

UNITED STATES COAST AND GEODETIC SURVEY OFFICE.

TIIE ELSTEERN OBLLQUE ARC OF THEE UNITEI STATES AND

OSCULATING SPHEROID
(TREASURY DEPARTMENT) U. S. COAS' AND GEODETIC SURVEY II
O. H. TITTMANN

SUPERINTENDENT

GEODESY

THE EASTERN 0BLIQUE ARC OF THE UNITED STATES

AND

OSCULATING SPHEROID

By CIIAS. A. SCHO'IT, Assistant, Coast and Greodetio Survey

WASHINGTON
GOVERNMENTPRINTINGOFFICE
1902

Treantry Department,

Doctment No. 2232.
Coust und Geodetic Survey.

$$
\begin{aligned}
& Q B \\
& 291 \\
& 465 \\
& 1902
\end{aligned}
$$

Treasury Department,
 Office of the Secretary,
 Washington, July It, rgor.

Sir: It affords me pleasure to approve the publication of the discussion of the Eastern Oblique Arc of the United States, herewith presented to the public.

It appears that the value of this arc to geodesy is very great, but that the results are only incidental to the immediate purposes for which the triangulation was made. The results, however, could not have been obtained if the general plan of the Coast Survey had been less systematic or comprehensive. Thus, in applied science, as well as in many other things, the far-sighted wisdom of our earlier statesmen, who gave direction to our beloved country's policies, has borne fruit.

Respectfully,

L. J. Gage, Secretary.

Mr. O. H. Titmmann,
Superintendent Coast and Geodetic Survey, Washington, D. C.
z

LETTER OF SUBMITTAL.

Treasury Department,
Office of the Coast and Geodetic Survey, Washington, D. C., July I6, IяOI.

Sir: I have the honor to submit to you for publication the numuscript of Special Publication No. 7, giving the results of the completed measurements of the Easteru Oblique Arc of the United States.

This is the second of the publications intended to give the results of the principal arc measurements made by this Service, and like the first, which relates to the Transcontinental Arc of the Thirty-ninth Parallel, it was prepared by Assistant Charles A. Schott, whose knowledge, mature experience, and ability fitted him especially for the task.

The Eastern Oblique Arc, though treated separately, intersects the Transcontinental Arc, and the two triangulations have several lines in common. The former extends from the Bay of Fundy to the Gulf of Mexico, and parallels the Appalachian mountaiu system, while the latter crosses the axes of the great mountain systems of this country, and extends from the Atlantic to the Pacific Ocean.

Invaluable as the Transcontinental Arc is as a contribution to geodesy and the geography of our country, it does not in itself contain the data for determining the figure of the earth.

The Oblique Arc, however, contains within itself all that is necessary for determining the dimensions of a spheroid which corresponds most uearly with the existing geoid within the area covered by triangulation. It is unique in that it is the first one which utilizes on a grand scale a measurement oblique to the meridian. The peculiar power of an oblique arc for determining the compression of the earth was pointed out by Tobias Mayer ($1723-1762$), but the first practical application of such an are to geodesy was made by Bessel. This was before the introduction of telegraphic longitudes had made it possible to utilize such an arc to its fullest extent.

The results of previous discussions of parts of this arc led to the abandonment by this Survey, in 1880, of Bessel's spheroid of reference and the adoption of Clarke's (of 1866), and the final discussion of the complete arc here presented sustains the grounds on which the change from one spheroid to the other was made.

Taken in connection with the Transcoutiuental Arc of the Thirty-ninth Parallel, this discussion has enabled the Survey to decide upon the retention of the Clarke's spheroid and to adopt geographic coordinates for the whole extent of this country based on a uniform system. Further information as to these standard coordinates for geographic purposes, which differ slightly from those here published in connection with the Eastern Oblique Arc treated independently of other triangulations, will be published in due time.

Very respectfully,

[^0]The Secretary of the Treasury.

CONTENTS.

Page.
Introduction 19
PART 1.
THE BASE LINES AND BASE NETS.
A. General remarks 25
B. THE BASE LINES OF THE FASTERN OBLIQUE ARC, THEIR MEASUREMENT, RESULTING LENGTH, PROBABLE ERROR, AND ADJUSTMENT OF BASE NETS 27

1. Epping base line and base net.
Location, measurement, and lengtlı 27
Adjustment of the base net 28
Resulting angles and sides. 35
Descriptions of stations. 39
2. The Massachusetts base line.
Location, measurement, and lengtlı 41
Connection with the main triangulation. 42
Descriptions of stations 42
3. The Fire Island base line and base net.
Location, measurement, and length 44
Adjustnent of the base net 47
Resulting angles and sides. 53
Descriptions of stations 54
4. The Kent Island base line, base net, and extension.
Location, measurement, and length 56
Adjustment of the base net 58
Extension of the base net 63
Resulting angles and sides. 68
Determination of probable error in the sides Osbornes Ruin-Turkey Point, and Tobacco Row-Spear 72
5. The Atlanta base line and base net.
Location, measurennent, and length 72
Adjustment of the base net 75
Resulting angles and sides. S_{5}
Descriptions of stations 87
6. The Dauphin Island base line and base net.
Location, measurement, and length 90
Adjustment of the base net 93
Resulting angles and sides. 97
Descriptions of stations 97
C. SYNOPSIS OF THF MEASUREMENTS AND RESULTS OF THE BASE LINES OF THE EASTERN OBLIQUE ARC. 100

PARTII.

THE MAIN TRIANGULATION.

A. GENERAL TREATMENT OF THE REDUCTION OF THE MAIN TRIANGULATION BETWEEN Calais, Maine, and Newí Orieans, Louisiana 103
B. The trianguiation.
I. Northeastern terminus to Epping base net 105
Abstracts of horizontal directions Io6
Figure adjustment 108
Resulting angles and sides IIO
2. Epping base net to Massachusetts base and to Fire Island base net III
Abstracts of horizontal directions II4
Figure adjustıment 122
Resulting angles and sides I30
3. Fire Island base net to Kent Island base net extended 135
Abstracts of horizontal directions 137
Figure adjustment 142
Resulting angles and sides 145
4. First, or Virginia section, south of the transcontinental triangulation 148
Abstracts of horizontal directions 149
Figure adjustment 151
Resulting angles and sides 154
5. Second, or North Carolina section, south of the transcontinental triangulation 156
Abstracts of horizontal directions 158
Figure adjustment 162
Resulting angles and sides 163
6. Third, or South Carolina section, sonth of the transcontinental triangulation 164
Abstracts of horizontal directions 165
Frigure adjustment 169
Resulting angles and sides I73
Adjustment of the position of Mount Mitchell, in North Carolina 176
7. First section west of the Atlanta base net 178
Abstracts of horizontal directions. 179
Figure adjustment 182
Resulting angles and sides 185
8. Second section west of the Atlanta base net 187
Abstracts of horizontal directions 188
Figure adjustment 191
Resulting angles and sides 192
9. Third section west of the Atlanta base net 194
Abstracts of horizontal directions 195
Figure adjustment 196
Resulting angles and sides 195
10. Fourth section west of the Atlanta base net 199
Abstracts of horizontal directions 200
Figure adjustment 20.4
Resulting angles and sides 206
II. Fifth section west of the Atlanta base net 209
Abstracts of horizontal directions 210
Figure adjustment 213
Resulting angles and sides 216
Rennarks on the accord of the Atlanta and Dauplin Island bases 218
CONTENTS.I I
B. The triangulation-continued. Page.
12. First section west of the Dauphin Island base net 219
Abstracts of horizontal directions 219
Figure adjustment 222
Resulting angles and sides 224
13. Second section west of the Dauphin Island base net 226
Figure adjustment 228
Resulting angles and sides 232
14. Some statistics of the triangulation 234
C. Resulting Geographic Positions of the Principal Stations of the Triangu- lation, Calais, Maine, to New Orleans, Louislana 237
D. Additional Geographic Positions which were Derived Differentially and for which Triangles are not Given in this Paper 247
E. Additional. Geodetic Azimuths Computed Directly from the Given Positions of the Stations 248
PART III
THE ASTRONOMIC MEASURES.
A. Resulits for latitude

1. General statement 251
2. Details at stations:
Agamenticus, Maine 276
Atlanta, Georgia 306
Atlanta Middle Base, Georgia 305
Aurora, Alabama 304
Bangor, Maine. 257
Beacon Hill, New Jersey 289
Bull Rın, Virginia 292
Calais, Maine. 253
Cambridge, Massachusetts (Cloverden Observatory) 282
Cape Henlopen, Delaware 292
Cape May, New Jersey 292
Cape Small, Maine 271
Causten, District of Columbia. 292
Charlottesville, Virginia 292
Clark, Virginia 292
Coast and Geodetic Survey Office, District of Columbia 292
Coon, Alabama 310
Cooper, Maine 255
Currahee, Georgia 299
Dover, Delaware 292
East Pascagoula, Mississippi 312
Elliott Knob, Virginia 292
Farmington, Maine 258
Fort Morgan, Alabania 313
Gunstock, New Hampshire 274
Harvard College Observatory, Massachusetts (Cambridge) 281
Hill, Maryland 292
Howard, Maine 263
Humpback, Maine 256
Isles of Shoals, Maine 278
A.-Resul.ts for latitude-continued.
3. Details at stations-continued. Page.
Kahatchee, Alabama 307
King, North Carolina 295
Lavender, Georgia 301
Long Mountain, Virginia 292
Lower Peach Tree, Alabana 309
Manomet, Massaclusetts 284
Marriott, Maryland 292
Maryland Heights, Maryland 292
Mobile, Alabania 310
Montgomery, Alabana 307
Moore, North Carolina 292
Mount Desert, Maine 264
Mount Harris, Maine 260
Mount Independence, Maine 272
Mount Pleasant, Maine 270
Mount Rose, New Jersey 290
Mount Tom, Massachusetts 282
Naval Observatory (new), District of Columbia 292
Naval Observatory (old), District of Columbia 292
New Orleans, Louisiana 314
New York, New York 288
Paris, South Carolina 297
Pooles Island, Maryland 292
Principio, Maryland 292
Ragged Mountain, Maine 266
Rockville, Maryland 292
Sabattus, Maine 269
Sandford, New York 286
Sawnee, Georgia 302
Seaton, District of Columbia 292
Soper, Maryland 292
Strasburg, Virginia 292
Sugar Loaf, Maryland 292
Taylor, Maryland 292
Thompson, Massachusetts 279
Unkonoonuc, New Hanlpshire 278
Wachusett, Massachusetts 280
Webb, Maryland 292
West Hills, New York 287
Yard, Pennsylvania 291
Young, North Carolina 294
4. Summary of results for latitude 315
B. Results for longitude.
I. General statement 317
5. Results for longitude at stations:
Atlanta, Georgia 318
Calais, Maine 318
Cambridge, Massachusetts 318
Cape May, New Jersey 318
Charleston, Soutlı Carolina 318
Charlottesville, Virginia 318
Dover. Ielaware 318

B. Resulits for longitude-continued.

B. Resulits for longitude-continued.
New Orleans, Louisiana
2. Resuits for longituide at stations-continued.
2. Resuits for longituide at stations-continued.Page.318
Washington, District of Columbia 318
Strasburg, Virginia 318
3. Details at stations: Bangor, Maine 318
Charleston, South Carolina 321
Columbia, South Carolina 321
Lower Peach Tree, Alabania 322
Macon, Georgia 322
Mobile, Alabania 323
Montgomery, Alabama 322
New Orleans, Louisiana 323
Petersburg, Virginia 320
Raleigh, North Carolina 320
Seaton, District of Columbia 319
Statesville, North Carolina 319
Wilmington, North Carolina 321
4. Summary of results for longitude. 326
C. Resulits for azimuth.
I. General statement 327
2. Details at stations:
Aganenticus, Maine 334
Atlanta Middle Base, Georgia 359
Aurora, Alabana 361
Beacon Hill, New Jersey 345
Beaconpole, Rhode Island 341
Blue Hill, Massachusetts 339
Bull Run, Virginia 351
Cape Henlopen Light-House, Delaware. 347
Cape Snall, Maine 332
Cat Island i855, Mississippi 366
Causten, District of Columbia 350
Clark, Virginia 351
Cooper, Maine. 328
Copecut, Massachusetts 341
Currahee, Georgia 357
Eiast Pascagoula, Mississippi 365
Elliott Knob, Virginia 352
Ethridge, Alabama 363
Fort Morgan, Alabana 364
Gunstock, New Hanpshire 335
Harvard Observatory, Massachusetts 338
Hill, Maryland 348
Howard, Maine 328
Humpback, Maine 329
Indian, Massachusetts 340
Kahatclee, Alabama 362
King, North Carolina 355
Lavender, Georgia 360
Long Mountain, Virginia 351
Marriott, Maryland 348
C. Resulits for azimuth-contimed. Page.2. Details at stations-continued.
Maryland Heights, Maryland 350
Moore, Nortlı Carolina 352
Mount Desert, Maine 330
Mount Harris, Maine 330
Mount Independence, Maine 333
Mount Pleasant, Maine 334
Mount Rose, New Jersey 345
Mount Tom, Massachusetts. 343
Paris, Soutlı Carolina 356
Principio, Maryland 347
Ragged Mountain, Maine. 331
Sabattus, Maine. 33^{2}
Sandford, Connecticut 343
Sawnee, Georgia. 358
Seaton, District of Columbia 349
Shootflying, Massachusetts 339
Soper, Maryland. 349
Spencer, Rhode Island $34{ }^{2}$
Sugarloaf, Maryland 350
Thompson, Massachusetts. 336
Unkonoonuc, New Hampshire. 336
Wachusetts, Massachusetts 337
Webb, Maryland. $3+8$
West Hills, New Iork 344
Yard, Pennsylvania 346
Young, North Carolina 354
PART IV.
DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THE TRIANGULATION.
A. Comparison of the astronomic and geodetic results 369

1. The astronomic latitude stations.
Reduction to sea level 370
Reduction for variation of pole 370
Comparison of astronomic and geodetic latitudes 372
Review of latitudinal deflections 373
2. The astronomic longitude stations.
Comparison of astronomic and geodetic longitudes. 374
Review of longitudinal deflections 374
3. The astronomic azimuth stations.
Comparison of astronomic and geodetic azimuths 375
Review of azimuthal deflections 376
b. Determination of an oscllating spheroin for the region covhren by the triangulation 377
The method and formulx employed. 377
Collection of constants and tabular quantities required in the computation for estab- lishing the conditional equations. 380
B. DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THEtriangulation-continued.
Selection of stations for which data were admitted into the equations of condition. 381
Conditional equations derived from latitude comparisons 385
Conditional equations derived from longitude comparisons 386
Conditional equations derived from azinuth comparisons 386
Formation of normal equations 387
The relative weights of the observation equations $3^{38} 7$
Resulting normal equations 388
The precision of the adjusted or resulting values of the length of the equatorial radius and of the compression as found from the measure of the arc. 390
Resulting spheroid 391
Comparison with other spheroids 394

ILLUSTRATIONS.

Page.1. United States Coast and Geodetic Survey Office Frontispiece.
2. Epping base. View of line as graded for measurement 27
3. Epping base. Placing base apparatus over mark 27
4. Epping base net, Maine 29
5. Massachusetts base, and connection with the primary triangulation of Massachusetts 42
6. Diagram 45
7. Fire Island base net, New York 47
8. Diagram 57
9. Kent Island base net, Maryland 58
10. Kent Island base and extension of the triangulation to the westward and southward 64
11. Ferdinand Rudolph Hassler 44
12. Atlanta base net, Georgia 76
13. Alexander Dallas Bache 90
14. Dauphin Island base net, Alabania 93
15. Diagram 94
16. Triangulation, Epping base net to northeastern terminus 105
17. Mount Desert, Maine 114
1S. Mount Waslington 116
18. $75-\mathrm{cm}$. or $30-\mathrm{inch}$ theodolite. Trougliton and Sinnms 135
19. 30-cn1. or 12 -inch theodolite. Designed and constructed in the Instruntent Division, Coast and Geodetic Survcy Office 135
20. Triangulation, Epping base net to Fire Island base net 112
21. ${ }^{\text {Triangulation, Fire Island base net to Kent Island base net, extended }}$ I35
22. Triangulation, first section south of the transcontinental are 148
23. Triangulation, second or North Carolina section 156
24. Triangulation, third section, North Carolina to Atlanta base net 164
25. Mount Mitchell, North Carolina 176
26. Triangulation, adjustnent of Mount Mitchell 176
2S. Triangulation, first section west of Atlanta base net 178
27. Triangulation, second section west of Atlanta base net 187
28. Triangulation, third section west of the Atlanta base net 194
29. Triangulation, fourth section west of the Atlanta base net 199
30. Triangulation, fiftll scction and junction with the Dauphin Island base 209
31. Gulf coast triangulation west of Dauphin Island base net 219
32. Gulf coast triangulation to New Orleans, Louisiana 226
33. Extended Iambert equivalent projection, showing the location of principal are measures and areas of osculating spheroids 369
34. Naval Observatory, Waslington, D. C 377
35. Plan of Naval Observatory grounds 377
36. Suhsidiary telegraphic longitude stations between Washington and New Orleans 320

MAPS.

A. Area covered by the eastern oblique arc of the United States-triangulation from Maine to Louisiana
B. Distribution of astronomic stations along the eastern oblique arc of the United States fromMaine to Iouisiana
In pocket.

$$
4192-\text { No. } 7-02-2
$$

THE EASTERN OBLIQUE ARC OF THE UNITED STATES, FROM MAINE TO LOUISIANA, 1833-1898.

INTRODUCTION.

The general course of this ínclined arc is indicated in the title, and is shown on a projection with elliptical outline* facing Part IV of this publication. The triangulation upon which it is based begins at Calais, Maine, on the St. Croix River, opposite the Canadian boundary, in latitude $45^{\circ}{ }^{1} 1^{\prime} \circ 9^{\prime \prime \prime} 4$, and iu longitude $67^{\circ} 16^{\prime} 57^{\prime \prime} 9$ west of Greenwich, and, following the trend of the Appalachian chain of mountains, reaches the Gulf coast at Dauphin Island, near Mobile Bay, and terminates at New Orleans, Louisiana, in latitude $29^{\circ} 57^{\prime} 24^{\prime \prime} 4$, and in longitude $90^{\circ} 04^{\prime} 24^{\prime \prime \prime} 4$ west of Greenwich.

The geodetic line covers $23^{\circ} 30^{\prime} 57^{\prime \prime}$, and its total length is 26123° kilometers, or I $623^{\circ} 2$ statute miles, with an azimuth of $57^{\circ} 30^{\prime \prime} 7$ at Calais and of $223^{\circ} 22^{\prime} 5$ at New Orleans, as counted from south around by west. . Its extremes differ $15^{\circ} 13^{\prime} 45^{\prime \prime}{ }^{\circ}$ in latitude and $22^{\circ} 47^{\prime} 26^{\prime \prime} 5$ in longitude, and in its course it traverses sixteen States. \dagger

Near the middle of the arc the triangulation crosses the thirty-ninth parallel, and for some distance in Maryland and Virginia the same triangulation is used in discussing the oblique arc as was employed in the discussion of the arc of the thirty-ninth parallel, an important feature, as will appear in the following pages.

Looking at the gradual development of this arc, extending over two-thirds of a century, it can be seen that in its historical aspect it is readily divisible into several well-defined groups, and as a whole it will appear that its existence must be ascribed to necessity rather than to any preconceived idea of measuring such an oblique arc.

Previous to the invention of the telegraphic method of determining differences of longitude, first employed in October, 1846, by the U. S. Coast Survey, in determining the difference of longitude between Washington and Philadelphia, and up to a somewhat later epoch, when the great accuracy of the method had been fully demonstrated, oblique arcs as well as arcs of the parallel were held in small esteem by geodesists, for the reason that the earlier methods did not determine differences of longitude with a degree of accuracy comparable with that obtained in observations for latitude. Consequently their attention was almost exclusively confined in practice to the measure of meridional arcs from which to deduce the earth's magnitude. Compared with an arc of the parallel, an arc inclined to the meridian is less favorably conditioned for discussing the figure of the earth on account of the greater effect of any uncertainty in the measure of

[^1]azimuths, and greater accuracy is demanded in the latter case than is required when the arcs follow a meridian or parallel.

Oblique arcs should no longer be regarded with any special disfavor, and while they entail very much more labor, comparatively, when they are utilized in determining the figure of the earth, they are well adapted, when of sufficient extent, for the determination of an osculating spheroid for the region covered by them. . The existence of the arc discussed in this publication is the result of the necessity for a main triangulation binding together the detached surveys of the harbors on the Atlantic coast and forming a base upon which all subordinate triangulation along the coast could be brought into accord.

The immediate object of the main triangulation was thus to secure uniformity and systematic treatment for both the astronomic and geodetic measures in the preparatiou of the geographic position of the trigouometric stations. This was a leading idea from the begiming of the Survey under its first Superintendent, and when fully developed resulted in the work under discussion.

There could be no doubt of the necessity of firmly binding together iu this way the small tertiary triangulation and traverse measures along the coast which wind, unbroken, following the indentations of the coast, from the Canadian boundary to Cape Florida and thence into the Gulf of Mexico, following the coast to the Mexican boundary.

The measuremeut of the oblique are was thus identical with the progress of the ordinary operations of the Survey in this portion of the country.

The first period, covering the years 1833 to 1844, witnessed the execution of the work from central Long Island, New York, to the head-waters of Chesapeake Bay, uniting on the way the surveys at New York, New York, and Philadelphia, Pennsylvania, and this work was nearly all completed under Superintendent Hassler.

During the second period Superintendent Bache, pursuing the same general plan, had the work carried from Rhode Island to the Canadian boundary, at Calais, Maine, on the St. Croix River, and this work was completed in 1859.

In 1865 the branch primary triangulation across the State of Connecticut, counecting the main scheme with some older work in this region, was completed. This period closed in 1871, when the Potomac River was reached and crossed.

In the third period, covering the years 1873-1877, the work was extended to the Atlanta base, in Georgia.

The fourth period begins in 1885 and extends to 1898 , and during this time the work was extended to Mobile, Alabama.

The triangulation between Mobile and New Orleans, Louisiana, was done between 1846 and 1874.

While the field work, as completed, apparently covers a very long period, the first measures dating back to the year 1833 and the last measures being made in 1898 , as has been stated, this interval contaiued many years when no work was donc upon this arc. The slow rate of progress was thus only apparent, as it dcpended upon and was subordinate to thic ordinary requirements of the Survey on this part of the coast, and of the gencral operations of which it was only an incidcutal feature.

Part I deals mainly with the base lines and Part II with the intervening triangulation.

The astronomic determinations of latitude, longitude, aud azinnths are numerous
and well distributed over the whole arc. There are available, for the computation and comparison of geodetic and astronomic positions, results at 7 I latitude stations, at I_{7} longitude, and at 55 azimuth stations. The latitudes depend almost exclusively on observations with zenith telescopes, and the longitudes on telegraplic transmission of time. The azimuths depend upon a variety of methods, using the pole star most frequently. Abstracts of the individual and final results of the astronomic measures are presented in Part III of this publication. The distribution of the astronomic stations over the region covered by the arc is shown on Map B (in pocket), and the two maps A and B have the same scale as the similar maps accompanying U. S. Coast and Geodetic Survey Special Publication No. 4, containing the discussion of the transcontinental are of the parallel in latitude $39^{\circ} \mathrm{N}$.

Part IV contains the comparison of the geodetic and astronomic measures and the determination of an osculating spheroid for the region covered by the arc.

Preliminary publication of the greater portion of this arc has already been made in the following reports of the Survey: Report for 1865, Appendix No. 21, pp. 187-203 "Results of the primary triangulation of the coast of New England from the northeastern boundary to the vicinity of New York;" Report for 1866, Appendix No. 8, pp. 49-54, "Report on the geodetic comnection of the primary base lines in New York and Maryland, their degree of accordance and accuracy of the primary triangulation intervening, with the resulting angles and distances as finally adjusted," and Report for 1878, Appendix No. 8, pp. 92-120, "On the adjustment of the primary triangulation between the Kent Island aud the Atlanta base lines." These reports contain also more or less complete accounts of the six base lines located in the arc.

Other references will be given in their proper place. The present publication is complete in itself, and while no important facts or statements are omitted, much simplification has been effected by referring to the publication above mentioned, covering the transcontinental arc of the parallel, the same general treatment and method of reduction of the triangulation having been employed in reducing that arc as is used in the following discussion of the oblique arc.

PARTI.

THE BASE LINES AND BASE NETS.

THE BASE LINES AND BASE NETS.

A. GENERAL REMARKS.

The unit of length is the same as that used from the beginning of the Survey uutil 1889, viz, an iron bar, I meter long, standardized at Paris in 1799 and brought to this country by Mr. F. R. Hassler in 1805 . Its use was discontinued after the receipt of the new prototype platinum meters in November, 1889. This meter, known on the Survey as the Committee Meter, is an end measure and is represented by an iron bar with square end surfaces, now slightly defaced by corrosion and perhaps by use. It will suffice to refer the reader to the full account given of this meter in Part I of the "Transcontinental Triangulation and the American Arc of the Parallel " across the United States in the vicinity of latitude 39°, published by the Coast and Geodetic Survey in 1900. In that publication, after some historical notes, the results of the numerous comparisons, direct and indirect, by different observers, by different methods and at different times, are completely set forth, and the final conclusion is reached that this bar at $o^{\circ} \mathrm{C}$. represents so nearly the length of the prototype meter that no reliable value of the difference can be stated. The weighted inean of all comparisons gave the result $\mathrm{I}^{\prime \prime}+\mathrm{o}^{\circ} 2 \mu \pm 0^{\circ} 6 \mu$, and in all comptatations depending upon this standard it has been taken as equal in length to the prototype meter with a probable error of about three-quarters of a micron.

There are six base lines irregularly distributed along the are, and they are described in the order of location, beginning in the extreme northeast and ending on the Gulf coast. For each line all needful information is given in connection therewith, such as position, physical features, elevation above sea level, apparatus used for the measure, name of observer, computation of length and final result, with its probable error.

A sketch of each base net is presented, and it is followed by the abstracts of horizontal directions, observed and adjusted, for each station forming part of the net. These abstracts contain the following information: County and State, date of measure, instrument used and observer's name, and alse, in the first column, the number of each direction. These numbers, when in parentheses, indicate the corresponding corrections as given by the net adjustment. In the great majority of cases direction theodolites were employed, and for these Bessel's method* of reduction at the station was used. When repeating theodolites were used the station adjustment followed the ordinary method \dagger of combination with the introduction of relative weights. Below the abstracts of directions resulting from station adjustment there is given the probable error of a single observa-

[^2]tion of a direction (mean of the direct and reversed series) deduced from $e_{\mathrm{s}}^{2}=\frac{\dot{0} \cdot 455 \sum \Delta^{2}}{n-s-d+1}$, where $n=$ number of observations, $s=$ number of series, $d=$ number of directions, and $\Delta=$ differences of observed and adjusted values.

The figure adjustment of the triangulation generally proceeds on the supposition of equal weights to all directions used in the adjustment, except, as in the case of the Epping base net adjustment, where special weights are introduced.* To carry weight equations from the station adjustment into the figure adjustment is not practiced or favored in the Survey on account of the increased complexity and the doubtful advantage of the proceeding. The errors brought to light by geometrical conditions, and which tave been called triangle-combination errors, are of a different character from those developed by a comparison of the measures made at a station, where defects of centering at observing and observed stations, effects of large local deflections of the vertical at a station, persistent lateral refraction along a line, etc., do not show; that is to say, weights pertaining to one operation are not those proper for the next operation. Further particulars of figure adjustment with statement of formulæ may be found in "The Transcontinental 'Triangulation,' ' Part I.

Fo. the computation of the sides of the triangles Legendre's theorem was used, and since none of the lines of the oblique arc are very long the spherical excess was computed by the simple formula

$$
\frac{a b \sin C}{2 \rho_{m}} \rho_{n} \sin I^{\prime \prime}
$$

where $C=$ the plane angle included by the sides a and b and the subscripts to ρ refer to the radius of curvature in the meridian and in the prime vertical. Appendix No. 9 , Coast and Geodetic Survey Report for 1894, page 291, contains a table to facilitate the computation of the spherical excess, the argument being the latitude of the center of the triangle. The computation of the geodetic positions along the oblique arc is made according to the formulæ and tables in the same appendix, the differences in latitude, longitude, and azimuth for two points of known distance and azimuth being given by

$$
\left\{\begin{array}{l}
-\Delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C+(\delta \varphi)^{2} D-h s^{2} \sin ^{2} \alpha . E \\
\Delta \lambda=s \sin \alpha \sec \phi^{\prime} \cdot A \\
-\Delta \alpha=\Delta \lambda \sin 1 / 2\left(\varphi+\phi^{\prime}\right) \sec 1 / 2(\Delta \varphi)+(\Delta \lambda)^{3} F
\end{array}\right.
$$

where

$$
\begin{array}{l|c}
\varphi^{\prime}=\varphi+\Delta \varphi & \text { and }-\delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C-h s^{2} \sin ^{2} \alpha \cdot E \\
\lambda^{\prime}=\lambda+\Delta \lambda & \text { also } h=s \cos \alpha \cdot B .
\end{array}
$$

The factors A, B, C, D, E, and F are tabulated and refer to Clarke's spheroid of 1866. Their logarithmic values are given for every minute of angle between latitudes of 18° and 72°.

A description of each station used in the base nets is given. The description of the other stations of the triangulation can be obtained upon application to the Coast and Geodetic Survey, Washington, District of Colnmbia.

[^3]

EPPING BASE. VIEW OF LINE AS GRADED FOR MEASUREMENT.

B. THE BASE LINES OF THE EASTERN OBLIQUE ARC, THEIR MEASUREMENT, RESULTING LENGTH, PROBABLE ERROR, AND ADJUSTMENT OF BASE NETS.

1. THE EPPING BASE LINE AND BASE, NET, MAINE, 1857.

Location, measurement, and resulting length of the Epping base line, Maine, 1857.
The site of this base is on Epping Plains, near Cherryfield, Washington County, Maine. A recomaissance of the locality was made in 1853, and the neasurement of the base followed in July and August, 1857, under the immediate direction of Superintendent A. D. Bache. The Annual Report for 1865, Appendix No. 21 , pages 189-191, contains a full account of the measure and of the result. It will therefore suffice to present here only the salient points of the operation.

The measure was made with the Bache-Würdemann contact-level compensating apparatus, and is the sixth primary line where this apparatus was employed, the Dauphin Island base, Alabama, being the first, an account of which is given further on (q. v.). The apparatus is fully described with illustrations in Coast Survey Report for 1854, Appendix No. 35, and reprinted in Coast Survey Report for 1873, Appendix No. 12. The essential part of the apparatus consists of two 6 -meter bars, one of brass and one of iron, placed parallel to each other, one being above the other and firmly connected at one end. At the opposite or free end is the lever of compensation, so proportioned in its arms with respect to the actual and differential expansion and contraction with changes of temperature that the end of the apparatus remains at a constant distance from the opposite end. The spirit-level contact piece terminates in an agate, ground to a knife edge, whereas the agate at the opposite presents a slightly convex surface. The apparatus was standardized by means of a standard 6 -meter iron bar, the length of which was determined at different times in terms of the Committee Meter.

The length of this base is about 8.72 kilometers (or 5.42 statute miles), its middle point is in latitude $44^{\circ} 40^{\circ} \cdot 8$ and in longitude $67^{\circ} 53^{\prime \cdot}$, with a mean azimuth of 106° 54^{\prime}. Much labor had to be spent preparing the ground for the measure by leveling it, removing bowlders, and overcoming other obstacles, the handling of the apparatus demanding a wide and fairly smooth roadway. The average height of the tubes above the mean tide level of the Atlantic was 76.45 meters. The 6 -meter base bars or tubes were compared with the standard 6 -meter bar just before and immediately after the base measure. Taking the length of the latter and its coefficient of expansion as determined in 1860 and published by Assistant J. E. Hilgard in Coast Survey Report for 1862, Appendix No. 26, viz, 5999941 meters, and o.000 01154 for the centigrade scale, the following $\pm 2 \pm 4$
results for the length of the tubes were obtained: Three sets of 23 comparisons, made with Saxton's reflecting comparator* on July 16th and 17 th, gave tube No. i shorter than the standard (at $18^{\circ}{ }_{3} \mathrm{C}$.) I $300^{\circ} 4$ divisions of the comparator and tube No. 2 shorter $1088{ }^{\circ} 7$

[^4]divisions; again, after the base measure, on August 6th and 7 th, from 4 sets of 27 comparisons, tube No. I shorter than the standard (at $21^{\circ}{ }^{\circ} \mathrm{OC}$.) I $411^{\circ} 8$ divisions and from ± 33
4 sets of 23 comparisons tube No. 2 shorter $1195^{\circ} 3$ divisions. Having regard to the ± 2.9
weights, the above comparisons give the values for length of tubes,
\[

$$
\begin{aligned}
& \text { for No. } 1_{2}, 5 \text { 5'999 } 459 \text { o meters,* } \\
& \pm 49 \\
& \text { for No. 2, 5"999 } 7506 \text { meters. }
\end{aligned}
$$
\]

$$
\pm 49
$$

Although the comparisons of the tuhes with the standard bar were made with rising and falling temperatures, there remained an uncertainty respecting the indication of the thermometers in air giving the temperature of the metallic bar even within $1 /{ }^{\circ}$. Further, some allowance had to be made for any defect in the mechanical compensation, for possible error in making contacts and transfers to the ground, and for other small uncertainties in connection with the base measure, and this was arbitrarily fixed as $\pm 97 \mu$. The probable error of the length of a tube during the measure was taken as $\sqrt{\left(4^{\circ} 9\right)^{2}+\left(9^{\circ} 7\right)^{2}}$ $= \pm 10^{\circ} 9 \mu$, hence that for the whole length $=1453 \times 10^{\circ} 9 \mu=0^{\circ} 0158^{m}$, which equals ${ }^{5}{ }^{1}{ }^{1} \bar{\sigma} \sigma$ part of the length. In this case, as in that of the other bases of this arc, except the Atlanta base, the single measure fails to provide proper means for a more reliable value of the probable error of the length. We have for the length of the Epping base:

452 tubes of mean length,	$8711^{\text {mi }} 4262$
One odd tube, No. I,	+5.9994
Correction for inclination of tubes,	-2.80,40
Defect of last tube at East Base,	+1.4250
Reduction to half-tide level of ocean,	, -0.1044
Resulting length of base, And its logarithun, $3.9 .4031434 \pm 0$	$\begin{aligned} & 8715^{\text {n. }} \cdot 9.422 \pm 0^{\text {ne }} \cdot 0158 \\ & 00000079 \end{aligned}$

The Epping base net and results of its adjustment.

As shown on the following sketch, this net of triangles is included within the primary quadrilateral Humpback, Mount Desert, Howard, and Cooper, and involves 6 geodetic points. The figure is a very strong one and demands that 35 geometric conditions be satisfied. The reduction of this base net is complicated on account of the employment of both direction and repeating theodolites, five of the stations having been occupied with the latter instruments.

An account of the adjustment of this base net is con ained in Coast Survcy Report for 1864, Appendix No. 14, and may be referred to for particulars; the results are here transcribed, except that the notation has been changed for one more convenient. In comnection with the station abstracts there is added a column containing the approxi-

[^5]mate value of the probable error of a resulting direction, depending on the formula $\varepsilon_{1}^{2}=\frac{0.455 \Sigma \Delta^{2}}{s(\text { diag. coeff't })}$ in case of direction observations. In case of repetitions the probable error will depend upon the comparison of a resulting angle with each of its 20 measures (each of 3 repetitions direct and 3 repetitions reversed), from which an average and approximate value of the probable error of a single measure of an angle and of a direction has been derived, as well as the probable error of a resulting direction. We have approximately from the 20 measures of each angle the probable error of a single observation of an angle $c_{L}=0.845 \sqrt{n(v-v)}$ *hence the probable error of a single observation (3 D. and $3 R$.) of a direction $e_{1}=e_{L} / \sqrt{2}$, also approximately for a resulting direction $\varepsilon_{1}=e_{1} / \sqrt{20}$. The last column of the abstracts contains the final adjusted directions, the first direction having again been made zeró by subtracting the correction to the initial direction from each of the corrections to the other directions, as given in the preceding column. \dagger

In the adjustment of the base net special weights were assigned to the directions, as explained at length in Coast Survey Report for 1864 . If
 we deduce the probable error of a direction from the closing errors in the sum of the angles of the 46 triangles, we find from the sum of the squares of these errors the mean closing error of a triangle $=\sqrt{\frac{54^{\circ 49}}{46}}= \pm \mathrm{I}^{\prime \prime} \circ 9$, hence the probable error of a direction $=0.674 \times 1.09 / \sqrt{6}= \pm 0^{\prime \prime} \cdot 30$.

On the other hand, the average value of the probable error of observation of the 116 directions in the net is about $\pm 0^{\prime \prime} \cdot 24$, whence the triangle combination error $\varepsilon_{c}=\sqrt{\left(0^{\circ} 30\right)^{2}-\left(0^{\circ} 24\right)^{2}}= \pm 0^{\prime \prime}{ }^{17}$ (11early), and the square of this was added as a constant to each of the previously deduced squares of the observing errors. We then have $\varepsilon^{2}=\varepsilon_{x}^{2}+\varepsilon_{c}^{2}$ and the weight to any direction $p=\frac{1}{\varepsilon^{2}}$. The values of p thus have

[^6]smaller range than they would have had without the addition of the constant; still the maximum weight is to the minimum weight as $5^{\circ} 4$ to r . The effect of the introduction of weights is small in cases like the present, a base net of great complexity and fair measures.

There was no special necessity for a reduction of the horizoutal measures to sea level on account of the elevation of the signals sighted. The following table gives the approximate heights of the ground at the stations:

	Meters.	Feet.
Epping East Base,	$77^{\circ} 6$	255
Epping West Base,	$72^{\circ} 9$	239
Burke,	$129^{\circ} 5$	425
Tunk,	$350^{\circ} 5$	1150
Pigeon,	$95^{\circ} 9$	315
Humpback,	45^{1}	1480
Mount Desert,	$464^{\circ} 9$	1525
Howard,	$82^{\circ} 0$	269
Cooper,	224	735

The largest reduction for latitude 45° and $\alpha=45^{\circ}$ (nearly that of the line Epping East Base to Mount Desert) would amount to only $0^{\prime \prime} \cdot 025$, a correction so small that it may be neglected.

Abstracts of resufting horizontal directions observed and adjusted at stations forming the base net, 1856-1859.

Epping East Base, Washington County, Maine. September 17 to September 29, 1859. 25^{cm} repeating theodolite No. 43. C. O. Bgitelle, observer. Telescope 14 meters above ground.

No. of directions.	Objects observed.	Resulting directions from station adjustment.			Approximate probable errors.	Corrections from base net adjustwent.	Final seconds in triangulation.
		-	,	"	/	11	"
1	Mount Desert	0	00	$00 \cdot 00$	± 0.27	$0 \cdot 000$	$00{ }^{\circ} 000$
2	Burke	13	34	$42 \cdot 40$	- $\cdot 28$	-0.556	41.847
3	Tunk	39	21	$25 \cdot 46$	$0 \cdot 27$	+1.035	26.495
4	Epping West Base	65	11	$55 \cdot 30$	- 31	-0.476	$54 \cdot 824$
5	Humpback	92	52	$56^{\prime 3}$ I	- 28	-0.157	$56 \cdot 153$
6	Howard	235	22	32.46	- 28	-0.582	$31 \cdot 878$
7	Pigeon	329	07	59.80	- 29	-0.878	$58 \cdot 922$

Probable error of a single observation (3 D. and $3 R$.) of a direction, $e_{\mathrm{t}}= \pm 0^{\prime \prime} 9$. ${ }^{\prime}$. Number of angles adjusted, 14.

Epping West Base, Washington County, Maine. October II to October 16, 1859. 25^{cm} repeating theodolite No. 43. C. O. Boutelle, observer. Telescope 14 meters above ground.

Probable error of a single observation ($3 D$. and $3 R$.) of a direction, $e_{1}= \pm 0^{\prime \prime} 96$. Number of angles adjusted, 6.

Abstracts of resulting horizontal directions obsemed and adjusted at stations forming the base net, 1856-1859-continued.

Burke, Washington County, Maine, September 30 to October $10,1859.25^{\mathrm{cm}}$ repeating theodolite No. 43. C. O. Boutelle, observer.

No. of directions.	Objects observed.	Resulting directhous from station adjustment.			Approximate probable errors. "	Corrections from base net adjustment. //	Final seconds in trian. gulation. //
		-	1	/'			
13	Humpback	-	OO	$00 \cdot 00$	$\pm 0 \cdot 32$	$0 \cdot 000$	$00 \cdot 000$
14	Epping West Base	35	50	55.63	$0 \cdot 36$	+0.529	$56 \cdot 159$
15	Cooper	62	44	$36 \cdot 70$	0.33	+1.178	$37 \cdot 879$
16	Epping East Base	75	10	31.48	$0 \cdot 33$	+0.609	$32 \cdot 089$
17	Howard	105	30	16.64	$0 \cdot 33$	-0.891	15.749
18	Pigeon	176	58	51.30	$0 \cdot 34$	-0.397	$50 \cdot 903$
19	Mount Desert	236	09	$13 \cdot 84$	$0 \cdot 34$	-0. 442	$13 \cdot 398$
20	Tunk	315	37	52.99	$0 \cdot 34$	+0.326	53.316

Probable error of a single observation (3 D. and $3 R$.) of a direction, $e_{1}= \pm d^{\prime} .94$. Number of augles adjusted, 14.

Tink, Hancock County, Maine. October 27 to October $31,1859.25^{\mathrm{cm}}$ repeating theodolite No. 43 . C. O. Boutelle, observer.

21	Humpback	o	о0	00'00	± 0.48	0.000	-000
22	Epping West Base	67	44	56.53	$0 \cdot 48$	-0.835	55.694
23	Epping East Base	83	49	$30 \cdot 54$	$0 \cdot 46$	+0.070	30.610
24	Burke	118	30	08.38	0.46	-0.875	07-505
25	Pigeon	144	27	29.16	$0 \cdot 46$	+0.154	29.314
26	Mount Desert	201	11	04.45	$0 \cdot 47$	-0.224	$04 \cdot 226$
	Saunders	275	58	53.08	$0 \cdot 51$		

Probable error of a single observation (3D. and $3 R$.) of a direction, $e_{1}= \pm 1^{\prime \prime} 37$. Number of angles adjusted, i2.

Pigeon, Washington County, Maine. October 19 to $25,1859.25^{\mathrm{cm}}$ repeating theodolite No. 43 . C. O. Boutelle, observer.

27	Mount Desert	0	-	$00 \cdot 0$	± 0.27	0.000	00.000
	Saunders	45	\bigcirc	42.99	$0 \cdot 29$	
28	Tunk	74	49	02. 86	0.27	-0.326	02.534
29	Burke	90	12	$38 \cdot 14$	- 25	$+0.477$	$3^{8.617}$
30	Humpback	92	09	19050	0.26	-0.033	19.467
31	Epping West Base	104	56	${ }^{4} \times 61$	$0 \cdot 26$	$+1.482$	42.092
32	Epping East Base	123	57	37^{17}	$0^{\circ} 27$	$+{ }^{+} \cdot 303$	$37 \cdot 473$
33	Howard	176	41	31^{169}	0.25	+0.536	32.226

Probable error of a single observation ($3 D$. and $3 R$.) of a direction, $\ell_{\mathrm{r}}= \pm \mathrm{I}^{\prime \prime}$. II. Number of angles adjusted, i4.

Abstrads of resnlting horizontal directions observed and adjusted at stations forming the base net, 1856-1859-continued.

Humpback, Hancock Connty, Maine. July 19 to September 6, 1858.75^{cmu} direction theorlolite No. I. A. D. Bache and G. W. Dean, observers.

No. of direclions.	Objects observed.	Resulting directions from station adjustinent.			Approximate prob able errors	Corrections from hase net adjustnent.	Final seconds in trian. gntation.
		-	,	"	"	/1	"
34	Cooper	0	¢о	$00 \cdot 000$	± 0.150		$00 \cdot 000$
	Azimuth Mark	39	37	40.23	0.163	$40 \cdot 403$
35	Howard	39	45	46.385	0.126	+0.605	46.990
36	Epping liast Base	59	43	10:401	0.136	+0.135	10.536
37	Epping West Base	69	3^{8}	$48 \cdot 051$	$0 \cdot 151$	+0.084	$48 \cdot 135$
38	Pigeon	8.4	09	57.099	0.125	-0.223	56:S76
39	Burke	85	14	25.280	0.142	-0.086	25*195
40	Tunk	102	22	11.498	0.143	+0.093	11.591
41	Mount Desert	114	33	$50 \cdot 877$	$0 \cdot 090$	+0.779	$51 \cdot 656$
	Ragged Mountain	15.4	2.5	20.545	$0 \cdot 132$	
	Saunders	165	12	47-118	$0 \cdot 131$	
	Mount Harris	1 So	36	29.988	$0 \cdot 169$. .	

Number of positions of circle, V. Probable error of a single observation of a direction, $e_{s}= \pm 0^{\prime \prime} 91$.
Mount Desert, Hancock County, Maine. August 14 to October 14, 1856.75^{cm} direction theodolite No. I. A. I. Bache and G. WV. Dean, observers.

Number of positions of circle, V. I'robable error of a single observation of a direction, $c_{\mathrm{x}}= \pm 0^{\prime \prime} .86$.

Abstracts of resulting horizontal directions obscrved and adjusted at stations forming the base net, 1856-1859-continued.

Howard, Washington County, Maine. July 15 to August 8, 1859. 75^{cm} direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

No. of direc tions.	Objects observed.	Resulting direc tions from station adjustment.			Approximate probable errors	Corrections fron base ment.	Hinal seconds in triangulation.
		-	,	"	"	"	"
49	Pigeori	\bigcirc	∞	$00 \% 00$	+0.140	$0 \cdot 000$	00.000
50	Mount Desert	1	19	25.944	- 177	-0.112	$25 \cdot 832$
51	Burke	22	02	$34 \cdot 126$	0.213	-0.968	$33 \cdot 158$
52	Epping East Base	33	30	$40^{\circ} 141$	-191	+o. 204	$40 \cdot 345$
53	Humpback	51	03	$41 \cdot 505$	-173	+1.231	+2\%736
54	Cooper	108	or	27.996	O. 114	+0.022	28.018
	Azimuth Mark	123	51	$19^{\circ} 227$	0 orio	19.290
	Trescott Rock	:73	43	51.973	- 191		
	Grand Manan	189	28	$45 \cdot 843$	- 016 I		

Number of positions of circle, V. Probable error of a single observation of a direction, $c_{2}= \pm 1^{\prime \prime} 19$.
Cooper, Washington County, Maine. August 30 to September $16,1859.75^{\mathrm{cm}}$ direction theodolite
No. I.- A. D. Bache and G. W. Dean, observers.

	Chanicook	-	00	00'000	$\pm{ }^{*} 117$	
	Prince Regents Redoubt	38	36	$49^{\circ} \mathrm{OS} 2$	- 197		
	Grand Manan	54	40	14.493	$0 \cdot 238$		
	Trescott Rock	68	43	$5 \mathrm{I} \cdot 687$	${ }^{0} 161$f...
55	Howard	$\left\{\begin{array}{r}108 \\ 0\end{array}\right.$	56	$09 \cdot 385$ $00 \% 00$	${ }_{0}{ }^{1} 33$	$0 \cdot 000$	00.000
56	Mount Desert	$\left\{\begin{array}{l}157 \\ 48\end{array}\right.$		$\begin{aligned} & 00 \cdot 7 \mathrm{S9} \\ & 5 \cdot 404 \\ & 5 \cdot 4 \end{aligned}$	0.188	+0.641	$52^{\circ} \mathrm{O} 45$
57	Burke	$\left\{\begin{array}{l}160 \\ 51\end{array}\right.$		$40 \cdot 754$ 31.369	0. 149	+0.578	31.9 .48
58	Humpback	$\left\{\begin{array}{l}192 \\ s_{3}\end{array}\right.$	12	43.014 33.629	- 259	-0.587	'33.042
	Azimuth Mark	$\left\{\begin{array}{l} 294 \\ 185 \end{array}\right.$	13	$\begin{aligned} & 08 \cdot 804 \\ & 59 \cdot 419 \end{aligned}$	o'127	\ldots	59.577

Number of positions of circle, V. Probable error of a single observation of a direction, $\varepsilon_{\mathrm{t}}= \pm \mathrm{I}^{\prime \prime} \cdot \mathrm{I} 9$.

> EPPING bASE NET ADJUSTMENT.

Observation equations.

Obsemation equations－continued．

```
    VI
    VII
    VIII
    IX
    x
    XI
    XX
    XXI
XXII
```

```
\(0=-1 \cdot 726+(25)-(22)+(11)-(9)+(31)-(28)\)
```

$0=-1 \cdot 726+(25)-(22)+(11)-(9)+(31)-(28)$
XIII $0=-0.68771+0.31512(32)-1.07988(29)+0.76476(28)+0.43254(25)-0.73688(24)$
XIII $0=-0.68771+0.31512(32)-1.07988(29)+0.76476(28)+0.43254(25)-0.73688(24)$
$+0.30434(23)+0.43596(3)-0.65063(2)+0.21467(7)$
$+0.30434(23)+0.43596(3)-0.65063(2)+0.21467(7)$
XIV $0=-0.929+(16)-(20)+(24)-(23)+(3)-(2)$
XIV $0=-0.929+(16)-(20)+(24)-(23)+(3)-(2)$
XV $0=-1.58338+0.73062(23)-0.81676(22)+0.08614(21)+0.32768(40)-1.53073^{\circ}(37)$
XV $0=-1.58338+0.73062(23)-0.81676(22)+0.08614(21)+0.32768(40)-1.53073^{\circ}(37)$
$+1 \cdot 20305(36)+0.40132(5)-0.83606(4)+0.43474(3)$
$+1 \cdot 20305(36)+0.40132(5)-0.83606(4)+0.43474(3)$
XVI $0=+\mathrm{O}^{\circ} 153+(40)-(37)+(12)-(\mathrm{II})+(22)-(21)$
XVI $0=+\mathrm{O}^{\circ} 153+(40)-(37)+(12)-(\mathrm{II})+(22)-(21)$
XVII $0=+0.22432+0.65422(44)-1.9850 S(43)+1^{\prime} 33086(42)+0.97432(4 \mathrm{I})-\mathrm{I}^{16} 674 \mathrm{~S}(40)$
XVII $0=+0.22432+0.65422(44)-1.9850 S(43)+1^{\prime} 33086(42)+0.97432(4 \mathrm{I})-\mathrm{I}^{16} 674 \mathrm{~S}(40)$
$+0.68316(39)+0.21525(13)-0.25436(20)+0.03911(19)$
$+0.68316(39)+0.21525(13)-0.25436(20)+0.03911(19)$
XVIII $0=-0.907+(13)-(19)+(44)-(42)+(41)-(39)$
XVIII $0=-0.907+(13)-(19)+(44)-(42)+(41)-(39)$
XIX: $0=-1 \cdot 117+(41)-(40)+(21)-(26)+(43)-(42)$
XIX: $0=-1 \cdot 117+(41)-(40)+(21)-(26)+(43)-(42)$
$0=-1 \cdot 83218+2 \cdot 20947(46)-2 \cdot 62575(44)+0^{\circ} 41628(42)+0.37484(41)-0.81586(39)$
$0=-1 \cdot 83218+2 \cdot 20947(46)-2 \cdot 62575(44)+0^{\circ} 41628(42)+0.37484(41)-0.81586(39)$
$+0.44102(36)+0.03977(5)-0.91152(2)+0.87175(\mathrm{~s})$
$+0.44102(36)+0.03977(5)-0.91152(2)+0.87175(\mathrm{~s})$

```
\(0=+1 \times 292+(10)-(9)+(31)-(29)+(18)-(14)\)
```

$0=+1 \times 292+(10)-(9)+(31)-(29)+(18)-(14)$
$0=+0)^{\circ} 76 S+(18)-(13)+(39)-\left(3^{8}\right)+(30)-(29)$
$0=+0)^{\circ} 76 S+(18)-(13)+(39)-\left(3^{8}\right)+(30)-(29)$
$o=+0^{\circ} 08483+0^{\circ} 25700(16)-0.5484^{1}(14)+0.29141(13)+0^{\circ} 75443(39)-1 \times 95748(37)$
$o=+0^{\circ} 08483+0^{\circ} 25700(16)-0.5484^{1}(14)+0.29141(13)+0^{\circ} 75443(39)-1 \times 95748(37)$
$+1 \cdot 20305(36)-0.40132(5)+0.16676(2)-0.56 \mathrm{SOS}(4)$
$+1 \cdot 20305(36)-0.40132(5)+0.16676(2)-0.56 \mathrm{SOS}(4)$
$0=-0.788+(16)-(13)+(39)-(36)+(5)-(2)$
$0=-0.788+(16)-(13)+(39)-(36)+(5)-(2)$
$0=-1.34263+0.18284(11)-0.65278(10)+0.46994(9)+0.80064(31)-1.56540(29)$
$0=-1.34263+0.18284(11)-0.65278(10)+0.46994(9)+0.80064(31)-1.56540(29)$
+0.76476(28)+0.43254(25)-0.60454(24)+0.17200(22)
+0.76476(28)+0.43254(25)-0.60454(24)+0.17200(22)
$0=-2.555+(20)-(18)+(29)-(28)+(25)-(24)$
$0=-2.555+(20)-(18)+(29)-(28)+(25)-(24)$
$\mathrm{o}=+\mathrm{I}^{\circ} 27 \mathrm{I}+(2)-(1)+(46)-(44)+(19)-(16)$
$\mathrm{o}=+\mathrm{I}^{\circ} 27 \mathrm{I}+(2)-(1)+(46)-(44)+(19)-(16)$
$0=-0.44146+0.67443(30)-0.73156(28)+0.05713(27)+0.18656(48)-1.51742(43)$
$0=-0.44146+0.67443(30)-0.73156(28)+0.05713(27)+0.18656(48)-1.51742(43)$
$+1 \times 33086(42)+0.97432(41)-1 \times 61457(40)+0.64025(38)$
$+1 \times 33086(42)+0.97432(41)-1 \times 61457(40)+0.64025(38)$
XXIII $0=-1 \cdot 358+(30)-(27)+(48)-(42)+(41)-(38)$
XXIII $0=-1 \cdot 358+(30)-(27)+(48)-(42)+(41)-(38)$
XXIV $0=+0.92970+0.44102(39)-1.020 S S(36)+0.57986(35)+0.66575(53)-1.7035^{8}\left(5^{2}\right)$
XXIV $0=+0.92970+0.44102(39)-1.020 S S(36)+0.57986(35)+0.66575(53)-1.7035^{8}\left(5^{2}\right)$
$+1{ }^{\circ} 03783(51)+0.35990(17)-0.41562(16)+0.05572(13)$
$+1{ }^{\circ} 03783(51)+0.35990(17)-0.41562(16)+0.05572(13)$
xxy $0=+0.303+(2)-(6)+(52)-(51)+(17)-(16)$
xxy $0=+0.303+(2)-(6)+(52)-(51)+(17)-(16)$
XXVI $0=-0.134+(36)-(35)+(53)-(52)+(6)-(5)$
XXVI $0=-0.134+(36)-(35)+(53)-(52)+(6)-(5)$
XXVII $0=-1.36912+0.66575(53)-I^{\circ} 00027(52)+0.33452(50)+0.49153(47)-0.82493(46)$
XXVII $0=-1.36912+0.66575(53)-I^{\circ} 00027(52)+0.33452(50)+0.49153(47)-0.82493(46)$
$+0.33340(42)+0.14829(41)-0.72815(36)+0.57986(35)$
$+0.33340(42)+0.14829(41)-0.72815(36)+0.57986(35)$
XXVIII $0=-1 \cdot 716+(1)-(6)+(52)-(50)+(47)-(46)$
XXVIII $0=-1 \cdot 716+(1)-(6)+(52)-(50)+(47)-(46)$
XXIX $\quad 0=+0.51527+0.35890(41)-0.57388(38)+0.21498(35)+0.17014(53)+8.94070(49)$
XXIX $\quad 0=+0.51527+0.35890(41)-0.57388(38)+0.21498(35)+0.17014(53)+8.94070(49)$
$-9^{\cdot 11084}(50)+5^{\circ} 94358(48)-6.07800(47)+{ }^{\circ} 13442(42)$
$-9^{\cdot 11084}(50)+5^{\circ} 94358(48)-6.07800(47)+{ }^{\circ} 13442(42)$
$\mathrm{XXX} \quad 0=-0.056+(33)-(27)+(48)-(47)+(50)-(49)$
$\mathrm{XXX} \quad 0=-0.056+(33)-(27)+(48)-(47)+(50)-(49)$
XXXI $0=-1.75954+0.33673(58)-5.33719(57)+5.00046(56)+2 \cdot 88157(45)-3.297 \mathrm{~S}_{5}(44$
XXXI $0=-1.75954+0.33673(58)-5.33719(57)+5.00046(56)+2 \cdot 88157(45)-3.297 \mathrm{~S}_{5}(44$
$+0^{\circ} 41628(42)+0.37484(41)-0.39237(39)+0.01753(34)$
$+0^{\circ} 41628(42)+0.37484(41)-0.39237(39)+0.01753(34)$
XXXII $\quad 0=+1 \cdot 216+(19)-(15)+(57)-(56)+(45)-(44)$
XXXII $\quad 0=+1 \cdot 216+(19)-(15)+(57)-(56)+(45)-(44)$
XXXIII $0=+0^{\circ} 380+(41)-(34)+(5 S)-(56)+(45)-(42)$
XXXIII $0=+0^{\circ} 380+(41)-(34)+(5 S)-(56)+(45)-(42)$
XXXIV $0=+0.82217+4.83153(57)-5^{\circ} 00046(56)+0.16893(55)+0.01479(54)-0.57145(51$
XXXIV $0=+0.82217+4.83153(57)-5^{\circ} 00046(56)+0.16893(55)+0.01479(54)-0.57145(51$
$+0^{\circ} 55666(50)+0.38566(47)+2.49591(44)-2.88157(45)$
$+0^{\circ} 55666(50)+0.38566(47)+2.49591(44)-2.88157(45)$
XスベV: $0=-1.463+(47)-(45)+(56)-(55)+(54)-(50)$

```
XスベV: \(0=-1.463+(47)-(45)+(56)-(55)+(54)-(50)\)
```

［The log differences for $1^{\prime \prime}$ are given in units of the fifth place of decimals．］

The reciprocals of the weights introduced for the several directions are as follows:

Dir's	\% ${ }^{1} p$	Lir's	1/p	Dir's	1/p	Dir's	1/p	Dir's	1/p	Dir's	1/p
I	$0 \cdot 102$	1 I	0.084	2 I	0.259	(max.) 31	0.09S	4 I	$0 \cdot 038$	51	0.076
2	0.108	12	$0 \cdot 057$	22	0.256	32	0. 102	42	0.036 (min.)	52	0.067
3	0.105	13	$0 \cdot 132$	23	0.237	33	0.094	43	$0 \cdot 0.42$	53	$0 \cdot 060$
4	0.128	14	$0 \cdot 157$	24	0.241	34	0.053	44	0.052	54	$0 \cdot 043$
5	- 108	15	0.138	25	0.239	35	0.046	45	$0 \cdot 043$	55	0.048
6	O. 110	16	-1139	26	0.250	36	0.049	46	$0 \cdot 048$	56	0.066
7	$\mathrm{O}^{\text {Ofi }}$	17	$0 \cdot 142$	27	$0 \cdot 105$	37	-0.053	47	0.048	57	0.052
8	0.065	18	0.148	28	o. 104	38	-0.046	48	0.042	58	0.097
9	$0 \cdot 070$	19	0.144	29	0.094	39	$0 \cdot 050$	49	0.050		
10	$0 \cdot 093$	20	0.146	30	$0 \cdot 098$	40	$0 \cdot 051$	50	0.062		

The correlate and normal equations may be found in Coast Survey Report for 1864, pp. ${ }^{1} 3^{2-1} 36, *$ the resulting corrections to the several directions are as follows:

For check \dagger we have $\Sigma\left(p z^{\prime} z^{\prime}\right)=+171.31$

$$
\text { and }-\left[\begin{array}{ll}
z e & C
\end{array}\right]=+171.44
$$

The probable error of a direction of tunit weight is therefore $0.674 \sqrt{\frac{[p v v]}{c}}=$ $0.674 \sqrt{{ }^{1775}-4}= \pm \mathrm{I}^{\prime \prime} .49$.

The reciprocal of the average weight of a direction, or $1 / p$ equals o° roo, hence the probable error of an observed direction equals $\mathrm{I}^{\circ} 49 \sqrt{\frac{1}{p}}= \pm \mathrm{o}^{\prime \prime} 47$ and that of an angle $\pm \mathrm{o}^{\prime \prime} .67$.

Resutting angtes and sides of the Epping base net, Maine. \ddagger

No.	Stations.	Observed angles,			Correction.	Spherical augles.	Spherical excess.	Log. distances.	Distance in meters.
		-	,	'/					
1	Burke	39	19	$35 \cdot 850$	+0 008)	35930	0.079	39.4031434	8715942
	Epping West Base	89	3	11.750	-0.422	I 13228	0.080	$4^{\text {1 } 13834364 ~}$	I3 751 296
	Epping East Base	51		12.900	to 080	$12{ }^{\prime} 980$	- `079	$4 \cdot 03267078$	Io 781*291
2	Tunk	16	0.4	34° о10	+0.906	$34 \cdot 916$	$0 \cdot 068$	394031434	87159.92
	Epping West Base	138	4	57 oso	-0.122	56 '95 8	$0 \cdot 067$	$4 * 32277880$	$21027{ }^{\circ} 7^{2}$
	Epping Last Base	25	50	$29 \cdot 840$	- 1 511	2S 329	$0 \cdot 068$	$4 \cdot 13732824$	13719.183

[^7]Resulting angles and sides of the EPping base net, Maine-coutinuen.

Resulting angles and sides of the Epping base net, Maine-continued.

No.	Stations.	bserved angles.			$\begin{gathered} \text { Correc- } \\ \text { tion. } \end{gathered}$	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \\ & \text { angles. } \end{aligned}$	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \\ & \text { excess. } \end{aligned}$	Log. distances.	Distance in meters.
				"					
15	Humpback	15	35	37-229	-0.169	37 '060	$0 \cdot 167$	$4{ }^{\circ} 03267078$	$10781 \cdot 291$
	Epping West Base	128	33	$26 \cdot 310$	+o.973	$27 \cdot 283$	$0 \cdot 168$	4.49641939	31 $363 \cdot 129$
	Burke	35	50	$55 \cdot 630$	+0.529	$56 \cdot 159$	$0 \cdot 167$	437086003	${ }^{2} 3488 \cdot 757$
16	Humpback	32	43	23.447	+0.009	23.456	- 268	$4{ }^{\circ} 13732824$	13719.182
	Epping West Base	79	31	$40 \cdot 980$	+0.674	41 654	$0 \cdot 268$	4.397174 17	24955 '954
	Tunk	67	44	$56 \cdot 530$	-0.836	$55 \cdot 694$	- 2668	437086003	$23488 \cdot 757$
17	Humpback		31	$09 \cdot 048$	-0.308	$08 \cdot 740$	$0 \cdot 242$	442489691	$26600 \cdot 936$
	Epping West Base	152	41	29.760	-0 399	$29 \cdot 361$	$0 \cdot 242$	$4 \cdot 68734691$	$48679{ }^{\circ} 590$
	Pigeon		47	$21 \cdot 110$	+1.515	$22 \cdot 625$	- 241	437086004	$23488 \cdot 757$
18	Humpback	17	07	$46 \cdot 218$	+0.178	$46 \cdot 396$	- '195	$4^{\circ} \mathrm{O} 1266233$	10 511443
	Burke		22	$07^{\circ} 10$	-0.326	о6 684	- 195	439717418	24955 954
	Tunk	118	30	o8 3 380	-0.875	07×505	0'195	$4 \% 49641940$	31363.130
19	Humpbac	1	04	$28 \cdot 181$	+c.138	$28 \cdot 319$	- 022	4.23884761	17331×957
	Pigeon		56	41 360	-0.509	$40 \cdot 851$	$0 \cdot 024$	4.49641939	31 363 '129
	Burke	176	58	51-300	-0 397	$50 \cdot 903$	0.025	4.68734691	48679 590
20	Humpback	18	12	14×399	+0.316	14.715	0.321	441766018	26161352
	Pigeon	17	20	16.640	+0.293	16.933	0.320	4.39717418	24955 '954
	Tunk	- 144	27	$29 \cdot 160$	to ${ }^{1} 154$	29.314	$0 \cdot 321$	$4 \cdot 687 \cdot 34691$	$48679{ }^{\circ} 590$
21	Mount Deser	5	26	$36 \cdot 898$	to 337	37 235	0.129	4 '138 34364	13751.296
	Burk	60	58	$42 \cdot 360$	- I ${ }^{\circ} \mathrm{O}$ I	41 309	-'129	4.67435400	$47^{24} 44^{7} 98$
	Epping Fast Base	3	34	42.400	-0.557	41-843	0•129	4.53187892	031×330
22	Mount Dese	3	17	or 756	-0.268	or 488	- 5332	4.322 778 So	21027 \% ${ }^{2}$
	Tunk	117	21	33.910	-0.294	$33 \cdot 616$	-. 533	$4 \cdot 674354$ 00	47244×798
	Epping East Base	39	21	25.460	+1034	$26 \cdot 494$	$0 \cdot 533$	$4 \cdot 52806536$	33733 '807
23	Mount Desert		Io	22.487	+o. 45 I	22.938	0.496	438432457	24.228 .391
	Epping East Base	O	52	00 200	to. 878	01 ${ }^{\circ} 78$	- 496	4.46573176	$29223 \cdot 468$
	Pigeon	123	57	37170	+0.303	$37 \cdot 473$	0.497	$4 \cdot 674354$ 00	$47244{ }^{7} 798$
24	Mount Desert	32	16	$26 \cdot 482$	-0.062	$26 \cdot 420$	$1 \cdot 231$	4.489 32943	30 $855 \cdot 2 \% 6$
	Humpback	54	50	$40 \cdot 476$	+o.643	$4{ }^{1} 119$	I 231	4.67435400	$47^{2} 44^{\prime 7} 79$
	Epping East Base	92	5^{2}	$56 \cdot 310$	-0.157	$56 \cdot 153$	$1 \cdot 230$	$4{ }^{761} 26803$	$57712 \cdot 253$
25	Mount Desert	17	50	24.858	-0.605	$24^{\circ} 253$	- 297	$4{ }^{\circ} \mathrm{O} 2166233$	10511443
	Tunk	82	40	56.070	+0.651	$56 \cdot 72$ I	0. 297	$4{ }^{6} 53187893$	34031 '330
	Burke	79	28	$39 \cdot 150$	+0.768	39.918	0. 298	4.52806536	$33733 \cdot 807$
26	Mount Desert	30	36	$59 \cdot 385$	+0.788	$60 \cdot 173$	0.428	4.23884761	17331957
	Burke		10	$22 \cdot 540$	-0.045	$22 \cdot 495$	0.428	4.46573176	29223.468
	Pigeon	90	12	$38 \cdot 140$	+0.476	$38 \cdot 616$	0.428	4×33187892	$34031^{\prime} 33^{\circ}$

Resulting angles and sides of the Fipping base net, Maine-continued.
so. $27\left\{\begin{array}{l}\text { Mount Desert } \\ \text { Hunıphack } \\ \text { Burke }\end{array}\right.$ 28 Mount Desert Pigeon
Mount Desert $\{$ Humpback $30\left\{\begin{array}{l}\text { Mount Desert }\end{array}\right.$

Pigeon $31\{$

Howard
\{ Burke
Epping East Base
Howard
Pigeon
Epping East Base
$33\{$
Howard
\{ Epping East Base
Humpback

34 Mount Desert
Howard

Epping Fiast Base
Howard
Pigeon
Burke

36
Howard
36 Burke
Humpback
Howard
37 Mount Desert
Burke
$38\left\{\begin{array}{l}\text { Howard } \\ \text { ligeon } \\ \text { Hunpback }\end{array}\right.$
Stations.
unk

Humpback
-

138	12	$09 \cdot 940$
33	30	$40 \cdot 141$
52	43	$54 \cdot 520$
93	45	$27 \cdot 340$
17	33	$01 \cdot 364$
142	29	$36 \cdot 150$
19	57	$24 \cdot 016$
32	11	$14 \cdot 197$
23	11	$19 \cdot 990$
124	37	$27 \cdot 540$
22	02	$34 \cdot 126$
86	28	$53 \cdot 550$
71	28	$34 \cdot 660$
29	01	$07 \cdot 379$
105	30	$16 \cdot 640$
45	28	$38 \cdot 895$
20	43	$08 \cdot 182$
28	37	$56 \cdot 888$
130	38	$57 \cdot 200$
51	03	$41 \cdot 505$
84	32	$12 \cdot 190$
44	24	$10 \cdot 714$

Correction.	Spherical angles.	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \\ & \text { excess. } \end{aligned}$	l.og distances.	Distance in meters.
-0.399	$49^{\circ} 185$	$0 \% 749$	$4 \cdot 49641939$	31363
- . 864	$26 \cdot 461$	07750	+531 87892	34031 -330
+0.442	$46 \cdot 602$	$0 \cdot 749$	476126803	$57712{ }^{\circ} 253$
+o	24.426	0.624	441766018	$26161 \cdot 352$
-0.37	34.912	0.624	4.46573176	$29223 \cdot 468$
-0.327	02.533	0.623	$45^{28} 06536$	33733 : 807
-	$24^{19} 9{ }^{2}$	0.257	4.397174 18	24955.954
+0.686	40.065	0.257	4.52806536	33733 -807
+0.225	$55 \cdot 775$	- ${ }^{2} 5^{8}$.	4.76126S 03	$57712{ }^{\circ} 253$
+0.	$49^{\prime} 35^{8}$	1×202	$4 \cdot 6873.4691$	O
+1.002	54.780	$1 \cdot 202$	$4 \cdot 46573176$	29223.468
-0.033	19.467	$1 \cdot 201$	4.761 26803	57712.253
1	07	$0 \cdot 271$	$4^{1} 13^{8} 34364$	1375
-1.500	$43 \cdot 660$	0.271	$4 \cdot 54311755$	$34923: 483$
+0.026	09 \% 96	$0 \cdot 270$	4.66365876	46095 '524
$+$	40 345	0.714	$4 \cdot 38432456$	24
+	54.753	0.714	4.54311754	$34923 \cdot 482$
-0.297	$27{ }^{\circ} 043$	$0 \cdot 713$	$4 \cdot 64137453$	$43789{ }^{\circ} 95^{8}$
I O 2	$02 \cdot 392$	0. 555	4.48932943	$30855 \cdot 276$
-0.424	$35^{\prime} 726$	0. 554	$4 \cdot 79449045$	$62300 \cdot 345$
-0.470	$23 \cdot 546$	- '555	4.543 11754	34923.482
-31	14.513	1 1 148	4.67435400	$47244 \cdot 798$
- . 81	$20 \cdot 808$	1-1.48	4.54311754	$34923 \cdot 482$
O 58	$28 \cdot 122$	I 1447	4.86322898	$72984 \cdot 221$
-	$33^{1} 5$	0.640	$4{ }^{2} 3^{8} 84761$	17331 957
+o 059	$53 \cdot 609$	0.641	$4 \cdot 66365875$	$46095 \cdot 523$
+0.494	$35 \cdot 154$	- 0.640	4 641 37453	43789.958
+2.199	09.578	1 1 177	$4 \cdot 49641939$	31 $363 \cdot 129$
-0.891	$15 \cdot 749$	1.178	$4 \cdot 79449046$	$62300 \cdot 346$
-0.690	$3^{8 \cdot 205}$	1 1 177	4.66365876	46095 '524
-o.856	. 07326	1.006	$4.531878{ }^{8}{ }^{2}$	34031.330
+1'155	$58 \cdot 043$	I 006	4.66365876	46095 '524
+o:449	$57 \cdot 649$	1 006	$4 \cdot 86322 S 98$	$72984 \cdot 221$
+1.231	$42 \cdot 736$	1×794	4.68734691	48679×590
+0.569	12 '759	1 793	4.79449044	62300.345
-0.828	09 888	1794	4.64137453	43789.958

BASE LINES AND BASE NETS.

Resulting angles and sides of the Epping base net, Maine-continned.

No.	Stations.	Observed angles.			$\begin{aligned} & \text { Correc- } \\ & \text { tionl- } \end{aligned}$	$\begin{gathered} \text { spher- } \\ \text { sal- } \\ \text { angles. } \end{gathered}$	Spherexcess.	L.og. distances.	Distances in meters.
				"					
39	Howard	1	19	25 '944	-0.112	$25 \cdot 832$	$0 \cdot 062$	4.46573176	$29223 \cdot 468$
	Pigeon	176	41	$31 \cdot 690$	+0.535	$32 \cdot 225$	0.063	$4 \cdot 86322898$	$72984 \cdot 221$
	Mount Deser	I		$02 \cdot 497$	$\bigcirc{ }_{-}^{\circ} \cdot 367$	$\mathrm{O}^{2}{ }^{1} 3 \mathrm{O}$	- .062	$4 \cdot 64137453$	43789.958
40)	Howari	49	4.	$15 \cdot 561$	+ I 34.4	16 '905	2933	476126803	$57712 \cdot 253$
	Mount Desert	55	27	$46 \cdot 772$	+o. 756	+7 ${ }^{228}$	2 '933	479449045	$62300 \cdot 3.45$
	Himmpack	74	48	$04 \cdot 492$	+0.174	$04 \cdot 666$	2 '933	$4 \cdot 86322898$	$72984 \cdot 221$
4	Cooper	32	©	$62 \cdot 260$	-I'165	61.095	1 389	4.49641939	$3^{1} 363 \cdot 129$
	Burke	62	4	$36 \cdot 700$	+1.178	$37 \cdot 878$	1 389	472089320	$52588 \cdot 793$
	Humpback	S_{5}	3	$25 \cdot 280$	-0.085	25 '195	1.390	477050808	58953 '295
42	Cooper	2	24	39×96	-0.063	39:902	- 194	4.53187892	$34031 \cdot 330$
	Mount Desert	4	10	$44 \cdot 694$	+0.467	$45 \cdot 161$	- '195	4770508 o8	$58953 \cdot 295$
	Burke	173	24	37^{140}	-: 5 - 0	$35{ }^{\circ} 20$	- •19.4	496774425	92841949
43	Cooper	51	15	31 369	+ 0.578	31947	1 559	4.66365876	$46095{ }^{5} 24$
	Howard	85	58	$53 \cdot 870$	+0'990	$54 \cdot 860$	$1 \cdot 560$	477050808	58953 '295
	Burke	42	45	$39{ }^{\circ} 940$	-2.069	$37 \cdot 871$	1×559	4.60340214	40123 -808
44	Cooper	34	25	$42 \cdot 225$	-1.228	40‘997	2 ¢33	476126803	57712×253
	Mount Desert	31	∞	$34 \cdot 278$	to 069	$34 \cdot 347$	2 333	4.720 89321	52583 794
	Humphack	114	33	$50 \cdot 877$	+0.779	51 ${ }^{656}$	2 '334	4.967744 25	928.41949
45	Cooper	83	16	$33 \cdot 629$	-0.587	$33^{\circ} \mathrm{O} 42$	1772	479449046	$62300 \cdot 346$
	Howard	56	57	$46 \cdot 491$	-1.209	$45^{\circ} 282$	$1 \cdot 771$	472089321	$52588 \cdot 79.4$
	Humphack	39	45	$46 \cdot 385$	+0.605	$46 \cdot 990$	1771	4.60340214	$40123 \cdot 808$
46	Cooper	48	50	51404	+0.641	5^{2} '045	$2 \cdot 371$	4.86322898	$72984 \cdot 221$
	Howard	106	$4{ }^{1}$	62.052	+0.134	$62 \cdot 186$	$2 \cdot 371$	4.96774425	92841949
	Mount Desert	24		:2'194	+0.688	12 'S82	$2 \cdot 371$	$4 \cdot 60340214$	40123 '808

Descriptions of stations.
Eppiny İast Base. - The station is in Washington County, Maine, at an angle in the road from Epping village to Columbia, and directly upon the edge of the escarpment of the Epping Plains.

The subsurface mark is the intersection of cross lines on a copper bolt in granite block 2 fect long, set 3.5 feet below the surface of the ground. A platform of concrete about 5 feet square and I foot thick was prepared above this, with an opening in the center, through which the subsurface mark could be seen. This formed the foundation for the surface mark, a large granite block, 3 feet square, carefully dressed, and, when in place, projecting about 6 inches above the surface of the ground, with a copper bolt and cross lines in its center. Upon this was placed a monument of marble $3^{\circ} 28$ feet high and 1.64 feet square, resting upon three feet, each about 3 inches in diameter and 1 inch high. 'The inscriptions on the sides are as follows: north face, "U. S. Coast Survcy;" south "'1857;" east, "Base No. 9;" west, "A. D. Bache, Supt." The apex is 4 inches above its sides, and on its four faces are the letters, N, E, S, \& W, respectively.

A perpendicular to the base at the center of the monnnent passes through the intersections of cross lines in copper bolts in tops of two granite reference monmments, 3.5 feet long and i foot square, set at distance of 36 and 72 meters north of station.

When the station was visited in i884, these reference monnments were found undisturbed, also a third, not described, with a hole drilled in top, 108 meters north of the station. The marble monnment was then found orerturned and broken, but the granite surface mark remained undisturbed, except that the head of the copper bolt had been hammered so that the cross lines were no longer visible.

Epping West Base.-This station is about 2 miles west of Schoodiac Hill, and has no subsurface mark.

The surface mark is the intersection of cross lines on a copper bolt in a monmment 3 fcet square, made from the solid ledge by cutting away the rock to a depth of 6 or 8 inches around it.

Similar marks i foot square were made north and soutlı of the center in a line perpendicular to the base, with copper bolts and cross lines placed in position.

Over the surface mark was placed the monument of marble of same dimensions as that described for Epping East Base.

When visited in i884 the marble montment was found overthrown and broken, while the copper bolt had been hammered so that no cross lines werc visible. The mark sonth of the center was in perfect condition. The one to the north had been destroyed by vandals, but the remains of the hole in which the copper bolt had been placed conld be distinguished. The distance from the station to these marks is about ro meters.

Burke.-This station is on the southernmost one of a range of rocky hills about 3 miles west of Cherryfield village and about 20 rods north of the line between Mount Steuben and Cherryfield. It is marked by hole in a granite ledge at the north end of a small hollow on the summit of the hill, and it is about 3 feet below highest part of ledge, which is too narrow for a signal.

Tunk.-This station is on a mountain of the same name, the most commanding mountain (except Mount Desert) east of the Penobscot River. It is abont I mile north of the stagc road from Ellicott to Cherryfield and about 3 miles west of the nearest house in Cherryfield. It is marked by a hole drilled in a granite ledge about 150 feet southwest of the highest part of the summit and about 4 feet below it.

Pigcon.-This station is on the highest part of a hill close to the ocean on the western side of the outlet of Narraguagus River. It commands the coast from Frenchmans Bay to Head Harbor Island, and is 9 miles from Cherryfield. It is marked by a hole drilled in a flat rock. In range to Mount Desert, $53^{\circ} 25$ feet distant; to Saunders, 56.25 feet distant; to Humpback, $35^{\circ} 33$ feet distant, and to Mitten Mountain, 36.8_{3} fcet distant, there are holes and piles of stone.

Humpback.-This station is on the mountain of the sane name, near the western line of Brewster Township: The lighest point of the monntain is about 400 feet northeast of the station and is 4 or 5 feet above it. It is marked by a hole drilled in the rock. Range marks, consisting of holes drilled in the rock and heaps of stones, were made toward Harris, Saunders, and Mount Dcsert, distant I4, I $7^{\circ} 4^{2}$, and I 3.50 feet, respectively.

Mount Desert.-This station is marked by a copper bolt in a ledge which is in the center of a small depression in the large bare rock and $221 / 4$ inches easterly from the southeast corner of a crevice.

Single range inarks, consisting of a hole in the rock, were made toward Peaked, Blue, and Ragged mountains, distant fron center $53^{\cdot 17}, 17^{\circ} 5^{2}$, and $21^{\circ} 83$ feet, respectively. Toward Saunders and Harris there were two such marks, distant, in the first instance, $35^{\circ} 9^{2}$ and $142^{\circ} 50$ feet, while in the latter, $19^{\circ} 9^{2}$ and $136^{\circ} 60$ feet from the center of the station.

Howard.-This station is on a steep, precipitous hill, about 6 miles below Machiasport and near Bucks Harbor. It is marked by a drill hole i11 a rock. Range marks were established toward Mount Desert, Humpback, and Cooper, distant $33^{\circ} 67,66{ }^{\circ} 25$, and $21 \cdot 30$ feet, respectively. When visited in 1884, the station was recovered.

Cooper. -This station is on the northern end of the summit of Western Ridge, about one-fourth mile west of the road running through the village of Cooper and about three-eighths of a mile northwest of Cooper Church. It is marked by a drill hole in a broad, flat granite ledge. Range marks, consisting of drill holes in the rock, were made toward Mount Desert and Humpback, distant 22.80 and 19.65 feet, respectively.

> 2. THE MASSACHUSETTS BASE LINE, MASSACHUSETTS, I844.

Location, measurement, and resulting length of the Massachusetts base linc, Massachusetts, 18ff.
This base was the third and last one measured with the Hassler base apparatus and followed within a few months the measure of the Kent Island base. Its site is on the Boston and Providence Railroad, in Bristol County, Massachusetts, and about 12 kilometers ($71 / 2$ statute miles) to the northward and eastward of Providence, Rhode Island. An account of this base is given in the Coast Survey Report for 1865 , Appendix No. 21 , page 189 , and little need be said here respecting the apparatus, a description of which can be found in the account of the measurement of the Fire Island and Kent Island bases. Its middle point is in latitude $41^{\circ} 58^{\prime} 9$ and in longitude $7 \mathrm{I}^{\circ} 15^{\prime} 3$, the mean azimuth is $27^{\circ} 4 y^{\prime} \cdot 2$, and its length $17^{1 / 3}$ kilometers (or nearly $103 / 4$ statute miles). There are but two bases in the United States (both in California) which exceed this lengtl.

The line was measured by Assistant Edmund Blunt dinring September, October, and November, 1844. As in the case of the two bases previously measured by the Survey, but one measure was made. The length adopted for the compound 8 -meter bar rests upon the comparisons of 1844^{-45}, with the resulting length of 7.9998716 meters at $0^{\circ} \mathrm{C}$. $\pm \quad 55$
(see account of the Kent Island base). The mean temperature of the bar during the measurement was $14^{\circ} 99^{2} \mathrm{C}$. (or $58^{\circ} .85 \mathrm{~F}$.); the average elevation of the apparatus above the lalf-tide level at Boston Harbor was $44^{\mathrm{m} \cdot} \cdot 83$. The record at this base is deficient in details.

The resulting length of the base is as follows:

2165 boxes	$17319^{\text {m }} 7221$
Correction for excess of temperature	+ 3.2383
Correction for inclination	-0.5629
Fractional part of a box at Northeast Rase	+ 3.9999
Correction for 10° difference of temperature for above	0.0003
Additional length measured by scale	+ o.1012
Reduction to half-tide level	-0.1220
Resulting lengtlt of base	$17326^{\text {m }} 3763$

To form an estimate of the accuracy of this measure, we find, from the probable error assigned to the base bars, that of the base to be $\pm 0^{\text {m" }} \mathrm{O} 119$. With reference to temperature, 702 boxes were laid with rising and 579 with falling temperature, and for the rest of the boxes the temperature was stationary. The assumed probable error from this condition and probable lag, and from graduation error is $\pm 0^{\mathrm{m}}{ }^{\circ} 033^{2}$, and the probable error from instability of the microscopes is taken as $\pm \mathrm{o}^{\mathrm{m}} \cdot 0059$. Combining these three independent values, we get for the probable error of the base $\pm 0^{\mathrm{m}} \cdot 0358$, which equals ${ }^{4} 3^{1}{ }^{1} 880$ of its length. We have, therefore, the final result for the length of the Massachusetts base $17{ }^{226} .3763$ meters, and its logarithm $4^{\circ} 23870774$.

$$
\pm .035 S^{\circ} \quad \pm \quad 90
$$

The connection of the Massachusetts base zwith the main triangulation.

The Massachusetts base is comected with the main triangulation in an unusual way-that is, with a base net so simple as to render a special adjustment of it umecessary. The conditional equations, therefore, which subsist between the three northern baselines were extended to reach directly to the Massachusetts base without any intervention of a special base net adjustment.
 The diagram shows the direct connection of the base with the triangulation of the New England States, the quadrilateral Beacon Pole, Copecut, Manomet, and Blue Hill being an integral part thereof. One advantage which the base possesses over the other two is its great length.

The following table gives the approximate elevation above the Atlantic of the stations adjacent to the base:

	Meters.	Feet.
Massachusetts South Rase	33	108
Massachusetts Nortlı Base.	70	231
Beacon Pole.	167	548
Great Meadow	So. 5	26.4
Copecut.	$10^{-7} 5$	353
Manonet	120	394
Blue Hill	194	635

Descriptions of stations.

The descriptions of these old stations are very imeager. The following information is all that could be gathered:

Massachusetts South Base, 1844 . -The station is located on the Boston and Providence Railroad, in Bristol County, Massachusetts. For a ground mark a stone of the following dimensions was buried: Length, 4 feet $71 / 2$ inches; base, 12 inches square; top, 6 inches square. A copper bolt, on which there is a cross mark $(+)$, driven in the stone defines the starting point of the measure. The stone is 8 feet from the eastern rail of the Boston and Providence Railroad, there being but one track laid. "Another stone is placed
on the west side of the road in the line toward Beaconpole Hill, 6 inches being above ground, and distant 33 feet from the termination of the base." *

Massachusetts North Base, $18 \not 8$. -The station is marked by a brick tower, stated by G. Bradford to be 44 feet in height, when reoccupied October i8, 1884. The center of the station is indicated by a brass bolt in the center of a stone, this + . It is central with the tower. The cap stone (of 1844) had a mean diameter of 0.32 meter.

Beaconpole, 18 ff . - This station is located about 2 miles northeasterly from the village of Cumberland Hill. The station was visited and reoccupied in September, i884, by Assistant G. Bradford, who remarks: " Found here, guided by E. H. Pickering, an old resident, a copper (brass?) bolt set in lead and filling a hole drilled in a ledge of rock some 30 feet in diameter, which occupies the sumnit of the elevation." A tripod signal was built over the station in 1884. There is also a description of 1896 by H. B. Wood, of the "Survey of the Commonwealth of Massachusetts."

Copecut, $18 \not \& 4$. -Station on Copecut Hill between Fall River and New Bedford. Assistant G. Bradford found here in Noveniber, i884, a copper bolt in a rock, presumably the center of the station. A large pile of stones was found about the bolt, covering it. The place is surrounded with bushes and small trees, and is difficult to find without a guide. The road to it through the woods is extremely rough. A tripod signal was built here in 1884.

Great Mcadow, 1845 .-This is one of the Borden Survey stations; about 3 miles morth of west of Relnobotl village, 7 miles from Taunton, and 12 from Providence, Rhode Island. Assistant G. Bradford, in September, i884, found here a hole in the rock, where, an old resident says, the signal once stood. The trees have grown up, and are now to the northward and westward some 40 to 50 feet higln. The following description is by Assistant C. H. Van Orden, in 1889: "The hill is well known and is called Great Meadow Hill by the people about North Rehobotlı. It is best approached from the south side. It is a large flat hill, with a growth of timber on the east and west sides. Directly nortl of the station is an open lot or meadow, noticeable from a distance."

Manomet, $18 \not 85$. Near Plymouth, Massachusetts. Assistant C. O. Bontelle states, in his record of the latitude observations of July, 1867: "The triangulation station at Manomet has been more permanently marked by drilling three holes, forming an equilateral triangle around the copper bolt, and each hole is distant 6 inches from it. The two holes sonth of the bolt are east and west from each other and the third lole is 11orth from the bolt. Each hole is five-eighths of an inch in diameter and 2 inches deep." In September, 1877, Assistant G. A. Fairfield writes: "Visited this station and found it undisturbed; lad no difficulty in finding the rock with copper bolt and three drill holes."

Blue Hill, $18 \not 85$. - Near Dedhann, Massachusetts. The Coast Survey station is distant from the Borden survey station of Blue Hill 8.337 meters, and the azimuth of the Borden station is $I 1^{\circ} 16^{\prime}$, as deduced from computation of December, 1884. The Borden station was located in the middle of a square inclosure of stones. In November, 1886. Assistant C. H. Van Orden visited the station and found the Coast Survey copper bolt (outsidc the old Borden inclosure) in good order. Borden's "Blue Hill" is under the stone tower of the "Blue Hill Obscrvatory."

The private meteorological observatory at this place was established by Mr. A. I. Rotch in 1885. It is a two-story circular tower, i2 fcet in diameter inside and 25 feet high, built of the broken stone found on the hill. Extending southward fron this:
tower is a one-story, hip-roof house, built of stone, with a wooden shed attached. . . . heliotype in Amnals of the Astronomical Observatory of Harvard College, Volume XX, Cambridge, 1896). There is also a description of 1896 by H. B. Wood of the "Survey of the Commonwealth of Massachusetts." A sketch shows the Coast Survey station with reference to the tower.

3. THF FIRE ISLAND BASE LINE AND BASF, NET, NEW YORK, 1834.

Location, measurement, and resulting length of the Fire Island Base Lime, Nea' York, 1837.
The site of this base is on the southern shore of Long Island, New York, on the narrow Fire Island beach between the Great South Bay and the Atlantic Ocean, and distant nearly 80 kilometers, or 50 statute miles, to the east from New York City. It was the first and only primary base measured by Superintendent F. R. Hassler, and the measurement was made witl an apparatus of his own design. He has left a full description, with illustrations, in detail, of this apparatus in the Transactions of the American Philosophical Society, Philadelphia, Pennsylvania, new series, 1825. Volume II, pages 273-286. The essential parts of the apparatus are enumerated in No. 12 of his cata\log ue of instruments, which probably dates back to the year 1816 . These parts appear to have been made by Troughton, of London, in 1813 . Two other primary base lines were measured with the same apparatus, viz, the Kent Island and the Massachusetts bases.

The beach over which the measure extended is sandy, interspersed with low hummocks and ridges, and subject to changes from storms, which caused the west end of the base to be finally lost, notwithstanding a strong timber protection surrounded the hillock. The eastern terminal point was further removed from the beach, which caused a bend in the line close to the monument, and necessitated the measure of an angle at the bend. The insecurity of this exposed base and the danger of its loss cansed the transfer of its length, a few years later, to be made to a primary line located on the central hills of Long Island. The base net, therefore, in this case consists simply of a quadrilateral.

The length of the base is about 14 kilounters (or $83 / 4$ statute miles). The central
 backward azimuths is $72^{\circ} 56^{\prime} 8$. For convenience of reference, a brief description of the Hassler base apparatus is repeated here from his ciescription, and further remarks on this subject will be found in comnection with the Kent Island base. It makes use of one measuring bar and of optical contact. The bar is 8 meters in length and is composed of four 2 -meter iron bars placed in contact lengthwise. These pieces are of square section* and are firmly held together by means of collars clamped over the bar ends and bringing them together by means of screw bolts. The whole or componnd bar is supported on 15 rollers, resting on a wooden beam, itself adjustable upon another similar support. The whole is placed in the bottom of a wooden trough. There are eight thermometers, two placed on the upper surface of cach of the single bars to ascertain their temperature. A sector for measuring the inclination is attached to one end of the supporting beant, and all required mechanical appliances for the adjustment and alignment of the bar, as well as for the manipulation of the micrometer microscopes, are provided. The trough itself rests upon five trestles. The two microscopes are likewise mounted upon trestles. For alignment of the base the trough or box carries at one end a small telescope and at the opposite end a slort reertical pin to

FERDINAND RUDOLPH HASSLER (1770-1843).
define the axis of the apparatus and the direction of the line of measure. The microscopes admit of adjustment for verticality of axis. Their objectives are composed of two half lenses of different foci, one for pointing on spider threads stretched across small central half-circular notches cut vertically into the end faces of the protruding measuring bar, the other focus serving for a verification of the steadiness of the optical axis, the pointing being made upon cross lines ruled on an ivory plate resting on the support below the microscope.

For the standardization of the measuring bar repeated comparisons were made at different times by different observers and by different means. The Hassler double endmeters, known as bars A, B, C, and D, were first compared in February and March, 1817, with the Committee Meter and a standardized iron à bout meter by Lenoir. In the same year Hassler determined their coefficient of expansion and found it 0.000006963 for Fahrenheit's scale or o'000 o12 534 for the Centigrade scale, a value somewhat large yet probably applying to these particular bars, but this could not be verified, the bars laving long since been lost. In May, I834, and March, 1835, in connection with the Fire Island base, comparisons were made involving the Troughton brass scale and the Committee Meter. The last comparisons date from 1844-45, and were made with a Bessel level-contact comparator, using the Lenoir iron meter. The results were, for the combined length at $0^{\circ} \mathrm{C}$:

From comparisons of $1817 \quad \Sigma=7^{\mathrm{n} \cdot} \cdot 9999506$	
From comparisons of $1834-35$	$8 \cdot 0000414^{*}$
	$\pm \quad 242$
From comparisons of $1844-45$	7.9998716
	$\pm \quad 55$

When the comparisons in 1835 in connection with the Fire Island base had been made an examination of bars A and B showed them to be rusty. After cleaning them they were again compared, and the new 1835 value $\Sigma=7^{\mathrm{m}}$. 9999764 resulted. The last observations indicate a decided apparent shortening, which has not been accounted for satisfactorily except it be due to the manner in which the 8 -meter bar was built up. Upon the whole, it has been thought best to adopt the Hassler value of 1834-35 for the reduction of the Fire Island base as representing the
 conditions then existing.

But one measure of the base was made, owing probably to the labor and time required to measure such a long line. The measure was made during the months of August, September, and October, 1834 . The above diagram shows the condition at

[^8]the eastern end. The distances 2 to 3,3 to 4 , and 4 to 5 were measured with the base apparatus, and the angular horizontal directions of the fine and heary lines at the points $1,2,3,4$, and 5 were obtained by means of a theodolite. Calling West Base No. 6, the points $6,5,4$, and 3 were placed in line. For reduction of the measured length of the base to sea level, the average height of the bar above the half-tide level of the Atlantic was taken as 2.75 meters. The mean temperature of the bar during measurement was $26^{\circ} 60 \mathrm{C}$. (or $79^{\circ} 90 \mathrm{~F}$.). The resulting length from West Base to East End was as follows:

1725 boxes	$13800^{m \cdot 0714}$
Correction for excess of temperaturc over $0^{\circ} \mathrm{C}$	+4.6031
Correction for inclination	-0.2055
Reduction to half-tide level of ocean	-0.0060
\quadResulting length	$13804^{\mathrm{m} \cdot 4630}$

Similarly we have the short measures at the eastern end.

Line measured	2 to 3	5 to 4	3 to 4
Number of boxes	14	17	7
Corresponding length	$112{ }^{\text {m' }} \cdot 0006$	$136^{m \cdot 0007}$	$56^{\mathrm{m} \cdot 0003}$
Correction for expansion	-fo.0216	+0.0276	+0.0119
Correction for inclination	-0.0650	-0.0268	-0.0038
Defect of last box at eastern end	+0.8203		+1.1380
Resulting length	$112^{\text {m. }} 7775$	$136{ }^{\text {m }}$.0015	$57^{\text {m. }} 1464$

In the adjustment of the linear and angular measures, it has been assumed that the former require no correction; the figure adjustment of $1,2,3,4$, and 5 involves two angle, two side, and two distance or length equations,* and the resulting length for line 5 to I was $294^{\circ} 75^{2}$ meters. If West Base be designated as 6 , then by the known distances 6 to 5 and i to 5 and the known angles, the angle at 6 between East End and East Base is found equal to $36^{\prime} 4 \mathrm{I}^{\prime \prime} 3$, whence the final length West Base to East Base becomes I4 058.9709 meters and its logarithm $4^{\circ} 14795353$.

To ascertain the probable error of this result, we estimate that of the line 6 to 5 as
 perature of the bar, 455 boxes being placed with rising temperature, 553 with stationary temperature, and 717 with falling temperature, and assuming a possible error in temperature of 2°, the probable error of the base might be $\pm 0^{m \cdot} \cdot 29$. The effect of the graduation error is estimated at $\pm 0^{m} \cdot 023$ or $\pm \mathrm{o}^{\mathrm{m}} \cdot \mathrm{O} 370$ for combined effect. The probable error arising from instability of microscopes was assumed to be $\pm 0^{\prime \prime \prime} \cdot 000127$ and the total effect $\pm 0^{m} \cdot 0053$. These are the principal sources of error and when combined produce $\pm \mathrm{o}^{\mathrm{m}} \cdot 057$ for the line 6 to 5 . To obtain the probable error for the line between the monuments $\pm \mathrm{o}^{\mathrm{m}}$. O 3 was added, hence the probable error of the base as estimated is $\sqrt{(0.057)^{2}+(0.013)^{2}}= \pm 0^{m} \cdot 0585$.

This equals $\frac{1}{240270}$ part of the whole length, the corresponding value in the logarithm of the length $\pm \frac{\Delta I M}{l}=0 \cdot 000001807$. Conscquently, the final result for the

* All measures involved in this adjustment were fonnd satisfactory:

The. Fire Island base net and results of its adjustment.
In this net we include the quadrilateral which transfers the measured base to the so-called mountain base, and the two other quadrilaterals, one within the other, which start from this derived base. The line Wooster to Sandford will be the connecting link with the northeastern triangulation, and the line West Hills to Bald Hill will form the link for the southwestern branch.

The elevations of the stations above the sea level are very moderate and the horizontal directions needed but very small corrections, the maximum being less than $\mathrm{o}^{\prime \prime}$ 'o2, but no account of this was taken when less than $0^{\prime \prime} \cdot 003$. The approximate heights of the trigonometric stations are as follows:

	Meters.	Feet.
West Hills 117	383	
Ruland	104	341
Tashua *	$185: 3$	608
Bald Hill	196	643
Wooster	305	1000
Sandford	273	895

The ends of the base are between 2 and 3 meters above the sea. In this figure we have a' combination of very old work with later work. The measures of horizontal angles by Superintendent Hassler date from 1833 and were made with a 60^{cmm} theodolite, first employed at station Weasel in 1817. Subsequently he used the $75^{\text {cm }}$ theodolite, first employed at station West Hills in 1836 . This last instrument was in continuouss.use till November, 1873, when it met with an accident at station Sawnee, Georgia. It was struck by a tornado and, notwithstanding its weight of 300 pounds, was hurled from its stand and irreparably damaged.

In consequence of the work added between 1862 and 1865, and the reoccupation of three of the old stations, a new adjustment of the base net became necessary. Weights had to be introduced in consequence of the unequal values of the resulting directions due to the relatively small number of series in the older work. It was done by the same method as already explained in connection with the adjustment of the Epping base net. From the closing of 17 triangles we have the mean error of a triangle $\sqrt{\frac{12}{} \frac{15}{17}}= \pm 0^{\prime \prime} \cdot 84$ and of an angle $\frac{0.84}{\sqrt{3}}= \pm 0^{\prime \prime \prime} 49$ and the probable error of a direction $0.674 \times \frac{0.49}{\sqrt{2}}= \pm 0^{\prime \prime \prime} \cdot 23$. The approximate average probable error of a direction from station adjustment resulting from 36 directions is $e_{0}= \pm 0^{\prime \prime} \cdot 19$, hence the square of the triangle combination
error e_{c} equals $(0.23)^{2}-\left(0^{\circ} 19\right)^{2}$ or $e_{\mathrm{c}}= \pm 0^{\prime \prime \prime}{ }^{1} 3$, that is, the combination error is but slightly less than the observing error e_{0}. If e_{c}^{2} is added to each value of $e_{0}^{2 \cdot t}$ we get the weight of each direction $p=1 /\left(c_{c}{ }_{\mathrm{c}}+\varepsilon_{0}^{2}\right)$. Among the values of ε_{0} there was one exceptionally large, and, omitting it, we find $e_{\mathrm{o}}= \pm 0^{\prime \prime \prime} 18$, hence $e_{\mathrm{c}}=\sqrt{\left(0^{\circ} 233\right)^{2}-\left(0^{\circ} 183\right)^{2}}$ $= \pm 0^{1} 14$ and $p=1 /\left[\left(0^{1}+4\right)^{2}+e_{0}^{2}\right]$, and in order to make the average sum of the reciprocals of the weights nearly unity, the values of I / p were multiplied by 13 . The range in these relative weights is still large, the ratio of the greatest to the least being as 16 to I , but it would have been as 144 to i had not the equalizing device been introduced. Comparing the old with the present results they are found to be nearly the same. For the side Wooster to Sandford we have old log. distance (Coast Survey Report for 1865, pages 201-202) $4^{.669171} 1$ and by the present adjustment 4.669 I 7 I 0 , which \log. difference corresponds to a linear difference of but 2 centimeters. For the side Bald Hill to West Hills we have old log. distance (Coast Survey Report for 1866, page 52) 4.648 I 353 , and by the present adjustment 4.648 I 356 , corresponding to a linear difference of 4 centimeters.

A preliminary publication of results of the triangulation about this base and vicinity was made in 185 I in the Coast Survey Report of that date, pages 222 and following. A second publication will be found in the Coast Survey Report for 1865, pages 20I-202. These results are now superseded.

Abstracts of horizontal directions at stations forming the Fire Island Base Net. 1833-1865.
Fïre Island East Base, Suffolk County, New York. October 1 to October 8, 1837. F. R. Hassler, observer. 75^{cm} direction theodolite No. 1. Circle used in V1 positions.

No. of directions.	Object observed.	Resulting directions from station adjustment.			Approximate probable error.	Correction from net adjustment.	$\begin{aligned} & \text { Fina! } \\ & \text { seconds. } \end{aligned}$
		-	,	11	"	11	/1
4	Fire Island West Base	0	¢0	$00 \cdot 000$	± 0.32	+0.426	00.426
5	West Hills	44	48	25'129	0.27	-1.086	$24^{\circ} 043$
6	Kuland*	112	32	52:403	$0 \cdot 22$	+0.330	$52 \cdot 755$
				+0.022			

Fire Island West Base, Suffolk County, New Iork. October 16 to October 24, 1837. F. R. Hassler, observer. 75^{cm} direction theodolite No. 1. Circle used in VI positions.

		-	,	"	"	/1	"
1	West Hills	0	-0	$00 \cdot 000$	± 0.30	+0.397	$00 \cdot 397$
2	Ruland*	73		$\begin{array}{r} 46.131 \\ +0.087 \end{array}$	-.19	-0.386	$45 \cdot 8_{32}$
3	Fire Island East Base	113	49	$51 \cdot 571$	$0 \cdot 29$	+0.158	51'729

[^9]Abstracts of horizontal directions at slalions forming the Fire Island base nel, 1833-1865-continued. Ruland, Suffolk County, New York. August 19 to September 16, 1837. F. R. Hassler, observer. 75^{cm} direction theodolite No. I. Circle used in VI positions. June iI to July 27, 1865. G.W. Dean, observer. Same instrument. Circle used in V positions.

Adopled results at Ruland:

No. of directions.	Object observed.	Resulting directions from station adjustment.			Ap-proximate probahle	Reduction to sea level.	Seconds reduced to sea level.	Correction from net ad-jnst-	Final seconds.
		-	,	11	11	11	"	/1	/1
7	Fire Island East Base	0	00	$00 \cdot 000$	± 0.14			-0.020	59.950
8	Fire Island West Base	27	17	$02 \cdot 716$	0.22			-0.310	$02 \cdot 406$
9	West Hills	78	54	$02 \cdot 335$	0.35	\ldots		+0.266	$02 \cdot 601$
IO	Bald Hill \dagger	132	os	$56 \cdot 733$	$0 \cdot 27$	-0.012	$56 \cdot 721$	+o.131	$56 \cdot 8_{52}$
11	Wooster	140	20	$30 \cdot 391$	$0 \cdot 08$	-0.018	30*373	+0.040	$30 \cdot 413$
12	Tashua	152	53	45'644	$0 \cdot 07$	-0.00S	$45 \cdot 636$	-0.134	$45 \cdot 502$
13	Sandford	180	I3	17 ${ }^{\circ} 299$	$0 \cdot 09$	+o.004	17.303	+o.192	17.495

West Hills, Suffolk County, New York. October 18 to December 1, 1836. F. R. Hassler, observer. 75^{cm} direction theodolite No. I. Circle used in VI positions. July 18 to August 15,1865 . G. W. Dean, observer. Same instrument. Circle used in V positions.

		-	,	/	/
$\begin{aligned} & \dot{\infty} \\ & \infty \\ & \infty \end{aligned}$	Ruland	0	OO	00 000	± 0.31
	Fire Island East Base	33	21	31.070	- 33
	Fire Island West Base	54	43	$\begin{array}{r} -0.136 \\ 16.203 \\ -0.136 \end{array}$	$0 \cdot 38$
$\dot{\mathscr{0}}$	Wooster	0	00	00 000	± 0.06
	Azimnth Mark	7	26	$\begin{array}{r} 21.39^{8} \\ +0.370 \end{array}$	$0 \cdot 06$
	Tashua	21	35	$\begin{array}{r} 06.485 \\ -0.009 \end{array}$	$0 \cdot 05$
	Sandford	33	58	$\begin{array}{r} 36.554 \\ -0.023 \end{array}$	o 08
	Ruland	89	14	$\begin{array}{r} 44.819 \\ -0.078 \end{array}$	0 07

*The correction $+0^{\prime \prime}$. 047 refers to the direction of heliotrope to station of 1836; the other corrections refer the old measures to Ruland station of 1865 , since the stations of 1837 and 1865 do not quite coincide. No notice is taken of those observations of 1837 which are superseded by uew observations of 1865 .
\dagger Mean valne, as derived differentially fron West Hills and Tashua.

$$
4192-\mathrm{No} .7-\mathrm{O} 2-4
$$

Abstracts of horizontat directions at stations formung the Fire Istand base net, 1833-1865-continued.

No notice is taken of those measures of 1836 , which are superseded by new measures of 1865 . The corrections for eccentricity are indicated; instead of increasing the direction to Ruland by of ${ }^{\prime \prime 1}{ }^{1} 36$ this amount is subtracted from the measnres of the base ends.

Resulting directions at West Hills:

No. of directions	Object observed.	Resulting directions from station adjustment.			Approxi mate prob. able	Reduction to level.	Seconds reduced to sea level.	Correction from net ad-just-	Final secouds.
		-	,	"	"	1	"	11	/1
15	Wooster	-	00	$00 \cdot 000$	± 0.06	-0.003	$\overline{59 \times 97}$	+o.169	00.166
	Azinuth Mark	7	26	21 768	0.06				
16	Taslua	2 I	35	$06 \cdot 476$	0.05	+0.006	$06 \cdot 482$	-0.099	$06 \cdot 3 \mathrm{~S}_{3}$
17	Sandford	33	5^{8}	$36 \cdot 531$	- 0 O	+o.014	$36 \cdot 545$	-0.089	$36 \cdot 456$
18	Ruland	S9	14	$44 \cdot 741$	-. 32			+0.226	44.967
19	Fire Island Eiast Base	122	36	15.675	- 33			-0.400	15 275
20	Fire Island West Base	143	58	00.80S	- 38			+0.406	O1 214
	Harrow*	269	17	04.256	-.16			-..."	
	Round Hill*	331	59	$49^{\circ} 211$	- 33			
14	Bald Hill*	359	21	O1 916	0.25	-0.003	O1.913	-0.123	ol '790

Tashua, Fairfield County, Connecticnt. August 25 to September 16, I833. F. R. Hassler, observer. 75^{cm} direction theodolite No. I. Circle used in III positions. September 2 to October 21, 1863. G. W. Dean, observer. Same instrument. Circle used in V positions.

			-0	$00 \cdot 00$		"	$1 /$		
30	Ruland	0	00	00.000	± 0.05			+0.082	$00 \cdot 082$
31	West Hills \dagger	38	20	$42 \cdot 522$	- 09	. . .		+o.os5	$42 \cdot 630$
				10.023					
32	Bald Hill \ddagger	96	34	59.438	0.44	+0.006	59.444	+0.078	$59 \cdot 522$
33	Wooster	138	3^{2}	$49 \circ{ }^{\circ} \mathrm{g}$	- 06	-0.015	$49 \cdot 081$	-0.241	$48 \cdot 840$
	Good Hill	200	12	$56 \cdot 834$	- .08				
29	Sandford	249	56	$26 \cdot 327$	$0 \cdot 06$	+0.017	$26 \cdot 344$	+0.107	26.45 I
	Mount Carmel	259	24	22.837	$0 \cdot 12$				

Sandford, New Haven County, Connecticut. September 9 to November 4, iS62, G. W. Dean, observer. 75^{cm} direction, theodolite No. 1. Circle used in V positions.

		-	,	"	"	"	"	"	"
21	Ruland	-	-	00 000	$\pm 0 \cdot 11$		-0. 264	$\overline{59} 7{ }^{\circ} 7$
22	West Hills \dagger	23		$\begin{array}{r} 41.547 \\ +0.00 s \end{array}$	$0 \cdot 12$		to 482	$4^{\circ} \mathrm{O} 37$
23	Tashua	42	36	$58 \cdot 413$	0.12	to.011	$58 \cdot 424$	-0.330	58.094
24	Wooster	69	03	$33 \cdot 113$	0. 24	to.009	$33 \cdot 122$	+o. 356	32.478
	Azinuth Mark	85	20	$30 \cdot 246$	- 15				
	Ivy	147	34	$47 \cdot 646$	0.15				
	Mount Ton1	190	09	54.58 I	$0 \cdot 12$		
	Box	221	37	22 '062	- 10		
	Mount Carmel	298	46	os $53{ }^{2}$	$0 \cdot 44$			

[^10]Abstraits of horizontat directions at stations forming the Fire Istand base net, 1833-1865-continued. Wooster, Fairfield County, Counecticut. July I4 to October ro, 1864. G. W. Dean, observer. 75^{cm} direction theodolite No. I. Circle used in V positions.

No. of directions.	Object observed.	Resulting directions from station adjustment.			Ap-proximate probable	Reduction to sea level.	Seconds reduced to sea level.	Correction from net adjust	Final seconds.
		-	,	11	11	"	11	/1	/1
	Ivy	0	00	$00 \cdot 000$	± 0.07				
25	Sandford	53	47	$59^{\cdot 208}$	0 © 07	+0.009	$59^{\circ} 217$	-0.069	$59 * 148$
26	Tashua	95	57	$47 \cdot 652$	- . 08	-0.009	$47 \cdot 643$	+0.285	$47^{\circ} 928$
27	Ruland	124	51	45.938	- 0.08		+o 005	45 943
28	West Hills*	154	10	$38 \cdot 493$	$0 \cdot 07$			-0.147	$38 \cdot 378$
				0.032					

Bald Hitt, Fairfield County, Connecticut. July 23 to August i8, 1833. F. R. Hassler, observer. 60^{cm} direction theodolite No. 2. Circle used in VI positions.

		-	,	"	"	/	"	!	/"
3435	Tashua	\bigcirc	∞	$00 \cdot 000$	± 0.22	+o.006	00.006	-0.103	59 903
	Ruland	62	40	12.802	o 60		+1.433	14.291
36	+ 0.056 \dagger								
	West Hills	99	31	$40 \cdot 835$	- $\cdot 27$	-0.213	$40 \cdot 622$
	Harrow	12 I	42	18.609	- $\cdot 19$				
	Round Hill	158	3^{6}	$54^{\circ} \mathrm{OO} 2$	- 40				

FIRE ISLAND BASE NET.
Observation equations.

I	$\mathrm{o}=+0.945-(1)+(3)-(4)+(5)-(19)+(20)$
II	$0=-0.158-(2)+(3)-(4)+(6)-(7)+(8)$
III	$0=+0.027-(1)+(2)-(8)+(9)-(18)+(20)$
IV	$0=+0.462-(15)+(17)-(22)+(24)-(25)+(28)$
V	$0=-0.988-(9)+(13)-(17)+(18)-(21)+(22)$
VI	$0=+0.32 \mathrm{I}-(9)+(\mathrm{II})-(\mathrm{I} 5)+(\mathrm{I} 8)-(27)+(28)$
VII	$0=-0.236-(12)+(13)-(21)+(23)-(29)+(30)$
VIII	$0=+0.072-(16)+(18)-(9)+(12)-(30)+(31)$
IX	$0=+\mathrm{r} 026-(15)+(16)-(26)+(28)-(31)+(33)$
X	$0=+0.093-(14)+(16)-(31)+(32)-(34)+(36)$
XI	$0=+1.432-(14)+(18)-(9)+(10)-(35)+(36)$
XII	$0=-9.5+2^{.99(4)-2.12(5)-0.87(6)+4.08(7)-5.74(8)+\mathrm{r}^{\circ} 66(9)+\mathrm{I}^{\circ} 49(18)-5.38(19)+3 \cdot 89(20)}$
XIII	$\begin{aligned} 0= & +4 \cdot 2+1.56(9)-1 \cdot 14(\mathrm{II})-0.42(13)+4 \cdot 87(21)-6.92(22)+2 \cdot 05(24)-0.38(25)-3.75(27) \\ & +4 \cdot 13(28) \end{aligned}$
XIV	$\begin{aligned} 0= & +3.0+0.60(9)-4.68(12)+4.08(13)+8 \cdot 71(16)-9.58(17)+2.29(21)-6.05(22)+3.76(23) \\ & +0.87(\mathrm{I} 8) \end{aligned}$
XV	$\begin{aligned} 0= & -0.8 \cdot+0.60(9)-9.46(11)+8 \cdot 86(12)+5 \cdot 32(15)-6 \cdot 19(16)+0.87(18)+2.51(26)-3.82(27) \\ & +1 \cdot 31(28) \end{aligned}$
XVI	$\begin{aligned} \mathrm{o}= & +\mathrm{r}^{\circ} 4+\mathrm{r} \cdot 57(9)-7 \cdot 13(\mathrm{ro})+5 \cdot 56(\mathrm{I} 2)-5 \cdot 15(14)-5 \cdot 15(16)+0.00(18)-0 \cdot 24(30)-1 \cdot 30(31) \\ & +\mathrm{r}^{\circ} 54(32) \end{aligned}$

[^11]\dagger Correction to reter the old to the new station of 1865

Reciprocals of the weights or alues of $\frac{13}{p}$

			$1 \cdot 2$				10	1.2			19	17		28		
		2	0.9				11	0.4			20	$2 \cdot 1$		290		
		3	1.6				12	$0 \cdot 3$			21	$0 \cdot 4$		30		
		4	1.4				13	0.4			22	$0 \cdot 5$		31 0		
		5	144				14	$1 \cdot 1$			$2 \cdot$	0.5		$32 \quad 2$		
		6	0.7				15	0.3			24	10		330		
		7	$0 \cdot 5$				16	$0 \cdot 3$			25	$0 \cdot 3$		34 -		
		8	0.9				17	0.4			26	0.4		354		
		9	199				18	1.6			27	$0 \cdot 4$		36 I		
								Nor	mal	equa	ons.					
	C ${ }^{2}$	C_{3}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	c_{9}	C_{10}	C_{18}	C_{2}	C_{83}	C_{34}	C_{55}	C_{56}
$0=+0.945$	94	$+3^{\circ}$	$+3 * 3$									+10.161				
$0=-0.158$			-1.8									-12.001				
$0=+0.027$			8.6		-3.5			-3.5			-3.5	+14*105	+2.964	-0.252	-0.252	+2983
$0=+0.462$				28	-0.9				+0.6				$+5.863$	-0.807	-1.203	
$0=-0.988$					5^{2}	$+3.5$	+0.8	$+3.5$			+3.5	-0.770	-8.540	+1775	+ 0.252	-2.983
$0=+0^{\circ} 321$						4.9		+3'5	+0.6		+3.5	-0.770	-0.68i	$+0.252$	- 3^{207}	- 2.953
$0=-0.236$							$2{ }^{\prime} 3$	-0.7					-2.116	$+4^{\circ} 000$	- 2.658	- 1.764
$0=+0.072$								$4^{\circ} 9$	-0\%7	-0.7	$+35$	-0.770	-2'964	- 3.765	+ 47767	--0.194
$0=+1.026$									20	$+07$			+1.239	$+2.613$	- 4.064	- 1025
$0=+0.093$										6%	+2.3			$+2.613$	-1.857	-2.378
$0=+1 \cdot 432$											119	-0.770	$-2^{\prime} 964$	$+0.252$	+0.252	-17.204
$0=-9.5$												147085	+4920	$+3.966$	+ 3066	+ 4.951
$0=+4 \cdot 2$													53.630	$+26.487$	+13445	$+4.853$
$0=+3{ }^{\circ}$.														102.061	$-26 \cdot 719$	-19473
$0=-0.8$															90'100	+26.132
$0=+1 \cdot 4$																139.437

Resulting values of correlates.

$C_{1}=-0.4899$	$C_{5}=+1.1956$	$C_{9}=-0.8014$	$C_{83}=+0.0750$
$C_{2}=+0.5886$	$C_{5}=-0.1550$	$C_{10}=+0.1145$	$C_{14}=-0.0807$
$C_{3}=+0.1590$	$C_{7}=-0.3553$	$C_{11}=-0.2924$	$C_{15}=-0.0361$
$C_{4}=+0.2016$	$C_{8}=-0.5471$	$C_{12}=+0.1348$	$C_{86}=-0.0563$

Resulting correclions to observed directions.

/1	$1 /$	"	$1 /$	
(1) $=+0.397$	$(10)=+0^{1} 311$	$(19)=-0.400$	$(28)=-0 \cdot 148$	Probable error of
(2) -0.387	(11) +0.040	(20) +0.406	(29) +0.107	an observed direc-
(3) +0.158	(12) -0.134	(21) -0.264	(30) +0.082	tioll.
(4) +0.426	(13) +0.192	(22) +0.482	(31) +o.085	$=0.674 \sqrt{4 \cdot 134}$
(5) -1.086	(14) -0.123	(23) -0.329	(32) +0.078	$7+\sqrt{16}$
(6) +0.330	(15) +0.169	(2.4) +0.355	(33) -0.240	"
(7) -0.019	(16) -0.099	(25) -0.069	(34) -0.103	$= \pm 0.34$
(8) $\quad 0.310$	(17) -0.089	(26) +0.284	(35) $+1: 433$	
(9) +0.266	(18) +0.226	(27) +0.005	(36) -0.214	
Check: $-[w \mathrm{C}]=4 \cdot 133$ and $[p v v]=4.135$.				

Resulting angles and sides of the Fire Island base net.

No.
$-7+8$
$-4+6$
$-2+3$
$-19+20$
$-4+5$
$-1+3$
$-18+20$
$-8+9$
$-1+2$
$-18+19$
$-7+9$
$-5+6$
$-30+31$
$-9+12$
$-16+18$
$-27+28$
$-9+11$
$-15+18$
$-26+27$
$-30+33$
$-11+12$
$-26+28$
$-31+33$
$-15+16$
$-2 \mathrm{I}+22$
$-9+13$
$-17 \div 18$
$-22 \div 23$
$-16+17$
$-29+31$
$-21+23$
$-12+13$
$-29+30$
$-22+24$
$-15+17$
$-25+28$

Stations.

Ruland

${ }^{\text {F Fire Island East Base } 112} 32252.425$
Fire Island West Base 40 Io $05^{\circ} 353$
West Hills $21 \quad 21 \quad 45.133$

Observed angles.

Fire Island East Base
 4

 Fire Island West Base IIRulan
349
25
51
$51 \cdot 57$
$\begin{array}{lll}54 & 43 & 16\end{array} \cdot 067$

Fire Island West Base
$\begin{array}{lll}51 & 36 & 59 \cdot 619 \\ 73 & 39 & 46 \cdot 218\end{array}$
West Hills
Ruland
Fire Island East Base
3

Tashua
Ruland
West Hills
Wooster
Ruland
West Hills
Wooster
Tashua
Rulaird
Wooster
Tasliua
West Hills
Sandford
Ruland
West Hills
Sandford
West Hills
「「ashua
Sandford
Ruland
Tashua
Sandford
West Hills
Wooster
$\begin{array}{ccc}1 / & \text { angles. excess. } \\ -0.290 & 02 \cdot 426 & 0 \cdot 218\end{array}$

-0.096	52.329	0.217

Log. dis-
tances.

Distances in meters.
4.147 $953 \quad 5 \quad 14058 \cdot 971$ $\begin{array}{llllll}4 & 452 & 173 & 4 & 28 & 325\end{array} \cdot 23$ $4 \cdot 296291$ I $19782 \cdot 95$

4'147 $953514058 \cdot 971$
$4.434 \quad 543$ o $\quad 27 \quad 198 \cdot 38$
$\begin{array}{lllllll}4 & 547 & \text { S2S } & 6 & 35 & 30.4 & 38\end{array}$

| 4 | 45^{2} | 173 | 4 | 28 |
| :--- | :--- | :--- | :--- | :--- | $3^{2} 5 \cdot 23$

$4.434543 \cap 27198 \cdot 38$
$\begin{array}{llllll}4 & 522 & 397 & 2 & 33 & 296\end{array} \cdot 39$
4.296 291 1 19 7S2'95
$\begin{array}{lllllll}4 & \prime & 547 & 828 & 5 & 35 & 304\end{array} 37$

4	522	397	I	33

$\begin{array}{llllll}4 & 522 & 397 & 1 & 33 & 296\end{array} \mathbf{3 9}$
47125613 5I $589 \quad 50$
4 '695 847 64964 I 81
$\begin{array}{lllllll}4 & 5 & 522 & 397 & 1 & 33 & 296\end{array} 39$
$4776212 \quad 1 \quad 59732 \cdot 69$
4.832520768 OO1 ${ }^{-85}$
$4.695 \quad 847649641$: 81
$4.8325207 \quad 68$ ool 85
$4 \begin{array}{lllllll} & 348 & 836 & 22 & 327^{\circ} & 30\end{array}$
$\begin{array}{llllll}47712 & 561 & 3 & 51 & 589 & 50\end{array}$
$47762120 \quad 59732 \cdot 68$
$\begin{array}{lllll}4 & 348 & 836 & 2 & 22 \\ 327 & 30\end{array}$
$\begin{array}{llllll}4 & 522 & 397 & 1 & 33 & 296 \cdot 39\end{array}$
$\begin{array}{llllllll}4 & 914 & 715 & 9 & 82 & 170.49\end{array}$
4.838 030 $8 \quad 68 \quad 870 \cdot 11$
$\begin{array}{llllll}4.712 & 561 & 3 & 51 & 589 & 50\end{array}$
$4.5270586 \quad 33 \quad 65570$
$4.9147160 \quad 82170 \cdot 50$
$4 \quad 695 \quad 847 \quad 6 \quad 49641 \cdot 81$

4 | 527 | 058 | 6 | 33 | 655% |
| :--- | :--- | :--- | :--- | :--- |

$4: 838 \quad 30 \quad 8 \quad 68 \quad 870 \cdot 11$
$4776 \quad 2120 \quad 59732 \cdot 68$
$4.6691710 \quad 46684 \quad 31$
$4.9147160 \quad 82 \quad 1700^{\circ}$

Resulting angles and sides of the Fire Island base nel-continued.

No.	Stations.	Observed angles.			Correction.	Spherical	Spherical	Log. distances.	Distances in meters.
		-	,	"	$1 /$	11	//		
-21 - 24	Sandford	69	03	$33^{1} 122$	+0.621	33^{7743}	2.540	$4 \cdot 8325207$	68 001 S_{5}
$-11+13$	Ruland	39	52	$46 \cdot 930$	+0.152	$47^{\circ} 082$	2.540	$4 \cdot 6691709$	$46684 \cdot 30$
$-25+27$	Wooster	71	O_{3}	$46 \cdot 721$	+0.074	$46^{\prime} 795$	2×540	$4 \cdot 8380309$	$68870 \cdot 13$
$-23+24$	Sandford	26	26	$34 \cdot 698$	+0.686	$35 \cdot 38$	$0 \cdot 592$	$4 \cdot 3488362$	22327 30
-29-33	Tashua	III	23	$37^{\circ} 263$	+o. 348	$37^{61} 1$	0.592	4.6691711	$46684 \cdot 3^{2}$
$-25+26$	Wooster	42	∞.	$48 \cdot 426$	+0.355	$48 \cdot 781$	- 592	4.5270588	$33655 \% 1$
$-34+35$	Bald Hill	62	40	$12 \cdot S_{52}$	+1.536	$14 \cdot 388$	0.826	$4{ }^{\prime} 695$ S47 6	49641 -81
$-30+32$	Tashua	96	34	59.444	-0.004	$59^{\circ} 44^{\circ}$	0.826	4 '744 3758	$55510 \cdot 58$
$-10+12$	Ruland	20	44	48.915	-0.265	$48 \cdot 650$	0.826	$4 \cdot 296541$ I	19794.34
$-35+36$	Bald Hill	36	5I	27.977	- I 646	$26 \cdot 331$	I ${ }^{2} 253$	4.522397 I	$33296 \cdot 38$
$-9+10$	Ruland	53	14	54*386	-0.135	$54{ }^{\circ} 2{ }^{\text {I }}$	I ${ }^{2} 53$	4.6481357	$44477{ }^{\circ} 02$
$-14+18$	West Hills	89	53	$42 \cdot 828$	+0.349	$43^{1} 177$	I 253	4.7443759	$55510 \cdot 60$
$-34+36$	Bald Hill	99	31	$40 \cdot 829$	-0.110	$40 \cdot 719$	0.735	47125613	$5^{1} 589 \cdot 50$
$-31+32$	Tashua	58	14	16.899	-0.007	$16 \cdot 892$	0.735	4.648 I35 6	44477 ㅇI
$-14+16$	West Hills	22	14	$04 \cdot 569$	+0.024	$04 \cdot 593$	0.734	4.2965413	$19794 \cdot 35$

Descriptions of base net stations.

Fire Island West Base, Long Island, New York. The base was located in a most insecure position, close to the beach of the narrow strip of land known as Fire Island, and with its western terminus not far from the Fire Island Light-House. The locality is subject to total changes of aspect, due to drifting sands and inundations and erosions from high tides. This being well known, Superintendent Hassler connected it directly with the line Ruland-West Hills, which he called his "Mountain base." This connection was made by means of a quadrilateral of which all angles were measured.

It appears that the station was originally marked by a red sandstone post, with cross lines upon its upper surface.

It has been reported that the station is destroyed.
Fire Island East Base, Long Island, New York. This end of the base of 1834 was subjected to the same physical conditions of exposure which rendered the opposite end insecure. It was originally marked with a stone post.

Nothing is known as to the date when the station succumbed to the destructive influences surrounding it.

Ruland, Suffolk County, New York. This station was located by Superintendent Hassler in 1833, on Rulands hill, in Smithtown, Long Island, about halfway between the northern and southern turnpike at Patchogue. It is on the highest hill in the neighborhood. The point is on the summit (about 20 feet in diameter), the ground sloping down all around the station. It was marked by a stoneware crock, with its top i6 inches below the surface. Oyster shells are scattered about the place to assist in finding it. In 1837 the station was found in good condition.

The place was visited by Assistant C. O. Boutelle in 1860, who re-marked the
station for greater security. Four stone postswere placed to the north, soutl, east, and west of the center stone post. On the npper surface of the center stone post the intersection of two lines marks the position of the center point of the Hassler crock of 1833 . Around each post concrete was placed to secure it firmly in position. Upon the center stone was placed a stout stub of locust wood into the top of which, level with the ground, a copper tack was driven, marking the center point. A fuller description is given in the record of 1865 , when the station was reoccupied.

West Hills, Suffolk County, New York. This station was established by Superintendent Hassler in 1836. It is marked by a red sandstone post, 4 feet high and i foot square, sunk in the ground, with stones well packed around it; the intersection of diagonal cross lines upon the top marks the station point. A crock, which had beforc served as station mark, was placed upon the post and a nail in a wooden peg driven centrally through it marks the station. Upon the side of the post facing Harrow were cut the initials U. S. C. S.

The station was reoccupied in 1865, and again described.
The place is + miles from Huntington and 7 miles from Farmingdale railroad station. The point is on the summit of a hill. An examination lad been made in 1860 , when the stone post appeared not to have been disturbed, but the crock was broken and the stub decayed.

To mark the point more securely, posts arranged about the center post, north, south, east, and west of the station, were sunk to a level with the surface of the ground. A stout wooden stub, with a nail driven into it, was placed over the center of the old post to mark the station. Some further remarks are given in the 1865 description.

Tashua, Fairfield County, Connceticut. This station is located in 'Trumbull township, Fairfield County, Connecticut. It was established and occupied by Superintendent Hassler in 1833. The station was reoccupied in 1863 by the party of Superintendent Bache, by whom the following description is given:
" The station point is marked by a copper bolt inserted in the top of a granite post sunk 2 feet below the surface of the ground. Four similar posts, 8 inches square and $21 / 2$ feet in length, were adjusted 6 feet distant to the north, east, south, and west of the center point. The tops of the posts are marked by two lines intersecting at right angles and the letters U.S.C.S. Four directions to signals visible from the station are marked by copper tacks driven into hickory stubs at distances 171 feet 3 inches toward Ruland, 121 feet 7 inches toward West Hills, 73 feet 9 inches toward Wooster, and 70 feet 3 inches toward tower in Warren."

Sandford, New Haven County, Connecticut, 1862. This geodetic point is located on the highest and most western summit of Sandford Mountain, 5 feet from a pile of stones which marks the boundry line between New Haven and Bethany townships. The point is marked by the center of a half-incl drill hole in the top of a granitc post which is $21 / 2$ feet in length and I foot square at the upper surface. Two cross lines and the letters U.S.C.S. are cut on its top, which is $11 / 2$ feet below the general surface of the ground. For greater security four granite posts, each $21 / 2$ feet long and 6 inches square at the top, were sunk into the ground at points about 6 feet to the north, east, sonth, and west of the station. The tops of these posts were flush with the ground. To this description Assistant G. W. Dean adds the following: "The top of the stone post marking the station was sunk 20 inches below the plane of the four surrominding stones.

A copper bolt was driven into the central stone and the center accuratcly marked by intersecting lines. A cedar stub was placed immediately over the center of the granite post, the top of which was flush with the ground and firmly secured with earth. The station point was further marked by a composition nail driven into the top of the cedar stul.".

Bald Hill, Fairfield County, Comecticut. This station was established in 1833 by Superintendent Hassler and occupied by him in that year.

The hill is situated in Wilton Township, about 4 miles south of Ridgefield. The station was visited by Assistant Farley in 1868, who found fragments of an earthenware crock (of the pattern of the Hassler crocks, or cones, as he called them), and marks cut on three rocks, but he was not able to identify the marks owing to the (apparent) loss of the original description of the station by Superintendent Hassler and by Assistant Blunt in 1866. What made the search at the place more difficult was the fact that rock blasting had been going on there for some time. A second visit in 1869 elicited no certain information from want of application of proper means. The place was next examined. by Assistant G. Bradford in 1882 and 1884, when, by means of the determination of a temporary signal, the location of the crock (cone) placed by Assistant Blunt in 1866 was readily discovered. It is assumed that this crock occupies the position of the Hassler crock, because Assistant Blunt is said to have put it in the place of the fragments of the older one. The station appears to have been recovered.

Wooster, Fairfield County, Comnecticut. This station was established in 1864 by the party of Superinteudent Bache. It is located in Ridgefield Township, about + miles southwest of Danbury, on Wooster Mountain, known to the residents in the vicinity as Pine Hill.

The station point is marked by a copper bolt, and is located on the highest point of gneiss which crops out near the summit of the mountain. The top of the ledge is quite limited, its length east and west being about 25 feet.
4. THE KENT ISLAND BASE LINE, BASE NET AND EXTENSION, MARYLAND, 1844.

Location, measurement, and resulting length of the Kent Island base line, Maryland, 1877.
Kent Island, in Queen Ame Colnty, Maryland, on the western shore of which the base was measured, is situated on the east side of Chesapeake Bay, and is nearly opposite Anmapolis Harbor. Originally it was intended as a check on the main triangulation which cxtended from the Fire Island base southward and westward, but its position near the latitude of 39° rendered it desirable to incorporate it in the eastern part of the transcontinental triangulation.

An account of the measure and length of this base is contained in the Coast Survey Report for the year 1866, supplement to Appendix No. 8, page 140, and again in Special Publication No. 4i "The Transcontinental Triangulation."

The middle point of the base is in latitude $38^{\circ} 56^{\prime} \cdot 1$, and in longitude $76^{\circ} 21^{\prime \prime} \cdot 2$, the mean azimuth is $14^{\circ} 35^{\prime} 4$, and the length 8.7 kilometers (or $5^{\circ} 4$ statute miles). The surface of this part of the island is slightly undulating, and the line crosses cultivated fields, with some portions covered by swamps and woods. The elevation is very little above the surface of the bay. The shore is subject to erosion, in consequence of which the terminal monuments, each consisting of an upright stone surface mark with a copper
bolt in a piece of slate below the surface, the whole being protected by rubble masonry, have disappeared.

The base was measured by Assistant J. Ferguson, in May and Jin1e, 1844, by means of the same apparatus as was used for the measure of the Fire Island base ten years before. It is known as the Hassler base apparatus,* and consists of four rectangular iron bars each 2 meters long, put together endwise and aligned in a wooden trough. The protruding ends of this 8 -meter bar have semicircular notches * which was stretched a spider thread; over this was mounted,
 across independent stand, an adjustable micrometer microscope, by means of which the measure was held while the bar was brought forward into a new position. All needed adjustments for the apparatus were provided for and the temperature of the bar was read from thermometers attached to the top of the 2-meter bars placed in the bottom of the trough, which is supposed to have been covered with canvas. At the end of a day's work or at other times when necessary, the end of the last bar laid was transferred to the ground, generally by a plummet. Only one measure was made, and the total time consumed was a little over one month.

The four 2-meter bars made by Troughton, of London, about 1813 were standardized in 1817 by Hassler, by using the Committee Meter, in $1834-35$ by using the Troughton brass scale, and finally, in i 844^{-45}, by Superintendent Bache, J. Saxton, and W. Würdemann, by using a Bessel comparator, with the following results:

This last value, after verification in July, i854, was finally adopted for the two bases measured with this apparatus in 1844. The coefficient of expansion of the bar which was determined in 1817 by Hassler at Newark, viz, 0000012534 for the centigrade scale, was adopted and, though somewhat large, may nevertheless be true for these particular bars, now lost. The mean temperature of the bar during measurement of the base was $25^{\circ}{ }_{18} 8 \mathrm{C}$. (or $77^{\circ} \cdot 33 \mathrm{~F}$.). The deduced length of the base is as follows:

```
I O86 boxes S687"4-8606
Excess of last box over end mark at South Base, as measured by Bar D and scale -2.0508
Correction for excess ( }2\mp@subsup{5}{}{\circ}.44\textrm{C}\mathrm{ .) of temperature of bars over o}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ . and graduation error of
    thermometers ( }-\mp@subsup{0}{}{\circ}\cdot255\textrm{C}.
    -2.7424
Correction for inclination of boxes - - %007
Reduction to half-tide level of bay for surface elevation and height of boxes 5m.o -o.0069
Resulting length of base
8687"1"5446
```

The probable error of this value can only be estimated, since the base was measured but once. Supposing the combined length of the four 2 -meter bars subject to $\pm 20 \mu$, the effect on the base will be $\pm 0^{\prime \prime \prime} \cdot 022$; an assumed error of $\pm \frac{1}{60}$ part in the

[^12]coefficient of expansion would produce $\pm 0^{m} \cdot{ }^{\prime} 055$; again, the effect for imperfect temperature correction, for inequality in umber of boxes laid witli rising and with falling temperatures, may be taken as $\pm \mathrm{o}^{\mathrm{m}}$-o34; other minor uncertainties may be omitted. Combining the several values for probable error gives $\pm 0^{m} \cdot 068$, equal to 24800 of the length nearly. This may be taken to represent the measuring error, and to include the probable error due to our practical unit of length, the Committee Meter, taken as $\pm 3 / 4$. Resulting leugth of Kent Island base, $8687^{\circ} 5446$ meters and its logarithm, $\pm .0680$

```
3.93889705
    \pm4 40
```


Kent Island base net and results of adjustment.

The following abstracts of observed and adjusted directions at the nine stations forming the base net proper, as well as the conditional equations and results of its adjustment with resulting length of triangle sides, were copied from Part I, Special Publication No. 4, "The Transcontinental Triangulation," and from Part III of the same publication the . results of two triangles* to the northward of the net and of 35 triangles to the westward and southward of the base. \dagger The triangles of this last extension are shown on the following sketch:

[^13]The heights of the stations above the half-tide level of the ocean are small and approximately as follows:

	Meters.
Kent Island North Base	5
Kent Island South Base	5
Taylor	29
Marriott	76
Linstid	48
Webb	72
Swan	8
Pooles Island	4
Finlay	150
Osbornes Ruin	90
Turkey Point	25

The approximate heights of stations along the Blue Ridge extension are as follows:

	Meters.
Hill	84
Soper	143
Stabler	174
Peach Grove	159
Sugar Loaf	390
Maryland Heights	444
Bull Run	419
Mount Marshall	1028
Fork	1174
Clark	334
Humpback	1110
Spear	492
Tobacco Row	895

No corrections to the observed horizontal directions on account of altitude were , applied, as they are too small in comparison with the angular corrections required by the net adjustment to be considered. In latitude 39° the correction to a direction for height of station sighted becomes $o^{\prime \prime} \cdot 000066 \sin 2 \alpha . h$, hence the maximum correction would still be less than $0^{\prime \prime} \cdot 08$, whereas the net adjustment in this region in several instances calls for angular corrections exceeding $\mathrm{I}^{\prime \prime}$.

The results of the triangle side computations between the Kent Island and the Atlanta base lines, published in Coast and Geodetic Survey Report for 1878, pages 94-112, are now superseded. A portion of this work was readjusted in reducing the transcontinental triangulation and the results are reproduced in this publication.

Aostracts of resutting horizontal directions, observed and adjusted, at the stations forming the base net, 1S4t-1S97.
Kent Istand South Base, Queen Anme County, Maryland. May 30 to June 4, 1847. 30 ctu repeating theodolite No. II. F. Blunt, observer. (Observations in 1844 by J. Ferguson superseded by above.)

Number of directions.	Object observed.	Resuiting directions from station adjust nent.			Corrections from base net adjustment.	Final secouds
		-	,	/	/1	"
1	Marriott	0	00	(0.00	+0.03	$00 \cdot 03$
2	Taylor	58	53	$46 \cdot 24$	+o.06	$46 \cdot 30$
3	Kent Island North Base	111	41	$18 \cdot 25$	-0.09	18-16

Probable error of a single observation of a direction (6 D . and 6 K .), $e_{t}= \pm 0^{\prime \prime} \cdot 69$.
Kent Istand North Base, Queen Anne County, Maryland. May 2I to 28, 1847. 30 cm repeating theodolite No. II. E. Blunt, observer. (Observations in 1844 -' 45 by J. Ferguson superseded by above.)

		-	,	11	"	11
4	Kent Island South Base	0	00	$00 \cdot 00$	+o.19	$00 \cdot 19$
5	Marriott	50	05	$05 \cdot 36$	-0.47	$04 \cdot 89$
6	Taylor	88	35	$36 \cdot 91$	-0.12	$36 \cdot 79$
7	Linstid	121	02	$04 \cdot 33$	+o.16	$04 \cdot 49$
8	Swan Point	181	09	$45^{*} 47$	+o. 24	$45 \cdot 71$

Probable error of a single observation of a direction ($6 /$). and $6 R$.), $\varepsilon_{1}= \pm 0^{\prime \prime} \cdot 68$.
Swan Point, Kent County, Maryland. October 16 to 21,1848 . 30^{cm} repeating theodolite No. I1. E. Blunt, observer. (Observations in 1845 by J. Ferguson superseded by above.)

	0	$\prime \prime$	$\prime \prime$	$\prime \prime$	
34	Kent Island North Base	0	00	00.00	-0.23

Probable error of a single observation of a direction (6 I) and 6 K.), $\epsilon_{\mathrm{t}}= \pm 1^{\prime \prime} 35$.
Faytor, Anne Arundel County, Maryland. June 8 to 16,1847 . 30^{cm} repeating theodolite No. I1. E. Blunt, observer. (Observations in 1844 by J. Ferguson superseded by above.)

		-	,	11	"	"
10	Kent Island North Base	0	∞	$00 \cdot 0$	± 0.36	00.36
11	Kent Island South Base	38	36	$52 \cdot 37$	-0.23	52'14
12	Marriott	119	32	$44 \cdot 32$	+o.53	$44 \cdot 85$
9	Linstid	247	12	$54 \cdot 29$	-0.66	53.63

Probable error of a single observation of a direction (6 D) and $6 R$.), $e_{5}= \pm 0^{\prime \prime} .66$.
Pootes Istand, IIarford County, Maryland. May 17 to 27,1848 . 33^{cm} repeating theodolite No. II. E. Blunt. observer. (Observations in 1845 by J. Ferguson superseded by above.)

Probable error of a single observation of a direction (6 J . and 6 K.), $\epsilon_{\mathrm{r}}= \pm 0^{\prime \prime} .69$.

Abstracts of resulting horizontal directions, observed and adjusted, at the stations forming the base net, 1844-1897-continued.
Webb, Anne Arundel County, Maryland. July io to August 14, 1848. 60^{cm} direction theodolite No. 2. A. D. Bache, observer. October 2I to December 2, 1850.75^{cm} direction theodolite No. I. A. D. Bache, observer. September 18 to 25,1868 . 75^{cm} direction theodolite No. 1. C. O. Boutelle, observer.

Number of
directions.

Object observed.

26
27

Linstid
 Marriott
 Hill
 Soper
 Stabler
 Azimuth Mark
 Finlay

Resulting direc-
tions from sta-
tions from sta-
tion adjustment.

Corrections from base net adjustment.	Final seconds.
$1 /$	/1
- 0.02	59.98
+0.25	$06 \cdot 44$
- $00{ }^{*}$	$58 \cdot 53$
- $00{ }^{*}$	$04 \cdot 72$
-0.02*	I I 54
. . .	-•••
-0.23	$42 \cdot 78$

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 0^{\prime \prime} 94$.
Number of positions of circle in 1848, XXXIII; in 1850 and $1868, \mathrm{~V}$.
Marriott, Aune Arundel County, Maryland. November 18 to December 9, 1846. 30^{cm} repeating theodolite No. II. E. Blunt, observer. May 18 to June 18, 1849. $60{ }^{\mathrm{cm}}$ direction theodolite No. 2. A. D. Bache, observer.

				"	"	"
	Hill		-	¢ 0°	-0.29*	$\overline{5971}$
	Soper	32	06	$10 \cdot 36$	to 38**	10 '74
13	Webb	70	os	$37 \cdot 17$	-0. 24	36 '93
	Azinuth Mark	82	23	$48 \cdot 68$	
14	Linstid	107	33	$48^{\prime} 30$	+o. 34	48.64
15	Taylor	125	56	$32 \cdot 84$	-0. 20	$32 \cdot 64$
16	Kent Island North Base	147	53	16.80	-0.10	$16 \cdot 70$
17	Kent Island South Base	166	06	$54 \cdot 12$	+0.19	$54 \cdot 31$

Probable error of a single observation of a direction (6 D . and $6 R$.) in 1846, $e_{1}= \pm 0^{/ / .67}$ and of a direction (D. and R.) in $1849, e_{1}= \pm 1^{/ / 10}$. Number of positions of circle, XI.
Linstid, Anne Arundel County, Maryland. May 24 to June $26,1848.60^{\mathrm{cm}}$ direction theodolite No. 2. A. D. Bache, observer. January 8 to $31,1897.30^{\mathrm{cm}}$ repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope elevated above ground 27.89 meters. (Observations in 1844-45 by J. Ferguson superseded by above.)

		。	,	"	"	"
18	Finlay	-	∞	$00 \cdot 0$	+0\% 70	00 70
19	Pooles Island	46	42	57.73	-0.18	57×5
	Clouglı	69	13	$07 \cdot 73$
20	Swan Point	77	13	$16 \cdot 97$	-0. 5^{2}	16.45
	Hope	102	07	23 '10	
21	Kent Island North Base	140	56	37.60	-0.26	37×34
22	Taylor	175	43	O2.43	+0.75	03. 18
23	Marriott	209	40	11.28	-0.50	10 78
24	Webb	275	58	$53 \cdot 59$	to ${ }^{\circ} 2$	$53^{\circ} 61$

Probable error of a single observation of a direction (D. and R.) in $1848, \epsilon_{x}= \pm 1^{/ / \cdot 12}$ and of a direction (6 D). and 6 K .) in $\mathrm{I} 897, e_{\mathrm{x}}= \pm 0^{\prime \prime} \cdot 73$.

Number of positions of circle, XVII.

Abstracts of resutting horizontat directions, observed and adjusted, at the stations forming the base net, 1847-1897-continued.

Finfay, Baltimore County, Maryland. August 29 to September 11, 1844.60 cm direction theodolite No. 2. J. Ferguson, observer. October 15 to December 27,1896 . 30^{cm} repeating theodolite No. 16. G. A. Fairfield, observer. Telescope above ground 1×5 meters.

Number of directions	Object observed.	Resulting directions from station adjustment.			Corrections from base net adjustment.	Final seconds.
		-	,	/1	- $/ 1$	/1
	Osbornes Ruin	0	00	$00 \cdot 00$
	Still Pond	30	48	A' 95	
28	Pooles Island	48	03	$34 \cdot 15$	+0.48	$34 \cdot 63$
-	Clough	55	23	20.93
29	Linstid	101	36	ol 26	-0.72	00 54
30	Webb	127	19	$37 \cdot 46$	+0.25	3771

Probable error of a single observation of a direction (D. and R.) in $1844, \ell_{\mathrm{x}}= \pm 1^{\prime \prime} 52$ and a direction ($6 D$. and $6 R$.) in $1896, e_{1}= \pm 0^{\prime \prime} 65$. Number of positions of circle in 1844 , VI.

BASE NET ADJUSTMENT; MARRIOTT TO FINLAY.

Observation equations.

```
\(0=+1.05-(2)+(3)-(4)+(6)-(10)+(11)\)
\(0=-0.62-(5)+(6)-(10)+(12)-(15)+(16)\)
\(0=+0.49-(1)+(3)-(4)+(5)-(16)+(17)\)
\(0=-2 \cdot 31-(6)+(7)-(9)+(10)-(21)+(22)\)
\(0=+2.97+(9)-(12)-(14)+(15)-(22)+(23)\)
\(0=-1 \cdot 37-(13)+(14)-(23)+(24)-(26)+(27)\)
\(0=-1 \cdot 87+(18)-(24)-(25)+(26)-(29)+(30)\)
\(0=+2 \cdot 73-(18)+(19)-(28)+(29)-(32)+(33)\)
\(0=+1 \cdot 26-(19)+(20)-(31)+(32)-(35)+(36)\)
\(0=-1.07-(7)+(8)-(20)+(21)-(34)+(35)\)
\(0=-39+17^{\prime} 1(4)-17^{\circ} 6(5)+0^{\circ} 5(6)+26^{\circ} 4(10)-29^{\circ} 8(11)+3^{\circ} 4(12)+24^{\circ} 9(15)-63^{\circ} 9(16)+39^{\circ} 0(17)\)
\(0=+31+26 \cdot 4(5)-59^{\circ} 5(6)+33 \cdot 1(7)+63 \cdot 4(14)-115 \cdot 6(15)+52^{\circ} \cdot 2(16)+30 \cdot 3(21)-61.6(22)\)
    \(+3 I^{\circ} 3(23)\)
XIII \(0=-28+7.3(5)-19.4(7)+12^{\circ} 1(8)+27^{\circ} 5(13)-52^{\circ} 3(14)+24.8(16)+7.6(25)-12^{\circ} 7(26)\)
    \(+5^{\circ} 1(27)+15 \cdot 5(28)-59^{\circ} 2(29)+43^{\circ} 7(30)+28 \cdot 6(31)-32^{\circ} 4(32)+3^{\circ} 8(33)+14^{\circ} 2(34)-5^{\circ} 2(35)\)
    \(-9^{\circ} \circ(36)\)
```

The correlate and normal equations, when established and solved, gave the following values of corrections to the angular directions:

"	"	"	"
(I) $=+0.03 \mathrm{O}$ o	(I) $=+0.359$	$(\mathrm{I} 9)=-0.1849$	$(28)=+0.4758$
(2) +0.0597	(II) -0.232	(20) -0.5180	(29) -0.7247
(3) -0.0907	(12) +0.529	(21) -0.2545	(30) +0.249
(4) +0.1897	(13) -0.2394	(22) $+0.7474^{\text {. }}$	(31) +0.2957
(5) -0.4716	(14) +0.341	(23) -0.4996	(32) ${ }^{\circ}+0.1730$
(6) -0.1167	(15) -o.1954	(24) +0.0166	(33) -0.4687
(7) +0.1642	(16) -o.101	(25) -0.230	(34) -0.2276
(8) +0.2373	(17) +0.194	(26) -0.021 3	(35) +0.5161
(9) -0.6568	(18) +0.7030	(27) $+0 \cdot 251$	(36) -0.288

Checks: Sum of + corrections $55^{\circ} 35$ and $\Sigma p v v=+4.867$
Sum of - corrections $55^{\circ} 32-\Sigma w \mathrm{C}=+4.872$
Mean error of an observed direction $m_{\mathrm{r}}=\sqrt{\frac{[p v \bar{v}]}{n}}= \pm 0^{\prime \prime} \cdot 61$ where $n=$ number of conditions. Mean error of an angle $m L=m_{1} \sqrt{2}= \pm 0^{\prime \prime} \cdot 87$ and probable error of the same $\pm d^{\prime \prime} \cdot 59$.

EXTENSION OF THE KENT ISLAND BASE NET TO THE NORTHWARD.

Abstracts of resulting honzontat directions, observed and adjusted at stations to the north of the net.
Osbornes Ruin, Harford County, Maryland. September 23 to October 2, 1844.60^{cm} direction theodolite No. 2. J. Ferguson, observer. August 17 to September 20, 1896 . 30^{cm} repeating theodolite No. I6. G. A. Fairfield, observer. Telescope $14^{\circ} 17$ meters above ground in 1896 .

Object observed.

Turkey Point
Pooles Island
Finlay
Principio

Kesults of local adjustment.		
-	,	//
0	00	00 ${ }^{\circ}$
81	27	17.53
158	56	$33 \cdot 29$
324	49	48

$324 \quad 49 \quad 4^{8 \cdot 33}$

$\begin{array}{cc}11 & \prime \prime \\ +0.1 I & 0011\end{array}$
—0.06 $\quad 17^{.47}$
-0.09 $33^{\circ} 20$

Probable error of a single observation of a direction (D. and R.) in 1844, $\varepsilon_{1}= \pm 1^{\prime \prime} 33$ and of a direction (6 D . and 6 R .) in $\mathrm{I} 896, e_{\mathrm{I}}= \pm \mathrm{o}^{\prime \prime} \cdot 35$. Number of positions of circle in 1844 , VI.

Turkey Point, Cecil County, Maryland. May 31 to June $17,1845.60^{\mathrm{cm}}$ direction theodolite No. 2. J. Ferguson, observer. September 30 to October 19, 1896.35^{cm} direction theodolite No. 10. J. Nelson, observer. Telescope 2.08 meters above ground in 1896 .

	-	,	"	"	"
Pooles Island	\bigcirc	∞	$00^{\circ} 0$	+0.65	00.65
Osbornes Ruin	44	or	$4^{8 \cdot} 7^{2}$	$\bigcirc 0.44$	$48 \cdot 28$
Principio	131	14	$4{ }^{1} 24$	\ldots	

Probable error of a single observation of a direction (D. and R.) in $1845, e_{\mathrm{x}}= \pm 1 / / 49$ and of a direction in 1896, $e_{\mathrm{I}}= \pm 0^{\prime \prime} \cdot 62$.

Number of positions of circle in 1845 , VI; and in 1896 , XII.

Abstracts of resutting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and southward.

Hitt, Prince George County, Maryland. June 18 to July ${ }^{5} 5,1846.60^{\mathrm{cm}}$ direction theodolite No. 2. A. D. Baclre, observer. August 8 to October 4, i850. 75^{cms} direction theodolite No. I. A. D. Baclie and A. A. Humphreys, observers. October 9 to November 12, 1868.75^{cm} direction theodolite, No. I. C. O. Bontelle, observer. Telescope 16.76 meters above ground in i 868.

> objects observed.

Peach Grove
Causten
Sugar Loaf
Stabler
Soper
Azinuth Mark
Webb
Marriott

Results of local adjustment.			Correction from figure adjust ment.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	,	"	/"	"
0	-	$00 \cdot 00$	-0 30	59%
5	54	$28 \cdot 96$	\ldots	
37	48	$42 \cdot 47$	to.ro	$42 \cdot 57$
65	16	$57 \cdot 50$	to 20	57%
69	14	$40 \cdot 71$	-0 3 I	$40 \cdot 40$
	08	$23 \cdot 97$	\ldots	
125	o8	$24 \cdot 12$	+0.12	$24 \cdot 24$
	48	$56 \cdot 12$	+o. 20	$56 \cdot 32$

Probable error of a single observation of a direction (D. and R.) , $e_{1}= \pm 0^{\prime \prime} 90$. Number of positions of circle in 1846 and 1850, V: in I868, VII.

Soper, Montgomery-County, Maryland. June 19 to July 23, $1850.75{ }^{\mathrm{cm}}$ direction theodolite No. 1 . A. D. Bache, observer.

Webb	0	Oo	$00 \cdot 0$	-o. 08	59.92
Marriott	39	41	37 ©8	-0.17	$36^{\circ} 91$
Hill	75	or	10 92	+o. 24	If 16
Azimuth Mark	89	30	15 \%o		
Causten		∞	$57 \cdot 30$	
Stabler	233	17		\ldots	$09 \% 8$

Probable error of a single observation of a direction (I. and R.), $e_{1}= \pm 0^{\prime \prime \prime} 91$. Number of positions of circle, V.

Stabler, Montgomery County, Maryland. July 17 to September 3, $1859.75{ }^{\mathrm{cm}}$ direction theodolite No. I. C. O. Boutelle, observer. Instrument $16 \% 6$ meters above ground.

Hill		-	,	"	17	"
		0	00	$00 \cdot 00$	-0.24	$\overline{5976}$
Peacli Grove		63	40	03.06	-0.37	02.69
Bull Ruis		87	II	16.57	+0.04	$16 \cdot 1$
Maryland Heights		131	27	54.59	+0.06	$54 \cdot 65$
Sugar Loaf		134	09	4234	+0.48	$42 \cdot 82$
Webb		297	19	$37 \cdot 68$	+0.01	$37 \cdot 69$
Soper	\because	342	13	$41 \cdot 17$	0.00	$41 \cdot 17$

Probable error of a single observation of a direction (D. and R.) , $e_{t}= \pm 1 / 108$. Number of positions of circle, VII.

Abstrads of resulting horizontal directions observed and adjusled at stations forming the extension of the Kent Island base net to the westward and southward-continued.

Peach Groue, Fairfax County, Virginia. October 11 to November S, 1869, and July 28 to August 15 , 1870. 75^{cm} direction theodolite No. 1. C. O. Boutelle, observer. Telescope 13.72 meters above ground.

Objects observed.

Mount Marshall
Bull Run
Maryland Heights
Sugar Loaf
Stabler
Causten
Hill

Results of local adjustment.	Correction from fgure ndjust- ment.	Final seconds.	
0	,	$\prime \prime$	$\prime \prime$

Probable error of a single observation of a direction (D. and R.) , $e_{1}= \pm I^{\prime \prime} \cdot$ o2. Number of positions of circle, VII.

Sugar Loaf, Frederick County, Maryland. August 18 to November 19, 1879. 50^{cm} direction theorlolite No. II3. C. O. Boutelle, F. D. Granger, and J. B. Boutelle, observers.

Reference Mark
Rull Kun
Mount Marshall

0	00	$00 \cdot 00$		
45	27	1579	+0.72	16.51
65	36	$50 \cdot 72$	$-0 \cdot 11$	$50 \cdot 61$
120.	27	$54 \cdot 38$	+0.10	$54 \cdot 48$
306	43	36 '06	-0.46	$35 \cdot 60$
325	05'		$39^{\circ} 25$
352	26	27*18	-0.26	$26 \cdot 92$

Probable error of a single observation of a direction ($/$). and R.), $e_{\mathrm{x}}= \pm 0^{\prime \prime} 60$. Number of positions of circle, XI.

Mounl Marshall, Rappahannock County, Virginia. July 18 to September 7, 1874. 35^{cm} direction theodolite No. so. A. T. Mosman, observer.

Fork	O	00	$00 \% 0$		
Maryland Heights	184	15	$49{ }^{56}$	-0.26	$49^{\prime \prime} 30$
Sugar Loaf	202	41	$37{ }^{\circ} 50$	+0.36	37 '86
Bull Kun	225	17	$06 \cdot 78$	+0.19	06 '97
l'each Grove	229	31	$29^{\circ} 99$	-0.28	2971
Clark	311	50	$33 \cdot 98$. . .	
Peters	336	20	$36^{*} 44$		

Prohable error of a single observation of a direction (D. and R.), $e_{3}= \pm 1^{\prime \prime} 29$. Number of positions of circle, XI.

$$
\text { 4192-No. } 7-02-5
$$

Abstracts of resulting horizontal directions observed and adjusted at stations forming the extension of the Kent Island base net to the westward and sonthward-continuel.

Bull Run, Fauquier County, Virginia. September 22 to November $2 S, 1871 . \quad 75^{\mathrm{cm}}$ direction theodolite No. I. C. O. Boutelle, observer.

Objects observed.
$\left.\begin{array}{cccc}\begin{array}{c}\text { Kesults of local } \\ \text { adjustment. }\end{array} & \begin{array}{c}\text { Correction from } \\ \text { figure adjust- } \\ \text { ment. }\end{array} & \begin{array}{c}\text { Final } \\ \text { seconds. }\end{array} \\ 0 & , & \prime \prime & \ldots\end{array}\right]$

Probable error of a single observation of a direction (D. and R.) , $e_{\mathrm{x}}= \pm \mathrm{I}^{\prime \prime}$ og. Number of positions of circle, VII.

Marytand Heights, Washington County, Maryland. September 16 to October 28, 1870. 75^{cm} direction theodolite No. I. C. O. Boutelle, observer.

Sugar Loaf	-	0	00	$00 \cdot 00$	-0.18	$\overline{59.32}$
Azinntlı Mark		0	57	$03 \cdot 66$		
Stabler		3	33	$53^{*} 3^{2}$	-0.2. 4	$53 \cdot 08$
Peaclı Grove	-	30	31	14.53	+0.84	15.37
Bull Run		71	25	$27^{\cdot 26}$	-0.50	$25 \cdot 76$
Mount Marshall		106	43	12.67	+0.08	$12 \cdot 75$

Probable error of a single observation of a direction (D. and R.), $\epsilon_{\mathrm{I}}= \pm 0^{\prime \prime} \cdot 93$. Number of positions of circle, VII.

Ctark, Orange County, Virginia. July 24 to September 5, í $871 . \quad 75^{\mathrm{cm}}$ direction theodolite No. I. C. O. Boutelle, observer.

	-	,	/1	"	11
Spear	0	∞	$\infty{ }^{\circ} \times 0$	-0.12	59.88
Peters	11	21	$47^{\circ} 00$		
Humpback	24	09	$37 \cdot 37$	-1.35	$36^{\circ} \mathrm{O} 2$
Azinuth Mark	55	29	$20 \cdot 96$		
Fork:	78	26	$10 \cdot 17$	+0.97	11'14
Mount Marshall	122	25	$05{ }^{12}$	+o.02	$05 \cdot 14$
Bull Run	163	19	$47^{\circ} 57$	+o.48	$48 \cdot 05$

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 1{ }^{\circ} 0_{3}$. Number of positions of circle, V11.

Abstracts of resutting horizontat directions observed and adjusted at stations forming the extension of the Kent Istand base net to the westward and southward-continued.
Fork, Madison County, Virginia. October 12 to December 24, 1874 . 35^{cnn} direction theodolite No. 10 . A. T. Mosman, observer. July iS to August 6 , r879. 50^{cm} direction theodolite No. 114. Saure observer.

Objects observed.

Peaked

Slate Springs
Mount Marsnall
Bull Run
Clark
Peters
Spear .
Humpback
Elliott Knob

Results of local adjustment.			Correction from figure adjnstment.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	,	"	"	/1
0	OO	(00 ${ }^{\circ}(0)$		
20	16	00.96	+0.98	ol ${ }^{\prime} 94$
${ }^{1} 36$	25	13.62	+o. 39	14 Or
161	06	$37 \cdot 64$	-I OI	$36 \cdot 63$
224	16	$58 \cdot 68$	-0.86	57.82
270	56	24.51		
303	52	$39^{\circ} 51$	-0.10	$39^{\circ} 41$
322	58	$40 \cdot 96$	-0.20	$40 \cdot 76$
353	33	$11^{1} 50$	+o 80	1230

Probable error of a single observation of a direction (I. and k.) , $e_{i}= \pm 1^{\prime /} \cdot 24$. Number of positions of circle, XI in $1 S_{74}$ and in $\mathrm{I}_{7} 79$.
Humpback, Nelson County, Virginia. June S to 29, IS 75.35^{cm} direction theodolite No. io. A. T. Mosman, obscrver. May 11 to June 6, 1878. 50^{mm} direction theodolite No. 114. Sanme observer. August is to 28 , 1879 . 50^{cm} direction theodolite No. 144. A. T. Mosman and W. B. Fairfield, observers.

Jarman

\circ	\prime	$\prime \prime$	$\prime \prime$
0	00	$00 \cdot 00$	\ldots
24	30	$20 \cdot 46$	$+1 \cdot 37$
31	40	$01 \cdot 24$	\ldots
126	14	$25 \cdot 02$	$+0 \cdot 44$
$154 \cdot$	41	$57 \cdot 10$	\ldots
173	06	$07 \cdot 68$	$-0 \cdot 87$
230	26	$24 \cdot 65$	$+0 \cdot 17$
265	35	$01 \cdot 13$	$-1 \cdot 03$
300	08	$53 \cdot 99$	-0.57
357	28	$32 \cdot 18$	+0.33

Clark
Peters
Spear
Long Mountain
Tobacco Row
Bald Knob
Elliott Knob
Slate Springs
Fork
$\begin{array}{llll}357 & 28 & 32 \cdot 15\end{array}$
32 51
Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{r}}= \pm 1^{\prime \prime} 43$. Number of positions of circle, XI.
Spear, Buckinghanl County, Virginia. July 30 to August 29, 1875. 35^{cm} direction theodolite No. Io.
A. T. Mosman, observer.

Willis
Long Mountain
Flat Top
Tobacco Row
Hunpback
Fork
Peters
Clark

\circ	\prime	$\prime \prime$	$\prime \prime$
0	0	$00 \cdot 00$	\ldots
113	14	$26 \cdot 50$	\ldots

Probable error of a single observation of a direction (D. and K.), $e_{\mathrm{s}}= \pm 1^{\prime \prime} \cdot 37$. Number of positions of circle, XI.

Abstrats of resntting horizontal directions observed and adjusted at the stations forming the extension of the Kent Island base net to the westavard and southeard-continued.

Tobacco Row, Amherst County, Virginia. September 14 to $23,1875.35^{\mathrm{cm}}$ direction theodolite No. 10 . A. T. Mosman, observer. September 6 to 9, 1879. 50^{cm} direction theorlolite No. 114. Same observer.
objects observed.

1Flat Top
Bald Knob
Humplack

Kesults of local
adjustuent.

adjustment.			nent.	secouds. "
-	,	"		
o	-	00 00	\ldots
54	31	49 '35	-0.65	$48 \cdot 70$
140	52	$23 \cdot 38$	+0. 86	$24^{\circ} \cdot 4$
200	19	$25^{\text {So }}$	-0.21	2 S 59
272	56	$37 \cdot 39$		
318	30	$40 \cdot 14$		
		24.62		

 ment.
...... .

Probable error of a single observation of a direction (D. and R.) $e_{1}= \pm 1^{\prime \prime} 43$. Number of positions of circle in 1875, XI.

Kesulting ingles and sides of the Kent Island base net.

No.
Stations.
1 $\left\{\begin{array}{l}\text { Taylor } \\ \text { Kent Island North Base } \\ \text { Kent Island South Base }\end{array}\right.$
$2\left\{\begin{array}{l}\text { Marriott } \\ \text { Taylor } \\ \text { Kent Island North Base }\end{array}\right.$

	56	43	96
119	32	44	32
38	30	31	55

$3\left\{\begin{array}{l}\text { Marriott } \\ \text { Taylor } \\ \text { Kent Island South Base }\end{array}\right.$
$4\left\{\begin{array}{l}\text { Marriott } \\ \text { Kent Island North Base } \\ \text { Kent Island South Base }\end{array}\right.$
$\begin{array}{lll}18 & 13 & 37\end{array} 3_{2}^{2}$
$5\left\{\begin{array}{lrrr}\text { Linsticl } & 34 & 46 & 24 \cdot 93 \\ \text { Kent Island North lBase } & 32 & 26 & 27 \cdot 42 \\ \text { Taylor } & 112 & 47 & 05 \cdot 71\end{array}\right.$
$6\left\{\begin{array}{lrrr}\text { Linstid } & 33 & 57 & 08 \cdot 85 \\ \text { Taylor } & 127 & 40 & 09 \cdot 97 \\ \text { Marriott } & 18 & 22 & +4.54 \\ 7 & 68 & 43 & 33 \cdot 68 \\ \text { Linstil } & .70 & 56 & 58 \cdot 97 \\ \text { Kent Island North Rase } \\ \text { Marriott } & 40 & 19 & 28 \cdot 50\end{array}\right.$

Correc.
tion.

s

-0.59	$5: 78$
-0.31	36.60

$-0.15 \quad 31 \cdot 86$
to "09 " 44 " 05
$+0 \cdot 17 \quad 44.49$
$+0.36 \quad 31 \cdot 91$
+0.39 21.67
$+0.76 \quad 52 \cdot 71$
$+0.03 \quad 46 \cdot 27$
+o.29 37.61
$-0.66 \quad 0470$
$-0.12 \quad 18 \cdot 13$
+1 ol 25 . S_{4}
+o. $28 \quad 27.70$
$+1.02 \quad 06 \% 73$
$-1 \cdot 25 \quad 07 \cdot 60$
$-1 \cdot 18 \quad 08 \cdot 79$
$-0.54 \quad 44.00$
$-0.24 \quad 33.44$
$+0.64 \quad 59.61 \quad 0.37$
$28 * 06$

$\begin{gathered} \text { pg. dis. } \\ \text { alices. } \end{gathered}$	Dista
$3.938 \mathrm{S97} 1$	S
143529	13916.47
816	1108707
44 S16	$11089{ }^{\circ} \mathrm{o}$
11765	${ }_{25} \mathrm{SOP} \cdot 67$
$4 \cdot 266498$	1847
4.143 5291	13916.47
328444	$21303 \cdot 16$
$4 \cdot 266498$	18471
3.938897	86
$4 \cdot 328444$	21303.
44117658	$25 \mathrm{SoS} \cdot 68$
44 S16	11 087 07
$4 \% 181982$	10 $427 \cdot 93$
4.253398	17922.48
$66+99^{8} 5$	$18471 \cdot 34$
$4 \% 17956$	$26 \quad 179.19$
4 \%18 198 2	10 427.93
117765	$25 \operatorname{Sos} \cdot 67$
44179562	$26 \quad 179.19$
-253 398	17922 .

BASE LINES AND BASE NETS.
Resulting angles and sides of the Kent Island base net-continued.

No.	Stations.	Observed angles.			Correc-	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \end{aligned}$	Spherical	Log.distances.	Distances in meters.
8		-	,	"	"	"	"		
	Webb	76	16	$06 \cdot 19$	+0.27	$06 \cdot 46$	$\bigcirc \bigcirc 33$	4417956	$26 \quad 179 \times 19$
	Linstid	66	18	$4^{2 \cdot 31}$	+0.52	$42 \cdot 83$	$\bigcirc \cdot 33$	433923247	$24678 \cdot 84$
	Marriott	37	25	11.13	+0.58	1171	0.34	4.2142040	16375 -86
9	Finlay	25	43	$36 \cdot 20$	+o.97	.37 ${ }^{17}$	0.49	4.214 2040	$16375 * 86$
	Linstid	84	OI	06.41	+o.69	$07 \cdot 10$	$0 \cdot 49$	4.5742619	$37519^{\circ}{ }^{2}$
	Webb	70	15	16.99	+0.21	17.20	0.49	$4 \% 5503163$	$35507 \cdot 19$
Io	¢ Pooles Island	79	44	$39{ }^{\prime 7} 9$	-0.64	$39^{\text {'15 }}$	- 64	$4 \cdot 5503163$	35 507 19
	Linstid	46	42	5773	-o ${ }^{\text {S }} 9$	$56 \cdot 84$	- 63	4.4194188	$26267 \cdot 50$
	Finlay	53		$27 \cdot 11$	-1 20	$25{ }^{\circ} 91$	0.63	44627164	$29021 \cdot 27$
11	Swan	56	08	57 '92	+0.74	$58 \cdot 66$	$0 \cdot 25$	4'253 398 21	17922.48
	Kent Island Nortlr Base	60	07	$41 \cdot 14$	+o.07	41.21	- 25	4*272 151	$18713 \cdot 33$
	Linstid	63	43	20.63	+o. 26	20.89	$0 \cdot 26$	4.2866889 !	19350.36
12	Swan Point	113	07	$27 \cdot 59$	-0.81	26.78	$0 \cdot 23$	44627164	$29021 \cdot 27$
	Linstid	30	30	19.24	-0.33	18.91	0.23	$4 \cdot 2046263$	16 ors 66
	Pooles Island	36	22	$15 \cdot 13$	-0.12	15 or	0.24	4.272 151	$18713 \cdot 34$
13	Osbornes Ruin	77	29	$15 \cdot 76$	-0.04	15.72	$\bigcirc \cdot 37$	44194188	26267.50
	Pooles Island	54	27	$12 \cdot 11$	1 20	10.91	$0 \cdot 36$	43402894	$21 \mathrm{S92} \cdot 20$
	Finlay	4^{8}	03	34.63	$-0 \cdot 17$	$34 \cdot 46$	$0 \cdot 36$	43013370	$20.14 \cdot 14$
14	Turkey Point	44	O1	$48 \cdot 72$	-1'09	47.63	$\bigcirc \bigcirc 39$	4 '301 3370	$20.014 \cdot 14$
	Pooles Island	54	30	$55^{\circ} \mathrm{o}$	+ I'19	$56 \cdot 19$	- 39	$4 \cdot 370$ 101 8	$23447 \cdot 78$
	Osbornes Ruin	81	27	17.53	- I_{7}	$17 \cdot 36$	0.40	4.454483	$28476 \cdot 32$

Western and southem extension of hent Island base net.

15	Hill	56	40	$32 \cdot 00$	+0.08	$32 * 8$	0.46	4*392	324	7	24	$678 \cdot 84$
	Webb	53	10	$52{ }^{\circ} \mathrm{O} 9$	$0 \cdot 00$	$52{ }^{\circ} \mathrm{O} 9$	0.46	4373	719	9	23	643 '94
	Marriott	70	os	$36 \cdot 93$	+0.29	$37^{\circ} 22$	0.47	$4 \cdot 443$	721	I	27	$779{ }^{\circ} 29$
16	Soper	39	41	37 '08	$0 \cdot 9$	36"99	0.49	4 392	324	7	24	$678 \cdot 84$
	Webb	102	15	58.28	$00^{\circ} 0$	$58 \cdot 2 S$	- 0.48	4577	012	1	37	$75^{\text {- }} 27$
	Marriott	3^{8}	02	$26 \cdot 57$	-0.38	26.19	$0 \cdot 49$	$4 \cdot 376$	775	6	23	$810: 89$
17	Soper	75	OI	$10 \% 92$	+0.32	II * 24	$0 \% 43$	$4^{\circ} 443$	721	F	27	779 -29
	Webb	49	05	06*19	$0 \cdot 00$	06.19	0.42	4.337	076	I	21	$730 \cdot 82$
	Hill	55	53	43.41	+0.43	$43: 84$	$0 \cdot 42$	4 376	775	S	23	$810 \cdot 90$
18	Soper	35	19	$33 \cdot 84$	+0.41	$34 \cdot 25$	$0 \cdot 40$	4 373	719	9	23	$643{ }^{\circ} 94$
	Marriott	32	06	$10 \cdot 36$	+0.67	11×03	0.40	4*337	076	2	21	730 :82
	Hill	112	34	1541	+0.51	$15 * 92$	0.40	$4 \cdot 577$	012	2	37	$758 \cdot 28$
19	Stabler	44	54	O3 49	-0.01	03.48	0.08	$4 \cdot 376$	775	7	23	810.90
	Webb	8	23	$06 \cdot 84$	-0 ${ }^{\circ} \mathrm{O}$	$06 \cdot 82$	$0 \cdot 08$	3.691	882	4	4	$919{ }^{\circ} 06$
	Soper	126	42			$49^{\circ} 94$	$0 \cdot 08$	$4^{\circ} 43^{2}$	017	4	27	$0.40 \cdot 67$

Wetern and southern extension of Kent Island base net-continued.

No.	Stations.	Observed angles.			Correction.	$\begin{aligned} & \text { Spher- } \\ & \text { ical- } \end{aligned}$	$\begin{aligned} & \text { Spher- } \\ & \text { ical- } \end{aligned}$	Log. distances.	Distances in meters.
20		-	,	"	"	"	"		
	Stabler	62	40	$22 \cdot 32$	-0.26	22.06	0.53	$4 \cdot 443721$	$27779 \cdot 29$
	Webb			$13{ }^{\circ} \mathrm{O}$	-0.02	$13^{\circ} \mathrm{O}$	- 54	4.4209983	$2636.3 \cdot 21$
	Hill			$26^{\circ} 62$	-0.08	$26^{\prime} 54$	- $5 \cdot 5$	44^{42} O17 4	$27040 \cdot 67$
21	Stabler	17	46	$18 \cdot 83$	-0.245	$18 \cdot 585$	0.034	$4 \cdot 3370761$	$21730 \cdot{ }^{2}$
	Soper	158				$58 \cdot 820$	- 033	$4 \cdot 4209983$	$26363 \cdot 21$
	Hill		57	$43 \cdot 21$	-0.514	$4^{2} \cdot 696$	0 -034	3.6915825	4919.06
22	Peach Grove	51	O3	O1 ${ }^{\circ} 0$	-0.08	00'92	0.62	$4 \cdot 4209983$	26363.21
	Stabler			$03 \cdot 06$	-0.13	02 '93	0.62	$4 \cdot 4826098$	30381.54
	Hill	65	16	$57 \cdot 50$	+0.50	$58 \cdot 00$	0.61	-4.488 4568	$30793 \cdot 34$
23	Sugar Loaf	18	22			03.65	0.62	44209983	26363 ²1
	Stabler			$42 \cdot 34$	+o. 73	43.07	0.61	$4778{ }^{281} 4$	$60017{ }^{\prime} 99$
	Hill		28	15 ¢03	+o.10	$15 \cdot 13$	0.62	4.5865136	$3^{8} 593 \cdot 45$
24	Sugar Loaf	45	42	$51 \cdot 12$	+o.20	$51 \cdot 32$	- '95	$4 \div 8884568$	$30793 \cdot 34$
	Stabler	70		$39 \cdot 28$	+o.85	$40 \cdot 13$	$0 \cdot 94$	$4 \cdot 6079577$	$40546{ }^{91}$
	Peach Grove		47	31×09	+o. 30	31 39	- 95	4.5865136	$3^{8} 593 \cdot 45$
25	Sugar Loaf	27	20			$47 \cdot 66$	- `95	4.4826098	$3038 \mathrm{SI} \cdot 54$
	Hill	37	48	42.47	+0.40	$42 \cdot 87$	- 95	46079578	$40546 \cdot 92$
	Peach Grove	114	50	$3^{2} 09$	+0.22	$32 \cdot 31$	- 94	$4{ }^{7} 7782814$	$60017 \cdot 99$
26	Maryland Heights	3	33	$53 \cdot{ }^{2}$	-0.059	$53 \cdot 261$	- '104	4.5865136	38593.45
	Sugar Loaf	173		18.32	+o. 562	18 -882	- •104	$48_{39} 5730$	$67697 \cdot 56$
	Stabler	2	41	47 '75	+0.419	$48 \cdot 169$	- '104	44654327	$29203 \cdot 35$
27	Maryland Heights	30	$3{ }^{1}$	$14^{\prime} 53$	+102	15.55	- 79	$4 \cdot 6079577$	$40546{ }^{\circ} 1$
	Sugar Loaf	128	OI	$27 \cdot 20$	+0.36	$27 \cdot 56$	$0 \cdot 79$	47986110	$62894 \cdot 26$
	Peacl Grove	21	27	$18 \cdot 70$	+o. 56	$19 \cdot 26$	- 79	4.4654327	$29203 \cdot 35$
28	Maryland Heights	26	57	21.21	+I 08	$22 \cdot 29$	I 63	4.4884568	$30793 \cdot 34$
	Stabler	67	47	51'53	+0.43	$51 \cdot 96$	$1 \cdot 63$	47986111	6289.928
	Peach Grove	85	14	49 '79	+o. 86	$50 \cdot 6$	1.64	4.8305730	$67 \quad 697 \cdot 56$
29	Bull Ruı	33	33	$59 \cdot 83$	-1.16	$58 \cdot 67$	1×0	4.4654327	$29203 \cdot 35$
	Maryland Heights	71	25	$27 \cdot 26$	-0.31	26.95	${ }^{1} 20$	$4 \cdot 6995517$	$50067{ }^{\circ 1}$
	Sugar Loaf	75	-	38.59	-0.62	$37 \cdot 97$	I 19	+ 7077532	51021.49
30	Bull Run	67	51	$56 \cdot 80$	-0.40	56.40	270	$4 \cdot 830573$ -	$67697 \cdot 56$
	Maryland Heights	67	$5{ }^{1}$	33 '94	-0.26	$33 \cdot 68$	271	$4{ }^{\circ} 3^{\circ} 5535$	$67694 \cdot 52$
	Stabler	44	16	$3^{8} 02$	+0.02	$38 \cdot 04$	$2 \cdot 71$	47077532	51021.49
31	Rull Run	85	09	$50 \% 70$	-0.49	$50^{\circ} \mathrm{II}$	177	4798611 o	$62894 \cdot 26$
	Maryland Heights	40	54	$12 \cdot 73$	- I'33	11.40	178	4.6162530	$41328 \cdot 82$
	Peach Grove	53		$04 \cdot 40$	-0.68	$03 \cdot 72$	$1 \cdot 78$	$4 \cdot 7077533$	$51021 \cdot 51$
32	Bull Ruis	34	17	56 97	+0.76	57×73	162	$4 \cdot 5865136$	38593.45
	Sugar Loaf	98		$39 \cdot 73$	+1.18	$40 \cdot 91$	161	$4 \cdot 8305535$	$67694 \cdot 52$
	Stabler	46	5^{8}	$25^{\circ} 77$	+0.44	$26 \cdot 21$	1.62	4.6995516	$50067{ }^{\circ} 00$

Western and southern extension of Kent Island base net-continued.

No.	Stations.	Observed angles.			Correction.	spherical	Spherical	L.og. distances.	Distances in meters.
33		-	,	"	"	"	"		
	Bull Ruir	51	35	$50 \cdot 87$	+0.68	51'55	1×37	$4 \cdot 6079577$	40546 \% ${ }^{\text {1 }}$
	Sugar Loaf	53	-	$48 \cdot 61$	+0.98	$49^{\circ} 59$	1 37	$4 \cdot 616253$ o	$41328 \cdot 82$
	Peach Grove	75	23	$23 \cdot 10$	-0.12	$22 \cdot 98$	$1 \cdot 38$	4.699 551 7	50067 Or
34	Bull Run	17	17	53 '90	-0.08	$53 \cdot 82$	0%	4.4884568	$30793 \cdot 34$
	Stabler	23		13.51	+0.41	$13{ }^{\circ} 92$	0%	46162531	$41328 \cdot 83$
	Peach Grove	139	10	$54 \cdot 19$	+0.18	$54 \cdot 37$	$0 \cdot 71$	4 '830 5536	$67694 \cdot 53$
35	Mount Marshall	18	25	4794	+0.62	$48 \cdot 56$	179	44654327	$29203 \cdot 35$
	Maryland Heights	106	43	12.67	+0.26	12.93	1 78	4.9467931	$88469{ }^{\circ} \mathrm{I}$
	Sugar Loaf	54	51	$03 \cdot 66$	+0.21	03.87	I'79	4.8781223	75 530*9
36	Mount Marshal1	41	OI	$17 \cdot 22$	+0.45	1767	188	$4 \cdot 7077532$	51 021.49
	Maryland Heights	35	17	$45 \cdot 41$	+0.57	$45{ }^{\circ} 98$	1.88	46524004	44915 '93
	Bull Run	103	41	OI 62	+o.38	02 \% 0	I 89	4.8781222	$75530 \cdot 47$
37	Mount Marslıall	45	15	$40 \cdot 43$	-0.or	$40{ }^{42}$	3'90	47986110	62894.26
	Maryland Heights	76		$58 \cdot 14$	-0.76	57×8	3'91	4.9344390	$85988 \cdot 24$
	Peach Grove	58	32	34 '06	-0.15	33.91	$3 \cdot 90$	4.8781223	75 530\%49
3^{8}	Mount Marshall	22	35	29.28	-0.17	$29^{\prime 1} 1$	$1 \cdot 29$	4.699 551 7	50.067 ºr
	Sugar Loaf	20	09	34 '93	-0.83	$34 \cdot 10$	I '29	46524005	$44915{ }^{\circ} 94$
	Bull Run	137	${ }^{15}$	OI 45	-0.78	00.67	$1{ }^{3} 0$	4.9467931	88469.41
39	Mount Marshall	26	49	52.49	-0.63	'51 ${ }^{\text {8 }}$ ($2 \cdot 91$	4.6079577	$40546{ }^{\circ} 1$
	Sugar Loaf	73	10	$23 \cdot 54$	+0.15	$23 \cdot 69$	2 '91	4.934 4391	$85988 \cdot 25$
	Peach Grove	79	59	52 76	+0.41	$53 \cdot 17$	2 '90	$4{ }^{\circ} 946793$ I	$88469{ }^{\circ} \mathrm{4}$
40	Mount Marshall	4	14	23.21	-0.468	$22 \cdot 742$	0. 242	4•616 253 o	$41328 \cdot 82$
	Bull Ruir	171	O9	$07 \cdot 68$	to.111	07 791	$0 \cdot 241$	4.9344390	$85988 \cdot 24$
	Peach Grove	4	36	$29 \cdot 66$	+o.532	30'192	$0 \cdot 242$	4.6524004	44915 93
	Clark	40	54	$42{ }^{\circ} 45$	+0.46	4291	2 \% 0	4.6524004	4.4915 '93
	Mount Marshall	86	33	$27^{\circ} \mathrm{Ol}$	-0.25	$26^{7} 76$	2 -06	4.8354471	6846161
	Bull Run	52	31	56.29	+0. 24	$56 \cdot 53$	$2{ }^{\circ} \mathrm{O}$	$4^{\prime} 7358883$	$54435 \quad 63$
42	Fork	24	41	$24^{\circ} \mathrm{O} 2$	-1.40	$22 \cdot 62$	$1{ }^{\circ} \mathrm{O}$	4.6524004	44915 '93
	Nount Marshall	134		$53{ }^{\circ} \mathrm{O} 3$	-0.19	$52 \cdot 84$	$1{ }^{\circ} \mathrm{O} 3$	$4 \cdot 8831772$	7641475
	Bull Run	20	35	$48 \cdot 13$	-0.52	4761	$1{ }^{\circ} \mathrm{O}$	4.577 810 2	37827 '72
43	Fork	87	51	$45 \circ 6$	-1'25	$43 \cdot 81$	I 29	47358833	$54435{ }^{6} 3$
	Mount Marshall	48	\bigcirc	$26^{\circ} \mathrm{O} 2$	to 05	26.07	130	4.6083270	$4058 \mathrm{I} \cdot 40$
	Clark	43	58	5495	-0.94	$54{ }^{\text {ol }}$	$1{ }^{1} 30$	4.577 810 3	$37827 \% 73$
	(Fork	63	10	21.04	+0.15	$21 \cdot 19$	$2 \cdot 34$	48354471	68461 61
	Bull Run	31	56	$08 \cdot 16$	to 76	08 92	2.34	4.6083269	40581×39
	Clark	84	53	$37 \cdot 40$	-0.48	$36^{\circ} 9$	$2 \cdot 35$	$4 \cdot 8831772$	$76414 \% 75$
45	Humpback	27		$48 \cdot 28$	$+1.04$	$49^{\prime 3}$	$2 \cdot 46$	4 -608 3269	40581 '39
	Fork			$42 \cdot 28$	+o.67	$42 \cdot 95$	2.47	4.945819 I	$88271 \cdot 22$
		54		$32 \cdot$ So	$+232$	$35^{\prime} 12$	$2 \cdot 46$	$4 \cdot 8603074$	$72494 \cdot 89$

W'estern and southern extension of Kent Istand base net-continued.

No.	Stations.	observed angles.			Correction. $1 /$	spherical angles. "	Spher. ical excess. //	Log. dis. tances.	Distances in nineters.
		-	,	11					
46	Spear	32	08	$11 \cdot 61$	+0.49	12'10	2.13	4.8603074	$72491 \cdot 89$
	Huurpback			$52 \cdot 84$	+0.11	52'95	$2 \cdot 14$	$5 \cdot 0263955$	$106266 \cdot 29$
	Fork	19	06	Or 45	$\cdots 0 \cdot 10$	ol '35	2.13	$4 \cdot 6.992 S_{3} 4$	$44594 \cdot 71$
47	Spear	54	06	29.41	+0.61	$30 \cdot 02$	$3 \cdot 26$	4.945 8191	$88 \quad 271{ }^{\prime 2}$
	Humpback	101		$04 \cdot 56$	-0.93	$03 \cdot 63$	3 27	$5{ }^{\circ} \mathrm{O} 2 \mathrm{~S} 0999$	$10668+15$
	Clark	24		$37 \cdot 37$	-1.23	$36 \cdot 14$	$3 \cdot 26$	$4.649 \quad 2834$	$44594^{\circ} 71$
4^{8}	Spear	21	5^{8}	17 So	+0.12	$17^{\circ} 92$	3'59	$4 \cdot 6083269$	40 5S1 39
	Fork	79	35	$40 \cdot \mathrm{~S}_{3}$	+0.77	41.60	$3 \cdot 59$	5.028 1000	$106684 \cdot 17$
	Clark	78	26	$10 \cdot 17$	+1.0s	11.25	3'59	5'026 3955	$106266{ }^{\circ} 29$
	Tobacco Row	59	27	05.42	-1 08	0434	$1 \cdot 37$	4.6492834	$44594^{\circ} 71$
	Humpback		51	$42 \cdot 66$	-1.31	41.35	$1 \cdot 37$	45773262	$37785 \cdot 59$
	Spear	73	41	19.08	-0.66	1S:42	$1 \cdot 37$	4.6963395	$49698 \cdot 07$

Determination of the probable error of the length of the sides Osbornes Ruin to Turkey Point, and Tobacco Roa' to Spear.

In connection with the Kent Island base net the probable error of the side Linstid to Finlay was rigorously computed, and was found to be ± 0.33 meters; whiclı equals T07 ${ }^{1}$ 勿 part of the length of the side. There are three triangles between this side and the side Osbornes Ruin to Turkey Point; but, instead of computing the additional probable error arising from their measure separately, it will suffice, when estimating the probable error of the chain of triangles between the Fire Island and Kent Island bases to include these three triangles as part of the chain; otherwise, the probable error of the

For the extension sonthward the probable error of the side Webb to Marriott was rigorously computed and found to equal ± 0.22 meters, which is about $\frac{1 \pi}{1 \frac{1}{2} \bar{\sigma} \overline{0}}$ part of the length. For that part of the triangulation lying between Webb to Marriott and Fork to Clark the probable error was found to be $10 \bar{\sigma}^{1}{ }^{1} 0 \overline{0}$ part of the length, and the same fraction may be used for the extension thence to the line Tobacco Row to Spear.

Descriptions of the base-net stations are given in the acconnt of the Transconti${ }_{n}$ ental Triangulation, etc., Special Publieation No. 4, Washington, 1900.

> 5. TIE ATLANTA BASE AND BASE NET, GEORGIA, IS72-73.

Location, measurement, and resulting length of the Atlanta base line, r872-73.
'Yhe Atlanta base is located on Peach Tree Ridge, Georgia, about 24 kilometers (or 15 statute 111iles) northeast of the city of Atlanta. It is the serenth and last base measured with the Bacho-Wïrdemann apparatus, and is the only one measured with it more than once. It is $91 / 3$ kilometers (or 5.8 I statute miles) in lengtl and was measured three times. There is a very full description of the operations in Coast Survey Report for $\mathbf{1 8 7 3}$, Appendix No. 12, pages 123-131, and the description of the apparatus
is given in Coast Survey Report for 1854, Appendix No. 35, and in Coast Survey Report for 1873, Appendix No. 12. Further remarks will be found in the account of the Dauphin Island and the Epping bases in this publication. It will also appear from the seven values collected on page I3I of the Report for 1873 that the average accuracy reached with this apparatus is about $\overline{\sigma \pi} \frac{1}{0} \overline{0} \bar{\sigma}$ part of the length measured. In view of the complete publication already made, it will suffice to give the present account in an abbreviated form.

The unddle point of the base is in latitude $33^{\circ} 54^{\prime \prime} 4$ and longitude $84^{\circ} 16^{\prime}{ }^{\circ}$, with a mean azimuth $52^{\circ} 08^{\prime} \cdot 2$. The measurements were made by Assistant C. O. Boutelle. The first and second measures were made in opposite directions in November and December, 1872, and in January, 1873, and the third was made in July and August, 1873. The three measures were accomplished in 17,13 , and 14 working days, respectively. In comection with these several measures the tubes* were frequently compared for length with the standard bar, which was inmersed in glycerin during the July and September comparisons.

The summit of the ridge is narrow and crooked, but the slope of the measurement was confined within the maximum inclination the tubes would bear, namely, 5°. A gulch near the sonthwest end was crossed on trestlework consisting of two separate structures. The appioximate elevation above sea level is 320 meters. The terminals are marked by granite monmments and the subdivisions of the line by small granite posts.

The length of the 6-meter standard bar is $5^{\mathrm{m}} 999941$ at $0^{\circ} \mathrm{C}$., and its coefficient of

$$
\pm 2
$$

expansion o.OOO OI 154 . The numerous comparisons made for standardization of the士 4
tubes and for testing their compensation showed that the latter was still close; that is, about 21 parts of 22 remained compensated between the range of temperature o° to $22^{\circ} \mathrm{C}$. , but between the temperatures fron 22° to $3^{\circ} \mathrm{C}$. the tubes compensated only about 10 parts in II. The comparisons were made with the Saxton reflecting comparator No. i, for which we have for the period November, 1872, to Jantary, 1873, one division at $4^{1 / 2^{\circ}} \mathrm{C}$. equal $1 \cdot 384$ microns and at $19^{\circ} \mathrm{C}$. $I^{\circ} 37^{8}$ microns, values answering for the case

$$
\pm 3
$$

$$
\pm 3
$$

of the first and second base measures In connection with the third measure, observations in July and September, 1873, gave I div. $=1 \cdot 376 \mu$. We have also 1 turn of the screw at the temperatures $4^{\circ}, 19^{\circ}$, and $28^{\circ} \mathrm{C}$. equal to $35^{\circ} 9,35^{\circ} 3$, and 353° o6 scale ± 18
divisions, respectively.
As the result from the above comparisons we have the following values for the length of the tubes, in which the uncertainty from the length of the standard is included:

* Before making the comparisons tube No. : was supplied with a new agate. The Borda scale or differeutiai thermometer as applied to the tubes is shown on plate No. 18 in the Coast survey Report for 1573 .

The mininum temperature at which the tubes were used was $-7^{\circ} \cdot 7 \mathrm{C}$., and many were laid with temperatures below the freezing point; the maximum temperature at which the tubes were used was $4 \mathrm{I}^{\circ} 7 \mathrm{C}$., and many were laid with temperatures above $38^{\circ} \mathrm{C}$. The three thermometers attached to each tube were read and the mean values were corrected for graduation errors. The maximum inclination of a tube laid was $4^{\circ} 7$, and there were a great many with inclinations of 4°. The ruggedness of the ground caused the sum of the inclination corrections for the whole base to mount up to $10^{\text {m" }} 2212$ in the first and to $10^{\mathrm{m} \cdot} \cdot 375$ in the last measure. Fractional parts of a tube at the base monuments and intermediate marks were measured with the brass Lenoir meter of the Survey, which is of standard lengtl at $13^{\circ} 6 \mathrm{C}$.

The following table shows the temperature of the tubes during the measures of the several parts of the base, their lengths as measured, corrected for inclination, but not reduced to sea level, and exhibits the difference of the individual measures from the mean of the three measures:

Subdivisions of base.	Temperatures.			Resulting leugth.			Mean.	Discrepaucies.		
	First measure	$\begin{array}{r} \text { Second } \\ \text { measure } \end{array}$	Third measure.	First measure.	Second. ineasure.	Third measure.		First measure	second measire	Third measure
	c. 0	C. "	c. -					$m m$.	$m m$.	mm.
SW to 1	15.13	5\%2	34×33	16359749	$1635 \% 680$	1635 "9664	$1635{ }^{\circ} 9698$	$-5^{\circ} 1$	+1-8	$+3.4$
I to II	5 '10	9.44	33.94	1 $642^{\prime} 3136$	1642.3173	1642×3125	$1642{ }^{\prime} 3144$	+0.8	-2.9	$+19$
II to M	6.84	4.28	$32 \cdot 56$	$1234{ }^{\prime} 3833$	$1234 \cdot 3880$	1234.3918	12343877	$+4.4$	-0.3	$-4 \cdot 1$
M to IV	11.06	2.97	32.03	1348.8862	$1348 \cdot 8806$	I 3488885 I	$1348 \cdot 8840$	$-2 \cdot 2$	$+3.4$	
IV to V	$14^{\circ} \mathrm{O}$	$5 \cdot 57$	31.96	${ }^{1} 785 \% 7090$	$1785 \% 048$	$1785{ }^{\circ} 705$	1785.7063	$-2 \cdot 7$	+I'5	$+1.1$
V to NE:	11.31	12.92	30.74	1691.6920	1691.6925	$1691 \cdot 6815$	$1691 \cdot 6887$	$-3 \cdot 3$	$-3 \cdot 8$	$+7^{\circ}$
Whole base	$10 \cdot 58$	6 \%o	32.59	9338.9590	$9338 \cdot 9512$	9338.9425	$9333^{\prime \prime} 9509$			

The frequent changes of sign in the above discrepancies may be taken as a favorable indication that the lengths of the tubes were correctly determined. In order to obtain the data required to reduce each part of the base to sea level, two lines of spirit levels were carried over it, double zenith distances of Stone Mountain were measured for difference of heiglit at Southwest Base, Middle Base, and Northeast Base, and reciprocal observations were made at Stone Mountain. A line of spirit levels was carried from Stone Mountain, in 1873^{-74}, to Augusta, Georgia; between this place and Port Royal the railroad levels were utilized, and the elevations refer to Atlantic half tide at Beaufort, South Carolina. The resulting height of Stone Mountain is $513^{\prime \prime \prime} 95$, and allowing ${ }^{\mathrm{mm}} 52$ for the elevation of the tubes above the ground, the average elevation of the tubes above the half-tide level becomes $322^{1 \mathrm{~mm}} 5$, and the reduction of the base to sea level $-\frac{h l}{\rho}=-0^{\mathrm{mm}} 4710$. Whence we get for the lengtl of the base the values

$$
\left.\begin{array}{r}
9338^{\mathrm{m} \cdot} 4880 \\
4802 \\
4715
\end{array}\right\} \text { mean } 9338.4799 \text { meters. }
$$

Combining the mean of the two winter measures with the value of the summer measure, we get 9338.4778 meters. We have also the distance Southwest Base to Middle Base $+5{ }^{12^{m}} 447$, and from Middle Base to Northwest Base 4826.032 meters. The horizontal angles measured at these three base stations and at Stone Mountain
afford a check on the measure. Starting with the first or shorter distance and using the adjusted angular measures, the length of the base thus trigonometrically deduced comes out $9338^{\mathrm{m}} \cdot 502$, or 22^{mm} in excess of the direct linear measure.

For the probable error of the measure of the base we have the following data: Probable error from uncertainty in length of tubes in 1556 tubes, $1556 \times 14^{\circ} \mathrm{o} \mu=$ $\pm \mathrm{o}^{\mathrm{m} \cdot 02 \mathrm{I}} \mathrm{7}^{2}$. For mere measuring error we have, after forming the values $\Sigma \delta_{1}^{2}, \Sigma \delta_{2}{ }^{2}$, $\Sigma \delta_{3}^{2}$, etc., where the δ 's are taken from the preceding table of differences from the mean of three measures, assumed of equal weight, the probable error of the base from these measures $= \pm 0.674\binom{\sum \delta_{1}^{2}+\sum \delta_{2}^{2}+\sum^{2} \delta_{3}^{2}+\cdots}{n(n-1)}^{1 / 2}$ where $n=3$, hence the result $= \pm 0^{\mathrm{m} \cdot 003} 85$, which includes errors arising from defective compensation, errors of contact, of transfer to ground or to monuments, of alignment and inclination, etc.

Supposing an uncertainty in h of 1 meter, the reduction to sea level changes $\pm \mathrm{I}^{\mathrm{mm}} 46$.

Combining the values we get the probable error of the base

$$
\sqrt{(21 \cdot 78)^{2}+(3 \cdot 85)^{2}+(1 \cdot 46)^{2}}= \pm 22^{\mathrm{mm} \cdot 2,}
$$

The resulting length of the base is $9338^{\circ} 4778$ meters, and its logarithm $3^{\circ} 97027609$ ± 222 ± 103

Adjustment of the Atlanta base net.

The base is connected with the principal triangulation by a rather complex system of triangles, which made the placing of the boundary of the net to some extent an arbitrary act, except in so far as the labor involved set a limit to it. The net as it had been selected and adjusted in 1876 is here retained as satisfactory. The only change that could be made would be the introduction of the small corrections to the horizontal directions for height of object observed upon, which it was not customary to introduce at that time.

The heights of the 10 stations involved are as follows:
Approximate heights of stations above the Allantic Ocean.

	Meters.	Feet.
Atlanta Southwest Base	3180°	I 045
Atlanta Northeast Base	326	I 070
Atlanta Middle Base	$3^{2} 5$	I 068
Stone Mountain*	514	I 686
Acadeny	346	1136
Kenesaw	551	I 809
Sweat Mountain	516	I 694
Sawnee	600	I 967
Pine Log	713	2340
Grassy	1003	3290

This reduction of the directions to sea level, a maximum in the case of line Pine Log to Grassy, is less than $\mathrm{o}^{\prime \prime} \circ 0$, and in general it is less than one-half of this annount. It is therefore fully covered by the observing error of the directions which on the arerage amounts to $\frac{14^{\circ} 4}{77}$ or $0^{\prime \prime}$ 19; besides, a number of directions require corrections in the figure adjustment of more than $1^{\prime \prime}$.

As shown in the diagram, the net comprises io stations which were occupied between 1872 and 1874; two observers were engaged in the work and three different instruments were employed, one being a
 repeating theodolite. The adjustment of the observations of directions at a station was made by Bessel's method, and the results are presented in the abstracts, where, for convenience, the resulting corrections due to the figure or net adjust ment have been added. The latter computation involsed 29 conditions which had to be satisfied. Here weights to the directions were introduced, depending upon the same principle as explained in the case of the adjustment of the Epping base net. In accordance with the method of application of weights to the directions in a net adjustment, we derive the mean error of a triangle from the sum of the squares of the closing errors of the 30 triangles involved and find $\sqrt{\frac{91 \cdot 1}{30}}= \pm 1^{\prime \prime} \cdot 74$; hence also the probable error of a direc- tion, $0.674 \sqrt{\frac{91^{\circ} 1}{180}}= \pm 0^{\prime \prime} 48$. Further we have the average value of the probable error of a direction derived from the measures and given in colunn 4 of the abstracts of directions $= \pm 0^{\prime \prime} \cdot 19$, whence the square of the triangle combination error $\varepsilon_{c}^{2}=\left(0^{\prime \prime} \cdot 48\right)^{2}-\left(0^{\prime \prime} \cdot 19\right)^{2}=0^{\prime \prime} \cdot 20$ nearly. This value was added as a constant to each previously deduced square of the observing error; hence $\varepsilon^{2}=\varepsilon_{1}^{2}+\varepsilon_{\mathrm{c}}{ }^{2}$ and the weight of each direction, $p=\frac{1}{\varepsilon^{2}}$. The reciprocals of these values after division by 0.22 for the sake of convenience arc tabulated further ou.

Abstracts of horizontal directions at stations forming the Atlanta base net, 1873-1874.
Atlanta Middle Base,* De Kalb County, Georgia. January in to 30, 1873. C. O. Boutelle, observer. 75^{cm} direction theodolite No. 1. Circle used in VII positions.

Number of
directions.

2	Atlanta Northeast Base
3	Stone Mountain
1	Atlanta Southwest Base

Resulting direc- tions from station adjustment.
0

Approximate
probable
error.

$1 /$
± 0.12
0.14
0.12

Final seconds. from figure adjustment.
-0.078
$\frac{11}{59.922}$
$+0 \cdot 193$
23.574
59.922

Mean correction 0 '000
Probable error of a single observation of a direction (D. and R.), $\varepsilon_{2}= \pm \mathrm{o}^{\prime \prime} \cdot 75$.
Atlanta Southruest Base, De Kalb County, Georgia. February to to 22, 1873. C. O. Boutelle, observer. Instrument as before. Circle used in VII positions.

5	Kenesaw	o	OO	00×00	$\pm 0 \cdot 15$	+0.026	-0 ${ }^{\circ} \mathrm{O} 26$
6	Sweat Mountain	34	24	$39^{\circ} 322$	O. 14	-0.130	39*192
4	Atlanta Middle Base and North-- east Base	118	38	$10 \cdot 842$	$0 \cdot 12$	-0'114	$10 \cdot 728$
7	Stone Mountain	184	22	$33 \cdot 046$	O'11	+0.219	$33 \cdot 265$
	Atlanta, City Hall spire		16	31.46	\ldots		
	Atlanta, Capitol flagstaff	273	14	57 8			

Mean correction 0.000
Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{r}}= \pm \mathrm{o}^{\prime \prime} 68$.
Allanta Northeast Base, Gwinnett County, Georgia. February 27 to March 21, 1873. Observer and instrument as before. Circle used in VII positions.

12	Stone Mountain	0	OO	$00 \cdot 00$	$\pm 0 \cdot 15$	+0.082	$00 \cdot 082$
8	Atlanta Middle west Base	82	49	01328	0.13	+0.371	$01 \cdot 699$
9	Kenesaw	129	23	28.311,	0.14	+0.904	29.215
10	Sweat Monntain	156	57	$34 \cdot 651$	$0 \cdot 15$	+0.070	34^{721}
11	Sawnee	222	15	$52 \cdot 840$	- 17	-0.601	52.239
13	Academy	293	13	58.560	- 16	--0.826	57 734

Mean correction 0.000
Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 0^{\prime \prime} .90$.
*This station was occupied eccentrically om"o423 off the line connecting Northeast Base and southwest Base and the above directions are reduced to the line.

Abstracts of horizontal directions at stations forming the Allanta base net, 1873-1874-continued.
K'nesanc', Cobb County, Georgia. June 25 to July 18, i873. F. P. Webber, observer. Instrument as before. Circle used in VII positions.

Ninmber of directions.	Objects observed.	Kesulting directions from station adjustment.			Approximate proballe error.	Correction fromt figure adjustrueut.	Final seconds
		-	,	"	"	"	"
16	Sweat Mountain	0	00	$00 \cdot 000$	± 0.20	+o.049	00×49
17	Sawnee	4	36	07.630	$0 \cdot 20$	+0.110	07740
15	Atlanta Northeast Base	50	03	$37 \cdot 342$	-. 28	+0.226	$37 \cdot 568$
14	Atlanta Southwest Base	64	50	59.613	$0 \cdot 27$	+0.290	59 903
IS	Stone Mountain	66	3^{5}	II 903	0. 24	-1 056	$10 \cdot 8.47$
	Carnes	224	20	$15 \cdot 036$	-. 36		$15 \cdot 063$
	Lavender	252	07	$00 \cdot 675$	-. 54		00•702
19	Pine Log	303	37	2I 586	0.41	+o. 543	22.129

Probable error of a single observation of a direction (I. and R_{0}), $e_{1}= \pm 1^{\prime \prime} 8_{1}$.
Sweal Mounlain, Cobb County, Georgia. September 10 to October 3, 1873. F. P. Webber, observer
Instrument as before. Circle used in VII positions.

		-	,	11	//	11	"
22	Kenesaw	\bigcirc	00	$00 \cdot 000$	$\pm 0 \cdot 11$	to 016	00 016
	Carnes	32	34	$43 \cdot 053$	0.26		
26	Pine Log	100	54	55 •825	0.21	-0.273	$55 \cdot 552$
25	Grassy	145	16	24 . 035	- 1.18	+0.529	$24 \cdot 564$
23	Sawnee	186	42	$56 \cdot 639$	$0 \cdot 21$	+0.669	57.30 S
27	Acadenı	236	54	$39 \cdot 846$	$0 \cdot 27$	$-1 \cdot 131$	$3^{8 \cdot 715}$
21	Atlanta Northeast Base	257	37	$42 \cdot 923$	0. 25	-0.835	42 '0S8
24	Stone Mountain	266	39	06.616	0.19	+o.916	07.532
20	Atlanta Southwest Base	279	15	$3^{8 \cdot 289}$	$0 \cdot 15$	-0.183	$3 \mathrm{~S} \cdot 106$
Mean correction -0.036							

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{z}}= \pm \mathrm{I}^{\prime \prime} \cdot 25$.
Stone Mountain, De Kalb County, Georgia. December II to December 20, 1873. C. O. Boutelle, observer. 50^{cnn} direction theodolite No. 3. Circle used in XI positions.

		\bigcirc	,	"	/	11	"
	Spire near flagstaff	0	00	$00 \cdot 000$	± 0.23	
3 S	Kenesaw	40	54	$49^{\circ} 578$	- $\cdot 26$	-0.375	$49^{\circ} 203$
36	Atlanta Southwest Base	43	32	11.836	- 19	-0.245	11.591
35	Atlanta Middle Base*	58	02	13 ${ }^{204}$	- 17	-0.314	$12 \cdot 890$
39	Sweat Monntain	60	57	$46 \cdot 579$	-. 24	+o.915	$47 \cdot 494$
37	Atlanta Nortleast Base	74	58	$48 \cdot 469$	- $\cdot 10$	-0.649	$47 \cdot 820$
40	Sawnee	103	57	$45 \% 10$	- 14	+0.627	$46 \cdot 037$
41	Academy	145	43	17.505	0.20	+0.119	$17^{\circ} 62.4$
	Alcova	207	54	$55 \cdot 333$	$0 \cdot 21$		-
					11 corre	+0.011	

Probable error of a single observation of a direction (1). and R_{0}), $e_{1}= \pm 1^{1 / 1} 14$.

* Kesult reduced to Middle Base in line, reduction $=-0^{\prime \prime \prime} 092$.

Abstracts of horizontat directions at stations forming the Attanta base net, 1873-1874-continued.
Sazunee, Forsyth County, Georgia. October 7 to November i2, 1873 . C. O. Boutelle, observer. 75^{cm} direction theodolite No. 1. November 26 to December 4, 1873. Same observer. 50^{cm} direction theodolite No. 3. Circle used in VII and IV positions, respectively.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approximate probable ertor.	Correctiou from figure adjustuent. adjustment	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	"	"	/,	/,
	Azimuth Mark	-	¢	00 000	$\pm 0 \cdot 09$	\ldots	
	Alcova	5	59	$50 \cdot 203$	0.24	-....	
34	Academy	13	35	48•306	- 26	+o. 847	$49 \cdot 153$
31	Stone Mountain	38	56	35'773	0.23	+1311	$37 \cdot 084$
28	Atlanta Northeast Base	52	13	32'259	0.21	-0.274	31.985
29	Kenesaw	93	53	$42 \cdot 795$	0.25	-0.856	41939
30	Sweat Mountain	96	-	32 '086	0.22	-0.396	31.690
33	Pine Log	142	50	$58 \cdot 425$	$0 \cdot 17$	-0.353	58.072
32	Grassy	191	04	$26 \cdot 154$	0.22	-0. 244	25 910
	Blood	240	44	00 ${ }^{564}$	- 24	
	Yonah	263	II	38.044	- 31	
	Skitt	273	57	$55 * 373$	$\bigcirc \cdot 32$	
	Currahee	286	09	07 ${ }^{2} 228$	-. 22	\ldots	
					ean correctio	+o 0 or	

Ninety-two series were measured with theodolite No. I, and 40 with theodolite No. 3 .
Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 1^{\prime \prime} i_{34}$.
Grassy, Pickens County, Georgia. July I_{3} to 31 , 1874. C. O. Boutelle, observer. 50^{cm} direction theodolite No. 3. Circle used in XI positions.

		-	,	"	"	"	"
44	Sawnee	-	∞	00 '000	0.07	+0.228	00.228
43	Sweat Mountain	43	29	35 '631	- $\cdot 16$	+o. 299	35.930
42	Kenesaw	51	39	$33 * 335$	- $\cdot 23$	-1.408	31 ${ }^{\text {927 }}$
45	Pine Log	86	4I	$37^{\circ} \mathrm{O}{ }^{1}$	-.13	+o.753	$37{ }^{\prime} 7^{8} 4$
	Johns	31	59	17.050	0.26	\ldots	
	Cohutta	183	15	38.960	-. 18	
	Blood	261	37	28.061	- ${ }^{1} 5$		
	Skitt	297	:3	10.620	- $\cdot 16$		

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm 0^{\prime \prime} 91$.

Abstracts of horizontal directions at stutions forming the Allanta base net, 1873-1874-continued.
Pine Lo.g, Bartow County, Georgia. July 29 to September 17, 1874. F. P. Welbher, observer. $3^{0^{\text {cun }}}$ repeating theodolite No. 32 .

Number of
directions.
Objects observed.

Carnes
Indian
Coosa
Lavender
Gulf
Jolns
Cohutta
Grassy
Sawnee
Sweat Mountain
Kenesaw
Lost Mountain
Pine Mountain

Kesulting directions from station adjustment.			Approximate probabl error	Correction froint figure adjustment.	$\begin{aligned} & \text { Hinal } \\ & \text { seconds } \end{aligned}$
。	,	"	/	"	"
0	¢	00000	$\pm 0 \cdot 10$	
22	30	$38 \cdot 597$	0.13	\ldots, \cdot	
36	17	$34 \cdot 507$	0.12	
46	28	$35 \cdot 508$	- 08	\ldots	
70	19	$50 \cdot 280$	-. 12	
84	39	$43 \cdot 143$	0.12	. .	
141	29	$12 \cdot 849$	$0 \cdot 14$	\ldots	
193	10	40 *009	$0 \cdot 13$	0.600	$39^{\circ} 409$
238	${ }^{1} 5$	$36 \cdot 125$	$0 \cdot 11$	+o.598	$36 \cdot 723$
285	37	11.880	$0 \cdot 12$	-0. $5 \downarrow 1$	11.339
308	19	$38 \cdot 586$	- ${ }^{10}$	to 542	$39 \cdot 128$
323	. 54	$52{ }^{\circ} 71$	0.15		
347	59	$11: 443$	0.14	

Observations made in sets of $3 D$. and $3 R$. measures.
Probable error of a single observation of a direction (6 repetitions), $e_{1}= \pm 1^{\prime \prime}{ }^{2} 23$.
Academy, Gwinnett County, Georgia. December 4 to 10, 1874. C. O. Boutelle, observer. 50^{cm} direction theodolite No. 3. Circle used in XI positions.

Probable error of a single olservation of a direction (1). and R. .), $c_{1}= \pm 0^{\prime \prime} 95$.

ATI,ANTA BASF NET ADJUSTMFNT.
 Obseration equations.

I	$0=+0.037-(2)+(1)$
II	$0=-0.225-(2)+(3)-(35)+(37)-(12)+(8)$
III	$0=-0.219-(4)+(7)-(36)+(37)-(12)+(8)$
IV	$0=-0.411-(6)-(7)-(36)+(39)-(24)+(20)$
V	$0=-0.367-(6)+(4)-(8)+(10)-(21)+(20)$
VI	$0=+1.410-(14)-(18)-(38)+(36)-(7)+(5)$
VII	$0=+0.733-(15)+(18)-(38)+(37)-(12)+(9)$
VIII	$0=-0.284-(5)+(6)-(20)+(22)-(16)+(14)$
IX	$0=+2.497-(10)+(13)-(50)+(51)-(27)+(21)$
X	$0=-4.228-(37)+(41)-(53)+(50)-(13)+(12)$

Observalion equations-continued.

XI	$0=+2.33 \mathrm{I}-\left(3^{8}\right)+(40)-(31)+(29)-(17)+(18)$
XII	$0=+1 \cdot 971-(9)+(11)-(28)+(29)-$ (17) $+(15)$
XIII	$0=+4351-(11)+(13)-(50)+(52)-(34)+(28)$
XIV	$0=+2 \cdot 296-(10)+(11)-(28)+(30)-(23)+(21)$
XV	$0=+0 \cdot 154-(48)+(47)-(26)+(23)-(30)+(33)$
XVI	$0=-1 \cdot 3_{31}-(33)+(32)-(44)+(45)-(49)+(48)$
XVII	$0=-1 \cdot 313-(26)+(25)-(43)+(45)-(49)+(47)$
XVIII	$0=-0 \cdot 301-(22)+(26)-(47)+(46)-(19)+(16)$
XIX	$0=+0.152-0.095(4)+0.095(7)-0.026(8)+0.026(12)-1.505(35)+0.814(36)+0.691(37)$
XX	$\begin{aligned} 0= & +3 \cdot 124-0.116(4)+0.021(6)+0.095(7)+0.531(20)+0.795(21)-1 \cdot 326(24)+0.344(36) \\ & +0.499(37)-0.843(39) \end{aligned}$
XXI	$\begin{aligned} 0= & +9 \cdot 94^{2}-0 \cdot 226(8)+0 \cdot 199(9)+0 \cdot 027(12)-7 \cdot 676(14)+0 \cdot 798(15)+6 \cdot 878(18) \\ & -4.941(36)+0 \cdot 344(37)+4.596(38) \end{aligned}$
XXII	$\begin{aligned} 0= & +0.436+0 \cdot 140(8)-0 \cdot 199(9)+0.060(10)+0.699(14)-0.798(15)+0.099(16) \\ & -0.565(20)+0.53 \mathrm{I}(21)+0.034(22) \end{aligned}$
XXIII	$\begin{aligned} 0= & +2 \cdot 004+1.883(21)-1 \cdot 326(24)-0.557(27)+0.917(37)-0.843(39)-0.074(4 \mathrm{I}) \\ & +0: 726(50)-0.496(51)-0.230(53) \end{aligned}$
XXIV	$\begin{aligned} 0= & -0.915-0.916(15)+0.207(17)+0 \cdot 709(18)-1 \cdot 128(28)+0.237(29)+0.892(31) \\ & -0.692(37)+0.311(38)+0.380(40) \end{aligned}$
xxy	$\begin{aligned} 0= & +2 \cdot 359+0.628(28)-0.892(31)+0 \cdot 264(34)+0.306(37)-0.380(40)+0.074(41) \\ & -0.305(50)+0.075(52)+0.230(53) \end{aligned}$
xXVI	$\begin{aligned} 0= & -2.792+0.403(9)-0.500(10)+0.097(11)+0.176(15)+2.439(16)-2.616(17) \\ & +0.220(28)-5.705(29)+5.485(30) \end{aligned}$
XXVII	$\begin{aligned} 0= & +0.463+0.223(23)-0.238(25)+0.016(26)-0.222(43)+0.210(44)+0.012(45) \\ & +0.194(47)-0.404(48)+0.210(49) \end{aligned}$
XXVIII	$\begin{aligned} 0= & +1.619-2.7557(16)+2.6157(17)+0.1400(19)+5.7048(29)-5.9022(30)+0.1974(33) \\ & +0.5032(46)-0.6971(47)+0.1939(48) \end{aligned}$
XXIX	$\begin{aligned} 0= & +5.491-2.6157(16)+2.6157(17)-0.4212(22)+0.4212(25)+5.7048(29)-5.6861(30) \\ & -0.0187(32)+1.8885(42)-2.1104(43)+0.2219(44) \end{aligned}$

Equations of correlatives.

```
z
(1) = 1 % ( + + C C )
(2) =r %o(-C C - C C )
(3)=1 O(+C-C2)
```



```
(5) =1 o(+C
(6) =1 O(-C4
(7) =10(+}\mp@subsup{C}{3}{}+\mp@subsup{C}{4}{}-\mp@subsup{C}{6}{\prime}+0.095\mp@subsup{C}{59}{}+0.095\mp@subsup{C}{20}{\prime}
```



```
(9)=1.0(+ C C
```



```
    4192-No.7-O2-6
```

Equations of comelatives-contimued.

```
\(\therefore \quad \frac{1}{p}\)
(12) \(==1 \cdot 0\left(-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{7}+\mathrm{C}_{20}+0.026 \mathrm{C}_{29}+\mathrm{O} 027 \mathrm{C}_{21}\right)\)
( I 3 ) \(=10\left(+\mathrm{C}_{9}-\mathrm{C}_{20}+\mathrm{C}_{13}\right)\).
(14) \(=1 \cdot 2\left(-\mathrm{C}_{6}+\mathrm{C}_{8}-7 \cdot 676 \mathrm{C}_{31}+0 \cdot 699 \mathrm{C}_{22}\right)\)
(15) \(=1 \cdot 3\left(-\mathrm{C}_{1}+\mathrm{C}_{12}+0.79 \mathrm{C}_{21}-0.798 \mathrm{C}_{27}-0.916 \mathrm{C}_{24}+0 .{ }_{176} \mathrm{C}_{26}\right)\)
(16) \(=1 \cdot 1\left(-\mathrm{C}_{8}+\mathrm{C}_{18}-0.099 \mathrm{C}_{22}+2.4394 \mathrm{C}_{25}-2.7557 \mathrm{C}_{28}-2.6157 \mathrm{C}_{89}\right)\)
(17) \(=1.1\left(-\mathrm{C}_{15}-\mathrm{C}_{12}+0.207 \mathrm{C}_{24}-2.6157 \mathrm{C}_{26}+2.6157 \mathrm{C}_{28}+2.6157 \mathrm{C}_{29}\right)\)
(IS) \(={ }_{1} \cdot 2\left(+\mathrm{C}_{6}+\mathrm{C}_{7}+\mathrm{C}_{12}+6 \cdot 878 \mathrm{C}_{21}+0 \cdot 709 \mathrm{C}_{24}\right)\)
(19) \(=1 \cdot 7\left(-\mathrm{C}_{18}+\mathrm{O}^{\prime} \cdot 1400 \mathrm{C}_{28}\right)\)
(20) \(=1 \circ 0\left(+\mathrm{C}_{4}+\mathrm{C}_{5}-\mathrm{C}_{8}+0.531 \mathrm{C}_{20}-0.565 \mathrm{C}_{22}\right)\)
(21) \(=11^{\circ} 2\left(-\mathrm{C}_{5}+\mathrm{C}_{9}+\mathrm{C}_{24}+0.795 \mathrm{C}_{20}+\mathrm{o} \cdot 531 \mathrm{C}_{22}+1.883 \mathrm{C}_{23}\right)\)
(22) \(=1 \cdot 0\left(+\mathrm{C}_{8}-\mathrm{C}_{18}+0.034 \mathrm{C}_{28}-0.4212 \mathrm{C}_{29}\right)\)
(23) \(=1 \cdot 1\left(-\mathrm{C}_{24}+\mathrm{C}_{15}+0 \cdot 2230 \mathrm{C}_{27}\right)\)
(24) \(=1 \cdot 0\left(-\mathrm{C}_{4}-\mathrm{I} \cdot 326 \mathrm{C}_{20}-1 \cdot 326 \mathrm{C}_{23}\right)\)
(25) \(=\mathrm{I} \cdot 0\left(+\mathrm{C}_{17}-0.23 \mathrm{~S}_{5} \mathrm{C}_{27}+\mathrm{O} \cdot 4212 \mathrm{C}_{29}\right)\)
(26) \(=1 \cdot 1\left(-\mathrm{C}_{15}-\mathrm{C}_{87}+\mathrm{C}_{88}+\mathrm{o}{ }^{\circ}{ }^{2}{ }_{55} \mathrm{C}_{27}\right)\)
(27) \(=1 \cdot 2\left(-\mathrm{C}_{9}-0.557 \mathrm{C}_{23}\right)\)
(28) \(=1 \cdot 1\left(-\mathrm{C}_{12}+\mathrm{C}_{13}-\mathrm{C}_{14}-1 \cdot 128 \mathrm{C}_{24}+0 \cdot 628^{\circ} \mathrm{C}_{25}+0.220 \mathrm{C}_{26}\right)\)
(29) \(=1{ }^{\circ} 2\left(+\mathrm{C}_{18}+\mathrm{C}_{22}+0.237 \mathrm{C}_{24}-5{ }^{\circ} 704 \mathrm{~S}_{26}+5{ }^{\circ} 7048 \mathrm{C}_{28}+5{ }^{\circ} 7048 \mathrm{C}_{29}\right)\)
(30) \(=1 \cdot 1\left(+\mathrm{C}_{14}-\mathrm{C}_{15}+5 \cdot 4 \mathrm{~S}_{5} \mathrm{I} \mathrm{C}_{26}-5 \cdot 9022 \mathrm{C}_{28}-5 \cdot 6861 \mathrm{C}_{29}\right)\)
\((31)=1 \cdot 1\left(-\mathrm{C}_{15}+0 \cdot 892 \mathrm{C}_{24}-0 \cdot \mathrm{Sg}_{2} \mathrm{C}_{25}\right)\)
(32) \(=1 \cdot 1\left(+\mathrm{C}_{16}-0.0187 \mathrm{C}_{29}\right)\)
(33) \(=1 \cdot 0\left(-\mathrm{C}_{15}-\mathrm{C}_{16}+\mathrm{O} \cdot{ }^{1974} \mathrm{C}_{28}\right)\)
(34) \(=1 \cdot 2\left(-\mathrm{C}_{13}+0 \cdot 264 \mathrm{C}_{25}\right)\)
(35) \(=1 \cdot 0\left(-\mathrm{C}_{2}-1 \cdot 505 \mathrm{C}_{19}\right)\)
(36) \(=1 \cdot 1\left(-\mathrm{C}_{3}-\mathrm{C}_{4}+\mathrm{C}_{6}+0 \cdot 814 \mathrm{C}_{19}+0 \cdot 344 \mathrm{C}_{20}-4 \cdot 941 \mathrm{C}_{21}\right)\)
(37) \(=1.0\left(+C_{2}+C_{3}+C_{7}-C_{10}+0.691 C_{19}+0.499 C_{20}+0.344 C_{28}+0.917 C_{23}-0.692 C_{24}+0.306 C_{25}\right)\)
\((38)=1 \cdot 2\left(-\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{11}+4{ }^{\circ} 596 \mathrm{C}_{21}+0 \cdot 311 \mathrm{C}_{44}\right)\)
(39) \(=1 \cdot 2\left(+\mathrm{C}_{4}-0.843 \mathrm{C}_{20}-0 \cdot \mathrm{~S}_{43} \mathrm{C}_{23}\right)\)
(40) \(=1 \cdot 0\left(+\mathrm{C}_{11}+0.380 \mathrm{C}_{24}-0.3 \mathrm{SOC}_{25}\right)\)
(4) 1 ) \(1 \cdot 1\left(+C_{10}-0.0 .4 \mathrm{C}_{23}+0.074 \mathrm{C}_{25}\right)\)
(42) \(=1 \cdot 1\left(+1.8885 C_{29}\right)\)
(43) \(=1 \cdot 0\left(-\mathrm{C}_{17}-0.2219 \mathrm{C}_{27}-2 .{ }^{1104} \mathrm{C}_{29}\right)\)
(44) \(=1 \cdot 0\left(-\mathrm{C}_{16}+0.2097 \mathrm{C}_{29}+0.2219 \mathrm{C}_{29}\right)\)
(45) \(=1 \cdot 0\left(+\mathrm{C}_{16}+\mathrm{C}_{17}+0.0122 \mathrm{C}_{27}\right)\)
(46) \(=1 \cdot 0\left(+\mathrm{C}_{18}+\mathrm{C}_{5}{ }_{5032} \mathrm{C}_{28}\right)\)
. (47) \(=1 \cdot 0\left(+C_{15}+C_{17}-C_{18}+0.1939 C_{27}-0.6971 C_{28}\right)\)
    \((48)=1 \cdot 0\left(-\mathrm{C}_{15}+\mathrm{C}_{16}-0.4039 \mathrm{C}_{27}+0.1939 \mathrm{C}_{28}\right)\)
    (49) \(=1 \cdot 0\left(-\mathrm{C}_{16}-\mathrm{C}_{17}+0.2100 \mathrm{C}_{27}\right)\)
    ( 50 ) \(=1.0\left(-\mathrm{C}_{9}+\mathrm{C}_{10}-\mathrm{C}_{23}+0.726 \mathrm{C}_{23}-0.305 \mathrm{C}_{25}\right)\)
    (51) \(=1 \cdot 0\left(+\mathrm{C}_{9}+0 \cdot 496 \mathrm{C}_{23}\right)\)
    (52) \(=1 \cdot 1\left(+\mathrm{C}_{13}+0.075 \mathrm{C}_{25}\right)\)
    (53) \(=1 \% 0\left(-\mathrm{C}_{10}-0.230 \mathrm{C}_{23}+0.230 \mathrm{C}_{25}\right)\)
```

Normal equations.

Resulting Correlates.

$\mathrm{C}_{3}=-0 .{ }^{11} 5 \mathrm{og}$
$\mathrm{C}_{12}=+\mathrm{o}^{\circ} \mathrm{oS}_{3} 78$
$\mathrm{C}_{21}=-0 .{ }_{137} \mathrm{~g}^{8}$
$\mathrm{C}_{12}=-0.350 \quad 90$
$\mathrm{C}_{27}=-1 \cdot 13288$
$\mathrm{C}_{2}=+\mathrm{o} \cdot \mathrm{r} 93$ I 8
$\mathrm{C}_{3}=-0.07144$
$\mathrm{C}_{13}=-0.95_{2} 35$
$\mathrm{C}_{23}=+0.95^{2} 70$
$C_{6}=+0.11000$
$\mathrm{C}_{5}=-\mathrm{O} .378 \mathrm{~S}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{B}_{4}}=-1 \cdot 305{ }_{71}$
$\mathrm{C}_{24}=+0.33_{3} 7^{1}$
$\mathrm{C}_{15}=-0 . \mathrm{S}_{5}: 29$
$\mathrm{C}_{25}=-1{ }^{\circ} 0465^{8}$
$\mathrm{C}_{6}=-0.337{ }^{23}$
$\mathrm{C}_{56}=-0.23429$
$\mathrm{C}_{26}=+\mathrm{O}^{\circ} 7555^{8}$
$\mathrm{C}_{37}=+\mathrm{o}{ }^{\circ} 97 \mathrm{~S}^{52}$
$\mathrm{C}_{27}=+\mathrm{O}^{6} 689 \quad 15$
$\mathrm{C}_{7}=+\mathrm{o}^{\circ} 050 \mathrm{S6}$
$\mathrm{C}_{8}=-0.362 \quad 70$
$\mathrm{C}_{88}=-\mathrm{o} \cdot 13^{1} 5^{8}$
$\mathrm{C}_{28}=+\mathrm{I}^{\prime} 33940$
$\mathrm{C}_{9}=+\mathrm{O}_{4} 41193$
$\mathrm{C}_{19}=+\mathrm{o}^{\circ} \mathrm{oso}$ or
$\mathrm{C}_{29}=-0.67799$
$\mathrm{C}_{\mathrm{x} 0}=+\mathrm{o} .25574$
$\mathrm{C}_{20}=-\mathrm{I} 72674$
and resulting corrections to observed directions:

$(41)=+0 \cdot 1186$	$(48)=+0 \cdot 5984$
(42) -I.4084	(49) -0.5995
(43) +0.2994	(50) + 1.8370
(44) +0.2284	(51) -0.0606
(45) +0.7526	(52) -I 1669
(46) +0.5424	(53) -0.7156
(47) -0.5413	

We have the probable error of a direction of unit weight $0.674 \sqrt{\frac{[p v v]}{c}}=$ $0^{\circ} 674 \sqrt{\frac{24^{\circ} 4}{29}}$ or $\pm 0^{\prime \prime} .62$ nearly, and since the average reciprocal of the weights is $1^{\circ} 07$, the probable error of an observed direction is nearly $\pm 0^{\prime \prime} \cdot 65$.

Resulling angles and sides of the Atlanta base net.

No.	Stations.	Otiserved angles.			Correc- tiont	Spher- ical	Spherical	Iog. distances.	Distances in meters.
			,	/1	/"	"	"		
1 1	Stone Mounta	3 I	26	$36 \cdot 633$	-0.404	$36 \cdot 229$	0•128	39702761	9338.478
	se	65		$22 \cdot 204$	+o'334	$22 \cdot 538$	- •128	4:2127382	16320.68
	Atlanta Northeast Base	82		O1 328	+o. 289	O1 617	O.128	4.249470	17 761 ${ }^{1} 13$
22	Stone Mountain	14	30	-1 368	-0.068	01 300	0.062	3.6544120	4512.446
	Atlanta Southwest Base	65		22	+o. 334	22.538	-62	$4{ }^{\circ} \mathrm{I} 55648$	1643040
	Atlanta Middle Base	99		$36 \cdot 656$	-0.308	$36 \cdot 348$	0 -062	4.2494705	$17761 \cdot 13$
3	Stone Mountain	16	56	$35 \cdot 265$	-0.335	$34^{\circ} 930$	0 '066	$3{ }^{6} 683590$	4826.032
	Atlanta	80		$23 \cdot 381$	+o. 271	$23 \cdot 652$	0 -066	$4^{-212738}$	$16320 \cdot 68$
	Atlanta Northeast Base	82	49	or 328	+o. 289	O1 617	0.067	4.2156483	$16430 \cdot 41$
4	Sweat Mount	21	37	$55 \% 366$	+o. 65	56 \%18	- 192	3'970 276	933847^{8}
	Atlanta Northeast	74		$33 \cdot 323$	-0.301	33 '022	$0 \cdot 192$	$4 \cdot 386815$	$24367{ }^{\prime} 76$
	Atlanta Southwest Bas	84		31.520	to or 6	$31 \cdot 536$	$0 \cdot 192$	$4 \cdot 4014563$	$25 \quad 203 \cdot 24$
5	Sweat	12		31°	-1'099	$30 \cdot 574$	\bigcirc	4-249 470	17761×13
	St	17	25	$34 \cdot 743$	+1.160	35 '903	-. 184	4.386815	$24367 \cdot 76$
	Atlanta Southwest	149	57	$53 \cdot 724$	+o. 350	$54^{\circ} \mathrm{o74}$	0.183	4.6098722	40726 04
$6\{$	(Sweat Mountain	9		23.693	+1752	$25^{\circ} 445$	-	$4^{\cdot 212} .738^{2}$	$16320 \cdot 68$
	Atlanta Northeast	156	57	$34 \cdot 651$	-0.013	$34{ }^{\circ} 638$	$0 \cdot 137$	4.609872	40726 '04
	Stone Mountain	14		or 890	- I 564	-0. 32	-. 136	4 401 456	$25 \quad 203.24$
7	\int Academy			$26 \cdot 166$	+2.552	18	- 290	2127382	$16320 \cdot 68$
	Stone Moun	70		29.036	+0.768	29 ${ }^{\text {P }} 4$	0.290	4.3581179	$22809 \% 1$
	Atlanta Northeast Base	66		OI 440	+0.90	$02 \cdot 34$	- 290	-346 4003	$22202{ }^{4} 4$
8	Academy	3	-	$36 \cdot 521$	- I'S97	$34{ }^{\circ} 624$	- 337	4 * 401456	$25 \quad 203.24$
	Atlanta Northeast Base	136	16	23 '909	-0.896	23 ©13	- 336	4.649 o26 8	$44568 \cdot 38$
	Sweat Mountain	20		03 '077	+0.296	$03 \cdot 373$	- 337	4358117	2280961
$9\{$,	65		$02 \cdot 687$	$+0.655$	03 342	$0 \cdot 763$	72	$40726{ }^{\circ}{ }_{4}$
	Stone Moun	84		$30 \cdot 926$	-0.796	'I30	- 763	4.6490268	$44568 \cdot 38$
	Sweat Mountain	29		$26 \cdot 770$	+2.047	$28 \cdot 81$	- 763	$4.346{ }^{600} 3$	$22202{ }^{42}$
10	K	14		$22 \cdot 271$	$+$	22 '335	-.185	3.970	933848
	Atl	46		$26 \cdot 983$	+0.534	27.517	o.185	4.424374	26568.98
	Atlanta Southwest Base	118		10.842	-0.140	$10 \cdot 702$	-. 184	4.5066153	$32 \operatorname{loS} \cdot 15$
II	K	16		$34^{\circ} 561$	-1.281	$33^{2} 280$	$0 \cdot 343$	$4^{\circ 212738}$	$16320 \cdot 68$
	Atlanta Northeast Base	129	23	28.311	+o. S_{22}	$29 \cdot 833$	$\bigcirc 344$	4.6463945	44299.06
	Stone Mountain	34		$58 \cdot 891$	-0.274	$58 \cdot 617$	- 343	4.5066153	$32 \quad 108 \cdot 15$
12	Kenesaw			12.290	-1 346	10'944	$0 \cdot 030$	4.249470	$17.761 \cdot 13$
	Atlanta Southwest Base	175		26 '954	-0.194	$26 \cdot 760$	0.031	4.6463945	$44^{299} 06$
	Stone Mountain	2		22 '258	+o	223	$\mathrm{O}^{\circ} \mathrm{O}$	4×24	26568

Resulting angles and sides of the Allamta base net-continued.

Resulting angles and sides of the Allanta base net-contimued.

No.	Station.	Observed angles.			Correc-	Spher-	Spher-	Log.distances.	Distances in meters.
25			,	"	'r	"	\%		
	Pine Log	22		$26 \cdot 706$	+1.084	$27 \cdot 790$	$0 \cdot 415$	4*1S2 2149	$15213{ }^{\circ} 00$
	Sweat Mountain	100	54	$55 \cdot 825$	-0. 289	$55 \cdot 536$	0.416	45876664	$38696{ }^{\circ}$
	Keresaw	56	22	38.414	-0.494	37.920	0.415	4.516084	$32815 \cdot 89$
26	Pine Log	70	04	$02 \cdot 461$	-0.056	02 405	$1 \cdot 383$	$4 \cdot 6833595$	$48234{ }^{\prime} 69$
	Sawnee	48		$15 \cdot 630$	+0.503	$16 \cdot 133$	$1 \cdot 353$	$45^{587} 6665$	$38696{ }^{\circ} 4$
	Kenesaw	60	5	$46 \cdot 044$	-0.433	$45^{\circ} 11$	$1 \cdot 383$	$4 \cdot 651920$	$44866 \cdot 28$
27	Pine Log	47	21	$35 \cdot 755$	- I 1 140	$34 \cdot 615$	0.918	45197395	$3.3093 \cdot 26$
	Sawnee	46		$26 \cdot 339$	+o. 044	$26 \cdot 383$	0.918	4.516084	32815 -89
	Sweat Mountain	S5		00 814	+o.942	or 756	- 918	4.6519201	$44866 \cdot 28$
28	Grassy	43	29	$35 \cdot 631$	+0.071	$35 \cdot 702$	o -889	45197395	$33093{ }^{\circ} 26$
	Sawnee	95		54 '068	+o. 153	$54^{\text {²21 }}$	0.889	$4 \cdot 680284$	$47 \mathrm{S94} 33$
	Sweat Mountain	41	26	$32 \cdot 604$	+o.140	$32 \cdot 744$	o. 889	$4 \cdot 5027519$	31823 79
29	Grassy	43	12	O1 400	+o. 453	or 853	0.931	$4 \cdot 516$ o84 1	$32 \mathrm{SI}_{15}{ }^{\text {8 }}$
	Sweat Mountain	$4+$	21	28.210	to - SO_{2}	$29^{\circ} \mathrm{OL} 2$	- "931	$4.525 \quad 2409$	$33515 \cdot 13$
	Pine Log	92	26	$31 \cdot 871$	to 0.05	31'929	- $93{ }^{2}$	4 -680 284	$47894 \cdot 33$
30	Grassy	S6	41	$37^{\circ} \mathrm{O} 3^{1}$	+0.524	37.555	- 903	$4 \cdot 651920$ 1	$44 \mathrm{S66}^{\cdot 2} \mathrm{~S}$
	Sawnee	48		27^{729}	+o•109	27.838	$0 \cdot 902$	$45^{525} 2409$	33515 '13
	Pine Log	45	04	$56 \cdot 116$	+1'198	57.314	$0 \cdot 902$	4.502 7519	31 823 '79
31	Kenesaw	31	09			48^{202}	1 290	$4 \cdot 5027519$	31823 '79
	Grassy	51	39	$33 * 335$	-1.637	31 698	I 290	$4{ }^{6} 833595$	$48234 \cdot 69$
	Sawree	97	10	$43 \cdot 359$	+0.612	43.971	I 291	47854449	61 016 '17
	Kenesaw	29	48			$57 \cdot 408$	- '995	$4 \cdot 5252409$	$33515 \cdot 13$
	Pine Log	115	O8	58•577	+1.142	59.719	- '994	47854449	$61016 \cdot 17$
	Grassy	35	O2	$03 \cdot 696$	$+2 \cdot 161$	$05 \cdot 857$	- '995	4.5876665	38696 04
33	Kenesaw	26	33			40×511	0.352	4 680 2841	$47894 \cdot 33$
	Grassy	8	09	57×704	-1 708	55 '996	- $35{ }^{2}$	4.1822149	15213.00
	Sweat Mountain	145	16	24 © 035	+o.513	24.548	- $35{ }^{\text {I }}$	47854449	61016 -17

Descriptions of stations.
Atlanta Southwest Base.-This station is in De Kalb County, Georgia, about 12 miles northeast of Atlanta, near and to the east of the track of the Southern Railway. It is situated on the northwestern slope of a small hill, 20 meters from and 8 feet below the sumninit. It is 100 meters south of Humphrey's house.

This end of the base has both a surface and an underground mark. The lower mark is a hole drilled in a copper bolt in the top of a granite post 2 feet long and 6 inches square. The top of this post is $31 / 2$ feet below that of a large granite monument covering it, the upper mark being in this upper monument. The upper block is 3.3 feet square at base and 3 feet square at top and 2.5 feet ligh; it rests on a brick platform, laid in cement, 5 feet square and i foot high, with hole i foot square in center, through which the top of lower monument may, be seen. A drill hole at the intersection of two
cross lines, in a copper bolt driven into the center of the top of the upper block, marks the station. Over the upper monument is placed a granitc shaft bearing the usual inscriptions on its faces. The station is further defined as the center of a square whose side is $24^{\mathrm{m} \cdot} \cdot 75$, each angular point of the square being a drill hole at the intersection of cross lines in a copper bolt driven into the top of a stone post 3 feet long and 6 inclies square at top. The center of each reference mark is 18 meters from the station, and diagonal grooves are cut in top of each, with an arrowhead pointing to the station.

Allanta Northeast Base.-This station is at a road crossing on the Southern Railway, near Norcross, Gwinnett County, Georgia. It is on the west side of the road and the west side of the railroad, on the place of J. H. Maloney. The station is marked exactly as described at Atlanta Sonthwest Base.

Atlanta Middle Base. -The station is in De Kall) County, Georgia, upon a small knoll in edge of woods 65 feet northwest of the Southern Railway and about a quarter of a mile northeast of the railroad station at Doraville. The underground mark is the center of the mouth of a short-mecked bottle. The surface mark is a drill hole at the intersection of cross lines in the liead of a copper bolt driven into a granite post, i foot square and 3 feet long, with diagonal grooves cut in the top, one in line with the base and the other perpendicular to it. The copper bolt with the cross lines and drill hole is placed at the intersection of the grooves. Around this central monument are buried four reference marks, two in line with the base and two in a line perpendicular to it. Each of the granite posts is 7 inches square and 3 feet long, and has in its top a diagonal groove with an arrowhead pointing to the station, from which the center of each reference nurk is 5 feet distant.

Stone Mountain. -This station is in De Kalb County, Georgia, on the well-known mountain of that name, about 15 miles $\mathrm{N} .76^{\circ} \mathrm{E}$. from Atlanta, and about I mile fron the post-office, Stone Mountain, on the Georgia Railroad, De Kalb County, Georgia.

The station is marked by a copper bolt in the solid granite of the mountain. Around the bolt the rock is cut down to a level in a circle of $31 / 2$ feet radius, the bolt being the center. In the periphery of this circle are six equidistant holes $3^{1 / 2}$ feet apart and 2 inches deep.

Academy. -This station is on the highest point of Academy Hill, in Lawrenceville, the county seat of Gwinnett County, Georgia.

The underground mark is the mouth of a bottle 3 feet below the surface. Orer this is a granite post 30 inches long and 7 inches square, with the letters U.S.C.S. cut in top. Around the central monnment are placed four reference marks abott $30^{\circ} \mathrm{W}$. of S., $30^{\circ} \mathrm{N}$. of $\mathrm{W} ., 30^{\circ} \mathrm{E}$. of N., and $30^{\circ} \mathrm{S}$. of E. The center of the SW. reference mark is 4 feet 6 inches from the center of the station, and the center of the other marks is 5 feet distant from station. In the top of each reference mark is a diagonal groove with an arrowhead pointing toward the station.

Kenesaw. -This station is on the highest part of Kenesaw Monntain, about 3 miles northwest of Marietta, Cobb County, Georgia. The station is reached by following thie Marietta and Cartersville road for about $21 / 2$ miles from the Kenesaw Honse, in Marietta, and then following the road which turns to the left, near a covered well, and finally along the spur of the mountain to the summit. The underground mark is a cross in the head of a copper bolt driven into a lole drilled in the solid rock 2 feet $13 / 4$ inches below the surface. Above this is planted a granite post 5 inches square, with
the top projecting 2 inches above the ground. The intersection of two cross lines in the top of the post marks the station. The letters U. S. C. S. were also cut in top of post. The station has three reference marks-A, B, and C-these being the intersections of cross lines cut in the heads of copper bolts driven into holes drilled in the rock. The distances of these points from the station are 6.65 feet, $I^{\circ} 35$ feet, and ir ${ }^{\circ}{ }^{\circ}$ feet, respectively. The angles subtended at the station by lines from, A to B, B to C, and C to A are $170^{\circ} 59^{\prime}, 47^{\circ}$ o6', and $141^{\circ} 55^{\prime}$, respectively.

Sweat Mountain.-This station is in Cobb County, Georgia, the nearest post-office being Woodstock, almost + miles distant in a direct line on the Atlanta, Knoxville and Northern Railroad. The station is on top of the mountain, about $11 / 2$ miles from Mr. Dial's house, and is reached by following the Marietta and Cumming road to a point $93 / 4$ miles from Marietta, near Mr. Garrison's, and then taking the road along the southeast ridge of the mountain.

The station is marked by a copper bolt driven in a hole drilled in the rock very near the edge, and has three reference marks, A, B, and C , which are copper bolts driven in drill holes in the most solid rocks available. These points are 6.2 feet, 7.67 feet, and $12^{\circ} 3$ feet, respectively, from the station. Taking the line to Kenesaw, S. $48^{\circ} 33^{\prime}$ W., as the initial or zero direction, and measuring angles comnter-clock-wise, the directions of A, B, and C are $3^{\circ} 19^{\prime} 30^{\prime \prime}, 83^{\circ} 44^{\prime} 30^{\prime \prime}$, and $23^{\circ} 12^{\prime} 30^{\prime \prime}$, respectively.

Sawnce.-This station is on the most prominent or central peak of Sawnee Mountain, in Cumming Township, Forsyth County, Georgia, about 2 miles NE. of Cumming and i2 miles from Buford, on the Southern Railway.

The station was marked temporarily by a copper tack driven in a stub, with similar stubs for reference marks. The permanent marks are supposed to be the usual central marks with four reference marks.

Pine Log.-This station is on Pine Log Mountain, Cherokee County, Georgia, about 7 miles north of Wolf Pen. The station is reached by going east from Cartersville, to Wolf Pen; thence 9 miles to Moore's Iron Furnace; thence 3 miles to Mr. Lewis' house; thence to the station on top of the monntain.

The underground mark is the neck of a jug 2 feet 6 inches beneath the surface. The surface mark is the intersection of cross lines on the top of a granite post 5 inches square, planted above the jug, the top of post projecting above the ground. The letters U. S. C. S. were cut in the angles of the cross lines. Around the station are four granite reference marks similar to the central monument, to the north, east, south, and west, each distant 6 feet from the station. In the top of each is cut an arrowhead pointing to the station.

Grassy.-This station is on top of Grassy Mountain, 3,290 feet high, in Pickens County, Georgia, about 6 miles in a direct line east of Jasper, the county seat, on the Atlanta, Knoxville and Northern Railroad. The station marks are supposed to be the usual central monument, and four reference marks to the north, east, south, and west, each 5 feet distant from the station.
6. T11F DAUl'IIN ISLAND BASF, I,INF: AND BASE NET, ALABAMA, $18+7$.

Location, measurement, and resulting length of the Dauphin Island base line, Alabama, 1847.

When reconnoitering for a primary base line on the coast of Alabama and Mississippi in 1845, Assistant F. H. Gerdes selected a site on Dauphin Island, and a preliminary measurement was made with a chain in 1845-46. The measurement was made during May and June, 1847, by A. D. Bache, Superintendent of the Coast Survey. A full account of this measurement, and the only one published, will be found in Coast and Geodetic Survey Report for 1889, Appendix No. 17, pages 479-491, which permits of giving less space to it here than would otherwise be demanded.

This is the first base line measured with the Bache-Würdemann contact-level compensating apparatus, six meters in length, designed in 1845, and constructed at the Survey Office in 1845-46. A description of this apparatus, with illustrations of its detail construction, is contained in Coast Survey Report for 1854, Appeudix No. 35, pages 103ro8, by E. B. Hunt, Lieutenant, U. S. A., and Assistant, Coast Survey. This article was reprinted in Coast Survey Report for 1873, Appendix No. 12, pages 132-136, with a supplement describing improvements. The last basc line measured with the apparatus was the Atlanta base in 1873. It was compared in 1877, but its employment in the field closed with its use in 1873. It was superseded by an apparatus less complex, less cumbersome, and more-easily trausported, using a contact slide, and either with or without the principle of compensatiou.

The average elevation of the island is but little more than I meter above the mean level of the Gulf. The line passes over sand, generally bare, but in part it is covered with low grass or rushes. To prepare the ground for the measure a number of sand ridges lad to be leveled and a few gullies, cut by the sea, had to be crossed. The leugth of the base is 10.66 kilometers (or 6.62 statute miles). Its terminal points were marked with stone monuments and (so called) milestones were set along the line. In August, 185^{2}, a hurricane swept over the island, causing the sea to wash over the line and disturb several of the intermediate marks and the monument at West Base. Certain verification marks having been recovered, part of the line was remeasured in 1855 by Assistants F. H. Gerdes and J. E. Hilgard, and the line was further secured in 1857 by the insertion of screw piles as marks. The marks were recovered in 1898 by Assistant W. B. Fairfield. The middle point is in latitude $30^{\circ} 14^{\prime} 7$ and in longitude $88^{\circ} 11^{\prime} 6$, with mean azimuth $84^{\circ} 13^{\prime}$.

Thc lengtli and compensation of the Bache-Würdemann apparatus depends entirely on the length and the coefficient of expansion of the 6 -meter iron standard bar, prepared in 1847 and known as No. I. It was standardized by means of numerous comparisons made between the yeats 1847 and 1882. The elaborate comparisons and dcterminations of 1860 , made by Assistant J. E. Hilgard at the Smithsonian Institution, are described in Coast Survey Report for 1862, Appendix No. 26, pages 248-255. The coefficient of expansion was found to be 0.00001154 for the ccntigrade scale (or 0.000 0064 I for the ± 4
± 2
Fiahrenheit scale). The weighted (assumed) mean of the most trustworthy observations,

8

ALEXANDER DALLAS BACHE (1806-1867),
namely, those of 1860,1877 , and 1882 (the last by the writer), gave the final value: Lengtl of the 6 -meter (\dot{u} bout) standard (No. I) at $0^{\circ} \mathrm{C} .=5^{\circ} 999949$ meters*, whereas ± 3
the 1860 determination gave $5^{\circ} 999$ 94I meters, the difference being only 8μ in 6 meters. ± 2
It was thought well to adhere to the 1860 value as the one in good accord with the coefficient of expansion then found. It was found that the compensating bars or "tubes" of the apparatus did not retain an invariable length at different times, probably owing to the great leugth of the apparatus and wear on the compensating lever, so that for each base their length had to be specially determined. At Dauphin Island tubes i and 2 were intercompared in May and June, before and after the base measure, and tube 2 was likewise compared with the standard bar. The results were, tube i longer than tube 2 , $0^{\mathrm{mm}} 00002 \mathrm{I}$ 6: on May II and 12 tube 2, at about $23^{\circ} \cdot 6 \mathrm{C}$., with probably rising temper± 14
ture, was found equal to $6^{m \cdot 0000573} 3$, and on June 10 , at about $25^{\circ} \circ \mathrm{C}$., with probably \pm II O
falling temperature, tube I was equal to $6^{m .000} 0640$. Equating these measures with consideration of their weights, we get:

$$
\begin{array}{r}
\text { Length of tube } 1,6^{\mathrm{m}} \cdot 00007 \mathrm{I} \circ \\
\pm 1 \mathrm{I} \cdot 0 \\
\text { Length of tube } 2,6 \mathrm{~m} \cdot 0000503 \\
\pm \mathrm{II} 0
\end{array}
$$

The adjustment of the compensation apparatus for changes of temperature was made in 1846 by Superintendent A. D. Bache, with the result that the lengths of the tubes were found practically invariable during the range of natural temperatures as well as at different rates of change of temperature.

The probable error assigned to the deduced length of the tubes may be takeu to include all uncertainty arising from the direct comparisons with the standard, and that of the standard itself, but excluding uncertainty due to any inperfect compensation during the measure. The temperature of the tubes was taken from three thermometers attached to each tube, which gave an average of $30^{\circ} \circ \mathrm{C}$. during the field operations; while that of standardization was $24^{\circ} 3 \mathrm{C}$. ; the probable error of the length of each tube was accordingly increased to $\pm 0^{m \cdot 000014} 6$. The maximum inclination of a tube during measurement but slightly exceeded 1°; the excess of length of 1777 th tube over the west end of the base was measured with a brass meter scale, having regard for its temperature.

[^14]We have for the length of the base:

1776 tubes of mean length	10 $656^{\text {m }}$ • 1076
1 additional tube No. I	$+6.0001$
Excess of last tube at west base	-0.171 3
Correction to reduce to mean value of a double measure of 97 tubes	+o.000 1
Correction for inclination of tubes	-0.095 8
Reduction to half-tide level of Gulf	-0.003 I
Resulting length of base	10 $661^{\text {m. }}$. 8376

We have also the following resulting distances from the east end of the base to the several so-called milestones:

To first milestone	$1608^{\text {ma }}$. 0156
To second milestone	3216.0325
To third milestone	4824.0482
To fourth milestone	6432.0639
To fifth milestone	8040.0798
To west end of tube 1532	$9192^{\circ} 008$ I
To sixth milestoue	9648.0956
To west end of tube 1658	$9948 \cdot 0058$
To sixth and a half milestone	10452.1037

The hurricane of August, 1852, having displaced milestones V, VI, and VI $1 / 2$, as well as the monument at West Base, that portion of the old line between the verification marks at the east end of tubes No. 1533 and No. 1659 was remeasured in May, 1855 , by means of the 4 -meter contact-slide apparatus,* with iron rods, Nos. I and 2. Their lengths at 0° C. were: No. 1, $3^{m} 999937$ 7, and No. 2, $3^{m} 9999098$.

The length remeasured is as follows:

I 88 rods of mean length, at $30^{\circ} \cdot 67 \mathrm{C}$.	$752^{\mathrm{m} \cdot} \cdot 2518$	
I rod No. I, at $34^{\circ} \cdot 4 \mathrm{C}$.	4.0015	
Excess of last rod over line	-0.2600	
Reduction to sea level	-0.002	
Resulting length	$755^{\mathrm{m} \cdot} \cdot 993$ I \quad Original leugth of $1847,755^{\mathrm{m} \cdot 9977}$	

A screw pile was inserted in the line at a distance $9942^{\mathrm{m} \cdot} 7984$ from the east end of the base.

The probable error of the assigned length of the base arising from the uncertainty in the length of tubes is $\pm 0^{m} \cdot 02594$; that due to contact and transfer errors during the measurement (which occupied seventeen working days) is estimated at $\pm 0^{m m} \cdot 01 \sqrt{1} 776$ or $\pm 0^{m \cdot} \cdot 0004^{2}$ and $\pm 0^{m m} \cdot 082 \sqrt{68}$ or $\pm 0^{m \cdot} \cdot 00068$, respectively. \dagger Combining these probable errors, we find the square root of the sum of the squares $= \pm 0^{m} \circ 026$, which equals $810^{1}{ }^{1} \overline{0} \overline{0}$ (nearly) of the length and corresponds to a logarithmic difference in the length of 0.00000106 . Hence the final value for the length of the Dauphin Island base, in terms of the prototype meter $=10661^{\mathrm{m} \cdot} 8376$, and its logarithm $=4.02783206$.

$$
\pm{ }^{\circ} \mathrm{o} 26 \mathrm{o}
$$

$$
\pm \text { I } 06
$$

[^15]The Dauphin Island base net and results of its adjustment.
This net, as shown in the figure, represents measures executed at two periods widely differing in date. The older work of $1846,1847,1848$, in charge of Assistant F. H. Gerdes, which includes the base measure, is exhibited in the diagram by lines of dashes, while the later work of $1897-98$, in charge of Assistant W. B. Fairfield, is shown by full lines. It was at first the intention to adjust the whole of the measures at the stations connected with the base, but when the computation starting from the Atlanta Base was carried through the adjusted triangulation and had reached the Dauphin Island Base, there was found an almost perfect accord between its length as derived from the Atlanta Base and as measured directly. No further adjustment, therefore, was demanded on this account, but for the triangulation to the westward toward New Orleans-that is, for the old triangulation-the three stations, Cat Island, Cedar Point, and Point anx Pins, required to be brought into perfect relationship with the base and with the position of Fort Morgan. 'There is no line from Dauphin Island East Base to Fort Morgan in the old work, and besides, the direction from West Base to Fort Morgan is not in harmony with the later measure.

In the fourth column of the following abstracts of
 directions the twelve corrections to directions numbered 53 to 64 are those which resulted from the adjustment of the fifth section of the triangulation southwest of the Atlanta Base, comprised between the lines Creagh to Pollard on the north and Fort Morgan to Dauphin Island West Base on the south. The corrections to directions numbered i to 16 are those pertaining to and resulting from the present adjustment of the old measures. The ground at the stations is but a few meters above the level of the Gulf.

For the details of the adjustment of the triangulation to the northtward of the

Dauphin Island Base and of Fort Morgan, see the record and results of the fifth and last section of the triangulation in Alabama (1895-1898).

The small diagram shows the adjusted figure, or the old
 base net npon which the survey to the westward depends. An independent start is made directly from the base. Respecting the position of Fort Morgan, the single triangle Dauphin Island West Base, Cedar Point, Fort Morgan, from the 1847-48 measures, has been added to the other triangles. The measures at Fort Morgan in 1847 , by Assistant R. H. Fauntleroy, were made in connection with his observations for azimuth, and the azimuth station was occupied for the measure of the horizontal angles.

Abstracts of horizontal angles and directions at stations of the Dauphin Island base net.
Dauphin Island Eqst Base, Mobile County, Alabama. Febrnary, 1846. F. H. Gerdes, observer. Theodolite No. 6. Circle used in IV positions. January and June, I848. F. H. Gerdes, observer. 45^{cm} direction theodolite No 4 . Circle used in V positions.

Number of directions.

Objects observed.

Dauphin Island West Base Cat Island
Cedar Point

Results from
station adjust ment.
$01 / 1$ $000 \quad+0.00 .00 .05$ $\begin{array}{llll}52 & 04 & 29 & 67\end{array}$
$-0 \cdot 28$
$+0.23$ Corrections
from net adjust-
ment. nent. 11
$29 \cdot 39$
$29^{\circ} 76$

Dauphin Island East Base, reoccupied August I to 30, 1897, and March 6 to 9, ISg8. W. B. Fairfield, observer. 30^{cm} repeating theodolites Nos. 16 and 32.

```
Number of
directions.
```

58
59
60
61

Objects observed.

Dauphin Island West Base
St. Elmo
Daphue
Fort Morgan
\quad Also,
Dauphin Island West Base
Point aux Pins, ISg8
Middle Bay Light-House
Fort Morgan Light-House
Sand Island Light-House

Results from station adjustment.			Corrections from adjustment of fifth section.	Final seconds.
-	,	"	"	"
o	∞	$00 \cdot 00$	+o. 23	$00 \cdot 23$
So	51	$20 \% 1$	-0.08	20.63
125	25	$47^{\circ} \mathrm{O} 9$	+o. 56	$47 \cdot 65$
197	27	36.91	-0.71	$36 \cdot 20$
- 0	∞	$00 \% 0$	†-0.23	$00 \cdot 23$
46	19	52 '90		
125	53	$38 \cdot 37$	\ldots
197	58	$04 \cdot 81$	
224	55	$51 \cdot 14$	\ldots	

Abstracts of horizontal cngles and directions at stations of the Dauphin Island base net-continued.

Dauphin Island West Base, Mobile County, Alabama. November, 1847. F. H. Gerdes, observer. 45 cm direction theodolite No. 4. Circle used in V positions. January, 1848. F. H. Gerdes, observer. Instrument as before. Circle used in III positions.

Number of directions.	Objects observed.	Results fron station adjustment.			Corrections from net adjustinent.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	"	"	"
	Petit Bois	0	00	$00 \cdot 00$		
	Grand Batture	45	15	13.69	
I	Point aux Pins	81	33	$33 \cdot 52$	+o.14	$33 \cdot 66$
2	Cat Island	128	34	$20 \cdot 89$	+o. 24	21.13
3	Cedar Point	151	37	$06 \cdot 72$	-0.49	$06 \cdot 23$
4	Dauphin Island East Base	190	OI	23.58	to.10	$23 \cdot 68$
	Fort Morgan*	198		$49^{\prime} 75$		

Dauphin Island West Base, reoccupied September 1 to 6,1897 , and February 23 to 27, 1898. W. B. Fairfield, observer. 30^{cm} repeating theodolite No. 32.

Number of directions.	Objects observed.	Results from stationt. - ment.			Corrections from adjustment of fifth section.	$\begin{aligned} & \text { Final } \\ & \text { seconds } \end{aligned}$
		-	,	"	"	"
	Casotte	o	∞	00 00	
	Point aux Pins, 1898	46	29	$59 \cdot 46$	\ldots	
62	St. Elmo	73	IS	$25 \cdot 29$	+0.17	25.46
63	Dauphin Island East Base	15.1	5	$46 \cdot 46$	-0.74	$45 \% 2$
	Baylor's West Base, 1892	156	02	$30 \cdot 71$	\ldots	
64	Fort Morgan Quarantine flagstaff	158	33	57×6	\ldots	
	Fort Morgan	160	56	08 79	+o 56	0935
	Sand Island Light-House	174	34	$48 \cdot 52$	
	Horn Island Liglt-House	333	31	$03 \cdot 21$	-...	

Fort Morgan, Baldwin County, Alabama. March, 1846, and May, 1846. F. H. Gerdes, observer. Theodolite No. 6. Circle used in III positions. Decenber, IS47. J. E. Hilgard, observer. 45^{cm} direction theodolite No. 4. Circle used in V positions.

Number of
 Number of directions.

Objects olbserved.

53

Results from station adjustment.			$\begin{aligned} & \text { Corrections } \\ & \text { from net adjust- } \\ & \text { neent. } \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	;	"	/	"
o	oo	$00 \cdot 0$	\ldots	
	∞	30×90	+o. 45	3135
115	44	$45{ }^{\circ} 5$		

[^16]
Abstracts of horizontal angles and directions at stations of the Dauphin Island base net-continued.

Fort Morgan, reoccupied June 14 to 20, 1897 , and January 20 to 23, 1898. W. R. Fairfield, observer. 30^{cm} repeating theodolite No. 16 used in 1897, and 30^{cru} repeating theodolite No. 32 in 1898 .

Nimber of directions.	Objects observed.	Kesults from station adjnstment.			Corrections from adjustmeut of fifth section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	"	"	"
53	Dauphin Island West Base	0	00	$00 \cdot 00$	Fo. 45	00.45
54	Dauphin Island East Base	8	30	12.65	+0.23	12.88
	Baylor's West Base, 1892	10	02	56:90	
	Point aux Pins, $1898{ }^{\circ}$	27	3^{8}	10.50		
55	St. Fillino	55	51	$43{ }^{\circ} 92$	-0.23	$43 \cdot 69$
56	Spring Hill	73	56	39 * 86	-0.58	$39 \cdot 28$
	Middle Bay Liglit-House	S9	35	$36 \cdot 8.4$		
57	Dapline	102	05	O4'52	+o.14	04.66
	Sand Island Light-House	296	55	$25 \cdot 96$. \cdot.	

Cedar Point, Mobile County, Alabana. April 23 to 28, 1848. IF. H. Gerdes, observer. 30^{cm} theodolite. Circle used in III positions.

Number of directions.	Objects observed.	Results from station adjnstment.			Corrections from net adjnstment.	Final seconds.
		-	,	/1	/1	"
	Fort Morgan	\bigcirc	00	$00 \cdot 00$		
8	Dauphin Island East Base	44	10	$49 \cdot 67$	-0.07	$49 \cdot 60$
9	Dauphin Island West Base	81	54	02.57	+0.17	$02 \cdot 74$
10	Point aux Pins	133	36	$22 \cdot 92$	-0.10	$22: 82$

Cat Island, Mobile County, Alabana. April 15 to 16, 1846. F. H. Gerdes, observer. Theodolite No. 6. May 19, 1847. J. E. Hilgard, observer. May, 1848. F. H.Gerdes, observer.

Point aux lins, Mobile County, Alabama. May 23 to June I, 1848. F. H. Gerdes, observer. 30 cm theodolite. Circle used in III positions.
Cedar Point
Cat Island
Dauplin Island West Base
Petit Bois
Grand Batture

\circ	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
0	00	00.00	+0.32	00.32
22	36	33.45	-0.29	33.16
58	14	08.33	-0.03	08.30
105	51	21.51	\ldots.	\ldots.
147	05	47.69	$\ldots .0$	\ldots.

> DAUPHIN ISIAND BASF NET ADJUSTMENT.
> Obscration equations.

I
II
III
IV

$$
\left\{\begin{aligned}
0= & -1 \cdot 00-(3)+(4)-(5)+(7)-(8)+(9) \\
0= & +1.25-(1)+(3)-(9)+(10)-(11)+(13) \\
0= & +0.76-(2)+(4)-(5)+(6)-(14)+(15) \\
0= & -0.65-(1)+(2)-(12)+(13)-(15)+(16) \\
0= & -0.4+1.63(13)-2.93(12)+1.30(11)+1.66(101-4.38(9)+2.72(8)-0.52(7)+2.16(5) \\
& -1.64(6)+0.27(16)+0.65(15)-0.92(14)
\end{aligned}\right.
$$

The solution of the normal equations gives the values of the correlatives:

$$
\begin{aligned}
& C_{3}=+0.2645 \\
& C_{2}=-0.2234 \\
& C_{3}=-0.1617 \\
& C_{4}=+0.0783 \\
& C_{5}=+0.0726
\end{aligned}
$$

and the corrections to the directions are:

$1{ }^{\circ}$	"
$(\mathrm{I})=+\mathrm{o} \cdot 145$	(9) $=+0 \cdot 170$
(2) +0.240	(10) -0.103
(3) -0.488	(II) +0.318
(4) $+\mathrm{o} \cdot \mathrm{To3}$	(12) -0.291
(5) +0.054	(I 3$)-0.027$
(6) $-0 \cdot 28 \mathrm{I}$	(14) +0.095
(7) +0.227	(15) -0.193
(8) -0.067	(16) +0.098

The mean error of a direction, $\sqrt{\frac{0.73}{5}}= \pm 0^{\prime \prime} \cdot 38$ and the probable error $= \pm 0^{\prime \prime \prime} \cdot 26$.
Resulting angles and sides of the Dauphin Island base net.

Dauphin Island East Base.-This station is on Dauphin Island, at the entrance of Mobile Bay about 7 miles from the west end of the island and $31 / 2$ miles from the east end, near the western edge of the pine woods which cover the eastern end of the island.

The station was recovered and reoccupied in 1897 and marked as follows:
In a bed of cement $51 / 2$ feet square, extending 6 feet below the surface, are two

$$
4192-\text { No. } 7-\mathrm{O}-7
$$

pieces of drain tile 2 feet long and 4 inches in diameter, each placed with its axis vertical, one above the other, the lower extending 7 inches below the bottom of the cement. A pine pole 6 feet long and 2 inches in diameter is driven down through the pipes until its top is 16 inches below the top of the upper tile. Above this pole in the upper pipe are placed vertically, one above the other, two copper bolts, each 8 inches long and $3^{1 / 4}$ inches in diameter, a cross on each bolt marking the station, the upper mark being 3 feet below the surface. The bolts are held in place by cennent, with which the remaining space of the pipes is filled. Above the top of the npper pipe a cavity I foot square and 6 inches deep is left in the cement. Over this cavity, still embedded in cement, the four original granite blocks of the base of the monument of 1847 are built, as originally, in two courses, the top of the upper course projecting 2 inches above the surface. A copper bolt in the top of one of the blocks of the upper course is directly over the cross on the bolt in the pipe and marks the station. The original granite shaft is placed on this foundation and cemented down over the copper bolt, its apex again marking the station. On the north, east, south, and west faces of the shaft are inscribed, respectively, "A. D. Bache, Suptdt.," "U. S. Coast Survey," " 1847 ," "Base No. 5." The station is witnessed by two marks in the same rertical line, one on the surface and one underground, in prolongation of the base line, 144^{\prime} IO25 meters east of the extremity and just in the edge of the pine woods. The underground mark is a cross in an iron bolt in the top of a tile pipe 2 feet long embedded vertically in a mass of cement 2 feet in diameter, the top of the pipe being 3 feet below the surface. Above this pipe is placed a granite block ifoot square and $21 / 2$ feet long, the top of block being flush with the surface and containing a copper bolt as the surface mark.

Dauphin Island West Base.-This station is on the western end of Dauphin Island. In 1847 the station was within one-half mile of the extremity of the island, while in 1897 the island extended $31 / 2$ miles west of it. In Septenber, 1897, the distance was reduced by a storm which washed away I mile of the western end of the island. The station is marked as described at Dauphin Island East Base, except that the cennent at this station is 6 feet square and 5 feet deep and only one piece of tile pipe was put in.

Fort Morgan. -The station is near the center of the northwest bastion (No. 2) of Fort Morgan, at the entrance to Mobile Bay. The station of 1846 was recovered and reoccupied in 1892 and again in 1897-98.

The earthenware vessel used originally was left in its place, filled with cement, and a nail was placed in its center to mark the station, the top of the mail being $21 / 2$ feet below the surface. Above this was placed vertically a section of tile drain pipe inclosed in a nail keg, both filled with cement. In the pipe are two spike nails, one above the other, making additional marks. The head of the upper nail is just beneath the brick floor.

Cat Island.-This station is on Cat Island, in Mississippi Sound, north of Dauphin Island. The station of 1845 was marked by a buried earthenware cone. In 1855 a new station was established'near the old one.

Cedar Point.-This station is on Mon Louis Island, on the western side of Mobile Bay. The station is situated on the castern extremity of the island, on a narrow strip of beach, anong marshes. In 1846 an earthenware cone was buried as the station mark, and copper nails were driven in blazed trees with the following directions and distances: One northwest, 9 feet 4 inches; one northeast, is feet; one southwest, 32 feet 6 inches, as reference marks.

Point aux Pins.-On the point of land of the same name which extends southward into Mississippi Sound, just west of Bayou Batture. In 1846 the station was marked by an earthenware cone buried 3 feet under the surface. In 1848 four poles 4 feet long and 6 inches in diameter were inserted around the undisturbed cone, the station being the point of intersection of two perpendicular lines determined by four copper nails driven in the tops of these poles.

St. Elmo.-The station is in Mobile County, Alabama, about ${ }^{\circ} 2$ miles east of St. Elmo, on the Louisville and Nashville Railroad, and about one-half mile south of Otis's mill. The station is in the northwest corner of N. E. $1 / 4$ of S. E. $1 / 4$ of S. E. $1 / 4$ of S. E. $1 / 4$ of N. W. $1 / 4$, sec. 19, T. 6 S., R. 2 W., and is distant from the northwest corner of section 19, 3426 feet, and bears from said corner 3 1 $3^{\circ} 43^{\prime}$ true.

The underground mark is the intersection of cross lines on top surface of limestone post, 6 inches square and 18 inches long, buried vertically, with top 3 feet below surface of ground. The letters U. S. C. G. S. are cut in the angles of the cross lines. Six inches above this is another limestone post, 6 inches square and 28 inches long, its top level with the surface of the ground and marked as the lower stone.

Daphne.-This station is in Baldwin County, Alabama, about one-half mile northeast of the court-house at Daphne. The station is in the southwest corner of the S. W. I/4 of S. W. $1 / 4 /$ of N. E. $1 / 4$ of N. E. $1 / 4$ of N. E. 1/4, sec. 19, T. 5 S., R. 2 E. Distance from the northeast corner of section 19 to station is 882 feet, and the station bears S. $44^{\circ}{ }^{1} 7^{\prime} \mathrm{W}$. (true) from the northeast corner of section 19.

A r-gallon stone jug was buried, bottom up, and a small hole in the center of the bottom, 3 feet below the surface, is the underground mark. A limestone post 6 inches square and 30 inches long was placed in a vertical position 6 inches above the jug, the surface mark being the intersection of cross lines on its top surface, which is flush with the ground. The letters U. S. C. G. S. are cut in the usual manner in the angles of the cross lines.

Spring Hill.-The station is about 7 miles northwest of Mobile, on the highest part of Spring Hill, on the land of Judge H. Anstell, about 40 feet north of the fence line of main road and about 200 yards west of road going to Whistler, and also about 200 yards west of station Spring Hill on electric road.

The station is marked as Daphne, except that the jug is buried mouth up, the center of mouth being the underground mark. The following true bearings and distances were measured: Oak tree, No. I, N. $62^{\circ} 33^{\prime}$ го" E., Io3 feet; oak stump, No. 2, N. $18^{\circ}{ }^{17} 7^{\prime} 20^{\prime \prime}$ W., 39 feet 9 inches; oak stump, No. 3, S. $95^{\circ} 46^{\prime} 25^{\prime \prime}$ W., 44 feet 7 inches; fence line, S. $29^{\circ} 47^{\prime}$ E., 39 feet II inches.
C. SXNOPSIS OF THE MEASUREMENTS AND RESULTS OF THE BASE LINES OF THE OBLIQUE ARC.

No.	Name of line.	state.	Date of measure.	Chief of party and observer.	Apparatus used.
1	Epping	Me.	1357, July and Ang.	A. 1). Bache	I3ache-Würdenann
2	Massachusetts Bas	Mass.	1844 , Sept. to Nov.	E. Blunt	Hassler
3	Fire Island Base	N. Y.	1834, Aug. to Oct.	F. R. Hassler	Hassler
4	Kent Island Base	Md.	1844, May and June	J. Fierguson	Hassler
5	Atlanta Base	Ga.	$\left\{\begin{array}{l} 1872, \text { Nov. and Dec. } \\ 1872, \text { Dec. and } 1873, \text { Jan. } \\ 1873, \text { July and Aug. } \end{array}\right.$	C.O.Boutelle	Bache-Würdemann
6	Dauphin Island Base	Ala.	1847, May and June	A. D. Bache	Bache-Würdemann

No.
Name of line.

Epping Base
Massachusetts Base
Fire Island Base
Kent Island Base
Atlanta Base
Dauphin Island Base

Resulting length in meters and probable error.	Logarithm of preceding numbers.	Approximate probable error in terms of length.
$8715 \% 9422$	3.94031434	$6 \overline{200000 ~}$
$\pm \quad 158$	± 79	
17326.3763	4.23870774	484000
± 358	± 90	
$14 \quad 058 \quad 9709$	4'14795353	240000
± 585	$\pm 18 \mathrm{I}$	
8687.5446	$3{ }^{\circ} 93889705$	128000
± 680	± 340	
$9338 \cdot 4778$	$3.970 \quad 27609$	प29000
± 222	± 103	
10 66I ${ }^{\text {S }}$ 376	402783206	यT0000
$\pm \quad 260$	± 106	

PARTII.

THE MAIN TRIANGULATION.

THE MAIN TRIANGULATION BETWEEN THE BASE LINES OR NETS.

A. GENERAL TREATMENT OF THE REDUCTION OF THE MAIN TRIANGULATION BETWEEN CALAIS, MAINE, AND NEW ORLEANS, LOUISIANA.

Since the early and partial publications of preliminary results of the various parts of this triangulation, as referred to in Part I, changes have taken place, not only in the field work by additional stations or measures, but also in the office work of computation in respect to the general treatment, and due to the experience gained in the meantime. Nevertheless, it was desirable to retain as much as possible of the older reductions, such as the computations of the base lines, the local adjustments of the horizontal directions, and the adjustment of the base nets. That part of the oblique arc which is in common with the arc of the parallel of $\varphi=39^{\circ}$ is retained unchanged.

When dealing with the treatment of the portion of the oblique are traversing the New England States, it became necessary to introduce the station Mount Washington, New Hampshire, into the scheme, and to consider the most advantageous manner by which the three base lines (or their nets), the Epping, the Massachusetts, and the Fire Island bases, could be brought into perfect accord. This was to be done with due regard to the labor involved in the establishment and solution of a large number of equations. At the same time attention had to be given to the circumstance of the intersection of the oblique arc with a triangulation, now nearly completed, which can be used for the discussion of an arc of the parallel, in latitude $42^{1 / 2}{ }^{\circ}$, from Cape Cod to the State of Iowa, executed partly by the U. S. Lake Survey and partly by the U. S. Coast and Geodetic Survey for this and other purposes. Further, attention had to be given to non-interference with the full development of the large triangulation in the States of New Hampshire and Vermont, which lhas Killington, Vermont, as a central station. After due consideration it was decided to retain unchanged the adjustment of the Epping base net as made in June, 1864, and to adjust the triangulation between the three bases, so as to preserve the length of the side Humpback to Mount Desert (of the Epping base net), the Massachusetts base, and the side Wooster to Sandford (of the Fire Island base net). This scheme involves the simultaneous solution of 57 equations, two of which are length equations, each containing a large number of terms. The results from the old but less perfect scheme differ very little, and within the uncertainties of the measures, from those now obtained, and also indicate the excellent accord of the relations of the newly added station to the surrounding stations. The small extension of the Epping base net from the side Cooper to Howard to the boundary on the St. Croix River was afterwards treated by itself.

The stretch of triangulation between the base nets of the Fire Island base and the Kent Island base starts from the line Bald Hill to West Hills, and ends on the line

Osbornes Ruin to Turkey Point, and the latter liue, being a part of the adjusted triangulation of the arc of the parallel in $\phi=39^{\circ}$, is preserved as given in Special Publication No. 4, "The Transcontinental Triangulation."

The adjustment involved the solution of 35 equations, of which the conditional or observation equation for accord of length of sides contains 89 terns. The triangulation lying between the line Osbornes Ruin to Turkey Point, Maryland, and the line Tobacco Row to Spear, Virginia, is retained unchanged as given in Special Publication No. 4.

Upon reaching latitude 36° the triangulation splits into two branches, one, the western and later one, passing through Tennessee, the other and older one througli North Carolina. They unite again in northern Georgia. The angular measures on the western branch were made with an inferior instrument. A study of the local adjustments of this triangulation and of the approximate computatious which were arailable indicated that the angle measures did not possess quite the same accuracy as those of the eastern branch and could lend no additional value to the triangulation to the sotuthward. Moreover, there are no astrononic observatious of any kind connected with this triangulation. For these reasons the western or Temessee branch was not used as a part of the arc, and the computation between the Keut Island and Atlanta bases was carried through the eastern branch.

Proceeding southwestward from the line Tobacco Row to Spear to the Atlanta base, the adjustment was made in three parts.

The complex strong figure between the lines Tobacco Row to Spear and Buffalo to Moore was first adjusted and involved the solution of 24 equations. The influence of the Atlanta base was then extended by the adjustment of the section of the triangulation from the line Sawnee to Grassy to the line Benn to King, involving the solution of 4 I equations, and finally the remaining portion, forming a central figure about the station Poore, was adjusted, involving the solution of 13 equations, including a length equation introduced for the purpose of bringing the lengths derived from the two bases into accord.

The reasons for dispersing the small outstanding discrepancy in this particular figure are given in the portion of this publication which treats of its adjustment.

The fortunate circumstance that the Atlanta and the Dauphin Island bases, when connected through the chain of intervening triangles or more complex figures, proved to be in almost exact accord, as was shown by the several adjusted pieces of triangulation gradually joined together as the field work progressed, made it possible to retain all of these five partial adjustnients. This carried the results to the Dauphin Island base net at the line Spring Hill to Daphne.

It was thought highly desirable to extend the oblique arc as far as the city of New Orleans, wherc it meets with and terminates at a well-determined astronomic station. It was known that the small coast triangulation along the Gulf from Mobile Bay westward was inferior in accuracy to first-class work. Nevertheless a rediscussion and new adjustment showed that it could be used to extend the are to New Orleans. The whole of this triangulation is old, and the inferiority of the work is due to the difficulties encountered on account of the climatic conditions along the Gulf coast, and particularly to the effects of severe hurricanes passing across this region, which rendered it difficult to preserve the stations fronn one season to another. It was also most inportant to include the station at New Orleans in the discussion of the local deflections of the plumb line at stations approaching and in close proximity to the Gnlf of Mexico.

B. THE TRIANGULATION.

I. NORTHEASTERN TERMINUS TO EPPING BASE NET.

The extension of the triangulation from the primary line Cooper to Howard, of the Epping base net, to and across the Canadian boundary at the St. Croix River is shown on the following diagram. The geometric figure is a strong one and demanded for its

adjustment that 13 conditional equations be satisfied. Equal unit weights were given to the directions, excepting the initial line Cooper to Howard, to which a double weight was assigned.

The angles measured with the repeating circle were generally made up of 20 sets, each of three repetitions direct and three repetitions reversed for every angle; these results, when combinations existed among the measured angles, were adjusted at each
station. The probable error of an observation of an angle ($3 D$. and $3 R$.) is given by $e_{L}=0.674 \sqrt{\left.\frac{[v}{n-1}\right]}$ and that of a direction by $e_{i}=e_{L} / \sqrt{2}$.

The approximate elevations of the stations above the half-tide level of the Atlautic are as follows:

	Meters.	Feet.
Chancook	197	647
Trescott Rock	94	310
Prince Regents Redoubt	60	197
Grand Manan	128	420
Calais, observatory	46	150
Howard	82	269
Cooper	225	738

No reductions to the horizontal directions for heights were required.
Abstracts of resulting horizontat directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1859 to 1861.

Howard, Washington County, Maine. July and August, 1859.75^{cn} direction theodolite No. 1. A. D. Bache and G. W. Dean, observers. From abstract given in Part I of this publication we have:

No. of directions.	Objects observed.	Resulting directions from station adjustment.			Corrections from preceding figure adjustment. /	Resulting directious. "	Corrections from present figure adjustment. //	Final seconds. "
		-	,	/1				
	Pigeon	-	00	$00 \cdot 000$	-0.089	$00 \cdot 000$		00 000
I	Cooper	10 S	01	$27^{\circ} 996$	-0.066	$28 \cdot 018$		$28^{\circ} \mathrm{0} 8$
2	Trescott Rock	173	43	$51 \cdot 973$	-0.026	$52 \cdot 036$	-0.398	51.638
3	Grand Manan	189	28	$45 \cdot 843$	-0.026	45 '906	to 267	$46 \cdot 173$

Cooper, Washington County, Maine. August and September, ${ }^{1859 .} 75^{\mathrm{cm}}$ direction theodolite No. 1 . A. D. Bache and G. W. Dean, observers. 25^{cm} repeating theodolite No. 74. October 23, 1867.
C. H. Boyd, observer.

6	Chamcook	0	Oo	00 000	-0.068	$00 \% 00$	to 004	$00 \cdot 000$
7	Prince Regents Redoubt	38	36	$49^{\circ} \mathrm{o8} 2$	-o.068	$49^{\circ} \mathrm{O} 2$	-0.951	48.127
8	Grand Manan	54	40	$14 \cdot 493$	-0.068	$14^{\prime} 493$	+o.646	$15 \cdot 135$
9	Trescott Rock	68	43	$51 \cdot 687$	-0.068	$51 \cdot 687$	-0.058	51.625
10	Howard	108	56	09.385	-0.226	09.227	
	Mount Desert	157	47	00 789	+o.415	01 $\cdot 272$		
4	Rye (Boyd)*	309	17	27.536	-0.068	27.536	-0.802	26.730
5	Saint David (Boyd)*	329	01	$51 \cdot 167$	-o .068	$51 \cdot 167$	$+11117$	$52 \cdot 280$

Probable error of an observation ($3 D$. and $3 R$.) of a direction, $e_{2}= \pm 1^{\prime \prime} \%$.

[^17]Abstracts of resulling horizontal directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1859 lo r86r-continued.

Chamcook, New Brunswick. October 22 to October 28, 1859. 75^{cm} direction theodolite No. I. G. W. Dean, observer. $25^{\text {can }}$ repeating theodolite No. 74. C. H. Boyd, observer, 1867.

No. of directions.	Objects observed.	Results from station adjustment.			Corrections from present adjustment.	Final seconds.
16		\bigcirc	,	"	- "	"
	Grand Manan	-	∞	00.000	+0.491	¢0 000
				± 0.139		
17	Prince Regents Redoubt	11	23	$35 \cdot 285$	$\rightarrow 0.150$	$34 \cdot 644$
				± 0.135		
15	Trescott Rock	28	17	21.691	-0.160	21.040
				± 0.141		
19	Cooper	88	44	50:139	-0.723	$48 \cdot 925$
				± 0.173		
20	Rye (Boyd)*	115	16	$24^{\text {- } 874}$	+0.344	$24^{\prime} 727$
21	Calais, observatory (Boyd)*	138	46	$22 \cdot 644$	+o.319	22.472
22	Saint David (Boyd)*	165	22	52 '99I	-0.120	$52 \cdot 380$

Probable error of an observation ($3 D$. and $3 R$.) of a direction, $e_{\mathrm{x}}= \pm 1^{\prime \prime} 3$. Probable error of a single observation of a direction, $e_{\mathrm{s}}= \pm \mathrm{I}^{\prime \prime} \cdot \mathrm{os}$.

Trescott Rock, Washington County, Maine. November I to $7,1861.30^{\mathrm{cm}}$ repeating theodolite No. 30. C. H. Boyd, observer.

Number of sets of angles, 5 ; probable error of an observation (3 D. and 3 R .) of a direction, $e_{\mathrm{x}}= \pm \mathrm{I}^{\prime \prime} \cdot \mathrm{I}$.

Prince Regents Redoubt, Washington County, Maine. October 4 to 2I, 1861. 30^{cns} repeating theodolite No. 30. C. H. Boyd, observer.

23	Grand Manan		∞	00×00	-0.371	00 000
24	Trescott Rock	60	o6	12 - 74	-0.214	$12 \cdot 231$
25	Cooper		37	$25 \cdot 265$	+0.519	$26 \cdot 155$
26	Chamcook	202	39	$25 \cdot 281$	+0.067	$25 \% 19$

Number of sets of observations, 7 ; probable error of an observation (3 D. and $3 R$.) of a direction, $e_{1}= \pm \mathrm{I}^{\prime \prime} \cdot 1$.

* Number of sets of repetition observations, 3 .

Abstracts of resulting horizontal directions observed and adjusted at stations of the triangulation extending to the Canadian boundary, 1850 to 186 -continued.

St. David, New Brunswick. September 30 to October 2, $1867.25^{\text {cu }}$ repeating theodolite No. 74. C. H. Boyd, observer.
No. of
Ohjects observed.

Results from station adjustment.	Correctious from preseut ad- justment.	Final seconds.	
0	,	\prime	$\prime \prime$

Number of sets ofservations, 3; probable error of an observation (3 D. and $3 R$.) of a direction, $e_{\mathrm{r}}= \pm \mathrm{I}^{\prime \prime}{ }_{\mathrm{I}}$.

Rye, Washington County, Maine. October $24-25,1867.25^{\mathrm{cn}}$ repeating theodolite No. 74. C. H. Boyd, observer.

31	St. David	0	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
32	Chancook	9	00	$00 \cdot 000$	-0.720	00.000
33	Cooper	42	47	52.302	+0.531	53.553

Number of sets of observations, 2; probable error of an observation (3 D. and $3 R$.) of a direction, $e_{1}= \pm 1^{\prime \prime \prime} \cdot 4$.
Calais, observatory, Washington County, Maine. October $17-18,1867.25^{\mathrm{cm}}$ repeating theodolite No. 74. C. H. Boyd, observer.

34	St. David	0	\prime	$\prime \prime$	$\prime \prime$
35	Chamcook	0	00	00.000	+0.319

FIGURE ADJUSTMENT.

Observation equations.

$$
\begin{array}{r|l}
\text { I } & 0=+0.625-(1)+(2)-(9)+(10)-(11)+(12) \\
\text { II } & 0=-2.090-(7)+(9)-(12)+(14)-(24)+(25) \\
\text { III } & 0=+0.691-(6)+(9)-(12)+(13)-(18)+(19) \\
\text { IV } & 0=+1.981-(6)+(7)-(25)+(26)-(17)+(19) \\
\text { V } & 0=-1.531-(4)+(6)-(19)+(20)-(32)+(33) \\
\text { VI } & 0=-1.485-(4)+(5)-(29)+(30)-(31)+(33) \\
\text { VII } & 0=-0.506-(20)+(22)-(27)+(30)-(31)+(32) \\
\text { VIII } & 0=+1.241-(21)+(24)-(27)+(28)-(34)+(35) \\
\text { IX } & 0=+2.18-0.095(1)+1.439(2)-1.344(3)-0.249(10)+1.544(9)-1.295(8)-0.597(11) \\
& -0.454(12)+1.051(15) \\
\text { X } & 0=-0.70-1.213(9)+1.295(8)-0.082(6)+0.454(12)-0.339(15)-0.115(13)-0.119(19) \\
& +0.625(18)-0.506(16) \\
\text { XI } & 0=+4.31-1.176(8)+1.439(7)-0.263(6)-0.445(25)+1.503(23)-1.058(26)-0.047(19) \\
& -2.103(16)+2.150(17) \\
\text { XII } & 0=+1.38-0.254(15)+0.816(14)-0.562(13)-0.176(24)+1.234(23)-1.058(26)-0.693(18) \\
& \quad-2.103(16)+2.796(17) \\
\text { XIII } 0= & 0.60-0.172(6)-0.415(4)+0.587(5)-0.422(19)+0.598(20)-0.176(22)+0.502(29) \\
& -0.011(27)-0.791(.30)
\end{array}
$$

It was not deemed necessary to set down the correlate equations, as they are readily formed. The directions (I) and (io) each have the weight 2.

Normal equations.

Resulting correlates:

$$
\begin{array}{ll}
\mathrm{C}_{5}=-0.04462 & \mathrm{C}_{8}=-0.31864 \\
\mathrm{C}_{2}=+0.17549 & \mathrm{C}_{9}=-0.22277 \\
\mathrm{C}_{3}=-0.06144 & \mathrm{C}_{10}=-0.10949 \\
\mathrm{C}_{4}=-0.15283 & \mathrm{C}_{15}=-0.42884 \\
\mathrm{C}_{5}=-0.07477 & \mathrm{C}_{12}=+0.22147 \\
\mathrm{C}_{6}=+0.26438 & \mathrm{C}_{13}=+1.46242 \\
\mathrm{C}_{7}=+0.456 \mathrm{oo} &
\end{array}
$$

$+2 \cdot 3820$
and the resulting corrections to directions:

"		"		/		/		"	
	+0.0329	(8)	+0.6510	(15)	-0.2534	(22)	-0.1200	(29)	+0.9984
(2)	-0.3652	(9)	-0.0525	(16)	+0.4913	(23)	-0.3712	(30)	-0.4364
(3)	+o. 2994	(10)*	+0.0054	(17)	-0.1498	(24)	-0.2145	(31)	-0.7204
(4)	-0.7965	(II)	+o.1776	(18)	-0.1605	(25)	+0.5191	(32)	+0.5308
(5)	+1.1228	(12)	-0.1072	(19)	-0.7233	(26)	+o.0666	(33)	+0.1896
(6)	+0.0097	(13)	-0.1733	(20)	+0.3437	(27)	-o'r 535	(34)	+0.3186
(7)	-0.9453	(14)	+0.3562	(21)	+0.3186	(28)	-0.3186	(35)	-0.3186

Probable error of an observed direction, $0.674 \sqrt{\frac{7.36}{\mathrm{I} 3}}= \pm 0^{\prime \prime} \cdot 5^{1}$

* Directions (i) and (10) were given double weight in the adjustment.

IIO THE EASTERN OBLIQUE ARC.

Resulting angles and sides of the triangutation between the Epping base net and the northeastern terminus of the are.

Resutting angles and sides of the triangulation between the Epping base net and the northeastern terminus of the arc-continued.

2. EPPING BASE NET TO MASSACHUSETTS BASE AND TO FIRE ISLAND BASE NET, MAINE, NEW HAMPSHIRE, MASSACHUSETTS, RHODE ISLAND, AND CONNECTICUT, 184t-1882.

The main triangulation which connects and is based upon the three northern base lines is among the most elaborate pieces of field work ever executed by the Survey. It was steadily continued and completed by Superintendent Bache and his party in twenty years. Only one station (Mount Washington) was afterwards included in the scheme. There are also several subordinate stations, not referred to here, which, in addition to what is furnished by the principal stations, effects the junction with the subordinate, secondary, and tertiary work covering the greater part of the coast line of Massachusetts, New Hampshire, and Maine.

With the exception of the angles at the Massachusetts base, all angular directions were measured by means of the great (so called) 75^{cm} theodolite, and the station results were deduced by application of Bessel's least square method of reduction. The accuracy reached is quite commensurate with the amount of labor spent, both in the

field and in the office. This may be seen in the closing errors of the 52 triangles as well as in the numerical constants of the 57 conditional equations. The first adjustment of this triangulation, made in 1866 under the writer's direction, avoided the heavy work of solving simultaneously this large number of equations by dividing the whole work into three parts, but in this discussion it was decided to treat the adjustment rigorously as a whole. The new results, however, differ but slightly from the older ones. The directions in the new adjustment are corrected for effect of altitude of the stations sighted, and the observations made at and upon Mount Washington are now incorporated into the general scheme.

Approximate heights of stations above the average levet of the Allantic Ocean.

	Meters.	Feet.		Meters.	Feet.
Humphack	451	1480	Manomet	120	394
Momint Desert.	465	1525	Blue Hill	194	635
Mount Harris	381	1251	Beaconpole	167	548
Ragged Mountain	397	1301	Monadnock	966	3168
Sabattus	244	Soo	Wachusett	616	2022
Nonnt Blue	976	3.202	Mount Tom	372	220
Mount Pleasant	615	2015	Bald Hill (Tolland County)	393	1290
Mount Washington	1920	6300	Box Hill	259	850
Mount Independence	153	501	Ivy	498	634
Gunstock	73^{2}	2402	Sandford	273	S95
Agamenticus	222	728	Wooster	305	000
Unkonoonuc	411	1348	Copecnt	- 108	353
Thompson	S3	271	Great Meadow	81	265

Observation equation LVI is the length equation between the Epping base (referred to the line Humpback to Mount Desert) and the Massachusetts base, showing a discrepancy of but 57 units in the seventlo place of decimals in the logarithms, and the corresponding equation No. LVII is the length equation between the Massachusetts base and the Fire Island base (referred to the line Sandford to Wooster) and shows a discrepancy of but 26 units. Weights to the 131 directions are introduced on the same principle as was done in 1866 , which takes care of the circumstance that the relative weights, when the directions are combined to form triangles, are very different from and only partly resemble the weights deduced from the station adjustment alone. Experience has shown that the former are at least of equal if not greater importance than the latter.

The maximum closing error in the sum of the angles of any one triangle is but $2^{\prime \prime} \circ$ and the average closing error of a triangle, found by squaring the 52 errors, is given by $\sqrt{\frac{44^{\prime} 47}{5^{2}}}= \pm 0^{\prime \prime} \cdot 92$; hence the probable error of a direction is $0.674 \frac{0^{\prime} 92}{\sqrt{6}}= \pm 0^{\prime \prime \prime} \cdot 255$. On the other hand the approximate probable error of a direction derived from the station adjustment alone $*$ is found from the average square $\frac{3^{\circ} 056}{131}$, viz, $c_{1}=\sqrt{0^{\circ} 0233}=$ $\pm 0^{\prime \prime} \cdot 153$; hence the square of the combination error or $e_{\mathrm{c}}^{2}=\left(0^{\circ} 255\right)^{2}-\left(0^{1} 153\right)^{2}=$ $\left(0^{\circ} 204\right)^{2}$. To eacll of the values of e_{8}^{2}, therefore, was added $\left(0^{\circ} 204\right)^{2}$ or $0^{\circ} 040$ in order:

* See resulting probable errors of the direction presented further ou with the abstracts of the horizontal measures.

4192-No. 7-02-8
to get $E^{2}=\frac{1}{p}$, but in order to make the average value of the 13 I cases equal to unity this was multiplied by 15.75 ; hence the final reciprocals of weights used in the adjustment further on.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Mrassachusetts base, and the Fire Istand base net, 1847-18S2.

Humpback, Hancock County, Maine. July 19 to September 6, $1858.75{ }^{\mathrm{cm}}$ direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

Circle used in V positions.
Mount Desert, Hancock County, Maine. August 14 to October 14, 1856. 75^{cm} direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

		0	,	"	"	"	"	"	"	"	"
	Isle au Haut	0	∞	$00 \cdot 000$	± 0.14	-0.006	$00 \cdot 000$	$00^{\circ} 00$
1	Ragged Monsıtain	33	39	$21 \cdot 332$	0.11	-0.006	$21 \cdot 332$	+0.009	21.34	-0.05	21.29
2	Mount Harris	70	54	51.931	0.12	-0.006	51 931	-0.017	51.91	+0.10	$52^{\circ} \mathrm{OI}$
	Sannders	93	48	$58 \cdot 382$	$0 \cdot 10$	-0.006	58.392	
	Azimuth Mark	122	49	$25 \cdot 136$	- 10	-0.006	$25 \cdot 136$	-....	. \cdot	. ${ }^{\text {c }}$
	Humpback	144	20	$00 \cdot 152$	$0 \cdot 10$	-0.143	00 ${ }^{\circ} 15$	+0.008	00.02 -
	Mean correction -0°										

Circle used in V positions.
Mount Harris, Penobscot County, Maine. July 25 to October 17, 1855. 75^{cm} direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approxinate probable errors.	Reductions to sealevel.	Resulting	Corrections froill figure adjustment.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
	Thomas Hill, Ban-	。	,	"	"	"	"	"	"
	gor	0	-	00 \%00	$\pm 0 \cdot 11$		$00 \cdot 00$	\ldots	
	Azimuth Mark	1	16	32750	0:12		\ldots	
	Peaked Mountain	9	50	$32 \cdot 207$	$0 \cdot 13$		
5	Humphack	13	14	12 '055	$0: 09$	+0.013	12.07	-0 01	12.06
	Saunders	29	29	$47 \cdot 495$	0.09	\ldots	
6	Mount Desert -	53	46	$37 \cdot 312$	0.09	-0.020	37×29	+0.07	$37 \cdot 36$
	Isle au Haut	85	58	21.672	$0 \cdot 11$	
7	Ragged Mountain	118	55	14.559	$0 \cdot 11$	$0 \cdot 000$	$14 \cdot 56$	to 06	14.62
8	Sabattus	170	57	$33 \cdot 572$	$0 \cdot 12$	+o. 013	$33 \cdot 58$	-0.01	$33 \cdot 57$
9	Mount Blue	213	17	4S '992	0.13	-0.009	$4{ }^{\circ} 98$	-0.11	48 87
Circle used in V positious.									

Abstracts of horizontal directions as obsevved and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882-continued.
Ragged Mountain, Waldo County, Maine. August 9 to November 21, 1854. 75^{cm} direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approximate probable errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment. /"	$\begin{aligned} & \text { Final } \\ & \text { seconds } \end{aligned}$
		-	,	/	"	/	"		"
	Cape Small	0	-	$00 \cdot 000$	$\pm 0 \cdot 13$	00%	
10	Mount Pleasant	32	27	39*339	- ${ }^{19}$	+o.010	$39 \cdot 35$	+o.39	39 '74
11	Sabattus	35	05	$22 \cdot 195$	- $\cdot 17$	+0.003	$22 \cdot 20$	-0.27	21.93
12	Mount Blue	72	13	02 447	$0 \cdot 12$	-0.049	$02 \cdot 40$	+o.11	$02 \cdot 51$
13	Mount Harris	130	54	59'344	$0 \cdot 11$. 0 '000	$59 \cdot 34$	-0. 20	$59 \cdot 14$
	Azimuth Mark	131	32	$49^{\circ} 928$	-. 16		\ldots	
	Saunders	171	43	10.933	$0 \cdot 12$		
14	Humpback	179	05	58.378	- $\cdot 18$	+0.025	$58 \cdot 40$	- 00	$58 \cdot 40$
15	Mount Desert	208	31	00.500	O.11	to 011	00.51	+0.04	¢0 55
	Isle au Haut	241	os	17.507	- ${ }^{19}$				

Circle used in V positions.
Mount Blue, Franklin County, Maine. August 29 to November 5, $1853.75{ }^{\mathrm{cm}}$ direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

		-	,	"	"	"	"	/1	"
	Peaked Mountain	0	∞	00 000	$\pm 0 \cdot 14$	$\infty^{\circ}{ }^{\circ}$	\ldots	
	Saunders	7	35	$33 \cdot 784$	-17			
16	Mount Harris	8	46	$42 \cdot 896$	-.18	-0.003	$42 \cdot 89$	-0.24	$42 \cdot 65$
17	Ragged Mountain	35	42	$23 \cdot 708$	$0 \cdot 16$	-0.019	$23 \cdot 69$	+0.15	${ }^{2} \mathrm{~J} \cdot 84$
	Cape Small	74	11	$02 \cdot 283$	0. 20				
18	Sabattus	76	57	$34{ }^{640}$	0.15	-0.008	$34 \cdot 63$	to. 15	$34 \cdot 78$
19	Mount Independence	94	02	$02{ }^{\circ} 938$	$0 \cdot 30$	$0 \cdot 000$	O2 94	-0.20	$02 \cdot 74$
20	Mount Pleasant	121	17	49 ¢712	$0 \cdot 15$	+0.027	49 '74	+o.03	49^{77}

Circle used in IV positions.
Sabattus, Androscoggin County, Maine. June 18 to August 16, $1853.75{ }^{\mathrm{cm}}$ direction theodolite No. I. A. D. Bache, C. O. Boutelle, J. E. Hilgard, and G. W. Dean, observers.

		-	,	/"	/	"	//	/	"
23	Mount Blue	\bigcirc	oo	00×00	$\pm 0 \cdot 11$	-0.032	$\overline{59}{ }^{\circ 97}$	-0.21	$\overline{5976}$
	Azimuth Mark	17	56	$05 \cdot 204$	0.17		
24	Mount Harris	69	29	07×402	-.18	+0.02I	07×42	+o.16	$07 \cdot 58$
25	Ragged Mountain	101	37	$20 \cdot 637$	$0 \cdot 17$	+o.005	$20 \cdot 64$	+0.24	$20 \cdot 88$
	Cape Small	172	59	00. 194	- 14				
21	Mount Independence	222	21	04 $\cdot 158$	$0 \cdot 13$	+0.007	$04 \cdot 16$	-0.07	$04 \% 9$
22	Mount Pleasant	275	46	51 399	- 14	to oil	$51 \cdot 41$	-0.02	51.39

N. B. The observation of the direction to Mount Washington is too weak to be admissible. Circle used in IV positions.

Absiracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1841-1882-- continuerl.

M/ount Pleasant, Oxford Connty, Maine. July 2 to August 16, 1851.75 cm direction theodolite No. I. A. D. Bache, W. P. Trowbridge, and G. W. Dean, observers.

	Ohjects observed.	Kesulting directions from station adjustinent.			Approximate probable errors.	Reductions to sea level.	Kesulting secouds.	Corrections from figureadjustilent.	Final second.
		-	,	$1 /$	11	$1 /$	11	"	11
26	Mount Blue*	0	00	$00 \cdot 000$	± 0.10	+0.043	$00 \cdot 04$	-0.11	$59{ }^{\circ} 93$
27	Sabattus	51	26	$46 \cdot 938$	- 12	+0.006	46 '94	+0.13	$47 \cdot 07$
28	Ragged Mountain		39	$35^{\circ} 737$	- 114	to.007	$35 \cdot 74$	-0.20	$35 \cdot 54$
	Cape Small	83	OI	$37{ }^{\circ} 055$	$0 \cdot 11$.
29	Mount Independence	100	12	$48 \cdot 045$	- 09	-0.008	$48 \cdot 04$	-0. 49	$47 \cdot 55$
	Ossipee	146	17	2.4 .539	$0 \cdot \mathrm{OS}$	
30	Agamenticus	147	14	$47 \cdot 657$	0.14	-0.003	$47 \cdot 65$	+0.77	$45 \cdot 42$
31	Gunstock	192	06	$52 \cdot 382$	- 09	+o.040	$52 \cdot 42$	-0.23	52.19
34	Mount Washington	279	18	$34 \cdot 810$	$0 \cdot 24$	-0.102	34×1	+0.38	$35{ }^{\circ} 9$

Circle used in V positions.
Mount Independence, Cumberland County, Maine. September 2 to October 19, 1849. 75^{cn} direction theodolite No. 1. A. D. Bache and G. W. Dean, observers.

39	Mount Blue	o	∞	00 '000	$\pm 0 \cdot 14$	-0 002	00 ${ }^{\circ}$	+o. 36	00 36
	Azimuth Mark	0	44	36.450	0.16			
40	Sabattus	25	16	$42 \cdot 166$	- 15	to oro	$42 \cdot 18$	+0.02	$42 \cdot 20$
	Cape Small	87	33	O3 0.48	$0 \cdot 16$		\cdots		
36	Agamenticus	207	51	14.438	$0 \cdot 17$	+0.010	14.45	-0.30	${ }^{14} \cdot 15$
	Ossipee	241	49	46 '990	0. 20			
37	Gunstock	253	4^{2}	$01 \cdot 296$	$0 \cdot 20$	+0:023	O1 32	-0.60	$00 \cdot 72$
38	Mount Pleasant	307	28	23 '886	$0 \cdot 13$	-0.033	$23 \cdot 85$	+0.29	2.414

N. B.-Observation of direction to Mount Washington too rough for use.

Circle used in VI positions.
Mount Washington, \dagger Coos County, New Hampshire. Station mark of 1851 and 1860.30^{cm} direction theodolite No. II8. July 31 to September 13, 1882. J. A. McNicol, observer (R. D. Cutts, chief of party).

	Keference Mark	\bigcirc	-	00%	$1 \pm 0 \cdot 07$	\ldots			
33	Mount Blue	46	31	4134	O.II	+0.02	$41 \cdot 36$	-0.13	$41 \cdot 23$
34	Mount Plcasant	115	27	$23^{\circ} 90$	- $\cdot 13$	-0.03	${ }^{2} 3 \cdot 87$	-0.16	23.71
35	Gunstock	174	OS	45×5	$0 \cdot 14$	- 00	45 \% 5	+0.30	4595
	Killington	229	44	$57 \cdot 67$	- ${ }^{\text {I } 7}$				
	Mount Mansfield	274	18	19.08	- '14			

Circle used in Vil positions.

[^18]

Abstracts of horizontal directions as observed and adjusted at the principat stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882-continued.
Aganenticus, York County, Maine. August 30 to October 10, 1847.75^{cm} direction theodolite No. I. A. D. Bache, observer.

Number of directions.	Objects observed.	Resulting direc. tions from station adjustment.			Approximate probahle errors.	Reduc'ions to sea level.	Resulting seconds.	Corrections from figure adjustment.	Final seconds
		-	,	/1	/,	/,	"	"	/1
49	Isle of Shoals	0	-	$00 \cdot 000$	$\pm 0 \cdot 15$		00.00		
	Thompson	16	20	22.029	-. 14	0.000	22.03	+o.39	22.42
	Holt	41	28	13.964	0.17				
50	Unkonoonuc	83	56	21.852	$0 \cdot 17$	+o.OI5	21.87	-0.32	$21 \cdot 55$
	Patuccawa	88	19	23.555	- $\cdot 16$				
51	Gunstock	134	44	12.364	O.13	-0.037	12.33	+0. 02	12.35
52	Mount Pleasant	187	02	$56 \cdot 311$	O. 14	-0.008	$5^{6 \cdot 30}$	-0.16	$56 \cdot 14$
	Ossipee	188	12	$18 \cdot 168$	-.14	-....	
53	Mount Independence	220	23	$53 \cdot 621$	0.14	+0.007	$53 \cdot 63$	+0\%OI	$53 \cdot 64$
	Azimuth Mark	307		25 '880	- 17				

Circle used in V positions.
Gunstock,* Belknap County, New Hampshire, July 11 to August 15, 1860. $75{ }^{\mathrm{cm}}$ direction theodolite No. I. G. W. Dean, observer.

		-	,	"	"	"	"	"	"
	Azimuth Mark	0	-	$00 \cdot 000$	$\pm 0 \cdot 14$		00 00	\ldots	
41	Mount Washington	44	06	$20 \cdot 238$	$0 \cdot 11$	to.014	$20 \cdot 25$.	-0.40	19.85
42	Mount Pleasant	78	13	$23 \cdot 269$	$0 \cdot 11$	+0.034	$23 \cdot 30$	-0. 04.	$23 \cdot 26$
43	MountIndependence	112	33	03.490	$0 \cdot 11$	+o.005	$03 \cdot 50$	to 80	0430
	Ossipee	121	29	$34 \cdot 600$	O.12		
44	Agamenticus	161	02	47320	$0 \cdot 12$	-0.011	47×1	-0.08	$47 \cdot 23$
45	Thompson	192	55	14.997	o. 12	-0.004	14.99	-0.20	14.79
	Patuccawa	202	52	41'124	O.II				
46	Unkonoonuc	237	14	$12 \cdot 358$	$0 \cdot 08$	+o.013	12.37	+o.10	12.47
47	Wachusett	240	56	10 -060	$0 \cdot 09$	+0.023	10.08	-0.40	$09 \cdot 68$
4 S	Monadnock	260	13	$18 \cdot 732$	- 07	+o.054	18*79	+0.15	18.94

Unkonoonuc, \dagger Hillsboro County, New Hampshire. August 29 to October 6, 1848 . 75 cm direction theodolite No. I. A. D. Bache, observer. August 25 to 29, 1860. G. W. Dean, observer. Same instrument.

		\bigcirc	,	"	"	"	"	"	"
	Gunstock	-	-	00 000	$\pm 0 \cdot{ }^{\circ}$	+0.023	$00 \cdot 02$	+o. OI	00. ${ }^{3}$
59	Patuccawa	47	43	13.498	0.12	
	Agamenticus	53	-	$53 \cdot 613$	- '13	+o 008	53. 62	+0.11	$53 \cdot 73$
54	Thompson	103	24	13.952	$0 \cdot 09$	-0.004	13.95	+0.02	13.97
55	Holt and Azimutla								
56	Blue Hill	138	49	II 993	- $\cdot 15$	-0.009	1198	-0.35	11.63
57	Wachusett	187	30	$54^{\cdot 272}$	o 07	+o.027	5430	+0.16	$54 \cdot 46$
58	Monadnock	235	53	$53 \cdot 272$	$0 \cdot 09$	+o.032	53.30	-0.03	$53 \cdot 27$

Prolable error of a single observation (D. and R.) of a direction, $e_{\mathrm{r}}= \pm 0^{\prime \prime} 75$. Circle used in V positions, in 1848 and in 1860.

[^19]Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachuselts base, and the Fire Island base nel, 184.-1882-continned.

Thompson, Essex County, Massachusetts. October 15 to November 24, 1846, and July 27 to August 23, 1847.75^{cma} direction theodolite No. I. A. D. Bache, observer.

Number of directions.

73	Manonet
74	Blue Hill
75	Wachusett
76	Holt
77	Unkonoonuc Patnccawa Gunstock Azinuth Mark, west
	Azimuth Mark, east Aganenticus Isle of Shoals

Resulting directions from station adjustment.			Approximate probable errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	,	11	//	11	11	"	11
0	00	$00 \cdot 000$	$\pm 0 \cdot 18$	-0.002	$00 \cdot 00$	+0.10	$00 \cdot 10$
44	15	19.752	O-11	to OII	19.76	+o.14	19'90
90	52	$38 \cdot 782$	$0 \cdot 12$	+o.010	$38 \cdot 79$	$0 \cdot 00$	$3^{8 \cdot 79}$
104	48	$53 \cdot 491$	$0 \cdot 13$				
129	22	$49 \cdot 757$	- 114	-0.021	4974	+0.11	$49 \cdot 85$
154	45	$22 \cdot 283$	- $\cdot 12$				
161	29	50.943	$0 \cdot 15$	-0.035	$50 \cdot 91$	-0.23	50.68
156	35	$35^{\prime} 45^{8}$	$0 \cdot 19$		\ldots	
190	40	$47 \cdot 449$	-0.29				
191	13	$43^{\circ} \mathrm{O} 2 \mathrm{I}$	$0 \cdot 12$	+0.001	$43{ }^{\circ} \mathrm{O} 2$	-0.14	$42 \cdot 88$
	26	$34 \cdot 383$	O.II \cdot	

Circle used in III positions in IS46.
Wachusell, Worcester County, Massachusetts. September 13 to October $16,1860.75 \mathrm{~cm}$ direction theodolite No. I. A. D. Bache and G. W. Dean, observers.

				\%	\%	\%	\%	,	
	Azimuth Mark	\bigcirc	oo	00 \%00	$\pm 0 \cdot 10$	$00 \cdot 00$
65	Bald Hill	18	32	$53 \cdot 177$	- 20	+o.017	$53 \cdot 19$	+0.07	$53 \cdot 26$
66	Mount Tom	60	52	05 '024	- 34	+o.016	05 . 04	-1.17	$03 \cdot 87$
67	Monadnock	150	3^{8}	43 '050	$0 \cdot 13$	-0.042	43 O1	+0.23	43.24
68	Gunstock	194	20	24 '085	-. 14	to 027	24^{111}	+o.13	$24 \cdot 24$
69	Unkonoonuc	198	\bigcirc	$22 \cdot 750$	$0 \cdot 13$	+o.018	$22 \cdot 77$	-0.07	22.70
	Patuccawa	212	49	54 - 36	$0 \cdot 12$	\ldots		
	Holt	249	13	$40 \cdot 236$	$0 \cdot 15$				
70	Thompson	255	42	$43 \cdot 548$	$0 \cdot 17$	+o \%ol	$43 \cdot 55$	-0.05	43.50
71	Blue Hill	289	46	57.469	-. 13	-0.009	$57 \cdot 46$	-0.02	57.44
72	Beaconpole	320	47	$46 \cdot 873$	- $\cdot 12$	-0.009	$46 \cdot 86$	+0.15	47 or

Circle used in V positions.
Blue Hill, Norfolk County, Massachusetts. September 14 to October 19, $1845.75{ }^{\mathrm{cm}}$ direction theodolite No. I. A. D. Bache, observer.

			-	,	"	"	"	"	"	"
79	Manomet		\bigcirc	∞	$00 \cdot 000$	$\pm 0 \cdot 11$	-0.007	$\overline{59}{ }^{\circ 9}$	+0.14	$00 \cdot 13$
80	Copecut	\therefore	49	17	$23 \cdot 167$	- '14	-0.001	$23 \cdot 17$	to 03	$23 \cdot 20$
81	Great Meadow		67	or	11.77^{8}	$0 \cdot 11$	to 002	1178	-0.01	11.77
82	Beaconpole		103	II	$18 \cdot 606$	$0 \cdot 14$	to 010	18.62	-0.52	$18 \cdot 10$
83	Wachusett		170	05	$20 \cdot 382$	- 12	-0.028	$20 \cdot 35$	+0.20	$20 \cdot 55$
84	Unkonoonuc		209	46	13.547	$0 \cdot 13$	-0.018	13.53	+0.23	$13 \cdot 76$
	Holt		234	4^{8}	$06 \cdot 131$	$0 \cdot 10$			
	Azimuth Mark		236	05	$03 \cdot 497$	- 09			\ldots
85	Thompson		269	23	$57 \cdot 425$	$0 \cdot 10$	+0.005	57×4	-0.07	$57 \cdot 36$

Circle used in VI positions.

Abstracts of horizontal directions as observed and adjusted at the principal stations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1844-1882-continued.

Great Meadow, Bristol County, Massachusetts. May 7 to $27,1845.75{ }^{\mathrm{cm}}$ direction theodolite No. I. A. D. Bache, observer.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approximate probable errors.	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	"	"	//	"	"	"
104	Copecut	o	-	$00 \cdot 000$	$\pm 0 \cdot 14$	-0.006	$\overline{59} 9$	-0.28	$\overline{59}{ }^{17}$
IoI	Beaconpole	160	29	59 '351	$0 \cdot 15$	-0.009	59 '34	+0.28	$59 \cdot 62$
102	Massachusetts North								
	Base	219		$14 \cdot 351$	- $\cdot 19$	- 000	14.35	-0. 24	14.11
103	Blue Hill	229	39	39 '0So	0.14	to 005	39. 08	+0.20	39.28

Copecut, Bristol County, Massachusetts. September 7 to October 8, 1844. 75^{cns} direction theodolite No. I. A. D. Bache, observer.

92	Blue Hill and Azi-	-	,	"	"	"	"	"	"
	muth Mark	0	-	00.000	$\pm 0 \cdot 13$	-0.002	$00 \cdot 0$	-0.19	$\overline{59}{ }^{\circ 1}$
93	Manomet	64	O8	$37 \cdot 851$	0.16	to. 006	$37 \cdot 86$	+o.ol	$37 \cdot 87$
	Indian	140	03	$44 \cdot 563$	$0 \cdot 15$	\ldots	
90	Beaconpole	318	or	-8.556	- ${ }^{1} 13$	-0.010	$08 \cdot 55$	-0.17	$08 \cdot 38$
91	Great Meadow	328	04	$06 \cdot 825$	$0 \cdot 15$	-0.005	$06 \cdot 82$	+o 39	07-21
Circle used in III positions.									

Manomet, Plymouth County, Massachusetts. August 25 to September 11 , 1845.75^{cm} direction theodolite No. I. A. D. Bache, observer.

		-	,	"	"	/	11	"	/
	Provincetown	-	∞	$00 \cdot 000$	$\pm 0 \cdot 11$	00 00	...	
	Indian	120	13	$21^{\circ} 474$	- 'ro			
86	Copecut	172	29	$05 \cdot 212$	- 17	+o.006	05 ${ }^{22}$	+o.07	$05 \cdot 29$
87	Beaconfole	209	03	$27^{\circ} 009$	0.16	-0.002	$27^{\circ} \mathrm{O}$	+0.10	27^{111}
88	Blue Hill	239	03	$09 \cdot 898$	- ${ }^{\text {Io }}$	-0 OII	09.89	-0.08	09 81
89	Thompson	284	II	54 745	O '13	-o ${ }^{\text {OOI }}$	54 '74	-0.06	$54 \cdot 68$

Circle used in VI positions.
Massachusetts South Base, Bristol County, Massachusetts. September 9 to 17, 1845. 25^{cm} repeating theodolite No. II. E. Blunt, observer.

Massachusetls North Base, Bristol County, Massachusetts. September ig to 29, 1845. 25 cm repeating theodolite No. II. E. Blunt, observer.

107				"	"	"	"	"	"
	Great Meadow	0	∞	00 '000	$\pm 0 \cdot 35$	$0 \cdot 000$	$00 \cdot 00$	+0.26	$00 \cdot 26$
108	Massachusetts South								
	Base	25	16	31.173	- 35	to 002	$31 \cdot 18$	-0.09	31.09
109	Beaconpole	70	∞	29.812	$0 \cdot 35$	to 006	$29 \cdot 82$	-0.17	29.65

Abstracts of horizonlal directions as observed and adjusted at the principal stations between the Epping base net, the Massachuselts base, and the Fire Island base net, 1844-1882-continued.
Beaconpote, Providence County, Rhode Island. October ig to November 23, 1844. 75^{cu} direction theodolite No. I. A. D. Bache, observer.

Number of directions.	Objects observed.	Resulting direc tions from - station adjustwent.			Approxi mate probable errors.	Reductions to sea level.	Resulting seconds.	Corrections froul figure adjustment	$\begin{aligned} & \text { Final } \\ & \text { secouds } \end{aligned}$
		-	,	/	"	"	"	,	/1
94	Wach usett	-	-	$00 \cdot 000$	$\pm 0: 11$	-0.034	$\stackrel{\text { 59 } 97}{ }$	-0.26	$\overline{59} 71$
	Azinnuth Mark	. 35	12	$22 \cdot 656$	$0 \cdot 16$				
95	Blue Hill	82	O5	13.351	$0 \cdot 11$	+0.012	$13 \cdot 36$	+0.40	$13 \cdot 76$
96	Massachusetts North								
	Base	105	44	12.597	0.15	+o 002	$12 \cdot 60$	to ${ }^{1} 7$	$12 \cdot 77$
97	Manomet	128	54	IS ${ }^{252}$	$0 \cdot 16$	-0.001	$18 \cdot 25$	-0.28	1797
98	Great Meadow	${ }_{156}$	45	30.025	$0 \cdot 09$	-0.005	30%	-0.15	29. 87
99	Massachusetts South								
	Base	159	50	$57 \cdot 84.3$	$0 \cdot 11$	-0.002	$57 \cdot 84$	-0.03	57.8 I
100	Copecut	166	12	31431	- $\cdot 10$	-0.006	31.42	+o.13	3155

Circle used in III positions.
Monadnock,* Cheshire County, New Hampshire. July 2 I to August $15,186 \mathrm{I} .75^{\mathrm{cms}}$ direction theodolite No. I. G. W. Dean, observer.

60	Gunstock	0	00	00.000	± 0.10	+0.042	00.04	-0.14	59.90
61	Unkonoonuc	32	54	52.457	0.19	+0.014	52.47	0.00	52.47
62	Wachusett	117	01	19.427	0.10	-0.026	19.40	-0.12	19.38
63	Bald Hinl	145	06	44.724	0.09	+0.204	44.73	+0.35	45.08
64	Mount Tom1	173	46	06.971	0.11	+0.019	06.99	-0.08	06.91

Probable error of a single observation (1). and R.) of a direction, $\varepsilon_{1}= \pm o^{\prime \prime} .67$. Circle used in V positions.

Mount Tom, \dagger Tolland County, Connecticut. July 11 to August $16,1862.75{ }^{\mathrm{cm}}$ direction theordolite No. I. G. W. Dean and R. F. Halter, observers.

115		-	,	"	"	"	"	"	/"
	Monadıock	-	-	00.000	$\pm 0 \cdot 10$	+0.052	00 05	to. 12	$00 \cdot 17$
	Azinuth Mark	4	45	$13 \cdot 052$	- 0 O				
116	Wachusett	33	28	40 * 690	$\bigcirc{ }^{\circ} \mathrm{O}$	+o.027	40. 72	+0.30	41.02
117	lald Hill	95	52	53 '979	- 08	-0.023	$53 \cdot 96$	$\bigcirc \cdot 0$	53.96
118	Box Hill	129	18	$15{ }^{\circ} \mathrm{4} 7$	- 09	-0.009	15 \% 4	-0.13	$14 \% 1$
119	Sandford	163	34	58.584	$0 \cdot 12$	+0.009	$58 \cdot 59$	-0.33	$58 \cdot 26$

Circle used in V positions.
Bald Hill, Tolland County, Connecticut. September 12 to 25, 186r, and May 22 to June 7, 1864. 75^{cma} direction theodolite No. I. G. W.' Dean, observer.

110	Box Hill	\bigcirc	00	$00 \cdot 000$	$\pm 0 \cdot 08$	- +o.ors	$00 \cdot 02$	+0.21	$00 \cdot 23$
III	Ivy	34	47	$46 \cdot 780$, 0.12	+o 007	$46^{\prime} 79$	+0.2S	$47^{\circ} 07$
112	Mount Ton	80	50	$44 \cdot 995$	- $\cdot 10$	-0.022	$44^{\prime} 97$	-0.05	$44^{\prime} 92$
113	Monadnock	136	18	$39^{\prime} 740$	- 114	+0.009	$39^{\prime 7} 75$	-0.6I	$39^{\circ} 14$
114	Wachusett	156	07	$28 \cdot 560$	- $\cdot 12$	+o.02S	$28 \cdot 59$	+o.1I	$28 \cdot 70$

Circle used in V positions in 1861 and 1864.

[^20]Abstracts of horizonlal directions as observed and adjusted at the principal slations between the Epping base net, the Massachusetts base, and the Fire Island base net, 1847-1882-continued.

Box Hilt, Tolland County, Connecticut. October 9 to $28,186 \mathrm{I} .75^{\mathrm{cm}}$ direction theodolite No. I. - G. W. Dean, observer.

Number of directions.	Objects observed.	Resulting directions from station adjustment.			Approximate probableerrors.	Reductions to sea level.	Resulting seconds.	Corrections from figure adjustment.	Final seconds.
		0	,	11	/1	"	"	/	11
120	Sandford	0		$00 \cdot 000$	$\pm 0 \cdot 13$	+0.017	00 ${ }^{\circ} \mathrm{O} 2$	+o.10	00.12
121	Ivy	49	35	. $39 \cdot 88 \mathrm{I}$	O'II	-0.007	$39 \cdot 87$	-0.08	$39 \cdot 78$
122	Mount Tom	114	15	$55^{\prime} 751$	$0 \cdot 11$	-0.013	$55 \cdot 74$	+0.28	56 '02
123	Bald Hill	179	59	54×87	- $\cdot 10$	+o.024	$54 \cdot 11$	-0.28	$53 \cdot S_{3}$

Ivy, Litchfield County, Connecticut. June 29 to August $12,1863.75{ }^{\mathrm{cm}}$ direction theodolite No. I. G. W. Dean, observer.

		-	,	"	/	/	"	/1	"
124	Bald Hill	0	©	$00 \cdot 000$	± 0.08	+0.007	00 OI	-0.04	59'97
125	Box Hill	14	48	-2 ${ }^{\text {\% }} 805$	$0 \cdot 09$	-0.004	O2.80	-0.13	$02 \cdot 67$
126	Sandford	7 I	09	$55 \cdot 842$	- 09	-0.013	$55 \cdot 83$	-0.12	$55^{7} 7$
127	Wooster	118	so	$47 \cdot 463$	0.12	to ol2	$47 \cdot 48$	+0.33	47 \% 1

Sandford, New Haven County, Connecticut. September 9 to November 4, 1862. 75^{cm} direction theodolite No. I. G. W. Dean, observer.

Number of directions.	Objects observed.	Kesulting directions from station adjust. ment.			Approxinate probable error.	Reduction to sea level.	Corrected directions.	Corrections from net adjustment.	Result. ing directions.	Corrections -from fig. tre adjustment.	Final seconds.
		0	,	"	"	11	"	"	"	"	"
	Ruland	0	©0	00.000	± 0.11	-0.264	$59^{* 74}$	
	West Hills**	23		$\begin{array}{r} 41.547 \\ +0.008 \end{array}$	$0 \cdot 12$	+0.482	$42 \cdot 04$
	Tashua	42		58.413	$0 \cdot 12$	+0.011	58.424	-0.330	$5^{8} 09$	
	Wooster	69	O_{3}	33^{1113}	0.24	+0.009	$33 \cdot 122$	+0.356	$33 \cdot 48$	
	Azimuth Mark		20	30.246	0.15	\ldots
128	Ivy		. 34	$47 \cdot 646$	0.15	-0.024	$47 \cdot 62$	+0.25	47.37
129	Mount Tom		∞	$54 \cdot 581$	0.12	+0.012	54 '59	+0.11	$54 \cdot 70$
130	Box Hill	221	37	22.062	0.10	+0.016	22.08	+0.02	$22 \cdot 10$

Circle used in V positions.
Wooster, Fairfield County, Connecticut. July 14 to October $10,1864.75{ }^{\mathrm{cm}}$ direction theodolite No. I. G. W. Dean, observer.

		0	1	"	"	"	"	"	"	"	"
131	Ivy	0	-	$00 \cdot 000$	± 0.07	+0.020	$00^{\circ} \mathrm{O} 2$	-0.29	$\overline{5973}$
	Sandford	53	47	$59 \cdot 208$	0.07	+0.009	59.217	-0.069	$59^{\circ} 15$. \cdot.	
	Tashua	95	57	$47 \cdot 652$	0.08	-0.009	47.643	+0.285	$47^{\circ} 93$. . .	
	Ruland	124	51	45 '93 ${ }^{\text {8 }}$	0.08	\ldots	+0.005	45 '94	. \cdot
	West Hills*	154	10	38.493 to.032	0.07	-0.147	$3^{8} 3^{8}$	

Circle used in V positions.
*The correction to direction of West Hills is for eccentricity.

Observation equations.

I	$0=-0.45-(1)+(3)-(14)+(15)$
II	$0=+0.46-\quad(2)+(4)-(5)+(6)$
III	$0=-0.38-(1)+(2)-(6)+(7)-(13)+(15)$
IV	$0=+0.09-(7)+(9)-(12)+(13)-(16)+(17)$
V	$0=-0.08-(7)+(8)-(11)+(13)-(24)+(25)$
VI	$0=-0.66-(8)+(9)-(16)+(18)-(23)+(24)$
VII	$0=+0 \cdot 49-(10)+(12)-(17)+(20)-(26)+(28)$
VIII	$0=+0 \cdot 07-(18)+(20)-(22)+(23)-(26)+(27)$
IX	$0=+0.85-(21)+(22)-(27)+(29)-(38)+(40)$
X	$0=+0 \cdot 09-(19)+(20)-(26)+(29)-(38)+(39)$
XI	$0=-1 \cdot 42-(31)+(32)-(34)+(35)-(41)+(42)$
XII	$0=+1 \cdot 20-(36)+(37)-(43)+(44)-(51)+(53)$
XIII	$0=-2 \cdot 02-(29)+(30)-\left(3^{6}\right)+\left(3^{8}\right)-(52)+(53)$
XIV	$\mathrm{o}=+\mathrm{I} \cdot 22-(30)+(3 \mathrm{I})-(42)+(44)-(51)+(52)$
XV	$0=+0 \cdot 39-(44)+(45)-(49)+(51)-(77)+(78)$
XVI	$0=+105-(49)+(50)-(54)+(55)-(76)+(78)$
XVII	$0=+0.03-(45)+(46)+(55)-(59)-(76)+(77)$
XVIII	$0=-0.27-(55)+(57)-(69)+(70)-(75)+(76)$
XIX	$0=+0.61-(45)+(47)-(68)+(70)-(75)+(77)$
XX	$0=-0 \cdot 23-(46)+(48)-(58)+(59)-(60)+(61)$
XXI	$0=+0.61-(57)+(58)-(61)+(62)-(67)+(69)$
XXII	$0=+0.69-(55)+(56)-(74)+(76)-(84)+(85)$
XXIII	$0=+0.37-(70)+(71)-(74)+(75)-(83)+(85)$
XXIV	$0=-1{ }^{\circ} 55-(71)+(72)-(82)+(83)-(94)+(95)$
XXV	$0=-0.25-(73)+(74)+(79)-(85)-(88)+(89)$
xXVI	$0=-0.62-(86)+(87)-(90)+(93)-(97)+(100)$
XXVII	$0=+0.84-(80)+(82)-(90)+\left(9^{2}\right)-(95)+(100)$
XXVIII	$0=+0.07-(79)+(80)-(86)+(88)-\left(9^{2}\right)+(93)$
XXIX	$0=+1 \cdot 10-(80)+(81)-(91)+(92)--(103)+(104)$
XXX	$\mathrm{o}=-\mathrm{I} \cdot 4 \mathrm{I}-(90)+(9 \mathrm{I})-(98)+(100)+(101)-(104)$
XXXI	$0=+1 \cdot 28-(96)+(98)-(101)+(102)-(107)+(109)$
XXXII	$\mathrm{o}=-\mathrm{O} \cdot \mathrm{II}-(96)+(99)-(105)+(\mathrm{IO6})-(\mathrm{IOS})+(\mathrm{IO9})$
XXXIII	$0=-162-(62)+(64)-(66)+(67)-(115)+(116)$
XXXIV	$0=+1 \cdot 10-(63)+(64)-(112)+(113)-(115)+(117)$
XxXV	$\mathrm{o}=+\mathrm{I} 37-(65)+(66)-(112)+(114)-(116)+(117)$
XXXVI	$0=+0.96-(110)+(112)-(117)+(118)-(122)+(123)$
xXXVII	$0=+0 \cdot 22-(110)+(111)-(121)+(123)-(124)+(125)$
XxxVIII	$\mathrm{o}=+\mathrm{o} \cdot 1 \mathrm{II}-(\mathrm{I} 18)+(119)-(120)+(122)-(129)+(130)$
XXXIX	$0=+0 \cdot 41-(120)+(121)-(125)+(126)-(128)+(130)$
XI,	$0=-0.99-(126)+(127)+(128)-(131)$
XLI	$0=-3 \cdot 8-2 \cdot 77(1)+3 \cdot 39(2)+4 \cdot 29(3)-3 \cdot 35(4)-1 \cdot 43(13)+1.89(14)-0.46(15)$
XLII	$\begin{aligned} 0= & -1 \cdot 7+0 \cdot 21(11)+1 \cdot 28(12)-1 \cdot 49(13)-3 \cdot 30(16)+4 \cdot 14(17)-0 \cdot 84(18)-0 \cdot 79(23) \\ & +4 \cdot 14(24)-3 \cdot 35(25) \end{aligned}$

Observation equations-continued.

XLIII	$\begin{aligned} 0= & -1.82+4.586(10)-4.864(11)+0.278(12)+0.240(17)-0.455(18)+0.215(20) \\ & +0.168(26)-3.918(27)+3.750(28) \end{aligned}$
XLIV	$\begin{aligned} 0= & -0 \cdot 8-4 \cdot 70(18)+6 \cdot 85(19)-2 \cdot 15(20)-1 \cdot 68(26)+3 \cdot 53(27)-1 \cdot 85(29)-0 \cdot 46(38) \\ & +4 \cdot 46(39)-4 \cdot 00(40) \end{aligned}$
XLV	$\begin{aligned} 0= & +1 \cdot 7-4 \cdot 08(19)+4 \cdot 08(20)+3 \cdot 59(26)-3 \cdot 59(32)-4 \cdot 40(33)+5 \cdot 68(34)-1 \cdot 28(35) \\ & -1 \cdot 54(37)+3 \cdot 15(38)-1 \cdot 61(39)-3 \cdot 10(41)+6 \cdot 18(42)-3 \cdot 08(43) \end{aligned}$
XLVI	$\begin{aligned} 0= & -6 \cdot 2-2 \cdot 03(29)+1 \cdot 96(30)+0 \cdot 07(31)-3 \cdot 08(42)+4 \cdot 94(43)-1 \cdot 86(44)-0 \cdot 16(51) \\ & +3 \cdot 20(52)-3 \cdot 04(53) \end{aligned}$
XIVII	$\begin{aligned} \cdot 0= & +0 \cdot 8-2 \cdot 87(44)+3 \cdot 39(45)-0 \cdot 52(46)+3 \cdot 32(54)-1 \cdot 73(55)-1 \cdot 59(59)-1 \cdot 13(76) \\ & +3 \cdot 69(77)-2 \cdot 56(78) \end{aligned}$
XLVIII	$\begin{aligned} 0= & -1 \cdot 23-0.216(45)+3.472(46)-3.256(47)-3 \cdot 156(68)+3 \cdot 290(69)-0.134(70) \\ & -0.265(75)+0.600(76)-0.335(77) \end{aligned}$
XLIX	$\begin{aligned} 0= & -1 \cdot 7-2 \cdot 16(45)+7 \cdot 12(46)-4 \cdot 96(48)+3 \cdot 25(60)+3 \cdot 47(61)-0 \cdot 22(62)-1 \cdot 93(67) \\ & +3 \cdot 27(69)-1 \cdot 34(70)-2 \cdot 65(75)+6 \cdot 00(76)-3 \cdot 35(77) \end{aligned}$
L.	$\begin{aligned} 0= & +2 \cdot 4-2 \cdot 98(55)+4 \cdot 83(56)-1 \cdot 85(57)+0 \cdot 06(69)+3 \cdot 11(70)-3 \cdot 17(71)-1 \cdot 81(74) \\ & +1 \cdot 99(75)-0 \cdot 18(76) \end{aligned}$
LI	$\begin{aligned} 0= & -0 \cdot 7-3 \cdot 11(70)+6 \cdot 61(71)-3 \cdot 50(72)-2 \cdot 16(73)+4 \cdot 15(74)-1 \cdot 99(75)-3 \cdot 65(87) . \\ & +5 \cdot 74(88)-2 \cdot 09(89)-0 \cdot 29(94)+2 \cdot 27(95)-1 \cdot 98(97) \end{aligned}$
LII	$\begin{aligned} 0= & -2 \cdot 0+0.49(79)+1 \cdot 54(80)-2 \cdot 03(82)-2 \cdot 84(86)+6 \cdot 49(87)-3 \cdot 65(88)-2 \cdot 95(90) \\ & +2 \cdot 34(92)+0 \cdot 61(93) \end{aligned}$
LIII	$\begin{aligned} 0= & -0.61-0.659(80)+0.947(81)-0.288(82)-1 \cdot 188(90)+1.526(91)-0.338(92) \\ & -0.058(95)+1.323(98)-1 \cdot 265(100) . \end{aligned}$
LIV	$\begin{aligned} 0= & +1 \cdot 4-2 \cdot 56(62)+3 \cdot 94(63)-1 \cdot 38(64)-0.55(112)+5 \cdot 84(113)-5 \cdot 29(114)-3 \cdot 18(115) \\ & +4 \cdot 28(116)-1 \cdot 10(117) \end{aligned}$
LV	$\begin{aligned} 0= & -1 \cdot 0-2 \cdot 69(110)+3.03(111)-0.34(112)-3 \cdot 19(117)+6.28(118)-3.09(119) \\ & +7.97(124)-9 \cdot 37(125)+1 \cdot 40(126)+0.60(128)-3.44(129)+2 \cdot 84(130) \end{aligned}$
LVI	
LVII	$\begin{aligned} 0= & +2.6+1.85(56)-3.72(57)+1.87(58)+0.22(61)-1.60(62)+1.38(64) \\ & -2.31(65)+2.31(66)+3.50(71)-3.50(72)+2.88(81)-2.88(82) \\ & -2.54(83)+2.54(84)-0.29(94)+0.29(95)+1.52(96)-1.52(99) \\ & +0.48(101)-1 \cdot 28(102)+0.80(103)-0.33(105)+0.33(106)-0.76(107) \\ & +0.76(109)-0.34(110)+0.89(112)-0.55(114)+3.18(115)-3.18(116) \\ & -3.09(118)+3.09(119)-1.79(120)+1.79(121)+0.95(122)-0.95(123) \\ & +1.40(125)-3.32(126)+1.92(127)+3.44(129)-3.44(130)+1.54(131) \end{aligned}$

Correlate equations.

(I) $=0.8\left(-\mathrm{C}_{1}-\mathrm{C}_{3}-2 \cdot{ }_{77} \mathrm{C}_{48}-{ }^{\circ}{ }^{\prime} 77 \mathrm{C}_{56}\right)$
$(2)=0 \cdot 9\left(-\mathrm{C}_{2}+\mathrm{C}_{3}+3 \cdot 39 \mathrm{C}_{41}+2{ }^{\circ} 77 \mathrm{C}_{56}\right)$
(3) $=0 \cdot 9\left(+\mathrm{C}_{1}+4 \cdot 29 \mathrm{C}_{41}\right)$
(4) $=1 \cdot 1\left(+\mathrm{C}_{2}-3 \cdot 35 \mathrm{C}_{48}+0.94 \mathrm{C}_{56}\right)$
(5) $=0 \cdot 8\left(-\mathrm{C}_{2}+2 \cdot 46 \mathrm{C}_{56}\right)$
(6) $=0 \cdot 8\left(+\mathrm{C}_{2}-\mathrm{C}_{3}-2 \cdot 46 \mathrm{C}_{56}\right)$
(7) $=0 \cdot 8\left(+C_{3}-C_{4}-C_{5}\right)$
(8) $=0.9\left(+\mathrm{C}_{5}-\mathrm{C}_{6}-2 \cdot 3 \mathrm{I} \mathrm{C}_{56}\right)$
(9) $=0.9\left(+\mathrm{C}_{4}+\mathrm{C}_{6}+2 \cdot 3 \mathrm{IC}_{56}\right)$
(ro) $=1 \cdot 2\left(-\mathrm{C}_{7}+4 \cdot 586 \mathrm{C}_{43}\right)$
(II) $=1 \cdot 1\left(-\mathrm{C}_{5}+0 \cdot 2 \mathrm{IC}_{42}-4.864 \mathrm{C}_{43}+0 \cdot 2 \mathrm{IC}_{56}\right)$
(12) $=0.9\left(-\mathrm{C}_{4}+\mathrm{C}_{7}+1 \cdot 28 \mathrm{C}_{42}+0 \cdot{ }_{27} \mathrm{SC}_{43}\right)$
(13) $=0 \cdot 8\left(-\mathrm{C}_{3}+\mathrm{C}_{4}+\mathrm{C}_{5}-1 \cdot 43 \mathrm{C}_{41}-\mathrm{I}^{\prime} \cdot 49 \mathrm{C}_{42}+0 \cdot 25 \mathrm{C}_{56}\right)$
(14) $=1 \cdot 1\left(-\mathrm{C}_{1}+1{ }^{1} 89 \mathrm{C}_{41}\right)$
(15) $=0.8\left(+\mathrm{C}_{1}+\mathrm{C}_{3}-\mathrm{O} .46 \mathrm{C}_{43}-\mathrm{O} .46 \mathrm{C}_{56}\right)$
(16) $=\mathrm{I}^{\circ} \cdot 1\left(-\mathrm{C}_{4}-\mathrm{C}_{6}-3 \cdot 30 \mathrm{C}_{42}+\mathrm{O} \cdot{ }_{4} \mathrm{C}_{56}\right)$
(17) $=1 \cdot 0\left(+\mathrm{C}_{4}-\mathrm{C}_{7}+4 \cdot 14 \mathrm{C}_{82}+0 \cdot{ }^{240 \mathrm{C}_{6}}\right)$
(18) $=1 \cdot 0\left(+\mathrm{C}_{6}-\mathrm{C}_{8}-0 \cdot 84 \mathrm{C}_{42}-0.455 \mathrm{C}_{43}-4.70 \mathrm{C}_{44}-2 \cdot 99 \mathrm{C}_{56}\right)$
(19) $=2 \cdot 0\left(-\mathrm{C}_{10}+6 \cdot 85 \mathrm{C}_{44}-4 \cdot{ }^{\circ} \mathrm{OSC}_{45}\right)$
(20) $=1 \cdot 0\left(+\mathrm{C}_{7}+\mathrm{C}_{8}+\mathrm{C}_{50}+0.215 \mathrm{C}_{43}-2{ }^{\prime}{ }^{15} \mathrm{C}_{44}+4{ }^{\circ} 08 \mathrm{C}_{45}+2 \cdot{ }^{15} \mathrm{C}_{56}\right)$
(21) $=0.9\left(-\mathrm{C}_{9}-1 \cdot 56 \mathrm{C}_{56}\right)$
(22) $=0.9\left(-\mathrm{C}_{8}+\mathrm{C}_{9}+\mathrm{I} \cdot 56 \mathrm{C}_{56}\right)$
(23) $=0 \cdot 8\left(-\mathrm{C}_{6}+\mathrm{C}_{8}--\mathrm{o} \cdot 79 \mathrm{C}_{42}\right)$
(24) $=1 \cdot 1\left(-\mathrm{C}_{5}+\mathrm{C}_{6}+4 \cdot 14 \mathrm{C}_{42}+3 \cdot 35 \mathrm{C}_{56}\right)$
(25) $=1 \cdot 1\left(+\mathrm{C}_{5}-3 \cdot 35 \mathrm{C}_{82}-3 \cdot 35 \mathrm{C}_{56}\right)$
(26) $=0 \cdot 8\left(-\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{C}_{10}+0 \cdot 168 \mathrm{C}_{43}-\mathrm{I} \cdot 68 \mathrm{C}_{44}+3 \cdot 59 \mathrm{C}_{45}+\mathrm{I} \cdot 68 \mathrm{C}_{56}\right)$
(27) $=0.9\left(+\mathrm{C}_{8}-\mathrm{C}_{9}-3.918 \mathrm{C}_{48}+3 \cdot 53 \mathrm{C}_{48}-1 \cdot 68 \mathrm{C}_{56}\right)$
(28) $=0.9\left(+\mathrm{C}_{7}+3^{\circ} 75^{\circ} \mathrm{C}_{43}\right)$
(29) $=0 \cdot 8\left(+\mathrm{C}_{9}+\mathrm{C}_{10}-\mathrm{C}_{13}-1 \cdot 8_{5} \mathrm{C}_{44}-2 \cdot{ }_{3} \mathrm{C}_{46}+0.07 \mathrm{C}_{56}\right)$
(30) $=0.9\left(+\mathrm{C}_{13}-\mathrm{C}_{44}+\mathrm{C}^{\circ} 96 \mathrm{C}_{46}\right)$
(31) $=0 \cdot 8\left(-\mathrm{C}_{11}+\mathrm{C}_{14}+0.07 \mathrm{C}_{56}-0.07 \mathrm{C}_{56}\right)$
(32) $=1 \cdot 5\left(+\mathrm{C}_{11} \cdot-3 \cdot 59 \mathrm{C}_{45}\right)$
(33) $=0.8\left(-4 \cdot 40 \mathrm{C}_{45}\right)$
(34) $=0.9\left(-\mathrm{C}_{11}+5^{\circ} 68 \mathrm{C}_{45}\right)$
(35) $=0.9\left(+\mathrm{C}_{55}-\mathrm{I}^{\circ} 28 \mathrm{C}_{45}\right)$
(36) $=1 \cdot 1\left(-C_{12}-C_{13}-2 \cdot 04 C_{56}\right)$
(37) $=1 \cdot 3\left(+\mathrm{C}_{12}-1 \cdot 54 \mathrm{C}_{45}+2 \cdot 04 \mathrm{C}_{56}\right)$
(38) $=0.9\left(-\mathrm{C}_{9}-\mathrm{C}_{50}+\mathrm{C}_{53}-\mathrm{O}^{\circ} 46 \mathrm{C}_{44}+3 \cdot 15 \mathrm{C}_{45}+0^{\circ} 46 \mathrm{C}_{56}\right)$
(39) $=0.9\left(+\mathrm{C}_{10}+4.46 \mathrm{C}_{44}-\mathrm{I}^{\circ} 6 \mathrm{IC}_{45}\right)$
$(40)=\mathrm{I}^{\circ} \mathrm{O}\left(+\mathrm{C}_{9}-4^{\circ} 00 \mathrm{C}_{44}-\mathrm{O}^{\circ} 46 \mathrm{C}_{56}\right)$

Correlate equations-continued.

$$
\begin{aligned}
& \begin{array}{l}
\text { Corrections. } \\
\begin{array}{c}
\text { Reciprocal } \\
\text { of weight } \mathrm{I} / \mathrm{p}
\end{array}
\end{array} \\
& (4 \mathrm{I})=0 \cdot 8\left(-\mathrm{C}_{12}-3^{\prime} \cdot \mathrm{IOC}_{45}\right) \\
& \text { (42) }=0.8\left(+\mathrm{C}_{11}-\mathrm{C}_{14}+6.18 \mathrm{C}_{45}-3^{\circ} 0 . \mathrm{SC}_{46}+3^{.08 C_{56}}\right) \\
& \text { (43) }=0.8\left(-\mathrm{C}_{52}-3.08 \mathrm{C}_{45}+4^{\circ} 94 \mathrm{C}_{46}-3 \cdot{ }^{\circ} \mathrm{OSC}_{56}\right) \\
& \text { (44) }=0.9\left(+\mathrm{C}_{12}+\mathrm{C}_{14}-\mathrm{C}_{15}-\mathrm{I} \cdot 86 \mathrm{C}_{46}-2 \cdot \mathrm{~S}_{7} \mathrm{C}_{47}-\mathrm{O}_{5}{ }^{2} \mathrm{C}_{56}\right) \\
& \text { (45) }=0.9\left(\uparrow \mathrm{C}_{15}-\mathrm{C}_{17}-\mathrm{C}_{19}+3.39 \mathrm{C}_{47}-0.216 \mathrm{C}_{48}-\mathbf{2}^{\cdot 16 \mathrm{C}_{49}}\right. \text {) } \\
& \text { (46) }=0.7\left(+\mathrm{C}_{57}-\mathrm{C}_{20}-0^{\circ}{ }_{52} \mathrm{C}_{47}+3^{\circ} 472 \mathrm{C}_{48}+7^{\circ} 12 \mathrm{C}_{49}+0^{\circ} 5^{2} \mathrm{C}_{56}\right) \\
& \text { (47) }=0.8\left(+\mathrm{C}_{19}-3.256 \mathrm{C}_{48}\right) \\
& (48)=0 \cdot 7\left(+\mathrm{C}_{20}-4 \cdot 96 \mathrm{C}_{49}\right) \\
& \text { (49) }=0.9\left(-\mathrm{C}_{15}-\mathrm{C}_{16}-0.86 \mathrm{C}_{56}\right) \\
& \text { (50) }=1 \cdot 1\left(+\mathrm{C}_{16}+0 \cdot 86 \mathrm{C}_{56}\right) \\
& \text { (51) }=0^{\circ} 9\left(-\mathrm{C}_{12}-\mathrm{C}_{14}+\mathrm{C}_{55}-0^{\circ} 16 \mathrm{C}_{46}+0^{\circ}{ }^{16} \mathrm{C}_{56}\right) \\
& \text { (52) }=0.9\left(-\mathrm{C}_{23}+\mathrm{C}_{24}+3^{.} 20 \mathrm{C}_{86}\right) \\
& \text { (53) }=0.9\left(+\mathrm{C}_{12}+\mathrm{C}_{13}-3^{\circ} \mathrm{O}_{4} \mathrm{C}_{46}-\mathrm{O}^{\circ} \cdot{ }_{16} \mathrm{C}_{56}\right) \\
& (54)=0.9\left(-\mathrm{C}_{16}+3.32 \mathrm{C}_{47}-\mathrm{I}^{\circ} 59 \mathrm{C}_{56}\right) \\
& \text { (55) }=0.8\left(+\mathrm{C}_{16}+\mathrm{C}_{17}-\mathrm{C}_{58}-\mathrm{C}_{23}-1{ }^{1} 73 \mathrm{C}_{47}-2.98 \mathrm{C}_{50}\right) \\
& \text { (56) }=\mathrm{I} \cdot \mathrm{o}\left(+\mathrm{C}_{22}+4 \cdot 83 \mathrm{C}_{50}-\mathrm{I} \cdot 85 \mathrm{C}_{56}+\mathrm{I} \cdot 85 \mathrm{C}_{57}\right) \\
& \text { (57) }=0 \cdot 7\left(+\mathrm{C}_{28}-\mathrm{C}_{28}-\mathrm{I} \cdot 85 \mathrm{C}_{50}+\mathrm{I} \cdot{ }_{55} \mathrm{C}_{56}-3 \cdot 72 \mathrm{C}_{57}\right) \\
& (58)=0 \cdot 8\left(-C_{30}+C_{28}+1 \cdot 87 C_{57}\right) \\
& \text { (59) }=0^{\circ} 7\left(-\mathrm{C}_{17}+\mathrm{C}_{20}-\mathrm{I}^{\circ} 59 \mathrm{C}_{47}+\mathrm{I}^{\circ} 59 \mathrm{C}_{56}\right) \\
& \text { (60) }=0.8\left(-\mathrm{C}_{20}-3^{.25} \mathrm{C}_{49}\right) \\
& \text { (6I) }=0.8\left(+\mathrm{C}_{20}-\mathrm{C}_{21}+3{ }^{\circ} 47 \mathrm{C}_{49}+0^{\circ} 22 \mathrm{C}_{57}\right) \\
& \text { (62) }=0.8\left(+\mathrm{C}_{21}-\mathrm{C}_{33}-0.22 \mathrm{C}_{49}-2 \cdot 56 \mathrm{C}_{54}-\mathrm{I} \cdot 60 \mathrm{C}_{57}\right) \\
& (63)=0.8\left(-\mathrm{C}_{34}+3.94 \mathrm{C}_{54}\right) \\
& \text { (64) }=0.8\left(+\mathrm{C}_{33}+\mathrm{C}_{34}-\mathrm{I}^{\prime} 38 \mathrm{C}_{54}+\mathrm{I}^{\circ} 38 \mathrm{C}_{57}\right) \\
& \text { (65) }=1 \cdot 3\left(-\mathrm{C}_{35}-2 \cdot 3 \mathrm{rC}_{57}\right) \\
& \text { (66) }=2.5\left(-\mathrm{C}_{33}+\mathrm{C}_{35}+2.3 \mathrm{I}_{57}\right) \\
& \text { (67) }=0.9\left(-\mathrm{C}_{21}+\mathrm{C}_{33}-1.93 \mathrm{C}_{49}\right) \\
& \text { (68) }=0.9\left(-\mathrm{C}_{19}-3 \cdot 156 \mathrm{C}_{48}\right) \\
& \text { (69) }=0.9\left(-\mathrm{C}_{18}+\mathrm{C}_{2 t}+3^{290} \mathrm{C}_{48}+3^{\circ} 27 \mathrm{C}_{49}+0^{\circ} 06 \mathrm{C}_{50}-0^{\circ} 06 \mathrm{C}_{56}\right) \\
& \text { (70) }=1 \cdot 1\left(+\mathrm{C}_{18}+\mathrm{C}_{19}-\mathrm{C}_{23}-\mathrm{O}^{\circ} 134 \mathrm{C}_{48}-\mathrm{I}^{\prime} 34 \mathrm{C}_{49}+3^{\circ} 11 \mathrm{C}_{50}-3^{\prime} 11 \mathrm{C}_{51}\right) \\
& \text { (71) }=0.9\left(+\mathrm{C}_{23}-\mathrm{C}_{24}-3^{\circ}{ }^{1} 7 \mathrm{C}_{50}+6.61 \mathrm{C}_{51}-3.44 \mathrm{C}_{50}+3.50 \mathrm{C}_{57}\right) \\
& (72)=0.9\left(+\mathrm{C}_{24}-3 \cdot 50 \mathrm{C}_{52}+3 \cdot 50 \mathrm{C}_{56}-3 \cdot{ }^{\circ} \mathrm{CO}_{57}\right) \\
& \text { (73) }=1 \cdot 1\left(-\mathrm{C}_{25}-2 \cdot 16 \mathrm{C}_{5 \mathrm{t}}\right) \\
& \text { (74) }=0 \cdot 8\left(-\mathrm{C}_{23}-\mathrm{C}_{23}+\mathrm{C}_{25}-\mathrm{I} \cdot 8 \mathrm{IC}_{50}+4 \cdot{ }^{15} \mathrm{C}_{5 \mathrm{5}}-0 \cdot{ }_{18} \mathrm{C}_{56}\right) \\
& \text { (75) }=0.9\left(-\mathrm{C}_{18}-\mathrm{C}_{19}+\mathrm{C}_{23}-0.265 \mathrm{C}_{48}-2.65 \mathrm{C}_{49}+\mathrm{I}^{\circ} 99 \mathrm{C}_{50}-\mathrm{I}^{\circ} 99 \mathrm{C}_{51}\right) \\
& \text { (76) }=0.9\left(-\mathrm{C}_{16}-\mathrm{C}_{17}+\mathrm{C}_{18}+\mathrm{C}_{23}-\mathrm{I}^{\prime} \cdot 13 \mathrm{C}_{47}+\mathrm{O}^{\circ} \cdot 600 \mathrm{C}_{48}+6 \cdot 00 \mathrm{C}_{49}-\mathrm{O}^{\circ} 18 \mathrm{C}_{50}+\mathrm{I}^{\circ} 3 \mathrm{I}_{56}\right) \\
& \text { (77) }=1 \cdot 0\left(-\mathrm{C}_{15}+\mathrm{C}_{17}+\mathrm{C}_{19}+3^{.69 \mathrm{C}_{47}}-\mathrm{O}^{\circ} 335 \mathrm{C}_{48}-3.35 \mathrm{C}_{49}\right) \\
& \text { (78) }=0.9\left(+\mathrm{C}_{55}+\mathrm{C}_{16}-2 .{ }_{56} \mathrm{C}_{47}-1{ }^{1}{ }_{13} \mathrm{C}_{56}\right) \\
& \text { (79) }=0.8\left(+\mathrm{C}_{25}-\mathrm{C}_{28}+0 \cdot{ }_{49} \mathrm{C}_{52}\right) \\
& \text { (80) }=0.9\left(-\mathrm{C}_{27}+\mathrm{C}_{28}-\mathrm{C}_{29}+1.54 \mathrm{C}_{52}-0.659 \mathrm{C}_{53}\right)
\end{aligned}
$$

Correlate equations--continued.


```
\(\left(\mathrm{SI}_{1}\right)=0.8\left(+\mathrm{C}_{29}+\mathrm{O}^{\circ} 947 \mathrm{C}_{53}-2 \cdot 8 \mathrm{SC}_{56}+2 \cdot 8 \mathrm{SC}_{57}\right)\)
(82) \(=0.9\left(-\mathrm{C}_{24}+\mathrm{C}_{27}-2 \cdot{ }^{\circ} 3 \mathrm{C}_{52}-2 \cdot 88 \mathrm{C}_{53}+2 \cdot 88 \mathrm{C}_{56}-2 \cdot \mathrm{SSC}_{57}\right)\)
\((83)=0.9\left(-\mathrm{C}_{29}+\mathrm{C}_{24}-2.54 \mathrm{C}_{57}\right)\)
\((84)=0.9\left(-\mathrm{C}_{22}+\mathbf{1}^{2} \cdot 2 \mathrm{C}_{56}+\mathbf{2}^{\circ} 54 \mathrm{C}_{57}\right)\)
(85) \(=0.8\left(+\mathrm{C}_{22}+\mathrm{C}_{23}-\mathrm{C}_{25}-1 \cdot 24 \mathrm{C}_{56}\right)\)
(86) \(=1 \cdot 1\left(-\mathrm{C}_{26}-\mathrm{C}_{28}-2 \cdot 84 \mathrm{C}_{58}\right)\)
\((87)=1 \cdot 0\left(+\mathrm{C}_{26}-3.65 \mathrm{C}_{54}+6.49 \mathrm{C}_{58}\right)\)
\((88)=0.8\left(-\mathrm{C}_{25}+\mathrm{C}_{28}+5.74 \mathrm{C}_{54}-3^{\circ} 65 \mathrm{C}_{58}\right)\)
(89) \(=0.9\left(+\mathrm{C}_{25}-2^{\circ} 09 \mathrm{C}_{58}\right)\)
(90) \(=0.9\left(-\mathrm{C}_{26}-\mathrm{C}_{27}-\mathrm{C}_{30}-2 \cdot 95 \mathrm{C}_{52}-1 \cdot 188 \mathrm{C}_{53}\right)\)
(91) \(=1 \cdot 0\left(-\mathrm{C}_{29}+\mathrm{C}_{30}+1^{\circ} 526 \mathrm{C}_{53}\right)\)
(92) \(=0.9\left(+\mathrm{C}_{27}-\mathrm{C}_{28}+\mathrm{C}_{29}+2 \cdot 34 \mathrm{C}_{58}-\mathrm{O}^{\circ} 338 \mathrm{C}_{53}\right)\)
(93) \(=1 \cdot 0\left(+\mathrm{C}_{26}+\mathrm{C}_{28}+0.6 \mathrm{C}_{52}\right)\)
(94) \(=0.8\left(-\mathrm{C}_{24}-\mathrm{O}^{\circ} 29 \mathrm{C}_{51}+\mathrm{O}^{\circ} 29 \mathrm{C}_{56}-\mathrm{o}^{\circ} 29 \mathrm{C}_{57}\right)\)
(95) \(=0.8\left(+\mathrm{C}_{24}-\mathrm{C}_{27}+2^{\circ} 27 \mathrm{C}_{52}-0.058 \mathrm{C}_{53}-0.29 \mathrm{C}_{56}+\mathrm{O}^{\circ} 29 \mathrm{C}_{57}\right)\)
(96) \(=1 \cdot \mathrm{O}\left(-\mathrm{C}_{38}-\mathrm{C}_{37}-\mathrm{I}^{\circ} 52 \mathrm{C}_{56}+\mathrm{I}^{\circ} 52 \mathrm{C}_{57}\right)\)
(97) \(=1 \cdot 0\left(-\mathrm{C}_{26}-\mathrm{I}^{\circ} 9^{8 \mathrm{C}_{51}}\right.\) )
(98) \(=0.8\left(-\mathrm{C}_{30}+\mathrm{C}_{34}+1^{\prime} 323 \mathrm{C}_{53}\right)\)
(99) \(=0.8\left(+\mathrm{C}_{32}+\mathrm{r}^{\circ} 5_{2} \mathrm{C}_{56}-\mathrm{r}^{\circ} 5_{2} \mathrm{C}_{57}\right)\)
\((\mathrm{r} 00)=0.8\left(+\mathrm{C}_{26}+\mathrm{C}_{29}+\mathrm{C}_{30}--1 \cdot 265 \mathrm{C}_{53}\right)\)
(101) \(=1 \cdot 0\left(+\mathrm{C}_{30}-\mathrm{C}_{34}-0.4 \mathrm{SC}_{56}+0 \cdot 48 \mathrm{C}_{57}\right)\)
(102) \(=1 \cdot 2\left(+\mathrm{C}_{3}{ }^{2}+1 \cdot 28 \mathrm{C}_{56}-\mathrm{I}^{\circ} \cdot 2 \mathrm{SC}_{57}\right)\)
(103) \(=0.9\left(-\mathrm{C}_{29}-\mathrm{O}^{\circ} 8 \mathrm{OC}_{56}+\mathrm{o}^{\circ} 8 \mathrm{OC}_{57}\right)\)
\((104)=0.9\left(+\mathrm{C}_{29}-\mathrm{C}_{30}\right)\)
\((105)=3^{\circ} 8\left(-\mathrm{C}_{32}+\mathrm{O}^{\circ} 33 \mathrm{C}_{56}-\mathrm{o}^{\circ} 33 \mathrm{C}_{57}\right)\)
(106) \(=3.8\left(+\mathrm{C}_{32}-\mathrm{O}_{\left..33 \mathrm{C}_{56}+\mathrm{O}_{33} \mathrm{C}_{57}\right)}\right.\)
\(\left(\mathrm{IO}_{7}^{7}\right)=2.5\left(-\mathrm{C}_{3 \mathrm{r}}+\mathrm{o}^{\circ} 75 \mathrm{C}_{56}-0.76 \mathrm{C}_{57}\right)\)
\((108)=2 \cdot 5\left(-\mathrm{C}_{32}\right)\)
\((109)=2.5\left(+\mathrm{C}_{38}+\mathrm{C}_{32}-0.76 \mathrm{C}_{56}+0.76 \mathrm{C}_{57}\right)\)
(110) \(=0.7\left(-\mathrm{C}_{36}-\mathrm{C}_{37}-2.69 \mathrm{C}_{55}-0.34 \mathrm{C}_{57}\right)\)
(III) \(=0.9\left(+\mathrm{C}_{37}+3 .{ }^{\circ} \mathrm{O}_{55}\right)\)
(II2) \(=0^{\prime} 8\left(-\mathrm{C}_{34}-\mathrm{C}_{35}+\mathrm{C}_{36}-\mathrm{o}^{\circ} 5 \mathrm{C}_{54}-\mathrm{o}^{\prime} 34 \mathrm{C}_{55}+\mathrm{o}^{\circ} 89 \mathrm{C}_{57}\right)\)
(II3) \(=0.9\left(+\mathrm{C}_{34}+5.84 \mathrm{C}_{54}\right)\)
(114) \(=0.9\left(+\mathrm{C}_{35}-5^{\circ} 29 \mathrm{C}_{54}-\right.\) ® \(\left.^{\circ} 55 \mathrm{C}_{57}\right)\)
(II5) \(=0 \cdot 8\left(-\mathrm{C}_{33}-\mathrm{C}_{34}-3^{\prime} \cdot 1 \mathrm{CC}_{54}+3^{\prime} \cdot 18 \mathrm{C}_{57}\right)\)
(II6) \(=0 \cdot 8\left(+\mathrm{C}_{33}-\mathrm{C}_{35}+4^{\prime} \cdot 28 \mathrm{C}_{54}-3^{\prime} \cdot 18 \mathrm{C}_{57}\right)\)
(117) \(=0 \cdot 7\left(+\mathrm{C}_{34}+\mathrm{C}_{35}-\mathrm{C}_{36}-1 \cdot 10 \mathrm{C}_{54}-3 \cdot 19 \mathrm{C}_{55}\right)\)
\((118)=0.8\left(+\mathrm{C}_{36}-\mathrm{C}_{38}+6.28 \mathrm{C}_{55}-3 \cdot{ }^{\circ} \mathrm{Og}_{57}\right)\)
(II9) \(=0.9\left(+\mathrm{C}_{38}-3^{\circ} \circ 9 \mathrm{C}_{55}+3^{\circ} \circ 9 \mathrm{C}_{57}\right)\)
(120) \(=0.9\left(-\mathrm{C}_{38}-\mathrm{C}_{39}-\mathrm{I} \cdot 79 \mathrm{C}_{57}\right)\)
```

Correlate equations-completed.

Normal equations.

		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C6	C_{7}	C8	C_{9}	Cro	Cir	C_{12}	Cr_{13}	C_{14}.	C_{15}
1	$0=-0.45$	$+3 *$		+1:6												
2	$0=+0.46$		$+3 \%$	-1.7												
3	$0=-0.38$			$+4.9$	-1.6	-1.6										
4	$0=+0.09$				$+5.5$	+1.6	$+2{ }^{\circ} 0$	$-1{ }^{\circ} 9$								
5	$0=-0.08$	$+58$	$-2{ }^{\circ} 0$									
6	$0=-0.66$						$+5.8$		-18					-		
7	$0=+0.49$							$+5 \cdot 8$	$+18$		+18					
8	$0=+0.07$								$+5.4$	-1.8	+1.8					
9	$c=+0.85$									+5.4	+177			-17		
10	$0=+0.09$	-....	-...	-....	. . . ${ }^{\text {a }}$	-...	-...	. \cdot. \cdot.	+6.4		-17 7		
II	$0=-1 \cdot 42$											+57			-1.6	
12	$0=+1 \cdot 26$												$+5{ }^{\circ} 9$	$+2 \%$	$+1.8$	-18
13	$0=-2{ }^{\circ} 02$													$+5.5$	-1.8	
14	$0=+1 \cdot 22$														$+5^{\circ}$	- I'8

Normal equations-continued.

		Cr_{15}	$\mathrm{C}_{16} \quad$	C_{3}	C_{18}	C_{19}	C_{20}	C_{32}	C_{87}	C_{23}	C_{24}	C_{25}	C26	C_{37}	C_{28}	C_{29}	C_{3}	$\mathrm{C}_{3} \mathrm{I}$	C_{32}	
15	$0=+0^{\prime} 39$	$+5^{\circ} 5+$	+188-	-1'9		-1.9														
16	$0=+1.05$		$+5^{\circ} 5+$	$+{ }^{+7}$	-17				-17											
17	$0=+0.03$			$+5^{\circ}$	-17	+ r -9	$-\mathrm{r}^{\circ} 4$		-177											
18	$0=-0.77$				$+5^{\prime} 3$	+ '0 $^{\circ}$		-1.6	+1'7	-2\%										
19	$0=+0.6$ t					$+5^{6}$				-2.0										
20	$\mathrm{o}=-\mathrm{O}^{\circ} 23$	+4*5	$-1 \cdot 5$												
21	$0=+0 \cdot 61$							+4*9												
22	$0=+0.69$								$+5^{\circ}$	+1.6		$-\mathrm{I}^{\circ} 6$								
23	$0=+0.37$									+5.4	-1.8	$-\mathrm{r}^{6}$								
24	$0=-1 \cdot 55$										$+5^{2}$			-17 7						
25	$0=-0^{\prime} 25$					$+5^{\circ}$			-1'6					
${ }^{26}$	$0=-0.62$												$+5 \cdot 8$	+177	$+2^{*}$		+17 7			
27	$0=+0.84$													$+5^{\prime 2}$	-1×8	+188	+17			
28	$\mathrm{o}=+0^{\circ} \mathrm{O}$														+5.5	-18				
29	$0=+1 \cdot 50$															+5'4	- $\mathrm{r}^{\circ} 9$			
30	$0=-1.41$																+54	-18		
31	$0=+1 \cdot 28$																	$+9^{\circ}$		
32	0=-0.11																		$+14.4$	

Normal equations-continued.

		C_{33}	C_{34}	C_{35}	C_{36}	C_{37}	$\mathrm{C}_{3} 8$	C_{39}	C_{40}	C_{4}	C_{42}	C_{43}	C_{44}	C_{45}	C_{46}
33	$0=-162$	+6\%	+16	$-3 \cdot 3$											
34	$0=+1 \cdot 10$		$+48$	+1.5	-1.5										
35	$0=+1{ }^{\prime} 37$	$+7^{\circ}$	-1.5										
36	$0=+0.96$				$+4.6$	$+1 \cdot 5$	-16				*				
37	$0=+0.22$					$+4 \%$		-16							
38	$0=+0.11$						+5:1	$+17$							
39	$0=+0.41$							$+5^{1}$	-1.8						
40	$0=-0.99$	+3.4						
41	$0=-3 \cdot 8$									+51'123	+1705				
42	$0=-17$										$+64 \cdot 821$	+ 0.573	$+395$		
43	$0=-1.82$											$+7^{8 \cdot 1} 3^{6}$	- 1100	$+136$	
44	$0=-0.8$												$+170.86$	- $77 \cdot 26$	$+3{ }^{\circ} 004$
45	$0=+17$	-	\ldots	+185 75	-27.400
46	$0=-6 \cdot 2$														$+54.542$

Normal equations-completed.

	$\mathrm{C}_{4 \mathrm{I}}$	C_{42}	C_{43}	C_{44}	C_{45}	C_{46}	C_{47}	$\mathrm{C}_{4} 8$	C_{49}	C_{5}	$\mathrm{C}_{5}{ }^{1}$	C_{52}	C_{56}
1	$+3.630$												$+1.848$
2	-6.736												$-5 \cdot 395$
3	+6.043	+1.192											+6.109
4	-1.144	+5:426	-0.010										+1 35.5
5	-1.144	-9.662	+5.350	-9.480
6		+7976	-0.455	-4700									+ 3 '929
7		-2098S	-2.037	- 0.806	+1:208								+0.806
8		+0.208	-2.990	$+7^{\circ} 071$	+1'205								+0. 580
9			+3.526	$-8 \cdot 243$	-2.835	-1624							+3'502
0	+0.081	-11 558	+5.084	-1.624	\ldots	+0.448
1					-4.225	-2.520							+2.520
12					+0.462	-8.218	-2.583						+6.604
13				+ 1 0066	+2.835	-2.228							+2.458
14					-4\%94	+2.106	$-2 \cdot 583$						-3.132

Normal equations-completed.

	C_{44}	C_{45}	C_{46}	C_{47}	C_{48}	C_{49}	C_{50}	C_{5}	C_{52}	C_{53}	C_{54}	C_{56}	C_{57}
15	-	+1*53	-0.360	+0.141	+1.406	-. $\cdot .$.		+0.369	
16				-5.659	-0. 540	$-5^{\circ} 400$	-2.222					+0.955	
17				+1.021	+1 750	-1.822	$-2 \cdot 222$					-1.928	
15				+0.367	-2.330	$+3 \cdot 368$	+2.503	-1.630				+2 528	$-2 \cdot 604$
19				+0.639	+0.186	-0.495	+1.630	-1.630					
20	-0.749	-2.430	$-3^{\circ} 080$	+0.749	-1.320
21					+2.961	$+1728$	+1.349				-2 0.48	-1.349	+2.644
22				+0.367	+0.540	$+5 \cdot 400$	+8.500	$-3 \cdot 320$				-2.635	-0.436
23					-0.091	-0.911	$-3 \cdot 035$	+4.259				-3.944	+5.436
24							+2 853	-7.051	+182\%	+0.213		+3'190	-5.530
25	-"- ${ }^{\text {- }}$	-1:448	-0.777	$+3.312$	+0.84S	
26								-1.670	+12.879	+0.057			
27								-1.816	$+1.548$	+0.133		$+2.824$	$-2 \cdot 824$
28								+4'592	-0.298	-0.259			
29									+0.720	-0.480		-1.584	+1'584
30	. . .	-	\cdots	-....... ${ }^{\text {a }}$	+ 2.655	+0.525	-0.4.0	+0.4.80
31										+1 0.08		-0.264	+0.264
32												-1.672	+1.672

Normal equations-completed.

Resulting values of corretates.

$\mathrm{C}_{8}=+0.1207$
$\mathrm{C}_{2}=-0.127^{2}$
$\mathrm{C}_{3}=-0.0699$
$\mathrm{C}_{4}=-0.3218$
$\mathrm{C}_{5}=+0.1829$
$\mathrm{C}_{6}=+0.3318$
$\mathrm{C}_{7}=-0.2663$
$\mathrm{C}_{8}=+0.105^{2}$
$\mathrm{C}_{9}=+0.1698$
$\mathrm{C}_{20}=+0.2558$
$\mathrm{C}_{3}=+0.3849$
$\mathrm{C}_{22}=-0.2855$
$\mathrm{C}_{23}=+0.6821$
$\mathrm{C}_{44}=+0.0849$
$\mathrm{C}_{25}=-0.1424$

C_{26}	$=-0.2409$
C_{27}	$=+0.181 \mathrm{I}$
C_{28}	$=+0.4276$
C_{29}	$=-0.3196$
C_{20}	$=+0.1918$
C_{22}	$=+0.1744$
C_{22}	$=-0.3624$
C_{23}	$=+0.1242$
C_{24}	$=+0.3096$
C_{25}	$=-0.0829$
C_{26}	$=+0.2957$
C_{27}	$=-0.1935$
C_{28}	$=-0.2701$
C_{29}	$=-0.1904$

Resutting corrections to directions.

(1) $=-0.054$	$(34)=-0.155$	$(67)=+0.228$	$(100)=+0.126$
$(2)=+0.103$	$(35)=+0.303$	$(68)=+0.126$	$(101)=+0.284$
$(3)=+0.360$	$(36)=-0.304$	$(69)=-0.074$	$(102)=-0.237$
$(4)=-0.441$	$(37)=-0.603$	$(70)=-0.049$	$(103)=+0.204$
$(5)=-0.014$	$(38)=+0.294$	$(71)=-0.018$	(104)=-0.281
$(6)=+0.070$	$(39)=+0.356$	$(72)=+0.152$	(105)=-0.195
$(7)=+0.055$	$(40)=+0.017$	$(73)=+0.104$	(106) $=+0.195$
$(8)=-0.011$	$(41)=-0.401$	$(74)=+0.136$	(107)=+0.262
$(9)=-0.114$	$(42)=-0.044$	$(75)=-0.002$	(108)=-0.091
$(10)=+0.387$	$(43)=+0.801$	$(76)=+0.110$	$(109)=-0.172$

$\mathrm{C}_{44}=+0 \cdot 0449$
$\mathrm{C}_{45}=+0{ }^{\circ} \mathrm{O} 375$
$\mathrm{C}_{46}=-\mathrm{o}-\mathrm{O} \mathrm{I}_{3} 15$
$\mathrm{C}_{47}=-\mathrm{o} \cdot 0635$
$\mathrm{C}_{48}=+0.0569$
$\mathrm{C}_{49}=-0 \cdot 0056$
$\mathrm{C}_{50}=-\mathrm{o} \cdot \mathrm{OI}_{43}$
$\mathrm{C}_{51}=-0 \cdot 0053$
$\mathrm{C}_{52}=-\mathrm{O} . \mathrm{O}_{2} 25$
$\mathrm{C}_{53}=+0.0{ }_{53}{ }^{\circ}$
$\mathrm{C}_{54}=-0.0247$
$\mathrm{C}_{55}=+\mathrm{O}_{0}^{\circ} \mathrm{O}_{2} 3^{6}$
$\mathrm{C}_{56}=-\mathrm{O} \cdot 0590$
$\mathrm{C}_{57}=-0 .{ }^{\circ}{ }^{1}{ }_{3} 6$

4192 -No. $7-\mathrm{O} 2-9$
(I) $=-0.054$
$(2)=+0 \cdot 103$
$(4)=-0.44 \mathrm{I}$
(5) $=-0 \cdot 014$
(6) $=+0 \cdot 070$
(7) $=+0 \cdot 055$
(8) $=-0 \cdot 011$
(9) $=-0 \cdot 114$

Resulting corrections to directions-continued.

$(11)=-0.270$	$(44)=-0.081$	$(77)=-0.231$	$(110)=+0.214$
$(12)=+0.108$	$(45)=-0.198$	$(78)=-0.139$	$(111)=+0.281$
$(13)=-0.199$	$(46)=+0.104$	$(79)=+0.137$	$(112)=-0.050$
$(14)=+0.003$	$(47)=-0.404$	$(80)=+0.026$	$(113)=-0.605$
$(15)=+0.038$	$(48)=+0.154$	$(81)=-0.008$	$(114)=+0.107$
$(16)=-0.240$	$(49)=+0.391$	$(82)=-0.525$	$(115)=+0.120$
$(17)=+0.147$	$(50)=-0.321$	$(83)=+0.198$	$(16)=+0.299$
$(18)=+0.146$	$(51)=+0.025$	$(84)=+0.229$	$(117)=+0.005$
$(19)=-0.202$	$(52)=-0.159$	$(85)=-0.066$	$(118)=-0.133$
$(20)=+0.027$	$(53)=+0.006$	$(86)=+0.073$	$(119)=-0.328$
$(21)=-0.070$	$(54)=+0.112$	$(87)=+0.104$	$(120)=+0.102$
$(22)=-0.025$	$(55)=+0.022$	$(88)=-0.079$	$(121)=-0.084$
$(23)=-0.212$	$(56)=-0.347$	$(89)=-0.065$	$(122)=+0.275$
$(24)=+0.165$	$(57)=+0.155$	$(90)=-0.172$	$(123)=-0.282$
$(25)=+0.241$	$(58)=-0.034$	$(91)=+0.394$	$(124)=-0.037$
$(26)=-0.106$	$(59)=+0.012$	$(92)=-0.187$	$(125)=-0.127$
$(27)=+0.130$	$(60)=-0.139$	$(93)=+0.006$	$(126)=-0.124$
$(28)=-0.198$	$(61)=-0.004$	$(94)=-0.257$	$(127)=+0.330$
$(29)=-0.988$	$(62)=-0.125$	$(95)=+0.401$	$(128)=+0.247$
$(30)=+0.769$	$(63)=+0.347$	$(96)=+0.172$	$(129)=+0.109$
$(31)=-0.229$	$(64)=-0.080$	$(97)=-0.285$	$(130)=+0.020$
$(32)=+0.375$	$(65)=+0.066$	$(98)=-0.153$	$(131)=-0.290$
$(33)=-0.132$	$(66)=-1.168$	$(99)=-0.026$	

Probable error of a resulting direction $=0.674 \sqrt{\frac{8 \cdot 6}{57}}= \pm^{\prime \prime} 0^{\prime \prime} \cdot 26$.
Resulting angles and sides of the triangulation between the Epping base nel and the Massachusetts base: also between this base and the Fire Island base net.

No.	Stations.	Observed angles.			Correction.	Spherical	Spherical	Log. distances.	Distances in meters.
		-	,	/1	/1	"	$1 /$		
1	Ragged Mountain	29	25	O2'11	+0.04	$02 \cdot 15$	3.44	4761268	$57712 \cdot 253$
	Humpback	39		29.08	+0.36	29.44	3.44	$4.877 \quad 2804$	75 384.22
	Mount Desert	110	40	$38 \cdot 68$	+0.05	$38 \cdot 73$	3'44	5 \%041 1376	$109935{ }^{\circ} 4$
2	Mount Harris		32	$25^{\circ} 22$	+o.08	$25 \cdot 30$	379	47612680	$57712 \cdot 253$
	Humpback	66	02	$3^{8.51}$	-0.44	$38 \cdot 07$	3 80	49092496	81 $142 \cdot 72$
	Mount Desert		25	08•11	-0.10	38 ol	379	4 '929 927 0	$85 \quad 099{ }^{\circ}$
3	Mount Harris	65	08	$37^{\circ} 27$	-0.02	$37{ }^{\prime 25}$	$3^{1 / 13}$	4.8772804	75 384.21
	Mount Desert	37	15	$30 \cdot 57$	$+0.16$	$30 \cdot 73$	$3^{\prime} 13$	47015444	50 297 7
	Ragged Mountain	77	36	OI 17	to. 24	O1'41	$3 \cdot 13$	49092496	Si $14^{\prime} 7^{2}$
4	Mount Harris	105	41	$02 * 49$	+0.07	$02 \cdot 56$	$3 \cdot 49$	5.0411376	$109935{ }^{\circ}$
	Humpluack	26	OS	$09 \cdot 43$	-0.80	$08 \cdot 63$	$3 \cdot 48$	$4 \cdot 7015444$	$50 \quad 297 \quad 27$
	Ragged Mountain	48		$59 \cdot 06$	+0.20	$59 \cdot 26$	3.48	4.9299270	$85099{ }^{\circ} 5$
5	Mount Blue	26	55	$40 \cdot 80$	+0.39	41'19	$4^{\circ} \mathrm{O} 2$	47015444	$50 \quad 297 \quad 27$
	Mount Harris			34 * 42	-0.17	$34 \cdot 25$	$4{ }^{\circ} \mathrm{O}$	5 \%044 318 1	$110743 \cdot 5$
	Ragged Mountain	. 58	41	$56 \cdot 94$	-0.31	56.63	4'02	49772671	$94900 \cdot 20$

Resulting angtes and sides of the triangulation between the Epping base net and the Massachusetts base; atso between this base and the Fire Island base net-continued.

No.	Stations.	Observed angles.			Correction.	Spherical angles.	Spherical excess.	Log. dis. tances.	Distances in meters.
		-	,	/1	/	11	/1		
6	Sabattus	32	08	I3 32	+0.08	13.30	8.15	4 701 5444	$50 \quad 297 \quad 27$
	Mount Harris	52		$19{ }^{\circ} \mathrm{O} 2$	-0.07	1895	$3^{1} 5$	4.8724429	74549 *19
	Ragged Mountain	95		$37^{\prime} 14$	+0.07	$37^{\circ} 21$	$3 \cdot 16$	4.9734384	$94067{ }^{2} 5$
7	Sabattus	69	29	0745	+0.38	07.83	5*09	49772671	$94900 \cdot 20$
	Mount Blue	68		51'74	+0.38	$52 \cdot 12$	5 \% 0	$4 \% 734384$	$94067{ }^{\circ} 25$
	Mount Harris	42		15.40	-0 ${ }^{\text {10 }}$	15 '30	5 '08	$4 \cdot 8340489$	68 241 56
8	Sabattus	IOI	37	$20 \cdot 67$	+0.45	21.12	$4^{\circ} 22$	$5 \% 044$ 318 I	I 10 $743{ }^{\circ} 5$
	Mount Blue	41	15	10 94	$0 \cdot 00$	10.94	$4^{\text {²I }}$	$4 \cdot 872443$ o	$74549{ }^{\circ} 20$
	Ragged Mountai	37	07	$40^{\circ 20}$	+o. 38	$40 \cdot 58$	$4^{\text {® }}$ I	4.834048 S	68 241 55
9	Mount Pleasa	54	39	$35^{\prime \prime} 70$	-0.09	$35^{\prime} 61$	$8 \cdot 11$	5.044 318 I	I 10 $743{ }^{\circ} 5$
	Mount Blue	85	35	$26^{\circ} \mathrm{O}$	-0.12	25 '93	8*10	5 131 4936	$135361{ }^{\circ} \mathrm{o}$
	Ragged Mountain	39	45	$23^{\circ} \mathrm{O}$	-0.28	$22 \cdot 77$	8*10	4.9386186	86819×76
10	[Maunt	51	26	$46 \cdot 90$	+	47 '14	$3 \cdot 50$	4.8340489	$68 \quad 24 \mathrm{I} \cdot 56$
	Mount Blue	44	20	15 '11	-0.12	14 '99	$3 \cdot 50$	4.7852310	$60986 \cdot 12$
	Sabattus	84	13	08.56	-0.19	08 37	$3^{\circ} 50$	$4{ }^{\circ} 9386186$	86819.76
II	[Mount Pleas	3	12	$48 \cdot 80$	-0.327	$48 \cdot 473$	$0 \cdot 391$	$4 \cdot 8724430$	$74549{ }^{\circ} 20$
	Sabattus	174		$30 \cdot 77$. -0.265	30.505	0.392	5'131 4936	. $135361{ }^{\circ} \mathrm{o}$
	Ragged Mountain	2	37	$42 \cdot 85$	-0.654	$42 \cdot 196$	- 391	$4^{\prime} 785 \quad 2310$	$60986 \cdot 12$
12	[Mount Independ	77	48	18*33	-0.28	18.05	I 94	$47^{8} 52310$	$60986 \cdot 12$
	Mount Pleasant	48		OI ${ }^{\prime}$ Io	-0.62	$00 \cdot$	I "94	4.6713777	$46922 \cdot 13$
	Sabattus	53	25	$47^{\circ} 25$	+0.05	$47 \cdot 30$	I 95	4.6999258	$50110 \cdot 16$
13	[Mount Indep	25	16	42 - 8	-0.34	41-84	1.83	4.8340489	$68 \quad 241 \cdot 56$
	Mount Blue	17	04	$28 \cdot 31$	-0.35	27.96	I 82	46713777	$46922 \cdot 13$
	Sabattus	137	38	$55 \cdot 8 \mathrm{I}$	-0.14	$55 \cdot 67$	1.82	5 '032 0672	107663.2
14	[Mount Independence	52	31	$36 \cdot 15$	+0.0	$36 \cdot 21$	3.62	$4 \% 9386: 86$	$86819{ }^{* 76}$
	Mount Pleasaut	100	12	$48^{\prime 0}$	-0.38	$47 \cdot 62$	$3^{\circ} 62$	$5 \cdot 0320672$	107663.2
	Mount Blue	27	15	$46 \cdot 80$	+0.23	$47{ }^{\circ} \mathrm{O} 3$	$3^{\cdot 62}$	4.6999258	50 110 16
15	\int Mount Washingt	68	55	$4^{2} 51$	-0.02	$42 \cdot 49$	$3 \cdot 41$	49386186	86819.76
	Mount Blue	30	23			$02 \cdot 89$	3.41	4.6726404	46950.53
	Mount Pleasant	80	41	$25 * 33$	-0.48	$24 \cdot 85$	$3 \% 1$	4.9629185	918 I 6.03
16	¢ Gunst	34	19	$40^{\circ} 20$	to. 84	41'04	$3^{\circ} \mathrm{O}$	46999258	50 I 10 16
	Mount Pleas	19	54	04.38	+0.26	04.64	$3^{\circ} \mathrm{O}$	4.9484706	88 811 79
	Mount Independence	53	46	$22 \cdot 53$	+0.90	23.43	$3{ }^{\circ} \mathrm{O}$	$4 \cdot 8554081$	71 68ı 66
17	[Mount Washington	58	41	$21 \cdot 78$	+0.46	$22 \cdot 24$	2.85	4.855408 I	71 681 66
	Mount Pleasaut			$42 \cdot 29$	+0.60	$42 \cdot 89$	$2 \cdot 84$	4923248 I	$83800 \cdot 79$
	Gunstock	34	07	03 '05	+o. 36	03.41	$2 \cdot 85$	4.6726404	46950 . 53

Resulting angtes and sides of the triangutation between the Epping base net and the Massachusetts base; atso between this base and the Fire Island base net-continued.

No.	Stations.	Observed angles.		Correction.	$\begin{gathered} \text { Spher- } \\ \text { tcal } \\ \text { angles. } \end{gathered}$	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \\ & \text { excess. } \end{aligned}$	Log. distances.	Distances in meters.
18		- ,	"	"	"	"		
	Agamenticus	8539	$41^{\prime} 30$	-0.02	41-28	3'59	4'948 4706	8881179
	Gunstock	4829	$43 \cdot 81$	-0.88	42×3	$3 \cdot 59$	$4.824 \quad 135$ I	66 701 43
	Mount Independence	$45 \quad 50$	$46 \cdot 87$	-0.30	$46 \cdot 57$	$3 \cdot 60$	4.8055158	$63902 \cdot 20$
19	Aganenticus	3320	57×33	+o.16	$57{ }^{\circ} 49$	$2 \cdot 78$	4.6999258	50 110•16
	Mount Pleasant	47 or	59.61	+1.26	00.87	$2 \cdot 79$	4.824 135	$66701 \cdot 43$
	Mount Independence	9937	$09 \cdot 40$	+o.60	10 '00	279	4.953627	$89872 \cdot 56$
20	Agamenticus	$\begin{array}{ll}52 & 18\end{array}$	43 "97	-0.18	4379	$3 \cdot 84$	4.8554081	$7168 \mathrm{I} \cdot 66$
	Gunstock	8249	24 ol	-0.04	23.97	$3 \cdot 85$	4.9536270	$89872 \cdot 54$
	Mount Pleasant	$44 \quad 52$	$04 \cdot 77$	- I ${ }^{\circ}$	03.77	$3 \cdot 84$	$4 \cdot \mathrm{So5} 5158$	$63902 \cdot 20$
21	Unkonoonuc	53 oo	$53 \cdot 60$	+0.10	53.70	$3 \cdot 25$	4.805 515 8	$63902 \cdot 20$
	Gunstock	$76 \quad 11$	25 '06	+o'19	25.25	$3 \cdot 25$	4 -890 346	77686 '72
	Agamenticus	$50 \quad 47$	$50 \cdot 46$	+0.35	$50 \cdot 8 \mathrm{I}$	3.26	$4{ }^{7} 79^{2} 3364$	$61992 \cdot 11$
22	Thompson	2943	$5^{\text {² II }}$	+0.09	5^{2}-20	$3^{\prime 2} 3$	$4 \cdot 8055158$	$63902 \cdot 20$
	Gunstock	3152	$27 \cdot 68$	-0'12	27.56	$3 \cdot 23$	$4 \cdot 8327769$	6804197
	Agamenticus	$118 \quad 23$	50×30	-0.36	$49^{\circ} 94$	$3 \cdot 24$	$5{ }^{\circ} \mathrm{5} 443308$	113352.4
23	Thompson	$61 \quad 50$	$53 \cdot 28$	-0.25	53.03	$4^{1} 3$	$4 \cdot 8903468$	$77686{ }^{\circ} 72$
	Unkonoonuc	5033	$20 \cdot 33$	-0.09	20 '24	$4 \cdot 13$	$4 \cdot 8327769$	68 0.41 97
	Agamenticus	$67 \quad 35$	59.84	-0.71	$59 \cdot 13$	$4 \cdot 14$	4 910 9550	81 461.99
24	Unkonoonuc	10334	I3 93	+o or	13 '94	$4^{\circ} 15$	5 '054 4308	$11335{ }^{\circ} 4$
	Gunstock	$44 \quad 18$	$57 \% 38$	+0.30	$57 \cdot 68$	$4 \cdot 15$	4.910955	81 $462{ }^{\circ} \mathrm{O}$
	Thompson	$\begin{array}{lll}32 & 07\end{array}$	O1'17	-0.34	00.83	$4 \cdot 15$	47923365	$61992 \cdot 13$
25	Monadnock	$32 \quad 54$	52.43	+0.13	$5^{2} 56$	1×93	4792336	61992 II
	Gunstock	$22 \quad 59$	$06 \cdot 42$	to. 05	$06 \cdot 47$	1×93	4.648 8_{35}	$44548 \cdot 71$
	Unkonoonuc	124 06	$06 \cdot 72$	+o.05	$06 \cdot 77$	I 94	49752874	$94468 \cdot 59$
26	Wachusett	6122	19×44	-0.17	$19^{\circ 27}$	8.68	5 '054 430	II3 352.4
	Gunstock	$48 \cdot 00$	55×9	-0.2I	$54 \cdot 88$	8.68	$4.982 \quad 231$	95991.20
	Thompson	$70 \quad 37$	12×12	-0.23	II 89	8.68	5.0857315	121 823.6
27	Wachusett	$57 \quad 33$	$20 \cdot 78$	+0.03	$20 \cdot 8 \mathrm{I}$	4.12	4910955	81 $46 \mathrm{I} \times 99$
	Unkonoonuc	$83 \quad 56$	$40 \cdot 35$	+o.13	$40 \cdot 48$	4.11	4.9822313	$95991 \cdot 18$
	Thompson	$38 \quad 30$	10 *95	to.11	II 06	$4 \cdot 12$	$4 \cdot 778830$	$60 \quad 093 \cdot 88$
28	Wachusett	348	$58 \cdot 66$	-0.202	$58 \cdot 458$	0.412	4792336	$61992 \cdot 11$
	Gunstock	341	5771	-0.510	$57 \cdot 200$	0.412	$4^{\prime} 778830$	$60093 \cdot 89$
	Unkonoonuc	$172 \quad 29$	$05 \cdot 72$	-0.142	$04 \cdot 578$	0.412	5.0857314	121 $823 \cdot 6$
29	Monadnock	117 or	19×36	+o.01	19×37	3 ²1	5.085731	121823.6
	Gunstock	$19 \quad 17$	$08 \% 1$	+0.56	$09 \cdot 27$	$3 \cdot 22$	$4 \cdot 654798$	$45 \quad 164.59$
	Wachusett	43 4I	$41^{\circ} \mathrm{I}$	-0.10	$41^{\circ} 00$	3 ²1	49752875	$94468 \cdot 60$

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts

 base;- also between this base and the Fire Island hase net-continued.| No. | Stations. | Observed angles. | | | $\begin{aligned} & \text { Correc- } \\ & \text { tion. } \end{aligned}$ | Spheraugles. | $\underset{\substack{\text { Spher- } \\ \text { ical }}}{\text { den }}$ excess | Log. distances. | Distances in meters. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 。 | , | " | " | " | " | | |
| 30 | (Wachusett | 47 | 30 | $39 \cdot 76$ | -0.30 | $39 \cdot 46$ | 170 | 4.648835 | 4454871 |
| | Monadnock | 84 | 06 | $26 \cdot 93$ | -0.12 | 26.81 | 1 69 | - 477788302 | $60 \quad 093 \cdot 88$ |
| | Unkonoonuc | 48 | 22 | $59^{\circ} \mathrm{o}$ | -0.19 | $58 \cdot 81$ | 1. 69 | 4.654 798 | $45164 \quad 59$ |
| $3{ }^{1}$ | Blue Hill | 59 | 37 | 43 '90 | -0.29 | $43 \cdot 61$ | $3 \cdot 74$ | 4 910 955 | 81 461×9 |
| | Unkonoonuc | 35 | 14 | 58.03 | -0.37 | $57 \cdot 66$ | 374 | 4.736332 | 54492 OI |
| | Thompson | 85 | 07 | $29 \cdot 98$ | -0.03 | 29 '95 | 374 | 4 '973 491 | $94 \times 78 \cdot 68$ |
| 32 | Blue Hill | 99 | 18 | 37.08 | -0.26 | $36 \cdot 82$ | 3.22 | $4{ }^{\prime} 982231$ | 95 991. 20 |
| | Wachusett | 34 | 04 | 13.91 | +0.03 | 13.94 | $3 \cdot 21$ | $4^{\prime} 73^{6} 33{ }^{2}$ | 54 491*99 |
| | Thompson | 46 | 37 | $19^{\circ} \mathrm{O} 3$ | -0.14 | 18.89 | $3 \cdot 22$ | 4.849420 | $70700 \cdot 11$ |
| 33 | Wachusett | 91 | 37 | 34×9 | to o6 | $34^{\prime 7} 7$ | $3 \cdot 60$ | $4 {f6245fb53-eea8-4f78-be13-5a40ab6fdd27} 737944$ | $54694 \cdot 55$ |
| | Great Meadow | 69 | ¢ | 39 '74 | -0.08 | 39^{66} | $0 ` 70$ | 4.5655^{81} | $36777 * 43$ |
| | Beaconpole | 74 | 40 | $16 \cdot 66$ | -0.55 | 16 11 | 0.69 | 4.579231 | 37951 71 |
| | Blue Hill | 36 | Io | $06 \cdot 84$ | -0.52 | $06 \cdot 32$ | 0.70 | $4 \cdot 365932$ | 23223 '74 |
| 41 | Great Meadow | 130 | 20 | 20.91 | -0.49 | $20 \cdot 42$ | $0 \cdot 54$ | 4×737944 | $54694 \cdot 55$ |
| | Blue Hill | 17 | 43 | 48 61 | -0.03 | $48 \cdot 5^{8}$ | - 53 | 4 *339 491 | $2185{ }^{\circ} \mathrm{OI}$ |
| | Copecut | 31 | 55 | $53 \cdot 18$ | -0.58 | $52^{\circ} 60$ | 0.53 | 4 579 231 | $3795{ }^{\text { }}$ |

Resulting angles and sides of the triangulation between the Epping base net and the Massachusetts base; also between this base and the Fire Island base net-completed.

No.	Stations.	Observed angles.			Corrections.	spherical	Spherical	1.0g. distances.	Distances in meters.
		-	,	"	"	/	"		
	Great Meadow	160	29	59×35	+o. 565	59,915	0.144	4.6476300	$44425 \cdot 27$
42	Copecut		02	$58 \cdot 27$	to ${ }^{566}$	58'836	0.143	4*365 932 I	$23223 \cdot 74$
	Beaconpole			O1 40	+o.279	oi ${ }^{6} 79$	- 143	$4 \cdot 3394913$	21 852 ol
(Massachusetts North									
43	Base	70	og	$29 \cdot 82$	-0.43	29 '39	$\bigcirc \bigcirc 33$	4.365 932	23223.74
	Great Meadow	58		15 \% 1	-0.52	14×49	$0 \cdot 32$	$4 \cdot 3247577$	21123.10
	Beaconpole	51		1742	-0'33	$17{ }^{\circ} 9$	$0 \cdot 32$	$4 \cdot 2831455$	$19193 \cdot 12$
[Massachusetts South									
44	Base		-	16.67	+0.39	17 '06	$0 \cdot 22$	43247577	$21123 \cdot 10$
	Beaconpole Massachusetts North			$45 \cdot 24$	-0.20	45 \% 4	$0 \cdot 22$	$4 \cdot 2387077$	17326376
	Base	44	52	$58 \cdot 64$	-0.08	$58 \cdot 56$	$0 \cdot 22$	4 178727.3	15091×32
45	Mount Tom	33	28	$40 \cdot 67$	+0.18	$40 \cdot{ }^{5}$	2.62	4.654798 I	$45 \quad 164 \times 59$
	Monadnock	56		$47 \cdot 59$	+o. 04	$47{ }^{6} 3$	$2 \cdot 61$	$4 \cdot 835503$	$68470 \cdot 44$
	W chusett	89	46	37×7	+1.40	$39 \cdot 37$	2.62	49131656	81 $877{ }^{\circ} 70$
46	Bald Hill	19	48	$48 \cdot 84$	+0.71	$49^{\circ} 55$	178	4.654 798 I	$45 \quad 164 \times 59$
	Monadnock	28		$25 \cdot 33$	+0.47	25 '80	178	4'797545 ○	62740.07
	Wachusett	132	-5	$49 \cdot 82$	+0.16	49.98	1 77	4.9950672	$98870 \cdot 61$
47	Mount Tom	95		$53^{\circ} 91$	-O.II	53.80	3 29	49950672	9 $8870 \cdot 61$
	Monadnock	28		$22 \cdot 26$	-0.43	21.83	$3 \cdot 28$	4.6781807	47662.93
	Bald Hill	55	27	$54 \cdot 78$	-0.56	$54 \cdot 22$	$3 \cdot 28$	$4 \% 131656$	SI $877{ }^{70}$
48	Bald Hill	75	16	$43 \cdot 62$	+o.15	$43^{\circ} 77$	2.44	$4 \cdot 8355031$	$68470 \cdot 44$
	Mount Tom	62	24	13.24	-0.29	12 '95	$2 \cdot 45$	$4{ }^{\circ} 797545$	62740%
	Wachusett	42	19	I I 8_{5}	-I'23	$10 \cdot 62$	$2 \cdot 45$	$4 \cdot 6781807$	47662.93
49	Box Hill	65	43	$58 \cdot 37$	-0.56	$57 \cdot 81$	I 15	4. 678 180 7	47662 93
	Mount Tom	33	25	21.08	-0.14	20 '94	I 15	4.459 356	28797×5
	Bald Hill	80	50	$44 * 95$	-0.26	$44 \cdot 69$	I 14	4.7127922	51 61693
50	Ivy	14	48	$02 \cdot 79$	-0.09	$02 \cdot 70$	I 19	4.4593562	$28797 \cdot 58$
	Bald Hill	34		$46 \cdot 77$	+0.07	$46 \cdot 84$	I 19	4.8084203	$6433{ }^{1} 00$
	Box Hill	130	24	$14 \cdot 24$	-0.20	14.04	I 20	4 '933 7143	$85844 \cdot 86$
51	Sandford	31	27	$27 \cdot 49$	-0.09	27.40	$2 \cdot 22$	47127922	51 616.93
	Mount Tom	-34	16	43×55	-0.19	$43 \cdot 36$	$2 \cdot 22$	$4^{\prime} 7459100$	$55707{ }^{\circ} \mathrm{O}$
	Box Hill	114	15	$55 \cdot 72$	+0.17	$55 \cdot 89$	$2 \cdot 21$	4 '955 070 1	$9017 \mathrm{I} \cdot 67$
52	Sandford	74	02	$34 \cdot 46$	-0.23	$34 \cdot 23$	231	4.8084203	$64331{ }^{\circ} 00$
	Ivy	56	21	$53 \cdot 03$	$0 \cdot 00$	$53{ }^{\circ} \mathrm{O}$	$2 \cdot 31$	47459100	$55707{ }^{\circ} \mathrm{O}$
	Box Hill	49	35	$39 \cdot 85$	-0.18	$39 \cdot 67$	231	47071381	50949 "29
53	Wooster	53	47	$59 \cdot 13$	-0. 29	59.42	1 97	$4{ }^{7} 7071381$	50949 29
	Ivy		40	51 65	+0.45	$52 \cdot 10$	I 97	$4^{6} 6691710$	46684 \% 31
	Sandford	78	31	$14 \cdot 14$	+o. 25	14×39	1 97	4 791 5134	61 $874{ }^{\circ} 74$

30 CM . THEODOLITE.

75 CM . THEODOLITE.
3. TRIANGULATION CONNECTING THE FIRE ISLAND BASE NET WITH THE KENT ISLAND BASE NET EXTENDED, CONNECTICUT, NEW YORK, NEW JERSEY, PENNSYLVANIA, DELAWARF, AND MARYLAND. I833-I845 AND 1865.

The angular measures of this section of the oblique arc date from the year 1833, and were completed in 1845. The triangulation up to 1843 inclusive is essentially the work of Superintendent F. R. Hassler. In its composition it reflects the custom in those early days of including but a few composite figures, such as quadrilaterals or central figures, the chain being made up mainly of triangles. The number of observations taken would now be considered as scanty, yet with the superior instruments Mr. Hassler had procured, his results reached a fair degree of accuracy. The number of serics, each including a direct and a reversed set, varied from in to 35 , with an average of 24 . At the six stations which remained to be occnpied after his death in November 1843, the observations of his principal assistant show an extreme range in number of series between 10 and 73 . The horizontal circle of the theodolite was used at each station in several positions, most frequently in six or threc, that is, by shifting the zero division of the graduation either 60° or 120° for each new position. It was Mr. Hassler's practice to observe only at such times as were considered by him favorable or conducive to good results. In 1850-51, in the local or station adjustments, the measures were treated as directions according to Bessel's method, and an adjustment of the triangulation was made in sections. The results were published in the Coast Survey Report for 1851, page 222, and following. Later on, in 1866-67, after the reoccupation of certain stations of the Fire Island base net, and after some revision of the triangulation about the Kent Island base, a new and more systematic adjustment was made, and relative weights to the directions were introduced. These later results were published in the Coast Survey Report for 1866, pages 52-53. A discrepancy of 50 units in the seventh place of decimals of the logarithm of the length was developed by the triangulation, and was distributed in this adjustment by a length equation. A comparison of these results with the present values of the length of the starting line Bald Hill to West Hills, showed a difference in the logarithm of 4 units in the seventl place, whereas the new adjustment in the vicinity of Kent Island base showed no discrepancy on the line Osbornes Ruin to Turkey Point. This fully justified the retention of the adjustment of $1866-67$, with but a slight change due to the

gradual dispersion of this small logarithmic discrepancy of 4 units in the seventh place of decimals. The small changes indicated in the angles of the first and second triangles, which do not exceed $0 " 121$, and in the last or thirtieth triangle of less than half a second, are due to this method of producing an accord.

The correction to the horizontal angles for height of stations observed upon is less than $\mathrm{o}^{\prime \prime} \circ 2$, and generally this need not be considered.

The approximate heights of the stations are as follows:

	Meters.	Feet.		Meters.	Feet.
Round Hill	177	582	Willowgrove	132	433
Harrow *	116	379	Pine Hill \dagger	61.4	202
Buttermilk	217	712	Yard	150	493
Weasel*	178	583	Lippincott	43	142
Beacon Mill \dagger	1137	373	Bethel	125	410
Springfield*	159	523	Burden, less than		500
Mount Rose	$127^{\circ} 7$	419	Meetingliouse Hill, less than		500
Disboro \dagger	$84^{\prime} 2$	276	Buck, less than		500
Stouy Hill \dagger	71.6	235	Principio, less than		500
Newtown	99	326	Turkey Point	25	82
Mount Holly	$55 * 3$	181	Osbornes Ruin	90	295

The fact that the spherical excess of the triangles was computed with reference to the Besselian spheroid is immaterial, as the values from the Clarke spheroid would be the same within the limits of the size of the triangles. The details of this adjustment have not been published, and it is desirable to present here certain leading quantities, but it is essential to bear in mind that the $1866-67$ adjustment started from the sides of the triangle Tashua, Ruland, West Hills, as given, and terminated with the side Finlay to Pooles Island. It is therefore slightly longer than the section which is now under consideration. The small corrections to the lines Bald Hill to West Hills and Osbornes Ruin to Turkey Point, due to the readjustment, are not introduced here, but the effect is indicated by the fractional seconds placed in parenthesis and already alluded to above. The mean error of a triangle, derived from the sum of the squares of the closing errors, equals $\sqrt{\frac{73^{\circ} 92}{33}}= \pm \mathrm{I}^{\prime \prime} \cdot 50$, and that of an angle $\pm 0^{\prime \prime} \cdot 86$, and the probable error of a direction equals $0.674 \frac{1^{\circ} 50}{\sqrt{ } 6}= \pm 0^{\prime \prime} 4 \mathrm{I}$. The probable error of a direction, ε_{r}, as found approximately from the individual measures at each station, is $\pm 0^{\prime \prime}{ }^{\circ} 25$; hence the square of the triangle-combination error $=\varepsilon_{c}^{a}=\left(0^{\circ} 41\right)^{2}-\left(0^{\circ} 25\right)^{2}=0^{\circ} 107$, which quantity was added to each ε_{2}^{2}; hence $\frac{1}{p}=\varepsilon_{c}^{2}+\varepsilon_{2}^{2}$. The ratio of the greatest to the least value of $\frac{1}{p}$ is as 0.63 to 0.12 .

Absiracls of horizonlal directions al lhe principal slalions belween lhe Fire Island and the Kenl Island base nels, Conneclicut, New York, New Jersev, Pennsylvania, Delaware, and Maryland, 1833-1S45 and 1865.

Bald Hill, Fairfield County, Connecticut. July 23 to August 18, 1833.60 cm direction theodolite No. 2. F. R. Hassler, observer.

Circle used in VI positions.
Wesl Hills, Suffolk County, New York. October 18 to December $1,1836 . \dagger 75 \mathrm{~cm}$ direction theodolite No. I. F. R. Hassler, observer. July 18 to August 15, $1865.75{ }^{\mathrm{cm}}$ direction theodolite No. I. G. W. Dean, observer.

Round Hill, Fairfield County, Connecticut. July 5 to 18,1833 . 60^{cns} direction theodolite No. 2. F. R. Hassler, observer.?

Number of directions.	Objects observed.	Results from station adjustment..			Approximate probable errors.	Corrections from adjustment of 1566.	Final seconds.	
		\bigcirc	,	$1 /$	"	/ $/$	/	
II	Bald Hill	0	∞	00×00	± 0.25	+o. 275	$00 \cdot 27$	
12	West Hills	93	33	38594	-.30	- 1 264	$37 \cdot 33$	
13	Harrow	121	52	$34{ }^{\prime} 93^{\circ}$	- $\cdot 26$	+o.965	$35 \cdot 89$	
14	Buttermilk \|			22	$52 \cdot 250$	0.38	-0.181	$48 \cdot 51$
		-3.560						

* The correction refers to Ruland station of 1865 . \ddagger Hassler, observer.
\dagger Twenty-six series were observed $\mathrm{i}_{11} \stackrel{8}{ } 86$.
Fourteen series were observed.
| The reduction indicated is ou observer's authority.

${ }^{1} 38$

THE EASTERN OBLIQUE ARC.
Abstracts of horizontal directions at the principat stations bctween the Fire Istand and the Kent Istand base nets, Connecticut, New York, New Jersey, Pennsytvania, Detaware, and Marytand, 1833-1845 and $1 \mathrm{SO}_{5}$-continued.

Harrow, Queen's County, New York. November to to December 12, 1837. $75{ }^{\mathrm{cm}}$ direction theodo lite No. 1. F. R. Hassler, observer. Twenty-four series were taken.

Number of directions.	Objects observed.	Results from station adjustment.			Approximate probable errors.	Corrections from adjustment of 1866.	Final secouds.
		-	,	11	11	11	"
18	Beacon Hill	0	oo	$00 \cdot 000$	± 0.31	+0.060	00.06
19	Springfield	32	. 08	$00 \cdot 764$	0.37	+0.438	01:20
20	Weasel *	54	02	$55 \cdot 302$	$0 \cdot 24$	-0.058	$54 \cdot 2 \mathrm{I}$
				-1 032			
21	Buttermilk	110	38	$12 \cdot 742$	$0 \cdot 17$	-0.133	12.61
22	Round Hill	128	21	16.936	-. 16	-0.071	16.86
23	Bald Hill	149	34	$06 \cdot 715$	o. 34	-0.230	06.4¢
24	West Hills	217	19	34.439	0.4I	+o.213	$34 \cdot 65$

Buttermitk, Westchester County, New York. June II to $29,1833.60 \mathrm{~cm}$ direction theodolite No. 2. F. R. Hassler, observer. Eleven series were taken.

		0	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
15	Round Hill	0	00	00.000	± 0.22	+0.098
16	Harrow	63	46	44.026	0.22	+0.184
17	Weasel	137	17	19.193	0.23	-0.291

Weaset, Passaic County, New Jersey. September 19 to October 23, 1838.75 cm direction theodolite No. I. F. R. Hassler, observer. . Nineteen series were taken.

		-	,	/1	11	11	"
25	Butterınilk	0	©	$00 \cdot 000$	$\pm 0 \cdot 22$	+0.235	$00 \cdot 23$
26	Harrow	49	54	10•775	0.24	+0.100	$10 \cdot 87$
27	Beacon Hill	133	03	II 643	$0 \cdot 20$	-0.312	II '33

Spring fietd, Union County, New Jersey. November 6 to 24, 1838.75^{cm} direction theodolite No. 1. F. R. Hassler, observer. Twenty series were taken.

			-	,	"	"	"	"
33	Harrow		0	-	00×00	$\pm 0 \cdot 22$	-0.348	$\overline{59 \cdot 65}$
34	Beacon Hill		84	13	$25 \cdot 129$	- 18	+o. 324	25.45
35	Mount Rose		142	41	$14^{7} 80$	$0 \cdot 21$	-0 ${ }^{\circ} 13$	14.77

Beacon Hitt, Monnouth County, New Jersey. July 8 to 24,1839 . Theodolite No. 1. F. R. Hassler, observer, Nineteen series were taken.

		-	,	"	"	"	"
28	Disboro	0	∞	Co 000	$\pm 0 \cdot 21$	to. 016	$00 \cdot 02$
29	Mount Rose	35	O6	$41 \cdot 283$	- ${ }^{24}$	-0.091	$41 \cdot 19$
30	Springfield	108	40	25 '771	$0 \cdot 21$	-0.267	25.50
31	Weasel \dagger	129	30	52 '007	- 20	to 266	$52 \cdot 27$
32	Harrow	172	19	$04^{\circ} 232$	$0 \cdot 17$	+o 056	$04 \cdot 29$

[^21]
Abstracts of horizontal directions at the principal stations between the Fire Island and the Kent Island

 base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865 -continued.Disboro, Mercer County, New Jersey. August 11 to 28 , 1839.75^{cm} direction theodolite No. I.
F. R. Hassler, observer. Eighteen series were taken.

Number of
directions.

Objects observed.

36	Stony Hill
37	Mount Rose
38	Springfield
39	Beacon Hill

Results from sta-
tion adjustment.

Approxi- Corrections mate proba- fronl adjust-
ble errors.
ment of 1866. ble errors. ment or

11	$\prime 1$	$\frac{11}{11}$
± 0.22	-0.097	59.90
0.16	+0.119	38.82
0.17	-0.113	13.1 I
0.21	+0.0 OS	34.25

Mount Rose, Mercer County, New Jersey. September 29 to October 17, 1839. 75^{cm} direction theodolite No. I. F. R. Hassler, observer. Twenty-one series were taken.

40	Springfield	0	-o	$00 \cdot 000$	± 0.20	+o 016	. $00 \cdot 02$
41	Beacon Hill	47	58	$30 \cdot 192$	- 20	-0.042	30^{15}
42	Dishoro	79	38	55 '096	- ${ }^{25}$	-0.081	55 or
43	Stony Hill	115	15	$05 \cdot 181$	- 18	to ooss	-05 27
44	Mount Holly*	146	53	25 '591	- .19	+o.033	$25 \cdot 62$
45	Newtown	191	24	$23 \cdot 100$	- 23	-0.033	23 \% 7

Stony Hill, Burlington County, New Jersey. September 5 to $24,1839.75{ }^{\mathrm{cm}}$ direction theodolite No. I. F. R. Hassler, observer. Thirteen series were taken.

		-		//	"	"	"
46	Mount Holly	o	-o	00 \%oo	± 0.23	-0.496	59
47	Newtown	63	09	51 $\cdot 295$	0.21	+o 370	51×6
48	Mount Rose	102	35	57•937	$0 \cdot 11$	-0.018	$57 \cdot 9$
49	Disboro	163	16	09 801	$0 \cdot 20$	to:118	0902

Mount Holty, Burlington County, New Jersey. November 11 to December 21, 1840. 75^{cm} direction theodolite No. I. F. R. Hassler, observer. Thirty-five series were taken.

		-	,	"	/	"	/1
54	Pine Hill	\bigcirc	-o	00.000	$\pm 0 \cdot 20$	-0.411	59 '59
55	Yard	48	51	$18 \cdot 622$	- 22	+0.440	19.06
56	Willowgrove	S2	09	$48 \cdot 442$	$0 \cdot 13$	- ${ }^{\circ} 244$	48^{69}
57	Newtown	120	O8	$32 \cdot 708$	0.22	-0.669	32 \% 4
58	Mount Rose	150	-o	$21 \cdot 433$	0.25	-0.218	21.21
59	Stony Hill	195	46	03.416	$0 \cdot 28$	+0.665	$04^{\circ} 08$

Newtown, Bucks County, Pennsylvania. October 23 to November 13, $1839.75{ }^{\mathrm{cm}}$ direction theodolite No. I. F. R. Hassler, observer. Twenty-three series were taken.

50	Mount Rose	0	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
51	Stony Hill	60	00.000	± 0.20	+0.046	00.05
52	Mount Holly	24	37.993	0.18	-0.433	37.56
53	Willowgrove	105	37	14.249	0.20	+0.718
$184^{\circ} 97$						

[^22]Abstracts of horizontal directions at the principal slationsbetween the Fire Istand and the Kent Island base nets, Connecticut, New York, Nezo Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865 -continued.

Willougrove, Montgomery County, Pennsylvania. November 18 to December 5, 1839, and November 3, 1840. 75^{cm} direction theodolite No. I. F. R. Hassler, observer. Thirty-five series were taken.

Number of
directions.
Objects observed.

60 Newtown
6i Mount Holly
62 Pine Hill

Results from station adjustment.			Approximate probable errors.	Corrections from adjustment of 1566.	Final secouds.
-	,	"	11	/1	$1 /$
0	00	$00 \cdot 000$	± 0.20	+o. 279	$00 \cdot 28$
67	07	$37 \cdot 536$	- 15	-0.207	37 '33
113	13	31.865	$0 \cdot 22$	-0 0.45	$31 \cdot 82$

Pine Hill, Gloucester County, New Jersey. October 2 to December 20, 1842.75 cm direction theodolite No. r. F. R. Hassler, observer. Thirty-five series were taken.

		-	,	/	/	"	"
63	Lippincott	-	-	$00 \cdot 00$	$\pm 0 \cdot 21$	-0.304	$\overline{59} 70$
64	Bethel	24	14	$38 \cdot 796$	- ${ }^{1} 7$	-0.445	$38 \cdot 35$
65	Yard	47	-6	14.531	$0 \cdot 16$	+0.329	14.86
66	Willowgrove	92	50	$20 \cdot 541$	0.21	-0.026	20.51
67	Mount Holly*	144	34	38.914	- $\cdot 18$	+0.450	$39 \cdot 17$
				-0 190			

Yard, Delaware County, Pennsylvania. September 26 to December 1, i841, and August is to September 12, I842. 75^{cm} direction theodolite No. I. F. R. Hassler, observer. Thirty-two series were taken.

68	Mount Holly	0	00	00.000	± 0.16	-0.461	59.54
69	Pine Hill	33	40	18.8_{13}	0.13	-0.257	18.56
70	Lippincott \dagger	81	05	15.178	0.15	+0.521	15%
71	Bethel	125	$47,25.325$	0.26	+0.262	25.59	

Bethel, Delaware County, Pennsylvania. December 2 to $13,1843.75 \mathrm{~cm}$ direction theodolite No. I. J. Ferguson, observer. Sixteen series were taken. May 4 to 8 , $1847.30{ }^{\mathrm{cm}}$ repeating theodolite No. ir. E. Blunt, observer. Thirteen sets of 6 repetitions each.

[^23]Abstracts of horizontat directions at the principal stations between the Fire Island and the Kent Istand base nets, Connecticut, New York, New Jersey, Pennsyivania, Delaware, and Maryland, 1833-1845 and 1865 -continued.

Lippincott, Gloucester County, New Jersey. August 15 to September 5, $1843 . \quad 75^{\mathrm{cm}}$ direction theodolite No. I. F. R. Hassler, observer. Thirty-three series were taken.

Number of directions	Objects observed.	Results from station adjustment.		Approxinate probable errors.	Corrections from adjust-	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		- ,	"	"	"	"
76	Burden	'0 0	$00 \cdot 000$	± 0 '33	+0.472	$00 \cdot 47$
77	Meetinghouse Hill	$\begin{array}{ll}73 & 07\end{array}$	$29^{\circ} \mathrm{7}$ 0	- 29	-0.296	$29^{\circ} 41$
78	Bethel	117	$58 \cdot 189$	-. 16	+o. 093	$58 \cdot 28$
79	Yard	152 o6	$60 \cdot 223$	$0 \cdot 22$	-0.629	59 '59
So	Pine Hill	$237 \quad 35$	$48 \cdot 835$	- 26	+0.490	$49^{\circ} 3^{2}$

Burden,* Salem County, New Jersey. September 29 to November 3, $1843.75{ }^{\mathrm{cm}}$ direction theodolite No. I. F. R. Hassler, observer. Twenty-six series were taken. August 22, I845. 30^{cm} repeating theodolite No. II. E. Blunt, observer. Four sets.

		-	,	//	//	/	"
81	Buck	o	-0	00.000	$\pm 0 \cdot 19$	-0.146	$\overline{59.85}$
S2	Meetinghouse Hill	33	22	$27 \cdot 846$	- •16	+0.33 1	$28 \cdot 18$
83	Bethel	72	46	31970	- 33	+o.039	32 'or
84	Lippincott	102	51	08•769	- 22	-0. 256	$08 \cdot 51$

Mectinghouse Hill, Newcastle County, Delaware. September 16 to $26,1845.60 \mathrm{~cm}$ direction theodolite No. 2 (regraduated). J. Ferguson, observer. Seventeen series were taken.

		-	,	. $/$	"	/'	/
S5	Lippincott	o	oo	00 \%00	$\pm 0 \cdot 27$	+o. 202	. 20
S6	Burden	37	23	53 '256	- 30	-0.501	52 75
57	Buck	97	15	50'141	$0 \cdot 18$	+o.132	$50 \cdot 27$
88	Principio	154	14	$56 \cdot 363$	0.44	+o. 142	$56^{\circ} 50$

Buck,\dagger Newcastle County, Delaware. July 29 to August 13, 1845. 60^{cm} direction theodolite No. 2. J. Ferguson, observer. Seventy-one series were taken.

89	Tuikey Point
90	Principio
9 r	Meetinghouse Hill
92	Burden
Deakyne	

。	,	/	"	"	"
o	∞	00 \%00	$\pm 0 \cdot 18$	to.131	$00 \cdot 13$
37	OI	12.453	-. 16	-0.211	12.24
118	14	25 '359	-. 14	-o.ior	$25 \cdot 26$
205	-o	00.673	$0 \cdot 20$	+o.211	oo 88
248	08	11 297	0 ¢ 21		

Principio, Cecil County, Maryland. August 17 to September 5, 1845. 60 cm direction theodolite No. 2.
J. Ferguson, observer. Twenty-six series were taken.

		-	,	"	/	"	/
93	Meetinghouse Hill	o	oo	00 000	$\pm 0 \cdot 25$	-0.159	$\overline{59 \cdot 84}$
94	Buck	41	47	$4 \mathrm{I}^{1} 53 \mathrm{I}$	0.20	+o. 225	41 '76
95	Turkey Point	119	25	09 985	- '16	+o o89	10.07
96	Osbornes Ruin	177	02	97 7^{641}	- . 16	-0.169	0747

[^24]Abstracts of horizontal directions at the principal stations betzeen the Fire Island and the Kent Island base nets, Connecticut, New York, New Jersey, Pennsylvania, Delaware, and Maryland, 1833-1845 and 1865 -continued.

Turkey Point, Cecil County, Maryland. May 31 to June 17, 1845. $60{ }^{\mathrm{cm}}$ direction theodolite No. 2. J. Ferguson, observer. Seventy-three series were taken.

Number of directions.	Objects observed.	Results from station adjustinent.			Approx imate probable error.	Correc. tion from adjustment. Special Publication No. $4,1900$.	Resulting seconds.	Correction from adjustinent of 1866.	Final seconds.
		\bigcirc	,	11	"	11	11	/1	"
97	Pooles Island	0	00	$00 \cdot 000$	± 0.17	$+0.65$	(00.65)	-0.009	$59 * 99$
98	Osbornes Ruin	44	OI	$48 \cdot 723$	- 18	-0.44	$(48 \cdot 28)$	+0.158	48.88
99	Principio		14	41.244	0.18			-0.084	$41 \cdot 16$
100	Buck	196	36	OI 'So6	$0 \cdot 38$			-0.118	OI * 69

Osbomes Ruin, Harford County, Maryland. September 23 to October 2, 1844.60 cm direction theodolite No. 2. J. Ferguson, observer. Ten series were taken.

	0	$\prime \prime$							
IO1	Principio	0	00	00.000	± 0.27	\ldots.	\ldots.	+0.126	00.13
102	Turkey Point	35	10	11.669	0.39	+0.11	(11.78)	-0.268	11.40
103	Pooles Island	116	37	29.195	0.55	-0.06	$\left(29{ }^{\circ} 13\right)$	-0.461	28.73
104	Finlay	194	06	43.571	0.42	\ldots.	$\ldots .$.	+0.414	43.98

Of the old adjustment of $1866-67$, retained here after leaving off a few triangles at both ends, we shall only present the observation equations and the resulting corrections, together with the triangles. The following designations in the old adjustment still need explanation; they are, (1), Ruland to Bald Hill; (2), Tashua to same; (6), Bald Hill to Tashua, and (7), Bald Hill to Ruland:-at the southern end; (103) Osbornes Ruin to Pooles Island; (104), same to Finlay; (97), Turkey Point to Pooles Island; (105), (106), (107), Pooles Island to Finlay, Osbornes Ruin, and Turkey Point, respectively.

I	$0=-1 \times 525-(6)+(7)-(1)+(2)$
II	$0=+1 \cdot 433-(7)+(8)-(5)+(1)$
III	$0=+2.483-(11)+(12)-(4)+(5)-(8)+(10)$
IV	$0=-1.397-(11)+(13)-(22)+(23)-(9)+(10)$
V	$0=-2 \cdot 771-(22)+(24)-(3)+(4)-(12)+(13)$
VI	$0=+0.996-(15)+(16)-(21)+(22)-(13)+(14)$
VII	$0=+0.686-(25)+(26)-(20)+(21)-(16)+(17)$
VIII	$0=+0.741-(31)+(32)-(18)+(20)-(26)+(27)$
IX	$0=-1.372-(33)+(34)-(30)+(32)-(18)+(19)$
X	$0=+0.571-(40)+(41)-(29)+(30)-(34)+(35)$
XI	$0=+0.179-(37)+(39)-(28)+(29)-(41)+(42)$
XII	$0=-0.522-(48)+(49)-(36)+(37)-(42)+(43)$
XIII	$0=-1 \cdot 306-(58)+(59)-(46)+(48)-(43)+(44)$

[^25]| XIV | $0=-1.057-(50)+(52)-(57)+(58)-(44)+(45)$ |
| :---: | :---: |
| XV | $0=-3 \cdot 35 \mathrm{I}-(57)+(59)-(46)+(47)-(51)+(52)$ |
| XVI | $0=+2.493-(60)+(6 \mathrm{I})-(56)+(57)-(52)+(53)$ |
| XVII | $0=-1 \cdot 294-(66)+(67)-(54)+(56)-(61)+(62)$ |
| XVIII | $0=-1 \cdot 176-(68)+(69)-(65)+(67)-(54)+(55)$ |
| XIX | $0=-1 \cdot 959-(72)+(73)-(64)+(65)-(69)+(71)$ |
| XX | $0=-2.570-(79)+(80)-(63)+(65)-(69)+(70)$ |
| XXI | $0=+0 \cdot 7 \mathrm{So}-(72)+(74)-(78)+(79)-(70)+(71)$ |
| XXII | $0=+0 \cdot 789-(83)+(84)-(76)+(78)-(74)+(75)$ |
| XXIII | $0=+2.059-(85)+(86)-(82)+(84)-(76)+(77)$ |
| XXIV | $0=-1 \cdot 422-(91)+(92)-(81)+(82)-(86)+(87)$ |
| XXV | $0=-0.503-(93)+(94)-(90)+(91)-(87)+(88)$ |
| XXVI | $0=+0.5 \mathrm{II}-(99)+(100)-(\mathrm{S9})+(90)-(94)+(95)$ |
| XXVII | $0=+0.895-($ IOI $)+(102)-(98)+(99)-(95)+(96)$ |
| XXVVII | $0=+0.072-(106)+(107)-(97)+(98)-(102)+(103)$ |
| XXXIX | $0=-2.09 S-(108)+(106)-(103)+(104)$ |
| XXX | $0=+0.31250+0.14415(6)-0.03534(8)-0.55583(1)+0.51506(5)-0.1088 \mathrm{I}$ (7) |
| XXXI | $0=-0.19647-0.51563(4)+0.40701(5)+0.53867(22)+0.0037 \mathrm{~S}(24)-0.2 \mathrm{SO} 33(9)+0.15426$ (10$)$ |
| | $+0^{\circ} 12607(8)+0.10862(3)-0.54245(23)$ |
| XXXII | $\begin{aligned} 0= & -0.03765-0.29742(3 S)+0.21685(39)+0.15129(40)+0.03846(42)-0.06212(29) \\ & +0.1332 S(30)-0.07116(28)+0.08057(37)-0.18975(4 \mathrm{I}) \end{aligned}$ |
| XXXIII | $\begin{aligned} 0= & +0.29283-0.36253(47)+0.2560 \mathrm{I}(48)+0.3 \mathrm{I} 275(57)+0.05396(59)-0.2 \mathrm{I} 4 \mathrm{I} 4(44) \\ & +0.16225(45)+0.05 \mathrm{IS}(43)+0.10652(46)-0.3667 \mathrm{I}(58) \end{aligned}$ |
| XXXIV | $\begin{aligned} 0= & +0.15673-0.40626(70)+0.21275(7 \mathrm{I})+0.27 \mathrm{I} 9 \mathrm{I}(63)+0.19563(65)-0.29782(73) \\ & +0.3360 \mathrm{I}(74)-0.038 \mathrm{I} 9(72)+0.1935 \mathrm{I}(69)-0.46754(64) \end{aligned}$ |
| XXXV | |

It will not be necessary to transcribe here the correlate and normal equations, since the resulting triangles given further on prove the correctness of the solution. The individual corrections to the directions, together with their assigned weights, are as follows:

$\begin{gathered} \text { Correc- } \\ \text { tion } \\ \text { symbol. } \end{gathered}$	Kcciprocal of weight, $\frac{1}{\phi}$	Correction.	$\begin{gathered} \text { Correc- } \\ \text { tion } \\ \text { symbol. } \end{gathered}$	Keciprocal of weight, $\frac{1}{\phi}$	Correction. 11	$\begin{aligned} & \text { Correc- } \\ & \text { tion } \\ & \text { symbol. } \end{aligned}$	Reciprocal of weight, $\frac{1}{p}$	Correction. /
(1)	$0 \cdot$ ISo	to 048	(38)	$0 \cdot 136$	-0.113	(74)	- 175	-0 020
(2)	0.301	-0.413	(39)	$0 \cdot 151$	+o.085	(75)	- 0.129	-0'135
(3)	-. 133	+o.055	(40)	$0 \cdot 147$	+o.016	(76)	0.216	+0.472
(4)	0.216	+0.314	(41)	- 1.147	-0.042	(77)	- -191	-0.296
(5)	$0 \cdot 170$	-0.109	(42)	- $0 \cdot 169$	-0.08ı	(78)	$0 \cdot 133$	+o.093
(6)	$0 \cdot 155$	+o.039	(43)	- ${ }^{\text {- }} 39$	to.088	(79)	$0 \cdot 155$	-0.629
(7)	- 0.467	+2.024	(44)	-'143	+o.033	(80)	$0 \cdot 180$	+0.490
(S)	$0 \cdot 180$	+0.434	(45)	-. 160	-0.033	(8I)	-. 143	-0.146
(9)	$0 \cdot 143$	-0 954	(46)	- 0.160	-0.496	(82)	-.133	+0.331
(10)	- 267	-0.087	(47)	- 151	+o.370	(83)	0.216	+0.039
(II)	$0 \cdot 169$	+o. 275	(48)	-'119.	-0.018	(84)	- ${ }^{1} 55$	-0.256
(12)	$0 \cdot 197$	-1.264	(49)	- '147	+0.118	(85)	- $\cdot 180$	+0.202
(13)	$0 \cdot 175$	+o.965	(50)	$0 \cdot 147$	+o.046	(86)	- '197	-0.501
(14)	- 251	-0.181	(51)	- 0.139	-0.433	(87)	- . 139	+o.132
(15)	$0 \cdot 155$	+o.098	(52)	-.147	+0.718	(88)	$0 \cdot 301$	+0.142
(16)	O 155	+o.184	(53)	-. ISo	-0.375	(89)	- ${ }^{\text {I }} 39$	+0.131
(17)	- 0.160	-0.291	(54)	- 1.147	-0.4 II	(90)	$0 \cdot 133$	-0.211
(18)	- 203	+0.060	(55)	- ${ }^{\text {. }} 55$	+o.440	(91)	- 0.127	-0.101
(19)	- 244	+o.438	(56)	$0 \cdot 124$	+0.244	(92)	- 147	+0.211
(20)	$0 \cdot 165$	-0 058	(57)	- ${ }^{\circ} 155$	-0.669	(93)	- $\cdot 167$	-0.159
(21)	-. 136	-0.133	(58)	-.169	-0.218	(94)	-. 147	+0.225
(22)	$0 \cdot: 33$	-0.071	(59)	-. 185	+o.665	(95)	- 136	+o.089
(23)	0.229	-0.230	(60)	- 147	+0.279	(96)	-. 136	-0.169
(24)	- 275	+0.213	(61)	- 0.129	-0.207	(97)	- . 136	-0.009
(25)	- ${ }^{1} 55$	+o. 235	(62)	$0 \cdot 155$	-0.045	(98)	- 139	+0.158
(26)	- $\cdot 165$	+0.100	(63)	- ${ }^{\text {¹5 }} 1$	-0.343	(99)	- 1139	-0.084
(27)	- 147	-0.312	(64)	-. 136	-0.445	(100)	- 2.25 I	-0.118
(28)	$0 \cdot 151$	+o.016	(65)	- ${ }^{\text {. }} 36$	+0.329	(101)	- 180	+0.126
. 29)	-. 165	-0.091	(66)	-.151	-0.026	(102)	- 0.259	-0.268
(30)	$0 \cdot 151$	-0.267	(67)	- 139	+o.450	(103)	$0 \cdot 409$	-0.461
(31)	-. 147	+o.266	(68)	-. 133	-0.46I	($\mathrm{IO4}$)	0.283	+0.414
(32)	-. 136	+o.056	(69)	$0 \cdot 124$	-0. 257	(105)	
(33)	-. 155	-0.348	(70)	- 129	+o.52 I	(106)	- ${ }^{1} 124$	+0.124
(34)	- ${ }^{\circ} 139$	+0.324	(71)	- 175	+o. 262	(107)	- 1.147	to. 077
(35)	-.151	-0.013	(72)	-.139	-0.223	- (108)	- 0.625	-1.100
(36)	- $0 \cdot 155$	-0.097	(73)	$0 \cdot 160$	+0.442	(109)	\ldots
(37)	- 133	+0.119						

Probable error of a resulting direction $0.674 \sqrt{\frac{16 \cdot 7}{35}}= \pm 0^{\prime \prime} \frac{47}{4}$.

Resulting angles and sides of the triangulation between the Fire Island base net and the extended net of the Kent Island base.

Resulling angles and sides of the triangutation between the Fire Istand base net and the extended net of the Kenl Island basc-continued.

No.	stations.	Observed augles.			Correction.	spherical	Splier ical excess	I.Og. Distances.	Distances in meters.
		-	,	"	11	11	/1		
12	Dishoro	09	03	34.53	-0.23	34 30	I 04	46754732	$47366 \cdot 71$
	Mount Rose	79		55^{\prime} 10	-0.10	$55^{\circ} \mathrm{QO}$	104	$4 \cdot 6940224$	$49 \mathrm{S91}$ '02
	Springfield	31	17			$33 \cdot \$_{2}$	$1{ }^{1} 04$	44206566	$26342 \cdot 4 \mathrm{~S}$
13	Stony Hill	60	40	11:86	+0.14	$12{ }^{\circ} \mathrm{O}$	- 39	$4420 \cdot 6566$	26342 48
	Mount Rose	35	36	$10 \cdot 08$	$+0^{\circ} 17$	$10 \cdot 25$	$0 \cdot 39$	$4 \cdot 2452775$	17590.47
	Disloro	8_{3}	43	$3^{8 \cdot 70}$	$\therefore-\mathrm{O} \cdot 22$	$3{ }^{\text {P }} 92$	- 39	4.4776260	30034.89
14	Mount Holly	45	45	41.98	+-0.8S	$42 \cdot 86$	0.54	4.4776260	$30 \quad 034 \% 9$
	Mount Rose	31		$20 \cdot 41$	-0.05	$20 \cdot 36$	- '55	43422408	$21990 \cdot 79$
	Stony Hill	102	35	$57 \cdot 94$	+0.48	$58 \cdot 42$	- 55	46118568	40912.58
15	N゙ewtown	41	12	$36 \cdot 26$	+1•15	37.41	- 54	$4 \div 3422408$	$21990 \% 9$
	Stony IIIII	63	09	51.29	+0.87	$52 \cdot 16$	0.53	$4 \cdot 473$ 954 7	$29784 \cdot 12$
	(Mount Holly	75	37	$30 \cdot 71$	+1.33	$32 \cdot 04$	$0 \cdot 54$	45096577	$\begin{array}{ll}32 & 333\end{array} \mathrm{~S}_{7}$
16	Newtown	105	37	14.25	$+0.67$	14 '92	$0 \cdot 51$	46118568	40912.58
	Mount Rose	44	30	$57{ }^{1}$	-0.07	$57 \% 4$	$0 \cdot 51$	447.39847	$29784 \cdot 12$
	Sount Holly	29	51	$48 \cdot 72$	+o. 45	$49^{\circ 17}$	$0 \cdot 51$	43253742	21153.11
17	(Newtown	6.4	24	37'99	-0:48	$37^{\circ} 5^{1}$	0.52	4.4776259	$30034 \cdot 58$
	Mount Rose	76		$17{ }^{192}$	-0.12	17.80	$0 \cdot 52$	4.5096577	$\begin{array}{llll}32 & 333 \cdot 87\end{array}$
	Stony Hill	39	26	$06 \cdot 64$	-0.39	$06 \cdot 25$	0.52	4.3253742	21 153.11
IS	Willowgrove	67	07	$37 \cdot 54$	-0.49	$37 \cdot 05$	0.48	44739847	$29784 \cdot 12$
	Newtown	74	53	$42 \cdot 14$	-1.10	41.04	0.48	4.4942807	$31209 \cdot 06$
	Mount Holly	37	58	$44^{\circ 27}$	-0.91	$43 \cdot 36$	0.49	$4 \cdot 2986858$	19 S92.33
19	Pine Hill	51	44	IS 18	$+0.48$	18.66	0•75	$4 \cdot 4942807$	$31209{ }^{\circ} 06$
	Willowgrove	46	05	54.33	+0.16	$54 \cdot 49$	$0 \cdot 75$	$4 \cdot 4569577$	$28638{ }^{\prime \prime} 99$
	Mount Holly	S2	09	$48 \cdot 44$	+0.66	$49^{\circ} 10$	0'75	45952307	$39375{ }^{\prime \prime} 9$
20	Yard	33	40	18.81	$+0 \cdot 20$	19 or	- '93	$4 \cdot 4569577$	$28638 \cdot 99$
	Mount Holly	48	5 I	IS $\cdot 62$	+0.85	$19: 47$	- 94	$45^{\circ} 899314$	$38 \quad 898 \cdot 37$
	Pine Hill	97°	28	$2.4 \cdot 19$	+0.12	24.3 I	0.93	47094037	$51215 \cdot 76$
21	Idippincott	85	28	$48 \cdot 61$	+1.12	$49^{\circ} 73$	-0.69	$45^{\circ} \mathrm{S} 99314$	$38 \quad 898.37$
	Yard	47	24	$56 \cdot 37$	+0.78	$57 \cdot 15$	$0 \% 0$	4.4583284	$28 \quad 729 \cdot 52$
	Pine IIIl	47	06	14.53	+0.67	$15 \cdot 20$	- 69	4.4561455	28585.48
22	Betliel	35	15	$3^{\circ} \mathrm{O} 1$	-0.46	31:55	0.43	4.4583284	28729.52
	Pine Hill	, 24	14	$3{ }^{\text {•So }}$	-0.10	$3^{8 \cdot 70}$	0.43	4.3103937	$20435{ }^{\circ} 90$
	Lippincott	120	29	$50 \cdot 65$	+0.39	51.04	0.43	4.6322827	$42 \quad 882 \cdot 76$
23	(Betliel	100	16	$49^{\circ} 45$	+0.20	$49 \cdot 65$	$0 \cdot 28$	4.4561455	$28585 \cdot 48$
	Yard	44	42	10'15	-0.26	09 * 89	0.29	4.3103937	20435 '90
	Lippincott	35		02.03	$-0 \cdot 72$	O1. 31	0.28	4.2219489	$16670{ }^{\circ} 51$

Resulting angles and sides of the triangulation between the Fire Island base net and the extended net of the Kient Island base-continued.

No.	stations.	Onserved angles.			Correction.	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \end{aligned}$	$\begin{gathered} \text { Spher- } \\ \text { ical } \end{gathered}$	Log. distances.	Distances in neters
24		-	,	"	"	"	"		
	Bethel	65	or	1744	+0.67	is.if	0.55	$45^{5} 999{ }^{1} 4$	$3^{8} \mathrm{SgS} \cdot 37$
	Yard	92	07	0651	+o. 52	$\mathrm{o}_{7} \mathrm{or}_{3}$	- 55	4.6322826	$4^{2} \mathrm{SS} 2 \cdot 75$
	Pine Ifill	22	51	35 '74	+0.77	36.51	- $55{ }^{\text {* }}$	4.2219489	$16670 \cdot 51$
25	Burden	30	of	36 \%o	-0.30	$36 \cdot 50$	0.34	43103936	$20.435 \% 9$
	Bethel	32	49	$26 \cdot{ }^{2}$	-0.It	$26^{\circ} 7$	- 34	43444655	$22{ }^{10} 573$
	L,ippincott	117	O5	$58 \cdot 19$	-0.3S	57.81	$0 \cdot 34$	45599146	$36300 \cdot 67$
26	Meetinghouse Hill	37		$53 \cdot 26$	-0.70	$52 \cdot 56$	0.61	$4344+655$	22103.73
	Lippincott	73		$29^{\prime 7}$	-0.77	28.94	$0 \cdot 61$	4545940	$348_{26} 8_{3}$
	Burden	69	$2 S$	$40 \cdot 92$	-0.59	$40 \cdot 33$	$0 \cdot 61$	+ 5325546	$34084 \cdot 32$
27	Buck	S6	45	$35 * 3{ }^{\text {5 }}$	+0.31	35 *2	- 49	4×5419139	$34{ }^{\text {S } 26 ~}{ }^{\text {S }} 2$
	Meetinghouse Hill	59	51	$56 \cdot{ }_{9} 9$	+o.63	$57{ }^{\prime} 5^{2}$	$0 \cdot 49$	44795507	30168.29
	Burden	33	22	27 'S	+0:48	$28 \cdot 33$	$0 \cdot 49$	$4 \cdot 283056$	
28	Principio	45	47	41×53	to. ${ }^{8} 8$	41^{19}	- 38	$4 \cdot 2830565$, 9.189 .18
	Meetinghouse Hill	56		$06 \cdot 22$	+o.01	06.23	- 39	4.3 S2 796 o	$24143 \cdot 27$
	Buck	81		12.91	+0.11	$13{ }^{\circ} \mathrm{O} 2$	- 39	$4 * 4541596$	$28455{ }^{\circ} \mathrm{6}$
29	Turkey Point	65		$20 \cdot 56$	-0.03	$20 \cdot 53$	$0 \cdot 32$	$43^{\text {S }}$ 2 7960	$24143 \cdot 27$
	Priucipio	77		2S 45	-0.14	$28^{\circ} 3$	- $3{ }^{2}$	47440631	$25945{ }^{5} 6$
	Buck	37		12.45	-0.34	12.12	$0 \cdot 32$	+ 203937.1	15993.26
30	Osbornes Rnin	35		$\begin{gathered} 11.67 \\ (11.78) \end{gathered}$	-0\% 40	11 ${ }^{\prime} 27$	$0 \cdot 31$	4.203 937 I	15993.26
	Principio	57	36	$57 \cdot 66$	-0. 26	$57 \cdot 40$	$0 \cdot 32$	$4 \cdot 370$ 1or S	$23447{ }^{7} 8$
	Turkey Point	87		$\begin{gathered} 52 \cdot 52 \\ (52 \cdot 96) \end{gathered}$	-0.24.	52 '2S	- 32	4.4430009	27733 '26

4. FIRST SECTION OF THF TRIANGULATION, SOUTH

 OF TIE TRANSCONTINENTAL TRIANGULATION, IN VIRGINIA AND NORTH CAROLINA, 1875 1879.In connection with the account of the Kent Island base net and its extension to the westward there are given the abstracts of the horizontal directions as well as the adjusted angles and triangle sides between the triangulation stations which connect that base with the sides of the triangle Humpback, Tobacco Row, Spear. It is from this triangle that the triangulation of the oblique arc departs from that of the are of the parallel and the first section, proceeding to the southward and westward, terminates at the line Buffalo to Moore. Between Humpback and Moore the triangulation is so strengthened by the numerous tie lines that it is not supposed that any measurable error could accunnulate within this section; its whole adjustment was therefore made to depend for initial direction and length on the above fixed triangle. In this section there are 24 conditions to be satisfied and 42 directions to be corrected.

The approximate elevations of the stations are as follows:

	Meters.	Feet.
Humpback	1110.4	3643
Spear	491.7	1613
Tobacco Row	$894^{\circ} 8$	2936
Long Mountain	436.8	1433
Flat Top	$1218 \% 7$	3998
Cahas	1088.4	3571
Smith Mountain	622.7	2043
Moore	$784^{\circ} 0$	2572
Buffalo	1210.4	3971

Corrections to horizontal directions for height of station observed upon were applied. Squaring the closing errors of the triangles we get $\sqrt{\frac{64^{\circ 64}}{28}}= \pm \mathrm{I}^{\prime \prime} \cdot 5^{2}$ as the mean error of a triangle, also mean error of anl angle $\frac{I^{\circ} 52}{\sqrt{3}}= \pm 0^{\prime \prime} \cdot 88$ and the probable error of a direction $= \pm 0^{\prime \prime} 42$.

Absiracts of horizontal directions at stations composing the first section of the triangulation south of

 the transcontinental triangulation, 1875 to 1879.Humpback, Nelson County, Virginia. June 8 to 29,1875 . A. T. Mosman, observer. 35^{cm} direction theodolite No. Io. May II to June 6, 1878. A. T. Mosman, observer. 50^{cm} direction theodolite No. 114. August 18 to 28, 1879. A. T. Mosman and W. B. Fairfield, observers. 50^{cm} direction theodolite No. 114.

No. of directions.	Objects observed.	Results of local adjustment.								
					froill figure adjustment transcontinental arc.	Resulting seconds.	Reductions tosea level.	Resulting seconds.	Cor from adjustnient of first section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	"	"	"	"	"	"	
!	Jarman		∞	00%	\ldots	\ldots		
	Spear	126	14	$25^{\circ} 02$	$+0.44$	25.46	\ldots	
	Long Mountain	154	4I	57'so	+0.01	(57 11)	+0.46	57.57
	Tobacco Row	173	06	07 68	-0.87	$06 \% 1$				

Probable error of a single observation of a direction (D. and R.) , $\varepsilon_{\mathrm{x}}= \pm \mathrm{I}^{\prime \prime} \cdot 28$. Circle used in XI positions.
Spear, Buckingham County, Virginia. July 30 to August 29, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. Io.

Tobacco Row, Ainherst County, Virginia. September 14 to 23, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. Io. September 6 to 9, 1S79. A. T. Mosman, observer. 50^{cm} direction theodolite No. II4.

	(1)	-	,	"	"	"	"	"	"	"
8	Flat Top	0	∞	$00 \cdot 00$	+0.06	(∞ © 06)	+0.93	$00 \% 99$
	Humpback	140	52	$23 \cdot 38$	+0.86	24×24	
	Spear	200	19	$28: 80$	-0.22	28.58	\ldots	.. .
	Willis	208	43	$23^{\circ} 06$	\ldots		
5	Long Mountain	272	56	$37 \cdot 39$	-0.02	(37-37)	-0.07	$37 \cdot 30$
5	L.yichburg	276	15	$5^{\prime} \cdot 23$	
6	Snith Mountain	318	30	$40^{\circ} 14$. .		+0.04	(40.18)	+0.07	$40 \cdot 25$
7	Cahas	345	5^{2}	$24^{\circ} 62$. . .		+0.07	($24 \cdot 69$)	-0.87	$23 \cdot 82$

Probable error of a single observation of a direction (D. and R_{0}), $e_{5}= \pm I^{\prime \prime} 43$.
Long Mountain, Campbell County, Virginia. October 16 to December 9, 1875. A. T. Mosman, observer. 35^{cm} direction theodolite No. Io.

Number of directions.	Objects observed.	Results from local adjustment.			Reductions to sea level.	Resulting seconds.	Corrections from figure adjustinent	Final seconds.
		-	,	11	11	11	"	$1 /$
12	Tobacco Row	0	00	$00 \cdot 00$	-0.03	$\overline{59.97}$	-0.24	59.73
13	Humpback	29	31	$39 \cdot 55$	+0.03	39.58	+o.84	$40 \cdot 42$
14	Spear	60	19	$37 \cdot 53$	+o.03	$37 \cdot 56$	-0.50	37 '06
	Willis	86	30	$44 \cdot 38$				
9	Smith Mountain	251	12	$44 \cdot 36$. +o.04	$44{ }^{40}$	+0.47	44 -87
Io	Cahas	273	58	20 77	+0.04	$20 \cdot 83$	-0.47	$20 \cdot 36$
II	Flat Top	309	05	12.49	-0.05	12.44	-0.10	$12 \cdot 34$
	Azimuth Mark, Lynchburg							
	C. H.	356	02	$42 \cdot 35$

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 1^{\prime \prime \prime} 36$. Circle used in XXIII positions.

Abstracts of horizontal divections at stations composing the first section of the triangulation south of the transcontinental triangulation, 8875 to 5879 -continued.

Filat Top, Peaks of Otter, Berlfori County, Virginia. June 20 to September 2 1876. A. T. Mosman, observer. 35^{cm} direction theodolite No. 10.

Number of directions.	Objects ohserved.	Kesults from local adjustment.			keductions to sea level.	Kesulting seconds.	Corrections front figure adjustment.	Final seconds.
		-	,	11	$1 /$	"	"	11
15	Tobacco Row	0	00	$00 \cdot 00$	+0.04	00.04	-0.28	5976
16	Spear	10	17	$00 \cdot 26$	+o.01	$00 \cdot 27$	-0.13	$0 \cdot 14$
	Lyuchburg	26	12	$24 \cdot 16$				
17	Long Mountain	42	OI	5179	-0.02	$51 \cdot 77$	-0.11	51'66
18	Suith Mountain	10 S	18	$02 \cdot 38$	- .00	$02 \cdot 38$	-0.0S	$02 \cdot 30$
19	Moore	138	23	$14 \cdot 12$	+0.05	$14 \cdot 17$	+0.09	$14 \cdot 26$
20	Calias	156		$54{ }^{\circ} 25$	+0.08	$54 \cdot 33$	+0:40	$54 \cdot 73$
21	Buffalo	157	53	$45^{\circ} \mathrm{O}$	+o os	45^{111}	$\div 0.12$	$45 \cdot 23$

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 1^{\prime /} 36$. Circle used in NXIII positions.

Cahas, Franklin County, Virginia. June 25 to July 13, 1877 . A. T. Mosnan, observer. 50^{cm} direction theodolite No. 114.

		-	,	"	"	"	"	"
3^{2}	Smith Mountain	-	-	$00 \cdot 00$	-0.02	$\overline{59.98}$	-0.06	$\overline{59.9}$
33	Moore	90	56	$57 \cdot 57$	+0.03	$57 \cdot 60$	-0.84	$56 \% 6$
34	Buffalo	123	26	57.08	+o.08	$54 \cdot 16$	-0.15	54.01
29	Flat Top	300	OI	07.25	+0.09	$07 \cdot 34$	+0.36	0770
30	Tobacco Row	309	43	$37^{\circ} 90$	+o.06	$37 \cdot 96$	-0.3S	37.58
31	Long Mountain	330	46	1745	+o.or	$17 \cdot 46$	+1.07	$18 \cdot 53$

Probable error of a single observation of a direction (D. and R.) , $e_{x}= \pm 0^{\prime \prime} \cdot 7 \mathrm{I}$. Circle used in XI positions.

Smith Mountain, Pittsylvania County, Virgiyia. August 6 to September 6, 1877. A. T. Mosman, observer. $50^{\circ \mathrm{cm}}$ direction theodolite No, 114.

		-	,	"	"	"	"	"
2.4	Caltas	\bigcirc	-	00%	-0.04	59.96	-0.19	$\overline{5977}$
25	Flat Top	72	09	19.84	- 00	19.4	+0.18	$20 \cdot 02$
26	Tobacco Row	102	22	00.94	+0.05	00•99	to 06	O1 ${ }^{\circ} \mathrm{O}$
27	Spear	123	12	35 '99	+o.03	$36 \cdot 02$	-0.18	$35 \cdot 84$
28	Long Mountain	128	00	$47^{\prime 7}$	+0.03	47.75	-0.48	$47 \cdot 27$
22	Moore	297	18	1797	+o.05	18.02	+0.47	18.49
	Bull Mountain	312	53	5897		
23	Buffalo	327	37	1951	+o.05	19.56	+0.13	$19 \% 9$

Probable error of a single observation of a direction (D. and R.), $\epsilon_{3}= \pm 0^{\prime \prime} .68$. Circle used in XI positions.

Abstracts of horizontal directions at stations composing the first section of the triangulation south of the transcontinentat triangulation, 1875 to 1879-continued.

Moore, Stokes County, North Carolina. November 7 to December 26, 1876. A. T. Mosman, observer. 35^{cnn} direction theodolite No. 10. April 21 to May 31, 1877. Same observer and instrument.

Number of directions.	Objects observed.	Results from local adjustment.			Reductions to sea level. /1	Resulting seconds. ' 1	Corrections from figure adjustment. //	Final seconds. /"
		0	1	11				
39	Pilot Mountain	\bigcirc	00	$00 \cdot 00$
	Buffalo	S9	04	$10 \cdot 07$	-0.05	$10 \cdot 02$	-0.23	$09^{\circ} 79$
	Aziuntlı Mark	1 Io	31	0190			
40	Cahas	127	05	$24 \cdot 85$	+0.04	24.89	+1.48	$26 \cdot 37$
41	Flat Top	13 S	23	$02 \cdot S_{4}$	+o.07	$02 \cdot 91$	-0.58	$02 \cdot 33$
42	Suith Mountain	153	26	$57 \cdot 69$	to.04	57 '73	-0.68	57 '05
	Young	314	44	12.49	\ldots	\ldots	
	Poore	354	21	09'66	

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm \mathrm{I}^{\prime /} / 55$. Circle used in XXIII positions in 1876 and in XXIV positions in 1877 .

Buffalo, Floyrl County, Virginia. September 25 to October 16, 1876. A. T. Mosman, observer. 35^{cm} direction theodolite No. Io.

		-	,	11	I/	, 1	"	/,
3 S	Bull Mountain	0	00	$00 \cdot 00$...	-
	Moore	41	36	$45^{\prime} 92$	-0.04	$48 \cdot 88$	$+0.10$	4S 9^{8}
	Pilot Mountain	62	51	$49^{\circ} 9$			
	Voung	70	37	$50 \cdot 34$. .	
	Poore	99	35	$20 \cdot 42$...	
35	Flat Top	290	26	00.73	+0.09	00. 82	--0.44	00.38
35	Calıas	292	07	$56 \cdot 59$	+o.0S	$56 \cdot 67$	-0.04	$56 \cdot 63$
37	Smith Mountain	316	18	$26 \cdot 55$	+0.02	$26 \cdot \$ 7$	+o.38	$27^{\circ} 25$

Probable error of a single observation of a direction (D) and R.), $e_{2}= \pm 1^{\prime \prime} \cdot 58$. Circle used in XXIII positions.

Obscriation cquations.

	$-1 \cdot 12+(1)-(2)-(13)+(14)$
II	$\mathrm{o}=-\mathrm{o}^{\circ} 54-(\mathrm{I})+(5)-(12)+(\mathrm{I} 3)$
II	$0=-1 \cdot 40-(4)+(8)-(15)+(16)$
v	$0=-103-(5)+(8)-(11)+(12)-(15)+(17)$
V	$0=+0^{\circ} 09-(3)+(6)-(26)+(27)$
YI	$0=+1.60-(2)+(3)-(9)+(14)-(27)+(28)$
VII	$0=-0.95-(6)+(8)-(15)+(18)-(25)+(26)$
VIII	$0=-1.74-(7)+(8)-(15)+(20)-(29)+(30)$
$1 \times$	$0=-0 \cdot 88-(5)+(7)-(10)+(12)-(30)+(31)$
x	$0=-0.37-(6)+(7)-(24)+(26)-(30)+(.32)$
XI	$0=-107-(18)+(21)-(23)+(25)-(35)+(37)$
XII	$0=-0.63-(20)+(21)+(29)-(34)-(35)+(36)$
XIII	23-(18)+(19)-(22)+(25)-(41)

Obserzation equations-continued.

```
    XIV \(\mid 0=+3^{\cdot 60}-(22)+(24)-(32)+(33)-(40)+(42)\)
    \(0=+1 \cdot 07-(22)+(23)-(37)+(38)-(39)+(42)\)
    \(0=-6 \cdot 7+6 \cdot 33(1)-1 \cdot 96(2)-2 \cdot 51(12)+3 \cdot 71(13)-1 \cdot 20(14)\)
    \(0=+0.30-0.196(2)+1 \cdot 189(4)-0.171(11)+0.291(12)-0.120(14)-0.927(15)+1 \cdot 160(16)\)
        \(-0.233(17)\)
XVIII \(0=-2 \cdot 0-1 \cdot 96(5)+2 \cdot 06(6)-0 \cdot 10(8)-2 \cdot 33(15)+3 \cdot 26(17)-0.93(18)-1 \cdot 43(25)+4.38(26)\)
    \(-2.95(28)\)
```



```
    XX \(0=+2.51-0.010(5)+0.836(7)-0.826(8)-0.299(10)+0.470(11)-0.171(12)-0.877\) (29)
    \(+1.23 \mathrm{I}(30)-0.354(3 \mathrm{I})\)
```



```
    \(-2.55(32)\)
XXII \(0=+1.46-0.190(18)+0.656(19)-0.466(20)-0.109(22)+0.177(24)-0.068(25)-0.629(40)\)
    \(+1.054(41)-0.425(42)\)
XXIII \(0=-4^{.60--0.190(18)+7^{\prime} 158(20)-6.968(21)-0.33^{2}(23)+0.400(24)-0.068(25)-7.099(35)}\)
    \(+7.568(36)-0.469(37)\)
XXIV \(0=-16 \cdot 2-1 \cdot 09(22)+3.32(23)-2 \cdot 23(24)-5.43(36)+4.69(37)+0^{\circ} 74(38)-2 \cdot 69(39)\)
    \(+6.94(40)-4^{.25(42)}\)
```

N. B.-The correlate equations being of a simple character, are not given here.

Normal equations.

No.		C\%	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	$\mathrm{C}_{1} \mathrm{O}$	CiI_{1}	Cr_{12}	C_{33}	C_{4}	C_{15}
1	$0=+1 \cdot 12$	+4	-2				$+2$									
2	$0=-0.54$		+4		-2					-2						
3	$0=-1 \cdot 40$			+4	+2			+2	+2							
4	$0=-1 \cdot 03$				+6			+2	+2	+2						
5	$0=+0.09$: \cdot	-..	+4	-2	-2	...	\ldots	--2	...	\cdots	. \cdot	. \cdot	...
6	$0=+1.60$						+6									
7	$0=-0.95$							+6	+2		+2	-2		-2		
8	$0=-174$								+6	-2	-2		-2			
9	$0=-0.88$									+6	+2					
to	$0=+0.37$...	- .	-	-••	- \cdot	- \cdot	- \cdot	\cdots	-.	+6	\cdots	\cdots	\cdots	-2	\cdots
11	$0=-1 \cdot 07$											+6	+2	+2		-2
12	$0=-0.63$												+6			
13	$0=+0.23$													+6	+2	+2
14	$0=+3.60$														+6	+2
15	$0=+1 \cdot 07$	-..	...	-	- \cdot	. \cdot	- \cdot	-••	. \cdot	...	--	...	-	-	\cdots	+6

Normal equations-completed.

No. 1		C_{15}	Cl_{17}	CI8	Cı9	C_{20}	Car	C_{22}	C_{23}	C_{24}
1		$+3 \cdot 3^{8}$	+0.076		+ 1 780					
2		-0.11	-0.291	-1.96	+0.272	+0.161				
3			+0.898	$+2.23$		-0.826	1			
4		-2.51	+1.156	$+745$	-0.272	-1.457	+0.39			
5	,	-2.32	+0.761
6		$+0.76$	+0.076	-205	-0.816		+ 37\%			
7			+0.927	+ 5.05	-0.232	-0.826	$+2.83$	-0.122	- 0.122	
8			+0.927	$+2.23$		+0.446	-0.68	-0.466	+ 7'158	
9		-2.51	+0.291	+196	-0.272	-0.611	-. 1 25			
10		$+2.32$	-0.232	-0.395	- 2'55	-0.177	- 0.400	$+2.23$
II				-0.50			-2.83	+o.122	$+0.116$	+ 137
12						-0.877	$+0.68$	+0.466	+ 0.541	-5.43
13		-		-0.50			-2.83	-0.592	$+0.122$	- 3.16
14	-						+ 2.55	+0.490	$+0.400$	-12.33
15	 \cdot......	-........ $\cdot . .$.	-0.316	+ 0.137	- 110
16	$0=-6.7$	$+6541$	-0.202		$+3.489$	+0.429				
17	$0=+0.30$		$+3 \cdot 840$	+ 1400	+0.349	-0.130	$+0.442$			
18	$0=-2.0$			+54'95	$+3.222$	+0.102	-5.664	+0.274.	+ 0.274	
19	$0 \Rightarrow+0.11$				+17.929	-0.003				
20	$0=+2.51$. $\cdot . .$.	-......	. \cdot......	[.......	$+4^{1} 131$	-2.386	-......	. ${ }^{\text {. }}$. ${ }^{\text {a }}$.
21	$0=+1 \cdot 1$						+75.32	+0.348	-14.138	
22	$0=+1 \cdot 46$							$+2.418$	-3.224	-2.84
23	$0=-4 \cdot 60$								+207.99	- $45^{\prime 2}$ 29
24	$0=-16 \cdot 2$									+142\%7

Resulting corretates.

$\mathrm{C}_{\mathbf{s}}=+0 \cdot 190$	$\mathrm{C}_{9}=+0{ }^{\circ} 767$	$\mathrm{C}_{12}=-0.196$
$\mathrm{C}_{2}=+\mathrm{O}^{\circ} 547$	$\mathrm{C}_{\mathrm{r} 0}=-\mathrm{o} .844$	$\mathrm{C}_{\mathrm{r} 9}=+0{ }^{\circ} \mathrm{O} 45$
$\mathrm{C}_{3}=+\mathrm{o} .093$	$\mathrm{C}_{11}=+0.134$	$\mathrm{C}_{\mathrm{tg}}=-0.0569$
$\mathrm{C}_{4}=-\mathrm{O} \cdot 183$	$\mathrm{C}_{12}=+0 \cdot 146$	$\mathrm{C}_{20}=-0.603$
$\mathrm{C}_{5}=-\mathrm{O} .587$	$\mathrm{C}_{13}=+0.276$	$\mathrm{C}_{21}=+0.023 \mathrm{I}$
$\mathrm{C}_{6}=-\mathrm{o} \cdot 554$	$\mathrm{C}_{44}=-0.842$	$\mathrm{C}_{22}=-0.285$
$\mathrm{C}_{7}=+0.23 \mathrm{I}$	$\mathrm{C}_{55}=+0.05 \mathrm{I}$	$\mathrm{C}_{23}=+0.0233$
$\mathrm{C}_{8}=+\mathrm{o}^{\circ} 288$	$\mathrm{C}_{15}=+\mathrm{O}^{1} 129$	$\mathrm{C}_{24}=+\mathrm{o} \cdot 0665$

Resulting corvections to obsevved direclions.

(I) $=+0 \cdot 460$	(12) $=-0.241$		$(23)=+0 \cdot 130$		(34) $=-0 \cdot 146$	
(2) +0.251	(13)	+o.836	(24)	-0.187	(35)	-0. 445
(3) -0.079	(14)	-0.495	(25)	+0.176	(36)	-0.039
(4) -0.326	(15)	-0.281	(26)	+0.062	(37)	to 384
(5) -0.075	(16)	-0.134	(27)	-0.176	(38)	to 100
(6) +0.068	(17)	-0.112	(28)	-0.479	(39)	-0.230
(7) -0.869	(18)	-0.077	(29)	+o.359	(40)	+1.483
(8) +0.926	(19)	to 089	(30)	-0.377	(41)	-0. 576
(9) +0.468	(20)	+0.398	(31)	+1.068	(42)	-0.677
(10) -0.47 I	(21)	+0.118	(32)	-0.061		
(II) -0.097	(22)	+0.474	(33)	-o 842		

Probable error of an observed direction $0.674 \sqrt{\frac{9^{\circ} 88}{24}}= \pm 0^{\prime \prime} .4 \mathrm{I}$.

Resulling angles and sides of the first section of the triangutation soulhwest of the Kent Island base net and extension.

No. stations.	Observed angles.			$\begin{aligned} & \text { Correc- } \\ & \text { tion. } \end{aligned}$			Log. distances.	Distances in meters.
	\bigcirc	,	"	"	"	"		
[Long Mountain		47	5798	-1.33	$56 \cdot 65$	135	$4 \cdot 6+92834$	4459.471
1 Humpback			31.65	+o:46	32^{111}	1 35	$4 \cdot 6180774$	${ }^{1} 1502$ So
Spear	120	4	35 '53	-0. 25	$35 \cdot 28$	1 34	4.87422 .49	$74855{ }^{71}$
T Tobacco Row	132	04	$13 \cdot 13$	() 08	13.05	1 \%o	+ $874+22.4$	$74855 \% 11$
Humpback			$09{ }^{\circ} \mathrm{O}$	-0.46	09 24	- 99	$4 \cdot 5028866$	31 833.66
Long MIountain		31	$39 \cdot 61$	+1.03	$40 \cdot 69$	- '99	4.6963396	$49698{ }^{\circ} \mathrm{S}$
Long Mountain	60	19	37×59	0.25	$37 \cdot 3.4$	0.97	$+5773262$	37785 '59
Tobacco Row		37	OS 79	-0.07	$08 \cdot 72$	0.98	$4 \cdot 618077+$	41502 So
Spear	47	o3	$17 \cdot 11$	-0.25	$16 \cdot 86$	0.97	$4 \cdot 5028867$	$31833 \cdot 67$
[Flat Top	10	17	$00 \cdot 23$	TO. 15	() 3°	0.41	4.5773262	37785 '59
Tobacco Row	159	40	31:48	- $0 \cdot 92$	3240	0.41	4 '866 3989	73 518.8S
Spear	10	02	$28 \cdot 12$	+o. 33	$28 \cdot 45$	$0 \cdot 41$	+ 56770836	${ }_{3} 6904 \times 86$
Flat Top	31	H	$51 \cdot 50$	+o.02	$51 \cdot 52$	156	$4 \cdot 618077+$	$41502 \cdot 80$
Spear	37	∞	48.99	-0.57	+8.42	$1 \cdot 56$	4.676543 I	$+7483 \cdot 54$
Long Mountain	111	14	$25 \cdot 12$	-0'39	24 '73	$1 \cdot 55$	+ 8663989	73 518:88
Flat Top	42	Ol	5173	+0.17	5190	099	$4 \cdot 502 S 867$	${ }^{31} 833 \cdot 67$
Tobacco Row	87	O3	22.69	+100	23.69	$1{ }^{\circ} 0$	$4 \cdot 6765+3{ }^{2}$	$47483 \cdot 55$
Long Mountain	50	54	$47 \cdot 53$	-0.14	47.39	$0 \cdot 99$	$+{ }^{1} 567{ }_{7}{ }^{\text {os3 }} 6$	36904 :56
Smith Mountain	20	50	$35{ }^{\circ} \mathrm{O}$	-0.24	$34 \cdot 79$	$1 \cdot 96$	$+577{ }^{262}$	$37785 \cdot 59$
Tobacco Row	118	11	11.60	+o.07	11.67	197	4.9713031	$93605 \cdot 87$
Spear	40	58	$19^{\prime 35}$	+0.0S	$19 \div 3$	1.96	+ ${ }^{842} 8154$	$69633 \cdot 05$
Smith Mountain	4	48	1173	-0.30	1143	- 35	$4.618077+$	41502%
8 \{ Spear	6	04	$57 \cdot 76$	-0.33	5743	$0 \cdot 35$	4.720334	$52521 \cdot 14$
L Long Mountain	69	o6	$53 \cdot 16$	-0.97	52'19	o 35	+ 9713030	$93605 \cdot 85$
Smith Mountain		12	$41^{1} 15$	-0.11	$41^{\circ} \mathrm{O}+$	14	$+{ }^{5} 67{ }_{7} 0836$	3690.4×56
Flat Top	108	18	$02 \cdot 34$	+0.20	02 5 5 f	144	$4{ }^{\circ} \mathrm{S} 42815$	$69633 \cdot 2$
Tobacco Row	41	29	$19 \% 88$	+o. 86	$20 \cdot 74$	$1 \cdot 44$	4.6865228	$48587 \cdot 30$
Smith Mountain	25	3^{8}	$46 \cdot 76$	-0.55	$46 \cdot 21$	134	4.502 8867	${ }^{1} 833 \cdot 67$
10 T Tobacco Row	45	3.4	$02 \cdot 81$	+0.14	02.95	134	$+7203344$	$52521 \cdot 17$
Long Mountain	108	47	$15 \cdot 57$	-0.71	$14 \cdot 86$	$1 \cdot 34$	4 8.42 S15 4	$69633 \cdot 05$
Smith Mountain	51	O3	$16 \cdot 18$	-0.35	15 :83	300	4 -866 39 \% 9	$73518 \cdot 88$
1'lat Top	98	OI	02 11	+o.06	$02 \cdot 17$	2.99	+971303	$93605 \cdot 87$
Spear	30	55	51'23	-0.24	50'99	$3^{\circ} 0$	4.686522	48587.31
$12\left\{\begin{array}{l}\text { Flat Top } \\ \text { Ioug Moun }\end{array}\right.$	55	51	27^{91}	-0.66	$27 \cdot 25$	179	4.6765432	$47+83 \cdot 55$
		16	10.61	+0.03	10. 64	1 79	$4 \cdot 7203343$	$52 \cdot 521 \cdot 16$
	57	52	28.04	-0.56	$27 \% 8$	1 79	4686523	48587.33

Resulting angles and sides of the first section of the triangulation southzuest of the Kent Island base net and extension-continued.

o.	statio
${ }^{1} 3$	Cahas Flat Top Tobacco Ro
14	Cahas Tobacco Row Long Monntain
15	Cahas Flat Top Long Mountain
16	Calias Flat Top Suith Mountain
17	Cahas. Long Mountain Smith Mountain
	Calas Tobacco Row Smith Mountain
19	Buffalo Flat Top Smith Mountain
20	Buffalo Flat Top Cahas
21	Buffalo Flat Top Smith Mountain
22	Moure Flat Top Surith Mduntain
23	Moore Cahas Flat Top
24	Moore Cahas Smith Mountain

observed angles.
Correc-
tion.

Spher- Spher // /1 // $\begin{array}{rcc}0 & \prime \prime \\ 9 & 42 & 30.62 \\ 156 & 09 & 54.29 \\ 14 & 07 & 35 \cdot 37 \\ 21 & 02 & 39.50 \\ 72 & 55 & 47.32 \\ 86 & 01 & 39 \cdot 14 \\ 30 & 45 & 10 \cdot 12 \\ 114 & 08 & 02.56 \\ 35 & 06 & 51.61\end{array}$
 $\begin{array}{lll}59 & 58 & 52 \cdot 64\end{array}$ $47 \quad 51 \quad 51 \quad 95$ $\begin{array}{lll}72 & 09 & 19\end{array}$
$\begin{array}{lll}29 & 13 \quad 42 \cdot 52\end{array}$
$\begin{array}{lll}22 & 45 & 36\end{array}$
$12 \mathrm{~S} \quad 0 \quad 47 \% 9$
$\begin{array}{lll}-0.73 & 29.89 & 0.67\end{array}$
+0.68 $54.97 \quad 0.68$
$+1.79 \quad 37.16 \quad 0.67$
$+1.44 \quad 40.94 \quad 2.28$
$\begin{array}{lll}-0.79 & 46.53 & 2 \cdot 28\end{array}$
$+0.23 \quad 39.37 \quad 2.2 S$
$+0 \cdot 71 \quad 10 \cdot 8_{3} \quad 1 \cdot 96$
$+0.51 \quad 03.07 \quad 1.96$
+0.37 51 "98 1.96
$-0.42 \quad 52.22 \quad 1.63$
$+0.48 \quad 52: 43 \quad 1.63$
$+0 \cdot 36 \quad 20 \cdot 24 \quad 1 \cdot 63$
$\begin{array}{llll}-1 \cdot 13 & 41 \cdot 39 & 1 \cdot 46\end{array}$
$\begin{array}{llll}-0.94 & 35 & \circ & 49\end{array} \quad 1: 46$
$-0.30 \quad 47.49 \quad 145$
$\begin{array}{llllll}4 & 567 & 083 & 6 & 36 & 904\end{array} 86$
$+946643 \quad 2 \quad 88438 \cdot 88$
$4727663453415{ }^{\circ} \mathrm{O} 2$
$4.5028867 \quad 31833 \cdot 67$
$4.9281195 \quad 84 \quad 746.06$
$4.946 \quad 643 \quad 2 \quad 88 \quad 438 \quad 88$
$4.676 \quad 543 \quad 2 \quad 47483 \cdot 55$
4 "928 $1196 \quad 84 \quad 746$ '08
4727663653415 ㅇ5
$4.686522 \quad 4 \quad 4858731$
4.6192205 41 612 1 8
$47276635 \quad 53+15{ }^{\circ} \mathrm{O} 4$
$+72033+3 \quad 52521$ '16
4.6192205 41 612.18
$4.928 \quad 1196 \quad 84746 \cdot 08$
$\begin{array}{lllllllll}+0.32 & 22.34 & 2.40 & 4.842 & 815 & 4 & 69 & 633 & \circ\end{array}$
$-0.94 .43 .57 \quad 2^{\circ} 40 \quad 4.619 \quad 2206 \quad 41612$ 19

$\begin{array}{llllllllll}+0.83 & 26: 88 & 3 & 38 & 4 & 686 & 522 & 9 & 48 & 587\end{array}$

+0.05	00.33	3.37	$5{ }^{\circ} 032$	535	0	107	779

$+0.41 \quad 56.26 \quad 0.15 \quad 4727663 \quad 5 \quad 53415{ }^{\circ} 04$
$-0.28 \quad 50.50 \quad 0.15 \quad 4735 \quad 6983 \quad 54412.45$
$\begin{array}{llllllllll}+0.50 & 13 & 68 & 0.14 & 5 & 032 & 534 & 9 & 107 & 779\end{array}$
$+0 \cdot 42 \quad 30.62 \quad 1.60$
4 619 2205 41 6I2.18
$\begin{array}{llllll}4.928 & 312 & 3 & 84 & 783 & 69\end{array}$
$4 \% 735 \quad 698654412 \cdot 49$
$4.686 \quad 522 \quad 9 \quad 48 \quad 587 \quad 31$
$4.971803 \quad 6 \quad 93 \quad 713.81$
5.1 223294132534.6
$4727663 \quad 53+15$ '04
$\begin{array}{llllll}5 \cdot 122 & 329 & 5 & 132 & 534 & 6\end{array}$
$4.920 \quad 554 \quad 4 \quad 83 \quad 282 \cdot 62$
$4.6192205 \quad 41612 \cdot 18$
$4.9718036 \quad 93713$ 81
$4^{\circ} 9205543 \quad 83 \quad 282{ }^{\prime \prime} 60$

Resutting angles and sides of the first section of the triangulation southwest of the Kent Island base net and extension-continued.

No.	Stations.	Observed angles.			Correction. "	Spherical angles. /	Spherical excess. /"	1,og. dis. tances.	Distances in meters.
		-	,	/1					
25	Moore	49	18	52 '89	-0.35	$52 \cdot 54$	$4^{\circ} \mathrm{O} 4$	$5 \cdot 0325350$	$107779 \cdot 2$
	Buffalo	III	10	$48 \cdot 06$	+0.55	$48 \cdot 61$	$4^{\circ} \mathrm{O} 4$	5'122 3293	132534.6
	Flat Top	19		30.94	+o.03	$30 \cdot 97$	4.04	4.6763564	$47463{ }^{1} 13$
26	Moore	38		$14 \cdot 87$	+171	$16 \cdot 53$	2.06	47356986	$54412{ }^{\prime} 49$
	Buffalo	109		52 21	+o.14	52'35	2 \% 0	49205543	$83 \quad 282 \cdot 60$
	Cahas	32		$56 \cdot 56$	+o.69	$57{ }^{\circ} 25$	$2 \cdot 06$	4.6763564	$47463 \cdot 13$
27	Moore	64	22	$47 \% 1$	-0.45	$47 \cdot 26$	$3 \cdot 40$	49283123	$84 \quad 783 \cdot 69$
	Buffalo			2201	-0.28	21 73	3.39	4.9718036	93713 81
	Smith Mountain	30		or '54	-0.34	or '20	3.40	4.6763564	4746313

5. SECOND OR NORTH CAROLINA SECTION OF THE TRIANGULATION SOUTH OF THE TRANSCONTINENTAL TRIANGULATION, IN VIRGINIA AND NORTH CAROLINA, I876I 895.

This section extends over an area covered by several large triangles which have the centrally located station Poore as one of their points in common. In 1878 when the main triangulation between the lines Buffalo to Moore and Grassy to Sawnee was adjusted, this central figure about Poore had no existence. In consequence of the introduction of this figure some modification in the treatment of the work between the Kent Island and Atlanta bases became necessary. The adjustment of 1878 involved considerable labor, as it included the formation and solution of 41 normal equations. It was desirable to retain this adjustment and interpose the central figure about Poore for the purpose of disposing of whatever error was developed between the bases by the intervening triangulation. The probable error of the measure of the Kent Island base, which is the least accurate of the six bases along the arc, is 34 units in the seventh place of decimals of its logarithm, whereas that of the Atlanta base is but ro units;
hence the influence of the latter over the triangulation between stations Sawnee and Benn, which constitutes the third section, was retaiued. In the present central figure the condition was iutroduced preserving the fixed relation between the two sides marked in the diagram by heavy lines.

The approximate elevations of the stations are as follows:

Poore	Meters. Si 7	$\begin{aligned} & \text { Feet. } \\ & 2680 \end{aligned}$	King		$\begin{gathered} \text { Meters. } \\ 516 \end{gathered}$	$\begin{aligned} & \text { Feet. } \\ & \text { I } 693 \end{aligned}$
Young	333	I 093	Rogers		1 746	5729
Benn	SS6	2907	Roan High Bluff		1913	6275

From the eleven triangles we derive the mean closing error of a triangle $\sqrt{\frac{56.8}{I I}}=$ $\pm 2^{\prime \prime} \cdot 27$, the mean error of an angle $\frac{2^{\circ} 27}{\sqrt{3}}= \pm 1^{\prime \prime} \cdot 31$ and the probable error of a directioll $0.674 \frac{2.27}{\sqrt{6}}= \pm 0^{\prime \prime} .63$.

In the preceding diagram, the two heavy lines are fixed in length, and the dispersion of the discrepancy between the bases, of 24 units in the seventh place of decimals in the logarithm, is accomplished by the adjustment. Atteution is called to the fact that in a figure adjustment, when forcing an accord between the fixed lengths of two terminal sides, as is the case here, the conditional equation may be established either with plane angles or with spherical angles, provided in the latter case the terminal sides are corrected for difference between arc and sine. This is readily done by means of the table given in Coast and Geodetic Survey Report for 1894, Appendix No. 9, page 289, below the heading "Table of corrections to longitude for difference in arc and sine."
I_{11} establishing the length equation for any unadjusted figure the apparent discrepancy to be dispersed in order to produce accord between two lines whose length is fixed will vary with the angles selected. The true discrepancy to be dispersed can, nevertheless, be obtained from the length equation, provided the length equation be taken last in the solution of the normal equations, thus eliminating all the other unknown quantities; and the discrepancy so derived is the same as would beobtained if the length equation were formed after the entire figure had been adjusted in all other respects.

In the present section the length discrepancy with the uncorrected spherical angles was 78 units; but the true discrepancy outstanding after the other adjustments are made is but 24 units. This is less than the probable error of the measurement of the Kent Island base. The logarithm of the length of line Buffalo to Moore is 4.6763564 , and that of the line Bemn to King, $4^{\circ} 7051366$.

Abstracts of horizontal directions at stations composing the second or North Carotina section of the triangulation, 1876-1895.

Buffato, Floyd County, Virginia. September 25 to October $16,1876.35{ }^{\mathrm{cm}}$ direction theodolite No. 10. A. T. Mosman, observer. September 27 to October $1,1895.45^{\mathrm{cm}}$ direction theodolite No. 4 .
A. H. Buchanan, observer.

Number of directions.	objects observed.	Result of local adjustment.			Reductions to sea level.	Resulting seconds.	Corrections from adjustment of first sec-	Result. ing seconds.	Corrections from adjustment of second sec-	Final seconds.
		-	,	"	/1	/1	"	/1	/1	"
	Bull Mountain	0		$00 \cdot 0$					
	Moore			$43^{\circ 9} 9$	-0.0.4	$48 \cdot 8.8$	+o.ro	$(48 \cdot 98)$	
	Pilot Mountain	62	51	$49^{\circ} 9$						
3	Young	70	37	$50 \cdot 34$	+0.01	$50 \cdot 35$			-0.63	$49^{\prime 7} 7$
4	Poore \dagger	99	35	20.42	+0.05	$20 \cdot 47$			-0.19	$20 \cdot 28$
5	Rogers* \dagger	144		13.76	+0.0.4	13.80			+0.74	14.54
	Flat Top	290		00 ${ }^{\prime} 73$	+0.09	$00 \cdot 82$	-0.44	(00.38)	...	
	Cahas	292		$56 \cdot 59$	+0.08	$56 \cdot 67$	-0.04	$(56 \cdot 63)$	
	Suitlı Mountain			$26 \cdot 85$	+0.02	$26 \cdot 87$	+0.38	(27.25)	

Probable error of a single observation of a direction (D. and R.), (Buchanan, observer), $\varepsilon_{\mathrm{t}}= \pm 1^{1 / \cdot 25}$. Circle used in X1 positions.

Moore, Stokes County, North Carolina. November 7 to December 26, 1876, and April 21 to May 31 , 1877. 35^{cm} direction theodolite No. Io. A. T. Mosman, observer.

[^26]\dagger Buchanan, observer.
*Bstracts of horizontal directions at stations composing the second or North Carolina section of the triangulation, $1876-1895$-continued.
Poore, Wilkes County; North Carolina September 15 to October II, 1877. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. - August 30 to September 17, I895. 45^{cm} direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions in both years.

Number of
directions.

Objects observed.

Probable error of a single observation of a direction (D. and R.) in $1877, c_{\mathrm{r}}= \pm 0^{\prime \prime} 78$; in i 895 , $c_{1}= \pm \mathrm{I}^{\prime \prime} \cdot 28$; combined $\pm \sigma^{\prime \prime} 99$.

Soung, Rowan County, North Carolina. September 22 to November II, 1876. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle uscd in XI positions.

16		-	,	"	"	/	/,	"	"
	Azimuth Mark	o	-	00 '00	$\pm 0 \cdot 08$			00 ${ }^{\circ}$
	Buffalo	0	01	9 ${ }^{*} 36$	0•19	to.02	0938	to 64	10 \% ${ }^{\circ}$
	Mocksville Church	16	37	$17{ }^{\circ} \mathrm{O}$	$0 \cdot 17$	
17	Moore	16	40	18•19	0.14	too. ${ }^{\text {d }}$	$18 \cdot 23$	+0.52	$18 \cdot 75$
13	King	218	37	$38 \cdot 28$	-0.16	to. 04	$38 \cdot 32$	-1.40	$36 \cdot 92$
	Anderson	237	26	$03 \cdot 64$	$0 \cdot 12$				
14	Bem	251	11	54 "95	0.16	+0.02	54.97	+0.37	$55 \cdot 34$
15	Poore	299	3^{2}	$29 \cdot 32$	$0 \cdot 15$	-0.06	$29 \cdot 26$	-0.12	29.14

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 0^{\prime \prime} \cdot 8_{3}$.

Abstracts of horizontat directions at stations composing the second or North Carotina section of the briangutation, 1876-1895-continued.
Benn, Burke and Cleveland Counties, North Carolina. "July 25 to Áugust 22, 1877. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.	Results of station adjustment.			Approximate prohable errors.	Reductions to sea level	Resulting seconds.	Corrections from figure adjustment.	Final seconds.
	-	-	,	11	V1				
	Reference Mark	0	00	00 00	$\pm 0 \cdot 08$				
	Poore	90	24	$53 \cdot 48$	$0 \cdot 21$				
	Young	128	03	$37 \cdot 66$	$0 \cdot 15$				
	Anderson	139	52	$09 \cdot 17$	- 28				
	King	191	28	$17 \cdot 42$	-. 16				
	Thicketty	241	16	$29^{\circ} \mathrm{T} 3$	- 335				
	Wofford	250	34	$52 \cdot 92$	- -19				
	Paris	274	57	$27 \cdot 38$					
	Hogback	282	51	$27^{\circ} \mathrm{O} 3$	0. 22				
	Mount Mitchell	342	18	31 76	0.43				

Probable error of a single observation of a direction (D. and R_{0}), $e_{1}= \pm I^{\prime \prime} \cdot 08$.
July 13 to August 14, I895. 45^{cn} direction theodolite No. 4. A. H. Buclianan, observer. Circle used in XI positions.

$|$| Mark IS95 |
| :--- |
| Roan High Bluff |
| Poore |

\circ	\prime	$\prime \prime$
0	00	00.00
21	02	06.70
98	00	40.56

$\prime \prime$	$\prime \prime$
$\cdots \cdot$	$\cdots \cdots$
-0.13	06.57
+0.06	40.62

Probable error of a single observation of a direction ($1 /$. and R_{0}), $e_{1}= \pm I^{\prime \prime} \cdot 30$. Consotidated resutts at Benn.

		-	,	/1	"	"	"	/1
	Mark 1877	0	00	$00 \cdot 00$	
18	Roan High Bluff	13	26	I9. 62	-0.13	I9*49	-1.25	$18 \cdot 24$
19	Poore	90	24	53.48	+0.06	53 '54	+0.18	$53 \cdot 72$
20	Young	128	03	$37 \cdot 66$	+0.01	$37 \cdot 67$	-0.81	$36 \cdot 86$
	Auderson	139	52	$09^{\prime} 17$	
	King*	191	28	17.42	-0.0.4	1738
						+0.23		
	Tlicketty	241	16	$29^{\prime 1} 3$. . .		\ldots
	Wofford	250	34	$5^{2} 9^{2}$	
	Paris	274	57	27.38	. . \cdot		\ldots	
	Hogback	282	51	$27^{\circ} \mathrm{O} 3$
	Mount Mitchell	342	18	$31^{\circ} 75$				

*Tlie line king to Henn being fixed by the southern section.

Abstracts of horizontat directions at stations composing the second or North Carolina section of the triangutation, 1876-1895-continued.
King, Gaston County, North Carolina. November 26 to December 30, 1876, and June 17 to $25,1877$. 50 cm direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI position.

Number of directions.	Objects observed.	Results of station adjnstment.			Approximate probable	Reductions to sea level.	Resnlting seconds.	Corrections from figure adjistment	Final seconds.
		-	,	"	"	'1	- "1	"	11
	Azimuth Mark	0	00	$00 \cdot 00$	± 0.06
	Benn*	I	34	$43 \cdot 66$	- *20	-0.06	$43 \cdot 60$		
							+0.02	-	
21	Poore	48	36	08 31	$0 \cdot 16$	+0.02	-8.33	-0.30	08.03
	Anderson	66	51	08-80	0.24	
	Young	85	35	53^{117}	0.15	+0*02	$53 * 19$	+2.05	$55 \cdot 24$
	Wofford	284	16	$19^{\circ} 00$	0.12	
	Paris	293	54	$20 \cdot 10$	0.16	
	Thicketty	296	01	01 90	$0 \cdot 26$. . ${ }^{*}$		
	Hogback	307		$45 \cdot 89$	-. 16 ${ }^{\text {a }}$	
	Mount Mitchell	345	51	$56 \cdot 4$.	\cdots	- .	

Probable error of a single observation of a direction (D. and $K_{\text {. }}$), $e_{\mathrm{r}}= \pm \mathrm{o}^{\prime \prime} 69$.
Koan High Btuff, Mitchell County, North Carolina. October II to 24, 1894. 45^{cm} direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions.

		-	,	"	/	"	"	"
	Mark	-	-	00%	
24	Poore	34	17	$14^{\circ} 14$	-0.01	14.13	-0.39	1374
25	Benn	84	17	56 '57	-0.06	56.51	+1.27	$57 \cdot 78$
	Mount Mitchell	137	47	39 29	
	Big Butt	206	45	13.80	\ldots		\ldots	
	Chimmey	246	os	13.94	\ldots	\ldots	\ldots	
	Big Kıob	274	20	49 '02		\ldots	
	Holston	303	26	14×54	\ldots		...	
23	Rogers	341	40	13.92	+0.12	14.04	-0.88	$13 \cdot 16$

Probable error of a single observation of a direction (D. and K.), $e_{\mathrm{s}}= \pm \mathrm{I}^{\prime \prime \prime} 33$.
Kogers, Grayson County, Virginia. July 27 to September $22,1894.45^{\mathrm{cm}}$ direction theodolite No. 4. A. H. Buchanan, observer. Circle used in XI positions.

	White Top	0	¢	$00 \cdot \infty$
	Big Kıob	24	O9	$36 \cdot 83$	\ldots
26	Buffalo	194	12	37.64	+o.03	$37 \cdot 67$	-0. 72
27	Poore	266	18	$26 \cdot 84$	-0.05	$26 \cdot 79$	-0.18
28	Roan High Bluff	334	18	$03 \cdot 89$	to. 13	O4.02	to.90
	Big Butt	349	29	$28^{\circ} \mathrm{O}$			\ldots
	Holston	358		$29^{\circ} 97$			

[^27]4192-No. 7-O2- 11

Observation equations.

I	$0=-0^{\circ} 10-(2)+(4)-(6)+(7)$
II	$0=+{ }^{\circ} 57-(\mathrm{I})+(3)-(16)+(17)$
III	$0=-1 \cdot 10-(1)+(2)-(7)+(8)-(15)+(17)$
IV	$0=+0.51-(9)+(10)-(19)+(21)$
V	$0=-4.65-(13)+(14)-(20)+(22)$
VI	$0=-3.31-(8)+(9)-(13)+(25)-(21)+(22)$
VII	$0=-0.92-(4)+(5)+(6)-(12)-(26)+(27)$
VIII	$0=-1.36-(11)+(12)-(23)+(24)-(27)+(28)$
IX	$0=-3.64-$ (10) + (11) $-(18)+(19)-(24)+(25)$
X	
XI	$0=-5.9+0.15(8)+3.38(9)-3^{\circ} 53(10)-3.29(13)+5.16(14)-1.87(15)+1.96$ (21)-0.22(22)
XII	$\begin{aligned} 0= & +1 \cdot 4-3 \cdot 80(3)+5 \cdot 91(4)-2 \cdot 11(5)-1 \cdot 87(14)+3 \cdot 07(15)-1 \cdot 20(16)-0.49(18)+3 \cdot 22(19) \\ & -2 \cdot 73(20)-1 \cdot 6 \mathrm{I}(23)+3 \cdot 38(24)-1 \cdot 77(25)-0.68(26)+1 \cdot 53(27)-0.85(28) \end{aligned}$
XIII	$\begin{aligned} 0= & +7.8-2.55(\mathrm{I})+2.55(2)+1.32(4)+4.08(6)-4.08(7)-3.38(9)+3.38(10)-0.34(13) \\ & +0.82(15)-0.48(17)-0.41(19)+2.80(21)-2.80(22) \end{aligned}$

Normal equations.

		Cr	C_{2}	C_{3}	C_{4}	C_{5}	C6	C_{7}.	C8	C_{9}	Cro	CIr	Cl_{2}	C_{13}
1	$0=-0.10$	$+4$		-2				-2			+ 791		$+5.91$	$-9 \cdot 39$
2	+0.57		+4	+2							-9.81		- $2 \cdot 60$	$+207$
3	-1.10			+6			-2				- $12 \cdot 30$	$+2.02$	- 307	+ 788
4	+0.52				$+4$		-2					-4.95	-3.22	+997
5	$-4 \cdot 64$					+4	+2					$+8.23$	+ 0.86	-2.46
6	$-3 \cdot 31$						+6				$+0.59$	$+2.47$	$+3.07$	-7.82
7	-0*92							+6	-2		- $2 \cdot 76$		- 5.81	+ 276
8	$-1 \cdot 36$								+6	-2			$+261$	
9	$-3 \cdot 64$									$+6$		$+3.53$	- 1.44	-3^{779}
10	-0.5										$+153.25$	+0.74	$-32 \cdot 12$	-36.64
11	-5.9											+68 74	- 15.39	-17.67
12	+14												+106 ${ }^{\circ} 92$	$+9^{\circ 0}$
13	$+7 \cdot 8$													+8775

$\mathrm{C}_{1}=+0.719$
$\mathrm{C}_{2}=-0.653$
$\mathrm{C}_{3}=+\mathrm{I} \cdot 096$
$C_{4}=+1 \cdot 080$
$\mathrm{C}_{5}=+\mathrm{o} \cdot 838$
$\mathrm{C}_{6}=+0$ '909
$\mathrm{C}_{7}=+0^{\circ} 726$
$\mathrm{C}_{8}=+\mathrm{O}^{\circ} 890$
$\mathrm{C}_{9}=+\mathrm{I} \cdot{ }^{252}$
$\mathrm{C}_{\mathrm{r} 0}=-\mathrm{o}{ }^{\circ} 00386$
$\mathrm{C}_{18}=-0.0940$
$\mathrm{C}_{12}=-0 \cdot 00916$
$\mathrm{C}_{\mathrm{x}_{3}}=-\mathrm{O}$.10I 5

Resulting corrections to observed directions.

/1	"	"	"
(1) $=-0.185$	$(8)=+0 \cdot 177$	$(15)=-0 \cdot 121$	(22) $=+2 \cdot 052$
(2) +0.118	(9) -0.146	(16) +0.637	(23) -0.875
(3) -0.633	\therefore (10) -0.183	(17) +0.517	(24) $-=; 93$
(4) -0.190	(II) +0.362	(18) -1 248	(25) +1.268
(5) +0.745	(12) $+0 \cdot 164$	(19) +0.184	(26) $-0 \cdot 720$
(6) -0.391	(13) -1.403	(20) -0.813	(27) -0.178
(7) +0.017	(14) +0.370	(21) -0.297	(28) +0.898

Probable error of an observed direction, $0.674 \sqrt{\frac{14^{\circ} 66}{13}}= \pm 0^{\prime \prime} \cdot 7^{2}$.

Resulting angles and sides of the second or North Carolina section of the triangulation.

6. THIRD OR SOUTII CAROLINA SECTION OF THE TRIANGULATION SOUTH OF THE TRANSCONTINENTAI. TRIANGULATION, 1873-1877.
'This section completes the commection of the Kent Island and Atlanta bases, as already indicated in the preceding section. The results of the adjustinent made in October, 1878. are retained, onitting only the two quadrilaterals lying between the stations Buffalo and King, which were included in the second section. The conditional equations, as well as the normal equations, are presented in full, leaving out the eight triangles between the two stations named above, as they are superseded by the present arrangement. The old, and less convenient, notation of the corrections to the angles has been changed, and the order of the presentation of the triangles has been reversed so as to proceed from the northeast-toward the southwest. The third place of decinals in the seconds of the angles was dropped as unnecessary, partictularly since no corrections for heiglit of stations observed upon were made, the maxinnum value of this correction bei ${ }^{\circ}$ g below $o^{\prime \prime} \cdot 1$.

The stations involved and their approximate heights are as follows:

	Meters.	Feet.
Hogback	984.4	3230
Wofford	267.6	875
Pinnacle	1047.4	3436
Paris	626.1.	2054
Mauldin	404.8	1328
Rabun	1437.7	4717
Currahee	530.2	1740
Blood	1360.4	4.463
Skitt	632.7	2076

Relative weights to the directions were introduced in the same way as lad been employed in the adjustment of the Atlanta base net. Referring to the explanation there given, the value of the nean closing error of a triangle (derived from 73 cases in the triangulation comecting stations Buffalo, Virginia, and Kenesaw, Georgia) is $\sqrt{\frac{275 \cdot 5}{73}}= \pm 1^{\prime \prime} 9 t^{*}$ and the probable error of a direction is $0.674 \frac{1^{\circ} 94}{\sqrt{6}}= \pm 0^{\prime \prime} .54$; also the average probable error of an observed direction (see abstracts) $\varepsilon_{\mathrm{t}}= \pm 0^{\prime \prime} \cdot 18$, hence $\varepsilon_{\mathrm{c}}^{2}=(0.54)^{2}-\left(0^{\circ} 18\right)^{2}=0.255$, which was added as a constant to the square of each observing error. We have $\varepsilon^{2}=\varepsilon_{6}^{2}+\varepsilon_{1}^{2}$ and the weight $p=1 / \varepsilon^{2}$; in order to make the average weight nearly unity, the reciprocal was divided by 0.28 . The reciprocal relative weights are tabulated farther on; the minimum value of $\varepsilon^{2} \operatorname{or} \frac{1}{p}$ is $0^{\circ} 5$ and the n1axinnunn $1 \cdot 3$.

[^28]Aostracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873-1877.
King, Gaston County, North Carolina. November 26 to December 30, 1876, and June 17-25, 1877. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.	Results of local ad-justunent. justurent.			Approximate probable error.	Corrections from adjustment of third section.	Final secouds.
64		-	,	"	"	"	"
	Azimuth Mark	-	-	$00 \cdot 000$	$\pm 0.06{ }^{\circ}$	
	Benn	1	34	$43 * 56$	$0 \cdot 20$	+0.014	$43 \cdot 670$
	Poore	48	36	08.311	$0 \cdot 16$	
	Anderson		51	08.804	0.24	
	Young		35	$53 \cdot 167$	- $\cdot 15$	
61	Wofford	284	16	$18 \cdot 996$	$0 \cdot 12$	+o. 444	19.440
62	Paris		54	$20 \% 098$	$0 \cdot 16$	-1 724	$18 \cdot 374$
	Thicketty		OI	O1 905	$0 \cdot 26$	
63	Hoghack		36	$45 \cdot 893$	$0 \cdot 16$	+0.413	$46 \cdot 306$
	Mount Mitchell			56.4			

Benn, Burke and Cleveland Counties, North Carolina. July 25 to August 22, 1877. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Probable error of a single ohservation of a direction (D. and R.), $e_{1}= \pm 1^{\prime \prime} \cdot 0$.
Hogback, Greenville County, South Carolina. August 16 to September 1,1876 . 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		-	,	"	"	"	"
58	Paris	0	-o	$00 \% 00$	$\pm 0 \cdot 07$	-o. ${ }^{178}$	$\overline{59.822}$
59	Mauldin	15	44	$50 \cdot 325$	O'II	-0.038	$50 \cdot 287$
60	Pinnacle	46	26	$55^{\circ} 104$	$0 \cdot 17$	+1.278	$56 \cdot 382$
	Mount Mitchell	158	32	$15 \% 4$	0.44	
55	Benn	208	54	$59 \cdot 171$	$0 \cdot 12$	-0.287	$58 \cdot 884$
56	King	243	34	$02 \cdot 348$	$0 \cdot 18$	-0.339	02 '009
	Thicketty	253	55	03.471	0.14	
57	Wofford	282	16	22.064	$0 \cdot 17$	-0.416	21.648

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm 0^{\prime \prime} 8_{1}$.

Abstracts of horizontal directions at stations comprising the third or South Carolina section of the triangulation, 1873-r877-continued.
Wofford, Spartanburg County, South Carolina. July 6 to August 7, 1876. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.	Kesults of local adjustment.			Approximate probable error.	Corrections from adjustment of third section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	\%	"	"	"
	Thicketty		-o	$00 \cdot 000$	± 0.09	
54	King	22	25	08.507	- 14	+0.580	$09 \cdot 087$
50	Paris	226	05	$58 \cdot 853$	- $\cdot 16$	+0.635	59.488
51	Pinnacle	235	09	59.137	$0 \cdot 16$	-0.656	$58 \cdot 48$ r
52	Hogback	264	27	$49 \cdot 062$	0.26	+0.862	49.924
	Mount Mitchell					
53	Bean		50	02 ${ }^{58} 9$	- ${ }^{15}$	-1. 343	or 246

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm 0^{\prime \prime}{ }^{\prime} 96$.
Pinnacle, Pickens County, South Carolina. August 25 to September 8, 1875. $50^{\text {cum }}$ direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		。		\%	\%	/'	"
38	Paris	o	oo	00 000	$\pm 0 \cdot 10$	+0.258	00. 258
39	Mauldin	48	46	48 '017	$0 \cdot 17$	+0.032	48 -049
40	Currahee	117	37	$44 \cdot 518$	0.12	to. 269	$44 \cdot 787$
41	Rabun	153	o7	$06 \cdot 908$	0.14	+o. 856	07.764
36	Hogback	321	02	$43 \cdot 547$	0.21	-0.887	$42 \cdot 660$
37	Wofford	347	34	$20 \cdot 804$	- $\cdot 17$	-0.637	$20 \cdot 167$

Probable error of a single observation of a direction (D. and k^{\prime}.), $e_{1}= \pm 0^{\prime \prime \prime} 92$.
Paris, Greenville County, South Carolina. September 16 to November 20, 1875 . $50^{\text {cn }}$ direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		-	,	11	11	"	11
45	Pinnacle	0	OO	$00 \cdot 000$	± 0.06	-0.079	$\overline{59} 921$
46	Hogback	94	35	$47{ }^{\circ} 974$	- -19	+0.020	47'994
	Propst	109	45	43 '080	0.17		
47	Bellı	115	36	49×45	0 -09	+1.183	$51 \cdot 128$
	Thicketty	142	59	15.298	0.17		
48	King	144	27	$2 S^{\circ} 12$	$0 \cdot 21$	-0.155	$27 \cdot 857$
49	Wofford	15^{8}	30	21.824	- 21	+0.304	$22 \cdot 128$
	Aziuutlı Mark	229	12	08.277	$0 \cdot 17$		
42	Mauldin	308	16	00'933	0.14	-0 755	$00 \cdot 17^{8}$
43	Currahee	314	06	42.296	0.18	-0 947	41.349
44	Rabun	343	20	$09 \cdot 423$	- 16	+0.320	$09 * 743$

Probable error of a single observation of a direction (D. and h_{\cdot}), $e_{s}= \pm 0^{\prime \prime} 93$.

Abstracts of horizontat directions at stations comprising the third or South Carolina section of the triangulation, 1873-1877-continued.

Mautdin, Pickens County, South Carolina. December 8 to 14,1875 . 50^{cm} direction theodolite No.3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objects observed.	Results of local ad-justment. justment.			Approximate probable error error.	Corrections from adjustment of third section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		。	,	"	"	"	"
33	Pinnacle	0	-0	$00 \cdot 000$	$\pm 0 \cdot{ }^{\circ}$	+o.022	00 022
34	Hogback	61	33	51.967	- •18	-0.598	51 369
35	Paris	79	29	$12 \cdot{ }^{\text {S }} 3$	$0 \cdot 16$	+1.215	14.038
31	Currahee	267	13	16.950	$0 \cdot 12$	+o. 112	17.062
32	Rabun	307	25	59 '062	o'ti	-0.678	$5^{8} 384$

Probable error of a single observation of a direction (D. aud R.), $e_{1}= \pm 0^{\prime \prime} 77$.
Rabun, Rabun County, Georgia. July 27 to August 5, 1875. 50^{cm} direction theodolite No. 3 . C. O. Boutelle, observer. Circle used in XI positions.

		-	,	"	- /'	"	/
	Walhalla	-	-	$00 \cdot 000$	± 0 os		
28	Currahee	51	48	$33^{\cdot 214}$	- 20	-0.351	32 '863
29	Skitt	So	53	$21 \cdot 496$	- $\cdot 17$	+1.023	22.519
	Yonalı	89	51	56.194	- $\cdot 23$		
30	Blood	1 Io	31	$24 \cdot 370$	$0 \cdot 31$	-0.354	24.016
25	Pinnacle	304	59	58-119	-. 15	-0.987	$57 \cdot 132$
26	Paris	315	13	or '555	$0 \cdot 12$	-0.220	or ${ }^{3} 35$
27	Mauldin	328	05	$38 \cdot 177$	$0 \cdot 14$	+0.830	$39 \cdot 007$

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm \mathbf{o}^{\prime /} 85$.
Currahee, Habersham County, Georgia. September 17 to November 21, 1874.50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

		-	,	"	"	"	/
	Azimuth Mark	o	OO	00 \%00	$\pm 0 \cdot 07$	
22	Pinnacle	9	31	57^{621}	- $\cdot 1$	-0.042	57×579
23	Paris	26	or	00 177	O. 14	+o.085	00 $\cdot 262$
24	Mauldin	27	54	$22 \cdot 374$	$0 \cdot 14$	+o. 369	22 '743
18	Sawnee	209	40	$29^{\circ} 255$	0.14	-0. 55^{2}	$28 \cdot 703$
19	Skitt	229	04	$06 \cdot 507$	0.16	-0.432	06 \% 075
	Youah	254	59	$47 \cdot 703$	0. 25	
20	Bloud	258	14	09.621	$0 \cdot 15$	to. 661	$10 \cdot 282$
21	Rabun	331	49	$50 \cdot 248$	- $\cdot 17$	-0.090	50'158

Probable error of a single observation of a direction (D. aud K.), $e_{\mathrm{x}}= \pm 0^{\prime \prime} .80$.

Abstracts of horizontal directions at stations comprisiug the third or South Carolina section of the triaugulation, 1873-1877-continued.

Blood, Union Comnty, Georgia. June 30 to Jnly 15, 1875. 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

Number of directions.	Objecls observed.	Results of local adjusturnt.			Approximate probable error.	Corrections from adjustment of third	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	11>	"	/1	"
	Yonah	0	00	00 '000	$\pm 0 \cdot 08$		
15	Skitt	23	53	12×312	- 117	-0.403	11.909
16	Sawnee	81	25	$11 \cdot 718$	- 19	+0.383	$12 \cdot 101$
17	Grassy	113	23	06.280	0. 22	+0.480	$06 \cdot 760$
	Colnitta	167	${ }^{1} 5$	34:393	- $!$! 9		
13	Rabun	307	42	$15 \cdot 079$	- 114	-0.22I	$14 \cdot 858$
14	Currahee	355	23	$50 \cdot 761$	- 15	-0.195	$50 \cdot 566$

Probable error of a single observation of a direction (D. and R.), $e_{s}= \pm 0^{\prime \prime} 94$.
Skutt, White Connty, Georgia. August 14 to 25,1874 . 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer. Circle used in XI positions.

	Yonah	o	oo	00 \%000	$\pm 0 \cdot 09$	
II	Rabun	33	56	23 '941	-.16	-0.105	23.836
12	Currahee	82	05	$53 \cdot 45^{2}$	- $\cdot 15$	+o.510	53.962
8	Sawnee	230	31	$07 \cdot 207$	- 17	-o 009	07-198
9	Grassy	264	50	54 '066	- 14	-r.304	53762
10	Blood	319	45	$17 \cdot 372$	- ${ }^{15}$	-0.092	17.280

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 0^{\prime \prime} \cdot 84$.
Saunee, Forsyth County, Georgia. October 7 to November 12, 1873, and November 26 to December 4, 18;3. 75^{cmm} direction theodolite No. 1 and 50^{cmm} direction theodolite No. 3. C. O. Boutelle, observer.

Number of
directions.

Objects observed.
Results of station
adjustment.

	Azinuth Mark
$\mathbf{1}$	Alcova
$\mathbf{2}$	Grassy*
$\mathbf{3}$	Blood
Yonah	
4	Skitt
Currallee	

Grassy, Pickens County, Georgia. July 13 to 31,1874 . 50^{cm} direction theodolite No. 3. C. O. Boutelle, observer.

7	Sawnee*	0	00	$00{ }^{\circ} 00$	± 0.07	+o. 228	00 ${ }^{228}$	-0 097	$00 \cdot 131$
	Johns	131	59	$17^{\circ} 050$	$0 \cdot 26$				
	Colutta	183	15	$38 \cdot 960$	-. 18	-0.032	$3^{8} \cdot 928$		
5	Blood	26:	37	28.061	0.15	-0.032	$28 \cdot 029$	-1.338	$26^{6} 691$
6	Skitt	297	13	$10 \cdot 620$	$0 \cdot 16$	-0.032	$10 \cdot 588$	+1:532	$12 \cdot 120$

[^29]Observation equations.

$$
\begin{aligned}
& 0=+1 \cdot 93^{8}-(6)+(7)-(1)+(3)-(8)+(9) \\
& 0=-2 \cdot 247-(5)+(7)-(1)+(2)-(16)+(17) \\
& \text { III } 0=-3.964-(5)+(6)-(9)+(10)-(15)+(17) \\
& \text { IV } 0=-0.535-(2)+(4)-(18)+(20)-(14)+(16) \\
& 0=+0.73 \mathrm{I}-(3)+(4)-(18)+(19)-(12)+(8) \\
& \text { VI } 0=+0 \cdot 727-(20)+(21)-(28)+(30)-(13)+(14) \\
& \text { VII } \left.0=+1{ }^{\circ} 572-\text { (10 }\right)+(11)-(29)+(30)-(13)+(15) \\
& \text { VIII } \\
& 0=-1 \cdot 270-(25)+(28)-(21)+(22)-(40)+(41) \\
& 0=+1 \cdot 512-(27)+(28)-(21)+(24)-(31)+(32) \\
& 0=-0.559 \cdots(39)+(40)-(22)+(24)-(31)+(33) \\
& \mathrm{o}=-\mathrm{I} \cdot 3 \mathrm{II}-(26)+(28)-(21)+(23)-(43)+(44) \\
& 0=-1 \cdot 195-(23)+(24)-(31)+(35)-(42)+(43) \\
& 0=-1 \cdot 616-(36)+(39)-(33)+(34)-(59)+(60) \\
& 0=-2 \cdot 727-(34)+(35)-(42)+(46)-\left(5^{8}\right)+(59) \\
& \mathrm{XV} 0=+0.013-(37)+(38)-(45)+(49)-(50)+(51) \\
& \text { XVI } \\
& 0=-3.463-(57)+(60)-(36)+(37)-(51)+(52) \\
& \text { XVII } 0=-0.750-(57)+\left(5^{8}\right)-(46)+(49)-(50)+(52) \\
& \text { XVIII } 0=+2 \cdot 755-(47)+(49)-(50)+(53)-(66)+(67) \\
& \text { XIX } 0=+3 \cdot 506-(55)+(57)-(52)+(53)-(66)+(68) \\
& \mathrm{XX} \quad 0=-2^{\cdot} \cdot 124-\left(5^{6}\right)+\left(5^{8}\right)-(46)+\left(4^{8}\right)-(62)+(63) \\
& \text { XXI } 0=+0390-(56)+(57)-(52)+(54)-(61)+(63) \\
& \text { XXII } 0=-1 \cdot 867-(65)+(66)-(53)+(54)-(61)+(64) \\
& \text { XXIII } 0=+0.805-(71)+(65)-(64)+(69)-(81)+(82) \\
& \text { XXIV } \mid 0=+2397-(80)+(82)-(71)+(72)-(74)+(75) \\
& \text { XXV } 0=-3 \cdot 260-(80)+(81)-(69)+(70)-(73)+(75) \\
& \text { XXVI } 0=-1.04 \mathrm{I}-(79)+(80)-(75)+(77)-(83)+(84) \\
& \text { XXVII } 0=+0 \cdot 802-(86)+(88)-(78)+(79)-(84)+(85) \\
& \text { XXVIII } 0=+0.905-(86)+(87)-(76)+(77)-(83)+(85) \\
& \text { XXIX } 0=-0.01-0.153(1)-0.026(3)+0.179(2)-0.308(8)+0.456(9)-0.148(10)+0.337(16) \\
& -0.335(17)-0.002(15)
\end{aligned}
$$

$$
\begin{aligned}
& +0.975(19)-0.377(20) \\
& \text { - XXXI } 0=-1.53-0.336(15)+0.387(14)-0.051(13)-0.425(19)-0.377(20)+0.048(21) \\
& +0.749(29)-0.370(30)-0.379(28) \\
& \text { XXXII } 0=+0.65+0.142(21)-0.634(22)+0.492(24)+0.024(28)-0.945(27)+0.921(26) \\
& -0.082(40)+0.266(39)-0.184(38)+0.300(44)-0.166(45)-0.134\left(4^{2}\right) \\
& \text { XXXIII } \mid 0=+2 \cdot 12-0.634(22)-5.749(24)+6.383(23)-0.082(40)+0.266(39)-0.184(38) \\
& +2.057(43)-0.166(45)-1.891(42) \\
& \text { XXXIV } 0=+0.46+0.675(25)+0.493(27)-1.168(26)+0.162(32)-0.201(33)+0.039(35) \\
& 0.703(44)+0.537(45)+0.166(42)
\end{aligned}
$$

N. B. -The 6 equations, XXIII to XXVIII, refer to the 2 quadrilaterals in the old work, of which no further use is made here. The numbered corrections are as follows: at King, Poore (69), Young (70); at Benn, Poore (71), Young (72); at Young, King (73), Benn (74), Poore (75), Buffalo (76), Moore (77); at Poore, Buffalo (78), Moore (79), Young (80), King (81), Benn (82); at Moore, Young (83), Poore (84), Buffalu (85); and at Buffalo, Moore (86), Young (87), and Poore (88).

Observation equations-continued.

The last two equations refer to the quadrilaterals already disposed of.
Normal equations.
$\begin{array}{lllllllllllllllllll}\mathrm{C}_{8} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{12} & \mathrm{C}_{12} & \mathrm{C}_{83} & \mathrm{C}_{54} & \mathrm{C}_{55} & \mathrm{C}_{86} & \mathrm{C}_{87} & \mathrm{C}_{20}\end{array}$

$\begin{array}{rr}0=+1.938 & +5 \cdot 3+1 \quad-2 \\ 0=-2 \cdot 247 & +5 \cdot 2+2 \cdot 1-2 \cdot 1\end{array}$
$\begin{array}{lll}0=-3.964 & +6.1 & \\ 0=-0.535 & +6.2+2.1-2\end{array}$
$0=+0.731$
$0=+0727$
$0=+1 \cdot 57^{2}$
$0=-1 \cdot 270$
$0=+1.512+5{ }^{\circ}+2+2+2$
$0=-0.559$
$0=-1 \cdot 311$
$0=-1 \cdot 195$
$0=-1 \cdot 616$
$0=-2 \cdot 727$

Normal equations-continued.

15	$0=+0.013$	$+59$	-2	$+2.1$	$+2 \cdot 1$
16	$0=-3 \cdot 463$		$+6 \cdot 2$	+2.1		211		- $2^{\circ 1}$							
17	$0=-0.750$			+6.1	$+2 \cdot 1$	-2.1	+19	-2.1			-				
18	$0=+2 \cdot 755$				$+6 \cdot \mathrm{r}$	+2			-2						
19	$0=+3 \cdot 506$					$+6 \cdot 2$		+2.I	-2						
20	$0=-2$ '124	\because \cdot.	+6.0	+2	\ldots	. \cdot.	. \cdot.
21	$0=+0 \cdot 390$							+6.1	- +2						
22	$0=-1.867$								+6.1	-2.I					
23	$0=+0.805$									+6.2	+21 1	-2			
24	$0=+2 \cdot 397$			"							$+6.1$	+2	-2		
25	$0=-3^{\cdot} 260$ \cdot.	+6	-2
26	$0=-1.041$												+6	-2	+2
27	$0=+0.802$													$+6 \cdot 2$	$+2 \cdot 2$
28	$0=+0^{\circ} 905$														+6.4

Normat equations-completed.

	C_{29}	C_{3}	$\mathrm{C}_{3} \mathrm{I}$	C_{32}	$C_{33}{ }^{1}$	C_{34}	C_{35}	C_{36}	C_{37}	$\mathrm{C}_{3} 8$	C_{39}
t	+0.8067	+1.6835								,	
2	-0.4321	-0.2191									
3	-0.9705	-0.5210	+0.3360								
4	to.1401	-0.2443	-0.0100								
5	-0.2742	-1.1819	-0.4250	-
6		-0.0100	+0.0440	+0.1180				*			
7	+0.1460	+0.5210	- 1.4780								
8			-0.4270	-0.6700	-0.5520	-0.6750					
9			-0.4270	+13190	-5.7490	-0.3472					
10 \cdot.	+0.7780	-5.4630	-0.1809	-0.1489	-	-
11			-0.4270	-0.7390	$+43260$	+0.4650					
12				+0.6260	$-8 \cdot 1840$	-0.1270	$+0.6120$				
13				+0.2660	+0.2660	+0.1809	$+0 \cdot 1578$	$+0.0871$			
14				+0.1340	+1.8910	-0.1270	+0.0237	-0.2214	-0.4450	-0.0740	-0.0616

Normat equations-completed.

	C_{32}	C_{33}	C_{34}	C_{35}	C_{36}	C_{37}	C_{38}	C_{39}	C_{4}	C_{41}
15	-0.0162	-0.0162	-0.4833	-0.4005	+0.7924	+0.1527	+0.1527	-0.8118
16				-0.0871	-0.5235	+0.3575	+0.3575	-0.3090		
17				+0.4923	+1.0278	+o.9552	+0.5842	-1.0592		-
18					+1.0530	$+1.6043$	+0.4277	-0.8118		
19	-				+0.2466	-1.3849	+0.2904	+0.3090		
20	+0.4923	+0.2214	+0.4450	-1.6113	-0.4783	. ${ }^{\text {- }}$
21					+0.2466	-0.3575	-1.3745	+0.8360		
22						-0.2750	-0.1006	+0.7520	-0.1914	
23		\sim					-0.1744	.	-0.303^{6}	
24		-							-1.0710	+0.0590
25 \cdot..... \cdot..... \cdot......	$+0.2470$	$+0.0590$
26									+0.2020	-I.2300
27										+ I 0627
23										-0.6335

Normal equations-completed.

Resulting values of correlates.

$\mathrm{C}_{11}=+\mathrm{O}_{2} \mathrm{M}_{3} 30$
$C_{21}=-0.14^{2} 55$
$\mathrm{C}_{32}=+1 \cdot 22474$
$\mathrm{C}_{12}=-0.48874$
$\mathrm{C}_{22}=+0.723 \quad 09$
$\mathrm{C}_{13}=+1$ 131 56
$\mathrm{C}_{23}=+0.9578_{4}$
$\mathrm{C}_{32}=-0.21482$
$\mathrm{C}_{14}=+1 \cdot 43316$
$\mathrm{C}_{24}=-1{ }^{1}{ }^{151} 53$
$\mathrm{C}_{33}=-0 \cdot 102 \quad 086$
$\mathrm{C}_{25}=+\mathrm{o}^{\circ}{ }^{\circ} \mathrm{O}_{6} \quad 14$
$\mathrm{C}_{25}=+141285$
$\mathrm{C}_{34}=-\mathrm{o} .193 \mathrm{~S}_{5}$
$C_{L 6}=-0.05786$
$C_{20}=+0.42481$
$\mathrm{C}_{35}=+0.454 \mathrm{~g}^{1}$
$\mathrm{C}_{37}=+0.22361$
$\mathrm{C}_{27}=+0 \cdot \mathrm{I}_{39} \mathrm{So}$
$\mathrm{C}_{30}=-0.568 \mathrm{~S} 9$
$\mathrm{C}_{18}=-0 \cdot 795{ }^{5} 6$
$\mathrm{C}_{28}=-0.3027$
$\mathrm{C}_{37}=+0.946 \quad 19$
$\mathrm{C}_{19}=+0.28698$
$\mathrm{C}_{29}=+2.692$ 이
$\mathrm{C}_{38}=+0$ '934 10
$\mathrm{C}_{20}=+0.84026$
$\mathrm{C}_{30}=+0.614 \quad 15$
$\mathrm{C}_{39}=-1 \cdot 36270$
$\mathrm{C}_{40}=-0.598 \quad 29$
$\mathrm{C}_{41}=-0.01691$
Reciprocals of weights and resulting corrections to observed directions.

	$\frac{1}{p}$			$\frac{1}{p}$			$\frac{1}{7}$			$\frac{1}{p}$	"
(1)	0.5	-0.1091	(23)	1.0	+o 0854	(45)	0.9	-0.0789	(67)	I'I	+o.7048
(2)	$1 \cdot 1$	+0.7998	(24)	1.0	+o 3693	(46)	1 -0	+o oi95	(68)	1×1	-0.5683
(3)	$1{ }^{1} 3$	-0.1235	(25)	10	-0.9868	(47)	0.9	+1.1827	(69)	10	-0.5722
(4)	$1 \cdot 1$	-0.4552	(26)	10	-0.2197	(48)	$1 \cdot 1$	-0 1545	(70)	10	+1.4260
(5)	10	-1 3379	(27)	$1{ }^{\circ}$	+o 8298	(49)	$0 \cdot 9$	+0.3038	(71)	1 1	+0.2130
(6)	1 \%	+1.5315	(28)	10	-0.3512	(50)	10	+o.6347	(72)	$1{ }^{\circ}$	-I'1515
(7)	0.5	-0.0968	(29)	$1{ }^{\circ}$	+10227	(51)	10	-0.6564	(73)	1 'o	-1.2160
(8)	10	-0.0088	(30)	$1 \cdot 2$	-0.3537	(52)	$1 \cdot 1$	+0.8621	(74)	1.0	+o.8429
(9)	1.0	-0.3040	(31)	10	+o.119	(53)	\%	-1 3426	(75)	10	-0.0508
(10)	10	-0.0921	(32)	$0 \cdot 9$	-0.6783	(54)	$1{ }^{\circ}$	+0.5805	(76)	1.	+0.2908
(II)	$1{ }^{\circ}$	-o.1054	(33)	$0 \cdot 9$	+0.0219	(55)	10	-0.2870	(77)	1 oo	+o.133 1
(12)	10	+0.5103	(34)	1.0	-0.5978	(56)	10	-0.3393	(78)	$1{ }^{\circ}$	-0.1329
(13)	10	-0.2209	(35)	1.0	+1 ${ }^{21} 53$	(57)	-	-0.4162	(79)	$1{ }^{\circ}$	-0.2938
(14)	1%	-0.1946	(36)	$1 \cdot 1$	-0.8871	(58)	0.9	-0.1780	(80)	1	+o.1564
(15)	10	-0.4032	(37)	1.0	-0.6373	(59)	10	-0.0382	(81)	1.	+o. 2528
(16)	10	+0.3826	(38)	$0 \cdot 9$	+o.2581	(60)	$1{ }^{\circ}$	+1.2785	(82)	1%	+o.0175
(17)	$1 \cdot 1$	+0.4797	(39)	1 \%	+o.0318	(61)	10	+0.4442	(83)	10	-0.1220
(18)	1	-0.5517	(40)	1.0	+o.2692	(62)	10	-1'7239	(84)	1	+o. 2850
(19)	10	-0.4320	(41)	ioo	+o. 5_{560}	(63)	10	+0.4127	(85)	1.1	-0.3089
(20)	10	+0.6610	(42)	1 \%	-0.7548	(64)	10	+o. 0145	(86)	1 1	+o.1893
(21)	10°	-0.0898	(43)	1.0	-0,9470	(65)	10	+0.2301	(87)	$1 \cdot 2$	-0.3711
(22)	$1{ }^{\circ} \mathrm{o}$	-0.0423	(44)	1%	+0.3201	(66)	10	+0.6036	(88)	10	to.1421

Resulting angles and sides of the third or South Carolina section of the triangulation.

Resulling angles and sides of the third or South Carolina section of the triangulation-contirued.

No.
$13\left\{\begin{array}{l}\text { Pinnacle } \\ \text { Wofford } \\ \text { Paris }\end{array}\right.$
$14\left\{\begin{array}{l}\text { Mauldin } \\ \text { Hogback } \\ \text { Paris }\end{array}\right.$
$15\left\{\begin{array}{l}\text { Mauldin } \\ \text { Dinnac }\end{array}\right.$
$5\left\{\begin{array}{l}\text { Pinnacle }\end{array}\right.$
$16\left\{\begin{array}{l}\text { Manldin } \\ \text { Pinnacle } \\ \text { Paris }\end{array}\right.$
$17\left\{\begin{array}{l}\text { Rabun } \\ \text { Pinnacle }\end{array}\right.$ Paris

18
$\left\{\begin{array}{l}\text { Rabun } \\ \text { Paris } \\ \text { Mauldin }\end{array}\right.$
$19\left\{\begin{array}{l}\text { Rabun } \\ \text { Pinnacle } \\ \text { Mauldin }\end{array}\right.$
$20\left\{\begin{array}{l}\text { Currahee } \\ \text { Pinnacle } \\ \text { Paris }\end{array}\right.$
2I $\left\{\begin{array}{l}\text { Currahee } \\ \text { Pinnacle } \\ \text { Mauldin }\end{array}\right.$ $22\left\{\begin{array}{l}\text { Currahee } \\ \text { Paris } \\ \text { Mauldin }\end{array}\right.$
$23\left\{\begin{array}{l}\text { Currahee } \\ \text { Rabun } \\ \text { Pinmacle }\end{array}\right.$
$4\left\{\begin{array}{l}\text { Currahee } \\ \text { Rabuir } \\ \text { Paris }\end{array}\right.$ Iogback
\qquad
ris

Stations.

Observed angles.			Correct. tion.	Spherical angles.	Spherical excess.	Log. distances	Distances in meters.
-	,	11	/1	/	/		
12	25	$39^{\circ} 20$	+o.90	$40^{\prime 10}$	$0: 43$	4.6386551	$43516 \cdot 62$
9	03	$60 \cdot 28$	-1.29	58'99	- . 43	4.5032904	$31863 \cdot 27$
158	30	$21 \cdot 82$	+0.38	$22 \cdot 20$	0. 43	4.8697573	74 089 61
17	55	$20 \cdot 86$	+181	22.67	- 31	4.44I 5435	$27640 \cdot 35$
I 5	44	50*32	+0.14	$50 \cdot 46$	$0 \cdot 32$	43869655	$24376 \cdot$ I 7
146	19	$47^{\circ} 04$	+-0.78	$47 \cdot 82$	$0 \cdot 32$	$4.697 \quad 1961$, $49796 \cdot 18$
61	33	$51 \cdot 97$	-0.62	51 '35	0.94	4.641 6974	43822.52
87	44	04.47	+0.92	$05 \cdot 39$	$0 \cdot 94$	4.6971963	$49796 \cdot 2 \mathrm{I}$
30	42	0478	+131	$06^{\circ} 09$	- "95	4.4055863	25444.05
79	29	$12 \cdot 82$	4-1.19	14 OI	$0 \cdot 52$	4×5032903	31 $863 \cdot 26$
48	46	$48^{\prime} \mathrm{O} 2$	-0.23	$47^{\prime \prime} 79$	$0 \cdot 52$	$4 \cdot 3869656$	24 376.18
51	43	$59{ }^{\circ} 07$	+0.68	$59 * 75$	$0 \cdot 51$	4.4055863	$25444{ }^{\circ} \mathrm{O}$
10	13	03.44	+0.76	$04 \cdot 20$	- . 63	$4 \cdot 5032907$	31863×29
153	07	$06 \cdot 91$	+0.60	07.51	0. 63	49096445	81 $216 \cdot 55$
16	39	$50 \cdot 58$	-0.40	$50 \cdot 18$	0.63	$4^{\circ 7118767}$	$51508 \cdot 24$
12	52	$36 \cdot 62$	+I.O5	$37^{\circ} 67$	0.96	$4 \cdot 3869654$	$24376 \cdot 17$
35	04	08.49	+1.08	09 56	0.96	4798278 I	$628.46 \cdot 08$
132	03	$13: 76$	+190	15.66	- '97	4.9096442	8I 216.49
23	05	$40^{\circ} 06$	+1.82	41.88	I 08	$4 * 4055865$	$25444{ }^{\circ} 06$
104	20	$18 \cdot 89$	+o.82	$19 \% 7$	I '07	47982782	$62846 \cdot 09$
52	34	$00 \cdot 94$	+0.70	O1. 64	I os	47118767	$51508 \cdot 24$
16	29	02.56	+0.13	02.69	I '93	4*503 2900	31863.24
117	37	$44^{\circ} 5^{2}$	to. 01	$44 \cdot 53$	I '93	$4 \bigcirc 9977900$	$99492 \cdot 42$
45	53	$17{ }^{\circ} 7$	+o.87	18.57	$1 ` 93$	4.9064819	80 $627 \cdot 26$
18	22	$24^{\prime} 75$	+0.41	$25 \cdot 16$	1.62	4.4055861	$25444{ }^{\circ} 04$
68	50	$56 \cdot 50$	+0.24	$56 \cdot 74$	1 62	4.8767021	$75 \quad 283$ '90
92.	46	$43^{\circ} \mathrm{O}$	-0.09	$42 \cdot 96$	1. 62	49064819	So $627 \cdot 26$
I	53	22×20	+0.29	22 * 49	$0 \cdot 21$	4 -386 965 3	$24376 \cdot 16$
5	50	41.36	-0.19	41.17	$0 \cdot 21$	$4 \cdot 8767021$	$75 \quad 283 \cdot 90$
172	I5	$55 \cdot 87$	+ I 10	$56 \cdot 97$	$0 \cdot 21$	4.997789 9	$99492 \cdot 40$
37	42	07*37	+o.05	Q7 42	2.04	4.7118767	5 I $508 \cdot 24$
106	48	$35 \cdot 10$	+0.63	$35^{\prime} 73$	2.05	4.906 4819	80 $627 \cdot 26$
- 35	29	22•39	+o. 59	$22 \cdot 98$	$2{ }^{\circ} \mathrm{O} 4$	4.6892851	$48897 \cdot 33$
54	11	09 '93	+0.17	10'10	3*34	4909644 I	81 $216 \cdot 47$
96	35	31.66	-0.13	3153	3.35	4'997789 9	$99492 \cdot 40$
29	13	$27 \cdot 13$	+1"27	$28 \cdot 40$	$3 \cdot 34$	$4 * 6892851$	$48^{897} 33$

Resulting angles and sides of the third or South Carolina section of the triangulation-continued.

Stations.		Observed		$\begin{aligned} & \text { correc. } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \text { Spher- } \\ \text { cat } \end{gathered}$	spher ical	distances.	Distances in
5		- ,	"	"	"	"		
	(Currahee	56 , 04	$32 \cdot 13$	+0.46	$32 \cdot 59$	$2 \cdot 59$	47982779	62846 \% 4
	Rabun	8342	55 \% 0	- I 19	$53 \cdot 85$	$2 \cdot 59$	$4 \cdot 8767020$	$75283 \cdot 88$
	Mauldin	40	42 II	-0.79	41.32	$2 \cdot 58$	4.689285 I	4889733
25	(Blood	474	$35 \cdot 68$	+o 02	3570	$2 \cdot 25$	$4 \cdot 689285$ I	4889733
	Rabun	5842	${ }_{51}^{1} 16$	0 Oo	51'16	$2 \cdot 25$	$4^{\prime} 7520745$	$56503 \cdot 38$
	Currahee	$73 \quad 35$	$40 \cdot 63$	-0.75	39.88	$2 \cdot 24$	$4 \cdot 8022677$	$63426 \cdot 6$
27	Skitt	4809	29.51	+0.62	$30 \cdot 13$	1.29	4.689285 I	4889733
	Rabun	04	$48 \cdot 28$	+1.38	49.66	I 29	4.503 Sor o	$3^{11} 90076$
	Currahee	45	$43^{\circ} 74$	to 34	44.08	129	4 - 8 '66 2729	64 ol3 69
28	Blood	76 10	57^{23}	-0.18	57.05	170	4 - So6 2728	64 o13 68
	Rabun	2938	02.87	$-\mathrm{I} 38$	ol 49	170	4.5131465	$32594 \cdot 66$
	Skitt	74 If	$06 \cdot 57$	-0 or	$06 \cdot 56$	170	$4 \cdot 8022676$	63426 \%
	Skitt	20	36.08	to 6r	$36 \cdot 69$	$\bigcirc \cdot 75$	47520745	$56503 \quad 39$
	Blood	2829	$2 \mathrm{I} \cdot 55$	-0.21	21.34	- 74	4.5038 Sol 1	$31900 \cdot 76$
	Currahee	29 10	$03 \cdot 11$	+I'09	$04 \cdot 20$	- 74	4.5131465	32594.66
30	Sawnee	4525	$06 \cdot 66$	-1. 26	05.40	$2 \cdot 84$	4'752 0744	$56503 \cdot 38$
	Blood	S6 or	$20 \cdot 96$	+o. 58	21.54	$2 \cdot 84$	$4 \cdot 898$ 401 o	79140 19
	Currahee	4833	$40 \cdot 37$	+1.21	41.58	$2 \cdot 84$	47743119	$59471{ }^{19}$
31	Sawnee	12 II	II 86	-0.34	115	$0 \cdot 71$	4×5038009	$31900 \cdot 75$
	Skitt	14825	$13{ }^{76}$	-0.52	13.24	0.71	4.898 40I	$79140{ }^{\circ} \mathrm{P}$
	Currahee	1923	$37 \cdot 25$	+0.12	$37 \cdot 37$	$0 \cdot 71$	4.7005389	$50180 \cdot 95$
32	Sawnee	3313	$54 \% 1$	-0.92	53.89	I 39	4.5131465	$32594 \cdot 66$
	Blood	$57 \quad 31$	59.41	+o.78	$60 \cdot 19$	I 3^{8}	4 '700 539 ○	$50180 \quad 96$
	Skitt	8914	$10 \cdot 16$	-0.08	10 '08	I 39	47743119	$59471{ }^{\text {9 }}{ }^{2}$
33	Grassy	3535	$42 \cdot 56$	$+2.87$	$45^{\circ} 43$	$1 \cdot 26$	4.5131465	$32594 \cdot 66$
	Blood	8929	53 '97	+0.88	$54 \cdot 85$	I 27	4778 161 8	$55995 \cdot 62$
	Skitt	5454	23 31	to. 21	$23^{\circ} 5$. 27	4.6610441	45818.84
	Grassy	6246	$49 \cdot 64$	${ }_{-1} \mathrm{I}_{3}$	48 or	I 34	47005389	$50180 \cdot 95$
	Skitt	$34 \quad 19$	$46 \cdot 86$	-0.30	$46 \cdot 56$	1 34	$4 \cdot 5027518$	$31823{ }^{7} 7^{8}$
	Sawnee	8253	29.47	-0 01	29.46	I 35	47781618	$55996 \cdot 62$
	Grassy	9822	$32 \cdot 20$	+1.24	33.44	$\mathrm{I}^{\circ} 23$	4'774 3119	59471 '92
	5 Blood	3157	54×56	+o.10	54 '66	$1 \cdot 22$	4.5027518	${ }^{11} 823 \cdot 78$
	Sawnee	4939	$34 \cdot 66$	+0.91	57	$1 \cdot 2$	4.661 0443	$45818 \cdot 86$

Adjustment of the posilion of Mount Mitchell in North Carolina, 1876-1895.

Roan High Bluff, A. H. B., ISg.4.

Nimber of directions.

Poore
 Benn
 Mount Mitchell
 Rogers

Objects observed.
O. B., $1 S_{77}$; A. H.

King
Benn
Nount Mitchell
Roan
Rogers

Benn, C. O. 13., 1 S77; А. H. B., 1895.
King
Wofford
Hogback
Mount Mitchell
Roan
Poore

Poore,
, C. O. B., $1 S_{77}$; A. H. B., 1895 .

Poore

Directions from pre-
vions adjustments.
\qquad
.

$$
20^{\circ} 30
$$

$307 \quad 22 \quad 594 ;$
.

Corrections.

0	00	$00 \cdot 00$	\ldots	\ldots.
31	55	20.57	\ldots	$\ldots \ldots$
64	18	17.14	+0.37	17.51
84	56	$13 \cdot 76$	\ldots.	$\ldots \ldots$
144	19	$49 \cdot 80$	\ldots.	$\ldots \ldots$

THE MAIN TRIANGULATION.

Adjustment of the position of Mount Mitchell in North Carotina, 1876-1895-continued.
King, C. O. B., 1876-77.

Number of directions.		Objects observed.	Directious from previous adjustments.			Correc tions.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
			-	,	"	"	/,
	Wofford		-	-	$00 \cdot 00$	
	Hogback		23	20	$26 \cdot 87$	\ldots
4	Mount Mitchell		61	35	$36 \cdot 94$	-4.99	31.95
	Benn		77	18	$24^{\cdot 23}$	
	Poore		124	19	$48 \cdot 64$	
Wofford, C. O. B., 1876.							
5	King		0	∞	$\infty{ }^{\circ} \times$.	
	Hogback .		242	02	$40 \cdot 84$
	Mount Mitchell		277	39	$32 \cdot 86$	-5.10	$27 \cdot 76$
	Benn		316	24	$52 \cdot 16$		

Hogback, C. O. B., IS76.

Benn
King
Wofford
Mount Mitchell

0	00	$00 \cdot 00$	\ldots	$\ldots .$.
34	39	$03 \cdot 12$	\ldots	\ldots
73	21	$22 \cdot 76$	\ldots	\ldots.
309	37	$16 \cdot 84$	-5.27	11.57

N. B.-Observations from Paris in $1 \mathrm{~S}_{75}$ were too rough for use.

Conditionat equations.
I. $0=+43-0.92(\mathrm{I})+3.98(2)-\mathrm{I} 86(3)$
2. $0=-142 \cdot 0-5 \cdot 87(2)+11 \cdot 35(3)-16 \cdot 28(4)$
3. $0=+70 \cdot 0-5{ }^{\circ} 02(3)+11 \cdot 69(4)-3 \cdot 17(5)$
4. $0=+1 \cdot 1-4 \cdot 0_{3}(4)+8 \cdot 47(5)-4 \cdot 17(6)$

Correlates.

1	-0*92
2	+3.98-5.87
3	-1. $86+11 \cdot 35-5 \cdot 02$
4	$-16.28+11.69-4.03$
5	$-3 \cdot 17+8 \cdot 47$
6	$-4 \cdot 17$

Normal equations.
$0=+4 \% 3+20 \cdot 146 C_{8}-44.474 C_{2}+9.337 C_{3}$ $0=-142 \circ \quad+428.318 \mathrm{C}_{2}-247.290 \mathrm{C}_{3}+65.608 \mathrm{C}_{4}$ $0=+70 \% \quad+171.905 \mathrm{C}_{3}-73.961 \mathrm{C}_{4}$ $0=+1 \cdot 1 \quad+105.371 \mathrm{C}_{4}$
$\mathrm{C}_{1}=+5 \cdot 3 \dot{6}_{48}$
$\mathrm{C}_{2}=+3{ }^{\prime} 5738$
$\mathrm{C}_{3}=+4.9863$
$\mathrm{C}_{4}=+\mathrm{I} \cdot 2643$
(I) $=-4.94$
(2) $=+0 \cdot 37$
(3) $=+5 \cdot 55$
(4) $=-4 \cdot 99$
(5) $=-5 \cdot 10$
(6) $=-5 \cdot 27$
$4192-\mathrm{No} .7-\mathrm{O} 2-12$

Resulting angles and sides from the adjustment made to determine the position of Moumt Mitchell.

No.

I | Mount Mitchell |
| :--- |
| Roan |
| Bem |

$2\left\{\begin{array}{l}\text { Mount Mitchell } \\
\text { Poore } \\
\text { Benn }\end{array}\right.$
$3\left\{\begin{array}{l}\text { Mount Mitchell } \\
\text { Poore } \\
\text { King }\end{array}\right.$
$4\left\{\begin{array}{l}\text { Kount Mitchell } \\
\text { King } \\
\text { Wofford }\end{array}\right.$
$5\left\{\begin{array}{l}\text { Mount Mitchell } \\
\text { Wofford } \\
\text { Hogback }\end{array}\right.$

Observed angles.
Correc- Spher Spher-
tion.
tion. ical $\begin{aligned} & \text { ical } \\ & \text { tion. angles. excess. }\end{aligned}$.
/1 11

0	1	11	$1 /$	11	11
95	22		-...	$48 \cdot 23$	$1 \cdot 89$
53	29	$41 \cdot 20$	-4.94	$36 \cdot 26$	1.89
31	07	$46 \cdot 73$	$-5 \cdot 55$	41.18	I.89
39	30			$56 \cdot 41$	$3 \cdot 33$
32	22	$56 \cdot 57$	+0.37	$56 \cdot 94$	$3 \cdot 34$
105	06	$22 \cdot 21$	-5 55	$16 \cdot 66$	333
52	57			48•39	7-53
64	18	$17^{1} 14$	+0.37	17.51	7 '53
62	44	$11 \cdot 70$	+4.99	$16 \cdot 69$	7'53
34	04			10:80	$5^{\circ} 00$
61	35	$36 \cdot 94$	-4'99	31'95	$5^{\circ} 00$
82	20	$27{ }^{\circ} 14$	$+5 \cdot 10$	$32 \cdot 24$	4.99
20	39			07.47	I.96
35	36	$52{ }^{\circ} \mathrm{O} 2$	$-5 \cdot 10$	$46 * 92$	I 86

Iog, dis- Distances
tances.
$\begin{array}{llllll}4 & 864 & 269 & 1 & 73 & 159\end{array} 22$
$\begin{array}{llllll}4 \cdot 771 & 325 & 0 & 59 & 064 \cdot 29\end{array}$
$4.579630 \quad 9 \quad 37 \quad 986 \cdot 64$
$4 \cdot 846 \quad 167 \quad 7 \quad 70 \quad 172 \cdot 52$
$\begin{array}{llllll}4 \cdot 771 & 325 & \text { I } & 59 & 06.1 \cdot 30\end{array}$
$5^{\circ} 020 \quad 471 \quad 2 \quad 104 \mathrm{~S}_{2} 6^{\circ} 53$
4 •973 $743 \quad 9 \quad 94 \quad 133$ •44
$\begin{array}{llllllllll}5 & 026 & 388 & 2 & 106 & 264 & 50\end{array}$
$\begin{array}{lllllll}5 & \circ & 020 & 471 & 2 & 104 & 826\end{array}$
$4 \cdot 800 \quad 210 \quad 3 \quad 63 \quad 126 \cdot 29$
$4.974 \quad 5517 \quad 94 \quad 308 \cdot 69$
$\begin{array}{lllllll}5 & \circ & \circ & 26 & 388 & 3 & 106\end{array} \quad 264 \quad 52$
$4 \cdot 6020196 \quad 39996 \cdot 28$
4 'SI9 78I $3 \quad 66 \quad 036$ os
$4.974 \quad 5517 \quad 94305 \quad 69$
7. FIRST SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, GEORGIA AND ALABAMA, I873-I875.

This triangulation is located in Georgia and Alabama, and is of the same complex character as the Atlanta base net. It depends for the length of its sides upon the Atlanta base, and on the accompanying sketch is shown, by two heavy lines, the connection with the base net.* The section depends for the length of its sides directly

[^30]upon the Atlanta base. It is composed of 22 triangles. The angles were measured by Assistants F. P. Webber and C. O. Bottelle, in the years 1873-74-75, and five different instruments were employed. Weights to the several directions were introduced in the adjustment, depending in part on the approximate probable errors of the observations at a station and in part ou the closing errors of the triangles. We have the mean error of a triangle from the sum of the squares of the closing errors $=\sqrt{\frac{62^{\circ} \cdot 5^{86}}{22}}= \pm \mathrm{r}^{\prime \prime} \cdot 69$, and that of an angle $= \pm 0^{\prime \prime} \cdot 97$; also the probable error of a direction $=0.674 \frac{I^{\circ} 69}{\sqrt{6}}= \pm 0^{\prime \prime} \cdot 46$. From the approximate probable errors of the observed directions, as given in the abstracts of the respective stations, we have the average value $\varepsilon_{\mathrm{s}}= \pm \mathrm{o}^{\prime \prime} 18$, hence the square of the triangle combination error $\varepsilon_{\mathrm{c}}{ }^{2}=\left(0^{\circ} 46\right)^{2}$ $-\left(0^{\circ} 18\right)^{2}=0^{\prime} 18$, and adding this to the square of ε_{r}, we have $\varepsilon^{2}=I^{\prime} p=\varepsilon_{\mathrm{c}}^{2}+\varepsilon_{1}^{2}$, whence the relative weight p to each direction. We have also the ratio of the greatest to the least weight 2.53 to I.

The approximate heights of the stations above the Atlantic are as follows:

	Meters.	Feet.
Carnes	396.9	I 302
Lavender	$515^{\circ} 2$	I 690
Johns	$577^{\circ} 4$	I 894
Indian	603.4	I 980
Gulf	673.3	22.209
Brandon	$511 * 8$	I 679

Abstracts of horizontal directions at stations composing the-first section west of the Atlanta base net, 1873-1875.

Kenesaw, Cobb County, Georgia. June 23 to July 18, 1873. 75^{cm} direction theodolite No. I. F. P. Webber, observer.

Number of directions.	Objects observed.	Resulting directions from previous ad-justment of net justment of net.			Corrections from adjustment of irst section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
		-	,	//	//	/
	Sweat Mountain	0	-	00 049
7	Carnes	224	20	15.063	-2.019	13.044
8	Lavender	252	07	$00 \cdot 702$	+2.009	02.711
	Pine Log	303	37	22 129	

Pine Log, Bartow County, Georgia. July 29 to September 17, IS74. $30^{\text {crm }}$ repeating theodolite No. 32. F. P. Webber, observer.

```
Carnes
Indian
Coosa
Lavender
Gulf Point
Johns
Cohutta
Grassy
Sweat Mountain
Kenesaw
```

$\begin{array}{ccccc}\circ & \prime \prime & \prime \prime & \prime \prime & \prime \prime \\ 0 & \infty & 00.000 & -0.710 & \frac{11}{59 \cdot 290}\end{array}$

Abstracts of horizontal directions at stations composing the first section west of the Allanta base net, 1873-1875-continued.

Sucat Mountain, Cobb County, Georgia. September io to October 3, 1873. $75^{\text {cm }}$ direction theololite No. I. F. P. Webber, observer.

Grassy, Pickens County, Georgia. July 13 to 28 , 1874.50^{cm} direction theodolite No. 3. C. O. Boutelle, observer.

Carnes, Polk County, Georgia. November 17 to December 27,1873 . 30^{cm} repeating theodolite No. 32. F. P. Webber, observer.

Number of directions.	Objects observed.	Results from loca! adjustment.			Approximate probable error.	Corrections from adjustment of first section.	Final seconds.
		-	,	"	11	"	"
14	Kenesaw	0	∞	$\infty 0000$	$\pm 0 \cdot 10$	-0.456	$\overline{59}{ }^{\circ} 544$
	Lost Mountain	7	04	$48 \cdot 139$	0.14	
10	Indian	183	44	$53 \cdot 3 \mathrm{~S}_{3}$	$0 \cdot 12$	-1.345	52 o38
	Coosa	230	04	∞ *691	- 16	
II	Lavender	232	44	$12 \cdot 747$	- 12	+0.920	13.667
12	Pine Log	310	57	24.950	- 'Io	--0.045	$24^{.905}$
	Pine Mountain	317	59	$30 \cdot 451$	- 114	
13	Sweat Mountain	348	14	$27 \cdot 327$	0. 12	+0.934	$28 \cdot 261$

Abstracts of horizontat directions at stations composing the first section west of the Attanta base net, 1873-1875-continued.

Lavender, Floyd County, Georgia. October 12, 1874, to January 30, 1875 , and August 6 to 12, 1875 . 30^{cm} repeating theodolite No. 32. F. P. Webber, observer.

Number of directions.	Objects ob
19	Pine Log
	Pine Mountain
20	Kenesaw
21	Carnes
	Coosa, marl:
15	Indiaif
	Weisner
16	Brandon
17	Gulf Point
18	Johns
	Cohutta

Results from local adjustment.			Approximate probable etrot.	Corrections from adjustment of fitst section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	,	"	"	"	/
0	-0	00 000	± 0 \% 0	+o. 324	00 324
17	49	59 - 135	-. 16		
30	20	51'197	o $\cdot 11$	- I 058	50'139
55	18	18.473	- ${ }^{\text {¢ }}$ O	-0.267	$18 \cdot 206$
63	25	38315	$0 \cdot 09$		
111	29	54716	- 09	+0. 234	54 '950
137	35	38.33	- 32		
189	35	31.660	- $\cdot \mathrm{oS}$	+0.171	31.831
244	Io	24 '069	- 0 ¢	+0.673	24.742
	42	46 291	o ${ }^{\text {I I }}$	-0.108	$46 \cdot 183$
	04	$49 * 376$	$0 \cdot 12$		
			ean correcti	ioll -0.004	

Johns, Walker County, Georgia. May 12 to June 21, 1875. 30^{cm} direction theodolite No. 107. F. P. Webber, observer. Circle used in XXI positions.

26	Gulf Point	0	oo	$00 \% 000$	$\pm 0 \cdot 10$	+o 394	00 394
	Pigeon	17	13	25.438	$0 \cdot 31$
	High Point	44	15	$12{ }^{7} 78$	$0 \cdot 20$	\ldots
	Cohutta	145	15	$56 \cdot 8$
22	Grassy	191	23	$00 \cdot 153$	$0 \cdot 20$	- 1. 240	$\overline{58 \cdot 913}$
23	Pine Log	217	34	29 '722	$0 \cdot 24$	to. 672	30.394
24	Indian	294	07	26 '733	$0 \cdot 16$	+o. 247	26.980
25	Lavender	297	06	13.557	- 20	- I'IO2	13.455
					ail correc	-0 006	

Indian, Cherokee County, Alabama. July 24 to August 21, $1875.30^{\text {om }}$ direction theodolite No. 108. F. P. Webber, observer. Circle used in XVII positions.

[^31]Abstracts of horizontal directions at stations composing the first section zeest of the Allanta base net, 1873-1875-continued.
Gulf Point, Walker County, Georgia. September 14 to October 9, 1875.30^{cm} direction theodolite No. ros. F. P. Webber, F. D. Granger, and J. H. Christian, observers. Circle used in XVVII positions.

Number of directions.	Objects observed.	Results from local adjustment.			Approximate probable error.	Corrections from adjustment of first section.	Final seconds.
		-	,	11	"	/	/1
	High Point	-	00	00:000	$\pm 0 \cdot 08$
	Pigeon	28	39	11.071	$0 \cdot 32$
	Cohutta	55	29	$34^{1} 56$	-. 16
34	Johns	75	49	$36 \cdot 751$	0.25	-1 391	$35 \cdot 360$
35	Pine Log	99	04	$14 \cdot 149$	-.18	+o 959	15.108
36	Lavender	139	23	$30 \cdot 004$	$0 \cdot 14$	-0.138	29.866
37	Indian	162	05	54 '020	- 20	+0.362	$54 \cdot 382$
38	Brandon	210	o8	59.511	-. 17	+0.054	59.565
	Gunter	250		$42: 408$	0.45	
		Mean correction -0.031					

Brandon, Dekalb County, Alabana. December 6 to $26,1875.30^{\mathrm{cm}}$ direction theotolite No. 108. F. P. Webber, observer.

	Aurora
39	Gunter
40	Gulf Point
41	Lavender
	Indian
Weisner	

-	,	/	"	"	/
-	∞	$00 \cdot 00$	$\pm 0 \cdot 11$		
61	36	$36 \cdot 507$	0.19		.
168	10	$14 \cdot 156$	- :36	-0.338	13.818
222	49	54.438	$0 \cdot 30$	+0.138	$54 \cdot 576$
266	-	43 '001	$0 \cdot 31$	+o.164	$43 \cdot 165$
293	13	$43{ }^{\circ} \mathrm{C} 2$	0.21	
n correction -o.or 1					

Observation equations.

```
\(\mathrm{o}=-\mathrm{O}_{472-(1)+(2)-(12)+(13)}\)
\(0=-0.426-(7)+(1)-(13)+(14)\)
\(0=+3 \cdot 167-(8)+(4)-(19)+(20)\)
\(0=-3.443-(11)+(14)-(7)+(8)-(20)+(21)\)
\(\mathrm{o}=+\mathrm{o}^{\circ} 75^{2}-(6)+(9)-(22)+(23)\)
\(0=+0.095-(18)+(19)-(4)+(6)-(23)+(25)\)
\(0=-0.544-(10)+(12)-(2)+(3)-(31)+(33)\)
\(0=-2.505-(10)+(11)-(21)+(15)-(29)+(33)\)
\(0=-2 \cdot 293-(5)+(6)-(23)+(26)-(34)+(35)\)
\(0=-2 \cdot 034-(28)+(31)-(3)+(5)-(35)+(37)\)
XI \(\quad 0=-3 \cdot 144-(28)+(30)-(24)+(26)-(34)+(37)\)
XII \(0=-0.120-(27)+(29)-(15)+(16)-(40)+(41)\)
XIII \(0=-1^{\cdot 167-(16)+(17)-(36)+(38)-(39)+(40) ~}\)
XIV \(0=+0.827-(27)+(28)-(37)+\left(3^{8}\right)-(39)+(41)\)
XV \(0=+1.382+0.8286(14)-1.0114(13)+0.1828(12)-0.3295(1)+0.1664(2)\)
XVI \(0=+8.023+6.6014(14)-6.6014(10)-0.0398(7)+12.5171(33)-12.8777\left(3^{2}\right)+0.3606(31)\)
    \(-0.6745(2)+0.5081\) (3)
```


THE MAIN TRIANGULATION.

The reciprocals of the relative weights to the several directions introduced into the correlate equations are as follows:

Direc- tion.	$\frac{1}{p}$	Direc- tion.	$\frac{1}{p}$	Direc- tion.	$\frac{1}{p}$	Direc- tion.	$\frac{1}{p}$
1	1.13	12	0.87	23	1.08	34	1.11
2	0.88	13	0.90	24	0.95	35	0.97
3	0.90	14	0.87	25	1.01	36	0.92
.4	0.86	15	0.87	26	0.88	37	1.01
5	0.89	16	0.86	27.0 .94	38	0.96	
6	0.90	17	0.86	28	0.93	39	1.40
7	1.43	18	0.89	29	0.85	40	1.24
8	2.15	19	0.85	30	0.96	41	1.26
9	1.14	20	0.88	31	0.93		
10	0.90	21	0.87	32	0.89		
II	0.89	22	1.01	33	0.93		

The average value of $\frac{1}{p}$ equals 1 .

Normal equations.

No.		$\mathrm{C}_{\text {I }}$	C_{2}	C_{3}	C_{4}	C_{5}	C6	C_{7}	C8	C9	Cso	C_{12}	C_{12}	C_{13}	C_{54}
1	$0=-0.472$	$+3 \cdot 78$	$-2^{\circ} \mathrm{O} 3$					-175							
2	-0.426		+4.33		+2.30										
3	$+3 \cdot 167$			+4.74	-3.03		-: 71								
4	-3.443				+7.09				-176						
5	+0.752 \cdot	$+4.13$	-1.98	- 1 . 98
6	+0.095						+3.59			+1.98					
7	-0. 544							+5.41	+1\%83		$-1{ }^{\circ} 8_{3}$				
8	-2.505								+5.31				$-1 \cdot 72$		
9	-2.293									$+5 \cdot 83$	-1.86	+199			
10	-2.034	$+5.63$	+1'94	-1 ${ }^{194}$
11	-3.144											+5.84			-1994
12	-0.120												+6.02	-2.10	+2.20
13	-1.167													+6.24	+2.36
14	+0.827														+6.50
15	+1.382	'

Normal equations-completed.

No.		C^{15}	C^{16}	C17	C18	C19	Cas	Cas	$\mathrm{Cl2}^{2}$	Ca^{3}
1		-0.55054	-0.59356		+0.27113					
2		$+1.25881$	$+5 \cdot 80013$	$+6.31479$						
3				-0.46125	+0.04807	+0.63760		+0.13621		-0.35621
4		+0.72088	+5.80013	$+6.25978$	-0.21952					-0.0.4346
5		+0.19892	-......	+0.50076	+0.69916
6					-0.04507	-4.58268	-4'194.33	-0.60147		-0.04535
7		+0.01261	+ $1 \mathrm{~S} \cdot 29765$	+17.86441	-0.11081	-0.2273!				
8			$+17.58216$	+19.45491	+0.60590	$+2.98477$	$+3.55724$		+0.2S186	
9						-0.19892	10.02136	-0.33082		-0.50436
10		-0.12193	. \cdot........	+0.12193	- +0.22\%31	+0.08090	+0.25796	to osogo
11						-0.26627	-0.20673	+0.42790	+0.080go	
12				-0.07413	-0.07413	-2.98477	-3.55724		-0.90776	
13							+0.55927	-0.03750	+0.99717	
14							-0.03090		-0.10495	
15		+1.69408	+4 66006	+4*75883	+0.04512	. . \cdot......
16	$0=+8.023$		+371'19343	$+373 \text { '99329 }$	+2.99686	-0.28839				-
17	$+8 \cdot 667$			$+378 \cdot 66768$	$+3.78651$	-0.17042	-0.20311		-0.01609	-0.25702
18	+1.425				+0.66659	+0.24549	-0.20311	-0.05975	-0.01609	+o.05827
19	-0.701					$+56.34184$	$+58 \cdot 16226$	-0.03663	+0.98975	+0.13779
20	-1.290	-.........	-...........	-............	-•••--*	+61.98754	+0.01375	+1 8 '8200	+o.16316
21	-0.7.36							+1.44710	+o.04139	-0.070.41
22	+0.219								$+1 \cdot 00383$	
23	-1.514									+o: 84.453

Resulling correlales.

$\mathrm{C}_{1}=-0.3231$	$\mathrm{C}_{7}=-0.2582$	$\mathrm{C}_{13}=+0.9330$	$\mathrm{C}_{19}=+2.0506$
$\mathrm{C}_{2}=-0.7134$	$\mathrm{C}_{8}=+2.1722$	$\mathrm{C}_{14}=-0.8156$	$\mathrm{C}_{20}=-2.0409$
$\mathrm{C}_{3}=+0.4736$	$\mathrm{C}_{9}=+0.8573$	$\mathrm{C}_{55}=-0.6398$	$\mathrm{C}_{25}=+0.9664$
$\mathrm{C}_{4}=+.1 .1388$	$\mathrm{C}_{10}=+0.3726$	$\mathrm{C}_{16}=-2.81128$	$\mathrm{C}_{22}=+0.8278$
$\mathrm{C}_{5}=-0.8917$	$\mathrm{C}_{15}=-0.219 \mathrm{~S}$	$\mathrm{C}_{17}=+2.7477$	$\mathrm{C}_{23}=+4.9511$
$\mathrm{C}_{6}=-0.1688$	$\mathrm{C}_{12}=+1.1322$	$\mathrm{C}_{18}=-8.2162$	

Resulting corrections to observed directions.

Mean error of a direction of unit weight $\sqrt{\left[\frac{p^{\prime} \cdot i}{n}\right]}=\sqrt{\frac{30 \cdot 1}{23}}= \pm 1^{\prime \prime}{ }^{\prime}{ }^{1} 5$.
The average weight being tuity, we have the probable error of an observed direction $= \pm 0^{\prime \prime} \cdot 79$.

Resulting angles and sides of the first section west of the Allanta base net.

No.	stations.	Observed angles.			Corrections.	Spher- ical	Spher. ical". exces	1,og. distances.	Distances in meters.
		-	,	/"	//	"	11		
1	Carnes	49	02	$35{ }^{\circ} 050$	-0.41I	$34 \cdot 639$	1-295	$4 \cdot 5876664$	$38 \quad 696 \cdot 03$
	Pine Log	51	40	$20 \cdot 872$	-0.710	20.162	1 295	4.6041837	40 I96 08
	Kenesaw	79	17	$07 \cdot 066$	+2018	09.084	I 295	47019677	$50346 \cdot 31$
2	Carnes	37	17	02 377	+o.979	03 356	$1 \cdot 348$	$4.516 \quad 0840$	32815.88
	Pine Log	74	22	$4^{8 \cdot 661}$	-0.710	$47^{\circ} 95^{1}$	I 349	47174364	$52 \quad 171.87$
	Sweat Mountain	68	20	12 '535	+o.203	$12{ }^{\prime} 738$	I 348	47019677	$50346{ }^{\prime} 1$
3	Carnes	11	45	$32 \cdot 673$	- I 390	31 283	0.362	4.182 2149	$15213{ }^{\circ} \mathrm{O}$
	Sweat Mountain	32	34	$43^{\circ} \mathrm{Ool}$	-0.203	$42 \cdot 798$	0.362	46041837	$40196{ }^{\circ} 08$
	Kenesaw	135	39	$44 \cdot 986$	+2.019	$47^{\circ} \mathrm{OO} 5$	$0 \cdot 362$	47174364	$52171 \cdot 87$
4	Lavender	30	20	51 '197	-1.382	$49 \cdot 815$	I 9946	4×576664	$38696 \cdot 03$
	Pine Log	98	os	$56 \cdot 380$	+0.225	$56 \cdot 605$	I'945	48797702	75817.63
	Kenesaw	51	30	219427	-2 ${ }^{\circ} \mathrm{OLO}$	19.417	1.946	$4^{\circ} 777750^{\circ} \mathrm{S}$	$59944{ }^{\prime \prime} 70$
5	Lavender	24	57	$27 \cdot 276$	+0.791	$28 \cdot 067$	I $\cdot 204$	$4 \cdot 6041837$	$40196 \% 8$
	Kenesaw	27	46	$45 \cdot 639$	$+4028$	$49 \cdot 667$	I $\cdot 204$	46473879	$44400 \cdot 50$
	Carnes	127	15	$47 \cdot 253$	-1.376	$45 \cdot 877$	I $\cdot 203$	4 - 8797702	75817.63
6	Lavender	55	18	$18 \cdot 473$	-0.591	17.882	I 854	4.7019677	$50346{ }^{11}$
	Pine Log	46	28	$35 \cdot 508$	+o.935	$36 \cdot 443$	I 885	$4.647 \quad 3879$	$44400 \cdot 50$
	Carnes	78	13	$12 \cdot 203$	-0.965.	II ${ }^{\prime} 238$	I $\cdot 855$	4.777750 8	59944^{7}
7	Johns	26	11	29.569	+1.912	$31 \cdot 481$	I 453	4.5252408	$33515{ }^{\prime} 12$
	Grassy	45	17	$39^{\prime 2} 77$	-2'193	$37 \cdot 084$	1 * 453	$4^{7} 732$ 129 0	$53967{ }^{\circ} 09$
	Pine Log	108	30	$56 \cdot 266$	-0.471	$55 \cdot 795$	I ${ }^{4} 45$	4.8573509	$72003 \cdot 05$
8	Lavender	62	17	$13{ }^{709}$	+o.432	$14 \cdot 148$	I $\cdot 695$	47321290	$53967{ }^{\circ} \mathrm{O}$
	Johns	79	31	$43 \cdot 835$	-0.773	$43^{\circ} 062$	I 694	4.7777508	$59914{ }^{\prime} 70$
	Pine Log	38	II	$07 \cdot 635$	+0.246	$07 \cdot 88$ I	1.695	4.576 176 5	$37685 \cdot 69$
9	Indian	44	32	I I '956	+2.235	$14 \cdot 191$	I 641	4.7777508	5994470
	Lavender	I I I	29	54716	-0.091	$54 \cdot 625$	I. 640	4.9004889	$79522 \cdot 29$
	Pine Log	23	57	56.911	-0.805	$56 \cdot 106$	1.641	4.5405243	34715 '57
10	Indian	41	18	$06 \cdot 906$	$+2 \cdot 167$	09 073	3.215	4.732 129 0	$53967{ }^{\circ} 9$
	Johns	76	32	$57^{\circ} \mathrm{OII}$	-0.425	$56 \cdot 586$	$3^{\cdot 216}$	4 \%900 4889	$79522{ }^{\circ} 29$
	Pine Log	62	09	04.546	-0.559	03 '987	3'215	$4.859 \quad 1083$	$72295{ }^{\circ} \mathrm{OI}$
11	I, avender	173	47	08.425	+o. 342	08 ${ }^{767}$	0.120	$4 \cdot 859$ 108 3	72295 - 1
	Johirs	2	58	$46 \cdot 824$	-0.348	$46 \cdot 476$	$0 \cdot 120$	4.5405243	$34715{ }^{\circ} 57$
	Indian	3	14	$05 \cdot 050$	+0.067	$05 \cdot 117$	$0 \cdot 120$	$4.576 \quad 1765$	$37685 \cdot 69$
12	Indian	30	16	$53 \cdot 188$	-2.495^{\prime}	$50 \cdot 693$	1.299	$4 \cdot 7019677$	$50346 \cdot 31$
	Pine Log	22	30	$3^{8 \cdot 597}$	+17740	$40 \cdot 337$	I 299	4.5823753	38227 '45
	Carnes	127	12	31 567	+1.299	32 '566	I 298	4.9004889	79522.29

Resulting angles and sides of the first section west of the Allanta base net-continued.

No.	Stations.	Observed angles.			Corrections.	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \end{aligned}$	Spher-	Log. distances.	Distances in meters.
		-	,	"	"	"	"		
	Indian	74	49	$05 \cdot 144$	-0.261	$04 \cdot 883$	I '086	4.6473879	$44400 \cdot 50$
	Lavender	56		$36 \cdot 243$	+o.501	$36 \cdot 744$	I © 05	$4 \cdot 5823753$	$3^{8} .227 \cdot 44$
	Carnes		59	$19 \cdot 364$	+2.265	21.629	I'085	45405243	34715 '57
14	Gulf Point	23	14	$37 \cdot 398$	+2.351	39.749	0.944	47321290	53967.99
	Johns	142	25	$30 \cdot 278$	-0.278	30 '000	0.944	4921107 I	83388.67
	Iine Log	14	19	$52 \cdot 863$	+o. 220	$53 \cdot{ }^{\circ} \mathrm{OS}_{3}$	$0 \cdot 944$	4.529539 -	$33848 \cdot 38$
15	Gulf Point	40	19	${ }^{15}$ ' 855	- I 096	14759	1713	47777508	$50944 * 70$
	Pine Log	23	51	14.772	+o.026	14.798	1713	4.5736192	$37464 \cdot 44$
	Lavender	115	49	35 '931	-0.349	$35 \cdot 582$	1713	4.9211070	$83 \quad 388 \cdot 67$
16	Gulf Point	63	33	$53 * 253$	+1.254	$54 \cdot 507$	0.963	$4^{\circ} 576$ ¢76 5	$37685 \cdot 69$
	Johns	62	53	$46 \cdot 443$	+0.496	46939	$0 \cdot 962$	4.5736192	$37464 \cdot 44$
	Lavender	53	32	$22 \cdot 222$	-0.781	$21 \cdot 441$	0.962	4×5295379	$33848 \cdot 38$
17 1	Gulf Point	63	ol	$39 \cdot 871$	-0.597	$39 \cdot 274$	$4 \cdot 164$	49004889	$79522 \cdot 29$
	Pine Log	47	49	$11 \cdot 683$	-0.779	10'904	$4 \cdot 164$	4.820337 I	$66120 \cdot 64$
	Indian	69	\bigcirc	18.903	+3.410	22.313	$4 \cdot 163$	4 '921 107	83358.67
18	Gulf Point	22	42	24 '016	+o. 500	24.516	0.810	45405243	34715 \% 57
	Lavender	132	40	29.353	+0. ${ }^{\text {a }} 440$	29 '793	0.811	4.820 337	66120.64
	Indian	24	37	06.947	+1.175	OS $\cdot 122$	0.810	4.5736192	$37464 \cdot 44$
19	Gulf Point	86	16	$17 \cdot 269$	+1 754	19 © 23	I "S93	$4 \cdot 859$ IoS 3	72295 이
	Johns	65	52	$33 \cdot 267$	+0.147	$33 \cdot 414$	I $\times 92$	4.820337 I	$66120 \cdot 64$
	Indian	27	51	11 997	+1 1243	13.240	1.892	4.5295379	33 848 3^{8}
20	Brandon	43	10	$48 \cdot 563$	+0.027	$48 \cdot 590$	I 248	45405243	34715 57
	Lavender	78	05	$36 \cdot 944$	-0.062	$36 \cdot 882$	I 248	$4.695 \mathrm{~S}_{37} 9$	$49640 \% 70$
	Indian	58	43	$38 \cdot 117$	+0.155	$38 \cdot 272$	1.248	4.6370992	$43360 \cdot 99$
21	Brandon	54	39	$40 \cdot 282$	+0.475	$40 \cdot 757$	I 122	4.5736192	$37464 \cdot 44$
	Gulf Point	70	45	$29 \cdot 507$	+0.191	$29 \cdot 698$	I'121	$4 \cdot 6370992$	$43 \quad 360.99$
	Lavender	54	34	52.409	+0.501	52.910	I 122	$4.573 \quad 1889$	$37427 \cdot 33$
22	Brandon	97	50	$28 \cdot 845$	+0.502	29.347	1 5559	4.820 337	$66 \quad 120.64$
	Gulf Point	48	O3	05 ${ }^{4} 1$	-0.308	$05 \cdot 183$	1 560	4.6958379	$496.40 \cdot 70$
	Indian	34	06	31'170	-1.021	30'149	$1 \cdot 560$	4.5731889	$37427 \cdot 33$
23	Indian	28	21	$36 \cdot 171$	-1.262	$34 * 909$	$2 \cdot 509$	4.587666	$3^{8} 696{ }^{\circ}$
	Pine Log	74	10	59:469	+1.030	60.499	$2 \cdot 509$	4.894214	$78381 \cdot 61$
	Kenesaw	77	27			32.118	$2 \cdot 508$	4.9004889	$79522 \cdot 29$
24	Indian	72	53	$48 \cdot 127$	+o.973	49 100	$2 \cdot 204$	4*579 770	$75817{ }^{6} 6$
	Lavender	SI	$\bigcirc 9$	03 519	+1.292	O4*811	$2 \cdot 203$	4 '894 214	78351.61
	Kenesaw	25	57			$12 \cdot 700$	$2 \cdot 204$	45405243	34715 '57
25	Carnes	176	15	06.617	to 888	\% 7 505	- .os5	4×84214	$78 \quad 381.61$
	Indian		55	17 -017	-1.232	$15 \cdot 785$	- .085	$4 \cdot 604183$	40196 os
		I	49			36.965	- '085	$4{ }^{\circ} 523753$	38.227

8. THE SECOND SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, GEORGIA AND ALABAMA, I875-1887.

This section is of the same complex composition as the preceding section; it is shown on the following sketch; for distances and positions it depends upon the two sides marked by heavy lines. Eight observers took part in the work, which was executed between the years 1875 and 1887, but this includes an interval of eight

years during which the work was suspended. The figure comprises 8 new stations connected by 16 triangles and the adjustment involves 18 conditions to be satisfied. From the sum of the squares of the closing errors of the triangles we have the mean error $\sqrt{\frac{29^{\circ} 54}{16}}= \pm \mathrm{I}^{\prime \prime} \cdot 36$ and that of an angle $\pm \mathrm{o}^{\prime \prime} \cdot 78$, also the probable error of a , direction $=0.674 \frac{1^{\prime} 36}{\sqrt{6}}= \pm 0^{\prime \prime} \cdot 37$. Unit weight was assigned to each direction.

The approximate elevations of the stations are as follows--

Gunter
Aurora
Rowe
Summit

Meters.	Feet.		Meters.	Feet.
436	I 430	Wilson	360	I 180
428	I 404	Wornock	435	1428
46 I	I	5I2	Cahaba	46 I
360	I I8I	Cheehahaw	513	
				734

Abstracts of horizontal directions at stations composing the second section of the triangulation west of the Allanta base net, 1875-1887.

Gulf Point, Walker County, Georgia. September 14 to October 9, 1875. 30^{mm} direction theodolite No. ros. F. P. Webber, F. D. Granger, and J. H. Christian, observers.

Number of direc tions.		Objects observed.	Resulting directious from adjnstment of first section.			Corrections from adjust ment of second sec tion.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
			-	,	/	"	"
	High Point		o	-	$\overline{59}{ }^{\circ} 969$	$\overline{59}{ }^{\circ 969}$
	Pigeon		28	39	11.040		
	Cohutta		55	29	$34 \cdot 125$	
5	Gunter		250	04	$42 \cdot 377$	to 057	42.434

Brandon, Dekalb County, Alabama. December 6 to 17,1875 . 30^{cmi} direction theodolite No. IoS. F. P. Webber, observer.

		-	,	"	"	/
3	Aurora	o	oo	$\overline{59}{ }^{\circ 989}$	-0.337	$\overline{59.652}$
4	Gunter	61	36	36.496	+o.938	$37 \cdot 434$
	Gulf Point	168	10	13.818	
	Indian	266	oo	$43 \cdot 165$	\ldots	
	Weisner	293	13	$43^{\circ} 081$		

Indian, Cherokee County, Alabama. July 24 to August 18 , 1875.30^{cm} direction theodolite No. 10 S. F. P. Webber, observer. December 3° to 19, 1885. 50^{cm} direction theodolite No. 114. O. H. Tittmann, observer.

	,	-	,	"	"	"
	Lavender	0	00	$\overline{59} 7{ }^{76}$	$\overline{59}{ }^{775}$
	Cohutta, Grassy Mountain	15	28	22.9
	Coosa	16	44	$04^{\circ} 052$	
I	Cheehalaw	189	16	$07 \cdot 560$	-0.469	$07{ }^{\circ} \mathrm{O} \mathrm{I}^{1}$
2	Aurora	259	21	$48 \cdot 650$	-1.844	$46 \cdot 806$
	Brandon	301	16	21.486	\ldots	
	Gulf Point	335	22	51 ${ }^{6} 35$	

Gunter, Marshall County, Alabama. July 21 to August 15,1877 . 30 cm direction theodolite No. 128. F. D. Granger, observer.

18	Rowe	00%	00	00.00	+0.45	00.45
14	Gulf Point	179	48	34.80	-1.12	33.68
15	Brandon	213	19	17.80	+0.60	18.40
16	Aurora	276	52	01.30	-0.17	01.13
17	Sunurit		311	07	24.82	+0.24

Probable error of a single observation of a direction (\cap. and R.), $c_{1}= \pm 1^{\prime \prime}{ }_{5}$ S. Circle used in XVII positions.

Abstracts of horizontal directions at stations composing the second section of the triangulation west of the Allanta base net, 1875-1887-continued.

Aurora, Etowah County, Alabana. June 6 to 20, 1877. 30^{cm} direction theodolite No. 108. F. P. Webber, observer. April 14 to May 8, 1886. 50^{cm} direction theodolite No. II4. O. H. Tittmann, observer.

Number of direc tions tions.	Objects observed.	Resulting directions of first section.			Corrections from adjust ment of second section.	Final seconds
		。	,	"	"	"
,	Azimuth Mark	0	-	$00 \cdot 0$	-0.00
6	Indian	33	25	$53 \cdot 76$	-0.06	53 '70
	Weisner	38	53	$43 \cdot 30$:....
7	Cheehahaw	87	46	$50 \cdot 31$	-0.28	50.03
8	Cahaba	148	48	14 '92	+o. 20	$15 \cdot 12$
9	Wornock	184	04	$18 \cdot 77$	+o.05	18.92
Io	Summit	216	19	$35 \cdot{ }^{2}$	+0.07	$35 \cdot 59$
II	Rowe	257	36	10 ${ }^{1} 3$	-0 ${ }^{\circ} 5$	10.08
	Moore		36	11 38	
12	Gunter	294	28	55 '38	-0.62	54×76
13	Brandon	349	19	$38 \cdot 19$	+o.68	38.87

Probable error of a single observation of a direction (D. and R.) in 1877, $e_{\mathrm{a}}= \pm 1^{\prime \prime}$.80. Circle used in XVII positions.

Probable error of a single observation of \ddagger direction (D. and R.) in $1886, e_{1}= \pm 0^{\prime \prime} \cdot 79$. Circle used in VII positions.
Rowe, Madison County, Alabama. September 3 to October $9,1877 . \quad 30^{\mathrm{cm}}$ direction theodolite No. 108. F. D. Granger and J. H. Christian, observers.

		-	,	/	"	"
23	Wilson	0	00	00 \%o	+o.63	$00 \cdot 63$
	Trinity	33	55	19.77	\ldots
	Capshaw	83	58	30.88	\ldots	\ldots
19	Gunter	200	33	04.41	to 11	$04 \cdot 5$
	Moore	246	19	$38 \cdot 60$	\ldots	
20	Aurora	260	32	$25^{\prime \prime} 1$	-0.76	$24 \cdot 35$
21	Summit	290	47	00 66	+0.27	00*93
22	Wornock	311	16	$48 \cdot 15$	-0. 25	47 '90

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm \mathrm{I}^{\prime \prime} \cdot 27$. Circle used in XVII positions.
Summit, Blount County, Alabama. October 20 to 27, 1877.30^{cm} direction theodolite No. 108. F. D. Granger and J. H. Christian, observers. October 31 to November 10, 1878. Same instrument.
C. O. Boutelle and J. B. Boutelle, observers.

24	Aurora
25	Wornock
26	Wilson
27	Rowe
28	Gunter
	Moore

\circ	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
0	0	00.00	-0.39	59.61
117	35	21.57	+0.87	22.44
204	57	48.65	-0.04	48.61
251	31	$08 \cdot 14$	-0.03	08.11
292	24	39.81	-0.42	39.39
306	45	30.51	\ldots.	$\ldots .$.

Probable error of a single observation of a direction (D. and R.) in $1877, e_{3}= \pm 1^{\prime /} \cdot 21$, and in 1878, $e_{\mathrm{x}}= \pm \mathrm{I}^{\prime \prime} 35$. Circle used in XVII positions in both years.

Abstracts of horizontal directions at stations composing the second section of the triangulation west of the Atlanta base net, 1875-1887-continued.
Wilson, Morgan County, Alabama. June 28 to July $25,1878.50^{\mathrm{cm}}$ direction theodolite No. II3. C. O. Boutelle and J. B. Boutelle, observers.

Number of direc. tions.	Objects observed.	Resulting directions from adjustment of first section.			Corrections from adjustment of second sec-	Final seconds.
		-	,	/1	11	11
	Somerville Court-House	0	OO	$00 \cdot 0$...	
	Smithers	6	20	$08 \cdot 64$ \cdot
29	Rowe	47	10	35 '95	-0.35	35.60
30	Suumit	III	24	19.56	-0.51	19.05
3 I	Wornock	$\times 50$	23	$34 \cdot 89$	+0: 8_{7}	$35 \cdot 76$
	Penit	256	06	15.28		
	Capshaw	352	59	$40 \cdot 80$		

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm 0^{\prime \prime} 7.75$. Circle used in XI positions.
Wornock, Blount County, Alabama. August 16 to $3 \mathrm{I}, 1878.50^{\mathrm{cm}}$ direction theodolite No. 113 . C. O. Boutelle and J. B. Boutelle, observers. January 20 to 25,1887 . 30^{cm} repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers.

		-	,	11	"	"
34	Sun1uit	0	00	$00 \cdot 00$	-0.9S	$59^{\circ} \mathrm{O} 2$
35	Aurora	30	09	$2 \mathrm{I} \cdot 57$	-0.20	2137
36	Cahaba	109	43	$5^{8 \cdot 02}$	+0.94	$58 \cdot 96$
3^{2}	Wilson	306	21	$39^{\prime} 14$	-0.23	$33^{\cdot 91}$
33	Rowe	334	25	$29^{\text {I I I }}$	+0.48	29.59

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{I}}= \pm 0^{\prime \prime}{ }^{\prime} 59$. Circle used in XI positions.
Cheehahazo, Talladega and Clay counties, Alabana. January in to February 16, IS86. 50 cm direction theodolite No. II4. O. H. Tittmann, J. H. Turner, and J. E. McGrath, observers.

		-	,	"	"	"
	Horn	0	¢	oo ${ }^{\circ}$
	Alpine	27	39	$56 \cdot 44$
37	Cahaba	63	41	15.86	-0.19	15.67
3^{8}	Aurora	104	45	29.69	-1.03	$28 \cdot 66$
39	Indian	160	19	$03 \cdot 33$	+1.22	$04 \cdot 55$
				n corr	$0 \cdot 00$	

Probable error of a single observation of a direction (D. and R.), $\varepsilon_{\mathrm{m}} \pm \mathrm{o}^{\prime \prime} 9$ r. Circle used in VII positions.
Cahaba, Saint Clair County, Alabana. March 8 to $31,1886.5^{\mathrm{cm}}$ direction theodolite No. II4. O. H. Tittmann and J. E. McGraih, observers.

		\bigcirc	-	,	"	"	"
40	Wornock		o	¢	$00 \cdot 0$	-0.48	$\overline{59 \cdot 5}$
41	Aurora		65	09	$22^{\circ} 94$	-0.69	$22 \cdot 25$
42	Cheelialnaw		143	o_{3}	$52 \cdot 83$	+1.16	$53 \cdot 99$
	Alpine		171	Os	$59^{\prime} 7{ }^{2}$
	Laurel		217		44×8	\ldots	
			Mean correction $0 \cdot 00$				

Probable error of a single observation of a direction (D. and R.), $\epsilon_{t}= \pm 0^{\prime \prime} 99$. Circle nsed in VII positions.

Observation equations.

$$
\begin{aligned}
& \begin{array}{r|l}
\text { I } & 0=-0.77+(6)-(13)+(3)-(2) \\
\text { II } & 0=-0.84+(15)-(14)+(5)-(4)
\end{array} \\
& 0=-1 \cdot 81+(16)-(15)+(4)-(3)+(13)-(12) \\
& 0=+0.25+(24)-(28)+(17)-(16)+(12)-(10) \\
& 0=+0.82+(20)-(19)+(18)-(16)+(12)-(11) \\
& 0=+0 \cdot 02+(21)-(19)+(18)-(17)+(28)-(27) \\
& 0=-0.23+(30)-(29)+(23)-(21)+(27)-(26) \\
& 0=+0 \cdot 29+(34)-(32)+(31)-(30)+(26)-(25) \\
& 0=-2 \cdot 82+(31)-(29)+(23)-(22)+(33)-(32) \\
& 0=-2 \cdot 05+(35)-(34)+(25)-\left(z_{4}\right)+(10)-(9) \\
& 0=-0 \cdot 64+(39)-(38)+(7)-(6)+(2)-(1) \\
& \mathrm{o}=-\mathrm{I} \cdot 5 \mathrm{o}+(42)-(4 \mathrm{I})+(8)-(7)+(38)-(37) \\
& 0=-0.78+(4 \mathrm{r})-(40)+(36)-(35)+(9)-(8) \\
& 0=+14^{\circ} 0+2^{\circ} 3 f^{\prime}(2)+2^{\circ} 51(5)+2^{\circ} 18(6)+1^{\circ} 49(12)-3^{\circ} 67(13)+3 \cdot 18(14)-4^{\circ} 23(15)+1^{\prime} 05(16) \\
& 0=+2 \cdot 8-1 \cdot 96(10)+2 \cdot 40(11)-0.44(12)-3 \cdot 09(16)+4.93(17)-1 \cdot 84(18)+0.01(19)+3 \cdot 61(20) \\
& -3 \cdot 62(21) \\
& \mathrm{o}=+\mathrm{I} \cdot 7-4^{\circ} \cdot \mathrm{S}_{\mathrm{f}}(21)+5 \cdot 64(22)-\mathrm{o} \cdot 8 \mathrm{O}(23)-\mathrm{I} \cdot 02(29)+3 \cdot 62(30)-2 \cdot 60(31)-1 \cdot 55(32)+4 \cdot 40(33) \\
& -2.85(34) \\
& \text { XVII } \quad 0=+2 \cdot 3-3.34(9)+5.74(10)-2.40(\text { II })-3.6 \mathrm{I}(20)+9.25(21)-5.64(22)-4.40(33)+8.02(34) \\
& -3 \cdot 62(35) \\
& \text { XVIII } 0=+17.4-0.76(1)+3 \cdot 10(2)+1^{\circ} 00(3)-1 \cdot 14(4)-1 \cdot 05(15)+1 \cdot 30(16)-0.25(18)-1 \cdot 22(19) \\
& +2.94(20)-1 \cdot 72(22)-1.44(33)+1.83(35)-0.39(36)-2 \cdot 42(37)+3 \cdot 86(38)-1 \cdot 44(39) \\
& -0.97(40)+1.42(41)-0.45(42)
\end{aligned}
$$

Normal equations.

No.		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	Co	C_{7}	C8	C_{9}	Cro	C_{11}	Cl_{12}	C_{13}	CII	C_{55}	C_{16}		C_{17}	C18
1	$0=-0.77$	$+4$		-2								-2			$+3{ }^{\circ} 5$					- 2 '10
2	-0.84		$+4$	-2											- 4 "90					+ 0.09
3	-1.81			+6	-2	-2									+ 0.12	-2.65				+0.21
4	+0.25				+6	+2	-2				-2				$+0.44$	+ 9.54		-	5'74	-130
5	$+0.82$	- .	. \cdot	+6	+2	\ldots	-.	...	\ldots	\ldots	...	-	$+0.44$	+ $2^{\circ} \mathrm{OI}$	-	1"21	+ 261
6	$+0.02$						+6	-2								-10.40	- $4^{\circ} 84$	+	$9^{\circ} 25$	+0.97
7	-0.23							+6	-2	+2						$+3.62$	+ 8.68	-	$9^{\circ} 25$	
8	+0.29								+6	+2	-2						- 7'52	$+$	8.02	
9	-2.82									+6							- 207	+	1.24	$+0.28$
10	-2.05	- .	-	*	. \cdot	.	. \cdot	* ${ }^{\prime}$	$+6$	-2	- I 96	+ 2\%85		$2 \cdot 56$	$+1.83$
II	- 0.64											+6	-2		$+0.16$					-1.44
12	- I 50												+6	-2						+ 4.41
13	-0.78													+6					0.28	+0.17
14	+140														+6t 32	$-3^{\circ} 90$				$+13.06$
15	+2.8	. .	.	-••	\cdots	...	**	\cdots	*..	-	- .	. $\cdot . .$.	+73. 57	$+17^{\circ} 5^{2}$		63.53	+ 7.04
16	$+17$																+106 66	-11	8.80	-16.04
17	+23																	+27	$77^{\circ} 05$	-1.20
18	$+174$																			$+60 \cdot 00$

$\mathrm{C}_{5}=+1 \cdot 079$
$\mathrm{C}_{2}=+0.526$
$\mathrm{C}_{3}=+1 \cdot 076$
$\mathrm{C}_{4}=+0.593$
$\mathrm{C}_{5}=+0.125$
$\mathrm{C}_{6}=+\mathrm{O} .177$

Resulting correlates.

$\mathrm{C}_{7}=+0.150$	$\mathrm{C}_{13}=+0.807$
$\mathrm{C}_{8}=+0.107$	$\mathrm{C}_{14}=-0.187$
$\mathrm{C}_{9}=+0.361$	$\mathrm{C}_{15}=-0.0357$
$\mathrm{C}_{20}=+0.980$	$\mathrm{C}_{16}=-0.153$
$\mathrm{C}_{11}=+0.727$	$\mathrm{C}_{17}=-0.068$
$\mathrm{C}_{12}=+1.01 \mathrm{I}$	$\mathrm{C}_{18}=-0.340$

THE EASTERN OBI,IQUE ARC.

Resulting Corrections to observed directions.

(1) $=-0 \cdot 469$	$(\mathrm{II})=-0.048$	(21) $=+0.267$	(31) $=+0.866$	
(2) $-1: 844$	(12) -0.621	(22) -0.255	(32) -0.231	
(3) -0.337	(13) +o.683	(23) +0.633	(33) +0.477	
(4) +0.938	(14) -1.121	(24) -0.387	(34) -0.982	
(5) +0.057	(15) +0.598	(25) +0.873	(35) -0.203	
(6) -0.056	(16) -0.170	(26) -0.043	(36) +0.9 .40	
(7) -0.284	(17) +0.240	(27) -0.027	(37) $-0 \cdot 188$	
(8) +0.204	(18) +0.453	(28) -0.416	(38) $-1 \cdot 028$	
(9) +0.054	(19) +0.113	(29) -0`355 & (39) +1.217 \\ \hline (10) +0.067 & (20) -0`759	(30) -0.511	(40) -0.477
			(41) -0.687	
			(42) +1.164	

Probable error of an observed direction $0.674 \sqrt{\frac{17 \cdot 65}{18}}= \pm 0^{\prime \prime} \cdot 67$.
Resulting angles and sides of the second section of the triangulation west of the Atlanta base net.

No.	Stations.	Observed angles.			Corrections. ",	Spheric calangles. ,	Sphericalexcess. ex	Log. distances.	Distances in meters.
		-	,	"					
1	Aurora	44	06	$15 \cdot 57$	-0.74	$14 \cdot 83$	200	4.6958379	$49640{ }^{\prime} 70$
	Brandon		59	16 S2	-0.34	16.48	$2 \cdot 0$	$4 \cdot 8522027$	7115456
	Indian		54	$32 \cdot 84$	+1.85	$34 \cdot 69$	200	46779995	$47643{ }^{\circ} \mathrm{O}$
2	Gunter	33	30	43 -00	$+172$	$44^{7} 7$	$1^{1} 32$	4.5731889	$37427 \cdot 34$
	Gulf Point	39	55	$42 \cdot 81$	+o.06	$42 \cdot 87$	$1 \cdot 32$	4.6385796	43509.05
	Brandon		33	$37 \cdot 3^{2}$	-0.94	$36 \cdot 38$	1 33	$4 \cdot 8_{12} 7640$	$64977 \cdot 65$
3	Gunter	63	32	$43 \cdot 50$	-0.77	$42 \cdot 73$	1 55	46779995	$476.43{ }^{\circ} \mathrm{4}$
	Brandon		36	$36 \cdot 51$	+1.28	37 '79	$1 \cdot 54$	4.6703897	$46 \mathrm{SI}_{5} 51$
	Aurora	54	50	$42 \cdot 81$	+1.30	$44 \cdot 11$	$1 \cdot 54$	4.6385796	$43509{ }^{\circ} \mathrm{O}$
4	Sunmit	67	35	$20 \cdot 19$	+0.03	$20 \cdot 22$	111	4.6703897	$46 \mathrm{Sr} 5{ }^{51}$
	Gunter	34	15	$23 \cdot 52$	+0.41	23.93	1 '11	4.4549251	$28505 \cdot 27$
	Aurora	78	∞	19×86	-0.69	19.17	1 'ro	4.6951492	$49562 \cdot 05$
5	Rowe	59	59	$20 \cdot 70$	-0.87	19.83	$1 \cdot 28$	$4 \cdot 6703897$	$46 \mathrm{S15} 51$
	Gunter	S3		$58 \cdot 70$	+0.62	59.32	$1 \cdot 27$	4.7297826	$53676 \cdot 31$
	Aurora	36	52	$45 \cdot 25$	-0.57	$44 \cdot 68$	$1 \cdot 28$	4.5111499	$32445 \cdot 16$
6	Rowe	90	13	56.25	+0.16	$56 \% 41$	$1^{1} 02$	$4 \cdot 6951492$	49562.05
	Gunter	48	52	$35 \cdot 18$	+0.21	$35 \cdot 39$	$1{ }^{\circ} \mathrm{O} 3$	4.5721152	$37334 * 92$
	Summit	40	53	$31 \cdot 67$	-0.39	. $31 \cdot 28$	$1{ }^{1} 03$	4.5111499	$32445 \cdot 16$
7	Summit	108	2 S	51 86	-0.36	51 50	- ${ }^{\circ} 5$	4'729 7826	53676.31
	Rowe	$\therefore 30$	14	$35 \cdot 55$	+103	36.58	0.86	$4 * 4549252$	$28505 \cdot 27$
	Aurora	41	16	$34 \cdot 61$	-0.12	$34 \cdot 49$	$0 \cdot 86$	4.572 115	$37334{ }^{\circ} 1$
8	[Wilson	64	13	$43 \cdot 61$	-0.16	43.45	0.89	4*572 115 2	$37334{ }^{\circ} 92$
	Rowe	69	2	59:34	+0.37	$59^{\circ} 71$	\bigcirc - ${ }^{\text {9 }}$	4.5883923	$38760 \cdot 76$
	Summit	46	33	19.49	+0.02	$19^{\circ} 5^{1}$	- 89	44785733	$30100 \cdot 47$

Resulting angtes and sides of the second section of the triangulation west of the Allanta base net-continued.

No.	:'tations.	Observed angles.			Correction. //	Spherical angles. //	Spherical excess. //	Log. distances.	Distances in meters.
		-	,	"					
9	Wornock	25	34	$30 \cdot 59$	-1.46	$29^{\circ} 43$	0.69	4.572 II5 2	$37334{ }^{\circ} 92$
	Rowe	20	29	$47 * 49$	-0.52	$46 \cdot 97$	- . 69	4.4811945	$30282 \cdot 69$
	Sunmit	133	55	$46 \cdot 57$	-0.90	$45 \cdot 67$	0.69	4;794 3985	$62 \quad 287 \cdot 16$
10	Wornock	53	3 S	$20 \cdot 86$	-0.75	20 ' II	0×99	4.5883923	$38 \quad 760 \cdot 76$
	Wilson	38	59	15.33	+1.38	16.71	- '99	4.48 I I94 6	$30282 \cdot 70$
	Summit	87	22	$27^{\circ} 08$	-0.92	$26 \cdot 16$	$1{ }^{\circ} \mathrm{OO}$	$4 \cdot 6819815$	48 08I 88
II	Wilson	103	12	58*94	+1.22	$60 \cdot 16$	I ${ }^{20}$	4'794 3985	$62 \quad 287 \cdot 16$
	Rowe	8	43	I I 85	+o.89	12 74	I 'I9	$4 \cdot 68 \mathrm{I}$ 981 5	48 081 88
	Wornock	28	03	$49^{\circ} 97$	+0.71	$50 \cdot 68$	I 19	4.4785733	$30100 * 47$
	Wornock	55	43	52.46	-0.63	51 78	2.19	47297826	53676 '3I
	Rowe	50	44	$23^{\circ} \mathrm{O} 4$	+0.50	$23 \cdot 54$	2.19	4 7 OI 4883	$50290 \cdot 77$
	Aurora	73	31	5I'36	-0.10	5I 26	$2 \cdot 20$	47943985	$62 \quad 287 \cdot 16$
13	Wornock.	30	09	21 57	+0.78	$22 \cdot 35$	- 0.65	4*454 925 I	$28505 \cdot 27$
	Summit	I17	35	21.57	+1:26	$22 \cdot 83$	-0.64	4 701 488 I	50290 "75
	Aurora	32	I 5	I6 75	+o.0I	$16 \cdot 76$	-. 65	4*48I 1944	$30282 \cdot 69$
14	Cheehahaw	55	33	$33 \cdot 64$	+2.24	$35 \cdot 88$	3'97	$4852 \quad 2027$	71 I54*56
	Aurora	54	20	$56 \cdot 55$	-0.23	$56 * 32$	3'97	4.8457638	7010739
	Indian	70	O5	$4 \mathrm{I} \cdot 09$	- 1 37	$39^{\prime} 72$	$3 \cdot 98$	$4{ }^{\circ} 909145$ I	8 I 123.2 I
15	Cahaba	77	54	29.89	+1.85	31 74	$3^{\circ} 27$	4909145 I	81 123.21
	Aurora	61	OI	24.61	+0.49	$25^{\circ} \mathrm{IO}$	$3 \cdot 28$	4.8608044	$72577{ }^{\circ} 90$
	Cheehahaw	41	04	13.83	-0.84	12 '99	3 28	$4^{7} 7364367$	54 505 05
16	Cahaba	65	09	22.94	-0.21	22 '73	I '34	4.7014882	$50290 \cdot 76$
	Wornock	9	34	$36 \cdot 45$	+1.14	$37 \cdot 59$	I 34	47364368	$54505{ }^{\circ} 66$
	Aurora	35	16	$03 \cdot{ }^{\text {S }}$	-0.15	03 '70	I 34	4.505134 I	$31998 \cdot 83$

$$
4192-\mathrm{No} .7-\mathrm{O} 2=13
$$

9. THE THIRD SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, AL,ABAMA, 1886-I890.

This section forms a compact figure comnecting at each end on a single line both with the preceding and the following sections. It covers a portion of the valley of the No. 30. Consa River and comprises 6
 stations, whose approximate heights are as follows:

	Meters.	Feet.
Alpine	473	1551
Laurel	480	1576
Horn	588	1930
Kahatchee	396	1300
Weogufka	352	1155
Janison	255	
		855

The observers employed almost exclusively a repeating theodolite for the angular measures of this section. In the adjustment unit weight was given to all directions. The mean closing error derived from the 13 triangles of the figure equals $\sqrt{\frac{234}{13}}= \pm 1^{\prime \prime} \cdot 34$ and the mean error of an angle $= \pm 0^{\prime \prime \prime} \cdot 77$, also the probable error of a direction $=0^{\circ} 674 \frac{1^{\prime} 34}{\sqrt{6}}= \pm \mathrm{o}^{\prime \prime} \cdot 37$.

The observations of 1888 at stations Laurel and Horn by Assistant F. W. Perkins were made at night upon lights. Subsequent to this date all horizontal measures of the primary triangulation between these stations and the Gulf coast were made at night by Assistants F. W. Perkins and W. B. Fairfield. Advantage was thus taken of the greater transparency of the atmosphere and of the better seeing during the night as compared with the day. On long or difficult lines two or three lights arranged vertically were shown at the same station.

Abstracts of horizontal directions at stations composing the third section of the triangutation west of Attanta base net, 1886-189o.

Cheehahazw, Talladega and Clay Counties, Alabama. January if to February, I6 I886. $5^{\circ}{ }^{\mathrm{cm}}$ direction theodolite No. 1I4. O. H. Tittmann, J. H. Turner and J. E. McGrath, observers.

Number of directions.		Objects observed.	Results from adjnstment of second section.			Corrections from adjustment of third section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
			-	,	"	"	"
I	Horn		0	-	$00 \cdot 0$	+o.or	00 01
2	Alpine			39	$56 \cdot 44$	-0.04	56.40
	Cahaba		63	4	15 ${ }^{6} 7$		

Cahuba, St. Clair County, Alabama. March 8 to 31, i886. $50^{\text {cm }}$ direction theodolite No. II4. O. H. Tittmann and J. E. McGrath, observers.

		-	,	"	"	"
	Wornock	o	00	$\overline{59}{ }^{\circ}{ }^{2}$	\ldots	
	Cheehahaw	143	03	$53{ }^{\circ} 99$	\ldots	
3	Alpine	171	08	$59 \cdot 72$	+o.57	$60 \cdot 29$
4	Laurel	217	19	$44 \cdot 87$	-0.62	$44^{\circ} 25$

Alpine, Talladega County, Alabama. February to to Marcl 9, 1887. 30^{cm} repeating theodolite
No. 16. O. H. Tittmann and J. H. Turner, observers.

Number of directions.		Objects observed.	Results from station adjnstment.			Corrections for third sectiou.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
			-	,	"	"	"
7	Horn		\bigcirc	∞	00.00	+o.47	$00 \cdot 47$
8	Kahatchee		79	16	$54{ }^{\circ} 5$	to 55	55 '06
9	Laurel		131	56	$48 \cdot 89$	-0.34	$48^{\circ} 55$
	Cahaba			∞	$40 \cdot 66$	-0.64	$40 \cdot 02$
	Clreehahaw		301	54	$18 \cdot 60$	-0. 04	$18 \cdot 56$

Horn, Talladega and Clay Counties, Alabama. March 22 to April 5, 1887. 30^{cma} repeating theodolite No. 16. O. H. Tittmain and J. H. Turner, observers. May 16 to 22, 1888. Instrument as before. O. H. Tittmann, J. H. Turner and F. W. Perkins, observers.

13	Alpine	0	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
I4	Cheehahaw	0	oo	00.00	-0.59	59.41
I0	Weogufka	$9+$	14	22.53	+0.03	22.56
I1	Kahatchee	260	49	34.86	-0.27	34.59
12	Laurel	298	04	03.82	-0.02	03.80

Laurel, Shelby County, Alabama. May in to 28,1887 . 30^{cm} repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers, April 27 to May ro, 1888. Instrument as before. F. W. Perkins and W. B. Fairfield, observers.

15	Cahaba	0	00	00.00	+0.65	00.65
16	Alpine	79	45	28.59	+0.04	28.63
17	Horn	95	31	01.66	-0.40	01.26
18	Kalratchee	124	56	26.94	-0.33	26.61
19	Weogufka	147	58	16.93	-0.06	16.87
	Columbiana	172	50	15.95	\ldots.	$\ldots \ldots$
20	Jamison	178	28	$38^{\circ} 93$	+0.10	39.03

Abstracts of horizontal directions at stations composing the third sction of the triangulation west of Allanta base net, 1886-1890-continued.

Kahatchce, Talladega County, Alabama. April 18 to 28,1887 . 30^{cm} repeating theodolite No. 16. O. H. Tittmann and J. H. Turner, observers.

Number of directions.	1	Objects observed.	Results from station adjustment.			Corrections for third section.	$\begin{gathered} \text { Final } \\ \text { seconds. } \end{gathered}$
			- 0	,	/1	/1	"
25	Jamison		0	-	$\infty{ }^{\circ} \times 0$	$0 \cdot 00$	$00 \cdot 0$
	Columbiana		41	54	$02 \cdot 20$...	
21	Laurel		93	59	$09^{\prime} 51$	+0.30	$09 \cdot 81$
22	Alpine		176	08	$20 \cdot 52$	-0.44	$20 \cdot 08$
23	Horn		214	55	3I'O4	-0.04	31.00
24	Weogufka		320	17	$33 \cdot 35$	+0*IS	33.53

Wcogufka, Consa County, Alabama. Nay $2 S$ to June 1 and December 5 to 1888 to January 17, 1889. 30^{cm} repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope $I^{m} 9$ above the ground.

28	Kahatchee
29	Horn
	Wetunpka
26	Wilder
27	Janison
Laurel	

-	,	"	/'	/1
-	∞	$00 \cdot 0$	-0.18	$\overline{59.82}$
37	23	$29^{\prime} 76$	to. 20	$29 \cdot 96$
164	O3	00.15		
200	-	45.06		
260	22	$41 \cdot 69$	-0.12	4157
336		$24 \cdot 84$	+o.11	$24 * 95$
	Mean correction 0.00			

Jamison, Chilton County, Alabama. February I to March 5, 18S9, and May 7 to 14, 1890. 30^{cm} repeating theodolite No. I6. F. W. Perkins and W. B. Fairfield, observers. Telescope $2^{m / 1}$ above the ground.

30	Laurel
31	Kahatchee
32	Weogufka
	Wilder
	Perry

\circ	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
0	∞	00.00	-0.19	59.81
32	28	40.43	+0.10	40.53
73	08	57.60	+0.09	57.69
151	38	56.43	\ldots.	$\cdots .$.
231	10	29.86	\ldots.	$\ldots .$.

Observation equations.

1	$0=-1.22+(6)-(5)+(3)-(2)$
II	$0=-108+(14)-(13)+(7)-(6)+(2)-(1)$
III	$0=+2 \cdot 11+(16)-(15)+(4)-(3)+(5)-(9)$
IV	$0=+1.99+(22)-(21)+(18)-(16)+(9)-$ (8)
V	$u=+0.11+(23)-(22)+(8)-(7)+(13)-(11)$
VI	$0=-1.55+(29)-(27)+(19)-(17)+(12)-(10)$
VII	$0=-0.85+(29)-(28)+(24)-(23)+(11)-(10)$
VIII	$0=-1.03+(31)-(30)+(20)-(18)+(21)-(25)$
IX	$0=+0.25+(32)-(31)+(25)-(24)+(28)-(26)$
X	$0=-0.67+(32)-(30)+(20)-(19)+(27)-(26)$
XI	$\begin{aligned} 0= & -2.7-4.02(1)+6.91(2)+5.96(3)-2.02(4)-3.33(12)+3.17(13)+0.16(14)-0.38(15) \\ & +7.84(16)-7.46(17) \end{aligned}$

- Observation equations-continued.

Normal equations.

No.		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	Cr	C_{9}	Cro		C 18		12		${ }^{3}$		C_{14}
1	$0=-1 \cdot 22$	+4	-2	-2								-	0.95			*			
2	-1.08		+6			-2							7*92		$2^{\circ} 20$				
3	+2.11			$+6$	-2					-			$0 \cdot 24$	-	$5 \cdot 37$				
4	+1.99				+6	-2			-2			-	784	$+$	$6 \cdot 48$		8.68	-	3'39
5	+0.11					+6		-2				$+$	$3^{\circ} 17$	-	$6 \cdot 60$		6.47
6	-1.55						$+6$	+2			-2	$+$	$4^{\prime} 13$	-	$4 \cdot 13$		0.02	$+$	$0 \cdot 06$
7	-0.85							$+6$		-2					I 49		177	$+$	5.25
8	-1.03								+6	-2	+2				180		8.68		$10 \% 90$
9	+0.25									+6	+2						7:65		13.82
10	--0.67										+6						0.06	-	1.12
11	-2.7												41.94	- 11	5.82		$40 \cdot 15$		
12	-0.4													$+12$	$1 \cdot 48$		$65 \cdot 60$		$7{ }^{\circ} 09$
13	$+6.0$																$67^{\circ} 03$		$18{ }^{\circ} 00$
14	$-3^{\circ} 1$																		$40 \cdot 17$

Resulting correlates.

$$
\begin{array}{lll}
\mathrm{C}_{1}=-0.003 & \mathrm{C}_{6}=+0.727 & \mathrm{C}_{21}=-0.0115 \\
\mathrm{C}_{2}=+0.034 & \mathrm{C}_{7}=-0.495 & \mathrm{C}_{52}=+0.0389 \\
\mathrm{C}_{3}=-0.645 & \mathrm{C}_{8}=-0.678 & \mathrm{C}_{53}=+0.0134 \\
\mathrm{C}_{4}=-0.985 & \mathrm{C}_{9}=-0.677 & \mathrm{C}_{44}=+0.0184 \\
\mathrm{C}_{5}=-0.437 & \mathrm{C}_{50}=+0.809 &
\end{array}
$$

Resulting corrections to observed directions.

(1) $=+0.012$	(9) $=-0.340$	$(17)=-0.399$	(25) $=+0$ \% 001
(2) -0.042	(10) -0.269	(18) -0.334	(26) $-0 \cdot 125$
(3) +0.573	(II) -0.015	(19) -0.057	(27) $+0 \cdot 106$
(4) -0.622	(12) ${ }^{\circ}+0 \cdot 845$	(20) $+0 \cdot 102$	(28) $-0 \cdot 176$
(5) -0.642	(13) -0.593	(21) +0.296	(29) $+0 \cdot 195$
(6) -0.037	(14) +0.032	(22) -0.435	(30) $-0 \cdot 192$
(7) +0.471	(I5) +0.649	(23) -0.044	(31) $+0 \cdot 105$
(8) +0.548	(16) +0.041	(24) $+0 \cdot 182$	(32) +o .087

Probable error of an observed direction $0^{\circ} 674 \sqrt{\frac{4^{\circ} \mathrm{og}}{14}}= \pm 0^{\prime \prime}{ }^{\prime} 36$.

Resulling angles and sides of the third section of the triangulation west of the Allanta base net.

No. . Stations.	observed angles.			Correction.	Spherical Spherical angles. excess.		l.og. distances.	Distances in meters.
	-	,	"	,	"	"		
\int Alpine	115	53	37×94	+0.61	$38^{\circ} 55$	$1 \cdot 38$	4*860804 4	7257790
1 Cahaba	28		05 '73	+0.57	$06 \cdot 30$	$1 \cdot 37$	4 '579 566 6	$37981 \cdot 02$
Cheehalaw	- 36	OI	19.23	+0.0.4	19.27	$1 \cdot 37$	4.6761963	$47445 \cdot 64$
Horn	94	14	22.53	+0.62	$23 \cdot 15$	$0 \cdot 49$	4.579566	$37981 \cdot 02$
2 Alpine	5		$41 \cdot 40$	+0.51	$41^{\circ} 91$	0.48	$4 \cdot 5096255$	32331.47
Clieehahaw	27	39	56.44	--0.05	56 39	0.48	4.247 5640	17683.33
Laurel	79	45	28.59	-0.61	27.98	$1 \cdot 14$	$4 \cdot 6761963$	4744564
3 Callaba	46	10	$45 \cdot 15$	-1 20	43 '95	$1 \cdot 13$	4.541410	34786.45
Alpine	54	$\bigcirc 3$	51 77	-0.30	51.47	$1 \cdot 13$	$4{ }^{\circ} 5914826$	$39037 \cdot 55$
Horn	32	17	$41 \cdot 89$	-1.44	40×45	- 39	4.541410	$34786 \cdot 45$
4 Laurel	15	45	33 \%7	-0.44	$32 \cdot 63$	$0 \cdot 39$	4.247 564	${ }_{7} 688_{3} \cdot 33$.
Alpine	131	56	$48 \cdot 89$	-0.81	48.08	0.38	$4 \cdot 6850865$	$48426 \cdot 88$
Kahatchee	S2	09	II or	-0.73	$10 \cdot 28$	- 59	4.541410	34786.45
5 Laurel	45	ı0	58.35	-0.37	$57 \cdot 98$	$0 \cdot 58$	$4 \cdot 396361$	$24909 \cdot 27$
Alpine	52	39	$54 \cdot 3^{8}$	-0.89	53.49	$0 \cdot 58$	$4 \cdot 445918$	$27920 \cdot 17$
Kaluatcliee	38	47	$10 \cdot 52$	to. 39	10×1	- 37	4.247 564	17683.33
6 Alpine	79	16	$54{ }^{\circ} 5$	to os	54 '59	- 36	4.4430567	$27736 \cdot 82$
Horn	61	55	$56 \cdot 18$	-0.58	55 '60	- 37	$4 \cdot 3963610$	24909.27
Kahatchee	120	56	21 53	-0.34	21.19	- 57	$4 \cdot 6850865$	$48426 \cdot 88$
Laurel	29	25	$25 \cdot 28$	+0.07	$25 \cdot 35$	$0 \cdot 56$	4.4430568	$27736 \cdot 83$
Horn	29	38	$14 \cdot 29$	+0.86	15.15	$0 \cdot 56$	4.4459180	$27920 \cdot 17$
Weogufka	60	40	04×2	to 09	05 \%I	1.66	$4 \cdot 6850865$	$48426 \cdot 88$
8 L Laurel	52	27	$15 \cdot 27$	+0.34	15 '61	I 66	4.643871	$44042 \cdot 46$
Horn	66	52	$43 \cdot 25$	+1.12	$44 \cdot 37$	1.67	4.7083075	$51086 \cdot 66$
Weogufka	37	23	$29 \cdot 76$	+0.37	$30 \cdot 13$	0.63	4.4430567	$27736 \cdot 82$
9 Kahatchee	105	22	$02 \cdot 31$	+0.23	$02 \cdot 54$	0.62	4.6438716	44042.46
Horn	37	14	$28 \cdot 96$	+0.25	29.21	0.63	4.4415626	$27641 \cdot 56$
Weogufka	23	16	35^{16}	-0.28	$34 \cdot 88$	0.47	4.4459180	$27920 \cdot 17$
10 Laurel	23	OI	$49^{\circ} 99$	+0.28	$50 \cdot 27$	0.47	4.441562	$2764{ }^{1} 55$
Kalatchee	133	41	$36 \cdot 16$	+0.11	$36 \cdot 27$	0.48	47083075	$51086 \cdot 66$
Jamison	32	28	$40 \cdot 43$	+o. 30	$40 \cdot 73$	- 99	4.445918	$27920 \cdot 17$
If Laurel	53	32	II '99	+0.44	12.43	$0 \cdot 99$	4.621350	$41816 \cdot 74$
Kalatcliee		59	09 ${ }^{\prime 51}$	+0.29	0980	- 98	4.714 915	51869.88
Jamison	40	40	$17 \cdot 17$	-0.02	17.15	0.63	4.4415625	$2764 \mathrm{I} \cdot 55$
12 Kahatcliee	39	42	$26 \cdot 65$	-0.18	26.47	0.63	4.432911	$27096 \cdot 38$
Weogufka	99	37	$18 \cdot 31$	-0.05	18.26	0.62	4.621350	41816.74
$13\left\{\begin{array}{l}\text { Jaurel } \\ \text { Laur } \\ \text { Weogufk }\end{array}\right.$	73	08	$57 \cdot 60$	+0.28	$57 \cdot 88$	$1 \cdot 14$	47083075	$51086 \cdot 66$
	30		$22 \cdot 00$	+0.16	$22 \cdot 16$	$1 \cdot 14$	44329113	27096.38
	76	20	$43 \cdot 15$	+0.23	$43 \cdot 38$	$1 \cdot 14$	4.714915 2	51869.88

IO. THE FOURTH SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET, ALABAMA, I888-1895.

The triangulation between the preceding terminal line and the southern limiting line, Creagh to Pollard, follows the valleys of the Coosa and Alabama rivers. It is abundantly supplied with check lines, making 30 conditions in the adjustment. The linear development is 209 kilometers (or I 30 statnte miles). The whole of the scheme lies south of latitude 33° and the natural elevation of all the spurs available for stations is less than 220 meters (or 722 feet); farther south the ground slopes gradually to the level of the Gulf. The approximate elevations of the stations are as follows:

	Meters.	Feet.
Perry	206	677
Wilder	216	710
Wetumpka	172	565
Parker	170	558
Lowndesboro	121	396
Mount Carmel	192	629
Lovers Leap	169	556
Bargenier	178	583
County Line	173	568
Ethridge	143	470
Fatama	165	540
Midway	171	562
Creagh	133	435
Pollard	121	397

The observations of the primary directions were made at night upon lights mounted over the respective stations.

At Pollard station it was necessary to mount the theodolite on a wooden structure

46.53 meters (or $152 \mathrm{I} / 2$ feet) above the ground, in order to raise it above the high woods obstructing the lines of sight.

Squaring the closing errors of the triangles we get the mean error $\sqrt{\frac{32.8}{28}}= \pm 1^{\prime \prime} \cdot 08$ and the mean error of an angle $\frac{1^{\prime \prime} 08}{\sqrt{3}}= \pm 0^{\prime \prime} 63$, also the probable error of a direction, $\pm 0^{\prime \prime} \cdot 30$.

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Allanta base net, Alabama, 1888-1895.

Jamison, Chilton County, Alabama. February 1 and March 5, 1889, and May 7 to 14, $1890.30^{\circ \mathrm{mm}}$ repeating theodolite No. 16. F. W. Perkins and W. B. Fairfield, observers. Telescope $2^{\text {m. }} 1$ above the ground.

Number of directions.

Objects observed.

	Laurel
3	Weogufka
4	Wilder
Perry	

Results from adjustment of third section.			Corrections from adjust. ment of fourth section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
-	,	11	//	/1
	00	$\overline{59 \cdot 81}$		
	08	$57 \cdot 69$		
151	38	$56 \cdot 43$	-0.82	55.61
231	10	$29^{\text {• }} 66$	+0.05	29 91
	Iean	correctio	on -o. 15	

Weogufka, Coosa County, Alabama. May 28 to June 1 , and December 5, 1888 , to January 17, 1889. 30^{cnn} repeating theodolite No. I6. F. W. Perkins and W. B. Fairfield, observers.

1	Kalıatchee Wetunpka 2
Wilder	
Jamison	

Wilder, Autauga County, Alabama. June 13 to July $28,1890.30^{\mathrm{cm}}$ repeating theodolite No. 16. F. W. Perkins, observer. Telescope $20^{\mathrm{mm}} \cdot 3$ above the ground.

N'umber of directions.	Objects observed.	$\underset{a c}{\text { Result }}$	from justi	station nest.	Corrections from adjust inent of	Final seconds.
		\bigcirc	,	11	"	11
5	Wetumpka	-	00	$00{ }^{\circ} 0$	-0.32	$\overline{59 \cdot 68}$
	Montgomery, Capitol	36	00	$43^{\circ} 94$	
6	Lowndesboro	- 84	05	$39^{\circ} 74$	-0.74	$39^{\circ} 00$
7	Lovers Leap	99	41	48•39	-0.03	$48 \cdot 36$
8	Parker -	145	24	$54 * 49$	+0.16	$54 \cdot 65$
9	Perry	176	3^{8}	$20 \cdot 73$	+0.14	$20 \cdot 87$
10	Jamison	226	24	43 '90	+0.84	$44 \cdot 74$
II	Weogufka	267	32	$52^{\circ} 9{ }^{\text {. }}$	-0.05	$52 \cdot 86$

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Alabama, 1888-1895-continued.

Perry, Chilton County, Alabama. July 30 to August 6, 1890.30^{cn} repeating theodolite No. 16. F. W. Perkins, observer. Telescope $I^{\mathrm{m} \cdot} 7$ above the ground.

Number of directions.	.	Objects observed.	$\begin{gathered} \text { Result. } \\ \text { ad } \end{gathered}$	fro	ntation ment.	Correction from adjus ment of fourth sect		Final seconds
			-	,	"	"		"
12	Jamison			oo	00%	-0.09		$\overline{59}{ }^{\circ} 9$
13	Wilder			42	$04{ }^{\circ} 9$	-0.06		04.90
14	Parker		96	51	$15 \cdot 25$	+o ${ }^{\circ} 15$		$15 \cdot 40$

Wetumpka, Elmore County, Alabama. March 6 to May 23, 1892 . 30^{cm} repeating theodolite No. 16.
F. W. Perkins, observer. Telescope $I^{m} 8$ above the ground.

		-	,	"	"	"
19	Mount Carnel	o	-	00 00	+o 30	00 30
	Montgomery, Capitol	15	36	$22 \cdot 25$		
20	Lowndesboro	39	09	II '09	+o.12	$1{ }^{12}$
21	Wir.	97	04	$34 * 94$	+o. 35	$35 \cdot 29$
22	Weogufka	148	39	47 '96	-0.77	47.19

Parker, Autauga County, Alabama. August 8 to 28 , 1890.30^{cmm} reneating theodolite No. 16. F. W. Perkins, observer.
$\left.\begin{array}{l|lrccc}15 & \text { Perry } & 0 & \prime & \prime \prime & \prime \prime \\ \text { 16 } & \text { Wilder } & 0 & 00 & 00.00 & -0.18\end{array}\right] \frac{11}{59.82}$

Lowndesboro, Lowndes County, Alabama. March 26 to April 25, 1892.30 cm repeating theodolite No. 16. F. W. Perkins, observer. Telescope $20^{m \pi} \cdot 3$ above the ground.

		。	,	"	"	"
23	Parker	o	-o	$00^{\circ} 0$	-0.10	59'90
24	Wilder	49	08	$27^{\prime 4}$	to 93	28.33
25	Wetunipka	87	07	28.24	-0.13	28.11
	Montgomery, Capitol	fot	49	$48 \cdot 45$	\ldots	
26	Mount Carmel	171	58	00 86	-0.20	00 66
27	Bargenier	214	18	$04 \cdot 20$	-0.24	$03 \cdot 96$
28	County Line	241	53	5676	+o.03	$56 \cdot 79$
29	Lovers Leap	274	05	$53{ }^{\circ}$	-0.29	$52 \cdot 71$

Mount Carmel, Crenshaw County, Alabama. May 26 to June I, I892. 30 cm repeating theodolite No. 16. F. W. Perkins, observer.

39	Bargenier	o	oo	-0 ${ }^{\circ}$	+o.39	00 39
40	Lovers Leap	28	34	$48 \cdot 68$	-0.03	$48 \cdot 65$
41	Lowndesboro	56	34	$12 \cdot 39$	+o or	12.40
	Montgomery, Capitol	104	47	$10 \cdot 94$	
42	Wetumpka	112	34	$33^{\circ} 9^{2}$	-0.37	$33 \cdot 55$

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Allanta base net, Atabama, 1888-1895-continued.
Lozers Leap, Lowndes County, Alabama, June 4 to $20,1892.30 \mathrm{~cm}$ direction theodolite No. 135 . W. B. Fairfield, observer. Telescope $7^{\mathrm{m} \cdot} 5$ above the ground. Circle used in XVII positions.

Number of directions.		Objects observed.	Results from station adjustment.			Corrections from adjustment of fourth section. //	Final seconds.
			-	1	/1		11
32	Lowndesboro		0	OO	00'00	+o. 0.4	00 '04
33	Mount Carmel		49	52	$45 \cdot 80$	+o.55	$46 \cdot 35$
34	Bargenier		75	30	10 '39	-0.04	$10 \cdot 35$
35	County Line		115	27	$55 \cdot 55$	+0.11	$55 \cdot 66$
36	Midway		142	57	02 18	to. 16	$02 \cdot 34$
37	Fatana		171	54	21.51	-0.34	21'17
38	Ethridge	-	185	50	$02 \cdot 19$	-0.09	$02 \cdot 10$
30	Parker		297	17	O1'14	-0.3I	$00 \cdot 83$
31	Wilder		330	38	$43 \cdot 38$	-0.08	$44^{3} \cdot 30$

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm \mathrm{o}^{\prime \prime} \cdot 8$. .
Ethridge, Dallas County, Alabama. June 6 to 11, 1802 . 30^{cm} repeating theodolite No. 16. F. W. Perkins, observer.

Lovers Leap	0	\prime	$\prime \prime$	$\prime \prime$
County Line	0	00	00.00	+0.24
Fatama	51	57	27.06	-0.45
153	22	20.95	+0.21	$20^{\prime \prime} 61$
	$21 \cdot 16$			

Bargenier, Lowndes County, Alabama. March is to April 7, 1892.30^{cm} direction theodolite No. 135. W. B. Fairfield, observer. Circle used in XVII positions.

43	County Line	0	\prime	$\prime \prime$	$\prime \prime$	$\prime \prime$
44	Lovers Leap	0	00	00.00	+0.29	00.29
45	Lowndesboro	53	59	14.24	+0.07	14.31
	98	41	16.61	+0.21	16.52	
46	Montgomery, Capitol	132	30	40.19	\ldots	$\ldots .$.
Mount Carmel	179	47	04.09	-0.57	03.52	

Probable error of a sir:gle observation of a direction (D. and R.), $\ell_{\mathrm{x}}= \pm 0^{\prime \prime \cdot} \cdot 7^{\prime}$.
County Line, Lowndes County, Alabama. May 10 to 16,1892 . 30^{cm} direction theololite No. 135 . W. B. Fairfield, observer. Circle used in XVII positions.

			-	,	11	11	11
52	Bargenier		0	00	$00 \cdot 00$	-0.44	$\overline{59.56}$
47	Midway		138	31	49 '80	-0.27	$49^{\circ} 53$
48	Fatanna		177	24	or 35	+0.19	O1.54
49	Fithridge		216	16	$28 \cdot 96$	+0.38	$29 \cdot 34$
50	Lovers Leap	\therefore	273	56	$58 \cdot 28$	-0.42	$57 \cdot 86$
51	Lowndesboro		306	17	$00^{\circ} 94$	+0.56	$07 \cdot 50$

Probable error of a single observation of a direction (1). and R.), $e_{1}= \pm \sigma^{1 / 87 .}$

Abstracts of horizontal directions at stations composing the fourth section of the triangulation west of the Atlanta base net, Alabama, 1888-1895-continued.

Fatama, Wilcox County, Alabama. October 2 to November 26, 1895. 30 cm direction theodolite No. 145. G. A. Fairfield, observer. Telescope $15^{m} \cdot 8$ above the ground. Circle used in XII positions.

Number of directions.		Objects observed.	Results from station adjustment.			Corrections from adjustment of jourth section.	$\begin{aligned} & \text { Final } \\ & \text { sections. } \end{aligned}$
			-	,	$\prime \prime$	"	/
59	Midway		0	∞	00.00	-0.04	$\overline{59}{ }^{\circ} 96$
60	Pollard		67	24	$18 \cdot 64$	+0.33	18.97
61	Creagh		96	02	$10 \cdot 39$	-0.12	$10 \cdot 27$
56	Ethridge		262	09	$32 \cdot 81$	-0.09	$32^{\prime 7} 7$
57	Lovers Leap			51	3172	-0.II	31.61
58	County Line		301	52	$12 \cdot 15$	+0.03	$12 \cdot 18$

Probable error of a single observation of a direction (D. and R.), $e_{\mathrm{x}}= \pm \mathrm{o}^{\prime /} \cdot 58$.
Midway, Monroe County, Alabama. September 19 to October $20,1895.30^{\mathrm{cm}}$ repeating theodolite No. 16. F. W. Perkins, observer. Telescope $34^{\mathrm{m} \cdot} 5$ above the ground.

		-	,	"	"	"
62	Pollard	\bigcirc	-o	$00 \cdot 0$	-0.31	59.69
63	Creaglı	23	41	$51 \cdot 42$	+0.21	51.63
	Lookout Hill	50	50	$15 \% 3$		
64	Fatama	82	29	45×86	-0.11	$45 \cdot 75$
65	Lovers Leap	148	24	or ${ }^{80}$	+o.ro	or 90
66	County Line	165	29	$48 \cdot 23$	toris	$48 \cdot 34$

Creagh, Clarke County, Alabama. August 9 to September 10, 1895.30^{cm} direction theodolite No. I 35 . G. A. Fairfield, observer. Telescope $I^{2 \mathrm{~m}} 4$ above the ground. Circle used in XVI positions.

	White	0	00	00.00	\ldots	$\ldots .$.
70	Fatama	196	20	14.53	-0.30	14.23
71	Midway	221	30	12.95	+0.41	13.36
72	Pollard	270	04	55.03	-0.11	54.92
	Red Hill	320	37	14.96	\ldots.	$\ldots .$.

Probable error of a single observation of a direction (D. and R.), $e_{1}= \pm 0^{\prime \prime} 776$.
Pollard, Monroe County, Alabama. August 29 to September $13,1895 . \quad 30^{\mathrm{cm}}$ repeating theodolite No. 16.
F. W. Perkins, observer. Telescope $46^{\mathrm{m} \cdot 5} 5$ above the ground.

		-	,	"	"	/
	Red Hill	o	00	00.0	\ldots	
	White	55	52	09.60	\ldots
67	Creagh	93	or	$16 \cdot 79$	-0 01	$16 \cdot 78$
68	Fatama	170	3^{8}	48 \%6	+o.12	$48 \cdot 18$
69	Midway*	200	44	$46 \cdot 47$	-0.11	$46 \cdot 36$

*The correction - $0^{\prime \prime} 09$ was applied for ecceutricity.

Observation equations.

```
\(0=+1 \cdot 84-(2)+(3)-(10)+(11)\)
\(0=+1 \cdot 92-(1)+(2)+(5)-(11)-(21)+(22)\)
\(0=-1 \cdot 60-(3)+(4)-(9)+(10)-(12)+(13)\)
\(0=-0.19-(8)+(9)-(13)+(14)-(15)+(16)\)
\(0=+1 \cdot 24-(5)+(6)-(20)+(21)-(24)+(25)\),
\(0=-2 \cdot 19-(6)+(8)-(16)+(17)-(23)+(24)\)
\(0=-0.87-(7)+(8)-(16)+(18)-(30)+(31)\)
\(0=-0.72-(17)+(18)+(23)-(20)-(30)+(32)\)
\(0=+0.63-(19)+(20)-(25)+(26)-(41)+(42)\)
\(0=+1 \cdot 21-(26)+(27)-(39)+(41)-(45)+(46)\)
\(0=-0.02-(27)+(29)-(32)+(34)-(44)+(45)\)
\(0=+1 \cdot 65-(33)+(34)-(39)+(40)-(44)+(46)\)
\(0=+0.08-(34)+(35)-(43)+(44)-(50)+(52)\)
\(0=+0.80-(27)+(28)-(43)+(45)-(51)+(52)\)
\(0=+1.69-(35)+(38)-(49)+(50)-(53)+(54)\)
\(0=-0.97-(48)+(49)-(54)+(55)-(56)+(58)\)
\(0=-0 \cdot 20-(37)+(38)-(53)+(55)-(56)+(57)\)
\(\mathrm{o}=-0.6 \mathrm{I}-(47)+(48)-(58)+(59)-(64)+(66)\)
\(0=+0.09-(35)+(36)-(47)+(50)-(65)+(66)\)
\(0=-0.33-(59)+(60)-(62)+(64)-(68)+(69)\)
\(0=+0.14-(60)+(61)-(67)+(68)-(70)+(72)\)
\(0=+0 \cdot 11-(62)+(63)-(67)+(69)-(71)+(72)\)
\(0=-4.3-2.90(1)+4.10(2)+0.82(3)-0.39(4)-1^{\circ} 72(12)+3^{\circ} 74(13)-2.02(14)+0^{\circ} 47(15)\)
    \(+0.31(16)-0.78(17)-1.32(20)+2.99(21)-1.67(22)-1.82(23)+4.52(24)-2.70(25)\)
XXIV \(0=+3 \cdot 8+6 \cdot 39(6)-7.54(7)+1 \cdot 15(8)+0.78(16)-4.23(17)+3.45(18)+1.08(30)\)
    \(-3 \cdot 74(31)+2 \cdot 66(32)\)
    XXV \(0=+6 \cdot 0-0^{\circ} 22(5)+7^{\prime} 76(6)-7^{\prime} 54(7)-2 \cdot 58(19)+3^{\prime} 90(20)-\mathrm{r}^{\prime} 32(2 \mathrm{I})-3^{\prime} 74(3 \mathrm{I})\)
    \(+5^{\circ} 5^{2}(32)-1 \cdot 78(33)-3^{\circ} 96(40)+5^{\circ} 38(41)-1.4^{2}\left(4^{2}\right)\)
XXVI \(0=-1.4-2.32(26)+3.55(27)-1.23(29)-0.55(32)+4.39(33)-3.84(34)-2.47(39)\)
    \(+3.86(40)-1.39(4 \mathrm{I})\)
```



```
    \(-1.55(51)+1 \cdot 40(52)\)
```



```
    \(+9.35(57)-2.54(58)\)
XXIX \(0=+\mathrm{I}^{\circ} 5+2 \cdot 65(35)-4^{\circ} \mathrm{O}(36)+\mathrm{I}^{\circ} 40(37)+4^{\circ} \cdot 13(57)-5^{\circ} \cdot 44(58)+\mathrm{I}^{\circ} 3 \mathrm{I}(59)+\mathrm{o}^{\circ} \cdot 26(64)\)
    \(-6.84(65)+6.58(66)\)
\(\mathrm{XXX} \quad 0=+5^{\circ} 6+0.87(59)-4.72(60)+3^{\circ} 85(61)+4^{\circ} 51(62)-4.79(63)+0^{\circ} 28(64)+0.61(70)\)
    \(-1 \cdot 86(71)+1 \cdot 25(72)\)
```


Normal equations.

		Cr	C_{2}	\dot{C}_{3}	C_{4}	C_{5}	C6	C_{7}	C8	C.	Cro	Clin^{1}	C_{12}	C_{13}	C_{14}	C_{15}	Ci5	Cr_{7}	C 58
1	$0=+1 \cdot s_{1}$	$+4$	$4-2$	-2															
2	$+192$		$+6$			-2													-
3	-1.60			+6	-2														
4	-0.19				+6		-2	-2											
5	+1.24	\cdots	- \cdot...	+6	-2	-2	\cdots	\cdots	\cdots
6	-2.19						+6	+2	-2										
7	-0.87							+6	+2										
8	-0.72								+6			-2							
9	+0.63									+6	-2								
10	+1.21	\ldots	-	$+6$	-2	+2	-2
15	-0.02											$+6$	$+2$	-2	$+2$				
12	+1.65												+6	-2					
13	+0.08													+6	+2	-2			
14	+0.80														+6				
15	+1.69	\ldots	+6	-2	+2
16	-0.97																+6	+2	-2
17	-0.20																	$+6$	
18	-0.61																		$+6$

Normal equations-completed.

		Cr_{19}	C20	C25	C_{22}	C_{23}	C_{24}	C_{25}	C_{26}	C_{27}	C_{28}	C_{29}	$\mathrm{C}_{3}{ }^{\circ}$
1						-3.28							
2						+ 2.34		$+1110$					
3						+ 4.25							
4						- 5.92	- 0.37				.		
5		- 291	$+6.39$	$+2.76$	\ldots	\cdots
6						$+5.25$	-10.25	-776					
7						-0.31	+6.54	$+380$					
8						-104	+ 9.26	+ 5 5 5^{2}	+0.68	-0.68			
9						+1.38		-0.32	-0.93				
10		+ 5138	+6.95	$+2.80$
11							-2.66	- 5.52	-8.07	-5.18			
12								- $2 \cdot 18$	- I'90	-3.06			
13		-2							+ $3 \cdot 84$	+6.82.	$+0.58$	$+2.65$	
14									- 3.55	- 3 .88			
15		+2	-2.36	-12.26	- 2.65
16											$+10.82$	- 5.44	
17											- 0.07	+ 273	
18		+2	-2								- 0.07	$+13.07$	+0.59
19	$0=+0.09$	+6								$-2 \cdot 36$	-0.58	$+6 \cdot 72$	
20	-0.33	+6	-2	+2	- I 05	-9.82
21	$+0.14$			+6	$+2$								+9.21
22	+0.11				$+6$								- 6.19
23	$-4 \cdot 3$					+92 50	$+3.54$	- 9:10					
24	$+3 \cdot 8$						$+151.64$	$+135^{\circ} 11$	-146	$+1.46$			
25	$+6.0$	-	$+234 \% 99$	$-33 \cdot 6$ \%	$+3.04$
26	-1.4								+76 75	+19.87			
27	$+2 \cdot 3$									+45'94	-2.08	$+6.65$	
28	$+1 \cdot 3$										$+29691$	$+62.33$	
29	+1.5											$+163.90$	$+121$
30	$+5^{\circ} 6$	+86\% 6

Resutting correlates.

$\mathrm{C}_{1}=-0.780^{\circ}$	$\mathrm{C}_{88}=+0.28_{4}$	$\mathrm{C}_{21}=+\mathrm{O}^{\circ} 242$
$\mathrm{C}_{2}=-0.73 \mathrm{I}$	$\mathrm{C}_{12}=-0.249$	$\mathrm{C}_{22}=-0.237$
$\mathrm{C}_{3}=+\mathrm{o} .055$	$\mathrm{C}_{13}=+0 \cdot 108$	$\mathrm{C}_{23}=+0.0218$
$\mathrm{C}_{4}=+\mathrm{O}^{\prime} 193$	$\mathrm{C}_{14}=-0.397$	$\mathrm{C}_{24}=-0.0086$
$\mathrm{C}_{5}=-0.418$	$\mathrm{C}_{15}=-0.390$	$\mathrm{C}_{25}=+0.0183$
$\mathrm{C}_{6}=+0.409$	$\mathrm{C}_{56}=+0.058$	$\mathrm{C}_{86}=-0.0760$
$\mathrm{C}_{7}=-0.043$	$\mathrm{C}_{17}=+0 \cdot 155$	$\mathrm{C}_{27}=-0.1070$
$\mathrm{C}_{8}=+0 \cdot 345$	$\mathrm{C}_{88}=+0.200$	$\mathrm{C}_{28}=-0.0184$
$\mathrm{C}_{9}=-0.345$	$\mathrm{C}_{19}=+0.067$	$\mathrm{C}_{29}=-0.0237$
$\mathrm{C}_{\mathrm{r} 0}=-0 \cdot 326$	$\mathrm{C}_{20}=+0 \cdot 123$	$\mathrm{C}_{30}=-0.0944$

Resutting corrections to observed directions.

"	!	"	"
(I) $=+0.668$	$(19)=+0.298$	$(37)=-0.344$	(55) $=+0.213$
(2) +0.138	(20) +0.116	(38) -0.093	(56) -o.088
(3) -0.817	(21) +0.354	(39) +0.387	(57) -0.115
(4) +0.046	(22) -0.767	(40) -0.029	(58) +0.034
(5) -0.317	(23) -0.104	(41) +0.012	(59) -0.036
(6) -0.739	(24) +0.926	(42) -0.371	(60) +0.327
(7) -0.031	(25) -0.132	(43) +0.289	(61) -0.121
(8) +0.163	(26) -0.195	(44) +0.073	(62) -0.312
(9) +0.138	(27) -0.243	(45) +0.213	(63) +0.215
(10) +0.835	(28) +0.034	(46) -0.575	(64) -0.110
(11) -0.049	(29) -0.286	(47) -0.267	(65) +0.095
(12) -0.092	(30) -0.311	(48) +0.190	(66) +O .11 I
(13) -0.056	(31) -O OSo	(49) +0.375	(67) -0.005
(14) +0.149	(32) +0.039	(50) -0.423	(68) +0.119
(15) -0.183	(33) +o.550	(51) +0.563	(69) -0.114
(16) -0.173	(34) -0.037	(52) -0.438	(70) -0.300
(17) +o.o83	(35) +0.113	(53) +0.235	(71) +0.413
(18) +0.272	$(36)+0.163$	(54) -0.448	(72) -0.113

Probable error of an observed direction $0.674 \sqrt{\frac{7.77}{30}}= \pm 0^{\prime \prime} \cdot 34$.
Resulting angtes and sides of the fourth section of the triangulation west of the Allanta base net.

No.	Stations.		Observed augles.			Correction. 11	$\begin{gathered} \text { Spher- } \\ \text { angle } \\ \text { angles. } \end{gathered}$"	Spherexcess /"	Log.distances.	Distances in meters.
			-	,	"					
1	Wilder		41	OS	09 -	-0.88	08.13	0.81	$4 * 4329113$	27096 3 ${ }^{5}$
	Jamison		78		58 74	-0. S_{2}	$57^{\circ} 9^{2}$	0.80	$4 \cdot 6059824$	$40362{ }^{\text {9 }}$ 1
	Weogufka		60	21	$56 \cdot 51$	-0.14	56×37	0.81	4.5539090	$35 \mathrm{So2} \cdot 14$
2	Wetumpka		51	35	13.02	- I ${ }^{12}$	II 90	$1{ }^{\circ} \mathrm{O}$	$4 \cdot 6059824$	40362 91
	Wider		92	27	$07^{\circ} 09$	-0.27	$06 \cdot 82$	104	47115204	51 $466{ }^{\circ}$
	Weogufka	\cdots	35	57	$44 \% 1$	-0.53	443^{8}	$1{ }^{1} \mathrm{O} 3$	$4 \cdot 4807405$	30251 '06
3	Perry		50	42	04 96	+0.04	$05^{\circ} \mathrm{oo}$	$1{ }^{\circ} \mathrm{O}$	$4 ` 553909$	$35802 \cdot 14$
	Jamison		79	31	$33 \cdot 43$	+0.86	$34^{\prime 29}$	1 '06	46579534	45493 '93
	Wilder				$23 \cdot 17$	+0.70	$23 \cdot 87$	I 05	$4 \cdot 5480553$	$35322 \cdot 81$
4	Parker		102	37	25 '30	+0.01	$25^{\circ} 31$	- . 68	46579534	45493 '93
	Perry				10.29	+0.21	10.50	0.67	4.5266296	3.3622 .47
	. Wilder		31		$26 \cdot 24$	-0.03	26^{121}	0.67	4.383230	$24167 \% 11$

Resulting angles and sides of the fourth section of the triangulation west of the Allanta base net-continued.

No.	Stations.	Observed angles.			Correc tiont.	Spher ical	Spher-	Log. distattces.	Distance in meters.
		-	,	"	"	/	"		
5	Lowndesboro	37	58	$60 \cdot 84$	-1.06	5978	1.06	$4 \cdot 4807405$	30251.06
	Wilder	84	05	$39 \cdot 74$	-0.42	$39 \cdot 32$	I 07	$4 \cdot 6892523$	$48893 \quad 63$
	Wetumpka	57	55	$23 \cdot 85$	+0.24	$24^{\circ} \mathrm{O} 9$	I 06	'4.619 619 2	41650%
6	Lowndesboro	49	08	$27^{\circ} 40$	+1.03	28.43	1'04	$4 \cdot 5266296$	33622.47
	Parker	69	32	$18 \cdot 78$	+0.26	$19^{\circ} \mathrm{O} 4$	I 04	4*619 6195	$41650 \cdot 43$
	Wilder	6I	19	14.75	+o.9n	15.65	$1{ }^{1} 04$	$4^{\circ} 5910813$	39 001 50
7	Lovers Leap	33	21	$42 \cdot 24$	+o. 23	42.47	1.22	45266296	33622.47
	Parker	100	55	14.46	to. 45	14 '91	I 23	$4^{\cdot 778} 394$ I	$60033 \cdot 57$
	Wilder	45	43	$06 \cdot 10$	+o.19	$06 \cdot 29$	I $\cdot 22$	4.641 191 I	43771×46
8	Lovers Leap	62	42	58.86	+o. 35	59.21	$0 \cdot 75$	4 *591081 3	39 OOI 50
	Parker	1	22	$55^{\circ} 68$	to.19	$55 \cdot 87$	0.75	4*358925	$22852^{\circ} \mathrm{O}$
	Lowndesboro	85	54	$07{ }^{\circ} 0$	+o.18	07.15	$0 \cdot 76$	4.641 191 2	4377147
9	Lowndesboro	135	02	$34 \cdot 40$	+1.21	$35 \cdot 61$	$0 \cdot 57$	$4777^{8} 394$ I	$60033: 57$
	Lovers Leap	29	21	$16 \cdot 62$	+o.12	1674	- 57	4*619 6194	41 $650 \cdot 42$
	Wilder	15	36	$08 \cdot 65$	+o. 71	$09 \cdot 36$	- 57	4.3589249	$22852^{\circ} \mathrm{4}$
10	Mount Carmel	56	¢	21.53	-0.38	${ }_{21}{ }^{1} 5$	I 54	4.6892523	48893.63
	Lowndesboro	8t	50	$32 \cdot 62$	-0.07	$32 \cdot 55$	153	$4^{\cdot 7} 768888$ 1	58733 'So
	Wetumpka	39	$\bigcirc 9$	11.09	-0.18	$10 \cdot 91$	$1 \cdot 54$	4*5709467	$37234^{6} 6$
11	Bargenier	81	5	$47 \cdot 48$	-0.79	46.69	0.66	45709467	37. 234.60
	Lowndesboro	2	20	$03 \cdot 34$	-0.05	$03 \cdot 29$	0.67	4.404 5187	25381.59
	Mount Carmel	56	34	$12 \cdot 39$	-0.37	$12{ }^{\circ} \mathrm{O}$	0.67	4.4976684	$31453 \% 46$
12	Lovers Leap	49	52	45%	+o.5	$46 \cdot 31$	0.70	4.570 9467	$37234{ }^{\circ} 60$
	Lowndestoro	102	07	$52 \cdot 14$	-0.09	52 '05	0.71	4.677 654 I	$47605 \cdot 17$
	Mount Carmel	27	59	$23 \cdot 71$	to of	2375	$0 \cdot 70$	43589248	$2285{ }^{\circ} \mathrm{O}$
13	Lovers Leap	75	30	$10 \cdot 39$	-0.08	$10 \cdot 31$	$0 \cdot 52$	44976684	31 453.46
	Lowndeshoro	59	47	$48 \cdot 80$	-0.04	$48 \cdot 76$	$0 \cdot 53$	4.4483589	$28077{ }^{\circ} 53$
	Bargenier	44	42	02 37	to 14	02 '51	- 53	$4 \cdot 3589248$	$22852{ }^{\circ} \mathrm{O}$
14	Bargenier	125	47	$49 \cdot 85$	-0.65	$49^{\prime 2}$	0.49	4.677 6541	$47605 \cdot 17$
	Lovers Leap	25	37	24 '59	-0.5	24 'ol	- 49	4.4045186	25381×58
	Mount Carmel	28	34	$48 \cdot 68$	-0.4	$48 \cdot 26$	$0 \cdot 49$	4.4483589	$28077{ }^{\circ} 53$
15	County Line	86	03	or 7^{7}	-0.0	or 71	0.34	4.4483589	$28077 \cdot 53$
	Lovers Leap	39	57	$45 \cdot 16$	+o. 1	4531	0.35	4.257 1200	$18076 \% 3$
	Bargenier	53	59	14.24	-0.2	$14{ }^{\circ} \mathrm{O} 2$	$0 \cdot 35$	4×3572783	22765 '56
	County Line		20	08.66	+0.99	09 65	0.40	4.3589249	22852.04
	Lovers Leap	115	27	55 '55	+o.0	55 '62	- 39	$4 \cdot 5862805$	$3^{8} 57^{2} 75$
	Lowndesboro	32	II	$56 \cdot 24$	-0.3	55 '92	$0 \cdot 40$	4.357278	22765

Resulting angles and sides of the fourth section of the triangulation west of the Atlanta base net-continued.

II. THE FIFTH AND LAST SECTION OF THE TRIANGULATION WEST OF THE ATLANTA BASE NET AND JUNCTION WITH THE DAUPHIN ISLAND BASE, I895-1898.

This section extends to the Gulf at Mobile Bay and effects the junction with the Dauphin Island base line. It is composed of ten stations exclusive of the base stations, and presents a series of quadrilaterals. The stations are of very moderate height. Their approximate heights above the Gulf level are as follows:

	Meters.	Feet.
White	$\mathbf{1 2 0}$	393
Red Hill	95	31 I
Coon	8 I	265
Dean	86	284
Cold Creek	83	274
Minette	73	240
Spring Hill	64	210
Daphne	46	152
St. Elnı	40	132
Fort Morgan	8	27
Dauphin Island East Base	1	3
Dauphin Island West Base	1	3

The country being well timbered and cutting impracticable, it was necessary to elevate the theodolite on scaffolds ranging from $12^{m \cdot} 4$ to $46^{m \cdot} 5$ in height, with several 37^{m} high. All observing was done at night on signal lights.

The mean closing error derived from 28 triangles composing the figure equals $\sqrt{\frac{38 \cdot 23}{28}}= \pm 1^{\prime \prime} \cdot 17$; the mean error of ant angle is $\pm 0^{\prime \prime} \cdot 68$, and the probable error of a direction, $0.674 \frac{1^{\circ} 17}{\sqrt{6}}= \pm 0^{\prime \prime \prime} 34$.

For the several sections these last values are very nearly equal notwithstanding the number of observers, of instruments, and methods, and other circumstances, such as elevation of instruments, day or night observations, etc. The values of the probable error of a direction for the second, third, fourth, and fifth sections average $\pm 0^{\prime \prime} \cdot 34$, which indicates that the triangulation of Alabama is of a high degree of accuracy.

$$
4192-\mathrm{No} .7-\mathrm{O} 2-14
$$

Abstracts of horizontal directions at stations composing the fifth and last section of the triangulation west of the Atlanta base net, 1895-1898.

Creagh, Clarke County, Alabama. August 9 to September 10, 1895.30^{cm} direction theotolite No. 135. G. A. Fairfield, observer. Circle used in XVI positions. Telescope $12^{140} 4$ above the ground.

Number of directions.		Objects observed.	$\underset{\substack{\text { Resu }}}{\text { ment }}$		m adjustth section.	Corrections of fifth section.	$\begin{aligned} & \text { Final } \\ & \text { seconds } \end{aligned}$
			-	,	"	11	"
4	White		0	00	$00 \cdot 00$	+0.16	$00 \cdot 16$
	Pollard		270	04	$54^{\prime} 92$		
3	Red Hill		320	37	14 '96	+0.31	$15 * 27$

Pollard, Mouroe County, Alabaua. August 29 to September 13, 1895 . $30^{c r u}$ repeating theodolite No. 16. F. W. Perkins, observer. Telescope $46^{\mathrm{n} \cdot} 5$ above the ground.

1		-	,	"	"	"
	Red Hill	o	-	$00 \% 0$	-0.40	5960
2	White	55	52	0960	+0.17	0977
	Creagh	93	O1	16%		

White, Clarke County, Alabama. September 17 to 25, 1895. 30^{cm} direction theotolite No. 145. G. A. Fairfield, observer. Telescope $27^{\text {na }} \cdot 9$ above the ground. Circle used in XII positious.

Number of directions.		Objects observed.	Results from station adjustment.			Corrections from adjustinent of fifth	Final seconds.
			-	,	"	"	11
5	Creagh		0	00	$00 \cdot 00$	-0.38	$\overline{59.62}$
6	Pollard		52	55	48.49	+0.19	$48 \cdot 68$
7	Red Hill		116	57	$48 \cdot 60$	+0.12	$48 \cdot 72$
8	Deası		141	23	$19^{\circ} 31$	+0.07	$19 \cdot 35$
9	Coon		192	52	$41^{1} 17$	$0 \cdot 00$	$41 \cdot 17$

Probable error of a single observation of a direction (D. and $R_{.}$), $e_{\mathrm{x}}= \pm \sigma^{\prime \prime} 59$.
Red Hill, Baldwin County, Alabana. July 2I to 24, 1S95. 30^{chn} repeating theodolite No. 16. F. W.
Perkius, observer. Telescope $36^{\mathrm{m} \cdot} \mathrm{S}$ above the ground.

		-	,	/	"	"
10	Dean	o	oo	00'00	+o.17	$0 \cdot 17$
11	Cold Creek	26	51	17.10	-0.31	$16 \cdot 79$
12	Coon	67	or	$49^{\circ} \mathrm{So}$	-0.22	49.58
13	White	124	29	52.41	-0.13	$52 \cdot 28$
14	Creagh	148	09	19.38	+o.31	19.69
15	Pollard	184	35	$44^{\circ} 23$	+o.18	44.41

Coon, Washington County, Alabama. August 7 to 20,1895 . 30^{cm} repeating theololite No. 16. F. W.
Perkins, observer. Telescope $31^{\text {m. }} 0$ above the ground.

Abstracts of horizontat directions at stations composing the fifth and tast section of the triangutation west of the Attanta base net, 1895-1898-continued.
Dean, Baldwin County, Alabama. July 28 to 31, 1895. 30^{cmm} repeating theodolite No. 16. F. W. Perkins, observer. Telescope $24^{\mathrm{m}} 9$ above the ground.

Number of
directions.
Objects observed.

Results from station adjustment.	Corrections from adjust- ment of fifth section.	Final seconds.		
0	,	$\prime \prime$	$\prime \prime$	$\prime \prime$
0	00	00.00	+0.15	00.15
58	57	45.47	-0.14	45.33
112	24	09.45	+0.48	09.93
158	28	36.00	-0.65	35.35
189	33	14.05	+0.16	14.21

Cold Creek, Mobile County, Alabama. December I to 9, IS95. F. W. Perkius and G. A. Fairfield, observers. April IS to May I, IS97. W. B. Fairfield, observer. 30^{cmi} repeating theodolite No. 16. Telescope $3 \mathrm{I}^{\mathrm{II}}$ above the ground.

		-	,	/1	/	11
26	Coon	0	00	00'00	-0.24	$\overline{59 \%}$
27	Red Hill	56	39	59.33	+o.01	$59 \cdot 34$
28	Dean	79	13	14.83	+0.42	15.25
29	Minette	113	48	$34 \cdot 16$	-0.09	$34^{\circ} \mathrm{O}$
3°	Daphne	156	54	$45 \cdot 74$	-0.10	$45 \cdot 64$
	Mobile, Court-House tower	172	09	04.4	. \cdot.
31	Spring Hill	191	47	$54{ }^{\circ} \mathrm{O} 7$	$0 \cdot 00$	$54{ }^{\circ} \mathrm{O}$

Minette, Baldwin County, Alabama. April 9 to $15,1897.30 \mathrm{~cm}$ repeating theodolite No. 16 . W. B.
Fairfield, observer. Telescope 37^{m} above the ground.

		0	,	"	11	"
32	Daphne	0	00	$00 \cdot 00$	-0.37	$\overline{59.63}$
	Mobile, Court-House tower	32	20	$20 \cdot 40$
	Mobile, transit pier (public square)	33	02	$05 \cdot 48$. . .	
33	Spring Hill	45	32	$20 \cdot 09$	+o.45	$20 \cdot 54$
34	Cold Creek	LOI	58	5179	-0.02	$51 \cdot 77$
35	Coon	139	32	$34 \cdot 86$	+0.15	35 '01
36	Dean	188	25	$49^{\circ} \mathrm{O}$	-0.22	$48 \cdot 83$

Spring Hitt, Mobile County, Alabama. April 4 to June 3, 1897.30^{cm} repeating theodolite No. 16. W. B. Fairfield, observer. Telescope 37^{m} above the ground.

37	Cold Creek	0	∞	$00 \% 0$	+o. ${ }_{3}$	00.03
38	Minette	45	34	$\mathrm{II}^{1} \mathrm{I}_{3}$	-0.49	10. 64
	Mobile, transit pier	82	O3	$43 \cdot 44$
	Mobile, Court-House tower	83	20	$20 \cdot 54$	\ldots
39	Daphue	103	31	00:32	-0.22	00 ' 10
	Middle Bay Light-House	145	00	3192		
40	Fort Morgan	156	27	$50 \cdot 23$	+0.28	$50 \cdot 51$
41	St. Eluo	187	37	06. 49	+o. 40	$06 \cdot 89$

Abstracts of horizontat directions at stations composing the fifth and last section of the triangulation west oj the Allanta base net, 1895-1898-continued.
Daphne, Baldwin County, Alabama. May 4 to 15,1897 , and March 18 to 19, 1898 . 30 cm repeating theodolite No. I6. W. B. Fairfield, observer. Telescope 36.9 meters above the ground.

Number of directions.	Objects observed.	Results from station adjustment.			Corrections from adjustment of fifth section.	$\begin{aligned} & \text { Final } \\ & \text { seconds. } \end{aligned}$
42		-	,	"	"	"
	Fort Morgan	0	∞	00\%	+0.39	00 39
	Sand Island Light-House	1	36	$05 \cdot 71$
	Middle Bay Light-House	13	51	14.53	\ldots
43	Dauphin Island East Base	14	23	$22^{\circ} 41$	-111	21.30
44	St. Elmo	55	47	34×3	-0.03	$34 \cdot 30$
45	Spring Hill	98	54	$47^{\circ} \mathrm{O} 3$	+0.32	$47 \cdot 35$
	Mobile, Court-House tower	III	23	$46^{\prime 9}$	
	Mobile, transit pier	111	34	$43 \cdot 93$	\ldots	
46	Cold Creek		30	$40 \cdot 66$	+o.04	40%
47	Minette	175	25	$38 \cdot 47$	+0.40	$3{ }^{\text {S }}$ 87

St. Etmo, Mobile County, Alabama. June 5 to 7, 1897, and January 3 I to February 18, 1898 . 30 cm repeating theodolite No. 16 in 1 S 97 and 30^{cm} repeating theodolite No. 32 in ISgS. W. B. Fairfield, observer. Telescope $37^{\circ} 1$ meters above the ground.

		-	,	"	"	"
48	Spring Hill	-	00	$00 \cdot 0$	-0.30	$\overline{59 \%}$
49	Dapline	52	46	41-22	+0.04	41 26
	Middle Bay Light-House	93	42	$19 \cdot 17$		
50	Fort Morgan	130	45	$49{ }^{\circ} \mathrm{O}$	+0.22	49.25
	Sand Island Liglit-House	137	29	$48 \cdot 87$	
51	Dauphin Island East Base	146	48	$03 \cdot 63$	0.00	$03 \cdot 63$
52	Dauphin Island West Base	167	16	23.72	to. 05	23.77
	Point aux Pins 1S98	192	38	$47 \% 34$		

Fort Morgan, Baldwin County, Alabama. June 14 to 20,1897 , and January 20 to $24,1898.30 \mathrm{~cm}$ repeating theodolites Nos. 16 and $\cdot 32$. W. B. Fairfield, observer. Telescope 14.2 meters above the ground.
Dauphin Island West Base
Dauphin Island East Base
Baylor's West Base I 892
Point aux Pins I 898
St. Eluno
Spring Hin
Middle Bay Light-House
Daphe
Sand Island Light-House

-	,	"	"	"
\bigcirc	∞	$00 \cdot 0$	+0.45	$00 \cdot 45$
8	30	$12 \cdot 6$	$+0.23$	12 \% 8
10	02	$56^{\circ} 90$	
27	38	$10 \cdot 50$	\ldots	
55	51	$43{ }^{\circ} 92$	-0.23	$43 \cdot 69$
73	56	$39 \cdot 86$	-0.58	39.28
S9	35	$36 \cdot 84$		
102	05	04 5^{2}	to. 14	$04 \cdot 60$
296	55	$25 \cdot 96$	\ldots	

THE MAIN TRIANGULATION.

Abstrads of horizontal directions at stations composing the fifth and tast section of the triangulation zuest of the Attanta base net, 1895-1898-continued.

Dauphin Istand East Base, Mobile County, Alabama. August 2 to $30,1897.30^{\mathrm{cm}}$ repeating theodolites Nos. 16 and 32. W. B. Fairfield, observer. Telescope $23^{\circ} 4$ meters above the ground up to August 27 , after which only 14.2 meters.

Number of directions.	- Objects observed.
58	Dauphin Island West Base
	Point aux Pins 1898
59	St. Elmo
60	Daphne
61	Fort Morgan
	Sand Island Light-House

Results from station adjustment.			Corrections from adjustment of fifth	$\begin{gathered} \text { Final } \\ \text { seconds. } \end{gathered}$
-	,	"	"	"
0	00	O0 ${ }^{\circ} \mathrm{O}$	+o. 23	00 $\cdot 23$
46	19	$52 \cdot 90$		
80	51	20 71	-0.08	$20 \cdot 63$
125	25	$47{ }^{\circ} \mathrm{O}$	+o. 56	$47 \cdot 65$
197	27	$36^{\circ} 91$	-0.71	$36 \cdot 20$
224	55	51'14		

Dauphin Island West Base, Mobile County, Alabama. September I to 6, 1897, and February 23 to 27, 1898.30^{cm} repeating theodolite No. 32. W. B. Fairfield, observer. Telescope $23^{\circ} 4$ meters above the ground.

.	Casotte 1898
62	Point aux Pins 1898
63	St. Elmo
64	Dauphin Island East Base Baylor's West Base 1892 Fort Morgan Sand Island Light-House Horn Island Light-House

-	,	"	'"	/
o	oo	-o 00	\ldots
46	29	$59 * 46$	
73	18	25 '29'	+0.17	$25 \cdot 46$
151	58	$46 \cdot 46$	-0.74	45.72
156	02	$30 \cdot 71$	
. 160	56	08 79	+o.56	09 35
174	34	$48^{\prime} 5^{2}$		
333	31	03 '21	. . .	

Observation equations.

I	$0=-0.56-(2)+(4)-(5)+(6)$
II	$0=-0.57-(1)+(3)-(14)+(15)$
III	$0=-0.80-(1)+(2)-(6)+(7)-(13)+(15)$
IV	$0=+0.21-(7)+(9)-(12)+(13)-(16)+(17)$
V	$\mathrm{o}=+\mathrm{1} \cdot 27-(10)+(12)-(17)+(18)-(23)+(25)$
VI	$0=+1.94-(8)+(9)-(16)+(18)-(23)+(24)$
VII	$0=-2.07-(18)+(20)-(22)+(23)-(26)+(28)$
VIII	$0=-0.57-(11)+(12)-(17)+(20)-(26)+(27)$
IX	$0=+0^{\prime} 99-(21)+(22)-(28)+(29)-(34)+(36)$
X	$0=-0^{\circ} 40-(19)+(20)-(26)+(29)-(34)+(35)$
XI	$0=+0.89-(29)+(31)-(33)+(34)-(37)+(38)$
XII	$0=-0.71-(29)+(30)-(32)+(34)-(46)+(47)$
XIII	$0=-1 \cdot 17-(32)+(33)-(38)+(39)-(45)+(47)$
XIV	$\mathrm{o}=-\mathrm{r} \cdot 3 \mathrm{r}-(39)+(4 \mathrm{r})-(44)+(45)-(48)+(49)$
XV	$\mathrm{o}=-\mathrm{r} \cdot 14-(39)+(40)-(42)+(45)-(56)+(57)$
XVI	$\mathrm{o}=-0 \cdot 13-(42)+(44)-(49)+(50)-(55)+(57)$
XVII	$0=+0.46-(50)+(52)-(53)+(55)-(62)+(64)$
XVIII	$0=-2.02-(53)+(54)+(58)-(61)-(63)+(64)$
XIX	$\mathrm{e}=-1^{.69}-(43)+(44)-(49)+(51)-(59)+(60)$

Observation equations-continued.

XX	$0=+2 \cdot 87-(42)+(43)-(54)+(57)-(60)+(61)$
XXI	$0=-3.4-1.43(1)+4^{.21(2)+2.57(3)-2.57(4)-3.59(13)+4 .} \mathrm{So}(14)-1.21(15)$
XXII	$\begin{aligned} 0= & -1.9+4 \cdot 11(7)-4.63(8)+0.52(9)+1 \cdot 99(16)-4.90(17)+2 \cdot 91(18)+0.48(23)-3.49(24) \\ & +3 \cdot 01(25) . \end{aligned}$
XXIII	$\begin{aligned} 0= & -6 \cdot 6+3.26(10)-4.15(11)+0.89(12)+2.91(17)-4.85(18)+1.94(20)+0.40(26)-5.07(27 \\ & +4 \cdot 67(28) \end{aligned}$
XXIV	$\begin{aligned} 0= & +5 \cdot 4+4 \cdot 28(18)-6 \cdot 22(19)+1 \cdot 94(20)+0 \cdot 40(26)-3 \cdot 45(28)+3 \cdot 05(29)+0 \cdot 14(34)-1 \cdot 84(35) \\ & +1 \cdot 70(36) \end{aligned}$
xxy	$\begin{aligned} \mathrm{o}= & -1 \cdot 4-0.45(29)+3 \cdot 02(30)-2 \cdot 57(31)-2 \cdot 07(32)+3 \cdot 47(33)-1 \cdot 40(34)-1 \cdot 87(45)+2 \cdot 37(46) \\ & -0 \cdot 50(47) \end{aligned}$
XXVI	$\begin{aligned} \mathrm{o}= & -4.7+0.22(39)-3.49(40)+3^{\circ} 27(4 \mathrm{I})+1 \cdot 43(42)-3 \cdot 68(44)+2 \cdot 25(45)+4.43(55)-6.45(56) \\ & +2 \cdot 02(57) \end{aligned}$
XXVII	$\begin{aligned} 0= & +14 \cdot 2-8 \cdot 20(42)+10 \cdot 59(43)-2 \cdot 39(44)+0 \cdot 15(49)+7 \cdot 33(50)-7 \cdot 48(51)-2 \cdot 07(54) \\ & +1 \cdot 94(55)+0 \cdot 13(57) \end{aligned}$
XXVIII	$\begin{aligned} \mathrm{o}= & -21 \cdot 8+7 \cdot 33(50)-12 \cdot 97(51)+5 \cdot 64(52)+14 \cdot 09(53)-16 \cdot 03(54)+1 \cdot 94(55)+0 \cdot 42(62) \\ & -13 \cdot 78(63)+13 \cdot 36(64) \end{aligned}$

Normal equations.

No.		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C6	C_{7}	$\mathrm{C8}$	C_{9}	$\mathrm{Cr}_{\text {IO }}$	$C_{\text {II }}$	Cl_{12}	C_{13}	Cl_{14}	C_{15}	C_{16}	Cr_{17}	Cr^{8}
1	$0=-0.56$	+4		-2															
2	-0.57		$+4$	$+2$															
3	-0.80			$+6$	-2														
4	+0:21				$+6$	-2	$+2$		-2										
5	+1'27	. .	-	- .	-	$+6$	$+2$	-2	+2	- .	-••	-••	-••	-.	- .	-	-••	- .	. \cdot
6	+1'94						$+6$	-2											
7	-2.07							$+6$	$+2$	-2	+2								
8	-0.57								+6		+2								
9	+o.99									$+6$	$+2$	-2	-2						
10	-0.40	- .	-•*	...	-•	-..	-	- .	-	. .	$+6$	-2	-2	- .	.	-
II	+0.89											$+6$	$+2$	-2					
12	-0.71											-	+6	$+2$					
13	-1'17													$+6$	-2	-2			
14	-1 31														$+6$	$+2$	-2		
15	-1.14	- .	-*	- .	\cdots	. \cdot	...'	-•*	-	-	. .	- .	. \cdot	- .	. \cdot	$+6$	+2		
16	-0.13																$+6$	-2	
17	+0:46																	$+6$	$+2$
18	-2.02																		$+6$

Normat equations-completed.

Resulting correlates.

$\mathrm{C}_{3}=+0.377$	$\mathrm{C}_{10}=+0.084$	$\mathrm{C}_{29}=+0.0 \mathrm{C}_{2}$
$\mathrm{C}_{2}=+0.091$	$\mathrm{C}_{15}=-0.028$	$\mathrm{C}_{23}=-0.479$
$\mathrm{C}_{3}=+0.188$	$\mathrm{C}_{32}=-0.063$	$\mathrm{C}_{21}=+0.843$
$\mathrm{C}_{4}=+0.363$	$\mathrm{C}_{33}=+0.458$	$\mathrm{C}_{22}=+0.0718$
$\mathrm{C}_{5}=-0.060$	$\mathrm{C}_{34}=+0.302$	$\mathrm{C}_{23}=+0.0325$
$\mathrm{C}_{6}=-0.400$	$\mathrm{C}_{55}=+0.383$	$\mathrm{C}_{24}=-0.0387$
$\mathrm{C}_{7}=-0.014$	$\mathrm{C}_{16}=+0.177$	$\mathrm{C}_{25}=-0.0107$
$\mathrm{C}_{8}=+0.17 \mathrm{I}$	$\mathrm{C}_{17}=-0.159$	$\mathrm{C}_{26}=+0.0307$
$\mathrm{C}_{9}=-0.149$	$\mathrm{C}_{18}=+0.230$	$\mathrm{C}_{27}=-0.0563$
		$\mathrm{C}_{28}=+0.0367$

Corrections.

/"	"	"	"
(1) $=-0 \cdot 400$	$(17)=-0.005$	$(33)=+0.449$	$(49)=+0.035$
(2) +0.166	(18) -0.560	(34) -0.016	(50) +0.222
(3) +0.308 :	(19) +0.157	(35) +0.155	(51) -0.003
(4) +0.160	(20) +0.229	(36) -0.215	(52) +0.048
(5) -0.377	(21) +0.149	(37) +0.028	(53) +0.446
(6) $+0 \cdot 189$	(22) -0.135	(38) -0.486	(54) +0.229
(7) +0.120	(23) +0.480	(39) -0.220	(55) -0.230
(8) +0.068	(24) -0.651	(40) +0.276	(56) $-0.58:$
(9) 0.000	(25) +0.156	(41) +0.402	(57) +0.136
(10) +0.166	(26) -0.243	(42) $+0.39^{2}$	(58) +0.230
(II) -0.306	(27) +0.006	(43) -1.115	(59) -0.082
(12) -0.223	(28) +0.420	(44) -0.03 I	(60) +0.56I
(13) -0.128	(29) -0.087	(45) +0.316	(61) -0.709
(14) +0.314	(30) -0.095	(46) +0.03 S	(62) +o.174
(15) +0.177	(31) -0.001	(47) +0.400	(63) -0.736
(16) $+\mathrm{o} \cdot 180$	(32) -0.373	(48) -0.302	(64) $+0 \cdot 56$:

Probable error of an observed direction o $\cdot 674 \sqrt{\frac{7 \cdot 38}{28}}= \pm 0^{\prime \prime}{ }^{\prime} 35$.
Resulting angles and sides of the fifth and last section of the triangulation west of the Allanta base net.

No.	Stations.	Observed angles.			$\begin{aligned} & \text { Correc- } \\ & \text { tion. } \end{aligned}$	Spherical ugle	Spherical	Log. dis-	Distances in meters.
		-	,	"	"	"	/		
	White	52		$48 \cdot 49$	+0.57	$49^{\circ} \mathrm{o6}$	0.44	4415967	26059×56
	Creagh	89		05.8	+0.16	05.24	0.43	4.5140174	$32660 \% 9$
	Pollard	37		07 ${ }^{18}$	-0.17	07 \% 1	0.44	4.295003 8	19724.40
2	Red Hill	36	26	$24 \cdot 85$	-0.14	24 '71	075	4.4159671	$26059 \cdot 56$
	Creagh	50		20 \% 04	+o.31	$20 \cdot 35$	- '75	$45^{529} 843$ I	$33872 \cdot 18$
	Pollard	93		1678	+0.40	$07 \cdot 18$	- 74	4.6415909	4381177^{8}
3	Red Hill	60		51-82	+0.30	52'12	$0 \cdot 78$	45140174	$32660 \% 9$
	White	64		$60 \cdot 11$	-0.07	$60^{\circ} 04$	- 77	4.529843 I	$33872 \cdot 18$
	Pollard	55		09.60	+0.57	10'17	$0 \cdot 78$	4.4939647	$31186 \cdot 36$
4	White	116	57	$48 \cdot 60$	+0.49	$49^{\circ} 09$	0.47	$4{ }^{\circ} 6415909$	43 811 78
	Creagh	39		$45^{\circ} \mathrm{O} 4$	-0.15	$44 \cdot 89$	0.46	4.4939648	31186.37
	Red Hill	23	39	26^{97}	+0.44	27.41	0.46	4.295 004 -	$19724 \% 1$
5	Coon	46		07.81	-0.18	07.63	0 03	$4 \% 4939647$	$3^{1186} 3^{6}$
	White	75		52.57	-0.12	52.45	0×92	4.6192934	$41619 \cdot 17$
	Red Hill	57		02.61	+0.09	$02 \cdot 70$	0×93	$4 * 5584222$	$36176 \cdot 14$
6	Dean	31	O4	3^{8} \% 5 .	+o. 81	$38 \cdot 86$	- '54	4.4939647	$31186 \% 36$
	White	24	25	$30 \cdot 71$	-0.05	$30 \cdot 66$	- '54	433976296	$24982 \cdot 14$
	Red Hill	12.	29	52.41	-0.30	52.11	- '55	4*697 1575	$49791 \cdot 76$
7	Dean			07.60	-0.32	O4. 28	0.81	$4 \cdot 6192934$	41619×17
	Coon	35		09.30	-0. 56	08.74	0.81	43976295	$24{ }^{4} 8_{2} \cdot 13$
	Red Hill	67	or	49 So	-0.39	49.41	0.81	4.5944299	39303.38

Resulting angles and sides of the fifth and last section of the triangulation west of the Atlanta base net-continued.

No.	Stations.
8	Coon White Dean
9	Cold Creek
10	Cold Creek Coon Red Hill
II	Dean Cold Creek Red IIill
12	Minette Cold Creek Dean
13	$\left\{\begin{array}{l}\text { Minette } \\ \text { Coon } \\ \text { Dean }\end{array}\right.$
14	Cold Creek Coon Minette
15	$\left\{\begin{array}{l}\text { Spring Hill } \\ \text { Cold Creek } \\ \text { Minette }\end{array}\right.$
16	$\left\{\begin{array}{l} \text { Dapline } \\ \text { Cold Creek } \\ \text { Minette } \end{array}\right.$
17	$\left\{\begin{array}{l} \text { Daphne } \\ \text { Spring Hill } \\ \text { Minette } \end{array}\right.$
18	$\left\{\begin{array}{l} \text { Spring Hill } \\ \text { Cold Creek } \\ \text { Daphne } \end{array}\right.$
19	$\left\{\begin{array}{l} \text { St. Elmo } \\ \text { Spring Hill } \\ \text { Daplnue } \end{array}\right.$
20	$\left\{\begin{array}{l} \text { Fort Morgan } \\ \text { Spring Hil! } \\ \text { Laplne } \end{array}\right.$

Observed angles.		
-	,	/"
S2	26	$17 \cdot 11$
51	29	21 - 56
46	04	$26 \cdot 55$
79	13	14.83
47	20	21.48
53	26	23.98
56	39	59×33
83	O9	$30 \cdot 78$
40	10	$32 \cdot 70$
130	35	$28 \cdot 58$
22	33	15 '50
26	51	$17 \cdot 10$
86	26	$57 \cdot 26$
34	35	$19 \cdot 33$
58	57	$45^{\circ} 47$
48	53	14×19
18	42	$37 \cdot 22$
112	24	$09 \cdot 45$
113	48	$34 \cdot 16$
28	37	$44 \cdot 26$
37	33	43.07
45	34	II'I3
77	59	19.91
56	26	$31^{7} 7$
34	54	57.81
43	06	II 5^{8}
ıor	58	51.79
76	30	51.44
57	56	49'19
45	32	$20 \cdot 09$
103	31	$00 \cdot 32$
34	53	OS 33
41	35	$53 \cdot 63$
52	46	$41 \cdot 22$
84	06	06.17
43	07	$12 \cdot 70$
28	08	$24{ }^{\prime} 66$
52	56	$49^{\circ} 91$
99	54	$47{ }^{\circ} \mathrm{O}$

Correction.	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \end{aligned}$ angles.	$\begin{aligned} & \text { Spher- } \\ & \text { ical } \\ & \text { ixcess. } \end{aligned}$
"	"	"
-0 74	$16 \cdot 37$	I 20
-0.07	21'79	I 19
- $1 \cdot 13$	$25 \cdot 42$	$1 \cdot 19$
to 66	15.49	$0 \cdot 78$
+o 79	$22 \cdot 27$	- 779
+0.62	$24 \cdot 60$	- 79
+0.25	59×58	I 13
+0.24	31.02	I•12
+o o8	$3^{2} 78$	I 13
+0.29	$28 \cdot 87$	0.48
+0.42	15.92	0.47
-0.47	16.63	$0 \cdot 47$
-0.20	$57{ }^{\circ} 06$	$0 \cdot 35$
-0.51	18.82	0.36
-0.28	$45 \cdot 19$	- 36
-0.37	13.82	$0 \cdot 52$
+0.72	3794	$0 \cdot 52$
+0.34	09 ${ }^{7} 9$	$0 \cdot 51$
+o.16	$34 \cdot 32$	0. 63
+o.07	$44 \cdot 33$	0.63
+0.17	$43 \cdot 24$	0. 63
-0.51	10 62	0.62
+0.09	$20 \cdot 00$	0.61
-0.47	$3 \mathrm{I} \cdot 23$	$0 \cdot 62$
+o. 36	$58 \cdot 17$	0.63
-0 OI	11.57	0.63
+o. 36	52'15	0.63
to 08	$51 \cdot 52$	0.63
+0.27	$49 \cdot 46$	0.63
+o. 8_{2}	20'91	0.63
-0. 25	-0 07	0.61
+o.ro	0S 43	0.62
-0.28	$53 \cdot 35$	0.62
+o. 34	41×5	0.47
+o. 62	06 79	0.46
+0.35	13.05	$0 \cdot 47$
+0.72	$25^{\circ} 38$	$0 \cdot 91$
+o 50	50.41	$0 \cdot 91$
-0.08	4695	0.92°

$\begin{array}{cc}\text { Log. dis- } & \text { Distances in } \\ \text { tances. } & \text { meters. }\end{array}$
$4.697 \quad 1575 \quad 49791 \quad 76$
4 '594 430 o $39303 \cdot 39$ $4{ }^{4} 558422 \quad 3 \quad 36 \quad 17615$
$4.5944299 \quad 39303 \cdot 38$
4.468673 ○ $29422{ }^{\circ} 05$
$\begin{array}{lllll}4 \cdot 507 & 02 & 9 & 32 \quad 136 \cdot 82\end{array}$
4*619 2934 41 619'17
$4^{\circ} 694 \quad 2518 \quad 49459$ 74
$4.5070029 \quad 32 \quad 136 \cdot 82$

$43976296 \quad 24982 \cdot 14$
4.468673 I $29422{ }^{\circ} 06$
4.468673 o $29422 \% 05$
$4.2236096 \quad 16734 \cdot 38$
$44^{\circ} 024020 \quad 25 \quad 255^{\prime \cdot 17}$
$4.5944299 \quad 39303 \cdot 38$
$4.223 \quad 6098 \quad 16734 \cdot 39$
$4 \cdot 683 \quad 3164 \cdot 48 \quad 229 \cdot 90$
$4.683 \quad 31644842290$
$4.402 \quad 402$ o $25 \quad 258 \cdot 17$
$4 \cdot 507003$ о $\quad 32136 \cdot 83$
$4.4024020 \quad 25 \quad 258 \cdot 17$
$4 \cdot 5390295 \quad 34596 \cdot 29$
$4{ }^{\circ} 4694578 \quad 29475{ }^{\prime 2} 7$
4.402 402 o $25 \quad 258 \cdot 17$
$4.479341 \circ 30153$ 73
$\begin{array}{lllll}4 & 635 & 156 & 6 & 43 \\ 167 \% 47\end{array}$
$4.539 \quad 0295 \quad 34 \quad 596 \cdot 29$
$4.479341 \circ 30 \quad 153.73$
4.404704425392 .44
$\begin{array}{llllll}4 & 635 & 156 & 6 & 43 & 16747\end{array}$
$4.4047043 \quad 25 \quad 392 \cdot 43$
$4.4694577 \quad 29475 \quad 27$
$4 \cdot 40+7044 \quad 25392 \cdot 44$
$4^{\circ} 5013233131719 \cdot 28$
$4338 \quad 386 \quad 5 \quad 21796 \cdot 49$
$4.4047044 \quad 25 \quad 392.44$
$4.6331494 \quad 42968 \cdot 43$
$\begin{array}{lllll}4 & 725 & 827 & 4 & 53 \\ 189\end{array}$ •68

Resutting angles and sides of the fifth and tast sections of the triangutation west of the Attanta base net-continued.

No.	Stations.	Observed angles.			Correction.	Spherical	Spherical	L.og.distances.	Distances in meters.
		-	,	18	11	11	/1		
21	[Fort Morgan	46		20.60	+0.36	$20 \cdot 96$	0.96	4.501323 .3	31719.28
	St. Eilmo			0781	to.19	$08{ }^{\circ} \mathrm{oo}$	- `95	4.6331496	$42968 \cdot 45$
	Dapline	55	47	$34 \cdot 33$	-0.42	$33^{\circ} 91$	- 96	4.5602780	$36331 \cdot 05$
22	(Fort Morgan	18	04	55 '94	-0.35	55 *59	- 51	$4.33^{8} 3864$	21 $796 \cdot 48$
	St. Elmo			$49{ }^{\circ} \mathrm{O}$	+0.52	49 *5	- $\cdot 51$	4.7258274	53 189 68
	Spring Hill	3 I		16:26	to.13	$16 \cdot 39$	$0 \cdot 51$	4.5602778	36331.03
23	[Dauplinin Island East Base	116	36	$16 \cdot 20$	-0.63	15.57	- 26	4.5602779	36331×04
	St. Elnıo	16		14.60	-0.22	14.38	0.25	4 '050 2034	II $22.5{ }^{\circ} 44$
	Fort Morgan	47		$3^{1 \times 27}$	-0.46	$30 \cdot 81$	$0 \cdot 25$	44755272	29890.09
24	(Dauplin Island West Base	87	37	$43 \cdot 50$	+o. 39	$43 \cdot 89$	\% 55	4.5602779	$36331 \cdot 04$.
	St. Eluno	36		$34 \cdot 69$	-0.17	$34 \cdot 52$	- $\cdot 55$	4335 I34 2	$21633 \cdot 87$
	Fort Morgan	55	51	$43^{\circ 9} 9$	-0.68	$43 \cdot 24$	0 *55	$47^{48} 516$ I	$30096 \cdot 51$
25	(Dauplin Island West Base	78	40	21.17	-0.91	$20 \cdot 26$	0. 27	$4 \cdot 4755272$	$29890{ }^{\circ} 09$
	St. Elnio			20.09	+o	$20 \cdot 1$	0.27	4.027 831 9	10 661 83
	Dauphin Island East Base	So		$20 \cdot 71$	-0.31	$20 \cdot 40$	$0 \cdot 26$	$4 \cdot 4785160$	$30 \quad 096 \cdot 50$
26	[Dauplin Island East	162	32	23.09	to. 94	$24^{\circ} \mathrm{O} 3$	$0 \cdot 03$	4.335134	$21633 \cdot 87$
	Fort Morgan	8	30	12.65	-0.22	12.43	$0{ }^{\circ} \mathrm{O}$	4.027 83I 9	Io 66I 83
	Dauphin Island West Base	8	57	$22 \cdot 33$	+1.30	23.63	$0{ }^{\circ} \mathrm{O} 3$	$4^{\circ} \mathrm{O} 02035$	II $2255^{\circ} 44$
27	[Dauphin Island East Base	44		$26 \cdot 38$	+o. 6	$2.7{ }^{\circ} \mathrm{O} 2$	0.80	4×501323	31719.28
	St. Elimo	9		22.41	-0	$22 \cdot 37$	- :80	4.6540206	$\begin{array}{llllll}45 & 083\end{array}$
	Daphne	41		II 92	+1:09	$13^{\circ} \mathrm{OI}$	- -80	4.4755274	$29890 \cdot 10$
28	Dauphin Island East Base	72	01	$49 \cdot 82$	-I ${ }^{\circ} 27$	$48 \cdot 55$	0.41	4.6331495	$42968 \cdot 44$
	Daphne	14		22.41	-1.51	20 '90	0.41	4 '050 2033	II 225.44
	Fort Morgan	93		5187	-0.09	$51^{17}{ }^{8}$	0.41	4.6540206	$45 \quad \mathrm{os}_{3} \cdot 81$

Remarks on the accord of the Atlanta and Dauphin Island bascs.-The distance between the middle points of these bases, when measured through the middle line of the triangulation connecting them, is 677 kilometers or 421 statute miles.* The total number of geometrical conditions demanded by this triangulation in order to renove its inconsistencies is 142 , to which number one more condition would have to be added to bring out the length of the second base as measured. The simultaneous solution of so large a number of equations being impracticable, the actual adjustment was made in parts. When the Dauphin Island base was reached a very small difference \dagger was found in the computed length, as derived from the Atlanta base, and the measured length, a matter of accident, but a very satisfactory one, since no further labor was needed to bring about a closer accord.

[^32]12. THE FIRST SECTION OF THE TRIANGULATION WEST OF THE DAUPHIN ISLAND BÁSE NET, ALABAMA AND MISSISSIPPI, I846-I855.

Proceeding from the base net westward, the triangulation is contracted in dimensions and possesses an inferior degree of accuracy as compared with the triangulation north of the base. This change is primarily due to unfavorable atmospheric conditions and to the difficulty of preserving the stations for a few years in a low country, subject to storms and severe hurricanes, which cause alterations in the shore line, overflow of

the ground, and destruction of the stations. When the localities were revisited in another year several of the stations could not be recovered, and new stations had to be established in their places. The width of the triangulation was limited by the width of Mississippi Sound, along which it extends. The observers were Assistants F. H. Gerdes and J. E. Hilgard. In 1854 - 55 a Gambey repeating theodolite was used, and for these measures the resulting seconds are given to the nearest tenth. The section extends from the Dauphin Island base net to the line Deer Island I to Ship Island 1855, a distance of about 56 kilometers or 35 statute miles. The connected series of quadrilaterals terminates here.

Abstracts of horizontal directions at slations of the first seclion of the triangulation west of Dauphin Island base net.

Point aux Pins, Mobile County, Alabama. May and June, 1848. F. H. Gerdes, observer.

Number of
directions.
Objects observed.

Cedar Point	
3	
4	Cat Island
Dauphin Island West Base	
Petit Bois	
Grande Batture	

Results of station adjustment.		
-	,	"
o	oo	$00 \cdot 00$
	36	$33 \cdot 45$
	14	08.33
105	51	21.51
	05	47×9

Corrections
from first
section.

$\prime \prime$
\ldots
$\ldots \cdot$
\ldots
-0.05
-0.03
$\begin{array}{llll}147 & 05 & 47 \% 9\end{array}$

Final secouds.

Resulting Corrections from ba net. 11
+0.32 -
-
. . . .
$+0.32$
$00 \cdot 32$
.....
...
21 46
$47 \cdot 66$
$33 \cdot 16$
$08 \cdot 30$
....

Abstracts of horizontal directions at stations of the first section of the triangulation west of Dauphin Island base net-continued.
Dauphin Island West Base, Mobile County, Alabaua. Noveuber, 1847 and January, 1848. F. H. Gerdes, observer.

Number of directions.

I

2

Objects observed.

Petit Bois

Grande Batture
Point aux Pins

Results of station adjustment.	Corrections from. first section.		
	\prime	$\prime \prime$	\ldots
	∞	$00 \cdot 0$	$-0 \cdot 17$
45	15	$13 \cdot 69$	$+0 \cdot 36$
81	33	$33 \cdot 52$	$\ldots \ldots$

$\begin{array}{lll}81 & 33 & 33\end{array} \cdot 52$

Resulting seconds.	Corrections from base net.	Final seconds.
"	"	"
$\overline{59.83}$	\ldots	
14.05	\ldots	
	+o. 14	$33 \cdot 66$

Petil Bois, Jackson County, Mississippi. June, 1846. F. H. Gerdes, observer. Theodolite No. 6 used in III positions.

5	Horn Island East 1855^{*}	0	00	00.00	-0.4 I	
6	Bayou Casotte	42	36	12.87	+0.70	59.59
7	Grande Batture	7 I	28	26.37	-0.64	13.57
8	Poiut aux Pins	104	36	32.24	+0.26	25.73
9	Dauplin Island West Base	155	25	46.00	+0.09	32.50

Grande Batture, Jackson County, Mississippi. July, I846. F. H. Gerdes, observer. 45^{cmm} theodolite No. 4. September and October, 1847. J. E. Hilgard, observer. Theodolite No. 6 used in V positions.

		-	,	"	"		/1
10	Point aux Pins	-	∞	$00 \cdot 0$	-0.06		59.94
II	Dauplin Island West Base	54	50	O I 60	-0.18	*	OI 42
12	Petit Bois	105	37	$27^{\circ} \mathrm{O}$	+0.30		27.35
13	Horn Island East 1855*	${ }^{1} 58$	42	II 77	-0.39		11 38
14	Bayou Casotte	209	13	$36 \cdot 14$	+0.32		$36 \cdot 76$

Horn Island East 1855, Jackson County, Mississippi. February and March, 1847. F. H. Gerdes and J. E. Hilgard, observers. 45^{cm} direction theodolite No. 4. (V to X positions.) December, 1854, to April, I855. J. E. Hilgard, observer. Repeating theodolite.

Bayou Casolte, Jackson County, Mississippi. July and August, 1847. F. H. Gerdes, observer. Theodolite No. 4. (V positions.) September, 1847. J. E. Hilgard, observer. Theodolite No. 6.

15	Grande Batture	0	oo	00.00	-0.48	59.52
16	Petit Bois	47	31	37.80	+0.75	$38 \cdot 55$
17	Horn Island East 1855 *	94	58	$25^{7} 76$	-0.64	$26 \cdot 12$
	Horn Island West	153	29	14.20	
	Belle Fontaine		49	$13 \cdot 30$		
18	East Pascagoula	202	51	05 38	+o. 37	$05 \cdot 75$

[^33]Abstracts of horizontat directions at stations of the first section of the triangutation west of Dauphin Island base net-continued.

East Pascagouta, Jackson County, Mississippi. August, 1847. F. H. Gerdes, observer. Theodolite No. 4. (V positions.) April, 1854, and January, 1855. J. E. Hilgard, observer. Repeating theodolite. Elevation of ground, 16 feet; of tripod, 14 feet.

Number of directions.	Objects observed.	Results of station adjustment.			Corrections from first section.	Final seconds.
		-	,	11	/1	/1
25	Bayou Casotte	\bigcirc	-	00 ${ }^{\circ}$	-0.21	59'79
26	Petit Bois	20	42	$28 \cdot 49$	-1.31	27.18
27	Horn Island East 1855*	57	56	$20 \cdot 18$	+0.26	$20 \cdot 44$
	Azimuth Mark	96	22	$50 \cdot 60$	
28	Horn Island West	122	43	$25^{\circ} \mathrm{O}$	+0.65	$25 \cdot 6$
29	Belle Fontaine	153	09	$16^{\circ} 2$	+0.61	16 \% 1

Horn Island West, Jackson County, Mississippi. August to November, 1848. F. H. Gerdes, observer. Repeating theodolite. March, 1854, May and November, 1855. J. E. Hilgard, observer. Repeating theodolite.

		-	,	"	"	"
30	Ship Island 1855	o	∞	$\infty{ }^{\circ}$	0 -	$\infty{ }^{\circ} \mathrm{O}$
31	Deer Island I	54	48	36.8	-0.7	$36 \cdot 1$
	Monk Point	78	59	18.8		
32	Belle Fontaine	100	06	$34^{\circ} 9$	+o. 3	$35 \cdot 2$
33	East Pascagoula	153	53	$60 \cdot 2$	-0.5	59.7
34	Horn Island East 1855	196	12	49°	+o.9	$50 \cdot 1$

Bette Fontaine, Jackson County, Mississippi. April, October, and November, 1855. J. E. Hilgard, observer. Repeating theodolite.

		-	,	"	/	"
35	East Pascagoula	0	-o	00 \%	-0.7	59
36	Horn Island East 1855	38	42	55.8	+o. 4	56.2
37	Horn Island West	95	46	44°	$0 \cdot 0$	$44^{\circ} \mathrm{O}$
38	Slip Island 1855	147	26	07°	$0 \cdot$	$7{ }^{\circ} 2$
39	Deer Island I	191	39	$3{ }^{1}$	+0.4	39.5

Ship Istand 1855, Harrison County, Mississippi. June and July, 1848. F. H. Gerdes. Repeating theodolite. November, $1855 . \mathrm{J} . \mathrm{E}$. Hilgard, observer. Repeating theodolite.

			,	"	/1	
	Cat Island	0	∞	∞ -	-- \ldots \ldots 	
	Mississippi City	49	20	569		.
	Biloxi Light	87	13	418	
40	Deer Island I	116	14	11 7	+0.5	$12 \cdot 2$
41	Belle Fontaine	148	10	$50 \cdot 2$	-10	49°
42	Horn Island West	176	24	50%	+o.5	$51{ }^{\circ}$
	Chandeleur Light 1855	268	06	- $0 \cdot 8$		

* Observations of 1847 referred to tbe position of 1855 .

Abstracts of horizontal directions at stations of the first section of the triangulation west of Dauphnn Island base net-continued.

Deer Island $I_{\text {, }}$ Jackson County, Mississippi. October, November, and December, 1855. J. E. Hilgard, observer. Repeating theodolite.

Number of directions.	Objects observed.	Results of station adjustment.			Corrections from first section.	Final seconds.
		-	,	11	/1	"
43	Belle Fontaine	0	∞	000	+0.1	00•1
	Monk Point	\bigcirc	19	13°		
44	Horn Island West	38	49	057	+0.1	05.8
45	Slip Island I855	103	49	51 \%	-0. 1	51.3
	Mississippi City	174	34	$46^{\circ} \mathrm{I}$	\ldots	
	Biloxi Light	194	35	56 '5	. .	

Observation equations.

```
\(0=-1.74-(1)+(2)-(7)+(9)-(11)+(12)\)
\(0=-0.51-(2)+(4)-(10)+(11)\)
\(0=-1 \cdot 28-(3)+(4)-(7)+(8)-(10)+(12)\)
\(0=+0.09-(6)+(7)-(12)+(14)-(15)+(16)\)
\(0=+0.07-(5)+(6)-(16)+(17)-(22)+(24)\)
\(0=-1.15-(13)+(14)-(15)+(17)-(22)+(23)\)
\(0=-1.57-(17)+(18)-(21)+(22)-(25)+(27)\)
VIII \(\mathrm{O}=-\mathrm{I} \cdot \mathrm{O}-(19)+(20)-(32)+(34)-(36)+(37)\)
\(0=-1 \cdot 7-(20)+(21)-(27)+(29)-(35)+(36)\)
\(0=+0.1-(25)+(29)-(32)+(33)-(35)+(37)\)
\(\mathrm{o}=+\mathrm{I} \cdot \mathrm{O}-(30)+(3 \mathrm{I})-(40)+(42)-(44)+(45)\)
\(0=-1.4-(31)+(32)-(37)+(39)-(43)+(44)\)
XIII \(\quad 0=+1.4-\left(3^{8}\right)+(39)-(40)+(41)-(43)+(45)\)
XIV \(\quad 0=+4.8+2.09(1)-4.95(2)-2.40(3)+2 \cdot 36(4)+3 \cdot 00(7)-3 \cdot 22(8)+0.22(9)\)
\(0=+8 \cdot 2+2 \cdot 29(5)-6 \cdot 11(6)+3.82(7)-0.51(12)-1 \cdot 74(13)+2 \cdot 25(14)+3.05(22)-3.06(23)\)
    +o.0I(24)
XVI \(0=-4.84+0.229(5)-0.229(6)+3.035(16)-3.035(18)+0.834(21)-0.835(22)+0.001(24)\)
    \(+3.46(25)-3.592(26)+0.132(27)\)
XVVII \(0=+2 \cdot 0+4.17\) (19) \(-6 \cdot 20(20)+2 \cdot 03\) (21) \(-0.19(27)-3.5 S(28)+3.77(29)+1 \cdot 76(32)-1.54\) (33)
    \(-0.22(34)\)
XVIII \(0=-9^{\circ} 0+1.49(30)-3.57(31)+2^{\circ} 0\) S(32)-0.22(37)-2.16(38)+2.38(39)+2.17(40)-3.38(41)
    \(+1.21(42)\)
```


Normal equations.

Resulting correlates.

$\mathrm{C}_{5}=+\mathrm{o} .0965$	$\mathrm{C}_{10}=-0.5309$
$\mathrm{C}_{2}=-0.0 .93 \mathrm{I}$	$\mathrm{C}_{11}=+0.2551$
$\mathrm{C}_{3}=+0.1404$	$\mathrm{C}_{12}=+0.3376$
$\mathrm{C}_{4}=-0.0306$	$\mathrm{C}_{23}=-0.4014$
$\mathrm{C}_{5}=+0.3323$	$\mathrm{C}_{14}=-0.0362 \mathrm{~S}$
$\mathrm{C}_{6}=+0.5085$	$\mathrm{C}_{55}=-0.06853$
$\mathrm{C}_{7}=+\mathrm{I} .477 \mathrm{I}$	$\mathrm{C}_{16}=+0.36560$
$\mathrm{C}_{8}=+0.8785$	$\mathrm{C}_{17}=-0.03300$
$\mathrm{C}_{9}=+\mathrm{I} .2697$	$\mathrm{C}_{88}=+0.17487$

Resulting corrections to observed directions.

"	/	"
(1) $=-0 \cdot 171$	$(16)=+0.747$	$(31)=-0 \cdot 707$
(2) -0.359	(17) -0.636	(32) +0.296
(3) -0.054	(18) +0.367	(33) -0.480
(4) -0.02 S	(19) -I 016	(34) +0.886
(5) -0.406	(20) -0.187	(35) -0.739
(6) +0.698	(21) +0.030	(36) +0.391
(7) -0.638	(22) +0.122	(37) -0.028
(8) +0.257	(23) +0.718	(38) +0.024
(9) +0.085	(24) +0.332	(39) $+0.35{ }^{2}$
(10) -0.057	(25) -0.212	(40) +0.526
(i1) -0.180	(26) -1 313	(41) -0.992
(I2) +0.302	(27) +0.261	(42) +0.467
(I3) -0.389	(28) +0.649	(43) +0.064
(14) +0.324	(29) +0.614	(44) $+\mathrm{o} \cdot \mathrm{o8} 4$
(15) -0.478	(30) +o.005	(45) -0.146

Probable error of an observed direction $0.674 \sqrt{\frac{11 \cdot 28}{18}}= \pm 0 . / 53$

Rcsulting angles and sides of the first section of the triangulation uest of Dauphin Island base net.

Resulting angles and sides of the first section of the triangulation west of Danphin Island base net-continued.

No.	Stations.
13	Horn Island West East Pascagoula Horn Island East 1855
14	$\left\{\begin{array}{l}\text { Horn Island West } \\ \text { Belle Fontaine } \\ \text { Horn Island East IS55 }\end{array}\right.$
15	$\left\{\begin{array}{l}\text { Horn Island West } \\ \text { Belle Fontaine } \\ \text { East Pascagoula }\end{array}\right.$
16	$\left\{\begin{array}{l}\text { Deer Island I } \\ \text { Belle Fontaine } \\ \text { Horn Island West }\end{array}\right.$
17	$\left\{\begin{array}{l}\text { Ship.Island I855 } \\ \text { Belle Fontaine } \\ \text { Iforn Island West }\end{array}\right.$
18	$\left\{\begin{array}{l} \text { Slip Island IS55 } \\ \text { Deer Island I } \\ \text { Belle Fontaine } \end{array}\right.$
19	$\left\{\begin{array}{l} \text { Ship Island I } 855 \\ \text { Deer Island I } \\ \text { Horn Island West } \end{array}\right.$

Observed angles.

42	IS	49°	+1.4	50	$0 \cdot 2$	4•135 600
64	47	$04 \cdot 8$	+0.4	05 '2	$0 \cdot 2$	$4.2639719 \quad 18364.19$
72	54	$04^{\circ} \mathrm{O}$	+10	05 0	$0 \cdot 2$	$4 \cdot 2878277$ I9 401 ${ }^{16}$
96	06	143	+o. 6	149	$0 \cdot 2$	$4.3376005 \quad 21757.07$
57	03	$48 \cdot 2$	-0.4	$47 \cdot 8$	$0 \cdot 2$	4.263972418364 .22
26	49	57°	to. 8	$57 \cdot 8$		$3.9946189 \quad 9876 \cdot 86$
53	47	$25^{\prime} 3$	-0.8	24.5	O.I	4.196838 o $15733 \cdot 96$
95	46	44°	to. 7	447	$0 \cdot 2$	4.2878278 19 401 17
30	25	51.2	0 o	$51 \cdot 2$	$\bigcirc \bigcirc$	$3.9946187 \quad 9876 \cdot 85$
38	49	057	$0{ }^{\circ} \mathrm{O}$	057	$0 \cdot 1$	3'994 6188 8 9 S76 86
95	52	55 I	+0.4	55.5	$0 \cdot 1$	$4 * 1951614415673$ '34
45	17	$58 \cdot 1$	+10	59.1	$0 \cdot 1$	4 \% $049199011199{ }^{\circ} 50$
28	14	00 5	$+15$	$02{ }^{\circ} \mathrm{O}$	$0 \cdot 2$	3.994 $6188 \quad 9876 \cdot 86$
51	39	23.2	- ${ }^{\circ}$	23.2	O.I	$4 * 214177216374 * 84$
100	06	$34^{\circ} 9$	+0.3	$35{ }^{\circ}$	- $\cdot 1$	$4312896420554{ }^{\circ} \mathrm{O}$
31	56	$38 \cdot 5$	- I 5	37°	$0 \cdot 1$	4.0.49 199 0 11 199 50
103	49	51.4	-0.2	$51^{\circ} 2$	$0 \cdot 2$	4.312896220553 .99
44	13	$31^{\circ} 9$	+0:3	32 '2	$\bigcirc \bigcirc$	$4 \cdot 169.2094$ 14 $764 \cdot 18$
60	10	39°	-0.1	38.9	$0 \cdot 1$	
65	oo	45%	-0. 2	$45 \cdot 5$	$0 \cdot 2$	4.2141777316374 .85
54	48	36%	-0.7	36 I	$0 \cdot 2$	$4 * 169209514764 * 19$

$$
4192-\text { No. } 7-02-15
$$

I3. SECOND AND IAST SECTION OF THE TRIANGULATION WEST OF THF DAUPHIN ISLAND BASE NET, MISSISSIPPI AND LOUISIANA, $1850-1874$.

The second and last section of the triangulation stretches west from the line Deer Island I to Ship Island 1855 and reaches the astronomic station in the city of New Orleans, Louisiana, a distance of 132 kilometers, or 82 statute miles. It is of secondary and sonnewhat irregular character as to size and shape of its component parts, yet possesses sufficient accuracy to render it useful in the discussion of the geodetic and astronomic measures of the southern portion of the oblique arc.

When within 34 kilometers, or 2 I statute miles, of New Orleans the triangles are apparently left without a check, but here we can take advantage of a mell-deternined and independent length of the terminal side Martello Tower to Bienvenue. This is furnished by its direct connection, through a small but otherwise well conditioned and adjusted river triangulation, with the Magnolia base line, situated about 60 kilometers, or $371 / 4$ statute miles, farther down the Mississippi River.* This base was measured by Assistant C. H. Boyd in January, 1872. Its length is, ronghly, $3^{\circ} 6$ kilometers, or $21 / 4$ statute miles, \dagger and the corresponding length of side Martello Tower to Bienventue is 6233.42 meters. The length for this same line, starting from the Dauphin Island base in the old unadjusted computation of I88o, is 6233° o2. The discrepancy was remored by dispersing this difference in the adjustment between this side and the side Deer Island I to Ship Island 1855 , at the same time preserving the four intermediate and adjusted parts, as explained farther on.

In this branch of the triangulation it was found sufficient to give the resulting angles either from the station adjustment or from direct measure, as the case may be, to the nearest tenth of a second; further, the special tabulation of these results could be dispensed with, since they are given in the presentation of the triangles.

[^34]The names of the observers and dates of execution of the triangulation for each station are as follows:

Name of station.	Observer.	Month and year.
Mississippi City	S. A. Gilbert	May, 1851
	J. E. Hilgard	Apr. and Oct., 1855
Cat Island 1852	S. A. Gilbert	May, 85 $^{\text {I }}$
		'Janı, 1852
Cat Island 1855	J. E. Hilgard	Sept. and Dec., 1855
	R. E. Halter	Feb. and May, 1857
Pitcher Point 2	S. A. Gilbert	Apr. and May, 1851
	J. E. Hilgard	Oct. and Dec., 1855
Cat Island Light	S. A. Gilbert	May, IS50
	J. E. Hilgard	Dec., 1855
	J. S. Harris and R. E. Halter	Feb. and May, IS_{57}
Soutly Point	J. S. Harris, R. E. Halter and S. Harris	Feb. and May, 1857
Bayou Pierre	S. A. Gilbert	Feb., 1852
	R. E. Halter and S. Harris	Feb., IS $_{57}$
Point Clear	S. A. Gilbert	Mar., $\mathrm{I}_{5}{ }^{2}$
Grand Island 1852	S. A. Gilbert	Feb. and Mar., 1852
Grand Island 1855	J. E. Hilgard	May and June, 1855
Oyster Bayou 1855	S. A. Gilbert	Dec., 1852
	J. E. Hilgard	Juthe, 1855
Nine Mile Bayou	S. A. Gilbert	Mar., May, and Dec., IS52
Malheureux Point	J. E. Hilgard	June and Aug., ${ }^{\text {8 }} 55$
East Pearl River	J. E. Hilgard	June, 1855
Rigolet Light	S. A. Gilbert	June, 1852
	J. E. Hilgard	May, June, and Dec., 1855
	S. Harris and R. E. Halter	Jan., Mar., and May, S5 $_{5}$
Shell Point	J. E. Hilgard	Aug. and Dec., I_{555}
	S. Harris	Feb. and Mar., 1858
Fort Wood	J. E. Hilgard	June, IS55
	R. E. Halter	Feb., $8_{5} 8$
Proctor 1853	S. A. Gilbert	Mar., 1853
Martello Tower	S. A. Gilbert	Mar., 1853
	C. H. Boyd	Mar., 1874
Battery Bienvenue	S. A. Gilbert	Mar., 1853
Ducros	C. H. Boyd	Apr., 1873
		Mar., 1874
Saint Patrick's Clurch, New Orleans	C. H. Boyd	Mar. and Apr., 1874
Astro. Observatory, Canal and Basin streets, New Orleans	S. Harris	Apr., 1858
Caernarvon	C. H. Van Orden and C. H. Boyd	Mar., 1873
	C. H. Boyd	Mar., 1S74

That branch of the triangulation which reaches New Orleans by way of the Rigolets and Lake Pontchartrain could not be utilized in consequence of a break in the survey at the eastern end of the lake; the old station marks, diligently searched for in 1898, have entirely disappeared. The junction made via Lake Borgne, as presented here, is direct and the corrections due to adjustment are small.

Leaving the line Deer. Islaud to Ship Island 1855 and passing over two triangles, the first special adjustment comprises the figure Mississippi City, Pitcher Point 2, Cat Island 1852, Cat Island 1855, Cat Island Light, South Point, and Bayou Pierre. (See sketch, p. 226.) It involves 12 condition or observation equations and 30 corrections to directions numbered as follows:

Obscriation cquations.

$$
\begin{aligned}
& 0=+0.3-(2)+(4)-(5)+(7)-(13)+(14) \\
& 0=+0.4-(2)+(3)-(12)+(14)-(19)+(20) \\
& 0=-0.9-(3)+(4)-(5)+(8)-(18)+(19) \\
& 0=+14-(1)+(4)-(5)+(6)-(16)+(17) \\
& 0=-5.4-(6)+(9)-(15)+(16)-(23)+(25) \\
& 0=+0 \cdot 9-(10)+(12)-(20)+(21)-(29)+(30) \\
& 0=0.0-(21)+(22)-(24)+(27)-(28)+(29) \\
& 0=+1 \cdot 1-(10)+(11)-(26)+(27)-(28)+(30) \\
& 0=+0.5-3 \cdot 25(2)+4 \cdot 58(3)-1 \cdot 33(4)-1 \cdot 02(5)+3 \cdot 87(7)-2 \cdot 85(8)+0 \cdot 18(18)+1 \cdot 88(19) \\
& -2.06(20) \\
& \text { X } 0=+13 \cdot 6-2 \cdot 85(7)+14 \cdot 11(8)-11.26(9)-3 \cdot 34(11)+5 \cdot 19(12)-1 \cdot 85(13)-6 \cdot 09(18)+6.09(22) \\
& +5.37(24)-537(26) \\
& \mathrm{X} 10=-12 \cdot 7+1 \cdot 33(1)=1 \cdot 33(2)-6 \cdot 09(8)+6 \cdot 09(9)-1 \cdot 85(12)+3 \cdot 14(13)-1 \cdot 29(14)+0.34(15) \\
& -1.64(16)+1.30(17)+3.51(18)+0.18(20)-3.69(22)-2.47(23)+2.47(25) \\
& \text { X11 } 0=+3.8-3.34(10)+4.75(11)-1 \cdot 41(12)-2 \cdot 20(20)+2.48(21)-0.28(22)-3.41(24) \\
& +11.56(26)-8 \cdot 15(27)
\end{aligned}
$$

Correlates and resulting corrections.

	$(1)=+0 \cdot 156$		$(I I)=-0.446$		$(21)=-0.122$	
$C_{1}=-0.185$						
$\mathrm{C}_{2}=+0.119$	(2)	-0.084	(12)	-0.117	(22)	$\rightarrow 0.100$
$\mathrm{C}_{3}=+0.398$	(3)	-0.198	(13)	+0.401	(23)	-0.948
$\mathrm{C}_{4}=-0.064$	(4)	+0.125	(14)	-0.156	(24)	-0.044
$\mathrm{C}_{5}=+0 \cdot 776$	(5)	-0.167	(15)	-0.752	(25)	+o.948
$\mathrm{C}_{6}=+0 \cdot 0.08$	(6)	-0: 840	(16)	+0.726	(26)	-0.008
$\mathrm{C}_{7}=+0.142$	(7)	-0.120	(17)	+0.026	(27)	+0.051
$\mathrm{C}_{8}=-\mathrm{O} 313$	(8)	-0.06:	(18)	-0.157	(28)	+0.171
$\mathrm{C}_{9}=+0.0177$	(9)	+1.188	(19)	+0.312	(29)	+o.054
$\mathrm{C}_{10}=+0.0010$	(10)	+o.316	(20)	+o.068	(30)	-0.225
$\mathrm{C}_{13}=+0.0695$						
$\mathrm{C}_{12}=$ - ${ }^{\circ} \mathrm{O} 273$						

The second special figure submitted to adjustment is composed of the stations given below:

Obserzation equations.

Correlates and resulting corrections.

$$
\begin{aligned}
& \mathrm{C}_{1}=+0.473 \\
& \mathrm{C}_{2}=0.03^{\prime} \\
& \mathrm{C}_{3}=+0.047 \\
& \mathrm{C}_{4}=-0.018 \\
& \mathrm{C}_{5}=+0.0223 \\
& \mathrm{C}_{6}=+0.0103
\end{aligned}
$$

(1) $=-0.033$	(10) $=+0.1111$
(2) -0.386	(11) -0.171
(3) -0.011	(12) +0.065
(4) +0.430	(13) +0.106
(5) -0.563	(14) -0.225
(6) +0.503	(15) -0.632
(7) +0.060	(16) +0.944
(8) -0.814	(17) -0.087
(9) +0.503	

The third special figure ,treated by itself involves stations Bayou Pierre, Grand Island 1855, Nine Mile Bayou, Oyster Bayou 1855, and Malheureux Point.

At Bayou Pierre	1. Oyster Bayon 1855	At Oyster Bayou 1855	6. Malheureux Point	
At Grand Island 1855	2. Oyster Bayou 1855	"	"	"

Observation equations.

```
    I \(0=-1 \cdot 1-(1)+(2)-(7)+(8)\)
II \(0=-2 \cdot 0-(2)+(3)-(6)+(7)-(9)+(10)\)
III \(0=-3^{\circ} 9+(3)-(4)-(9)+(11)\)
IV \(0=-32 \cdot 23-11{ }^{\circ} 07(1)+0.64(2)-4{ }^{\circ} 13(5)-0.10(7)+4{ }^{\circ} 23(8)\)
    \(\mathrm{V} \quad 0=-4 \cdot 6-3 \cdot 15(2)-2 \cdot \mathrm{I} 8(3)-2 \cdot 63(5)+2 \cdot 95(6)-0 \cdot 32(7)-0 \cdot 2 \mathrm{I}(9)+3 \cdot 98\) (I0) \(-3 \cdot 77\) (II)
```

Correlates and resulting corrections.

$C_{1}=-1.138$	$(1)=-2.29$	(7) $=+0.54$
$C_{2}=-0.522$	(2) -0.82	(8) +0.17
$C_{3}=+1.421$	$(3)+0.62$	(9) -0.93
$C_{4}=+0.310$	$(4)-1.42$	(10) -0.01
$C_{5}=+0.129$	(5) -1.62	(II) +0.94

The next quadrilateral-Grand Island i855, Malheureux Point, Rigolet Light, East Pearl River-is treated by itself.

Observation equations.

I	$0=+3.0-(\mathrm{I})+(2)-(4)+(6)-(8)+(9)$
II	$0=+0.4-(1)+(3)-(5)+(6)-(10)+(\mathrm{II})$
III	$0=-\mathrm{I}^{\circ} 7-(4)+(5)-(7)+(9)-(\mathrm{II})+(12)$
IV	$0=-41.9-0.68(\mathrm{I})+5.99(2)-5.3 \mathrm{I}(3)-2 \cdot 04(4)+3.68(5)-1.64(6)-5.39(7)+7.50(8)-2 \cdot \mathrm{II}(9)$

- Correlates and resulting corrections.

$$
\begin{array}{llll}
\mathrm{C}_{3}=-0.784 & \text { (1) }=-0.13 & \text { (5) }=+0.59 & \text { (9) }=-0.89 \\
\mathrm{C}_{2}=+0.748 & \text { (2) }+0.7 \mathrm{I} & \text { (6) }-0.44 & \text { (10) }-0.75 \\
\mathrm{C}_{3}=+0.420 & \text { (3) }-0.57 & \text { (7) }-1.76 & \text { (11) }+0.33 \\
\mathrm{C}_{4}=+0.249 & \text { (4) }-0.14 & \text { (8) }+2.65 & \text { (12) }+0.42
\end{array}
$$

Finally the length of the sides Deer Island I to Ship Island I855 and Battery Bienvente to Martello Tower were brought into accord by adjustment of the intervening triangulation, but leaving the preceding adjusted parts unaltered. There were 6 triangles, the sums of whose angles were equated to $180^{\circ}+\varepsilon$, respectively, and the length equation constituted the seventh condition to be satisfied. This adjustment was made by angle corrections, the 16 angles being marked from A to Q as follows:

Designation of angles.	At stations.	Between stations. .
A	Deer Island I	Ship Island I855 and Mississippi City.
B	Mississippi City	Deer Island I and Ship Island 1855.
C	Ship Island 1855	Cat Island 1855 and Mississippi City.
D	Cat Island 1855	Mississippi City and Ship Island 1855.
E	Pitcher Point 2	Bayou Pierre and Point Clear.
F	Point Clear	Pitcher Point 2 and Bayou Pierre.
G	Malheureux Point	Shell Point and Rigolet Light.
H	Shell Point	Rigolet Light and Malheureux Point.
I	Rigolet Light	Shell Point and Fort Wood.
K	Fort Wood	Rigolet Light and Sliell Point.
L	Shell Point	Proctor Point I853 and Fort Wood.
M	Proctor Point 1853	Fort Wood and Slell Point.
N	Proctor Point 1853	Martello Tower and Fort Wood.
\bigcirc	Martello Tower	Fort Wood and Proctor Point 1853.
P	Martello Tower	Battery Bienvenue and Fort Wood.
Q	Battery Bienvenue	Fort Wood and Martello Tower.

When a letter designating an angle is inclosed in a parenthesis, it designates the corresponding correction.

In establishing the 6 angle equations the plane angles already corrected were employed. Thus we have
I. $\quad 0=(\mathrm{A})+(\mathrm{B})+\left(\mathrm{R}_{\mathrm{I}}\right)$
II. $\quad o=(C)+(D)+\left(R_{2}\right)$
etc., where R_{3}, R_{2}, \ldots refer to the third angle of the triangle.

$$
\text { VII. } \begin{array}{r}
0=-32.5+0.73(\mathrm{~A})-2.31(\mathrm{~B})+1.8 \mathrm{I}(\mathrm{C})-0.50(\mathrm{D})+1.36(\mathrm{E})-0.98(\mathrm{~F})+3.53(\mathrm{G}) \\
-0.79(\mathrm{H})+2.88(\mathrm{I})-3.69(\mathrm{~K})+0.80(\mathrm{I})-\mathrm{I} .80(\mathrm{M})+0.99(\mathrm{~N})-0.78(\mathrm{O}) \\
-4.12(\mathrm{P})-3.92(\mathrm{Q})
\end{array}
$$

where - 32.5 is the discrepancy of length in the sixth place of decimals of the logarithm.

The corresponding corrections are-

"	"	/'	
(A) $=+0 \cdot 5$	$(\mathrm{E})=+0.5$	(I) $=+13$	$(\mathrm{N})=+0.4$
(B) -0.7	(F) -0.4	(K) -1.4	(O) -0.3
(C) +0.6	(G) $+\mathrm{I} \cdot \mathrm{I}$	(L) +0.5	(P) -1.7
(D) -0.4	(H) -0.7	(M) -0.6	(Q) -1.6

Resutting angles and sides of the second and last section of the triangutation zuest of the Dauphin Istand base net.

Resutting angles and sides of the second and last section of the triangulation west of the Dauphin Island base net-continued.

No.	Stat
13	Point Clear Pitcher Point 2 Bayou Pierre
14	Grand Island I852 Point Clear Bayou Pierre
15	Nine Mile Bayou Grand Island 1852 Bayou Pierre
16	Grand Island 1855 Point Clear Bayou Pierre
17	Nine Mile Bayou Point Clear Bayóu Pierre
IS	Grand Island S $_{5} 5$ Bayou Pierre Nine Mile Bayou
19	Oyster Bayou : 855 Grand Island 1855 Bayou Pierre
20	Oyster Bayou 1855 Nine Mile Bayou Granil Island IS55
21	
22	Malheureux Point Grand Island 1855 Nine Mile Bayou
23.3	Malheureux Point Oyster Bayon IS55 Nine Mile Bayou
24	Kigolet Liglit Grand Island IS55 $_{5}$ Malheureux Point
25	East Pearl River Grand Island 1855 Malheureux Point

Observed angles.
Correc-
tion. $\begin{gathered}\text { Spher- } \\ \text { ingl } \\ \text { angles. }\end{gathered}$

-	,	"	11	"	"		
64	54	OS $\cdot 1$	$-1 \cdot 3$	$07{ }^{\circ} 1$	0.4	$4: 363 \quad 173$	23076 7
57	06	$43^{1} 1$	-0.3	42 8	$0 \cdot 3$	4.330386	21398.6
57	59	$12^{\circ} \mathrm{I}$	-0.9	11.2	0.4	. 4.334 60i	216073
S4	46	367	+1.3	$3 S^{\circ} \mathrm{O}$	0.2	$4: 330386$	$21398 \cdot 6$
57	34	$03 \cdot 6$	+1.1	04.7	$0 \cdot 2$	$4 \cdot 25 S 550$	$\begin{array}{ll}18 & 1364\end{array}$
37	39	$17^{\circ} 1$	to: S	$17^{\circ} 9$	$0 \cdot 2$	4.118 166	13127°
60	20	$44^{\prime 1}$	+0.5	44.6	$0 \cdot 2$	$4^{2} 25$ S 550	$\begin{array}{llll}18 & 136.4\end{array}$
79	41	$19 \% 3$	-0.2	19°	$0 \cdot 2$	$4 \cdot 312446$	20532 '7
39	57	$57^{\cdot 2}$	-0.3	$56^{\circ} 9$	$0 \cdot 2$	$4^{\cdot 127275}$	134053
S3	22	$26 \cdot 6$	+0.2	26 \%	0.2	4.330386	21 $398 \cdot 6$
59	38	$59^{\circ} 8$	+0.6	$60 \cdot 4$	$0 \cdot 2$	$4 \cdot 269285$	$18590{ }^{\circ}$
36	5 S	$32 \cdot 9$	+o.5	33.4	$0 \cdot 2$	4.112517	$12957^{\circ} 4$
52	39	$39^{\circ} 2$	-1%	$33^{5} \cdot 2$	0.4	$4: 33^{\circ} 386$	21 $398 \cdot 6$
49	43			08.1	$0 \cdot 3$	4'312 446	20532%
77	37	$1+3$	+0.5	14.8	0.4	4.419772	$26 \quad 288 \cdot 9$
77	18	$47^{\circ} 2$	to. 1	$47 \cdot 3$	0.2	4312446	205327
40	38	41.4	0 '0	41.4	0.2	$4^{1 / 137} 007$	137090
62	02	318	+0.1	31.9	$0 \cdot 2$	$4^{\prime} 269286$	$18590 \cdot 3$
94	05	448	-0.4	$44 \cdot 4$	$0 \cdot 2$	$4 \cdot 269285$	18590.2
43	33	$07 \cdot 2$	-0.8	$06 \cdot 4$	O.1	$4 \cdot 108621$	128417
42	21	$07 \cdot 3$	$+2 \cdot 3$	09.6	O'I	$4{ }^{\circ} \mathrm{og} 8857$	12556.2
8 I	20	$57^{\circ} 2$	$+2 \cdot 2$	$59^{\circ} 4$	0 \%	4'137 007	$13709{ }^{\circ}$
64	53			$19^{\prime 9}$	$0 \cdot 1$	4.098857	$12556 \cdot 2$
33	45	$40 \cdot 1$	+0:	40.9.	O*I	$3 \cdot 886843$	$7706 \cdot 25$
56	26	$46^{\circ} 2$	+0.9	47.1	...	$4{ }^{\circ} \mathrm{og} 8857$	$12556 \cdot 2$
77	47	23.5	+1.5	25°	\ldots	$4 \cdot 168$ 083	147259
45	45	$48 \cdot 3$	-0.4	479	*	$4^{\circ} \mathrm{O} 33214$	10794 'S
84	22	34.6	$+19$	$36 \cdot 5$...	$4^{1} 137007$	$13709{ }^{\circ}$
44	or	$43 \cdot 4$	+0.6	$44^{\circ} \mathrm{O}$	\ldots	3.981100	9574.14
51	35	$38 \cdot 1$	+1.4	39.5	\ldots	4.033214	10 794.8
27	55	$48 \cdot 4$	+o.9	$49^{\circ} 3$. .	3.886 843	$7706 \cdot 25$
35	35	as 9	$+2.5$	11.4	. .	3 '981 100	$9574 \cdot 5$
116	28			$59 * 3$		$4 \cdot 1681083$	14725%
29	13	$63 \cdot 2$	-3.5	59%	...	$+033214$	10794.8
52	42	$52 \cdot 3$	$+0.8$	$53 \cdot 1$...	$4 \cdot 245179$	17586.5
98	03	07.5	-0.3	$07 \cdot 2$	-	$4.340 \quad 165$	21885.9
55	47	$55 \cdot 6$	$+1.1$	$56 \cdot 7$...	4.033214	10797^{8}
72	0.4	21'5	-0.5	$21^{\circ} \mathrm{O}$. \cdot	$4^{\circ} 094055$	$12418 \cdot 1$
52	07	4.3 '3	- I ${ }^{\circ}$	42%	\ldots	$4 \cdot 12962$	$10303{ }^{\circ}$

Nesutting angles and sides of the secont and last section of the triangutation west of the Dauphin Istand base net-continued.

14. SOME STATISTICS OF THE TRIANGULATION.

In the following table will be found some statistics relating to the triangulation.
In the third column is given the number of triangles contained in this discussion, including those few triangles of which but two angles were measured. In the next column is given the mean error of an angle derived from the relation $m=\sqrt{\frac{\Sigma \Delta^{2}}{3 n}}$, where $\Delta=$ closing error of a triangle and n the number of triangles; in the last column is given the more precise measure of accuracy, namely, the probable error of an observed direction derived from the adjustment of the triangulation, given by the formula: $e_{s}=0.674 \sqrt{\frac{[p v v]}{c}}$ where $v=$ the correction required by the figure adjustment, p its weight, usually unity, and $c=$ number of conditions that entered into the adjustment.

Locality or name.	State.	$\begin{aligned} & \text { Number } \\ & \text { of of } \\ & \text { triangles. } \end{aligned}$	Mean error of an angle.	$\begin{aligned} & \text { Number } \\ & \text { of con- } \\ & \text { ditions } \\ & \text { satisfied. } \end{aligned}$	
			"		"
Fpping base net.	Maine.	46	± 0.63	35	± 0.47
Northeastern boundary section.	Maine.	18	- '74	13	- 51
New England section, connecting three base lines.	Me., N. H., Mass., R. I., Conn.	53	o '53	57	- ${ }^{26}$
Fire Island base net.	Comnecticut, New York.	17	$0 \cdot 49$	16	- 34
Section connecting the Fire Island and Kent Island bases.	N. Y., N. J., Penn., Del., Md.	33	o. 36	35	- 47
Kent Island base net.	Maryland.	12	0 96	13	- 41
Allegheny section, to HumpbackSpear.*	Maryland and Virginia.	28	o '94	22	O 35
First section south of the transcontinental triangulation.	Virginia and North Carolina.	28	o •88	24	0.41
Second, or North Carolina section.	Virginia and North Carolina.	11	131	13	0 ${ }^{7} 7$
Third, or South Carolina section.	N. C., S. C., Ga.	35	$0 \cdot 78$	41	0.62
Atlanta base net.	Georgia.	33	$1{ }^{\circ} \mathrm{CO}$	29	0.65
First section west of Atlanta base net.	Georgia and Alabama.	25	- '97	23	- 79
Second section west of Atlanta base net.	Alabana.	16	$0 \cdot 78$	18	- 6.6
Third section west of Atlanta base net.	Alabama.	13	- 77	14	- 36
Fourth section west of Atlanta base net.	Alabama.	28	0.63	30	- 34
Fiftl and last section west of Atlanta base net.	Alabama.	28	- 68	28	- 35
Dauphin Island base net. \dagger	Alabana.	5	$0 \cdot 51$	5	0.26
First section west of Dauphin Island base net.	Alabama and Mississippi.	19	- 78	18	o 5 53
Second section west of Dauplinin Island base net.	Alabama and Mississippi.	35	1 20	27	$0 \cdot 78$
Total numiber of triangles		483		461	
Weighted mean			$\pm 0 \cdot 82$		$\pm 0 \cdot 51$

* Fstimated for two quadrilaterals beyond line Mount Marshall to Bull Run. tof little weight on account of the small extent.

C. RESULTING GEOGRAPHIC POSITIONS OF THE PRINCIPAL STATIONS OF THE TRIANGULATION BETWEEN CALAIS, MAINE, AND NEW ORLEANS, LOUISIANA, BASED UPON THE CLARKE SPHEROID OF 1866 AND THE DATA OF THE TRANSCONTINENTAL TRIANGULATION.

The geographic positions in the following list are those used in this investigation of the figure and size of the earth. They conform to those published in Special Publication No. +, "The Transcontinental Triangulation." These positions, as well as those in Special Publication No. 4, are not intended to be used for geographic purposes, and do not conform to the principal lists heretofore published for that purpose, namely, for Massachusetts, in the Report for 1894, Appendix No. 10; Rhode Island, in the Report for 1885 , Appendix No. 8; and Connecticut, in the Report for 1888, Appendix No. 8.

On March 13, 1901, the Superintendent adopted a uniform standard for the whole United States, to which all positions intended for geographic purposes are to be reduced and which is to be known as the United States Standard Datun. The New England positions referred to above are based upon the United States Standard Datum. The corrections required to reduce the positions here published to the United States Standard vary at different parts of the arc, and in general fall between the linits $\Delta \psi=+1^{\prime \prime} 9$ to $+2^{\prime \prime} \cdot 1, \Delta \lambda=-0^{\prime \prime \prime} \cdot 5$ to $-0^{\prime \prime \prime} \cdot 8, \Delta a r=-1^{\prime \prime}$ to $+2^{\prime \prime}$.

Stations
New Brunszoick.

Grand Manan

St. Lavid

Maine.
Aganenticns

Burke	44 35. $54 \cdot 036$	$2351308 \cdot 22$
	$67 \quad 5838319$	$3370127^{\circ} \mathrm{O}$
Calais (Dhservatory	451103.778	$206544^{6} \cdot 96$
	6716.53 .919	293 o6 $27{ }^{\circ} \mathbf{2 3}$
Cooper	445911 '570	35153×9 '93
	672803.393	$750942 \cdot 97$
H.pping Fast Hase	444007844	277 ¢6 58.49
	万7 49.58 .595	10 5225.53
Epping West Base	444129.939	286515517
	$675617 \cdot 247$	$155506 \cdot 50$

I.og. distance.	Distance in meters.
$4^{13713} 37^{2} 8$	23516.51
4.529 9291	33 8,8.88
4342 006 7	21978.94
43762390	2378149
4.262 2000	$18289{ }^{\prime} 42$
4.3150005	20653.82
4.8327769	$68 \quad 04197$
4 - 8 go 3468	$77686 \cdot 72$
$4^{13} 3{ }^{3} 3436$	13751×30
$4^{\prime 2} 3^{8} 84776$	17331 '96
3*914 3283	$8 \quad 209 \cdot 72$
$4^{\circ} 2378164$	16897.26
$4^{16034021}$	40123.80
4720 S93 2	52588.79
4.543 1175	34923.48
43843246	24 228'39
3. 9403143	8715.94
4×32670 S	10785

statious.	Latitude and longitude.	Azimuth.	Back azimuth.	. To statious.	Log. distance.	Distance in meters.
Maine-continued.	0 , "	- , "	- , "			
Howard	$443744{ }^{677}$	651408.80	244391185	Monut Desert.	4.8632290	$72984 \cdot 22$
	672346.486	$1145^{8} 25 \%$	$2942814 \% 79$	Humpback	4.7944904	$62300 \cdot 34$
1lumpback	44 5: $48 \cdot 770$	91619.46	1891124.63	Momut Desert	$4^{\circ} 7$ 7t 2680	57712.25
	$650635 \cdot 596$	751857.53	$2543506 \cdot 9$	Mount Harris	4.9299270	S5 0999.50
Mount Blue	$444339{ }^{\circ} 45^{\circ}$	3415911 "59	162 10 16.31	Sabattus	4'S34 0489	$65241 \cdot 56$
	$702034 \cdot 175$	$261926 \cdot 5^{8}$	2055917×3	Mount Pleasant	$4{ }^{9} 9356156$	\$6 819 76
Mount Desert	442103.308	$783045 \% 9$	$2575202 \cdot 56$	Ragged Mountain.	48772504	75354.21
	681335×729	1154616.62	2950731×34	Mount Harris	4.9092496	81 14272
Monnt Harris	$44395^{2} 920$	521827.54	2315924.14	Sabattus	4.9734384	$94067 \cdot 34$
	69 os 55.730	$9438{ }^{4} 42 \cdot 84$	$2734^{8819.48}$	Mount Blne	4.977 2671	$94900 \cdot 20$
Mount Independence	434531×774	265548.38	$2064027 \cdot 15$	Agamenticus	4.824 1351	$66701{ }^{\circ} 43$
	$701915: 306$	72463495	2520308.40	Guustock	4.948470 6	88811.75
Mount Pleasant	44 or 34.695	$3061205 \cdot 15$	$126 \quad 325^{8 * 37}$	Monut Independence	4.6999258	$50110 \cdot 16$
	704922.903	$3^{8} 0609 \times 9$	$2174327{ }^{\prime \prime} 3^{6}$	Gunstock	4.8554081	$7168{ }^{\prime}{ }^{\prime} 66$
Pigeon	442716.964	159 or $42 \cdot 47$	$33^{8} 5224.67$	Humplback	4.657 3469	48679×59
	675325.321	2433355.23	$635442 \cdot 66$	Howard	4.641 3745	43789.96
Prince Kegents Redoubt	$445509 \cdot{ }^{2} 3$	232155.30	203174774	Trescott Rock	4.259 3842	$19470 \cdot{ }_{2}$
	67×041 \%	101 5309.22	281334848	Cooper	4.56548 s 2	$36765 \cdot 9.5$
Kagged Mountain	441243.434	842623.93	2634737×44	Sabattus	$4 * 8724429$	74 549'19
	$690906 \cdot 369$	150 16 O1'14	- 1608.59	Mount Harris	$4^{7015444}$	$50297 \cdot 27$
Rye	45 o7 $22 \cdot 650$	$26930 \quad 22.00$	$8944.53 \cdot 68$	Chamcook	4.4295047	$265_{54}{ }^{6} 7$
	672532% \%	121613.6	1921427.44	Cooper	4.190 7270	15514 11
Sabattus	44 os 35 "55\%	$243120 \% 4$	2042116.42	Monnt Independence	4.671 3777	$46922 \cdot 13$
	700444734	77570794	25972604.67	Mount Pleasant	$4.785 \quad 2310$	$60955 \cdot 12$
Trescott Rock	$444530 * 335$	$575042 \cdot 10$	$2373^{58} 344^{\circ}(5)$	Iloward	44302770	$26932 \cdot 52$
	$6706 \quad 32 \cdot 99$	1315603.3	3114052.33	Cooper	4 '350 0997	$38027 \cdot 67$
Tunk	44 33 $21 \cdot 352$	$2445015 \% 1$	$6456_{6}^{52.13}$	Epping West Base	$4 \cdot 1373282$	13.9 .18
	$580541 \cdot 160$	$29535 \quad 27 * 52$	5154029.44	Burke	$4^{\circ} 0216623$	10511.44
New Hampshire.						
Gunstock	43 3102.306	$300325{ }^{1} \times 33$	1210045.86	Agamenticus	4-805 5158	$63902 \cdot 20$
	712212.299	494323.05	2191302.94	Monadnock	4*97.5 2574	94 46i'59
Monadnock	$4^{2} 5^{1} 39.141$	$3361422 \cdot 31$	1562322.41	Wachusett	$4^{-654} 79^{8} 1$	$45 \quad 164 \quad 59$
	7^{2} o6 $31 \cdot 641$	325909.94	$2123715 \cdot 13$	Mount Ton	$4 \% 9131656$	S1 877%
Monnt Washington	$44^{16} 12 \cdot 057$	3 39905 74	$1833^{6} \quad 23$ '95	Gumstock	4.923 24\% :	S_{3} :000 79
	71.1514 .620	$2360204 \% 08$	56422947	Monnt Blue	4 -962 91x 5	$9^{1} 816.03$
Unkonoonuc	$425^{\text {¢ }}$ ' 57.845	24 of 11.10	20354 ol $8^{7} 7$	Wachusett	4.77588302	60093×7
	713520.266	722909091	2520755.50	Monaduock	$4.648^{8} 835$	$4454{ }^{4} 71$
Massachusetts.			-			
Blue Itill	421241933	$116025^{\circ} 31$	$2953136 \cdot 62$	Wachusett	4×494201	$70700 \cdot 11$
	7106.53*495	${ }^{155} 433^{4} 5^{2}$	$335 \quad 2428 \cdot 2.5$	Unkonoonnc	4973 498 2	$94075 \cdot 68$
Copeent	. $41{ }^{4} 4315.235$	1331512 \%	$3130235 * 32$	Beaconpole	4.6476300	4.425 .27
	71033747%	1751790404	. 355145^{2} \%	Bher 11ill	4.7379440	54694954
Creat Meadow	415243 12\%	123445433	3033533.64	Beacoupole	4.365932 :	23223.74
	711.303 .129	1925433.99	125841×54	Blue Hill	4.5792314	3795171
Manomet	$4155.36 \cdot 706$	$594425 \cdot 05$	2392542.09	copecnt	4.655000 .3	45.155 .63
	703529.945	126 : $5132 \cdot 57$	$3055729 * 89$	Blue Hill	4\%729 5131	53.64 .200

Stations.	Latitude and lougitude.	Azimuth.	Back azimuth.	To stations.	Log.distance.	Distance in meters.
Massachusetts-cont'd.	0 ; "	0 , "	0 , "'			
Massachusetts North	$420304{ }^{\circ} 5^{\text {SI }}$	23433.83	182340881	Great Meadow	4.283 1455	19 193*12
Base.	$711225 \cdot 718$	$724403{ }^{\circ} 22$	$2523416{ }^{\prime} 55$	Beaconpole	4'3447577	$21123 \cdot 10$
Massachusetts South	415447907	1264652.66	3064101.58	Beaconpole	4 1788727	15098.32
Base.	711816.951	2074709.72	$275104 \cdot 66$	Massachusetts North Base	$4 \cdot 2387077$	$173^{26} 3^{8}$
Thompron	423639.930	3512140.40	171271743	Manomet	4.8857268	76864 '6s
	704350.053	$1204430 \cdot 14$	3000930.63	Trikonoouruc	49109350	81 46 r "99
Wachusett	$422918 \cdot 755$	241732.42	$204045^{8.96}$	Bald Hill	47975450	62740.07
Rhode Islund.	$715314 \cdot 835$	663643 '04	$2460555{ }^{\circ} 97$	Mourit Toni	4835503 I	$65470 \cdot 44$
Beaconpole	$415940 \cdot 450$	1465003.48	$3263226 \cdot 18$	Wachusett	4.817 2795	65656.77
Connecticut.	$712702 \% 94$	$22855 \quad 17.53$	490847×86	Blue Hill	$4.5655^{\text {SI }} 4$	$36777 \% 43$
Bald Hill (Faitfied Co.)	$411247 \% 87$	$354163^{1 / 28}$	$174 \mathbf{1 8}^{8} 35{ }^{\prime} 50$	West Hills	4.648 1356	44477 \%
	$73 \quad 2842.425$	532143.93	233 14 00 \% 54	Rourd Hill	4.3112363	$20475{ }^{\circ} 5{ }^{\prime}$
Bald Mill (Tolland Co.)	$4^{1} 5^{8} 23.851$	475730.50	$2274712{ }^{\circ} \mathrm{or}$	Box Hill	4.4593562	28797 '59
	721155.844	$824517 \cdot 34$	2620410.02	Ivy	4933714	$85844 \cdot 86$
Box Hill	414757.748	4747 I8 '30	$227277^{\prime} \cdot 22$	Sandford	4\%7459100	$55707{ }^{\circ} 03$
	$722722 \cdot 205$	97225797	$2765^{2} 12 \cdot 72$	Ivy	4.8084203	$6433{ }^{\circ} \mathrm{O}$
Iny	415216.434	205457 'S5	2004426 \$6	Wooster	4.791513 4	61 $874{ }^{\prime} 74$
	731329.707	3331405 '75	1533502.99	Saudford	$4^{7} 7071{ }^{88}$ I	50949.29
Mount Tom	$\begin{array}{llllll}42 & 14 & 29.749\end{array}$	3083005092	$1284^{88} 15 \cdot 19$	Bald Hill	4.678 : 807	47662.93
	$7_{72} 3^{9} 555^{\prime} 574$	$1612{ }^{13} \cdot 22$	1960009.83	Sandford	4'955 070 I	$90171 \cdot 67$
Round Hill	$410611 \% 097$	$3550636 \cdot 16$	$1750757 \cdot 15$	Harrow	4.5312674	33983.45
	$734025 \cdot 520$	$933^{6} 48 \cdot 78$	$2733^{1} 245^{\circ}$	Buttermilk	$4^{\circ} 0617712$	II 528.46
Sandford	41 27 40'743	$291457 \cdot 16$	$2085610 \cdot 16$	West Itills	4.9147160	$82170 \cdot 50$
	725700.074	$745348{ }^{\circ} 60$	$254 \quad 33^{2} 26 \cdot 29$	Wooster	4.669 171 0	$46684{ }^{11}$
Tashua	41 1535.775	$163934{ }^{41}$	$1963240{ }^{\circ} \mathrm{O} 9$	West Hills	47125613	51 589×50
	$73 \quad 15020083$	$745351{ }^{1} 31$	$254440^{\circ} 56$	Bald Hill	4.296 541 3	$19794 \cdot 35$
Wooster	412101906	2964215.07	1165140.62	Tashua	4.3488362	22327.30
New York.	$73 \quad 2918.883$	3545505.52	1745733.87	West Hills	4.776 212 。	$59732 \cdot 68$
Buttermilk	41 o6 34.359	337 18 08.70	1572452.90	Harrow	4.573 62S 3	37465.22
	734839.626	504843 '39	$2303355 * 67$	Weasel	4.611 5426	$40882^{\prime \prime} 9^{\prime \prime}$
Fire 1sland East Base	4040 O1 370	$725954{ }^{\prime \prime} 96$	$2525342^{\circ} 31$	Fire Islaud West Base	4.147953 5	14058.97
	730320690	$1853247 \cdot 29$	$53340 \cdot 57$	Kıuland	$4 \cdot 296$ 291 1	$19782{ }^{\prime \prime} 9$
Fire Island West Base	$403747{ }^{\prime} 708$	1390350.98	$3185534 \% 92$	West Hills	44345430	27 195.38
	$73125^{\prime \prime} 757$	212433641	$325043{ }^{\circ} \mathrm{00}$	Ruland	4.452 i 734	28325.23
Harrow	404753.430	$464640 \cdot 35$	32623 41.32	Beacou Hill	4.8364667	$68622 \cdot 52$
	$733^{5} 22$ 2949	$785441{ }^{7} 49$	$258 \quad 2635.67$	Springfield	47910099	61 803.04
Ruland	$405^{0} 39$ '695	$842743^{\prime 2}$	2641218.67	West Hills	4×522397 I	33 296*39
	73 or 59.070	1582726 '10	3381851 -86	Tashua	4.695 8476	4964188
West Hills	$404852 \cdot 117$	$84 \times 43^{\circ} \mathrm{01}$	2640614.93	Harrow	$4^{\circ} 25^{8} 5902$	18138.03
New Jersey.	$732533 \cdot 130$	1465723.22	3264737.59	Ronnd Hill	$45^{82} 434$ I	38232.62
Beacon Hill	402224.457	$540437{ }^{\circ} 07$	2335544 *04	Disboro	4.381086 I	$24048 \cdot 39$
	$741342{ }^{\circ} 595$	89 II 18:23	26858202 '79	Mourit Rose	4.624 1928	$42091 \cdot 35$
Burdeu	39 31 46 -807	921943.45	272 o6 19.93	muck	4.4795507	30168.29
	$752253{ }^{\prime} 468$	1254211 '79	$3052934 * 66$	Meetinghouse Kill	4*5419139	$34826 \cdot 82$

stations.
Niew Jersey-contt d .
Dishoro

1,ippincote

Nount Holly

Nonnt Rose

I'ine Ilill
springfield
stony Hill

Weasel

Pennsylvania.

Bethel

Newtown

Willowgrove

Vard
Delaavare.
Buck

Meetinglouse Hill

Marvland.

Finlay*

Hill*

Kent Island North Bace*

Kent Island South Hase ${ }^{*}$

I,instid*

Narriott *

Maryland Heights*

Iatitude aud
longitude.

$$
\begin{array}{r}
0 \\
\text { so } \\
74
\end{array}
$$

$$
\begin{aligned}
& \text { s0 } 1446 \cdot 206 \\
& 842726 \cdot 539
\end{aligned}
$$

$$
3943 \quad 18: 439
$$

$$
75 \text { in } 50.435
$$

$$
400006^{\circ} 99^{\prime}
$$

$$
744720 \cdot 003
$$

$$
\begin{array}{llll}
40 & 22 & \text { ol } & 305 \\
74 & 4 & 26 & 26
\end{array} 437
$$

$$
74 \quad 4.3 \quad 26 \cdot 437
$$

$$
394751 \cdot 982
$$

$$
\begin{array}{rr}
3947 & 51902 \\
7459 & 36 \cdot 725
\end{array}
$$

$$
404120.05
$$

$$
7421 \quad 25 \cdot 8 \%
$$

$$
\begin{aligned}
& 400710 \cdot 408 \\
& 7434 \quad 53 \cdot 452
\end{aligned}
$$

$$
\text { so } 5234^{\circ} 725
$$

$$
741112.916
$$

$$
395044^{1}
$$

$$
752925 \circ 9
$$

$$
401.5 \text { or } 3
$$

$$
745514 \times 5
$$

$$
\text { 40 or } 29.8
$$

$$
75 \text { of } 22^{\circ} 9
$$

$$
395 \text { si } 22 \cdot 673 \quad 347
$$

$$
7523
$$

$$
39.3224^{\circ}
$$

$$
7543
$$

$$
\begin{aligned}
& 3942 \\
& 7542
\end{aligned}
$$

$$
7542
$$

$$
\begin{aligned}
& 392 \\
& 76
\end{aligned}
$$

$$
\begin{aligned}
& 3^{n} 535^{2} 767 \\
& 765250: 32 \mathrm{~N}
\end{aligned}
$$

$$
\begin{array}{lr}
3 \times 5 \times 24.429 & 64 \\
762027.924 & 135
\end{array}
$$

$$
\begin{aligned}
& 345351 \cdot 73_{7} \\
& 762155 \cdot 789
\end{aligned}
$$

$$
\begin{array}{llll}
390519^{\circ} 591 & 24 & 26 & 04^{\circ} \\
-6 & 00 & 00 & 36
\end{array}
$$

$$
7629.09 .3 .6 \quad 903447.58
$$

$$
3^{8} 5225 \cdot 417 \quad 963735^{\circ} 0
$$

$$
\begin{array}{llll}
76 & 36 & 35 & 724
\end{array}
$$

$$
392025 \cdot 561 \quad 35 \hat{x} 4.310 * 5
$$

$$
774300.445 \quad 340056 \cdot 5
$$

To stations.
Back aximuth.

$$
0 . \quad 1
$$

$2165421 \cdot 32$ Story Hill
$30032 \quad 27.66$ Mount Rose

4.420 656	263424 s
4344465.	22103.73
$4: 532554$	$34084{ }^{32}$
4*456957	$28635 \% 99$
4*7094037	51215%
4477625	30.034 .88
4.32533 .4	$21153 * 11$
$44^{4} 5{ }^{5} 38$	28729.52
4.589931	35 S9S 37
4.56449%	$36685 \cdot 81$
4675473	$47366 \cdot 72$
4342240	$21990: 79$
$4 \cdot 509657$	${ }^{32} 333$ '87
$4^{6} 71752$	46962.65

$43103936 \quad 20435 \% 9$
$4.5599146 \quad 36 \quad 300 \cdot 67$
4.473 9847 $29784 \cdot 12$
$4^{\circ} 29^{\circ} 6858$ 19 $892 \cdot 33$
$4^{\circ} 4942807 \quad 31209.06$
4.595 $2307 \quad 39375$ "92
$4^{\circ} 4.46145 \quad 5 \quad 295^{2} \cdot 5^{\circ} 48$
$4^{\circ 221} 9489 \quad 16670 \circ 51$
$4.4140631 \quad 23945 \cdot 56$
$4.33^{1} 2796 \quad 0 \quad 24143.27$
$\begin{array}{llllll}4^{\circ} 2 S_{3} & 056 & 5 & 19 & 189 & 18\end{array}$
4 *454 1596 29455.06
$4.5503163 \quad 35507 \cdot 19$
$4.574 \quad 2619 \quad 37519.92$
$4.4526098 \quad 30381 \cdot 54$
$4^{\circ} 42099 S_{3} \quad 26363 \cdot 21$
$4.4117657 \quad 25808 \cdot 67$
4. $253398 \quad 17922 \cdot 48$
$43254440 \quad 21303 \cdot 16$
4'1435291 $13916 \cdot 47$
$4 \times 417956 \quad 2 \quad$ 26 179×19
$4^{\circ} 2142040 \quad 16375 \times 6$
$43737199 \quad 2364394$
$4.3923247 \quad 24678: 7_{4}$
4:707 75.3 $2 \quad 51021.49$
4 '4.'s $1223 \quad 7553049$

* Stations in common with and fixed by the transcontinental triangulation.

Stations in common with and fixed hy the transcontinental triangulation.
$4192-N O .7-02-16$

Stations.	- Jatitude and longitncle.	Aximuth.	laack azimuth.	. To stations.	Log. distance.	Distance in meters.
f'ivginia-contimed.	- ,	- , "	- , "			
spear*	3-33 40'751	$904350 \% 2$	$270 \quad 2512$ as	Tobacco kow	4571326	37785×59
	ブ 4547 '192	1642509.04	$3+4{ }^{20} 00.566$	Huupback	$4 \cdot 6492.2834$	$44594 \cdot 7^{2}$
Tobacco Row*	373353.394	1244032.20	$3041616 \cdot 15$	Bald Kıob	4.849 0.428	70638%
North Cavolima.	7911126704	211 of 07'74	311150.01	Himmback	4 Froh 3395	$49695 \cdot 07$
Benur	353352.827	$2201810 \% 43$	$40355^{1} \cdot 27$	Poore	4.8461670	70172.51
	813938.032	2575653×55	$7^{8} 3^{2} \quad 18 \cdot 85$	Vonng	4.971 705 4	$93693^{\prime 2}$
King	351225.649	${ }^{141} 3339^{\circ} 1^{1}$	$3212134 \cdot 31$	Bem	47051366	50715.02
	$81 \quad 1846 \cdot 057$	$2253450 \cdot 93$	$455^{51} 00 \cdot 4.3$	Vomus	4.9255307	$84242 \cdot 39$
Monut Mitchell	354551 '44	$1962756 \cdot 26$	163208% \%	Koan High Bluff	4.5796309	$37956 \cdot 64$
	831555.02	2915044.49	1121153%	Benn	4771325 8	$59064 \cdot 30$
Moore	362351403	${ }_{159}{ }^{5} 33$ 32.10	$3382634 \% 89$	Buffalo	4.676 3564	47463.13
	So $1659 \% 76$	1963448.69	$164424 \% 74$	Cahas	4920554	S3 282.60
Poore	$360245 \cdot 446$	2160054.42	$362506 \cdot 19$	Buffalo	$5^{\circ} 013257^{\circ}$	$103099{ }^{\prime} 60$
	$810924 \cdot 748$	$2431933 \cdot 69$	$635032 \cdot 14$	Moore	$4 \cdot 9430257$	57705.65
Koals High Bluff	$360533 \cdot 179$	273 or 48.50	$933644 * 46$	Poore	49505236	$89232 \cdot 61$
	82 of 44.634	3230232.54	1431934.95	Belnn	4.564 269 I	73159.22
Voung	$354412 \cdot 276$	$1265252 \cdot 65$	3063458.00	Poore	477586445	$57364 \cdot 67$
Sonth Carolina.	$803851 \cdot 665$	$2040042 \cdot 26$	$24{ }^{13} 344^{64}$	Moore	4.9049125	So 341.98
Hogback	$351010 \cdot 003$	$23^{2} 2249{ }^{\circ} 92$	$524443 \cdot 12$	Benir	4.855 12.	$72131 \cdot 33$
	821726.782	305 4412.69	$125.56{ }^{27} 81$	Wofford	4.6020196	$39996 \cdot 25$
Manldin	344916.196	1572659.56	3372319×17	Pimacle	$44055^{86} 3$	25444×5
	$823.505 \cdot 506$	$236 \quad 56 \quad 13 \cdot 57$	579353.95	Paris	4336665 5	$24376 \cdot 17$
Paris	345627 '015	203234177	$23.2750 \cdot 87$	Hogback	44415437	$27640 \cdot 36$
	822440.474	267 1815.89	87343737	Wofford	4.638655 :	$435^{16 \% 62}$
rinnacle	35 or 58.585	2493913779	$695447 \cdot 43$	Hogback	46416975	$43822 \cdot 54$
	824430.447	${ }_{2} 8583^{6} 33^{1} 35$	1084753%	Paris	4.5032904	31863.27
Woftord	$345730 \cdot 072$	2001839×13	2028 10.18	Benn	4 * 8559012	$71763 \cdot 10$
	815607174	2435346.98	641515% OS	King	4 S00 2103	$63 \quad 126 \cdot 29$
Academy	$335 \% 30 \cdot 366$	824239.78	$2623427 \cdot 87$	Atlanta Northeast Hase	$4.355^{5} 1179$	$22509 \% 1$
	$835928 \cdot 860$	1530653.34	333 or 11'19	Saswee	4.5383342	34540×94
Atlanta Middle Base	335419.447	2320809.06	52093184	Atlanta Northeast Base	$3^{\prime 6} 635950$	4826.03
	$84 \quad 163^{8 \cdot 136}$	$3122232 \cdot 71$	$132 \quad 2655 \% 60$	Stone Mountain	4.2156453	16430.41
Allanta Northeast Base	335555.564	1261504.86	306104894	Sweat Monntain	44014563	25.203 .24
	$841409{ }^{\prime} 791$	1913622.37	$113^{8} 54^{\circ} \mathrm{O}$	Sawnee	4.536534 S	34421.90
Atlanta Sonthwest Base	$335249{ }^{\circ} 530$	$2320651 \cdot 76$	520931.84	Atlanta Northeast nase	3.9702761	933848
	88 18 $56{ }^{\circ} 756$	2975154.29	117 56 54.30	Stone 3tountain	4.2494706	${ }_{17} 761.3$
Blood	344420.949	2463402.45	665353.35	Kabun	4-802 2677	63 426.06*
	83.5613 .609	2941538.14	$1143446 \cdot 12$	Currahee	4.7520545	$56503 \cdot 39$
Carnes	$3359 \cdot 33 \cdot 442$	$2233155 \cdot 32$	434436 86	Pine log	$4 \% 7019677$	$503.46 \cdot 31$
	$8500.50 \cdot 35 \%$	${ }^{272} 3429.97$	924904×34	Kenesaw	4.604 153 7	$40.196 \cdot 0{ }^{\text {c }}$
Currahee	$343142 \cdot 855$	1851026.00	$81302 \cdot 19$	Kaloun	4.68982 .51	$45^{5} \mathrm{~S} 97{ }^{\circ} 3$
	$83.3233 \cdot 706$	$244145^{8,60}$	$644016 \cdot 60$	Mauldis	4.8,6702	$75 \quad 283.90$
Grassy	3429 os. 280	232 ol 27 \% S_{5}	$521454 \cdot 33$	Blood	$4^{66610442}$	$45 \quad 818.85$
	$8419.53{ }^{\circ} 405$	2673713.27	875755%	skith	$4 \cdot 74816 \mathrm{I}_{\text {S }}$	55996.62

[^35]Stations.
Georgia-continued.
Gulf Point
Johns
Kenesaw
Lavender
Pine Log

Pine Log	$341916{ }^{\circ} 00$
-	$843^{81} 14{ }^{\circ}$

Kabuı

Sawnee

Skitt

Stone Mountain

Sweat Mountain
Alabama
Alpine

Aurora

Eargenier	31 $5914 \cdot 45$ $86 \quad 36$ 51$\cdot 35$

Brandon

Cahaba

Cat Island

Cedar Point

Cheehahaw

Cold Creek

Coonl

County I, ine

Creagh

Daphne
Latitude a
longitude
$0, \quad$. $\begin{array}{lll}34 & 37 & 29 \cdot 82 \\ 85 & 28 & 02\end{array} 82$ $3437 \quad 20^{\prime} 912$
$8505 \quad 54^{\prime 2} 12$
$335^{8} 32 \cdot 06$ $84344^{\circ} 0$
$341917^{\circ} 2$ 8517187
nd
2
3
$270 \quad 21 \quad 36.61$
$356 \quad 37 \quad 55.63$
$3080841^{\prime} 55$ $274^{40 \quad 24.62}$ $17206 \quad 1342$ 2282851.33 269 51 It $\cdot 27$ $3250929^{\prime} 15$ 843814 O12
$345753^{\circ} 4$ $831759^{\circ} 67$
$34 \quad 14 \quad 09.82$ $840939^{\circ} 19$ $\begin{array}{lll}34 & 30 \quad 18 \cdot 26 \\ 83 & 43 & 20 \cdot 2\end{array}$
$334^{5} \quad 19^{\circ} 771$ $840546{ }^{\circ} 239$
$340359^{\prime 1} 13^{9}$ $842721: 883$
$33 \quad 24 \quad 40^{\circ} 29$ $86 \quad 12 \quad 27^{\circ} 492$
$340845 \cdot 503$ 86 II or ${ }^{\prime}$ I $86365^{1} 35$
$342305^{\circ} 005$ $85 \quad 45 \quad 13.034$

334445118 $863133 \cdot 36$
301854° $881238 \cdot 8$
$302042^{\circ} 4$ 880717.561
$33 \quad 2905 \cdot 692$ $854^{8} 31^{\prime} 422$
$305725^{\circ} 027$ S8 0520.666
$311448 \cdot 358$ $880543 \cdot 81$

315750 *224 $864^{8} 12714$

| 31 | 36 | 15 |
| :--- | :--- | :--- | 130 $\begin{array}{llll}87 & 41 & 03 & 677\end{array}$

$\begin{array}{lll}30 & 36 \quad 05762\end{array}$ $8754 \quad 16.946$

90, 11
$903411 \cdot 56$ Johns
1763921 02 Iudiau
1282421 '18 Pine Log
$2073357^{\circ} 13$ I, avender
Log. dis-
taisce. $\begin{gathered}\text { Distance ins. } \\ \text { meters. }\end{gathered}$
$4.5295379 \quad 3384^{\circ} \cdot 3$ 4.820337 I 66120.65
$47321290 \quad 53967^{\circ} 09$ 4.576 I76 5 3768570
$4.5^{87} 6664 \quad 3^{8} 696 \cdot 03$
$4^{\circ} \mathrm{I} 822149 \quad 15213.00$
$47777508 \quad 5994470$ 4.647387944400 .50
$335^{15}{ }^{\circ} 13$ $44866 \cdot 28$
$\begin{array}{lll}4.6519201 \\ 4.7118767 & 51 & 508 \cdot 24\end{array}$
4798278 I 62846.07
4.502751 8 31 823.79

4'700 $5339 \quad 50$ 180 95
$4.5131465 \quad 32594 \cdot 66$
$4 \cdot 503$ 801 o $31900 \cdot 76$
$4.212738 \quad 16 \quad 320.68$
$4.3464003 \quad 22202.42$

4'516 084 1 $\quad 328_{15}$ '89
4.5197395 $33093 \cdot 26$
$\begin{array}{lllll}4 \cdot 676 & 196 & 3 & 47 & 445\end{array} \cdot 64$
4 '579 566 6 37 98I'02
$4.6779995 \quad 47643{ }^{\circ} 04$

4.852	2027	71	154

$4^{\circ} 44^{8} 35^{8} 9 \quad 28077$:53
$\begin{array}{llll}4.4976684 & 3^{1} 453.46\end{array}$
4'573 $1889 \quad 37427$ '34
$4^{\circ} 6958379 \quad 49640$ '70
$4{ }^{\prime} 73^{6} 4367 \quad 54505{ }^{\circ} 05$
$4.8608044 \quad 72577$ '90
e $4^{\circ} 0092138 \quad 10214 \% 42$ $9172 \cdot 61$

1082576
16918.31

4'909 1451 81 $123 \cdot 20$
$4.8457638 \quad 70107.39$
4 '507 $0029 \quad 32 \quad 136.82$
$44686730 \quad 29422 \cdot 05$
$4.55^{8} 422 \quad 36 \quad 176 \cdot 14$
4.6192934 41619 17
$\begin{array}{llll}4 * 357 & 278 & 22765 & 56\end{array}$
$4 \cdot 2571200 \quad 18076 \cdot 73$
$4 \cdot 7252764 \quad 53: 22 \cdot 24$
4.415967×26059.56
$4.404704 \quad 25 \quad 392.44$
44793410 yo 153.73

Stations.	Latitude and longitude.	Azinuth.	Back azinuth.	To stations.	Log. dis. tance.	Distance in meters.
Alabama-continned.	- " 1	- , "	"			
Dauphin Island East	301454 \%47	1650603.75	$34503 \quad 37$ '99	St. Eilmo	4.4755272	29890.09
Base	8800814.813	2S142 19.32	1014546.33	Fort Morgan',	40502034	11225.44
Damphin Island West	301419.561	264×1123.52	84 $14433^{3} 3$	Dauphin Island East Base	$4^{\circ} 02788^{11} 9$	10661.83
Base	$88145^{\circ} 558$	$2730847 \cdot 15$	$931533{ }^{\circ} 90$	Fort Morgan	4.3351342	$21633{ }^{\circ} \mathrm{S} 7$
Dean	$3^{1} 0040 \cdot 292$	${ }_{131} 4327 \times 82$	311 $3354 \% 2$		$4 * 5944299$	39303.38
	$874715 \% 226$	$20852{ }^{3} \cdot 111$	$28 \quad 56 \quad 27 \cdot 58$	Red Hill	4.397629 5	$24952 \cdot 13$
Ethridge	320443.931	$2455252{ }^{\circ} \mathrm{O}$	660024.52	Lovers L.eap	$4 \cdot 3878686$	24426.92
	870329.565	2975018.42	$1175^{8} 24.57$	County Line	$4 * 4349916$	$27226 \cdot 49$
Fatama	${ }^{31} 53310091$	219093186	39151297	Fthridge	4.4272418	$26744^{\prime 9}$
	871413.528	$25^{8} 5211 \cdot 33$	$790556 \cdot 77$	County Line	4.6208733	41770 '85
Fort Morgan	301340 '307	$1490717 \cdot 14$	3290123.61	St. Elmo	475602780	$3^{6} 331 \times 5$
	880123.757	$195 \quad 203^{8.09}$	$152414 \% 17$	Daphne	4.6331496	42968.45
lort Morgan, Ast. Az. Station 1847	$301340 \cdot 301$	$93 \quad 1536$	273 of 49.27	Dauphin Island West Base	4.3351203	$21633 \cdot 17$
	SS or $23{ }^{\prime} 784$	1435950.69	$323565^{2} \cdot 27$	Cedar l'oint	4.206 1437	$16074 \% 73$
Gunter	343404.490	29743 27\% 43	117574083	Braudon	$4^{6} 6385796$	43509.05
	$861020 \cdot 627$	$116 \quad 10 \cdot 17$:81 $1547{ }^{\prime 2}$	Alirora	4.6703897	$46815{ }^{\circ}{ }^{1}$
Horı	$331750 \% 262$	$1353734{ }^{\prime} 97$	$31533: 1183$	Alpine	4.2475640	17683.33
	$860428 \cdot 886$	$2295158{ }^{1} 5$	500045%	Cheehahaw	4.5096255	$32331{ }^{\circ} 47$
Indian	34 of 47.608	$2011629 \cdot 13$	$212105 \% 8$	Lavender	4.540 5243	34715.57
	$85 \quad 2531.412$	2760534 '01	961922.45	Carnes	4.5§2 3753	$3^{8} 227{ }^{\prime \prime} 45$
Jamison	325554.510	$21827{ }^{6} \cdot 25$	$3^{8} \quad 3644 * 49$	Kahatchee	$4^{6621} 3502$	41816.74
	863821.461	2590753.40	$7917 \quad 10 \% 8$	Weogufka	4.4329113	$27096 \cdot 38$
Kahatchee	$\begin{array}{llll}33 & 13 & 36.299\end{array}$	2144504.5 ?	$345006 \cdot 42$	Alpine	$4 \cdot 3963610$	24909.27
	$86 \quad 21 \quad 37{ }^{\circ} 002$	$2533^{2} \quad 15 \cdot 48$	734139.37	Horis	4.4430567	27736.82
L,aurel	332349.014	1873211.55	7340155	Cahaha	4.5914826	$39037 \cdot 55$
	$86345^{\circ} \mathrm{2} 86$	$26717{ }^{17} 9.53$	872959.89	Alpiue	4541410	$34786 \cdot 45$
Lovers Leap	$321007 \cdot 200$	1772723.26	$3572643 \cdot 40$	Parker	$4^{6} 6411911$	$43771 \cdot 46$
	$864918 \cdot 648$	$240 \quad 10 \quad 22 \cdot 47$	601706935	Lowndestroro	4.358925	22852.04
L,ourndesboro	321615.581	1461183.53	$3260347{ }^{\circ} 53$	Parker	4.591 OSI 3	$39001{ }^{\circ} 5$
	863641.140	1951941.96	152328.61	Wilder	4.6196193	41 650.41
Midway	${ }^{31} 4303.463$	1370559.66	3165959.11	Fatama	$4 \cdot 4217723$	$26410 \cdot 24$
	870249487	2200602.24	$401344 \% 6$	County Line	4*553 155 5	35740 \% 8
Minette	305207.453 .	1125033.81	2924303.26	Cold Creek	4.4024020	25258.17
	875043.649	1991730.87	191918.03	Dean	4.2236096	$16734 \cdot 3^{8}$
Mount Carmel	320114×72	81 4325 "91	${ }^{261} 345^{8} 8_{4}$	Bargenier	4.4045187	2538.58
	$86 \quad 2054 \cdot 584$	138173794	3180914.30	Lowndesboro	4.5709467	$37234 \% 60$
Parker	$32.3346 * 821$	$1535403 \cdot 18$.	333502276	Perry	$43^{88} 32301$	2416741
	$865033 \% 110$	2563128.49	764244.26	Wilder	4.5266296	33622.47
Perry	$324531 \cdot 190$	2365907.26	570925 \% I	Jamison	4.5480553	$35322 \cdot 81$
	$8657 \quad 21 \times 552$	$2 S_{7} 4112.26$	107561047	Wilder	46579534	$45493{ }^{\circ} 93$
Proint Aux Pins	3022 or '836	$3000357^{\circ} \mathrm{C} 5$	1200705954	Cat Island	$4 \% 0614191$	11519.11
	¢5 18 51 990	$3354132 \cdot 18$	$1554333^{\circ} 50$	Danjhin Island West Base	$4 \cdot 1936052$	15617.27
Pollard	31 $2746 \cdot 614$	2041709.00	242418.11	Fatama	4.717-7670	52218.60
	$872750 \cdot 666$	$2342307 \cdot 18$	$54 \quad 3613^{\circ} 60$	Midway	4.6868189	$48620 \cdot 44$
Red Itill	311230.412	1532619.69	3332145 \% 1	White	44939647	$31.186 \cdot 36$
	8.7.39 39\% 490	$213.32 \mathrm{II} 8^{8}$	3338820.43	Pollard	4.529843	$33872 \cdot 18$

Stations.
Alabama-continued.
Rowe
St. Elmo
Spring Hill
summit

Weogıfka

Wetumpka

White

Wilder
Wilson
Wornock
Mississippi.
rellefontaine

Bayou Casotte

Cat Island 1852

Cat Island 1855

Cat Island Light

Deer Island I

East Pearl River

East Pascagoula
Grande Batture

Horn Island Fast Is55

Horn Island West

Mississippi City

Petit Bois

Latitude and
longitude.

Log. dis- Distance itr
tance.
rueters.
tance. sueters.
4.5111499
$32445 \cdot 16$
$4.5721152 \quad 37334 \% 1$
$4.33^{8} \quad 3865 \quad 21796.49$
$4.501 \quad 323 \quad 3 \quad 31719 \cdot 28$
$4.4694578 \quad 294755^{\circ} 27$
$4.5390295 \quad 34596 \cdot 29$
$4.695149249562 \cdot 05$
$4.4549251 \quad 28505 \cdot 27$
4.4415625 57641×55
$4.6438716 \quad 44 \quad 042.46$
$4.4807405 \quad 30251.06$
$47115204 \quad 51466 \cdot 00$
$4 \cdot 2950039 \quad 19724 \cdot 40$
$4: 5140174 \quad 32660.09$
$4 \cdot 5539090 \quad 35802 \cdot 14$
$4.6059824 \quad 40362.91$
$4^{\circ} 47^{8} 573 \quad 3 \quad 30 \quad 100$ '47
4.5883923876076
4.481 $1945 \quad 30 \quad 282.69$
$4.5051341 \quad 31998 \cdot 83$

- $4 \cdot 196839 \quad 15 \quad 733 \cdot 96$
$3.9946188 \quad 9876$ '86
$39508294 \quad 8929.55$
$4.0852257 \quad 12168 \cdot 18$
$\begin{array}{lll}4^{\prime} 180 & 939 & 15168 \cdot 37 \\ 4 \cdot 207 & 760 & 16\end{array}$
$4 \cdot 207 \quad 760 \quad 16 \quad 134 \quad 67$
4.207942 $16 \quad 141$ '43
$4.236 \quad 793 \quad 17 \quad 250 \cdot 15$
$4.058394 \quad 11439 \cdot 16$
$3.9555^{11} \quad 902632$
4.049 $1990 \quad$ II $199 \circ 51$

4'195 161 $4 \quad 15673$ '34
$4.012962 \quad 10302.96$
$4.094055 \quad 12418.09$
$3.5462953 \quad 3518 \cdot 00$
$4 \cdot 1356002 \quad 13664 \cdot 70$
$4 \circ 535132 \quad 11311 \cdot 32$
$4 \cdot 281040 \quad 19 \quad 100 \cdot 30$
4'196 $0339 \quad 15704 \cdot 85$
4'1219420 13241"65
$4 \cdot 287827 \quad 19401 \cdot 16$
$4^{\circ} 2639719 \quad 18 \quad 364^{\circ} 19$
$4 \times 304316 \quad 20151$ "90
$4315662 \quad 2068531$
4'134 862 $2 \quad 13641 \cdot 50$
$41726730 \quad 14882 \cdot 40$

Stations.	Latitude and longitude.	Azimuth.	Back azimuth.	To stations.	L.og. distance.	Distance in meters.
Mississipti-continued.						
Pitcher loint 2	301954.661	2494500.5	$694932{ }^{\circ}$	Mississippi City	$4^{1} 184451$	15291.53
	\$9 10 54 '368	3134513.3	133 4\% $399^{\prime \prime} 9$	Cat Island 1855	$4 \cdot 180886$	${ }^{15} 166 \cdot 52$
Point Clear	$301547 \cdot 120$	2491724.4	$692346{ }^{1}$	Pitcher Point 2	4.334 601	21607.32
	892330.992	3241132.4	$1341619{ }^{17}$	Bayou Pierre	4.3303×6	21.398 .63
Ship Island 1855	301426.509	2045918.5	250116.3	Deer Island I	4 1692095	$14.764 \cdot 19$
	$885319{ }^{1663}$	2650957.4	851504%	Horn Island West	$4^{* 2141773 .}$	- 16374.85
South Point	301113.376	1285516.1	309 5324.6	Cat Island Light	3.881 619	7614^{1114}
	890559.440	20854277	285525.5	Cat Island ${ }^{8} 55$	3.802 717	$6349 \cdot 17$
Lousiana.						
Battery Bienvenue	$295902 \cdot 847$	2193818.8	$394036 \cdot 8$	Fort Wood	$4^{\circ 063} 829$	11583.21
	89 52 $51 \cdot 433$	$314 \quad 5807.5$	1345929.6	Martello Tower	3794728	$6233 \cdot 44$
Bayon Pierre	300742 '355	$1921530 \% 9$	$12: 703.3$	Pitcher Point 2	4*363 173	$23076 \cdot 66$
	$891357{ }^{\prime} 793$	$23^{2} 4406 \cdot 7$	5249051	Cat Island 1852	4.299 6่70	1993747
Caernarvon	$295149 \cdot 307$	$1775553{ }^{\circ}$	35755477	Ducros	$3 \cdot 894517$	7843.63
	$895515 \cdot 512$	$2224553{ }^{\circ} 9$	424827%	Martello Tower	4.085847	12185.60
Ducros	295603.880	$2165653 \cdot 5$	$365^{8} \quad 10 \% 7$	Battery Bienvenue	3.838614	6896.27
	89 $5526 \cdot 070$	2623726.5	8240057	Martello Tower	3.9359322	8628.44
Fort Wood	300352.460	$2360850{ }^{\circ} 4$	$\begin{array}{lllll}56 & 13 & 26 & 9\end{array}$	Rigolet Light	4.249 405	$1775{ }^{\circ} 45$
	$8948: 5.553$	$2654858 \cdot 1$	$855232{ }^{\prime} 5$	Shell Point	$4^{\circ} 060338$	11490.48
Grand Island $8_{5}{ }^{2}$	300549.748	1914445.8	${ }_{11} 45{ }^{36} 1$	Point Clear	4.118 166	1312702
	$892510.95{ }^{2}$	2763123.8	$96 \quad 3708.8$	Bayon Pierre	$4 \cdot 258550$	18136.35
Grand Island 1855	$300858 \cdot 526$	1934933.5	$135^{50} 33^{18}$	Point Clear	4.112 517	12957.37
	$89 \quad 25 \quad 26 \text { 819 }$	$2771200 \cdot 3$	971746%	Bayou Pierre	4.269 285	18590.24
Malheureux Point	$300424 \cdot 258$	2183025%		Grand Island 1855	$4{ }^{0033} 214$	$10794 * 79$
	892937 '958	$3025402 \cdot 2$	$12255 \cdot 32 \cdot 5$	Nine Mile Bayou	3 \%9S1 100	9574.14
Martello Tower	295639.747	$1923733{ }^{\circ}$	123888	Fort Wood	$4^{-135}{ }^{271}$	${ }^{13} 654 \times 35$
	$895006 \cdot 982$	26213073	821625.8	Proctor Point 1853	$4^{\circ} 031758$	10758 '66
New Orleans, st. Patrick's Church	$295645 \cdot 248$	2750742.1	$951204{ }^{4} 4$	Ducros	4*150 739 I	14149.44
	900411.530	3021926.4	1222353.6	Caernarvou	$4 \cdot 2310662$	$17024 \cdot 18$
Nine Mile Bayou	30 or $35 * 344$	174 3: 12\%	$3543047^{\prime 6}$	Grand Island 1855	$4^{1137} 007$	13709.04
	89 2437900	$2392432 \cdot 1$	592636.1	Oyster Bayou 1855	3.886 843	$7706 \cdot 25$
Oyster Bayon ${ }^{8} 55$	300342.646	$1404735{ }^{\circ} 5$	32045067	Grand Island 1855	4 098857	$12556 \cdot 16$
	$892030 \cdot 242$	$2345319{ }^{\circ} 9$	5456367	Bayon Pierre	$4 \cdot 108621$	${ }^{12} 884165$
Proctor Point 1853	295726.888	$1470948{ }^{49}$	3270725 "8	Fort wood	4*150 236	14133.05
	${ }^{99} 43$ 29 444	3963815.5	$163929 \% 7$	Shęll Point	4.122 559	13.260 .47
Rigolet I,ight	300913.411	${ }^{255} 2745.4$	75 3: 35.2	East Pearl River	4.101 598	$12635{ }^{\prime} 66$
	S9 3904.455	3002234^{46}	1202718.8	Malheurenx Point	4'245 179	${ }^{17} 5886.48$
Shell l'oint	300419 '492	2000105%	2002076	Rigolet Light	3.98 .3750	9632.74
	894107675	$2692948 \cdot 7$	S9 3534.3	Malheureux Point	4.266 540	$18473 \cdot 11$

D. ADDITIONAL GEOGRAPHIC POSITIONS OF ASTRONOMIC STATIONS FOR WHICH TRIANGLES ARE NOT GIVEN IN THIS PAPER AND WHICH WERE DERIVED DIAFERENTIALLY.

Stations.	Latitude.			Longitude.		
Maine.	-	,	" $/$	-	,	"
Bangor	44	48	$14 \cdot 19$	68	47	O1 20
Cape Small	43	46	$41 \cdot 24$	69	50	45^{20}
Farmington	44	40	$20 \cdot 78$	70	09	$18 \cdot 40$
Isles of Shoals, astronomic latitude station	42	59	$12 \cdot 87$	70	36	51'19
Massachusetts.						
Cambridge, Cloverder Observatory	42	22	$44 \cdot 28$	71	07	18.46
Cambridge, Harvard Observatory	42	22	5148	71	07	$44^{7} 7$
Indian	41	25	44×75	70	40	4154
Shootflying	41	41	05 34	70	20	$50 \cdot 59$
Rhode Island.						
New York.						41 5^{2}
New York, Rutherford Observatory	40	43	$49 * 37$	73	59	${ }^{15} 513$
Delaware.						
Cape Henlopen Light-House, astronomic azimuth station*	38	46	$39^{\circ} 4^{2}$	75	05	$03 \cdot 52$
Dover, astronomic latitude station	39	09	$18 \cdot 59$	75	31	24.56
Dover, astronomic longitude station	39	®9	18 '59	75	31	$24^{\circ} 51$
Maryland.						
Rockville, astrononic latitude station	39	${ }^{0}$	09.08	77	09.	$37 \cdot 20$
District of Columbia.						
Causten	38	55	$33 \cdot 16$	77	04	24.37
Georgetown University Observatory	38	54	$27 \cdot 81$	77	04	39.61
Seaton	38	53	26 '82	77	-0	00 10
United States Coast and Geodetic Survey Office, transit in yard	. 38	53	10 ol	77	-	3271
United States Naval Olservatory, old site, dome	38	53	$40 \cdot 12$	77	03	$06 \cdot 68$
United States Naval Observatory, Georgetown Heights, center of clock room	38	55	14×9	77	04	02 So
Virginia.						
Charlottesville, McCormick Observatory	38	or	$55{ }^{\circ} 9$	78	3^{1}	21.15
Elliott Knol, astronomic azimuth station*	38	O9	$57{ }^{\circ 2}$	79	18	$51 \cdot 84$
Strasburg, astronomic latitude station	38	59	27.81	78	21	$39^{7} 74$
Strasburg, astronomic longitude station	38	59	27×82	78	21	$39^{\circ} 54$
North Carolina.						
Statesville, astronomic longiture station	35	46	54×34	So	53	$40 \cdot 44$

* Stations in common with and fixed by the transcontinental triangulation.

THE EASTERN OBLIQUE ARC.

Atlanta, astronomic station
Alabama.
Jower Peach Tree, astronomic station
Mobile, astronomic station
Montgomery, astronomic station
Louisiana.
New Orleans, astrononic station of 1858
New Orleans, astrononic station of 1880 and i 895

31	50	$18 \cdot 51$	87	32	$43 \cdot 37$
30	41	$28 \cdot 91$	88	02	$33 \cdot 83$
32	22	$37 \cdot 37$	86	18	$00 \cdot 92$

29	57	$1 S$	05	90	04
25	14				
29	56	51.51	$9 ?$	04	$12 \cdot 16$

E. ADDITIONAL GEODETIC AZIMUTHS COMPUTED DIRECTLY FROM THE GIVEN POSITIONS OF THE TWO STATIONS.

stations.	Azimuth.			Back azimuth.			To stations.
Maine.	-	1	/1	-	1	$1 /$	
Cape Snall	155	I 8	59.9	335	09	$17^{\circ} \mathrm{I}$	Sabattus
Massachusetts.							
Cambridge, Harvard Observatory, dome	356	25	$25^{1} 1$	176	25	59.5	Blue Hill
Indian	135	36	$02 \cdot 6$	315	20	$49 \cdot 5$	Copecut
Shootflying	143	03	19.5	322	53	$33^{\circ} 9$	Manomet
Spencer	185	57	$36 \cdot 5$	5	59	22: 8	Beaconpole
District of Columbia.							
Causter!	210	54	$3^{8 \cdot 3}$	30	59	$17^{\circ} 2$	Soper
Seaton	265	32	$42 \cdot 33$	85	37	12.16	Hill

PARTIII.

THE ASTRONOMIC MEASURES.

III. THE ASTRONOMIC MEASURES.

A. RESULTS FOR LATITUDE AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

1. GENERAI STATEMENT.

The area covered by the triangulation extending from Maine to Louisiana is well supplied with astronomic latitudes, determined by the Horrebow-Talcott method. The number of stations is 71 , irregularly distributed over the arc, as may be seen in the general sketch* of the location of the astronomic stations. In the northeastern half of the are there are twice as many stations as in the other half. In some localities the stations are closely clustered, as in latitudes $38^{\circ} 45^{\prime}$ to 40°, and in latitudes 44° to 45°, but upon the whole a satisfactory number of fairly well distributed stations are available for the study of the local and regional deflections of the vertical.

At nearly all the stations the latitude was determined with a zenith telescope. At four stations the determination depends entirely upon observations made with Airy's Zenith Sector. \dagger At two stations both the above instruments were used, and at one of these a transit in the prime vertical was also used. At a few stations observations were made with other instruments, as stated in the abstracts of results. The results for latitude are here presented in the form used in the discussion of the arc of the parallel, but for those stations which are in common with that are the final values alone are given. What has beens said respecting instruments, observations, and method of reduction of latitudes in the publication of the arc of the parallel applies equally well to the present publication, and that publication should be consulted for further details.

The observations used extend over the interval between the years i846 and i898. The olservations made before that time have been superseded by the introduction of new measures, using more refined methods and superior instruments. Some results at the Harvard College Observatory and the old Naval Observatory at Washington are incorporated in the table of results. The reduction of the observations for latitude was examined with a view of improving the mean star places, and in those cases where the residnal, or difference of result from any pair of stars from the indiscriminate mean of all, was greater than $31 / 2$ times the probable error of the result from that pair, the mean places of these stars were recomputed.

[^36]The method of determining mean places of stars was to abstract from all available catalogues the north polar distances and to apply to them such systematic corrections as were known to attach to the catalognes (principally determined by the researches of Professor Lewis Boss). These north polar distances were next reduced to a common eloch, usually the year 1890 , using the given precessional values and approximate values for the proper motion, and applying relative weights conformable to a wellproportioned systems, embracing the catalogues in general. Finally the most probable corrections to the assumed north polar distances and proper motions were derived by application of the method of least squares; the probable errors of these quantities likewise became known. For convenience of reference the star numbers given in the abstracts are those of the British Association Catalogue; when not contained therein, the number in parenthesis () refers to the Greenwich Ten Year Catalogne of 1880; a number in brackets [] refers to the Coast Survey Catalogue given in Appendix No. 7 of the Report for 1876 ; an asterisk attached to any star mumber directs attention to the fact that the star is also used in another pair or pairs at that station. The observed. component of a close double star is identified by the subscript letters P, F, and M , meaning preceding, following, or mean, respectively.

Referring to the abstracts of results at the several stations the column headed "Adopted seconds of mean N. P. D." contains the seconds of the star's mean north polar distance for the beginning of the year of observation, as adopted in the latitude computation; the column headed n^{\prime} gives the mumber of olservations made upon the pair; the column headed z^{\prime} gives the relative weight assigned to the result from the pair; the last column, headed v, exhibits the residual of the result from each pair from the weighted mean of all the pairs.

The probable errors and relative weights as given in the abstracts were determined as follows:

Let $n=$ the total number of observations at a station and $n^{\prime}=$ the number :upon any pair, also $p=$ the number of pairs, and $\Delta=$ the difference of each individual result from the mean result from that pair, then the probable error of a single observation for latitude is given by

$$
e^{2}=\frac{0.455 \sum \Delta^{2}}{n-p}
$$

For the determination of relative weights w we need $e_{\text {on }}$ or the value of the probable error of the mean of two declinations of a pair; this may be obtained either from the catalogue mean places or more directly from the latitude observations thenselves. The probable error e_{p} of a mean result from any pair is given $b y_{v} e_{p}=\frac{0^{\circ} 455 \sum_{p} \tilde{V}^{2}}{p-1}$, where the v 's arise both from errors of observation and errors of declination, and are found by subtracting the particular values $\phi_{1}, \varphi_{3}, \varphi_{3}, \quad . \quad$, of which there are p in number from ϕ or the mean latitide of all.

The probable errors $c_{p_{1}}, e_{p_{z}}$, etc. of the latitudes ϕ_{1}, ϕ_{a}, etc. are given by:

$$
e_{p_{2}}^{2}=e_{\frac{w_{1}}{2}}+\frac{e^{2}}{n_{1}} \quad \quad e_{p_{2}}^{2}=e_{w_{1}}^{2}+\frac{e^{2}}{n_{2}} \quad \text { etc. }
$$

where $e_{g_{g}}=e_{p}^{2}-\varepsilon^{2}$ and $\varepsilon^{2}=\frac{e^{2}}{\rho}\left[\frac{1}{n_{x}}+\frac{1}{n_{z}}+\quad . \quad . \quad\right]$ l lence the weights w become:

$$
w_{\mathrm{x}}=\left(e^{2} \frac{e^{2}}{n_{1}}\right)^{-\dot{i}} \quad w_{2}=\left(e_{\frac{2}{2}}^{2}+\frac{e^{2}}{n_{2}}\right)^{-\mathrm{i}} \quad \text { etc. }
$$

There are exceptional cases in which these expressions do not apply. When a north or south star is comnected after reversal of instrument, with two south or two north stars, the weight assigned to each of the two pars or doublets so formed is two-thirds of that given by the general expression, and in case of triplets the weight is but one-half. Several stars observed on one side of the zenith may occur with several stars observed on the opposite side; in such a case the combination may be broken up into ordinary pairs or into doublets or triplets and the weights determined as indicated above. When a single or close zenith star is observed with instrument direct and instrument reversed the expression for the weight becomes $w=\left(2 e^{2}+\frac{e^{2}}{n_{1}}\right)^{-1}$

Two values can be obtained for $e_{e_{\bar{n}}^{2}}^{2}$, one from the star catalogues $\frac{\Sigma e^{2}}{4}$, where the summation extends over the two stars of the group, and the other from the latitude observations $e_{p}^{2}-\varepsilon^{2}$, and the larger of the two values was used.

The resulting latitude \dagger is given by
and its probable error by

$$
\varphi=\frac{w_{1}, \varphi_{1}+w w_{2} \varphi_{2}+. . .}{\tilde{w_{1}+w_{2}+.} \cdot . .}
$$

$$
e_{\phi}^{2}=\frac{0.455 \Sigma w(\Delta \varphi)^{2}}{(p-1) \Sigma w}
$$

2. DETAILS AT STATIONS.

1. Calais, Maine.-G. W. Dean. Zenith telescope No. 4. September 2 to 29, 1857. One division of level $=\mathrm{I}^{\prime \prime \prime} \circ \mathrm{o}$. One turn of nicrometer $=43^{\prime \prime} 64$.

Pairs of stars.		Adopted seconds of mean N.P.D.		n^{\prime}	${ }^{w}$	I, atitude.		v
		"	"			-	"	"
6350	*6 365	$30 \cdot 60$	45^{27}	5	3	45 II	10'09	-0.69
*6365	6372	$48 \cdot 27$	$13 \cdot 37$	5	3		$10 \cdot 30$	-0 ${ }^{\circ} 9$
6394	6419	$09 \cdot 46$	$03 \cdot 35$	5	5		$09 \cdot 23$	+0.17
6475	6520	$25 \cdot 14$	$57^{1 / 2}$	1	2		09.70	-0.30
6480	*6496	45 '94	$25^{\circ} 32$	5	3		09. 25	to. 15
6 491	*6496	14.34	$25^{\prime} 32$	5	3		09%	+0.40
6547	6555	$35 \cdot 88$	$13 \cdot 12$	3	4		09.26	to. 14
6566	6593	$55 \cdot 50$	17.87	4	4		09.89	-0.49
6629	6690	08.47	$16 \cdot 56$	2	3		08 36	+1.04
*6635	6651	19.32	$40 \cdot 97$	5	3		$10 \cdot 27$	-0.87
*6 635	6667	19.32	$58 \cdot 60$	5	3		10.09	-0.69
6687	6711	09 ${ }^{\circ} 5$	$50 \cdot 24$	4	4		$10 \cdot 21$	-0.8i
6721	6745	$43 \cdot 40$	$35^{\circ} 79$	3	4		10.96	-I 56
6717	*6769	50.98	$04 \cdot 90$	3	2		08.54	+o.86
6741	* 6769	$41^{7} 70$	$04^{\prime} 90$	4	3		08:30	+1.10

[^37]1. Calais, Maine-continued.

rairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	"	Latitude.		v
		"	/			- ,	"	"
6763	*6 ${ }_{17} 7$	18.35	$43 \cdot 16$	4	3	45 I1	$10 \cdot 33$	-0.93
6764	*6 8r7	$45 \cdot 6.4$	$43 \cdot 16$	5	3		$09 \% 9$	-0.50
6784	$6 S_{47}$	08 90	co. 62	2	3		$07 \cdot 84$	+1 56
6 S 51	*6924	$39^{\text {'So }}$	17.30	4	3		OS 54	+o * 86
*6924	6998	17 \% 30	$43^{\circ} \mathrm{O}$	1	1		07.45	+1.95
6944	6994	44^{121}	$27^{\circ} \mathrm{co}$	2	3		$09 \cdot 63$	-0.23
7060	7131	$59 * 69$	$28 \cdot 60$	4	4		OS 48	+o.92
7062	* 7119	21.70	-9 75	6	3		oS 99	+o.41
7 091	*7119	$38 \cdot 11$	09 75	6	3		$09 \cdot 65$	-0.25
7176	7194	$38 \cdot 28$	00.80	5	5		os 98	to. 42
7204	7215	$47 \cdot 69$	55.60	4	4		09%	- ${ }^{\circ} \mathrm{O}$
7241	7268	39.50	$43 \cdot 00$	5	5		$09^{\circ} 40$	- 00
7277	*7 294	$53 \cdot 13$	3076	3	2		0s ${ }^{56}$	+0.54
*7 294	7353	$30 \cdot 76$	41.63	3	2		08. 67	+o.73
7301	${ }^{*} 7333$	$08 \cdot 22$	$27 \cdot 17$	6	3		09 "94	-0.54
${ }^{*} 7333$	7345	$27 \cdot 17$	28.33	6	3		09 '92	-0.52
7365	$73{ }^{\text {S }}$	$10 \cdot 66$	$47 \cdot 27$	6	5		$10 \cdot 30$	-0.90
7398	7488	$10 \cdot 65$	09.62	3	4		0S.63	+o.77
7465	7494	54 •87	$47 \cdot 30$	6	5		09.18	+0. 02
7521	7560	$37 \cdot 40$	42.03	7	5		$10 \cdot 43$	-1.03
*7623	7699	$26^{\circ}{ }^{1}$	30'74	6	3		09'54	-0.14
${ }^{*} 7623$	${ }^{*} 7707$	26.31	$40 \cdot 53$	3	2		10.03	-0.63
7693	*7707	$44 \cdot 43$	$40 \cdot 53$	4	3		0947	-0.07
${ }^{7} 7718$	7721	$22 \cdot 51$	$28 \cdot 68$	3	2		10.11	-0.71
${ }^{*} 7718$	7731	$22 \cdot 51$	$18 \cdot 35$	2	2		09.98	-0.5
*7753	7778	56 *34	06•19	4	3		$09 \cdot 13$	+0.27
${ }^{7} 7753$	7782	$56 \cdot 34$	31:74	4	3		$09 \cdot 32$	+o.os
7766	${ }^{*} 7798$	54.51	$18 \cdot 40$	6	3		09.63	-0.23
${ }^{*} 7798$	7829	$18 \cdot 40$	$53 \cdot 93$	4	3		$10 \cdot 16$	-0.76
$7 \mathrm{Sr}_{5}$	7 SSo	10.98	$16 \cdot 71$	4	4		$08 \cdot 62$	+0.78
7845	7906	$26 \cdot 22$	09.7	5	5		09 ${ }^{\text {S6 }}$	-0.46
7923	7973	31.43	46×55	4	4		$07 \cdot 89$	+1.51
7972	7999	$48 \cdot 35$	44.54	4	4		os 70	+0.70
8023	* SOS_{2}	$29 \cdot 46$	27 So	4	3		08.56	+o. 84
*8 028	8059	37.47	57.50.	5	3		09. 25	+o.15
*8 028	*S OS2	$37 \cdot 47$	27.80	5	2		09.18	+0.22
S 114	S 171	56 \%o	$28 \cdot 62$	5	5		$09 \cdot 46$	-o.06
8188	* 8211	$20 \cdot 70$	35 '97	5.	3		$10 \cdot 30$	-0.90
*8 211	8268	35 '97	39 •86	5	3		-9. 22	+o.18
51	60	$51 \cdot 52$	1175	5	5		OS 63	+0.77
92	*158	03.53	$16 \cdot 23$	4	3		09 71	-0.31
* 158	169	10.41	51%	3	3		$09{ }^{\circ} 92$	-0.52

Indiscriminate ineail $=45^{\circ} 11^{\prime} 09^{\prime \prime} / 38$.
Weighted mea: $=45$ 1: $099^{\prime} 40 \pm 0^{\prime \prime} .06$.

$$
\varepsilon= \pm 0^{1 \%} \cdot 67 .
$$

243 olservations, 57 pairs.

2. Cooper, Maine.-E. Goodfellow. Zenitli telescope No. 5. September S to 18, 1859. One division of level $=0^{\prime \prime}: 96$ fromobservations at this station. One turn of micrometer $=41^{\prime /} 91^{16}$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	Latitude.			v
		$1 /$	/1			-	,	\because	'1
6365	6372	$42 \cdot 25$	$06 \cdot 93$	6	12	44	59	$13 \cdot 06$	-0.46
6404	6428	$28^{*} 30$	$32 \cdot 64$	6	12			-12 42	+0.18
6473	6476	$33 \cdot 20$	$54 \cdot 70$	6	12			12.55	+0.05
6497	6500	$57 \cdot 59$	$04 \cdot 66$	4	9			$12 \cdot 20$	+0.40
6491	6496	$05 \cdot 02$	15.97	2	6			13.35	-0.75
6542	65^{86}	$54 \cdot 00$	$26 \cdot 25$	5	II			$12 \cdot 24$	$+0.36$
6602	6612	$30 \cdot 86$	11.47	5	II			13.02	-0.42
6657	*6662	19.92	$24 \cdot 50$	5	5			12.98	-0.38
*6662	6674	$24 \cdot 50$	04.41	6	6			11 97	+0.63
*6662	6676	$24 \cdot 50$	$09 \cdot 87$	6	6			12.04	+0.56
6730	*6 S17	$33 \cdot$ So	$25 \cdot 32$	6	S			12.21	+o. 39
6734	*6 S17	$14 \cdot 20$	$25 \cdot 32$	6	S			$12{ }^{\circ} \mathrm{O} 3$	- +0.57
68_{57}	6895	$32 \cdot 78$	10.09	6	12			12.75	-0.15
*6930	6940	$55 \cdot 22$	$40 \cdot 40$	6	S			12.67	-0.07
*6930	6943	$55 \cdot 22$	$32 \cdot 27$	6	8			$12{ }^{\circ} 70$	-0.10
*6957	6970	$48 \cdot 49$	51 27	6	6			12 21	+0.39
*6957	7024	$48 \cdot 49$	$22 \cdot 70$	6	6			1 I -88	+0.72
*6957	7051	$48 \cdot 49$	1974	6	6			$13{ }^{\circ} \mathrm{O}$	-0.45
7060	7 13I	$36 \cdot 32$	$04 \cdot 62$	4	9			12.10	+0.50
7152	*7 176	$27^{\prime 25}$	$12 \cdot 79$	6	8			12 266	-0.06
* 7176	7194	$12 \cdot 79$	$35 \cdot 04$	6	8			12.37	+0.23
7213	7262	$31 \cdot 52$	$21 \cdot 73$	6	12			12.44	+0.16
7268	*7333	$15 \% 4$	$58 \cdot 8 \mathrm{I}$	6	8			13.08	-0.48
7301	*7333	$40 \cdot 50$	$58 \cdot 8 \mathrm{I}$	6	S			12.81	-0.2I
7428	7444	$30 \cdot 58$	49^{\prime} Io	6	12			12.48	+0.12
7455	7477	41.58	$38 \cdot 88$	6	12			$13 \cdot 11$	-0.51
7501	7503	12.63	$48 \cdot 21$	5	11			$12 \cdot 19$	+0.41
7533	7568	03.43	$33 \cdot 26$	6	12			I2.65	-0.05
7595	7607	$44 \cdot 38$	50 73	6	12			I I '92	+0.68
7611	7627	06.91	12.34	6	12			12.34	+0.26
7693	7708	$09^{\circ} 71$	$19^{\circ} \mathrm{O} 1$	6	12			13.35	-0.75
7721	*7 749	$53 \cdot 76$	34:68	6	8			$13 \cdot 02$	-0.42
7 731	*7749	$43 \cdot 18$	$34 \cdot 68$	6	8			13 '19	-0.59
7789	7798	$06 \cdot 30$	$42 \cdot 31$	6	12			$12 \cdot 32$	+0.28
7803	7845	$50 \cdot 58$	$49^{\circ} 58$	5	II			$13^{\circ} 00$	-0.40
7880	7888	39.73	$54 \cdot 17$	6	12			13.39	-0.79
7913	7950	$39 \cdot 83$	3I 60	6	12			$12 \cdot 22$	+o.3S

Indiscriminate mean $=44^{\circ} 59^{\prime} \quad$ 12 $2^{\prime \prime} 59$.
Weighted mean $=44 \quad 59 \quad 12 \quad 60 \pm 0^{\prime \prime} \cdot 05$.

$$
e= \pm 0^{\prime \prime} \cdot 5^{2}
$$

209 observations, 37 pairs.
[Reduction to $\Delta=+o^{\prime \prime} \cdot 04$.]
3. Humpback, Maine.-A.T. Mosman. Zenitli telescope No. 5. July 26 to August 19, 1858. Oue division of level $=0^{\prime \prime} \cdot 66$. One turn of micrometer $=41^{\prime \prime} .416$ from circumpolar observations at this station.

Indiscriminate mean $=44^{\circ} 51^{\prime} 47^{\prime \prime} 55$.
Weighterlmean $=44$ 51 $47 \quad{ }^{5} 5 \pm \pm 0^{\prime \prime} \circ$ 05. $c= \pm 0^{\prime \prime} \% 36$.
296 observations, 37 pairs.
[Reduction to $\Delta=-0^{\prime /} 43$.]
4. Bangor, Maine. E. Goodfellow. Zenith telescope No. 5. September 7 to October 10, 1857. One division of level $=0^{\prime \prime} \cdot 86$. One turn of micrometer $=41^{\prime \prime} \cdot 397$.

Pairs of stars.		Adopted seconds ofmean N. P. D.		n^{\prime}	${ }^{v}$	Latitude.	v
		"	"			- , "	"
6427	6477	$40 \cdot 80$	$38 \cdot 79$	5	10	44481188	+0.99
6496	6497	25 '33	07.05	2	7	13 \% 07	-0.20
6500	6534	14.26	59.63	2	7	$12{ }^{\circ} \mathrm{O}$	+o.85
6579	6593	43.94	17.87	6	10	12.27	+0.60
*6 697	6711	$24 \cdot 11$	$50 \cdot 24$	6	7	13.07	-0.20
*6 697	6765	$24 \cdot 11$	-1.83	6	7	12.55	+0.32
6771	6824	19.63	$24 \cdot 22$	6	10	$13: 45$	-0.58
6849	*688ı	27.82	$05 \cdot 78$	4	6	12.68	+o.19
6860	*6881	27.48	$05 \cdot 78$	5	6	12.91	-0.04
6930	6944	$15 \% 70$	$44^{\circ} \mathrm{I}$	6	10	12.85	+0.02
6959	7001	$54 \cdot 82$	$30 \cdot 58$	6	10	13.11	-0. 24
7027	*7062	$45 \cdot 20$	21.96	6	7	12.93	-o 06
* 7062	7114	21.96	$34^{\circ} \mathrm{So}$	6	7	$12 \cdot 34$	+o.53
7171	7219	$44 \cdot 19$	$38 \cdot 12$	6	10	12.99	-0.12
7233	7253	$52 \cdot 89$	$08 \cdot 96$	5	10	12.50	+0.07
7290	7306	-1 32	$15 \% 3$	6	10	12.46	+0.41
7398	7448	10.65	$23 \cdot 15$	6	10	13.23	-0.36
7455	*7477	12.40	10 '02	6	7	13.54	-0.67
*7477	7 480	10 '02	$18 \cdot 72$	4	6	12.62	+0.25
7488	7505	09 ${ }^{6}$	$19 \cdot 17$	6	10	12.21°	+o.66
7548	7565	53 '03	$50 \cdot 24$	6	10	11'97	+o.90
7623	7708	$26^{\prime} 1$	$53 \cdot 84$	5	10	$13 \cdot 17$	-0.30
*7668	7721	$30 \cdot 54$	$28 \cdot 68$	5	6	13.39	-0 ${ }^{52}$
${ }^{*} 7668$	7731	$30 \cdot 54$	18.35	6	7	13 31	-0.44
*7727	7743	$54 \cdot 43$	17.33	3	5	13.21	-0.34
*7727	7770	$54 \cdot 43$	$14 \cdot 68$	4	6	${ }^{1} 3{ }^{\prime} 6$	-0.49
7749	7843	09.97	28.90	6	10	12.37	+0.50
7875	*7914	35*1	15.26	5	6	13.02	-0.15
*7914	7973	$15 \cdot 26$	$46 \cdot 55$	6	7	$12 \cdot 78$	+0.09
7999	$8 \bigcirc 23$	$44^{\circ} 54$	29.46	6	10	13.07	-0.20
8059	*8 118	57.50	$23 \cdot 82$	5	6	$12 \% 1$	+0.16
8 OS2	* 3118	27 So	$23 \cdot 82$	6	7	13.44	-0.57
8126	8171	07.92	$28 \cdot 62$	6	10	$13 \cdot 89$	-1.02
8279	*8 374	$47 \cdot 87$	$03 \cdot 23$	6	7	$13 \cdot 82$	-0.95
8338	*8 374	$06 \cdot 88$. $03 \cdot 23$	6	7	$13 \cdot 19$	$-0 \cdot 32$
46	109	$42 \cdot 28$	$13.4{ }^{\circ}$	6	10	$13 \cdot 19$	-0.32
So	164	$42 \cdot 58$	-54.68	6	10	13.00	-0.13
*254	310	$32 \cdot 53$	04.91	3	5	13.13	-0.26
*254	321	$32 \cdot 53$	$07 \cdot 83$	3	5	12.67	+o. 20
263	335	31.24	$33^{\circ} \mathrm{O} 9$	3	8	12%	+0.17
395	450	$19^{\circ} 90$	$41 \cdot 40$	6	10	12.27	+o'60

Indiscriminate mean $=44^{\circ} 48^{\prime} \quad 12^{\prime \prime} 90$.
$\begin{aligned} & \text { Weighted mean }=44 \quad 4^{8} \text { 12 } 87 \pm 0^{\prime \prime} \circ \mathrm{os} . \\ & e= \pm 0^{\prime \prime} \cdot 3^{3} .\end{aligned}$
213 observations, 4^{1} pairs.
[Reduction to $\Delta=o^{\prime \prime} \cdot \mathrm{co}$.]
4192-No. 7-02-17
5. Farmington, Maine. C. O. Boutelle. Zenith telescope No. 5. October 8 to Novemher 6, 1866 One division of level $=0^{\prime \prime} \cdot 90$. One turn of micrometer $=41^{\prime \prime \cdot} 48$.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{*}$	Iatitude.	ν
		"	"			- , "	"
6599	6697	12%	16.7	5	5	$44 \quad 40 \quad 19 \% 49$	+o.05
6723	6806	56.4	34.6	5	5	$19 \cdot 85$	-0.31
6824	6875	03.5	23.7	6	6	19.40	+o. 14
6928	6937	45.5	11.0	7	6	20.06	-0.52
6973	7024	$42 \cdot 6$	03.2	7	6	18.79	+0.75
7091	7114	$51^{\circ} \mathrm{O}$	44.6	6	6	$19^{\circ} 27$	+0.27
7233	7241	54.2	$38 \cdot 6$	6	6	19.78	-0. 24
7253	7306	OS 0	10.4	6	6	$19 \% 40$	+o. 14
7368	7387	$16 \cdot 6$	16 \%	6	6	19.09	+o.45
7444	7449	03.6	515	6	6	$19^{\circ} 05$	+o.49
7474	7482	$48 \cdot 6$	30°	6	6	$19^{\prime 26}$	+0.28
7524	7560	04.6	157	6	6	19.97	-0:43
7627	7700	15.4	27.4	8	6	$19 \% 1$	+o. 53
7746	7765	16%	57.4	S	6	18.37	+1.17
7845	7 S50	415	46 -	7	6	19.57	-0.03
7885	7901	$44^{\circ} 7$	46 \%	7	6	$20 \cdot 17$	-0.63
7950	7983	21.5	46°	5	5	20.29	-0.75
7994	8059	37.6	or ${ }^{\circ}$	6	6	$19 \cdot 27$	+0.27
8037	8082	517	31.5	6	6	$19 \% 2$	+o.52
8114	8118	∞ \%	27.4	5	5	20.38	-0.84
8159	8188	02 5	22.8	6	6	19.43	+0.11
8212	8231	07°	12.6	7	6	19.27	+0.27
8279	8284	$48^{\circ} \mathrm{o}$	11%	6	6	$19^{\prime 7}$	-0.16
4	46	57.5	42 \%	6	6	19.52	+0.02
67	8_{3}	25^{1}	$46 \cdot 5$	6	6	20.07	-0.53
158	201	18.0	46.7	6	6	$18 \cdot 67$	+0.87
244	285	$14^{\circ} \mathrm{o}$	$55^{\circ} 6$	6	6	19.77	-0.23
314	334	18.7	26°	6	6	$18 \cdot 96$	+o. 58
425	441	18.4	$06 \cdot 3$	6	6	19.73	-0.19
492	540	$48^{\circ} 4$	23°	5	5	$18 \cdot 64$	+0.90
610	647	51.4	10.7	5	5	$19{ }^{\circ} 0$	+o. 54
691	700	$56^{\circ} \mathrm{o}$	-9 5	5	5	19.70	-0.16
721	786	11.6	557	5.	5	19.55	-0.0I

5. Farmington, Maine--continued.

Pairs of stars.	
6930	6944
6996	7062
7 OS5	7 101
7171	7254
7278	7313
7365	7373
7399	7401
7469	7477
7488	7505
7548	7554
7565	7598
* 7668	7721
* 7668	7731
7753	7813
7855	7915
7958	7967
8023	8126
8158	8211
8224	S 237
52	79
173	232
239	299
395	450
588	630
668	679
705	727
785	871
962	963
981	995
1006	1 OP_{3}
1129	1139
1219	1254

Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		v
11	"			- ,	11	11
43.4	07.5	7	6	4440	20.06	-0.52
03°	$36 \cdot 2$	8	6		19.46	+o.08
$51 \cdot 6$	$00 \cdot 5$	6	6		19.57	-0.03
50%	$28 \cdot 6$	8	6		19 91	-0.37
$05 \cdot 6$	06°	7	6		19.35	+0.19
$00 \cdot 0$	05°	7	6		19.45	+o.09
$51^{\circ} \mathrm{O}$	$53^{\circ} \mathrm{o}$	6	6		$18 \cdot 26$	+1.28
$57^{\circ} \mathrm{O}$	$50{ }^{\circ}$	6	6		$20 \cdot 23$	-0.69
47^{-8}	56 \%	7	6		19 45	+0.09
27.5	$07 \cdot 2$	6	6		20.18	-0.64
22.5	$35^{\circ} \mathrm{o}$	7	6		18:86	+0.68
$55 \% 7$	$52 \cdot 5$	6	4		19.96	-0.42
557	43°	5	4		$19 \cdot 10$	+0.44
$18 \cdot 8$	$50 \cdot 1$	6	6		IS 86	+o.68
20.6	$25 \cdot 8$	6	6		19.59	-0.05
$18 \cdot 5$	$14^{\circ} 2$	6	6		19 ${ }^{29}$	+0.25
36°	10.5	6	6		19.88	-0.34
59.3	$36^{\circ} 0$	7	6		I $8 \cdot 66$	+0.88
03.5	28°	6	6		19.51	+o.03
44.5	$22 \cdot 2$	6	6		20:.2	-0.48
$37^{\circ} 6$	$22 \cdot 8$	6	6		$20 \cdot 57$	- I ${ }^{\circ} \mathrm{O}$
$44^{\circ} \mathrm{I}$	19.5	6	6		$20 \cdot 36$	-0.82
27°	$52 \cdot 8$	6	6		19.36	+o.18
56.3	$43 \cdot 3$	6	6		18:26	+I 28
21.6	$45^{\circ} 2$	6	6		$20 \cdot 81$	-I 27
$03 \cdot 8$	$48 \cdot 5$	6	6		19 '54.	0 000
$31^{\circ} \mathrm{O}$	$05^{\circ} 0$	5	5		$20 \cdot 58$	-1.04
04.5	$46 \cdot 5$	5	5		$20 \cdot 76$	-1.22
00%	44.4	5	5		$20 \cdot 58$	-1.04
12.6	O1 3	6	6		18.49	+1.05
39°	$5{ }^{1} 5$	6	6		20 '02	-0.48
$49^{\circ} 7$	$57 \cdot 5$	6	6		20.42	-0.88

Indiscriminate mean $44^{\circ} 40^{\prime} 19^{\prime \prime \prime} 55$.
Weighted mean $=44 \quad 40 \quad 19 \quad .54 \pm \alpha^{\prime \prime} \cdot 5$. $e= \pm 0^{\prime \prime}{ }^{\circ} 55$.
397 observations, 65 pairs.
[Reduction to $\Delta=\sigma^{\prime /} \cdot \circ$. .]
6. Mount Harris, Maine.-G. W. Dean.. Zenith telescope No. 2. First series. August 15 to 24, 1855. One division of level $=1^{\prime \prime} \cdot 16$. One turn of micrometer $=44^{/ / \cdot} .803$ from circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		
			/1	"			\bigcirc	, "	"
5	5840	5922	$35 \cdot 25$	$36 \cdot 72$	5	11		3954×25	+0.44
6	6129	6218	26.04	$05 \cdot 44$	5	II		$55{ }^{\circ} 20$	-0.51
6	6232	6311	$37^{\circ} 00$	04 40	3	9		$54 \cdot 88$	-0.19
6	6237	6318	$24 \cdot 70$	$48 \cdot 24$	3 .	9		$54 \cdot 32$	+0.37
6	6335	6394	$30 \cdot 40$	$16 \cdot 96$	3	9		$54 \cdot 12$	+0.57
6	6372	6392	19.81	$38 \cdot 24$	2	7		55 '08	-0.39
6	6419	6466	10.93	58.34	5	II		55.7	-0.38
* 6	6477	6497	$47 \cdot 66$	$16 \cdot 62$	3	6		$54{ }^{\circ} \mathrm{O}$	+0.65
* 6	6477	6553	$47 \cdot 66$	$25 \cdot 85$	2	5		$55 \cdot 18$	-0.49
*6	623	6651	5I '94	54.43	5	7		54.43	+0.26
* 6	662	6667	$5 \mathrm{I} \cdot 94$	12 *59	5	7		53 "95	+0.74
6	6711	6723	$05 \cdot 36$	$21 \cdot 21$	5	11		54.92	-0.23
6	6731	6754	$25 \cdot 28$	00.98	5	II		54.82	-0.13
6	6824	6875	$42 \cdot 20$	$09 \cdot 08$	5	II		$54 \cdot 73$	-0.04
6	928	6937	$41 \cdot 81$	$05 \cdot 18$	6	II		54.45	+o. 24
6	6973	* 7024	$40 \cdot 25$	08.02	6	7		$54^{\text {I I I }}$	+o. 58
6	6978	* 7024	$0_{3} \cdot 28$	$08 \cdot 02$	4	7		55 OI	-0.32
7	062	* 7 I14	$45 \cdot 20$	$58 \cdot 23$	5	7		53.98	+0.71
7	ogI	* 7 II4	$02{ }^{\circ} \mathrm{O} 2$	$58 \cdot 23$	5	7		$54 \cdot 62$	+0.07
7	233	7241	19.18	$06 \cdot 10$	5	11		54 '90	-0.21
7	253	7306	$35 \cdot 8$	$43 \cdot 49$	5	II		54.92	-0.23
7	368	7387	$56 \cdot 50$	5S 3 I	5	1 I		$54 \cdot 36$	+0.33
7	399	7 401	$35 \cdot 19$	36*22	5	II		$54 \cdot 30$	+0.39
7	769	7477	$46 \cdot 90$	41.18	4	10		$55 \cdot 64$	-0.95
7	788	7505	41•12	50•84	5	11		$55 \cdot 3 \mathrm{I}$	-0.62
7	7524	7560	$00 \cdot 92$	14.76	5	11		55.47	-0.78
7	757	* 7 6II	10.83	13.60	5	7		$54{ }^{\text {1 } 19}$	+0.50
7	7584	* 7 611	58.95	13.60	5	7		$54 \cdot 20$	+0.49
7	7651	7693	$43 \cdot 49$	18.07	5	II		54.98	-0.29
7	7746	7765	$30 \cdot 45$	$12 \cdot 20$	5	II		$54 \cdot 22$	+0.47
7	7845	7850	02 '93	07.71	5	II		$54 \cdot 86$	-0.17
7	7962	* 7999	$47^{\text {'80 }}$	$22 \cdot 8 \mathrm{r}$	3	6		55 '14	-0.45
* 7	7999	8023	$22 \cdot 8 \mathrm{I}$	$08^{\circ} 00$	2	5		$55 \cdot 49$	-0.80
	8037	8082	24*29	$06 \cdot 94$	4	10		$53 \cdot 83$	+o. 86
8	8114	8 128	$35^{\circ} 50$	$53 \cdot 70$	5	11		$54^{\prime 7}{ }^{2}$	-0.03
8	-156	* 8188	55 *49	00.36	5	7		$54 * 44$	+0.25
8	-159	* 8188	39.44	$00 \cdot 36$	5	7		54*79	-0.10
8	8212	8231	$45 \cdot 25$	51'97	5	11		55 'os	-0.39
8	8237	8261	$06 \cdot 22$	$04 \cdot 35$	5	1 I		$54 \cdot 33$	+0.36
S	S 279	8284	$27^{\circ} 94$	51.44	4	10		$54 \cdot 8$ I	-0.12
			scriminat ghted ur observat	nean	$\begin{array}{r}39 \\ 39 \\ \hline 19\end{array}$. 68			

6. Mount Harris, Maine.-G. W. Dean. Zenith telescope No. 1o. Second series. August 6 to 27 , 1855. One division of level $=0^{\prime \prime} .632$, fronn observations at this station. One turn of micrometer $=39^{\prime \prime} / 522$ from circumpolar observations.at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{v}$	Latitude.	v
		$1 /$	$1 /$			- , /1	/1
5731	5797	25.48	26.99	5	16	443954.99	-0.48
5840	5922	$35 \cdot 25$	$36 \cdot 72$	6	17	$54 * 13$	+0.38
5944	6036	$05 \cdot 88$	09.54	5	16	$54 \cdot 37$	+o.14
6129	6218	$26^{\circ} 04$	05.44	5	16	$54 \cdot 66$	-0.15
6232	6311	$37^{\circ} 00$	$04 \cdot 40$	5	16	$54 \cdot 8 \mathrm{I}$	-0.30
6237	6318	$24 \cdot 70$	$48 \cdot 24$	4	15	54.41	+0.10
6335	6394	$30 \cdot 40$	16.96	3	14	54.61	-0.10
6372	6392	$19^{.81}$	$38 \cdot 24$	2	1 I	$54 \cdot{ }^{2}$	-0.01
* 6419	6456	10.93	$24^{\prime 2}$	5	11	55.38	-0.87
*6419	6466	10 '93	$5^{8} \cdot 34$	5	II	55 15	-0.64
*6477	6497	$47 \cdot 66$	16.62	5	11	$53 \cdot 65$	+0.86
*6477	6553	$47 \cdot 66$	$25 \cdot 85$	5	11	54.76	-0.25
6566	65^{81}	$05 \cdot 37$	03.90	5	16	$54 \cdot 84$	-0.33
*6623	665 I	51 '94	$54 \cdot 43$	5	11	5477	-0.26
*6623	6667	5 I'94	12.59	5	1 I	$54 \cdot 70$	-0.19
6711	6723	$05 \cdot 36$	21.21	6	17	$54 \cdot 73$	-0.22
6731	6754	$25 \cdot 28$	00.98	6	17	54*19	'+0.32
6 S24	6875	$42 \cdot 20$	0908	6	17	54 36	+0.15
6928	6937	$41 \cdot 81$	$05 \cdot 18$	5	16	54.44	+0.07
6973	* 7024	$40 \cdot 25$	08 02	6	I I	54.63	-0.12
6978	* 7024	$03 \cdot 28$	$08 \cdot 02$	6	I I	55 O1	-0.50
7062	* 7114	$45^{* 20}$	$58 \cdot 23$	6	1 I	53.97	+0.54
7091	* 7114	O2 ${ }^{\circ} \mathrm{O} 2$	$58 \cdot 23$	6	1 I	$54 \cdot 38$	$+0.13$
7233	7241	19.18	$06 \cdot 10$	6	17	$54 \cdot 18$	+0.33
7253	7306	35.81	$43{ }^{\circ} 49$	5	16	54.58	-0.07
* 7368	7377	$56 \cdot 50$	$31 \cdot 10$	5	11	$54 \cdot 24$	+0.27
* 7368	7387	$56 \cdot 50$	58.31	5	11	$54 \cdot 29$	+0.22
7399	7401	$35 \cdot 19$	$36 \cdot 22$	5	16	54 . 05	+0.46
7469	7477	$46 \cdot 90$	41.18	6	17	$54 \cdot 57$	--0.06
7488	7505	41 12	5084	6	17	$54 \cdot 79$	-0.28
7524	7560	$00 \cdot 92$	14.76	6	17	$54 \cdot 69$	-0.18
7571	*7611	10.83	13.60	6	11	$54 \cdot 22$	+0.29
75^{84}	*7611	58'95	13.60	6	11	$54 \cdot 37$	+0.14
7651	7693	$43 \cdot 49$	$18 \cdot 07$	6	17	$54 \cdot 76$	-0.25
7746	7765	$30 \cdot 45$	$12 \cdot 20$	5	16	53.77	+0.74
7789	7798	I8 05	53.50	5	16	54.43	+o.08
7845	7850	02.93	07.71	4	15	$54 \cdot 12$	+o.39
7879	${ }^{*} 7888$	$16 \cdot 69$	08.20	3	9	54.48	to.03
7880	*7888	54 O2	08 $\cdot 20$	2	8	$54 \cdot 34$	+0.17
7913	7950	54.44	$46 \cdot 74$	5	16	54.41	+0.10
7962	*7999	47 So	$22 \cdot 8 \mathrm{I}$	5	11	$54 \cdot 85$	-0.34
*7999	8023	$22 \cdot 8 \mathrm{I}$	$08 \cdot 00$	5	11	55 34	-0.83
8037	8082	$24 \cdot 29$	06.94	5	16	54 I I	+0.40

6. Mount Harris, Maine. Second series-continued.

Pairs of stars.		Adopted seconds of mean N. P.D.		n^{\prime}	*	Latitude.		v
		"	/1			-	, "1	11
8114	8 128	$35 \cdot 50$	$53 \cdot 70$	5	16	44	$3954{ }^{\circ} \mathrm{S}_{3}$	-0.32
8. 156	* 8 I88	55.49	00.36	5	II		$54 \cdot 23$	+0.28
8159	*8 188	39.44	00 36	5	11		54.69	-0.18
S 212	8231	$45{ }^{\circ} 25$	51'97	5	16		$54{ }^{\circ} 4$	+0.10
8237	8261	$06 \cdot 22$	$04 \cdot 35$	5	16		$54 \cdot 20$	+0.31
8279	8284	27.94	51*44	5	16		$55^{\circ} 13$	-0.62

Indiscriminate mean $=44^{\circ} \quad 39^{\prime} \quad 54^{\prime \prime} \quad 52$.

$$
\begin{array}{lllll}
\text { Weighted mean } & =44 & 39 & 54 & { }^{\prime} 51 \pm 0^{\prime \prime} \prime 04 . \\
& e= \pm 0^{\prime \prime} & \cdot 29 .
\end{array}
$$

248 observations, 49 pairs.
6. Mount Harris, Maine. -E. Goodfellow. Zenith telescope No. 10. Third series. September I2 to 25 , IS55. One division of level $=0^{\prime \prime .632}$. One turn of micrometer $=39^{\prime \prime} \cdot 507$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{v}$	Latitude.	v
		"	"			- , "	"
*6419	6456	10.93	$24 \cdot 22$	1	2	443954 74	+o.05
*6419	6466	10.93	$58 \cdot 34$	1	2	$54{ }^{\circ} \mathrm{O}$	+0.70
* 6477	6497	$47 \cdot 66$	$16 \cdot 62$	5	6	$54 \cdot 17$	+0.62
*6 477	6553	$47 \cdot 66$	$25 \cdot 55$	5	6	$55 \cdot 24$	-0.45
6566	6 58I	$05 \cdot 37$	-3'90	6	9	55 \%2	-0.23
*6623	6651	5194	$54 * 43$	6	6	54 -86	-0.07
*6623	6667	5194	12.59	6	6	54.74	+o.05
6711	6723	$05 \cdot 36$	$21 \cdot 21$	5	9	54.43	+o. 36
6731	6754	$25 \cdot 28$	00 98	5	9	$55 \cdot 50$	-0.71
6824	6875	$42 \cdot 20$	09 08	6	9	$54 \cdot 74$	+o.05
6928	6937	41 -81	$05 \cdot 18$	6	9	54.45	+o. 34
6973	*7024	$40 \cdot 25$	08.02	6	6	$54{ }^{\prime 2} 2$	+0.37
6978	${ }^{*} 7024$	03.2S	o8 ${ }^{\circ} \mathrm{O}$	6	6	5430	+0.49
7062	7114	$45^{\circ} \mathrm{O}$	$58 \cdot 23$	6	9	54.88	-0.09
7233	7241	19.18	06.10	6	9	53.74	+1.05
7253	7306	$35 \cdot 81$	$43 \cdot 49$	6	9	55.44	-0.65
*7 368	7377	$56 \cdot 50$	$31 \cdot 10$	5	6	$54 \cdot 12$	+0.67
*7368	7387	$56 \cdot 50$	58.31	6	6	54 '59	+0.20
7399	7401	$35 \cdot 19$	$36 \cdot 22$	6	9	$54 \cdot 37$	+o. 42
7469	7477	$46 \cdot 90$	41.18	6	9	$55 \cdot 30$	-0.51
7488	7505	$41 \cdot 12$	$50 \cdot 84$	6	9	55.45	-0.66
7524	7560	0092	14.76	6	9	54.91	-0.12
7571	${ }^{7} 7611$	10.83	13.60	4	5	$54 \cdot 66$	+0.13
7584	${ }^{7} 7611$	$5 \mathrm{~S} \cdot 95$	13.60	7	6	$54 \cdot 59$	+0.20
7651	7693	$43 \cdot 49$	18.07	6	9	55.02	-0.23
7746	7765	$30 \% 45$	12.20	6	9	$53 \cdot 80$	+0.99
7789	7798	18.05	$53 \cdot 50$	6	9	55.03	-0.24
7845	7850	02 '93	0771	6	9	$54 \cdot 88$	-0.09
7879	* 7 \$88	16.69	O8.20	3	5	$55{ }^{\circ} \mathrm{O}$	-0.30

6. Mount Harris, Maine. Third series-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		v
		"	/'			- ,	"	"
7 8So	${ }^{7} 7888$	54 -2	08.20	3	5	4439	55.47	-0.68
7913	7950	54.44	$46 \cdot 74$	6	9		$55^{\circ} \mathrm{oo}$	-0.21
7962	*7999	47 'So	$22 \cdot 8 \mathrm{I}$	6	6		$55 \cdot 23$	-0.44
*7999	8023	$22 \cdot 81$	o8.00	6	6		55"92	- $1 \cdot 13$
8037	8082	$24 \cdot 29$	06.94	6	9		54 37	+0.42
8114	S 128	35 '50	53 '70	6	9		$55 \cdot 28$	-0.49
8156	*8 188	$55 * 49$	00. 36	7	6		54.47	+o.32
8159	*8 188	$39 \cdot 44$	0.. 36	6	6		5490	-0.11
8212	8231	$45 \cdot 25$	51 '97	5	9		$54 \cdot 89$	-0.10
8237	8261	06.22	0.4.35	6	9		$53 \cdot 80$	+o.99
8279	8284	27.94	5144	6	9		$55 \cdot 38$	-0.59

Indiscriminate mean $=44^{\circ} 39^{\prime} 54^{\prime \prime} \cdot 78$.

Weighted mean $\quad=$| 44 | 39 | 54 | 79 | $\pm 0^{\prime \prime}$ | \circ |
| :--- | :--- | :--- | :--- | :--- | :--- | $e= \pm 0^{\prime \prime}{ }^{\prime} 44$.

218 observations, 40 pairs.

Collection of results at station, Mount Harris, Maine.

G. W. Dean, Z. T. No. $2 \quad \varphi=44^{\circ} 39^{\prime} 54^{\prime \prime} \cdot 69 \pm 0^{\prime \prime} \cdot 05$
G. W. Dean, Z. T. No. Io
$54 \quad 5 \mathrm{I} \pm 0 \quad 04$.
E. Goodfellow, Z. T. No. to $54 \quad 79 \pm 0 \quad{ }^{\circ} 05$.

Mean adopted $\varphi=44 \quad 39 \quad 54 \quad 66 \pm 0 \quad{ }^{\circ} 04$.
[Reduction to $\Delta=+o^{\prime \prime} \cdot 2$ I.]
7. Howard, Maine.-E. Goodfellow. Zenith telescope No. 5. July 13 to 23, 1859. One division of level $=1^{\prime \prime} \cdot \mathrm{or} 5$ from observations at this station. One turn of micrometer $=44^{\prime \prime} \cdot 4 \mathrm{r} 8$ front circumpolar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude,	v
			"	"			- , "	/
*5	$1 \mathrm{I}_{3}$	5122	$03 \cdot 14$	$02 \cdot 30$	3	5	$44 \quad 3748 \cdot 84$	+0.40
${ }^{*} 5$	113	5130	$03 \cdot 14$	11:88	3	5	$48 \cdot 46$	+0.78
5	210	5259	33.98	$10 \cdot 14$	4	8	$48 \cdot 44$	+o.80
5	2.44	5249	51.44	$49 \cdot 95$	4	8	$48 \cdot 85$	+o.39
5	307	5321	49:85	$07 \cdot 30$	5	8	$49 \cdot 43$	-0.19
5	388	5400	$37^{\circ} \mathrm{Co}$	$08 \cdot 78$	6	9	$48 \cdot 85$	+o.39
5	440	5459	$53 \cdot 61$	$07 \cdot 76$	6	9	$49 \cdot 59$	-0.35
5	466	5514	$46 \cdot 87$	$53 \cdot 35$	6	9	$48 \cdot 61$	+0.63
5	523	5568	$20 \cdot 48$	$58 \cdot 50$	6	9	$49 \cdot 58$	-0.34
5	604	5643	21.97	$54^{\cdot 20}$	6	9	49.06	+0.18
5	658	5747	20.74	$30 \cdot 21$	6	9	$49 \cdot 35$	-0.11
5	823	5883	$41 \cdot 88$	$20 \cdot 28$	4	8	$49 \cdot 61$	-0.37
5	834	5937	4590	$33 \cdot 85$	4	8	$49 \cdot 42$	-0.18
	5990	5997	$00 \cdot 05$	$28 \cdot 65$	6	9	$49^{*} 46$	-0.22
	6095	* 6109	08.06	$24 \cdot 52$	6	6	$48 \cdot 89$	+o. 35
	109	6162	24.52	13.58	5	6	50 -02	-0.78

7. Howard, Maine-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	tatitude.	v
		"	"			- , "	"
6231	*6 272	43 \% 8	00.41	6	6	$443749 \% 45$	-0.21
*6 251	*6 272	27.97	00.41	7	6	$50 \cdot 13$	-0:89
*6 316	6322	25.89	07.80	7	6	$49 \cdot 3{ }^{2}$	-o os
*6316	6341	25.89	61.60	7	6	$48 \cdot 67$	+o. 57
5372	6392	$06 \cdot 93$	23.96	6	9	$49{ }^{\circ} \mathrm{O}$	+0.17
*6419	6456	$55 \cdot 79$	08 00	5	6	$50 \cdot 0$	-0.76
*6419	6466	$55 \cdot 79$	$41 \cdot 82$	5	6	$49^{7} 78$	-0. 54
6476	6493	$54 \cdot 68$	$45 \cdot 16$	4	S	$48 \cdot 87$	+0.37
6477	6553	29.81	0495	4	8	$4^{8 \cdot 7}{ }^{2}$	+0.52
6566	65^{81}	$44^{\circ} 00$	39.63	6	9	$49{ }^{\circ}{ }_{3}$	+o.21
*6623	6667	25.49	$44 \cdot 64$	6	6	$50 \cdot 18$	-0.91
*6 623	6651	25.49	27.29	6	6	$49^{\circ} 91$	-0.67
*6723	6806	$50 \cdot 67$	$34 \cdot 56$	6	4	$49 \cdot 7$ S	-0. 54
*6723	6765	$50 \cdot 67$	$45 \cdot 19$	6	4	$49 \cdot 79$	-0. 55
* 6723	6813	$50 \cdot 67$	18.18	6	4	$49 \cdot 84$	-0.60
6824	6875	$06 \cdot 26$	$30 \cdot 30$	6	9	$49^{\circ} \mathrm{o}$	+0.24
*6928	6937	00.92	23.23	6	4	48.98	+0.26
*6928	6967	00.92	$24 \cdot 65$	6	4	$45 \cdot 57$	+o.67
*6928	6997	00 92	2193	6	4	$48 \cdot 26$	+0.9
${ }^{*} 7027$	7062	22.54	58.26	6	6	$49 \cdot 19$	+o. 05
${ }^{*} 7027$	7091	22.54	$14 \cdot 19$	6	6	$49 \cdot 64$	-0.40
7100	7112	$15 \cdot 10$	19*10	6	9	$48 \cdot 54$	+0.40
7233	${ }^{*} 7253$	26.48	$42 \cdot 8$	6	6	$49^{\circ} 5^{2}$	-0.28
${ }^{*} 7253$	7306	42.08	475^{51}	6	6	$49^{\prime \prime}$	-0.16

Indiscriminate mean $=44^{\circ} 37^{\prime} 49^{\prime \prime \prime} \cdot 26$.

$$
\text { Weighted mean } \quad=44 \quad 37 \quad 49 \cdot 24 \pm 0^{\prime \prime} \circ 05
$$

$$
e= \pm o^{\prime \prime} 45
$$

221 observations, 40 pairs.
[Reduction to $\triangle=-0^{\prime \prime \prime} 56$.]
8. Mount Desert, Maine.-S. Harris. Zenith telescope No. 5. First series. August i8 to September 5,1856 . One division of level $=0^{\prime \prime} 73$ from observations at this station. One turn of microneter $=41^{\prime /} \cdot 42$ fronn circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	Lratitude.		v
		"	"			-	, "	11
6062	*6 129	$02{ }^{\circ} 90$	$26 \cdot 14$	5	15	44	210638	+0.13
6068	*6 129	$45 \cdot 46$	$26 \cdot 14$	7	21		$06 \cdot 56$	-0.05
*6 255	6268	57 '91	07 * 44	6	18		$06 \cdot 51$	$0 \cdot 00$
*6255	6357	$57^{\circ 91}$	$23^{\circ} 53$	7	21		$06 \cdot 33$	+0.18
6395	*6 429	$18 \cdot 80$	06.94	6	18		$0_{5} \cdot 8_{5}$	+0.66
*6429	6522	$06 \cdot 94$	$47 \cdot 75$	6	15		06.14	+0.37
6553	6583	$20 \cdot 45$	05 45	6	27		$06 \cdot 39$	+0.12
6629	6637	14.87	$38 \cdot 62$	6	27		$06 \cdot 19$	+0.32
6687	6722	$16 \cdot 61$. $23 \cdot 34$	6	27		$06 \cdot 13$	+o.3S

8. Mount Desert, Maine. First series-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Lratitude.		v
		"	/1			- ,	11	/
* 6769	6799	$14 \cdot 17$	$48 \cdot 16$	6	18	4421	$06 \cdot 66$	-0.15
*6769	6830	$14 \cdot 17$	$17 \cdot 70$	6	18		$06 \cdot 50$	+o. OI
6849	6865	$37^{\circ} 00$	$5^{8} 5^{8}$	6	27		$06 \cdot 61$	-0.10
6879	6932	$30 \cdot 59$	I8.37	6	27		$06 \cdot 11$	+0.40
6979	6994	II $\cdot 65$	$38 \cdot 32$	6	27		06.29	+0.22
7022	7062	$07 \cdot 50$	$33 \cdot 49$	6	27		06.45	+0.06
7073	7153	$24 \cdot 90$	$42 \cdot 83$	4	19.		$06 \cdot 73$	-0.22
7219	7253	$51 \cdot 17$	$22 \cdot 37$	4	19		$06 \cdot 42$	+0.09
7220	7256	10.37	16.11	5	23		06•34	+0.17
7310	7368	23.23	41'98	6	27		$06 \cdot 40$	+0.11
7416	7461	$25{ }^{\circ} \mathrm{O} 2$	$59 \cdot 25$	6	27		$06 \cdot 57$	-0.06
7521	7548	$52 \cdot 76$	$09 \cdot 52$	6	27		-06.42	+o.09
7569	7595	$20 \cdot 84$	$33 \cdot 83$	6	27		$06 \cdot 91$	-0.40
7615	7623	$50 \cdot 84$	$43 \cdot 04$	6	27		$06 \cdot 68$	-0.17
7721	7754	$46 \cdot 19$	$3^{2} 42$	6	27		$07 \cdot 04$	-0.53
7.731	7778	$35 \cdot 83$	24.41	7	32		06.99	-0.48
7800	$7 \mathrm{SO}_{3}$	14.36	$44 \cdot 64$	5	23		$06 \cdot 72$	-0.21
7855	*7858	24 '55	35.05	6	18		06 'So	-0.29
* 7858	7882	$35{ }^{\circ} \mathrm{O}$	$26 \cdot 94$	7	21		$06 \cdot 30$	+0.21
7 894	7913	52 '06	- $34 \cdot 79$	6	18		$06 \cdot 02$	+o. 49
8141	8188	$32 \cdot 05$. $40 \cdot 54$	$5{ }^{\circ}$	23		$06 \cdot 99$	-0.48
8284	8344	31.40	$44 \cdot 73$	6	27		$06 \cdot 60$	-0.09
8366	8374	17.12	22.62	7	32		$06 * 44$	+0.07

Indiscriminate nean $=44^{\circ} \quad 21^{\prime} 06^{\prime \prime} .48$.
Weighted mean $=44 \quad 2 \mathrm{I}$ o6 $51 \pm \mathrm{o}^{\prime \prime}{ }^{\circ} \mathrm{O}$.

$$
e= \pm 0^{\prime \prime} 46
$$

189 observations, 32 pairs.
[Reduction to $\Delta=-1^{\prime \prime}$ 88.]
8. Mount Desert, Maine.-E. Goodfellow. Zenith telescope No. 5. Second series. September 18 to October 5, 1856 . One division of level $=o^{\prime \prime} 716$ from observations at this station. One turn of micrometer $=41^{\prime \prime} 42$ I from circunnpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	Latitude.	v
		"	"			- , "	"
6 255	6268	57.91	07 44	5	5	44 2106 25	+o. 28
*6 255	6357	$57{ }^{\circ} 1$	23.53	5	5	$06 \cdot 06$	+o. 47
6395	*6429	18.80	06.94	7	5	$05 \cdot 68$	+o.85
*6429	6522	06.94	47×75	6	5	$06 \cdot 06$	+0.47
6553	$65^{8} 3$	$20 \cdot 45$	$05 \cdot 45$	6	8	$06 \cdot 97$	-0. 44
6629	6637	14.87	$38 \cdot 62$	6	8	O6 22	+o.31
6687	6722	16.61	$23 \cdot 34$	6	8	05.63	+0.90
*6769	6799	$14 \cdot 17$	$48 \cdot 16$	5	5	$06 \cdot 55$	-0.02
* 6769	6830	$14 \cdot 17$	1770	6	5	$06 \cdot 43$	+o.10
6849	6865	$37^{\circ} 0$	$58 \cdot 58$	6	8	06 ${ }^{\text {5 }}$	-0.02

S. Mount Desert, Maine. Second series-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{2}$	Iatitude.		v
		"	"			-	"	"
6579	6932	$30 \cdot 59$	$18 \cdot 37$	7	8	442	$06 \cdot 61$	-0.08
6979	6994	11 65	$38 \cdot 32$	6	8		0577	+0.76
7022	7062	07.50	$33^{\circ} 49$	6	8		$06 \cdot 66$	-0.13
7073	7153	24.90	$42 \cdot 83$	5	7		$06 \cdot 78$	-0.25
7219	7253	51'17	22.37	4	7		$07 \cdot 32$	-0.79
7220	7256	$10 \cdot 37$	16.11	4	7		$06 \cdot 14$	+o. 39
7310	7368	23.23	4198	6	8		$06 \cdot 42$	to.11
7416	7461	$25^{\circ} 2^{\circ}$	59.25	6	8		$06 \cdot 09$	+0.44
7521	7548	$52^{7} 76$	09.52	6	S		$06 \cdot 73$	-0.20
7569	7595	20.84	$33 \cdot 83$	6	8		$07 \cdot 23$	-0.70
7615	7623	$50 \cdot 54$	43.04	7	8		06.07	+0.46
7721	7754	$46 \cdot 19$	$32 \cdot 42$	6	8		$07 \cdot 11$	-0.58
7731	7778	$35 \cdot 8$	24.41	6	8		07. 39	-0.86
7800	7 SO 3	$14 \cdot 36$	$44 \cdot 64$	4	7		$07 \cdot 73$	-1.20
7855	${ }^{*} 7858$	24.55	35.05	6	5		$06 \cdot 20$	+o.33
${ }^{7} 7858$	7882	$35{ }^{\circ} \mathrm{O}$	26.94	6	5		$06 \cdot 0$	+o.53
7894	7913	52.06	$34^{\circ} 79$	6	8		$06 \cdot 73$	-0.20
8141	8188	$32 \cdot 0$	$40 \cdot 54$	6	8		$07 \cdot 32$	-0.79
8284	8344	31.40	$44^{\prime 7} 3$	6	S		$06 \cdot 21$	+0.32
8366	8374	${ }^{17} 1{ }^{12}$	$22 \cdot 62$	4	7		$06 \cdot 19$	+0.34
		Indiscrim Weighted 171 observ [Reducti	ate mea lean tions, 30 1 to Δ	44°	$6{ }^{\prime \prime}$	$3 \pm$	$\%$	

9. Ragged Montain, Maine.-G. W. Dean. Zenith telescope No. 5. First series. August 18 to September 7, 1854 . One division of level $=0^{/ /} 71$ from observations at this station. One turn of micrometer $=41^{\prime / \prime} 426$ from circumpolar observations at chis station.

Pairs of stars.		Adopted seconds of mean N. P. D.			n^{\prime}	${ }^{v}$	Latitude.		v
		"	"				-	"	"
5596	5617	$02 \cdot 60$	$50 \cdot 57$		2	9	4412	$43^{\circ} \mathrm{O}$	-0.10
5795	5847	14.25	10.82		4	10		$43 \cdot 17$	-0.25
5874	5911	45 '86	$55^{\circ} 20$		5	10		$43 \cdot 45$	-0.53
5922	5978	33.71	$47 \cdot 28$,	5	10		$43 \cdot 50$	-0.58
6006	6030	$30^{\circ} 7^{2}$	$40^{\circ} 79$		6	11		$42 \cdot 12$	+o. So
6052	6082	$57^{\cdot 22}$	$39^{\circ} 45$		6	11		$43 \cdot 51$	-0.59
6177	6223	$04 \cdot 82$	$40 \cdot 99$		6	11		4294	-0.02
6241	6316	08.99	$36 \cdot 74$		6	II		$42 \cdot 47$	+o. 45
6395	*6429	25.72	14.28		6	7		43 O1	-0.09
*6429	6522	14.28	58.88		5	7		$42 \cdot 65$	+0.27
6534	${ }^{*} 6583$	16.49	$17 \% 1$		5	7		$42 \cdot 26$	to. 66
6659	6711	$44 \cdot 88$	12.92		6	11		$42 \cdot 9$	+0.02
6734	6 So6	54 '74	$18 \cdot 22$		5	10		$42^{\circ} 47$	to. 45

9. Ragged Mountain, Maine. First series-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	v
		"	"			- , "	"
6763	$6 \mathrm{SI}_{3}$	$42 \cdot 42$	$03 \cdot 10$	6	II	$441243 \cdot 14$	-0.22
6824	6915	$51 \cdot 20$	$37 \cdot 67$	5	7	- $43 \cdot 25$	-0.33
*6915	6928	$37 \cdot 67$	52 '1	5	7	$43 \cdot 12$	-0.20
6940	7024	31.54	19.33	5	10	$43 \cdot 45$	-0.53
7098	7126	$44^{\prime 2} 5$	$36 \cdot 50$	6	II	$43^{\text {I }} 11$	$\bigcirc{ }^{-} .19$
7171	7253	$22 \cdot 17$	49.23	6	11	$42^{\prime 7}$	+0.21
7278	7336	$50 \cdot 85$	$57 \cdot 30$	6	II	$42 \cdot 84$	+0.08
7385	7448	$32 \cdot 98$	09.03	6	II	$43 \cdot 65$	-0.73
7512	7566	$03 \cdot 20$	$58 \cdot 74$	6	II	42.82	+0.10
7595	7623	$06 \cdot 75$	$16 \cdot 38$	6	II	$43 \cdot 14$	-0.22
7679	7695	19.74	29.98	6	11	$42^{\circ} \mathrm{I}$	$+0.51$
7721	7754	21.99	07.98	6	II	$43 \cdot 32$	-0.40
7731	7778	10.96	00.03	6	11	$43 \cdot 56$	-0.64
7894	*7 983	29.04	34.41	5	7	$4^{2} 75$	$+0.17$
7913	*7983	13.08	34.41	5	7	$42^{\circ} 41$	+o.51
5. 828	5840	08.28	31.00	4	10	$41 \cdot 84$	$+\mathrm{I} \cdot 8$
5900	5972	29.61	20.83	4	10	$42 \cdot 27$	+0.65
6056	6062	51.88	00 75	3	10	$42 \cdot 92$	- $\cdot 00$
6068	6129	$43 \cdot 58$	$26^{\circ} \mathrm{00}$	3	10	42.80	+0.12
6079	6178	10.83	$40 \cdot 90$	2	9	$42 \cdot 6$	+0.27
6234	6318	41.27	$50 \cdot 48$	5	10	$43^{\circ} \mathrm{O}$	$-0 \cdot 17$
623.8	6311	$46 \cdot 34$	$06 \cdot 55$	5	Io	$43 \cdot 30$	-0.38
6477	${ }^{*} 657 \mathrm{I}$	52^{10}	26.74	2	6	$42 \cdot 84$	+o.08
6496	* 6571	$39^{\circ} 21$	26.74	2	6	$43 \cdot 43$	$-\mathrm{O} .51$
6497	*6583	21 36	17.41	2	6	$43 \cdot 33$	-0.41
6687	6722	$30 \cdot 87$	$38 \cdot 90$	4	10	$42 \cdot 49$	+0.43
6740	6867	49.65	34.41	4	10	$42 \cdot 82$	+o.10
6926	6975	33.73	$45 * 95$	5	10	$43 \cdot 53$	-0.6r
6986	7076	04.20	54.08	5	10	43.02	-0.10
7048	7085	$29^{\circ} \mathrm{O}$	13.97	5	10	$43 \cdot 31$	-0.39
7243	7337	$29^{\circ} 75$	$02 \cdot 50$	4	Iо	41.49	+1.43
7569	*7615	53.44	$24^{\circ} \mathrm{O}$	I	4	$43 \cdot 22$	-0.30
7570	${ }^{*} 7615$	04*44	$24^{\circ} \mathrm{O}$	1	4	$42 \cdot 67$	+0.25
7782	7843	2530	$24^{\circ} \mathrm{O}$	5	Iо	$43 \cdot 45$	-0.53
${ }^{*} 7855$	7879	or ${ }^{2} 5$	$34 \cdot 92$	5	7	$42 \cdot 52$	+0.40
${ }^{*} 7855$	7880	or ${ }^{2} 5$	$12 \cdot 50$	5	7	$42 \cdot 70$	+o. 22

Indiscriminate mean $=44^{\circ} 12^{\prime} \quad 42^{\prime \prime} \cdot 92$.
Weighted mean $\quad=4412 \quad 42 \quad 92 \pm(\% / 05$. $c= \pm 0^{6 / 25}$.
228 observations, 49 pairs.
[Reduction to $\Delta=+0^{\prime \prime} / 40$.]
9. Ragged Mountain, Maine.-S. Harris. Zenith telescope No. 5. Secound series. September II to October 6, 1854. One division of level $=0^{\prime \prime} 77$ from observations at this station. One turn of micrometer $=4 \mathrm{I}^{\prime \prime} .420$ from circumpolar observations at this station.

Pairs of stars.		Adopted secouds of mean N. P. D.		n^{\prime}	${ }^{v}$	Latitude.	v
		"	"			- , "	"
6052	6082	$57 \cdot 22$	$39^{\circ} 45$	3	8	441242.49	+0.51
6177	6223	$04 \cdot 82$	40 *99	2	6	43 -5	-0.05
6241	6316	08.99	$36^{7} 74$	2	6	$41 \cdot 69$	+1.31
6395	*6429	$25^{\prime 7}{ }^{2}$	$14 \cdot 28$	4	7	$42^{\circ} 92$	to .08
*6429	6522	14.28	$5^{8 \cdot 88}$	5	7	$42 \cdot 32$	+o.68
6534	6583	16.49	$17{ }^{\circ} 1$	3	S	$42 \cdot 15$	to. 85
6659	6711	$44 \cdot 88$	12.92	6	12	$42 \cdot 96$	to 04
6734	6 So6	54 74	$18 \cdot 22$	6	12	$4{ }^{\prime} 72$	+0.28
6763	- 813	$42 \cdot 42$	$03 \cdot 10$	6	12	$43^{\circ} 62$	-0.62
6824	*6915	51.20	$37 \cdot 67$	4	7	$43 \cdot 33$	-0.33
*6915	6928	$37 \cdot 6$	52 OI	6	8	$4{ }^{\prime} 73$	+o. 27
6940	7024	31×54	19.33	5	11	$42 \cdot 62$	+o. 3 s
7098	7126	$44 \cdot 25$	$36 \cdot 50$	7	13	$42 \cdot 84$	+0.16
7171	7253	$22 \cdot 17$	$49 \cdot 23$	7	13	$43{ }^{\circ} \mathrm{O}$	-0.02
7278	*7336	$50 \cdot 8$	$57 \cdot 30$	5	7	$42 \cdot 76$	+0.24
7385	7448	$32 \cdot 98$	-9 ${ }^{\circ} \mathrm{O}$	4	เо	$43 \cdot 86$	-0.86
7512	7566	03: 30	$58 \cdot 74$	4	го	$43 \cdot 21$	-0.21
7595	7623	$06 \cdot 75$	16.38	4	10	$43 \cdot 42$	-0.42
7679	7695	19.74	29.98	2	6	$42^{\circ} 4^{1}$	+0.59
7721	*7754	21.09	07.98	3	6	$43 \cdot 77$	-0.77
773 I	*7754	$10 \cdot 96$	07.98	4	7	$43 \cdot 74$	-0.74
7894	*7983	29.04	34^{41}	4	7	$42 \cdot 86$	+0.14
7913	${ }^{*} 7983$	13.08	$34 \cdot 41$	4	7	$42 \cdot 45$	+o. 55
*6238	6311	$46 \cdot 34$	$06 \cdot 55$	1	3	$42 \cdot 79$	+0.21
*6238	6318	$46 \cdot 34$	$50 \cdot 48$	1	3	$42 \cdot 37$	+0.63
6477	*6 571	$52 \cdot 10$	$26 \cdot 74$	4	7	$42 \cdot 66$	+o. 34
6496	*6 571	$39^{\cdot 21}$	$26 \cdot 74$	4	7	43.41	-0.41
6687	6722	$30 \cdot 87$	38.90	6	12	$42 \cdot 60$	+0.40
6740	6867	$49 \cdot 65$	34.41	6	12	$43 \cdot 13$	-0.13
6926	6975	$33 \cdot 73$	45.95	3	8	$43 \cdot 88$	-0.88
6986	7076	$04 \cdot 20$	54 '08	2	6	$43 \cdot 11$	-0.11
7048	7085	29.07	13.97	5	11	43.05	-0.05
7243	*7336	29.75	57 '30	3	6	$43 \cdot 21$	-0. 21
7782	7843	$25 \cdot 30$	24 \% 04	5	11	$43 \cdot 52$	-0.52
${ }^{7} 785$	7879	ol ${ }^{2} 5$	$34 \cdot 92$	3	6	$43 \cdot 15$	-0.15
${ }^{*} 7855$	7880	OI ${ }^{2} 5$	12.50	4	7	$43{ }^{\circ} \mathrm{O}$	-0.04

Indiscriminate mean $=44^{\circ} 12^{\prime} 42^{\prime \prime} 97$.
Weighted utean $=44^{12} \quad 43 \quad{ }^{\circ} 00 \pm 0^{\prime \prime} \circ 05$
147 observations, 36 pairs.
[Reduction to $\Delta=+0^{\prime \prime} 40$.]
Combination of results.
G. W. Dean $\varphi=44^{\circ}{ }_{12} 2^{\prime} 42^{\prime \prime} \cdot 92 \pm 0^{\prime \prime} \cdot 05$.
S. Harris $\quad 43{ }^{\circ} 00 \pm 00^{\circ} 05$.

Mean $\quad 4^{2} \quad 96 \pm 0 \quad 04$.
[Reduction to $\Delta=+0^{\prime \prime}$. 40 .]
10. Sabattus, Maine.-J. E. Hilgard. Zenith telescope No. 1. June 29 to July 14, 1853. One division of level $=3^{/ / \cdot 2}$. One turn of micrometer $=45^{\prime \prime} 5^{2}$.

Pairs of stars.		Adopted seconds of mean N: P. D.		n^{\prime}	w	Latitude.	v
		"	"			- , "	"
4943	4974	$55^{\circ} \mathrm{oo}$	18.00	4	4	440837×35	+0.38
5079	$5 \bigcirc 5$	$33^{\circ} 50$	03.51	3	3	$39^{\circ} \cdot 26$	-1 53
*5094	5^{152}	$34 \cdot 30$	$32 \cdot 30$	2	2	$39^{\circ} 30$	-1 57
*5 094	5216	$34 \cdot 30$	53.07	2	2	38.92	- I 19
5168	5177	$55 \cdot 40$	57.60	3	3	$38^{\circ} 50$	-0.77
5348	5440	26.90	59.56	6	5	38.04	-0.31
5483	5490	$50 \cdot 25$	$29^{\circ} 50$	6	5	37.95	-0.22
5596	5617	$55^{\circ} 50$	$43 \cdot 50$	3	3	$37 \cdot 54$	+o.19
5592	5621	$37 \cdot 60$	44.40	2	3	$37 \cdot 68$	+o.05
5692	5705	$20 \cdot 40$	10 56	4	4	36.96	+o. 77
5714	5734	01 ${ }^{7} 7$	13.80	4	4	3798	-0.25
5747	5785	$57{ }^{\circ} 00$	$05^{\circ} 0$	4	4	$37 \cdot 64$	+o.09
5828	5840	$03 \cdot 60$	26.80	4	4	36.47	+1.26
5900	5972	$26 \cdot 00$	$18 \cdot 30$	3	3	$36 \cdot 11$	$+1.62$
5922	5978	$30 \cdot 80$	$44 \cdot 62$	3	3	$38 \cdot 24$	-0.51
5991	6 047-8	$33 \cdot 40$	$35{ }^{1} 5$	3	3	$38 \cdot 49$	-0.76
6006	6030	29.00	$39 \cdot 57$	3	3	37 08	+0.65
6052	6082	$55 \cdot 50$	$37 \cdot 80$	2	3	$38^{\circ} 47^{\prime}$	-0.74
6079	6178	09 ${ }^{50}$	415°	3	3	37 '80	-0.07
6237	6289	25.53	59.80	2	3	$38 \cdot 37$	-0.64
*6 238	6311	$47 \cdot 73$	08.00	2	2	$37 \cdot 29$	+o. 44
*6 238	6318	$47 \cdot 73$	$52 \cdot 40$	2	2	35.83	+1.90
6357	*6428	31.00	$55{ }^{\circ} 50$	3	2	36%	+o.83
6390	* 6428	$51 \cdot 40$	55.50	3	2	$36 \% 0$	+o.83
6 391	*6428	$18 \cdot 20$	$55 \cdot 50$	3	2	$36 \cdot 8$	+0.90
6368	6429	$18 \cdot 50$	18.30	3	3	38.45	-0.72
6453	6586	16.60	$02 \% 0$	1	1	$37 \cdot 13$	+0.60
6480	6522	-1. ${ }^{\circ} 3$	$04{ }^{\circ} 0$	4	4	$38 \cdot 55$	-0.82
6582	6612	$18 \cdot 35$	$49^{\circ}{ }^{\circ}$	4	4	38 '02	-0.29
6625	6644	14.50	$57^{\circ} 0$	4	4	$37 \cdot 47$	+0.26
6667	6687	$25 \cdot 20$	$38 \cdot 60$	4	4	$37 \cdot 81$	-0.08
6737	6758	3^{2} '02	$3^{8 \cdot 84}$	4	4	$37 \cdot 23$	+o. 50
6783	6836	31.20	24.30	2	3	$35 \cdot 79$	+o. 94
6835	6905	$45 \cdot 36$	24.50	4	4	$38 \cdot 27$	-0.54
6856	6937	$57 \% 6$	25 50	1	1	$38 \cdot 24$	-0.51
		discrimin eighted m		-77		.09.	

no observations, 35 pairs.
[Reduction to $\Delta=-\sigma^{\prime \prime} \cdot{ }^{15}$.]
11. Mount Pleasant, Maine.-G. W. Dean. Zenith telescope No. 5. July 20 to August 19, 1851. One division of level $=1^{\prime \prime} \cdot 58$ from observations at this station. One turn of micrometer $=41^{\prime \prime \prime} 400$ from circumpolar observations at this station and Cape Small, Maine.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{w}$	Latitude.	\%
		"	"			- , "	"
5484	5502	$58 \cdot 15$	16.00	4	12	44 or $36 \cdot 53$	-0.09
5497	555^{2}	$03 \cdot 20$	10:80	I	7	$36 \cdot 6$	$-\mathrm{o} .2 \mathrm{I}$
5602	5717	$33 \cdot 12$	53.44	3	11	36.06	to. 38
5604	${ }^{5} 5629$	27 '70	$03 \cdot 72$	5	9	$35 \% 6$	to. 48
*5 629	5693	$03 \cdot 72$	$55 \cdot 16$	5	9	$35^{\circ} 9^{2}$	+o.52
5840	5860	$18 \cdot 15$	$55 \cdot 68$	6	14	$35^{\circ} 6$	to. 84
5922	5978	$24 \cdot 62$	$38 \cdot 73$	6	14	$36 \cdot 67$	-0.23
5986	6079	$56 \cdot 15$	08 36	6	14	$36 \cdot 59$	-0.15
6129	6268	25 '98	14.90	5	13	$37 \cdot 28$	-0.84
6178	6216	$43 \cdot 15$	$40 \cdot 77$	6	14	$35 \% 3$	to. 51
6238	6318	$50 \cdot 51$	56 \%9	4	12	36.43	to. 01
*6255	6349	05 32	25.76	5	9	$35 \cdot 77$	+0.67
*6 255	6355	$05 \cdot 32$	0790	6	9	35.98	+0.46
6390	*6428	58.25	$03 \cdot 50$	5	9	$36 \cdot 67$	-0.23
6391	*6428	$24 \cdot 80$	$03 \cdot 50$	6	9	$36 \cdot 10$	to. 34
6530	6556	12.40	49×59	6	14	36.92	-0.48
6566	*6599	$27 \cdot 50$	$44 \cdot 18$	6	9	$36 \cdot 32$	to. 12
*6599	6659	$44 \cdot 18$	05 21	5	9	35 '95	+o. 49
6667	6687	39 '76	$52 \cdot 67$	6	14	$37 \cdot 23$	-0'79
6712	6740	$5^{2} 92$	$13 \cdot 38$	6	14	36.91	-0.47
$\dagger 2872$	6784	29.34	$58 \cdot 94$	6	14	$36 \cdot 12$	to. 32
6763	*6849	07.06	23.50	5	9	36.91	-0.47
*6849	6895	$23 \cdot 50$	$28 \cdot 56$	6	9	36.44	0.00
6915	6928	$06 \cdot 50$	$25^{1} 13$	5	13	$35 \cdot 74$	+0.70
6932	6940	09 ${ }^{68}$	03.80	6	14	$36 \cdot 68$	-0. 24
6943	6970	$55 \cdot 73$	18.08	6	14	$36 \cdot 48$	-0.04
7008	7062	5178	$32 \cdot 16$	6	14	36.31	to.13
7022	7076	-4 05	$28 \cdot 67$	6	14	36.71	-0.27
${ }^{7} 7098$	7117	$20 \cdot 23$	$52 \cdot 21$	5	9	36.45	-0.or
*7098	7126	$20 \cdot 23$	13.46	6	9	36 So	-0.36
7171	7333	$00 \cdot 03$	$5^{2 \cdot 15}$	6	14	36.41	to. 03
7243	7336	09 ${ }^{6} 7$	$49 \cdot 65$. 6	14	36.99	-0.55
7385	7448	18.69	54.90	6	14	36.71	-0.27
7398	74 II	$40 \cdot 13$	05.86	6	14	$35 \cdot 63$	+0.81
7636	7721	19 '39	13.79	6	14	$36 \cdot 12$	+o. 32
76.43	7731	$35 \% 7$	04.28	5	13	36.75	-0.31
7679	${ }^{7} 7800$	11.41	$44 \cdot 47$	5	9	36.44	0 -00
${ }^{*} 7800$	7850	44.47	$20 \cdot 58$	6	9	$36 \cdot 23$	to. 21
7843	7871	16.83	4 T 5.	6	14	$36 \cdot 15$	to. 29
7894	7948	25 ol	${ }^{17}{ }^{\circ} 65$	6	14	$36 \cdot 43$	toor

II. Monnt Pleasant, Maine-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		v
		"	\%			- ,	/	11
7901	$\dagger 3901$	$26 \cdot 44$	$39^{\circ} 98$	6	14	44 or	$36 \cdot 51$	-0.07
$8058{ }^{\circ}$	8076	$00 \cdot 00$	$19 \cdot 65$	6	14		$36 \cdot 80$	-0.36
8171	8224	$27^{\circ} 40$	$55 \cdot 36$	5	13		$36 \cdot 46$	-0.02
8229	8 26I	$22^{\circ} 70$	$24^{\circ} 00$	2	10		$36 \cdot 80$	-0.36

Indiscriminate mean $=44^{\circ}$ or $36^{\prime \prime} \cdot 42$.
Weighted mean $=44$ or $36^{\circ} 44 \pm 0^{\prime \prime} \circ \mathrm{o}$.

$$
e= \pm 0^{\prime \prime} \cdot 30 .
$$

236 observations, 44 pairs.
[Reduction to $\Delta=+o^{\prime \prime} \%$ 05.]
12. Cape Small, Maine.-G. W. Dean. Zenith telescope. September 17 to October 10,1851 . One division of level $=I^{\prime \prime} .598$ from observations at this station. One turn of micrometer $=41^{\prime \prime \prime} 429$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D		n^{\prime}	${ }^{w}$	Latitude.	\%
		"	"			- , "	"
6497	6522	$35 \cdot 57$	1396	6	15	$434643 \cdot 13$	+o.56
6571	6583	43.98	$35 \cdot 34$	6	18	$43^{\cdot 7}{ }^{2}$	-0.03
6599	6659	$44 \cdot 20$	$05 \cdot 20$	6	18	$43 \cdot 48$	+0.21
6667	6697	$40 \cdot 00$	09 20	6	18	$4+32$	-0.63
6673	6712	or 34	$55 \cdot 24$	6	IS	$43 \cdot 26$	+0.43
6745	6754	$24 \cdot 42$	$33^{7} 70$	7	18	43.63	+o.06
6849	6895	2355	28.55	6	18	$44 \cdot 29$	-0.60
$685 i$	6928	$35 * 46$	$23 \cdot 13$	7	18	$43 \cdot 24$	+0.45
69.32	6943	09 65	$56 \cdot 30$	6	18	$43 \cdot 75$	-0.06
6983	6996	29.56	$48 \cdot 50$	7	18	$43 \cdot 20$	+0.49
7008	7076	$52 \cdot 45$	28.65	7	18	$43 \cdot 69$	$0 \cdot 00$
7024	7 I 26	$53 \cdot 63$	13.46	6	IS	$43 \cdot 30$	+o.39
7100	7171	50.48	00.12	7	18	$44 \cdot 26$	-0.57
7204	7262	0746	11.69	6	18	43.08	+0.61
7277	7301	15.44	$3 \mathrm{I} \cdot 10$	6	18	$44 \cdot 26$	-0.57
7317	7333	$42 \cdot 19$	$52 \cdot 26$	5	18	$43 \cdot 32$	+o. 37
7345	7383	$54 \cdot 64$	10.06	6	18	$43 \cdot 60$	+o 09
7398	7411	$40 \cdot 36$	$05 \cdot 70$	6	18	$43 \cdot 42$	+0.27
7448	7462	54 '90	$43 \cdot 25$	6	18	$43 \cdot 96$	-0.27
7503	7544	54 '30	02.48	6	18	43 '98	-0.29
7582	7607	$07 \cdot 9$	$03 \cdot 56$	6	18	43 '79	-0.10
7598	7614	$42{ }^{\circ} \mathrm{o}$	$33 \cdot 81$	6	18	$43 \cdot 53$	+o.16
7731	7813	$04 \cdot 22$	22.40	6	18	43.03	+0.66
7843	787 I	16.70	$4{ }^{1} 60$	6	18	$44 \cdot 17$	-0.48
7803	7894	$14 \cdot 73$	$24 \cdot 76$	6	18	$43 \cdot 77$	-0.08
7882	7901	$58 \cdot 92$	$26 \cdot 46$	6	18	$43 \cdot 50$	+0.19
7906	7983	or '18	$31 \cdot 20$	6	18	43 '99	-0.30
8028	8058	$33 \cdot 27$	59.80	6	18	43 '99	-0.30
†3952	*8 076	24.35	18.88	6	12	$43 \cdot 53$	+o.16

12. Cape Small, Maine-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	*	Latitude.		v
		11	$1 /$			-	11	11
*8 076	8115	$15 \cdot 88$	$26 \cdot 85$	6	12		$4643 \cdot 76$	-0.07
8114	8212	$53 \cdot 60$	04.50	6	18		43.99	-0.30
8171	8 261	27.40	$24 \cdot 28$	6	18		43 91	-0.22
180	259	$20 \cdot 60$	$35 \cdot 44$	6	18		$43 \cdot 87$	-0.18
330	337	$15{ }^{12}$	$43 \cdot 42$	6	18		$43 \cdot 85$	-0.16
487	502	43 '50	$46 \cdot 84$	6	18		43 -80	-0.11
649	673	O1 28	4740	6	18		$43^{\circ} 15$	+o. 54
706	727	$38 \cdot 58$	58•10	6	18		43.95	-0.26
819	877	$49 \cdot 66$	22.98	5	18		$43 \cdot 63$	+0.06
915	947	$04 \cdot 20$	53.30	6	18		$43 \% 1$	-0.02
953	1043	$27 \cdot 56$	25.90	6	18		$43{ }^{\circ} 91$	-0.22
		Indiscrimin Weighted m	inean					

243 observations, 40 pairs.
[Reduction to $\Delta=-0^{\prime \prime 2} \cdot 2$ I.]
13. Mount Independence, Maine.-A. D. Bache and G. Davidson. Zenitll sector No. 1. First series. September 21 to October 27,1849 . Mean value of one division of level $=0^{\prime \prime \cdot} 721$. (Levels No. 3.)

Stars.	stars north of zenith.					
	Adopted seconds of mean N. P.D.	n^{\prime}		L.ati	ude.	v
	11		-	,	/1	$1 /$
16	$06 \cdot 00$	4	43	45	$35^{\circ} 22$	-0.21
169	30 \%2	5			$34 \cdot 84$	+0.17
180	$00 \cdot 20$	4			$34 \cdot 78$	+0.23
330	53.80	4			$35{ }^{\circ} 23$	-0.22
474	$02 \cdot 30$	1			$34 \cdot 78$	+0.23
487	$20 \cdot 50$	3			35'16	-0.15
673	21.50	3			. $34{ }^{\circ} \mathrm{O} 3$	+0.98
706	12.40	3			$35^{\circ} 76$	-0.75
819	21.20	4			34 -05	+0.96
947	22.40	3			$35 \cdot 84$	-0.83
1043	52.44	6			35'19	-0.18
3048	$10 \cdot 77$	4			$35 \cdot 42$	-0.41
5937	$05^{\circ} 30$	4			$35 \cdot 83$	-0.82
6091	28.90	8			$35 \cdot 15$	-0.14
6522	23.84	1			$34 \cdot 20$	+o. S_{1}
6583	$47 \cdot 30$	3			$36 \cdot 62$	-1.61
6712	$08 \cdot 10$	4			$36 \cdot 32$	-131
6754	$50 \cdot 06$	3			$34 \cdot 55$	+0.46
6928	45 '54	4			$33 \cdot 32$	+1.69
6983	51.30	4			$33 \cdot 84$	+1.17
7076	$52 \cdot 10$	4			35\%0	-0.69

Stars.	Adopted seconds of mean N. P. D.	n^{\prime}		Inati	ude.	v
	"		-	,	$1 /$	$1 /$
58	$07 \cdot 46$	4	43	45	$34^{\circ} \mathrm{O} 2$	+0.14
100	$28 \cdot 50$	4			35.5%	-1.42
259	14 So	4			34.99	-0.83
337	22.00	3			34 S8	-0.72
502	$23 \cdot 60$	3			$34 \cdot 53$	-0.37
649	$36 \cdot 00$	3			32.98	+1.18
727	$31 \cdot 48$	3			$33 \cdot 95$	+0.21
877	$54 \cdot 20$	4			$35{ }^{\circ} \mathrm{O}$	-0.86
915	3370	3			34'19	-0.03
953	$56 \cdot 30$	3			$33{ }^{\prime 9} 8$	+0.18
2485	09.15	3			$33 * 56$	+0.60
6355	$14 \cdot 10$	8			$34 * 29$	-0.13
6429	$33 \cdot 71$	6			$34 \cdot 40$	-0.24
6497	45 \%	4			$33 \cdot 26$	+0.90
6571	55 '50	4			$32 \cdot 60$	+1.56
6673	$15 \cdot 30$	2			34 '04	$+0.12$
6745	$40 \cdot 70$	4			$35 \cdot 27$	-1.11
6784	$15 \cdot 26$	4			$33 \cdot 29$	+0.87
6851	$54{ }^{\circ} 00$	4			$33 \cdot 62$	+0.54
6996	$10 \cdot 60$	3			$33^{\circ} 94$	+0.22
7008	14^{72}	4			32.69	+1.47

13. Mounl Independence, Maine. First series-continued.

160 observations, 42 stars.

$$
\varphi_{n}=43^{\circ} 45^{\prime} 35^{\prime \prime} \text { or } .
$$

Stars south of zenith.

seconds
of mean n^{\prime} Latitude. v
of mean

7100	14.58	3	$43 \quad 45 \quad 34 \quad 88$	-0 72
7204	$34^{\circ} \mathrm{O}$	4	32 '91	+I:25
7277	$42 \cdot 80$	4	34.75	-0.59
7333	$20 \cdot 60$	3	34.31	-0.15
7336	24.56	4	$34 \cdot 47$	-0.31
7368	$23^{\text {• }}$ \%	5	34.05	+o.II
$73{ }^{\text {S }} 3$	$39^{\circ} 40$	3	$32 \cdot 82$	+ I 34
7398	10.10	4	$36 \cdot 68$	-2 ${ }^{2}$
7462	14.10	4	$34 \cdot 46$	-0.30
7544	34 So	4	33.57	+0.59
7607	$36 \cdot 70$	4	$33^{\circ} 91$	+0.25
7614	$07 \cdot 16$	3	$33 \cdot 28$	+o.88
7731	$39^{\circ} 20$	4	$34 \cdot 37$	-0.2
7803	$50 \cdot 75$	3	33 . 04	+1.12
7843	53.50	2	35'15	-0.99
7901	0373	4	33.99	+0.17
79.48	55.31	3	3478	-0.62
8028	II : 85	5	34.71	-0.55
8076	$5^{S} \cdot 20$	3	$33 \cdot 67$	+0.49
8171	$06 \cdot 95$	4	35.07	-0.91
S 229	$02 \cdot 57$	4	$34 \cdot 88$	-0.7

157 observations, 42 stars
$\varphi_{s}=43^{\circ} 45^{\prime} 34^{\prime \prime \cdot 16}$.

$$
\varphi=1 / 2\left(\varphi_{n}+\varphi_{n}\right)=43^{\circ} 45^{\prime} 34^{\prime \prime} \cdot 5^{S} \pm 0^{\prime \prime} \cdot 07
$$

13. Mount Independence, Maine.-G. W. Dean. Zenith telescope No. 2. Second series. September 20 to October 20, 1849. One division of level $=\alpha^{\prime \prime}$ 'go front observations at this station. One turn of micronteter $=44^{\prime \prime} .880$ from the latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	I, atitude.		v
		$1 /$	$1 /$			- ,	$1 /$	11
6368	6427	$32 \cdot 92$	13 '94	I	2	4345	$33^{\circ} 67$	+0.66
6497	6522	$45^{\circ} \mathrm{OI}$	$23 \cdot 84$	4	5		$33 \cdot 48$	+o.85
6571	6583	$55^{\circ} 50$	$47 \cdot 30$	4	5		$34 \cdot 28$	+0.05
6673	6712	15 '30	o8 '10	4	5		3.483	-0.50
6745	6754	40 *70	$50 \cdot 06$	5	6		34.49	-0.16
6851	6928	$54{ }^{\circ} 00$	$45 \cdot 54$	5	6		33.45	+o.88
6983	6996	51.30	$10 \cdot 60$	4	5		33 '25	+ I 08
7008	7076	14.72	$52 \cdot 10$	4	5		$33^{1} 11$	+1.22
7100	7171	14.58	$25^{\circ} 40$	5	6		$34 \cdot 80$	-0.47
7204	7262	34.00	$38 \cdot 68$	4	5		$33 \cdot 82$	+0.51
7277	7301	$42 \cdot 80$	58.80	4	5		$34 \cdot 65$	-0.32
$+192$	o. 7	-18						

13. Mount Independence, Maire. Second series-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		${ }^{\prime}$	${ }^{*}$		v
		"	"			- , "	"
7317	7333	10.18	. 20.60	5	6	434534 OI	+0.32
7345	7383	$23 \cdot 20$	39.40	4	5	$33 \cdot{ }^{\text {S }}$	+0.51
7448	7462	25.50	14.10	4	5	$33 \cdot 74$	+o. 59
7503	7544	$25 \cdot 75$	$34 \cdot 80$	4	5	$33^{\circ} 92$	+0.41
7582	7607	39.85	$36 \cdot 70$	4	5	$33 \cdot 85$	+0.48
7731	7813	$39^{\circ} 20$	$55^{\circ} \mathrm{oo}$	5	6	$33 \cdot 32$	+1 01
7843	7871	53.50	18.50	4	5	$34 \cdot 16$	+0.17
7882	7901	$35 \% 6$	03.73	4	5	$33 \cdot 79$	+o.54
8028	8058	11.85	38.50	5	6	$34 \cdot 35$	-0.02
8076	8115	$58 \cdot 20$	$06 \cdot 04$	4	5	$35 \cdot 19$	-0: ${ }^{\text {¢ }}$
8171	8261	$06 \% 9$	04.20	4	5	$34 \cdot 31$	+o.02
180	259	$00 \cdot 20$	14 So	3	5	$34 \cdot 27$	+o.06
330	337	$53 \cdot 80$	22 \%o	3	5	$34 \cdot 30$	to. 03
7398	7411	10 * 10	$35 \cdot$ So	6	6	34.97	-0.64
7598	7614	15.40	07.16	7	6	$34 \cdot 70$	-0.37
7803	7894	$50 \cdot 75$	or 'So	6	6	$35 \cdot{ }^{2}$	-0.99
487	502	$20 \cdot 50$	$23 \cdot 60$	6	6	35.64	-1.31
649	673	$36^{\circ} \mathrm{oo}$	21.50	6	6	$34 \cdot 70$	-0.37
706	727	- 12.40	3148	5	6	$35 \cdot 28$	-0.95
819	877	21.20	$54 \cdot 20$	6	6	. $34 \cdot 66$	--0.33
915	947	$33 \cdot 70$	22.40	6	6	35.14	-0.81
953	I 043	56:30	52.44	6	6	$34 * 37$	-0.04
		$\begin{aligned} \text { Indiscriminate mean } & =43^{\circ} 45^{\prime} 34^{\prime \prime} \cdot 29 . \\ & =434534 \quad 0^{\prime \prime} 33 \pm 0^{\prime \prime} \mathrm{os} . \\ & e= \pm 0^{\prime \prime} 52 \end{aligned}$					

151 observations, 33 pairs.
[Reduction to $\triangle=-0^{\prime \prime} \cdot 0_{3}$.]
Resulting latitude by combination of series $=43^{\circ} 45^{\prime} 34^{\prime \prime \prime} 47 \pm 0^{\prime \prime} \circ 6$.
14. Gunslock, New Hampshire.-J. H. Toomer. Zenitlı telescope No. 5. July 11 to August 9, 1860. One division of level $=0^{\prime \prime} .948$ from observations at this station. One turn of micrometer $=4 \mathrm{I}^{\prime \prime} 39 \mathrm{I}^{1}$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	\% Latitude.		v
		11	$1 /$			- , "	"
5400	5417	$18 \cdot 63$	$53 \cdot 62$	8	14	43 3I 03×24	+0.57
5479	5499	09.30	$24 \cdot 77$	7.	14	$03 \cdot 24$	+0.57
5541	5599	I7 78	$35 \cdot 36$	9	15	03.25	+0.56
5629	*5731	05.31	53.90	7	9	$03 \cdot 67$	+0.14
5658	${ }^{*} 5731$	$27 \cdot 34$	$53 * 90$	8	10	03.50	+0.3I
5785	5863	$40{ }^{\circ} \mathrm{O} 2$	58.20	8	14	$03 \cdot 76$	+0.05
5918	5931	$48 \cdot 28$	19.58	8	14	$04 \cdot 14$	-0.33
6079	6087	15 \%6	$48 \cdot 61$	S	14	$03 \cdot 22$	+0.59
*6 147	$6 \quad 184$	20•29	50'90	7	9	$03 \cdot 15$	+0.66
*6 147	6216	$20 \cdot 29$	$31^{\cdot 23}$	7	9	$03 \cdot 41$	+0.40

THE ASTRONOMIC MEASURES.
14. Gunstock, New Hampshire-continued.

*6235	6246
*6235	6258
6365	6428
6456	6470
6493	6520
6599	6626
6648	6 68I
6734	6771
*6 86I	6940
*6861	6943
*6983	7022
*6983	7048
7064	* 7132
7105	${ }_{7}{ }^{1} 32$
7174	7233
7297	7345
5643	${ }^{*} 5666$
*5 666	5752
5788	5795
5853	5886
5911	5929
6095	6162
623 I	${ }^{*} 6316$
6251	*6 316
6392	642 I
6495	6516
6512	6629
6656	*6720
*6720	6728
6745	6779
6824	6851
6881	6915
6962	6996
7027	7112
7158	7198
7241	* 7333
7253	${ }^{*} 7333$

Adopted seconds o
 mean N. P. D.

276

15. Agamenticus, Maine.-T. J. Lee. Zenith telescope Military Academy. First series. September 15 to October 10,1847 . One division of level $=1^{1 / \cdot 2}$. One turn of micrometer $=44^{\prime / 7} 791$ from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	*			${ }^{\prime \prime}$
		"	/1			-	11	
65^{82}	6662	$54 \cdot 24$	$47{ }^{\circ} \mathrm{OO}$	3	2	4313	$25^{\prime} 79$	
6735	6744	56.90	28.90	5	3		25 '06	-0.11
6758	6834	$26 \cdot 63$	00.50	4	3		23.81	+1.14
7377	*7461	$28 \cdot 16$	18.13	5	2		$26 \cdot 16$	-1.21
7387	*7461	$55 \cdot 84$	18.13	5	2		26.21	-1.26
* 7533	*7571	IS ${ }^{\circ}$	19'17	5	1		$25 \cdot 76$	-0.81
*7533	*7584	18.00	$10 \cdot 37$	4	I		$24{ }^{\circ} \mathrm{O} 3$	+0.92
*7533	*7586	18.00	31.50	5	1		$25^{\circ} 70$	-0.75
* 7542	* 7571	$25 \cdot 30$	19'17	4	1		$24^{6} 62$	+0.33
*7542	*7584	$25^{\prime} 3^{\circ}$	10:37	3	I		23.07	+1.88
*7542	*7586	$25 \cdot 30$	$31 \cdot 50$	4	1		24.70	+0.25
7607	7668	10 \%0	21.80	5	3		25.09	-0.14
7693	7718	$36 \cdot 97$	$16 \cdot 70$	5	3		$25 \cdot 24$	-0.29
7755	7798	$19^{\prime 7}$	17.07	6	4		$24 \cdot 88$	+0.07
7829	7958	$56 \cdot 32$	I 8 \%o	6	4		25.56	-0.6I
*7997	*8039	00.80	$54 \cdot 20$	5	2		$24^{\circ} 60$	+0.35
*7997	*8 077	00 $0^{\text {So }}$	17.60	5	2		24 '93	+0.02
* 8146	*8 039	31'74	$54 \cdot 20$	5	2		$24^{\circ} 41$	+0.54
*8 146	*8 077	3174	1760	5	2		24.74	+0.21
*8 256	8188	$08 \cdot 48$	$38 \cdot 90$	7	3		24.25	+0.70
* 8256	8268	$08 \cdot 48$	00.32	7	3		24.73	+0.22
8 374	*7	$20 \cdot 87$	$39^{\circ} 60$	2	I		$25^{\circ} 00$	-0.05
4	* 7	15.67	$39^{\circ} 60$	3	2		$22 \cdot 78$	$+2.17$
32	68	$39 * 66$	$33 \cdot 26$	4	3		25.08	-0.13
164	182	II'90	11'13	4	3		$26 \cdot 18$	-1.23
253	395	47×50	31.04	2	2		$25 \cdot 50$	-0.55
412	430	$15{ }^{\circ}{ }^{2}$	$30 \cdot 52$	3	2		24.43	+0.52
	.	Indiscriminate mean $=43^{\circ} 13^{\prime} 24^{\prime /} 90$. Weighted mean $=\begin{array}{llll}43 & 13 & 24 & 95 \pm 0^{\prime /} \cdot 10 \text {. }\end{array}$ $e= \pm d^{\prime \prime} 99$ 121 observations, 27 pairs. [Reduction to $\Delta=-\sigma^{\prime \prime \cdot 1 I .] ~}$						

15. Agamenticus, Maine.-A. D. Bache, R. H. Faunṭleroy, C. O. Boutelle. Zenith sector No. I. Second series. October 4 to November 15, 1847. Mean value of one division of level $=0^{\prime \prime \prime} 727$.

Stars.	stars north of zenith.					
	Adopted seconds N. P.D.	n^{\prime}		I,atit	tude.	v
	"		-	,	"	"
7091	$38 \cdot 10$	1	43	13	$25 \cdot 78$	-0.23
7171	50 60	5			25.42	+o.13
7345	51'60	5			$25 \cdot 72$	-0.17.
7560	$24 \cdot 60$	6			26.55	-1×0

Stars.	stars south of zenith.				
	Adopted seconds of mean.	n^{\prime}		tude.	ν
	"			"	/
7277	09%	5	4313	25.47	-0.70
7398	39 •75	4		$2.4{ }^{\circ} \mathrm{S9}$	-0.12
7462	44 '90	5		$24 \cdot 26$	+o.51
7731	14.50	3		$24 \cdot 45$	+0.32

15. Agamenticus, Maine. Second series-continued.

Stars.	Stars north of zenith.					
	Adopted seconds N. P. D.	n^{\prime}	Latitude.			v
	"		-	,	"	"
7705	41'17	2	43	13	24.88	+o 67
7815	$10 \cdot 6$	2			26.93	-r ${ }^{3} 8$
7888	36.40	2			$27 \cdot 46$	-191
7906	15 \% 90	4			25 \% 0.	+o. 51
8036	$42 \cdot 56$	3			26.3 .4	-0.79
8107	39.28	2			23.72	+1 8_{3}
8224	13.20	2			25.35	+o.20
8231	$30 \cdot 50$	4			27.05	-1 50
8289	40×30	4			24.21	+134
16	$45 \cdot 75$	3			23.71	+1•84
100	07 '90	5			$25 \cdot 52$	+0.03
180	$39^{\circ} 20$	2			$26 \cdot 61$	- I.06
330	$32 \cdot 48$	1			$24 \cdot 32$	+1.23
404	29.28	2			25.86	-0.31
735	$03 \cdot 30$	1			25 '06	+o 49
	$\varphi_{n}=43^{\circ}{ }^{1} 3^{\prime} 25^{\prime \prime} 55$ 56 observations, 19 stars.					

stars.	Adopted second. N. P. D.	n^{\prime}	Iatitude.		v
	"		- ,	"	"
7777	41 So	2	4313	24.48	+o. 29
7850	$34 \% 0$	3		25.65	-0.88
7972	58.60	3		24.89	-0.12
7994	$41^{\circ} \mathrm{OO}$	1		25.25	-0.48
S 136	07.52	4		24.30	+0.47
8345	05.26	2		${ }^{2}+71$	+o.06
58	$47 \cdot 60$	3		$23 \cdot 17$	+1.60
480	43.20	3		$24 \cdot 96$	$-0 \cdot 19$
566	$40 \cdot 50$	3		$2+\cdot 69$	+0.08
656	$22^{\circ} 00$	3		$25 \cdot 13$	-0.36
821	2.4 .20	2		25.63	-0.86
912	13.48	2		24.46	+0.31
981	$26 \cdot 90$	I		2.4 '68	+o.09

49 observations, 17 stars.

$$
\begin{gathered}
\varphi=y / 2\left(\varphi_{n}+\varphi_{s}\right)=43^{\circ} 13^{\prime} 25^{\prime \prime} \cdot 16 \pm \mathrm{o}^{\prime \prime} \cdot 11 . \\
\text { [Reduction to } \left.\Delta=-0^{\prime \prime} \cdot 11 .\right]
\end{gathered}
$$

15. Agamenticus, Maine.-A. D. Bache, R. H. Fauntleroy, G. Davidson. Transit No. 2 in prime vertical. Third series. October i8 to November 26, 1847.

Stars.	Adopted seconds of mean N. P. D. //	n^{\prime}	w	Latitude.			v
6355	$20 \cdot 24$	4	4	43	13	$24 \cdot 92$	+o.05
7022	$49 * 40$	4	4			$24 \cdot 67$	+0.30
8023	$42 \cdot 25$	4	4			$24 \cdot 65$	+0.32
60	32 '05	2	2			25.53	-0.56
7972	$5^{8 \cdot 72}$	2	2			24.06	+0.91
8229	$42 \cdot 18$	2	2			25.33	-0.36
963	$17 \% 40$	1	1			25.27	-0.30
1320	$02 \cdot 25$	I	1			$25 \cdot 65$	-0.68
1398	$08 \cdot 00$	I	I			$26^{\prime} 72$	$-1 \cdot 75$

Indiscriminate mean $=43^{\circ} 13^{\prime} \quad 25^{\prime \prime} \circ 0$.
Weighted mean $\quad=\begin{array}{llll}43 & 13 & 24 & 97 \pm 0^{\prime \prime} 14 .\end{array}$ $e= \pm 0^{\prime \prime} \cdot 44$.
21 observations, 9 stars.
[Reduction to $\Delta=o^{\prime \prime} \mathrm{oo}$.]
Combination of results for latitude referred to Δ.

By zenith telescope
By zenith sector
By transit in prime vertical
Weighted mean
$43^{\circ} 13^{\prime} \quad 24^{\prime \prime} \cdot 84 \pm d^{\prime \prime} \cdot 10$.

$\begin{array}{lllll}43 & 13 & 24 & 97 & \pm 0\end{array} 14$.
$43 \quad 13 \quad 24 \quad 96 \pm 0 \quad 06$.
16. /sles of Shoals, Maine.-T. J. Lee. Zenith telescope Military Academy, August 4 to 22, 1847. One division of level $=1^{\prime \prime} \cdot 283$. One turn of micrometer $=44^{\prime \prime} .962$.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{20}$	Latitude.		
		/	"			-	"	"
*6 079	*6 150	$05 * 35$	$16: 40$	7	2	4259	1297	$0 \cdot 00$
*6079	*6234	05 '35	$50 \cdot 39$	5	2		12.88	+o.09
*6 079	*6238	05 35	56 \%6	7	2		12.69	+0.28
*6 348	*6150	11.59	$16 \cdot 40$	7	2		13.49	-0.52
*6348	*6234	11 59	$50 \cdot 39$	5	2		13.08	-0.11
*6 $3 \ddagger 8$	*6 238	11.59	56.06	7	2		$13 \cdot 15$	-0.18
6547	6 601	30.04	$26^{9} 9$	5	4		12.35	+0.62
6642	*6735	22.52	56.90	6	3		12.86	+0.11
6647	*6735	17.00	56.90	5	3		13.69	-0.72
6762	68 IS	$35 \cdot 20$	$54^{\circ} 0^{\circ}$	6	5		13.03	-0.06
*6882	*6932	$14 \cdot 28$	$50 \cdot 85$	7	2		12.68	+0.29
*6 882	*6970	14.28	or $\cdot 15$	7	2		12.22	+o.75
*6883	*6932	12.86	$50 \cdot 85$	6	2		13.04	-0.07
*6883	*6970	12.86	or ${ }^{1} 15$	6	2		$12 \cdot 62$	+0.35
*6979	*6932	49 '30	$50 \cdot 85$	7	2		12.33	+0.64
*6979	*6970	$49^{\circ} 30$	O1 ${ }^{1} 15$	8	3		$12 \cdot 10$	+0.87
7013	7024	18.04	39.00	8	6		13.34	-0.37
7105	7152	17.50	$54 \% 9$	7	6		13.44	-0.47
7188	7220	26 \%2	15.30	7	6		11 'S9	+1.08
7281	7368	$59{ }^{\circ}$	$53^{\circ} \mathrm{O}$	8	6		13.70	-0.73
7474	7658	44^{74}	06.60	6	5		13.52	-0.55
		riminat	$\begin{aligned} \text { ean } & = \\ & = \\ e & =\end{aligned}$	9'1	$7 \pm$			

137 observations, 21 pairs.
[Reduction to $\triangle=-o^{\prime \prime} \cdot 10$.]
17. Unkonoonuc, New Hampshire.-J. S. Ruth. Zenith telescope No. 5. September 16 to October 8, 1848. One division of level $=1^{\prime \prime} \cdot 064$. One turn of micrometer $=46^{\prime \prime} \cdot 61_{5}$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{w}$	Latitude.			v
		"	"			-	,	"	"
6372	6468	$42 \cdot 02$	19.13	3	5	42	58	$59 \cdot 29$	+o.05
6496	6547	$07{ }^{\circ} 0$	23.59	3	5			59.50	-0.16
6583	6648	53 \%o	21.01	5	S			$58 \cdot 77$	+o. 57
6697	6777	3150	$16 \cdot 38$	6	9			-59•12	+o.22
6813	6830	56.42	29.86	6	9			59 '07	+0.27
6865	6915	14.40	$35 \cdot 56$	4	7			58.77	+0.57
6965	7022	$02 \cdot 38$	3795	3	5			$58 \cdot 20$	+1.14
7048	7112	$37 \cdot 61$	$32 \cdot 51$	4	7			59.07	+o.27
7153	7204	22.60	$47 \cdot 13$	5	8			$58 \cdot 92$	+0.42
7281	7368	45.25	$38 \cdot 20$	7	10			$59 \cdot 61$	-0.27
7480	7554	$40 \cdot 10$	$5^{8} 5^{0}$	4	7			58.71	to. 63
7614	7727	$23 \cdot 82$	32.06	4	7			5899	to. 35

17. Unkonoonuc, Maine-continued.

Pairs of stars.		Adopted seconds of mean N.P.D.		n^{\prime}	w	Latitude.	v
		-	/1			- 11	11
7765	7845	15 \% 00	11 *10	4	7	$425^{8} 59.65$	-0.31
7894	8023	2 21.11	$23^{\circ} 00$	2	4	$59 * 66$	-0.32
8054	8097	03 \%o	46%	3	5	59,71	-0.37
8268	8284	$40 \cdot 30$	I I 44	4	7	59.60	-0.26
8296	8355	$25^{\circ} 50$	50.92	3	5	59.80	-0.46
120	146	$28 \cdot 92$	I I 73	4	7	$5 \mathrm{~S} \cdot 41$	+o.93
173	198	$35{ }^{\circ} \mathrm{O}$	54%	4	7	59.02	+o.32
224	244	$36 \cdot 26$	$06 \cdot 34$	4	7	$58 \cdot 88$	+0.46
337	40.4	$41^{1} 15$	$10 \cdot 25$	3	5	$60 \cdot 36$	-1.02
441	502	$44 \cdot 10$	$42{ }^{\circ} \mathrm{O}$	3	5	$59 * 40$	-0.06
535	581	$02 \cdot 55$	12.71	4	7	$60 \cdot 13$	-0.79
610	644	$09 \cdot 68$	$42 \cdot 80$	3	5	$59 * 47$	-0.13
673	772	$38 \cdot 88$	$49 \cdot 28$	3	5	59.51	-0.17
821	897	$08 \cdot 60$	23.48	4	7	$60 \cdot 60$	-1.26
921	$1{ }^{1} 01$	16 \%0	$35 \cdot 80$	3	5	$58 \cdot 85$	+o.49
1066	1123	22 '02	$54 \cdot 56$	3	5	$60 \cdot 68$	-I.34
1 175	I 293	$45 \cdot{ }^{\text {S }}$	$35 \cdot 14$	4	7	$59 \cdot 47$	-0.13
1424	1520	$00 \cdot 00$	49 '50	3	5	59.98	-0.64

Indiscriminate mean $=42^{\circ} \quad 58^{\prime} 59^{\prime \prime} \cdot 37$.
Weighted mean $\quad=42 \quad 58 \quad 59 \quad 34 \pm \mathrm{o}^{\prime \prime} \times 07$.

$$
e= \pm 0^{\prime \prime} \cdot 67
$$

115 observations, 30 pairs.
[Reduction to $\Delta=0^{\prime \prime}$.0.]
18. Thompson, Massachusetts.-T. J. Lee. Zenith telescope, Military Academy. September 19 to October 16, 1846. One division of level $=1^{\prime \prime} \cdot 32$. One turn of micrometer $=45^{\prime \prime} \cdot 064$, from observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	v
		"	"			- , 11	11
*6 640	6690	41*46	$3^{6} 7^{2}$	1 I	6	$423637 \cdot 16$	+o.86
*6640	6691	41•46	$17{ }^{\circ} \mathrm{O}$	5	3	$38 \cdot 16$	-0.14
6737	6810	$27 \cdot 48$	$37 \cdot 30$	9	8	$38 \cdot 72$	-0.70
6861	*6966	00 77	30:14	3	2	$3 S^{\prime} 72$	-0.70
6862	*6966	34 '07	$30 \cdot 14$	12	7	$37 \cdot 82$	+0.20
7024	7143	$50 \cdot 20$	15.50	14	I I	$37 \cdot 38$	+0.64
7246	7310	$35^{1} 11$	42.50	14	1 I	$38 \cdot 89$	-0.87
7418	7482	04 80	43 '00	13	11	37 '99	+0.03
7595	7627	$18 \cdot 20$	50:20	5	5	37×97	+0.05
7651	7706	15.95	18.00	7	7	37 '88	+0.14
78 r 2	7914	35 '43	$40 \% 5$	12	10	$38 \cdot 48$	-0.46
7973	8052	$16 \cdot 80$	$43^{6} 6$	12	10	$37 \cdot 49$	+o. 53
8104	$8 \quad 182$	$28 \cdot 20$	18.00	12	10	37 '97	+0.05

Indiscriminate mean $=42^{\circ} 36^{\prime} 38^{\prime \prime} .05$.
Weighted mean $=42 \quad 36 \quad 38 \cdot 02 \pm 0^{\prime \prime} \cdot 10$.

$$
e= \pm \sigma^{\prime} \cdot 87
$$

129 observations, 13 pairs.
[Reduction to $\Delta=+o^{\prime /} \cdot 25$.]
19. Wachusell, Massachusetts.-J. H. Toomer. Zenitli telescope No. 5. September 25 to October 16, is6o. One division of level $=0^{\prime / \prime 91}$, from observations at this station. One turn of micrometer $=41^{1 /} 413$, from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	Latitude.	v
		"	"			- , "	"
6654	6662	$22 \cdot 35$	$17 \cdot 63$	5	7	422915.68	+0.45
6698	6723	$33 \cdot 70$	$43 \cdot 15$	8	13	16.25	-0.12
6764	6777	21.19	$33 \cdot 73$	6	II	15.8 r	+o. 32
6851	6865	11 93	20.68	8	13	15.87	to. 26
6895	6915	$00 \cdot 17$	$40 \cdot 08$	7	12	16.29	-0.16
6932	6968	37.09	59 '74	7	12	$15 \% 35$	+o.3s
7007	*7 073	22.04	37.95	6	5	16.49	-0.36
7062	*7 073	46 '54	3795	S	7	$16 \cdot 36$	-0.23
*7 073	7091	3795	$02 \cdot 23$	8	7	16.67	-0.54
7158	7171	$49 \cdot 66$	06.24	7	12	15.75	+0.38
7215	7256	$17 \cdot 17$	$22 \cdot 34$	6	11	16.34	-0.21
7301	7320	26.64	$39 \cdot 39$	9	14	16.23	-0.10
7337	7345	18.75	$45 * 46$	6	11	159.4	+0.19
7368	7401	$43 \cdot 80$	$20 \cdot 14$	6	11	15.68	+0.45
7431	7453	$35^{\circ} 45$	08.60	8	13	15.80	+0.33
7474	7533	$22 \cdot 60$	$47^{\circ} \mathrm{O} 4$	7	12	15.14	+0.99
7571	${ }^{7} 7605$	$49^{\text {1 }} 4$	$22 \cdot 46$	7	S	15 \% 95	+0.18
7586	${ }^{7} 7605$	59.94	22.46	7	S	1596	+0.17
7646	7721	$12 \cdot 78$	$36 \cdot 20$	7	12	$16^{\circ} 65^{\prime}$	-0.52
7676	7731	$30^{\prime 2}$	25.53	8	13	16.77	-0.64
7749	7798	17.07	$24^{\prime} 30$	7	12	16.49	-0.36
7812	7914	21.96	19.15	7	12	16.29	-0.16
7932	${ }^{*} 7983$	51.78	$40 \cdot 03$	7	8	16.65	-0.52
7948	7962	28.08	12.97	7	12	16.66	-0.53
*7983	7994	$40 \cdot 03$	33.40	7	8	16.58	-0.45
8054	*8 079	$10 \cdot 36$	$28 \cdot 34$	9	9	15.85	+0.2S
8075	*8 079	$33^{\circ} 90$	28.34	9	9	15%	to.6s
8126	8136	08.91	$52^{\prime 9}$	8	13	$15 \% 9$	+o.IS
8212	8224	$06 \cdot 10$	$00^{\circ} \mathrm{O}$	6	II	$16 \cdot 15$	-0 02.
8277	8296	$03 \cdot 60$	$26^{\circ} \mathrm{O}$	7	12	$15 \cdot 78$	+0.35
*8 324	8344	11.74	$24^{\circ} 50$	7	6	15.67	to:46
*8324	8366	11.74	56.90	7	6	$15 \% 1$	+0.42
*8 324	46	1174	$42^{\text {'10 }}$	8	7	15.27	to: 86

19. Wachusett, Massachusetts-continued.

Pairs of stars.		$\begin{aligned} & \text { Adopted seconds of } \\ & \text { mean N. P. D. } \end{aligned}$		n^{\prime}	w	Latitude.		v
		"	"			- ,	"	"
92	109	$03 \cdot 44$	$13 \cdot 69$	7	12	4229	$16 \cdot 78$	-0.65
130	175	$37 \cdot 40$	15.60	6	11		16.65	-0.52
229	244	$08 \cdot 78$	10.6 S	6	11		15.77	to. 36
285	314	$52 \cdot 48$	0571	7	12		16 \% 0	+o.10
339	345	$45^{\circ} 70$	15.99	7	12		16 \% 1	+o.12
412	446	08.90	09.44	6	11		16.60	-0.47
469	498	$20 \cdot 78$	or 35	6	11		17.07	-0.94
535	556	$24 \cdot 84$	18.68	6	11		$16 \cdot 57$	-0.44
576	* 590	$40 \cdot 27$	$55{ }^{\circ} 9$	7	8		15.95	to. 18
579	*590	$38 \cdot 08$	$55^{\circ} 90$	7	8		$16 \cdot 16$	-0.03
656	673	$36 \cdot 80$	$13 \cdot 10$	8	13		16.09	+0.04
706	761	05%	$22 \cdot 40$	6	11		15.84	+o. 29
SO2	838	2450	51 '90	6	11		$16 \cdot 12$	+o.01
Indiscriminate mean $=42^{\circ} 29^{\prime} 16^{\prime \prime} \cdot 12$.								

322 observations, 46 pairs.
[Reduction to $\Delta=+\sigma^{\prime \prime} 95$.]
20. Harvard College Observatory, Cambridge, Massachusetts.-The report of Dr. B. A. Gould to the Superintendent of the United States Coast Survey, dated Cambridge, November, I865, and printed in the Report for 1865 , gives the following information respecting the latitude of this observatory:
"Prof. B. Peirce in 1845 found from transit observations in the prime vertical by Messrs. W. C. Bond, J. D. Graham, and G. P. Bond the following values for the latitude of the observatory:

"This result has been used to the present time. The adoption of later determinations of the declinations of the 5 stars observer would somewhat dininish the resultant value; but there seems little doubt that this value should be lessened by about half a second, unless strong local disturbances of the plumb-line exist in the vicinity."*

Other references will be found in the American Ephemeris and Nautical Almanac for 1855 and in Menoirs of the Anerican Acalemy of Natural Sciences, II, 203.

The reduction to the center of the dome is $-0^{\prime \prime \prime} 55$, hence the latitude of the dome $42^{\circ} 22^{\prime} 48^{\prime \prime} 05$ with estimaterl probable error $\pm 0^{\prime \prime} \cdot 22$ which is adopted. \dagger

[^38]21. Clowerten Observatory, Cambridge, Massachusetts.*-B. A. Gould, J. Searlcs, and C. II. F. Peters. Leuitl telescope No. 5. August to October, 1855 . One division of level $=0^{\prime \prime} \cdot 88$. One turn of micrometer $=41^{\prime \prime \prime} 369$.

22. Mount Tom, Massachusetts.-E. Goodfellow. Zenith telescope No. 5. July 18 to August 11 , 1862. One division of level $=d^{\prime \prime} 76$ from observations at this station. One turn of micrometer $=41^{\prime \prime} \cdot 38 \mathrm{o}$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		v
		"	"			-	"	"
5157	5168	25.88	$43^{\circ} 0$	1	3	4214	$27^{\circ} \mathrm{O}$	+0. 54
5249	5252	23.24	17.25	5	7		$27^{\circ} \mathrm{I}$	to or
5295	5338	08.47	$42 \cdot 79$	5	7		$28^{\circ 20}$	-0.58
5376	5453	$30 \cdot 19$	$49 \cdot 83$	3	6		$28^{\circ} 0$	-0.38
5463	5496	23.00	22.67	6	8		27.48	+0.14
5512	5530	21.76	16.74	6	8		28.33	-0.71
5549	5619	$57 \cdot 65$	19.40	5	7		27.52	+o. 10
5602	5643	$52 \cdot 26$	14.21	5	7		$27^{\circ} 60$	+o.02
5624	5629	15.64	$18 \cdot 76$	5	7		28.32	-0.70
5775	5790	5497	05.14	5	7		$26 \cdot 49$	+1.13

[^39]
THE ASTRONOMIC MEASURES.

22. Mount Tom, Massachusetts-continued.

5763	5776
5795	5842
5944	5997
6013	6062
6021	6079
6109	6193
6147	6185
6162	6218
6300	6373
6341	6410
6466	6516
6475	6493
6534	6551
6530	6553
6655	6602
6659	6698
6718	6745
6740	6748
6771	6799
6827	6834
6847	6879
6 S62	6882
6930	6941
6957	6976
6985	6998
7073	7 091

Adopted seconds of mean N.P. D.		n^{\prime}	w	Latitude.	v
i	"			- , "	"
20. 25	$16^{\prime 5}$	6	8	$4^{2} 142789$	-0.27
51'53	56.08	5	7	27.57	+0.05
25 '05	$34 \cdot 80$	5	7	$28 \cdot 12$	-0.50
$13 \cdot 10$	08.91	4	7	27.06	+o.56
$46 \cdot 0$	$16 \cdot 63$	4	7	28.70	-1.08
25.77	$46 \cdot 98$	4	7	26.83	+o. 79
19.41	${ }^{15} \cdot 68$	4	7	$27 \cdot 56$	+o.06
12.05	$58 \cdot 43$	5	7	28.05	-0.43
22.39	$00 \cdot 18$	5	7	27.60	+o.02
13.82	51.41	3	6	$27{ }^{\circ} \mathrm{O}$	+o. 53
$28 \cdot 62$	$35 \cdot 12$	5	7	$27^{\circ} 95$	-0.33
$03 \cdot 15$	$31^{\circ} 03$	4	7	$26 \cdot 66$	- 0.96
$35 \cdot 24$	51'12	5	7	$27^{\circ} \mathrm{0}$	+o 62
$16 \cdot 57$	4772	5	7	$27^{\circ} 96$	-0.34
$45 \cdot 29$	12.25	5	7	$26 \cdot 78$	+o.84
$50 \cdot 65$	17.80	5	7	$27^{\circ} 3$	+o. 39
17.11	$55 \cdot 49$	5	7	$28 \cdot 14$	-0.52
$45 \cdot 32$	$56 \cdot 32$	5	7	27 \% 0	+o. 54
$38 \cdot 24$	56.31	5	7	$27 \cdot 86$	-0. 24
$4^{1}{ }^{9} 9$	$42 \cdot 35$	5.	7	$27 \cdot 75$	-0.13
14.06	31.87	6	8	$28 \cdot 18$	-0. 56
03.06	$48 \cdot 48$	5	7	$27 \cdot 67$	-0.05
$24 \cdot 48$	$25^{\circ} 44$	5	7	$27 \cdot 23$	+o. 39
$16 \cdot 56$	12.58	5	7	$27 \cdot 36$	+0.26
28.51	46.80	6	8	$27 \cdot 15$	+o.47
$15{ }^{\circ} 9$	37.80	5	7	$28 \cdot 72$	-1 10

Indiscriminate mean $=42^{\circ} 14^{\prime} 27^{\prime \prime} 61$.
$\begin{aligned} \text { Weighted mean } & =42 \quad 14 \quad 27 \quad 62 \pm 0^{\prime \prime \prime} \text { o6. } \\ e & = \pm 0^{\prime \prime} \cdot 45 .\end{aligned}$
172 observations, 36 pairs.
[Reduction to $\Delta=+o^{\prime / \prime} 9$ I.]
23. Manomet, Massachusetts.-C. O. Boutelle, F. H. Agnew, and C. S. Peirce. Zenith telescope No. 5. July 8 to August 21, 1867 . One division of level $=0^{\prime \prime} 95^{\prime \prime}$ from observations at this station. One turn of micrometer $=41^{\prime \prime} \cdot 423$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. D. D.		n^{\prime}	w	Latitude		v
		"	/			-	, "	"
4 S12	$+8+3$	$31 \% 30$	13.40	6	5	415	5534×56	+0.79
4873	4949	15 '00	$14^{\circ} \mathrm{O}$	6	5		$35 \cdot 12$	+0.23
4961	+974	18.20	$36 \cdot 60$	7	5		34.94	+0:41
5058	5085	52.26	08.20	7	5		$35 \cdot 31$	+o. 04
5181	5204	$30 \cdot 50$	$45^{\circ} \mathrm{oo}$	7	5		$35 \% 1$	-0.26
5336	5463	$59^{\circ} 00$	06'90	7	5		$35 \cdot 23$	+0.12
5512	5525	O3.00	$06 \cdot 0$	7	5		$35 \cdot 56$	-0.21
*5 541	5574	12.40	$53 \cdot 60$	5	3		$34 \cdot 24$	+1.11
${ }^{5} 541$	5575	12.40	$26 \cdot 50$	5	3		$34^{\circ} \mathrm{O}$	+131
5628	5702	31.40	$06 \cdot 00$	6	5		$35{ }^{9}$	-0.57
5714	5797	$23 \cdot 37$	$25^{\prime} 30$	7	5		34.47	+o.88
5847	${ }^{5} 5871$	02 2 So	$39^{\circ} \mathrm{O}$	6	3		35^{11}	+0. 24
*5 S71	5886	$39^{\circ} \mathrm{o}$	$47 \cdot 10$	7	3		$35 \cdot 74$	-0.39
${ }^{*} 5931$	5950	$37 \cdot 47$	$26 \cdot 50$	5	3		$35 \cdot 82$	-0.47
${ }^{*} 5931$	5951	$37 \cdot 47$	$08 \cdot 70$	5	3		$35 \cdot 84$	-0.49
*5997	6062	$45 \bigcirc 0$	13.54	5	3		35 -80	-0.45
*5997	6068	45 . 05	54.80	5	3		$35: 48$	-0.13
*6 185	6232	$07 \cdot{ }^{5}$	$22 \cdot 73$	6	3		$34 \cdot S_{3}$	+0.52
* 6185	6237	07 ${ }^{85}$	05.41	6	3		$36 \cdot 53$	-1.18
6341	6373	$00 \cdot 60$	$44 \cdot 10$	6	5		33.99	+1.36
6429	6470	23.95	$21 \cdot 12$	6	5		$35 \cdot 75$	-0.40
6522	6547	54.08	$42 \cdot 92$	6	5		$34 \cdot 36$	+0.99
6571	6623	11.30	$33 \cdot 50$	6	,5		$34 \cdot \mathrm{~S} 2$	+0.53
6637	6681	$25 \cdot 50$	25.50	6	5		$35 \cdot 29$	+o.06
6698	6734	$40 \% 0$	$09 \cdot 67$	6	5		$34 \cdot \mathrm{Si}$	+0.54
6763	*6784	56.38	$48 \cdot 50$	6	3		$35 \cdot 46$	-0.1I
676	*6784	23.90	$48 \cdot 50$	6	3		$35 \cdot 43$	-0.0s
6810	6932	$31^{\circ} 0$	$24^{7} 7$	6	5		$35 * 55$	-0.20
6962	*6990	07.00	43.02	6	3		$36 \cdot 24$	-0.89
6965	*6990	$38 \cdot 12$	43 . 02	6	3		36.00	-0.65
7062	7103	$24 \cdot 40$	1148	6	5		35.06	+0. 29
5168	5271	$42 \cdot 80$	$30 \cdot 00$	6	5		$3+90$	+o. 45
5295	5388	oi ${ }^{\circ}$	54.40	6	5		$35 \cdot 66$	-0.31
5444	5459	57 - ${ }^{1}$	18.40	4	5		36.51	-1:46
5530	5560	56.94	50.99	6	5		$36 \cdot 72$	-1 37
5602	5752	29.54	55.80	5	5		34 So	+0.55
5795	5863	$16 \cdot 72$	31.01	5	5		$36 \cdot 70$	-1 35
5927	5937	24.95	56 So	6	5		$35 \cdot 87$	-0.52
* 6223	6311	25.50	$37^{\circ} 50$	6	3		35 º8	+0.27
* 6223	6318	25.50	20.80	6	3		$3+72$	+0.63
$\dagger 1631$	* 6427	17.75	$03 \cdot 82$	6	3		. 3670	-1 35

23. Manomet, Massachusetts-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{u}$	Latitude.		v
		/	"			- ,	"	"
†1633	* 6427	21.25	${ }_{0}{ }^{\prime} 82$	6	3	4155	$34 \cdot 85$	+o 50
6456	6520	$34 \cdot 62$	08.00	5	5		$35{ }^{\text {S }} 2$	-0.47
6530	6534	$50 \cdot 92$	09 ${ }^{19} 9$	5	5		35:91	-0.56
6582	6629	$53 \cdot 36$	04.14	5	5		34.02	+1 33
6673	$\ddagger 2872$	$0^{9}{ }^{\circ} 4$	$25 \cdot 16$	6	5		$34 \cdot 63$	+0.72
6714	6748	39.90	13.50	6	5		34.73	+0.62
6758	6867	$40 \cdot 71$	$30 \cdot 44$	5	5		34.42	+0.93
6973	6976	3150	$18 \cdot 20$	5	5		$35 \cdot 24$	+o.II
7035	7067	IS ${ }^{5} 3$	$25^{\circ} 20$	6	5		$34 \cdot 43$	+0.92
7055	7152	$02 \cdot 17$	$45 \cdot 62$	6	5		$35 \cdot 62$	-0.27
7215	7246	$47 \cdot 65$	57.30	5	5		3571	-0.36
7256	7281	$47 \cdot$ So	$25 \% 30$	6	5		$35 \cdot 43$	-0.08
7306	7320	$56 \cdot 35$	O1 20	6	5		. 35 \%	+0.05
5321	5341	$30 \cdot 50$	$48 \cdot 69$	2	4		35.60	-0.25
5535	5619	$52 \cdot 27$	$56 \cdot 15$	3	5		34.45	+o.90
5747	5853	$14 \cdot 64$	54'19	8	5		$35 \cdot 39$	-0.04
5978	6106	$24 \cdot 18$	$04 \cdot 14$	6	5		$35 \cdot 55$	-0.20
6238	6368	$27{ }^{7} 8$	$37 \cdot 64$	7	5		$35 \cdot 33$	+o. 02
6497	6530	19.57	$50 \cdot 92$	6	5		$35^{\circ} 6{ }^{\text {. }}$	-0.33
6603	6698	$46 \cdot 00$	$40 \% 0$	6	5		$35 \cdot 43$	-0.08
6745	\% 769	$15 \cdot 20$	$40 \cdot 88$	7	5		$35 \cdot 78$	-0.43
6847	6940	27×0	$16 \cdot 70$	7	5		$35 \cdot 47$	-0.12
6983	6997	$35{ }^{\circ} 5$	53.00	7	5		$36 \cdot 15$	-0.80
7 -41	7119	$44 \cdot 76$	07.44	6	5		$36 \cdot 16$	-0.81
7143	7176	55 \%0	$30 \cdot 50$	7	5		$35 \cdot 59$	-0.24
7204	7243	$35 \cdot 44$	$38^{\circ} 09$	5	5		$34 \cdot 90$	+0.45
7253	7260	$54 \cdot 48$	$06 \cdot 98$	5	5		$35 \cdot 64$	-0.29
7277	7333	$36 \cdot 50$	$05{ }^{3}$	6	5		$35 \cdot 66$	-0.31
7385	7455	$16 \cdot 22$	$38 \cdot 12$	6	5		$35 \cdot 68$	-0. 33
85241	7505	or ${ }^{30}$	$39 \cdot 30$	7	5		$35 \cdot 32$	+o.03
7533	114739	$52 \cdot 74$	$30 \cdot 94$	7	5		$33 \cdot 98$	+1.37
7542	7585	02 $\cdot 52$	$44^{7} 70$	7	5		$36 \cdot 52$	-1.17
7623	7636	$39 \cdot 55$	$49 \cdot 67$	7	5		$35 \cdot 29$	+o.06
7696	* 7706	45 '94	12.22	7	3		$34 \cdot 86$	+0.49
7698	* 7706	$38 \cdot 55$	$12 \cdot 22$	7	3		$35 \cdot 32$	to o3
7754	7757	$16 \cdot 20$	$57{ }^{\circ} 06$	5	5		$35 \% 5$	-0.30

Indiscriminate mean $=41^{\circ} 55^{\prime} 35^{\prime \prime} 36$.
Weighted neair $=4^{1} \quad 55 \quad 35 \quad 35 \pm 0^{\prime / \prime} \cdot 05$.

$$
e= \pm 0^{\prime \prime} \cdot 30
$$

456 observations, 77 pairs.
[Reduction to $\Delta=0^{\prime \prime} \cdot \infty$.]
24. Sandford, New York.-E. Goodfellow. Zenith telescope No. 5. September iI to October 8, 1862. One division of level $=0^{\prime \prime} 687$. One turn of micrometer $=41^{\prime \prime} 40$.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{w}$	Latitude.	v
		"	"			- , "	"
6421	6468	10 54	$18 \cdot 18$	2	4	41 2741×10	-0.63
6427	6470	$21 \cdot 44$	$43 \cdot 6$.	4	5.	$40 \cdot 55$	-0.08
6475	6495	$03 \cdot 15$	179.4	5	5	$39^{*} 46$	+roi
6520	6556	$32 \cdot 56$	$49^{\circ} 71$	3	5	$40 \cdot 35$	+o.12
6530	6571	16.54	$40 \cdot 61$	3	5	$41 \cdot 46$	-0.99
6555	6589	$45^{\circ} 29$	$03 \cdot 05$	3	5	$40 \cdot 50$	-0.03
6629	6652	$36: 40$	51 67	5	5	$39 \cdot 24$	+1.23
669 S	6717	17.87	$12 \cdot 73$	5	5	$40 \cdot 50$	-0.33
6731	6765	$30 \cdot 32$	20.21	5	5	$41^{\circ} \mathrm{OO}$	-0.53
6779	6806	16.02	oS 63	5	5	$39^{\circ} 74$	+0.73
6818	6827	$39^{\circ} 77$	$41 \cdot 23$	5	5	$39 \cdot 84$	+o.63
6 86I	6866	29 '70	20.41	5	5	$40 \cdot 28$	+o.19
6 S67	6882	18.43	$4^{8 \cdot 14}$	5	5	$40 \cdot 50$	-0.03
6937	6962	$52 \cdot 17$	00.85	5	5	41.08	-0.61
6965	6967	31*46	51.70	5	5	$40 \cdot 78$	-0.3I
6970	6975	19 *59	IS 96	5	5	$40 \cdot 78$	-0.31
7027	7041	$4^{8 \cdot 64}$	$42 \cdot 55$	5	5	$40 \cdot 11$	+o. 36
7 Or 3	7060	$30 \cdot 34$	or 41	5	5	$40 \cdot 61$	-0.14
7084	7112	$38 \cdot 26$	$42 \cdot 6.4$	5	5	$40 \cdot 21$	+0.26
7120	7164	$14 \cdot 32$	$53 \cdot 66$	5	5	$41 \cdot 52$	-I ${ }^{\text {O }}$
7153	719.4	$28 \cdot 30$	56.08	5	5	$40 \cdot 52$	-0.05
7182	7204	15.88	41:47	3	5	$39^{\circ} \mathrm{O}$	+1.39
7198	7213	10.26	5172	3	5	$40 \cdot 30$	+o.17
7220	; 275	$46 \cdot 93$	19.00	5	5	$40^{\circ} 99$	-0.52
7297	7333	11.23	$16 \cdot 10$	5	5	$40 \cdot 47$	0.00
7345	7373	17.46	O4.10	5	5	$41^{\circ} \mathrm{O} 9$	-0.62
7365	7368	$57 \cdot 34$	$14 \cdot 60$	5	5	$39^{\prime \prime} \mathrm{It}$	+1.36
7387	7410	15.27	2.412	5	5	39.87	+0.60
7418	7449	$02 \cdot 07$	$53 \cdot 50$	5	5	$41{ }^{42}$	-0.95
7455	7462	$55 \cdot 34$	$53 \cdot 56$	5	5	. 39 '58	+o. ${ }^{\text {g }}$
7474	$7495{ }^{\text { }}$	50 9.4	$54 \cdot 45$	5	5	$40 \cdot 38$	to.09
7503	7505	00 96	58.97	5	5	$40^{\prime} 79$	-0.32
7544	7554	$04 \cdot 43$	$11 \cdot 92$	5	5	$40 \cdot 38$	to.09
7571	7582	13.99	$06 \cdot 68$	5	5	$41 \cdot 30$	-o.83
7585	7595	$07 \cdot 30$	54.97	5	5	41'39	-0.92

Indiscriminate mean $=41^{\circ} 27^{\prime} 40^{\prime \prime} .47$.
Weighted mean $\quad=41 \quad 27 \quad 40 \quad 47 \pm 0^{\prime \prime}{ }^{\prime \prime} 0$ S.

$$
c= \pm 0^{\prime \prime} 39 .
$$

161 observations, 35 pairs.
[Reduction to $\Delta=-v^{\prime \prime} 39$.]
25. West Hills, New York.-A. T. Mosman. Zenith telescope No. 5. August 8 to 24, 1865. One division of level $=0^{\prime / \prime} 76$ from observations at this station. One turn of micrometer $=41^{\prime / \prime} 397$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of meatt N. P. D.		n^{\prime}	${ }^{w}$	Latitude.	v
		"	"			- , "	"
5617	5644	$08 \cdot 60$	$07 \cdot 17$	6	16	40485085	-0 79
5643	5677	$34 \cdot 15$	$52 \cdot 20$	4	14	$49 * 69$	+0.37
5658	5703	00.26	$57 \cdot{ }^{\text {S }}$	2	10	$50 \cdot 31$	-0.25
5702	5734	$54 \cdot 9$	$20 \cdot 97$	4	14	$49 * 67$	+0.39
5714	58 SO	$12 \cdot 37$	$33 \cdot 63$	6	16	$49{ }^{\circ} 51$	+o.55
5752	5798	44×57	$42 \cdot 17$	4	14	$49 \cdot 66$	+o.40
5840	5856	$17{ }^{\circ} 00$	$03 \cdot 62$	6	16	$49 * 69$	+0.37
5842	59 II	$08 \cdot 18$	$30 \cdot 90$	6	16	$50 \cdot 14$	-0.08
${ }^{5} 874$	5944	$26 \cdot 89$	$33 \cdot 18$	7	16	$49 * 97$	+o.09
5922	5950	$06 \cdot 55$	21.74	6	16	49.69	+0.37
5978	6030	16.50	57.54	4	14	$49 * 99$	+0.07
6005	6079	39.91	$18 \cdot 50$	5	15	$50 \cdot 27$	-0.21
6 Or 3	6082	$18 \cdot 60$	$46 \cdot 33$	4	14	$50 \cdot 14$	-0.08
6147	6246	19.20	$36 \cdot 34$	6	16	$50 \cdot 86$	-0.80
6231	*63II	$34 \cdot 70$	$43 \cdot 54$	6	10	$50 \cdot 33$	-0.27
6251	*6311	19.58	$43 \cdot 54$	7	11	49.91	+0.15
6373	6438	50:58	$06 \cdot 00$	6	16	$49 \cdot 76$.	+0.30
6387	6410	49.80	$40 \cdot 32$	6	16	49.53	+0.53
642 I	6427	59.06	-9 70	6	16	$50 \cdot 17$	-0.iI
646 S	6516	04.95	20•19	0	16	$50 \cdot 06$	- 00
6473	6493	06 '94	16×96	6	16	49×75	+0.31
6534	6566	19.74	08.09	5	15	$50 \cdot 22$	-0.16
6553	6579	$32 \cdot 65$	$49 * 90$	6	16	49.52	+0.54
658 s	6656	-4. $\mathrm{S6}$	24.97	6	16	$50 \cdot 21$	-0.15
6635	6690	26.65	1790	6	16	$50 \% 40$	-0.34
6698	6721	57 '50	42 - II	6	16	50 \% 7	-0.01
6711	*6728	49.64	$40 \cdot 82$	7	II	. $49{ }^{\circ} 94$	+0.12
*6728	6765	$40 \cdot 82$	$53 \cdot 18$	6	10	$50 \cdot 50$	-0.44
6748	6762	$30 \cdot 36$	07-17	5	15	$49 \cdot 83$	+o. 23
6810	*6818	$50 \cdot 75$	12.44	6	ıо	49 '99	+o.07
*6818	6866	12.44	5190	6	Io	49 '33	+o.73
6827	6863	14.45	19*10	6	16	50 *93	-0.87
6868	6905	00. 27	24.45	6	16	$50 \cdot 37$	-0.31
6876	6937	$40 \cdot 77$	$23 \cdot 10$	6	16	$50 \cdot 15$	-0.09
6915	6965	$52 \cdot 48$	$00 \cdot 62$	7	16	$50 \% 9$	-0.03
6966	6976	$04 \cdot 42$	$40 \cdot 94$	6	16	$49 \cdot 87$	+o.19
6983	6998	$56 \cdot 65$	15.02	6	16	$50 \cdot 15$	-0.09
7022	7041	25.46	$07 \cdot 86$	7	16	$50 \cdot 47$	-0.41
7064	7117	19.71	or ${ }^{71}$	7	16	$50 \cdot 21$	-0.15

Indiscriminate mean $=40^{\circ} 4^{\prime} 50^{\prime \prime} .06$.
Weighted mean $=40 \quad 485^{\circ}{ }^{\circ} 06 \pm 0^{\prime \prime} \circ$. 4 .

$$
e= \pm 0^{\prime \prime} 34
$$

223 observations, 39 pairs.
[Reduction to $\Delta=-0^{\prime \prime} \cdot 16$.]
26. Ncw York, New York.-E. Goodfellow. Zenith telescope No. 5. June 22 to 25, 1858 . One division of level $=o^{\prime \prime} \cdot 845$. One turn of micrometer $=41^{\prime \prime \cdot} 516$.

Pairs of stars.		Adopted seconds of mean $\mathrm{N} . \mathrm{P} . \mathrm{D}$.		n^{\prime}	${ }^{v}$	tantitude.	v
		"	"			- , 11	"
4640	4726	$05 \cdot 82$	41.06	3	4	40434772	+0.67
4804	4808	$05 \cdot 42$	11.96	3	4	4772	+0.67
4845	4864	41.90	57.76	4	5	$47 \cdot 28$	+1.11
48_{5}	4897	13.08	$06 \cdot 54$	4	5	48.06	+o. 33
${ }^{*} 4952$	5000	35.82	4977	4	3	$48 \cdot 86$	-0.47
${ }^{4} 4952$	$5 \bigcirc 36$	$35 \cdot 82$	i1 25	4	3	$47 \cdot 36$	+1.03
5113	5204	$50 \cdot 58$	O1 05	4	5	49^{10}	-0.71
5244	5313	39 'so	$51 \cdot 66$	4	5	$47 \cdot 53$	+o. 56
5336	${ }^{*} 5400$	27.68	$58 \cdot 95$	4	3	$48 \cdot 86$	- 0.47
5385	${ }^{*} 5400$	45 '50	58.95	4	3	$49 \cdot 63$	- 1.24
5448	5502	$14 \cdot 58$	$14 \cdot 87$	4	5	$48 \cdot 24$	+0.15
5599	5677	20.95	$08 \cdot 13$	4	5	$48 \cdot 14$	$\pm{ }^{\circ} \mathrm{O} 25$
*5752	5798	$06: 46$	09.57	4	3	$48 \cdot 50$	$-0 \cdot 11$
${ }^{*} 5752$	5860	$06 \cdot 46$	$23 \cdot 12$	4	3	47.58	$+0 \cdot 81$
*5902	5957	$29 \cdot 36$	09.81	4	3	48.95	-0.56
${ }^{*} 5902$	5988	29.36	48.41	4	3	$48 \cdot 62$	-0.23
6005	*6 079	27.06	I_{3} So	4	3	$48 \cdot 95$	-0.56
*6079	6223	13.80	$36 \cdot 38$	2	3	$48 \cdot 32$	-0.43
6251	6318	$29 \cdot 16$	$41 \cdot 44$	3	4	49.58	-1.19
6357	6410	$11 \cdot 34$	$06 \cdot 13$	3	4	$49^{\cdot 17}$	-0.78
6476	6 491	59 * ${ }^{8}$	$09 \cdot 5 \mathrm{~S}$	4	5	$49^{\cdot 1} 3$	-0.74
6534	6579	$55 \cdot 92$	$25 \cdot 75$	4	5	$48^{\circ} \mathrm{O}$	+0.33
6648	6687	13.28	02.72	4	5	$48 \cdot 51$	-0.12
6697	6740	$16 \cdot 61$	$17 \cdot 46$	4	5	$48^{\circ} \mathrm{O}$	+o. 37
$\begin{aligned} \text { Indiscriminate mean } & =4^{\circ} 43^{\prime} 4^{8^{\prime \prime} \cdot 43 .} \\ \text { Weighter mean } & =40 \quad 434^{\prime} \cdot 39 \pm 0^{\prime \prime \prime} \mathrm{og} \\ & e \end{aligned}$							

90 observations, 24 pairs.
[Reduction to center of transit or $A=+o^{\prime / \cdot 21}$.]
27. Beacon Hill New Jersey.-J. B. Baylor. Zenitly telescope No. 4. July 24 to August 27, IS75. One division of level $=2^{\prime \prime}$ O4. One turn of micrometer $=43^{\prime \prime} \cdot 462$ from circumpolar observations at this station.

r95 observations, 33 pairs.
[Reduction to $\Delta=\alpha^{\prime /} \cdot \circ$.]
4192-No. 7-02-19
28. Mouut Rose, New Jersey.-J. E. Hilgard. Zenith telescope No. 2. July 19 to August 3, 1852 One division of level $=1^{\prime \prime} \cdot 00$, from observations at this station. One turn of microneter $=44^{\prime \prime} 750$, from circumpolar observations at this station.

81 observations, 24 pairs.

[Reduction to $\triangle=0^{\prime \prime} \cdot \infty$.]
29. Yard, Pennsylvania.-J. E. Hilgard. Zenith telescope No. 6. October 17 to November 2, 1854. One division of level $=0^{\prime /} \cdot 8$. One turn of micrometer $=76^{\prime /} \cdot{ }^{15}$, from circumpolar obsevations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		${ }^{\prime}$	w	Latitude.	v
		"	"			- , "	/
7029	7085	$43 \cdot 69$	13.97	6	13	$395828 \cdot 58$	+o.81
* 7 091	7131	14.03	$06 \cdot 40$	4	6	29.63	-0.24
* 7 091	$713{ }^{\text {2 }}$	$14{ }^{\circ} \mathrm{O}$	O2.45	4	6	29.98	-0. 59
7141	7144	29.97	09.66	3	6	$29 \cdot 16$	+0.23
7182	7194	$58 \cdot 31$	39.23	8	17	29.63	-0. 24
7213	7253	$38 \cdot 34$	$49^{\circ} 23$	4	9	$29^{6} 6$	-0.21
7260	* 7297	02.53	O1'90	4	6	29.46	-0.07
7277	* 7297	34 '06	OI 90	6	9	30.04	-0.65
7313	7326	$53 \cdot 78$	4971	1	2	$29^{\circ} 90$	-0.51
7363	7372	11 ${ }^{25}$	$56 \cdot 30$	4	9	$28 \cdot 54$	to 85
* 7399	7469	$50 \cdot 15$	$02 \cdot 33$	1	I	29.40	-0.01
* 7399	7480	50 '15	0590	6	9	29.54	-0.15
7402	7462	59.78	57 or	5	II	29.66	-0.27
7521	7554	$24 \cdot 76$	21.78	4	9	$29 \cdot 36$	+o. 03
7560	7607	$30 \cdot 78$	13.72	5	11	28.64	+o.75
7610	7674	$31 \cdot 90$	$00 \cdot 40$	4	9	29.39	0.00
7696	* 7712	31.90	$21 \cdot 34$	4	6	29.53	-0.14
7698	* 7712	$24 \cdot 82$	$21 \cdot 34$	4	6	28.83	+o. 56
7727	7731	$46 \cdot 90$	$10 \cdot 96$	4	9	$28 \cdot 36$	$+\mathrm{I} \mathrm{O}_{3}$
7757	7787	51 26	$27 \cdot 72$	6	13	$30 \cdot 54$	-I.15
7805	7851	26 '30.	45.57	6	13	$29^{\circ} 20$	+o.19
7878	7908	$45 \cdot 53$	46.02	2	4	29.08	to 31
7937	7973	05 55	44.06	5	11	$29 \cdot 72$	-0.33
7984	8037	or 43	$43 \cdot 56$	2	4	$30 \cdot 57$	-I'18
8059	8156	$56 \cdot 11$	$15 \cdot 17$	5	11	$30 \cdot 30$	-0.91
8082	* 8159	$26 \cdot 10$	59.20	2	3	. 29.29	+o.10
8114	* 8159	$54 \cdot 80$	59 '20	5	7	29.51	-0.12
8177	8187	$20 \cdot 32$	$43 \cdot 13$	5	11	29.40	-0.01
8206	8231	48.41	II 18	4	9	$28 \cdot 78$	to. 61
8279	8299	$47{ }^{\circ} 96$	23.42	5	II	29.57	-0.18
8312	8314	$27 \cdot 22$	07.98	2	4	29.81	-0.42
8355	26	$50 \cdot 42$	41.42	3	6	$29^{\prime 3}$	+o. 04
32	46	$19 \cdot 17$	41×97	3	6	$29 \cdot 17$	+o. 22
60	67	11\%90	23.95	3	6	$30 \cdot 8$	-0.69
80	87	$25 \cdot 14$	$08 \cdot 70$	3	6	$28 \cdot 75$	+0.64
114	156	$14 \cdot 77$	$18 \cdot 54$	3	6	28.30	+1.09
166	180	19.38	$20 \cdot 51$	4	9	29.31	to.08

Indiscriminate mean $=39^{\circ} 5^{\prime \prime} 29^{\prime \prime}{ }^{\prime} 41$.
Weighted utean $=39 \quad 58 \quad 29 \quad 39 \pm \sigma^{\prime \prime}$ '06.

$$
\varepsilon= \pm 0^{\prime \prime} \cdot 68
$$

148 observations, 37 pairs.
[Reduction to $\Delta=o^{\prime \prime}{ }^{\circ} \mathrm{ov}$.]

For the abstracts of results corresponding to the astronomic latitudes of the following stations, numbered from 30 to 53 , inclusive, that is, for stations common to the transcontinental arc and the oblique arc, see "The Transcontinental Triangulation" United States Coast and Geodetic Survey Special Publication No. 4; Washington, D. C., 1900. The final summary of the results for latitude includes the adopted latitude at these stations:
30. Principio, Md.

3I. Maryland Heights, Md
32. Pooles Island, Md.
33. Sugar Loaf, Md.
34. Dover, Del.
35. Webb, Md.
36. Soper, Md.
37. Rockville, Md.
38. Taylor, Md.
39. Strasburg, Va.
40. Cape May, N. J.
41. Causten, D. C.
42. Naval Observatory (new), D. C.
43. Hill, Md.
44. Naval Observatory (old), D. C.
45. Seaton, D. C.
46. Coast and Geodetic Survey Office, D. C.
47. Bull Run, Va.
48. Marriott, Md.
49. Cape Henlopen, Del.

5o. Clark, Va.
5. Elliott Knob, Va.
52. Charlottesville, Va.
53. Long Mountain, Va.
54. Moore, North Carolina.-J. B. Baylor. Zenith telescope No. 2. First series. November 8 to December 6, 1876 . One division of level $=1^{\prime \prime} .06$. One turn of micrometer $=44^{\prime \prime} .867$ from circum. polar observations at this station.

Pairs of stars.			Adopted seconds of mean N. P. D.		n^{\prime}	\% Latitude.		\%
			"	11	,		- , /1	"
7	943	7973	44×53	$43 \cdot 6$	7	3	$362355 \quad 62$	-0.54
8	068	8071	54.41	$58 \cdot 91$	6	3	$55 \cdot 67$	-0.59
8	107	8146	$18 \cdot 72$	O1.91	6	3	$53{ }^{\circ} 85$	+1.23
8	171	8206	12.67	32. 56	7	3	$54 \cdot 87$	+0.21
8	245	8256	$42 \cdot 10$	$29^{\circ} 75$	5	2	54 -88	+0.20
	7	26	$02 \cdot 79$	$21 \cdot 38$	9	3	$54 \cdot 29$	+o.79
	100	109	$28 \cdot 90$	$55 \cdot 78$	7	3	$55 \cdot 65$	-0.57
	130	153	$19^{\circ} 20$	OS 34	6	3	$55 * 84$	-0.76
	219	264	$3^{2 \cdot 13}$	08.30	7	3	$54 \cdot 63$	+o.45
	318	349	08^{41}	0942	6	3	$55 \cdot 27$	-0.19
	388	438	19.60	$28 \cdot 6$ r	6	3	$56 \cdot 16$	-1 08
	456	476	19.26	$23 \cdot 30$	6	3	$55 \cdot 18$	-0.10
	518	568	$26 \cdot 68$	31.00	7	3	$54 \cdot 89$	+0.19
	595	615	$45 * 44$	$48 \cdot 21$	8	3	$55 \cdot 16$	-0.08
	656	661	$00 \cdot 44$	$47{ }^{\circ} 91$	6	3	54 '99	+0.09
	740	791	$23 \cdot 64$	$07^{\circ} 5^{2}$	4	2	$56 \cdot 87$	- I 79
	796	827.	$34 \cdot 62$	$52 \cdot 24$	5	2	$55 \cdot 89$	-0.8i
	863	903	14.63	$20 \cdot 50$	7	3	$56 \cdot 73$	-1.65
	915	953	$57^{\circ} \mathrm{0}$	$28 \cdot 81$	7	3	$53 \cdot 70$	+1.38
	981	1017	$39 \cdot 36$	OI *35	6	3	$53 \cdot 59$	+1.49
I	030	1057	$37 \cdot 46$	$31 \cdot 60$	7	3	$53 \cdot 84$	+1.24
1	099	I 126	19.53	$24 \cdot 60$	6	3	$54 \cdot 97$	+0.11

Indiscriminate mean $=36^{\circ} \quad 23^{\prime} 55^{\prime \prime \prime} 12$.
Weighterl mean $\begin{array}{rlrl} & =36 \quad 23 & 55 \quad 08 \pm 0^{\prime / \prime \cdot 13 .} \\ e & = \pm 1 / / \cdot 06 .\end{array}$
140 observations, 22 pairs.
[Rerluction to $\Delta=-0^{\prime \prime} \cdot 04$.]

THE ASTRONOMIC MEASURES.

54. Moore, North Carolina.-W. B. Fairfield. Zenith telescope No. 2. Second series. November 23 to December 6, 1876 . One division of level $=1^{\prime \prime} \cdot 06$. One turn of micrometer $=44^{\prime \prime} \cdot 867$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	v
		"	"			- , "	"
7943	7973	44 '53	$43 \cdot 67$	6	3	362356 \% 4	-1.22
8 o6S	8071	54.41	$58 \cdot 91$	6	3	$55 \cdot 14$	-0.32
8107	8146	$18 \cdot 72$	O1 91	5	3	53 '95	+o. 87
8171	8206	12.67	$32 \cdot 56$	6	3	$55 \cdot 13$	-0.31
8245	8256	$42 \cdot 10$	29.75	6	3	$54 \cdot 87$	-0 05
7	26	02 79	21.38	6	3	$53 \cdot 82$	+1.00
100	109	$28 \cdot 90$	$55 \cdot 78$	6	3	$55{ }^{\circ} 55$	-0 73
130	${ }^{1} 53$	19.20	08 34	6	3	55.41	-0. 59
219	264	$32 \cdot 13$	$08 \cdot 30$	6	3	$52 \cdot 76$	$+2.06$
318	349	O 8.41	$09 \cdot 42$	6	3	$55^{\circ} 4$	-0.59
388	438	19.60	$28 \cdot 61$	6	3	54 '86	-0.04
456	476	19.26	$23 \cdot 30$	7	3	55.69	-0.87
518	568	26.68	31.00	7	3	53.58	+1.24
595	615	45.44	$48 \cdot 21$	6	3	$54{ }^{\circ} 5$	+0.32
656	661	$00 \cdot 44$	4791	5	3	55 21	-0.39
740	791	$23 \cdot 64$	$07 \cdot 52$	6	3	56.47	-1.65
863	903	14.63	$20 \cdot 50$	6	3	54.90	-0.08
915	953	57 -00	$28 \cdot 81$	6	3	54.03	+0.79.
98 r	1017	$39 \cdot 36$	-1 35	6	3	$55 \cdot 37$	-0.55
1030	1057	$37 \cdot 46$	$31 \cdot 60$	6	3	$53 \cdot 76$	+1:06
1099	1126	19.53	$24 \cdot 60$	6	3	54 '74	+o.08

Indiscriminate inean $=36^{\circ} 23^{\prime} 54^{\prime \prime \prime} 82$. Weighted mean $=36 \quad 23 \quad 54 \quad 82 \pm 0^{\prime / \prime}{ }^{1}$ I 3 . $e= \pm 0^{\prime \prime} \cdot 67$
I26 observations, 21 pairs.
[Reduction to $\Delta=-0^{\prime \prime}$ o4.]
Adopted value $\quad=36^{\circ} 23^{\prime} 54^{\prime \prime} 95 \pm 0^{\prime \prime} 09$.
[Reduction to $\triangle=-0^{\prime \prime}$ o4.]
55. Yoning, North Carolina.-H. W. Blair. Zenith telescope No. 4. First series. October 14 to 21,1876 . One division of level $=2^{\prime /} \cdot 20$. One turn of micrometer $=43^{\prime \prime} \cdot 388$ froni circumpolar observations at this station.

pairs of stars.		Adopted seconds of mean N. B. D.		n^{\prime}	*	Latitude.		
		"	"			- ,	"	"
6856	6858	21995	$36 \cdot 45$	6	2	3544	22 S8	-1 35
6962	6966	$31 \cdot 57$	08.15	5	2		22.90	-1.37
7022	7029	20.95	$32^{\prime} 26$	6	2		21.63	-0.10
7174	7194	$35{ }^{\circ} \mathrm{O}$	$55 \cdot 55$	6	2		$20 \cdot 68$	+o. 85
7253	7256	53 *08	$46 \cdot 94$	6	2		$20 \cdot 27$	+1.26
7399	[1909]	21.60	45.8 r	6	2		$23 \cdot 20$	-1.67
7465	7525	59.09	33.74	6	2		22.88	-1.35
7585	7598	$20 \cdot 17$	$49^{6} \mathrm{I}$	6	2		$20 \cdot 50$	+1.03
7712	7746	$00 \cdot 12$	$20 \cdot 31$	6	2		$20 \cdot 36$	+1 ${ }^{17}$
7914	7972	20.45	$46^{\prime} 74$	6	2		$21 \cdot 36$	+o.17
8082	8160	15.54	4138	5	2		20.84	+0.69
8114	8131	$43 \cdot 23$	$17 \cdot 15$	5	2		$20 \cdot 35$	+1.18
8195	8211	$41 \cdot 56$	1748	5	2		$21 \cdot 28$	+0.25
8229	8256	$05 \cdot 86$	$29^{\prime} 75$	5	2		$22 \cdot 23$	-0.70

Indiscriminate mean $=35^{\circ} 44^{\prime} 21^{\prime \prime} .53$.

$$
\text { Weighted mean }=\begin{array}{lllll}
35 & 44 & 21 & 53 \pm 0^{\prime \prime} \cdot 20
\end{array}
$$

79 observations, 44 pairs.

$$
c= \pm 0^{\prime \prime} \cdot 67
$$

[Reduction to $\Delta=+o^{\prime \prime}$ or.]
55. Young, North Carolina, -J. B. Boutelle. Zenith telescope No. 4. Second series. October 24 to 31,1876 . One division of level $=2^{\prime /} \cdot 20$. One turn of micrometer $=43^{\prime \prime} 388$ from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N.P.D.		n^{\prime}	${ }^{w}$	Jatitude.		ν
		"	"			- ,	"	"
7664	7755	22.67	$49^{\circ} 24$	6	3	3544	$21 \cdot 34$	+0.13
7961	7975	17.66	$56 \cdot 50$	6	3		20 '95	+0.52
8153	8 צ82	$46 \cdot 26$	23.80	6	3		21.05	+0.42
8203	8231	$06 \cdot 13$	$54 \cdot 25$	6	3		21.45	+0.02
8370	7	$37 \cdot 17$	$02 \cdot 79$	6	3		23.26	$-1 \cdot 79$
28	[20]	$57 \cdot 40$	1597	6	3		$22 \cdot 18$	-0.71
120	173	10.57	${ }^{19} \cdot 13$	6	3		22.05	-0.58
198	215	$40 \cdot 18$	$27 \cdot 77$	6	3		$22 \cdot 61$	-1.14
244	269	$57 \cdot 9^{8}$	$30 \cdot 00$	6	3		21.07	+0:40
283	345	15.68	OS 80	6	3		20.58	+0.89
395	404	$17 \cdot 46$	$18 \cdot 60$	6	3		20.77	+0.70
488	515	$34 \cdot 53$	3111	6	3		21.68	-0.21
55^{8}	592	04.50	$17 \% 0$	6	3		20.41	+ $\mathrm{I} \cdot 06$
628	675	$5^{8 \cdot 85}$	4430	6	3		21×17	+o 30

Indiscriminate mean $=35^{\circ} 44^{\prime} 21^{\prime \prime \prime} 47$.
Weighted mean $\quad=35 \quad 44 \quad 21 \quad 47 \pm 0^{\prime \prime \cdot} 15$.
84 observations, 44 pairs.
[Reduction to $\Delta=+\sigma^{\prime \prime}$ or.]
Adopted value $\quad=35^{\circ} 44^{\prime} 21^{\prime \prime} 50 \pm 0^{\prime \prime \prime}$ I 2 .
[Reduction to $\Delta=+0^{\prime \prime}$ OI.]
56. King, North Carolina.-H. W. Blair. Zenith telescope No. 5. First series. December 5 to $I_{3}, 1876$. One division of level $=0^{\prime \prime} 98$. One turn of micrometer $=41^{\prime /} \cdot 420$ from circumpolar observations at this station.

8052	8058
8125	8160
S 206	S 212
8261	8324
8345	4
67	120
170	180
218	269
330	365
456	488
522	577
649	698
727	759
SI_{3}	829
885	901
941	967
999	1007
1034	1043
1058	$\mathrm{I}^{1} \mathrm{OS}_{4}$
1117	1174

Indiscriminate mean $=35^{\circ} \quad 12^{\prime} \quad 13^{\prime \prime \prime} 26$.
Weighted nean $\begin{aligned} &=35 \quad 12 \quad 13 \cdot 26 \pm 0^{\prime \prime} \cdot 10 \\ & e= \pm 0^{\prime \prime} \cdot 21\end{aligned}$
Ioo observations, 20 pairs.
[Reduction to $\Delta=+16^{\prime \prime} \circ$ o7.]
56. King, North Carolina.-J. B. Boutelle. Zenith telescope No. 5. Second series. December 12 to 20,1876 . One division of level $=0^{\prime \prime} 98$. One turn of micrometer $=4 I^{\prime \prime \prime} 561$ from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{7 \prime}$			
		"	"			- ,	"	"
8256	$\dagger 4172$	$29 \cdot 75$	54.74	5	4	3512	13.39	-0.02
8364	8370	$30 \cdot 10$	$37 \cdot 17$	5	4		13.24	+o.13
26	92	$21 \cdot 38$	$43^{\circ} \mathrm{O}$	5	4		14.25	-0.88
101	153	$37 \cdot 13$	-8.34	$5{ }^{\circ}$	4		14.22	-0.35
178	189	03.04	$13 \cdot 57$	5	4		14.34	-0.97
198	264	$40 \cdot 18$	$08 \cdot 30$	5	4		13.62	-0.25
283	349	18.68	$09 \cdot 42$	5	4		14 \%	-0.71
515	561	$3{ }^{1 \cdot 11}$	18.20	5	4		$12 \cdot 39$	+o.98
569	628	$34 \cdot 25$	$58 \cdot 85$	5	4		12.43	+0.94
682	735	21.44	$03 \cdot 14$	5	4		12.58	+0.79
769	785	$46 \cdot 25$	$56 \cdot 30$	5	4		12.69	+0.68
842	863	51.60	14.63	5	4		$13 \cdot 32$	+o.05
904	912	59.45	05.47	5	4		$13 \cdot 62$	-0.25
947	966	51'12	$59 \cdot 59$	5	4		12.20	+1.17
983	1025	$37 \cdot 96$	09 77	5	4		14.40	-1.03
1069	1099	$29 \cdot 64$	19.53	5	4		12.70	+0.67
1123	1132	17.54	$03 \cdot 57$	5	4		1430	-0.93
1155	1210	$32 \cdot 11$	41.87	5	4		13.26	+0.11
I 289	1287	25.64	29.74	5	4		13.05	+o.32
1301	1311	42 So	$43 \cdot 20$	5	4		$13 \cdot 40$	-0.03
Indiscriminate mean $=35^{\circ} 12^{\prime} 13^{\prime \prime \prime} \cdot 37$. Weighted mean $=35 \quad 12 \quad 13 \quad 37 \pm 0^{\prime \prime} \cdot 11$. e $= \pm 0^{\prime \prime \prime} 34$.								

100 observations, 20 pairs.
[Reduction to $\left.\Delta=+16^{\prime \prime} .07.\right]$
Adopted value $\quad=35^{\circ} 12^{\prime} \mathrm{I}^{\prime \prime \prime} 3^{1} \pm 0^{\prime \prime} \circ \mathrm{o}$.
[Reduction to $\Delta=+16^{\prime \prime} \circ \%$.]
57. Paris, South Carolina.-J. B. Boutelle. Zenith telescope No. 5. First series. October 4 to 17, 1875. One division of level $=0^{\prime \prime} 944$. One turn of micrometer $=4 I^{\prime \prime} 5$ I4 from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		ν
		"	"			- ,	"	"
6 Sio	6830	22.04	$24 \cdot 52$	5	5	3456	31.60	+0.46
6876	6882	04*16	$42{ }^{\circ}$	6	5		$33 \cdot 13$	- I 07
6941	7007	08. 57	$35 \cdot 26$	6	5		$32^{6} \mathrm{I}$	-0. 55
7029	7061	$43 \cdot 72$	$10 \cdot 03$	5	5		$33^{\circ} 0$	-0.94
* 7103	*7 103	$35 \cdot 32$	$35 \cdot 32$	5	3		31.44	+0.62
7152	7158	10.61	41.85	5	5		31×8	+o.98
7200	7262	29.45	$45 \cdot{ }^{\circ}$	5	5		$31 \cdot 10$	+o.96
7271	7377	31.86	$37 \cdot 85$	5	5		$30 \cdot 63$	+143
7448	7450	47.08	$53 \cdot 92$	5	5		32.30°	-0.24
7512	7520	29.36	$33 \cdot 53$	5	5		31 93	+o.13
7554	7607	42.05	24.88	5	5		$32 \cdot 44$	-0.38
7664	7683	$40 \cdot 76$	$07 \cdot 67$	5	5		$32 \cdot 38$	-0.32
7731	7777	$04 \cdot 25$	$22 \cdot$ So	5	5		$33 \cdot 06$	- I 00
7.798	7850	$54 \cdot 74$	$00 \cdot 34$	6	5		$32 \cdot 21$	-0.15
7888	7900	$58 \cdot 0$	0909	5	5		$32 \cdot 73$	-0.67
7914	7932	$40 \cdot 15$	$10 \cdot 15$	6	5		$32 \cdot 33$	-0.27
7972	8032	$05 \cdot 77$	41.03	5	5		31 57	+0.49
8052	8056	22.06	$26 \cdot 86$	5	5		31 71	+o.35
8182	8188	$43 \cdot 65$	23.73	6.	5		31 90	+0.16
8206	8212	$52 \cdot 60$	$08 \cdot 68$	6	5		$32 \cdot 18$	-0.12
8227	8252	29.70	$26 \cdot 95$	5	5		31'90	+o.16
8280	8300	5777	$53 \cdot 55$	5	5		31 77	+0.29
		scrimina ghted me		$6 \prime$ 6^{\prime} 36.	5.	Io.		

n16 observations, 22 pairs.
[Reduction to $\Delta=-0^{\prime \prime} 87$.]
57. Paris, South Carolina.-H. W. Blair. Zenith telescope No. 5. Second series. October 18 to 25, 1875. One division of level $=0^{\prime \prime} 944$. One turn of micrometer $=41^{\prime \prime} \cdot 386$ from circumpolar observations at this station.

P'airs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{\text {z }}$	Latitude.		v
		/	"			-	, "	"
7204	7213	$49 \cdot 16$	03 74	5	6	345	5631×57	+0.29
7260	$\dagger 2065$	19.40	$53 \cdot 66$	5	6		$3^{\text {\% }}$ o2	- 0.16
7437	7455	41 ol	$34 \cdot 65$	5	6		$32 \cdot 68$	-0. 8_{2}
7495	7553	28.93	$41 \cdot 30$	5	6		31×30	+o.56
7606	7642	$40 \cdot 50$	$32 \cdot 40$	5	6		$31 \cdot 56$	+0.30
7674	7696	59.05	$27 \cdot 52$	5	6		3172	+o. 14
7738	7796	$37 \cdot 82$	26.07	5	6		$3{ }^{1} 70$	+0.16
7807	7855	58•19	$35 \cdot 56$	5	6		$30 \cdot 88$	+o.98
7871	7912	17.85	07.72	5	6		3132	+o. 54
8003	5013	$19{ }^{\circ} 6$	$16 \cdot 54$	5	6		$32 \cdot 21$	-0.35
8028	8097	$50 \cdot 74$	58.93	5	6		3157	+o. 29
8099	S 171	14.18	$32 \cdot 48$	5	6		32.54	-o.68
8261	S 324	25.03	$11 \% 9$	5	6		32 '06	-0.20
S 345	4	$43 \cdot 34$	$58 \cdot 21$	5	6		$32 \cdot 6$	-0.20
S2	92	37 '80	$03 \cdot 14$	5	6		$32 \cdot 39$	-0.53
102	121	25.44	$05 \cdot 15$	5	6		$31 \cdot 92$	-0.06
189	215	$33 \cdot 37$	$47^{\circ} 45$	5	6		32.03	-0.17
226	250	OI ${ }^{\text {OI }}$	$55{ }^{\circ} \mathrm{O}$	5	6		$32 \cdot 71$	-0.85
*334	*334	$33 \cdot 49$	$33 \cdot 49$	5	3		$33 \cdot 33$	-1.47
339	370	56 \% 8	44×07	5	6		30 '99	+o.87
416	454	55 \%o	21.54	5	6		$30 \cdot 90$	to.96
470	508	54 '50	18.61	5	6		$32 \cdot 13$	-0. 27

Indiscriminate mean $=34^{\circ} 56^{\prime} 31^{\prime \prime} \cdot 88$.
Weighted mean $=34 \quad 56$ 31 $\cdot 86 \pm 0^{\prime \prime} \cdot 08$.
$e= \pm o^{\prime \prime} \cdot 27$.
ino observations, 22 pairs.
[Reduction to $\Delta=-0 . / 187$.]
Adopted value $\quad=34^{\circ} 56^{\prime} 31^{\prime \prime} \cdot 96 \pm 0^{\prime \prime} \cdot 07$.
[Reduction to $\left.\triangle=-0^{\circ / 187 .}\right]$
58. Currahee, Georgia.-H. W. Blair. Zenith telescope No. 5. First series. September 28 to October 8, 1874. One division of level $=0^{\prime \prime} 94$ from observations at this station. One turn of micrometer $=41^{\prime \prime}{ }_{3} 8_{1}$ from circumpolar observations at this station.

Pairs of stars.		Adapted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	v
		$1 /$	/			- /1	"
6571	6599	31 74	$22 \cdot 34$	5	5	3431373^{2}	+0.43
6637	6656	$40 \cdot 03$	22.44	5	5	$38 \cdot 05$	-0.30
6697	6739	$16 \cdot 54$	$26 \cdot 40$	5	5	38:32	-0.57
6764	6794	$26 \cdot 47$	$20^{\cdot 20}$	5	5	37.73	+0.02
6824	6839	51.47	4975	5	5	37 '53	10.22
6858	6895	$54 \cdot 76$	42•24	5	5	$37 \cdot 60$	+0.15
6944	6963	45 '15	08.25	6	5	$37 \cdot 64$	+o.11
*6998	*6998	$35 \cdot 87$	$35 \cdot 87$	5	3	$38 \cdot 33$	-0.58
7008	7067	$35 \cdot 17$	$02 \cdot 51$	5	5	$38 \cdot 03$	-0.28
7094	7105	10.28	49.94	5	5	$38 \cdot 46$	-0.71
7215	7257	18.44	$40 \cdot 94$	5	5	38.50	-0.75
7275	7301	$35^{\circ} 60$	12.52	5	5	38.09	-0.34
7350	7377	29.42	$52 \cdot 53$	5	5	$36 \cdot 15$	+1.60
7402	7444	$00 \cdot 33$	O1 55	5	5	36.19	+1.56
7474	7480	$43 \cdot 96$	5178	5	5	$38 \cdot 29$	-0.54
7528	7548	08*14	17.84	5	5	$36 \cdot 64$	+1.11
7606	7612	$57^{1} 12$	25.68	5	5	37:30	+0.45
7641	7683	13.87	24 '94	5	5	38-12	-0.37
7705	7706	$54^{\circ} \mathrm{I} 3$	10*13	5	5	36.97	+0.78
7807	7820	16.25	$43 \cdot 26$	5	5	$37^{\cdot 22}$	+o. 53
7855	7856	$53 \cdot 84$	$06 \cdot 71$	5	. 5	$38 \cdot 05$	-0.30
7915	7923	$56 \cdot 37$	13.32	5	5	$37 \cdot 81$	-0.06
7953	8003	51 15	$3^{8 \cdot 76}$	5	5	$38 \cdot 41$	-0.66
8023	8032	or $\cdot 48$	$00 \cdot 52$	5	5	$38 \cdot 59$	-0.84
8076	8079	$55 * 39$	$57 \cdot 83$	5	5	38-55	-0.80
8097	8128	$18 \cdot 56$	$40 \cdot S_{5}$	5	5	$38 \cdot 29$	-0.54
815^{8}	8182	2179	03.50	5	5	$37 \cdot 36$	+0.39
8250	8280	-3 "95	$17 \cdot 82$	5	5	$37 \cdot 60$	+0.15

Indiscriminate mean $=34^{\circ} 31^{\prime} 37^{\prime \prime} 75$.
Weighted mean $\begin{array}{lllll} & 34 & 31 & 37 & \\ & 75 \pm 0^{\prime \prime} / 09\end{array}$ $e= \pm o^{\prime \prime} \cdot 32$.
141 observations, 28 pairs.
[Reduction to $\Delta=+6^{\prime \prime} \cdot 21$.]
58. Currahce, Georgia. -J. B. Boutelle. Zenith telescope No. 5. Second series. October 12 to 21 , 1874. One division of level $=\mathrm{o}^{\prime \prime} .94$ from observations at this station. One turn of micrometer $=41^{\prime \prime} 3^{81}$ from circumpolar observations at this station.

Indiscriminate mean $=34^{\circ} 31^{\prime} 37^{\prime / \prime} 71$.
Weighted mean $=3431 \quad 37 \quad 71 \pm 0^{\prime / 1} 14$. $e= \pm o^{\prime \prime} 49$.
82 observations, 16 pairs.
[Reduction to $\triangle=+6^{\prime \prime} \cdot 2$ I.]
Adopted value $=34^{\circ} 3 I^{\prime} 37^{\prime \prime} \cdot 75 \pm 0^{\prime \prime} \cdot \mathrm{OS}$.
[Reduction to $\Delta=+6^{\prime \prime} \cdot 21$.]
59. Lavender, Georgia.-F. P. Webber. Zenith telescope No. 3. October 20 to November 4, 1874. One division of level $=1^{\prime \prime} \cdot 20$. One turn of micrometer $=46^{\prime \prime} .60$ determined from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. I.		n^{\prime}	w	Latitude.		v
		$1 /$	11			-	$1 /$	11
7310	7350	12'79	29.42	8	3	34	16.41	-0.60
7553	7582	$57 \cdot 49$	49'75	6	3		$16 \cdot 67$	-0.86
7607	7614	41 51	$09 \cdot 32$	5	3		$16 \cdot 12$	-0.3I
7643	7664	$07 \cdot 12$	$56 \cdot 90$	5	3		$16 \cdot 02$	-0.2I
7712	7729	$34 \cdot 99$	$56 \cdot 79$	6	3		$14 \cdot 73$	+1:08
7820	7856	$43 \cdot 26$	$06 \cdot 71$	7	3		14.87	+0.94
7879	7923	$29 \cdot 57$	$13 \cdot 32$	5	3		14.45	+1.36
7997	8059	22.27	25 '08	6	3		15 62	+o.19
8097	8 II8	17.90	$50 \cdot 30$	5	3		$17 \cdot 32$	-I.5I
8149	8158	33.81	21 79	5	3		$16 \cdot n 8$	-0.27
8282	8300	12.56	${ }_{1} 13.53$	5	3		$15 \cdot 65$	+0.16
79	IOI	$42 \cdot 48$	$17 \cdot 29$	5	3		17 ${ }^{1} 15$	- I 34
121	156	25.11	$40 \cdot 70$	5	3		$16 \cdot 17$	-0.36
. 180	214	44.91	$36 \cdot 50$	5	3		15 14	+0.67
305	339	$55 \cdot 35$	15 '39	5	3		14.73	+1.08
377	395	$30 \cdot 80$	$55 \cdot 68$	8	3		$16 \cdot 51$	-0.70
560	572	$52 \cdot 73$	$20 \cdot 70$	6	3		14.42	+1:39
587	644	$13 \cdot 00$	II 68	5	3		$17 \cdot 40$	-I. 59
7559	7568	$50 \cdot 89$	32 '05	5	3		$15 \% 70$	+O.II
7641	7668	$13 \cdot 87$	3922	5	3		$17 \cdot 22$	-1.41
7855	7900	$53 \cdot 84$	$26 \cdot 68$	5	3		15.58	+0.23
7962	8032	$47 \cdot 41$	$00 \cdot 52$	6	3		$16 \cdot 25$	-0.44
8058	8131	$34 \cdot 35$	$56 \cdot 50$	5	3		14.58	+1.23
8160	8224	21.00	27.85	7	3		15.88	-0.07
142	169	16.58	14.80	5	3		16.07	-0.26
219	- 247	I I 45	$40 \cdot 63$	5	3		$15 \cdot 56$	+0.25
321	- 343	$38^{\circ 90}$	47.53	6	3		14.55	+1:26

Indiscriminate mean $=34^{\circ} 19^{\prime} \quad 15^{\prime \prime} \cdot 81$.
Weighted mean $\quad=34 \quad$ I9 $15 \quad 8 \mathrm{I} \pm \mathrm{o}^{/ / \cdot} \cdot 12$. $e= \pm 0^{\prime \prime} \cdot 65$.
${ }^{151}$ observations, 27 pairs.
[Reduction to $\triangle=+1^{\prime \prime} \cdot 24$.]
60. Sazonee, Georgia.-H. W. Blair. Zenitli telescope No. 5. First series. October 6 to 17, 1873. One division of level $=1^{\prime \prime} .00$. One turn of micrometer $=41^{\prime /} \cdot 429$ frour circumpolar observations at this station.

60. Sawnee, Georgia.-A. H. Scott. Zenith telescope No. 5. Second series. October 30 to Norember 15,1873 . One division of level $=1^{\prime \prime} \%$. One turn of micrometer $=41^{\prime \prime} .429$ from circumpolar observations at this station

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	v
		"	"			- , "	"
7 r 37	7166	$45^{\circ} 9$	$30 \cdot 31$	5	4	$3414 \quad 03 \cdot{ }_{5}$	+o' 30
7306	7361	$32 \cdot 55$	14.07	5	4	O4 6 I	-0.46
7350	7449	$33 \cdot 30$	$04 \cdot 16$	5	4	$04 \cdot 26$	-0.II
7559	7568	$07 \cdot 17$	$48 \cdot 19$	5	4	$03 \cdot 79$	+o. 36
7590	7612	$30 \cdot 50$	42 '39	6	4	04 ${ }^{2} 3$	-0.08
7674	7749	$33^{\circ} 5$	$27^{\circ} 99$	6	4	03.53	+0.62
7855	7893	$12 \cdot 23$	02.81	6	4	$04{ }^{\circ} \mathrm{OI}$	+o.14
7913	7958	18.59	$06 \cdot 26$	6	4	$03 \cdot 12$	+1.03
8114	8146	$42^{\text {'II }}$	or ${ }^{\circ} \mathrm{o}$	5	4	$04 \cdot 12$	+o.03
8282	8300	$32 \cdot 54$	$33^{\circ} 5$	4	3	03.52	+0.63
92	142	$43 \cdot 14$	$36 \cdot 50$	6	4	05'59	-1.44
164	181	$40 \cdot 52$	$22 \cdot 62$	6	4	$05 \cdot 53$	- I 38
224	227	23.05	47.09	6	4	$04 \cdot 88$	-0.73
305	314	14.50	13.77	5	4	02 '95	+1.20
352	365	$21 \cdot 18$	$20 \cdot 62$	6	4	03 '90	+o. 25

Indiscriminate mean $=34^{\circ} 14^{\prime} \mathrm{O}^{\prime \prime}$ ' 13 .
Weighted mean $\quad=34 \quad 14 \quad 04 \quad{ }^{1} 5 \pm 0^{\prime \prime} \cdot 14$.

$$
e= \pm o^{\prime \prime} \cdot 5 \mathrm{I}
$$

S2 observations, I5 pairs.
[Reduction to $\Delta=+6^{\prime \prime} \cdot 89$.]
Value arlopted $\quad=34^{\circ} 14^{\prime} 04^{\prime \prime} \cdot 20 \pm \alpha^{\prime \prime} \cdot \mathrm{os}$.
[Reduction to $\Delta=+6^{\prime \prime}{ }^{\prime \prime} 9$. .]
61. Aurora, Alabama.-F. P. Webber. Zenith telescope No. 2. May 28 to June 20, 1877. One division of level $=1^{\prime \prime} .006$. One turn of micrometer $=45^{\prime \prime}$ ' 852 from circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		. n^{\prime}	\%	Latitude.	
		"	"			- , "	"
4057	4127	$15 \cdot 90$	$15 \cdot 10$	5	3	34 of $4 S^{\prime} 72$	-1:27
4148	4156	59.48	$35^{6} 60$	5	3	$47 \cdot 74$	-0.29
4274	4305	-5 20	$32 \cdot 6$	5	3	$46 \cdot 65$	to So
4335	4367	21.00	45.50	5	3	$47 \cdot 59$	-0.14
4406	4456	$10 \cdot 50$	15.22	5	3	46 90	+o. 55
4684	4753	$09 \cdot 88$	$43 \cdot 18$	6	3	$46 \cdot 49$	+o.96
4570	4876	$10 \cdot 73$	23 \% 0	6	3	$48 \cdot 73$	-1.28
4958	4969	24.70	IS 3^{2}	6	3	$48 \cdot 30$	-0.85
5026	5031	25.07	42.24	5	3	$49 \cdot 43$	-1.98
5075	$5 \bigcirc 84$	$\infty{ }^{\circ} 5$	25.75	4	3	$46 \cdot{ }^{6}$	+o. S_{9}
5130	5143	$56 \cdot 38$	13.00	5	3	46.94	+o.51
5177	5252	$46 \cdot 80$	$03 \cdot 60$	5	3	47^{151}	-0.06
5295	5321	4S So	13.57	5	3	$46 \cdot 53$	+0.92
5432	5479	$43{ }^{\circ} 1$	37.63	5	3	$46 \cdot 12$	+1.33
5502	5587	$53 \cdot 64$	53.78	5	3	$48 \cdot 17$	-0.72
${ }^{5} 834$	5927	$04 \cdot 50$	$56 \cdot 25$	5	3	$47 \cdot 11$	+o. 34
5937	5991	$25 \cdot 10$	21.83	6	3	$47 \cdot 36$	+0.09
6091	6094	$45 \cdot 85$	$26 \cdot 60$	5	3	$49 \cdot 32$	-187
6151	6203	10 $\cdot 25$	54.18	5	3	$48^{2} 8$	-0.83
4242	4303	$44{ }^{50}$	$45 \cdot 85$	5	3	$46 \cdot 73$	+o. 72
4597	4701	$45 \cdot 45$	$36 \cdot 44$	5	3	$47 \cdot 56$	-0.11
4751	4845	$38 \cdot 25$	$40 \cdot 23$	5	3	$47 \cdot 47$	-0.02
4905	4980	16.66	23.48	5	3	$47 \cdot 14$	+0.31
5185	5313	$24 \cdot 14$	O8 06	5	3	47^{111}	+0.34
5322	5388	10.41	$30 \cdot 48$	5	3	$46 \cdot 50$	+o. 65
5463	5525	$34 \cdot 73$	27.79	5	3	$46 \cdot 55$	+0.90

Indiscriminate mean $=34^{\circ}$ os' $47^{\prime \prime} 45$.
Weighted mean $=34^{\text {os }} 47^{\prime \prime} 45 \pm 0^{\prime \prime} \cdot 12$. $e= \pm 0^{1 / 7} 60$.
133 observations, 26 pairs.
[Reduction to $\Delta=+o^{\prime \prime} 26$.]
62. Allanta Middle Base, Georgia.-F. P. Webber. Zenith telescope No. 5. September 4 to 27, 1872. One division of level $=1^{\prime \prime}$.oo. One turn of micrometer $=41^{\prime /} \cdot 427$ from circumpolar observations at this station.

THE EASTERN OBLIQUE ARC.

Altanta Middle Base, Georgia-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		${ }^{\prime}$	\%	Latitude.		$\stackrel{\nu}{\prime \prime}$
		"	"			- ,	"	
754.	7571	23.41	$32 \cdot 50$	5	7	3354	21.55	+0.27
7668	7674	13.61	55.06	6	7		21.96	-0.14
7727	7733	31.64	00.75	5	7		$22 \cdot 27$	-0.45
7901	7923	55.06	$50 \cdot 55$	5	7		$22 \cdot 36$	-0.54
7937	7595	25 '96	57 S8	5	7		22.87	-1.05
8052	8076	19.57	$34{ }^{\circ} \mathrm{5}$	5	7		22.33	-0.51
S 125	81.47	$36 \cdot 34$	$32 \cdot 05$	5	7		21.55	+0.27
8212	828.	$08 \cdot 20$	1150	5	7		$22 \cdot 37$	-0.55
8300	8364	$53 \cdot 12$	$50 \cdot 24$	6	7		$21 \cdot 13$	+o.69
54	101	$40 \cdot 84$	$57 \% 45$	5	7		$220 \cdot 45$	-0.63
152	178	$04 \cdot 34$	22.39	5	7		$22 \cdot 32$	-0.50
198	217	$59: 42$	$28 \cdot 50$	5	$\overline{7}$		22.09	-0.27
Indiscriminate mean $=33^{\circ} 54^{\prime} 21^{\prime \prime} \cdot 88_{2}$								
Weighted mean $=33 \quad 54 \quad 21 \quad{ }^{\prime} \mathrm{S}_{2} \pm \mathrm{o}^{\prime \prime} \mathrm{O} 05$								
274 observations, 54 pairs.								

63. Allanta, Georgia.-C. H. Sinclair. Meridian telescope No. 13. January it to 22, 1880. One division of level $=2^{\prime \prime} .7$ at $33^{\circ} \mathrm{F}$. and $2^{\prime \prime} .64$ at $75^{\circ} \cdot 2 \mathrm{~F}$. One turn of micrometer $=77^{\prime \prime} \cdot 7 \mathrm{~S}_{3}$ from circurnpolar observations at this station.

Pairs of slars.		Adopted seconds of mean N. P. D.		n^{\prime}	zv	Latitude.	v
		"	"			- , "	"
522	592	$00 \cdot 0$	08.So	6	4	$334458 \cdot 83$	+0.47
628	657	$49 \cdot 20$	$44^{\circ} 7$	6	4	58.42	+0.88
682	706	$13 \cdot 04$	$28 \cdot 85$	5	3	59.3 S	-0.08
819	842	12.40	$50 \cdot 72$	6	4	$59 \cdot 25$	+0.05
897	921	$25 \cdot 63$	$26 \cdot 10$	6	4	58.63	+0.67
974	981	$56 \cdot 90$	$43 \cdot 72$	4	3	60.44	-1.14
1006	1052	$02 \cdot 67$	os 5^{8}	4	3	59.58	-0.28
1065	1087	55 '80	$32 \cdot 79$	4	3	58.99	+0.31
(557)	1129	$37 \cdot 76$	$52 \cdot 20$	4	3	59 '12	+o.1S
1139	1 192	$07 \cdot 20$	$03 \cdot 10$	5	3	$59 \cdot 48$	-0.18
1214	(654)	14.60	$58 \cdot 22$	5	3	$58 \cdot 19$	+1.11
1254	1272	$34 * 60$	55.50	4	3	$60 \cdot 51$	-1.21
1301	1 346	$05 \cdot 68$	25.50	5	3	58^{30}	+1.00
1307	1 365	$42 \cdot 75$	$53 \cdot 25$	5	3	$60 \cdot 26$	-0.96
1 382	1393	O5 00	17.50	5	3	58.92	+o.3S
I 409	1424	$33 \cdot 80$	55^{20}	5	3	59.45	-0.15
1 460	1456	43.50°	29.50	5	3	$59 \cdot 66$	-0.36
(772)	${ }^{1} 492$	22.02	04.80	5	3	$61 \cdot 14$	-1.84
1 500	1504	$03 \cdot 40$	$32 \cdot 12$	4	3	$58 \cdot 85$	+0.45

Indiscriminate mean $=33^{\circ} 44^{\prime} 59^{\prime \prime} 34$.
Weighted niean $=33$ 44 $59 \quad 30 \pm 0 \cdot 12$.

$$
\varepsilon= \pm 0^{\prime \prime} \cdot 50
$$

93 observations, i9 pairs.
[Reduction to $\Delta=+0^{\prime \prime}$ oS.]
64. Kahalchee, Alabama.-O. B. Frencl. Zenith telescope No. 2. June 3 to 9, I898. One division of level $=1^{\prime \prime \prime} 211$, as determined by E. G. Fischer, 189 . One turn of micrometer $=46^{\prime \prime \prime} 376$ from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.		v
		"	"			-	"	"
4729	4741	11.45	$36 \cdot{ }^{6}$	4	13	3313	39.87	+o.03
*4748	* $\left.\begin{array}{l}2 \\ 232\end{array}\right)$	$38 \cdot 32$	$0_{4}{ }^{\circ} \mathrm{O}$	2	5		$39^{\circ} 49$	+0.41
*4 748	*(2 237)	$38 \cdot 32$	56.63	4	7		$39^{\circ} 45$	+o.45
4762	*($\left.\begin{array}{l}2 \\ 2\end{array} 237\right)$	18.51	56.63	2	5		38.99	+0.91
* $\left(\begin{array}{ll}2 & 23\end{array}\right)$	${ }^{*} 4792$	$04 \cdot 04$	14.73	2	5		$40 \cdot 45$	-0.55
*(2 237)	* 4792	$56 \cdot{ }_{3}$	14.73	4	7		$40 \cdot 07$	-0.17
4830	4 847p	12.97	40.08	4	13		$39^{\circ} 95$	-0.05
4873	4 907p	13.70	$36 \cdot 85$	5	14		$39^{\circ} \mathrm{Bo}$	+o.so
4936	4939	39^{62}	51 24	5	14		$39^{\circ} 72$	+o.18
4967	$\left(\begin{array}{l}2 \\ 3\end{array} 39\right)$	41 '07	$32 \cdot 25$	5	14		$40 \cdot 29$	-0. 39
(2350)	$\left(\begin{array}{l}2 \\ 3\end{array}{ }^{\text {8 }}\right.$)	$47 \cdot 42$	21.87	4	12		$40 \cdot 54$	-0.64
${ }^{*} 5098$	$\left(\begin{array}{l}296)\end{array}\right.$	33 '99	$53 \cdot 58$	4	9		39.58	+0.32
${ }^{*} 5098$	(2399)	33.99	C9.15	3	S		$39 \cdot 78$	+0.12
5143	5155	3 I '89	$04 \cdot 40$	4	${ }^{1} 3$		$39^{\circ} 40$	+0.50
5181	5216	$38 \cdot 78$	$3^{2} 52$	4	13		$40 \cdot 43$	-0.53
5287	*5 322	51.95	44.83	4	9		$40^{\prime 3}$	-0.40
(2486)	${ }^{*} 5322$	$44 \cdot 46$	$44 \cdot 83$	3	3		$39 \cdot 60$	+0.30
5388	5462	$59 \cdot 76$	56 \% 5	4	${ }^{3}$		39.60	+o. 30
5509	5523	17 '33	38.06	4	13		$39 \% 2$	-0.02

Indiscriminate mean $=33^{\circ} 13^{\prime} 39^{\prime \prime} 85$.
Weighted mean $=33$ 13 39 '90 $\pm 0^{\prime \prime \prime}$ o6.

$$
e= \pm 0^{\prime \prime} 3 \mathrm{I}
$$

71 observations, 19 pairs.
[Reduction to $\Delta=+\mathrm{o}^{\prime \prime} \cdot 39$.]
65. Montgomery, Alabama.-G. W. Dean. Zenith telescope No. 5. March 22 to 28, 1856. One division of level $=0^{\prime \prime} .929$ as determined at this station. One turn of micrometer $=41^{\prime \prime} .45$ from circumpolar observations at this station.

THE EASTERN OBLIQUE ARC.
65. Montgomery, Alabama-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	*			v
		"	"			-	"	/
${ }^{*} 3634$	3670	$27 \cdot 20$	$15: 40$	5	9	3222	44×96	+0.45
3704	3736	23.04	$50 \cdot 53$	6	14		$45 \cdot 86$	-0.45
3760	3776	$44 \cdot 44$	$55 \cdot 07$	5	14		$45 \cdot 38$	+0.03
3825	3837	$26 \cdot 18$	$07 \cdot 13$	5	14		$45 \cdot 81$	-0.40
$3 \mathrm{SS}_{5}$	3911	$38 \cdot 35$	$24 \cdot 17$	5	14		$45 \cdot 15$	+0.26
3931	3954	09 98	OS 27	5	14		$45 \cdot 75$	-0.34
3964	3973	$52 \cdot 30$	$42 \cdot 17$	5	14		$45^{\circ} 41$	- ${ }^{\circ}$
${ }^{*} 3990$	4057	51.22	19.75	5	9		$45 \cdot 14$	+0.27
*3990	4059	51:22	$37 \cdot 41$	5	9		$45 \cdot 60$	-0.19
4079	4121	$05 \cdot 62$	$49 \cdot 60$	5	14		$45 \cdot 64$	-0.23
4127	${ }^{*} 4188$	13.94	55.48	4	9		$45 \cdot 66$	-0.25
4184	${ }^{*} 4188$	$25 \cdot 76$	$55 \cdot 48$	5	9		$45 \cdot 56$	-0.15
4203	4229	$22 \cdot 14$	39.46	5	14		44.72	+o. 69
4240	4258	37.09	$56 \cdot 60$	4	13		$45 \cdot 67$	-0.26
4287	4351	18.35	47.80	5	14		$45^{\circ} 40$	+o.01
4384	4390	$46 \cdot 34$	04.56	5	14		$45 \cdot 67$	-0.26
4421	4457	26.53	$52^{7} 70$	5	14		4495	+0.46
4468	4538	$38 \cdot 73$	$47 \cdot 7^{8}$	5	14		44.80	+0.6r
4553	${ }^{*} 4596$	$03 \cdot 16$	14.57	5	9		$45 \cdot 69$	-0.28
4566	${ }^{*} 4596$	$23 \cdot 37$	14.57	5	9		$45 \cdot 10$	+0.31
4609	4618	$52^{\prime 22}$	$10 \cdot 25$	5	14		$45 \cdot 26$	+0.15
4632	4640	$28 \cdot 13$	$29 \cdot 75$	5	14		$45 \cdot 66$	-0.25
4694	4714	$35 \cdot 61$	32.09	2	9		45.66	-0.25
4699	4729	32.67	$57 \cdot 47$	2	9		$46^{\circ} \mathrm{I}$	-0.60
4753	4827	$53 \cdot 46$	$50 \cdot 70$	2	9		$45^{\circ} 94$	-0.53
4789	4853	$55 \cdot 76$	58.71	2	9		$46^{\circ} 03$	-0.62
4902	4961	$08 \cdot 17$	41^{102}	2	9		$45 \cdot 50$	-0.09
4993	5026	$17 \cdot 16$	$38 \cdot 94$	2	9		45.80	-0. 39

Indiscriminate mean $=32^{\circ} 22^{\prime} 45^{\prime \prime} .43$.

- $\quad e= \pm d^{\prime \prime} \cdot 29$.

181 observations, 40 pairs.
[Reduction to Δ or center of State House $=+\sigma^{\prime \prime}{ }^{22}$.]
66. Lower Peach Tree, Alabama.-E. Goodfellow. Zenith telescope No. 5. April 4 to $16,1857$. One division of level $=0^{\prime \prime} 99$ from observations at this station. One turn of micrometer $=4 \mathrm{I}^{\prime \prime \prime} 4^{8 \mathrm{I}}$ from circumpolar observations at Mobile, Alabama.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	ratitude.		v
		"	"				"	"
2740	2792	29.03	27.05	4	5	3150	21.03	+o.16
2841	2860	02.68	$56 \cdot 19$	4	5		21×68	-0.49
2912	2952	21 76	15.52	4	5		$20 \cdot 75$	+o. 44
2995	*3 075	18.92	52.87	4	3		21.79	-0.60
3047	*3 075	54 '29	52.87	4	3		21.04	+o.15
3095	3106	or 'ıo	17.82	3	4		$22 \cdot 37$	-1.18
3140	3228	$28 \cdot 60$	24^{15}	5	5		21.16	+o.03
3246	3265	$14{ }^{\circ} 0$	47.50	4	5		$20 \cdot 22$	+o.97
3278	3341	25.27	$54 * 68$	5	5		$20 \% 1$	+o.58
3355	3399	23.50	56 © 0	4	5		21.95	-0.76
3406	3421	29.83	$10 \cdot 38$	4	5		21.37	-0.18
3505	3522	24.07	18.09	4	5		$20 \cdot 74$	+o. 45
3545	3602	45 \%o	$16 \cdot 58$	4	5		22.41	-1.22
3610	3650	34 50	$50^{\circ} 40$	4	5		21.40	-0.21
3661	3685	21.90	$56 \cdot 73$	4	5		$20 \% 1$	+o.58
3691	3729	$20 \cdot 64$	59'19	4	5		2197	-0.18
3725	3788	21.84	30.80	5	5		20.88	+o.31
3862	3885	15.50	$58 \cdot 02$	4	5		$22 \cdot 38$	-I'19
3915	3952	11 30	55 \%6	6	5		$20 \cdot 64$	+o. 55
3 981	3995	$40 \cdot 12$	$43 \cdot 39$	5	5		20.71	+o. 48
*4 ${ }^{\text {or }} 7$	4027	$37 \cdot 15$	$39^{\circ} 20$	6	4		$20 \cdot 76$	+o. 43
*4 017	4072	$37 \cdot 15$	$21^{\circ} 00$	4	3		20.16	+r:03

Indiscriminate mean $=31^{\circ} 50^{\prime} 21^{\prime \prime} \cdot 18$.
Weighted mean $=3 I$ so 21 ' $19 \pm \alpha^{\prime \prime}$ เo.
$e= \pm 0^{\prime \prime} \cdot 53$.
95 observations, 22 pairs.
[Reduction to $\Delta=o^{\prime \prime} \%$ o.]
67. Coon, Alabana.-O. B. French. Zenitl telescope No. 2. May 21 to 26,189 . Onc division of level $=1^{\prime \prime} \cdot 211$ as determined April 23, 1891. One turn of micrometer $=46^{\prime \prime} 325$ from circumpolar observations at this station and at Kahatchee, Alabama.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	\%	Latitude.		v
		"	/			- ,	/	"
4122	4140	$56 \cdot 10$	51'58	4)	20	3414	$48 \cdot 26$	-0.44
4222	4257	or ${ }^{1} 1$	03 34	5	24		4777	+0.05
4 268p	4300	21 ${ }^{18}$	$44 \cdot 39$	5	15		47×86	-0. 0_{4}
4347	4352	29.62	42.79	5	24		$47 \% 8$	+o. 04
4387	4433	58.04	25.56	4	21		4793	-0.11
4480	4506	44 'io	$44 \cdot 33$	4	21		$48^{\circ} \mathrm{oo}$	-0.18
4513	4536	12.91	$42 \cdot 60$	2	10		47.11	+0.71
(2122)	4591	19.62	54.04	4	21		$47 \cdot 88$	-0.06
4607	$\binom{2}{158}$	$39 \cdot 79$	$50 \cdot 40$	5	21		4791	-0.09
*4 727	$\left(\begin{array}{ll}2 & 232\end{array}\right)$	$49 \cdot 88$	04.04	4	14		$45^{\circ} \mathrm{o6}$	-0. 24
*4 727	$\binom{2}{237}$	$49 \cdot 88$	$56 \cdot 63$	4	14		$48 \cdot 19$	-0.37
4803	4 S 23	17.95	$42 \cdot 80$	5	15		47 -88	-0.06
4843	4873	19.29	13.70	5	24		$47 \cdot 46$	+o. 36
$\binom{2}{288}$	4706	$35{ }^{\circ} \mathrm{O}$	34.43	5	19		47×29	+o. 53
$\begin{aligned} \text { Indiscriminate mean } & =3^{\circ} 14^{\prime} 47^{\prime \prime} \cdot 8 \text { I. } \\ \text { Weighted mean } & =3^{1} 14 \quad 47 \quad 82 \pm 0^{\prime \prime} \cdot 05 . \\ e & = \pm 0^{\prime \prime \prime} \cdot 34 . \end{aligned}$								

61 observations, 14 pairs.
[Reduction to $\Delta=-0^{\prime \prime} \cdot 03$.]
68. Mobile, Alabama.-E. Goodfellow. Zenith telescope No. 5. December II, i856 to January 3, 1857. One division of level $=0^{\prime / \%} 69$. One turn of micrometer $=4 I^{\prime \prime} 4^{8 I}$ fromi circumpolar observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{v}$	Latitude.	v
		"	"			- , "/	//
215	259	or ${ }^{20}$	$57{ }^{\circ} \mathrm{O}$	5	6	$304133 \cdot 86$	-0.44
283	307	4790	$56 \cdot 18$	6	6	$32 \cdot 68$	+o.74
330	341	37.96	36.70	6	6	$32 \cdot 32$	+1.10
*425	427	27.05 -	44.09	6	4	$32 \cdot 55$	+0.87
* 425	431	$27^{\circ} \mathrm{O}$	$26 \cdot 03$	7	4	$33^{\text {'II }}$	+o.31
446	${ }^{*} 492$	$24 \cdot 74$	$53 \cdot 32$	6	4	$33 \cdot 28$	+0.14
469	*492	$34 \cdot 76$	$53 \cdot 32$	6	4	3297	+o.45
510	523	$40 \cdot 06$	$59^{\circ} 27$	6	6	$33^{\circ} 0$	+0.42
556	566	$30 \cdot 03$	58.50	- 6	6	$33^{\circ} \mathrm{o}$	+0.42
576	630	51'73	38.00	6	6	31.99	+1.43
648	661	14.22	32.61	6	6	$33 * 88$	-0.46

6S. Mobtle, Alabama-continued.

Pairs of stars.			Adopted seconds of mean N. P. D.		n^{\prime}	w	Latitude.	
			"	"			- , "	"
	697	*710	13.48	26.80	6	4	$304133 \cdot 58$	-0.16
	698	*710	15.75	26.80	6	4	$34 \cdot 13$	-0.71
	735	798	3378	44 90	6	6	$32 \cdot 86$	+o. 56
	872	915	09.44	$50 \cdot 42$	6	6	$33 \cdot 27$	+0.15
	92 I	963	18.03	0906	6	6	$34^{\circ} \mathrm{O}$	-0.60
	986	993	15.97	15.73	6	6	$33 \cdot 85$	-0.43
	006	1064	28.69	or ${ }^{3} \mathrm{O}$	6	6	$33 \cdot 33$	+0.09
	095	*1 123	20.70	18.58	7	3	$33 \% 9$	-0. 27
	123	1146	18.58	O1 62	6	3	$34 * 24$	-0.82
*1	123	1154	18.58	$09{ }^{\circ} 0$	7	3	$34 \cdot 23$	-0. SI_{1}
1	189	*1 219	$50 \cdot 57$	$37 \cdot 60$	6	3	33.68	-0.26
${ }_{1}$		I 257	$37 \cdot 60$	$55 \cdot 27$	6	3	$33 \cdot 77$	-0.35
* 1		1260	37.60	co ${ }^{2} 3$	6	3	$34 \cdot 47$	-1.05
1	323	1 328	59.92	$26 \cdot 34$	7	6	$33{ }^{\circ}{ }^{2}$	+o.ro
1	337	${ }^{\text {\% }} 1414$	$22 \cdot 60$	o8 ${ }^{8} 4$	5	4	$32 \cdot 68$	+0.74
	342	${ }^{1} 1414$	$22 \cdot 80$	08.54	7	4	$33 \cdot 60$	-o.r8
1	445	I 468	50×53	$47^{\circ} 40$	6	6	$33 \cdot{ }^{2}$	-0.10
1	492	1528	$4{ }^{1} 55$	34^{60}	6	6	$34^{\circ} 50$	-1.08
15	557	* 1609	$02 \cdot 42$	$13{ }^{\circ} 0$	7	4	$32.83{ }^{\circ}$	+o.59
15	591	*1 609	$27 \cdot 12$	13.00	5	4	32.43	+0.99
16	629	${ }^{1} 1648$	$33^{\circ 1}$	$36 \cdot 54$	6	4	$33 \cdot 67$	-0.25
	632	${ }^{1} 1648$	34 '53	$36 \cdot 54$	6	4	32 '91	+0.51
	669	1 768	$45 \cdot 50$	52.88	6	6	$33 \cdot 15$	+0.27
	845	1 925	56.45	28.05	6	6	$33 \cdot{ }^{2}$	+o.10
	935	1951	$05 \cdot 36$	10'19	6	4	$33 \cdot 20$	+0.22
	935	2016	$05 \cdot 36$	5431	6	4	33.48	-0.06
	067	${ }^{1}{ }^{15}$	$47{ }^{1} 13$	13.70	6	6	$34 \cdot 29$	-0.87
2	182	2228	33.06	$16 \cdot 11$	5	6	$33 \cdot 57$	-0.15
	306	2409	$28 \cdot 40$	10.93	6	6	$34 \cdot 37$	-0.95
	423	2429	$19 \cdot 10$	$18{ }^{\circ} \mathrm{O}$	4	5	$33 \cdot 37$	+0.05
	441	2444	$28 \cdot 79$	08 55	6	6	$33 \cdot 17$.	+0.25
	463	${ }_{2} 563$	$34 \cdot 28$	$05 \cdot 83$	6	6	$34 \cdot 38$	-0.96

Indiscriminate mean $=30^{\circ} 41^{\prime} 33^{\prime \prime \prime} 43$.
Weighted mean $\quad=30 \quad 41 \quad 33 \quad 42 \pm 0^{\prime /} \cdot 06$ 。
$e= \pm o^{\prime / \cdot} 46$.
258 observations, 43 pairs.
[Reduction to $\Delta($ Episcopal Church. $)=-10^{\prime \prime 7} 72$.]
69. East Pascagoula, Mississippi.-R. H. Fauntleroy. Zenith Telescope No. r. June 25 to July 26, 1847. One division of lével $=0^{\prime \prime} 90$. One turn of uicrometer $=45^{\prime \prime}{ }^{\prime} 502$ from latitude observations at this station.

rairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{*}$	Latitude.	v
		/	"			- , "	/
5463	5563	10.60	$57{ }^{\circ} \mathrm{O}$	2	12	302041×19	-0.27
5628	5724	$12 \cdot 36$	17.13	1	6	$40 \cdot 87$	+o.05
5667	5749	$50 \cdot 6$	or ${ }^{2} 5$	3	19	$40 \cdot 43$	+o.49
5795	5940	39×7	$19 \cdot 77$	2	12	$40^{\prime} 79$	+o.13
5802	5853	$29 \cdot 78$	$31 \cdot 96$	2	12	$40 \% 91$	tool
5953	6006	$12.40{ }^{\circ}$	$19 \cdot 20$	3	19	$40 \cdot 57$	+0.35
6 ol3	6094	$44^{9} 9^{2}$	09.65	2	12	41.08	-0.16
6052	6143	$49 \cdot 24$	$12 \cdot 10$	1	6	$40 \cdot 82$	+o.10
6155	6216	39.79	$44^{\prime} 99$	1	6	$40 \cdot 44$	+o.48
*6224	6418	14.98	$57 \cdot 12$	3	12	$41 \cdot 71$	-0.79
*6224	6420	14.98	29.64	3	12	$40 \cdot 60$	+o. 32
6269	6373	23.53	48.06	4	24	41.51	-0.59
6428	*6615	18.42	13.29	4	12	$40 \cdot 70$	+o. 22
6476	*6 615	$46 \cdot 40$	13.29	3	9	$40 \cdot 62$	+o. 30
6460	6583	27.50	59.08	2	8	$41 \cdot 26$	-0.34
6626	*6644	$4{ }^{\prime \prime} 71$	$42 \cdot 2{ }_{4}$	3	12	$40 \cdot 76$	+o.16
*6644	6717	$42 \cdot 24$	07.50	3	12	40 'So	+0.12
6720	6744	17.06	27×39	3	19	$40 \cdot 98$	-0.06
6748	6833	58 -80	17 '10	3	19	$40 \cdot 32$	+0.60
6772	*6865	$20 \cdot 15$	$23 \cdot 86$	3	12	$40 \cdot 67$	+o. 25
$6 \mathrm{So5}$	*6 865	$48 \cdot 38$	${ }_{23} \cdot 86$	3	12	41 'to	-0.18
6 Sgr	6932	$53 \cdot 88$	$51 \cdot 27$	4	24	$40 \cdot 85$	+0.07
6910	6970	51.61	or ${ }^{18}$	3	19	$40 \cdot 18$	+o.74
6985	7088	1175	$47 \cdot 30$	4	24	$40 \cdot 5$	+0.40
7062	7223	18.98	24.77	3	19	$40 \cdot 68$	+0.24
7091	7257	$37 \cdot 60$	$47^{\circ} 31$	3	19	$40 \cdot 78$	+o. 14
7125	7182	09.10	$26 \cdot 39$	5	29	$41 \cdot 22$	-0.30
7215	7269	04.05	$25^{\circ} 41$	5	29	$40 \cdot 51$	+0.41
7324	7401	$35 \cdot 18$	34.71	2	12	$41 \cdot 21$	-0.29
7350	7448	$53 \cdot 53$	$56 \cdot 16$	3	19	$41 \cdot 16$	-0.24
7476	7527	$50 \cdot 78$	29.07	4	24	$41 \cdot 14$	-0.22
7488	${ }^{*} 7561$	$47^{\circ} 0$	25.73	3	12	$40 \cdot 63$	+0.29
7589	${ }_{7} 561$	08.90	$25 \cdot 73$	3	12	$40 \cdot 24$	+0.68
7642	7662	28.69	31.69	3	19	$40 \cdot 69$	+0.23
7606	7705	$22 \cdot 40$	41.54	2	12	41'79	-0.87
${ }^{*} 7689$	7754	1297	12.49	3	12	$41 \cdot 42$	-0.50
${ }^{*} 7689$	7778	1297	04 36	3	12	41.42	-0.50
*7766	7795	51.04	$22 \cdot 52$	2	8	41.00	-0.08
*7766	7809	$51 \cdot 04$	$42 \cdot 31$	1	4	$41 \cdot 72$	-0.80
7812	7827	16.86	$10 \% 45$	3	19	41.24	-0.32

THE ASTRONOMIC MEASURES.

69. East Pascagoula, Mississippi-continuer.

Pairs of stars.		Adopted seconds of mean N. P. D.		${ }^{\prime}$	${ }^{v}$	Latitude.		v
		"	"			-	"	"
7845	7912	$29 \cdot 35$	$51^{\prime} 70$	I	6	30	2041×39	-0.47
7888	7908	36.03	$56 \cdot 60$	4	24		$40 \cdot 96$	-0.04
7953	7996	$23 \cdot 16$	27.29	4	24		41×67	-0.75
7975	8115	$43 \cdot 12$	25.60	1	6		$40 \cdot 68$	+o. 24
8036	8149	09.30	$43 \cdot 83$	3	19		41.04	-0.12
8153	8218	17×5	$46 \cdot 45$	I	6		$40 \cdot 35$	+o. 57
8262	8282	$42 \cdot 75$	$11 \cdot 98$	2	12		$40 \cdot 59$	+o. 33
8322	8331	$42 \cdot 55$	or ${ }^{6} 5$	2	12		$40 \cdot 93$	-o. Or

Indiscrininate mean $=30^{\circ} \quad 20^{\prime} 40^{\prime \prime}$ '92.
Weighted mean $=30 \quad 20 \quad 40 \quad 92 \pm 0^{\prime \prime} \circ 04$ $e= \pm \mathbf{o}^{\prime \prime}{ }^{\prime} 39$.
129 observations, 48 pairs.
[Reduction to $\Delta=o^{\prime \prime}{ }^{\circ} \mathrm{oo}$.]
70. Fort Morgan, Alabama.-R. H. Fauntleroy. Zenith telescope No. i. March 23 to April 30, 1847. One division of level $=\mathrm{o}^{\prime \prime} 91$ from observations at this station. One turn of micrometer $=45^{\prime \prime}$ '570 from latitude observations at this station.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	z	Latitude.		v
		"	"				"	"
2650	2673	$34 \cdot 45$	$58 \cdot 17$	4	24	$30 \times$	$47^{\circ} 92$	-0.03
2725	2765	$32 \cdot 42$	$38^{\circ} \mathrm{oo}$	4	24		48^{22}	-0.33
2844	2889	22.03	00 70	4	24		$47^{\circ} 9$	-0.02
2970	3075	57 - 3	$33 \cdot 87$	4	24		$48 \cdot 8$	-0.19
3105	3.140	$59 \cdot 36$	$03 \cdot 52$	7	42		$47 \cdot 75$	+o. 14
3182	3251	31.55	$45 \cdot 44$	8	48		$47 \cdot 78$	+o.II
3325	3368	$42 \cdot 30$	$44 \cdot 12$	10	59		$47 \cdot 96$	-0.07
3402	3532	$33^{\circ} 40$	$33^{\circ} 90$	13	77		$47 \cdot 67$	+o. 22
3592	3682	19.97	$44 \cdot 80$	15	91		$48 \cdot 20$	-0.31
3758	3843	17.75	32.04	16	100		$47{ }^{52}$	+0.37
3 \$68	3910	$42 \cdot 68$	32.31	13	77		$45^{1} 13$	-0. 24
3949	3979	02 56	$29 \cdot 34$	14	83		$48^{\circ} \mathrm{O}$	-0.19
4094	4123	$33^{\prime 9}$	-0.95	II	67		$47^{\circ} 66$	+0.23
4228	*4 303	$34 \cdot 28$	52.92	10	59		$47{ }^{\circ} 9$	-0.03
4271	*4 303	12.79	52.92	ı0	59		$48 \cdot 10$	-0.21
4341	4423	20.69	$42 \cdot 65$	8	48		$47 \cdot 73$	+o.16
4596	4637	$31 \cdot 28$	$38 \cdot 80$	7	42		$47 \cdot 84$	+o.05
4699	4737	$56 \cdot 67$	33.72	5	30		$47^{\circ} 67$	+o. 22
4792	4874	$20 \cdot 54$	04×9	3	18		$47^{\circ} 91$	-0.02

Indiscriminate mean $=30^{\circ} 13^{\prime} 47^{\prime \prime} .90$.
Weighted mean $=30$ 13 $47 \quad 89 \pm 0^{\prime \prime}{ }^{\circ} 03$.

$$
e= \pm 0^{\prime \prime} \cdot 4 \mathrm{r}
$$

166 observations, 19 pairs.
[Reduction to $\Delta=o^{\prime \prime}$ 'oo.]
75. New Orleans, Louisiana. - J. Kincheloe. Zenith telescope No. 5. January 16 to February io, 1858. One division of level $=0^{\prime /} \cdot S_{45}$ from observations at this station. One turn of micrometer $=41^{1 / .} 516$ from circumpoiar observations at this station.

71. New Orleans, Louisiana-continued.

Pairs of stars.		Adopted seconds of mean N. P. D.		n^{\prime}	${ }^{w}$	Latitude.		v
		"	"			- ,	/	"
3242	3286	4174	$46 \cdot 78$	6	5	2957	$26 \cdot 12$	-0.84
3313	3327	35 '86	29.75	6	5		$24^{\circ} \mathrm{O}$	+1.26
3358	3359	29.64	37 -80	4	5		$25^{\prime} 35$	-0.07
$33^{8 I}$	3398	$43 \cdot 32$	$44 \cdot 40$	6	5		$25 \cdot 56$	-0.28

Indiscriminate mean $=29^{\circ} 57^{\prime} \quad 25^{\prime \prime} \cdot 29$.
Weighted mean $\quad=\begin{array}{lllll}29 & 57 & 25 & \cdot 28 \pm 0^{\prime \prime} \cdot 07\end{array}$ $e= \pm 0^{\prime \prime} 43$.
256 observations, 44 pairs.
[Reduction to $\Delta=o^{\prime \prime} \cdot$ oo.]
3. SUMMARY OF RESULTS FOR LATITUDE.

No.

Calais
Cooper
Humphack
Bangor
Farmington
Mount Harris
Howard
Mount Desert
Ragged Mountain
Sabattus
Mount Pleasant
Cape Sunall
Mount Independence
Gunstock
Aganienticus
Isles of Shoals
Unkonoonuc
Thompson
Wachusett
Cambridge, Harvard College Observatory
Cambridge, Cloverden Observatory
Mount Tonn
Manomet
Sandford
West Hills
New York
Beacon Hill
Mount Rose
Yard
Name of station.

State.	Resulting latitude.			Probable error of resilt.
	-	,	/1	"
Me.	45	11	0940	± 0.06
Me.	44	59	12.60	- 05
Me.	44	51	$47 \cdot 56$	$0 \cdot 05$
Me.	44	48	12.87	- 05
Me.	44	40	19 '54	- 05
Me.	44	39	$54 \cdot 66$	0.04
Me.	44	37	$49 \cdot 24$. 0.05
Me.	44	21	$06 \cdot 51$	0.03
Me.	44	12	42•96	$0 \cdot 04$
Me.	44	08	$37 \% 3$	0.09
Me.	44	OI	$36 \cdot 44$	$0 \cdot 04$
Me.	43	46	$43 \cdot 69$	0.04
Me.	43	45	$34 * 47$	0.06
N. H.	43	31	O3 ${ }^{\circ} \mathrm{I}$	- 05
Me.	43	13	24 '96	$0 \cdot 06$
Me.	42	59	1297	0.09
N. H.	42	58	$59 * 34$	- 07
Mass.	42	36	$3^{8} \mathrm{O} 2$	$0 \cdot 10$
Mass.	42	29	$16^{\prime} 13$	$0 \cdot 04$
Mass.	42	22	$48 \cdot 05$	- 22
Mass.	42	22	$40 \cdot 97$	0.08
Mass.	42	14	27 '62	0.06
Mass.	41	55	$35 \cdot 35$	- 05
Conn.	41	27	$40 \cdot 47$	- 08
N. Y.	40	48	50.06	0.04
N. Y.	40	43	48-39	0.09
N. J.	40	22	27 81	- 07
N. J.	40	22	05.41	- .08
Pa.	39	58	$29 * 39$	$0 \cdot 06$

[^40]THE, FASTERN OBLIQUE ARC.
3. SUMMARV OF R'ESULTS FOR LATITUIE-contimued.

No.	Name of station.	state.	Kesulting latitude.			Prohable error of result.
			-	,	"	"
30	Principio	Md.	39	35	$32 \cdot 81$	± 0.04
31	Maryland Heights	Md.	39	20	$32^{1} 10$	0.04
32	Pooles Island	Md.	39	17	$17^{5} 5^{2}$	-. 15
33	Sugar loaf	Md.	39	${ }^{15}$	49.71	- 'ıo
34	Dover	Del.	39	09	13.62	- 06
35	Webb	Md.	39	${ }^{\circ} 5$	25.21	0 -04
36	Soper	Md.	39	05	10 69	$0 \cdot 09$
37	Rockville	Md.	39	05	10.45	- ${ }^{\circ} \mathrm{O}$
38	Taylor	Md.	3^{8}	59	$46 \cdot 0$	$0 \cdot 12$
39	Strasburg	Va.	3^{8}	59	31.49	$0 \cdot 09$
40	Cape May	N. J.	3^{8}	55	$44^{\prime 7} 7$	0 -66
41	Causten, Washington	D. C.	3^{8}	55	$32 \cdot 18$	- 06
42	Naval Observatory (new), Washington*	D. C.	38	55	13.91	- 06
43	Hill	Md.	3^{8}	53	5231	0.05
44	Naval Observatory (old). Washington \dagger	D. C.	38	53	38^{77}	- '03
45	Seaton, Waslington	D. C.	3^{8}	53	25^{20}	$0 \cdot 15$
46	Coast and Geodetic Survey Office, Washington \ddagger	D. C.	38	53	$07 \cdot 43$	- ${ }^{\circ} \mathrm{O}$
47	Bull Run	Va.	38	52	5679	- 07
48	Marriott	Md.	3^{8}	52	$25^{1} 12$	- 06
49	Cape Henlopen	Del.	3^{8}	46	$40 \cdot 00$	- 05
50	Clark	Va.	38	18	39.80	-. 06
51	Elliott Knob	Va .	3^{8}	\bigcirc	57 5 I	$0 \cdot 11$
52	Charlottesville	Va.	38	02	00 95	0.14
53	Long Mountain	Va.	37	17	$28 \cdot 72$	$0 \cdot 09$
54	Moore	N. C.	36	23	54 '95	0.09
55	Young	N. C.	35	44	25.50	0.12
56	King	N. C.	35	12	$13 \cdot 31$	- 07
57	Paris	S. C.	34	56	31.96	0.07
58	Currahee	Ga.	34	$3{ }^{1}$	3775	- . 0 S
59	Lavender	Ga.	34	19	15.81	0.12
60	Sawnee	Ga.	34	14	04. 20	0.08
61	Aurora	Ala.	34	os	$47 \% 45$	0.12
62	Atlanta Middle Base	Ga.	33	54	21.82	- 05
63	Atlanta	Ga.	33	44	5930	$0 \cdot 12$
64	Kahatcltee	Ala.	33	13	$39^{\circ} 90$	0.86
65	Montgomery	Ala.	32	22	45.41	$0 \cdot 04$
66	Lower Peach Tree	Ala.	31	50	21'19	$0 \cdot 10$
67	Coon	Ala.	31	14	47.82	- 0.05
68	Mobile	Ala.	30	41	$33^{\circ} 42$	- .06
69	Fast Pascagoula	Miss.	30	20	40×92	$0 \cdot 04$
70	Fort Morgan	Ala.		13	$47 \% 9$	- ${ }^{\circ} 3$
71.	New Orleans	La.	29	57	$25^{\circ} 28$	- 07

* Center of clock-room.
\dagger Center of small dome.
$\$$ Station in yard.

B. THE RESULTS FOR LONGITUDE AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

I. GENERAL STATEMENT.

Connected with the arc there are fourteen well determined longitude stations available for comparison of geodetic and astronomic longitudes. The stations are marked by their appropriate sign on the general Map B (in pocket), and are irregularly distributed over the region of the arc. Within the limits of the city of Washington there are four longitude stations, all within a few kilometers of one another, and consequently. under the same general influence of zenithal deflection. These four stations have been treated as one in this discussion. The following stations are common to the arc of the parallel in latitude 39° and to the oblique arc: Cape May, New Jersey; Dover, Delaware; three* of the Washington, District of Columbia, stations; Strasburg, Virginia, and Charlottesville, Virginia.

The longitudes here given depend on the standard longitude system of the United States, as presented in the Report of the U. S. Coast and Geodetic Survey for the year 1897, Appendix No. 2, "The telegraphic longitude net of the United States and its connection with that of Europe, 1866-1896." \dagger (pp. 197-261.)

Six of the are stations are standard stations, i. e., Calais, Maine; Cambridge, Massachusetts, Harvard Observatory; Cape May, New Jersey; Washington, District of Columbia, Naval Observatory (old); Atlanta, Georgia, and New Orleans, Lonisiana. For these stations, particulars and full abstracts of the individual results are given in the Report for 1897 . It suffices, therefore, to present only the dates and results at these stations, but for the remaining stations, abstracts are given to the same extent as in the Report for 1897 , together with all necessary explanation. In nearly every case of a telegraphic determination of a difference of longitnde the observers exchanged places after one-half of the proposed observations had been made, in order to effectively eliminate differences of personal equations. All these longitudes count from Greenwich, positive to the west ward. The probable error of any one of the adjusted standard longitude determinations is $\pm 0^{\circ} \cdot 05$, and none of the probable errors of the longitudes used in this discussion exceeds $\pm 0^{5}{ }^{5} 09$.

[^41]
2. RESULTS FOR LONGITUDE PRFVIOUSL, PUBLISHED.

Results for tongitude of stations forming part of the standard longilude net of the United States or closety connected therezuith.
[Taken from Coast and Geodetic Survey Report for 1897, p. 254.]
Name of station. IPoint of reference. Longitude west of Greenwich.

 tory.
$\begin{array}{llllllllll}\text { Cape May, New Jersey. } & \text { Transit. } & 4 & 59 & 43.045 & 74 & 55 & 45.68 \\ \text { Washington, District of Columbia. } & \text { Dome of old Naval Observatory. } & 5 & 08 & 12 \cdot 153 & 77 & 0.3 & 32.30\end{array}$

Atlanta, Georgia.
New Orleans, Louisiana.

Charleston, South Carolina.*

Transit, 1896.
Transit, I8S0 and IS95, Lafayette 6 oo $16 \cdot 763$ go of ir 44 Square.
Citadel Square, transit. $\quad 5 \quad 19 \quad 44^{\circ} 076$

From the same Report we have two more of the Washington stations, pp. 257-259: and 26 I .

Name of station.
Point of reference.
I.ongitude west of Greenwich.

 transit.
Resutts for longitude of stations in the Are of the Thirty-ninth Parattet.
Name of station.
Point of reference.
Transit, 1897
Tratısit, 188 I
McConnick Observatory
L.ongitude west of Greenwich.

3. ABSTRACTS OF RESULTS FOR DIFFERENCE OF LONGITUDE AND ADJUSTMENT OF THE LONGITUDES OF THE REMAINING STATIONS + CONNECTED WITH THE ARC.

DIFFERENCE OF LONGITVDE HETWEFN BANGOR, ${ }^{\text {B ME., AND CALAIS, ME. }}$
Date. Observers at - Difference of longitude.
1857. Bangor. Calais.

Bangor (transit) west of Calais (transit), Longitude of Calais,

h.	m.	s
	6	$00 \cdot 316 \pm 0 \cdot 015$.
4	29	$07 \cdot 857 \pm 0 \cdot 05$.
4	35	os $\cdot 173$.

[^42]DIFFERENCE OF LONGITUDE BETWEEN SEATON STATION* WASHINGTON, D. C.. AND NAVAI. OBSERVATORY (OLD), WASHINGTON, D. C.

Date, $1867 .$	From western signals.	From eastern siguals.	W.-E.	Mean western and eastern signals.
June 4	$\begin{gathered} s . \\ 12.70 \end{gathered}$	${ }_{12}{ }^{s} \cdot 67$	$\begin{gathered} s . \\ +0 \cdot 0_{3} \end{gathered}$	$\begin{gathered} s . \\ 12: 68 \end{gathered}$
6	$\cdot 60$	-60	0.00	. 60
10	70	$\cdot 69$	+0.01	-69
11	.63	-61	+0.02	$\cdot 62$
21	775	-69	+o.06	$\cdot 72$
29	-68	-69	-0 01	$\cdot 69$
Mean . $12 \cdot 667$				

Observers: G. W. Dean, in charge of party, E. Goodfellow and other observers; three were engaged in the work at the Naval Observatory and two at Seaton, but no interchange of observers took place. The results were corrected for the personal equation of the observers derived from observations made for this purpose.

aval Observatory (Meridian Circle) west of Seaton (transit)			$12^{3} \cdot 6$
Reduction to center of dome at Observatory			-0 0
Difference of longitude Naval Observatory (old) and Seaton, transit			12.63
Longitude of dome, Naval Observatory (old)	$5^{\text {h }}$	$\mathrm{of}^{\text {m }}$ I2	12^{5}
Longitude of Seaton (transit)		$07 \quad 59$	59×519
Same, as adjusted.	5		$59 ' 520$

DIFFFRFNCF, OF LONGITUDF: BETWEFN STATESVILLE, N. C., AND IPASHINGTON, D. C.

[^43]

In order to reach the longitudes of Montgomery, Lower Peach Tree, and Mobile, Alabama, it was necessary to make a special adjustment of certain intermediary longitude stations, which bind them together and connect them with the standard net. They are Petersburg, Virginia, 1852; Raleigh, North Carolina, i853; Charleston, South Carolina, 1853; Wilmington, North Carolina, 1854 and 1856; Columbia, South Carolina, 1854 and 1856; Macon, Georgia, 1855; Montgomery, Alabama, 1856; Lower Peach Tree, Alabama, 1857, and Mobile, Alabama, 1857 and 1858.*

DIFFERENCE OF LONGITUD1; BFTWEFN PETERSBURG, VA., AND SEATON STA TION, D. C.

Date, 1852	Number of stars.	Difference of longitude. m. s.
July 7	15	1 35.583
9	21	. 636
21	13	. 617
22	6 and 14	-559
Aug. 2	9	-545
7	17	-597
	Mean	135.589

The observers were A. D. Bache and G. W. Dean, at Petersburg, and L. F. Pourtales, at Seaton Station. The observers did not interchange places. Their personal equations were ascertained by direct observations taken at various times. The results, as given here, are corrected accordingly. Giving weiglits to the individual results in proportion to the number of stars observed each night, we get $\Delta \lambda=1^{\mathrm{m}} 35^{2} \cdot 59 \mathrm{I} \pm 0^{n} \cdot 0220$.

Petersburg (transit) west of Seaton (transit), Im $35^{9} 59$ I $\pm \mathrm{O}^{\prime} \mathrm{O} 22$.

DIFFERFNCE OF I,ONGITUDF, BETWEFN RALEIGH, N. C., AND SEATON STA TION, D. C.
Date.

1853. | Number of |
| :---: |
| stars. |

Apr. 21

The observers were B. A. Gould at Raleigh and

[^44]L．F．Pourtales at Seaton Station．The personal equation correction was determined from direct and indirect comparisons．The results given here are corrected accordingly．＊

Raleigh（transit）west of Seaton（transit） $6^{n i} 32^{5} \cdot S 73 \pm 0^{8} \cdot 044$ ．
DIFFERF：NCE；OF LONGITUDE BETWEEN CHARLESTON，S．C．，AND RALEIGH，N．C．

Observers：At Charleston，L．R．Gibbes；at Raleigh，B．A．Gould．The personal equation cor－ rection being unknown，the probable error of the result is raised to $\pm 0{ }^{\circ} 15$ ．

Charleston，Gibbes Observatory（transit）west of Raleigh（transit）$\quad 5^{\mathrm{m}} 12^{8 \cdot} 08 \pm 0^{n}{ }^{\mathrm{n}} 15$ ．
Reduction of Gibbes Observatory to Citadel Square（transit）at Charleston．\dagger－ $\mathrm{o}^{*} 396$ ．
Charleston，Citade1 Square（transit）west of Raleigh（transit）$\quad 5^{\text {ni }} 11^{* 6} 684 \pm 0^{8 / 150}$ ．

1）HFERENCK OF゙ 1，ONGITUDF，BFTWEKN WILAKINGTON，N．C．，AND PETTERSBURG，VA．

Date．	Number of stars．	Wilmington．	Observers at－Petersburg．	Difference of longitnde．	Difference of longitude referred to D．\ddagger and P．\ddagger and neans．
1854.					
May 8	4	G．W．Dean．	B．A．Gould．	m．s．	m．s．
27	13	$\left\{\begin{array}{l}\text { C．W．Dean．} \\ \text { A．D．Bache．}\end{array}\right.$	$\text { \} 1. F. Pourtales. }$	$\begin{array}{r} 2 \quad 11.213 \\ .239 \end{array}$	$\begin{array}{llll} 2 & 11.244 & { }^{\circ} & \\ m . & s . \end{array}$
Junt 5	24	G．W．Dean．	I．F．Pourtales．	$\cdot 239$	－239 ${ }^{\text {2 }}$ ，m．s．
14	5	ㅍ--		(451)	$\}_{2} \quad 11: 340$
－17	2	I．ド Pourtales	G．W，Jean	$\left\{{ }^{480}\right.$	
－ 20	27	I．F．Pourtales．	G．W．Dean．	$\cdot 449$	211445
23	23			（ 399 ）	

Wilmington（transit）west of Petersburg（transit），呞 $2^{24} 11^{8} 340 \pm 0^{8 \cdot 033 .}$

Columbia（transit）west of Raleigh（transit），\％ $9^{\prime \prime \prime} 35^{* *} 862 \pm 0^{4} \cdot 041$ ．

[^45]$$
4192-\text { No. } 7-02-21
$$

DFFFERENCE OF 1,ONGITUDE BETW\&FN MACON, GA., ANI CO/.K.MBIA, S. C

Macon (transit) west of Columbia (transit), $10^{\text {nu }} 22^{n} \cdot 250 \pm 0^{*} 051$.

Columbia (transit) west of Wilmington (transit), $12^{\text {ru }} 21^{\mathrm{s}} \cdot 73 \mathrm{I} \pm \mathrm{o}^{5} \cdot \mathrm{O} 2 \mathrm{~S}$. DIFEERENCH: OF IONGITUDE BETWEFN MONTGOMERY, AIA, AND MACON, GA.

Montgomery (transit) west of Macon (transit), $\operatorname{Io}^{14} 4 I^{*} 570 \pm 00^{\circ} 015$.
DIFFERFNCE OF LONGITUDF BFTWEEN LOWER PEACH TREE. ALA., AND MONTGOMFERY, ALA.

Iower Peach Tree (transit) west of Monitgonnery (transit), $4^{\mathrm{mm}} 5^{84} \cdot 7^{89} \pm 0^{5} 0 \mathrm{or} 6$.

DIFFERENCE, OF LONGITUDE BETWEEN MOBILE, ALA., AND LOWER PEACH TREE, ALA.

DIFFERENCF: OF LONCITUDE, BETWFEN NEU ORLEANS, IA., AND MOBTLE, AI,A.

New Orleans, Basin street, west of Mobile (transit), $8^{\mathrm{m}} \quad 07^{8 \cdot} 147 \pm \mathrm{o}^{8 \cdot} 022$. Reduction to station Lafayette Square . - o 866 . $\Delta \lambda$ New Orleans, Lafayette Square, and Mobile 8 o6 ${ }^{\circ} 28 \mathrm{I} \pm 0$ © 022.

Adjustment of secondary telegraphic longitude stations to the standard telegraphic longitude net of the United States.

Referring to the preceding diagram, which shows the connection of the longitude stations between Washington and New Orleans, it is seen that the three circuits de nand as many conditions to be satisfied. The conditional or observation equations are established as follows \dagger :

Stations.		$\Delta \lambda$		Corrections.	;
		m.	s.		
$\Delta \lambda$	New Orleans and Mobile	8	06 ${ }^{281}$	(1)	5
1λ	Mobile and Lower Peach Tree	1	59.768	(2)	3
$\Delta \lambda$	Lower Peach Tree and Montgomery	4	58 789	(3)	3
$\Delta \lambda$	Montgomery and Macon	10	$4 \mathrm{I} \cdot 570$	(4)	2
$\Delta \lambda$	Macon and Columbia	10	$22 \cdot 250$	(5)	26
$\Delta \lambda$	Columbia and Raleiglı	9	35 ${ }^{\text {862 }}$	(6)	17
$\Delta \lambda$	Raleigh and Seaton	6	$32 \cdot 873$	(7)	19
$\Delta \lambda$	Seaton and Washington (Old Naval Observatory)	-0	12.634	(8)	2
		52	04759		

[^46]True value in standard system $52^{\mathrm{m}} \mathrm{o}_{4}{ }^{5} 610$, hence the first observation equation:

$$
0=+0.149+(1)+(2)+(3)+(4)+(5)+(6)+(7)-(8)
$$

hence the second equation:

$$
0=+0^{8} 073+(6)+(7)-(9)-(10)-(11)
$$

$\Delta \lambda$	Charleston and Raleiglı	5	11684	(12)	225
$\Delta \lambda$	Raleigh and Seaton	6	32.873	(7)	19
$\Delta \lambda$	Seaton and Washington (Old Naval Observatory)	-0	12.634	(8)	2

True $\Delta \lambda$ in standard system $1 I^{m} 31^{5} 923$, hence third equation

$$
0=0^{8} \cdot 000-(12)-(7)+(8)
$$

Correlate equations.
Normal equations.

Corr.	$\frac{1}{p}$	C_{1}	C_{2}	C_{3}
(1)	5	+1		
(2)	3	+1		
(3)	3	+1		
(4)	2	+1		
(5)	26	$+1 \ldots \ldots \ldots \ldots \ldots \ldots$		
(6)	17	+1	+1	
(7)	19	+1	+1	-1
(8)	2	$\ldots 1$		+1
(9)	8		-1	
(10)	$11 \ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots$		
(11)	5		-1	
(12)	225			-1

$$
\begin{aligned}
& 0=+0.149+77 \mathrm{C}_{2}+36 \mathrm{C}_{2}-21 \mathrm{C}_{3} \\
& 0=+0.073+36 \mathrm{C}_{2}+60 \mathrm{C}_{2}-19 \mathrm{C}_{3} \\
& 0=0.000-21 \mathrm{C}_{2}-19 \mathrm{C}_{2}+246 \mathrm{C}_{3} \\
& \mathrm{C}_{5}=-0.00193 \\
& \mathrm{C}_{2}=-0.000 \quad 11 \\
& \mathrm{C}_{3}=-0.00017
\end{aligned}
$$

(1) $=-0 \stackrel{s}{\circ} \cdot 0.096$
(7) $=-0.0355$
(2) $-0 \cdot 0058$
(8) +0.0035
(3) $-0 \cdot 0055$
(9) $+0 \cdot 0009$
(4) -0.0039
(io) +0.0012
(5) $-0 \cdot 0502$
(II) +0.0006
(5) -0.0347
(12) +0.0383

Resulting longitudes.
λ Washington, Old Naval Observatory Dome
$\Delta \lambda$ Washington and Seaton
λ Seaton (transit)
$\Delta \lambda$ Seaton and Petersburg
λ Petersburg (transit)
$\Delta \lambda$ Petersburg and Wilmington
λ Wilmington (transit)
$\Delta \lambda$ Wilmington and Colunbia
λ Columbia (transit)
\quad Check:
$\Delta \lambda$ Seaton and Raleigh
λ Raleigh (transit)
$\Delta \lambda$ Raleigh and Colunbia
λ Columbia (transit)

 \(\lambda\) Washington, Old Naval Observatory Dome \begin{tabular}{llllllll}
 5 \& oS \& $12{ }^{\prime} 153$ \& 77 \& 03 \& 02 \&

\hline
\end{tabular}

$\Delta \lambda$ Washington and Seaton
$\Delta \lambda$ Seaton and Petersburg
λ Petersburg (transit)
$\Delta \lambda$ Petersburg and Wilmington
λ Wilmington (transit)
$\Delta \lambda$ Wilmington and Columbia
λ Columbia (transit)
Check:
$\Delta \lambda$ Seaton and Raleigh
λ Raleigh (transit)
$\Delta \lambda$ Raleigh and Columbia
λ Columbia (transit)
h. m. s. o , "
h. m. s.

5	OS	12	153	77	03

$-12 \cdot 6375$
$\begin{array}{llllll}5 & \text { o7 } & 59 & & 5155 & 76 \\ 59 & 52\end{array} 732$
$+135.5916$

| 5 | 09 | 35 | 1071 | 77 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | $4^{\circ} 6$ ot

$+2113412$
$\begin{array}{llllll}5 & 11 & 46 \% 4483 & 77 & 56 & 36\end{array} 72.4$
12217319
$\begin{array}{llllll}5 & 24 & 08 & 1802 & 81 & 02\end{array} \quad 02703$
$+6328375$
$\begin{array}{lllllll}5 & 14 & 32 & 3530 & 78 & 3^{8} & 05\end{array} 295$ 。
$+9.35 .8273$

Further-

$\Delta \lambda$ Columbia and Macon
$\dot{\lambda}$ Macon (transit)
$\Delta \lambda$ Macon and Montgomery

If the above results are compared with those obtained in the preliminary adjustment of the telegraphic longtitude system as it stood in 1884 , * it will be seen that the present longitndes are about one-tenth of a second of time greater than those found in 1884. This is mainly due to the introduction into the systenn of the fourth cable line across the Atlantic Ocean in 1892.

The probable errors given in the summary of results are close approxinnations.

* Keport of 1884, Appendix No. 11, pp. 407-430; and Keport for 1897. Appendix No. 2, pp. 197-261.

THF, EASTERN OBLIQUF, ARC.

4. SUMMARY OF RESULTS FOR LONGITUDE.

| No. Station. | State. | Referred to. | | I.ongiture | Probable |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| error. | | | | | |

C. RESULTS FOR AZIMUTH AT THE ASTRONOMIC STATIONS OF THE OBLIQUE ARC.

The stations where an azimuth was determined astronomically are quite numerous and are distributed over the whole extent of the arc. There are 56 azimuth stations, 14 of which are in common with the arc of the parallel in latitude 39°. All necessary details in regard to the observations at these stations are given in the published discussion of that arc. Some of the partictulars are republished in this discussion in the proper place.

The various methods employed by the Coast and Geodetic Survey for the determination of azimuths, together with the required formulæ and their numerical application, are so fully set forth in Appendix No. 14, Coast and Geodetic Survey Report for 1880, pp. 26r-286, and in a later edition, Appendix No. 7, Coast and Geodetic Survey Report for $1897-98$, pp. 377-407, that 110 further reference is required. It will suffice for a full exhibit of the azimuthal restults to present for each station the following par-ticulars-the method employed, instrument used, stars observed, the arrangement and composition of sets of observations, the number of measures and position of sircle or instrument, and any other details pertaining to the operation; the names of the observers, and, finally, the individual results in the form of an abstract, together with their probable errors.

The apparent places of stars are taken directly from the American Ephemeris or derived fronı Gould's "Standard Places of Fundamental Stars," Washington, 1866 (second editiont), except in a very few cases.

The probable error of the result of a single set and that for the resulting azimuth of the mark are due to observing errors and exclude the probable error in the star's catalogue place. When referring the azimuth of the mark to the triangulation, the probable error of the referring angle is not given, as in general it is not accurately deterninable. Thie local adjustment of the horizontal directions at a station include that of the mark, and the angle between the mark and the direction of a line in the triangulation was corrected by applying to it the mean shift or average correction to all the directions at the station in the second or figure adjustment. The probable error of any resulting azimuth of a line in the triangulation may be estimated as not less than one-half of a second. One-third of a second has been taken for the probable error of an observed direction, resulting from the figure adjustment, whence $\pm 0^{\prime \prime} 47$ for the angle "mark and line." Combining this witl $\pm 0^{\prime \prime} .25$ as the probable error of the measure of the azimuth of the mark, we get $\pm 0^{\prime \prime} .53$ for an approximation of the probable error of a resulting azimutl of a line. For ordinary or less precise work this value may rise to three-fourths of a second.

[^47]$$
\varphi=44^{\circ} 59^{\prime \cdot} \cdot 2 . \quad \lambda=67^{\circ} 28^{\prime} \cdot \text { I west of Greenwich. }
$$

The $75^{\text {cm }}$ direction theodolite No. I (Troughton \& Simms) was mounted over the triangulation station. Focal length of telescope, if5 centineters; clear aperture, 7×5 centimeters. The azimith mark was located upon a hill to the north of the station and distant about 2 miles. Light was shown through an aperture three-fourths of an inch in diameter; for day observations a wand i foot in length and I inch in breadth was placed above the center of the aperture. A set of observations on Polaris generally consisted of 3 observations of the mark, telescope direct, and 3 observations telescope reversed, followed by 5 observations of the star, with the necessary time and level record; the instrument was then reversed and the observations were repeated in the reverse order. In case of λ Ursæ Minoris 6 observations were made upon the star both before and after reversal. One division of level $=\mathrm{I}^{\prime \prime} 43$. Observers, G. W. Dean and R. E. Halter. Probable error of a single restult for azimuth $\pm 0^{\prime \prime} \cdot 89$.

Summary of results for azimuth at Cooper, Maine.

Date. 1859.	Polaris near eastern elongation.			λ L'rse Minoris near upper culmination.			
	Position.	Mark	Δ	Date.	Position.	Mark	Δ
		W. or	"	1859.			Δ
Sept. 9	IV	24947 '53	+0.85	Sept. 9	IV	$24947 \% 49$	+1.50
12	V	$48^{\circ} \mathrm{ob}$	+o. 32	12	V	47.94	+1.05
14	I	$50 \% 7$	-1.69	14	I	$49^{\circ} \mathrm{O}$	-0.10
15	11	$46 \cdot 58$	+1.80	15	11	$50 \% 9$	-1.70
16	111	47.80	+0.5 5	16	III	4793	+1.06
18	III	$49^{\circ} \mathrm{OB}$	-0.70	18	IV	50 S2	-1.83
19	V	$49^{\prime} 56$	$-1 \cdot 18$				
	Mean	$2{ }^{2} 4948^{\prime} 3 \mathrm{~S} \pm 0^{\prime} 31$			Mean	$24945 \% 9$	
	Mean of groups				$4948 \cdot 6$		
	Diurnal aberration -o						
	Azimuth of Mark				1011	$\pm 0^{\prime \prime} \cdot 25$	
	Angle between Mark and Howard				1659.5		
	Azimuth of Howard				$5312{ }^{\circ}$		

2. HOWARD, MAINE.

$$
\varphi=44^{\circ} 37^{\prime} \cdot 8 \quad \lambda=67^{\circ} 23^{\prime}-8
$$

Theodolite No. 1 was mounted over the station. The mark was located upon a hill about $1 / 2$ miles north of the station. Light was shown through an aperture three-fourths of an inch in diameter; a wand i foot high and inch wide was placed above the aperture to serve as day mark. In the case of Polaris a set. of olservations consisted of 3 pointings on the mark with telescope direct, 3 pointings on the mark with telescope reversed, followed by 5 pointings, on the star, or 6 in case of δ Ursæ Minoris, with the necessary level and time records; the instrument was then reversed and the above observations were repeated in the reverse order. One division of level $=\mathrm{I}^{\prime \prime} \cdot 43$. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm 0 ": 80$.

Summary of results for azimuth at Howard, Maine.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{δ Ursæ Minoris near upper chlmination.} \& \multicolumn{4}{|l|}{a Ursee Minoris near eastern elongation.}

\hline Date. \& Position. \& Mark \& Δ \& Date. \& l'osition. \& ${ }_{\text {Mark }}$ \& Δ

\hline \multicolumn{2}{|l|}{1859.} \& -, ", \& " \& \multicolumn{2}{|l|}{1859.} \& \bigcirc \& "

\hline \multirow[t]{9}{*}{July
18
28
23
23
24
25
29} \& I \& $74604 \cdot 72$ \& -0.33 \& July 18 \& 1 \& -4603`35 \& +0.41

\hline \& II \& [0 S $34{ }^{\text {* }}$] \& - \& 20 \& 11 \& 05.49 \& -1 73

\hline \& III \& 0505 \& -0.66 \& 21 \& II \& 05.63 \& $-1 \cdot{ }_{7}$

\hline \& IV \& 04.72 \& -0.33 \& 23 \& III \& 04.50 \& -0.74

\hline \& v \& ${ }^{02} 33$ \& +2.06 \& 24 \& IV \& $03 \cdot 17$ \& +o. 59

\hline \& II \& \multirow[t]{4}{*}{${ }_{0} \cdot 1{ }^{13}$} \& -0.74 \& 25 \& V \& 03.46 \& +0.30

\hline \& \& \& \& 28 \& v \& 03.43 \& $+0^{\circ} 3$

\hline \& \& \& \& 29 \& 1 \& 01 7^{7} \& $\mathrm{H}_{2} 04$

\hline \& \& \& \& Aug. 6 \& w \& $02 \cdot 84$ \& +0.92

\hline \multicolumn{2}{|l|}{:} \& \& \& 8 \& III \& 04*00 \& $\bigcirc 0.24$

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Mean |
| :--- |
| Diurnal aberrati |}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{| Mean |
| :--- |
| liurnal aberration |} \& \multicolumn{2}{|l|}{\[

$$
\begin{gathered}
74603 \cdot 76 \pm 0.25 \\
+0.31
\end{gathered}
$$
\]}

\hline \& \& \& \& \& - , " \& \&

\hline \multicolumn{4}{|c|}{Mean of groups} \& \& 74694 \& \&

\hline \multicolumn{4}{|c|}{Azirsuth of Mark} \& \& 874604 \& $\pm 0^{\prime \prime} \cdot 27$ \&

\hline \multicolumn{5}{|c|}{Angle between Mark and Pigeon} \& 235119 \& \&

\hline \multicolumn{4}{|c|}{Azimuth of Pigeon} \& \& 635445 \& \&

\hline
\end{tabular}

$$
\begin{gathered}
\text { 3. HUMPBACK, MAINE. } \\
\varphi=44^{\circ} 51^{\prime} \cdot \mathrm{S} \\
\lambda=65^{\circ} 06^{\prime} \cdot 6 .
\end{gathered}
$$

Theodolite No. I was mounted over the trigonometric s'ation. The mark was located in an open field estimated to be about 2 miles from the station, light was shown through an aperture three-fourths of an inch in diameter, and for day observations a wand I foot high and I inch wide was placed vertically above it. A set of observations consisted of 3 pointings on the mark, telescope direct, and 3 pointings telescope reversed, 5 pointings on the star for α Ursæ Minoris and 6 for δ Ursæ Minoris. The instrument was then reversed and the observations were repeated in the reverse order; the necessary time and level records were made for both positions of the instrument. One division of level $=\mathrm{I}^{\prime \prime} \times 43$. Observer, G. W. Dean. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 86$.

Summary of results for azimuth at Humpback, Maine.

8 Ürse Minoris near upper culnination.				a Urse Minoris near eastern elongation.				
Date.	Position.	Mark F. of N.	Δ	Date.	Position.		lark of N .	Δ
1858.		\bigcirc -	"	1858.		-	, "	"
Ang. $\begin{array}{r}9 \\ 13 \\ 14 \\ 14 \\ 16 \\ 17\end{array}$	III	$1142012 \cdot 86$	-0.07	Alig. 9	III		$2013 \cdot 11$	-1.01
	IV	$12 \cdot 39$	+0.40	12	III		$11 \cdot 37$	+0.73
	V	12.51	+0.28	13	IV		11.00	+1.10
	1	11.52	+1'27	14	v		$10^{\prime 7}$	+1 39
	II	14.63	-1.89.	16	1		11.63	+0.47
				17	II		13.65	-1.55
				19	11		14:17	--2.07
				20	Iv		$10 \cdot 84$	+1.26
				23	V		21.13	+0.97
				2.5	I		13.34	-1.24
Mean 1142012.79 ± 0.35				Mean		114	$2012 \cdot 10$	
Diurnal aberratio		+0.33		Diurnal aberration - , /1			+0.31	
Mean of groups				$11420 \quad 12 \cdot 76$				
	Azimuth of Mark			$2942012 \cdot 76 \pm 0^{\prime \prime} \cdot 22$				
	Angle between Mark and Cooper				. $3740{ }^{\circ}$			
	Azimuth of Cooper			$254+2{ }^{2} \times 36$				

[^48]4. MOUNT DHSFRT, MALN:.
$$
\varphi=44^{\circ} 21^{\prime \prime} 1 . \quad \lambda=68^{\circ} 13^{\prime} .6
$$

Theodolite No. i was mounted over the triangulation station. The mark was established near Hulls Cove, and is distant from the station abont 4 miles. Light was shown throngh an aperture one inch in diameter, and above this a wand was adjusted vertically for day observations. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings telescope reversed, 5 pointings on α Ursæ Minoris or 6 on λ Ursæ Minoris. The instrument was then reversed and the observations were repeated in reverse order; time and level records were made for both positions. One division of level :"'53. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 8$.

Siummary of results for azimuth at Mount Desert, Maine.

5. MOUNT HARRIS, MAINE.

$$
\varphi=44^{\circ} 39^{\prime} 9 . \quad \lambda=69^{\circ} \circ 8^{\prime} 9
$$

Theodolite No. 1 was mounted over the triangulation station. The mark was located upon the south side of the old stage road from Dixmont to Hampden, about $21 / 2$ miles from Dixmont village; light was shown through an aperture 1 inch in diameter, and for day observations a wand ifoot high and : inch wide was placed over it; the lower half of this wand was covered with black cotton cloth and the upper half with white cotton cloth. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings telescope recersed, 5 pointings on the star if ce Ursæ Minoris or 6 if λ Ursæ Minoris. The instrument was then reversed and the observations were repeated in the reverse order; time and level records were made for both positions. One division of level $=I^{\prime \prime}$ '54. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth $\pm 0^{\prime \prime \prime} 98$.

Summary of results for azimuth at Mount Harris, Maine.

Date. 1855.	Position.	E. of N . E. Of	\triangle	Date. 1 S55.	Position.	$\begin{aligned} & \text { Mark } \\ & \text { F. of } \mathrm{N} . \end{aligned}$	Δ
Ang. ${ }^{29}$	v	623729.32	+1.03	Aug. 30	v	623730.58	+ $\mathrm{I} \cdot 08$
30	v	29'19	$+1 \cdot 6$	Sept. 4	IV	$32 \cdot 85$	-1.19
Sept. 3	iv	$30 \cdot 25$	+0.10	5	111	30.68	+0.98
4	IV	30.97	-0.62	6	11	32.93	- $1 \cdot 27$
5	111	[26.22]*	-	8	1	$31^{1} 28$	+0.38
6	111	29.68	+0.67				
8	11	29.65	+0.67				
10	1	30.90	-0. 55				
1	1	33.47	-3^{12}				
12	11	31.48	${ }_{-1} 13$				
14	111	$28 \cdot 62$	+1.73				
	Mean	$\overline{623730 \cdot 35} \pm 0 \cdot 30$			$\begin{gathered} \text { Mean } \\ \circ \end{gathered}$	$\overline{623731^{\prime 6}} \pm 0 \cdot 35$	
	Mean by groups				62373100		
	Diurnal aberration					31	
	Azimuth of Mark				$242373^{1} 31 \pm 0^{\prime \prime \prime} 25$		
	Angle between mark and Humpback				115739.31		
	Azimuth of Humpback						

$$
\begin{aligned}
& \text { 6. RAGGED MOUNTAIN, MAINF. } \\
& \varphi=44^{\circ} 12^{\prime \prime} 7 . \quad \lambda=69^{\circ} 09^{\prime} \cdot 1
\end{aligned}
$$

Theodolite No. I was mounted over the triangulation station. The mark was located about $21 / 2$ miles from the station and was arranged in the usual nanner. A set of observations generally consisted of 3 pointings on the niark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, with time and level record. The instrument was then reversed and the observations repeated in reverse order. One division of level $=I^{\prime \prime} 54$. Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azinuth $\pm o^{\prime \prime} \cdot 66$.

Summary of results for azimuth at Ragged Mountain, Maine.


```
    7. CAPF: SMALI, MAINF:
```

$\phi=43^{\circ} 46^{\prime} 7 . \quad \lambda=69^{\circ} 50^{\prime} \mathrm{S}$.

Theorlolite No. 1 was mounted over the triangulation station. The mark was about $11 / 2$ miles from the station, no other particulars given in the record. A set of observations consisted generally of 3 pointings on the mark, telescope direct, 3 pointings on the mark, telescope reversed, 5 observations of the star with time and level record. The instrument was then reversed and the observations were repeated in reverse order. One division of level $=o^{\prime \prime} \cdot 97$. Observers, A. D. Bache, W. P. Trowbridge, and C. O. Boutelle. Probable error of a single result for azimnth $\pm 0 " 96$.

Summary of resulls for azimuth at Cape Small, Maine.

8. SABBATTUS, MAINE.

$$
\varphi=44^{\circ} \text { o8 } 8^{\prime} 6 . \quad \lambda=70^{\circ} \text { o4 } 4^{\prime} 7
$$

Theodolite No. I was mounted over the triangulation station. The nark was placed on the gable of a barn about 3 miles distant from the station, and it showed under an angle of depression of $11 / 2^{\circ}$.

A set of observations consisted generally of 3 pointings on the nark with telescope direct, 3 pointings on sane, telescope reversed; 5 pointings on the star, if near culmination, but 3 pointings only when near elongation, with time and level records. The insirument was then reversed and the observations repeated in reverse order. Value of I division of level o' 97 . Observers, A. D. Bache and G. W. Dean. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime} \cdot \mathrm{o}$.

Summary of resulls for azimuth at Saballus, Maine.

Date.	Position.	$\begin{aligned} & \text { Mark } \\ & \text { E. of N. } \\ & 0, \end{aligned}$	$\prime \prime$
July 13	V	-062489	+0.39
14	1	26.07	-0.79
15	11	$22^{\circ} 75$	$+2.53$
22	III	$27^{\prime} 40$	$-2 \cdot 12$
Mean		- o6 $25^{\circ} 25$	
Diurn	1 aberration	+0,31	

Summary of results for azimuth at Sabattus, Maine-continued.

Mean by culminations
Mean by elongations
Mean of groups
Azimuth of Mark
Angle between Mark and Mount Independence
Azimuth of Mount Independence

- $06 \quad 25 \cdot 35 \pm 0.46$
$23^{\circ} 93 \pm 0.24$
- 0624.64

I So $06 \quad 24 \cdot 64 \pm 0 \cdot 29$
$20424 \quad 58$ •87
$243123^{\circ} 51$
9. MOUNT INDEPENDENCE, MAINE.

$$
\varphi=43^{\circ} 45^{\prime} \cdot 6 . \quad \lambda=70^{\circ} 19^{\prime} 3 .
$$

Theodolite No. I was monnted over the triangulation station. The mark was located nearly north of the station and distant about 3 miles. A set of observations generally consisted of 2 or 3 pointings on the mark with telescope direct, 2 or 3 pointings on same, telescope reversed, 5 observations on the star with time and level record; the instrument was then reversed and the observations repeated in reverse order. One division of level $=o^{\prime \prime} 97$. Observer: A. D. Bache. Probable error of a single result for azimuth $\pm o^{\prime \prime}{ }^{6} 65$.

Summary of results for azimuth at Mount Independence, Maine.

1O. MOUNT PLIEASANT, MAINE.:

$$
\varphi=44^{\circ} \text { o1 } 6 . \quad \lambda=70^{\circ} \quad 49^{\prime} 4
$$

Theodolite No. I was mounted over the triangulation station. The mark was placed nearly in line with Mount Blue, on the summit of the next ridge and about a mile distant from the station. The angle between the mark and Mount Blue was measured micrometrically with the eye-piece micrometer of the theodolite. The angle of depression of the wand placed over the mark was $21 / 2^{\circ}$. A set of observations consisted of 3 pointings on the mark with telescope direct, 3 pointings on same, telescope reversed, 5 observations of the star with time and level record; the instrument was then reversed and similar observations were made with their order reversed. One division of level = o"'97. Observers: A. D. Bache, C. O. Boutelle, and W. P. Trowbridge, U. S. E. Probable error of a single result for azimuth $\pm 0^{\prime \prime} 90$.

Summary of results for azimuth at Mount Pleasant, Maine.

II. AGAMENTICUS, MAINE.

$$
\varphi=43^{\circ} 13^{\prime} 4 . \quad \lambda=70^{\circ} 4 I^{\prime} \cdot 6
$$

Theodolite No. I was mounted over the triangulation station. The mark was situated on a hill about 2 miles distant. A set of observations consisted of 3 pointings on the mark, telescope direct; 3 pointings on same, telescope reversed; 5 pointings on star with time and level records; the instrument was then reversed and similar observations were made in the reverse order. One division of level $=o^{\prime \prime} 97^{*}$. Observer: A. D. Bache. Probable error of a single result for azimuth $\pm 1^{\prime \prime}$: O .

[^49]Summary of results for azimuth at Agamenticus, Maine.

12. Gunstock, new hampshire.

$$
\varphi=43^{\circ} 31^{\prime} \circ . \quad \lambda=71^{\circ} 22^{\prime} \cdot 2 .
$$

Theodolite No. I was mounted over the triangulation station. The mark was located upon the highest point of rock on the summit of Mount Belknap, about threefourths of a mile from the station; light was shown through a three-fourths inch aperture, above which was placed vertically a wand i foot high and I inch wide for day observations. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star if Polaris, or 6 if δ or 24 Ursæ Minoris, with time and level record. The instrument was then reversed and the observations repeated in the reverse order. Value of I division of level $=I^{\prime \prime} \cdot 00$. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm \mathrm{o}^{\prime \prime} .82$.

Summary of results for azimuth at Gunstock, New Hampshire.
a UTsae Minoris thear eastern elongation.

Date.	Position.	$\begin{aligned} & \text { Mark } \\ & \mathbf{w . ~ o f ~} N . \end{aligned}$		Δ
1860.			"	"
July 24	11	4029	$49^{\circ} 54$	+0.36
25	III		$50 \cdot 66$	-0.76.
27	111		$4{ }^{8.23}$	+1.67
28	1 V		$49^{\circ} 06$	+0.34
30	I		49.68	+0. 22
31	II		$50 \cdot 50$	-0.60
Aug. 1	v		$49^{\circ} 94$	-0.04
2	IV		$51 \cdot 38$	-1.48
3	I		$50 \cdot 10$	-0.20
Mean		$402949{ }^{\circ} 90 \pm 0^{\prime \prime} \cdot 21$		
Diurnal aberration		$1-0.31$		

δ Ursre Minoris near npper culmination.

Date.	Position.	Mark W. of \mathbf{N}.	Δ
1860.		o ' "	"
July 24^{*}	II	402951×40	-1 53
25*	III	$52^{\prime 9}$	-3.03
27	III	$49^{\circ} 101$	+0.86
28	IV	$48 \cdot 63$	+1.24
30	I	$48: 80$	+1.07
31	11	$50 \cdot 03$	-0.16
Aug. 1	V	$48 \cdot 12$	+175
2	V	$49 \cdot 48$	+0.39
3	I	.50*4	-0.61
$\begin{array}{ll}\text { Mean } & 402949 \cdot 87 \pm 0^{\prime \prime}: 34 \\ \text { Diurnal aberratiou } & -0.33\end{array}$			

Mean of groups
Azinnuth of Mark
Angle between Mark and Mount Pleasant Azimuth of Mount Pleasant

\circ	\prime	$\prime \prime$	
40	29	$49 \cdot 57$	$\prime \prime$
139	30	$10 \cdot 43 \pm 0 \cdot 18$	
78	13	$23 \cdot 17$	
217	43	33.60	

*The results for July 24 and 25 are from observations of 24 Ursa Minoris aud of δ Urse Minoris.

I3. UNKONOONUC, NFW HAMPSHIRE.

$$
\varphi=42^{\circ} 59^{\prime} \circ . \quad \lambda=71^{\circ} 35^{\prime} 3
$$

Theodolite No. 1 was mounted over the triangulation station. For an azimuth mark a lamp with reflector was set up at Holt station about 34 miles distant from Unkonoonuc. A set of observations generally consisted of 2 pointings on the mark, telescope direct, 2 pointings on same, telescope reversed, 5 pointings on the star, with time and level record. The instrument was then reversed and the operations repeated in the reverse order. One division of level $=o^{\prime \prime} 96$. Observer, A. D. Bache. Probable error of a single result for azimuth $\pm I^{\prime \prime} 64$.

Summary of results for azimuth at Unkonoonuc, New Hampshire.

14. THOMPSON, MASSACHUSETTS.

$$
\delta=42^{\circ} 36^{\prime} \cdot 6 . \quad \lambda=70^{\circ} 43^{\prime} \cdot S .
$$

Theodolite No. 1 was mounted over the triangulation station. The nark was situated in a northerly direction on a higl rocky bluff, distant from the station about onethird of a mile. Over the small opening in the box was placed a wand, a half inch wide, for day observations.* A set of observations generally consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, with time and levelt records. The instrument was then reversed and the operations were repeated in the reverse order. Chief of party, A. D. Bache. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 84$.

[^50]Summary of results for azimuth at Thompson, Massachusetts.

Mean of groups
Diurnal aberration
Azimuth of Mark
Angle between Mark and Manomet
Azimuth of Manomet
a Urse Minotis near western elongation.

15. WACHUSETT, MASSACHUSETTS.

$$
\varphi=42^{\circ} 29^{\prime} 3 . \quad \lambda=71^{\circ} 53^{\prime} \cdot 2
$$

Theodolite No. I was mounted over the triangulation station. The mark was located upots the highest point of Little Wachusett Mountain, about $13 / 4$ miles distant; light was shown through a $3 / 4-$ inch aperture, and day observations were made on a wand I foot high and I inch wide, mounted over the aperture. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on α Ursæ Minoris (or 6 on λ.Ursæ Minoris) with time and level records. The instrument was then reversed and similar observations were made in the reverse order. Value of one division of level $I^{\prime \prime} \circ 0$. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm 0^{\prime \prime \prime} 42$.

Summary of resutts for azimuth at Wachusett, Massachusetts.
a U'rsæ Minoris near eastern elongation.
A Urse Minoris near upper culmination.

Date.	Position.	Mark W. of N .	Δ	Date.	Position.	$\begin{aligned} & \text { Mar } \\ & \text { W. of } \end{aligned}$		Δ
1560.		- , "	"	1860.		- ,	"	"
Sept. 26	1	174151263	-0.34	Sept. 26	I	17415	12.08	+0.04
25	v	11.95	+0.34	28	v		12.82	-0.70
29	1V	12.71	-0.42	29	IV		$12 \cdot 78$	-0.66
30	III	12.67	-0.38	30	III		11.52	+0.60
Oct. 3	II	13.24	-0.95	Oct. 3	II		$12 \cdot 11$	+0.01
6	IV	$12 \cdot 13$	+0.16	6	v		1140	+0.72
7	I	12.62	-0.33					
8	II	11.42	+0.87				.	
9	III	11.27	+1.02					
	Mean	$1741512.29 \pm$			Mean	17415	$12 \cdot 12$	
					- ,	"		
	Mean of groups				1741512.21			
	Diurnal aberration				-0.31			
	Azimuth of Mark				$5444^{8 \cdot 10} \pm 0^{\prime \prime} \cdot 11$			
	Angle between Mark and Bald Hill				183253.35			
	Azimuth of Bald Hill				$241741^{\circ} 45$			

16. HARVARD OBSERVATORS, MASSACIIUSETTS.

$$
\varphi=42^{\circ} 22^{\prime} \cdot 8 . \quad \lambda=71^{\circ} 07^{\prime \cdot} 7
$$

Troughton and Simms transit, Coast Survey No. 5, was mounted on the west transit pier of Harvard Observatory. The mark was a bull's-eye lantern, showing through a hole of $1 / 4$ inch diameter in a box placed on a trestle 21 feet high and strongly braced. The mark was found to be about $7^{\prime \prime} 5$ west of north, and was on the same level as the old north mark for the east transit. The aperture appeared at an altitude of $0^{\circ} 6^{\prime}$ as seen from the west transit. A board 2 by 2 feet, painted in alternate stripes of black and white, 4 inches wide, served for day mark. Micrometric differences were meastured between the verticals of the mark and star as it passed the meridian, and times were recorded on chronograph; a set of observations generally consisted of ro pointings on the mark, clamp west, to pointings, clamp east, and of 9 transits of the star. Levels were recorded. One division of level $=0 " 96$; the value of one turn (roo divisions) of the eyepiece micrometer was found to be $=44^{\prime \prime} .8$ I from the transits themselves. Observer, A. T. Mosman. Probable error of a single result for azimuth $\pm 0^{\prime \prime} 40$.

Summary of results for azimuth at Harzard Observatory, Massachusetts.

I7. BLUE Hild., MASSACHUSETTS.

$$
\varphi=42^{\circ} \text { I2 } 2^{\prime} 7 . \quad \lambda=71^{\circ} 06^{\prime} 9
$$

Theodolite No. I was mounted over the triangulation station. A set of observations consisted of 3 pointings on the mark,* telescope direct, 3 pointings on same, telescope reversed, and 5 pointings on the star, with time and level records. The instrument was then reversed and the preceding operations repeated in the reverse order. The instrument was kept leveled. Chief of party, A. D. Bache. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 89$.

Summary of resutts for azimuth at Btue Hitt, Massachusetts.

a. Ursw Minoris near western elongation.				a UTrsat Minoris near eastern elongation.				
Date.	Position,	Mark F . of N .	Δ		Position		Mark E. of \mathbf{N}.	Δ
1845.		- . 1	"	1845.			- "	"
Sept. 24	III	20233.78	-0.42	Sept	III		$20230 \cdot 25$	$+2.62$
27	IV	$33 \cdot 75$	-0.39		IV		$33 \cdot 28$	-0.45
Oct. \%	VI	$34 \cdot 49$	$-1 \cdot 13$		IV		33 "91	-1.04
2	I	34.59	-1.23		11		$33^{\circ} 29$	-0.42
3	II	30.99	+2.37		\checkmark		$33 \cdot{ }^{2}$	-0.45
13	V	$32^{\circ} 57$	+0.79		V'I		$31^{19} 94$	+0'93
					1		$34 \% 7$	$-1 \cdot 20$
	Mean	$20233 \cdot 36 \pm 0{ }^{\prime \prime} \cdot 3^{8}$			Mean		20232.87	
					-	,	"	
	Mean of groups				2	02	$33^{11} 1$	
	Diurnal aberration						-0.3I	
	Azinutlı of Mark				182	02	$33^{\cdot 12} \pm 0$	
	Angle between Mark and Manomet				123	54	$56 \cdot 63$	
	Azimuth of Manomet				305	57	$30 \cdot 05$	

IS. SHOOTFLYING, MASSACHUSETTS.

$$
\varphi=41^{\circ} 4 \mathrm{I}^{\prime} \cdot \mathrm{I} . \quad \lambda=70^{\circ} 20^{\prime} 8 .
$$

Theodolite No. I was mounted over the triangulation station. The azimuth mark was distant from the station about $\mathrm{I} 3 / 4$ miles. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, and 5 pointings on star, with time and level records. The instrument was then reversed and the operations repeated in the reverse order. Instrument was kept leveled. Chief of party, A. D. Bache. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 86$.

THE EASTERN OBLIQUE ARC.
Summary of results for azimuth at Shootflying, Mrassachusetts.

19. indian, Massachusettrs.

$$
\varphi=41^{\circ} 25^{\prime} 7 . \quad \lambda=70^{\circ} 40^{\prime} 7 .
$$

Theodolite No. i pas mounted over the triangulation station. A pole at Prospect Hill served for a day mark, but several lights were used for reference marks. It was found, however, that the day and night observations upon the Cape Poge Light, the West Chop Light, and the Tarpaulin Cove Light were discordant, the verticals through the centers of the light-houses and through their focal reflectors not being coincident. A set of observations generally consisted of several pointings on one or more of the marks with telescope direct and reversed, and 6 pointings on the star with tine and level records. The instrument was then reversed and the operations repeated in the reverse order. Instrument was kept leveled. Observers: A. D. Bache and C. O. Boutelle. Probable error of a single result for azimuth $\pm 1^{\prime \prime} \cdot 40$.

Summary of resilts for azimuth at Indian, Massachusetts.

20. COPECUT, MASSACHUSETTS.

$$
\varphi=4 \mathrm{I}^{\circ} \quad 43^{\prime} 3 . \quad \lambda=7 \mathrm{I}^{\circ} \mathrm{o} 3^{\prime} 6
$$

Theodolite No. I was mounted over the triangulation station. A small telescope was placed a few feet from the great theodolite to serve as collimator; it proved, however, to be very unsteady, and even for day observations the cross threads had to be artificially illuminated. For the observations near the eastern elongation eyepiece C was attached to the theodolite;* value of one division of its micrometer $=0^{\prime \prime}{ }^{5} 54$. The station Blue Hill was used for a day mark. A set of observations of Polaris near eastern elongation generally consisted of one dozen micrometric observations between mark and star, telescope direct, and the same number with telescope reversed; also 5 circle readings on collimator, instrument direct, and 5 readings, instrument reversed. In connection with the observations near western elongation the star was pointed at a number of times, with instrument direct and reversed; times and levels were recorded. The instrument was kept leveled. Observer: A. D. Bache. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime}{ }^{1} 5$.

Summary of results for azimuth at Coperut, Massachusetts.

2I. BEACONPOLE, RHODF, ISI.AND.

$$
\varphi=4 \mathrm{I}^{\circ} 59^{\prime} 7 . \quad \lambda=71^{\circ} 27^{\prime} \circ
$$

Theodolite No. I was mounted over the triangulation station. Observations were made in sets consisting generally of 3 to 6 pointings on the mark and on the star, with telescope direct, and the same number of pointings with telescope reversed; the instrument was kept leveled. Observer: A. D. Bache. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 69$.

Summary of results for azimuth at Beaconpole, Rhode Island.

22. SPENCER, RHODI, [SLANI).

$$
\varphi=4 \mathrm{I}^{\circ} 40^{\prime} 7 . \quad \lambda=7 \mathrm{I}^{\circ} 29^{\prime} 7 .
$$

Theodolite No. I was mounted over the triangulation station. Two azimuth marks were used; their angular difference is $4^{\circ} 04^{\prime} 12^{\prime \prime} \cdot 64 \pm 0^{\prime \prime} \cdot 18$. All measures were reduced to the eastern mark. The observations were made in irregular set.s of a number, a dozen, more or less, of micrometric measures between the star and the mark, with telescope direct and telescope reversed. The valte of one division of the eyepiece inicrometer was $0^{\prime \prime} .57$; it was not used in connection witl western elongation of August 14. One division of level $\mathrm{C}=0^{\prime \prime} \cdot 96$, but the instrument was generally kept leveled.* Observer, A. D. Bache. Probable error of a single result for azimuth $\pm 1^{\prime \prime} \cdot 25$.

Summary of results for azimuth at Spencer, Rhode Island.

* On Angust 17 and 21 the star was observed direct and refected.

23. MOUNT TOM, MASSACHUSETTS.

$$
\varphi=42^{\circ} \quad 14^{\prime} 5 . \quad \lambda=72^{\circ} \quad 38^{\prime} 9
$$

Theodolite No. I was mounted over the triangulation station. The mark was located near the Prospect House on Mount Holyoke; a light was shown through a three-fourthsinch aperture in the box; a wand above the opening was used in daytime. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on α Ursæ Minoris (6 in the case of δ Ursæ Minoris), with time and level records. The instrument was then reversed and a series of like observations was made in the reverse order. One division of level $=\mathrm{r}^{\prime \prime} . \infty 0$. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 77$.

Sumtmary of results for azimuth at Mount Tom, Massachusetts.

δ Urse Minoris near upper culnination.

Date.	Position.	$\begin{gathered} \text { Mark } \\ \mathrm{E} . \text { of } \mathrm{N} \end{gathered}$		Δ
1862.		0	"	"
July 27	I	3722	3674	$-2 \cdot 6$
30	11		34 *39	+0.29
Alig. 1	[1		$34 \cdot 62$	+0.06
3	[11		34 '92	-0.24
4	IV		33 "93	+0.75
7	V		$34 \cdot 16$	+0.52
10	111		$34^{\circ} \mathrm{O}$	+0.67
Meaı		3722	$34 \cdot 68 \pm$	
Diurnal aberration			-0.33	

Mean of groups
Aximuth of Mark Angle between Mark and Monadnock Azimuth of Monadnock

$$
\begin{array}{rll}
37 & 22 & 34 \cdot 62 \quad \text { /1 } \\
217 & 22 & 34 \cdot 62 \pm 0 \cdot 20 \\
4 & 45 & 12 \cdot 88 \\
212 & 37 & 21 \cdot 74
\end{array}
$$

24. SANDFORD, CONNECTICUT.

$$
\psi=41^{\circ} 27^{\prime} 7 . \quad \lambda=72^{\circ} 57^{\prime} 0
$$

Theodolite No. I was mounted over the triangulation station. An azimuth mark was placed on the highest hill in a westerly direction, and about $11 / 2$ miles from the station. The aperture was three-fourths of an inch in diameter, and a wand ifoot high and I inch wide was placed vertically over it. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star if Polaris, 6 if λ Ursæ Minoris, with time and level records. The instrument was then reversed and the observations repeated in the reverse order. One division of level $=\mathrm{I}^{\prime \prime} . \infty$. Observers, G. W. Dean and R. E. Halter. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime} \cdot 20$.

Summary of results for azimuth at Sandford, Connecticut

25. WEST MILLS, NEW YORK.

$$
\varphi=40^{\circ} 48^{\prime} 8 . \quad \lambda=73^{\circ} 25^{\prime} \cdot 6
$$

Theodolite No. I was mounted nearly over the triangulation station. The azimuth mark was placed near the station Huntington, $4 \frac{1}{6}$ kilometers distant from West Hills station.* A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on same, telescope reversed, 5 pointings on the star, if Polaris, 6 if δ Urse Minoris, with time and level records. The instrument was then reversed and similar observations were made with their order reversed. One division of level $=1^{\prime \prime}$ oo. Observer, G. W. Dean. Probable error of a single result for azimuth $\pm 0^{\prime \prime}{ }^{5}$.

Summary of results for azimuth at West Hitls, New York.
a Ursae Minoris near eastern elongation.

Date.	Position.	Mark E. of N .	\triangle
1865.		- '"	"
Aug. 4	v	${ }^{2} 2358.23$	+1.00
8	IV	59.02	+0.21
9	II	$60 \cdot 87$	-1.64
11	1	58.21	$+1.02$
12	III	$60 \cdot 61$	$-1 \cdot 38$
15	\checkmark	58.46	+0.77
16	II	58.85	+0.38
18	III	59.62	-0`39
		22359.23	
	rual aberra	+0.31	

> Mean of groups Reduction to station Azimuth of Mark Angle between Mark and Wooster Azimuth of Wooster
δ Ursae Minoris near upper culmination.

Date.	Position,	$\begin{aligned} & \text { Mark. } \\ & \text { F. of } \mathrm{N} . \end{aligned}$			Δ
1865.		0	,	"	"
Aug. 4	V	2	23	$58 \cdot 63$	+0.55
8	IV'			5'55	+0.63
9	II			$5^{5} \cdot 7^{2}$	+0.46
11	I			53 76	+0.42
12	III			$59 * 8$	-0.50
15	IV			$60^{\circ} 00$	-0.82
16	I			$59 * 4$	-0.76
Mean		$22359 \cdot 19 \pm 0^{16} 17$			
Diurnal aberration			+0.33		

$$
\text { Durual aberration } \quad+0 \cdot 33
$$

$$
\begin{array}{rrc}
2 & 23 & 59.53 \\
& +0.40 \quad \prime 1 \\
182 & 2.3 & 59.93 \pm 0.15: \\
7 & 26 & 21.61 \\
174 & 57 & 38.32
\end{array}
$$

* The geodetic station was found to be 0.47 of an inch $S W$. of the point at which the azinuth observations were inade: the correction to the azinnth when referred to the geodetic station is $+0^{\prime \prime 4} 40$.

26. Beacon hill, new Jersey.

$$
\varphi=40^{\circ} 22^{\prime} \cdot 4 . \quad \lambda=74^{\circ} 13^{\prime} \cdots
$$

The Troughton \& Simms transit, Coast Survey No. 5, was mounted over the station; focal length of telescope $I^{m \cdot 1} \cdot$, clear aperture $70^{m m}$, magnifying power about 80. Value of one division of eyepiece micrometer $0^{\prime \prime} 4480 \pm 0^{\prime \prime} \cdot 000^{\prime}$ at $2 I^{\circ} \mathrm{C}$. One division of level $0^{\prime \prime} \cdot 96$; pivot inequality $+0^{5} \cdot{ }^{\circ} 7$ for clamp west. The mark was located about 8 miles north of the station and light was shown through a i-inch aperture. In connection with the observations for time micrometric measures between the verticals of mark and star were made for the determination of azinuth. A set of observations consisted of 15 transits of δ Ursæ Minoris and an equal number of transits of 5 I Cephei over the micrometer thread set in advance to a whole turn between o and 14 ; the nark was observed so times with clamp east and an equal number of times with clamp west; the level was generally read before and after each set. Observer, G. W. Dean. Probable error of a single result for azimutl $\pm 0^{\prime \prime} .8 \mathrm{I}$ for δ Ursæ Minoris and $\pm 0^{\prime \prime} \cdot 67$ for 5 I Cephei.

Summary of results for azimuth at Beacon Hill, New Jersey.

27. MOUNT ROSE, NFW JERSEY.

$$
\varphi=40^{\circ} 22^{\prime} \cdot 1 . \quad \lambda=74^{\circ} 43^{\prime} 4
$$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station and 15 feet above the ground. The mark was I 20 kilometers distant. A set of observations consisted of 3 pointings on the mark, telescope direct, 3 pointings on the same, telescope reversed, and 5 pointings on the star, telescope direct, and 5 pointings on the same, telescope reversed, with time and level records. One division of level $=1 " \cdot 25$. Observer, J. E. Hilgard, assisted by G. W. Stevens. Probable error of a single result for azimuth $\pm \mathrm{r}^{\prime \prime}{ }^{\circ}$ o7.

Sumunary of results for azimuth at Mount Rose, Newo Jersey.

Date.	l'osition.	Mark F. of	Δ
1852.		- "	"
Aug. 13	I	7558.03 .45	-0.72
14	11	03.50	-0.74
14	11	00\% 78	$+1.98$
15	III	00.30	+2.46
16	IV	${ }^{9} 3{ }^{\circ} 4^{8}$	-0.72
18	v	$04 \cdot 33$	-1.57
19	111	03.42	-0.66
	Mean	$755^{8} 02 \cdot 76 \pm 0^{\prime \prime} \cdot 40$	

Mean of groups Diurnal aberration Azinnuth of Mark
Angle between Mark and Mount Holly Azimuth of Mount Holly
a Ursa Minoris near western elongation.

Date.	Position.	$\begin{aligned} & \text { Mark } \\ & \text { F. of } \mathrm{N} . \end{aligned}$	Δ
-552.		- " "	"
Aug. 13	I	$755763{ }^{3}$	-2.08
14	II	59.94	$+1 \cdot 36$
15	111	$61 \cdot 24$	+o.0
17	v	$60 \cdot 42$	+o. 8
19	1 V	$61 \cdot 50$	-0. 20

- 11
$755^{5} 02.03$

$$
+0.31 \quad 11
$$

$255 \quad 5 S$ 02.34士0.31
$1114853^{\circ} 25$
74655.59
28. YARD, PENNSY1,VANIA.

$$
\varphi=39^{\circ} 5^{\prime \prime} 5 . \quad \lambda=75^{\circ} 23^{\prime} \cdot 2
$$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station. A set of azimuth observations consisted of 3 pointings on the mark and 3 pointings on the star, with telescope direct, and the same number of pointings on mark and star with telescope reversed. Times and levels were recorded. One division of level $=0^{\prime \prime} .94$. Observer, J. E. Hilgard. Probable error of a single result for azimuth $\pm 0^{\prime \prime}$ ' 99 .

Summary of results for azimuth at Yard, Penusylvania.
a U'rse Mihoris at varions hour angles.

Azinuth of Mark \quad So $1734^{.25} \pm 0.31$
Angle between Mark and Lippincott 1670004.32
Azimuth of Lippincott
$3471738 \cdot 57$
29. PRINCIPIO, MARYMAND.*

$$
\dot{\varphi}=39^{\circ} 35^{\prime} 5 . \quad \lambda=76^{\circ} 00^{\prime} 3 .
$$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station; the mark was at Carpenter's Point, about $31 / 2$ miles distant. A single result for azimuth is derived from 19 sets, each consisting of: 3 pointings on the mark, reversal of instrument; 3 pointing on the mark, 4 to 6 pointings on the star, followed by the same operations in the reverse order, with the necessary noting of time and level readings; circle used in V positions. Observer, R. D. Cutts. Probable error of a single result $\pm I^{\prime \prime} 75$.

Results for azimuth from observations of a Ursce Minoris near eastern clongation, in August and September, 1866.

Mark west of south	$30507 \cdot 20$
Diurnal aberration	+o.32
Azimuth of Mark	$30507.52 \pm 0^{\prime \prime} \cdot 40$
Angle between Mark and Turkey Point	I $3024 \% 1$
Azinuth of Turkey Point	I 3443 . 5

30. CAPF HENLOPEN LICHT-HOUSE, DELAWARE.

$$
\varphi=3 S^{\circ} 46^{\prime \circ} 7 . \quad \lambda=75^{\circ} \text { о5 } \quad \text { I. }
$$

The 30^{cm} direction theodolite No. I 35 was mounted over the eccentric geodetic station, about 15 meters north of the center of the Light-House; the mark was at Brandywine Shoal Light-House. A single result for azimuth is derived from 49 sets. each consisting of a pointing on the mark, a pointing on the star, reversal of instrument and pointings on star and mark, noting of times and level readings. Circle used in XVII positions. Observer, O. B. French. Probable error of a single result $\pm I^{\prime \prime}{ }_{7} 6$ for α Ursæ Minoris and $\pm 0^{\prime \prime} 97$ for λ Ursæ Minoris.

Results for azimuth from observations of a Urse Minoris and λ Urse Minoris at varions hour angles, in September, 1897.

Mark W. of N., 28 results from observations of $¢$ Ursee Minoris	$14 \quad 23 \cdot 21 \pm 0 \cdot 33$
Mark W. of N., 21 results from observations of λ Urse Minoris	$22^{19} 190 \cdot 21$
Weighted mean according to the probable errors	$22 \cdot 48 \pm 0 \cdot 18$
Indiscriminate mean of 49 sets	22.77
Mean value adopted	$22 \cdot 62$
Diurnal aberration	-0.32
Azimuth of Mark	$1734537 \times 70 \pm 0 \% 1$
Reduction to center of Cape Henlopen Light-House	-20 37
Azimuth, Cape Henlopen Light-House to Brandywine Shoal Light-House	$17345 \quad 1733$

[^51]
31. MARRIOTT, MARYLANU.

$$
\varphi=38^{\circ} 52^{\prime} \cdot 4 . \quad \lambda=76^{\circ} 36^{\prime} \cdot 6
$$

The 60^{cm} direction theodolite No. 2 was mounted over the triangulation station. A single result for azimuth is derived from a set of observations consisting of about one dozen pointings on the star, one half with telescope direct and one-half with telescope reversed, and corresponding pointings on the mark, with noting of times and level readings. Circle used in XI positions. Observers: A. D. Bache, J. Hewston, jr., and G. Davidson. Probable error of a single result $\pm \mathrm{I}^{\prime \prime} \cdot 92$.

Results for azimuth from observations of α, δ, and λ Ursa Minoris near eastern elongation and of α, β, σ, and ζ Ursa Minoris and of a Urse Majoris near western elongation, June, 1849.
Mark W. of N., from 8 stars near eastern elongation
Mark W. of N., from 8 stars near western elongation
Mean, Mark west of north
Diurnal aberration
Azinnutl of Mark
Angle between Mark and Hill
Azinuth of Hill
32. WEBB, MARVLAND.

$$
\varphi=39^{\circ} \circ 5^{\prime} 4 . \quad \lambda=76^{\circ} 40^{\prime} 5
$$

The 75^{cm} direction theodolite No. I was mounted over the triangulation station. The mark was about i mile distant. A single result for azimuth is derived from a set of observations consisting of 6 pointings on the mark, one-half of which with telescope direct and the other half with telescope reversed; 12 pointings on the star, one-laalf with telescope direct and one-half with telescope reversed; finally 6 more pointings on the mark as before, noting time and level readings. Circle used in V positions. Observers, A. D. Bache and G. W. Dean. Probable error of a single result $\pm 0^{\prime \prime} \cdot 67$.

Results for azimuth from observations of a Ursa Minoris near eastern and western elongations, in October and November, 1850.

	-	,	111
Mark E. of N. α Ursxe Minoris, 5 sets near eastern elongation	6	07	$45 \cdot 42 \pm 0 \cdot 28$
Mark E. of N. cr Ursæ Minoris, 5 sets near western elongatıon			$45 \cdot 69 \pm 0 \cdot 35$
Mean, Mark east of nortlı	6	07	$45 \cdot 56$
Diurnal aberration			+0.32
Azinuth of Mark	186	07	$45 \cdot 88 \pm 0 \cdot 21$
Angle between Mark and Soper	97	07	$56 \cdot 64$
Azinnutl of Soper	88	59	$49^{\prime 2}$

33. HILI, MARYLAND.

$$
\therefore \quad \varphi=38^{\circ} 53^{\prime \cdot} 9 . \quad \lambda=76^{\circ} 52^{\prime \cdot} 8
$$

The 75^{cmm} direction theodolite No. I was mounted over the triangulation station. Mark in line to station Webb. A single restult for azinuth is derived from 13 sets of observations, each consisting of 6 pointings on the mark, half with telescope direct and half with telescope reversed; 10 pointings on the star, half with telescope direct and half with telescope reversed, and finally 6 pointings on the mark as before, with noting of times and level readings. Circle used in V positions. Observers, A. D. Bache and G. W. Dean. Probable error of a single result $\pm 0 " 83$.

Resutts for azimuth from obserzations of a Ursa Minoris near eastern and western elongations and of λ Urse Minoris near upper cutmination, in September and October, 1850.

Mark E. of N., 5 results from cr Ursæ Minoris near easterir elongation Mark E. of N., 5 results from α Ursæe Minoris near western elongation Mark E. of N., 3 results from λ Ursæ Minoris near upper culmination Mean, Mark east of north Diurnal aberration Azimuth of Mark Angle between Mark and Webb Azimuth of Webb

$57 \cdot 77 \pm 0 \cdot 3$ I
$57 \cdot 30$
$+0.32$
$00 \cdot 27$
$219 \quad 46 \quad 57 \quad 89$
34. SOPER, MARyI.AND.

$$
\varphi=39^{\circ} \circ 5^{\prime} \cdot 2 . \quad \lambda=76^{\circ} 57^{\prime} \circ .
$$

The 75^{cm} direction theodolite No. I was mounted over the triangulation station, the inark being to the southward, distant 44^{2} meters. A single result for azimuth is derived from 10 sets of observations, each consisting of 6 pointings on the mark, io pointings on the star, one-half with telescope direct and half with telescope reversed, 6 pointings on the mark, with noting of times and level readings. In case of culminations the above operations were repeated. Circle used in V positions. Observer, A. D. Bache. Probable error of a single result $\pm 0^{\prime \prime} \cdot 92$.

Resutt for azimuth from observations of a Ursa Minoris near tower cutmination, λ Ursa Minoris near eastern etongation, and δ Ursa Minoris near western etongation, in July, 1850.

	- , "			
Mark east of north, indiscriminate mean	178	19	$38 \cdot 22$	
Diurnal aberration			+o. 32	"
Azimuth of Mark	358	19	$38^{\circ} 54$	
Angle between Mark and Webb	89	30	15.08	
Azimuth of Webb	268	49	23.46	

35. SEATON, DISTRICT OF COLUMBIA.

$$
\varphi=3 S^{\circ} 53^{\prime} 4 . \quad \lambda=77^{\circ} \mathrm{oo}{ }^{\prime} \circ .
$$

The 75^{cm} direction theodolite No. I was mounted over the triangulation station, and the mark was on the tower of the Soldiers' Home, about $31 / 2$ miles distant. A single result for azimuth is derived from 34 sets, each set of observations consisting of 8 pointings on the mark and 8 pointings on the star, one-half with telescope direct and one-half in reversed position. The star was observed alternately direct and reflected in mercury, times noted. The circle was used in VII positions. Observer, C. O. Boutelle. Probable error of a single result $\pm 0^{\prime \prime}{ }^{\prime} 72$.

Result for azimuth from observations of a Ursa Minoris at various hour angles, in December, 1868, and January, 1869.

	-	,	"
Mark west of north	10	O1	13.73
Diurnal aberration			-0.32
Azimuth of Mark	169	58	$46 \cdot 59$
Angle between Mark and Hill	95	34	$07 \cdot 17$
Azimuth of Hill	265	32	$53 \cdot 76$

36. Caysten, mistrict of comdmbia.

$$
\varphi=38^{\circ} 55^{\prime} \cdot 5 . \quad \lambda=77^{\circ} 04^{\prime} \cdot 4
$$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station, and the mark was about a quarter of a mile distant. A single result for azimuth is derived from a set of observations consisting oí 6 pointings on the mark, one-half with telescope direct and one-half with telescope reversed, 10 pointings on the star, one-half with telescope direct, and one-half, telescope reversed; finally, 6 more pointings on the mark with times noted and levels read. For culminations two sets were taken and coupled, one made before, the other after culmination. Circle used in V positions. Observer, G. W. Dean. Probable error of a single result, star near elongation $\pm 0^{\prime \prime} \cdot 88$ and star near culmination $\pm I^{\prime \prime} \cdot \mathrm{OS}$.

Resutts for azimuth from obserations of ar Urse Minoris near eastern elongation and near lower cutmination, in May and June, 1851.

Mark E. of N., 3 observations near eastern elongation	30	52	$60 \% 62 \pm 0.51$
Mark E. of N., 5 observations near lower culmination			$59.29 \pm 0 \% 4 S$
Mean, Mark east of north		59.955	
Diurnal aberration		+0.315	
Azinuth of Mark	210	53	$00 \% 27 \pm 0.37$
Angle between Mark and Soper	0	01	41.51
Azimuth of Soper	210	54	$41 \% 78$

$$
\begin{gathered}
\text { 37. SUGAR L.OAF, MARITAND. } \\
\phi=39^{\circ} 15^{\prime} .8 . \\
\lambda=77^{\circ} 23^{\prime} .6 .
\end{gathered}
$$

The 50^{cm} direction theodolite No. 113 was momed over the triangulation station, and the mark was near the railroad station at Barnsville 3.8 miles distant. Thirtythree sets of observations were made, each consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument, observations as before, but in reversed order, times noted. The circle was used in XI positions. Observers, C. O. Boutelle and F. D. Granger. Probable error of a single result $\pm \mathrm{r}^{\prime \prime} \cdot 02$.

Result for azimuth from observations of a Ursa Minoris at iarious hour angles, in Oclober and Nozember, 1879.

Azimuth of Mark, east of north	167	ar	59.96	
Diurnal aberration			+o. 32	"
Azinuth of Mark	347	OI	$60 \cdot 28$	- 2
Angle between Mark and Bull Run	45	27	16.51	
Azimuth of Bull Run	32		167	

$$
\begin{gathered}
\text { 38. MARSLAND HKIGHTS, MARVIANI. } \\
\therefore \quad \phi=39^{\circ} 20^{\prime} 5 . \quad \lambda=77^{\circ} 43^{\prime} \circ .
\end{gathered}
$$

The 75^{cm} direction theodolite No. 1 was mounted over the triangulation station; the mark was on a liill back of Knoxville distant about $3^{1 / 2}$ miles. Thirty-five sets of observations were taken, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle was used in V positions. Observers, C. O. Boutelle and F. D. Granger. Probable error of a set or single result $\pm \mathrm{I}^{\prime \prime} \cdot 10$.

Resull for azimuth from obscrations of ar ltrse Minoris at araious hour angles, in October, 1870.

	0	\prime	$\prime \prime$	
Mark east of north	roS	14	$43 \cdot 46$	
Diurnal aberration			$+0 \cdot 32$	$\prime \prime$
Azimuth of Mark	$2 S 8$	14	$43 \cdot 78 \pm 0 \cdot 18$	
Angle between Mark and Bull Run	70	28	$23 \cdot 10$	
Azimutl of Bull Run	358	43	06.88	

39. BUII, RUN, VIRGINIA.

$$
\varphi=38^{\circ} 52^{\prime} 9 . \quad \lambda=77^{\circ} 42^{\prime} \cdot 2 .
$$

The 75^{cm} direction theodolite No. 1 was mouted over the triangulation station; the mark was on High Point Mountain about I $1 / 2$ miles distant. Thirty-five sets for azimuth were taken, each consisting of a pointing on the nark, 2 pointings on the star, first direct, second reflected in mercury, reversal of instrunent and series of similar observations in the reverse order, times noted. Circle used in VII positions. Observer, C. O. Boutelle. Probable error of a set or single result $\pm \mathrm{r}^{\prime \prime} \cdot 20$.

Resull for aziunth from obserations of a Ursa Minoris at zarious hour angles, in October and Nozember, 1871.

Mark west of north	158	36	29.98
Diurnal aberration			-0'32
Azimuth of Mark	21	23	30'34
Angle between Mark and Peach Grove	242	29	57 -81
Azinuth of Peach Grove	263	53	$28 \cdot 15$

40. CIARK, VIRGINIA.

$$
\varphi=38^{\circ} \text { 18 } 8^{\prime} 7 . \quad \lambda=78^{\circ} 00^{\prime} \cdot 2
$$

The 75^{cm} direction thcodolite No. I was mounted over the triangulation station; mark at Rapidan railroad station, nearly 5 . 54 kilometers distant. Thirty-five sets of observations were taken, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle was used in V positions. Observer, C. O. Boutelle. Probable error of a single set or result $\pm \mathrm{r}^{\prime \prime}{ }^{\circ} \mathrm{og}$.

Result for azimuth from observatious of ar Ursce Minoris at various hour angles, in August, 1871.

$$
\begin{aligned}
& \begin{array}{lllll}
\text { Mark west of north } & 85 & 30 & 59 & 64
\end{array} \\
& \text { Diurnal aberration } \\
& \text { Azimuth of Mark } \\
& \text { Angle between Mark and Bull Run } \\
& \text { Azinuth of Bull Run } \\
& -0.32 \quad / \\
& 94 \quad 29 \quad 00 \cdot 68 \pm 0 \cdot 18 \\
& 107 \cdot 50 \quad 27.09 \\
& \begin{array}{lll}
202 & 19 & 27 \\
\hline 77
\end{array}
\end{aligned}
$$

4i. long mountain, virginia.

$$
\varphi=37^{\circ} 17^{\prime} 5 . \quad \lambda=79^{\circ} 05^{\prime} \cdot 2 .
$$

The 35^{cm} direction theodolite No. Io was mounted over the triangulation station; the mark was on belfry of court-house at Lynchburg, about 10 miles distant. Fortysix sets of observations were made, each set consisting of a pointing on the mark, 2 pointings on the star, one direct, the other reflected in mercury, reversal of instrument and series of observations, as before, but in the reverse order, times noted. The circle
was used in XXIII positions. Observer, A. T. Mosman. Probable error of a set or of a single result $\pm I^{\prime \prime}{ }^{\circ} 54$.
Result for azimuth from observations of ar Ursa Minoris at various hour angtes, in November, 1875.

	-	,	"
Mark west of north	20	48	$13 \cdot 11$
Diurnal aberration			-0.32
Azimuth of Mark	159	11	$47 \cdot 21 \pm 0 \cdot 23$
Angle between Mark and Spear	64	16	54.53
Azimuth of Spear	223	28	$41 \cdot 74$

42. FLLIOTT KNOB, VIRGINIA.

$$
\phi=38^{\circ} 10^{\prime} \circ \quad \lambda=79^{\circ} 18^{\prime} 9
$$

The 50^{cm} direction theodolite No. 114 was mounted over the triangulation station, and the collimator was mounted on a brick pier 29 feet distant. Thirty sets of observations were made, each set consisting of a pointing on collimator, 2 pointings on the star; one direct, the other reflected in mercury, times noted, reversal of instrument and series of observations, as before, but in the reverse order. The circie was used in X positions. Observer, A. 'T. Mosman. Probable error of a single result $\pm \mathrm{r}^{\prime \prime}{ }^{5} 50$.

Result for azimuth from observations of a Ursa Minoris at zarious hour angles, in Augnst, 1878.

$$
\begin{aligned}
& \text { Collimator east of north } \\
& \text { Diurnal aberration } \\
& \text { Azimuth of Collimator } \\
& \text { Angle between Collimator and Humpback } \\
& \text { Azimuth of Humpback } \\
& \text { 43. MOORE, NORTH CAROIINA. } \\
& \varphi=36^{\circ} \quad 23^{\prime} 9 . \quad \lambda=80^{\circ} \quad 17^{\prime} \circ .
\end{aligned}
$$

$$
\begin{array}{ccc}
\circ & \prime & \prime \prime \\
1 & 41 & 34 \cdot 52 \\
& & +0 \cdot 32 \\
181 & 41 & 34 \cdot 84 \pm 0 \cdot 27 \\
121 & 4.3 & 49 \cdot 53 \\
303 & 25 & 24.37
\end{array}
$$

The Simms transit, Coast Survey No. 8, was mounted in the meridian of the triangulation station, 7 feet to the north. Focal length of telescope $1^{\mathrm{m}} \cdot 10$, clear aperture 7^{cm}, magnifying power 45 , pivot inequality for clamp west $+v^{s \cdot} \circ 2$; resulting value of one division of eyepiece micrometer before November ${ }^{15}, 0^{\prime \prime} 4870$ and after changing focus to the close of the series " 0 " $4804 \pm 0^{\prime \prime} \cdot 0002$. Value of one division of level $B=1^{\prime \prime} 11$.

In connection with the observations for time, those for azimuth proper consist of micrometric measures between the verticals of the star and mark. The light at the mark was shown through a $3 / 4$-inch aperture; it was distant from the station $51 / 2$ miles and appeared under an angle of depression of $2^{\circ} 25^{\prime}$.

A set of observations generally consisted of 7 or in transits (times noted by a sidcreal chronometer) of the star over the micrometer thread set in advance to a whole or to half a turn, instrument clamp west. In connection with these, from 5 to 10 pointings were madc on the mark, with clamp east, and the same number with clamp west. The level was recorded with each set. When measuring the horizontal angle between the mark and the line to Buffalo the transit instrument was used as a collimator. The riglit ascensions of the stars were taken from the best sources available. Observer, A.T. Mosman. Probable error of a single resnlt for azimuth as derived from all the stars $\pm 1^{\prime \prime} 10$.

THE ASTRONOMIC MEASURES.

Summary of results for azimuth at Moore, North Carolina.
[The tabular results include the correction for diurnal aberration.]

Date. $1876 .$	Star observed near npper culmination.	Mark E. of N.	Date. $1876 .$	Star observed near lower culmination,	Mark E. of N.
Nov. 15	1879 T. צ.C. a Urs. Min.	$\left.\begin{array}{l} 23 \cdot 96 \\ 21.83 \end{array}\right\} 22 \cdot 90$	Nov. 15	© Draconis 32 Camelo.	$\left.\begin{array}{l} 25.69 \\ 19.63 \end{array}\right]^{22 \cdot 66}$
Nov. 21	II Cephei 79 Draconis a Urs. Min.	$\left.\begin{array}{c} 21 \cdot 32 \\ 24 \cdot 28 \\ 23 \cdot 38 \end{array}\right\}_{22 \cdot 99}$	Nov. 21	ᄃ Draconis 32 Caruelo.	$\begin{aligned} & 24 \cdot 84 \\ & \left.26 \cdot{ }_{10}\right\}^{25} \cdot 47 \end{aligned}$
Nov. 22	β cephei II Cephei a C'rs. Min.	$\left.\begin{array}{l} 25 \cdot 08 \\ 24 \cdot 89 \\ 24 \cdot 42 \end{array}\right\} 24 \cdot 80$	Nov. 22	- Draconis 9 Draconis 32 Camelo.	$\left.\begin{array}{c} 21 \quad 21 \\ 21 \cdot 91 \\ 19.56 \end{array}\right\} 20 \cdot 89$
Nov. 24	II Cephei 226 Cephei a Urs. Min.	$\left.\begin{array}{l} 24 \cdot 24 \\ 24 \cdot 16 \\ 20 \cdot 8_{1} \end{array}\right\} 23 \cdot 07$	Nov. 24	- Draconis 9 Draconis	$\left.\begin{array}{l} 23 \cdot 30 \\ 22 \cdot 46 \end{array}\right\} 22 \cdot 88$
Nov. 26	is Cephei 79 Draconis 226 Cephei	$\left.\begin{array}{l} 25 \cdot 14 \\ 22 \cdot 81 \\ 22 \cdot 63 \end{array}\right\} 23 \cdot 53$	Nov. 26	- Draconis 9 Draconis A Draconis	$\left.\begin{array}{l} 23 \cdot 22 \\ 22 \cdot 63 \\ 23 \cdot 78 \end{array}\right\} 23 \cdot 21$
Dec.	79 Draconis	26.68	Dec.	9 Draconis	$23 \cdot 15$
Dec.	if Cephei is Draconis γ Cephei a U'rs. Min.	$\left.\begin{aligned} & 27 \cdot 82 \\ & 26 \cdot 63 \\ & 22 \cdot 37 \\ & 23 \cdot 97 \end{aligned} \right\rvert\, 25 \cdot 20$	Dec.	9 Draconis A Draconis 4 Draconis \times Draconis	$\left.\begin{aligned} & 21 \cdot 37 \\ & 22 \cdot 76 \\ & 22 \cdot 71 \\ & 20 \cdot 99 \end{aligned} \right\rvert\, 21 \cdot 44$
Dec. 3	is Cephei 79 Draconis γ Draconis 4163 Groom. a Uirs. Min.	$\left.\begin{array}{l} 25 \cdot 99 \\ 25 \cdot 17 \\ 24 \cdot 17 \\ 25 \cdot 73 \\ 24 \cdot 67 \end{array}\right\} 25 \cdot 15$	Dec. 3	32 Camelo. 32 Urs. Maj. 9 Draconis 4 Draconis κ Draconis	$\left.\begin{array}{l} 19.39 \\ 22 \cdot 54 \\ 22 \cdot 55 \\ 20.92 \\ 20 \cdot 92 \end{array}\right\}_{21} \cdot 26$
Dec. 5	226 Cephei γ Cephei 4163 Groom. a Urs. Min.	$\left.\begin{array}{l} 26 \cdot 33 \\ 22 \cdot 69 \\ 24 \cdot 24 \\ 23^{\prime} \cdot 71 \end{array}\right\}\langle 24 \cdot 24$	Dec. 5	32 Camelo. 9 Draconis κ Draconis 32 Camelo.	$\left.\begin{array}{l} 19 \cdot 39 \\ 23 \cdot 20 \\ 21 \cdot 43 \\ 21 \cdot 94 \end{array}\right\} 22 \cdot 19$

Daily mean values of mark E . of N . from stars at upper and at lower culminations:

Nov. I5	$\prime \prime \prime \prime \prime$	
21	22.78 ± 0.55	
22	24.23	0.50
24	22.85	0.45
26	22.98	0.50
Dec. 1	23.37	0.45
2	24.91	0.78
3	23.32	0.37
5	23.20	0.34
Weiglited mean	23.30 ± 0.15	

Azimuth of Mark	180	00	$23^{\circ} 30 \pm 0^{\circ} 15$
Angle between Mark and Buffalo	21	26	5^{\prime} II
Azimuth of Buffalo	158	33	$3^{\prime} \cdot 19$

4192-No. 7-02-23
44. VOUNG, NORTH CAROLINA.

$$
\varphi=35^{\circ} 44^{\prime} 4 . \quad \lambda=80^{\circ} 38^{\prime} 9
$$

The 50^{cm} direction theodolite (Würdemami) No. 3 was monnted over the triangulation station. The azimuth mark was placed on top of a barn on Solomon Hall Place, distant 4.86 miles, and the light was shown through an aperture $1 / 2$ inch in diameter. A set of observations consisted of a pointing on the mark, telescope direct, 2 observations, with time record of the star, one pointing with image direct, the other with image reflected in mercnry.* The telescope was then reversed and 2 observations on star, direct and reflected, and a pointing of the mark, telescope reversed, completed the set. Observer, C. O. Bontelle. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime \cdot} 14$.

Summary of results for azimuth at Young, North Carolina.

a Urse Minoris at various hour angles.				a Urse Minoris at various hour angles.			
Date. $1876 .$	Position.	$\begin{aligned} & \text { Mark } \\ & \text { E. of N. } \\ & 0 \text {. } \end{aligned}$	Mean by positions. "	Date. $1876 .$	Position.	$\begin{aligned} & \text { Mark } \\ & \text { E. of } \mathrm{N} . \end{aligned}$	Meau by positions. ff
Oct. 10	1	$72025{ }^{\circ} \mathrm{4}$ (Oct. 12	V'1	72026.09	
	1	$26 \cdot 20$	24 '33		VI	$22.93\}$	$23 \cdot 76$
	I	$21 \cdot 75$			VI	$22 \cdot 26$	
	11	25.85			VII	$26 \cdot 07$	
	11	23.79	24^{60}		VII	$24 \cdot 72$	$24 * 87$
	II	$24 \cdot 16$			V'II	$23.83)$	
Oct. II	III	$22 \cdot 73$			VIII	$26 \cdot 36$	
	111	22.46	$23 \cdot 14$		VIII	24.78 \}	$25 \cdot 68$
	III	24.23			VIII	25.89	
	IV	25 '08		Oct. 13	IX	$26 \cdot 21$	
	1 V	$22^{\prime 2} 2$	$23 * 29$		IX	$26 \cdot 94$	25.68
	IV	22.57			IX	$23 \cdot 88)$	
	v	22.67			x	23.13	
		$22 \cdot 24$	$22 \cdot 38$		X	21.94	$22 \cdot 76$
		$22 \cdot 23$			X	23.22	
					XI	24.577	
					XI	$26.92\}$	$26 \cdot 16$
					XI	$27^{\circ} 00$	
					Meain	720	$24^{\prime 2} \pm \pm 0^{\prime \prime} \cdot 26$
					- ,		
	Mean,	ark east of	north		72024		
	Diurnal	berration			+o	//	
	Azimut	of Mark		18	$20 \quad 24$	± 0.26	
	Angle b	ween Ma	and Poos	- 299	$32 \quad 29$		
	Azimut	of Poore		12	5253		

* The mercury was covered by a mosqnito net to prevent auy disturbance of the surface by wind.

45. KING, NORTH CAROIINA.

$$
\varphi=35^{\circ} \quad 12^{\prime} \cdot 2 \quad \lambda=81^{\circ} \quad 18^{\prime} \cdot 8
$$

The 50^{cm} direction theodolite No. 3 was mounted over the triangulation station. The azimuth mark was placed on the roof of a store near Kings Mountain R. R. station, distant 2.79 miles from King, and light was shown from a bulls-eye lantern through a hole of $3 / 4$-inch diameter. A set of observations consisted of a pointing on the 1nark, telescope direct, 2 observations of the star, one with image direct, the other with image reflected in mercury, with time record. The instrument was then reversed and 2 observations of the star were made, one direct, the other a reflected image, and one pointing on the mark concluded the set. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 98$.

Summary of resutts for azinuth at King, North Carolina.

[^52]
46. PARIS, SOUTII CAROLINA.

$$
\varphi=34^{\circ} 56^{\prime \cdot} 5 . \quad \lambda=82^{\circ} \quad 24^{\prime \cdot} 7
$$

The 50^{cm} theodolite No. 3 was mounted over the triangulation station. The azimuth mark was 1.4 miles distant from the station, and the light was shown through an opening one-half inch in diameter. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one with image direct, the other with image reflected in mercury, with time record. The instrument was then reversed, and 2 more observations of the star, direct and reflected, were made, and the set was completed by an observation on the mark. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime} \cdot{ }^{15}$.

Summary of results for azimuth at Paris, South Carolina.

47. CURRAHEE, GEORGIA.

$$
\varphi=34^{\circ} 31^{\prime \prime} 6 . \quad \lambda=83^{\circ} 22^{\prime} 6
$$

The 50^{cm} theodolite No. 3 was mounted over the triangulation station. The mark was placed on the roof of a store at Toccoa village, distant between 3 and 4 miles, and was about 600 feet below the top of the mountain; the light was shown through an opening three-fourths of an inch in diameter and appeared under an angle of depression of less than 2°. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one by direct vision, the other by image reflected in mercury, with time record. The instrument was then reversed and the preceding observations were repeated in the reverse order. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm I^{\prime \prime *} 47$.

Summary of results for azimuth at Currahee, Georgia.

4S. SAWNEE, GFORGIA.

$$
\varphi=34^{\circ} 14^{\prime} 1 . \quad \lambda=84^{\circ} 09^{\prime} 7
$$

The 75^{cm} direction theodolite No. I was mounted over the triangulation station. The azimutl mark was placed on a hill north of the village of Cumming, 2.7 miles distant from Sawnee; light was shown through a half-inch opening and appeared under an angle of depression of $2^{\circ} 38^{\prime} 7$. A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one of image direct, the other of image reflected in mercury with time record. The instrument was then reversed and the preceding observations were repeated but in the reverse order. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm 1 " 50$.

Summary of results for azimuth at Sazonee, Georgia.

49. ATLANTA MIDDIE BASE, GEORGIA.

$$
\varphi=33^{\circ} 54^{\prime} 3 \quad \lambda=84^{\circ} \mathrm{I} 6^{\prime} \cdot 6
$$

The $75^{\text {cm }}$ theodolite No. I was mounted over the triangulation station. The azimuth mark was located at the north end of the base, 3 miles distant from Middle Base; light was shown through a half inch aperture.* A set of observations consisted of a pointing on the mark with telescope direct, 2 observations of the star, one observation with star direct, the other with image reflected in mercury, with time record. The instrument was then reversed and the preceding operations were repeated, but in the reverse order. Observer, C. O. Boutelle. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime} \cdot 6 \mathbf{r}$.

Summary of resutts for azimuth at Atlanta Middle Base, Georgia.

Dat $=$	Position.	Mark E. of N .	Mean by position.
1873.		- ' "	"
Jan. 11	1	$520803 \cdot 16$	
	1	$04 * 3$	
Jan. 12	I	$06 \cdot 30$	04.76
	I	$05 \cdot 37$	
	I	04 "93	
Jan. 14	II	06.33]	
	II	$03 \cdot 35$	
	II	04.92	04*44
	II	03.90	
	II	0370	
Jan. 21	III	${ }^{0} 782$	
	III	08.99	
	III	$10^{\circ} 47$	09 '55
	III	$09 \cdot 26$	
	III	$11.23)$	
Jan. 23	IV	10.01	
	IV	08.75	
	IV	09 082	$09 \cdot 13$
	IV	09.96	
	IV	07.37	

Mean, Mark east of north
Diurnal aberration
Azimuth of Mark
Reduction to base line
Reduction to center at Northeast Base
Angle between Northeast Base and Stone Mountain Azimuth of Stone Mountain
a Urse Minoris at various hour angles.

Date.	Position.	Mark E. of N .	Mean by position.
$\begin{gathered} 1873 . \\ \text { Jan. } 24 \end{gathered}$		- ' 1	"
	V	$520810{ }^{\circ} 16$	
	V	$07^{\circ} 12$	
	V	$08 \cdot 06$	$07 * 24$
	V	05*4.	
	V	05*44	
Jan. 27	VI	o7 ${ }^{\text {51 }}$	
	VI	$08 \cdot 35$	
Jan. 31	VI	$08.82\}$	09 "04
	VI	09 '46	
	VI	11.08	
Feb. 4	VII	$07 \cdot 68$)	
Feb. 5	VII	$05 \% 8$	1
Feb. δ	VII	$04 * 97$	05.88
	VII*	$06 \cdot 86$	1
	VII	$04.83)$	
	Mean	52.08	$07 \cdot 16 \pm 0^{\prime \prime} \cdot 55$

50. LAVENDER, GEORGIA.

$$
\phi=34^{\circ} 19^{\prime} 3 \quad \lambda=85^{\circ} 17^{\prime} 3
$$

The 30^{cm} repeating theodolite No. 32 was mounted over the triangulation station. Focal length of telescope 54^{cm}; aperture 5^{cm}; magnifying power 28 and 48 .* The azinnth mark was located at the secondary station Coosa, $6^{\circ} 9$ miles distant, and nearly at the same height as Lavender. For the first fifteen nights the light was shown through a three-fourtlis incl opening; after that it was enlarged to $11 / 2$ inches. A set of observations consisted of 12 repetitions of the horizontal angle between mark and star, one-half of these with telescope direct and one-half with telescope reversed, and observing the star alternately direct and reflected in mercury. Observer, F. P. Webber. Probable error of a single result for azimuth $\pm \mathrm{I}^{\prime \prime} 92$.

Summary of results for azimuth at Laiender, Georgia.

[^53]5I. AURORA, ALABAMA.
$\varphi=34^{\circ}$ os $S^{\prime} \mathrm{S} . \quad \lambda=86^{\circ}$ п 1^{\prime} о.
The 30^{cm} direction theodolite No. 108 (Troughton \& Simms) was mounted over the triangulation station. Focal length of telescope $0^{\mathrm{m} \cdot} \cdot 75$, aperture $7^{\mathrm{cm} \cdot} 5$, magnify ing power 60. This instrument was used here for the first time.* The' azimuth mark was seen under an angle of depression of $0^{\circ} 37^{\prime} \cdot 3$. A set of observations consisted of a pointing on the mark with telescope direct, followed by 2 observations of the star, one with image direct, the other with image reflected in mercury. The telescope was then reversed and the star and mark were observed as before, but in the reverse order. Observer, F. P. Webber. Probable error of a single result for azinuth $\pm 3^{\prime \prime}{ }^{\circ} \mathrm{o8}$.

Summary of results for azinuth of Aurora, Alabama.

Mean, Mark east of north	66	46	50.67	
Diurnal aberration			$+0.3 I$	
Azimuth of Mark	246	46	50.98	$\pm 0^{\prime \prime} \cdot 72$
Angle between Mark and Brandon	349	19	$38^{\prime .37}$	
Azimuth of Brandon	236	06	29.35	

[^54]52. KAHATCHEE, ALABAMA.
$$
\varphi=33^{\circ} 13^{\prime \cdot} 7 . \quad \lambda=86^{\circ} \quad 21^{\prime} \cdot 6
$$

The 25^{cm} repeating theodolite (Gambey) No. 63 was mounted over the triangulation station. The azimuth mark was located near the station Horn, distant ${ }^{17} 3$ miles; light was shown from a signal lamp. A set of observations consisted of 6 repetitions of the horizontal angle between mark and star, 3 with telescope direct and 3 with telescope reversed, with the requisite time and level readings. One-third of the sets measured the angle star and mark. Value of one division of level $=2^{\prime \prime} \cdot 67$ at $24^{\circ} \mathrm{C}$. Observer, O. B. French. Probable error of a single result for azimuth $\pm 0^{\prime \prime}{ }^{\circ} 98$.

Summary of results for azimuth at Kahatchee, Alabama.

53. ETHRIDGE, ALABAMA.

$$
\varphi=32^{\circ} 04^{\prime} \cdot 7 . \quad \lambda=87^{\circ} 03^{\prime \cdot} 5
$$

The $25^{\text {cm }}$ repeating theodolite (Gambey) No. 63 was mounted over the triangulation station. The azimath mark was placed over the station Lovers Leap, distant $15^{\circ} 2$ miles. A set of observations consisted of 6 repetitions of the horizontal angle between mark and star, 3 with telescope direct and 3 with telescope reversed, with the requisite time and level record. One-half of the sets were made with the angle mark and star, the other with star and mark. Value of one division of level $2^{\prime \prime} 67$ at $24^{\circ} \mathrm{C}$. Observer, O. B. French. Probable error of a single result for azimuth $\pm 0^{\prime \prime \prime} 95$.

Summary of results for azimuth of Ethridge, Alabama.

54. FORT MORGAN, ALABAMA.

$$
\phi=30^{\circ} 13^{\prime} 8 . \quad \lambda=88^{\circ} \circ 1^{\prime} 4
$$

The 60^{cm} direction theodolite No. 2 (Troughton) was mounted over the triangulation station; focal length of telescope, 78^{cm}; aperture, 52^{cm}; magnifying power, 30 and 40.* A set of observations consisted generally of 3 pointings on the mark, telescope direct, and 3 pointings on same, telescope reversed; from 3 to 6 observations of the star, telescope direct, with time and level record. The instrument was then reversed and the preceding observations of star and mark were repeated, but in the reverse order. Some sets begin and end with 6 pointings on the mark, the reversal of the instrument taking place in the middle of the star observations. Value of one division of level, prior to April 21, I" 66 ; after that date $2^{\prime \prime} .92$. Observer, R. H. Fauntleroy. Probable error of a single result for azimuth $\pm 0^{\prime \prime} \cdot 75$.

Summary of results for azimuth at Fort Morgan, Alabama.

* Two eyepieces used.

EAST PASCAGOULA, MISSISSIPPI.

$$
\varphi=30^{\circ} 20^{\prime} 7 . \quad \lambda=88^{\circ} .32^{\prime} \cdot \mathrm{S}
$$

The 60^{cm} direction theodolite No. 2 (Troughton) was mounted over the triangulation station; focal length of telescope, 78^{cm}; aperture, 5.2^{em}; magnifying power, 30 and 40.* A set of observations generally consisted of 6 pointings on the mark, telescope direct, 6 observations of the star, with time and level record. The instrument was then reversed and the preceding observations were repeated, but in the reverse order. One division of level $=2^{\prime \prime} \cdot 92$. Observer, R. H. Fauntleroy. Probable error of a single result for azimuth $\pm \mathrm{r}^{\prime \prime}{ }^{\prime \prime}{ }^{\prime} 8$.

Summary of results for azimuth at East Pascagoula, Mississippi.

56. CAT ISLAND IS55, M1SS1SSIPPI.
$\varphi=30^{\circ} 14^{\prime} \cdot 2 . \quad \lambda=89^{\circ} 04^{\prime} \mathrm{I}$.

The $75^{\text {cm }}$ transit Coast Survey No. 9 (Würdemann) was mounted over the triangulation station. A mark was placed in the vertical of the western elongation, and the horizontal difference between star and mark measured by means of the pivot micrometer, which is ordinarily employed for adjusting the transit in azimutl.* A set of observations consisted of 2 pointings on the mark and 6 on the star, with time and level record, one-half of these observations being made with clamp east, the other with clamp west. Value of one division of micrometer $2^{\prime \prime} \cdot 18$, and of one division of level $2^{\prime \prime \prime} \cdot 0$. Observer, J. E. Hilgard. Probable error of a single result for azimuth $\pm 0^{\prime \prime}{ }^{\circ} 57$.

Summary of resutts for azimuth at Cat Island 1855, \dagger Mississippi.

Date. ${ }^{1} 855$. Dec. 5	Mark W. of N.			\pm
	-	,	/	/
		41	$10 \cdot 20$	-0.67
			0971	-0.18
			09 ${ }^{\circ} 5$	-0.02
			o8 8 \%	+o. 72
			$08 \cdot 33$	+1.20
			10 58	-r ${ }^{\circ} \mathrm{O}$
Mea		41	09×53	

[^55]```
PARTIV.
```


## DETERMINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THE TRIANGULATION.

TREASURY DEPARTMENT
U. S. COAST AND GEODETIC SURVEY O. H. TITTMANN, SUPERINTENDENT.


# DETERMIINATION OF AN OSCULATING SPHEROID FOR THE REGION COVERED BY THE TRIANGULATION. 

## A. COMPARISONS OF THE ASTRONOMIC AND GEODETIC RESULTS AT STATIONS CONNECTED WITH THE OBLIQUE ARC.

Parts II and III contain the necessary statements and results for the next operation, namely, the direct comparison of the astronomic latitudes, longitudes, and azimuths with their corresponding values derived geodetically by development of the triangulation upon the Clarke spheroid of 1866 . In doing this the geodetic data for the station Hay's, Kansas, as given in the account of the transcontinental triangulation and are of the parallel in latitude $39^{\circ}$, have been adhered to. They are:

$$
\left\{\begin{array}{l}
\varphi_{0}=38 \\
\lambda_{0}=94 \\
\hline
\end{array}\right.
$$

We shall thus secure systematic positions which, if desirable, may be made at once available for a determination of anl osculating spheroid based upon a surface of wider geographic limits than is contemplated in this discussion.

As early as the year 1879 the writer made a preliminary comparison of the astronomic and geodetic measures then available.* The stations included extend from Calais, Maine, to Atlanta, Georgia. That discussion furnished the first comprelensive information of the relative magnitude and distribution of the outstanding differences between the astronomic and geodetic results in the United States, the latter as developed on each of two reference spheroids. It leci to the adoption of the Clarke spheroid of 1866 for use by the Coast and Geodetic Survey.

As a matter of general interest, the location oi the principal are measures and areas of osculating spleroids is shown on a Lambert equivalent zenithal projection upon a meridional plane and transferred from a hemi- to a plani-sphere,* constructed by Adolph Liindenkohl, of the Drawing Division, Coast and Geodetic Survey, for this special use. Lambert himself pointed out how the whole surface of the sphere could be represented, a fact stated again in Littrow's admirable work, Chorographie, etc., von J. J. Littrow, Wien, 1833, page 126.
*U. S. Coast and Geodetic Survey Report for 1879, A ppendix No. 8, pp. 110-123.

## I. The Astronomic Latitude: Stations.

The following table of the comparison of the astronomic and geodetic determinations of latitudes consists of the collection of the latitude results derived from direct observation, given in full in Part III. To these restlts have been added the reduction to sea level, and the reduction to the average position of the earth's pole of rotation. The tabular geodetic latitude is that of the corresponding astronomic station, the local reduction for any difference of position between the two stations having been applied.

The reduction to sea level.-As a consequence of the earth's rotation producing a slight curvature of the rertical of a station in the plane of the meridian concave toward the pole, a small correction to the observed latitude is required, which is given by the expression

$$
i=-\operatorname{siz}^{2} \frac{2}{\pi} h \sin 2 q
$$

where $h$, or height, is given in meters and $i$ in seconds of arc. The value of the factor $-0.000{ }_{1} 72 \sin 2 \varphi$ for different latitudes is as stated below:

For $\varphi=$| $50^{\circ}$ | $-0^{\prime \prime} \cdot 000$ | 169 |
| ---: | ---: | ---: |
| 45 | 172 |  |
| 40 | 167 |  |
| 35 | 161 |  |
| 30 | 149 |  |

The reduction for variation of pole.-The advisability of introducing into the present discussion of the astronomic and geodetic measures corrections for variation in the position of the earth's axis of rotation largely depended upon the degree of reliability of the values of such corrections. The origin of this motion is at this time imperfectly understood, and the uncertainty in the correction for variation is here considerably increased on account of the early dates of many of our latitnde observations, some dating back more than half a century.

In consequence of the importance of the subject the International Geodetic Association for the measurement of the earth has organized a special service for the purpose of procuring data for the study and elucidation of the law of this variation which was first definitely formulated by Dr. S. C. Chandler. The association selected a small number of stations suitably located around the earth, near the parallel of north latitude, $39^{\circ}{ }^{\circ} 8^{\prime} 10^{\prime \prime}$, at which it is intended to prosecute refined latitude observations for a series of years. The range of the variation is small, about $o^{\prime \prime} 3$ from a mean value, and it requires, consequently, the utmost attainable precision as regards instruments and method in order to bring its periods and ranges into clear evidence.*.

The probable error of a correction to an observed latitude may be estimated at $\pm \mathrm{o}^{\prime \prime} \cdot \mathrm{o}_{4}$ for the past decade, but for the earlier dates of our observations this needs to be increased.

These small corrections for variation of latitude, while yet very uncertain, conld have no sensible influence upon the results of this investigation for determining a representative spheroid, nor would these small corrections be of any consequence in comection

[^56]with the local deflections of the vertical, the average magnitude of which, namely, $2^{\prime \prime \prime} 4$,* has been deduced from a large number of comparisons. It has, however, been concluded to apply these small and as yet rather uncertain corrections in the present investigation. The corrections to all latitude results were computed by Chandler's formulæ $\dagger$ except for a few stations where none were needed and for four stations occupied in 1897 and 1898 where Dr, Albrecht's results were introduced in preference, as contained in his report on the state of the latitude variation at the close of the year 1899 [Centralbureau der Internationalen Erdmessung, Berlin, 1900].

About one-half of the corrections thus computed were found to be below $\mathbf{o}^{\prime \prime} \cdot \mathrm{I}$, a very few reached $o^{\prime \prime} \cdot 2$, and none exceeded $o^{\prime \prime} \cdot 25$. For the whole arc these corrections balance.

The effect of the variation of the position of the pole upon observed differences of longitude is small enough to be negligible and the same is true with reference to the observed azimuths, for which the probable error of observation always excecds the small correction due to the polar variation.

The headings of the following summary of results need no explanation. The geodetic latitudes were in all cases referred to the astronomic station unless the two stations happened to be located on the same parallel or to be identical in position. The relative position of the stations is stated in the preceding abstracts and the reductions there given are applied to the geodetic latitude with the sign reversed. The last column contains the apparent local deflection of the vertical in the plane of the meridian or the difference $(A-G)$ of the two values in the two preceding columns.

[^57]Comparison of astronomic and reodetic latitudes.

| No. | Name of latitude station. | State. | year and month of observation. | Reduction- |  |  | Seconds- |  | $A-G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Observed astronomic latitude. | To sea level. | To average pole. | Of as tronomic latitude. | Of geodetic latitude.* |  |
|  |  |  |  | - $\quad$ " | " | " | " | " | " |
| 1 | Calais | Me. | 1857 Sept. | 451109.40 | -0.01 | 0.00 | 09. 39 | $03 \cdot 78$ | $+5 \cdot 61$ |
| 2 | Cooper | Me. | 1859 Sept. | $4459 \quad 12.60$ | -0.04 | $-0.07$ | 12.49 | 11.53 | +0.96 |
| 3 | Humpback | Me. | 1858 July and Aug. | $445^{1} 47 \% 56$ | -0.08 | -0.11 | $47 \cdot 37$ | $49^{\circ} 2$ | -1.83 |
| 4 | Jangor | Me. | 1857 Sept. and Oct. | $44 \quad 48 \quad 12.87$ | -0.01 | +0.03 | 12.89 | $14 \cdot 19$ | $-1.30$ |
| 5 | Farmington | Me. | 1866 Oct. and Nov. | 444019.54 | -0.12 | -0.07 | 19 '35 | 20.78 | $-1.43$ |
| 6 | Mount Harris | Me. | 1855 Ang. and Sept. | 443954.66 | -0.07 | +0.09 | 54.68 | 52.71 | +197 |
| 7 | Howard | Me. | 1859 July | $443749^{\circ} 24$ | -0.01 | -0.06 | $49^{\prime 17}$ | $45 \cdot 24$ | $+3.93$ |
| 8 | Mount Desert | Me. | $1 S_{56}$ Ang., Sept., Oct. | 442106 51 | -0.08 | +0.09 | $06 \cdot 52$ | 05'19 | +1.33 |
| 9 | Ragged Mountain | Me. | 1854 Aug., Sept., Oct. | $441242 \% 6$ | -0.07 | +0.04 | $42 \cdot 93$ | 43.03 | $-0.10$ |
| 10 | Sabattus | Me. | 1853 June and July | 44053773 | $-0.04$ | -0.02 | 37.67 | $36 \cdot 01$ | $+166$ |
| 11 | Mount Pleasant | Me. | 1851 July and Aug. | 44 01 36.44 | -0.11 | -0.09 | $36 \cdot 2.4$ | $34 \cdot 65$ | +1.59 |
| 12 | Cape Small | Me. | 1851 Sept. and Oct. | $43 \quad 4643$ '69 | - 0.01 | +0.02 | - 43 '70 | $41 \cdot 45$ | +2.25 |
| 13 | Mount Independence | Me. | 1849 Sept. and Oct. | 434534.47 | -0.03 | +0.12 | 34.56 | $31 \cdot 80$ | $+2.76$ |
| 14 | Gunstock | N. H. | 1860 July and Aug. | $433103 \cdot 81$ | -0.12 | +0.02 | 0371 | 00.98 | $+2 \cdot 73$ |
| 15 | Aganmenticus | Me. | 1847 Sept., Oct., Nov. | $43 \quad 1324 \% 6$ | -0.04 | 0.00 | 24.92 | $22 \cdot 75$ | +2.17 |
| 16 | Isles of Shoals | Me. | 1847 Aug. | $42 \quad 5912.97$ | 0.00 | 0.00 | 12.97 | 12.87 | +0.10 |
| 17 | Unkonoonuc | N. H. | 1848 Sept. and Oct. | 425859.34 | -0.07 | +0.07 | 59.34 | 57.85 | +1.49 |
| 18 | Thompson | Mass. | 1846 Sept. and Oct. | $423^{6} \quad 38 \cdot 02$ | -0.01* | -0.03 | 37.98 | 39.68 | $-170$ |
| 19 | Wachusett | Mass. | 1860 Sept., Oct. | $42 \quad 2916 \cdot 13$ | -0.10 | -0.01 | $16^{\circ} 02$ | 17.80 | $-1 \cdot 78$ |
| 20 | Cambridge, Harvard College Observatory | Mass. | 1844, 1845 | $42224^{8.05}$ | -0.01 | $\ldots$ | 48.04 | $51 \cdot 48$ | $-3 \cdot 44$ |
| 21 | Cambridge, Cloverden Observatory | Nass. | 1855 Aug., Sept., Oct. | $422240{ }^{\circ} 97$ | -0.01 | ... | $40 \cdot 96$ | $44 \cdot 28$ | $-3 \cdot 32$ |
| 22 | Mount Tonı | Mass. | 1862 July and Aug. | $42^{-14} 27.62$ | -0.06 | +0.06 | 27.62 | $27 \cdot 84$ | $-0.22$ |
| 23 | Manomet | Mass. | 1867 July and Aug. | $4^{11} 5535 \% 35$ | -0.02 | +0.08 | $35 \cdot 41$ | $36 \cdot 71$ | $-1.30$ |
| 24 | Sandford | Con111. | 1862 Sept. and Oct. | $41 \quad 274047$ | -0.05 | +0.15 | $40 \cdot 57$ | 41'13 | -0.56 |
| 25 | West Hills | N. Y. | 1865 Allg. | 404850.06 | -0.02 | -0.12 | 49.92 | 53'28 | $-3 \cdot 36$ |
| 26 | New York | N. Y. | 1858 June | $40434^{8} \cdot 39$ | 0.00 | $-0.13$ | $48 \cdot 26$ | $49^{\cdot 16}$ | -0.90 |
| 27 | Beacon Hill | N. J. | 1875 July and Ang. | 402227.81 | -0.02 | +0.14 | 27.93 | 24.46 | $+3.47$ |
| 25 | Monnt Rose | N, J. | 1852 July | $40 \quad 2205.41$ | -0.02 | --0.09 | 05 '30 | 01.30 | $+4^{\circ} 00$ |
| 29 | Yard | Pa. | 1854 Oct., Nov. | 3955129 '39 | -0.03 | $+0.03$ | 29 "39 | $22 \cdot 67$ | $+672$ |
| 30 | Principio | Md. | 1866 July, Aug., Sept. | $3935 \quad 32 \cdot 81$ | -0.01 | $-0.05$ | $32 \cdot 75$ | $34 \cdot 55$ | $-1.80$ |
| 31 | Maryland Heights | Md. | 1870 Sept., Oct., Nov. | $39 \quad 20 \quad 32 \cdot 10$ | -0.07 | $+0.16$ | 32'19 | $26 \cdot 30$ | +5.89 |
| 32 | Pooles Islaud | Md. | 1847 June and July | 39 17 <br> 17 7 <br> 15  | 0.00 | 0.00 | $17{ }^{\prime} 5^{2}$ | 13.52 | +4.00 |
| 33 | Sngar Loaf | Md. | 1879 Oct. | $391549 \% 1$ | -0.07 | -0.10 | 49.54 | 43.65 | $+5.89$ |
| 34 | Dover | Del. | 1897 May | 390913.62 | 0.00 | -0.15 | 13.47 | $18 \cdot 59$ | $-5 \cdot 12$ |
| 35 | Webh | Md. | 1850 Oct. and Nov. | $39055^{\prime 21}$ | -0.01 | $+0.15$ | 25 '35 | $24 \cdot 16$ | +1.19 |
| 36 | Rockville | Md: | 1891, 1892 | 390510.45 | -0.03 | . | 10.42 | 09 '0S | +1.34 |
| 37 | Soper | Md. | 1850 June and July | 390510.69 | -0.02 | $-0.06$ | 10.61 | 09.80 | $+0.81$ |
| $3^{\text {S }}$ | Taylor | Md. | $11_{47}$ May | $385946 \cdot 08$ | -0.01 | 0.00 | 46.07 | $46 \cdot 34$ | -0.27 |
| 39 | Strasburg | Va. | 1881 June | $385931 \cdot 49$ | -0.03 | +0.10 | 31.56 | 27.82 | +3.74 |
| 40 | Cape May | N. J. | 1881 May, 1891 May | $3^{8} 5544.69$ | 0.00 | -0.06 | $44^{6 / 63}$ | $46 \cdot 53$ | $-1 \cdot 90$ |
| 41 | Causten, Washington | D.C. | 1851 May and June | $3^{8} 553^{2 \cdot 18}$ | -0.02 | -0.14 | 32.02 | $3^{2}$-81 | -0.79 |
| 42 | U. S. new Naval Ohservatory, Washington. | D.C. | 1893 May, 1897 June, 1893, 1594, 'i895, 1896 | $3^{8} 55 \quad 13.91$ | -0.01 | -0.16 | 13.74 | 14.89 | $-1 \cdot 15$ |
| 43 | Hill | Md. | 1850 Aug. and Sept. | $3^{8} 535^{2} 3^{1}$ | -0.01 | +0.06 | 52 '36 | $52 \cdot 24$ | +0.12 |
| 44 | U. S. old Naval Observatory, Washington | D.C. | $\begin{aligned} & 1861 \text { to } 1864,1866 \text { to } \\ & 1885,1893 \end{aligned}$ | $3^{5} 533^{5 \cdot 79}$ | -0.01 | .... | $3^{8 \cdot} 7^{8}$ | $40 \cdot 12$ | $-1 \cdot 34$ |
| 45 | Seaton, W'ashington | D.C. | 1850 June | 38 53 25 | 0.00 | -0.08 | $25^{\circ} 12$ | $26^{\circ} 82$ | -1:90 |
| 46 | U. S. Coast and Geodetic Survey Office, Washington | D.C. | 1891 Aug., 1892 Aug., 1894 Aug. | $3^{6} 530743$ | $0 \cdot 00$ | -0.08 | 07. 35 | $10^{\circ} 00$ | $-2.65$ |
| 47 | Hull Run | Va. | 1871 sept. sud Oct. | 35525679 | -0.07 | $0 \cdot 0$ | $56 \cdot 72$ | $52 \cdot 08$ | $+4 \cdot 64$ |

[^58]
## Comparison of astronomic and geodetic latitudes-Continued.



Review of the preceding latitudinal deflections.-Taking in the whole number of comparisons, there is a preponderance of plus signs in the values of $(A-G)$, viz: 44 with a + and 27 with a - sign. This inequality is most marked in the southern part of the arc where the positive signs predominate, and this is especially the case for stations near the Gulf coast. The mean deflection of the last $\&$ stations is $+6^{\prime \prime} \cdot 6$, apparently indicating a deviation of the plumb line directed toward the Gulf. The average value of $(A-G)$ is $+\frac{112}{7 \mathrm{I}}=+\mathrm{I}^{\prime \prime} \cdot 6$. There are several localities where the latitude stations are crowded together, and, consequently, are subject to the same regional deviation. For each of these localities it is desirable to substitute a single station of average or representative value. There are 6 such cases, the latitudes in each group being contained within a space of about $\mathrm{I}^{\prime}$. For these groups we have adopted the following values:

| Groups. | Value of $A-G$. |
| :---: | :---: |
| 20,21 | -3.38 |
| 27,28 | +3.73 |
| $35,36,37$ | $+1 \cdot 11$ |
| 38,39 | $+1 \cdot 74$ |
| $40,41,42$ | -1.28 |
| $43,44,45,46,47,48$ | -0.26 |

These values, when substituted for the respective tabular numbers, make

$$
\frac{\sum(A-G)}{n}=+\frac{106}{59}=+1^{\prime \prime} \cdot 8 \text { nearly. }
$$

Of these differences 39 are positive and 20 negative. The resulting average ( $+\mathrm{I}^{\prime \prime} \cdot 8$ ) may be regarded as representing the difference between the standard latitude of the transcontinental arc of the parallel of $39^{\circ}$ and that of the eastern oblique arc. This discordance of nearly $2^{\prime \prime}$ in the standard latitudes of the ares at their intersection is not surprising when we examine the regional changes in the values of $(A-G)$ along the arc of the parallel. There are rog astronomic latitudes connected with the arc of the parallel and 71 with the oblique arc. Of these, 24 are common to both; consequently, 156 independent latitude stations are involved in the discussions of the two arcs.
2. The Astronomic Longitude Stations.

Comparison of astronomic and standard gcodetic longitudes.

| No. | Name of longitude station and state. | Object of reference. | Observed astronomic longitude. | Seconds of geodetic longitude.* | $A-G$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - " | " | " |
| 1 | Calais, Me. | Transit | 671657.86 | 53.92 | +3.94 |
| 2 | Bangor, Me. | Transit | $684702 \cdot 60$ | $01 \cdot 20$ | +1.40 |
| 3 | Cambridge, Mass. | Center of dome, Harvard Observatory. | $710745 \% 9$ | $44^{\circ} 74$ | +0.95 |
| 4 | Cape May, N. J. | Transit | 74554568 | 48.03 | -2.35 |
| 5 | Dover, Del. | Transit | $75 \quad 31 \quad 18 \cdot 45$ | $24 \cdot 51$ | -6.06 |
| 6 | Washington, D. C. | Seaton, transit | $765952 \cdot 73$ | 60*10 | $-737$ |
| 7 | Washington, D. C. | Coast and Geodetic Survey Office, transit | $770025^{\circ} 64$ | $32 \cdot 71$ | -7.07 |
| 8 | Washingtou, D. C. | Old Naval Observatory, small dome | $770302 \cdot 30$ | 06.68 | $-4.38$ |
| 9 | Washington, D. C. | New Naval Observatory, center clock room | 77035676 | $62 \cdot 80$ | -6.04 |
| 10 | Strasburg, Va. | Transit | 78213570 | 39.54 | $-3 \cdot 84$ |
| 11 | Charlottesville, Va. | McCormick Observatory, transit | ${ }^{7} 53120 \cdot 10$ | 21.15 | $-1.05$ |
| 12 | Statesville, N. C. | Transit, near Siurnton College | So $5341{ }^{\prime} 31$ | $40 \cdot 44$ | +o. 87 |
| 13 | Atlanta, Ga. | Trausit, 1896 | $8423 \quad 20 \% 7$ | 19.41 | +0.66 |
| 14 | Montgomery, Ala. | Transit | 861759.19 | 60.92 | -1.73 |
| 15 | Lower Peach Tree, Ala. | Transit | S7 $3240 \cdot 94$ | $43 \cdot 37$ | -2.43 |
| 16 | Mobile, Ala. | Transit | SS $02377^{\prime 37}$ | $33 \cdot 83$ | $+3.54$ |
| 17 | New Orleans, La. | Transit, 18so and 1895, Lafayette Square | 90.0411 .44 | $12 \cdot 16$ | $-0.72$ |

Review of the preceding longitudinal deffections.-Before examining the tabular values $(A-G)$ it is desirable to contract the table on account of the regional deflections about Washington by admitting only one in the place of the four closely packed stations. The average value of $(A-G)$ for numbers $6,7,8,9$ is $-6^{\prime \prime} 22$. For these, number 9 or the New Naval Observatory value $-6^{\prime \prime} \circ 4$ has been substituted. The distribution of the is stations over the whole arc is fairly uniform. They show an average deflection of $(A-G)=-0^{\prime \prime} \cdot 9^{2}$, the plumb line apparcntly being attracted to the westward. This amount might be expected from the location of the arc. Thus for one-half of the stations, cither on account of proximity to the Atlantic coast or in consequence of their location to the east of the principal mountain chains, or for both reasons, negative values of $(A-G)$ might be expected. These values are as follows:

| $\square$ | " |  |
| :---: | :---: | :---: |
| Cambridge | +0.95 |  |
| Cape May | -2.35 |  |
| Dover | $-6.06$ |  |
| Washington | $-6.04$ | A verage value $=-2^{\prime \prime \prime} 50$. |
| Strasburg | $-3 \cdot 84$ |  |
| Charlottesville | $-\mathrm{I} 05$ |  |
| Statesville | +0.87 |  |

[^59]The value at New Orleans also has a negative sign, thougl the above. reasons do not apply to this location.

It has already been remarked in the account of the transcontinental triangulation and arc of the parallel in latitude $39^{\circ}$ that Cape May, though directly located on the coast, is distant about 213 kilometers ( 15 nautical miles) from the actual, but submerged, continental border.* At Calais we find the largest, yet moderate, positive deflection $+3^{\prime \prime} 94$, which probably, in a measure, is due to the attraction of the mass of Nova Scotia lying directly to the eastward of the station. Respecting the remaining 6 stations no special features appear to be present, and the deviations may be indifferently + or - , the average value being $+o^{\prime \prime} 45$.

## 3. The Astronomic Azimuth Stations.

Comparison of astronomic and geodetic azimuths of sides of the triangulation.

| No. | Name of azimuth station. | State. | Yearofobserva-tion. | Reference station. | Astrononuic azimuth of line. |  |  | $\begin{aligned} & \text { Geodetic } \\ & \text { azimuth. } \dagger \text { A-G. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | - | , | " | " | " |
| 1 | Cooper | Me. | 1859 | Howard | 351 | 53 | 12.05 | $09 \times 93$ | +2.12 |
| 2 | Howard | Me. | 1859 | Pigeon | 63 | 54 | $45^{111}$ | 42.96 | $+2^{i} 15$ |
| 3 | Humpback | Me. | 1858 | Cooper | 254 | 42 | $32 \cdot 36$ | 27.80 | +4.56 |
| 4 | Mount Desert | Me. | 1856 | Ragged Mountain | 78 | 30 | $46 \cdot 57$ | $45 \cdot 89$ | +0.68 |
| 5 | Mount Harris | Me. | 1855 | Humpback | 254 | 35 | 10.62 | 06.04 | $+4.58$ |
| 6 | Kagged Mountain | Me. | 1854 | Mount Pleasant | 81 | 4 S | $45^{\circ} \mathrm{o}$ | 41.73 | +3.27 |
| 7 | Cape Small | Me. | 1851 | Sabattus | 155 | 18 | . 63.51 | 59\%9 | $+3.6$ |
| 8 | Sabattus | Me. | 1853 | Momint Independence | 24 | 31 | $23^{1} 51$ | 20.64 | +2.87 |
| 9 | Mount Independence | Me. | 1849 | Agamenticus | 26 | 55 | 48.60 | 48.38 | +0.22 |
| 10 | Mount Pleasant | Me. | 1851 | Mount Blue | 205 | 59 | ${ }^{21} 5^{6}$ | 17.53 | $+4.03$ |
| 11 | Agamenticus | Me. | 1847 | Thompson | 2 | 36 | 55 '51 | 55 '92 | -0.41 |
| 12 | Gunstock | N. H. | 1560 | Mount Pleasant | 217 | 43 | $33^{\circ} 60$ | $27 \cdot 36$ | +6.24 |
| 13 | Unkonoonuc | N. H. | 1848 | Gunstock | 196 | 35 | $20 \cdot 38$ | 16.68 | $+370$ |
| 14 | Thompson | Mass. | 1846 | Manomet | 351 | 21 | 41 '86 | $40 \cdot 40$ | $+1.46$ |
| 15 | Wachusett | Mass. | 1860 | Bald Hill | 24 | 17 | $41 \cdot 45$ | $32 \cdot 42$ | $+9.03$ |
| 16 | Harvard Observatory (dome) | Mass. | 1869 | Blue Hill | 356 | 25 | 26.4 | $25 \cdot 1$ | $+1 \cdot 3$ |
| 17 | Blue Hill | Mass. | 1845 | Manomet | 305 | 57 | 30.05 | 29.89 | +0.16 |
| 18 | Shootfying | Mass. | 1845 | Manomet | 143 | 03 | $22 \cdot 74$ | 19.5 | $+3.2$ |
| 19 | 1ndian | -Mass. | 1845 | Copecut | 135 | 35 | $58 \cdot 82$ | 62.6 | $-3 \cdot 8$ |
| 20 | Copecut | Mass. | 1844 | Blne Hill | 175 | 17 | 06. 5 | 04.04 | +2.5 |
| 21 | Beaconpole | R. 1. | 1844 | Blue Hill | 228 | 55 | 17.24 | 17.53 | -0.29 |
| 22 | Spencer | R. 1. | 1844 | Beaconpole | 185 | 57 | $33^{\circ} \mathrm{O}$ | $36 \cdot 5$ | $-3.5$ |
| 23 | Monnt 'rom | Mass. | 1862 | Monadnock | 212 | 37 | 2174 | 15.13 | +6.61 |
| 24 | Sand ford | Coinl. | 1862 | Rnland | 5 | 50 | 25.28 | 15.86 | +9 ${ }^{4} 2$ |
| 25 | West Hills | N. Y. | 1865 | Wooster | 174 | 57 | $38 \cdot 32$ | 33.87 | +4.45 |
| 26 | Beacon Hill | N. J. | 1875 | Weasel | 183 | 35 | 29'89 | $29 \cdot 32$ | +0.57 |
| 27 | Mount Rose | N. J. | 1852 | Mount Holly | 7 | 46 | 55'59 | $58 \cdot 26$ | -2.67 |
| 25 | Yard | Pa . | 1854 | T,ippincott | 347 | 17 | $38 \cdot 57$ | - 37.09 | $+1.48$ |
| 29 | Principio | Md. | 1866 | Turkey | 1 | 34 | $43^{\circ} 51$ | $34 \cdot 59$ | $+8.92$ |
| 30 | Cape Henlopen Light-Honse | Del. | 1897 | Brandywine Light-House | 173 | 45 | $17 \times 33$ | 15.29 | $+2.04$ |
| 31 | Marriott | Md. | 1849 | Hill | 96 | 37 | $43^{13}$ | 35.04 | + 8.32 |
| 32 | Webh | Md. | 1850 | Soper | 88 | 59 | $49^{\prime 24}$ | 42'70 | +6.54 |
| 33 | [fil] | Md. | 1850 | Webb | 219 | 46 | $57 \cdot 89$ | $51 \cdot 13$ | +6\%6 |
| 34 | soper | Md. | 1850 | Webb | 268 | 49 | 23.46 | $18 \cdot 14$ | + 5132 |
| 35 | Seaton | D.c. | 1869 | Hill | 265 | 32 | $53 \cdot 76$ | $42 \cdot 33$ | +1143 |
| 36 | Canster | 1). C . | 1851 | Soper | 210 | 54 | 4178 | $38 \cdot 3$ | $+35$ |
| 37 | Sugar Loaf | Md. | 1879 | Bull Run | 32 |  | $16 \cdot 79$ | $22 \cdot 28$ | - 5 '49 |
| 38 | Maryland Heights | Md. | 1870 | Bull Run | $35^{8}$ | 4.3 | 06.88 | 10.54 | $-3.66$ |

[^60]Comparison of astronomic and geodetic azimuths of sides of the triangutation-continued.

| No. | Name of azimuth station. | State. | lear of observation. | Reference station. | Astronomic azimuth of line. |  |  | Geodetic aximuth. | $A-G$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 0 | , | " | " | , |
| 39 | Bull Run | Va. | 1871 | Peach Grove | 263 | 53 | 25-15 | $30 \cdot 60$ | $-2.45$ |
| 40 | Clark | Va. | 1871 | Bull Rutu | 202 | 19 | $27 \cdot 77$ | 28.81 | - 104 |
| 42 | L.ong Mountain | Va. | 1875 | Spear | 223 | 28 | 4174 | 45.62 | -4.55 |
| 42 | Elliott Knob | Va. | 1878 | Humpback | 303 | 25 | $24^{\circ} 3{ }^{\prime}$ | 22.28 | $+2.09$ |
| 43 | Moore | N.C. | 1876 | Buffalo | 158 | 33 | 31'19 | $32 \cdot 10$ | $-0.91$ |
| 44 | Young | N. C. | 1876 | Poore | 126 | 52 | $53 \cdot 69$ | $52 \cdot 65$ | + 104 |
| 45 | Klug | N.C. | 1877 | Bellı | 14. | 33 | $36^{\circ} 9$ | 39.3 | -2.4 |
| 46 | Paris | S.c. | 1875 | Wofford | 267 | 18 | $15 \cdot 17$ | 15.89 | $-0.72$ |
| 47 | Currahee | Ga. | 1874 | Rabut | 188 | 10 | 27.89 | 26.00 | + 189 |
| 48 | Sawnee | Ga. | 1873 | Currahee | 245 | 34 | $26 \cdot 12$ | 28.93 | 2.81 |
| 49 | Atlanta Middle Base | Ga. | 1873 | Stone Monntain | 312 | 22 | 28.94 | $32 \cdot 71$ | -3.77 |
| 50 | Lavender | Ga. | 1874 | Kencsaw | 300 | 11 | $59^{\circ} 11$ | 61.09 | - 197 |
| 51 | Aurora | Ala. | 1577 | Brandont | 236 |  | 29.35 | 31.43 | $-2.08$ |
| 52 | Kahatchee | Ala. | 1895 | Horn | 253 | 32 | 12.80 | 15.45 | $-2.68$ |
| 53 | Ethridge | Ala. | 1898 | l,overs Leap | 245 | 52 | $49^{\circ} 31$ | $52^{\circ} \mathrm{0} 5$ | -274 |
| 54 | Fort Morgan | Ala. | 1847 | Cedar Point | 143 | 59 | $45 \cdot 61$ | 50.69 | - 5.08 |
| 55 | East Pascagoula | Miss. | 1847 | Bayou Casotte | 296 |  | 51.27 | 53.20 | - 1.93 |
| 56 | Cat Istand $8_{55}$ | Miss. | 1855 | Mississippi City | 192 | 11 | $14 \% 3$ | 08.4 | +5 ${ }^{\circ}($ (?) |

Review of the preceding azimuthal deflections.-We recognize as their main feature systematic but small positive deflections, i. e., plumb line attracted westward for that part of the are which lies north of the thirty-ninth parallel, and small negative deflections for the part south of that parallel, thus showing for the whole arc a sulnall predominating plus value of $\frac{\sum(A-G)}{n}=+\frac{86 \cdot 7}{56}=+1^{\prime \prime} 55$. Omitting the last azimuth, No. $5^{6}$, as doubtful,* and using No. 33 instead of the six closely clustered values in the vicinity of Washington, i. e., Nos. 3r, 32, 33, 34, 35, 36, the average value for the oblique arc becomes $\frac{\Sigma(A-G)}{n}=+\frac{45^{\circ} 7}{50}=+0^{\prime \prime} \cdot 91$. This represents the discrepancy between the average azimuths of the arc of the parallel in latitude $39^{\circ}$ and of the oblique arc, and, considering its small size, the general azimuthal directions of the two arcs may be taken as being in satisfactory accord. A remarkable feature in the tabular values of ( $A-G$ ), and one that had been known for a long time, is the large regional deflection existing in that part of the triangulation common to the two arcs. The average deflection observed at the six stations-Marriott, Webb, Hill, Soper, Seaton, and Causten-is $+7^{\prime \prime} \cdot$, the plumb line being attracted to the westward. If we convert this value into a corresponding longitudinal quantity, we have $\Delta \lambda=-\Delta \alpha^{\prime} \sin \varphi=-11^{\prime \prime} \cdot 1$, which agrees in sign but exceeds in amount the mean value $(A-G)=-6^{\prime \prime} \cdot 2$, as found from the four longitudinal deflections in this region obtained at stations, only one of which is identical with any of those named above.
Considering that the present adopted azimuth depends upon 73 azimuth determinations or stations of the triangulation along the 39th parallel, any new or independent correction that might be deduced for standard value in the oblique are would probably not differ from it by as much as one second.

[^61]


PLAN OF NAVAL OBSERVATORY GROUNDS.

## B. DETERMINATION OF A SPHEROID MOST NEARLY REPRESENTING THAT PART OF THE EARTH'S SURFACE LYING BETWEEN MAINE AND LOUISIANA AND ALONG THE REGION COVERED BV THE TRIANGULATION.

## The method and formula employed.

After having assumed a reference spheroid representing the figure of the earth as closely as may be, and placed in position thereon, and having developed the triangulation upon its surface, the problem next to be solved is to determine corrections to the dimensions of the 1 eference spheroid which shall make the sum of the squares of the apparent discrepancies between geodetic and astronomic results a minimum. In other words, we are to determine a representative or osculatory spheroid which shall most nearly harmonize these measures, necessarily leaving outstanding the mere local deflections of the vertical at the stations involved.

For this purpose it has been thought most expedient to follow the theoretical development as presented by Capt. A. R. Clarke, R. E., in the Account of the Principal Triangulation of Great Britain and Ireland.* In this work the method is developed and applied to the computation of a spheroid whose dimensions were in best accord with the curvature of the surface of these countries.

Let $P$ be any point on the actual irregular or disturbed surface (2) and $P_{\mathrm{r}}$ its projection upon the surface of a regular or reference spheroid (1); through $P$ on the surface (2) let a system of rectangular axes of coordinates $\bar{\xi}, \eta, \zeta$, be drawn, so that $\xi$ is directed to the north, $\eta$ to the east, and $\zeta$ to the zenith. For any two points A and B connected by triangulation let $\varphi, \phi^{\prime}$ be their observed or apparent latitudes, $\Delta \lambda$ their observed or apparent difference of longitude; also, let the direction of the meridian be observed at each place. If $\mathrm{A}_{4}, \mathrm{~B}_{1}$ are the projections of A and B and $s$ their distance, and $\alpha$ the observed azimutlo of B at A , and $\alpha^{\prime}$ the reverse azimuth, or that of A at B , and if $\varphi_{1}, \varphi_{t}^{\prime}, \alpha_{t}, \alpha_{1}^{\prime}$, and $\Delta \lambda_{1}$ refer to the points $\mathrm{A}_{t}, \mathrm{~B}_{1}$, then

$$
\begin{array}{ll}
\varphi_{\mathrm{r}}=\varphi+\xi & \varphi_{\mathrm{x}}^{\prime}=\phi^{\prime}+\dot{\zeta}^{\prime} \\
\alpha_{\mathrm{r}}=\alpha+\eta \tan \varphi & \alpha_{\mathrm{x}}^{\prime}=\alpha^{\prime}+\eta^{\prime} \text { tan } \varphi^{\prime} \\
\Delta \lambda_{\mathrm{t}}=\Delta \lambda-\eta^{\prime} \sec \varphi^{\prime}+\eta \sec \varphi .
\end{array}
$$

Also let $\left(\varphi^{\prime}\right),\left(\alpha^{\prime}\right),(\Delta \lambda)$, be the numerical results which should obtain for the point $B$ by starting the computation from the observed latitude and given longitude of $A$ and the observed direction of the meridian at A , together with the known distance $s$, then the following relations will hold. They are the fundamental equations (18), page 620 of the Ordnance Survey publication meutioned above. $\dagger$

$$
\begin{gathered}
\xi^{\prime}=\left(\varphi^{\prime}\right) \quad \varphi^{\prime}+(\cos \Delta \lambda) \xi+(\sin \phi \sin \Delta \lambda) \eta-\left(\frac{\nu}{\rho} \cos \alpha_{\mathrm{x}}^{\prime}\right) \delta \theta+Q \varepsilon \\
-\sec \varphi^{\prime} \eta^{\prime}=(\Delta \lambda)-\Delta \lambda+\left(\tan \varphi^{\prime} \sin \Delta \lambda\right) \xi+\left(\frac{\sin \theta \cos \alpha^{\prime}}{\cot \varphi \cos \varphi^{\prime}}-\sec \phi\right) \eta+\left(\sec \varphi^{\prime} \sin \left(x_{\mathrm{r}}^{\prime}\right) \hat{\delta} \theta\right. \\
\tan \phi^{\prime} \eta^{\prime}=\left(\alpha^{\prime}\right)-\alpha^{\prime}-\left(\sec \varphi^{\prime} \sin \Delta \lambda\right) \xi+\binom{\sin \varphi \cos \Delta \lambda}{\cos \varphi^{\prime}} \eta-\left(\tan \varphi^{\prime} \sin \alpha^{\prime}\right) \delta \theta
\end{gathered}
$$

* Ordnance Survey, I.ondon, is58, pp. 609 and following. See also Chapter XII of Clarke's Geodesy; Oxford. I88o. $\dagger$ Cf. Helmert, Höhere Geodäsie, V'ol. 1, pp. 535-536. Leipzig, 8850.
where

$$
\varrho=\frac{\rho}{v} \cdot \frac{\phi^{\prime}-\varphi}{\left(1-\varepsilon^{2}\right)^{2}} \cos ^{2} 1 / \not\left(\varphi+3 \varphi^{\prime}\right) \quad \text { and } \quad \delta \theta=-\gamma^{\varphi}-1 / 2 \cdot \frac{\rho \sin ^{2} \phi}{1--\rho^{2} \sin ^{2} \phi} \cdot \varepsilon
$$

These equations may be written in the form:

$$
\begin{aligned}
& \xi^{\prime}=k,+a, \xi+b_{2} \eta+c_{3} u+c_{1} v \\
& \eta^{\prime}=k_{2}+a_{2} \xi+b_{2} \eta+c_{2} u+c_{2} v \\
& \eta^{\prime}=k_{3}+a_{3} \xi+b_{3} \eta+c_{3} u+e_{3} v
\end{aligned}
$$

The values of the absolute terms are:

$$
\begin{aligned}
& k_{1}=(\text { calculated }- \text { observed }) \text { latitule } \\
& k_{2}=\text { (observed-calculated) longitude } \times \cos \phi^{\prime} \\
& k_{3}=(\text { calculated-observed }) \text { azimuth } \times \cot \phi^{\prime}
\end{aligned}
$$

Here $\bar{\xi}=$ deflection of the vertical in the plane of the meridian at the initial station, positive when the tangent to the actual surface is elevated to the north of the station.
$\eta=$ deflection of the vertical in the plane at right angles to the meridian at the initial station, positive when the tangent to the actual surface is elevated to the eastward.
Similarly $\xi^{\prime}$ and $\eta^{\prime}$ represent deflections of the vertical in the meridian and in the prime vertical planes for any other point whose latitude is $\phi^{\prime}$, the latitude of the initial point being $\varphi$.
$\theta$ is the are distance of the initial point from any other point.
\& , the azimuth at the initial point of any other point.
$\alpha^{\prime}$, the reverse azimuth or that from any point to the initial one. The azimuths count from north toward the east.
$\Delta \lambda$ is the difference of longitude between the initial and any other point; west longitudes are considered positive; $\Delta \lambda=\lambda^{\prime}-\lambda$.
It may be remarked here that the observations for difference of longitude give the same kind of information as those for azimuth, so that the first set of equations may be used as a confinnation or check of the other set.

The quantities $\theta, \alpha, \alpha^{\prime}, \phi, \varphi^{\prime}, \Delta \lambda$ are geodetic values.
For evaluating the quantities $Q \varepsilon$ and $\delta \theta$ in the preceding equations. we have for $v$ or length of line normal to the surface and terminating at the minor axis
and for $\rho$ the radius of curvature

$$
v=\frac{a}{\left(1-c^{2} \sin ^{2} \varphi\right)^{\prime 2}}
$$

$$
\rho=\frac{a\left(1-\epsilon^{2}\right)}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{3 / 2}}
$$

## Putting

$$
100 \frac{v}{\rho}=\mu \quad \text { and } \quad \frac{\rho}{v} \cdot\left(\frac{100}{\left(1-e^{2}\right)^{2}} \cos ^{2} 1 / 4\left(\varphi+3 \varphi^{\prime}\right)=\mu^{\prime}\right.
$$

hence

$$
\mu=100 \frac{\left[1-\epsilon^{2} \sin ^{2} 1 / 2\left(\varphi^{\prime}+\varphi\right)\right]^{32}}{\left(1-\epsilon^{2}\right)\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{1 / 2}} \quad \text { and } \quad \mu^{\prime}=\frac{(100)^{2}}{\mu} \cdot \frac{\cos ^{2} 1 /\left(\varphi+3 \varphi^{\prime}\right)}{\left(1-\epsilon^{2}\right)^{2}}
$$

also writing
$u\left(\operatorname{arc} 160^{\prime \prime}\right)$ for $\gamma$ and $v\left(\operatorname{arcc} 100^{\prime \prime}\right)$ for $\varepsilon$, then
$Q \varepsilon=\mu^{\prime}\left(\varphi^{\prime}-\varphi\right) \sin 1^{\prime \prime} \%$
$-\delta 6=100 f^{\prime} \sin 1^{\prime \prime} t u+100 g 6 \sin I^{1 /} v_{0}$
where $g$ is a constant, viz:

$$
g=\frac{1 / 2 \sin ^{2} \varphi}{1-e^{2} \sin ^{2} \varphi}
$$

If $a=$ equatorial radius of reference spheroid and $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}$ the square of its eccentricity, the respective values of the corrected spheroid become

$$
a+\gamma a \text { and } e^{2}+\varepsilon
$$

The corrections to the semiaxis major and to the square of the eccentricity are then

$$
a\left(\operatorname{arc} 100^{\prime \prime}\right) u \text { and }\left(\operatorname{arc} 100^{\prime \prime}\right) v
$$

where $u$ and $v$ are to be derived from the solution of the equations.
The coefficients in the equations (I8) in simplified form are as follows:


The values of $\theta$ and $\boldsymbol{\alpha}^{\prime}$ are to be computed from the known geodetic latitudes and longitudes of the initial and any other astrononic point of the triangulation. $\theta$ and $\alpha^{\prime}$ may be computed by the inversion of the formulæ for direct position computation as given in the Report for 1894, Appendix No. 9, pages 284-286. No extreme accuracy is required in the computation of the respective coefficients, and it is found that the Survey formulæ when rigorously employed in their reversed application-viz, given two positions to find their distance and azinuths-answer well up to the limit here required $*$ where $\theta$ does not exceed $14^{\circ}$.

The values of $\mu$ and $\mu^{\prime}$ are to be tabulated for convenient intervals of latitude and of sufficient extent to cover the limits of the triangulation.

In applying the preceding method and formulæ for the determination of an improved spheroid most nearly conforming to the surface under consideration, a suitable initial station must be closen, preferably centrally located in order to keep the values of $\theta$ as snall as possible. The United States (New) Naval Observatory on Georgetown Heights, Washington, District of Columbia, has been adopted for this station; its geographic position refers to the center of the clock room, for which we have the geodetic latitude $38^{\circ} 55^{\prime} 14^{\prime \prime} .89$ and the geodetir longitude $77^{\circ} 04^{\prime} 02^{\prime \prime} .80$, these figures being based upon the same data as the positions in the transcontinental triangulation. $\dagger$ In this systen the position of station Hays, Kansas, is in latitude $38^{\circ} 54^{\prime} 50^{\prime \prime} \cdot 180$ and in longitude $99^{\circ}$ I $6^{\prime}$ I $6^{\prime \prime} \cdot 730$. The maximum value of $\theta$ for the extreme northeast station is less than $10^{\circ}$ and for the extreme southwest station slightly less than $14^{\circ}$. The initial station also fairly represents an average local deflection of the plumb line for the region about the District of Columbia, and the point being common to the two arcs, additional equations of condition, depending upon other stations of the arc of the parallel than those at present included, can readily be incorporated, if desirable.

[^62]Collection of certain constants and tabular quantilies required in the compulalion for establishing the conditional equations.

For Clarke's spheroid of 1866 we have

$$
\begin{aligned}
& \log a=6 \cdot 80469857 \\
& \log b=6 \cdot 80322378 \\
& \log e^{a}=7 \cdot 83050257
\end{aligned}
$$

with the following data for the reference station,

$$
\begin{array}{rlrl}
\varphi & =38^{\circ} & 55^{\prime} & 14^{\prime \prime} \cdot 9 \\
\lambda & =77 \quad 04 \quad 02 \cdot 8 \\
\log g & =9^{\prime 2} \cdot 296 & 391
\end{array}
$$

Values of $\log \mu \sin 1^{\prime \prime}$ between latitudes $30^{\circ}$ and $45^{\circ}$.

| $\phi^{\prime}$ | $\phi^{\prime}$ |  | $\phi^{\prime}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $30^{\circ}$ | 6.687692 | $35^{\circ}$ | 6.687509 | $40^{\circ}$ | 6.687321 |
| $301 / 2$ | 674 | 351/2 | 490 | $401 / 2$ | 302 |
| 31 | 655 | 36 | 471 | 41 | 283 |
| $311 / 2$ | 637 | $361 / 2$ | 453 | $41 / 2$ | 264 |
| 32 | 619 | 37 | 434 | 42 | 245 |
| $321 / 2$ | 600 | $37^{1 / 2}$ | 415 | $421 / 2$ | 226 |
| 33 | 582 | 38 | 396 | 43 | 207 |
| $331 / 2$ | 564 | $381 / 2$ | 377 | $43^{1 / 2}$ | 188 |
| 34 | 546 | 39 | 359 | 44 | 169 |
| $341 / 2$ | 527 | 391/2 | 340 | $441 / 2$ | ${ }^{150}$ |
|  |  |  |  | 45 | 131 |
| $\Delta(1 / 2)^{\circ}=18.3$ |  | $\Delta(1 / 2)^{\circ}=18.8$ |  | $\Delta(1 / 2)^{\prime}=19^{\circ}$ |  |


| $\varphi^{\prime}$ | $\Delta \mathrm{IO}^{\prime}$ | $\varphi^{\prime}$ |  | $\Delta \mathrm{IO}^{\prime}$ | $\phi^{\prime}$ |  | $\Delta \mathrm{IO}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $30^{\circ} 00^{\prime}$ | 6.54400 | $35^{\circ} 00^{\prime}$ | $6 \cdot 50567$ |  | $40^{\circ} 00^{\prime}$ | 6.46166 |  |
| 10 | 42 81 II9 |  | 0430 | 137 | 10 | $60 \mathrm{o8}$ | ${ }^{1} 58$ |
|  | 42120 |  | - 30 | $13^{8}$ | , |  | ${ }^{1} 88$ |
| 20 | 4161120 | 20 | 0292 | 138 | 20 | 5850 | 159 |
| 30 | -540 41 121 | 30 | -501 54 |  | 30 | -456 91 | 15 |
| 40 | 3920 | 40 | $\cdot 50015$ | 139 | 40 | 5532 | ${ }^{1} 59$ |
| 50 | 3799 | 50 | -49875 | 140 | 50 | 5372 | 160 |
| $\begin{array}{rr}31 & \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 32\end{array}$ | - 53677 | 36 | -49734 | 141 | 41 | -452 11 | 161 |
|  | 3554 | 10 | 9593 | 141 |  | 5050 |  |
|  | $343^{123}$ | 20 | 9451 | 142 | 20 | 4888 | 162 |
|  | 124 |  |  | 142 | 2 |  | 163 |
|  | $\begin{array}{llll}533 & 07 & 124\end{array}$ | 30 | -49309 | 143 | 30 | -44725 | 164 |
|  | 3183 | 40 | 9166 |  | 40 | 4561 |  |
|  | $30 \quad 58 \quad 125$ | 50 | 9022 | 143 | 50 | 4397 | 164 |
|  | . $52933 \quad 125$ | 37 | 48878 | 144 | 42 | -442 32 | 166 |
| 321020304050 | $2 \mathrm{C}^{2} 07 \quad 126$ | 10 | 8733 | 145 |  |  |  |
|  | 26 So 127 | 20 | 8587 | 146 | 20 | 3899 | 167 |
|  | - 128 |  |  | 146 | 2 |  | 167 |
|  | ${ }^{525} 521128$ | 30 | -484 41 | 147 | 30 | -437 32 | 168 |
|  | 2424 | 40 | 8294 |  | 40 | 3564 |  |
|  | $2295 \begin{aligned} & 129\end{aligned}$ | 50 | 8146 | 148 | 50 | 3395 | 169 |
|  | -521 $66 \begin{aligned} & \text { I29 }\end{aligned}$ | $3^{8}$ | $\cdot 47998$ | 148 | 43 | . 43226 | 169 |
| 33102030405034 | $\begin{array}{lll}20 & 36\end{array}$ | 10 | 7849 | 149 | 10 | 3056 | 170 |
|  | $1906{ }^{130}$ | 20 | 7699 | 150 | 20 |  | 171 |
|  | 17 131 |  |  | 150 | 20 | 25 | 172 |
|  | -51775 | 30 | -475 49 |  | 30 | -427 13 |  |
|  | 1643 | 40 | 7398 | 15 | 40 | 2540 | 73 |
|  | 15 11 132 <br> 133   | 50 | 7246 | 152 | 50 | 2367 | 173 |
|  | $\cdot 5137^{1} \quad 133$ | 39 | -470 94 | 152 | 44 | -421 93 | 174 |
| 34 10 | $1244 \begin{aligned} & 134\end{aligned}$ |  | 6941 | 153 |  | 20.18 | 175 |
| 20 |  | 20 | 67 S8 | I 53 | 20 | 1842 | 176 |
|  | 135 |  |  | I54 |  |  | 176 |
| 30 | $` 50975 \quad 135$ | 30 | -466 34 | 155 | 30 | 41666 | 177 |
| 40 | 0840 | 40 | 6479 |  | 40 | 1489 |  |
| 50 | $07 \quad 04 \quad 136$ | 50 | 63.23 | 156 | 50 | 13 II | 178 |
| 35 | $6 \cdot 50567{ }^{137}$ | 40 | $6 \cdot 46166$ | 157 | $45 \begin{array}{rr}10 \\ 10 \\ 20 \\ 30\end{array}$ | 41133 | 178 |
|  |  |  |  |  |  | 0954 | 179 |
|  |  |  |  |  |  | $0774$ | 180 |
|  |  |  |  |  |  | $6 \cdot 40593$ | 181 |

Setection of slations for which the results of comparison of astronomic and geodetic data were admilled into the equations of condition.

In a preceding table there has been exhibited a comparison of the astronomic and geodetic latitudes for 71 stations. If all of these were included in the discussion, the labor of computation would be unnecessarily great, since practically the same'accuracy of the results can be attained by a judicious selection of a much smaller number of latitude stations, provided they are uniformly distributed over the whole region of the arc.

The following table contains these selected stations with their geodetic positions (to the nearest half second), together with the computed distances $\theta$ and azimuths $\sigma^{\prime}$ to the reference station at Washington, D. C. For these stations the value, $\Sigma(A-G) n$ $=+2^{\prime \prime \prime} 1$, is nearly the same as that previously derived from all the stations after the mean value for each of the 6 groups had been introduced in place of the separate values.

| No. | Name of latitude station. | Geodetic tatitude $\Phi^{\prime}$. | Geodetic longitude $A^{\prime}$. | $\varphi^{\prime}-$ © | $\lambda^{\prime}-\lambda$. | $\theta$ | $a^{\prime}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - , " | - , 1 | - , "1 | "1 | - /1 | - , 1 |
| 1 | Calais | 45 II O4 | 671654 | +61549 | -94709 | 93449 | 2324256 |
| 2 | Cooper | 4459 I1 5 | $67 \quad 2803$ | +603 56.5 | -93600 | 92122 | 23303 |
| 3 | Humpback | 445149 | 68 06 39 | +55634 | - \$5724 | $8 \quad 55 \quad 16$ | 2312755 |
| 4 | Farmington | 444021 | 700918.5 | +54506 | $-654445$ | 74259 | 22419 |
| 5 | Mount Desert | 442103 | 681339 | +52548 | - 85024 | 83235 | 23342 |
| 6 | Mount Pleasant | 44 O1 35 | 704923 | +50620 | 61440 | 65515 | 22443 |
| 7 | Mount Independence | 434532 | $70 \quad 19 \quad 15$ | -4 5017 | -64448 | 7000 | 22841 |
| 8 | Agamenticus | $43 \quad 13 \quad 22.5$ | 704134 | +4 1S 075 | $-62229$ | $6 \quad 2647$ | 2302431 |
| 9 | Unkonoonuc | $425^{8} 5^{8}$ | 713520 | +403 43 | - 52843 | 54745 | 2272759 |
| 10 | Thompson | 423640 | 704350 | +34125 | -62013 | 60304 | 23439 |
| 11 | Mount 'Ton | 421428 | $723^{\text {S }} 56$ | $\begin{array}{llll}3 & 19 & 13\end{array}$ | -42507 | 44310 | 22652 |
| 12 | Manonet | 415537 | $7035 \quad 29$ | $+30022$ | -62834 | 546 IS | 24051 |
| 13 | Sandford | 412741 | 725700 | -2 3226 | -40703 | 40233 | $23^{2} 3^{1}$ |
| 14 | West Hills | 404853 | 732533 | +15338 | - $33^{8} 30$ | 32233 | 23709 |
| 15 | Beacon Hill | $4022 \quad 24.5$ |  | +12709 5 | - $25020 \cdot 5$ | 23727 | 23724 |
| 16 | Yard | $395^{8} 23$ | $75 \quad 23 \quad 14$ | $+10308$ | 14049 | 14014 | 23136 |
| 17 | Principio | 393534.5 | $7600 \quad 17$ | - 4019.5 | -103 46 | I 0346 | 23112 |
| 18 | Pooles Island | $3917 \quad 13.5$ | 761550 | +o21585 | -0 4813 | - 4324 | 23955 |
| 19 | Washington* | 385515 | 770403 | $0 \%$ | $0 \%$ | 0 |  |
| 20 | Cape Henlopen L. H. | 384640 |  | -o os 35 | I $5^{8} 59.5$ | 13304 | 27553 |
| 21 | Clark | $3^{88} 1839$ | 780012 | -0 3636 | + o 5609 | - 57 oS | 4959 |
| 22 | Elliott Kinob | 3809575 | 791852 | -0 4517.5 | + 21449 | 1 5445 | 66 cs |
| 23 | Long Motntais | 371725.5 | 7905 II | -13749.5 | $+2 \mathrm{OI} 08$ | 21635 | 4345 |
| 24 | Moore | $36235^{1} 5$ | So 1700 | -2 3123.5 | + 31257 | $\begin{array}{llll}3 & 3502\end{array}$ | 4424 |
| 25 | loung | 354412 | 80 3852 | -3 11 03 | 33449 | 41614 | 4050 |
| 26 | King | $35 \quad 1209{ }^{\circ}$ | Sı 1846 | $-34305.5$ | + 41443 | 50143 | 4111 |
| 27 | Currahee | $343136 \cdot 5$ | 832234 | -4 2338.5 | $+61831$ | 64144 | 4716 |
| 28 | Sawnee | 341403 | 840939 | -4 4112 | + 70536 | 72220 | $\begin{array}{llll}48 & 36 & 15\end{array}$ |
| 29 | Atlanta | 334456 | $84 \quad 2319.5$ | $\begin{array}{ll}-5 & 10 \\ 19\end{array}$ | + 71916.5 | 75020 | 4645 |
| 30 | Kahatchee | $\begin{array}{llllllllll} & 13 & 36\end{array}$ | 862137 | --5 41 39 | +91734 | 92459 | 5017 |
| 31 | Montgomery | 322237 | 86 IS OI | $-6323^{8}$ | +91358 | 95643 | 462435 |
| 32 | Lower Peach Tree |  | 873243 | -7 04 $5^{6.5}$ | +10 2840 | II 0459 | 4731 |
| 33 | Coon | 311448 | 880544 | $-74027$ | +II OI 41 | II 4945 | 4640 |
| 34 | Mobile | 304129 | 880234 | -8 13 46 | $+105831$ | 12 I1 09 | 44 41 |
| 35 | Fort Morgan | 301340 | 88 OI 2.4 | -8 4135 | $+105721$ | 123030 | 43 II |
| 36 | N゙ew Orleans (1858) | $2957 \quad 18$ | 900425 | -85757 | +130022 | 135712 | 464130 |

[^63]The data for the computation of the distances of the several astronomic longitude stations from the reference station and of the azimuths of the latter from each of the stations are contained in the following table:

No. Name of longitude station.

```
Calais
Bangor
Cambridge
Cape May
INover
Washington*
Strasburg
Charlottesville }
Statesville
Atlanta
Montgoniery
Lower Peach Tree
Mobile
New Orleans (I895)
```

| Geodetic latitude. $\varphi^{\prime}$ | $\begin{aligned} & \text { Geodetic } \\ & \text { longitude. } \end{aligned}$ | $\Delta_{\lambda}$ | $\theta$ | $a^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| - , 11 | " | - , /1 | - , /1 | /1 |
| 45 II 04 | $67 \quad 1654$ | 94709 | 93449 | 2324256 |
| 44.4814 | 6847 or | - S 1702 | $8305^{8}$ | 22918 II |
| 422251.5 | 710745 | - 556 I 8 | 54942 | 2343300 |
| $3^{88} 5546 \cdot 5$ | 745548 | - 2 of 15 | 1 3946 | 2702217 |
| $390918 \cdot 5$ | 7531245 | 1 32385 | $113 \quad 19$ | 2592840 |
| $3855 \quad 15$ | 77 O4 O3 | 0 | 0 |  |
| 385928 | 78 21 39.5 | + 117365 | 10030 | 933420 |
| $3^{8}$ OI 56 | 78 31 21 | 12718 | I 2640 | 514223 |
| 354654 | So 5340 | + 34937 | 42214 | 430437 |
| 334456 | $84 \quad 23 \quad 19.5$ | + 719165 | 75020 | 464503 |
| $\begin{array}{llll}32 & 22 & 37\end{array}$ | S6 is of | + 91358 | 95643 | $46 \quad 2438$ |
| 3150 IS 5 | 873243 | +102S40 | II 0459 | 47 31 10 |
| 304129 | $88 \quad 0234$ | +10 5831 | 121109 | 444143 |
| $295651 \times 5$ | $90 \quad 04 \quad 12$ | +130009 | 135722 | 463950 |

The data for the computation of the distances of the several astronomic azimuth stations from the initial station and of the azimuths of the latter from the various stations will be found in the following table, together with the resulting values of $\theta$ and $\alpha^{\prime}$.

As was the case with the latitudes, we have here a surplus of stations at which astronomic azimuths were measured. Much labor may therefore be saved withont incurring any sensible loss of accuracy in the results by the selection of a more limited number of stations uniformly distributed, as nearly as may be, over the whole arc and properly representing the deflection over every part of it. For these 34 positions the average value of $(A-G)$ is $\mathrm{I}^{\prime}{ }^{\prime} 9$, the same value found from all the stations.

[^64]THE EASTERN OBLIQUE ARC.

| No. | Name of azimuth station. |
| :--- | :--- |
| 15 | Cooper |
| 16 | Humpback |
| 17 | Mount Desert |
| 18 | Mount Harris |
| 19 | Sabattus |
| 20 | Agamenticus |
| 21 | Gunstock |
| 22 | Unkonoonuc |
| 23 | Blue Hill |
| 24 | Mount Tom |
| 25 | Sandford |
| 26 | West Hills |
| 27 | Mount Rose |
| 28 | Yard |
| 29 | Principio |
| 30 | Cape Henlopen Light-House |
| 31 | Hill |
| 32 | Maryland Heights |
| 33 | Bull Run |
| 34 | Clark |
| 35 | Long Mountain |
| 36 | Elliott Knob |
| 37 | Moore |
| 38 | Young |
| 39 | King |
| 40 | Paris |
| 41 | Currahee |
| 42 | Atlanta Middle Base |
| 43 | Lavender |
| 44 | Aurora |
| 45 | Kalatchee |
| 46 | Ethridge |
| 47 | Fort Morgan |
| 48 | East Pascagoula |


| Geodetic lati- | (Seodetic longi- | $\theta$ | $a^{\prime}$ |
| :---: | :---: | :---: | :---: |
| " | " | " | " |
| 4459115 | 672803 | 92122 | 2330311 |
| 445149 | 680639 | 85516 | 2312755 |
| 442103 | 681339 | 83235 | 2334202 |
| 443953 | 69 os 56 | 81345 | 2283551 |
| 44 of 36 | 700445 | 72311 | 2273120 |
| 431322.5 | 704134 | 62647 | 2302431 |
| 433102 | 712212 | $6165^{2}$ | 225 O1 91 |
| 425858 | 713520 | 54745 | 2272759 |
| 421242 | 710653.5 | 53525 | 236 or 39 |
| 421429 | $723^{8} 56$ | 44311 | 2265219 |
| 412741 | 725700 | 40233 | $23^{2} 3134$ |
| 404853 | 732533 | 32233 | 2370952 |
| 4022 or | 744326 | 21845 | 2320932 |
| 395823 | 752314 | 14014 | 2313639 |
| 393534.5 | 76 00 17 | 10346 | $231125^{\circ}$ |
| 384640 | 750503.5 | 13304 | 2755329 |
| 385353 | 765250 | - 0850 | 2785534 |
| 392026 | 774300 | - 3920 | 1292927 |
| $35^{52} 51$ | $774^{213}$ | - 2948 | 851154 |
| 381839 | 78 00 12 | - 5708 | 495924 |
| 371725 '5 | 790511 | 21635 | 434526 |
| 380957 | 79 IS 52 | 15445 | 66 os 42 |
| 362351.5 | So 1700 | 33502 | 442415 |
| 354412 | So 3852 | 41614 | 405055 |
| 351225.5 | 811846 | 50131 | 411354 |
| 345627 | $822440 \cdot 5$ | 55010 | 453404 |
| 343143 | 832234 | 64140 | $4717{ }^{11}$ |
| 335419 | 841638 | 73952 | 47 I111 |
| 341917 | $85 \quad 1719$ | 8 02 13 | 525026 |
| 34 os 45 '5 | 8611 or | S 4414 | 542131 |
| 331336 | S6 2137 | 92459 | 5017 ¢ |
| 320444 | 87 0329.5 | 103657 | 471405 |
| 301340 | S8 ol 24 | 123030 | 43 11 11 |
| 302033.5 | 883246 | 124417 | 44435 |

## THE DETERMINATION OF THE SPHEROID.

Conditional or observation equations derived from latitude comparisons.

| $\xi_{1}=-5 \% 1$ | +0.9854\% | - - . $1068 \eta$ | $-10 \cdot 16512 u$ | +3 $7759{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\xi_{2}=-0 \cdot 96$ | to 9860 | -0.1048 | - 9.8505 | $+3 \cdot 6825$ |
| $\xi_{3}=+\mathrm{I} \cdot 8_{3}$ | +o.9878 | -0.0978 | - 9*7350 | +3.6082 |
| $\xi_{4}=+1{ }^{\text {c }} 43$ | +o.9927 | -0.0756 | -9.6700 | +3.4683 |
| $\xi_{5}=-1{ }^{\prime} 33$ | +o.9881 | -o *0965 | - 8.8595 | +3.3677 |
| $\xi_{6}=-1{ }^{\text {P }} 59$ | +o '9941 | -0.0683 | - 8.6143 | $+3 \cdot 1483$ |
| $\xi_{7}=-2 \cdot 76$ | +0.9951 | -0.0738 | -8.0935 | +3 ${ }^{\circ} \mathrm{O} 68$ |
| $\xi_{8}=-2 \cdot 17$ | +o 9938 | -0.0697 | - 7 '1973 | +2.7441 |
| $\xi_{9}=-1{ }^{\text {r }} 49$ | to '9954 | -0.0600 | - $6 \cdot 8641$ | +2.5997 |
| $\boldsymbol{\xi}_{10}=+1{ }^{\text {r }} 70$ | +o.9939 | -0.0693 | -6.1328 | +2.4135 |
| $\xi_{13}=+0 \cdot 22$ | to 9970 | -0.0484 | - 5.6524 | +2.1731 |
| $\xi_{12}=+1{ }^{\text {a }} 30$ | +o '9936 | -0.0709 | - 4.9244 | $+2 \cdot 0272$ |
| $\xi_{\mathbf{r r}_{3}}=+0.56$ | to \%9974 | -0.0451 | - 433093 | +17109 |
| $\xi_{4}=+3 \cdot 36$ | to 9980 | -0.0399 | $-3 \cdot 2074$ | +1 3042 |
| $\xi_{\text {r5 }}=-3+7$ | +o.9988 | -0.0311 | - 247765 | +1.0117 |
| $\xi_{16}=-6 \cdot 72$ | +o 09996 | -0.0184 | - 1.8179 | +o.7376 |
| $\xi_{17}=+1 \cdot$ So | +o 9998 | -0.0116 | - I.1667 | +0.4758 |
| $\xi_{18}=-4.00$ | +o *9999 | -0.0088 | -0.6352 | +o. 2619 |
| $\xi_{19}=+1{ }^{1} 5$ | +1 1 '000 | $0 \cdot 0000$ | $0 \cdot 0000$ | - 0000 |
| $\xi_{20}=+0 \cdot 10$ | to '9994 | -0.0217 | + 0.2790 | -0.0978 |
| $\xi_{21}=-0.38$ | +o '9999 | +o.0103 | + 1 10730 | -0.4466 |
| $\xi_{52}=+0 \cdot 43$ | +o *9992 | +o.0246 | + 1 3556 | -0.5496 |
| $\xi_{23}=-3 \cdot 3 \cdot t$ | +o '9994 | +o.022 1 | + 2.8818 | -1.2281 |
| $\xi_{24}=-3 \cdot 61$ | +o.9984 | +o.0353 | + 4.4882 | -1 9447 |
| $\xi_{25}=-9 \cdot 42$ | +0.9980 | to 0392 | $+56629$ | -2 5008 |
| $\xi_{26}=-3 \cdot 8.4$ | +o.9973 | +o.0465 | + 6.6332 | -2.9595 |
| $\xi_{27}=-1 \cdot 10$ | to '9939 | +o.0690 | + 79634 | -3.5375 |
| $\xi_{28}=-1 \cdot 10$ | to 9923 | +o.0776 | + 8.5469 | -3'7925 |
| $\xi_{59}=-3 \cdot 18$ | to 9918 | to 0801 | + 94168 | -4.2428 |
| $\xi_{30}=-3 \cdot 83$ | +o '9869 | to.1014 | +10.5494 | -4.6986 |
| $\xi_{34}=-7 \cdot 87$ | +o '9870 | +o '1008 | +12.0241 | -5.5387 |
| $5_{32}=-2.49$ | to 9833 | to '1143 | +13.1250 | -6.0530 |
| $\xi_{33}=+0.65$ | +o.9816 | +o.1202 | +14.2331 | -6.6521 |
| $\xi_{34}=-4 \cdot 61$ | +o.9817 | +0.1196 | +15:1918 | -7.2431 |
| $\xi_{35}=-7 \cdot 58$ | +o.9818 | +o.1194 | +15.99.52 | -7 7455 |
| $\xi_{76}=-73^{1}$ | +o 9743 \% | to.14147 | +16 $786{ }^{\text {r }}$ u | -7.9819v |

4192-No. 7 -O2- 25

Conditional equations derived from longitude comparisons.

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\eta_{1}=+2.78$ | $+0.1206 \xi$ | $+0.9873 \eta$ | $-13.3036 u$ | $-2.6324 v$ |
| $\eta_{2}=+0.99$ | +0.1015 | +0.9899 | -11.2689 | -2.2298 |
| $\eta_{3}=+0.70$ | +0.0697 | +0.9958 | -8.0733 | -1.5975 |
| $\eta_{4}=-1.83$ | +0.0234 | +0.9998 | -2.9021 | -0.5743 |
| $\eta_{5}=-4.70$ | +0.0170 | +0.9998 | -2.0968 | -0.4146 |
| $\eta_{6}=-4.70$ | 0.0000 | +1.0000 | 0.0000 | .0 .0000 |
| $\eta_{7}=-2.98$ | -0.0142 | +0.9999 | +1.7565 | +0.3476 |
| $\eta_{8}=-0.83$ | -0.0157 | +0.9998 | +1.9786 | +0.3915 |
| $\eta_{9}=+0.71$ | -0.0390 | +0.9978 | +5.2098 | +1.0309 |
| $\eta_{10}=+0.55$ | -0.0708 | +0.9932 | +9.9653 | +1.9719 |
| $\eta_{11}=-1.46$ | -0.0859 | +0.9893 | +12.5722 | +2.4877 |
| $\eta_{12}=-2.06$ | -0.0959 | +0.9870 | +14.2656 | +2.8228 |
| $\eta_{13}=+3.04$ | -0.0972 | +0.9841 | +14.9586 | +2.9599 |
| $\eta_{14}=-0.62$ | $-0.1123 \xi$ | $+0.9801 \eta$ | $+17.7 .66 \pi$ | $+3.5058 v$ |

Conditional equations derived from azimuth comparisons.

| $\eta_{15}=-2.12$ | +0.2359\% | to 0.87627 | -13.0504" | -2.5823v |
| :---: | :---: | :---: | :---: | :---: |
| $\eta_{16}=-4.58$ | $+0.2207$ | +o. ${ }^{\text {797 }}$ | -12.1795 | -2.4100 |
| $\eta_{17}=-0.70$ | +0.2198 | to.888o | -12.0170 | -2 3778 |
| $\eta_{18}=-4.63$ | +o.1960 | +o.8852 | -10.7734 | -2.1318 |
| $\eta_{19}=-2.96$ | +o ${ }^{1} 747$ | +o.8954 | -9.5081 | -1 $\mathrm{SSP}_{14}$ |
| $\eta_{20}=+0.44$ | +o.162I | +o.9117 | - 8.6702 | -1 7156 |
| $\eta_{2 x}=-6.57$ | +0.1442 | +o '9079 | - 77540 | -1 5343 |
| $\eta_{22}=-3.97$ | +0.1400 | +o.9173 | - 7.4540 | -1.4750 |
| $\eta_{23}=-0.18$ | to '1544 | +o 93300 | - 8.0914 | -1.6011 |
| $\eta_{24}=-7.28$ | +o'1146 | +o 9318 | - 6.0119 | -1 1 1896 |
| $\eta_{25}=-10.66$ | +o.1084 | +o.9464 | - 5.5994 | - I 1 IoSo |
| $\eta_{26}=-5 \cdot 15$ | +0.0972 | +o '9593 | - 49506 | -0.9796 |
| $\eta_{27}=+3 \cdot 14$ | +0.0631 | +0.9692 | $-3 \cdot 1873$ | -0.6307 |
| $\eta_{28}=-1 \cdot 77$ | +o.0456 | +o '9775 | $-2.2853$ | $-0.4522$ |
| $\eta_{29}=-10.78$ | to 0291 | +o "9856 | - 1.4459 | -0.2861 |
| $\eta_{30}=-2.54$ | +o.0552 | +1.0025 | - 2.6928 | -0.5329 |
| $\eta_{35}=-8 \cdot 38$ | +o.0052 | +1.0005 | - 0.2538 | -0.0502 |
| $\eta_{32}=+4.47$ | -0 0179 | to 9910 | + 0.8830 | +0.1747 |
| $\eta_{33}=+3.04$ | -0.0177 | +I 0uas | + 0.8638 | +0.1709 |
| $\eta_{34}=+13^{2}$ | -0.0264 | +1.0133 | + I 2729 | +0.2519 |
| $7_{35}=+6.41^{\prime \prime}$ | -0.0582 | +1.0363 | + 27478 | to 5437 |
| $\eta_{36}=-2.66$ | -0.0634 | +1:0159 | + 3 O528 | to \% 641 |
| $\eta_{37}=+1 \cdot 23$ | -0.0945 | +1.0571 | + 43768 | to 8660 |
| $\eta_{38}=-144$ | -0.1069 | +1.0735 | + 4.8751 | +o.9646 |
| $\eta_{39}=+3 \cdot 40$ | -0.1284 | +1.0867 | + 57809 | +I•1439 |
| $\eta_{40}=+10^{0}$ | -0.1626 | +1.0922 | + 7 '2736 ${ }^{\prime}$ | +1.4393 |
| $\eta_{48}=-2.75$ | -0'1939 | +1.1017 | + 8.5856 | +1.6989 |

Conditional equations derived from azimuth comparisons-continued.

| $1 \prime$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\eta_{42}=+5.61$ | -0.2250 | +1.1173 | +9.8130 | +1.9417 |
| $\eta_{43}=+2.89$ | -0.2536 | +1.1028 | +11.1790 | +2.2120 |
| $\eta_{44}=+3.07$ | -0.2823 | +1.1051 | +12.3928 | +2.4522 |
| $. \eta_{45}=+4.09$ | -0.2947 | +1.1315 | +12.6422 | +2.5016 |
| $\eta_{46}=+4.37$ | -0.3266 | +1.1650 | +13.6023 | +2.6916 |
| $\eta_{47}=+8.72$ | -0.3775 | +1.2252 | +14.9497 | +2.9564 |
| $\eta_{48}=+3.30$ | -0.39395 | $+1.218 . \eta$ | $+15.6464 u$ | $+3.0961 \eta$ |

Formation of normal equations.
The types of a latitude observation equation and of a longitude and azimuth equation are:

$$
\begin{aligned}
& \xi_{\mathrm{p}}=m+a \xi+b \eta+c u+e v \\
& \eta_{\mathrm{q}}=n+a^{\prime} \xi+b^{\prime} \eta+c^{\prime} u+e^{\prime} v
\end{aligned}
$$

then $\xi, \eta, u$, and $v$ are to be determined so as to make a minimum the quantity

$$
\Sigma(m+a \xi+b \eta+c u+e v)^{2}+w \Sigma\left(n+a^{\prime} \xi+b^{\prime} \eta+c^{\prime} u+e^{\prime} v\right)^{2}
$$

whence the normal equations:

$$
\begin{aligned}
& o=(a m)+w\left(a^{\prime} n\right)+[a a] \xi+[a b] \eta+[a c] u+[a c] v \\
& 0=(b m)+w\left(b^{\prime} n\right)+[a b] \xi+[b b] \eta+[b c] u+[b e] v \\
& 0=(c m)+w\left(c^{\prime}\right)+[a c] \xi+[b c] \eta+[c c] u+[c e] v \\
& 0=(e m)+w\left(e^{\prime} n\right)+[a e] \xi+[b e] \eta+[[e] u+[e e] v
\end{aligned}
$$

where

$$
\begin{aligned}
& {[a a]=(a a)+w\left(a^{\prime} a^{\prime}\right)} \\
& {[a b]=(a b)+w\left(a^{\prime} b^{\prime}\right)}
\end{aligned}
$$

For equal weight to the several equations $v$ becomes unity, as will be assumed in the first of our combinations.

## The relative weights of the observation equations.

The equations involving the comparisons of the latitudes and longitudes may be considered as of fairly equal weight, the result of the introduction of the telegraphic method for the determination of differences of longitudes; thus arcs of the meridian and arcs of the parallel may now be combined as of equal importance as far as the astronomic data are concerned.

It is quite evident, however, that the azimuthal equations are certainly of inferior value, considering that they are directly affected by the accumulation of error in the angular measures of the triangles by means of which the geodetic azimuths are carried forward. If unit weight is assigned to each of the latitnde and longitude equations, a fraction only can be assigned for the weight of an azimuth equation. There is no principle by means of which the exact ratio of the weights could be ascertained, but the comparison of the mean values of the squares of the $\xi$ 's and of the $\eta$ 's, which shows that the latter is generally the larger of the two, sufficiently indicates the need of the introduction of relative weights. There is no reason why the average deflections in the meridian and in the prime vertical or in any azimuthal plane should be of different magnitude.

The resulting values of the $\xi^{\prime}$ 's and $\eta$ 's, or the remainders, in the equations for the several stations may be taken as representing the actual local or regional deviations of the rertical of the geoid at these places as compared with the normal or geometric direction; in other words, they exhibit the difference between the disturbed and the regular or undisturbed direction of gravity within the geographic limits of the investigation. As a matter of course these values are affected to a relatively small extent by the unavoidable errors of observation.

For the case in hand, as shown in the following solution, we have the mean ralue of the squares of the discrepancies in $\psi$ and $\lambda$, equal to $\frac{589^{\circ} 6}{5^{\circ}}=1 I \cdot 8$, and the mean value of the squares of the differences in $\boldsymbol{\alpha}$, equal to $\frac{780^{\circ} 2}{34}=23^{\circ} 2$, or about double the former; which indicates that the azimuth equations should not have more than half weight.

This solution presents the results for a spheroid representing the curvature of the surface along the are without distinguishing relatively between the measures of latitudes, longitudes, and azimuths.

## Resulting normal equations.

From the latitude observations:

$$
\begin{aligned}
& 0=-74.453^{2} \mid+35.4844 \xi+0.0953 \eta+35.6977 u-25{ }^{\circ} 0643 \geqslant \\
& 0=-4.079 \mathrm{I}+0.203^{2}+22 \cdot 6054-9.7 \mathrm{~S}_{44} \\
& \mathrm{o}=-526.5026 \quad+257 \mathrm{I} \cdot 4 \mathrm{SO} 4-112 \mathrm{I} \cdot 6 \mathrm{I}^{2} 2 \\
& 0=+253 \cdot 3814+494 \cdot 2387
\end{aligned}
$$

From the longitude observations:

$$
\begin{array}{c|r}
0=+0.4477 \\
0 & =-10.4552 \\
0 & =-49.5751 \\
0 & =-9.0760-0.1950 \eta-10.2707 u-2.0324 v \\
+13.5089+40.1059 & +7.9363 \\
+1414.6253 & +279.9192 \\
+ & 55.3890
\end{array}
$$

From the azimuth observations:

$$
\begin{array}{c|r}
0=-17.9120 \\
0=-13.1179 \\
0=+833.7203 \\
0 & =+164.9719
\end{array} \left\lvert\, \begin{array}{r}
1515-1.4576 \eta-52.7266 u-10.4331 v \\
+35.1172+41.5066+8.2132 \\
+2453.3579+455.4576 \\
+ \\
\hline
\end{array}\right.
$$

hence by combination:

$$
1 .\left|\begin{array}{r|r}
10=-91.9175 \\
0=-27.6522 \\
0=+257.6426 \\
0=+408.5423
\end{array}\right| \begin{array}{r}
+36.7119 \xi-1.5573 \eta-27.2996 u-37.5298 v \\
+49.1293+104.2179+6.3651 \\
+6439.4636-356.2364 \\
+645.6877
\end{array}
$$

The solution gives-

$$
\begin{cases}\xi=+1.895898 & \text { with residuals o } 00000 \\ \eta=+0.862056 & 0 \cdot 0000 \\ u=-0.0776716 & 0 \cdot 0002 \\ v=-0.573878 & 0 \cdot 0002\end{cases}
$$

whence we get $y a=-240^{\circ} 2$ and the equatorial radius becomes $63782060^{\circ}-240^{\circ} 2=$ 6377966.2 meters; we have also $\varepsilon=v\left(\operatorname{arc} 100^{\prime \prime}\right)=-0.00027822$, hence the new $e^{2}=$ $0.0067687-0.0002782=0.0064905$

Let $\varepsilon_{\mathrm{r}}=\frac{1}{2} e^{2}$ and $\frac{a-b}{a}$ or the compression $=\frac{1}{c}$, then

$$
\frac{1}{c}=\varepsilon_{x}+\frac{1}{2} \varepsilon_{3}^{2}+\frac{1}{2} \varepsilon_{1}^{3}+\frac{5}{8} \varepsilon_{4}^{4}+\ldots . .=0.0032505
$$

hence the compression $=\frac{1}{307^{\circ} 6^{\prime}}$; the resulting value of $b$ is $6377966^{\circ} 2-20737.7=$ $6357228 \cdot 5$ meters.

Substituting the values found for $\xi, \eta, u$, and $v$ in the equations of condition we obtain for each station the outstanding deflections. These quantities are also needed for the determination of the probable errors of the dimensions of the spheroid just obtained when these residuals are treated as accidental errors.

Resulting values of $\xi$ and $\eta$ at the obsering stations.

| No. | station. | $\stackrel{\xi}{\prime \prime}$ | No | station. | $\stackrel{1}{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Calais | -5.20 | 19 | Washingtor | +3.05 |
| 2 | Cooper | -0.52 | 20 | Cape Henlopen | +2.06 |
| 3 | Humpback | +2.32 | 21 | Clark | $+170$ |
| 4 | Farmington | $+2.02$ | 22 | Elliott Knob | $+2.55$ |
| 5 | Mount Desert | -0.77 | 23 | Long Mountain | -0.94 |
| 6 | Mount Pleasant | -0.89 | 24 | Moore | -0.92 |
| 7 | Mount Independence | -2.04 | 25 | Young | $-6 \cdot 52$ |
| 8 | Aganrenticus | -1 35 | 26 | King | -0.73 |
| 9 | Unkonoonuc | -0.61 | 27 | Currahee | +2.26 |
| to | Thompson | +2.63 | 28 | Sawnee | +236 |
| 1 | Mount Tonı | +1.27 | 29 | Atlanta | +0.47 |
| 12 | Manomet | +2.35 | 30 | Kahatchee | to or |
| 13 | Sandford | +176 | 31 | Montgomery | $-3 \cdot 67$ |
| 14 | West Hills | +4.74 | 32 | Lrower Peach Tree | +193 |
| 15 | Beacon Hill | -1'99 | 33 | Coon | +5:33 |
| 16 | Yard | -5.12 | 34 | Mobile | +o. 33 |
| 17 | Principio | +3.5 | 35 | Fort Morgan | $-2.41$ |
| 15 | Pooles Island | $-2.21$ | 36 | New Orleans | $-2.07$ |

Resutting values of $\xi$ and $\eta$ at the observing stations-continued.

| No. | Station. | $\eta$ | No. | Station. | $\eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 1* | Calais | $+6.41$ | 25 | Sandford | -8.55 |
| 2 | Bangor | $+4 \cdot 19$ | 26 | West Hills | $-3.20$ |
| 3 | Cambridge | $+3 \cdot 24$ | 27 | Mount Rose | +471 |
| 4 | Cape May | -0.38 | 28 | Yard | -0.46 |
| 5 | Dover | $-3.41$ | 29 | Principio | $-9.60$ |
| 6 | Washington | $-3 \cdot 84$ | 30 | Cape Henlopen Light-House | -1.07 |
| 7 | Strasburg | -2.49 | 31 | Hill | $-7 \cdot 46$ |
| 8 | Charlottesville | -0.37 | 32 | Maryland Heights | $+5.13$ |
| 9 | Statesville | +0.51 | 33 | Bull Run | $+3 \% 1$ |
| 10 | Atlanta | +0.37 | 34 | Clark | +190 |
| II | Montgomery | $-3 \cdot 17$ | 35 | Lrong Mountain | $+6 \cdot 68$ |
| 12 | Lower Peach Tree | $-4 \cdot 12$ | 36 | Elliott Knob | $-2.48$ |
| 13 | Mobile | +0.85 | 37 | Moore | +1.12 |
| 14 | New Orleans | $-3 \cdot 37$ | 38 | Young | -1.65 |
| $15 \dagger$ | Cooper | +1.58 | 39 | King | +3 ${ }^{\circ} 00$ |
| 16 | Humpback | $-1.07$ | 40 | Paris | +0.27 |
| 17 | Mount Desert | +279 | 41 | Curraliee | -3.81 |
| 18 | Mount Harris | -1.44 | 42 | Atlanta Middle Base | $+4.28$ |
| 19 | Sabattus | -0.04 | 43 | Lavender | +1.23 |
| 20 | Agamenticus | $+3.20$ | 44 | Aurora | +1.12 |
| 21 | Gunstock | -4.04 | 45 | Kahatcliee | +2.08 |
| 22 | Unkonoonuc | -1.48 | 46 | Ethridge | +2.15 |
| 23 | Blue Hill | +2.46 | 47 | Fort Morgan | +6.20 |
| 24 | Mount Tons | $-5 \cdot 10$ | 48 | East Pascagoula | +0.61 |

We have $\Sigma \Sigma \xi$ and $\Sigma \eta \eta$ before and after change of spheroid.
old spheroid. New spheroid.

| Fronn latitude equations | $506 \cdot 5$ | 265 '9 |
| :---: | :---: | :---: |
| From longitude equations | $8_{3}{ }^{1}$ | 141.5 |
| From azimuth equations | $7 \mathrm{~S} 9 \cdot 2$ | 519.8 |
| Fronn all equations | $1378 \cdot 8$ | $927^{\circ} 2$ |

The precision of the adjusted or resulting value of the length of the equatorial radius and of the compression as found from the measure of the arc.

To find the probable errors of the elements of the resulting spheroid we have to determine the mean error of a single observation or that of the unit of weight, as well as the weights of the values of $u$ and $v$ as obtained from the solution of the normal equations, whence the probable error of the result for the equatorial radius $a$, and for the compression $\frac{a-b}{a}$, or $\frac{1}{c}$, readily follows.

Substituting the values of $\bar{\xi}, \eta, u$ and $v$ resulting from the solution of the normal equations in the equations of condition, the residuals represent the respective deflections at the stations. Squaring and summing up these residuals, we get $m^{2}=\frac{\left[p v^{2}\right]}{n_{0}-1}$,
where $m=$ mean error of the unit of weight, $n_{0}$ the number of observations or stations, and $n$ the number of normal equations or unkiowns. The weight of any one of the unknowns is found in the usual way by means of the solution of the modified normal or weight equations; thus, for the third unknown $u$ and for the preceding hypothesis of equal weight to the observations we liave:

$$
\begin{cases}\mathrm{o}=+36.7119 q_{\mathrm{x}}-\mathrm{I} \cdot 5573 q_{\mathrm{z}}-27.2996 q_{\mathrm{u}}-37.5298 q_{3}^{\prime} \\ \mathrm{o}= & +49 \cdot 1293+104.2179 \\ \mathrm{I}= & +6.3651 \\ \mathrm{o}= & +6439.4636-356.2364 \\ & \end{cases}
$$

Here $q_{u}$ is the reciprocal of the weight of $u$ or, as usnally written, $=\frac{1}{p_{u}}$, and the mean error of $u$ or $m_{\mathrm{u}}$ is given by $m_{\mathrm{u}}=m \sqrt{p_{\mathrm{u}}}=m \sqrt{q_{\mathrm{u}}}$; whence follows $r_{\mathrm{a}}$, the probable error of $a$, and by the same method that of the compression is obtained from $m_{v}=m \sqrt{ } \overline{q_{v}}$.

Applying this to the results of hypothesis (1), which assigns equal weight ( $z^{\prime}=1$ ) to the observation equations, we get $m=\sqrt{\frac{927}{84-4}}= \pm 3^{\prime \prime} .40$; the weight equations in connection with $u$ and $v$ give:

$$
\left\{\begin{array} { l } 
{ q _ { \mathrm { r } } = + 0 \cdot 0 0 0 2 2 1 3 } \\
{ q _ { 2 } = - 0 \cdot 0 0 0 3 6 5 9 } \\
{ q _ { \mathrm { u } } = + 0 \cdot 0 0 0 1 6 8 2 } \\
{ q _ { 3 } = + 0 \cdot 0 0 0 1 0 9 2 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
q_{4}=+0 \cdot 0018212 \\
q_{5}=-0 \cdot 0003946 \\
q_{5}=+0 \cdot 0001092 \\
q_{\mathrm{v}}=+0 \cdot 0017188
\end{array} .\right.\right.
$$

hence $m_{\mathrm{u}}= \pm 0^{\circ} 044 \mathrm{I}$, and the corresponding value $m_{\mathrm{a}}=136^{\circ} 4$, and the probable error of $a$ or $r_{\mathrm{a}}= \pm 92^{\circ}$ o meters. From the second set of weight equations we get $m_{v}= \pm 0^{\circ} 1400$ and the corresponding value $m_{c}= \pm 3 \cdot 3$, also the probable error of $c$ or $r_{c}= \pm 2 \cdot 2$. The complete results by hypothesis (i) are therefore: Length of equatorial radius, $6377966 \pm 92$ meters and the compression $\qquad$
Resulting spheroid.
The following is the determination of a spheroid most nearly coinciding with the surface of that part of the United States which is traversed by the oblique arc from the St. Croix River at Calais, Me., to the delta of the Mississippi River at New Orleans, La.

In consequence of the uncertainty respecting the proper weighting of the azimuth equations, four sets of normal equations were established, and the results for equatorial radius and compression were deduced for the several hypotheses: $w=1,1 / 2,1 / 3$, and $1 / 4$.

The normal equations and results are as stated below:

| Hypothesis I $w=1$ | $\left\{\left.\begin{array}{l}o=-9{ }^{\prime} \cdot 9175 \\ 0=-27 \cdot 6522 \\ 0=+257 \cdot 6426 \\ 0=+408 \cdot 5423\end{array} \right\rvert\,\right.$ | +36 7119 % | $\begin{aligned} & -15573 \eta \\ & +49 \cdot 1293 \end{aligned}$ | $\begin{aligned} & -\quad 27 \cdot 2996 u \\ & +\quad 104.2179 \\ & +6439.4636 \end{aligned}$ | $\begin{aligned} & -37.5298 y \\ & +\quad 63651 \\ & -356.2364 \\ & +645.6877 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hypothesis II $w=1 / 2$ | $\left\{\left.\begin{array}{c}0=-82 \cdot 9615 \\ 0=-21 \cdot 0932 \\ 0=-159 \cdot 2176 \\ 0=+326 \cdot 0563\end{array} \right\rvert\,\right.$ | $+361361 \xi$ | $\begin{aligned} & -0.8285 n \\ & +31.5707 \end{aligned}$ | $\begin{aligned} & -\quad 0.9363 u \\ & +\quad 83.4646 \\ & +5212.7846 \end{aligned}$ | $\begin{aligned} & -32.3132 v \\ & +\quad 2.2585 \\ & -598.9652 \\ & +597.6577 \end{aligned}$ |



Examining the contents of this table, it is evident, in the first place, that whatever value for $w$ is adopted the general result will be but slightly influenced; that is, the value of the equatorial radius remains close to the value of Clarke's spheroid of 1866 ( 6378206 ), whereas the value of the compression remains slightly smaller than that of the Besselian spheroid $\left(\frac{1}{299^{\circ} 2 \pm^{\circ} 2}\right)$; and, in the second place, that the curvature of that part of the surface under consideration does not differ to any very marked extent from that which would be exhibited by a representative spheroid for the whole earth.

There is therefore but little choice between the above results. The deflections at the initial station remain about the same, viz, $1^{\prime \prime} \cdot 88$ in the meridian and $0^{\prime \prime} \cdot 85$ at right angles thereto; the radius $\|$ varies but 237 meters between the extremes and the probable errors remain practically unchanged, while with decrease of weight the compression slowly increases approaching the Besselian value. The resulting values of $\eta$ or the deflections at the several stations increase necessarily in magnitude as the weight of the azimuth equations is diminished, and in Hypothesis IV the larger ones appear to indicate $w=1 / 4$ as a limiting value.

The spheroid of hypothesis $/ / /$ is apparently the most acceptable, as it preserves a proper balance between the magnitudes of the opposing deflections in longitude and in azimuth,* and it has been adopted as representing the result of the present investigation. The resulting values of $亡$ and $\eta$ on this hypothesis are as follows, the numbers referring to the same stations as in the preceding tabulation under liypothesis I.

[^65]|  | 5121 |  | $\eta_{118}$ |  | $\#_{112}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 /$ |  | $1 /$ |  | 11 |
| 1 | $-5.34$ | 1 | +5.19 | 15 | +0.39 |
| 2 | -0.65 | 2 | $+3 \cdot 16$ | 16 | -2 19 |
| 3 | $+2 \cdot 18$ | 3 | +2.50 | 17 | +1.68 |
| 4 | +1.87 | 4 | -0.64 | IS | $-2.42$ |
| 5 | -0.89 | 5 | $-3 \cdot 61$ | 19 | -0.91 |
| 6 | -1.02 | 6 | $-385$ | 20 | +2.40 |
| 7 | $-2 \cdot 15$ | 7 | -2.3I | 21 | $-476$ |
| S | -1 45 | 8 | -0.21 | 22 | $-2 \cdot 18$ |
| 9 | -0.70 | 9 | +0.96 | 23 | +1.71 |
| 10 | $+2 \cdot 55$ | 10 | +0.23 | 24 | -5.66 |
| II | +1.19 | II | -2 07 | 25 | $-9^{\prime 1} 1$ |
| 12 | $+2 \cdot 30$ | 12 | $+2 \cdot 87$ | 26 | $-3 \cdot 65$ |
| 13 | +171 | 13 | +2.16 | 27 | +4.39 |
| 14 | +4.68 | 14 | - I 81 | 28 | -0.63 |
| 15 | -2.03 |  |  | 29 | $-9^{\circ} 76$ |
| 16 | $-5 \cdot 16$ |  |  | 30 | - I 33 |
| 17 | T3 $\cdot 48$ |  |  | 31 | $-7.52$ |
| 18 | -2.24 |  |  | 32 | $+5 \cdot 19$ |
| 19 | $+3 \cdot \mathrm{O} 2$ |  |  | 33 | $+3.77$ |
| 20 | +1.98 |  |  | 34 | +-1.98 |
| 21 | +1.69 |  |  | 35 | +6.90 |
| 22 | +2.53 |  |  | - 36 | -2 24 |
| 23 | -0.96 |  |  | 37 | +1.50 |
| 24 | -0.94 |  |  | 38 | -1.24 |
| 25 | $-6 \cdot 52$ |  |  | 39 | $+3.47$ |
| 26 | -0.75 |  |  | 40 | +0.90 |
| 27 | +2.23 |  |  | 41 | $-3.08$ |
| 28 | +2.34 |  |  | 42 | $+5 \cdot 12$ |
| 29 | +0.44 |  |  | 43 | +2.22 |
| 30 | -0.03 |  |  | 44 | +2.21 |
| 31 | $-3 \cdot 72$ |  |  | 45 | +3.19 |
| 32 | +187 |  |  | 46 | +3:34 |
| 33 | $+5 \cdot 25$ |  |  | 47 | +7.52 |
| 34 | +0.24 |  |  | 48 | +199 |
| 35 | -2 ${ }^{2}$ |  |  |  |  |
| 36 | $-2 \cdot 17$ |  |  |  |  |

The probable error of a single latitude is $0.674 \sqrt{\frac{266^{\circ} 0}{36-4}}= \pm \mathrm{I}^{\prime \prime} \cdot 94$ as computed from the 36 latitude discrepancies and that of a single latitude or longitude $0.674 \sqrt{\frac{364 \cdot 3}{50-4}}=$ $\pm I^{\prime \prime} 90$ as computed from the 36 latitude and the 14 longitude discrepancies.

4192-No. $7-02-26$

## Comparison with Other Spileroids.

The following table is presented for convenience of reference or comparison of the resulting spheroid with a few other spheroids (of revolution):

| Spheroid of - | Rquatorial radius a in meters. | Polar semidiameter $\delta$ in meters. | $a-b$. | Compression $(a-b) a .$ |
| :---: | :---: | :---: | :---: | :---: |
| Bessel, i8q1. Froni 10 ares of the meridian, total amplitude $50^{\circ} 34^{\prime}$. | 6377397 | 6356079 | 21318 | $\begin{array}{r} 1 / 299^{\circ} 15 \\ \pm 3.15 \end{array}$ |
| Clarke, $\mathrm{t} \mathrm{S}_{5} \mathrm{~S}$.* Special spheroid for surface of Great Britain and Ireland. Range in latitude $12^{\circ}$, the sante in longitude; 75 astronomic stations. | $\begin{array}{r} 6378494 \\ \pm 90 \end{array}$ | 6355746 | 2274 S | $\begin{array}{r} 1 / 280 \cdot 4 \\ \pm 8 \cdot 3 \end{array}$ |
| Clarke, I866. From five meridional ares, total amplitude $76^{\circ} 35^{\prime}$. | 6378206 | 6356584 | 21622 | 1/295 ${ }^{\circ}{ }^{\circ}$ |
| Clarke, 1880.* From five meridional ares and longitudinal measures, total amplitude $88^{\circ} 59^{\prime} .8$ equatorial degrees. | 6378249 | 6356515 | 21734 | 1/293 5 |
| U. S. Coast and Geoletic Survey, igoo. Fastern Oblique Arc of the United States. Total amplitude $23^{\circ} 31^{\prime} ; S_{4}$ astronomic stations. | $\begin{array}{r} 637 S \\ 157 \\ \pm 90 \end{array}$ | 6357210 | 20947 | $\begin{array}{r} 1 / 304.5 \\ \pm 1.9 \end{array}$ |
| Harkness, iSgi. From "The Solar Parallax and Related Constants," Washington, r891, p. 138. | $\begin{array}{r} 6377972 \\ \pm 125 \end{array}$ | $\begin{array}{r} 6356 \quad 727 \\ \pm 99 \end{array}$ | 21 245 | $\begin{array}{r} 1300 \cdot 2 \\ \pm 30^{\circ} \end{array}$ |

[^66]
[^0]:    O. H. Titrmann, Superintendent.

[^1]:    * A Lambert equivalent zenithal projection extended over a planisphere, $\quad$ See Map A (in pocket).

[^2]:    * See 2. W. Wright's "Treatise on the Adjustment of Observations." New York, 1884, pp. 315-322. + Ihid. p. 39 and foll.; also p. 217 and foll.

[^3]:    * When special weights are introduced for the several directions at a station, they are deduced from the rough expression of the square of the probable error given by $\mathrm{e}_{2}=\frac{0^{\circ} 4.55 \sum د^{2}}{s[x \times]}$ where [xx] represents the diagonal coefficient of the direction in the normal equation.

[^4]:    * The instrument is known as Saxton*s pyrometer, and it is described in detail, with illustrations, in the Report of the superintendent of Weights and Measures for 1856, and the Report of the same burean for 1862 contains, on page 249 , a general description of it. One turn of the serew equals $357^{\prime 11}$ scale divisions and one scale division equals $\mathrm{r}^{\circ} 36$ microns. The head is divided into 100 divisions.

[^5]:    * Comparing these values with the corresponding values of 1847 (Dauphin istand base) and of 1872-73 (Atlanta base), it will be seen that the leugths are not invariable, but it should be noted that one of the agates of tube i was accidentally broken in 1855 , and after the new agate was substituted the tube was found to be $0^{\circ} 430$ millimeter shorter than before.

[^6]:    *The half bracket indicates sum of similar quantities, disregarding their sigus.
    $\dagger$ The mean of the 4 values of $e_{1}$ derived from a single measure ( $D$. and $R$.) with the $75^{\mathrm{cm}}$ theodolite is $\pm 1^{\prime \prime .04}$ and 'he mean of the 5 values of ex derived from a single measure ( $3 D$. and $3 R$.) with the 25 cm repeating theodolite is $\pm 1^{\prime \prime} \cdot 16$, or one measure with the first instrument is about equal in accuracy to three with the latter.

[^7]:    * With changed notation, the present one being more convenient for printing as well as for writing.
    $+1 t$ is not quite exact, for the reason that after the general figure adjnstntent had been made the third decimals of the corrections to the directions were not assured and had to he further treated; see Report for $\mathbf{1 8 6}$ d p. 137 . On page 136 of that report corrclate xxxi for 24.943 read 34.943.
    † Published in Coast survey Keport for 1865, pp. 197-\$99.

[^8]:    *The value found in connection with the Fire 1sland base.

[^9]:    *The correction for eccentricity, as indicated, refers to Ruland of 1865 since the station occupied in 1865 does not perfectly agree with the old station of 1837.

[^10]:    * The resnits are mean values derived differentially from Tashua and Ruland. + Correction for eccentricity indicated.
    \$ Mean value deduced from differences with West Ititls and Kutand in 1833 a ud 8863.

[^11]:    * Correction for eccentricity indicated.

[^12]:    * For a description, with illustrations, of the apparatus, see the Transactions of the American IPhilosophical society, Pliladelphia, Pennsylvania, for the year 1825 , pp. 273-286. See also the preceding acconnt of the Fire Island base measurement.
    + Kesnlt of comparisons made after cleaning two of the z-meter hars which were found rusty when examined.

[^13]:    * Shown on the alove sketch by dotted lines.
    +For adjustment of this work see special Publication No. 4, "The "ranscontinental Triangulation."

[^14]:    * For further particulars see the account of the length of the kil Paso base in Colorado, 1879, in Special Publication No. 4, "The Trauscontinental r'riangulation."

[^15]:    * for description of this sulsidiary apparatns see Coast sitvey keport for 1856 . Appendix No bo
    $\dagger$ An account of the experiments for contact and transfer errors, Coast and Geodetic survey keport for 1889 , $p, 455$.

[^16]:    * The measures of the angle between East Base and Fort Morgan in 1848 and 1897 differ $3^{\prime \prime}$ - 84 ; probably the object observed upon was not well centeredover the station. The direction is not interlaced with other directionsat the station, and no use has been made of it in the present adjustment.

[^17]:    * Number of sets of repetition observations, 2.

[^18]:    * Azimuth mark west of Monnt Blne $2^{\prime \prime} \cdot 19 \pm 0^{\prime \prime} \cdot 1$.
    +'rhis station was estahlished in September, 1849 , by T. McDonnell at the highest part of the momntain. It was marked loy a copper bolt insert cd in a bowlder by G. A. Fairfield in 1851 , and re-marked in 1853 by R. F. West. The pole placed over the mark was ohserved upon from Monnt Independence in 1849 , from Ossipee in 1 851 , and from Sabattns in ${ }^{15} 53$, bit only ronghly. The observations from Mount lleasant in is5t and from Gunstock in 1860 , however, were quite satisfactory. $\mathrm{In}_{1} \mathrm{is}_{77} \mathrm{C}$. 11. Sinclair visited the station and under the direction of Assistant K. D. Cnts connected geodetically the several eccentric station marks since 1873 and again, in 15so and 1589 , those nsed by Prof. E. T. Quinhy in his survey of the state of New Hampshire. These last observations have no hearing on the oblique are, the only direction in conmon being that to Salmatns. Between July 31 and September 13, 1882 , Assistant Cntts and Aid J. A. McNicol observed horizontal angles at the station in connection with the survey of New Hampshire, hut included the three directions to Monnt Blne, Gunstock, and Mount Pleasant. The $3^{\circ} \mathrm{cm}$ theodolite was then employed.

[^19]:    * The station was occnpied by Prof. E. T. Quinby in 1878 , but onty in connection with the survey of New Hanpshire; it was reoccupied in September, 1897 , hy Assistant A. T. Mosman, in connection with western work in Vcrmont.
    $\dagger$ The station was occupled by Prof. F. T. Quimby in Juty, 1872 , in connection with the survey of New Hampshire. He used 25 cm theodolite No. 32. Ile sighted Monadnock and Patuccawa, but for these observations we have no use here.

[^20]:    \# This station was occupied by Prof. F. T. Quinby in June, 8872 . in connectiou with the survey of New Hampshire. 11 septenber, 1878 , the party of Assistant R. D. Cutts reoccupied the station, but neither of these observers made any additions to the measures of the oblique arc.
    $\ddagger$ This station was occupied in Jnne and july, 1877, by Assistant K . D. Cutts in connection with the survey of Vermont.

[^21]:    * The correction is for eccentricity.
    $\dagger$ Angle between Weasel and Azimuth Mark, $3^{\circ} 35^{\prime} 3^{6 \prime \prime} 95 \pm 0^{\prime \prime \prime} 40$.

[^22]:    * Angle between Azimuth Mark and Mount Holly, $11^{\circ}{ }^{\circ} 8^{\prime} 53^{\prime \prime \prime} 25 \pm 0^{\prime \prime \prime} 0 \%$.

[^23]:    * Direction corrected for eccentricity.
    † Angle between Azimuth Mark and Lippincott, $167^{\circ} 00^{\prime} 04^{\prime \prime \prime} 32 \pm 0^{\prime \prime \prime} 22$.

[^24]:    * Last station occupied by Superintendent Hassler. He died November 20, 1843. $\dagger$ Also designated Buck 2 in some records.

[^25]:    * See result of the measures of mog Coast and Geodetic Survey Special Publication, No. 4. p. 354.

[^26]:    * Reduction to center $-2^{2 / \cdot 10}$, applied.

[^27]:    * The line King to Benu being fixed by the southern section.

[^28]:    * From the 35 trianglen directly suvolved bere we have $\sqrt{\frac{55^{3} 4}{3.4}}= \pm 8^{\prime \prime \prime} 30$ and the mean error of a direction becomes $\pm 0 . .78$.

[^29]:    * This direction, which is now considered as fixed, and hence not liable to a further correction, was formerly treated as subject to correction.

[^30]:    * The computation and adjustment made in 1878 and retained here has no corrections applied to the directions for height of stations observed. These are too suall in comparison with the observing error to require special cousiderationIn a new computation it would have anficed to linit the seconds of the angular directions to two places of decimals.

[^31]:    *Ohserved December 3 to 19 , 1885, by O. 11. Tittmann, with 50 cm direction theodolite No. 114 .

[^32]:    *It is made up of the several parts as follows: 111 base net, 42 kilometers; first section, 98 kilometers; second section. 88 kilometers; third section, 80 kilometers; fourth section, 209 kilometers; and fifth section, 160 kilometers.
    +One and a half untits in the seventh place of decimals in the logarithm.

[^33]:    * The observations of 1847 were reduced to the position of 1855 .

[^34]:    * See sketch of triaugulation, plate No. 19, Coast and Geodetic Survey Report for 1879. $\dagger$ Logarithm of length of Magnolia base. 3.558 o6s 3 .

[^35]:    *Stations in common with and fixed ly the transcontinental triangulation.

[^36]:    * See Map 8 in pocket.
    + For discussion of the results ohtained by using this instrument, see special publication No. 4, "The Transconti-
    

[^37]:    $\dagger$ The details of the method of making and reducing astronomic observations used in the coast and Geodetic Survey are published in the Report for 1897-98, Appendix No. 7, "Determination of Time, Longitude, Iatitude. and Aximuth."

[^38]:    *This last remark has no bearing on the result here needed.
    tThe Ephemeris for 1888 gives $42^{\circ} 22^{\prime} 48^{\prime \prime} 3$, and that of $1889,42^{\circ} 22^{\prime} 47^{\prime \prime} \cdot 6$, for which values no explanation is offered.

[^39]:    * See report by Dr. B. A. Gould dated November, 1865 , in U. S. Coast survey Keport for 1865 . These results were revised andin part improved in 1870 .

[^40]:    *Center of dome.

[^41]:    *A fourth, named Seaton (east of the United States Capitol), established in 1849, was not a station of sufficient importance to be included in the general longitude net.
    $\dagger$ For an abstract of this paper see Gould's Astronomical Journal, No. 412 (September 14, 1897).

[^42]:    * This result is added becatise it is needed further ont.
    $\dagger$ These stations are included in the discnssion of the arc of the 39 th parallel andall necessary details are puhlished in Coast and Geodetic survey Special Puhlication No. 4, "The Transcontinental Triangnation," Washington, D. C., 1900. \& Puhlished for the first time.
    $\hat{3}$ The longitude of this station was differentially determined from Cambridge, Massachusetts, in November and December, 8851 , but the resule was found to be weak and unsatisfactory, the observers not interchanging places, hence no use was made of thoseobservations.

[^43]:    *This station was established in 1849, to be used in place of the United States Naval Observatory, where it was found both inconvenient and unsatisfactory to make observations, as it interfered with the regular dnties of the observatory staff. It was located east of the Capitol, in an open field, on Fifth street east, near A street north, now covered by buildings. Telegraphic connection with the Naval Observatory (old) was made in 1867; distance by wire, $5 \frac{1}{2}$ kilometers, or $3 / 2 / 2$ statute miles, nearly.

[^44]:    * Details at these stations published for the first time. See also report by 1)r. B. A. Gonld in Coast Survey Keport for 1864, Appendix No. 12. pp. 115, 116,

[^45]:    ＊Hor further remarks on the methods used at this and some other stations representing the stage of the develop－ ment of telegraphic longitnde determinations，see Coast Survey Report for $1853, \mathrm{pp} .56-57$ ．A part of the work done at Kaleigh is used as an example of a method for determining differences of longitude，in Vol． 1 of Chauvenet＇s Spherical and l＇ractical Astronomy．5th edition， 1887.
    the observation for difference of longitude of Charleston，South Carolina，and seaton station，District of Columbia，in February，1850，was experimental in character，and too weak for use here．
    $\ddagger$ D．for Dean and P．for Pourtales．
     Columhia．

[^46]:    * D. stands for G. W. Dean and M. for A. T. Mosuan.

    The numbers in column $\frac{1}{p}$ equal rooso times the square of probable error.

[^47]:    1. COOPER, MAINE.
[^48]:    * Rejected by Peirce's criterion.

[^49]:    * The instrument was generally kept leveled.

[^50]:    * Two azimuth marks were put up; the results were referred to the western one as being hetter determined than the other; the angle between the marks was $4^{\circ} 05^{\prime} 08^{\prime \prime \prime} 99 \pm 0^{\prime \prime} 34$.
    $\dagger$ The instrument was generally kept leveled.

[^51]:    *For the complete abstract and combnation of results for azimuth at this and the succeeding ${ }^{13}$ stations, all of which are common to the Arc of the 39th Parallel and the Oblique Arc, see "The Transcontinental Triangulation" U. S. Coast and Geodetic Survey, Special I'ublication No. 4, Washington, D. C., 1900.

[^52]:    *This angle is somewhat uncertain owing to large corrections to directions Young and Paris, required by the adjustment of the triangulation.

[^53]:    *Two eyepieces were used at this station.

[^54]:    * The graduation of the horizontal circle was afterwards found to be defective.

[^55]:    *The instrument was overturned in a storm and the threads of its diaphragm were broken; a new single thread was put in and served for the time and azimuth observations.
    †The triangulation of which this station is a part is of secondary character with respect to size and precision, and there is no check of the above result for azimuth, suc as, for instance, repeating the measures on other datis. - The elongation occurred about the 3 d . of the above 6 consecutive measures.

[^56]:    * When comparing Dr. Chandler's predicted resu'ts of the motiun of the pole for the years 1890 to $3897 \%$ with results deduced directly from observation, a comparatively large discord is noticed in some places, as might be expected in such an inquiry, nor are these modern sbservatious free from considerable uncertainty.

[^57]:    * Prohable error in the direction of the vertical from all parts of India except portions under Himalay un attraction is about $\pm z^{\prime \prime \prime} 8$. (Annual Keport of the Snrvey of India, 1893-94.)
    $\dagger$ Astronomical Journal (Gould's), No. 446, October 14, 1899. The formulie are, for the coordinates,
    $\left\{\begin{array}{l}x=r_{3} \sin \left(6-T_{8}\right) \theta+0.095 \sin \left(\odot-305^{\circ}\right) \\ y=r_{8} \cos \left(t-T_{8}\right) \theta+0.110 \cos \left(\odot-3^{\circ}\right)\end{array}\right.$
    $y=F_{x} \cos \left(f-T_{8}\right) \theta+0.110 \cos \left(0-3^{\circ}\right)$
    Where

    $$
    \begin{aligned}
    & T_{1}=2412646+427^{\circ} 0 \mathrm{E}-0.05 \mathrm{E} z \\
    & \theta=0^{0.8} 843+0.000316 \mathrm{E} \\
    & y_{\mathrm{B}}=0^{\prime \prime} \cdot 125+0.05 \sin (2414363-t) \times 0^{0.015}
    \end{aligned}
    $$

    fiere $t$ and $T_{z}$ are expressed in Julian dates, $t$ is the epoch of observation, Trany epoch when the pole of the figure passes the Greenwich meridian between Greenwich and the instantaneous pole of rotation (this latler taken as the origin of the coordinates $x$ and $y$ ), $\mathbb{E}$ is the mmber of periods, $\theta$ the daily angular motion, $r_{1}$ the radius vector, and $\odot$ the sun's longitude at the time $t$.

    The variation of latitude $\Delta \varphi=\varphi-\varphi_{0}=x \sin \lambda-y \cos \lambda$, where $\lambda$ equals the longitude of the place zeest of Greenwich. $\varphi$ the observed and $\varphi_{0}$ the corrected latitude, as referred to the average or fixed position of the pole.

    The day number in the expression for $\mathrm{T}_{\mathrm{t}}$ corresponds to the ist of July, 1893 , and that in parenthesis in the expression for $r s$ to the $14 t h$ of March, 1898 . The direction of the motion of the pole is from west to east.

[^58]:    * For reference data see introductory remarks to IPart IV.

[^59]:    * For reference date see introductory remarks to Part IV゙.

[^60]:    * Page 837 of Special Publication No. 4. "The Transcontinental Triangulation."
    $\dagger$ For reference data see introductory remarks to Part 1V.

[^61]:    * The last value of onr table is marked as donbtful for the reason that the accuracy both of the astronomic and geodetle measures is inferior to that of the other tabular results; and, moreover, its appearance with a large positive value (pointing to westerly deflection) in a region where mints values predomiuate iuparts to it an anomalous character, especially in a fat region of quaternary formation without any surface indications to justify or account for a reversal in the direction of the disturbed normal of the place. No further nse will be made of this station m comnection with azimuths.

[^62]:    *Theadditional terms in $\Delta \varphi$ given on p. 285 must be included in the computation. A rougb cbeck on $\theta$ and $a$ may he bad by the use of the spberical formulre, $\cos \theta=\cos \varphi \cos \varphi^{\prime} \cos \Delta \lambda+\sin \varphi \sin \varphi^{\prime}$ and $\sin \alpha=\cos \varphi \sin \Delta \lambda^{\prime} \sin \theta$.
    $\dagger$ The new observatory was connected by local triangulation with the Coast and Geodetic Survey triangulation by Prof. W. Harkness, Astronomical Director, in 1893 and 1894 , and by Assistant EF. D. Preston in 1894. The work of Assistant C. Junken in 1881 is involved in tbe adjustment of the geodetic connection.

[^63]:    * U"nited States Naval Observatory, Georgetown IIeights

[^64]:    *United States Naval Observatory, Georgetown Heights, Washington, D. C.

    + McCormick Observatory.

[^65]:    *The substitution of the respective valnes of $\xi, \eta, u$ and $v$ in the equations of condition derived from latitnde, longitude, and azimuth comparisons. give for [prv] and hypotheses 1 to 1 V :

    | From comparisons of $\varphi^{\prime} s$ | $265^{\circ} 9$ | $265^{\circ} s$ | $266^{\circ} 0$ | $266^{\circ} 0$ |
    | :--- | :---: | :---: | :---: | :---: |
    | From comparisons of $\lambda^{\prime} s$ | $11^{\circ} 5$ | $111^{\circ} 6$ | $95^{\circ} 3$ | $91^{\circ} .4$ |
    | From comparisons of $a^{\prime} s$ | $5^{1} 9^{\circ 8}$ | $1\left(55^{\circ} \cdot 3\right)$ | $1\left(593^{\circ} 9\right)$ | $1\left(616^{\circ} 8\right)$. |

    In the discnssion of the ordnance survey of Great mritain and Ireland Clarke adopts the weight of most suitable.

[^66]:    * For conversion of Figlish feet into meters Clarke's determination of is66 was used, viz: i ft. $=0$ ' 30479727 nn . $1 \mathrm{111} .=3^{\circ} 2 \operatorname{Sosing} 33 \mathrm{ft}$.

