation 20.14, is either zero

or at least finite, even iff lies just inside the matter

on and external to S. If (AFi) is the maximum value

of AVi, the second term of the volume integral is

accordingly less than

-(AF,) P jx27r/2
rf/ = -(AF 1 )rre

2

Jo /

which is zero as e —> 0. In regard to the first term

of the volume integral, we can consider that (—1//)

is the potential at Q of a particle of mass 1/G sit-

uated at P (G is the gravitational constant). When
Q is within 2, A(l//) is therefore zero except

actually at the particle of mass 1/C, that is, when

Q coincides with P. For physical reasons, we must

suppose that the actual attraction potential V\ of

the external masses is finite within 2. Accordingly,

the first term of the volume integral becomes zero

as e—* 0, provided we exclude the actual point
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P (e = 0) as we have already done in deriving

Equation 30.41. The exclusion of the point P, and

of any matter actually at P, from the volume and

the surface, although mathematically necessary,

makes no significant physical difference to the mass
distribution and to the external field. Subject to

these considerations, we are justified in assuming

that the volume integral over the hemisphere be-

comes zero as e—* 0.

25. Next, we shall consider the potential V2

arising from matter within the same surface S
(shaded in fig. 43), and shall evaluate the potential

Figure 43.

at the same point P on S by applying Green's

theorem to the volume enclosed between S and a

sphere S of infinite radius (not indicated in fig. 43).

To isolate the singularity in 1// at P, we take a

small hemisphere £ of radius e out of this volume,

as shown in figure 43. Equation 30.39 for the re-

maining area and volume then becomes

U' ds

1 dV2

I ds
dS

ds \lj

1 dV2

I ds

TsXi)

1 dV2

I ds

dS

dS

30.42 -JM AF2 dv

As in the case of V\ arising from the external mat-

ter, we find that the volume integral is zero, even

when e —> 0; and so also is the integral zero over the

infinite sphere S because V2 behaves like 1// at

infinity. The second term of the surface integral

over 2 is similarly zero, and the first term is

where (V2 ) is an average value of V-> over the

hemispherical surface. In this case, the positive

direction of ds is inward away from the volume over

which the volume integral is taken, as shown in

figure 43, so that dl/ds = —l on the boundary of

the hemisphere, and the surface integral as e —»

is 2ttV-u> where V-ip is the value of V2 at P. Equation

30.42 thus reduces to

T\ 1 dV2 ]30.43 -2itV2P {{ V2
ds \l I ds

dS,

which has exactly the same form as Equation 30.41

for the potential Vn> arising from the external

masses. A glance at figures 42 and 43 shows, how-

ever, that the positive directions of ds are opposite

in the two cases. If we wish to combine Equations

30.41 and 30.43, we must change the sign of ds in

one of these equations. We shall do so in Equa-

tion 30.43, thereby ensuring that the positive direc-

tion of ds is away from the main mass of the Earth

in both cases. Equation 30.43 then becomes

30.44 ^WKGHf}*-
Because there are no volume integrals in Equations

30.41 and 30.44, the current point Q is now restricted

to the surface S. The potentials {V\ or V2 ) and the

component of the forces of attraction in the direction

of the normal to S, drawn toward the main mass of

the Earth (dVJds or dV2 /ds in accordance with

Equation 20.05), must be evaluated or observed

at points Q on S. The distance / is PQ between two

points on S; one point is fixed at P and the other is

the current point Q in the surface integration.

26. Next, we consider the potential (1 of the

centrifugal force, given by Equation 20.08 as

30.45 £l=W{x2+ f)

in which to is the angular velocity of rotation of

the Earth and (x2+ y
2
) is the square of the per-

pendicular distance of the point considered from

the axis of rotation. If W , V are. respectively, the

geopotential and the attraction potential at the

same point, then Equation 20.08 with suitable

change of notation also gives

30.46 W=V-a=V1+ V2 -£l
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in which we have applied the principle of super-

position (§20-7) by making the total potential

V= Vi + V2 . It is clear from Equation 30.45 that ft

has no singularities on or inside the surface S of

figure 42 so that we can use Equation 30.40 simply

by replacing V\ with Cl. The volume integral in

Equation 30.40 is now

2cb
2dv

I I

taken over the whole volume enclosed by S; allow-

ing for the singularity of 1// at /= as in §30-23,

we have

-2-n-iV

30.47
^(iHfW/T-

2 -

By adding Equations 30.41 and 30.44, subtracting

Equation 30.47, and using Equation 30.46, we have

/{-Ui
13
I ds

dS-
I

dv

= 2TT{V2p-Vu>)+27rnP

= 2tt(Wp+ £Ip -2V1p ) + 2irfL,>

30.48 =2Tr(Wp-2V1P )+2TTcb
2 (xP + fP ).

This equation, which is fundamental to the subject,

has been given explicitly by de Graaff-Hunter 6

and in various approximate or special forms by

several other writers.

27. It can be argued that V\ and V2 in Equation

30.46 are harmonic and therefore V= V\ + V2 is

harmonic — for example, in the sense that if V\

and V2 can be validly expressed in solid spherical

harmonics, so can V— even when P lies inside the

attracting matter, where V should satisfy not the

Laplace equation but Poisson's Equation 20.14.

This question, which does not appear to be satis-

factorily answered anywhere in the literature,

requires an answer even though, for reasons given

in §21—74, we are not concerned in geodesy with

potential and force inside matter. We have already

noted in §30-23 and §30-24 that the point P, and

with P any particle of matter at P, must be excluded

from both the surface and the volume considered

in Green's Equation 30.39. The point P must there-

fore be considered as lying within a small cavity

where the potential is harmonic. This argument is

even clearer if we consider the potential at P in the

form of a volume integral

V=-
Gpdv

I

in which / is the distance between P and a current

point Q, G is the gravitational constant, p is the

density, and the integral is taken over the whole

volume occupied by attracting matter. The inte

grand becomes infinite when Q coincides witl

P (1= 0), and the integral does not therefore con
verge unless we exclude the particle actually at P.

If we do exclude this particle (and we can do sc

without significant effect on either the mass dis

tribution, the external field, or the internal field)

V becomes a sum of harmonic functions and there

fore itself a harmonic function. Nevertheless, we
are not entitled to differentiate the relation

V= V\ + V2 — once to find the force, or twice tc

find the density— unless the resulting differentials

are continuous; differentiation implies a displace

ment from the cavity at P into the surrounding

matter, and we must expect some discontinuity to

result from this process. In the case of a continu-

ous distribution of matter— except in the cavity

at P— we can argue physically from the principle

of superposition (§20-7) of potential and of force,

implying that a relation similar to V— V\ + V2 exists

for the force components, that the potential and

its first derivatives are continuous at P, but the

second derivatives are not continuous and Poisson's

equation provides a measure of the discontinuity

(§20-18). This question of discontinuous derivatives

will become clearer when we consider single- and
double-layer distributions in §30-31 through §30-41.

We shall find that in the case of a single layer the

potential is continuous across the surface, whereas
the force is discontinuous and cannot be obtained

by differentiating the potential; in the case of a

double layer, both the potential and the force are

discontinuous.

28. It is usual to simplify Equation 30.48 by intro-

ducing the potential anomaly T as defined in § 29-10.

To do this, we write Equation 30.48 for the actual

geopotential W and for the standard geopotential

U and subtract, remembering that the centrifugal

terms are the same for both actual and standard

fields and will cancel. We assume further that the

mass giving rise to the standard field is entirely

contained within the surface S so that VlP for the

standard field is zero. The result is

30.49 2ir(TP -2Vip)
ds

1ST]

I ds]
dS.

6 de Graaff-Hunter, op. cit. supra note 2.

It is usually assumed that the mass giving rise to

the standard field of Chapter 23 is contained within

the equipotential base spheroid of this field, so

that the field external to the spheroid can be ex-

pressed in the form of a convergent series of sphe-



Integration of Gravity Anomalies— The Green-Molodenskii Approach 337

roidal harmonics as discussed in §23-9 and §22-23.

In that case, we must ensure that the spheroid

lies entirely within the surface S of Equation 30.49.

29. If the surface S coincides with or lies entirely

outside the topographic surface of the Earth, we

have Vu>— 0, and Equation 30.49 becomes

30.50 «'-JteGH£}--
This equation applies also to the co-geoid, or regu-

larized geoid, outside which all masses have been

removed. On the other hand, if we do not remove the

external masses, we must estimate their potential

Vu> at P and substitute in Equation 30.49, which

then applies to the actual or nonregularized geoid.

In the same way, we can estimate the potential of

masses external to the Model Earth (or the telluroid

or the terroid), but with less drastic assumptions;

Equation 30.49 can then be applied to the surface

of the Model Earth (or the telluroid or the terroid).

Unless S coincides with the actual topographic

surface, and for reasons given in § 30-2 this situa-

tion is not altogether possible, some estimate of

the potential of masses external to S is necessary.

30. In applications involving satellites, we may
require the attraction potential at a point P not on

S but external to S, which, for this purpose, we shall

assume contains all the matter. We apply Green's

Equation 30.39 to the volume bounded by S and the

infinite sphere. The integrand becomes infinite

when the current point Q coincides with P (/ = 0),

and to deal with this situation, we exclude a small

sphere 2 of radius e centered on P from the area

and volume considered. As in §30-25, we find that

the volume integral is zero (even when e —» 0), the

integral over the infinite sphere is zero, and the

second term of the surface integral over £ is zero.

The remaining integral over 2, as in §30-23, is

V
ds

j\d:-.
V

e
2da= tkrV,>.

The positive direction of ds in Equation 30.39 is

away from the volume considered, and we must
accordingly change the sign of ds to follow the con-

vention of §30-25, that is, positive ds away from
the main mass of the Earth. We have finally

30.51 Mr= fL * m laF1
V

ds \l I c>s
dS

in which we may substitute for V the harmonic
potential anomaly T, so that Equation 30.50 holds

for an exterior point P with the substitution of 4>tt

for 2tt. If P is an exterior point, the singularity at

P has to be removed by excluding a small sphere

of radius e, whereas if P is confined to the surface S,

a small hemisphere serves to remove the singularity.

The difference in area between a sphere and a

hemisphere accounts for the factor of 2 between
Equations 30.51 and 30.50.

Equations 30.41, 30.44, and 30.51 are equivalent

to three of the six relations, usually known as Green's

third identities, obtained from Equation 30.39 for

the volumes external and internal to the closed sur-

face S when P is outside, on, or inside S. The other

three identities can easily be obtained similarly if

required. If V in Equation 30.39 is not harmonic, the

volume integral

-
1 ¥ *

I

must be retained in deriving these identities as we
have done in deriving Equation 30.47: V must still

be finite and continuous, and have finite and con-

tinuous first and second derivatives throughout

the volume considered. Green's first identity is

Equation 9.18, and Greens second identity is

Equation 9.19 with Equation 30.39 as a special

case.

POTENTIAL AND ATTRACTION
OF A SINGLE LAYER

31. We shall now develop further the ideas in

§29-53 through §29-59 by considering the field

arising from a layer or coating of surface density cr

spread over an arbitrary S-surface.

At External Points

32. Omitting the gravitational constant or con-

sidering cr to be the surface density multiplied by

the gravitational constant, the potential at an ex-

ternal point P arising from an element of mass at Q
on the surface is —crdS/l where / as usual is the

distance PQ. The total potential at P is accordingly

30.52 I r-
mIS

I

<r

Kl
dil

where K is the Gaussian curvature of the surface

and dil is an element of solid angle enclosed by

normals to the surface, that is, an element of solid

angle or area in the unit spherical representation

of the surface. In deriving this result, we have used

Equation 13.14.

306-962 0-69—23
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33. The vector attraction at an external point P
arising from an element of mass at Q is

<T(IS

/
2

/,

where /, is a unit vector in the direction QP and is

also the gradient of / for a displacement of P with

Q fixed. The gradient of the potential at P— the

negative of the total force of attraction from the

generalization of Equation 20.05 — is then

crdS
30.53 :vr

i-
lr = +

(T

Kl2o
I, (1ft,

which could have been obtained by differentiating

Equation 30.52 for a displacement of P, but only

because there are no singularities in either the

potential or gravity at an external point P. If we
wish to combine Equation 30.53 with other equations

in which /, is the unit vector in the direction PQ,
we must change the sign of /, and write Equation

30.53 as

30.53A (Vr)p--
<T(IS

I
2 Kl

i i, (in.

ward if P is on the outside (and upward if P is o

the inside) of the surface so that there is a discoi

tinuity of 47T(t across the surface. If, as usual in thi

application, P is on the outside of the surface, th

gradient of the potential at P or the negative of th

total force of attraction at P is given by

(Vr)p=+ 27T(T(Vr)p+
J
~ lr

30.54 + 2mr(vr)p+
I gplrdQ,

instead of by Equation 30.53. In Equation 30.54

(vr )p is the unit outward-drawn or exterior normal t

the surface at P, and /,- is the unit vector in th

direction QP. If we wish to combine Equation 30.5

with other equations in which l r is the unit vecto

in the direction PQ, we must change the sign of i

and write Equation 30.54 as

crdS
(Vr)p =+ 2Tro-(vr )p- lr

30.54A = -\-2TTcr(vr )p-

KlJ IrdCl.

At Points on the Surface

34. Equations 30.52 and 30.53 are valid if the

S-surface has a unique spherical representation

(§ 11—2) and continuous curvature. However, if

the point P lies on the surface, the integrands be-

come infinite when P and Q coincide (1—0), and

we must investigate this case further. We do so by

considering part of the coating to be a small circu-

lar disc centered on P, the potential and attraction

of which is a stock case in the literature; 7 the poten-

tial and attraction of the remainder of the coating

presents no problem. The potential of the disc, of

radius e, is — 27rcre which diminishes to zero as e

decreases. Moreover, this result is true whether we
consider P to be outside or inside the coating, so

that the potential is continuous across the coating

and Equation 30.52 holds true whether P lies on the

surface or not, although the integral will need spe-

cial evaluation when Q is in the neighborhood of

P just as Stokes' integral needs special evaluation

in that case (§ 29-30).

35. The attraction of the disc at P on the surface

is 27rcr, directed along the surface normal at P if

the disc is small enough for the density to be con-

sidered uniform. The attraction of the disc is down-

POTENTIAL AND ATTRACTION
OF A DOUBLE LAYER

36. In this section, we develop further the idea

in §21-101 through §21—103 by considering a

outer surface layer of density <x and an inne

surface layer of density minus cr. The notion c

negative density has, of course, no physical signif

cance except in connection with the analogou

magnetic dipole distribution, but the notion is, neve:

theless, of value as a mathematical device. I

figure 44, we locate an element of mass (minu

7 See, for example, Heiskanen and Moritz (1967), Physical

Geodesy, 129.

Figure 44.

adS) at the current point Q on the S-surface and a

element of mass (plus adS) at a point Q' on the sui

face normal distant ds from Q. Because ds is sma
and in the limit will be zero, we can suppose ths

the two elements of area dS at Q and Q' are bounde
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by surface normals and are equal. In proceeding

to the limit ds^O, we assume that ads remains

finite and equal to p so that cr—» °° as ds —> 0. The

whole arrangement is accordingly analogous to a

surface distribution of dipoles of moment density p.,

oriented in the direction of the surface normals.

At External Points

37. The potential at an external point P arising

from the elements ±adS is

crdS adS p 1 1

dS.
ds \r i,

In the limit ds^> 0, this last expression becomes

so that the total potential at P is

30.55 VP "M>"
i which contains no singularities as long as P lies

j
outside the surface (/^0). Partial differentiation

with respect to 5 implies differentiation along the

(
surface normal at Q with P fixed, so that we have

»••" sGHr 1

p VrVr
)

in which lr is now a unit vector in the direction PQ.

38. The attraction at P is

adS crdS _ p I 1 1\ ,.

which becomes in the limit

[
^is{i)

dS

in the direction PQ = l r . The gradient of the total

potential at P is the negative of the total attraction

at P.

30.57 (Vr)p=- ^|(^ /,/S
2/i

(ltv%dS.

At Points on the Surface

39. If P is on the surface, there are strong singu-

larities when P and Q coincide (/=0) and the inte-

grands become infinite. As in the case of a single

layer, we consider small circular discs of radius e

taken out of the two layers, as shown in figure 45,

where we have located P on the outside of the top

layer. The potential of the top disc is — 2ircre and

ds

Figure 45.

the potential of the bottom disc is 277cr (e — ds) to a

first order in ds/e, so that the total potential at P oi

the double disc is — Irrcrds which becomes — 2irp in

the limit ds —> 0. Instead of Equation 30.55 for the

potential of the whole double layer, we have

30.58 V,-= -2np, '£©*
If we had located P on the inside of the bottom

layer, the potential of the double disc would be

+ 2irp.p; accordingly, there is a discontinuity of

4?Trpi> in the potential on crossing a double layer.

40. If we use the same method to evaluate the

attraction of the double layer at a point P on the

surface, we find that the attraction is indeterminate

when both e and ds tend to zero. Moreover, the

singularity in the potential of Equation 30.58 sug-

gests that there must also be a singularity in the

attraction containing differentials of the moment
distribution p, which we cannot introduce if we
suppose that the distribution is uniform over the

small discs. We can overcome the difficulty by a

device similar to that used in §29-41, which has

also been used by Koch 8 in the present application.

41. We can evaluate the integral

dS
ds

by the divergence theorem, Equation 9.17, pro-

vided we remove the singularity at P. where the

integrand becomes infinite, by the device used in

§ 30-23. Or, we can use Equation 30.41 for V\

equal to unity and obtain the result at once as

30.59 </S = -277,

which can be used to rewrite the potential of the

double layer at P, given by Equation 30.58, as

/T
[p — /LI/''30.60 Vp

o

ds
dS.

8 Koch (1967), Determination of the First Derivatives of the

Disturbing Potential by Green's Fundamental Formula, Report

No. 90 of the Department of Geodetic Science. The Ohio State

University Research Foundation. Columbus. Ohio. 12-13.
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If we differentiate this last equation for a displace-

ment of P in a direction m 1 ' (line element dm) with Q
fixed, we have

dm
djjLi' d

= -2tt

dm ds

dfXp

- ) dS—
\ (fi— fip)

30.61 dm
[jx — jXp

a d

dm ds

J__d_
dm ds

j)dS

dS

where we have used Equation 30.59. This equation

gives the negative of the component of attraction in

the direction m'\ provided we can show there are no

singularities in the integrals of both Equations

30.60 and 30.61. Using Equation 30.56, we can

rewrite Equation 30.60 as

30.62 VP ,fi — /xp
UrV r

I
1

dS

where /, is a unit vector in the direction PQ and v r is

the unit normal to the S-surface at Q. We can show,

as in § 29—41, that this equation contains no singu-

larity at P. The change in the vector (//,) for a

displacement dm of P in the direction m 1 with Q
fixed is —m,dm (fig. 46), so that we have

a

dm
(//,)=-/»,.

Accordingly, the value of the integral in Equation

30.61, obtained by differentiating Equation 30.62

Figure 46.

for a displacement off with Q (and therefore v'\ dS)

fixed, is

-/<*-">£ Hi) *

30.63 =
f

(M ~^' ) mtV<)(Lrm>)-mrv
r}dS,

remembering that the gradient / at P with

fixed is in the direction QP and is therefore minus /

As in § 29-41, we can show that there is no singi

larity in this integral at P so that Equation 30.6!

with the alternative expression in Equation 30.6c

correctly gives the component in the direction m 1

i

the potential gradient (or the negative of the fore

vector) at P when P is on the surface. Because n,

is an arbitrary vector which can be considere
constant during the surface integration, we ca

rewrite Equations 30.61 and 30.63 in the vector forr

Vr)p — — 27T{fJLr)i
n — y-p

{S(l,v')lr-Vr}dS

30.64

in which /, is the unit vector in the direction PQ
Because the moment density /jl can vary only alon

the surface, its gradient /x, has no normal corr

ponent. If we contract Equation 30.64 with an arb

trary unit vector m'\ we must accordingly ignore th

normal component of m 1 in evaluating the (yu,, )/<-terrr

For example, if q' is a unit surface vector in th

plane of v 1
' and m'\ we may write

/??'' = v r cos (3 + q' sin /3,

and the value of the (/ir)p-term will then be — 27r(/x rq

sin /3).

THE EQUIVALENT SURFACE LAYERS

42. One object of the diversion on single an

double layers in the last two sections, apart from th

fact that these notions appear often in the literature

is to show that any harmonic potential can be cor

sidered as arising from a combination of single an

double layers spread over a surface S which cor

tained all the original mass distribution. If P is a

external point and Q a current point on the surfac

as usual and if we suppose that we are given th

values of Vq and (dVjds)Q over the surface, we ca:

take the moment density of the double layer to b

fXQ—— VqI(<Ut) and the density of the single layer t

be <jQ = {dVlds)Ql{ /\!iT). From Equations 30.55 an.

30.52, the total potential at the external point i

will be

VP J_
47T *=GH

dV\

ds JQ
dS,

30.65

which agrees with Equation 30.51, so that the tw

mass distributions can be considered equivalent ii

the sense that they give rise to the same externa

field.
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43. From Equation 30.58 and from the fact that

Equation 30.52 continues to hold true for a point

I

P on the surface (§30-34), we find that the total

potential of both layers at a point P on the S-surface

is

1 vAVr={V,. + f- ,,.,,,, , , , ,

4-7T J I ds \lj I \ds / q

1\ 1 dV\
dS,

giving the same answer as Equation 30.50, in which

T can be considered a general harmonic potential.

The same two layers accordingly give the correct

potential at a point on the surface as well as at an

external point. The same restrictions must, however,

be applied as in the derivation of Equations 30.50

and 30.51 in regard to the continuity of the surface,

which must contain all the original mass distribution.

44. If the S-surface is an equipotential, such as

the co-geoid or regularized geoid, Vq is a constant

Vo over the surface, and the first term of the integral

of Equation 30.65 becomes

477
VA TS dS.

if P is an external point, there are no singularities

|
in this surface integral or in the volume integral of

the divergence theorem (Equation 9.17) over the

space enclosed by the surface. The integral is there-

I
fore zero. In this case, the potential arising from the

|
constant moment density is zero; we can consider

that the equivalent coating is a single layer of

density (3P73s)q/(47t), known as Green's equivalent

layer.

45. To obtain the deflections and gravity dis-

turbance, whether at external points or on the

surface, we shall have to differentiate Equation
30.50 or 30.51 for a displacement of the point P,

substitute Equation 29.23 for the gradient of the

potential anomaly, and contract with the coordinate

vectors as we did to derive Equations 29.58 in the

case of the Poisson integral. The best procedure,

which takes care of all the singularities, is to use
the same two equivalent layers as we used for the

potential in § 30-42. If P is external to the surface,

we add the vector Equations 30.53 and 30.57 to

obtain the potential gradient; if P is on the surface,

we add Equations 30.54 and 30.64.

THE BASIC INTEGRAL EQUATIONS
IN GEODETIC COORDINATES

46. Our next task will be to express Green's

Equation 30.50 or 30.51 in a form in which they can
be solved. We shall concentrate on Equation 30.50

for the potential anomaly at a point P on the S-sur-

face (fig. 47), considering that the modifications

required to use Equation 30.51 when P is outside

the S-surface are self-evident. In figure 47, the

base coordinate surface

Figure 47.

normal to the S-surface at the current point Q is

shown as v r and the normal through Q to the

A-coordinate surface is shown as v r
. The plane of

the paper in figure 47 may be considered as con-

taining v r and PQ, but this plane does not neces-

sarily contain v r or either normal at P, although the

heights of P and Q are shown as h, h, respectively.

47. If a, /3 are the geodetic azimuth and zenith

distance of vr
, and the geodetic parallel, meridian,

and normal vectors are A r
, jl

r
, v r , we have as usual

v r— K r sin a sin /3 + /Z
r cos a sin (3+ v T cos /3.

30.66

We can consider that the maximum slope of the

S-surface relative to the geodetic zenith is a depres-

sion of )6 in azimuth a, and, for the present purpose,

it will be sufficient to take a, /3 as the astronomical

azimuth and zenith distance of v r
. If d, (5 are the

geodetic azimuth and zenith distance at Q of the unit

vector in the direction PQ, which we have seen in

§ 29-35 is the same as the covariant gradient vector

lr for displacements of Q with P fixed, we have

/,= k r sin a sin (3-\- {Lr cos a sin /3+ vr cos /3.

30.67

We can obtain a, /3 direct from Equations 25.19 by

writing / for s and by taking the overbarred point

as Q. For substitution in Equation 30.50, we then

have

d n\_ l,v r

Bs \l) I
2

~~li i cos P cos P

30.68 + cos ( a — a) sin /B sin /3}

.
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From Equations 30.66 and 29.23 in our present

notation, we have also

dT_ .——=1 rv r=gr\ sin a sin B
as

30.69 +g(£ + K) cos a sin /3+ (g-y) cos B

where g is actual gravity, y is standard gravity,

k is the curvature correction (§ 29—12), and £, 17 are

the usual components of deflection, all at Q. Equa-

tion 30.69 is suitable if we use the gravity disturb-

ance gD= (g— y) at Q during the surface integration.

If we use the gravity anomaly g,[ and Equations

29.25 and 29.30, we have

30.70 -=(g-y)= gA +-^-T

dT . , .

-7— — gr) sin a sin B + g(£ + k) cos a sin /3
05

30.71 -t

d In y
dh

T) cos/3.

Formulas equivalent to Equations 30.69 and 30.71

can also be obtained from Equation 30.15 for F—T
with Equation 30.21, which shows that (gK) is

minus the meridian component of standard gravity,

as indeed we have already shown in § 29—12 to a

first order in k and in the gravity disturbance. If we
wish to avoid introducing the deflections, we can use

Equation 30.18 for F=T with Equations 30.25 and

30.29, after substitution in the basic integral Equa-

tion 30.50. To avoid breaking the argument, we shall

not write this alternative in full; instead, we shall

concentrate on using Equations 30.69 and 30.71.

48. We have finally to express in geodetic coordi-

nates the element of area <IS of the S-surface at Q.

If we construct normals to the //-coordinate surfaces

through points on the boundary of (IS, the element of

area of the A-surface through Q enclosed by these

normals can be expressed in two ways as

cos /3 dS = (f'+ h) (p + h) cos 4> </aW<£

30.72 =(D+ h){p + h)d£l,

using Equations 9.01 and 18.04 with p, v as the

principal radii of curvature of the base spheroid in

the latitude
(f>

of Q. As shown in figure 47, h is the

geodetic height of Q. The element of solid angle

dil from Equation 29.01 refers to the spherical

representation of the base coordinate spheroid and

can be expressed as

49. Substituting Equations 30.68, 30.71, and 30.'

in Equation 30.50 gives

30.74 2ttTp+
)
JTQdn=

J

LdQ.

where

J = \ cos /3 + cos fa — a) tan (3 sin /3

+i
d-^y-P +h){v+h)ip

L = — {gA + grj sin a tan /3

30.75 +g(£ + x) cos a tan /3} (p+ h) (v+ h),

Equation 30.74 is an integral equation for the u

known potential anomaly with J as kernel. 1

quantities in the surface integrands J, L refer

the current point Q, and the integrands conta

the geodetic heights h. But if we know the geodel

heights of all points as well as the potential, \

should also know the standard potential and th

the potential anomaly; there would be no problei

Accordingly, the integral equation can only be solvi

by successive approximation. We could start wi

assumed heights and solve the equation for a fii

approximation to the potential anomaly T, whi<

enables us to calculate the corresponding geodet

height at P. This operation would have to be 1

peated for the height of a network of points P to 1

used in a second approximation, so that ultimate

we should end with a network of consistent heigh

which do satisfy the integral equation. Unfortu

ately, this direct numerical method is excessive

complicated and involves so much computation th

it could hardly be used in preference to correspon

ing data provided by satellite methods.

50. Many attempts have accordingly been mac

to derive integral formulas for the second and high

approximations. The most elegant method is

parametric method proposed by Molodenskii 9 wl

uses it to solve the simpler integral equation d

rived for a single layer in the next section, althouj

the method could be used to solve the present pro

lem. The integral equation is rewritten for a d

formed surface, as discussed in §30-19 throuj

§30-21, which simply means substitution of tl

formulas given in §30-19 through §30-21 ar

expansion in powers of A\ In addition, the potenti

anomaly is expanded in powers of k as

30.76 T=Ti) + kT i + kiT-2 + k :i
T-, + . . . .

Because k is arbitrary in the sense that any d

formed surface intermediate between the S-surfa<

30.73 (li\ = cos 4> </oj<l(t).

" Molodenskii. Eremeev, and Yurkina, op. cit. supra note

120-124.
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and the base coordinate surface can be used, we
can equate powers of k in the result and so can

obtain a number of integral equations for 7o, 7i,

Tz . The final answer for the potential anomaly

on the S-surface (A:=l) is obtained from Equation

30.76 as

30.77 T=Tti +T, + T, + Ti +

We may ask why the term containing the gravity

anomaly and the deflections is not also expanded

in powers of k; to do so would amount to defining

the gravity anomaly, etc., on the base surface and

on all intermediate ^--surfaces, involving some form

of height reduction for gravity and deflection which

the entire Molodenskii approach seeks to avoid.

However, we can consider that the gravity anomaly

term is defined only on the S-surface; the term is

therefore expressible as a function of two coordi-

nates only— the geodetic latitude and longitude —
and retains the same value at corresponding points

of all the ^-surfaces, although the term does not

represent the gravity anomaly, etc., on these inter-

mediate surfaces. The term (d In yjdh ) also requires

special consideration. The usual assumption is

that the A-coordinate surfaces are standard equi-

potentials and the centrifugal term is assumed to

be zero in Bruns' Equation 20.17, so that we have

30.78
d-^= 2H =- * 1

dh (p + h) (v+h)

These assumptions may be justified in view of the

usual assumptions made in defining the gravity

anomaly itself (for example, by Equation 29.31),

especially when the term (d In y/dh) is multiplied

by the small potential anomaly in the integral equa-

tion; but, by the time a number of other approxi-

mations have been made, it is not unreasonable to

doubt the value of the Tz, T3, etc., terms in Equation

30.77. If we work in terms of the gravity disturbance

instead of the gravity anomaly, it is evident from

Equation 30.70 that the term (d In yjdh) simply dis-

appears from the integral equation, but in that case

it would be necessary to compute the gravity dis-

turbances from approximate geodetic heights and
to repeat the whole computation later from more
accurate heights.

51. Other approximations which have been intro-

duced in the integral equation are too numerous to

detail here. One very common — almost universal —
approximation is to replace the p, v of the base
spheroid by a constant mean radius of curvature R,
which amounts to changing the coordinate system
to spherical polar coordinates. There is no objection

to this procedure which is sometimes described as

a spherical approximation and is justified by rather

unconvincing geometry, but to be consistent we
should evaluate the slopes /3 and the deflections

f , rj in the same system; we should also use appro-

priate values for k and (d In y/r>h) which depend on

the adopted standard field. These logical conse-

quences of the spherical approximation are almost

always ignored. Another common approximation is

to neglect h/R in order to simplify further the

expressions for /, a, /3, etc. The best reference for

these approximate solutions is Moritz,10 but other

approximate solutions are given by de Graaff-

Hunter n and by Levallois,12 the latter using a

spherical base surface in conjunction with gravity

disturbances on the topographic surface. Iterative

methods of approximate solution have been dis-

cussed fully by Koch 13 for the case of a single equiv-

alent layer, and could be extended to cover the case

of both single and double layers.

52. If we evaluate anomalies over the base sphe-

roid instead of over the S-surface, we have /8 = 0,

h — 0, and Equations 30.75 become

3 In yl pv
J= cos/3 + /

dh I /
2

L = — gApv/l.

The resulting integral equation, with the usual

assumptions relating to (9 In y/dh) unless gravity

disturbances are used, can be used to solve the

Zagrebin-Bjerhammar problem (§29—43) or to

provide results equivalent to those derived in

§ 29—44 through §29-47. If, in addition, we assume
that the base surface is a sphere so that p—v — R,

l= 2R sin iifj, cos j8= sin hjj, d lnyldh^-2/R, the

integral equation can be solved by spherical

harmonics to give Stokes' Equation 29.32.

Gradient Equations

53. Integral equations for the gradient of the

potential anomaly can be obtained by the method

outlined in § 30-45. For example, by adding Equa-

tions 30.54A and 30.64 for the potential anomaly T
at a point P on the S-surface and by using the layer

10 Moritz, loc. cit. supra note 5.

11 de Graaff-Hunter, loc. cit. supra note 2.

12 Levallois (1958), "Sur une Equation Integrale Tres Generale

de la Gravimetric" Bulletin Geodesique, new series, no. 50,

36-49.
13 Koch (1967). Successive Approximation of Solutions of

Molodenskys Basic Integral Equation. Report No. 85 of the

Department of Geodetic Science, The Ohio State University

Research Foundation, Columbus, Ohio, 1-34.
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densities given in §30-42, that is,

4-n- \ds)" 47r'

we have

30.79 +i(fr)p-^ f
^y^ {3il'vt)lr-vr}dS

where the overbar in the third term on the right

implies the S-surface gradient of T for reasons given

at the end of § 30-41. This equation can be con-

tracted with any vector fixed at P during the inte-

gration. The simplest results are obtained by
contraction with the S-surface normal and with

the surface vectors at P because we are then able

to assimilate the nonintegral terms on the right.

For example, if we contract with (vr)p (the S-surface

normal at P), we have

(2V)/

30.80

ds) P

-JLf
2tt )

'ldT
, v

_l
l as

+ ^-jr
1{W ,

V>)lr(v
r

)P
--Vr(v

r
)p} dS

where as usual quantities which are not suffixed

P refer to Q, and /, is a unit vector in the direction

PQ. Contraction with an S-surface vector (m'')p

(line element dm) produces exactly the same result

with the substitution of (m r
)P for (v r

)P and dT/dm

for dT/ds. Equivalent unexpanded formulas not

in vector form have been obtained by Koch 14 who
has priority for these formulas. The vector Equa-

tion 30.79 is, however, more general and can be

contracted with the coordinate vectors at P to obtain

the deflections and gravity disturbance at P, using

Equation 29.23. Invariants in contractions of Equa-

tion 30.79 are best calculated from Cartesian com-

ponents which, of course, are the same at P and Q
for parallel vectors. Theoretically, the deflections

and gravity disturbance at P can be calculated from

the three simpler components of 7Y, given by con-

traction with the S-surface normal and surface

vectors; but, if S is the topographic surface, the

results would be completely invalidated by uncer-

tainty in the slope of the surface.

54. If the S-surface is
- a sphere, the equations are,

of course, much simpler and are often given in the

14 Koch, op. cit. supra note 8, 18-21.

literature, but they tell us nothing which has n<

already been obtained even more simply in Chapt(

29. For example, Equation 30.80 can be reduce

to Equation 29.60, using only results which ha\

been obtained in Chapter 29.

THE EQUIVALENT SINGLE LAYER

55. The extra complication involved in the repr

sentation of the basic Green's Equation 30.50 I

both single and double layers, especially in tl

gradient equations and when the point P is on tl

surface, has led Molodenskii to propose using on

a single layer, spread over the topographic S-su

face, as an equivalent mass distribution giving ris

to the actual potential anomaly. The density o" i

this single layer is, of course, no longer (dV/ds)l(4<7i

but has to be determined to agree with the actu;

potential anomaly. We have seen in § 29—55 th<

this arrangement is possible for a general Newtonia

potential if the S-surface is a sphere containing a

the attracting matter, but some justification i

needed in the case of a more general surface. Th
potential of a single layer at a point P, which i

either on or outside the surface, is from Equatio

30.52 and § 30-34

30.81 V,
adSf era

If we hold the current point Q fixed so that cr an

dS are fixed, differentiate twice covariantly for

displacement of an external point P, and contrac

with the associated metric tensor, all in Cartesia

coordinates, we have

30.82 (An-J A(l//)o-dS = 0,

provided cr is bounded. Moreover, the potenti;

at P when P is at a great distance L from S tend

toward

30.83 r, -II adS=-
M
L

where M is the total mass of the coating. The coa

ing accordingly does give rise to a Newtonian poter

tial throughout the space outside the S-surface, an

it is not unreasonable to suppose that we have suff

cient freedom in the choice of cr to represent an

Newtonian potential in this way. Similar justifies

tion when P is on the surface presents more difl

culty. Differentiating Equation 30.54A again i

Cartesian coordinates, we have

(Vrs )p = 2ir(ds)p(vr)p + 2Tra-p(vrs)p +
J

(VDrsadS

30.84
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in which the overbar implies the surface gradient

of cr because cr can vary only over the surface. We
are entitled to assume that the surface integral

derives from a Newtonian potential in free space

at P, which is analytic at P, because the integral

is not taken over the small disc at P (§ 30-35), so

that there are no singularities in any of the deriva-

tives of the potential represented by the integral.

If we contract Equation 30.84 with the metric tensor

and use Equation 7.19, we have

30.85 {AV)r= — 47r///.o>

in which Hp is the mean curvature of the surface

at P. If the coating is to give rise to a Newtonian

potential at a point P on the surface, we must

assume, as indeed we have done in § 30—34 and

§ 30-35, that the small disc at P can be considered

flat; in other words, that a small part of the surface

at P, where we wish to find the potential, can be

replaced by a plane. In practice, this conception

presents no difficulty in the case of a sufficiently

smooth surface; we do not avoid, and cannot expect

to avoid, the necessity for some smoothing of the

topographic surface by adopting the single layer

device.

56. Brovar '"' has noticed that Equation 30.82 is

satisfied if we use a more general harmonic function

E instead of 1// and a more general bounded func-

tion c/> of the position of tire current point Q on the

surface instead of the surface density cr. In that case,

30.86 V,.= \<i>EdS

represents a harmonic potential. But if V p is to

represent a general Newtonian potential throughout

the free space external to the surface. Equation

30.83 must also be satisfied, and it has to be shown
that a particular choice of E does so. For example,

the spheroidal coordinate a does so (§ 22-35) and

could be used in the representaion of a general

Newtonian potential; so could Pizzetti's extension

of the Stokes' function (Equation 29.14 for A=/?/r),

provided the zero- and first-degree harmonics are

omitted. The use of Pizzetti's function does, in fact,

result in some simplification in the formation and
solution of the basic integral Equation 30.90 for a

single layer. But the Cartesian coordinates of P
and many functions of the Cartesian coordinates,

which become infinite at great distances, cannot be

used.

15 Brovar (1963), "Solutions of the Molodenskiy Boundary
Problem," American Geophysical Union translation of Geodeziya
i Aerofotos"yemka, no. 4, 237-240.

The Basic Integral Equations

57. Writing Equation 30.54A for the potential

anomaly, contracting with the coordinate vectors

at P (a point on the surface), and using Equations

29.23, 29.25, 29.30, 30.66, and 30.67, we have

'<) In y\

30.87

30.88

30.89

. cr cos Bp JC
Ittctp cos f3i'

—
|

T5 (IS

(gr})p = 2irap sin ctp sin /3/>

cr sin otp sin fit

P
dS

{g(g+ k) }i- — 2tt(Ti> cos «/• sin (3r

a cos ap sin j8/«

l-
dS

where [gp)p, {g.\)i> are as usual the gravity dis-

turbance and gravity anomaly at P; «/•, /3/> are the

azimuth and zenith distance of the normal to the

S-surface at P, that is, the azimuth an of the greatest

slope, a depression of ftp; and «/•, (3p are the azimuth

and zenith distance at P of the line PQ obtained in

geodetic coordinates from Equation 25.18. Equation

30.87 can be combined with Equation 30.81 and
written as

27TCT/' cos fin

30.90

cos/3/ d In y \ 1

Bh Jpl
adS = (gA

which is the basic integral equation to determine cr

from gravity anomalies. The corresponding equation
for the gravity disturbance is obtained by omitting

the term containing (d In yjdh)p. If P is outside the

S-surface, we use Equation 30.53A instead of Equa-

tion 30.54A, which amounts simply to dropping

the terms containing cri> from Equations 30.87.

30.88. and 30.89.

58. The integral Equation 30.90 can be solved
by any of the methods outlined in § 30-50 and § 30-

51. It is usual to solve the equation in spherical polar

coordinates with the usual approximation d In yldh
=— 2l(R + h) (Equation 30.78). In that case,

the first- or zero-order approximation, obtained by
ignoring all heights or by solving the integral equa-
tion resulting from terms not containing A in

Molodenskii's parametric solution, must be given by
any of the results obtained for a spherical layer

in §29-53 through §29-59. Equation 30.90 in spher-
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ical polar coordinates with all heights ignored

(£,, = (), pp=hr+b}f, l=2Rsinhl/, dS= R2dD)

becomes

{g\),> = 2iT(Ti' — l\ {\ cosec \\\f)crdQ.

30.91 =2tto-p-| [ o- JT/
J„(cos^)(/n,

using Equation 29.11 for k=l. Using Equation

29.10, this last equation can be solved in spherical

harmonics as

{«*?}i»= 2ir{crff}i»r

30.92
47r(» —

1

2ji + 1

3 4-77

~*
2« -h 1

{o-;r}/..

{oW},

which is equivalent t<

^ 2// + 1

4m<TP= 2*-—l{gA>#}p

30.93
4tt J £5 n - 1

using Equations 29.10, 29.05, and 29.06 and noting

that terms in the expansion of g.\ in spherical

harmonics make no contribution to the integral

except the term of the nth degree. Terms of zero

and first degree must be dropped from the sum-

mation, and are not included or determined in

either gA or cr for reasons given in §29-32. How-
ever, when these harmonics are suppressed in

the potential anomaly, as always assumed, they

will not appear in g,.\ (Equation 29.32) or cr. The
function

Mi/>)=>. f„(eosi//)
n=2 n— \

is easily found by writing

<^±Df- 4„ + 2+ 3(2n+ li
I I

Using Equation 29.11 (for k=l), Equation 29.11

differentiated (for A = l), and Equation 29.15,

we have

S (<//) = 1 + 3 cosec |)// — 18 sin ii|/ — 2 1 cos \\>

— 9 cos i|/ In (sin ii// + sin2 ii//).

The final equation for determining the first appro:

imation to the density a from gravity anomalie

is

30.94 167T2crr= S(\ft)gAdn-

The density would have to be calculated from thi

equation if we wish to use Equations 30.88 an

30.89 for the deflections or to calculate the exterm

field. However, if we merely require the potenti

anomaly T at a surface point P, we can use Equ£

tions 30.92 and 29.32 and write

4t7{ct;;'} /

2/» + l (n-l){T'»} P

1 R" + i

which is the same as Equation 29.74 for a sphericc

layer. We then have

R
„ 477

'2i In + 1
{cr',!'}/'

=-^ [{cr'//}/\(C0S<//k/n

again using Equation 30.92. If we exclude zen

and first-degree harmonics, as we must, this las

equation is the same as Stokes" integral, Equatio

29.50. In other words, we may use Stokes' integr;

to find the first approximation to the potenti*

anomaly. To derive this result, we use value

of gA observed on the topographic surface, fc

reasons given in §30-50. without attempting t

apply any reduction to the base sphere; the n

suiting potential anomaly T is a first approxim;

tion to the potential anomaly on the topographi

surface. Neither gA nor T refers to values on th

base sphere, although these quantities are cor

nected by equations applicable to values on the bas

sphere. The same conclusion applies to the firs

approximation to the density cr. It will be foun

that the integral equations for the higher approx

mations have the same form with functions contair

ing heights instead of gA, and can be solved in th

same way. The whole operation is simpler tha

solving Equation 30.74, and should give the sam
results.



Index of Symbols

(Only main uses of the symbols on frequent occasions are given; minor use for some other quantity in

only one context is not given in the index, but is fully explained in the text. References are to the first signifi-

I cant appearance or explanation in the text; later references are sometimes added to a fuller treatment or

to an equally important use of the symbol.)

A Azimuth of principal directions of /V-surface § 12-37

A rs , A rs
, A\ Covariant, contravariant, mixed tensors (second order)... §2-1

A r
sl
BsC Contracted tensor § 2-6; § 2-7

A r , B,, Cr Fixed Cartesian vectors § 12-8

A nm , Bum Coefficients of degree n and order m of Legendre func- §22-17
tions in spheroidal harmonic expression of the po-

tential.

a Determinant of metric tensor (two dimensions) §2-35

a, b Semimajor and semiminor axes of a spheroid or ellipse... § 18—23

dan, a"® Metric tensor in two dimensions § 1—14; § 1-15;

§2-38

b Determinant of bap § 6—31

ba&, b ati Second fundamental forms of a surface § 6-23; § 8-1

C Riemannian curvature § 5-19

Cnm, Snm Coefficients of Legendre functions of degree n and §21-25
order m in spherical harmonic expression of the

potential.

c Determinant of cap § 8-3

c Velocity of light § 24-3

cap, cati Third fundamental forms of a surface § 6-24; § 8-3

D Declination §26-32

E Eccentric anomaly §22-9; §28-28

e Eccentricity of a spheroid or ellipse § 18—23; § 22-3

e Complementary eccentricity § 18-23

I
Atmospheric vapor pressure § 24-38

|
rs

', erst Permutation symbols (three dimensions) § 2-22

ea®, ea/3 Permutation symbols (two dimensions) § 2-35

347
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Fs Force §20-5

F, F, A general scalar, vector § 25-16; § 28-56;

§30-13

/ True anomaly §22-9; §28-25;

§ 28-48

/ The "height" function § 30—8

G Gravitational constant § 20-2

g Determinant of metric tensor (three dimensions) § 2—19

g Gravity §21-90

gA Gravity anomaly § 29—16

go Gravity disturbance § 29-14

grs , grs Metric tensors in three dimensions § 1—9; § 1—10;

§2-19

H Mean curvature of a surface § 7-9

H Hour angle §26-32

H* Hamiltonian §28-23

h Third coordinate in a general (w, (/>, h ) coordinate sys- §17-4
tern. "Height" along straight normal-to-base coordinate

surface.

Istu •••(») nth-order inertia tensor § 21—13

i Inclination of orbit § 28-30

K Gaussian or specific curvature §5-14

A Normal curvature of a surface § 7-3

k A general parameter §29-5; §30-19

k\, k-z Curvature parameters. Normal curvature of /V-surface § 12^23; § 12-24
in parallel (A,•) and meridian (jAr) directions, respectively.

/ Distance between two points § 29-22

Lr , M,-, Nr Orthogonal triad of vectors § 26-36

/,, Mr, n r Orthogonal triad of vectors § 26-7

/,-, L, Covariant vectors (three dimensions) § 1-2; § 1—13

la , L a Covariant vectors (two dimensions) § 1-3

l
r ,L' Contravariant vectors (three dimensions) § 1-3; § 1-12

l
a

, La Contravariant vectors (two dimensions) § 1-3

l
rmr , lrmr Scalar products (three dimensions) § 1-4; § 1-5

l
ama , lama Scalar products (two dimensions) § 1-4

M (or W) Geopotential §20-10

M Total mass §21-13

M Mean anomaly §28-28

m Scale factor § 10-1; § 13-4

m Mass of a particle § 20-2
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/V Third coordinate in a general (w, </>, N) coordinate sys- § 12-1

tem. N may be given various meanings in different

chapters, for example, potential or geopotential in

Chapter 20.

N Angular momentum § 28-25

n Magnitude of gradient of /V in a (w, c/>, N) system. Various § 12-1

meanings may be given to n in different chapters, for

example, gravity in Chapter 20.

n Mean motion § 28-27

p Perpendicular from Cartesian origin to /V-surface tangent § 12-95

plane.

p Atmospheric pressure § 24—34

Q Latitude and longitude matrix § 19—9

qu q-i Rectangular coordinates in an ellipse § 22-9; § 28-29

R Disturbing force § 28-41

R[jjk., Rmijk Riemann-Christoffel tensors § 5-3: § 5-5

Rij Ricci tensor § 5-11

R, S Matrices of components of K r
, jx' , v r and A. r , £i r , vr § 19—16

r, R Radial distance from Cartesian origin. Third coordinate §1-11; §29-22
in spherical polar coordinates.

S Surface or area § 9-1

S Optical path length § 24-3

Sp«,Su Lame tensor §5-12; §5-13

Snm , Cnm Coefficients of Legendre functions of degree n and order § 21-25

m in spherical harmonic expression of the potential.

\S(k, iff), S(k, \jj), Stokes or Pizzetti functions §29-6; §29-8;

SW,S(*)Jw §29-9; §30-58

5 Arc of curve or contour § 9-3

T Atmospheric temperature °K § 24-46

T Potential anomaly § 29-10

t Geodesic torjsion § 7—5

t Atmospheric temperature °C § 24-45

t Time §28-3

h Curvature parameter. Geodesic torsion of A^-surface in §12-23
the direction of the parallel (\r).

U Geopotential of standard gravitational field § 29-10

u Reduced latitude in spheroidal coordinates § 22-4

{u™}, {u n} Spherical harmonics §29-2

«„, va Principal directions of a surface § 7-14

I Volume §9-2; §9-12

V Attraction potential §21-11; §30-22
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v Volume §30-22

v Scalar velocity § 28-5

V Velocity vector § 28-5

W Geopotential §20-14; §23-9;
§28-19

w Argument of perigee § 28-30

X, F, Z Cartesian coordinates § 27-3

x, y, z Cartesian coordinates § 27-1

x r Generalized coordinates (three dimensions). Position §1-9
vector in Cartesian coordinates.

x r
a dxrldxa §6-3

a Azimuth § 12-11

« Eccentricity angle in spheroidal coordinates § 22-3

a Temperature coefficient of refractivity of air § 24-45

ft Zenith distance § 12-11

P Auxiliary angle in spheroidal coordinates § 22-6

Mj, [ij, k] Christoffel symbols § 3-1

7 Standard gravity § 29-13

7i, 72 Curvature parameters. Rate of change of (In n) in parallel § 12-17

(V) and meridian (/u.
r

) directions, respectively, in a

(to, 0, N) system.

A Laplacian § 3-9

A Surface Laplacian §8-17

A Deflection or increment § 25-24; § 26-1

1

A'' Deflection vector § 19-23

V First differential invariant §3-10

V, V„. Surface V §8-18: §30-10

8 Deflection or increment, or intrinsic derivative § 26-10; § 4-1

8f Kronecker delta (three dimensions) § 1-21

&,"',", 8",'" Generalized Kronecker deltas (three dimensions) §2-27; §2-28

8yf , Sjj Kronecker deltas (two dimensions) § 2-40

e'
s
', e,.s ,

e-systems or e-tensors (three dimensions) § 2-24

erstA sB t , e rstA sB< Vector products §2-30

e
rs'A rBsC t Scalar triple product § 2-31

erstFts Curl of vector F, §3-11

e™'
3

, eU/3
e-systems or e-tensors (two dimensions) § 2-35

£ Height anomaly § 29-16

rj Parallel component of deflection § 29-13

k Standard curvature correction § 29-12
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Ki, K2 Principal curvatures of a surface § 7-14

k Wavelength §24-43

\ r , p r , v r Parallel, meridian, and normal vectors in a (w, $, N) §12-9
system.

p Dipole magnetic moment or moment density §21-101; §30-36

p Refractive index § 24-3

p Product of mass and gravitational constant (GM) § 28-25

p, p Principal radii of curvature of a spheroid in parallel and § 1 8-24

meridian directions.

vr Unit normal vector §6-13

v'a Surface tensor derivative of unit normal § 6-22

£ Meridian component of deflection §29-13

p, v Principal radii of curvature of a spheroid in meridian § 18-24

and parallel directions.

p Density § 20-16

p
r

, p r Position vector § 11-3; § 12-95

<j Geodesic curvature § 4-6

<j Spherical auxiliary angle § 19-5

o~ Densitv of a surface layer § 29-53; § 30-31

t Torsion of a curve in three dimensions § 4-4

t Spherical auxiliary angle § 19-6

]

$ Lat it ude matrix § 19-9

</> Latitude of the gradient of N and second coordinate in § 12-1

a (a). 4>, N) system.

X First or principal curvature (curve in three dimensions)... § 4~3

i// Isometric latitude § 2 1-79

</> Spherical arc § 29-4

" Longitude matrix § 19-9

ft Solid angle § 20-16; § 29-2

ft Right ascension of ascending node § 28-30

w Longitude of the gradient of TV and first coordinate in a §12-1
(oi, (/>, N) system.

f Angular velocity (usually of the Earth's rotation) § 20-10





Summary of Formulas

Metric:

1.06

Chapter 1

ds 2= grsdx'dx* (r, s— 1, 2, 3)

(in three dimensions)

ds 1 = a alidxadx ii (a,j8=l,2)
(in two dimensions)

Unit Contravariant Vector:

1.08 l> = dx>lds

Unit Covariant Vector:

1-12 lx=grjr= gjr

Vector of Magnitude k:

1.09; 1.13 L>=kl>; L,=kl r

Scalar Product:

1.17 L'M, = k /J, cosO

Gradient of a Scalar V:

1.20; 1.21 Nr=dNldxr=nvr

Transformation of Vectors:

1.18
i dxr

j
L' =— L s

3x s

1.19
— 3xs

dxr

Kronecker Delta:

8?=1 if s = t

1.24 8*=0 if s^t

Chapter 2

Transformation of Tensors:

dxf dxq

2.01 Ars=~ Sr-Am
dx r dx* '

'

2.02

2.03

7 C)X' dx s
.

dx? dx"

7 dx r dxi .

s dxP dx s "

Addition of Tensors:

2.04 C'
S ,
= A'

S , + B'
X ,

Multiplication of Tensors:

2.05 C'
S ,
= A S,B>-

2.06 C, = /*,,#'

The Metric Tensor as Product of Unit Orthogonal

Vectors:

2.07 k'K + /x'/x, + vrv„ = 8j = grtgs,

2 .08 k,K + Hr^s + VrVs = gr,

2.09; 2.10 krkt+ fi
r
fi

t+vrv'= grt=Grt
lg

Raising and Lowering Indices:

grsA l
.

t =A*
l

grsA s
., = A r ,

Determinants:

2.12 Aers,
= eijkA).A^

2.16 V.A =e iJke r:«Ai rApA kl

2.17 2L4 "•= e^ke rstAjlsAk ,

The e-Systems:

2.14

2.15

2.18

2.19

dx*> = Vg
dx'

ersi
= Vgerst

cist= <>rste rs'/Wg

rsl c ^rst " "rat

Simn = Simnp

353
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2.22

2.20

2.21

8f = £8™*

o
s ,
A mil ii

= ^ xfp ^3 (sp

°s< ^..p ^..p ^..p

Vector Products:

2.24 e r*<A sB t ={ab sin 0)A'

2.25 e{rAStC r = abc sin sin </>

2.26 e"%./zx i>, = 1

(Xr ,
/a,, v r unit orthogonal right-handed vectors.)

Further Properties of e-Systems:

€rSt = k r
{/JL

s
l>> - Ps

fJL<) + /jl'( ps K< — AV)

2.27 +vr(\snt -(Askt
)

2.28 gne^'e^ = g'Jgk - g'kgj>

Two-Dimensional Formulas:

2.29 j _ c>xy dxb

2.30 e^^e^/Va; eu0 =\4eo/j

2.32 ea^= \a^-fxak^

(A", yfi unit orthogonal vectors.)

2.32 €a/3
= Aa£l/3~ Ha^fi

2.37 fJ-a
= €aaK"

2.34 CLafS= \a\$-\- lAalAQ

2.35 aaP= \.
akl3+ fi

a
V<

13

2.36 a"<3a0y=8y=A"Ay + /A
<>y

2.38 8y£=e«%y6

2.39 8§=8$

2.41 8y^y4 agpo-= A ygp,r — A gypo.

2.42 2L4 = e«V«4 a/^y8

2.43 A°»=(^e»hAyh

2.44

2.45

aa = e"VsayS

a a/3 — € (»ye/isa

Chapter 3

y8

Christoffel Symbols:

3.01 W,k]=^(^+^f-
d

^i

Mathematical Geodei

3.02

Covariant Derivatives of a Vector A'. A,

3.07

dA
(

-

Aj=^+rj^
J dxJ Jk

3.08 ^ST 1^
Covariant Derivative of a Tensor K r

st
:

3-09 A^= ^+r;,Ai,-risA];-Fi,A^

(Rules follow Equation 3.09.)

Covariant Derivative of a Scalar Gradient </> r :

3.10; 3.11 v
' dx rdxs rs^ *'•

Laplacian of a Vector F,:

l a
3.12; 3.17 \F= grsFr« = Fs

.s
= =^~

s
(VgF s

\ g oX

Other Differential Invariants:

3.13 V(F)=grsF,Fs

3.14 V(F, G)=gr*FrGs

Curl of a Vector F,

:

3.15 e rs
'F,,.

Differentials of Determinant of Metric Tensor:

B (In \rg)
3.16

a.t»
1

fru

Covariant Derivatives of Unit Perpendicular Vectors

3.19; 3.20 /,,, /' = 0; lr, s j
r=-jr,s l

r

Chapter 4

Frenet Equations of a Curve in Three Dimensions

m rs l
s = — \lr + Tn r

4.06 n rJs= — Tm,

Curvature of Orthogonal Surface Curves la , ja :

4.11

latl = (TJall3 + (T*jcJl3

jap= ~ crlJn — a lajli
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4.12

Chapter 5

Riemann-Christoffel Tensors:

5.03 R

5.02

5.04

5.05

5.06

ijk dxJ

i : ri + r»ir/ _ r»ir/
ik Qxk

' U^ ' i*
J

>»J >J mk

h,jk — h, kj — R'.iji^i

Riijk WikJ

R'.
ijk
+ R[jki + Rl kij

=

R mijk gl.nR 1

. ijk

5.07

Rmijk =— [ik, m] -— [y, m]

+ r(,.[mA, /]-n,[m>, /]

„ =1 ( Vgmk d 2
gij d 2gmj &gik

mijk 2
{dx^xJ dx'"dxk dx'dxk dx"'c)xJ

5.08 +gP*{[mk, p][ij, q]-[mj, p][ik, q]}

5.09 Rniuk
= Rjkm i

Ricci Tensor:

5.11 Rij
= g»»>R„ l ijk

= R%k
.

ri r)

5.12 dxJ" dx l h u m} 'jl >»i

Lame Tensor:

5.13 SP<l=Upmi€^kRmijk

5.14 €
l)rSeq,uSP1=Rrstu

5.15 Rij = Sij — Sgij

Gaussian Curvature of a Surface:

5.16; 5.17 K=Ua'3eySRapY8= Rnula

]

5.18 +

2V7i

d

1 da-i-i

dx l VVa dx ]

1 d«,,
N

<9x 2 \ Va d.v

5.19 ReptTT — KeepeaT

5.20 R l)IT
= -Ka p<T

Unit Orthogonal Surface Vectors \a , /-<-«:

?
8

\a/3Y

(O,2= 0)

A-a. ^y
—

A-a. yfl — ^f>R
h
„Ry
— ^Rhapy — KiAuepy

5.24 e^ka,ffY=Kfia

Riemannian Curvature:

5.25 ; 5.26 C = RmijkkmiJ.
iVlx

k = S™vpvq

General:

6.02

6.06

Chapter 6

dx r

= ,.

dxa %a

aap = grsXax
[!

Surface Vectors:

6.07 l
r=x r

a l
a

6.08 fcc|=//B

6.09 x r
a =l'la +j<\ja

The Unit Normal:

6.10 grs= aaH T
ax%+vrv s

6.11 i/r€
r"=e ,*x«x'

fl

6.12 fp=ie°%s,x£4

Covariant Derivatives:

3 (In Va)
6.13

6.14

- V 13

dx a "*

d-x r

+ H; *<,*$- 1^*$" d%ad^

The Gauss Equations:

6.16 xT
ay=bayv

r

The Weingarten Equations:

6.17 v^-a^bpyxl

The Fundamental Forms:

6.18

««H = grs-X'aXfr

Cap = gr8V£V$= d^baybfi?,

5.22; 5.23

The Mainardi-Codazzi Equations:

6.21 bapy=bayi} (flat space)

6.22 baffY = ba yfi
— R UrstV

uX r
axlXy

Gaussian Curvature:

Kesa€0y= Rsa/fY= (baybps— bsvbap) (flat space)

6.26
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6.27 aK — R\2vi = b (flat space)

Kesaepy = Rsapy = bayb($b — bdybap+ R Urstx^x
r
ax^xy

6.28

Chapter 7

Curvature (Meusnier's Equations):

7.03 l rs v
rls = -vrj rl*=bali l

aiv = x cosd= k

7.04 lrsj
r
l
s= <r=x sin 9

Torsion:

t= T+ (ddlds) = bali l
ajV = bapjW

7.08 =-vrs l
r
j

s=-vrsj
r
l
s

Curvature and Torsion:

7.09 vrs l
!t = -kl r -tjr

7.10 badlV^+kL + tja

7.12 bafi = kla l/}+t( lajfi + ja 1 ) + k*jajli

ca0=(k2 + t
2)lal^+2Ht(laJi3+jal )+(k*2 + t

2
)jajp

7.14

Invariants:

7.15 aa%afi=k+ k*= 2H

7.18 K = bla = c/b=(kk*-fi
)

7.19 2H = -v[ r

7.20 Ka ae-2Hbai3+ Cav =

Principal Curvatures:

7.21 2H=K } + K>

7.22 K= Ki k2

7.23 aap= uaup+

v

avp

7.24 bali= K\UaU$+ KtVaVjj

7.25 Ca0= KiMaM|8+ K|Wa^/3

7.26; 7.27 vr$u>s=— Ki?/ r ; vrsV
s— ~k%vt

Chapter 8

Contravariant Fundamental Forms:

8.01 Kb c"3= e^e'H yf>

8.02 =k*la^-t(laf+j"l^)+kjap
8.03 =KZUa

lll3+KiVaV 13

8.04 K 2c°<,= e aV8cy8

K 2
ca<3 =(k* 2 +t 2 )l a l(i -2Ht(laji3 +ja lii

)

+ (Jfe»+«»)jV

8.05 = k
l
2u q^ + k 2?;<V*

8.07 a a»-2Hb a»+ Kc a» = Q

8.08 b a% ay = 8^. C^Cay=8^

8.09; 8.12 b^c/ty=a^bpr; c a»bffY =b a^a t

8.10; 8.11 6"%=-a a%£; c a%=-

b

a^

8.13 2H=a^ba(i=b a(icai3
= Kc afib al3

= Kb^a c

8.14 a^Co/B = K2ca^aafi = (4// 2 - 2£) = k 2 + «

Covariant Derivatives:

ba0y= (K, )yttatt0+ ( K2 ) yVal>|8

8.16 + (ki — K2) (crwy+ crVy) {uav$ + vau.ii)

Capy= (K 2
x
)yUaU(}+ (l<l)yVaVfj

8.17 + (k 2 — K|)(cra-y+cr*vy) ( u«f + faU/3

)

&?A
y=(l/Ki)ya°W

s+ (l/fb)-ypV

8.18 +(1/k, -l/K.Xauy + o-Vl'fuy+fV

C«^= (l/K?)yttV+ (l/fc|)yl>«|*

8.19 +(l/K'--l/K^)(o-«y+cr*?;y)(uV+2;a^)

a aeb
al3y=(2H)y a^ca/3y=(4// 2 -2K)

b^b al3y=anK)y b<#CaPY= (4//)y

8.20 c^baffv=- (2H/K) y c^caffY=2(lnK) y

Mainardi-Codazzi Equations:

(ki
— k2 )ct= (Ki )y?;

y

8.22 (K,-K2 )o-*=(K,)yU>

o-(^-^*) = (A-)y; Y -(0y/ Y -2io-*

8.23 <r*(k- k*) = (k*) yly - (t)yjy + 2to-

Space and Surface Tensors and Invariants:

8.25 FrsX^X^Faf}- (FrV r
)bcfi

8.26 Frsll
rV s= FapU^

8.27 F:r =F?a -2H(Frv r
) +Frsvrv s

8.29 AF = &F-2H(dFlds) + (d2Flds 2)-x(F,W

dF\ /8G
8.30 V(F,G)=V(^G) + (-ll-

Space Curved:

8.31 £=(M*-*2)+C
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General:

9.01

9.02

dS = V~adx ldx 2

dV=Vgdx 1dx 2dx i

Surface and Contour Integrals:

9.04 [ ea^Fp, a dS= f FJads

[ e»»''vlTiJk .„ l dS = j T,Jk l»ds

j Vi€ l™Fn.mdS= j FJnds

VielmnFn,mdS= (closed surface)

I (VpTijk, q— VqTijK,p)dS= I €npqTijkl
nds

J

(pl)
C"

l
-u,

l
C'!

l)
)dS=\ e„ llflG«l"ds

9.11 f {2Hv lUik + a^xp ipik , q)dS=-[j lU}kds

\ ~M>dS =-\ 0,/
Js Jc

9.06

9.07

9.08

9.09

9.10

9.12

9.13 L

i'ds

A(f)dS = (closed surface)

Volume and Surface Integrals:

9.15

9.16

9.17

9.18

9.19

Tjjk.mdV— TijkVmdS

J
F% dV=j F'"vmdS=

J
F,„p>»dS

j t

(&<b)dV=j {d<)>lds)dS

J
{S7i4>,^)+4>^}dV=

J

(j)(dil/lds)dS

{d>Aih-^d>}dV=! U^-^)dS
Js \ ds dsj

Chapter 10

Metrical Relations:

10.01 ds 2 = m 2ds 2

10.02 grs=m*grs

10.03 \grs\ = m«\grs
\

10.04 grs= m-2
grs

m 2
[ij, k] = [ij, k] + gik ( In m )j + gjk ( In m )

,

10.05 -
gij (\nm) k

T;. - rj. + 8\( In m )j + Sj( In m )
,

:

-

gijglk
( In m )

,

10.06

m ~ 2R qrs i
— Rqrst = mgqs ( l//») rt~ TTlgqt ( 1/ffl) rg

— mg™ ( 1 /m ) 9, + mgr , ( 1 /m ) gs

10.07 + m*(g„g*-grtgq,)V(llm

)

10.09 Rrs- Rrs =-m(l/m) ),+ (l/m)(Affl)g(,

10.11 S,,. - Srs=- m(llm)rs~ (A In m )grs

Transformation of Tensors:

10.12 l< = m-H>

10.13 /~=m/ r

10.14 m

"

lJr , , = /r, , - ( In m ) , /, + grs (In m),l<

10.15 mlr
tS
= l

r
tS+ h T

s {\am)tl
t-grt{h\m) tls

<t>rs
= 0rs — (/),( In m ) g

— c/).s (In m ) , + gy-sV ( In m , <£

)

10.16

10.17 m 2A^ = A</)+(8;:-2) V(ln m, </>)

;h 2 A(/> = A0+ V(ln m, 0) (three dimensions)

10.18

Correspondence of Lines:

10.19 /„,/«=/„/«- (In m), + {(hi m),l'}l r

Xn r = mxn, = {x- (\nm) tp'}p r
-

{ ( In m),q'}q,

10.20

m\ cos 0= x — (In m ),p'

10.21 mxsmd=— {Inm^q 1

10.22 mf = T+(dBlds)

mxidd/ds )
=— sin d(dx/ds )+ r(ln m ),- rc

''

10.23 + mQlm)rsb r
l*

m 2
XT= XT cos $ — sm d(dx/ds)+ m(llm),sb r

l
s

10.24
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m'z {dxlds)= cos d(dxlds)— T(\n m)rb'

10.25 +malm)rsn r
l*

Surface Normals:

10.27 Nr= nvr

10.28 vTS = vsr + *A-(ln n ),•
— v,(\n n )s

1 0.29 vnv* = (In n ), - i>,{\n n
)sv*

Transformation of Surfaces:

a,ap
= m 2aap

\<iap\ = m 4 |aa#|
jap -2n aPm~-a10.30

10.31 M\nm)=K-m 2K

10.32 A(\nm)= K (plane to curved surface)

Geodesic Curvatures:

10.33 a — ma = {In m)aja

Extrinsic Properties:

10.34

10.35 rrCv

10.36

10.37

10.38

10.39

10.40

10.41

10.42

10.43

x r= xa a

,
v'a+nx[

In Equation 10.35, n = (In m)rv r
.

m- 1 bap= bap — naap

Cap= cap ~ 2nbap + n 2a ap

mk=k—

n

*= k*-

mt=t

m 2 (kk*-t 2
)
= (kk*-t 2)-2Hn + n 2

m 2C = C-{Mlnm)-2Hn + n 2
}

m~ l bapy — bapy — aapm ( l/m ) siv
sx'y

^ (\nm) abpy
apy

10.44 + r/
fie (In m% V a apbyb

apy

m- iR (irs(
vix'ax

s
x'y— R l, ) sii'''x'ax

:

ji
x'y

10.45 =— maap(llm) qtv <'Xy+ ma ay(llm) qspix^

Gauss-Bonnet Theorem:

|

ads- &ds = KdS

ads +
|
KdS = 27T (continuous contour)

J

<rds+ KdS = 2tt — rnr + ^ dn (n-corners)

10.48

I crds+l KdS = A + B + C-ir (triangle)

10.49

I KdS — A + B + C — TT (geodesic triangle)

10.50

Chapter 11

Metrical Relations:

(Overbarred quantities refer to the sphere.)

11.01 v' = p
r =i> r

11.02 < = P'a= * ra=K
11.03 aap=cap

11.04 bap=— Cap = — dap

11.05 cap=cap = aap

11.06 \a ap\ — \cap\ =K 2 \aap\ =K\bap\

11.07 aa^=ca^=-baP=ca^

11.08 b^x^b^Xy-

(Scale factor m = ds/ds.)

11.11 m 2 = k 2 + t
2

11.12 l
a = mla

11.13 ml(i=capla = m 2
lp + 2Htjp

11.14 €ap = eap/K- e^=Ke a^

11.15 jfi={mlK)h

Principal Directions and Curvatures:

m = — K\ (in ^-direction)

11.18 m=— Ki (in ^-direction)

11.19 u a= — K\U a
; up = — uplK X

11.20 va=— Kiv a
; vp =— vplK>

Direction l
a
(l

aua= cos t//)

:

11.21 m 2 = k 2 cos 2
<// + k.| sin 2

<//

— K\ cos >p

10.47
11.22 COS l//

:

(k 2 cos 2
t// + K.f sin 2

<//)
1/2
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11.23 sint/»=

11.24

k2 sin <//

(k 2 cos 2 i//+ k| sin 2
1//)

1/2

tan t//= (k2/ki) tani|/

Christoffel Symbols:

11.30

11.31 r^ + 6^86^5

a/3 * a0
-& y8

6a/38

same overbarred

Chapter 12

Base Vectors:

12.001 Nr =nvr

l
r = K r sin a sin B + /u,' cos a sin /3+ f r cos /3

12.007

\, = — /4,- sin to + 5, cos to

fj, r
= — A r sin (/> cos a»

—
fir sin (/> sin w + C r cos (/>

v r= /4 r cos </) cos u) + B r cos (£ sin to + C r sin $

12.008

Xr
— A, =— Xr sin to — /it, sin (/> cits a;

+ j/r cos cf> cos to

yr= Br=\r cos (0 — /JL, sin $ sin a;

+ pv cos $ sin to

z, = C, = /Xr cos + i', sin t\>

12.009

x = — (*— xo) sin a> + (y— Jo) cos to

y= — (x — Xo) sin tj> cos a»

— (y~ yo) sin </> sin to+ (z— zo) cos </>

z= (x — xo) cos cos to

12.010 + (v— yo) cos (/> sin to+ (z— Zo) sin t}>

(x — xo) = — x sin cd — y sin tj> cos to + z cos cos a;

(y— yo)
= x cos a> — y sin sin to +z cos c/> sin a»

(z — Zo) =y cos (/) +z sin c/>

12.011

/A,\ /l \ /-sin to cos to 0\//4A

I ju-c )
—

I sin (j) cos $ II — cos a» —sin to Oil fi»

\i/,-/ \0 -cos sin </>/ \ l/\C,./

12.012

/A,\ /-sin &) -cos to OW] \ /\,

fi, = cos a> —sin to I sin </>
— cos <M Lu.,

\C,J \ l/\0 cost/) sin<£ /V,

12.013

Derivatives of Base Vectors:

A r .s
= (— /4 r COS CO —

B

r sin to)tos

12.014 = (/JLr Sin </)
— IV COS c/))to.s

12.015 jU.r.s- = — sin (/> K rco,-v,4s

12.016 »Vs — COS $ Arto., + /A, </>.s

12.017 N„=n,vr + nvn

12.020 vrsvs= {(In fi)g\s}Xr +{(ln nls^'V'

12.021 =y,\r + y2rir

12.022 kQ = riaiop sin 4>

12.023 fJ-ap — — Xatofj sin <£

12.024 vaii = -bati

Components of Base Vectors:

12.025

12.026

$8 = — rlr*V
r

(COS $)to.s- = — X rsV
r

\r=(tos\s
, (/>SAS

, iVsAs
)

12.029 =(-Ai sec </>, -f,, 0)

/U.' = ( tos/i." . SrA
S

, Vs/Lt.s )

12.030 =(-ti sec</),-A-2,0)

I/'= (tosJ/
s

, (J^V*, <V.s^
x

)

12.034 =(y, sec(/),yj./0

12.035 \"= (-/m sec 0, -fi)

12.036 jbt° = (-fi sec 0, -/.>)

12.041 Kk,=(—k> cos 0. +?,. A. sec (j>d(lln)ldco)

12.042 Kixr = (+t l
cos </>. -/.,. Kd{lln)ld<fi)

12.043 i/r= (0, 0, 1//))

J
KXz= (kiyi-t lyi)ln=- (\ln) s (h-2 k

x -
t,fx

s
) I

[K/a3 = (A-,y2 -f,y, )/n=- (l/n)«(- ?,AS + A lrx
s

)
J

12.039; 12.040

12.044 K\„= (-A-2 cos (/>. +.,)

12.045 K/x„= ( + / cos 0, -Ai)
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12.046 (COS 4))(i) r = —kikr — UfXr + JxVr

12.047 4h=*-tikr-ktlJLr+ yiVr

12.048 (In n),=yi\r+ y2Hr+{(\n n) s i>"}i>,

Curvatures of /V-Surfaces:

ft = k\ sin- a + 2^i sin a cos a+A"2 cos 2 a

12.049

t= (A'2— Ai) sin a cos a-/, (cos- a -sin- a)

12.050

12.051 tan 2/f = + 2f,/(A2
- A,

)

K\ = A'i sin 2 4 + 2t\ sin ,4 cos A + A2 cos2 4

k> — k\ cos 2 4 — 2t\ sin 4 cos A + k2 sin2 4

12.052

12.053 H=H«i + K2)=i(ki + h)

( Ki — k-2 ) = ( A2 — Ai ) sec 24 = 2f i cosec 2A

12.054

12.055 K= K i K2 = k l k2 -fi

12.056 A = k. cos 2 (4 — a) + K2 sin 2 (4 — a)

12.057 t = i(#c,-/c2 ) sin 204 -a)

Ai = Ki sin 2 4 + k-j cos 2
/4

A2 = Ki cos2 A + k> sin 2 4

12.058 ti= (ki — k2 ) sin/4 cos A

(cos (j>)do)/dl =— Ai sin a — fi cos a

= — A sin a + f cos a

d(f>ldl = — 1\ sin a — A-2 cos a

= — A cos a— £ sin a

(cos (f))do)/dj= Ai cos a — /, sin a

= A* cos a— t sin a

12.060

B(f>ldj=t\ cos ot— kz sin a

=— k* sin a — f cos a

(cos <f>)(or = (~k sin a+ ? cos a)/r

12.061 + {k* cos a— f sin a)j,+J\V r

(/>,=— (A cos a+f sin a)lr

12.062 - (A* sin a + t cos <x)jr+yiVr

Geodesic Curvatures:

12.063 lpy = jp(o)y sin
(f>
— ay)

Mathematical Geodes

12.064 crly + cr*jy=(oy sin </> — a>

12.065 <r= sin <f>(do>ldl) - (da/dl)

cti = — Ai tan ^; cr2 =— /, tan c/>

12.066; 12.067

o"= o"i sin a + cr2 cos a— {da/dl)

12.068

Metric Tensor:

gu = (iu — (kj + t'i) cos 2 $fK'2

gv> = ci\2 = — 2Ht\ cos 4>IK-

g22= a22= (k\ + f\)IK-

gn

gza

k-> 3(l/n) d cos (/> 3(l/n)

= -[y.(A-2 + /
2 )-2//y,r 1 ]/(«A'

2 sec 0)

_ £i sec
(f>

d(l/n) Ai d(l/n)

K da> K d(f>

=-[yz(ki + f{)-2Hy1ti]lnK 2

£33 = sec 2 $
a(l/n)\ 2

,
(B{Vn

n-

12.069

12.070

12.071

12.072

12.073

dco ) \ <?</>

= [y\(kl + f\)+yl(k\ + ti)

-mtiyiy2 + K 2V(n 2K 2
)

= sec 2 j8/n 2

£ = cos 2 $/(n 2
A.

2
); « = cos 2 (j)/K-

fi
u = (k'i+ fi+ y'i) sec 2

g
v2 = (yiyz + 2Hti) sec </>

£
22 =(Ai + /

2 + yi)

g
Vi — nyi sec </>

A
/2:, = «y2

o"=(A-f+ tf) sec 2

a 12= 2//fi sec (/>

a 22 =(As+f 2
)

|^'"s
|

= n 2
A.'

2 sec 2
: |a

a
^| = X 2 sec 2

</>

Second Fundamental Form:

12.074

12.075 (A-2 cos 2 0/A:. —t\ cos (/>/&. Ai/A)
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12.076 b= cos 2
<t>IK

12.077 ba>i = (/„ sec-
<f>,

f, sec <f>. /.,)

12.079 6,a =-(cos</>)\„; b>a =-fia

12.080 b la=- (sec <b)Ka ; b'
la =-[x c

12.081 (lnn) a =-6a/3^

12.082 i/« = -6«*(ln/i)0

Third Fundamental Form:

12.083 c^= (cos- (/>, 0, 1)

12.084 c= cos-</>

12.085 c^=(sec- 0,0.1)

Coordinate Directions:

Longitude:

12.086 f=(l/V>„,0, 0)

cos «, = ?,/( A| + t'\

)

''- = /,//»_>

12.087 sin oc!=- fol {ki+.t*y l*=- folrn-,

m-> =
(&f+ £f)

1/2 = (k! sin- // + kt cos- //)"-

cos cci = (ki — k>) sin // cos /4/ma

12.088 sin ai=— (k> sin- A + Ki cos- .4)/w-,

sin (-4 — ai ) = Ki cos .4/m^

12.089 cos {A — a\)=— k2 sin A/m2

Coordinate Directions:

Latitude:

12.090 j'= (0, 1/V^, 0)

cos a-> = - /, ,/ (/.'t
+ ^ ) "- = - Ai/m,

12.091 sin aa = fi/(Af + «f)
,/2 = fi//n,

mi =(AT + f'T)"-= (kt sin- ,4 + K3 cos- ,4 )
"*

cos a> = — (k\ sin- .4 + k< cos- .4 )/mi

12.092 sin a>= [k\ — K>) sin A cos ,4/mi

sin {A — a>) = — K\ sin .4/m,

12.093 cos M-a>)=-K2 cos /f/m,

The Isozenithal:

12.095 A' = (0, 0, 1/V&

sin a sin /3 = {sec d ( 1//? )/d<w}/ V #13

cos a sin = {a ( 1/n )/d0}/V#^

cos/3=(l/n)/V#^

12.096

sin a tan )8 = — (sec </> )r> ( In n)/du>

12.097 cos a tan /3= -d(ln /i)/d<£

12.098 \,,A * = /Ar,A
s = i/MA-« =

Laplacians of Coordinates:

12.099 /V,..,= n.,i/, + ni;, s

12.100 AN= dn/ds-2Hn

12.101 (cos 4>)<os= (1MY,,vV

12.102 0,=(l//O;V,,/Li'

12.103 nx = Nr!lv
r

(cos $)Aw = 2 sin c/> V(a>, c/>) —2 cos V (w. In /i)

12.104 + (1//;)(A/V),V

A<j) = — 2V(</>, In ra) — sin cos <£ V(a>)

12.105 +(l/n)(A/V) r/a
r

A// = /({cos- </> V(co) + V(</>) } + ( A/V),V

12.106

12.109 cos- 4> V(w) =
/,f + /f + y'T

12.110 V(0)=A1 + fT + y3

12.111 cos V(ft), 0)=2///, + -y,y,

cos V(a), In n) =-/.,yi — to*+ 2//yi + (y,A.V)//;

12.112 =/.jy,-/,y,.+ (y.A.V)//;

V
( 0, In /1 ) = - f

,
y, - /,,.y,- + 2/7 y, + ( y,A;V )/n

12.113 =kiyi -tiy l + (y2A;V)/n

cos- </> V(w) + V(</>)=4//--2/^ + (yf + yji)

12.114 =K? + K|+(yi + yi)

(l//i)A/» = 4//--2A + (yf+ yl)

12.115 + (l/n)(AAO ri/
r

Surface Invariants:

(cos </>)Aw = 2(sin 0)V(w, 0)- (2//)„\ a

12.118

L
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12.119 V(a), <b) = 2Ht i sec0

12.120 A0 = - (sin cos 0)V(<u) - [2H) alx
a

12.121 V(a») = (A? + tf) sec2
<£

(l/n)A^=(4# 2 -2A:) + 2(y2+ yi)-d(2//)/3s

12.122

Christoffel Symbols:

0/3 = «V ; r§« = ; Th =- d(ln rc)/d/V

12.124

, d6a7

Mathematical Geodesy

12.127

12.128

12.129

T% = b*»
dbgy

dN 5/37
dN

r^=ain)ba»
d 2(\n /i)

— oj# sin 4>(jj.„ky — ka/Ay)+ bupv^

(space) =—2\t+----m
a**3 c)x fi ^

nifl surface) =-H! \y+_c^
/u,
y

12.130

F^ (space) -r*3 (surface) =—vafjV
y

12.131 =bapvy

Mainardi-Codazzi Equations:

dbu/d(f) — db\->ldoj + bu tan (j) + b>> sin $ cos (b~0

12.134

dbVz/d(f> — db-z-zldo) — 6 t2 tan =12.135

12.143

12.144

12.142

dfrg£= a
2
(l//?)

| py
3(l//l) Cg/3

aTV a^a.r^ a/3
a* Y " n

sL+'-M^-?
T2

,
= sin cos ; T}

2
= — tan

Mainardi-Codazzi Equations in Tangential Coor-

dinates:

12.145 P = PrVr

12.146 pa = prv'a

l>ati=— bafi + p,\byhbatihv$ — capv r
)

12.147

12.148

12.151

bafi — — Pali + bySbafi py ~ pCa

d2
P , -F

dN n

— ba = pal3+ pCa

Higher Derivatives of Base Vectors:

d{l/n) cos
(f>

d(f> n
12.153 A-3a— I sin (j)

12.154 /*3 a =-tan0^^ 8a
--52

12.155 v3a =(lln)a

Kpz= Aa:i/3=— (sin $)p.ab
ly {dbpYldN)

Pafu = Pa-.ii3
= {sm cj>)kably(dbpYldN)

12.159 va03 = vMli= dban/dN

K:a = HaQ-ln) tan A6 {a 2
(ln n)/dxsdN}

pa33 = - K(lln) tan A5 {a 2 (ln n)/dx&dN}

Va33 =(lln){d-(\n n)ldxadN}

12.160

12.161 Vapy = — 6«/3Y — b^ ( In n )„

The Marussi Tensor:

Nrs\'\s= -nki

Nrsp' p* = — nk-i

Nrs\ rpf=— nh

Nrskrvs = nj\

Nrsp/v* — ny-2

12.162 NnvV = n(\n n

)

svs

The Position Vector:

12.169 p r= (sec <b) (dpldto)\r+ (dp/d(b)iJLr+ pv,-

p = x cos 4> cos co + y cos <b sin w + z sin (/)

12.170

dp/d(j>—~x sin cos to—y sin sin oj+z cos 4>

12.171

(sec <f>)c)p/c)ct) = — x sin w + y cos w

12.172
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Chapter 13

Curvatures and Azimuths:

13.02 k =-m cos [a -a)

13.03 t = -m sin (a -a)

m cos a = — k cos a — t sin a

= — k> cos a — t\ sin a

13.04 =90/95

m sin a = — k sin a + ? cos a

— — k\ sin a — 1\ cos a

13.05 =(cos <f>)dQ)lds

Geodesic Curvatures:

ma — a = (a — a) pi1*

7r \ a (///,)

363

13.10

Covariant Derivatives:

(mlK)lan= lau+jja — a)u

k*\d(tlk)
13.12

13.13

Double Spherical Representation:

m A» cos a + /i sin a

13.19

13.20

13.21

m* A* cos a* + t* sin a*

A
i
sin a + t] cos a

tan a

tan a *

.

a + 6 tana*

c + (/ tan a*

a + c tan a

13.22

13.25

6 + d tan a

a=(fefT-fiA-?) : &=(A-2A*-*,rf)

c=(tif?-A-iW) : rf=(fiA'?-A-itf)

ad-bc = KK*

(m/m*)K* sin a* =— (a cos a + c sin a)

(m/m*)K* cos a* =(6 cos a + ^/sin a)

(m*/m)K sin a = (« cos a* + /> sin a*)

(m*lm)K cos a = — (c cos a* + a? sin a*)

Chapter 14

(In some cases, the formulas have been extended or

rearranged to give the isozenithal derivatives ex-

plicitly and can be obtained at sight from the textual

references on the left.)

Fundamental Forms:

daafildN= bySany(dbaSldN) + b^aMdbfaldN)

14.03

BbapldN=bayrzt12.127

12.144

12.143

&

I

bv&ba0f>
I

n h
Cgfi

n

d-(Mn) = HIM C°V

d&dxP <* dxv n

=— {lln) ap — Capln

(Covariant derivatives refer to surface metric; over-

bars refer to metric of spherical representation. Only

nonzero values of spherical Christoffel symbols are

12.142 r?, = sin <j> cos ; rj
2
= - tan 0.)

14.08

14.06 da^ldN-- [aovb^ + a^b^JidbyildN)

fib"
^rr^-b^b^iabyslaN)

14.07; 12.127 =-W§,

14.08
dN

14.04; 3.16
d In Vq 5 In b

dN dN
d In A
dN

1 a3

12.084
d In c _ „

d/v

Curvature Invariants:

(Overbars refer to surface metric.

d(2H)ldN = -a"Hdba0ldN)

= A(l/«) + (4// 2 -2A")(lM

14.32; 14.28 -6«*(2ff)«(l/n)0

a ( In A ) IdN =- baV ( dbap/dN

)

14.32; 14.29

b^(lln)afi+ 2H(lln]

-ba(i(\nK) a (lln)i3
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d(2HIK)ldN= cae(dba0/dN)

14.32; 14.30; 14.37

C*(l/n),tf-2(l/i0

b*(WIK)«{lln)f>

Christoffel Symbols:

_a

dN•> \i X
/3Y ^ 03'?

=(r?s)/s

14.14; 14.15 b^\
dN J,

Curvature Parameters:

bapyk"^ = ( Ai

)

Y - 2t1<tiy sin (/>

bapykaiiP = (ti)y+ (A:i — fa) (Oy sin

14.35 bapyix
a
ijJ

i = (fe2 )y+ 2ti<ay sin</>

dfa =_dbS fi = db^

dN dN * dN

dh dbap o , afr
12

——= "f Aa
U/* = COS © —

—

dN dN ^ r
a/V

14.34; 12.077 dh = _dba£.. a ..t3.

dN dN ^ ^
db 22

dN

dN\Kj
db-ii

Jn

dN\KJ
— sec

3(fa\
dN\K)

sec2
4>

afeu

aw

dyi/dN=-- n^ COS (£

dy-z/dN=-n,^s

12.075

14.40

14.41

Principal Curvatures:

bat}yii
(Xu l3 = (Ki)v

bapyV
avP=

( K2 ) y

14.43 baiiyu
av ti = (ki — K2 )(ojy sin (f)—Ay)

dKi/dN = - {dbapldN)uau^

dK->ldN = -(dba0/dN)va vi3

14.42 do - k2) (d.4ldN)=(db a(ildN)ua vii

Miscellaneous Point Functions:

14.09 deafildN = -cavd(\n K)ldN

14.10 d€«<ildN = + e
u'id(\n K)ldN

14.11 d(Kea0)ldN=d(e^lK)ldN=O

13.14; 14.05 d(KdS)ldN=0

14.50 ax^/a/v=r^y
'

14.51 dvr
a/dN=0

14.52 dv'a ldN=- (I%i)0Vy

(The space coordinates are Cartesian

in the last three equations.)

14.16
dbauy_, , /db»

OapOfJv
dN dN

Surface Vectors Defined in Space:

1,,^-jAda/dN)

14.17 jn= IridaldN)

Projection of Surface Vectors:

Length:

6 (In 8s) = 3 (In m) = d{\n (P + *
2

)

1 '2
}

dN ~ dN ~ dN

14.53; 14.54

14.56 d{\n(m/K)}ldN=Vy.,j°jy

Azimuth:

(daldN)= -n,Ja
jy = (k2lm?){d(t/k)ldN}

14.61; 14.67

Components:

14.59 d/uldN= -Vy
.Jvy°

14.64 dlJdN= T^-UdaldN)

Curvatures:

14.65 dkldN=k{d(\n m)ldN}-t(daldN)

14.66 dt/dN = t{d (In m)ldN} + k(daldN)

14.69
go; a(lnm)__gaL
a/v

CT
a/v ax^aA^

Covariant Derivatives:

14.70
r^A7
"^ -

~dN~ Ja d^dN

r&My

14.71
dFaj3_(dF

dN \dNjali

'& )/»*">

(F is a scalar defined in space.)

Chapter 15

Normal Coordinates:

Metric:

15.02 ds- = aapdxrdxl* + ( 1/ii)
2dN-
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15.04

15.05

Unit Normals
15.07

g=(\ln*)u

,rS= („«^„2)

Vr = (0,0, 1//I)

15.08 v'=(0,0,/j)

15.10 ^3 = 0; vg = - « ay />^y = - 6 a^Y
Surface Vectors:

/3 = 0; /
3 =

Christoffel Symbols:

(space) = F^ (surface)

r3
a
3 = ( l/«

2
)«

a/3
(ln n fe ; rg

:j
= - ( 1 \n ) a^fyjy

\

T^ = nbafi ; r3
3
a =-(ln«)a ; r3

3
3 =-3(ln n )/dN

15.11

i 15.12

r&

_a_

a/v

Derivatives of Unit Normal:

15.18 ya/3 = — 6a/s

Va3 =— (l/«)a

^3u =
15.19 ^33 =

15.20

15.21

v%p UCali

Mainardi-Codazzi Equations:

15.24 b lt0y=bay0

15.25 ——=n -I — caj8
as \n/ ali

Normal Differentiation:

Fundamental Forms:

15.13 daa0lds = — 2ba

a&ai8 /1—
-= 11 I — I -Cafi

ds \ n kn
15.25

15.26
dCa

ds

da a0

ds

15.14; 15.15

15.27

naySbay[—\ +na y8bpy
, n )nh

2a <*ya &byS = 4//a a/j - 2Kb <*

a6a0 /i\

os \n/ys

i)

15.28

15.16

—— = - nbayc^ (— )
- nbayc"f'

ds \n/yf, \n/yf,

d(\na)

ds
W

15.25 d(\n b)/ds = bat3
(db„iilds) = nbaliain) ufi -2H

15.30

d(ln c)/ds = c^dcafj/ds) = 2nba0 ( \/n ) a/3

Surface Invariants:

a(2#)

95
= nA(l/«)+(4// 2 -2/0

15.29 -^-^ = ,^^1 '//

15.31

a5

d(2H/K)

ds

U/ aji

T
,a/3

a/3

Christoffel Symbols:

dVa
—J*l = - aaSbpyS + aa%s (Innh
ds

15.32 + oa86yS (ln n)p— aa86/jy(ln h.

Curvature Parameters:

(See § 15-35.

+ 2y^i tan <£

dA2/ds=ra(l/n) a/3juVJ+(*f+*i)

— 2yiti tan $

5«i/9s = n ( l/n) a/8XV + 2Ht,

14.36 -yi(k1 -k2)ta.n(b

Principal Curvatures:

(See § 15-35.

14.45

14.46

dKilds = n(lln)afiuauf3+K2
i

aK2/a5=/!(l//Oa0r
a

('
/3 +K5

14.44 (K,-K2 )(y, tan <j>
— d.4fds)= nil/n )a/juV

Miscellaneous Point Functions:

as
2//ea

15.17

15.39

15.33

ae ng

as
= +2//€^

d(8S)/ds = -2H8S (area)

a

(

6«/jv )lds — n(l/n) a)iy — Ca/3
( In n )

y

— c^y(ln n)„ — cy (,(ln n)^

+ a8f
( In n) e ( 6„y6s^ + 6#y6s<, )
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Surface Vectors Defined in Space:

dlalds —— kla+ja(ji tan <j>
— t — da/ds)

15.36 dla/ds = kla +ja
{y A tan

<f>
+ t — da/ds)

Meridian and Parallel:

d\a/ds = (yi tan — ?i)/u,a — kika

dkalds=(y l
lan

(t> + t
l )/jL

a + k l ka

dfjia/ds = — (j\ tan + ?i ) Ku — k2^a

15.35 dix
a/ds = -{yi tan </)-f,)Aa + A-2 yu,

a

Principal Directions:

dUa/dS = — K\U a + Vaijl tan
(f>
— dA /ds)

Bua/ds = + K\ua + v
a
{y\ tan

<f>
— dA Ids)

dva/ds=— K2va — ua (yi tan
<f)
— 8A/ds)

15.37 dvalds = + K2v
a -ua

(y ] tan <f>-dA/ds)

Normal Projection of Surface Vectors:

Length:

15.38 dQn8l)lds=— k

Azimuth:

15.43 da/ds — y3 tan + t

Components:

15.40

15.41

dP
ds
= kla

dlalds = — kla — 2tja

Curvatures:

15.44 dk/ds= n(l/n) a^ + (k2 -t2
)

15.46 dt/ds = n{\/n) alii
al^+2kt

da/ds= k<T+ 2t (In n)eP-kQxi n)^f-t^
15.54

Covariant Derivatives:

15.51 dlae/ds=-k*laf} +ja{Q(} +t{]n n)p-tp )

with

15.49 (?/}=- yi<fos+ (72 cos 4>)u)tj

15.49; 15.50 =Kbv& (\nn)yeim=eya (ln n) yba0

15.52 jaQn = b ati (\n n ) yl y - b^(\n n ) u /
8

^=n (-¥) +Fy{ba0y-bay(lnn) li

15.53 — bpy(\n n) a +

b

ap(\n n) y }

Chapter 16

Darboux Equation:

(l/n)apu
av li (surface) =(l/n)rsu rv s (space) =0

16.03; 16.04

16.05

Mathematical Geodes'

dA/ds = y\ tan

Uft , d 2 (l/n) r 9(l/n) fl(l/n)
16.06 = 1

\2 + T 2
,

(Surface coordinate lines are fines of curvature.)

Particular Solutions:

16.07 a + bx + cy+dz + er 2

Chapter 17

The (co, 0, h) Coordinate System:

Metric:

1 7.04 ds 1 = a a!3dxadx^+ dh 2

17.05 grs = (a ali
. 1)

Fundamental Forms:
a u = {k'i + t'j) cos 2 4>/K2

b\ ,
= k2 cos 2

<f>/K

a vl =— 2Ht x cos 0/A? b v> =— t ] cos 0//<C

a-22 = (ki + «f)/K
2

b-22 = k l/K

17.12 c„ = (cos 2
0, 0, 1)

an =(k2+ t
2
) sec2 6 n = A, sec2

a l2 = 2Ht\ sec b i2 = ti sec

a22 =(Af+i?) 6
22 = A 2

17.20 c^=(sec2 0, 0, 1)

a = bl = El
71 b

2 K 2
17.21

Base Vectors:

17.23 \r=(-ki sec.0,-*i,O)

17.24 i*
r= {-ti sec (/>, --h2 , 0)

17.25 ^=(0,0,1)

17.26 KK r = (-k, cos 0, +f,, 0)

17.27 A>, = (+/, cos 0, -A,, 0)

17.28 *V= (0, 0, 1)

17.29 (COS 0)o>,- =— fciXr— tl/Ar

17.30 0, = -f,A,-A:,/x,

X«/3= /u.oOJ/3 sin

(JLaj3 = — ka (i)
f3 Sin

17.31 Vap = — 6Q/3
= (COS 0)AaOJ0 + HXa0,8

17.32 A:u= — cos ; M32 = — 1

Christoffel Symbols:

T^ (space) = Tg^ (surface)
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17.36 Vln = bali r%--a^b^Y=v$

(All other 3-index symbols are zero.)

Laplacians:

17.37 M=-2H
17.38 (cos </>)Aw = 2(sin (/>)V(oj,

(f>)
— (2H)aka

(space or surface)

17.39 Ac/> = -(sin c/> cos (f>)S7(a>)—{2H)afJL
a

(space or surface)

17.40 with V(Q), cf))
= a [ - = 2Ht, sec

17.41 VM=(;" = (^ + (t) sec- </>

AF=AF— 2// —r+ ttt = AF + A. rrh^rr
r»/i d/r d/i \A. ri/i /

17.42; 17.43

The A-Differentiation:

(References may be to formulas in (w, $, /V) or

in normal coordinates from which the formulas given

now are derived. See § 17-32. The corresponding

formulas given now in (w, (f>, h) coordinates are not,

of course, the same in all cases.)

The Fundamental Forms:

15.13 daaf}ldh=— 2baf}

15.25 dbafjldh=— Cafj

15.26 dcalildh=

da^ldh = 2aQ^86y8 = \Ha<® - 2Kb^
15.14; 15.15

15.27 db°*ldh = aaP

15.28 dcrt/dh = o

17.09 a«ti = dan — 2hbaii + h 2
cals

17.10 ba$=bal3— hCafl

17.11 Ca/8 = Ca/3

17.17 u«»/k 2 = d^lK2 - IhbrtjR + h^crt

17.18 //«V/v = />//\-/;c^

17.19 c»tfi == £aji

§17-14
dlnVa d In b ,„

(9h dh

§17-14
*jnc

dh

Curvature Invariants:

15.30 d(2H)tih = 4H 2 -2K

15.29; 17.22 d(lnK)/dh=2H

15.31 d(2HIK)dh=-2

K/K = l-2Hh +Kki ={l-hK X ){l- hk,

)

17.14; 17.15

17.16 2HIK= 2H/K-2h
§17-14 K-</ = Kb = c= cos2

<f>
= c = Kb = K-d

Christoffel Symbols:

15.32; 17.52

17.36

-V%=-"" hb
i*y

UYfr

dh
Y
rt"

d .,
I '* =

dh *3

Cali

— aayc$y

Curvature Parameters:

dkjah= (/,-, + /-,)

aki/Bh= (ki + t-)

14.34; 14.36 dt 1/dh = 2Ht 1

kilK=kilK-h

hlK=hlK

17.13 k2/K= k2IK-h

Principal Curvatures:

14.44; §17-21 dA/dh =

±(L\±
dh \kJ dh

14.45; 14.46

17.35

(1/ki)= (1/7ci)-A

(1/k2)= (1/k2)-A

Miscell aneous Point Functions:

de^/dh = - 2Heafi

15.17 d€#ldh=+ 2H**

15.39 d{8S)ldh=-2H8S (area

13.14 d{K8S)/dh = Q

14.11 d(Kea0 ) Idh = d ( e^/K ) /dh =

14.50; 17.36 dx ,

ajdh=vl,

14.51 dv'Jdh =

14.52 dvydh = ay^b^yv'^

(Space coordinates in the last

three equations are Cartesian.)

17.53 db„pyldh =

Surface Vectors Defined in Space:

dljdh = - /,/„ - /',,

(

t + da/dh )

15.36 dla/dh = /,/" +>"(/- da/dh )

(The vector is defined in space;

it is not projected.)
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Meridian and Parallel:

dkjdh = -t
t fjL it -kiK,= - b],^

dXa/dh = ti/JL
a + k

l
ka = aa%,iyk y

d/Xa/dh — — 1\ ka — k-ifxa = — bafjfd
3

15.35 dfJL
aldh= t

]
ka +k-2 /x

a =a a'ibuy^

Principal Directions:

dujdh = — K\ Ua dvjdh =— K->Va

15.37 dua/dh = K 1 u
a dvaldh = KoVa

Normal Projection of Surface Vectors:

Length:

(m = scale factor of spherical representation.)

14.53; 15.38 d (In m) /dh=-d (In 81) Idh= k

14.56; 17.36 *M*/*) =_ A *
dn

Azimuth:

15.43 t)a/c)h = t

Components:

15.40 dl*ldh=kla

15.41 dUdh= -kIa -2tja

Curvatures:

15.44 8klc)h = k--f1

15.46 c)t/c)h = 2kt

15.54 dcrlBh=ka—t^

Covariant Derivatives:

14.70; 15.51 dlafildh= -k*lafi-jatfi

dFaB (dF

aa"^h

+ a^Fbb^

A(f)+V(2H,f)

i)h \8h I a/3

dFad -/dF\
, ^

BF\
,

=

17.54

17.55

^M3= A
f ^f ) + V(2//, F) + 4#AF - 2Kb^Fali

r)h \c)n

)

17.56

Normal Projection— Integral Equations:

(Overbars denote values on base surface.)

Aa= (a — a)

(dslds) sin Aa = — ht

17.47 (ds/ds) cos Aa= (l-hk)

(dslds)
2 =l-2hk+h 2 (k2 + P)

(dslds) 2k=k-h(k- + ?)

1 7.44 (dslds)Hk- + f-) = k2 + t-

17.48 (dslds)H=t

The Position Vector:

17.64 p
r = p' + hv'

17.65 p' = (sec BplBoj)k' + (BplB<f>)jji
r + pi> r

p' = (sec dpldo))X r + (dpld(/))fJL
r+ (p + h)vr

17.66

17.67 p = p + h

Chapter 18

Radii of C urvature:

18.01 Rx=-- 1/A. = — 1/k,== /? + A

18.02 Ri = --Vh=- 1/k2 == «v + h

Fundamental Forms:

18.03 g™= (aaM); g,s = (aa0A)

18.04 aafi= {{Rx + h) 2 cos2
0,0, (#2+ /i)

2
}

18.05 6«*={-(i?, + A) cos- 0,0, -(R, + h)

18.06 ca/3 ={cos- 0,0, 1}

18.07 a^={sec^0/(ft, + /i)
2

, 0, l/(fl2+ /0 2
}

18.08 &^={-sec2
0/(/? 1 + /*),O,-l/(/?2 + /*)}

18.09 c^={sec'J 0, 0, 1}

Base Vectors:

k' = «'={sec 0/(/?, + /i), 0, 0}

p' = i/' = {0, 1/(5,+ h), 0}

18.10 J/'- {0,0,1}

\r= u, = {(/?,+/*) COS 0, 0. 0}

jU.r= »r = {0,(Ri+ h),0}

18.11 ^r= {0,0,1}

18.12 <cos <t>)u r =Kl(R) + h)

18.13 r
=

p.rl(R->+ h)

fsec sin a sin /3 cos a sin B n
~\

/'" =
{

-= —

,

= — , cos «
\

/, = { (/?i + h )cos sin a sin /3,

18.14 (Ri + h) cos a sin /3, cos B}
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Derivatives of Base Vectors:

18.15 A,, = (R- + h) sin <t> : Xgi—— cob0

18.16 /Xn=— (fli + /») sin 4> cos </> ; M:i-'
= —

1

18.17 vn =(Ri + h) cos2
<£ ; vTi = Ri + h

Surface Curvatures:

-k=l/R

18.18 = sin- a/(/?i + /0+cos 2 a/(/?2+ /i)

18.19
{Ri — R\ ) sin a cos a

'

(Ri + h)(R-i+ h)

18.20 cr, = tan <bl{R\ + h)

18.21 a= tan 4> sin al(R\ + h)— daldl

Coda;iu Equations:

18.22 ^= (R t -R») tanc/>

18.23 ^=0

18.24
dba0

18.34

Christoffel Symbols:

r 2
, = (^, + A) sine/) cos <£/(/?•> + /i)

r,',=-(«, + A) tan </>/(/?, + A)

9 In (/L + Mrw
a</>

18.35

r?, =-(«, + /i)cos-^

r,i3 = i/(«,+/i)

n3 =i/(R2 +/i)

Higher Derivatives of Base Vectors:

18.36 X«is=-(&+ &) sin </>/(« + M
18.37 yu M :(

= sin </> cos <£

18.38 i'tt/83 = -c«
/
8

18.39 X„S3 = /A«83=l'aa3=

18.40 I'npy = — b t,0Y

Vatiy = 8181 ( tf , ) y cos- <j> + 82
8| ( fi > ) y

18.41 + (Ri-R>) sin </> cos ^(5^+5^)5;

= fi, sin</>- [ (Ri-R->) sec<b </</>

p = i?i cos'- (/> + sin (/> I /?2 cos </> <l<t)

The Position Vector:

18.25 R, cos <*>=-[ #2 sin <£<#>

X = R\ COS (/> COS (D

18.28 y—R\ cos</> sinto

2= I /?2 COS (/> (/</>

= — R\ cos </> cot — I /?] cos </> cosec- (f> d<\>

18.30

=— sin (}> I /?i cos $ cosec- (f) d<j)

18.31 =«- sin </>

J

(Rt-R-,) sec <ty

dp/d(f) = — R\ sin (/> cos </> + cos (/> /?•> cos <i> d$>

— — R i
cot <j>

— cos </> R] cos <j> cosec- </> r/</>

= — cos(/)l {R]—R o ) sec (/> <i(/>

18.32

18.33 p
r ={dpld<t>)^(p + h)v r

Laplacians:

18.42 A/? =-2//

18.45 Ao> =

A(/) = -tan (t>l(R^+h)
2 -(2H)„p"

tan c/> 1 Mj
18.46

(Ri + h)(R, + h) (R> + h) :i

<I<f>

Surface Ceodesics:

r)a A', sin a+ £i cos a
COt </>TT

=
l

, :

()(p kz cos a+ f , sin a

A" sin a — t cos a
18.49 (any surface)

k cos a + ? sin a

Ri cos </> sin a = (^, + /j ) cos sin a= constant

18.50; 18.51 (surfaces of revolution)

The Spheroidal Base:

(Eccentricity e; semiaxes a, b.)

18.53 e =bla = +(l-e 2
)
u -

306-962 0-69— 2 5
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18.55 RA=N=v)=a(\-e2
sin 2 <t>)-V2

RA=M = p) = ae~-(l-e 2
sin- <£)~ 3 / 2

18.54 = e 2/j?/a2

18.56 z=e2Ri sin </>

18.57 P = a 2/R l

18.58 dp/d4> = —

e

2R i
sin <p cos 4>

x — x + h cos
(f>

cos a>= (/?i + h) cos </> cos cj

y=y+ h cos c6 sin w = (/?i + h) cos c/> sin w

z=z+h sin c/> = (e
2Ri+ h) sin </>

18.59

p'=-(e2R x
sin cos (j))^ + (a 2/R x + h)i> r

18.60

Chapter 19

Auxiliary Spherical Formulas:

cos cr= sin <f> sin <^> + cos
(f>

cos cos Sou

19.01

cos t = cos 4> cos <£ + sin cf> sin (/> cos 8a>

19.02 = sin a* sin a* + cos a* cos a* cos cr

cos 8a>= cos a* cos a*

19.03 +sin a* sin a* cos cr

sin <£> sin 8a> = — sin a* cos a*

19.04 + cos a sin a cos cr

sin sin 8w = cos a* sin a*

19.05 —sin a* cos a* cos o-

sin o" cos a* = cos (f>
sin $

19.06 —sin c6 cos <£ cos 8co

sin cr cos a* = — sin </> cos $

19.07 + cos 4> sin ^ cos Sod

19.08 sin o" sin a* = cos </> sin 8w

19.09 sin o- sin a* = cos </> sin 8w

cos 4> cos a*= — sin </> sin cr

19.10 +cos cos cr cos a*

cos 4> cos a*= sin (/> sin cr

19.11 + cos (f)
cos cr cos a'

cos (j) cos 8w = cos (/) cos cr

19.12 — sin c6 sin cr cos a*

cos </> cos 8oj= cos $ cos cr

19.13 + sin c6 sin cr cos a*

cot a* sin 8a;= cos (/> tan </>

19.14 — sin </> cos 8a>

cot a* sin 8co =— cos <£ tan $

19.15 + sin <£> cos 8w

sin cr da* = sin a* cos cr dcf> + cos cos a* rf(8w)

19.16 —cos (/> sec <£ sin a* c/</>

sin a da* = sin a* sec c/> cos d<f>

19.17 +cos c& cos a*d(8ci)) — sin a* cos crc/c6

dcr — ~ cos a* c/(/>

19.18 + cos (/> sin a* d(8oj) + cos a* d(/>

Rotation Matrices:

/l

19.20 <!> = sin</> cos (^

\0 — cos <£ sin (/>

/ — sin o> cos a)
N

19.21 H= -cosoj -sinw

\ 1

/ —sin o> cos w

Q = 4>fl = I — sin
(f>

cos o> — sin </> sin o> cos (/>

\cos cos a> cos (/> sin co sin $/

19.22; 19.26

(cos 8<o sin $ sin 8a> —cos </> sin 8aA

- sin <£ sin 8a> cos t — sin cr cos a* I

cos </> sin 8cj sin cr cos a* cos cr I

19.25

Base Vectors:

19.24 {K, jir,i>r}=QQT{K,P-r,Vr}

Azimuths and Zenith Distances:

{sin a sin /3, cos a sin /3, cos j8}

19.27 = QQ 7'{sin a sin /3, cos a sin y8, cos /3}

Orientation Conditions:

(0
sin </> 8(d — cos $ 8wN

-sin</>8w -8(/>

cos $ 8w 8<j)
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8a = sin 4> 8w + cot /3 (sin a 8(f)
— cos a cos (f)

Sou)

5/3 =— cos </) sin a 8u> — cos a 8</>

19.29

The (co, 0, iV) Components of Base Vectors:

k 1 K 2 \ 3
\ /— ki sec* -tj 0'

— t\ sec 4> — k 2/A
1

jU,
2

jU.
3

yi sec * y 2 n

/\j A. 2 ^-3\

S=l /U-l fJ-2 fX 3

Vl V-2 VS/

/- kt cos 4>IK ti/K sec <£ d(l/n)lda)\

\ t, cos*/K -Arx/K d(\ln)ld4>

d/«)
19.32

19.33

19.34

RS r=SR T =I
R ^S 7

; S-^Rr

Tensor Transformation Matrices:

^*/dcu ax/3^ ^/a/V\ /AiA-,A :i \

dylda) dy/d<t> ay/a/V =15, B, B, = Q rS

,,te \dzlda> dz/dQ az/a/V/ \Ci C2 C3/

/aw/ax a*/a* aiv/a*\ /a i a 2 A 3\

doldy d<f>/dy dN/dy\= I B l B 2 B 3 = Q^R

^cu/az aovaz a/V/az/ Xc'C 2 ^/
19.36

^&>/ao> a<w/3* aco/a/v\

d*/a&> ao>/a</) a*/a/v =R : QQ^S

Va/V/aco ayv/a^ ayv/aw

19.37

Parallel Transport of Vectors:

{Z~\ Z~
2

, Z
3}=R rQQrS{/ 1

, /
2

, Z
3
}

19.38 = R TQQ r{sina sin/3, cos a sin/3, cos/3}

{7i,72 ,73 } = S 7'OO rR{/u/2,/3}

19.39 =SrQQ r{sin a sin /3, cos a sin /3, cos /3}

The Deflection Vector:

19.40 A r =i> r-^ r

19.41 A r
/ r =cosj3-cos/3

A r = (cos* sin8a>)A r

19.43 +(sincrcosa*)/Li r -2sin 2 (cr/2)^ r

Change in Coordinates:

19.44 {w r , 4> r , Nr } = R TQQ TS{w r , <}>r, N r }

{(8<u)r, (80)r, (8yV) r}=(S- 1QO 7S-I){o> r ,0r,/Vr}

19.45 =(RiQQ»'-RT){Xr,fiPl i/r}

/a(Sco) d(8o>) a(5co)\

M =

19.46

19.47

ax a/u, dv

3(8*) a (8*) d(8ct>)

ax d/JL dv

a(8/V) d(8N) d(8N)

R rQQ r -R

a\ a/u. a j/

R + M r = QQ rR

d(8w) a (8*) a(8/V)
]

a/ ' az ' a/ J

= (K TQQ T — R T ){s'ma sin/3, cos a: sin /3, cos /3}

19.48

Chapter 20

Attraction Potential (Free Space):

20.01 /V=^-Cm/r

20.03 A/V=0

Force:

20.05 Fs = — Ns =— n v.

Geopotential:

20.08 M = N-%to 2 (x 2 + y
2

)

20.09 A/W = -2w 2 (free space)

20.15 AM = 47rCp-2w- (at density p)

Equations of Motion:

20.11 ^r=^r=-Vr (fixed axes)
ot ot

^=-Wr -2erA<bC°)vl

ot

20.12 (rotating axes)

Gravity Differentials (Free Space):

20.17 dn/ds = 2Hn - 2cD2

i

in
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20.32 (\nn)rv
r =(k l + k2 )-2(o2

ln

dN \nj \nj \nj a \n/

p

20.27

Flux:

f=-n8S

20.30 dflds=-(AN)8S

Torque:

— (2m/2 sin 2 /3)n{ (k\ — k>) sin a cos a

+ t]{cus- a — sin 2 a)

20.36 — yi cos a cot /3 + y2 sin a cot (3}

20.37 = -(2mn/ 2 sin /3) (i/rs;
r
/
s

)

20.38 = (2mnl2 sin /3){? sin j3-(ln n)r /' r cos (S\

= (2mnl 2 sin (3){t sin /3 + yi cos a cos (3

20.39 —72 sin a cos /3}

Chapter 21

Generalized Harmonic Functions:

21.003 A'-' • •<">//,„.
. . („)

21.004 CLrMsN* . . . <?<">//,,,
. . . on

Brst . . unp'p'p' p
(n)

. {p
lBk„. . . (»)=

21.009

Potential at Distant Points:

Maxwell's Form:

y x (— \n /

1

__= y ' Ljstu . . .
(«)

'

G *•* n\
H=0 r/stu ...(«)

21.017

21.012 /*»..- (n>=2 mjrac'x" . . . x (

21.019 pp*p'p" . . . p
[ll)dv

Successive Derivatives of (1/r):

(-)"(l/r)Wr»/...(«)r"
+1 _

1-3-5 ... (2/1-1)

+

{gpqVrVsVt V{n)}

(2n-l)

(2n-l)(2n-3)

21.025

(-)"(l/r) wr.s7...(»)r»-'

1 -3-5 . . . (2n-l)
= VpVqVrVgVt . . . I'CO

n(n-l)
2(2n-l

g,,qV rVx V< . . . V(n)

21.026

ra(n-l)(n-2)(n-3)
2 -4(2/1-1) (2/i-3) g""grs"' • •

"(,,)

... (symmetrical form)

(-)"n\ n .=

—

7IT~ "«(sin0)
r/ 333... CO r"

+ '

21.027

r/[\\... in) r

—
jj^
— r„(cos <p cos a>)

21.028

———

—

"»(cos <p sin on

)

CO r

21.029

t \ n.r2n+l

1 -3 . . . (2n-l) J " Vflx' 9y' flz/ \r/" a~' a,,' a, L
r2A

+
r>A 2

21.031

2(2n-l) 2-4(2/i-l)(2n-3)

. . /„(*, y, z)

Potential in Spherical Harmonics:

~^= J 2 p»"( sin ^^c cos mw
» = o m=o

21.035 + Snm sin maj}/r" + 1

c,,o=2 ?nf"^>''(sin 0)

21.037

C»»A __ (n-m)\
Dii

. .
- /-cos row

(rc + m) sin mco

Normalized Coefficients:

C„o= C»o/(2n + l)" 2

Jin

(n+ m)\

2(2n+ l)(/i-m)!

21.038

Inertia Tensors (First and Second Orders):

21.062A; 21.062B 7s= M^ = Mpfi

21.064 I=grJrs =2,mr2

21.065 IoP=: Ir8{grs-VrVs)= Ir»(X.r\s+fXrfls)



Summary of Formulas 373

Iop = I~Iu cos2
(f>

cos2
a) — /

22 cos2
<f> sin 2 (o

— I33 sin2
<f>
— 21 12 cos2 $ sin <o cos w

— 2/ 13 sin </> cos <f)
cos w

— 2/2! sin (/> cos sin oj

21.066

/ 12 = Zjmxy

/' ,! = 2jihxz

21.067 /23=2myi"

21.073 J/*'(l/r) rf
= (2/-3/or)/(2r !

)

Potential at Near Points:

VP=V +(Vs)op
s +KVst)op sp' + .

21.085 +^(V8l .., ,))op
sp'. p

M+. . .

-£=2 2 r"/»j? (sin £){[<:,,-] cos ina»
** n = o m = o

21.086 + [5h«] sin mxa)

[Co] =2 7777TTT
P " (sin #)

YSnm]/ r" + ll (« + m): \ sin mw
21.087

Potential at Internal Points:

V _
" — ———= ^ 2 ^'" * sin ^ ^nm cos /na,_,"^"m sm ma*}

" « = ll m = o

21.096 C,„„= (C, l
„,),/rl " t " + r''[C„,„] f;

21.102

Alternative Expressions:

P!!'(sin <£

)

/cos maA
^»+n

\ sin mw/

21.100
(
- )" d" "1 jV— z]

"'I'2/cos mwY
_r \r + z\ \sin mcu/

P',i' (sin <t>) + •„ (-)" 3"
|
— \ e -ni(<l> + iu>)

fill+l) (n — m) ! dz"

21.103; 21.104

Isometric Latitude:

e
l/'= cosh i// + sinh i//= sec </>+ tan </> = tan (477 + 2<j>)

_ 1 + sin </> /l + sin (/)\
1/2

cos </) \1 — sin (/>

21.101

1/1= I sec </> ^</>

21.107 ^0=7 {/(*+ io)+g(./f-i<»)}

*+*V\ + (l\ r. (
x ~ [y21.107A Vo :

The (£, 17, 2) System:

£= x+iy=r cos <^e'"'

7)=x—iy=r cos <f>e~
iw

r
2= tr) + z

2

21.108 ^=(r+2)/(^-n) ,/2

^+m-
( r+z)lr)= i;l(r— z)

21.109 e*- i»=(r + z)l{ = -nl(r-z)

3f~* r

drj r

21.110

f)(ft+tQ>) _ 1

dr_z
dz r

d£ 2r
,-(!/!+ ICU)

3i9 2r

d(ft + ia*) = l .

62 r

21.111

d(iji-ia>) = 1 „,,_,„,,

d£ 2r

fK_____l_J_
dr? ~~2r

d ( i/>
— ia> ) __ 1

dz r

-(ill-iui)

21.112

21.113

2-Ui-ii-
df r)x dy

2—=—+i —
$17 r)x dy

ds 2 = d£dr
}
+dz2

gvi = h #33=1; |g|
= — i;

g 12 = 2; g*>=l

21.114
a 2

_aj_

d^d-q
+

d22
A = 4^r^r+ -^

21.115 2 — (-e-mW-Uo) )=——(-e'
d{ \r J dz\r/ dz \r J
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21 116 2 — (
- e -m(<ii+iu>) \ ——

J
- e-(m + lMi//+ia.)

21.117 2—(- p-m(il)-iw)\—^_ (± p-(m + l)«<-!a.)
|

dl)\r J dz\r
e

J

21.118 2— (- e-mW+iu)\ =—A [1 e-(m-lX*+M
di? \r / dz \r

= (re-m+ 2)(re-/re+l) ^f*'"
^

e'
-0"- 11"

21.119

2

21.12

JL p»'<sin ^ ;

„
; ; ;

3tj 1 H n+1 >I)
j

^n+2)

Gravity:

g cos cos d> _ ^, 'Si,
1
P,',"+1 (sin cfo)

G
_^ -^ r ( " + 2)

n = m =

X (C(h + i), m cos mw

21.136 +S(» + i),fflSinmo))

C(n+ |),o
= I'i(n + l)C n i

C(„ + i), l=~C„o+ 2«fn-l)C|,-i

S(„ + i). i=ire(re— 1)S H2

(>(«+ 1 1, m 2t«, (»i-i)

+ i (re— m + 1) (re — m)C„, (,„ + ,,

•S(n + i), m
=—

2 O/,, (w-i) -,

+ £ (re— to + 1) (re— m)S„, (m+1)
J

(m = 2, 3, . . . (re-1))

Wn+ l ), n 2"»,(»-ll

J(n+ l), n 2 -Jh, (h-1)

Lr(n + i), (n+l)
= it», /,

J(n + 1), (« + l)
==

2 %, n

21.137

g cos
(ft

sin o) = ^ !£,' PgVj (sin </>)

n=0 /n=0

X(C(«+d, »i cos men

21.138 + S(,,+i), m sin mo))

Mathemat ica/ Geodesy

G{ll + {), o=ire(re+l)S„,

C(n+\ », .=ire(re- 1 )Sn,

S(«+D, 1

== L ;,()
--hn(n-\)C, -

f C(H+1),
— J-S

IN 2-J ll, {111--ii

1 + i(n-- m + 1 ) ( n
- m)S,,, (JW+I)

S(H+1), ,„=-hc„. (iii-n
1

-h(n - to+ 1 ) ( re
- m)C„

, (w+l ) J

( re* = 2, 3, . . (n -D)

Mn+1) , n == 'ZOii, in -ii

S(„+i) ll 2^ II (»-D

G(»+l ), (M+ l )

= 2-J//, ii

S(n+ 1), (n + 1) — — 2C

n

, /,

21.139

g_sinj> = - t+i
P;,"+ ,(sin(/))

G 2< 2 r(n+2)

21.140 X (C(„ + d, „, cos /na> + S(„ + i), », sin mat)

C(/i+l). m=— («— TO + l)Cnm

21.141 5(H + n, „, = — (n — m + l)S„m

Spherical Harmonic Coefficients in Second

Differentials of the Potential:

dx1
\ G,

C{„+2), = — 2(11 + 1 ) (n + 2)C„o

fi(re-l)re(re+l)(re+2)C,(2

C(«+2), . =-fre(n + 1 )G„, + £(re - 2) (re- 1 )n(n + l)C»s

S(„+2), 1= — £re(re+ l)S„i

+i(re-2)(re-l)re(re+l)SH3

t>(//+2), 2— fC«o

—

2fi(n — 1 )C,i2

+i(n— 3)(re-2)(re-l)reC,M

S(»+2), 2 — — in(re— 1)S„2

+ i(re-3)(re-2)(re-l)reS,l4

C(h+2), m= 4C a, (in -2)— 2(n—m+l) (re—to+2)C„„,

+1(re—to— l)(n — to) (re—m+l)(re—to+2)

X C«, (H|+ 2)

S(/,+2), in= iS„, (m-2)— 2"(re— TO+l)(re—m+2)Snm

+{(re—to— l)(n— to)(h—m+l)(re—to+2)

21.145 xS«,(H1+2 ) (m>2)
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£L(JL
dy2

\ G
C(H+2), o = -i(n + 1 ) (n + 2)C„o - {-(n - 1 )n(n + 1 ) (n + 2)C„ 2

C(„ +2 ), i
= — \n(n-\- l)C„i — i(n— 2)(rc — \)n{n+ l)C li:i

i

S(h+2), i =-fn(R+ l)S„i — i(n — 2)(n — l)n(n+ DS„ ;i

^(,,+2), 2 = — Wm) — 2n(n — 1 )C„i —i(n — S)(n — 2)(n — l )nC llA

S(„+2), > = — ^n(n — l)Sn2 — i(n— 3)(n — 2)(n — l)nS„A

C( ll+2),„,= — ^C,,,(m-2)—Un—m+\)(n—m+2)C llm—4(n—m—l)(n—m)(n—m-\-\)(n—m+2)C„,(!!,+> >

S( ll+z),m=—4S ll ,im-i)—2{n—m+l)(n—m+2)S llm—4(n—m—l)(n—m)(n — m^rl){n—m+2)S ll A»i+2)

21.146 (m>2)

d-

~dz-

C(H +2), o—{n+l)(n+ 2)C,o

C(„+2), i
= «(« + l)C,n

S(,l+ 2). i
= n(n+ 1 )S„i

C(n+i),%— n(n — \)C„i

S(n+2),2= n{n— l)S„2

C(„+2),m= (n — m+ l)(n — m + 2)C,im

S(H+2), ,n= (n — m+ l)(n — m + 2]S,im

21.147
(m>2 )

-^— f—f1= C,„ + 2,,o= i(n-l)n(n + l)(n + 2)S„,
dxdy \ G/

C(„+2), i
= — in(n + llS/n + ifn — 2)(n — \)n(n + 1 >S„ :1

S(H+2), i= — in(n+ DC,n — ^(n — 2)(n — \)n(n + l)C,r.i

C(„ + 2), 2 = 4<n — 3) (n— 2) (n— 1 )nS,M

S(H+2), 2 = 2C„ — i(n — 3) (n — 2) (n — 1 )rcC„ 4

C(« + 2), m= — iS H ,(m-2) + i(n — m — \) (ti — m) (n — m+\)(n — m + 2)S„,
(m+-z)

S( ll+ 2), m= iC>,,(,„->) — \-(n — m — \){n — m)(n — m + l)(n — m + 2)C„,
(W +2)

21.148 (m>2)
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jj-
z

( -|d : C0(+2)> = -in(/i + 1 ) (n + 2)S„,

C(H+2), i
= — 2<n — l)ft(ft+ 1£„ 2

S(«+2), i
= (n+ 1 )CHo +i(n — 1 )n(n + 1 )C,,2

C(h+2), 2 = — 2«S„i — i(n — 2) (n — l)nS„ :!

S(„+2), 2 = 2-«C„i + if" — 2) (n— 1 )nC«3

C(M+2),m= — hn — m + 2)S„, {,,,-d — 2-(n — m)(n — m+l)(n — m + 2)S ll , {)ll+l)

S<„+2). „,= 2<« — m + 2)C, (ih-1 > + Un — m) (n — m + 1 ) (n — m + 2)C„,
( ,„ +l )

21.149 <m>2)

a 2

C(„+2), o = — ?n(n+ l)(n + 2)C„i

C(n+2), i
= (n+ l)C„o — Un — l)n(n+ l)C ir2

S(«+2), i
=— 2(n — l)n(n+ 1)S„2

C( ll+ 2), 2 = |nC„i — i(rc — 2)(n — l)nC„ :!

S(W+2), 2 = inS ll i
— 2(n — 2)(n — l)nS„:i

CiH+2),m=i(n— Tn+2)CnAm-i)—i(n— m)(n— m+l)(n— m+2)CH ,(m+i)

S(„+2), m= 2(n — m + 2)Sn, (»i-D
— 2<n — m) (rc — m + l)(rc — m + 2)S„,(,„+i)

21.150 (m>2)

p = a cos 2 a see'5

y3

Chapter 22 =Q gec a/(i+ tan -' u cos -; ^)3/2

The Meridian Ellipse (fig. 26): =a cos 2 a/(l —sin 2 a sin 2
(/>)

:,/2

22.03 sin /3 = sin a sin (/> 22.12 = a sec a(l — sin 2 a cos 2 u)'!/2

tan /3 = tan a sin u 22.13 dfild<$> = sin a cos u

.>.) a< , 22.14 dB/du = tan a cos 2
fl cos uZlAtV tan u = cos a tan cp

^ ^

sin u = cos a sec sin </>

2215 ^(ln p)/aty = 3 sin a tan a sin u cos u

22.05 = cosasin</>/(l-sin 2 asin 2
</>)'

/2 22.16 d{v cos <j))ld(f) =-p sin </>

cos u = sec /3 cos 22.17 d(f sin <£)/e^> = p sec 2 a cos </>

22.06 = cos 0/(1- sin 2 asin 2
</>)

,/2 22.18 dvld(f>= (v-p) tan

22.07 (1 — sin 2 asin 2
(/>)(l — sin 2 acos 2 u) = cos2 a K=l/(pv)

22.08 (l-sin 2 acos 2 u) ,/2 = cosasec/3 22.19 2// = -(l/p+ 1M
i' = a cos « sec = a sec £ g ,

= OS sin/= 6 sin E = a(\ - e 2 )" 2 sin E
= a sec a/(l + tan 2 a cos 2 0)" 2

g2 = OS cos/= (a cos E-ae) = a(cos E-e)

= o/(l — sin 2 a sin 2
</>)

l/2

22.20

= a sec a(l — sin 2 a cos 2 u) l/2

22.10 = a 2/(a 2 cos 2
</> + 6 2 sin 2

<£)
1/2

(1 + ecos/)
22.21 r=OS = a(l-ecos£)-
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Spheroidal Coordinates:

x = (ae ) cosec a cos u cos w

y= (ae) cosec a cos u sin w

22.22 z = (ae) cot a sin u

22.23 r= (ae)(cos a+icota) ,/2(cos u— icot a)" 2

22.24 geocentric latitude = cos a tan u

ds' = (a- cos'- u)du)-+ (v- cos- a)du-

22.25 + (y
2 cot- a) da-

g
u = l/(a 2 cos 2 u) : g" = ll(v'

2 cos- a) :

377

22.26

22.27

22.28

22.29

22.30

22.31

22.32

22.33

22.34

22.35

22.36

22.37

g
M = \j(v- cot 2a)

a r = nv r

3a n 9s

tan a
i^

9 (In a)

da

da

=— cot a ;

9(ln «) = 1

ds v

sec a cos /3 sin (/)

— = tan a sin q> cos m
9a

d In (i> cos </>) 9 In (« cos u)— = = — cot a
da da

9 In v

9a

9 In p
9a

cot a + tan a sin 2
(/>

cot a — 2 tan a + 3 tan a sin 2 $

0«0 = (— V cos 2 $, 0, — a 2
lv)

c 1(/3 =(cos 2
(/), 0, « 2K)

r ,*;
t

=— cot a

r|3=— a~l(v'2 sin a cos a) = — \/(np)

rjjj = — sec a sin $ cos </>

r,', = tan a cos 2
(f>

V:L = (a- tan a)/^ 2

a 29 In rc

:»•$
= :—=— cot a-

r'a

=2#
i'

2 sin a cos a rc

i ( 9 In n . . .

I ;{-2
= = sin a tan a sin <p cos q>

()U

rj., =— tan «

If, = sec a sin c/> cos (/>

_,„ 9 In n 9 In v . . .

1 & — —

:

= sin a tan a sin cos <p
()u c)u

22.39

n (1/n )n =— tan 2 a sin -(f) cos
2 $

n(l//i), 2 =

22.40 „ i \/„ | 22
= tan-a cos 2

/3 cos 2<£

External Potential:

1/ x n

-tt= ^ 2] W(/ cot a)P™(sin u)(^wm cos ma>

+ D,,m sin mw)
22.50

Internal Potential:

F x n

-tt= ^ ^ /J "
M/ cot »)^{"(sin «*)( [/4„m ] cos mw

n=0 »i=0
+ [/?„,„ J

sin mw]
22.51

@»(i cot a) =— ;'a

Q\ (i cot a) = a cot a — 1

(?•_•( i cot a) = ;h'(a + 3a cot 2 a — 3 cot a)

22.52

(n+ l)Qll+i-{2n+l)i cot a (?„ + «(>„-, =

22.53

</'"(?„(* cot a)
@{"(i cot a) = cosec"

d{i cot a)'"

22.54

Mass Distribution:

. „ U'2n + 1)
A„» =^ - - mP„U cot dl/Vsin a)

r/r

n )~Zj~ ~H I;tt~ )
mryii cot a)

22.56

ae (rt+ m)!

xP»'(sin u)
COS ffld)

sin mai

[^«o] = 5)^-5 mQM cot «)/>„( sin u)

[A„m ] \_^2l'(2n+l
[B,,m] ae {n + m)\

m

22.38
22.65 X<?!J»(icot a)/>;!'(sin u) (

COS

\ sin

cos moj

ma>
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Spherical and Spheroidal Coefficients:

(An

\B„m

\ l-3-5. . . (2n+l) ,m+n+u
J (n + m)\

{n—m)(n—m—l) 1

1

(ae)" +1 \S„„

_ /Qn-2), m\
"- 1 \S0l -2),m)

+

2-(2n-l) (ae)

{n— m)(n—m— l){n— m—2)(n—m—3)

1

2-4(2n-l)(2/i-3)

(ae)"-3 VS (

(C(n-A), m\ ,

|

\S(,,-4), m/
|

22.59

\$nm) 1-3-5... (2/1+1

(n + iw)! //<,

(n-m)!\B„

+ 2n+l (n + m-2)

+

2 (n-m-2)

(2n+l)(2n-l) (n + m-4)

+

2-4 (n-m-4)

(2n + l)(2n-l)(2n-3) (n + /n-6)
2-4-6 (n — m — 6)

-4(n-2),

22.60

n-2), m\

n-2), m/

/A(n -4), m\

\fi(,,-4), m/

^(h-K), »A

B(„-e), ml

+ . .

Inertial Properties:

22.61 M = C o = -i(ae)A

I*IM=(CnlM, SnIM, CxolM)

00

22.63 i»'(«)»^.l«(«)-^-*(«)*^)

C2o = / :,:i -i(/ n +/ L"2
)
= iJ(ae )•'(§ Aw + An)

C«=/»=t(ae)»^«

S 2 ,
= /

23 = f (ae) :,

fl,.,

C,, = 4-(/"-/-- 2)=-!t(ae) :!^2

S22=i/,2=-|i(ae) 3
fl22

22.64

Differential Form of the Potential:

22.66 -g=2r---""(a)nr...oo

Chapter 23

Symmetrical Models

23.01
JT= <§ CwOPw (sin0) |-dJ

2U 2 + y
2

)

Mathematical Geodesy

gcos = 2) -7^7^ + 1
(sin 0)-di 2rP](sin 0)

23.02

23.03

23.04

g sin = 2, «7^ F«+i(sin 0)
n =

r

g sin (0 — ^)=— £ 7777 ^«(sin 0)
n= 1

+ d>
2 r sin cos

g cos (0-0)= ]£
——— P„(sin 0)

h=o r

23.05 d)
2 r cos 2

Standard Potential:

-W = GMal(ae)+GA 20Q2 {i cot a)/>
2 (sin u)

23.13 + {V« 2 -Va 2P2 ( sin u )

}

— Wo = GMatol {do sin ao)+ ^ u>
2a%23.11

23.12

23.14

_i

23.18

23.19

G4 20 =
§ia> 2

al

W

20
3 cot ao — ao(l + 3 cot2 ao)

(ae) =ao sin a

a = ao sin cto cosec a

(2n + l)iV*oo+(2n-2)i/*2o

2 H" (2n-l)(2n + l)

(ae)
1}— /

>
2n- 2 (sin 0) +

A o=iMI(ae)

W{x 2 + y
2
)

Standard Gravity:

23.24 g»

g£_ge
=

b a

5or

23.28

__ age cos2 + 6g> sin2

(a2 cos2 + 62 sin2 0)
l/2

(1+^ tan2 a„ —^ tan4 a (.+ . . .)

23.33 2&l + ZlL = 4TrGp -2a> 2

a

23.34 £ = ge(l+fl 2 sin 2 + fi4sin 2 20 +

fl2=-/+fg—rW+W
23.35 BA = kf2 -iaf

f=(a — b)/a; q = u)
2a/ge

)



Summary of Formulas

3 sin u cos u

v cos a
[GA> ()Q>(i cot a) — jara-]

23.37

23.39 g=(gl + g$)m

7 v> m w. (2n + l)t/foo+ (2n-2)/,4 2o

* cos = J) M") (2n-l)(2n + l)

23.40 x
(ae) 2"- 1— P>„_,(sin 0)-w-r cos

.7 ^ ri ,„ (2n + 1Moq+ (2n-2)t/l s

gsin ^2 6H (2^TT)

(ae) 2"- 1

23.41 X U
/2 „

/'zn-iCsin 0)

g sin (0 - 0) = £ C(-)" +
(2n + l)tAo» + (2/i-2)t/i.„

(2n-l)(2n+l)

(ae)-"
-1

23.42

gcos<0-0)=£ G(-)"

+ aj
2 rsin cos

(2n + 1 Moo + (2n - 2)L42 ,i

23.43
(ae) 2"-'

x

(2/i+D

Pa«_2 (sin (/>)
— d)-r cos-

. ^ ^/i+nt'/^m + ^/i^UXnlae) 2 "- 1

23.44 x

Curvatures:

(2n+ l)

1-3-5
. . . (2^-3)

2-4-6 . . . (2n-2)

(For particular values of the coefficients A,B,C, and

Z) given below.)

^ + c S7^^p» + - (sin ^

+ CPj
l + , (sin <t>) + DPl + ., (sin 0)}

For g#2 : /4 = a)
2 sin 2

fl = (/i+l)(/i + 2)(cos 2 0- 2 sin 2
0)

C = — (n+\) sin 20

23.49 D=lsin 2

For gki

:

A=a)2

B=-i(n+l)(n+ 2)

C =

23.50 £> = -£

379

For g-y2 : ^ =io)2 sin 20

B=-i(n+l)(n+ 2) sin 20

C=-(n+ l) cos 20

23.51 D = isin20

For —: /4= — oi
2 cos 2

5 =- (n + 1 ) (n + 2) (sin 2 -± cos 2 0)

C=-(n+ l) sin 20

23.52 D = -icos2

23.53

T797 — — tan —— h-dW * o0 g

23.54 ^=™+l
a**7 a0 2

g

23.55
9 a

,
1 d(lng) d

ds
SdW ' p d0 00

23.56 to__Ii(l+l)+«aL+3S
ds p 0(f) \p v I g V

V2
= a(lng)

pd0

Geocentric to Geodetic Coordinates:

rcos 0= (f+ /i) cos

23.58 r sin 0= (f cos 2 a + h) sin

Chapter 24

Laws of Refraction:

24.01 (Jl = c/v

24.03

24.04

24.05

24.06

-"

J

pa's

S r = fllr

VS=p 2

(ln ix),m' = x

(In p) rn' =0

Equations of Refracted Ray:

8(p/ r

24.07
OS

p,

pr sin /3 = constant (spherical symmetry)

24.11



380

Arc-to-Chord Corrections:

(The (a), </>, In p.) system.)

t— (k-2 — k\ ) sin a cos a — £i(cos- a — sin- a)

+ (-y, cos a — y2 sin a ) cot yQ

24.23

= t— Vrsnrvs cot (3

24.24

24.25 (ln/x) r=-^ r

24.26 x= ( hi pj ,/»' = <? sin /3

24.27 xT = < ln /^)r*n
r
/
s

{(s)/s} sin (a) sin (fi)
= A sinasin/3

+ fl sin a cos p — C cos a

{(5 )/s } cos (a) sin (J3)
=A cos a sin/3

+ fi cos a cos /3 + C sin a

24.28 {(«)/«} cos(/3)= /4 cos /3 -B sin p

/* = 1-£ XV

C = i xT5
"

24.29 (5)/5=l-2Vx 2
5

2

24.30 tan{(a)-a}=—— ^—
,4 sin £ + fi cos /3

24.31 {(*)/*} sin{Q3)-0} = fi (ifC = 0)

Arc-to-Chord Corrections — Geodetic Model:

(p — y) sin a cos a

(p + h)(v + h)

24.33 A(3 = %sx.i (r assumed zero)

24.34 A(3 = ^s\ (x assumed constant)

24.35; 24.38 f=xR=l+(R/s)(p-p)

Velocity Correction:

24.39 ct= U(^L + 11)+A sHjxx cot p - ixX cot p)

c3

Mathematical Geodesy

24.41
fi

/(I-/)

Equation of State:

24.42 P = cpT

24.43 (ju,
— l)/p = constant

24.44 dp — — pgdh

cpT
24.47 p =

l - 0.37803(e/p)

Hypsometric Formula:

ln^ = ^-{l-0.37803(e/p)„,}(^-/i.)

24.49

Index of Refraction:

(/tis
- 1) X 107 = 2876.04 + 16.288X-' + 0. 136\"4

24.51

{fxa - 1 ) x 10 7= 2876.04 + (3 x 16.288)\" 2

24.53 +(5X0.136)A- 4

(^,-l) /p\ 55xiQ-»e
^ U

(1+ at) \760/ (l + o0
24.54 (optical wavelengths)

24.57 (l+ ot)=aT

103.49 86.26/ 5748 \

(/x-1) X106 =
r

(p-e)+—y-(l+
-^-J

e

24.58 (microwaves)

Curvature:

X =
»

sin

(1 +
/3

at)

, . . dt u.(. — I dp

|>
1)a

dh 760 dh

24.59
del

+ 55X10- Hi
7fdh

24.60 tr~m
X =

_(/*--l)sin/3

dh
g
c

24.61 (e= 0) (optical waves)

Astronomical Refraction:

/
XdS="/l{U/sin i8o)

2 1-1/2

ll </(ln /a)

24.69 (spherical symmetry)

Chapter 25

General Equations of the Line:

25.01 l
rJs = (r=l,2, 3)



Summary of Formulas

25.02

381

dlr

ds "'

x — x = sa

y— y= sb

25.03 z — z — sc

25.04 p'-p'=sl'

sin a sin f3
= — a sin a> + 6 cos a>

cos a sin (3 =— a sin <£ cos co — b sin (/> sin oj

+ c cos <b

cos (3 = + a cos (/> cos co + 6 cos <£ sin w

25.06 + csin</>

(sec </>)/|
=— (k>/K) sin a sin /3

+ {t]/K) cos a sin /3

/•_> = (ti/K) sin a sin /3

— (k\/K) cos a sin /3

_ aq//i)
/.! —— sec <b sin a sin (3

25.07

25.09

+ BQJn) .
,

cos y8——— cos a sin oH

= (1/n) sec j8 cos a

(cos (/>)/' = — /fi sin a sin /3

—
1\ cos a sin fi + yi cos /3

l
2 =— t\ sin a sin (3

— k> cos a sin /3 + -y^ cos (3

25.08 /
:i = n cos fi

25.10 {sin a sin fi, cos a: sin fi, cos (3}= Q{a, b, c}

a = — sin a) sin a sin (3

— sin (/> cos a> cos a sin (3

+ cos (/> cos a> cos )3

b — cos Q) sin a: sin )8

— sin </> sin a> cos a sin /3

+ cos (/> sin oj cos /3

25.12 c = cos (b cos a sin fi + sin <b cos /8

The Line in Geodetic Coordinates:

{s sin a sin /3, 5 cos a sin /3, 5 cos /3}

25.13 = Q{(*-*), (y-y), (z-z)}

x — Xo(w, cb) + h cos (/> cos w

y=yo(o>, <b) + h cos (/> sin w

25.14 2 = zo((o, <b) + /i sin <b

x = (v + h) cos (/> cos oj

y={v + h) cos <£ sin a>

z = (e-v+h) sin $=(j/+/i)sin <$>
— e l v sin $

25.15

/, = { ( j/ + h ) cos (/> sin a sin /3,

(p + h) cos a sin /3, cos /3}

__ __ , f sin a sin (3 secc/> cos a sin fi

25.17 /'= —-^-—-. ; _,,>" cos/3
(. (y+ A) (p + h)

{s sin a sin /8, 5 cos a sin fi, s cos fi}

= (f + A)Q{cos 4> cos oD, cos $ sin aj, sin $}

-eVsin <K>{0, 0, 1}

— (f + /i)Q{cos 4> cos &>< cos </> s in w ' s 'n <M

+ e2f sin 4>Q{0, 0, 1}

= (v+ h){s'm cr sin a*, sin a cos a*, cos cr}

-(v + h){0, 0, 1}

— e2 (£ sin 4> — v sin <£){0, cos (/>, sin (/>}

25.18

{s sin a sin y8, 5 cos a sin fi, s cos j8}

= (|/+ /i){sin cr sin a*, sin cr cos a*, —cos cr}

+ {v + h){0, 0, 1}

— eHi> sin <j>
— v sin (/>){0, cos </>, sin <£}

25.19

{*, y, z} = {x, y, z}

+ QT{s sin a sin fi, 5 cos a sin fi, 5 cos (3}

25.21

25.22 tandi = y/i

(i> + A)cos = (3c
2+ y2

)
1/2

25.23 (e
L^ + ^)sin^) = 2

Taylor Expansion Along the Line:

25.31 (F-F)=|5 (F'+F')+-^52(F"-F")

Expansion of the Gravitational Potential:

(N- N)/n = s cos (3 + h 2
{
~ k sin 2

/3 - \ sin (3

+ 2(ln n)sq
s sin (3 cos fi

25.33 +(ln n)si^cos
2
fi}

N—N= h(n cos fi + n cos (3)

25.35 (first order)
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Expansion of Geodetic Heights:

h — h = \s( cos /3 + cos /3

)

+ T
L
zs

2 (k sin2 /3 + x sin

25.39 -k sin2 /3-x sin 0)

with

^_ , sin2 a , cos2 a
25.38 -k= -

,

—+•
(y + A) (p +M

Astro-Geodetic Leveling:

i5 (A + A) = (l/n){/V-yV}-{A-/i}
25.43 (first order)

A = (cos c6 8(d) sin a sin )3+ (8</>) cos a sin /3

25.44

Deflections by Torsion Balance Measurements:

Ip = + k\ sin /3 cosec /3 {sin a cos a(l + cos cr)

— sin a cot fi sin cr cos a*}

— &2 sin )8 cosec )3 { sin a cos a ( 1 + cos cr)

— cos a cot P sin a-

sin a*}

+ 1\ sin )3 cosec /3 {(cos2 a — sin2 a) ( 1 + cos a-

)

— cot )3 sin cr cos (a + a*)}

— yi cos/3 cosec /3 {cos a(l + cos cr)

— cot /3 sin cr cos a*}

+ 72 cos /3 cosec /8 {sin a(l + cos cr)

25.48 — cot /3 sin cr sin a*}

1 1' — sin (5 cosec (5 ( 1 + cos cr)

X {{k\ — k>) sin a cos a + t\ (cos2 a— sin2 a)

25.50 — yi cos a cot fi + y> sin a cot /3}

//• — (1 + cos a) { (ki — k-z) sin a cos a

25.51 -+-
1\ (cos2 a— sin2 a)}

25.49 s(IP + h)=4 sin A

( \a — k<; ) — — cos a cosec /8 cos <£> ( a>..i
— a>r,

)

+ sin ci cosec /3 (q>A ~<f>(;)

+ cos a cosec /3 cos $ (a>i — cor,)

25.52 — sin a cosec /3 (<£i — </>r.)

Chapter 26

The Triangle in Space:

26.02 5 12 /[2 +s23 /
2
r
3-5,3/r3 =

si2 (cos «i3, — sin a13 , 0)

X {sin c*i2 sin )8i2, cos a.\2 sin /812, cos (Siz\

—— S23 (cos «i3, — sin CX13, 0)

X 0Qr{sin a23 sin /323 , cos a23 sin /323 , cos /323 }

26.04

512 (cos 0:23, — sin C*23, 0)

X QQr{sin ai2 sin /3i2, cos an sin /3i 2 , cos /3i 2 }

= Si3 (cos «23, —sin a23, 0)

x QQr{sin a 13 sin /3i 3 , cos ai 3 sin /3i 3 , cos y8i 3 }

26.05

Variation of Position:

26.08 ds = Irdx r- lrdx r

sd{l r
) = (msdxs — msdxs

) m r + ( nsdx* — nsc/x
s
) n r

26.10

Variation of Position in Geodetic Coordinates:

/' = A.' sin a sin (B + p.'" cos a sin /3 + i>
r cos /3

26.11

m'"= A.' sin a cos /3+ p r cos a cos fi
— v' sin /3

n r=— A.' cos a+ /x' sin a

26.13

sd($ = msdx $—

m

sdxs — s cos <£ sin a da) — s cos a c/<£

26.15

5 sin /3 da = — hsdx" + nsefa:
s

+ s(sin </> sin /3 — cos </> cos a cos /3)c/oj

26.16 +5 sin a cos y3 c/(/>

mi m>

(v + h) cos<f> ' (p+ A)'

= {sin a cos j8, cos a cos )8, — sin/3}

(v + A) cos (/>' (p + h)

26.20 = {—cos a, sin a, 0}

fe
m 1

TO2
m3+ /i) cos 0' (p+fc)'

=QQr{sin a cos /3,cos a cos /8,— sin /?}

h] n.2

n3

(v + h) cos</> '

(p+ h)

= OQ7 {— cos a, sin a, 0}

26.21
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26.22
m.

+77Tt^+^ =1
(v + h) 2 cos-

(f> (p + h)'

fh\ = m\+ s cos 4> sin a

h\ = ri\ + s (sin $ sin /3 — cos </> cos a cos /3)

26.23

Observation Equations in Geodetic Coordinates:

Horizontal and Vertical Angles:

(Observed Minus Computed) Zenith Distance

= — A/3 + fhidibls + m2d(f>ls + rh3dh/s

— midco/s — m 2 d(f>ls — m3dh/s

— (d(o + 8(o) cos (/> sin a— {d<f> + 8<f>) cos a

26.24

(Observed Minus Computed) Azimuth

= — Aa — h\dU) (cosec /3)/s — n2d<}> (cosec /3)/s

~n3dh (cosec ft) Is

+ riidw (cosec ft)/s + n2d<f> (cosec ft) Is

+ n3dh (cosec ft) Is

+ (d(o + 8a>)(sin </>
— cos cos a cot ft)

+ (d<f> + 8<l>) sin a cot /3

26.25

Reverse Equations:

(Observed Minus Computed) Zenith Distance

=— A/3 — fh\d<bls — m2d4>l s — m3dh/s

+ m t da)ls + m2d$\s + m3dhfs

+ (da) + 8a>) cos 4> sin a

26.28 +(rf^ + S^)cosa

(Observed Minus Computed) Azimuth

= — Aa + hidcb (cosec /3)/s + n 2d<f> (cosec ft) Is

-\- n3dh (cosec ft) Is

— nido) (cosec ft)/s — n2d<f> (cosec ft)/s

— n3dh (cosec ft) Is

+ (da) + 8~u>) (sin (/>
— cos

<f> cos a cot /8)

+ {d<f> + S(t>) sin a cot )8

26.29

Lengths:

(Observed Minus Computed) Distance

=
( v + h ) cos </> sin a sin ft(da) — d(o)

+ (p + h) cos a sin ft d<f> + cos /3 </A

26.30 — (p+ /i) cos a sin ft d<f> — cos ft dh

Observation Equations in Cartesian Coordinates —
Auxiliary Vectors:

{/i,/»,/3 } = {/"., *»,/*}

26.33 = Q'jsin a sin/3, cos a sin/3, cos/3}

{mi, m> , m :i } = {m i
, m2 , m:{

}

26.34 =Q 7 {sin a cos /3, cos a cos /3, —sin ft]

{ri\, n 2 , n3}={hi, h->, h3 }

26.35 =Q7 {-cos a, sin a, 0}

Observation Equations — Hour Angle and Dec-

lination:

// = (cos D cos //)/T + (cos D sin //)Z3
r + (sin D)C r

26.36

W= (sin D cos //)/*
r + (sin D sin H)B r -(cos D)C r

26.39

26.40 /V
r = -(sin//M r +(cos//)£'-

26.42 sdD =-Msdx s + Msdx s

26.43 (s cos D)dH = Nsdx s-Nsdx s

Observation Equations — Hour Angle and Dec-

lination— Cartesian Coordinates:

x — x — s cos D cos H

y— y=s cos Z) sin H

26.44 z— 2= 5 sin D

M ' = M~r= (sin Z> cos //, sin Z) sin //.— cos D)

/V
r = A7 ' = (- sin //, cos //, 0)

26.45

Observation Equations — Hour Angle and Dec-

lination—Other Coordinates:

(Mi , Mj, M.O = (sin D cos //, sin D sin //, — cos D)

26.48 x Q'S

(Mi,M2,M:i )
= (sin DcosH, sin D sin//, — cos D)

26.50 x Q'S

(/V, , /V2 , N-,) = (- sin //, cos //, 0)Q 'S

26.51

(A7 , .Nt , A7:! )
= (- sin // , cos H , 0)Q '

S

Satellite Triangulation — Directions:

Basic Photogrammetric Equations:

26* (vr^
M
fc:



384 Mathematical Geodesy

(cos k sin k 0\

— sin k cos k
J

1/

/l \ /- sin Hc cos Hr 0\

X sin Df cos Z)c I

_ cos //f — sin Hc

\0 - cos Dc sin Dc/ \ 1/

26.56

«V- (x-Xo) 2 +(y-y )

2 +f
VAJ (*-Z )

2+(F-F )
2 +(Z-Zo) 2

x — jcd m n (X —Xp) + m v2(Y—Y{) ) + m vAZ — Zn)

/ ~m.n(X-X ) + m:i2 (Y- Y )+ m33(Z - Z„)

y— yo _ m-iilY — Xi) + mggQK~ F() ) + m L»,i(Z — Z»)

/ ~ to:, , (X - Jo) + m :!,(F- F„) + m :t,(Z - Z„)

26.58

26.57

inn m i
> m i :i

M= (

m 2 i m 2 2 m-23

.m3 ) m.i2 m :i ;(

Photogrammetric Equations — Star Images:

/cos Z) cos //

./' sin Z)

rf
2 =(x-JCo) 2 +(y-yn )

2+^

x — Xd _ ffii i
cos D cos H+m\> cos Z) sin ZZ+mi :i

sin Z)

/ ira.-n cos D cos H-\-m-M cos Z) sin H+mM sin Z)

y — y() _ n?2i cos D cos H-\-m?> cos D sin H+m-^ sin Z)

/ ni:( i
cos Z) cos H+m.i> cos Z) sin H+mXi sin D

26.60

(cosZ)cos/Z\ /sin a sill /3\

cos ZJ sin A/ 1= N cos a sin /3

sinZ) / \ cos/3 /

/—sin co —cos co 0\ /l \

N = l cos co —sin co sin c/> —cose/)

\ 1/ \0 cos (j> sin /

26.53; 26.54

Alternative Photogrammetric Equations:

X— Xo_ n ii sin a sin B_+ n v > cos a sin fl+ n i:i cos /3

/ rt.u sin a sin /3 + n32 cos a sin (3 + nM cos /3

y— yp _ H2i sin a sin (3-\-n>-> cos a sin /3 + ii2:i cos (3

/ n
:u sin a sin (3 + n :!2 cos a sin /3 + n-.u cos /3

26.62

"ii "i2 ^13'

11 :
l n-n n-n n-n

n-.u n-M n.ni

tan H _ mvzix - go) + W2-»(y~ y»> + /n :>2(/)

m, ,(x — ^(,) + m2,(y— y( i) + ni:n(/)

tan D = sin ZZ X
m i:iU ~ *"> + ma » (r=& ±"^
mi 2U — *o)+ffi22(y— y»)+ m-xAf)

= cos ZZx

26.64

m VA(x — xu) + m> n(y — yo) + m :t:<(/)

mn(jc — jc ( ,) + /7i2i(y—

y

( )) + m :t i(/)

Chapter 27

Change of Spheroid:

c/co =

(p + /i )d<f) — (e
2v/a ) sin c/> cos c/> cZa

+ (e/e2 )(p + t»e
2

) sin c/> cos c/> cZe

27.04 dh=-(alv)da + ev sin2
</> cZe

Change of Origin:

(^ + /; ) cos c/) cZco = (sin w)dX — (cos co)cZF

(p + h)d(f> — (sin c/> cos co)cZA^)+(sin c/> sin co)cZF

— (cos c/>)c/Zn

cZ/i = — (cos <f> cos cotcZYo

27.06 — (cos </> sin co)c/F — (sin <f>)dZ

Change of Cartesian Axes:

( v + h ) cos c/> cZco =— (1)3 (v+ h) cos c/>

+ (coi cos C0 + CO2 sin co)

X (Pv + h) sin c/>

(p + /i)c/c/)= (CO2 cos to — coi sin co)

x (/i + fl»

dh = (C02 cos co — coi sin co)

27.14 x {e
2 v sin <$> cos 0)

Change of Scale and Orientation:

/sin a sin /3 sin a cos (3 —cos a

A— cos a sin /3 cos a cos /8 sin a

\ cos (3 — sin /3

27.18

{(f + A) cos <£ c/co, (p + h)d<f>, dh}

27.21 =sA{cZs/5, cZ/3 . -sin/8 cZa }
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Extension to Astronomical Coordinates:

Change of Origin :

27.22 {do>, (1$, dN} = RTQ{dx, dy, dz}

where

l—k\ sec <f>
— 1\ sec 4> y\ sec <$\

W \ ~h ~k2 y,

,i

Change of Cartesian Axes:

27.23 {d<a, #, dN} = RrQN {jc, y, z}

Change of Scale and Orientation:

\dbi, d<f>, dN}=sRTA{ds/s, rf/8 , -sin (3 da }

27.24

Chapter 28

Equations of Motion — Inertial Axes:

d 2x d{mvx )

385

28.001

28.002

28.003

28.004

28.005

28.006

28.007

m
dt 2

dx r

dt
= F,

- , _ d*' dx s_ dx' _ ds dx' _ .

dx s dx s dt dt dt ds

8p^

8t
vi

8'-p, 8v, 8{mvl,) r
- „ = m —r- = — r ,

8t< 8t ot

°"P' _8v r _ 8{vlr) _ r,

~8t
T~^t~ 8t ~~ '

82
p r 8v, 8(vl r )

8t
2

8t ot
F,=-V,

v _ F _ d_ ( dx?\ _ i dgkq dxk dx'1

'"
'
' dt\g

' s
dt)

2
dxr dt dt

aw at

dV_d ,=
, M2 Ji 1

r>{(^, + /i)^cos-(/)} ..,

. a{(ft. + /t )

2
} ,.,

aF J
r
-,

. d{(Ri + h)2 cos- <£} .,

a{(ft> +W ,

dh

28.009

dV d .
t

.....— -— =— (r- cos -
<p (o)

r>CD dt

W d , ,
, , . . . ...

- =— (rd>)+ r~ sin cos cit-

ric/) dt

dV .. ., , ... ;.,= r— r cos- (p o»— r0-

Equations of Motion — Moving Axes:

A r = A r cos d>t-\- B, sin ai/

B,— — A, sin d)t + B, cos oif

28.010 C=C,

cW, - D dfl, _ ,
dC, n—j——<0tf r ;

—j— = — coA l : —

i

-

=

U
tff dt dt

28.011

28.012 F,=-^-+2ioe,vqC»v»-fa2 (x2 + y
2
)r

28.013 -r,=^7+2o>e,p,C^9
of

x - 26jy= F.r + oj-x = - a JF/ri.v

y+ 2wi = Fy + w'-'y= - d W\'dy

z =F, =-dW/dz28.014

Inertial Axes — First Integrals:

28.015
d(v-) n 8v,

: = lv' ~r~
dt 8t

28.016

28.020

28.021

28.027

8(Vr) = ~Vr
8t

f dV
?v2 + V= — dt + constant

J a/

vr sin /3— constant

Moving Axes — First Integrals:

28.028 hv1 + W= constant

The Lagrangian:

28.029

28.030

* = A I V-2(±
2 + y

2 + z
2 )-f/(.v. y, 2. t)

dt \dq r)~ 8q r

28.008

The Canonical Equations:

28.032 H* = Hx2 + y
2 + z

2
) + V(x. y, z, t)

3H^ = dx^ dH* = dir

d.ir dt
'

dx r ~ dt
28.033

306-962 0-69— 26
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The Kepler Ellipse:

28.035 h2 -(Mlr=H*

28.036 vr sin ft
=N

drjds = cos ft

28.037 rdf/ds = sin
ft

r= i; cos /3

28.038 rf^v sin ft

r
2f=N

28.039 (r)
2
+(rf)

2 = v
2 = 2(»lr+ H*)

28.040 /V=vVa(l-e2
)

28.041 H* = -\x\2a

28.042
\r a) ar

28.043
2n

n ——
28.044 n = fi^a- 3'2

28.045 A^=V/ia(l-e2
) = na 2 (l-e2

)
1 /2

dr_ . „ dE

_

ae(l —e2
) sin f df_ r^e sin/ jV—-aesint

dt
-

{1 + ecosfy dt~ a(\-e2
) r

2

28.046

28.047
dE na

dt r (1 — e cos E)

28.048 (E-e sin E) = n(t-t») = M
e sin E

28.049 cot)8 =

28.050 cot ft

(l_e2)i/2

e sin/ _ re sin/

(1 + ccos/) a(l-e2
)

a(l-e2
)28.051 r=a(l-ecosE)=,.

(l + e cos/)

q\ = r cos /= a(cos E — e)

28.052 qt = r sin/=a(l-e2 )'/2 sin £

/u,
1 '2^ sin/ _/x 1/2a 1/2e sin £

28.053 ^cos^ =
al/2(1 _ e2)1/2

- -

M,n ^= 7
=

P

=
a^l-e2 )"2

28.054

28.055

cos £ =

cos /=

cos /+ e

1+e cos/

cos E — e

1 — e cos £

_ jit
2
(l + 2e cos/+e2

) _ /"-(1 + e cos £)

W2 r

28.056

v cos (/+/3)=9i-

v sin (f+ft)=q2 =

28.057

rca sin/ na2 sin £
~(l-e2

)
1/2 ~ r

na(e+ cos/) _ na2(l—

e

2
)

1 '2 cosi:

(1-e2 )"2 r~~

Auxiliary Vectors:

/
fc= r* cos ft + t

k sin /3

28.058 r* sin (3 + t
k cos j8

/
fc = \ fc sin a sin ft + fJ.

k cos a sin ft+vk cos /3

m fc = \ fc sin a cos ft + i^
k cos a cos ft

— vk sin )8

\fc cos a + //.
fe sin a

t* =

ffc — ^fc
s jn a _|_ ^t cos a

28.059

(cos (u;+/) cos ft — sin (w+f) sin ft cos i\

cos (w+f) sin ft + sin (w+f) cos ft cos i
J

sin (w+f) sin i /

28.060

(—
sin (w+f) cos ft — cos (w+f) sin ft cos i\

— sin (w+f) sin ft + cos (w+f) cos ft cos i

cos (if+/) sin i /

28.061

28.062

SI

,..< I-
nft sin i

I
cos ft sin j

cos i j

28.063

28.064

(cos (w+f+ ft) cos ft — sin (w+f+ ft) sin ft cos i\

cos (w+f+ ft) sin ft + sin (w+f+ ft) cos ft cos i
J

sin (w+/+/3) sin i /

(—
sin (w+/+/3) cos ft — cos (w+f+ (3) sin ft cos i

s

— sin (w+f+ ft) sin ft+ cos (w+f+ ft) cos ft cos i

cos {w+f+ ft) sin i /
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/rk\ /cos (w+f) sin (w+f) 0\ /l \ / cos ft sin ft 0\ /i*\

f
fe = -sin (w+/) cos (u>+/") cos i sin i - sin ft cos ft 0|[fi fc

)W V 1/ \0 - sin i cos t/ \ 1/ \CV
28.065 = K{i*, Bk

, C*}

cos (w+f) cos fi — sin (w+/) sin fi cos i cos (w+/) sin fi + sin (w+f) cos fi cos i sin t sin (w+f)\

K=
[

—sin (if +/) cos fi — cos (u/+/) sin fi cos i —sin (w+f) sin fi + cos (w+/) cos fi cos j sin ( cos (w+f)

sin fi sin i —cos fi sin i cos i

28.066

28.067 {A k
, Bk

, Ck
) =KT{rk , t

k
, nk

}
Variation of the Elements:

28.068 {gi,92,0}=K/= {*, y, z] 28.082 F r = --„p r + R r
r3

'

28.069 {*.**>-!M«..*.0} 28>og3 ^ =Fr/r =_^os^ + /?/r

/ \
efr r

2

/ cos/ sin/ 0\ ,, ,. , s , r >

K= -sin, cos/ ,L 2«-«8* ^^T^^W,
\ o o 1/

rfr

28.070 = FK/=0 28.085 -j-= p rp
r\r = v cos /3

28.071 {/*, rf, „*} =K,WA *. C*} Semimajor Axis;

/
COS ^ Sin ^ °\ 28.086 (£-^= vRrlr=RrF

28.072 Kw+/+i8= -sin/8 cos/? OK \2aV dt

\ 1/
|=2a!{

esin/(/?rrr) + «iiz-!l
(/?r,

r)

}

p
k =vlk =(v cos /3, i; sin /3, 0)K{/f*, fi

fc
, C fr

} 28.087

28.073

p*(i*, #*, Ck ) = (p«A k , P
kBk , p

kCk ) = (i, y, z)

28.074 =
(V cos B, v sin B, 0)K

Angular Momentum:

28.088 (vr sin B)nr = Nn r= e
rPip

ppq

{*, y,i} = Kr{^ cos /3, i; sin j3, 0}
28.089 -^ n r

' + N jp = e
r™ppR q

= KI=0FT{v cos )8, u sin B, 0} <#V

28.075 =KJ=0{t;cos(/+/3), i,sin</+/3),0} dt *

28.076 {£,?,2} = K/=0{$i, ^2,0} 28.091 &~=~£ (/V)' r

28.077 cos t = cos (/> sin a

28.078 cos (w+/) = cos $ cos (a) — ft)

Eccentricity:

<k_, n _ 2 , d^_^dN
sin (u>+/) = sin (<w — ft) cosec a=sin $ cosec i

^ae
<ft

*/*U €
' dt dt

28.079 28.092 = {i;a
2 (l-e2

) (/«/?,) -Nr (t«R q )}

cos a= tan (/> cot (w+f) = sin </> sin a cot (a) — fi) Je a 1/2 (l — e2
)
1/2

= sin t cos (di-n) = sin i sec </> cos (w+f) dt p.
1 '2 \ smn g)

28.080 28.093 + (cos/+ cos £)(*«/?,)}
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de_ (l-e2
) [ 2 cos E(l"Rq ) sin E(m"R q ) }

dt v [ 1-e cosE (l-e2
)
1/2

J

28.094

Zenith Distance:

28.095 vr-£ =fi sin 13 (~^] + r(m^Rg)

True Anomaly:

df_ N
,

(N cosf)(R qr«)

fxe

N(2-cos2f- cos E cos/Kggg)

dt r 2
+

28.096

fxe sin/

TV
|

(N cosf)(R q
r<J)

r 2 \xe

(N sinf)(R q
ti)

\
1

/xp a(l-e 2
)

28.097

/V (2 sin/W)

(cosf + eXftgm'?)

et>

7V_ M 1/2Q 1/2
(1 -e 2 yl2

= n(l + e cos/)2
^B.098

r 2 a 2(l-ecos£)2 (1-e 2
)

3'2

Eccentric Anomaly:

dE na a 1 l2 (cosf-e)(R r r
r

)

28.099

28.100

(a 1 '2 sin E) (2 - e 2 + e cosf)(R r t
r

efi^d-e 2
)

1 ' 2

na (2smf)(R r l
r

)

~~

r
~~

ve(\-e 2 y'2

(1-e 2 )"2 cos E(R rm r
)

ve

Mean Anomaly:

dM {(\-e 2
) cosf-2er/a}(R r r

r
)

—jT=n-\
at nae

28.101
{(1 -

e

2
)

1 '2 sin E(2 + e cos/)} (R r t
r

)

= n +
{a(l-e 2

) cos/-2er}(/? r r
r

)

eM i/2a i/2

28 . 102 -'"-''rd'wu
efJL

V2a H2 1-e 2

dM
dt

~~

28.103

Mathematical Geodesy

2 sin £(l+e cosf+e 2 )(R r l
r

)

ev

(1 -e 2
V'

2 r cosf(R rm r
)

vae

Inclination:

28.104 -j = jj(Rqn«) cos (w+f)

Right Ascension of the Ascending Node:

28.105 -j-=^{R q
ni) sin (w+f)coseci

Argument of Perigee:

dw df v sin /3 . dil
—j- + -j: — cos i —r-
dt dt r dt

28.106
N r n=3— 7v

yR<inq ) sm («>+/) cot i

dw_ (N cosf)(R q
ri)

dt

+ 1+-

28.107

^e

(N sinf)(R q
t<i)

H-e \ a {I— e 2
)

r sin (m/+/) cot i(R q n
Q

)

Derivations With Respect to the Elements:

Semimajor Axis:

28.108 (~f
Xr

)

rr

dF r(F r r
r

) F rp
r

28.109 ^ =^^=
da a a

dp r _ d(vl r
)= Bl^ dv _vlL = _PZ_

da da da da 2a 2a

28.110

8a 8a

28.111

2a'/2 /

Eccentricity:

— = -(acosf)(F r r
r)+(a +Y^) (Frt r

) sin/
dF

de

28.11
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Bp r B(vl r
)

Be Be

_ pa
vr 2

28.117

28.118

{(cos./')/ r+(l+-
re cos E .a^mr%mf

dp r _ N
Be r(\— e

— {— r
r sin/+ t

r cos E}

Bjh _ N sin/
f

a7~"7(T^a {cos/+cos£}

ggg_ V

de r(l-e 2
!

28.119

{— sin2 /+ cos £ cos /}

28.120

Mean Anomaly:

dF v 1

BF _(ae smf)(F rr
Y

) a(l + e cos f)(F rt
r

)

BM (l-e2
)

1 '2

28.121

(1-e2 )"2

dp r

= d(vl r
) ^l dp r

= P r = _JL
BM BM n dt nr3

28.122

Inclination:

28.123 — = r sin (w+f)(F rn
r

)

Bi

nr2

Bp r

= B(vl r
)

Bi Bi

28.124

= v sin (w+f+ fi)n
r

pin'
{ cos (w +/) + e cos w}

Right Ascension of the Ascending Node:

dF

an
= €

rstF rCsp,

= (r cos i)(F rt
r

) —r sin i cos (w+/)(/r
r"

r
)

28.125

an "an

cos ( m;+/+ /3) sin H — sin ( w +/+ /3) cos ft cos i

i>
j

cos (w+f+fS) cos fl — sin (w+/+/3) sin ft cos t

(v cos i)m r — v sin t cos (w+f+(l)n r

N
,,_ 2 , {— cos i(l+e cos f)rr + (e cos i sin/)/ r

28.126 + [sin i sin (w+/) +e sin t sin w]n r
}

389

Argument of Perigee

BF
28.127

B£ Bl r

-f~- = v —— = vm r

Bw Bw

Bw
= rF rt

r

28.128
/2„l/2p^a 1

{- (\-e2
)

l '2rr +(e sin E)t r
}

Relations Between Partial Derivatives:

- BF r(l-e2 )" 2 aF
(ae sin /)

—— = —riJ Ba a BM

— (1 + e cos f)

{ e(l- e2)i/2 sin£} — = (e + cos£) —
ac aw;

aF

aw

BF
+ (l-e2 )"2(e-cos£)^

/ i-n^F aF ^ - dF
sin i cot (m; + /) -tt = — —^ + cos t

—

—

Bi Bil Bw

28.129

Derivatives of Cartesian Coordinates:

Bp r p r rrr

Ba a a

Bp r

Be
(a cos f)r

r +
( a + j) f sin/

Bp r

-—=r sin (i^+/)n r

a/

ap r _ ( ae sin f)rr a(l + e cos f)t
r

_p^
B~M~ (1-e2

)

1 '2 (1-e2
)

1 '2 "n

a«;

ap r

r/
r

28.130 ttt— (r cos i)t r — r sin i cos (w+f)n
Bil

d

-f =-^rH e sin ^)rr + (i -e2 )"2r}
aa 2a v 'r

Bp r V

f- = 71 FT {- r
r sin /+ r cos E}

Be r(l—e)

B£^ pn r

-Ft = —rr {cos (w +J ) + e cos w)

dp r_ prr

BM~ nr2

B6 r u ll2a 112JL=vm r = '±—— {- (l-e 2)"V+(e sin E)t r
)Bw r

NBp r
_

an~ a(l-e2
)

28.131

'— cos i ( 1 + e cos /)

r

r

+ (e cos i sin/)f r

+ [sin i sin (zc+/)

+ e sin i sin w]n r
}

h
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(2ae sin/) ^= (1 -e2
)
x'2(l -e2 cos 2 E) %,da dM

q(l-e2
) dp r

2r dw

{ed-e2
)

1 '2 sinE} ^-=cosEdpr
_

de

dp r

dw

+ (l-e2 )"2 (e-cos£)
dp r

dM

[sin i sin (w+f) + e sin i sin w] -+r
9

1

28.132

{ cos (w+f) + e cos w}

X -"=-— cos i
-c-

The Lagrange Planetary Equations:

da = 2 dR
dt na dM

de = (l-e 2)dR (l-e 2
)

l l2 dR

dt na 2e dM na 2
e dw

di _ cot i dR cosec i dR
dt~ N ~dw N. dO,

dM = 2 dR (l-e 2
) dR

dt na da na 2e de

dw_ N dR cot i dR
dt /xae de N di

dCt _ cosec i dR

dt~ N di
28.134

dN = dR

dt dw

8n r
t
r dR

28.135

8t N sin (w+f) di

df= N_ N_dR
dt r

2 p.ae de

dE = na 1 f dR ae(\ + e cos f) dR

dt r na 2e\ de (I — e
2

) da

e
2 sinfdR]

+
(1-e 2

) dw

Curvature and Torsion of the Orbit:

dv

"

28.136

28.137

28.138

dt

dt
trl

v 2x~ Fr m'

28.139

28.140

28.141

28.143

m r = m r cos y + n r sin y

v 2x~ (Frm r
) cosy + (Frn r

) siny

n r — n r cosy— m r siny

F r n
r

tany :

F r m>

28.144 Frm r = v 2
x cosy= (^t sin /3)

/

r2 + R rm

28.145 F r n
r=v2

x siny = R rn
r

v
2
xrhr = F r -(Fs l

s
)l r

= (Fsm s)m r + (Fsn $ )n r

fx sin /3
28.146 = + R sm s )m r + (R sn

s)n r

28.147 F rsn
r
l
s = TF rm r = v

2
XT

28.148 T = (dylds)-nrsm r
l
s

n rsm r
l
s = — x Sin 7 cot fi

28.149 T=(dy/ds)+x sin y cot /3

The Delaunay Variables:

Canonical Equations:

28.163

dL =
dt

dl _

dt

28.164

H* = -R =~^~-R

dH*

dl
;

dH*

dl
;

2a

dG

dt

dg_

dt

dH*
'

dg
;

dH*

dG
;

dH
dt

dh

dt

dH*
'

dh

dH*

dH

First Integrals of the Equations of Motion — Furthe:

General Considerations:

28.166

28.167

d(N cos i)

dt

\v2 + V— (dN cos i = constant

dV

\ dt
dt = a>N cos i + constant

— rRQ{t
q cos i — nq sin i cos (w+f)}

28.168 = (r cos 4>)R q
\i

N cos i = € rstCrpspi

d(N cos i)

dt

28.169

28.170

28.171

= e rs<Crpspt
= € rstCrpsF, = e rstCrpsR t

dV . d(N cos i)

dt dt

faj
2 + V— constant
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28.172 N cos i = constant

28. 1 73 hv
2+ V— d>N cos i = constant

28.174 h2 + V-6Jers'Crpspt = constant

Integration of the Gauss Equations:

The Hamilton-Jacobi Equation:

28.192
"*(<'.f,<)

+ f=0
dS(qr

, Otr, t)

Pr =

28.180 Cn0 = — (ae )

n
Jn

28.181
3ira 2

e
cos ij2

Aid =
a2 (l-e2

)

2

Aia =

Ak? =

A,i =

28.193 Q r = p

28.194 V+ WS-. ""

AlW=
a 2 (l-e 2

)
2 (

*
l)

[ idM \ 37ragy2 ,_ , .
2

..

28.182

Integration of the Lagrange Equations:

dq r

_ dS(qr
, Oir, t)

as

dt

28.195 VS = g
rsS rSs

28.196 S=W*-a,t

28.197 //* = F + |Vr* = a,

28.198 />,=«.

28.199 Q r = 8 r
l
t + p

r

P, = a,

aw*
da,

28.200

Qr=8';t+pr=

Rnm— „ +

6

j ^ Fnmp(i) 2j Gnpq {e)
a

p = 9=-x

28.184 xs„™(w, m, n, e)

Jnmpq

n-m even

n-m odd
cos [{n — 2p)w

The Vinti Potential:

28.202 (ae) 2 = -C,„ = + a 2
J,

- f 1 1
- (—V^ (

sin *> > + (-V^ (^n *)

^nmj n-

(n-2p + 9)M + m(n-e)] _/M' ;

y,p4(sin</)) + . .
1

'« odd

28.185

sin [(n — 2p)w

+ (n-2p + q)M+m(n-d)]

&& I am _J fia"

N sin i a" + l

*2
\dr limp/ (il)f-rnpqO nnipq

(n - 2p)u/+ (n - 2p + g)/t/ + m((l - 6)

28.187

Integration of the Canonical Equations:

Contact Transformations:

28.189
dK*

Pr=~
dK*

dQr

dS „ dS
K* = H* +

dS

dt

28.190

28.191 S=f(qr,Pr,t)

28.203

The Variational Method:

28.212 it;
2 +r=a,

28.213 ds = vds

28.214 lr=vl,

28.215 M* = vl, = I,

28.217 VM * = g rsM*M* = v
2
$

rs
lr ls = v

2

Chapter 29

Surface Integrals of Spherical Harmonics:

29.01
I
Ydfl=

\ \
Y cos

(f> d<f>da)

{«;,"} =P;
(

"(sin (f})(C„iii cos maj + Snm sin m<o)

29.02
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{u™} =f>

;;

, (sin 4>){Cnm cos moj + Snm sin mw)

29.03

29.04 {u„} = C liaPn (sin(t>)

I
{u%}{u%}d£l = if (m, p) are different

29.05 or if (n, g) are different

{ «£»} {a;,"} dil= 7^—r

—

r; (CnmCnm + S„mSnr,

(2n+l) {n— m)\

29.06 (m #0)

(m = 0){ «„} { u„} dO = -r——- C„ C„o
J (Zn+ 1)

J

[Pjffsin 0) cos ma>]2dn= I [P^(sin </>) sin mojfdD,

29.07

2tt (n+ m)!

(2n+l) (n-m)!

29.08

29.09

(m #0)

f [P„(sin </>)]= dO =

477

(2n+l)

r 477 -

{«;;'}P„<cosi/;Wa =—-— P™(sin 0)(C„
J zn+ 1

cos ma)

+S,,m sin mw)

29.10

Series Expansions:

29.11

477

2rc+l
{u>,?}p

1

(l-2k cosip + k2
)

(1-A 2
)

</0(l-2Acos^P)3^ g/
2 - +1)A"P » (cOS

29.12

29.13 <P = (1-2A cos «// + A2
)

2 (2n + 1

)

& (
R_1 )

= A — 5k2 cos i|/

— A:(l — 6A cos t/z + SA 2)/^2

29.14 -3A 2 cos «/>lni(l-A cos <// + cp'/2
)

~, (n — i)

= 1—5 cos i// — (2 — 3 cos t|/) cosec ii//

29.15 — 3 cos \jj In (sin |i|/ + sin2 51//)

$(*.*) = 2 ?
n

^iV A-"+'P„(cos</,)

2A- / cp'/
2 + A-cos ^29.16 ^TTt;

- In ; 7-
<P 1/2

\ 1 — cos <//

- - (2n+l)

29.17 = cosec ii// — In (1 + cosec |i|/)

Introduction of the Standard Field:

Potential Anomaly:

29.18 t=W-U

Curvature and Deflection:

Ar=l,r_=r ^

(

cos $ 8u>)K r + (Scf))^ = r)Kr + £ Jl'

29.19

29.20 i>
T = v r cos k — pt

r sin k

Gradient of the Potential Anomaly:

29.21 Tr=Wr -Ur = gVr-yVr

T,^(giq)Kr + (gi + y sin k )fZ r + (g— y cos K)v r

29.22

29.23 7"
r *>(gr))lr+g(g+K)&r+(g-y)Vr

Gravity Disturbance:

29.24 g„ = g-y

29.25 g,,= Trv
r = dTldh

29.26 g/;^-2 («+l){r»'}/r» +2

Gravity Anomaly:

29.27 gA =gP -yH

29.28 Tp^-yB i,

29.29' y^-yC
<9r /d In y29.30

29.31

^4 =
dh V aA

ar 2r
gA^— +—

dr r

/ mi- (" + D{ry} 2{r;;'} = (/i-D{ry}
lo.-IJl/ _»+•> _nj-9 _»i-f>

29.32

29.33 = _ v (n-\){T>?}
&A Zj rn+2



Summary of Formulas

The Spherical Standard Field:

— I/— 2, 3Tm h3~ w 2r2 -^ wz
r
2/

,
2(sin <f>)

n = '

29.34

-f/o= GC o//?+id)2/?2

29.35 0=GC2olR3 -to*R*

Poisson's Integral:

«"
29.36 "

/3
= 2 (2»+D-^T /?n(cosi/>)

n=0
r

29.37 #«=2 2 {//;r}//?"
+l

n = m = (i

29 .38 (J^l^^yy^iM
J /!

£o £o r "+
' R " +l

29.39 HP=^j^^P-HQdn

29.40
47T 4vr r </n

rCr
2 -/? 2

) r(/T) J /
:2 /3

29.36A ^7^=2 (2n+l)^T P„(cos^)
M =

x n

29.3 7A #o=2 2 fi'WJ
n=0 m=0

29.39A Hr^~ \
-"

,.,
-' HQdil

477 J /' !

29.41
/? f (/?

2 -^)

/?
2

f (« 2 -r2
)/?

2
r

29.42 r=— -
r ,

'

!

,-
( ,s ,/>,/!>

29.43 (rr)P

29.44 g> =

/
3

_ R(r2 -R 2
)

\tt

R(r2 -R 2
)

477

29.45 ^=2 2 {^!'}/ r
" +l

n = m =

29.46 r£=-]T 2 (" + l){f
/
"'}/''" + '

29.47 gP
R 2

(r
2 -R 2

)

\-nr

dn
gu-p

o0/,q i \
R 2

(r
2 -R 2

)
f dU

29.48 (*,),= —
I (^)Q-p-
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Stokes' Integral:

29.49 rs = y y 1
7^-r

n=2 m=0

29.50

29.51 7V

29.52 N

29.53

-£;| S(R/r,il,)(gA ) Qdn

-! S(Rlr, ij))(gA ) Qda
\it(

Deflection of the Vertical:

29.57

R
(
dS

i wo

£(£+*)=-£;] H cos «(^) Qdn

Gravity and Deflection From Poisson's Integral:

3R(r 2 -R') fsin/Scosa
«£=

gi7 :

4tt

3R(r--R-) ( sin /3 sin a

47T /'
zwn

R f f 2r 3 (

r

2 -R 2
) cos ft ]

(g" )/,
=
4^ 7» F <

TQdn

29.58

dT\ R =_K f[2r 3 (
r-' -/?-) cos j8

dr p r2 '' 4ttJ I/ 3 /'

29.59 *(T(i -Tr)di\

dT\
,

Tp R 2
[( Tv-Tp)

/
:1

2960 <777j„+K=^ 712

Extension to a Spheroidal Base Surface:

- T/G= 2 2 ^»"u cot a )P »" (sin "

'

n= m = 6

29.61 X {A nm cos ma) + B„„, sin mw)

_dT_ tana^T
1

rte t" da

G tan a * " _, ,= 2 2 (l' cosec a )Q'" d cot a)
v n=0 m=0

29.62 X ^;T (sin u ){/*„,„ cosmco + fi„m sin ma>}
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^=-2 2 (" +1 H^'}
n = m =

_ » " i tana(n — m+l)Q™+1 (i cot a) ,

^ ^ m
(i cot a) "

29.63

cos t//= sin u sin u + cos u cos u cos (w — to)

29.64

(^)S(.//)<m= -47r7V

_ f ^ ^ i tan a(n — m + 1 )'Q™+ , (i cot a

)

J \ ^n (J™ (i cot a)

29.65 xS(i}>){T™}dn

^=-2 2 ("-iHnm }

n = m =

+ 2 2 sin 2 acos 2 u{r™}
n = m =

+ 2 2 (2^ 2Wy){r-}
n = o m =

_^ " i tana(n—m + i)Q^+ Ai cot a) , ,

£.£. QZUcota) ~ Uni

29.67

Bjerhammars Method:

/?
2 (r2 -/? 2

) fU,) Q
29.68 (&,),>=

I4tjt J I
3

29.69 (*.)q=2 { """ }

rfO

[ Rn + 2 (2n+ \)

J n tn

Dn + 2

29 ™ -2-pMrOff}'

U.4)«=2 C»/?
"

29.71 (^)/'=2 c
»J 7

A" K 2 (r2 -R 2
)

477T
rfn

The Equivalent Spherical Layer:

X /I

cr= V V /
J
;"(sin c/>) {c„„, cos ma> + s„„, sin mw}

H=0 »1=0

29.72

29.73
C„,i,\ 4ttH" + - (c„

S,,J (2

\irR"+- (c,m\

2» + l) \S„„,/

29.74

29.75

29.76

29.77

J

Ov/S = 47r/?
2
C„o = /tf=Coo

<rK 2

rp =

•/ ^a

Vr)r^+!~-l ldn

j* — n j»— n _ ^-** *i

29.78 =-

29.79

(1 = Hl=

37
1

2K

(27TO—^) =—

Chapter 30

The S-Surface in (w, (/>, h) Coordinates:

30.01 h Q =f(w,4>)

30.02 x»=/«; *£=«£ (r=l,2)

The Metric Tensor:

30.03 aa
= aa +/<*/#

30.04 a= a(l + y7) = a(l + V/)

The Unit Normal:

30.05 vr={alayi*{-fu -/*, 1}

30.06 =(a/a) ,/2{-an/i, -a22/.,!}

30.07 a/a= 1 + V/=l+V/= sec 2
/8

30.08 V/=V7=tan 2
)3

30.09 V.s/= sin 2
(3= S/fcos- j8= V/cos2

j8

iv = X, sin a sin j8 + /I, cos a sin /3+ vr cos /3

30.10

IV = { ( ^ + /' ) cos (/) sin a: sin j8.

30.11 (p + /») cos a sin /3, cos /3}

/, = — ( f + /) ) cos </> sin a tan /3

30.12 /»=— (p+ /») cos a tan)8

The Associated Tensor:

= (d/a)e«v^8(ay8 +/y/s )

30. 1 3 = cos2 y8{aa^ + i^i^fyfs}



Summary of Formulas

30.14 dy6= ay*+vVv6

Normal Gradients:

dF

ds

30.15

= F rv
r = cos j8(- a 11/,/

1

,
- a22f2F2 + F3 )

= cos/3{f-V(F,/)}

30.16 V(F,/)=V.s(F,/)+ (BFIds)idflds)

30. 1 7 df/ds = - Vfcos /3 = - sin tan (3

as
30.18 -; sec/3{^-V.s (F,/)

The Invariant V(T, /):

30.19 V(T,f)=V(T,f)=g™(Wp-Up)fq

V(7
,

,/) = V(r,/)=-g7j sin a tan /3

30.21 -(g£-y,)cosa tan/3

The Invariant Vs7\ /):

v.s-(r,/)
dS A/as

7 rfS

/ cos /3 J / cos /3

30-25 -J
r7
'(r^F- /

)

30.26 i> rx
r

a = xl=fa

30.27 - b a + bap cos /3 =/aJ3

30.28 A/=2// cos (3- 2H + bai3V
avi3

. „ „,„ „ (1 — sin2 a sin2 6)
A/=2// cos /3+ - :

—

-rr —
J

(y + /i)

(1 — cos2 a sin2
/3)

30 -29 + "
(p+ *)

Deformation of the S-Surface:

30.30 (/)=¥

30.31 (/«)=*/«

(i> + £/i) sin (a) tan (j3)=— (/i) sec

= /c(i^ + /i) sin a tan /3

{p + kh) cos (a) tan (/3) =- (/2 )

30.32 =£(p + /i) cos a tan /3

(«;= «

30.33 tan (/8)= p , rr tan ft

30.34

R + kh

tan (/3) — A; tan /3
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(l)
2 =(v+kh?-2(v~+kh)(v+kh) cos cr+^ + A/t)

2

— 2e 2
A:(t< sin <j>

— v sin <£)(A sin c/> — /i sin </>)

+ (e
4 — 2e2

)(P sin </>
— t> sin $)

2

30.35

(/) sin (<5) sin (J3)
= (v + kh) sin cr sin a*

(/) cos (d) sin (f3)=(v + kh) sin cr cos a*

— e
2 cos c6(P sin (j>

— v sin 4>)

(I) cos (j8)=— (v+A/i) cos a-+ (p + kh)

30.36 — e2 sin <j>{ v sin — v sin c6)

(Z)
2= 4 sm2 \x\t(R + kh){R + kh) + k2(h-hf

= H 1 +
k(h + h), k2hh

+ -\ + k2{h-hf
R R2

30.37

(/) sin (a) sin (J3)=(R + kh) sin i// sin a*

= (R + kh) cos </> sin (d) — a»)

(/) cos (a) sin {(3)=(R + kh) sin i// cos a*

= (R + kh) (— sin c6 cos c6

+ cos c6 sin c6

X cos (a>
—

a>))

(/) cos 08) = (R+ kh)-(R + kh) cos <//

30.38 = 2 sin2 ^(R + kh) + k(h-h)

Application of Green's Theorem:

(K(iHfMK)->h
30.39

30.40 =[fr,Aft)-yAFiJrfi>

30.41 - 2„^/{r,A(I)-I^},,s

LKGHfl-

a /i\ l dF2

/,{H ir^l7)-7l7 1<JS

30.42
I {-©"7 AF2 du

II
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30.43

30.44

30.45

30.46
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2nV2P -

i{^(IHf^

30.47

VL = \u>
2 (x1 + y

2
)

w=v-n=v1+vi -ci

JteGHf}-/ 1?*
= 2-n-(F2p-F1P)+27rll/»

= 2tt(WP + Ctr - 2Vw ) + 277-0,,

= 27r(r/.-2F1/.)+2 7ra)
2(^ + yf.)

2„ (r,- 2r„>
-J {

r£ (])-}£}*

*»-JteGH3}«
SCSI „,./{,• (J)-^*
Potential and Attraction of a Single Layer:

At External Points:

30.52 ^=-/^f=-/f/^

30.53 (Vr)r = +
j ^f ''

= + jfp '' (ln

30.53A (Vr ) P=-j^~lr^-j-~lrdn

At Points on the Surface:

<r,),. = +277-0-<lv)p +

30.48

30.49

30.50

30.54 = + 2t7ct(

(Vr)p=+2iro-(vr)f

30.54A =+2ircr{vr)i

f o-dS

J P ''

crdS
lT

J KP
l ' da

Potential and Attraction of a Double Layer:

At External Points:

30.55 p>—

|

M ±(l)dS

30.56
d /l\ /L

{Vr)P=-j (X Js (jj\
l,dS =

j^ (l,v')l rdS30.57

At Points on the Surface:

30.58 VP= -27Tt
ji l,-j ixy

s (jj

30.60 r,--J !>-,,,) ±@)

dS

t/S

r')/» r)m ds \/
(/S —>££&*

30.61

30.62

-2
âm ^-^i^iw 11

-j/
'/. =

| (fx — [Mr) '

,., dS

i^-rt-ki®'*

30.63
(M
~

/X/ '
)

{3(/,^')(/,m') -m,.|/'-}rfS
/

:;

M~M-/'
(L,) / . = -277( M,)r

+ J ^f11 {m,v')lr-vr}dS

30.64

The Equivalent Surface Layers:

jHq= -Fq/(47T)

<rQ=(BVIds)ol{*ir)

30.65

The Basic Integral Equations in Geodetic Coordi-

nates:

^ r= A r sin a sin /3 + /d
r cos a sin (3+ v r cos /3

30.66

/ r = A, sin a sin /S + /I r cos a sin (3 + i> r cos /3

30.67



Summ a ry of Form u his

d (1\ l,v r

ds \l) ' I
2

30.68

—-= Trv r—gT) sin a sin B
as

|2 {cos B cos B

+ cos (a — a) sin B sin /8}

30.69 + #(£ + /<) cos a sin 0+ (#-y) cos j8

30.70

'iT
1—= gr) sin a sin /3 + ,§:(£ + k) cos a sin /3

a In "y

30.71 + gu+—r
J

dA
n cos B

cos /3 dS = (i>+ h) (p + h) cos $ dcudcf)

30.72 =(?+ A)(p+ A)rfn

30.74 f /7v/n = [ wn2777V + jr^/n

7 =
j
cos B + cos (a — a) tan /3 sin B

L=— {gA + grj sin a tan /3

30.75 +g({ + K ) cos a tan B}(p + h)(j} + h)/l

Gradient Equations:

i ct-t,.
30.79 +t(Tr)p-

477
[3(/'v,)/,-i/,.}dS

**>-a
J_
277 J& ds

Uv'lf

30.80 +^Tfi{3(/'v
f
Kr(^

r
)p - vAv r

)r] ds
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The Equivalent Single Layer:

30.87 = 277CT/' COS /3/

cr cos Br

30.88

(gri)i> = 2iT(Tp sin aP sin /3/<

<t sin oti- sin /3/>

J /
2

I-

dS

dS

{#(£ + k) }/- = 277ct/> cos a/, sin /3/>

30.89
f cr cos a/' sin /3/»

/
2

277(T/' COS

30.90

f
[
cos g/> /j In y\ 1]

(g-i)/- = 277cr/' — f (icosec|t|/)ov/n

30.91 =2t7ot-|
I

o-jrP„(cos«/>)dO

{^;;'}/'=2t7{o--}p-i
477

2n + l
{o-!!'}/

30.92
477(» — 1

2/i + l
{o-!!'}/

^ 2« + 1

4770-,- =^^—j-{^!!'}/<

477 J ^2 « ~ ]

30.94 16ir2o-/»=
J

S(ty)gAdn

30.93 ,(cos l//)





General Index

Adiabatic formula, 222

Adiabatic lapse rate, 221, 222

Allan, R. R., 299

American Ephemeris and Nautical Almanac, 257, 258

American Society of Photogrammetry, 253

Anderle, R. J., 299

Angle of refraction, 215, 226, 243

Angular momentum, 273, 276, 282, 283, 387

Angus-Leppan, P. V., 220, 222

Anomaly:
eccentric, 189, 277, 284, 388

gravity, see also Gravity anomalies

height, 329

mean, 277, 284, 287, 389

potential, 311, 312, 316, 317, 319, 321, 343, 344, 392,

393, 397

true, 189, 276, 281, 283, 284, 388

Area, 49-53, 357

Arsenault, J. L., 304

Associated metric tensor, see Metric tensor

Astro-geodetic leveling, 233, 234, 382

Astronomical Ephemeris, 257, 258

Astronomical refraction, 223, 224, 254, 380

Atmospheric pressure, 216

Atmospheric refraction:

adiabatic formula, 222

adiabatic lapse rate, 221, 222

angle of refraction, 215, 226, 243

arc-to-chord corrections, 213, 214, 380

atmospheric pressure, 216

Barrell and Sears formula, 218, 219, 225, 226
Bender-Owens proposal, 226

Cauchy dispersion formula, 218

coefficient of refraction, 215, 216, 380

curvature, 220, 221,380

Atmospheric refraction: — Continued
Dalton's law of partial pressure, 217

dispersion formula, 218, 220

distance measurements, 225-226

distance measurements, electronic, 215, 216, 225,

227

Dufour's formula, 212

eikonal, 210

eikonal equation, 210, 307, 379

equations for moist air, 217

equations of state, 216-218, 380

Essen and Froome formula, 219, 220, 225

Fermat's principle, 209, 210

flat curves, 211,212

general remarks, 209

geodetic model atmosphere, 214, 215, 220, 380

geodetic model corrections, 214, 215, 380

geometrical wave front, 210

gravity, mean, 217

humidity, 221

hypsometric formula, 217, 218, 380

index of refraction, 218-220, 379, 380

International Association of Geodesy, 218, 219

isopycnics, 214

lapse rate, see also Lapse rate

laws of, 209, 210, 379

mean gravity, 217

measurement of refraction, 225, 226

microwaves, 219, 220

model atmosphere, geodetic, 214, 215, 220, 380

moist air, 217

optical, see also Optical

parallax correction, 224

refracted ray equation, 210, 211, 379

refraction correction, 251

refractive index, see also Index of refraction

refractivity, 217, 218, 219

residual, 254, 255

satellite triangulation, 223, 224, 254, 380

399
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Atmospheric refraction: — Continued

Smithsonian Meteorological Tables, 217, 220, 221.

222

spherically symmetrical medium, 211

temperature, 219, 221

torsion, 213, 379

vapor pressure, 217

velocity corrections, 215, 216, 380

velocity of light, 209

wave front, geometrical, 210

wavelength, short, equations, 210

wave number, 218

Attraction:

external points, 337, 338, 339, 396

force of, 143, 144, 371

points on the surface, 338, 339, 340, 396

potential, 143, 144, 155, 172, 174, 315, 371, 373

S-surface, double layer, 338-340, 396

S-surface, single layer, 337, 338, 396

Azimuth:

definition, 71

isozenithal projection, 99, 364

Laplace, 134

normal projection, 121, 368

jV-surface, 76

/V-systems, 133, 134, 370

observation equations, geodetic coordinates, 243,

244, 383

principal directions, 76, 360

surface vectors, 99, 110, 111, 364, 366, 368

symmetrical (o», </>, h) coordinates, 126

transformation, 133, 134

vector in space, 109

((o,<f>, h) coordinates, 121

(a>,<£, N) coordinates, 70, 71, 76, 89, 90, 363

B
Baker-Nunn camera, 302

Barrell, H., 218, 219, 225

Barrell and Sears formula, 218, 219, 225, 226

Base vector:

(A r
, B'\ C r

) system, 70, 359

Cartesian coordinates, 70

contravariant components, 73, 74, 359

covariant components, 74, 75, 359.360

curvature parameters, 74

derivatives, 72, 73, 126, 359

derivatives, higher, 85, 86, 127, 128, 362, 369

derivatives, symmetrical (a>,</>,/i) coordinates, 126,

127, 128, 359, 369

matrices, 135

/V-surface, 70-75, 133, 135, 359, 370, 371

N-systems, 70-75, 85, 86, 133, 135, 359, 370, 371

relations between, 71, 72

symmetrical (co,$, h) coordinates, 126, 368

transformation between, 71, 72, 133, 135, 359

zenith distance, 71

Base vector: — Continued

(\
r
,/x

r,^0 system, 71, 359

(co,<f>,h) coordinates, 119, 366

(w,</>, N) coordinates, 69-75, 135, 371

Bateman, H., 175, 176, 315

BC-4 camera, 302

Bender, P. L., 225

Bender-Owens proposal, 226

Bianchi, E., 114

Binormal:

definition, 21

n'\ 39

q\ 57

transformation, 57

Bjerhammar, A., 320, 323, 324, 394

Bjerhammar: the Zagrebin-Bjerhammar problem. 343

Blades' equation, 194, 196

Bomford, G., 220, 221

Bonnet, P. O., 61

Bonnet: Gauss-Bonnet theorem, 61, 358

Bonnet's theorem, 37

Born, M., 210, 218

Brand, L., 49

Brouwer, D., 302

Brovar, V. V., 345

Browne, W. E., 246

Bruns, E. H., 80.

Bruns' equation, 80, 148, 313, 318, 361, 371, 392

Canonical equations:

contact transformations, 299, 300, 391

Delaunay variables, 293, 390

formation of, 275, 276, 385

Hamiltonian //*, 275, 276, 293, 299, 385

Hamiltonian K*, 299

Hamilton-Jacobi equation, 300, 301, 307, 391

Heine's theorem, 193, 301

integration, 299-302, 391

Vinti potential, 301, 302, 391

von Zeipel transformation, 302

Cauchy dispersion formula, 218

Centrifugal force, 169

Centripetal force, 272

Chandler wobble, 168

Chovitz, B. H., 230

Christoffel symbols:

first kind, 17, 354

^-differentiation, 121

isozenithal differentiation, 94, 95, 363, 364

normal coordinates, 105, 107, 108, 365

second kind, 17, 354

spherical representation, 65, 66, 359

symmetrical (w, cj), h) coordinates, 127, 369
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1

Christoffel symbols: — Continued

(to, cf), h) coordinates, 120, 367

(to, </>, N) coordinates, 81, 82, 362

Clairaut's:

equation, 128, 203, 230, 378

first-order result, 204

formula, 202, 203

Codazzi equations, see Mainardi-Codazzi equations

Coefficient of refraction, 215, 216, 380

Co-geoid, 320

Conformal map projection, 60

Conformal transformations, 55-61, 357, 358

Conjugate metric tensor, see Metric tensor

Contour integrals, 49-51, 357

Contravariant:

components, see also Contravariant components
curl of a vector, 19, 354

fundamental forms, 43, 44, 356

metric tensor, 78, 360

space metric tensor, 33, 78, 355, 360

surface metric tensor, 33, 78, 355, 360

tensor, second-order, 9

vector, three-dimensional, 3, 5

vector, two-dimensional, 3

vector, unit, 5, 353

Contravariant components:

base vector, 73, 74, 359

isozenithal projection, 99, 364

metric tensor, 77, 78, 360

surface vector, 99, 364

Cook, A. H., 174

Coriolis force, 146, 272

Courant, R., 177

Covariant:

components, see also Covariant components

derivatives, see also Covariant derivatives

differential invariants, 19

differentiation, 17-20, 34

Laplacian of a scalar F, 19, 191

Laplacian of a vector, 19, 354

Riemann-Christoffel tensor, 26, 355

tensor, second-order, 9

vector, see also Covariant vector

e-system, 13

Covariant components:

base vectors, 74, 75, 359, 360

isozenithal projection, 100, 364

metric tensor, 77, 78, 360

surface vector, 100, 364

Covariant derivatives:

fundamental forms, 44, 356

/i-differentiation, 121

isozenithal differentiation, 100, 101, 364

isozenithal projection, 100, 101, 364

metric tensor, 94

rules, 19, 20, 34

Covariant derivatives: — Continued

scalar gradient </>, 18, 354

spherical representation, 90, 91

surface, 33, 34, 355

surface vectors, isozenithal differentiation, 100, 101,

364

surface vectors, normal projection. 111, 112,366,368

tensors, 18, 354

unit perpendicular vector, 20, 354

vector, 18, 20, 354

(to, $, h) coordinates, 121, 122

(w, </>, N) coordinates, 86, 90, 91, 363

Covariant vector:

generalized, 6

three-dimensional, 3, 6

two-dimensional, 3

unit, 6, 353

Curl, 19, 354

Curvature:

atmospheric refraction, 220, 221, 380

binormal nr , 39

correspondence of lines, 57, 58, 357

equipotential spheroid, 207

first, 21, 29, 41, 42, 57, 58, 65, 76, 97. 119, 120, 356,

357, 358, 360, 364, 367

Gaussian, 27, 28, 36, 37. 41, 46, 60, 76, 91, 355, 356,

360

geodesic, 22, 23, 39, 46, 60, 76, 77, 90, 100, 112, 126,

358, 360, 363, 364, 366, 369

gravity anomalies, 311, 312

gravity field, 180-183, 205-207, 311, 312, 392

/i-surface, 118

intrinsic, 27, 28, 36, 37, 41, 46, 60, 76, 91 , 355, 356, 360

invariants, 41 , 96, 97, 107, 1 19, 189, 356, 363, 366, 367,

376

isozenithal projection, 100, 364

Lame tensor, 27, 56, 355, 357

lines, correspondence of, 57, 58, 357

lines of, 42

locally Cartesian systems, 26

mean, 41

meridian, 183

Meusnier's equations, 40, 356

normal, 40, 41, 42, 60, 75, 76, 89, 126, 358, 360, 363,

369
/V-surface, 75, 76, 360

orbit, 290, 291,390

orthogonal surface curves, 23, 354, 355

parameters, 74, 97, 118, 199, 207, 366, 367

parameters, differentiation of, 97, 364

principal, 21, 29, 41, 42. 57, 58, 65, 76, 97, 119, 120,

356, 357, 358, 360, 364, 367

principal, differentiation of, 97

principal radii, 125, 129, 368. 370

Ricci tensor. 27, 28, 56, 355, 357

Riemannian, 28, 29, 60, 355, 358

satellite orbit, 290, 291, 390

second, 22

specific, 27, 28, 36, 37, 41, 46, 60. 76, 91 , 355, 356, 360

306-962 0-69—27
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Curvature: — Continued

spherical harmonics, 205-207

standard correction, 312

standard gravity field, 205-207, 311, 312, 392

surface curves, orthogonal, 23, 354, 355

surface, symmetrical (a>, <j>, h) coordinates, 126, 369

surface vector, 100, 111, 364, 366, 368

symmetrical (co, <f>, h) coordinates, 126, 369

tensor, see also Lame tensor, Ricci tensor, and
Riemann-Christoffel tensor

torsion, 40, 41, 356

two-dimensional, 27, 28

umbilic, 44

vector, 21, 22

velocity components of curvature correction, 216
(to, 0, h) coordinates, 125, 129, 311, 312, 392

(w, (/>, N) coordinates, 76, 89, 90, 363

Curve:

binormal, 21

extrinsic properties, 39-47

flat, geometry, 211, 212

Frenet equations, 22, 354

intrinsic properties, 21-23

normal to, 22

orthogonal surface, 23, 354, 355

osculating plane, 21

principal normal, 21, 39

second curvature, 22

three-dimensional, 21, 22, 354

torsion, 22, 40, 41, 356

twisted, 21

two-dimensional, 22, 23

vector curvature, 21, 22

Curved space, 27, 45-47, 57, 356

D

Dalton's law of partial pressures, 217

Darboux equations:

solutions, 114, 115, 366
triply orthogonal systems, 113-115, 366

(to, (/>, h) coordinates, 118

Deflection vector, 136, 371

de Graaff-Hunter, J., 212, 221, 327, 336, 343

Delaunay variables:

canonical equations, 293, 390
definition of, 291-293

H, 293, 294, 390

time derivatives, 292

de Masson d'Autume, G., 222

Derivatives with respect to the elements:

argument of perigee, 288, 389

Cartesian coordinates, 288-290, 389
eccentricity, 286, 287, 388

general, 285-290, 388, 389

inclination, 287, 288, 389

mean anomaly, 287, 389

Derivatives with respect to the elements: — Continued
partial derivatives, 288, 389

perigee, argument of, 288, 389

right ascension, 288, 389

semimajor axis, 286, 388

Differential invariants, 19, 354

Dispersion formula, 218, 220

Distance measurements, 225—226

Distance measurements, electronic, 215, 216, 225, 227, 256

Disturbing:

force, 282, 305

potential, 281

Divergence, 19

Divergence theorem:

tensor form, 52, 357

two-dimensional, 51, 123, 357

Doppler tracking system, 302, 305, 306

Douglas, B. C, 299

Dufour, H. M., 212, 224

Dufour's formula, 212

Dupin, F. P. C, 113

E

Eccentric anomaly, 189, 277, 284, 388

Eccentricity, 283, 286, 287, 387, 388

Edlen, B., 218 '

Eikonal, 210

Eikonal equation, 210, 307, 379

Eisenhart, L. P., 103

Electronic distance measurements, 215, 216, 225, 227. 256

Eotvos':

deflection, torsion balance, 234
double torsion balance, 151

Hungarian plains experiment, 151

torsion balance, 150

Ephemeris, 257, 258

Eremeev, V. F., 327, 331, 342

Erickson, K. E., 225

Essen, L., 219, 220

Essen and Froome formula, 219, 220, 225, 380

Eulerian free nutation, 168

Euler-Lagrange equations, 307

Euler's angles, 262

Extrinsic properties:

curves, 39-47

surface, 31-37, 43-47, 60, 61, 358

e-system:

Kronecker delta, 13, 14, 15, 353, 354

scalar, 14, 354

tensors, 13, 14, 353, 354

three-dimensional, 13, 14, 353, 354
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e-system : — Continued

two-dimensional, 15, 354

vectors, 14, 354

Fermat's principle, 209, 210

Fermi, E., 26

Ferrers' definition, 193

Figure of the Earth, 266, 267

Finzi equations, 55, 59, 61, 357, 358

Flare triangulation, 246, 247

Flat space, 25

Force:

attraction, 143, 144, 371

centrifugal, 169

centripetal, 272

Coriolis, 146, 272

disturbing, 282, 305

gravitational, flux of, 149, 150, 372

magnetic, 185

tube of, 149

Forsyth, A. R., 37, 56, 114, 115, 274

Frenet equations:

curve, 22, 354

surface, 22

three-dimensional, 22, 354

two-dimensional, 22

Froome, K. D., 219, 220

Froome: Essen and Froome formula, 219, 220, 225, 380

Fundamental forms:

contravariant, 43, 44, 356

covariant derivatives, 44, 356

differentiation, 93, 94, 363

differentiation, isozenithal, 93, 94, 95, 363

differentiation, normal, 105, 106, 107, 365

first, surface, 35, 355

normal coordinates, 105, 106, 107, 118, 119, 365, 366

normal differentiation, 105, 106, 107, 365

principal curvatures, 42, 356

second, 43, 64, 358

second, isozenithal differentiation, 95

second, /V-surface, 78, 360, 361

second, of spheroids, 190

second, surface, 35, 60, 63, 64, 355, 358

symmetrical (co, (/>, h) coordinates, 125, 126, 368

third, 43, 64, 94, 358

third, /V-surface, 78, 79, 361

third, surface, 35, 43, 60, 64, 94, 355, 358

(a), <£, h) coordinates, 118, 119, 367

Gangetic Plain, India, 324

Garfinkel, B., 223

Garfinkel's theory, 223, 255

Gauss':

divergence theorem, 52, 357
equations, see also Gauss characteristic equations,

Gauss planetary equations, and Gauss surface

equations

Gauss-Bonnet theorem, 61, 358

Poisson's equation, 146, 147

spherical representation, 63—66

Gauss characteristic equations, 36, 356

Gaussian curvature, 27, 28, 36, 37, 41, 46, 60, 76, 91, 355,

356, 360

Gauss planetary equations:

corrections to, 304

first-order, 282, 285, 290, 387

integration, 294-298, 302, 391

Kepler elements, 295, 296

second-order perturbations, 296—298

Gauss surface equations, 31, 35, 355

Gedeon, G. S., 299

Geocentric latitude, 157. 189, 194, 377

Geocentric longitude, 157, 194

Geodesic:

curvature, 22, 23, 39, 46, 60, 76, 77, 90, 100, 112, 126,

358, 360, 363, 364, 366, 369

parallels, 59

principle, 307

space, 21, 28

three-dimensional, 21

torsion, see also Geodesic torsion

triangle, 61, 358

Geodesies:

family of, 59
space, 21, 28

surface, 22, 29, 46, 128, 369

three-dimensional, 21, 22

two-dimensional, 22

Geodesic torsion:

balance measurements. 234-237
conformal space, 60, 358

TV-surface, 74, 75, 76, 360

surface curves, 40, 41, 356

symmetrical (w, </>, h) coordinates, 126, 369

(w, <f>, N) coordinates, 74, 75, 76, 89, 363

Geodetic:

heights, 233, 382

latitude, 233

longitude, 233

model atmosphere, 214, 215, 220, 380

model corrections, 214, 215, 380

Geodimeter, 216, 218, 225

Geoid:

co-geoid, 320

definition, 200

regularized, 320
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Geoid: — Continued
spheroidal model, 200

Geometrical wave front, 210

Geopotential:

Laplacian, 145, 371

Newtonian gravitational field, 144, 145, 146, 147, 371

rotation of the Earth, 169

second differential, 183

spherical coordinates, 201

spheroidal coordinates, 200, 201, 378

spheroidal harmonics, 200

standard gravitational field, 311

total time differential, 274

Goldstein, H., 165, 299

Gradient:

equations, 343, 344

normal, S-surface, 330, 331, 395

potential anomaly, 312, 392

scalar, 7, 18, 70, 353, 354

surface, 31, 355

Gravimeter, 151

Gravity:

anomalies, see also Gravity anomalies
Newtonian gravitational field, see also Newtonian

gravitational field

Newtonian potential, see also Newtonian potential

potential, see also Potential

standard gravity field, see also Standard gravity field

Gravity anomalies:

attraction, see also Attraction

Bjerhammar's method, 323, 324, 394

Bjerhammar, the Zagrebin-Bjerhammar problem, 343

Bruns' equation, 313, 318, 392

co-geoid, 320

curvature, 311, 312

deflection, geocentric, 319, 320, 341

deflection of the vertical, 318, 319, 393

density of a surface layer, 325

equivalent layer. Green, 341

equivalent single layer, 344-346

equivalent spherical layer, 324-326, 394

equivalent surface layer, 340, 341, 396

fundamental equation of physical geodesy, 313, 392

Gangetic Plain, India, 324

geoid, regularized, 320

gradient equations, 343, 344

gravity disturbances, 316, 319, 320, 321, 341, 393

Green-Molodenskii, 327-346, 394-397

Green's, see also Green's

height anomaly, 329

integral equations, 341-344

integration, 309-346, 391-397

Model Earth, 327, 328, 329, 337

Molodenskii's integrals, 327

Pizzetti's extension of Stokes' function, 311,318,345,

392

Pizzetti's extension of Stokes' integral, 317, 321, 393,

394

Gravity anomalies: — Continued

Poisson's integral, 309, 315, 316, 319, 320, 324, 325,

393, 394

Poisson-Stokes approach, 309-326, 391-394

potential anomaly, 311, 312, 316, 317, 319, 321, 343,

344, 392, 393, 397

potential, double layer, 338-340, 396

potential, single layer, 337, 338, 396

series expansions, 310, 311, 392

spherical polar coordinates, 318

spheroidal base surface, 320-322, 393

S-surface, see also S-surface

standard field, 199, 313, 314, 392

Stokes', see also Stokes'

surface integrals, spherical harmonics, 309, 310, 391

telluroid, 314, 328, 329, 337

terroid, 328, 329, 337

The Royal Institute of Technology, Stockholm, 323,

324

upward continuation integral, 316, 317, 323, 393, 394

Vening-Meinesz',see also Vening-Meinesz'

Zagrebin-Bjerhammar problem, 343

Green-Molodenskii, gravity anomalies, 327-346, 394-397

Green's:

equation, 332, 333-337, 341, 344

equivalent layer, 341

first identity, 337, 357

second identity, 337, 357

theorem, 49, 327, 328, 333-337, 395, 396

third identities, 337

H

Haalck horizontal pendulum, 151

Hamiltonian:

//*, 275, 276, 293, 299, 385

K*, 299

Hamilton-Jaeobi equation, 300, 301, 307, 391

Hamilton's:

characteristic function, 301

principal function, 301

Hann, J. F., 221

/i-differentiation, 121-123, 367

Height anomaly, 329

Heiland, C. A., 185

Heine's theorem, 193, 301

Heiskanen, W. A., 314, 317, 319, 320, 324, 338

Helmert, F. R., 296

Hilbert, D., 177

Hiran, 258

Hirvonen, R. A., 314

Hobson, E. W., 155, 158, 174, 176, 177, 192, 193, 194, 196

Hobson's formula, 158, 159, 171, 175, 372

Hopcke, W., 216
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Hungarian plains experiment, 151

Hypsometric formula, 217, 218, 380

I

Index of refraction:

Barrell and Sears formula, 218, 219, 225, 226

eikonal, 210

eikonal equation, 210, 307, 379

Essen and Froome formula, 219, 220, 225, 380

geometrical wave front, 210

laws of refraction, 209, 210

measurement, 220

microwaves, 219, 220

optical, see also Optical

refractive index, 209, 379

velocity of light, 209, 379

Inertia:

MacCullagh's formula, 167, 373

moment of, 165, 166, 167, 195, 373, 380

principal axes, 166

principal moments, 166

products of, 165, 373

tensor, see also Inertia tensor

Inertia tensor:

first-order, 164, 165, 195, 372, 378

nth-order, 156, 372

second-order, 165-168, 195, 372, 378

zero-order, 156, 195, 378

Integrals:

contour, 49-51, 357

Molodenskii's, 327

Pizzetti's extension of Stokes' integral, 317, 321,

393, 394

Poisson's, see also Poisson's integral

Stokes
1

, 317, 318, 320, 321, 322, 346, 393

surface, 49-53, 357

surface, spherical harmonics, 309, 310, 391

upward continuation, 316, 317, 323, 393, 394

Vening-Meinesz', 319, 320

volume, 51-53, 357

International Association of Geodesy, 204, 218, 219

International Astronomical Union, 204

International Geophysical Year 1957-58, 257

International Latitude Service, 168

International Polar Motion Service, 168

Intrinsic:

curvature, 27, 28, 36, 37, 41, 46, 60, 76, 91, 355, 356,

360

derivatives of a tensor, 21

properties of a curve, 21-23

properties of a surface, 28

Invariants:

curvature, 41, 96, 97, 107, 119, 189, 356, 363, 366,

367, 376

differential, 19, 354

Marussi, 205

Molodenskii's, S-surface, 331

Invariants: — Continued

scalar, 7, 21

space, 45, 81,356, 361

S-surface, 331,332, 395

surface, 45, 81, 107, 356, 361, 362, 365

tensor, 10, 13

vector, 4

V(r,/),331,395
V.s (7\/),331,332, 395

Isometric latitude, 174, 175, 373

Isopycnics, 214

Isozenithal projection:

azimuth, 99, 364
contravariant components, 99, 364

covariant components, 100, 364

covariant derivatives, 100, 101, 364

curvature, 100, 364

double spherical representation, 91

geodesic curvatures, 100, 364

length, 98, 99, 364

A-surface, 93

surface vector, 98-101, 364

Isozenithals:

definition, 66

differentiation, 93-101, 363, 364

normal, 118

projection, see also Isozenithal projection

vector, differentiation, 95, 363

(to, 4>, h) coordinates, 118

(to, </>, A) coordinates, 80, 85, 361

Izsak, I. G., 302, 304

Jacchia, L. G.. 304

Jeffery, G. B., 196

Jeffreys, B. S., 295, 323

Jeffreys, H., 168, 295. 323

K

Kaula, W. M., 160, 262, 290, 298, 299, 302, 304, 305

Kellogg, O. D., 173

Kepler's:

elements, 281,295, 296

ellipse, see also Kepler ellipse

equation, 277, 386

orbit, 281

second law, 277, 386

third law, 277, 386

Kepler ellipse:

angular momentum, 276

apogee, 279

argument of perigee, 279

ascending node, 278, 279

auxiliary vectors, 279-281. 386, 387
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Kepler ellipse: — Continued

descending node, 278

description of, 276-281

eccentric anomaly E, 189, 277

inclination, 279

line of nodes, 279

mean anomaly M , 277

mean motion, 277

orbital geometry, 189

osculating ellipse, 281

perigee, 278, 279

potential, 189

rectangular coordinates of the satellite, 277

right ascension, 279

satellite, 277, 278

true anomaly, 189, 276

unperturbed orbit, 281

variation of elements, 282

vector, auxiliary, 279-281, 386, 387

Kinetheodolite, 302

King-Hele, D. C, 304

Koch, K. R., 339, 343, 344

Koskela, P. E., 304

Kozai, Y., 298

Kreyszig, E., 32

Kronecker delta:

generalized, three-dimensional, 13, 14, 353, 354

generalized, two-dimensional, 15, 16, 354

mixed tensor, 11

three dimensions, 8, 353

e-system, 13, 14, 15, 353, 354

Lagrange equations:

corrections to, 304

Euler-Lagrange, 307

integration, 298, 299, 302, 391

planetary, 290, 390

resonance, 299

Lagrangian, 275, 385

Lambert, W. D., 317

Lame tensor, 27, 56, 355, 357

Laplace equation, classical geodesy, 134

Laplace equation, potential theory:

Cartesian coordinates, 161

geopotential, Newtonian gravitational field, 145

potential, 183

solutions, 175

spherical harmonics, 183

spherical polar coordinates, 174, 175

surface tensor equation, 115

Laplacian:

geopotential, 145, 371

of a scalar, 19, 191

of a vector, 19, 354

Laplacian: — Continued

surface, 45, 356

symmetrical (w, (f>, h) coordinates, 128, 369

(o>, <£, h) coordinates, 120, 367

(a), </>, N) coordinates, 80, 81, 361

Lapse rate:

adiabatic, 221, 222

constant, 222

humidity, 221

recent work, 222, 223

Smithsonian Meteorological Tables, 222

temperature, 218, 221

Lasers, 218, 302

Latitude:

geocentric, 157, 189, 194. 377
geodetic, 233

isometric, 174, 175, 373

Mercator, 174

/V-systems, 134, 371

reduced, 187, 188

sign conventions, 70

spherical isometric, 174, 175, 373

spheroidal, 187, 188

transformation, 134

{fit, <f>, IV) coordinates, 70, 79, 361

Legendre functions:

associated, 192

coefficients, potential, spherical harmonics, 159,

170, 372, 373

in infinite series, 310, 392

second kind, 193, 377

spherical harmonics, 159, 170, 192, 193, 372, 373

spheroidal coordinates, 193

Legendre harmonics, 177, 179

Levallois, J. J., 222, 343

Leveling, astro-geodetic, 233, 234, 382

Levi-Civita, T., 12, 26, 28, 29, 42, 55

Line-crossing techniques, 258-260

Line of observation, see Observation line

Lines of curvature, 42

Longitude:

geocentric, 157, 194

geodetic, 233

jV-systems, 134, 371

sign conventions, 70

spheroidal, 188

transformation, 134

(co, (t>, IV) coordinates, 70. 79, 361

Lunar observations:

declination, 258
equations, 258

geocentric coordinates, 257

International Geophysical Year 1957-58, 257

Markowitz' moon camera, 257

Markowitz' system, 257

origin-hour angle, 258

right ascension, 258



General Index 407

Lunar observations: — Continued

spherical polar coordinates, 257

The American Ephemeris and Nautical Almanac, 257,

258

The Astronomical Ephemeris, 257, 258

U.S. Naval Observatory, 257

Lunisolar perturbations, 304, 305

M

MacCullagh's formula, 167, 373

MacDonald, G. J. F., 168

Magnetic anology, 184, 185, 186

Magnetic potential, 184, 185

Magnetometer, 185

Mainardi-Codazzi equations:

flat space, 35, 36, 44, 355, 356

A-surface, 123, 126, 129, 369

isozenithal derivatives of second fundamental form,

93

normal coordinates, 106, 107, 123, 126, 365

TV-surface, 82-85, 362

potential, 189

space, 126

spheroid, 189, 376

surface, 35, 36, 355

symmetrical (to, <j>, h) coordinates, 126, 127, 369

tangential coordinates, 84, 85, 362

(a>, </>, h) coordinates, 106, 107, 123, 126

(a), </>, N) coordinates, 82-84, 362

Manual of Photogrammetry, American Society of Photo-

grammetry, 253

Markowitz':

moon camera, 257

system, 257

Marussi, A., 60, 86, 151,207

Marussi invariants, 205

Marussi tensor, 86, 150, 183, 205, 362

Matrix:

rotation, 72, 133, 135, 359, 370
tensor transformation, 135, 136, 371

Maxwell, J. C, 154

Maxwell's:

form of the potential, distance points, 155, 156,

372

theory of poles, 176-179, 185, 186

McConnell, A. J., 165

Mean:

anomaly, 277, 284, 287, 388, 389

curvature, 41

gravity, 217

motion, 277

Mercator latitude, 174

Mercury, 147

Meridian:

curvature, 183

ellipse, 187-189, 376

normal coordinate system, 109, 366, 368

trace, 77, 360

(&), 4>, N) coordinates, 71

Merson, R. H., 297

Metric:

normal coordinates, 103, 104, 364

space, 5, 353

Metric tensor:

associated, 12, 330, 355, 394
conjugate, 12, 353

contravariant, 33, 78, 353, 360

contravariant components, 77, 78, 360

covariant components, 77, 78, 360

definition. 5, 11

determinants, 13, 55, 353, 357

differentials of determinant, 19. 34, 354, 355

indices, 12, 353

normal coordinates, 103, 104, 105, 118, 119, 329, 365

product of unit orthogonal vectors, 11, 12, 353

space, surface relation, 45, 356

sphere, 63, 358

S- surface, 329, 330, 394

symmetrical (a>, </>, h) coordinates, 125, 126, 368

three-dimensional, 5

two-dimensional, 7, 15, 16. 354

(o), <f>, h) coordinates, 103, 104, 105, 118, 119, 329

(o>, 4>, N) coordinates, 77, 78, 360

Meusnier, J., 40

Meusnier's equations, 40, 356

Microwaves, 219. 220

Mixed tensor, 9, 353; see also Kronecker delta

Model:

geodetic atmosphere, 214, 215, 220, 380
geodetic corrections, 214, 215, 380

standard gravity field, 199, 200, 378

Model Earth, 327, 328, 329, 337

Moist air equations, 217

Molodenskii's:

basic integral equations, 342, 345

equivalent surface layer, 344, 345

gravity anomalies, 327, 331. 342, 344, 345

Green-Molodenskii, gravity anomalies, 327-346, 394-

397

integrals, 327

integration of gravity anomalies. 327

invariants, S-surface, 331

potential anomaly. 344

Moment of inertia, 165, 166, 167, 195, 373, 380

Monge's:

S-surface equation, 329, 394
surface equations, 31, 32

Morando, B., 299

Moritz, H., 173, 209, 314, 317, 319, 320, 324, 331, 338. 343
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Morrison, F. F., 174

Mueller, I. I., 151,234

Munk, W. H., 168

Musen, P., 304

N
Nabauer, M., 226

Networks:

adjustment, external, 261-267

adjustment, internal, 239-260

adjustment procedure, external, 265, 266

astronomical coordinates, 265, 385

Cartesian axes, change of, 262, 263, 265, 384, 385

Cartesian rotations, 267

change of Cartesian axes, 262, 263, 265, 384, 385

change of orientation, 264, 265, 384, 385

change of origin, 261, 262, 265, 384, 385

change of scale, 264, 265, 384, 385

change of spheroid, 261, 384

Euler's angles, 262

external adjustment, 261—267

Figure of the Earth, 266, 267

flare triangulation, 246, 247

general remarks, 239

geocentric coordinates, 262

geodetic coordinates, 239-242, 261, 382, 383, 384

hiran, 258

internal adjustment, 239-260

line-crossing techniques, 258-260

lunar observations, see also Lunar observations

observation equations, see also Observation equations

orientation, change of, 264, 265, 384, 385

origin, change of, 261, 262, 265, 384, 385

satellite triangulation, see also Satellite triangulation

scale, change of, 264, 265, 384, 385

spheroid, change of, 261, 384

stellar triangulation, see also Stellar triangulation

Straits of Florida, 247

triangle in space, 239, 240, 382

variation of position, Cartesian coordinates, 240, 241
\

382

variation of position, geodetic coordinates, 241,

242, 382

(w, (j>, h) coordinates, 239-242, 261, 382, 383

Newcomb, S., 223

Newton, I., 274

Newtonian:

equations of motion, 146, 269, 270, 272, 273, 274,

275, 285, 290, 307, 371, 385, 390

equipotentials in free air, 327

gravitational balance, 151

gravitational field, see also Newtonian gravitational

field

law of attraction, 173

potential, see also Newtonian potential

system, 275

Newtonian gravitational field:

attraction force, 143, 144, 371

Bruns' equation, 148, 371

Cartesian vectors A r , Br , C r, 144, 145

central field, 143-144

Coriolis force, 146

differentials, 148-150

equipotential surfaces, central field, 143

flux of force, 149, 150, 372

force of attraction, 143, 144, 371

general remarks, 147

geometry, 143, 148, 149

geopotential, 144, 145, 146, 147, 371

gravitational equation, 149

gravitational force, flux, 149, 150, 372

gravity differentials, 148, 149, 150, 371, 372

Hungarian plains experiment, 151

Laplacian, geopotential, 145, 371

laws of gravity, 145, 148, 150

Marussi tensor, 86, 150

mechanical principles, 143-146
parameters, measurement of, 150, 151

Poisson's equation, 146, 147

potential, see also Newtonian potential

principle of superposition, 144

rotating Earth, 145

rotation, effect of, 144-146

satellite, equations of motion, 146, 371

superposition of fields, 144

symbols used, 144

test particle,' 143

torque, 151, 372

torsion, 151

tube of force, 149

((o,(j),N) system, 143-151

Newtonian potential:

attraction, 143, 144, 155, 174, 371. 373
basic equation, 156, 372

constants, relations between, 160-162

continuous distribution of matter, 156-157
convergent series, 154

derivatives of (1/r), successive, 157-159, 372

distant points, 155-168, 372
distribution of mass, 196, 197

distribution of matter, 156, 157

energy, 143

general, free space, 345

generalized harmonic functions, 154, 372

harmonic functions, generalized, 154, 372

Hobson's formula, 158, 159, 171, 175, 372

homogenous polynomials, tensor form, 154

inertia, moments of, 165, 166, 167, 195, 373, 380

inertia, principal axes, 166

inertia, products, 165, 373

inertia tensor, see also Inertia tensor

invariance, distant points, 162-164

invariance, near points, 171

Laplace equation, see also Laplace equation, po-

tential theory
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Newtonian potential: — Continued

Legendre coefficients, 159, 372

Legendre functions, spherical harmonics, 159, 170,

372, 373

MacCullagh's formula, 167, 373

mass distribution, 196, 197

Maxwell, distant points, 155, 156, 372

moment of inertia, 165, 166, 167, 195, 373, 380

near points, 169-171, 373

normalized functions, 160

primitive, 175

products of inertia, 165, 373

spherical harmonics, 159, 160, 170, 171, 372, 373

spheroidal coordinates, 191

successive derivatives of (1/r), 157-159, 372

Normal:

curvature, 40, 41, 42, 60, 75, 76, 89, 126, 358, 360,

363, 369

differentiation, 96

gradients, S-surface, 330, 331, 395

isozenithals, 118

principal, 21

projection, azimuth, 121, 368

projection, surface vector, 110-112, 366, 368

to a curve, 22

unit, see also Unit normal

/V-surface:

azimuth, 76

base surface, 104, 117

base vectors, 70-75, 133, 135, 359, 370, 371

base vectors, derivatives, 72, 73, 85, 86, 359

Christoffel symbols, 81, 82, 362

coordinate directions, 79, 80

curvature, normal, 75, 76, 360

fundamental form, second, 78, 360. 361

fundamental form, third, 78, 79, 361

Gaussian curvature, 76, 91, 360

geodesic curvature, 76, 77. 360

geodesic torsion, 74, 75, 76, 360

isozenithal projection, 93

Laplacians of the coordinates, 80, 81, 361

Mainardi-Codazzi equations, 82-85, 362

Marussi tensor, 86, 362

meridian trace, 77, 360

metric tensor, 77, 78

normal curvature, 75, 76, 360

parallel trace, 77, 360

position vector, 86—88

principal curvature, 76, 360

spherical representation, 79

/V-system:

azimuth, 133, 134, 370

base vector, 70-75, 85, 86, 133, 135, 359, 370, 371

coordinates, changes in, 136, 137, 371

definition, 69

deflection vector, 136, 371

directions, transformation of, 132, 133, 370

latitude, 134, 371

/V-system: — Continued
longitude, 134, 371

matrices R andS, 135, 371

matrices, tensor transformation, 135, 136, 371

orientation conditions, 134, 135, 370, 371

parallel transport of vectors, 136, 371

transformation of directions, 132, 133, 370

transformations, 131-137, 370, 371

vector, deflection, 136, 371

vector, parallel transport, 136, 371

zenith distances, 133, 134, 370

O
Observation equations:

angle of refraction, 243
angular equations, 244, 245

azimuth, geodetic coordinates, 243, 244, 383

Cartesian coordinates, 246, 249, 383

Cartesian rotations, 267

differential, 302-306

direction. 248, 249, 302-305

disturbing force, 305

Doppler tracking system, 302, 305, 306

drag, 304

geocentric coordinates, 250, 383

geodetic coordinates, 242-246, 250, 383

horizontal angles, 242, 243, 383

initial values, 246

length, geodetic coordinates, 245, 383

lunisolar perturbations, 304, 305

perturbation, 305

radiation pressure, 304

range, 302-305

range rate, 305, 306

reverse equation, 243, 244. 383

rotation of the Earth, 168

satellite observations, 302

satellite triangulation, 256

solar radiation pressure, 304

station correction, 243

stellar triangulation, 247-250, 383

vertical angles, 242, 243, 383

zenith distance, geodetic coordinates, 243. 383

(w. <£, h) coordinates, 242-246, 250, 383

Observation line:

astro-geodetic leveling, 233, 234, 382

Cartesian coordinates, 228, 229, 381

Clairaut's equation, 230

deflection of the vertical, 234—237

direct problem, 230, 231

general equations, 227-229, 380

general remarks, 227

geodetic coordinates, 229-231, 233. 381

geodetic heights, 233, 382

gravitational potential, 231, 232, 381

latitude, geodetic. 233

longitude, geodetic, 233

plane of normal section, 227
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Observation line: — Continued

reverse problem, 230

Taylor expansion, 231, 381

torsion balance measurements of deflection, 234—237,
382

(to, </>, h) coordinates, 229-231, 233, 381

(to, 0, N) coordinates, 228, 229

Optical:

path length, 210
path length equation, 210, 379

wavelength, 215, 218, 219, 380

waves, 220, 221

Orbit, see Satellite orbits

Orbital geometry, 189

Osculating plane, 21

Owens, J. C, 225

Owens: Bender-Owens proposal, 226

Palmiter, M. T., 299

Parallax correction, 255

Parallel:

direction (to, $, N) coordinates, 71

normal coordinate system, 109, 366, 368

trace, geodesic curvature of, 77, 360

transport of vectors, 136, 371

vectors, 131

Pellinen, L. P., 298

Permutation symbols:

three-dimensional, 13

two-dimensional, 15, 16

Perturbing potential, 281

Photogrammetric equations, 251-255, 383, 384

Pizzetti's extension of Stokes' function, 311, 318, 345,

392

Pizzetti's extension of Stokes' integral, 317, 321, 393,

394

Pizzetti's formula, 203

Planetary equations:

Gauss, 282, 285, 290, 294-298, 302, 304, 387, 391

Lagrange, 290, 390

Plummer,H. C.,301

Poisson,S. D.,309

Poisson's equation, 146, 147

Poisson's integral:

alternate, 325, 394
Bjerhammar's method, 324

deflection, 319, 320, 393
gravity, 319, 320, 393

integration of gravity anomalies, 309, 315-317, 393
potential anomaly, 319

Poisson-Stokes, gravity anomalies, 309-326, 391-394

Position vector:

Cartesian coordinates, 5

TV-surface, 86-88

spherical representation, 63, 358
symmetrical (to, </>, h) coordinates, 127, 369
(to, cf), h) coordinates, 124, 368
(to, $, N) coordinates, 86-88, 362

Potential:

analytic continuation, 172, 173

anomaly, 311, 312, 316, 317, 319, 321, 343, 344

392, 393, 397

attraction, 143, 144, 155, 172, 174, 371, 373

attraction potential ///>, 315

Blades' equation, 194, 196

Cartesian differentials, 180-183

centrifugal force, 169

Chandler wobble, 168

convergence, 194

curvatures of the field, 180-183

differential form, 196, 378

differentials, 180-183, 374-376

disturbing, 281

double layer S-surface, 338-340, 396
energy, 143

Eulerian free nutation, 168

external, 174-176, 192, 373, 377

external points, 337, 338, 339, 396

external (£, tj, z) coordinates, 175, 176, 373

geopotential, see also Geopotential

gravitational, 176, 185, 231, 232, 381

gravity representation, 179, 180, 374

harmonic functions, generalized, 153, 154, 372

Hobson's formula, 175

inertia tensor, see also Inertia tensor

internal, 192, 193, 377

internal points, 173, 174, 196, 373

International Latitude Service, 168

International Polar Motion Service, 168

Kepler ellipse, 189

Laplace equation, 183

Legendre functions, spheroidal coordinates, 193

Legendre harmonics, gravity representation, 179

Legendre harmonics, spherical harmonics, 177

magnetic, 184, 185

magnetic analogy, 184, 185, 186

Mainardi-Codazzi equations, 189

Marussi tensor, 183

mass distribution, 193, 194, 196, 377

Maxwell's form of the potential, 155, 156, 372

Maxwell's theory of poles, 176-179, 185, 186

meridian ellipse, 187-189, 376

near points, 196

Newtonian, see also Newtonian potential

perturbing, 281

rotation of the Earth, 168, 169

satellite triangulation, 168

second differentials, spherical harmonics, 181-183

single layer S-surface, 337, 338, 396
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Potential: — Continued

spherical coefficients, 194-196, 201, 378

spherical harmonics, 153-185, 201, 202, 372-376,

378

spheroidal coefficients, 194-196, 201, 378

spheroidal coordinates, 189-193, 201, 377
spheroidal harmonics, 187-197, 200-202, 376-378
spheroid of convergence, 194

S-surface, double layer, 338-340, 396

S-surface, single layer, 337, 338, 396

surface points, 338, 339, 340, 396

symbol convention, 199

total, 169

Vinti potential, 301, 302, 391

(£, 7), z) coordinates, 175, 176

Priester, W.,304

Principal:

curvature, 21, 29, 41, 42, 57, 58, 65, 76, 97, 119, 120,

356, 357, 358, 360, 364, 367

directions, 29, 42, 64, 65, 109, 120, 126, 358, 366,

368

moments, inertia, 166

normal, 21

R

Radiation pressure, solar, 304

Rainsford, H. F., 218

Range measurements, 302

Range, observation equations, 302-305

Range-rate measurements, 302

Range rate, observation equations, 305, 306

Refraction, atmospheric, see Atmospheric refraction

Refractive index, see Index of refraction

Reit, B. G., 323

Ricci tensor, 27, 28, 56, 355, 357

Riemann-Christoffel tensor:

covariant form, 26, 355
definition, 25, 26, 355

special forms, 26, 27

two-dimensional, 27, 28

Riemannian:

curvature, 28, 29, 60, 355, 358

geometry, three-dimensional, 307

space, 25

Roemer, M., 304

Rotation matrix, 72, 133, 135, 359, 370

Rotation of the Earth, 168

Routh, E. J., 168

Royal Institute of Technology, Stockholm, 323, 324

Saastamoinen, J. J., 216, 217

Satellite, equations of motion:

first integrals, 293, 294, 390

inertial axes, 269-271, 385

moving axes, 271, 272, 385

Newtonian, 146, 269, 270, 272, 273, 274, 275, 285,

290,307,371,385,390

Satellite geodesy:

action, least, 307, 308
angular momentum, 276

angular momentum vector, 273

Baker-Nunn camera, 302

BC-4 camera, 302

canonical equations, see also Canonical equations

centripetal force, 272

Coriolis force, 272

Delaunay variables, see also Delaunay variables

derivatives with respect to the elements, see also

Derivatives with respect to the elements

disturbing force, 282, 305

disturbing potential, 281

Doppler tracking system, 302, 305, 306

dynamic, 269-308

eikonal equation, 307

energy integral, 294, 390

energy, law of conservation, 294

equations of motion, see also Satellite, equations of

motion

Euler-Lagrange equations, 307

Gauss planetary equations, 282, 285, 290, 294-298,

302, 304, 387, 391

geodesic principle, 307

geopotential, 274

Hamiltonian #*, 275, 276, 293, 299, 385

Hamiltonian K*, 299

Hamilton-Jacobi equation, 300, 301, 307, 391

inertial axes, first integrals, 272-274, 385

Kepler elements. 281, 295, 296

Kepler ellipse, see also Kepler ellipse

Kepler orbit, 281

Lagrange equations, 290, 298, 299, 302, 304, 307,

390, 391

Lagrangian, 275, 385

least action concept, 307, 308

moving axes, first integrals, 274, 275. 385

Newtonian equations of motion, 146, 269, 270, 272,

273, 274, 275, 285, 290, 307, 371. 385, 390

Newtonian system, 278

observation equations, see also Observation equa-

tions

orbit, see also Satellite orbits

perturbed orbits, 281, 282

perturbing potential, 281

planetary equations, Gauss, 282, 285, 290, 294-298,

302, 304, 387, 391

planetary equations, Lagrange, 290, 390

principle of least action, 307, 308

range measurements, 302

range-rate measurements, 302
true anomaly, 276, 281, 283, 284
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Satellite geodesy: — Continued

variational method, 306, 391

variation of elements, see also Variation of the

elements

velocity vector, 270, 385

zenith distance, 283

Satellite, Kepler ellipse, 277, 278

Satellite orbits:

curvature, 290, 291,390

Kepler, 281

perturbed, 281,282

torsion, 290, 291,390

Satellite triangulation:

American Society of Photogrammetry, 253

astronomical refraction, 223, 224, 254, 380

atmospheric refraction, residual, 254, 255

camera calibration, 251, 253, 254

coordinate system, choice, 251, 252

declination, 255

definition, 250

direction, 250, 251

direction to satellite, 255

distances, 256, 257

electronic distance measurements, 256

Garfinkel's theory, 255

Manual of Photogrammetry, American Society of

Photogrammetry, 253

net adjustment, 255, 256, 257

observation equations, see also Observation equa-

tions

parallax correction, 255

photogrammetric equations, 251-255, 383, 384

potential, 168

radiation pressure, 304

refraction correction, 251

rotation of the Earth, 168

SECOR, 256

star calibration, 252

swing, 252

U.S. Coast and Geodetic Survey, 255

Scalar:

general, 285

gradient of AT, 7, 70,353
gradient of </>, 18, 354

gradient, surface, 31, 355

invariant, 7, 21

Laplacian, 19, 191

product, 4. 7, 14, 353, 354

velocity, 270

e-system, 14, 354

Schild, A., 26, 51

Schmid, H. H., 224, 255

Schols, C. M., 60

Sears, J. E., 218, 219, 225

Sears: the Barrell and Sears formula, 218, 219, 225, 226

SECOR, 256

Sign conventions:

latitude, 70

Sign conventions: — Continued

longitude, 70

(to, </>, N) coordinates, 69, 70

Smithsonian Meteorological Tables, 217, 220, 221, 222

Solar radiation pressure, 304

Somigliana's equation, 203, 204

Somigliana's formula, 202, 378

Souslow, C, 60

Space:

curved, 27

flat, 25

Riemannian, 25

Space metric, (to, <$>, h) coordinates, 118. 366

Specific curvature, 27, 28, 36, 37, 41, 46, 60, 76, 91, 355,

356, 360

Spherical excess, 61, 358

Spherical, isometric latitude, 174, 175, 373

Spirit levels, 245, 246

Springer, C. E., 49, 51

S-surfaee:

associated metric tensor, 330, 394
attraction, double layer, 338-340, 396

attraction, single layer, 337, 338, 396

basic integral equations, 341-344, 345, 346, 396, 397

deformation, 332, 333, 395

diagram, 328, 341

double layer, 338-340, 396

equivalent single layer, 344-346, 397

equivalent surface layers, 340, 341, 396

geodetic coordinates, 341-344, 396, 397

gradients, normal, 330, 331, 395

Green's, see also Green's

integral equations, basic, 341-344, 345, 346, 396, 397

invariant V(T,f), 331, 395

invariant V.v(7\/),331, 332, 395

metric tensor, 329, 330, 394

Model Earth, 337

Molodenskii's invariants, 331

Monge's equation, 329, 394

normal gradients, 330, 331, 395

potential, double layer, 338-340, 396

potential, single layer, 337, 338, 396

single layer, 337, 338, 396

Stokes', see also Stokes'

unit normal, 328, 329, 330, 341, 394

(a>, <f>. h) coordinates, 329-333, 394

Standard gravity field:

anomalies, see also Gravity anomalies

Bruns' equation, 313, 392

Clairaut's, see also Clairaut's

convention, symbol, 199

curvature, standard correction, 312

curvatures, 205-207, 311, 312, 392

deflection, 199,311,312,392

disturbances, 199, 312, 313, 317. 318, 319. 323, 392,

393
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Standard gravity field: — Continued

equipotential spheroid, 202-204, 207

flattening of the spheroid, 203

free air correction, 206

general remarks, 203, 204

geocentric coordinates, 207, 379

geocentric deflections, 319

geodetic coordinates, 207, 379

geodetic system, 311

geoid, 200

geopotential, 311

gradient of potential anomaly, 312, 392

gravitational flattening, 203

height correction, 206

International Association of Geodesy, 204

International Astronomical Union, 204

Marussi invariants, 205

Marussi tensor, 205

mean gravity, 217

model, spheroidal, 200

models, field, 199

models, symmetrical, 199-200, 378

Pizzetti's formula, 203

potential anomaly, 311, 312, 316, 317, 319, 321, 343,

344,392,393,397

potential, see also Potential

Somigliana's equation, 203, 204

Somigliana's formula, 202, 378

space, 204, 379

spherical harmonics, 204, 205, 379

spherical standard field, 314, 393

standard curvature correction, 312

symbol correction, 199

(to, </>, h) coordinates, 200, 311, 312

Star calibration, 252

Stellar triangulation:

declination, 247
observation equations, Cartesian coordinates, 247-

249,383
observation equations, geodetic coordinates, 250, 383

origindiour angle, 247, 249, 383

time correction, 249

Sterne, T. E., 304

Stokes, G. G., 309, 313, 320, 328

Stokes':

Bruns' equation, 318

equation, 313, 343, 392

function, 31 1 , 317, 318, 345, 392

integral, 317, 318, 320, 321, 322, 346, 393
Pizzetti's extension of Stokes' function, 311, 318,

345, 392

Pizzetti's extension of Stokes' integral, 317, 321,

393, 394

theorem, 50, 122,357

Strain, 29

Straits of Florida, 247

Surface:

base coordinate, 328

Surface: — Continued
conformal space, 60,61, 358

covariant derivatives, 33, 34, 355

curvature, see also Curvature

curves, extrinsic properties, 39-47

curves, torsion, 40, 41, 356

equations, forms of, 31,32

equations, Gauss' form, 31 , 35, 355

equations, Monge's form, 31, 32

equations, third functional form, 32

extrinsic properties, 31-37, 43-47, 60, 61, 358

family of, 32,66

Frenet equations, 22

fundamental form, first, 35, 355

fundamental form, second, 35, 60, 63, 64, 355, 358

fundamental form, third, 35, 43, 60, 64, 94, 355, 358

Gauss equations, 31, 35, 355

Gaussian characteristic equation, 36, 356

Gaussian curvature, 27, 28, 36, 37, 355, 356

geodesic, 22, 29, 46, 128, 369

geodesic torsion, see also Geodesic torsion

gradient, 31, 355

integrals, 49-53, 357

integrals, spherical harmonics, 309, 310, 391

intrinsic properties, 28

invariants, 45, 81 , 107, 356, 361 , 362, 365

Laplacian, 45, 356

layer, density, 325

Mainardi-Codazzi equations, 35, 36, 355

metric tensor, see also Metric tensor

minimal, 65

Monge's surface equation, 31, 32

normal curvature, see also Curvature

normals, 58, 59, 358

/V-surfaee, see also /V-surface

orthogonal, unit vector, 28, 355

projection,98-101

Riemannian curvature, 28, 29, 60, 355, 358

space relation, tensor, 45, 356

spherical, equations of, 31

S-surface, see also S-surface

tensor derivative, unit normal, 34

tensors, 34, 45, 115, 191,356

transformation of normals, 58, 59, 358

transformations, 59, 60, 358

vector, see also Surface vector

Weingarten equations, 35, 43, 66, 104, 355, 356

Surface vector:

azimuth, 99, 110, 111, 364, 366, 368

components, normal coordinate system, 104

components, normal projection, 110, 366, 368

contravariant components, 99, 364

covariant components, 100, 364

covariant derivatives, isozenithal differentiation. 100,

101,364

covariant derivatives, normal projection, 111, 112,

366, 368

curvatures, 100, 1 1 1 , 364, 366, 368

curvatures, normal projection, 111, 366
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Surface vector: — Continued
differentiation, space, 108, 109

general, 32, 33, 355

geodesic curvature, normal projection, 112, 366

isozenithal projection, 98-101, 364

length, 98, 99, 110, 364, 366, 368

normal coordinates, 104

normal projection, 110-112

orthogonal, 15, 354

space, differentiation, 108, 109, 366, 367

spherical representation, 64, 358

unit normal, 7, 33, 355

unit normal to coordinate surface, 328, 341

Sutton, O. G., 222

Swing, 252

Synge,J. L.,26,51

Taucer, G., 60

Telluroid, 314, 328, 329, 337

Tellurometer, 219

Tengstrom, E., 226

Tensor:

absolute, 13

addition, 9, 353

antisymmetric, 10

associated, see a/50 Metric tensor

character, 11, 12

conjugate, see also Metric tensor

contracted, 10, 353

contravariant, second-order, 9

covariant derivative, 18, 354

covariant, second-order, 9

covariant, e-system, 13

curvature, see also Curvature

determinant, 13, 16,353,354

divergence theorem, 52, 357

dummy index, 10

equations, 10, 25, 26, 356

general rules, 9, 10

indices, 12,353

inertia tensor, see also Inertia tensor

intrinsic derivative, 21

invariant, 10, 13

Kronecker delta, see also Kronecker delta

Lame, 27, 56, 355, 357

Laplace surface tensor equation, 115

Marussi, 86, 150, 183, 205, 362

metric, see also Metric tensor

mixed, second-order, 9, 353

multiplication, 9, 10, 353

order, 9

relative, 13

Ricci,27,28,56,355,357

Riemann-Christoffel, 25, 26, 27, 28, 355

skew-symmetric, 10

space, surface relation, 45, 356

Tensor: — Continued
surface, derivative, 34

surface, equation, 115

surface, space relation, 45, 356

surface, spheroidal coordinates, 191

symmetric, 10

transformation, 9, 56, 57, 353, 357

transformation matrices, 135, 136,371

e-system, 13, 14, 353, 354

Terroid, 328, 329, 337

Test particle, 143

The American Ephemeris and Nautical Almanac, 257, 258

The Astronomical Ephemeris, 257, 258

Theodolite, 227

The Royal Institute of Technology, Stockholm, 323, 324

Thompson, E. H., 244

Thompson, M.C., Jr., 225

Torque, 151,372

Torsion:

alternate expression, 213, 380

atmospheric refraction, 213, 379

balance, 150, 151

balance measurements, 185,234—237

correspondence of lines, 57, 58, 357

curvature, 40, 41 , 356

curve, 22, 40, 41, 356

deflection, 234-237, 382

EotvoV double torsion balance, 151

Eitvos' torsion balance, 150

geodesic torsion, see also Geodesic torsion

gravimeters, 151

Hungarian plains experiment, 151

Newtonian gravitational field, 151

satellite orbit, 290, 291, 390

surface curves, 40, 41 , 356

Transformation:

azimuth, 133, 134

base vectors, 71, 72, 133, 135, 359

canonical equations, 299, 300, 391

conformal space, 55-61, 357, 358

directions, 132,133,370

latitude, 134

longitude, 134

/V-systems, 131-137, 370, 371

space, 55-61, 357, 358

surface normals, 58, 59. 358

surfaces, 59, 60, 358

tensors, 9, 56, 57, 135, 136, 353, 357. 371

vectors, 7, 8, 353

von Zeipel, 302

zenith distance, 133, 134

Triangulation:

flare, 246, 247

satellite, see also Satellite triangulation

stellar, see also Stellar triangulation

True anomaly, 189, 276, 281, 283, 284, 388

Tube of force. 149
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U
Umbilic, 44

U.S. Coast and Geodetic Survey, 255

U.S. Naval Observatory, 257

Unit normal:

coordinate surface, 328, 341

normal coordinates, 104, 105, 106, 365

space derivatives, 106, 365

S-surface, 328, 329, 330, 341, 394

surface tensor derivative, 34

vector, 33, 355

vr , 7

(o>, (/>, h) coordinates, 329

Unit vector:

contravariant, 5, 353
covariant, 6, 353

orthogonal surface, 28, 355

perpendicular, 20, 354

symmetrical (w, <f>, h) coordinates, 126

(a>, 4>, N) coordinates, 75, 80

Upward continuation integral, 316, 317, 323, 393, 394

Vaisala, Y., 247

Variation of the elements:

angular momentum, 282, 283, 387

argument of perigee, 285, 388

disturbing force, 282

eccentric anomaly, 284, 388

eccentricity, 283, 387

inclination, 284, 388

mean anomaly, 284, 388

perigee, argument of, 285, 388

right ascension, 284, 388

semimajor axis, 282, 387

true anomaly, 283, 284, 388

zenith distance, 283, 388

Vector:

angular momentum, 273

azimuth in space, 109

base, see also Base vector

Cartesian, 3

contravariant, 3,

5

contravariant, unit, 5, 353

convention of indices, 4

covariant, 3, 6, 353

covariant derivatives, 18, 20, 354

covariant, unit, 6, 353

curl, 19, 354

curvature, 21, 22

curvilinear coordinates, 4^7

deflection, 136,371

differentiation, space, 108, 109

dimension, 9

divergence, 19, 354

geodesic curvature, 22, 23, 39, 46, 60, 76, 77, 90, 100,

112, 126, 358, 360, 363, 364, 366, 369

Vector: — Continued

indices, convention, 4

invariant, 4

isozenithal differentiation, 95, 363

Kepler ellipse, 279-281, 386, 387

Kronecker delta, 8, 353

Laplacian, 19, 354

line element, 5, 353

magnitude, 6, 353

nonunit, 6

orthogonal, unit, surface, 28, 355
parallel, 131

parallel transport, 136, 371

position, 5, 63,86-88, 124, 127, 358, 362, 368, 369
products, 14, 354

scalar, see also Scalar

space, differentiation, 108, 109

summation convention, 4

surface, see also Surface vector

tangent, 39

transformation, 7, 8, 353

unit, see also Unit vector

velocity, 270, 385

e-system, 14, 354

Velocity:

light, 209, 379

scalar, 270

vector, 270, 385

Vening-Meinesz':

equations, 318
function, 318

integrals, 319, 320
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Vinti potential, 301,302, 391

Volland, H., 304

Volume, 49-53

Volume integrals, 51-53, 357

von Zeipel transformation, 302
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Wagner, C. A., 299

Walters, L. G., 304

Watson, G. N., 194, 196, 301

Wave front, geometrical, 210

Wave number, 218

Wayman, P. A., 270

Weingarten equations, 35, 43, 66, 104, 355, 356
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Zagrebin, D. W., 320

Zagrebin-Bjerhammar problem, 343

Zenith, astronomical, 145

Zenith distance:

dynamic satellite geodesy, 283

Zenith distance: — Continued
equations, geodetic coordinates, 243, 383

N-systems, 133, 134, 370

symmetrical (to, $, h) coordinates, 126

transformation, 133, 134

(to, <f>, N) coordinates, 71
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