

UNITED STATES COAST AND GEODETIC SURVEY OFFICE.

THE EASTERN OBLIQUE ARC OF THE UNITED STATES

AND

OSCULATING SPHEROID

43

U. S. COAST AND GEODETIC SURVEY O. H. TITTMANN

SUPERINTENDENT

GEODESY

THE EASTERN OBLIQUE ARC OF THE UNITED STATES

 ${\bf AND}$

OSCULATING SPHEROID

By CHAS. A. SCHOTT, Assistant, Coast and Geodetic Survey

SPECIAL PUBLICATION NO. 7

57746

WASHINGTON
GOVERNMENT PRINTING OFFICE
1902

Treasury Department,
Document No. 2232.

Coast and Geodetic Survey.

QB 291 U65 1902

TREASURY DEPARTMENT,
OFFICE OF THE SECRETARY,
Washington, July 16, 1901.

SIR: It affords me pleasure to approve the publication of the discussion of the Eastern Oblique Arc of the United States, herewith presented to the public.

It appears that the value of this arc to geodesy is very great, but that the results are only incidental to the immediate purposes for which the triangulation was made. The results, however, could not have been obtained if the general plan of the Coast Survey had been less systematic or comprehensive. Thus, in applied science, as well as in many other things, the far-sighted wisdom of our earlier statesmen, who gave direction to our beloved country's policies, has borne fruit.

Respectfully,

L. J. GAGE, Secretary.

Mr. O. H. TITTMANN,

Superintendent Coast and Geodetic Survey, Washington, D. C.

LETTER OF SUBMITTAL.

TREASURY DEPARTMENT,
OFFICE OF THE COAST AND GEODETIC SURVEY,
Washington, D. C., July 16, 1901.

SIR: I have the honor to submit to you for publication the manuscript of Special Publication No. 7, giving the results of the completed measurements of the Eastern Oblique Arc of the United States.

This is the second of the publications intended to give the results of the principal arc measurements made by this Service, and like the first, which relates to the Transcontinental Arc of the Thirty-ninth Parallel, it was prepared by Assistant Charles A. Schott, whose knowledge, mature experience, and ability fitted him especially for the task.

The Eastern Oblique Arc, though treated separately, intersects the Transcontinental Arc, and the two triangulations have several lines in common. The former extends from the Bay of Fundy to the Gulf of Mexico, and parallels the Appalachian mountain system, while the latter crosses the axes of the great mountain systems of this country, and extends from the Atlantic to the Pacific Ocean.

Invaluable as the Transcontinental Arc is as a contribution to geodesy and the geography of our country, it does not in itself contain the data for determining the figure of the earth.

The Oblique Arc, however, contains within itself all that is necessary for determining the dimensions of a spheroid which corresponds most uearly with the existing geoid within the area covered by triangulation. It is unique in that it is the first one which utilizes on a grand scale a measurement oblique to the meridian. The peculiar power of an oblique arc for determining the compression of the earth was pointed out by Tobias Mayer (1723–1762), but the first practical application of such an arc to geodesy was made by Bessel. This was before the introduction of telegraphic longitudes had made it possible to utilize such an arc to its fullest extent.

The results of previous discussions of parts of this arc led to the abandonment by this Survey, in 1880, of Bessel's spheroid of reference and the adoption of Clarke's (of 1866), and the final discussion of the complete arc here presented sustains the grounds on which the change from one spheroid to the other was made.

Taken in connection with the Transcoutiuental Arc of the Thirty-ninth Parallel, this discussion has enabled the Survey to decide upon the retention of the Clarke's spheroid and to adopt geographic coordinates for the whole extent of this country based on a uniform system. Further information as to these standard coordinates for geographic purposes, which differ slightly from those here published in connection with the Eastern Oblique Arc treated independently of other triangulations, will be published in due time.

Very respectfully,

O. H. TITTMANN, Superintendent.

The SECRETARY OF THE TREASURY.

CONTENTS.

	Page.
Introduction	19
PART I.	
THE BASE LINES AND BASE NETS.	
A. General remarks. B. The base lines of the eastern oblique arc, their measurement, resulting	25
LENGTH, PROBABLE ERROR, AND ADJUSTMENT OF BASE NETS 1. Epping base line and base net.	27
Location, measurement, and length	27
Adjustment of the base net	28
Resulting angles and sides	35
Descriptions of stations	39
2. The Massachusetts base line	
Location, measurement, and length	41
Connection with the main triangulation	42
Descriptions of stations	42
3. The Fire Island base line and base net.	
Location, measurement, and length	44
Adjustment of the base net	47
Resulting angles and sides	53
Descriptions of stations	54
4. The Kent Island base line, base net, and extension.	
Location, measurement, and length	56
Adjustment of the base net	58
Extension of the base net	63
Resulting angles and sides	68
Determination of probable error in the sides Osbornes Ruin—Turkey Point, and	
Tobacco Row—Spear	72
5. The Atlanta base line and base net.	
Location, measurement, and length	72
Adjustment of the base net	75
Resulting angles and sides.	85
Descriptions of stations	87
6. The Dauphin Island base line and base net.	
Location, measurement, and length	90
Adjustment of the base net	93
Resulting angles and sides	97
Descriptions of stations	97
C. Synopsis of the measurements and results of the base lines of the eastern	
OBLIQUE ARC.	100

PART II.

THE MAIN TRIANGULATION.

		Page.
Α.	GENERAL TREATMENT OF THE REDUCTION OF THE MAIN TRIANGULATION BETWEEN	
	Calais, Maine, and New Orleans, Louisiana	103
В.	THE TRIANGULATION.	
	I. Northeastern terminus to Epping base net	105
	Abstracts of horizontal directions	106
	Figure adjustment	108
	Resulting angles and sides	110
	2. Epping base net to Massachusetts base and to Fire Island base net	111
	Abstracts of horizontal directions	114
	Figure adjustment	I 22
	Resulting angles and sides	130
	3. Fire Island base net to Kent Island base net extended	135
	Abstracts of horizontal directions	137
	Figure adjustment	142
	Resulting angles and sides	145
	4. First, or Virginia section, south of the transcontinental triangulation	148
	Abstracts of horizontal directions	149
	Figure adjustment	151
	Resulting angles and sides	154
	5. Second, or North Carolina section, south of the transcontinental triangulation	156
	Abstracts of horizontal directions	158
	Figure adjustment	162
	Resulting angles and sides	163
	6. Third, or South Carolina section, south of the transcontinental triangulation	164
	Abstracts of horizontal directions	165
	Figure adjustment	169
	Resulting angles and sides	-
	Adjustment of the position of Mount Mitchell, in North Carolina	173 176
	7. First section west of the Atlanta base net.	178
	Abstracts of horizontal directions.	*
		179
	Figure adjustment	182
	Resulting angles and sides	185
	8. Second section west of the Atlanta base net	187
	Abstracts of horizontal directions	188
	Figure adjustment	191
	Resulting angles and sides	- 192
	9. Third section west of the Atlanta base net	194
	Abstracts of horizontal directions	195
	Figure adjustment	196
	Resulting angles and sides	198
	10. Fourth section west of the Atlanta base net	199
	Abstracts of horizontal directions	200
	Figure adjustment	204
	Resulting angles and sides	206
	11. Fifth section west of the Atlanta base net.	209
	Abstracts of horizontal directions	210
	Figure adjustment	213
	Resulting angles and sides	216
	Remarks on the accord of the Atlanta and Dauphin Island bases	218

CONTENTS.	II

-	M	
В.	THE TRIANGULATION—continued.	Page.
	12. First section west of the Dauphin Island base net	219
	Abstracts of horizontal directions	219
	Figure adjustment	222
	Resulting angles and sides	224
	13. Second section west of the Dauphin Island base net	226
	Figure adjustment	228
	Resulting angles and sides	232
	14. Some statistics of the triangulation	234
C.	RESULTING GEOGRAPHIC POSITIONS OF THE PRINCIPAL STATIONS OF THE TRIANGU-	
	LATION, CALAIS, MAINE, TO NEW ORLEANS, LOUISIANA	237
D.	ADDITIONAL GEOGRAPHIC POSITIONS WHICH WERE DERIVED DIFFERENTIALLY AND FOR	
_	WHICH TRIANGLES ARE NOT GIVEN IN THIS PAPER	247
E.	ADDITIONAL GEODETIC AZIMUTHS COMPUTED DIRECTLY FROM THE GIVEN POSITIONS	
	OF THE STATIONS	248
	TO A DOM'S TITE	
	• PART III.	
	THE ASTRONOMIC MEASURES.	
A.	RESULTS FOR LATITUDE	
	. I. General statement	251
	2. Details at stations:	
	Agamenticus, Maine	276
	Atlanta, Georgia	306
	Atlanta Middle Base, Georgia	305
	Aurora, Alabama	304
	Bangor, Maine	257
	Beacon Hill, New Jersey	289
	Bull Run, Virginia	292
	Calais, Maine	253
	Cambridge, Massachusetts (Cloverden Observatory)	282
	Cape Henlopen, Delaware	292
	Cape May, New Jersey	292
	Cape Small, Maine	271
	Causten, District of Columbia.	292
	Charlottesville, Virginia	292
	Clark, Virginia	292
	Coast and Geodetic Survey Office, District of Columbia	292
	Coon, Alabama	-
	Cooper, Maine	255
	Currahee, Georgia	299
	Dover, Delaware	292
	East Pascagoula, Mississippi	312
	Elliott Knob, Virginia	292
	Farmington, Maine	258
	Fort Morgan, Alabania	313
	Gunstock, New Hampshire	274
	Harvard College Observatory, Massachusetts (Cambridge)	281
	Hill. Maryland	292
	Hill, Maryland. Howard, Maine	263
		256
	Humpback, Maine	250
	Isles of Shoals, Maine	2/0

A.—RESULTS FOR LATITUDE—continued.	
2. Details at stations—continued.	Page.
Kahatchee, Alabama	307
King, North Carolina	295
Lavender, Georgia	301
Long Mountain, Virginia	292
Lower Peach Tree, Alabama	309
Manomet, Massachusetts	284
Marriott, Maryland	292
Maryland Heights, Maryland	292
Mobile, Alabama	310
Montgomery, Alabama	307
Moore, North Carolina	292
Mount Desert, Maine	264
Mount Harris, Maine	260
Mount Independence, Maine.	272
Mount Pleasant, Maine	270
Mount Rose, New Jersey.	-
Mount Tom, Massachusetts	290 282
Naval Observatory (new), District of Columbia.	292
Naval Observatory (old), District of Columbia	292
New Orleans, Louisiana.	314
New York, New York	288
Paris, South Carolina	297
Pooles Island, Maryland	292
Principio, Maryland	292
Ragged Mountain, Maine	266
Rockville, Maryland	292
Sabattus, Maine	269
Sandford, New York	286
Sawnee, Georgia	302
Seaton, District of Columbia	292
Soper, Maryland	292
Strasburg, Virginia.	292
Sugar Loaf, Maryland	292
Taylor, Maryland	292
Thompson, Massachusetts	279
Unkonoonuc, New Hampshire	278
Wachusett, Massachusetts	280
Webb, Maryland	292
West Hills, New York	287
Yard, Pennsylvania	291
Young, North Carolina	294
3. Summary of results for latitude	315
B. RESULTS FOR LONGITUDE.	
I. General statement	317
2. Results for longitude at stations:	
Atlanta, Georgia 🚕	318
Calais, Maine	318
Cambridge, Massachusetts	318
Cape May, New Jersey	318
Charleston, South Carolina	318
Charlottesville, Virginia	318
Dover, Delaware	318

	Page,
B. RESULTS FOR LONGITUDE—continued.	
2. Results for longitude at stations—continued.	
New Orleans, Louisiana	318
Washington, District of Columbia	318
Strasburg, Virginia	318
3. Details at stations;	
Bangor, Maine	318
Charleston, South Carolina	321
Columbia, South Carolina.	321
Lower Peach Tree, Alabania	322
Macon, Georgia	322
Mobile, Alabama	323
Montgomery, Alabama	322
New Orleans, Louisiana	
Petersburg, Virginia	323
Raleigh, North Carolina	320
Sector District of Columbia	320
Seaton, District of Columbia	319
Statesville, North Carolina	319
Wilmington, North Carolina	321
4. Summary of results for longitude	326
C. RESULTS FOR AZIMUTH.	
I. General statement	. 327
2. Details at stations:	
Agamenticus, Maine	334
Atlanta Middle Base, Georgia	359
Aurora, Alabama	361
Beacon Hill, New Jersey	. 345
Beaconpole, Rhode Island	341
Blue Hill, Massachusetts	339
Bull Run, Virginia	351
Cape Henlopen Light-House, Delaware	347
Cape Small, Maine	332
Cat Island 1855, Mississippi	366
Causten, District of Columbia.	350
Clark, Virginia	351
Cooper, Maine.	328
Copecut, Massachusetts.	341
Currahee, Georgia	357
East Pascagoula, Mississippi	365
Elliott Knob, Virginia	352
Ethridge, Alabama	363
Fort Morgan, Alabama	364
Guustock, New Hampshire	335
Harvard Observatory, Massachusetts	338
Hill, Maryland	348
Humpback, Maine	328
Indian, Massachusetts.	329
	340
Kahatchee, Alabama	362
King, North Carolina	355
Lavender, Georgia	360
Long Mountain, Virginia	351
Marriott, Maryland	348

C. RESULTS FOR AZIMUTH—continued.	Page.
2. Details at stations—continued.	
Maryland Heights, Maryland	350
Moore, North Carolina	352
Mount Desert, Maine	330
Mount Harris, Maine	330
Mount Independence, Maine	333
Mount Pleasant, Maine	334
Mount Rose, New Jersey.	345
Mount Tom, Massachusetts	343
Paris, South Carolina	356
Principio, Maryland	347
Ragged Mountain, Maine.	331
Sabattus, Maine.	332
Sandford, Connecticut	343
Sawnee, Georgia.	358
Seaton, District of Columbia	349
Shootflying, Massachusetts	339
Soper, Maryland	349
Spencer, Rhode Island	342
Sugarloaf, Maryland	350
Thompson, Massachusetts	336
Unkonoonuc, New Hampshire	336
Wachusetts, Massachusetts	337
Webb, Maryland	348
West Hills, New York	344
Yard, Pennsylvania	346
Young, North Carolina	354
	30 1
PART IV.	
DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED) BY
THE TRIANGULATION.	
A. COMPARISON OF THE ASTRONOMIC AND GEODETIC RESULTS	369
1. The astronomic latitude stations.	
Reduction to sea level	370
Reduction for variation of pole	370
Comparison of astronomic and geodetic latitudes	372
Review of latitudinal deflections.	373
2. The astronomic longitude stations.	
Comparison of astronomic and geodetic longitudes	374
Review of longitudinal deflections	374
3. The astronomic azimuth stations.	
Comparison of astronomic and geodetic azimuths	375
Review of azimuthal deflections	376
B. Determination of an osculating spheroid for the region covered by the	
TRIANGULATION	377
The method and formulæ employed	377
Collection of constants and tabular quantities required in the computation for estab-	
lishing the conditional equations	380

	_
	Page.
B. DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY TH	E
TRIANGULATION—continued.	
Selection of stations for which data were admitted into the equations of condition	
Conditional equations derived from latitude comparisons	. 385
Conditional equations derived from longitude comparisons	. 386
Conditional equations derived from azimuth comparisons	. 386
Formation of normal equations	. 387
The relative weights of the observation equations	. 387
Resulting normal equations	. 388
The precision of the adjusted or resulting values of the length of the equatorial radiu	s
and of the compression as found from the measure of the arc	. 390
Resulting spheroid	
Comparison with other spheroids	. 394

ILLUSTRATIONS.

		Page.
Ι.	United States Coast and Geodetic Survey Office Frontis	
	Epping base. View of line as graded for measurement	27
	Epping base. Placing base apparatus over mark	27
4.	Epping base net, Maine	29
	Massachusetts base, and connection with the primary triangulation of Massachusetts	42
6.	Diagram	45
7.	Fire Island base net, New York	47
8.	Diagram	57
	Kent Island base net, Maryland	58
	Kent Island base and extension of the triangulation to the westward and southward	64
	Ferdinand Rudolph Hassler	44
	Atlanta base net, Georgia	76
	Alexander Dallas Bache	90
14.	Dauphin Island base net, Alabama	93
15.	Diagram	94
	Triangulation, Epping base net to northeastern terminus	105
	Mount Desert, Maine	114
	Mount Washington	116
	75-cm. or 30-inch theodolite. Troughton and Simms	135
20.	30-cm. or 12-inch theodolite. Designed and constructed in the Instrument Division, Coast and Geodetic Survey Office.	135
21.	Triangulation, Epping base net to Fire Island base net	112
22.	Triangulation, Fire Island base net to Kent Island base net, extended	135
23.	Triangulation, first section south of the transcontinental arc	148
24.	Triangulation, second or North Carolina section	156
25.	Triangulation, third section, North Carolina to Atlanta base net	164
26.	Mount Mitchell, North Carolina	176
27.	Triangulation, adjustment of Mount Mitchell	176
	Triangulation, first section west of Atlanta base net	178
	Triangulation, second section west of Atlanta base net	187
	Triangulation, third section west of the Atlanta base net	194
	Triangulation, fourth section west of the Atlanta base net	199
-	Triangulation, fifth section and junction with the Dauphin Island base	209
	Gulf coast triangulation west of Dauphin Island base net	219
	Gulf coast triangulation to New Orleans, Louisiana	226
35.	Extended Lambert equivalent projection, showing the location of principal arc measures and areas of osculating spheroids	369
36.	Naval Observatory, Washington, D. C	377
	Plan of Naval Observatory grounds	377
38.	Subsidiary telegraphic longitude stations between Washington and New Orleans	320
	MAPS.	
A.	Area covered by the eastern oblique arc of the United States—triangulation from Maine to Louisiana	
В.	Distribution of astronomic stations along the eastern oblique arc of the United States from	
	Maine to Louisiana	ocket.
	1102-10 7-02-2	
	1107	

THE EASTERN OBLIQUE ARC OF THE UNITED STATES, FROM MAINE TO LOUISIANA, 1833-1898.

INTRODUCTION.

The general course of this inclined arc is indicated in the title, and is shown on a projection with elliptical outline* facing Part IV of this publication. The triangulation upon which it is based begins at Calais, Maine, on the St. Croix River, opposite the Canadian boundary, in latitude 45° 11′ 09″ 4, and in longitude 67° 16′ 57″ 9 west of Greenwich, and, following the trend of the Appalachian chain of mountains, reaches the Gulf coast at Dauphin Island, near Mobile Bay, and terminates at New Orleans, Louisiana, in latitude 29° 57′ 24″ 4, and in longitude 90° 04′ 24″ 4 west of Greenwich.

The geodetic line covers 23° 30′ 57″, and its total length is 2 612·3 kilometers, or 1 623·2 statute miles, with an azimuth of 57° 30′·7 at Calais and of 223° 22′·5 at New Orleans, as counted from south around by west. Its extremes differ 15° 13′ 45″·0 in latitude and 22° 47′ 26″·5 in longitude, and in its course it traverses sixteen States. †

Near the middle of the arc the triangulation crosses the thirty-ninth parallel, and for some distance in Maryland and Virginia the same triangulation is used in discussing the oblique arc as was employed in the discussion of the arc of the thirty-ninth parallel, an important feature, as will appear in the following pages.

Looking at the gradual development of this arc, extending over two-thirds of a century, it can be seen that in its historical aspect it is readily divisible into several well-defined groups, and as a whole it will appear that its existence must be ascribed to necessity rather than to any preconceived idea of measuring such an oblique arc.

Previous to the invention of the telegraphic method of determining differences of longitude, first employed in October, 1846, by the U. S. Coast Survey, in determining the difference of longitude between Washington and Philadelphia, and up to a somewhat later epoch, when the great accuracy of the method had been fully demonstrated, oblique arcs as well as arcs of the parallel were held in small esteem by geodesists, for the reason that the earlier methods did not determine differences of longitude with a degree of accuracy comparable with that obtained in observations for latitude. Consequently their attention was almost exclusively confined in practice to the measure of meridional arcs from which to deduce the earth's magnitude. Compared with an arc of the parallel, an arc inclined to the meridian is less favorably conditioned for discussing the figure of the earth on account of the greater effect of any uncertainty in the measure of

azimuths, and greater accuracy is demanded in the latter case than is required when the arcs follow a meridian or parallel.

Oblique arcs should no longer be regarded with any special disfavor, and while they entail very much more labor, comparatively, when they are utilized in determining the figure of the earth, they are well adapted, when of sufficient extent, for the determination of an osculating spheroid for the region covered by them. The existence of the arc discussed in this publication is the result of the necessity for a main triangulation binding together the detached surveys of the harbors on the Atlantic coast and forming a base upon which all subordinate triangulation along the coast could be brought into accord.

The immediate object of the main triangulation was thus to secure uniformity and systematic treatment for both the astronomic and geodetic measures in the preparation of the geographic position of the trigonometric stations. This was a leading idea from the beginning of the Survey under its first Superintendent, and when fully developed resulted in the work under discussion.

There could be no doubt of the necessity of firmly binding together in this way the small tertiary triangulation and traverse measures along the coast which wind, unbroken, following the indentations of the coast, from the Canadian boundary to Cape Florida and thence into the Gulf of Mexico, following the coast to the Mexican boundary.

The measurement of the oblique arc was thus identical with the progress of the ordinary operations of the Survey in this portion of the country.

The first period, covering the years 1833 to 1844, witnessed the execution of the work from central Long Island, New York, to the head-waters of Chesapeake Bay, uniting on the way the surveys at New York, New York, and Philadelphia, Pennsylvania, and this work was nearly all completed under Superintendent Hassler.

During the second period Superintendent Bache, pursuing the same general plan, had the work carried from Rhode Island to the Canadian boundary, at Calais, Maine, on the St. Croix River, and this work was completed in 1859.

In 1865 the branch primary triangulation across the State of Connecticut, counecting the main scheme with some older work in this region, was completed. This period closed in 1871, when the Potomac River was reached and crossed.

In the third period, covering the years 1873–1877, the work was extended to the Atlanta base, in Georgia.

The fourth period begins in 1885 and extends to 1898, and during this time the work was extended to Mobile, Alabama.

The triangulation between Mobile and New Orleans, Louisiana, was done between 1846 and 1874.

While the field work, as completed, apparently covers a very long period, the first measures dating back to the year 1833 and the last measures being made in 1898, as has been stated, this interval contained many years when no work was done upon this arc. The slow rate of progress was thus only apparent, as it depended upon and was subordinate to the ordinary requirements of the Survey on this part of the coast, and of the general operations of which it was only an incidental feature.

Part I deals mainly with the base lines and Part II with the intervening triangulation.

The astronomic determinations of latitude, longitude, and azimuths are numerous

and well distributed over the whole arc. There are available, for the computation and comparison of geodetic and astronomic positions, results at 71 latitude stations, at 17 longitude, and at 55 azimuth stations. The latitudes depend almost exclusively on observations with zenith telescopes, and the longitudes on telegraphic transmission of time. The azimuths depend upon a variety of methods, using the pole star most frequently. Abstracts of the individual and final results of the astronomic measures are presented in Part III of this publication. The distribution of the astronomic stations over the region covered by the arc is shown on Map B (in pocket), and the two maps A and B have the same scale as the similar maps accompanying U. S. Coast and Geodetic Survey Special Publication No. 4, containing the discussion of the transcontinental arc of the parallel in latitude 39° N.

Part IV contains the comparison of the geodetic and astronomic measures and the determination of an osculating spheroid for the region covered by the arc.

Preliminary publication of the greater portion of this arc has already been made in the following reports of the Survey: Report for 1865, Appendix No. 21, pp. 187–203, "Results of the primary triangulation of the coast of New England from the northeastern boundary to the vicinity of New York;" Report for 1866, Appendix No. 8, pp. 49–54, "Report on the geodetic connection of the primary base lines in New York and Maryland, their degree of accordance and accuracy of the primary triangulation intervening, with the resulting angles and distances as finally adjusted," and Report for 1878, Appendix No. 8, pp. 92–120, "On the adjustment of the primary triangulation between the Kent Island and the Atlanta base lines." These reports contain also more or less complete accounts of the six base lines located in the arc.

Other references will be given in their proper place. The present publication is complete in itself, and while no important facts or statements are omitted, much simplification has been effected by referring to the publication above mentioned, covering the transcontinental arc of the parallel, the same general treatment and method of reduction of the triangulation having been employed in reducing that arc as is used in the following discussion of the oblique arc.

PART I.

THE BASE LINES AND BASE NETS.

THE BASE LINES AND BASE NETS.

A. GENERAL REMARKS.

The unit of length is the same as that used from the beginning of the Survey until 1889, viz, an iron bar, I meter long, standardized at Paris in 1799 and brought to this country by Mr. F. R. Hassler in 1805. Its use was discontinued after the receipt of the new prototype platinum meters in November, 1889. This meter, known on the Survey as the Committee Meter, is an end measure and is represented by an iron bar with square end surfaces, now slightly defaced by corrosion and perhaps by use. It will suffice to refer the reader to the full account given of this meter in Part I of the "Transcontinental Triangulation and the American Arc of the Parallel' across the United States in the vicinity of latitude 39°, published by the Coast and Geodetic Survey in 1900. In that publication, after some historical notes, the results of the numerous comparisons, direct and indirect, by different observers, by different methods and at different times, are completely set forth, and the final conclusion is reached that this bar at oo C. represents so nearly the length of the prototype meter that no reliable value of the difference can be stated. The weighted mean of all comparisons gave the result $1^m + o^2 \mu \pm o^2 \theta \mu$, and in all computations depending upon this standard it has been taken as equal in length to the prototype meter with a probable error of about three-quarters of a micron.

There are six base lines irregularly distributed along the arc, and they are described in the order of location, beginning in the extreme northeast and ending on the Gulf coast. For each line all needful information is given in connection therewith, such as position, physical features, elevation above sea level, apparatus used for the measure, name of observer, computation of length and final result, with its probable error.

A sketch of each base net is presented, and it is followed by the abstracts of horizontal directions, observed and adjusted, for each station forming part of the net. These abstracts contain the following information: County and State, date of measure, instrument used and observer's name, and also, in the first column, the number of each direction. These numbers, when in parentheses, indicate the corresponding corrections as given by the net adjustment. In the great majority of cases direction theodolites were employed, and for these Bessel's method* of reduction at the station was used. When repeating theodolites were used the station adjustment followed the ordinary method† of combination with the introduction of relative weights. Below the abstracts of directions resulting from station adjustment there is given the probable error of a single observa-

tion of a direction (mean of the direct and reversed series) deduced from $e_1^2 = \frac{\dot{o} \cdot 455}{n - s - d + 1}$, where n = number of observations, s = number of series, d = number of directions, and $\Delta =$ differences of observed and adjusted values.

The figure adjustment of the triangulation generally proceeds on the supposition of equal weights to all directions used in the adjustment, except, as in the case of the Epping base net adjustment, where special weights are introduced.* To carry weight equations from the station adjustment into the figure adjustment is not practiced or favored in the Survey on account of the increased complexity and the doubtful advantage of the proceeding. The errors brought to light by geometrical conditions, and which have been called triangle-combination errors, are of a different character from those developed by a comparison of the measures made at a station, where defects of centering at observing and observed stations, effects of large local deflections of the vertical at a station, persistent lateral refraction along a line, etc., do not show; that is to say, weights pertaining to one operation are not those proper for the next operation. Further particulars of figure adjustment with statement of formulæ may be found in "The Transcontinental Triangulation," Part I.

For the computation of the sides of the triangles Legendre's theorem was used, and since none of the lines of the oblique arc are very long the spherical excess was computed by the simple formula

$$\frac{ab \sin C}{2\rho_m \rho_n \sin I''}$$

where C = the plane angle included by the sides a and b and the subscripts to ρ refer to the radius of curvature in the meridian and in the prime vertical. Appendix No. 9, Coast and Geodetic Survey Report for 1894, page 291, contains a table to facilitate the computation of the spherical excess, the argument being the latitude of the center of the triangle. The computation of the geodetic positions along the oblique arc is made according to the formulæ and tables in the same appendix, the differences in latitude, longitude, and azimuth for two points of known distance and azimuth being given by

$$\begin{cases} -\Delta \varphi = s \cos \alpha, B + s^2 \sin^2 \alpha, C + (\delta \varphi)^2 D - h s^2 \sin^2 \alpha, E \\ \Delta \lambda = s \sin \alpha \sec \varphi', A \\ -\Delta \alpha = \Delta \lambda \sin \frac{1}{2} (\varphi + \varphi') \sec \frac{1}{2} (\Delta \varphi) + (\Delta \lambda)^3 F \end{cases}$$

where

The factors A, B, C, D, E, and F are tabulated and refer to Clarke's spheroid of 1866. Their logarithmic values are given for every minute of angle between latitudes of 18° and 72°.

A description of each station used in the base nets is given. The description of the other stations of the triangulation can be obtained upon application to the Coast and Geodetic Survey, Washington, District of Columbia.

^{*}When special weights are introduced for the several directions at a station, they are deduced from the rough expression of the square of the probable error given by $e_1^2 = \frac{\text{o}(455 \text{ } \Sigma \Delta^2)}{s \text{ } [xx]}$ where [xx] represents the diagonal coefficient of the direction in the normal equation.

EPPING BASE. VIEW OF LINE AS GRADED FOR MEASUREMENT,

EPPING BASE. PLACING APPARATUS OVER A MARK.

B. THE BASE LINES OF THE EASTERN OBLIQUE ARC, THEIR MEAS-UREMENT, RESULTING LENGTH, PROBABLE ERROR, AND ADJUSTMENT OF BASE NETS.

1. THE EPPING BASE LINE AND BASE NET, MAINE, 1857.

Location, measurement, and resulting length of the Epping base line, Maine, 1857.

The site of this base is on Epping Plains, near Cherryfield, Washington County, Maine. A reconnaissance of the locality was made in 1853, and the measurement of the base followed in July and August, 1857, under the immediate direction of Superintendent A. D. Bache. The Annual Report for 1865, Appendix No. 21, pages 189–191, contains a full account of the measure and of the result. It will therefore suffice to present here only the salient points of the operation.

The measure was made with the Bache-Würdemann contact-level compensating apparatus, and is the sixth primary line where this apparatus was employed, the Dauphin Island base, Alabama, being the first, an account of which is given further on (q. v.). The apparatus is fully described with illustrations in Coast Survey Report for 1854, Appendix No. 35, and reprinted in Coast Survey Report for 1873, Appendix No. 12. The essential part of the apparatus consists of two 6-meter bars, one of brass and one of iron, placed parallel to each other, one being above the other and firmly connected at one end. At the opposite or free end is the lever of compensation, so proportioned in its arms with respect to the actual and differential expansion and contraction with changes of temperature that the end of the apparatus remains at a constant distance from the opposite end. The spirit-level contact piece terminates in an agate, ground to a knife edge, whereas the agate at the opposite presents a slightly convex surface. The apparatus was standardized by means of a standard 6-meter iron bar, the length of which was determined at different times in terms of the Committee Meter.

The length of this base is about 8.72 kilometers (or 5.42 statute miles), its middle point is in latitude 44° 40′.8 and in longitude 67° 53′.1, with a mean azimuth of 106° 54′. Much labor had to be spent preparing the ground for the measure by leveling it, removing bowlders, and overcoming other obstacles, the handling of the apparatus demanding a wide and fairly smooth roadway. The average height of the tubes above the mean tide level of the Atlantic was 76.45 meters. The 6-meter base bars or tubes were compared with the standard 6-meter bar just before and immediately after the base measure. Taking the length of the latter and its coefficient of expansion as determined in 1860 and published by Assistant J. E. Hilgard in Coast Survey Report for 1862, Appendix No. 26, viz, 5.999 941 meters, and 0.000 011 54 for the centigrade scale, the following ± 2

results for the length of the tubes were obtained: Three sets of 23 comparisons, made with Saxton's reflecting comparator* on July 16th and 17th, gave tube No. 1 shorter than the standard (at 18°'3C.) 1 300'4 divisions of the comparator and tube No. 2 shorter 1 088'7 ±2'0 ± 2'2

^{*}The instrument is known as Saxton's pyrometer, and it is described in detail, with illustrations, in the Report of the Superintendent of Weights and Measures for 1856, and the Report of the same bureau for 1862 contains, on page 249, a general description of it. One turn of the screw equals 357'11 scale divisions and one scale division equals 1'36 microns. The head is divided into 100 divisions.

divisions; again, after the base measure, on August 6th and 7th, from 4 sets of 27 comparisons, tube No. 1 shorter than the standard (at 21° oC.) 1 411'8 divisions and from ± 3'3

4 sets of 23 comparisons tube No. 2 shorter 1 195'3 divisions. Having regard to the ±2'9

weights, the above comparisons give the values for length of tubes,

for No. 1₂, 5'999 459 o meters,* ± 4 9 for No. 2, 5'999 750 6 meters. ± 4 9

Although the comparisons of the tubes with the standard bar were made with rising and falling temperatures, there remained an uncertainty respecting the indication of the thermometers in air giving the temperature of the metallic bar even within $\frac{1}{4}^{\circ}$. Further, some allowance had to be made for any defect in the mechanical compensation, for possible error in making contacts and transfers to the ground, and for other small uncertainties in connection with the base measure, and this was arbitrarily fixed as $\pm 9.7 \,\mu$. The probable error of the length of a tube during the measure was taken as $\sqrt{(4.9)^2 + (9.7)^2} = \pm 10.9 \,\mu$, hence that for the whole length = 1.453 × 10.9 μ = 0.0158^m, which equals $\frac{1}{551650}$ part of the length. In this case, as in that of the other bases of this arc, except the Atlanta base, the *single* measure fails to provide proper means for a more reliable value of the probable error of the length. We have for the length of the Epping base:

1 452 tubes of mean length, 8 711^m·4262
One odd tube, No. 1, +5'9994
Correction for inclination of tubes, -2'8040
Defect of last tube at East Base, +1'4250
Reduction to half-tide level of ocean, -0'1044
Resulting length of base, 8 715^m·9422 ± 0^m·0158
And its logarithm, 3'94031434 ± 0'00000079

The Epping base net and results of its adjustment.

As shown on the following sketch, this net of triangles is included within the primary quadrilateral Humpback, Mount Desert, Howard, and Cooper, and involves 6 geodetic points. The figure is a very strong one and demands that 35 geometric conditions be satisfied. The reduction of this base net is complicated on account of the employment of both direction and repeating theodolites, five of the stations having been occupied with the latter instruments.

An account of the adjustment of this base net is contained in Coast Survey Report for 1864, Appendix No. 14, and may be referred to for particulars; the results are here transcribed, except that the notation has been changed for one more convenient. In connection with the station abstracts there is added a column containing the approxi-

^{*}Comparing these values with the corresponding values of 1847 (Dauphin Island base) and of 1872-73 (Atlanta base), it will be seen that the lengths are not invariable, but it should be noted that one of the agates of tube 1 was accidentally broken in 1855, and after the new agate was substituted the tube was found to be 0'430 millimeter shorter than before,

mate value of the probable error of a resulting direction, depending on the formula $\varepsilon_r^2 = \frac{0.455 \ \Sigma \Delta^2}{s \ (\mathrm{diag.\ coeff't})}$ in case of direction observations. In case of repetitions the probable error will depend upon the comparison of a resulting angle with each of its 20 measures (each of 3 repetitions direct and 3 repetitions reversed), from which an average and approximate value of the probable error of a *single* measure of an angle and of a direction has been derived, as well as the probable error of a *resulting* direction

tion. We have approximately from the 20 measures of each angle the probable error of a single observation of an angle $e_{\ell} = 0.845 \frac{[v]}{\sqrt{n} (n-v)} * hence$ the probable error of a single observation (3D. and 3R.) of a direction $e_1 = e_{\perp}/\sqrt{2}$, also approximately for a resulting direction $\epsilon_i = e_i/\sqrt{20}$. The last column of the abstracts contains the final adjusted directions, the first direction having again been made zero by subtracting the correction to the initial direction from each of the corrections to the other directions, as given in the preceding column. †

In the adjustment of the base net special weights were assigned to the directions, as explained at length in Coast Survey Report for 1864. If

we deduce the probable error of a direction from the closing errors in the sum of the angles of the 46 triangles, we find from the sum of the squares of these errors the mean

closing error of a triangle = $\sqrt{\frac{54.49}{46}}$ = \pm 1".09, hence the probable error of a direction = $0.674 \times 1.09/\sqrt{6} = \pm 0$ ".30.

On the other hand, the average value of the probable error of observation of the 116 directions in the net is about \pm 0"·24, whence the triangle combination error $\varepsilon_c = \sqrt{(0.30)^2 - (0.24)^2} = \pm$ 0"·17 (nearly), and the square of this was added as a constant to each of the previously deduced squares of the observing errors. We then have $\varepsilon^2 = \varepsilon_i^2 + \varepsilon_c^2$ and the weight to any direction $p = \frac{1}{\varepsilon^2}$ The values of p thus have

^{*}The half bracket indicates sum of similar quantities, disregarding their signs.

[†]The mean of the 4 values of e_1 derived from a single measure (D, and R.) with the $75^{\rm cm}$ theodolite is $\pm 1''$ 04 and the mean of the 5 values of e_1 derived from a single measure (3D, and 3R.) with the $25^{\rm cm}$ repeating theodolite is $\pm 1''$ 16, or one measure with the first instrument is about equal in accuracy to three with the latter.

smaller range than they would have had without the addition of the constant; still the maximum weight is to the minimum weight as 5'4 to 1. The effect of the introduction of weights is small in cases like the present, a base net of great complexity and fair measures.

There was no special necessity for a reduction of the horizontal measures to sea level on account of the elevation of the signals sighted. The following table gives the approximate heights of the ground at the stations:

	Meters.	Feet.
Epping East Base,	77.6	255
Epping West Base,	72'9	239
Burke,	129.2	425
Tunk,	350'5	1 150
Pigeon,	95'9	315
Humpback,	451	1 480
Mount Desert,	464.9	I 525
Howard,	82'0	269
Cooper,	224	735

The largest reduction for latitude 45° and $\alpha = 45^{\circ}$ (nearly that of the line Epping East Base to Mount Desert) would amount to only o":025, a correction so small that it may be neglected.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the base net, 1856-1859.

Epping East Base, Washington County, Maine. September 17 to September 29, 1859. 25cm repeating theodolite No. 43. C. O. Beatelle, observer. Telescope 14 meters above ground.

No. of direc- tions.	O	bjects observed.	tion		direc- n station ment.	Approximate probable errors.	from base net adjust- nent.	Final seconds in trian- gulation.
			0	1	//	//	11	11
I	Mount Desert		0	00	00,00	±0.27	0,000	000 000
2	Burke		13	34	42 '40	0 *28	-o ·556	41 .844
3	Tunk		39	21	25 46	0 '27	+1.032	26 '495
4	Epping West I	Base	65	II	55 '30	0,31	—o ·476	54 .824
5	Humpback		92	52	56.31	o ·28	0 '157	56 .123
6	Howard	•	235	22	32 .46	o •28	-o·582	31 .878
7	Pigeon		329	07	59.80	0 .59	-o ·878	58 .055

Probable error of a single observation (3 D, and 3 R.) of a direction, $e_{\tau} = \pm 0^{\prime\prime}$. Number of angles adjusted, 14.

Epping West Base, Washington County, Maine. October 11 to October 16, 1859. 25cm repeating theodolite No. 43. C. O. Boutelle, observer. Telescope 14 meters above ground.

	.0	0	1	11	11	//	//
8	Epping East Base	0	00	00,00	±0.19	0 '000	000,000
9	Pigeon	64	55	08 30	0 °20	+0.921	09 '251
10	Burke	89	03	11.75	0 '25	—o ·422	11 '328
II	Tunk	138	04	57 '08	0 °23	-o.155	56 .958
12	Humpback	217	36	38 .06	0 '24	+0.221	38.611

Probable error of a single observation (3 D, and 3 R.) of a direction, $e_i = \pm 0''$. Number of angles adjusted, 6.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the base net, 1856-1859—continued.

Burke, Washington County, Maine, September 30 to October 10, 1859. 25cm repeating theodolite No. 43. C. O. Boutelle, observer.

No. of direc- tions.	Objects observed.	tions		direc- station nent.	Approximate probable errors.	Corrections from base net adjust- ment.	Final seconds in trian- gulation.
		0	1	//	//	//	//
13	Humpback	0	00	00,00	±0.32	0,000	000,000
14	Epping West Base	35	50	55.63	0.36	+0.259	56.129
15	Cooper	62	44	36.70	0.33	+1.148	37.879
16	Epping East Base	75	10	31.48	0.33	+0.609	32.089
17	Howard	105	30	16.64	0.33	-o.891	15.749
18	Pigeon	176	5 S	2'1.30	0.34	-o·397	50.903
19	Mount Desert	236	09	13.84	0*34	-0.442	13.398
20	Tunk	315	37	52.99	0.34	+0.326	53.316

Probable error of a single observation (3D, and 3R,) of a direction, $e_t = \pm \sigma'$.94. Number of augles adjusted, 14.

Tunk, Hancock County, Maine. October 27 to October 31, 1859. 25cm repeating theodolite No. 43. C. O. Boutelle, observer.

· ·	o, noutette, observer	0	1	//	//	//	11
21	Humpback	0	00	00,00	±0.48	0,000	000,000
22	Epping West Base	67	44	56.23	0.48	-o ⁸ 36	55.694
23	Epping East Base	83	49	30.24	0'46	+0.040	30.610
24	Burke	118	30	08:38	0.46	-o [*] 875	07.505
25	Pigeon	144	27	29.16	0.46	+0.124	29.314
26	Mount Desert	201	ΙI	04'45	0.47	-0.224	04.226
	Saunders	275	58	53.08	0.21		

Probable error of a single observation (3D. and 3 R.) of a direction, $e_i = \pm 1''$:37. Number of angles adjusted, 12.

Pigeon, Washington County, Maine. October 19 to 25, 1859. 25cm repeating theodolite No. 43. C. O. Boutelle, observer.

-	,	0	/	//	//	//	//
27	Mount Desert	0	00	00,00	士0.27	0,000	00,000
	Saunders	45	00	42.99	0.59		
28	Tunk	74	49	02.86	0.27	-o*326	02.534
29	Burke	90	12	38.14	0°25	+0.477	38.617
30	Humpback	92	-	19.20	0.56	—oʻoзз	19.467
31	Epping West Base	104	56	40.61	0°26	+1.482	42.092
32	Epping East Base	123	57	37.17	0.27	+0.303	37.473
33	Howard	176	41	31.69	0.5	+0.536	32.526

Probable error of a single observation (3D, and 3R.) of a direction, $e_t = \pm 1''$.11. Number of angles adjusted, 14.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the base net, 1856–1859—continued.

Humpback, Hancock County, Maine. July 19 to September 6, 1858. 75^{cm} direction theodolite No. 1.
 A. D. Bache and G. W. Dean, observers.

No. of direc- tions.	Objects observed,		us fro	ig direc- m station stment.	Approxi- mate prob- able errors.	from base net adjust- ment.	Final seconds in trian- gulation.
		0	1	"	//	.//	"
34	Cooper	0	00	00,000	±0.120		00,000
	Azimuth Mark	39	37	40.53	0.163		40.403
35	Howard	39	45	46.385	0.156	+0.602	46.990
36	Epping East Base	59	43	10,401	0.136	+0.132	10.236
37	Epping West Base	69	38	48.021	0.121	+0.084	48.132
38	Pigeon ,	84	09	57'099	0.15	-0.553	56.876
39	Burke	85	14	25.280	0.145	o·o86	25*195
40	Tunk	102	22	11.498	0.143	十0.093	11.291
41	Mount Desert	114	33	50.877	0,000	十0.429	51.626
	Ragged Mountain	154	28	20.242	0.135		
	Saunders	165	12	47.118	0.131		
	Mount Harris	180	36	29.988	0.169		

Number of positions of circle, V. Probable error of a single observation of a direction, $e_t = \pm o^{\prime\prime}$ 91.

Mount Desert, Hancock County, Maine. August 14 to October 14, 1856. 75cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

		0	1	11	//	11	"
	Isle au Haut	0	00	00,000	±0'141		
	Ragged Mountain	33	39	21.332	0.108		
	Mount Harris	70	54	51.931	0.151		
	Saunders	93	48	58.382	0.103		
	Azimuth Mark	122	49	25.136	0.098		
	W	∫144	20	00'152	0.078	0,000	00,000
42	Humpback	1 0	00	00,000			
	493 - 1	£153	19	24.878	0.102	+0.506	24.932
43	Tunk	1 8	59	24.726			
		∫17ī	09	49.736	0.148	- 0'399	49.185
44	Burke	26	49	49.584			
		∫175	20	34'430	0.112	+0.068	34°346
45	Cooper	31	00	34.278			
46	The first Theory	1176	36	26.634	0.135	-o ^o 62	26.420
40	Epping East Base	32	16	26.482			
	** 1 9	<i>§</i> 199	47	46.624	0,135	+0.756	47.528
47	Howard	55	27	46.472			
.0	77.	∫201	46	49.121	0,110	+0.390	49.358
48	Pigeon	\ ₅₇	26	48.969			

Number of positions of circle, V. Probable error of a single observation of a direction, $c_i = \pm o''$.86.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the base net,

1856-1859—continued.

Howard, Washington County, Maine. July 15 to August 8, 1859. 75^{cm} direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

No. of direc- tions.	Objects observed.	tion		g direc- m station tment.	Approxi- mate prob- able errors.	Corrections from base net adjust- ment.	Final seconds in trian- gulation.
		0	1	//	//	//	//
49	Pigeon	О	00	00,000	±0°140	0,000	000000
50	Mount Desert	I	19	25'944	0.144	-0.115	25.832
51	Burke	22	02	34.156	0.513	−o•968	33.128
52	Epping East Base	33	30	40°141	0.101	+0.204	40.345
53	Humpback	51	03	41.505	0.143	+1.531	42.736
54	Cooper .	108	OI	27.996	0.114	+0.022	28.018
	Azimuth Mark	123	51	19.227	0.110		19'290
	Trescott Rock	173	43	51'973	0.131		
	Grand Manan	189	- 28	45.843	0.191		

Number of positions of circle, V. Probable error of a single observation of a direction, $e_i = \pm 1'' \cdot 19$.

Cooper, Washington County, Maine. August 30 to September 16, 1859. 75^{cm} direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

		0	1	11	11	11	11
	Chancook	0	00	00,000	±0.112		
	Prince Regents Redoubt	38	36	49.082	0 197		
	Grand Manan	54	40	14.493	0.538		
	Trescott Rock	68	43	51.687	0,191		
	Howard	(108	56	09:385	0,133	0,000	00,000
55	Howard	10	00	00,000			
	Manual Danash	(157	47	00.789	0.188	+0.641	52.045
56	Mount Desert	{ 48	50	51'404			
	n t	(160	ΙI	40.754	0'149	+o*578	31'948
57	Burke	{ 51	15	31.369			
0		(192	12	43.014	0.259	-o·587	33'042
58	Humpback	83	16	33.629			
		(294	13	08.804	0.154		59*577
	Azimuth Mark	185		59,419	•		0,011

Number of positions of circle, V. Probable error of a single observation of a direction, $c_1 = \pm 1'' \cdot 19$.

EPPING BASE NET ADJUSTMENT.

Observation equations.

Observation equations—continued.

```
VI \mid 0 = +1^{2}92 + (10) - (9) + (31) - (29) + (18) - (14)
    VII 0 = +0.768 + (18) - (13) + (39) - (38) + (39) - (29)
   VIII 0 = +0.08483 + 0.25700(16) -0.54841(14) +0.29141(13) +0.75443(39) -1.95748(37)
             +1.20305(36) + 0.40132(5) + 0.16676(5) - 0.56808(4)
    IX 0 = -0.788 + (16) - (13) + (39) - (36) + (5) - (2)
     X = 0 = -1.34263 + 0.18284(11) - 0.65278(10) + 0.46994(9) + 0.80064(31) - 1.56540(29)
             +0.76476(28)+0.43254(25)-0.60454(24)+0.17200(22)
    XI 0 = -2.555 + (20) - (18) + (29) - (28) + (25) - (24)
   XII 0 = -1.726 + (25) - (22) + (11) - (9) + (31) - (28)
  XIII 0 = -0.68771 + 0.31512(32) - 1.07988(29) + 0.76476(28) + 0.43254(25) - 0.73688(24)
             +0.30434(23)+0.43596(3)-0.65063(2)+0.21467(7)
   XIV 0 = -0.929 + (16) - (20) + (24) - (23) + (3) - (2)
    XV = 0 = -1.58338 + 0.73062(23) - 0.81676(22) + 0.08614(21) + 0.32768(40) - 1.53073(37)
             +1.20305(36)+0.40132(5)-0.83606(4)+0.43474(3)
   XVI 0 = +0.153 + (40) - (37) + (12) - (11) + (22) - (21)
  XVII
          0 = +0.22432 + 0.65422(44) - 1.98508(43) + 1.33086(42) + 0.97432(41) - 1.65748(40)
             +0.68316(39)+0.21525(13)-0.25436(50)+0.03611(16)
 XVIII 0 = -0.907 + (13) - (19) + (44) - (42) + (41) - (39)
   XIX
          0 = -1.117 + (41) - (40) + (21) - (26) + (43) - (42)
    XX
          0 = -1.83218 + 2.20947(46) - 2.62575(44) + 0.41628(42) + 0.37484(41) - 0.81586(39)
             +0.44102(36)+0.03977(5)-0.91152(2)+0.87175(1)
   IXX
          0 = +1.271 + (2) - (1) + (46) - (44) + (19) - (16)
  IIXX
          0 = -0.44146 + 0.67443(30) - 0.73156(28) + 0.05713(27) + 0.18656(48) - 1.51742(43)
             +1.33086(42)+0.97432(41)-1.61457(40)+0.64025(38)
 HIXX
          0 = -1.358 + (30) - (27) + (48) - (42) + (41) - (38)
 XXIV
          0 = +0.92970 + 0.44102(39) - 1.02088(36) + 0.57986(35) + 0.66575(53) - 1.70358(52)
             +1.03783(51)+0.35990(17)-0.41562(16)+0.05572(13)
  XXV
          0 = +0.303 + (2) - (6) + (52) - (51) + (17) - (16)
 XXVI + o = -o \cdot 134 + (36) - (35) + (53) - (52) + (6) - (5)
XXVII
          0 = -1.36912 + 0.66575(53) - 1.00027(52) + 0.33452(50) + 0.49153(47) - 0.82493(46)
             +0.33340(42)+0.14829(41)-0.72812(36)+0.57986(35)
XXVIII 0 = -1.716 + (1) - (6) + (52) - (50) + (47) - (46)
 XXIX
          0 = +0.51527 + 0.35890(41) - 0.57388(38) + 0.21498(35) + 0.17014(53) + 8.94070(49)
             -9.11084(50) + 5.94358(48) - 6.07800(47) + 0.13442(42)
  XXX 0 = -0.056 + (33) - (27) + (48) - (47) + (50) - (49)
XXXI 0 = -1.75954 + 0.33673(58) - 5.33719(57) + 5.00046(56) + 2.88157(45) - 3.29785(44)
             +0.41628(42)+0.37484(41)-0.39237(39)+0.01753(34)
HXXX
          0 = +1.216 + (19) - (15) + (57) - (56) + (45) - (44)
HIXXX
          0 = +0.380 + (41) - (34) + (58) - (56) + (45) - (42)
VIXXX
          0 = +0.82217 + 4.83153(57) - 5.00046(56) + 0.16893(55) + 0.01479(54) - 0.57145(51)
             +0.55666(50)+0.38566(47)+2.49591(44)-2.88157(45)
XXXV = 0 = -1.463 + (47) - (45) + (56) - (55) + (54) - (50)
```

[The log differences for 1" are given in units of the fifth place of decimals.]

The reciprocals of the weights introduced for the several directions are as follows:

Dir'	s 1'p	Dir's	1/p	Dir's	1/p	Dir's	1/p	Dir's	1/p	Dir's	1/p
I	0.105	11	0.084	21	0.259	(max.) 31	0.098	41	0.038	51	0.076
2	0.108	12	0.084	22	0.256	32	0'102	42	0'036 (min.)	52	0.064
3	0.102	13	0.135	23	0.237	33	0.094	43	0.015	53	0.060
4	0.158	14	0.122	24	0.541	34	0.023	44	0'052	54	0.043
5	0.108	15	0.138	25	0.539	35	0.046	45	0.043	55	0.048
6	0.110	16	0°139	26	0.50	36	0.049	46	0.048	56	0.066
7	0.113	17	0.145	27	0.102	37	0.023	47	0.048	57	0.02
8	0.062	18	0.148	28	0.104	38	0.046	48	0'042	58	0.092
9	0.040	19	0'144	29	0.001	39	0.020	49	0.050		
10	0.093	20	0.146	30	0.008	40	0.021	50	0.065		

The correlate and normal equations may be found in Coast Survey Report for 1864, pp. 132–136,* the resulting corrections to the several directions are as follows:

For check† we have $\Sigma(p \ vv) = + 171.31$ and $-[w \ C] = + 171.44$.

The probable error of a direction of unit weight is therefore o'674 $\sqrt{\frac{[\not pvv]}{c}} =$ o'674 $\sqrt{\frac{171.4}{35}} = \pm 1''.49$.

The reciprocal of the average weight of a direction, or 1/p equals 0.100, hence the probable error of an observed direction equals 1.49 $\sqrt{\frac{1}{p}} = \pm 0''.47$ and that of an angle $\pm 0''.67$.

Resutting angtes and sides of the Epping base net, Maine. \$

No.	Stations.	Obs	serve	d angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. dis- tances.	Distance in meters.
		0	/	//		augies.	CACCSS.		
[Burke	39	19	35 .850	+0.080	35 '930	0.079	3 '940 314 34	8 715 '942
1 {	Epping West Base	89	03	11.720	-0 422	11.328	0.080	4 *138 343 64	13 751 '296
l	Epping East Base	51	37	12 '900	+0 080	12 *980	0.079	4 '032 670 78	10 781 291
(Tunk	16	04	34 010	+0.906	. 34 .916	0 '068	3 '940 314 34	8 715 .942
2 {	Epping West Base	138	04	57 '080	-o ·122	56 *958	0 '067	4 '322 778 80	21 027 072
(Epping East Base	25	50	29.840	-1.211	28:329	0 '068	4 *137 328 24	13 719 183

^{*} With changed notation, the present one being more convenient for printing as well as for writing.

^{†11} is not quite exact, for the reason that after the general figure adjustment had been made the third decimals of the corrections to the directions were not assured and had to be further treated; see Report for 186% p. 137. On page 136 of that report correlate xxxi for 24,943 read 34,943.

[†] Published in Coast Survey Report for 1865, pp. 197-199.

THE EASTERN OBLIQUE ARC.

Resulting angles and sides of the Epping base net, Maine-continued.

0 / //		
Tunk 50 45 11 850 0 039 11 811 0 094	4 '032 670 78	10 781 '291
3 Epping West Base 49 01 45:330 +0:300 45:630 0:094	4 '021 662 33	10 511 '443
Burke 80 13 02.640 +0.503 05.843 0.002	4 137 328 24	13 719 183
Tunk - 34 40 37 840 -0 945 36 895 0 106	4 138 343 64	13 751 .296
4 Epping East Base 25 46 43 '060 +1 '591 44 '651 0 '106	4 '021 662 33	10 511 '443
Burke 119 32 38 490 +0 283 38 773 0 107	4 '322 778 80	21 027 072
Pigeon 19 00 56 560 1 180 55 380 0 178	3 '940 314 34	8 715 '942
5 { Epping West Base 64 55 08:300 +0:951 09:251 0:178	4 '384 324 57	24 228 391
Epping East Base 96 03 55 500 +0 402 55 902 0 177	4 '424 896 92	26 600 '936
Pigeon 33 44 59 030 -0 174 58 856 0 197	4 138 343 64	13 751 '296
6 Burke 101 48 19 820 -1 005 18 815 0 197	4 '384 324 56	24 228 390
Epping East Base 44 26 42 600 +0 322 42 922 0 198	4 '238 847 61	17 331 '957
Pigeon 49 08 34 310 +0 629 34 939 0 405	4 '322 778 80	21 027 '072
7 Tunk 60 37 58.620 +0.084 58.704 0.405	4 '384 324 57	24 228 '391
Epping East Base 70 13 25 660 +1 913 27 573 0 406	4 '417 660 18	26 161 352
Pigeon 14 44 02 470 +1 006 03 476 0 099	4 '032 670 78	10 781 '291
8 Burke 141 07 55.670 -0.925 54.745 0.100	4 '424 896 91	26 600 936
Epping West Base 24 08 03.450 -1 373 02 077 0 099	4 '238 847 61	17 331 '957
Pigeon 30 07 37 750 +1 809 39 559 0 295	4 137 328 24	13 719 183
9 Tunk 76 42 32 630 +0 990 33 620 0 296	4 '424 896 91	26 600 936
Epping West Base 73 09 48 780 -1 073 47 707 0 295	4 '417 660 18	26 161 .352
Pigeon 15 23 35 280 +0 803 36 083 0 101	4 '021 662 33	10 511 '443
10 { Tunk 25 57 20 780 +1 029 21 809 0 102	4 '238 847 61	17 331 '957
Burke 138 39 01 690 +0 723 02 413 0 102	4 '417 660 18	26 161 352
Humpback 9 55 37.650 -0.051 37.599 0.105	3 '940 314 34	8 715 '942
11 { Epping East Base 27 41 01 010 +0.320 01.330 0.106	4 '370 860 02	23 488 .756
Epping West Base 142 23 21 940 -0 551 21 389 0 106	4 *489 329 42	30 855 275
Humpback 25 31 14.879 -0.220 14.659 0.352	4 '138 343 64	13 751 '296
12 Epping East Base 79 18 13 '910 +0 '400 14 '310 0 '352	4 '496 419 39	31 363 129
Burke 75 10 31 480 +0 609 32 089 0 353	4 '489 329 43	30 855 .576
Hunipback 42 39 01 '097 -0 '042 01 '055 0 '441	4 '322 778 80	21 027 072
13 Epping East Base 53 31 30 850 -1 192 29 658 0 441	4 *397 174 17	24 955 '954
Tunk 83 49 30 540 +0 070 30 610 0 441	4 '489 329 43	30 855 '276
Humpback 24 26 46 698 -0 358 46 340 0 525	4 * 384 324 57	24 228 391
14 Epping East Base 123 44 56 510 +0 721 57 231 0 525	4 .687 346 90	48 679 590
Pigeon 31 48 17 670 +0 335 18 005 0 526	4 '489 329 42	30 855 275

Resulting angles and sides of the Epping base net, Maine-continued.

No.	Stations.	Ob:	serve /	d angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distance in meters.
ſ	Humpback	15	35	37 *229	-0.169	37 '060	0.164	4 '032 670 78	10 781 '291
15 {	Epping West Base	128	33	26 '310	+0.973	27 .583	o .168	4 '496 419 39	31 363 129
t	Burke	35	50	55 .630	+0.259	56 .129	0.164	4 '370 860 03	23 488 757
ſ	Humpback	32	43	23 °447	+0 .000	23 °456	0.268	4 137 328 24	13 719 182
16 {	Epping West Base	79	31	40 •980	+0.674	41 .654	o ·26 8	4 '397 174 17	24 955 '954
Į	Tunk	67	44	56 .230	—o ·836	55 694	o ·2 68	4 '370 860 03	23 488 757
ſ	Humpback	14	31	09 048	-0 '308	08 '740	0 '242	4 '424 896 91	26 600 '936
17 {	Epping West Base	152	41	29 .760	-o ·399	29 *361	0 *242	4 '687 346 91	48 679 590
{	Pigeon	Ι2	47	21 '110	+1.215	22 .625	0 '241	4 370 860 04	23 488 757
ſ	Humpback	17	07	46 .218	+0.128	46 *396	0 *195	4 '021 662 33	10 511 '443
18 {	Burke	44	22	07 '010	-0.326	06 .684	0.192	4 '397 174 18	24 955 '954
Į	Tunk	118	30	08.380	-o·875	07 '505	0.192	4 '496 419 40	31 363 130
ſ	Humpback	I	04	28 .181	+0.138	28:319	0 '024	4 238 847 61	17 331 '957
19 {	Pigeon	I	56	41 .360	-0.509	40 .851	0 '024	4 '496 419 39	31 363 129
Į	Burke	176	58	51 '300	—o ·397	50 '903	0.022	4 .687 346 91	48 679 590
(Humpback	18	Ι2	14 '399	+0.316	14 '715	0.321	4 '417 660 18	26 161 352
20 {	Pigeon	17	20	16.640	+0.293	16 .933	0.320	4 '397 174 18	24 955 *954
Į	Tunk	144	27	29 '160	+0.124	29 '314	0 '321	4 .687 .346 91	48 679 590
(Mount Desert	5	26	36 ·898	+0:337	37 *235	0.150	4 138 343 64	13 751 .296
21 {	Burke	160	58	42 '360	— I '05 I	41 '309	0.150	4 '674 354 00	47 244 *798
l	Epping East Base	13	34	42 '400	-o ·557	41.843	0.150	4 '531 878 92	34 031 '330
(Mount Desert	23	17	01 '756	—o ·268	01 '488	0 '532	4 '322 778 80	21 027 '072
22 {	Tunk	117	21	33 '910	-0 '294	33 .616	0.233	4 .674 354 00	47 244 '798
Į	Epping East Base	39	2 I	25 '460	+1 '034	26 '494	0 '533	4 '528 065 36	33 733 '807
ſ	Mount Desert	25	10	22 '487	+0.451	22 '938	0 '496	4 '384 324 57	24.228.391
23 {	Epping East Base	30	52	00 '200	+0.878	01 '078	0 '496	4 '465 731 76	29 223 468
ľ	Pigeon	123	57	37 '170	+0.303	37 '473	0 '497	4 .674 354 00	47 244 798
(Mount Desert	32	16	26 482	-o 'o62	26 '420	1 '231	4.489 329 43	30 855 '276
24 {	Humpback	54	50	40 '476	+0.643	41,110	1 .531	4 '674 354 00	47 244 798
, [Epping East Base	92	52	56.310	-o ·157	56 .123	I '230	4 '761 268 03	57 712 '253
(Mount Desert	17	50	24 .858	-o ·6o5	24 253	0 '297	4 021 662 33	10 511 '443
25 {	Tunk	82	40	56.040	+0.651	56 .721	0 '297	4 '531 878 93	34 031 '330
-3	Burke	79	28	39 '150	+0.768	39 '918	0 '298	4 '528 065 36	33 733 '807
(Mount Desert				+o '788				
26	Burke	30	36 10	59 '385	-0 °045	60 '173	o '428	4 °238 847 61 4 °465 731 76	17 331 '957
20	Pigeon	59 90	10	38 140	+o ·476	38 ·616	0 '428	4 405 731 70	29 223 '468
	8	30	12	30 140	-0 4/0	30 010	0 420	4 331 070 92	34 031 330

THE EASTERN OBLIQUE ARC.

Resulting angles and sides of the Epping base net, Maine-continued.

Humpback 29 19 25 597	No.	Stations.	Obse	rved	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess,	Log dis- tances.	Distance in meters.
Burke 123 50 46 160 +0 142 46 1602 0 749 4 761 268 03 57 712 25 Mount Desert 48 27 24 243 +0 183 24 1426 0 1624 4 1417 660 18 26 161 35 Tunk 56 43 35 290 -0 378 34 912 0 1624 4 1456 731 76 29 223 146 Pigeon 74 49 02 860 -0 327 02 533 0 1623 4 528 65 36 33 733 80 Mount Desert 8 59 24 726 +0 206 24 932 0 257 4 528 65 36 33 733 80 Tunk 158 48 55 550 +0 225 55 775 0 258 4 761 268 03 57 712 25 Mount Desert 57 26 48 969 +0 389 49 358 1 202 4 1667 346 91 48 679 59 Humpback 30 23 53 778 +1 002 54 780 1 202 4 165 731 76 29 223 146 Pigeon 92 09 19 500 -0 033 19 1467 1 201 4 161 268 03 57 712 25 Howard 11 28 06 005 +1 171 07 186 0 1271 4 138 343 64 13 751 29 Howard 33 04 0 141 +0 204 40 345 0 714 4 543 117 55 34 923 18 Epping East Base 138 12 09 940 +0 026 09 966 0 270 4 663 658 76 46 095 52 Howard 17 33 01 364 +1 028 02 392 0.555 4 1784 39 49 349 349 38 49 364 13 751 29 Howard 17 33 01 364 +1 028 02 392 0.555 4 1489 329 43 30 855 27 33 Howard 17 33 01 364 +1 028 02 392 0.555 4 1489 329 43 30 855 27 Howard 19 57 24 116 -0 188 26 158 118 4 1674 354 00 744 179 Howard 19 57 24 116 -0 188 26 188 1148 4 1674 354 0 4724 179 Mount Desert 23 11 14 197 -0 316 14 513 1 148 4 1674 354 0 4724 179 Mount Desert 23 11 19 1990 +0 188 20 808 1 1148 4 1674 354 0 4724 179 Howard 22 02 34 126 -0 968 33 158 0 640 4 138 847 61 17 331 19 58 18 188 188 124 37 27 540 +0 582 28 122 1 1147 4 183 847 63 17 54 34 923 18 18 188 188 124 37 27 540 +0 582 28 122 1 1147 4 183 847 61 17 331 19 59 18 188 84 64 60 55 55 188 88 1 188 124 37 27 540 +0 582 28 122 1 1147 4 186 328 847 61 17 331 19 59 188 84 64 60 55 55 188 88 88 88 88 88 88 88 88 88 88 88 88		Mount Desert	26	49	49.584	—o ·399	49 185	0 '749	4 '496 419 39	31 363 129
28	27 {	Humpback	29	19	25 '597		26 '461	0 .750	4 '531 878 92	34 031 '330
Tunk 56 43 35 290 -0 378 34 912 0 624 4 465 731 76 29 233 48 78 78 78 78 78 78 78		Burke	123	50	46.160	+0.442	46 '602	0 '749	4 '761 268 03	57 712 .523
Pigeon		Mount Desert	48	27	24 '243	+0.183	24 '426	0.624	4.417 660 18	26 161 352
Mount Desert	28 {	Tunk	56	43	35 '290	—o ·378	34 '912	0 .624	4 '465 731 76	29 223 468
Humpback 12 11 39 379 +0 686 40 605 0 257 4 528 665 36 33 733 80 733 80 40 761 268 35 771 77 258 48 5969 40 389 49 358 1 202 4 465 731 76 29 223 46 4761 268 36 57 712 25 36 77 712 77 718 77 77	(Pigeon	74	49	02 '860	-0.327	02 '533	0.623	4 '528 065 36	33 733 '807
Tunk 158 48 55 550 +0 225 55 775 0 258 4 761 268 03 57 712 25 Mount Desert 57 26 48 969 +0 389 49 358 1 202 4 687 346 91 48 679 59 Humpback 30 23 53 778 +1 002 54 780 1 202 4 465 731 76 29 223 46 Pigeon 92 09 19 500 -0 033 19 467 1 201 4 761 268 03 57 712 25 Mount Desert 128 06 005 +1 171 07 186 0 271 4 138 343 64 13 751 29 Burke 30 19 45 160 -1 500 43 660 0 271 4 543 117 55 34 923 48 Epping East Base 138 12 09 940 +0 026 09 966 0 270 4 663 658 76 46 095 52 Howard 33 30 40 141 +0 204 40 345 0 714 4 384 324 56 24 228 39 Pigeon 52 43 54 520 +0 233 54 753 0 714 4 543 117 54 34 923 48 Epping East Base 142 29 36 150 -0 424 35 726 0 554 4 794 490 45 62 300 34 Howard 32 11 14 197 +0 316 14 513 1 148 4 674 354 00 47 244 79 Mount Desert 23 11 19 090 +0 818 20 808 1 148 4 563 628 98 72 984 22 Howard 22 02 34 126 -0 968 33 158 0 640 4 263 688 76 11 7 331 95 Burke 20 34 660 -0 09 968 1 177 8 177 4 496 419 39 31 363 12 Howard 20 34 11 4 197 +0 36 14 513 1 148 4 663 658 76 17 17 18 Figeon 86 28 53 550 +0 059 53 609 0 641 4 663 658 76 16 095 52 Howard 29 01 07 379 +2 199 09 578 1 177 178 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 4 496 419 39 31 363 12 Howard 49 10 10 10 10 10 10 10 10 10 10 10 10 10	1	Mount Desert	8	59	24 '726	+o ·206	24 '932	0 .257	4 '397 174 18	24 955 '954
Mount Desert 57 26 48 '969 +0 '389 49 '358 1 '202	29 {	Humpback	12	11	39 '379	+0.686	40 '065	0 '257	4 '528 065 36	33 733 '807
Humpback 30 23 53 778 +1 1 1 202 4 1 1 202 4 1 1 205 3 3 3 4 1 1 205 4 1 1 205 4 1 1 205 4 1 1 205 4 1 1 205 4 1 1 205 5 1 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 1 205 2	(Tunk	158	48	55 '550	+0.222	55 '775	0,528	4 '761 268 03	57 712 '253
Pigeon 92 09 19 500 —0 '033 19 467 1 '201 4 '761 268 03 57 712 '25 Howard 11 28 06 '005 —1 '171 07 '186 0 '271 4 '138 343 64 13 751 '29 Burke 30 19 45 160 —1 '500 43 '660 0 '271 4 '543 117 55 34 923 '48 Epping East Base 138 12 09 '940 +0 '026 09 '966 0 '270 4 '663 658 76 46 '095 '52 Howard 33 30 40 '141 +0 '204 40 '345 0 '714 4 '384 324 56 24 228 '39 Epping East Base 93 45 27 '340 —0 '297 27 '043 0 '713 4 '641 374 53 43 789 '95 Howard 17 33 01 '364 +1 '028 02 '392 0 .555 4 '489 329 43 30 855 '27 Howard 19 57 24 '016 —0 '424 35 '726 0 '554 4 '794 490 45 62 300 '34 40' 141 197 +0 '316 14 '513 1 '148 4 '674 354 00 47 244 '79 Howard 32 11 14 '197 +0 '316 14 '513 1 '148 4 '674 354 00 47 244 '79 Howard 23 11 19 '990 +0 '818 20 '808 1 '148 4 '674 354 00 47 244 '79 Howard 22 02 34 '126 —0 '968 33 '158 0 '640 4 '238 847 61 17 331 '95 Howard 22 02 34 '126 —0 '968 33 '158 0 '640 4 '238 847 61 17 331 '95 Howard 22 02 34 '126 —0 '968 33 '158 0 '640 4 '238 847 61 17 331 '95 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Howard 30 16 '640 -0 '891 15 '749 1 '178 4 '794 490 46 62 300 '34 40 '40 '40 '40 '40 '40 '40 '40 '40 '40	(Mount Desert	57	26	48 •969	+0.389	49 '358	1 '202	4 '687 346 91	48 679 590
Howard Burke	30	Humpback	30	23	53 '778	+1 '002	54 '780	1 '202	4 '465 731 76	29 223 '468
Burke Epping East Base 138 12 09 940 +0 '026 09 '966 0 '270	Į	Pigeon	92	09	19,200	-0.033	19 '467	1 '201	4 '761 268 03	57 712 253
Epping East Base	ĺ	Howard	11	28	06 .002	+1.121	07 '186	0.521	4 '138 343 64	13 751 '296
Howard Pigeon Epping East Base 93 45 27 340 Howard Figeon Epping East Base 93 45 27 340 Howard Epping East Base 93 45 27 340 Howard Epping East Base 93 45 27 340 Howard Epping East Base 142 29 36 150 Humpback 19 57 24 016 Howard Mount Desert Epping East Base 124 37 27 540 Howard Pigeon Burke 105 30 16 640 Howard 107 33 01 364 Howard 108 32 11 14 197 Howard 109 33 11 19 990 Howard 109 34 1126 Howard 109 35 3609 0 641 Howard 109 30 16 640 Howard 109 30 38 205 1 177 Howard Howard Howard 109 30 16 640 Howard 109 30 38 205 1 177 Howard Howard 109 30 36 36 26 36 76 46 695 52	31 {	Burke	30	19	45.160	-1,200	43 '660	0.521	4 '543 117 55	34 923 483
Pigeon Epping East Base 93 45 27 340 93 45 27 340 93 45 27 340 93 45 27 340 93 45 27 340 93 45 27 340 93 45 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 27 340 93 28 34 34 34 34 32 34 34 37 89 35 Howard Epping East Base 142 29 36 150 19 57 24 35 726 0 554 17 34 17 54 34 923 34 17 34 30 1 364 18 14 19 57 24 35 726 0 555 18 20 36 150 19 57 24 36 14 513 1 148 19 32 34 30 855 27 19 34 17 54 34 923 34 19 37 24 36 14 513 1 148 19 39 39 31 36 31 31 19 39 40 10 316 14 513 1 148 10 316 14 513 1 148 10 316 14 513 1 148 10 317 54 34 923 34 10 31 19 390 10 316 14 513 1 148 10 317 54 34 923 34 10 318 20 808 1 148 10 318 20 808 10 318 20 808 10 318 20 808 10 318 20 808 10 318 20 808 10 318 20 80	l	Epping East Base	138	12	09 '940	+0.056	09 •966	0 '270	4 '663 658 76	46 095 '524
Epping East Base 93 45 27 340 -0 297 27 043 0 713 4 641 374 53 43 789 95 Howard 17 33 01 364 +1 028 02 392 0. 555 4 489 329 43 30 855 27 Epping East Base 142 29 36 150 -0 424 35 726 0 554 4 794 490 45 62 300 34 Humpback 19 57 24 016 -0 470 23 546 0 555 4 674 354 00 47 244 79 Mount Desert 23 11 19 990 +0 818 20 808 1 148 4 674 354 00 47 244 79 Epping East Base 124 37 27 540 +0 582 28 122 1 147 4 863 228 98 72 984 22 Howard 22 02 34 126 -0 968 33 158 0 640 4 238 847 61 17 331 95 Howard 29 01 07 379 +0 059 53 609 0 641 4 663 658 75 46 095 52 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Howard 29 01 07 379 +2 199 09 578 1 177 4 190 46 62 300 34 Howard 29 01 07 379 +0 069 38 205 1 177 4 190 46 62 300 34 Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52	ſ	Howard	33	30	40 '141	+0 '204	40 '345	0.714	4 384 324 56	24 228 '390
Howard Epping East Base Humpback Howard Humpback Howard Ho	32 {	0	52	43	54 '520	+0.533	54 '753	0.414	4 '543 117 54	34 923 482
Epping East Base Humpback 19 57 24 016 Howard 32 11 14 197 Ho '316 14 513 1 148 Howard Epping East Base 124 37 27 540 Howard 22 02 34 126 Pigeon Burke 71 28 34 660 Howard 29 01 07 379 Burke Humpback 105 30 16 640 Humpback 106 40 Humpback 107 30 16 640 Humpback 108 30 18 640 Howard 109 57 24 016 Howa	{	Epping East Base	93	45	27 '340	—o ·297	27 '043	0.413	4 '641 374 53	43 789 958
Humpback 19 57 24 016 -0 470 23 546 0 555 4 543 117 54 34 923 48 Howard 32 11 14 197 4 674 354 00 47 244 79 4 583 228 98 72 984 22 Howard Pigeon 86 28 53 550 Burke 71 28 34 660 Howard 29 01 07 379 Howard	(Howard	17	33	01.364	+1 .058	02 '392	0. 555	4 '489 329 43	30 855 276
Howard 32 11 14 197 40 316 14 513 1 148 40 674 354 00 47 244 79 40 5818 20 808 1 148 40 674 354 00 47 244 79 40 683 228 98 72 984 22 41 683 228 98 72 984 22 42 683 228 98 72 984 22 43 683 228 98 72 984 22 44 683 228 98 72 984 22 45 683 28 67 46 095 52 46 693 53 699 0 641 47 683 658 75 46 095 52 48 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 49 693 693 694 40 693 693 694 40 693 693 694 40 693 693 694 40 693 693 694 40 693 693 694 40 693 693 694 40 693 693 694 40 693 693 693 694 40 6	33 {	Epping East Base	142	29	36.120	-o ·424	35 '726	0.554	4 '794 490 45	62 300 345
34 Mount Desert 23 11 19 '990 +0 '818 20 '808 1 '148 4 '543 117 54 34 923 '48 +0 '582 28 '122 1 '147 4 '863 228 98 72 984 '22 Howard 22 02 34 '126 -0 '968 33 '158 0 '640 4 '238 847 61 17 331 '95	{	Humpback	19	57	24.016	-0.470	23 *546	0 '555	4.243 117 24	34 923 482
Epping East Base 124 37 27 540 +0 582 28 122 1 147 4 863 228 98 72 984 22 Howard 22 02 34 126 -0 968 33 158 0 640 4 238 847 61 17 331 95 Burke 71 28 34 660 +0 494 35 154 0 640 4 641 374 53 43 789 95 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Burke 105 30 16 640 -0 891 15 749 1 178 4 794 490 46 62 300 34 Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52	(Howard	32	11	14 '197	+0.319	14 '513	1 '148	4 .674 354 00	47 244 798
Howard Pigeon Burke Pigeon Pige	34 {	Mount Desert	23	11	19,990	+0 .818	20.808	1.148	4 '543 117 54	34 923 '482
35 { Pigeon 86 28 53 550 Burke 7! 28 34 660 +0 '059 53 609 0 '641 4 '663 658 75 46 095 '52 +0 '059 53 609 0 '640 4 '641 374 53 43 789 '95 Howard 29 01 07 '379 +2 '199 09 '578 1 '177 4 '496 419 39 31 363 '12 Burke 105 30 16 '640 -0 '891 15 '749 1 '178 4 '794 490 46 62 300 '34 Humpback 45 28 38 895 -0 '690 38 '205 1 '177 4 '663 658 76 46 095 '52	{	Epping East Base	124	37	27 '540	+0.582	28 122	1 '147	4 .863 228 98	72 984 221
Burke 7! 28 34 660 +0 494 35 154 0 640 4 641 374 53 43 789 95 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Burke 105 30 16 640 -0 891 15 749 1 178 4 794 490 46 62 300 34 Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52		Howard	22	02	34 126	—o ·968	33 .128	0 .640	4 '238 847 61	17 331 '957
36 Howard 29 01 07 379 +2 199 09 578 1 177 4 496 419 39 31 363 12 Burke 105 30 16 640 -0 891 15 749 1 178 4 794 490 46 62 300 34 Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52	35	Pigeon	86	28	53 '550	+0 059	53 '609	0.641	4 '663 658 75	46 095 '523
36 Burke 105 30 16 640 -0 891 15 749 1 178 4 794 490 46 62 300 34 Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52	ł	Burke	7,1	28	34 '660	+0 '494	35 '154	0 '640	4 '641 374 53	43 789 958
Humpback 45 28 38 895 -0 690 38 205 1 177 4 663 658 76 46 095 52	(Howard	29	01	07 '379		09 '578	1 '177	4 '496 419 39	31 363 129
	36	Burke	105	30	16.640	-0.891	15 '749	1,148	4 '794 490 46	62 300 346
(Howard 20 43 08 182 -0 856 07 326 1 006 4 531 878 92 34 031 33	ł	Humpback	45	28	38 .892	0.690	38 .502	1 .122	4 '663 658 76	46 095 '524
100 7. 5. 34.30.33	(Howard	20	43	08 182	-o ·856	.07 '326	1 .009	4 '531 878 92	34 031 '330
37 Mount Desert 28 37 56 888 +1 155 58 043 1 006 4 663 658 76 46 095 52	37 {	Mount Desert	28	37	56 .888	+1.122	58 .043	1 .009	4 '663 658 76	46 095 524
Burke 130 38 57 200 +0 449 57 649 1 006 4 863 228 98 72 984 22	{	Burke	. 130	38	57 '200	+0.449	57 .649	1 ,009	4 .863 228 98	72 984 .521
Howard 51 03 41 505 +1 231 42 736 1 794 4 687 346 91 48 679 59	(Howard	51	03	41 '505	+1.531	42 .736	1 '794	4 '687 346 91	48 679 590
	38 {	Pigeon	84	32	12 '190	+0.569	12 '759	1 '793	4 '794 490 44	62 300. 345
	. {	Humpback	44	24	10.41	-o ·828	09 '886		4 '641 374 53	43 789 958

Resulting angles and sides of the Epping base net, Maine-continued.

No.	Stations.	Ol:	serve	ed angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	tances	Distances in meters.
1	Howard	I	19	25 '944	-0.113	25 .832	0 '062	4 '465 731 76	29 223 468
39 {	Pigeon	176	41	31 *690	+o ·535	32 '225	0 *063	4 .863 228 98	72 984 '221
Į	Mount Deser	I	59	02 '497	· o · 367	02 '130	0 '062	4 '641 374 53	43 789 958
1	Howard	49	44	15.261	+1 .344	16 '905	2 '933	4 '761 268 03	57 712 '253
40 {	Mount Desert	55	27	46 .472	+0.756	47 '228	2 *933	4 '794 490 45	62 300 345
1	Humpback	74	48	04 *492	+0.124	04 .666	2 '933	4 .863 228 98	72 984 '221
ſ	Cooper	32	00	62 '260	-1 .162	61 '095	1 '389	4 '496 419 39	31 363 129
41 {	Burke	62	44	36 '700	+1 178	37 .878	1 '389	4 '720 893 20	52 588 793
Į	Humpback	S ₅	1.1	25 280	-o °o85	25 '195	1 ,300	4 '770 508 08	58 953 '295
ĺ	Cooper	2	24	39 '965	0 '063	39:902	0.194	4 '531 878 92	34 031 '330
42 {	Mount Desert	4	10	44 .694	+0.467	45 '161	0 '195	4 '770 508 o8	58 953 '295
- (Burke	173	24	37 '140	- : '620	35 '520'	0.191	4 '967 744 25	92 841 '949
1	Cooper	51	15	31 .369	+o ·578	31 '947	ı ·559	4 663 658 76	46 095 '524
43 {	Howard	85	58	53 .870	+0 '990	54 '860	1 '560	4 '770 508 08	58 953 '295
- (Burke	42	45	39 *940	-2 069	37 .871	1 '559	4 603 402 14	40 123 '808
ſ	Cooper	34	25	42 '225	-1 .558	40.997	2 *333	4 '761 268 03	57 712 .253
44 {	Mount Desert	31	00	34 '278	+0 069	34 '347	2 *333	4 . 720 893 21	52 583 794
Į	Humpback	114	33	50.877	+0.779	51 .656	2 '334	4 '967 744 25	92 841 *949
(Cooper	83	16	33 .629	−o ·587	· 33 °042	1 '772	4 '794 490 46	62 300 346
45 {	Howard	56	57	46 '491	-1 '209	45 *282	1 '771	4 .20 893 21	52 588 '794
(Humpback	39	45	46 .385	+0.605	46 •990	1 '771	4 '603 402 14	40 123 '808
ſ	Cooper	48	50	51 '404	+0.641	52 045	2 '371	4 .863 228 98	72 984 :221
46 {	Howard	106	41	62 052	+0.134	62 *186	2 '371	4 '967 744 25	92 841 '949
Į	Mount Desert	24	27	:2 *194	+o ·688	12 '882	2 '371	4 .603 402 14	40 123 808

Descriptions of stations.

Epping East Base.—The station is in Washington County, Maine, at an angle in the road from Epping village to Columbia, and directly upon the edge of the escarpment of the Epping Plains.

The subsurface mark is the intersection of cross lines on a copper bolt in granite block 2 fect long, set 3.5 feet below the surface of the ground. A platform of concrete about 5 feet square and 1 foot thick was prepared above this, with an opening in the center, through which the subsurface mark could be seen. This formed the foundation for the surface mark, a large granite block, 3 feet square, carefully dressed, and, when in place, projecting about 6 inches above the surface of the ground, with a copper bolt and cross lines in its center. Upon this was placed a monument of marble 3.28 feet high and 1.64 feet square, resting upon three feet, each about 3 inches in diameter and 1 inch high. The inscriptions on the sides are as follows: north face, "U. S. Coast Survey;" south "1857;" east, "Base No. 9;" west, "A. D. Bache, Supt." The apex is 4 inches above its sides, and on its four faces are the letters, N, E, S, & W, respectively.

A perpendicular to the base at the center of the monument passes through the intersections of cross lines in copper bolts in tops of two granite reference monuments, 3.5 feet long and 1 foot square, set at distance of 36 and 72 meters north of station.

When the station was visited in 1884, these reference monuments were found undisturbed, also a third, not described, with a hole drilled in top, 108 meters north of the station. The marble monument was then found overturned and broken, but the granite surface mark remained undisturbed, except that the head of the copper bolt had been hammered so that the cross lines were no longer visible.

Epping West Base.—This station is about 2 miles west of Schoodiac Hill, and has no subsurface mark.

The *surface mark* is the intersection of cross lines on a copper bolt in a monument 3 feet square, made from the solid ledge by cutting away the rock to a depth of 6 or 8 inches around it.

Similar marks I foot square were made north and south of the center in a line perpendicular to the base, with copper bolts and cross lines placed in position.

Over the surface mark was placed the monument of marble of same dimensions as that described for Epping East Base.

When visited in 1884 the marble monument was found overthrown and broken, while the copper bolt had been hammered so that no cross lines were visible. The mark south of the center was in perfect condition. The one to the north had been destroyed by vandals, but the remains of the hole in which the copper bolt had been placed could be distinguished. The distance from the station to these marks is about 10 meters.

Burke.—This station is on the southernmost one of a range of rocky hills about 3 miles west of Cherryfield village and about 20 rods north of the line between Mount Steuben and Cherryfield. It is marked by hole in a granite ledge at the north end of a small hollow on the summit of the hill, and it is about 3 feet below highest part of ledge, which is too narrow for a signal.

Tunk.—This station is on a mountain of the same name, the most commanding mountain (except Mount Desert) east of the Penobscot River. It is about 1 mile north of the stage road from Ellicott to Cherryfield and about 3 miles west of the nearest house in Cherryfield. It is marked by a hole drilled in a granite ledge about 150 feet southwest of the highest part of the summit and about 4 feet below it.

Pigeon.—This station is on the highest part of a hill close to the ocean on the western side of the outlet of Narraguagus River. It commands the coast from Frenchmans Bay to Head Harbor Island, and is 9 miles from Cherryfield. It is marked by a hole drilled in a flat rock. In range to Mount Desert, 53'25 feet distant; to Saunders, 56'25 feet distant; to Humpback, 35'33 feet distant, and to Mitten Mountain, 36'83 feet distant, there are holes and piles of stone.

Humpback.—This station is on the mountain of the same name, near the western line of Brewster Township. The highest point of the mountain is about 400 feet northeast of the station and is 4 or 5 feet above it. It is marked by a hole drilled in the rock. Range marks, consisting of holes drilled in the rock and heaps of stones, were made toward Harris, Saunders, and Mount Desert, distant 14, 17'42, and 13'50 feet, respectively.

Mount Desert.—This station is marked by a copper bolt in a ledge which is in the center of a small depression in the large bare rock and 22½ inches easterly from the southeast corner of a crevice.

Single range marks, consisting of a hole in the rock, were made toward Peaked, Blue, and Ragged mountains, distant from center 53°17, 17°52, and 21°83 feet, respectively. Toward Saunders and Harris there were two such marks, distant, in the first instance, 35°92 and 142°50 feet, while in the latter, 19°92 and 136°60 feet from the center of the station.

Howard.—This station is on a steep, precipitous hill, about 6 miles below Machiasport and near Bucks Harbor. It is marked by a drill hole in a rock. Range marks were established toward Mount Desert, Humpback, and Cooper, distant 33.67, 66.25, and 21.30 feet, respectively. When visited in 1884, the station was recovered.

Cooper.—This station is on the northern end of the summit of Western Ridge, about one-fourth mile west of the road running through the village of Cooper and about three-eighths of a mile northwest of Cooper Church. It is marked by a drill hole in a broad, flat granite ledge. Range marks, consisting of drill holes in the rock, were made toward Mount Desert and Humpback, distant 22.80 and 19.65 feet, respectively.

2. THE MASSACHUSETTS BASE LINE, MASSACHUSETTS, 1844.

Location, measurement, and resulting length of the Massachusetts base line, Massachusetts, 1844.

This base was the third and last one measured with the Hassler base apparatus and followed within a few months the measure of the Kent Island base. Its site is on the Boston and Providence Railroad, in Bristol County, Massachusetts, and about 12 kilometers (7½ statute miles) to the northward and eastward of Providence, Rhode Island. An account of this base is given in the Coast Survey Report for 1865, Appendix No. 21, page 189, and little need be said here respecting the apparatus, a description of which can be found in the account of the measurement of the Fire Island and Kent Island bases. Its middle point is in latitude 41° 58′ 9 and in longitude 71° 15′ 3, the mean azimuth is 27° 49′ 2, and its length 17½ kilometers (or nearly 10¾ statute miles). There are but two bases in the United States (both in California) which exceed this length.

The line was measured by Assistant Edmund Blunt during September, October, and November, 1844. As in the case of the two bases previously measured by the Survey, but one measure was made. The length adopted for the compound 8-meter bar rests upon the comparisons of 1844–45, with the resulting length of 7 999 8716 meters at 0° C.

(see account of the Kent Island base). The mean temperature of the bar during the measurement was 14°'92 C. (or 58°'85 F.); the average elevation of the apparatus above the half-tide level at Boston Harbor was 44^m'83. The record at this base is deficient in details.

The resulting length of the base is as follows:

2 165 boxes	17 319m·7221
Correction for excess of temperature	+ 3.2383
Correction for inclination	- o·5629
Fractional part of a box at Northeast Base	+ 3.9999
Correction for 10° difference of temperature for above	- 0.0003
Additional length measured by scale	+ 0.1015
Reduction to half-tide level	- 0.1330
Resulting length of base	17 326 th 3763

To form an estimate of the accuracy of this measure, we find, from the probable error assigned to the base bars, that of the base to be \pm 0^m·0119. With reference to temperature, 702 boxes were laid with rising and 579 with falling temperature, and for the rest of the boxes the temperature was stationary. The assumed probable error from this condition and probable lag, and from graduation error is \pm 0^m·0332, and the probable error from instability of the microscopes is taken as \pm 0^m·0059. Combining these three independent values, we get for the probable error of the base \pm 0^m·0358, which equals $_{f83}^{1}_{980}$ of its length. We have, therefore, the final result for the length of the Massachusetts base 17 326'3763 meters, and its logarithm 4'238 70774.

± '0358 ± 90

The connection of the Massachusetts base with the main triangulation.

The Massachusetts base is connected with the main triangulation in an unusual way—that is, with a base net so simple as to render a special adjustment of it unnecessary. The conditional equations, therefore, which subsist between the three northern base lines were extended to reach directly to the Massachusetts base without any interven-

tion of a special base net adjustment. The diagram shows the direct connection of the base with the triangulation of the New England States, the quadrilateral Beacon Pole, Copecut, Manomet, and Blue Hill being an integral part thereof. One advantage which the base possesses over the other two is its great length.

The following table gives the approximate elevation above the Atlantic of the stations adjacent to the base:

	Meters.	Feet.
Massachusetts South Base	33	108
Massachusetts North Base	70	231
Beacon Pole	167	548
Great Meadow	80.2	264
Copecut	107.5	353
Manomet	120	394
Blue Hill	10.1	625

Descriptions of stations.

The descriptions of these old stations are very meager. The following information is all that could be gathered:

Massachusetts South Base, 1844.—The station is located on the Boston and Providence Railroad, in Bristol County, Massachusetts. For a ground mark a stone of the following dimensions was buried: Length, 4 feet 7½ inches; base, 12 inches square; top, 6 inches square. A copper bolt, on which there is a cross mark (+), driven in the stone defines the starting point of the measure. The stone is 8 feet from the eastern rail of the Boston and Providence Railroad, there being but one track laid. "Another stone is placed

on the west side of the road in the line toward Beaconpole Hill, 6 inches being above ground, and distant 33 feet from the termination of the base."*

Massachusetts North Base, 1844.—The station is marked by a brick tower, stated by G. Bradford to be 44 feet in height, when reoccupied October 18, 1884. The center of the station is indicated by a brass bolt in the center of a stone, thus +. It is central with the tower. The cap stone (of 1844) had a mean diameter of o 32 meter.

Beaconpole, 1844.—This station is located about 2 miles northeasterly from the village of Cumberland Hill. The station was visited and reoccupied in September, 1884, by Assistant G. Bradford, who remarks: "Found here, guided by E. H. Pickering, an old resident, a copper (brass?) bolt set in lead and filling a hole drilled in a ledge of rock some 30 feet in diameter, which occupies the summit of the elevation." A tripod signal was built over the station in 1884. There is also a description of 1896 by H. B. Wood, of the "Survey of the Commonwealth of Massachusetts."

Copecut, 1844.—Station on Copecut Hill between Fall River and New Bedford. Assistant G. Bradford found here in November, 1884, a copper bolt in a rock, presumably the center of the station. A large pile of stones was found about the bolt, covering it. The place is surrounded with bushes and small trees, and is difficult to find without a guide. The road to it through the woods is extremely rough. A tripod signal was built here in 1884.

Great Meadow, 1845.—This is one of the Borden Survey stations; about 3 miles north of west of Rehoboth village, 7 miles from Taunton, and 12 from Providence, Rhode Island. Assistant G. Bradford, in September, 1884, found here a hole in the rock, where, an old resident says, the signal once stood. The trees have grown up, and are now to the northward and westward some 40 to 50 feet high. The following description is by Assistant C. H. Van Orden, in 1889: "The hill is well known and is called Great Meadow Hill by the people about North Rehoboth. It is best approached from the south side. It is a large flat hill, with a growth of timber on the east and west sides. Directly north of the station is an open lot or meadow, noticeable from a distance."

Manomet, 1845.—Near Plymouth, Massachusetts. Assistant C. O. Boutelle states, in his record of the latitude observations of July, 1867: "The triangulation station at Manomet has been more permanently marked by drilling three holes, forming an equilateral triangle around the copper bolt, and each hole is distant 6 inches from it. The two holes south of the bolt are east and west from each other and the third hole is north from the bolt. Each hole is five-eighths of an inch in diameter and 2 inches deep." In September, 1877, Assistant G. A. Fairfield writes: "Visited this station and found it undisturbed; had no difficulty in finding the rock with copper bolt and three drill holes."

Blue Hill, 1845.—Near Dedham, Massachusetts. The Coast Survey station is distant from the Borden survey station of Blue Hill 8:337 meters, and the azimuth of the Borden station is 11° 16′, as deduced from computation of December, 1884. The Borden station was located in the middle of a square inclosure of stones. In November, 1886, Assistant C. H. Van Orden visited the station and found the Coast Survey copper bolt (outside the old Borden inclosure) in good order. Borden's "Blue Hill" is under the stone tower of the "Blue Hill Observatory."

The private meteorological observatory at this place was established by Mr. A. L. Roteli in 1885. It is a two-story circular tower, 12 feet in diameter inside and 25 feet high, built of the broken stone found on the hill. Extending southward from this

^{*}From original record of the base measurement.

tower is a one-story, hip-roof house, built of stone, with a wooden shed attached. (Lie heliotype in Annals of the Astronomical Observatory of Harvard College, Volume XX, Cambridge, 1896). There is also a description of 1896 by H. B. Wood of the "Survey of the Commonwealth of Massachusetts." A sketch shows the Coast Survey station with reference to the tower.

3. THE FIRE ISLAND BASE LINE AND BASE NET, NEW YORK, 1834.

Location, measurement, and resulting length of the Fire Island Base Line, New York, 1834.

The site of this base is on the southern shore of Long Island, New York, on the narrow Fire Island beach between the Great South Bay and the Atlantic Ocean, and distant nearly 80 kilometers, or 50 statute miles, to the east from New York City. It was the first and only primary base measured by Superintendent F. R. Hassler, and the measurement was made with an apparatus of his own design. He has left a full description, with illustrations, in detail, of this apparatus in the Transactions of the American Philosophical Society, Philadelphia, Pennsylvania, new series, 1825, Volume II, pages 273–286. The essential parts of the apparatus are enumerated in No. 12 of his catalogue of instruments, which probably dates back to the year 1816. These parts appear to have been made by Troughton, of London, in 1813. Two other primary base lines were measured with the same apparatus, viz, the Kent Island and the Massachusetts bases.

The beach over which the measure extended is sandy, interspersed with low hum-mocks and ridges, and subject to changes from storms, which caused the west end of the base to be finally lost, notwithstanding a strong timber protection surrounded the hillock. The eastern terminal point was further removed from the beach, which caused a bend in the line close to the monument, and necessitated the measure of an angle at the bend. The insecurity of this exposed base and the danger of its loss caused the transfer of its length, a few years later, to be made to a primary line located on the central hills of Long Island. The base net, therefore, in this case consists simply of a quadrilateral.

The length of the base is about 14 kilometers (or 83/4 statute miles). The central point is in latitude 40° 38'.9, and in longitude 73° 08'.1. The mean of the forward and backward azimuths is 72° 56'8. For convenience of reference, a brief description of the Hassler base apparatus is repeated here from his description, and further remarks on this subject will be found in connection with the Kent Island base. It makes use of one measuring bar and of optical contact. The bar is 8 meters in length and is composed of four 2-meter iron bars placed in contact lengthwise. These pieces are of square section * and are firmly held together by means of collars clamped over the bar ends and bringing them together by means of screw bolts. The whole or compound bar is supported on 15 rollers, resting on a wooden beam, itself adjustable upon another similar support. The whole is placed in the bottom of a wooden trough. There are eight thermometers, two-placed on the upper surface of cach of the single bars to ascertain their temperature. A sector for measuring the inclination is attached to one end of the supporting beam, and all required mechanical appliances for the adjustment and alignment of the bar, as well as for the manipulation of the micrometer microscopes, are provided. The trough itself rests upon five trestles. The two microscopes are likewise mounted upon trestles. For alignment of the base the trough or box carries at one end a small telescope and at the opposite end a short vertical pin to

^{*} The same as that of the Committee Meter.

FERDINAND RUDOLPH HASSLER (1770-1843).

define the axis of the apparatus and the direction of the line of measure. The microscopes admit of adjustment for verticality of axis. Their objectives are composed of two half lenses of different foci, one for pointing on spider threads stretched across small central half-circular notches cut vertically into the end faces of the protruding measuring bar, the other focus serving for a verification of the steadiness of the optical axis, the pointing being made upon cross lines ruled on an ivory plate resting on the support below the microscope.

For the standardization of the measuring bar repeated comparisons were made at different times by different observers and by different means. The Hassler double endmeters, known as bars A, B, C, and D, were first compared in February and March, 1817, with the Committee Meter and a standardized iron à bout meter by Lenoir. In the same year Hassler determined their coefficient of expansion and found it 0'000 006 963 for Fahrenheit's scale or 0'000 012 534 for the Centigrade scale, a value somewhat large yet probably applying to these particular bars, but this could not be verified, the bars having long since been lost. In May, 1834, and March, 1835, in connection with the Fire Island base, comparisons were made involving the Troughton brass scale and the Committee Meter. The last comparisons date from 1844–45, and were made with a Bessellevel-contact comparator, using the Lenoir iron meter. The results were, for the combined length at 0°C:

From comparisons of 1817 $\Sigma = 7^{\text{m}} \cdot 999 9506$ From comparisons of 1834-35 8 000 0414* ± 242 From comparisons of 1844-45 7 999 8716 ± 55

When the comparisons in 1835 in connection with the Fire Island base had been made an examination of bars A and B showed them to be rusty. After cleaning them

they were again compared, and the new 1835 value $\Sigma = 7^{m} \cdot 999 9764 \text{ re}$ sulted. The last observations indicate a decided apparent shortening, which has not been accounted for satisfactorily except it be due to the manner in which the 8-meter bar was built up. Upon the whole, it has been thought best to adopt the Hassler value of 1834-35 for the reduction of the Fire Island base as representing the conditions then existing.

But one measure of the base was made, owing probably to the labor and time required to measure such a long line. The measure was made during the months of August, September, and October, 1834. The above diagram shows the condition at

^{*}The value found in connection with the Fire Island base.

the eastern end. The distances 2 to 3, 3 to 4, and 4 to 5 were measured with the base apparatus, and the angular horizontal directions of the fine and heavy lines at the points 1, 2, 3, 4, and 5 were obtained by means of a theodolite. Calling West Base No. 6, the points 6, 5, 4, and 3 were placed in line. For reduction of the measured length of the base to sea level, the average height of the bar above the half-tide level of the Atlantic was taken as 2.75 meters. The mean temperature of the bar during measurement was 26°.60 C. (or 79°.90 F.). The resulting length from West Base to East End was as follows:

1 725 boxes	× .	13 800 ^m ·0714
Correction for excess	s of temperature over o°C	+ 4.6031
Correction for inclin	ation	- 0.5022
Reduction to half-tie	le level of ocean	- 0.0060
Resulting leng	oth	13 804m·4630

Similarly we have the short measures at the eastern end.

Line measured	2 to 3	5 to 4	3 to 4
Number of boxes	14	17	7
Corresponding length	112m.0009	136 ^m ·0007	56m·0003
Correction for expansion	+0.0319	+0.0276	+0.0119
Correction for inclination	-0.0650	a'0268	-0.0038
Defect of last box at eastern end	+0.8203		+1.1380
Resulting length	112 ^m ·7775	136 ^m '0015	57 ^m ·1464

In the adjustment of the linear and angular measures, it has been assumed that the former require no correction; the figure adjustment of 1, 2, 3, 4, and 5 involves two angle, two side, and two distance or length equations,* and the resulting length for line 5 to 1 was 294'752 meters. If West Base be designated as 6, then by the known distances 6 to 5 and 1 to 5 and the known angles, the angle at 6 between East End and East Base is found equal to 36' 41"'3, whence the final length West Base to East Base becomes 14 058'9709 meters and its logarithm 4'147 953 53.

To ascertain the probable error of this result, we estimate that of the line 6 to 5 as $\pm 0^m \cdot 0000242$ for each box, hence for the whole distance $\pm 0^m \cdot 00417$. Respecting the temperature of the bar, 455 boxes being placed with rising temperature, 553 with stationary temperature, and 717 with falling temperature and assuming a possible error in temperature of 2°, the probable error of the base might be $\pm 0^m \cdot 029$. The effect of the graduation error is estimated at $\pm 0^m \cdot 023$ or $\pm 0^m \cdot 0370$ for combined effect. The probable error arising from instability of microscopes was assumed to be $\pm 0^m \cdot 000127$ and the total effect $\pm 0^m \cdot 0053$. These are the principal sources of error and when combined produce $\pm 0^m \cdot 057$ for the line 6 to 5. To obtain the probable error for the line between the monuments $\pm 0^m \cdot 013$ was added, hence the probable error of the base as estimated is $\sqrt{(0.057)^2 + (0.013)^2} = \pm 0^m \cdot 0585$.

This equals $\frac{1}{240\ 270}$ part of the whole length, the corresponding value in the logarithm of the length $\pm \frac{\Delta lM}{l} = 0.000\ 001\ 807$. Consequently, the final result for the length of the Fire Island base is $\frac{14\ 058.9709}{\pm .0585}$ meters, and its logarithm $\frac{4.147\ 953\ 53}{\pm .181}$

^{*} All measures involved in this adjustment were found satisfactory.

The. Fire Island base net and results of its adjustment.

In this net we include the quadrilateral which transfers the measured base to the so-called mountain base, and the two other quadrilaterals, one within the other, which start from this derived base. The line Wooster to Sandford will be the connecting link

with the northeastern triangulation, and the line West Hills to Bald Hill will form the link for the southwestern branch.

The elevations of the stations above the sea level are very moderate and the horizontal directions needed but very small corrections, the maximum being less than o"'02, but no account of this was taken when less than o"'03. The approximate heights of the trigonometric stations are as follows:

1	Meters.	Feet.
West Hills	117	383
Ruland	104	341
Tashua *	185'3	608
Bald Hill	196	643
Wooster	305	1 000
Sandford	273	895

The ends of the base are between 2 and 3 meters above the sea. In this figure we have a combination of very old work with later work. The measures of horizontal angles by Superintendent Hassler date from 1833 and were made with a 60^{cm} theodolite, first employed at station Weasel in 1817. Subsequently he used the 75^{cm} theodolite, first employed at station West Hills in 1836. This last instrument was in continuous use till November, 1873, when it met with an accident at station Sawnee, Georgia. It was struck by a tornado and, notwithstanding its weight of 300 pounds, was hurled from its stand and irreparably damaged.

In consequence of the work added between 1862 and 1865, and the reoccupation of three of the old stations, a new adjustment of the base net became necessary. Weights had to be introduced in consequence of the unequal values of the resulting directions due to the relatively small number of series in the older work. It was done by the same method as already explained in connection with the adjustment of the Epping base net. From the closing of 17 triangles we have the mean error of a triangle $\sqrt{\frac{12.15}{17}} = \pm 0$ ".84 and of

an angle $\frac{0.84}{\sqrt{3}} = \pm 0''.49$ and the probable error of a direction $0.674 \times \frac{0.49}{\sqrt{2}} = \pm 0''.23$. The approximate average probable error of a direction from station adjustment resulting from 36 directions is $e_o = \pm 0''.19$, hence the square of the triangle combination

^{*} Derived from spirit levels.

error e_c^a equals $(0.23)^a - (0.19)^a$ or $e_c = \pm 0'' \cdot 13$, that is, the combination error is but slightly less than the observing error e_o . If e_c^a is added to each value of e_o^a we get the weight of each direction $p = 1/(e_c^a + e_o^a)$. Among the values of e_o there was one exceptionally large, and, omitting it, we find $e_o = \pm 0'' \cdot 18$, hence $e_c = \sqrt{(0.233)^2 - (0.183)^2} = \pm 0.144$ and $p = 1/[(0.144)^2 + e_o^a]$, and in order to make the average sum of the reciprocals of the weights nearly unity, the values of 1/p were multiplied by 13. The range in these relative weights is still large, the ratio of the greatest to the least being as 16 to 1, but it would have been as 144 to 1 had not the equalizing device been introduced. Comparing the old with the present results they are found to be nearly the same. For the side Wooster to Sandford we have old log. distance (Coast Survey Report for 1865, pages 201–202) 4.669 171 1 and by the present adjustment 4.669 171 0, which log. difference corresponds to a linear difference of but 2 centimeters. For the side Bald Hill to West Hills we have old log. distance (Coast Survey Report for 1866, page 52) 4.648 135 3, and by the present adjustment 4.648 135 6, corresponding to a linear difference of 4 centimeters.

A preliminary publication of results of the triangulation about this base and vicinity was made in 1851 in the Coast Survey Report of that date, pages 222 and following. A second publication will be found in the Coast Survey Report for 1865, pages 201–202. These results are now superseded.

Abstracts of horizontal directions at stations forming the Fire Island Base Net. 1833-1865.

Fire Island East Base, Suffolk County, New York. October 1 to October 8, 1837. F. R. Hassler, observer. 75cm direction theodolite No. 1. Circle used in VI positions.

No. of directions.	Object observed.	Resulting directions from station adjustment.	Approximate probable error.	Correction from net adjustment.	Final seconds.
		0 / //	11	//	11
4	Fire Island West Base	0 00 00 '000	±0.32	+0.426	00 '426
5	West Hills	44 48 25 129	0.27	— 1 ·o86	24 '043
6	Ruland*	112 32 52 403	0 '22	+0.330	52 .755
		+0.022			

Fire Island West Base, Suffolk County, New York. October 16 to October 24, 1837. F. R. Hassler, observer. 75^{cm} direction theodolite No. 1. Circle used in VI positions.

		0	/ //	//	//	//
1	West Hills	0	000 00 000	± o *30	+0*397	00 '397
2	Ruland*	73	39 46 131	0.10	— o ·386	45 .832
			+0.087			
3	Fire Island East Base	113	49 51 571	0.59	+ o ·158	51 '729

^{*}The correction for eccentricity, as indicated, refers to Ruland of 1865 since the station occupied in 1865 does not perfectly agree with the old station of 1837.

Abstracts of horizontal directions at slations forming the Fire Island base net, 1833-1865—continued. Ruland, Suffolk County, New York. August 19 to September 16, 1837. F. R. Hassler, observer. 75^{cm} direction theodolite No. 1. Circle used in VI positions. June 11 to July 27, 1865. G. W. Dean, observer. Same instrument. Circle used in V positions.

		0	1	//	11
	Fire Island East Base	0	00	00,000	±0'14
7	Fire Island West Base	27	17	02.651	
1837				+0.062	
-	West Hills	78	54	02'221	
				+0.114	
	West Hills	О	00	00,000	±0'09
	Wooster	61	26	28'009	0.08
				+0.047	
1865	Tashua*	73	59	43.262	.0.04
- 7				+0'047	
	Sandford*	101	19	14.917	0.00
				+0.047	

Adopted results at Ruland:

No. of directions.	Object observed.	re	ection static	ing di- is from on ad- nent.	Ap- proxi- mate prob- ahle error.	Reduc- tion to sea level.	Seconds reduced to sea level.	Correc- tion from net ad- just- nient.	Final sec- onds.
		0	/	11	11	//	//	11	11
7	Fire Island East Base	0	00	000,000	±0.14			-0.020	59 '980
8	Fire Island West Base	27	17	02 '716	0.55			-0.310	02 '406
9	West Hills	78	54	02 '335	0 '35			+0.266	02 .601
10	Bald Hill†	132	oS	56 '733	0 '27	-0.013	56 .421	+0.131	56 .852
11	Wooster	140	20	30,391	0.08	-o ·o18	30.373	+0 '040	30 '413
12	Tashua	152	53	45 .644	0 '07	-o ·oo8	45 .636	-0. 134	45 '502
13	Sandford	180	13	17 '299	0,09	+o · 004	17:303	+0'192	17 '495

West Hills, Suffolk County, New York. October 18 to December 1, 1836. F. R. Hassler, observer. 75^{cm} direction theodolite No. 1. Circle used in VI positions. July 18 to August 15, 1865. G. W. Dean, observer. Same instrument. Circle used in V positions.

		0	/	11	11
	Ruland	0	00	000,000	±0.31
	Fire Island East Base	33	21	31 '070	0 '33
1836.				-o ·136	
-	Fire Island West Base	54	43	16.503	0.38
				—о :136	
-	Wooster	0	00	000'000	±0.06
	Azimuth Mark	7	26	21 '398	0 '06
				+0.370	
	Tashua	21	35	06 '485	0 '05
1865.				0 '009	
-	Sandford	33	58	36 '554	0.08
				-0 '023	
	Ruland	89	14	44.819	0.07
				-0.078	

^{*}The correction +0'' 047 refers to the direction of heliotrope to station of 1836; the other corrections refer the old measures to Ruland station of 1865, since the stations of 1837 and 1865 do not quite coincide. No notice is taken of those observations of 1837 which are superseded by new observations of 1865.

[†] Mean value, as derived differentially from West Hills and Tashua.

Abstracts of horizontal directions at stations forming the Fire Island base net, 1833-1865—continued.

No notice is taken of those measures of 1836, which are superseded by new measures of 1865. The corrections for eccentricity are indicated; instead of increasing the direction to Ruland by 0''136 this amount is subtracted from the measures of the base ends.

Resulting directions at West Hills:

No. of directions.		Object observed.	Resulting di- rections from station ad- justment.			Ap- proxi- mate prob- able error.	Reduc- tion to sea level.	Seconds reduced to sea level.	Correc- tion from net ad- just- ment.	Final sec- onds.	
			0	1	//	"	11	//	11	11	
	15	Wooster	0	00	000,000	±0.06	0 '003	59 '997	+0.169	00.166	
		Azimuth Mark	7	26	21 '768	0.06					
	16	Tashua	21	35	06 '476	0.02	+-0.006	06 482	-o ' 099	06 '383	
	17	Sandford	33	58	36 '531	0 '08	+0.014	36 .245	-o ·o89	36 °456	
	18	Ruland	89	14	44 '741	0.35			+0'226	44 '967	
	19	Fire Island East Base	122	36	15 .675	0.33			-o ·400	15 '275	
	20	Fire Island West Base	143	58	00.808	0,38			+0.406	01 '214	
		Harrow*	269	17	04 .526	0.19			* * * * *		
		Round Hill*	331	59	49 '211	0.33					
	14	Bald Hill*	359	21	01.916	0.52	-0 '003	01 '913	—o ·123	01 '790	

Tashua, Fairfield County, Connecticut. August 25 to September 16, 1833. F. R. Hassler, observer.
 75^{cm} direction theodolite No. 1. Circle used in III positions. September 2 to October 21, 1863.
 G. W. Deau, observer. Same instrument. Circle used in V positions.

		0	1	11	11	11	11	11	11
30	Ruland	О	00	000,000	±0.08			+0.085	00 '082
31	West Hills†	38	20	42 '522	0.09			+0.085	42 .630
				+0.023					
32	Bald Hill‡	96	34	59 '438	0 '44	+0.006	59 '444	+0.078	59.222
33	Wooster	138	32	49 '096	0 .06	-0.012	49 '081	-0 ·24I	48.840
	Good Hill	200	12	56 .834	o °o8				
29	Sandford	249	56	26 '327	0 '06	+0.017	26 '344	+0'107	26 °451
	Mount Carmel	259	24	22.837	0'12				

Sandford, New Haven County, Connecticut. September 9 to November 4, 1862. G. W. Dean, observer. 75^{cm} direction, theodolite No. 1. Circle used in V positions.

		0	/	//	//	//	//	//	//
21	Ruland	0	00	000'000	±0.11			0 .564	59 .736
22	West Hills †	23	24	41 '547	0.15			+0.482	. 42 '037
		0		+0.008					
23	Tashua	42	36	58 .413	0.15	+0.011	58 '424	-0:330	58 1094
24	Wooster	69	03	33 '113	0.54	+0.000	33 122	+0.356	32.478
	Azimuth Mark	85	20	30 .546	0.12				
	Ivy	147	34	47 .646	0'15				
	Mount Tom	190	09	54 '581	0'12				
	Box	221	37	22 '062	01'0				
	Mount Carmel	298	46	08 '532	0 '44				

^{*}The results are mean values derived differentially from Tashua and Rulaud.

[†] Correction for eccentricity indicated.

¹ Mean value deduced from differences with West Hills and Ruland in 1833 and 1863.

Abstracts of horizontal directions at stations forming the Fire Island base net, 1833-1865—continued.

Wooster, Fairfield County, Connecticut. July 14 to October 10, 1864. G. W. Dean, observer.

75cm direction theodolite No. 1. Circle used in V positions.

No. of directions.	Object observed.	Resulting di- rections from station ad- justment.			Ap- proxi- mate prob- able error.	Reduction to sea level.	Seconds reduced to sea level.	Correc- tion from net ad- just ment.	Final sec- onds.
		0	1	//	//	//	//	11	//
	Ivy	0	00	000,000	±0.07				
25	Sandford	53	47	59 '208	0 '07	+0 '009	59 '217	o ·o69	59 '148
26	Tashua	95	57	47 .652	o ·o8	0 '009	47 .643	+0°285	47 '928
27	Ruland	124	51	45 '938	0.08			+0 '005	45 '943
28	West Hills*	154	IO	38 '493	0 '07			-o ·147	38 .378
				+ 0.032					

Bald Hitt, Fairfield County, Connecticut. July 23 to August 18, 1833. F. R. Hassler, observer. 60cm direction theodolite No. 2. Circle used in VI positions.

		0	1	11	//	11	11	11	11
34	Tashua	0	00	000,000	±0.53	+o ·oo6	00 '006	-0'103	59 '903
35	Ruland	62	40	12.802	0.60			+1 .433	14 '291
				+ 0.056†					
36	West Hills	99	31	40 835	0 '27			-0.513	40 .622
	Harrow	121	42	18.609	0.19				
	Round Hill			54 '002					

FIRE ISLAND BASE NET.

Observation equations.

^{*}Correction for eccentricity indicated.

[†]Correction to refer the old to the new station of 1865.

Reciprocals of the weights or values of $\frac{13}{p}$

I	1.3	10	1.5	19 1.7	28	0.3
2	0.9	11	0.4	20 2'1	29	0.3
3	1.6	12	0.3	21 0'4	30	0'4
4	1*4	13	0'4	22 0.5	31	0.4
5	1.4	14	1,1	23 0.2	32	2.8
6	0.4	15	0.3	24 1.0	33	0.3
7	0.2	16	0.3	25 0.3	34	0.9
8	0,8	17	0.4	26 0.4	35	4.9
9	1.9	18	1.6	27 0'4	36	1.5

Normal equations.

	Cz	Ca	C ₃	C ₄	C ₅	C ₆	C ₇	C8	C ₉	Cio	Czz	C12	C13	Cz4	C15	C ₁₆
	-		and the second													
0=+0.945	9'4	+3.0	+3°3									+10,191				
0 = -0.128		6.0	-1.8									-12.001				•
0=+0.027	1		8.6		-3.2	-3°5		-3.2			-3.2	+14.102	+2.964	- 0.52	- 0.52	+ 2.983
0=+0.462				2.8	-0.9	+0.6			+0.6				+6.863	- o°807	1'203	
0 = -0.988					5.5	+3.2	+0.8	+3'5			+3°5	- 0'770	-8°540	+ 1.775	+ 0.522	- 2.983
0=+0.321	1					4*9		+3.2	+0.6		+3*5	- 0°770	0.681	+ 0.52	- 3.307	- 2.983
0=-0.236	1						2'3	-o.4					-2.119	+ 4.000	- 2.658	- 1.764
0=+0'072								4°9	-0.7	-o.4	+3.5	- 0.770	- 2.964	- 3.765	+ 4.767	0*194
0=+1.056									2.0	+0.4			+1.539	+ 2.913	- 4.064	- 1.052
0=+0.033	1									6.7	+2.3			+ 2.613	- 1.857	- 2.378
0=+1.432											11,0	- 0.770	- 2.964	+ 0.525	+ 0.525	-17.204
o=-9 ⁵												147.085	+4 920	+ 3.966	+ 3.966	+ 4.951
0=+4.3													53.630	+26.487	+13'445	+ 4.653
0=+3.0.														102.061	-26.419	-19'473
0=-0.8															90,100	+26.135
0=+1.4																119'437

Resulting values of correlates.

$C_1 = -0.4899$	$C_5 = +1.1956$	$C_9 = -0.8014$	$C_{13} = +0.0750$
$C_2 = +0.5886$	$C_6 = -0.1550$	$C_{10} = +0.1145$	$C_{14} = -0.0807$
$C_3 = +0.1590$	$C_7 =0.3553$	$C_{11} = -0.2924$	$C_{15} = -0.0361$
$C_4 = +0.2016$	$C_8 = -0.5471$	$C_{12} = +0.1348$	$C_{16} = -0.0563$

Resulting corrections to observed directions.

//	<i>"</i>	. "	//	
(1) = +0.397	(10) = +0.131	(19) = -0.400	(28) = -0.148	Probable error of
(2) -0.387	(11) +0.040	(20) +0.406	(29) +0'107	an observed direc-
(3) +0.128	(12) -0.134	(21) —o ·264	(30) +0.082	tion.
(4) +0.426	(13) +0'192	(22) +0.482	(31) + 0.085	$=0.674\sqrt{\frac{4.134}{16}}$
(5) -1.086	(14) -0.123	(23) -0.329	(32) +0.078	=0 0/4V 16
(6) +0.330	(15) +0.169	(24) +0 355	(33) —0 '240	"
(7) -0.019	(16) -0.099	(25) —o ·o69	(34) -0.103	=±o:34
(8) = 0.310	(17) -0.089	(26) +0.284	(35) +1.433	
(9) +o ·266	(18) +0.559	(27) +0.005	(36) -0.214	

Check: -[wC]=4.133 and [pvv]=4.135.

Resulting angles and sides of the Fire Island base net.

No.	Stations.	Observed angles.			Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	,	11	//	"	11		
- 7+ 8	Ruland	27	17	02.216	-0 '290	02 '426	0.518	4 147 953 5	14 058 971
-4+6	*Fire Island East Base	112	32	52.425	-0.096	52 .329	0 '217	4 '452 173 4	28 325 23
- 2+ 3	Fire Island West Base	40	10	05 *353	+0.544	05. 897	0.512	4 296 291 1	19 782 '95
-19+20	West Hills	21	21	45 '133	+o ·806	45 '939	0 '296	4 '147 953 5	14 058 971
一 4十 5	Fire Island East Base	44	48	25 '129	-1.212	23 617	0.296	4 '434 543 0	27 198 38
- I+ 3	Fire Island West Base	113	49	51 .221	—o ∙ 239	51 '332	0 °296	4 '547 828 6	35 304 38
-18+2o	West Hills	54	43	16 '067	+o .180	16 '247	0 026	4 '452 173 4	28 325 23
− 8+ 9	Ruland	51	36	59.619	+o ·576	60 '195	0.625	4 '434 543 0	27 198 38
— I+ 2	Fire Island West Base	73	39	46 .518	—o ⋅783	45 '435	0.626	4.22 397 2	33 296 39
-18+19	West Hills	33	21	30.934	-o ·626	30.308	0.547	4 '296 291 1	19 782 95
一 7 + 9	Ruland	78	54	02 335	+o ·286	02.631	0 '547	4 '547 828 5	35 304 37
- 5± 6	Fire Island East Base	67	44	27 *296	+1 *416	28.712	0 *547	4 '522 397 1	33 296 .39
-30+31	Tashua	38	20	42 '545	+0.003	42 '548	ı ·344	4 '522 397 I	33 296 '39
— 9 ⁺¹²	Ruland	73	59	43 *301	-0 '400	42 '901	1 '345	4 712 561 3	51 589 50
-16+18	West Hills	67	39	38 *259	+0.322	38.584	ı ·344	4 .695 847 6	49 641 .81
-27+28	Wooster	29	18	52.587	-0.125	52 '435	1 .683	4 '522 397 1	33 296 39
-9+11	Ruland	61	26	28 .038	−o ·226	27.812	1 .683	4 .776 212 1	59 732 69
—15+·18	West Hills	89	14	44 *744	+0.057.	44 '801	1 .683	4 .832 520 7	68 001 .82
-26+27	Wooster	28	53	58 .295	-o ·28o	58.012	0.621	4.695 847 6	49 641 .81
-30+33	Tashua	138	32	49 °081	—o ·323	48 .758	0 '620	4.832 520 7	68 001 85
-11+12	Ruland	12	33	15 .563	-o ·174	15 .089	0.621	4 '348 836 2	22 327 30
-26+28	Wooster	58	12	50 .882	−o °432	50°450	0 '959	4.712 561 3	51 589 50
-31 -⊦33	Tasliua	100	Ι2	06.536	-0.326	06.510	0 '959	4.776 212 0	59 732 68
-15+16	West Hills	21	35	06 °485	−o •268	06 '217	0 '959	4 *348 836 2	22 327 30
-21+22	Sandford	23	24	41 '555	+0.746	42 '301	1 '902	4 '522 397 1	33 296 39
- 9+13	Ruland	101	19	14 '968	-0.074	14 *894	1 .003	4 914 715 9	82 170 '49
-17±18	West Hills	55	16	08.196	+0.319	08.215	1 '902	4.838 o30 S	68 870 11
-22+23	Sandford	19	12	16 .869	-o ·812	16 °057	0 '736	4.712 561 3	51 589 50
-16+17	West Hills	12	23	30 .063	+0.010	30 '073	0 '737	4.527 058 6	33 655 70
-29+31	Tashua	148	24	16 .501	0 '022	16 '079	0.736	4.914 716 0	82 170 50
-21+23	Sandford	42	36	58 .424	- o ·o66	58 .358	1 '317	4 695 847 6	49 641 .81
-12+13	Ruland	27	19	31 '667	+o *326	31 '993	1,318	4 '527 058 6	33 655 70
-29+30	Tashua	110	03	33 .656	-o ·o24	33 .632	1,318	4 .838 030 8	68 870 11
-22+24	Sandford	45	38	51 '567	o '1 26	51 '441	2 .320	4.776 212 0	59 732 68
-15+17	West Hills	33	58	36 .548	-o ·257	36 .591	2 .320	4.669 171 0	46 684 31
-25+28	Wooster	100	22	39 '308	-o ° 079	39 *229	2 .321	4 914 716 0	82 170 50

Resulting angles and sides of the Fire Island base nel-continued.

No.	Stations.	Obs	erve	d angles.	Correc- tion.	Spher- ical angles.	Spherical excess.	Log. dis- tances.	Distances in meters.
		0	1	11	//	11	11		
-21+24	Sandford	69	03	33 '122	+0.621	33 '743	2 '540	4 .832 520 7	68 001 .82
-11+13	Ruland	39	52	46 '930	+0'152	47 '082	2 '540	4.669 170 9	46 684 30
-25+27	Wooster .	71	03	46 '721	+0.074	46 '795	2 *540	4.838 030 9	68 870 13
-23+24	Sandford	26	26	34 '698	+0.686	35 '384	0 '592	4 '348 836 2	22 327 30
29 33	Tashua	III	23	37 '263	+0.348	37 '611	0.592	4 '669 171 1	46 684 32
-25+26	Wooster	42	09.	48 .426	+0.352	48.781	ი .292	4 '527 058 8	33 655 71
-34+35	Bald Hill	62	40	12 .852	+1 .236	14 '388	o ·826	4 '695 847 6	49 641 .81
-30+32	Tashua	96	34	59 '444	-0.004	59 '440	0 .826	4 '744 375 8	55 510.28
-10+12	Ruland	20	44	48.915	-o ·265	48 .650	0.826	4 '296 541 1	19 794 34
-35+36	Bald Hill	36	51	27 '977	−ı ·646	26 '331	1 '253	4 '522 397 I	33 296 38
- 9+10	Ruland	53	14	54 '386	0 '135	54 '251	1 '253	4.648 135 7	44 477 '02
-14+18	West Hills	89	53	42 '828	+0 '349	43 '177	1 '253	4 '744 375 9	55 510 60
-34+36	Bald Hill	99	31	40 .829	-0.110	40 '719	0 '735	4.712 561 3	51 589 50
-31+32	Tashua	58	14	16 ·S99	-0 '007	16 '892	0.735	4.648 135 6	44 477 °01
-14+16	West Hills	22	14	04 '569	+0.024	04 '593	0 '734	4 '296 541 3	19 794 '35

Descriptions of base net stations.

Fire Island West Base, Long Island, New York. The base was located in a most insecure position, close to the beach of the narrow strip of land known as Fire Island, and with its western terminus not far from the Fire Island Light-House. The locality is subject to total changes of aspect, due to drifting sands and inundations and erosions from high tides. This being well known, Superintendent Hassler connected it directly with the line Ruland-West Hills, which he called his "Mountain base." This connection was made by means of a quadrilateral of which all angles were measured.

It appears that the station was originally marked by a red sandstone post, with cross lines upon its upper surface.

It has been reported that the station is destroyed.

Fire Island East Base, Long Island, New York. This end of the base of 1834 was subjected to the same physical conditions of exposure which rendered the opposite end insecure. It was originally marked with a stone post.

Nothing is known as to the date when the station succumbed to the destructive influences surrounding it.

Ruland, Suffolk County, New York. This station was located by Superintendent Hassler in 1833, on Rulands hill, in Smithtown, Long Island, about halfway between the northern and southern turnpike at Patchogue. It is on the highest hill in the neighborhood. The point is on the summit (about 20 feet in diameter), the ground sloping down all around the station. It was marked by a stoneware crock, with its top 16 inches below the surface. Oyster shells are scattered about the place to assist in finding it. In 1837 the station was found in good condition.

The place was visited by Assistant C. O. Boutelle in 1860, who re-marked the

station for greater security. Four stone posts were placed to the north, south, east, and west of the center stone post. On the upper surface of the center stone post the intersection of two lines marks the position of the center point of the Hassler crock of 1833. Around each post concrete was placed to secure it firmly in position. Upon the center stone was placed a stout stub of locust wood into the top of which, level with the ground, a copper tack was driven, marking the center point. A fuller description is given in the record of 1865, when the station was reoccupied.

West Hills, Suffolk County, New York. This station was established by Superintendent Hassler in 1836. It is marked by a red sandstone post, 4 feet high and 1 foot square, sunk in the ground, with stones well packed around it; the intersection of diagonal cross lines upon the top marks the station point. A crock, which had before served as station mark, was placed upon the post and a nail in a wooden peg driven centrally through it marks the station. Upon the side of the post facing Harrow were cut the initials U. S. C. S.

The station was reoccupied in 1865, and again described.

The place is 4 miles from Huntington and 7 miles from Farmingdale railroad station. The point is on the summit of a hill. An examination had been made in 1860, when the stone post appeared not to have been disturbed, but the crock was broken and the stub decayed.

To mark the point more securely, posts arranged about the center post, north, south, east, and west of the station, were sunk to a level with the surface of the ground. A stout wooden stub, with a nail driven into it, was placed over the center of the old post to mark the station. Some further remarks are given in the 1865 description.

Tashua, Fairfield County, Connecticut. This station is located in Trumbull township, Fairfield County, Connecticut. It was established and occupied by Superintendent Hassler in 1833. The station was reoccupied in 1863 by the party of Superintendent Bache, by whom the following description is given:

"The station point is marked by a copper bolt inserted in the top of a granite post sunk 2 feet below the surface of the ground. Four similar posts, 8 inches square and 2½ feet in length, were adjusted 6 feet distant to the north, east, south, and west of the center point. The tops of the posts are marked by two lines intersecting at right angles and the letters U. S. C. S. Four directions to signals visible from the station are marked by copper tacks driven into hickory stubs at distances 171 feet 3 inches toward Ruland, 121 feet 7 inches toward West Hills, 73 feet 9 inches toward Wooster, and 70 feet 3 inches toward tower in Warren."

Sandford, New Haven County, Connecticut, 1862. This geodetic point is located on the highest and most western summit of Sandford Mountain, 5 feet from a pile of stones which marks the boundry line between New Haven and Bethany townships. The point is marked by the center of a half-inch drill hole in the top of a granite post which is 2½ feet in length and 1 foot square at the upper surface. Two cross lines and the letters U. S. C. S. are cut on its top, which is 1½ feet below the general surface of the ground. For greater security four granite posts, each 2½ feet long and 6 inches square at the top, were sunk into the ground at points about 6 feet to the north, east, south, and west of the station. The tops of these posts were flush with the ground. To this description Assistant G. W. Dean adds the following: "The top of the stone post marking the station was sunk 20 inches below the plane of the four surrounding stones.

A copper bolt was driven into the central stone and the center accurately marked by intersecting lines. A cedar stub was placed immediately over the center of the granite post, the top of which was flush with the ground and firmly secured with earth. The station point was further marked by a composition nail driven into the top of the cedar stub."

Bald Hill, Fairfield County, Connecticut. This station was established in 1833 by Superintendent Hassler and occupied by him in that year.

The hill is situated in Wilton Township, about 4 miles south of Ridgefield. The station was visited by Assistant Farley in 1868, who found fragments of an earthenware crock (of the pattern of the Hassler crocks, or cones, as he called them), and marks cut on three rocks, but he was not able to identify the marks owing to the (apparent) loss of the original description of the station by Superintendent Hassler and by Assistant Blunt in 1866. What made the search at the place more difficult was the fact that rock blasting had been going on there for some time. A second visit in 1869 elicited no certain information from want of application of proper means. The place was next examined by Assistant G. Bradford in 1882 and 1884, when, by means of the determination of a temporary signal, the location of the crock (cone) placed by Assistant Blunt in 1866 was readily discovered. It is assumed that this crock occupies the position of the Hassler crock, because Assistant Blunt is said to have put it in the place of the fragments of the older one. The station appears to have been recovered.

Wooster, Fairfield County, Connecticut. This station was established in 1864 by the party of Superintendent Bache. It is located in Ridgefield Township, about 4 miles southwest of Danbury, on Wooster Mountain, known to the residents in the vicinity as Pine Hill.

The station point is marked by a copper bolt, and is located on the highest point of gneiss which crops out near the summit of the mountain. The top of the ledge is quite limited, its length east and west being about 25 feet.

4. THE KENT ISLAND BASE LINE, BASE NET AND EXTENSION, MARYLAND, 1844.

Location, measurement, and resulting length of the Kent Island base line, Maryland, 1844.

Kent Island, in Queen Anne County, Maryland, on the western shore of which the base was measured, is situated on the east side of Chesapeake Bay, and is nearly opposite Annapolis Harbor. Originally it was intended as a check on the main triangulation which extended from the Fire Island base southward and westward, but its position near the latitude of 39° rendered it desirable to incorporate it in the eastern part of the transcontinental triangulation.

An account of the measure and length of this base is contained in the Coast Survey Report for the year 1866, supplement to Appendix No. 8, page 140, and again in Special Publication No. 4; "The Transcontinental Triangulation."

The middle point of the base is in latitude 38° 56′1, and in longitude 76° 21′2, the mean azimnth is 14° 35′4, and the length 8.7 kilometers (or 5.4 statute miles). The surface of this part of the island is slightly undulating, and the line crosses cultivated fields, with some portions covered by swamps and woods. The elevation is very little above the surface of the bay. The shore is subject to erosion, in consequence of which the terminal monuments, each consisting of an upright stone surface mark with a copper

bolt in a piece of slate below the surface, the whole being protected by rubble masonry, have disappeared.

The base was measured by Assistant J. Ferguson, in May and June, 1844, by means of the same apparatus as was used for the measure of the Fire Island base ten years before. It is known as the Hassler base apparatus,* and consists of four rectangular iron bars each 2 meters long, put together endwise and aligned in a wooden trough. The protruding ends of this 8-meter bar have semicircular notches' across which was stretched a spider thread; over this was mounted, on an independent stand, an adjustable micrometer microscope, by means of which the measure was held while the bar was brought forward into a new position. All needed adjustments for the apparatus were provided for and the temperature of the bar was read from thermometers attached to the top of the 2-meter bars placed in the bottom of the trough, which is supposed to have been covered with canvas. At the end of a day's work or at other times when necessary, the end of the last bar laid was transferred to the ground, generally by a plummet. Only one measure was made, and the total time consumed was a little over one month.

The four 2-meter bars made by Troughton, of London, about 1813 were standardized in 1817 by Hassler, by using the Committee Meter, in 1834–35 by using the Troughton brass scale, and finally, in 1844–45, by Superintendent Bache, J. Saxton, and W. Würdemann, by using a Bessel comparator, with the following results:

In	1817	$\Sigma = 7^{m}.999$	9506	at o° C.
	1834-35	8 '000	0414	6.6
	1835	†7 '999	9764	4.6
	1844-45	7.999	8716	6.6
			± 55	

This last value, after verification in July, 1854, was finally adopted for the two bases measured with this apparatus in 1844. The coefficient of expansion of the bar which was determined in 1817 by Hassler at Newark, viz, 0.000 012 534 for the centigrade scale, was adopted and, though somewhat large, may nevertheless be true for these particular bars, now lost. The mean temperature of the bar during measurement of the base was 25°18 °C. (or 77°33 °F.). The deduced length of the base is as follows:

1 o86 boxes	8687 ^m ·8606
Excess of last box over end mark at South Base, as measured by Bar D and scale	-2 '0508
Correction for excess (25° 44 C.) of temperature of bars over o° C. and graduation error o	f
thermometers ($-0^{\circ}.255$ C.)	+2 '7424
Correction for inclination of boxes	1 '0007
Reduction to half-tide level of bay for surface elevation and height of boxes 5 ^m o	-0.0069
Resulting length of base	8687 th ·5446

The probable error of this value can only be estimated, since the base was measured but once. Supposing the combined length of the four 2-meter bars subject to $\pm 20\mu$, the effect on the base will be $\pm 0^{\text{m}} \cdot 022$; an assumed error of $\pm \frac{1}{50}$ part in the

^{*}For a description, with illustrations, of the apparatus, see the Transactions of the American Philosophical Society, Philadelphia, Pennsylvania, for the year 1825, pp. 273-286. See also the preceding account of the Fire Island base measurement.

[†] Result of comparisons made after cleaning two of the 2-meter bars which were found rusty when examined.

coefficient of expansion would produce $\pm o^m \cdot o_{55}$; again, the effect for imperfect temperature correction, for inequality in number of boxes laid with rising and with falling temperatures, may be taken as $\pm o^m \cdot o_{34}$; other minor uncertainties may be omitted. Combining the several values for probable error gives $\pm o^m \cdot o_{68}$, equal to ${}_{27\frac{1}{8}00}$ of the length nearly. This may be taken to represent the measuring error, and to include the probable error due to our practical unit of length, the Committee Meter, taken as $\pm \frac{3}{4}\mu$.

Resulting length of Kent Island base, 8 687.5446 meters and its logarithm, ±:0680

3.93889705 ± 340

Kent Island base net and results of adjustment.

The following abstracts of observed and adjusted directions at the nine stations forming the base net proper, as well as the conditional equations and results of its adjustment with resulting length of triangle sides, were copied from Part I, Special Publication No. 4, "The Transcontinental Triangulation," and from Part III of the same publication the results of two triangles* to the northward of the net and of 35 triangles to the westward and southward of the base.† The triangles of this last extension are shown on the following sketch:

^{*}Shown on the above sketch by dotted lines.

[†] For adjustment of this work see Special Publication No. 4, "The Transcontinental Triangulation."

The heights of the stations above the half-tide level of the ocean are small and approximately as follows:

	Meters.
Kent Island North Base	5
Kent Island South Base	5
Taylor	29
Marriott	76
Linstid	48
Webb	72
Swan	8
Pooles Island	4
Finlay	150
Osbornes Ruin	90
Turkey Point	25

The approximate heights of stations along the Blue Ridge extension are as follows:

	Meters
Hill	84
Soper	143
Stabler	174
Peach Grove	159
Sugar Loaf	390
Maryland Heights	444
Bull Run	419
Mount Marshall	1 028
Fork	1 174
Clark	334
Humpback	Ĩ 110
Spear	492
Tobacco Row	895

No corrections to the observed horizontal directions on account of altitude were applied, as they are too small in comparison with the angular corrections required by the net adjustment to be considered. In latitude 39° the correction to a direction for height of station sighted becomes o":000 o66 sin 2 $\alpha.h$, hence the maximum correction would still be less than o":08, whereas the net adjustment in this region in several instances calls for angular corrections exceeding 1".

The results of the triangle side computations between the Kent Island and the Atlanta base lines, published in Coast and Geodetic Survey Report for 1878, pages 94–112, are now superseded. A portion of this work was readjusted in reducing the transcontinental triangulation and the results are reproduced in this publication.

Abstracts of resulting horizontal directions, observed and adjusted, at the stations forming the base net, 1844-1897.

Kent Island South Base, Queen Anne County, Maryland. May 30 to June 4, 1847. 30cm repeating theodolite No. 11. E. Blunt, observer. (Observations in 1844 by J. Ferguson superseded by above.)

Number of directions.	Object observed.	tion	is fro	direc- m sta- stment.	Corrections from base net adjust- ment.	Final seconds.	
		0	,	//	//	//	
I	Marriott	0	00	00,00	+0.03	00.03	
		58	53	46 '24	+o ·o 6	46 '30	
3	Kent Island North Base	111	41	18 '25	0 *09	18.19	

Kent Island North Base, Queen Anne County, Maryland. May 21 to 28, 1847. 30cm repeating theodolite No. 11. E. Blunt, observer. (Observations in 1844-'45 by J. Ferguson superseded by above.)

Probable error of a single observation of a direction (6 D, and 6 R), $e_i = \pm o''$ 69.

	,	0	,	11	//	11
4	Kent Island South Base			00,00	+0.19	00,10
5	Marriott	50	05	05 '36	-o ·47	04 '89
6	Taylor	88	35	36 '91	o *12	36 .79
7	Linstid	121	02	04 '33	+o ·16	04 '49
8	Swan Point	181	09	45 '47	+o ·24	45 '71

Probable error of a single observation of a direction (6 D, and 6 R.), $e_1 = \pm o^{\prime\prime}$.68.

Swan Point, Kent County, Maryland. October 16 to 21, 1848. 30cm repeating theodolite No. 11. E. Blunt, observer. (Observations in 1845 by J. Ferguson superseded by above.)

		0	/	//	//	//
34	Kent Island North Base	О	00	00,00	-o ·23	59.77
35	Linstid	56	08	57 '92	+0.52	58 *44
36	Pooles Island	169	16	25 '51	−o · 29	25 '22

Probable error of a single observation of a direction (6 D. and 6 R.), $e_1 = \pm 1''$ 35.

Taytor, Anne Arundel County, Maryland. June 8 to 16, 1847. 30cm repeating theodolite No. 11. E. Blunt, observer. (Observations in 1844 by J. Ferguson superseded by above.)

		. 0	1	11	//	11
10	Kent Island North Base	0	00	00,00	+0.36	00.36
11	Kent Island South Base	38	36	52 '37	-o ·23	52 '14
12	Marriott	119	32	44 '32	+o ·53	44 .85
9	Linstid	247	I 2	54 '29	-o ·66	53 .63

Probable error of a single observation of a direction (6 D. and 6 R.), $e_1 = \pm o''$.66.

Pootes Istand, Harford County, Maryland. May 17 to 27, 1848. 30cm repeating theodolite No. 11. E. Blunt. observer. (Observations in 1845 by J. Ferguson superseded by above.)

			0	/	//	//	//
31	Swan Point	•	0	00	00 '00	+0.30	00.30
32	Linstid		36	22	15 '13	+0.12	15 '30
33	Finlay		116	06	54 '92	−o *47	54 '45
	Osbornes Ruin		170	34	06 *56		
	Turkey Point		225	05	01 '56		

Probable error of a single observation of a direction (6 D. and 6 R.), $e_i = \pm 0^{\prime\prime}$.69.

Abstracts of resulting horizontal directions, observed and adjusted, at the stations forming the base net, 1844-1897—continued.

Webb, Anne Arundel County, Maryland. July 10 to August 14, 1848. 60^{cm} direction theodolite No. 2.
 A. D. Bache, observer. October 21 to December 2, 1850. 75^{cm} direction theodolite No. 1. A. D. Bache, observer. September 18 to 25, 1868. 75^{cm} direction theodolite No. 1. C. O. Boutelle, observer.

Number of directions.	Object observed.	tio	ns fre	g direc- om sta- stment.	Corrections from base net adjust- ment.	Final seconds.	
		0	/	//	//	//	
26	Linstid	o	00	00 '00	— o ° 02	59.98	
27	Marriott	76	16	06.19	+0.25	06 '44	
	Hill	129	26	58.53	o °oo *	58 '53	
	Soper	178	32	04 '72	o *oo *	04 '72	
	Stabler .	186	55	11.26	o *o2 *	11.24	
	Azimuth Mark	275	40	01.37			
25	Finlay	289	44	43 °01	- o ·23	42.78	

Probable error of a single observation of a direction (D. and R.), $e_i = \pm o''$ 94. Number of positions of circle in 1848, XXXIII; in 1850 and 1868, V.

Marriott, Anne Arundel County, Maryland. November 18 to December 9, 1846. 30^{cm} repeating theodolite No. 11. E. Blunt, observer. May 18 to June 18, 1849. 60^{cm} direction theodolite No. 2, A. D. Bache, observer.

210. 2.	in D. Dadie, Observer.	0	1	11	' //	//
	Hill	0	00	00 '00	0 ·29*	59.71
	Soper	32	06	10.36	+o ·38.*	10 .44
13	Webb	70	08	37 '17	-0 '24	36 '93
	Azimuth Mark	82	23	48 .68		
14	Linstid	107	33	48.30	+0.34	48 .64
15	Taylor	125	56	32 .84	—o ∙2 o	32.64
16	Kent Island North Base	147	53	16.80	-0.10	16.40
17	Kent Island South Base	166	06	54 °12	+0.19	54 '31

Probable error of a single observation of a direction (6 D. and 6 R.) in 1846, $e_i = \pm o''$ ·67 and of a direction (D. and R.) in 1849, $e_i = \pm i''$ ·10. Number of positions of circle, XI.

Linstid, Anne Arundel County, Maryland. May 24 to June 26, 1848. 60cm direction theodolite No. 2. A. D. Bache, observer. January 8 to 31, 1897. 30cm repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope elevated above ground 27.89 meters. (Observations in 1844–45 by J. Ferguson superseded by above.)

		0	1	11	//	11
18	Finlay	0	00	00'00	+0.70	00 *70
19	Pooles Island	46	42	57 '73	-0.18	57 '55
	Clough	69	13	07:73		
20	Swan Point	77	13	16.97	-0.52	16 '45
	Hope '	102	07	23 '10	• • • •	
2 I	Kent Island North Base	140	56	37 .60	—o ·26	37 '34
22	Taylor	175	43	02 '43	+0.75	03.18
23	Marriott	209	40	11.58	-o ·50	10.78
24	Webb	275	58	53 '59	+0°02	53.61

Probable error of a single observation of a direction (D, and R.) in 1848, $e_1 = \pm 1'' \cdot 12$ and of a direction (6 D, and 6 R.) in 1897, $e_1 = \pm 0'' \cdot 73$.

Number of positions of circle, XVII.

^{*} From adjustment of Kent Island extension.

Abstracts of resulting horizontal directions, observed and adjusted, at the stations forming the base net, 1844-1897—continued.

Fintay, Baltimore County, Maryland. August 29 to September 11, 1844. 60cm direction throdolite No. 2. J. Ferguson, observer. October 15 to December 27, 1896. 30cm repeating throdolite No. 16. G. A. Fairfield, observer. Telescope above ground 1.5 meters.

Number of direction		Resulting direc- tions from sta- tion adjustment.	Corrections from base net adjustment.	Final seconds.
		0 / //	• //	//
	Osbornes Ruin	0 00 00 00		
	Still Pond	30 48 41.95		
28	Pooles Island	48 03 34 15	+o °48	34 .63
	Clough	55 23 20 93		
29	Linstid	101 36 01 26	-0.72	00 '54
30	Webb	127 19 37 46	+o ·25	37 '71

Probable error of a single observation of a direction (D. and R.) in 1844, $e_i = \pm 1'' \cdot 52$ and of a direction (6 D. and 6 R.) in 1896, $e_i = \pm 0'' \cdot 65$. Number of positions of circle in 1844, VI.

BASE NET ADJUSTMENT; MARRIOTT TO FINLAY.

Observation equations.

```
I + o = +1.05 - (2) + (3) - (4) + (6) - (10) + (11)
   II 0 = -0.62 - (5) + (6) - (10) + (12) - (15) + (16)
  III 0 = +0.49 - (1) + (3) - (4) + (5) - (16) + (17)
       0 = -2.31 - (6) + (7) - (9) + (10) - (21) + (22)
  IV
       0 = +2.97 + (9) - (12) - (14) + (15) - (22) + (23)
  V
  VI 0 = -1.37 - (13) + (14) - (23) + (24) - (26) + (27)
 VII 0 = -1.87 + (18) - (24) - (25) + (26) - (29) + (30)
VIII 0 = +2.73 - (18) + (19) - (28) + (29) - (32) + (33)
  IX 0 = +1.26 - (19) + (20) - (31) + (32) - (35) + (36)
  X = 0 = -1.07 - (7) + (8) - (20) + (21) - (34) + (35)
  \text{XI} \quad \text{o} = -39 + 17 \cdot 1(4) - 17 \cdot 6(5) + 0 \cdot 5(6) + 26 \cdot 4(10) - 29 \cdot 8(11) + 3 \cdot 4(12) + 24 \cdot 9(15) - 63 \cdot 9(16) + 39 \cdot 0(17) 
 XII 0 = +31 + 26 \cdot 4(5) - 59 \cdot 5(6) + 33 \cdot 1(7) + 63 \cdot 4(14) - 115 \cdot 6(15) + 52 \cdot 2(16) + 30 \cdot 3(21) - 61 \cdot 6(22)
            +31.3(23)
XIII 0 = -28 + 7.3(5) - 19.4(7) + 12.1(8) + 27.5(13) - 52.3(14) + 24.8(16) + 7.6(25) - 12.7(26)
            +5^{\circ}1(27) + 15^{\circ}5(28) - 59^{\circ}2(29) + 43^{\circ}7(30) + 28^{\circ}6(31) - 32^{\circ}4(32) + 3^{\circ}8(33) + 14^{\circ}2(34) - 5^{\circ}2(35)
             -9.0(36)
```

The correlate and normal equations, when established and solved, gave the following values of corrections to the angular directions:

Checks: Sum of + corrections 55 '35 and Σ pvv = + 4 '867 Sum of - corrections 55 '32 - Σ wC = + 4 '872

Mean error of an observed direction $m_1 = \sqrt{\frac{|\vec{p}v\vec{v}|}{n}} = \pm o''$ 61 where n = number of conditions.

Mean error of an angle $m = m_1 \sqrt{2} = \pm o'' \cdot 87$ and probable error of the same $\pm o'' \cdot 59$.

EXTENSION OF THE KENT ISLAND BASE NET TO THE NORTHWARD.

Abstracts of resulting horizontal directions, observed and adjusted at stations to the north of the net.

Osbornes Ruin, Harford County, Maryland. September 23 to October 2, 1844. 60cm direction theodolite No. 2. J. Ferguson, observer. August 17 to September 20, 1896. 30cm repeating theodolite No. 16. G. A. Fairfield, observer. Telescope 14'17 meters above ground in 1896.

Object observed.	Results of local adjustment.	Correction from figure adjustment.	Final seconds.
	0 / //	//	//
Turkey Point	0 00 00 00	+0.11	00,11
Pooles Island	81 27 17:53	 0 .06	17.47
Finlay	158 56 33 29	-0.09	33 '20
Principio	324 49 48 33		

Probable error of a single observation of a direction (D. and R.) in 1844, $e_1 = \pm 1'''$ 33 and of a direction (6 D. and 6 R.) in 1896, $e_1 = \pm 0'''$ 35. Number of positions of circle in 1844, VI.

Turkey Point, Cecil County, Maryland. May 31 to June 17, 1845. 60cm direction theodolite No. 2.

J. Ferguson, observer. September 30 to October 19, 1896. 35cm direction theodolite No. 10.

J. Nelson, observer. Telescope 2 o8 meters above ground in 1896.

	0	1	//	//	//
Pooles Island	0	00	00'00	+0.65	00.62
Osbornes Ruin	44	OI	48 .72	 0 '44	48 .58
Principio	131	14	41 '24		

Probable error of a single observation of a direction (*D*, and *R*,) in 1845, $e_1 = \pm 1''$ ·49 and of a direction in 1896, $e_1 = \pm 0''$ ·62.

Number of positions of circle in 1845, VI; and in 1896, XII.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and southward.

Hitt, Prince George County, Maryland. June 18 to July 15, 1846. 60cm direction theodolite No. 2. A. D. Bache, observer. August 8 to October 4, 1850. 75cm direction theodolite No. 1. A. D. Bache and A. A. Humphreys, observers. October 9 to November 12, 1868. 75cm direction theodolite, No. 1. C. O. Boutelle, observer. Telescope 16.76 meters above ground in 1868.

Objects observed.	Results of local adjustment.	Correction from figure adjustment.	Final seconds.
	0 / //	//	//
Peach Grove	0 00 00,00	 о ' 30	59 '70
Causten	5 54 28.96		
Sugar Loaf	37 48 42.47	+0.10	42 '57
Stabler	65 16 57 50	+0.50	57 '70
Soper	69 14 40 71	-o ·3 ɪ	40 '40
Azimuth Mark	125 08 23 97		
Webb	125 08 24 12	+0.15	24 '24
Marriott	181 48 56.13	+0.50	56 '32

Probable error of a single observation of a direction (D, and R.), $e_i = \pm o''$:90. Number of positions of circle in 1846 and 1850, V: in 1868, VII.

Soper, Montgomery-County, Maryland. June 19 to July 23, 1850. 75cm direction theodolite No. 1. A. D. Bache, observer.

	0 /	/ //	//	//
Webb	0 0	00,00	-o •o8	59 '92
Marriott	39 4	1 37 '08	-0.14	36.91
Hill	75 0	10.92	+0.24	11.19
Azimuth Mark	89 3	0 15 '00		
Causten	122 0	9 57:30		
Stabler	233 I	7		09 '98

Probable error of a single observation of a direction (D, and R.), $e_i = \pm 0''$:91. Number of positions of circle, V.

Stabler, Montgomery County, Maryland. July 17 to September 3, 1869. 75^{cm} direction theodolite No. 1. C. O. Boutelle, observer. Instrument 16.76 meters above ground.

		٥	1	11	//	//
Hill		0	00	00,00	-0.24	59 '76
Peach Grove		63	40	03 .06	−o:37	02 '69
Bull Run		87	11	16.27	+0.04	19.61
Maryland Heights		131	27	54 '59	+0.06	54 .65
Sugar Loaf		134	09	42 '34	+0.48	42.82
Webb		297	19	37.68	+0.01	37 .69
Soper	0	342	13	41 '17	0.00	41 '17

Probable error of a single observation of a direction (D, and R.), $e_i = \pm i''$ o8. Number of positions of circle, VII.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and southward—continued.

Peach Grove, Fairfax County, Virginia. October 11 to November 8, 1869, and July 28 to August 15, 1870. 75^{cm} direction theodolite No. 1. C. O. Boutelle, observer. Telescope 13:72 meters above ground.

ot	ojects observed,	Results of local adjustment.		Correction from figure adjust- ment.	Final seconds.	
		0	1	//	//	//
Mount Marshall		О	00	00,00	-o ·36	59.64
Bull Run		4	36	29 .66	+0.18	29 .84
Maryland Heights		58	32	34 '06	-0.20	33 .26
Sugar Loaf		79	59	52.76	+o · 06	52.82
Stabler		143	47	23 .85	+o ·35	24 '20
Causten		187	26	02 '78		
Hill		194	50	24.85 .	+o ·27	25 '12

Probable error of a single observation of a direction (*D*, and *R*.), $e_i = \pm i''$ 'o2. Number of positions of circle, VII.

Sugar Loaf, Frederick County, Maryland. August 18 to November 19, 1879. 50cm direction theodolite No. 113. C. O. Boutelle, F. D. Granger, and J. B. Boutelle, observers.

•	0	/	11	//	//
Reference Mark	O	00	00 '00		
Bull Run	45	27	15 '79	+0.72	16.21
Mount Marshall	65	36	50 .43	o *11	50 .61
Maryland Heights	120	27	54 '38	+0.10	54 '48
Stabler	306	43	36 06	-o ·46	35 .60
Hill	325	05			39 *25
Peach Grove	352	26	27.18	−o ·2 6	26 . 92

Probable error of a single observation of a direction (D. and R.), $e_i = \pm o''$ 60. Number of positions of circle, XI.

Mount Marshall, Rappahannock County, Virginia. July 18 to September 7, 1874. 35^{cm} direction theodolite No. 10. A. T. Mosman, observer.

	0	/	11	//	//	
Fork	О	00	00,00			
Maryland Heights	184	15	49 '56	o ·26	49 '30	
Sugar Loaf	202	41	37 '50	+o ·36	37 .86	
Bull Run	225	17	06 '78	+0.19	06 '97	
Peach Grove	229	31	29 '99	-o ·2 8	29 '71	
Clark	311	50	33 '98			
Peters	336	20	36 °44			

Probable error of a single observation of a direction (D, and R.), $c_i = \pm 1''$ 29. Number of positions of circle, XI.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and southward—continued.

Bull Run, Fauquier County, Virginia. September 22 to November 28, 1871. 75cm direction theodolite No. 1. C. O. Boutelle, observer.

Objects observed.	Results of local adjustment.	Correction from figure adjust- ment.	Final seconds.
	0 / //	//	//
Azimuth Mark	0 00 00 00		
Clark	1 07 09 35		
Fork	33 03 17:51		
Mount Marshall	53 39 05 53	+0.11	05 '64
Maryland Heights	157 20 07.15	+0.49	07 '64
Sugar Loaf	190 54 06:98	-o·68	06 '30
Stabler	225 12 03 95	+0.08	04 '03
Peach Grove	242 29 57.85	0.00	57.85

Probable error of a single observation of a direction (D and R.), $e_i = \pm i''$ og. Number of positions of circle, V11.

Maryland Heights, Washington County, Maryland. September 16 to October 28, 1870. 75cm direction theodolite No. 1. C. O. Boutelle, observer.

		0	1	//	. //	//
Sugar Loaf	-	0	00	00,00	-o.18	59.82
Azimuth Mark		О	57	03 '66		
Stabler	•	3	33	53 *32	. —о .54	53 '08
Peach Grove	•	30	31	14.23	+o ·84	15 '37
Bull Run		71	25	27 '26	—o ·50	25 .76
Mount Marshall		106	43	12 .64	+0.08	12 '75

Probable error of a single observation of a direction (D, and R.), $e_{\rm r} = \pm {\rm o}^{\prime\prime}$. Number of positions of circle, VII.

Clark, Orange County, Virginia. July 24 to September 5, 1871. 75cm direction theodolite No. 1. C. O. Boutelle, observer.

	0	1	11	//	//
Spear	0	00	00 '00	<u>-0.15</u>	59 .88
Peters	11	21	47 '00	• • • •	
Humpback	24	09	37 '37	−1 .32	36 02
Azimuth Mark	55	29	20 '96		
Fork	78	26	10'17	+0 '97	11.14
Mount Marshall	122	25	05 12	+0 02	05 *14
Bull Run	163	19	47.57	+o ·48	48 .02

Probable error of a single observation of a direction (D, and R.), $e_i = \pm 1$ °03. Number of positions of circle, VII.

Abstracts of resulting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and southward—continued.

Fork, Madison County, Virginia. October 12 to December 24, 1874. 35^{cm} direction theodolite No. 10. A. T. Mosman, observer. July 18 to August 6, 1879. 50^{cm} direction theodolite No. 114. Same observer.

Results of local adjustment.	Correction from figure adjust- , ment,	Final seconds.
0 / //	//	11
0 00 00 00		
20 16 00'96	+0.98	01,04
136 25 13 62	+0.39	14 '01
161 06 37 64	-1.01	36.63
22 4 16 58 68	-o ·86	57 ·S2
270 56 24.51		
303 52 39 51	-0.10	39 '41
322 58 40 96	—o ·2 о	40 .76
353 33 11.20	+o *8o	12.30
	adjustment. 0	adjustment. "Ingure adjust- neut." 0 00 00 00 00 20 16 00 96 +0 98 136 25 13 62 +0 39 161 06 37 64 -1 01 224 16 58 68 -0 86 270 56 24 51 303 52 39 51 -0 10 322 58 40 96 -0 20

Probable error of a single observation of a direction (*D*, and *R*.), $e_t = \pm 1''^2$ 4. Number of positions of circle, XI in 1874 and in 1879.

Humpback, Nelson County, Virginia. June 8 to 29, 1875. 35^{cm} direction theodolite No. 10. A. T. Mosman, observer. May 11 to June 6, 1878. 50^{cm} direction theodolite No. 114. Same observer. August 18 to 28, 1879. 50^{cm} direction theodolite No. 114. A. T. Mosman and W. B. Fairfield, observers.

			0	/	//	. "	11
Jarman			О	OO	00 *00		
Clark			24	30	20 '46	+1:37	21 .83
Peters	,	,	31	40	01 *24		
Spear			126	14	25 '02	+0 *44	25 '46
Long Mountain			154.	41	57 '10		
Tobacco Row			173	06	07.68	—o ·87	06.81
Bald Knob			230	26	24.65	+0 .14	24 .82
Elliott Knob			265	35	01,13	-1.03	00,10
Slate Springs			300	08	53 '99	-o ·57	53 '42
Fork			357	28	32 '18	+o ·33	32.21

Probable error of a single observation of a direction (D. and R.), $e_t = \pm 1'' \cdot 43$. Number of positions of circle, XI.

Spear, Buckingham County, Virginia. July 30 to August 29, 1875. 35cm direction theodolite No. 10. A. T. Mosman, observer.

	0	/	11	//	11
Willis	0	00	00 *00		
Long Mountain	113	14	26 .20		
Flat Top	150	15	15 '49		
Tobacco Row	160	17	43 '42	+0.22	43 .64
Humpback	233	59	02 '50	0 '44	02 '06
Fork	266	07	14'11	+0.05	14.19
Peters	283	15	22.29	• • • •	
Clark	288	05	31.91	+0.12	32.08

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 1''$ 37. Number of positions of circle, XI.

Abstracts of resulting horizontal directions observed and adjusted at the stations forming the extension of the Kent Island base net to the westward and southward—continued.

Tobacco Row, Amherst County, Virginia. September 14 to 23, 1875. 35cm direction theodolite No.10.

A. T. Mosman, observer. September 6 to 9, 1879. 50cm direction theodolite No. 114. Same observer.

Objects observed.	Results of local adjustment.	Correction from figure adjust- ment.	Final seconds.
	0 / //	14	//
Flat Top	0 00 00 00		
Bald Knob	54 31 49 35	-o ·65	48.70
Humpback	140 52 23 38	+o ·86	24 '24
Spear	200 19 28 80	—o ·2 1	28 '59
Long Mountain	272 56 37 39		
Smith	318 30 40 14		
Cahas	345 42 24 62		

Probable error of a single observation of a direction (D, and R.), $e_1 = \pm 1''$ 43. Number of positions of circle in 1875, XI.

Resulting angles and sides of the Kent Island base net.

No.	Stations.	Obs	ervec	l angles.	Correction.	Spherical angles.	Spherical excess.	Log. dis- tauces	Distances in meters.
(Taylor	38	36	52 '37	o ·59	51.48	0 '08	3 '938 897 1	8 687 545
, J	Kent Island North Base	88	35	36.91	0 '31	36.60	0.08	4 '143 529 1	13 916 47
.)	Kent Island South Base					31 '86	0.08		11 087 '07
(Kent Island South base	52	47	32 '01	o '15	31 60	0 00	4 '044 816 9	11 007 07
ſ	Marriott	21	56	43 '96	+0.09	44 '05	0.12	4 044 816 9	11 087 07
2 {	Taylor	119	32	44 '32	+o ·17	44 '49	0.12	4 '411 765 6	25 808 67
Į	Kent Island North Base	38	30	31 '55	+0.36	31 '91	0 *15	4 266 498 4	18 471 '34
(Marriott	40	10	21 .58	+0'39	21 .67	0 '21	4 143 529 1	13 916 '47
ا ا	Taylor	80		51 '95	+0.76	•	0 '22	4 '328 444 0	
3 {	Kent Island South Base		55			52 '71			21 303 16
,	Kent Island South base	58	53	46 .54	+0.03	46 .52	0 '22	4 '266 498 5	18 471 '34
ſ	Marriott	18	13	37 '32	+0.59	37 .61	0.14	3 '938 897 1	8 687 545
4 {	Kent Island North Base	50	05	05 '36	-o ·66	04 '70	0.12	4 '328 444 1	21 303 16
Į	Kent Island South Base	111	41	18 .52	-o ·12	18.13	0 '15	4 '411 765 8	25 808 68
ſ	Linstid	34	46	24 .83	+1.01	25 '84	0 '09	4 '044 816 9	11 087 '07
5 {	Kent Island North Base	32	26	27 '42	+0.28	27 '70	0 '09	4 018 198 2	10 427 '93
	Taylor	112	47	05 '71	+1 '02	o6 ·73	0 '09	4 '253 398 1	17 922 48
,									
ſ	Linstid	33	57	08 '85	-1.52	07 '60	0 '13	4 '266 498 5	18 471 34
6 {	Taylor	1 27	40	09 '97	-1.18	08 '79	0 '13	4 '417 956 2	26 179 19
l	Marriott	18	22	44 '54	-0.54	44 '00	0.13	4 018 198 2	10 427 '93
(Linstid	68	43	33 .68	-o ·24	33 '44	0 '37	4 '411 765 7	25 808 67
7 {	Kent Island North Base	.70	56	58 '97	+o ·64	59 '61	0.37	4 '417 956 2	26 179 19
	Marriott	40	19	28.50	-o ·44	28 '06	0.37	4 '253 398 2	17 922 48

Resulting angles and sides of the Kent Island base net-continued.

No.	Stations.	Obs	erved	angles.		rec- on,	Spher- ical augles,	Spher- ical excess.		g. dis- ices.		ances in eters.
		0	/	"	//	,	"	"				
ſ	Webb	76	16	06.19	+0	.27	06 '46	0.33	4 '417	956 2	26	179 .19
8 {	Linstid	66	18	42.31	+0	52	42 .83	0 '33	4 '392	324 7	24	678 -84
Į	Marriott	37	25	11.13	+0	·58	11.21	0.34	4.514	204 0	16	375 .86
ſ	Finlay	25	43	36 .50	+0	. 97	37 '17	0 '49	4 '214	204 0	16	375 .86
9 {	Linstid	84	01	06 '41	+0	.69	07 '10	0 '49	4 '574	261 9	37	519 '92
Į	Webb	70	15	16 .99	+0	'21	17 *20	0 *49	4 *550	316 3	35	507 '19
ſ	Pooles Island	79	44	39 '79	-o	·64	39 '15	0 .64	4 '550	316 3	35	507 '19
10 {	Linstid	46	42	57 '73	-o	·89	56 .84	0.63	4.419	418 8	26	267 '50
l	Finlay	53	32	27 '11	-1	*20	25 '91	0.63	4 '462	716 4	29	021 '27
ſ	Swan Point	56	08	57 '92	+0	·74	58 .66	0 '25	4 '253	398 21	17	922 .48
11 {	Kent Island North Base	60	07	41 14	+0	°07	41.51	0 '25	4 '272	151 1	18	713 '33
Į	Linstid	63	43 ·	20 .63	+0	•26	20 .89	0.56	4 .586	689 I	19	350 36
ſ	Swan Point	113	07	27 '59	0	·81	26 .78	0 '23	4 '462	716 4	29	021 '27
12 {	Linstid	30	30	19 '24	-о	'33	18.81	0 '23	4 '204	626 3	16	018 .66
Į	Pooles Island	36	22	15 '13	-0	°12	15 '01	0 '24	4 '272	151 2	18	713 '34
ſ	Osbornes Ruin	77	29	15 '76	-0	°04	15 '72	0 '37	4 '419	418 8	26	267 '50
13 {	Pooles Island	54	27	12.11	1	'2 0	10,01	0.36	4 '340	289 4	21	892 '20
{	Finlay	48	03	34 .63	-0	17	34 '46	0 '36		337 0	20	014 14
1	Turkey Point	. 44	01	48.72	1 -	'09	47 .63	0 '39	4 '301	337 0	20	014.14
14 {	Pooles Island	54	30	55 '00	+1	19	56 .19	0 '39		101 8		447 '78
(Osbornes Ruin	81	27	17 '53	-о	.17	17 '36	0 '40	4 '454	483 8	28	476 '32
	Wester	n an	d soi	uthern e.	xtensio	m of	Kent I:	sland bas	se net.			
1	Hill	56	40	32 '00	+0	°08	32 '08	0 '46	4 '392	324 7	24	678 .84
15	Webb	53	10	52 '09	0	*00	52 '09	0 '46	4 '373	719 9	23	643 '94
l	Marriott	70	o8	36 .93	+0	.29	37 '22	0 '47		721 I		779 '29
ſ	Soper	39	41	37 '08	- 0	°09	36 *99	0 '49	4 '392	324 7	24	678 .84
16 {	Webb	102	15	58 . 28		°00	58 *28	°0 '48	1	012 1		758 .27
Į	Marriott	38	02	26 '57	-о	. 38	26.19	0 '49	1	775 6		810.89
. (Soper	75	OI	10 '92	+0	*32	11 *24	0 '43	4 '443	721 F	27	779 *29
17 {	Webb	49	05	06.10		°00	06.10	0 '42		076 1		730 '82
1	Hill		• 53	43 '41	+0	,	43 '84	0 '42		775 8		810 '90
(Soper		19		+-0							
18	Marriott	35 32	06	33 ·84 10 ·36	+0		34 '25	o '40 o '40		719 9 076 2		643 '94 730 '82
(,)	Hill	112	34	15 '41	+0	•	15 '92	0 40		012 2		758 '28
	Stabler	44	54	03 '49	-0		03 '48	0.08		775 7		810,00
19 {	Webb	8	23	06 '84	-0		06 .82	0 '08	1 7 7	882 4		919 '06
(Soper	126	42			• • •	49 '94	o *o8	4 432	017 4	27	040 .67

Wetern and southern extension of Kent Island base net-continued.

No.	Stations.	Obse	rved	angles.	Correc-	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	,	11	//	//	"		
-	Stabler	62	40	22 *32	-0.56	22 °06	0.23	4 '443 721 1	27 779 29
20 {	Webb	57	28	13 '03	−o 'o2	13,01	0 '54	4.420 998 3	26 363 .21
l	Hill	59	51	26 .62	~o .o8	26 54	0.24	4 '432 017 4	27 040 67
ſ	Stabler	17	46	18.83	—o ·245	18.285	0 '034	4 '337 076 1	21 730 82
21 {	Soper	158	15			58 .820	0 '033	4 '420 998 3	26 363 21
1	Hill	3	57	43 '21	-0.214	42 .696	0 '034	3 '691 882 5	4 919 06
ſ	Peach Grove	51	03	00' 10	-o °o8	00 '92	0 .62	4 '420 998 3	26 363 21
22 {	Stabler	63	40	03 '06	-o ·13	02 '93	0.62	4 482 609 8	30 381 54
l	Hill ·	65	16	57 '50	+0.20	58 '00	0.61	•4 ·488 456 8	30 793 34
1	Sugar Loaf	18	22			03 .65	0.62	4 '420 998 3	26 363 '21
23 {	Stabler	134	09	42 '34	+0 '73	43 '07	0.91	4 '778 281 4	60 017 '99
l	Hill	27	28	15.03	+0.10	15.13	0 .62	4 '586 513 6	38 593 45
ſ	Sugar Loaf	45	42	51 '12	+0 '20	51 '32	0 '95	4 '488 456 8	30 793 34
24	Stabler	70	29	39 .58	+0.85	40 '13	0 '94	4.607 957 7	40 546 91
· · · · · · · · ·	Peach Grove	63	47	31 '09	+0.30	31.39	0 '95	4 .586 513 6	38 593 45
ſ	Sugar Loaf	27	20			47 .66	0.92	4 482 609 8	30 381 54
25 {	Hill	37	48	42 '47	+0.40	42 .87	0 '95	4.607 957 8	40 546 92
l	Peach Grove	114	50-	32 '09	+0.55	32 *31	0.94	4.778 281 4	60 017.99
ſ	Maryland Heights	3	33	53 '32	-o ·o59	53 '261	0.104	4 586 513 6	38 593 45
26 {	Sugar Loaf	173	44	18:32	+0.562	18 '882	0 '104	4 .830 573 0	67 697 56
l	Stabler	2	41	47 '75	+0.419	48 '169	0.104	4 '465 432 7	29 203 35
ſ	Maryland Heights	30	31	14 '53	+1.02	15.22	0 '79	4 '607 957 7	40 546 91
27	Sugar Loaf	128	OI	27 '20	+0.36	27 '56	0.79	4.798 611 0	62 894 26
l	Peach Grove	21	27	18.40	+0.26	19 .56	0.79	4 '465 432 7	29 203 35
ſ	Maryland Heights	26	57	21,51	+1.08	22 *29	1 .63	4 '488 456 8	30 793 '34
28 {	Stabler	67	47	51 '53	+0.43	51 '96	1 .63	4 '798 611 1	62 894 28
l	Peach Grove	85	. 14	49 '79	+o ·86	50 .65	1 '64	4 .830 573 0	67 697 56
(Bull Run	33	33	59.83	-1 .16	58 .67	1 .50	4 '465 432 7	29 203 '35
29 {	Maryland Heights	71	25	27 '26	-o ·31	26 '95	1 '20	4 '699 551 7	50 067 01
l	Sugar Loaf	75	00	38.29	—o ⁴62	37 '97	1 .19	4.707 753 2	51 021 °49
ſ	Bull Run	67	51	56 .80	-o ·4o	56.40	2 '70	4 .830 573 0	67 697 56
30 {	Maryland Heights	67	51	33 '94	—o ·2 6	33 .68	2 '71	4 .830 553 5	67 694 52
l	Stabler	44	16	38 02	+0 '02	38 .04	2 '71	4 '707 753 2	51 021 49
ſ	Bull Run	85	09	50.40	-o '49	50 '21	1 .77	4.798 611 0	·62 894 ·26
31 {	Maryland Heights	40	54	12 '73	-1.33	11 '40	1 .48	4.616 253 0	41 328 82
- (Peach Grove	53	56	04 '40	-o ·68	03 '72	1 .48	4 '707 753 3	51 021.21
(Bull Run	34	17	56 '97	+0.76	57 '73	1 .62	4.286 213 6	38 593 °45
32 {	Sugar Loaf	98	43	39 '73	+1.18	40 '91	1.61	4 .830 553 5	67 694 52
	Stabler	46	58	25.77	+0.44	26 '21	1 .65	4 .699 551 6	50 067 00

Western and southern extension of Kent Island base net-continued.

No.	Stations.	Obser	rved	angles.	Correction.	Spherical angles.	Spherical excess.	Log. distances.	Distances in meters.
33 {	Bull Run Sugar Loaf Peach Grove	51 53 75	35 00 23	50 ·87 48 ·61 23 ·10	+0.68 +0.98 -0.12	51 '55 49 '59 22 '98	'' 1 '37 1 '37 1 '38	4 '607 957 7 4 '616 253 0 4 '699 551 7	40 546 91 41 328 82 50 067 01
34 {	Bull Run Stabler Peach Grove	17 23 139	17 31 10	53 '90 13 '51 54 '19	-0.08 +0.41 +0.18	53 ·82 13 ·92 54 ·37	0.70 0.70 0.71	4 '488 456 8 4 '616 253 1 4 '830 553 6	30 793 '34 41 328 '83 67 694 '53
35 {	Mount Marshall Maryland Heights Sugar Loaf	18 106 54	25 43 51	47 '94 12 '67 03 '66	+0.51 +0.50 +0.65	48 ·56 12 ·93 03 ·87	1 .43 1 .48 1 .49	4 '465 432 7 4 '946 793 1 4 '878 122 3	29 203 35 88 469 41 75 530 49
36 {	Mount Marshall Maryland Heights Bull Run	35 103	0I 17 4I	17 '22 45 '41 01 '62	+0.45 +0.57 +0.38	17 '67 45 '98 02 '00	1 .88 1 .88	4 '707 753 2 4 '652 400 4 4 '878 122 2	51 021 '49 44 915 '93 75 530 '47
37 {	Mount Marshall Maryland Heights Peach Grove	45 76 58	15 11 32	40 ·43 58 ·14 34 ·06	-0 °01 -0 °76 -0 °15	40 '42 57 '38 33 '91	3 .80 3 .81 3 .80	4 '798 611 0 4 '934 439 0 4 '878 122 3	62 894 26 85 988 24 75 530 49
38 {	Mount Marshall Sugar Loaf Bull Run	22 20 137	35 09 15	29 ·28 34 ·93 01 ·45	-0.17 -0.83 -0.78	29 '11 34 '10 00 '67	1 .30 1 .30	4 '699 551 7 4 '652 400 5 4 '946 793 1	50 067 °01 44 915 °94 88 469 °41
39	Mount Marshall Sugar Loaf Peach Grove	26 73 79	49 10 59	52 ·49 23 ·54 52 ·76	-0.63 +0.15 +0.41	51 ·86 23 ·69 53 ·17	2 .01 2 .01	4 '607 957 7 4 '934 439 1 4 '946 793 1	40 546 '91 85 988 '25 88 469 '41
40 {	Mount Marshall Bull Run Peach Grove	4	14 09 36	23 ·21 . 07 ·68 29 ·66	-0.468 +0.111 +0.532	30 ·192	0 °242 0 °241 0 °242	4 '616 253 0 4 '934 439 0 4 '652 400 4	41 328 ·82 85 988 ·24 44 915 ·93
41 {	Clark Mount Marshall Bull Run	86	54 33 31	42 '45 27 '01 56 '29	+0.46 -0.25 +0.24	42 ·91 26 ·76 56 ·53	2 °07 2 °06 2 °07	4 ·652 400 4 4 ·835 447 1 4 ·735 883 3	44 915 93 68 461 61 54 435 63
42 {	Fork Mount Marshall Bull Run	134	41 42 35	24 °02 53 °03 48 °13	-0.19 -0.25	52 ·84 47 ·61	I '02 I '03 I '02	4 .652 400 4 4 .883 177 2 4 .577 810 2	44 915 '93 76 414 '75 37 827 '72
43 {	Fork Mount Marshall Clark		51 09 58	45 °06 26 °02 54 °95	-0.94	43 ·81 26 ·07 54 ·01	I '30 I '30	4 '735 883 3 4 '608 327 0 4 '577 810 3	54 435 ·63 40 581 ·40 37 827 ·73
44 {	Fork Bull Run Clark	31	56 53	08°16 37°40	+0.15 +0.48	21 '19 08 '92 36 '92	2 *34 2 *34 2 *35	4 ·835 447 1 4 ·608 326 9 4 ·883 177 2	68 461 ·61 40 581 ·39 76 414 ·75
45 {	Humpback Fork Clark	98	01 41 16	48 ·28 42 ·28 32 ·80	+1 .04 +0 .67 +2 .32	49 '32 42 '95 35 '12	2 °46 2 °47 2 °46 .	4 '608 326 9 4 '945 819 1 4 '860 307 4	40 581 *39 88 271 *22 72 494 *89

Western and southern extension of Kent Island base net-continued.

No.	Stations.	Ob	serve	d augles.	Correc- tion.	Spher- ical augles.	Spher- ical excess.	Log. dis. tauces.		ances in eters.
		0	/	//	11	11	11			
ſ	Spear	32	oS	11.61	+0.49	12 '10	2.13	4 860 307 4	72	494 '89
46 {	Humpback .	128	45	52.84	+0.11	52 '95	2.14	5 '026 395 5	106	266 '29
Į	Fork	19	06	01 '45	-0.10	01 35	2 '13	4 649 283 4	44	594 '71
ſ	Spear	54	06	29 '41	+0 .61	30.05	3 .26	4 '945 819 1	88	271 '22
47 {	Humpback	101	44	04 '56	-0.93	03 .63	3 '27	5 '028 099 9	106	684 '15
(Clark	24	09	37 '37	-1 .53	36.14	3 . 26	4 '649 283 4	44	594 '71
ſ	Spear	21	58	17 '80	+0.15	17 '92	3 '59	4 608 326 9	40	581 '39
48 {	Fork	79	35	40 °S3	+0.77	41.60	3 '59	5 '028 100 0	106	684 17
l	Clark	78	26	10.12	4-1 .08	11.52	3 '59	5 026 395 5	106	266 '29
ſ	Tobacco Row	59	27	05 '42	-1.08	04 '34	1 '37	4 649 283 4	44	594 '71
49 {	Humpback	46	51	42 .66	-1.31	41 '35	1 '37	4 '577 326 2	37	785 '59
(Spear	73	41	19 '08	-o .ee	18 '42	1 '37	4 .696 339 5	49	698 '07

Determination of the probable error of the length of the sides Osbornes Ruin to Turkey Point, and Tobacco Row to Spear.

In connection with the Kent Island base net the probable error of the side Linstid to Finlay was rigorously computed, and was found to be \pm 0.33 meters; which equals $_{\bar{1}\,\bar{0}\,\bar{7}^{\bar{1}}\,\bar{6}\,\bar{0}\,\bar{0}}$ part of the length of the side. There are three triangles between this side and the side Osbornes Ruin to Turkey Point; but, instead of computing the additional probable error arising from their measure separately, it will suffice, when estimating the probable error of the chain of triangles between the Fire Island and Kent Island bases to include these three triangles as part of the chain; otherwise, the probable error of the line may be taken as about $_{\bar{1}\,\bar{0}\,\bar{0}\,\bar{0}\,\bar{0}}$ part of the length.

For the extension southward the probable error of the side Webb to Marriott was rigorously computed and found to equal ± 0.22 meters, which is about $\frac{1}{112} \frac{1}{2000}$ part of the length. For that part of the triangulation lying between Webb to Marriott and Fork to Clark the probable error was found to be $\frac{1}{103} \frac{1}{1000}$ part of the length, and the same fraction may be used for the extension thence to the line Tobacco Row to Spear.

Descriptions of the base-net stations are given in the account of the Transcontinental Triangulation, etc., Special Publication No. 4, Washington, 1900.

5. THE ATLANTA BASE AND BASE NET, GEORGIA, 1872-73.

Location, measurement, and resulting length of the Atlanta base line, 1872-73.

The Atlanta base is located on Peach Tree Ridge, Georgia, about 24 kilometers (or 15 statute miles) northeast of the city of Atlanta. It is the seventh and last base measured with the Bache-Würdemann apparatus, and is the only one measured with it more than once. It is 9½ kilometers (or 5.81 statute miles) in length and was measured three times. There is a very full description of the operations in Coast Survey Report for 1873, Appendix No. 12, pages 123-131, and the description of the apparatus

is given in Coast Survey Report for 1854, Appendix No. 35, and in Coast Survey Report for 1873, Appendix No. 12. Further remarks will be found in the account of the Dauphin Island and the Epping bases in this publication. It will also appear from the seven values collected on page 131 of the Report for 1873 that the average accuracy reached with this apparatus is about $\frac{1}{5000}$ part of the length measured. In view of the complete publication already made, it will suffice to give the present account in an abbreviated form.

The middle point of the base is in latitude 33° 54′ 4 and longitude 84° 16′ 5, with a mean azimuth 52° 08′ 2. The measurements were made by Assistant C. O. Boutelle. The first and second measures were made in opposite directions in November and December, 1872, and in January, 1873, and the third was made in July and August, 1873. The three measures were accomplished in 17, 13, and 14 working days, respectively. In connection with these several measures the tubes* were frequently compared for length with the standard bar, which was immersed in glycerin during the July and September comparisons.

The summit of the ridge is narrow and crooked, but the slope of the measurement was confined within the maximum inclination the tubes would bear, namely, 5°. A gulch near the southwest end was crossed on trestlework consisting of two separate structures. The approximate elevation above sea level is 320 meters. The terminals are marked by granite monuments and the subdivisions of the line by small granite posts.

The length of the 6-meter standard bar is 5^{m} '999 941 at 0° C., and its coefficient of ± 2

expansion o 000 011 54. The numerous comparisons made for standardization of the ± 4

tubes and for testing their compensation showed that the latter was still close; that is, about 21 parts of 22 remained compensated between the range of temperature o° to 22° C., but between the temperatures from 22° to 38° C. the tubes compensated only about 10 parts in 11. The comparisons were made with the Saxton reflecting comparator No. 1, for which we have for the period November, 1872, to January, 1873, one division at 4½° C. equal 1.384 microns and at 19° C. 1.378 microns, values answering for the case ± 3

of the first and second base measures In connection with the third measure, observations in July and September, 1873, gave 1 div. = 1.376 μ . We have also 1 turn of the screw at the temperatures 4°, 19°, and 28° C. equal to 350.9, 352.3, and 353.06 scale \pm 18

divisions, respectively.

As the result from the above comparisons we have the following values for the length of the tubes, in which the uncertainty from the length of the standard is included:

For first and second measures:
$$\begin{cases} \text{Tube } 1_3 = 5^{\text{m}} \cdot 999 \cdot 999 \cdot 7 + 0.000 \cos 37 \cdot (l - 11^{\circ} \cdot 2 \cdot \text{C.}) \\ \pm 14 \cdot 4 \end{cases}$$

$$\text{Tube } 2 = 5 \cdot 999 \cdot 647 \cdot 8 + 0.000 \cos 48 \cdot (l - 11^{\circ} \cdot 2 \cdot \text{C.}) \\ \pm 19 \cdot 3 \end{cases}$$

$$\text{and for third measure} \begin{cases} \text{Tube } 1_3 = 6^{\text{m}} \cdot 000 \cdot 084 \cdot 6 + 0.000 \cos 54 \cdot (l - 27^{\circ} \cdot 6 \cdot \text{C.}) \\ \pm 11 \cdot 2 \end{cases}$$

$$\text{Tube } 2 = 5 \cdot 999 \cdot 730 \cdot 3 + 0.000 \cos 01 \cdot (l - 27^{\circ} \cdot 8 \cdot \text{C.}) \\ \pm 11 \cdot 6 \end{cases}$$

^{*}Before making the comparisons tube No. t was supplied with a new agate. The Borda scale or differential thermometer as applied to the tubes is shown on plate No. 18 in the Coast Survey Report for 1873.

The minimum temperature at which the tubes were used was -7° , C., and many were laid with temperatures below the freezing point; the maximum temperature at which the tubes were used was 41°'7 C., and many were laid with temperatures above 38° C. The three thermometers attached to each tube were read and the mean values were corrected for graduation errors. The maximum inclination of a tube laid was 4°7, and there were a great many with inclinations of 4°. The ruggedness of the ground caused the sum of the inclination corrections for the whole base to mount up to 10m 2212 in the first and to 10^m o₃₇₅ in the last measure. Fractional parts of a tube at the base monuments and intermediate marks were measured with the brass Lenoir meter of the Survey, which is of standard length at 13°.6 C.

The following table shows the temperature of the tubes during the measures of the several parts of the base, their lengths as measured, corrected for inclination, but not reduced to sea level, and exhibits the difference of the individual measures from the mean of the three measures:

	Te	mperatur	es.	Re	sulting leng	th.		Discrepancies. •			
Subdivisions of base.	First measure.	Second measure,	Third measure.	First measure.	Second. measure.	Third measure.	Меан.	First measure.	Second measure.	Third measure.	
	c.	C.	C.					mm.	mm.	nım.	
SW to I	15*13	5.62	34 "33	1 635 974 9	1 635 '968 0	1 635 °966 4	1 635 '969 8	-5'1	+1 '8	+3 '4	
I to II	2,10	9.44	33 '94	1 642 '313 6	1 642 317 3	1 642 312 5	1 642 314 4	+0 *8	-2.9	+1'9	
II to M	6.84	4 '28	32 *56	1 234 '383 3	1 234 388 0	1 234 391 8	1 234 387 7	+4*4	-0*3	-4'1	
M to IV	11 .09	2'97	32 -03	1 348 886 2	1 348 880 6	1 348 885 1	1 348 884 0	-2.5	+3'4	1 'I	
IV to V	14 '0?	5 '57	31 *96	1 785 709 0	1 785 704 8	1 785 705 2	1 785 706 3	-2.7	+1.2	+1.1	
V to NE	11.31	12,05	30.74	1 691 '692 0	1 691 692 5	1 691 681 5	1 691 688 7	-3.3	3.8	+7.2	
Whole base	10.28	6 '80	32 *59	9 338 959 0	9 338 951 2	9 338 942 5	9 338 *950 9				

The frequent changes of sign in the above discrepancies may be taken as a favorable indication that the lengths of the tubes were correctly determined. In order to obtain the data required to reduce each part of the base to sea level, two lines of spirit levels were carried over it, double zenith distances of Stone Mountain were measured for difference of height at Southwest Base, Middle Base, and Northeast Base, and reciprocal observations were made at Stone Mountain. A line of spirit levels was carried from Stone Mountain, in 1873-74, to Augusta, Georgia; between this place and Port Royal the railroad levels were utilized, and the elevations refer to Atlantic half tide at Beaufort, South Carolina. The resulting height of Stone Mountain is 513" 95, and allowing 1m.52 for the elevation of the tubes above the ground, the average elevation of the tubes above the half-tide level becomes 321"5, and the reduction of the base

to sea level
$$-\frac{h l}{\rho} = -0^{\text{m}} \cdot 4710$$
. Whence we get for the length of the base the values $\frac{9.338^{\text{m}} \cdot 4880}{4802}$ mean 9.338.479 9 meters.

$$\begin{pmatrix} 9 & 338^{m} \cdot 4880 \\ 4802 \\ 4715 \end{pmatrix}$$
 mean 9 338'479 9 meters.

Combining the mean of the two winter measures with the value of the summer measure, we get 9 338 477 8 meters. We have also the distance Southwest Base to Middle Base 4 512" 447, and from Middle Base to Northwest Base 4 826'032 meters. The horizontal angles measured at these three base stations and at Stone Mountain

afford a check on the measure. Starting with the first or shorter distance and using the adjusted angular measures, the length of the base thus trigonometrically deduced comes out 9 338^m·502, or 22^{mm} in excess of the direct linear measure.

For the probable error of the measure of the base we have the following data: Probable error from uncertainty in length of tubes in 1 556 tubes, 1 556 × 14 o $\mu = \pm$ 0 o o 21 78. For mere measuring error we have, after forming the values $\sum \delta_{i}^{2}$, $\sum \delta_{2}^{2}$, $\sum \delta_{3}^{2}$, etc., where the δ 's are taken from the preceding table of differences from the mean of three measures, assumed of equal weight, the probable error of the base from these measures = \pm 0 o 674 $\left(\frac{\sum \delta_{i}^{2} + \sum \delta_{2}^{2} + \sum \delta_{3}^{2} + \sum \delta_{3}^{2} + \cdots}{n(n-1)}\right)^{1/2}$ where n=3, hence the result = \pm 0 o o 385, which includes errors arising from defective compensation, errors of contact, of transfer to ground or to monuments, of alignment and inclination, etc.

Supposing an uncertainty in h of 1 meter, the reduction to sea level changes $\pm 1^{mm} \cdot 46$.

Combining the values we get the probable error of the base

$$\sqrt{(21.78)^2 + (3.85)^2 + (1.46)^2} = \pm 22^{mm}.2$$

which equals 421000 part of the length.

The resulting length of the base is 9 338 477 8 meters, and its logarithm 3 970 276 09 ± 22 2 ±1 03

Adjustment of the Atlanta base net.

The base is connected with the principal triangulation by a rather complex system of triangles, which made the placing of the boundary of the net to some extent an arbitrary act, except in so far as the labor involved set a limit to it. The net as it had been selected and adjusted in 1876 is here retained as satisfactory. The only change that could be made would be the introduction of the small corrections to the horizontal directions for height of object observed upon, which it was not customary to introduce at that time.

The heights of the 10 stations involved are as follows:

Approximate heights of stations above the Atlantic Ocean.

	Meters.	Feet.
Atlanta Southwest Base	318 5	1 045
Atlanta Northeast Base	326	1 070
Atlanta Middle Base	325	1 068
Stone Mountain*	514	ı 686
Academy	346	1 136
Kenesaw	551	1 809
Sweat Mountain	516	1 694
Sawnee	600	1 967
Pine Log	713	2 340
Grassy	1 003	3 290

^{*}Elevation from spirit levels, 513m 95.

This reduction of the directions to sea level, a maximum in the case of line Pine Log to Grassy, is less than o" \cdot 07, and in general it is less than one-half of this amount. It is therefore fully covered by the observing error of the directions which on the average amounts to $\frac{14.4}{77}$ or o" \cdot 19; besides, a number of directions require corrections in the figure adjustment of more than 1".

As shown in the diagram, the net comprises 10 stations which were occupied between 1872 and 1874; two observers were engaged in the work and three different instruments

were employed, one being a repeating theodolite. The adjustment of the observations of directions at a station was made by Bessel's method, and the results are presented in the abstracts, where, for convenience, the resulting corrections due to the figure or net adjustment have been added. The latter computation involved 29 conditions which had to be satisfied. Here weights to the directions were introduced, depending upon the same principle as explained in the case of the adjustment of the Epping base nct. In accordance with the method of application of weights to the directions in a net adjustment, we derive the mean error of a triangle from the sum of the squares of the closing errors of the 30 triangles involved and find $\sqrt{\frac{91.1}{30}} = \pm 1''.74$; hence also the probable error of a direc-

tion, 0.674 $\sqrt{\frac{91.1}{180}} = \pm 0''.48$. Further we have the average value of the probable error of a direction derived from the measures and given in column 4 of the abstracts of directions= $\pm 0''.19$, whence the square of the triangle combination error $\varepsilon_c^2 = (0''.48)^2 - (0''.19)^2 = 0''.20$ nearly. This value was added as a constant to each previously deduced square of the observing error; hence $\varepsilon^2 = \varepsilon_1^2 + \varepsilon_2^2$ and the weight of each direction, $p = \frac{1}{\varepsilon^2}$. The reciprocals of these values after division by 0.22 for the sake of convenience are tabulated further ou.

Abstracts of horizontal directions at stations forming the Atlanta base net, 1873-1874.

Atlanta Middle Base,* De Kalb County, Georgia. January 11 to 30, 1873. C. O. Boutelle, observer. 75^{cm} direction theodolite No. 1. Circle used in VII positions.

Number of directions.	Objects obser	ved. tio		g direc- n station ment.	Approximate probable error.	Correction from figure adjustment.	Final seconds.
			0 /	//	//	. 11	//
2	Atlanta Northeast	Base	00	000,000	±0.15	o ·078	59 '922
3	Stone Mountain	86	0 14	23 .381	° 0.14	+0.193	23 '574
I	Atlanta Southwest	Base 18c	00	00 '037	0.12	-o ·115	59 '922
					24		

Probable error of a single observation of a direction (D. and R.), $e_2 = \pm 0^{\prime\prime}$.75.

Atlanta Southwest Base, De Kalb County, Georgia. February 10 to 22, 1873. C. O. Boutelle, observer.

Instrument as before. Circle used in VII positions.

	0	/	11	//	//	11
Kenesaw	O	00	000,000	±0°15	+o ·o26	00 '026
Sweat Mountain .	34	24	39 '322	0 *14	—o :13о	39 '192
Atlanta Middle Base and North-						
· east Base	118	38	10 .842	0.13	-o °114	10.728
Stone Mountain	184	22	33 '046	0 '11	+0.219	33 '265
Atlanta, City Hall spire	271	16	31 .46		`	
Atlanta, Capitol flagstaff	273	14	57 '08			
	Sweat Mountain . Atlanta Middle Base and North- east Base Stone Mountain Atlanta, City Hall spire	KenesawoSweat Mountain. 34Atlanta Middle Base and North 118east Base. 118Stone Mountain. 184Atlanta, City Hall spire. 271	Kenesaw000Sweat Mountain.3424Atlanta Middle Base and North east Base11838Stone Mountain18422Atlanta, City Hall spire27116	Kenesaw 0 00	Kenesaw 0 00 00 00 00 15 Sweat Mountain . 34 24 39 '322 0 '14 Atlanta Middle Base and North- • east Base 118 38 10 '842 0 '12 Stone Mountain 184 22 33 '046 0 '11 Atlanta, City Hall spire 271 16 31 '46	Kenesaw 0 00 130 00 130 00 130 00 130 00 110 00 111 00 121 00 111 00 121 0

Mean correction o 'ooo

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 0^{\prime\prime}$.68.

Atlanta Northeast Base, Gwinnett County, Georgia. February 27 to March 21, 1873. Observer and instrument as before. Circle used in VII positions.

		0	/	//	//	11	11
12	Stone Mountain	О	00	000'000	±0°15	+0.082	00 '082
S	Atlanta Middle Base and South-						
	west Base	82	49	01 '328	0.13	+o ·371	01 '699
9	Kenesaw	129	23	28 '311,	0 14	+ 0 *904	29 *215
10	Sweat Mountain	156	57	34 .651	0.12	+0.040	34 '721
II	Sawnee	222	15	52 .840	0.12	-o . 601	52 '239
13	Academy	293	13	58 '560	0.19	o ·826	57 '734

Mean correction o 'ooo

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 0^{\prime\prime}$.90.

^{*} This station was occupied eccentrically om o423 off the line connecting Northeast Base and Southwest Base and the above directions are reduced to the line.

Abstracts of horizontal directions at stations forming the Atlanta base net, 1873-1874—continued.

Kenesaw, Cobb County, Georgia. June 25 to July 18, 1873. F. P. Webber, observer. Instrument as before. Circle used in VII positions.

Number of directions.	Objects observed.	tion	is fro	ng direc- m station tment.	Approximate probable error.	Correction from figure adjustment.	Final seconds.
		0	/	11	//	//	11
16	Sweat Mountain	0	00	000,000	±0.50	+0 .049	00 '049
17	Sawnee	4	36	07 630	0.30	+0,110	07 '740
15	Atlanta Northeast Base	50	03	37 '342	0.28	+0.556	37 '568
14	Atlanta Southwest Base	64	50	59.613	0.27	+0.500	59 '903
ιS	Stone Mountain	66	35	11.003	0 '24	—ı ·o56	10 .847
	Carnes	224	20	15 .036	0.36		15 .063
	Lavender	252	07	00 .675	0.54		00 '702
19	Pine Log	303	37	21 .286	0 '41	+o ⁺543	22 129

Mean correction +0 '027

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 1''$ '81.

Sweat Mountain, Cobb County, Georgia. September 10 to October 3, 1873. F. P. Webber, observer Instrument as before. Circle used in VII positions.

		0	1	11	//	//	//
22	Kenesaw	0	00	000,000	±0.11	+0.019	00.019
	Carnes	32	34	43 '053	0.56		
26	Pine Log	100	54	55 .825	0.51	−o ·273	55 *552
25	Grassy	145	16	24 '035	0.18	+0.529	24 * 564
23	Sawnee	186	42	56 639	0.51	+o ·669	57 '30S
27	Academy	236	54	39 .846	0.27	-1.131	38.715
21	Atlanta Northeast Base	257	37	42 '923	0 '25	-o·835	42 '088
24	Stone Mountain	266	39	06.616	0.19	+0 '916	07 '532
20	Atlanta Southwest Base	279	15	38.589	0.18	-o ·183	38 .109

Mean correction —o '036

Probable error of a single observation of a direction (D, and R.), $e_i = \pm 1''$ 25.

Stone Mountain, De Kalb County, Georgia. December 11 to December 20, 1873. C. O. Boutelle, observer. 50cm direction theodolite No. 3. Circle used in XI positions.

		٥	1	11	11	//	//
	Spire near flagstaff	0	00	000,000	±0 ·23		
3 S	Kenesaw	40	54	49 '578	0 °26	-o ·375	49 '203
36	Atlanta Southwest Base	43	32	11 'S36	0.19	-o ·245	11,291
35	Atlanta Middle Base *	58	02	13 '204	0.12	-o ·314	12 .890
39	Sweat Mountain	60	57	46 '579	0 *24	+0.912	47 '494
37	Atlanta Northeast Base	74	58	48 •469	0.10	-o ·649	47 .820
40	Sawnee	103	57	45 '410	0.14	+0.627	46 '037
41	Academy	145	43	17 '505	0 '20	+0.110	17 624
	Alcova	207	54	55 '333	0.51		

Mean correction +0 '011

Probable error of a single observation of a direction (D, and R.), $e_i = \pm 1'''14$.

^{*} Result reduced to Middle Base in line, reduction = $-o^{\mu}$.092.

Abstracts of horizontal directions at stations forming the Attanta base net, 1873-1874—continued.

Sawnee, Forsyth County, Georgia. October 7 to November 12, 1873. C. O. Boutelle, observer. 75cm direction theodolite No. 1. November 26 to December 4, 1873. Same observer. 50cm direction theodolite No. 3. Circle used in VII and IV positions, respectively.

Number of directions.	Objects observed.	tion	s froi	g direc- n station ment.	Approximate probable error.	Correctiou from figure adjustment.	Final seconds.
		0	1	11	1.1	* //	//
	Azimuth Mark	0	00	000'000	±0.09		
	Alcova	5	59	50 *203	0 '24	- · · · ·	
34	Academy	13	35	48 '306	0 .56	+o ·847	49.153
31	Stone Mountain	38	56	35 '773	0.53	+1.311	37 '084
28	Atlanta Northeast Base	52	13	32 '259	0 *21	− 0 . 274	31 '985
29	Kenesaw	93	53	42 '795	0.5	-o ·856	41 '939
30	Sweat Mountain	96	00	32 '086	0 *22	-0 :396	31 .690
33	Pine Log	I 42	50	58.425	0.14	-o ·353	58 072
32	Grassy	1 91	04	26 '154	0 '22	− o · 244	25 '910
	Blood	240	44	00 .264	0 *24		
	Yonah	263	11	38 .044	0.31		
	Skitt	273	57	55 °373	0.35		
	Currahee	286	09	07 '228	0 *22		
				I	Mean correctio	on +0 '005	

Ninety-two series were measured with theodolite No. 1, and 40 with theodolite No. 3. Probable error of a single observation of a direction (D. and R.), $e_i = \pm 1''$:34.

Grassy, Pickens County, Georgia. July 13 to 31, 1874. C. O. Boutelle, observer. 50cm direction theodolite No. 3. Circle used in XI positions.

			0	/	11	//	//	11
44	Sawnee		0	00	000'000	0 °07	+0.558	00 '228
43	Sweat Mountain		43	29	35 '631	0.19	+0.599	35 '930
42	Kenesaw		51	39	33 °335	0.53	-1 .408	31 *927
45	Pine Log	-	86 .	41	37 '031	0.13	+o ·753	37 '784
	Johns		31	59	17.050	0.56		*****
	Cohutta	15	83	15	38 '960	0.18		
	Blood	2	61	37	28.061	0.12		
	Skitt	2	97	13	10.620	0.19		
					N	Iean correcti	011 -0 '032	

Probable error of a single observation of a direction (D. and R.), $e_x = \pm 0''$ 91.

Abstracts of horizontal directions at stations forming the Atlanta base net, 1873-1874-continued.

Pine Log, Bartow County, Georgia. July 29 to September 17, 1874. F. P. Webber, observer. 30cm repeating theodolite No. 32.

Number of directions.	Objects observed.	tion	s froi	ng direc- ni station iment.	Approximate probable error.	Correction from figure adjustment.	Final seconds
	•	0	1	71	11	//	11
	Carnes	0	00	000'000	±0.10		
	Indian	22	30	38 '597	0.13		
	Coosa	36	17	34 '507	0.15		
	Lavender	46	28	35 '508	0.08		
	Gulf	. 70	19	50 '280	0.15		
	Johns	84	39	43 *143	0/12		
	Cohutta	141	29	12 *849	0.14		
49	Grassy	193	10	40 '009	0.13	o '600	39 '409
48	Sawnee	238	15	36 125	0.11	+0.598	36 .723
47	Sweat Mountain	285	37	11.880	0 '12	-o *541	11 '339
46	Kenesaw	308	19	38 .586	0.10	+0.542	39.128
	Lost Mountain	323	54	52 '071	0.12		
	Pine Mountain	347	59	11 '443	0.14		
					Mean correction	0 000	

Observations made in sets of 3 D, and 3 R, measures. Probable error of a single observation of a direction (6 repetitions), $c_1 = \pm 1'' \cdot 23$.

Academy, Gwinnett County, Georgia. December 4 to 10, 1874. C. O. Boutelle, observer. 50^{cm} direction theodolite No. 3. Circle used in XI positions.

					•		
		0	1	11	"	" "	//
53	Stone Mountain	0	00	000'000	士0.10	- 0.716	59 '284
50	Atlanta Northeast Base	42	29	26 '166	0.14	+1.837	28 '003
51	Sweat Mountain	65	30	02 '687	0.19	-0.061	02 .626
52	Sawnee	112	53	42 '731	0.55	1 '167	41 '564
					Mean correcti		

Probable error of a single observation of a direction (D, and R.), $e_1 = \pm 0^{\prime\prime}$ 95.

. ATLANTA BASE NET ADJUSTMENT.

Observation equations.

I
$$0 = +0.037 - (2) + (1)$$
III $0 = -0.225 - (2) + (3) - (35) + (37) - (12) + (8)$
III $0 = -0.219 - (4) + (7) - (36) + (37) - (12) + (8)$
IV $0 = -0.411 - (6) + (7) - (36) + (39) - (24) + (20)$
V $0 = -0.367 - (6) + (4) - (8) + (10) - (21) + (20)$
VI $0 = +1.410 - (14) + (18) - (38) + (36) - (7) + (5)$
VII $0 = +0.733 - (15) + (18) - (38) + (37) - (12) + (9)$
VIII $0 = -0.284 - (5) + (6) - (20) + (22) - (16) + (14)$
IX $0 = +2.497 - (10) + (13) - (50) + (51) - (27) + (21)$
X $0 = -4.228 - (37) + (41) - (53) + (50) - (13) + (12)$

Observation equations—continued.

XII
$$0 = +2 \cdot 331 - (38) + (40) - (31) + (29) - (17) + (18)$$
XIII $0 = +1 \cdot 971 - (9) + (11) - (28) + (29) - (17) + (15)$
XIII $0 = +4 \cdot 351 - (11) + (13) - (50) + (52) - (34) + (28)$
XIV $0 = +2 \cdot 296 - (10) + (11) - (28) + (30) - (23) + (21)$
XV $0 = +0 \cdot 154 - (48) + (47) - (26) + (23) - (30) + (33)$
XVII $0 = -1 \cdot 831 - (33) + (32) - (44) + (45) - (49) + (48)$
XVIII $0 = -1 \cdot 313 - (26) + (25) - (43) + (45) - (49) + (47)$
XVIII $0 = -0 \cdot 301 - (22) + (26) - (47) + (46) - (19) + (16)$
XIX $0 = +3 \cdot 124 - 0 \cdot 116(4) + 0 \cdot 021(6) + 0 \cdot 095(7) + 0 \cdot 531(20) + 0 \cdot 795(21) - 1 \cdot 326(24) + 0 \cdot 344(36) + 0 \cdot 499(37) - 0 \cdot 843(39)$
XXII $0 = +9 \cdot 942 - 0 \cdot 226(8) + 0 \cdot 199(9) + 0 \cdot 027(12) - 7 \cdot 676(14) + 0 \cdot 798(15) + 6 \cdot 878(18) - 4 \cdot 941(36) + 0 \cdot 344(37) + 4 \cdot 596(38)$
XXIII $0 = +0 \cdot 436 + 0 \cdot 140(8) - 0 \cdot 199(9) + 0 \cdot 060(10) + 0 \cdot 699(14) - 0 \cdot 798(15) + 0 \cdot 099(16) - 0 \cdot 565(20) + 0 \cdot 531(21) + 0 \cdot 034(22)$
XXIII $0 = +2 \cdot 004 + 1 \cdot 883(21) - 1 \cdot 326(24) - 0 \cdot 557(27) + 0 \cdot 917(37) - 0 \cdot 843(39) - 0 \cdot 074(41) + 0 \cdot 726(50) - 0 \cdot 496(51) - 0 \cdot 230(53)$
XXIV $0 = -0 \cdot 915 - 0 \cdot 916(15) + 0 \cdot 207(17) + 0 \cdot 709(18) - 1 \cdot 128(28) + 0 \cdot 237(29) + 0 \cdot 892(31) - 0 \cdot 692(37) + 0 \cdot 311(38) + 0 \cdot 380(40)$
XXVI $0 = -2 \cdot 792 + 0 \cdot 403(9) - 0 \cdot 500(10) + 0 \cdot 097(11) + 0 \cdot 176(15) + 2 \cdot 439(16) - 2 \cdot 616(17) + 0 \cdot 200(35) + 0 \cdot 705(52) + 0 \cdot 230(53)$
XXVII $0 = -2 \cdot 792 + 0 \cdot 403(9) - 0 \cdot 500(10) + 0 \cdot 097(11) + 0 \cdot 176(15) + 2 \cdot 439(16) - 2 \cdot 616(17) + 0 \cdot 200(28) - 5 \cdot 705(29) + 5 \cdot 485(30)$
XXVII $0 = -2 \cdot 792 + 0 \cdot 403(9) - 0 \cdot 500(10) + 0 \cdot 097(11) + 0 \cdot 176(15) + 2 \cdot 439(16) - 2 \cdot 616(17) + 0 \cdot 194(47) - 0 \cdot 404(48) + 0 \cdot 210(49)$
XXVIII $0 = +1 \cdot 619 - 2 \cdot 7557(16) + 2 \cdot 6157(17) + 0 \cdot 1400(19) + 5 \cdot 7048(29) - 5 \cdot 9022(30) + 0 \cdot 1974(33) + 0 \cdot 5032(46) - 0 \cdot 6971(47) + 0 \cdot 1939(48)$
XXIX $0 = +5 \cdot 491 - 2 \cdot 6157(17) + 0 \cdot 1400(19) + 5 \cdot 7048(29) - 5 \cdot 9022(30) + 0 \cdot 1974(33) + 0 \cdot 5032(46) - 0 \cdot 6971(47) + 0 \cdot 1939(48)$
XXIX $0 = +5 \cdot 491 - 2 \cdot 6157(17) + 0 \cdot 1400(19) + 5 \cdot 7048(29) - 5 \cdot 6861(30) - 0 \cdot 1974(32)$

Equations of correlatives.

Equations of correlatives -continued.

```
(12) == 1.0(-C_2-C_3-C_7+C_{10}+0.026 C_{19}+0.027 C_{21})
(13)=1 \circ (+C_9-C_{10}+C_{13})
(14)=1.2(-C_6+C_8-7.676 C_{21}+0.699 C_{22})
(15)=1.3(-C_7+C_{12}+0.798 C_{21}-0.798 C_{22}-0.916 C_{24}+0.176 C_{26})
(16) = 1 \cdot 1 \left( -C_8 + C_{18} - 0.099 C_{22} + 2.4394 C_{26} - 2.7557 C_{28} - 2.6157 C_{29} \right)
(17) = 1 \cdot 1(-C_{11} - C_{12} + 0.207 C_{24} - 2.6157 C_{26} + 2.6157 C_{28} + 2.6157 C_{29})
(18)=1.2(+C_6+C_7+C_{11}+6.878 C_{21}+0.709 C_{24})
(19)=1.7(-C_{18}+0.1400 C_{28})
(20)=1.0(+C_4+C_5-C_8+0.531 C_{20}-0.565 C_{22})
(21) = 1.2(-C_5 + C_9 + C_{14} + 0.795 C_{20} + 0.531 C_{22} + 1.883 C_{23})
(22)=1.0(+C_8-C_{18}+0.034 C_{22}-0.4212 C_{29})
(23)=1 \cdot 1(-C_{14}+C_{15}+0.2230 C_{27})
(24) = 1.0(-C_4 - 1.326 C_{20} - 1.326 C_{23})
(25)=1.0(+C_{17}-0.2385 C_{27}+0.4212 C_{29})
(26)=1 \cdot I(-C_{15}-C_{17}+C_{18}+0.0155 C_{27})
(27)=1.2(-C_9-0.557 C_{23})
(28) = 1.1(-C_{12} + C_{13} - C_{14} - 1.128 C_{24} + 0.628 C_{25} + 0.220 C_{26})
(29)=1.2(+C_{11}+C_{12}+0.237 C_{24}-5.7048 C_{26}+5.7048 C_{28}+5.7048 C_{29})
(30)=1.1(+C_{14}-C_{15}+5.4851\ C_{26}-5.9022\ C_{28}-5.6861\ C_{29})
(31)=1 \cdot 1(-C_{11}+0.892 C_{24}-0.892 C_{25})
(32)=1.1(+C_{16}-0.0184 C_{29})
(33)=1 \cdot 0(+C_{15}-C_{16}+0.1974 C_{28})
 (34)=1.2(-C_{13}+0.264C_{25})
(35)=1 °0(-C_2-1 °505 C_{19})
 (36) = 1 \cdot 1(-C_3 - C_4 + C_6 + 0.814 \cdot C_{19} + 0.344 \cdot C_{20} - 4.941 \cdot C_{21})
 (37) = 1.0 + C_2 + C_3 + C_7 + C_{10} + 0.691 C_{19} + 0.499 C_{20} + 0.344 C_{21} + 0.917 C_{23} + 0.692 C_{24} + 0.306 C_{25}
 (38)=1.2(-C_6-C_7-C_{11}+4.596 C_{21}+0.311 C_{24})
 (39)=1.2(+C_4-0.843 C_{20}-0.843 C_{23})
 (40) = 1.0 (+C_{11} + 0.380 C_{24} - 0.380 C_{25})
 (41)=1 \cdot 1 (+C_{10}-0.074 C_{23}+0.074 C_{25})
 (42)=1.1(+1.8882 C^{50})
 (43) = 1.0(-C^{12} - 0.5516 C^{52} - 5.1104 C^{50})
 (44) = 1.0(-C_{16} + 0.2097 C_{27} + 0.2219 C_{29})
 (45)=1 \cdot 0(+C_{16}+C_{17}+0 \cdot 0122 C_{27})
 (46)=1 \cdot 0(+C_{18}+0.5032 C_{28})
(47) = 1.0 (+C_{15} + C_{17} - C_{18} + 0.1939 C_{27} - 0.6971 C_{28})
 (48) = 1.0(-C_{15} + C_{16} - 0.4039 C_{27} + 0.1939 C_{28})
 (49) = 1.0(-C_{16} - C_{17} + 0.2100 C_{27})
 (50)=1.0(-C_9+C_{10}-C_{13}+0.726C_{23}-0.305C_{25})
 (51)=1.0(+C_9+0.496 C_{53})
 (52)=1 \cdot 1 (+C_{13}+0.075 C_{25})
  (53) = 1.0(-C^{10} - 0.530 C^{53} + 0.530 C^{52})
```

Normal equations.

No.		Cz	C ₂	C ₃	C ₄	C ₅	C6	C ₇	C8	C ₉	Czo	Ctt	C12	C ₁₃	C ₁₄	C15	C16	C ₁₇	C18	C ₁₉
I	0=+0.037	+2	+1										·							
2	-0.552		+6 +			-1		+2			-2									+2'144
3	-0,510		+	-6.1	+2'1		-3.1	+2			-2									-0.0664
4	-0.411				+6.3		-5.1		-2											-0 '8004
5	-0'367					+6.5			-2	-5.5		1 1 -			-2,5					-0.069
6	+1.410						+0.7		-5.5		-2	+2.4	0.10							+0.8004
7 8	+0.733							+6.4			-2	⊤ ≠ 4	-2.3							+0.662
G	+2'497								+6.3	+6.4	-2			+2	+2'2				-2,1	
10	-4.558									1014	+6'1	1		-2	100					-o*665
11	+2'331												+2'3							003
12	+1.971												+6.7	-2'1	+2'1					
13	+4 '351													+6 4	-2'1					
14	+2.596														+6.2	-2'2				
15	+0'154															+6.3	-2	+2'1	-2.1	
16	-1.831																+6.1			
17	-1,313																	+6.1		
18	-0.301																		+6.9	
19	+0'152																			+3.49076
20 21	+3°124 +9°942																	•		
22	+0 '436																			
23	+2.004																			
24	-0'915																			
25	+2:359																			
26	-2.792																			
27	+0.463																			
28	+1.619																			
29	0=+5.491																			
No.	C20		C21		(222	C	23	(224		C25.		C ₂₆		C ₂₇		C28		C29
<u>z</u>																				
I																				
2	+0'499	+	0 '09	I	+0	140	+0	917	-0	692	+0	1306								
3	+0.3316	+	5 '52	61	+0	140	+0	917	-0'	692	+0	306								
4	+0.241	+	5 43	51	-0	565	+0	3144												
5	-o·560	+	0.55	6		2822	-2	2596					- 0	500						
6	+0 '2834	+	6.21	45		8388			+0:	4776										
7	+0*499	+	2 '21	7		8384	+0,	917	+0.	9764	+0	*306		1742						
8	-0.210	-	9,51	12		3289								·6829			+	- 3.031	27	+ 2.45607
9	+0.924				+0.	5772	+1.			_		305	+ 0	500						
10	-0 '499		0.31				-0.	0424	+0.	-		7596		1-60						
11			2.73			2.0				0669		'6012		9684				- 3'968		+ 3 96849
12		+	0.83	84	-0.	8384		mak.		1067		*6908		2876			+	3 '968	49	+ 3.96849
13	101051				40	E 1772	-0.			240S		.4615		5 '3885		12450		6.,,,,	240	6100.00
14	+0 '954				FO	5772	T-2	2596	+1	2408	- 0	*6908		0335		0°2453 0°82605		- 6 49		- 6'25471
16													_ (- 4333		8114		- 5 '798 - 0 '003		+ 6°25471 - 0°24247
17																0 03755		- o 69;		+ 2.5316
18					+0	0749							+ 2	: 6829		17685		- 2'068		- 2°45607
19	+0.67287		4'17	989		00364	+0	63365	-0	47817	+0	21145		-,		7-5			"	- 45007
20	+4 '05354		1,60			20656		86502		34531		15269								
21	4 -3334		180 '71			33772		31545		37872		10526	+ 0	0 '2627	S					
22			, .	07-		14648		19985		95026				0'0271			-	- 0.300	010	- o · 29917
23							+8.	91109	-0	63456	+0	'00025								
24									+4	82271	- 2	.01020		2 *7007:			+	- 2'218	504	+ 2.51804
25											+1	*78886		1519						
26													+80	5 '7357				-89 '58		-87 '90629
27															+0	45004	1 -	0'21	248	+ 0'41437
															1.	40				
28																40		-94 '10		+91 '42521
28 29																40				

Resulting Correlates.

$C_1 = -0.112 00$	$C_{11} = +0.08378$	$C_{21} = -0.137 98$
$C_2 = +0.193 18$	$C_{12} = -0.350 \ 90$	$C_{22} = -1.132.88$
$C_3 = -0.07144$	$C_{13} = -0.982 35$	$C_{23} = +0.95270$
$C^4 = +0.110 00$	$C_{14} = -1.305 71$	$C_{24} = +0.38371$
$C_5 = -0.378 \ 5i$	$C_{15} = -0.851$ 29	$C_{25} = -1.046.58$
$C_6 = -0.337 23$	C ₁₆ =-0.234 29	$C_{26} = +0.75558$
$C_7 = +0.050 86$	$C_{17} = +0.978 52$	$C_{27} = +0.689 15$
$C_8 = -0.36270$	$C_{18} = -0.131 \ 58$	$C_{28} = +1.33940$
$C_9 = +0.41193$	C19=+0.080 01	$C_{29} = -0.67799$
$C_{10} = +0.25574$	$C_{20} = -1.726.74$	

and resulting corrections to observed directions:

We have the probable error of a direction of unit weight $0.674 \sqrt{\frac{pvv}{c}} = 0.674 \sqrt{\frac{24.4}{29}}$ or ± 0.062 nearly, and since the average reciprocal of the weights is 1.07, the probable error of an observed direction is nearly ± 0.065 .

BASE LINES AND BASE NETS.

Resulting angles and sides of the Atlanta base net.

	Mesiming angues and sides of the Ithania das her.									
No.	Stations.	Obs	erved	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.	
		0	1	11	11	"	11			
1	Stone Mountain	31	26	36 .633	-o ·404	36 .556	0.138	3 '970 276 1	9 338 478	
1 {	Atlanta Southwest Base	65	44	22 '204	+0.334	22.238	0.158	4 ;212 738 2	16 320 68	
l	Atlanta Northeast Base	82	49	01 .358	+0.289	01.617	0.158	4 * 249 470 6	17 761 13	
ſ	Stone Mountain	14	30	01 .368	o *o68	01 '300	0 '062	3 .654 412 0	4 512 446	
2 {	Atlanta Southwest Base	65	44	22 '204	+0.334	22 .538	0 '062	4 215 648 2	16 430 40	
l	Atlanta Middle Base	99	45	36 .656	-o ·3o8	36 .348	0.062	4 '249 470 5	17 761 13	
ſ	Stone Mountain	16	56	35 °265	—o *3 35	34 *930	0 '066	3 '683 590 2	4 826 032	
3 {	Atlanta Middle Base	80	14	23 *381	+0.271	23 '652	0 '066	4 212 738 2	16 320 68	
ĺ	Atlanta Northeast Base	82	49	01 '328	+0.589	01.617	0 '067	4 '215 648 3	16 430 41	
ſ	Sweat Mountain	21	37	55 '366	+0.652	56 018	0 192	3 '970 276 1	9 338 478	
4 {	Atlanta Northeast Base	74	08	33 '323	-o.301	33 '022	0.193	4.386 815 7	24 367 76	
· [Atlanta Southwest Base	84	13	31 *520	+0.019	31 .236	0.192	4 '401 456 3	25 203 24	
ſ	Sweat Mountain	12	36	31 .673	-1,099	30.574	0.184	4 249 470 6	17 761 13	
5 {	Stone Mountain	17	25	34 '743	+1.160	35 '903	o ·184	4 *386 815 7	24 367 76	
1	Atlanta Southwest Base		57	53 724	+0.350	54 '074	0.183	4 609 872 2	40 726 04	
(Sweat Mountain	9	or	23.693	+1 .752	25 '445	0.136	4 *212 738 2	16 320 68	
6 {	Atlanta Northeast Base	156			-0.013	34 .638	-	4 '609 872 2		
~)	Stone Mountain	_	57	34 .651			0.137		40 726 04	
(14	10	01 *890	—ı ·564	·00 ·326	0.136	4 401 456 3	25 203 *24	
ſ	Academy	42	29	26 .166	+2.552	28.718	0 *290	4 '212 738 2	16 320 68	
7 {	Stone Mountain	70	44	29 °036	+0.768	29 .804	0.590	4.358 117 9	22 809 61	
Į	Atlanta Northeast Base	66	46	01 '440	+0.908	02 *348	0 *290	4 '346 400 3	22 202 42	
ſ	Academy	23	00	36 .221	-1 .897	34 .624	0.337	4 '401 456 3	25 203 24	
8 {	Atlanta Northeast Base	136	16	23 '909	−o *896	23 '013	0 *336	4.649 026 8	44 568 38	
l	Sweat Mountain	20	43	03 °077	+0.596	03 '373	0 '337	4 '358 117 9	22 809 61	
ſ	Academy	65	30	02 687	+0.655	03 *342	0 '763	4 609 872 2	40 726 04	
9 {	Stone Mountain	84	45	30 °926	-o ·796	30 '130	0.763	4.649 026 8	44 568 38	
l	Sweat Mountain	29	44	26 .770	+2 *047	28 .817	0 .763	4 .346 400 3	22 202 42	
ſ	Kenesaw	14	47	22 *27 I	+0.064	22 *335	0.182	3 '970 276 1	9 338 48	
10 {	Atlanta Northeast Base	46	34	26 '983	+0.534	27 '517	0.182	4 '424 374 8	26 568 98	
l	Atlanta Southwest Base	118	38	10 .842	-0.140	10.702	0.184	4.506 615 3	32 108 15	
ſ	Kenesaw	16	32	34 *561	-1.581	33 *280	0 '343	4 '212 738 2	16 320 68	
11 {	Atlanta Northeast Base	129	23	28 '311	+0.822	29.133	0 '344	4 646 394 5	44 299 06	
	Stone Mountain	34	03	58 891	_o ·274	58.617	0 '343	4.206 615 3	32 108 15	
ſ	Kenesaw	1	45	12 '290	-1 '346	10 '944	0.030	4 '249 470 6	17 761 13	
12	Atlanta Southwest Base	175	37	26 '954	-0'194	26 '760	0 '031	4.646 394 5	44 299 '06	
1	Stone Mountain	2		22 '258	+0.130	22 '388		4 '424 374 8	26 568 98	
(Conc Mountain		37	22 230	1 0 130	22 300	0.031	4 424 3/4 0	20 300 90	

THE EASTERN OBLIQUE ARC.

Resulting angles and sides of the Allanta base net -continued.

No.	Stations.	Obs	ervec	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	/	//	//	//	//		
[Kenesaw	64	50	59 613	+0 '241	59 .854	0.310	4 386 815 7	24 367 76
13 {	Sweat Mountain	80	44	21 '711	+0.199	21/910	0.310	4 '424 374 8	26 568 98
Į	Atlanta Southwest Base	34	24	39 '322	-0.126	39 .166	0.310	4.182 214 9	15 213 '00
(Kenesaw	50	03	37 '342	+0.122	37 '519	0.317	4 '401 456 3	25 203 24
14 {	Sweat Mountain	102	22	17 '077	+0.851	17.928	0.318	4 '506 615 2	32 108 15
1	Atlanta Northeast Base	27	34	06 '340	· -o ·835	05 '505	0.312	4.185 514 6	15 213 00
,	Kenesaw	66	36	11 '903	-1 '105	10 '798	0 '524	4.609 872 2	
	Sweat Mountain		20						40 726 04
15 {		93		53 '384	-0.901	52 483	0. 524	4 646 394 5	42 299 06
(Stone Mountain	20	02	57 '001	+1 '290	58 •291	0.524	4.182 214 9	15 213 00
	Sawnee	25	20	47 '467	+0.464	47 '931	0.599	4 '346 400 3	22 202 42
16 {	Academy	112	53	42 '731	-o '452	42 .549	0.598	4 .679 227 4	47 777 93
(Stone Mountain	41	45	32 '095	—o ·509	31 .286	0.299	4 '538 334 2	34 540 94
ſ	Sawnee	13	16	56 °486	-1:586	54 '900	0.320	4 '212 738 2	16 320 68
17 {	Stone Mountain	28	58	56 '941	+1 .276	58 .512	0'320	4 536 834 8	34 421 '90
(Atlanta Northeast Base	137	44	07 °160	+o ·683	07 .843	0 '320	4 .679 227 4	47 777 '93
ſ	Sawnee	38	37	43 '953	—I 'I22	42 '831	0.629	4.358 117 9	22 809 61
18 {	Academy	70	24	16 '565	-3 '004	13.261	0.629	4 '536 834 8	34 421 '90
	Atlanta Northeast Base	70	58	05 '720	-0 '225	95 '495	0.629	4 '538 334 2	34 540 '94
		•							
	Sawnee	43	46	59.827	-0.122	59 '705	0.668	4 '401 456 3	25 203 24
19 {	Atlanta Northeast Base	65	81	18 189	0 '670	17.519	0.668	4 '519 739 5	33 093 '26
l	Sweat Mountain	70	54	46 *284	-1.204	44 '780	o *668	4 '536 834 8	34 421 '90
- 1	Sawnee	82	24	43 '780	-1 *244	42 536	0.961	4.649 026 8	44 568 38
20 {	Academy	47	23	40 '044	-1.106	38 .938	0.960	4 '519 739 5	33 093 26
l	Sweat Mountain	50	11	43 *207	-1.800	41 '407	0.960	4.538 334 3	34 540 95
ſ	Sawnee	57	03	56 '313	-1 .404	54 .606	1 '125	4 .609 872 2	40 726 04
21 {	Stone Mountain	42	59	58.831	—o ·288	58 '543	1 '125	4 '519 739 5	33 093 26
1	Sweat Mountain	79	56	09 '977	+0.248	10 .522	1 '124	4 .679 227 4	47 777 '93
ſ	Sawnee	54	57	07 '022	-2'167	04 '855	1 '599	4 .646 394 5	44 299 06
22 {	Stone Mountain	63	02	55 .832	+1.003	56 .834	1 '598	4 '683 359 5	48 234 '69
	Kenesaw	62	00	04 '273	-1.166	03 '107	1 '599	4 '679 227 4	47 777 '93
,			40		0.1500				
	Sawnee	41	40	10.536	-o ·582	09 '954	0 '935	4.506 615 3	32 108 15
23 {	Atlanta Northeast Base,		52	24 '529	-1 '505	23 '024	0 '936	4 '683 359 5	48 234 69
(Kenesaw	45	27	29 '712	+0.119	29 .828	0 '935	4 536 834 8	34 421 '90
[Sawnee	2	06	49 '291	+0 *460	49 '751	0.050	4.185 514 6	15 213 00
24 {	Kenesaw	4	36	07 630	+0.061	07.691	0.020	4 '5 19 739 5	33 093 26
(Sweat Mountain	173	17	03 .361	-o ·653	02 '708	0 050	4 '683 359 5	48 234 69

Resulting angles and sides of the Atlanta base net-continued.

No.	Station.	Ob	serve	d augles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	11	//	11	11		
ſ	Pine Log	22	42	26 '706	+1 .084	27 '790	0.415	4 182 214 9	15 213 '00
25 {	Sweat Mountain	100	54	55 .825	-0.589	55 .236	0 '416	4 '587 666 4	38 696 03
Į.	Kenesaw	56	22	38.414	-o ·494	37 '920	0.412	4.216 084 1	32 815.89
ſ	Pine Log	70	04	02 '461	-o ·o56	02 '405	1 .383	4 683 359 5	48 234 169
26 {	Sawnee	48	57	15 .630	+0.203	16.133	1 .383	4 '587 666 5	38 696 04
- {	Kenesaw	60	58	46 *044	-o ·433	45 611	1 ,383	4 651 920 1	44 866 28
1	Pine Log	47	21	35 '755	-1 '140	34 .615	0.918	4 '519 739 5	33 093 26
27 {	Sawnee	46	50	26 '339	+o *044	26.383	0.918	4.216 084 1	32 815 89
Į	Sweat Mountain	85	48	00.814	+0 '942	01 '756	0.918	4 651 920 1	44 866 '28
ſ	Grassy	43	29	35 .631	+0.041	35 '702	o :889	4 '519 739 5	33 093 '26
28 {	Sawnee	95	03	54 '068	+0.123	54 '221	o ·889	4 '680 284 1	47 894 33
ł	Sweat Mountain	41	26	32 .604	+0.140	32 '744	o '889	4 '502 751 9	31 823 79
ſ	Grassy	43	12	01 '400	+0 '453	от 853	0 '931	4.216 084 1	32 815 89
29 {	Sweat Mountain	44	2 [28.510	+0.802	29 '012	0 '931	4 '525 240 9	33 515 13
{	Pine Log	92	26	31 .871	+0.028	31 '929	0 '932	4.680 284 1	47 894 33
(Grassy	86	41	37 '031	+0.524	37 '555	0.903	4.651 920 1	44 866 28
30 {	Sawnee	48	13	27 '729	+0.100	27 .838	0 '902	4 525 240 9	33 515 13
l	Pine Log	45	04	56.116	+1.108	57 314	0 '902	4.202 751 9	31 823 79
[Kenesaw	31	09	• • • • • •		48 '202	1 '290	4.202 751 9	31 823 79
31 {	Grassy	51	39	33 *335	-1 .634	31 .698	1 '290	4 683 359 5	48 234 69
- {	Sawnee	97	10	43 '359	+0.615	43 '971	1 ,501	4 '785 444 9	61 016 17
ſ	Kenesaw	29	48			57 '408	0 '995	4 '525 240 9	33 515 13
32 {	Pine Log	115	08	58.577	+1.142	59.719	0 '994	4 '785 444 9	61 016 17
- {	Grassy	35	02	03 '696	+2.161	05 '857	°o '995	4 . 587 666 5	38 696 04
ſ	Kenesaw	26	33			40 *511	0 '352	4 '680 284 1	47 894 33
33 {	Grassy	8	09	57 '704	-1 .408	55 '996	0.352	4.185 514 6	15 213 '00
{	Sweat Mountain	145	16	24 °035	+0.213	24 '548	0 '351	4 '785 444 9	61 016.14

Descriptions of stations.

Atlanta Southwest Base.—This station is in De Kalb County, Georgia, about 12 miles northeast of Atlanta, near and to the east of the track of the Southern Railway. It is situated on the northwestern slope of a small hill, 20 meters from and 8 feet below the summit. It is 100 meters south of Humphrey's house.

This end of the base has both a surface and an underground mark. The lower mark is a hole drilled in a copper bolt in the top of a granite post 2 feet long and 6 inches square. The top of this post is $3\frac{1}{2}$ feet below that of a large granite monument covering it, the upper mark being in this upper monument. The upper block is $3\cdot3$ feet square at base and 3 feet square at top and $2\cdot5$ feet high; it rests on a brick platform, laid in cement, 5 feet square and 1 foot high, with hole 1 foot square in center, through which the top of lower monument may be seen. A drill hole at the intersection of two

cross lines, in a copper bolt driven into the center of the top of the upper block, marks the station. Over the upper monument is placed a granite shaft bearing the usual inscriptions on its faces. The station is further defined as the center of a square whose side is 24^m·75, each angular point of the square being a drill hole at the intersection of cross lines in a copper bolt driven into the top of a stone post 3 feet long and 6 inches square at top. The center of each reference mark is 18 meters from the station, and diagonal grooves are cut in top of each, with an arrowhead pointing to the station.

Atlanta Northeast Base.—This station is at a road crossing on the Southern Railway, near Norcross, Gwinnett County, Georgia. It is on the west side of the road and the west side of the railroad, on the place of J. H. Maloney. The station is marked exactly as described at Atlanta Southwest Base.

Atlanta Middle Base.—The station is in De Kalb County, Georgia, upon a small knoll in edge of woods 65 feet northwest of the Southern Railway and about a quarter of a mile northeast of the railroad station at Doraville. The underground mark is the center of the mouth of a short-necked bottle. The surface mark is a drill hole at the intersection of cross lines in the head of a copper bolt driven into a granite post, 1 foot square and 3 feet long, with diagonal grooves cut in the top, one in line with the base and the other perpendicular to it. The copper bolt with the cross lines and drill hole is placed at the intersection of the grooves. Around this central monument are buried four reference marks, two in line with the base and two in a line perpendicular to it. Each of the granite posts is 7 inches square and 3 feet long, and has in its top a diagonal groove with an arrowhead pointing to the station, from which the center of each reference mark is 5 feet distant.

Stone Mountain.—This station is in De Kalb County, Georgia, on the well-known mountain of that name, about 15 miles N. 76° E. from Atlanta, and about 1 mile from the post-office, Stone Mountain, on the Georgia Railroad, De Kalb County, Georgia.

The station is marked by a copper bolt in the solid granite of the mountain. Around the bolt the rock is cut down to a level in a circle of $3\frac{1}{2}$ feet radius, the bolt being the center. In the periphery of this circle are six equidistant holes $3\frac{1}{2}$ feet apart and 2 inches deep.

Academy.—This station is on the highest point of Academy Hill, in Lawrenceville, the county seat of Gwinnett County, Georgia.

The underground mark is the mouth of a bottle 3 feet below the surface. Over this is a granite post 30 inches long and 7 inches square, with the letters U. S. C. S. cut in top. Around the central monument are placed four reference marks about 30° W. of S., 30° N. of W., 30° E. of N., and 30° S. of E. The center of the SW. reference mark is 4 feet 6 inches from the center of the station, and the center of the other marks is 5 feet distant from station. In the top of each reference mark is a diagonal groove with an arrowhead pointing toward the station.

Kenesaw.—This station is on the highest part of Kenesaw Mountain, about 3 miles northwest of Marietta, Cobb County, Georgia. The station is reached by following the Marietta and Cartersville road for about 2½ miles from the Kenesaw House, in Marietta, and then following the road which turns to the left, near a covered well, and finally along the spur of the mountain to the summit. The underground mark is a cross in the head of a copper bolt driven into a hole drilled in the solid rock 2 feet 1¾ inches below the surface. Above this is planted a granite post 5 inches square, with

the top projecting 2 inches above the ground. The intersection of two cross lines in the top of the post marks the station. The letters U. S. C. S. were also cut in top of post. The station has three reference marks—A, B, and C—these being the intersections of cross lines cut in the heads of copper bolts driven into holes drilled in the rock. The distances of these points from the station are 6.65 feet, 11.35 feet, and 11.19 feet, respectively. The angles subtended at the station by lines from A to B, B to C, and C to A are 170° 59′, 47° o6′, and 141° 55′, respectively.

Sweat Mountain.—This station is in Cobb County, Georgia, the nearest post-office being Woodstock, almost 4 miles distant in a direct line on the Atlanta, Knoxville and Northern Railroad. The station is on top of the mountain, about 1½ miles from Mr. Dial's house, and is reached by following the Marietta and Cumming road to a point 9¾ miles from Marietta, near Mr. Garrison's, and then taking the road along the southeast ridge of the mountain.

The station is marked by a copper bolt driven in a hole drilled in the rock very near the edge, and has three reference marks, A, B, and C, which are copper bolts driven in drill holes in the most solid rocks available. These points are 6'2 feet, 7'67 feet, and 12'3 feet, respectively, from the station. Taking the line to Kenesaw, S. 48°33' W., as the initial or zero direction, and measuring angles counter-clock-wise, the directions of A, B, and C are 3° 19' 30", 83° 44' 30", and 231° 12' 30", respectively.

Sawnee.—This station is on the most prominent or central peak of Sawnee Mountain, in Cumming Township, Forsyth County, Georgia, about 2 miles NE. of Cumming and 12 miles from Buford, on the Southern Railway.

The station was marked temporarily by a copper tack driven in a stub, with similar stubs for reference marks. The permanent marks are supposed to be the usual central marks with four reference marks.

Pine Log.—This station is on Pine Log Mountain, Cherokee County, Georgia, about 7 miles north of Wolf Pen. The station is reached by going east from Cartersville, to Wolf Pen; thence 9 miles to Moore's Iron Furnace; thence 3 miles to Mr. Lewis' house; thence to the station on top of the mountain.

The underground mark is the neck of a jug 2 feet 6 inches beneath the surface. The surface mark is the intersection of cross lines on the top of a granite post 5 inches square, planted above the jug, the top of post projecting above the ground. The letters U. S. C. S. were cut in the angles of the cross lines. Around the station are four granite reference marks similar to the central monument, to the north, east, south, and west, each distant 6 feet from the station. In the top of each is cut an arrowhead pointing to the station.

Grassy.—This station is on top of Grassy Mountain, 3,290 feet high, in Pickens County, Georgia, about 6 miles in a direct line east of Jasper, the county seat, on the Atlanta, Knoxville and Northern Railroad. The station marks are supposed to be the usual central monument, and four reference marks to the north, east, south, and west, each 5 feet distant from the station.

6. THE DAUPHIN ISLAND BASE LINE AND BASE NET, ALABAMA, 1847.

Location, measurement, and resulting length of the Dauphin Island base line, Alabama, 1847.

When reconnoitering for a primary base line on the coast of Alabama and Mississippi in 1845, Assistant F. H. Gerdes selected a site on Dauphin Island, and a preliminary measurement was made with a chain in 1845–46. The measurement was made during May and June, 1847, by A. D. Bache, Superintendent of the Coast Survey. A full account of this measurement, and the only one published, will be found in Coast and Geodetic Survey Report for 1889, Appendix No. 17, pages 479–491, which permits of giving less space to it here than would otherwise be demanded.

This is the *first* base line measured with the Bache-Würdemann contact-level compensating apparatus, six meters in length, designed in 1845, and constructed at the Survey Office in 1845–46. A description of this apparatus, with illustrations of its detail construction, is contained in Coast Survey Report for 1854, Appendix No. 35, pages 103–108, by E. B. Hunt, Lieutenant, U. S. A., and Assistant, Coast Survey. This article was reprinted in Coast Survey Report for 1873, Appendix No. 12, pages 132–136, with a supplement describing improvements. The *last* base line measured with the apparatus was the Atlanta base in 1873. It was compared in 1877, but its employment in the field closed with its use in 1873. It was superseded by an apparatus less complex, less cumbersome, and more-easily transported, using a contact slide, and either with or without the principle of compensation.

The average elevation of the island is but little more than 1 meter above the mean level of the Gulf. The line passes over sand, generally bare, but in part it is covered with low grass or rushes. To prepare the ground for the measure a number of sand ridges had to be leveled and a few gullies, cut by the sea, had to be crossed. The leugth of the base is 10.66 kilometers (or 6.62 statute miles). Its terminal points were marked with stone monuments and (so called) milestones were set along the line. In August, 1852, a hurricane swept over the island, causing the sea to wash over the line and disturb several of the intermediate marks and the monument at West Base. Certain verification marks having been recovered, part of the line was remeasured in 1855 by Assistants F. H. Gerdes and J. E. Hilgard, and the line was further secured in 1857 by the insertion of screw piles as marks. The marks were recovered in 1898 by Assistant W. B. Fairfield. The middle point is in latitude 30°14′7 and in longitude 88°11′6, with mean azimuth 84°13′.

The length and compensation of the Bache-Würdemann apparatus depends entirely on the length and the coefficient of expansion of the 6-meter iron standard bar, prepared in 1847 and known as No. 1. It was standardized by means of numerous comparisons made between the years 1847 and 1882. The elaborate comparisons and determinations of 1860, made by Assistant J. E. Hilgard at the Smithsonian Institution, are described in Coast Survey Report for 1862, Appendix No. 26, pages 248–255. The coefficient of expansion was found to be 0'000 011 54 for the centigrade scale (or 0'000 006 41 for the

Fahrenheit scale). The weighted (assumed) mean of the most trustworthy observations,

ALEXANDER DALLAS BACHE (1806-1867).

namely, those of 1860, 1877, and 1882 (the last by the writer), gave the final value: Length of the 6-meter (\grave{a} bout) standard (No. 1) at 0° C. = 5 999 949 meters*, whereas ± 3

the 1860 determination gave 5.999 941 meters, the difference being only 8 μ in 6 meters. ± 2

It was thought well to adhere to the 1860 value as the one in good accord with the coefficient of expansion then found. It was found that the compensating bars or "tubes" of the apparatus did not retain an invariable length at different times, probably owing to the great length of the apparatus and wear on the compensating lever, so that for each base their length had to be specially determined. At Dauphin Island tubes 1 and 2 were intercompared in May and June, before and after the base measure, and tube 2 was likewise compared with the standard bar. The results were, tube 1 longer than tube 2, o^m ooo o21 6: on May 11 and 12 tube 2, at about 23° 6 C., with probably rising temper±1 4

ture, was found equal to 6^{m} :000 057 3, and on June 10, at about 25° o C., with probably ± 11 0

falling temperature, tube I was equal to 6^m·000 o64 o. Equating these measures with ±1I o consideration of their weights, we get:

Length of tube 1, $6^{\text{m}} \cdot 000 \cdot 071 \cdot 0$ $\pm 11 \cdot 0$ Length of tube 2, $6^{\text{m}} \cdot 000 \cdot 050 \cdot 3$ $\pm 11 \cdot 0$

The adjustment of the compensation apparatus for changes of temperature was made in 1846 by Superintendent A. D. Bache, with the result that the lengths of the tubes were found practically invariable during the range of natural temperatures as well as at different rates of change of temperature.

The probable error assigned to the deduced length of the tubes may be taken to include all uncertainty arising from the direct comparisons with the standard, and that of the standard itself, but excluding uncertainty due to any imperfect compensation during the measure. The temperature of the tubes was taken from three thermometers attached to each tube, which gave an average of 30° o C. during the field operations, while that of standardization was 24° 3 C.; the probable error of the length of each tube was accordingly increased to $\pm 0^{\circ}$ 000 o14 6. The maximum inclination of a tube during measurement but slightly exceeded 1°; the excess of length of 1777th tube over the west end of the base was measured with a brass meter scale, having regard for its temperature.

^{*}For further particulars see the account of the length of the El Paso base in Colorado, 1879, in Special Publication No. 4, "The Transcontinental Triangulation."

We have for the length of the base:

O Company of the comp	
1 776 tubes of mean length	10 656m·107 6
1 additional tube No. 1	+6.000 I
Excess of last tube at west base	-0.111 3
Correction to reduce to mean value of a double measure of 97 tubes	+0,000 1
Correction for inclination of tubes	-0.092 8
Reduction to half-tide level of Gulf	0.003 1
Resulting length of base	10 661m·837 6

We have also the following resulting distances from the east end of the base to the several so-called milestones:

To first milestone	1 608m o 15 6
To second milestone	3 216.032 5
To third milestone	4 824.048 2
To fourth milestone	6 432.063 9
To fifth milestone	8 040 079 8
To west end of tube 1532	9 192'008 1
To sixth milestone	9 648 095 6
To west end of tube 1658	9 948 005 8
To sixth and a half milestone	10 452 103 7

The hurricane of August, 1852, having displaced milestones V, VI, and VI½, as well as the monument at West Base, that portion of the old line between the verification marks at the east end of tubes No. 1533 and No. 1659 was remeasured in May, 1855, by means of the 4-meter contact-slide apparatus,* with iron rods, Nos. 1 and 2. Their lengths at o°C. were: No. 1, 3^m·999 937 7, and No. 2, 3^m·999 909 8.

The length remeasured is as follows:

```
      188 rods of mean length, at 30°·67 C.
      752<sup>m</sup>·251 8

      1 rod No. 1, at 34°·4 C.
      4.001 5

      Excess of last rod over line
      -0°260 0

      Reduction to sea level
      -0°000 2

      Resulting length
      755<sup>m</sup>·993 1

      Original length of 1847, 755<sup>m</sup>·9977
```

A screw pile was inserted in the line at a distance 9 942^m·798 4 from the east end of the base.

The probable error of the assigned length of the base arising from the uncertainty in the length of tubes is $\pm 0^m$:025 94; that due to contact and transfer errors during the measurement (which occupied seventeen working days) is estimated at $\pm 0^{mm}$:01 $\sqrt{1.776}$ or $\pm 0^m$:000 42 and $\pm 0^{mm}$:082 $\sqrt{68}$ or $\pm 0^m$:000 68, respectively.† Combining these probable errors, we find the square root of the sum of the squares $= \pm 0^m$:026 0, which equals $_{4.1.0}^{1.0.0.0}$ (nearly) of the length and corresponds to a logarithmic difference in the length of 0.000 001 06. Hence the final value for the length of the Dauphin Island base, in terms of the prototype meter = 10 661^m·837 6, and its logarithm = 4.027 832 06.

^{*} For description of this subsidiary apparatus see Coast Survey Report for 1856, Appendix No. 60

[†] An account of the experiments for contact and transfer errors, Coast and Geodetic Survey Report for 1889, p. 485.

The Dauphin Island base net and results of its adjustment.

This net, as shown in the figure, represents measures executed at two periods widely differing in date. The older work of 1846, 1847, 1848, in charge of Assistant F. H. Gerdes, which includes the base measure, is exhibited in the diagram by lines of dashes, while the later work of 1897–98, in charge of Assistant W. B. Fairfield, is shown by full lines. It was at first the intention to adjust the whole of the measures

at the stations connected with the base, but when the computation starting from the Atlanta Base was carried through the adjusted triangulation and had reached the Dauphin Island Base, there was found an almost perfect accord between its length as derived from the Atlanta Base and as measured directly. No further adjustment, therefore, was demanded on this account, but for the triangulation to the westward toward New Orleans—that is, for the old triangulation—the three stations, Cat Island, Cedar Point, and Point aux Pins, required to be brought into perfect relationship with the base and with the position of Fort Morgan. There is no line from Dauphin Island East Base to Fort Morgan in the old work, and besides, the direction from West Base to Fort Morgan is not in harmony with the later measure.

In the fourth column of the following abstracts of directions the twelve correc-

tions to directions numbered 53 to 64 are those which resulted from the adjustment of the fifth section of the triangulation southwest of the Atlanta Base, comprised between the lines Creagh to Pollard on the north and Fort Morgan to Dauphin Island West Base on the south. The corrections to directions numbered 1 to 16 are those pertaining to and resulting from the present adjustment of the old measures. The ground at the stations is but a few meters above the level of the Gulf.

For the details of the adjustment of the triangulation to the northward of the

Dauphin Island Base and of Fort Morgan, see the record and results of the fifth and last section of the triangulation in Alabama (1895–1898).

The small diagram shows the adjusted figure, or the old base net upon which the survey to the westward depends. An independent start is made directly from the base. Respecting the position of Fort Morgan, the single triangle Dauphin Island West Base, Cedar Point, Fort Morgan, from the 1847–48 measures, has been added to the other triangles. The measures at Fort Morgan in 1847, by Assistant R. H. Fauntleroy, were made in connection with his observations for azimuth, and the azimuth station was occupied for the measure of the horizontal angles.

Abstracts of horizontal angles and directions at stations of the Dauphin Island base net.

Dauphin Island East Base, Mobile County, Alabama. February, 1846. F. H. Gerdes, observer. Theodolite No. 6. Circle used in IV positions. January and June, 1848. F. H. Gerdes, observer. 45 cm direction theodolite No 4. Circle used in V positions.

Number of directions.	Objects observed,			from adjust- it.	Corrections from net adjust- ment.	Final seconds.
		o	1	11	11	11
5	Dauphin Island West Base	0	00	00 000	+0.02	00 '05
6	Cat Island	52	04	29 .67	-o · 2 8	29 *39
7	Cedar Point	103	52	29 '53	+o ·23	29 '76

Dauphin Island East Base, reoccupied August 1 to 30, 1897, and March 6 to 9, 1898. W. B. Fairfield, observer. 30 cm repeating theodolites Nos. 16 and 32.

Dauphin Island West Base	Number of directions.	Objects observed.			from djust- t,	Corrections from adjustment of fifth section.	Final seconds.
59 St. Elmo 80 51 20 71 -0 08 20 63 60 Daphue 125 25 47 09 +0 56 47 65 61 Fort Morgan 197 27 36 91 -0 71 36 20 Also, Dauphin Island West Base 0 00 00 00 +0 23 00 23 Point aux Pins, 1898 46 19 52 90 Middle Bay Light-House 125 53 38 37 Fort Morgan Light-House 197 58 04 81			0	1	11	//	11
60 Daphue 125 25 47 '09 +0 '56 47 '65 61 Fort Morgan 197 27 36 '91 -0 '71 36 '20 Also, Dauphin Island West Base *0 00 00 00 +0 '23 00 '23 Point aux Pins, 1898 46 19 52 '90 Middle Bay Light-House 125 53 38 '37 Fort Morgan Light-House 197 58 04 '81	58	Dauphin Island West Base	0	00	00,00	+0.53	00.53
61 Fort Morgan Also, Dauphin Island West Base o o o o o o o o o o o o o o o o o o o	59	St. Elmo	80	51	20 '71	-o ·o8	20 .63
Also, Dauphin Island West Base	60	Daphue	125	25	47 '09	+o·56	47 .65
Dauphin Island West Base ° 0 00 00 00 00 +0 23 Point aux Pins, 1898 46 19 52 90 Middle Bay Light-House 125 53 38 37 Fort Morgan Light-House 197 58 04 81	61	Fort Morgan	197	27	36 '91	—0 '71	36 '20
Point aux Pins, 1898 46 19 52 90 Middle Bay Light-House 125 53 38 37 Fort Morgan Light-House 197 58 04 81		Also,					
Middle Bay Light-House 125 53 38 '37 Fort Morgan Light-House 197 58 04 '81		Dauphin Island West Base	° 0	00	00,00	-0.53	00 '23
Fort Morgan Light-House 197 58 04.81		Point aux Pius, 1898	46	19	52 '90		
		Middle Bay Light-House	125	53	38 '37		
Sand Island Light-House 224 55 51 14		Fort Morgan Light-House	197	58	04 '81		
		Sand Island Light-House	224	55	51 '14		

Abstracts of horizontal angles and directions at stations of the Dauphin Island base net—continued.

Dauphin Island West Base, Mobile County, Alabama. November, 1847. F. H. Gerdes, observer. 45 cm direction theodolite No. 4. Circle used in V positions. January, 1848. F. H. Gerdes, observer. Instrument as before. Circle used in III positions.

Number of directions.	Objects observed.	Results from station adjust- ment.	Corrections from net adjust- ment.	Final seconds.
		0 / //	//	//
	Petit Bois	0 00 00 00		
	Grand Batture	45 15 13 69		
I	Point aux Pins	81 33 33 52	+0.14	33 .66
2	Cat Island	128 34 20.89	+0.24	21.13
3	Cedar Point	151 37 06 72	-0.49	06 '23
4	Dauphin Island East Base	190 01 23.58	+0.10	23 .68
j	Fort Morgan*	198 58 49 75		

Dauphin Island West Base, reoccupied September 1 to 6, 1897, and February 23 to 27, 1898. W. B. Fairfield, observer. 30 cm repeating theodolite No. 32.

Number of directions.	Objects observed.	Results from station adjustment.		idjust-	Corrections from adjustment of fifth section.	Final seconds.
		0	/	//	//	//
	Casotte	0	00	00,00		
	Point aux Pins, 1898	46	29	59 .46		
62	St. Elmo	73	18	25 '29	+0.12	25 '46
63	Dauphin Island East Base	15.1	58	46 '46	—o ·74	45 '72
	Baylor's West Base, 1892	156	02	30 71		
64	Fort Morgan Quarantine flagstaff	158	33	57 *96		
	Fort Morgan	160	56	08 '79	+o ·56	09 '35
	Sand Island Light-House	174	34	48 '52		
	Horn Island Light-House	333	31	03 '21		

Fort Morgan, Baldwin County, Alabama. March, 1846, and May, 1846. F. H. Gerdes, observer. Theodolite No. 6. Circle used in III positions. December, 1847. J. E. Hilgard, observer. 45^{cm} direction theodolite No. 4. Circle used in V positions.

Number of directions.	Objects observed.	Results from station adjust- ment.	Corrections from net adjust- ment.	Final seconds.
		0 ! //	//	//
	Azimuth Mark	0 00 00 00		
53	Dauphin Island West Base	65 00 30 90	+0.45	31.35
	Cedar Point	115 44 45 50	• • • •	

^{*} The measures of the angle between East Base and Fort Morgan in 1848 and 1897 differ 3".84; probably the object observed upon was not well centered over the station. The direction is not interlaced with other directions at the station, and no use has been made of it in the present adjustment.

Abstracts of horizontal angles and directions at stations of the Dauphin Island base net—continued.

Fort Morgan, reoccupied June 14 to 20, 1897, and January 20 to 23, 1898. W. B. Fairfield, observer. 30cm repeating theodolite No. 16 used in 1897, and 30cm repeating theodolite No. 32 in 1898.

Number of directions.	Objects observed.	4			from djust- t.	Corrections from adjustment of fifth section.	Final conds.
			0	/	11	//	11
53	Dauphin Island West Base		0	00	00,00	·+o *45	00 '45
54	Dauphin Island East Base		8	30	12 .62	+0.23	12.88
	Baylor's West Base, 1892		10	02	56 '90		
	Point aux Pins, 1898		27	38	10 '50		
55	St. Elmo		55	51	43 '92	—o ·23	43 '69
56	Spring Hill		73	56	39 '86	—o ⋅58	39 '28
	Middle Bay Light-House		S9	35	36.84		
57	Daphne	1	02	05	04 '52	+0.14	04 '66
	Sand Island Light-House	2	296	55	25 '96		

Cedar Point, Mobile County, Alabama. April 23 to 28, 1848. F. H. Gerdes, observer. 30cm theodolite. Circle used in III positions.

Number of directions.	Objects observed.			from djust- t.	Corrections from net adjust- ment.	Final seconds.
		٥	/	11	//	//
	Fort Morgan	0	00	00,00		
8	Dauphin Island East Base	44	10	49.67	-o ·o7	49 '60
9	Dauphin Island West Base	81	54	02 '57	+0.12	02 '74
10	Point aux Pins	133	36	22 '92	-0.10	22 .82

Cat Island, Mobile County, Alabama. April 15 to 16, 1846. F. H. Gerdes, observer. Theodolite No. 6. May 19, 1847. J. E. Hilgard, observer. May, 1848. F. H. Gerdes, observer.

		0	/	//	//	//
14	Dauphin Island East Base	0	00	00,00	+0.10	00.10
15	Dauphin Island West Base	66	28	28 .62	-0.19	28 '43
	Point aux Pins	163	50	05 '99	+0.10	06 '09

Point aux Pins, Mobile County, Alabama. May 23 to June 1, 1848. F. H. Gerdes, observer. 30cm theodolite. Circle used in III positions.

		0	/	//	/	,	//
11	Cedar Point	0	00	00,00	+0	.32	00 '32
12	Cat Island	22	36	33 '45	-0	.29	33 .16
13	Dauphin Island West Base	58	14	o8 '33	-0	·03	08 '30
	Petit Bois	105	51	21 '51			
	Grand Batture	147	05	47 '69			

DAUPHIN ISLAND BASE NET ADJUSTMENT.

Observation equations.

I
$$0=-1.00-(3)+(4)-(5)+(7)-(8)+(9)$$

II $0=+1.25-(1)+(3)-(9)+(10)-(11)+(13)$
III $0=+0.76-(2)+(4)-(5)+(6)-(14)+(15)$
IV $0=-0.65-(1)+(2)-(12)+(13)-(15)+(16)$
V $0=-0.4+1.63(13)-2.93(12)+1.30(11)+1.66(10)-4.38(9)+2.72(8)-0.52(7)+2.16(5)$
 $-1.64(6)+0.27(16)+0.65(15)-0.92(14)$

The solution of the normal equations gives the values of the correlatives:

$$C_1 = +0.2645$$

 $C_2 = -0.2234$
 $C_3 = -0.1617$
 $C_4 = +0.0783$
 $C_5 = +0.0726$

and the corrections to the directions are:

$$(1) = +0.145$$
 $(9) = +0.170$
 $(2) +0.240$ $(10) -0.103$
 $(3) -0.488$ $(11) +0.318$
 $(4) +0.103$ $(12) -0.291$
 $(5) +0.054$ $(13) -0.027$
 $(6) -0.281$ $(14) +0.095$
 $(7) +0.227$ $(15) -0.193$
 $(8) -0.067$ $(16) +0.098$

The mean error of a direction, $\sqrt{\frac{0.73}{5}} = \pm 0'' \cdot 38$ and the probable error $= \pm 0'' \cdot 26$.

Resulting angles and sides of the Dauphin Island base net.

No.	Stations.	Obse	rved	angles.	Correc-	Spheri- ical angles.	Spheri- ical excess.	Log. distances.	Distances in meters.
		0	1	11	//	11	11		
- [Cedar Point	37	43	12 '90	+0.24	13 *14	0 .00	4 027 832 1	10 661 838
1 {	Dauphin I'd. East Base	103	52	29 53	+0.12	29 70	0.10	4 '228 357 0	16 918 31
Į	Dauphin I'd. West Base	38	24	16.86	+0.29	17 '45	0.10	4.034 458 5	10 825 76
ſ	Point aux Pins	58	14	08 '33	-o ·35	07 '98	0.51	4 '228 357 0	16 918 31
2 {	Cedar Point	51	42	20 '35	-o ·27	20.08	0 '21	4 . 193 602 1	15 617 .27
Į	Dauphin I'd. West Base	70	03	33 *20	−o •63	32.57	0.51	4 '271 975 5	18 705 77
ſ	Cat Island	66	28	28 .62	−o · 29	28 '33	0.08	4 '027 832 1	10 661 .84
3 {	Dauphin I'd, East Base	52	04	29.67	−o <i>*</i> 33	29 '34	0 '07	3 '962 492 9	9 172 61
Į	Dauphin I'd. West Base	61	27	02 .69	-0.14	02 '55	0 '07	4 '009 213 8	10 214 42
ſ	Point aux Pins	35	37	34 .88	+0.56	35 '14	0 '09	3 '962 492 9	9 172 61
4 {	Cat Island	97	2 I	37 °37	+0.59	37 .66	0.09	4 193 605 2	15 617 27
Į	Dauphin I'd. West Base	47	00	47 '37	+0.10	47 '47	0.09	4.061 419 1	11. 219.11
-	Fort Morgan (1847)	50	44	14.6	+0.1	14 '7	0 '2	4 .228 357 0	16 918:31
5 {	Dauphin I'd. West Base	47	21	43 °O	+0.5	43 '2	0.3	4 '206 143 7	16 074 73
Į	Cedar Point	81	54	02 .6	+0.2	02 '8	0,3	4 '335 120 3	21 633 17

Descriptions of Stations.

Dauphin Island East Base.—This station is on Dauphin Island, at the entrance of Mobile Bay about 7 miles from the west end of the island and 3½ miles from the east end, near the western edge of the pine woods which cover the eastern end of the island.

The station was recovered and reoccupied in 1897 and marked as follows:

In a bed of cement 51/2 feet square, extending 6 feet below the surface, are two

pieces of drain tile 2 feet long and 4 inches in diameter, each placed with its axis vertical, one above the other, the lower extending 7 inches below the bottom of the cement. A pine pole 6 feet long and 2 inches in diameter is driven down through the pipes until its top is 16 inches below the top of the upper tile. Above this pole in the upper pipe are placed vertically, one above the other, two copper bolts, each 8 inches long and 31/4 inches in diameter, a cross on each bolt marking the station, the upper mark being 3 feet below the surface. The bolts are held in place by cement, with which the remaining space of the pipes is filled. Above the top of the upper pipe a cavity I foot square and 6 inches deep is left in the cement. Over this cavity, still embedded in cement, the four original granite blocks of the base of the monument of 1847 are built, as originally, in two courses, the top of the upper course projecting 2 inches above the surface. A copper bolt in the top of one of the blocks of the upper course is directly over the cross on the bolt in the pipe and marks the station. The original granite shaft is placed on this foundation and cemented down over the copper bolt, its apex again marking the station. On the north, east, south, and west faces of the shaft are inscribed, respectively, "A. D. Bache, Suptdt.," "U. S. Coast Survey," "1847," "Base No. 5." The station is witnessed by two marks in the same vertical line, one on the surface and one underground, in prolongation of the base line, 144'1025 meters east of the extremity and just in the edge of the pine woods. The underground mark is a cross in an iron bolt in the top of a tile pipe 2 feet long embedded vertically in a mass of cement 2 feet in diameter, the top of the pipe being 3 feet below the surface. Above this pipe is placed a granite block I foot square and 21/2 feet long, the top of block being flush with the surface and containing a copper bolt as the surface mark.

Dauphin Island West Base.—This station is on the western end of Dauphin Island. In 1847 the station was within one-half mile of the extremity of the island, while in 1897 the island extended 3½ miles west of it. In September, 1897, the distance was reduced by a storm which washed away 1 mile of the western end of the island. The station is marked as described at Dauphin Island East Base, except that the cement at this station is 6 feet square and 5 feet deep and only one piece of tile pipe was put in.

Fort Morgan.—The station is near the center of the northwest bastion (No. 2) of Fort Morgan, at the entrance to Mobile Bay. The station of 1846 was recovered and reoccupied in 1892 and again in 1897–98.

The earthenware vessel used originally was left in its place, filled with cement, and a nail was placed in its center to mark the station, the top of the nail being 2½ feet below the surface. Above this was placed vertically a section of tile drain pipe inclosed in a nail keg, both filled with cement. In the pipe are two spike nails, one above the other, making additional marks. The head of the upper nail is just beneath the brick floor.

Cat Island.—This station is on Cat Island, in Mississippi Sound, north of Dauphin Island. The station of 1845 was marked by a buried earthenware cone. In 1855 a new station was established near the old one.

Cedar Point.—This station is on Mon Louis Island, on the western side of Mobile Bay. The station is situated on the castern extremity of the island, on a narrow strip of beach, among marshes. In 1846 an earthenware cone was buried as the station mark, and copper nails were driven in blazed trees with the following directions and distances: One northwest, 9 feet 4 inches; one northeast, 18 feet; one southwest, 32 feet 6 inches, as reference marks.

Point aux Pins.—On the point of land of the same name which extends southward into Mississippi Sound, just west of Bayou Batture. In 1846 the station was marked by an earthenware cone buried 3 feet under the surface. In 1848 four poles 4 feet long and 6 inches in diameter were inserted around the undisturbed cone, the station being the point of intersection of two perpendicular lines determined by four copper nails driven in the tops of these poles.

St. Elmo.—The station is in Mobile County, Alabama, about '2 miles east of St. Elmo, on the Louisville and Nashville Railroad, and about one-half mile south of Otis's mill. The station is in the northwest corner of N. E. ¼ of S. E.

The underground mark is the intersection of cross lines on top surface of limestone post, 6 inches square and 18 inches long, buried vertically, with top 3 feet below surface of ground. The letters U. S. C. G. S. are cut in the angles of the cross lines. Six inches above this is another limestone post, 6 inches square and 28 inches long, its top level with the surface of the ground and marked as the lower stone.

Daphne.—This station is in Baldwin County, Alabama, about one-half mile northeast of the court-house at Daphne. The station is in the southwest corner of the S. W. ¼ of S. W. ¼ of N. E. ¼ of N. E. ¼ of N. E. ¼, sec. 19, T. 5 S., R. 2 E. Distance from the northeast corner of section 19 to station is 882 feet, and the station bears S. 44° 17′ W. (true) from the northeast corner of section 19.

A 1-gallon stone jug was buried, bottom up, and a small hole in the center of the bottom, 3 feet below the surface, is the underground mark. A limestone post 6 inches square and 30 inches long was placed in a vertical position 6 inches above the jug, the surface mark being the intersection of cross lines on its top surface, which is flush with the ground. The letters U. S. C. G. S. are cut in the usual manner in the angles of the cross lines.

Spring Hill.—The station is about 7 miles northwest of Mobile, on the highest part of Spring Hill, on the land of Judge H. Anstell, about 40 feet north of the fence line of main road and about 200 yards west of road going to Whistler, and also about 200 yards west of station Spring Hill on electric road.

The station is marked as Daphne, except that the jug is buried mouth up, the center of mouth being the underground mark. The following true bearings and distances were measured: Oak tree, No. 1, N. 62° 33′ 10″ E., 103 feet; oak stump, No. 2, N. 18° 17′ 20″ W., 39 feet 9 inches; oak stump, No. 3, S. 95° 46′ 25″ W., 44 feet 7 inches; fence line, S. 29° 47′ E., 39 feet 11 inches.

C. SYNOPSIS OF THE MEASUREMENTS AND RESULTS OF THE BASE LINES OF THE OBLIQUE ARC.

No.	Name of line.	State.	Date of measure.		Chief of	party server.	Apparat	us used.
I	Epping Base	Me.	1357, July and Aug.		A. D. F	Bache	Bache-W	/ürdemann
2	Massachusetts Base	Mass.	1844, Sept. to Nov.		E. Blu	nt	Hassler	
3	Fire Island Base	N.Y.	1834, Aug. to Oct.	3	F.R.E	Iassler	Hassler	
4	Kent Island Base	Md.	1844, May and June		J. Ferg	guson	Hassler	
			[1872, Nov. and Dec.)			
5	Atlanta Base	Ga.	1872, Dec. and 1873, Ja	11.	C.O.B	outelle	Bache-W	/ürdemann
			1873, July and Aug.		J			
6	Dauphin Island Base	Ala.	1847, May and June		A. D.	Bache	Bache-W	Vürdemann
No.	Name (of line.	Resulti in me probal	ters	and	Logarithm preceding n bers.	um- pro	Approximate bable error in ms of length,
I	Epping Base			715 °	'9422 1 5 8	3 '940 314 ±	34 79	552000
2	Massachusetts Base	•			3763 358	4 ·238 707 ±	74 90	484000
3	Fire Island Base		. 14 0		'9709 585	4 °147 953 ± 1		240000
4	Kent Island Base				·5446 680	3 '938 897 ± 3		128000
5	·Atlanta Base			338 ±	°4778 222	3 '970 276 ± 1		421000
6	Dauphin Island Base	0			·8376	4 °027 832		410000

PART II.

THE MAIN TRIANGULATION.

THE MAIN TRIANGULATION BETWEEN THE BASE LINES OR NETS.

A. GENERAL TREATMENT OF THE REDUCTION OF THE MAIN TRI-ANGULATION BETWEEN CALAIS, MAINE, AND NEW ORLEANS, LOUISIANA.

Since the early and partial publications of preliminary results of the various parts of this triangulation, as referred to in Part I, changes have taken place, not only in the field work by additional stations or measures, but also in the office work of computation in respect to the general treatment, and due to the experience gained in the meantime. Nevertheless, it was desirable to retain as much as possible of the older reductions, such as the computations of the base lines, the local adjustments of the horizontal directions, and the adjustment of the base nets. That part of the oblique are which is in common with the arc of the parallel of $\varphi = 39^{\circ}$ is retained unchanged.

When dealing with the treatment of the portion of the oblique arc traversing the New England States, it became necessary to introduce the station Mount Washington, New Hampshire, into the scheme, and to consider the most advantageous manner by which the three base lines (or their nets), the Epping, the Massachusetts, and the Fire Island bases, could be brought into perfect accord. This was to be done with due regard to the labor involved in the establishment and solution of a large number of equations. At the same time attention had to be given to the circumstance of the intersection of the oblique arc with a triangulation, now nearly completed, which can be used for the discussion of an arc of the parallel, in latitude 42 ½°, from Cape Cod to the State of Iowa, executed partly by the U. S. Lake Survey and partly by the U. S. Coast and Geodetic Survey for this and other purposes. Further, attention had to be given to non-interference with the full development of the large triangulation in the States of New Hampshire and Vermont, which has Killington, Vermont, as a central station. After due consideration it was decided to retain unchanged the adjustment of the Epping base net as made in June, 1864, and to adjust the triangulation between the three bases, so as to preserve the length of the side Humpback to Mount Desert (of the Epping base net), the Massachusetts base, and the side Wooster to Sandford (of the Fire Island base net). This scheme involves the simultaneous solution of 57 equations, two of which are length equations, each containing a large number of terms. The results from the old but less perfect scheme differ very little, and within the uncertainties of the measures, from those now obtained, and also indicate the excellent accord of the relations of the newly added station to the surrounding stations. The small extension of the Epping base net from the side Cooper to Howard to the boundary on the St. Croix River was afterwards treated by itself.

The stretch of triangulation between the base nets of the Fire Island base and the Kent Island base starts from the line Bald Hill to West Hills, and ends on the line Osbornes Ruin to Turkey Point, and the latter liue, being a part of the adjusted triangulation of the arc of the parallel in $\varphi=39^{\circ}$, is preserved as given in Special Publication No. 4, "The Transcontinental Triangulation."

The adjustment involved the solution of 35 equations, of which the conditional or observation equation for accord of length of sides contains 89 terms. The triangulation lying between the line Osbornes Ruin to Turkey Point, Maryland, and the line Tobacco Row to Spear, Virginia, is retained unchanged as given in Special Publication No. 4.

Upon reaching latitude 36° the triangulation splits into two branches, one, the western and later one, passing through Tennessee, the other and older one through North Carolina. They unite again in northern Georgia. The angular measures on the western branch were made with an inferior instrument. A study of the local adjustments of this triangulation and of the approximate computations which were available indicated that the angle measures did not possess quite the same accuracy as those of the eastern branch and could lend no additional value to the triangulation to the southward. Moreover, there are no astronomic observations of any kind connected with this triangulation. For these reasons the western or Tennessee branch was not used as a part of the arc, and the computation between the Keut Island and Atlanta bases was carried through the eastern branch.

Proceeding southwestward from the line Tobacco Row to Spear to the Atlanta base, the adjustment was made in three parts.

The complex strong figure between the lines Tobacco Row to Spear and Buffalo to Moore was first adjusted and involved the solution of 24 equations. The influence of the Atlanta base was then extended by the adjustment of the section of the triangulation from the line Sawnee to Grassy to the line Benn to King, involving the solution of 41 equations, and finally the remaining portion, forming a central figure about the station Poore, was adjusted, involving the solution of 13 equations, including a length equation introduced for the purpose of bringing the lengths derived from the two bases into accord.

The reasons for dispersing the small outstanding discrepancy in this particular figure are given in the portion of this publication which treats of its adjustment.

The fortunate circumstance that the Atlanta and the Dauphin Island bases, when connected through the chain of intervening triangles or more complex figures, proved to be in almost exact accord, as was shown by the several adjusted pieces of triangulation gradually joined together as the field work progressed, made it possible to retain all of these five partial adjustments. This carried the results to the Dauphin Island base net at the line Spring Hill to Daphne.

It was thought highly desirable to extend the oblique arc as far as the city of New Orleans, where it meets with and terminates at a well-determined astronomic station. It was known that the small coast triangulation along the Gulf from Mobile Bay westward was inferior in accuracy to first-class work. Nevertheless a rediscussion and new adjustment showed that it could be used to extend the arc to New Orleans. The whole of this triangulation is old, and the inferiority of the work is due to the difficulties encountered on account of the climatic conditions along the Gulf coast, and particularly to the effects of severe hurricanes passing across this region, which rendered it difficult to preserve the stations from one season to another. It was also most important to include the station at New Orleans in the discussion of the local deflections of the plumb line at stations approaching and in close proximity to the Gulf of Mexico.

B. THE TRIANGULATION.

I. NORTHEASTERN TERMINUS TO EPPING BASE NET.

The extension of the triangulation from the primary line Cooper to Howard, of the Epping base net, to and across the Canadian boundary at the St. Croix River is shown on the following diagram. The geometric figure is a strong one and demanded for its

adjustment that 13 conditional equations be satisfied. Equal unit weights were given to the directions, excepting the initial line Cooper to Howard, to which a double weight was assigned.

The angles measured with the repeating circle were generally made up of 20 sets, each of three repetitions direct and three repetitions reversed for every angle; these results, when combinations existed among the measured angles, were adjusted at each

station. The probable error of an observation of an angle (3 D, and 3 R.) is given by $e_{\ell} = 0.674 \sqrt{\frac{[v \ v]}{n-1}}$ and that of a direction by $e_{i} = e_{\ell} / \sqrt{2}$.

The approximate elevations of the stations above the half-tide level of the Atlantic are as follows:

:	Meters.	Feet.
Chancook	197	647
Trescott Rock	94	310
Prince Regents Redoubt	60	197
Grand Manan	128	420
Calais, observatory	46	150
Howard	82	269
Cooper	225	738

No reductions to the horizontal directions for heights were required.

Abstracts of resulting horizontal directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1859 to 1861.

Howard, Washington County, Maine. July and August, 1859. 75^{cm} direction theodolite No. 1.

A. D. Bache and G. W. Dean, observers. From abstract given in Part I of this publication we have:

No. of directions.	Objects observed.		stati	directions on adjust- ent.	from pre- ceding fig- ure adjust- ment.	Resulting directions.	Corrections from pres- ent figure adjustment.	Final seconds.
		0	1	//	//	11	//	//
	Pigeon ,	0	00	000 '000	-0.089	000,000		000'000
I	Cooper	108	01	27 '996	-o ·o66	810.82		28 '018
2	Trescott Rock	173	43	51 '973	-0.026	52 '036	0 '398	51 .638
3	Grand Manan	189	28	45 .843	0 '026	45 '906	+0.267	46.173
		Me	an c	correction				

Cooper, Washington County, Maine. August and September, 1859. 75^{cm} direction theodolite No. 1.
 A. D. Bache and G. W. Dean, observers. 25^{cm} repeating theodolite No. 74. October 23, 1867.
 C. H. Boyd, observer.

		0	1	//	//	//	11	11		
6	Chamcook	0	00	000,000	-o ·o68	000'000	+0.004	000,000		
7	Prince Regents Redoubt	38	36	49 '082	-o ·o68	49 082	-0.951	48 '127		
8	Grand Manan	54	40	14 '493	−o °o68	14 '493	+0.646	15 '135		
9	Trescott Rock	68	43	51 '687	-o ·o68	51 '687	-o ·o58	51 '625		
10	Howard	108	56	09 '385	-o ·226	09 '227				
	Mount Desert	157	47	00 '789	+0.415	01 .525				
4	Rye (Boyd)*	309	17	27 '536	-o ·o68	27 .536	0 '802	26 '730		
5	Saint David (Boyd)*	329	01	51 '167	-o ·o68	51 '167	+1-117	52 '280		
Mean correction —o 'o68										

Probable error of an observation (3 D. and 3 R.) of a direction, $e_1 = \pm 1''$ o.

^{*} Number of sets of repetition observations, 2.

Abstracts of resulting horizontal directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1859 to 1861—continued.

Chamcook, New Brunswick. October 22 to October 28, 1859. 75^{cm} direction theodolite No. 1. G. W. Dean, observer. 25^{cm} repeating theodolite No. 74. C. H. Boyd, observer, 1867.

No. of directions.	Objects observed.			om station tment.	from present ad- justment.	Final seconds.
		0	1	"	, "	"
16	Grand Manan	0	00	000,000	+o · 491	000,000
				±0 °139		
17	Prince Regents Redoubt	11	23	35 '285	→o ·150	34 .644
				±0 '135		
18	Trescott Rock	28	17	21 '691	-o ·160	21 '040
				±0'141		
19	Cooper	88	44	50 .139	-o ·723	48 '925
				±o∶173		
20	Rye (Boyd)*	115	16	24 .874	+0 *344	24 '727
21	Calais, observatory (Boyd)*	138	46	22 .644	+0.319	22 '472
22	Saint David (Boyd)*	165	22	52 '991	-o ·1 20	52 '380

Probable error of an observation (3 D. and 3 R.) of a direction, $e_i = \pm 1''$ '3. Probable error of a single observation of a direction, $e_i = \pm 1''$ '08.

Trescott Rock, Washington County, Maine. November 1 to 7, 1861. 30cm repeating theodolite No. 30. C. H. Boyd, observer.

		0	1	"	"	"
ΙI	Howard	0-	00	000,000	+o ·178	000,000
12	Cooper	74	05	21 .262	-o ·to7	21 .580
13	Chamcook	124	54	05 '165	—o ·173	04 .814
14	Prince Regents Redoubt	145	27	05 '458	+o ·356	05 .637
15	Grand Manan	215	10	26 '975	-o ·253	26 .544

Number of sets of angles, 5; probable error of an observation (3 D. and 3 R.) of a direction, $e_1 = \pm 1$ " 1.

Prince Regents Redoubt, Washington County, Maine. October 4 to 21, 1861. 30cm repeating theodolite No. 30. C. H. Boyd, observer.

		0	1	"	"	"
23	Grand Manan	О	00	000'000	-o ·371	00,000
24	Trescott Rock	60	06	12 '074	-o ·214	12.531
25	Cooper	138	37	25 '265	+0.219	26 .122
26	Chamcook	202	39	25 '281	+0.067	25 '719

Number of sets of observations, 7; probable error of an observation (3 D, and 3 R.) of a direction, $e_1 = \pm 1'' \cdot 1$.

^{*} Number of sets of repetition observations, 3.

Abstracts of resulting horizontal directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1859 to 1861—continued.

St. David, New Brunswick. September 30 to October 2, 1867. 25^{cm} repeating theodolite No. 74. C. H. Boyd, observer.

No. of directions.	Objects observed.			rom station tment.	Corrections from present ad- justment.		inal onds.
		0	1	11	//		//
27	Chamcook	0	00	000°000	-o ·153	00	'000
28	Calais, observatory	67	I 1	50.342	—o ·3 19	50	176
29	Cooper	72	23	49 '293	+0 *908	50	353
30	Rye	87	05	40 '032	-o · 436	39	749

Number of sets of observations, 3; probable error of an observation (3 D. and 3 R.) of a direction, $e_1 = \pm i'' \cdot i$.

Rye, Washington County, Maine. October 24–25, 1867. 25^{cm} repeating theodolite No. 74. C. H. Boyd, observer.

			0	1	11	//	//
31	St. David	4	9	00	000°000	-o ·720	000'000
32	Chamcook		42	47	52 '302	+0.531	53 '553
33	Cooper		145	3.3	44 '604	+0.100	45 '514

Number of sets of observations, 2; probable error of an observation (3 D. and 3 R.) of a direction, $e_1 = \pm 1''$:4.

Calais, observatory, Washington County, Maine. October 17–18, 1867. 25^{cm} repeating theodolite No. 74. C. H. Boyd, observer.

			0	/	11	11	//
34	St. David	,	0	00	000,000	+0.319	000'000
35	Chamcook		86	ΙI	40 '903	-o '319	40 . 265

FIGURE ADJUSTMENT.

Observation equations.

```
I + 0 = +0.625 - (1) + (2) - (9) + (10) - (11) + (12)
  II 0 = -2.090 - (7) + (9) - (12) + (14) - (24) + (25)
 III 0 = +0.691 - (6) + (9) - (12) + (13) - (18) + (19)
 IV 0=+1.981-(6)+(7)-(25)+(26)-(17)+(19)
      0 = -1.531 - (4) + (6) - (19) + (20) - (32) + (33)
  VI | o = -1.485 - (4) + (5) - (29) + (30) - (31) + (33)
 VII 0 = -0.506 - (20) + (22) - (27) + (30) - (31) + (32)
VIII 0 = +1.241 - (21) + (24) - (27) + (28) - (34) + (35)
  IX 0 = +2.18 - 0.095(1) + 1.439(2) - 1.344(3) - 0.249(10) + 1.544(9) - 1.295(8) - 0.597(11)
          -0.454(12)+1.051(15)
      0 = -0.50 - 1.513(4) + 1.502(8) - 0.085(9) + 0.424(15) - 0.333(12) - 0.112(13) - 0.113(13)
          +0.625(18) - 0.506(16)
 XI 0=+4.31-1.176(8)+1.439(7)-0.263(6)-0.445(25)+1.503(23)-1.058(26)-0.047(19)
          -2.103(16)+2.120(17)
XII 0 = +1.38 - 0.254(15) + 0.816(14) - 0.562(13) - 0.176(24) + 1.234(23) - 1.058(26) - 0.693(18)
          -2.103(16) + 2.796(17)
XIII
      0 = -2.60 - 0.172(6) - 0.415(4) + 0.587(5) - 0.422(19) + 0.598(20) - 0.176(22) + 0.802(29)
          -o ·o11(27)-o ·791(30)
```

It was not deemed necessary to set down the correlate equations, as they are readily formed. The directions (1) and (10) each have the weight 2.

Normal equations.

	C ₁ C ₂ C ₃ C ₄	C ₅ C ₆	C ₇ C ₈	C ₉	Cio	Cıı	C13	C_{r_3}
o= +o ·625	+5 -2-2			-o 'o39	+1.667			
o= -2 ·090	+6+2 -2			+1.998	—ı ·667	- 1 'SS4	+ 0 '992	
0= +0.691	+6 +2	-2		+1 .998	-2·444	+ 0.519	+ 0.131	−o ·2 50
0 = +1.381	+6	— 2			-o ·o37	— 1 .108	3 .854	-o ·250
0 = -1.531		+6 +2 -	-2		+0 '037	- o ·216		+1.263
o = -1.485		+6 -	+2					—о :591
o= -o.506		-	+6 +2					—ı ·554
0= +1.241			+6					-o ·165
o= +2.18				+9.6407	_	+ 1 '5229	-	
o= -o ·70					+4 '1502	- o ·4316		+0.0643
o= +4 ·31						+16.1466	+13 '4081	+0.0621
0 = +1.38							+16.4398	
o= -2.60								+2:3820

Resulting correlates:

and the resulting corrections to directions:

^{*}Directions (1) and (10) were given double weight in the adjustment.

Resulting angles and sides of the triangulation between the Epping base net and the northeastern terminus of the arc.

No.	Stations.	Obs	serve	d angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	/	11	11	11	//		
	Trescott Rock	74	05	21 '565	-o ·285	21 .580	0 .832	4 .603 402 1	40 123 81
I	Howard	65	42	24 '018	-o ·398	23 .620	0.833	4 '580 099 7	38 027 .67
	Cooper	40	12	17 '540	+0.058	17 .598	0.833	4 '430 277 0	26 932 52
,		4	-	-7 540	10030	-1 350			
	Grand Manan	44	16			52 '451	1 .262	4 603 402 1	40 123 81
2 {	Howard	81	27	17 .888	+0.267	18.122	1 '564	4 '754 589 2	56 831 '51
(Cooper	54	15	54 '734	-o ·646	54 *088	1 .262	4 '668 845 2	46 649 31
(Grand Manan	19	25			32 .875	0 '288	4 '430 277 0	26 932 52
3 {	Howard	15	44	53 °S70	+0.664	54 '534	o ·2 88	4 '342 006 7	21 978 94
l	Trescott Rock	144	49	33 °025	+0.431	33 '456	0 '289	4 .668 845 2	46 649 31
(Grand Manan	24	51			19 '577	0 '444	4 580 099 7	38 027 .67
4 {	Trescott Rock	141	05	05 '410	-0.146	05 '264	0 '443	4°754 589 1	56 831 50
Į	Cooper	14	03	37 '194	-0 '704	36 °490	0 '444	4 '342 006 7	21 978 94
(Prince Regents Re								
	doubt	_	06	12.074	+0.124	12 '231	0.339	4 '342 006 7	21 978 94
5 {	Grand Manan								
		50	10			27 ·8So	0 '339	4 '289 384 2	19 470 '82
(Trescott Rock	69	43	21.217	-0.910	20 '907	0 '340	4.376 239 0	23 781 49
ſ	Prince Regents Re	e-							
	doubt	78	31	13 '191	+0.734	13 '925	0.293	4 '580 099 7	38 027 67
6	Trescott Rock	71	21	43 .893	+0.463	44 *356	0.593	4 565 481 2	36 768 95
Į	Cooper	30	07	02 '605	+0.893	03 *498	0.593	4 '289 384 2	19 470 ·S2
	Prince Regents Re	-							
	doubt	138	37	25 '265	+0.890	26.122	o '488	4 '7E4 E80 2	F6 821 1F1
7 {								4 '754 589 2	56 831 '51
	Grand Manan	25	19			08 '304	0.489	4.565 481 2	36 768 95
(Cooper	16	03	25 '411	+1.296	27 '007	0.489	4 376 239 2	23 781 .20
ſ	Chamcook	88	44	50.139	-1,512	48 '924	1 '327	4 754 589 2	56 831 .21
8 {	Grand Manan	36	34			59 '925	1 '328	4 *529 929 0	33 878 88
· (Cooper	54	40	14 '493	+0.641	15 '134	1 '328	4 .666 298 1	46 376 51
ſ	Chamcook	28	17	21 .691	-o ·652	21 '039	0.757	4. 342 006 7	21 978 94
9 {	Grand Manan	61	26			19 '501	0.757	4 609 948 2	40 733 17
	Trescott Rock	90	16	21 '810	-o °o8o	21 '730	0.756	4 666 298 0	46 376 50
ſ	Chancook	60	27	28 448	o ·563	27 '885	1 '015	4 580 099 7	38 027 67
10	Trescott Rock			43 .600	-o ·o66	43 '534	1 '015	4 '529 929 I	33 878 88
	Cooper		-	51 .687	-o ·o62	51 .625	1 '014	4 529 929 1	
(_						40 733 17
	Chamcook	ΙΙ		35 .582	−o ·642	34.643	0.185	4 '376 239 1	23 781 .49
11 {	Grand Manan		15			51 .622	0.185	4 '371 372 7	23 516 50
	Prince Regents Re								
l	doubt	157	20	34 '719	-0 '438	34 .581	0.185	4 .666 298 0	46 376 50

Resulting angles and sides of the triangulation between the Epping base net and the northeastern terminus of the arc—continued.

No.	Stations.	Obs	served	l angles.	Correc- tion.	Spher- ical augles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	"	"	"	"		
ſ	Chamcook	16	53	46 '406	-0.011	46 .392	0.232	4 '289 384 2	19 470 82
12 {	Prince Regents Re							,	
	doubt	142	33	13 '207	+0.581	13 '488	0. 236	4 609 948 2	40 733 17
. (Trescott Rock	20	33	00 '293	+0.230	00 '823	0.532	4 '371 372 7	23 516 50
	Chamcook	77	21	14 .854	-o ·574	14 *280	o ·657	4 '565 481 2	36 768 95
	Prince Regents Re	-							
13	Prince Regents Redoubt	64	OI	910.09	—o '452	59 . 564	o ·657	4 529 929 1	33 878 88
Į	Cooper	38	36	49 '082	-o ·955	48.124	o ·657	4 '371 372 8	23 516 51
ſ	Rye	102	45	52.302	-0.342	51 '960	0.344	4 529 929 1	33 878 88
14 {	Chamcook	26	31	34 '735	+1 .064	35 *802	0°344	4.190 222 0	15 514 11
Į	Cooper	50	42	32 *464	+o *806	33 .540	0 '344	4 '429 504 7	26 884 67
ſ	St. David	72	23	49 *293	+1 .091	50 '354	0 '510	4 '529 929 I	33 878 88
15 {	Chamcook	76	38	02.852	+0.603	03 '455	0 '509	4 '538 830 5	34 580 44
Į	Cooper	30	58	08 .833	←1 .113	07 '720	0.210	4 262 199 9	18 289 42
ſ	St. David	87	05	40 '032	-o ·283	39 749	0.319	4 '429 504 7	26 884 67
16 {	Chamcook	50	06	28.112	—o ·463	27 .654	0.319	4 *315 000 5	20 653 82
Į	Rye	42	47	52 *302	+1 *252	53 *554	0.319	4.363 300 0	18 289 42
ſ	St. David	14	41	50 '739	-1 345	49 '394	0 *153	4.190 227 0	15 514 11
17 {	Cooper	19	44	23 .631	+1 .920	25 .221	0.123	4.312 000 4	20 653 82
į	Rye	145	33	44 '604	+0.910	45 '5 14	0.123	4.538 830 5	34 580 44
ſ	Calais Observatory	86	ΙI	40 '903	—o ·637	40 '266	0'117	4 '262 200 O	18 289 42
18 {	St. David	67	ΙI	50 '342	-o ·165	50.144	0'117	4 227 816 4	16 897 26
l	Chamcook	26	36	30 '347	-0.439	29 *908	0.112	3 *914 328 3	8 209 72

2. EPPING BASE NET TO MASSACHUSETTS BASE AND TO FIRE ISLAND BASE NET, MAINE, NEW HAMPSHIRE, MASSACHUSETTS, RHODE ISLAND, AND CONNECTICUT, 1844-1882.

The main triangulation which connects and is based upon the three northern base lines is among the most elaborate pieces of field work ever executed by the Survey. It was steadily continued and completed by Superintendent Bache and his party in twenty years. Only one station (Mount Washington) was afterwards included in the scheme. There are also several subordinate stations, not referred to here, which, in addition to what is furnished by the principal stations, effects the junction with the subordinate, secondary, and tertiary work covering the greater part of the coast line of Massachusetts, New Hampshire, and Maine.

With the exception of the angles at the Massachusetts base, all angular directions were measured by means of the great (so called) 75^{cm} theodolite, and the station results were deduced by application of Bessel's least square method of reduction. The accuracy reached is quite commensurate with the amount of labor spent, both in the

field and in the office. This may be seen in the closing errors of the 52 triangles as well as in the numerical constants of the 57 conditional equations. The first adjustment of this triangulation, made in 1866 under the writer's direction, avoided the heavy work of solving simultaneously this large number of equations by dividing the whole work into three parts, but in this discussion it was decided to treat the adjustment rigorously as a whole. The new results, however, differ but slightly from the older ones. The directions in the new adjustment are corrected for effect of altitude of the stations sighted, and the observations made at and upon Mount Washington are now incorporated into the general scheme.

Approximate heights of stations above the average level of the Atlantic Ocean.

	Meters.	Feet.		Meters.	Thoras
** 1 1				Meters.	Feet.
Humphack	451	1 480	Manomet	120	394
Mount Desert	465	1 525	Blue Hill	194	635
Mount Harris	381	1 251	Beaconpole	167	548
Ragged Mountain	397	1 301	Monadnock	966	3 168
Sabattus	244	800	Wachusett	616	2 022
Mount Blue	976	3 .202	Mount Tom	372	I 220
Mount Pleasant	615	2 018	Bald Hill (Tolland County)	393	I 290
Mount Washington	1 920	6 300	Box Hill	259	850
Mount Independence	153	501	Ivy	498	1 634
Gunstock	732	2 402	Sandford	273	895
Agamenticus	222	728	Wooster	305	1 000
Unkonoonuc	411	1 348	Copecut	. 108	353
Thompson	83	271	Great Meadow	81	265

Observation equation LVI is the length equation between the Epping base (referred to the line Humpback to Mount Desert) and the Massachusetts base, showing a discrepancy of but 57 units in the seventh place of decimals in the logarithms, and the corresponding equation No. LVII is the length equation between the Massachusetts base and the Fire Island base (referred to the line Sandford to Wooster) and shows a discrepancy of but 26 units. Weights to the 131 directions are introduced on the same principle as was done in 1866, which takes care of the circumstance that the relative weights, when the directions are combined to form triangles, are very different from and only partly resemble the weights deduced from the station adjustment alone. Experience has shown that the former are at least of equal if not greater importance than the latter.

The maximum closing error in the sum of the angles of any one triangle is but 2"'o and the average closing error of a triangle, found by squaring the 52 errors, is given by $\sqrt{\frac{44.47}{52}} = \pm 0$ "'92; hence the probable error of a direction is $0.674 \frac{0.92}{\sqrt{6}} = \pm 0$ "'255. On the other hand the approximate probable error of a direction derived from the station adjustment alone* is found from the average square $\frac{3.056}{131}$, viz, $e_1 = \sqrt{0.0233} = \pm 0$ "'153; hence the square of the combination error or $e_c^2 = (0.255)^2 - (0.153)^2 = (0.204)^2$. To each of the values of e_i^2 , therefore, was added $(0.204)^2$ or 0.040 in order

^{*}See resulting probable errors of the direction presented further on with the abstracts of the horizontal measures. 4192—No. 7—02——8

to get $E^2 = \frac{1}{p}$, but in order to make the average value of the 131 cases equal to unity this was multiplied by 15.75; hence the final reciprocals of weights used in the adjustment further on.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844–1882.

Humpback, Hancock County, Maine. July 19 to September 6, 1858. 75 cm direction theodolite No. 1.
 A. D. Bache and G. W. Dean, observers.

Number of direc- tions.	Objects observed.	rect	ion: itio	ng di- s from a ad- ent.	Approxi- mate probable errors.	Corrections from net adjust- ment.	Correct- ed direc- tions.	Reduc- tions to sea level.	Result- ing sec- onds.	Corrections from figure adjustment.	Final seconds.
		0	- 1		"	"	"	"	41	"	"
	Cooper	0	00	000,000	±0.12	-0.196	00 '000		00 '00		
	Azimuth Mark	39	37	40 *230	0.19	-0.023	40 ° 403				
	Mount Desert	114	33	50 '877	0 '09	+o ·583	51 '656	+0 *008	51 *66		
3	Ragged Mountain	154	28	20 '545	0.13	-0 '023	20.718	+0 022	20.74	+0.36	21 '10 .
	Saunders	165	12	47 118	0 *13	0 °023	47 '291				
4	Mount Harris	180	36	29 *988	0'17	-o°023	30 . 191	+0 010	30 17	-0.44	29.73
				Mea	u correctio	n -0°023					

Circle used in V positions.

Mount Desert, Hancock County, Maine. August 14 to October 14, 1856. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

		0	- /	**	"	11	11	21	21	11	"
	Isle au Haut	0	00	000'000	±0°14	-o °oo6	000*000		00 00		
1	Ragged Mountain	33	39	21.335	0 11	-0.006	21 '332	+0.009	21 '34	-o °o5	21 .59
2	Mount Harris	70	54	51 *931	0.15	-0.006	51 '931	-0.017	51.01	+0.10	52 '01
	Sanuders	93	48	58:382	0.10	-0 *006	58 * 382				
	Azimuth Mark	122	49	25 *136	0.10	-0.006	25 *136				
	Humpback	144	20	00 152	0.10	-0°143	00 *015	+0.008	00 02		
				Mear	correction	-0.006					

Circle used in V positions.

Mount Harris, Penobscot County, Maine. July 25 to October 17, 1855. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

ber of	Objects observed.	ti	ous f	idjust-	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
	Thomas Hill, Bau-	0	1	//	//	//	//	//	11
	gor	О	00	000'000	于0.11		00,00		
	Azimuth Mark	. 1	16	32 750	0:12				
	Peaked Mountain	9	50	32 '207	0.13				
5	Humpback	13	14	12 055	0:09	+0.013	12 '07	-0.01	12 .09
	Saunders	29	29	47 '495	0.09				
6	Mount Desert	53	46	37 '312	0 '09	-0 '020	37 *29	+0.07	37 .36
	Isle au Haut	85	58	21 .672	, 0'11				
7	Ragged Mountain	118	55	14 '559	0,11	0 '000	14 .26	+0.06	14.62
8	Sabattus	170	57	33 '572	0.13	+0.013	33 .28	-c '01	33 '57
9	Mount Blue	213	17	48 '992	0.13	-0.009	48 '98	-0.11	48 .87
Circle	used in V positions.								

MOUNT DESERT.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882—continued.

Ragged Mountain, Waldo County, Maine. August 9 to November 21, 1854. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

Number of directions.	Objects observed.	ti	ons	g direc- from adjust- nt.	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	from figure ad- justment.	Final seconds.
		0	1	11	//	11	//	//	"
	Cape Small	О	00	000,000	±0.13		00,00		
10	Mount Pleasant	32	27	39 339	0.19	010.0+	39 '35	+0.39	39 '74
II	Sabattus	35	05	22 '195	0.12	+0.003	22 '20	-o ·27	21 .93
12	Mount Blue	72	13	02 '447	0.15	-0°049	02 '40	+0.11	02 '51
13	Mount Harris	130	54	59 '344	0.11	. 0 '000	59 '34	-o ·20	59.14
	Azimuth Mark	131	32	49 '928	0.19				
	Saunders	171	43	10 '933	0'12				
14	Humpback	179	05	58. 378	0.18	+0 '025	58 '40	00'00	58 '40
15	Mount Desert	208	31	00 '500	0,11	+0.011	00.21	+0.04	00.22
	Isle au Haut	241	08	17 '507	0.19				
Circle	used in V positions.								

Mount Blue, Franklin County, Maine. August 29 to November 5, 1853. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

		0	,	11	11	//	11	11	//
	Peaked Mountain	0	00	000,000	±0'14		00,00		
	Saunders	7	35	33 *784	0.12				
16	Mount Harris	8	46	42 '896	0.18	-o ·oo3	42 .89	-o ·24	42.65
17	Ragged Mountain	35	42	23 '708	0.19	-0,019	23 '69	+o ·15	23 .84
	Cape Small	74	II	02.583	0 '20				
18	Sabattus	76	57	34 '640	0.12	-o *oo8	34 .63	+0.12	34 '78
19	Mount Independence	94	02	02 '938	. 0.30	0 '000	02 *94	-0 '20	02 '74
20	Mount Pleasant	121	17	49 '712	0 '15	+0.027	49 '74	+o ·o3	49.77
Circle	used in IV positions.								

Sabattus, Androscoggin County, Maine. June 18 to August 16, 1853. 75 cm direction theodolite No. 1. A. D. Bache, C. O. Boutelle, J. E. Hilgard, and G. W. Dean, observers.

		0	/	11	11	11	//	11	11
23	Mount Blue	О	00	000 000	±0.11	-0.032	59 '97	-0.5I	59 '76
	Azimuth Mark	17	56	05 *204	0.12				
24	Mount Harris	69	29	07 '402	0.18	+0 '021	07 '42	+o ·16	07.58
25	Ragged Mountain	101	37	20 '637	0.12	+0 '005	20.64	+0.24	20.88
	Cape Small	172	59	00 194	0'14				
21	Mount Independence	222	2 I	04 '158	0.13	+0 '007	04.16	—o · o7	04 '09
22	Mount Pleasant	275	46	51 '399	0'14	+0°014	51 '41	-o °02	51 '39

N. B. The observation of the direction to Mount Washington is too weak to be admissible. Circle used in IV positions.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844–1882--continued.

Mount Pleasant, Oxford County, Maine. July 2 to August 16, 1851. 75 cm direction theodolite No. 1.

A. D. Bache, W. P. Trowbridge, and G. W. Dean, observers.

Number of directions.	Objects observed.		tions	g direc- from adjust- nt.	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
		0	/	//	//	//	//	//	//
26	Mount Blue*	0	00	000,000	±0.10	+0.043	00 '04	-0.11	59 '93
27	Sabattus	51	26	46 '938	0 '12	+0.006	46 '94	+0.13	47 '07
28	Ragged Mountain	54	39	35 '737	0.14	+0.007	35 '74	-0.50	35 '54
	Cape Small	83	OI	37 '055	0.11				
29	Mount Independence	100	12	48 .045	0.09	-o ·oo8	48 '04	-0.49	47 °55
	Ossipee	146	17	24 '539	80.0				
30	Agamenticus	147	14	47 '657	0 '14	-o 'oo3	47 .65	+0.77	48 .42
31	Gunstock	192	06	52 .382	0 ,00	+0 '040	52 '42	—0 :23	52 '19
34	Mount Washington	279	18	34 '810	0 *24	-o ·102	34 '71	+o ·38	35 '09
Circle	used in V positions.								

Mount Independence, Cumberland County, Maine. September 2 to October 19, 1849. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

		0	1	11	//	//	11	"	//
39	Mount Blue	0	00	000 '000	±0.14	0 '002	00,00	+0.36	00.36
	Azimuth Mark	О	44	36 .450	0.19				
40	Sabattus	25	16	42 '166	0.12	+0.010	42.18	+0.05	42 20
	Cape Small	87	33	03 '048	0.19				
36	Agamenticus	207	51	14 '438	0.12	+0 '010	14 '45	—o ·3о	14 '15
	Ossipee	241	49	46 '990	0.30				
37	Gunstock	253	42	01 '296	0 '20	+0.023	01 '32	—o ·6o	00 '72
38	Mount Pleasant	307	28	23 .886	0,13	—o ·o33	23 ·S5	+0 '29	24 '14

N. B.—Observation of direction to Mount Washington too rough for use. Circle used in VI positions.

Mount Washington,† Coos County, New Hampshire. Station mark of 1851 and 1860. 30 cm direction theodolite No. 118. July 31 to September 13, 1882. J. A. McNicol, observer (R. D. Cutts, chief of party).

or pa	ity).	0	1	11	"	11	//	//	//
	Reference Mark	0	00	00 '00	,±0.07				
33	Mount Blue	46	31	41 '34	0,11	+0 '02	41 '36	-o ·13	41 '23
34	Mount Pleasant	115	27	23 '90	0.13	-o ·o3	23 ·S7	-o.19	23 '71
35	Gunstock	174	oS	45 .65	0 *14	0.00	45 '65	+0.30	45 '95
	Killington	229	44	57 '67	0.12				
	Mount Mansfield	274	18	19.08	0 '14				
Circle	e used in VII position	ıs.							

^{*} Azimuth mark west of Mount Blue 2"19 ± 0"11.

[†]This station was established in September, 1849, by T. McDonnell at the highest part of the mountain. It was marked by a copper bolt inserted in a bowlder by G. A. Pairfield in 1851, and re-marked in 1853 by B. F. West. The pole placed over the mark was observed upon from Mount Independence in 1849, from Ossipee in 1851, and from Sabattus in 1853, but only roughly. The observations from Mount Pleasant in 1851 and from Gunstock in 1860, however, were quite satisfactory. In 1877 C. H. Sinclair visited the station and under the direction of Assistant R. D. Cutts connected geodetically the several eccentric station marks since 1873 and again, in 1880 and 1881, those used by Prof. E. T. Quimby in his survey of the State of New Hampshire. These last observations have no bearing on the oblique arc, the only direction in common being that to Sabattus. Between July 31 and September 13, 1882, Assistant Cutts and Aid J. A. McNicol observed horizontal angles at the station in connection with the survey of New Hampshire, but included the three directions to Mount Blue, Gunstock, and Mount Pleasant. The 30cm theodolite was then employed.

MOUNT WASHINGTON.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882-continued.

Agamenticus, York County, Maine. August 30 to October 10, 1847. 75 cm direction theodolite No. 1. A. D. Bache, observer.

Number of directions.	Objects observed.	t	ions	g direc- from adjust- nt,	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
		0	1	11	//	11	"	//	11
	Isle of Shoals	0	00	000 '000	±0.12		00,00		
49	Thompson	16	20	22 '029	0.14	0 *000	22 '03	+0.39	22.42
	Holt	41	28	13 '964	0.12				
50	Unkonoonuc	83	56	21 '852	0.12	+0.012	21.87	-o ·32	21 .22
	Patuccawa	88	19	23 '555	0.16				
51	Gunstock	134	44	12:364	0.13	o °037	12.33	+0.02	12 '35
52	Mount Pleasant	187	02	56.311	0.14	-o 'oo8	56 '30	-o.19	56 '14
	Ossipee	188	Ι2	18 .168	0.14				
53	Mount Independe	nce 220	23	53 .621	0.14	+0 '007	53 .63	+0.01	53 .64
	Azimuth Mark	307	52	25 '880	0.12				
		_							

Circle used in V positions.

Gunstock,* Belknap County, New Hampshire, July 11 to August 15, 1860. 75 cm direction theodolite No. 1. G. W. Dean, observer.

		0	/	//	11	11	//	//	//
	Azimuth Mark	0	00	000'000	±0.14		00 00		
41	Mount Washington	44	06	20 .538	0.11	+0 014	20 *25 .	-o ·40	19.85
42	Mount Pleasant	78	13	23 '269	0.11	+0 '034	23 '30	-o °04	23 '26
43	Mount Independence	112	33	03 '490	0.11	+0.002	03 '50	+o ·8o	04 '30
	Ossipee	121	29	34 '600	0'12				
44	Agamenticus	161	02	47 '320	0.15	-0.011	47 '31	-o ·o8	47 '23
45	Thompson	192	55	14 '997	0. 12	-o 'oo4	• 14.99	-0.50	14 '79
	Patuccawa	202	52	41 124	0,11				
46	Unkonoonuc	237	14	12:358	o °o8	+0.013	12.37	+0.10	12 47
47	Wachusett	240	56	10,060	0 '09	+0 '023	10.08	-o ·40	09.68
48	Monadnock	260	13	18 '732	0 '07	+0.054	18.49	+o ·15	18 '94
Circle	need in V positions								

Unkonoonuc,† Hillsboro County, New Hampshire. August 29 to October 6, 1848. 75 cm direction theodolite No. 1. A. D. Bache, observer. August 25 to 29, 1860. G. W. Dean, observer. Same instrument

mani	anicht								
		۰,	, /	//	//	//	//	//	11
	Gunstock	0	00	000,000	±0.07	+0 '023	00 '02	10.0+	00,03
59	Patuccawa	47	43	13 '998	0'12				
	Agamenticus	53	00	53 .613	0.13	+o *oo8	53. 62	+0.11	53 '73
54	Thompson	103	24	13 '952	0 .00	-0.004	13.95	+0.02	13.97
55	Holt and Azimuth								
	Mark	117	12	51 745	0.11				
56	Blue Hill	138	49	11.993	0.12	0 '009	11.08	-o ·35	11.63
57	Wachusett	187	30	54 '272	0 '07	+0 '027	54 '30	+0.19	54 '46
58	Monadnock	235	53	53 '272	0 .00	+0.032	53 *30	−o ·o₃	53 '27

Probable error of a single observation (D. and R.) of a direction, $e_i = \pm o''$.75. Circle used in V positions, in 1848 and in 1860.

^{*}The station was occupied by Prof. E. T. Quimby in 1878, but only in connection with the survey of New Hampshire; it was reoccupied in September. 1897, by Assistant A. T. Mosman, in connection with western work in Vermont.

[†] The station was occupied by Prof. E. T. Quimby in July, 1872, in connection with the survey of New Hampshire. He used 25cm theodolite No. 31. He sighted Monadnock and Patuccawa, but for these observations we have no use here.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882—continued.

Thompson, Essex County, Massachusetts. October 15 to November 24, 1846, and July 27 to August 23, 1847. 75 cm direction theodolite No. 1. A. D. Bache, observer.

Number of directions.	Objects observed.	* t	ions i	adjust-	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
		0	1	//	//	//	11	11	//
73	Manoniet	О	00	000 000	±0.18	-0 '002	00,00	+0.10	00.10
74	Blue Hill	44	15	19 '752	0.11	+0.011	19.76	+0.14	19.90
75	Wachusett	90	52	38 .782	0'12	+0.010	38 .79	0 '00	38.79
	Holt	104	48	53 '491	0.13				
76	Unkonoonuc	129	22	49 '757	0'14	-0 '021	49 '74	+0.11	49 .85
	Patuccawa	154	45	22.583	0 '12				
77	Gunstock	161	29	50 '943	0.12	—o 'o35	50 '91	-0.23	50 .68
	Azimuth Mark, west	186	35	38 '458	0.19				
	Azimuth Mark, east	190	40	47 '449	0 '29				
78	Agamenticus	191	13	43 '021	0.13	+0.001	43 *02	-0'14	42 '88
	Isle of Shoals	201	26	34 '383	0.11				
Ø!1	1 to year autations t	0.	-						

Circle used in III positions in 1846.

Wachusett, Worcester County, Massachusetts. September 13 to October 16, 1860. 75 cm direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

		0	1	11	//	//	11	//	11
	Azimuth Mark	0	00	000'000	±0.10		00 '00		
65	Bald Hill	18	32	53 '177	0 '20	+0.017	53 '19	+0.07	53 '26
66	Mount Toni	60	52	05 '024	0.34	+0.019	05 '04	1 '17	03 .87
67	Monadnock	150	38	43 '050	0.13	-0 '042	43 '01	+0.23	43 '24
68	Gunstock	194	20	24 '085	0 '14	+0 027	24 '11	+0.13	24 '24
69	Unkonoonuc	198	09	22 . 750	0.13	+0.018	22 '77	-0 '07	22 '70
	Patuccawa	212	49	54 '036	0 °12			,	
	Holt	249	13	40 '236	0.12				
70	Thompson	255	42	43 '548	0'17	+0.001	43 *55	-0 05	43 '50
71	Blue Hill	289	46	57 '469	0.13	-0.009	57 '46	o * 02	57 °44
72	Beaconpole	320	47	46 .873	0 '12	0 '009	46 .86	+0'15	47 '01
12	Deaconpoic	320	47	40 0/3	0 12	0 009	40 00	1 0 23	47 01

Circle used in V positions.

Blue Hill, Norfolk County, Massachusetts. September 14 to October 19, 1845. 75 cm direction theodolite No. 1. A. D. Bache, observer.

			0	/	//	//	- //	//	//	//
79	Manomet		0	00	000,000	11.0平	-0.007	59 '99	+0.14	00.13
80	Copecut		49	17	23 *167	0'14	-0.001	23 '17	+0.03	23 '20
8r	Great Meadow		67	OI	11.778	0,11	+0 0002	11.48	-0 '01	11 '77
82	Beaconpole	10	03	II	18 '606	0 '14	010,0+	18 .62	-0.52	18.10
83	Wachusett	I	70	05	20 '382	0 '12	-o ·o28	20.35	+0.50	20 '55
84	Unkonoonuc	2	09	46	13 '547	0.13	-o.o18	13.23	+0.53	13 '76
	Holt	2	34	48	06.131	0,10				
	Azimuth Mark	2	36	05	03 '497	0,09				
85	Thompson	2	69	23	57 '425	0.10	+0.002	57 '43	-0 07	57 '36

Circle used in VI positions.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844–1882—continued.

Great Meadow, Bristol County, Massachusetts. May 7 to 27, 1845. 75 cm direction theodolite No. 1.

A. D. Bache, observer.

Number of directions.	Objects observed.	ti	ons f	djust-	Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
		0	1	11	//	//	//	//	//
104	Copecut	0	00	000'000	±0'14	-o 'oo6	59 '99	—o ·2 8	59.71
IOI	Beaconpole	160	29	59 '351	0.12	0 '009	59 '34	+0.58	59 .62
102	Massachusetts North								
	Base	219	19	14 '351	0.19	0,000	14 '35	-o ·24	14 '11
103	Blue Hill	229	39	39 '080	0'14	+0.002	39.08	+0.50	39 '28
Circle	used in III positions.								

Copecut, Bristol County, Massachusetts. September 7 to October 8, 1844. 75 cm direction theodolite No. 1. A. D. Bache, observer.

92	Blue Hill and Azi-	0	1	//	//	//	//	. //	//
	muth Mark	О	00	000,000	±0.13	-o 'oo2	00'00	-0.19	59.81
93	Manomet	64	08	37 '851	0.19	+0.006	37 .86	10.0+	37 .87
	Indian	140	03	44 '563	0.12				
90	Beaconpole	318	OI	08.556	0.13	-0.010	08.22	—о :17	08.38
91	Great Meadow	328	04	06 '825	0.12	-0 '005	06.82	+0.39	07 '21
Circle	used in III positions.								

Manomet, Plymouth County, Massachusetts. August 25 to September 11, 1845. 75 cm direction theodolite No. 1. A. D. Bache, observer.

		0	1	11	//	11	11	11	11
	Provincetown	0	00	000,000	平0.11		00,00		
	Indian	120	13	21 '474	0.10				
86	Copecut	172	29	05 '212	0.12	+ o .ooq	05 '22	+0.07	05 '29
87	Beaconpole	209	03	27 '009	0.19	-0.002	27 '01	+0.10	27 °11
88	Blue Hill	239	03	09 *898	0.10	110 0—	09.89	-o · o8	09.81
89	Thompson	284	11	54 '745	0.13	-0,001	54 '74	-o . oe	54 ·6 8
Circle	e used in VI positions.								

Massachusetts South Base, Bristol County, Massachusetts. September 9 to 17, 1845. 25 cm repeating theodolite No. 11. E. Blunt, observer.

		0	1	11	11	//	11	//	11
105	Beaconpole	0	00	000,000	±0 '45	-o .o1o	59 '99	-0.50	59 '79
106	Massachusetts North								
	Base .	81	00	16.66	0 '45	+0 '004	16.66	+0.50	16.89

Massachusetts North Base, Bristol County, Massachusetts. September 19 to 29, 1845. 25 cm repeating theodolite No. 11. E. Blunt, observer.

	1	0	1	11	//	11	11	11	11
107	Great Meadow	0	00	000,000	±0°35	0.000	00,00	+0.56	00 '26
108	Massachusetts South								
	Base	25	16	31 '173	0.35	+0 '002	31.18	-0.09	31 '09
109	Beaconpole	70	09	29 '812	0.35	+0.006	29 *82	-o·17	29.65

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachuselts base, and the Fire Island base net, 1844-1882—continued.

Beaconpote, Providence County, Rhode Island. October 19 to November 23, 1844. 75 cm direction theodolite No. 1. A. D. Bache, observer.

Number of directions.	Objects observed.		Resulting directions from station adjustment.		Approxi mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds
		0	1	11	11	11	11	//	//
94	Wachusett	0	00	000'000	于0:11	-o 'o34	59 '97	-o ·26	59 '71
	Azimuth Mark	. 35	12	22 .656	0.19				
95	Blue Hill	82	05	13 '351	11.0	+0.013	13 '36	+0.40	13 .76
96	Massachusetts North								
	Base	105	44	12 '597	0.12	+0 '002	12.60	+0.12	12.77
97	Manomet	128	54	18 '252	0.19	100° o—	18 .52	-o ·28	17 '97
98	Great Meadow	156	45	30 '025	0 '09	-o 'oo5	30 '02	0'15	29. 87
99	Massachusetts South							•	
	Base	159	50	57 .843	0.11	-0 '002	57 *84	-o 'o3	57 '81
001	Copecut	166	12	31 431	0.10	-o 'oo6	31 '42	+0.13	31 '55
Cirolo	used in III positions								

Circle used in III positions.

Monadnock,* Cheshire County, New Hampshire. July 21 to August 15, 1861. 75 cm direction theodolite No. 1. G. W. Dean, observer.

		0	1	11	//	//	11	//	11
60	Gunstock	0	00	000,000	±0.10	+0 '042	00 '04	-o·14	59.90
61	Unkonoonuc	32	54	52 457	0.19	+0.014	52.47	0,00	52 47
62	Wachusett	117	OI	19 '427	o.lo	-o ·o26	19*40	-o ·12	19:28
63	Bald Hill	145	06	44 '724	0 '09	+0.004	44 '73	+0.35	45 '08
64	Mount Toni	173	46	06 '971	0,11	+0.019	06 •99	-o ·o8	06.91

Probable error of a single observation (D. and R.) of a direction, $e_i = \pm o''$.67. Circle used in V positions.

Mount Tom, † Tolland County, Connecticut. July 11 to August 16, 1862. 75 cm direction theodolite No. 1. G. W. Dean and R. E. Halter, observers.

		0		//	//	11	//	//	//
115	Monadnoek	0	00	000,000	±o.io	+0.052	00 05	+0.13	00.14
	Azimuth Mark	4	45	13 '052	0.08				
116	Wachusett	33	28	40 '690	0 '09	+0.027	40, 72	+0.30	41 '02
117	Bald Hill	95	52	53 '979	0 '08	-0.023	53 '96	0.,00	53 '96
118	Box Hill	129	18	15 '047	0,09	-0 '009	15 '04	-0.13	14.91
119	Sandford	163	34	58.584	0.13	+0 '009	58.29	− o .33	58 .56

Circle used in V positions.

Bald Hill, Tolland County, Connecticut. September 12 to 25, 1861, and May 22 to June 7, 1864.
75 cm direction theodolite No. 1. G. W. Dean, observer.

		0	/	11	11	11	11	11	11
011	Box Hill	0	00	000 '000	±0.08	+0.012	00 '02	+0.51	00 *23
111	Ivy	34	47	46 '780	0.15	+0 '007	46 .79	+0.58	47 '07
112	Mount Tom	80	50	44 '995	0.10	0 '022	44 '97	-o·o5	44 '92
113	Monadnock	136	18	39 '740	0.14	+0 .000	39 '75	-o.e1	39°14
114	Wachusett	156	07	28 '560	0.13	+0 '028	28.59	+0.11	28 '70
Circle	used in V positions in I	861 a	nd ı	864.					

^{*}This station was occupied by Prof. E. T. Quimby in June, 1872, in connection with the survey of New Hampshire. In September, 1878, the party of Assistant R. D. Cutts reoccupied the station, but neither of these observers made any additions to the measures of the oblique arc.

[†] This station was occupied in June and July, 1877, by Assistant R. D. Cutts in connection with the survey of Vermont.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882—continued.

Box Hill, Tolland County, Connecticut. October 9 to 28, 1861. 75 cm direction theodolite No. 1.

** G. W. Dean, observer.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approxi- mate prob- able errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure ad- justment.	Final seconds.
		0	/	11	//	//	//	//	"
120	Sandford	0	00	000,000	±0.13	+0 '017	00 '02	+0.10	00 °12
121	Ivy	49	35	39.881	0.11	—o '007	39.87	o 'o8	39.78
122	Mount Tom	114	15	55 751	0,11	—o '013	55 . 74	+o ·28	56 .02
123	Bald Hill	179	59	54 '087	0.10	+0.024	54'11	−o ·28	53 .83
Circle	used in V positions.								

Ivy, Litchfield County, Connecticut. June 29 to August 12, 1863. 75 cm direction theodolite No. 1.
 G. W. Dean, observer.

		0	1	//	//	//	11	11	//
124	Bald Hill	0	00	000,000	±0.08	+0 '007	10,00	-o ·o4	59 '97
125	Box Hill	14	48	02 '805	0.09	-o ·oo4	02 '80	-o ·13	02 '67
126	Sandford	71	09	55 .842	0.09	0.013	55.83	-o'I2	55 '71
	Wooster	118	50	47 '463	0,15	+0.015	47 '48	+o ·33	47 '81
Circle	used in V positions								

Sandford, New Haven County, Connecticut. September 9 to November 4, 1862. 75 cm direction theodolite No. 1. G. W. Dean, observer.

Number of direc- tions.	Objects observed.	dire	ction	ulting ons from adjust- ent.	nenhabla	41 4	Correct- ed direc- tions.	Correc- tions from net adjust- ment.	Result- ing direc- tions.	Correc- tions from fig- nre ad- justment.	Final seconds.
		0	1	"	"	"	11	"	"	"	"
1	Ruland	0	00	000,000	±0.11			-0'264	59 '74		
	West Hills*	23	24	41 '547 +0 '008	0.13			+0.485	42.04		
	Tashua	42	36	58 '413	0 '12	+0.011	58.424	-o°330	58 '09		
	Wooster	69	03	33 '113	0.24	+0,000	33 122	+0.356	33 '48		
	Azimuth Mark	85	20	30. 246	0.12						
128	Ivy	147	34	47 '646	0.12	-0.024			47.62	+0.5	47 '87
129	Mount Tom	190	09	54 '581	0'12	+0'012			54 '59	+0.11	54.70
130	Box Hill	221	37	22.065	0,10	+0.016			22.08	+0.03	22 '10
Circ	ele used in V positions.										

Wooster, Fairfield County, Connecticut. July 14 to October 10, 1864. 75 cm direction theodolițe No. 1. G. W. Dean, observer.

		0	1	11	"	"	11	"	11	11	"
131	Ivy	0	00	000,000	±0.07	+0.050			00 '02	-0'29	59 '73
	Sandford	53	47	59 '208	0.02	+0,000	59 '217	-0.069	59 15		
	Tashua	95	57	47.652	0.08	-0.009	47 643	+0.582	47 '93		
	Ruland	124	51	45 '938	0.08			+0.002	45 '94		
	West Hills*	154	10	38 '493 +0 '032	0.04			-0.147	38 '38		

Circle used in V positions.

^{*}The correction to direction of West Hills is for eccentricity.

Observation equations.

```
I \mid 0 = -0.45 - (1) + (3) - (14) + (15)
          0 = +0.46 - (2) + (4) - (5) + (6)
       II
           0 = -0.38 - (1) + (2) - (6) + (7) - (13) + (15)
      III
           0 = +0.09 - (7) + (9) - (12) + (13) - (16) + (17)
      IV
       \mathbf{v}
           0 = -0.08 - (7) + (8) - (11) + (13) - (24) + (25)
      VI
           0 = -0.66 - (8) + (9) - (16) + (18) - (23) + (24)
           0 = +0.49 - (10) + (12) - (17) + (20) - (26) + (28)
     VII
     VIII
           0 = +0.07 - (18) + (20) - (22) + (23) - (26) + (27)
      IX
           0 = +0.85 - (21) + (22) - (27) + (29) - (38) + (40)
       X
           0 = +0.09 - (19) + (20) - (26) + (29) - (38) + (39)
      XI
           0 = -1.42 - (31) + (32) - (34) + (35) - (41) + (42)
           0=+1.20-(36)+(37)-(43)+(44)-(51)+(53)
     XII
           0 = -2 \cdot 02 - (29) + (30) - (36) + (38) - (52) + (53)
    XIII
           0 = +1.22 - (30) + (31) - (42) + (44) - (51) + (52)
    XIV
     XV
           o = +0.39 - (44) + (45) - (49) + (51) - (77) + (78)
    XVI
           0 = +1 05 - (49) + (50) - (54) + (55) - (76) + (78)
           o = +o \cdot o_3 - (45) + (46) + (55) - (59) - (76) + (77)
    XVII
           0 = -0.27 - (55) + (57) - (69) + (70) - (75) + (76)
   XVIII
           o = +o \cdot 6i - (45) + (47) - (68) + (70) - (75) + (77)
    XIX
           0 = -0.23 - (46) + (48) - (58) + (59) - (60) + (61)
     XX
           o = +o \cdot 6i - (57) + (58) - (6i) + (62) - (67) + (69)
    XXI
           o=+o.69-(55)+(56)-(74)+(76)-(84)+(85)
   XXII
           0 = +0.37 - (70) + (71) - (74) + (75) - (83) + (85)
   IIIXX
           0 = -1.55 - (71) + (72) - (82) + (83) - (94) + (95)
   XXIV
           0 = -0.25 - (73) + (74) + (79) - (85) - (88) + (89)
    XXV
           0 = -0.62 - (86) + (87) - (90) + (93) - (97) + (100)
   XXVI
           0 = +0.84 - (80) + (82) - (90) + (92) - (95) + (100)
  XXVII
           0 = +0.07 - (79) + (80) - (86) + (88) - (92) + (93)
 XXVIII
           0 = +1 \cdot 10 - (80) + (81) - (91) + (92) - (103) + (104)
   XXIX
           0 = -1.41 - (60) + (61) - (68) + (100) + (101) - (104)
    XXX
           0=+1.28-(96)+(98)-(101)+(102)-(107)+(109)
   XXXI
           0 = -0.11 - (96) + (99) - (105) + (106) - (108) + (109)
  XXXII
           0 = -1.62 - (62) + (64) - (66) + (67) - (115) + (116)
 HIXXX
           0 = +1 \cdot 10 - (63) + (64) - (112) + (113) - (115) + (117)
 XXXIV
  XXXV
           0 = +1.37 - (65) + (66) - (112) + (114) - (116) + (117)
 XXXVI
           0 = +0.96 - (110) + (112) - (117) + (118) - (122) + (123)
           0 = +0.22 - (110) + (111) - (121) + (123) - (124) + (125)
XXXVII
           0 = +0.11 - (118) + (119) - (120) + (122) - (129) + (130)
XXXVIII
            0 = +0.41 - (120) + (121) - (125) + (126) - (128) + (130)
 XIXXX
            0 = -0.99 - (126) + (127) + (128) - (131)
      XL
           0 = -3.8 - 2.77(1) + 3.39(2) + 4.29(3) - 3.35(4) - 1.43(13) + 1.89(14) - 0.46(15)
     XLI
            0 = -1.7 + 0.21(11) + 1.28(12) - 1.49(13) - 3.30(16) + 4.14(17) - 0.84(18) - 0.79(23)
    XLII
              +4.14(24) -3.35(25)
```

Observation equations—continued.

```
XLIII |
         0 = -1.82 \pm 4.586(10) - 4.864(11) + 0.278(12) + 0.240(17) - 0.455(18) + 0.215(20)
             +0.168(26) - 3.918(27) + 3.750(28)
 XLIV
          0 = -0.8 - 4.70(18) + 6.85(19) - 2.15(20) - 1.68(26) + 3.53(27) - 1.85(29) - 0.46(38)
             +4.46(39) - 4.00(40)
  XLV
         0 = +1.7 - 4.08(19) + 4.08(20) + 3.59(26) - 3.59(32) - 4.40(33) + 5.68(34) - 1.28(35)
             -1.54(37) + 3.12(38) - 1.61(39) - 3.10(41) + 6.18(42) - 3.08(43)
 XLVI
          0 = -6.2 - 2.03(29) + 1.96(30) + 0.07(31) - 3.08(42) + 4.94(43) - 1.86(44) - 0.16(51)
             +3.20(52) - 3.04(53)
XLVII
         -0 = +0.8 - 2.87(44) + 3.39(45) - 0.52(46) + 3.32(54) - 1.73(55) - 1.59(59) - 1.13(76)
             +3.69(77) - 2.56(78)
XLVIII
         0 = -1.23 - 0.216(45) + 3.472(46) - 3.256(47) - 3.156(68) + 3.290(69) - 0.134(70)
             -0.265(75) + 0.600(76) - 0.335(77)
 XLIX
         0 = -1.7 - 2.16(45) + 7.12(46) - 4.96(48) + 3.25(60) + 3.47(61) - 0.22(62) - 1.93(67)
             +3.27(69)-1.34(70)-2.65(75)+6.00(76)-3.35(77)
         0 = +2.4 - 2.98(55) + 4.83(56) - 1.85(57) + 0.06(69) + 3.11(70) - 3.17(71) - 1.81(74)
             +1.99(75) - 0.18(76)
     LI
         0 = -0.7 - 3.11(70) + 6.61(71) - 3.50(72) - 2.16(73) + 4.15(74) - 1.99(75) - 3.65(87)
             +5.74(88) - 2.09(89) - 0.29(94) + 2.27(95) - 1.98(97)
    LII
         0 = -2.0 + 0.49(79) + 1.54(80) - 2.03(82) - 2.84(86) + 6.49(87) - 3.65(88) - 2.95(90)
             +2.34(92)+0.61(93)
   LIII
         0 = -0.61 - 0.659(80) + 0.947(81) - 0.288(82) - 1.188(90) + 1.526(91) - 0.338(92)
             -0.058(95)+1.323(98)-1.265(100)
   LIV
          0 = +1.4 - 2.56(62) + 3.94(63) - 1.38(64) - 0.55(112) + 5.84(113) - 5.29(114) - 3.18(115)
             +4.28(116)-1.10(117)
         0 = -1.0 - 3.69(110) + 3.03(111) - 0.34(115) - 3.18(115) + 6.58(118) - 3.08(118)
    LV
             +7.97(124) - 9.37(125) + 1.40(126) + 0.60(128) - 3.44(129) + 2.84(130)
   LVI
          0 = +5.7 -2.77(1) +2.77(2) +0.94(4) +2.46(5) -2.46(6) -2.31(8)
             +2.31(9)+0.21(11)+0.25(13)-0.46(15)+0.84(16)-2.99(18)
             +2.15(20)-1.26(21)+1.26(22)+3.32(24)-3.32(25)+1.68(26)
             -1.68(27) + 0.07(29) - 0.07(31) - 2.04(36) + 2.04(37) + 0.46(38)
             -0.46(40) + 3.08(42) - 3.08(43) - 0.52(44) + 0.52(46) - 0.86(49)
             +0.86(50)+0.16(51)-0.16(53)-1.59(54)-1.85(56)+1.85(57)
             +1.59(59) - 0.06(69) - 3.44(71) + 3.50(72) - 0.18(74) + 1.31(76)
             -1.13(78) - 2.88(81) + 2.88(82) + 1.24(84) - 1.24(85) + 0.29(94)
             -0.53(32) - 1.25(32) + 1.25(32) - 0.48(101) + 1.28(102) - 0.80(103)
             +0.33(105)-0.33(106)+0.76(107)-0.76(109)
  LVII
         0 = +2.6 + 1.85(56) - 3.72(57) + 1.87(58) + 0.22(61) - 1.60(62) + 1.38(64)
             -2.31(65) + 2.31(66) + 3.50(71) - 3.50(72) + 2.88(81) - 2.88(82)
             -2.54(83) + 2.54(84) - 0.29(94) + 0.29(95) + 1.52(96) - 1.52(99)
             +0.48(101)-1.28(102)+0.80(103)-0.33(105)+0.33(106)-0.76(107)
             +0.76(109)-0.34(110)+0.89(112)-0.52(114)+3.18(112)-3.18(119)
             -3.09(118) + 3.09(119) - 1.29(120) + 1.29(121) + 0.95(122) - 0.95(123)
             +1.40(125) -3.32(126) +1.92(127) +3.44(129) -3.44(130) +1.54(131)
```

Correlate equations.

```
Corrections
 (1) = 0.8(-C_1 - C_3 - 2.77C_{41} - 2.77C_{56})
 (2)=0.9(-C_2+C_3+3.39C_{41}+2.77C_{56})
 (3) = 0.9(+C_1+4.29C_{41})
 (4)=1 'I (+C_2-3 '35C_{41}+0 '94C_{56})
 (5) = 0.8(-C_2 + 2.46C_{56})
 (6) = 0.8(+C_2-C_3-2.46C_{56})
 (7) = 0.8(+C_3 - C_4 - C_5)
 (8) = 0.9 (+C_5 - C_6 - 2.31C_{56})
 (9)=0.9(+C_4+C_6+2.31C_{56})
(10) = 1.2(-C_7 + 4.586C_{43})
(11)=1 \cdot 1(-C_5+0.21C_{42}-4.864C_{43}+0.21C_{56})
(12) = 0.9(-C_4 + C_7 + 1.28C_{42} + 0.278C_{43})
(13) = 0.8(-C_3 + C_4 + C_5 - 1.43C_{41} - 1.49C_{42} + 0.25C_{56})
(14) = 1.1(-C^{1} + 1.80C^{41})
(15) = 0.8(+C_1+C_3-0.46C_{41}-0.46C_{56})
(16)=1 \cdot 1(-C_4-C_6-3 \cdot 30C_{42}+0 \cdot 84C_{56})
(17)=1.0(+C_4-C_7+4.14C_{42}+0.240C_{43})
(18)=1 'o(+C<sub>6</sub>-C<sub>8</sub>-o '84C<sub>42</sub>-o '455C<sub>43</sub>-4 '70C<sub>44</sub>-2 '99C<sub>56</sub>)
(19)=2.0(-C_{10}+6.85C_{44}-4.08C_{45})
(20) = 1.0(+C_7 + C_8 + C_{10} + 0.215C_{43} - 2.15C_{44} + 4.08C_{45} + 2.15C_{56})
(21) = 0.9(-C_9 - 1.56C_{56})
(22) = 0.9(-C_8 + C_9 + 1.56C_{56})
(23) = 0.8(-C_6 + C_8 - 0.79C_{42})
(24)=1 \cdot 1(-C_5+C_6+4 \cdot 14C_{42}+3 \cdot 35C_{56})
(25) = 1 \cdot 1 (+C_5 - 3 \cdot 35C_{42} - 3 \cdot 35C_{56})
(26) = 0.8(-C_7 - C_8 - C_{10} + 0.168C_{43} - 1.68C_{44} + 3.59C_{45} + 1.68C_{56})
(27) = 0.9 (+C_8 - C_9 - 3.918C_{43} + 3.53C_{44} - 1.68C_{56})
(28) = 0.9(+C_7 + 3.750C_{43})
(29) = 0.8(+C_9+C_{10}-C_{13}-1.85C_{44}-2.03C_{46}+0.07C_{56})
(30) = 0.9(+C_{13}-C_{14}+1.96C_{46})
(31) = 0.8(-C_{11} + C_{14} + 0.07C_{46} - 0.07C_{56})
(32)=1.5(+C_{11}-3.59C_{45})
(33) = 0.8(-4.40C_{45})
(34) = 0.9(-C_{11} + 5.68C_{45})
(35) = 0.9(+C_{11} - 1.28C_{45})
(36) = 1.1(-C_{12}-C_{13}-2.04C_{56})
(37) = 1.3(+C_{12}-1.54C_{45}+2.04C_{56})
(38) = 0.9(-C_0 - C_{10} + C_{13} - 0.46C_{44} + 3.15C_{45} + 0.46C_{56})
(39) = 0.9 (+C_{10} + 4.46C_{44} - 1.61C_{45})
(40) = 1.0(+C_9 - 4.00C_{44} - 0.46C_{56})
```

Correlate equations—continued.

```
(41) = 0.8(-C_{11} - 3.10C_{45})
(42) = 0.8(+C_{11}-C_{14}+6.18C_{45}-3.08C_{46}+3.08C_{56})
(43) = 0.8(-C_{12} - 3.08C_{45} + 4.94C_{46} - 3.08C_{56})
(44) = 0.9(+C_{12} + C_{14} - C_{15} - 1.86C_{46} - 2.87C_{47} - 0.52C_{56})
(45) = 0.9 (+C_{15} - C_{17} - C_{19} + 3.39C_{47} - 0.216C_{48} - 2.16C_{49})
(46) = 0.7(+C_{17} - C_{20} - 0.52C_{47} + 3.472C_{48} + 7.12C_{49} + 0.52C_{56})
(47) = 0.8(+C_{19} - 3.256C_{48})
(48) = 0.7(+C_{20} - 4.96C_{49})
(49) = 0.9(-C_{15} - C_{16} - 0.86C_{56})
(50) = 1.1 (+C_{16} + 0.86C^{26})
(51) = 0.0(-C_{12} - C_{14} + C_{15} - 0.16C_{46} + 0.16C_{56})
(52) = 0.9(-C_{13} + C_{14} + 3.20C_{46})
(53) = 0.9 (+C_{12} + C_{13} - 3.04C_{46} - 0.16C_{56})
(54) = 0.9(-C_{16} + 3.32C_{47} - 1.59C_{56})
(55) = 0.8(+C_{16}+C_{17}-C_{18}-C_{22}-1.73C_{47}-2.98C_{50})
(56) = 1.0(+C_{22}+4.83C_{50}-1.85C_{56}+1.85C_{57})
(57) = 0.7 (+C_{18} - C_{21} - 1.85C_{50} + 1.85C_{56} - 3.72C_{57})
(58) = 0.8(-C_{20} + C_{21} + 1.87C_{57})
(59) = 0.7(-C_{17} + C_{20} - 1.59C_{47} + 1.59C_{56})
(60) = 0.8(-C_{20} - 3.25C_{49})
(61) = 0.8(+C_{20} - C_{21} + 3.47C_{49} + 0.22C_{57})
(62) = 0.8 (+C_{21} - C_{33} - 0.22C_{49} - 2.56C_{54} - 1.60C_{57})
(63) = 0.8(-C_{34} + 3.94C_{54})
(64) = 0.8(+C_{33}+C_{34}-1.38C_{54}+1.38C_{57})
(65) = 1.3(-C_{35} - 2.31C_{57})
(66) = 2.5(-C_{33} + C_{35} + 2.31C_{57})
(67) = 0.9(-C_{21} + C_{33} - 1.93C_{49})
(68) = 0.9(-C_{19} - 3.126C_{48})
(69) = 0.9(-C_{18} + C_{21} + 3.290C_{48} + 3.27C_{49} + 0.06C_{50} - 0.06C_{56})
(70) = 1.1 (+C_{18} + C_{19} - C_{23} - 0.134C_{48} - 1.34C_{49} + 3.11C_{50} - 3.11C_{51})
(71) = 0.9 (+C_{23} - C_{24} - 3.17C_{50} + 6.61C_{51} - 3.44C_{56} + 3.50C_{57})
(72) = 0.9 (+C_{24} - 3.50C_{51} + 3.50C_{56} - 3.50C_{57})
(73)=1.1(-C^{52}-5.19C^{21})
(74) = 0.8(-C_{22} - C_{23} + C_{25} - 1.81C_{50} + 4.15C_{51} - 0.18C_{56})
(75) = 0.9(-C_{18} - C_{19} + C_{23} - 0.265C_{48} - 2.65C_{49} + 1.99C_{50} - 1.99C_{51})
(76) = 0.9(-C_{16} - C_{17} + C_{18} + C_{22} - 1.13C_{47} + 0.600C_{48} + 6.00C_{49} + 0.18C_{50} + 1.31C_{56})
(77) = 1.0(-C_{15} + C_{17} + C_{19} + 3.69C_{47} - 0.335C_{48} - 3.35C_{49})
(78) = 0.9 (+C_{15} + C_{16} - 2.56C_{47} - 1.13C_{56})
(79) = 0.8(+C_{25} - C_{28} + 0.49C_{52})
(80) = 0.9(-C_{27} + C_{28} - C_{29} + 1.54C_{52} - 0.659C_{53})
```

Correlate equations -- continued.

$$\begin{array}{l} \frac{1}{800} \frac{1}{800} \frac{1}{800} \\ \frac{1}{800} \frac{1}{800} \frac{1}{800} \frac{1}{800} \frac{1}{800} \frac{1}{800} \frac{1}{800} \\ \frac{1}{800} \\ \frac{1}{800} \frac{1}{80$$

Correlate equations—completed.

```
(121) = 0.8(-C_{37} + C_{39} + 1.79C_{57})
(122) = 0.8(-C_{36} + C_{38} + 0.95C_{57})
(123) = 0.8(+C_{36} + C_{37} - 0.95C_{57})
(124) = 0.7(-C_{37} + 7.97C_{55})
(125) = 0.8(+C_{37} - C_{39} - 9.37C_{55} + 1.40C_{57})
(126) = 0.8 (+C_{39} - C_{40} + 1.40C_{55} - 3.32C_{57})
(127) = 0.9(+C_{40} + 1.92C_{57})
(128) = 1.0(-C_{39} + C_{40} + 0.60C_{55})
(129) = 0.9(-C_{38} - 3.44C_{55} + 3.44C_{57})
(130) = 0.8(+C_{38}+C_{39}+2.84C_{55}-3.44C_{57})
(131) = 0.7(-C_{40} + 1.54C_{57})
```

Normal equations.

	1	Cz	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C8	C ₉	Cro	Crr	C12	C_{13}	C14 -	C_{15}
I	0=-0.45	+3 °6		+1.6												
2	0=+0.46		+3 °6	-ı.4												
3	0=-0.38			+4.9	-1.6	-1.6										
4	0=+0.09				+5.2	+1.6	+2°0	-1.9								
5	0=-0.08					+5.8	-2.0									
6	0=-0.66						+5.8		-1.8							
7	0=+0.49							+5.8	+18		+1.8					
8	0=+0.07								+5.4	-ı ·8	+1.8					
9	c=+o.85									+5°4	+1.4			-1.7		
10	0=+0.09										+6.4			-1.7		
II	0=-1'42											+5.7			-1.6	
12	0=+1.50												+5.9	+2 0	+1.8	-1.8
13	0=-2'02													+5.2	- ı ·8	
14	0=+1.53														+5.5	-1.8
						8.7	2				4					

Normal equations—continued.

		C15	Cz6	C17	C18	C19	C20	C21	C33	C_{23}	C ₂₄	C25	C26	C ₂₇	C28	C ⁵⁹	C30	C31	C32	C ₃₃
15	0=+0'39			-		-1.9														
16	0=+1.02		+5.2	+1.4	-1.4				-1.4											
17	0=+0.03			+50	-1.4	+1'9	-1.4		- 1'7											
18	0=-0.27				+5°3	+2.0		-1.6	+1.4	-2'0										
19	0=+0.61					+5.6				-20										
20	0=-0.53						+4'5	-1.6												
21	0=+0.61							+4'9												-1-
22	0=+0.69								+5'2	+1.6		-1.6								-1.7
23	o=+o:37									+5.4	-1.8	-1.6								
24	0=-1.22										+5.5			-1'7						
25	0=-0'25											+5°2			-1.6					
26	0=-0.62												+5*8	+1.7	+2'1		+1.4			
27	0=+0.84													+5'2	-1.8	+1.8	+1.7			
28	0=+0.07														+5'5	-1.8				
29	0=+1.10															+5'4	-1'9			
30	0=-1'41																+5'4	-1.8		
31	0=+1.58																	+9.0	+ 3.5	
32	0=-0'II																		+14.4	ļ

THE EASTERN OBLIQUE ARC.

Normal equations—continued.

		C ₃₃	C ₃₄	C ₃₅	C ₃₆	C ₃₇	C ₃ 8	C ₃₉	C ₄₀	C ₄₁	C ₄₂	C ₄₃	C ₄₄	C ₄₅	C ₄₆
33	0=-1'62	+6.6	+1.6	-3.3											
34	0=+1'10		+4.8	+1.5	-1.2										
35	0=+1'37			+7.0	-1.2										
36	0=+0.06				+4.6		-1.6								
37	0=+0.55				-	⊦4°7		-1.6						•	
38	0=+0.11						+5.1	+1 7							
39	0=+0.41							+5'1							
40	0=-0.99								+3 4	⊢51°123 -	- 1 taos				
41	0=-3.8									-		+ 0.573	± 2°05		
43	0=-1.82											+78 136		+ 1.36	
44	0=-0.8													- 77'26	+ 3°004
45	0=+1.7													+185.45	
46	0=-6.3														+54.542
					4	Norn	nal e	quation	sco	mpleted	•				
		C ₄₁	C ₄	12 C	43	C44	C	45	246	C ₄₇	C48 C	C ₅₀	C ₅₁	C ₅₂	C ₅₆
I		+3.63	0												+1.848
2		−6 °73	6												-5'395
3		+6.04	3 +1	192											+6.100
4		-1.14		426 -0											+1.355
5		-1'14		662 +5							• • • • • • • • • • • • • • • • • • • •				-9°480
6				976 -0				ton6							+3'929
7 8			+0	-	*990 +										+0 'S80
9			10					·835 —1	·624						+3 '502
10								*084 —1							+0 '448
11						-		.225 —2							+2.520
12							+0	·462 —8	*218 -	2.583					+6.604
13					+	1 *066	+2	835 -2	*228						+21458
14			•				-4	*944 +2	.109 -	2.583					-3'132
						Nori	nal e	quatio	ns—co	mpleted	l.				
		C44	C ₄₅	C ₄₆	C ₄₇	C	48	C ₄₉	C50	C51	C ₅₂	C ₅₃	C ₅₄	C ₅₆	C ₅₇
														1 - 1 - 6 -	
15			• • • • • •	+1 530	_			+1.406						+0.369	
16								-5 °400 -1 '822						-1 933	
17 18										- 1 ·630				+2.528	-2.604
19								-0.495		-1 630					
20					-	-		3 °080						+0.749	-1:320
21						+2	2*961	+1.728	+1*349)			-2 '048	-1 '349	+2'644
22					+0.36	7 +0	540	+5*400	+8.500	-3.350				-2 635	-o °436
23							100°	-0,911						-3 '944	+5.436
24												7 +0.213		+3.190	-5.230
25									—I *44 ⁸			2		+0.848	
26					-							9 +0.057		+2.824	- 2 '824
27 28												8 +0.133 8 -0.289		T2 024	- 2 024
25										14 392		0 -0 239 0 -0 480		-1:584	+1 *584
30												5 +0 525			+0 480
31												+1.058			+0.264
32		1												-1.672	+1.673

Normal equations—completed.

				210	mui cy	uuuuns-	Compi	Lect.				
	.	C47	C ₄ 8	C ₄₉	C ₅₀	C ₅₁	C ₅₂	C ₅₃	C ₅₄	C ₅₅	C ₅₆	C ₅₇
22				- 1·56					+ 6.913			- 8'479
33 34				- 1 30						- 1,961		- 2.12
35									_	- 1.961		+ 10.112
36									+ 0.330	+ 8.868		- 3 '042
37									•	- 8.465		— 0.834
38										- 2°437		+ 1.776
39										+ 10.588		- 3°485 + 3°306
40			******	******	* * * * * * * * * * * * * * * * * * * *			*******		- 0 520	+ 11,000	+ 3.306
42											+ 26 814	
43											+ 6.849	
44											+ 3.380	
45							• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	+ 33 633	
46	0=+0.8	+ 4.804	2:068	- 27.64	1 4 1000						- 18.595	
47 48	0=-1.53	+52.693	- 3 768 +36 187	+ 32.60	+ 4 ·307 - 0 ·853	+ 0.93					- 4 °096 + 1 °793	
49	0=-1.7		1 30 201.	+139 '92	-10.15	+ 9.33			+ 0.450			+ 0.892
50	0=+2.4				+58 728	- 39.07						+ 3.767
51	0=-0.7					+135.18	-40.449	-0.106			- 32.680	+ 32.440
52	0=-2.0						+80 *820	+2.026			- 5.561	+ 5.561
53	0=-0.61							+7.568			- 2.914	+ 2.914
54	0=-1.0									+ 2.61		- 14.998
55 56	0=+5.7	* * * * * * * *	* * * * * * * *	******					* > * * * * * * *	+194.42	+171 '07	- 56°399
57	0=+2.6										1-1/	+174.110
				Re	sulting	vatues o	f corret	rtes.		•		
	(; =+o :1	207	C=	-o ·2 409		C.,=-	-0 '1223		$C_{44} = +c$	°0440	
		$\frac{1}{2} = -0.1$			+0 .1811			-0 1223		$C_{45} = +c$		
		$^{\circ}_{3}=-0$			+0 4276			-0 0363		$C_{46} = -1-0$	010	
		$\frac{1}{4} = -0.3$			-0.3196			-0.4168		$C_{47} = -c$		
		=+0'i		-	+0.1918			-0 '5315		$C_{48} = +c$		
		° 6=+0		$C_{21} = \cdot$	+0.1744			-0.0191		$C_{49} = -c$		
	C	; ₇ =-0.2	663	C22=-	-0:3624		C ₃₆ =-	-0 .6061		$C_{50} = -c$	0143	
	(1. o+=8	052	C23=	+0 1242		$C_{37} = -1$	-0 '2410		$C_{5i} = -c$	10053	
	C	; ₀=+o.ı	698		+o •3096		$C^{38} = -$	-0 '2491		$C_{52} = -c$	'0325	
		5:0++0.5		C ₂₅ =-	–o ⁺o829)	C39=-	-0 '1599		$C_{53} = +c$.0530	
		5.0 + 0.3		C ³⁶ =	+0 2957	,	$C_{40} = -$	-o ·3 927		$C_{54} = -c$		
		C ₁₂ =-0 '2			-o ·1935			-0 *0652		$C_{55} = +0$		
		;13=+0.6			-0 27 01			-0 *0481		$C_{56} = -0$		
		C14=+0.0		C29=	-0 °1 904		C ₄₃ =-	-0 '01 23		$C_{57} = -c$	'0136	
		;=o ·1	424	Dage	Hine	rrection	s to die	ctions				
				Nesu		rection	s w uire					
			/	()	//	_	((-)	//			"	
		(1) = -0			=-0 ·155		(67) = (68) = (68)			100) = +	_	
		(2) = +0 (3) = +0			=+0 ·303 =-0 ·302		1 1	+0°126		(01) = +		
		(3) = +0 (4) = -0	_		=-0 302 =-0 603			-0 °049		102)=- 103)=+		
		(5) = -0			=+0.294	-		-0.018		(03) = -		
		(6) = +0			=+0 ·356			+0 '152		(05) = -		
		(7) = +0	-		=+0 °017			+0 104		(05) = +		
		(8) = -0			=-0 '401			+0°136		(07) = +		
		(9) = -0		4	=-0 044			-0 '002		108)=-		
		10)=+0			=+o ·8oı			0110		109)=-		
		a_No	F 00						-			

4192-No. 7-02-9

Resulting corrections to directions—continued.

/	//	//	//
(11)=-0.270	(44) = -0.081	(77) = -0.231	(110) = +0.214
(12) = +0.108	(45) = -0.198	(78) = -0.139	(111) = +0.581
(13) = -0.199	(46) = +0.104	(79) = +0.137	(112) = -0.020
(14) = +0.003	(47) = -0.404	(80) = +0.026	(113) = -0.608
$850^{\circ}0 + = (21)$	(48) = +0.154	800.00 = 0.008	(114) = +0.107
(16) = -0.240	(49) = +0.391	(82) = -0.525	(115) = +0.120
(17) = +0.147	(50) = -0.321	(83) = +0.198	(116) = +0.299
(18) = +0.146	(51) = +0.025	(84) = +0.229	(117) = +0.005
(19) = -0.505	(52) = -0.159	(85) = -0.066	(118) = -0.133
(20)=+0.027	(53) = +0.006	(86) = +0.073	(119) = -0.328
(21)=-0.070	(54) = +0.112	(87) = +0.104	(120) = +0.103
(22) = -0.025	(55) = +0.022	(88) = -0.079	(121) = -0.084
(23) = -0.212	(56) = -0.347	(89) = -0.065	(122) = +0.275
(24) = +0.165	(57) = +0.155	(90) = -0.172	(123) = -0.282
(25) = +0.241	(58) = -0.034	(91) = +0.394	(124) = -0.037
(26) = -0.106	(59) = +0.012	(92) = -0.187	(125) = -0.127
(27) = +0.130	(60) = -0.139	(93) = +0.006	(126) = -0.124
(28) = -0.198	(61) = -0.004	(94) = -0.257	(127) = +0.330
(29) = -0.488	(62) = -0.125	(95) = +0.401	(128) = +0.247
(30) = +0.769	(63) = +0.347	(96) = +0.172	(129) = +0.109
(31) = -0.5229	(64) = -0.080	(97) = -0.285	(130) = +0.020
(32) = +0.375	(65) = +0.066	(98) = -0.123	(131) = -0.50
(33) = -0.132	(99) = -1.198	(99) = -0.026	

Probable error of a resulting direction =0.674 $\sqrt{\frac{8.6}{57}} = \pm 0''.26$.

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island base net.

No.	Stations.	Obs	erved	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. dis- tances.	Distances in meters.
		0	/	//	//	//	11		
1	Ragged Mountain	29	25	O2 'I I	+0.04	02 15	3 '44	4.761 268 0	57 712 253
1	Humpback	39	54	29.08	+0.36	29 '44	3 '44	4.877 280 4	75 384 22
	Mount Desert	110	40	38.68	+0.02	38 '73	3 '44	5 '041 137 6	109 935 '4
	Mount Harris	40 .	32	25 .55	+o ·o8	25 '30	3 '79	4 '761 268 o	57 712 '253
2	Humpback	66	02	38 51	-o ·44	38 .02	3 .80	4 '909 249 6	81 142 72
	Mount Desert	73	25	11.80	-0.10	38 '01	3 '79	4 '929 927 0	85 099 50
	Mount Harris	65	08	37 '27	-o °o2	37 '25	3.13	4 .877 280 4	75 384 21
3 +	Mount Desert	37	15	30.57	+0.19	30.43	3.13	4 701 544 4	50 297 .27
	Ragged Mountain	77	36	01.12	+0 '24	01 '41	3 .13	4 '909 249 6	81 142 72
	Mount Harris	105	41	02 '49	+0 07	02 '56	3 '49	5 041 137 6	109 935 '4
4	Humpback	26	08	09 '43	-o ·8o	08.63	3 '48	4 '701 544 4	50 297 27
	Ragged Mountain	48	ю	59 '06	+0 '20	59 '26	3 '48	4 '929 927 0	85 099 50
	Mount Blue	26	55	40 *80	+0.39	41 '19	4 '02	4 '701 544 4	50 297 '27
5	Mount Harris	94	22	34 '42	-0.12	34 '25	4 *03	5 044 318 1	110 743 5
	Ragged Mountain	58	41	56 '94	-o.31	56 '63	4 '02	4 '977 267 1	94 900 '20

THE MAIN TRIANGULATION.

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island base net—continued.

No.	Stations.	Obse	erved	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	//	//	11	//		
{	Sabattus	32	08	13 '22	+0.08	13 '30	g .12	4 '701 544 4	50 297 27
6 {	Mount Harris	52	02	19 '02	-0.07	18 '95	3 .12	4 .872 442 9	74 549 119
l	Ragged Mountain	95	49	37'14	+0 .07	37 '21	3 .16	4 '973 438 4	94 067 25
(Sabattus	69	29	07 '45	+0.38	07 '83	5 '09	4.977 267 1	94 900 '20
7 {	Mount Blue	68	10	51 '74	+0.38	52 '12	5 °08	4 '973 438 4	94 067 25
_	Mount Harris	42	20	15 '40	-0.10	15 '30	5 '08	4.834 048 9	68 241 56
(Sabattus	101	37	20 '67	+0.45	21, 12	4 '22	5 '044 318 1	110 743 5
8]	Mount Blue	41	15	10 '94	0,00	10 '94	4 .51	4.872 443 0	74 549 20
~)	Ragged Mountain	37	07	40 '20	+0'38	40 '58	4.51	4.834 048 8	68 241 55
(-	1				
[Mount Pleasant	54	39	35 '70	-0,09	35 '61	8.11	5 044 318 1	110 743 5
9 {	Mount Blue	85	35	26 °05	-0.15	25 '93	8.10	5 '131 493 6	135 361 0
{	Ragged Mountain	39	45	23 '05	-o ·28	22.77	8.10	4 '938 618 6	86 819 76
{	Mount Pleasant	51	26	46 '90	+0 *24	47 '14	3 '50	4.834 048 9	68 241 '56
10 {	Mount Blue	44	20	15 '11	-0.13	14 '99	3 '50	4 '785 231 0	60 986 12
l	Sabattus	84	13	08.26	-0.19	08:37	3 '50	4 '938 618 6	86 819 76
ſ	Mount Pleasant	3	12	48 ·80	-0.327	48 '473	0 '391	4.872 443 0	74 549 20
11 {	Sabattus	174	09	30 '77	o ·265	30.202	0 *392	5 '131 493 6	·135 361 'o
l	Ragged Mountain	2	37	42.85	-0.654	42 '196	0,391	4.785 231 0	60 986 12
ſ	Mount Independence	77	48	18 *33	-0.58	18 05	1 '94	4.785 231 0	60 986 12
12	Mount Pleasant	48	46	01,10	-0.62	00 '48	1 '94	4.671 377 7	46 922 13
12	Sabattus	53	25	47 '25	+0.05	47 '30	1 '95	4.699 925 8	50 110,16
(
	Mount Independence	25	16	42 '18	-0.34	41 '84	1 .83	4 '834 048 9	68 241 '56
13 {	Mount Blue	17	04	28.31	-o ·35	27 '96	1 '82	4 671 377 7	46 922 13
l	Sabattus	137	38	55 .81	-0.14	55 .67	1 .85	5 '032 067 2	107 663 2
ſ	Mount Independence	52	31	36 .12	+0 .06	36 .51	3 .65	4 '938 618 6	86 819 76
14 {	Mount Pleasaut	100	12	48 '00	-o ·38	47 .62	3 .65	5 032 067 2	107 663 2
Į	Mount Blue	27	15	46 .80	+0.53	47 °03	3 .62	4.699 925 8	20 110.19
ſ	Mount Washington	68	55	42 '51	-o °o2	42 '49	3 '41	4 '938 618 6	86 819 76
15 {	Mount Blue	30	23			02 .89	3 '41	4 .672 640 4	46 950 53
l	Mount Pleasant	80	41	25 °33	-o ·48	24.85	3 '41	4 962 918 5	91 816 '03
(Gunstock	34	19	40°20	+0.84	41 '04	3 '03	4.699 925 8	50 110.16
16 {	Mount Pleasant	19	54	04.38	+0.26	04 .64	3 '04	4 948 470 6	88 811 '79
	Mount Independence	53	46	22 '53	+0.90	23 '43	3 '04	4 855 408 1	71 681 66
(Mount Washington	58	41	21 '78	+0.46	22 '24	2 .85	4 ·855 408 I	71 681 66
17	Mount Pleasaut	87	11	42 '29	+0.60	42 .89	2 .84	4 '923 248 1	83 800 79
*/ }	Gunstock	•					2 '85	4 923 240 1	
(Callstock	34	07	03 '05	+0.36	03 '41	2 05	4 0/2 040 4	46 950 53

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island base net—continued.

No.	Stations.	Obser	ved :	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	/	//	//	//	"		
ſ	Agamenticus	85	-	41 '30	-0 '02	41 (28	3 '59	4 '948 470 6	88 811 .49
18 {	Gunstock	48	29	43 .81	-o ·88	42 '93	3 '59	4 '824 135 I	66 701 .43
{	Mount Independence	45	50	46 .87	-0.30	46 .57	3.60	4.805 515 8	63 902 20
ſ	Agamenticus	33	20	57 '33	+0.19	57 °49	2 .78	4 699 925 8	50 110.16
19 {	Mount Pleasant	47	οI	59.61	+1.26	00 '87	2 '79	4.824 135 1	66 701 '43
1	Mount Independence	-	37	09 '40	+0.60	10,00	2 '79	4 '953 627 I	89 872 56
ſ	Agamenticus	52	18	43 '97	-o .18	43 '79	3 .84	4 ·855 408 I	71 681 66
20 {	Gunstock	82	49	24 '01	-o ·o4	23 '97	3 .82	4 '953 627 0	89 872 54
	Mount Pleasant	44	52	04 '77	-1.00	03 '77	3 .84	4.805 515 8	63 902 20
(Unkonoonuc	53	00	53 .60	+0.10	53 '70	3 '25	4.805 515 8	63 902 20
21 {	Gunstock		11	25 '06	+0'19	25 '25	3 '25	4 .890 346 8	77 686 '72
(Agamenticus	50	47	50 .46	+0.35	50.81	3 .56	4 '792 336 4	61 992 11
(Thompson	29	43	52 '11	+0.09	52 '20	3 '23	4.805 515 8	63 902 '20
22 {	Gunstock	_	52	27 .68	-0 °I 2	27 .26	3 .53	4.832 776 9	68 041 '97
- (Agamenticus	_	23	50 '30	-o ·36	49 *94	3 *24	5 '054 430 8	113 352 4
ſ	Thompson	61	50	53 .58	-0.5	53 °03	4.13	4.890 346 8	77 686 72
23 {	Unkonoonuc	50	33	20 '33	-0.09	20 °24	4 '13	4.832 776 9	68 041 '97
	Agamenticus	67	35	59 .84	-0.41	59 °13	4.14	4.910 955 0	81 461 .99
1	Unkonoonuc	103	34	13 '93	+0.01	13 '94	4 '15	5 054 430 8	113 352 4
24 {	Gunstock	44	18	57 '38	+0.30	57 .68	4 '15	4 '910 955 1	81 462 00
	Thompson	32	07	01.12	−o · 34	00.83	4.12	4 *792 336 5	61 992 13
	Monadnock	32	54	52 '43	+0.13	52.26	1 .93	4 .792 336 4	61 992 11
25 {	Gunstock	22	59	06 *42	+0.02	06 '47	1 *93	4.648 835 1	44 548 71
	Unkonoonuc	124	06	06 '72	+0.02	06 '77	1 '94	4 '975 287 4	94 468 59
	Wachusett	61	22	19 '44	-0.12	19 .52	8 .68	5 .054 430 8	113 352 4
26 {	Gunstock	48 .	00	55 .09	-0.51	54.88	8 .68	4.982 231 4	95 991 '20
	Thompson	70	37	12 °12	-o ·23	11.89	8.68	5.085 731 5	121 823 '6
	Wachusett	57	33	20.78	+0.03	20.81	4.15	4 '910 955 0	81 461 99
27 <	Unkonoonuc	83	56	40 '35	+0.13	40 48	4.11	4 '982 231 3	95 991 18
	Thompson	38	30	10 '95	+0.11	11.00	4.13	4 . 778 830 2	60 093 88
	Wachusett	_ 3	48	58 .66	-0 '202	58 .458	0 '412	4 '792 336 4	61 992 111
28 +	Gunstock	3	41	57 '71	-0.210	57 '200	0 '412	4 '778 830 3	60 093 89
	Unkonoonuc	172	29	05 '72	-0'142	04 *578	0 412	5 '085 731 4	121 823 6
	Monadnock	117	OI	19 '36	+0.01	19 '37	3 '21	5 '085 731 4	121 823 6
29	Gunstock	19	17	08 '71	+0.26	09 *27	3 *22	4 '654 798 1	45 164 59
	Wachusett	43	41	41 '10	-0.10	41 '00	3 '21	4 '975 287 5	94 468 60

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island hase net—continued.

No.	Stations.	Obs	erved	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess,	Log. distances.	Distances in meters.
		0	1	//	//	11	11		
	Wachusett	47	30	39 '76	-o .3o	39 '46	I '70	4 .648 835 1	44 548 71
30	Monadnock	84	06	26 '93	-o ·12	26 '81	1 .69	· 4 ·778 830 2	60 093 88
l	Unkonoonuc	48	22	59 '00	-0.19	58.81	1 .69	4 654 798 1	45 164 59
	Blue Hill	59	37	43 '90	-o ·29	43 '61	3 '74	4 '910 955 0	81 461 99
31 {	Unkonoonuc	35	14	58 .03	—o ·37	57 '66	3 '74	4 .736 332 8	54 492 '01
	Thompson	85	07	29 '98	-0.03	29 '95	3 *74	4 973 491 2	94 078 68
1	Blue Hill	99	18	37 '08	-o ·26	36 82	3 '22	4 '982 231 4	95 991. 20
32 {	Wachusett	34	04	13,01	+0.03	13 '94	3 '21	4.736 332 6	54 491 '99
	Thompson	46	37	19 '03	-o ·14	18.89	3 '22	4 849 420 1	70 700 11
1	Wachusett	91	37	34 '69	+0.06	34 '75	3 · 60	4 '973 491 2	94 078 68
22	Unkonoonuc	48	41	42 '32	+0.20	42 *82	3 '59	4 973 491 2	70 700 13
33 {	Blue Hill	39	40	53 .18	+0.03	53 '21	3 '59	4 .778 830 4	60 093 '90
`									
	Beaconpole	82	05	13 '39	+0.66	14 '05	2 *03	4 *849 420 I	70 700 111
34 {	Wachusett	31	00	49 40	+0.17	49 57	2 '02	4 *565 581 4	36 777 43
,	Blue Hill	66	54	01 '73	+0.72	02 45	2 '02	4.817 279 5	65 656 .77
ſ	Manomet	45	08	44 .85	+0 '02	44 .87	2 '47	4 '736 332 7	54 49 2 ° 00
35 {	Blue Hill	90	36	02.26	+0,50	02 .76	2 *48	4 885 726 8	76 864 67
l	Thompson	44	15	19.76	+0.03	19.79	2 *47	4 729 513 1	53 643 00
ſ	Manomet	29	59	42 .88	-o.18	42 '70	1 .65	4 .262 281 4	36 777 43
36 {	Beaconpole	46	49	04 .89	o ·69	04 '20	1 .65	4 '729 513 0	53 642 99
Ų	Blue Hill	103	II	18 .63	o · 66	17 '97	1 .63	4 .855 073 1	71 626 39
ſ	Copecut	106	07	29 '31	+0.18	29 '49	1 .63	4 '855 073 1	71 626 '39
37 {	Beaconpole	37	18	13 '17	+o •41	13 .28	1 .63	4.655 000 4	45 185 64
Į	Manomet	36	34	21 '79	+0.03	21 '82	1 .63	4 647 629 9	44 425 26
ſ	Copecut	41	58	51 '45	0 '01	51 '44	1 '37	4 565 581 4	36 777 '43
38 {	Beaconpole	84	07	18.06	-0.58	17 '78	1 .38	4 '737 944 0	54 694 54
- (Blue Hill	53	53	55 '45	0.55	54 '90	1 '37	4 · 647 630 0	44 425 27
f	Copecut	64	08	37 .86	+0.10	38 '05	1 .88	4 '729 513 I	53 643 '00
39 {	Blue Hill	49	17	23 '18	0.11	23 '07	1 '88	4.655 000 3	45 185 63
	Manomet	66	34	04 .67	-0.12	04 '52	ı •88	4 '737 944 I	54 694 55
ſ	Great Meadow	69	09	39 °7 4	-o ·o8	39 .66	0.70	4 '565 581 4	36 777 '43
40 {	Beaconpole	74	40	16.66	-o ·55	16.11	0.69	4 '579 231 4	37 951 71
,	Blue Hill	36	10	06 .84	-0°52	06 '32	0.40	4 '365 932 1	23 223 '74
	Great Meadow		20			20 '42			
41 {	Blue Hill	130		20 . 91	-0.49		0.54	4 '737 944 I	54 694 55
41 {		17	43		-0.03	48.58	0 '53	4 '339 491 3	21 852 01
(Copecut	31	55	53 .18	− o .28	52 '60	0.23	4 '579 231 4	37 951 71

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island base net—completed.

No.	Stations.	Obse	erved	angles.	Correc- tions.	Spher- ical angles.	Spher- ical excess.	1,og. dis- tances.		stances meters.
		0	1	11	//	//	11			
ſ	Great Meadow	160	29	59 '35	+0.565	59, 915	0'144	4 '647 630 0	44	425 '27
42 {	Copecut	IO	02	58 .54	+0.566	58 836	0.143	4 '365 932 1	23	223 '74
l	Beaconpole	9	27	01 '40	+0.279	01 '679	0'143	4 '339 491 3	21	852 '01
(Massachusetts North									
	Base	70	09	29 .82	0 '43	29 '39	0.33	4 '365 932 1	23	223 '74
43 {	Great Meadow	58	49	15 '01	-o ·52	14 '49	0 '32	4 324 757 7	21	123 '10
(Beaconpole	51	OI	17 '42	-0.33	17 '09	0.35	4 283 145 5	19	193 '12
(Massachusetts South		•							
	Base	Sı	00	16.67	+0.39	17 '06	0 '22	4 *324 757 7	21	123 '10
44 {	Beaconpole	54	06	45 *24	-0.50	45 '04	0 '22	4 '238 707 7		326 '376
	Massachusetts North									
l	Base	44	52	58.64	-0.08	58 '56	0 '22	4.178 727.3	15	091 '32
ſ	Mount Tom	33	28	40 '67	+0.18	40 .85	2 .62	4 .654 798 I	45	164 '59
45 {	Monadnock	56	44	47 '59	+0 '04	47 .63	2 .61	4 .835 503 1	68	470 *44
Į	W chusett	89	46	37 '97	+1.40	39 '37	2 .62	4 '913 165 6	81	877 '70
ſ	Bald Hill	19	48	48 .84	+0.41	49 55	1 .78	4.654 798 1	45	164 '59
46 {	Monadnock	28	05	25 '33	+0.47	25 '80	ı ·78	4 '797 545 0		740 '07
· (Wachusett	132	05	49 .82	+0.16	49 '98	ı .77	4 '995 067 2	98	870.61
(Mount Tom	95	52	53 '91	-0.11	53 .80	3 *29	4 '995 067 2	08	870 '61
47	Monadnock	93 28	39	22 .56	-0.43	21.83	3 .58	4 '678 180 7		662 '93
47 {	Bald Hill	55	27	54 '78	-o ·56	54 .55	3 '28	4.913 165 6		877 '70
	Bald Hill	75	16	43 .62	+0.12	43 '77	2 '44	4 .835 503 1		470 '44
48 {	Mount Tom	62	24	13 '24	-0.59	12 '95	2 '45	4 797 545 0		740 07
(Wachusett	42	19	11 '85	-1 '23	10 '62	2 '45	4.678 180 7		662 '93
	Box Hill	65	43	58 .37	-o ·56	57 '81	1 .12	4 .678 180 7		662 '93
49 {	Mount Toni	33	-	21 '08	-0.14	20 '94	1 .12	4 459 356 2		797 '58
(Bald Hill	80	50	44 '95	-o ·26	44 '69	1 '14	4.412 492 5	51	616 93
ſ	Ivy	14	48	02 '79	-0.09	02 °70	1 .19	4 '459 356 2	28	797 '58
50 {	Bald Hill	34	47	46 .77	+0.07	46 .84	1,19	4.808 420 3	64	331 '00
Į	Box Hill	130	24	14 '24	-0 *20	14 '04	I '20	4 '933 714 3	85	844 .86
ſ	Sandford	31	27	27 '49	-0.09	27 '40	2 .55	4.712 792 2	51	616.93
51 {	Mount Tom	, 34	16	43 '55	-0.19	43 *36	2 '22	4 '745 910 0	55	707 °03
Į	Box Hill	114	15	55 '72	+0.14	55 .89	2 .51	4 '955 070 1	90	171 .67
1	Sandford	74	02	34 .46	-0.23	34 '23	2 '31	4 .808 420 3	64	331 000
52	Ivy	56	21	53 '03	00,00	53 '03	2 '31	4 '745 910 0		707 03
	Box Hill	49	35	39 .85	-o ·18	39 .67	2 '31	4 '707 138 1	50	949 *29
	Wooster	53	47	59 °13	-0 '29	59 '42	1 '97	4 '707 138 1	50	949 '29
53	Ivy	47	40		+0.45	52 '10	ı '97	4 .669 171 0	46	684 *31
	Sandford	78	31	14 '14	+o ·25	14 '39	1 '97	4 '791 513 4	61	874 *74

30 CM. THEODOLITE.

75 CM. THEODOLITE.

 TRIANGULATION CONNECTING THE FIRE ISLAND BASE NET WITH THE KENT ISLAND BASE NET EXTENDED, CONNECTICUT, NEW YORK, NEW JERSEY, PENNSYL-VANIA, DELAWARE, AND MARYLAND. 1833–1845 AND 1865.

The angular measures of this section of the oblique arc date from the year 1833, and were completed in 1845. The triangulation up to 1843 inclusive is essentially the work of Superintendent F. R. Hassler. In its composition it reflects the custom in those early days of including but a few composite figures, such as quadrilaterals or central figures, the chain being made up mainly of triangles. The number of observations taken would now be considered as scanty, yet with the superior instruments Mr. Hassler had procured, his results reached a fair degree of accuracy. The number of series, each including a direct and a reversed set, varied from 11 to 35, with an average of 24. At the six stations which remained to be occupied after his death in November 1843, the observations of his principal assistant show an extreme range in number of series between 10 and 73. The horizontal circle of the theodolite was used at each station in several positions, most frequently in six or three, that is, by shifting the zero division of the graduation either 60° or 120° for each new position. It was Mr. Hassler's practice to observe only at such times as were considered by him favorable or conducive to good results. In 1850-51, in the local or station adjustments, the measures were treated as directions according to Bessel's method, and an adjustment of the triangulation was made in sections. The results were published in the Coast Survey Report for 1851, page 222, and following. Later on, in 1866-67, after the reoccupation of certain stations of the Fire Island base net, and after some revision of the triangulation about the Kent Island base, a new and more systematic adjustment was made, and relative weights to the directions were introduced. These later results were published in the Coast Survey Report for 1866, pages 52-53. A discrepancy of 50 units in the seventh place of decimals of the logarithm of the length was developed by the triangulation, and was distributed in this adjustment by a length equation. A comparison of these results with the present values of the length of the starting line Bald Hill to West Hills, showed a difference in the logarithm of 4 units in the seventh place, whereas the new adjustment in the vicinity of Kent Island base showed no discrepancy on the line Osbornes Ruin to Turkey Point. This fully justified the retention of the adjustment of 1866-67, with but a slight change due to the

gradual dispersion of this small logarithmic discrepancy of 4 units in the seventh place of decimals. The small changes indicated in the angles of the first and second triangles, which do not exceed o"'21, and in the last or thirtieth triangle of less than half a second, are due to this method of producing an accord.

The correction to the horizontal angles for height of stations observed upon is less than o"'02, and generally this need not be considered.

The approximate heights of the stations are as follows:

	Meters.	Feet.		Meters.	Feet.
Round Hill	177	582	Willowgrove	132	433
Harrow*	116	379	Pine Hill†	6t * 4	202
Buttermilk	217	712	Yard	150	493
Weasel*	178	583	Lippincott	43	142
Beacon Hill†	113 '7	373	Bethel	125	410
Springfield*	159	523	Burden, less than		500
Mount Rose	127.7	419	Meetinghouse Hill, less	than	500
Disboro †	84.5	276	Buck, less than		500
Stony Hill†	71 .6	235	Principio, less than		500
Newtown	99	326	Turkey Point	25	82
Mount Holly	55 '3	181	Osbornes Ruin	90	295

The fact that the spherical excess of the triangles was computed with reference to the Besselian spheroid is immaterial, as the values from the Clarke spheroid would be the same within the limits of the size of the triangles. The details of this adjustment have not been published, and it is desirable to present here certain leading quantities, but it is essential to bear in mind that the 1866–67 adjustment started from the sides of the triangle Tashua, Ruland, West Hills, as given, and terminated with the side Finlay to Pooles Island. It is therefore slightly longer than the section which is now under consideration. The small corrections to the lines Bald Hill to West Hills and Osbornes Ruin to Turkey Point, due to the readjustment, are not introduced here, but the effect is indicated by the fractional seconds placed in parenthesis and already alluded to above. The mean error of a triangle, derived from the sum of the squares of the closing errors,

equals $\sqrt{\frac{73.92}{33}} = \pm \text{ i''.50}$, and that of an angle $\pm \text{ o''.86}$, and the probable error of a direction equals $0.674 \frac{1.50}{\sqrt{6}} = \pm \text{ o''.41}$. The probable error of a direction, ε_i , as found approximately from the individual measures at each station, is $\pm \text{o''.25}$; hence the square of the triangle-combination error $= \varepsilon_c^2 = (0.41)^2 - (0.25)^2 = 0.107$, which quantity was added to each ε_i^2 ; hence $\frac{1}{p} = \varepsilon_c^2 + \varepsilon_i^2$. The ratio of the greatest to the least value of $\frac{1}{p}$ is as 0.63 to 0.12.

^{*}Determined in 1817.

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833–1845 and 1865.

Bald Hill, Fairfield County, Connecticut. July 23 to August 18, 1833. 60 cm direction theodolite No. 2. F. R. Hassler, observer.

Number of direc- tions.	Objects observed.	dire	ectic	lting on from adjust- ut.	Approxi- mate prob- able error.	Reduc- tions to sea level.	Corrections from net adjust- ment.	Resulting seconds.	Correc- tions from ad- justment of 1866.	Final seconds.
		0	,	"	"	"	"	"	**	"
	Tashua'	0	00	000*000	±0°22	+0.006	-o ·103	(59.903)		00,00
	Ruland*	62	40	17.802	0 .60		+1 *433	(14.501)		
				+0.026						
8	West Hills	99	31	40.835	0 *27		-o*213	(40.622)	+0.434	41 *27
9	Harrow	121	42	18 '609	0.10				-0 '954	17.65
10	Round Hill	158	36	54 *002	0.40				-o*o87	53 '91
					Mea	11 correctio	0 *272			

Circle used in VI positions.

Wesl Hills, Suffolk County, New York. October 18 to December 1, 1836.† 75 cm direction theodolite No. 1. F. R. Hassler, observer. July 18 to August 15, 1865. 75 cm direction theodolite No. 1. G. W. Dean, observer.

		0	,	"	"	"	"	"	"	91
	Wooster	0	00	000°000	±0°06	-o*003	+0.169	(00°166)		00'17
	Azimuth Mark	7	26	21 '768	0.06			(21.781)		
	Tashua‡	21	35	06 *476	0.02	+0 °c06	0 *099	(06:383)		
	Sandford	33	58	36.231	0.08	+0.014	-o *o89	(36.456)		
	Ruland‡	89	14	44 *741	0.32		+0.556	(44 °967)		
	Fire Island East Base ‡	122	36	15.675	0*33		-0 *400	(15.275)		
	Fire Island West Base‡	143	58	00 '808	o *38		+0 *406	(01 *214)		
3	Harrow ‡	269	17	04 *256	0.19				+0.022	04 *31
4	Round Hill !	331	59	49.511	0.33		•		+0.314	49 *52
5	Bald Hill‡	359	21	01 °916	0*25	-0.003	-o. 123	(01.790)	-0.100	01.81
					Me	an correctio	n 0'013			

Round Hill, Fairfield County, Connecticut. July 5 to 18, 1833. 60 cm direction theodolite No. 2. F. R. Hassler, observer.

Number of directions.	Objects observed.			from sta- ustment	Approxi- mate proba- ble errors.	Corrections from adjust- ment of 1866.	Final seconds.
		0	1	11	11	11	//
II	Bald Hill	0	00	000,000	±0 °25	+0.275	00 '27
12	West Hills	93	33	38 594	0.30	— ı ·264	37 '33
13	Harrow	121	52	34 '930	0 .56	+0.965	35 .89
14	Buttermilk	220	22	52 '250	0.38	-o ·181	48.21
				-3 '560			

^{*} The correction refers to Ruland station of 1865.

[†] Twenty-six series were observed in 1836.

[‡] Hassler, observer.

Fourteen series were observed.

[|] The reduction indicated is ou observer's authority.

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsytvania, Detaware, and Maryland, 1833-1845 and 1865—continued.

Harrow, Queen's County, New York. November 10 to December 12, 1837. 75 cm direction theodo lite No. 1. F. R. Hassler, observer. Twenty-four series were taken.

Number of directions.	Objects observed.		s from sta- djustment.	Approxi- mate proba- ble errors.	Corrections from adjust- ment of 1866.	Final seconds.
		0	/ //	//	//	11
18	Beacon Hill	0 0	000,000	±0.31	+0.060	90.00
19	Springfield	32 .0	8 00 764	0 '37	+0 '438	01 '20
20	Weasel*	54	55 302	0 '24	—o · 058	54 .51
			-1 '032			
21	Buttermilk	110 3	8 12.742	0 '17	-0 т33	12.61
22	Round Hill	128 2	16 '936	0.19	-o ·o71	16.86
23	Bald Hill	149 3	34 06 715	0. 34	— о ·23 0	06°48
24	West Hills	217 1	9 34 439	0 '41	+0.513	34.65

Buttermitk, Westchester County, New York. June 11 to 29, 1833. 60 cm direction theodolite No. 2. F. R. Hassler, observer. Eleven series were taken.

		0	/	//	//	//	//
15	Round Hill	0	00	000,000	±0 °22	+o *098	00,10
16	Harrow	63	46	44 '026	0 '22	+o ·184	44 '21
17	Weasel	137	17	19 '193	0 *23	—o ·2 91	18 '90

Weasel, Passaic County, New Jersey. September 19 to October 23, 1838. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Nineteen series were taken.

			0	/	11	11	//	"
25	Buttermilk	•	0	00	000*000	±0 °22	+o ·235	00 '23
26	Harrow		49	54	10.775	0 '24	+0.100	10.87
27	Beacon Hill		133	03	11 .643	0.30	—o ·312	11 .33

Springfield, Union County, New Jersey. November 6 to 24, 1838. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Twenty series were taken.

			0	1	11	//	//	"
33	Harrow		, о	00	000'000	±0°22	-o ·348	59 '65
34	Beacon Hill		84	13	25 '129	0.18	+0.324	25 '45
	Mount Rose	1	142	41	14 '780	0 '21	-0 '013	14 '77

Beacon Hitt, Monntouth County, New Jersey. July 8 to 24, 1839. Theodolite No. 1. F. R. Hassler, observer. Nineteen series were taken.

			0	1	11	//	//	"
28	Disboro		0	00	000,000	±0 .51	+0.019	00 '02
29	Mount Rose		35	06	41 *283	0 *24	-0 .001	41 '19
30	Springfield	0	108	40	25 '771	0.51	−o ·267	25 '50
31	Weasel†		129	30	52 '007	0 *20	+o ·266	52 '27
32	Harrow		172	19	04 '232	0.12	+0.056	04 '29

^{*} The correction is for eccentricity.

[†] Augle between Weasel and Azimuth Mark, 3° 35′ 36″ 95 \pm 0″ 40 .

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833–1845 and 1865—continued.

Disboro, Mercer County, New Jersey. August 11 to 28, 1839. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Eighteen series were taken.

Number of directions.	Objects observed.			rom sta- ustment.	Approxi- mate proba- ble errors.,	Corrections from adjust- ment of 1866.	Final seconds.
		٥	1	//	//	//	"
36	Stony Hill	0	00	000,000	±0 °22	-o ·o97	59 '90
37	Mount Rose	83	43	38 .698	0.16	+0.119	38.82
38	Springfield	152	47	13 '225	0.12	-o ·113	13 .11
39	Beacon Hill	196	56	34'168	0.31	+0.085	34.5

Mount Rose, Mercer County, New Jersey. September 29 to October 17, 1839. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Twenty-one series were taken.

		0	1	11	//	11	11
40	Springfield	O	00	000,000	±0°20	+0.019	.00 '02
41	Beacon Hill	47	58	30 '192	0.50	-0°04 2	30.12
42	Disboro	79	38	55 '096	0.22	-o ·o81	55 '01
43	Stony Hill	115	15	05 .181	0.18	+o .088	- 05 *27
44	Mount Holly*	146	53	25 '591	0.19	+0.033	25 .62
45	Newtown	191	24	23 '100	0 *23	-o o33	23 '07

Stony Hill, Burlington County, New Jersey. September 5 to 24, 1839. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirteen series were taken.

		0	1	. //	//	// '	//
46	Mount Holly	0	00	000'000	±0°23	-0 .496	59 '50
47	Newtown	63	09	51 .595	0.31	+0.370	51 .66
48	Mount Rose	102	35	57.937	0.11	-0 °018	57 '92
49	Disboro	163	16	09 '801	0 '20	+o .118	09 '92

Mount Holty, Burlington County, New Jersey. November 11 to December 21, 1840. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirty-five series were taken.

		0	1	//	//	//	//
54	Pine Hill	0	00	000'000	±0.20	-0.411	59 '59
55	Yard	48	51	18.623	0 '22	+0.440	19 '06
56	Willowgrove	82	09	48 '442	0.13	+0 *244	48 .69
57	Newtown	120	08	32 '708	0.22	o •669	32 '04
58	Mount Rose	150	00	21 '433	0.52	-0.518	21 '21
59	Stony Hill	195	46	03 '416	0.38	+0.665	04 °08

Newtown, Bucks County, Pennsylvania. October 23 to November 13, 1839. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Twenty-three series were taken.

		0	/	11	//	11	//
50	Mount Rose	0	00	000,000	±0.50	+0.046	00 05
51	Stony Hill	62	24	37 '993	o .18	-o ' 433	37 . 56
52	Mount Holly	105	37	14 *249	0 *20	+o ·718	14 '97
53	Willowgrove	180	30	56 *392	0 '27	-o:375	56 .02

^{*}Angle between Azimuth Mark and Mount Holly, 1110 48' 53'' 25 \pm 0'' 07.

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865—continued.

Willowgrove, Montgomery County, Pennsylvania. November 18 to December 5, 1839, and November 3, 1840. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirty-five series were taken.

Number of directions.	Objects observed.		Results from sta- tion adjustment.		Approxi- mate proba- ble errors.	Corrections from adjust- ment of 1866,	Final seconds.
		0	1	11	//	11	11
60	Newtown	0	00	000,000	±0.50	+0 .529	00 '28
19	Mount Holly	67	07	37 '536	0.12	—o ·207	37 '33
62	Pine Hill	113	13	31 '865	0 '22	-0 '045	31 .82

Pine Hill, Gloucester County, New Jersey. October 2 to December 20, 1842. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirty-five series were taken.

		0	1	//	//	11	11
63	Lippincott	0	00	000,000	±0°21	-0.304	59 '70
64	Bethel	24	14	38 .796	0.12	-0 '445	38 '35
65	Yard	47	06	14 '531	0.16	+0.329	14.86
66	Willowgrove	92	50	20.541	0 '21	o ·o26	20 '51
67	Mount Holly*	144	34	38 .914	o.18	+0.450	39.17
				-0.130			

Yard, Delaware County, Pennsylvania. September 26 to December 1, 1841, and August 18 to September 12, 1842. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirty-two series were taken.

		0	1	11	//	//	11
68	Mount Holly	0	00	000,000	±0.19	-0.461	59 '54
69	Pine Hill	33	40	18.813	0.13	-o °257	18.26
70	Lippincott†	81	05	15 '178	0.12	+0.521	15.70
71	Bethel	125	47	25 '325	0 .56	0°262	25 '59

Bethel, Delaware County, Pennsylvania. December 2 to 13, 1843. 75 cm direction theodolite No. 1. J. Ferguson, observer. Sixteen series were taken. May 4 to 8, 1847. 30 cm repeating theodolite No. 11. E. Blunt, observer. Thirteen sets of 6 repetitions each.

		0	/	//	//	//	" 11					
72	Yard	0	00	000,000	±0.18	-0 ·223	59.78					
73	Pine Hill	65	10	53 '189	0 '23	+0 '442	17 .88					
			-	- 35 '750								
74	Lippincott	100	16	130 '880	0 *26	-0 '020	49 '43					
			-	- 81 '430								
74	Lippincott	0	00	00,000 •		0 '020	59.98					
75	Burden	32	48	39 '502		0 :135	86.69					
		•	-	47 '320								
	N. B.—The corrections are for eccentricity.											

^{*}Direction corrected for eccentricity.

[†] Angle between Azimuth Mark and Lippincott, 167° 00′ 04′′32±0′′22.

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865—continued.

Lippincott, Gloucester County, New Jersey. August 15 to September 5, 1843. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Thirty-three series were taken.

Number of directions.	Objects observed.		Results from sta tion adjustment		Approxi- mate proba- ble errors.	Corrections from adjust- ment of 1866.	Final seconds.
		0	1	11	//	//	//
76	Burden	' o	00	000'000	±0.33	+0.472	00 '47
77	Meetinghouse Hill	73	07	29 '710	0.59	−o ·29 6	29 '41
78	Bethel	117	05	58.189	0.19	+0.093	58:28
79	Yard	152	06	60 '223	0 *22	—о [.] 629	59 '59
So	Pine Hill	237	35	48 .835	0.56	+0 '490	49 '32

Burden,* Salem County, New Jersey. September 29 to November 3, 1843. 75 cm direction theodolite No. 1. F. R. Hassler, observer. Twenty-six series were taken. August 22, 1845. 30 cm repeating theodolite No. 11. E. Blunt, observer. Four sets.

		0	1	11	//	//	11
81	Buck	0	00	00,000	±0.19	0.146	59.85
82	Meetinghouse Hill	33	22	27 .846	0.19	+o ·33 1	38.18
83 .	Bethel	72	46	31 '970	0.33	+0.039	32 '01
84	Lippincott	102	51	08 .769	0.55	—o ·256	08.21

Meetinghouse Hill, Newcastle County, Delaware. September 16 to 26, 1845. 60 cm direction theodolite No. 2 (regraduated). J. Ferguson, observer. Seventeen series were taken.

		0	1	. //	//	// .	//
85	Lippincott	0	00	000,000	±0 °27	+0.505	00 '20
86	Burden	37	23	53 *256	0.30	—o ·5 01	52 '75
87	Buck	97	15	50 '141	0.18	+0.132	50 .54
88	Principio	154	14	56 .363	0 °44	+0.142	56.20

Buck,† Newcastle County, Delaware. July 29 to August 13, 1845. 60 cm direction theodolite No. 2.
 J. Ferguson, observer. Seventy-one series were taken.

		0	/	11	//	//	//
89	Turkey Point	0	00	000'000	±0.18	+0.131	00.13
90	Principio	37	OI	12 '453	0.19	-0.511	12 '24
91	Meetinghouse Hill	118	14	25 *359	0.14	-0.101	25 . 26
92	Burden	205	00	00 '673	0 '20	+0.511	oo *88
	Deakyne	248	08	11 '297	0 *2 I		

Principio, Cecil County, Maryland. August 17 to September 5, 1845. 60 cm direction theodolite No. 2.

J. Ferguson, observer. Twenty-six series were taken.

		0	/	11	//	//	//
93	Meetinghouse Hill	0	00	000,000	±0°25	-0.129	59 .84
94	Buck	41	47	41 '531	0 '20	+0.225	41 '76
95	Turkey Point	119	25	09 '985	0.19	+0 089	10.07
96	Osbornes Ruin	177	02	07 '641	0.19	-0.169	07 '47

^{*} Last station occupied by Superintendent Hassler. He died November 20, 1843.

[†] Also designated Buck 2 in some records.

Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865—continued.

Turkey Point, Cecil County, Maryland. May 31 to June 17, 1845. 60 cm direction theodolite No. 2.

J. Ferguson, observer. Seventy-three series were taken.

Number of directions.	Objects observed.			from sta- ustment.	Approx- imate probable error.	Correction from adjustment. Special Publication No. 4, 1900.	Resulting seconds.	Correction from ad- justment of 1866,	Final seconds.
		0	/	//	//	//	//	11	11
97	Pooles Island	0	00	000'000	±0 '17	+0.65	(00.65)	-0.009	59 °99
98	Osbornes Ruin	44	10	48 .723	0.18	—o · 44	(48.28)	+o·158	48.88
99	Principio	131	14	41 '244	0.18			—o · o84	41 '16
100	Buck	196	36	01 .806	0.38			-o.118	01 .69

Osbornes Ruin, Harford County, Maryland. September 23 to October 2, 1844. 60 cm direction theodolite No. 2. J. Ferguson, observer. Ten series were taken.

		0	1	11	11	11	11	11	11
101	Principio	0	00	000,000	±0°27			+0.126	00 '13
102	Turkey Point	35	io	11.669	0 '39	+0.11	(11.48)	—o ·268	11.40
103	Pooles Island	116	37	29 '195	0.22	-o .oe	(29°13)	—o ·461	28.73
104	Finlay	194	06	43 '57 I	0 '42			+0.414	43 '98
				*44 '955		-o.o9	(44.87)		

Of the old adjustment of 1866–67, retained here after leaving off a few triangles at both ends, we shall only present the observation equations and the resulting corrections, together with the triangles. The following designations in the old adjustment still need explanation; they are, (1), Ruland to Bald Hill; (2), Tashua to same; (6), Bald Hill to Tashua, and (7), Bald Hill to Ruland:—at the southern end; (103) Osbornes Ruin to Pooles Island; (104), same to Finlay; (97), Turkey Point to Pooles Island; (105), (106), (107), Pooles Island to Finlay, Osbornes Ruin, and Turkey Point, respectively.

```
I + o = -1.525 - (6) + (7) - (1) + (2)
  II 0 = +1.433 - (7) + (8) - (5) + (1)
 III
       0 = +2.483 - (11) + (12) - (4) + (5) - (8) + (10)
 IV
      0 = -1.397 - (11) + (13) - (22) + (23) - (9) + (10)
  V
      0 = -2.771 - (22) + (24) - (3) + (4) - (12) + (13)
  VI \mid o = +0.996 - (15) + (16) - (21) + (22) - (13) + (14)
 VII 0 = +0.686 - (25) + (26) - (20) + (21) - (16) + (17)
VIII 0 = +0.741 - (31) + (32) - (18) + (20) - (26) + (27)
 IX 0 = -1.372 - (33) + (34) - (30) + (32) - (18) + (19)
  X = -0.571 - (40) + (41) - (29) + (30) - (34) + (35)
 XI
       0 = +0.179 - (37) + (39) - (28) + (29) - (41) + (42)
XII 0 = -0.522 - (48) + (49) - (36) + (37) - (42) + (43)
XIII 0 = -1.306 - (58) + (59) - (46) + (48) - (43) + (44)
```

^{*}See result of the measures of 1896 Coast and Geodetic Survey Special Publication, No. 4, p. 354.

```
0 = -1.057 - (50) + (52) - (57) + (58) - (44) + (45)
   XIV J
    XV
          0 = -3.351 - (57) + (59) - (46) + (47) - (51) + (52)
   XVI
          0 = +2.493 - (60) + (61) - (56) + (57) - (52) + (53)
          0 = -1.294 - (66) + (67) - (54) + (56) - (61) + (62)
  XVII
 XVIII
          0 = -1.176 - (68) + (69) - (65) + (67) - (54) + (55)
   XIX
          0 = -1.959 - (72) + (73) - (64) + (65) - (69) + (71)
          0 = -2.570 - (79) + (80) - (63) + (65) - (69) + (70)
    XX
   IXX
          0 = +0.780 - (72) + (74) - (78) + (79) - (70) + (71)
  XXII
          0 = +0.789 - (83) + (84) - (76) + (78) - (74) + (75)
          0 = +2.059 - (85) + (86) - (82) + (84) - (76) + (77)
 HIXX
 XXIV
          0 = -1.422 - (91) + (92) - (81) + (82) - (86) + (87)
  XXV
          0 = -0.503 - (93) + (94) - (90) + (91) - (87) + (88)
 XXVI
          0 = +0.511 - (99) + (100) - (89) + (90) - (94) + (95)
XXVII 0 = +0.895 - (101) + (102) - (98) + (99) - (95) + (96)
XXVIII 0 = +0.072 - (106) + (107) - (97) + (98) - (102) + (103)
XXXXX
          0 = -2.098 - (108) + (106) - (103) + (104)
  XXX 0 = +0.31250 + 0.14415(6) - 0.03534(8) - 0.55583(1) + 0.51506(5) - 0.10881(7)
 XXXI \quad \circ = -0.19647 - 0.51563(4) + 0.40701(5) + 0.53867(22) + 0.00378(24) - 0.28033(9) + 0.15426(10)
              +0.12607(8)+0.10862(3)-0.54245(23)
          0 = -0.03765 - 0.29742(38) + 0.21685(39) + 0.15129(40) + 0.03846(42) - 0.06212(29)
IIXXX
              +0.13328(30) -0.02116(38) +0.08022(32) -0.18022(41)
         0 = +0.29283 - 0.36253(47) + 0.25601(48) + 0.31275(57) + 0.05396(59) - 0.21414(44)
HIXXX
              +0.16225(45) +0.05189(43) +0.10652(46) -0.36671(58)
XXXIV
          0 = +0.15673 - 0.40626(70) + 0.21275(71) + 0.27191(63) + 0.19563(65) - 0.29782(73)
              +0.33601(74) - 0.03819(72) + 0.19351(69) - 0.46754(64)
XXXV
          0 = +0.50123 + 0.13036(2) + 0.10862(4) - 0.10862(3) - 0.03534(6) - 0.09074(8) + 0.12608(10)
              +0.01310(12) - 0.01310(11) + 0.03148(13) - 0.03148(14) - 0.00378(24) + 0.00378(22)
              -0.33522(18) + 0.33522(19) + 0.10370(15) - 0.16603(16) + 0.06233(17) - 0.20258(26)
              +0.17729(25)+0.02529(27)-0.22735(32)+0.22735(31)+0.29946(29)-0.29946(28)
              +0.02130(33)-0.12021(34)+0.12021(35)-0.18072(41)+0.18072(40)-0.21414(44)
              +0.21414(45)+0.09031(39)-0.06716(37)+0.02312(36)+0.07124(48)-0.11830(49)
              +0.04706(46) +0.20502(58) -0.20502(59) -0.18397(54) +0.18397(55) -0.05887(50).
              +0.00204(52)+0.05683(53)-0.29146(61)+0.08883(60)+0.20263(62)-0.16602(67)
              +0.16605(66)+0.46753(64)-0.46753(63)+0.31604(68)-0.30825(69)-0.00779(71)
              -0.09809(73) + 0.09809(72) - 0.32641(74) + 0.32641(75) + 0.12401(80) - 0.12401(78)
              -0.06387(76) + 0.06387(77) + 0.36356(83) - 0.36356(84) + 0.31962(82) - 0.31962(81)
              +0.27541(85) - 0.27541(85) - 0.13681(87) + 0.13681(88) - 0.01192(92) + 0.01192(91)
              +0.27921(90) - 0.27921(89) + 0.23553(93) - 0.23553(94) - 0.13354(95) + 0.13354(96)
              -0.09660(100) + 0.09660(99) + 0.21780(98) - 0.21780(97) + 0.29881(101) - 0.29881(102)
              -0.04673(103) + 0.04673(104) - 0.15010(107) + 0.15010(106) + 0.18919(108)
```

It will not be necessary to transcribe here the correlate and normal equations, since the resulting triangles given further on prove the correctness of the solution. The individual corrections to the directions, together with their assigned weights, are as follows:

Correction symbol.	Reciprocal of weight, $\frac{1}{p}$	Correction.	Correction symbol.	Reciprocal of weight, $\frac{1}{p}$	Correction.	Correction symbol.	Reciprocal of weight, $\frac{1}{p}$	Correction.
(1)	0.180	+o ·048	(38)	0.136	-o.113	(74)	0.172	-0 '020
(2)	0.301	-0.413	(39)	0.121	+0.085	(75)	0.139	-o ·135
(3)	0.133	+0.055	(40)	0.144	+0.016	(76)	0.519	+0.472
(4)	0.516	+0.314	(41)	o ·147	-o ·o42	(77)	0.101	-o·296
(5)	0.140	-0.109	(42)	0.169	-o.o81	(78)	0.133	+0.093
(6)	0 *155	+0.039	(43)	0.139	+0.088	(79)	0.122	0.629
(7)	0 '467	+2 024	(44)	0 *143	+0.033	(80)	0.180	+0.490
(8)	0.180	+0.434	(45)	0.160	—o ·o33	(81)	0.143	—o ·146
(9)	0 '143	—o ·954	(46)	0,160	−o ·496	(82)	0.133	+0.331
(10)	0 '267	-o ·o87	(47)	0.121	+0.370	(83)	0.519	+0.039
(11)	0.169	+0.275	(48)	0.116	-o.o18	(84)	0.122	-o·256
(12)	0.192	— I ·264	(49)	0 '147	+0.118	(85)	0,180	+0.505
(13)	0.172	+0.962	(50)	0 147	+0.046	(86)	0.194	-o . 501
(14)	0.521	-o.181	(51)	0.139	− o '433	(87)	0.139	+0.135
(15)	0.122	+0.008	(52)	0.144	+o ·718	(88)	0,301	+0.145
(16)	0.122	+0.184	(53)	0.180	− o ·375	(89)	0.139	+0.131
(17)	0.160	-o ·291	(54)	0 '147	-o ·411	(90)	0.133	-o ·211
(18)	0 '203	+0.060	(55)	0.122	+0.440	(91)	0.124	-0.101
(19)	0 '244	+0.438	(56)	0.154	+0.544	(92)	0.147	+0.511
(20)	0.162	—o ·o58	(57)	0.122	−o ·669	(93)	0.164	—o ·159
(21)	0.136	-o.133	(58)	0.169	-o.518	(94)	0.147	′ +o ·225
(22)	0.133	—o ·o71	(59)	0.182	+0.662	(95)	0.136	+0.089
(23)	0.556	-0.530	(60)	. 0.147	+0.5279	(96)	0.136	—o .169
(24)	0 *275	+0.513	(61)	0.159	—o ·207	(97)	0.136	-0.009
(25)	0.122	+0.235	(62)	0.122	—o °045	(98)	0.139	+0.128
(26)	0.162	+0.100	(63)	0.121	−0 :343	(99)	0.139	-o ·o84
(27)	0.147	—o :312	. (64)	0.136	—o ·445	(100)	0.521	-o.118
(28)	0.121	+0.019	(65)	0.136	+0.359	(101)	0.180	+0.156
.(29)	0.162	-o .odi	(66)	0.121	—o ·o26	(102)	0.529	-o ·268
(30)	0,121	—o ·267	(67)	0.139	+0.420	(103)	0 '409	-0.461
(31)	0 '147	+0.566	(68)	0.133	—o ·461	(104)	0 '283	+0 '414
(32)	0.136	+0.026	(69)	0.134	-o ·257	(105)		
(33)	0.122	-o:348	(70)	0.159	+0.21	(106)	0.154	+0.124
(34)	0.139	+0.351	(71)	0.142	+0.565	(107)	0.147	+0.077
(35)	0.121	-0.013	(72)	0.139	-0.553	(108)	0.625	-1.100
(36)	0.122	-0.097	(73)	0.160	+0.442	(109)		• • • • •
(37)	0.133	+0.119				J		

Probable error of a resulting direction o 674 $\sqrt{\frac{16.7}{35}} = \pm 0.47$.

Resulting angles and sides of the triangulation between the Fire Island base net and the extended net of the Kent Island base.

No.	Stations.	Ob	serve	d angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	/	"	"	//	11		
	Round Hill	93	33	38 ·5 9	-1.24	37 '05	0.66	4 .648 135 6	44 477 01
1	Bald Hill	59	05	(38)	-o ·52	12 .65	0.66	4 '582 434 1	38 232 62
	West Hills	27	21	(.28)	—o '42	12.58	o .ee	4.311 236 3	20 475 58
1	Harrow	67	45	27 '72	+0 '45	28.14	o '6 8	4 .648 135 6	44 477 01
2 <	Bald Hill	22	10	37 '77 ('58)	-1 .39	36.38	o .e8	4 '258 590 2	18 138 03
	West Hills	90	03	57.65 (.54)	-0.16	57 '49	o ·68	4.681 716 2	48 052 52
	Harrow	88	58	17.50	+0.28	17.78	0.2	4 '582 434 1	38 232 62
3 {	Round Hill	28	18	56 '34	+2.53	58:57	0.2	4 '258 590 2	18 138 03
	West Hills	62	42	44 '95	+0.56	45 '21	0.52	4 '531 267 4	33 983 45
	Harrow	21	12	49.78	-o.19	49 .62	0.20	4 311 236 3	20 475 58
4 {	Round Hill	I 21	52	34 '93	+0.69	35 '62	0.20	4.681 716 2	48 052 52
	Bald Hill	36	54	35 '39	+0.87	36 .56	0.20	4 '531 267 4	33 983 45
	Buttermilk	63	46	44 '03	+0.00	44 '12	0.33	4.231 267 4	33 983 45
5 {	Round Hill	98	30	13.76	-1.12	12.61	0.33	4 '573 628 3	37 465 '22
1	Harrow	17	43	04 '19	+0.06	04 '25	0.35	4 '061 771 2	11 528 46
ſ	Weasel	49	54	10.48	-0"14	10.61	I °24	4 573 628 3	37 465 .22
6 {	Buttermilk	73	30	35 '17	-0.48	34 .69	1 .54	4.671 752 6	46 962 65
l	Harrow	56	35	18 '47	− 0 .02	18.40	1 .52	4.611 542 6	40 882 98
ſ	Beacon Hill	42	48	12.53	-o.51	12 '01	2 '20	4.671 752 6	46 962 65
7 {	Weasel	83	09	00 '87	-o '41	00 '46	2 '21	4 .836 466 7	68 622.52
Į	Harrow	54	02	54 '27	-o.13	54 '15	2 '2 I	4 '747 798 8	55 949 84
(Springfield	84	13	25 '13	+0.67	25 '80	1 '91	4 .836 466 7	68 622 52
8 {	Harrow	32	08	00.46	+0.38	01 '14	16.1	4.264 498 1	36 685 81
l	Beacon Hill	63	38	38 46	+0.35	38.48	1,00	4 '791 009 9	61 803 04
ſ	Mount Rose	47	58	30.19	-o ·o6	30,13	1 '25	4.264 498 1	36 685 .81
9 {	Springfield	58	27	49 .65	−o · 34	49 '31	1 '25	4 624 192 9	42 091 36
l	Beacon Hill	73	33	44 '49	-o.18	44 '31	1 .52	4 '675 473 3	47 366 72
1	Disboro	44	09	20 '94	+0 '20	21 '14	0.41	4 '564 498 1	36 685 81
10	Springfield	27	01			15 '49	0.40	4.381 086 1	24 048 39
l	Beacon Hill	108	40	25 '77	−o ⁺2 8	25 '49	0.41	4 '698 022 4	49 891 '02
- (Disboro	113	12	55 '47	-0.03	55 '44	0.20	4.624 192 8	42 091 '35
11 {	Mount Rose	31	40	24 '90	-o ·o3	24.87	0 '49	4 '381 086 1	24 048 '39
1	Beacon Hill	35	06	41 '28	-0.11	41 '17	0 '49	4 '420 656 6	26 342 48
	No								

4192-No. 7-02-10

Resulting angles and sides of the triangulation between the Fire Island base net and the extended net of the Kenl Island base—continued.

Dishoro	No.	Stations.	Obs	erved	angles.		orrec- tion.	Spher- ical angles.	ical	Log. Dis		Distan met	
Mount Rose 79 38 55 10 -0 10 55 10 1 10 4 1698 022 4 19 891 02 10 13 17			0	1	//		11	11	11				
Springfield 31 17 33 82 1 104 4 42 656 6 6 342 48	ſ	Disboro	69	_				34 '30					
Stony Hill	12	Mount Rose	79	38	55.10	-	-0.10						
Mount Rose 35 36 10 08	-	Springfield	31	17				33 ·S2	I '04	4 '420 65	6 6	26 3	142 48
Disboro	ſ	Stony Hill	60	40	11.86	+	-0 14	12 '00	0.39	4 '420- 65	6 6	26 3	342 48
Mount Holly	13 {	Mount Rose	35	36	10.08	1	0'17	10 '25	0.39	4 '245 27	77 5	17 5	590 '47
Mount Rose Stony Hill 102 35 57 94 +0 48 58 42 0 55 4 342 240 8 21 990 79	Į	Disboro	83	43	38.70	-	-0 '22	38 .92	0.39	4 '477 62	26 o	30 0	34 .89
Stony Hill	ſ	Mount Holly	45	45	41 '98	- +	-o ·88	42.86	0.24	4,'477 62	26 o	30 0	034 '89
Newtown	14	Mount Rose	31	38	20 '41	-	-0 '05	20.36	0.55	4 '342 22	10 8	21 9	990 '79
Stony Hill 63	· ·	Stony Hill	102	35	57 '94	1	-o '48	58:42	○ *55	4.611 85	56 8	40 9	912.28
Mount Holly	(Newtown	41	12	36 .26	-	-1 '15	37 '41	0.24	4 '342 2	to 8	21 9	990 '79
Mount Holly	15	Stony Hill	63	09	51 .59	-	-o ·87	52 .16	0.23	4 *473 98	34 7	29	784 12
Mount Rose Mount Rose Mount Holly Mount Holly Mount Rose Mount Holly Mount Rose	- (75	37	30.41	-	1 '33	32 '04	0.54	4.509 65	57 7	32	333 .87
Mount Holly 29 51 48 72 +0 45 49 17 0 51 4 325 374 2 21 153 11	ŀ	Newtown	105	37	14 '25	1	0.67	14 '92	0.21	4 '611 85	56 S	40	912.58
Newtown	16 {	Mount Rose	44	30	57 '51	-	-0 '07	57 '44	0.21	4 '473 9	34 7	29	784 12
Mount Rose 76	Į	Mount Holly	29	51	48.72	-	-0 '45	49 '17	0.21	4 '325 3	74 2	21	153 *11
Stony Hill 39 26 06 64 -0 39 06 25 0 52 4 325 374 2 21 153 11	ſ	Newtown	6.1	2.4	37 '99	ľ -	-o ·48	37 '51	0.52	4 '477 6	25 9	30 (034 'S8
Stony Hill 39 26 06 64 -0 39 06 25 0 52 4 325 374 2 21 153 11	17		76	09	17 '92	-	-0'12	17 '80	0.2	4.509 65	57 7	32	333 .87
Newtown	'		39	26	06.64	-	-0'39	06 .52	0.52	4 '325 3	74 2	21	153 '11
Mount Holly 37 58 44 27		Willowgrove	67	07	37 '54	-	-0.49	37 °05	0.48	4 '473 9	84 7	29	784 12
Pine Hill 51 44 18 18	18 {	Newtown	74	53	42 '14	-	-1 '10	41 '04	0.48	4 '494 2	So 7	31	209 '06
Willowgrove Mount Holly 82 09 48 44 +0 66 49 10 0 75 4 456 957 7 28 638 99 Mount Holly 48 51 18 62 Pine Hill 47 24 56 37 Pine Hill 47 06 14 53 +0 78 57 15 0 70 4 458 328 4 28 729 52 Bethel Pine Hill 24 14 38 80 -0 10 38 70 0 43 Bethel 100 16 49 45 +0 20 9 89 0 29 4 456 145 5 28 638 99 4 456 957 7 28 638 99 4 458 931 4 38 898 37 4 709 403 7 51 215 76 4 458 328 4 28 729 52 4 458 328 4 28 729 52 4 458 328 4 28 729 52 4 458 328 4 28 729 52 8 638 99 4 458 931 4 38 898 37 4 709 403 7 51 215 76 4 458 328 4 28 729 52 4 456 145 5 28 585 48 6 8ethel 100 16 49 45 40 20 49 65 0 28 4 456 145 5 28 585 48 4 44 42 10 15 -0 26 09 89 0 29 4 4310 393 7 20 435 90		Mount Holly	37	58	44 *27	-	-0.91	43 '36	0 '49	4.298 6	85 8	19	892 .33
Mount Holly 82 09 48 44		Pine Hill	51	44	18.18	-	-o ·48	18.66	0.75	4 '494 2	So 7	31	209 '06
Vard Mount Holly Pine Hill 21 {	19 {	Willowgrove	46	05	54 '33	-	+0.19	54 '49	0.75	4 '456 9	57 7	28	638 •99
Mount Holly Pine Hill Pine		Mount Holly	82	09	48 *44	-	+o ·66	49.10	0.75	4 '595 2	30 7	39	375 *92
20 Mount Holly Pine Hill 48 51 18.62		Yard	33	40	18.81	-	0.50	19 '01	0 '93	4 '456 9	57 7	28	638 •99
Pine Hill	20 {	Mount Holly		51	18.62	-	+o·85	19 '47	0 '94	4 589 9	31 4	38	898 *37
Yard 47 24 56 37 +0 78 57 15 0 70 4 458 328 4 28 729 52 Pine Hill 47 06 14 53 +0 67 15 20 0 69 4 456 145 5 28 585 48 Bethel 35 15 32 01 -0 46 31 55 0 43 4 458 328 4 28 729 52 Pine Hill 24 14 38 80 -0 10 38 70 0 43 4 310 393 7 20 435 90 Lippincott 120 29 50 65 +0 39 51 04 0 43 4 632 282 7 42 882 76 Bethel 100 16 49 45 +0 20 49 65 0 28 4 456 145 5 28 585 48 Yard 44 42 10 15 -0 26 09 89 0 29 4 310 393 7 20 435 90		Pine Hill		28	24.19	-	0.15	24 '31	0.93	4 '709 4	03 7	51	215 .46
Pine Hill 47 06 14 53		(Lippincott	85	28	48 •61	-	+1.12	49 '73	0.69	4 589 9	31 4	38	898 '37
Bethel 35 15 32 01 -0 46 31 55 0 43 4 458 328 4 28 729 52 Pine Hill 24 14 38 80 -0 10 38 70 0 43 4 310 393 7 20 435 90 Lippincott 120 29 50 65 +0 39 51 04 0 43 4 632 282 7 42 882 76 Bethel 100 16 49 45 +0 20 49 65 0 28 4 456 145 5 28 585 48 Yard 44 42 10 15 -0 26 09 89 0 29 4 310 393 7 20 435 90	21	Yard	47	24	56 .37	-	+0.78	57 '15	0.70	4 *458 3	28 4	28	729 . 52
Pine Hill 24 14 38 80		Pine Hill	47	06	14 *53	-	+0.67	15 *20	0 .69	4 '456 1	45 5	28	585 '48
Lippincott 120 29 50 65 +0 39 51 04 0 43 4 632 282 7 42 882 76 Bethel 100 16 49 45 +0 20 49 65 0 28 4 456 145 5 28 585 48 44 42 10 15 -0 26 09 89 0 29 4 310 393 7 20 435 90		(Bethel	35	15	32 '01		-0.46	31 '55	0 '43	4 '458 3	28 4	28	729 '52
Bethel 100 16 49 45 +0 20 49 65 0 28 4 456 145 5 28 585 48 23 { Yard 44 42 10 15 -0 26 09 89 0 29 4 310 393 7 20 435 90	22	Pine Hill	2.4	14	38 · So		-0'10	38 .70	0.43	4.310 3	93 7	20	435 '90
23 Yard 44 42 10.15 -0.26 09.89 0.29 4.310 393 7 20 435.90		Lippincott	120	29	50 .65	-	+0.39	51 °04	0.43	4 .632 2	82 7	42	882 '76
The state of the s		(Betliel	100	16	49 *45	1.	+0.50	49 .65	0.58	4 456 1	45 5	28	585 .48
	23	Yard	44	42	10.12		-0'26	09 '89	0 °29	4 '310 3	93 7	20	435 '90
(Lippincott 35 of 02 03 72 of 31 0 20 1 4 221 940 9 10 070 51		Lippincott	35	OI	02 '03	.	-0.72	01.31	0.58	4 '221 9	48 9	16	670 '51

Resulting angles and sides of the triangulation between the Fire Island base net and the extended net of the Kent Island base—continued.

No.	Stations.	Obs	erve	l angles.	Correc- tion,	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		٥	1	11	//	11	11		
1	Bethel	65	OI	17 '44	+0.67	18.11	0.55	4.589 931 4	38 898 37
24 {	Yard	92	07	06.21	+0.2	07 '03	0 '55	4.632 282 6	42 SS2 75
	Pine Hill	22	51	35 '74	+0.77	36.21	0.55 ,	4 . 221 948 9	16 670 51
	Burden	30	04	36 ·80	-0.30	36.20	0.34	4 '310 393 6	20 435 89
25 {	Bethel	32	49	26 ·S2	-0.11	26 .21	0:34	4 344 465 5	22 103 '73
	Lippincott	117	05	58.19	- 0.38	57 '81	0.34	4 '559 914 6	36 300 67
1	Meetinghouse Hill	37	23	53 *26	-0.70	52.56	0.61	4 '344 465 5	22 103 '73
26 {	Lippincott	73	07	29 '71	−o ·77	28 '94	0.61	4 '541 914 0	34 826 83
l	Burden	69	2S	40 '92	-0.59	40 *33	0.61	4.532 554 6	34 084 32
1	Buck	86	45	35 *31	+0.31	35 .62	0 *49	4.241 913 9	34 826 82
27 {	Meetinghouse Hill	59	51	56 .89	+0 .63	57 '52	0 '49	4 '479 550 7	30 168 29
(Burden	33	22	27 .85	+0.48	28.33	0 *49	4.583 056 2	19 189 18
ĺ	Principio	41	47	41 *53	+0.38	41 '91	0 '38	4 283 056 5	19 189 18
28 {	Meetinghouse Hill	56	59	06 .55	10.01	06 '23	0 '39	4 382 796 0	24 143 27
(Buck	81	13	12.01	+0.11	13 '02	0 '39	4.454 159 6	28 455 06
ſ	Turkey Point	65	2 I	20.56	-0.03	20.53	0.32	4°382 796 o	24 143 '27
29	Priucipio	77	37	28 45	-0.14	28 '31	0 '32	4 414 063 1	25 945 56
(Buck	37	OI	12.45	-0.34	13,13	0 '32	4 '203 937 .1	15 993 26
ſ	Osbornes Ruin	35	10	11.67	-0,40	11 '27	0,31	4°203 937 I	15 993 26
30 {	Principio	57	36	57 .66	−o °26	57 °40	0.32	4'370 101 S	23 447 78
	Turkey Point	87	Ι2	52 ·52 (52 ·96)	-0.24	52 '28	0.32	4 '443 000 9	27 733 '26

4. FIRST SECTION OF THE TRIANGULATION, SOUTH OF THE TRANSCONTINENTAL TRIANGULATION, IN VIRGINIA AND NORTH CAROLINA, 1875–1879.

In connection with the account of the Kent Island base net and its extension to the westward there are given the abstracts of the horizontal directions as well as the adjusted angles and triangle sides between the triangulation stations which connect that base with the sides of the triangle Humpback, Tobacco Row, Spear. It is from this triangle that the triangulation of the oblique arc departs from that of the arc of the parallel and the first section, proceeding to the southward and westward, terminates at the line Buffalo to Moore. Between Humpback and Moore the triangulation is so strengthened by the numerous tie lines that it is not supposed that any measurable error could accumulate within this section; its whole adjustment was therefore made to depend for initial direction and length on the above fixed triangle. In this section there are 24 conditions to be satisfied and 42 directions to be corrected.

The approximate elevations of the stations are as follows:

	Meters.	Feet.
Humpback	1 110 4	3 643
Spear	491 .4	1 613
Tobacco Row	894.8	2 936
Long Mountain	436.8	I 433
Flat Top	1 218.7	3 998
Cahas	1 088 4	3 571
Smith Mountain	622 '7	2 043
Moore .	784 °o	2 572
Buffalo	1 210 4	3 971

Corrections to horizontal directions for height of station observed upon were applied. Squaring the closing errors of the triangles we get $\sqrt{\frac{64.64}{28}} = \pm 1''.52$ as the mean error of a triangle, also mean error of an angle $\frac{1.52}{\sqrt{3}} = \pm 0''.88$ and the probable error of a direction $= \pm 0''.42$.

Abstracts of horizontal directions at stations composing the first section of the triangulation south of the transcontinental triangulation, 1875 to 1879.

Humpback, Nelson County, Virginia. June 8 to 29, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. 10. May 11 to June 6, 1878. A. T. Mosman, observer. 50^{cm} direction theodolite No. 114. August 18 to 28, 1879. A. T. Mosman and W. B. Fairfield, observers. 50^{cm} direction theodolite No. 114.

No. of direc- tions.	Objects observed.	Results of local adjustment.			Corrections from figure adjustment transconti- nental arc.	Resulting seconds.	Reductions to sea level.	Resulting	from ad- justment of first section.	Final seconds.	
		0	,	"	"	11	"	"	"	**	
	Jarman	0	00	00 '00							
	Spear	126	14	25 02	+0 °44	25.46					
I	Long Mountain	154	41	57.10			+0.01	(57.11)	+0.46	57 '57	
	Tobacco Row	173	06	07 68	-o ·87	o6 *81					

Probable error of a single observation of a direction (D, and R.), $e_r = \pm 1'' \cdot 28$. Circle used in XI positions.

Spear, Buckingham County, Virginia. July 30 to August 29, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. 10.

		0	1	11	"	"	"	"	//	"
	Willis	0	00	00 00						
2	Long Mountain	113	14	26 '50	• • • •		+0.03	(26 '53)	+0°25	26.78
3 .	Smith Mountain	119	19	24 *25			+0 *04	(24 *29)	-o °o8	24 '21
4	Flat Top	150	15	15 '49			+0 °03	(15.25)	~o *33	15*19
	Tobacco Row	160	17	43 42	+0°22	43.64				
	Humpback	233	59	02.20	0 °44	02.06				

Tobacco Row, Amherst County, Virginia. September 14 to 23, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. 10. September 6 to 9, 1879. A. T. Mosman, observer. 50^{cm} direction theodolite No. 114.

		0	/	"	"	"	//	"	"	11
8	Flat Top	0	00	00,00			+0 °06	(00 °06)	+0 *93	00 *99
	Humpback	140	52	23 '38	+0.86	24 *24				
	Spear	200	19	28 *80	-0.55	28 *58				
	Willis	208	43	28 *06						
5	Long Mountain	272	56	37 °39			-0°02	(37:37)	-0°07	37 *30
	Lynchburg	276	15	52 '23						
6	Smith Mountain	318	30	40 '14			+0 *04	(40.18)	+0 *07	40 '25
7	Cahas	345	52	24 .62		•	+0 *07	(24.69)	-o ·87	23 '82
93							W W			0

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 1'''\cdot 43$.

Long Mountain, Campbell County, Virginia. October 16 to December 9, 1875. A. T. Mosman, observer. 35cm direction theodolite No. 10.

Number of directions.	Objects observed.			m local ient.	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment.	Final seconds.	
		_ 0	1	//	//	11	11	//	
12	Tobacco Row	О	00	00'00	-o ·o3	59 '97	-0 '24	59 '73	
13	Humpback	29	31	39 '55	+0.03	39.28	+o ·84	40 '42	
14	Spear	60	19	37 '53	+0.03	37 .56	-o·50	37 '06	
	Willis	86	30	44 '38					
9	Smith Mountain	251	12	44 '36	. +0.04	44 '40	+0.47	44 '87	
10	Cahas	273	5 8	20 '77	+0.04.	20.83	-0.47	20 '36	
11	Flat Top	309	05	12.49	-0.02	12 '44	-0.10	12 '34	
	Azimuth Mark, Lynchburg								
	С. Н.	356	02	42 '35					

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 1'' \cdot 36$. Circle used in XXIII positions.

Abstracts of horizontal directions at stations composing the first section of the triangulation south of the transcontinental triangulation, 1875 to 1879—continued.

Flat Top, Peaks of Otter, Bedford County, Virginia. June 20 to September 2 1876. A. T. Mosman, observer. 35cm direction theodolite No. 10.

Number of directions.	Objects observed.			om local ment.	Reductions to sea level.	Resulting seconds.	from figure adjustment.	Final seconds.	
			,	//	11	11	//	//	
15	Tobacco Row	C	00	00,00	+0 °04	00 '04	—о ·2 8	59.76	
16	Spear	10	17	00 '26	+0.01	00 '27	-0.13	00 '14	
	Lynchburg	26	12	24.19					
17	Long Mountain	42	10	51 '79	-0.02	51 '77	-0.11	51 '66	
18	Smith Mountain	108	18	02 '38	0 '00	02 '38	-o ·oS	02 '30	
19	Moore	138	23	14.15	+0.02	14.17	+0.09	14 '26	
20	Calias	156	09	54 '25	+0.08	54 '33	+0.10	54 '73	
21	Buffalo	157	53	45 '03	+o *o8	45 '11	+0.15	45 *23	

Probable error of a single observation of a direction (D, and R.), $e_1 = \pm 1''$:36. Circle used in XXIII positions.

Cahas, Frankliu County, Virginia. June 25 to July 13, 1877. A. T. Mosman, observer. 50cm direction theodolite No. 114.

		0	1	//	//	//	//	11
32	Smith Mountain	0	00	00,00	o 'o2	59 98	-o ·o6	59 '92
33	Moore	90	56	57 '57	+ 0.03	57 .60	-o ·84	56 .76
34	Buffalo	123	26	54 '08	+o ·o8	54 '16	-0.12	54 '01
29	Flat Top	300	10	07 '25	+0.09	07 '34	+0.36	07 '70
30	Tobacco Row	309	43	37 '90	+0.06	37 '96	—o ·38	37 °58
31	Long Mountain	330	46	17 '45	10.0+	17 '46	+1.07	18.23

Probable error of a single observation of a direction (D, and R,), $e_i = \pm o'' \cdot 71$. Circle used in XI positions,

Smith Mountain, Pittsylvania County, Virginia. August 6 to September 6, 1877. A. T. Mosman, observer. 50 cm direction theodolite No. 114.

		o	1	11	//	//	//	//
2.1	Caltas	0	00	00'00	-o ' 04	59 '96	-0 .13	59 '77
25	Flat Top	. 72	09	19 84	0,00	19.84	+0.18	20 '02
26	Tobacco Row	102	22	00 '94	+0.02	00,09	+0.06	01 ,02
27	Spear	123	12	35 '99	+0.03	36 '02	-o ·18	35 .84
28	Long Mountain	128	00	47 '72	+0.03	47 '75	—o :48	47 *27
22	Moore	297	18	17 '97	+0.02	18.05	+o · 47	18 '49
	Bull Mountain	312	53	58 '97				rs
23	Buffalo	327	37	19.21	+0.02	19.26	+0.13	19 .69

Probable error of a single observation of a direction (D. and R.), $e_i = \pm o''$ 68. Circle used in XI positions.

Abstracts of horizontal directions at stations composing the first section of the triangulation south of the transcontinental triangulation, 1875 to 1879—continued.

Moore, Stokes County, North Carolina. November 7 to December 26, 1876. A. T. Mosman, observer. 35 cm direction theodolite No. 10. April 21 to May 31, 1877. Same observer and instrument.

Number of directions.	Objects observed.			n local	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment.	Final seconds.	
		0	1	//	//	11	//	//	
	Pilot Mountain	0	00	00,00					
39	Buffalo	89	04	10 '07	-o ° 05	10 '02	-o °23	09 '79	
	Azimuth Mark	110	31	01 '90					
40	Cahas	127	05	24 .85	+0 .04	24 .89	+1.48	26 '37	
41	Flat Top	138	23	02 84	+0 °07	02 '91	—o · 58	02:33	
42	Smith Mountain	153	26	57 '69	+0.04	57 '73	-o ·68	57 °05	
	Young	314	44	12:49					
	Poore	354	2 [09 '66					

Probable error of a single observation of a direction (D, and R.), $c_1=\pm 1''\cdot 58$. Circle used in XXIII positions in 1876 and in XXIV positions in 1877.

Buffalo, Floyd County, Virginia. September 25 to October 16, 1876. A. T. Mosman, observer.

	35 direction	OH CI	reodonic	- 140. IO.			
	0	-	11	11	11	//	//
Bull Mountain	0	00	00,00				
Moore	41	36	48 '92	-0 '04	48 .88	. +0.10	48 •98
Pilot Mountain	62	51	49 °S9				
Young	70	37	50 '34				
Poore	99	35	20 '42	*			
Flat Top	290	26	00 [73	+0.09	00 '82	o *44	00 '38
Calias	292	07	56.29	+o °o\$	56 .67	-o * 04	56 .63
Smith Mountain	316	18	26 .85	+o °02	26 ·S7	-o *3 8	27 '25
	Moore Pilot Mountain Young Poore Flat Top Cahas	Bull Mountain o Moore 41 Pilot Mountain 62 Young 70 Poore 99 Flat Top 290 Cahas 292	Bull Mountain 0 00 Moore 41 36 Pilot Mountain 62 51 Young 70 37 Poore 99 35 Flat Top 290 26 Cahas 292 07	Bull Mountain 0 00 00 00 00 Moore 41 36 48 92 Pilot Mountain 62 51 49 89 Young 70 37 50 34 Poore 99 35 20 42 Flat Top 290 26 00 73 Cahas 292 07 56 59	Bull Mountain 0 00	Bull Mountain 0 00 00 00 00 Moore 41 36 48 92 -0 04 48 88 Pilot Mountain 62 51 49 89 Young 70 37 50 34 Poore 99 35 20 42 Flat Top 290 26 00 73 +0 09 00 82 Cahas 292 07 56 59 +0 08 56 67	Bull Mountain 0 00 00 00 """ "" """ "" Moore 41 36 48 92 -0 04 48 88 +0 10 Pilot Mountain 62 51 49 89 Young 70 37 50 34 Poore 99 35 20 42 Flat Top 290 26 00 73 +0 09 00 820 44 Cahas 292 07 56 59 +0 08 56 67 -0 04

Probable error of a single observation of a direction (*D*, and *R*.), $e_{\rm r}=\pm 1^{\prime\prime}$ '58. Circle used in XXIII positions.

Observation equations.

Observation equations—continued.

XIV
$$0=+3.60-(22)+(24)-(32)+(33)-(40)+(42)$$

XV $0=+1.07-(22)+(23)-(37)+(38)-(39)+(42)$
XVI $0=-6.7+6.33(1)-1.96(2)-2.51(12)+3.71(13)-1.20(14)$
XVII $0=+0.30-0.196(2)+1.189(4)-0.171(11)+0.291(12)-0.120(14)-0.927(15)+1.160(16)$
 $-0.233(17)$
XVIII $0=-2.0-1.96(5)+2.06(6)-0.10(8)-2.33(15)+3.26(17)-0.93(18)-1.43(25)+4.38(26)$
 $-2.95(28)$
XIX $0=+0.11-1.780(2)+1.976(3)+0.272(5)-0.206(6)-0.438(26)+2.505(27)-2.067(28)$
XX $0=+2.51-0.010(5)+0.836(7)-0.826(8)-0.299(10)+0.470(11)-0.171(12)-0.877(29)$
 $+1.231(30)-0.354(31)$
XXI $0=+1.1-3.70(9)+5.02(10)-1.32(11)-0.93(17)+2.83(18)-1.90(20)-1.22(29)+3.77(31)$
 $-2.55(32)$
XXII $0=+1.46-0.190(18)+0.656(19)-0.466(20)-0.109(22)+0.177(24)-0.068(25)-0.629(40)$
 $+1.054(41)-0.425(42)$
XXIII $0=-4.60-0.190(18)+7.158(20)-6.968(21)-0.332(23)+0.400(24)-0.068(25)-7.099(35)$
 $+7.568(36)-0.469(37)$
XXIV $0=-16.2-1.09(22)+3.32(23)-2.23(24)-5.43(36)+4.69(37)+0.74(38)-2.69(39)$
 $+6.94(40)-4.25(42)$

N. B.—The correlate equations being of a simple character, are not given here.

Normal equations.

No.		Ct	C ₂	C_3	C ₄	C ₅	C ₆	C ₇	C8	C ₉	Cto	C11	C12	C13	C ₁₄	$C_{\tau\varsigma}$
I	0=+1.15	+4	-2				+2									
2	0=-0.24		+4		-2					-2						
3	0=-1.40			+4	+2			+2	+2							
4	0 = -1.03				+6			+2	+2	+2						
5	0=+0.09	,				+4	-2	-2			2					
6	o⇒+1.eo						+6									
7	0=-0.95							+6	+2		+2	-2		-2		
S	o=-1°74								+6	-2	-2		-2			
9	o=-o*88									+6	+2					
10	0=+0.37										+6				-2	
11	0=-1.07											+6	+2	+2		-2
12	0=-0.63												+6			
13	0=+0.23													+6	+2	+2
14	0=+3.60														+6	+2
15	0=+1.07				• • •	• • • •	***	•••		• • •	- •		• • •	• •	• • •	+6

Normal equations—completed.

						-				
No.		C16	C17	C18	C19	C ₂₀	Car	C ₂₂	C ₂₃	C24
I		+ 3.38	+0.076		+ 1 °780					
2		- 0.11	-0 *291	- 1.96	+ 0.272	+0.191				
3			+0.898	+ 2.53		-o.826	1			
- 4		- 2.21	+1.126	+ 7.45	- 0.272	-I °457	+ 0.39			
5	,			- 5.35	+ o °761					
6		+ 0.76	+0.076	- 2.95	- o *816		+ 3.70			
7			+0.927	+ 5 05	- 0.535	-0.826	+ 2.83	-0.155	- 0.155	
8			+0.927	+ 2.53		+0.446	- o ·68	-o ·466	+ 7.158	
9		- 2.21	+0 *291	+ 1.96	- 0.272	-0.611	-, I '25			
10				+ 2.32	- 0 '232	-o ·395	- 2.55	-0.177	- 0.400	+ 2.53
11				- o ·50			- 2.83	+0.155	+ 0.119	+ 1.37
12						-o*877	+ 0.68	+0.466	+ 0.541	- 5'43
13				- 0.20			- 2.83	-0 *592	+ 0.155	- 3°16
14							+ 2.55	+0.490	+ 0.400	- 12.33
15								-o:316	+ 0'137	- 1.10
16	0=- 6.7	+65.41	-0.505		+ 3 489	+0.429				
17	0=+ 0.30		+3.840	+ 1 400	+ 0 *349	-0.130	+ 0.442			
18	0=- 2.0			+54 '95	+ 3.222	+0'102	- 5°664	+0.274	+ 0.274	
19	0=+0.11				+17'929	~0 *003		•		
20	0=+ 2.21					+4 *131	- 2.386			
21	0=+ I.I						+75.32	+0.348	- 14.138	•
22	· o=+ 1.46							+2.418	- 3.224	- 2.84
23	0=- 4.60								+207'99	- 45'29
24	0=-16.5									+142.67
				Result	ing corret	ates.				

C	$6^{1} = +0.130$	C 9=+0.767	$C_{17} = -0.196$
C	$e_2 = +0.547$	C10=-0.844	C18=+0 0145
C	$_{3}$ =+0.093	$C_{11} = +0.134$	$C_{19} = -0.0569$
C	4 = -0.183	$C_{12} = +0.146$	$C_{20} = -0.603$
C	$c_5 = -0.587$	$C_{13} = +0.276$	$C_{21} = +0.0231$
C	6 = -0.554	$C_{14} = -0.842$	$C_{22} = -0.285$
C	₇ =+0 '231	$C_{15} = +0.051$	$C_{23} = +0.0233$
C	s=+o ·288	$C_{16} = +0.150$	C24=+0.0665

Resulting corrections to observed directions.

			_				
(1)=	=+o ·460	(12)=	-O '24I	(23)=	=+0.130	(34)	=-o ·146
(2)	+0.221	(13)	+o ·836	(24)	-0 '187	(35)	-ю ·445
(3)	-0.079	(14)	-o '495	(25)	+0.146	(36)	—o ·oз9
(4)	-o ·326	(15)	-o ·281	(26)	+0.062	(37)	+o:384
(5)	-o ·o75	(16)	-o'134	(27)	-o ·176	(38)	+0.100
(6)	+0 .068	(17)	-0'112	(28)	−0 '479	(39)	−o ·230
(7)	-o ·869	(18)	-o °077	(29)	+0.359	(40)	+1 '483
(8)	+0 '926	(19)	+0 '089	(30)	-o '377	(41)	−о '576
(9)	+0 '468	(20)	+o ·398	(31)	+1 '068	(42)	-o ·677
(10)	-o ·47 I	(21)	+0.118	(32)	-o.091		
(11)	-0.097	(22)	+0'474	(33)	-o ·842		

Probable error of an observed direction o'674 $\sqrt{\frac{9.88}{24}} = \pm 0''.41$.

Resulting angles and sides of the first section of the triangulation southwest of the Kent Island base net and extension.

No.	Stations.	Observed angles.	Correc- tion.	Spher- Spher- ical ical angles, excess,	Log. distances.	Distances in meters.
I {	Long Mountain Humpback	30 47 57 98 28 27 31 65	-1 ·33 +0 ·46	56.65 1.35	4.649 283 4 4.618 077 4	44 594 71
2	Tobacco Row Humpback Long Mountain	120 44 35 53 132 04 13 13 18 24 09 70 29 31 39 61	-0 '25 -0 '08 -0 '46 +1 '08	35 '28 1 '34 13 '05 1 '00 09 '24 0 '99 40 '69 0 '99	4 ·874 224 9 4 ·874 224 9 4 ·502 886 6 4 ·696 339 6	74 855 71 74 855 71 31 833 66 49 698 08
3 {	Long Mountain Tobacco Row Spear	60 19 37 59 72 37 08 79 47 03 17 11	-0.25 -0.07 -0.25	37 '34 0 '97 08 '72 0 '98 16 '86 0 '97	4.577 326 2 4.618 077 4 4.502 886 7	37 785 '59 41 502 '80 31 833 '67
4 {	Flat Top Tobacco Row Spear	10 17 00 23 159 40 31 48 10 02 28 12	+0.15 +0.33	00.38 0.41 32.40 0.41 28.45 0.41	4 '577 326 2 4 '866 398 9 4 '567 083 6	37 785 59 73 518 88 36 904 86
5 {	Flat Top Spear Long Mountain	31 44 51 50 37 00 48 99 111 14 25 12	+0 °02 -0 °57 -0 °39	51 '52 1 '56 48 '42 1 '56 24 '73 1 '55	4 ·618 077 4 4 ·676 543 1 4 ·866 398 9	41 502 So 47 483 54 73 518 88
6 {	Flat Top Tobacco Row Long Mountain	42 01 51 73 87 03 22 69 50 54 47 53	+0 17 +1 00 -0 14	51 '90 0 '99 23 '69 1 '00 47 '39 0 '99	4 '502 886 7 4 '676 543 2 4 '567 083 6	31 833 ·67 47 483 ·55 36 904 ·86
7 {	Smith Mountain Tobacco Row Spear	20 50 35 °03 118 11 11 °60 40 58 19 °35	-0°24 +0°07 +0°08	34 '79 1 '96 11 '67 1 '97 19 '43 1 '96	4 '577 326 2 4 '971 303 1 4 '842 815 4	37 785 59 93 605 87 69 633 05
s {	Smith Mountain Spear Long Mountain	4 48 11 73 6 04 57 76 69 06 53 16	-0.30 -0.33 -0.97	11 '43 0 '35 57 '43 0 '35 52 '19 0 '35	4 '618 077 4 4 '720 334 2 4 '971 303 0	41 502 80 52 521 14 93 605 85
9 {	Smith Mountain Flat Top Tobacco Row	30 . 12 41 15 108 18 02 34 41 29 19 88	+o ·20 +o ·86	41 '04 1 '44 02 '54 1 '44 20 '74 1 '44	4.567 083 6 4.842 815 2 4.686 522 8	36 904 ·86 69 633 ·02 48 587 ·30
10 {	Smith Mountain Tobacco Row Long Mountain	25 38 46.76 45 34 02.81 108 47 15.57	-0.55 +0.14 -0.71	46 '21 1 '34 02 '95 1 '34 14 '86 1 '34	4 '502 886 7 4 '720 334 4 4 '842 815 4	31 833 ·67 52 521 ·17 69 633 ·05
11	Smith Mountain Flat Top Spear	51 03 16.18 98 01 02.11 30 55 51.23	-0.35 +0.06 -0.24	15 '83 3 '00 02 '17 2 '99 50 '99 3 '00	4.866 398 9 4.971 303 1 4.686 522 9	73 518 88 93 605 87 48 587 31
12	Smith Mountain Flat Top Long Mountain	55 51 27 91 66 16 10 61 57 52 28 04	-0.66 +0.03 -0.56	27 '25 I '79 I0 '64 I '79 27 '48 I '79	4 ·676 543 2 4 ·720 334 3 4 ·686 523 0	47 483 55 52 521 16 48 587 33

Resulting angles and sides of the first section of the triangulation southwest of the Kent Island base net and extension—continued.

No.	Stations.	Obse	erved	angles.	Correc- tion.	Spher- Spher- ical ical angles. excess.	Log. distances.	Distances in meters.
		0	/	11		// //		
	Cahas	9	42	30.62	-0.73	29.89 0.67	4 '567 083 6	36 904 86
13 {	Flat Top	156	09	54 '29	+0.68	54.'97 0.'68	4 946 643 2	88 438 88
1	Tobacco Row	14	07	35 '37	+1.49	37 .16 0 .62	4 '727 663 4	53 415 '02
1	Cahas	21	02	39 '50	+1.44	40 '94 2 '28	4 '502 886 7	31 833 67
14 {	Tobacco Row	72	55	47 '32	0 '79	46 .53 2 .58	4 '928 119 5	84 746 06
	Long Mountain	86	OI	39 '14	+0.53	39 '37 2 '28	4 '946 643 2	88 438 88
	Cahas	30	45	10.13	+0.41	10.83 1.96	4 .676 543 2	47 483 55
15 {	Flat Top	114	08	02.26	+o ·51	03 .04 1 .06	4 '928 119 6	84 746 08
	Long Mountain	35	06	51 '61	+0.37	51 '98 1 '96	4 .727 663 6	53 415 05
	Cahas	59	58	52 .64	-0.42	52 . 22 1 . 63	4.686 522 9	48 587 31
16 (Flat Top	47	51	51 '95	+0.48	52.43 1.63	4 '619 220 5	41 612 18
	Smith Mountain	72	09	19.88	+0.36	20 . 24 1 . 63	4.727 663 5	53 415 °04
	Cahas,	29	13	42 .22	1.13	41.39 1.46	4 '720 334 3	52 521 16
17	Long Mountain	22	45	36 '43	0 '94	35 49 1 46	4 '619 220 5	41 612 18
	Smith Mountain	128	00	47 '79	-0.30	47 '49 1 '45	4 '928 119 6	84 746 08
	Cahas	50	16	22 '02	+0 '32	22 '34 2 '40	4 .842 815 4	69 633 05
18	Tobacco Row	27	2 I	44 '51	-0.94	43 '57 2 '40	4.619 220 6	41 612 19
	Smith Mountain	102	22	01 '03	+0 '25	01.58 5.30	4 '946 643 3	88 438 90
	Buffalo	25	52	26 '05	+0.83	26.88 3.38	4.686 522 9	48 587 31
19	Flat Top	49	35	42 '73	+0.10	42 '92 3 '38	4 '928 312 3	84 783 '69
- 9	Smith Mountain	10.1	32	00 '28	+0.02	00 '33 3 '37	5 '032 535 0	107 779 '2
	Buffalo	ī	41	55 .85	+0.41	56 '26 0 '15	4 '727 663 5	53 415 '04
20 (Flat Top	ı	43	50 .78	-0.58	50.20 0.12	4 727 603 3	54 412 '45
20	Cahas	176	34	13 '18	+0.20	13 '68 0 '14	5 '032 534 9	107 779 '2
	Buffalo	24	10	30 '20	+0.42	30.62 1.60	4.619 220 5	41 612 18
21	Flat Top Smith Mountain	123	26	54,18	-o ·o8	21,10 1,60 70,08 1,60	4 '928 312 3	84 783 69
	(Smith Mountain	32	22	40 '40	-0.32	40 '08 1 '60	4 735 698 6	54 412 49
	Moore	15	03	54 .82	-0,10	54 '72 2 '73	4 '686 522 9	48 587 '31
22	Flat Top	30	05	11 '79	+0.12	11.96 5.73	4 971 803 6	93 713 81
	Smith Mountain	134	51	01.82	-0.30	01.25 5.4	5 122 329 4	132 534 6
	Moore	11	17	38 °02	-2 .06	35 '96 1 '83	4 .727 663 5	53 415 '04
23	Cahas	150	55	50.56	-1.50	49 '06 1 '83	5 122 329 5	132 534 6
	Flat Top	17	46	40.16	+0.31	40.47 1.83	4 '920 554 4	83 282 62
	Moore	26	2 [32.84	-2.19	30 '68 2 '93	4.619 220 5	41 612 18
24	Cahas	90	56	57 .62	-o ·78	56 .84 2 .94	4 '971 803 6	93 713 81
	Smith Mountain	62	41	41 '94	-0.66	41.58 5.83	4 '920 554 3	83 282 '60

Resulting angles and sides of the first section of the triangulation southwest of the Kent Island base net and extension—continued.

No.	Stations.	Obse	rved :	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	//	//	"	11		
	Moore	- 49	18	52.89	− o .35	52 °54	4 '04	5 '032 535 0	107 779 2
25	Buffalo	111	10	48 .06	+0.22	48 .61	4 '04	5 122 329 3	132 534 6
	Flat Top	19	30	30 '94	+0.03	30 '97	4 '04	4 .676 356 4	47 463 13
	Moore	38	10	14 .87	+1 '71	16.28	2 '06	4 '735 698 6	54 412 '49
26	Buffalo	109	28	52.51	+0.14	52 '35	2 '06	4 '920 554 3	83 282 60
	Cahas	32	29	56.26	+0 .69	57 '25	2 '06	4 '676 356 4	47 463 '13
	Moore	64	22	47.71	-0 '45	47 '26	3 *40	4 '928 312 3	84 783 69
27	Buffalo	85	18	22 '01	-o ·2 8	21 '73	3 '39	4 '971 803 6	93 713 81
	Smith Mountain	30	19	01 '54	-0.34	01 '20	3 '40	4 '676 356 4	47 463 13

5. SECOND OR NORTH CAROLINA SECTION OF THE TRIANGULATION SOUTH OF THE TRANSCONTINENTAL TRIANGULATION, IN VIRGINIA AND NORTH CAROLINA, 1876–1895.

This section extends over an area covered by several large triangles which have the centrally located station Poore as one of their points in common. In 1878 when the main triangulation between the lines Buffalo to Moore and Grassy to Sawnee was adjusted, this central figure about Poore had no existence. In consequence of the introduction of this figure some modification in the treatment of the work between the Kent Island and Atlanta bases became necessary. The adjustment of 1878 involved considerable labor, as it included the formation and solution of 41 normal equations. It was desirable to retain this adjustment and interpose the central figure about Poore for the purpose of disposing of whatever error was developed between the bases by the intervening triangulation. The probable error of the measure of the Kent Island base,

which is the least accurate of the six bases along the arc, is 34 units in the seventh place of decimals of its logarithm, whereas that of the Atlanta base is but 10 units;

hence the influence of the latter over the triangulation between stations Sawnee and Benn, which constitutes the third section, was retained. In the present central figure the condition was introduced preserving the fixed relation between the two sides marked in the diagram by heavy lines.

The approximate elevations of the stations are as follows:

	Meters.	Feet.		Meters.	Feet.
Poore	817	2 680	King	516	1 693
Young	333	1 093	Rogers	1 746	5 729
Benn	886	2 907	Roan High Bluff	1 913	6 275

From the eleven triangles we derive the mean closing error of a triangle $\sqrt{\frac{56.8}{11}}$ =

 \pm 2"'27, the mean error of an angle $\frac{2^{\circ}27}{\sqrt{3}} = \pm$ 1"'31 and the probable error of a direction o'674 $\frac{2^{\circ}27}{\sqrt{6}} = \pm$ 0"'63.

In the preceding diagram, the two heavy lines are fixed in length, and the dispersion of the discrepancy between the bases, of 24 units in the seventh place of decimals in the logarithm, is accomplished by the adjustment. Attention is called to the fact that in a figure adjustment, when forcing an accord between the fixed lengths of two terminal sides, as is the case here, the conditional equation may be established either with plane angles or with spherical angles, provided in the latter case the terminal sides are corrected for difference between arc and sine. This is readily done by means of the table given in Coast and Geodetic Survey Report for 1894, Appendix No. 9, page 289, below the heading "Table of corrections to longitude for difference in arc and sine."

In establishing the length equation for any unadjusted figure the apparent discrepancy to be dispersed in order to produce accord between two lines whose length is fixed will vary with the angles selected. The true discrepancy to be dispersed can, nevertheless, be obtained from the length equation, provided the length equation be taken last in the solution of the normal equations, thus eliminating all the other unknown quantities; and the discrepancy so derived is the same as would be obtained if the length equation were formed after the entire figure had been adjusted in all other respects.

In the present section the length discrepancy with the uncorrected spherical angles was 78 units; but the true discrepancy outstanding after the other adjustments are made is but 24 units. This is less than the probable error of the measurement of the Kent Island base. The logarithm of the length of line Buffalo to Moore is 4.676 356 4, and that of the line Benn to King, 4.705 136 6.

Abstracts of horizontal directions at stations composing the second or North Carolina section of the triangulation, 1876–1895.

Buffalo, Floyd County, Virginia. September 25 to October 16, 1876.
 A. T. Mosman, observer. September 27 to October 1, 1895.
 A. H. Buchanan, observer.

Number of directions.	Objects observed.		ult o justn	f local nent.	Reduc- tions to sea level.	Resulting seconds.	Corrections from ad- justment of first sec- tion.	Result- ing sec- ouds.	from ad- justment of second sec- tion.	Final
		0	1	//	//	//	//	11	//	//
1	Bull Mountain	0	00	00 '00						
	Moore	41	36	48 '92	0.01	48 '88	+0.10	(48, 98)		
	Pilot Mountain	62	51	49 '89						
3	Young	70	37	50.34	+0.01	50.35	:		-o ·63	49 '72
4	Poore†	99	35	20 '42	+0.05	20 '47			-0.19	20 .58
5	Rogers*†	144	29	13 '76	+0.04	13 '80			+0.74	14 *54
	Flat Top	29 0	26	00 '73	+0.09	00 '82	-o ·44	(00:38)		
	Cahas	292	07	56.29	+0.08	56 '67	-0.01	(56.63)		
	Smith Mountain	316	18	26 .85	+0 '02	26.87	+o ·38	(27.25)		

Probable error of a single observation of a direction (D, and R.), (Buchanan, observer), $e_1 = \pm 1'' \cdot 25$. Circle used in XI positions.

Moore, Stokes County, North Carolina. November 7 to December 26, 1876, and April 21 to May 31, 1877. 35 cm direction theodolite No. 10. A. T. Mosman, observer.

	0	1	11	//	11	//	11	11	11
Pilot Mountain	0	00	00,00						
Buffalo	89	04	10 '07	-0.02	10 02	-0.53	(09.79)		
Azimuth Mark	110	31	01 '90						01 ,00
Cahas	127	05	24 .85	+0.04	24 .89	+1 .48	(26:37)		
Flat Top	138	23	02.84	+0.07	02 '91	-o·58	(02:33)		
Smith Mountain	153	26	57 '69	+0.04	57 '73	-o ·68	(57.05)		
Young	314	44	12 '49	+0.03	12.21			81° o—	12 '33
Poore	354	21	09 '66	+0.02	09 '71			+0.13	09 '83

^{*}Reduction to center -2''10, applied.

† Buchanan, observer.

Abstracts of horizontal directions at stations composing the second or North Carolina section of the triangulation, 1876-1895—continued.

Poore, Wilkes County, North Carolina September 15 to October 11, 1877. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. August 30 to September 17, 1895. 45 cm direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions in both years.

Number of directions.	Objects obser	·ved.			of local ment.	Approxi- mate probable errors,	Reduc- tions to sea level.	Resulting seconds.	Corrections from ad- justment of second section.	Final seconds.
			0	/	11	//	"	11	//	11
	Mark	1877	. 0	00	00,00	±0.07				
6	Buffalo 1877	1895	32	47	15 '52	0.15	+o °o8	15.60	-o ·39	15 '21
7	Moore	1877	60	05	54 '43	0.11	+0.01	54 '47	+0 '02	54 '49
	Mark	1895	60	55	18:32	***				
8	Young	1877	123	21	18.64	0.19	—o 'o2	18 '62	+o .18	18 *So
	Anderson	1877	170	22	26.64	o ·2 8				
9	King	1877	185	26	51 .63	0.13	+0.01	51 .64	-o·15	51 '49
10	Benn 1877,	1895	217	22	12.19	0.13	+0.06	12 *25	-o.18	12.07
	Mount Mitchell	1877	249	45	08.56	0 '54				
11	Roan High Bluff	1895	270	23	04 '91		-0.02	04.89	+0.36	05 '25
12	Rogers	1895	329	46	41 *23		-0.10	41 '13	+0.19	41 .59

Probable error of a single observation of a direction (*D*, and *R*.) in 1877, $e_t = \pm 0'' \cdot 78$; in 1895, $e_t = \pm 1'' \cdot 28$; combined $\pm 0'' \cdot 99$.

Young, Rowan County, North Carolina. September 22 to November 11, 1876. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	/	11	- //	//	11	11	//
	Azimuth Mark	0	00	00'00	±0.08				00 '00
16	Buffalo	0	01	09 *36	0.19	+0.03	09 '38	+0 '64	10 '02
	Mocksville Church	16	37	17 '07	0.12				
17	Moore	16	40	18'19	0.14	+0.01	18 .53	+0.52	18 '75
13	King	218	37	38.28		+0.01	38 .32	-1 '40	36 '92
	Auderson	237	26	03 .64	0.15				
14	Benn	251	ΙI	54 '95	0.19	+0.03	54 '97	+0'37	55 '34
15	Poore	299	32	29 '32	0.12	-0.06	29 °26	-0.13	29 '14

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 0^{\prime\prime} \cdot 8_3$.

Abstracts of horizontal directions at stations composing the second or North Carotina section of the triangulation, 1876-1895—continued.

Benn, Burke and Cleveland Counties, North Carolina. July 25 to August 22, 1877. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.			of sta- stment.	Approxi- mate probable errors.	Reductions to seconds. Resulting from figure adjustment.	Final seconds.
		0	1	11	111		
	Reference Mark	0	00	00,00	±0.08		
	Poore	90	24	53 '48	0 '2 I		
	Young	128	03	37 .66	0.12		
	Anderson	139	52	09 '17	o ·28		
	King	191	28	17 '42	0.19		
	Thicketty	241	16	29 '13	0.35		
	Wofford	250	34	52 '92	0.19		
	Paris	274	57	27 '38	0 *20		
	Hogback	282	51	27 '03	0.55		
	Mount Mitchell	342	18	31 .46	0 *43		

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 1'' \cdot 08$.

July 13 to August 14, 1895. 45 cm direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions.

	0	1	11	//	11
Mark 1895	O	00	00,00		
Roan High Bluff	21	02	06.70	-o ·13	06.24
Poore	98	00	40.56	+0 .06	40 '62

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 1'' \cdot 30$. Consolidated results at Benn.

	I	0	1	11	//	//	. 11	11
	Mark 1877	0	00	00,00				
18	Roan High Bluff	13	26	19.62	-o '13	19 '49	—I ·25	. 18.24
19	Poore	90	24	53 '48	+0.09	53 '54	+0.18	53 '72
20	Young	128	03	37 .66	+0.01	37 .67	-o .81	36 .86
	Anderson	139	52	09 '17				
	King*	191	28	17 '42	-o.ot	17 '38		
		•				+o ·23		
	Thicketty	241	16	29.13				
	Wofford	250	34	52 '92				
	Paris	274	57	27:38				
	Hogback	282	51	27 '03				
	Mount Mitchell	342	18	31 '75				

^{*}The line King to Benn being fixed by the southern section.

Abstracts of horizontal directions at stations composing the second or North Carolina section of the triangulation, 1876-1895—continued.

King, Gaston County, North Carolina. November 26 to December 30, 1876, and June 17 to 25, 1877. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI position.

Number of directions.	Objects observed.		Results of station adjustment.		Approxi- mate probable errors. Reduc- tions to sea level. Resulting seconds.		Corrections final from figure adjustment.		
		0	/	//	11	11	. 11	11	//
	Azimuth Mark	0	00	00,00	±0 '06				
	Benn*	1	34	43 '66	0 '20	-o ·o6	43 '60		
							+o °02		
21	Poore	48	36	08 '31	0.19	+o °02	08 '33	-o ·3о	08 03
	Anderson	66	51	08 '80	0 '24				
	Young	85	35	53°17	0.12	+o °02	53 *19	+2.05	55 '24
	Wofford	284	16	19 *00	0'12				
	Paris	293	54	20.10	0.19				
	Thicketty	296	OI	01 '90	0.56				
	Hogback	307	36	45 '89	0.19				
	Mount Mitchell	345	51	56 .4					

Probable error of a single observation of a direction (D. and R.), $e_i = \pm o''$.69.

Roan High Bluff, Mitchell County, North Carolina. October 11 to 24, 1894. 45 cm direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions.

		0	1	11	//	11	11	//
	Mark	0	00	00 '00				
2.1	Poore	34	17	14 *14	-0.01	14 *13	—o ·39	13 '74
25	Benn	84	17	56 . 57	-o °o6	56.21	+1 .52	57 '78
	Mount Mitchell	137	47	39 *29				
	Big Butt	206	45	13 '80				
	Chinney	246	08	13 '94				
	Big Knob	274	20	49 '02				
	Holston	303	26	14 '54				
23	Rogers	341	40	13 *92	+0.15	14 '04	−o ·88	13.16

Probable error of a single observation of a direction (D. and R.), $e_r = \pm i''$:33.

Rogers, Grayson County, Virginia. July 27 to September 22, 1894. 45 cm direction theodolite No. 4.

A. H. Buchanan, observer. Circle used in X1 positions.

		٥	/	11	//	11	//	11
	White Top	0	00	00'00				
	Big Knob	24	09	36 .83				
26	Buffalo	194	12	37 '64	+0.03	37 .67	-o·72	36 .92
27	Poore	266	18	26 .84	−o · o5	26 '79	-o.18	26 .61
28	Roan High Bluff	334	18	03 .89	+0.13	04 '02	+0.90	04 '92
	Big Butt	349	29	28 01				
	Holston	358	23	29 '97				
Proba	ble error of a single observ	ation of	a d	irection (D, and R.), $e_t =$	士1//-32.		

^{*} The line King to Benn being fixed by the southern section.

Observation equations.

I
$$0 = -0^{\circ}10 - (2) + (4) - (6) + (7)$$

 $0 = +0^{\circ}57 - (1) + (3) - (16) + (17)$
 $0 = -1^{\circ}10 - (1) + (2) - (7) + (8) - (15) + (17)$
 $1V$ $0 = +0^{\circ}51 - (9) + (10) - (19) + (21)$
 V $0 = -4^{\circ}65 - (13) + (14) - (20) + (22)$
 VI $0 = -3^{\circ}31 - (8) + (9) - (13) + (5) - (21) + (22)$
 VII $0 = -0^{\circ}92 - (4) + (5) + (6) - (12) - (26) + (27)$
 $VIII$ $0 = -1^{\circ}36 - (11) + (12) - (23) + (24) - (27) + (28)$
 $1X$ $0 = -3^{\circ}64 - (10) + (11) - (18) + (19) - (24) + (25)$
 X $0 = -0^{\circ}5 + 3^{\circ}79(3) - 1^{\circ}32(4) - 4^{\circ}8(6) + 5^{\circ}15(7) - 1^{\circ}07(8) - 0^{\circ}48(15) + 7^{\circ}04(16) - 6^{\circ}56(17)$
 XI $0 = -5^{\circ}9 + 0^{\circ}15(8) + 3^{\circ}38(9) - 3^{\circ}53(10) - 3^{\circ}29(13) + 5^{\circ}16(14) - 1^{\circ}87(15) + 1^{\circ}96(21) - 0^{\circ}22(22)$
 XII $0 = +1^{\circ}4 - 3^{\circ}80(3) + 5^{\circ}91(4) - 2^{\circ}11(5) - 1^{\circ}87(14) + 3^{\circ}07(15) - 1^{\circ}20(16) - 0^{\circ}49(18) + 3^{\circ}22(19)$
 $-2^{\circ}73(20) - 1^{\circ}61(23) + 3^{\circ}38(24) - 1^{\circ}77(25) - 0^{\circ}68(26) + 1^{\circ}53(27) - 0^{\circ}85(28)$
 $0 = +7^{\circ}8 - 2^{\circ}55(1) + 2^{\circ}55(2) + 1^{\circ}32(4) + 4^{\circ}08(6) - 4^{\circ}08(7) - 3^{\circ}38(9) + 3^{\circ}38(10) - 0^{\circ}34(13) + 0^{\circ}82(15) - 0^{\circ}48(17) - 0^{\circ}41(19) + 2^{\circ}80(21) - 2^{\circ}80(22)$

Normal equations.

I 0=-0'10		6 C ₇ C ₈	C ₉	Czo	C11	C12	C13
11 -5 '9	2 3 4 5 6 7 8	-2 -2 -2 -2 -2 -6 +6 -2	C ₉	+ 7 '91 - 9 '81 - 12 '30 + 0 '59 - 2 '76	+ 2°02 - 4°95 + 8°23 + 2°47	+ 5.91 - 2.60 - 3.07 - 3.22 + 0.86 + 3.07 - 5.81 + 2.61 - 1.44	C ₁₃ - 9°39 + 2°07 + 7°88 + 9°97 - 2°46 - 7°82 + 2°76 - 3°79
	11			+153 *25	+ 0.74	- 32°12 - 15°39 +106°92	-36.64 -17.67 + 9.00
13 +7.8 Resulting correlates.		ing correlates.				1100 92	+87.75

$C_1 = +0.719$	$C^{\varrho} = +0.300$	C11=-0.0	94 0
$C_2 = -0.653$	$C_7 = +0.726$	C12=-0,0	09 16
$C_3 = +1.096$	$C_8 = +0.890$	$C^{13} = -0.1$	01 5
$C_4 = +1.080$	$C_9 = +1.252$		
$C_5 = +0.838$	$C_{10} = -0.00386$		

Resulting corrections to observed directions.

//	//	"	//
(1) = -0.182	(8) = +0.177	(15) = -0.151	(22) = +2.052
(2) +0.118	(9) —o.146	(16) +o ·637	(23) -0.875
(3) -0.633	·• (10) —0 ·183	(17) +0.217	(24) -= 593
(4) -0.130	(II) +o ·362	(18) -1.248	(25) +1.268
(5) +0.745	(12) +0'164	(19) +o ·184	(26) —0 .720
(6) -0.391	(13) -1 '403	(20) -0.813	(27) —o ·178
(7) +0.017	(14) +0.370	(21) —0.297	(28) +o ·898

Probable error of an observed direction, o 674 $\sqrt{\frac{14.66}{13}} = \pm 0''.72$.

THE MAIN TRIANGULATION.

Resulting angles and sides of the second or North Carolina section of the triangulation.

	0 0			•
No.	Stations.	Observed angles.	Correction. Spherical ical ical angles. excess,	Log. dis- tances. Distances in meters.
		0 / //	11 11 11	
	Poore	27 18 38 87	+0.41 39.58 3.21	4 .676 356 4 47 463 .13
1 -	Buffalo	57 58 31 49	-0.19 31.30 3.21	4 '943 028 7 87 705 '87
	Moore	94 42 60.08	-0.15 20.09 3.25	5 013 257 0 103 099 6
	Young	16 39 08.85	-0.15 08.43 5.31	4 .676 356 4 47 463 .13
2	Buffalo	29 01 01 37	-0.63 00.4 5.31	4 '904 942 5 80 341 '98
	Moore	134 19 57.28	+0.18 22.46 5.31	5 '073 639 3 118 478 '4
	Poore	90 34 03 '02	+0.24 03.29 2.01	5 073 639 3 118 478 4
3 +	Buffalo	28 57 30 12	+0.44 30.26 2.01	4 .758 644 5 57 364 .67
	Young	60 28 40 12	+0.76 40.88 2.01	5.013 524 0 103 099.6
	Poore	63 15 24 15	+0.16 54.31 3.81	4 '904 942 5 80 341 '98
4	Moore	39 36 57 20	+0.30 22.20 3.81	4 '758 644 6 57 364 '69
	Young	77 07 48 97	+0.64 49.61 3.80	4 '943 028 8 87 705 '89
	Rogers	72 05 49 12	+0.24 49.66 2.94	5.013 524 0 103 099.6
5	Buffalo	44 53 53 33	+0.93 54.56 5.95	4 .883 517 2 76 474 .60
	Poore	63 00 34 47	-o ·55 33 ·92 5 ·95	4 '984 727 I 96 544 '40
-	Roan High Bluff	52 37 00 '09	+0.48 00.57 4.97	4.883 517 2 76 474.60
6	Rogers	67 59 37 23	+1.08 38.31 4.98	4 '950 523 6 89 232 '62
	Poore	59 23 36 24	-0.50 36.04 4.92	4.918 514 85 832.64
	Benn	76 58 34 05	+1 '43 35 '48 4 '23	4 '950 523 6 89 232 '62
7 4	Roan High Bluff	50 00 42 38	+1 '66 44 '04 4 '24	4 .846 167 1 70 172 .52
	Poore	53 00 52 64	+0.55 53.19 4.54	4 .864 269 1 73 159 .22
	King	36 59 44 86 °	+2'35 47'21 4'04	4 '758' 644 5 57 364 '67
8 (Poore	62 05 33 02	-0'32 32'70 4'04	4 '925 530 7 84 242 '39
	Young	80 54 50 94	+1.58 25.55 4.05	4 '973 743 9 94 133 '44
	Вешп	37 38 44 13	-1.00 43.13 3.40	4 '758 644 5 57 364 '67
9	Poore	94 00 53.63	-0.36 23.27 3.40	4 '971 708 3 93 693 '26
	Young	48 20 34 29	-0 '49 33 '80 3 '40	4.846 167 0 70 172.21
	Benn	101 03 24 07	-o ·18 23 ·89 2 ·95	4 '973 743 9 94 133 '44
10	Poore	31 55 20.61	-0 °04 20 °57 2 °96	4 '705 136 5 50 715 '01
	King	47 01 24 71	-0.30 54.41 5.96	4.846 167_1 70 172.52
	Benn	63 24 39 94	+0.82 40.76 3.60	4 '925 530 7 84 242 '39
II +	Young	32 34 16 65	+1.77 18.42 3.60	4 '705 136 7 50 715 '03
	King	84 01 09:57	+2.02 11.65 3.60	4 '971 708 5 93 693 '30

6. THIRD OR SOUTH CAROLINA SECTION OF THE TRI-ANGULATION SOUTH OF THE TRANSCONTINENTAL TRIANGULATION, 1873-1877.

This section completes the connection of the Kent Island and Atlanta bases, as already indicated in the preceding section. The results of the adjustment made in October, 1878, are retained, omitting only the two quadrilaterals lying between the stations Buffalo and King, which were included in the second section. The conditional equations, as well as the normal equations, are presented in full, leaving out the eight triangles between the two stations named above, as they are superseded by the present arrangement. The old, and less convenient, notation of the corrections to the angles has been changed, and the order of the presentation of the triangles has been reversed so as to proceed from the northeast toward the southwest. The third place of decimals in the seconds of the angles was dropped as unnecessary, particularly since no corrections for height of stations observed upon were made, the maximum value of this correction being below o"1.

The stations involved and their approximate heights are as follows:

	Meters.	Feet.
Hogback	984 *4	3 230
Wofford	267 .6	878
Pinnacle	1 047 '4	3 436
Paris	626 .1 ,	2 054
Mauldin	404 '8	1 328
Rabun	1 437 7	4 717
Currahee	530 °2	1 740
Blood	1 360 4	4 463
Skitt	632 '7	2 076

Relative weights to the directions were introduced in the same way as had been employed in the adjustment of the Atlanta base net. Referring to the explanation there given, the value of the mean closing error of a triangle (derived from 73 cases in the triangulation connecting stations Buffalo, Virginia, and Kenesaw, Georgia) is $\sqrt{\frac{275.5}{73}} = \pm 1''.94^*$ and the probable error of a direction is $0.674 \frac{1.94}{\sqrt{6}} = \pm 0''.54$; also the average probable error of an observed direction (see abstracts) $\epsilon_i = \pm 0''.18$, hence $\epsilon_i^2 = (0.54)^2 - (0.18)^2 = 0.255$, which was added as a constant to the square of each observing error. We have $\epsilon^2 = \epsilon_i^2 + \epsilon_i^2$ and the weight $p = 1/\epsilon^2$; in order to make the average weight nearly unity, the reciprocal was divided by 0.28. The reciprocal relative weights are tabulated farther on; the minimum value of ϵ^2 or $\frac{1}{p}$ is 0.5 and the maximum 1.3.

^{*} From the 35 triangles directly involved here we have $\sqrt{\frac{55/4}{35}} = \pm 1'''$ 30 and the mean error of a direction becomes $\pm 0'''$ 78.

Abstracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873–1877.

King, Gaston County, North Carolina. November 26 to December 30, 1876, and June 17–25, 1877. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.			local ad-	Approximate probable error.	from adjust- ment of third section.	Final seconds.
		0	1	//	11	//	"
	Azimuth Mark	О	00	000'000	±0.06		
64	Benn	1	34	43 .656	0.30	+0.014	43 '670
	Poore	48	36	08:311	0.19		
	Anderson	66	51	08 '804	0 *24		
	Young	85	35	53 '167	0.12		
61	Wofford	284	16	18 '996	0.13	+0 '444	19 '440
62	Paris	293	54	20 '098	0.19	−1 '724	18:374
	Thicketty	296	OI	01 '905	0 '26		
63	Hoghack	307	36	45 .893	0.19	+0.413	46 '306
	Mount Mitchell	345	51	56 .4			
		4.5		/ 12 1 1			

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 0''$ 69.

Benn, Burke and Cleveland Counties, North Carolina. July 25 to August 22, 1877. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	,	//	//	//	11
	Reference Mark	0	,	00,000	±0.08		
							• • • • • •
	Poore	90	24	53 '479	0.51	,	
	Young	128	03	37 .657	0.12		
	Anderson	139	52	09 167	0 *28		
65	King	191	28	17 '424	0.16	+0.230	17 .654
	Thicketty	241	16	29.132	0 *35		
66	Wofford	250	34	52 '916	0.19	+0.604	53 '520
67	Paris	274	57	27:376	0 *20	+0.705	28 '081
68	Hogback	282	51	27 '027	0 '22	− o :568	26 .459
	Mount Mitchell	342	18	31 '755	0 '43		

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 1''$ o8.

Hogback, Greenville County, South Carolina. August 16 to September 1, 1876. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	1	11	11	11	//
58	Paris	0	00	000,000	±0°07	—o ·178	59 .822
59	Mauldin	15	44	50 '325	0.11	-o °038	50 °287
60	Pinnacle	46	26	55 *104	0.12	+1.278	56 '382
	Mount Mitchell	158	32	15 '94	0 *44		
55	Benn	208	54	59 '171	0'12	-0.287	58.884
56	King	243	34	02 *348	0.18	- о . 339	02 '009
	Thicketty	253	55	03 '471	0 *14		
57	Wofford	282	16	22 .064	0.12	-0.416	21 .648

Probable error of a single observation of a direction (D, and R.), $e_1 = \pm 0''$ 81.

Abstracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873-1877—continued.

Wofford, Spartanburg County, South Carolina. July 6 to August 7, 1876. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.		ilts of justm	local ad- lent.	Approximate probable error.	Corrections from adjust- ment of third section.	Final seconds.
	•	0	,	11	11	11	11
	Thicketty	0	00	000,000	±0.09		
54	King	22	25	08:507	0.14	+o •58o	09 '087
50	Paris	226	05	58 '853	o ·16	+o ·635	59 '488
51	Pinuacle	235	09	59 '137	0.16	—o ∙656	58 .481
52	Hogback	264	27	19 '062	0.56	+0.862	49 '924
	Mount Mitchell	300	0.4	42			
53	Benn	338	50	02 *589	0.12	-1. 343	01 .546
ma 4 4		3.		10 3	73.3		

Probable error of a single observation of a direction (D. and R.), $e_r = \pm o^{\prime\prime}$ '96.

Pinnacle, Pickens County, South Carolina. August 25 to September 8, 1875. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	1	11	11	//	11
38	Paris	0	00	000'000	平0.10	+0.258	00.528
39	Mauldin	48	46	48 '017	0 '17	+0 032	48 .049
40	Curraliee	117	37	44 '518	0'12	+0.269	44 . 787
41	Rabun	153	07	06 •908	0.11	+o ·856	07 .764
36	Hogback	321	U2	43 '547	0 '21	-o ·887	42.660
37	Wofford	347	34	20 '804	0 '17	-o ·637	20.167

Probable error of a single observation of a direction (D. and R.), $e_t = \pm 0^{\prime\prime}$.92.

Paris, Greenville County, South Carolina. September 16 to November 20, 1875. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	1	//	//	"	//
45	Pinnacle	0	00	000,000	±0 '06	—o ·o79	59 '921
46	Hogback	94	35	47 '974	0.19	+0 020	47 '994
	Propst	109	45	43 '080	0.12		
47	Benn	115	36	49 *945	0 '09	+1.183	51 128
	Thicketty	142	59	15 '298	0'17		
48	King	144	27	28 '012	0 '21	-o ·155	27 .857
49	Wofford	158	30	21 '824	0 '21	+0.304	22.158
	Aziuiuth Mark	· 229	12	08 '277	0.12		
42	Mauldin	308	16	00 '933	0 *14	—o '755	00.118
43	Currahee	314	06	42, 296	o •18	-0 '947	41 '349
44	Rabun	343	20	09 '423	0.19	+0.320	09 '743

Probable error of a single observation of a direction (D. and R.), $e_t = \pm 0^{\prime\prime\prime}$.93.

Abstracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873-1877—continued.

Mauldin, Pickens County, South Carolina. December 8 to 14, 1875. 50cm direction theodolite No.3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.	Results of local adjustment.			Approximate probable error.	Corrections from adjust- ment of third section.	Final seconds.
		0	1	//	" //	//	11
33	Pinnacle	О	00	000'000	±0.07	+0 '022	00 '022
34	Hogback	16	33	51 '967	0.18	-o ·59 8	51 '369
35	Paris	79	29	12 ·S23	0.19	+1 215	14 '038
31	Currahee	267	13	16 '950	0.13	+0.115	17.062
32	Rabun	307	25	59 '062	0,11	—о ·67 8	58 '384

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm 0'' \cdot 77$.

Rabun, Rabun County, Georgia. July 27 to August 5, 1875. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	1	//	. //	11	//
	Walhalla .	0	00	000,000	±0.08		
28	Currahee	51	48	33 '214	0 '20	-o ·351	32 '863
29	Skitt	80	53	21 '496	0.17	+1 .033	22 '519
	Youali	89	51	56.194	0 °23		
30	Blood	110	31	24 '370	0.31	—o ·35 4	24 '016
25	Pinnacle	304	59	58 1119	0.12	—o ·9 87	57 '132
26	Paris	315	13	01.222	0'12	.—o ·22 0	01 '335
27	Mauldin	328	05	38 177	0 *14	+o · 830	39 '007

Probable error of a single observation of a direction (D, and R.), $e_i = \pm o^{\prime\prime} \cdot 85$.

Currahee, Habersham County, Georgia. September 17 to November 21, 1874. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		٥	1	//	//	"	11
	Azimuth Mark	О	00	000,000	±0 °07		
22	Pinnacle	9	31	57 .621	0.11	-0 '042	57 '579
23	Paris	26	10	00 '177	0.14	+0.082	00.565
24	Mauldin	27	54	22 '374	0.14	+0 '369	22 '743
18	Sawnee	209	40	29 .522	0.14	—o ·552	28 . 703
19	Skitt	229	04	06 '507	0.16	—o ·432	06 '075
	Youah	254	59	47 '703	0 '25		
20	Blood	258	14	09.621	0.12	+o .991	10.585
21	Rabun	331	49	50 *248	0.12	-0.000	50.128

Probable error of a single observation of a direction (D, and R.), $e_t = \pm 0''$.80.

Abstracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873-1877—continued.

Blood, Union County, Georgia. June 30 to July 15, 1875. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.		ts of ust m	local ad- ent.	Approximate probable error,	Corrections from adjust- ment of third section.	Final seconds.
		0	,	113	11	"	//
	Youah	0	00	000'000	±0 '08		
15	Skitt	23	53	12 '312	0.12	-o · 403	11 '909
16	Sawnee	81	25	11 '718	0.19	+0.383	12 '101
17	Grassy	113	23	06 .580	0 '22	+o °480	06 .760
	Cohutta	167	15	34 '393	0.10		
13	Rabun ·	307	42	15 '079	0.14	-0 '221	14 .858
14	Currahee	355	23	50 '761	0.12	-o ·195	50.266

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm o^{\prime\prime}$ 94.

Skitt, White County, Georgia. August 14 to 25, 1874. 50cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		0	1	11	11	//	11
	Yonah	0	00	000,000	±0.09		
11	Rabun	33	56	23 '941	0.19	-o ·105	23 '836
12	Currahee	82	05	53 452	0.12	+0.210	53 '962
8	Sawnee	230	31	07 '207	0.12	-0.009	07 '198
9	Grassy	264	50	54 '066	0.14	-c ·304	53 '762
10	Blood	, 319	45	17 '372	0,12	-0 '092	17 '280

Probable error of a single observation of a direction (D. and R.), $e_1 = \pm o^{\prime\prime} \cdot 84$.

Sawnee, Forsyth County, Georgia. October 7 to November 12, 1873, and November 26 to December 4, 1873. 75^{cm} direction theodolite No. 1 and 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer.

Number of directions.	Objects observed.			f station ment.	Approxi- mate probable error.	Correc- tions from base net ad- justment.	Resulting direc- tions.	Corrections from adjust- ment of 3d section.	Final seconds.
		0	/	//	11	11	//	11	//
1	Azimuth Mark	0	00	000,000	±0 '09	+0.002	00 '005		
	Alcova	5	59	50 '203	0 '24	+0 '005	50 .508		
1	Grassy*	191	04	26 .124	0 '22	-o ·244	25 '910	-0.109	25 '801
2	Blood	240	44	00.264	0 '24	+0 '005	00.269	+0.800	01 '369
	Yonah	263	ΙI	38 .044	0 '31	+0.002	38 '049		
3	Skitt	273	57	55 '373	0.32	+0 '005	55 '378	-o ·124	55 *254
4	Curraliee	286	09	07 '228	0 '22	+0 '005	07 '233	− о ·455	06 .778

Grassy, Pickens County, Georgia. July 13 to 31, 1874. 50cm direction theodolite No. 3. C. O. Boutelle, observer.

		. 0	/	//	11	11	//	//	//
	Sawnee*	0	00	000'000	±0.07	+0.558	00 '228	-o ·o97	00 '131
	Johns	131	59	17 '050	0.56				
	Cohutta	183	15	38 960	0.18	-0 '032	38 '928		
5	Blood	261	37	28 '061	0.12	-o ·o32	28.029	-1.338	26 '691
6	Skitt	297	13	10 .650	0.19	—o '032	10.288	+1.532	12 '120

^{*}This direction, which is now considered as fixed, and hence not liable to a further correction, was formerly treated as subject to correction.

Observation equations.

```
I = 0 = +1.938 - (6) + (7) - (1) + (3) - (8) + (9)
      II 0 = -2.247 - (5) + (7) - (1) + (2) - (16) + (17)
     III 0=-3.964-(5)+(6)-(9)+(10)-(15)+(17)
     IV 0 = -0.535 - (2) + (4) - (18) + (20) - (14) + (16)
      L.
         0 = +0.731 - (3) + (4) - (18) + (19) - (12) + (8)
     VI 0 = +0.727 - (20) + (21) - (28) + (30) - (13) + (14)
     VII 0 = +1.572 - (10) + (11) - (29) + (30) - (13) + (15)
    VIII
          0 = -1.270 - (25) + (28) - (21) + (22) - (40) + (41)
     IX
          0 = +1.512 - (27) + (28) - (21) + (24) - (31) + (32)
      \mathbf{X}
          0 = -0.559 - (39) + (40) - (22) + (24) - (31) + (33)
     XI
          0 = -1.311 - (26) + (28) - (21) + (23) - (43) + (44)
    XII
          0 = -1.195 - (23) + (24) - (31) + (35) - (42) + (43)
   XIII 0 = -1.616 - (36) + (39) - (33) + (34) - (59) + (60)
   XIV
         0 = -2.727 - (34) + (35) - (42) + (46) - (58) + (59)
    XV = 0.013 - (37) + (38) - (45) + (49) - (50) + (51)
    XVI |
          0 = -3.463 - (57) + (60) - (36) + (37) - (51) + (52)
   XVII | o = -0.750 - (57) + (58) - (46) + (49) - (50) + (52)
  XVIII 0 = +2.755 - (47) + (49) - (50) + (53) - (66) + (67)
   XIX
          0 = +3.506 - (55) + (57) - (52) + (53) - (66) + (68)
    XX
         0 = -2.124 - (56) + (58) - (46) + (48) - (62) + (63)
   XXI
          0 = +0.390 - (56) + (57) - (52) + (54) - (61) + (63)
  XXII 0 = -1.867 - (65) + (66) - (53) + (54) - (61) + (64)
 XXIII o = +0.805 - (71) + (65) - (64) + (69) - (81) + (82)
  XXIV | o = +2.397 - (80) + (82) - (71) + (72) - (74) + (75)
  XXV
          0 = -3.260 - (80) + (81) - (69) + (70) - (73) + (75)
 XXVI
          0 = -1.041 - (79) + (80) - (75) + (77) - (83) + (84)
 XXVII
         0 = +0.802 - (86) + (88) - (78) + (79) - (84) + (85)
XXVIII
          0 = +0.905 - (86) + (87) - (76) + (77) - (83) + (85)
  XXIX
         0 = -0.01 - 0.153(1) - 0.026(3) + 0.179(2) - 0.308(8) + 0.456(9) - 0.148(10) + 0.337(16)
              -0.335(17) - 0.002(12)
  XXX
         0 = +0.50 + 1.295(3) -0.321(2) -0.974(4) -0.134(16) +0.521(15) -0.387(14) -0.598(18)
              +0.975(19) -0.377(20)
          0 = -1.53 - 0.336(15) + 0.387(14) - 0.051(13) - 0.425(19) + 0.377(20) + 0.048(21)
IXXXI
              +0.749(29) -0.370(30) -0.379(28)
XXXII
         0 = +0.65 + 0.142(21) - 0.634(22) + 0.492(24) + 0.024(28) - 0.945(27) + 0.921(26)
              -0.082(40) + 0.266(39) - 0.184(38) + 0.300(44) - 0.166(45) - 0.134(42)
HIXXX
         0 = +2.12 - 0.634(22) - 5.749(24) + 6.383(23) - 0.082(40) + 0.266(39) - 0.184(38)
              +2.057(43) - 0.166(45) - 1.891(42)
XXXIV = 0 = +0.46 + 0.675(25) + 0.493(27) - 1.168(26) + 0.162(32) - 0.201(33) + 0.039(35)
              -0.703(44) + 0.537(45) + 0.166(45)
```

N. B.—The 6 equations, XXIII to XXVIII, refer to the 2 quadrilaterals in the old work, of which no further use is made here. The numbered corrections are as follows: at *King*, Poore (69), Young (70); at *Benn*, Poore (71), Young (72); at *Young*, King (73), Benn (74), Poore (75), Buffalo (76), Moore (77); at *Poore*, Buffalo (78), Moore (79), Young (80), King (81), Benn (82); at *Moore*, Young (83), Poore (84), Buffalo (85); and at *Buffalo*, Moore (86), Young (87), and Poore (88).

Observation equations—continued.

The last two equations refer to the quadrilaterals already disposed of.

Normal equations.

		Cr	C2	C ₃	C ₄	C ₅	C6	C ₇	C8	C ₉	C10	CII	C12	C_{13}	Cx4	C15	C16	C17	C ₂₀
I	0=+1.938	+5°3	+1	-2		-2.3													
2	0=-2.247		+5°2	+2'1	-2.1														
3	0=-3.964			+6.1				-2											
4	o=-o'535				+6.5	+21	-2												
5	o≈+o.231					+6.4													
6	0=+0 727						+6.3	+3.3	-2	-2		-2							
7	0=+1.22							+6°2											
8	0=-1.320								+6.0	+2	-2	+2							
9	0=+1.213									+5'9	+2	+2	+2						
10	o=-o.223										+5'9		+2	-1.9					
11	0=-1,311											+6.0	-2						
12	0=-1.192												+6		+2				
13	0=-1.616													+6	-2		+2'1		
14	0=-2.727													-	+5 ' 9			-1.9	-1.9
						Λ	Torne	al eq	uatio	ns-	conti	nued	l.						
			,													ra			
		C15	,	216	Cr	Cı	8 '	C19	C20	Ca	I	C22	. C23	Cat	,	C25	C ₂₆	C ₂₇	C28
15	0=+0'013																		
16		+5	,	-2		+2	ı												••••
10	0=-3.463	+5	,	-6 . 5	+2.1	•		2 °I								•••	••••	••••	••••
17	o=-3.463 o=-0.750	+5.	,			+2	'I -	-2.I -5.I	+1.0		·I	•••				•••	••••		••••
17 18	0 = -3.463 0 = -0.750 0 = +2.755	+5	,		+2.1	•	'I' -	-3.I -3.I		·2 -2	.1 .1	- 2				***	•••		••••
17	0 = -3.463 0 = -0.750 0 = +2.755 0 = +3.506	+5	,		+2.1	+2	'I' -	-2.I -5.I	+1,0	-2 -2 +2	.1 .1					•••	••••		••••
17 18 19	0 = -3.463 $0 = -0.750$ $0 = +2.755$ $0 = +3.506$ $0 = -2.124$	+5.	+		+2.1	+2	'I - 'I' +	-3.I -3.I		-2 -2 +2 +2	.1 -	-2					••••		••••
17 18 19 20 21	0 = -3.463 0 = -0.750 0 = +2.755 0 = +3.506 0 = -2.124 0 = +0.390		+		+2.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2	.i -	-2 -2 				•••	••••		
17 18 19	0 = -3.463 0 = -0.750 0 = +2.755 0 = +3.506 0 = -2.124 0 = +0.390 0 = -1.867		+		+2.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2	-2.1						
17 18 19 20 21	0 = -3.463 0 = -0.750 0 = +2.755 0 = +3.506 0 = -2.124 0 = +0.390 0 = -1.867 0 = +0.805		+		+6.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 		+21			••••		
17 18 19 20 21 22 23 24	0=-3'463 0=-0'750 0=+2'755 0=+3'506 0=-2'124 0=+0'390 0=-1'867 0=+0'805 0=+2'397		+		+2.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 	-2.1	+2.1			2		
17 18 19 20 21 22 23 24 25	0=-3'463 0=-0'750 0=+2'755 0=+3'506 0=-2'124 0=+0'390 0=-1'867 0=+0'805 0=+2'397 0=-3'260				+6.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 	-2.1		+	2	-2		
17 18 19 20 21 22 23 24 25 26	0=-3'463 0=-0'750 0=+2'755 0=+3'506 0=-2'124 0=+0'399 0=-1'867 0=+0'805 0=+2'397 0=-3'260 0=-1'041				+6.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 	+6 ·2	+6.1	+	2	_		
17 18 19 20 21 22 23 24 25 26 27	0=-3 '463 0=-0 '750 0=+2 '755 0=+3 '506 0=-2 '124 0=+0 '390 0=-1 '867 0=+0 '805 0=+2 '397 0=-3 '260 0=-1 '041 0=+0 '802				+6.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 	+6 ·2	+6.1	+	2	-2		+2.5
17 18 19 20 21 22 23 24 25 26	0=-3'463 0=-0'750 0=+2'755 0=+3'506 0=-2'124 0=+0'399 0=-1'867 0=+0'805 0=+2'397 0=-3'260 0=-1'041				+6.1	+2	'I - 'I' +	-6 .5 -5 .1 -5 .1	+1,0	-2 -2 +2 +2	.i -	-2 -2 	+6 ·2	+6.1	+	2	-2		

Normat equations—completed.

	C ₂₉	C30	C _{3f}	C ₃₂	C331	C ₃₄	C	35	C ₃₆	C ₃₇	C ₃ 8	3	C ₃₉
ī	+0.8067	+1 .6832											
2	-0.4321	-0.5101											
3	-0 '9705	-0.2510	+0.3360										
4	+0.1401	-0 *2443	-0.0100										
5	-0.2742	-1.1813	-o '4250										
6		-0.0100	+0 '0440	+0.1180									
7	+0.1460	+0.2510	-1°4780										
8			-o ·4270	-0.6700	-0.5520	-0.6750							
9			-0.4270	+1 *3190	-5'7490	-0°347	2						
10				°+0 .7780	-5.4630	-o.1800) —o·	1489					
11			-0.4270	-o ·7390	+4.3260	+0.4650)						
12				+0.6260	-8.1840	-o 1270	+0.	6120					
13				+0.2660	+0.5660	+0.1800	+0.	1578	+0.0871				
14				+0°1340	+1.8910	-0.1276	+0.	0237	-0.5514	-0.4450	-o ·o7	40	-o .0016
				Norm	nat equa	tions—	comple	eted.					
	C32	C ₃₃	C ₃₄	C ₃₅	C ₃	36	C ₃₇	C	38	C ₃₉	C40		C ₄₁
1.5	-0.0165	-0.0165	-0.4833	-0.400	5 +0°	7024	-0'1527	+0	1527	-0 8118			
15 16	-0 0102	-0 0102	-0 4033	-o 'o87			-0 '3575		3575	-o .3090		•	
				+0 '4923			-0 *9552		5842	-1 .0292			
17 18				10 4900	+1.0		-1 '6043		4277	-0.8118			*
19					+0*		-1 '3849		*2904	+0.3000			
20				+0 '492			-0 *4450		6113	-0.4783			
21				1 0 49%	+0:		-0 *3575		3745	+0.8360			
22							-0 *2750		1006	+0.7520	-0.101	T.A.	
23							0 2/30		1744		-0.303		
24		~						_	-, -,		-1,071		+0 .0200
25											+0.247		+0.0590
26											+0.503		-I *2300
27											,		+1'0627
28													-o 6335
	•			Norn	nal equa	ations	comple	eted	·				
		C20 C	C30 C31	C ₃₂	C ₃₃	C ₃₄	C ₃₅	C ₃₆	C ₃₇	C ₃ 8	C ₃₉	C40	C41
		C20 C		C32		C34		C30	C37	C38	C39	C40	
29	0=-0'01 -	-0.6096 -0.	1532 +0 '000	7									
30		+5*											
31	0=-1.23			2 -0 '0023									
32	0=+0.65		437	+2.6467 -	-2 '0404	-1.8550 +	0.1559 -	-0 1140)				
33	0=+2,15				82 1355 -								
34	0=+0'46					-2 *9057 +		7,					
35	0=-0'98.							-0 *2841			-0°0226 .		
36	0=+2'60									+0.1820			
37	0=-2'34									-0 '0949			
38	0=+2'17										+1.8214 -	0'029	5
39	0=+3.05										+3*8955		
40	0=-0.78										+	0'720	7+0'0074
	0=+0.50												+1'6283

THE EASTERN OBLIQUE ARC.

Resulting values of correlates.

$C_1 = -1.330 62$	$C_{11} = +0.248 30$	$C_{21} = -0.145 22$	$C_{31} = +1.224.74$
C 2= +1 '137 00	$C_{12} = -0.48874$	C22=+0.723 09	$C_{32} = -0.214 82$
C 3=+0.500 89	$C_{13} = +1.131.56$	$C_{23} = +0.957.84$	$C_{33} = -0.102 \text{ o}$
C 4=+0.694 67	$C_{14} = +1.433 16$	$C_{24} = -1.121.23$	$C_{34} = -0.193 85$
$C_5 = -0.510 27$	$C_{15} = +0.036$ 14	$C_{25} = +1.412.85$	$C_{35} = +0.45491$
C 6=+0 .563 83	C ₁₆ =-0 '057 86	C26=+0.424 81	$C_{36} = -0.568 \text{ Sg}$
$C_7 = -0.10540$	$C_{17} = +0.223 61$	$C_{27} = +0.139 80$	· C ₃₇ =+0 ·946 19
C ₈ =0.855 96	C ₁₈ =-0 '795 56	$C_{28} = -0.302 7$	$C_{38} = +0.934$ 10
$C_9 = -0.722 30$	$C_{19} = +0.286 98$	$C_{29} = +2.692$ 01	$C_{39} = -1.36270$
$C_{10} = +1.099 17$	$C_{20} = +0.840 26$	$C_{30} = +0.614 15$	$C_{40} = -0.598$ 29
*			$C_{41} = -0.016 \ 01$

Reciprocals of weights and resulting corrections to observed directions.

				i +							
	$\frac{1}{p}$	v		p	v		1	U		$\frac{1}{p}$	v
	P	11		P	//		<i>P</i>	//		Ρ	11
. (1)	o •5	—о .1091	(23)	1,0	+0.0854	(45)	0'9	-o ·o789	(67)	1,1	+0.7048
(2)	1,1	+o ·7998	(24)	1.0	+0 '3693	(46)	1,0	+0.0192	(68)	I,I	-o ·5683
(3)	1 ,3	—o '1235	(25)	1 '0	-ю ' 98 6 8	(47)	0.0	+1 1827	(69)	oʻ I	-o ·5722
(4)	1.1	—o '4552	(26)	0, 1	—o ·2197	(48)	1.1	-o ·1545	(70)	0, 1	+1 '4260
(5)	I 'O	-1.3379	(27)	1.0	+0.8298	(49)	0.0	+0.3038	(71)	1.1	+0.5130
(6)	I 'O	+1.2312	(28)	1.0	—o '3512	(50)	I .O	+0 6347	(72)	I 'O	-1.1212
(7)	0.2	−o •o968	(29)	1,0	+1 '0227	(51)	I 'O	-0.6564	(73)	I 'O	-1·2160
(8)	1 ,0	-o 'oo88	(30)	1 .5	—o ·3537	(52)	1.1	+0.8621	(74)	0' 1	+0 .8429
(9)	0, 1	-o ·3040	(31)	0, 1	+0.1116	(53)	0, 1	-1.3426	(75)	I 'O	-o ·o5o8
(10)	1,0	-0.0931	(32)	0.0	-o ·6783	(54)	1,0	+o ·5805	(76)	0, 1	+0 *2908
(11)	0, 1	—o ·1054	(33)	0.0	+0.0219	(55)	1 '0	-o °2870	(77)	I 'O	+0.1331
(12)	0, 1	+0.2103	(34)	I 'O	−o ·5978	(56)	1.0	-o '3393	(78)	0, 1	-o ·1329
(13)	1,0	-o ·2209	(35)	0.1	+1 '2153	(57)	0, 1	-o '4162	(79)	I *O	-o ·2938
(14)	1.0	—o ·1946	(36)	1.1	-o ·8871	(58)	0.0	—o ·178о	(80)	I 'O	+0 1564
(15)	1.0	-o ' 4032	(37)	I .O	o [.] 6373	(59)	1,0	−o °o382	(81)	1 '0	+0.2528
(16)	0.1	+o ·3826	(38)	0.0	+0.5281	(60)	1.0	+1 '2785	(82)	1 '0	+0.0175
(17)	1.1	+0 4797	(39)	1.0	+0.0318	(61)	1.0	+0 '4442	(83)	1 ,0	—o ·1220
(18)	1.0	-o°5517	(40)	1.0	+0 '2692	(62)	1 '0	— I ·7239	(84)	1 '0	+0.2850
(19)	0,1	-o '43 2 0	(41)	ī, o	+o ·8560	(63)	1.0	+0 4127	(85)	I.I	− о •3089
(20)	0' 1	+0.6610	(42)	1.0	− 0 '7548	(64)	1.0	+0 0145	(86)	1.1	+0.1893
(21)	1 '0"	° –0 °0898	(43)	1 ,0	−0 '947 0	(65)	I .O	+0 '2301	(87)	I '2	-0'3711
(22)	1,0	—o '0423	(44)	1.0	+0.3201	(66)	1 '0	+0.6036	(88)	1 .0	+0.1421

Resulting angles and sides of the third or South Carolina section of the triangulation.

No.	Stations.		Obse ang			Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
ſ	Wofford	o 43	35	05 '92	ı	// +1 '92	07 .84	2.64	4 705 136 6	50 715 02
Ţ,	Benn	59	06	35 '49		+0.38	35 .87	2 .65	4.800 210 3	63 126 '29
- 1	King	77	18	24 '66		-0.43	24 '23	2 .65	4 .855 901 2	71 763 10
								,		
	Hogback Benn	34	39	03 '18		-0 °05	03 '13	3,10	4 '705 136 6	50 715 02
	King	91	23	09.60				3 '09	4 '950 231 9 4 '858 124 0	89 172 70
(53	57	57 .76		-0.40	57 '36	3 '10		72 131 '33
ĺ	Paris	28	50	38 '07	П	-1 '34	36 .73	4 '15	4 '705 136 6	50 715 02
· 3 {	Benn	83	29	09 '95	Н	+0.47	10 '42	4.12	5 018 914 1	104 451 4
(King	67	40	23 *56		+1.74	25 '30	4.12	4 '987 882 5	97 248 41
ſ	Wofford	117	57	19 '44	1	o ·2 8	19.19	1 .89	4 '950 231 9	89 172 70
4 {	Hogback	38	42	19'72		0.08	19.64	1 .89	4 .800 210 3	63 126 29
{	King	23	20	26 '90		-0.03	26 .87	1 .89	4 602 019 6	39 996 28
ſ	Hogback	73	21	22.89		-0.13	22 '76	2 '34	4 .855 901 2	71 763 10
5 {	Benn	32	16	34 '11		-1 :17	32 '94	2 '34	4.602 019 6	39 996 28
-{	Wofford	74	22	13 '53		-2.51	11 '32	2 '34	4 .858 124 1	72 131 '35
ſ	Paris	14	02	53 .81		+0.46	54 '27	0 '93	4 '800 210 3	63 126 *29
6 {	King	9	37	61 .10		-2.17	58 '93	0 '94	4.638 655 1	43 516 62
{	Wofford	156	19	09 .62		-o ·o5	09.60	0 '93	5 '018 914 1	104 451 '4
ſ	Paris	21	OI	01 '97		+1 .16	03 '13	0 '82	4.858 124 0	72 131 '33
7 {	Hogback	151	05	00.83		+0.11	00 '94	0 '81	4 '987 882 4	97 248 39
· {	Benn	7	53	59.65		-1 '27	58:38	0.82	4 '441 543 7	27 640 '36
(Paris	49	51	40 '04		-0.18	39 '86	1 '87	4 '950 231 8	89 172 67
8 {	Hogback	116	25	57 .65		+0.19	57 .81	1 .87	5.018 914 0	104 451 '4
	King	13	42	25 .80	П	+2 14	27 '94	1 .87	4 '441 543 7	27 640 36
		_			1					
	Paris	42	53	31 '88		—o ·88	31 '00	2 '44	4 '855 901 2	71 763 10
9 {	Benn Wofford	24	22	34 '46		+0.10	34 '56	2 '44	4.638 655 1	43 516 62
ţ		112	44	03 '74		-1 .98	01 .76	2 '44	4 '987 882 5	97 248 41
(Paris	63	54	33.85		+0.58	34.13	0 '92	4 602 019 5	39 996 '27
10 {	Hogback	77	43	37 '94		+0'24	38.18	0 '92	4.638 655 o	43 516 61
ł	Wofford	38	21	50.51		+0.53	50 '44	0,01	4 '441 543 7	27 640 36
[Pinnacle	38	57	16 '45		+1.12	17.60	0.74	4 '441 543 9	27 640 37
11	Hogback	46	26	55 '10		+1.46	56.26	0.75	4 '503 290 4	31 863 27
l	Paris	94	35	47 '97		-o.to	48 .07	0.74	4 .641 697 6	43 822 55
1	Pinnacle	26	31	37 .26		+0 '25	37 '51	I *23	4.602 019 6	39 996 28
12	Hogback	124	10	33 °04		+1.70	34 '74	I *23	4.869 757 3	74 089 61
	Wofford	29	17	49 '92		+1 '52	51 '44	1 '23	4.641 697 5	43 822 53

Resulting angles and sides of the third or South Carolina section of the triangulation—continued.

No.	Stations.		Obse ang		Correct-	ical	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	//	//	"	11		
	Pinnacle	12	25	39 '20	+0.00	40 '10	0 '43	4 '638 655 1	43 516 62
13	Wofford	9	03	60 '28	-1 .59	58 '99	0 '43	4 '503 290 4	31 863 27
	Paris	158	30	21 .82	+0.38	22 '20	0 '43	4 '869 757 3	74 089 61
	Mauldin	17	55	20.86	+1.81	22.67	0.31	4 '441 543 5	27 640 '35
14	Hogback	15	44	50 '32	+0.14	50 .46	0.32	4 386 965 5	24 376 17
	Paris	146	19	47 '04	+0.48	47 .82	0.35	4 697 196 1	49 796 18
	Mauldin	61	33	51 '97	−o ·62	51 '35	0.94	4 '641 697 4	43 822 52
15	Pinnacle	87	44	04 '47	+0.92	05 '39	0 '94	4 '697 196 3	49 796 21
	Hogback	30	42	04 '78	+1.31	06 .00	0 '95	4 '405 586 3	25 444 05
	Mauldin	79	29	12.82	+1.19	14 '01	0.2	4 '503 290 3	31 863 26
16	Pinnacle	48	46	48 '02	-o ·2 3	47 '79	0 .52	4 '386 965 6	24 376 18
	Paris	51	43	59 '07	+o ·68	59 '75	0,21	4 '405 586 3	25 444 05
	Rabun	10	13	03 *44	+0.76	04 '20	0 .63	4 '503 290 7	31 863 29
17	Pinnacle	153	07	06 '91	+0.60	07.21	o · 63	4 '909 644 5	81 216 55
	Paris	16	39	50.28	-o ·40	20.18	0 .63	4.411 846 4	51 508 24
	Rabun	12	52	36 .62	+1 '05	37 .67	0.96	4 '386 965 4	24 376 17
18	Paris	35	04	08 '49	+1.08	09 '56	0.96	4 '798 278 1	62 846 08
	Mauldin	132	03	13.76	+1.30	15 .66	0 '97	4 '909 644 2	81 216 49
	Rabun	23	05	40 °06	+1.82	41 .88	8c* 1	4 '405 586 5	25 444 06
19	Pinnacle	104	20	18.89	+0.82	19.41	1 '07	4 798 278 2	62 846 09
	Mauldin	52	34	00 '94	+0.40	01.64	1 .08	4.711 876 7	51 508 24
	Currahee	16	29	02 '56 '	+0.13	02 .69	1 '93	4 503 290 0	31 863 24
20	Pinnacle	117	37	44 '52	10.0+	44 '53	1 ,63	4 '997 790 0	99 492 42
	Paris	45	53	17 '70	+o ·87	18.24	1 '93	4 '906 481 9	80 627 26
	Currahee	18	22	24 '75	+o ·41	25 '16	1 .65	4 '405 586 1	25 444 04
21	Pinnacle	68	50	56.20	+0 .54	56 . 74	1 .65	4 .876 702 1	75 283 90
l	Mauldin	92	46	43 °05	-0.09	42 '96	1 .65	4 '906 481 9	80 627 26
	Currahee	1	53	22 '20	+0.59	22 '49	0.31	4 '386 965 3	24 376 16
22	Paris	5	50	41.36	-0.19	41 '17	0 '21	4 .876 702 1	75 283 '90
	Mauldin	172	15	55 .87	+1.10	56 '97	0 '21	4 '997 789 9	99 492 40
	Currahee	37	42	07 '37	+0.02	Q7 '42	2 '04	4.711 876 7	51 508 24
23	Rabun	106	48	35 '10	+0.63	35 '73	2 '05	4 906 481 9	80 627 26
	Pinnacle	. 35	29	22 .39	+0.29	22 '98	2 '04	4 .689 285 1	48 897 33
	Currahee	54	11	09 '93	+0.12	10,10	3 *34	4 '909 644 1	81 216 47
4 {	Rabuii	96	35	31 .66	-0.13	31.23	3 *35	4 '997 789 9	99 492 40
	Paris	29	13	27 '13	+1 '27	28 '40	3 *34	4 '689 285 I	48 897 33

Resulting angles and sides of the third or South Carolina section of the triangulation—continued.

No.	Stations.		Obse ang		Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		٥	1	//	//	//	11		
	Currahee	56	04	35.13	+0.46	32 *59	2 .59	4 '798 277 9	62 846 04
25	Rabun	83	42	55 '04	-1.19	53 .85	2 *59	4.876 702 0	75 283 88
	Mauldin	40	12	42'11	-0.79	41 '32	2 .28	4.689 285 I	48 897 33
	Blood	47	41	35 .68	+0.02	35 '70	2 .52	4 .689 285 1	48 897 33
26 {	Rabun	58	42	21.16	0.00	21.19	2 *25	4 752 074 5	56 503 38
	Currahee	73	35	40.63	-0.75	39.88	2 *24	4 .802 267 7	63 426 06
1	Skitt	48	09	29 51	+0.62	30,13	1 '29	4 '689 285 I	48 897 33
27	Rabun	29	04	48 .28	+1.38	49.66	1 .59	4.203 801 0	31 900 .46
	Currahee	102	45	43 '74	+0.34	44 .08	1 .59	4.806 272 9	64 013 '69
1	Blood	76	10	57 '23	-o.18	57 °05	1 .40	4 So6 272 8	64 013 68
28 {	Rabun	29	38	02 .84	-1 .38	01 '49	1 '70	4.213 146 2	32 594 66
	Skitt	74	11	06 '57	-0.01	06.26	1 .40	4.802 267 6	63 426 04
1	Skitt	122	20	36 .08	+0.61	36 .69	0.75	4 '752 074 5	56 503 '39
29 {	Blood	28	29	21 '55	-0.51	21 '34	0.74	4.203 801 1	31 900 76
	Currahee	29	10	03,11	+1 ,00	04 '20	0.74	4 '513 146 5	32 594 66
	Sawnee	45	25	06.66	—ı ·26	05 '40	2 .84	4 '752 074 4	56 503 38
30 {	Blood	86	OI	20 '96	+0.28	21 '54	2 .84	4.898 401 0	79 140 91
l	Currahee	48	33	40 '37	+1.51	41.28	2 .84	4 774 311 9	59 471 '92
	Sawnee	12	II	11.86	-0.34	11 '52	0'71	4 '503 800 9	31 900 75
31 {	Skitt	148	25	13 .46	-0.52	13 *24	0.41	4.898 401 0	79 140 91
l	Currahee	19	23	37 '25	+0.13	37 '37	0'71	4 '700 538 9	50 180 '95
	Sawnee	33	13	54 '81	-0.92	53 .89	1 .39	4 '513 146 5	32 594 66
32 {	Blood	57	31	59 '41	+0.78	60'19	1 ,38	4 '700 539 0	50 180 '96
l	Skitt	89	14	10.19	-o ·o8	10.08	1 ,39	4 '774 311 9	59 471 '92
1	Grassy	35	35	42.26	+2.87	45 '43	1 .56	4.513 146 5	32 594 66
33 {	Blood	89	29	53 '97	+0.88	54 * 85	1 '27	4 .248 161 8	55 996 62
ı	Skitt	54	54	23.31	+0.51	23 .22	1 '27	4 661 044 1	45 818 84
	Grassy	62	46	49 '64	-1 .63	48 .01	1 '34	4 '700 538 9	50 180 .95
34 {	Skitt	34	19	46 .86	-0.30	46.26	1 '34	4.202 751 8	31 823.78
	Sawnee	82	53	29 '47	-0,01	29 *46	1 .32	4.748 161 8	55 996 62
	Grassy	98	22	32 '20	+1 .24	33 '44	1 '23	4 '774 311 9	59 471 '92
35 {	Blood	31	57	54 .26	+0.10	54.66	I '22	4 '502 751 8	31 823 78
	Sawnee	49	39	34 '66	+0.01	35 '57	I '22	4.661 044 3	45 818 86

Adjustment of the position of Mount Mitchell in North Carolina, 1876-1895.

Roan High Bluff, A. H. B., 1894.

	D					
Number of directions.	Objects observed.	Direct	ions adju	from pre- stments.	Correc- tions.	Final seconds.
		0	,	11	11	11
	Poore	.0	00	00,00		
	Benn	50	00	44 '04		
I	Mount Mitchell	103	30	25 '24	-4 '94	20 '30
	Rogers	307	22	59 '43		
Poore, C. C	D. B., 1877; A. H. B., 1895.					
	King	0	00	00,00		
	Benn	31	55	20 '57		
2	Mount Mitchell	64	18	17 14	+0.37	17.21
	Roan	84	56	13 .76		
	Rogers	144	19	49 '80		
Benn, C. C	D. B., 1877; A. H. B., 1895.					
	King	0	00	00 '00		
	Wofford	59	06	35 -87		
	Hogback	91	23	18, 80		
3	Mount Mitchell	150	50	13 '90	+5°55	19 *44
	Roan	181	58	00 63		
	Poore	258	56	36 .11		

MOUNT MITCHELL.

Adjustment of the position of Mount Mitchell in North Carolina, 1876-1895—continued.

King, C. C). B., 1876-77.						
Number of directions.		Objects observed.			from pre- stments.	Correc- tions.	Final seconds.
			0	1	//	11	//
	Wofford		0	00	00,00		
	Hogback		23	20	26.87		
4	Mount Mitchell		61	35	36 .94	-4 '99	31 '95
	Benn		77	18	24 *23		
	Poore		124	19	48 .64		
Wofford, C	C. O. B., 1876.		4				
	King		0	00	00 '00		
	Hogback .		242	02	40 '84		
5	Mount Mitchell		277	39	32 .86	-5 '10	27 '76
	Benn		316	24	52 .16		
Hogback,	C. O. B., 1876.						
	Benn		ò	00	00,00		
	King		34	39	03 '12		
	Wofford		73	21	22 .76		
6	Mount Mitchell		309	37	16.84	-5.27	11 '57
N B	-Observations fro	om Paris in 1875 were too rough for	1150				

N. B.—Observations from Paris in 1875 were too rough for use.

Conditional equations.

1.
$$0 = + 4.3 - 0.92(1) + 3.98(2) - 1.86(3)$$

2. $0 = -142.0 - 5.87(2) + 11.35(3) - 16.28(4)$
3. $0 = + 70.0 - 5.02(3) + 11.69(4) - 3.17(5)$
4. $0 = + 1.1 - 4.03(4) + 8.47(5) - 4.17(6)$
Correlates.

	Cı	C_2	C^3	C ₄
_				
I	-0.92			
2	+3.98	— 5 ⋅87		
3	-1.86	+11.35	- 5.03	
4		- 16 .5 8	+11.69	−4 °03
5			- 3.12	+8 .47
6				-4 .12

Normal equations.

4192-No. 7-02-12

Resulting angles and sides from the adjustment made to determine the position of Mount Mitchell.

No.	Stations.	Obs	serve	d angles.	Correc- tion.	Spher- ical angles.	Spherical excess.	Log. distances.	Distances in meters.
		٥	1	11	11	"	//		
	Mount Mitchell	95	22		• • • •	48 *23	1 *89	4 864 269 1	73 159 22
I	Roan	53	29	41 '20	-4 '94	36.56	1 .89	4.771 325 0	59 064 29
	Benn	31	07	46 .73	−5 °55	41 '18	1 .89	4.579 630 9	37 986 64
	Mount Mitchell	39	30			56 °41	3 *33	4 .846 167 1	70 172.52
2	Poore	32	22	56.57	+0:37	56 '94	3 *34	4 '771 325 I	59 064 30
	Benn	108	06	22 '21	−5 '55	16.66	3 '33	5 020 471 2	104 826 53
	Mount Mitchell	52	57			48 '39	7 '53	4 '973 743 9	94 133 44
3 .	Poore	64	18	17.14	+0.37	17.51	7 '53	5 026 388 2	106 264 50
	King	62	44	11 '70	+4 '99	16.69	7 '53	5 '020 471 2	104 826 53
	Mount Mitchell	34	04			10.80	5 '00	4 800 210 3	63 126 29
4	King	61	35	36 '94	-4 '99	31 '95	5 '00	4 *974 551 7	94 308 69
	Wofford	82	20	27 14	+5 '10	32.54	4 *99	5 °026 388 3	106 264 '52
	Mount Mitchell	20	39			07 '47	ı .86	4 '602 019 6	39 996 28
5	Wofford	35	36	52 '02	-5.10	46 °92	1 .86	4.819 781 3	66 036 08
	Hogback	123	44	05 '92	+5 *27	11,11	1 .86	4 '974 551 7	94 308 69

7. FIRST SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, GEORGIA AND ALABAMA, 1873-1875.

This triangulation is located in Georgia and Alabama, and is of the same complex character as the Atlanta base net. It depends for the length of its sides upon the Atlanta base, and on the accompanying sketch is shown, by two heavy lines, the connection with the base net.* The section depends for the length of its sides directly

^{*}The computation and adjustment made in 1878 and retained here has no corrections applied to the directions for height of stations observed. These are too small in comparison with the observing error to require special consideration. In a new computation it would have sufficed to limit the seconds of the angular directions to two places of decimals.

upon the Atlanta base. It is composed of 22 triangles. The angles were measured by Assistants F. P. Webber and C. O. Boutelle, in the years 1873-74-75, and five different instruments were employed. Weights to the several directions were introduced in the adjustment, depending in part on the approximate probable errors of the observations at a station and in part ou the closing errors of the triangles. We have the mean error of a triangle from the sum of the squares of the closing errors

$$=\sqrt{\frac{62.586}{22}}=\pm 1''.69$$
, and that of an angle $=\pm 0''.97$; also the probable error of a direc-

tion = 0.674 $\frac{1.69}{\sqrt{6}} = \pm 0$. From the approximate probable errors of the observed

directions, as given in the abstracts of the respective stations, we have the average value $\varepsilon_1 = \pm 0$ "18, hence the square of the triangle combination error $\varepsilon_c^2 = (0.46)^2 - (0.18)^2 = 0.18$, and adding this to the square of ε_1 , we have $\varepsilon_1^2 = \varepsilon_1^2 + \varepsilon_1^2$, whence the relative weight p to each direction. We have also the ratio of the greatest to the least weight 2.53 to 1.

The approximate heights of the stations above the Atlantic are as follows:

	Meters.	Feet.
Carnes	396.9	I 302
Lavender	515.5	1 690
Johns	577.4	1 894
Indian	603.4	1 980
Gulf	673'3	2 209
Brandon	511.8	1 679

Abstracts of horizontal directions at stations composing the first section west of the Atlanta base net, 1873-1875.

Kenesaw, Cobb County, Georgia. June 23 to July 18, 1873. 75cm direction theodolite No. 1. F. P. Webber, observer.

Number of directions.	Objects observed.	from	pre	directions vious ad- t of net.	Corrections from adjust- ment of first section.	Final seconds.
		0	1	//	//	//
	Sweat Mountain	0	00	00 *049		
7	Carnes	224	20	15 .063	-2 '019	13 '044
8	Lavender	252	07	00 '702	+2 *009	02 '711
	Pine Log	303	37	22,159		

Pine Log, Bartow County, Georgia. July 29 to September 17, 1874. 30cm repeating theodolite No. 32. F. P. Webber, observer.

		0	/	//	//	//
2	Carnes	0	00	000,000	-0.710	59 '290
3	Indian	22	30	38 '597	+1.030	39 .627
	Coosa	36	17	34 '507		
4	Lavender	46	28	35 '508	+0.222	35 '733
5	Gulf Point	70	19	50 *280	+0.221	50.231
6	Johns	84	39	43 *143	+o ·471	43 .614
	Cohutta	141	29	12 .849		
	Grassy	193	10	39 '409		• • • • • •
	Sweat Mountain ·	285	37	11 *339.		
	Kenesaw	308	19	39 .158		

Mean correction +0 '253

Abstracts of horizontal directions at stations composing the first section west of the Atlanta base net, 1873–1875—continued.

Sweat Mountain, Cobb County, Georgia. September 10 to October 3, 1873. 75cm direction theodolite No. 1. F. P. Webber, observer.

Number of directions.		Objects observed.	fron	a pre	directions vious ad- t of net.	from adjust- ment of first section.	Final seconds.
			0	1	//	11	//
	Kenesaw		0	00	910,00		
I	Carnes		32	34	43 '017	-0 '203	42 .814
	Pine Log		100	54	55 '552		
	Grassy		145	16	24 .264		

Grassy, Pickens County, Georgia. July 13 to 28, 1874. 50cm direction theodolite No. 3. C. O. Boutelle, observer.

		0	/	//	//	// .
	Sawnee	0	00	00 '228		
	Sweat Mountain	43	29	35 '930		
	Kenesaw	51	39	31 '927		
	Pine Log	86	41	37 .784		
9	Johns	131	59	17 '061	-2.193	14 .868
	Cohutta	183	15	38 '93		
	Blood	261	37	28 '06		
	Skitt	. 297	13	10 .65		

Carnes, Polk County, Georgia. November 17 to December 27, 1873. 30cm repeating theodolite No. 32. F. P. Webber, observer.

Number of directions,	Objects observed.	Results from local adjustment.		Approximate probable error.	Corrections from adjustment of first section.	Final seconds.	
		0	1	11	//	"	//
14	Kenesaw	0	00	000,000	±0 .10	-o ·456	59 '544
	Lost Mountain	7	04	48 .139	0 14		
10	Indian	183	44	53 '383	0 12	− 1 '345	52 .038
	Coosa	230	04	00 .691	0.19		
11	Lavender	232	44	12.747	0 12	+0.920	13 .667
12	Pine Log	310	57	24 '950	o.io	0 '045	24 '905
	Pine Mountain	317	59	30 '451	0.14		
13	Sweat Mountain	348	14	27 '327	0.12	+o ·934	28 .561

Mean correction -0 '002

Abstracts of horizontal directions at stations composing the first section west of the Atlanta base net, 1873-1875—continued.

Lavender, Floyd County, Georgia. October 12, 1874, to January 30, 1875, and August 6 to 12, 1875. 30^{cm} repeating theodolite No. 32. F. P. Webber, observer.

Number of directions.	Objects observed.	Results from local adjustment.			Approximate probable error.	Corrections from adjustment of first section.	Final seconds.
		0	1	11	11	//	//
19	Pine Log	0	00	000°000	±0.07	+o ·32 4	00 '324
	Pine Mountain	17	49	59 *135	0.19		
20	Kenesaw	30	20	51 '197	0.11	1 *058	50.139
2 [Carnes	55	18	18 '473	0.10	−o ·267	18 .509
	Coosa, marl:	63	25	38 315	0 .00		
15	Indiau	111	29	54 '716	0 '09	+0.234	54 '950
	Weisner	137	35	38.33	0 '32		
16	Brandon	189	35	31.660	0.08	+0.111	31 .831
17	Gulf Point	244	IO	24 '069	o °08	+o ·673	24 '742
18	Johns	297	42	46 .591	0,11	-o ·108	46 183
	Cohutta	316	04	49 '376	0 *12		
	•				Mean correct	ion —o '004	

Johns, Walker County, Georgia. May 12 to June 21, 1875. 30cm direction theodolite No. 107. F. P. Webber, observer. Circle used in XXI positions.

		0	1	//	//	. //	11
26	Gulf Point	0	00	000,000	±0.10	+0 '394	. 00 '394
	Pigeon	17	13	25 '438	0 '31		
	High Point	44	15	12 .485	° 0 '20		
	Cohutta	145	15	56.8			
22	Grassy	191	23	00 153	0 *20	— 1 *24 0	58 *913
23	Pine Log	217	34	29 '722	0 *24	+o ·672	30 '394
24	Indian	294	07	26 '733	0.19	+o ·247	26 ' 980
25	Lavender	297	06	13.557	0 '20	-1 '102	13 '455
	,				Mean correctio	п —о ,006	

Indian, Cherokee County, Alabama. July 24 to August 21, 1875. 30cm direction theodolite No. 108. F. P. Webber, observer. Circle used in XVII positions.

		* 0	1	11	//	//	11
2 9	Lavender	0	00	000°000	±0.06	o ·2 44	59 .756
30	Johns	3	14	05 '050	0.12	-o ·176	04 '874
	Cohutta	15	28	22 '9		*,* * * *	
	Coosa	16	44	04 '052	0 '22		
31	Pine Log	44	32	11 '956	0.12	+1,661	13 *947
32	Кепеsaw	72	53	48 '127	0.13	+0.729	48 .856
33	Carnes	74	49	05 '144	0.12	-o ·504	04 •640
	Cheehahaw *	189	16	07 '563			
	Aurora	259	2 I	48 .653	0 *12		
27	Brandon	301	16	21 .883	0.19	-o ·397	21 '486
28	Gulf Point	335	22	53 '053	0.12	-ı ·418	51 .632
					Meaп correct	ion —0 '003	

^{*}Observed December 3 to 19, 1885, by O. H. Tittmann, with 50cm direction theodolite No. 114.

Abstracts of horizontal directions at stations composing the first section west of the Atlanta base net, 1873–1875—continued.

Gulf Point, Walker County, Georgia. September 14 to October 9, 1875. 30cm direction theodolite No. 108. F. P. Webber, F. D. Granger, and J. H. Christian, observers. Circle used in XVII positions.

Number of directions.	Objects observed.			Results from local adjustment.			Corrections from adjustment of first section.	Final seconds.
			0	1	//	"	//	11
	High Poin	it	0	00	000'000	±0.08		
	Pigeon		28	39	11 '071	0.33		
	Cohutta		55	29	34 °156	0.19		
34	Johns		75	49	36 '751	0 °25	—ı ·391	35 '360
35	Pine Log		99	04	14 *149	0.18	+0.959	15.108
36	Lavender		139	23	30 '004	0 '14	—о т38	29 °S66
37	Indian		162	05	54 '020	0 '20	+0.362	54 '382
38	Brandon		210	08	59 '511	0.12	+0 '054	59 '565
	Gunter		250	04	42 '408	0 '45		
						Mean correct	ion —0 '031	

Brandon, Dekalb County, Alabama. December 6 to 26, 1875. 30cm direction theodolite No. 108. F. P. Webber, observer.

	1	0	1	//	11	11	11
	Aurora	0	00	000,000	±0.11		
	Gunter	61	36	36 .207	0.19		
39	Gulf Point	168	10	14 '156	0:36	-o ·338	13.818
40	Lavender	222	49	54 '438	0.30	+0.138	54 '576
41	Indian	266	00	43 '001	0,31	+0.164	43 °165
	Weisner	293	13	43 '092	0.51		
					Mean correction	110. o u u	

Observation equations.

I
$$0 = -0.472 - (1) + (2) - (12) + (13)$$

II $0 = -0.426 - (7) + (1) - (13) + (14)$
III $0 = +3.167 - (8) + (4) - (19) + (20)$
IV $0 = -3.443 - (11) + (14) - (7) + (8) - (20) + (21)$
V $0 = +0.752 - (6) + (9) - (22) + (23)$
VI $0 = +0.995 - (18) + (19) - (4) + (6) - (23) + (25)$
VII $0 = -0.544 - (10) + (12) - (2) + (3) - (31) + (33)$
VIII $0 = -2.505 - (10) + (11) - (21) + (15) - (29) + (33)$
IX $0 = -2.293 - (5) + (6) - (23) + (26) - (34) + (35)$
X $0 = -2.034 - (28) + (31) - (3) + (5) - (35) + (37)$
XI $0 = -3.144 - (28) + (30) - (24) + (26) - (34) + (37)$
XII $0 = -0.120 - (27) + (29) - (15) + (16) - (40) + (41)$
XIII $0 = -1.167 - (16) + (17) - (36) + (38) - (39) + (40)$
XIV $0 = +0.827 - (27) + (28) - (37) + (38) - (39) + (41)$
XV $0 = +1.382 + 0.8286 (14) - 1.0114 (13) + 0.1828 (12) - 0.3295 (1) + 0.1664 (2)$
XVI $0 = +8.023 + 6.6014 (14) - 6.6014 (10) - 0.0398 (7) + 12.5171 (33) - 12.8777 (32) + 0.3606 (31) - 0.6745 (2) + 0.5081 (3)$

XVII
$$0=+8.667+6.6014(14)-6.6014(10)-0.5934(21)+0.4524(20)+0.1410(15)-12.8777(32)$$

 $+0.3997(8)-0.3997(7)+12.8206(33)+0.0571(29)$
 $0=+1.425-0.2868(21)+0.1410(15)+0.1458(19)+0.3035(33)+0.0571(29)-0.3606(31)$
 $+0.3081(2)+0.2000(4)-0.5081(3)$
 XIX $0=-0.701-4.0061(25)+4.0450(24)-0.0389(23)-3.5115(29)+3.7255(30)-0.2140(31)$
 $+0.7414(4)-0.2677(6)-0.4737(3)$
 XX $0=-1.290-4.1528(25)+4.0450(24)+0.1078(26)-4.1850(29)+3.7255(30)+0.4595(28)$
 $-0.6079(36)+0.1047(34)+0.5032(37)$
 XXII $0=-0.736+0.2662(18)-0.1556(17)-0.1106(19)-0.1047(36)-0.3855(34)+0.4902(35)$
 $-0.2677(4)-0.5564(6)+0.8241(5)$
 XXII $0=+0.219-0.3316(29)+0.4595(28)-0.1279(27)-0.4297(36)+0.5032(37)-0.0735(38)$
 $+0.3737(40)-0.2244(41)-0.1493(39)$
 XXIII $0=-1.514-0.1106(18)-0.3596(20)+0.4702(19)-0.0389(25)-0.4281(22)+0.4670(23)$
 $-0.1674(8)-0.2084(9)$

The reciprocals of the relative weights to the several directions introduced into the correlate equations are as follows:

Direction.	T P	Direction.	$\frac{1}{\dot{\rho}}$	Direction.	1	Direction.	$\frac{1}{p}$
I	1,13	12	0.87	23	1 .08	34	1.11
2	o ·88	13	0.90	24	0 '95	35	0 '97
3	0 '90	14	o ·87	25	10.1	36	0.93
, 4	o *86	15	o ·87	26	o . 88	37	io i
5	0 '89	16	0.86	27 .	0 '94	38	0.96
6	0.90	17	o ·86	28	0 '93	39	1 '40
7	1 '43	18	o ·89	29	o ·85	40	I '24
8	2.12	19	o ·85	30	0 '96	41	1 .56
9	1.14	20	o '88	31	0 '93		
10	0.90	21	o ·87	32	o •89		
II	o ·89	22	1.01	33	0 *93		

The average value of $\frac{1}{p}$ equals 1.

Normal equations.

No.		Cr	C ₂	C ₃	C ₄	C ₅	C6	C ₇	C8	C ₉	Cro	CII	C12	C13	Cx4
1	0=-0'472	+3.48	-2.03					- r ·75							
2	-0.426		+4.33		+2.30										
3	+3°167			+4.74	-3.03		-: '71								
4	-3.443				+7.09				-1.46						
5 6	+0.752					+4.13	-1.08			-1.98	• • • • • •				****
6	+0.092						+5.59			+1.08					
7 8	-0.544							+5.41	+1.83		-1.83				
	-2.505	U							+5.31				-1.72		
9	- 2*293									+5.83	-1.8e	+1.66			
10	-2.034				• • • • • • •				• • • • • •		+5.63				-1 '94
II	-3 144											+5.84			-1.94
12	-0,130												+6.03		+2.50
13	-1.164													+6.54	+2.36
14	+0.827														+6.20
15	+1.385					• • • • • •	• • • • • •		• • • • • •	*****				*****	• • • • • •

Normal equations—completed.

No.		C15	C16	C17	C18	C19	G ₂₀	Cst	C32	C53
ī		-0.55054	-o·59356		+0.27113					
2		+1.25881	+5.80013	+6.31479						
3				-0.46125	+0.04807	+0.63760		+0.13651		-0.32621
4		+0 '72088	+5*80013	+6.55978	-0.51925					-0.04346
5						+0.19893		+0:50076		+0.69916
6					-o °04S07	-4 '89 268	-4 19433	-0.60147		-0 '04555
7		+0.01561	+18:29765	+17 .86441	-0.11081	-0.22731				
8			+17.58216	+18.45481	+0 '60590	+2'98477	+3 *55724		+0, 28186	
9						-o ·19892	-0.03136	-o :330S2		-o'50436
10			-0.15163		+0.15163	. +0.55231	+0 08090	+0.525796	+0 '08090	
11						-o · 26627	-0 20673	+0 '42790	+o 'o8ogo	
12				-0.07413	-0.07413	-2.98477	-3.55724		-o *90776	
13							+0 *55927	-0.03750	+0.99717	
14							-0 '08090		-0.10492	
15		+1 '69408	+4 *66006	+4 '75883	+0 *04512					
16	0=+8.033		+371 19343	+373 '99329	+2 *99686	-0.58833				
17	+8.667			+378 66768	+3 *78681	-0.17042	-0 *20311		-0 .01600	-0128702
18	+1 '425				+0.66659	+0.24549	-0.50311	-0.05975	-0.01609	+0.05827
19	-0.701					+56 *34184	+58.16236	-o °o3663	+0.98975	+0'13778
20	-1,500						+61 '98784	+0.01375	+1 '87200	+0.16319
21	-0.736							+1 44710	+0.01130	-o °07041
22	+0.510								+1 '00383	
23	-1.214									+0 *84453

Resulting correlates.

$C_1 = -0.3231$	C 7=-0.585	$C_{13} = +0.9330$	C₁9=+2 '0506
$C_2 = -0.7134$	C 8=+2 .1222	$C_{14} = -0.8156$	C20=-2 '0409
$C_3 = +0.4736$	$C_9 = +0.8873$	$C_{15} = -0.6398$	$C_{21} = +0.9664$
$C_4 = + 1.1388$	$C_{10} = +0.3726$	$C_{16} = -2.81128$	$C_{22} = +0.8278$
$C_5 = -0.8917$	$C_{11} = -0.5198$	$C_{17} = +2.7477$	$C_{23} = +4.9511$
$C_6 = -0.1688$	$C_{12} = +1.1322$	$C_{18} = -8.5165$	

Resulting corrections to observed directions.

	• •		
11	"	//	//
(1) = -0.2028	(12) = -0.0452	(23) = +0.6722	(34) = -1.3909
(2) -0.7101	(13) +0.9336	(24) +0.2466	(35) +0.9589
(3) + 1.0297	(14) -0.4563	(25) —0.1022	(36) - 0.1375
(4) +0.2247	(15) +o ·2338	(26) +o ·3937	(37) +0.3621
(5) +0.2512	(16) +0.1213	(27) —0:3973	(38) + 0.0541
(6) +0.4706	(17) +0.6730	(28) -1.4185	(39) -0.3380
(7) -2.0189	(18) —0.1080	(29) -0.2438	(40) + 0.1375
(8) +2 '0094	(19) +0:3237	(30) -0.1759	(41) +0:1643
(9) -2.1939	(20) -1 0584	(31) +1.9913	
(10) -1.3448	· (21) —0:2671	(32) +0.7289	
(11) +0.0102	(22) -1 2404	(33) -0'5042	

Mean error of a direction of unit weight $\sqrt{\frac{p_{i'i'}}{n}} = \sqrt{\frac{30^{\circ}1}{23}} = \pm 1''' \cdot 15$.

The average weight being unity, we have the probable error of an observed direction $= \pm 0$ ".79.

THE MAIN TRIANGULATION.

Resulting angles and sides of the first section west of the Atlanta base net.

No.	Stations.	Obse	rved	angles.	Correc- tions.	Spher- ical augles.	Spher- ical", excess,	Log. distances.	Distances in meters.
		0	1	11	//	//	11		
ſ	Carnes	49	02	35 '050	-0.411	34 .639	1 .592	4.587 666 4	38 696 '03
1 {	Pine Log	51	40	20.872	-0'710	50.165	1 *295	4 604 183 7	40 196 08
l	Kenesaw	79	17	07 '066	+2 '018	09 '084	1 .592	4 701 967 7	50 346 31
ſ	Carnes	37	17	02 '377	+0.979	03 .356	1 *348	4.216 084 0	32 815 88
2 {	Pine Log	74	22	48 .661	-0.710	47 '951	1 '349	4 '717 436 4	52 171 '87
l	Sweat Mountain	68	20	12 '535	+0.203	12 . 738	1 '348	4 701 967 7	50 346 31
ſ	Carnes	II	45	32 .673	-1,390	31 .583	0.362	4'182 214 9	15 213 '00
3 {	Sweat Mountain	32	34	43 '001	-0.503	42 .798	0 '362	4 '604 183 7	40 196 08
- [Kenesaw	135	39	44 '986	+2 '019	47 '005	0.365	4.717 436 4	52 171 87
ſ	Lavender	30	20	51 '197	1.385	49 .815	1 *946	4 587 666 4	38 696 03
4 {	Pine Log	98	08	56 '380	+0.55	56 .602	1 '945	4 .879 770 2	75 817 63
Į	Kenesaw	51	30	21 427	−2 *010	19 '417	1 *946	4 777 750 S	59 944 70
ſ	Lavender	24	57	27 '276	+0.791	28.067	1 '204	4.604 183 7	40 196 08
5 {	Kenesaw	27	46	45 .639	+4 028	49 '667	1 '204	4 '647 387 9	44 400 50
ŧ	Carnes	127	15	47 *253	−ı ·376	45 '877	1 .503	4 .879 770 2	75 817 63
ſ	Lavender	55	18	18 '473	—o ·591	17 '882	1 .854	4.701 967 7	50 346 31
6 {	Pine Log	46	28	35 508	+0.935	36 '443	1 '854	4 .647 387 9	44 400 50
· ·	Carnes	78	13	12 '203	—o '9 65.	11 '238	1 .855	4 '777 750 8	59 944 70
ſ	Johns	26	11	29.569	+1.912	31 '481	1 '453	4 '525 240 8	33 515 12
7 {	Grassy	45	17	39 '277	-2 *193	37 '084	I '453	4 '732 129 0	53 967 '09
1	Pine Log	108	30	56 .266	-o ·471	55 '795	1 '454	4 .857 350 9	72 003 '05
ſ	Lavender	62	17	13 '709	+0 .432	14.141	1 .692	4 '732 129 0	53 967 '09
8 {	Johns	79	31	43 .835	-0.773	43 '062	1 .694	4 777 750 8	59 914 70
l	Pine Log	38	11	07 '635	+0.246	07 '881	1 .692	4.576 176 5	37 685 69
ſ	Indian	44	32	11 '956	+2 *235	14 '191	1 .641	4 777 750 8	59 944 70
9 {	Lavender	III	29	54 '716	-0,091	54 '625	1 .640	4 '900 488 9	79 522 '29
l	Pine Log	23	57	116.99	-o ·8o5	96.106	1 '641	4 '540 524 3	34 715 57
ſ	Indian	41	18	906,90	+2 .164	09 '073	3 .512	4 '732 129 0	53 967 '09
10 {	Johns	76	32	57 '011	-0.425	56 . 586	3 *216	4 *900 488 9	79 522 29
Į	Pine Log	62	09	04 '546	-0.259	03 '987	3 .512	4.859 108 3	72 295 '01
ſ	Lavender	173	47	08 '425	+0.342	08 '767	0'120	4.859 108 3	72 295 '01
11	Johns	2	58	46 .824	-o ·348	46 '476	0.150	4.240 254 3	34 715 57
1	Indian	3	14	05 '050	+0.067	05 '117	0.150	4.576 176 5	37 685 69
ſ	Indian	30	16	53 .188	-2 '495'	50 '693	1 '299	4 '701 967 7	50 346 31
12 {	Pine Log	22	30	38 .597	+1 .740	40 '337	1 '299	4 '582 375 3	38 227 '45
l	Carnes	127	12	31 .267	+1 .599	32 .866	1 .398	4 '900 488 9	79 522 29

THE EASTERN OBLIQUE ARC.

Resulting angles and sides of the first section west of the Atlanta base net-continued.

No.	Stations.	Obse	erved	angles.	Correc- tions.	Spher- ical angles.	Spher- ical excess.	Log. dis- tances.	Distances in meters.
	Indian Lavender	o 74 - 56	49 11	05 '144 36 '243	+0.201 +0.201	04 ·883 36 ·744	1 °086 1 °085	4 .647 387 9 4 .582 375 3	44 400 '50 38 -227 '44
	Carnes	48	59	19.364	+2.265	21 .629	1 '085	4 '540 524 3	34 715 57
	Gulf Point Johns	23 142	14 25	37 '39 ⁸ 30 '27 ⁸	+2 '351 -0 '278	39 '749 30 '000	o '944 o '944	4 '732 129 0 4 '921 107 1	53 967 ·09 83 388 ·67
•	Pine Log	14	19	52 .863	+0 '220	53.083	0 '944	4 '529 538 0	33 848 38
15	Gulf Point Pine Log	40 23	19 51	15 ·855 14 ·772	+0.036	14 '759 14 '798	1 '713	4 '777 750 8 4 '573 619 2	50 944 ·70 37 464 ·44
•	Lavender Gulf Point	63	49 33	35 '931 53 '253	-0.349 +1.254	35 ·582 54 ·507	0.963	4 '921 107 0	83 388 ·67 37 685 ·69
16	Johns	62	53	46 '443	+0.496	46 '939	0 '962	4 573 619 2	37 464 44
	Lavender Gulf Point	53 63	32 01	39 '871	-0.281 -0.294	39 '274	0 '962	4 '529 537 9 4 '900 488 9	33 848 ·38 79 522 ·29
17	Pine Log	47	49	11 .683	-0.779	10 '904	4 .164	4.820 337 1	66 120 64
•	Indian Gulf Point	69	09	18 '903	+3.410	22 '313	0.810	4 '921 107 0	83 388 ·67 34 715 ·57
18 1	Lavender	132	40	29. 353	+0.440	29 '793	0.811	4 820 337 1	66 120 64
	Indian Gulf Point	24 86	37 16	06, 947	+1.754	08 122	0.810	4 · 573 619 2 4 · 859 108 3	37 464 44 72 295 01
19	Johns	65	52	33 '267	+0.144	33 '414	1 .893	4 '820 337 1	66 120 64
	Indian Brandon	27 43	51	48 •563	+0.027	13 '240 48 '590	1 .895	4 '529 537 9 4 '540 524 3	33 848 ·38 34 715 ·57
20	Lavender	78	05	36 '944	-o ·o62	36 .882	1 '248	4 .695 837 9	49 640 70
	Indian Brandon	58 54	43	38.117	+0.122	38 ·272 40 ·757	1 .125	4 '637 099 2	43 360 ·99 37 464 ·44
- 1	Gulf Point	70	45	29 '507	+0.101	29 .698	1 .151	4.637 099 2	43 360 99
•	Lavender Brandon	54 97	34 50	52 '409 28 '845	+0.201	52 '910	1,22	4 '573 188 9	37 427 33 66 120 64
	Gulf Point Indian	48 34	03 06	05 '49I 31 '170	-0.308 -1.021	o5 '183 30 '149	1 '560 1 '560	4 .695 837 9 4 .573 188 9	49 640 70 37 427 33
	Indian	28	21	36 '171	-I .365	34 '909	2 '509	4 '587 666 4	38 696 03
	Pine Log Kenesaw	74 77	10 27	59 .469	+1 .030	32 '118	2 '509 2 '508	4 ·894 214 2 4 ·900 488 9	78 381 ·61 79 522 ·29
	Indian	72	53	48 127	+0.973	49.100	2 '204	4 .879 770 2	75 817 '63'
	Lavender Kenesaw	81 25	o9 57	03 '519	+1 '292	04 '811	2 '203	4 '894 214 2 4 '540 524 3	78 381 ·61 34 715 ·57
(Carnes		15	06.617	+o ·888	07 '505	0.085	4.894 214 2	78 381 '61
	Indian Kenesaw	I	55 49	17.017	—I .535	15 ·785 36 ·965	o °o85 o °o85	4 '604 183 7 4 '582 375 3	

8. THE SECOND SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, GEORGIA AND ALABAMA, 1875-1887.

This section is of the same complex composition as the preceding section; it is shown on the following sketch; for distances and positions it depends upon the two sides marked by heavy lines. Eight observers took part in the work, which was executed between the years 1875 and 1887, but this includes an interval of eight

years during which the work was suspended. The figure comprises 8 new stations connected by 16 triangles and the adjustment involves 18 conditions to be satisfied. From the sum of the squares of the closing errors of the triangles we have the mean error $\sqrt{\frac{29.54}{16}} = \pm 1'''.36$ and that of an angle $\pm 0'''.78$, also the probable error of a direction = $0.674 \frac{1.36}{\sqrt{6}} = \pm 0'''.37$. Unit weight was assigned to each direction.

The approximate elevations of the stations are as follows:—

	Meters.	Feet.		Meters.	Feet.
Gunter	436	1 430	Wilson	360	1 180
Aurora	428	1 404	Wornock	435	1 428
Rowe	461	1 512	Cahaba	461	1 513
Summit	360	181	Cheehahaw	734	2 407

Abstracts of horizontal directions at stations composing the second section of the triangulation west of the Atlanta base net, 1875-1887.

Gulf Point, Walker County, Georgia. September 14 to October 9, 1875. 30cm direction theodolite No. 108. F. P. Webber, F. D. Granger, and J. H. Christian, observers.

Number of direc- tions.		Objects observed.	f	ron	ı adj	directions ustment section.	Corrections from adjust- ment of second sec- tion.	Final seconds.
				0	1	11	11	//
	High Point			o	00	59 '969		59 .969
	Pigeon		2	8	39	11 '040		
	Cohutta		5	55	29	34 125		
5	Gunter		25	0	04	42 '377	+0.057	42 '434

Brandon, Dekalb County, Alabama. December 6 to 17, 1875. 30^{cm} direction theodolite No. 108. F. P. Webber, observer.

		0	1	11	//	"
3	Aurora	0	00	59 *989	-o ·337	59 652
4	Gunter	61	36	36 .496	+0.938	37 '434
	Gulf Point	168	10	13.818		
	Indian	266	00	43 '165		
	Weisner	293	13	43 °081		

Indian, Cherokee County, Alabama. July 24 to August 18, 1875. 30^{cm} direction theodolite No. 108. F. P. Webber, observer. December 3 to 19, 1885. 50^{cm} direction theodolite No. 114. O. H. Tittmann, observer.

	, 0000. (0.)	0	1	11	11	11
	Lavender	o	00	59 '756		59 '756
	Cohutta, Grassy Mountain	15	28	22 '9		
	Coosa	16	44	04 052		
1	Cheehahaw	189	16	07 '560	-0 .469	07 '091
2	Aurora	259	21	48 .650	-1 .844	46 *806
	Brandon	301	16	21 .486		
	Gulf Point	335	22	51 .635		

Gunter, Marshall County, Alabama. July 21 to August 15, 1877. 30cm direction theodolite No. 108. F. D. Granger, observer.

			~ .					
				. 0	1	11	11	11
	Rowe	•		0	00	00'00	+o*45	00 '45
	Gulf Point			179	48	34 '80	-1,15	33 .68
15 .	Brandon			213	19	17 '80	+0.60	18 '40
16	Aurora		•	276	52	01.30	-o ·17	01,13
17	Summit			- 311	07	24 .82	+0.24	25 '06

Probable error of a single observation of a direction (D, and R.), $c_1 = \pm 1''$ 58. Circle used in XVII positions.

Abstracts of horizontal directions at stations composing the second section of the triangulation west of
the Atlanta base net, 1875–1887—continued.

Aurora, Etowah County, Alabama. June 6 to 20, 1877. 30cm direction theodolite No. 108. F. P. Webber, observer. April 14 to May 8, 1886. 50cm direction theodolite No. 114. O. H. Tittmann, observer.

Number of direc- tions.	Objects observed.	from	adju	irections stment ction.	Corrections from adjust- ment of second sec- tion.	Final seconds.
		0	1	11	//	"
)	Azimuth Mark	0	00	00,00		00,00
6	Indian	33	25	53 '76	-o ·o6	53 '70
	Weisner	38	53	43 '30		: • • • •
7	Cheehahaw	87	46	50 '31	· -o ·28	50.03
8	Cahaba	148	48	14 '92	+0 '20	15 '12
9	Wornock	184	04	18.77	+0.02	18.82
10	Summit	216	19	35 '52	+0.07	35 '59
II	Rowe	257	36	10,13	-o ·o5	10.08
	Moore	275	36	11.38		
12	Gunter	294	28	55 '38	−o ·62	54 . 76
13	Brandon	349	19	38 '19	+o ·68	38.87

Probable error of a single observation of a direction (D, and R.) in 1877, $e_1 = \pm 1''$ '80. Circle used in XVII positions.

Probable error of a single observation of a direction (D. and R.) in 1886, $e_i = \pm o''$ 79. Circle used in VII positions.

Rowe, Madison County, Alabama. September 3 to October 9, 1877. 30cm direction theodolite No. 108. F. D. Granger and J. H. Christian, observers.

		0	/	11	//	//
23	Wilson	0	00	00,00	+o ·63	00 '63
	Trinity	33	55	19.77		
	Capshaw	83	58	30.88		
19	Gunter	200	33	04'41	+0.11	04.2
	Moore	246	19	38.60		
20	Aurora	260	32	25 '11	—o ·76	24 '35
21	Summit	290	47	00.66	+0.27	00 '93
22	Wornock	311	16	48 '15	-o ·25	47 '90

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 1''$ 27. Circle used in XVII positions.

Summil, Blount County, Alabama. October 20 to 27, 1877. 30 cm direction theodolite No. 108. F. D. Granger and J. H. Christian, observers. October 31 to November 10, 1878. Same instrument. C. O. Boutelle and J. B. Boutelle, observers.

		0	1	11	//	11
24	Aurora	0	00	00,00	−o ·39	59.61
25	Wornock	117	35	21.57	+0.87	22.44
26	Wilson	204	57	48 .65	-o · o4	48 .61
27	Rowe	251	31	08 14	0 '03	08.11
28	Gunter	292	24	39.81	-o · 42	39 '39
	Moore	306	45	30,21		

Probable error of a single observation of a direction (D. and R.) in 1877, $e_x = \pm 1''$ 21, and in 1878, $e_z = \pm 1''$ 35. Circle used in XVII positions in both years.

Abstracts of horizontal directions at stations composing the second section of the triangulation west of the Atlanta base net, 1875-1887—continued.

Wilson, Morgan County, Alabama. June 28 to July 25, 1878. 50cm direction theodolite No. 113.

C. O. Boutelle and J. B. Boutelle, observers.

Number of direc- tions.	Objects observed.	from	adju	irections stment ection.	Corrections from adjust- ment of second sec- tion.	Final seconds.
		0	1	//	//	11
	Somerville Court-House	О	00	00,00		
	Smithers	6	20	08 .64		
29	Rowe	47	IO	35 '95	− o ·35	35 .60
30	Suumit	111	24	19.26	-o.21	19.02
31	Wornock	150	23	34 .89	+o ·87	35 .76
	Penit	256	06	15 '28		
	Capshaw	352	59	40 .80		

Probable error of a single observation of a direction (D. and R.), $e_i = \pm o''$ 75. Circle used in XI positions.

Wornock, Blount County, Alabama. August 16 to 31, 1878. 50cm direction theodolite No. 113. C. O. Boutelle and J. B. Boutelle, observers. January 20 to 25, 1887. 30cm repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers.

		0	/	//	//	11
34	Summit	0	00	00,00	-o •98	59 '02
35	Aurora	30	09	21 '57	-0.50	21 '37
36	Cahaba	109	43	58 '02	+0.94	58 .96
32	Wilson	306	21	39 '14	-0.23	38.91
33	Rowe	334	25	29.11	+o ·48	29 '59

Probable error of a single observation of a direction (*D*. and *R*.), $e_t = \pm o''$ 59. Circle used in XI positions.

Cheehahaw, Talladega and Clay counties, Alabama. January 11 to February 16, 1886. 50 cm direction theodolite No. 114. O. H. Tittmann, J. H. Turner, and J. F. McGrath, observers.

		0 / //	11	11
	Horn	0 00 00 00		
	Alpine	27 39 56.44		
37	Cahaba	63 41 15.86	-0.19	15 .67
38	Aurora	104 45 29 69	-ı ·o3	28.66
39	Indian	. 160 19 03 33	+1.55	04 '55
		Mean corre	ection o '00	

Probable error of a single observation of a direction (D. and R.), $c_t \pm 0^{\prime\prime}$:91. Circle used in VII positions.

Cahaba, Saint Clair County, Alabama. March 8 to 31, 1886. 50 cm direction theodolite No. 114.
O. H. Tittmann and J. E. McGrath, observers.

		.0	0	/	11	11	//
40	Wornock	*	0	00	00,00	-o '48	59 '52
41	Aurora		65	09	22 '94	o ·69	22 . 22
42	Cheehahaw		143	03	52.83	+1.16	53 '99
	Alpine		171	08	59 '72		
	Laurel		217	19	44 '87		
		×		Mea	an correcti	oo o noi	

Probable error of a single observation of a direction (D, and R.), $c_i = \pm 0''$ 99. Circle used in VII positions.

Observation equations.

```
0 = -0.77 + (6) - (13) + (3) - (2)
    II
         0 = -0.84 + (15) - (14) + (5) - (4)
   III
         0 = -1.81 + (16) - (15) + (4) - (3) + (13) - (12)
    IV
         0 = +0.25 + (24) - (28) + (17) - (16) + (12) - (10)
    \mathbf{V}
         0 = +0.82 + (20) - (19) + (18) - (16) + (12) - (11)
    VI
         0 = +0.02 + (21) - (19) + (18) - (17) + (28) - (27)
   VII
         0 = -0.23 + (30) - (29) + (23) - (21) + (27) - (26)
  VIII
         0 = +0.29 + (34) - (32) + (31) - (30) + (26) - (25)
   IX
         0 = -2.82 + (31) - (29) + (23) - (22) + (33) - (32)
    X
         0 = -2.05 + (35) - (34) + (25) - (24) + (10) - (9)
   XI
         0 = -0.64 + (39) - (38) + (7) - (6) + (2) - (1)
  XII
         0 = -1.50 + (42) - (41) + (8) - (7) + (38) - (37)
 XIII
         0 = -0.78 + (41) - (40) + (36) - (35) + (9) - (8)
  XIV
         0 = +14.0 + 2.31(2) + 2.51(5) + 2.18(6) + 1.49(12) - 3.67(13) + 3.18(14) - 4.23(15) + 1.05(16)
  XV
         0 = +2.8 - 1.96(10) + 2.40(11) - 0.44(12) - 3.09(16) + 4.93(17) - 1.84(18) + 0.01(19) + 3.61(20)
             -3.62(21)
  XVI
         0 = +1.7 - 4.84(21) + 5.64(22) - 0.80(23) - 1.02(29) + 3.62(30) - 2.60(31) - 1.55(32) + 4.40(33)
             -2.85(34)
 XVII
         0 = +2^{\circ}3 - 3^{\circ}34(9) + 5^{\circ}74(10) - 2^{\circ}40(11) - 3^{\circ}61(20) + 9^{\circ}25(21) - 5^{\circ}64(22) - 4^{\circ}40(33) + 8^{\circ}02(34)
             -3.62(35)
XVIII
         0 = +17.4 - 0.76(1) + 3.10(2) + 1.00(3) - 1.14(4) - 1.05(15) + 1.30(16) - 0.25(18) - 1.22(19)
             +2.94(20) - 1.72(22) - 1.44(33) + 1.83(35) - 0.39(36) - 2.42(37) + 3.86(38) - 1.44(39)
             -0.97(40) + 1.42(41) - 0.45(42)
```

Normal equations.

	Normal equations.																		
No.		Cz	C2	C ₃	C ₄	C ₅	C6	C ₇	C8	C ₉	Cto	C11	C12	C13	Cz4	C ₂₅	Cz6	C17	C18
I	0=-0.77	+4		-2								-2			+ 3°51				- 2.10
2	- o ·84		+4	-2											- 4 '90				+ 0.09
3	- 1.81			+6	-2	- 2									+,0,13	- 2.65			+ 0.51
4	+ 0.52				+6	+2	-2				-2				+ 0.44	+ 9.54		- 5'74	- 1.30
5	+ 0.82					+6	+2								+ 0'44	+ 2.01		- 1.51	+ 2.61
6	+ 0.03						+6	-2								-10.40	- 4.84	+ 9°25	+ 0.97
7	- 0.53							+6	-2	+2						+ 3.62			
8	+ 0.50								+6	+2	-2							+ 8.03	
9	- 2.82									+6								+ 1.24	+ 0.58
10	- 2 05										+6			-2		- 1°96		- 2.56	+ 1.83
11	- 0.64											+6	-2		+ 0'16				- 1.44
12	- I '50												+6	-2					+ 4.41
13	- o'78													+6				+ 0.58	+ 0'17
14	+14.0													' -	+61 *32	- 2 '00			+13.06
15	+ 2.8															-	+ 17'52	- 63.53	+ 7.04
16	+ 1.7						•••											-118.80	-16.04
17	+ 2'3																1 200 00	+277 05	1 °20
18	+17.4																	T2// 03	+60.00
10	T1/4							R	esul	tino	cor	rela.	tes.						T00 00
								4.		_			<i>v v v v v v v v v v</i>						
	C ₁ =	=+1	'079)					C,	=+	0'1	50				C13:	=+0.8	07	
	C2=	=+0	:526	,					C8	=+	0.10	07				C14:	=-0.1	87	

 $C_0 = +0.361$

C10=+0.080

 $C_{12} = +0.727$ $C_{12} = +1.011$ C15=-0 '0357

 $C_{16} = -0.068$

 $C_{18} = -0.340$

C2=+1 '076

 $C_4 = +0.593$

C5=+0:125

C6=+0'177

Resulting Corrections to observed directions.

		6.7						
	//		11		11			//
(1)=	0 '469	(11)=-	-0 '048	(21)=	-+0 .267	(3	1)=	+o ·866
(2)	-1 '844	(12) -	-0 .651	(22)	—o ·255	(3	2)	-0.531
(3)	-o ·337	(13) -	-0 '683	(23)	+0.633	(3	3)	+0.477
(4)	+0.938	(14) -	-1.151	(24)	-o ·387	(3	4)	-0 '982
(5)	+0.057	(15)	-o ·59 8	(25)	+o ·873	(3	5)	—o ·2 03
(6)	-o °056	(16) -	0.110	(26)	-o ·o43	(3	6)	+0.940
(7)	-o ·284	(17)	-o ·2 40	(27)	-o 'o27	(3	7)	-o ·188
(8)	+0 '204	(18) -	-0 '453	(28)	-o ' 416	(3	(8)	-1 '028
(9)	+0.054	(19) -	-0 '113	(29)	-o ·355	(3	(9)	+1.217
(10)	+0.067	(20) -	-0 '759	(30)	-0.211	(4	(o)	-0 '477
						(4	1)	—о ·687
						(4	12)	+1 .164

Probable error of an observed direction o 674 $\sqrt{\frac{17.65}{18}} = \pm 0''.67$.

Resulting angles and sides of the second section of the triangulation west of the Atlanta base net.

No.	Stations.	Obs	erved	l angles.	Correc- tions.	Spheri- cal angles.	Spheri- cal excess.	Log. distances.	Distances in meters.
		0	1	//	"	//	11		
ſ	Aurora	44	06	15 '57	-0.74	14 .83	2 '00	4 '695 837 9	49 640 70
- 1 {	Brandon	93	59	16 '82	− o · 34	16 '48	2 '00	4 .852 202 7	71 154 56
Į	Indian	41	54	32 .84	+1 .85	34 '69	2 '00	4 .677 999 5	47 643 04
ſ	Gunter	33	30	43 '00	+1 .45	44 '72	1 '32	4 '573 188 9	37 427 '34
2 {	Gulf Point	39	55	42 .81	+0.06	42 .87	1 .35	4 .638 579 6	43 509 05
Į	Brandon	106	33	37 '32	-o ·94	36.38	1 .33	4.812 764 0	64 977 65
ſ	Gunter	63	32	43 '50	-0.77	42 '73	1 .22	4 677 999 5	47 643 '04
3 {	Brandon	61	36	36.21	+1 .58	37 '79	1 '54	4 '670 389 7	46 815 51
Į	Aurora	54	50	42.81	+1 .30	44 '11	ı . 54	4 .638 579 6	43 509 '05
	Summit	67	35	, 20 19	+0.03	20 '22	1.11	4 .670 389 7	46 815 51
4 {	Gunter	34	15	23 '52	+0.41	23 '93	1.11	4 '454 925 1	28 505 27
	Aurora	78	09	19.86	-0 '69	19.12	1,10	4 .695 149 2	49 562 05
	Rowe	59	59	20 '70	-o ·87	19 '83	1.58	4 .670 389 7	46 815 51
5 {	Gunter	83	07	58 .40	+0.62	59 '32	1 '27	4 '729 782 6	53 676 '31
	Aurora	36	52	45 *25	− 0 '57	44 '68	1 '28	4.211 149 9	32 445 16
	Rowe	90	13	56 .52	+0.16	56 41	1 '02	4 695 149 2	49 562 05
6 -	Gunter	48	52	35 '18	+0.51	35 '39	1 .03	4 '572 115 2	37 334 '92
	Summit	40	53	31 .62	-0.39	. 31 *28	1 .03	4 '511 149 9	32 445 16
	Summit	108	28	51 '86	-0.36	51.20	0.82	4 .729 782 6	53 676 '31
7 -	Rowe	30	14	35 '55	+1 '03	36.28	0.86	4 '454 925 2	28 505 '27
	Aurora	41	16	34 .61	-0.13	34 '49	o ·86	4 '572 115 1	37 334 '91
	Wilson	64	13	43 .61	-0.19	43 '45	o ·89	4 '572 115 2	37 334 '92
8 -	Rowe	69	12	59 '34	+0.37	59 '71	0.89	4 588 392 3	38 760 76
	Summit	46	33	19.49	+0.02	19.21	0.89	4 '478 573 3	30 100 '47

Resulting angles and sides of the second section of the triangulation west of the Atlanta base net—continued.

No.	t'tations.	Obs	erved	l angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	/	//	//	11	//		
ſ	Wornock	25	34	30 ·S9	<u>−1 .46</u>	29 °43	0.69	4 '572 115 2	37 334 '92
9 {	Rowe	20	29	47 '49	-0.52	46 .97	0.69	4.481 194 5	30 282 69
ı	Summit	133	55	46 .57	-0.30	45 .67	0.69	4, 794 398 5	62 287 16
	Wornock	53	3 S	20.86	-0.75	20,11	0,99	4.588 392 3	38 760 76
10 (Wilson	38	59	15 *33	+1 .38	16.41	′о .9 9	4.481 194 6	30 282 70
Į	Summit	87	22	27.08	-0.92	26 .19	1 ,00	4.681 981 5	48 081 88
1	Wilson	103	12	58 '94	+1.55	90.19	1 '20	4 '794 398 5	62 287 16
11	Rowe	48	43	11.85	+0.89	12.74	1,19	4.681 981 2	48 081 88
	Wornock	28	03	49 '97	+0.41	50.68	1.19	4 * 478 573 3	30 100 '47
-	Wornock	55	43	52 '46	-o ·68	51 .48	2.19	4 .729 782 6	53 676 31
12	Rowe	50	44	23 °04	+0.20	23 '54	2.19	4 '701 488 3	50 290 77
	Aurora	73	31	51 .36	-0.10	51 .59	2 '20	4 794 398 5	62 287 16
	Wornock.	30	09	21 '57	+0.48	22 *35	0.65	4 '454 925 I	28 505 27
13	Summit	117	35	21 '57	+1.56	22.83	0.64	4 '701 488 1	50 290 75
	Aurora	32	15	16 .42	+0.01	16.76	0.65	4 481 194 4	30 282 69
	Cheehahaw	55	33	33 .64	+2.54	35 .88	3 '97	4.852 202 7	71 154 56
14 -	Aurora	54	20	56 .22	-0.53	56 .32	3 °97	4 845 763 8	70 107 39
	Indian	70	05	41 '09	-1 .37	39 '72	3 .08	4 '909 145 1	81 123 21
	Cahaba	77	54	29 .89	+1.85	31 '74	3 *27	4 '909 145 1	81 123 '21
15	Aurora	61	OI	24 '61	+0.49	25 '10	3 .58	4.860 804 4	72 577 90
	Cheehahaw	41	04	13 .83	-o ·84	12 '99	3 '28	4.736 436 7	54 505 05
	Cahaba	65	09	22 .04	-0.51	22 .43	1 '34	4.701 488 2	50 290 76
16 -	Wornock	79	34	36 .45	+1.14	37 '59	I '34	4.736 436 8	54 505 06
	Aurora	35	16	03 .82	-0.12	03 '70	1 '34	4 '505 134 1	31 998 83

4192-No. 7-02-13

9. THE THIRD SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, ALABAMA, 1886-1890.

This section forms a compact figure connecting at each end on a single line both with the preceding and the following sections. It covers a portion of the valley of the

Coosa River and comprises 6 stations, whose approximate heights are as follows:

	Meters.	Feet.
Alpine	473	I 551
Laurel	480	1 576
Horn	588	1 930
Kahatchee	396	I 300
Weogufka	352	1 155
Jamison	255	835

The observers employed almost exclusively a repeating theodolite for the angular measures of this section. In the adjustment unit weight was given to all directions. The mean closing error derived from the 13 triangles of the figure equals $\sqrt{\frac{23.4}{13}} = \pm 1^{\prime\prime\prime} \cdot 34$ and the mean

$$\sqrt{\frac{1}{13}} = \pm 1$$
 34 and the mean error of an angle $=\pm 0''$.77, also the probable error of a direction

$$=0.674\frac{1.34}{\sqrt{6}}=\pm0.37.$$

The observations of 1888 at stations Laurel and Horn by Assistant F. W. Perkins were made at night upon lights.

Subsequent to this date all horizontal measures of the primary triangulation between these stations and the Gulf coast were made at night by Assistants F. W. Perkins and W. B. Fairfield. Advantage was thus taken of the greater transparency of the atmosphere and of the better seeing during the night as compared with the day. On long or difficult lines two or three lights arranged vertically were shown at the same station.

Abstracts of horizontal directions at stations composing the third section of the triangulation west of Atlanta base net, 1886-1890.

Cheehahaw, Talladega and Clay Counties, Alabama. January 11 to February, 16 1886. 50cm direction theodolite No. 114. O. H. Tittmann, J. H. Turner and J. E. McGrath, observers.

Number of directions.		Objects observed.		ent of	om adjust- f second tion.	Corrections from adjust- ment of third section.	Final seconds.
			0	1	11 "	//	11
I	Horn		0	00	00,00	+0.01	10,00
2	Alpine		27	39	56.44	, —o · o4	56 '40
	Cahaba		63	41	15 .67		

Cahaba, St. Clair County, Alabama. March 8 to 31, 1886. 50cm direction theodolite No. 114. O. H. Tittmann and J. E. McGrath, observers.

		0	/	//	//	//
	Wornock '	0	00	59 '52	• • • •	
	Cheehahaw	143	03	53 *99		
3	Alpine	171	08	59 '72	+o ·57	60 '29
4	Laurel	217	19	44 '87	-o ·62	44 '25

Alpine, Talladega County, Alabama. February 10 to March 9, 1887. 30^{cm} repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers,

Number of directions.		Objects observed.			Results from station adjustment.			Corrections for third section.	Final seconds.
					٥	1	//	//	11
7	Horn				0	00	00'00	+0.47	00 '47
8	Kahatchee				79	16	54.21	+0.52	55 *06
9	Laurel				131	56	48 .89	-o ·34	48 '55
	Cahaba				186	00	40.66	-o ·64	40 '02
	Cheehahaw				301	54	18.60	-o °04	18.26

Horn, Talladega and Clay Counties, Alabama. March 22 to April 5, 1887. 30cm repeating theodolite
 No. 16. O. H. Tittmann and J. H. Turner, observers. May 16 to 22, 1888. Instrument as before.
 O. H. Tittmann, J. H. Turner and F. W. Perkins, observers.

		0	1	11	//	//
13	Alpine	0	00	00 '00	-o ·59	59 '41
14	Cheehahaw	94	14	22.53	+0.03	22.26
10	Weogufka	260	49	34.86	-0.27	34 '59
11	Kahatchee	298	04	03 '82	-o ·o2	03 .80
12	Laurel	327	42	18.11	+o ·84	18 .92

Laurel, Shelby County, Alabama. May 11 to 28, 1887. 30cm repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers. April 27 to May 10, 1888. Instrument as before. F. W. Perkins and W. B. Fairfield, observers.

		0	/	11	//	11
15	Cahaba	0	00	00,00	+0.65	00 '65
16	Alpine	79	45	28 .59	+0 04	28 .63
17	Horn	95	31	01.66	-o ·40	01 .56
18	Kahatchee	. 124	56	26.91	-o ·33	26.61
19	Weogufka	147	58	16.93	—o •o6	16.87
	Columbiana	172	50	15 '95		
20	Jamison	178	28	38.93	+0.10	39 '03

Abstracts of horizontal directions at stations composing the third section of the triangulation west of Atlanta base net, 1886-1890—continued.

Kahatchce, Talladega County, Alabama. April 18 to 28, 1887. 30cm repeating theodolite No. 16.
O. H. Tittmann and J. H. Turner, observers.

Number of directions.	Objects observed.	Resul	ts fro djust	Corrections for third section.	Final seconds.	
	•	0	1	11	//	//
25	Jamison	0	00	00,00	0,00	00,00
	Columbiana	41	54	02 '20		
21	Laurel	93	59	09.21	+0.30	09.81
22	Alpine	176	08	20 '52	-0.44	20.08
23	Horn	214	55	31 .04	-0.04	31.00
24	Weogufka	320	17	33 °35	+o.18	33 '53

Wcogufka, Coosa County, Alabama. May 28 to June 1 and December 5 to 1888 to January 17, 1889. 30 cm repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope 1m·9 above the ground.

		0	1	11	//	//
28	Kahatchee	0	00	00,00	-o .18	59.82
29	Horn	37	23	29 .76	+0.50	29 .96
	Wetumpka	164	03	00.12		
	Wilder	200	00	45 .06		
26	Jamison	260	22	41 .69	-0.13	41 '57
27	Laurel	336		24 .84	+0.11	24 '95
			Me	an corre	ction o oo	

Jamison, Chilton County, Alabama. February 1 to March 5, 1889, and May 7 to 14, 1890. 30 cm repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope 2^m·1 above the ground.

		0	/	//	//	//
30	Laurel	О	00	00,00	-0.19	18, 65
31	Kahatchee	32	28	40 '43	+0.10	40.23
32	Weogufka	73	08	57 '60	+0.09	57 .69
	Wilder	151	38	56 .43		
	Perry	231		29 .86		
			Me	an correc	tion o'oo	

Observation equations.

$$\begin{array}{c} 1 \\ 0 = -1.22 + (6) - (5) + (3) - (2) \\ 0 = -1.08 + (14) - (13) + (7) - (6) + (2) - (1) \\ 0 = +2.11 + (16) - (15) + (4) - (3) + (5) - (9) \\ 1V \\ 0 = +1.99 + (22) - (21) + (18) - (16) + (9) - (8) \\ V \\ 0 = +0.11 + (23) - (22) + (8) - (7) + (13) - (11) \\ 0 = -1.55 + (29) - (27) + (19) - (17) + (12) - (10) \\ 0 = -0.85 + (29) - (28) + (24) - (23) + (11) - (10) \\ VIII \\ 0 = -1.03 + (31) - (30) + (20) - (18) + (21) - (25) \\ 1X \\ 0 = +0.25 + (32) - (31) + (25) - (24) + (28) - (26) \\ X \\ 0 = -0.67 + (32) - (30) + (20) - (19) + (27) - (26) \\ XII \\ 0 = -2.7 - 4.02(1) + 6.91(2) + 5.96(3) - 2.02(4) - 3.33(12) + 3.17(13) + 0.16(14) - 0.38(15) \\ +7.84(16) - 7.46(17) \end{array}$$

Observation equations—continued.

XII
$$0 = -0.4 - 1.13(11) + 3.33(12) - 2.20(13) - 5.37(16) + 7.46(17) - 2.09(18) - 0.29(21) + 2.91(22)$$

XIII $0 = +6.0 - 2.77(10) + 6.47(11) - 3.70(12) - 3.73(17) + 8.68(18) - 4.95(19) - 4.89(27) + 7.65(28)$
 $-2.76(29)$
XIV $0 = -3.1 - 3.39(18) + 4.95(19) - 1.56(20) + 0.36(26) + 4.89(27) - 5.25(28) - 3.31(30) + 5.76(31)$
 $-2.45(32)$

Normal equations.

No.		Cz	C3	C ₃	C4	C_5	C ₆	C ₇	CR	C ₉	Czo	, C xx	C12	C _{x3}	C ₁₄
	0=-1.52	+4	-2	-2								- 0.95		b.	
2	-1.08	1 7	+6			-2						+ 7.92	+ 2°20		
3	+2.11			+6	-2							+ 0°24	- 5°37		
4	+1.60				+6	-2			-2			- 7 *84	+ 6.48	+ 8.68	- 3.39
5	+0.11	·				+6		-2				+ 3.17	- 6.60	- 6.47	
6	-1.22						+6	+2			-2	+ 4°13	- 4.13	- 0.02	+ 0.06
7	~0.85							+6		-2			+ 1.49	- 1.17	+ 5.25
8	-1.03								+6	-2	. +2		+ 180	— 8.68	+ 10,00
9	+0°25									+6	+2			+ 7:65	- 13-82
10	·-o ·67										+6 .			+ 0.06	- 1.13
11	-2.7											+241.94	-115.83	+ 40'15	
12	-o ·4												+121.48	- 65 '60	+ 7.09
13	+6.0													+267 '03	-118.00
14	-3.1														+140.14

Resulting correlates.

$C_{z} = -0.003$	$C_6 = +0.727$	$C_{11} = -0.0112$
C2=+0.034	$C_7 = -0.495$.	$C_{12} = +0.0389$
$C_3 = -0.645$	$C_8 = -0.678$	$C_{13} = +0.0134$
$C_4 = -0.985$	$C_9 = -0.677$	$C_{14} = +0.0184$
C-=-0°437	$C_{10} = +0.809$	

Resulting corrections to observed directions.

//	//	//	//
(1)=+0.013	(9) = -0.340	(17) = -0.399	(25) = +0.001
(2) -0.042	(10) -0.569	(18) —o:334	(26) —o:125
(3) +0.573	(11) -0.012	(19) —0.057	(27) +o'106
(4) —o ·622	(12) +0.845	(20) +0.103	(28) —o ·176
(5) -0.612	(13) -0.593	(21) +o.596	(29) +0.192
(6) —o ·o37	(14) +0.032	(22) -0.435	(30) -0.193
(7) +0.471	(15) +0.649	(23) -0.044	(31) +0.102
(8) +0.548	(16) +0 '041 =	(24) + 0.185	(32) +0.087

Probable error of an observed direction o'674 $\sqrt{\frac{4.08}{14}} = \pm 0''.36$.

Resulling angles and sides of the third section of the triangulation west of the Atlanta base net.

No. Stations. Observed angles. Correct Spherical	4	Resulting angles and sites of the third section of the triangulation west of the Financial outst need									
Alpine 115 53 37 94 +0 61 38 55 1 38 4 866 804 4 72 577 90	No.	. Stations.	Obse	rved	angles.						
Cahaba 28			0	1	//				06.0		
Cheehahaw	i	Alpine		53	37 '94	+0.61		1 .38			
Horn	1	Cahaba	28	05	05 '73	+0.24	06 '30	1 .37		37 981 02	
Alpine		Cheehahaw	- 36	10	19.53	+0.04	19.52	1 '37	4.676 196 3	47 445 64	
Cheehahaw 27 39 56 44 -0 05 56 39 0 48 4 '247 564 0 17 683 33 [Laurel		Horn	94	14	22 '53	+0.62	23.12	0 '49	4 '579 566 6	37 981 02	
Laurel	2 <	Alpine	58	05	41 '40	+0.21	41 '91	0 '48	4 '509 625 5	32 331 47	
Caliaba		Cheehahaw	27	39	56 .44	0 .02	56.39	o ·48	4 '247 564 0	17 683 33	
Alpine		[Laurel	79	45	28.59	-0.61	27 '98	1 '14	4 .676 196 3	47 445 64	
Alpine	3 4	Caliaba	46	10	45 '15	-1 .50	43 '95	1 '13	4.241 410 1	34 786 45	
Haurel		Alpine	54	03	51 '77	-0.30	51.47	1.13	4 '591 482 6	39 037 55	
Alpine		Horn	32	17	41.89	-1 '44	40 '45	0.39	4.241 410 1	34 786 .45	
Kahatchee 82 09 11 01 -0.73 10:28 0.59 4.541 410 1 34 786 45 Alpine 45 10 58'35 -0.37 57'98 0.58 4'396 361 24 909'27 Alpine 52 39 54'38 -0.89 53'49 0'58 4'445 918 0 27 920'17 Kahatchee 38 47 10'52 +0'39 10'91 0'37 4'247 564 0 17 683'33 33 Horn 61 55 56'18 -0'58 55'60 0'37 4'247 564 0 17 683'33 33 Kahatchee 120 56'21'53 -0'34 21'19 0'57 4'685 686 5 48 426'88 Laurel 29 25 25'28 +0'07 25'35 0'56 4'443 056 8 27 736'82 Kahatchee 120 56 21'53 -0'34 21'19 0'57 4'685 686 5 48	4 4	Laurel	15	45	33 °07	-0.44	32 .63	0 '39	4 '247 564 0	17 683 '33.	
Laurel		Alpine	131	56	48.89	-0.81	48 .08		4 .685 o86 2	48 426 88	
Alpine		Kahatchee	82	09	10,11	-0.73	10 .58	0.59	4.241 410 1	34 786 45	
Alpine	5.5	Laurel	45	10	58 '35	-o ·37	57 '98	0.28	4.396 361 0	24 909 27	
6 Alpine Horn 61 55 56 18 -0 58 55 60 0 37 Kahatchee Horn 61 55 56 18 -0 58 55 60 0 37 Kahatchee 120 56 21 53 -0 34 21 19 0 57 Kahatchee 120 56 21 53 Horn 29 38 14 29 +0 86 15 15 0 56 4 443 056 8 27 736 82 4 685 086 5 48 426 88 Keogufka 60 40 04 92 +0 90 05 01 1 66 Horn 66 52 43 25 +1 12 44 37 1 67 Kahatchee Horn 66 52 43 25 +1 12 44 37 1 67 Kahatchee Horn 77 14 28 96 Horn 78 16 35 16 Weogufka 105 22 02 31 Horn 106 15 20 03 11 42 89 Kahatchee 133 41 36 16 -0 28 34 88 0 47 Kahatchee 133 41 36 16 -0 28 34 88 0 47 Kahatchee 133 41 36 16 Jamison 32 28 40 43 +0 30 40 73 0 99 4 445 918 0 27 920 17 4 444 562 6 27 641 56 Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 37 18 31 -0 05 18 26 062 4 441 562 5 27 641 55 12 Kahatchee 39 39 95 51 +0 29 99 80 0 98 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 12 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 441 562 5 27 641 55 18 69 88 12 Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 18 69 88 12 Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 18 69 88 12 Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 18 69 88 18 69 88 19 69 88 10 60 60				39		-o·89	53 '49	o •58		27 920 17	
Horn		Kaliatcliee	38	47	10.2	+0.39	10.01	0.37	4 247 564 0	17 683 '33	
Horn	6	Alpine	79	16	54 '51	+0 08	54 '59	0.36	4 '443 056 7	27 736 .82	
Taurel 29 25 25 28				55	56 '18	-0.58	55 '60	0.37	4.396 361 0		
Horn	1	Kahatchee	120	56	21 '53	0'34	21'19	o ·57	4 .685 086 5	48 426 88	
Horn	7	Laurel	29	25	25 '28	+0 '07	25 '35	0.56	4 '443 056 8	27 736 83	
8 Laurel Horn 66 52 43 25 Weogufka 37 23 29 76 Horn 37 14 28 96 Horn 37 14 28 96 Horn 66 52 31 35 16 Laurel Laurel Laurel Rahatchee 133 41 36 16 Horn 32 28 40 43 Horn 33 28 40 43 Horn 34 15 61 1 66 Horn 35 32 11 99 Hora Horn 10 Laurel Kahatchee 133 29 76 Horn 11 Laurel Rahatchee 133 29 76 Horn 14 28 96 Horn 15 22 02 31 Hora 16 44 042 46 Horn 16 4 643 871 6 44 042 46 Horn 17 10 4 643 871 6 44 042 46 Horn 18 10 20 20 2 31 Hora 19 20 20 2 31 Hora 21 0 63 Hora 22 16 35 16 Hora 23 01 49 99 Hora 28 50 27 Hora 29 0 4 444 59 18 0 27 920 17 Hora 20 40 73 0 99 Hora 20 40 62 1 350 2 41 816 74 Hora 20 17 17 0 02 17 15 0 63 Hora 21 18 16 74 Hora 22 16 65 Hora 23 16 35 76 Hora 24 4 641 3871 6 44 042 46 Hora 25 16 40 62 Hora 26 62 7 641 56 Hora 27 920 17 Hora 28 34 88 0 47 Hora 39 40 73 0 99 Hora 30 99 Hora			-	_	-			_			
8 Laurel Horn 66 52 43 25 Weogufka 37 23 29 76 Horn 37 14 28 96 Horn 37 14 28 96 Horn 66 52 31 35 16 Laurel Laurel Laurel Rahatchee 133 41 36 16 Horn 32 28 40 43 Horn 33 28 40 43 Horn 34 15 61 1 66 Horn 35 32 11 99 Hora Horn 10 Laurel Kahatchee 133 29 76 Horn 11 Laurel Rahatchee 133 29 76 Horn 14 28 96 Horn 15 22 02 31 Hora 16 44 042 46 Horn 16 4 643 871 6 44 042 46 Horn 17 10 4 643 871 6 44 042 46 Horn 18 10 20 20 2 31 Hora 19 20 20 2 31 Hora 21 0 63 Hora 22 16 35 16 Hora 23 01 49 99 Hora 28 50 27 Hora 29 0 4 444 59 18 0 27 920 17 Hora 20 40 73 0 99 Hora 20 40 62 1 350 2 41 816 74 Hora 20 17 17 0 02 17 15 0 63 Hora 21 18 16 74 Hora 22 16 65 Hora 23 16 35 76 Hora 24 4 641 3871 6 44 042 46 Hora 25 16 40 62 Hora 26 62 7 641 56 Hora 27 920 17 Hora 28 34 88 0 47 Hora 39 40 73 0 99 Hora 30 99 Hora		Weogufka	60	40	04 '92	+0.03	05 '01	1 .66	4 .685 086 5	48 426 88	
Horn	-8			•				1 .66	4.643 871 6		
Weogufka 37 23 29 76 Horn 37 14 28 96 Horn 37 14 28 96 Horn 38 34 88 Sorar So				•	-		_				
9 { Kahatchee 105 22 02 31 +0 23 02 54 0 62 4 643 871 6 44 042 46 Horn 37 14 28 96 +0 25 29 21 0 63 4 441 562 6 27 641 56 Weogufka 23 16 35 16 -0 28 34 88 0 47 4 445 918 0 27 920 17 10 { Kahatchee 133 41 36 16 +0 28 50 27 0 47 4 441 562 4 27 641 55 Kahatchee 133 41 36 16 +0 11 36 27 0 48 4 708 307 5 51 086 66 Jamison 32 28 40 43 +0 30 40 73 0 99 4 445 918 0 27 920 17 Laurel 53 32 11 99 +0 44 12 43 0 99 4 621 350 2 41 816 74 Kahatchee 93 59 09 51 +0 29 09 80 0 98 4 714 915 2 51 869 88 12 Jamison 40 40 17 17 -0 02 17 15 0 63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Horn 37 14 28 96		~		_							
Weogufka 10 { Weogufka	9 1										
Io Laurel 23 oi 49 99 +o 28 50 27 0 47 4 441 562 4 27 641 55 Kahatchee 133 41 36 16 +o 11 36 27 0 48 4 708 307 5 51 086 66 Jamison 32 28 40 43 +o 30 40 73 0 99 4 445 918 0 27 920 17 Laurel 53 32 11 99 +o 44 12 43 0 99 4 621 350 2 41 816 74 Kahatchee 93 59 09 51 +o 29 09 80 0 98 0 98 4 714 915 2 51 869 88 Jamison 40 40 17 17 -o 02 17 15 0 63 4 441 562 5 27 641 55 Kahatchee 39 42 26 65 -o 18 26 47 0 63 4 432 911 3 27 096 38 Weogufka 99 37 18 31 -o 05 18 26 0 62 4 621 350 2 41 816 74 Jamison 73 08 57 60 +o 28 57 88 1 14 4 708 307 5 51 086 66											
Kahatchee		_			-				-		
Jamison 32 28 40 43 +0 30 40 73 0 99 4 445 918 0 27 920 17 Laurel 53 32 11 99 +0 44 12 43 0 99 4 621 350 2 41 816 74 Kahatchee 93 59 09 51 +0 29 09 80 0 98 0 98 4 714 915 2 51 869 88 Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 432 911 3 27 096 38 Weogufka 99 37 18 31 -0 05 18 26 0 62 4 621 350 2 41 816 74 Jamison 73 08 57 60 +0 28 57 88 1 14 4 708 307 5 51 086 66	10 {							_			
II Laurel 53 32 11 '99 +0 '44 12 '43 0 '99 4 '621 350 2 41 816 '74 Kahatchee 93 59 09 '51 +0 '29 09 '80 0 '98 4 '714 915 2 51 869 '88 Jamison 40 40 17 '17 -0 '02 17 '15 0 '63 4 '441 562 5 27 641 '55 Kahatchee 39 42 26 '65 -0 '18 26 '47 0 '63 4 '432 911 3 27 096 '38 Weogufka 99 37 18 '31 -0 '05 18 '26 0 '62 4 '621 350 2 41 816 '74 Jamison 73 08 57 '60 +0 '28 57 '88 1 '14 4 '708 307 5 51 086 '66		Kahatchee	133	41	36.16	+0.11	36.52	0.48		51 086 66	
Kahatchee 93 59 09 51 +0 29 09 80 09 80 09 8 4 714 915 2 51 869 88 Jamison 40 40 17 17 - 002 17 15 063 4 441 562 5 27 641 55 Kahatchee 39 42 26 65 - 018 26 47 063 4 432 911 3 27 096 38 Weogufka 99 37 18 31 - 005 18 26 062 4 621 350 2 41 816 74 Jamison 73 08 57 60 + 028 57 8 114 4 708 307 5 51 086 66			32								
Jamison 40 40 17 17 -0 02 17 15 0 63 4 441 562 5 27 641 55 Kahatchee 39 42 26 65 -0 18 26 47 0 63 4 432 911 3 27 096 38 Weogufka 99 37 18 31 -0 05 18 26 0 62 4 621 350 2 41 816 74 Jamison 73 08 57 60 +0 28 57 88 1 14 4 708 307 5 51 086 66	11		53	32	11,99	+0.44					
12		Kaliatchee	, 93	59	09.21	+0.59	09.80	0.98	4 '714 915 2	51 869 88	
Weogufka 99 37 18 31 -0 05 18 26 0 62 4 621 350 2 41 816 74 [Jamison 73 08 57 60 +0 28 57 88 1 14 4 708 307 5 51 086 66		Jamison	40	40	17.17	-0 '02	17 '15	0.63	4 '441 562 5	27 641 55	
Weogufka 99 37 18 31 -0 05 18 26 0 62 4 621 350 2 41 816 74 [Jamison 73 08 57 60 +0 28 57 88 1 14 4 708 307 5 51 086 66	12	Kahatchee	39	42	26.65	-o.18	26.47	0.63		27 096 38	
				37		-0.02					
20 20 20 20 20 40 16 22 16 LIVE 4 122 011 2 27 006 28		Jamison	73	08	57 '60	+0.58	57 .88	1 .14	4 '708 307 5	51 086 66	
13 \ Hatter 30 30 22 00 +0 10 22 10 1 14 4 432 911 3 27 090 30	13	Laurel	30	30	22 '00	+0.19	22 .19	1 '14	4 '432 911 3	27 096 38	
Weogufka 76 20 43 15 +0 23 43 38 1 14 4 714 915 2 51 869 88		Weogufka	76	20	43 '15	+0.53	43 '38	1 '14	4 '714 915 2	51 869 88	

10. THE FOURTH SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, ALABAMA, 1888–1895.

The triangulation between the preceding terminal line and the southern limiting line, Creagh to Pollard, follows the valleys of the Coosa and Alabama rivers. It is abundantly supplied with check lines, making 30 conditions in the adjustment. The linear development is 209 kilometers (or 130 statute miles). The whole of the scheme lies south of latitude 33° and the natural elevation of all the spurs available for stations is less than 220 meters (or 722 feet); farther south the ground slopes gradually to the level of the Gulf. The approximate elevations of the stations are as follows:

	Meters.	Feet.
Perry	206	677
Wilder	216	710
Wetumpka	172	565
Parker	170	558
Lowndesboro	121	396
Mount Carmel	192	629
Lovers Leap	169	556
Bargenier	178	583
County Line	173	568
Ethridge	143	470
Fatama	165	540
Midway	171	562
Creagh	133	435
Pollard	121	397

The observations of the primary directions were made at night upon lights mounted over the respective stations.

At Pollard station it was necessary to mount the theodolite on a wooden structure

46.53 meters (or 152½ feet) above the ground, in order to raise it above the high woods obstructing the lines of sight.

Squaring the closing errors of the triangles we get the mean error $\sqrt{\frac{32.8}{28}} = \pm 1'' \cdot 08$ and the mean error of an angle $\frac{1.08}{\sqrt{3}} = \pm 0'' \cdot 63$, also the probable error of a direction, $\pm 0'' \cdot 30$.

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Alabama, 1888–1895.

Jamison, Chilton County, Alabama. February 1 and March 5, 1889, and May 7 to 14, 1890. 30cm repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope 2m-1 above the ground.

Number of directions. Objects observed.			Results from adjust- ment of third section. Corrections Corrections fourth of fourth section.					
			0	/	//	//	11	
	Laurel		0	00	59 .81			
	Weogufka		73	08	57 '69			
3	Wilder		151	38	56 .43	- 0 .82	55.61	
4	Perry		231	10	29 .86	+0.05	29 '91	
			1	Mean	correct	ion —0.12		

Weogufka, Coosa County, Alabama. May 28 to June 1, and December 5, 1888, to January 17, 1889. 30cm repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers.

		0	1	11	11	"
	Kahatchee	0	00	59.82		
1	Wetumpka	164	03	00.12	+0.67	00 '82
2	Wilder Jamison	200	00	45 °06	+0 '14	45 '20
	Jamison	260	22	41 '57		
		N	Iean	correcti	on +0.14	

Wilder, Autauga County, Alabama. June 13 to July 28, 1890. 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope 20^m·3 above the ground.

Number of directions.	Objects observed.		s fro ljustr	m station nent.	Corrections from adjust- ment of fourth section.	Final seconds.
		0	/	11	11	//
5	Wetumpka	0	00	00'00	-o ·32	59 .68
	Montgomery, Capitol	36	00	43 '94		
6	Lowndesboro	- 84	05	39 '74	-o ·74	39 '00
7	Lovers Leap	99	41	48 '39	-o ·o3	48 '36
8	Parker	145	24	54 '49	+0.16	54 .65
9	Perry	176	38	20 '73	+0.14	20.87
10	Jamison	226	24	43 '90	+0.81	44 '74
11	Weogufka	267	32	52 '91 ·	-0.02	52.86

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Alabama, 1888-1895—continued.

Perry, Chilton County, Alabama. July 30 to August 6, 1890. 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope 1^m·7 above the ground.

Number of directions.		Objects observed.	٠	Results from station adjustment.			Corrections from adjust- ment of fourth section.	Final seconds.
	,			0	/	11	" "	11
12	Jamison			0	00	00'00	-o ·o9 °	59 '91
13	Wilder			50	42	04 '96	-o ·o6	04.90
14	Parker		•	96	51	15 .52	+o ·15	15.40

Wetumpka, Elmore County, Alabama. March 6 to May 23, 1892. 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope 1^m·8 above the ground.

		0	/	11	11	//
19	Mount Carmel	0	00	00,00	+0.30	00°30
	Montgomery, Capitol	15	36	22 '25		
20	Lowndesboro	39	09	11.09	+o ·12	11,51
21	Wil	97	04	34 '94	+0.35	35 *29
22	Weogufka	148	39	47 '96	-o ·77	47.19

Parker, Autauga County, Alabama. August 8 to 28, 1890. 30cm repeating theodolite No. 16. F. W. Perkins, observer.

		0	1	//	//	//
15	Perry	0	00	00,00	÷o •18	59 '82
16	Wilder	. 102	37	25 '30	-o ·17	25 '13
17	Lowndesboro	172	09	44 '08	+o ·o8	44.16
18	Lovers Leap	203	32	39.76	+0.27	40 '03

Lowndesboro, Lowndes County, Alabama. March 26 to April 25, 1892. 30 cm repeating theodolite No. 16. F. W. Perkius, observer. Telescope 20m·3 above the ground.

		0	1	//	//	//
23	Parker	0	00	00,00	-0.10	59 '90
24	Wilder	49	08	27 '40	+0.93	28:33
25	Wetunipka	87	07	28 .24	-0.13	28.11
	Montgomery, Capitol	IOI	49	48 45		
26	Mount Carmel	171	58	oo •86	-0.50	00.66
27	Bargenier	214	18	04 '20	-0 '24	03 '96
28	County Line	241	53	56 .76	+0.03	56 .79
29	Lovers Leap	274	05	53 °00	- 0 °29	52 71

Mount Carmel, Creushaw County, Alabama. May 26 to June 1, 1892. 30 cm repeating theodolite No. 16. F. W. Perkins, observer.

		0	/	11	//	//
39	Bargenier	0	00	00'00	+0.39	00 '39
40	Lovers Leap	28	34	48 .68	-0.03	48 '65
41	Lowndesboro	56	34	12:39	+0.01	12 '40
	Montgomery, Capitol	104	47	10 '94		
42	Wetumpka	112	34	33 '92	—o ·37	33 '55

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Atabama, 1888-1895—continued.

Lovers Leap, Lowndes County, Alabama. June 4 to 20, 1892. 30 cm direction theodolite No. 135. W. B. Fairfield, observer. Telescope 7^m·5 above the ground. Circle used in XVII positions.

Number of directions.	Objects observed. °			m station ment.	Corrections from adjust- ment of fourth section.	Final seconds.
		0	1	//	//	11
32	Lowndesboro	0	00	00,00	+0.04	00 '04
33	Mount Carmel	49	52	45 '80	+0.55	46 '35
34	Bargenier	75	30	10 '39	-0 '04	10,32
35	County Line	115	27	55 '55	+0.11	55 .66
36	Midway	142	57	02 '18	+0.19	02 '34
37	Fatama	171	54	21.21	-0.34	21 '17
38	Ethridge ·	185	50	02 '19	0.09	02 '10
30	Parker	297	17	01'14	-0.31	00 .83.
31	Wilder	330	38	43 '38	0.08	42 '30

Probable error of a single observation of a direction (D. and R.), $e_r = \pm o^{\prime\prime} \cdot 84$.

Ethridge, Dallas County, Alabama. June 6 to 11, 1892. 30cm repeating theodolite No. 16. F. W. Perkins, observer.

		0	1	11	//	11
53	Lovers Leap	0	00	60.00	+0°24	00 '24
54	County Line	51	57	27 '06	-o ·45	26 .61
55	Fatama	153	22	20 '95	+0.51	21 .19

Bargenier, Lowndes County, Alabama. March 18 to April 7, 1892. 30cm direction theodolite No. 135. W. B. Fairfield, observer. Circle used in XVII positions.

		0	1	//	//	11
43	County Line	О	ÓO	00 '00	+0.29	00 '29
44	Lovers Leap	53	59	14 *24	+0.07	14.31
45	Lowndesboro	98	41	19.91	+0.51	16 .85
	Montgomery, Capitol	132	30	40.19		
46	Mount Carmel	179	47	04 .00	-o '57 '	03 *52

Probable error of a single observation of a direction (D. and R.), $e_t = \pm o'' \cdot 72$.

County Line, Lowndes County, Alabama. May 10 to 16, 1892. 30cm direction theodolite No. 135. W. B. Fairfield, observer. Circle used in XVII positions.

		0	/	//	//	//
52	Bargenier	0	00	00,00	-0 '44	59 .26
47	Midway	138	31	49 '80	-0.27	49 '53
48	Fatama	177	24	01.32	+0.19	01.24
49	Ethridge	216	16	28 *96	+o ·38	29 '34
50	Lovers Leap	273	56	58 .58	-o ·42	57 .86
51	Lowndesboro	306	17	06 '94	+0.56	07 '50

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 0''.87$.

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Alabama, 1888-1895—continued.

Fatama, Wilcox County, Alabama. October 2 to November 26, 1895. 30cm direction theodolite No. 145. G. A. Fairfield, observer. Telescope 15m.8 above the ground. Circle used in XII positions.

Number of directions.		Objects observed.			m station nent.	Corrections from adjust- ment of Jourth section.	Final sections.
			0	1	"	//	//
59	Midway		0	00	00,00	-0 .04	59 . 96
60	Pollard		67	24	18.64	+0.33	18 '97
61	Creagh		96	02	10,39	-o ·12	10 '27
56	Ethridge		262	09	32 .81	-0.09	32 '72
57	Lovers Leap		274	51	31 '72	-o.ii	31 .61
58	County Line		301	52	12 '15	+0.03	13.18

Probable error of a single observation of a direction (D. and R.), $e_x = \pm o'' \cdot 58$.

Midway, Monroe County, Alabama. September 19 to October 20, 1895. 30cm repeating theodolite No. 16. F. W. Perkins, observer. Telescope 34m 5 above the ground.

			0	1	//	//	//
62	Pollard		0	00	00,00	-o.31	59 69
63	Creagh	•	23	41	51 '42	+0.51	51 .63
	Lookout Hill		50	50	15 .83		
64	Fatama ·		82	29	45 .86	-0.11	45 '75
65	Lovers Leap		148	24	08.10	. +0.10	01 .00
66	County Line		165	29	48 '23	+0.11 .	48 '34

Creagh, Clarke County, Alabama. August 9 to September 10, 1895. 30cm direction theodolite No. 135. G. A. Fairfield, observer. Telescope 12m4 above the ground. Circle used in XVI positions.

		0	1	11	//	//
	White	0	00	00,00		
70	Fatama	196	20	14.23	-0.30	14 '23
71	Midway	221	30	12 '95	+0.41	13 '36
72	Pollard	270	04	55 '03	-0.11	54 '92
	Red Hill	320	37	14 '96		

Probable error of a single observation of a direction (D. and R.), $e_i = \pm 0'' \cdot 76$.

Pollard, Monroe County, Alabama. August 29 to September 13, 1895. 30cm repeating theodolite No. 16. F. W. Perkins, observer. Telescope 46m·5 above the ground.

		0	/	11	//	//
	Red Hill	0	00	00,00		
	White	55	52	09 .60		
67	Creagh	93	01	16.49	-0.01	16.78
68	Fatama	170	38	48 '06	+0.13	48.18
69	Midway*	200	44	46 .47	-0.11	46 . 36

^{*}The correction - o" og was applied for ecceutricity.

Observation equations.

```
I \mid o = +1.84 - (2) + (3) - (10) + (11)
      II
          0 = +1.92 - (1) + (2) + (5) - (11) - (21) + (22)
     III | o=-1.60 - (3) + (4) - (9) + (10) - (12) + (13)
     IV
          0 = -0.19 - (8) + (9) - (13) + (14) - (15) + (16)
      \mathbf{V}
          0 = +1.24 - (5) + (6) - (20) + (21) - (24) + (25)
     VI
          0 = -2 \cdot 19 - (6) + (8) - (16) + (17) - (23) + (24)
    VII
          0 = -0.87 - (7) + (8) - (16) + (18) - (30) + (31)
   VIII
          0 = -0.72 - (17) + (18) + (23) - (29) - (30) + (32)
          0 = +0.63 - (19) + (20) - (25) + (26) - (41) + (42)
     IX
      \mathbf{X}
          0 = +1.21 - (26) + (27) - (39) + (41) - (45) + (46)
     XI
          0 = -0.02 - (27) + (29) - (32) + (34) - (44) + (45)
    _{
m XII}
          0 = +1.65 - (33) + (34) - (39) + (40) - (44) + (46)
   _{\rm XIII}
          0 = +0.08 - (34) + (35) - (43) + (44) - (50) + (52)
   XIV
          0 = +0.80 - (27) + (28) - (43) + (45) - (51) + (52)
    XV
          0 = +1.69 - (35) + (38) - (49) + (50) - (53) + (54)
   XVI
          0 = -0.97 - (48) + (49) - (54) + (55) - (56) + (58)
  XVII
          0 = -0.20 - (37) + (38) - (53) + (55) - (56) + (57)
 XVIII
          o = -0.6i - (47) + (48) - (58) + (59) - (64) + (66)
   XIX
          0 = +0.09 - (35) + (36) - (47) + (50) - (65) + (66)
    XX
          0 = -0.33 - (59) + (60) - (62) + (64) - (68) + (69)
   XXI
          0 = +0.14 - (60) + (61) - (67) + (68) - (70) + (72)
  XXII
          0 = +0.11 - (62) + (63) - (67) + (69) - (71) + (72)
 XXIII
          0 = \pm 4.3 - 2.90(1) + 4.10(2) + 0.82(3) - 0.39(4) - 1.72(12) + 3.74(13) - 2.02(14) + 0.47(15)
              +0.31(16)-0.78(17)-1.32(20)+2.99(21)-1.67(22)-1.82(23)+4.52(24)-2.70(25)
 XXIV
          0 = +3.8 + 6.39(6) - 7.54(7) + 1.15(8) + 0.78(16) - 4.23(17) + 3.45(18) + 1.08(30)
              -3.74(31)+2.66(32)
  XXV
          0 = +6.0 - 0.22(2) + 7.76(6) - 7.54(7) - 2.58(19) + 3.90(20) - 1.32(21) - 3.74(31)
              +5.52(32)-1.42(33)-3.96(40)+5.38(41)-1.42(42)
 XXVI
          0 = -1.4 - 2.32(26) + 3.55(27) - 1.23(29) - 0.55(32) + 4.39(33) - 3.84(34) - 2.47(39)
              +3.86(40)-1.39(41)
XXVII
          0 = +2.3 + 2.80(27) - 4.03(28) + 1.23(29) + 0.55(32) - 3.06(34) + 2.51(35) + 0.15(50)
              -1.55(51)+1.40(52)
XXVIII
          0 = +1.3 - 0.75(35) + 8.49(37) - 7.74(38) - 2.61(48) + 3.94(49) - 1.33(50) - 6.81(56)
              +9.35(57) - 2.54(58)
 XXIX
          0 = +1.5 + 2.65(35) - 4.05(36) + 1.40(37) + 4.13(57) - 5.44(58) + 1.31(59) + 0.26(64)
              -6.84(65)+6.58(66)
  XXX
          0 = +5.6 + 0.87(59) - 4.72(60) + 3.85(61) + 4.51(62) - 4.79(63) + 0.28(64) + 0.61(70)
              -1.86(71)+1.25(72)
```

Normal equations.

		Cz	C ₂	Ċ3	C ₄	C ₅	C6	C ₇	C8	C ₉	Cio	C11	C12	C13	C ₁₄	C ₁₅	Czś	C17	C18
1	0=+1.84	+4	-2	-2															
2	+1 '92		+6			-2													
3	-1.60			+6	-2														
4	-0.19				+6		-2	-2											
5	+1 *24	.,				+6	-2			-2									
6	-2.19						+6	+2	-2										
7	-o·87							+6	+2										
8	-0.72								+6			-2							
9	+0.63									+6	-2								
10	+1.31										+6	-2	+2		-2				
IE	-0 02											+6	+2	-2	+2				
12	+1.65												+6	-2					
13	+0.08													+6	+2	-2			
14	+0.80														+6				
15	+1.69															+6	-2	+2	
16	-0.97																+6	+2	-2
17	-0.50																	+6	
18	-o.e1																		+6

Normal equations—completed.

		C19	C ₂₀	C21	C22	C ₂₃	C ₂₄	C ₂₅	C ₂₆	C ₂₇	C28	C ₂₉	C30
1 2 3 4 5 6		•••••	•••••	•••••		- 2.91	- 0°37 + 6°39 - 10°25		•••••				
7 8 9						- 1.04 + 1.38	+ 6°54 + 9°26	+ 3.80 + 5.52 - 0.32	+ o ·68 - o ·93	- o·68			
10 11 12		*****		• • • • •	•••••	* * * * * * * *	- 2°66	+ 5.38 - 5.52 - 2.18		+ 2.80 - 5.18 - 3.06			• • • • • • •
13 14 15		-2 +2							+ 3.84 - 3.55	- 3.88	+ 0.58 - 12.26		
16 17										- 0	+ 10°82 - 0°07	- 5.44 + 2.73	
18	0=+0.00	+2 +6	2							- 2:36	- 0.07 - 0.58	+ 13.07	+ 0.29
20	-0.33		+6	2	+2						_	- 1°05	- 9.82
21	+0.14			+6	+2								+ 9.51
22	+0.11				+6								- 6.19
23	-4·3 +3·8					+92 *50		- 9,10	* * * * 6	+ 1.46			
24 25	1 7							+135 '11 +234 '99	- 33 ·61	+ 3.04			
<u>≁</u> ى 26	ł.							1 -34 33	+76'75	+19.87	•••••		
27	+2.3								11- 10	+45 '94	- 2'08	+ 6.65	,
28	+1.3										+296 '91	+ 62.33	
29	+1.2											+163.80	+ 1,51
30	+5.6										• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	+86.61

Resutting correlates.

$C_{1} = -0.780$	$C_{ii} = -$	├o ·2 84	$C_{21} = +0.242$
$C_2 = -0.731$	C12=-	-0 *249	$C_{22} = -0.237$
$C_3 = +0.055$	$C_{i3} = +$	-0.108	$C^{53} = +0.0518$
$C_4 = +0.193$	C14=-	-0.397	$C_{24} = -0.0086$
$C_5 = -0.418$	$C_{15} = -$	-0 '390	$C_{25} = +0.0183$
C 6=+0 .409	. C ₁₆ =+	-0 '058	$C_{26} = -0.0760$
$C_7 = -0.043$	$C_{ij} = +$	-0.122	$C_{27} = -0.1020$
C ₈ =+0.345	$C_{18} = +$	-0 '200	$C_{28} = -0.0184$
$C_9 = -0.345$	C19=+	-0 '067	$C_{29} = -0.0237$
$C_{10} = -0.326$	$C_{20} = +$	-0.153	$C_{30} = -0.0944$

Resutting corrections to observed directions.

//
(55) = +0.513
(56) —o ·o88
(57) -0.115
(58) +0.034
(59) —0 '036
(60) +0.327
(91) -0.151
(62) .—0*312
(63) +0.512
(64) —0.110
(65) +0.095
(99) +0.111
(67) —0 0005
(68) +0.113
(69) —0.114
(70) -0.300
(71) +0.413
(72) —0.113

Probable error of an observed direction o $674\sqrt{\frac{7.77}{30}} = \pm 0''.34$.

Resulting angles and sides of the fourth section of the triangulation west of the Atlanta base net.

No.	Stations.	Obse	rved	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. dis- tances.	Distances in meters.
		. 0	1	//	11	//	11		
1	Wilder	41	o8	10' 60	-o ·88	08.13	0.81	4 432 911 3	27 096 38
1	Jamison	78	29	58.74	−o ·82	57 '92	0 '80	4 .605 982 4	40 362 91
	Weogufka	60	21	56 .21	-0.14	56 .37	0.81	4 553 909 0	35 802 14
	Wetumpka	51	35	13 02	-1,13	11.90	1 .03	4 605 982 4	40 362 91
2 {	Wilder	92	27	07 '09	-0.27	06.82	1 '04	4.711 520 4	51 466 00
	Wagguffra	35	57	44.91	-o ·53	44 * 38	1 .03	4.480 740 2	30 251 06
	Perry	50	42	04 '96	+0.04	05 '00	1 °05	4 '553 909 o	35 802 14
3 {	Jamison	79	31	33 °43	+0.86	34 *29	1 ,06	4 657 953 4	45 493 °93
	Wilder	49	46	23 °17	+0.70	23 .87	1 '05	4.548 055 3	35 322 81
	Parker	102	37	25 '30	+0.01	25 '31	o .6 8	4 .657 953 4	45 493 '93
4 {	Perry	46	09	10.59	+-0.51	10.20	0 .67	4 '526 629 6	33 622 47
	. Wilder	31	13	26 *24	-o ·o3	36,51	0 '67	4°383 230 I	24 167 .11

Resulting angles and sides of the fourth section of the triangulation west of the Atlanta base net—continued.

No.	Stations.	Obse	rved	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distance in meters.
	1	0	1	11	//	//	11		
	Lowndesboro	37	58	60 *84	-1.06	59 '7 ⁸	1 .06	4 480 740 5	30 251 06
5 {	Wilder	84	05	39 '74	—്റ∙42	39 '32	1 '07	4 .689 252 3	48 893 63
	Wetumpka	57	55	23.85	+0.54	21,00	1 .09	4.619 619 2	41 650 40
	Lowndesboro	49	08	27 '40	+1 .03	28 '43	1 '04	4 '526 629 6	33 622 '47
6 {	Parker	69	32	18.78	+0.56	19 '04	1 '04	4.619 619 5	41 650 43
	Wilder	61	19	14 *75	+0.60	15 .65	1 '04	4 591 081 3	39 001 '50
1	Lovers Leap	33	2 I	42 *24	+0.53	42 '47	1 '22	4 '526 629 6	33 622 47
7 {	Parker	100	55	14 '46	+0.45	14 '91	1 .53	4 '778 394 I	60 033 '57
	Wilder	45	43	06.10	+0.19	06 '29	I .55	4.641 191 1	43 771 '46
1	Lovers Leap	62	42	58.86	+0.35	59 '21	0 '75	4.291 081 3	39 001 '50
8 {	Parker	31	22	55 '68	+0.19	55 '87	0 '75	4.358 925 0	22 852 04
	Lowndesboro	85	54	07 *00	+0.18.	07 '18	0.76	4 641 191 2	43 771 '47
	Lowndesboro	135	02	34 '40	+1.51	35 .61	0.57	4 '778 394 1	60 033:57
9 {	Lovers Leap	29	21	16.65	+0.15	16.74	0.57	4 .619 619 4	41 650 42
	Wilder	15	36	08.65	+0.41	09.36	0.57	4 '358 924 9	22 852 04
1	Mount Carmel	56	00	21 '53	—o ·38	21.12	ı *54	4 .689 252 3	48 893 .63
10 {	Lowndesboro	84	50	32 .62	-o ·o7	32 '55	1 *53	4 '768 888 I	58 733 80
	Wetumpka	39	09	11.09	-o :18	16.01	1 '54	4 570 946 7.	37 234 60
1	Bargenier	81	05	47 '48	—o ·79	46 '69	0 .66	4 '570 946 7	37, 234 '60
11	Lowndesboro	42	20	03 '34	-0.02	03 '29	0.67	4 '404 518 7	25 381 .29
	Mount Carmel	56	34	12.39	-o ·37	12 '02	o ·67	4 '497 668 4	31 453 46
1	Lovers Leap	49	52	45 °80	+0.21	46.31	0.40	4 '570 946 7	37 234 60
12 {	Lowndesboro	102	07	52 '14	-0.09	52 .02	0.41	4 .677 654 1	47 605 17
	Mount Carmel	27	59	23 '71	+0.01	23 '75	0.70	4.358 924 8	22 852 03
	Lovers Leap	75	30	10 '39	-o ·o8	10.31	0.25	4 '497 668 4	31 453 46
13 {	Lowndesboro	59	47	48 .80	-o ° 04	48 .76	0.23	4 '448 358 9	28 077 53
1	Bargenier	44	42	02 °37	+0'14	02 '51	0.23	4 '358 924 8	22 852 '03
	Bargenier	125	47	49 .85	-o ·65	49 '20	0 '49	4.677 654 1	47 605 17
14 {	Lovers Leap	25	37	24 '59	−o ·58	24 '01	0 '49	4 '404 518 6	25 381 58
	Mount Carmel	28	34	48 .68	o ·42	48 26	0 '49	4 '448 358 9	28 077 53
	County Line	86	03	01 '72	10'0-	01.41	0 '34	4 '448 358 9	28 077 53
15 {	Lovers Leap	39	57	45 .16	+0.12	45 '31	0 '35	4 '257 120 0	18 076 73
	Bargenier	53	59	14 '24	-o ·22	14 '02	0.32	4 '357 278 3	22 765 56
	County Line	32	20	o8 ·66	+0.99	09 .65	0 '40	4 '358 924 9	22 852 04
16 {	Lovers Leap	115	27	55 '55	+0 .07	55 '62	0 '39	4.586 280 5	38 572 75
	Lowndesboro	32	II	56 .54	-0.35	55 '92	0 '40	4 '357 278 4	22 765 56

Resulting angles and sides of the fourth section of the triangulation west of the Atlanta base net—continued.

	.								
No.	Stations.	Obs	erved	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distances in meters.
		0	1	//	//	11	11		
[County Line	53	42	53 '06	-1.00	52 .06	0.48	4 '497 668 4	31 453 46
17 {	Lowndesboro	- 27	35	52 .26	+0.28	52 .84	0.48	4 '257 120 1	18 076 74
l	Bargenier	98	41	19.91	-o ·o8	16 .23	0.47	4 '586 280 5	38 572 75
ſ	Ethridge	51	57	27 °06	-o ·68	26.38	0 '44	4 '357 278 3	22 765 56
18 {	Lovers Leap	70	22	06 • 64	-0.51	06 '43	0 '45	4 '434 991 6	27 226 49
l	County Line	57	40	29°32	-o*8o	28 '52	0 '44	4 '387 868 6	24 426 92
ſ	Fatama	27	00	40.43	+0.12	40.58	0.80	4 '357 278 3	22 765 .56
19 {	Lovers Leap	56	26	25 '96	-0.46	25 '50	0.80	4 .620 873 4	41 770 86
	County Line	96	32	56 .93	-0.61	56.32	0.80	4 '697 224 2	49 799 41
(Fatania	39	42	39 '34	+0'12	39 46	0.60	4.434 991 6	
20 {	Ethridge	101	24	53 .89	+0.66	54 '55	0.61	4 620 873 3	41 770 85
20		38	52		+0.10	27 '80	0.60	4 427 241 8	
(County Line		22	27 '61	_0 °02	20 '93	0 '24	4 '697 224 2	
1	Ethridge	153		20 '95					49 799 41
21 {	Lovers Leap	13	55	40.68	+0.52	40 '93	0 '25	4 '427 241 9	
l	Fatama	12	41	58 *91	-o ·oʒ	58.88	0 '25	4 '387 868 7	24 426 92
ſ	Midway	83	00	02 '37	+0.55	02 *59	0.80	4 .620 873 3	41 770 85
22 {	Fatama	58	07	47 .85	-o °o7	47 '78	0.79	4 '553 155 5	35 740 08
	County Line	38	52	11.22	+0.46	12 '01	0.79	4 421 772 2	26 410 '23
(Midway	65	54	15 '94	+0.51	16.12	1.11	4 '697 224 2	49 799 41
23 {	Fatama	85	08	28 . 28	+0.08	28 '36	1.11	4 '735 254 5	54 356 87
	Lovers Leap	28	57	19 °33	-0.21	18.82	1.11	4 '421 772 4	26 410 25
ſ	County Line	135	25	08 '48	-0.19	08 '32	0.49	4 '735 254 5	54 356 87
24 {	Midway	17	05	46 '43	+0 02	46.45	0.48	4 '357 278 4	22 765 .56
l	Lovers Leap	27	29	06.63	+0.02	06 .68	0.48	4°553 ¹ 55 5	35 740 08
ſ	Pollard	30	05	58 '41	-o ·23	58 '18	1 .08	4 '421 772 3	26 410 24
25 {	Fatama	67	24	18 .64	+0.36	19 '00	1 .08	4 '686 818 9	48 620 44
į	Midway	82	29	45 .86	+0 .50	46 .06	1 .08	4.717 767 0	52 211 '60
(Creagh	25	09	58.42	+0.41	59 '13	1 .18	4 '421 772 3	26 410 24
26 {	Fatama	96	02	10.39	-0.09	10.30	1,19	4 '790 720 0	61 761 .81
l	Midway	58	47	54 °44	-0.35	54.15	1 .18	4 '725 276 4	53 122 24
-	Creagh	73	44	40.20	+0.19	40 .69	1 '13	4.717 767 0	52 211 60
27 {	Fatama	. 28	37	51 .75	-0.45	51 '30	1 .13	4 '415 967 1	26 059 56
. [Pollard	77	37	31 '27	+0.13	31 '39	1.13	4.725 276 4	53 122 24
1	Pollard	107	43	29 .68	-0.11	29 '57	1 *03	4 '790 720 0	61 761 81
28 {	Creagh	48	34	42 '08	-o ·53	41 '55	I '02	4 .686 818 9	48 620 44
	Midway	23	41	51 '42	+0.23	51 '95	1 '02	4 415 967 1	26 059 56
,		-)		4- 4-	1 - 03	0- 10		7 7-0 7-7 -	

II. THE FIFTH AND LAST SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET AND JUNCTION WITH THE DAUPHIN ISLAND BASE, 1895-1898.

This section extends to the Gulf at Mobile Bay and effects the junction with the Dauphin Island base line. It is composed of ten stations exclusive of the base stations, and presents a series of quadrilaterals. The stations are of very moderate height. Their approximate heights above the Gulf level are as follows:

	Meters.	Feet.
White	120	393
Red Hill	95	311
Coon	81	265
Dean	86	284
Cold Creek	83	274
Minette	73	240
Spring Hill	64	210
Daphne	46	152
St. Elmo	40	132
Fort Morgan	8	27
Dauphin Island East Base	I	3
Dauphin Island West Base	I	3

The country being well timbered and cutting impracticable, it was necessary to elevate the theodolité on scaffolds ranging from 12^m'4 to 46^m'5 in height, with several 37^m high. All observing was done at night on signal lights.

The mean closing error derived from 28 triangles composing the figure equals $\sqrt{\frac{38\cdot23}{28}} = \pm i''\cdot i7$; the mean error of an angle is $\pm 0''\cdot 68$, and the probable error of a direction, $0.674 \frac{i^*i7}{\sqrt{6}} = \pm 0''\cdot 34$.

For the several sections these last values are very nearly equal notwithstanding the number of observers, of instruments, and methods, and other circumstances, such as elevation of instruments, day or night observations, etc. The values of the probable error of a direction for the second, third, fourth, and fifth sections average \pm 0" 34, which indicates that the triangulation of Alabama is of a high degree of accuracy.

Abstracts of horizontal directions at stations composing the fifth and last section of the triangulation west of the Atlanta base net, 1895-1898.

Creagh, Clarke County, Alabama. August 9 to September 10, 1895. 30^{cm} direction theodolite No. 135. G. A. Fairfield, observer. Circle used in XVI positions. Telescope 12^m·4 above the ground.

Number of directions.	Objects observed.				Corrections of fifth section.	Final seconds
		0	1	11	11	//
4	White	0	00	00,00	+0.19	00.16
	Pollard	270	04	54 '92		
3	Red Hill	320	37	14 '96	+0.31	15 °27

Pollard, Monroe County, Alabama. August 29 to September 13, 1895. 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope 46^m·5 above the ground.

		0	/	11	11	//
I	Red Hill	О	00	00°00	-0 '40	59.60
2	White	55	52	09.60	+0.17	09 '77
	Creagh	93	OI	16.78		

White, Clarke County, Alabama. September 17 to 25, 1895. 30cm direction theodolite No. 145. G. A. Fairfield, observer. Telescope 27m-9 above the ground. Circle used in XII positious.

Number of directions.		Objects observed.			m station nent.	Corrections from adjust- ment of fifth section.	Final seconds.
			0	/	11	//	11
5	Creagh		0	00	00,00	-o ·38	59.62
6	Pollard		52	55	48 '49	+0.19	48 .68
7	Red Hill		116	57	48.60	+0.15	48 .72
8	Dean		141	23	19 '31	+0.07	19:38
9	Coon		192	52	41 '17	0.00	41 '17

Probable error of a single observation of a direction (D. and R.), $e_i = \pm \alpha'' \cdot 59$.

Red Hill, Baldwin County, Alabama. July 21 to 24, 1895. 30 cm repeating theodolite No. 16. F.W. Perkins, observer. Telescope 36 m·8 above the ground.

		0	/	11	//	11
10	Dean	0	00	00,00	+0.12	00.12
11	Cold Creek	26	51	17'10	-o.31	16 '79
12	Coon	67	OI	49 *80	-O .55	49.28
13	White	124	29	52 '41	-0.13	52.58
14	Creagh	148	09	19 '38	+0.31	19.69
15	Pollard	184	35	44 '23	+0.18	44 '41

Coon, Washington County, Alabama. August 7 to 20, 1895. 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope 31^{rm} o above the ground.

	· ·	0	/	//	//	//
16	White	0	00	00°00	4-0.18	00.18
17	Red Hill	46	37	o7 ·81	0.00	07 '81
18	Dean	82	26	17 '11	−o ·56	16.22
19	Minette	101	o8	54 °33	+o:16	54 '49
20	Cold Creek	129	46	38.59	+0.23	38.82

Abstracts of horizontal directions at stations composing the fifth and tast section of the triangulation west of the Atlanta base net, 1895-1898—continued.

Dean, Baldwin County, Alabama. July 28 to 31, 1895. 30cm repeating theodolite No. 16. F. W. Perkins, observer. Telescope 24m 9 above the ground.

Number of directions.	Objects observed.			m station nent.	Corrections from adjust- ment of fifth section.	Final seconds.
		0	/	11	//	//
21	Minette	0	00	00,00	+o ·15	00.12
22	Cold Creek	58	57	45 '47	-o ·14	45 '33
23	Coon	112	24	09 '45	+o ·48	09 '93
24	White	158	28	36 '00	−o ·65	35 '35
25	Red Hill	189	33	14.05	+0.19	14.51

Cold Creek, Mobile County, Alabama. December 1 to 9, 1895. F. W. Perkins and G. A. Fairfield, observers. April 18 to May 1, 1897. W. B. Fairfield, observer. 30 cm repeating theodolite No. 16. Telescope 31 above the ground.

		0	/	//	//	11
26	Coon	0	00	00,00	-o ·24	59.76
27	Red Hill	56	39	59 '33	+0.01.	59 '34
28	Dean	79	13	14 .83	+0.42	15 .52
29	Minette	113	48	34 '16	-0.09	34 '07
30	Daphne	156	54	45 '74	-o.io	45 .64
	Mobile, Court-House tower	172	09	04 '4		
31	Spring Hill	191	47	54 '07	0 '00	54 '07

Minette, Baldwin County, Alabama. April 9 to 15, 1897. 30 cm repeating theodolite No. 16. W. B. Fairfield, observer. Telescope 37 above the ground.

		0	/	11	11	//
32	Daphne	0	00	00'00	-o ·37	59 .63
	Mobile, Court-House tower	32	20	20.40		
	Mobile, transit pier (public square)	33	02	05 '48		
33	Spring Hill	45	32	20 '09	+0 *45	20 .54
34	Cold Creek	101	58	51 '79	-0 '02	51 '77
35	Coon	139	32	34 .86	+0.12	35 °01
36	Dean	188	25	49 °05	-o ·22	48.83

Spring Hitt, Mobile County, Alabama. April 4 to June 3, 1897. 30 cm repeating theodolite No. 16. W. B. Fairfield, observer. Telescope 37^m above the ground.

		0	//	//	//	//
37	Cold Creek	0	00	00 00	+0.03	00 °03
38	Minette	45	34	11.13	-o ·49	10.64
	Mobile, transit pier	82	03	43 *44		
	Mobile, Court-House tower	83	20	20 '54		
39	Daphue	103	31	00 '32	-o ·22	00,10
	Middle Bay Light-House	145	00	31 '92		
40	Fort Morgan	156	27	50 '23	+0.28	50.21
41	St. Eliuo	187	37	06.49	+0.40	06 '89

Abstracts of horizontal directions at stations composing the fifth and last section of the triangulation west of the Atlanta base net, 1895-1898—continued.

Daphne, Baldwin County, Alabama. May 4 to 15, 1897, and March 18 to 19, 1898. 30 cm repeating theodolite No. 16. W. B. Fairfield, observer. Telescope 36'9 meters above the ground.

Number of directions.	Objects observed.			om station tment,	Corrections from adjust- ment of fifth section.	Final seconds.
	•	0	1	//	11	//
42	Fort Morgan	0	00	00'00	+0.39	00 '39
	Sand Island Light-House	I	36	05 '71		
	Middle Bay Light-House	13	51	14 '53		
43	Dauphin Island East Base	14	23	22 °41	-1.11	21 '30
44	St. Elmo	55	47	34 '33	-o °оз	34 '30
45	Spring Hill	98	54	47 '03	+0.32	47 '35
	Mobile, Court-House tower	III	23	46 °96		
	Mobile, transit pier	111	34	43 '93		
46	Cold Creek	140	30	40 .66	+0 *04	40 '70
47	Minette	175	25	38 '47	+0.40	38.87

St. Etmo, Mobile County, Alabama. June 5 to 7, 1897, and January 31 to February 18, 1898. 30 cm repeating theodolite No. 16 in 1897 and 30 cm repeating theodolite No. 32 in 1898. W. B. Fairfield, observer. Telescope 37 I meters above the ground.

		0	1	//	//	11
48	Spring Hill	О	00	00,00	—o · 30	59 '70
49	Dapline	52	46	41 .55	+0 04	41 '26
	Middle Bay Light-House	93	42	19 '17		
50	Fort Morgan	130	45	49 '03	+0.55	49 '25
	Sand Island Light-House	137	29	48 .87		
51	Dauphin Island East Base	146	48	03 .63	0.00	03 .63
52	Dauphin Island West Base	167	16	23 '72	+0.02	23 '77
	Point aux Pins 1898	192	38	47 '34		

Fort Morgan, Baldwin County, Alabama. June 14 to 20, 1897, and January 20 to 24, 1898. 30 cm repeating theodolites Nos. 16 and 32. W. B. Fairfield, observer. Telescope 14'2 meters above the ground.

		0	/	11	//	//
53	Dauphin Island West Base	0	00	00,00	+0 *45	00 '45
54	Dauphin Island East Base	8	30	12 .62	+0, 23	12 '88
	Baylor's West Base 1892	10	02	56 '90		
	Point aux Pins 1898	27	38	10.20		
55	St. Elmo	55	51	43 '92	—o ·2 3	43 '69
56	Spring Hill	- 73	56	39 .86	− o ·58	39 .58
	Middle Bay Light-House	89	35	36.84		
57	Daphue	102	05	04 '52	+0.14	04 '60
	Sand Island Light-House	296	55	25 '96		

Abstracts of horizontal directions at stations composing the fifth and tast section of the triangulation west of the Atlanta base net, 1895-1898—continued.

Dauphin Island East Base, Mobile County, Alabama. August 2 to 30, 1897. 30 cm repeating theodolites Nos. 16 and 32. W. B. Fairfield, observer. Telescope 23.4 meters above the ground up to August 27, after which only 14.2 meters.

Number of directions.	· Objects observed.			nı station nent.	from adjust- ment of fifth section.	Final seconds.	
		0	1	11	//	//	
58 E	Dauphin Island West Base	0	00	00'00	+0.53	00 '23	
P	Point aux Pins 1898	46	19	52.90			
59 S	t. Elmo	80	51	20 '71	-o ·o8	20 .63	
60 I	Daphne	125	25	47 '09	+0.26	47 '65	
61 F	fort Morgan	197	27	36 .01	—o ·71	36 .50	
s	and Island Light-House	224	55	51 '14			

Dauphin Island West Base, Mobile County, Alabama. September 1 to 6, 1897, and February 23 to 27, 1898. 30 cm repeating theodolite No. 32. W. B. Fairfield, observer. Telescope 23.4 meters above the ground.

			0	/	//	//	//
	Casotte 1898		0	00	00,00		
	Point aux Pins 1898		46	29	59 '46		
62	St. Elmo		73	18	25 '29'	+0.17	25 .46
63	Dauphin Island East Base		151	58	46 .46	-o·74	45 '72
	Baylor's West Base 1892	0	156	02	30.41		
64	Fort Morgan		. 160	56	08 '79	+0.26	09:35
	Sand Island Light-House		174	34	48.52		
	Horn Island Light-House		333	31	03 '21		

Observation equations.

I
$$0=-0.56-(2)+(4)-(5)+(6)$$
III $0=-0.57-(1)+(3)-(14)+(15)$
III $0=-0.80-(1)+(2)-(6)+(7)-(13)+(15)$
IV $0=+0.21-(7)+(9)-(12)+(13)-(16)+(17)$
V $0=+1.27-(10)+(12)-(17)+(18)-(23)+(25)$
VI $0=+1.94-(8)+(9)-(16)+(18)-(23)+(24)$
VII $0=-2.07-(18)+(20)-(22)+(23)-(26)+(28)$
VIII $0=-0.57-(11)+(12)-(17)+(20)-(26)+(27)$
IX $0=+0.99-(21)+(22)-(28)+(29)-(34)+(36)$
X $0=-0.40-(19)+(20)-(26)+(29)-(34)+(35)$
XII $0=-0.71-(29)+(30)-(32)+(34)-(46)+(47)$
XIII $0=-1.17-(32)+(33)-(38)+(39)-(45)+(47)$
XIV $0=-1.31-(39)+(41)-(44)+(45)-(48)+(49)$
XV $0=-1.14-(39)+(40)-(42)+(45)-(56)+(57)$
XVII $0=-0.13-(42)+(44)-(49)+(50)-(55)+(57)$
XVII $0=-0.13-(42)+(44)-(49)+(50)-(55)+(57)$
XVII $0=-0.169-(43)+(44)-(49)+(51)-(59)+(60)$

Observation equations—continued.

```
XX 0 = +2.87 - (42) + (43) - (54) + (57) - (60) + (61)
    XXI 0 = -3.4 - 1.43(1) + 4.21(2) + 2.57(3) - 2.57(4) - 3.59(13) + 4.80(14) - 1.21(15)
   XXII 0 = -1.9 + 4.11(7) - 4.63(8) + 0.52(9) + 1.99(16) - 4.90(17) + 2.91(18) + 0.48(23) - 3.49(24)
              +3.01(25)
  XXIII | \circ = -6.6 + 3.26(10) - 4.15(11) + 0.89(12) + 2.91(17) - 4.85(18) + 1.94(20) + 0.40(26) - 5.07(27)
              +4.67(28)
  XXIV \mid o = +5.4 + 4.28(18) - 6.22(19) + 1.94(20) + 0.40(26) - 3.45(28) + 3.05(29) + 0.14(34) - 1.84(35)
               +1.70(36)
   XXV
           0 = -1.4 - 0.45(29) + 3.02(30) - 2.57(31) - 2.07(32) + 3.47(33) - 1.40(34) - 1.87(45) + 2.37(46)
              -0.50(47)
  XXVI
           0 = -4.7 + 0.22(39) - 3.49(40) + 3.27(41) + 1.43(42) - 3.68(44) + 2.25(45) + 4.43(55) - 6.45(56)
              +2.02(57)
. XXVII |0=\pm 14.2-8.20(42)\pm 10.59(43)-2.39(44)\pm 0.15(49)\pm 7.33(50)-7.48(51)-2.07(54)
               +1.94(55)+0.13(57)
XXVIII \quad o = -21.8 + 7.33(50) - 12.97(51) + 5.64(52) + 14.09(53) - 16.03(54) + 1.94(55) + 0.42(62)
               -13.78(63)+13.36(64)
```

Normal equations.

No.		Cz	C ₂	C ₃	C_4	C ₅	C ₆	C ₇	C8	C ₉	Cro	Cxx	C12	C13	C14	C ₁₅	C16	C17	C18
1	0=-0.56	+4		-2															
2	-o.22		+4	+2															
3	-o ·8o			+6	-2														
4	+0.51	1			+6	-2	+2		~- 2										
5	+1.52					+6	+2	-2	+2										
6	+1 *94						+6	-2											
7	-2.07							+6	+2	-2	+2								
8	·-o ·57								+6		+2								
9	+0.09									+6	+2	-2	-2						
10	-0.40										+6	-2	-2						
11	+0.89											+6	+2	-2					
12	-0.41												+6	+2					
													10	+6	-2	-2			
13	-1.17													7-0	+6				
14	-1.31															+2	-2		
15	-1.14				• • • •		****		• •		• • •		• • •	• • •	• • •	+6	+2		
16	-0.13																+6	-2	
17	+o °46																	+6	+2
18	-2.03																		+6
		1																	7-0

Normat equations—completed.

No.	1	C19	Caò	C ₂₁	C ₂₂	C23	C ₂₄	C ₂₅	C ₂₆	C ₂₇	C ₂ 8
1				- 6·78							
2				- 2 01							
3				+ 8 *02	+ 4.11						
4				- 3.59	-10.48	+ 2°02					
5					+10.34	-10.13	+ 4.28		****		
6					+ 2°10	- 4°85	+ 4.28		,		
7					- 2.43	+11.09	ό°19				
S					+ 4 *90	— 1.40	+ 1.54				
9						- 4.67	+ 8.06	+ 0.95			
10	1					+ 1 '54	+ 8 -83	+ 0.95			
11							- 2.91	− 6 *99			
12							- 2 91	+ 1.27			•
13								+ 6.91	- 2.03		
14		-2						— 1 ·87	+ 8.98	+ 2°54	
15			+2					- 1.87	+ 5.58	+ 8.33	
16		+2	+2						- 7.52	+ 11.18	+ 5°39
17									+ 4.43	- 5.39	0 '90
ıs			-2							- 2 07	- 2.98
IQ (0= 1'69	+6	-2						- 3.68	- 20 61	- 12.97
20	+ 2.87		+6						+ 0.59	+ 20*99	÷ 16°03
21	- 3.4			+70°37							
22	- 1'9				+96.21	- 28:37	+12.45				
23	- 6.6					+112.07	-32.95				
24	+ 5.4						+58 '43	- 1.57			
25	- 1'4							+43.58	- 4.51		
26	- 4.7								+108.88	+ 5 '93	+ 8.59
27	+14.2									+302 *87	+ 187 69
28	-21 '8										+1081 .27

Resulting correlates.

$C_z = +0.377$	$C_{10} = +0.084$		$C_{19} = +0.082$
$C_2 = +0.091$	$C_{11} = -0.028$		$C_{20} = -0.479$
$C_3 = +0.188$	C12=-0.063		$C_{23} = +0.843$
$C_4 = +0.363$	$C_{13} = +0.458$		$C_{22} = +0.0718$
$C_5 = -0.060$	$C_{14} = +0.302$		$C_{23} = +0.0325$
$C_6 = -0.400$	$C_{15} = +0.383$	•	$C_{24} = -0.0387$
$C_7 = -0.014$	$C_{16} = +0.177$		$C_{25} = -0.0102$
$C_8 = +0.171$	$C_{17} = -0.159$		$C_{26} = +0.0307$
$C_9 = -0.149$	C18=+0.530		C ₂₇ =-0 '0563
			$C_{28} = +0.0367$

,			Corr	rections.			
	//		//		//		11
(1)=	=-0 '400	(17)=	=-0 005	(33)=	=+0.449	(49)=	=+o ·o35
(2)	+0.199	. (18)	o ·560	(34)	-0.016	(50)	+0 '222
(3)	+0.308;	(19)	+o:157	(35)	+0.122	(51)	—о 'ооз
(4)	+0.190	(20)	+0.556	(36)	—o ·215	(52)	+0 '048
(5)	—o ·377	(21)	+0 149	(37)	+0.028	(53)	+0.446
(6)	+0.189	(22)	—о :135	(38)	−o ·486	(54)	+0.529
(7)	+0.150	(23)	+o ·48o	(39)	-0.550	(55)	—o ·23 о
(8)	+0.068	(24)	—o ·651	(40)	+o ·276	(56)	—o '581
(9)	0 '000	(25)	+o ·156	(41)	+0.403	(57)	+0.136
(10)	+0.199	(26)	—o ·243	(42)	+0.392	(58)	+0.530
(11)	-o ·306	(27)	+0 .006	(43)	-1.112	(59)	—o °o82
(12)	—o ·223	(28)	+0 '420	(44)	-o ·o31	(60)	+0.261
(13)	-o ·128	(29)	-o °o87	(45)	+0.316	(16)	—o ·709
(14)	+o °314	(30)	-o °095	(46)	+0.038	(62)	+0'174
(15)	+o'177	(31)	-0,001	(47)	+o °400	(63)	—o ·736
(16)	+0.180	(32)	-o ·373	(48)	-0 '302	(64)	+o •561
	Pre	obable error of	an observed	direction o 6	$74\sqrt{\frac{7.38}{28}} = 3$	± o'' ·35.	

Resulting angles and sides of the fifth and last section of the triangulation west of the Atlanta base net.

No.	Stations.		erved	l angles.	Correc- tion.	ical	Spher- ical excess.	Log. distances.	Distances in meters.
,	White	0		18:40	//	11	0:44	A *41 = 06 = 1	26 200 106
		52	55	48 '49	+0.57	49 06	0 '44	4 415 967 1	26 059 56
1	Creagh	89	55	05 '08	+0.19	05 '24	0 '43	4 '514 017 4	32 660 09
Į	Pollard	37	09	07 '18	-0.12	07 '01	0 '44	4 '295 003 8	19 724 40
ſ	Red Hill	36	26	24 .85	-o ·14	24 '71	o '75	4 '415 967 1	26 059 56
2 {	Creaglı	50	32	20 '04	+0,31	20 '35	0 '75	4 529 843 1	33 872 18
{	Pollard	93	OI	16 78	+0 '40	07 *18	0 '74	4.641 590 9	43 811 .78
ſ	Red Hill	60	05	51 .82	+0.30	52 '12	0.78	4.214 017 4	32 660 09
3 {	White	64	10	60,11	-o o7	60 '04		4.529 843 1	33 872 18
۱	Pollard	55	52	09.60	+0.57	10'17	0.48	4 '493 964 7	31 186 36
						-			
ĺ	White	116	57	48 .60	+0.49	49 '09	0 '47	4.641 590 9	43 811 .78
4 {	Creagh	39	22	45 '04	-0.12	44 .89	0 '46	4 '493 964 8	31 186 .37
1	Red Hill	23	39	26 '97	. +0 *44	27 '41	0.46	4 295 004 0	19 724 41
ſ	Coon	46	37	07 .81	-o.18	07 '63	0 '93	4 '493 964 7	31 186 .36
5 {	White	75	54	52 '57	-o ·12.	52 '45	0 '92	4.619 293 4	41 619 17
- (Red Hill	57	28	02 .61	+0.09	02 '70	0.93	4 558 422 2	36 176 14
1	Dean	31	04	38 '05 .	+0.81	38 .86	0.54	4 '493 964 7	31 186 36
6 {	White	24	25	30 '71	-0.02	30 .66	0.54	4 '397 629 6	24 982 14
	Red Hill	124	29	52 '41	-0.30	52 '11	0 '55		
,	•	4 64	-9					4 '697 157 5	49 791 76
	Dean	77	09	04 '60	-0.32		0.81	4 '619 293 4	41 619 17
7 {	Coon	35	49	09 '30	-0.26	08.74	0.81	4 '397 629 5	24 982 13
	Red Hill	67	10	49 '80	-0:39	19'41	0.81	4 '594 429 9	39 303 38

Resulting angles and sides of the fifth and last section of the triangulation west of the Atlanta base net—continued.

No.	Stations.	Obse	erved	angles.	Correc- tion.	ical	Spher- ical excess.	Log. dis- tauces. Distances in meters.	
	,	٥	1	11	//	11	11		
(Coon	82	26	17.11	-o ·74	16 '37	1 '20	4 '697 157 5 49 791 '76	
8 {	White	51	29	21 .86	—o ·o7	21 '79	1,19	-4 '594 430 O 39 303 '39	
l	Dean	46	04	26 .22	-1.13	25 '42	1 19	4 '558 422 3 36 176 '15	
1	Cold Creek	79	13	14 .83	+0.66	15 °49	0.48	4 '594 429 9 39 303 '38	
9 {	Coon	47	20	21 '48	+0 '79	22.27	0.49	4 '468 673 0 29 422 '05	
1	Dean	53	26	23.98	+0.62	24 .60	0.79	4.202 005 8 35 136.85	
ſ	Cold Creek	56	39	59 '33	+0 '25	59.58	1 .13	4.619 293 4 41 619.17	
10 {	Coon	83	09	30.78	+0.54	31 '02	1.15	4 .694 251 8 49 459 .74	
l	Red Hill	40	10	32 '70	+0.08	32 . 78	1 .13	4.202 005 8 35 139.85	
1	Dean	130	35	28 '58	+0.29	28 .87	0.48	4 '694 251 8 49 459 '74	
11 {	Cold Creek	22	33	15 '50	+0.42	15 '92	0.47	4 397 629 6 24 982 14	
l	Red Hill	26	51	17 '10	-0.47	16 '63	0 '47	4 468 673 1 29 422 06	
ſ	Minette	86	26	57 *26	-o ·2 0	57 '06	0 '35	4.468 673 0 29 422.05	
12	Cold Creek	34	35	19 '33	-o '51	18.82	0.36	4 223 609 6 16 734 38	
	Dean	58	57	45 '47	-0.28	45 '19	0.36	4 '402 402 0 25 258 '17	
ſ	Minette	48	53	14 '19	−0 '37	13 '82	0 '52	4 '594 429 9 39 303 '38	;
13 {	Coon	18	42	37 '22	+0.72	37 '94	0 '52	4 223 609 8 16 734 39	
	Dean	112	24	09 '45	+0 *34	09 '79	0 *51	4 683 316 4 48 229 90	
	Cold Creek	113	48	34.16	+0.19	34 '32	0.63	4.683 316 4 48 229.90	
14 {	Coon	28	37	44 *26	+0 07	44 '33	0.63	4 '402 402 0 25 258 '17	
Ų	Minette	37	33	43 '07	+0.12	43 '24	0.63	4.207 003 0 32 136.83	
	Spring Hill	45	34	11.13	-o ·51	10.62	0.62	4 402 402 0 25 258 17	
15 {	Cold Creek	77	59	19.91	+0.09	20 '00	0.61	4 539 029 5 34 596 29)
Į	Minette	56	26	31 '70	-o ·47	31 *23	0 .65	4 '469 457 8 29 475 '27	
	Dapline	34	54	57 '81	+0.36	58.17	0.63	4 '402 402 0 25 258 '17	,
16 {	Cold Creek	43	06	11.28	-0.01	11.22	0 '63	4 '479 341 0 30 153 '73	,
Į	Minette	101	58	51.79	+0.36	52 '15	0.63	4.635 156 6 43 167.47	,
	Daphne	76	30	51.44	+0.08	51 '52	0.63	4 '539 029 5 34 596 '29)
17 {	Spring Hill	57	56	49.19	+0.52	49 °46	0.63	4 '479 341 0 30 153 '73	
1	Minette	45	32	20 '09	+0.82	20.91	0.63	4 '404 704 4 25 392 '44	
	Spring Hill	103	31	00.35	-0 '25	00.07	0.61	4 635 156 6 43 167 47	,
18 {	Cold Creek	34	53	08 '33	+0,10	08 '43	0 '62	4 '404 704 3 25 392 '43	3
	Daphne	41	35	53 .63	-0'28	53 '35		4 '469 457 7 29 475 '27	7
	St. Elmo	52	46	41 *22	+0.34	41 .26	0 '47	4 '404 704 4 25 392 '44	1
19	Spring Hill	84	06	06 '17	+0 '62	06 '79	0 '46	4 '501 323 3 31 719 '28	3
	Dapline	43	07	12.40	+0.32	13.02	0 '47	4 '338 386 5 21 796 '49)
	Fort Morgan	28	08	24 '66	+0.42	25 '38	0 '91	4 '404 704 4 25 392 '44	
20	Spring Hill	52	56		1	50 '41	0.91	4.633 149 4 42 968 43	
	Dapline	98			-·o ·o8			4 '725 827 4 53 189 '68	
						2.0		, , , ,	

Resulting angles and sides of the fifth and last sections of the triangulation west of the Atlanta base net—continued.

No.	Stations.	Obse	erved	angles. '	Correc- tion.	ica1	Spher- ical excess.	Log. dis- tances.	Distances in meters.
		0	/	11	"	"	11		
ĺ	Fort Morgan	46	13	20 '60	+0.36	20 '96	0.96	4 '501 323 3	31 719 28
21 {	St. Elmo	77	59	07.81	+0.19	08.00	0.92	4 .633 149 6	42 968 45
Į	Dapline	55	47	34 '33	-0.42	33 '91	0.96	4.560 278 0	36 331 05
(Fort Morgan	18	04	55 '94	-0.35	55 '59	0.21	4 '338 386 4	21 796 48
22 {	St. Elmo	130	45	49 '03	+0.2	49 '55	0.21	4 .725 827 4	53 189 68
-	Spring Hill	31	09	16 '26	+0.13	16 '39	0.21	4.560 277 8	36 331 .03
ſ	Dauphin Island East Base	116	36	16 .50	-o ·63	15 '57	o '2 6	4 '560 277 9	36 331 '04
23 {	St. Elmo	16	02	14 '60	-0.55	14 '38	0 '25	4 '050 203 4	11 225 '44
. (Fort Morgan	47	21	31 '27	-0 '46	30,81	0 '25	4 '475 527 2	29 890 '09
ſ	Dauphin Island West Base	87	37	43 '50	+0.39	43 '89	°55	4 .560 277 9	36 331 '04.
24 {	St. Elmo	36	30	34.69	-0.12	34 '52	0.22	4 '335 134 2	21 633 87
Į	Fort Morgan	55	51	43 '92	-o ·68	43 '24	0.22	4.478 216 1	30 096 .21
1	Dauphin Island West Base	78	40	21.12	-0.91	20 '26	0.27	4 '475 527 2	29 890 '09
25 {	St. Elmo	20	28	20 '09	+0 05	20 '14	0 '27	4 '027 831 9	10 661 83
	Dauphin Island East Base	So	51	20.71	-o ·31	20 '40	0 '26	4 '478 516 o	30 096 50
1	Dauphin Island East Base	162	32	23 '09	+0.94	24 '03	0.03	4 '335 134 2	21 633 87
26 {	Fort Morgan	8	30	12.65	-0.53	12.43	0 '03	4 .027 831 9	10 661 .83
	Dauphin Island West Base	8	57	22 '33	+1.30	23 .63	0 '03	4 '050 203 5	11 225 44
1	Dauphin Island East Base	44	34	26.38	+0.64	27 '02	o ·8o	4.201 353 3	31 719 28
27 {	St. Elmo	94	10	22 '41	-0.04	22 '37	0 '80	4.654 020 6	45 083 .81
	Daphne	41	24	11.92	+1,09	13 '01	0 .80	4 475 527 4	29 890 10
	Dauphin Island East Base	72	01	49 .82	-1.27	48 '55	0 '41	4 .633 149 5	42 968 44
28 {	Daphne	14	23	22 '41	-1.21	20 '90	0'41	4 '050 203 3	11 225 44
	Fort Morgan	93	34	51 .87	-0.09	51 .48	0 '41	4 '654 020 6	45 083 .81

Remarks on the accord of the Atlanta and Dauphin Island bases.—The distance between the middle points of these bases, when measured through the middle line of the triangulation connecting them, is 677 kilometers or 421 statute miles.* The total number of geometrical conditions demanded by this triangulation in order to remove its inconsistencies is 142, to which number one more condition would have to be added to bring out the length of the second base as measured. The simultaneous solution of so large a number of equations being impracticable, the actual adjustment was made in parts. When the Dauphin Island base was reached a very small difference † was found in the computed length, as derived from the Atlanta base, and the measured length, a matter of accident, but a very satisfactory one, since no further labor was needed to bring about a closer accord.

†One and a half units in the seventh place of decimals in the logarithm.

^{*}It is made up of the several parts as follows: 111 base net, 42 kilometers; first section, 98 kilometers; second section, 88 kilometers; third section, 80 kilometers; fourth section, 209 kilometers; and fifth section, 160 kilometers.

12. THE FIRST SECTION OF THE TRIANGULATION WEST OF THE DAUPHIN ISLAND BASE NET, ALABAMA AND MISSISSIPPI, 1846-1855.

Proceeding from the base net westward, the triangulation is contracted in dimensions and possesses an inferior degree of accuracy as compared with the triangulation north of the base. This change is primarily due to unfavorable atmospheric conditions and to the difficulty of preserving the stations for a few years in a low country, subject to storms and severe hurricanes, which cause alterations in the shore line, overflow of

the ground, and destruction of the stations. When the localities were revisited in another year several of the stations could not be recovered, and new stations had to be established in their places. The width of the triangulation was limited by the width of Mississippi Sound, along which it extends. The observers were Assistants F. H. Gerdes and J. E. Hilgard. In 1854–55 a Gambey repeating theodolite was used, and for these measures the resulting seconds are given to the nearest tenth. The section extends from the Dauphin Island base net to the line Deer Island 1 to Ship Island 1855, a distance of about 56 kilometers or 35 statute miles. The connected series of quadrilaterals terminates here.

Abstracts of horizontal directions at slations of the first section of the triangulation west of Dauphin Island base net.

Point aux Pins, Mobile County, Alabama. May and June, 1848. F. H. Gerdes, observer.

Number of directions. Objects observed,		Results of station adjustment.			Corrections from first section.	Resulting seconds.	Corrections from base net.	Final seconds.
		0	1	//	11	//	11	//
	Cedar Point	0	00	00,00			+0.32	00 '32
	Cat Island	22	36	33 *45			-0.29	33 '16
	Dauphin Island West Base	58	14	08:33			-o ·o3	08.30
3	Petit Bois	105	51	21.21	-o ·o5	21 '46		
4	Grande Batture	147	05	47 '69	-o ·o3	47 .66		

Abstracts of horizontal directions at stations of the first section of the triangulation west of Dauphin Island base net—continued.

Dauphin Island West Base, Mobile County, Alabauia. November, 1847 and January, 1848. F. H. Gerdes, observer.

Number of directions.	Objects observed.			of station ment.	Corrections from first section.	Resulting seconds.	Corrections from base net.	Final seconds.
		0	1	11	//	11	11	11
I	Petit Bois	0	00	00,00	-o ·17	59 .83		
2	Grande Batture	45	15	13 '69	+0.36	14 '05		
	Point aux Pins	81	33	33 '52			+o·14	33 .66

Petit Bois, Jackson County, Mississippi. June, 1846. F. H. Gerdes, observer. Theodolite No. 6 used in III positions.

		0	1	11	11	11
5	Horn Island East 1855*	О	00	00,00	o '4I	59 '59
6	Bayou Casotte	42	36	12 .87	+0.70	13 '57
7	Grande Batture	71	28	26:37	-o ·64	25.73
8	Poiut aux Pins	104	36	32.54	+0.56	32 '50
9	Dauphin Island West Base	155	25	46 '00	+0.09	46 '09

Grande Batture, Jackson County, Mississippi. July, 1846. F. H. Gerdes, observer. 45^{cm} theodolite No. 4. September and October, 1847. J. E. Hilgard, observer. Theodolite No. 6 used in V positions.

		0	/	11	//		11
IO	Point aux Pins	0	00	00,00	0.06		59 '94
II	Dauphin Island West Base	54	50	01.60	-o .18	44	01 '42
12	Petit Bois	105	37	27 '05	+0.30		27 '35
13	Horn Island East 1855*	158	42	11.77	—o ·39		11.38
14	Bayou Casotte	209	13	36 '14	+0.32		36.46

Horn Island East 1855, Jackson County, Mississippi. February and March, 1847. F. H. Gerdes and J. E. Hilgard, observers. 45 cm direction theodolite No. 4. (V to X positions.) December, 1854, to April, 1855. J. E. Hilgard, observer. Repeating theodolite.

			0	1	11	//		//
21	East Pascagoula		0	00	00'00	+0 '03		00.03
22	Bayou Casotte	1045	14	10	58 '73	+0'12	•	58.85
23	Grande Batture	1847	48	41	07.72	+0.72		08 '44
24	Petit Bois		104	07	58 .38	+0.33		58.41
19	Horn Island Wes	st) rest s	287	05	56.0	—I °02		54 '98
20	Belle Fontaine	} 1854-5	313	55	53 '0	-0.10		52 '81

Bayou Casotte, Jackson County, Mississippi. July and August, 1847. F. H. Gerdes, observer. Theodolite No. 4. (V positions.) September, 1847. J. E. Hilgard, observer. Theodolite No. 6.

		0	/	//	//	//
15	Grande Batture	0	00	00,00	-0 ·48	59 '52
16	Petit Bois	47	31	37 '80	+0.75	38 55
17	Horn Island East 1855*	94	58	25 .76	-0.64	26°12
	Horn Island West	153	29	14 '20		
+ 1	Belle Fontaine	180	49	13 '30		
18	East Pascagoula	202	51	05 '38	+0:37	05 '75

^{*}The observations of 1847 were reduced to the position of 1855.

Abstracts of horizontal directions at stations of the first section of the triangulation west of Dauphin Island base net—continued.

East Pascagouta, Jackson County, Mississippi. August, 1847. F. H. Gerdes, observer. Theodolite No. 4. (V positions.) April, 1854, and January, 1855. J.E. Hilgard, observer. Repeating theodolite. Elevation of ground, 16 feet; of tripod, 14 feet.

Number of directions.	Objects observed.		ilts of ljusti	Corrections from first section.	Final seconds.	
		٥	1	//	//	11
25	Bayou Casotte	0	00	00,00	-o ·2 I	59 '79
26	Petit Bois	20	42	28.49	—ı .3ı	27 '18
27	Horn Island East 1855*	57	56	20.18	+0.26	20 '44
	Azimuth Mark	96	22	50.60		
28	Horn Island West	122	43	25 '0	+0.65	25 .65
29	Belle Fontaine	153	09	16 °2	+0.61	18.91

Horn Island West, Jackson County, Mississippi. August to November, 1848. F. H. Gerdes, observer. Repeating theodolite. March, 1854, May and November, 1855. J. E. Hilgard, observer. Repeating theodolite.

,		0	1	11	11	//
30	Ship Island 1855	0	00	00,00	0.0	00,'0
31	Deer Island 1	54	48	36 .8	—o ·7	36.1
	Monk Point	78	59	18.81		
32	Belle Fontaine	100	06	34 '9	+0.3	35 '2
33	East Pascagoula	153	53	60 '2	-o·5	59 '7
34	Horn Island East 1855	196	12	49 '2	+0.9	50.1

Bette Fontaine, Jackson County, Mississippi. April, October, and November, 1855. J. E. Hilgard, observer. Repeating theodolite.

		0	/	11	//	//
35	East Pascagoula	0	00	00'0	-0.7	59 '3
36	Horn Island East 1855	38	42	55.8	+0.4	56 .5
37	Horn Island West	95	46	44 °0	0.0	44 °0
38	Ship Island 1855	147	26	07 '2	0.0	07.2
39	Deer Island 1	101	39	39 'I	+0.4	39 '5

Ship Island 1855, Harrison County, Mississippi. June and July, 1848. F. H. Gerdes. Repeating theodolite. November, 1855. J. E. Hilgard, observer. Repeating theodolite.

		0	/	//	//	//
	Cat Island	0	00	00 '0	•	
	Mississippi City	_ 49	20	56.9		
	Biloxi Light	87	13	41 .8		
40	Deer Island 1	116	14	11 '7	+0.2	12 '2
41	Belle Fontaine	148	10	50.5	—ı ·o	49 '2
42	Horn Island West	176	24	50 '7	+0.2	51 '2
	Chandeleur Light 1855	268	06	00.8		

^{*}Observations of 1847 referred to the position of 1855.

Abstracts of horizontal directions at stations of the first section of the triangulation west of Dauphin Island base net—continued.

Deer Island 1, Jackson County, Mississippi. October, November, and December, 1855. J. E. Hilgard, observer. Repeating theodolite.

Number of directions.	Objects observed.	Result adj	Corrections from first section.	Final seconds.		
		0	1	"	"	//
43	Belle Fontaine	0	00	00'00	+0.1	00 *1
	Monk Point	0	19	13 '2		
44	Horn Island West	38	49	05 '7	+0.1	05 '8
45	Ship Island 1855	103	49	51 '4	-o .ı	51 '3
	Mississippi City	174	34	46.1		
	Biloxi Light	194	35	56.2		

Observation equations.

I
$$0=-1.74-(1)+(2)-(7)+(9)-(11)+(12)$$
III $0=-0.51-(2)+(4)-(10)+(11)$
III $0=-1.28-(3)+(4)-(7)+(8)-(10)+(12)$
IV $0=+0.90-(6)+(7)-(12)+(14)-(15)+(16)$
V $0=+0.90-(6)+(7)-(12)+(14)-(15)+(16)$
VI $0=-1.15-(13)+(14)-(15)+(17)-(22)+(23)$
VIII $0=-1.5-(17)+(18)-(21)+(22)-(25)+(27)$
VIII $0=-1.9-(19)+(20)-(32)+(34)-(36)+(37)$
IX $0=-1.7-(20)+(21)-(27)+(29)-(35)+(36)$
X $0=+0.1-(28)+(29)-(32)+(33)-(35)+(37)$
XI $0=+1.0-(30)+(31)-(40)+(42)-(44)+(45)$
XII $0=-1.4-(31)+(32)-(37)+(39)-(43)+(44)$
XIII $0=+1.4-(38)+(39)-(40)+(41)-(43)+(45)$
XIV $0=+4.8+2.99(1)-4.95(2)-2.40(3)+2.36(4)+3.00(7)-3.22(8)+0.22(9)$
XV $0=+8.2+2.29(5)-6.11(6)+3.82(7)-0.51(12)-1.74(13)+2.25(14)+3.05(22)-3.06(23)+0.01(24)$
XVII $0=-4.84+0.229(5)-0.229(6)+3.035(16)-3.035(18)+0.834(21)-0.835(22)+0.001(24)+3.46(25)-3.592(26)+0.132(27)$
XVII $0=-4.84+0.229(5)-0.229(6)+3.035(16)-3.035(18)+0.834(21)-0.835(22)+0.001(24)+3.46(25)-3.592(26)+0.132(27)$
XVII $0=-4.84+0.229(5)-0.229(6)+3.035(16)-3.035(18)+0.834(21)-0.835(22)+0.001(24)+3.46(25)-3.592(26)+0.132(27)$
XVII $0=-4.84+0.229(5)-0.229(6)+2.03(21)-0.19(27)-3.58(28)+3.77(29)+1.76(32)-1.54(33)-0.22(34)$
XVIII $0=-9.0+1.49(30)-3.57(31)+2.08(32)-0.22(37)-2.16(38)+2.38(39)+2.17(40)-3.38(41)+1.21(42)$

Normal equations.

No.		C ₁ C	2 C ₃	C ₄	C_5	C ₆	C ₇	C8	C ₉	C ₁₀ C ₁₁	C ₁₂	C_{13}	C ₁₄	C ₁₅	C ₁₆	C ₁₇	C_{18}
									-								
I	0=-1.74	+6 -	2 +2	-2									- 9.82	- 4.33			
2	0=+0.21	+	4 +2	2									+ 7.31				
3	0=-1.58		+6	-2									— 1°46	- 4°33			
4	0=+0.00			+6	-2	+2							+ 3.00	+12.69	+ 3 .264		
5	0=+0.07				+6	+2	-2							-11 44	- 2.658		
6	0=-1.12					+6	-2							- 2.13	+ 0.834		
7	0=-1.57						+6		-2					+ 3.05	- 8 °o31	- 2.55	
8	0⇒ - I °0							+6	-2	+2	2					-12.35	- 2.30
9	0=-1.7	}							+6	+2					+.0.702	+12.19	
10	0=+0.1									+6	-2					+ 4.05	- 2.30
II	0=+1.0	ĺ								+6	-2	+2					- 6.02
12	0=-1'4										+6	+2				+ 1.76	+ 8.25
13	0=+1.4											+6					→ 1 °O1
14	0=+4.8												+59 617	+11*46			
15	0=+8.5													+84 185	- o °6201		
16	0=-4.84														+44 *8039	+ 1.6679	
17	0=+2.0															+92.2323	+ 3 6608
18	0=-9.0																+47°2672
									-								

Resulting correlates.

$C_1 = +0.0965$	$C_{10} = -0.5309$
$C_2 = -0.0831$	$C_{11} = +0.2551$
$C_3 = +0.1404$	$C_{12} = +0.3376$
$C_4 = -0.0306$	$C_{13} = -0.4014$
$C_5 = +0.3323$	$C_{14} = -0.03628$
$C_6 = +0.5085$	$C_{15} = -0.06853$
$C_7 = +1.4771$	$C_{16} = +0.36560$
$C_8 = +0.8785$	$C_{17} = -0.03300$
$C_9 = +1.2697$	C18=+0.17487

Resulting corrections to observed directions.

//	//	//
(1) = -0.111	(16) = +0.747	(31) = -0.707
(2) +0.359	(17) —o ·636	(32) +0.296
(3) -0.054	(18) +o ·367	(33) -0.480
(4) -0.028	(19) —1.016	(34) +o.886
(5) -0.406	(20) -0.187	(35) -0.739
(6) +0.698	(21) +0.030	(36) +0.391
(7) —o ·638	(22) +o·122	(37) -0.028
(8) +o ·257	(23) +0.718	(38) +0.024
(9) +o ·o88	(24) +0.332	(39) +0.352
(10) -0.057	(25) -0.515	(40) +o:526
(11) -0.180	(26) —1:313	(41) -0.992
(12) +0.302	(27) +o ·261	(42) +0.467
(13) -0.389	(28) +o ·649	(43) +0.064
(14) +0.324	(29) +o ·614	(44) +0.084
(15) -0.478	(30) +0.002	(45) —o ·146

Probable error of an observed direction o 674 $\sqrt{\frac{11.28}{18}} = \pm 0.753$

Resulting angles and sides of the first section of the triangulation west of Dauphin Island base net.

No.	Stations.	Obs	erved	l angles.	Correc-	Spher- ical angles.	Spher- ical excess.	Log. dis- tances.	Distances in meters.
		٥	,	11	//	11	//		
1	Petit Bois	50	49	13 '76	-0.1 2	13 '59	0 '20	4 '193 605 2	• 15 617 27
1 {	Point anx Pins	47	37	13 '21	-0.02	13.16	0.10	4 172 673 0	14 882 40
Į	Dauphin Island West Base	81	33	33 .66	+0.12	33 .83	0 '19	4 '299 478 8	19 928 69
(Grande Batture	54	50	01 .60	-0.13	01.48	0.12	4 '193 605 2	
2 }	Point aux Pins	88	51		-0.03			4 '281 040 2	
2	Dauphin Island West Base		18	39 '39		39.36	0.12		
(•	36	10	19 '97	o * 36	19.61	0.12	4 '053 513 2	
- (Grande Batture	105	37	27 '05	+0.36	27 '41	0.13	4 '299 478 8	19 928 69
3 {	Point aux Pins	41	14	26.18	+0.03	26.51	0.13	4 '134 862 4	13 641 '51
Į	Petit Bois	33	08	05 '87	+0.89	06.76	0.15	4 '053 513 1	11 311 32
1	Grande Batture	50	47	25 '45	+0.48	25 '93	0.12	4 172 673 0	14 882 40.
4 {	Dauphin Island West Base	45	15	13 '69	+0.23	14 '22	0.12	4 134 862 2	13 641 '50
l	Petit Bois	83	57	19.63	+0 '73	20 '36	0'17	4 '281 040 0	19 100 29
(Horn Island East 1855	55	26	50 .66	-o ·39	50 '27	0.12	4 134 862 3	13 641 '51
5 {	Grande Batture	53	04	44 '72	-0.69	44 '03	0.14	4 134 002 3	
3)	Petit Bois	71	28	26 '37	-o ·23	26 14	0.12	4 121 942 0	
(11	20			·	0.13		
ſ	Bayou Casotte	47	31	37.80	+1.53	39.03	0.10	4 134 862 3	13 641 .21
6 {	Grande Batture	103	36	09.09	+0 '02	09,11	0.10	4 '254 684 9	17 975 66
Į	Petit Bois	28	52	13.20	-1 '34	12 .19	0.10	3 .950 829 6	8 929 55
(Bayou Casotte	47	26	47 '96	-1 .38	46 '58	0'14	4 121 942 0	13 241 .65
7 {	Petit Bois	42	36	12 '87	+1.10	13 '97	0.13	4 '085 225 7	12 168 18
Į	Horn Island East 1855	89	56	59 .65	+0 '21	59 '86	0'14	4 '254 684 7	. 17 975 65
	Bayou Casotte	94	58	25 .76	-0.16	25 '60	0 '00	4.196 033 9	15 704 .85
8	Grande Batture	50	31	24 '37	+0.21	25 '08	0,00	4 '085 225 8	
)	Horn Island East 1855	34	30	08 '99	+0.60	09 '59	0,00	3 .950 829 4	
(34					0 09		
ſ	East Pascagoula	57	56	20.18	+0.47	20.65	0.03	4 '085 225 8	
9 {	Bayou Casotte	107	52	39 .62	+1.01	40 '63	0.01	4 135 600 2	13 664 70
ا .	Horn Island East 1855	14	10	58.73	+0.09	58.82	0 '03	3 '546 295 3	3 518 00
(East Pascagoula	20	42	28 49	-1.10	27 '39	0 '02	4 '254 684 8	17 975 65
10 {	Bayou Casotte	155	19	27 '58	-o ·38	27 '20	0 '02	4.326 812 5	21 223 28
Į	Petit Bois	3	58			05 '47	0 '02	3 '546 295 4	3 518 00
1	East Pascagoula	37	13	51 .69	+1 '57	53 '26	0.12	4'121 942 0	13 241 '65
	Petit Bois	38	38		1 2 37	08 '51	0'15	4.132 600 0	
	Horn Island East 1855	104	07	58.38	+0.30	58.68	0 '15	4 '326 812 5	_
	Belle Fontaine	38	42	55 '8	+1.1	56 '9	0,1	4 .135 600 1	
12 {	East Pascagoula	95	12	56 '0	-+0 *4	56 °4	0 .5	4 '337 600 5	
l	Horn Island East 1855	46	04	07.0	+0'2	07 '2	0 '2	4 '196 838 c	15 733 '96

Resulting angles and sides of the first section of the triangulation west of Dauphin Island base net—continued.

No.	Stations.	Obse	rved	angles.	Correc- tion.	Spherical angles.	Spherical excess.	Log. distances.	Distances in meters.
,		٥	/	//	//	//	//		
(Horn Island West	42	18	49.0	+1.4	50.4	0.5	4.135 600 1	13 664 70
13 {	East Pascagoula	64	47	04.8	+o ·4	05 .5	0.3	4.263 971 9	18 364 19
Į	Horn Island East 1855	72	54	04 .0	+1.0	05 °0	0 '2	4 . 287 827 7	19 401 16
ſ	Horn Island West	96	06	14.3	+o ·6	14 '9	· 0 ·2	4 '337 600 5	21 757 07
14 {	Belle Fontaine	57	03	48 '2	-o ·4	47 .8	0.3	4 263 972 4	18 364 22
Į	Horn Island East 1855	26	49	57 °O	+0.8	57 .8	0 .1	3 '994 618 9	9 876 86
ſ	Horn Island West	53	47	25 '3	-o ·8	24.5	o 'I	4·196 838 o	15 733 96
15 {	Belle Fontaine	95	46	44 '0	+0.7	44 '7	0.5	4 287 827 8	19 401 17
	East Pascagoula	30	25	51.2	0.0	51 '2	0,1	3 994 618 7	9 876 85
ſ	Deer Island 1	38	49	05 '7	0.0	05 '7	0 .1	3 '994 618 8	9 876 .86
16	Belle Fontaine	95	52	55 '1	+0.4	55 '5	0,1	4 195 161 4	15 673 '34
	Horn Island West	45	17	28.1	+1.0	29 .1	0.1	4 '049 199 0	11 199 50
ſ	Ship Island 1855	28	14	00 '5	+1.5	02 '0	0 °2	3 '994 618 8	9 876 .86
17	Belle Fontaine	51	39	23 '2	0.0	23 *2	0.1	4.214 177 2	16 374 84
- 1	Horn Island West	100	06	34 '9	+0'3	35 '2	0,1	4.312 896 4	20 554 00
(Ship Island 1855	31	56	38.5	-1.2	37 °0	0,1	4 '049 199 0	11 199 50
18	Deer Island 1	103	49	51 '4	-0'2	51 '2	0 '2	4 '312 896 2	20 553 '99
	Belle Fontaine	44	13	31 '9	+0:3	32 '2	0,1	4 169, 209 4	
,									
	Ship Island 1855	60	10	39 '0	-0.1	38 '9	0,1	4 195 161 4	
19 {	Deer Island 1	65	00	45 '7	-0.5	45 '5	0.5	4 214 177 3	16 374 85
- (Horn Island West	54	48	36 .8	-0.7	36.1	0 '2	4 '169 209 5	14 764 19

4192-No. 7-02-15

13. SECOND AND LAST SECTION OF THE TRIANGULATION WEST OF THE DAUPHIN ISLAND BASE NET, MISSISSIPPI AND LOUISIANA, 1850-1874.

The second and last section of the triangulation stretches west from the line Deer Island 1 to Ship Island 1855 and reaches the astronomic station in the city of New Orleans, Louisiana, a distance of 132 kilometers, or 82 statute miles. It is of secondary and somewhat irregular character as to size and shape of its component parts, yet possesses sufficient accuracy to render it useful in the discussion of the geodetic and astronomic measures of the southern portion of the oblique arc.

When within 34 kilometers, or 21 statute miles, of New Orleans the triangles are apparently left without a check, but here we can take advantage of a well-determined and independent length of the terminal side Martello Tower to Bienvenue. This is furnished by its direct connection, through a small but otherwise well conditioned and adjusted river triangulation, with the Magnolia base line, situated about 60 kilometers, or 37½ statute miles, farther down the Mississippi River.* This base was measured by Assistant C. H. Boyd in January, 1872. Its length is, roughly, 3.6 kilometers, or 2½ statute miles,† and the corresponding length of side Martello Tower to Bienvenue is 6 233 42 meters. The length for this same line, starting from the Dauphin Island base in the old unadjusted computation of 1880, is 6 233 02. The discrepancy was removed by dispersing this difference in the adjustment, between this side and the side Deer Island 1 to Ship Island 1855, at the same time preserving the four intermediate and adjusted parts, as explained farther on.

In this branch of the triangulation it was found sufficient to give the resulting angles either from the station adjustment or from direct measure, as the case may be, to the nearest tenth of a second; further, the special tabulation of these results could be dispensed with, since they are given in the presentation of the triangles.

^{*}See sketch of triangulation, plate No. 19, Coast and Geodetic Survey Report for 1879.

[†] Logarithm of length of Magnolia base, 3'558 o68 3.

The names of the observers and dates of execution of the triangulation for each station are as follows:

Name of station.	Observer.	Month and year.
Mississippi City	S. A. Gilbert	May, 1851
	J. E. Hilgard	Apr. and Oct., 1855
Cat Island 1852	S. A. Gilbert	May, 1851
		'Jan., 1852
Cat Island 1855	J. E. Hilgard	Sept. and Dec., 1855
	R. E. Halter	Feb. and May, 1857
Pitcher Point 2	S. A. Gilbert	Apr. and May, 1851
	J. E. Hilgard	Oct. and Dec., 1855
Cat Island Light	S. A. Gilbert	May, 1850
	J. E. Hilgard	Dec., 1855
	J. S. Harris and R. E. Halter	Feb. and May, 1857
South Point	J. S. Harris, R. E. Halter and S. Harris	Feb. and May, 1857
Bayou Pierre	S. A. Gilbert	Feb., 1852-
	R. E. Halter and S. Harris	Feb., 1857
Point Clear	S. A. Gilbert	Mar., 1852
Grand Island 1852	S. A. Gilbert	Feb. and Mar., 1852
Grand Island 1855	J. E. Hilgard	May and June, 1855
Oyster Bayou 1855	S. A. Gilbert	Dec., 1852
	J. E. Hilgard	June, 1855
Niue Mile Bayou	S. A. Gilbert	Mar., May, and Dec., 1852
Malheureux Point	J. E. Hilgard	June and Aug., 1855
East Pearl River	J. E. Hilgard	June, 1855
Rigolet Light	S. A. Gilbert	June, 1852
	J. E. Hilgard	May, June, and Dec., 1855
	S. Harris and R. E. Halter	Jan., Mar., and May, 1858
Shell Point	J. E. Hilgard	Aug. and Dec., 1855
	S. Harris	Feb. and Mar., 1858
Fort Wood	J. E. Hilgard	June, 1855
	R. E. Halter	Feb., 1858
Proctor 1853	S. A. Gilbert	Mar., 1853
Martello Tower	S. A. Gilbert	Mar., 1853
	C. H. Boyd	Mar., 1874
Battery Bienvenue	S. A. Gilbert	Mar., 1853
Ducros	C. H. Boyd	Apr., 1873
		Mar., 1874
Saint Patrick's Church, New Orleans	C. H. Boyd	Mar. and Apr., 1874
Astro. Observatory, Canal and Basin streets, New Orleans	S. Harris	Apr., 1858
Caernarvon	C. H. Van Orden and C. H. Boyd	Mar., 1873
	C. H. Boyd	Mar., 1874

That branch of the triangulation which reaches New Orleans by way of the Rigolets and Lake Pontchartrain could not be utilized in consequence of a break in the survey at the eastern end of the lake; the old station marks, diligently searched for in 1898, have entirely disappeared. The junction made via Lake Borgne, as presented here, is direct and the corrections due to adjustment are small.

Leaving the line Deer Island to Ship Island 1855 and passing over two triangles, the first special adjustment comprises the figure Mississippi City, Pitcher Point 2, Cat Island 1852, Cat Island 1855, Cat Island Light, South Point, and Bayou Pierre. (See sketch, p. 226.) It involves 12 condition or observation equations and 30 corrections to directions numbered as follows:

```
At Mississippi City
                            1. Cat Island 1852.
                                                     At Cat Island 1852
                                                                                   15. Bayou Pierre.
                                                      44 44 44
                            2. Cat Island 1855.
                                                                                   16. Pitcher Point 2.
       6.6
               4.6
                                                      44 44
                            3. Cat Island Light.
                                                                                   17. Mississippi City.
4.6
       4.4
               4.6
                            4. Pitcher Point 2.
                                                     At Cat Island Light
                                                                                   18. Pitcher Point 2.
At Pitcher Point 2
                            5. Mississippi City.
                                                                                   19. Mississippi City. .
                                                      44 44
                                                               6.4
                            6. Cat Island 1852.
                                                                                   20. Cat Island 1855.
                                                      66 66
                                                               4.4
                                                                     4.4
      4.6
                            7. Cat Island 1855.
                                                                                   21. South Point.
      4.4
            4.6
                                                      66 64
                                                               4.6
                            8. Cat Island Light.
                                                                                   22. Bayou Pierre.
            6.4
                            9. Bayou Pierre.
                                                     At Bayou Pierre
                                                                                   23. Pitcher Point 2.
                                                         44 44
At Cat Island 1855
                           10. South Point.
                                                                                   24. Cat Island Light.
                                                                 6.6
                           11. Bayou Pierre.
                                                                                   25. Cat Island 1852.
         6.6
               4.4
                                                           4.6
                                                                 1.4
                                                      4.4
                           12. Cat Island Light.
                                                                                   26. Cat Island 1855.
44 44
        4.4
               4.6
                           13. Pitcher Point 2.
                                                                                   27. South Point.
         1.6
               4.4
                           14. Mississippi City.
                                                     At South Point
                                                                                   28. Bayou Pierre.
                                                                                   29. Cat Island Light.
                                                     44 44
                                                                                   30. Cat Island 1855.
```

Observation equations.

```
I \quad o = +0.3 - (2) + (4) - (5) + (7) - (13) + (14)
  II 0 = +0.4 - (2) + (3) - (12) + (14) - (19) + (20)
 III 0 = -0.9 - (3) + (4) - (5) + (8) - (18) + (19)
 IV \mid o = +1.4 - (1) + (4) - (5) + (6) - (16) + (17)
       0 = -5.4 - (6) + (9) - (15) + (16) - (23) + (25)
 VI \mid o = +o \cdot 9 - (10) + (12) - (20) + (21) - (29) + (30)
VII | o = o \cdot o - (21) + (22) - (24) + (27) - (28) + (29)
VIII
       0 = +1.1 - (10) + (11) - (26) + (27) - (28) + (30)
 IX
       0 = +0.5 - 3.25(2) + 4.58(3) - 1.33(4) - 1.02(5) + 3.87(7) - 2.85(8) + 0.18(18) + 1.88(19)
       0 = +13.6 - 2.85(7) + 14.11(8) - 11.26(9) - 3.34(11) + 5.19(12) - 1.85(13) - 6.09(18) + 6.09(22)
  X
                 +5.37(24) - 5.37(26)
 X1 \mid o = -12.7 + 1.33(1) + 1.33(2) - 6.09(8) + 6.09(9) - 1.85(12) + 3.14(13) - 1.29(14) + 0.34(15)
                  -1.64(16) + 1.30(17) + 3.51(18) + 0.18(20) - 3.69(22) - 2.47(23) + 2.47(25)
X11 0 = +3.8 - 3.34(10) + 4.75(11) - 1.41(12) - 2.20(20) + 2.48(21) - 0.28(22) - 3.41(24)
                +11.56(26) - 8.15(27)
```

Correlates and resulting corrections.

•	11	11	11
$C_1 = -0.182$	(1) = +0.156	(11) = -0.446	(51) = -0.155
$C^3 = +0.110$	(2) -0.084	(12) -0.112	(22) -0 100
$C_3 = +0.398$	(3) -0.198	(13) +0.401	(23) -0.948
$C_4 = -0.064$	(4) +0.125	(14) -0.126	(24) -0 044
$C_5 = +0.776$	(5) —o ·167	(15) —o ·752	(25) +0.948
$C_6 = +0.088$	(6) —o ·840	(16) +o ·726	(26) —o ·oo8
$C_7 = +0.142$	(7) -0.150	(17) +0.026	(27) +0.051
$C_8 = -0.313$	(8) -0 '061	(18) —o ·157	(28) +0:171
$C_9 = +0.0177$	(9) +1.188	(19) +0.312	(29) +0.054
$C_{10} = +0.0010$	(10) +0.316	(20) +0.068	(30) -0.225
$C_{11} = +0.0692$			
C12=-0.0273			

The second special figure submitted to adjustment is composed of the stations given below:

At Bayou Pierre " " " " " "	 Nine Mile Bayou. Grand Island 1852. Grand Island 1855. Point Clear. 	At Grand Island 1855	11. Point Clear.12. Bayou Pierre.13. Nine Mile Bayou.
At Point Člear	5. Bayou Pierre.6. Grand Island 1852,7. Grand Island 1855.	At Nine Mile Bayou	14. Grand Island 1855.15. Grand Island 1852.16. Point Clear.17. Bayou Pierre.
At Grand Island 1852	8. Point Clear. 9. Bayou Pierre. 10. Nine Mile Bayou.		

Observation equations.

Correlates and resulting corrections.

	//	//
$C_1 = +0.473$	(1) = -0.033	(10) = +0.311
$C_2 = 0.03$	(2) —o ·386	(11) -0:171
$C_3 = +0.047$	(3) ~0.011	(12) +o ·o65
$C_4 = -0.018$	(4) +0.430	(13) +0.109
$C_5 = +0.0223$	(5) -o ·563	(14) -0.225
$C_6 = +0.0103$	(6) +o ·503	(15) -0.632
	(7) +0.060	(16) +0.944
	(8) -0.814	(17) —o ·o87
	(9) +0.503	

The third special figure treated by itself involves stations Bayou Pierre, Grand Island 1855, Nine Mile Bayou, Oyster Bayou 1855, and Malheureux Point.

At Bayou Pierre 1. Oys	ter Bayon 1855 At Oys	ter Bayou 1855 6.	Malheureux Point
	ter Bayou 1855	· · · · · · · · · · · · · · · · · · ·	Grand Island 1855
" " 3. Mal	heureux Point	0.	Bayou Pierre
At Nine Mile Bayou 4. Mal	neureux Point		Grand Island 1855
At Oyster Bayou 1855 5. Nin	e Mile Bayou "	10.	Oyster Bayou 1855 Nine Mile Bayou

Observation equations.

$$\begin{array}{ll} 1 & o=-1 \cdot 1 - (1) + (2) - (7) + (8) \\ II & o=-2 \cdot 0 - (2) + (3) - (6) + (7) - (9) + (10) \\ III & o=-3 \cdot 9 + (3) - (4) - (9) + (11) \\ IV & o=-32 \cdot 23 - 11 \cdot 07(1) + 0 \cdot 64(2) - 4 \cdot 13(5) - 0 \cdot 10(7) + 4 \cdot 23(8) \\ V & o=-4 \cdot 6 - 3 \cdot 15(2) - 2 \cdot 18(3) - 2 \cdot 63(5) + 2 \cdot 95(6) - 0 \cdot 32(7) - 0 \cdot 21(9) + 3 \cdot 98(10) - 3 \cdot 77(11) \\ \end{array}$$

Correlates and resulting corrections.

$$C_1 = -1 \cdot 138$$
 $(1) = -2 \cdot 29$ $(7) = +0 \cdot 54$ $(2) = -0 \cdot 522$ $(2) = -0 \cdot 82$ $(8) = +0 \cdot 17$ $(3) = +0 \cdot 62$ $(9) = -0 \cdot 93$ $(4) = -1 \cdot 42$ $(10) = -0 \cdot 01$ $(5) = +0 \cdot 129$ $(5) = -1 \cdot 62$ $(11) = +0 \cdot 94$ $(6) = +0 \cdot 90$

The next quadrilateral—Grand Island 1855, Malheureux Point, Rigolet Light, East Pearl River—is treated by itself.

At Gran	d Island 1855	1. Malheureux Point	At Rigolet Light	7. East Pearl River
66 66		2. Rigolet Light	11 11 11	8. Grand Island 1855
44 44	44	3. East Pearl River	16 16 46	9. Malheureux Point
At Malh	eureux Point	4. Rigolet Light	At East Pearl River	10. Grand Island 1855
44 (6.6	5. East Pearl River	16 66 66 66	11. Malheureux Point
66	6.6	6. Grand Island 1855	66 66 66	12. Rigolet Light

Observation equations.

$$\begin{array}{ll} 1 & o=+\ 3 \cdot 0 - (1) + (2) - (4) + (6) - \ (8) + \ (9) \\ III & o=+\ o \cdot 4 - (1) + (3) - (5) + (6) - (10) + (11) \\ IIII & o=-\ 1 \cdot 7 - (4) + (5) - (7) + (9) - (11) + (12) \\ IV & o=-41 \cdot 9 - 0 \cdot 68(1) + 5 \cdot 99(2) - 5 \cdot 31(3) - 2 \cdot 04(4) + 3 \cdot 68(5) - 1 \cdot 64(6) - 5 \cdot 39(7) + 7 \cdot 50(8) - 2 \cdot 11(9) \\ \end{array}$$

* Correlates and resulting corrections.

	//	//	//
$C_1 = -0.784$	(1) = -0.13	(5) = +0.59	(9) = -0.89
$C_2 = +0.748$	(2) +0.71	(6) −o °44	(10) -0.75
$C_3 = +0.420$	(3) -0.57	(7) —1.76	(11) +0.33
$C_4 = +0.249$	(4) -o·14	(8) +2.65	(12) +0.42

Finally the length of the sides Deer Island 1 to Ship Island 1855 and Battery Bienvenue to Martello Tower were brought into accord by adjustment of the intervening triangulation, but leaving the preceding adjusted parts unaltered. There were 6 triangles, the sums of whose angles were equated to $180^{\circ} + \varepsilon$, respectively, and the length equation constituted the seventh condition to be satisfied. This adjustment was made by angle corrections, the 16 angles being marked from A to Q as follows:

Designa- tion of angles.	At stations,	Between stations.
A	Deer Island 1	Ship Island 1855 and Mississippi City.
В	Mississippi City	Deer Island 1 and Ship Island 1855.
C	Ship Island 1855	Cat Island 1855 and Mississippi City.
D	Cat Island 1855	Mississippi City and Ship Island 1855.
E	Pitcher Point 2	Bayou Pierre and Point Clear.
F	Point Clear	Pitcher Point 2 and Bayou Pierre.
G	Malheureux Point	Shell Point and Rigolet Light.
H	Shell Point	Rigolet Light and Malheureux Point.
I	Rigolet Light	Shell Point and Fort Wood.
K	Fort Wood	Rigolet Light and Shell Point.
L	Shell Point	Proctor Point 1853 and Fort Wood.
M	Proctor Point 1853	Fort Wood and Shell Point.
N	Proctor Point 1853	Martello Tower and Fort Wood.
0	Martello Tower	Fort Wood and Proctor Point 1853.
P	Martello Tower	Battery Bienvenue and Fort Wood.
Q	Battery Bienvenue	Fort Wood and Martello Tower.

When a letter designating an angle is inclosed in a parenthesis, it designates the corresponding correction.

In establishing the 6 angle equations the plane angles already corrected were employed. Thus we have

I.
$$o = (A) + (B) + (R_1)$$

II. $o = (C) + (D) + (R_2)$

etc., where R₁, R₂, ... refer to the third angle of the triangle.

VII.
$$0 = -32.5 + 0.73$$
 (A) -2.31 (B) $+1.81$ (C) -0.50 (D) $+1.36$ (E) -0.98 (F) $+3.53$ (G) -0.79 (H) $+2.88$ (I) -3.69 (K) $+0.80$ (L) -1.80 (M) $+0.99$ (N) -0.78 (O) -4.12 (P) -3.92 (Q)

where -32.5 is the discrepancy of length in the sixth place of decimals of the logarithm.

The corresponding corrections are—

(A) =
$$+0.5$$
 (E) = $+0.5$ (I) = $+1.3$ (N) = $+0.4$ (B) -0.7 (F) -0.4 (K) -1.4 (O) -0.3 (C) $+0.6$ (G) $+1.1$ (L) $+0.5$ (P) -1.7 (D) -0.4 (H) -0.7 (M) -0.6 (Q) -1.6

Resulting angles and sides of the second and last section of the triangulation west of the Dauphin Island base net.

No.	Stations.	Obs	ierve	i augles.	Correc- tion.	Spher- ical angles.	Splier- ical excess.	Log. distances,	Distances in meters.
		0	,	11	//	"	"		
ſ	Mississippi City	42	21	51 4	-o ·7	50 '7	0 '2	4 '169 209	14 764 17
- I {	Deer Island 1	. 70	44	54 '7	+0.4	55 '1	0.3	4 '315 662	20 685 3
l	Ship Island 1855	66	53	14 'S	+0.1	14 '9	0.3	4 '304 316	20 151 '9
ſ	Cat Island 1855	76	28	33.5	-o ·5	33 °0	0.3	4 '315 662	20 685 3
2 {	Mississippi City	54	10	30.6	—o ·3	30'3	0 '2	4 '236 793	17 250 '2
ł	Ship Island 1855	49	20	56 '9	+o ·5	57 '4	0 '2	4 '207 942	16 141 '4
ſ	Pitcher Point 2	6.4	00	12 '7	+0.1	12 .8	0.1	4 '207 942	16 141 4
3 {	Mississippi City	57	37	19.0	+0 '2	19 '2	0 '2	4 180 886	15 166 5
t	Cat Island 1855	58	22	29 '1	-o ⋅e	28.2	0 '2	4 184 451	15 291 '5
ſ	Cat Island Light	48	15	01.4	-o ·3	01,10	1.0	4 '207 942	16 141 4 .
4 {	Mississippi City	2.1	39	28.5	-0.1	28.4	0,1	3 '955 511	9 026 32
(Cat Island 1855	107	05	30 '9	0.0	30.9	0 '2	4 '3 15 551	20 680 0
ſ	Cat Island Light	94	54	55 '4	+0.5	55 .6	1, 0	4°180 886	15 166 .2
5 {	Pitcher Point 2	36	22	02 '3	+e.1	02 '4	I°O	3 '955 511	9 026 32
t	Cat Island 1855	48	43	or '8	+0.2	02.3	0,1	4 '058 394	11 439 2
ſ	Cat Island Light	46	39	54.0	+0.2	54 '5	1.0	4 184 451	15 291 '5
6 {	Pitcher Point 2	001	22	15 '0	+0.1	15 '1	0 °2	4 '315 551	20 680 0
t	Mississippi City	32	57	50.2	+0.3	50 °S	0 '1	4 '058 394	11 439 2
1	South Point	79	59	12 '0	-0.3	11.7	0.1	3 '955 511	9 026 '32
7 {	Cat Island Light	43	50	36 '5	—o '2	36 '3	0,0	3 '802 717	6 349 17
Į	Cat Islaud 1855	56	10	12.2	-0.4	12 'I	0.0	3 .881 619	7 614 11
ſ	Bayou Pierre	31	43	28 °o	+0.1	28 '1	0.1	3 '881 619	7 614 11
-S {	Cat Island Light	82	28	30 '3	0.0	30 '3	0.1	4 '157 014	14 355 4
(South Point	65	48	02 '0	-o ·ı	01.9	1.0	4 120 824	13 207 6
ĺ	Bayou Pierre	10	19	10,0	+0.1	0, 11	0,0	3 '802 717	6 349 17
9	Cat Island 1855	23	53	36 .5	—o ·8	35 '4	0,0	4 '157 012	14 355 3
Į	South Point	145	47	14.0	-0.4	13.6	0,0	4 '299 466	19 928 1
1	Cat Island 1852	58	23	12 '2	-0.7	11.2	0 '2	4 184 451	15 291 '5
10 {	Pitcher Point 2	63	58	09 '4	-o '7	oS '7	0.5	4 '207 760	16 134 7
[Mississippi City	57	38	40 '3	0 0	40 '3	0.1	4.180 939	15 168 4
1	Bayou Pierre	40	28	33 '9	+1.9	35 ·S	0.2	4 180 939	15 168 4
14 {	Pitcher Point 2	58	33	52.1	+2 0	54 1	0.3	4 '299 670	19 937 '5
- {	Cat Island 1852	80	57	29 '4	±1.5	30.9	0.3	4 '363 173	23 076 7
1	Bayou Pierre	19	04			14 '9	0.1	4 '058 394	11 439 '2
12	Pitcher Point 2	22	09	46 '5	+1'2	47 '7	0 °I	4 '120 S22	13 207 5
	Cat Island Light	138	45	57 .8	-o.1	57 '7	0.1	4 '363 172	23 076 6

Resulting angles and sides of the second and last section of the triangulation west of the Dauphin Island base net—continued.

No.	Stations	Observed angles.	Correc-	Spher- ical angles,	Spher- ical excess.	Log. distances.	Distance in meters.
,	· Datas Of	0 / //	//	"	11		
	Point Clear	64 54 08:4	-1 '3	07 '1	0'4	4 '363 173	23 076 7
13 {	Pitcher Point 2	57 06 43.1	−o · 3	42 8	0,3	4 '330 386	21 398 6
l	Bayou Pierre	57 59 12 1	o . 9	11.5	0 '4	4 '334 601	21 607 3
-	Grand Island 1852	84 46 36.7	+1.3	38 %	0'2	4 '330 386	21 398 6
-14 {	Point Clear	57 34 03 6	+1.1	04 '7	0.5	4 *258 550	18 136 4
Į	Bayou Pierre	37 39 17 1	+o ·S	17 '9	0.5	4.118 199	13 127 '0
1	Nine Mile Bayou	60 20 44 1	+0.2	44 .6	0 *2	4 '258 550	18 136 4
15 {	Grand Island 1852	79 41 19 3	−o · 2	19.1	0 '2	4.312 446	20 532 7
Į	Bayou Pierre	39 57 57 2	-0.3	56 .9	0 '2	4 127 275	13 405 '3
(Grand Island 1855	83 22 26.6	+o.5	26.8	0 '2	4 330 386	21 398 6
16 {	Point Clear	59 38 59 8	+0.6	60 '4	0.5	4 '269 285	18 590 2
Į	Bayou Pierre	36 58 32.9	+0.2	33 '4	0 '2	4 112 517	12 957 '4
(Nine Mile Bayou	52 39 39 2	-1 *0	38 .5	0.4	4 '330 386	21 398 6
17 {	Point Clear	49 43		08.1	0.3	4.312 446	20 532 7
· {	Bayou Pierre	77 37 14'3	+o ·5	14.8	0.4	4 '419 772	26 288 9
1	Grand Island 1855	77 18 47 2	+0.1	47 '3	0'2	4 '312 446	20 532 7
18 {	Bayou Pierre	40 38 41.4	0.0	41.4	0 '2	4 137 007	13 709 0
ł	Nine Mile Bayou	62 02 31.8	+0.1	31.9	0 °2	4 269 286	18 590 3
(Oyster Bayou 1855	94 05 44 8	-o ·4	44 '4	0 '2	4 '269 285	18 590 2
19 {	Grand Island 1855	43 33 07 2	-0.8	06 '4	0,1	4 209 203	12 841 .7
	Bayou Pierre	42 21 07 3	+2.3	09.6	0,1	4 '098 857	12 556 2
(Oyster Bayou 1855		+2.5				
20 {	Nine Mile Bayou	6		59 '4	0.0	4 '137 007 4 '098 857	13 709 0
	Grand Island 1855	33 45 40 1	+o ·S	19 '9	0,1	3.886 843	12 556 2
(40 '9	0 1		7 706 .25
.	Malheureux Point	56 26 46 2	+0.9	47 '1	• • •	4 '098 857	12 556 .5
21 {	Grand Island 1855	77 47 23.5	+1.2	25 '0	• • •	4.168 083	14 725 9
)	Oyster Bayou 1855	45 45 48 3	-0'4	47 '9	• • •	4 '033 214	10 794 8
	Malheureux Point	84 22 34.6	+1.9	36 .2		4 '137 007	13 709 0
22 {	Grand Island 1855	44 01 43 4	+0.6	44 '0		3 , 981 100	9 574 14
1	Nine Mile Bayou	51 35 38 1	+1 -4	39 '5	• • •	4 '033 214	10 794.8
	Malheureux Point	27 55 48 4	+0.9	49 *3	• • •	3 .886 843	7 706 . 25
23 {	Oyster Bayou 1855	35 35 08 9	2 '5	11.4	• • • • !	3 '981 100	9 574 14
1	Nine Mile Bayou	116 28		59 '3		4.168 083	14 725 9
	Rigolet Light	29 13 63.2	-3.2	59 7	• • •	4 '033 214	10 794 8
24 {	Grand Island 1855	52 42 52 3	± o •8	23.1		4 *245 179	17 586 .2
· ·	Malheureux Point	98 03 07 5	-0.3	07 '2		4 '340 165	21 885 9
1	East Pearl River	55 47 55 6	+1.1	56 '7		4 '033 214	10 794 8
25 {	Grand Island 1855	72 04 21 5	−o · 5	21 '0		4 '094 055	12 418 1
(Malheureux Point	52 07 43 3	- I .O	42 *3		4.015 965	10 303 '0

Resulting angles and sides of the second and last section of the triangulation west of the Dauphin Island base net—continued.

No.	Stations.	Obse	rved	angles.	Correc- tion.	Spher- ical angles.	Spher- ical excess.	Log. distances.	Distance in meters.
		0	/	11	//	11	11		
-	East Pearl River	89	09	45 .8	+0.9	46 . 7		,4 °245 179	17 586 5
26	Malheureux Point	45	55	24 '2	+0.1	24 '3		4 '101 598	12 635 7
1	Rigolet Light	44	54	48.3	+0.7	49 '0		4 '094 054	12 418 1
(East Pearl River	144	57	41 '4	+1.5	42.6		4 '340 165	21 885 9
27 {	Grand Island 1855	19	2 I	29.5	-1 .3	27 '9		4'101 599	12 635 .4
(Rigolet Light	15	40	45 '1	+4 '4	49 '5		4 '012 961	10 303 0
	Shell Point	69	28	43 '5	-o·8	42 '7		4 '245 179 .	17 586 .5
28	Rigolet Light	79	39	33 '4	-0.2	32.9		4 '266 540	18 473 1
l	Malheureux Point	30	51	43 '4	+1.0	44 '4	• • •	3 '983 750	9 632 74
{	Fort Wood	29	40	09 '7	-2.1	07 .6		3 '983 750	9 632 74
29 {	Rigolet Light	36	ΙI	18.6	+0.6	19.5		4 '060 338	11 490 5
{	Shell Point	114	08	33 '7	-o ·5	33.5		4 *249 405	17 758 4
ſ	Proctor Point 1853	49	28	30 '7	o. 1—	29 '7		4 '060 338	11 490.2
30 {	Fort Wood	61	18	27 '9	—o .3	27 .6		4 122 559	13 260 5
Į	Shell Point	69	13	02 '5	+0.5	02 '7		4 '150 236	14 133 %
-	Martello Tower	69	35	34 '5	-0.3	34 °2		4 '150 236	14 133 '0
31 {	Fort Wood	45	31			02.8		4 '031 758	10 758 7
{	Proctor Point 1853	64	53	22 .6	+0 '4	23 '0		4 135 271	13 654 3
-	Battery Bienvenue	95	19	50.3	-ı ·6	48 .7		4 135 271	13 654 3
32 {	Fort Wood	27	02			o8 ·o		3 '794 728	6 233 '44
Į	Martello Tower	57	38	05 '0	—ı ·7	03.3		4 .063 829	11 583 .5
ſ	Ducros	45	40	33 °0	0.0	33 '0	0.0	3 794 727	6 233 42
33 {	Bienvenue	. 82	00	03.1	+o.1	03 '2	0.1	3 '935 932	8 628 44
{	Martello Tower	52	19	23 '9	0'0	23 '9	0.0	3 .838 615	6 896 27
ſ	Caernaryon	44	49	59 '7	+1.3	61.0	0,1	3 '935 932	8 628 44
34 {	Ducros	95	18	19.8	+1 .4	21 .5	0.1	4 '085 848	12 185 6
Į	Martello Tower	39	51	36 .4	+1.3	38 °o	0,0	3 .894 517	7 843 63
(Saint Patrick's Church								
25	(center)	27	11	44 '4	-0.5	44 °2	0.1	3 894 517	7 843 63
35 {	Ducros	97	16	17 '0	-o.3	16.7	0.1	4 '231 066	17 024 2
(Caernarvon	55	31	59 .6	-o ·a ·	59 4	o.i	4 150 739	14 149 '4

14. SOME STATISTICS OF THE TRIANGULATION.

In the following table will be found some statistics relating to the triangulation.

In the third column is given the number of triangles contained in this discussion, including those few triangles of which but two angles were measured. In the next column is given the mean error of an angle derived from the relation $m = \sqrt{\frac{\sum \Delta^2}{3n}}$, where $\Delta =$ closing error of a triangle and n the number of triangles; in the last column is given the more precise measure of accuracy, namely, the probable error of an observed direction derived from the adjustment of the triangulation, given by the formula: $e_i = 0.674 \sqrt{\frac{pvv}{c}}$ where v = the correction required by the figure adjustment, p its weight, usually unity, and c = number of conditions that entered into the adjustment.

Locality or name.	State.	Number of triangles.	Mean error of an angle.	Number of con- ditions satisfied.	error of an observed direction.
			11		//
Epping base net.	Maine.	46	±0.63	`35	±0 '47
Northeastern boundary section.	Maine.	18	0.74	13	0,21
New England section, connecting three base lines.	Me., N. H., Mass., R. I., Conn.	53	0 '53	57	0 '26
Fire Island base net.	Connecticut, New York.	17	0 '49	16	0 '34
Section connecting the Fire Island and Kent Island bases.	N. Y., N. J., Penn., Del., Md.	33	o ·86	35	0 '47
Kent Island base net.	Maryland.	12	o · 96	13	0 '41
Allegheny section, to Humpback— Spear.*	Maryland and Virginia.	28	0 '94	22	0.35
First section south of the transcontinental triangulation.	Virginia and North Carolina.	. 28	o ·88	24	0 '41
Second, or North Carolina section.	Virginia and North Carolina.	11	1.31	13	0 '72
Third, or South Carolina section.	N. C., S. C., Ga.	35	0.78	41	0.62
Atlanta base net.	Georgia.	33	1 '00	29	0 .65
First section west of Atlanta base net.	Georgia and Alabama.	25	0 '97	23	0.79
Second section west of Atlanta base net.		16	0.78	18	0.67
Third section west of Atlanta base net.	Alabama.	13	0.77	14	0 '36
Fourth section west of Atlanta base net.	Alabama,	28	0 63	30	0 '34
Fifth and last section west of Atlanta	Alabama.	28	0 '68	28	0 '35
base net.					00
Dauphin Island base net.†	Alabama.	5	0.21	5	0 .56
First section west of Dauphin Island base net.	Alabama and Mississippi.	19	0.78	18	o ·5,3
Second section west of Dauphin	Alabama and Mississippi.	35	I '20	27	0.48
Island base net.			- 20		
Total number of triangles		483		461	
Weighted mean	and the second of the second o	-	±0.82		±0.21

^{*}Estimated for two quadrilaterals beyond line Mount Marshall to Bull Run.

[†] Of little weight on account of the small extent.

C. RESULTING GEOGRAPHIC POSITIONS OF THE PRINCIPAL STATIONS OF THE TRIANGULATION BETWEEN CALAIS, MAINE, AND NEW ORLEANS, LOUISIANA, BASED UPON THE CLARKE SPHEROID OF 1866 AND THE DATA OF THE TRANSCONTINENTAL TRIANGULATION.

The geographic positions in the following list are those used in this investigation of the figure and size of the earth. They conform to those published in Special Publication No. 4, "The Transcontinental Triangulation." These positions, as well as those in Special Publication No. 4, are not intended to be used for geographic purposes, and do not conform to the principal lists heretofore published for that purpose, namely, for Massachusetts, in the Report for 1894, Appendix No. 10; Rhode Island, in the Report for 1885, Appendix No. 8; and Connecticut, in the Report for 1888, Appendix No. 8.

On March 13, 1901, the Superintendent adopted a uniform standard for the whole United States, to which all positions intended for geographic purposes are to be reduced and which is to be known as the United States Standard Datum. The New England positions referred to above are based upon the United States Standard Datum. The corrections required to reduce the positions here published to the United States Standard vary at different parts of the arc, and in general fall between the limits $\Delta \varphi = +1$ " 9 to +2" 1, $\Delta \lambda = -0$ " 5 to -0" 8, $\Delta \alpha = -1$ " to +2".

Stations.	Latitude and longitude.	Azimuth.	Back azimuth	. To stations,	Log. dis- tance.	Distance in meters.
New Brunswick.	0 1 11	0 / "	2 / //			
Chamcook	45 07 28 347	345 52 03 60		Prince Regents Redoubt	4'371 372 8	23 516 51
	67 05 02 797	63 13 17 88	242 57 00 70	Cooper	4 '529 929 1	33 878 88
Grand Manan	44 44 51 626	93 12 51 10	273 01 08 65	Trescott Rock	4 '342 006 7	21 978 94
	66 49 54 371	143 23 18 98	323 15 43 07	Prince Regents Redoubt	4 376 239 0	23 781 49
St. David	45 15 00 878	319 44 57 74	139 51 21 '33	Chamcook	4 262 200 0	18 289 42
Maine.	67 14 03 514	46 50 37'49	226 42 28 44	Rye	4 '315 000 5	20 653 82
Agamenticus	43 13 22 638	2 36 55 92	182 35 23 16	Thompson	4 832 776 9	68 041 '97
	70 41 33 831	70 12 55 '05	249 36 10'39	Unkonoonuc	4 890 346 8	77 686 72
Burke	44 35 54 036	235 13 08 22	55 19 08 45	Epping East Base	4 135 343 6	13 751 30
	67 58 31 319	337 01 27 '04	157 05 01 62	Pigeon	4 * 238 847 6	17 331 '96
Calais Observatory	45 11 03 778	206 54 46 96	26 56 47 91	St. David	3 914 328 3	8 209 72
	67 16 53 919	293 06 27 23	113 14 51 42	Chamcook	4 '227 816 4	16 897 26
Cooper	44 59 11 570	351 53 09 '93	171 56 10 98	Howard	4 603 402 1	40 123 80
	67 28 03 393	75 09 42 97	254 42 27 80	Humphack	4 '720 S93 2	52 588 79
Epping East Base	44 40 07 844	277 06 58 49	97 25 23 31	Howard	4 '543 117 5	34 923 48
	67 49 58 595	10 52 25 53	190 50 00 47	Pigeon	4 384 324 6	24 228 39
Epping West Base	44 41 29 938	286 51 55 17	106 56 21 42	Epping East Base	3 '940 314 3	8 715 94
	67 56 17:247	15 55 06 50	195 53 32 29	Burke	4 '032 670 S	10 781 129

THE EASTERN OBLIQUE ARC.

Stations.	Latitude and	Azimuth.	Back azimuth	. To stations.		Distance in
	longitude.				tauce.	meters.
Maine—continued.	0 / //	0 / 1/	0 1 11	No	. 106	
Howard	44 37 44 677 67 23 46 486	65 14 08 80 114 58 25 70		Mount Desert	4 '863 229 0 4 '794 490 4	
Humpback	44 51 48 770 68 06 38 896	9 16 19 46 75 18 57 53	189 11 24 63 254 35 06 04	Mount Desert Mount Harris	4 '761 268 0 4 '929 927 0	
Mount Blue	44 43 39 450 70 20 34 175	341 59 11 59 26 19 26 58		Sabattus Mount Pleasant	4 '834 048 9 4 '938 618 6	
Mount Desert	44 21 03'308 68 13 38'729	78 30 45 89 115 46 16 62	257 52 02 56 295 07 31 34	Ragged Mountain. Mount Harris	4 877 280 4 4 909 249 6	
			~			
Mount Harris	44 39 52 920 69 08 55 730	52 18 27 54 94 38 42 84	231 39 24 14 273 48 19 48	Sabattus Mount Blue	4 '973 43 ⁸ 4 4 '977 267 1	
Mount Independence	43 45 31 774	26 55 48:38		Agamenticus	4 '824 135 1	
	70 19 15 306	72 46 34 95	252 03 08 40	Gunstock	4 948 470 6	88 811.48
Mount Pleasant	44 01 34 698	306 12 05 15		Mount Independence	4 699 925 8	
	70 49 22 903	38 06 09 79	217 43 27 36	Gunstock	4.855 408 1	71 681 '66
Pigeon	44 27 16 964	159 01 42'47	338 52 24 67	Humpback	4.687 346 9	
	67 53 25 321	243 33 55 23	63 54 42 96	Howard	4 641 374 5	43 789 96
Prince Regents Re-	44 55 09 523	23 21 55'30	203 17 47 74	Trescott Rock	4 259 384 2	19 470 82
doubt	67 00 41 '010	101 53 09*22	281 33 48 83	Cooper	4 '565 481 2	36 768 95
Ragged Mountain	44 12 43 434	84 26 23 93	263 47 37 44	Sabattus	4 *872 442 9	74 549 19
	69 09 06:369	180 16 01.14	0 16 08 59	Mount Harris	4 '701 544 4	50 297 27
Rye	45 07 22.680	269 30 22 00	89 44 53 68	Chamcook	4 429 504 7	26 884 67
*	67 25 32 890	12 16 13'96	192 14 27 44	Cooper	4'190 727 0	15 514 11
Sabattus	44 08 35 858	24 31 20 64	204 21 16 42	Mount Independence	4 '671 377 7	46 922 13
	70 04 44 734	77 57 97 94	257 26 04 67	Mount Pleasant	4 785 231 0	60 986 12
Trescott Rock	44 45 30 338	57 50 42 10	237 38 34 60	Howard	4 '430 277 (26 932 52
210,000 110011	67 06 32 099	131 56 03 38	311 40 52 33	Cooper .	4 '580 099 ;	
Tunk	44 38 21 352	244 50 15 71	64 56 52'13	Epping West Base	4 137 328 3	13 , .9 18
THIE	68 05 41 166	295 35 27 52	115 40 29 44	Burke	4 '021 662	
New Hampshire.						
Gunstock	43 31 02:306	300 32 51 33	121 00 45 86		4 '805 515 8	
	71 22 12:299	19 43 23 05	219 13 02 94	Monaduock	4 '975 287 4	94 468 59
Monadnock	42 51 39 141	336 14 22 31	156 23 22 41	Wachusett	4 654 798	45 164 59
	72 06 31 641	32 59 09 94	212 37 15 13	Mount Tom	4'913 165 (S1 877 70
Mount Washington	44 16 12 057	3 39 08 74	183 36 23 95	Gunstock	4 '923 248	S3 S00 '79
	71 18 14 620	236 02 04 '01	56 42 29 47	Mount Blue	4 '962 918	91 816 '03
Unkonoomic	42 58 57 845	24 06 11 10	203 54 01 *87	Wachusett	4 '778 830 :	60 093 "57
	71 35 201266	72 29 09 91	252 07 55 50	Monaduock	4 '648 835	44 548 71
Massachusetts.			*			
Blue Hill	42 12 41 933	116 02 50.31	295 31 36 62	Wachusett Unkonoonic	4 '549 420	
	71 06 53 495	155 43 43 52				
Copecut	. 41 43 15 238	133 18 12 60		Beaconpole	4 '647 630 (
	71 03 37 477	175 17 04 '04	355 14 52 96		4'737 944 9	
Great Meadow	41 52 43 127	123 44 54 33		Beaconpole	4 '365 932	
	71 13 03 129	192 54 33 99	12 58 41 '54		4 579 231	4 37 951 71
Manomet	41 55 36 706	59 44 28 05	239 25 42 09		4 655 000	
	70 35 25 985	126 18 32 57	305 57 29 89	Bide Hill	4 '729 513	1 53 643,00
•						

THE MAIN TRIANGULATION.

-						
Stations.	Latitude and lougitude.	Azimuth.	Back azimuth	. To stations.	Log. dis- tance.	Distance in meters.
Massachusetts-cont'd.	0 1 11	0 / //	0 , ,,			
Massachusetts North	42 03 04 581	2 34 33 83	182 34 08 81	Great Meadow	4 283 145 5	19 193.13
Base.	71 12 25 718	72 44 03 22	252 34 16 55	Веасопро1е	4 324 757 7	21 123 10
Massachusetts South	41 54 47 907	126 46 52.66	306 41 01.28	Beaconpole	4'178 727 3	15 091 '32
Base.	71 18 16 951	207 47 09 72	27 51 04 66	Massachusetts North Base	4 '238 707 7	17 326 38
Thompson	42 36 39 930	351 21 40 40	171 27 17 43	Manomet	4.885 726 8	76 864 68
	70 43 50 053	120 44 30 14	300 09 30 63	Unkonoonuc	4 '910 955 9	81 461 '99
Wachusett	42 29 IS '755	24 17 32 42	204 04 58 96	Bald Hill	4 797 545 0	62 740 07
Rhode Island.	71 53 14.835	66 36 43 04	246 05 55 97	Mount Toni	4.835 503 I	68 470 44
Beaconpole	41 59 40 450	146 50 03 48	326 32 26.18	Wachusett	4.817 279 5	65 656 77
Deneoupore	71 27 02 094	228 55 17 53	49 08 47 86	Blue Hill	4 '565 581 4	36 777 43
Connecticut,						
Bald Hill (Fairfied Co.)	41 12 47 787	354 16 31 28	174 18 35 50		4.648 135 6	44 477 '01
	73 28 42 425	53 21 43 93	233 14 00 54	Kound Hill .	4'311 236 3	20 475 58
Bald Hill (Tolland Co.)	41 58 23 851	47 57 30 50	227 47 12 01		4 459 356 2	28 797 59
	72 11 55 844	82 45 17 34	262 04 10 02	Ivy	4 933 714 3	85 844 86
Box Hill	41 47 57 748	47 47 18 30	227 27 37 22		4'745 910 0	55 707 03
	72 27 22 205	97 22 57 97	276 52 12.72	Ivy	4 '808 420 3	64 331 '00
Ivy .	41 52 16 434	20 54 57 S5	200 44 26 86	Wooster	4'791 513 4	61 874 74
	73 13 28 707	333 14 05 75	153 25 02,09	Sandford	4 '707 138 1	50 949 29
Mount Tom	42 14 28 749	308 30 08 92	128 48 15 19	Bald Hill	4.678 180 2	47 662 93
	72 38 55 874	16 13 13,52	196 00 09 83	Sandford	4 '955 070 I	90 171 67
Round Hill	41 06 11:097	355 06 36 16	175 07 57 15	Harrow	4 531 267 4	33 983 45
	73 40 26 520	93 36 48 78	273 31 24 58	Buttermilk	4 *061 771 2	11 528 46
Sandford	41 27 40 743	29 14 57 16	208 56 10.16		4'914 716 0	82 170 50
	72 57 00 074	74 53 48 60	254 32 26 29	Wooster	4.669 171 0	46 684 31
Tashua	41 15 35 778	16 39 34 41	196 32 40 09	West Hills	4.412 261 3	51 589 50
	73 15 02 083	74 53 51 31	254 44 50 56	Bald Hill	4.596 241 3	19 794 35
Wooster	41 21 01 906	296 42 15 07	116 51 40.62		4 '348 836 2	22 327 30
New York,	73 29 18 883	354 55 05 52	174 57 33 87	West Hills	4 '776 212 0	59 732 68
Buttermilk	41 06 34 358	337 18 08 70	157 24 52 90	Harrow	4 '573 628 3	37 465 22
	73 48 39 626	50 48 43 39		Wease1	4 '611 542 6	40 882 98
Fire Island East Base	40 40 01 370	72 59 54 96	252 51 42 11	Fire Island West Base	4 147 953 5	14 058 97
a are arranged agent arene	73 03 20 690	185 32 47 29	5 33 40 57		4 '296 291 1	19 782 97
Fire Island West Base	40 37 47 708	139 03 50 98	318 55 34 '92	West Hills	4 434 543 0	27 198:38
THE Estand West Dase	73 12 52 757	212 43 36 41	32 50 43 00		4°452 i73 4	28 325 23
Harrow	40 47 53 430	46 46 40 35	226 22 41,12	Beacon Hill	4.836 466 7	68 622:52
11411011	73 38 22 949	78 54 41 49	258 26 35 67		4 '791 009 9	61 803 '04
Ruland	40 50 39 695	84 27 43 20	264 12 18 67	West Hills	4 '522 397 I	77 206 170
Ruland	73 01 59 070	158 27 26 10	338 18 51 86		4 '695 847 6	33 296 '39 49 641 '81
West Hills	40 48 52 117	84 14 38 01	264 06 14 '93	Harrow	4*258 590 2	18 138 '03
	73 25 33 130	146 57 23 22		Round Hill	4 250 590 2	38 232 62
New Jersey.			1			
Beacon Hill	40 22 24 457	54 04 37 07	233 55 44 '04		4'381 086 1	24 048 39
	74 13 42 595	89 11 18 23	268 52 02 79	Mount Rose	4 624 192 8	42 091 '35
Burden	39 31 46 807	92 19 43 45	272 06 19 93		4 '479 550 7	30 168 29
	75 22 53 468	125 42 11 79	305 29 34 66	Meetinghouse Hill	4'541 913 9	34 826 82

THE EASTERN OBLIQUE ARC.

Stations.	Latitude and longitude.	Azimuth.	Back azimuth.	To stations.	Log. dis- D tauce.	istance in meters.
New Jersey—cont'd.	0 / //	0 / //	0 , 11			
Dishoro	40 14 46 206	36 59 09 68	216 54 21 32	Stony Hill	4 * 245 277 5	17 590 47
	74 27 26 539	120 42 48 60	300 32 27 66	· · · · · · · · · · · · · · · · · · ·	4 420 656 6	26 342 48
Lippincott	39 43 18 439	15 13 27 12	195 10 52 12	Burden	4 '344 465 5	22 103 '73
тарринеосс	75 18 50 435	88 20 56 06		Meetinghouse Hill	4 '532 554 6	34 084 32
Mount Holly	40 00 061997 74 47 201003	37 44 °5 '93 86 35 25 '41	217 36 13 36 266 12 20 93	Yard	4 '456 957 7 4 '709 403 7	28 638 99 51 215 76
Mount Rose	40 22 01 305	336 08 37 91	156 14 09*32	*	4'477 625 9	30 034 88
	74 43 26 437	52 17 55 71	232 10 17 61	Newtown	4 *325 374 2	21 153'11
Pine Hill	39 47 51 982	73 01 33 85	0 11 0 11	Lippincott	4*458 328 4	28 729 52
	74 59 36.725	120 07 49 05	299 52 39 94	Yard	4 589 931 4	38 898 37
Springfield	40 41 20 056	342 40 01 47	162 45 02 54	Beacon Hill	4 '564 498 1	36 685 81
	74 21 25 878	41 07 50 79	220 53 32 66	Mount Rose	4 675 473 3	47 366 72
Stony Hill	40 07 10 408	53 38 10 91	233 30 10 43	Mount Holly	4 342 240 8	21 990:79
	74 34 53 452	116 48 03 '07	296 34 55*12	Newtown	4 '509 657 7	32 333 87
Weasel	40 52 34 725	280 28 of '31	100 49 34 50	Harrow	4.671 752 6	46 962 65
	74 11 12'916	3 37 % 77	183 35 29 31	Beacon Hill	4 '747 798 8	55 949 '84
Pennsylvania.						
Bethel	39 50 44 107	312 12 38 26	132 19 24 '93	Lippincott	4 '310 393 6	20 435 89
	75 29 25 964	345 02 04 '97	165 06 15 62	Burden	4*559 914 6	36 300 67
Newtown	40 15 01 301	337 47 32 53	157 52 38 39	Mount Holly	4 473 984 7	29 784 12
	74 55 141585	52 41 13 57	232 34 02 22	Willowgrove	4 *298 685 8	19 892 33
Willowgrove	40 08 29*820	299 41 39 27	119 53 55 '03	Mount Holly	4 494 280 7	31 209 '06
	75 06 22 930	345 47 33 76	165 51 54 70	Pine Hill	4 * 595 230 7	39 375 92
Yard	39 58 22 673	347 17 37 09	167 20 26 24	Lippincott	4 456 145 5	28 585*48
	75 23 14 426	31 59 46 98	211 55 48 61	Bethel	4 '221 948 9	16 670 51
Delaware.		(- (Turkey Daint		22 212166
Buck	39 32 24 651 75 43 55 784	67 06 19 17	283 57 06°28	Turkey Point Principio	4 '414 063 1 4 '382 796 0	25 945 56 24 143 27
Meetinghouse Hill	39 42 44 148	5 21 32 18	185 20 44 31	Buck Principio	4 °283 056 5	19 189 18
Maryland.	75 42 40 734	62 20 38 41	242 09 24 37	Fillerpio	4 *454 159 6	28 455 06
Finlay*	39 24 25 852	354 34 26 29	174 35 54 68	Linstid	4 '550 316 3	35 507 19
•	76 31 29 080	20 18 03 46		Webb	4 '574 261 9	37 519 92
Hill*	3h 53 52 767	94 38 26 59	274 25 17 '00	Peach Grove	4*482 609 8	30 381 54
22111	76 52 50*328	159 55 24 59	339 51 27 46		4 *420 998 3	26 363 21
ar	-6 -6 -11		244 30 52 '03		4*411 765 7	25 808 67
Kent Island North Base*	38 58 24°429 76 20 27°924	64 41 00 '08 135 37 59 '69	315 32 31 '31	Linstid	4 '253 398 2	17 922 48
Kent Island South	38 53 51 787	82 53 40 15	262 44 29 64		4 328 444 0	21 303 16
Base*	76 21 58 789	141 47 26.42	321 43 41 57		4 143 529 1	13 916 47
Linstid*	39 05 19 591	24 16 04 75			4 417 956 2	26 179 19
	76 29 09 376	90 34 47 58	270 27 37 96	Webb	4 214 204 0	16 375 %6
Marriott*	38 52 25 417	96 37 35 04			4 '373 719 9	23 643 94
	76 36 35 724	166 46 12 26	346 43 44 '42	Webb	4 392 324 7	24 678 84
Maryland Heights*	39 20 25 561	358 43 10 54			4 707 753 2	51 021 49
	77 43 00 445	34 00 56 52	213 42 33 59	Mount Marshall	4 '878 122 3	75 530 49

^{*} Stations in common with and fixed by the transcontinental triangulation.

9						
Stations.	Latitude and longitude.	Azimuth.	Back azimut	h. To stations.	`Log. dis- `tances.	Distance in meters.
Maryland-continued.	0 / //	0 / 1/	0 / //			
Osbornes Ruin*	39 27 52 796	355 38 26 43		Pooles Island	4 '301 337 0	20 014 14
	76 16 53 430	73 07 42 15	252 58 25.92	Finlay	4 '340 289 4	21 892°20
Principio	39 35 34 552	I 34 34 59	181 34 22 88	Turkey Point	4 '203 937 0	15 993 '26
Timespio	76 00 17 006	59 11 31 99		Osbornes Ruin	4 '443 000 9	27 733 26
Pooles Island*	39 17 05 681	41 27 16 64 121 11 55 79	221 18 51 52 301 02 00 38		4'462 716 4	29 021 °27 26 267 °50
•	76 15 49 954	*21 12 33 79				20/ 30
Soper*	39 05 09 703	268 49 18'14	0, 1	Webb	4 ' 376 775 7	23 810 '90
	76 57 01.286	343 50 29 38	163 53 07 29	Hill	4 337 076 1	21 730 82
Stabler*	39 07 15 569	43 31 30 39	223 22 16.14	Peach Grove	4 '488 456 8	30 793 34
	76 59 07 050	114 01 10.2	293 45 41 37	Sugar Loaf	4 '586 513 6	38 593 45
Sugar Loaf*	39 15 42 412	32 29 22 28	212 17 39 05	Bull Run	4 '699 551 7	50 067 '01
	77 23 37 423	107 30 00 24	287 17 43 59	Maryland Heights	4 '465 432 7	29 203 35
Swan Point*	20 05 28 227	15 47 58 81	TOE 45 40 '00	Kent Island North Base	4°286 689 I	19 350*36
Swan Foint	39 08 28 277 76 16 49 060	71 56 57 47	251 49 10.42		4 230 039 1	18 713.33
	70 .0 49 0.0					7.3 33
Taylor*	38 59 46 243	42 39 34 28	222 34 07 97		4 266 498 5	18 471 '34
	76 27 56 483	170 19 43 07	350 18 57 15	Linsud	4 '018 198 2	10 427 93
Turkey Point*	39 26 56 156	50 19 42 97	-	Pooles Island	4*454 483 8	28 476 32
	76 00 35 405	94 21 30 60	274 11 09 07	Osbornes Ruin	4 '370 101 8	23 447 78
Webb*	39 05 24 413	39 54 36 51	219 46 51 13	Hill	4 '443 721 1	27 779 29
	76 40 30 733	97 22 49 52	277 11 05'40	Stabler	4 '432 017 4	27 040 67
Virginia,						
Buffalo	36 47 44 069	228 57 42 54	49 14 21 99		4.735 698 6	54 412 49
	80 28 39 565	253 08 13.16	73 41 04 05	Smith Mountain	4 '928 312 3	84 783 69
Bull Run*	35 52 51 450	22 30 41.85	202 19 28.81	Clárk	4 *835 447 1	68 461 61
	77 42 13 145	75 02 38°38	254 43 51 26	Mount Marshall	4 '652 400 4	44 915 93
Cahas	37 06 59 770	225 48 35 67	46 04 19 60	Flat Top	4 '727 663 5	53 415 '04
	80 00 57 165	285 47 27 89	106 03 44 13	Smith Mountain	4.619 220 5	41 612.18
Clark*	38 18 38 975	63 09 16:78	242 36 05 03	Humphack	4 '945 819 1	88 271 22
Citi	78 00 12'025	117 25 51 89	297 10 28 99	Fork	4 608 326 9	40 581 '39
				M1-1		
Flat Top	37 27 04 683	249 54 24 62 291 56 16 53	70 08 44 49	Tohacco Row Long Mountain	4.567 083 6	36 904 86
	79 34 58 928	291 50 10 53	112 14 21 09	Long .nonnearn	4 676 543 2	47 483 55
Fork *	38 28 42 681	35 52 11 '94	215 34 15 71	Humpback	4.860 307 4	72 494 88
	78 24 57 999	66 26 43 47	245 53 18 19	Elliott Knob	4 '933 878 8	85 877 38
Humphack*	37 56 53 769	88 32 08 02	267 57 00 80	Bald Knob	4 '922 915 2	83 736 58
	78 53 57 777	123 40 43 29	303 25 22°28	Elliott Knoh	4 .640 543 9	43 706 '28
Long Mountain	37 17 25 480	192 40 49 96	12 47 40 77	Humpback	4.874 224 9	74 855 71
.,	79 05 10 772	163 09 09 28	343 05 20 80	Tohacco Row	4 '502 886 7	31 833 67
Mount Marchall &	as 16 as 600	341 17 18 02	161 24 45 '00	Clark	4.505 66- 0	
Mount Marshall*	38 46 31 688 78 12 10 813	29 26 44 10	161 24 45 '90 209 18 45 '18		4 '735 883 3 4 '577 810 3	54 435 64 37 827 73
Peach Grove*	38 55 10 601	84 11 21 80	263 53 30 60		4.616 253 0	41 328 82
	77 13 47 327	159 34 44 78	339 28 32,69	Sugar Loaf	4 '607 957 7	40 546 91
Rogers	36 39 33 968	332 46 32 04	153 00 20 50		4 883 517 2	76 474 60
	81 32 42.378	40 46 10:34	220 24 47 93	Roan High Bluff	4 '918 217 4	82 835 67
Smith Mountain	37 00 49 354	178 13 04 37	358 12 27 17	Flat Top	4.686 522 9	48 587 31
	79 33 57 454	234 04 31 61	54 21 54 41	Long Mountain	4 '720 334 3	52 521 16

*Stations in common with and fixed by the transcontinental triangulation.

4192-No. 7-02-16

THE EASTERN OBLIQUE ARC.

242	1	HE EAST	EKN OBL	IQUE, ARC.		
Stations.	 Latitude and longitude. 	Azimnth,	Back azimuth	. To stations.	Log. dis- tance.	Distance in meters.
Virginia-continued	. , , ,,	0 / //	0 / //			
Spear*	3" 33 40'751	90 43 50 62		Tobacco Row	4 '577 326 2	37 785 59
•	78 45 47 192	164 25 09 '04		Humpback	4 649 283 4	44 594 72
Tobacco Row *	27 27 52 50	124 40 42 120	204 16 16:15	Pald Fuch		00 60° 100
Tobacco Row +	37 33 53 594 79 11 26 704	124 40 32 20	304 16 16 15	Bald Knob Humpback	4 '849 042 8 4 '696 339 5	70 638 72 49 698 07
North Carolina.	79 11 10 704	211 01 07 74	3 50 01	Taller products	4 197 339 3	49 093 07
Веши	35 33 52 827	220 18 10 43	40 35 51 27	Poore	4 '846 167 o	70 172 51
	81 39 38 032	257 56 53 55	78 32 18 85	Young	4'971 708 4	93 693 25
King	35 12 25 649	141 33 39 31	321 21 34 31	Berm	1:205 126 6	e 71 r '02
King	81 18 46 057	225 34 50 93	45 58 00 43	Young	4 '925 530 7	50 715'02 84 242'39
Mount Mitchell	35 45 51 44	196 27 56 26	16 32 08 81	Roan High Bluff	4 579 630 9	37 986 64
	82 15 55 02	291 50 44 49	112 11 53 77	Benn	4 771 325 1	59 o 64 '30
Moore	36 23 51 403	158 33 32'10	338 26 34 89	Buffalo	4 '676 356 4	47 463 13
	80 16 59 756	196 34 48 69	16 44 24 74	Cahas	4 '920 554 3	83 282 60
Poore	36 02 45 446	216 00 54 42	36 25 06 19	Buffalo	5'013 257 0	103 099 '60
	81 09 24 748	243 19 33 69	63 50 32'14	Moore	4 '943 028 7	87 705 68
Danie High Bluff	a6 or aa1100	200 01 18:10	22 26 11116	Doore	41050 500 6	So assis
Roan High Bluff	36 05 33 179 82 08 44 634	273 O1 48 50 323 O2 32 54	93 36 44 46	Poore	4 '950 523 6 4 '864 269 1	89 232 61
		323 02 32 34		Della	4 004 209 1	73 159 22
Young	35 44 12 276	126 52 52 65	306 34 58 00	Poore	4.758 644 5	57 364 67
South Carolina.	80 38 51 665	204 00 42.26	24 13 34 64	Moore	4 '904 942 5	80 341 98
				Down	11000 000 0	
Hogback	35 10 10'003 82 17 26'782	232 22 49 92	52 44 43 12	Wofford	4.858 124 0	72 131 '33 39 996 '28
	11/ 20 /02	305 44 12 69	125 50 27 01	Wonord	4 002 019 0	39 990 20
Mauldin	34 49 16 196	157 26 59 56	337 23 19:17	Pinnacle	4 '405 586 3	25 444 '05
	82 38 05 506	236 56 13 57	57 93 53 95	Paris	4 '356 965 5	24 376 17
Paris	34 56 27 015	203 23 41 '77	23 27 50 87	Hogback	4 '441 543 7	27 640:36
	82 24 40 474	267 18 15 89	87 34 37 37	Wofford	4.638 655 I	43 516 62
Pinnacle	35 01 58 585	249 39 13 79	69 54 47 43	Hogback	4 '641 697 5	43 822 54
	82 44 30'447	288 36 31 38	108 47 53 70	Paris	4 '503 290 4	31 863 27
147 - 67 3		200 10 40 114	00 00 00110	Donn	4 * 9 = 0 0 4 0	ne meatra
Wofford	34 57 30 072 81 56 07 174	200 18 39 13 243 53 46 98	20 28 10 18 64 15 15 08	Benn King	4 '855 901 2 4 '800 210 3	71 763°10 63 126°29
Georgia,	61 30 0/ 1/4	243 53 40 90	04 15 15 00	King	4 (00 210 3	03 120 29
Academy	33 57 30 366	82 42 39 78	262 34 27 87	Atlanta Northeast Base	4 '358 117 9	22 809 61
•	83 59 28 860	153 06 53 34	333 01 11,10		4 '538 334 2	34 549 94
Atlanta Middle Base	33 54 19 447	232 08 09 06	52 09 31 '84	Atlanta Northeast Base	3 '683 590 2	4 826 03
Atlanta Middle Dase	84 16 38 136	312 22 32 71		Stone Mountain	4 '215 648 3	16 430 41
		3.0 00 30 1.			40 -4- 5	45- 4-
Atlanta Northeast	33 55 55 564	126 18 04 86	306 10 41 '94	Sweat Mountain	4 '401 456 3	25 203 24
Base	84 14 09 791	191 36 22:37	11 38 54 02	Sawnee	4 '536 834 8	34 421 '90
Atlanta Southwest	33 52 49 530	232 06 51 76	52 09 31 84	Atlanta Northeast Base	3 '970 276 1	9 338 48
Base	84 18 56 758	297 51 14:29	117 56 54 30	Stone Mountain	4 249 470 6	17 761 13
Blood	34 44 20 949	246 34 02 45	66 55 53 35	Rabun	4 '802 267 7	63 426:06
	83 56 13 609	294 15 38 14	114 34 46 12		4 752 074 5	56 503 '39
Cornes		222 21			4 '701 967 7	
Carnes	33 59 33 442 85 00 50 358	223 31 55 32 272 34 29 97	43 44 36 86 92 49 04 34		4 '604 183 7	50 346 31 40 196 08
Currahee	34 31 42 855	188 10 26 00	8 13 02'19		4 689 285 1	48 897 33
	83 22 33 706	244 14 58 60	64 40 16 60	Manidill	4 876 702 1	75 283 '90
Grassy	34 29 08 280	232 01 27 85	52 14 54 33		4 '661 044 2	45 818 85
	84 19 53 408	267 37 13.27	87 57 55 37	Skitt	4 '748 161 8	55 996 62

^{*}Stations in common with and fixed by the transcontinental triangulation.

Stations.	Latitude and longitude.	Azimuth.	Back azimuth	. To stations.	Log. dis- tauce.	Distance in meters,
Georgia—continued.	0 / 11	0 7 11	0 / //			
Gulf Point	34 37 29 827	270 21 36 61	90 34 11 56	Johns	4 '529 537 9	33 848 38
	85 28 02 824	356 37 55.63	176 39 21 '02	Indian	4.820 337 I	66 120.65
Johns	34 37 20 912	308 08 41 55	128 24 21 18	Pine Log	4.732 129 0	53 967 09
J01120	85 05 54 122	27 40 24 62		Lavender	4.226 146 2	37 685 70
			, -			
Kenesaw	33 58 32 066 84 34 46 078	172 06 13 42 228 28 51 33		Pine Log Sweat Mountain	4 '587 666 4 4 '182 214 9	38 696 '03
	04 34 40 070	220 20 51 33	40 32 39 00	.7w Cat Monntain	4 102 214 9	15 213 00
Lavender	34 19 17 249	269 51 11'27		Pine Log	4 '777 750 8	59 944 '70
	85 17 18 719	325 09 29 15	145 18 44 '08	Carnes	4 647 387 9	44 400 50
Pine Log	34 19 16 '000	236 55 16.98	57 05 38 84	Grassy	4 '525 240 9	33 515 13
•	84 38 14 012	282 00 14 29	103 19 50,11	Sawnee	4.651 920 I	44 866 28
Rabun	34 57 53 468	261 24 26 47	81 43 38 88	Pinnacle	4.411 846 4	51 508 '24
	83 17 59 673	284 30 08 34	104 52 57 '92	Mauldin	4 '798 278 I	62 846 07
Sawnee	34 14 09 823	TED 30 47 '05	330 24 01 28	Crossy	41502 751 8	21 822 178
Sawnee	84 09 39 192	150 29 47 95 233 23 17 41	53 38 08 81	_	4 '502 751 8 4 '700 538 9	31 823 78 50 180 95
Skitt	34 30 18 269	142 52 18 89	322 44 59 48		4 '513 146 5	32 594 66
	83 43 20 214	265 12 55 59	85 24 41 92	Curranee	4'503 801 0	31 900 76
Stone Mountain	33 48 19 771	149 23 30 53	329 20 30'22	Atlauta Northeast Base	4 '212 738 2	16 320 68
	84 08 46 239	220 08 00 33	40 13 11 '06	Academy	4.346 400 3	22 202 42
Sweat Mountain	34 03 59 138	149 27 55 40	329 21 48 91	Pine Log	4 '516 084 1	32 815 89
	84 27 21 883	235 15 57 16	55 25 53 73	Sawnee	4'519 739 5	33 093 '26
Alabama						
Alpine	33 24 40 292	141 33 51 36	321 23 17 60		4 676 196 3	47 445 64
	86 12 27 492	257 27 29 92	77 40 41 45	Cheehahaw	4 '579 566 6	37 981 '02
Aurora	34 08 45 503	236 06 31 '43	56 21 03 04	Brandon	4 '677 999 5	47 643 04
	86 11 01,111	280 12 46 25	100 38 16.14	fudiau	4.852 202 7	71 154 '56
Pargenier	31 59 14 452	135 47 09 65	315 40 32 78	Lovers Leap	4.448 358 9	28 077 53
	86 36 51 350	180 29 12 15		Lowndesboro	4 '497 668 4	31 453 46
Brandon	34 23 05 '005	224 31 17'22	44 41 00 '81	Gulf Point	4 '573 188 9	27 427 24
Diandon	85 45 13 '034	322 21 46 56	142 32 50 86		4 '695 837 9	37 427 34 49 640 70
Cahaba	33 44 45 118	215 23 39 56	35 35 07 67	Aurora Cheehahaw	4 736 436 7	54 505 05
	86 31 33 365	293 18 11 30	113 42 00 /2	Cheenanaw	4 '860 804 4	72 577 90
Cat Island	30 18 54 274	316 16 59 55		Dauphin Island East Base	4 '009 213 8	10 214 42
	88 12 38 851	22 45 27 88	202 44 20 97	Dauphiu Island West Base	3 962 492 9	9 172 61
Cedar Point	30 20 42 488	8 07 41 '93	188 07 13 '05	Dauphin Island East Base	4 034 458 5	10 825 76
	88 07 17:561	45 50 55 07	225 47 06 07	Danphin Island West Base	4 228 357 0	16 918:31
Cheehahaw	33 29 05 692	154 46 13 71	334 33 42 57	Aurora	4'909 145 1	81 123 '20
	85 48 31 422	210 19 49 60	30 32 36 45	Indian	4 '845 763 8	70 107 39
Cold Creek	30 57 25 027	178 54 28 95	358 54 16 99	Coon	4 '507 002 9	32 136 .82
Cold Cicck	S8 o5 20 666	258 07 44 44	78 17 03 '22	,	4 '468 673 0	29 422 05
Coon	31 14 48 358	229 07 38 35	49 16 37 46		4 '558 422 2	36 176 14
	88 05 43 811	275 44 45 98	95 58 16 99	Ked filli	4 '619 293 4	41 619 17
County Line	31 57 50 224	175 38 53 09		Lovers Leap	4*357 278 3	22 765 56
	86 48 12.714	261 41 54.81	81 47 55 63	Bargenier	4*257 120 0	18 076 73
Creagh	31 36 11.130	232 48 02*18	53 02 09 41	Fatama	4 '725 276 4	53 122 24
	87 41 03 677	306 32 42 87	126 39 37 61	Pollard	4'415 967 1	26 059 56
Daphne	30 36 05 762	114 19 01 13	294 11 37 '90	Spring Hill	4 404 704 4	25 392 44
	87 54 16 946	190 49 52.66	10 51 41 67		4 479 341 0	30 153 73

Stations.	Latitude and longitude.	Azimuth.	Back azimuth,	. To stations.	Log. distance.	Distance in meters.
Alabama—continued.	0 / //	0 1 "	0 ' "			
Dauphin Island East	30 14 54 447	165 06 03 75	345 °3 37 '99	St. Elmo	4 475 527 2	29 890 09
Base	88 08 14 813	281 42 19:32	101 45 46 33	Fort Morgan,	4 '050 203 4	11 225'44
Dauphin Island West	30 14 19 561	264 11 23 52	84 14 43 35	Dauphin Island East Base	4 '027 831 9	10 661 83
Base	88 14 51 558	273 08 47 15	93 15 33 90	Fort Morgan	4 335 134 2	21 633 87
Dean	31 00 40 292	131 43 27 82	311 33 54 72	Coon	4*594 429 9	39 303 38
274417	87 47 15 226	208 52 32 11	28 56 27 58	Red Hill	4 397 629 5	24 982 13
Transistan						
Ethridge	32 04 43 931 87 03 29 565	245 52 52 °05 297 50 18 °42		Lovers Leap County Line	4 '387 868 6 4 '434 991 6	24 426 °92 27 226 °49
Fatama	31 53 31 091	219 09 31 '86	39 15 12 97		4 '427 241 8	26 744 95
	87 14 13 528	258 52 11 33	79 05 50 77	County Line	4 620 873 3	41 770 85
Fort Morgan	30 13 40 307	149 07 17 14	329 01 23.61		4.560 278 0	36 331 '05
	88 of 23.424	195 20 38 09	15 24 14 17	Daphne	4 633 149 6	42 968 45
Fort Morgan, Ast. Az.	30 13 40 301	93 15 36 00	273 08 49 27	Dauphin Island West Base	4 335 120 3	21 633 17
Station 1847	SS of 23.784	143 59 50 69	323 56 52:27	Cedar Point	4 206 143 7	16 074 73
Gunter	34 34 04 490	297 43 27 43	117 57 40 83	Brandon	4 638 579 6	43 509 05
	86 10 20 627	1 16 10.12		Aurora	4 '670 389 7	46 815 51
Horn	33 17 50 262	135 37 34 '97	315 33 11 83	Alnine	4 247 564 0	17 683 33
*****	86 04 28 886	229 51 58 12		Cheehahaw	4 '509 625 5	32 331 47
To Alam						
Indian	34 01 47 608 85 25 31 412	201 16 29 13	21 21 05 89 96 19 22 45	Carnes	4 '540 524 3 4 '582 375 3	
Jamison	32 55 54 510	218 27 36 25	38 36 44 49	Kahatchee	4.621 350 2	41 816 74
	86 38 21 461	259 07 53 40	79 17 10 87	Weogufka	4 432 911 3	27 096 38
Kahatchee	33 13 36 299	214 45 04 57	34 50 06 42		4.396 361 0	
	86 21 37 002	253 32 15 4S	73 4 ¹ 39 37	Ноги	4 443 056 7	27 736 82
Laurel	33 23 49 014	187 32 11.55	7 34 01 55	Cahaha	4 '591 482 6	39 037 55
	86 34 52*286	267 17 39 53	87 29 59 89	Alpiue	4 '541 410 1	34 786 45
Lovers Leap	32 10 07 200	177 27 23 26	357 26 43 40	Parker	4 641 191 1	43 771 46
	86 49 18 648	240 IO 22°47	60 17 06 35	Lowndesboro	4 358 925 0	22 852 04
Lowndesboro	32 16 15 °581	146 11 13 53	326 03 47 53	Parker	4*591 081 3	39 001 '50
	86 36 41 140	195 19 41 96	15 23 28 61	Wilder	4 619 619 3	
Midway	31 43 03 463	137 05 59 66	316 59 59*11	Fatania	4 '421 772 3	26 410°24
24244469	87 02 49 417	220 06 02 24	40 13 44 76	County Line	4 553 155 5	
Nin att.		*** *** ****		Cold Crople		
Minette	30 52 07 453 - 87 50 43 649	112 50 33 81	292 43 03°26 19 19 18°03	Cold Creek Dean	4 '402 402 0	25 258 17 16 734 38
Mount Carmel	32 01 14 '072	81 43 25 91	261 34 58 84	Bargenier	4 404 518 7	25 381 58
	86 20 54 584	138 17 37 94	318 09 14 30	Lowndesboro	4 *570 946 7	37 234 60
Parker			333 50 22 76		4 ° 383 230 I	
	86 50 33 110	256 31 28 49	76 42 44 26	Wilder	4.526 629 6	33 622 47
Perry	32 45 31 190	236 59 07 26	57 09 25 61	Jamison	4 *548 055 3	35 322.81
	86 57 21 552	287 41 12:26	107 56 10.47	Wilder	4 657 953 4	45 493 °93
Point Aux Pins	30 22 01 836	300 03 57 65	120 07 05 54	Cat Island	4.061 419 1	11 519 11
	88 18 51 990	335 41 32'18		Dauphin Island West Base	4 '193 605 2	15 617 27
Pollard	31 27 46 614	204 17 09 00	24 24 18 11	Fatama	4 '717 767 o	52 211 60
	87 27 50 666	234 23 07 18	54 36 13 60		4 686 818 9	
Red Hill	31 12 30 412	153 26 19'69			4 493 964 7	31 186 36
	87 39 39 490	213 32 11 80			4 '529 843 I	

THE MAIN TRIANGULATION.

Stations.	Latitude and longitude.	Azimuth.	Back azimuth.	To stations.	Log. dis- tance.	Distance in nueters.
Alabama-continued.						
Rowe	n / // 34 32 19 964	0 / //	0 / " 84 24 09 49	Gunter	4.211 149 9	32 445 '16
	86 31 26 930	354 26 07 '69	174 27 27 52		4 572 115 2	37 334 '91
St. Elmo	30 30 32 402	198 15 34 06	18 17 44 69	Spring Hill	4 '338 386 5	21 796 49
1741 241210	88 13 03,031	251 02 15 61	71 11 48 08	Daphne	4 501 323 3	31 719 28
Spring Hill		190 40 37 82	10 42 23 26	Cold Creek	4 '469 457 8	29 475 27
Spring IIII	30 41 44 505 88 08 46 420	236 14 48 44	56 24 02 58	Minette	4 409 437 5	34 596 29
Summit				Gunter		
Summe	34 12 13 980 86 29 05 522	282 56 19 °01	35 31 34 10 103 06 28 15	Aurora	4 '695 149 2 4 '454 925 1	49 562 05
Washin						
Weogufka	32 58 39 195 86 21 16 659	216 17 59 26	358 54 18 °02 36 27 10 °16	Kahatchee Horu	4 '441 562 5 4 '643 871 6	27 641 55 44 042 46
*** 4 . 4						
Wetumpka	32 32 01 '458 86 11 38 '672	111 27 30 94 163 02 42 85	291 17 49 29 342 57 30 12	Wilder Weogufka	4.480 740 5	30 251 06 51 466 00
White	31 27 35 857 87 48 27 684	269 19 44 97 269 19 44 97	36 27 48°11 89 30 30°60	Creagh Pollard	4 '295 003 9	19 724 '40 32 660 '09
	0/4/2/004				ř.	
Wilder	32 37 59 434	157 42 34 34	337 37 51 '32	Jamison	4'553 909 0	35 802 14
	86 29 38 754	198 50 42 47	18 55 14 50	Weogufka	4 605 982 4	40 362 91
Wilson	34 25 05 140	243 29 09 45	63 39 07 40	Rowe	4'478 573 3	30 100 47
,	86 49 03 198	307 42 52 90	127 54 08 '01	Summit	4 '588 392 3	38 7 60 °76
Wornock	33 59 46 272	220 24 31 96	40 31 41 84	Summit	4.481 194 2	30 282 69
Mississippi.	86 41 52 288	330 08 31 89	150 14 16 '83	Cahaba	4 505 134 1	31 998 83
Bellefontaine	30 20 30 277	269 35 12.7	89 40 10 3	East Pascagoula	4°196 838 o	15 733 '96
	88 42 34 781	5 21 57 4	185 21 40 0	Horn Island West	3*994 618 8	9 876 86
Bayou Casotte	30 19 42.575	273 40 46 49	93 43 34 '91	Grande Batture	3 950 829 4	8 929 55
Endy out quinotte	88 30 47 883	8 39 12 09	188 38 37 58	Horn Island East 1855	4.085 225 7	12 168 18
Cat Island 1852	30 14 14 '036	133 46 36 0	313 43 09 '2	Pitcher Point 2	4 '180 939	15 168 37
que anament anya	89 04 04 370	192 09 47 4	12 10 51'7	Mississippi City	4 207 760	16 134 67
Cat Island 1855	30 14 13 864	192 11 08 4	12 12 12.8	Mississippi City	4 207 942	16 141 '43
Cat Island 1033	89 04 04 655	268 39 41 4	88 45 06 2	Ship Island 1855	4 236 793	17 250 15
Cat Island Light		170 07 52 7	350 07 15 7	Pitcher Point 2		
Cat Island Light	30 13 48 673 89 09 40 973	265 02 48 3	85 05 37 6	Cat Island 1855	4 '058 394 3 '955 511	11 439°16 9 02 6 32
Dans Island s				Bellefontaine		
Deer Island 1	30 21 41 040	320 00 30 8	I01 I4 52'9 I40 03 40'9	Horn Island West	4.049 199 0	11 199'51 15 673'34
mark north nice						
East Pearl River	30 10 56 193 89 31 27 272	290 33 51 '7 346 21 48 '4	110 36 52 8	Grand Island 1855 Malheureux Point	4 °012 962 4 °094 055	10 302 96
Rast Pascagoula	30 20 33 593	296 30 53 20 354 27 13 86	116 31 52 72	Bayou Casotte Horn Island East 1855	3.546 295 3	3 518 '00
	88 32 45 725			**	4*135 600 2	13 664 70
Grande Batture	30 19 23 846	244 29 58 38		Point Aux Pins	4 '053 513 2	11 311'32
	88 25 14 320	299 19 59 87		Dauphin Island West Base	4 281 040 2	19 100 30
Horn Island East 1855	30 13 11 901	223 08 47 17		Grande Batture	4*196 033 9	15 704 85
	88 31 56 341	278 35 37 43	98 39 43 74		4.131 945 0	13 241 65
Horn Island West	30 15 10 928	239 09 04 5	59 14 19 1	East Pascagoula	4 '287 827 7	19 401.16
	88 43 09 330	281 27 54 9	101 33 33 8	Horn Island East 1855	4 '263 971 9	18 364 19
Mississippi City	30 22 46 232	275 39 51 7	95 46 11.4	Deer Island 1	4 '304 316	20 151 '90
	89 01 57 046	318 01 42 5	138 06 03 '6	Ship Island 1855	4 '315 662	20 685 31
Petit Bois	30 12 07 389	170 08 09 88			4 134 862 2	13 641 50
	88 23 46 844	254 05 30 25	74 09 59 67	Dauphin Island West Base	4'172 673 0	14 882 40

THE EASTERN OBLIQUE ARC.

Stations.	Latitude and longitude.	Azimuth.	Back azimuth.	To stations.	Log. dis- I tance.	istance in meters.
Mississippi-continued.						
Pitcher Point 2	0 / //	0 / //	0 ' "	Missinginoi City		
Fitcher Formt 2	30 19 54 661	249 45 00 5	69 49 32 0	Mississippi City	4'184 451	15 291 '53
	89 10 54 368	313 45 13'3	133 48 39 9	Cat Island 1855	4 180 886	15 166 '52
Point Clear	30 15 47 120	249 17 24 4	69 23 46 1	Pitcher Point 2	4 '334 E01	21 607 32
	89 23 30 982	314 11 31'4	134 16 19 7	Bayou Pierre	4 330 386	21 398 63
Ship Island 1855	30 14 26 509	204 59 18 5	25 01 16 '3	Deer Island 1	4'169 209 5	14 764 19
	88 53 19 661	265 09 57 4	85 15 04 8	Horn Island West	4 '214 177 3 °	16 374 85
South Point	30 11 13 '376	128 55 16 1	308 53 24 6	Cat Island Light	3 881 619	7 614 11
	89 05 59 440	208 54 27 7	28 55 25 5	Cat Island 1855	3'802 717	6 349 17
	7 7 37 447	54 -/ /	33 -3 3	200	3 444 /1/	0 349 -7
Louisiana.						
Battery Bieuvenue	29 59 02 847	219 38 18 8	39 40 36 8	Fort Wood	4 '063 829 `	11 583 21
	89 52 51 433	314 58 07.5	134 59 29 6	Martello Tower	3 794 728	6 233 44
Davies Dieses				Pitcher Point 2		
Bayon Pierre	30 07 42 355	192 15 30 9	12 17 03 3		4 '363 173	23 076 66
	89 13 57 793	232 44 06 7	52 49 05 1	Cat Island 1852	4 299 670	19 937 47
Caernarvon	29 51 49 307	177 55 53 '0	357 55 47 7	Ducros	3 '894 517	7 843 63.
	89 55 15 512	222 45 53 9	42 48 27 7	Martello Tower	4 '085 847	12 185 60
Ducros	29 56 03 880	216 56 53 5	36 58 10 7	Battery Bienvenue	3 '838 614 1	6 896 27
	89 55 26 070	262 37 26.5	82 40 05 7	Martello Tower	3 '935 932 2	8 628 44
Fort Wood	30 03 52 460	236 08 50 4	56 13 26 9	Rigolet Light	4 '249 405	17 758 45
	89 48 15 553	265 48 58 1	85 52 32 5	Shell Point	4 '060 338	11 490 48
	19 411 15 555	5 4- 5	-5 5- 5- 5		4 +00 550	11 490 40
Grand Island 1852	30 08 49 748	191 44 45 8	11 45 36 1	Point Clear	4.118 199	13 127 '02
	89 25 10 952	276 31 23.8	96 37 01.8	Bayon Pierre	4 '258 550	18 136 35
Grand Island 1855	30 08 58 526	193 49 33 5	13 50 31 '8	Point Clear	4 '112 517	12 957 37
Giana Island 1033	89 25 26 819	277 12 00 3	97 17 46 3	Bayou Pierre	4 '269 285	18 590 24
	09 25 20 019	2// 12 00 3	9/ 1/ 40 3	Dayou Fierre	4 209 205	10 390 24
Malheureux Point	30 04 24 258	218 30 25 7	38 32 31 7	Grand Island 1855	4 '033 214	10 794 79
	89 29 37 958	302 54 02 2	122 55 32 5	Nine Mile Bayou	3 981 100	9 574 14
3711= Manuar		100 00 0210	12 38 28 7	Fort Wood		
Martello Tower	29 56 39 747	192 37 33 '0			4 135 271	13 654 35
	89 50 06 982	262 13 07 3	82 16 25 8	Proctor Point 1853	4 '031 758	10 758 66
New Orleans, St. Pat-	29 56 45 248	275 07 42 1	95 12 04 4	Ducros	4.120 239 1	14 149 44
rick's Church	90 04 11 530	302 19 26 4	122 23 53 6	Caernarvou	4 '231 066 2	17 024 18
Nine Mile Bayou	30 01 35 344	174 31 12'1	354 30 47 6	Grand Island 1855	4 137 007	13 709 '04
	89 24 37 900	239 24 32 1	59 26 36 1	Oyster Bayou 1855	3 886 843	7 706 25
Oyster Bayon 1855	30 03 42 646	140 47 35 5	320 45 06 7	Grand Island 1855	4 '098 857	12 556 16
Synter Day on 1000	89 20 30 242	234 53 19 9	54 56 36 7	Bayon Pierre	4'108 621	12 841 65
			UT 0" 0" 1		4 ****	
Proctor Point 1853	29 57 26.888	147 09 48 9	327 07 25 8	Fort Wood	4 150 236	14 133 '05
	89 43 29 441	196 38 18 8	16 39 29 7	Shell Point	4 122 559	13 260 47
Rigolet Light	30 09 13 411	255 27 45 4	75 31 35 2	East Pearl River	4.101 208	12 635 '66
Rigoret 1/1811t		300 22 34 6	120 27 18 8	Malheureux Point		17 586 48
	89 39 04 455	300 22 34 0	120 2/ 10 8	Manufacture & Count	4 245 179	17 300 40
Shell Point	30 04 19 492	200 01 05 8	20 02 07 6	Rigolet Light	3 983 750	9 632 74
	89 41 07 675	269 29 48 7	89 35 34 3	Malheureux Point	4 '266 540	18 473.11

D. ADDITIONAL GEOGRAPHIC POSITIONS OF ASTRONOMIC STATIONS FOR WHICH TRIANGLES ARE NOT GIVEN IN THIS PAPER AND WHICH WERE DERIVED DIFFERENTIALLY.

Stations.		Lati	Longitude.			
Maine.						
Pangon	0	/ 48	// , TA *10	68	47	// 01 '20
Bangor Cape Small	44	46	14 '19	69	50	45 '20
Farmington	43	40	20.78	70	09	18 '40
Isles of Shoals, astronomic latitude station	42	59	12.87	70	36	51.10
Massachusetts.		0,	•		J-	0 - 7
Cambridge, Cloverden Observatory	40	22	44.00		0.77	.06
Cambridge, Harvard Observatory	42	22	44 °28 51 °48	71 71	07 07	18 ·46 44 ·74
Indian	41	25	44 '75	70	40	44 74
Shootflying	41	41	05 '34	70	20	50 .29
Rhode Island.	4.	-4 -	°J 54			20 39
Spencer	41	40	41 '25	71	29	41 '52
New York.						-
New York, Rutherford Observatory	40	43	49 '37	73	59	15.13
Delaware.						
Cape Henlopen Light-House, astronomic azimuth station*	38	46	39 '42 ·	75	05	03.25
Dover, astronomic latitude station	39	09	18 '59	75.	31	24 .26
Dover, astronomic longitude station	39	09	18.29	75	31	24 '51
Maryland,						
Rockville, astronomic latitude station ,	39	05	09 '08	77	09	37 '20
District of Columbia.						
Causten	38	55	33 '16	77	04	24 '37
Georgetown University Observatory	38	54	27 .81	77	04	39.61
Seaton Seaton	38	53	26 '82	77	00	00,10
United States Coast and Geodetic Survey Office, transit in yard	.38	53	10 '01	77	00	32 '71
United States Naval Observatory, old site, dome United States Naval Observatory, Georgetown Heights, center of	38	53	40 '12	77	03	06 .68
clock room	38	55	14 *89	77	04	02 '80
Virginia,	5-	00	-4 -7	,,		
· ·	.0	0.7		= 0		
Charlottesville, McCormick Observatory Elliott Knob, astronomic azimuth station*	38	01	55 '91	78	31	21 '15
Strasburg, astronomic latitude station	38 38	09 59	57 °22 27 °81	79 78	18	51 '84
Strasburg, astronomic longitude station	38	59	27 81	78	21	39 '74 39 '54
North Carolina.	Ju	39	27 02	70	21	39 34
Statesville, astronomic longitude station	35	46	54 *34	80	53	40 *44

^{*} Stations in common with and fixed by the transcontinental triangulation.

Stations.	Latitude.	Longitude.			
Georgia. `	0 / //	0 / //			
Atlanta, astronomic station	33 44 56 10	84 23 19 41			
Alabama.					
Lower Peach Tree, astronomic station	31 50 18.21	87 32 43 37			
Mobile, astronomic station	30 41 28 91	88 02 33.83			
Montgomery, astronomic station	32 22 37 37	86 18 00.92			
· Louisiana.					
New Orleans, astronomic station of 1858	29 57 18 05	90 04 25 14			
New Orleans, astronomic station of 1880 and 1895	29 56 51 51	92 04 12,19			

E. ADDITIONAL GEODETIC AZIMUTHS COMPUTED DIRECTLY FROM THE GIVEN POSITIONS OF THE TWO STATIONS.

Stations.	Azimu	th.	Back	azimut	To stations.	
Maine.	0 /				,, .	0.1
Cape Small Massachusetts.	155 18	59 '9	335	09 1	7 1	Sabattus
Cambridge, Harvard Observatory, dome	356 25	25 °I	176	25 5	9 '5	Blue Hill
Indian	135 36	02 .6	315	20 4	9 '5	Copecut
Shootflying	143 03	19.2	322	53 3	3 '9	Manomet
Spencer	185 57	36.2	5	59 2	2 .8	Beaconpole
District of Columbia.						
Causten	210 54	38.3	30	59 I	7 °2	Soper
Seaton	265 32	42 '33	85	37 I	5 .19	Hill

PART III.

THE ASTRONOMIC MEASURES.

III. THE ASTRONOMIC MEASURES.

A. RESULTS FOR LATITUDE AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

I. GENERAL STATEMENT.

The area covered by the triangulation extending from Maine to Louisiana is well supplied with astronomic latitudes, determined by the Horrebow-Talcott method. The number of stations is 71, irregularly distributed over the arc, as may be seen in the general sketch* of the location of the astronomic stations. In the northeastern half of the arc there are twice as many stations as in the other half. In some localities the stations are closely clustered, as in latitudes 38° 45′ to 40°, and in latitudes 44° to 45°, but upon the whole a satisfactory number of fairly well distributed stations are available for the study of the local and regional deflections of the vertical.

At nearly all the stations the latitude was determined with a zenith telescope. At four stations the determination depends entirely upon observations made with Airy's Zenith Sector.† At two stations both the above instruments were used, and at one of these a transit in the prime vertical was also used. At a few stations observations were made with other instruments, as stated in the abstracts of results. The results for latitude are here presented in the form used in the discussion of the arc of the parallel, but for those stations which are in common with that arc the final values alone are given. What has been said respecting instruments, observations, and method of reduction of latitudes in the publication of the arc of the parallel applies equally well to the present publication, and that publication should be consulted for further details.

The observations used extend over the interval between the years 1846 and 1898. The observations made before that time have been superseded by the introduction of new measures, using more refined methods and superior instruments. Some results at the Harvard College Observatory and the old Naval Observatory at Washington are incorporated in the table of results. The reduction of the observations for latitude was examined with a view of improving the mean star places, and in those cases where the residual, or difference of result from any pair of stars from the indiscriminate mean of all, was greater than $3\frac{1}{2}$ times the probable error of the result from that pair, the mean places of these stars were recomputed.

^{*}See Map B in pocket.

[†]For discussion of the results obtained by using this instrument, see Special Publication No. 4, "The Transcontinental Triangulation," United States Coast and Geodetic Survey, Washington, D. C., 1900.

The method of determining mean places of stars was to abstract from all available catalogues the north polar distances and to apply to them such systematic corrections as were known to attach to the catalogues (principally determined by the researches of Professor Lewis Boss). These north polar distances were next reduced to a common epoch, usually the year 1890, using the given precessional values and approximate values for the proper motion, and applying relative weights conformable to a wellproportioned system, embracing the catalogues in general. Finally the most probable corrections to the assumed north polar distances and proper motions were derived by application of the method of least squares; the probable errors of these quantities likewise became known. For convenience of reference the star numbers given in the abstracts are those of the British Association Catalogue; when not contained therein, the number in parenthesis () refers to the Greenwich Ten Year Catalogue of 1880; a number in brackets [] refers to the Coast Survey Catalogue given in Appendix No. 7 of the Report for 1876; an asterisk attached to any star number directs attention to the fact that the star is also used in another pair or pairs at that station. The observed component of a close double star is identified by the subscript letters P, F, and M, meaning preceding, following, or mean, respectively.

Referring to the abstracts of results at the several stations the column headed "Adopted seconds of mean N. P. D." contains the seconds of the star's mean north polar distance for the beginning of the year of observation, as adopted in the latitude computation; the column headed n' gives the number of observations made upon the pair; the column headed w gives the relative weight assigned to the result from the pair; the last column, headed v, exhibits the residual of the result from each pair from the weighted mean of all the pairs.

The probable errors and relative weights as given in the abstracts were determined as follows:

Let n = the total number of observations at a station and n' = the number upon any pair, also p = the number of pairs, and $\Delta =$ the difference of each individual result from the mean result from that pair, then the probable error of a single observation for latitude is given by

$$e^2 = \frac{0.455 \sum \Delta^2}{n - \rho}$$

For the determination of relative weights w we need e_{ee} or the value of the probable error of the mean of two declinations of a pair; this may be obtained either from the catalogue mean places or more directly from the latitude observations themselves.

The probable error e_p of a mean result from any pair is given by $e_p^* = \frac{0.455 \sum v^2}{p-1}$, where the v's arise both from errors of observation and errors of declination, and are found by subtracting the particular values $\varphi_1, \varphi_2, \varphi_3, \ldots$, of which there are p in number from φ or the mean latitude of all.

The probable errors e_{p_1} , e_{p_2} , etc. of the latitudes φ_1 , φ_2 , etc. are given by:

$$e^{2}_{p_{1}} = e^{2}_{\frac{p_{3}}{2}} + \frac{e^{2}}{n_{1}} \qquad e^{2}_{p_{2}} = e^{2}_{\frac{p_{3}}{2}} + \frac{e^{2}}{n_{2}} \quad \text{etc.},$$

where $e^2_{\frac{n}{2}} = e^2_{p} - \epsilon^2$ and $\epsilon^2 = \frac{e^2}{p} \left[\frac{1}{n_1} + \frac{1}{n_2} + \dots \right]$; hence the weights w become:

$$w_{\mathrm{r}} = \left(e^{2}_{\frac{nn}{2}} + \frac{e^{2}}{n_{\mathrm{r}}}\right)^{-1} \qquad \text{etc.}$$

There are exceptional cases in which these expressions do not apply. When a north or south star is connected after reversal of instrument, with two south or two north stars, the weight assigned to *each* of the two pairs or doublets so formed is two-thirds of that given by the general expression, and in case of triplets the weight is but one-half. Several stars observed on one side of the zenith may occur with several stars observed on the opposite side; in such a case the combination may be broken up into ordinary pairs or into doublets or triplets and the weights determined as indicated above. When a single or close zenith star is observed with instrument direct and instrument reversed.

the expression for the weight becomes $w = \left(2e^2_{\frac{88}{2}} + \frac{e^2}{n_1}\right)^{-1}$

Two values can be obtained for $e^2_{\frac{98}{2}}$, one from the star catalogues $\frac{\sum e^2}{4}$, where the

summation extends over the two stars of the group, and the other from the latitude observations $e^a_b - \epsilon^a$, and the larger of the two values was used.

The resulting latitude † is given by

$$\varphi = \frac{w_1 \varphi_1 + w_2 \varphi_2 + \dots}{w_1 + w_2 + \dots}$$

and its probable error by

$$e_{\varphi}^2 = \frac{0.455 \sum w(\Delta \varphi)^2}{(p-1)\sum w}$$

2. DETAILS AT STATIONS.

1. Calais, Maine.—G. W. Dean. Zenith telescope No. 4. September 2 to 29, 1857. One division of level = 1"'00. One turn of micrometer = 43"'64.

Р	airs o	f sta	rs.		opted se mean N			n'		70		:	ī,atitī	ude.	υ
					11		//		•			0	/	//	11
6 3	350	*6	365		30 .60	48	*27	5		3	4	45	I I I	0 '09	−o ·69
*6 3	365	6	372		48 .27	13	'37	5		3	4		1	0.30	-0 '90
6 3	394	6	419		09 .46	03	35	5		5			0	9 '23	+o ·17
6 4	175	6	520		25 '14	57	12	I		2			0	9 '70	—o · 3о
6 4	‡So	*6	496		45 '94	25	.32	5		3			0	9 '25	+o ·15
6 4	191	*6	496		14 '34	25	32	5		3			0	9 .00	+o · 40
6 5	547	6	555	,	35 .88	13	12	3		4			O	9 • 26	+o •14
6 5	566	6	593		55 '50	17	.87	4		4			0	9 '89	−o · 49
6 6	529	6	690		08 '47	16	.56	2		3			0	8 '36	+1 '04
*6 6	535	6	651		19 '32	40	'97	5		3			10	0 '27	−o ·87
*6 6	535	6	667		19 '32	58	. 60	5		3			10	0 '09	-o ·69
6 6	587	6	711		09 '55	50	*24	4		4			10	D '21	-o.81
6 7	721	6	745		43 '40	35	·79	3		4			10	0.96	− 1 .26
6 7	717	*6	769	1	50 '98	04	.90	3		2			0	8 .54	+0.86
6 7	741	*6	769	1	41 '70	04	*90	4		3			08	8 •30	+1.10

[†] The details of the method of making and reducing astronomic observations used in the Coast and Geodetic Survey are published in the Report for 1897-98, Appendix No. 7, "Determination of Time, Longitude, Latitude, and Azimuth."

1. Calais, Maine—continued.

Pairs o	f stars.		Adopted s	econds of J. P. D.	n'	70'	Latitude.	υ
			//	//			0 / //	//
6 763	*6 817		18.32	43 '16	4	3	45 11 10 33	-o '9 3
6 764	*6 817		45 '64	43 .16	5	3	09 '90	-o ·50
6 784	6 847		08 '90	00.62	2	3	07 '84	+1.26
6 851	*6 924		39 '80	17 '30	4	3	oS '54	+o ·86
*6 924	6 998		17 '30	43 '00	I	1	07 '45	+1.95
6 944	6 994		44 *21	27 '00	2	3	09 '63	-0.53
7 060	7 131		59 . 69	28 .60	4	4	oS ·48	+0.92
7 062	*7 119		21'70	09 '75	6	3	08 •99	+0.41
7 091	*7 119		38.11	09 '75	6	3	09.65	— о :25
7 176	7 194		38 *28	00 '80	5	5	oS · 98	+0.42
7 204	7 215		47 .69	55.60	4	4	09 °40	0,00
7 241	7 268		39 '50	43 '00	5	5	09 '40	0 '00
7 277	*7 294		53 '13	30 76	3	2	o8 ·86	十0.24
*7 294	7 383	- 1	30.46	41 .63	3	2	08.67	+0.43
7 301	*7 333	-1	08.55	27.12	6	3	09 '94	—o ·54
*7 333	7 345	Ų	27 . 12	28.33	6	3	09.92	—o ·52
7 365	7 385	- 1	10.99	47 '27	6	5	10.30	0.30
7 398	7 488		10.62	09 '62	3	4	08.63	+0.77
7 465	7 494		54 *87	47 '30	6	5	09.18	-l-0 .55
7 521	7 560		37 '40	42 '03	7	5	10 '43	-1.03
*7 623	7 699		26.31	30.74	6	3	09 '54	-o.14
*7 623	*7 707		26.31	40.23	3	2	10 '03	—o ·63
7 693	*7 707		44 '43	40 '53	4	3	09 '47	- 0 '07
*7 718	7 721		22 '51	28.68	3	2	10,11	-o ·71
*7 718	7 731		22 .21	18 35	2	2	09 .98	-o ·58
*7 753	7 778		56 '34	06.19	4	3	09.13	+0 '27
*7 753	7 782		56 .34	31:74	4	3	09 '32	+0.08
7 766	*7 798		54.21	18 '40	6	3	09.63	-0 '23
*7 798	7 829		18.40	53 '93	4	3	10.19	-0.76
7 815	7 880		10.98	16.41	4	4	08 '62	+0.78
7 845	7 906		26.52	09 '07	5	5	09 '86	-o ·46
7 923	7 973	-	31 '43	46 '55	4	4	07 '89	+1.21
7 972	7 999		. 48 35	44 '54	4	4	oS .70	+0.70
8 023	*S oS2		29 '46	27 'So	4	3	08.26	+0.84
*8 028	8 059		37 '47	57 '50 ·	5	3	09 '25	+0.12
*8 028	*8 oS2		37 '47	27.80	5	2	09.18	+0.55
8 114	8 171		56 '00	28.62	5	5	09 '46	-0.06
8 188	*8 211		20.70	35 '97	5.	3	10,30	-0.90
*8 211	8 268		35 '97	39 .86	5	3	09 '22	+0.18
51	60	1	51 '52	11 '75	5	5	08 .63	+0.77
92	*158		03.23	16.91	4	3	09.71	-0.31
*158	169		16.41	51 35	5	3	09 '92	-o ·52

Indiscriminate mean= 45° 11' 09'':38. Weighted mean = 45° 11' 09 '40±0'':06. $c=\pm0''$:67.

243 observations, 57 pairs. ↑Reduction to A=0′′∞.}

2. Cooper, Maine.—E. Goodfellow. Zenith telescope No. 5. September 8 to 18, 1859. One division of level=0'':96 from observations at this station. One turn of micrometer=41'':416 from circumpolar observations at this station.

Pairs of stars. Adopted seconds of n' w Latitude.	v
" " "	//
6 365 6 372 42 25 06 93 6 12 44 59 13 0	6 -0.46
6 404 6 428 28 30 32 64 6 12 12 4	5 +0.18
6 473 6 476 33 20 54 70 6 12 12 5	5 +0.05
6 497 6 500 57 59 04 66 4 9 12 2	0 +0.40
6 491 6 496 05 02 15 97 2 6 13 3.	5 -0.75
6 542 6 586 54 00 26 25 5 11 12 2	4 +0.36
6 602 6 612 30.86 11.47 5 11 13.0	2 -0.42
6 657 *6 662 19 92 24 50 5 5 12 9	8 —0.38
*6 662 6 674 24 50 04 41 6 6 II '9	7 +0.63
*6 662 6 676 24 50 09 87 6 6 I2 0	4 +0.56
6 730 *6 817 33 .80 25 .32 6 8 12 .5	1 +0.39
6 734 *6 817 14 '20 25 '32 6 8 12 '0	3 +0.57
6 857 6 895 32 78 10 09 6 12 12 7	5 —o ·15
*6 930 6 940 55 22 40 40 6 8 12 6	7 —0.07
*6 930 6 943 55 22 32 27 6 8 12 7	0 -0.10
*6 957 6 970 48 49 51 27 6 6 12 2	1 +0.39
*6 957 7 024 48 49 22 70 6 6 11 8	8 +0.72
*6 957 7 051 48 49 19 74 6 6 13 ·o	5 -0.45
7 060 7 131 36 32 04 62 4 9 12 1	0 +0.20
7 152 *7 176 27 25 12 79 6 8 12 6	6 -0.06
*7 176 7 194 12 ·79 35 ·04 6 8 12 ·3	7 +0.23
7 213 7 262 31 52 21 73 6 12 12 4	4 +0.16
7 268 *7 333 15 44 58 81 6 8 13 0	8 -0.48
7 301 *7 333 40.50 58.81 6 8 12.8	1 -0.51
7 428 7 444 30.58 49.10 6 12 12.4	8 +0.15
7 455 7 477 41 58 38 88 6 12 13 1	1 -0.21
7 501 7 503 12.63 48.51 5 11 12.1	9 +0.41
7 533 7 568 03 43 33 26 6 12 12 6	5 -0.05
7 595 7 607 44 38 50 73 6 12 11 9	2 +0.68
7 611 7 627 06:91 12:34 6 12 12:3	4 +0.26
7 693 7 708 09 71 19 01 6 12 13 3	5 -0.75
7 721 *7 749 53 76 34 68 6 8 13 0	2 -0.42
7 731 *7 749 43 18 34 68 6 8 13 1	9 -0.59
7 789 7 798 06:30 42:31 6 12 12:3	2 +0.58
7 803 7 845 50 58 49 58 5 11 13 0	0 -0.40
7 880 7 888 39.73 54.17 6 12 13.3	9 -0.79
7 913 7 950 39.83 31.60 6 12 12.2	2 +0.38

Indiscriminate mean = 44° 59′ 12′′ 59. Weighted mean = 44° 59′ 12′ 60±0′′ 05. $e = \pm 0$ ′′ 52.

209 observations, 37 pairs. [Reduction to $\triangle = + o^{\prime\prime}$ '04.]

3. Humpback, Maine.—A. T. Mosman. Zenith telescope No. 5. July 26 to August 19, 1858. One division of level = 0" '66. One turn of micrometer = 41'' '416 from circumpolar observations at this station.

Pairs of stars.	Adopted seconds of mean N. P. D.	n'	w .	Latitude.	υ
	// //			0 / //	" "
5 628 5 677	28.68 07.80	8	13	44 51 47 33	+0.53
5 747 5 Soi	24.73 02.51	8	13	47 '32	+0.54
5 SS6 *5 937,	14.84 31.00	8	9	48 .58	-0.72
5 ⁸ 95 *5 937	10 '07 31 '00	7	9	47 '16	+0.40
5 990 5 997	57 '91 28 '45	8	13	46 '99	+o ·57
6 013 6 109	06 '91 24 '09	8	13	47 *23	+0.33
6 246 *6 349	46 '63 07 '40	8	9	47 '78	−o °22
6 258 *6 349	58.60 07.40	8	9	47 .68	-o'12
6 364 6 428	34 '31 36 '50	5	12	47 °40	+0.19
6 404 6 476	31 '92 59 '00	5	12	48 '11	-o:55
6 497 6 500	02 '32 09 '46	8	13	47 °28	+o°28
6 553 6 601	10.36 19.83	8	13	47 '30	+0.56
6 697 6 711	16.63 42.70	8	13	47 °43	+0.13
6 731 *6 754	01 '71 36 '42	8	9	47 '60	-0.04
*6 754 6 779	36 '42 50 '04	7	9	47 '03	+0.53
6 817 6 895	34 '24 19 '90	8	13	47 '70	-0.14
6 930 6 943	05 '46 42 '80	10	14	47 .66	-0.10
6 957 6 970	59 '05 02 '73	8	13	46 .76	+0.80
6 985 7 022	12 '07 44 '87	8	13	47 *17	+0.39
*7 062 7 101	09 '98 37 '80	9	9	47 '28	+0.58
*7 062 7 114	09 '98 22 '64	9	9	46 .88	+o ·68
7 152 7 176	39 '50 25 '53	10	. 14	47 .64	-o ·o8
7 204 7 281	34 '47 28 '63	. 9	14	47 *24	+0.32
7 306 7 317	01 '42 03 '81	8	13	47 '58	-0 '02
7 398 7 448	55 '77 07 '85	S	13	47 *94	-o : 38
7 469 7 477	00 '53 54 '45	8	13	47 '93	−o ·37
7 489 7 505	20.09 03.50	S	13	48 .04	-o ·48
7 533 *7 568	19 '60 49 '35	9	9	47 '30	+0.56
*7 542 7 623	· 27 '70 09 '63	8	9	. 48.18	−o ·62
*7 542 *7 568	27 '70 49 '35	7	6	47 '54	+0.03
7 683 7 721	01 '20 11 '22	8	13	48 '40	-o·84
7 731 7 749	00 '73 52 '37	9	14	48 *13	-o·57
7 789 7 798	24 '31 00 '34	9	14	47 '50	+0.06
7 843 7 848	10 '59 38 '90	6	12	47 '56	0,00
7 SSo 7 SS8	58.30 12.75	8	13	47 '80	-0.24
7 913 7 950	58 '56 50 '46	9	14	47 *24	+0.32
7 999 S 023	25 40 10 18	8	13	48.10	-0.54

Indiscriminate mean = 44° 51' 47'' 55. Weighted mean = 44° 51' 47'' 55. $e = \pm 0''$ 36.

296 observations, 37 pairs.

[Reduction to $\triangle = -0''$:43.]

4. Bangor, Maine. E. Goodfellow. Zenith telescope No. 5. September 7 to October 10, 1857. One division of level =0".86. One turn of micrometer =41".397.

					0,,		
Pairs o	of stars.	Adopted se mean N.	conds of P. D.	72 *	w	Latitude.	v
		"	"			0 / //	//
6 427	6 477	40 '80	38 .79	5	10	44 48 11 88	+0 '99
6 496	6 497	25 '33	07 '05	2	7	13 '07	—o ·20
6 500	6 534	14 '26	59 .63	2	7	12 02	+0.85
6 579	6 593	43 '94	17.87	6	10	. 12.27	+0.60
*6 697	6 711	24 '11	50 °24	6	7	13 '07	-o ·2 0
*6 697	6 765	24 '11	01 83	6	7	12.25	+o.32
6 771	6 824	19.63	24.55	6	10	13:45	-o ⋅58
6 849	*6 881	27 .82	05 '78	4	6	12.68	+0.19
6 860	*6 881	27 '48	05 .78	5	6	12,01	-o · 04
6 930	6 944	15 '70	44 '21	6	10	12 '85	+o °02
6 959	7 001	54 .82	30 58	6	IO	13.11	—o ·24
7 027	*7 062	45 '20	21 .96	6	7	12 '93	o · 06
*7 062	7 114	21.96	34 *80	6	7	12.34	+0.53
7 171	7 219	44.19	38.15	6	IO	12 '99	-o ·12
7 233	7 253	52 '89	08 '96	5	10	12.80	+0.07
7 290	7 306	01 '32	15 *33	6	10	12.46	+0.41
7 398	7 448	10.62	23 °15	6	10	13 .53	o ·36
7 455	*7 477	12.40	10 '02	6	7	13 '54	−o ·67
*7 477	7 480	10 '02	18.72	4	6	12 .62	+0.22
7 488	7 505	09.62	19.17	6	10	13,51,	+0.66
7 548	7 565	53 '03	50 '24	6.	IO	11 '97	+0.00
7 623	7 708	26.31	53 .84	5	10	13 '17	—о :30
*7 668	7 721	30.24	28 '68	5	6	13 *39	−o ·52
*7 668	7 731	30.24	18.32	6	7	13 '31	-o . 44
*7 727	7 743	54 *43	17 '33	3	5	13 '21	-o ·34
*7 727	7 770	54 *43	14 .68	4	6	13 *36	—o · 49
7 749	7 843	09 '97	28 '90	6	IO	12:37	+0.20
7 875	*7 914	35 .61	15.56	5	6	13 '02	—o ·15
*7 914	7 973	15 '26	46.22	6	7	12.78	+0.09
7 999	8 023	44 °54	29 .46	6	10	13 '07	-0.50
8 059	*8 118	57.50	23 .82	5	6	12.41	+0.19
8 082	*8 118	27 '80	23 .82	6	7	13 '44	−o ·57
8 126	8 171	07 '92	28.62	6	10	13.89	-1.03
8 279	*8 374	47.87	03 .53	6	7	13 '82	0 '95
8 338	*8 374	06 .88	.03 '23	6	7	13.19	—o · 32
46	109	42 '28	13 '48	6	10	13.19	—o ·32
80	164	42.58	·54 ·68	6	IO	13 '00	0'13
*254	310	32.53	04.01	3	5	13 *13	o *2 6
*254	321	32 53	07 .83	3	5	12 .67	+0 '20
263	335	31 *24	33.09	3	8	12.70	+0.12
395	450	19.90	41 *40	6	10	12 . 27	+0.60
		w 11		440 40/	× 0//20	0	

Indiscriminate mean=44° 48′ 12″ 90. Weighted mean =44 48 12 '87 \pm 0″ '05. $e=\pm$ 0″ 38.

213 observations, 41 pairs.

[Reduction to $\triangle = o'' \cdot co.$]

4192-No. 7-02-17

5. Farmington, Maine. C. O. Boutelle. Zenith telescope No. 5. October 8 to November 6, 1866. One division of level = 0'':90. One turn of micrometer = 41'':48.

Pair	s of stars.	Adopted so		25'	20	Latitude.	ν
		, "	//			0 / //	//
6 599	6 697	12.0	16 .4	5	5	44 40 19 49	+0.02
6 723	6 806	56.4	34.6	5	5	19.85	-0.31
6 824	6 875	03.2	23 '7	6	6	19 '40	+0.14
6 928	6 937	45 '5	0.11	7	6	20.06	-0.2
6 973	7 024	42.6	03 '2	7	6	18 '79	+0.75
7 091	7 114	51.0	44 .6	6	6	19°27	+0.27.
7 233	7 241	54.5	38 .6	6	6	19.48	-o ·24
7 253	7 306	08 %	10 '4	6	6	19*40	+0.14
7 368	7 387	16.6	16 %	6	6	19 .09	+0 .45
7 444	7 449	03 .6	51.2	6	6	19 .02	+0.49
7 474	7 482	48.6	30 '0	6	6	19.26	+0.58
7 524	7 560	04 '6	15 '7	6	6	19 '97	-o ·43
7 627	7 700	15.4	27 *4	8	6	19.01	+0.53
7 746	7 765	16.4	57 '4	S	6	18:37	+1.12
7 845	7 850	41.5	46 '0	7	6	19.57	-0 '03
7 888	7 901	44 *7	46.8	7	6	20.12	-o ·63
7 950	7 983	21 '5	46 '0	5	5	20 *29	-0 '75
7 994	8 059	37 .6	01 0	6	6	19 '27	+0.27
8 037	8 082	51.7	31 .2	6	6	19 02	+o ·52
8 114	8 118	00.00	27 *4	5	5	20.38	-o ·84
8 159	8 188	02 °5	22 8	6	6	19 '43	+0.11
8 212	8 231	07 0	12.6	7	6	19 '27	+0.27
8 279	8 284	48 0	0'11	6	6	19.70	-0.19
4	46	57 '5	42 0	6	6	19 '52	+0.03
67	83	25 '1	46.5	6	6	20 '07	-0.53
158	201	18.0	46 .7	6	6	18 -67	+0.87
244	285	14.0	55 .6	6	6	19.77	-0.23
314	334	18.4	26 °5	6	6	18.96	+0.58
425	441	18 4	06 '3	6	6	19 '73	-0'19
492	540	48.4	23 '0	5	5	18.64	+0.90
610	647	51 .4	10.4	5	5	19 '00	+0.54
691	700	56 %	09.2	5	5	19.40	-0.19
721	786	11.6	55 '7	5.	5	19.55	-0.01

5. Farmington, Maine—continued.

		-	3. 2 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	autite co		•		
	Pairs o	of stars.	Adopted se mean N	econds of I. P. D.	n'	zv	Latiti	ide.	v
			//	11			0 /	11	//
6	930	6 944	43 '4	07.5	7	6	44 40	20 '06	—o '52
6	996	7 062	03 '0	36 .5	8	6		19 '46	+o ·o8
7	085	7 101	51.6	00.2	6	6		19.57	-o ·o3
7	171	7 254	50.0	28 .6	8	6		19.91	-o ·37
7	278	7 313	05 .6	06 '0	7	6		19 '35	+0.19
7	365	7 373	00 00	05 °0	7	6		19 '45	+0.09
7	399	7 401	51.0	53 '0	6	6		18.36	+1.58
7	469	7 477	57.0	50 '0	6	6		20 '23	− o .69
7	488	7 505	47.8	56 °o	7	6		19 '45	+0.00
7	548	7 554	27 '5	07 '2	6	6		20.18	-o ·64
7	565	7 598	22 .2	35 °O	7	6		18.86	+o ·68
* 7	668	7 721	55 '7	52 '5	6	4		19 '96	—o ·42
* 7	668	7 731	55 '7	43 °0	5	4		19.10	+0.44
7	753	7 813	18.8	50.1	6	6		18.86	+o ·68
7	855	7 915	20 °6	25 '8	6	6		19.29	-o ·o5
7	958	7 967	18.2	14.5	6	6		19 '29	+0.25
8	023	8 126	36 ℃	10.2	6	6		19.88	-o ·34
8	158	8 211	59 3	36.0	7	6		18.66	+0.88
8	224	8 237	03 *5	28 °o	6	6		19.21	+0.03
	52	79	44 °5	22 .5	6 .	6		20 '-2	−o ·48
	173	232	37.6	22.8	6	6		20.57	-1 .03
	239	299	44 '1	19.2	6	6		20 '36	-o ·82
	395	450	27 °0	52 .8	6	6		19 '36	+0.18
	588	630	56 °3	43 '3	6	6		18.56	+1.58
	668	679	21 .6	45 °2	6	6		20 '81	−1.5 2
	705	727	03.8	48 '5	6	6		19 '54	0 '00
	785	871	31.0	05 '0	5	5		20.28	-1 *04
	962	963	04 *5	46.2	5	5		20.76	-1 .55
	981	995	00.00	44 '4	5	5		20.28	-1.04
1	006	1 083	12.6	01,3	6	6		18 '49	+1.02
I	129	1 139	39 °0	51 '5	6	6		20 '02	−o · 48
I	219	I 254	49 '7	57 '5	6	6		20.42	-o · 88

Indiscriminate mean 44° 40′ 19′′.55. Weighted mean = 44 40 19 '.54±0′′.05. $e = \pm 0$ ′′.55.

397 observations, 65 pairs. [Reduction to $\triangle = 0'' \cdot \infty$.]

6. Mount Harris, Maine.—G. W. Dean.. Zenith telescope No. 2. First series. August 15 to 24, 1855. One division of level = 1"'16. One turn of micrometer = 44"'803 from circumpolar observations at this station.

Pairs	of stars.		Adopted se mean N.	conds of P. D.	n'	w	L	atitude.	v
			//	"			_	/ //	. "
5 840	5 922		35 '25	36.72	5	11	44 3	9 54 *25	+0 '44
6 129	6 218		26 '04	05 '44	5	11		55 '20	—o . 51
6 232	6 311		37 '00	04 '40	3	9		54 .88	-0.19
6 237	6 318		24 70	48 .54	3 ·	9		54 °32	+0.37
6 335	6 394		30 '40	16 .96	3.	9		54 '12	+0.57
6 372	6 392		19.81	38 .54	2	7		55 '08	−o . 39
6 419	6 466		10.93	58.34	5	II		55.07	−o .38
*6 477	6 497		47 .66	16 .62	3	6		54 '04	+0.65
*6 477	6 553		47 .66	25 .85	2	5		55 .18	− 0 . 49
*6 623	6 651		51 '94	54 '43	5	7		54 '43	+0.56
* 6 623	6 667		51 '94	12 .29	5	7		53 '95	+0.74
6 711	6 723		05 '36	21 '21	5	11		54 '92	-o ·23
6 731	6 754	1	25 .58	00.98	5	11		54 .82	-o·13
6 824	6 875		42 '20	90.60	5	11		54 '73	-o °04
6 928	6 937		41.81	05 '18	6	11		54 '45	+0.54
6 973	* 7 024		40 '25	08 '02	6	7		54 '11	+0.58
6 978	*7 024		03 '28	08 '02	4	7		55 '01	—o ·32
7 062	*7 114		45 '20	58 .53	5	7		53 '98	+0.71
7 091	*7 114		02 '02	58 .53	5	7		54 .62	+0.07
7 233	7 241		19.18	06.10	5	11		54 '90	-o ·21
7 253	7 306		35 .81	43 '49	5	11		54 '92	—o ·23
7 368	7 387		56.20	58 '31	5	II		54 '36	+0.33
7 399	7 401		35 '19	36 .52	5	11		54 '30	+0.39
7 469	7 477		46 .90	41.18	4	10		55 .64	−o ·95
7 488	7 505		41 12	50 .84	5	11		55 '31	-o ·62
7 524	7 560		00 '92	14 . 76	5	11		55 '47	—o ·78
7 571	*7 611		10 '83	13 .60	5	7		54 '19	+0.20
7 584	*7 611		58 .92	13 .60	5	7		54 '20	+0.49
7 651	7 693		43 '49	18.07	5	II -		54 '98	—o ·29
7 746	7 765		30 '45	12 '20	5	11		54 *22	+0.47
7 845	7 850		02 '93 .	07.71	5	11		54 .86	—o ·17
7 962	*7 999		47 '80	22 .81	3	6		55 '14	-o ·45
*7 999	8 023		22.81	08 '00	`2	5		55 '49	-o ·8o
8 037	8 082		24 '29	06 '94	4	10		53 .83	+o ·86
8 114	8 128		35 '50	53 '70	5	11		54 '72	-o ·o3
8 156	*8 188		55 °49	00.36	5	7		54 '44	+0.25
8 159	*8 188		39 '44	00 '36	5	7		54 '79	-o .10
8 212	8 231		45 *25	51 '97	5	11		55 '08	− o :39
8 237	8 261		06 '22	04 '35	5	11		54 '33	+0.36
8 279	8 284		27 '94	51 '44	4	10		54 '81	-0°12
		Indi	scriminat	e mean	=440 30' 5	1/1.68.			

Indiscriminate mean =44° 39′ 54′′68. Weighted mean =44° 39′ 54′′69±0′′05. $e=\pm0$ ′′37.

¹⁷⁹ observations, 40 pairs.

6. Mount Harris, Maine.—G. W. Dean. Zenith telescope No. 10. Second series. August 6 to 27, 1855. One division of level =0"632, from observations at this station. One turn of micrometer =39"522 from circumpolar observations at this station.

Pairs	of stars.		Adopted somean N		n'	20	Latitude.	v //
5 731	5 797	- 1	25 48	26 '99	5	16	44 39 54 99	-o : 48
5 840	5 922		35 *25	36.43	6	17	54 '43	+0.38
5 944	6 036		05.88	09 '54	5	16	54 '37	+0'14
6 129	6 218		26 '04	05 '44	5	16	54 .66	-0.12
6 232	_		· ·	04 '40		16	54 '81	
	6 311		37 '00	48 '24	5			+0.10 -0.30
6 237			24 '70	16.96	4	15	54 ·41	—0.10
6 335	6 394		30 . 40	38 *24	3 2	14		
6 372	6 392			24 '22		II I1	54 '52	-0.01 -0.87
*6 419	6 456		10 '93	58 '34	5		55.38	
*6 419	6 466		10 '93		5	11	55 '15	-0.64
*6 477	6 497		47 '66	16.62	5	11	53 .65	+0.86
*6 477	6 553		47 '66	25 '85	5	11	54 '76	÷0 ·25
6 566	6 581		05 '37	03 '90	5	16	54 .84	-o ·33
*6 623	6 651		51 '94	54 '43	5	II	54 '77	-o ·26
*6 623	6 667		51 '94	12 '59	5	I I	54 '70	-0.19
6 711	6 723		05 '36	21 .51	6	17	54 '73	-0 . 22
6 731	6 754		25 .58	00 '98	6	17	54 '19	+0.32
6 824	6 875		42 '20	09 '08	6	17	54 '36	+0.12
6 928	6 937		41 '81	05 .18	5 -	. 16	54 '44	+0.07
6 973	*7 024		40 '25	08 '02	6	11	54 '63	-0'12
6 978	*7 024		03 '28	08 '02	6	II	55 '01	-o ·50
7 062	*7 114		45 '20	58 .53	6	II	53 '97	+0.54
7 091	*7 114		02 '02	58 .53	6	11	54 '38	+0.13
7 233	7 241		19.18	06.10	6	17	54.18	+0.33
7 253	7 306		35 '81	43 *49	5	16	54.28	-o ·o7
*7 368	7 377		56.20	31,10	5	11	54 *24	+0.54
*7 368	7 387		56.20	58.31	5	11	54 '29	+0.55
7 399	7 401		35 '19	36 '22	5	16	54 '05	+0.46
7 469	7 477	1	46 '90	41.18	6	17	54 *57	0 .06
7 488	7 505		41 '12	50 84	6	17	54 '79	− o •28
7 524	7 560		00,65	14 '76	6	17	54 .69	-o .18
7 571	*7 611		10.83	13 '60	6	11	54 '22	+0.59
7 584	*7 611		58 '95	13 '60	6	11	54 '37	+0.14
7 651	7 693		43 '49	18.07	6	17	54 .76	-o ·25
7 746	7 765		30 '45	12 '20	5	16	53 '77	+0.74
7 789	7 798	İ	18 °05	53.20	5	16	54 *43	+0.08
7 845	7 850		02 '93	07.71	4	15	. 54 '12	+0.39
7 879	*7 888		16.69	08 '20	3	9	54 .48	+0.03
7 880	*7 888		54 '02	08 '20	2	8	54 *34	+o ·17
7 913	7 950		54 '44	46 .74	5	16	54 '41	+0.10
7 962	*7 999		47 '80	22.81	5	11	54 *85	-o·34
*7 999	8 023		22.81	08 '00	5	11	55 34	-o ·83 ·
8 037	8 082		24 *29	06 '94	5	16	54 '11	+0.40

6. Mount Harris, Maine. Second series-continued.

Pairs of stars.	Adopted seconds of mean N. P. D.	n' zu	Latitude.	υ
	// //		0 / //	11
8 114 8 128	35 '50 53 '70	5 16	44 39 54 'S3	-0.32
8, 156 *8 188	55 '49 00 '36	5 11	54 *23	+o ·28
8 159 *8 188	39 '44 00 '36	5 11	54 .69	—o .18
8 212 8 231	45 '25 51 '97	5 16	54 *41	+0.10
8 237 8 261	06 '22 04 '35	5 16	54 *20	+o*31
8 279 8 284	27 '94 51 '44	5 16	55 '13	—o ·62
	Indiscriminate mean =	=44° 39′ 54′′	52.	
	Weighted mean =	=44 39 54	'51±0" '04.	
	e=	=±0" ·29.		
	248 observations, 49 pa	irs.		

6. Mount Harris, Maine.—E. Goodfellow. Zenith telescope No. 10. Third series. September 12 to 25, 1855. One division of level=0"632. One turn of micrometer=39"507 from circumpolar observations at this station.

	Pair	s of star	s.	Adopted secondary N. I	onds of P. D.	n'	zv	Latitude.	υ
				11	11			0 / //	"
*6	419	6 45	5	10.93	24 °22	I	2	44 39 54 74	+0.02
*6	419	6 46	5	10.93	58:34	I	·2	54 '09	+0.70
* 6	477	6 49	7	47 .66	16 .65	5	6	54 '17	+0.62
*6	477	6 55.	3	47 .66	25 °S5	5	6	55 '24	-o ·45
6	566	6 58	I	05:37	03 '90	6	9	55 '02	—o ·23
*6	623	6 65	I	51 194	54 '43	6	6	54 .86	-0.07
*6	623	6 66	7	51 '94	12 '59	6	6	54 '74	+0.02
6	711	6 72	3	05.36	21 '21	5	9	54 '43	+0.36
6	731	6 75	4	25 .58	00 '98	5	9	55 '50	-0.41
6	824	6 87	5	42 '20	09 '08	6	9	54 '74	+0.02
6	928	6 93	7	41.81	05.18	6	9	54 '45	+0.34
6	973	*7 02	4	40 '25	08 '02	6	6	54 '42	+0.37
6	978	*7 02	4	03 '28	08 '02	6	6	54 '30	+0.49
7	062	7 11.	4	45 '20	58.53	6	9	54 .88	-0.09
7	233	7 24	I	19.18	06,10	6	9	53 '74	+1.02
7	253	7 30	6	35 .81	43 '49	6	9	55 '44	0.65
*7	368	7 37	7	56.20	31.10	5	6	54 '12	+0.67
*7	368	7 38	7	56.20	58.31	6	6	54 '59	+0.50
7	399	7 40	I	35.19	36 .55	6	9	54 '37	+0.42
7	469	7 47	7	46 '90	41.18	-6	9	55 '30	-o·51
7	488	7 50	5	41 '12	50.84	6	9	55 °45	-0.66
7	524	7 56	0 📫	00 '92	14 .76	6	9	54 '91	-o.13
-	571	*7 61	I	10.83	13 .60	4	5	54 .66	+0.13
7	584	*7 61	1	58 .95	13.60	7	6	54 '59	+0 '20
7	651	7 69	3	43 '49	18.04	6	9	55 '02	-o ·23
7	746	7 76	5	30 '45	12 '20	6	9	53 .80	+0.99
-	789	7 79		18 '05	53 '50	6	9	55 '03	—o '2 4
	845	7 85		02 '93	07 '71	6	, 9	54 .88	-o ·o9
7	879	*7 SS	8	16.69	08 '20	3	5	55 '09	-o <i>•</i> зо

6.	Mount	Harris.	Maine.	Third	series-	-continued.
----	-------	---------	--------	-------	---------	-------------

	Pairs	of stars.	Adopted s mean N		n'	zv	Latitude.	v
			//	//			0 / //	//
7	880	*7 888	54 '02	08 '20	3	5	44 39 55 47	-o ·68
7	913	7 950	54 '44	46 '74	6	9	55.00	-o.51
7	962	*7 999	47 '80	22.81	6	6	55 .53	− 0 ·44
*7	999	8 023	22.81	08 .00	6	6	55*92	-1.13
8	037	8 082	24 . 29	06 .04	6	9	54 '37	+0.42
8	114	8 128	35.20	53 '70	6	9	55 .58	—o ·49
8	156	*8 188	55 '49	00.36	7	6	54 '47	+0.32
8	159	*8 188	39 '44	00. 36	6	6	54 '90	-0.11
8	212	8 231	45 '25	51 *97	5	9	54 .89	-0.10
8	237	8 261	06 '22	04 '35	6	9	53 .80	+0.99
8	279	8 284	27 '94	51 *44	6	9	55 '38	−o <i>:</i> 59

Indiscriminate mean = 44° 39′ 54″ 78. Weighted mean = 44° 39′ 54″ 79 \pm 0″ 05. $e = \pm$ 0″ 44.

218 observations, 40 pairs.

Collection of results at station, Mount Harris, Maine.

G. W. Dean, Z. T. No. 2 $\varphi=44^{\circ}$ 39′ $54^{\prime\prime}$ '69 \pm 0′' '05. G. W. Dean, Z. T. No. 10 54 '51 \pm 0 '04. E. Goodfellow, Z. T. No. 10 54 '79 \pm 0 '05. Mean adopted $\varphi=44$ 39 54 '66 \pm 0 '04. [Reduction to $\triangle=+$ 0′' '21.]

7. Howard, Maine.—E. Goodfellow. Zenith telescope No. 5. July 13 to 23, 1859. One division of level = 1'':015 from observations at this station. One turn of micrometer = 44'':418 from circumpolar observations at this station.

Pa	Pairs of stars.		Adopted seconds of mean N. P. D.		n'	w	Latitude,	v
			//	11			0 / //	//
*5 113	5 1	22	03 *14	02 *30	3	5	44 37 48 84	+0 40
*5 113	5 I	30	03 '14	11.88	3	5	48 .46	+0.78
5 210	5 2	59	33 '98	10.14	4	8	48 .44	+0.80
5 244	5 2	49	51 '44	49 '95	4	8	48 .85	+0.39
5 307	5 3	21	49. 85	07 '30	5	8	49 '43	-0.19
5 388	5 4	.00	37 '00	08:78	6	9	48 .85	+0.39
5 449	5 4	59	53 .61	07 '76	6	9	49 '59	-o ·35
5 466	5 5 5	14	46 .87	53 '35	6	9	48 · 61	+0 .63
5 523	5 5	68	20.48	58 ·So	6	9	49.58	—o ∙ 34
5 604	5 6	43	21 '97	54 '20	6	9	49 °06	+0.18
5 658	5 7	47	20.74	30 °21	6	9	49 '35	-0.11
5 823	5 8	883	41.88	20.58	4	8	49.61	-0.37
5 834	5 9	37	45 '90	33 .85	4	8	49 '42	-0.18
5 999	5 9	97	00.02	28.65	6	9	49 '46	-o ·22
6 09	*6 r	09	08 °06	24 '52	6	6	48 .89	+0.35
*6 10	9 6 1	62	24 '52	13.28	5	6	50 02	-0.78

7. Howard, Maine-continued.

Pa	irs of	stars.			Adopted s		n'	70	Latitude.	v
					//	//			0 / //	11
6	231	*6	272		43 .88	00 '41	6	6	44 37 49 45	—o '2 I
*6	251	*6	272		27 '97	00 '41	7	6	50 *13	—o ·89
*6	316	6	322		- 25 .89	07 '80	7	6	49 *32	-o os
*6	316	6	341		25 .89	61 .60	7	6	48 .67	+0.57
5	372	6	392		06 '93	23 '96	6	9	49 *07	+0.12
*6	419	6	456		55 '79	08 '00	5	6	50 *00	—o ·76
*6	419	6	466		55 '79	41 .82	5	6	49.78	—o ·54
6	476	6	493		54 .68	45 '16	4	8	48.87	+0.37
6	477	6	553		29.81	04 '95	4 '	8	48 .72	+0.52
6	566	6	581		44 '00	39 '63	6	9	49 °03	+0.51
*6	623	6	667		25 '49	44 .64	6	6	50.18	-o '9 4
*6	623	6	651		25 '49	27 '29	6	6	49 '91	—o ·67
*6	723	6	806		50 .67	34 '56	6	4	49.78	−o ·54
*6	723	6	765		50.67	45 '19	6	4	49.79	—o ·55
*6	723	6	813		50 .67	18.18	6	4	49 .84	—o ·60
6	824	6	875		06 '26	30 '30	6	9	49 '00	+0.51
*6	928	6	937		00 '92	23 .53	6	4	48 '98	+0.26
*6	928	6	967		00 '92	24 .65	6	4	48 '57	+0.67
*6	928	6	997		00 '92	21 '93	6	4	48 . 26	+0.98
*7	027	7	062		22.54	58.26	6	6	49.19	+0 05
*7	027	7	160		22.24	14.19	6	6	49 .64	-0.40
7	100	7	112		15 '10	19.10	6	9	48 *84	+0.40
7	233	*7	253		26 '48	42 '08	6	6	49 '52	—o ·28
*7	253	7	306		42 '08	47 '51	6	6	49 '40	-o.19
				In	discriminat	e mean :	= 44° 37′	49''.26.		
				W	eighted mea	R11	= 44 37	49 '24 :	±0′′°05.	
						P	=+0".45			

221 observations, 40 pairs.

[Reduction to $\triangle = -o^{\prime\prime}.56.$]

8. Mount Desert, Maine.—S. Harris. Zenith telescope No. 5. First series. August 18 to September 5, 1856. One division of level =0".73 from observations at this station. One turn of micrometer =41" '42 from circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		n'	w	Latitude.	v	
				//	//			0 / //	//
6	062	*6 129		02 '90	26 '14	5	15	44 21 06 38	+0.13
6	068	*6 129		45 .46	26.14	7	21	06 '56	-o ·o5
*6	255	6 268	4	57 '91	07 '44	6	18	06.21	0.00
*6	255	6 357		57 '91	23 '53	7	21	06 .33	+0.18
6	395	*6 429		18 '80	06 '94	6	18	05 '85	+0.66
*6	429	6 522		06 '94	47 '75	6	15	06 *14	. +0 '37
6	553	6 583	1	20 '45	05 '45	6	27	06 '39	+0'12
6	629	6 637	- 1	14 .87	38 .62	6	27	06.19	+0 '32
6	687	6 722		19.91	23 '34	6	27	06,13	+o ·38

8. Mount Desert, Maine. First series-continued.

Pairs	of stars.	Adopted seconds of mean N. P. D.		n'	w Lat	itude.	υ
		. //	"		0 /	" "	//
*6 769	6 799	14 '17 4	8.19	6	18 44 21	06.66	-o.12
*6 769	6 830	14.12	7 . 70	6	18	06.20	+0.01
6 849	6 865	37 '00 5	8.28	6	27	06.61	-o.io
6 879	6 932	30.29	8 -37	6	27	06.11	+0.40
6 979	6 994	11 65	38.32	6	27	06 '29	+0.55
7 022	7 062	07 '50 3	33 '49	6	27	06 *45	+0.06
7 073	7 153	24 '90 4	12 '83	4	19.	06 .73	-o ·2 2
7 219	7 253	51 17 2	22 '37	4 .	19	06 °42	+0.09
7 220	7 256	10.37	16 '11	5	23	06:34	+0.12
7 310	7 368	23 .53	11 '98	6	27	06.40	+0.11
7 416	7 461	25 '02 5	9 '25	6	27	06 .24	-o · o6
7 521	7 548	52 '76	9 '52	6	27	·06 ·42	+0.09
7 569	7 595	20 .84	33 -83	6	27	06.91	-o ·40
7 615	7 623	50 .84	13 '04	6	27	06.68	-o ·17
7 721	7 754	46.19	32 '42	6	27	07 '04	-o ·53
7,731	7 778	35.83	24 '41	7	32	06 '99	-o ⋅48
7 800	7 803	14 °36	µ •64	5	23	06 '72	—o ·2 1
7 855	*7 858	24 '55 3	55 05	6	18	o6 ' 8o	-0.29
*7 858	7 882	35 05 2	6 '94	7	21	06 '30	+0.51
7 894	7 913	52 06 3	34 '79	6	18	06 '02	+0.49
8 141	8 188	32 05 4	10.54	5	23	06.99	-o ·48
8 284	8 344	31 '40 4	4 '73	6	27	06 '60	-o · o9
8 366	8 374	17 12 2	22 '62	7	32	o6 °44	+0.07

Indiscriminate mean = 44° 21' 06".48.

Weighted mean = 44 21 06 '51 \pm 0'' '03.

 $e = \pm \, o'' \, ^{46}$.

189 observations, 32 pairs.

[Reduction to $\triangle = -1''$ 88.]

8. Mount Desert, Maine.—E. Goodfellow. Zenith telescope No. 5. Second series. September 18 to October 5, 1856. One division of level = 0'' '716 from observations at this station. One turn of micrometer = 41'''421 from circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		n'	าย	Latitude.	υ	
				//	//			0 / //	//
*6	255	6 268		57 '91	07 *44	5	5	44 21 06 25	+o ·2 8
*6	255	6 357		57 '91	23 '53	5	5	90.90	+0.47
6	395	*6 429		18.80	06 '94	7	5	05 '68	+o ·85
*6	429	6 522		06 *94	47 '75	6	5	06.06	+0.47
6	553	6 583		20 .45	05 '45	6	- 8	06 '97	-o ·44
6	629	. 6 637		14 .87	38.62	6	8	06.55	+0.31
6	687	6 722		19.91	23 '34	6	8	05 .63	+0.90
*6	769	6 799		14 '17	48 .16	5	5	06 *55	-o ·o2
*6	769	6 830		14.17	17 '70	6	5	06 .43	+0.10
6	849	6 865		37 '00	58.28	6	8	06 '55	-0 '02

S. Mount Desert, Maine. Second series-continued.

	Pairs	of stars.	Adopted s mean N		n'	20	Latitude.	υ
			mean N	. F. D.			0 / //	//
6	879	6 932	30.59	18:37	7	8	44 21 06 61	-o ·o8
6	979	6 994	11 .65	38 '32	6	8	05 '77	+0.76
7	022	7 062	07 '50	33 '49	6	8	06 .66	-o ·13
7	073	7 153	24 '90	42 .83	5	7	06 *78	-o°25
7	219	7 253	51 '17	22 '37	4	7	07 '32	-0.79
7	220	7 256	10.37	16.11	4	7	06 '14	+0.39
7	310	7 368	23 '23	41.98	6	8	06 '42	+0.11
7	416	7 461	25 '02'	59 '25	6	8	06 '09	+0.44
7	521	7 548	52 .76	09.2	6	8	06 '73	-0.50
7	569	7 595	20.84	33.83	6	8	07 *23	-0.70
7	615	7 623	50 .84	43 '04	7	8	06 '07	+0.46
7	721	7 754	46 '19	32 '42	6	8	07 '11	o ·58
7	731	7 778	35 .83	24 '41	6	8	07 '39	-o ·86
7	800	7 803	14 '36	44 .64	4	7	07 '73	—I *20
7	855	*7 858	24 '55	35 .02	6	5	06 '20	+0.33
*7	858	7 882	35 '05	26 '94	6	5	06 .00	+0.23
7	894	7 913	52 06	34 *79	6	8	06 .43	-o ·20
8	141	8 188	32 '05	40 '54	6	8	07 '32	−o ·79
8	284	8 344	31 '40	44 '73	6	8	06.51	+0.32
8	366	8 374	17 12	22.62	4	7	06.19	+0.34
			Indiscrimi	nate mean	$= 44^{\circ} 21$	1' 06"	50.	

Weighted mean = 44 21 06 '53 \pm 0'' '07.

 $e = \pm 0''$ '41.

171 observations, 30 pairs.

[Reduction to $\triangle = -1''$ 88.]

9. Ragged Mountain, Maine.—G. W. Dean. Zenith telescope No. 5. First series. August 18 to September 7, 1854. One division of level = 0''·71 from observations at this station. One turn of micrometer = 41"'426 from circumpolar observations at this station.

			•					
Pairs	of stars.		Adopted se		n'	20	Latitude.	υ
			. //	11			0 / //	11
5 596	5 617		02 .60	50.27	2	9	44 12 43 02	-0.10
5 795	5 847		14 '25	10 '82	4	10	43 '17	-o ·25
5 874	5 911		45 .86	55 '20	5	10	43 '45	-o:53
5 922	5 978		33 '71	47 '28	` 5	10	43 '50	—o ·58
6 006	6 030		30 . 72	40.79	6	11	42 '12	+0.80
6 052	6 082		57 .52	39°45	6	1.1	43 '51	−o ·59
6 177	6 223	0	04.85	40.99	6	. 11	42 '94	0 02
6 241	6 316		08.99	36.74	6	41	42 '47	+0:45
6 395	*6 429		25 '72	14 '28	6	7	43 '01	-o °o9
*6 429	6 522		14 '28	58.88	5	7	42 .65	+0.27
6 534	*6 583		16:49	17 '41	5	7	42 . 26	+0.66
6 659	6 711		44 '88	12 '92	6	11	42 '90	+0.02
6 734	6 So6		54 '74	18 .22	5	IO	42 '47	+0 '45

9.	Ragged	Mountain,	Maine.	First	series-	-continued.
----	--------	-----------	--------	-------	---------	-------------

	9.	Ruggen moun	I HSC S	continued.			
Pairs	of stars.	Adopted s mean N	seconds of N. P. D.	12'	20	Latitude.	υ
		//	//			0 / //	//
6 763	6 813	42 '42	03 .10	6	II	44 12 43 14	-o ·22
6 824	6 915	51 .50	37 .67	5	7	. 43 *25	−o:33
*6 915	6 928	37 .67	52 '01	5	7	43 '12	-0.50
6 940	7 024	31 '54	19 .33	5	10	43 '45	−o ·53
7 098	7 126	44 '25	36.20	6	II	43 '11	-o.19
7 171	7 253	22.17	49 *23	6	ΙI	42 '71	+0.51
7 278	7 336	50.85	57 '30	6	11	42 84	+o.o8
7 385	7 448	32 '98	09 '03	6	11	43 .65	−o •73
7 512	7 566	03 .50	58 *74	6	11	42 .82	+0.10
7 595	7 623	06 .75	16.38	6	ΙI	43 '14	o ·22
7 679	7 695	19.74	29 °98	6	11	42 '41	+o.21
7 721	7 754	21 '09	07 '98	6	ΙI	43 '32	-0.40
7 731	7 778	10.96	00.03	6	11	43 .26	-o ·64
7 894	*7 983	29 '04	34 '41	5	7	42 '75	+o ·17
7 913	*7 983	13 .08	34 '41	5	7	42 '41	+0.21
5 828	5 840	08 '28	31 '00	4	IO	41 '84	+1 .08
5 900	5 972	29.61	20 .83	4	10	42 '27	+0.65
6 056	6 062	51 .88	00 '75	3	10	42 '92	0,00
6 068	6 129	43 '58	26 '00	3	IO	42 .80	+o:12
6 079	6 178	10.83	40 '90	2	9	42.65	+0.27
6 234	6 318	41 '27	50 '48	5	IO	43 '09	-o ·17
6 238	6 311	46 '34	06 '55	5	IO	43 '30	−o:38
6 477	*6 571	52 '10	26 '74	2	6	42 .84	+0.08
6 496	*6 571	39.51	26 .74	2	6	43 '43	-o.21
6 497	*6 583	21 .36	17 '41	2	6	43 '33	-o ·41
6 687	6 722	30 .87	38 '90	4	10	42 '49	+0.43
6 740	6 867	49.65	34 '41	4	IO	42 .82	+0.10
6 926	6 975	33 '73	45 '95	5	10	43 '53	-o.e1
6 986	7 076	04 '20	54 '08	5	OI	43 '02	-0.10
7 048	7 085	29.07	13 '97	5	10	43 '31	−o.39
7 243	7 337	29 '75	02 .20	4	IO	41 '49	+1.43
7 569	*7 615	53 '44	24 '00	I	4	43 '22	−o.3o
7 570	*7 615	04 '44	24 '00 '	1	4	42 .67	+0.52
7 782	7 843	25 30	24 '04	5	10	43 '45	-o·53
*7 855	7 879	01 '25	34 *92	5	7	42 '52	+0 .40
*7 855	7 880	01 '25	12 '50	5	7	42 '70	+o. 22
		V . 11		01			

Indiscriminate mean = $44^{\circ}12'$ 42'''92. Weighted mean = $44^{\circ}12'$ 42'''95. $e=\pm$ 0'''25.

228 observations, 49 pairs.

[Reduction to △=+o''.40.]

9. Ragged Mountain, Maine.—S. Harris. Zenith telescope No. 5. Second series. September 11 to October 6, 1854. One division of level =0"'77 from observations at this station. One turn of micrometer =41"'420 from circumpolar observations at this station.

Pairs o	Pairs of stars.		Adopted seconds of mean N. P. D.			Latitude.	υ
		"	"			0 / //	"
6 052	6 082	57 '22	39 °45	3	8	44 12 42 49	+o*51
6 177	6 223	04 .82	40 '99	2	6	43 '05	-o °o5
6 241	6 316	08 •99	36 .74	2	6	41 .69	+1.31
6 395	*6 429	25 '72	14.58	4	7	42 '92	+0.08
*6 429	6 522	14.58	58 .88	5	7	42 '32	+o ·68
6 534	6 583	16.49	17.41	3	8	42 '15	+o ·85
6 659	6 711	44 .88	12 '92	6	12	42 '96	+0.04
6 734	6 806	54 '74	18.55	6	12	42 '72	+o ·28
6 763	6 813	42 .42	03 .10	6	12	43 '62	−o ·62
6 824	*6 915	51 '20	37 .67	4	7	43 *33	-o ·33
*6 915	6 928	37 .67	52 01	6	8	42.73	+0.27
6 940	7 024	31 '54	19.33	5	II	42 '62	+0.38
7 098	7 126	44 '25	36.20	7	13	42 .84	+0.19
7 171	7 253	22.12	49 *23	7	13	43 '02	-o ·o2
7 278	*7 336	50.85	57 '30	5	7	42 .76	+0.24
7 385	7 448	32 '98	09 '03	4	10	43.86	-o ·86
7 512	7 566	03 '20	58 '74	4	01	43 '21	O .51
7 595	7 623	06 '75	16.38	4	10	43 *42	-o ·42
7 679	7 695	19.74	29.98	2 .	6	42 '41	+o ·59
7 721	*7 754	21 '09	07.98	3	6	43 '77	-o·77
7 731	*7 754	10.96	07.98	4	7	43 '74	-0 '74
7 894	*7 983	29 '04	34 '41	4	7	42 .86	十0.14
7 913	*7 983	13.08	34 '41	4	7	42 '45	+o ·55
*6 238	6 311	46 '34	06 .22	I	3	42 '79	+0,51
*6 238	6 318	46 '34	50.48	1	3	42 '37	+0.63
6 477	*6 571	52 '10	26.74	4	7	42 .66	+0.34
6 496	*6 571	39.51	26.74	4	7	43 '41	-o ·41
6 687	6 722	30.87	38 .90	6	12	42 .60	+0.40
6 740	6 867	49.65	34 '41	6	12	43 '13	—o ·13
6 926	6 975	33 '73	45 '95	3	8	43 .88	-o ·88
6 986	7 076	. 04 '20	54 '08	2	6	43 '11	-o.11
7 048	7 085	29 '07	13 '97	5	II	43 °05	~-0 '05
7 243	*7 336	29 '75	57 '30	3	6	43 '21	0.51
7 782	7 843	25 '30	24 '04	5	11	43 '52	-o ·52
*7 855	7 879	01 '25	34 '92	3	6	43 '15	-o.12
*7 855	7 880	01 *25	12.20	4	7	43 '04	-o '04

Indiscriminate mean = 44° 12' 42'' '97. Weighted mean = 44 12 43 ' $00 \pm 0''$ '05. $e = \pm 0''$ '47.

147 observations, 36 pairs.

[Reduction to $\triangle = + o^{\prime\prime}$:40.]

Combination of results.

G. W. Dean $\varphi = 44^{\circ}$ 12' 42'' '92 \pm 0'' '05. S. Harris 43 '00 \pm 0 '05. Mean 42 '96 \pm 0 '04. [Reduction to $\triangle = +$ 0'' '40.]

10. Sabattus, Maine.—J. E. Hilgard. Zenith telescope No. 1. June 29 to July 14, 1853. One division of level $=3^{\prime\prime}$ 2. One turn of micrometer $=45^{\prime\prime}$ 52.

Pair	s of stars.	Adopted seco mean N. I		n'	w	Latitude.	v
		//	11			0 , //	//
4 943	4 974	58 00	18.00	4	4	44 08 37 35	+0.38
5 079	5 085	33 '50	03.21	3	3	39.26	-1.23
*5 094	5 152	34 '30	32 '30	2	2	39.30	-ı ·57
*5 094	5 216	34 '30	53 °07	2	2	38.92	-1.19
5 168	5 177	55 '40	57 '60	3	3	38.20	—o ·77
5 348	5 440	26.90	59 .26	6	5	38 °04	-o.31
5 483	5 490	50 .52	29.20	6	5	37 '95	-O'22
5 596	5 617	55 '50	43 '50	3	3	37 '54	+0.19
5 592	5 621	37 .60	44 '40	2	3	37 .68	+0.02
5 692	5 705	20 '40	10.26	4	4	36.96	+0.77
5 714	5 734	01 '73	13.80	4	4	37 '98	-o ·25
5 747	5 785	57 °00	05 '00	4	4	37 .64	+0.09
5 828	5 840	03.60	26 ·80	4	4	36 '47	+1 .56
5 900	5 972	26 '00	18 '30	3	3	36.11	+1 .65
5 922	5 978	30.80	44 .62	3	3	38 .24	-o:51
5 991	6 047-8	33 '40	35 *15	3	3	38 .49	−o ∵7 6
6 006	6 030	29 '00	39 '57	3	3	37 '08	+o ·65
6 052	6 082	55 '50	37 .80	2	3	38 '47	−0.4
6 079	6 178	09.20	41 *50	3 ·	3	37 '80	-o °07
6 237	6 289	25 *53	59 '80	2	3	38 '37	−o •64
*6 238	6 311	47 '73	08 '00	2	2	37 *29	+0.44
*6 238	6 318	47 '73	52 '40	2	2	35 .83	+1.00
6 357	*6 428	31 '00	55 '50	3	2	36 '90	+o ·83
6 390	*6 428	51 '40	55.20	3	2	36 '90	+0.83
6 391	*6 428	18 .30	55 '50	3	2	36.83	+0.00
6 368	6 429	18.20	18.30	3	3	38 '45	-o ·72
6 453	6 586	16.60	02 '00	I	1	37 '13	+0.60
6 480	6 522	01 '03	04 '00	4	4	38.55	-o ·82
6 582	6 612	18 '35	49 '40	4	4	38 '02	-0.29
6 625	6 644	14 '50	57 '00	4	4	37 '47	+o · 26
6 667	6 687	25 '20	38 .60	4	4	37 ·8r	-o ·o8
6 737	6 758	32 '02	38 .84	4	4	37 '23	+o:50
6 783	6 836	31 '20	24 '30	. 2	3	36 .79	+0.94
6 835	6 905	45 '36	24 '50	4	4	38 .27	-o ·54
6 856	6 937	57 '60	25 '50	I	Ĭ	38 .24	-o.21

Indiscriminate mean=44° 08′ 37″ 71. Weighted mean =44 08 37 \cdot 73±0″ 09. $e=\pm$ 0″ 77.

110 observations, 35 pairs. [Reduction to △=-o"·15.]

11. Mount Pleasant, Maine.—G. W. Dean. Zenith telescope No. 5. July 20 to August 19, 1851. One division of level = 1'':58 from observations at this station. One turn of micrometer = 41'':400 from circumpolar observations at this station and Cape Small, Maine.

Pairs of stars.	Adopted seconds of mean N. P. D.	n'	w	Latitude.	v
	. // //			0 / //	//
5 484 5 502	28.12 16.00	4	12	44 01 36.53	-0,09
5 497 5 55 ²	03 '20 10 '80	I	7	36.65	-o ·21
5 602 5 7 ¹ 7	33 '12 53 '44	3	11	36.06	+0.38
5 604 *5 629	27 '70 03 '72	5	9	35 *96	+o·48
*5 629 5 69 3	03 .45 22 .16	5	9	35 '92	+0.52
5 840 5 860	18.12 22.68	6	14	35 .60	+o·84
5 9 ²² 5 97 ⁸ ,	24 .62 38 .43	6	14	36 .67	-o ⋅23
5 986 6 079	56.12 08.36	6	14	36 .29	—o ·15
6 129 6 268	25 98 14 90	5	13	37 '28	_o ·84
6 178 6 216	43 '15 40 '77	6	14	35 '93	+o.21
6 238 6 318	50.21 26.89	4	12	36 '43	+0.01
*6 255 6 349	05 '32 25 '76	5	9	35 '77	+o·67
*6 255 6 355	05 '32 07 '90	6	9	35 '98	+0.46
6 390 *6 428	58.52 03.20	5	9	36.67	-o ·23
6 391 *6 428	24 '80 03 '50	6	9	36.10	+o ·34
6 530 6 556	12.40 49.59	6	14	36.92	-o·48
6 566 *6 599	27 .20 44 .18	6	9	36.32	+0.13
*6 599 6 659	44.18 02.51	5	9	35 '95	+o ·49
6 667 6 687	39 '76 52 '67	6	14	37 *23	-o ·79
6 712 6 740	52 '92 13 '38	6	14	36.91	-o ·47
†2 872 6 784	29 '34 58 '94	6	14	36 12	+o·32
6 763 *6 849	07 '06 23 '50	5	9	36.91	-o ·47
*6 849 6 895	23.20 28.26	6	9	36 .44	0.00
6 915 6 928	06 '50 25 '13	5	13	35 '74	+0.70
6 932 6 940	09.68 03.80	6	14	36.68	-o ·24
6 943 6 970	55 '73 18 '08	6	14	36 '48	o °04
7 008 7 062	51.48 32.16	6	14	36.31	+0.13
7 022 7 076	04 '05 28 '67	6	14	36.41	-o ·27
*7 098 7 117	20,53 25,51	5	9	36 .45	-o ·oɪ
*7 098 7 126	20 '23 13 '46	6	9	36.80	—o ·36
7 171 7 333	00.03 25.12	6	14	36.41	+0.03
7 243 7 336	09.67 49.65	-6	14	36 '99	-o ·55
7 385 7 448	18.69 54.90	6	14	36.41	−o ·27
7 398 7 411	40 '13 05 '86	6	14	35 .63	+o ·8r
7 636 7 721	19:39 13:79	6	14	36.15	+0.32
7 643 7 731	35.07 04.58	5	13	36 .75	-o.31
7 679 *7 800	11 '41 44 '47	5	9	36.44	0 '00
*7 800 7 850	44 '47 20 '58	6	9	36 *23	+o •21
7 843 7 871	16.83 41.58	6	14	36.12	+0.59
7 894 7 948	25 '01 17 '65	6	14	36 .43	+0.01

†Groombridge.

11. Mount Pleasant, Maine-continued.

Pairs o	of stars.	Adopted se mean N	n'	10	Latitude.	v	
		"	11			0 / //	11
7 901	13 901	26 44	39.98	6	14	44 01 36 51	-o ·o7
8 o ₅ 8	8 076	00,00	19.65	6	14	36.80	-0 '36
8 171	8 224	27 '40	55 '36	5	13	36.46	-o ' 02
8 229	8 261	22.40	24 '00	2	10	36 .80	-o ·36
		Indiscriminate	mean	=44° 01′	36".42.		
		Weighted mea	ın	= 44 oi	36 '44	±0′′°04.	

 $e=\pm$ 0''-30. 236 observations, 44 pairs.

[Reduction to $\triangle = + o'' \circ 5.$]

12. Cape Small, Maine.—G. W. Dean. Zenith telescope. September 17 to October 10, 1851. One division of level $=1^{\prime\prime}$:598 from observations at this station. One turn of micrometer $=41^{\prime\prime\prime}$:429 from circumpolar observations at this station.

Pairs of stars.	Adopted seconds of mean N. P. D	n'	w	Latitude.	2/
	// //			0 / //	//
6 497 6 522	35 '57 13 '96	6	18	43 46 43 13	+o:56
6 571 6 583	43 '98 35 '34	6	. 18	43 '72	-o ·oʒ
6 599 6 659	44 '20 05 '20	6	18	43 '48	+o.51
6 667 6 697	40 '00 09 '20	6	18	44 '32	-0.63
6 673 6 712	01 '34 55 '24	6	18	43 *26	+0.43
6 745 6 754	24 '42 33 '70	7	18	43 .63	+o •o6
6 849 6 895	23 55 28 55	6 .	18	44 *29	-o ·6o
6 851 6 928	35 '46 23 '13	7	18	43 '24	+0.45
6 932 6 943	09 '65 56 '30	6	18	43 '75	0.06
6 983 6 996	29 '56 48 '50	7	18	43 '20	+0.49
7 008 7 076	52 '45 28 '65	7	18	43 .69	0 *00
7 024 7 126	53 .63 13 .46	6	18	43 '30	+0.39
7 100 7 171	50,48 00,15	7	18	44 • 26	—o ·57
7 204 7 262	07 '46 11 '69	6	18	43 '08	+0.61
7 277 7 301	15 '44 31 '10	6	18	44 .56	-o ·57
7 3 17 7 333	42 '19 52 '26	5	18	43 '32	+0:37
7 345 7 383	54 '64 10 '06	6	18	43 .60	+0.09
7 398 7 411	40 '36 05 '70	6	18	43 '42	+0.27
7 448 7 462	54 '90 43 '25	6	18	43 '96	-0.27
7 503 7 544	54 '30 02 '48	6	18	43 '98	-0 '29
7 582 7 607	07.09 03.26	6	18	43 '79	-o •10
7 598 7 614	42 '00 33 '81	6	18	43 '53	+0.19
7 731 7 813	04 '22 22 '40	6	18	43 °03	+o •66
7 843 7 871	16 '70 41 '60	6	18	44 *17	-o ·48
7 803 7 894	14 '73 24 '76	6	18	43.77	-o ·o8
7 882 7 901	58 '92 26 '46	6	18	43 '50	+0.19
7 906 7 983	01 '18 31 '20	6	18	43 '99	-0.30
8 028 8 058	33 '27 59 '80	6	18	43 '99	-o ·3o
†3 952 *8 076	24 '35 18 '88	6	12	43 53	+0.19

†Groombridge.

12. Cape Small, Maine-continued.

Pairs of stars.		Adopted s mean N	n'	70	Latitude.	υ	
		//	//			0 / //	//
*8 076	8 115	18.88	26.85	6	12	43 46 43 76	-0.07
8 114	8 212	. 53 .60	04 '50	6	18	43 '99	-0.30
8 171	8 261	27 '40	24.58	6	18	43 *91	-0.22
180	259	20.60	35 '44	6	18	43 '87	-o.18
330	337	15 '12	43 '42	6	18	43 '85	-o.19
487	502	43 '50	46 .84	6	18	43 '80	-o.11
649	673	01 .58	47 '40	6	18	43 15	+0.24
706	727	38.28	58.10	6	18	43 '95	−0.5
819	877	49 .66	22 '98	5	18	43 .63	+0.06
915	947	04 '20	53 '30	6	18	43 '71	-o °o2
953	1 043	27 . 56	25 '90	6	18	43 '91	-0.53
		Indiscriminat	e mean	$=43^{\circ} 46'$	43/1.69	•	
		Weighted me	an	= 43 46	43 '69	±0.04.	
				$e=\pm 0^{\prime\prime}$	23.		

243 observations, 40 pairs.

[Reduction to $\triangle = -0''$:21.]

13. Mount Independence, Maine.—A. D. Bache and G. Davidson. Zenith sector No. 1. First series. September 21 to October 27, 1849. Mean value of one division of level = 0".721. (Levels No. 3.)

	St	ars r	orth	of ze	nith.		Stars south of zenith.						
Stars.	Adopted seconds of mean N. P. D.	n'		Ļati	tude.	υ	Stars.	Adopted seconds of mean N. P. D.	n'		Lati	tude.	υ
	//		0	1	11	11		//		٥	/	11	//
16	06,00	4	43	45	35 '22	-0.51	58	07 '46	4	43	45	34 '02	+0.14
169	30 '02	5			34 '84	+0.14	100	28 .20	4			35.28	− 1 '42
180	00 '20	4			34 '78	+0.53	259	14 ·So	4			34 '99	-o·83
330	53 '80	4			35 '23	-0.22	337	22 '00	3			34 '88	-o·72
474	02 '30	1			34 '78	+0.53	502	23 .60	3			34 '53	-0.37
487	20.50	3			35 '16	-o·15	649	36 '00	3			32 °9S	+1.18
673	21.20	3			34 '03	+0.98	727	31 48	3			33 '95	+0.51
706	12 '40	3			35 '76	-o ·75	877	54 '20	4			35 °02	–o ·86
819	21 .50	4			34 '05	+0.96	915	33 '70	3			34 '19	—o ·oз
947	22 '40	3			35 .84	-o ·83	953	56 .30	3			33 *98	+0.18
1 043	52 '44	6			35 '19	-o.18	2 485	09.18	3			33 .26	+0.60
3 048	10 .44	4			35 '42	-0.41	⁻⁶ 355	14.10	8			34 '29	-0.13
5 937	05.30	4			35.83	-o·82	6 429	33 '71	6			34 '40	-0 '24
6 091	28 '90	8			35.12	-0.14	6 497	45 '01	4			33 . 26	+0.00
6 522	23 .84	1			34 '20	+0.81	6 571	55 '50	4			32 .60	+1.26
6 583	47 '30	3			36 .62	-1.61	6 673	15 '30	2			34 '04	+0.15
6 712	08.10	4			36 '32	-1'31	6 745	40 '70	4			35 '27	-1.11
6 754	50 06	3			34 '55	+0.46	6 784	15 '26	4			33 *29	+0.87
6 928	45 '54	4			33 '32	+1 .69	6 851	54 '00	4			33 .62	+0.54
6 983	51 .30	4			33 .84	+1.17	6 996	10.60	3			33 '94	+0.55
7 076	52 '10	4			35 70	-0.69	7 008	14 '72	4			32 69.	+1 .47

13. Mount Independence, Maine. First series-continued.

			13. 1.10.0.00	,	2.2011101	1 1100	C11C0 CO		ÇCI.	
		rs no	orth of zenith.					south o	of zenith.	
Stars.	Adopted seconds of mean N. P. D.	n'	Latitude.	v		Stars.	Adopted seconds of mean N. P. D.	n'	Latitude.	v
	11		0 / //	//			//		0 / //	//
7 171	25 '40	7	43 45 33 84	+1.12		7 100	14.28	3	43 45 34 88	—o '72
7 262	38 68	3	34 '81	+0.50		7 204	34 '00	4	32 '91	+1.52
7 301	58 .80	4	36.15	-1.11		7 277	42 '80	4	34 '75	−o ·59
7 317	10.18	2	33 '56	+1 .42		7 333	20 60	3	34 '31	-o'15
7 345	23 '20	2	34 '04	+0.97		7 336	24 '56	4	34 '47	-o ·31
7 411	35 '80	3	33 .60	+1.41		7 368	23 '80	5	34.05	+0.11
7 448	25 '50	4	36 . 24	—ı ·23		7 383	39.40	3	32 .82	+1 .34
7 503	25 '75	5	35 .82	-o.81		7 398	10.10	4	36 .68	-2.25
7 582	39 .85	3	35 '73	-o.72	Ì	7 462	14 '10	4	34 '46	-o ·зо
7 598	15 '40	4	34 '74	+0.52		7 544	34 '80	4	33 '57	+0.29
7 643	08.81	6	35 °42	-o . 41		7 607	36.40	4	33 '91	+o ·25
7 782	54 '00	2	37 °07	-2.06	:	7 614	07.16	3	33 *28	+o.88
7 813	58 '00	4	34 '18	+o ·83		7 731	39 '20	4	34 '37	-o.51
7 871	18.20	5	33 '07	+1.04		7 803	50.75	3	33 °04	+1.13
7 882	35 '96	3	35 '52	—o ·51		7 843	53 '50	2	35 '15	−o .∂∂
7 894	01.80	4	36.01	-1.00		7 901	03 '73	4	33 99	+0.14
7 983	09:40	3	35 '17	-o .19		7 948	55 '31	3	34 .78	-o ·62
8 058	38 .20	5	36.20	—ı ·49		8 028	11.85	5	34 '71	-o ·55
8 115	06 '04	4	33 .86	+1.12		8 076	58 •20	3	33 .67	+0 49
8 261	04 '20	4	34 '99	+0 '02		8 171	06 '95	4	35 '07	-o .ð1
8 310	26.40	4	34 '46	+0.22		8 229	02.57	4	34 .88	-o '72
	160 ob	serv	rations, 42 stars.				157 obs	ervat	ions, 42 stars.	
	$\varphi_n =$	= 43°	45′ 35″ 01.					43° 4	5′ 34′′·16.	
			- 1//-	- 1 - 1	1-0 1-1	- 1/1-0	1 -11			

 $\varphi = \frac{1}{2}(\varphi_n + \varphi_s) = 43^{\circ} 45' 34'' \cdot 58 \pm 0'' \cdot 07.$

13. Mount Independence, Maine.—G. W. Dean. Zenith telescope No. 2. Second series. September 20 to October 20, 1849. One division of level = 0''90 from observations at this station. One turn of micrometer = 44''880 from the latitude observations at this station.

Pa	irs of stars.	Adopted seconds of mean N. P. D.		nt'	าย	Latitude.	υ
		//	//			0 / //	//
6 368	6 427	32 '92	13 '94	I	2	43 45 33 67	+o ·66
6 497	6 522	45 °01	23 .84	4	5	33 *48	+o ·85
6 571	6 583	55 '50	47 '30	4	5	34 *28	+0.02
6 673	6 712	15.30	08.10	4	5	34 *83	-o:50
6 745	6 754	40 '70	50 '06	5	6	34 '49	-o .19
6 851	6 928	54 '00	45 '54	5	6	33 '45	+o ·88
6 983	6 996	51 .30	10.60	4	5	33 °25	+1.08
7 008	7 076	14.72	52 '10	4	5	33.11	+1.22
7 100	7 171	14 .28	25 '40	5	6	34 '80	-0.47
7 204	7 262	34.00	38 .68	4	5	33 .82	+0.21
7 277	7 301	42 '80	58 '80	4	5	34 .65	—o · 32
4192-	-No. 7-02	18				•	

13.	Mount	Independent	c, Maine.	Second	series-continued.
-----	-------	-------------	-----------	--------	-------------------

Pairs	of stars.		seconds of N. P. D.	n'	<i>าบ</i>	Latitude.	υ
		"	"			0 / //	11
7 317	7 333	10.18	·20 ·60	5	6	43 45 34 '01	+0.32
7 345	7 383	23 '20	39 *40	4	5	33 .82	+0.21
7 448	7 462	- 25 '50	14.10	4	5	33 *74	十0.29
7 503	7 544	25 '75	34 '80	4	5	33 *92	+0.41
7 582	7 607	39.85	36.40	4	5	33 *85	+0.48
7 731	7 813	39 '20	58 '00	5	6	33 '32	+1.01
7 843	7 871	53 '50	18.20	4	5	34 .16	+0.12
7 882	7 901	35 '96	03 '73	4	5	33 '79	+0.24
8 028	8 o58	11.85	38.20	5	6	34 °35	-0.03
8 076	8 115	58 .50	06 *04	4	5	35 '19	-o ·86
8 171	8 261	06 '95	04 '20	4	5	34 *31	+0.05
180	259	00.50	14 ° So	3	5	34 '27	+0.06
330	337	53 .80	22 '00	3	5	34 '30	+0.03
7 398	7 411	10.10	35.80	6	6	34 '97	− 0 ·64
7 598	7 614	15 '40	07.16	7	6	34 '70	− 0:37
7 803	7 894	50.75	08' 10	6	6	35 '32 '	-o .99
487	502	20 *50	23 '60	6	6	35 .64	-1.31
649	673	36 .00	21 '50	6	6	34 '70	−o ·37
706	727	12.40	31 .48	5	6	35 °28	− 0 ' 95
819	877	21 .50	54 *20	6	6	34 .66	0 '33
915	947	33 '70	22 '40	6	6	35 *14	-o.81
953	1 043	56 .30	52 '44	6	6	34 *37	-0 '04

Indiscriminate mean = $43^{\circ}45'34''^{\circ}29$. Weighted mean = $43^{\circ}45'34''^{\circ}29$. = $43^{\circ}45^{\circ}33 \pm 0''^{\circ}08$. $e = \pm 0''^{\circ}5^{\circ}2$.

151 observations, 33 pairs.

[Reduction to $\triangle = -0'' \cdot 03.$]

Resulting latitude by combination of series $=43^{\circ}45'34''\cdot47\pm0''\cdot06$.

14. Gunstock, New Hampshire.—J. H. Toomer. Zenith telescope No. 5. July 11 to August 9, 1860. One division of level = 0"948 from observations at this station. One turn of micrometer = 41"391 from circumpolar observations at this station.

Pairs	of stars.		Adopted se mean N		21'	70	Latitude.	υ
		1	11	11			0 / //	11
5 400	5 417		18.63	53 .62	8	14	43 31 03 24	+0.57
5 479	5 499		09 '30	24 '77	7.	14	03 *24	+0.24
5 541	5 599		17.84	35 '36	9	15	03 '25	+0.26
5 629	*5 731		05.31	53 '90	7	9	03 .67	+0.14
5 658	*5 731		27 '34	53 '90	8	10	03 .20	+0.31
5 785	5 863		40 *02	58 '20	8	14	03 .46	+0.02
5 918	5 931		48 *28	19.28	8	14	04*14	-0.33
6 079	6 087		15 '06	48.61	8	14	03 .55	+0.29
*6 147	6 184		20.29	50 '90	7	9	03.12	+0.66
*6 147	6 216		20 '29	31 *23	7	9	03 '41	+0 '40

14. Gunstock, New Hampshire -continued.

		14. 4 11/13/00/	, 11011 1	amponic	COIICI	nucci.	
Pairs o	of stars.	Adopted se mean N.	conds of P. D.	n'	70	Latitude.	v
		//	//			0 / //′	//
*6 235	6 246	46 . 72	43 '73	8	10	43 31 03 90	-0.09
*6 235	6 258	46 .72	55 '44	8	10	03 .87	-o ·o6
6 365	6 428	39 *25	28.78	7	14	93 *95	-o ·14
6 456	6 470	03 .46	52 '24	7	14	04 °21	-0.40
6 493	6 520	40.21	42 42	7	14	03 '74	+0.07
6 599	6 626	49.11	18.76	8	14	03 .62	+0.19
6 648	6 681	59.20	14.64	8	14	03 '70	+0.11
6 734	6 771	06.10	54 *19	7	14	03 '73	+o •o8
*6 861	6 940	48 .22	29 *95	7	9	03 '80	+0.01
*6 861	6 943	48.55	21 ' So	7	9	04 *21	-0.40
*6 983	7 022	52 '00	22 . 22	7	9	04 *23	-0.42
*6 983	7 048	52 00	19.67	7	9	04 '09	−o •2 8
7 064	*7 132	18.21	49 '71	7	9	03 *88	-o ·o7
7 105	*7 132	39'91	49 71	7	9	04 '73	—o ·92
7 174	7 233	58.31	13 '31	7	14	04 '21	-0.40
7 297	7 345	38.90	45 .46	7	14	04 °05	—o ·24
5 643	*5 666	00 '85	07.58	3	6	03 '72	+0.09
*5 666	5 752	07.58	17 '49	4	7	03 .84	−o ·o₃
5 788	5 795	50 '44	42 . 70	8	14	04 '21	-0.40
5 853	5 886	27 '70	22 '00	8	14	03 '75	+0:06
5 911	5 929	14.74	39 '71	7	14	03 '47	+o ·34
6 095	6 162	08.63	13.31	6	13	04 '45	-0.61
6 231	*6 316	42 .26	23 '72	8	10	04.12	− 0 <i>°</i> 34
6 251	*6 316	26 .59	23 '72	9	10	01 .54	-o ·46
6 392	6 421	20°43	18 -35	7	14	04 '01	-0.50
6 495	6 516	27 '38	44 '53	6	13	03 .28	+o ·23
6 542	6 629	48 *49	49 *29	6	13	03 '09	+0.72
6 656	*6 720	58.16	38.07	6	8	03 *92	-0.11
*6 720	6 728	38 .07	20 .67	6	8	03 .51	+0.60
6 745	6 779	11 '43	33 '02	6	13	04 '48	-o ·67
6 824	6 851	57 '28	11.96	7	14	01,51	-o ·40
6 881	6 915	36 .89	40 08	8	14	03.28	+0.23
6 962	6 996	22 *23	09.68	7	14	03 *90	-0.09
7 027	7 112	11,51	06 '95	7	14	04 '31	-0.20
7 158	7 198	49 .66	35 '97	7	14	03 °08	+0.73
7 241	*7 333	59 °45	44 .63	7	9	04 *04	-0.53
7 253	*7 333	28 .64	44 .63	7	9	04.21	-0.70
		- 11 1 1 .					

Indiscriminate mean =43° 31′ 03′′·84. Weighted mean =43° 31° 03′·84. $e=\pm 0$ ′′·50.

333 observations, 47 pairs. [Reduction to $\triangle = +1''$:33.]

15. Agamenticus, Maine.—T. J. Lee. Zenith telescope Military Academy. First series. September 15 to October 10, 1847. One division of level = 1'' 28. One turn of micrometer = 44'' 791 from latitude observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		w	Latitude.	υ
		1 //	//			0 / //	//
6 582	6 662	54 '24	47 '00	3	2	43 13 25 79	− o ·84
6 735	6 744	56.90	28 '90	5	3	25 °06	-0.11
6 758	6 834	26.63	00 '50	4	3	23 '81	+1.14
7 377	*7 461	28.16	18 13	5	2	26.16	-1.31
7 387	*7 461	55 .84	18 13	5	2	26.51	-1.26
*7 533	*7 571	18,00	19.17	5	I	25 '76	-o ·81
*7 533	*7 584	18,00	10'37	4	I	24 '03	+0.92
*7 533	*7 586	18.00	31 '50	5	I	25 '70	-o·75
*7 542	*7 571	25 '30	19'17	4	1	24 .62	+0.33
*7 542	*7 584	25 '30	10.37	3	I	23 '07	+1.88
*7 542	*7 586	25 '30	31.20	4	1	24 °70	+o ·25
7 607	7 668	10.00	21.80	5	3	25 '09	-0.14
7 693	7 718	36 .97	16.40	5	3	25 *24	—o ·29
7 755	7 798	19.70	17.07	6	4	24 .88	+0 '07
7 829	7 958	56 .32	18,00	6	4	25 °56	-o .91
*7 997	*8 039	00.80	54 '20	5	2	24 '60	+0.32
*7 997	*8 077	00.80	17.60	5	2	24 '93	+0 02
*8 146	*8 039	31 '74	54 '20	5	2	24 '41	+0.24
*8 146	*8 077	31 '74	17 '60	5	2	24 '74	+0.51
*8 256	8 188	08.48	38 '90	7	3	24 '25	+0.40
*8 256	8 268	08.48	00 '32	7	3	24 '73	+0.55
8 374	*7	20.87	39 '60	2	1	25 '00	-o °o5
4	*7	15 '67	39 60	3	2	22 .78	+2:17
32	68	39 .66	33 '26	4	3	25.08	-o.13
164	182	11.90	11.13	4	3	26.18	-1.53
253	395	47 '50	31 '04	2	2	25.20	-o ·55
412	430	15.22	-	3	2	24 '43	+0.52
			iminate me	an = 43°	13' 24"		
	•	Weight	ed mean	= 43		95 ± 0''·10.	
				$e = \pm 0$	′′′99•		

121 observations, 27 pairs.

[Reduction to $\triangle = -0''$ 11.]

15. Agamenticus, Maine.—A. D. Bache, R. H. Fauntleroy, C. O. Boutelle. Zenith sector No. 1. Second series. October 4 to November 15, 1847. Mean value of one division of level = 0''.727.

	Star	s nort	h of zenith.			Star	rs sou	ith of zenith.	
Stars.	Adopted seconds of mean. N. P. D.	n'	Latitude.	υ	Stars.	Adopted seconds of mean. N. P. D.	n'	Latitude.	v
	11		0 / //	11		11		0 / //	11
7 091	38.10	1	43 13 25 78	-0.53	7 277	09 '90	5	43 13 25 47	-0.40
7 171	50 '60	5	25 '42	+o ·13	7 398	39 '75	4	24 '89	-0'12
7 345	51.60	5	25 '72	-o'17	7 462	44 '90	5	24 '26	+0.21
7 560	24 '60	6	26 '55	-1,00	7 731	14 '50	3	24 '45	+0.32

15. Agamenticus, Maine. Second series-continued.

		s nor	th of zenith.			Sta	ts son	th of zenith.	
Stars.	Adopted seconds of mean N. P. D.	n'	Latitude.	υ	Stars.	Adopted seconds of mean N. P. D.	n'	Latitude.	υ
	//		0 / //	//		11		0 / //	11
7 705	41 '17	2	43 13 24 88	+0.67	7 777	41.80	2	43 13 24 48	+0 '29
7 815	10.09	2	26 93	-1.38	7 850	34 '00	3	25 .65	-o·88
7 888	36 '40	2	27 '46	-1.91	7 972	58 .60	3	24.89	-o.15
7 906	15 '90	4	25 '04	+0.21	7 994	41.00	1	25 *25	-o:48
8 036	42 .26	3	26 '34	—o :79	8 136	07.2	4	24 '30	+0.47
8 107	39 '28	2	23 '72	+1.83	8 345	05 '26	2	24.71	+0.06
8 224	13 '20	2	25 '35	+0.50	58	47 '60	3	23 '17	+1.60
8 231	30.20	4	27 '05	-1.20	480	43 '20	3	24 '96	-0'19
8 289	40 '30	4	24 '21	+1.34	. 566	40.20	3	24 .69	+0.08
16	45 '75	3	23 '71	+1.84	656	22 '00	3	25 '13	—o ·36
100	07 '90	5	25.52	+0.03	821	24 '20	2	25 63	-o ·86
180	39 *20	2	26.61	-1 .09	912	13 '48	2	24 '46	+0.31
330	32 '48	I	24,35	+1 .53	981	26 '90	I	24 '68	+0.09
404	29.58	2	25 .86	-0.31					
735	03 '30	I	25 '06	+0.49					
			13′ 25′′ 55.				$\varphi_s =$	43° 13′ 24″ 77.	
	56 obse	rvati	ions, 19 stars.					rvations, 17 stars	
					= 43° 13′ 25′′·10		1.		
			[Re	eduction	to $\triangle = -o!'$:	1.]			

Agamenticus, Maine.—A. D. Bache, R. H. Fauntleroy, G. Davidson. Transit No. 2 in prime vertical. Third series. October 18 to November 26, 1847.

Stars.	Adopted seconds of mean N. P. D.	n'	70		Lati	itude.	v
	//			0	/	//	//
6 355	20 '24	4	4	43	13	24 '92	+0.05
7 022	49 40	4	4			24 .67	+0.30
8 023	42 '25	4	4			24 .65	+0.32
60	32 '05	2	2			25 '53	−o ·56
7 972	58.72	2	2			24 '06	+0.91
8 229	42 18	2	2			25 '33	-o · 36
963	17 '40	I	1			25 '27	-о '30
I 320	02 °25	I	I			25 .65	-o ·68
1 398	08 '00	I	I			26 '72	-ı ·75

Indiscriminate mean = 43° 13′ 25″ oo.

Weighted mean = 43 13 24 '97 \pm 0'' 14. $e = \pm$ 0'' '44.

21 observations, 9 stars.

[Reduction to $\triangle = 0^{\prime\prime}$:00.]

Combination of results for latitude referred to A.

 By zenith telescope
 43° 13' $24'''.84 \pm o'''.10$.

 By zenith sector
 43 13 25 05 ± 0 '11.

 By transit in prime vertical
 43 13 24 97 ± 0 '14.

 Weighted mean
 43 13 24 96 ± 0 '06.

16. Isles of Shoals, Maine.—T. J. Lee. Zenith telescope Military Academy. August 4 to 22, 1847. One division of level = 1'':283. One turn of micrometer = 44'':962.

Pair	s of stars.		Adopted seconds of mean N. P. D.		20	Latitude.	υ
		//	//			0 / //	11
*6 079	*6 150	05 '35	16 '40	7.	2	42 59 12 97	0.00
*6 079	*6 234	05 '35	50.39	5	2	12.88	+0.09
*6 079	*6 238	05 '35	56 .06	7	2	12 .69	+0.58
*6 348	*6 150	11.29	16 '40	7	2	13 '49	-0.2
*6 348	*6 234	11.29	50.39	5	2	13 .08	-0.11
*6 348	*6 238	11.29	56.06	7	2	13 '15	-o ·18
6 547	6 601	30 '04	26 .95	5	4	12 *35	+0.62
6 642	*6 735	22.22	56 . 90	6	3	12 .86	+0.11
6 647	*6 735	17 '00	56.90	5	3	13 .69	-0.72
6 762	6 818	38 .50	54 '00 '	6	5	13 '03	-o ·o6
*6 882	*6 932	14 '28	50.85	7	2	12.68	+0.29
*6 882	*6 970	14 '28	01.12	7	2	12.55	+0.75
*6 883	*6 932	12.86	50.85	6	2	13 °04	-0.07
*6 883	*6 970	12.86	01.12	6	2	13.63	+0.35
*6 979	*6 932	49 '30	50.85	7	2	12 *33	+0.64
*6 979	*6 970	49 '30	01.12	8	3	12.10	+0.87
7 013	7 024	18.04	39.00	8	6	13 *34	—o ·37
7 105	7 152	17.50	54 '90	7	6	13 '44	—o ·47
7 188	7 220	26 02	15 '30	7	6	11.89	+1.08
7 281	7 368	59 .00	53 '00	8	6	13.70	− о ∙73
7 474	7 658	44 '74	06 '60	6	5	13.22	-o·55

Indiscriminate mean = 42° 59′ 12'' '91.

Weighted mean = $42 \frac{59}{9}$ 12 $\frac{97 \pm 0''}{99}$.

137 observations, 21 pairs.

[Reduction to $\triangle = -0''$ ·10.]

17. Unkonoonuc, New Hampshire.—J. S. Ruth. Zenith telescope No. 5. September 16 to October 8, 1848. One division of level = 1'':064. One turn of micrometer = 46'':615 from circumpolar observations at this station.

Pairs o	of stars.		Adopted se mean N.		nt'	<i>าบ</i>	Latiti	ıde.	v
			11	//			,	11	//
6 372	6 468		42 '02	19 '13	3	5 42	58	59 '29	+0.02
6 496	6 547		07 '00	23 '59	3	5		59 '50	-o ·16
6 583	6 648		53 '00	21 '01	5	S		58 .77	+0.57
6 697	6 777		31 .20	16.38	6	9		.59 .15	+0.55
6 813	6 830	•	56 .42	29 '86	6	9		59 '07	+0.27
6 865	6 915		14 '40	35 .26	4	7		58 .77	+0.57
6 965	7 022		02 *38	37 '95	3	5		58 '20	+1.14
7 048	7 112		37 .61	32.21	4	7		59 '07	+0.27
7 153	7 204		22.60	47 '13	5	8	**	58 '92	+0.42
7 281	7 368		45 '25	38 .50	7	10		59 .61	-o ·27
7 480	7 554		40 '10	58.20	4	7		58 '71	+0.63
7 614	7 727		23 .85	32 .06	4	7		58 *99	+0.35

17	Ilukonoonuc	Maine-continued.

Pairs of stars.			Adopted seconds of mean N. P. D.		n'	zv	Latitude.	v		
				1	//	11			0 / //	//
7	765	7	845		15 '00	11,10	4	7	42 58 59 65	-o.31
7	894	8	023	ŀ	721 '11	23 '00	2	4	59.66	—o ⋅32
8	054	8	097		03 '00	46 '00	3	5	59.71	—o ·37
8	268	8	284		40 '30	11.44	4	7	59.60	-o ·26
8	296	8	355		25 '50	50.92	3	5	59.80	-o ·46
	I 20		146		28 '92	11.73	4	7.	58 .41	+0.93
	173		198		35 '00	54.70	4	7	59 °02	+0.32
	224		244		36 .56	06 '34	4	7	58 -88	+o ·46
	337		404		41 '15	10 '25	3	5	60 '36	—I °O2
	441		502		44 '10	42 '00	3	5	59 *40	· -o ·o6
	535		581		02 '55	12.71	4	7	60.13	-o ·79
	610		644		09 68	42 .80	3	5	59 '47	-o·13
	673		772		38.88	49 '28	3	5	59.51	-o ·17
	821		897		o8 ·60	23 '48	4	7	60.60	—ı ·26
	921	1	100		16 .00	35 .80	3	5	58.85	+0.49
I	066	I	123		22 '02	54 .26	3	5	60 ·6 8	-1 '34
I	175	1	293		45 .83	35 *14	4	7	59 '47	-0.13
1	424	Ι,	520		00 00	49 '50	3	5	59 *98	-o ·64
				Indisc	riminate	mean = 4	0 58/ 50/	1 .27		

Indiscriminate mean = 42° 58′ 59″ 37. Weighted mean = 42° 58′ 59 34 ± 0″ 07. $e = \pm 0$ ″ 67.

115 observations, 30 pairs.

[Reduction to $\triangle = 0'' \cdot \infty$.]

18. Thompson, Massachusetts.-T. J. Lee. Zenith telescope, Military Academy. September 19 to October 16, 1846. One division of level=1"32. One turn of micrometer=45"064, from observations at this station.

uero	120 126	64340	Jener Olli								
	Pairs	of st	ars.	Adopted seconds of mean N. P. D.		n'	w	Lati	tude.	υ	
					//	11			0 /	//	//
*6	640	6	690		41 '46	36 .72	11	6	42 36	37 °16	+o ·86
*6	640	6	691		41 '46	17 '04	5	3	;	38 '16	o ·14
6	737	6	810		27 '48	37 '30	9	8	;	38 '72	−o ·7 0
6	861	*6	966		00 '77	30 '14	3	2	;	38 .22	-0.40
6	862	*6	966		34 '07	30'14	12	7	;	37 .82	+0.50
7	024	7	143		50 '20	15 '50	14	ΙΙ	;	37 '38	+0.64
7	246	7	310		35 '11	42 '50	14	1 I	;	38 .89	−o ·87
7	418	7	482		o4 · 8o	43 '00	13	11		37 '99	+0.03
7	595	7	627		18 '20	50.50	5	5	;	37 °97	+0.02
7	651	7	706	١,	15 '95	18.00	7	7	;	37 .88	+o ·14
7	812	7	914		35 '43	40 '95	12	10	;	38 '48	−o ·46
7	973	8	052		16.80	43 .60	12	10		37 '49	+0.23
8	104	8	182		28 '20	18.00	12	10	:	37 '97	+0.05

Indiscriminate mean=42° 36′ 38″ °05.

Weighted mean $=42\ 36\ 38\ 02\pm0''$ 10. $e=\pm0''$ 87.

129 observations, 13 pairs.

[Reduction to $\triangle = +0^{\prime\prime} \cdot 25.$]

19. Wachusett, Massachusetts.—J. H. Toomer. Zenith telescope No. 5. September 25 to October 16, 1860. One division of level =0"91, from observations at this station. One turn of micrometer = 41"413, from circumpolar observations at this station.

Pairs o	of stars.	Adopted se mean N.	Adopted seconds of mean N. P. D.			Latitude.	υ
		//	//			0 / //	//
6 654	6 662	22 '35	17.63	5	7	42 29 15 68	+o °45
6 698	6 723	33 . 70	43 '15	8	13	16 .52	O 'I2
6 764	6 777	21.10	33 '73	6	11	15.81	+0.35
6 851	6 865	11.93	20.68	8	13	15.87	+0.56
6 895	6 915	00.12	40 '08	7	12	16 .59	-o.19
6 932	6 968	37 '09	59 '74	7	12	15 .75	+o.38
7 007	*7 073	22 '04	37 '95	6	5	16 .49	—o ·36
7 062	*7 073	46 .24	37 '95	8	7	16.36	0.53
*7 073	7 091	37 '95	02 '23	8	7	16 .67	-o:54
7 158	7 171	49 .66	06 '24	7	12	15.75	+o ·38
7 215	7 256	17 '17	22 *34	6	11	16.34	-0 . 21
7 301	7 320	26 .64	39 '39	9	14	16 '23	-o .1o
7 337	7 345	18.75	45 '46	6	11	15 '94	+0.19
7 368	7 401	43 '80	20 14	6	II	15 .68	+o °45
7 431	7 453	35 °45	08.60	8	13	15.80	+o ·33
7 474	7 533	22 .60	47 '04	7	I 2	15 '14	+0.99
7 571	*7 605	49 '14	22 '46	7	8	15 '95	+o.18
7 586	*7 605	59 '94	22 '46	7	8	15 '96	+0.12
7 646	7 721	12.78	36 .50	7	I 2	16 .62	-o ·52
7 676	7 731	30 '20	25 °53	8	13	16 .44	0 '64
7 749	7 798	17 '07	24 '30	7	12	16 .49	-o ·36
7 812	7 914	21 '96	19.12	7	12	16 .59	-0.19
7 932	*7 983	51.78	40 '03	7	8	16 .62	-0.2
7 948	7 962	28 08	12 '97	7	12	19.99	o °53
*7 983	7 994	40 '03	33 '40	7	8	16.28	o ·45
8 054	*8 079	10.36	28 '34	9	9	15 .82	+0.28
8 075	*8 079	33 '90	28:34	9	9	15 '45	+o .es
8 126	8 136	. 08.91	52 '90	8	13	15 .92	+0.18
8 212	8 224	06.10	00 '02	6	II	16.12	-0 '02 ·
8 277	8 296	03 .60	26 '00	7	12	15.48	+0.35
*8 324	8 344	11 '74	24 '50	7	6	15 .67	+o ·46
*8 324	8 366	11.24	56 '90	7	6	15.21	+0.42
*8 324	46	11.24	42 '10	8	7	15 '27	+o ·86

TO.	Was	husett	Massacl	uisetts-	continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n'	w	Latitude.	υ
		//	//			0 / //	//
92	109	03 *44	13 '69	7	12	42 29 16.78	—o ·65
130	175	37 '40	15 '60	6	11	16 .62	-o ' 52
229	244	08.48	10.68	6	11	15 '77	+0.36
285	314	52 48	05 '71	7	12	16 .03	+0.10
339	345	45 '70	15 '99	7	12	16.01	+0.15
412	446	08 '90	09 '44	6	11	16.60	-o ·47
469	498	20 .78	01 '35	6	11	17 '07	0 '94
535	556	24.84	18.68	6	11	16.57	—o •44
576	*590	40 . 27	55 '90	7	8	15 '95	+o .18
579	*590	38.08	55 '90	7	8	16.19	-0.03
656	673	36.80	13 '10	8	13	16 .09	+0.04
706	761	05 '80	22 *40	6	II	15 .84	+0.29
802	838	24 '50	51 '90	6	11	. 16.12	+0.01

Indiscriminate mean=42° 29′ 16":12.

Weighted mean =42 29 16 '13 \pm 0'''04. $e=\pm$ 0'''60.

322 observations, 46 pairs.

[Reduction to $\triangle = +o''.95.$]

20. Harvard College Observatory, Cambridge, Massachusetts.—The report of Dr. B. A. Gould to the Superintendent of the United States Coast Survey, dated Cambridge, November, 1865, and printed in the Report for 1865, gives the following information respecting the latitude of this observatory:

"Prof. B. Peirce in 1845 found from transit observations in the prime vertical by Messrs. W. C. Bond, J. D. Graham, and G. P. Bond the following values for the latitude of the observatory:

"This result has been used to the present time. The adoption of later determinations of the declinations of the 5 stars observed would somewhat diminish the resultant value; but there seems little doubt that this value should be lessened by about half a second, unless strong local disturbances of the plumb-line exist in the vicinity."*

Other references will be found in the American Ephemeris and Nautical Almanac for 1855 and in Memoirs of the American Academy of Natural Sciences, II, 203.

The reduction to the center of the dome is -0''.55, hence the latitude of the dome $42^{\circ}.22'.48''.05$ with estimated probable error $\pm 0''.22$ which is adopted.†

^{*}This last remark has no bearing on the result here needed.

[†] The Ephemeris for 1888 gives 42° 22′ 48″ 3, and that of 1889, 42° 22′ 47″ 6, for which values no explanation is offered.

21. Cloverden Observatory, Cambridge, Massachusetts.*-B. A. Gould, J. Searles, and C. H. F. Peters. Zenith telescope No. 5. August to October, 1855. One division of level =0".88. One turn of micrometer =41'''369.

	Pair	s of stars.		Adopted so mean N	econds of I. P. D.	n'	าบ	Latitude.	υ
				//	//			0 / //	11
6	372	6 426	1-	20.70	15 '11	18	9	42 22 40 79 .	+0.18
6	452	6 497		38.78	17 '17	20	9	40 '36	+0.61
6	728	6 769		59 °05	21 .59	18	9	41 .83	o·86
6	861	6 882		36 '40	55 '43	17	8	41 '40	− о ° 43
6	912	6 932		02 '71	28 .75	21	9	39 .86	+1.11
7	073	7 091		36 .14	01 '98	21	9	41 '31	− о '34
7	158	7 171		51 *81	09 '23	19	9	40 .65	+0.32
7	188	7 193		42 *34	13 .63	19	9	41 '53	-o · 56
7	219	7 297	1	03 '34	51 '01	18	9	40 .81	+0.19
7	368	7 401		56 . 26	35 '34	17	8	40 .69	+0 .58
	431	7 453		51 '20	25 '16	.16	8	40 .88	+0.09
7	503	7 521		51 '13	08.56	15	8	41 *30	-o - 33
7	765	7 800	- 1	10 '30	32 '35	12	8	41 '13	-0.19
	950	7 978		46 '46	06 .80	12	8	41 '78	-o.81
	054	8 079	- 3	47 '34	04 '57	14	8	41 '31	—o · 34
	284	8 310	- 1	50 '33	26 '02	12	8	41 '21	-0.24
8	324	8 344		51 '07	04.20	12	8	40.41	+o ·56
	92	109	- 1	43 '70	53.78	10	7	40.37	+0.60
	158	219	}	55 '22	25 '28	11	8	40 .84	+0'13
	- 00			ndiscriminat				40 04	10 -3
				Veighted me				:0′′'08.	
				0		-1-0/1.67	7, —		

 $e = \pm 0''.67.$

302 observations, 19 pairs.

[Reduction to center of dome of Harvard College Observatory =+7"20.]

22. Mount Tom, Massachusetts.—E. Goodfellow. Zenith telescope No. 5. July 18 to August 11, 1862. One division of level = 0''.76 from observations at this station. One turn of micrometer = 41''.380 from circumpolar observations at this station.

Pairs of stars.	Adopted seconds of mean N. P. D.		n'	w	Latitude.	υ
·	11	//			0 / //	11
5 157 5 168	25 .88	43 '00	1	3	42 14 27 08	+0.54
5 249 5 252	23 '24	17 '25	5	7	27 .61	+0.01
5 295 5 338	o8 ·47	42 '79	5	7	28 '20	−o ·58
5 376 5 453	30 .19	49 '83	3	6	28 '00	-o '38
5 463 5 496	23 '00	22 .67	6	8	27 '48	+0.14
5 512 5 530	21 .76	16.74	6	8	28:33	-o ·71
5 549 5 619	57 .65	19.40	5	7	27.52	+o .10
5 602 5 643	52 . 26	14 '21	5	7	27 .60	+0 02
5 624 5 629	15.64	18.76	5	7	28.32	-o.4o
5 775 5 790	54 '97	05.14	5	7	26 .49	+1.13

^{*}See report by Dr. B. A. Gould dated November, 1865, in U. S. Coast Survey Report for 1865. These results were revised and in part improved in 1870.

22. Mount Tom, Massachusetts-continued.

Pairs of stars.			seconds of N. P. D.	n'	w .	Latitude.	υ
		ii	"			0 / //	11
5 763	5 776	20. 25	16 '56	6	8	42 14 27 89	—o ·27
5 795	5 842	51 '53	56 .08	5	7	27 '57	+0.02
5 944	5 997	25 '05	34 .80	5	7	28.13	-o ·50
6 013	6 062	13 '10	08.91	4	7	27 '06	+o ·56
6 021	6 079	46 '00	16.63	4	7	28 .40	-1 .08
6 109	6 193	25 '77	46 .98	4	7	26.83	+0.79
6 147	6 185	19'41	15 .68	4	7	27 .26	+0.06
6 162	6 218	12.02	58 '43	5	7	28 .02	—o · 43
6 300	6 373	22 .39	00.18	5	7	27 '60	+0.02
6 341	6 410	13 .82	51 '41	3	6	27 '09	+0.53
6 466	6 516	28.62	35 '12	5	7	27 '95	-o ·33
6 475	6 493	03.12	31 .03	4	7	26 .66	-⊦o · 96
6 534	6 551	35 *24	51 '12	5	7	27 '00	+0.62
6 530	6 553	16.57	47 '72	5	7	27 '96	− o '34
6 655	6 602	45 '29	12.52	5	7	26 . 78	+o ·84
6 659	6 698	50 .62	17 .80	5	7	27 '23	+0.39
6 718	6 745	17 '11	55 '49	5	7	28 '14	-o ·52
6 740	6 748	45 '32	56 '32	5	7	27 '08	+0.24
6 771	6 799	38 '24	56°31	5	7	27 .86	-0 '24
6 827	6 834	41 '92	42 '35	5.	7	27 '75	-o·13
6 847	6 879	14.06	31 .87	6	8	28.18	−o · 56
6 862	6 882	03 '06	48 *48	5	7	27 .67	-o ·o5
6 930	6 941	24 '48	25 '44	5	7	27 '23	+0.39
6 957	6 976	16 '56	12.28	5	7	27 *36	+o °2 6
6 985	6 998	28.21	46 '80	6	8	27 '15	+o ·47
7 073	7 091	15 *92	37 .80	5	7	28 '72	-1,10

Indiscriminate mean =42° 14′ 27′′·61.

Weighted mean =42 14 27 '62 \pm 0'' '06. $e=\pm$ 0'' '45.

172 observations, 36 pairs. [Reduction to $\triangle = +o''.91.$]

23. Manomet, Massachusetts.—C. O. Boutelle, F. H. Agnew, and C. S. Peirce. Zenith telescope No. 5. July 8 to August 21, 1867. One division of level = 0'' '951 from observations at this station. One turn of micrometer = 41'' '423 from circumpolar observations at this station.

Pairs of stars.		Adopted see mean N.	22'	10	Latitude	v	
		"	//			0 / // °	//
4 812	4 843	31,30	13.40	6	5	41 55 34 56	+0.79
4 873	4 949	15 '00	14 '00	6	5	35 '12	+0.53
4 961	4 974	18.30	36 .60	7	5	34 '94	十0.11
5 058	5 085	52 .56	08 '20	7	5	35 '3 ¹	+0.01
5 181	5 204	30.20	45 '00	7	5	35.61	-0.56
5 336	5 463	59.00	06 '90	7	5	35 *23	-1-0.13
5 512	5 525	03 .00	06,00	7	5	35.26	-O.51
*5 541	5 574	12.40	53 '60	5	3	34 *24	+1.11
*5 541	5 575	12 '40	26 ·8o	5	3	34 '04	+1.31
5 628	5 702	31 '40	06.00	6	5	35 '92	o ·57
5 714	5 797	23 '37	25 '30	7	5	34 '47	+o ·88
5 847	*5 871	02 '80	39 '00	6	3	35 '11	+0.54
*5 S71	5 886	39 '00	47 '10	7	3	35 '74	-0'39
*5 931	5 950	37 '47	26 '50	5	3	35.82	-0.47
*5 931	5 951	37 '47	08 .40	5	3	35 .84	-0.49
*5 997	6 062	45 *05	13 '54	5	3	35 .80	-o ·45
*5 997	6 068	45 *05	54 '80	5	3	35 '48	-o ·13
*6 185	6 232	07.85	22.73	6	3	34 .83	+0.52
*6 185	6 237	07 '85	05 '41	6	3	36 .23	-1.18
6 341	6 373	00.60	44 '10	6	5	33 '99	+1.36
6 429	6 470	23 '95	21 '12	6	5	35 '75	-0'40
6 522	6 547	24.08	42 .05	6	5	34 '36	+0.99
6 571	6 623	11,30	33 '50	6	,5	34.82	+0.53
6 637	6 681	25 '50	25 '60	6	5	35 '29	+0.06
6 698	6 734	40 '00	09 '67	6	5	34.81	+0.54
6 763	*6 784	56.38	48 .20	6	3	35 .46	-0.11
6 764	*6 784	23 '90	48 50	6	3	35 '43	-0.08
6 810	6 932	31 '00	24 '74	6	5	35 '55	-0.50
6 962	*6 990	07 '00	43 '02	6	3 -	36 '24	-o ·89
6 965	*6 990	38 *12	43 '02	6	3	36 '00	-o ·65
7 062	7 103	24 '40	11 '48	6	5	35 .06	+0 '29
5 168	5 271	42 80	30 '00	.6	5	34 '90	十0 '45
5 295	5 388	00, 10	54 '40	6	5	35 .66	-o·31
5 444	5 459	57 '01	18 '40	4	5	36.81	-1.46
5 530	5 560	56.94	50.99	6	5	36.72	-1 '37
5 602	5 752	29 '54	55 ·So	5	5	34 ·So	+0.22
5 795	5 863	16.72	31, '01	5	5	36 '70	—ı ·35
5 927	5 937	24 '95	56 ·8o	6	5	35 .87	-o ·52
*6 223	6 311	25 '50	37.50	6	3	35.08	+0.27
*6 223	6 318	25 '50	20 '80	6	3	34.72	+0.63
† 1 631	* 6 427	17 '75	03 '82	6	3	. 36 '70	-ı ·35

23. Manomet, Massachusetts-continued.

Pairs of stars.	Adopted seconds of mean N. P. D.	22"	70	La	ıtitude.	υ
	// //			0 /	11	//
† 1 633 * 6 427	21 .52 03 .85	6	3	41 55	34 .85	+0.20
6 456 6 520	34 '62 08 '00	5	5		35 .82	− 0 . 47
6 530 6 534	50.65 00.10	5	5		35 :91	−o ·56
6 582 6 629	53 '36 04 '14	5	5		34 '02	+1.33
6 673 ‡2 872	09 04 25 16	6	5		34 .63	+0.45
6 714 6 748	39.90 13.20	6	5		34 '73	+0.65
6 758 6 867	40.71 30.44	5	5		34 '42	+0.63
6 973 6 976	31.20 18.30	5	5		35 '24	+0.11
7 035 7 067	18 '53 25 '20	6	5		34 '43	+0.92
7 055 7 152	02 '17 45 '62	6	5		35 .62	− 0 '27
7 215 7 246	47.65 57.30	5	5		35 '71	- 0 ⋅36
7 256 7 281	47 ·So 25 ·30	6	5		35 '43	-0.08
7 306 7 320	56 '35 01 '20	6	5		35 '30	+0.02
5 321 5 341	30 .20 48 .69	2	4		35 .60	-o ·25
5 535 5 619	52 '27 56 '15	3	5		34 '45	+0.00
5 747 5 ⁸ 53	14.64 24.19	8	5		35 '39	-0.04
5 978 6 106	24 .18 04 .14	6	5		35 '55	-0.50
6 238 6 368	27 '78 37 '64	7	5		35 '33	+0.03
6 497 6 530	19.22 20.92	6	5		35 .68 .	—o ·33
6 603 6 698	46 '00 40 '00	6.	5		35 '43	-o ·o8
6 745 6 769	15 '20 40 '88	7	5		35 .78	-0.43
6 847 6 940	27 '90 16 '70	7	5		35 '47	-o.13
6 983 6 997	35 '50 53 '00	7	5		36.12	-0.80
7 041 7 119	44 .76 07 .44	6	5		36 .16	-0.81
7 143 7 176	55.00 30.20	7	5		35 '59	-0.54
7 204 7 243	35 '44 38 '09	5	5		34 '90	+0.45
7 253 7 260	54 '48 06 '98	5	5		35 .64	−o .59
7 277 7 333	36.20 02.30	6	5		35 .66	-o.31
7 385 7 455	16,55 38,15	6	5		35 .68	-o.33
§ 5 241 7 505	01,30 39,30	7	5		35 '32	+0.03
7 533 4 739	52 . 74 30 . 94	7	5		33 '98	+1 .37
7 542 7 585	02 '52 44 '70	. 7	5		36 .22	-1.17
7 623 7 636	39 55 49 67	7	5		35 '29	+0.06
7 696 * 7 706	45 '94 12 '22	7	3		34 .86	+0.49
7 698 * 7 706	38.22	. 7	3		35 '32	+0.03
7 754 7 757	16 .50 22 .06	5	5		35 '65	-0.30

Indiscriminate mean $=41^{\circ}$ 55′ 35″ 36. Weighted mean $=41^{\circ}$ 55 35 35 ±0″ 05. $c=\pm0$ ″ 30.

456 observations, 77 pairs.

[Reduction to $\triangle = o'' \cdot \infty$.]

24. Sandford, New York.—E. Goodfellow. Zenith telescope No. 5. September 11 to October 8, 1862. One division of level = 0'''687. One turn of micrometer = 41'''40.

Pairs of stars.	Adopted seconds of mean N. P. D.	n'	zv.	Latitude.	υ
	// //		0	1 11	11
6 421 6 468	10.24 18.18	2	4 41	27 41 10	− 0 ·63
6 427 6 470	21 '44 43 '64	4	5 -	40 *55	-o·o8
6 475 6 495	03 '15 17 '94	5	5	39°46	+1.01
6 520 6 556	32 '56. 49 '71	3	5	40.35	+0.15
6 530 6 571	16.24 40.61	3	5	41 :46	0,99
6 555 6 589	45 '29 03 '05	3	5	40 '50	—o °оз
6 629 6 652	36.40 21.62	5	5	39 '24	+1.53
6 698 6 717	17.87 12.73	5	5	40.80	− o '33
6 731 6 765	30.35 50.51	5	5	41 '00	− o ·53
6 779 6 806	16.03 08.63	5	5	39 '74	+0.73
6 818 6 827	39 '77 41 '23	5	5	39.84	+0.63
6 861 6 866	29 '70 20 '41	5	5	40.58	+0.19
6 867 6 882	18.43 48.14	5	5	40 '50	—o °оз
6 937 6 962	52 17 00 85	5	5	41 °08	-o.91
6 965 6 967	31.46 21.70	5	5	40.78	-o.31
6 970 6 975	19.29 18.96	5	5	40 .78	—o •3 I
7 027 7 041	48.64 42.55	5	5	40.11	+0.36
7 013 7 060	30 '34 01 '41	5	5	40 .61	-o·14
7 084 7 112	38 . 26 42 . 64	5	5	40.51	+0.56
7 120 7 164	14 '32 53 '66	5	5	41 .2	-1 '05
7 153 7 194	28 '30 56 '08	5	5	40 '52	-o ·o5
7 182 7 204	15 '88 41 '47	3	5	39 °08	+1.39
7 198 7 213	10.56 21.45	3	5	40 '30	+0.12
7 220 ', 275	46 '93 19 '00	5	5	40 *99	-0.2
7 297 7 333	11.53 19.10	5	5	40 '47	0 '00
7 345 7 373	17 '46 04 '10	5	5	41 '09	—o ·62
7 365 7 368	57 '34 14 '60	5	5	39,11	+1.36
7 387 7 410	15.52 51.15	5	5	39 ^{*8} 7	+0.60
7 418 7 449	02 '07 53 '50	5	5	41 *42	— о '95
7 455 7 462	55 '34 53 '56	5	5	.39 *58	+o 'S9
7 474 7 495	50 *94 54 *45	5	5	40 * 38	+0.09
7 503 7 505	00 '96 58 '97	5	5	40.79	—o '32
7 544 7 554	04 '43 11 '92	5	5	40 .38	+0.09
7 571 7 582	13 '99 06 '68	5	5	41 '30	-o ·83
7 585 7 595	07 '30 54 '97	5	5	41 .39	-o . 92

Indiscriminate mean $= 41^{\circ} 27' 40'' \cdot 47$. Weighted mean $= 41^{\circ} 27' 40'' \cdot 47 \pm 0'' \cdot 08$. $e = \pm 0'' \cdot 39$.

161 observations, 35 pairs. [Reduction to $\triangle = -o''$:39.]

25. West Hills, New York.—A. T. Mosman. Zenith telescope No. 5. August 8 to 24, 1865. One division of level = $0^{\prime\prime}$ '76 from observations at this station. One turn of micrometer = $41^{\prime\prime}$ '397 from circumpolar observations at this station.

Pairs of stars.	Adopted seconds of mean N.P.D.	n'	zυ	Latitude.	v
	// //			0 / //	//
5 617 5 644	08.60 07.17	6	16	40 48 50 85	-0.79
5 643 5 677	34 '15 52 '20	4	14	49 69	+0.37
5 658 5 703	00 '26 57 '82	2	10	20.31	-o·25
5 702 5 734	54 09 20 97	4	14	49 .67	+0.39
5 714 5 801	12.37 33.63	6	16	49.21	+0.22
5 752 5 798	44 '57 42 '17	4	14	49 66	+0.40
5 840 5 856	17 '00 03 '62	6	16	49 '69	+0.37
5 842 5 911	08.18 30.30	6	16	50.14	-o ·o8
5 874 5 944	26.89 33.18	7	16	49 '97	+0.09
5 922 5 950	06 '55 21 '74	6	16	49.69	+0.37
5 978 6 030	16.20 24.24	4	14	49 *99	+0.07
6 005 6 079	39 '91 18 '50	5	15	50.52	—ò •21
6 013 6 082	18 '60 46 '33	4	14	50.14	-o ·o8
6 147 6 246	19.30 36.34	6	16	50.86	o ·8o
6 231 *6 311	34 '70 43 '54	6	IO	50.33	-o ·27
6 251 *6 311	19.58 43.54	7	11	49.91	+0.12
6 373 6 438	50 '58 06 '00	6	16	49 '76	+0.30
6 387 6 410	49 '80 40 '32	6	16	49 *53	+0.23
6 421 6 427	59 '06 09 '70	6 .	16	50.12	-o ·iı
6 468 6 516	04.92 50.10	0	16	50.06	0 '00
6 473 6 493	06 '94 16 '96	6	16	49 °75	+0.31
6 534 6 566	19.74 08.09	5	15	. 50.52	-o .19
6 553 6 579	32 .65 49 .90	6	16	49 *52	+0.54
6 581 , 6 656	04 .86 24 .97	6 .	16	50.51	-o·15
6 635 6 690	26 .65 17 .90	6	16	50 '40	—o ·34
6 698 6 721	57 '50 42 '01	6	16	50.04	-0.01
6 711 *6 728	49 '64 40 '82	7	II	49 '94	+0.15
*6 728 6 765	40.85 23.18	6	10	50.20	-0 '44
6 748 6 762	30.36 04.12	5	15	49 .83	+0.53
6 810 *6 818	50 .75 12 .44	6	10	49 '99	+0.07
*6 818 6 866	12.44 21.90	6	IO	49 '33	+0.73
6 827 6 863	14.45 19.10	6	16	50.93	−o ·87
6 868 6 905	00 '27 24 '45	6	16	50.37	-0 '31
6 876 6 937	40 '77 23 '10	6	16	50.12	-0.09
6 915 6 965	52 '48 00 '62	7	16	50 '09	-o ·o3
6 966 6 976	04 '42 40 '94	6	16	49 .87	+0.19
6 983 6 998	56 .65 15 .02	6	16	50.12	-o.oð
7 022 7 041	25 '46 07 '86	7	16	50 '47	-o ·41
7 064 7 117	19.71 01.71	7	16	50 '21	-o ·15

Indiscriminate mean = 40° 48′ 50′ ·06. Weighted mean = 40° 48′ 50 ·06 ± 0′′ ·04. • $e = \pm$ 0″ ·34.

223 observations, 39 pairs. [Reduction to $\triangle = -0''$:16.]

26. New York, New York.—E. Goodfellow. Zenith telescope No. 5. June 22 to 25, 1858. One division of level = 0''·845. One turn of micrometer = 41''·516.

	Pairs of stars.			Adopted seconds of mean N. P. D.		าบ	I,ati	itude.	v		
					11	//			0 /	//	//
4	640	4	726		05 .82	41 '06	3	4	40 43	47 '72	+0.67
4	804	4	808		05 '42	11.96	3	4		47 '72	+0.67
4	845	4	864		41 '90	57 '76	4	5		47 '28	+1.11
4	885	4	897		13 .08	06:54	4	5		48.06	+0.33
*4	952	5	000		35 .82	49 '77	4	3		48 .86	—o :47
*4	952	5	036		35 .82	i1 '25	4	3		47 '36	+1.03
5	113	5	204		50.28	01 '05	4	5		49.10	—o .41
5	244	5	313		39,10	51 '66	4	5		47 '53	+o ·86
5	336	*5	400		27 '68	58 °95	4	3		48.86	—o ·47
5	385	*5	400		45 *50	58 ·95	4	3		49 .63	_1 ·24
5	448	5	502		14 *58	14 '87	4	5		48 .54	+0.12
5	599	5	677		20 '95	08.13	4	5		48 '14	±0°25
*5	752	5	798		06°46	09:57	4	3		48.20	-0.11
*5	752	5	860		06 '46	23 '12	4	3		47 '58	+0.81
*5	902	5	967		29 '36	09 '81	4	3		48 '95	—o ·56
*5	902	5	988		29 '36	48 '41	4	3		48 .62	··· 0 *23
6	005	*6	079		27 '06	13 '80	4	3		48 '95	—ი ⁺ 56
*6	079	6	223		13 '80	36 .38	2	3		48 .82	-0.43
6	251	6	318		29°16	41 '44	3	4		49.58	-1.19
6	387	6	410		11 '34	06.13	3	4		49 '17	-o·78
6	476	6	491		59 '38	09:58	4	5		49 '13	—о '74
6	534	6	579		55 '92	25 '75	4	5		48 .06	+0 '33
6	648	6	687		13.58	02 72	4	5		48.21	-o.15
6	697	6	740		16.61	17 '46	4	5		48 *02	+0.37

Indiscriminate mean = 40° 43′ 48′′·43. Weighted mean = 40° 43 48 '39 \pm 0′′·09. $e = \pm$ 0′′·45.

90 observations, 24 pairs.

[Reduction to center of transit or $\triangle = +0''$.21.]

27. Beacon Hill New Jersey.—J. B. Baylor. Zenith telescope No. 4. July 24 to August 27, 1875. One division of level = $2^{\prime\prime}$:04. One turn of micrometer = $43^{\prime\prime}$:462 from circumpolar observations at this station.

Pairs	Pairs of stars.		seconds of N.P.D.	n'	20	Latitude.	v
		//	//			0 / //	//
5 400	5 411	46 .88	03 '00	3	6	40 22 27 73	+o *o8
5 432	*5 463	23 .74	17 '20	5	4	28 .95	-1.14
* 5 463	5 479	17 '20	20.84	7	5	27 '77	+0 04
5 523	5 546	29 '40	04 '37	- 5	7	26 .86	+0.95
5 629	5 677	47 .64	56 '00	5	7	26.78	+1.03
5 703	5 785	58 .75	53 '32	6	7	27.58	+0.23
*5 801	5 828	22.22	43 '46	7	5	27 '59	+0'22
* 5 801	5 860	22 '52	29 '70	6	5	28.60	-o <i>·</i> 79
5 931	5 937	01.21	19.66	7	7	28 '15	-o · 34
5 997	*6 082	01,30	23 .10	6	5	28 '02	-o ·2I
*6 082	6 095	53.10	19.91	7	5	28 .64	-o ·83
6 193	6 203	37 '14 ·	56 .45	7	7	26 *95	+o:86
*6 232	6 246	12.63	21.29	7	5	28 '08	—o ·27
*6 232	6 258	12.63	31 '66	7	5	27 .65	+o ·16
6 300	6 348	55 '06	58 '33	7	7	28 '30	—o · 49
6 357	6 404	29 '60	29 .83	6	7	27 '30	+0.21
6 438	6 463	25 '60	50 '95	6	7	28.31	0.20
6 476	6 497	45 '92	41 '16	7	7	27 .62	+0.19
6 530	6 547	10 '05	01 '35	6 .	7	27 '66	+0.12
6 571	6 579	25 '20	41 '80	7	7	27 '41	+0.40
6 602	6 681	52 '77	28.68	7	7	27 '38	+0.43
6 697	6 714	09 '04	40 '44	6	7	27 '10	+o ·71
6 728	6 771	22 '43	47 '42	7	7	27.50	+0.31.
6 800	6 830	28.20	24 '52	6	7	27 .61	+0.50
6 862	6 933	00 '07	17 '42	6	7	27 '46	+0.35
5 596	5 604	35 '60	10 '20	3	6	27 '39	+0 '42
5 951	6 033	29 '80	01 .82	5	7	28 *24	—o °43
6 084	6 091	15 *09	44 .68	5	7	28.11	-0.30
6 184	6 223	40.87	16 .59	5	7	27.87	-o ·o6
6 238	6 335	16.80	40 '07	5	7	28 .26	−o · 45
6 711	6 718	32 '99	36.89	6	7	28 *26	-o ·45
6 745	6 765	09.21	30 .62	5	7	28.67	-ю·86
6 810	6 867	22 '04	14.83	5	7	28 '97	-1.16

Indiscriminate mean =40° 22′ 27′′·84. Weighted mean =40° 22′ 27 '81 \pm 0′′·07. $\epsilon=\pm$ 0′′·42.

195 observations, 33 pairs.

[Reduction to \(\Delta = \frac{0}{100}. \]

4192-No. 7-02-19

28. Mount Rose, New Jersey.—J. E. Hilgard. Zenith telescope No. 2. July 19 to August 3, 1852 One division of level=1"'00, from observations at this station. One turn of micrometer=44"'750, from circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		74'	Latitude.	7'
		//	//			0 / //	"
†2 285	5 302	52 °45	25 .61	3	4	40 22 05 00	+o *41
5 338	5 432	00 *55	48 '80	4	6 -	05 *54	-0 '07
I 211	5 383	13.80	40 '84	3	4	05 .56	+o·15
1 276	5 382	31 .31	17 '60	3	4	04 .62	十0.79
5 463	5 479	54 '75	58 '92	4 ,	6	05 '75	-0:34
5 489	1 448	57 '60	00 '94	4	6	05 '60	-0.19
5 628	5 686	47 *42	40 '14	3	4	05 '65	-0.24
5 674	5 740	24 .66	19.65	4	6	04 .66	+0.75
5 702	5 728 .	35 *40	50 '42	3	4	05 .89	o ·48
5 785	5 922	59 '46	26 '36	4	6	04 .83	+o:58
5 821	5 823	14 '00	10.20	3	4	04 '56	+0.85
5 941	5 972	41 .66	16 :26	4 .	6	05 '48	-0 '07
5 967	‡1 539	54 '96	43 '10	3	4	05 '14	+0.27
6 178	6 255	42 .61	04 '12	3	4	06.62	-1.51
6 216	6 223	39 '73	43 '30	3	4	05,2	-0.11
6 322	*6 348	24 *26	58 .45	4	4	05 '00	+0.41
6 341	*6 348	39 '21	58 '45	3	3	05 '23	+o ·18
6 460	6 563	05 '74	49 .76	3	4	05 .84	− 0 ' 43
6 487	6 586	44 '76	o8 ·27	3	4	05 '29	+0.15
6 585	6 625	19 *80	20 .56	3	4	06:29	-o ·88
6 623	6 690	10 '44	5 2 '60	4	6	04 '93	+o .48
6 648	6 697	53 '77	01 '73	3	4	06 '33	-0.92
6 735	6 749	26 '44	06 '40	3	4	06.40	-1 .59
*6 817	*6 817	27 .66	27 .66	4	6	04 '84	+0.57

Indiscriminate mean=40° 22′ 05′′·44. Weighted mean =40° 22° 05°·41 \pm 0′′·08. $e=\pm$ 0′′·82.

81 observations, 24 pairs.

[Reduction to $\triangle = 0^{\prime\prime}$:00.]

 ${\bf + Groombridge}.$

‡ Greeuwich 12 year Cat. 1845.

29. Yard, Pennsylvania.—J. E. Hilgard. Zenith telescope No. 6. October 17 to November 2, 1854. One division of level=0".80. One turn of micrometer=76":15, from circumpolar obsevations at this station.

Pairs o	of stars.	Adopted :	seconds of N. P. D.	n'	w	Latitude.	v
		//	//			0 / //	//
7 029	7 085	43 .69	13 '97	6	13	39 58 28 58	+o ·81
*7 091	7 131	14 '03	06 '40	4	6	29.63	-o ·24
*7 091	7 132	14 '03	02 45	4	6	29.9 8	-o ·59
7 141	7 144	29 '97	09 '66	3	6	29.16	+0.23
7 182	7 194	58.31	39 '23	8	17	29 .63	-o ·24
7 213	7 253	38 '34	49 '23	4	9	29.60	-o ·2 I
7 260	*7 297	02 '53	01,00	4	6	29 '46	-o o7
7 277	* 7 297	34 *06	01 '90	6	9	30 '04	-o ·65
7 313	7 326	53 '78	49 '71	I	2	29 '90	-0 .21
7 363	7 372	11 *25	56.30	4	9	28.54	+o ·85
*7 399	7 469	50.12	02.33	I	I	29 '40	-o ·oı
*7 399	7 480	50 '15	05 '90	6	9	29.54	-o ·15
7 402	7 462	59.78	57 '01	5	ΙΙ	29.66	-o ·27
7 521	7 554	24 .76	21 .48	4	9	29:36	+0.03
7 560	7 607	30.78	13 '72	5	11	28 .64	+0.75
7 610	7 674	31 '90	00 *40	4	9	29 '39	00'0
7 696	*7 712	31 '90	21 '34	4	6	29 '53	-o ·14
7 698	* 7 712	24 .82	21 '34	4	6	28.83	+o ·56
7 727	7 731	46 '90	10.96	4	9	28 .36	+1 '03
7 757	7 787	51 '26	27.72	6	13	30 '54	-1.12
7 805	7 851	26 '30	45 '57	6	13	29 '20	+0.19
7 878	7 908	45 '53	46 '02	2	4	29 °08	+0.31
7 937	7 973	05 '55	44 '06	5	II	29 '7 2	-o ·33
7 984	8 037	01 '43	43.26	2	4	30 '57	-ı ·18
8 059	8 156	56.11	15 '17	5	11	30.30	-0.91
8 082	*8 159	26.10	59 '20	2	3	. 29 '29	+o.to
8 114	*8 159	54 .80	59 '20	5	7	29.21	-o'12
8 177	8 187	20 '32	43 '13	5	1 1	29 '40	-o ·oı
8 206	8 231	48 '41	11.18	4	9	28.78	+0.61
8 279	8 299	47 '96	23 '42	5	II	29.57	-o ·18
8 312	8 314	27 '22	07 '98	2	4	29 .81	-0.42
8 355	26	50 .42	41 '42	3	6	29 '35	+0 '04
32	46	19.17	41 '97	3	6	29 '17	+0.22
60	67	11.90	23 '95	3	6	30.08	—o :69
8o	87	25 14	08.40	3	6	28 .75	+0 .64
114	156	14.77	18.54	3	6	28:30	+1 .00
166	180	19:38	20.21	4	9	29 *31	+0 .08

Indiscriminate mean =39° 58′ 29′′ '41. Weighted mean =39 58 29 '39 \pm 0′′ '06. $e=\pm$ 0′′ '68

148 observations, 37 pairs. [Reduction to $\triangle = 0''$ '00.]

For the abstracts of results corresponding to the astronomic latitudes of the following stations, numbered from 30 to 53, inclusive, that is, for stations common to the transcontinental arc and the oblique arc, see "The Transcontinental Triangulation" United States Coast and Geodetic Survey Special Publication No. 4; Washington, D. C., 1900. The final summary of the results for latitude includes the adopted latitude at these stations:

- 30. Principio, Md.
- 31. Maryland Heights, Md
- 32. Pooles Island, Md.
- 33. Sugar Loaf, Md.
- 34. Dover, Del.
- 35. Webb, Md.
- 36. Soper, Md.
- 37. Rockville, Md.
- 38. Taylor, Md.
- 39. Strasburg, Va.
- 40. Cape May, N. J.
- 41. Causten, D. C.

- 42. Naval Observatory (new), D. C.
- 43. Hill, Md.
- 44. Naval Observatory (old), D. C.
- 45. Seaton, D. C.
- 46. Coast and Geodetic Survey Office, D. C.
- 47. Bull Run, Va.
- 48. Marriott, Md.
- 49. Cape Henlopen, Del.
- 50. Clark, Va.
- 51. Elliott Knob, Va.
- 52. Charlottesville, Va.
- 53. Long Mountain, Va.

54. *Moore*, North Carolina.—J. B. Baylor. Zenith telescope No. 2. First series. November 8 to December 6, 1876. One division of level=1"06. One turn of micrometer=44"867 from circumpolar observations at this station.

Pair	Pairs of stars.		Adopted s mean 2	Adopted seconds of mean N. P. D.		7U	Latitude.	v
			//	//	,		0 / //	//
7 94	3 7	973	44 *53	43 -67	7	3	36 23 55 62	-o *5 4
8 06	8 8	071	54 *41	58 '91	6	3	55 .67	-0.59
8 10	7 8	146	18.42	01,01	6	3	53 '85	+1 .53
8 17	r 8	206	12 .67	32. 56	7	3	54 '87	+0 '21
8 24	5 8	256	42 '10	29 '75	5	2	54 .88	+0 '20
	7	26	02 '79	21 '38	9	3	54 '29	+0.79
10	0	109	28.90	55 '78	7	3	55 .65	-o ·57
13	0	153	19 '20	o8 ' 34	6	3	55 '84	−o ·76
21	9	264	32.13	o8 ·30	7	3	54 .63	+0 '45
31	8	349	08 '41	09 '42	6	3	55 '27	-0.19
38	8	438 .	19.60	28.61	6	3	56.16	-1 .08
45	6	476	19.26	23 '30	6	3	55 *18	-o .10
51		568	26 .68	31 '00	7	3	54 *89	+0.19
59		615	45 '44	48 '21	8	3	55 *16	-o •o8
65	6	661	00 *44	47 '91	6	3	54 '99	+0 '09
74	0	791	23 *64	07 '52	` 4	2	56 .87	−ı ' 79
79	6	827	34 .62	52 '24	5	2	55 .89	o ·81
86	3	903	14.63	20 '50	7	3	56 -73	—1 ·65
91	5	953	57 '00	28.81	7	3	53 '70	+1.38
98		017	39.36	01 '35	6	3	53 '59	+1 '49
I 03	0 1	057	37 '46	31 .60	7	3	53 *84	+1 '24
1 09	9 1	126	19 '53	24 .60	6	3	54 '97	+0.11

Indiscriminate mean=36° 23′ 55′′′12. Weighted mean =36° 23′ 55′′8±0′′′13.

e=±1′′′06.

140 observations, 22 pairs. [Reduction to $\triangle = -o''$:04.]

54. *Moore*, North Carolina.—W. B. Fairfield. Zenith telescope No. 2. Second series. November 23 to December 6, 1876. One division of level=1"06. One turn of micrometer=44"867 from circumpolar observations at this station.

Pairs o	f stars.	Adopted s mean N		22'	w	Latitude.	υ
		//	"			0 / //	//
7 943	7 973	44 '53	43 .67	6	3	36 23 56 04	-I '22
8 068	8 071	54 '41	28 . 91	6	3	55 '14	—o ·32
8 107	8 146	18.42	01.91	5	3	53 '95	+o ·87
8 171	8 206	12.67	32.26	6	3	55.13	-o.31
8 245	8 256	42 10	29 '75	6	3	54 .87	—o ·o 5
7	26	02 '79	21.38	6	3	53 .82	+1 .00
100	109	28 '90	55 . 78	6	3	55 *55	-o ·73
130	. 153	19 '20	08:34	6	3	55 '41	o ⁺59
219	264	32 '13	08.30	6	3	52 .76	+2.06
318	349	08 '41	09 '42	6	3	55 '41	-o ·59
388	438	19.60	28 .61	6	3	54 .86	-o ·o4
456	476	19 .26	23 '30	7	3	55 .69	-o·87
518	568	26.68	31 '00	7	3	53 '58	+1.24
595	615	45 '44	48.21	6	3	54 '50	+0.32
656	661	00 '44	47 '91	5	3	55 '21	—o ·39
740	791	23 .64	07 '52	6	3	56 '47	-1 .62
. 863	903	14.63	20.50	6	3	54 '90	. —o ·o8
915	953	57 '00	28.81	6	3	54 '03	+0.79
981	1 017	39.36	01 '35	6 .	3	55 '37	-o ·55
1 030	1 057	37 .46	31.60	6	3	53 .76	+1 .06
1 099	1 126	19.23	24.60	6	3	54 '74	+0.08

Indiscriminate mean=36° 23′ 54″.82.

Weighted mean = 36 23 54 $\cdot 82 \pm 0'' \cdot 13$. $e = \pm 0'' \cdot 67$.

126 observations, 21 pairs.

[Reduction to $\triangle = -0''$ o4.]

Adopted value = $36^{\circ} 23' 54'' \cdot 95 \pm 0'' \cdot 09$.

[Reduction to $\triangle = -0'' \cdot 04$.]

55. Young, North Carolina.—H. W. Blair. Zenith telescope No. 4. First series. October 14 to 21, 1876. One division of level=2"20. One turn of micrometer=43"388 from circumpolar observations at this station.

	Pairs	of stars.	Adopted somean ?		21'	70	Latitude.	v
			11	11			0 / //	11
6	856	6 858	21 '95	36 '45	6	2	35 44 22 88	— ı ·35
6	962	6 966	31.57	08.12	5	2	22 '90	—ı ·37
7	022	7 029	20 '95	32 '26	6	2	21 .63	-0.10
- 7	7 174	7 194	35 '03	55 '55	6	2	20.68	+o·85
7	7 253	7 256	53 °08	46.94	6	2	20 *27	+1 '26
7	7 399	[1 909]	21 '60	45.81	6	2	23 '20	-1 .64
7	7 465	7 521	59 '09	33 '74	6	2	22 .88	—ı ·35
1	7 585	7 598	20.17	49 .61	6	2	20.50	+1 .03
1	7 712	7 746	00 12	20 '31	6	2	20:36	+1.17
7	7 914	7 972	20 '45	46 .74	6	2	21 .36	+0.14
5	8 082	8 160	15 '54	41 '38	5	2	20 '84	+0.69
8	3 114	8 131	43 '23	17.12	5	2	20 '35	+1.18
8	3 195	8 211	41 '56	17 '48	5	2	21 .58	+0.25
8	8 229	8 256	05 '86	29 '75	5	2	22 . 23	—o ·70

Indiscriminate mean=35° 44′ 21″:53. Weighted mean =35 44 21 '53 \pm 0″:20. $e=\pm$ 0″:67.

79 observations, 14 pairs. [Reduction to $\triangle = + \circ'' \circ 1$.]

55. Young, North Carolina.—J. B. Boutelle. Zenith telescope No. 4. Second series. October 24 to 31, 1876. One division of level=2"2"20. One turn of micrometer=43"388 from circumpolar observations at this station.

cio.	II.S CLE	cirio ocacion.						
	Pairs	of stars.	Adopted s mean	econds of N. P. D.	n'	าบ	Latitude.	υ
			11	11			0 / //	11
7	664	7 755	22.67	49 *24	6	3	35 44 21 34	+0.13
7	961	7 975	17 .66	56 .80	6	3	20 '95	+0.22
8	153	8 182	46 • 26	23 .80	6	3	21 '05	+0.42
8	203	8 231	06 .13	54 '25	6	3	21 '45	+0.02
8	370	7	. 37 17	02 '79	6	3	23 '26	−1 '79
	28	[20]	57 '40	15 '97	6	3	22.18	—о :71
	120	173	10 '57	19 '13	6	3	22 .02	-o ·58
	198	215	40.18	27 .77	6	3	22 .61	-1.14
	244	269	57 '98	30 '00	6	3	21 '07	+0 '40
	283	345	18.68	o8 ·8o	<u>`</u> 6	3	20.58	+o ·89
	395	404	17 '46	18.60	6	3	20 .77	+0.70
	488	515	34.23	31.11	6	3	21 .68	-0.51
	558	592	04 '50	17 '70	6	3	20 '41	+1.06
	628	675	58.85	44 '30	6	3	21 '17	+0.30
						-		

Indiscriminate mean = 35° 44′ 21″ 47. Weighted mean = 35° 44′ 21 ′ 47 \pm 0″ 15. $c=\pm$ 0″ 64.

84 observations, 14 pairs.

[Reduction to $\triangle = +o''$ or.]

Adopted value = 35° 44′ 21″′50 \pm 0″′12. [Reduction to $\triangle = +$ 0″'01.]

56. King, North Carolina.—H. W. Blair. Zenith telescope No. 5. First series. December 5 to 13, 1876. One division of level=o''.98. One turn of micrometer=41''.420 from circumpolar observations at this station.

P	airs of st	ars.	Adopted secon		n'	w	Latitude.	υ
			//	11			0 / //	"
8 o	52 8	058	02 .66	55 '58	5	5	35 12 13 37	-0.11
8 12	25 8	160	17.61	41 '38	5	5	12*56	+o ·7 o
S 20	6 8	212	32.26	48.85	5	. 5	13 '34	-o ·o8
8 26	51 8	324	05 .06	51 '04	5	5	13 '92	-o ·66
8 34	15	4	23 '30	38 '41	5	5	14.17	-0.01
(57	120	05.85	10.57	5	5	13.38	-o ·12
17	70	180	31 '20	05 '37	5	5	12.60	+0.66
2	18	269	33 .02	30.00	5	5	12.39	+0.87
33	30	365	11.28	22 '90	5	5	14.19	-o ·93
45	56	488	19 '26	34 '53	5	5	13.10	+0.19
52	22	577	13.05	56 .04	5	5	12 '90	+0.36
64	19	698	47 .89	37 '60	5	5	14 °06	−o ·8o
7:	27	759	02 '43	38 .34	5	5	13.85	−o ·59
8	13	829	19 '96	53 '73	5	5	13 '97	-o ·71
88	35	901	48 '09	18.20	5	5	13 *24	+0.02
9.	1 I	967	46 .75	50 '22	5	5	13 *37	-o.11
99	99 1	007	58 '94	02 .63	5	5	13.61	—o ·35
1 0	34 1	043	05 '15	55 '90	5	5	12.43	+0.83
I O	58 1	084	37 '11	26 '24	5 -	5	12 60	+0.66
II	17 1	174	01.72	24 'CO	5	5	12 '20	+1 .09

Indiscriminate mean=35° 12′ 13′′·26. Weighted mean =35 12 13 '26 \pm 0′′·10 $e=\pm$ 0′′·31.

100 observations, 20 pairs. [Reduction to $\triangle = +16''$:07.]

56. King, North Carolina.—J. B. Boutelle. Zenith telescope No. 5. Second series. December 12 to 20, 1876. One division of level=0".98. One turn of micrometer=41".561 from latitude observations at this station.

Pairs o	of stars.	Adopted so mean N		n'	70	Latitude.	21
		//	//			0 / //	"
8 256	†4 172	29.75	54 '74	5	4	35 12 13 39	-0 '02
8 364	8 370	30.10	37 '17	5	4	13.54	+0.13
26	92	21 '38	43 '09	5	4	14 '25	-o ·88
101	153	37 . 13	08:34	5	4	14 '22	o ·85
178	189	03 '04	13 '57	5	4	14.34	− о ∙97
198	264	40.18	08 '30	5	4	13 .62	-o ·25
283	349	18.68	09 '42	5	4	14 '08	-0'71
515	561	31,11	18.30	5	4	12.39	+0.98
569	628	34 °25	58.85	5	4	12.43	+0 '94
682	735	21 '44	03 '14	5	4	12.28	+0.79
769	785	46 .52	56.30	5	4	. 12.69	+o ·68
842	863	51.60	14.63	5	4	13 '32	+0.05
904	912	59 45	05 '47	5	4	13 .62	-0.25
947	966	51.15	59 .89	5	4	12.50	+1.12
983	1 025	37 '96	09 '77	5	4	14 '40	-1 .03
1 069	1 099	29 64	19.23	5	4	12.70	+0.67
1 123	1 132	17.54	03 '57	5	4	14 '30	—о '93
1 155	1 210	32.11	41 '87	5	4	13 .56	+0.11
1 289	1 287	25 .64	29 '74	5	4	13 .02	+0.32
1 301	1 311	42 .80	43 '20	5	4	13 '40	-o ·o3

Indiscriminate mean = 35° 12′ 13′′·37. Weighted mean = 35° 12′ 13′′·37. $= 35^{\circ}$ 12′ 13′′·37. $e = \pm o''$ ·34.

100 observations, 20 pairs.

[Reduction to $\triangle = +16''$:07.]

Adopted value = 35° 12' 13"' 31 ± 0 "' \circ 7. [Reduction to $\triangle = +16$ "' \circ 7.]

† Groombridge.

57. Paris, South Carolina.—J. B. Boutelle. Zenith telescope No. 5. First series. October 4 to 17, 1875. One division of level=0'''944. One turn of micrometer=41'''514 from latitude observations at this station.

Pairs	of stars.	Adopted seconds of mean N. P. D.		n'	zv.	Latitude.	ν
		"	//			0 / //	//
6 810	6 830	22 '04	24 '52	5	5	34 56 31 60	+o ·46
6 876	6 882	04 '16	42.20	6	5	33.13	1 '07
6 941	7 007	08 '57	35 '26	6	5	32 '61	o · 55
7 029	7 061	43 '72	10.03	5	5	33 '00	-0 *94
*7 103	*7 103	35 '32	35 '32	5	3	31 '44	+0.62
7 152	7 158	10.61	41.85	5	5	31 '08	+o . 98
7 200	7 262	29 '45	45 40	5	5	31,10	+o · 96
7 271	7 377	31 .86	37 .85	5	5	30 .63	+1 '43
7 448	7 450	47 '08	53 '92	5	5	32 '30	-o ·24
7 512	7 520	29 '36	33 '53	5	5	31.93	+0.13
7 554	7 607	42 05	24.88	5	5	32 '44	—o ·38
7 664	7 683	40 .76	07 .67	5	5	32 '38	—o ·32
7 731	7 777	04 *25	22 '80	5	5	33 '06	-1.00
7.798	7 850	54 '74	00 '34	6	5	32.51	-o ·15·
7 888	7 900	58 00	09 .09	5	5	32 .73	−o ·67
7 914	7 932	40.12	10,12	6	5	32.33	−0.5
7 972	8 032	05 '77	41 '03	5	5	31 '57	+0.49
8 052	8 056	22 '06	26 .86	5	5	31.41	+0:35
8 182	8 188	43 .65	23 '73	6.	5	31 '90	+0.19
8 206	8 212	52 .60	o8 ·68	6	5	32.18	-o.15
8 227	8 252	29 '70	26 '95	5	5	31.30	+0.19
8 280	8 300	57 '77	53 '55	5	5	31.77	+0.59

Indiscriminate mean=34° 56′ 32′′ 05. Weighted mean =34 56 32 06 \pm 0′′ 10. $e=\pm$ 0′′ 36.

116 observations, 22 pairs. [Reduction to $\triangle = -o''.87.$]

57. Paris, South Carolina.—H. W. Blair. Zenith telescope No. 5. Second series. October 18 to 25, 1875. One division of level = 0" '944. One turn of micrometer = 41" '386 from circumpolar observations at this station.

Pair	s of stars.	Adopted secon	nds of n'	70	Latitude.	υ				
		//	//		0 / //	//				
7 204	7 213	- 49.16	23 *74 5	6	34 56 31 57	+0.59				
7 260	†2 065	19.40 5	3 .66 2	6	32 '02	-0.16				
7 437	7 455	41 '01 3	34.65 5	6	32 .68	-o ·82				
7 495	7 553	28 '93 4	11 '30 5	6	31,30	+0.26				
7 606	7 642	40.50	32 '40 5	6	31 .26	+0.30				
7 674	7 696	59 05 2	27.52 5	6	31 '72	+0'14				
7 738	7 796	37 .82 2	6 '07 5	6	31 70	+0.19				
7 807	7 855	58.19 3	35 * 56 5	6	30.88	+0.98				
7 871	7 912	17 .85	7 72 5	6	31 '32	+0.54				
8 003	8 013	19.26	6 '54 5	6	32.51	− 0 '35				
8 028	8 097	50 74 5	8'93 5	6	31 '57	+0.59				
8 099	8 171	14.18 3	2 '48 5	6	3 2 °54	-o ·68				
8 261	8 324	25 '03	1 '09 5	6	32 °06	-o ·20				
8 345	4	43 '34 5	8.31 2	6	32 '06	-0.50				
82	92	37.80	3 '14 5	6	32.39	-o ·53				
102	121	25 '44	5 15 5	6	31 '92	-o ·o6				
189	215	33 '37 4	7 '45 5	6	32.03	-o ·17				
226	250	01 '01 5	5 02 5	6	32 '71	-o ·85				
*334	*334	33 '49 3	33 '49 5	3	33 '33	−1 '47				
339	370	56.08	14 '07 5	6	30 .99	+0.87				
416	454	55 '00 2	1 '54 5	6	30.90	+0.96				
470	508 .		8.61 5	6	32 '13	—o ·27				
		Indiscrimina	te mean = 34°	56′ 31″.8	8.					
		Weighted me	0.		5±0′′′08.					
	$\rho = \pm 0^{1/27}$									

 $e = \pm 0'''27.$

110 observations, 22 pairs.

[Reduction to $\triangle = -0.^{\prime\prime}87.$]

Adopted value = $34^{\circ} 56' 31'''.96 \pm 0''.07$.

[Reduction to $\triangle = -o^{\prime\prime}87.$]

[†]Radcliffe Catalogue.

58. Currahee, Georgia.—H. W. Blair. Zenith telescope No. 5. First series. September 28 to October 8, 1874. One division of level = 0"'94 from observations at this station. One turn of micrometer = 41"'381 from circumpolar observations at this station.

Pairs of stars.		Adapted s mean N		n'	70	Latitude.	υ
		//	//			0 / //	//
6 571	6 599	31 '74	22 °34	5	5	34 31 37 32	+0.43
6 637	6 656	40 '03	22 *44	5	5	38 .02	-o ·30
6 697	6 739	16 '54	26.40	5	5	38.32	− o ·57
6 764	6 794	26 '47	20 *20	5	5	37 '73	+0.03
6 824	6 839	51 '47	49 '75	5	5	37 °53	+0 '22
6 858	6 895	54 .76	42 *24	5	5	37 .60	+0.12
6 944	6 963	45 '15	08.52	6	5	37 °64	+0.11
*6 998	*6 998	35 .87	35 .87	5	3	38 .33	-o ·58
7 008	7 067	35 '17	02 '51	5	5	38 .03	− o •28
7 094	7 105	10.58	49 '94	5	5	38 '46	—o ·7 I
7 215	7 257	18 44	40 °94	5	5	38 '50	—o ·75
7 275	7 301	35 *60	12.25	5	5	38 '09	-0.34
7 350	7 377	29 '42	52.53	5	. 5	36 .12	+1 .60
-7 402	7 444	00 '33	01.22	5	5	36.19	+1.26
7 474	7 480	43 *96	51 .48	5	5	38 .59	-o·54
7 528	7 548	08*14	17 .84	5	5	36 .64	+1.11
7 606	7 612	57 *12	25 .68	5	5	37 ;30	+0.45
7 641	7 683	13.87	24 '94	5	5	38.15	—o •37
7 705	7 706	54 *13	10.13	5	5	36 '97	+0.78
7 807	7 820	16 .52	43 .56	5	5	37 '22	+0.23
7 855	7 856	53 .84	06.41	5	.5	38 .02	-0.30
7 915	7 923	56 '37	13 *32	5	5	37.81	-o .oe
7 953	8 003	51.12	38 .76	5	5	38 '41	-o ·66
8 023	8 032	01 '48	00 '52	5	5	38 . 59	-o ·8₄
8 076	8 079	55 '39	57 .83	5	5	38.55	-o ·80
8 097	8 128	18.26	40 '85	5	5	38 . 29	− o ·54
8 158	8 182	21 '79	03 '50	5	5	37 '36	+0.39
8 250	8 280	03 *95	17 .82	5	5	37 '60	+0.12

Indiscriminate mean = 34° 31' 37'' 75. Weighted mean = 34 31 37 $75 \pm 0''$ 99. $e = \pm 0''$ 32.

141 observations, 28 pairs.

[Reduction to $\triangle = +6^{\prime\prime\prime}21.$]

58. Currahee, Georgia. – J. B. Boutelle. Zenith telescope No. 5. Second series. October 12 to 21, 1874. One division of level = 0'':94 from observations at this station. One turn of micrometer = 41"'381 from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n'	w	Latitude.	v	
			//	11			0 / //	11
6	754	6 827	22 '53	51 '94	5	3	34 31 37 06	+0.62
6	868	6 881	31 *94	21 '70	5	3	37 '31	+0.40
6	957	7 027	09 '44	35.51	5	3	37 .87	-0.19
7	174	7 256	00 '45	14 '00	5	3	36 '94	+0.77
†4	502	7 326	13 .63	o8 ·54	5	3	37 .62	4-0.09
7	372	7 387	o8 ·66	18.20	5	3	37 70	+0.01
7	437	7 561	56.30	15.31	5	3	37 '53	+0.18
7	565	7 623	12 .29	42 '42	6	3	36.88	+o ·83
7	674	7 718	16.58	25 '96	5	3	37 '90	-0.19
7	749	7 796	10.32	44 '12	6	3	37 '72	-0.01
7	825	7 900	18.49	26.68	5	3	36 '93	+0.78
7	912	7 961	26 '43	55 .62	5	3	37 '19	+0.25
8	052	8 110	41 '45	15 '02	5	3	39.61	1.30
8	136	8 159	18.36	24 '47	5	3	38 .77	- ı .o6
8	299	8 307	45 '87	43 '29	5	3	39 '37	-ı ·66
	7	14	42.24	20.12	5	3	37 '00	+0.41

Indiscriminate mean = 34° 31' 37'' 71.

= 34 31 37 '71 \pm 0"'14. $e = \pm$ 0"'49. Weighted mean

82 observations, 16 pairs.

[Reduction to $\triangle = +6^{\prime\prime}$:21.]

Adopted value =34° 31′ 37″.75 \pm 0″.08. [Reduction to $\triangle = +6$ ″.21.]

[†] Armagh, 1840.

59. Lavender, Georgia.—F. P. Webber. Zenith telescope No. 3. October 20 to November 4, 1874. One division of level=1"20. One turn of micrometer=46"60 determined from latitude observations at this station.

Pairs of stars.		Adopted s mean N		n'	w	Latitude.	υ
		//	//			0 / //	//
7 310	7 350	12 '79	29 '42	8	3	34 19 16 41	-o ·6o
7 553	7 582	57 '49	49 '75	6	3	16 .67	-o ·86
7 607	7 614	41.21	09 '32	5	3	16 .15	-0.31
7 643	7 664	07.13	56 '90	5	3	16 '02	-O.5I
7 712	7 729	34 '99	56 .79	6	3	14 '73	+1.08
7 820	7 856	43 '26	06 '71	7	3	14 .87	+0.94
7 879	7 923	29 '57	13 '32	5	3	14 '45	+1 .36
7 997	8 059	22.52	25 '08	6	3	15 .62	+0.19
8 097	8 118	17 '90	50.30	5	3	17 '32	-1.21
8 149	8 158	33.81	21 '79	5	3	16 .08	-o ·27
8 282	8 300	12.26	13 53	5	3	15.65	+0.19
79	IOI	42 .48	17 .59	5	3	17.12	—1 '34
121	156	25 .11	40 '70	5	3	16 '17	− o ·36
,180	214	44 '91	36 '50	5	. 3	15.14	+o ·67
305	339	55 '35	15 '39	5	3	. 14.73	+1.08
377	395	30.80	55 '68	8	3	16.21	-0.40
560	572	52 '73	20 '70	6	3	14 '42	+1.39
587	644	13 .00	11.68	5	3	17 '40	—ı.*59
7 559	7 568	50 .89	32 .02	5	3	15.40	+0.11
7 641	7 668	13 .87	39 22	5	3	17 .55	-1 '41
7 855	7 900'	53 .84	26 .68	5	3	15.28	+0.53
7 962	8 032	47 '41	00 '52	6	3	16 .52	-o ·44
8 058	8 131	34 '35	56 .20	5	3	14 *58	+1.53
8 160	8 224	21 '00	27 .85	7	3	15 '88	-0.07
142	169	16.28	14 .80	5	3	16 .07	—o ·26
219	· 247	11 '45	40 .63	5	3	15.26	+0 .52
321	# 343	38 '90	47 '53	6	3	14 '55	+1 .59

Indiscriminate mean=34° 19′ 15′′81. Weighted mean =34 19 15 '81 \pm 0′′'12. $e=\pm$ 0′′'65.

¹⁵¹ observations, 27 pairs.

[Reduction to △=+1":24.]

60. Sawnee, Georgia.—H. W. Blair. Zenith telescope No. 5. First series. October 6 to 17, 1873. One division of level=1"'00. One turn of micrometer=41"'429 from circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.			Latitude.	υ
		//	//			0 / //	11
6 583	6 644	- 23 '20	31.63	5	9	34 14 04 14	+0.56
*6 698	*6 698	57 '40	57 '40	6	5	04 '00	+o °40
6 723	6 739	03 '41	34.20	6	IO	05 '35	-o ·95
6 762	6 769	02 '04	50.67	5	9	03 '91	+0 '49
6 779	6 827	41 '98	01.14	5	9	03 .62	+0.78
6 805	6 867	02 '00	33 .66	5	9	03 *25	+1.12
6 839	6 856	59.13	50.12	5	9	05 '10	-0.70
6 881	6 896	29.63	03 '28	5	9	04.18	+0.55
6 890	6 928	25.31	32 '49	5	9	03 .65	+0.75
6 975	6 983	21 '39	29 '70	5	9	04 °47	—o ·o7
7 006	7 029	58 .44	06.66	5	9	04.18	+0.55
7 055	7 107	52 '05	44 '24	5	9	04.69	-0.59
7 143	7 171	41 '57	21 '34	5	9	04 '43	-o ·o3
7 188	7 241	56 .99	05 '54	5	9	04 '73	-o·33
7 257	7 281	. 55 '52	03 '05	5	9	04 . 76	− o ·36
7 310	7 351	26 .74	04 .82	5	9	03 .28	+o ·82
7 368	7 398	34 '57	12.12	5	9	04 .84	<u>-</u> 0 ·44
7 474	7 501	00 '25	31 .19	5	9	04.62	O '22
7 553	7 582	13 '72	06.12	5	9	04 '02	+o ·38
7 607	7 614	58.14	26 05	5	9	04 .63	—o °23
7 641	7 668	31 .36	56 .41	5	9	05 '32	o ·92
7 712	7 727	52 '43	14 '32	5	9	04 '20	+0.50
7 820	7 806	01 '40	25 '13	5	9	04 '13	+0.52
7 882	7 900	11.19	45 '36	5	9	04 .67	−o ·27
7 923	7 931	32.07	57 '97	5	9	04 '37	+0.03
7 945	7 958	07 '43	06 '07	5	9	05 '22	-o ·82

Indiscriminate mean=34° 14′ 04′′ 39. Weighted mean =34 14 04 '40 \pm 0′′ 07. $e=\pm$ 0′′ 28.

132 observations, 26 pairs. [Reduction to △=+6".89.]

60. Sawnee, Georgia. - A. H. Scott. Zenith telescope No. 5. Second series. October 30 to November 15, 1873. One division of level=1" :00. One turn of micrometer=41" :429 from circumpolar observations at this station

Pairs o	of stars.	Adopted s mean 2	n'	zv	Latitude.	v	
		//	"			0 / //	//
7 137	7 166	45 '90	30.31	5	4	34 14 03 .85	+ó ·30
7 306	7 361	32 '55	14 '07	5	4	04.61	o ·46
7 3So	7 449	33 '30	04.19	5	4	04 °26	-0.11
7 559	7 568	07:17	48.19	5	4	03 '79	+o ·36
7 590	7 612	30.80	42 *39	6	4	04 *23	-o °o8
7 674	7 749	33 '52	27 '99	6	4	03.23	+o ·62
7 855	7 893	12 .53	02.81	6	4	04 '01	+o ·14
7 913	7 958	18.29	06 '26	6	4	03.15	+1.03
8 114	8 146	42 '11	01,00	5	4	04 12	+0.03
8 282	8 300	32 '54	33 '50	4	3	03.25	+0.63
92	142	43 '14	36 .20	6	4	05.29	−1 '44
164	181	40.52	22 .62	6	4	05 '53	<u>-1 '38</u>
224	227	23 '05	47 '09	6	4	04 .88	-o '7 3
305	314	14.80	13 '77	5	4	02 '95	+1 .50
352	365	21.18	20 '62	6	4	03 '90	+0.25

Indiscriminate mean=34° 14′ 04′′ ·13.

Weighted mean =34 14 04 '15±0'' '14.

 $e=\pm 0^{\prime\prime}$ '51.

82 observations, 15 pairs.

[Reduction to $\triangle = + 6'' \cdot 89$.] Value adopted = 34° 14′ 04′' ·20±0′' ·08. [Reduction to $\triangle = +6'' \cdot 89$.]

61. Aurora, Alabama.—F. P. Webber. Zenith telescope No. 2. May 28 to June 20, 1877. One division of level = 1'' '006. One turn of micrometer = 45'' '852 from circumpolar observations at this station.

	Pairs	of stars.			seconds of N. P. D.	· n'	20	Latitude.	v
			1	11	//			0 / //	11
4	057	4 127	-	18,30	15.10	5	3	34 08 48 72	-1 '27
4	148	4 156		59 '48	38.60	5	3	47 '74	—o ·2 9
4	274	4 305		05 '20	32 .60	5	3	46 .65	+0.80
4	335	4 367		21 '00	45 *50	5	3	47 '59	—o '14
4	406	4 456		10.20	15 .53	5	3	46 •90	+0.22
4	684	4 753		09 '88	43.18	6	3	46 .49	+0.96
4	870	4 876		10.73	23 '05	6	3	48 .73	-1.58
4	958	4 969		24 '70	18.35	6	3	48 '30	-o ·85
5	026	5 031		25 '07	42 '24	5	3	49 '43	—ı .98
5	075	5 084		00 '52	25 '75	4	3	46 .26	+0.89
5	130	5 143		56.38	13 '00	5	3	46 -94	+0.21
5	177	5 252		46 '80	03 '60	5	3	47.51	-0.06
5	295	5 321		48 .80	13.57	5	3	46 .23	+0.95
5	432	5 479		43 '01	37 .63	5	3	46 . 15	+1 '33
5	502	5 587		53 .64	53 '78	5	3	48.17	—o ·72
5	834	5 927		04 '50	56.52	5	3	47 11	+0.34
5	937	5 991		25 '10	21 '83	6	3	47 '36	+0.00
6	091	6 094		45 '85	26 .60	5	3	49 '32	—ı ·87
6	151	6 203		10.52	54 '18	5	3	48.38	-o ·S3
4	242	4 303		44 '50	45.85	5	3	46 .73	+0.72
4	597	4 701		45 '45	36 '44	5	3	47 '56	-0 11
4	751	4 845		38 .52	40 '23	5	3	47 °47	-0°02
4	905	4 980		16 .66	23 .48	5	3	47 '14	+0.31
5	185	5 313		24 14	08 .06	5	3	47 '11	+0.34
5	322	5 388		10.41	30 '48	5	3	46 .80	+0.65
5	463	5 525	1	34 '73	27 .79	5	3	46 .55	+0.00

Indiscriminate mean = 34° os' $47'' \cdot 45$. Weighted mean = 34° os $47'' \cdot 45 \pm 0'' \cdot 12$. $e = \pm 0'' \cdot 60$.

133 observations, 26 pairs. [Reduction to $\triangle = + 0^{\prime\prime}$ 26.]

62. Atlanta Middle Base, Georgia.—F. P. Webber. Zenith telescope No. 5. September 4 to 27, 1872. One division of level = 1'' 00. One turn of micrometer = 41'' 427 from circumpolar observations at this station.

Pairs	of stars.	Adopted secone mean N.		n'	าบ	Latitude.	v
		11	11			0 / //	//
6 109	6 134	29 '76	28 '00	5	7	33 54 21 68	+0'14
6 452	6 487	22 .19	14 '00	5	7	20 '98	+0.84
6 583	6 595	29 *28	00.40	5	7	21 '48	+0.34
6 656	6 676	36.16	38 .41	5	7	21 '80	+0.02
6 697	6 724	31 '80	22 '20	5	7	22 °15	-0.33
6 739	6 763	42 .52	15 '73	5	7	22 .03	-o .5 1
6 777	6 800	53 .80	54 '70	5	7	20.64	+1 :18
6 839	6 881	08.20	41 .09	5	7	20 '96	+o ·86
6 928	6 952	44 '30	25.72	6	7	21 '53	+0.59
6 978	7 027	01,00	55 °03	5	7	22 '91	-1.00
7 061	7 067	44 '70	26.56	5	7	21 .63	+0.19
7 164	7 213	48.05	43 *15	5	7	21 '99	-o ·17
7 336	7 368	43 '24	49 '31	5	7	21 .60	+0.55
7 431	7 450	32 *92	40 '10	5	7	21 .62	+0.50
7 520	7 548	21 .88	50 *34	5	7	21 '41	+0.41
7 602	7 607	13 '42	14.82	5	7	22 '47	-o ·65
7 631	7 664	15 .48	31.12	5	7	21 '69 .	+0.13
7 695	7 712	16 .42	09 '92	5	7	20.63	+1.19
7 754	7 796	47 '44	19.82	5 '	7	21 '74	+0.08
7 88o	7 914	39 *28	35 '30	·5	7	21 .42	+0.07
7 948	7 958	41 .49	25 '00	5	7	21 .86	-o ·o4
8 032	8 037	39.11	55.81	5	7	20.60	+1.55
8 054	8 071	18.30	16 .60	5	7	21.22	+0.30
8 115	8 131	33 .68	36 .09	5	7	22.19	-o ·37
8 203	8 224	25.61	06 .67	5	7	22 '24	-o ·42
8 250	8 268	44 .62	39 *20	5	7	21 .67	+0.12
8 330	8 370	26 .62	57 '53	5	7	22 '46	−o ·64
63	83	36.55	45 .87	5	7	20.84	+o ·9 8
120	158	30 *40	18.23	5	7	22 *44	−o ·62
168	197	25 .59	16 .07	5	7	21.21	+0.31
6 475	6 542	18 '47	44 *58	5	7	21.69	+0.13
6 678	6 721	57 *08	47 .84	5	7	22 '41	—o ·59
6 745	6 758	33 .65	58 '97	5	7	. 22.22	-o ·40
6 780	6 805	16.15	11.64	5	7	21 .69	+0.13
6 865	6 868	27 .14	54 *36	5	7	21.31	+0.21
6 962	6 975	14.20	32.30	5	- 7	22 '07	-o ·25
7 041	7 117	46 '98	37 '15	6	7	21 '00	+0.82
7 146	7 153	35 '47	23 .88	5	7	22 *44	—o ·62
7 166	7 223	42.98	55 .00	5	7	22 '03	-O '2I
7 256	7 260	40.85	00 '03	5	7	21 '54 .	+0 '28
7 350	7 417	57 '93	02.61	5	7	. 21 '71	+0.11
7 453	7 465	04 '57	01 '52	5	7	22.77	− o . 95
4192-	No. 7—02-	20					

Attanta Middle Base, Georgia-continued.

Pairs of	stars.		Adopted se mean N		n'	zer	Latitude.	υ
			//	//			0 / //	11
7 544	7 571	-1	23 '41	32 50	5	7	33 54 21 55	+o °27
7 668	7 674		13.61	55 .06	6	7	21 '96	-o·14
7 727	7 733	-	31 .64	00 '75	5	7	22 .52	—o ·45
7 901	7 923		55 '06	50.55	5	7	22.36	-o ·54
7 937	7 995		25 .96	57 ·SS	5	7	22.87	-ı ·o5
8 052	8 076		19.57	34 °05	5	7	22.33	-o.21
8 125	8 147		36 *34	32.05	5	7	21 *55	+0.27
8 212	8 284		08 .50	11.20	5	7	22.37	-o ·55
8 300	8 364		53 12	50 '24	6	7	21.13	+0.69
54	101		40 '84	57 '45	5	7	22645	-o ·63
152	178		04 *34	22:39	5	7	22.32	-o·50
198	217		59 42	28.20	. 5	7	22 '09	-o ·27

Indiscriminate mean = 33° 54′ 21′′·82 Weighted mean = 33° 54′ 21′'·82 ± 0′′·05 $e = \pm$ 0′′·33

274 observations, 54 pairs.

[Reduction to $\triangle = + 0$ "'40.]

63. Atlanta, Georgia.—C. H. Sinclair. Meridian telescope No. 13. January 1 to 22, 1880. One division of level = 2'' 7 at 33° F. and 2'' 64 at 75° 2 F. One turn of micrometer = 77'' 783 from circumpolar observations at this station.

polar obs	er various at	this station.					
Pairs o	f stars.	Adopted se mean N		n'	ZV	Latitude.	υ
		//	11			0 / //	//
522	592	00,00	o8 'So	6	4	33 44 58 83	+0.47
628	657	49 *20	44 '71	6	4	58 .42	+o ·88
682	706	13 '04	28.85	5	3	59.38	-o ·o8
819	842	12:40	50.42	6	4	59.52	+0.02
897	921	25 .63	26.10	6	4	58.63	+o ·67
974	981	56.90	43 '72	4	3	60 *44	-1.14
1 006	1 052	02.67	08.28	4	3	59.28	-o ·28
1 065	1 087	55 '80	32.79	4	3	58 '99	+0.31
(557)	1 129	37 . 76	52 '20	4	3	59 '12	+0.18
I 139	1 192	07 *20	03,10	5	3	59 '48	-o ·18
I 214	(654)	14 '60	58.55	5	3	58.19	+1.11
I 254	I 272	34 '60	55.20	4	3	60 '51	-1.51
1 301	1 346	05 *68	25.20	5	3	58 '30	+1.00
I 307	1 365	42 '75	53 *25	5	3	60 '26	−o ·96
1 382	I 393	00,80	17.20	5	3	58.92	+o ·38
1 409	1 424	33 '80	55 *20	5	3	59 '45	-o ·15
1 460	1 456	43 *50 *	29 50	5	3	59.66	- o •36
(772)	1 492	22 '02	04.80	5	3	61.14	-1.84
I 500	1 504	03 '40	35.15	4	3	58.85	+o ·45

Indiscriminate mean = 33° 44′ 59'' 34.

Weighted mean = 33 44 59 30 ± 0.12 .

 $e=\pm \, o^{\prime\prime} \, .50.$

93 observations, 19 pairs.

[Reduction to $\triangle = + o'' \circ S$.]

64. Kahatchee, Alabama.—O. B. French. Zenith telescope No. 2. June 3 to 9, 1898. One division of level = 1'''211, as determined by E. G. Fischer, 1891. One turn of micrometer = 46'''376 from latitude observations at this station.

Pairs of stars.				seconds of N. P. D.	n'	zv.	Latitude.	v		
					//	//			0 / //	//
4	729	4	741	-	11 '45	36 '36	4	13	33 13 39 87	+0 '03
*4	748 '	*(2	232)		38.32	04 '04	2	5	39 '49	+o *41
*4	748	*(2	237)		38.32	56.63	4	7	39.45	+o ·45
4	762	*(2	237)		18.21	56 .63	2	5	38 '99	+0.01
*(2:	232)	*4	792		04 '04	14 '73	2	5	40 '45	o *55
*(2:	237)	*4	792		56.63	14.73	4	. 7	40.07	-o·17
4	830	4	847P		12 '97	40 '08	4	13	39 °95	o ·o5
. 4	873	4	907P		13.70	36 .85	. 5	14	39.80	+0.10
4 (936	4	939		39.62	51 .54	5	14	39 '72	+0.18
4 9	967	(2	339)		41 '07	32 .52	5	14	40 .59	-o·39
(2)	350)	(2	358)		47 '42	21 .84	4	I 2	40.24	о 64
*5	098	(2	396)		33 '99	53 *58	4	9	39.28	+o ·32
*5	098	(2	399)		33 '99	09.12	3	8	39 .78	+0.13
5	143	5	155		31 .89	04 '40	4	13	39 '40	+o ·50
5	181	5	216		38.48	32.22	4	13	40 '43	o.23
5	287	*5	322		51 '95	44 .83	4	9	40 '30	—o *40
(2	486)	*5	322		44 '46	44 .83	3	3	39.60 .	+0.30
5 3	388	5	462		59.76	56 ·5 0	4	13	39 60	+o ·30
5	509	5	523		17 '33	38 '06	4 .	13	39 *92	0 '02

Indiscriminate mean = 33° 13′ 39′′·85. Weighted mean = 33° 13° 39′·90 \pm 0′′·06. $e = \pm$ 0′′·31.

71 observations, 19 pairs. [Reduction to $\triangle = + \circ''$:39.]

65. Montgomery, Alabama.—G. W. Dean. Zenith telescope No. 5. March 22 to 28, 1856. One division of level = 0'' '929 as determined at this station. One turn of micrometer = 41'' '45 from circumpolar observations at this station.

Pairs	of stars.		Adopted seconds of mean N. P. D.		70	Latit	ude.	v
		11	//			0 /	11	//
3 109	3 112	11.18	07.13	5	14	32 22	45 .66	-o ·25
3 140	3 176	14 08	17 '90_	5	14		45 .68	—o ·2 7
3 202	3 220	16.72	42 '66	5	14		45 '19	+0.55
3 241	3 255	46 '01	48 '07	4	13		45 '14	+0.27
3 307	3 327	18.30	55 '11	4	13		44 '34	+1.04
3 331	3 352	54 '00	00.86	4	13		45 '42	-0.01
3 399	3 423	39 *20	29 80	4	13		45 '95	-o ·54
3 515	3 522	16.10	00,00	6	14		45 '93	-0 '52
*3 545	3 548	26 '90	16.96	6	10		45 '09	+0.32
*3 545	3 560	26 '90	19.90	6	10		44 *89	+0.2
3 580	3 621	57 .80	23 '07	6	14		45 °35	+0.06
*3 634	3 665	27 '20	27 '00	5	9		44 '80	+o.61

65. Montgomery, Alabama-continued.

Pairs of stars.		Adopted seco	n'	7 <i>U</i>	Latitude.	υ	
		mean N. I	7. D.			0 / //	//
*3 634	3 670	27 '20	15 40	5	9	32 22 44 96	+0.45
3 704	3 736	23 '04	50.23	6	14	45 .86	0 '45
3 760	3 776	44 '44	55 '07	5	14	45 *38	+0.03
3 825	3 837	26.18	07 13	5	14	45 .81	-0.40
3 885	3 911	38 .35	24 '17	5	14	45 '15	+0.56
3 931	3 954	09 '98	oS '27	5	14	45 '75	-o ·34
3 964	3 973	52 '30	42 '17	5	14	45 '41	0 '00
*3 990	4 957	51 '22	19.75	5	9	45 '14	+0.27
*3 990	4 059	51 .55	37 '41	5	9	45 '60	-0.19
4 079	4 121	05 '62	49 '60	5	14	45 '64	-o ·23
4 127	*4 188	13 '94	55 '48	4	9	45 '66	-o ·25
4 184	*4 188	25 '76	55 '48	5	9	45 '56	-o·15
4 203	4 229	22 14	39 '46	5	14	44 '72	+0.69
4 240	4 258	37 '09	56.60	4	13	45 .67	−o ·26
4 287	4 351	18 '35	47 .80	5	14	45 '40	+0.01
4 384	4 390	46.34	04.26	5	14	45 .67	—o •26
4 421	4 457	26 '53	52 '70	5	14	44 '95	+0.46
4 468	4 538	38.73	47 .78	5	14	44 .80	+0.61
4 553	*4 596	03.16	14.57	5	9	45 .69	-o ⋅38
4 566	*4 596	23 '37	14. 57	5	9	45 '10	+0.31
4 609	4 618	52 *22	10 '25	5	14	45 .26	+0.12
4 632	4 640	28.13	29 '75	5	14	45 '66	-o ·25
4 694	4 714	35 '61	32 '09	2	9	45 '66	-o·25
4 699	4 729	32 .67	57 '47	2	9	46 '01	−o · 60
4 753	4 827	53.46	50.40	2	9	45 '94	—о :53
4 789	4 853	55 '76	58.41	2	9	46 '03	−o ·62
4 902	4 961	08 17	41 '02	2	9	45 '50	-0.09
4 993	5 026	17 '16	38 '94	2	9	45 '80	-о. 39

Indiscriminate mean = 32° 22' 45"' 43. Weighted mean = 32 22 45 '41 \pm 0"' '04. $e = \pm$ 0"' '29.

181 observations, 40 pairs. [Reduction to \triangle or center of State House = + o'' '22.]

66. Lower Peach Tree, Alabama.—E. Goodfellow. Zenith telescope No. 5. April 4 to 16, 1857. One division of level = 0'''99 from observations at this station. One turn of micrometer = 41'''481 from circumpolar observations at Mobile, Alabama.

Pairs	of stars.		seconds of N. P. D.	n'	w	Latitude.	v
		//	11			0 / //	//
2 740	2 792	29 '03	27 '05	4	5	31 50 21 93	+0.19
2 841	2 860	02 .68	56.19	4	5	21 .68	-o ·49
2 912	2 952	21.76	15.2	4	5	20 .75	+0.44
2 995	*3 075	18 .92	52.87	4	3	21 .79	-o ·60
3 047	*3 075	54 '29	52.87	4	3	21 '04	+0.12
3 095	3 106	01,10	17 .82	3	4	22 '37	-1.18
3 140	3 228	28.60	24 '15	5	5	21.19	+0.03
3 246	3 265	14 '00	47 '50	4	5	20.22	+o ·97
3 278	3 341	25 '27	54 .68	5	5	2 0 .91	+o ·58
3 355	3 399	23 '50	56 '05	4	5	21 '95	-o ·76
3 406	3 421	29.83	10.38	4	5	21 '37	—o ·18
3 505	3 522	24 '07	18.09	4	5	20 .74	+o ·45
3 545	3 602	45 '00	16.28	4	5	22 '41	1 .55
3 610	3 650	34 '50	50 '40	4	5	21 '40	-o ·2 I
3 661	3 685	21 '90	56 '73	4	5	20.61	+o·58
3 691	3 729	20 .64	59.19	4	5	21 '37	-o.18
3 725	3 788	21 .84	30 .80	5	5	20.88	+0.31
3 862	3 885	15 '50	58 .05	4 .	. 5	22.38	-1.19
3 915	3 952	11.30	55 '06	6	5	20.64	+0.55
3 981	3 995	40 '12	43 '39	5	5	20.71	+0.48
*4 017	4 027	37 15	39 '20	6	4	20.76	+0.43
*4 017	4 072	37.12	21 '00	4	3	20 '16	+1 .03

Indiscriminate mean = 31° 50′ $21'' \cdot 18$. Weighted mean = 31° 50′ $21^{\circ} \cdot 19 \pm 0'' \cdot 10$. $e = \pm 0'' \cdot 53$.

95 observations, 22 pairs.

[Reduction to $\triangle = 0''$:00.]

67. Coon, Alabama.—O. B. French. Zenith telescope No. 2. May 21 to 26, 1898. Onc division of level=1"'211 as determined April 23, 1891. One turn of micrometer=46"'325 from circumpolar observations at this station and at Kahatchee, Alabama.

Pairs	of stars.	Adopted seco mean N. P		n'	70	Latitude.	υ
		11	//			0 / //	//
4 122	4 140	56.10	51.28	4	20	34 14 48 26	-0.44
4 222	4 257	01.21	03 '45	5	24	47 '77	+0.02
4 268 _P	4 300	21.18	44 '39	5	15	47 .86	-0.04
4 347	4 352	29 .62	42 '79	5	24	47 '78	+0.04
4 387	4 433	58 '04	25.26	4	2 I	47 '93	-0.11
4 480	4 506	44 °i0	44 '33	4	2 I	48 '00	-o.18
4 513	4 536	15.01	42 '60	2	10	47 * 11	+0.41
(2 122)	4 591	19 '62	54 '04	4	21	47 '88	-0 06
4 607	(2 158)	39 '79	50 '40	5	2 I	47 '91	-o ·o9
*4 727	(2 232)	49 .88	04 '04	4	14	48.06	−0°24
*4 727	(2 237)	49 .88	56.63	4	14	48.19	—o ·37
4 803	4 823	17 '95	42 .80	5	15	47 '88	-o °o6
4 843	4 873	19.29	13.40	5	24	47 '46	+0.36
(2 288)	4 706	35 °02	34 '43	5	19	47 *29	+-o ·53

Indiscriminate mean = 31° 14' 47''.81. Weighted mean = 31 14' 47'.82 \pm 0''.05.

 $e = \pm 0'' \cdot 34.$

61 observations, 14 pairs.

[Reduction to $\triangle = -o^{\prime\prime}$:03.]

68. Mobile, Alabama. - E. Goodfellow. Zenith telescope No. 5. December 11, 1856 to January 3, 1857. One division of level = 0"69. One turn of micrometer = 41"481 from circumpolar observations at this station.

Pairs	of stars.		Adopted seconds of mean N. P. D.		<i>w</i>	Latitude.	υ
		11	//			0 / //	//
215	259	01 '20	57 '08	5	6	30 41 33 86	−0 '44
283	307	47 '90	56.18	6	6	32 .68	+0.74
330	341	37 '96	36 '70	6	6	32 '32	+1.10
*425	427	27 '05 '	44 '09	6	4	32 '55	+0.87
*425	431	27 '05	26 '03	7	4	33.11	+0.31
446	*492	24.74	53 '32	6	4	33 .58	+0.14
469	*492	34 '76	53 '32	6	4	32 °97	+o ·45
510	523	40 '06	59 '27	6	6	33 '00	+0 '42
556	566	30 .03	58.20	- 6	6	33 '00	+0 '42
576	630	51 '79	38 .00	6	6	31.99	+1.43
648	661 '	14.55	32 .61	6	6	33 .88	-o ·46

68. Mobile, Alabama—continued.

Pairs of stars.		s of stars.	Adopted seco	n'	zv	Latitude.	υ	
			//	//			0 / //	//
	697	*710	13 '48	26 .80	6	4	30 41 33 58	—o .16
	698	*710	15 '75	26.80	6	4	34 '13	—0 '71
	735	798	33 '78	44 '90	6	6	32.86	+0.56
	872	915	09 '44	50 '42	6	6	33 *27	+0'15
	921	963	18.03	09 '06	6	6	34 °02	−o ·6o
	986	993	15 '97	15 '73	6	6	33 .85	-o ·43
I	006	1 064	28.69	01,30	6	6	33 *33	+0.09
I	095	*1 123	20 '70	18.28	7	3	33 '69	—o ·27
*1	123	1 146	18.28	01 .65	6	3	34 '24	-o ·82
*1	123	1 154	18.28	09,00	7	3	34 *23	-o .81
I	189	*1 219	50 '57	37 '60	6	3	33 .68	—o ·26
*1	219	1 257	37 .60	55 °27	6	3	33 '77	-o ·35
*1	219	1 260	37 '60	00 '23	6	3	34 '47	-1 '05
I	323	1 328	59 *92	26.34	7	6	33 '32	+0.10
I	337	*1 414	22 60	08 .84	5	4	32.68	+0.74
I	342	*1 414	22 .80	08.84	7	4	33 60	-o ·18
I	445	1 468	50 '53	47 '40	6	6	33 '52	0.10
I	492	1 528	41 .22	34 '60	6	6	34 '50	-1,08
1	557	*1 609	02 '42	13 '00	7	4	32.83	+0.29
I	591	*1 609	27 '12	13 '00	5 -	4	32.43	+0.99
1	629	*1 648	33 '21	36.54	6	4	33 .67	-o ·25
I	632	*1 648	34 .83	36 '54	6	4	32.91	+0.21
I	669	1 768	45 '50	52 .88	6	6	33 °15	+0.27
I	845	1 925	56 '45	28 '05	6	6	33 '32	+0.10
* 1	935	1 951	05 '36	10,13	6	4	33 *20	+0.55
* 1	935	2 016	05 '36	54 '31	6	4	33 *48	-o ·o6
2	067	2 155	47 '13	13 '70	6	6	34 *29	—o ·87
2	182	2 228	33 '06	19.11	5	6	33 *5 7	-o·15
2	306	2 409	28 '40	10 '93	6	6	34 '37	—o · 95
2	423	2 429	19.10	18 '03	4	5	33 '37	+0:05
2	441	2 444	28.79	08 '55	6	6	33 '17.	+0.25
2	463	2 563	34 '28	05 '83	6	6	34 .38	-o ·96

Indiscriminate mean = 30° 41′ 33″ 43. Weighted mean = 30° 41′ 33″ 42 ± 0″ 06. $e = \pm$ 0″ 46.

258 observations, 43 pairs.

[Reduction to \(\text{(Episcopal Church.)} = -10".72.]

69. East Pascagoula, Mississippi.—R. H. Fauntleroy. Zenith Telescope No. 1. June 25 to July 26, 1847. One division of level = 0'' '90. One turn of unicrometer = 45'' '502 from latitude observations at this station.

Pairs of stars.		Adopted s mean N	Adopted seconds of mean N. P. D.		ze,	Latitude.	v	
		"	11			0 / //	11	
5 463	5 563	10.60	57 '00	2	12	30 20 41 19	—o ·27	
5 628	5 724	12.36	17.13	1	6	40.87	+0.02	
5 667	5 749	50 .62	01 .52	3	19	40 '43	+0.49	
5 795	5 940	39 '77	19.77	2	12	40 '79	+0.13	
5 802	5 853	29.78	31 '96	2	12	40.91	10.01	
5 953	6 006	12 '40	19 '20	3	19	40.57	+0.35	
6 013	6 094	44 *92	09.65	2	12	41 '08	-0.19	
6 052	6 143	49 '24	12.10	I	6	40 .82	+0.10	
6 155	6 216	39 '79	44 *99	I	6	40 '44	+o ·48	
*6 224	6 418	14.98	57 '12	3	I 2	41.41	-0.79	
*6 224	6 420	14 '98	29.64	3	I 2	40 .60	+0.32	
6 269	6 373	23 '53	48 .06	4	24	41.21	− o :59	
6 428	*6 615	18.42	13 '29	4	12	40 '70	+0.55	
6 476	*6 615	46 .40	13 '29	3	9	40.62	+0.30	
6 460	6 583	27 '50	59.08	2	8	41 .59	-o ·34	
6 626	*6 644	42 '71	42 '2'4	3	12	40.76	+0.19	
*6 644	6 717	42 '24	07 '50	3	12	40.80	+0.13	
6 720	6 744	17 .06	27 '39	3	19	40 '98	-o ·o6	
6 748	6 833	58 ·8o	17 '10	3	19	. 40 '32	+o ·60	
6 772	*6 865	20.12	23 .86	3	12	40 .67	+0.25	
6 805	*6 865	48 *38	23 .86	3	12	41 '10	-o ·18	
6 891	6 932	53 '88	51 .52	4	24	40.85	+0.07	
6 910	6 970	51.61	01,18	3	19	40.18	+0.74	
6 985	7 088	11 '75	47 '30	4	24	40.22	+0 '40	
7 062	7 223	18.98	24 '77	3	19	40.68	+0 '24	
7 091	7 257	37 .60	47 '31	3	19	40.78	+0.14	
7 125	7 182	09.10	26.39	5	29	41 '22	-0'30	
7 215	7 269	04 05	25 '41	5	29	40.21	+0.41	
7 324	7 401	35.18	34 '71	2	12	41 '21	-0.59	
7 350	7 448	53 '53	26.19	3	19	41.16	-0.54	
7 476	7 527	50.78	29 '07	4	24	41.14	-o ·22	
7 488	*7 561	47 '00	25 '73	3	12	40 .63	+0 '29	
7 589	*7 561	08 '90	25 '73	3	12	40.54	+0.68	
7 642	7 662	28 .69	31 .69	3	19	40 69	+0 '23	
7 606	7 705	22 '40	41 '54	2	12	41 '79	-o ·87	
*7 689	7 754	12.97	12 '49	3	12	41 '42	−o <i>:</i> 50	
*7 689	7 778	12.97	04 '36	3	12	41 '42	-0.20	
*7 766	7 795	51.04	22 '52	2	8	41 '00	-0'08	
*7 766	7 809	51 °04	42 '31	I	4	41 '72	-o · 8о	
7 812	7 827	16 '86	10 .42	3	19	41 '24	-o · 32	

69. East Pascagoula, Mississippi-continued.

Pairs of stars.	Adopted seconds mean N. P. D.		w	Latitude.	v
	" "	,		0 / //	. //
7 845 7 912	29.35 21.	70 I	6	30 20 41 39	—o *47
7 888 7 908	36.03 26.	60 4	24	40.96	-o .ot
7 953 7 996	23.16 27.	29 4	24	4í ·67	—o ·75
7 975 8 115	43 .15 52 .	60 I	6	40 .68	+0.24
8 036 8 149	09.30 43.	83 3	19	41 '04	-0.13
8 153 8 218	17.58 46.	45 I	6	40 '35	+o ·57
8 262 8 282	42.75 11.	98 2	12	40 '59	+0.33
8 322 8 331	42.55 01.	65 2	12	40 '93	-o ·or

Indiscriminate mean = 30° 20′ 40″ '92. Weighted mean = 30° 20′ 40′ '92 \pm 0″ '04 $e = \pm$ 0″ '39.

129 observations, 48 pairs.

[Reduction to $\triangle = 0^{\prime\prime}$ '00.]

70. Fort Morgan, Alabama.—R. H. Fauntleroy. Zenith telescope No. 1. March 23 to April 30, 1847. One division of level = 0'' '91 from observations at this station. One turn of incrometer = 45'' '570 from latitude observations at this station.

	4 1 4 - 3					
Pairs of stars.	Adopted se mean N		" "	70	Latitude.	v
	//	11			0 / 1/ .	//
2 650 2 673	34 '45	58.12	4	24	30 13 47 92	—o ∙ o₃
2 725 2 765	32 42	38 '00	4 *	2.1	48 .55	—o ·33
2 844 2 889	22 '03	00.40	4	24	47 *91	-o · o 2
2 970 3 075	57 '03	33 .87	4	24	48 '08	-0.19
3 105 3°140	59 '36	03 '52	7	42	47 '75	+0.14
3 182 3 251	31 '55	45 '44	, S	48	47 '78	+0.11
3 325 3 368	42.30	44 '12	IO	59	47 '96	-o ° 07
3 402 3 532	33 '40	33 '90	13	77	47 .67	+0.22
3 592 3 682	19 '97	44 .80	15	91	48:20	-o·31
3 758 3 843	17 '75	32.04	16	100	47 '52	+0:37
3 868 3 910	42.68	32, 31	13	77	48.13	—o ·2 4
3 949 3 979	02.26	29 '34	14	83	48 '08	-0.19
4 094 4 123	33 '95	00.95	ΙI	67	47 .66	+0.23
4 228 *4 303	34 *28	52.92	10	59	47 '92	-o ·oз
4 271 *4 303	12.79	52 .92	10	59	48.10	-o ·21
4 341 4 423	20 '69	42 .65	8	48	47 '73	+0.19
4 596 4 637	31 .58	38.80	7	42	47 '84	+0.02
4 699 4 737	56 .67	33.72	5	30	47 .67	+0.55
4 792 4 874	20.54	04 *89	3	18	47 '91	-0.02

Indiscriminate mean = 30° 13′ 47″ 90. Weighted mean = 30° 13′ 47′ 89 \pm 0″ 03. $e = \pm$ 0″ '41.

166 observations, 19 pairs.

[Reduction to $\triangle = 0'' \cdot \infty$.]

71. New Orleans, Louisiana.—J. Kincheloe. Zenith telescope No. 5. January 16 to February 10, 1858. One division of level = 0".845 from observations at this station. One turn of micrometer = 41".516 from circumpolar observations at this station.

Pairs of stars.		Adopted so mean N	n'	20	Latitude.	υ	
		//	//			0 / //	//
707	727	28 '20	01 '40	6	5	29 57 25 17	+0.11
745	749	05 '00	04 '29	6	5	24 '43	+0.85
766	772 .	47 '04	06 '90	5	5	24 '73	+o ·55
806	*905	39 '33	32.53	6	4	24.61	+0.67
885	*905	19.58	32.53	6	4	24 .66	+0.62
*981	999	51 :91	04 '94	6	4	26.01	− 0 .73
*981	1 034	51.91	04.31	6	4	25 '30	-o ·o2
1 066	1 084	12 '74	13 .68	6	5	24 '90	+0.38
1 107	1 123	43 '34	54 '32	6 '	5	25 '29	-o.oı
1 221	1 269	04.42	09.78	6	5	25 '39	-0.11
*1 323	1 335	41 '66	43 '73	6	4	26.35	-1 .04
*1 323	1 343	41 '66	44 '52	6	4	25 '30	o °02
I 376	1 414	17 '23	52 .98	6	5	25 '50	0.52
1 449	1 476	09.60	59 '92	6	5	25 '70	-0 '42
1 492	1 527	28 . 29	37 '70	6	5	24 06	+1.22
1 571	1 602	13 '98	18.08	6	5	25 .83	-o ·55
1 631	1 651	54 '99	03 '30	6	5	24 *88	+0 40
1 690	1 778	59 '50	12 '50	6	5	24 16	+1.13
1 834	* 1 897	21 '76	52.84	6	4	25 .88	-o ·6o
1 862	*1 897	04 '98	52, 84	4	3	24.89	+0.39
1 935	1 970	04 .66	28.33	6	5	24 '43	+o`85
*1 981	2 014	11 '46	28 '15	6	4	26 '05	-0 .77
*1 981	2 021	11 '46	28 .61	5	3	26 '45	-1.17
2 084	* 2 155	20 '45	18 '90	6	4	25 '60	− 0 '32
2 090	* 2 155	07.88	18 .00	6	4	26 '17	-o •89
2 200	2 228	10.10	23 '24	6	5	24 '72	+0.56
2 237	2 254	19.61	03 '50	4	5	25 '72	-o ·44
2 301	2 340	43 '35	34 '80	6	5	25 '51	-o ·23
*2 440	2 464	30.25	13.88	6	4	25 '66	—o ·38
*2 440	2 485	. 30 .22	16.34	6	4	24 '43	+o ·85
*2 504	2 514	15 '25	33 .86	6	4	25 .53	+0.05
*2 504	2 551	15 '25	55 '30	6	4	24 '42	+o:86
2 639	2 691	or .88	10 '23	6	5	26 '01	—o ·73
2 731	2 798	11.66	29 .84	6	5	26 '14	-o ·86
2 892	2 971	40 '62	46.44	6	5	25 '25	+0.03
3 000	*3 016	39 '43	09 '33	6	4	24 '97	+0.31
3 002	*3 016	46.66	09:33	6	4	25 '29	-0.01
3 035	3 075	02 '40	06 .40	6	5	26 '03	-o ·75
3 123	3 162	46 .78	56.49	6	5	25 . 58	-0.30
3 182	3 227	16.62	38 .06	6	5	24 .87	+0.41

71. New Orleans, Louisiana-continued.

Pairs	s of stars.	Adopted s mean N		n'	zv	Latitude.	v
		//	//			0 / //	//
3 242	3 286	41 '74	46 .78	6	5	29 57 26 12	-o·84
3 313	3 327	35 .86	29 '75	6	5	24 '02	+1.56
3 358 ·	3 359	29 .64	37 .80	4	5	25.35	—o ·o7
3 381	3 398	43 '32	44 '40	6	5	25 .26	-o ·28

Indiscriminate mean = 29° 57′ 25″ 29. Weighted mean = 29° 57′ 25″ 29. $e = \pm 0$ ″ 43.

256 observations, 44 pairs.

[Reduction to $\triangle = 0'' \cdot \infty$.]

3. SUMMARY OF RESULTS FOR LATITUDE.

No.	Name of station.	State.		Resul		Probable error
		566661	0	latitu	1de.	of result.
I	Calais	Me.	45	11	09 40	±0.06
2	Cooper	Me.	44	59	12.60	0.05
3	Humpback	Me.	44	51	47 '56	0 *05
4	Bangor	Me.	44	48	12.87	0 *05
5	Farmington	Me.	44	40	19 '54	0 05
6	Mount Harris	Me.	44	39	54 .66	0 *04
7	Howard	Me.	44	37	49 '24	0 *05
8	Mount Desert	Me.	44	21	06.21	0.03
9	Ragged Mountain	Me.	44	12	42 '96	0 '04
10	Sabattus	Me.	44	08	37 '73	0.09
11	Mount Pleasant	Me.	44	OI	36 .44	0 °04
12	Cape Small	Me.	43	46	43 .69	0 .04
13	Mount Independence	Me.	43	45	34 '47	0.06
14	Gunstock	N. H.	43	31	o3 · 81	0 *05
15	Agamenticus	Me.	43	13	24 '96	0 *06
16	Isles of Shoals	Me.	42	59	12 '97	0.09
17	Unkonoonuc	N. H.	42	58	59 °34	0 '07
18	Thompson	Mass.	42	36	38 '02	0.10
19	Wachusett	Mass.	42	29	16 '13	0 '04
20	Cambridge, Harvard College Observatory	Mass.	42	22	48 '05	0.55
21	Cambridge, Cloverden Observatory	Mass.	42	22	40 '97	0.08
22	Mount Tom	Mass.	42	14	27 .62	0.06
23	Manomet	Mass.	41	55	35 '35	0 '05
24	Sandford	Conn.	41	27	40 *47	o °08
25	West Hills	N. Y.	40	48	50 .06	0 *04
26	New York	· N. Y.	40	43	48 *39	0,09
27	Beacon Hill .	N. J.	40	22	27 .81	0.04
28	Mount Rose	N. J.	40	22	05 '41	0.08
29	Yard	Pa.	39	58	29 '39	0 .06

^{*}Center of dome.

THE EASTERN OBLIQUE ARC.

3. SUMMARY OF RESULTS FOR LATITUDE—continued.

No.	Name of station.	State.		tesult latitu		Probable error of result,
			0	1	//	"
30	Principio	Md.	39	35	32 .81	±0 '04
31	Maryland Heights -	Md.	39	20	32 '10	0 '04
32	Pooles Island	Md.	39	17	17.2	0.12
33	Sugar Loaf	Md.	39	15	49 '71	0,10
34	Dover	Del.	39	09	13.62	0 .06
35	Webb	Md.	39	05	25 °21	0 *04
36	Soper	Md.	39	05	10.69	0 '09
37	Rockville	Md.	39	05	10.45	0 °03
38	Taylor	Md.	38	59	46 .08	0 '12
39	Strasburg	Va.	38	59	31 '49	0 *09
40	Cape May	N. J.	38	55	44 '74	0 '06 ,
41	Causten, Washington	D. C.	38	55	32.18	0 '06
42	Naval Observatory (new), Washington*	D. C.	38	55	13 '91	0,06
43	Hill	Md.	38	53	52 '31	0 05
44	Naval Observatory (old), Washington†	D. C.	38	53	38 .79	0 '03
45	Seaton, Washington	D. C.	38	53	25 '20	0.12
46	Coast and Geodetic Survey Office, Washington;	D. C.	38	53	07 '43	0 '02
47	Bull Run	Va.	38	52	56 .79	0 °07
48	Marriott	Md.	38	52	25.13	0.06
49	Cape Henlopen	Del.	38	46	40 '00	0 05
50	Clark	Va.	38	18	39.80	0.06
5 I	Elliott Knob	Va.	38	09	57 '51	0,11
52	Charlottesville	Va.	38	02	00 '95	0.14
53	Long Mountain	Va.	37	17	28.72	0,09
54	Moore	N. C.	36	23	54 '95	0,09
55	Young	N. C.	35	44	21.20	0.13
56	King	N. C.	35	12	13.31	0.07
57	Paris	S. C.	34	56	31.96	0.07
58	Currahee	Ga.	34	31	37 '75	o os
59	Lavender .	Ga.	34	19	15.81	0.13
60	Sawnee	Ga.	34	14	04 '20	0.08
61	Aurora	Ala.	34	08	47 '45	0.13
62	Atlanta Middle Base	Ga.	33	54	21.82	0 '05
63	Atlanta	· Ga.	33	44	59 '30	0 12
64	Kahatchee	Ala.	33	13	39 '90	0.06
65	Montgomery	Ala.	32	22	45 '41	0 '04
66	Lower Peach Tree	Ala.	31	50	21.13	o'io
67	Coon	Ala.	31	14	47 .82	. 0 .02
68	Mobile	Ala.	30	41	33 '42	0.06
69	East Pascagoula	Miss.	30	20	40 '92	0 *04
70	Fort Morgan	Ala.	30	13	47 '89	0 *03
71	New Orleans	La.	29	57	25 *28	0 '07

^{*}Center of clock-room.

B. THE RESULTS FOR LONGITUDE AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

I. GENERAL STATEMENT.

Connected with the arc there are fourteen well determined longitude stations available for comparison of geodetic and astronomic longitudes. The stations are marked by their appropriate sign on the general Map B (in pocket), and are irregularly distributed over the region of the arc. Within the limits of the city of Washington there are four longitude stations, all within a few kilometers of one another, and consequently under the same general influence of zenithal deflection. These four stations have been treated as one in this discussion. The following stations are common to the arc of the parallel in latitude 39° and to the oblique arc: Cape May, New Jersey; Dover, Delaware; three* of the Washington, District of Columbia, stations; Strasburg, Virginia, and Charlottesville, Virginia.

The longitudes here given depend on the standard longitude system of the United States, as presented in the Report of the U. S. Coast and Geodetic Survey for the year 1897, Appendix No. 2, "The telegraphic longitude net of the United States and its connection with that of Europe, 1866–1896." (pp. 197–261.)

Six of the arc stations are standard stations, i. e., Calais, Maine; Cambridge, Massachusetts, Harvard Observatory; Cape May, New Jersey; Washington, District of Columbia, Naval Observatory (old); Atlanta, Georgia, and New Orleans, Louisiana. For these stations, particulars and full abstracts of the individual results are given in the Report for 1897. It suffices, therefore, to present only the dates and results at these stations, but for the remaining stations, abstracts are given to the same extent as in the Report for 1897, together with all necessary explanation. In nearly every case of a telegraphic determination of a difference of longitude the observers exchanged places after one-half of the proposed observations had been made, in order to effectively eliminate differences of personal equations. All these longitudes count from Greenwich, positive to the westward. The probable error of any one of the adjusted standard longitude determinations is $\pm 0^{\circ}$:05, and none of the probable errors of the longitudes used in this discussion exceeds $\pm 0^{\circ}$:09.

^{*}A fourth, named Seaton (east of the United States Capitol), established in 1849, was not a station of sufficient importance to be included in the general longitude net.

[†] For an abstract of this paper see Gould's Astronomical Journal, No. 412 (September 14, 1897).

2. RESULTS FOR LONGITUDE PREVIOUSLY PUBLISHED.

Results for tongitude of stations forming part of the standard longitude net of the United States or closety connected therewith.

[Taken from Coast and Geodetic Survey Report for 1897, p. 254.]

Name of station.	Point of reference.		Long	itude west	of G	reen	wich.
		h.	111.	s.	0	1	11
Calais, Maine.	Transit.	4	29	07.857	67	16	57 '86
Cambridge, Massachusetts.	Dome of Harvard College Observatory.	4	44	31 '046	71	07	45 '69
Cape May, New Jersey.	Transit.	4	59	43 '045	74	55	45 '68
Washington, District of Columbia.	Dome of old Naval Observatory,	5	08	12 153	77	03	02 '30
Atlanta, Georgia.	Transit, 1896.	5	37	33 '338	84	23	20 '07
New Orleans, Louisiana.	Transit, 1880 and 1895, Lafayette Square.	6	00	16 '763	90	04	11.44
Charleston, South Carolina.*	Citadel Square, transit.	5	19	44 '076	79	56	01.14

From the same Report we have two more of the Washington stations, pp. 257-259, and 261.

Name of station. Point of reference. Longitude west of Greenwich.

h. m. s. ° ' ''
Washington, District of Columbia. Clock-room, new Naval Observatory. 5 o8 15 '784 77 o3 56 '76
Washington, District of Columbia. Coast and Geodetic Survey Office, 5 o8 o1 '709 77 oo 25 '64

Results for longitude of stations in the Arc of the Thirty-ninth Parattet.

Name of station.	Point of reference.	Point of reference.				Longitude west of Greenwich					
		h.	m.	s.	0	11	11				
Dover, Delaware†	Transit, 1897	5	02	05 '230	75	31	18 '45				
Strasburg, Virginia†	Trausit, 1881	5	13	26.380	78	21	35 '70				
Charlottesville, Virginia†	McCormick Observatory	5	14	05 '340	78	31	20 '10				

3. ABSTRACTS OF RESULTS FOR DIFFERENCE OF LONGITUDE AND ADJUSTMENT OF THE LONGITUDES OF THE REMAINING STATIONS CONNECTED WITH THE ARC.

DIFFERENCE OF LONGITUDE BETWEEN BANGOR, ME., AND CALAIS, MF.

Date.				Observers at—				Difference of longitude.				
18,	57.			Bangor.			Calais.		227	c		
Sept.	18	h						1	6	00 275	Means.	m. s. 6 00°316
	2.3	I	E. Go	odfellow			G. W. Dean	Į		00 '330	m. s. 6 00 275)
	25	1								00 '268		m. s.
	26	1						l		00 '229 .)	6 00.316
Oct.	10		Ch -11	Dean			, ,		6	00,341	6 00 357	
	12	1	G. W.	Dean			E. Goodfello	ow. {		00 '362	307	,
	17	IJ										
			В	angor (tra	nsit) west of (Calais	(transit),	h.	m.	s. 00 '316 :	s. ± o *o15.	
			L	ongitude o	f Calais,			4		07 '857		
			L	ongitude c	f Baugor (tra	insit),		4	35	08 173.		

^{*} This result is added because it is needed further on.

[†] These stations are included in the discussion of the arc of the 39th parallel and all necessary details are published. in Coast and Geodetic Survey Special Publication No. 4, "The Transcontinental Triangulation," Washington, D. C., 1900. ‡ Published for the first time.

[?] The longitude of this station was differentially determined from Cambridge, Massachusetts, in November and December, 1851, but the result was found to be weak and unsatisfactory, the observers not interchanging places, hence no use was made of those observations.

DIFFERENCE OF LONGITUDE BETWEEN SEATON STATION,* WASHINGTON, D. C., AND NAVAL OBSERVATORY (OLD), WASHINGTON, D. C.

Date, 1867.	From western signals.	From eastern signals.	WE.	Mean western and eastern signals.
Turns	S.	S.	S.	s.
June 4	12.40	12.67	+0.03	12,68
6	.60	. 60	0 '00	.60
10	·7º	*69	+0.01	.69
II	•63	·61	+0 '02	.62
21	*75	.69	+0.06	.72
29	•68	.69	0,01	.69
			Mea	an. 12.667

Observers: G. W. Dean, in charge of party, E. Goodfellow and other observers; three were engaged in the work at the Naval Observatory and two at Seaton, but no interchange of observers took place. The results were corrected for the personal equation of the observers derived from observations made for this purpose.

Naval Observatory (Meridian Circle) west of Seaton (transit)			12° '667 ±0° '013	3
Reduction to center of dome at Observatory			-o 'o33	
Difference of longitude Naval Observatory (old) and Seaton, transit			12 '634 ±0° '013	3
Longitude of dome, Naval Observatory (old)	5^{h}	$o8^{m}$	12s .123	
Longitude of Seaton (transit)	5	07	59 '519	
Same, as adjusted	5	07	59 '520	

DIFFERENCE OF LONGITUDE BETWEEN STATESVILLE, N. C., AND WASHINGTON, D. C.

Date. 1878-79.		vers at— Washington.	Stat	n west n or esville nals.	Was	m east- n or shing- signals	WE.	we		equation.	of 1	rence longi- nde. Δλ	Weights.	Difference.
Dec.19 23 24 25	E. Smitl	G. W. Dean	m. 15	\$. 22.62 *53 *49 *57		s. 22°55 58 42 51	s. o '07 -0 '05 o '07 o '06	m. 15	s. 22°58 °56 °46		15	22 · 52	_	\$. +0.04 +0.05 -0.08
Jan. 2	G. W. Dean	E. Smith	{ 15	22°48 °44 °32	15	22 '42 '39 '29	0 °06 0 °05 0 °03	15	22°54 22°45 '42 '30 22°42	+0°06	15	22 '51 '48 '36	-	+0°03 . 0°00 -0°12
Statesville (transit), west of Washington (transit), Reduction to center of dome at the old Naval Observatory, Statesville (transit) west of the dome of old Naval Observatory, Longitude of dome of old Naval Observatory, Longitude of Statesville (transit),											00			

^{*}This station was established in 1849, to be used in place of the United States Naval Observatory, where it was found both inconvenient and unsatisfactory to make observations, as it interfered with the regular duties of the observatory staff. It was located east of the Capitol, in an open field, on Fifth street east, near A street north, now covered by buildings. Telegraphic connection with the Naval Observatory (old) was made in 1867; distance by wire, 5½ kilometers, or 3½ statute miles, nearly.

In order to reach the longitudes of Montgomery, Lower Peach Tree, and Mobile, Alabama, it was necessary to make a special adjustment of certain intermediary longitude stations, which bind them together and connect them with the standard net. They are Petersburg, Virginia, 1852; Raleigh, North Carolina, 1853; Charleston, South Carolina, 1853; Wilmington, North Carolina, 1854 and 1856; Columbia, South Carolina, 1854 and 1856; Macon, Georgia, 1855; Montgomery, Alabama, 1856; Lower Peach Tree, Alabama, 1857, and Mobile, Alabama, 1857 and 1858.*

DIFFERENCE OF LONGITUDE BETWEEN PETERSBURG, VA., AND SEATON STATION, D. C.

Date, 1852.	Number of stars.	Difference of longitude.	
· ·		m. s.	
July 7	15	I 35.283	
9	21	.636	
21	13	.617	
22	6 and 14	'559	
Aug. 2	9	'545	
7	17	·597	
			S
	Mean	1 35 589	±0 °009

The observers were A. D. Bache and G. W. Dean, at Petersburg, and L. F. Pourtales, at Seaton Station. The observers did not interchange places. Their personal equations were ascertained by direct observations taken at various times. The results, as given here, are corrected accordingly. Giving weights to the individual results in proportion to the number of stars observed each night, we get $\Delta \lambda = I^m 35^{\circ} \cdot 591 \pm 0^{\circ} \cdot 0220$. Petersburg (transit) west of Seaton (transit), $I^m 35^{\circ} \cdot 591$

DIFFERENCE OF LONGITUDE BETWEEN RALEIGH, N. C., AND SEATON STATION, D. C.

Date.	•	Number of stars.	Difference of longitude. m. s.
Apr.	21	5	6 32.742
	26	23	.992
	28	23	·894
	30	16	·987
		Mean	6 32 '904±0 '039
We	ighte	d mean	6 32.87° 70.044

The observers were B. A. Gould at Raleigh and

^{*}Details at these stations published for the first time. See also report by Dr. B. A. Gould in Coast Survey Report for 1864, Appendix No. 12, pp. 115, 116.

L. F. Pourtales at Seaton Station. The personal equation correction was determined from direct and indirect comparisons. The results given here are corrected accordingly.* Raleigh (transit) west of Seaton (transit) 6^m 32^s·873±0^s·044.

DIFFERENCE OF LONGITUDE BETWEEN CHARLESTON, S. C., AND RALEIGH, N. C.

Date.		Number of stars,	Difference of longitude.
18,	53.		m. s.
Apr.	29	3	5 12 '007
May	6	15	.061
	14	13	.164
		Mean ·	5 12 077±0 031

Observers: At Charleston, L. R. Gibbes; at Raleigh, B. A. Gould. The personal equation correction being unknown, the probable error of the result is raised to ±0°15.

Charleston, Gibbes Observatory (transit) west of Raleigh (transit) 5m 12s. 08±0s.15. Reduction of Gibbes Observatory to Citadel Square (transit) at Charleston. + - 08.396. Charleston, Citadel Square (transit) west of Raleigh (transit) 5m 11s.684±0s.150.

DIFFERENCE OF LONGITUDE BETWEEN WILMINGTON, N. C., AND PETERSBURG, VA.

Da	te.	Number of stars.	Wilmington.	Observers at— Petersburg.	Difference of longitud		fference to D.‡ a	of longitude nd P.‡ and i	e referred means.
185	4.								
May	8	4	G. W. Dean.	B. A. Gould.	m. s.	91	. s.		
	27	13	G. W. Dean.	L. F. Pourtales.	2 11 '21		11 '244	m. s.	
_			A. D. Bache.	3	23		.519	2 11 234	
June	5	2.4	G. W. Dean.	L. F. Pourtales.	*23	9	*239	, 1	m. s.
	14	5)		45	١)		}	2 11 340
	17	2			*48	0			
•	20	27	I., F. Pourtales.	G. W. Dean.	*44	9 (2 11'445 J	
	23	23	J		*39	9 J			

Wilmington (transit) west of Petersburg (transit), ₹ 2^m 11^s·340±0^s·033.

DIFFERENCE OF LONGITUDE BETWEEN COLUMBIA, S. C., AND RALEIGH, N. C.

Dat	e.	Number of stars.	Columbia.	Observers at—	Raleigh.	Difference of longitude.	Меан Д Д	
185	ţ.					m. 8.		
jan. Feb.	21	23	B. A. Gould.	G. W. Dean.		9 35.821	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Feb.	5	14	,	,		36 '064	9 35 862±0s 041	
	21	23 10	G. W. Dean.	B. A. Gould.			9 35 983	
Mar.	12	10	}			35 779	, ee , e j	
Columbia (transit) west of Raleigh (transit), \$\% 9^m 35^* 862 \pm 041.								

^{*} For further remarks on the methods used at this and some other stations representing the stage of the development of telegraphic longitude determinations, see Coast Survey Report for 1853, pp. 56-57. A part of the work done at Raleigh is used as an example of a method for determining differences of longitude, in Vol. 1 of Chauvenet's Spherical †The observation for difference of longitude of Charleston, South Carolina, and Seaton Station, District of

See remarks by Dr. Gould in Coast Survey Report for 1854, pp. 45, 50, 51, 55, 56, and *123-*133, for Raleigh and Columbia.

Columbia, in February, 1850, was experimental in character, and too weak for use here.

[†] D. for Dean and P. for Pourtales.

DIFFERENCE OF LONGITUDE BETWEEN MACON, GA., AND COLUMBIA, S. C.

Date	e.	Number of stars.	Macou.	Observers at—Columbia.	Difference of longitude.	Mean 2	Δλ.
1859 Jan.		15)		m. s.	m. s.	
Feb.	18	21 12	G. W. Dean.	E. Goodfellow.	518		n. s. s.
	14 22	19 _ 22	E. Goodfellow.	G. W. Dean.	21 '963	10 22.132	0 22.250 ±0.051
Mar.	28	20 21	13. Godinenow.		22.059		

Macon (transit) west of Columbia (transit), 10^{ru} 22^s·250 ± 0^s·051.

DIFFERENCE OF LONGITUDE BETWEEN COLUMBIA, S. C., AND WILMINGTON, N. C.

Da	te.	Number of stars.	Columbia.	Observers at—Wilmington.	Difference of longitude.	Mean ⊿ λ.
18	56.				m. s.	
Jan.	9	12 1			[12 21 748]	
	10	21	G. W. Dean.	E. Goodfellow.	*744 *878	m. s. 12 21 '762 }
	15	13	G. W. Dean.	E. Goodfellow.	*878	m. s. s. s. 12 21 731±0 028
	16	24			680	12 21 731±0 028
Feb.	10	25	E. Goodfellow.	G. W. Dean.	{ 12 21 '740 }	12 21 700
	17	19	*** ***********************************		·660]	

Columbia (transit) west of Wilmington (transit), 12rd 218.731 ± 05.028.

DIFFERENCE OF LONGITUDE BETWEEN MONTGOMERY, ALA., AND MACON, GA.

Date. 1856.	Number of stars.	Montgomery.	Observers at— Macon.	Difference of longitude. m. s.	Mean Δ λ.	
Mar. 23 Apr. 3	21 23 17	G. W. Dean.	E. Goodfellow.	10 41°568 °501 °569 °488	m. s. 10 41 '531 m. s. s. 10 41 '570 ±0 '01	
12 18 21 24	21 23 30 24	F. Goodfellow.	G. W. Dean.	10 41 727 595 595 595 520	10 41 .609	

Montgomery (transit) west of Macon (transit), 10^{nu} 41**570 ± 0**015.

DIFFERENCE OF LONGITUDE BETWEEN LOWER PEACH TREE, ALA., AND MONTGOMERY, ALA.

Date.	Number of stars.			Mean Δ λ.		
1857.				m. s .		
Apr. 2	31			4 58 795	m. s.	
6	14	G. W. Dean.	E. Goodfellow.	723	4 58 800]	
7	27	(, , , , , , , , , , , , , , , , , , ,		736		m. s. s.
10	13	j	•	943	ļ	4 58.789±0.016
19	31)		4 58 790		
20	26	E. Goodfellow.	G. W. Dean,	795	4 58 778	
23	18	r, Goodfellow.	(). W. 17CHH.	752	4 5- 11 /	
28	33	J		1774 J		

Lower Peach Tree (transit) west of Montgomery (transit), 4^m 584789 ± 05016.

DIFFERENCE OF LONGITUDE BETWEEN MOBILE, ALA., AND LOWER PEACH TREE, ALA.

Dat	te.	Number of stars.	Mobile.	Observers at— Lower Peach Tree,	Difference of longitude.	Mea	n Δλ.
185	7-				m. s.		
May	21	34)		1 59 795	m. s.	
	24	38	G. W. Dean,	E. Goodfellow {	730	1 59 730	
	25	22	G. W. Dean.		*637	39 730	m. s. s.
	26	34	J		·757 J	}	1 59°768 ±0°016
June	2	41	}		1 59 *8S9 }		
	6	11	E. Goodfellow.	G. W. Dean	{ ·786 }	1 59 806	
	7	38	J		742		

Mobile (transit) west of Lower Peach Tree (transit) 1^m 598.768±08.016.

DIFFERENCE OF LONGITUDE BETWEEN NEW ORLEANS, I.A., AND MOBILE, AI.A.

Date:	Number of stars.	New Orleans.	Observers at-	Mobile.	Difference of longitude.	Mea	n Δλ.
1858. Jan. 19 Feb. 8 15 16	7 12 18 22 32	E. Goodfellow.	D. D.	and M. and M.	m. s. 8 07 012 07 075 06 963 07 022 07 079	m. s. 8 07 038	т. s. s.
Mar. 1 26 Apr. 2	35. 30 23 15	G. W. Dean.	•	odfellow	07.074 8 07.396 230 141	8 07.256 	S 07.147 ±0.022

New Orleans, Basin street, west of Mobile (transit), 8^m or 0.78° : 147 $\pm 0.79^{\circ}$: 022. Reduction to station Lafayette Square . - 0 '866. $\Delta \lambda$ New Orleans, Lafayette Square, and Mobile 8 of '281 \pm 0 '022.

Adjustment of secondary telegraphic longitude stations to the standard telegraphic longitude net of the United States.

Referring to the preceding diagram, which shows the connection of the longitude stations between Washington and New Orleans, it is seen that the three circuits demand as many conditions to be satisfied. The conditional or observation equations are established as follows:

	Stations.		$\Delta \lambda$	Corrections.	1
		m.	S.		,
$\Delta\lambda$	New Orleans and Mobile	8	06.581	(1)	5
$\Lambda\lambda$	Mobile and Lower Peach Tree	I	59 '768	(2)	3
$\Delta \lambda$	Lower Peach Tree and Montgomery	4	58 .789	(3)	3
$\Delta \lambda$	Montgomery and Macon	10	41 '570	(4)	2
$\Delta \lambda$	Macon and Columbia	IO	22.220	(5)	26
Δλ	Columbia and Raleigh	9	35 .862	(6)	17
$\Delta \lambda$	Raleigh and Seaton	6	32.873	(7)	19
$\Delta \lambda$	Seaton and Washington (Old Naval Observatory)	-0	12 .634	(8)	2
		Σ 52	04 '759		

^{*} D. stands for G. W. Dean and M. for A. T. Mosman.

[†] The numbers in column $\frac{1}{p}$ equal 10000 times the square of probable error.

True value in standard system 52^m 04^s·610, hence the first observation equation:

$$0 = +0^{n} \cdot 149 + (1) + (2) + (3) + (4) + (5) + (6) + (7) - (8)$$

			PH.	5.		
$\mathcal{J}\lambda$	Columbia and Wilmington		12	21 '731	(9)	8
$\Delta\lambda$	Wilmington and Petersburg		2	11 '340	(10)	11
$\Delta \lambda$	Petersburg and Seaton		1	35 '591	(11)	5
		Σ	16	08.662		
			m.	s.		
$\Delta\lambda$	Raleigh and Seaton		6	32.873	(7)	19
$\Delta \lambda$	Columbia and Raleigh		9	35 .862	(6)	17
		Σ	16	08 '735		

hence the second equation:

$$0 = +0^{\circ} \cdot 073 + (6) + (7) - (9) - (10) - (11)$$

True $\Delta\lambda$ in standard system 11^m 31^s·923, hence third equation $0=0^s\cdot\infty0-(12)-(7)+(8)$

Correlate equations.

Normal equations.

Corr.	$\frac{1}{p}$	Cı	C ₂	C ₃	
(1)	5	+1			$0 = +0.149 +77C_1 + 36C_2 - 21C_3$
(2)	3	+1			$0 = +0.073 + 36C_1 + 60C_2 - 19C_3$
(3)	3	+1			$0 = 0.000 -21C_1 - 19C_2 + 246C_3$
(4)	2	+1			
(5)	26	+1			C _r =-0 '001 93
(6)	17	+1	+1		C2=-0,000 11
(7)	19	+1	+1	-1	C3=-0.000 12
(8)	2	I		+1	s. s.
(9)	8		— I		(1) = -0.0096 $(7) = -0.0355$
(10)	11		— ı		(2) -0.0028 (8) +0.0038
(11)	5		I		(3) -0.0028 (9) +0.0000
(12)	225			-1	. (4) -0.0039 (10) +0.0013
					(5) -0.0205 (11) +0.0006
		C			(5) -0.0347 (12) +0.0383

Resulting longitudes.

	•	h. m.	s.	٥	,	"
λ	Washington, Old Naval Observatory Dome	5 08	12 *153	77	03	02 *295
Δλ	Washington and Seaton	-	-12 .6375			
λ	Seaton (transit)	5 07	59 '5155	76	59	52 '732
Δλ	Seaton and Petersburg	+ 1	35 '5916			
λ	Petersburg (transit)	5 09	35 '1071	77	23	46 .60€ €
Δλ	Petersburg and Wilmington	+ 2	11 3412			
λ	Wilmington (transit)	5 11	46 .4483	77	56	36 .724
Δλ	Wilmington and Columbia	+12	21.7319			
λ	Columbia (transit)	5 24	08 1802	81	02	02 '703
	Check:					
Δλ	Seaton and Raleigh	+ 6	32 .8375			
λ	Raleigh (transit)	5 14	32 '3530	78	38	05 '295 '
Δλ	Raleigh and Columbia	+ 9.	35 .8273			
λ	Columbia (transit)	5 24	08 1803	81	02	02 '704
Further	<u> </u>					
$\Delta\lambda$	Columbia and Macon	+10	22 '1998			
λ	Macon (transit)	5 34	30 *3801	83	37	35 '701
Δλ	Macon and Montgomery	+10	41 '5661			
λ	Montgomery (transit)	5 45	11 *9462	86	17.	59 '193
Δλ	Montgomery and Lower Peach Tree	+ 4	58 .7832			
λ	Lower Peach Tree (transit)	5 50	10 '7294	87	32	40 '941
Δλ	Lower Peach Tree and Mobile	+ 1	59 7622			
λ	Mobile (transit)	5 52	10 '4916	88	02	37 '374
Δλ	Mobile and New Orleans, Lafayette Square	- - 8	06 '2714			
λ	New Orleans, Lafayette Square	6 00	16 .7630	90	04	11 *445

If the above results are compared with those obtained in the preliminary adjustment of the telegraphic longitude system as it stood in 1884,* it will be seen that the present longitudes are about one-tenth of a second of time greater than those found in 1884. This is mainly due to the introduction into the system of the fourth cable line across the Atlantic Ocean in 1892.

The probable errors given in the summary of results are close approximations.

^{*} Report of 1884, Appendix No. 11, pp. 407-430; and Report for 1897, Appendix No. 2, pp. 197-261.

THE EASTERN OBLIQUE ARC.

4. SUMMARY OF RESULTS FOR LONGITUDE.

No.	Station.	State.	Referred to.	1	Longitude		Probable error.
				٥	1	11	11
I	Calais	Me.	Transit	67	16	57 '86	±0.75
2	Bangor, Thomas Hill	Me.	Transit	68	47	02 '60	0.78
3	Cambridge, Harvard Observatory	Mass.	Dome	71	07	45 .69	0 '75
4	Cape May	N. J.	Transit -	74	55	45 .68	0.75
5	Dover	Del.	Transit	75	31	18 '45	0 '79
6	Washington, Seaton Station	D. C.	Transit	76	59	52 '73	o ·78
7	Washington, Coast and Geodetic Survey	D. C.	Transit	77	00	25 .64	0.48
	Office				*		
8	Washington, Naval Observatory (old)	p. c.	Donne	77	03	02 '30	0 '75
9	Washington, Naval Observatory (new)	D. C.	Clock-Room	77	03	56.76	0.78
	Petersburg, Roslyn Station	Va.	Transit	77	23	46.61	o ·84
	Wilmington, De Rosset Station	N. C.	Transit	77	56	36 .72	I 'O
10	Strasburg	Va.	Transit	78	2 I	35 '70	0.80
11	Charlottesville	Va.	Observatory	78	31	20 '10	0.80
	Raleigh, State House Grounds	N. C.	Transit	78	38	05 '30	O. I
	Charleston, Citadel Square	s. c.	Transit	79	56	01 '14	0.78
12	Statesville, near Simenton College	N. C.	Transit	80	53	41 '31	0.80
	Columbia, Capitol Square	s. c.	Transit	Sı	02	02 '70	I '2
	Macon, Academy Square	Ga.	Transit	83	37	35 '70	I '3
13	Atlanta	Ga.	Transit	84	23	20 '07	0.80
14	Montgomery, Capitol Hill	Ala.	Transit	86	17	59.19	1.1
15	Lower Peach Tree, Wilson County	Ala.	Transit	87	32	40 '94	1.1
16	Mobile, Public Square	Ala.	Transit	88	02	37 '37	I .0
17	New Orleans, 1895, Lafayette Square	La.	Transit	90	04	11 '44	0.80
1/	Trew Oricans, 1095, Harayette siquate	L/a,	Hansit	90	04	11 44	0 00

C. RESULTS FOR AZIMUTH AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

The stations where an azimuth was determined astronomically are quite numerous and are distributed over the whole extent of the arc. There are 56 azimuth stations, 14 of which are *in common* with the arc of the parallel in latitude 39°. All necessary details in regard to the observations at these stations are given in the published discussion of that arc. Some of the particulars are republished in this discussion in the proper place.

The various methods employed by the Coast and Geodetic Survey for the determination of azimuths, together with the required formulæ and their numerical application, are so fully set forth in Appendix No. 14, Coast and Geodetic Survey Report for 1880, pp. 261–286, and in a later edition, Appendix No. 7, Coast and Geodetic Survey Report for 1897–98, pp. 377–407, that no further reference is required. It will suffice for a full exhibit of the azimuthal results to present for each station the following particulars—the method employed, instrument used, stars observed, the arrangement and composition of sets of observations, the number of measures and position of circle or instrument, and any other details pertaining to the operation; the names of the observers, and, finally, the individual results in the form of an abstract, together with their probable errors.

The apparent places of stars are taken directly from the American Ephemeris or derived from Gould's "Standard Places of Fundamental Stars," Washington, 1866 (second edition), except in a very few cases.

The probable error of the result of a single set and that for the resulting azimuth of the mark are due to observing errors and exclude the probable error in the star's catalogue place. When referring the azimuth of the mark to the triaugulation, the probable error of the referring angle is not given, as in general it is not accurately determinable. The local adjustment of the horizontal directions at a station include that of the mark, and the angle between the mark and the direction of a line in the triangulation was corrected by applying to it the *mean* shift or average correction to all the directions at the station in the second or figure adjustment. The probable error of any resulting azimuth of a line in the triangulation may be estimated as not less than one-half of a second. One-third of a second has been taken for the probable error of an observed direction, resulting from the figure adjustment, whence $\pm 0^{\prime\prime}$ '47 for the angle ''mark and line.'' Combining this with $\pm 0^{\prime\prime}$ '25 as the probable error of the measure of the azimuth of the mark, we get $\pm 0^{\prime\prime}$ '53 for an approximation of the probable error of a resulting azimuth of a line. For ordinary or less precise work this value may rise to three-fourths of a second.

1. COOPER, MAINE.

 $\varphi = 44^{\circ}$ 59''2. $\lambda = 67^{\circ}$ 28''1 west of Greenwich.

The 75^{cm} direction theodolite No. I (Troughton & Simms) was mounted over the triangulation station. Focal length of telescope, 115 centimeters; clear aperture, 7.5 centimeters. The azimuth mark was located upon a hill to the north of the station and distant about 2 miles. Light was shown through an aperture three-fourths of an inch in diameter; for day observations a wand 1 foot in length and 1 inch in breadth was placed above the center of the aperture. A set of observations on Polaris generally consisted of 3 observations of the mark, telescope direct, and 3 observations telescope reversed, followed by 5 observations of the star, with the necessary time and level record; the instrument was then reversed and the observations were repeated in the reverse order. In case of λ Ursæ Minoris 6 observations were made upon the star both before and after reversal. One division of level = 1"'43. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth \pm 0"'89.

Summary of results for azimuth at Cooper, Maine.

	Polaris nea	r eastern elong	gation.	λUrsæ	Minoris near	r upper culmin	ation.
Date.	Position.	Mark W. of N.	Δ	Date,	Position.	Mark W. of N.	Δ
1859.		0 / //	"	1859.		0 / //	"
Sept. 9	fV	2 49 47 53	+0.85	Sept. 9	1V	2 49 47°49	+1.20
12	V	48 *06	+0.32	12	V	47 *94	+1 *05
14	I	50.07	-1.69	14	I	49 *09	-0.10
15	11	46.58	+1.80	15	11	50.69	-1.70
16	111	47 '80	+0.58	16	111	47 '93	+1.06
18	III	49.08	-0.70	18	IV	50.82	-1.83
19	Λ.	49.56	-1118				
	Mean	2 49 48 38±0	.31		Mean	2 49 48 99±0	*40
		•		0	, ,,		*
	Mean of	groups			2 49 48 68		
	Diurnal a	berration			-0.31		
	Azimuth	of Mark	7.7	7 10 11 63	+0//-25		
		ween Mark	and How	•	5 16 59 58		
	0	of Howard	and How				
	Azimuth	or rioward		35	1 53 12.05		

2. HOWARD, MAINE.

 $\varphi = 44^{\circ}37' \cdot 8$ $\lambda = 67^{\circ}23' \cdot 8$

Theodolite No. 1 was mounted over the station. The mark was located upon a hill about 1½ miles north of the station. Light was shown through an aperture three-fourths of an inch in diameter; a wand 1 foot high and 1 inch wide was placed above the aperture to serve as day mark. In the case of Polaris a set, of observations consisted of 3 pointings on the mark with telescope direct, 3 pointings on the mark with telescope reversed, followed by 5 pointings on the star, or 6 in case of δ Ursæ Minoris, with the necessary level and time records; the instrument was then reversed and the above observations were repeated in the reverse order. One division of level = 1"'43. Observers, G.W. Dean and R. E. Halter. Probable error of a single result for azimuth \pm 0"'80.

Summary of results for azimuth at Howard, Maine.

δ Ursæ	Minoris nea	r upper culmin	ation.	a Ursæ Minoris near eastern elongation.					
Date.	Position.	Mark E. of N.	Δ	Dat	e.	Positi	011.	Mark E. of N.	⊿
1859.		0 / //	"	1859				0 / //	11
July 18	I	7 46 04 72	-0 '33	July	18	I		7 46 03 35	+0.41
21	11	[oS *34*]			20	. 11		05 '49	-1.73
23	III	05 '05	-o *66		21	II		o5 *63	-1.87
24	IV	04 '72	-o*33		23	111		04 *50	-0.74
25	V	02°33	+2.06		24	IV		03 17	+0.59
29	11	05.13	-o ·74		25	1.		03 '46	+0.30
					28	V.		03*43	+0.33
					29	1		01 '72	+2 04
				Aug.	6	IV		02 '84	+0.92
					8	111		04 00	-0'24
Mean		7 46 04 39 ±0 3	5	Me	an			7 46 03 76 ±	0°25
Diurn	ial aberration	n +0'33	1	Dia	ırnal	aberra	tion	+0.31	
						0 /	"		
	Mean o	of groups				7 46	04 '40		
	Azirıut	th of Mark	•		I	87 46	04 '40	±0′′ ·27	
	Angle	between Mar	k and Pig	reon		23 51		•	
		h of Pigeon				53 54			
					,	3 34	43 11		
		3.∙	HUMPBA	ск, м	AIN	E.			
		$\varphi = 44^{\circ}$ 5	8.71	λ	= 68	8° 06′	·6.		

Theodolite No. 1 was mounted over the trigonometric s'ation. The mark was located in an open field estimated to be about 2 miles from the station, light was shown through an aperture three-fourths of an inch in diameter, and for day observations a wand 1 foot high and 1 inch wide was placed vertically above it. A set of observations consisted of 3 pointings on the mark, telescope direct, and 3 pointings telescope reversed, 5 pointings on the star for α Ursæ Minoris and 6 for δ Ursæ Minoris. The instrument was then reversed and the observations were repeated in the reverse order; the necessary time and level records were made for both positions of the instrument. One division of level = 1"43. Observer, G. W. Dean. Probable error of a single result for azimuth \pm 0"86.

Summary of results for azimuth at Humpback, Maine.

& Urste	Minoris near	r uppe	r culin	ination.	a Ursæ M	inoris near	eastern	elonga	ition.
Date.	Position.	Ma E. of		Δ	Date.	Position.	Mar E. of		Δ
1858.		0 1	"	"	1858.		0 /	"	"
Ang. 9	111	114 20	12.86	-0°07	Aug. 9	111	114 20	13*11	-1.01
13	17.		12*39	+0.40	12	111		11 *37	+0.73
14	L.		12.21	+0.58	13	IV		11 00	+1.10
16	1		11.2	+1'27	14	V		10.21	+1.39
17	11		14 '68	-1.89.	16	1		11.63	+0.47
					17	11		13 °65	- 1 °55
					19	11		14*17	2'07
					20	IV		10 '84	+1.26
					23	7,		11*13	+0 *97
					2,5	1		13*34	-1 *24
Mean		114 20	12.79	±o*35	Mean		114 20	12'10 ±	0 '28
Diurn	al aberration		+0'33		Diurn	al aberratio	11 -	-o°31	
					0	1 11			
	Mean	of gro	ups		11.	4 20 12 76	5		
	Azimu	th of	Mark		29	4 20 12 76	5±0//	22	
•	Angle l	betwe	en Ma	ark and Coo	-	9 37 40 40			
	Azimut					4 42 32 36			
	AXIIIIII	01	Coope	-1	23	4 42 32 30	,		

^{*} Rejected by Peirce's criterion.

4. MOUNT DESERT, MAINE.

$$\varphi = 44^{\circ} 21''1.$$
 $\lambda = 68^{\circ} 13''6.$

Theodolite No. 1 was mounted over the triangulation station. The mark was established near Hulls Cove, and is distant from the station about 4 miles. Light was shown through an aperture one inch in diameter, and above this a wand was adjusted vertically for day observations. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings telescope reversed, 5 pointings on α Ursæ Minoris or 6 on λ Ursæ Minoris. The instrument was then reversed and the observations were repeated in reverse order; time and level records were made for both positions. One division of level 1"53. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth \pm 0"80.

Summary of results for azimuth at Mount Desert, Maine.

a Ursa	a Ursae Minoris, near eastern elongation. λ Ur						sæ Minoris, near upper culmination.				
Date.	Position.	Mark W. of N.	Δ	Date.	Position	n,	Mark W. of N.	Δ			
1356.		0 / //		1856.			0 / //	"			
Aug. 30	11	12 19 08 89	+o *66	Sept. 1	11		12 19 11 08	-1.04			
Sept. 1	11	09 '20	+0.35	2	III		07 '65	+2.39			
2	111	09 '24	+0.31	3	IV		10.88	-o:84			
3	111	07 163	+1.92	4	v		10.61	-o *57			
4	1 V	09.89	o *34	7	I		08 *78	+1.26			
5	V	11 '09	-1.54	18	III		11.56	-1'22			
7	I	, oS:77	+0.78								
9	I.	10.86	-1.31								
16	IV	09.79	-0.24								
17	V	10,10	-0.55								
	Mean	12 19 09 55±0	22		Mean		12 19 10 04 ±0	·41			
					0	1	//				
Me	an of grou	ps .			12	19	09.79				
Dit	arnal aberi	ration				-	- 0'31				
Azimuth of Mark						40	50 '52±0"	20			
Angle between Mark and Ragged Mountain					89	10	03 '95				
Azimuth of Ragged Mountain					78	30	46.57				
					, -	00	7- 07				
		5. MC	INE.								

5. MOUNT HARRIS, MAINE

$$\varphi = 44^{\circ} 39' \cdot 9.$$
 $\lambda = 69^{\circ} \circ 8' \cdot 9.$

Theodolite No. 1 was mounted over the triangulation station. The mark was located upon the south side of the old stage road from Dixmont to Hampden, about $2\frac{1}{2}$ miles from Dixmont village; light was shown through an aperture 1 inch in diameter, and for day observations a wand 1 foot high and 1 inch wide was placed over it; the lower half of this wand was covered with black cotton cloth and the upper half with white cotton cloth. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings telescope reversed, 5 pointings on the star if α Ursæ Minoris or 6 if λ Ursæ Minoris. The instrument was then reversed and the observations were repeated in the reverse order; time and level records were made for both positions. One division of level = 1"54. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth \pm 0"98.

Summary of results for azimuth at Mount Harris, Maine.

a Urste	Minoris nea	r eastern elongat	tion.	λ Ursæ Minoris near upper culmination.					
Date.	Position.	Mark E. of N.	Δ	Date.	Position.	Mark E. of N.	Δ		
1855.		0 / //	"	1855.		0 / //	"		
Ang. 29	L.	62 37 29:32	+1.03	Aug. 30) V	62 37 30 58	+1.08		
30	V	29 '19	+1.19	Sept. 4	IV	32.85	-1,19		
Sept. 3	IV ·	30.52	+0.10	5	III	30 '68	+0.98		
4	IV	30 '97	-0.62	6	II	32.93	- I '27		
5	111	[26.22]*		8	I	31 .58	+0.38		
6	111	29 '68	+0.67						
8	II	29 '68	+0.67						
10	I	30 '90	-o.22						
11	I	33 '47	-3'12						
12	11	31 '48	-1.13						
14	111	28 '62	+1.73						
	Mean	62 37 30'35±0'	30		Mean	62 37 31 66±0	·35		
					0 /	//			
	Mean l	y groups			62 37 31	' 00			
	Diurna	1 aberration			+0	31			
	Azimut	h of Mark				1.31±0′′.25			
		between mark	and Hu	ninback	11 57 3	-			
	U			1					
	Azımut	h of Humpbac	J.K.		254 35 10	0 02			

6. RAGGED MOUNTAIN, MAINE.

$$\varphi = 44^{\circ} 12'.7.$$
 $\lambda = 69^{\circ} 09'.1.$

Theodolite No. 1 was mounted over the triangulation station. The mark was located about $2\frac{1}{2}$ miles from the station and was arranged in the usual manner. A set of observations generally consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, with time and level record. The instrument was then reversed and the observations repeated in reverse order. One division of level = 1"54. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth \pm 0"66.

Summary of results for azimuth at Ragged Mountain, Maine.

a Ursæ	Minoris nea	ar eastern elonga	tion.	λ Ursæ Minoris near upper culmination.					
Date. 1854.	Position.	Mark E. of N.	<u>'</u>	Date. 1854.	Position.	Ma E. o	f N.	Δ	
Aug. 25	1	0 / //	+0.53	Ang. 25	I	0 /	# 56 '00	—I.I3	
29	II	54 '22	+0.67	Sept. 15	IV	0 33	54 '68	+0.50	
30	II	53 '34	+1 '55	16	v		53 '96	+0 '92	
Sept. 4	II	56 '39	-1'50				33 3-	1 - 3-	
11	111	55 *55	-0.66						
13	. 111	55 '82	-0.93						
15	IV	54 '00	+0.89						
16	v	55.16	-0.27						
	Mean	o 53 54 89±0	*24		Mean	0 53	54 '88 ± o '40)	
					0 /	"			
	Mean by	groups			0 53	54 '89			
	Diurnal a	berration				0.31			
		180 53 5	-	±0" °20					
	Angle bet	tween Mark an	d Mount	Pleasant	00 0				
	4.3	of Mount Plea			81 48 4				
						TU			

^{*}Rejected by Peirce's criterion.

7. CAPE SMALL, MAINE.
$$\varphi = 43^{\circ} \ 46''7. \qquad \lambda = 69^{\circ} \ 50''8.$$

The odolite No. 1 was mounted over the triangulation station. The mark was about $1\frac{1}{2}$ miles from the station, no other particulars given in the record. A set of observations consisted generally of 3 pointings on the mark, telescope direct, 3 pointings on the mark, telescope reversed, 5 observations of the star with time and level record. The instrument was then reversed and the observations were repeated in reverse order. One division of level = 0".97. Observers, A. D. Bache, W. P. Trowbridge, and C. O. Boutelle. Probable error of a single result for azimuth \pm 0".96.

Summary of results for azimuth at Cape Small, Maine.

a Urs	sæ Minoris n	ear upper culmi	ination.		α Ursæ Minoris near elongations.					
Date.	Position.	Mark E. of N.	Δ	Date.	Elonga- tion.	Posi- tion.	Mark E. of N.	4	1	
1851.		0 ' "	**	1851.			3 / "/	11	ŗ	
Oct. 14	I	8 40 15 66	-0.44	Oct. 16	E	1	8 40 12:50	+1	94	
15	I	17.03	-1.81	17	E	11	13.36	+1	'08	
16	11	13 '44	+1.48	17	W	III	14 *01	+0	43	
17	111	15 *35	-0.13	18	E	17.	16.18	-r	74	
20	v	14 *66	+0.26	20	E	V	16.12	-1	73	
23	1V	15*17	+0.02							
	Meau	8 40 15 ·22±0'	′ *30			Mean	S 40 14 44±0	′′ '50		
						0 /	//			
	Mear	of groups			8 40 14 83					
	Diur	nal aberration	1		+0.31					
	Azim	uth of Mark			188 40 15 14±0" 29					
	Angl	e between Ma	ark and S	Sabattus	33 21 11 63					
	Azim	uth of Sabatt	us		155 19 03 51					

8. SABBATTUS, MAINE.

$$\varphi = 44^{\circ} \text{ oS' } \cdot 6.$$
 $\lambda = 70^{\circ} \text{ o4' } \cdot 7.$

Theodolite No. 1 was mounted over the triangulation station. The mark was placed on the gable of a barn about 3 miles distant from the station, and it showed under an angle of depression of $1\frac{1}{2}^{\circ}$.

A set of observations consisted generally of 3 pointings on the mark with telescope direct, 3 pointings on same, telescope reversed; 5 pointings on the star, if near culmination, but 3 pointings only when near elongation, with time and level records. The instrument was then reversed and the observations repeated in reverse order. Value of 1 division of level 0":97. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth ± 1 ":00.

Summary of results for azimuth at Sabattus, Maine.

	a Ui	rsæ Minoris n	ear lower cult	nination.	n. a Ursæ Minoris near upper culmination.						
1	Date.	Position.	Mark E. of N.	4	Date.	Position.	Mark E. of N.	Δ			
	1853.		0 / //	"	1853		0 / //	11			
Ju1	y 13	V	0 06 24 89	+0.39	July 13	1.	0 06 25 83	-1,03			
	14	I	26.07	-0.79	14	I	23.79	+1.03			
	15	11	22.75	+2.23							
	22	III	27.40	-2.13	1						
	Mean		0 06 25 28		Meau		0 06 24 81				
	Diurn	al aberration	+0'31		Diurna	al aberration	+0.31				

Summary of results for azimuth at Sabattus, Maine-continued.

а	Ursæ Minoris	near eastern ele	ongation.	. 1007 T. Y. C. near western elongation.					
Date.	Position.	Mark E. of N.	Δ	Date.	Position.		Mark . of N.	Δ	
1853.		0 / //	11	1853.		0	, ,,	"	
	2 IV	0 06 25 00	-1.30	July 24	IV	0 0	06 23.61	-o •o8	
2	4 IV	23.18	+0.2	25	111		23 44	+0.00	
2	5 111	24 '15	-o*45						
3	0 11	22.46	+1 *24						
Mea	ın	0 06 23 70		Mean		0 0	6 23 53		
Diu	rnal aberratio	+0.31		Diurna	laberration	1	+0.31		
					۰	,	//	//	
M	ean by culn	inations			0	06 2	25 '35±0	·46	
M	ean by elon	gations				2	23 '93±0	24	
M	ean of group	ps			0	06 2	24 .64		
Az	imuth of M	ark					24 ·64±0	129	
Aı	igle betwee	n Mark and	Mount In	idependenc	e 204	24 5	58 *87	•	
Az	imuth of M	ount Indepen	dence	-	24	31 2	23 *51		
		O MOTING	r imper	*******	SEA ESTES				

9. MOUNT INDEPENDENCE, MAINE. $\varphi = 43^{\circ} 45' \cdot 6$. $\lambda = 70^{\circ} 19' \cdot 3$.

Theodolite No. 1 was mounted over the triangulation station. The mark was located nearly north of the station and distant about 3 miles. A set of observations generally consisted of 2 or 3 pointings on the mark with telescope direct, 2 or 3 pointings on same, telescope reversed, 5 observations on the star with time and level record; the instrument was then reversed and the observations repeated in reverse order. One division of level =0".97. Observer: A. D. Bache. Probable error of a single result for azimuth±0".65.

Summary of results for azimuth at Mount Independence, Maine.

			-)			4	,			
		a Ur:	sæ Minoris near elongation.	eastern		α Ursæ Minoris and δ Ursæ Minoris near western elongation.				
Dat	e.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W of N.	Δ		
184	2		0 / //	"	1849.		0 / 1/	11		
Sept.		l V	0 10 49 48	-o °05	Oct. 9	VI	0 10 49 69	-0 *21		
	20	V1	49 *14	+0 '29	1.1	1	48 *60	+0.88		
	21	VII	49 *32	+0'11	12	11	50 *85	- ı ·37		
Oct.	12	I	20,10	-0.67	13	VH	50 *20	-o ·72		
	13	11	47 * 27	+2.16	14	111	49 °93	-o °45		
	14	111	50.46	-1 '03	14	IV	48.82	. +0.66		
	18	IV	50 '21	-0.78	15	v	48 °26	+1.52		
		Mean	o 10 49°43±	0′′°27		Mean	o 10 49°48±0	′′ •24		
						0 /	11			
		Mean of	f groups			0 10 4	19 '45			
		Diurnal	aberration			_	0 '31 //			
Azimuth of Mark 179 49 10 86±										
		Angle b	etween Mark	207 06	37 *74					
		O	of Agament		26 55					
							T			

10. MOUNT PLEASANT, MAINE.
$$\phi = 44^{\circ}$$
 01'.6. $\lambda = 70^{\circ}$ 49'.4.

Theodolite No. 1 was mounted over the triangulation station. The mark was placed nearly in line with Mount Blue, on the summit of the next ridge and about 1 mile distant from the station. The angle between the mark and Mount Blue was measured micrometrically with the eye-piece micrometer of the theodolite. The angle of depression of the wand placed over the mark was $2\frac{1}{2}^{\circ}$. A set of observations consisted of 3 pointings on the mark with telescope direct, 3 pointings on same, telescope reversed, 5 observations of the star with time and level record; the instrument was then reversed and similar observations were made with their order reversed. One division of level = 0".97. Observers: A. D. Bache, C. O. Boutelle, and W. P. Trowbridge, U. S. E. Probable error of a single result for azimuth \pm 0".90.

Summary of results for azimuth at Mount Pleasant, Maine.

a Ursa	e Minoris n	ear lower culmi	ination.	a Ursæ Minoris near upper culmination.					
Date.	Position.	Mark E. of N.	Δ	Date.		Position.	Mark E. of N.	Δ	
1851.		0 / //	"	1851.			0 / //	11	
July 22	IV	25 59 18 30	+0.76		31	V	25 59 17 63	+1 '66	
Aug. 3	I	19°17	-0°11	Aug.	2	Λ.	20 *64	-1 '35	
8	11	17 '77	+1 '29		5	111	19 °61	-0.32	
14	l II	31,00	-1 *94						
	'·4S		Mean 25 59 19 29 ± 0" 60						
						0 /	"		
	Mean of g	roups				25 59 19	16.		
1	Diurnal ab	berration				+0.	31.		
	Azimuth o	f Mark			2	205 59 19	47±0" 34.		
	Angle bety	veen Mark an	d Mount	Blue		02	09.		
4	Azimuth o	f Mount Blue			2	205 59 21	56.		

II. AGAMENTICUS, MAINE.

$$\varphi = 43^{\circ} 13' \cdot 4.$$
 $\lambda = 70^{\circ} 41' \cdot 6.$

Theodolite No. 1 was mounted over the triangulation station. The mark was situated on a hill about 2 miles distant. A set of observations consisted of 3 pointings on the mark, telescope direct; 3 pointings on same, telescope reversed; 5 pointings on star with time and level records; the instrument was then reversed and similar observations were made in the reverse order. One division of level =0".97*. Observer: A. D. Bache. Probable error of a single result for azimuth ± 1 ".02.

^{*} The instrument was generally kept leveled.

Summary of results for azimuth at Agamenticus, Maine.

Minoris ne	ar eastern elonga	ation.	a Ursæ Minoris near western elongation.						
Position.	Mark E. of N.	Δ	Date.	Posit	ion.	Mark E. of N.	Δ		
	0 / //	"	1847.			0 / //	"		
IV	114 08 59 57	-1 16	Sept. 21	1	1,	114 08 60 64	−ı *75		
V	60 '57	-2.16	22	1	V.	58,*12	+0.77		
I	57 '92	+0.49	Oct. 5		I	59 *83	-0.94		
II	58 '31	+0.10	15	1	I	58°18	+0.41		
III	55 '68	+2.73	17	I	11	57 .68	+1.51		
Mean	114 08 58 41±0	'' ·56		Mea	ш	114 oS 58*89±0	2" 38		
				0	1	//			
Mean of	groups			114	08 5	58 .65			
Diurnal	aberration				+	-0 '31 //			
Azimuth	of Mark			294	08	58 '96±0 '32			
Angle be	tween Mark a	nd Thon	ipson	291	32	03 '45			
Azimuth	of Thompson			2	36	55 '51			
	Position. IV V I II III Mean Mean of Diurnal a Azimuth Angle be	Position. Mark E. of N. IV	Position. Mark E. of N. O ' '' IV 114 08 59 57 -1 16 V 60 57 -2 16 I 57 92 +0 49 II 58 31 +0 10 III 55 68 +2 73 Mean 114 08 58 41±0" 56 Mean of groups Diurnal aberration Azimuth of Mark Angle between Mark and Thom	Position. Mark	Position. Mark E. of N.	Position. Mark E. of N.	Position. Mark E. of N.		

12. GUNSTOCK, NEW HAMPSHIRE.

$$\varphi = 43^{\circ} 31'$$
 °o. $\lambda = 71^{\circ} 22'$ °2.

Theodolite No. 1 was mounted over the triangulation station. The mark was located upon the highest point of rock on the summit of Mount Belknap, about three-fourths of a mile from the station; light was shown through a three-fourths inch aperture, above which was placed vertically a wand 1 foot high and 1 inch wide for day observations. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star if Polaris, or 6 if δ or 24 Ursæ Minoris, with time and level record. The instrument was then reversed and the observations repeated in the reverse order. Value of 1 division of level = 1" oo. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth \pm 0" 82.

Summary of results for azimuth at Gunstock, New Hampshire.

a Ursie	Minoris nea	r eastern elonga	ition.	8 Ursæ Minoris near upper culminat			
Date.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W. of N.	Δ
1860.		c / //	"	1860.		0 / //	"
July 24	11	40 29 49 54	+0.36	July 24*	II	40 29 51 40	-1.23
25	III	50.66	-0.76.	25*	III	52 '90	-3.03
27	III	48.23	+1 .67	27	III	49 '01	+o ·86
28	1V	49 °06	+0.84	28	IV	48 •63	+1'24
30	1	49 *68	+0.22	30	I	48 *80	+1.02
31	II	50 *50	-o °60	31	11	50.03	-o*16
Aug. 1	v	49 *94	0°04	Aug. 1	V	48*12	+1.75
2	IV	51.38	-1*48	2	V	49 *48	+0.39
3	1	50 *10	-0 *20	3	I	50 *48	-0.61
Me	an	40 29 49 90±0	/′ ·21	Mea	n	40 29 49 87±0	* *34
Dit	irnal aberra	tion -0.31		Diur	nal aberrat	iou -0.33	
					0 /	11	
N	Iean of gro	oups			40 29	49 '57 //	
A	ziniuth of	Mark			139 30	10.43±0.18	
A	ngle betwe	een Mark and	Mount 1	Pleasant	78 13	23 '17	
	Angle between Mark and Mount Pl Azimuth of Mount Pleasant					33 .60	
Λ	Zimuth Oi	mount licase		217 43	33 00		

^{*}The results for July 24 and 25 are from observations of 24 Ursæ Minoris and of & Ursæ Minoris.

13. UNKONOONUC, NEW HAMPSHIRE.

$$\varphi = 42^{\circ} 59' \circ 0.$$
 $\lambda = 71^{\circ} 35' \circ 3.$

Theodolite No. 1 was mounted over the triangulation station. For an azimuth mark a lamp with reflector was set up at Holt station about 34 miles distant from Unkonoonuc. A set of observations generally consisted of 2 pointings on the mark, telescope direct, 2 pointings on same, telescope reversed, 5 pointings on the star, with time and level record. The instrument was then reversed and the operations repeated in the reverse order. One division of level = $0^{\prime\prime}$. Observer, A. D. Bache. Probable error of a single result for azimuth $\pm 1^{\prime\prime}$.64.

Summary of results for azimuth at Unkonoonuc, New Hampshire.

	a Ursæ Min	oris near eastern	ı elongatioı	1.	α, β,	and ζ U	rsæ Minoris elongatio	s near western on.
Date.	Position.	Mark E. of N.	Δ	Date.	Pos	sition.	Mark E. of N.	Δ
1848.		0 1 11 1	**	1848.			0 1 11	"
Sept. 28	[V	133 48 14 44	-3.52	Oct. 5		IV #	133 48 11 1	84 +0.63
Oct. 5	1V	07.83	+3°34	5		III g	081	09 +4.38
5	111	10 '21	+0.96	5		11I a	12*	76 -0.29
6	I	13.20	-2.33	5		IV a	13 '	01 -0.54
6	II	09 *85	+1.32	5		V e	12.	41 +0.06
				6		II #	13.1	63 -1'16
				6		I1 6	16.	17 -3.70
				6		I e	117	87 +0.60
	Mean	133 48 11 17±0"	182			Iean	133 48 12	47±0" 53
	35.00.00				0		//	
	Mean of			,	33	•	·S2	
		berration					31 //	
	Azimuth	of Mark		313	48 12	2.13 ± 0.42		
	Angle be	tween Mark a	nd Gunsto	ck 1	17	12 51	*75	
	Azimuth	of Gunstock		1	96	35 20	.38	

14. THOMPSON, MASSACHUSETTS.

$$\delta = 42^{\circ} 36' \cdot 6.$$
 $\lambda = 70^{\circ} 43' \cdot 8.$

Theodolite No. 1 was mounted over the triangulation station. The mark was situated in a northerly direction on a high rocky bluff, distant from the station about one-third of a mile. Over the small opening in the box was placed a wand, a half inch wide, for day observations.* A set of observations generally consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, with time and level † records. The instrument was then reversed and the operations were repeated in the reverse order. Chief of party, A. D. Bache. Probable error of a single result for azimuth ±0":84.

^{*}Two azimuth marks were put up; the results were referred to the western one as being hetter determined than the other; the angle between the marks was 4° os' os'' 99 ± 0 '' 34.

[†] The instrument was generally kept leveled.

Summary of results for azimuth at Thompson, Massachusetts.

a Ursæ	Minoris nea	ar eastern elon	gation.	a Ursæ Minoris near western elongation.						
Date.	Position.	Mark' W. of N.	Δ	Date.	Positi	on. Mar		Δ		
1846.		0 / //	"	1846.		0 /	11	"		
Oct. 26	I	2 02 39 76	-o °44	Nov. 5	I	2 02 4	1 '73	-o ·84		
Nov. 8	11	38 '06	+1.26	7	II	3	9.96	+ 0°93		
Dec. 1	III	40 *13	-0.81	24	111	4	.o •98	-0'09		
	Mean	2 02 39°32±0	' ' 4 3		Mean	2 02 4	o *89±0"	35		
					0 /	//				
	Mean of	groups			2 02	40'10				
	Diurnal a	aberration				-o'31	'/			
	Azimuth	of Mark		17	7 57	20'21±0'	34			
	Angle be	tween Mark	and Mano	met 18	5 35	38.35				
	Azimuth	of Manomet		35	1 21	41.86				

15. WACHUSETT, MASSACHUSETTS.

$$\varphi=42^{\circ}\ 29'\cdot 3.$$
 $\lambda=71^{\circ}\ 53'\cdot 2.$

Theodolite No. 1 was mounted over the triangulation station. The mark was located upon the highest point of Little Wachusett Mountain, about 13/4 miles distant; light was shown through a 3/4-inch aperture, and day observations were made on a wand 1 foot high and 1 inch wide, mounted over the aperture. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on α Ursæ Minoris (or 6 on λ Ursæ Minoris) with time and level records. The instrument was then reversed and similar observations were made in the reverse order. Value of one division of level 1"00. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth \pm 0"42.

Summary of results for azimuth at Wachusett, Massachusetts.

a Ursæ	a Ursæ Minoris near eastern elongation.					A Ursæ Minoris near upper culmination.						
Date.	Position.	Mark W. of N.	Δ	Da	te.	Position.	Mark W. of N.	Δ				
1860.		0 / 11	,,	186	0.		0 / //	"				
Sept. 26	I	174 15 12 63	-o '34	Sept.	26	I	174 15 12.08	+0 *04				
28	v	11 '95	+0°34		28	v	12.82	-0.70				
29	1V	12.41	-0.42		29	IV	12.78	-o*66				
30	111	12.67	-0.38		30	111	11 '52	+0.60				
Oct. 3	11	13 *24	-0.95	Oct.	3	II	12.11	+0.01				
6	IV	12.13	+0.16		6	v	11,40	+0.72				
7	I	12.62	-o ·33									
8	II	11 42	+0.87									
9	111	11.52	+1°02									
	Mean	174 15 12·29±0'	′·15			Mean	174 15 12 12 ±0	"·17				
						0 /	//					
	Me	an of groups				174 15	12'21					
		urnal aberratio	n				-o:31					
	Az	imuth of Mark					48·10±0/′·11					
	Angle between Mark and				Hill	18 32						
Azimuth of Bald Hill				Daily.								
	AZ	muun of Baid	11111			24 17	41 45					
4192-N	0. 7—02	22										

16. HARVARD OBSERVATORY, MASSACHUSETTS.

 $\varphi = 42^{\circ} 22' \cdot 8.$ $\lambda = 71^{\circ} 07' \cdot 7.$

Troughton and Simms transit, Coast Survey No. 5, was mounted on the west transit pier of Harvard Observatory. The mark was a bull's-eye lantern, showing through a hole of ¼ inch diameter in a box placed on a trestle 21 feet high and strongly braced. The mark was found to be about 7".5 west of north, and was on the same level as the old north mark for the east transit. The aperture appeared at an altitude of 0° 6′ as seen from the west transit. A board 2 by 2 feet, painted in alternate stripes of black and white, 4 inches wide, served for day mark. Micrometric differences were measured between the verticals of the mark and star as it passed the meridian, and times were recorded on chronograph; a set of observations generally consisted of 10 pointings on the mark, clamp west, 10 pointings, clamp east, and of 9 transits of the star. Levels were recorded. One division of level = 0".96; the value of one turn (100 divisions) of the eyepiece micrometer was found to be =44".81 from the transits themselves. Observer, A. T. Mosman. Probable error of a single result for azimuth ±0".40.

Summary of results for azimuth at Harvard Observatory, Massachusetts.

	δ Ursæ Minoris at lower cul- mination.	51 Cephei at upper culmi- nation.	a1 10	sæ Mi ower inatio	cul-		
Date.	М	ark West of No	rth.				
1869.	"	**		,,			
Jan. 28		8 '84					
Feb. 1	7.60	7 '85					
4	4 '63 *	6.89					
5	7.80	8.28					
7	7. 22	7 '49		7.47			
13	7.57	7 '29					
17	7'13	9,01		8 '07			
19	8'47	8 *So		7 '61			
25	7.83	9,11		8'02			
27		7 '92		8.68			
28	5.65	8.18		7'00			
Mar. I	6,30	7.16		8:20			
9	7.84	7 '49		7'30			
11	8 .61	7 '94					
12	7 '92						
	Means 7'50±0"'16	8:02±0":13	3	7 '79 ±	:0"'13		
					11		
Mean of δ and	λ Ursæ Minoris a	t upper transi	t		7 .65		
Mean of 51 Cer	hei at lower trans	sit			8 '02		
Mean					7 '84		
Diurnal aberrat	tion				-0'31		
man aberra			0	,	-0 31	11	
Azimuth of Ma	rk		179				
	Angle between Mark and Blue Hill						
O							
		ud down	356	22	01 20		
	zimutlıs, transit a			+2			
Azımutlı center	of dome to Blue	Hill	356	25	26 .4		
	*Rejected	đ					

^{*} Rejected.

17. BLUE HILL, MASSACHUSETTS.

 $\varphi = 42^{\circ} 12' \cdot 7.$ $\lambda = 71^{\circ} 06' \cdot 9.$

Theodolite No. I was mounted over the triangulation station. A set of observations consisted of 3 pointings on the mark,* telescope direct, 3 pointings on same, telescope reversed, and 5 pointings on the star, with time and level records. The instrument was then reversed and the preceding operations repeated in the reverse order. The instrument was kept leveled. Chief of party, A. D. Bache. Probable error of a single result for azimuth $\pm 0^{\prime\prime}$:89.

Summary of results for azimuth at Blue Hitt, Massachusetts.

a U	Trsæ	Minoris nea	ar western elong	gation.	a Ursa	e Minoris	nea	ar eastern eloi	ıgation.
Dat	e.	Position.	Mark E. of N.	Δ	Date.	Position	١,	Mark E. of N.	Δ
1845	5		0 1 11	"	1845.			0 / //	"
Sept.	24	III	2 02 33 78	→ 0 *42	Sept. 25	III		2 02 30.52	+2.62
	27	IV	33 '75	-0:39	26	IV		33 *28	-0.41
Oct.	I 2	VI	34 *49	-1.13	27	IA.		33 °91	-1.04
	2	I	34 '59	-1 *23	28	11		33 *29	-0.42
	3	II	30,08	+2.37	29	Z.		33 *32	-0°45
	13	Λ,	32°57	+0.79	Oct. 1	VI		31 *94	+0.93
					2	1		34 '07	-1 *20
		Mean	2 02 33°36 ±0	/* ·38	1	Mean		2 02 32·87±0	. '34
						0	,	//	
•		Mean	of groups		*	2	02	33 '11	
		Diur	nal aberration					-o ·31 //	
	Azimutlı of Mark							33 '42 ±0 '2	5
	Angle between Mark and Manou						54	56.63	
		O	uth of Manor				57	30 '05	
						0			

18. SHOOTFLYING, MASSACHUSETTS.

 $\varphi=41^{\circ} 41'$ 'I. $\lambda=70^{\circ} 20'$ '8.

Theodolite No. 1 was mounted over the triangulation station. The azimuth mark was distant from the station about 1¾ miles. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, and 5 pointings on star, with time and level records. The instrument was then reversed and the operations repeated in the reverse order. Instrument was kept leveled. Chief of party, A. D. Bache. Probable error of a single result for azimuth ±0″86.

^{*}No particulars given in record respecting the azimuth mark.

Summary of results for azimuth at Shootflying, Massachusetts.

a Ursie M	linoris near	eastern elongat	ion.	a Urs	a Ursæ Minoris near western elongation.					
Date.	Position.	Mark E. of N.	Δ	Date.	Position.	Mark E. of N.	Δ			
1845.		0 / //	"	1845.		0 / //	"			
Aug. 1	111	49 08 12'15	+0.2	Aug. I	III	49 08 15 13	-1 '40			
4	IV	12 '03	+0.64	3	IV	15.18	-1.45			
5	v	11.88	+0.79	4	V	11.18	+2.55			
7	1	14.19	-1'52	7	I	13 '52	+0.51			
8	VI	12.16	+0.21	9	VI	13 '01	+0.72			
12	11	13.21	-0.84	12	11	14 '35	-0.62			
13	111	12'80	-0.13							
	Mean	49 oS 12.67±0	′′ °22		Mean	49 08 13.73±0	′′ °42			
					0 / //					
	Mean of	U .			49 08 13 1					
		aberration		+0:	*					
	Azimutli	of Mark		229 08 13 5	51 ±0°24					
	Angle b	etween Mark	omet	86 04 50 "	77					
	Azimuth	of Manomet			143 03 22 "	74				

19. INDIAN, MASSACHUSETTS.

 $\varphi = 41^{\circ} 25' \cdot 7.$ $\lambda = 70^{\circ} 40' \cdot 7.$

Theodolite No. 1 was mounted over the triangulation station. A pole at Prospect Hill served for a day mark, but several lights were used for reference marks. It was found, however, that the day and night observations upon the Cape Poge Light, the West Chop Light, and the Tarpaulin Cove Light were discordant, the verticals through the centers of the light-houses and through their focal reflectors not being coincident. A set of observations generally consisted of several pointings on one or more of the marks with telescope direct and reversed, and 6 pointings on the star with time and level records. The instrument was then reversed and the operations repeated in the reverse order. Instrument was kept leveled. Observers: A. D. Bache and C. O. Boutelle. Probable error of a single result for azimuth ± 1 "40.

Summary of results for azimuth at Indian, Massachusetts.

a	Ursæ	Minoris nea	ir western elong	gation.	a Ursa	: Minoris ne	ar eastern elong	gation.
Dat	e.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W. of N.	Δ
184	5-		0 / //	"	1845.		0 / //	"
July	9	Į VI	140 37 36 62	+3 '03	July 10	VI	140 37 41 56	-1 '64
	12	I	43 '03	-3.38	11	I	40 '68	-0.76
	13	11	41.00	-2 '25	12	I	38 *69	+1.53
	14	111	37.78	+1.87	. 13	11	37 *98	+1 '94
	15	IV	40 *25	-0.60	15	111	40 '08	-0.19
	16	IV	42.55	2 *90	17	IV	39 '51	+0.41
	17	L ,	36.31	+3 *34	18	V	40 *94	-1 '02
	18	L.I	38 *78	+0.87				
		Mean	140 37 39 65±0	′′*64		Mean	140 37 39 '92±0	" '33
						0 / /	,	
		Mean o	of groups			140 37 39	78	
		Diurna	l aberration		-0			
		Azimut	th of Mark			53 ±0 36		
			between Marl	necut	96 13 38			
		_						
		AZIIII	th of Copecut			135 35 58	02	

20. COPECUT, MASSACHUSETTS.

 $\varphi = 41^{\circ} 43' \cdot 3.$ $\lambda = 71^{\circ} 03' \cdot 6.$

Theodolite No. 1 was mounted over the triangulation station. A small telescope was placed a few feet from the great theodolite to serve as collimator; it proved, however, to be very unsteady, and even for day observations the cross threads had to be artificially illuminated. For the observations near the eastern elongation eyepiece C was attached to the theodolite;* value of one division of its micrometer=0"54. The station Blue Hill was used for a day mark. A set of observations of Polaris near eastern elongation generally consisted of one dozen micrometric observations between mark and star, telescope direct, and the same number with telescope reversed; also 5 circle readings on collimator, instrument direct, and 5 readings, instrument reversed. In connection with the observations near western elongation the star was pointed at a number of times, with instrument direct and reversed; times and levels were recorded. The instrument was kept leveled. Observer: A. D. Bache. Probable error of a single result for azimuth ± 1 "15.

Summary of results for azimuth at Copecut, Massachusetts.

a Ursæ N	dinoris near	eastern elongat	ion.	a Ut	sæ Minoris ne	ear western elo	ngation.
Date.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W. of N.	Δ
1844.		0 / //	"	1844.		0 / //	. ,,
Sept. 24	111	4 42 51 41	+1 *21	Sept. 26	III	4 42 56 84	-1°78
27	IV	52 °03	+0.59	27	. IV	55 *19	-0.13
30	Z.	52 *74	-0'12	29	V.	56.55	-1.49
Oct. 1	V	53 *20	-o*58	30	V	52 *86	+2 *20
2	V	54 *26	-1 *64	Oct. 1	V	55°04	+0 02
4	v	53 '05	-0.43	4	v	53.87	+1.19
5	v	51 *95	+0.67				
8	V	52 * 29	+0.33				
	Mean	4 42 52 62 ± 0	/' -21	•	Mean	4 42 55 06±0	′′ °42
					0 / //		
	Mean o	f groups			4 42 53 8	34	
	Diurnal	aberration			0 *	31 //	
	Azimutl	h of Mark			175 17 06	5 ±0.31	
	Angle b	etween Mark	and Blu	e Hill	0.	_	
	0	n of Blue Hil			175 17 06		
	1 Sillitio	of Dide III.	•		1/3 1/ 00	3	

21. BEACONPOLE, RHODE ISLAND.

 $\varphi = 41^{\circ} 59' \cdot 7.$ $\lambda = 71^{\circ} 27' \cdot 0.$

Theodolite No. 1 was mounted over the triangulation station. Observations were made in sets consisting generally of 3 to 6 pointings on the mark and on the star, with telescope direct, and the same number of pointings with telescope reversed; the instrument was kept leveled. Observer: A. D. Bache. Probable error of a single result for azimuth \pm 0" 69.

^{*}One turn of eyepiece micrometer equals 100 divisions.

Summary of results for azimuth at Beaconpole, Rhode Island.

	a Ursa	Minoris nea	r western elong	gation.	a Urste	Minoris	near eastern efonga	tion.
	Date.	Position.	Mark E. of N.	Δ	Date.	Positio	Mark E. of N.	Δ
	1884.		0 / //	"	1844.		0 / //	11
0	ct. 31	I -	2 02 26 23	-1.03	Nov. 1	1	2 02 25 41	+1.03
N	ov. 1	I	25 '91	0.71	2	I	25 '96	+0.47
	S	111	25 °47	0°27	8	III	27 *34	-0.01
	10	111	25 *46	-0.56	9	III	26 '77	0 '34
	16	II	23 .63	+1.24	17	II	26 *55	-0.13
	18	11	24 *51	+0.69	19	11	26.22	-0°12
	Mean 2 02 25 20±0" 27					Meau	2 02 26 43±0"	1 8
						0 /	//	
		Mean of g	groups			2 02	25 .82	
		Diurnal a	berration				+0.31 //	
		Azimuth	of Mark		18	82 02	26.13∓0.50	
		Angle bet	ween Mark	Hill	46 52	21.11		
		Azimuth e	of Blue Hill		21	28 55	17 '24	

22. SPENCER, RHODE ISLAND.

$$\varphi = 41^{\circ} 40'.7.$$
 $\lambda = 71^{\circ} 29'.7.$

Theodolite No. 1 was mounted over the triangulation station. Two azimuth marks were used; their angular difference is 4° 04′ 12″ 64±0″ 18. All measures were reduced to the eastern mark. The observations were made in irregular sets of a number, a dozen, more or less, of micrometric measures between the star and the mark, with telescope direct and telescope reversed. The value of one division of the eyepiece micrometer was 0″ 57; it was not used in connection with western elongation of August 14. One division of level C=0″ 96, but the instrument was generally kept leveled.* Observer, A. D. Bache. Probable error of a single result for azimuth ±1″ 25.

Summary of results for azimuth at Spencer, Rhode Island.

а	Ursa			s near ation,	eastern	a Urs		ioris ongai	near we	estern
Da	ate.			rk f N.	Δ	Date.	1	Mar E. of		Δ
18	344.		,	11	, ,,	1844.	0		"	"
Aug.	. 13	2	02	00 *95	+1.92	Aug. 14	2	02 (4 '59	-2.73
	14			02.67	+0.23	15		02 0	01 '50	+0.36
	15			04 *34	— ı * 44	16		01 5	59 *48	+2.38
	16			04 02	-1'12					
	17			04 *26	-1.36					
	21			01.12	+1.73	•				
	Mea	11 2	02	02 '90 ±	·43	Ме	a11 2	02 (01 '86±1'	101
Mean	of g	rou	ps				2	02	02 *38	3
Diurn	0			011					+0.3	
Azimı	ith c	of M	lark				182	02	02 6	9±0°42
Angle	het	wee	11 3	Iark a	pole.	356	04	29 '6	7	
Azimuth of Beaconpole 185									33 '0:	2

^{*}On August 17 and 21 the star was observed direct and reflected.

23. MOUNT TOM, MASSACHUSETTS.

 $\varphi = 42^{\circ} 14' \cdot 5.$ $\lambda = 72^{\circ} 38' \cdot 9.$

Theodolite No. I was mounted over the triangulation station. The mark was located near the Prospect House on Mount Holyoke; a light was shown through a three-fourths-inch aperture in the box; a wand above the opening was used in daytime. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on α Ursæ Minoris (6 in the case of δ Ursæ Minoris), with time and level records. The instrument was then reversed and a series of like observations was made in the reverse order. One division of level = 1":oo. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm o$ ":77.

Summary of results for azimuth at Mount Tom, Massachusetts.

a l	Ursæ	Minoris nea	ar eastern elonga	tion,	δ Ursa	e Mi	noris	near upper culmi	nation.	
Da	ite.	Position.	Mark E. of N.	Δ	Date.	Pe	osition	Mark E. of N.	Δ	
186	52,		0 1 11	"	1862.			0 / //	"	
July	27	1	37 22 35 20	-1.58	July 27	1	1	37 22 36 74	-2.06	
	30	11	33 '98	-o*o6	30		11	34 *39	+0.59	
Aug.	1	I	33 *81	+0.11	Aug. I	1	11	34 '62	+o .oe	
	3	111	35 '59	-1 *67	3	1	111	34 '92	-0'24	
	4	IV	34 *30	-o*38	4	1	IV	33 *93	+0.75	
	7	V	32°22	+1.40	7		V	34 '16	+0.52	
	- 8	V	32 15	+1.77	10		111	34 *01	+0.67	
	10	1 V	34 *09	-0.14						
	Mea	111	37 22 33 '92±0"	**29	Ме	Mean 37 22 34 '68±0" '25				
	Diu	rual aberrat	ion +0'31		Di	arna)	l aber	ration -0'33		
						0	/	//		
		Mean of g	groups			37	22	34 .62 //		
		Azimuth o	of Mark		:	217	22	34 '62±0 '20		
		Angle bet	ween Mark an	d Mona	dnock	4	45	12 '88		
		Azimuth o	of Monadnock			212	37	21 '74		

24. SANDFORD, CONNECTICUT.

 $\varphi = 41^{\circ} \ 27' \cdot 7.$ $\lambda = 72^{\circ} \ 57' \cdot 0.$

Theodolite No. 1 was mounted over the triangulation station. An azimuth mark was placed on the highest hill in a westerly direction, and about $1\frac{1}{2}$ miles from the station. The aperture was three-fourths of an inch in diameter, and a wand 1 foot high and 1 inch wide was placed vertically over it. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star if Polaris, 6 if λ Ursæ Minoris, with time and level records. The instrument was then reversed and the observations repeated in the reverse order. One division of level = 1"'00. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth \pm 1"'20.

Summary of results for azimuth at Sandford, Connecticut

a Ursae	Minoris ne	ar eastern elong	gation.	A Urste N	Imoris II	ear upper cumuna	ition.
Date.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W. of N.	Δ
1862.		0 / //	71	·1862.		0 / //	"
Sept. 9	I	88 49 04 79	-o '54	Sept. 10	I	88 49 07 10	-1 '96
10	I	05 '95	~1.70	21	II	o6 ·81	−1 °67
11	II	07.83	-3.28	22	III	04°14	+1.00
21	II	04 '96	-o.71	23	IV	05 '67	-o.23
22	III	02.32	+1 *90	25	V	03.79	+1.35
23	IV	03 *24	+1.01	26	IV	06 *03	~0.89
25	Λ.	03 *37	+0.88	27	II	02 43	+2.21
26	1,	03.28	+0.67				
27	III	. 02*18	+2.07				
	Mean	88 49 04 25 ±0"	'-41		Mean	88 49 05 14 ±0'	' ·44
				0	,	//	
	Mean	of groups		88	49 0	14 .69	
		al aberration				0'31 //	
	_	th of Mark		91		55.62±0.30	
		between Mark	r and Dula	-			
	O		•		34		
	Azimu	th of Ruland		5	50 2	25 *28	

25. WEST HILLS, NEW YORK. $\varphi = 40^{\circ} 48' \cdot 8$. $\lambda = 73^{\circ} 25' \cdot 6$.

Theodolite No. 1 was mounted nearly over the triangulation station. The azimuth mark was placed near the station Huntington, $4\frac{1}{6}$ kilometers distant from West Hills station.* A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, if Polaris, 6 if δ Ursæ Minoris, with time and level records. The instrument was then reversed and similar observations were made with their order reversed. One division of level=1".oo. Observer, G. W. Dean. Probable error of a single result for azimuth \pm 0":57.

Summary of results for azimuth at West Hitls, New York.

a	Ursæ	Minoris near	eastern elongs	ation.	δ Ursa	e Minor	is near upper culmi	nation.
Da	te.	Position.	Mark E. of N.	Δ	Date.	Positio	n, Mark E, of N.	4
18	65.		0 / //	"	1865.		0 / //	"
Aug.	4	1.	2 23 58 23	+1 '00	Aug. 4	V.	2 23 58 63	+0.55
	8	IV	59.02	+0.51	. 8	IV	5 ⁸ '55	+0.63
	9	II	60°87	-1 *64	. 9	II	58.72	+0.46
	11	I	58 '21	+1.03	11	I	58.76	+0.42
	12	III	60.61	-1.38	12	III	59*68	-0.20
	15	V	58*46	+0.77	15	IV	60 '00	-0.82
	16	II	58.85	+0.38	16	I	59 '94	-0.76
	18	111	59 '62	-0.39				
	Mea	iu .	2 23 59°23±0′	7.25	Me	an	2 23 59°18±	0" 17
	Diu	rual aberratio	011 +0.31		Diu	irnal ab	erration +0.33	
						0 /	//	
		Mean of	groups			2 23	59 '53	
			n to station			Ü	+0.40 //	
		Azimuth			15	82 23	59 °93 ±0 °15 2	
				and Was		.,		
		()	tween Mark		7 26			
		Azimuth	of Wooster		1	74 57	38.32	

^{*}The geodetic station was found to be 0.47 of an inch SW, of the point at which the azimuth observations were made; the correction to the azimuth when referred to the geodetic station is +o''.40.

26. BEACON HILL, NEW JERSEY.

 $\varphi = 40^{\circ} 22' \cdot 4.$ $\lambda = 74^{\circ} 13' \cdot 7.$

The Troughton & Simms transit, Coast Survey No. 5, was mounted over the station; focal length of telescope $1^m \cdot 17$, clear aperture 70^{mm} , magnifying power about 80. Value of one division of eyepiece micrometer $0'' \cdot 4480 \pm 0'' \cdot 0001$ at 21° C. One division of level $0'' \cdot 96$; pivot inequality $+0^s \cdot 017$ for clamp west. The mark was located about 8 miles north of the station and light was shown through a 1-inch aperture. In connection with the observations for time micrometric measures between the verticals of mark and star were made for the determination of azimuth. A set of observations consisted of 15 transits of δ Ursæ Minoris and an equal number of transits of 51 Cephei over the micrometer thread set in advance to a whole turn between 0 and 14; the mark was observed 10 times with clamp east and an equal number of times with clamp west; the level was generally read before and after each set. Observer, G. W. Dean. Probable error of a single result for azimuth $\pm 0'' \cdot 81$ for δ Ursæ Minoris and $\pm 0'' \cdot 67$ for 51 Cephei.

Summary of results for azimuth at Beacon Hill, New Jersey.

δ'Ursæ N	linoris near u	pper culminati	on.	51 Ce	ephei ne	ar lo	wer culmination	
Date.	Clamp.	Mark W. of N.	Δ	Date.	Clamp	p,	Mark W. of N.	Δ
1875.		"	"	1875.			" .	"/
Aug. 19	E	7 *95	-o ·86	Aug. 19	E		7 *90	-0 *24
21	W	5 '53	+1.26	21	w		6.07	+1.59
25	W	8 *63	-1.24	25	W		8.78	-1'12
26	E	6.11	+0.48	26	E		7 . 21	+o *45
27	W.	6.20	+0.29	27	W		7-41	+0.25
28	E	7.81	-0.72	28	E		8 *59	-0.93
Mean Diurual a	Mean 7 '09±0" '33 -0 '33			Mean Diurnal a	berratio	n	7.66±0" -0.30	*27
					0	,	//	
	Mear	of groups			0	0	7.06 ' //	
	Azim		179	59	52 '94±0 '21			
	Angl	Weasel	3	35	36 '95			
		183	35	29.89				

27. MOUNT ROSE, NEW JERSKY.

 $\varphi = 40^{\circ} 22' \cdot 1.$ $\lambda = 74^{\circ} 43' \cdot 4.$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station and 15 feet above the ground. The mark was 1'20 kilometers distant. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on the same, telescope reversed, and 5 pointings on the star, telescope direct, and 5 pointings on the same, telescope reversed, with time and level records. One division of level = 1"'25. Observer, J. E. Hilgard, assisted by G. W. Stevens. Probable error of a single result for azimuth ± 1 "'07.

Summary of results for azimuth at Mount Rose, New Jersey.

a Ursie	Minoris nea	r eastern elon	gation.	a Ursæ N	Minoris near	western elon	gation.
Date.	Position.	Mark E. of N.	Δ	Date.	Position.	Mark E, of N.	Δ
1852.		0 ' "	11	1852.		0 / //	"
Aug. 13	I	75 58 03°48	-0.72	Aug. 13	I	75 57 63 38	-2'08
14	11	03°50	-0.74	14	II	59 '94	+1.36
14	11	00 '78	+1.98	15	111	61 '24	+0.0€
15	111	00°30	+2.46	17	v	60 *42	+0*88
16	IV	03°48	-0'72	19	IV	61 '50	-0.50
18	v	°4 °33	-1.22				
19	III	03'42	-0 .66				
'	Mean	75 58 02 76±	0″ •40		Mean	75 58 o1 '30±	0" *40
					0 /	//	
N.	Iean of gre	oups			75 5S c	02.03	
D	iurnal abe	erration			+	0'31 //	
A	zimuth of	Mark		255 58 6	02°34±0°31		
A	ngle betw	een Mark ar	t Holly	111 48 5	53°25		
A	zimuth of	Mount Hol		7 46 5			

28. YARD, PENNSYLVANIA.

$$\varphi = 39^{\circ} 58' \cdot 5.$$
 $\lambda = 75^{\circ} 23' \cdot 2.$

The $60^{\rm cm}$ direction theodolite No. 2 was mounted over the triangulation station. A set of azimuth observations consisted of 3 pointings on the mark and 3 pointings on the star, with telescope direct, and the same number of pointings on mark and star with telescope reversed. Times and levels were recorded. One division of level =0''.94. Observer, J. E. Hilgard. Probable error of a single result for azimuth $\pm 0''.99$.

Summary of results for azimuth at Yard, Pennsylvania.

a Ursæ Mihoris at various hour angles.

Date.	Position.	Mark F. of N.	Δ
1854.		0 / //	"
Oct. 27) V	0 17 31 87	+2 '07
Nov. 1	IV	34 '23	-0.59
I	111	36.89	-2.95
. 2	1	33.68	+0.56
2	v	34 '15	-0.51
5	111	32 '72	+1.55
5	v	34 *37	-0 '43
5	IV	32 '26	+1 '68
5	11	35 '32	-1.38
6	1	33 *94	0 *00
Mea	311	0 17 33 '94±0'	' '31
Diu	rual aberra	tion +0 '31	

Azimuth of Mark Angle between Mark and Lippincott Azimuth of Lippincott 180 17 34 '25±0 '31 167 00 04 '32 347 17 38 '57

29. PRINCIPIO, MARYLAND.*

$$\varphi = 39^{\circ} 35' \cdot 5.$$
 $\lambda = 76^{\circ} \circ 00' \cdot 3.$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station; the mark was at Carpenter's Point, about 3½ miles distant. A single result for azimuth is derived from 19 sets, each consisting of: 3 pointings on the mark, reversal of instrument; 3 pointing on the mark, 4 to 6 pointings on the star, followed by the same operations in the reverse order, with the necessary noting of time and level readings; circle used in V positions. Observer, R. D. Cutts. Probable error of a single result±1".75.

Results for azimuth from observations of α Ursæ Minoris near eastern elongation, in August and September, 1866.

	0 / //
Mark west of south	3 05 07 20
Diurnal aberration	+0.32
Azimuth of Mark	3 05 07 ·52±0" ·40
Angle between Mark and Turkey Point	1 30 24 01
Azimuth of Turkey Point	1 34 43 51

30. CAPE HENLOPEN LICHT-HOUSE, DELAWARE.

$$\varphi = 38^{\circ} 46'^{\circ}7.$$
 $\lambda = 75^{\circ} 05'^{\circ}1.$

The 30^{cm} direction theodolite No. 135 was mounted over the eccentric geodetic station, about 15 meters north of the center of the Light-House; the mark was at Brandywine Shoal Light-House. A single result for azimuth is derived from 49 sets. each consisting of a pointing on the mark, a pointing on the star, reversal of instrument and pointings on star and mark, noting of times and level readings. Circle used in XVII positions. Observer, O. B. French. Probable error of a single result \pm 1"76 for α Ursæ Minoris and \pm 0"97 for λ Ursæ Minoris.

Results for azimuth from observations of α Ursæ Minoris and λ Ursæ Minoris at various hour angles, in September, 1897.

	6 / // //
Mark W. of N., 28 results from observations of α Ursæ Minoris	6 14 23 21±0 33
Mark W. of N., 21 results from observations of λ Ursæ Minoris	22°19±0°21
Weighted mean according to the probable errors	22 ·48±0 ·18
Indiscriminate mean of 49 sets	22 .77
Mean value adopted	22.62
Diurnal aberration	-o ·32
Azimuth of Mark	173 45 37 70±0 21
Reduction to center of Cape Henlopen Light-House	-20 '37
Azimuth, Cape Henlopen Light-House to Brandywine Shoal Light-House	173 45 17 33

^{*}For the complete abstract and combination of results for azimuth at this and the succeeding 13 stations, all of which are *common* to the Arc of the 39th Parallel and the Oblique Arc, see "The Transcontinental Triangulation" U. S. Coast and Geodetic Survey, Special Publication No. 4, Washington, D. C., 1900.

31. MARRIOTT, MARYLAND, $\varphi = 38^{\circ} 52' \cdot 4$. $\lambda = 76^{\circ} 36' \cdot 6$.

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station. A single result for azimuth is derived from a set of observations consisting of about one dozen pointings on the star, one half with telescope direct and one-half with telescope reversed, and corresponding pointings on the mark, with noting of times and level readings. Circle used in XI positions. Observers: A. D. Bache, J. Hewston, jr., and G. Davidson. Probable error of a single result ±1"'92.

Results for azimuth from observations of α , δ , and λ Ursæ Minoris near eastern elongation and of α , β , δ , and ζ Ursæ Minoris and of α Ursæ Majoris near western elongation, June, 1849.

Mark W. of N., from 8 stars near eastern elongation
Mark W. of N., from 8 stars near western elongation
Mean, Mark west of north
Diurnal aberration
Azimuth of Mark
Angle between Mark and Hill
Azimuth of Hill

0 58 27 38±0 68
28 56±0 71
27 97
−0 31
179 01 32 34±0 48
82 23 48 98
96 37 43 36

32. WEBB, MARYLAND.

 $\lambda = 76^{\circ} 40'.5$

The 75^{cm} direction theodolite No. I was mounted over the triangulation station. The mark was about I mile distant. A single result for azimuth is derived from a set of observations consisting of 6 pointings on the mark, one-half of which with telescope direct and the other half with telescope reversed; 12 pointings on the star, one-half with telescope direct and one-half with telescope reversed; finally 6 more pointings on the mark as before, noting time and level readings. Circle used in V positions.

 $\varphi = 39^{\circ} \text{ o5''4.}$

Results for azimuth from observations of a Ursæ Minoris near eastern and western elongations, in October and November, 1850.

Observers, A. D. Bache and G. W. Dean. Probable error of a single result ±0".67.

0 / 11 Mark E. of N. α Ursæ Minoris, 5 sets near eastern elongation 6 07 45 42±0 28 Mark E. of N. α Ursæ Minoris, 5 sets near western elongation 45 '69±0 '35 Mean, Mark east of north 6 07 45.26 Diurnal aberration +0'32 Azimuth of Mark 186 o7 45 88±0 21 Angle between Mark and Soper 97 07 56 64 Azimuth of Soper 88 59 49 24 33. HILL, MARYLAND.

 $\varphi = 38^{\circ} 53' \cdot 9.$ $\lambda = 76^{\circ} 52' \cdot 8.$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station. Mark in line to station Webb. A single result for azimuth is derived from 13 sets of observations, each consisting of 6 pointings on the mark, half with telescope direct and half with telescope reversed; 10 pointings on the star, half with telescope direct and half with telescope reversed, and finally 6 pointings on the mark as before, with noting of times and level readings. Circle used in V positions. Observers, A. D. Bache and G. W. Dean. Probable error of a single result ±0"83.

Results for azimuth from observations of α Ursæ Minoris near eastern and western elongations and of λ Ursæ Minoris near upper cutmination, in September and October, 1850.

11 Mark E. of N., 5 results from α Ursæ Minoris near eastern elongation 39 46 56.83±0.42 Mark E. of N., 5 results from α Ursæ Minoris near western elongation 57 '77±0'31 Mark E. of N., 3 results from λUrsæ Minoris near upper culmination 61 or Not used. Mean, Mark east of north 57:30 Diurnal aberration +0.3546 57.62±0.26 Azimuth of Mark Angle between Mark and Webb 00 '27 Azimuth of Webb 219 46 57.89

34. SOPER, MARYLAND.

 $\varphi = 39^{\circ} \text{ o5' }^{\circ} \text{2.}$ $\lambda = 76^{\circ} \text{ 57' }^{\circ} \text{o.}$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station, the mark being to the southward, distant 442 meters. A single result for azimuth is derived from 10 sets of observations, each consisting of 6 pointings on the mark, 10 pointings on the star, one-half with telescope direct and half with telescope reversed, 6 pointings on the mark, with noting of times and level readings. In case of culminations the above operations were repeated. Circle used in V positions. Observer, A. D. Bache. Probable error of a single result ±0"·92.

Result for azimuth from observations of α Ursæ Minoris near tower cutmination, λ Ursæ Minoris near eastern etongation, and δ Ursæ Minoris near western etongation, in July, 1850.

35. SEATON, DISTRICT OF COLUMBIA.

 $\varphi = 38^{\circ} 53' \cdot 4.$ $\lambda = 77^{\circ} 00' \cdot 0.$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station, and the mark was on the tower of the Soldiers' Home, about 3½ miles distant. A single result for azimuth is derived from 34 sets, each set of observations consisting of 8 pointings on the mark and 8 pointings on the star, one-half with telescope direct and one-half in reversed position. The star was observed alternately direct and reflected in mercury, times noted. The circle was used in VII positions. Observer, C. O. Boutelle. Probable error of a single result ±0"72.

Result for azimuth from observations of a Ursæ Minoris at various hour angles, in December, 1868, and January, 1869.

Mark west of north

Diurnal aberration

Azimuth of Mark

Angle between Mark and Hill

Azimuth of Hill

O 01 13 73

-0 32 //

169 58 46 59±0 18

95 34 07 17

265 32 53 76

36. Causten, district of columbia. $\varphi=38^{\circ}$ 55'.5. $\lambda=77^{\circ}$ 04'.4.

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station, and the mark was about a quarter of a mile distant. A single result for azimuth is derived from a set of observations consisting of 6 pointings on the mark, one-half with telescope direct and one-half with telescope reversed, 10 pointings on the star, one-half with telescope direct, and one-half, telescope reversed; finally, 6 more pointings on the mark with times noted and levels read. For culminations two sets were taken and coupled, one made before, the other after culmination. Circle used in V positions. Observer, G. W. Dean. Probable error of a single result, star near elongation ±0"88 and star near culmination ±1"08.

Results for azimuth from observations of α Ursæ Minoris near eastern elongation and near tower cutmination, in May and June, 1851.

37. SUGAR LOAF, MARYLAND. $\varphi = 39^{\circ}$ 15'.8. $\lambda = 77^{\circ}$ 23'.6.

The 50^{cm} direction theodolite No. 113 was mounted over the triangulation station, and the mark was near the railroad station at Barnsville 3'8 miles distant. Thirty-three sets of observations were made, each consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument, observations as before, but in reversed order, times noted. The circle was used in XI positions. Observers, C. O. Boutelle and F. D. Granger. Probable error of a single result $\pm 1'''$ 02.

Result for azimuth from observations of α Ursæ Minoris at various hour angles, in October and November, 1879.

Azimuth of Mark, east of north

Diurnal aberration

Azimuth of Mark

Azimuth of Mark

Angle between Mark and Bull Run

Azimuth of Bull Run

38. MARYLAND HEIGHTS, MARYLAND. $\varphi = 39^{\circ} 20'$:5. $\lambda = 77^{\circ} 43'$:0.

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station; the mark was on a hill back of Knoxville distant about 3½ miles. Thirty-five sets of observations were taken, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle was used in V positions. Observers, C. O. Boutelle and F. D. Granger. Probable error of a set or single result ± 1"10.

Result for azimuth from observations of a Ursa Minoris at various hour angles, in October, 1870.

	0	/	//
Mark east of north	108	14	43 '46
Diurnal aberration			+0.32 //
Azimuth of Mark	288	14	43 '78±0 '18
Angle between Mark and Bull Run	70	28	23 '10
Azimuth of Bull Run	358	43	o6 ·88

39. BULL RUN, VIRGINIA.

$$\varphi = 38^{\circ} 52' \cdot 9.$$
 $\lambda = 77^{\circ} 42' \cdot 2.$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station; the mark was on High Point Mountain about 1½ miles distant. Thirty-five sets for azimuth were taken, each consisting of a pointing on the mark, 2 pointings on the star, first direct, second reflected in mercury, reversal of instrument and series of similar observations in the reverse order, times noted. Circle used in VII positions. Observer, C. O. Boutelle. Probable error of a set or single result ±1"*20.

Result for azimuth from observations of a Ursæ Minoris at various hour angles, in October and November, 1871.

	0	1	11
Mark west of north	158	36	29 '98
Diurnal aberration			0'32 //
Azimuth of Mark	21	23	30 °34±0 °20
Angle between Mark and Peach Grove	242	29	57 .81
Azimuth of Peach Grove	263	53	28 °15

40. CLARK, VIRGINIA.

$$\varphi = 38^{\circ} 18' .7.$$
 $\lambda = 78^{\circ} 00' .2.$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station; mark at Rapidan railroad station, nearly 5.54 kilometers distant. Thirty-five sets of observations were taken, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle was used in V positions. Observer, C. O. Boutelle. Probable error of a single set or result±1" og.

Result for azimuth from observations of a Ursæ Minoris at various hour angles, in August, 1871.

	0	1	"
Mark west of north	85	30	59 .64
Diurnal aberration			-0.32 //
Azimuth of Mark ·	94	29	00.68∓0.18
Angle between Mark and Bull Run	107 .	50	27 '09
Azimuth of Bull Run	202	19	27 '77

41. LONG MOUNTAIN, VIRGINIA.

$$\varphi = 37^{\circ} \ 17' \cdot 5.$$
 $\lambda = 79^{\circ} \ 05' \cdot 2.$

The 35^{cm} direction theodolite No. 10 was mounted over the triangulation station; the mark was on belfry of court-house at Lynchburg, about 10 miles distant. Fortysix sets of observations were made, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle

was used in XXIII positions. Observer, A. T. Mosman. Probable error of a set or of a single result $\pm i''$ 54.

Result for azimuth from observations of a Ursæ Minoris at various hour angles, in November, 1875.

```
Mark west of north
Diurnal aberration
Azimuth of Mark
Angle between Mark and Spear
Azimuth of Spear
Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear

Azimuth of Spear
```

42. ELLIOTT KNOB, VIRGINIA.

$$\varphi = 38^{\circ} \text{ 10' } \circ \lambda = 79^{\circ} \text{ 18' } \circ 9$$

The 50^{cm} direction theodolite No. 114 was mounted over the triangulation station, and the collimator was mounted on a brick pier 29 feet distant. Thirty sets of observations were made, each set consisting of a pointing on collimator, 2 pointings on the star, one direct, the other reflected in mercury, times noted, reversal of instrument and series of observations, as before, but in the reverse order. The circle was used in X positions. Observer, A. T. Mosman. Probable error of a single result $\pm 1''$ 50.

Result for azimuth from observations of a Ursa Minoris at various hour angles, in August, 1878.

	0	1	//
Collimator east of north	1	41	34 '52
Diurnal aberration			+0.32 "
Azimuth of Collimator	181	41	34 ·84±0 ·27
Angle between Collimator and Humpback	121	43	49 '53
Azimuth of Humpback	303	25	24 '37

43. MOORE, NORTH CAROLINA.

 $\varphi = 36^{\circ} 23' \cdot 9.$ $\lambda = 80^{\circ} 17' \cdot 0.$

The Simms transit, Coast Survey No. 8, was mounted in the meridian of the triangulation station, 7 feet to the north. Focal length of telescope 1^m ro, clear aperture 7^{cm} , magnifying power 45, pivot inequality for clamp west $+0^s$ o2; resulting value of one division of eyepiece micrometer before November 15, 0" 4870 and after changing focus to the close of the series 0" 4804 \pm 0" 0002. Value of one division of level B = 1" 11.

In connection with the observations for time, those for azimuth proper consist of micrometric measures between the verticals of the star and mark. The light at the mark was shown through a ¾-inch aperture; it was distant from the station 5½ miles and appeared under an angle of depression of 2° 25′.

A set of observations generally consisted of 7 or 11 transits (times noted by a sidereal chronometer) of the star over the micrometer thread set in advance to a whole or to half a turn, instrument clamp west. In connection with these, from 5 to 10 pointings were made on the mark, with clamp east, and the same number with clamp west. The level was recorded with each set. When measuring the horizontal angle between the mark and the line to Buffalo the transit instrument was used as a collimator. The right ascensions of the stars were taken from the best sources available. Observer, A.T. Mosman. Probable error of a single result for azimuth as derived from all the stars ± 1 " to.

Summary of results for azimuth at Moore, North Carolina.

[The tabular results include the correction for diurnal aberration.]

Date. 1876.	Star observed near np- per culmination.	Mark E.of N.	Date. 1876,	Star observed near low- er culmination.	Mark E. of N
Nov. 15	1879 T. Y.C.	23.96]	Nov. 15	€ C Draconis	11 11
2.00.	a Urs. Min.	21 .83 22 .90	1404. 15		25 '69 22 '66
		21 03)		32 Camelo.	19.63]
Nov. 21	11 Cephei	21 '31	Nov. 21	ι Draconis	24 '84)
	79 Draconis	24 .58 55 .66		32 Camelo.	26.10 25 47
	a Urs. Min.	23 '38)			
Nov. 22	β Cephei	25 '08)	Nov. 22	ι Draconis	21 '21)
	11 Cephei	24 '89 24 '80		9 Draconis	21 '91 20 '89
	a Urs. Min.	24 '42		32 Camelo.	19.56
Nov. 24	11 Cephei	24 '24]	Nov. 24	Draconis	
21011	226 Cephei	24 '16 23 '07	2101. 24	o Draconis	23 '30 22 '88
	a Urs. Min.	20.81		y Dracoms	22 '46]
Nov. 26	11 Cephei	25 '14	Nov. 26		23 '22
	79 Draconis	22 .81 53 .23		9 Draconis	22.63 23.51
	226 Cephei	22.63		A Draconis	23.78
Dec. 1	79 Draconis	26 *68	Dec. 1	9 Draconis	23 *15
Dec. 2	11 Cephei	27 .82	Dec. 2	9 Draconis	21 '37]
	79 Draconis	26.63		λ Draconis	22.76
	γ Cephei	22,32		4 Draconis	22 '71 21 '44
	a Urs. Min.	23 '97]		к Draconis	20 *99
Dec. 3	11 Cephei	25 '99]		32 Camelo.	19.39
	79 Draconis	25.17	Dec. 3	32 Urs. Maj.	22 '54)
	γ Draconis	24 17 25 15		9 Draconis	22.55
	4 163 Groom.	25.73		4 Draconis	20 '92 21 '26
	a Urs. Min.	24 '67)		« Draconis	20 92
Dec. 5	226 Cephei	26 '33]		32 Camelo.	19°39
	y Cephei	22.60	Dec. 5	o Draconis	23 '20]
	4 163 Groom.	24 '24 24 24		κ Draconis	21 '43 22 '19
	a Urs. Min.	23.71		32 Camelo.	21 '94
		-0 1-7		0	341

Daily mean values of mark E. of N. from stars at upper and at lower culminations:

	11	11
Nov. 15	22 .78≟	0 '55
21	24 '23	0.20
22	22 '85	0 '45
24	22 .98	0.20
26	23 '37	0.45
Dec. I	24 '91	0.78
2	23 '32	0.37
3	23 '20	0 °34
5	23.51	0 '42
*** * * . *		

Weighted mean 23 '30±0 '15

Azimuth of Mark
Angle between Mark and Buffalo
Azimuth of Buffalo

180 00 23 '30±0 '15
21 26 52 '11
158 33 31 '19

4192—No. 7—02—23

44. YOUNG, NORTH CAROLINA.

 $\varphi = 35^{\circ} 44' \cdot 4.$ $\lambda = 80^{\circ} 38' \cdot 9.$

The 50^{cm} direction theodolite (Würdemann) No. 3 was mounted over the triangulation station. The azimuth mark was placed on top of a barn on Solomon Hall Place, distant 4.86 miles, and the light was shown through an aperture ½ inch in diameter. A set of observations consisted of a pointing on the mark, telescope direct, 2 observations, with time record of the star, one pointing with image direct, the other with image reflected in mercury.* The telescope was then reversed and 2 observations on star, direct and reflected, and a pointing of the mark, telescope reversed, completed the set. Observer, C. O. Bontelle. Probable error of a single result for azimuth ±1"14.

Summary of results for azimuth at Young, North Carolina.

a lire	e Minoris s	t various hour	ลแตโคร	a Liv	sæ Minoris a	t various hou	ranoles
Date.	Position.	Mark E. of N.	Mean by positions.	Date.	Position.	Mark E. of N.	Mean by positions,
1876.		0 / //	"	1876.		0 / //	"
Oct. 10	I	7 20 25 04)		Oct. 12	V1	7 20 26 09)	
	1	26 '20}	24 '33		VI	22.93	23.76
	I	21.75			VI	22 26	
	11	25 '85)			VII	26.07	
	II	23.79	24 *60		VII	24.72	24 *87
	11	24.16			VII	23 *83	
Oct. II	III	22 '73			VIII	26 '36	
	I11	22.46	23 *14		VIII	24.78	25.68
	111	24 '23			VIII	25 *89	
	IV	25 '08)		Oct. 13	IX	26 *21	
	1V	22,55	23 '29		IX	26 94	25 °68
	IV	22.27			IX	23 .88	
	v	22 67			X	23 13	
	v	22 *24	22.38		X	21 '94	22.76
	v	22.53			X	23 '22	
					XI	24 '57	
					XI	26 . 92	26.19
					XI	27 *00)	
					Mean	7 20	24 *24 ±0" *2
				o	/ //		
	Mean,	Mark east of	north	7	20 24 2	1	
	Diurnal	aberration			+0 '31	. //	
	Azimut	h of Mark		187		5±0 '26	
		etween Mar	k and Poo		. 00		
		h of Poore	k and 100	126			
	Azımut	n or Poore		120	52 53 69)	

^{*}The mercury was covered by a mosquito net to prevent any disturbance of the surface by wind.

45. KING, NORTH CAROLINA.

 $\varphi = 35^{\circ} 12' \cdot 2$ $\lambda = 81^{\circ} 18' \cdot 8.$

The 50^{cm} direction theodolite No. 3 was mounted over the triangulation station. The azimuth mark was placed on the roof of a store near Kings Mountain R. R. station, distant 2.79 miles from King, and light was shown from a bulls-eye lantern through a hole of ¾-inch diameter. A set of observations consisted of a pointing on the mark, telescope direct, 2 observations of the star, one with image direct, the other with image reflected in mercury, with time record. The instrument was then reversed and 2 observations of the star were made, one direct, the other a reflected image, and one pointing on the mark concluded the set. Observer, C. O. Boutelle. Probable error of a single result for azimuth ±0" 98.

Summary of results for azimuth at King, North Carolina.

	a Ui	rsæ	Minoris at	various hour au	igles.	α	Ursæ	Minoris at	various hour :	angles.
	Date.		Position.	Mark W. of N.	Mean by positions.		te.	Position.	Mark W. of N	Mean by positions
	1877.			0 / //	"	18	77-		s / //	"
Ma	ay 2	S	I	40 01 07 13		May	30	VII	40 01 09*32	1
			I	05.11	06 *24			VII	05 *94	07.32
			I	06.47				VII	06°70	j
			II	08.72		May	31	VIII	08 14)
			II	09.16	08 *00			VIII	07 .64	07.13
			II	06.15]				VIII	05.60	J
Ma	y 2	9	III	05 '90				IX	09 *31	
			III	06 '24 }	06.30		•	IX	09.22	09.29
			III	o6·77 J				IX	09 02	J
			IV	06.41	4	June	1	X	05 *25)
			IV	05 '99	05*81			X	04 .69	05.12
			IV	04 74				X	05.20	Í
			V.	06.21				XI	07 '94	
			v	06.51	06°40			XI	07 '91	07 °93
			v	06.49				XI	07*94	
Ma	ly 3	0	VI	06.90				Mean	40 01	07.07±0".25
			VI	08 37	08.10				·	
		ш	VI	09°31 J			- 0			
							0	, ,,		
			Mean, Ma	ark west of no	orth	_	10 0	O7 '07		
			Diurnal a				-	o'3I	//	
			Azimuth o			7.0	39 5	_		
					nd Donn #				-0 23.	
				ween Mark a	nd benn "		I 3			
			Azimuth o	or Renn		14	11 3	3 36.9		

^{*} This angle is somewhat uncertain owing to large corrections to directions Young and Paris, required by the adjustment of the triangulation.

46. PARIS, SOUTH CAROLINA.

$$\varphi = 34^{\circ} 56' \cdot 5.$$
 $\lambda = 82^{\circ} 24' \cdot 7.$

The 50^{cm} theodolite No. 3 was mounted over the triangulation station. The azimuth mark was 1'4 miles distant from the station, and the light was shown through an opening one-half inch in diameter. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one with image direct, the other with image reflected in mercury, with time record. The instrument was then reversed, and 2 more observations of the star, direct and reflected, were made, and the set was completed by an observation on the mark. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm 1''$ 15.

Summary of results for azimuth at Paris, South Carolina.

a Ursa	Minoris at	various hour an	gles.	a Ursæ Minoris at various hour angles.					
Date.	Position.	Mark E. of N.	Mean by positions.	Date.	Position.	Mark E. of N.	Mean by positions.		
1875.	1	0 / //	"	1875.	1	0 / //	11		
Oct. 23	1	157 59 59 18		Oct. 31	VII	157 59 64.76)			
Oct 24	I	58.54	E0 *40		VII	62,16	62.59		
	1	59 *25	59 30		VII	60.84			
	1	60 '22		Nov. 1	VIII	61.12			
Oct. 25	II	58.02)			VIII	61.95	61, 20		
	11	61 ,66	60 *64		VIII	60.21			
	11	61 .88		Nov. 17	IX	58:37)			
Oct. 26	111	59 75			IX	62.37	61.05		
	III	64 61	62.42		IX	62.41			
	111	62 90		Nov. 18	x	58 * 15]			
Oct. 27	IV	59.50)		Nov. 20	x	61.16	59-54		
	IV	61.63	60°40		X	59 31			
	IV	60 '36			XI	61.88			
Oct. 28	v	59 73	6-100		XI	62.63	61.94		
	v	62.24	60 '98		XI	61.31			
Oct. 30	VI	59.63			Mean	157 59	60 '99±0" '21		
	VI	61 '93	60 *87			*37 39	00 99 20 21		
	VI	61.06							
					0 /	//			
	Moon	Mark east of	north						
	,	l aberration	HOLLII	1	0	0.99			
						0.3.			
		th of Mark			-	1 '30±0 '21			
		between Mar		fford	70 41 4	6.13			
	Azimu	th of Wofford	1	2	e67 18 1	5 '17			

47. CURRAHEE, GEORGIA.

 $\varphi = 34^{\circ} 31' \cdot 6.$ $\lambda = 83^{\circ} 22' \cdot 6.$

The 50^{cm} theodolite No. 3 was mounted over the triangulation station. The mark was placed on the roof of a store at Toccoa village, distant between 3 and 4 miles, and was about 600 feet below the top of the mountain; the light was shown through an opening three-fourths of an inch in diameter and appeared under an angle of depression of less than 2°. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one by direct vision, the other by image reflected in mercury, with time record. The instrument was then reversed and the preceding observations were repeated in the reverse order. Observer, C.O. Boutelle. Probable error of a single result for azimuth ±1"·47.

Summary of results for azimuth at Currahee, Georgia.

a Ursa	e Minoris at	various hour a	ingles.	a Urs	sæ M	inoris	at various hour	angles.
Date.	Position.	Mark E. of N.	Mean by positions.	Date.	Pos	ition.	Mark E. of N.	Mean by positions.
1874.		0 / //		1874.			0 / 1/	
Oct. 25	1	36 20 40 63	**	Nov. 2	1	VII	36 20 38 36)	"
	I	39.60	40°46			VII	38°31 }	38 67
	I	41 14				VII	39 34	
	II	38 '55		Nov. 4	1	VIII	36.20	
	II	38.33	37 °77	Nov. 6	1	VIII	36 °58 }	36.16
	II	36 42			1	VIII	35 *39	•
Oct. 29	111	39 '93		Nov. 13		IX	32.20	
	III	38 *32	39 *72			IX	33*15 }	32 *89
	III	40 '90			-	IX	33 02	
	IV	36.74				X	40.28	
	IV	35 .76	36°12			X	37 °01	37 *87
	IV	35 *85				\mathbf{X}	36°31	
Oct. 30	V	37 '42		Nov. 14		XI	35 *77	
	v	37 14	37 *96	Nov. 15		xI	35.21	36°06
	V	39.31				XI	36 -89	
	VI	38 37				Mean	36 20	37 '41 ±0" '42
	VI	38.45	37 *81				30 20	3/ 4-2- 4-
	VI	36 °62						
					0	1	11	
	Mean.	Mark east of	north		36	20	37 '41	
	,	aberration			0		-0.3I "	
		h of Mark			216		37 '72±0 '42	
	0	etween Mar	k and Kar	-	331	49	50.14	
	Azimut	h of Rabun		I	188	10	27 '89	

48. SAWNEE, GEORGIA.

$$\varphi = 34^{\circ}14'$$
 1. $\lambda = 84^{\circ}$ 09' 7.

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station. The azimuth mark was placed on a hill north of the village of Cumming, 2·7 miles distant from Sawnee; light was shown through a half-inch opening and appeared under an angle of depression of 2° 38'·7. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one of image direct, the other of image reflected in mercury with time record. The instrument was then reversed and the preceding observations were repeated but in the reverse order. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm 1''$ ·50.

Summary of results for azimuth at Sawnee, Georgia.

a Urs	sæ Minoris a	at varions hou	r angles.	a Urs	u Ursæ Minoris at various hour angles.					
Date.	Position.	Mark E. of N.	Mean by positions.	Date.	Position.		Mean by positions.			
1873.		0 / //	"	1873.		0 1 11	**			
Oct. 13	IV	139 25 19 01		Oct. 17	. I	139 25 17 96				
	IV	21.17		·	I	21 *95				
	IV	19.67	19.18		I	18.66	20 *86			
	IV	17 '90			I	21 *28				
	IV	18.12		Oct. 21	I	24 47				
Oct. 14	v	17 '25 }			II	16.02				
	v	21 '62			II	18.75				
	v	22.08	19.84		II	14.71	16.67			
Oct. 15	v	16.07			II	16 *60				
	v	22.17		•	II	17°24 J				
	VI	19 '95 }		Oct. 22	111	16.90				
	VI	19.98			III	16.66				
	VI	18.31	19.05		III	16.01	17°16			
	VI	17 °62			III	19.12				
	VI	19 '38			III	17.13)				
Oct. 16	VII	20.64			Mean	139 25	19.06 ±0" .41			
	VII	21 *18			212 CU11		•			
	VII	20 *90	20.68							
	VII	21 '00								
	VII	19.69								
					0	, ,,				
	Mea	n, Mark east	of north		139 2	5 19.06				
		nal aberratio			-37 -	+0.31 "				
		uth of Marl			210 0	1031				
					319 2	- 4				
	-	le between M		urranee	286 o					
	Azin	uth of Curr	anee	*	245 3	4 26 12				

49. ATLANTA MIDDLE BASE, GEORGIA.

$$\varphi = 33^{\circ} 54' \cdot 3$$
 $\lambda = 84^{\circ} 16' \cdot 6.$

The 75^{cm} theodolite No. 1 was mounted over the triangulation station. The azimuth mark was located at the north end of the base, 3 miles distant from Middle Base; light was shown through a half inch aperture.* A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one observation with star direct, the other with image reflected in mercury, with time record. The instrument was then reversed and the preceding operations were repeated, but in the reverse order. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm 1'''61$.

Summary of results for azimuth at Atlanta Middle Base, Georgia.

a Ursa	e Minoris at	various hour	angles.	a Ursa	e Minoris at	various hour ar	igles.
Date.	Position.	Mark E. of N.	Mean by position.	Date.	Position.		Mean by position.
1873.		0 / //	"	1873.		0 / //	<i>"</i>
Jan. 11	I	52 08 03 16		Jan. 24	v	52 08 10.16	
	I	04 *02			v	07.12	
Jan. 12	1	06 *30	04.76		v	o8*o6 }	07 *24
	I	95 '37			v	05 *4-+	
	I	04 '93			v	05 '44	
Ja11. 14	II	06,33		Jan. 27	VI	07 '51	
	II	03 *35			VI	08°35	
	II	04 92	04 *44	Jan. 31	VI	08 82	09 '04
	II	03.80			VI	09 '46	
	II	03.70			VI	11.08	*
Jan. 21	III	07 *82		Feb. 4	VII	07.68	
	III	08 99		Feb. 5	VII	05*08	
	III	10.47	09 '55	Feb. 8	VII	04 *97	05*88
	IİI	09.56			VII.	o6 ·86	
	III .	11.53			VII	04.83	
Jan. 23	IV	10.01			Mean	52.08	97 '16±0" '55
	IV	08 *75			2,204.1	32 00	07 10±0 33
	IV	09 82	09.13				
	IV	09.96					
	IV	07:37					
						0 / //	
Me	an, Mark	east of north	ı			52 08 07 1	6
Dit	irnal aberi	ation				+0 '3	I
Azi	muth of N	Tark			2	32 08 07 4	
	duction to		•			-1.8	
		center at No	ethonet De	00			
						-o '3'	•
		n Northeast		Stone Mo		80 14 23 6	
Azi	muth of S	tone Mounta	iin		3	12 22 28 9.	4

^{*}The station is 1'665 inches, or om'0423 to the west and north out of line of the base; the center of aperture was 9mm-7 east of Northeast Base.

50. LAVENDER, GEORGIA.

 $\varphi = 34^{\circ} 19' \cdot 3$ $\lambda = 85^{\circ} 17' \cdot 3$

The 30^{cm} repeating theodolite No. 32 was mounted over the triangulation station. Focal length of telescope 54^{cm} ; aperture 5^{cm} ; magnifying power 28 and 48.* The azimnth mark was located at the secondary station Coosa, 6.9 miles distant, and nearly at the same height as Lavender. For the first fifteen nights the light was shown through a three-fourths inch opening; after that it was enlarged to $1\frac{1}{2}$ inches. A set of observations consisted of 12 repetitions of the horizontal angle between mark and star, one-half of these with telescope direct and one-half with telescope reversed, and observing the star alternately direct and reflected in mercury. Observer, F. P. Webber. Probable error of a single result for azimuth ± 1 " 92.

Summary of results for azimuth at Lavender, Georgia.

a Urste M	inoris at various hour angles	š.	a Ursæ Minoris at various hour angles.						
Date.	Mark E. of N.	Δ	Date.		Mark	E. 0	f N.	Δ	
1874.	0 / //	//	1874.		0	1	"	"	
Nov. 13	153 16 53 25	6.58	Nov.	25	153	16	41 .82	5 '15	
	47 '01	0.01	Nov.	29			43 *90	3 '07	
	52.55	5 .58					49 .62	2 .65	
Nov. 21	51 '45	4 '48					43 '03	3 '94	
	48 '40	1 '43					48.11	1.17	
	50.68	3 '71	Nov.	30			47 '27	0.30	
	44 *27	2 '70		ĺ			47 '23	0 .56	
	48 .48	1.21					46 .94	0 .03	
Nov. 23	46 '37	0.60					48 ·2 8	1.31	
	45 '26	1 .21					44 '00	2 '97	
	48 '94	1 '97					42.48	4 '19	
	44 *46	2 .21	Dec.	2			4 5 '7 3	1 '24	
Nov. 25	47 *44	0 '47		1			47 '33	0.36	
	47 '06	0 '09		- 1			47.08	0.11	
.	43 '71	3 °2 6			Mean 153	16	46 '97±0". 36	5	
	•		. 0	,	"		. ,,		
	Mean, Mark east of n	orth	153	16	46 .97				
	Diurnal aberration				+0.31				
		153	16	47 °28±0". 3	36				
Angle between Mark and									
	Azimuth of Kenesaw	`300	II	29.11					

^{*} Two eyepieces were used at this station.

51. AURORA, ALABAMA.

 $\varphi = 34^{\circ} \text{ o8}' \cdot 8.$ $\lambda = 86^{\circ} \text{ i1}' \cdot \text{o.}$

The 30^{cm} direction theodolite No. 108 (Troughton & Simms) was mounted over the triangulation station. Focal length of telescope 0^m·75, aperture 7^{cm}·5, magnifying power 60. This instrument was used here for the first time.* The azimuth mark was seen under an angle of depression of 0° 37'·3. A set of observations consisted of a pointing on the mark with telescope direct, followed by 2 observations of the star, one with image direct, the other with image reflected in mercury. The telescope was then reversed and the star and mark were observed as before, but in the reverse order. Observer, F. P. Webber. Probable error of a single result for azimuth ±3"'08.

Summary of results for azimuth of Aurora, Alabama.

a Urs	æ Miuoris at	various hour ang	gles.	a Ursæ Minoris at various hour angles.						
Date.	Position.	Mark E. of N.	Means.	Date.	Position.	Mark E. of N.	Means.			
1877.		0 / //	"	1877.		G / //	11			
June 19	I	66 46 50'5	49 *4	June 25	X	66 46 46 7	47°5			
June 20	I	48.3	49 4		X	48.3 ∫	4/ 3			
	11	45 *9 }	44 *3		XI	49 '3 \	50 '0			
	11	42.8	44 0		XI	50 .4	30 0			
	III	43 '8	48 1		XII	53 '4	52*8			
	,111	52.4	42 6		XII	52'3	32 0			
	IV	54 '5 }	53 *7		XIII	58.5	57*3			
June 24	IV	52 9	33 /		XIII	56.4 ∫	37 3			
	V.	58.6	59 °3	June 26	XIV	54 '9 }	55 '8			
	V	59 ℃	39 3		XIV	56.7 ∫	22 0 .			
	VI	54°4]	54.6	1	XV	51.6	52 '2			
	VI	54 '9	34 0		XV	52.7	32 2			
	VII	47 '7]	48.2	1	XVI	48.1	48 *4			
	VII	48.8	40 2		XVI	48.7	40 4			
	VIII	46.4	44 *7		XVII	47.0	49 1			
	VIII	42°9 J	44 /	June 27	XVII	51 .5	49 *			
	IX	47.5	46°0		Mean	66 46	50.67±0".72			
	IX	44 *4	400			·	0 , ,			
				0	, ,,					
	Mean, Man	rk east of north	1	66	46 50 6	7				
	Diurnal ab	erration			+0.3	I				
	Azimuth o	f Mark		246	46 50 9					
		ween Mark and	Rrande		19 38.3					
	Azimuth o		. mand							
	AZIIIIUIN O	Diangon		236	06 29 3	3				

^{*}The graduation of the horizontal circle was afterwards found to be defective.

52. KAHATCHEE, ALABAMA.

 $\varphi=33^{\circ} 13'.7.$ $\lambda=86^{\circ} 21'.6.$

The 25^{cm} repeating theodolite (Gambey) No. 63 was mounted over the triangulation station. The azimuth mark was located near the station Horn, distant 17'3 miles; light was shown from a signal lamp. A set of observations consisted of 6 repetitions of the horizontal angle between mark and star, 3 with telescope direct and 3 with telescope reversed, with the requisite time and level readings. One-third of the sets measured the angle star and mark. Value of one division of level=2"67 at 24° C. Observer, O. B. French. Probable error of a single result for azimuth ±0"98.

Summary of results for azimuth at Kahatchee, Alabama.

	α Ursæ Minoris at various hour angles.							a Ursæ Minoris at various hour angles.						
Date.		Ma	irk E	of N.	Δ	Dat	te.			· Ma	ark E	of N.	Δ	
1898.		0	/	//	//	189	8.			0	1	11	"	
June	6	73	32	15.3	-o ·2	June	7			73	32	09.8	-2.7	
				12 'I	-o ·4	June	8					11.7	-o.8	
			•	13 '7	+1.5							15.1	-0.4	
				11.8	-0.7							12 '7	+0.3	
				10.8	-ı ·7							12 '4	-o.i	
				11.3	-ı.3							13 '0	+0.2	
				15 '7	+3 .5							13 '4	+0.9	
				12.3	-o ·2							13 '0	+o ·5	
				15 .6	+3.1							13 '9	+1.4	
				14 '0	+1.2							13 .6	+1.1	
	- 1			14 '0	+1.2							12 'I	-0.4	
				15 '1	+2 .6			1				12.8	+0.3	
				13 '4	+0.9							12 '2	-o ·3	
				11.0	-1.2	June	9					11.7	-o·8	
June	7			13 .6	+1.1							13 '4	+0.9	
				09.4	-3·I							11.6	-0.9	
				11.8	-0.7							12 '1	-0'4	
				11.5	-1.3							11'3	-1.3	
	1			10.3	-2 '2			,	Mean	72	20	10:40	±0// 176	
										13	32	12 49	±0′′.16	
		,	fonn	Mark	east of north		0	/	10:4					
	Diurnal abe					73	32	+0 '31		//				
Azimuth of				•	253	32	12 '80							
Angle between			en Mark and H	Iorn	30	J	0 '00							
		A	zim	uth of	Horn		253	32	12.80)				

53. ETHRIDGE, ALABAMA.

$$\varphi = 32^{\circ} \text{ o4'.7.}$$
 $\lambda = 87^{\circ} \text{ o3'.5.}$

The 25^{cm} repeating theodolite (Gambey) No. 63 was mounted over the triangulation station. The azimuth mark was placed over the station Lovers Leap, distant 15·2 miles. A set of observations consisted of 6 repetitions of the horizontal angle between mark and star, 3 with telescope direct and 3 with telescope reversed, with the requisite time and level record. One-half of the sets were made with the angle mark and star, the other with star and mark. Value of one division of level 2" 67 at 24° C. Observer, O. B. French. Probable error of a single result for azimuth ±0" 95.

Summary of results for azimuth of Ethridge, Alabama.

	а	Ursæ Minoris at	vari	ous hour	angles.	a Ursæ Minoris at various hour angles.						angles.
Da	te.	Ма	rk E	of N.	Δ	Da	te.		Ma	rk E	of N.	Δ
180	8.	٥	1	11	//	189	8.		0	1	//	. "
June	16	65	52	46 .9	+2.1	June	23		65	52	48 .4	+0.3
				48 %	+1.o						47 '9	+1.1.
				46 .0	+3 *0	June	24				48 .4	+0.6
				50.0	-ı ·o						50.0	-1.0
June	23			48 '1	+0.9						50.0	-ı .o
				45 '7	+3-3						49 3	-o.3
				48 *4	+0.6						21.1	-2 ·I
				49 °9	−o · 9		•				50.0	o: 1-
				48.9	+0.1						49 °0	0.0
				49 °1	- o.1						50 °0	-ı ·o
				48 .4	+0.6						51.9	−2 •9
				47 '6	+1.4						49 '2	O '2
				48 .6	+0.4						48 '9	+0.1
				49 '4	-o ·4						49 '9	-0.9
		K		47 '2	+1.8						50.0	o. 1 —
		D		49 '8	-o.8						51 .6	2.6
								-	_			

Mean 65 52 49 00±0" 17

Mean, Mark east of north Diurnal aberration Azimuth of Mark Angle between Mark and Lovers Leap Azimuth of Lovers Leap 65 52 49 00 +0 31 " 245 52 49 31±0 17 0 00 245 52 49 31 54. FORT MORGAN, ALABAMA.

 $\varphi = 30^{\circ} 13'.8.$ $\lambda = 88^{\circ} 01'.4.$

The 60^{cm} direction theodolite No. 2 (Troughton) was mounted over the triangulation station; focal length of telescope, 78^{cm}; aperture, 52^{cm}; magnifying power, 30 and 40.* A set of observations consisted generally of 3 pointings on the mark, telescope direct, and 3 pointings on same, telescope reversed; from 3 to 6 observations of the star, telescope direct, with time and level record. The instrument was then reversed and the preceding observations of star and mark were repeated, but in the reverse order. Some sets begin and end with 6 pointings on the mark, the reversal of the instrument taking place in the middle of the star observations. Value of one division of level, prior to April 21, 1".66; after that date 2".92. Observer, R. H. Fauntleroy. Probable error of a single result for azimuth ±0".75.

Summary of results for azimuth at Fort Morgan, Alabama.

a Ursa	e Minoris n	gation.	a Urs	sæ 1	Mino	ris ne	аг еа	aste	rn elong	ation,			
Date.	Position.		ark of N.	Δ	Date	١.	Pos	ition.	,		of N.		Δ
1847. Apr. 12 13 May 5 9 10	I II III V IV II	151 44	59°16 62°32 59°64 61°01 60°58	" +0 '94 +1 '20 -1 '96 +0 '72 -0 '65 -0 '22	1847. Apr. 1.	6 6 9	I III V IV		0 151	44	" 59 '32 58 '48 60 '55 60 '67 61 '18	+1 -0 -0	" '72 '56 '51 0'63 '14
`	Mean of Diurnal a	groups iberrat of Mar	ion rk Mark a	nd Cedar	Point		28 115 143	44	60 ·	20. 31 11=	// 		

^{*}Two eyepieces used.

EAST PASCAGOULA, MISSISSIPPI.

 $\varphi = 30^{\circ} 20'.7.$ $\lambda = 88^{\circ} 32'.8.$

The 60^{em} direction theodolite No. 2 (Troughton) was mounted over the triangulation station; focal length of telescope, $78^{\rm cm}$; aperture, $5^{\circ}2^{\rm cm}$; magnifying power, 30 and 40.* A set of observations generally consisted of 6 pointings on the mark, telescope direct, 6 observations of the star, with time and level record. The instrument was then reversed and the preceding observations were repeated, but in the reverse order. One division of level $=2^{\prime\prime\prime}$ 92. Observer, R. H. Fauntleroy. Probable error of a single result for azimuth $\pm 1^{\prime\prime\prime}$ 18.

Summary of results for azimuth at East Pascagoula, Mississippi.

a Ursæ	Minoris n	ear eastern elong	ation.	a Ursæ	sæ Minoris near western elongation.				
Date.	Position.	Mark W. of N.	Δ	Date.	Position.	Mark W. of N.	Δ		
1847.		0 / //	,,	1847.		0 / //	"		
June 12	II	147 06 16:97	+1 *77	June 14	I	147 06 14 47	+3.25		
13	III	17.55	+1 *19	15	III	19 °04	-1.32		
14	1	20 10	-1.36	18	v	20°15	-2.43		
15	V	20.78	-2.04	26	IV	18°27	-o ·55		
18	IV	18.17	+0.57	July 9	II	17 '90	0.18		
24	v	18.85	-0.11	12	III	16.20	+ 1 .55		
	Mean	147 06 18.74±0	" ' 41		Mean	147 06 17.72±0	o'' *55		
					. 0	, ,,			
Mean	of groups	S			147	06 18 23			
Diurn	al aberrat	tion				-0.31	//		
Azimu	th of Ma	rk	32	53 42 ·08±0	*34				
		East Pascagou	-	22 50.81	J.				
0		you Casotte	296	30 51 '27					
AZIIII	ien of Day	you casotte			290	30 31 2/			

^{*} Two eyepieces used.

56. CAT ISLAND 1855, MISSISSIPPI.

 $\varphi = 30^{\circ} \text{ 14}' \cdot 2.$ $\lambda = 89^{\circ} \text{ 04}' \cdot 1.$

The 75^{cm} transit Coast Survey No. 9 (Würdemann) was mounted over the triangulation station. A mark was placed in the vertical of the western elongation, and the horizontal difference between star and mark measured by means of the pivot micrometer, which is ordinarily employed for adjusting the transit in azimuth.* A set of observations consisted of 2 pointings on the mark and 6 on the star, with time and level record, one-half of these observations being made with clamp east, the other with clamp west. Value of one division of micrometer 2"18, and of one division of level 2"0. Observer, J. E. Hilgard. Probable error of a single result for azimuth ±0"57.

Summary of results for azimuth at Cat Island 1855,† Mississippi.

a Ursæ Minoris near western elongation.

Date.	M	ark V	V. of N.	7
1855.	0	,	//	//
Dec. 5	I	41	10 *20	-o ·67
			09 '71	-o.18
			09 *55	-o °02
			o8 ·81	+0.72
			08 '33	+1.50
			10.28	-ı ·o5
Mean	I	41	09 °53±0"	*23

	0	/	//
Mean, Mark west of north	I	41	09 *53
Diurnal aberration			-o ·31 //
Azimuth of Mark	178	18	50 '78±0 '23
Angle between Mark and Mississippi City	13	52	23 '54
Azimuth of Mississippi City	192	I 1	14 '32

^{*}The instrument was overturned in a storm and the threads of its diaphragm were broken; a new single thread was put in and served for the time and azimuth observations.

[†] The triangulation of which this station is a part is of secondary character with respect to size and precision, and there is no check of the above result for azimuth, suc—as, for instance, repeating the measures on other dates. The elongation occurred about the 3d of the above 6 consecutive measures.

PART IV.

DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THE TRIANGULATION.

OCATION OF PRINCIPAL ARC MEASURES AND AREAS OF OSCULATING SPHEROIDS U. S. COAST AND GEODETIC SURVEY O. H. TITTMANN, SUPERINTENDENT. 1901

TREASURY DEPARTMENT

DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THE TRIANGULATION.

A. COMPARISONS OF THE ASTRONOMIC AND GEODETIC RESULTS AT STATIONS CONNECTED WITH THE OBLIQUE ARC.

Parts II and III contain the necessary statements and results for the next operation, namely, the direct comparison of the astronomic latitudes, longitudes, and azimuths with their corresponding values derived geodetically by development of the triangulation upon the Clarke spheroid of 1866. In doing this the geodetic data for the station *Hays*, *Kansas*, as given in the account of the transcontinental triangulation and arc of the parallel in latitude 39°, have been adhered to. They are:

$$\varphi_0 = 38 \ 54 \ 50 \ 180$$
 $\lambda_0 = 99 \ 16 \ 16 \ 730$
 $\alpha_0 = 359 \ 44 \ 19 \ \infty$ Hays to La Crosse.

We shall thus secure systematic positions which, if desirable, may be made at once available for a determination of an osculating spheroid based upon a surface of wider geographic limits than is contemplated in this discussion.

As early as the year 1879 the writer made a preliminary comparison of the astronomic and geodetic measures then available.* The stations included extend from Calais, Maine, to Atlanta, Georgia. That discussion furnished the first comprehensive information of the relative magnitude and distribution of the outstanding differences between the astronomic and geodetic results in the United States, the latter as developed on each of two reference spheroids. It led to the adoption of the Clarke spheroid of 1866 for use by the Coast and Geodetic Survey.

As a matter of general interest, the location of the principal arc measures and areas of osculating spheroids is shown on a Lambert equivalent zenithal projection upon a meridional plane and transferred from a hemi- to a plani-sphere,*constructed by Adolph Lindenkohl, of the Drawing Division, Coast and Geodetic Survey, for this special use. Lambert himself pointed out how the whole surface of the sphere could be represented, a fact stated again in Littrow's admirable work, Chorographie, etc., von J. J. Littrow, Wien, 1833, page 126.

1. THE ASTRONOMIC LATITUDE STATIONS.

The following table of the comparison of the astronomic and geodetic determinations of latitudes consists of the collection of the latitude results derived from direct observation, given in full in Part III. To these results have been added the reduction to sea level, and the reduction to the average position of the earth's pole of rotation. The tabular geodetic latitude is that of the corresponding astronomic station, the local reduction for any difference of position between the two stations having been applied.

The reduction to sea level.—As a consequence of the earth's rotation producing a slight curvature of the vertical of a station in the plane of the meridian concave toward the pole, a small correction to the observed latitude is required, which is given by the expression

$$i = -\frac{1}{8820} h \sin 2 \varphi$$

where h, or height, is given in meters and i in seconds of arc. The value of the factor $-0.000 \text{ 172 sin } 2 \text{ } \varphi$ for different latitudes is as stated below:

For $\varphi = 50^{\circ}$	- 0,,,000	169
* 45		172
40		167
35		161
30		149

The reduction for variation of pole.—The advisability of introducing into the present discussion of the astronomic and geodetic measures corrections for variation in the position of the earth's axis of rotation largely depended upon the degree of reliability of the values of such corrections. The origin of this motion is at this time imperfectly understood, and the uncertainty in the correction for variation is here considerably increased on account of the early dates of many of our latitude observations, some dating back more than half a century.

In consequence of the importance of the subject the International Geodetic Association for the measurement of the earth has organized a special service for the purpose of procuring data for the study and elucidation of the law of this variation which was first definitely formulated by Dr. S. C. Chandler. The association selected a small number of stations suitably located around the earth, near the parallel of north latitude, 39° 08′ 10″, at which it is intended to prosecute refined latitude observations for a series of years. The range of the variation is small, about 0″ 3 from a mean value, and it requires, consequently, the utmost attainable precision as regards instruments and method in order to bring its periods and ranges into clear evidence.*

The probable error of a correction to an observed latitude may be estimated at \pm 0" o4 for the past decade, but for the earlier dates of our observations this needs to be increased.

These small corrections for variation of latitude, while yet very uncertain, could have no sensible influence upon the results of this investigation for determining a representative spheroid, nor would these small corrections be of any consequence in connection

^{*}When comparing Dr. Chandler's predicted results of the motion of the pole for the years 1890 to 1897½, with results deduced directly from observation, a comparatively large discord is noticed in some places, as might be expected in such an inquiry, nor are these modern observations free from considerable nucertainty.

with the local deflections of the vertical, the average magnitude of which, namely, 2"4,* has been deduced from a large number of comparisons. It has, however, been concluded to apply these small and as yet rather uncertain corrections in the present investigation. The corrections to all latitude results were computed by Chandler's formulæ† except for a few stations where none were needed and for four stations occupied in 1897 and 1898 where Dr. Albrecht's results were introduced in preference, as contained in his report on the state of the latitude variation at the close of the year 1899 [Centralbureau der Internationalen Erdmessung, Berlin, 1900].

About one-half of the corrections thus computed were found to be below o"1, a very few reached o"2, and none exceeded o"25. For the whole are these corrections balance.

The effect of the variation of the position of the pole upon observed differences of longitude is small enough to be negligible and the same is true with reference to the observed azimuths, for which the probable error of observation always exceeds the small correction due to the polar variation.

The headings of the following summary of results need no explanation. The geodetic latitudes were in all cases referred to the astronomic station unless the two stations happened to be located on the same parallel or to be identical in position. The relative position of the stations is stated in the preceding abstracts and the reductions there given are applied to the geodetic latitude with the sign reversed. The last column contains the apparent local deflection of the vertical in the plane of the meridian or the difference (A-G) of the two values in the two preceding columns.

† Astronomical Journal (Gould's), No. 446, October 14, 1898. The formulæ are, for the coordinates,

$$\begin{cases} x = r_1 \sin \left((t - T_1) \theta + 0.095 \sin \left((0 - 308^0) \right) \\ y = r_1 \cos \left((t - T_1) \theta + 0.110 \cos \left((0 - 3^0) \right) \end{cases}$$

$$T_1 = 2.412.646 + 427.0 E - 0.08 E^2$$

$$\theta = 00.843 + 0.000 316 E$$

$$r_1 = 0''.125 + 0.05 \sin \left(2.414.363 - t \right) \times 0^0.015$$

Where

Here t and T_t are expressed in Julian dates, t is the epoch of observation, T_t any epoch when the pole of the figure passes the Greenwich meridian between Greenwich and the instantaneous pole of rotation (this *latter* taken as the origin of the coordinates x and y), E is the number of periods, θ the daily angular motion, r_t the radius vector, and \odot the sun's longitude at the time t.

The variation of latitude $\Delta \varphi = \varphi - \varphi_0 = x \sin \lambda - y \cos \lambda$, where λ equals the longitude of the place west of Greenwich, φ the observed and φ_0 the corrected latitude, as referred to the average or fixed position of the pole.

The day number in the expression for T_I corresponds to the 1st of July, 1893, and that in parenthesis in the expression for r_I to the 14th of March, 1898. The direction of the motion of the pole is from west to east.

^{*}Probable error in the direction of the vertical from all parts of India except portions under Himalay in attraction is about $\pm z''$.8. (Annual Report of the Survey of India, 1893-94.)

Comparison of astronomic and reodetic latitudes.

		•			Reduc	tion—	Secor	ids—	
			Trees and month of	Observed		To	Of as-	Of geo-	
No.	Name of latitude station.	State.	Year and month of observation.	astronomic latitude.	To sea level.		tronomic latitude.	detic lat-	A-G
						-			
1	Calais	Me.	1857 Sept.	0 / "	-0'01	0,00	09.39	03.78	+5.61
2	Cooper	Me.	1859 Sept.	44 59 12 60	-0.04	-0.07	12'49	11'53	+0.00
i	Humpback	Me.	1858 July and Aug.	44 51 47 56	-0.08	-0.11	47 37	49'20	-1.83
3	Bangor	Me.	1857 Sept. and Oct.	44 48 12 87	-0.01	+0.03	12 '89	14'19	-1.30
4	Farmington	Me.	1866 Oct. and Nov.	44 40 19 54	-0.15	-0'07	19 '35	20.78	-1'43
5	Mount Harris	Me.	1855 Ang. and Sept.	44 39 54 66	-0.07	+0.00	54 '68		+1'97
	Howard	Me.	1859 July	44 39 34 00	-0.01	-0.00		52'71	
7 8	Mount Desert	Me.	1856 Aug., Sept., Oct.	44 37 49 24	-0.08	+0.00	49°17 06°52	45 '24	+3'93
	Ragged Mountain	Me.	1854 Aug., Sept., Oct.	44 12 42 96	-0.02	+0.04		05.19	-0.10
9	Sabattus	Me.	1853 June and July	44 08 37 73	-0.04	-0.03	42.93	43 °03 36 °01	+1.66
10	Mount Pleasant	Me.	1851 July and Aug.	44 01 36 44	-0.11	-0 °09	37.67 36.24	34 '65	+1 '59
11	Cape Small	Me.	1851 Sept. and Oct.		- 0'01	+0.03	-		+2.52
12	Mount Independence	Me.	1849 Sept. and Oct.	43 46 43 69	-0.03	+0.15		41 '45 31 '80	+2.76
13	Gunstock	N. H.	1860 July and Aug.	43 45 34 47	-0'12		34 '56	-	+2.73
14				43 31 03 81		+0 '02	03 '71	00.08	
15	Agamenticus	Me. Me.	1847 Sept., Oct., Nov.	43 13 24 96	-0.04	0,00	24 '92	22.75	+2'17
16	Isles of Shoals	N. H.	1847 Aug.	42 59 12 97	0,00	0.00	12'97	12.87	
17	Unkonoonuc		1848 Sept. and Oct.	42 58 59 34	-0.07	+0.07	59 34	57.85	+1.49
18	Thompson	Mass.	1846 Sept. and Oct.	42 36 38 02	-0.01	-0.03	37 '98	39 '68	-1.70
19	Wachusett	Mass.	1860 Sept., Oct.	42 29 16 13	-0.10	-0.01	16 '02	17 '80	-1.78
20		Mass.	1844, 1845	42 22 48 05	-0.01	• • • •	48 '04	51.48	-3'44
	College Observatory		.0 4					- 0	
21		Mass.	1855 Aug., Sept., Oct.	42 22 40 97	-0.01	• • • •	40.96	44 28	-3.33
	Observatory		00 1 1 1 1						
22	Mount Tom	Mass.	1862 July and Aug.	42_14 27 62	-0.06	+0.06	27.62	27 '84	-0.55
23	Manomet	Mass.	1867 July and Aug.	41 55 35 35	-0.03	+0.08	35 '41	36.41	-1.30
24	Sandford	Conn.	1862 Sept, and Oct.	41 27 40 47	-0.02	+0.12	40 '57	41 '13	0.26
25	West Hills	N. Y.	1865 Aug.	40 48 50 06	-0.03	-0'12	49 '92	53 '28	-3.36
26	New York	N. Y.	1858 June	40 43 48 39	0,00	-0.13	48.36	49'16	-0,00
27	Beacon Hill	N. J.	1875 July and Aug.	40 22 27 81	-0'02	+0'14	27 '93	24 '46	+3 '47
28	Mount Rose	N. J.	1852 July	40 22 05 41	-0.03	0,09	0 0	01 '30	+4 '00
29	Yard	Pa.	1854 Oct., Nov.	39 58 29 39	-0.03	+0.03	29:39	22.67	+6.72
30	Principio	Md.	1866 July, Aug., Sept.	39 35 32.81	0.01	-o °o5	32.75	34 '55	-1 .80
31	Maryland Heights	Md.	1870 Sept., Oct., Nov.	39 20 32 10	-0.04	+0.19	32'19	26 '30	+5.89
32	Pooles Islaud	Md.	1847 June and July	39 17 17 52	0,00	0,00	17.2	13 '52	+4'00
33	Sngar Loaf	Md.	1879 Oct.	39 15 49 71	-0.07	-0.10	49 '54	. 43.65	+5.89
34	Dover	Del.	1897 May	39 09 13 62	0,00	-0.12	13.47	18.59	-5'12
35	Webh	Md.	1850 Oct. and Nov.	39 05 25 21	-0.01	+0.12	25 '35	24'16	+1'19
36	Rockville	Md:	1891, 1892	39 05 10 45	-0.03	****	10.42	09 08	+1'34
37	Soper	Md.	1850 June and July	39 05 10 69	-0.03	-0.06	10.61	09.80	+0.81
38	Taylor	Md.	1847 May	38 59 46 08	-0.01	0,00	46 '07	46 '34	-0.52
39	Strasburg	Va.	1881 June	38 59 31 49	-0.03	+0.10	31.26	27.82	+3.74
40	Cape May	N. J.	1881 May, 1891 May	38 55 44 69	0,00	-0.06	44 '63	46.53	-1,30
41	Causten, Washington	D.C.	1851 May and June	38 55 32 18	-0.03	-0'14	32.03	32 '81	-0.79
42	U. S. new Naval Observ-	D.C.	1893 May, 1897 June,	38 55 13.91	-0.01	-0.19	13 '74	14 '89	-1.12
	atory, Washington.		1893, 1894, 1895, 1896						
43	Hill	Md.	1850 Aug. and Sept.	38 53 52 31	-0.01	+0.00	52'36	52 '24	+0.15
44	U. S. old Naval Observ-	D.C.	1861 to 1864, 1866 to	38 53 38 79	-0.01		38.48	40'12	-1'34
	atory, Washington		1888, 1893						
45	Seaton, Washington	D. C.	1850 June	38 53 25 20	0,00	-0.08	25 '12	26.82	-1.70
46	U. S. Coast and Geodetic	D.C.	1891 Aug., 1892 Aug.,	38 53 07 '43	0,00	-0.08	07.35	10,00	-2.65
	Survey Office, Wash-		1894 Aug.						
	ington								
47	Bull Run	Va.	1871 Sept. and Oct.	38 52 56 79	-0.07	0.00	56.42	52 '08	+4.64
			and the second s						

^{*} For reference data see introductory remarks to Part IV.

Comparison of astronomic and geodetic latitudes—Continued.

					Reduc	tion-	Secon	nds-	
No.	Name of latitude station.	State.	Year and month of observation.	Observed astronomic latitude.	To sea level.	To average pole.	Of as- tronomic latitude.	Of geo- detic lat- itude.	A-G
				0 1 11	"	"	**	11	//
48	Marriott	Md.	1846 June, 1849 May and June	38 52 25 12	-0.01	-o ·o6	25 05	25 *68	-0 °63
49	Cape Henlopen	Del.	1897 Sept.	38 46 40 '00	0 *00	-0.13	39 '88	39*98	-0'10
50	Clark	Va.	1871 July, Aug.	38 18 39*80	-0.06	-o ·14	39 *60	39 .55	+0.38
51	Elliott Knob	Va.	1878 July	38 09 57 51	-0 *23	-0°20	57 °08	57.21	-0.43
52	Charlottesville, McCor-	Va.	1882 Aug.	38 or 60°95	-0.03	+0°17	61 *09	55 '91	+5.18
	mick Observatory								
53	Long Mountain	Va.	1875 Oct. and Nov.	37 17 28 72	-0 '07	+0.10	28 *84	25 '50	+3.34
54	Moore	N.C.	1876 Nov. and Dec.	36 23 54 95	-0.13	+0.23	55 '05	51 44	+3 °61
55	Young	N.C.	1876 Oct.	35 44 21 50	-0 '05	+0 *24	21 .69	12.52	+9.42
56	King	N.C.	1876 Dec.	35 12 13.31	-o °o8	+0.19	13 42	09 '58	+3.84
57	Paris	S.C.	1875 Oct.	34 56 31 96	-0.10	+0.10	32 °05	27.88	+4*17
58	Currahee	Ga.	1874 Sept. and Oct.	34 31 37 75	-0.08	+0.07	37 *74	36 *64	+1.10
59	I.avender	Ga.	1874 Oct. and Nov.	34 19 15 81	o *oS	+0 *02	15 '75	16.01	-0 .56
60	Sawnee	Ga.	1873 Oct. and Nov.	34 14 04°20	-0'10	-o °o7	04 *03	02'93	+1.10
61	Aurora	Ala.	1877 May and June	34 08 47 45	-o °o7	+0.52	47.63	45 '24	+2:39
62	Atlanta Middle Base	Ga.	1872 Sept.	33 54 21 82	-o °o5	-0.11	21.66	19 05	+2.61
63	Atlanta	Ga.	1880 Jan.	33 44 59 °30	-o °o4	+0 02	59.58	56.10	+3*18
64	Kahatchee	Ala.	1898 June	33 13 39 90	-o °o6	-0.10	39 '74	35 *91	+3 *83
65	Montgomery	Ala.	1856 Mar. and Apr.	32 22 45 41	-0.01	-0.19	45 *24	37 * 37	+7.87
66	Lower Peach Tree	Ala.	1857 Apr.	31 50 21,13	-0.03	-o.12	21 '00	18*51	+2.49
67	Coon	Ala.	1898 May	31 14 47 82	10.0	-o ·o7	47 74	48*39	o °65
68	Mobile	Ala.	1856 Dec.	30 41 33 42	0 °00	+0.10	33 *52	28 '91	+4.61
69	East Pascagoula	Miss.	1847 June and July	30 20 40 92	0 *00	-0.01	40 '91	33*59	+7.32
70	Fort Morgan	Ala.	1847 Mar. and Apr.	30 13 47 89	0.00	-0.01	47 '88	40.30	+7.58
71	New Orleans	La.	1858 Jan. and Feb.	29 57 25 28	0 *00	+0 *08	25°36	18,02	+7*31

Review of the preceding latitudinal deflections.—Taking in the whole number of comparisons, there is a preponderance of plus signs in the values of (A-G), viz: 44 with a + and 27 with a - sign. This inequality is most marked in the southern part of the arc where the positive signs predominate, and this is especially the case for stations near the Gulf coast. The mean deflection of the last 4 stations is +6" 6, apparently indicating a deviation of the plumb line directed toward the Gulf. The average value of (A-G) is $+\frac{112}{71} = +1$ " 6. There are several localities where the latitude stations are crowded together, and, consequently, are subject to the same regional deviation. For each of these localities it is desirable to substitute a single station of average or representative value. There are 6 such cases, the latitudes in each group being contained within a space of about 1'. For these groups we have adopted the following values:

	Value of A - G .
Groups.	//
20, 21	-3.3 8
27, 28	+3 '73
35, 36, 37	+1.11
38, 39	+1 .74
40, 41, 42	—ı ·28
43, 44, 45, 46, 47, 48	0 *26

These values, when substituted for the respective tabular numbers, make

$$\frac{\Sigma(A-G)}{n} = +\frac{106}{59} = +1$$
" 8 nearly.

Of these differences 39 are positive and 20 negative. The resulting average $(\pm 1''\cdot 8)$ may be regarded as representing the difference between the standard latitude of the transcontinental arc of the parallel of 39° and that of the eastern oblique arc. This discordance of nearly 2" in the standard latitudes of the arcs at their intersection is not surprising when we examine the regional changes in the values of (A-G) along the arc of the parallel. There are 109 astronomic latitudes connected with the arc of the parallel and 71 with the oblique arc. Of these, 24 are common to both; consequently, 156 independent latitude stations are involved in the discussions of the two arcs.

2. The Astronomic Longitude Stations.

Comparison of astronomic and standard geodetic longitudes.

No.	Name of longitude station and State.	Object of reference.	Observed astronomic longitude.	Seconds of geodetic longitude.*
		295	0 ' "	" "
1	Calais, Me.	Transit	67 16 57 86	53 '92 +3 '94
2	Bangor, Me.	Transit	68 47 02 60	01.50 +1.40
3	Cambridge, Mass.	Center of dome, Harvard Observatory.	71 07 45 69	44 74 +0 95
4	Cape May, N. J.	Transit	74 55 45 68	48 '03 -2 '35
5	Dover, Del.	Transit	75 31 18 45	24 '51 -6 '06
6	Washington, D. C.	Seaton, transit	76 59 52 73	60°10 -7°37
7	Washington, D. C.	Coast and Geodetic Survey Office, transit	77 00 25.64	32 '71 -7 '07
8	Washington, D. C.	Old Naval Observatory, small dome	77 03 02°30	06 '68 -4 '38
9	Washington, D. C.	New Naval Observatory, center clock room	77 03 56 76	62.80 -6.04
10	Strasburg, Va.	Transit	78 21 35 70	39*54 -3*84
11	Charlottesville, Va.	McCormick Observatory, transit	78 31 20 10	21.12 -1.02
12	Statesville, N. C.	Transit, near Simenton College	80 53 41 '31	40 '44 +0 '87
13	Atlanta, Ga.	Transit, 1896	84 23 20 07	19:41 +0:66
14	Montgomery, Ala.	Transit	86 17 59 19	60 '92 -1 '73
15	Lower Peach Tree, Ala.	Transit	S7 32 40 94	43.37 -2.43
16	Mobile, Ala.	Transit	8S 02 37 37	33.83 +3.24
17	New Orleans, La.	Transit, 1880 and 1895, Lafayette Square	90 04 11 44	12.16 -0.25

Review of the preceding longitudinal deflections.—Before examining the tabular values (A-G) it is desirable to contract the table on account of the regional deflections about Washington by admitting only one in the place of the four closely packed stations. The average value of (A-G) for numbers 6, 7, 8, 9 is -6" 22. For these, number 9 or the New Naval Observatory value -6" of has been substituted. The distribution of the 14 stations over the whole arc is fairly uniform. They show an average deflection of (A-G) = -0" 92, the plumb line apparently being attracted to the westward. This amount might be expected from the location of the arc. Thus for one-half of the stations, either on account of proximity to the Atlantic coast or in consequence of their location to the east of the principal mountain chains, or for both reasons, negative values of (A-G) might be expected. These values are as follows:

-	//	
Cambridge	+0.95	
Cape May	-2.35	
Dover	-6.06	
Washington	-6.04 -0.09	Average value=-2"50.
Strasburg	-3.84	
Charlottesville	-1.02	
Statesville	+0.87	

^{*}For reference date see introductory remarks to Part IV.

The value at New Orleans also has a negative sign, though the above reasons do not apply to this location.

It has already been remarked in the account of the transcontinental triangulation and arc of the parallel in latitude 39° that Cape May, though directly located on the coast, is distant about 213 kilometers (115 nautical miles) from the actual, but submerged, continental border.* At Calais we find the largest, yet moderate, positive deflection +3".94, which probably, in a measure, is due to the attraction of the mass of Nova Scotia lying directly to the eastward of the station. Respecting the remaining 6 stations no special features appear to be present, and the deviations may be indifferently + or -, the average value being +0".45.

3. The Astronomic Azimuth Stations.

Comparison of astronomic and geodetic azimuths of sides of the triangulation.

No.	Name of azimuth station.	Year of azimuth station. State. State. Of Reference station.		Astronomic azimuth of line.			Geodetic azimuth.† A-G.		
	Cooper	Me.	****	Howard	0	,	"	"	
I	Cooper		1859		351	53	12 '05	09 '93	+2'12
2	Howard	Me. Me.	1859	Pigeon	63	54	45'11	42.96	+2'15
3	Humpback		1858	Cooper	254	42	32.36	27 '80	+4.56
4	Mount Desert	Me.	1856	Ragged Mountain	78	30	46 '57	45.89	+0.68
5	Mount Harris	Me.	1855	Humpback	254	35	10 '62	06 '04	+4.58
6	Ragged Mountain	Me.	1854	Mount Pleasant	81	48	45 '00	41 '73	+3.27
7	Cape Small	Me.	1851	Sabattus	155	18	.63 '51	59'9	+3.6
8	Sabattus	Me.	1853	Mount Independence	24	31	23 '51	20 64	+2.87
9	Mount Independence	Me.	1849	Agamenticus	26	55	48 60	48.38	+0.55
10	Mount Pleasaut	Me.	1851	Mount Blue	205	59	21 '56	17.53	+4.03
II	Agamenticus	Me.	1847	Thompson	2	36	55 '51	55 '92	-0.41
12	Gunstock	N. H.	1860	Mount Pleasant	217	43	33 60	27.36	+6.24
13	Unkonoonuc	N. H.	1848	Gunstock	196	35	20 '38	16.68	+3.40
14	Thompson	Mass.	1846	Manomet	351	21	41 '86	40 '40	+1.46
15	Wachusett	Mass.	1860	Bald Hill	24	17	41 '45	32.42	+9.03
16	Harvard Observatory (dome)	Mass.	1869	Blue Hill	356	25	26 '4	25 '1	+1.3
17	Blue Hill	Mass.	1845	Manomet	305	57	30.02	29 '89	+0.19
18	Shootflying	Mass.	1845	Manomet	143	03	22.74	19.2	+3.5
19	1ndian	_Mass.	1845	Copecut	135	35	58.85	62 .6	-3.8
20	Copecut	Mass.	1844	Blue Hill	175	17	06 '5	04 '04	+2.2
21	Beaconpole	R. 1.	1844	Blue Hill	228	55	17.54	17.53	-0.59
22	Spencer	R. 1.	1844	Beacoupole	185	57	33 '02	36.2	3 *5
23	Mount Ton	Mass.	1862	Monadnock	212	37	21 '74	15 '13	+6.61
24	Sandford	Conn.	1862	Ruland	5	50	25 '28	15.86	+9 42
25	West Hills	N. Y.	1865	Wooster	174	57	38.35	33 '87	+4 '45
26	Beacon Hill	N. J.	1875	Weasel	183	35	29 '89	29 '32	+0 '57
27	Mount Rose	N. J.	1852	Mount Holly	7	46	55 '59	58 '26	-2.67
28	Yard	Pa.	1854	Lippincott	347	17	38 '57	. 37 '09	+1.48
29	Principio	Md.	1866	Turkey	1	34	43 '51	34 '59	+8.92
30	Cape Henlopen Light-House	Del.	1897	Brandywine Light-House	173	45	17 '33	15 '29	+ 2'04
31	Marriott	Md.	1849	Hill	96	37	43 '36	35 04	+ 8.32
32	Webb	Md.	1850	Soper	88	59	49 *24	42.70	+ 6.54
33	IIill	Md.	1850	Webb	219	46	57 '89	51.13	+ 6.76
34	Soper	Mđ.	1850	Webb	268	49	23 '46	18.14	+ 5'32
35	Seaton	D.C.	1869	Hill	265	32	53 '76	42.33	+11 '43
36	Cansten	D.C.	1851	Soper	210	54	41.78	38.3	+ 3.5
37	Sugar Loaf	Md.	1879	Bull Run	32	29	16.79	22.58	- 5'49
38	Maryland Heights	Md.	1870	Bull Run	358	43	06 .88	10.54	- 3.66

^{*} Page 837 of Special Publication No. 4. "The Transcontinental Triangulation."

[†] For reference data see introductory remarks to Part 1V.

Comparison of astronomic and geodetic azimuths of sides of the triangulation-continued.

No.	Name of azimuth station.	State.	Year of observa- tion.	Reference station.	azi	nomic muth line.	Geodetic azimuth.	A-G.
					0 /	//	#	,
39	Bull Run	Va.	1871	Peach Grove	263 5	3 28.12	30.60	- 2.45
40	Clark -	Va.	1871	Bull Run	202 1	9 27 77	28.81	- 1'04
41	Long Mountain	Va.	1875	Spear	223 2	8 41.74	46 62	- 4.88
42	Elliott Knob	Va.	1878	Humpback	303 2	5 24 37	22.58	+ 2.09
43	Moore	N.C.	1876	Buffalo	158 3	3 31 19	32.10	- 0.91
44	Young	N.C.	1876	Poore	126 5	2 53 69	52.65	+ 1.04
45	Klug	N.C.	1877	Benn	141 3	3 36.9	39 '3	- 2'4
46	Paris	S. C.	1875	Wofford	267 1	8 15 17	15 '89	- 0.72
47	Currahee	Ga.	1874	Rabun	188 1	0 27.89	26 '00	+ 1.89
48	Sawnee	Ga.	1873	Currahee	245 3	4 26.13	28 '93	- 2.81
49	Atlanta Middle Base	Ga.	1873	Stone Mountain	312 2	28.94	32.21	- 3.77
50	Lavender	Ga.	1874	Kenesaw	300 I	1 59'11	61 *08	— I '97
51	Aurora	Ala.	1877	Brandon	236 0	6 29:35	31 '43	- 2.08
52	Kahatchee	Ala.	1898	Ноти	253 3	2 12 80	15 '48	— 2·68
53	Ethridge	Ala.	1898	Lovers Leap	245 5	2 49'31	52.05	- 2'74
54	Fort Morgan	Ala.	1847	Cedar Point	143 5	9 45 61	50.69	- 5 °oS
55	East Pascagoula	Miss.	1847	Bayon Casotte	296 3	0 51'27	53*20	- 1 '93
56	Cat Island 1855	Miss.	1855	Mississippi City	192 I	1 14.3	oS *4	+5 *9(?)

Review of the preceding azimuthal deflections.—We recognize as their main feature systematic but small positive deflections, i. e., plumb line attracted westward for that part of the arc which lies north of the thirty-ninth parallel, and small negative deflections for the part south of that parallel, thus showing for the whole arc a small predominating plus value of $\frac{\Sigma(A-G)}{n} = +\frac{86.7}{56} = +1$ ":55. Omitting the last azimuth, No. 56, as doubtful,* and using No. 33 instead of the six closely clustered values in the vicinity of Washington, i. e., Nos. 31, 32, 33, 34, 35, 36, the average value for the oblique are becomes $\frac{\Sigma(A-G)}{n} = +\frac{45.7}{50} = +0$ "91. This represents the discrepancy between the average azimuths of the arc of the parallel in latitude 39° and of the oblique arc, and, considering its small size, the general azimuthal directions of the two arcs may be taken as being in satisfactory accord. A remarkable feature in the tabular values of (A-G), and one that had been known for a long time, is the large regional deflection existing in that part of the triangulation common to the two arcs. The average deflection observed at the six stations—Marriott, Webb, Hill, Soper, Seaton, and Causten—is +7"'o, the plumb line being attracted to the westward. If we convert this value into a corresponding longitudinal quantity, we have $\Delta \lambda = -\Delta \alpha \sin \varphi = -11'' \cdot 1$, which agrees in sign but exceeds in amount the mean value $(A-G) = -6''\cdot 2$, as found from the four longitudinal deflections in this region obtained at stations, only one of which is identical with any of those named above.

Considering that the present adopted azimuth depends upon 73 azimuth determinations or stations of the triangulation along the 39th parallel, any new or independent correction that might be deduced for standard value in the oblique are would probably not differ from it by as much as one second.

^{*}The last value of our table is marked as doubtful for the reason that the accuracy both of the astronomic and geodetic measures is inferior to that of the other tabular results; and, moreover, its appearance with a large positive value (pointing to westerly deflection) in a region where minus values predominate imparts to it an anomalous character, especially in a flat region of quaternary formation without any surface indications to justify or account for a reversal in the direction of the disturbed normal of the place. No further use will be made of this station in connection with azimuths.

5		
		4
		٠
•		
	•	

NAVAL OBSERVATORY.

PLAN OF NAVAL OBSERVATORY GROUNDS.

B. DETERMINATION OF A SPHEROID MOST NEARLY REPRESENTING THAT PART OF THE EARTH'S SURFACE LYING BETWEEN MAINE AND LOUISIANA AND ALONG THE REGION COVERED BY THE TRIANGULATION.

The method and formulæ employed.

After having assumed a reference spheroid representing the figure of the earth as closely as may be, and placed in position thereon, and having developed the triangulation upon its surface, the problem next to be solved is to determine corrections to the dimensions of the reference spheroid which shall make the sum of the squares of the apparent discrepancies between geodetic and astronomic results a minimum. In other words, we are to determine a representative or osculatory spheroid which shall most nearly harmonize these measures, necessarily leaving outstanding the mere local deflections of the vertical at the stations involved.

For this purpose it has been thought most expedient to follow the theoretical development as presented by Capt. A. R. Clarke, R. E., in the *Account of the Principal Triangulation of Great Britain and Ireland*.* In this work the method is developed and applied to the computation of a spheroid whose dimensions were in best accord with the curvature of the surface of these countries.

Let P be any point on the actual irregular or disturbed surface (2) and P_r its projection upon the surface of a regular or reference spheroid (1); through P on the surface (2) let a system of rectangular axes of coordinates \mathcal{E} , η , ζ , be drawn, so that \mathcal{E} is directed to the north, η to the east, and ζ to the zenith. For any two points A and B connected by triangulation let φ , φ' be their observed or apparent latitudes, $\Delta \lambda$ their observed or apparent difference of longitude; also, let the direction of the meridian be observed at each place. If A_r , B_r are the projections of A and B and B their distance, and B the observed azimuth of B at A_r , and A' the reverse azimuth, or that of A at B_r , and if φ_r , φ_r' , α_r' , and $\Delta \lambda_r'$ refer to the points A_r , B_r , then

$$\varphi_{t} = \varphi + \xi \qquad \varphi_{t}' = \varphi' + \xi'
\alpha_{t} = \alpha + \eta \tan \varphi \qquad \alpha_{t}' = \alpha' + \eta' \tan \varphi'
\Delta \lambda_{t} = \Delta \lambda - \eta' \sec \varphi' + \eta \sec \varphi$$

Also let (φ') , (α') , $(\Delta\lambda)$, be the numerical results which should obtain for the point B by starting the computation from the observed latitude and given longitude of A and the observed direction of the meridian at A, together with the known distance s, then the following relations will hold. They are the fundamental equations (18), page 620 of the Ordnance Survey publication mentioned above.†

$$\xi' = (\varphi') - \varphi' + (\cos \Delta \lambda) \xi + (\sin \varphi \sin \Delta \lambda) \eta - \left(\frac{v}{\rho} \cos \alpha_{\iota}'\right) \delta \theta + Q \varepsilon$$

$$-\sec \varphi' \eta' = (\Delta \lambda) - \Delta \lambda + (\tan \varphi' \sin \Delta \lambda) \xi + \left(\frac{\sin \theta \cos \alpha'}{\cot \varphi \cos \varphi'} - \sec \varphi\right) \eta + (\sec \varphi' \sin \alpha_{\iota}') \delta \theta$$

$$\tan \varphi' \eta' = (\alpha') - \alpha' - (\sec \varphi' \sin \Delta \lambda) \xi + \left(\frac{\sin \varphi \cos \Delta \lambda}{\cos \varphi'}\right) \eta - (\tan \varphi' \sin \alpha') \delta \theta$$

^{*}Ordnance Survey, London, 1858, pp. 609 and following. See also Chapter XII of Clarke's Geodesy; Oxford, 1880, † Cf. Helmert, Höhere Geodäsie, Vol. 1, pp. 535-536. Leipzig, 1880.

where

$$\mathcal{Q} = \frac{\rho}{\nu} \cdot \frac{\varphi' - \varphi}{(1 - \ell^2)^2} \cos^2 \frac{1}{4} \left(\varphi +_3 \varphi' \right) \quad \text{and} \quad \delta \theta = -\gamma \theta - \frac{1}{2} \cdot \frac{\theta \sin^2 \varphi}{1 - \ell^2 \sin^2 \varphi} \cdot \epsilon$$

These equations may be written in the form:

$$\xi' = k, +a, \xi + b_1 \eta + c_1 u + e_1 v$$

$$\eta' = k_2 + a_2 \xi + b_2 \eta + c_2 u + e_2 v$$

$$\eta' = k_3 + a_3 \xi + b_3 \eta + c_3 u + e_3 v$$

The values of the absolute terms are:

 k_{z} =(calculated observed) latitude

 k_2 =(observed-calculated) longitude×cos φ'

 $k_3 =$ (calculated -observed) azimuth \times cot φ'

Here ξ =deflection of the vertical in the plane of the meridian at the initial station, positive when the tangent to the actual surface is elevated to the north of the station.

 η =deflection of the vertical in the plane at right angles to the meridian at the initial station, positive when the tangent to the actual surface is elevated to the eastward.

Similarly ξ' and η' represent deflections of the vertical in the meridian and in the prime vertical planes for any other point whose latitude is φ' , the latitude of the initial point being φ .

 θ is the arc distance of the initial point from any other point.

 α , the azimuth at the initial point of any other point.

 α' , the reverse azimuth or that from any point to the initial one. The azimuths count from north toward the east.

 $\Delta\lambda$ is the difference of longitude between the initial and any other point; west longitudes are considered positive; $\Delta\lambda = \lambda' - \lambda$,

It may be remarked here that the observations for difference of longitude give the same kind of information as those for azimuth, so that the first set of equations may be used as a confirmation or check of the other set.

The quantities θ , α , α' , φ , φ' , $\Delta\lambda$ are geodetic values.

For evaluating the quantities $Q\varepsilon$ and $\delta\theta$ in the preceding equations, we have for v or length of line normal to the surface and terminating at the minor axis

$$v = \frac{a}{(1 - \epsilon^2 \sin^2 \varphi)^{\frac{1}{2}}}$$

and for ρ the radius of curvature

$$\rho = \frac{a(1-e^2)}{(1-e^2\sin^2\varphi)^{3/2}}$$

Putting

$$100\frac{v}{\rho} = \mu$$
 and $\frac{\rho}{v} \cdot \frac{100}{(1-e^2)^2} \cos^2 \frac{1}{4} (\varphi + 3\varphi') = \mu'$

hence

$$\mu = 100 \frac{\left[1 - e^2 \sin^2 \frac{1}{2} (\varphi' + \varphi)\right]^{\frac{3}{2}}}{\left(1 - e^2 \right) \left(1 - e^2 \sin^2 \varphi\right)^{\frac{1}{2}}} \quad \text{and} \quad \mu' = \frac{(100)^2}{\mu} \cdot \frac{\cos^2 \frac{1}{4} (\varphi + 3\varphi')}{(1 - e^2)^2}$$

also writing

$$u(\text{arc 100''})$$
 for γ and $v(\text{arc 100''})$ for ε , then $Q\varepsilon = \mu'(\varphi' - \varphi) \sin \iota'' v$
 $-\delta\theta = 100 \theta \sin \iota'' u + 100 g \theta \sin \iota'' v$,

where g is a constant, viz:

$$g = \frac{1/2 \sin^2 \varphi}{1 - \ell^2 \sin^2 \varphi}$$

If a=equatorial radius of reference spheroid and $e^2 = \frac{a^2 - b^2}{a^2}$ the square of its eccentricity, the respective values of the corrected spheroid become

$$a + \gamma a$$
 and $e^2 + \varepsilon$

The corrections to the semiaxis major and to the square of the eccentricity are then

$$a$$
 (arc 100") u and (arc 100") v

where u and v are to be derived from the solution of the equations.

The coefficients in the equations (18) in simplified form are as follows:

$$\begin{cases} a_1 = \cos \Delta \lambda \\ b_1 = \sin \varphi \sin \Delta \lambda \end{cases} \begin{cases} a_2 = -\sin \varphi' \sin \Delta \lambda \\ b_2 = \cos \varphi' / \cos \varphi - (\sin \theta \cos \alpha') \tan \varphi \end{cases} \begin{cases} a_3 = -\sin \Delta \lambda / \sin \varphi' \\ b_3 = \sin \varphi \cos \Delta \lambda / \sin \varphi' \end{cases}$$

$$\begin{cases} c_1 = \mu \theta \cos \alpha' \\ c_2 = 100 \theta \sin \alpha' \end{cases} \begin{cases} c_3 = -\sin \Delta \lambda / \sin \varphi' \\ c_3 = 100 \theta \sin \alpha' \end{cases}$$

$$\begin{cases} c_3 = -\sin \Delta \lambda / \sin \varphi' \\ c_3 = 100 \theta \sin \alpha' \end{cases}$$

$$\begin{cases} c_3 = -\sin \Delta \lambda / \sin \varphi' \\ c_3 = 100 \theta \sin \alpha' \end{cases}$$

The values of θ and α' are to be computed from the known geodetic latitudes and longitudes of the initial and any other astronomic point of the triangulation. θ and α' may be computed by the inversion of the formulæ for direct position computation as given in the Report for 1894, Appendix No. 9, pages 284–286. No extreme accuracy is required in the computation of the respective coefficients, and it is found that the Survey formulæ when rigorously employed in their reversed application—viz, given two positions to find their distance and azimuths—answer well up to the limit here required * where θ does not exceed 14°.

The values of μ and μ' are to be tabulated for convenient intervals of latitude and of sufficient extent to cover the limits of the triangulation.

In applying the preceding method and formulæ for the determination of an improved spheroid most nearly conforming to the surface under consideration, a suitable initial station must be chosen, preferably centrally located in order to keep the values of θ as small as possible. The United States (New) Naval Observatory on Georgetown Heights, Washington, District of Columbia, has been adopted for this station; its geographic position refers to the center of the clock room, for which we have the geodetic latitude 38° 55′ 14″ 89 and the geodetic longitude 77° 04′ 02″ 80, these figures being based upon the same data as the positions in the transcontinental triangulation.† In this system the position of station Hays, Kansas, is in latitude 38° 54′ 50″ 180 and in longitude 99° 16′ 16″ 730. The maximum value of θ for the extreme northeast station is less than 10° and for the extreme southwest station slightly less than 14°. The initial station also fairly represents an average local deflection of the plumb line for the region about the District of Columbia, and the point being common to the two arcs, additional equations of condition, depending upon other stations of the arc of the parallel than those at present included, can readily be incorporated, if desirable.

^{*}The additional terms in $\varDelta \varphi$ given on p. 285 must be included in the computation. A rough check on θ and α may he had by the use of the spherical formulæ, $\cos \theta = \cos \varphi$ $\cos \varphi' \cos \varDelta \lambda + \sin \varphi \sin \varphi'$ and $\sin \alpha = \cos \varphi \sin \varDelta \lambda' \sin \theta$.

[†] The new observatory was connected by local triangulation with the Coast and Geodetic Survey triangulation by Prof. W. Harkness, Astronomical Director, in 1893 and 1894, and by Assistant E. D. Preston in 1894. The work of Assistant C. Junken in 1881 is involved in the adjustment of the geodetic connection.

Collection of certain constants and tabular quantities required in the computation for establishing the conditional equations.

For Clarke's spheroid of 1866 we have

$$\log a = 6.804 698 57$$
$$\log b = 6.803 223 78$$
$$\log e^2 = 7.830 502 57$$

with the following data for the reference station,

$$\varphi = 38^{\circ} 55' 14'' \cdot 9$$

 $\lambda = 77 04 02 \cdot 8$
 $\log g = 9 \cdot 296 391$

Values of log μ sin 1" between latitudes 30° and 45°.

φ'		φ'		φ'	
30°	6 687 692	35°	6 .687 509	40°	6.687 321
301/2	674	35 1/2	490	401/2	302
31	655	36	471	41	283
31 1/2	637	361/2	453	41 1/2	264
32	619	37	434	42	245
32 1/2	600	37 1/2	415	421/2	226
33	582	38	396	43	207
33 1/2	564	381/2	377	43 1/2	188
34	546	39	359	44	169
341/2	527	39½	340	44 1/2	150
				45	131
4(4	£)°=18:3	4(½)°=18.8	4(3)	(2)°=19°0

· Values of log μ' sin I'' between latitudes 30° and 45 $\frac{1}{3}$ °.

						,0 2		
φ'		∆ 10′	φ'		⊿ 10′	φ'		⊿ 10′
30°00′	6 .544 00	119	35°00′	6 .505 67	137	40°00′	6 '461 66	158
10	42 81	120	10	04 30	138	IO	60 o8	158
20	41 61	120	20	02 92	138	20	58 50	
30	*540 41	121	30	*501_54		30	°456 91	159
40	39 20	121	40	·500 I5	139	40	55 32	159 160
50	37 99	121	50	·498 75	140	50	53 72	161
31	.536 77		36	*497 34	141	41	452 11	
10	35 54	123.	10	95 93	141	10	50 50	161
20	34 31	123	20	94 51	142	20	48 88	162
30	533 07	124	30	*493 09	142	30	°447 25	163
40	31 83	124	40	91 66	143	40	45 61	164
50	30 58	125	50	90 22	143	50	43 97	164
32	529 33	125	37	°488 78	144	42	'442 32	165
10	28 07	126	10	87 33	145	10	40 66	166
20	26 So	127	20	85 87	146	20	38 99	167
30	525 52	128	30	°484 41	146	30	437 32	167
.40	24 24	128	40	82 94	147	40	35 64	168
50	22 95	129	50	81 46	148	50	33 95	169
33	·521 66	129	38	.479 98	148	43	'432 26	169
10	20 36	130	10	78 49	149	10	30 56	170
20	19 06	130	20	76 99	150	20	28 85	171
30	517 75	131	30	475 49	150	30	'427 13	172
40	16 43	132	40	73 98	151	40	25 40	173
50	15 11	132	50	72 46	152	50	23 67	173
34	513 78	133	39	°470 94	152	44	'421 93	174
10	12 44	134	IO	69 41	153	IO	20 18	175
20	11 10	134	20	67 88	153	20	18 42	176
30	509 75	135	30	°466 34	154	30	·416 66	176
40	08 40	135	40	64 79	155	40	14 89	177
50	07 04	136	50	63 23	156	50	13 11	178
35	6 '505 67	137	40	6 '461 66	157	45	'411 33	178
30	0-0-0		,	- ,		IO	09 54	179
						20	07 74	180
						30	6 '405 93	181
						30	0 403 93	

Selection of stations for which the results of comparison of astronomic and geodetic data were admitted into the equations of condition.

In a preceding table there has been exhibited a comparison of the astronomic and geodetic *latitudes* for 71 stations. If all of these were included in the discussion, the labor of computation would be unnecessarily great, since practically the same accuracy of the results can be attained by a judicious selection of a much smaller number of latitude stations, provided they are uniformly distributed over the whole region of the arc.

The following table contains these selected stations with their geodetic positions (to the nearest half second), together with the computed distances θ and azimuths α' to the reference station at Washington, D. C. For these stations the value, $\sum (A-G) n = \pm 2'' \cdot 1$, is nearly the same as that previously derived from all the stations after the mean value for each of the 6 groups had been introduced in place of the separate values.

No.	Name of latitude station.	Geodetic lati- tude \phi'.	Geodetic longitude λ' , $\varphi' - \varphi$ $\lambda' - \lambda$, θ	a'.
		0 / //	0 / // 0 / // 0 / // 0 / //	0 / //
I	Calais	45 11 04	67 16 54 +6 15 49 - 9 47 09 9 34 49	232 42 56
2	Cooper	44 59 11 5	67 28 03 +6 03 56 5 - 9 36 00 9 21 22	233 03 11
3	Humpback	44 51 49	68 06 39 +5 56 34 - 8 57 24 8 55 16	231 27 55
4	Farmington	44 40 21	70 09 18.5 +5 45 06 - 6 54 44.5 7 42 59	224 19 19
5	Mount Desert	44 21 03	68 13 39 +5 25 48 - 8 50 24 8 32 35	233 42 02
6	Mount Pleasant	44 01 35	70 49 23 +5 06 20 - 6 14 40 6 55 15	224 43 13
7	Mount Independence	43 45 32	70 19 15 +4 50 17 - 6 44 48 7 00 00	228 41 55
8	Agamenticus	43 13 22 5	70 41 34 +4 18 07 5 - 6 22 29 6 26 47	230 24 31
9	Unkonoonuc	42 58 58	71 35 20 +4 03 43 - 5 28 43 5 47 45	227 27 59
10	Thompson	42 36 40	70 43 50 +3 41 25 - 6 20 13 6 03 04	234 39 19
11	Mount Tom	42 14 28	72 38 56 +3 19 13 - 4 25 07 4 43 10	226 52 28
12	Manomet	41 55 37	70 35 29 +3 00 22 - 6 28 34 5 46 18	240 51 31
13	Sandford	41 27 41	72 57 00 +2 32 26 - 4 07 03 4 02 33	232 31 34
14	West Hills	40 48 53	73 25 33 $+1$ 53 38 -3 38 30 3 22 33	237 09 52
15	Beacon Hill	40 22 24 5	74 13 42 5 +1 27 09 5 - 2 50 20 5 2 37 27	237 24 50
16	Yard	39 58 23	75 23 14 +1 03 08 - 1 40 49 1 40 14	231 36 39
17	Principio	39 35 34 5	76 00 17 +0 40 19 5 - 1 03 46 1 03 46	231 12 50
18	Pooles Island	39 17 13 5	76 15 50 +0 21 58 5 - 0 48 13 0 43 24	239 55 48
19	Washington*	38 55 15	77 04 03 0 0 0 0 0	
20	Cape Henlopen L. H.	38 46 40	75 05 03.5 —0 08 35 — 1 58 59.5 1 33 04	275 53 29
21	Clark	38 18 39	78 00 12 -0 36 36 + 0 56 09 0 57 08	49 59 24
22	Elliott Knob	38 09 57 5	79 18 52 -0 45 17 5 + 2 14 49 1 54 45	66 08 42
23	Long Mountain	37 17 25 5	79 05 11 -1 37 49 5 + 2 01 08 2 16 35	43 45 26
24	Moore	36 23 51 5	80 17 00 -2 31 23.5 + 3 12 57 3 35 02	44 24 15
25	Young	35 44 12	80 38 52 -3 11 03 + 3 34 49 4 16 14	40 50 55
26	King	35 12 09 5	$81 \ 18 \ 46 \ -3 \ 43 \ 05 \ 5 \ + \ 4 \ 14 \ 43 \ 5 \ 01 \ 43$	41 11 54
27	Currahee	34 31 36 5	83 22 34 -4 23 38 5 + 6 18 31 6 41 48	47 16 55
28	Sawnee	34 14 03	84 09 39 -4 41 12 + 7 05 36 7 22 20	48 36 15
29	Atlanta	33 44 56	84 23 19.5 —5 10 19 + 7 19 16.5 7 50 20	46 45 07
30	Kahatchee	33 13 36	86 21 37 -5 41 39 + 9 17 34 9 24 59	50 17 08
31	Montgomery	32 22 37	$86 ext{ } 18 ext{ } 01 ext{ } -6 ext{ } 32 ext{ } 38 ext{ } +9 ext{ } 13 ext{ } 58 ext{ } 9 ext{ } 56 ext{ } 43$	46 24 3S
32	Lower Peach Tree	31 50 18.5	87 32 43 -7 04 56 5 +10 28 40 11 04 59	47 31 10
33	Coon	31 14 48	88 05 44 -7 40 27 +11 01 41 11 49 45	46 40 41
34	Mobile	30 41 29	88 02 34 -8 13 46 +10 58 31 12 11 09	44 41 43
35	Fort Morgan	30 13 40	88 01 24 -8 41 35 +10 57 21 12 30 30	
36	New Orleans (1858)	29 57 18	90 04 25 8 57 57 + 13 00 22 13 57 12	46 41 30

* United States Naval Observatory, Georgetown Heights.

The data for the computation of the distances of the several astronomic *longitude stations* from the reference station and of the azimuths of the latter from each of the stations are contained in the following table:

No.	Name of longitude station.	Geodetic latitude. 9'	Geodetic longitude. \(\lambda'\)	Δ_{λ}	θ	α'
		0 / //	0 / //	0 / //	0/11	0 / //
I	Calais	45 11 04	67 16 54	9 47 09	9 34 49	232 42 56
2	Bangor	44 48 14	68 47 01	- S 17 02	8 30 58	229 18 11
3	Cambridge	42 22 51 5	71 07 45	- 5 56 18	5 40 42	234 33 00
4	Cape May	38 55 46.5	74 55 48	<u> </u>	1 39 46	270 22 17
5	Dover	39 09 18 5	75 31 24 5	1 32 38 5	1 13 19	259 28 40
6	Washington *	38 55 15	77 04 03	О	0	
7	Strasburg	38 59 28	78 21 39 5	+ 1 17 36.5	1 00 30	93 34 20
8	Charlottesville †	38 01 56	78 31 21	+ 1 27 18	1 26 40	51 42 23
9	Statesville	35 46 54	80 53 40	+ 3 49 37	4 22 14	43 04 37
10	Atlanta	33 44 56	84 23 19.5	+ 7 19 16.5	7 50 20	46 45 03
11	Montgomery	32 22 37	86 18 01	+ 9 13 58 .	9 56 43	46 24 38
12	Lower Peach Tree	31 50 18 5	87 32 43	+10 28 40	11 04 59	47 31 10
13	Mobile	30 41 29	88 02 34	+10 58 31	12 11 09	44 41 43
14	New Orleans (1895)	29 56 51 5	90 04 12	+13 00 09	13 57 22	46 39 50

The data for the computation of the distances of the several astronomic azimuth stations from the initial station and of the azimuths of the latter from the various stations will be found in the following table, together with the resulting values of θ and α' .

As was the case with the latitudes, we have here a surplus of stations at which astronomic azimuths were measured. Much labor may therefore be saved without incurring any sensible loss of accuracy in the results by the selection of a more limited number of stations uniformly distributed, as nearly as may be, over the whole are and properly representing the deflection over every part of it. For these 34 positions the average value of (A-G) is 1'.9, the same value found from all the stations.

^{*} United States Naval Observatory, Georgetown Heights, Washington, D. C.

[†] McCormick Observatory.

THE EASTERN OBLIQUE ARC.

No.	Name of azimuth station.	Geodetic lati- tude ø',	Geodetic longi- tude λ'.	θ	a'
		0 / //	0 / //	0 / //	0 / //
15	Cooper	44 59 11 '5	67 28 03	9 21 22	233 03 11
16	Humpback	44 51 49	68 06 39	8 55 16	231 27 55
17	Mount Desert	44 21 03	68 13 39	8 32 35	233 42 02
18	Mount Harris	44 39 53	69 oS 56	8 13 45	228 35 51
19	Sabattus	44 08 36	70 04 45	7 23 11	227 31 20
20	Agamenticus	43 13 22 5	70 41 34	6 26 47	230 24 31
21	Gunstock	43 31 02	71 22 12	6 16 52	225 01 01
22	Unkonoonuc	42 58 58	71 35 20	5 47 45	227 27 59
23	Blue Hill	42 12 42	71 06 53 5	5 35 25	236 01 39
24	Mount Tom	42 14 29	72 38 56	4 43 11	226 52 19
25	Sandford	41 27 41	72 57 00	4 02 33	232 31 34
26	West Hills	40 48 53	73 25 33	3 22 33	237 09 52
27	Mount Rose	40 22 01	74 43 26	2 18 45	232 09 32
28	Yard	39 58 23	75 23 14	1 40 14	231 36 39
29	Principio	39 35 34 5	76 00 17	1 03 46	231 12 50
30	Cape Henlopen Light-House	38 46 40	75 05 03 5	1 33 04	275 53 29
31	Hill	38 53 53	76 52 50	0 08 50	278 55 34
32	Maryland Heights	39 20 26	77 43 00	0 39 20	129 29 27
33	Bull Run	38 52 51	77 42 13	0 29 48	85 11 54
34	Clark	38 18 39	78 00 12	0 57 08	49 59 24
35	Long Mountain	37 17 25 5	79 05 11	2 16 35	43 45 26
36	Elliott Knob	38 09 57	79 18 52	1 54 45	66 o8 42
37	Moore	36 23 51 5	80 17 00	3 35 02	44 24 15
38	Young	35 44 12	So 38 52	4 16 14	40 50 55
39	King	35 12 25 5	81 18 46	5 01 31	41 13 54
40	Paris	34 56 27	82 24 40 5	5 50 10	45 34 04
41	Currahee	34 31 43	83 22 34	6 41 40	47 17 31
42	Atlanta Middle Base	33 54 19	84 16 38	7 39 52	47 11 11
43	Lavender	34 19 17	85 17 19	8 02 13	52 50 26
44	Aurora	34 08 45 5	86 11 01	8 44 14	54 21 31
45	Kahatchee	33 13 36	86 21 37	9 24 59	50 17 08
46	Ethridge	32 04 44	87 03 29 5	10 36 57	47 14 05
47	Fort Morgan	30 13 40	88 01 24	12 30 30	43 11 11
48	East Pascagoula	30 20 33 5	88 32 46	12 44 17	44 43 51

Conditional or observation equations derived from latitude comparisons.

//				
ξ ₁ ='-5 '61	+o °9854€	−o ·1068η	-10.1621 <i>n</i>	+3 '77592'
ξ₂=-o °96	+0 .9860	-o.1048	- 9.8505	+3.6825
ξ ₃ =+1 ·83	+0.9878	o °o978	- 9.7350	+3 .6082
ξ₄=+1 ·43	+0.9927	−o •o756	— 9°6700	+3 '4683
ξ ₅ =-1 *33	+0.9881	-o °o965	- 8.8595	+3.3677
$\xi_{6} = -1.59$	+0.9941	—o ⁺o6Sʒ	- 8.6143	+3 .1483
ξ ₇ =-2.76	+0.9931	−o · o738	- 8 0935	+3 0268
ξ 8=−2 17	+0 .9938	−o •o697	- 7 '1973	+2.7441
ξ ₉ =−1 '49	+0 .9954	-o · o6oo	— 6·8641	+2 .5997
$\xi_{10} = +1.70$	+0.9939	−o •o693	- 6 ·132 8	+2.4135
$\xi_{11} = +0.22$	+0.9970	—o •о.184	— 5°6524	+2:1731
$\xi_{12} = +1.30$	+0.9936	-o ·o709	- 4 '9244	+2 0272
$\xi_{13} = +0.56$	+0 .9974	-o '0451	- 4.3093	+1 .2109
$\xi_{14} = +3.36$	+o ·99 80	-o ·o399	— 3 ·2074	+1.3042
$\xi_{15} = -3.47$	+0.9988	-0.0311	— 2·4765	+1.0112
• $\xi_{16} = -6.72$	+0 .9996	−o *o184	— т ·8179	+0.7376
· ξ ₁₇ =+1 '80	+0.9998	-0.0119	— г ·1667	+0.4758
$\xi_{18} = -4$ '00	+0.9999	-o ·oo88	— o ·6352	+0.5619
$\xi_{19} = +1.15$	+1,0000	0,0000	0,0000	0.0000
έ³ο=+ο.10	+0 .9994	-0 '0217	+ 0.2790	-o ·o978
$\xi_{21} = -0.38$	+0 .9999	+0.0103	+ 1 .0230	-o ·4466
$\xi_{22} = +0.43$	+0.9992	+0.0246	+ 1.3556	-o ·5496
$\xi_{23} = -3.34$	+0 '9994	+0.0331	+ 2.8818	1 .5581
$\xi_{24} = -3.61$	+0.9984	+0.0353	+ 4.4882	-1 '9447
$\xi_{25} = -9.42$	+0.9980	+0 '0392	+ 5.6629	-2·5008
$\xi_{26} = -3.84$	+0.9973	+0 '0465	+ 6.6332	-2 '9595
¢₂₁=−1 ·10	+0.9939	+0.0690	+ 7.9634	-3°5375
$\xi_{28} = -1.10$	+0 .9923	+0.0776	+ 8.5469	-3.7925
$\xi_{29} = -3.18$	+0.9918	+0.0801	+ 9 '4168	-4 *2428
$\xi_{30} = -3.83$	+0 .9869	+0.1014	+10.2494	−4 .6986
$\xi_{3i} = -7.87$	+0.9870	+0.1008	+12 .0541	−5 •5387
$\xi_{32} = -2.49$	+0 .9833	+0.1143	+.13 .1520	−6 °0530
$\xi_{33} = +0.65$	+0.9819	+0.1505	+14.5331	-6 .6521
$\xi_{34} = -4.61$	+0.9814	+0.1106	+15.1918	-7 .5431
$\xi_{35} = -7.58$	+0.9818	+0.1194	+15.9952	−7 °7455
$\xi_{36} = -7.31$	+0 .9743€	+0'14147	+16.7861 <i>u</i> .	-7 ·9819v
4192—No. 7—02—	25	•		,

Conditional equations derived from longitude comparisons.

//				
$\eta_1 = +2.78$	+o ·1206ξ	+o •9873η	-13.3039n	-2.63240
$\eta_2 = +0.99$	+0.1012	+o •9899	—11 · 2689	-2 '2298
$\eta_{3} = +0.70$	+0.0697	+o ∙ 9958	- 8 ·o ₇₃₃	-ı ·5975
$\eta_{4} = -1.83$	+o *o234	+o •9998	– 2 *9 021	-o ·5743
$\eta_{5} = -4.70$	+0 '0170	+0.9998	— 2 °0968	—o ·4146
$\eta_{6} = -4.70$	0,0000	+1,0000	0 '0000	.0,0000
$\eta_{7} = -2.98$	-0 '0142	+o , 9999	+ 1.7565	+o ·3476
$\eta_{8} = -0.83$	0 '0157	+o ∙999 8	+ 1 .9786	+0.3912
$\eta_{9} = +0.71$	-o ·o390	+o ·9978	+ 5.2098	+1 .0300
$\eta_{10} = +0.55$	—o °0708	+0 '9932	+ 9.9653	+1.9719
$\eta_{11} = -1.46$	0 .0859	+n 19893	+12.252	+2 '4877
$\eta_{12} = -2.06$	-0 '0959	+o ·9 870	+14.2656	+2.8228
$\eta_{13} = +3.04$	-0 '0972	+0 .9841	+14.9586	+2 .9599
$\eta_{14} = -0.62$	0 °1 123 €	+0.9801 <i>1</i> 1	+17.7166 <i>u</i>	+3.50282

Conditional equations derived from azimuth comparisons.

11				
$\eta_{15} = -2.12$	+o ·2359€	+o ·8762η	—13 °0504 <i>u</i>	-2.5823v
$\eta_{16} = -4.58$	+0 '2207	+o ·8797	-12.1792	-2 '4100
$\eta_{17} = -0.70$	+0.5188	+o ·888o	—12°0170	-2 ·3778
$\eta_{18} = -4.63$	+0.1060	+o ·8852	−10.7734	-2:1318
$\eta_{19} = -2.96$ ·	+o '1747	+o ·8954	- 9.5081	—1 ·8814
$\eta_{20} = + 0.44$	+0.1651	+0.9114	— 8·6 ₇₀₂	-1 7156
$\eta_{21} = -6.57$	+0 1442	+0 .9079	- 7 '7540	−ı : 5343
$\eta_{22} = -3.97$	+0'1400	+0.9173	· - 7°4540	−1 .4750
$\eta_{23} = - \text{ o'18}$	+o ·1544	+0.9300	- 8.0914	-1.6011
$\eta_{24} = -7.28$	+0.1146	+o ·9318	- 6.0119	-1.1896
$\eta_{25} = -10.66$	+0.1084	+0 .9464	- 5°5994	-1 .1080
$\eta_{26} = -5.15$	+0.0972	+o ·9593	- 4 '9506	—o ·9796
$\eta_{27} = + 3.14$	+0.0631	+0 .9692	- 3.1843	—o ·6307
$\eta_{28} = -1.77$	+0 .0426	+o · 9775	— 2·28 ₅₃	-o ⁺4522
$\eta_{29} = -10.78$	+0 .0291	+o •9856	— I ·4459	—o ·2 861
$\eta_{30} = -2.54$	+o ·0552	+1.0025	— 2 °6928	-o ·5329
$\eta_{3i} = -8.38$	+0 '0052	+1 *0005	- o ·2538	-o °0502
$\eta_{3^2} = + 4.47$	-0.0149	+0.9910	+ o ·8830	+o ·1747
$\eta_{33} = + 3 \cdot 04$	—o ° 0177	+1 .0008	+ o ·8638	+o ·1709
$\eta_{34} = + 1.32$	—o ·0264	+1 .0133	+ 1 .5253	+o ·2519
$\eta_{35} = + 6.41$	—o °o582	+1 .0363	+ 2.7478	十0 *5437
$\eta_{36} = -2.66$	-o ·обз4	+1 .0120	+ 3 .028	+0.6041
$\eta_{37} = + 1.23$	-o °o945	+1 .0211	+ 4.3768	+o ·866o
η ₃₈ =- 1 -44	-0.1069	+1 .0732	+ 4.8751	+0.9646
$\eta_{39} = + 3.40$	—o ·1 284	+1 .0864	+ 5.7809	+1.1439
η ₄₀ =+ 1 °03	—o ·1626	+1 .0055	+ 7 '2736	+1 .4393
$\eta_{AI} = -2.75$	-o '1939	+1 '1017	+ 8 5856	+1 .6989

Conditional equations derived from azimuth comparisons—continued.

-0.2250	+1.1123	+ 9.8130	+1 .9412
-o ·2536	+1.1058	+11 .1200	+2 .5150
-0.2823	+1.1021	+12.3928	+2.4522
-0.2947	+1.1312	+12.6422	′+2.2016
-o · 3266	+1.1620	+13.6023	+2.6916
-o:3775	+1.2252	+14 .9407	- 2 '9564
−о '3939\$	$+$ 1 '2187 η	+15.6464 <i>u</i>	+3 .09611
	-0 ·2536 -0 ·2823 -0 ·2947 -0 ·3266 -0 ·3775	-0 ·2536 +1 ·1028 -0 ·2823 +1 ·1051 -0 ·2947 +1 ·1315 -0 ·3266 +1 ·1650 -0 ·3775 +1 ·2252	-0 · 2536

Formation of normal equations.

The types of a latitude observation equation and of a longitude and azimuth equation are:

$$\xi_{p} = m + a\xi + b\eta + cu + ev$$

$$\eta_{q} = n + a'\xi + b'\eta + c'u + e'v$$

then ξ , η , u, and v are to be determined so as to make a minimum the quantity

$$\sum (m+a\xi+b\eta+cu+ev)^2+w\sum (n+a'\xi+b'\eta+c'u+e'v)^2$$

whence the normal equations:

$$\begin{array}{l} {\rm o} = (am) + w(a'n) + [aa]\xi + [ab]\eta + [ac]u + [ae]v \\ {\rm o} = (bm) + w(b'n) + [ab]\xi + [bb]\eta + [bc]u + [be]v \\ {\rm o} = (cm) + w(c'n) + [ac]\xi + [bc]\eta + [cc]u + [ce]v \\ {\rm o} = (em) + w(e'n) + [ae]\xi + [be]\eta + [ce]u + [ee]v \end{array}$$

where

$$[aa] = (aa) + w(a'a')$$
$$[ab] = (ab) + w(a'b')$$

For equal weight to the several equations w becomes unity, as will be assumed in the first of our combinations.

The relative weights of the observation equations.

The equations involving the comparisons of the latitudes and longitudes may be considered as of fairly equal weight, the result of the introduction of the telegraphic method for the determination of differences of longitudes; thus arcs of the meridian and arcs of the parallel may now be combined as of equal importance as far as the astronomic data are concerned.

It is quite evident, however, that the azimuthal equations are certainly of inferior value, considering that they are directly affected by the accumulation of error in the angular measures of the triangles by means of which the geodetic azimuths are carried forward. If unit weight is assigned to each of the latitude and longitude equations, a fraction only can be assigned for the weight of an azimuth equation. There is no principle by means of which the exact ratio of the weights could be ascertained, but the comparison of the mean values of the squares of the \mathcal{E} 's and of the η 's, which shows that the latter is generally the larger of the two, sufficiently indicates the need of the introduction of relative weights. There is no reason why the average deflections in the meridian and in the prime vertical or in any azimuthal plane should be of different magnitude.

The resulting values of the \mathcal{E} 's and η 's, or the remainders, in the equations for the several stations may be taken as representing the actual local or regional deviations of the vertical of the geoid at these places as compared with the normal or geometric direction; in other words, they exhibit the difference between the disturbed and the regular or undisturbed direction of gravity within the geographic limits of the investigation. As a matter of course these values are affected to a relatively small extent by the unavoidable errors of observation.

For the case in hand, as shown in the following solution, we have the mean value of the squares of the discrepancies in φ and λ , equal to $\frac{589.6}{50} = 11.8$, and the mean value of the squares of the differences in α , equal to $\frac{789.2}{34} = 23.2$, or about double the former; which indicates that the azimuth equations should not have more than half weight.

This solution presents the results for a spheroid representing the curvature of the surface along the arc without distinguishing relatively between the measures of latitudes, longitudes, and azimuths.

Resulting normal equations.

From the latitude observations:

From the longitude observations:

From the azimuth observations:

hence by combination:

The solution gives-

```
\begin{cases} \xi = + \text{ i '895 898} & \text{with residuals o '0000} \\ \eta = + \text{ o '862 056} & \text{ o '0000} \\ u = - \text{ o '077 671 6} & \text{ o '0002} \\ v = - \text{ o '573 878} & \text{ o '0002} \end{cases}
```

whence we get $\gamma a = -240^{\circ}2$ and the equatorial radius becomes 6 378 206.4-240.2= 6 377 966.2 meters; we have also $\varepsilon = v$ (arc 100")=-0.000 278 22, hence the new $\varepsilon^2 = 0.0067687 - 0.0002782 = 0.0064905$

Let
$$\varepsilon_{\mathbf{r}} = \frac{1}{2}e^{a}$$
 and $\frac{a-b}{a}$ or the compression $=\frac{\mathbf{r}}{c}$, then

$$\frac{1}{\ell} = \varepsilon_1 + \frac{1}{2}\varepsilon_1^2 + \frac{1}{2}\varepsilon_1^3 + \frac{5}{3}\varepsilon_1^4 + \dots = 0.003 \ 250 \ 5$$

hence the compression = $\frac{1}{307.6}$; the resulting value of b is 6 377 966.2-20 737.7= 6 357 228.5 meters.

Substituting the values found for \mathcal{E} , η , u, and v in the equations of condition we obtain for each station the outstanding deflections. These quantities are also needed for the determination of the probable errors of the dimensions of the spheroid just obtained when these residuals are treated as accidental errors.

Resulting values of ξ and η at the observing stations.

			, , ,			
No.		Station.	ŧ //	No.	Station.	ŧ
I	Calais '		-5.50	19	Washington	+3.05
2	Cooper		-0 '52	20	Cape Henlopen	+2.06
3	Humpb	ack	+2.32	21	Clark	+1.40
4	Farming	gton	+2.02	22	Elliott Knob	+2.55
5	Mount 1	Desert	-o ·77	23	Long Mountain	−c.94
6	Mount	Pleasant	-o·89	24	Moore	-o ·92
7	Mount 1	Independence	-2 04	25	Young	−6 . 52
8	Agamer	nticus	−1.32	26	King	-o ·73
9	Unkono	onue	-o · 61	27	Currahee	+2.26
10	Thomps	son	+2 .63	28	Sawnee	+2:36
11	Mount ?	ron ₁	+ I *27	29	Atlanta	+0.47
12	Manom	et	+2.35	30	Kahatchee	10.01
13	Sandfor	d	+1.76	31	Montgomery	−3 ·67
14	West H	ills	+4 *74	32	Lower Peach Tree	+1 .93
15	Beacon	Hill	-1 .99	33	Coon	+5 *33
16	Yard		-5.15	34	Mobile	+0.33
17	Principi	lo	+3.21	35	Fort Morgan	-2.41
18	Pooles I	sland	-2.51	36	New Orleans	-2.07

Resulting values of ξ and η at the observing stations—continued.

No.	Station.	71	No.	Station.	η //
1*	Calais	+6.41	25	Sandford	-8.55
2	Bangor	+4.19	26	West Hills	-3 °20
3	Cambridge	+3.54	27	Mount Rose	+4.71
4	Cape May	-o · 38	28	Yard	-o ·46
5	Dover	-3 °41	29	Principio	-9 .60
6	Washington	−3 *84	30	Cape Henlopen Light-House	-1 '07
7	Strasburg	-2 .49	31	Hill .	-7.46
8	Charlottesville	—o ·37	32	Maryland Heights	+5.13
9	Statesville	+0.21	33	Bull Run	+3.41
10	Atlanta	+0.37	34	Clark ,	+1,00
11	Montgomery	-3.12	35	Long Mountain	+6.68
12	Lower Peach Tree	-4.15	36	Elliott Knob	-2 '48
13	Mobile	+0.85	37	Moore	+1.15
14	New Orleans	-3.37	38	Young	-1 .62
15†	Cooper	+1.28	39	King	+3 '00
16	Humpback	1 .02	40	Paris	+0 '27
17	Mount Desert ·	+2.79	41	Curraliee	-3.81
18	Mount Harris	-1 '44	42	Atlanta Middle Base ,	+4.58
19	Sabattus	-0.04	43	Lavender	+1 .53
20	Agamenticus	+3.50	44	Aurora	+1.15
21	Gunstock	-4 '04	45	Kahatchee	+2.08
22	Unkonoonuc	—ı ·48	46	Ethridge	+2.12
23	Blue Hill	+2.46	47	Fort Morgan	+6.50
24	Mount Tom	-5.10	48	East Pascagoula	+0.61

We have $\Sigma \xi \xi$ and $\Sigma \eta \eta$ before and after change of spheroid.

Old spheroid. New spheroid.

From latitude equations	506 *5	265 '9
From longitude equations	83 .1	141 '5
From azimuth equations	789 '2	519.8
From all equations	1 378 .8	927 '2

The precision of the adjusted or resulting value of the length of the equatorial radius and of the compression as found from the measure of the arc.

To find the probable errors of the elements of the resulting spheroid we have to determine the mean error of a single observation or that of the unit of weight, as well as the weights of the values of u and v as obtained from the solution of the normal equations, whence the probable error of the result for the equatorial radius a, and for the compression $\frac{a-b}{a}$, or $\frac{1}{c}$, readily follows.

Substituting the values of ξ , η , u and v resulting from the solution of the normal equations in the equations of condition, the residuals represent the respective deflections at the stations. Squaring and summing up these residuals, we get $m^2 = \frac{[pvv]}{n_0 - n_0}$,

^{*} Values 1 to 14 from longitude equations.

where m=mean error of the unit of weight, n_o the number of observations or stations, and n the number of normal equations or unknowns. The weight of any one of the unknowns is found in the usual way by means of the solution of the modified normal or weight equations; thus, for the third unknown n and for the preceding hypothesis of equal weight to the observations we have:

$$\begin{cases} o = +36.7119 \ q_1 - 1.5573 \ q_2 - 27.2996 \ q_u - 37.5298 \ q_3' \\ o = +49.1293 + 104.2179 + 6.3651 \\ 1 = +6.439.4636 - 356.2364 \\ o = +645.6877 \end{cases}$$

Here q_u is the reciprocal of the weight of u or, as usually written, $=\frac{1}{p_u}$, and the mean error of u or m_u is given by $m_u = m\sqrt{p_u} = m\sqrt{q_u}$; whence follows r_a , the probable error of a, and by the same method that of the compression is obtained from $m_v = m\sqrt{q_u}$.

Applying this to the results of hypothesis (1), which assigns equal weight (w=1) to the observation equations, we get $m=\sqrt{\frac{927}{84-4}}=\pm 3''$ '40; the weight equations in connection with u and v give:

$$\begin{cases} q_1 = +0.0002213 & \text{and} \\ q_2 = -0.0003659 & q_5 = -0.0003946 \\ q_u = +0.0001682 & q_6 = +0.0001092 \\ q_3 = +0.0001092 & q_v = +0.0017188 \end{cases}$$

hence $m_u = \pm 0.0441$, and the corresponding value $m_a = 136.4$, and the probable error of a or $r_a = \pm 92.0$ meters. From the second set of weight equations we get $m_v = \pm 0.1400$ and the corresponding value $m_c = \pm 3.3$, also the probable error of c or $r_c = \pm 2.2$. The complete results by hypothesis (1) are therefore: Length of equatorial radius, 6.377, 966 \pm 92

meters and the compression $\frac{1}{307.6\pm2.2}$.

Resulting spheroid.

The following is the determination of a spheroid most nearly coinciding with the surface of that part of the United States which is traversed by the oblique arc from the St. Croix River at Calais, Me., to the delta of the Mississippi River at New Orleans, La.

In consequence of the uncertainty respecting the proper weighting of the azimuth equations, four sets of normal equations were established, and the results for equatorial radius and compression were deduced for the several hypotheses: $w=1, \frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$.

The normal equations and results are as stated below:

Hypothesis I
$$w=1$$

$$w=1$$

$$0=-\frac{91.9175}{0=-27.6522}$$

$$0=+257.6426$$

$$0=+408.5423$$

$$0=-\frac{82.9615}{0=-21.0932}$$

$$0=-\frac{159.2176}{0=+326.0563}$$

Hypothesis III
$$0 = -79.9762$$
 $0 = 18.9069$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = +298.5610$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -298.1709$ $0 = -299.1709$ $0 = -299.1709$ $0 = -298.1709$ $0 = -299.1709$

Examining the contents of this table, it is evident, in the first place, that whatever value for w is adopted the general result will be but slightly influenced; that is, the value of the equatorial radius remains close to the value of Clarke's spheroid of 1866 (6 378 206), whereas the value of the compression remains slightly smaller than that of the Besselian spheroid $\left(\frac{1}{299 \cdot 2 \pm 3 \cdot 2}\right)$; and, in the second place, that the curvature of that part of the surface under consideration does not differ to any very marked extent from that which would be exhibited by a representative spheroid for the whole earth.

There is therefore but little choice between the above results. The deflections at the initial station remain about the same, viz, 1".88 in the meridian and o".85 at right angles thereto; the radius a varies but 237 meters between the extremes and the probable errors remain practically unchanged, while with decrease of weight the compression slowly increases approaching the Besselian value. The resulting values of η or the deflections at the several stations increase necessarily in magnitude as the weight of the azimuth equations is diminished, and in Hypothesis IV the larger ones appear to indicate $w=\frac{1}{4}$ as a limiting value.

The spheroid of hypothesis III is apparently the most acceptable, as it preserves a proper balance between the magnitudes of the opposing deflections in longitude and in azimuth,* and it has been adopted as representing the result of the present investigation. The resulting values of $\tilde{\varepsilon}$ and η on this hypothesis are as follows, the numbers referring to the same stations as in the preceding tabulation under hypothesis I.

From comparisons of
$$\varphi'$$
 s 265'9 265'5 266'0 266'0. From comparisons of λ' s 141'5 111'6 98'3 91'4. From comparisons of α' s 519'8 $\frac{1}{4}(56)$ 3 $\frac{1}{4}(59)$ 9 1(616'8).

^{*}The substitution of the respective values of ξ , η , u and v in the equations of condition derived from latitude, longitude, and azimuth comparisons, give for [pvv] and hypotheses 1 to 1V:

In the discussion of the ordnance survey of Great Britain and Ireland Clarke adopts the weight 1 as most suitable.

	ຮ້າກ		η_{iii}		7/111
	//		11		//
I	-5 °34	1	+2.19	15	+0.39
2	-o ·65	2	+3.19	16	-2 '19
3	+2.18	3	+2.20	17	+1 .68
4	+1 .84	4	-0.64	18	-2.42
5	−o · 89	5	−3 . 61	19	-o.ði
6	— I '02	6	-3.85	20	+2 *40
7	-2.12	7	-2.31	21	-4 '76
S	-ı ·45	8	-o ·21	22	-2 '18
9	-0.70	9	+o • 96	23	+1.71
IO	+2.55	10	+0.23	24	−5 '66
ΙI	+1.19	II	−2 °07	25	-9.11
12	+2:30	12	+2 .84	26	-3.65
13	+1.71	13	+2 '16	27	+4 .39
14	+4 .68	14	-1.81	28	-o ·63
15	-2 '03			29	-9.76
16	-5.16			30	-ı ·33
17	+3 .48			31	−7 ′52
18	-2 .54			32	+5:19
19	+3.02			33	+3 .77
20	+1.98			34	+1 .08
21	+1.69			35	+6 '90
22	+2.23			. 36	2 '24
23	0.96			37	+1.20
24	-0.94			38	-1 '24
25	−6 .22			39	+3 '47
26	—o ·75			40	+0.00
27	+2.53			41	-3.08
28	+2 '34			42	+5.15
29	+0.44			43	+2.55
30	-o ·o3			44	+2.51
31	-3.72			45	+3.19
32	+1 .87			46	+3 *34
33	+5 .25			47	+7.52
34	+0 '24			48	+1 .99
35	2 .25				
36	-2'17				
				1-	

The probable error of a single latitude is 0.674 $\sqrt{\frac{266.0}{36-4}} = \pm 1''.94$ as computed from

the 36 latitude discrepancies and that of a single latitude or longitude o' $674\sqrt{\frac{364 \cdot 3}{50-4}} = \pm 1'' \cdot 90$ as computed from the 36 latitude and the 14 longitude discrepancies.

COMPARISON WITH OTHER SPHEROIDS.

The following table is presented for convenience of reference or comparison of the resulting spheroid with a few other spheroids (of revolution):

Spheroid of—	Equatorial radius <i>a</i> in meters.	Polar semi- diameter <i>ò</i> in meters.	$a \rightarrow b$.	Compression $(a - b)'a$.
Bessel, 1841. From 10 arcs of the meridian, total amplitude 50° 34′.	6 377 397	6 356 079	21 318	1/299°15 ±3°15
Clarke, 1858.* Special spheroid for surface of Great Britain and Ireland. Range in latitude 12°, the same in longitude; 75 astronomic stations.	6 378 494 ±90	6 355 746	22 748	1/280 °4 ±8 °3
Clarke, 1866. From five meridional arcs, total amplitude 76° 35′.	6 378 206	6 356 584	21 622	1/295 °0
Clarke, 1880.* From five meridional arcs and longitudinal measures, total amplitude 88° 59′8 equatorial degrees.	6 378 249	6 356 515	21 734	1/293 *5
U. S. Coast and Geodetic Survey, 1900. Eastern Oblique Arc of the United States. Total ampli- tude 23° 31′; 84 astronomic stations.	6 378 157 ±90	6 357 210	20 947	1/304 °5 ±1 °9
Harkness, 1891. From "The Solar Parallax and Related Constants," Washington, 1891, p. 138.	6 377 972 ±125	6 356 727 ±99	21 245	1/300 ·2 ±3 ·0

^{*}For conversion of English feet into meters Clarke's determination of 1866 was used, viz: 1 ft. =0 '30479727 m.
1 m. =3 '28086933 ft.

