DEPARTMENT OF COMNERCE

U. S. COAST AND GEODETIC SURVEY
o. h. titicmlann SUPERINTENDENT

GEODESY

THE CALIFORNTA-WASHINGTON ARC OF PRIMARY TRIANGULATION

A. I. BAI,DWIN

Computex, U.S. Coast and Geodetio Survey

SPECIAL PUBLICATION No. 13

JUN 9
wasilington

DEPARTMENT OF COMMERCE

U. S. COAST AND GEODETIC SURVEY
O. H. TIT'PMANN SUPERINTENDENT

GEODESY

THE CALIFORNIA-WASHINGTON ARC OF PRIMARY TRIANGULATION

BY
A. L. BALDWIN

Computer, U. S. Coast and Geodetic Survey

SPECIAL PUBLICATION No. 13

Digitized by the Internet Archive in 2007 with funding from Microsoffecorporation

> 291
> 464
> 1913

CONTENTS.

Page.Cenerai statement5
Irogress of the triangulation:
Season of 1903 5
Season of 1904 6
Scason of 1905 6
Season of 1906 7
Methods of obscrving employed 7
Program of occupation of stations 7
Stations occupied:
Season of 1903 7
Season of 1904 8
Season of 1905 8
Season of 1906 9
Statement of costs. 9
Statement of adjustments. 9
Abstract of horizontal directions and elevations of telescope above the station mark 9
Condition equations. 15
Accuracy as indicated by corrections to observed directions. 18
Table of corrections to observed directions. 18
Accuracy as indicated by corrections to angles and closures of triangles 19
Table of triangles 20
Accord of bases. 29
Accord of azimuths 30
Twist in triangulation 30
Explanation of positions, lengths, and azimuths and of the United States Standard Datum 31
Table of positions 33
Principal points 34
Supplementary points 37
Descriptions of stations 42
Principal points 43
Supplementary points. 54
Computation, adjustment, and accuracy of the elevations 57
Thirty-ninth Parallcl to Willamette base 58
Puget Sound to Tacoma basc 61
Willamette base net to Tacoma base 62
Elevation of Mount Shasta. 63
Accuracy of vertical angle results in the United Statcs 63
Elevations. 64
Table of elevations:
Thirty-ninth Parallel to Willamette base. 64
Willamette base net to Tacoma base 66
Tacoma base to Puget Sound 67
Sketches 68
Index to positions, descriptions, sketches, and elevations. 75
ILLUSTRATIONS

1. Indcx map 68
2. Index map. 69
3. Thirty-ninth Parallel to Bally-Round 70
4. Bally-Round to Onion-Rust. 71
5. Onion-Rust to Mary-Pcterson 72
6. Mary-Pcterson to Davis-Red 73
7. Davis-Red to Puget Sound 74

THE CALIFORNIA-WASHINGTON ARC OF PRIMARY TRIANGULATION.

By A. L. Baldwin.
Computer, United States Coast and Geodetic Survey.

GENERAL STATEMENT.

In the spring of 1903 the United States Coast and Geodetic Survey began the rcconnoissance for an are of primary triangulation to extend from the primary triangulation in northern California to Puget Sound. The work of reconnoissance was not done continuously in any one season, but was done a little at a time, in order to interfere as little as possible with the observations. It was usually done slightly in advance of the triangulation, but at times simultaneously with it, and so the two can not be discussed separately. The observing was completed in four summer seasons, beginning in June, 1903, and ending in July, 1906.

The length of the primary triangulation of this arc, along the axis of the scheme, is 577 miles (929 kilometcrs) and the length of the subsidiary schemcs, secondary in character, is about 30 miles (48 kilometers). Fifty-seven stations constitute the main scheme. The mean latitude of the three old stations of the Thirty-ninth Parallel triangulation, from which the are started, is $39^{\circ} 05^{\prime}$, and the northernmost point lies in latitude $47^{\circ} 23^{\prime}$. The triangulation follows closely the meridian of $122^{\circ} 30^{\prime}$.

The positions and descriptions werc prepared for publication by Mr. C. H. Swick.
The greater portion of the work of making the difficult least square adjustments was done by Mr. E. H. Bowen and Mr. M. H. Doolittle, the adjustment of the elevations from the vertical measures having been made by the latter.

The engineer intent only upon securing the necessary information to enable him to extend his triangulation or to base other surveys upon it will find the information he desires on pages 31-78, commencing with the explanation of the table of positions, lengths, and azimuths. The index printed on pages 75-78, used in connection with the sketches at the end of the publication, will enable him to find quickly the data for any given locality.

There were used to control the lengths in this triangulation the Yolo base in California, the Willamette base, near Eugenc, Oreg., and the Tacoma base, near Tacoma, Wash.

The Yolo base was measured in 1881 by Assistant George Davidson, who published his report as Appendix No. 8 in the Report of the Coast and Geodetic Survey for 1882. The Willamette and Tacoma bases were measured by the party of Assistant O. B. French in 1906. ${ }^{1}$ During this season of 1906 six primary bases were measured, the other four being a part of the Nincty-eighth Meridian triangulation. Complete mcasurements were made on each base with 50 -meter stcel tapes and also with invar tapes of the same length.

PROGRESS OF THE TRIANGULATION.

SEASON OF 1903.
Early in 1903 Assistant O. B. French was placed in charge of the field work and in April organized at Eugene, Oreg., a rcconnoissance and building party, consisting of a foreman and four men, with a wagon and four horses. With this party Mr. French conducted a recon-

[^0]noissance through the Willamette Valley to eonneet with the triangulation of the Columbia River. By the latter part of May this was so far advaneed that the observing could be started and a party, consisting of Mr. Freneh, a recorder, and four other men, with two wagons and seven horses, started out from Eugene for the first station, Roman, leaving the first party to build signals. The work was pushed toward the Columbia River as far as the reconnoissance had been completed. Before the end of September both parties returned to Eugene, where a base and its conneetions with the main seheme were laid out and a part of the stations were occupied by the middle of Oetober. Throughout the season the signal-building party was always in advance of the observing party, erecting signals, cutting lines, opening trails, and preparing camping grounds. The weather during the whole season was very disagreeable and uneertain and the cause of much lost time, espeeially by the observing party, as it was rare that all the signals to be observed at a station were visible at one time. There were frequent long intervals of many days when no observations eould be made.

Between the middle of October and the middle of November Mr. Freneh and the foroman of the signal party made a reconnoissance southward to conneet with the triangulation of the Thirty-ninth Parallel, developing the seheme that with few ehanges was earried out in 1904.

SEASON OF 1904.

In the season of 1904 the organization of the parties and the method of conducting the work were about the same as in 1903 . Assistant J. S. Hill was also assigned to the work, thus enabling Assistant Freneh to devote more time to reeonnoissanee without delaying the progress of the observing party. The parties were organized in April, when some additions were made to the reconnoissanee to eomplete the seheme between the Thirty-ninth Parallel triangulation and the work of the previous season, and a few stations were prepared for observations. The observing started at Marysville Butte soon after May 1 and the season's work closed about the middle of November. During this time the whole scheme between the old triangulation of the Thirty-ninth Parallel and the work of the previous season was eompleted. Between July 9 and August 10 Assistant French made a reconnoissanee to conneet the work of the Columbia River with that of Puget Sound, whieh praetieally settled the seheme of work for 1905.

Many diffieulties were encountered during the season. During April and May snow and very strong winds greatly delayed the work. At station Soda smoke delayed the party at one time for six weeks. Many stations were diffieult of aecess. Five stations were reached by pack trains over distanees from 10 to 25 miles and along difficult and dangerous trails. In eaeh of two cases speeial trails had to be made for a distanee of 4 miles and they werc so steep that in one case two horses went over backwards and the outfit had to be packed by men. In order to reaeh station Mears it was neeessary to use ladders and hand lines.

SEASON OF 1905.

During the season of 1905 the organization of the parties and method of condueting the work were the same as during the previous season. The field work began about the middle of April and closed about the middle of October.

The region betwcen the Columbia River and Puget Sound is a very diffieult one through which to earry a primary triangulation. Many of the peaks that must be used are flat and heavily timbered and the roads and trails are almost impassable. It is also a region of very bad weather and this faet, together with the prevalence of forest fires, made the delays in observing very great. The seheme that was laid out the preceding season proved to be cutirely too expensive, on account of the very high signals required and the great amount of eutting of timber necessary. Further reconnoissanee was therefore required and both parties took part in it. About June 1 the observing party began work in Oregon, completing the occupation of four stations in the Willamette base net. This party then moved to the vieinity of the Taeoma base and was engaged the rest of the month in signal building. Observing was resumed on July 1.

In spite of every effort the work connecting the Columbia River triangulation with that of Pugct Sound was not completed during this season. Assistant French reported that the weather conditions during this season were the most unpropitious for such work that he had ever experienced.

At three stations signals over 100 fcet high were built, one bcing 130 fect high. At several stations the instrument was mounted on a high tree. In such cases the tree was guyed with iron wires and a staging was built about the tree. At onc station over 200 trees 4 fect or more in diameter and 200 feet high, besides many smaller ones, were cut to open lincs. Long and dangcrous trails had to be constructed and several aecidents happened on them, which fortunately were not serious except to the horses. At the last station the party was caught in the snow and had difficulty in getting out.

SEASON OF 1906.
During this season the work was in charge of Assistant J. S. Hill, who organized a party on June 11 and finished the last station on July 26, eompleting the primary triangulation between the Columbia River and Pugct Sound. He also made the eonnection between the primary triangulation and the Columbia River work. Between June 18 and July 26 the observing party occupied scven primary stations and incidentally traveled 250 miles by boat, 315 miles by wagon, and 130 miles by trail with pack animals.

METHODS OF OBSERVING EMPLOYED.

The observations for the primary horizontal angles were made in accordance with the General Instructions for Primary Triangulation, as given on pages 170-174 of Appendix 4, Report for 1911.

All the horizontal angle measures were made by the direction method, using the 12 -inch (30-centimeter) theodolites made in the Instrument Division of the Survey. These instruments are described in Appendix 8, Report for 1904. The teleseope used has a clear aperture of 61 millimeters and its focal length is 74 centimeters. The circle is graduated to five-minute spaces and is read by the mierometer microscopes to single sceonds.

PROGRAM OF OCCUPATION OF Stations.

In the following three tables the primary stations occupied during the several scasons are arranged in the order of their occupation. The second column of cach table indieates the days on which primary horizontal observations were made, and the third column the number of such days. The letters (az.) after the name of a station indicates that observations for primary astronomic azimuth were made at that station.

Stations occupied.

Assistant O. B. French, chief of party and observer.
season of 1903.

Station	Days on which observations of primary horizontal directions were made	$\begin{aligned} & \text { Number of } \\ & \text { days } \end{aligned}$
Roman	June 17, 18, 19, 20, 23, 25, 26, 28, 29	9
Spencer (az.)	July 7, 8, 9; Oct 12, 13, 14	6
Peterson	July 14, 15, 16	3
Mary (az.)	July 25, 26	2
Yam (az.)	July 31; Aug. 3, 4, 8, 9	5
Hult	Aug. 11, 12, 13, 16	4
Barnes (az.)	Aug. 27, 28, 30; Sept. 1, 2	5
Larch	Sept. 8, 13, 14, 15	4
Rauch	Oct. 1, 2, 6	3
Willamette south base	Oct. 7, 8, 10, 11	4

Stations occupied-Continued.

Assistant O. 13. lirench, chief of party and observer, and Assistant J. S. Hill, observer.
SEASON OF 1004.

Station	Days on which observations of primary horizontal directions were made	$\begin{aligned} & \text { Number of } \\ & \text { days } \end{aligned}$
Marysville Butte	May 3, 4, 5, 6, 10	5
Suow Mountain east	May 16, 18	2
Kent (az.)	May 25, 26, 27	3
Lyous (az.)	June 3, 4, 5, 6	4
Round (az.)	June 11, 12, 13	3
Bally	June 16, 17, 18, 19	4
Mears	June 24	1
Spur	June 29, 30; July 1, 2	4
Gazelle (az.)	July 4, 5, 6, 8	4
Boliver	July 12, 13, 16, 18	4
Sterling	July 26, 27, 30.	3
Soda	Aug. 3, 4, 12; Sept. 24, 25	5
Rust (az.)	Sept. 28, 29	2
Black	Oct. 3, 4	2
Onion (az.)	Oct. 12	1
White	Oct. 18, 19	2
Scott (az.)	Oct. 21, 22	2
Yellow	Oct. 27	1
Fairview	Oct. 31	

Assistant O. B. French, chief of party and observer, and Assistant J. S. Hill, observer.
SEASON OF 1905.

station	Days on which observations of primary horizontal directions were made	$\begin{aligned} & \text { Number of } \\ & \text { days } \end{aligned}$
Ridge	June 6, 7	2
Willamette north base	June 8	1
Twin	June 10, 11, 12	3
Peterson	June 13, 14	2
Neill 2	July 1	1
Wash	June 27, July 6, 7	3
Smelt	July 7	1
Dron	July 10	1
Gull	July 10	1
Kin	July 11	1
Tacoma astronomic station (az.)	June 21, 22	2
Bos	July 13	1
Burn	July 14	1
Tacoma south base	July 26, 27, 28, 29, 30	5
Tacoma north base	July 31, Aug. 2, 3	3
Hurst ,	Aug. 5	1
Pen	Aug. 6, 7, 8, 9	4
Bel (az.)	Aug. 18, 19, 20, 21	4
Huck	Sept. 6, 11	2
Hal ${ }^{\text {Rain }}$	Sept. 1, 3, 4, Aug. 30, 31	5
Rain	July 22, Sept. 14, 15	3
Toutle	Sept. 21 July 24, 25, Aug. 28	1

Stations occupied-Continued.

Assistant J. S. Hill, chief of party and observer.
SEASON OF 1906.

Station	Days on which observations of primary horizontal directions were made	Number of days
Barnes	June 14, 16, 17,18	4
Red	June 23, 24, 25	4
Larch	June 30	1
Star	July 4, 5	2
Davis	July 10, 11, 12, 13	4
Lam (az.)	July 15, 16	2
Len	July 23, 24, 25, 26	4

STATEMENT OF COSTS

The diffieulty of separating the eost of the reconnoissance from that of the triangulation, where the two operations were carried on simultaneously, forbids an accurate statement of the eost of the former. It may fairly be stated that the time spent on the reeonnoissanee during the first three seasons was approximately 6. 2 months and the cost between $\$ 2500$ and $\$ 3000$. This makes the progress 93 miles per month and the unit cost not far from $\$ 4.80$ per mile.

The following statement of eosts for the triangulation may be eonsidered correet. These costs are computed for the whole are and inelude the salaries of the observers while in the field and during the limited times before and after each season while planning and reporting the work.

Number of months of observations	14.9	Cost per point determined.	\$192
Number of primary stations occupi	59	Number of miles of progress.	577
Stations occupied per month	4	Cost per mile of progress.	\$61
Total field expenses.	\$35029	Area in main scheme in square mile	2100
Cost per station occupied	\$594	Cost per square mile.	\$1.58
Total number of points detern	183		

STATEMENT OF ADJUSTMENTS.

No local adjustments were made, these having beeome unneeessary sinee the adoption of the present method of supplying missing observations in broken series. ${ }^{1}$

The line Snow Mountain west-Mount Helena had been fixed in length, direetion, and position by the Thirty-ninth Parallel triangulation, and the result is published on page 539 of Appendix 9, Report for 1904. Similarly, the length, direetion, and position of the line Marysville Butte-Mount Helena is published on page 540 of the same report. Marysville Butte was determined from eight stations of the Thirty-ninth Parallel triangulation, using six side equations, the angle equations being entirely laeking. The remaining parts of the triangle Snow Mountain west-Marysville Butte-Mount Helena were compuited, and it was found that the two angles measured in 1904 required correetions of $-0^{\prime \prime} .71$ and $+1^{\prime \prime} .32$, respeetively, to eonform to the fixed eomputed angles. A single least square adjustment served for the entire primary scheme. The measured bases, Willamette and Taeoma, compelled the use of two length equations, and the Laplace azimuths ${ }^{2}$ computcd at Gazelle, Willamette, and Taeoma made three azimuth equations neeessary.

ABSTRACTS OF HORIZONTAL DIRECTIONS AND ELEVATION OF TELESCOPE ABOVE THE STATION MARK.

All observed direetions in the triangulation have been given equal or unit weight. Those direetions were redueed to center where either the instrument or the objeet observed was not coineident with the eenter of the station mark.

[^1]The horizontal directions are reduced to sea level. The correction expressed in seconds is given by

$$
\frac{e^{2} h \sin 2 \alpha \cos ^{2} \phi}{2 \rho \sin 1^{\prime \prime}}
$$

where $e^{2}=\frac{\left(a^{2}-b^{2}\right)}{a^{2}}, h=$ height of station sighted, $\rho=$ the radius of curvature in a plane normal to the meridian, $\phi=$ the latitude, and $\alpha=$ the azimuth counted from the south westward.

In the following table are also given the elevations of the telescope of the theodolite above the station mark at each of the primary stations. These elevations enable the reader to judge of the amount of building done and they permit the engineer or surveyor who uses the stations to form an estimate of the probable amount of building required to make any particular line clear.

Station occupied and elevation of instrument above station mark	Number of direction	Object observed	Observed direction reduced to sea level	Final seconds after figure adjustment
Marysville Butte 3.73 meters	$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$		- , "	
		Snow Mountain east	00000.00	00.64
		Kent	$3311 \begin{array}{lll}38.15\end{array}$	28. 82
		Lyons	830642.00	42. 64
		Mount Helena	3055817.33	16. 60
		Snow Mountain west	3592517.60	
Snow Mountain east 1.58 meters	5	Snow Mountain west	00000.00	$\overline{58.54}$
	1	Kent	1425912.34	12. 30
	2	Lyons	1843724.10	24. 78
	3	Marysville Butte	2452531.85	31. 93
	4	Mount Helena	3143030.82	31. 55
Snow Mountain west		Marysville Butte	00000.00	00.36
		Mount Helena	691110.85	10. 50
	20	Snow Mountain east	2950907.62	09.10
Mount Helena		Mount Diablo.	$000 \overline{59.93}$	00. 110
		Snow Mountain west	2080911.473	11. 151
	19	Snow Mountain east	2083744.87	42. 89
		Marysville Butte	2653114.565	14.922
Gazelle astronomic station. 1.95 meters	45b	Spur	00000.00	$\overline{59.49}$
	45a	Soda	2421353.98	54. 50
Kent 1.51 meters	21	Bally	00000.02	00.04
	22	Round	2912 24. 35	24. 14
	23	Lyons .ll	620155.21	55. 69
	24	Marysville Butte	1304332.66	32. 60
	25	Snow Mountain east	1750558.30	58.07
Lyons 1.44 meters	15	Round	$000 \overline{59.95}$	01. 03
	11	Marysville Butte	2125626.00	24.84
	12	Snow Mountain east	2490161.06	61. 25
	13	Kent	2741962.35	61. 62
	14	Bally	3171711.40	12.03
Bally 3.06 meters	28	Round	00000.05	00. 10
	29	Lyons	421301.56	00. 79
	30	Kent	1171410.57	10. 77
	26	Boliver	2824432.07	32. 69
		Mears	30733	04.51
	27	Spur	3115312.78	12.69
Round 1.54 meters	10	Spur	$000 \overline{59.89}$	00. 19
	6	Lyons	1741549.37	48. 30
	7	Kent	2354633.31	33. 17
	8	Bally Mears	2692008.34	08. 46
	9	Mears	3305518.31	19. 12
Mears$1.59 \text { meters }$	34	Boliver	$000 \overline{59.87}$	$\overline{59.99}$
	31	Spur	895006.45	06.94
	32	Round	1920514.69	13. 87
	33	Bally	2580315.04	15. 24

THE CALIFORNIA-WASHINGTON ARC OF PRIMARY TRIANGULATION.

Station occupied and elevation of instrument above station mark	Number of direction	Object observed	Observed direction reduced to sea level	Final seconds after flgure adjustment
Sterling 1.50 meters			- ' ${ }^{\circ}$	
	53	Soda	00000.03	$\overline{59.90}$
	54	Spur	605145.03	44.83
	55	Boliver	9255 29.41	29. 09
	51	Onion	2582602.01	02. 12
	52	Rust	3122601.22	01.78
Spur1.67 meters	43	Boliver	00000.10	00.11
	43a	Gazelle astronomic station	504806.40	07. 29
	44	Sterling	715504.68	04.85
	45	Soda	950645.90	45.88
	40	Round	2692027.85	27.44
	41	Bally	$\begin{array}{llll}310 & 33 & 59.83 \\ 318 & 00 & 44.57\end{array}$	59.57 44.19
			3180044.57	44. 19
Boliver 2.54 meters	37	Spur	00000.11	00. 10
	38	Mears	481040.17	40.06
	39	Bally	1012528.71	28.23
	35	Sterling	2835838.63	39.25
	36	Soda	3053331.28	31.26
Soda 1.55 meters	48	Sterling	00000.00	00.25
	49	Onion	572059.99	59.72
	50	Rust	1083707.28	08.05
	46	Spur	2640319.78	19.66
	46a	Gazelle astronomic station	2815840.14	39. 63
	47	Boliver	2943014.20	14. 10
Rust1.74 meters	67	Sterling	00000.00	$\overline{59.23}$
	68	Onion	625046.25	46. 38
	69	White	1010313.56	13. 83
	70	Black	1371551.99	53.07
	66	Soda	3361100.72	00.01
Onion1.61 meters	56	White	00000.00	00. 45
	57	Black	314825.91	25.55
	58	Rust	775131.51	31.27
	59	Soda	1195548.27	48.10
	60	Sterling	1410057.36	57.66
White 6.67 meters	63	Black	00000.00	$\overline{59.63}$
	64	Rust	495850.86	50.98
	65	Onion	1135502.30	01.77
	61	Yellow	2434143.82	44.12
	${ }_{62}^{62}$	Scott Fairview	${ }_{306} 711138.91$	39.34
	62 a	Fairview	3063437.83	37.88
Black1.53 meters	71	Rust	00000.00	$\overline{58.64}$
	72	Onion	593156.35	57.05
	73	White	934834.84	35.26
	74	Scott	1250147.92	48.89
	75	Fairview	1710816.94	16. 20
Fairview 1.72 meters	80a	White	00000.00	59.48
	81	Scott	232603.35	02.22
	82	Yellow	545323.69	23.34
	83	Roman	813924.54	25. 12
	84	Spencer	1100045.96 31044	46. 59
	80	Black	3104455.62	56.40
Scott 1.74 meters	78	Black	00000.00	$\overline{58.70}$
	79	White	595828.34	28. 12
	76	Yellow	1894422.86	22.97
	77	Fairview	2984725.48	26.91
Yellow 2.00 meters	89	White	00000.00	$\overline{59.77}$
	85	Roman	1784038.63	38.70
	86	Spencer	2390647.80	48.00
	87	Fairview	2974609.74	09.78
	88	Scott	3371548.07	48.00

Station occupled and elevation of instrument above station mark	Number of direction	Object observed	Obserred directlon reduced to sea level	Final soconds after figure adjustment
Roman 1.65 meters			- "	
	103	Spencer	00000.00	00.19
	104	Fairview	310411.58	- 11.80
	105	Yellow	651245.72	45. 52
	100	Mary	2913434.04	33.07
	101	Peterson	3212523.53	23. 77
	102	Twin	3304133.42	33.93
Peterson 1.80 meters	112	Twin	00000.00	00.21
	113	Spencer	20717.11	17.02
	114	Willamette south base	120224.57	24. 53
	115	Rauch	195637.54	37.26
	116	Roman	351925.25	25.63
	117	Ridge	392439.46	39. 22
	118	Mary	814122.60	22.10
	119	Yam	1593832.55	32. 68
	120	Hult	1940636.09	36.48
Mary 1.68 meters	110	Spencer	00000.00	$\overline{59.30}$
		Willamette south base	121	10.01
	111	Roman	$\begin{array}{llll}45 & 09 & 17.07\end{array}$	17. 72
	106	Yam	2394719.05	18.85
	107	Hult	2643534.37	34.88
	108	Peterson	3012156.32	57.18
	109	Twin	3264241.83	40. 72
		Ridge	35846	
Spencer 1.77 meters	98	Peterson	00000.00	00.04
	99	Twin	10819.38	19.94
	90	Fairview	1311205.23	04.21
	91	Yellow	1972526.30	26.36
	92	Roman	2514638.49	37.59
	93	Rauch	2703726.91	27.64
	94	Willamette south base	3115109.89	10.22
	95	Mary	3181201.16	00.36
	96	Ridge	3191500.47	01.02
	97	Willamette north base	3282641.12	41.57
Rauch 6.22 ineters	140	Willamette south base	00000.00	$\overline{59.76}$
	141	Spencer	383420.22	19.91
	136	Ridge	2974413.19	12. 67
	137	Willamette north base	3232550.80	51.36
	138	Peterson	3254609.09	09. 68
	139	Twin	3351136.46	36. 36
Ridge 2.54 meters	135	Rauch	00000.00	00.05
	129	Mary	1471123.95	23. 90
	130	Peterson	2272957.53	56.94
	131	Twin	2564110.38	10.54
	132	Willamette nortli base	$\begin{array}{llll}310 & 54 & 60.15\end{array}$	59.92
	133	Spencer Willamette south base	$\begin{array}{lll}329 & 27 & 38.79 \\ 333 & 02 & 17.49\end{array}$	39.34 17.59
Willamette north base - 12.84 meters	151	Rauch	00000.00	00.27
	152	Ridge	1051322.03	22.13
	153	Twin	2032646.52	46.91
	149	Spencer	3125742.01	41. 72
	150	Willamette south base	3271109.75	09.27
Willamette south base 12.83 meters	142	Rauch	00000.00	$\overline{59.59}$
	143	Mary	873000.53	f2. 56
	144	Ridge	904631.35	30.84
	145	Willamette north base	1103700.35	00.61
	146	Peterson	1375158.15	57.91
	147	Twin	1453646.97	46. 53
	148	Spencer	2594802.20	01.94
Twin 1.79 meters	121	Spencer	00000.00	$\overline{59.69}$
	122	Willamette south base	163135.58	35. 46
	123	Rauch	260625.29	25. 71
	124	Willamette north base	374728.18	27.84
	125	Roman	$\begin{array}{llll}41 & 19 & 56 . & 11 \\ 65 & 20 & 14 & 14\end{array}$	55.91 14.38
	126	Ridge	652014.14 1034625.82	14. 38
	128	Peterson	1764423.07	23. 09

Station occupied and elevation of instrument above station mark	Number of direction	Object observed	Observed direction reduced to sea level	Final seconds after figure adjustment
Yam 1.58 meters			- "	
	156	Hult	00000.00	00. 19
	157	Peterson	592341.58	41.57
	158	Mary	995159.90	59.90
	154	Bames	2825150.59	50.88
	155	Larch	3093021.02	20.54
Hult11.13 meters	161	Yam	00000.00	$\overline{59.92}$
	162	Barnes	691105.28	05. 39
	163	Larch	1092549.52	50. 23
	159	Peterson	2735140.67	40.21
	160	Mary	3044009.69	09.43
Larch1.65 meters	166	Barnes	00000.00	$\overline{59.89}$
	167	Star	641306.42	06.81
	168	Red	1152255.56	55.86
	164	Hult	3083423.01	22.88
	165	Yam	32838 60. 20	59.76
Barnes4.63 meters	171	Larch	00000.00	00.66
	172	Hult	881947.53	47.04
	173	Yam	1220037.47	37.56
	169	Davis	2835930.10	29.94
	170	Star	3292321.81	21. 71
Star 1.29 meter	182	Barnes	00000.00	$\overline{59.65}$
	179	Davis	760401.19	01. 64
	180	Red	1781418.61	19.10
	181	Larch	2744942.99	42.39
Davis$1.56 \text { meter }$	186	Red	00000.00	00.12
	187	Star	383932.25	31. 49
	188	Barnes	971141.85	42. 23
	183	Toutle	27011142.34	42.71
	184	Lam	2975551.45	52.07
	185	Len	3091020.13	19.39
Red 1.31 meter	175	Star	00000.00	$\overline{59.05}$
	176	Davis	$\begin{array}{llll}39 & 10 & 13.92\end{array}$	13. 96
	177	Lam	564733.24	33: 74
	178	Len	9249 41. 21	41. 49
	174	Larch	3274508.67	08.81
Lam 1.53 meters	201	Len	- 00000.00	00.11
	202	Red	- 615939.51	39. 26
	203	Davis	1621814.19	13.94
	200	Toutle	2862844.77	45.14
Len 1.64 meters	193	Huck	00000.00	01. 00
	194	Bel	430550.04	48. 57
	189	Red	17713 38. 18	37. 85
	190	Davis	2524435.26	35. 57
	191	Lam	2591154.54	54. 88
	192	Toutle	2921828.42	28.59
Toutle2.93 meter	199	Davis	00000.00	$\overline{59.25}$
	195	Huck	1843034.45	35. 49
	196	Rel	2135410.59	11. 00
	197	Len	25832 26. 86	26. 33
	198	Lam	3315439.27	39.09
Bel 1.97 meters	211	Toutle	00000.00	00.46
	212	Huck	374445.17	44. 89
	213	Hal	41.05 38. 44	37. 67
	214	Rain	$\begin{array}{llll}55 & 27 & 10.83 \\ 87 & 05 & 27 & 46\end{array}$	11. 31
	215	Iurst Ien	$\begin{array}{rrr}87 & 05 & 27.46 \\ 335 & 25 & 30.52\end{array}$	26. 51 31.60
Muck 1.54 meters	205	IIal	00000.00	00.66
	206	IIurst	245418.96	18. 84
	207	Bel	1105344.10	44.97
	208	Len	1852849.40	48. 84
	209	Toutle	2234530.90	29.38
	204	Rain	3383311.51	12.21

Station occupied and elevation of instrument above station mark	Number of direction	Object observed	Observed direction reduced to sea level	Final seconds after agure adjustment
Hal 1.65 meters			- 11	
	216	Rain	00000.00	00. 34
	217	Hurst	501817.55	17. 52
	218	Tacoma north base	$\begin{array}{llll}58 & 37 & 25.30\end{array}$	25. 42
	219	Tacoma south base	585527.83	27.92
	220	Pen	772446.84	46. 77
	221	Bel	1380749.09	49.22
	222	Huck	2035312.96	12. 36
Rain 3.99 meters	228	Hal	00000.00	$\overline{59.73}$
	229	Huck	22623.70	23. 35
	223	Hurst	2623456.62	58. 25
	224	Tacoma north base	2631848.89	48. 93
	225	Tacoma south base	2722429.60	29.81
	226	Pen	2905300.56	00.32
	227	Bel	3322921.85	20.83
Pen 33.34 meters	242	Tacoma north base	00000.00	$\overline{59.79}$
	238	Hal .	2335829.41	29.83
	239	Rain	2672646.09	45. 89
	240	Hurst	3211118.53	18. 96
	241	Tacoma south base	3261832.57	32. 13
		Burn	35726	57.78
Hurst32.55 meters	231	Tacoma north base	00000.00	00.28
	232	Tacoma south base	$68 \quad 5918.27$	18. 42
	233	Pen	793401.52	01.54
	234	Bel	990400.08	01.38
	235	Huck	1434359.05	57.71
	236	Hal	1451445.09	44.80
	237	Rain	1773128.02	27.79
	230	Burn	3362808.21	08.32
Tacoma south base 32.33 meters	248	Tacoma north base	00000.00	00.00
	243	Pen	1120500.83	00.98
	244	Hal	1811539.88	40.94
	245	Rain	2144445.98	45.23
	246	Hurst	2762304.90	04. 74
	247	Burn	3441237.84	37.54
Tacoma north base 38.28 meters	262	Kin	00000.00	00.55
	249	Pen	1330022.21	22.07
	250	Tacoma south base	1671353.36	53. 78
	251	Hal	1681132.85	32.25
	252	Rain	1925259.32	58.71
	253	Hurst	1943740.90	40.56
	254	Burn	3025821.69	22. 05
	261	Wash	3235747.21	47.59
Burn$13.42 \text { meters }$	259	Wash	00000.00	00.14
	260	Kin	760249.34	48. 98
	255	Tacoma north base	1255443.94	43. 63
	256	Pen	1332341.08	41.70
	257	Tacoma soutli base	1542253.22	53. 04
	258	Hurst	1740210.28	10. 39
Kin 20.05 meters	268	Bos	00000.00	$\overline{59.92}$
	263	Tacoma north base	1593709.46	08.95
	264	Burn	2324335.59	35. 88
	265	Wash	2741557.55	57.66
	266	Dron	3113109.48	09.35
	267	Gull	3163318.39	18. 69
Wash 13.34 meters	269	Smelt	00000.00	$\overline{59.83}$
	270	Neill 2	423201.92	02. 28
	271	Dron	914521.33	21.40
	272	Gull	993934.94	35.27
	273	Bos	1401703.60	03.96
	274	Kin	1745806.29	06.00
	275	Taroma north base	2041705.00	04.42
	276	Burn	2372255.54	$5 \overline{5} .45$

Station occupied and elevation of instrument above station mark	Number of direction	Object observed	Observed direction reduced to sea level	Final seconds after figure adjustment
Bos 1.84 meters			- 11	
	277	Kin	00000.00	$\overline{59.92}$
	278	Wash	593455.62	55. 69
	279	Dron	965139.04	39.09
	280		1000104.62	04. 58
Gull 1.54 meters	281	Bos	00000.00	$\overline{59.82}$
	282	Kin	3632 13.92	13.97
	283	Tacoma astronomic station	$63 \quad 2746.89$	47.50
	284	Wash	985622.77	22.29
Dron2.56 meters	285	Bos	00000.00	$\overline{59.92}$
	286	Kin	343930.06	30. 24
	287	Wesh	941134.19	34.03
	288	Smelt	1351354.80	54. 63
	289	Neill 2	1821353.00	53.24
Smelt3.84 meters	290	Neill 2	00000.00	59.59
	291	Dron	$53 \quad 3713.04$	13. 36
	292	Wash	1004931.16	31.25
Neill 2 1.66 meters	296	Smelt	00000.00	00.33
	293	Dron	2803712.98	12. 66
	294	Tacoma astronomic station	3041412.70	12. 88
	295	Wash	3232134.56	34. 39
Tacoma astronomic station 5.40 meter ${ }^{3}$	297	Neill 2	00000.00	$\overline{59.81}$
	298	Gull	404619.32	19.50

CONDITION EQUATIONS.

No.

1. $0=+5.65-(4)+(5)+(19)-(20)$
2. $0=+2.38-(3)+(5)+(16)-(20)$
3. $0=+0.02-(1)+(3)-(16)+(17)-(24)+(25)$
4. $0=+0.91-(1)+(2)-(12)+(13)-(23)+(25)$
5. $0=+0.14-(11)+(13)-(17)+(18)-(23)+(24)$
6. $0=-2.78-(13)+(14)-(21)+(23)-(29)+(30)$
7. $0=-0.82-(6)+(8)-(14)+(15)-(28)+(29)$
8. $0=-0.17-(7)+(8)-(21)+(22)-(28)+(30)$
9. $0=-0.47-(8)+(10)-(27)+(28)-(40)+(41)$
10. $0=+1.79-(9)+(10)-(31)+(32)-(40)+(42)$
11. $0=+0.91-(26)+(27)-(37)+(39)-(41)+(43)$
12. $0=-0.66+(31)-(34)-(37)+(38)-(42)+(43)$
13. $0=+0.59-(35)+(37)-(43)+(44)-(54)+(55)$
14. $0=+2.33-(43 a)+(45)-(45 a)+(45 b)-(46)+(46 a)$
15. $0=-0.11-(44)+(45)-(46)+(48)-(53)+(54)$
16. $0=+0.49-(35)+(36)-(47)+(48)-(53)+(55)$
17. $0=+0.23-(48)+(50)-(52)+(53)-(66)+(67)$
18. $0=-1.95-(49)+(50)-(66)+(68)-(58)+(59)$
19. $0=-1.89-(51)+(52)-(67)+(68)-(58)+(60)$
$0=-3.13-(57)+(58)-(68)+(70)-(71)+(72)$
20. $0=+1.25-(56)+(57)-(63)+(65)-(72)+(73)$
21. $0=-3.09-(63)+(64)-(69)+(70)-(71)+(73)$
22. $0=+2.88-(62 a)+(63)-(73)+(75)-(80)+(80 a)$
23. $0=+6.35-(74)+(75)-(77)+(78)-(80)+(81)$
24. $0=+2.64-(62)+(62 a)-(77)+(79)-(80 a)+(81)$
25. $0=-0.30-(61)+(62)+(76)-(79)-(88)+(89)$
26. $0=-2.00-(76)+(77)-(81)+(82)-(87)+(88)$
$28,0=-1.89-(82)+(84)-(86)+(87)-(90)+(91)$
27. $0=-0.47-(82)+(83)-(85)+(87)-(104)+(105)$
28. $0=+1.22-(85)+(86)-(91)+(92)-(103)+(105)$
29. $0=-2.61-(92)+(95)-(100)+(103)-(110)+(111)$
30. $0=-0.12-(100)+(101)-(108)+(111)-(116)+(118)$
31. $0=+2.94-(108)+(109)-(112)+(118)-(127)+(128)$
32. $0=-0.66-(101)+(102)-(112)+(116)-(125)+(128)$
33. $0=-0.55-(98)+(99)-(112)+(113)-(121)+(128)$
34. $0=-0.95-(96)+(99)-(121)+(126)-(131)+(133)$
35. $0=-0.08-(112)+(117)-(126)+(128)-(130)+(131)$

No.

$$
100.0=+18.7+2.76(8)-6.55(9)+3.79(10)-27.80(31)+1.62(32)+26.18(33)+1.85(40)-43.92(41)+42.07(42)
$$

$$
101.0=-11.6+27.80(31)-32.36(33)+4.56(34)+1.88(37)-8.01(38)+6.13(39)+43.92(41)-46.26(42)+2.34(43)
$$

$$
102.0=-2.6+5.32(35)-6.83(36)+1.51(37)-0.19(43)-4.91(44)+5.10(45)+1.28(53)-1.17(54)-0.11(55)
$$

$$
\text { 103. } 0=-1.4-0.43(51)-1.92(52)+2.35(53)+2.33(58)-7.79(59)+5.46(60)+4.65(66)-4.77(67)+0.12(68)
$$

$$
\text { 104. } 0=-3.8+2.95(56)-3.40(57)+0.45(58)+2.70(68)-5.58(69)+2.88(70)-0.14(71)-3.09(72)+3.23(73)
$$

$$
105.0=+6.0+2.92(62)-2.96(62 a)+3.47(73)-5.50(74)+2.03(75)+0.66(80)-4.85(80 a)+4.19(81)+0.04(63)
$$

$$
106.0=+3.5-4.05(61)+7.01(62)-2.96(62 a)-4.85(80 \mathrm{a})+8.29(81)-3.44(82)-2.56(87)+7.58(88)-5.02(89)
$$

$$
107.0=-7.9-4.17 \quad(82)+8.07(83)-3.90(84)-1.19(85)+2.47 \quad(86)-1.28(87)-0.93(90)+2.44 \quad(91)-1.51 \quad(92)
$$ $-3.49(103)+6.59(104)-3.10(105)$

$108.0=-1.1-0.92(92)+3.28(95)-2.36(98)-3.67(100)+6.31(101)-2.64(103)-1.28(108)+3.37(110)-2.09(111)$ $-3.22(113)+5.23(116)-2.01$ (118)
109. $0=-68.8-0.74(92)-105.90(98)+106.64(99)+12.90(101)-16.65(102)+3.75(103)+53.87(112)-56.84$ (113) +2.97 (116)
110. $0=+78.7-2.26(95)+105.90(98)-103.64(99)-4.45 \quad(108)+7.66 \quad(109)-3.21 \quad(110)-56.43 \quad(112)+56.74 \quad$ (113) -0.31 (118)
111. $0=-228.6-213.7(95)+216.0(96)-2.3(99)-1.0(121)+7.0(126)-6.0(127)+102.2(129)-3.4(131)-98.8(133)$
112. $0=+1.3+2.56(112)-6.23(117)+3.67(118)+6.84(126)-6.01(127)-0.83(128)+2.01(129)+1.35(130)-3.36(131)$

$$
\begin{aligned}
& \text { 39. } 0=+0.47-(93)+(96)-(133)+(135)-(136)+(141) \\
& \text { 40. } 0=-1.79-(115)+(117)-(130)+(135)-(136)+(138) \\
& \text { 41. } 0=-0.14-(123)+(126)-(131)+(135)-(136)+(139) \\
& \text { 42. } 0=+0.90-(114)+(115)-(138)+(140)-(142)+(146) \\
& \text { 43. } 0=+0.62-(93)+(94)-(140)+(141)+(142)-(148) \\
& \text { 44. } 0=-0.13-(134)+(135)-(136)+(140)-(142)+(144) \\
& \text { 45. } 0=-0.36-(122)+(123)-(139)+(140)-(142)+(147) \\
& \begin{array}{l}
\text { 46. } 0=-1.28-(132)+(134)-(144)+(145)-(150)+(152) \\
\text { 47. } 0=-0.22-(137)+(140)-(142)+(145)-(150)+(151)
\end{array} \\
& \text { 48. } 0=+0.19-(94)+(97)-(145)+(148)-(149)+(150) \\
& \text { 49. } 0=+1.39-(122)+(124)-(145)+(147)+(150)-(153) \\
& \text { 50. } 0=-1.70-(106)+(108)-(118)+(119)-(157)+(158) \\
& \text { 51. } 0=-0.70-(106)+(107)-(156)+(158)-(160)+(161) \\
& \text { 52. } 0=-0.44-(119)+(120)-(156)+(157)-(159)+(161) \\
& \text { 54. } 0=-0.67-(151-(154)+(155)-(165)+(166)-(171)+(173) \\
& \text { 55. } 0=+0.53-(162)+(163)-(164)+(166)-(171)+(172) \\
& \text { 56. } 0=-1.51-(166)+(167)-(170)+(171)-(181)+(182) \\
& \text { 57. } 0=-2.00-(169)+(170)+(179)-(182)-(187)+(188) \\
& \text { 58. } 0=+2.27-(167)+(168)-(174)+(175)-(180)+(181) \\
& \begin{array}{l}
\text { 59. } 0=-0.15-(175)+(176)-(179)+(180)-(186)+(187) \\
\text { 60. } 0=-1.74-(176)+(178)-(185)+(186)-(189)+(190)
\end{array} \\
& \text { 61. } 0=+0.03-(176)+(177)-(184)+(186)-(202)+(203) \\
& \begin{array}{l}
\text { 62. } 0=+1.69-(184)+(185)-(190)+(191)-(201)+(203) \\
63.0=-0.30-(183)+(184)-(198)+(199)+(200)-(203)
\end{array} \\
& \text { 64. } 0=+0.08-(191)+(192)-(197)+(198)-(200)+(201) \\
& \text { 65. } 0=+1.70-(192)+(193)-(195)+(197)-(208)+(209) \\
& \text { 66. } 0=+3.20-(192)+(194)-(196)+(197)-(210)+(211) \\
& \text { 68. } 0=+1.01-(205)+(207)-(212)+(213)-(221)+(222) \\
& \text { 69. } 0=-0.82-(204)+(205)+(216)-(222)-(228)+(229) \\
& \text { 70. } 0=-1.79-(213)+(214)-(216)+(221)-(227)+(228) \\
& \text { 71. } 0=+1.70-(204)+(206)-(223)+(229)-(235)+(237) \\
& \text { 72. } 0=+5.62-(214)+(215)-(223)+(227)-(234)+(237) \\
& \text { 73. } 0=+2.22-(216)+(217)-(223)+(228)-(236)+(237) \\
& \text { 74. } 0=+0.34-(217)+(220)-(233)+(236)-(238)+(240) \\
& \text { 75. } 0=+1.49-(223)+(226)-(233)+(237)-(239)+(240) \\
& \text { 76. } 0=+0.11-(219)+(220)-(238)+(241)-(243)+(244) \\
& \text { 77. } 0=+1.59-(225)+(226)-(239)+(241)-(243)+(245) \\
& \text { 78. } 0=+1.31-(232)+(233)-(240)+(241)-(243)+(246) \\
& \text { 79. } 0=+2.11-(218)+(219)-(244)+(248)-(250)+(251) \\
& \text { 80. } 0=+0.11-(224)+(225)-(245)+(248)-(250)+(252) \\
& \text { 81. } 0=+0.73-231)+(232)-(246)+(248)-(250)+(253) \\
& \text { 82. } 0=-0.94-241)+(242)+(243)-(248)-(249)+(250) \\
& \text { 83. } 0=-1.29-(230)+(231)-(253)+(254)-(255)+(258) \\
& \text { 84. } 0=-0.37-(247)+(248)-(250)+(254)-(255)+(257) \\
& \text { 85. } 0=-1.04-(254)+(255)-(260)+(262)-(263)+(264) \\
& \text { 86. } 0=-0.50-(261)+(262)-(263)+(265)-(274)+(275) \\
& \text { 87. } 0=+0.48-(259)+(260)-(264)+(265)-(274)+(276) \\
& \text { 88. } 0=+0.69-(265)+(268)-(273)+(274)-(277)+(278) \\
& \text { 89. } 0=+0.10-(267)+(268)-(277)+(280)-(281)+(282) \\
& 90.0=+0.37-(272)+(273)-(278)+(280)-(281)+(284) \\
& \text { 91. } 0=-0.44-(266)+(268)-(277)+(279)-(285)+(286) \\
& \text { 92. } 0=-0.19-(271)+(273)-(278)+(279)-(285)+(287) \\
& \text { 93. } 0=+0.01-(269)+(271)-(287)+(288)-(291)+(292) \\
& \text { 94. } 0=-1.53-(269)+(270)-(290)+(292)-(295)+(296) \\
& \text { 95. } 0=-1.80-(288)+(289)-(290)+(291)-(293)+(296) \\
& \text { 96. } 0=-0.33-(270)+(272)+(283)-(284)-(294)+(295)+(297)-(298) \\
& \text { 97. } 0=-641.3+207.1(16)-254.9(19)+3.0(20) \\
& \text { 98. } 0=+6.5+2.83(1)-2.37(2)-0.46(3)+1.15(11)-4.46(12)+3.31(13)+3.22(16)-4.99(17)+1.77(18) \\
& \text { 99. } 0=-0.4-0.19(6)-3.17(7)+3.36(8)+2.26(13)-4.54(14)+2.28(15)+2.65(21)-3.77(22)+1.12(23)
\end{aligned}
$$

No.
113. $0=+10.9+3.24(112)-5.80(115)+2.56(117)+3.77(130)-3.27(131)-0.50(135)+2.75(136)-12.68(138)+9.93(139)$
114. $0=+1.3-1.84(93)+1.86(96)-0.02(98)-6.55(113)+12.50(115)-5.95(117)+1.93(130)+3.57(133)-5.50(135)$
115. $0=-319.8+106.34(94)-108.15(95)+1.81(99)+7.10(121)-10.25(122)+3.15(127)+86.15(143)+3.05(147)$ $-89.20(148)$
116. $0=+219=-4.07(114)+7.74(117)-3.67(118)+48.20(129)-1.35(130)-46.85(134)-83.65(143)+85.61$ (144) -1.96 (146)
117. $0=-20.3-14.34 \quad(94)+16.23 \quad(96)-1.89 \quad(98)-12.03 \quad(113)+16.10 \quad(114)-4.07 \quad(117)+0.59 \quad(130)+33.70 \quad(133)$ -34.29 (134)
118. $0=+3.4+9.87(112)-25.03(114)+15.16(115)+12.48(122)-8.74 \quad(123)-3.74 \quad(128)+12.68$ (138)-17.24 (139) $+4.56(140)-2.33(142)-13.16(146)+15.49(147)$
119. $0=+7.8-2.40(93)+9.47(94)-7.07(97)-2.84(137)+5.48(140)-2.64(141)-8.31(149)+11.58(150)-3.27(151)$
120. $0=+26.5+16.23(94)-29.24(96)+13.01 \quad(97)+6.27 \quad(132)-39.97 \quad(133)+33.70 \quad(134)+5.84 \quad(144)-2.31 \quad$ (145) $-3.53(148)+8.31(149)-5.97(150)-2.34(152)$
121. $0=-2.8-5.41 \quad(122)+10.17 \quad(123)-4.76 \quad(124)-7.28 \quad(137)+10.12 \quad(139)-2.84 \quad(140)+0.79 \quad(142)+2.22 \quad$ (145) -3.01 (147)
122. $0=-1.9-4.56(106)+7.38(107)-2.82(108)-0.45(118)+3.52(119)-3.07(120)-1.25(156)+3.72(157)-2.47(158)$ $-3.53(159)+4.99(160)-1.46(161)$
123. $0=+10.6-4.20 \quad(154)+5.94 \quad(155)-1.74 \quad(156)-0.80 \quad(161)+3.29 \quad(162)-2.49 \quad(163)-5.76 \quad(164)+9.22 \quad$ (165) $-3.46(166)-0.06(171)+3.22(172)-3.16(173)$
124. $0=+11.9-1.02 \quad(166)+2.72 \quad(167)-1.70 \quad(168)-2.08 \quad(169)+5.64 \quad(170)-3.56 \quad(171)-3.34 \quad(174)+5.92 \quad$ (175) $-2.58(176)-2.63(186)+3.92(187)-1.29(188)$
125. $0=+10.4-6.63 \quad(176)+9.52 \quad(177)-2.89 \quad(178)-9.47 \quad(184)+10.59 \quad(185)-1.12 \quad(186)-0.30 \quad(189)+18.61 \quad(190)$ -18.31 (191)
126. $0=+18.8+4.00(183)-14.59(184)+10.59(185)+18.61(190)-21.84(191)+3.23(192)+0.63(197)-4.57(198)$ +3.94 (199)
127. $0=-6.8-0.86 \quad(192)+3.11 \quad(193)-2.25 \quad(194)-3.74 \quad(195)+5.87 \quad(196)-2.13 \quad(197)-0.58 \quad(207)+3.25 \quad$ (208) $-2.67(209)-4.60(210)+7.32(211)-2.72(212)$
128. $0=-21.2+5.36(204)-4.56(205)-0.80(207)+36.00(212)-44.22(213)+8.22(214)+4.04(227)-53.45(228)$ +49.41 (229)
129. $0=-91.2-5.36(204)+9.89(205)-4.53(206)+0.27(223)+49.14 \quad(228)-49.41 \quad(229)-79.73(235)+83.06(236)$ -3.33 (237)
130. $0=+4.6-4.78(212)+6.59(214)-1.81(215)+0.37(223)+3.65(227)-4.02(229)-2.13(234)+5.28(235)-3.15(237)$
131. $0=+11.2-1.75(216)+5.86(217)-4.11(220)-3.91(223)+4.71(226)-0.80(228)-0.95(233)+4.28(236)-3.33(237)$ $-3.18(238)+4.72(239)-1.54$ (240)
132. $0=-4.1-12.16(223)+18.46(225)-6.30(226)-11.99(232)+11.28(233)+0.71 \quad(237)-1.27(239)+23.50(240)$ $-22.23(241)$
133. $0=-22.2-13.89(217)+20.19(219)-6.30(220)-10.77(232)+11.28^{\circ}(233)-0.51(236)+0.09(238)+23.50(240)$ -23.59 (241)
134. $0=-118.3-401.2 \quad(218)+407.5 \quad(219)-6.3 \quad(220)+0.1 \quad(238)+3.1 \quad(241)-3.2 \quad(242)-3.1 \quad$ (249)+128.6 \quad (250) -125.5 (251)
135. $0=-15.2+0.81(231)-12.09 \quad(232)+11.28 \quad(233)+23.50 \quad(240)-26.66 \quad(241)+3.16 \quad(242)+3.10 \quad(249)-7.16 \quad(250)$ +4.06 (253)
136. $0=+287.5-164.9(223)+178.06(224)-13.16(225)-0.81(231)+0.10(232)+0.71(237)-1.14(245)+1.38(246)$ $-0.24(248)-4.38(250)+73.49(252)-69.11(253)$
137. $0=-85.5-3.16 \quad(241)+3.16 \quad(242)+0.85 \quad(243)-7.45 \quad(247)+6.60 \quad(248)-47.27 \quad(249)+47.27 \quad$ (254)-59.42 (255) +63.30 (256) -3.88 (257)
138. $0=+26.6+0.09(230)+11.19$ (232) -11.28 (233) $-23.50(240)+23.50 \quad(241)+3.49$ (243) -3.49 (247)-8.98 (256) +14.88 (257)-5.90 (258)
139. $0=+2.5-5.49(254)-1.78(255)-0.52(259)+2.30(260)+8.38(261)-2.89(262)-0.64(263)+3.02(264)-2.38(265)$ $-3.75(274)+6.98(275)-3.23(276)$
140. $0=-5.0-2.32(265)+4.54(267)-2.22(268)-2.45(272)+5.49(273)-3.04(274)-1.24(277)+371(278)-2.47(280)$ $-2.84(281)+3.94(282)-1.10(284)$
141. $0=-3.2-2.77(265)+4.63(266)-1.86(268)-1.86(271)+4.90(273)-3.04(274)-1.24(277)+4.01(278)-2.77(279)$ $-3.04(285)+4.28(286)-1.24(287)$
142. $0=-1.4-2.30(269)+4.12(270)-1.82(271)-2.42(287)+4.38(288)-1.96(289)-1.55(290)+3.50(291)-1.95(292)$ $-2.28(293)+5.11(295)-2.83(296)$
143. $0=-5.7-0.46(1)+1.42(3)-0.96(5)+0.19(6)-0.21(8)+0.02(10)-1.15(11)+1.15(13)+2.28(14)-2.28(15)$ $+1.77(17)-1.77(18)+0.99(20)+1.12(21)-1.12(23)-2.15(24)+2.15(25)+3.78(26)-3.78(27)-0.56$ (29) $+0.56(30)+5.32(35)-5.32(36)+0.42(37)-0.42(39)-2.40(40)+2.40(41)-0.19(43)+0.19(45)-3.58(46)$ $+3.58(47)-0.71(48)+0.71(50)+1.53(51)-1.53(52)+0.11(53)-0.11(55)+0.45(56)-1.51(58)+1.06(60)$ $+1.08(61)-1.08(62 a)-1.03(64)+1.03(65)-4.77(66)+4.77(67)+2.88(69)-2.88(70)+0.14(71)+0.33(73)$ $-0.47(75)-1.81(80)+1.81(80 a)+1.47(82)-1.47(84)+1.19(85)-1.19(86)-1.11(87)+1.11(89)-0.93(90)$ $+0.93(91)+1.32(93)-1.32(97)+0.83(100)-1.80(103)+0.97(105)+3.21(109)-5.31(110)+2.10(111)+3.24(121)$ $-2.72(124)-0.52(127)+2.28(137)-2.84(140)+0.56(141)+0.79(142)-0.79(145)-0.75(149)+0.75(153)$
144. $0=+10.9+1.32(93)-2.26(95)-1.32(97)+2.26(99)-1.14(106)+1.14(108)+3.21(109)-3.21(110)+0.31(112)$ $-0.31(118)-3.07(119)+3.07(120)+2.72(121)-2.72(124)-0.65(127)+0.65(128)+2.28(137)-2.84(140)$ $+0.56(141)+0.79(142)-0.79(145)-0.75(149)+0.75(153)-0.48(154)+0.48(156)+2.47(157)-2.47)(158)$ $+0.14(159)-0.14(161)-2.49(162)+2.49(163)+1.68(164)-2.70(166)+1.02(167)-2.08(169)+2.08(170)$ $+3.16(172)-3.16(173)+2.58(175)-4.13(176)+1.55(178)+0.45(179)-0.45(180)+0.18(181)-0.18$ (182) $-2.60(183)+2.60(185)+1.29(187)-1.29(188)+0.54(189)-0.54(190)-2.25(193)+2.25(194)-0.61(195)$ $+0.18(197)+0.43(199)-2.01(204)+2.01(206)+2.67(208)-2.67(209)+1.10(210)-2.91(212)+1.81(215)$ $-4.28(223)+3.91(226)+0.37(229)-0.81(231)+0.81(232)+2.13(234)-2.13(235)+1.54(239)-4.16$ (240) $+2.62(242)+0.24(246)-0.24(248)+1.14(249)-1.14(253)$
145. $0=-5.55-(6)+(10)-(11)+(15)+(18)-(40)+(43 a)$
146. $0=-5.92+(45 \mathrm{a})-(45 \mathrm{~b})-(46 \mathrm{a})+(50)-(66)+(70)-(71)+(75)-(80)+(84)-(90)+(9.4)$
147. $0=-0.10-(94)+(98)-(113)+(120)-(159)+(163)-(164)+(168)-(174)+(178)-(189)+(194)-(210)+(213)+(220)$ $-(221)-(238)+(242)-(249)+(262)-(263)+(268)-(277)+(280)-(281)+(283)$

ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS.
The corrections to observed directions resulting from the figure adjustments indicated by the preceding observation equations are as follows:

Table of corrections to observed directions.

Number of direction	Correction to direction	Number of direction	Correction to direetion	Number of direction	Correction to direction	Number of direction	Correction to direction
1	-0.040	52	$+0.556$	105	-0.197	160	-0. 266
2	+0.681	53	-0. 134	106	-0.203	161	-0.084
3	$+0.085$	54	-0.202	107	$+0.506$	162	+0.108
4	+0.736	55	-0. 327	108	+0.858	163	$+0.708$
5	-1.461	56	+0.452	109	-1. 110	164	-0.130
6	-1.075	57	-0.355	110	-0.703	165	-0.443
7	-0.142	58	-0.236	111	$+0.653$	166	-0.109
8	+0.114	59	-0.167	112	+0.214	167	+0.388
9	+0.807	60	+0.306	113	-0.086	168	+0.294
10	+0.297	61	+0.299	114	-0.033	169	-0.160
11	-1.160	62	$+0.431$	115	-0.280	170	-0.100
12	+0.187	62a	+0.051	116	+0.384	171	+0.663
13	-0.729	63	-0.369	117	-0.237	172	-0.491
14	+0.626	64	+0.123	118	-0.494	173	+0.088
15	+1.077	65	-0.535	119	+0.137	174	+0.135
16	+0.643	66	-0.707	120	$+0.396$	175	-0.954
17	+0.674	67	-0. 771	121	-0.311	176	$+0.038$
18	+0.643	68	+0.132	122	-0.118	177	+0.499
19	-1.976	69	+0.267	123	+0.415	178	+0.282
20	+1.478	70	$+1.079$	124	-0.340	179	$+0.453$
21	$+0.023$	71	-1.363	125	-0.195	180	$+0.490$
22	-0.210	72	+0.701	126	+0.243	181	-0.597
23	+0.481	73	+0.424	127	+0.285	182	-0.346
24	-0.059	74	+0.974	128	+0.021	183	$+0.370$
25	-0.235	75	-0. 736	129	-0.050	184	+0.616
26	+0.618	76	+0.105	130	-0.591	185	-0. 740
27	-0.094	77	+1.422	131	+0.162	186	+0.124
28	+0.051	78	-1.304	132	-0.231	187	-0.755
29	-0. 770	79	-0.224	133	$+0.554$	188	$+0.385$
30	+0.196	80	+0.782	134	+0. 103	189	-0.328
31	+0.494	80a	-0.518	135	+0.053	190	$+0.306$
32	-0.816	81	-1. 133	136	-0.514	191	+0.331
33	+0.200	82	-0.344	137	$+0.562$	192	+0.167
34	+0.122	83	+0.582	138	+0.589	193	+0.994
35	$+0.617$	84	+0.626	139	-0.095	194	-1.470
36	-0.024	85	+0.070	140	-0.237	195	+1.042
37	-0.009	86	+0.196	141	-0.305	196	+0.414
38	-0. 106	87	+0.035	142	-0.415	197	-0.526
39	-0.478	88	-0.070	143	$+2.026$	198	-0.181
40	-0.406	89	-0.231	144	-0.513	199	-0.748
41	-0. 261	90	-1.016	145	-0.144	200	$+0.376$
42	-0.381	91	$+0.060$	146	-0.243	201	+0.115
43	+0.008	92	-0.898	147	-0.447	202	-0.247
43 a	+0.891	93	+0.729	148	-0.264	203	-0.245
44	+0.169	- 94	$+0.335$	149	-0.291	204	$+0.696$
45	-0.020	95	-0.800	150	-0.475	205	$+0.657$
45a	+0.514	96	+0.550	151	$+0.273$	206	-0.126
45 b	-0.514	97	+0.447	152	+0.102	207	$+0.865$
46	-0.123	98	$+0.038$	153	+0.391	208	-0.566
46 a	-0.514	99	+0.555	154	$+0.293$	209	-1.525
47	-0.100	100	-0.966	155	-0.479	210	$+1.079$
48	+0.244	101	+0.237	156	+0. 192	211	$+0.457$
49	-0.275	102	+0.511	157	-0.007	212	-0.285
50	+0.767	103	+0.191	158	+0.001	213	-0.777
51	+0. 109	10.4	+0.224	159	-0.465	214	$+0.477$

Table of corrections to observed directions-Continued.

Number of direction	Correction to direction	Number of directuon	Correction to direction	Number of direction	Correction to direction	Number of direction	Correction to direction
215	-0.952	240	+0.435	260	-0.365	280	-0.036
216	+0.342	241	-0.440	261	+0.376	281	-0.183
217	-0.027	. 242	-0.213	262	$+0.550$	282	+0.050
218	+0.123	243	+0.150	263	-0.503	283	+0.610
219	$+0.095$	244	+1.064	264	+0. 294	284	-0.478
220	-0.069	245	-0.753	265	+0.115	285	-0.082
221	+0.132	246	-0. 161	266	-0.128	286	+0.177
222	-0.595	247	-0.300	267	$+0.300$	287	-0.166
223	+1.634	248	0.000	268	-0.078	288	-0.173
224	+0.044	249	-0.146	269	-0.167	289	+0. 244
225	+0.210	250	+0.416	270	$+0.360$	290	-0.409
226	-0.237	251	-0.603	271	+0.068	291	+0.324
227	-1.022	252	-0.613	272	+0.331	292	+0.086
228	-0. 276	253	-0. 339	273	$+0.361$	293	-0.325
229	-0.353	254	+0.358	274	-0.287	294	+0.182
230	+0.113	255	-0.314	275	-0.579	295	-0.173
231	+0. 282	256	+0.619	276	-0.086	296	+0.325
232	+0.146	257	-0.187	277	-0.082	297	-0. 182
233	+0.022	258	+0.110	278	+0.068	298	+0.182
234	$+1.303$	259	+0.136	279	+0.050		
235	-1.341						
236	-0. 291						
237	-0. 233						
238	$+0.419$						
239	-0. 201						

The maximum correction to an observed direction on the California-Washington arc is $2^{\prime \prime} .03$, the correction at station Willamette south base on station Mary.

The probable error of an observed direction is

$$
d=0.674 \sqrt{\frac{\Sigma v^{2}}{c}}
$$

in which Σv^{2} is the sum of the squares of the corrections to directions, and c is the number of conditions.

The probable crror of an obscrved direction for this are is $\pm 0^{\prime \prime} .53$. Referring to the table on pages 63 and 64 of Spccial Publication No. 11, where the 63 sections of primary triangulation in the United Statcs have becn arranged according to accuracy, this triangulation would belong in the less accurate portion between numbers 52 and 53 .

ACCURACY AS INDICATED BY CORRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES.

The correction to cach angle is the algebraic sum of the corrections to two directions. In_{n} order to make it possible to study the corrections to the separate angles they are shown in the following table for cvery triangle in the primary schemc. There are also shown the crrors of closures of the triangles, the corrceted spherical angles and the spherical excess for each triangle. The plus sign prefixed to the crror of closure of a triangle indicates that the sum of the angles is less than 180° plus the spherical excess. The spherical cxcess is a convenient indication of the sizc of the triangle, since it is proportional to the area.

Table of triangles.

Table of triangles-Continued.

Station	Correction to angles from $\underset{\substack{\text { figure adjust- } \\ \text { ment }}}{\text { and }}$	Error of closure of triangle	Corrected spherical angles	Spherical excess
	"	"	- ' "	"
Boliver	-0.47		1012528.13	
Spur	$+0.27$	-0.91	49 49 29	8.67
Bally	-0.71		290840.00	
Boliver	-0.37		531448.17	
Mears	-0.08		1015644.75	4.74
Bally			244831.82	
Gazelle astronomic station	-1.03		1174604.99	
Soda	-0.39	-2.33	175519.97	3.55
Spur	-0.91		441838.59	
Soda	${ }^{+0.02}$		30 26 54.44 95 06 45	
Spur Boliver	-0.03 +0.02	+0.01	950645.77 54 6	9.06
Sterling	-0.07		605144.93	
Soda	+0.37	+0.11	955640.59	6.55
Spur	-0.19		231141.03	
Sterling	-0.19		925529.19	
Soda	+0.34	-0.49	652946.14	7.34
Boliver	-0.64		213452.01	
Sterling	-0.12		320344.26	
Spur	+0.16	-0. 59	715504.74	9.85
Boliver	-0.63		760120.85	
Rust	-0.06		234859.22	
Soda	+0.52	-0.23	1083707.80	5.14
Sterling	-0.69		473358.12	
Onion	+0.07		420416.83	
Rust	+0.84	+1.95	86.3946 .37	11.53
Soda	$+1.04$		511608.33	
Onion	+0.54		630926.39	
Rust	$+0.90$	+1.89	625047.15	13.20
Sterling	+0.45		535959.66	
Onion	+0.47		210509.56	
Soda	-0. 52	-0. 29	572059.47	6.81
Sterling	-0.24		1013357.78	
Black	$+2.06$		593158.41	
Rust	$+0.95$	+3.13.	742506.69	10.82
Onion	+0.12		460305.72	
White	+0.49		495851.35	
Black Rust	+1.79 +0.81	+3.09	93 36 36 12 36.63 .63	7.22
White	-0.16		1135502.14	
Onion	-0.81		314825.10	
White	-0.66		635610.78	
Rust	+0.14	-1.21	381227.45	9.05
Onion	-0.69		775130.82	
Scott	+1.08		595829.42	
Black	+0.55	+0.83	311313.63	3.34
White	-0.80		884820.29	
Fairview	-1.30		491503.08	
Black	-1.16	-2.88	771940.94	5.77
White	-0.42		532521.75	

Table of triangles-Continued.

Table of triangles-Continued.

Station	Correction to angles from figure adjustment	Error of closure of triangle	Corrected spherical angles	Spherical
	"	"	- , "	"
Twin	+0.22		1352427.18	
Roman	+0.27	$+0.66$	91610.16	2. 76
Peterson	+0.17		351925.42	
Twin	-0.27		725756.98 .	
Mary	-1.96	-2.94	$25 \quad 2043.55$	2.42
Peterson	-0.71		814121.89	
Ridge	-0.54		801833.04	
Mary			572447.22	3. 14
Peterson	-0.26		421642.88	
Ridge	+0. 21		1092946.64	
Mary			320403.68	2.04
Twin	+0.04		382611.72	
Ridge	+0.75		291113.60	
Peterson	-0.45	+0.08	392439.01	1. 32
Twin	-0. 22		1112408.71	
Ridge	+1. 14		1015742.40	
Peterson	-0.15	+0.48	371722.20	3.62
Spencer	-0.51		404459.02	
Ridge	$+0.39$		7246 28.80	
Twin	+0. 55	$+0.95$	$\begin{array}{lllll}65 & 20 & 14.69\end{array}$	2.41
Spencer	+0.01		415318.92	
Ridge	-0.60		1774344.56	
Spencer	+1.35			0. 12
Mary			11314.90	
Rauch	+1. 11		280157.01	
Ridge	+0.64	+1.79	1323003.11	2.08
Peterson	+0.04		192801.96	
Rauch	+0.42		372723.69	
Ridge	-0.11	+0.14	1031849.51	1.88
Twin	-0.17		391348.68	
Rauch	+0. 21		1005007.24	
Ridge	-0.50	-0.47	303220.71	1. 33
Spencer	-0.18		483733.38	
Rauch	-0.68		925 26.69	
Peterson	-0.49	-1.57	195637.05	1.12
Twin	-0.40		1503757.38	
Rauch	-0.90		724810.23	
Peterson	-0.19	-1.78		2.87
Spencer	-0.69		892232.40	
Rauch	-0.21		632243.55	
Twin	+0. 73	$+0.34$	260626.02	1. 86
Spencer	-0.18		903052.29	
Willamettc south base	-2.54		31628.28	-
Mary			23425.61	0.20
Ridge	-0.15		1740906.31	
Willamettc south base	-2. 27		502155.35	
Mary			5959512.83	5. 75
Peterson	-0.46		693857.57	
Willamctte south base	-2.47		58.0643 .97	
Mary			3438 29.29	3. 90
Twin	$+0.40$		871450.64	

Table of triangles-Continued.

Station	Correction to angles from figure adjust. ment	Error of closure of triangle	Corrected spherical angles	Spherical excess
	"	"	- "	"
Willamette south base	-2.29		1721759.38	
Mary			12110.71	0.23
Spencer	-1.13		62050.14	
Willamette south base	+0.27		470527.07	
Ridge	+0.69	+0.76	1053220.65	2.41
Peterson	-0.20		272214.69	
Willamette south base	+0.07		545015.69	
Ridge	-0.06	+0.37	$\begin{array}{llll}76 & 21 & 07.05\end{array}$	1.66
Twin	$+0.36$		484838.92	
Willamette south base	$+0.25$		1690131.10	
Ridge	-0.45	$+0.02$	33438.25	0.15
Spencer	+0.22		72350.80	
Willamette south base	-0.20		74448.62	
Peterson	-0.25	-0.31	1202 24. 32	0.57
Twin	+0.14		1601247.63	
Willamette south base	-0.02		1215604.03	
Peterson	+0.06	-0.26	95507.52	1.36
Spencer	-0.30		480849.81	
Willamette south base	+0.19		. 1141115.42	
Twin	+0.19	$+0.60$	- 163135.77	0.90
Spencer	+0.22		491709.71	
Willamette south base	-0.15		1001157.65	
Spencer	-0.40	-0.62	411342.58	0.38
Rauch	-0.07		383420.15	
Willamette south base	-0.10		904631.25	
Rauch	$+0.28$	$+0.13$	621547.09	0.80
Ridge	-0.05		265742.46	
Willamette south base	+0.17		1375158.32	
Rauch	-0.82	-0.90	341350.09	1. 13
Peterson	-0.25		75412.72	
Willamette south base	-0.03		1453646.94	
Rauch	-0.14	$+0.36$	244823.40	0.58
Twin	$+0.53$		93450.24	
Willamette north base	-0.18		141327.56	
Spencer	+0.11	-0.19	163531.34	0.23
Willamette south base	-0.12		1491101.33	
Willamette north base	$+0.56$		470218.55	
Spencer	-0.28	-0.59	574913.93	1.03
Rauch	-0.87		7508 28.55	
Willamette north base	+0.39		1521540.41	
Spencer	-0.10	$+1.07$	91140.55	0.38
Ridge	+0.78		183239.42	
Willamette north base	$+0.75$		324851.00	
Willamette south base	$+0.27$	+0. 22	1103701.02	0.42
Rauch	-0.80		363408.40	
Willamette north base	$+0.58$		1380212.86	
Willamette south base	+0.37	+1. 28	195029.77	0.30
Ridge	$+0.33$		220717.67	
Willamette north base	-0.17		1051321.86	
Rauch	+1.08	$+1.19$	254138.69	0.68
Ridge	+0.28		490460.13	

Table of triangles-Continued.

Station	Correction to angles from figure adjustment	Efror of closure of triangle	Corrected spherical angles	Spherical excess
	"	"	- "	"
Willamette north base	-0.68		1093054.81	
Twin	-0.03	-0.60	374728.15	1. 33
Spencer	+0.11		324138.37	
Willamette north base	$+0.29$		9813134.78	
Ridge	-0.39	$+0.48$	541349.38	0.70
Twin	$+0.58$		273246.54	
Willamette north base	-0.12		1563313.36	
Twin	-0.75	-1.53	114102.14	0.50
Rauch	-0.66		114545.00	
Willamette north base	-0.87		1234422.36	
Twin	-0. 22	-1.39	211552.38	0.66
Willamette south base	-0.30		345945.92	
Yam	$+0.01$		$\begin{array}{llll}40 & 28 & 18.33\end{array}$	
Peterson	+0.63	$+1.70$	775710.58	7. 24
Mary	+1.06		613438.33	
Hult	$+0.20$		3048 29. 22	
Peterson	$+0.89$	$+1.44$	1122514.38	5.90
Mary	$+0.35$		364622.30	
Hult	+0.38		860819.71	
Peterson	+0.26	+0.44	34.28 03. 80	4.89
Yam	-0.20		592341.38	
Hult	+0.18		551950.49	
Mary	+0.71	$+0.70$	244816.03	6.23
Yam	-0.19		995159.71	
Barnes	$+0.58$		334050.52	
Hult	+0.19	$+0.67$	$69^{1} 1105.47$	5. 30
Yam	-0. 10		$77 \quad 0809.31$	
Larch	-0.31		200436.88	
Hult	+0.79	$+1.15$	1092550.31	6. 84
Yam	+0.67		502939.65	
Larch	+0.02		512537.01	
Hult	+0.60	-0.53	401444.84	8. 23
Barnes	-1. 15		8819 46. 38	
- Larch	$+0.33$		312060.13	
Yam	-0.77	-1.01	$2638 \quad 29.66$	6. 69
Barnes	-0.57		1220036.90	
Star	+0. 25		$85 \quad 1017.26$	
Larch	+0.50 +0.76	$+1.51$	$\begin{array}{llll}64 & 13 & 06.92 \\ 30 & 36 & 38 & 95\end{array}$	3. 13
Barnes	+0.76		303638.95	
Davis	+1.14		$\begin{array}{llll}58 & 32 & 10.74\end{array}$	
Star	+0. 80	$+2.00$	760401.99	4.50
Barnes	+0.06		$45 \quad 2351.77$	
Red	-1.09		321450.24	
Larch	-0.09	-2.27	$\begin{array}{llll}51 & 09 & 49.05\end{array}$	2. 58
Star	-1.09		963523.29	
Red	$+0.99$		391014.91	
Star Davis	+0.04 -0.88	$+0.15$	1021017.46 38 39 39	3. 74
Davis	-0.88		383931.37	
Lam	0.00		1001834.68	
Red	$+0.46$	-0.03	173719.78	2. 52
Davis	-0.49		620408.06	

Table of triangles-Continued.

Station	Correction to angles from flgure adjustment	Eirror of closure of triangle	Corrected spherical angles	Spherical
	"	"	- "	"
Len	+0.64		753057.72	
Red	+0.24	$+1.74$	5339 27. 53	5.98
Davis	$+0.86$		504940.73	
Len	$+0.66$		815817.02	
Red	-0.22	+0.08	360207.75	3.92
Lam	-0.36		615939.15	
Len	$+0.03$		62719.31	
Davis	-1.36	-1.69	111427.32	0.46
Lam	-0.36		1621813.83	
Toutle	+0.35		$\begin{array}{llll}73 & 22 & 12.76\end{array}$	
Len	-0.17	-0.08	330633.71	1. 44
Lam	-0.26		733114.97	
Toutle	-0.22		1012732.92	
Len	-0. 14	-1.47	$\begin{array}{lllllllllll}39 & 33 & 53.02\end{array}$	2. 62
Davis	-1.11		385836.68	
Toutle	-0.57		$\begin{array}{llll}28 & 05 & 20.16\end{array}$	
Lam.	$+0.62$	$+0.30$	1241031.20	0.72
Davis	+0.25		274409.36	
Huck	-0.96		381640.54	
Len	$+0.83$	-1.70	674132.41	3. 79
Toutle	-1.57		740150.84	
Bel	-0.62		243428.86	
Len	-1.64	-3.20	1104719.98	4. 17
Toutle	-0.94		443815.33	
Bel	-1.36		$\begin{array}{llll}62 & 19 & 13.29\end{array}$	
Len	-2.47	-5.26	$\begin{array}{llll}43 & 05 & 47.57\end{array}$	4. 73
Huck	-1.43		$74 \quad 3503.87$	
Bel	-0.74		374444.43	
Toutle	-0.63	-3.76	292335.51	4.35
Huck	-2.39		1125144.41	
Hal	-0.73		6545 23. 14	
Bel	-0.49	-1.01	32052.78	0.23
Huck	$+0.21$		1105344.31	
Rain	+0.75		273038.90	
Bel	+1.25	$+1.79$	142133.64	1.42
Hal	-0.21		1380748.88	
Rain	$+0.67$		295702.52	
Bel	$+0.76$	+1.60	174226.42	1. 70
Huck	+0.17		1322032.76	
Rain	-0.08		22623.62	
Hal	+0.94	+0.82	1560647.98	0.05
Huck	-0.04		212648.45	
Hurst	-2.64			
Hel Huck	-0.67 +0.99	-2.32	$\begin{array}{lll}49 & 20 & 41.62 \\ 85 & 59 & 26.13\end{array}$	4.08
Huck	$+0.99$		855926.13	
Hurst	-1.59		$46 \quad 1043.42$	
Bel	-0.18	-1.61	$45 \quad 5948.84$	3.96
Hal	+0. 16		S7 4931.70	
Hurst	-1.53		782726.41	
Rel	-1.43	-5.62	$\begin{array}{llll}31 & 38 & 15 . & 20 \\ 69 & 5.1 & 22 & 57\end{array}$	4. 18
Rain	-2.66		695422.57	

Table of triangles-Continued.

Station	Correction to angles from figure adjust ment	Error of closure of triangle	Corrected spherical angles	Spherical
	"	"	,	"
Hurst	+1.05		13047.09	
Huck	-0.78	-0. 30	245418.18	0.11
Hal	-0. 57		$15334 \quad 54.84$	
Hurst	+1. 11		334730.08	
Huck	-0. 82	-1.70	462106.63	1. 80
Rain	-1.99		995125.09	
Hurst	+0.06		321642.99	
Hal	-0. 37	-2. 22	501817.18	1. 64
Rain	-1.91		972501.47	
Pen	-0.62		332816.06	
Hal	-0.41	-1.07	772446.43	1. 89
Rain	-0.04		690659.40	
Pen	+0.01		871249.13	
Hal	-0.04	-0. 34	2706 29. 25	1. 64
Hurst	-0.31		654043.26	
Pen	+0.63		534433.07	
Rain	-1.87	-1. 49	281802.07	1. 39
Hurst	-0. 25		975726.25	
Tacoma south base	+0.91		691039.96	
Pen	-0.86	-0.11	922002.30	1.11
Hal	-0.16		182918.85	
Tacoma south base	-0.90		10239 44. 25	
Pen	-0.24	-1.59	585146.24	1. 00
Rain	-0.45		182830.51	
Tacoma south base	-0.31		1641803.76	
Pen	-0.88	-1.31	50713.16	0.05
Hurst	-0.12		103443.13	
Tacoma south base	-1. 82		332904.28	
Hal	-0.25	-2. 55	585527.58	1.78
Rain	-0.48		873529.92	
Tacoma south base	-1.22		950723.80	
Hal	+0.12	-1.54	83710.40	0.58
Hurst	-0.44		761526.38	
Tacoma south base	+0.59		613819.51	
Rain	-1.42	-1. 21	94931.56	0.44
Hurst	-0.38		1083209.37	
Tacoma north base	$+0.56$		341331.71	
Pen	+0.23	+0.94	334127.66	0.35
Tacoma south base	+0.15		1120500.98	
Tacoma north base	-0. 46		$\begin{array}{llll}35 & 11 & 10.18\end{array}$	
Pen	-0. 63	-1. 28	1260129.96	1. 49
Hal	-0. 19		184721.35	
Tacoma north lase	-0.47		595236.64	
Pen	-0.01	-0.76	923313.90	1.93
Rain	-0.28		273411.39	
Tacoma north base	-0. 19		613718.50	
Pen	-0.65	-1.10	384840.82	0.58
Hurst	-0. 26		793401.26	
Tacoma north base	-1.02		05738.47	
Tacoma south base	-1.06	-2.11	1784419.06	0.03
Hal	-0.03		01802.50	

Table of triangles-Continued.

Table of triangles-Continued.

Station	Correction to angles from figure adjustment	Error of closure of triangle	Corrected spherleal angles	Spherleal excess
	"	"	- "	"
Gull	-0. 29		$98 \quad 5622.48$	
Bos	-0.11	-0.37	402608.89	0.06
Wash	+0.03		403728.69	
Gull	-0.53		622408.32	
Kin	+0.19	-0.96	$4217 \quad 21.03$	0.08
Wash	-0.62		751830.73	
Dron	+0.26		343930.32	
Bos	+0.13	+0.44	965139.17	0.06
Kin	+0.05		482850.57	
Dron	-0.08		941134.11	
Bos	-0.02	+0.19	371643.40	0.07
Wash	to. 29		483142.56	
Dron	-0.34		593203.79	
Kin	-0.24	-0.94	371511.69	0.08
Wash	-0.36		831244.60	
Smelt	-0.24		471217.88	
Dron	-0.01	-0.01	410220.60	0.05
Wash	+0.24		914521.57	
Neill 2	+0. 15		424421.73	
Dron	+0.40	$+0.26$	$88 \quad 0219.21$	0.06
Wash	-0.29		$49 \quad 1319.12$	
Neill 2	+0.65		792247.67	
Dron	+0. 42	$+1.80$	465958.62	0.06
Smelt	+0.73		$53 \quad 3713.77$.	
Neill 2	+0.50		363825.94	
Wash	+0.53	$+1.53$	423202.45	0.05
Smelt	+0.50		1004931.66	
Gull			770957.49	
Wash	-0.03		570732.99	0.07
Neill 2			$4542 \quad 29.59$	
Tacoma astronomic station	+0.37		404619.69	
Neill 2			263508.08	0.05
Gull			1123832.28	

The maximum correetion $\left(-2^{\prime \prime} .73\right)$ to any angle is to the angle at Scott between the stations Fairview and Blaek. The mean error of an angle $a=\sqrt{\frac{\Sigma \Delta^{2}}{3 n}}$, in which $\Sigma \Delta^{2}$ is the sum of the squares of the elosing errors of the triangle and n is the number of triangles in the seheme, is for this arc $+0^{\prime \prime} .97$. The average elosing error of a triangle for the 148 triangles is $1^{\prime \prime} .22$. There are 11 triangles with elosing errors greater than $3^{\prime \prime} .00$ and the maximum is $6^{\prime \prime} .35$.

ACCORD OF BASES.

There are three bases whieh serve to fix the length in the triangulation discussed in this report.

The Yolo base in the Thirty-ninth Parallel triangulation fixed the length of the line Snow Mountain West-Mount Helena and also the other two sides of the triangle Snow Mountain WestMarysville Butte-Mount Helena. The Willamette and Taeoma bases furnish two important tests of the reeuraey of the triangulation.

In solving the normal equations in each section of the figure adjustment the length equation was, as usual, assigned to the last place, so that after all the conditions relating to triangle closures and ratios of length had been satisfied the discrepaney in length became known. In the following table the discrepancies developed between bases are given in terms of the seventh place of logarithms and are also expressed as ratios. A plus sign before the diserepaney expressed in terms of logarithuns means that the first base mentioned is longer as measured than as eomputed through the intervening triangulation from the second base mentioned.

ACCORD OF AZIMUTHS.

Laplace azimuths were computed at three stations of this triangulation, viz, at Gazelle astronomic, Eugene astronomic, and Tacoma astronomic. It was so certain that the Laplace azimuth at each of these stations was more accurate than the geodetic azimuth computed through the triangulation that the existing discrepaney was distributed by means of three azimuth equations. These azimuth equations were assigned positions next preceding the length equations in the solution of the normal equations, so that after all the conditions relating to elosures of triangles and ratios of sides had been satisfied, the discrepancy in azimuth became known. At Gazelle astronomic the discrepaney in azimuth amounted to $3^{\prime \prime} .14$, the Laplace azimuth being larger than the United States standard azimuth by that amount. At Eugene astronomic the discrepancy in azimuth amounted to $2^{\prime \prime} .98$, the Laplace azimuth being again greater than the geodetic azimuth computed through the triangulation.

Similarly, at Tacoma astronomic the discrepancy in azimuth ameunted to $3^{\prime \prime} .95$ and again the Laplace azimuth was larger than the geodetic azimuth computed through the triangulation. It is evident therefore that if the United States standard azimuth at the Thirty-ninth Parallel is without twist, this entire arc has developed a twist amounting to the sum of these three diserepancies, a total of $10^{\prime \prime} .07$.

The nearest Laplace stations in the Thirty-ninth Parallel triangulation are at Salt Lake City and at Ogden, ${ }^{1}$ where the corrections to the United States standard value are $-2^{\prime \prime} .85$ and $-2^{\prime \prime} .74$, respectively. The nearest Laplace station in the California triangulation southward is at San Diego, where the correction to the United States standard value is $-8^{\prime \prime} .77$. From these corrections it might be inferred that the United States standard azimuth at Mount Helena requires also some correction of a minus sign, between $2^{\prime \prime} .8$ and $8^{\prime \prime} .8$, and the total twist of $10^{\prime \prime} .07$ would then be increased. Additional Laplace stations nearer the junction at Mount Helena might add to our knowledge, but the azimuth observations made at Mount Tamalpais in 1859 and again in 1882 showed that a movement of the earth had taken place between those dates which was large enough to inerease the azimuth nearly eight seconds, ${ }^{2}$ and the line Mount Helena-Snow Mountain west is not too far from the disturbed area, to declare with certainty that its azimuth may not have been affected by the same cause.

TWIST 1N TRIANGULATION.

The errors which are to be expected in eomputed geodetic azimuths are very mueh smaller than those which actually develop when tested by the Laplace azimuths. The expected error in this California-Washington are is only $2^{\prime \prime} .3$, as computed by a formula involving the minimum number of lines with which the azimuth may be earried (19 in this ease), the probable error of

[^2]an obscrved dircetion and the number of conditions and directions. ${ }^{1}$ The amount actually developed was $10^{\prime \prime} .1$. In the California arc, of which the California-Washington arc is a continuation, the error in azimuth expected at its extremity, near San Diego, was $\pm 2^{\prime \prime} .9$, even thougl , the azimuth was carried through 1,250 miles (2,000 kilometers) in the transcontinental triangulation and 500 miles (800 kilometers) through the California arc. The actual accumulated error in azimuth found at San Diego was $8^{\prime \prime} .8$. At San Diego the correction to reducc to Laplace or true azimuth was minus, whereas at Tacoma the required corrcetion was plus.

Confronted with these values for twist, the writer suggests that they may be caused by the unequal heating of the theodolite by the sun, even though the theodolite is protected from the direct rays. On triangulation extending in a north and south direction, as this arc does, where the observations were mainly made in the late afternoon, the west side of the instrument is undoubtedly warmer than the east side and the resulting angles opening to the west and to the east should be subject to systematic errors of opposite signs, and therefore twist would develop. If this theory is correct, an cast and west arc should develop only a small amount of twist, well within the limits for the expected error. Ares on which the observing was done at night should develop no twist exceeding that allowed by the probable error, for the temperature of the east and west sides of the instrument would be cqual. It is expected that this theory will be tested in the near future on all of the arcs of primary triangulation now existing in the United States.

EXPLANATION OF POSITIONS, LENGTHS, AND AZIMUTHS, AND OF THE UNITED STATES STANDARD DATUM.

The lengths, as already fully explaincd in connection with the adjustments, all depend upon the Yolo, Willamette, and Tacoma bases. The lengths as given are all reduced to sea level. If the actual length of a line simply reduced to the horizontal is desired, it may be obtained with all the accuracy ordinarily needed by adding to the sea-level length as given a correction $=$ (length of line as given) $\left[\frac{\text { mean elevation of the two ends of the line in meters }}{6370000}\right]$. The maximum value of this correction does not exceed $\frac{1}{2400}$ for the length of any portion of the triangulation here published. The maximum error made in the use of the above approximate formula for the correction does not exceed $\frac{{ }^{800000}}{}$ for the length of any portion of this triangulation.

The positions-that is, the latitudes, longitudes, and azimuths-need special explanation.
All of the positions and azimuths have been computed upon the Clarke spheroid of 1866, as expressed in meters, which has been in use in the United States Coast and Geodetic Survey for many ycars.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specificd station and a standard azimuth of a line from that station. For convenience, the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The primary triangulation in the United States was commenced at various points and existed at first as a number of detached portions, in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioncd the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California in the latitude of San Francisco, in the vicinity of Santa Barbara Channel, and in the vicinity of San Diego. With the lapse of time these scparate pieces have cxpanded until they have touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in 1899, joins all of the detached portions mentioned and makes them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this is a very heavy piece of work and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the superintendent adopted what is now known as the United States Standard Datum, and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had been used for geographic purposes in New England and along the Atlantic eoast to North Carolina, nor those in the States of New'York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in The Transeontimental Triangulation and in The Eastern Oblique Are of the United States, publications which deal primarily with the purely scientific problem of the determination of the figure of the earth and which were prepared for publication before the adoption of the new datum.

As the adoption of such a standard datum is a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the United States Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of geographic positions (latitudes and longitudes), of accurately determined elevations, and of distances and azimuths, to officers connected with the United States Coast and Geodetic Survey and to other organizations; third, the determination of the figure of the earth. For the first and second objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the area covercd, nor that the adopted geodetic datum should be absolutely the best that can be derived from the astronomic observations at hand. It is simply desirable that the refercnce spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now or may become available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one spheroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they be rigidly adhered to, without change, for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are therefore concerned in this problem. However, in marked contrast to the statements made in preeeding paragraphs, it is desirable in dealing with this problem that, with each new important accession of data, a new spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard Datum was adopted with reference to positions furnished for geographic purposes, but has no reference to the problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in the publications of the Survey,
ineluding its eharts; and, third, it was desirable, other things being equal, to adopt that datum which allowed the maximum number of positions already in the office registers to remain unehanged, and therefore necessitated a minimum amount of new eomputation. These consideration led to the adoption as the United States standard of the datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far as North Carolina.

An examination of the station errors available in 1903, on the United States Standard Datum, at 246 latitude stations, 76 longitude stations, and 152 azimuth stations, seattered widely over the United States from Maine to Louisiana and to California, indieated that this datum approaches elosely the ideal with which the algebraie sum of the station errors of each class would be zero. ${ }^{1}$

The adopted United States Standard Datum, upon which the positions and azimuths given in this publieation depend, may be defined in terms of the position of the station Meades Ranch as follows:

	\circ	\prime	$\prime \prime$
ϕ	$=39$	13	26.686
λ	to Waldo	98	32
	$=75$	28	14.506

Points are then said to be upon the United States Standard Datum when they are connected with the station Meades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866, as expressed in meters, starting from the above data.

The prineipal lists of geographie positions heretofore published on the United States Standard Datum throughout the whole United States are contained in the following publications of the United States Coast and Geodetie Survey and of other organizations:

Appendix 8 of the Report for 1885, positions in Massachusetts and Rhode Island; Appendix 8 of the Report for 1888, positions in Conneeticut; Appendix 8 of the Report for 1893, positions in Pennsylvania, Delaware, and Maryland; Appendix 10 of the Report for 1894, positions in Massachusetts; Appendix 6 of the Report for 1901, positions in Kansas and Nebraska; Appendix 3 of the Report for 1902, positions in Kansas, Missouri, Nebraska, and Colorado; Appendix 4 of the Report for 1903, positions in Kansas, Oklahoma, and Texas; Appendix 9 of the Report for 1904, positions in California; Appendix 5 of the Report for 1905, positions in Texas; Appendix 3 of the Report for 1907, positions in California; Appendix 5 of the Report for 1910, positions in California; Appendix 4 of the Report for 1911, positions in Nebraska, Minnesota, North Dakota, and South Dakota; Appendix 5 of the Report for 1911, positions in Texas; Appendix 6 of the Report for 1911, positions in Florida; Speeial Publication No. 11, positions in Texas, New Mexico, Arizona, and California; in Appendix EEE, pages 2905-3031, Annual Report of the Chief of Engincers, 1902, positions of points on or near the Great Lakes; in the publieations of the Massachusetts Harbor and Land Commission; and in various bulletins of the United States Geological Survey.

TABLE OF POSITIONS.

In the tables of positions the latitude and longitude of each point are given on the United States Standard Datum (see p. 31), also the length and azimuth of each line observed over, whether in one or both ways. Along with the latitude and longitude of each point the lengths and azimuths are given of lines from that point to other points of the triangulation. No lengths or azimuths are repeated, and for a given line the length and azimuth will generally be found opposite the position of the last mentioned of the two stations involved.

For the convenience of the draftsman a column of "seeonds in meters" is given, in which is placed the length (in meters) of each small are of a meridian or parallel corresponding to the

[^3]seconds of the given latitnde or longitude. To facilitate further the use of the tables, a column is givelı of the logarithms of the lengths. It must be remembered that it is the logarithm which is derived first from the computation, the lengths given in this table being then derived from the corresponding logarithms.

The rule followed in recent publications of this Office has been to give latitudes and longitudes to thousandths of seconds for all points the positions of which are fixed by fully adjusted triangulation. Points, the positions of which are given to hundredths of secouds only, are marked by footnotes as being without check (observed from only two stations) or checked by verticals only.

In the columns giving azimuths, distances, and logarithms of distances, the accuraey is indicated to a certain extent by the number of decimal places given, it being understood that in each case two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, while in a few eases some doubt may be cast on the third figure from the right.

These tables may be conveniently consulted by using as finders the seven sketches at the end of this appendix, and the index on pages 75 to 78 . In the third column of the index will be found for each point a reference to the page on which its description is given, in the fourth column the number of the sketch on which it appears, and in the fifth column the page on which its elevation above sea level will be found.

For the convenience of those who wish to convert the distances given in this table or the elevations given later on from meters into feet the following conversion table is here inscrted:

Meters	Feet	Feet	Meters
1	3. 280833	1	0. 3048006
2	6. 561667	2	0.6096012
3	9.842500	3	0.9144018
4	13. 123333	4	1. 2192024
5	16. 404167	5	1. 5240030
6	19. 685000	6	1. 8288037
7	22.965833	7	2. 1336043
8	26. 246667	8	2. 4384049
9	29. 527500	9	2.7432055
10	32. 808333	10	3. 0480061

Station	Latitude and longitude	Sec. onds in meters	Azimuth	Back azimuth	Tostation	Distance	Logar rithm
Principal points	- , "		- , 1	- ${ }^{\text {a }}$			
Mount Helens 1876	$38 \quad 40 \quad 11.080$	341.6	2455618.019	672203.416	Mount Lola	213873.23	5.33015644
	1223757.817	1397.7	3240134.822	1442818.913	Mount Diablo	107728.96	5. 03233246
			2692015.615	905857.203	Round Top	229100.84	5. 3600267
Marysville Butte 1876	391222.361	689.6	$50 \quad 03 \quad 28.78$	2293249.63	Mount Fielena	92269.81	4.9650596
	1214911.540	276.9	$103 \quad 3030.51$	2325451.87	Snow Mountain west	83129.44	4.9197549
Snow Mountain west1892	392238.452	1185.8	3520602.01	1721045.86	Mount Helens	79298. 64	4.8992657
	$12245 \quad 28.619$	685.0	180303.98	1974926.49	Ross Mountain	101704.73	5.0073412
Snow Mountain east 1876	392302.008	61.9	2832949.08	1040512.82	Marysville Butte	82741.44	4. 9177231
	1224504.847	116.0	3523448.70	1723917.60	Mount Helena	79942.78	4.9027792
			380415.69	2180400.61	Snow Mountain west	922.76	2.9650893
Kent 1904	395801,752	54.0	3164136.16	1371641.00	Marysville Butte	115540.16	5. 0627330
	1224412449	342.8	10401.62	1810329.44	Snow Mountain east	64768.60	4.8113645
$\begin{aligned} & \text { Lyons } \\ & 1904 \end{aligned}$	401806.101	188.2	71850.85	1871154.82	Marysville Butte	122611.05	5.0885296
	1213821.007	406.1	432427.26	2224141.92	Snow Mountain east	139446. 43	5. 1444074
			684227.63	2475959.25	Kent	100696. 76	5.0030155
${ }_{1904}$	403611.839	368.3	2910016.70	1113938.03	Lyons	92064.79	4. 9640936
	1223900.370	.8.7	60126.68	1855803.60	Kent	71026.97	4. 8514233
lound 1904	404819.882	613.3	3341002.02	1542227.03	Lyons	62103.91	4.7931190
	1215726.873	629.8	354046.89	2151027.70	Kent	114242.48	5.0578276
			691422.18	2484716.01	Bally	62695.07	4. 7972334
Spur1904	412414.648	451.9	3394245.15		Roun	70823.50	4.8501774
	1221454.491	1265.7	205617.28	2004028.60	Baily	95128.60	4.9783111

Station	Latitude and. longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logar rithm
Principal points-Contd.	- ' 11		- "	${ }^{\circ}{ }^{\prime \prime}$		Meters	
Mears 1904	410729.538	911.3	2081508.51	282301.90	Spur	35221.98	4.5468137
	1222652.260	1219.1	3103015.44 162816.81	1304932.84 196 20	Round	54422.85 60376.39	4. 7357813 4.7808671
$\underset{1904}{\text { Boliver (Cal.) }}$	411535.575	1097.5	2500114.88	702217.82	Spur	47264. 02	4.6745307
	1224646.811	1089.8	2981154.84	1182501.56	Mears	31618.27	4.4999381
			3512643.00	1713148.60	Bally	73724.24	4.8676103
$\begin{aligned} & \text { Soda (Oreg.) } \\ & 1904 \end{aligned}$	420354.670	1686.8	3451952.95	1652903.58	Spur	75875.33	4. 8801006
	1222841.648	957.5	154647.39	1953446.02	Boliver	92897.87	4.9680058
Gazelle astronomic station 1904	413136.248	1118.3	1831335.19	31512.92	Soda	59900. 25	4.7774286
	1223108.281	192.0	3005940.18	1211024.99	Spur	26386. 99	4. 4213899
$\underset{1904}{\text { Sterling (Oreg.) }}$	420103.864	119.2	2610009.26	811633.53	Soda	34213.03	4.5341916
	1225311.434	263.1	3215154.19	1421722.56	Spur	86401.66	4.9365221
			3535538.45	1735954.01	Boliver	84640.63	4.9275789
Rust 1904	423710.930	337.3	95858.92	1895341.33	Soda	62533.30	4. 7961114
	1222050.147	1142.9	334758.14	2132611.14	Sterling	80293.46	4.9046802
$\begin{gathered} \text { Onion } \\ 1904 \end{gathered}$	424131.762	980.1	2760252.70	963845.29	Rust	72802.92	4.8621488
	1231346.921	1068.1	3180709.53	1383733.00	Soda	93169.15	4.9692721
			3391219.09	1592611.48	Sterling	80071.78	4.9034795
Black 1904	430937.503	1157.3	3505907.43	1710351.98	Rust	60812.13	4. 7839902
	1222748.236	1089.8	503105.83	2295946.98	Onion	81362.20	4.9104227
- White 1904	430714.428.	445.3	2642410.96	844744.04	Black	46910.01	4. 6712655
	1230214.761	333.7	3142302.31	1345112.74	Rust	79232.11	4. 8989012
			181913.10	1981121.87	Onion	50126.59	4.7000681
Scott 1904	432221.758	671.5	2953615.65	1160057.67	Black	54169.15	4. 7337520
	1230350.517	1137.3	$355 \quad 3445.07$	$175 \quad 35 \quad 50.67$	White	28083. 48	4. 4484509
Falrview1904	433510.459	322.8	3415937.72	1620724.98	Black	49726.19	4. 6965851
	1223908.622	193.4	311440.80	2105849.21	White	60413.38	4. 7811331
			544043.54	2342343.86	Scott	40889.41	4.6116108
Yellow 1904	433248.849	1507.5	2653703.17	860804.66	Fairview	60770.94	4. 7836960
	1232409.568	214.9	3050641.39	$125 \quad 2039.92$	Scott	33550.08	4.5256936
			3275053.15	1480555.44	White	55853.69	4.7470519
Spencer1903	435900.715	22.1	3205705.87	$14115 \quad 27.90$	Fairview	56716.00	4. 7537056
	1230541.248	919.3	271028.02	2065741.38	Yellow	54479.49	4.7362330
$\begin{array}{r} \text { Roman } \\ 1903 \end{array}$	435445.041	1390.1	2610453.49	813139.25	Spencer	52195.22	4. 7176307
	1234414.987	334.5	2920905.10	1125406.43	Fairview	94618. 63	4.9759767
			3261738.82	1463132.08	Yellow	48763. 89	4. 6880983
$\begin{gathered} \text { Mary } \\ 1903 \end{gathered}$	443017.369	536.1	3273754.62	1475702.02	Spencer	68458.53	4. 8354276
	1233305.732	126.6	124713.03	1923926.37	Roman	67471.43	4. 8291199
$\begin{array}{r} \text { Peterson } \\ 1903 \end{array}$	443038.293	1182.0	95019.67	1894501.69	Spencer	59436.11	4. 7740504
	1225805.537	122.3	430228.28	2223017.06	Roman	90538.25	4. 9568321
			892424.75	2685952.49	Mary		4.6664822
Twin_{1905}	441931.401	969.3	105711.34	1905321.59	Spencer	38685.83	4.5875519
	1230011.426	253.2	521707.57	2314627.22	Roman	74563.88	4.8725285
			1144337.75	2942036.03	Mary	48015.44	4. 6813809
			1874134.73	74302.86		20772.15	4.3174815
Rldge 1905	441602.051	63.3	1463352.16	3262439.71	Mary	31664.07	4.5005667
	1231955.940	1240.7	2265225.20	470741.87	Peterson	39658.11	4.5983320
			2560338.80	761726.03	Twin	27042.78	4. 4320513
			3285007.61	1490002.67	Spencer	36807.85	4.5659404
Rauch 1903	440050.965	1573.0	1792237.92	3592228.32	Ridge	28122.31	4.4490510
	1231942.158	939.1	2072434.93	273939.91	Peterson	62214.07	4.7938886
				$\begin{array}{r}37 \\ 100 \\ 02 \\ 29 \\ 29.36 \\ \hline\end{array}$	Twin	43271.64 19042.44	4. 63632034
Willamette south base	440406.905	213.1	614415.53	2413825.01	Rauch	12751.68	4. 1055673
	1231117.933	399.1	1491418.50	3285905.33	Mary	56484.64	4. 7519303
			1523046.78	3322445.86	Ridge	24893.17	4.3960802
			1993613.85	194527.19	Petcrson	52166.74	4.7173937
			207 321 32102.47	272847.11 1413611.87	Twin	32144.90 12063.61	4. 5071120 4.0814722
Wliamette north base 1905	441137.076		250909.08	2050416.61	Rauch	22023.74	4.3428910
	1231241.921	931.0	1302230.94	3101728.19	Ridge	12636.24	4.1016178
			2283555.72	484439.50	Twin	22169.74	4.3457607
			3380650.53	1581143.21	Spencer	25150.86	4.4005529
			3522018.07	1722116.65	Willamette south base	14019.38	4.1467287
$\begin{gathered} \text { Seavies } 2 \\ \hline \end{gathered}$	440624.663	761.2	282103.50	2081712.93		15565.01	
	1230009.593	213.3	740622.54	2535837.54	Willamette south base	15464.74	4.1893425
Pisgah 1908	440019.836	612.2	765439.61	2564913.38	Spencer	10746.63	4.0312723
	1225751.568	1148.8	1112400.79	2911440.27	Wllamette south base	19274. 05	4.2849731
			1644506.65	3444330.67	Scavies 2	11671.80	4.0671380
Eugene astronomlc station 1894	440330.319	935.8	2324715.95	525057.77	Seavles 2	8904.00	3.9495852
	1230528.438	633.0	2995842.95	1200400.50	${ }^{\text {P }}$ 'isgah	11750.21	4.0700458
			15754.04	1815745.14	Spencer	8326.01	3.9204384

Station	Latitudo and longitudo	Seoonds in meters	Azimuth	$\begin{aligned} & \text { Back } \\ & \text { azimuth } \end{aligned}$	To station	Distance	Logarithm
Principal points-Contd.	- ' "		- ' "	- ' ${ }^{\prime}$			
Yam	450344.903	1388.9	3471412.38	1672135.33	Peterson	62564.86	4. 7984079
	1230834.292	750.3	274230.71	2072514.16	Mary		4.8445219
$\begin{aligned} & \text { Hult }_{1903} \end{aligned}$	445748.151	1480.2	220026.69	2014939.13	Peterson	54230.41	4. 3342429
	1224245.524	997.8	524855.91	2321330.19	Mary	83742.39	4.9229453
			1080846.40	2875031.00	Yam	35658.40	4.5521619
$\underset{1903}{\text { Barnes (Oreg.) }}$	453136.526	1127.6	3571816.35	1771951.87	Hult	62680.70	4. 7971754
	1224500.031	0.7	305906.87	2104221.69		60103.71	4. 7789013
$\begin{aligned} & \text { Larch (Oreg.) } \\ & 1903 \end{aligned}$	453159.615	1840.4	380116.39	2173436.71	Hult	80147.83	4.9038918
	1220513.018	282.5	580553.27	2372051.35	Yam	97962.33	4.9910591
			892653.40	2685820.97	Barnes	51802.18	4. 7143480
$\begin{aligned} & \text { Star (Wash.) } \\ & 1906 \end{aligned}$	454447.711	1473.0	3333331.93	1534000.32	Larch	20471.61	4. 4227804
	1221416.246	351.1	584349.19	2382151.02	Barnes	46811.84	4.6703557
$\underset{1906}{\text { Davis (Wash.) }}$	455937.452	1156.3	3143226.39	1344751.18	Star	39075.00	4. 5918990
	1223544.667	961.1	130437.13	1925759.25	Barnes	53266.40	4. 7264533
$\begin{aligned} & \text { Red (Wash.) } \\ & 1900 \end{aligned}$	455607.249	223.8	250117.31	2044949.37	Larch	49234.42	4.0927096
	1214912.344	265.9	571607.55	2365808.64	Star	38644.78	4.5870908
			962622.46	2755255.02	Davis	60473.22	4.7815631
$\begin{aligned} & \text { Warren (Oreg.) } \\ & 1903 \end{aligned}$	454833.229	1025.9	2255207.84	460354.50	Davis	29504.23	4. 4698843
	1225208.679	187.4	2962615.40	1165949.58	Larch	68230.27	4. 8339771
			3432922.08	1633428.69	Barnes	32731.73	4.5149689
$\operatorname{Lam}_{1906}$	460757.903	1787.8	2933559.64	1140342.24	Red	54305.40	4. $7348+30$
	1222742.295	908.0	335434.32	2134846.96	Davis	18607.75	4.2006939
1.en $_{1906}$	461845.173	1394.8	3295216.76	1500549.99	Red	48420.72	4. 6850313
	1220800.508	10.9	452314.48	2250314.29	Davis	50309.34	4. 7016486
			515033.78	2313620.49	Lam	32263.10	4. 5087061
Toutle 1905	461710.419	321.7	2643901.27	845707.49	Len.	32288.32	4. 5090454
	1223302.971	63.6	3380114.03	1580505.52	Lami	18392.59	4. 2646430
			60634.19	1860437.60	Davis	32096.06	4.5144954
Huck 1905	464245.136	1393.8	3322533.37	1523839.90	Len	50110.83	4.6999316
	1222604.593	97.6	104213.91	1003710.43	Toutle	48221.32	4.6532391
Bel	464704.983	153.9	155253.95	1954427.47			
	1215622.841	484.6	402722.81	2200045.94	Toutle	72585.28	4.8608486
			781207.24	2575029.50	Huck	38661.55	4.5872792
Hal_{1905}	464352.344	1616.3	2611035.73	813300.02	Bel	39612.33	4.5978304
	1222708.201	174.1	$32655 \quad 58.87$	1465645.18	Huck	2476.21	3.3937882
Rain_{1905}	465007.065	218.1	2752154.89	955433.66	Bel	57237.74	4. 7576825
	1224109.422	199.7	3025233.79	1230246.85	Hal	21267.75	4. 3277217
			3051857.41	1252956.74	Huck	23553.23	4.3720505
1lurst 1905	470502.549	78.7	3070742.31	1273248.86	Bel	54863.28	4. 7392818
	1223044.966	948.5	3514738.64	1715103.36	Huck	41723.617	4. 6203×25
			3531825.73	1732104.03	Hal	39491.49	4.5965035
			253508.72	2052732.32	Rain	30643.15	4.4863335
${ }^{\text {Pen }}{ }_{1905}$	470205.064	156.4	203448.68	2002733.28	Ilal	36029.17	4. 55666543
	1221711.732	247.7	540304.74	2334534.39	Rain	37635. 66	4.5755995
			1074737.81	2873742.47	Hurst	18016.34	4. 25560667
Tacoma south base1905	470438.837	1199.3	2924820.30	1125450.97	Pen	12223.72	4. 0572032
	1222605.422	114.4	15900.20		Hal	38514.80	4.5856276
			${ }^{35} 2804.55$	2151703.88	Rain	33016.51	4.5187312
			970624.06	2770239.34	Hurst	5942.41	3. 7739623
$\begin{aligned} & \text { Tacoma north base } \\ & 1905 \end{aligned}$	471109.189	283.8	3262952.90	1463618.03	pen	20138.56	4. 3040283
	1222558.206	1225.5	04324.61	1804319.32	Tacoma south base	12055.570	4.0811877
			14103.08	1814011.93	Hal	50568.14	4.7038770
			26 28 28 07 1 1.39	20611123.00 20803 1	Rain Hurst	43468.90 12834.17	4. 6381786 4.1083677
lurn 1905	471350.673	1564.9	3162507.53	1362752.88	Tacoma north base	6881.62	3.8376905
	1222943.535	915.7	3235405.60	1440316.62	Pen	26941.63	4. 4304238
			3445316.94	1645556.86	Tacoma south base	17650.12	4.2467477
			43234.29	1843149.25	Ilurst	16360.54	4.2137976
$\mathrm{Km}{ }_{1905}$	471402.319	71.6	133016.14	1932931.38	Tacoma north base	5498.45	3. 7402404
	1222457.219	1203.6	863643.07	2663312.88	Burn	6033.54	3. 7805720
Wash 1905	471614.398	444.6	3080603.35	1280904.85	Kin	6606.58	3.8199767
	1222904.374	91.9	3372501.77	1572718.42	Tacoma north base	10206. 74	4.0088869
			103052.80	1903024.04	Burn	4514.25	3.6545858
Bos_{1905}	471559.493	1837.2	335432.01	2135307.11	Kin	4359.53	3. 6394393
	1222301.599	33.6	932927.78	2732501.31	Wash	7639.85	3.8830851
Gull 1891	471752.574	1623.6	3135329.85	1335536.67	Bos	5035.48	3.7020410
	1222554.219	1139.2	3502544.00	170 232647325.88	Kin	7211.04	3.8579978
${ }_{1905}$							
	471800.812	25.1	3104339.16	1304611.18	Bos	5739.79	3. 7588960
	1222628.511	599.0	3452309.48	1652416.54	Kin	7611.11	3.8814482
			445513.27	2245318.75	Wash	4639.82	3.6605016

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Hincipal points-Contd.							
Smelt	471746.283 1223128.575	1429.3 600.4	$\begin{array}{llll}265 & 53 & 53.35 \\ 313 & 06 & 11.23\end{array}$		Dron Wash	6320.14 4151.58	3. 8007266 3. 6182138
${ }_{1905}^{\text {Nell } 2}$	471955.014 122 29	1699.0 608.1		132 175 179 212 212 16.48 .63 9.57	Dron Wash Smelt	$\begin{aligned} & 5177.06 \\ & 6832.69 \\ & 4702.78 \end{aligned}$	3. 7140833 3. 8345920 3. 6723549
Tacoma astronomic station 1892	471547.911 1222651.446	1479.6 1081.6	$\begin{array}{lll} 156 & 34 & 15.80 \\ 197 & 20 & 35.49 \end{array}$	$\begin{array}{r} 3363220.05 \\ 1721 \quad 17.53 \end{array}$	$\begin{aligned} & \text { Neill } 2 \\ & \text { Gull } \end{aligned}$	$\begin{aligned} & 8317.79 \\ & 4033.36 \end{aligned}$	3.9200079 3. 6056668
Supplementary points.							
$\begin{aligned} & \text { Mount St. John }{ }_{1904}^{1} \end{aligned}$	392603.17 1224132.14	97.8 768.7	1761631 2881910	3561448 10852	Kent Marysville Butte	59296.6 79376.0	4. 773030 4.899689
$\underset{1904}{\text { Corning tower }}$	39 122 10 10 44.784	1257.6 1044.9			Kent Lyons Marysville Butte	47923.97 61958.90 85868.67	4. 6805528 4. 7921037 4.9338347
$\underset{1908}{\text { Corning astronomic station }}$	$\begin{array}{r} 395540.48 \\ 1221044.92 \end{array}$	$\begin{aligned} & 1248.5 \\ & 1066.6 \end{aligned}$	2472410	672411	Corning tower	23.41	1.36933
Mount Linn, top of peak 1904	400212.617	389.1	1951714.5	152507.8	Bally	65228.9	4. 814440
	1225111.855	281.0	253 44 315 09.8 16	743109.3 1362554.9	Lyons ${ }_{\text {Larysville Butte }}$!	107523.9 127977.0	5. 03151505 5.107132
$\begin{aligned} & \text { Lassen Peak } \\ & 1904 \end{aligned}$	402918.614 1213015.513	57.1 365.4	105033.3 285628.7 613103.3	190 288 208 51 240 24.4 4.3	Marysville Butte Lyons Kent	$\begin{array}{r} 144911.5 \\ 23693.5 \\ 119851.7 \end{array}$	$\begin{aligned} & 5.161103 \\ & 4.374630 \\ & 5.078644 \end{aligned}$
Bully Choop 1904	403320.346 1224558.884	627.6 1385.4	241 211 286 39.9 357 49 40.6 40.2	$\begin{array}{r}61 \\ 1064612.1 \\ 106 \\ 177 \\ 50 \\ \hline 17.1\end{array}$	Bally Lyons Kent	11176.0 99722.2 65392.2	4.048286 4.998792 4.815526
Redding courthouse 1908	403458.278 1222344.281	1797.6 1041.5	$\begin{array}{r}96,0613.3 \\ 23607 \\ \hline 8.1\end{array}$	$\begin{array}{rrrr}275 & 56 & 17.2 \\ 56 & 24 & 53.6\end{array}$	Bally Round	$\begin{array}{r} 21661.1 \\ 44531.8 \end{array}$	$\begin{aligned} & 4.335680 \\ & 4.648670 \end{aligned}$
Red ling astrenomic station 1904	403419.354 12223 38.684	597.0 909.8		$\begin{array}{rrrr}279 & 01 & 09.1 \\ 353 & 44 & 37.8 \\ 55 & 03 & 18.7\end{array}$	Bally Redding courthouse Round	$\begin{array}{r} 21951.3 \\ 1207.8 \\ 45104.3 \end{array}$	4. 341461 3. 082013 4.654218
Redding south base 1908	403428.152 1222324.911	$\begin{aligned} & 868.3 \\ & 585.9 \end{aligned}$	500258.9	2300249.9	Redding astronomlc station	422.6	2.625930
			$\begin{array}{r}91 \\ 15353 \\ 153 \\ \hline 14.2\end{array}$	$\begin{array}{llll}271 & 28 & 50.5 \\ 333 & 53 & 01.6\end{array}$	Hill ${ }_{\text {Redding }}$ courthouse	351.4 1034.9	$\begin{aligned} & 2.545762 \\ & 3.014915 \end{aligned}$
Redding north base 1908	$\begin{array}{r}403442.167 \\ 12223 \\ \hline 23.340\end{array}$	1300.7 643.0		$\begin{array}{ll} 172 & 28 \\ 20045 & 24.2 \\ 56.6 \end{array}$	Redding south base Redding astronomic station	436.1 752.6	$\begin{aligned} & 2.639542 \\ & 2.876541 \end{aligned}$
			3414758.0 1417801.8	214 321164959.9	Hill	515.4 637.0	$\begin{aligned} & 2.712126 \\ & 2.804122 \end{aligned}$
Hm_{1908}	403428.446 1222339.845	877.4	3542627.4	$\begin{array}{lllll}174 & 26 & 28.2 \\ & 53 & 31 & 55.1\end{array}$	Redding astronomic station	281.8	2.449913
			1733158.0	3533155.1		926.1	2.966656
$\begin{gathered} \text { Crater Peak } \\ 1904 \end{gathered}$	404154.374 1213705.274	1677.2 123.8	21929.9 832610.3	182 18 262 45 40.7 0.1	Lyons Bally	44091.3 87920.3	4. 644353 4.944089
			1242311.6	3035035.4	Mears	84433.2	4.926513
Thompson Peak ${ }^{1}$ 1904	405637.67 1225219.33	1162.0 452.1	225 240 2658 158	$\begin{array}{r}45 \\ 60 \\ 60 \\ 43 \\ \hline\end{array}$	Spur	73149.8 40949.0	$\begin{aligned} & 4.864213 \\ & 4.612243 \end{aligned}$
Saw Tooth 1904	405821.995 1230005.396	678.4 126.2	232 35 06.1 249 52 324 01 324.8 15.2		Spur Mears Bally	$\begin{array}{r} 79280.8 \\ 49517.9 \\ 50626.0 \end{array}$	4. 899168 4. 694762 4. 704374
Mount Eddy, cairn 1904	411912.449 1222842.470	384.0 987.8	$\begin{array}{r}751454.3 \\ 180 \\ \hline 0047.0\end{array}$	$\begin{array}{rrrrr}255 & 02 & 58.9 \\ 0 & 00 & 47.6\end{array}$	Boliver	26103.3 82750.8	4.416695 4.917772
			2440437.5	641344.6	Spur	21384.1	4.330090
Black Butte, cairn 1904	${ }_{11} 42200.307$	${ }^{9.5}$	1482023.9	$\begin{array}{llll}327 & 5852.5 \\ 321 & 50\end{array}$		85107.9	4.929970
	1222049.836	1160.6	1410726.9	3210037.6	Gazelie astronomic station	22841.3	4.358721
			2431908.0 1720230.6	63 $\begin{array}{rrr}23 & 03.0 \\ 3515716.6\end{array}$	Spur	$\begin{array}{r} 9240.3 \\ 78335.2 \end{array}$	$\begin{aligned} & 3.965684 \\ & 4.893957 \end{aligned}$
Mount Shasta, top of 1904	412433.797	1042.7	3432501.5	. 1633421.4	Round	69943.8	4.844749
	1221138.482	893.8	232105.6	${ }_{203}^{203} 0308.3$	Bally	97392.4	4. 9888525
			$\begin{array}{llll}34 & 11 & 48.5 \\ 71 & 28 & 59.0\end{array}$	213 213145.8 2510546.5	Mears	38089.6 51760.1	4.580807 4.713995
			1394603.1	3191824.3	Sterling	88806.4	4.948444
			1620635.9	3415514.8	Soda ${ }^{\text {a }}$	76578.7	4.884108
China Mountain, not the cairn 1904	412241.420	1277.8	41229.0	1840932.3	Bally	86279.2	4.935906
	1223431.102	722.7	${ }_{52}^{5233} 09.7$	2322503.9 8	Boliver	21572.8 76730.5	4.333907
			$\begin{array}{llll}186 & 00 & 38.1 \\ 263 & 53 & 09.2\end{array}$	60430.6 840007.2	Soda	76730.5 27486.9	$\begin{aligned} & 4.884968 \\ & 4.439125 \end{aligned}$
Russian Peak, north point 1904	414659.106	1823.4	1834419.2	34653.2	Sterling	81770.4	4.912596
	1225703.164	73.6	25653 280 2807 10.8	772131.2 1001422.5	Spur	60306.8 14575.5	$\begin{aligned} & 4.780366 \\ & 4.163622 \end{aligned}$

1 Checked by vertical angles only.

Station	Latitudo and iongitudo	Seconds in meters	Azimuth	$\begin{gathered} \text { Back! } \\ \text { azimuth } \end{gathered}$	Tostation	Distance	1.ogerithm
Supplementary points-Continued.							
Russian Peak, south point ${ }^{1}$	411658.70	1810.8	2565300	772051	Spur	${ }_{\text {Meter }}$	4. 780398
1904	1223703.24	75.4	2922538	1124531	Mcars	45701.9	4. 650934
Marble Mountain 1904	$\begin{array}{rr} 4134 & 46.625 \\ 12305 & 27.947 \end{array}$	$\begin{array}{r} 1438.4 \\ 647.4 \end{array}$	1991135.3	191946.2	Stering	51540.5	4. 712199
			2230900.2	433331.4	Soda	7470.1	4.870229
			2851226.0	1054555.8	spur	73017.5	4.863427
Little Shasta 1904	$\begin{array}{r} 414314.240 \\ 1221318.490 \end{array}$	$\begin{aligned} & 439.4 \\ & 427.4 \end{aligned}$	423004.4	2220753.9	Bollyer	69201.4	4.840115
			1210602.3	3003925.2	Stering	642999.7	4.808209
			1510027.3	3305010.8	Soda	43789.9	4641374
Goose Nest, Lali treo (Cal.) 1904	$\begin{array}{r} 414858.928 \\ 1221419.005 \end{array}$	$\begin{array}{r} 1818.0 \\ 438.8 \end{array}$	360353.7	2155242.6	Gazelle astronomic station	39747.9	4.598314
			361945.5	2155813.8	Boliver	76540.3	4.883890
			$\begin{array}{llll}144 & 21 & 42.8 \\ 112 & 48 \\ 3\end{array}$	324 292 22 22	Soda Stering	34039.0 58217.6	4.531997 4.765054
Preston Peak (Cai.)	415007.93	244.7	1981015	182538	Onion	100218.3	5.000977
	123639.82	918.8	2510855	713758	Sterling	63415.7	4.802197
$\begin{gathered} \text { Greyback (Oreg.) } \\ 1 \text { you } \end{gathered}$	420637.101121841.721	$\begin{array}{r} 1144.7 \\ 958.5 \end{array}$	1855539.3	55858.1	Onion	64982.4	4.812796
			210 286 21	310601.1 106254.9	Blaek Sterling	135820.7 36655.3	5.132966 4. 564137
$\begin{aligned} & \text { Pilot Rock } \\ & 1904 \end{aligned}$	420151.653	$\begin{array}{r} 1593.7 \\ 829.8 \end{array}$	120801.3	1915915.8	Boliver	87578.8	4.942399
	12233 36.073		865917.2	2664610.4	Sterling	27080.5	4.432656
			2404159.1	604516.4	Soda	7762.2	3.889986
			3392826.6	1594053.0	Spur	74302.4	4.871003
Siskiyou ${ }^{\text {d }}$	420344.11	1361.0	1512426	3310535	Onion	79806.8	4. 902040
1904	1224549.09	1128.7	2690650	891818	Soda	23625.0	4.373372
Kerby ${ }^{1}$	421314.81	456.9	1994951	195912	Onion	55688.7	4.745767
1904	1232736.84	844.9	2434838	643341	Rust	101757.6	5.007567
Ashland Peak, cairn1904	$\begin{array}{r} 420452.547 \\ 1224257.867 \end{array}$	1621.3	1481412.4	3275325.9	Onion	79960.0	4.902873
		1330.0	2064839.6	270334.1	Rust	67086.5	4.826435
			2750614.9	951548.7	Soda	19763.9	4. 295873
			3322950.9	1524831.8	Spur	84676.5	4.927763
			32037.4	1831805.3	Boliver	91380.6	4.960854
$\begin{array}{r} \text { Wagner } \\ 1904 \end{array}$	$\begin{array}{r} 420705.737 \\ 1224624.287 \end{array}$	$\begin{aligned} & 177.0 \\ & 558.0 \end{aligned}$	1493840.8	3292013.1	Onion	73992.2	4. 869186
			1921058.1	122934.1	Black	118526.6	5. 073816
			2120435.7	322149.6	Rust	65838.1	4.818477
			2832819.0	1034011.4	Soda	25122.6	
$\begin{gathered} \text { Aspen Peak } \\ 1904 \end{gathered}$	4218512.286122	$\begin{array}{r} 1767.6 \\ 284.6 \end{array}$	492340.7 1142207.9	229 207 203 35 3 3	Soda	42675.5 102819.1	4.630179
				2933547.8	Onion	102819.1	5.012074
			1474045.0	3273011.8	Rust	39970.8	4.601743
Mount Pitt 1904	$\begin{array}{r} 422641.964 \\ 1221854.365 \end{array}$	$\begin{aligned} & 1294.8 \\ & 1242.5 \end{aligned}$	174510.0	1973835.2	Soda	44283.2	4.646239
			1102328.0	2894620.7	Onion	79960.0	4.902873
			1712217.4	3511614.7	Black	80395.0	4.905332
			1721527.2	3521409.0	Rust	19586.5	4.291956
$\begin{aligned} & \text { Lost Peak }{ }_{1004} \end{aligned}$	423050.921220842.90	1571.2	1025337	2820935	Onion	91166.2	4. 959834
		979.3	1251926	3051114	Rust	20313.9	4.307793
Central Point astronomie station 1904	$\begin{array}{r} 42 \quad 2351.581 \\ 1225623.451 \end{array}$	1591.7	2425629.8	632031.3	Rust	54593.6	4. 7371413
		536.3	3135645.8	1341522.8	Soda	530i5. 7	4. 7248137
Central Point latitude station	$\begin{array}{r} 42 \underset{4}{43} 51.512 \\ 122 \quad 56 \\ \hline 23.265 \end{array}$	$\begin{array}{r} 1589.6 \\ 532.1 \end{array}$	11641	29641	Central Point astronomic station	4.77	0.678
Union Peak 1903	$\begin{array}{r} 424953.546 \\ 1221321.078 \end{array}$	1652.2	233040.6	2032535.9	Rust	25054.5	4.409163
		478.7	794219.8	2590118.0	Onion	83885.9	4.923489
			1573138.4	3371358.9	Fairview	90829.7	4.958228
$\begin{aligned} & \text { Mount Scott } \\ & 1904 \end{aligned}$	$\begin{array}{r} 425524.019 \\ 1220055.549 \end{array}$	$\begin{array}{r} 741.2 \\ 1259.7 \end{array}$	$\begin{array}{llll}38 & 57 & 11.5 \\ 75 & 54 & 57.5\end{array}$	$\begin{array}{llll}218 & 43 & 40.3 \\ 255 & 05 & 26.9\end{array}$	Rust Onion	43304.8 102589.1	
			1255747.4	3053926.7	Onlack	102501.1 45013.3	$\begin{aligned} & 5.011101 \\ & 4.653341 \end{aligned}$
$\begin{gathered} \text { Liao Rock } \\ 1904 \end{gathered}$	$\begin{array}{r} 425708.096 \\ 1221006.336 \end{array}$	$\begin{aligned} & 249.8 \\ & 143.0 \end{aligned}$	214013.7	2013256.4	Rust	39734.3	4.599165
			715652.6	2511335.6	Onion	91471.1	4.961284
			1050545.2	2843010.1	White	73249.6	4.864805
			1340004.6	313 3304049.6 4.3	${ }_{\text {Fairy }}$ Black	33351.2	4.523112
			1510038.6	3304044.3	Fairview	80852.2	4.906616
$\underset{1904}{\text { High Rock }}$	$\begin{array}{r} 430302.950 \\ 1222905.670 \end{array}$	$\begin{array}{r} 91.0 \\ 128.3 \end{array}$	995829.9	2793551.2	White	45056.3	4.659501
			1881033.3	81120.2	Black	12300.9	4.089936
			3464345.8	1664922.7	1ust	49196.5	4. 691934
${ }_{1904}^{\text {Old Bailey }}$	$\begin{array}{r} 430919.956 \\ 1221309.098 \end{array}$	$\begin{aligned} & 615.8 \\ & 205.6 \end{aligned}$	582256.4	2374139.0	Onion	97243.4	4.887860
			865658.3	2662324.2	White	66084.7	4.824026
			913841.9	2712840.6	131ack	19869.5	4.298188
			1435240.2	3233449.3	Fairview	59349.0	4.773418
$\begin{aligned} & \text { Waiker Peak ! } \\ & 1904 \end{aligned}$	431133.681220218.18	1039.4	841322	26355	13lack	34743.1	4.540868
		410.5	1313115	3110556	Fairview	66233.1	4.821075

[^4]| Station | Latitude and longltude | Seconds in meters | Azimuth | $\underset{\text { azimuth }}{\text { Back }}$ | To station | 1)istance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplementary pointsContinued. | | | | | | | |
| $\underset{1904}{\text { Dodson (U. S. G. S.) }}$ | 430710.136 | 312.8 | 127 3924.7 | | Burg | Meters 7706.1 | 3.886832 |
| | 1231435.150 | 794.6 | 2071630.9 | ${ }_{27} 2352.6$ | Scott | 31669.4 | 4.500640 |
| | | | 2692835.0 | 893701.2 | White | 16738.3 | 4.223711 |
| Rose 1904 | 431409.038 | 278.9 | 2335346.81 | 540423.33 | Scott | 25859.68 | 4.4126232 |
| | 1231918.555 | 418.8 | 2985136.64 | 1190317.19 | White | 26426.56 | 4.4220406 |
| ${ }_{\text {Burg }}^{1904}$ | 430942.607 | 1314.8 | 1775402.44 | 3575353.30 | Rose | 8227.53 | 3.9152697 |
| | 1231905.198 | 117.4 | 2211638.67
 28113
 10.24 | 412705.61 1012511.18 | Scott Whlte | 31214.99 23288.13 | 4. 4943632 4.3671347 |
| Roseburg latltude station1904° | 431240.769 | 1258.1 | 2234038.71 | 434157.67 | Rose | 3767.03 | 3.5759994 |
| | 1232113.849 | 312.6 | 3320806.89 | 1520934.93 | Burg | 6218.42 | 3.7936802 |
| $\begin{gathered} \text { Quar }{ }^{\prime}+2 \\ 1004 \end{gathered}$ | 430951.770 | 1597.6 | 805253.4 | 2603750.6 | White | 30226.3 | 4.480385 |
| | 1224014.595 | 329.7 | 1814831.6 | 14916.9 | Fairsiew | 46891.4 | 4. 671003 |
| $\begin{aligned} & \text { Diamond Peak } \\ & 1904 \end{aligned}$ | | | | | | | |
| | 433116.014 1220854.659 | 494.2 1227.5 | 323647.1 1001459.1 | ${ }_{212} 23494.1$ | Black | 47516.3 41354 | 4.676843 |
| | | | 1091818.1 | ${ }_{288}^{281294.7}$ | Roman | 135233.7 | 5.131085 |
| | | | 1241840.2 | 3033924.4 | Spencer | 91913.4 | 4.963379 |
| $\underset{1903}{\text { Mount Zion }}$ | 434729.576 | 912.8 | 994238.7 | 2790029.5 | Roman | 82638.6 | 4.917183 |
| | 1224324.335 | 544.1 | 1254105.6 | 3052538.8 | Spencer | 36682.3 | 4. 564457 |
| $\underset{1908}{\substack{\text { Russian } \\ 1908}}$ Church, cross | 440318.487 | 570.6 | 1480420.1 | 3280351.0 | Willamette south base | 1760.8 | 3. 245722 |
| | 1231036.088 | 803.2 | 2473211.5 | 673927.3 | Seavies 2 | 15077.3 | 4. 178324 |
| | | | 2875219.2 | 1080110.6 | Pisgah | 17895.6 | 4.252746 |
| | | | 3202605.3 | 1402930.3 | Spencer | 10316.1 | 4.013515 |
| Springfield, Methodist
 Church
 1908 | 440253.545 | 1652.6 | 390116.7 | 2185815.1 | Spencer | 9246.3 | 3. 965968 |
| | 1230120.032 | 445.9 | 1013724.9 | 2813432.2 | Eugene astronomic sta- | 5644.9 | 3. 751653 |
| | | | 1933104.2 | 133153.2 | Seavies 2 | 6701.9 | 3.826199 |
| Springfield, Christian Church 1908 | 440251.552 | 1591.1 | 401327.9 | 2201010.0 | Spencer | 9326.1 | 3. 969699 |
| | 1230111.024 | 245.4 | 1014952.3 | 2814643.3 | Eugene astronomle sta- | 5853.9 | 3. 767444 |
| | | | 1914356.5 | 114439.2 | Seavies 2 | 6719.0 | 3.827305 |
| Eugene, Deady Hall, west torer 1908 | $\begin{array}{r} 440248475 \\ 1230432.924 \end{array}$ | $\begin{array}{r} 1527.0 \\ 732.9 \end{array}$ | 1353435.0 | 3153356.4 | Eugene astronomlc station | 1765.3 | 3.246821 |
| | | | 2212339.0 | 412642.1 | Seavies 2 | 8856.9 | 3.947284 |
| | | | 121013.9 | 1920926.3 | Spencer | 7222.7 | 3.858699 |
| Eugene, Geary School spire 1908 | 440322.161 | 684.0 | 1012914.4 | 2812541.5 | Willamette south base | 6952.0 | 3. 842110 |
| | 1230611.803 | 262.7 | 2552235.7 | 752305.8 | Eugene astronomlc sta- | 997.6 | 2.998939 |
| | | | 2964511.7 | 1165059.3 | Pisgah | 12480.2 | 4. 096223 |
| | | | 3551034.6 | 1751055.8 | Spencer | 8098.6 | 3.908378 |
| Eugene, Unlted Brethren Church 1908 | 440253.966 | 1665.6 | 1050728.9 | 2850308.1 | Willamette south base | 8648.2 | 3.936928 |
| | 1230502.786 | 62.0 | 1530150.8 | 3330133.1 | Eugene ast ronomic sta- | 1259.0 | 3. 100014 |
| | | | 2250347.3 | 450711.3 | Seavies 2 | 9211.4 | 3. 964328 |
| | | | 2961837.8 | 1162337.6 | Pisgah | 10716.9 | 4. 030071 |
| Eugene, Patterson School spire 1908 | 440247.636 | 1470.3 | 95158.2 | 1895120.2 | Spencer | 7108.8 | 3.851794 |
| | 1230446.593 | 1037.3 | 1444427.6 | 3244358.6 | Eugene astronomic sta- | 1613.5 | 3. 207756 |
| | | | 2223532.0 | 423844.7 | Seavies 2 | 9102.7 | 3.959172 |
| Eugene, Baptist ChurchSpire1908 | ${ }^{44} 0305.830$ | 179.9 | 1031842.4 | 2831432.7 | Whlamette south base | 8207.9 | 3.914232 |
| | 1230519.023 | 423.5 | 1643009.1 | 3443002.6 | Eugene astronomicsta- | 784.3 | 2.894509 |
| | | | 2281528.8 | 481904.1 | Seavles 2 | 9223.0 | 3. 964873 |
| | | | 2971001.0 | 1171511.9 | Pisgah | 11204.5 | 4.049392 |
| Engene, W. O. W. Hall spire 1908 | $\begin{array}{r} 440305 \quad 553 \\ 1230546.259 \end{array}$ | $\begin{array}{r} 171.4 \\ 1029.8 \end{array}$ | 2072529.7 | 272542.1 | Eugene astronomic sta tion | 861.2 | 2.935103 |
| | | | 2303609.7 | 504003.9 | Seavies 2 | 9689.2 | 3.986290 |
| | | | 2954625.7 | 1155155.6 | Pisgah | 11743.5 | 4.069796 |
| Engene, courthouse, flagpole 1908 | 440306.273 | 193.6 | 1032355.9 | 2831949.7 | Willamette south base | 8096.0 | 3. 908272 |
| | 12305 24.041 | 535.2 | 1722922.8 | 3522919.7 | Eugene astronomle sta- | 748.6 | 2.874247 |
| | | | 2284641.9 | 485020.6 | Seavies 2 | 9297.7 | 3.968374 |
| | | | 2065808.6 | 1170323.0 | Pisgah | 11310.2 | 4. 053471 |
| Eugene, Methodist Church 1908 | 440256.857 | 1754.8 | 1054144.6 | 2853743.6 | Willamette south base | 8008.4 | 3. 903543 |
| | 1230531.498 | 701.2 | 1834622.9 | 34625.0 | Eugene astronomicsta- | 1035.0 | 3.014948 |
| | | | 2280733.9 | | Searies 2 | 9614.6 | 3.982933 |
| | | | 2951637.7 | $115 \quad 2157.2$ | Plsgah | 11331.3 | 4.054279 |
| Seavles (U. S. G. S.) ${ }^{\text {2 }}$ | 440631.970 1225954.656 | 986.8 1215.5 | $\begin{array}{rrr} 29 & 01 & 13.7 \\ 73 & 39 & 13.7 \end{array}$ | $\begin{array}{llll} 208 & 57 & 12.7 \\ 253 & 31 & 18.7 \end{array}$ | Spencer
 Willamette south base | $\begin{aligned} & 15922.3 \\ & 15846.5 \end{aligned}$ | 4. 202007
 4. 190933 |
| Ball Butte 1903 | 435847.550 | 1467.6 | 605647.4 | 2401644.4 | Fairview | 89125.1 | 4.950000 |
| | 1214115.765 | 351.4 | 880626.2 | 2664105.0 | Roman | 164724.4 | 5.216758 |
| | | | 904141.0 | 2694303.5 | Spencer | 112893.8 | 5. 052670 |

[^5]| Station | Latitude and longltude | Sec- onds onds in meter | Azlmuth | $\begin{aligned} & \text { Hack } \\ & \text { azimuth } \end{aligned}$ | To statlon | Distance | Logaritlim |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplementary pointsContinued. | | | | | | | |
| | - ' ${ }^{\prime \prime}$ | | - ${ }^{\prime \prime}$ | \therefore | | Meters | |
| St. Mary Butte | 440500.402 1214154.902 | 1223. ${ }^{12.4}$ | 543420.3 840504.6 | 233 2624442.2 263 | Fairview Roman | 94533.8 164633.6 11250.6 | 4. 9735887 |
| | | | 844915.3 | 2635101.6 | Spencer | 112470.9 | 5.051080 |
| South Sister 1903 | 440614.251 | 439.9 | 511835.7 | 2304152.5 | Fairview | 91410.3 | 4. 960995 |
| | 1214608.254 | 183.6 | \$3 0038.4 | 2613834.5 | Roman | 159294.6 | 5. 2022201 |
| | | | 831703.4 | 2622145.1 | Spencer | 107102.8 | 5. 029801 |
| | | | 1154146.4 | 2945130.7 | Petcrson | 105823.7 | 5.024583 |
| Middle Sister 1903 | 440835.768 | 1721.3 | 482901.0 | 2275252.6 | Fairview | 93746.9 | 4. 971957 |
| | 1214659.750 | 1328.0 | 803232.2 | 2593748.4 | Spencer | 1066780.4 | 5. 028044 |
| | | | ${ }^{81} 10956.6$ | 2594826.5 | Roman | 158846.6 | 5. 200978 |
| | | | 1132724.0 | 2923743.2 | Peterson | 102708.7 | 5.011607 |
| North Sister | 441001.464 | 45.2 | 475731.4 | 2272053.1 | Fairview | 95803.0 | 4.981379 |
| | 1214617.183 | 381.8 | 793417.3 | 2583903.3 | Spencer | 107952.1 | 5.033231 |
| | | | 803032.5 | 2590832.0 | Roman | 160103.2 | 5.204400 |
| | | | 1121306.1 | 2912255.0 | Peterson | 102793.1 | 5.011964 |
| Nebo 1 1903 | 440927.05 | 834.9 | 3562548 | 1762750 | Fairvicw | 63596.0 | 4. 803430 |
| | 1224205.14 | 114.2 | 583638 | 2382013 | Spencer | 36970.6 | 4. 567857 |
| IIerman Peak, wooded | 440729.14 | 899.4 | 2205152 | 411110 | Mary | 55978.7 | 4. 748023 |
| $\operatorname{summita}_{1903}$ | 1240043.71 | 971.8 | 3165155 | 1370322 | Roman | 32266.6 | 4. 508753 |
| Prairie Peak, west tree 1903 | 44.1642 .307 | 1305.8 | 142117.1 | 1941552.7 | Roman | 41958.9 | 4. 622824 |
| | 123×3628.771 | 638.0 | 1900628.8 | 100850.8 | Mary | 23556.2 | 4. 407496 |
| | | | 3082409.5 | 1284535.9 | Spencer | 52540.8 | 4. 720497 |
| Alsea Peak, partiy cleared wooded summit 1904 | 442527.821 | 858.7 | 2271102.2 | 471608.3 | Mary | 13160.6 | 4.119275 |
| | 1234022.746 | 503.1 | 2600323.5 | 803301.0 | Peterson | 56896.3 | 4. 755084 |
| | | | 51221.3 | 1850939.5 | Roman | 57111.2 | 4. 756721 |
| $\begin{aligned} & \text { Cannibal Peak, highest } \\ & \text { wooded snmmit 1 } \\ & 1903 \end{aligned}$ | 442833.48 | 1033.4 | 2614941 | 820138 | Mary | 22836.9 | 4.358638 |
| | 1235009.03 | 199.6 | 3524828 | 1725235 | Roman | 63099.9 | 4.800029 |
| Mount Washington 1903 | 441957.346 | 1770. 1 | 383225.7 | 2175829.8 | Fairview | 105607.3 | 5.023694 |
| | 1215015.638 | 346.5 | 692051.5 | 2482818.8 | Spencer | 107781.9 | 5.032546 |
| | | | 733556.4 | 2521634.7
 277 16 | Roman | 159065.5 | ${ }_{5}^{5.201576}$ |
| | | | 983449.1 1024718.1 | | Peterson | $\underline{92180.5}$ | 4. 964639 |
| $\begin{array}{r} \text { Hayrick } \\ 1903 \end{array}$ | 442846.040 | 1421. 1 | 332907.0 | 2125519.5 | Fairview | 118610.5 | 5.074123 |
| | 1215031.724 | 701.1 | 613602.5 | 2404336.8 | | 114246.8 | 5.057844 |
| | | | 680514.2 | 2464557.3 | Roman | 184090.3 | 5.215083 |
| | | | 914712.2 | 2703519.1 | Mary | 136000.3 | 5. 133540 |
| 1.elt Nipple 1903 | 442949.672 | 1533.2 | 360959.1 | 2154815.8 | Spencer | 70527.6 | 4.848359 |
| | 1223433.718 | 745.0 | 905823.5 | 2701721.8 | Mary | 77591.1 | 4.889812 |
| | | | $\begin{array}{r}925431.7 \\ 144 \\ \hline\end{array}$ | 2723701.5
 324 | Peterson | 31223.8 77201.2 | 4.494486 4.887624 |
| | | | 1444008.0 | 3241610.6 | Yam | 77201.2 | 4.887624 |
| Lehanon, tail brick cinimney ${ }^{1}$ i903 | ${ }_{14}^{44} 3258.43$ | 1803.6 | 494603 | 2294321 | Peterson | 6694.0 | 3. 825683 |
| | 1223414.18 | 313.0 | 844242 | 2641527 | Mary | 51724.6 | 4.713697 |
| Corralis closed cupoia 1 1903 | 443359.92 | 1849.5 | 2841714 | 1043004 | Peterson | 25035.6 | 4.398558 |
| | 1231623.92 | 527.8 | 725039 | 2523856 | Mary | 23160.8 | 4.364754 |
| Corvails open cupola ${ }^{1}$ 1903 | 443355.89 | 1725.2 | 2834422 | 1035728 | Peterson | 25481.7 | 4.406228 |
| | 1231646.16 | 1018.6 | 724627 | 2523500 | Mary | 22655.2 | 4.355167 |
| Aibany courthouse cupoia : | 443805.82 | 179.6 | 3212427 | 1413017 | Peterson | 17662.0 | 4.247040 |
| | 1230624.31 | 535.8 | 675406 | 2473522 | Mary | 38180.6 | 4.581843 |
| Forest Peak, taliest trees 1903 | 444022.978 | 709.3 | 405531.0 | 2204656.5 | Mary | 24714.5 | 4.392952 |
| | 1232052.841 | 1163.9 | 2002753.5 | 203634.5 | Yam | 46215.9 | 4.664792 |
| | | | 2370437.3 | 573129.5 | Hult | 59720.7 | 4.776125 |
| $\begin{aligned} & \text { Round Peak } \\ & 1903 \end{aligned}$ | 443752.709 | 1627.0 | 663219.8 | 2461603.4 | Peterson | 33498.2 | 4.525021 |
| | 1223434.345 | 1197.9 | 800005.7 | 2591915.6 | | 78313.7 | 4.883838 |
| | | | 1372419.3 | 3170034.8 | Yam | 65297. 7 | 4.814898 |
| | | | 1722837.1 | 3522128.2 | Barnes | 100397.3 | 5.001722 |
| $\underset{1903}{\text { Thomas, cairn }}$ | 443810.938 | 337.6 | 661153.3 | 2455512.3 | Peterson | 34431.0 | 4. 536950 |
| | 1223419.315 | 425.7 | 794215.8 | 2590101.0 | Mary | 79172.8 | 4.898576 |
| | | | 1363451.0 | 3161041.7 | Yam | 65412.8 | 4.815663 |
| Mount Jefferson 1003 | 444029.156 | 899.9 | 535037.1 | 2325616.5 | Spencer | 128789.4 | 5. 109880 |
| | 1214755.280 | 1217.6 | 791759.6 | 2582843.7 | Peterson | 94639.6 | 4.976073 |
| | | | 825324.4 | 2613934.1 | Mary | 140470.1 | 5. 147584 |
| | | | 1123305.6 | 2913611.6 | Yam | 114832.8 | 5.059309 |
| | | | 1415959.6 16643 | 321
 346
 319
 314.6 | Barnes
 Larch | 120717.4 08063.9 | 5.081780 4.991509 |
| $\begin{aligned} & \text { Monmouth Peak } \\ & 1003 \end{aligned}$ | | | | | | | |
| | 444751.810 | 1599.3 | 2265008.6 | 470703.9 | Yam | 43124.9 | 4. 634728 |
| | 1233231.994 | 703.2 | 2340114.1 | 743621.4 | Huit | 68082.6 | 4. 833036 |
| | | | 11842.3 | 1811818.6 | Mary | 32556.7 | |
| Salem Capltol, dome ${ }^{1}$ 1903 | 445619.47 | 601.0 | 1465053 | 3264602 | Yam | 16434.8 | 4.215764 |
| | 1230143.50 | 953.8 | 2633732 | 835056 | Iluit | 25095.6 | 4.399597 |

I Cherked by vertical angies only.

Statlon	Latitude and longitude	Seconds in meters	Azimuth	$\begin{gathered} \text { Back } \\ \text { azimuth } \end{gathered}$	To station	Distance	Logarithm
- Supplementary pointsContinued.							
Chemawa tank ${ }_{1903}$	450011.41	352.2	1191923	${ }^{\circ} 9991303$	Yam	Meters 13485.0	4.129850
	1225936.91	808.4	2811115	1012310	Hult	22595.5	4.354021
Table Rock, cairn 1903	445814.226	439.2	624139.8	2414911.6	Mary	111189.6	5.046064
	1221833.078	724.9	884138.0	2682431.6	Hult	31840.9	4.502985
			$\begin{array}{r}99 \\ 150 \\ 154 \\ \hline 154.3\end{array}$	$\begin{array}{lllll}278 & 32 & 12.5 \\ 330 & 35 & 59.0\end{array}$	Yam	66503.7 70841.4	4. 822846
$\begin{aligned} & \text { Arquett, cairn } \\ & { }_{1903} \end{aligned}$	450419.542	603.3	712932.7	2511017.5	Hult	37746.4	4. 576875
	1221532.310	706.8	892606.6	2684833.9	Yam	69619.7	4.842732
			1425142.3	3223045.8	Barnes	63539.5	4.803044
White church spire, west of	450725.83	597.4	3143445	1344428	Hult	25370.3	4.404325
$\begin{gathered} \text { Brooks } \\ 1903 \end{gathered}$	1225630.05	656.7	664653	2463820	Yam	17241.9	4.236586
Fairdale Peak ${ }^{1}$	451509.97	307.8	3074730	1280944	Hult	52265.0	4.718211
	1231410.05	219.2	3405021	1605419	Yam	22381.3	4.349885
Sheridan Peak, highest	451653.64	1655.9	3011217	1214331	Hult	67744.5	4. 830874
green tree ${ }^{1}$ 1903	1232649.37	1076.0	3152422	1353719	Yam	34125.7	4. 533082
Squaw, cairn 1903	451351.206	1580.8	781249.8	2572555.7	Yam	88717.2	4.948008
	1220224.710	1539.0	1205129.4	3002110.6	Barnes	64596.7	4. 810210
			1734748.4	3534548.7	Larch	33800.2	4.528919
${ }_{1903}^{\text {Eagle cairn }{ }^{1}}$	451625.38	783.6	1182955.3	2980122.3	Barnes	59406.9	4. 773837
	1220454.19	1181.5	1791118.5	3591105.1	Larch	28844.4	4.460062
Mount Hood	$\begin{array}{r} 452227.122 \\ 1214148.696 \end{array}$	$\begin{array}{r} 837.3 \\ 1059.6 \end{array}$	733310.7	2523135.7	Yam	118745.2	5. 074616
			1020029.2	2811527.4	Barnes	84113.8	4.924867
			1025031.3	${ }_{289}^{2820715.7}$	Balch	8	4. 908772
			1201306.7	2995625.9	Larch	35263.2	4.547322
$\text { Fir }_{1903}$	453123.055	711.8	2951101.5	1151139.9	Cem	1293.0	3.111594
	1224446.238	1003.6	80929.8	1880923.5	Hill	1343.7	3. 128313
Monument, General LandSurvey1903	453111.983	368.4	235829.5	2035815.0	Hill	1079.9	3.033393
	1224434.806	755.4	1440914.0	3240905.8	Fir	423.6	2.626968
$\text { Hill }_{1003}$	453039.970	1234.0	1762618.0	3562614.4	Barnes	1749.4	3.242892
	1224455.023	1194.3	2401043.2	601127.9	Cem	1568.4	3. 195468
Cem_{1903}	453105.230	161.5	1232005.0	3031916.7	Barnes	1758.5	3. 2451.53
	1224352.328	1135.8	-1984443.5	184553.8	River	6640.3	3.822185
$\begin{aligned} & \text { Rivcr } \\ & 1903 \end{aligned}$	453428.89	891.9	2854228.7	1054825.4	Rocky Butte	11258.5	4. 0514797
	1224213.91	301.6	340713.5	2140514.9	Barnes	6426.7	3. 8079902
$\begin{gathered} \text { Oregonian } \\ 1903 \end{gathered}$	453113.21	407.8	1611103.4	3410955.6	Rlver	6382.8	3.8050088
	1224038.97	845.8	2511125.6	711614.4	Rocky Butte	9273.7	3.9672517
Portland longltude station 1887	$\begin{array}{r} 453108.82 \\ 1224039.75 \end{array}$	$\begin{aligned} & 272.3 \\ & 862.7 \end{aligned}$					
Portland latitude station 1887	$\begin{array}{r} 453108.83 \\ 1224039.84 \end{array}$	$\begin{aligned} & 272.6 \\ & 864.5 \end{aligned}$	1875652	75653	Oregonian	136.6	2.13537
Portland bench mark (U.S. G.S.)	$\begin{array}{r} 4531 \quad 09.07 \\ 122 \quad 4039.77 \end{array}$	$\begin{aligned} & 280.0 \\ & 863.1 \end{aligned}$			Oregonian	128.7	2. 10969
$\underset{1889}{\text { Rocky Butte (Oreg.) }}$	$\begin{array}{r} 453249.861 \\ 1223354.303 \end{array}$	1539.3	810927.83	2610132.80	Barnes	14620.66	4.1649670
		1177.8	1405923.21	3204620.26	Warren	37539.95	4. 5744937
			1771537.04	3571417.96	Davis	49689.84	4.6962679
$\underset{1881}{\text { Harney (Wash.) }}$	453721.734	671.0	3281553.08	1481843.96	Rocky Butte	9866.53	3.9941643
	1223753.538	1150.9	405924.33	2205419.74	Barnes	14110.22	4.1495337
$\begin{aligned} & \text { Balch (Oreg.) } \\ & 18 \leqslant 1 \end{aligned}$	453154.5741224230.763	$\begin{gathered} 1684.8 \\ 667.4 \end{gathered}$	801516.28	2601329.77		3286.69	
			$\begin{array}{ll} 210 & 43 \\ 261 & 44.61 \\ 17.30 \end{array}$	$\begin{array}{lll} 304702.60 \\ 81 & 23 & 23.91 \end{array}$	Harney Rocky Butte	- $\begin{array}{r}11753.53 \\ 11334.39\end{array}$	4.0701684 . 0543981
Vancouver Barracks flagstaff west? 1903	453737.911223936.04	1170.5	2823959.2	1024112.5	Harney	2276.1	3. 357196
		781.0	321336.7	2120945.3	Barnes	13184.2	4.120055
Warren schoolhouse cupola 2 1903	454847.53	1467.3	3454209.3	1654736.3	Barnes	32840.1	4. 516405
	$122 \quad 5113.32$	287.6	694350.8	2494311.1	Warren	1274.2	3. 105229
Mitchell ${ }^{2}$ 1903	$\begin{array}{rrr}46 & 0153.001 \\ 122 & 11 & 31.940\end{array}$	1636.4 687.0	$\begin{array}{llll}37 & 55 & 26.5 \\ 65 & 03 & 28.8\end{array}$	$\begin{array}{llll}217 & 31 & 27.4 \\ 244 & 34 & 18.3\end{array}$	Barnes Warren	70902.3 58025.5	$\begin{aligned} & \text { 4. } 850660 \\ & \text { 4. } 763619 \end{aligned}$
Mount Adams 1903	$\begin{array}{r} 461212.133 \\ 1212924.899 \end{array}$	$\begin{aligned} & 374.6 \\ & 533.8 \end{aligned}$	320553.1	2114011.3	1arch	87719.5	4.943096
			520953.4	2311741.3	Balch	120500.8	5.080990
			525414.0	2315959.1	Barnes	123384.6	5.091261
			1520349.2	3314415.5	Bel	73257.2	4.864850
Mount St. Helens 1903	461153.0281221125.864	$\begin{array}{r} 1637.3 \\ 554.5 \end{array}$	3534505.3	1734932.9	Larch	74331.7	4.871174
			302456.9	2100051.4	Barnes	86336.8	4. 936196
			$\begin{array}{lll}1612114.0 \\ 196 & 21 & 4.7\end{array}$	3410950.7 163238.5	$\begin{aligned} & 1 \mathrm{Ial} \\ & \mathrm{Bcl} \end{aligned}$	62582.2	4. 796451 4.832490
			1962143.7	163238.5			

1 Checked by vertical angles only.
2 No check on thls position.

Station	Latitude and longitude	Seconds in meters	Azlmuth	Back azimuth	Tostation	Distance	Logarithm
Supplementary pointsContinued							
Min ${ }_{1906}$		1699.2 1066.0	$\begin{array}{r}36 \\ 195 \\ 195 \\ \hline 51.98\end{array}$	$\begin{array}{rrrr}216 & 54 & 40.53 \\ 15 & 44 & 10.73\end{array}$	Len Bel	M180.7 54196.2	2. 3803528
Deschutes Peak 1905	463925.252	779.81153.7	1410359.3	3210010.8	Hal	10607.4	4.025008
	1222154.262		1664401.2	3463733.9	Hurst	48784.1	4. 6888278
			2461551.1	663426.0	Bel	35486.1	4.550058
Mineral Peak	463856.26	1737.2	1505420	3303847	Hurst	55420.9	4.743674
1905	1220927.44	583.5	2274519	475450	Bel	22481.8	4.351832
High Rock. 1905	$\begin{array}{r}4614105.848 \\ 121 \\ \hline 1\end{array}$	180.639.5	970852.2	2764446.4	Hal	42506.0	4.628450
			1334715.3	3132027.1	Hurst	64374.5	4.808714
			1645433.5	3445250.9	Bel	11486.7	4.06019
$\begin{aligned} & \text { Goat Mountain } \\ & 1905 \end{aligned}$	464623.948	739.5	835443.7	2633026.2	Hal	42726.6	4. 630698
	1215347.263	1002.8	1110108.5	2905915.1	Bel	3535.4	3.548435
Mount Ranier, high peak 1905	$\begin{array}{r} 465109.215 \\ 1214525.562 \end{array}$	284.5	755936.2	2552912.0	Hal	54766. 4	4. 738514
		541.5	1142327.3	2935019.5	Hurst	62984.3	4.799232
Mount Ranier, bare summit 1905	$\begin{array}{r} 465111.106 \\ 1214547.001 \end{array}$	342.9	754848.0	2551839.5	Hal	54339.9	4. 735119
		995.7	1143034.9	2935742.7	Hurst	62546.5	4.796203
$\begin{aligned} & \text { Sharp Peak } \\ & 1905 \end{aligned}$	$\begin{array}{r} 470104.392 \\ 1215320.964 \end{array}$	$\begin{aligned} & 135.6 \\ & 442.8 \end{aligned}$	82757.5	1882544.7	Bel	26205.4	4. 418390
			53 99 93 03 14.7 .7	23312 278 215 52.8	$\xrightarrow{\text { Hal }}$	53466.3 47932.2	$\begin{aligned} & 4.728080 \\ & 4.680627 \end{aligned}$
$\underset{1905}{T a}$ City Hall	$\begin{array}{r} 471528.463 \\ 1222620.264 \end{array}$	$\begin{aligned} & 879.0 \\ & 426.0 \end{aligned}$	1775326.9	3575320.8	Dron	4708.1	3.672844
			1870033.5	70052.6	Gull	4484.0	3.651667
			2570327.6	770553.5	Bos	4285.2	3.631972
			3264226.2	1464327.2	K in	3182.3	3.502746
$\underset{1905}{\text { Tacoma courthouse }}$	471512.7801222643.527	394.7	1224424.8	3024241.3	Wash	3519.8	3. 346524
		915.2	191 51 314 19.7 5.2	$\begin{array}{rrr}11 & 51515 \\ 134 & 14 & 03.3\end{array}$	Gull	$\begin{aligned} & 5042.5 \\ & 3119.9 \end{aligned}$	3. 702643 3. 494135
Smelter staek, 300 feet hlgh 1905	$\begin{array}{r} 471751.813 \\ 1223023.274 \end{array}$	1600.1	$196{ }^{*} 4100.6$	164140.6	Neill 2	3972.1	3.599017
		489.0	2470719.4	671045.5		6390.9	3. 805556
			3310748.6	1510846.6	Wash	3435.1	3. 535934
Brown Point Lighthouse 1906	$\begin{array}{r} 471823.031 \\ 1222636.330 \end{array}$	711.3	380448.2	2180259.4	Wash	5045.6	3. 702914
		763.2	1280549.9	3080343.0	Neill 2	4605.8	3.663308
			1690431.7	3490403.4	Piner 2	4271.9	3.630626
$\begin{aligned} & \text { Dash }_{1857} \end{aligned}$	471912.1711222542.896	375.9	373918.36			6932.54	3. 8408923
		901.0	$10535 \quad 50.58$	$285 \quad 3304.37$	Nelll 2	4928.00	3.6926708
$\begin{array}{r} \text { Piner } 2 \\ 1905 \end{array}$	$\begin{array}{r} 472038.852 \\ 1222714.898 \end{array}$	1199.9	3241034.26	1441141.91	Dash	3301.11	3.5186600
		312.8	154413.69	1954253.22	Wash	8484.54	3.92862×2
			641931.98	2441753.39	Neill 2	3123.19	3.4945984
$\underset{1867}{\text { Robinson }^{2}}$	$\begin{array}{r} 472311.720 \\ 1222231.984 \end{array}$	362.0	282736.29	2082515.86	Dash	8413.28	3.9249652
		670.9	513205.99	2312837.75	Piner 2	7584.71	3.8799391

DESCRIPTIONS OF STATIONS.

This list may be conveniently consulted by reference to the illustrations at the end of this publication or to the index. All azimuths given in these deseriptions are reekoned contimously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. Where magnetic azimuths are given they are indicated as such.

In general the surface and underground marks are not in contact, so that a disturbance of the surface mark will not necessarily affeet the underground mark. The underground mark should be resorted to only in cases where there is evidence that the surface mark has been disturbed.

The dates and initials given in each deseription immediately after the county refer to the date of establishment of the station, the man by whom it was established, and the date when the station was last visited.

Any person who finds that one of the stations herein described has been disturbed, or that the deseription no longer fits the facts, is requested to send such information to the Superintendent, U. S. Coast and Geodetic Survey, Washington, D. C.

MARKING OF STATIONS.

The old type of station mark referred to in the following notes and deseriptions eonsists of a disk aild shank made of brass and east in one picee. The disk is about 85 mm . in diameter
and has a polished center surrounded by the raised letters "U.S.C.\& G.S." and a raised flange around the edge. The shank is 25 mm . in diameter and 75 mm . long, with a slit at the lower end into which a wedge is inserted so that when it is driven into a drill hole in the rock, it will bulge at the bottom and so hold the mark securely in place.

general notes in regard to station marks.

Note 1.-A three-eighths-inch copper bolt 3 inches long is cemented into a drill hole in the rock, and directly above the bolt in the same drill hole is cemented an old-type station mark, described in the preceding paragrapl. A cross in the top of the copper bolt and another in the polished center of the disk mark the station.

Note 2.-This marking is similar to that described in note 1, except that the copper bolt and the disk are in separate bowlders and the bowlder containing the bolt is at some distance beneath the surface. The cross on the disk is directly above the one on the bolt. The dimensions of the bowlders are given in the description of the station.

Note 3.-The station is marked by an old-type station mark, described above, cemented into a drill hole in the rock. No underground mark was used.

REFERENCE MARK.
Note 4.-This mark is a drill or punch hole in the top of a three-eighths-inch copper bolt 3 inches long, which is leaded or cemented into a drill hole in a rock with the top of the bolt flush with the surface.

PRINCIPAL POINTS.

Mount ITelena (Napa County, Cal., W. E., 1876; 1908).-On the summit of Mount Helena, about 12 miles to the northward of Calistoga. The station was originally marked by a fine drill hole and cross in the top of a one-half-inch copper bolt 5 inches long, which was cemented in a drill hole in bedrock, and by a brick pier 3 bricks square and 43 inches high, built over the bolt. When visited in 1908 it was found that the pier had been dynamited. Other instrument piers are at the following distances and directions from the station: Collimator pier, 2 bricks square and 61 inches high, 2.27 meters northwest; transit pier, 2 by 3 bricks and 39 inches high, 17.04 meters southwest; latitude pier, 2 by $2 \frac{1}{2}$ bricks and 36 inches high, 17.74 meters southwest of the station and 1.68 meters east of the transit pier; vertical angle pier, 2 bricks square and 44 inches high, 33.31 meters southwest of the station and 16.92 meters a little south of east of the latitude pier. A boundary mark between Lake and Napa Counties, a large drill hole in a basaltic rock, is 2.18 meters northwest of the station.

Marysville Butte (Sutter County, Cal., W. E., 1876; 1904).-About 15 miles west of Marysville on the southeastern summit of the south butte of the Marysville Buttes, about 6 meters northeast of the highest part of the summit, and near the steep eliff on the north side. The station is marked by an old-type station mark, described on page 42, set in a drill hole in a small rock embedded in the concrete that fills a depression in the solid rock. Below the concrete and directly under the station mark is a three-eighths-inch copper bolt 3 inches long set in a drill hole in the solid rock. Three reference narks, each of which is a three-eighths-inch copper bolt 3 inches long set in a drill hole in the rock, are at the following distances and azimuths from the station: 2.470 meters, $246^{\circ} 48^{\prime} ; 2.635$ meters, $5^{\circ} 06^{\prime}$; and 2.915 meters, $103^{\circ} 07^{\prime}$.

Snow Mountain west (Glenn and Lake Counties, Cal., E. F. D., 1892; 1904).-On the highest point of the southwest summit of Snow Mountain. The summit is about 300 meters long in a northwest and southeast direction and about 50 meters wide at the station and is covered with small broken stones. There are a few scrub pines just below the pitch of the ridge about 100 meters southeast of the station. The station is marked by a one-half-inch brass bolt 3 inches long in a drill hole in the solid outcropping rock, and by a concrete pier 12 inches square and 44 inches high having embedded in its top a brass bolt directly above the one in the solid rock.

Snow Mountain east (Glenn County, Cal., W. E., 1876; 1904).-On the northernmost rock-croppings at the edge of the summit of the castern peak of Snow Mountain, about 5 miles south of Mount St. John and near the corner of Lake, Colusa, and Glenn Counties. The station is marked by a half-inch copper bolt cemented in a drill hole in a hollow at about the middle of the highest point of rocks, with the top of the bolt about a half inch above the surface and marked by a cross. The reference marks are all drill holes in rocks, the first being distant 5.16 meters in azimuth $59^{\circ} 57^{\prime}$, the second 3.33 meters in azimuth $165^{\circ} 39^{\prime}$, and the third 6.89 meters in azimuth $248^{\circ} 38^{\prime}$.

Kent (Tehama County, Cal., O. B. F., 1904).-On a high ridge about 8 or 10 miles east by south from Mount Linn and about 18 miles by road in a northwesterly direetion from Paskenta, on a peak locally known as Bald Rock, on a ledge on the east side of the summit and about 8 or 9 feet lower than its highest part. Four or five hundred feet to the westward of the station and about 50 or 60 feet lower is a large, prominent, rocky knob. The station is marked according to note $1 .{ }^{1}$ The reference marks are deseribed in note $4 .{ }^{1}$ The first one is in a large rock distant 5.01 meters in azimuth $212^{\circ} 40^{\prime}$, the second in a flat ledge distant 70.19 meters in azimuth $285^{\circ} 50^{\prime}$, and the third on the largest part of the ledge distant 47.72 meters in azimuth $5^{\circ} 17^{\prime}$.

Lyons ('Tehama County, Cal., O. B. F., 1904).-About 5 miles east of Lyonsville post office on a ridge known locally as Bald Hill, about 300 yards from the summit of the ridge on the shoulder extending toward Lyonsville and in the middle of a large group of bowlders. A lone fir tree stands about 50 meters south by east from the station. The station is marked aecording to note $1 .{ }^{1}$ Two reference marks described in note $4,{ }^{1}$ are in large rocks and at the following distances and azimuths from the station: 29.69 meters, $126^{\circ} 59^{\prime}$; and 20.22 meters, $332^{\circ} 22^{\prime}$.

Bally (Shasta County, Cal., O. B. F., 1904).-On the northernmost of the two main peaks on the summit of Bally Mountain, a prominent and well-known mountain about 15 miles by road west of Redding. The station mark, described in note $1,{ }^{1}$ is in the top of a rock on the north side of the most prominent group of rocks on the peak and 5 or 6 feet below the top of the group. Two reference marks, described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 4.29 meters, $247^{\circ} 07^{\prime}$; and 10.62 meters, $154^{\circ} 49^{\prime}$.

Round (Shasta County, Cal., O. B. F., 1904).-On the highest part of what is known as Round Mountain just north of the post office of the same name. The station mark, described in note $1,{ }^{1}$ is in a large bowlder which projects about 6 inches out of the ground. Two reference marks, described in note $4,{ }^{1}$ are at the following distances and azinuths from the station: 28.72 meters, $345^{\circ} 30^{\prime}$; and 6.43 meters, $57^{\circ} 13^{\prime}$. The south reference mark is in the most eastern rock of a prominent group of rocks near the south end of the summit.

Spur (Siskiyou County, Cal., O. B. F., 1904).-On the west slope of Mount Shasta at an clevation of about 9,100 feet, in a position best identified by approaching the summit from Igema, by the road leading through Kite Canyon. In aseending this route several prominent peaks are discerned ahead and from the right-hand one a narrow shoulder extends in a westerly direction, or toward Black Butte. The station is about 50 meters below an abrupt change of slope of the ridge of this shoulder, and about 1 mile from the peak mentioned above. The station mark, described in note $1,{ }^{1}$ is in the top of a large rock flush with the ground. Two reference marks described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 13.77 meters, $165^{\circ} 53^{\prime}$; and 8.10 meters, $228^{\circ} 47^{\prime}$.

Mears (Shasta County, Cal., O. B. F., 1904).-About 4 or 5 miles west by south from Castella and about southwest from Castle Crags, on the southern summit of the highest rocky peaks in the region known locally as Gray Rocks. The station is about 20 feet below the highest part of the peak and near the bluff on the south and east sides, with a ledge 3 or 4 feet higher about 10 feet distant toward the southeast. The peak was approached from the south and the 30 -foot bluff near the station surmounted by means of ladders. The station
is marked according to note $1 .{ }^{1}$ Two reference marks, described in note $4,{ }^{1}$ are located as follows: The first in a bowlder ncar the trail to the station, and distant 7.92 metcrs in azimuth $70^{\circ} 50^{\prime}$; and the second, on a low bowlder cast of a high pointed rock, and distant 17.77 meters in azimuth $143^{\circ} 03^{\prime}$.

Boliver (Siskiyou County, Cal., O. B. F., 1904).-On the north side of a large group of bowlders about 60 yards northeast of the highest part of the summit of Mount Scott, known locally as Old Craggy or Boliver, which is the high peak about 5 miles in a southerly direction from Callahan. The station is marked according to note 1. ${ }^{1}$ Two reference marks, described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 6.57 meters, $272^{\circ} 41^{\prime}$; and 9.88 meters, $107^{\circ}, 47^{\prime}$.

Soda (Jackson County, Oreg., O. B. F., 1904).-On a peak known locally as Old Baldy, in the Siskiyou range of mountains, about 20 miles by road and trail southeast of Ashland and 5 miles east by north from Pilot Rock, a prominent peak in the same range. The best approach is from Ashland via Soda Springs and Davis' ranch. The station mark, described in note $1,{ }^{1}$ is in a large rock whose upper surface is flush with the ground. Two reference marks, described in note $4,{ }^{1}$ are in bowlders whose tops are but slightly above ground and at the following distances and azimuths from the station: 12.91 meters, $299^{\circ} 53^{\prime}$; and 23.95 meters, $35^{\circ} 36^{\prime}$.

Gazelle astronomic station (Siskiyou County, Cal., O. B. F., 1904; 1908).-About 250 yards north by east from the Gazelle railroad station near the center of the top of a very prominent knoll and about 40 feet northeast of the largest bowlder on the knoll. The station mark, described in note $1 .{ }^{1}$ is in a rock below the surface of the ground. Three reference marks, described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 19.20 meters, $290^{\circ} 12^{\prime}$; and 6.40 meters, $137^{\circ} 39^{\prime}$.

Sterling (Jackson County, Oreg., O. B. F., 1904).-In the Siskiyou range of mountains, about 25 miles southwest of Ashland and 2 miles west of Mount Sterling, on the northernmost summit of a ridge just south of the Silver Fork basin and at the western eird of the long east-and-west valley which is just north of Mount Sterling. The station is about 80 or 90 meters southeast of the highest point of the summit in the center of a group of small bowlders. The station mark, described in note $1,{ }^{1}$ is in the top of a large rock. Two reference narks, described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 34.85 meters, $18^{\circ} 13^{\prime}$; and 20.44 metcrs, $136^{\circ} 03^{\prime}$.

Rust (Jackson County, Oreg., O. B. F., 1904).-On the highest summit of the peaks known locally as the Black Buttes (Rustler on U. S. Gcological Survey maps), about 20 miles north of Mount Pitt and 26 miles by road and trail from Big Butte post office via Parker's ranch. The station is marked according to note 1. ${ }^{1}$ Two reference marks, described in note 4, ${ }^{1}$ are at the following distances and azimuths from the station: 11.995 meters, $264^{\circ} 33^{\prime}$; and 10.12 meters, $337^{\circ} 53^{\prime}$.

Onion (Douglas County, Oreg., O. B. F., 1904).-On the highest part of the bare summit of Onion Springs Mountain, about 1 mile south of the Onion Springs, and best reached from Glendalc via Galesville and Gilpatrick's ranch. The station mark, described in note $1,{ }^{1}$ is in a rocky ledge. Two refercucc marks, described in note $4,{ }^{1}$ are located as follows: One in a prominent lcdge and 24.62 meters from the station in azimuth $91^{\circ} 50^{\prime}$, and the other in an inconspicuous, low bowlder at the westeru edge of the summit and distant 47.22 meters in azimuth $182^{\circ} 47^{\prime}$.

Black (Douglas County, Oreg., O. B. F., 1904).-Ncar the northeast corner of the highest part of the summit of Black Rock, a high, prominent, rocky peak about 40 miles in a direct linc east of Roseburg and north and northwest of some near-by higher wooded peaks. The station mark, described in note $1,{ }^{1}$ is in the solid rock of the summit. Two reference marks, described in note $4,{ }^{1}$ are also in solid rock and at the following distances and azimuths from the station: 13.78 meters, $4^{\circ} 55^{\prime}$; and 6.47 meters, $297^{\circ} 45^{\prime}$.

White (Douglas County, Oreg., O. B. F., 1904).-On the lrighest part of the summit of White Rock, a prominent pcak about 15 miles east of Roseburg. The station mark, described in note $1,{ }^{1}$ is in a large bowlder. A reference mark, described in note 4, ${ }^{1}$ is in a large bowlder just cast of a prominent ledge and is 34.44 meters from the station, in azimuth $353^{\circ} 11^{\prime}$.

Scott (Douglas County, Oreg., O. B. F., 1904).-On the highest part of the summit of Mount Scott, about 20 miles northeast of Roseburg. The station mark, deseribed in note $1,{ }^{1}$ is in a large bowlder. Two reference marks, described in note $4,{ }^{1}$ are located as follows: One in a white roek at about the middle of a prominent ledge and 32.71 meters from the station in azimuth $195^{\circ} 02^{\prime}$; and the other in a rocky ledge near the edge of the brush and 18.17 meters distant in azimuth $305^{\circ} 42^{\prime}$.

Fairview (Lane County, Oreg., O. B. F., 1904).-On the west side of the summit of Fairview Poak in the Bohemia Mountains, about 25 miles southeast of Cottagegrove and 6 miles by road from Mineral post offiee. The station mark, described in note $1,{ }^{1}$ is in a bowlder. Three referenee marks deseribed in note $4,{ }^{1}$ are in roek ledges and at the following distanees and azimuths from the station: 6.69 meters, $74^{\circ} 29^{\prime} ; 2.92$ metcrs, $181^{\circ} 39^{\prime}$; and about 175 feet, $266^{\circ} 09^{\prime}$.

Yellow (Douglas County, Oreg., O. B. F., 1904).-On the highest summit of the timbered ridge about 10 miles west of Yonealla. The station is marked aceording to note $2,{ }^{1}$ the subsurfaee mark in a bowlder S by 12 by 16 inches placed 18 inches beneath the surface, and the surface mark in a bowlder 10 by 20 by 30 inches, the top of which is flush with the surface of the ground. A reference mark, described in note $4,{ }^{1}$ is in a rock ledge and 22.62 meters from the station in azimuth $334^{\circ} 37^{\prime}$. Two other referenee marks, consisting of three-sixteenths inch copper wires 3 inches long set in bowlders, are at the following distances and azimuths from tho station: 21.04 metors, $197^{\circ} 31^{\prime}$; and 20.70 meters, $107^{\circ} 02^{\prime}$.

Spencer (Lane County, Oreg., O. B. F., 1903).-This station is near a United States Geologieal Survey station. It is on tho south end and highest point of the summit of Spencer Butte, about 4 miles south of Eugene. Two trecs used by the Geological Survey are at the north end of the summit, which is in the form of a ridge. The station is marked aceording to note $1 .{ }^{1}$ Two refercnce marks, described in note $4,{ }^{1}$ are in rocks near the station, one distant 5.338 meters in azimuth $175^{\circ} 02^{\prime}$, and the other 4.570 meters in azimuth $328^{\circ} 51^{\prime}$. The Geologieal Survey station is 7.970 meters from the station in azimuth $176^{\circ} 12^{\prime}$.

Roman (Douglas County, Oreg., O. B. F., 1903; 1908).-On the most westerly of the two summits of the highest peak of the Coast Range, known as Roman Nose or Saddle Mountain, situated near the north line of Douglas County about 5 miles southwest of the junction of Wild Cat Creek with the Siuslaw River. It is on the highest point of the summit, about 6 feet from the southern edge of the bluff and 20 feet from the steep part of the slope east of the station. The peak is bare except for a few low shrubs, and has a steep bluff on the south side and a gentle grassy slope on the north side. The station is marked according to note $2,{ }^{1}$ the subsurface mark in a bowlder 12 by 12 by 24 inches, 18 inches below the surfaee, set with the axis east and west, and the surfacc mark in a bowlder measuring about a foot on each side. Two reference marks, deseribed in note $4,{ }^{1}$ are loeated as follows: One in the nearest outcropping of the solid rock 14.760 meters from the station in azimuth $148^{\circ} 06^{\prime}$, and the other in a projecting bowlder 6.775 metcrs from the station in azimuth $205^{\circ} 33^{\prime}$. Arrows pointing to the refereneo marks are cut in the rock near ench mark. An old burned stump is about 5 fect from the station in azimuth 232°.

Mary (Benton County, Oreg., O. B. F., 1903; 1908).-On the highest point of the grassy summit of Mary Peak, about south-southwest from Corvallis. The station is marked aecording to note $2,{ }^{1}$ the subsurface mark in a flat stone 4 inches thick and 19 inehes in diameter 22 inches below the surface, and the surface mark in a bowlder 16 by 18 by 30 inches, the top of which is flush with the surface of the ground. Two reference marks, described in note 4, ${ }^{1}$ are in bowlders, and at the following distances and azimuths from the station: 13.77 meters, $326^{\circ} 22^{\prime}$; and 29.36 meters, $58^{\circ} 11^{\prime}$.

Peterson (Linn County, Oreg., O. B. F., 1903).-About 4 miles southwest of Lebanon on the highest part of the most westerly of the two summits known as Peterson Butte. The station is marked according to note $1 .{ }^{1}$ Two reference marks, described in note $4,{ }^{1}$ are located as follows: One in the lower part of the northerly sloping face of the largest rock on the south side of the summit, and 4.645 meters from the station in azimuth $7^{\circ} 30^{\prime}$; and the other in the ledge just east of the largest rock on the north side of the summit, and 3.270 meters distant in azimuth $185^{\circ} 00^{\prime}$.

Twin (Linn County, Oreg., O. B. F., 1905).-On the farm of Mr. Gentry near the southwest corner of sec. 24, T. 14, R. 3 W., about 6 or 7 miles from Rowland. It is on the highest summit of a partly wooded ridge, the south slope being bare and the north slope wooded, and about 8 or 10 meters southeast of the highest point of the summit. The station is marked according to note $2,{ }^{1}$ the underground mark in a stone about 2 fcet below the surface and the surface mark in a large stone about 6 inches below the surface. Three reference marks, described in note 4, ${ }^{1}$ are at the following distances and azimuths from the station: 6.66 meters, $314^{\circ} 42^{\prime} ; 6.39$ meters, $53^{\circ} 57^{\prime}$; and 6.87 meters, $155^{\circ} 44^{\prime}$. The last-mentioned reference mark is near the highest point of the summit.

Ridge (Lane County, Oreg., O. B. F., 1905).-On the highest part of a ridge on land owned by Mr. J. J. Winn, about $1 \frac{1}{2}$ miles north of his residence, and about 10 miles by road in a northwesterly direction from Junction City. The station is marked according to note $2,{ }^{1}$ with the subsurface mark 1.5 feet below the surface. Three reference marks, described in note $4,{ }^{1}$ are in inconspicuous bowlders flush with the surface of the ground, and at the following distances and azimuths from the station: 4.86 meters, $164^{\circ} 32^{\prime}$; 30.69 meters, $278^{\circ} 43^{\prime}$; and 9.73 meters, $356^{\circ} 15^{\prime}$. A triangular blaze in a large maple tree is 11.63 meters from the station in azimuth $92^{\circ} 16^{\prime}$, and a similar blaze in a large fir tree is 8.45 meters distant in azimuth $213^{\circ} 33^{\prime}$.

Rauch (Lane County, Oreg., O. B. F., 1903).-About 12 miles west by south from Eugene, $2 \frac{1}{2}$ miles southwest of Llewellyn post office and about one-half mile west of the road leading from Llewellyn to Crow post office, on land belonging to Mrs. Frances Rauch. It is about 150 meters east of the summit on the north side of a sloping ridge about 300 feet higher than the valley through which the road runs, the first prominent ridge encountered in going from Llewellyn to Crow and the only ridge in the vicinity from which Willamette south base can be seen. The station is about 200 fcet west of a point where the ridge becomes steeper. The station was marked according to note $2,{ }^{1}$ the underground mark in a small flat stone 2 feet below the surface and the surface mark in a rock about 12 by 12 by 18 inches flush with the surface. Two reference marks, described in note $4,{ }^{1}$ are located as follows: One in a rock 10 by 10 by 18 inches on the highest part of the ridge and 11.96 meters from the station in azimuth $286^{\circ} 02^{\prime}$, and the other in a rock 6 by 8 by 14 inches distant 12.22 meters in azimuth $51^{\circ} 46^{\prime}$.

Willamette south base (Lane County, Oreg., O. B. F., 1903; 1908).-About 5 miles from Eugene and 220 meters south of the Eugene-Elmira road on land belonging to William Nelson.. It is about 100 meters north of a large gravel pit, 78 meters from the line fence between William Nelson and M. Nelson, and about in line with the west face of the barn belonging to William Nelson which is 86.79 meters north of the station. The station is marked with old-type station mark described on page 42 , placed in the center of a 6 -inch drain tile and both embedded in a pillar of concrete 2 feet long, 36 inches in diameter at the base, 18 inches in diameter at the top, and set in the ground so that the tops of the pillar and tile and station mark are all flush with the surface of the ground. Six inches below the foot of this pillar a cross in the top of a $\frac{1}{2}$-inch copper bolt, cmbedded in a block of concrete 10 by 24 by 24 inches, forms the subsurface mark. In 1906 a concrete pillar $2 \frac{1}{2}$ feet high, 18 inches square at the base and 12 inches square at the top, with the letters "U.S.C.S." on the south side, was set over the surface mark. The first refercuce mark is a $\frac{1}{2}$-inch copper bolt in a concrete block 12 by 12 by 18 inches, the top of which is flush with the ground with a similar block and bolt directly beneath it as subsurface mark, distant 212.29 meters from the station in azimuth $177^{\circ} 32^{\prime} 02^{\prime \prime}$. The second mark, similar to the first, is at the junction of the road fence and that dividing the farms of

[^6]William Nelson and M. Nelson, and 225.16 meters from the station in azimuth $200^{\circ} 19^{\prime} 30^{\prime \prime}$. The third reference mark, similar to the preceding two but with no subsurfaee mark, is in the line of the boundary fenee 78.38 ineters from the station in azimuth $265^{\circ} 16^{\prime} 42^{\prime \prime}$. The fourth mark is a $\frac{1}{2}$-ineh eopper bolt leaded into a drill hole in a large stone in the southwest eorner of the foundation of the main part of William Nelson's barn, and is 86.79 meters from the station in azimuth $181^{\circ} 30^{\prime} 16^{\prime \prime}$.

Willamette north base (Lane County, Oreg., O. B. F., 1905; 1908).-One and one-half miles south and one-half mile west of Junetion City in the east eenter of see. 7, T. 16, R. 4 W., on land owned by Mr. William M. Pittney of Junetion City. It is in the northeast eorner of a field on the south side of the main east-and-west road, about 71 yards from the north-andsouth fence to the east and 4 or 5 yards from the fence on the sonth side of the road, and almost opposite the main gate whieh leads into the barnyard corral of the farm aeross the road. The subsurfaee station mark is a three-eighths ineh eopper bolt 6 inehes long, set in a bloek of eonerete $3 \frac{1}{2}$ by 4 feet and 10 inehes deep, placed 3 feet below the surface. The surfaee mark is an old-type station mark deseribed on page 42, set in the top of a eonerete pier $3 \frac{1}{2}$ feet square at the base, $1 \frac{1}{2}$ feet square at the top, and 2 feet 5 inehes deep, the top of whieh is flush with the surfaee of the ground. Surrounding the station mark and embedded in the eonerete is an 8 -ineh drain tile 1 foot long with its rim about flush with the top of the pier. Eaeh of the three referenee marks eonsists of two three-eighths ineh eopper bolts, 3 inehes long, eaeh set in the top of a conerete post 1 foot square, the subsurface post being 9 inehes long and $2 \frac{1}{2}$ to 3 feet below the surfaee, and the surfaee mark about 2 feet long, with its top 4 inehes below the surfaee. The first reference mark is 6 inehes south of the fenee on the south side of the road and about in the prolongation of the fenee line on the west side of the eorral mentioned above, and is 32.058 meters from the station in azimuth $97^{\circ} 10^{\prime}$. The seeond mark is in the eorral aeross the road, about 10 inehes from the road fence and 6 or 8 feet east of the east end of the main road gate, and is 19.876 meters from the station in azimuth $186^{\circ} 24^{\prime}$. The third nark is on the south side of the main road, 12 or 15 feet from the road fenee, and 6 inehes west of the north-and-south fenee, at a distanee from the station of 65.076 meters in azimuth $271^{\circ} 26^{\prime}$.

Seavies 2 (Lane County, Oreg., W.H. B., 190S).-In the same loeality as Seavies (U.S. G.S.). (See p. 56.) It is on the south slope of the peak near the lower edge of the first timber from the top and almost in line with Spencer (see p. 46) and the tangent line to the west bank of the MeKensie River at the big eurve in the flat below the station. The station is marked by a drill hole in the roek and by piles of roek around the tripod ereeted at the station.

Pisgah (Lane County, Oreg., W. H. B., 1908).-Loeated north and east from Goshen on a hill known as Mount Pisgah, about 200 feet southwest, or toward Speneer Butte, from the highest point of the lill. The station is on top of a roek about 4 by 6 feet in area, projeeting 16 inehes above the ground, the largest one of a eluster of roeks and, with the exeeption of a large roek on the west slope about 175 feet to the north, the largest roek in the vieinity. Station is marked by a one-half ineh drill hole $1 \frac{1}{4}$ inches deep, 6 inehes from the west edge of the roek and 23 inehes from its south point.

Eugene astronomic station (Lane County, Oreg., O. B. F., 1904; 1908).-This station is identieal with the United States Geologieal Survey station. It is on the east end of Skinners Butte, near Eugene, Oreg., just above the reservoir and north of the railroad station, on the site of the old observatory of Oregon State University. It was learned in 1908 that the land was to be eonverted into a park and that the station would be demolished, so two marble referenee stones, projecting 2 inehes above the surfaee and bearing on the top the letters "U. S." with a eross between, were set to preserve the station. The first 5 by 5 by 18 inehes is 18.294 meters from the station in azimuth $119^{\circ} 59^{\prime}$, and the seeond, 4 by 7 by 14 inehes in size is on the south brow of the hill 12.211 meters from the station in azimuth $52^{\circ} 47^{\prime}$. A large eonerete " O " on the brow of the hill overlooking the railroad station is in azimuth 2° from the station. The distanee between the two reference marks is 17.625 meters, and from the first reference mark the Patterson Sehool spire is in azimuth $315^{\circ} 28^{\prime}$, and the spire of the Humphrey Memorial Methodist Chureh is in azimuth $353^{\circ} 53^{\prime}$.

Yam (Polk County, Oreg., O. B. F., 1903; 1908).-On the highest point of the highest of a group of hills about 12 miles northwest of Salem, and about 10 meters south of a wire fence which passes over the summit. A slightly lower wooded hill is about a half mile northwest of the stanion and a group of hills is about halfway between the station and Salem. The station is marked according to note $2,{ }^{1}$ the surface mark in' a bowlder 15 by 18 by 18 inches with its top flush with the surface of the ground, and the subsurface mark in a bowlder 8 by 16 by 16 inches and 23 inches below the surface mark. Two refcrence marks, deseribed in note $4,{ }^{1}$ are in bowlders about 14 by 18 by 18 inches with their tops flush with the surface of the ground, and with a few loose stones piled about them for identifieation. Onc is in the line of the wire fence, 11.06 meters from the station in azimuth $197^{\circ} 10^{\prime}$, and the other 8.59 meters from the station in azimuth $329^{\circ} 07^{\prime}$.

Hult (Marion County, Oreg., O. B. F., 1903).--On a prominent bare hill about 6 miles by road and 4 miles in a straight line southeast of Silverton, just south of the road from Silverton to Hult post office and on the farm of Ai Porter. It is on the northeast side of the hill and slightly lower than the summit, 17 feet from a line fence on the west, and 8 feet from another fence on the south. The surface and underground marks at this station are crosses cut in the tops of one-half inch copper bolts embedded in bowlders, the underground mark being in a bowlder about 12 by 14 by 14 inches, with its top 1.9 feet below the surface mark, which is in a bowlder about 14 by 18 by 24 inehes, with its axis north and south. Two referenee marks, described in note $4,{ }^{1}$ are located as follows: One in a bowlder about 14 by 16 by 16 inches, set in the fence line 5.79 meters from the station in azimuth $108^{\circ} 55^{\prime}$, and the other in a bowlder about 14 by 16 by 24 inches, set in the fence line 7.125 meters from the station in azimuth $304^{\circ} 40^{\prime}$.

Barnes (Multnomah County, Oreg., O. B. F., 1903).-On a cleared hill about 4 miles west of Portland, betwcen the Barncs and Cornell roads, and just east of the highest hill in this range which hill is still densely wooded. It is on the south edgc of the hill about 100 feet southeast of a fir trce and some small maple trees, and close to the north side of a large stump. The station is marked aecording to notc $2,{ }^{1}$ the surface mark in a stone 8 by 14 by 18 inches with its top flush with the surface of the ground, and the subsurface mark in a stone 6 by 12 by 18 inches $1 \frac{1}{4}$ feet bclow the surface mark. Two reference marks, deseribed in note $4,{ }^{1}$ and set at the roots of stumps on the sides facing the station are located as follows: One in a bowlder 15 inches in diameter, distant 15.80 meters from the station in azimuth $156^{\circ} 11^{\prime}$; and the other in a bowlder 12 inehes in diameter 7.02 meters from the station in azimuth $233^{\circ} 23^{\prime}$. A third reference mark consists of a cross in the top of a bowlder 10 inches in diameter buried 15 inches beneath the surface and of a copper bolt directly above the cross, in a bowlder 14 by 14 by 18 inches set with its top flush with the surface of the ground. It is about 3 feet north of the main east-and-west fence line, about 30 fcet cast of where this fence crosses the highest part of the ridge, about 3 feet cast of a fence extending northward from this fence and 44.95 meters from the station in azimuth $184^{\circ} 35^{\prime}$.

Larch (Multnomah County, Oreg., O. B. F., 1903).-Southcast of Bridal Veil, a town on the Columbia River, on the highest peak of Larch Mountain and on the west point of a small rock ledge which is on the north end of a spur from the main summit. The ledge is about 20 feet higher than the spur of which it forms the end, and descends abruptly on the north in a cliff about 100 feet high. It can be reached either from Bridal Veil or Latourcll via Donahue's logging camp. The station is marked according to note 1. ${ }^{1}$ Two reference marks, deseribed in note $4,{ }^{1}$ are in the cast summit of the ledge, one in rather a low place 10.89 meters from the station in azimuth $298^{\circ} 51^{\prime}$, and the other near the cast end of the summit 15.01 meters from the station in azimuth $287^{\circ} 02^{\prime}$.

Star (Clark County, Wash., J. S. H., 1906).-On the most southerly of the two summits of Silver Star Mountain, on the line between Clark and Skamania Counties, about 35 miles northcast of Vancouver. The station was marked according to note $3 .{ }^{1}$ Two refcrence marks, described
in note $4,{ }^{1}$ are at the following distanees and azimuths from the stadion: 5.910 meters, $305^{\circ} 43^{\prime}$; and 5.160 meters, $26^{\circ} 11^{\prime}$.

Davis (Cowlitz County, Wash., J. S. H., 1906).-About 14 miles northeast of Woodland on the highest point of a hill on a north-and-south ridge whieh may be reaehed from Woodland by following the road up the Lewis River to the Fisher plaee and paeking from there. The station is marked aeeording to note $3 .{ }^{1}$ Two reference marks, deseribed in note $4,{ }^{1}$ are at the following distanees and azimuths from the station: 5.61 meters, $15^{\circ} 02^{\prime}$; and 5.37 meters, $96^{\circ} 51^{\prime}$.

Red (Skamania County, Wash., J. S. H., 1906).-On the highest point of a bald, red hill near the sourees of the Little White Salmon and Lewis Rivers and not far from Kliekitat Pass. It is best reached from White Salmon on the Columbia River via Guler post office, Ice Cave, Peterson's prairie, Goose Lake, Steamboat Lake, and the Indian race traek, being about 1 mile southwest from the last plaee and $1 \frac{1}{2}$ miles west of Steamboat Lake. The station is marked aeeording to note $3 .{ }^{1}$ Two referenee marks, described in note $4,{ }^{1}$ are at the following distanees and azimuths from the station: 7.400 meters, $96^{\circ} 14^{\prime}$; and 5.422 meters, $188^{\circ} 46^{\prime}$.

Warren (Columbia County, Oreg., O. B. F., 1903).-About a mile southwest of Warren, a station on the Northern Pacific Railway, on a slight elevation or ridge near the west side of a pasture owned by Mr. E. Harnes and about 250 meters north of an east-and-west road. The station is marked aecording to note $2,{ }^{1}$ the surfaee mark in a bowlder 8 by 24 by 24 inehes with the letters "U. S." eut in the north side and the subsurfaee mark in a stone 6 by 12 by 18 inehes buried 18 inches below the ground. Three referenee marks, deseribed in note 4, ${ }^{1}$ are in the north-and-south fence line to the west of the station. The middle referenee mark of the three is 246.7 meters north of the north road fenee and the other two are eaeh about 30 meters distant from the middle mark, one north and the other south. They are at the following distanees and azimuths from the station: 23.67 meters, $93^{\circ} 15^{\prime} ; 37.46$ meters, $41^{\circ} 26^{\prime}$; and 37.95 meters, $142^{\circ} 46^{\prime}$.

Lam (Cowlitz County, Wash., J. S. H., 1906).-On the highest part of the heavily wooded summit of Elk Mountain, about 35 miles northeast of Woodland. The station is marked aceording to note $3 .{ }^{1}$ Two reference marks, deseribed in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 6.28 meters, $36^{\circ} 56^{\prime}$; and 10.84 meters, $319^{\circ} 02^{\prime}$.

Len (Skamania County, Wash., J. S. H., 1906).-In the northwestern part of Skamania County, about 10 miles north of Mount St. Helens and a short distanee northeast of Spirit Lake. Spirit Lake ean be reaehed by stage road from Castle Rock via Toutle and St. Helens, and from the south landing on this lake the peak on whieh the station is located appears as a rocky summit through a gap almost due north. The station is marked aeeording to note 3. ${ }^{1}$ Two referenee marks, deseribed in note 4, ${ }^{1}$ are at the following distanees and azimuths from the station: 3.260 meters, $215^{\circ} 15^{\prime}$; and 12.220 meters, $138^{\circ} 04^{\prime}$.

Toutle (Cowlitz County, Wash., O. B. F., 1905).-On the top of a eonieal hill, the highest point of a long ridge, known loeally as Gum Mountain, between the north and south forks of the Toutle River and about 20 miles east of Castle Roek. The summit was heavily timbered in 1905 and lines of sight were eleared. The station is reaehed from Castle Roek via Toutle and St. Helens and the main road left at a point about $21 / 2$ miles east of St. Helens at Muniker's plaee, from where the station is about 3 miles distant in a southerly direetion. The station is marked aceording to note $2,{ }^{1}$ the underground mark in a stone 12 inches in diameter 2 feet below the ground and the surface mark in a bowlder 12 by 18 by 24 inehes. The reference marks are copper bolts set in the eenter of triangular blazes on each of three stumps on the sides faeing the station, the first being 9.24 meters from the station in azimuth $104^{\circ} 22^{\prime}$, the seeond 9.13 meters, in azimuth $165^{\circ} 16^{\prime}$, and the third 7.90 meters, in azimuth $345^{\circ} 34^{\prime}$. Two blazed trees are at the following distances and azimuths from the station: 18.24 meters, $152^{\circ} 52^{\prime}$; and 26.44 meters, $257^{\circ} 50^{\prime}$.

Huck (Lewis County, Wash., O. B. F., 1905)'-On a high, bald summit, known loeally as Huekleberry Mountain, and about $\&$ miles northwest of the highest point of the Deschutes

Mountains in this region. The station is on a level plaee on the summit and about 60 feet north of a sharp rocky point of about the same height. The station is marked by a one-half ineli drill hole 1 inch deep in the top of a bowlder 8 by 8 by 10 inehes set flush with the surfaee of the ground. The reference marks, three in number, are similar drill holes in solid ledges along the west side of the ridge a little below its top, and at the following distanees and azimuths from the station: 13.65 meters, $40^{\circ} ; 7.30$ meters, 60°; and 5.60 meters, 136°.

Bel (Piercc County, Wash., O. B. F., 1905).-On a high rocky peak known as "Bel Jaeket," about 10 or 12 miles a little south of west of Mount Taeoma, and about $91 / 2$ miles by road from Ashford. From Ashford there is a wagon road leading to Messler's place about 5 miles distant, then a trail in the direetion of Bald Roek and Eagle Roek, whieh leads to a small lake from where the peak may be seen about one-half mile distant a little to the west of north. The station is marked aecording to note $3 .{ }^{1}$ Three reference marks, deseribed in note $4,{ }^{1}$ are at the following distanees and azimuths from the station: 7.26 meters, $328^{\circ} 46^{\prime} ; 5.24$ meters, $16^{\circ} 22^{\prime}$; and 5.94 meters, $188^{\circ} 29^{\prime}$. A drill hole is 16.89 meters from the station in azimuth $15^{\circ} 01^{\prime}$.

Hal (Lewis County, Wash., O. B. F., 1905).-On the highest point of the most western one of the high, bald summits of the Deschutes Mountains near the northern line of Lewis County and due south of Tacoma. From the north the mountain appears as a symmetrical cone and is best approaehed from Yelm, a town on the Northern Pacific Railway, via Peier Stone's raneh, whieh is about 14 miles southeast of Yelm and a short distanee north of the station. The station is near the south point of the hilltop and marked aeeording to note $3 .{ }^{1}$ Three referenee marks, deseribed in note 4, ${ }^{1}$ are loeated as follows: The first in a large bowlder, 10.55 meters from the station in azimuth $166^{\circ} 24^{\prime}$, the second in a broad sloping ledge 4.81 meters distant in azimuth $333^{\circ} 35^{\prime}$, and the third in about the highest point of roeks 2.71 meters distant in azimuth $13^{\circ} 07^{\prime}$.

Rain (Thurston County, Wash., O. B. F., 1905).-About 10 meters northwest of the highest point of a prominent high hill about 4 miles south-southeast of the town of Rainier, about 1,200 feet above it, and just visible over the top of the timber from the town. It is probably in see. 33, T. 16, R. 1 E., and it is about a mile west-northwest of the raneh on the top of the ridge owned by N. N. Bungard. The station is marked aecording to note $2,{ }^{1}$ the subsurface mark in a bowlder about 10 by 12 by 12 inches and 15 inehes below the surfaee of the ground, and the surfaee mark in a bowlder 12 by 20 by 20 inehes. Two referenee marks, described in note $4,{ }^{1}$ are located as follows: One in a large bowlder at the highest part of the hill, 8.75 meters from the station in azimuth $8^{\circ} 54^{\prime}$, and the other in a bowlder at some distance down the slope of the hill and 13.78 meters from the station in azimuth $218^{\circ} 42^{\prime}$.

Hurst (Pierce County, Wash., O. B. F., 1905). -Near the north end and highest part of the timbered hill about 400 meters slightly south of west from the railroad station at Hillhurst, a town on the Northern Paeifie Railway, and about one-half mile southwest of the storo and post office. The hill is across the road south from the Cottage Grove farm, owned by Mr. Bueholtz. The station is marked at the surface with an old-type station mark, deseribed on page 42, set in a conerete block 12 inehes square and 18 inehes deep, and underground by a one-half inch eopper bolt 4 inches long set in the solid ground or native eement 3 feet beneath the surface. There are two reference marks, one of which is a eopper bolt set in the only large roek in the neighborhood, 40.34 meters from the station in azimuth $252^{\circ} 40^{\prime}$, and the other is a similar copper bolt in a bowlder 10 by 12 by 12 inehes flush with the surface of the ground, with a smaller bowlder 8 by 10 by 10 inches directly below it, and is 13.52 meters from the station in azimuth $150^{\circ} 41^{\prime}$.

Pen (Pieree County, Wash., O. B. F., 1905).-About one-half mile south of Graham, a station on the Taeoma Eastern Railroad, about one-half mile northwest of Mr. Hansen's house, and 75 or 100 meters to the westward of the highest part of a flat, partly cleared summit. The station is marked aecording to note $2 .{ }^{1}$ Three reference marks, deseribed in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 18.93 meters, $242^{\circ} 50^{\prime}$; 17.80 meters, $37^{\circ} 58^{\prime}$; and 23.15 meters, $160^{\circ} 53^{\prime}$.

Tacoma south base (Pierce County, Wash., O. B. F., 1905).-About 10 miles south of Tacoma and 2 miles south of Spanaway Lake, on land belonging to William Sekor, in the prolongation of Pacific Avenue of Tacoma. From the top of the hill in South Tacoma this street is nearly a straight line and Tacoma base line lics along it. The station is on the highest bench near the south side of Sckor's property and near the highest point of the bench, being about 10 feet west of a small but prominent knoll. It is 178.5 meters from the fence on the south side of the field and 154.8 meters from the fence on the west side. The station is marked underground by a cross in the head of a one-half inch copper bolt 3 inches long set in a block of concrete $2 \frac{1}{2}$ feet square and 6 inches thick 3 feet beneath the surface, and at the surface by an old-type station mark, described on page 42, set in the top of a concrete cube $2 \frac{1}{2}$ feet on an edge which has a 4 -inch drain tile 2 feet long at the center with its top flush with the surface of the concretc. There are three reference marks, each consisting of a copper bolt set in a concrete block 18 inches square and 6 inches thick buried 3 fect below the surface, and of a similar bolt above it in a concrete block 18 inches square and 30 inches deep, its top 2 inches below the surface of the ground. They are at the following distances and azimuths from the station: 49.658 meters, $263^{\circ} 50^{\prime} ; 38.938$ meters, $347^{\circ} 25^{\prime}$; and 61.153 meters, $173^{\circ} 25^{\prime}$.

Tacoma north base (Pierce County, Wash., O. B. F., 1905).-On Fern Hill, 4 miles south of Tacoma and about one-fourth mile north of the crossing of Pacific Avenue and the Puyallup Electric Railway. It is on a prominent knoll just south of the house owned and occupied by H. A. Wilhelmi, 8.5 meters south of his south line and 19 meters east of the east line of Pacific Avenuc. The subsurface mark at the station is a cross in the head of a one-half inch copper bolt 3 inches long set in a block of concrete 30 by 30 inches and 6 inches thick, 3 feet beneath the surface. The surface mark is an old-type station mark, described on page 42, set in a concrete cube $2 \frac{1}{2}$ feet on an edge which has a 4 -inch drain tile 2 feet long at the center with its top flush with the surface of the concretc. There are three reference marks, each consisting of a oneeighth inch copper wire embeddel in an underground block of concrete 14 by 14 inches and 6 inches thick sct 3 feet below the surface, and of a surface mark consisting of a similar wire in a block 14 by 14 by 30 inches set with the top flush with the surface of the ground. They are located as follows: The first, just north of Dr. Rynning's north fence and 4 feet east of the east line of Pacific Avenue, 92.325 meters from the station in azimuth $10^{\circ} 19^{\prime}$; the second, south of the back part of Wilhelmi's house and just south of his south fence, 47.757 meters from the station in azimuth $259^{\circ} 51^{\prime}$; and the third just south of Wilhelmi's south fence and 2 feet east of the east line of Pacific Avenue, 19.672 meters from the station in azimuth $117^{\circ} 04^{\prime}$.

Burn (Pierce County, Wash., O. B. F., 1905).-On a prominent ridge 2 or 3 miles southwest of the central part of the city of Tacoma, west of that part of the valley which is traversed by the Northern Pacific Railway in an east-and-west direction and almost in line with the east-and-west portion of the track, about threc-fourths of a mile from its western end. It is on a summit about one-half mile west of a prominent schoolhouse, about 300 meters southeast of a house, and about 30 meters north of a private road leading from the house to the schoolhouse. The station is marked according to note $2,{ }^{1}$ with the subsurface bowlder about 2 feet below the surface. Three reference marks, described in note 4, ${ }^{1}$ are located as follows: The first near a trail along the ridge and 23.53 meters from the station, in azimuth $160^{\circ} 44^{\prime}$; the second on the north edge of the road 25.13 metars distant, in azimuth $320^{\circ} 00^{\prime}$; and the third near the beginning of a slope 25.47 meters distant, in azimuth $85^{\circ} 34^{\prime}$.

Kin (Pierce County, Wash., O. B. F., 1905).-On the top of a prominent hill in the southeastern part of Tacoma, just south of McKinley Park, in the block between Thirty-second Street and Wright Avenue and K and L Strcets and very nearly halfway between Thirtysecond Street and Wright Avenue. It is directly in line with the gable ends of the N. P. B. A. Hospital, a large brick building a couple of hundred yards to the westward of the station. The station is marked according to note 2. ${ }^{8}$ Two reference marks, described in note 4,' are at the following distances and azimuths from the station: 24.55 meters, $215^{\circ} 48^{\prime}$; and 18.47 meters, $294^{\circ} 50^{\prime}$.

[^7]Wash (Pieree County, Wash., O. B. F., 1905).-In the northwestern part of Tacoma, near the middle of Twenty-fifth Street and about 5 yards east of the east line of Washington Street projected across Twenty-fifth Street at their intersection. The station is marked by an old-type station mark, deseribed on page 42, in a bowlder 18 by 24 by 30 inehes, whieh is buried with its top about 5 inches below the surfaee of the ground. Two reference marks, each eonsisting of a puneh mark in the head of a copper slug in a stone 2 feet below the surface and of a similar slug in a stone directly above the lower mark and about 3 inches beneath the surface, are loeated as follows: One at the northeast interseetion of Twenty-fifth and Washington Streets, about $1 \frac{1}{2}$ feet east of the east line of Washington Street, 1 foot north of the north line of Twenty-fifth Street and 9.634 meters from the station, in azimuth $153^{\circ} 20^{\prime}$; and the other at the southeast intersection of the same streets, about 3 feet from Washington Street, 1 foot south of the south line of Twenty-fifth Street and 17.713 meters from the station, in azimuth $12^{\circ} 22^{\prime}$.

Bos (Pieree County, Wash., O. B. F., 1905).-In the flat about 2 miles east of Taeoma and one-third of a mile south of the trestle leading from the city aeross the marsh to the mills on the east side of the valley. It is about 75 meters northeast of a small white house at the north end of the strip of fast land which extends farthest into the marsh and on a very slight elevation, clear of trees and buildings, on the edge of a slough. The station is marked aeeording to note $2,{ }^{1}$ the lower mark in a small bowlder 15 inehes below the surface and the upper nark in a bowlder about 10 inches in diameter projecting 3 inehes above the surface of the ground. There are no reference marks, but a broken-topped fir tree is about 60 meters from the station, in azimuth $331^{\circ} 44^{\prime}$, and the west corner of the small white house is 77.72 meters distant, in azimuth $13^{\circ} 54^{\prime}$.

Gull (King County, Wash., J. J. G., 1891; 1905).-On Commeneement Bay, north of Tacoma, and about 1 mile southeast from Brown Point Lighthouse, on the bold bluff about 125 feet high, which is conspicuous on approuehing the point from Tacoma. The station is about 15 feet from the edge of the bluff and in range with the tower of the Lowell Sehool in Tacoma and the left tangent of the tall, dark, eylindrieal building with a dome roof, whieh belongs to the Tacoma Lumber Co.'s mill, and bears about southwest from the station. The station is marked by a bottle buried $2 \frac{1}{2}$ feet below the surface and by a nail in a pine stub at the surface of the ground.

Dron (King County, Wash., O. B. F., 1905).-On Commencement Bay, about onè-half mile southeast of Brown Point Lighthouse and about one-half mile west of station Gull. It is on the highest part of a bluff point about 60 feet above the water and 20 or 25 feet inland from the edge of the bluff, in a thicket of madrona trees, some of which were felled to clear the line to station Neill. The station is marked aceording to note 2. ${ }^{1}$ Two reference marks, described in note $4,{ }^{1}$ are at the following distanees and azimuths from the station: 4.42 meters, $175^{\circ} 08^{\prime}$; and 5.01 meters $308^{\circ} 03^{\prime}$.

Smelt (Pierce County, Wash., O. B. F., 1905).-On a ridge in the extreme northwestern part. of Taeoma just south of Point Defiance Park. To reach the station follow the eleetrie line, whieh runs to the smelter, to a point about 300 yards beyond where the ears make the last turn at Highland Park, and there take the road which leads toward the west, following it until the topof the ridge is reaehed. From there keep along the ridge toward the north until the Brown Point lighthouse and the left tangent to the second smelter chimney to the north of the 300 -foot. smelter stack are in range, then follow this range to within 5 or 10 yards of the edge of the plateau. The station is not far from the west end of the main ridge, considerably below the highest point, and at about the same clevation as a small knoll some 300 feet to the west. The station is marked aecording to note $2,{ }^{1}$ exeept that the subsurface mark is a one-half inch drill hole in a stone 18 inches below the surface. The surface mark is in a bowlder 10 by 18 by 18 inehes set flush with the surface of the ground. One reference mark consists of punch holes in the heads of eopper slugs set in each of two stones, one 15 inches underground and the other at
the surface, 28.55 meters from the station in azimuth $27^{\circ} 38^{\prime}$. The other reference mark is a copper slug set in a stone in place 53.16 meters from the station in azimuth $236^{\circ} 33^{\prime}$.

Neill 2 (Pierce County, Wash., O. B. F., 1905).-On Neill Point at the southeast end of Vashon Island, about 6 or 8 feet above high-water mark and 15 feet inland from it. The station is marked only by a tack in the top of a pine stub.

Tacoma astronomic station (Pierce County, Wash., J. F. P., 1892; 1905).-A stone pier near the north end of Wrights Park, Tacoma. A brick picr 17 inches square and $5 \frac{1}{2}$ feet long, used for latitude observations in 1894, is 12 feet 3 inches due east of the station.

SUPPLEMENTARY POINTS.

Corning tower (Tehama County, Cal., O. B. F., 1904).-The tower at the south end of the Maywood Colonization Building, a wood and plaster structure, just across the street from the Maywood Hotel and southwest from the railroad station.

Corning astronomic station (Tehama County, Cal., W. H. B., 1908).-On the vacant lot just west of the Maywood Colonization Building at Corning. (See Corning tower, above.) The station is not marked but the following distances and azimuths to different parts of the Maywood Colonization Building were measured. Tower, 23.40 metcrs, $247^{\circ} 24^{\prime} .2$; northwest corner of the porch-like part of the building known as the Arcade, 31.40 meters, $207^{\circ} 55^{\prime} .2$; and southwest corner of the same Arcade, 16.64 metcrs, $242^{\circ} 17^{\prime} .8$.

Redding courthouse (Shasta County, Cal., O. B. F., 1904; 1908).-The center of the top of the dome of the courthouse upon which stands the statue of justice. The statue is eccentric to the center of the dome by about $1 \frac{1}{2}$ feet. A triangle with a small hole at the center is cut in the floor of the dome directly below the center of the dome and may be used as the station.

Redding astronomic station (Shasta County, Cal., O. B. F., 1904; 1908).-On a prominent hill about three-fourths of a mile south by west from the railroad station at Redding. To reach the station follow the railroad track south to milepost 259 , which is marked at present by a board nailed to a telegraph pole, wherc will be found a United States Geological Survey bench mark, a metal tube with a brass top, and from here the station is west about one-fourth of a mile. The station is on the brow of a hill somewhat toward the south edge and not quite at the highest point. A live oak about 6 inches in diameter is on the edge of the hill just north of the line to the Gcological Survey bench mark and a leaning pine tree about a quarter of a mile distant is in line with the Redding courthouse. The station is marked according to note $1,{ }^{1}$ in the top of a large bowlder projecting 4 inches above the ground. Two refcrence marks, described in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 20.22 meters, $115^{\circ} 49^{\prime}$; and 9.99 meters, $188^{\circ} 17^{\prime}$.

Redding south base (Shasta County, Cal., W. H. B., 1908).-About 15 feet cast of the railroad track at Redding and opposite a large steel oil tank. The station is marked only by a nail in the top of a wooden stub and by the three instrument stubs.

Redding north base (Shasta County, Cal., W. H. B., 1908).-Near the northwest corner of the cemetery south of the railroad station at Redding and about 15 feet east of the track. The station is marked only by a nail in a wooden stub and by the three instrument stubs around it.

Hill (Shasta County, Cal., W. H. B., 1908).-On the cast brow of a ridge just north of the ridge on which Redding astronomic station is located (see above), and almost on the line betwecn that station and the courthouse at Redding. The station is marked only by a wooden stub and the thrce instrument stubs surrounding it.

Central Point astronomic station (Jackson County, Orcg., O. B. F., 1904; 1908).-About 2 miles north of Central Point, near the intersection of the Southern Pacific Railway and the county road and in the northwest corner of the field which is just cast of the county road and south of the private road leading to the house occupied by George Mims. The station is about 30 meters from the railroad. (See Central Point latitude station, below). The underground mark at the station is a three-fourths inch drill hole in the top of a triangular granite
roek, set in eement 15 inches below the surfaee of the ground. The surfaee mark is an old-type station mark, described on page 42 , set in the top of a granite roek which projeets 2 inches above the surface and which is embedded in a mass of eoncrete 30 inches square and 12 inches dcep. The refcrence mark, a United States Geologieal Survey bench mark, is at the interseetion of the railroad and the county road, just east of the rail on the east side of the road and 28.15 meters from the station in azimuth $31^{\circ} 55^{\prime}$.

Central Point latitude station (Jackson County, Oreg., W. H. B., 1908).-Near Central Point astronomic station (see above) and marked only by a wooden pier: The following distanees and azimuths were measurcd: Astronomie station, 4.77 metcrs, $116^{\circ} 41^{\prime}$; United States Geologieal Survey benelı mark (referenee mark of astronomie station), 28.82 meters, $41^{\circ} 18^{\prime}$. The north and west fences of the field are, respeetively, 6.18 meters and 15.55 meters from the station.

Rose (Douglas County, Oreg., O. B. F., 1904).-On the highest point of the highest bald summit of a ridge about $1 \frac{1}{2}$ miles north of Roseburg. The station is marked aceording to note $2,{ }^{1}$ the underground mark in a mass of eonerete 1 foot below the surface and the surface mark in a bowlder 9 by 14 by 18 inehes flush with the surfaee of the ground. Two referenee marks, deseribed in note $4,{ }^{1}$ are at the following distances and azimuths from the station: 16.71 mctcrs, $12^{\circ} 24^{\prime}$; and 7.49 meters, $125^{\circ} 23^{\prime}$.

Burg (Douglas County, Oreg., O. B. F., 1904).-On a high, bald summit about 3 miles southeast of Roseburg. As seen from the iron bridge over the river just west of the railroad station, it is the highest and most distant peak visible up a small valley. The station is marked according to note $2,{ }^{1}$ the underground mark in a mass of eonerete 13 inehes below the surface, and the surface mark in a bowlder 10 by 12 by 14 inches set flush with the surface of the ground. The reference mark, deseribed in note $4,{ }^{1}$ is in a bowlder just over the edge of the hill, 10.24 metcrs from the station in azimuth $112^{\circ} 45^{\prime}$.

Roseburg latitude station (Douglas County, Oreg., O. B. F., 1904).-On the point of a spur aeross the river from the town of Roseburg, about 100 feet west from the end of the bridge and 60 feet above it. The station is marked aeeording to note $1,{ }^{1}$ set in a ledge of roek. Two rcference marks, described in note $4,{ }^{1}$ are loeated as follows: One in a prominent ledge 18.18 meters from the station in azimuth $30^{\circ} 17^{\prime}$, and the other in the side of a ledge flush with the ground, 32.30 meters from the station in azimuth $109^{\circ} 05^{\prime}$.

Springfield Methodist Church (Lane County, Oreg., W. H. B., 1908).-The lower and lcss prominent of the two ehurehes at Springfield.

Springfield Christian Church (Lane County, Oreg., W. H. B., 1908).-The taller and more prominent of the two churehes at Springfield.

Deady IIall, west tower (Lane County, Oreg., W. H. B., 1908).-Deady Hall is one of the two larger buildings of the University of Oregon at Eugene and has large square towers at both the east and west cnds.

Geary School spire, Eugene (Lane County, Oreg., W. H. B., 1908).-The Geary School is the publie school loeated at West Fourth and Madison Streets, Eugene.

United Brethren Church spire, Eugene (Lane County, Orcg., W. H. B., 1908).-At East Eleventh and Ferry Streets, Eugene.

Patterson School spire, Eugene (Lane County, Oreg., W. H. B., 1908).-The public school loeated one block west of the southwest eorner of the eampus of the University of Orcgon, at Eugene.

Baptist Church spire, Eugene (Lane County, Oreg., W. H. B., 1908).-At East Eighth and Pearl Streets, Eugene.
W. O. W. IIall spire, Eugene (Lane County, Oreg., W. II. B., 1908).-The old Episeopal Chureh loeated at West Eighth and Lineoln Streets, Eugene, which is now being used as a hall by the Woodmen of the World.

Courthouse flagpole (Lane County, Oreg., W. II. B., 1908).-At East Eighth and Oak Streets, Eugene.

Methodist Church spire (Lane County, Oreg., W. H. B., 1908).-The Humphrey Memorial M. E. Chureh loeated at West Tenth and Willamette Streets, Eugene.

Seavies (U.S. G.S.) (Lane County, Oreg., O. B. F., 1904).-This station is identical with the United States Geologieal Survey station of the same name. It is on the most sontheru of the high hills, about 6 miles northeast of Eugene and about 30° or 40 feet southwest of and slightly lower than the highest part of the hill. The station is marked by a square stone 4 by 4 by 24 inehes with its top a little below the surfaee. The old Geological Survey signal was still standing in 1904, anchored in place by roeks, and was not disturbed.

Mon'ument, General Land Survey (Multnomah County, Oreg., O. B. F., 1903).-The initial intersection of the First Standard Parallel and the Willamette Meridian, a short distanee southeast of Barnes. (See p. 49.) The station is in a fenee eorner and is marked by a stone post projeeting $1 \frac{1}{2}$ feet above the ground.

River (Mnltnomah County, Oreg., O. B. F., 1903).-Near the junction of the two suburbs of Portland known as Arbor Lodge and Peninsula, on the east bank of the Willamette River about a mile east of Columbia University. It is on a slight elevation, the lighest in the vieinity, and in the fence line on the north side of the boulevard along the river bank. It was plaeed as far east as possible and still keep the Oregonian Building in view. The station is marked by crosses eut in the tops of two bowlders, one placed near the surface of the ground and the other direetly beneath at a depth of 1.7 feet, eaeh stone bearing the letters "U. S. O. S." eut in the top.

Oregonian (Multnomah County, Oreg., O. B. F., 1903). -The tall iron pole at the southeast eorner of the tower of the Oregonian Building at the northwest eorner of Sixth and Adler Streets, Portland.

Portland longitude station (Multnomah County, Oreg., C. H. S., 1887; 1905).-This station has been destroyed.

Portland latitude station (Multnomah County, Oreg., C. H. S., 1887; 1905).-This statiou has been destroyed.

Rocky Butte (Multnomah County, Oreg., C. R., 1889; 1903).-On the north side of the highest part of the brush-eovered summit of the butte, about 2 miles northeast of Montavilla. The station is marked by a hole drilled in a large round-topped bowlder.

Harney (Clarke County, Wash., C. R., 1881; 1903).-On the north bank of the Columbia River, about $1 \frac{1}{2}$ miles above the United States wharf at Vaneouver, on the sloping bare bluff immediately above the road leading from Vaneouver up the river. It is almost in front of the "Harney House," on land formerly owned by Gen. Harney, and about 80 meters east of the fenee inelosing the race traek. The underground mark eonsists of a glass bottle placed 3 feet below the surface, with the neek up, the eenter of the neek marking the station, and three other bottles placed on their sides at a depth of about 1 foot and at distances of about 6 feet from the eenter, with the neeks of the bottles pointing toward the eenter. The surfaee mark is a small drill hole 2 inehes deep in a basaltie bowlder, weighing about 350 pounds, plaeed with its top flush with the surfaee of the ground. The following bearings to the right of magnetie north were read at the station: East chimney of Harney House, $27^{\circ} 05^{\prime}$; triangle on tree $74^{\circ} 28^{\prime}$; white house on south side of river, $172^{\circ} 55^{\prime}$; ventilator on barn, $220^{\circ} 06^{\prime}$; and eorner of race traek fence, $276^{\circ} 47^{\prime}$.

Balch (Multnomah County, Oreg., C. R., 1881; 1906).-This station was oeeupied for azimuth in 1886. It is immediately northwest of the eity limits of Portland, about a mile south of the Willamette River, on the first small level beneh of the spur making out from the ridge west of the Cornell road, and about 255 feet above the road. The station is marked underground by a broken-necked bottle placed neck up 2 feet below the surface, and by a eross in the top of a eopper bolt set in eoncrete 6 inehes above the bottle, and at the surface by a eross on an old-type station mark described on page 42, set in conerete, whieh is inseribed with the letters "C. \& (. S." The referenee marks are the remains of two briek piers built in line to the west of the station, with their fomdation about 20 inches below the surface, the nearest edge of the first pier being about 1 meter west of the station.

Dash (King County, Wash., G. D., 1857; 1905).-On the sand spit called Dash Point, about 1 mile northeast of Brown Point Lighthouse and 10 or 12 feet back from the high-water mark. The station is inclosed within a wall of old timbers to protect it from the washing of the waves, and is marked by a one-half inch drill hole 2 inches deep in a stone buried a foot beneat the surface. Two reference marks, probably drill holes in bowlders, are at the following distances and azimuths from the station: 18.05 meters, $284^{\circ} 34^{\prime}$; and 37.32 meters, 352° 21^{\prime}. A blazed fir tree is about 60 meters distant in azimuth $324^{\circ} 41^{\prime}$.

Piner 2 (King County, Wash., O. B. F., 1905).-On the southeast point of Maury Island, about 25 feet above high tide and 30 or 40 feet inland from high-water mark. A group of four piles is 30 or 40 meters east of the station, and a large rock, the largest in the vicinity, is in the water 50 or 60 meters south and a little west from the station. The station is marked by a three-fourths inch drill hole in a large stonc set flush with the surface, and underground by a similar drill hole in a stone 2 fect below the surface of the ground. Two reference marks, each consisting of surface and subsurface stones, are at the following distances and azimuths from the station: 4.61 meters, $86^{\circ} 55^{\prime}$; and 4.65 meters, $167^{\circ} 45^{\prime}$.

Robinson 2 (King County, Wash., J. S. L., 1867; 1905).-On Robinson Point, on Maury Island, about 300 meters southwest of the scaffold light, on a bluff about 20 fect above high tide and 30 feet inland from high-water mark." The station is 95 meters southwest of the light keeper's dwelling, 42 meters southwest from the southeast corner of the light keeper's shed or barn, and about 2 meters west of the fence which extends southwest from the corner of the shed. A large madrona tree at the top of the bluff is 15 or 20 meters southwest of the station. The station is marked underground by a one-half inch drill hole in a stone buricd 1 foot deep and at the surface by a similar hole in a stone, directly above the lower mark, set with its top flush with the surface of the ground. One reference mark is a one-half inch drill hole in a solid stone which is in line with the fence running southwest from the shed, and is 2.93 meters from the station in azimuth $26^{\circ} 25^{\prime}$. The other reference mark consists of surface and subsurface stones, the lower one $1 \frac{1}{2}$ fect beneath the surface, and is 10.62 meters from the station in azimuth $185^{\circ} 06^{\prime}$.

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THE ELEVATIONS.

The zenith distances directly observed at each station were first computed. These zenith distances were corrected for height of the object observed and of instrument so as to refer them all to the ground at each station or to the station marks.

The difference of elevation of each pair of stations in the main scheme was then computed from the observations over the line joining them by the formula

$$
h_{2}-h_{1}=s \tan 1 / 2\left(\zeta_{2}-\zeta_{1}\right)\left[1+\frac{h_{2}+h_{1}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}\right]
$$

in which h_{2} and h_{1} are elevations of the stations, ζ_{2} and ζ_{1} are the measured zenith distances as corrected for height of instrument and of object observed, s is the horizontal distance between the stations, and ρ is the radius of curvature.

As there are always two or more lines to each new station, many rigid conditions exist between the observed difference of elevation, even if the connections with the precise leveling were ignored, and the least square adjustment furnishes the readiest accurate means of deriving the required elevations.

The elevations of the primary scheme throughout the arc from the stations of the Thirtyninth Parallel triangulation to Puget Sound were adjusted in three sets of equations.

The first adjustment involved all stations of the primary scheme from the Thirty-ninth Parallel to the Willamette base.

The second adjustment fixed the elevations of the primary stations connecting the Tacoma base with the Puget Sound triangulation.

The third adjustment fixed the elevations of the primary stations between the Willamette base net and the Tacoma base as well as the secondary stations connecting these with the Columbia River.

In the first adjustment the elevations of stations Redding astronomic, Gazelle astronomic, Central Point astronomic, and Roseburg latitude were held fixed at 202.16, 848.28, 369.92, and 165.24 meters, respectively. These elevations were determined directly from the leveling of the United States Geological Survey. The precise leveling over the base and over a side line 1 kilometer in length connected the terminal marks of the Willamette base with the bench mark 4 miles north of Irving, also established in 1903 by the United States Geological Survey. The elevation published for this bench mark ${ }^{1}$ was increased by 0.286 foot (0.087 meter) and the elevations 101.36 and 116.59 meters adopted for the Willamette north base and south base, respectively.

The elevations of Mount Helena and Snow Mountain West were held fixed by the adjustment published in Special Publication No. 4, page 279, as 1322.08 and 2145.66 meters, respectively. The zenith distances measured at these stations in 1876 and 1892 were used to fix the elevations of Snow Mountain East and Marysville Butte. They were first changed by eliminating all observations made near sunrise and sunset, as these have been proved unreliable. They were then treated as reciprocal observations in connection with the zenith distances measured in 1904 at the latter stations. The elevation of Snow Mountain East was held fixed at $2,150.56$ meters as determined directly from Snow Mountain West, a line only 923 meters in length.

The elevations of the 26 remaining stations connected by the observations are unknowns, to be determined by least squares from the 82 observed differences of elevation indicated below.

In the following tabulation there are shown the observed differences of elevation treated in the first adjustment, together with their adjusted values. The weight p assigned to each observed difference of elevation is inversely proportional to the square of the length s of the line between stations in meters and was conveniently computed by the formula $\log p=10-$? $\log s$. The observed difference of elevation is given the sign of the elevation of the second station named minus the elevation of the first. The quantity contained in the last column but one is the correction to be added to an observed difference of elevation to obtain the adjusted difference of elevation.

Adjustment of elevations-Thirty-ninth Parallel. to Willamette base.

Station 1	Station 2	$\underset{p}{\text { Weight }}$	Observed difference of elevations $h_{2}-h_{1}$	Adjusted difference of elevations $h_{2}-h_{1}$	Adjusted minus observed v	$p v^{4}$
			Meters	Meters	Meters	
Mount IIelena	Marysville Butte	1.18	- 679.36	- 684. 06	-4.70	26. 1
Snow Mountain east	Marysville Butte	1. 46	-1509.66	-1512.54	-2.88	12. 1
Marysville Butte	Kent	0.75	+1400. 46	+1394.88	-5.58	23. 3
Snow Mountain east	Kent	2. 36	- 117. 49	- 117.66	-0.17	0.1
Snow Mountain east	Lyons	0.51	- 113. 31	- 119.17	-5.86	17.5
Marysville Butte	Lyons	0.67	+1401. 75	+1393. 37	-8.38	47. 0
Kent	Lyons	0.99	- 1.46	- 1.51	-0.05	0.0
Kent	Bally	1. 98	- 140.12	- 140.49	-0.37	0.3
Lyons	Ball ${ }^{\text {c }}$	1. 18	- 138. 32	- 139.03	-0.71	0.6
Redding	Bally	20.75	+1690.41	+1690. 20	-0.21	0.9
Kent	Round ${ }^{\text {a }}$	0.77	- 984.69	- 989.49	- 4.80	17.7
Lyons	Round	2. 59	- 984.99	- 988.00	-3.01	23. 5
Bally	Round	2. 55	-849.51	-848.97	+ 0.54	0.7
Bally	Spur	1. 10	+ 878.12	+ 874.52	- 3.60	14.3
Round	Spur	2. 00	+1728.70	+1723.49	-5.21	54.3
Bally	Boliver	1. 84	+ 561.09	+ 559.17	-1.92	6.8
Spur	Boliver	4. 48	-314.61	- 315. 35	-0.74	2.5
Round	Mears	3.37	$+1130.59$	$+1130.67$	+ 0.08	0.0
Spur	Mears	8. 05	- 593.20	- 592. 82	+0.38	1. 0

1See p. 134, Report for 1907.

Adjustment of elevations-Thirty-ninth Parallel to Willamette base-Continued.

* Station 1	Station 2	$\underset{p}{\text { Weight }}$	Observed difference of $\substack{\text { elevations } \\ h_{1}-h_{1}}$	Adjusted difference of $\underset{\substack{\text { elevations } \\ h_{2}-h_{1}}}{\substack{\text { and }}}$	Adjusted minus observe	$p v^{2}$
Boliver	Mears		Meters	Meters	Meters	
Spur	Sterling	1.34	- 529.07	- 527.60	- 0.34 +1.47	1.2 2.9
Boliver	Sterling	1. 40	- 214.04	- 212.25	+1.79	4.5
Spur	Soda	1. 70	- 910.22	- 909.51	+ 0.71	0.8
Boliver	Soda	1.16	- 589.01	- 594.16	- 5.15	30.7
Sterling	Soda	8.55	- 382.03	- 381.91	+ 0.12	0.1
Spur	Gazelle	14. 35	-1917.40	-1918. 60	- 1.20	20.6
Soda	Gazelle	2. 79	- 1008.31	-1009.09	- 0.78	1.7
Sterling	Onion	1.56	- 643.06	- 642.14	+ 0.92	1.3
Soda	Onion	1.15	- 265.88	- 260.23	+ 5.65	36.7
Sterling	Rust	1. 55	- 349.39	- 348.11	- 1.28	2.5
Soda	Rust	2.56	+ 34.39	+ 33.80	-0.59	0.9
Onion	Rust	1. 89	+ 296.04	+ 294.03	- 2.01	7.6
Soda	Central Point astronomic station	3. 55	-1485. 41	-1487.45	- 2.04	14.8
Onion	White	3.98	- 378. 66	- 374.42	+ 4.24	71.6
Rust	White	1. 59	- 666.36	- 668.45	- 2.09	6.9
Onion	Black	1.51	+ 280.62	+ 276.97	- 3.65	20.1
White	Black	4. 54	+ 650.04	+ 651.39	+ 1.35	8. 3
White	Scott	12. 71	+ 70.91 $+\quad 70.7$	+ 71.91 +579	+1.00	12.7
Black	Scott	3.40	- 579.72	- 579.48	+ 0.24	2.0
White	Burg	18. 45	- 614.95	- 614.02	+ 0.93	16. 0
Scott	Burg	10. 26	-- 685.60	- 685. 93	-0.33	1.1
Scott	Rose	14.96	- 842.96	- 841.32	+ 1.64	40.2
Burg	Rose	147.60	- 155.37	- 155.39	- 0.02	0.0
White	Rose	14.32	- 770.06	- 769.41	+ 0.65	6. 0
Burg	Roseburg latitude station	258.80	- 443.53	- 443.46	+0.07	1.3
Rose	Roseburg latitude station	704. 70	- 288.12	- 288.07	+ 3.05	1.8
White	Fairview	2. 74	+ 585. 20	+ 583.54	- 1.66	7.6
Black	Fairview	4.05	- 67.79	$-\quad 67.85$	-0.06	0.2
Scott	Fairview	5. 98	+ 511.90	+ 511.63	-0.27	0.4
White	Yellow	3.21	- 467.84	-- 476.38	- 8.54	234.0
Scott	Yellow	8.89	- 547.63	- 548.29	- 0.66	3. 9
Fairview	Roman	1. 12	- 929.52	- 933.98	- 4.46	22.3
Yellow	Roman	4.21	+ 124.23	+ 125.94	+ 1.71	12.3
Fairview	Spencer	3. 11	-1179.64	-1180.06	-0.42	0.5
Yellow	Spencer	3.37	- 108.13	- 120.14	-12.01	486.0
Roman	Spencer	3. 67	- 245.30	- 246.08	- 0.78	2.2
Roman	Mary	2. 20	+ 376. 11	+ 376.57	+0.46	0.5
Spencer	Mary	2. 13	+ 620.63	+ 622.65	+ 2.02	8.7
Roman	Peterson	1.22	- 434.71	- 435.05	- 0.34	0.1
Spencer	Peterson	2. 83	- 188. 71	- 188.97	-0.26	0.2
Mary	Peterson	4. 64	- 812.75	- 811.62	+ 1.13	5.9
Roman	Twin	1. 80	- 484.93	- 482.47	+ 2.46	10.9
Spencer	Twin	6. 68	- 235.93	- 236. 39	- 0.46	1.4
Mary	Twin	4. 34	- 859.07	- 859.04	+ 0.03	0.0
Peterson	Twin	23.17	- 47.44	- 47.42	+ 0.02	0.0
Spencer	Ridge	7. 38	- 265. 01	- 265.18	-0.17	0.0
Peterson	Ridge	6. 35	- 75.79	- 76.21	- 0.42	1.1
Twin	Ridge	13.68	- 28.69	- 28.79	-0.10	0.1
Spencer	Rauch	27.61	- 423.18	- 423.96	-0.78	16.8
Peterson	Rauch	2.59	- 235.91	- 234.99	+ 0.92	2.2
Twin	Rauch	5. 35	- 188.00	- 187.57	+ 0.43	1.0
Ridge	Rauch	12. 65	- 159.32	- 158.78	+ 0.54	3.7
Spencer	Willamette north base	15. 81	- 524.13	- 524.84	-0.71	5. 2
Twin	Willamette north base	20. 32	- 288.04	- 288.45	-0.41	3.5
Ridge	Willamette north base	62.66	- 259.46	- 259.66	-0.20	2.5
Rauch	Willamette north base	20. 61	- 99.83	- 100.88	- 1.05	22.7
Spencer	Willamette south base	68.87	- 509.40	- 509.61	- 0.21	3. 0
Peterson	Willamette south base	3.67	- 321.72	- 320.64	+ 1.08	4.3
Twin	Willamette south base	9. 68	- 274.19	- 273.22	+ 0.97	9. 1
Ridge	Willamette south base Willamette south base	16. 14 61.52	- 244.48 $-\quad 85.84$	- 244.43	+0.05 $+\quad 0.19$	0. 0
Rauch	Willamette south base	61.52	- 85.84	- 85.65	+ 0.19	2.2

The probable error of an observation of weight unity derived from the preceding adjustment is ± 1.08 meters. Fn other words, the reeiprocal observations over a line 31.7 kilometers (193 miles) long, ${ }^{1}$ this boing the length of line corresponding to unit woight, determined the difference of elevation of two points with such a degree of accuraey that it is an even chance whether the error is greater or less than 1.08 meters.

This probable error is unfair because of the fact that observations at the stations Roman and Spencer in Jume and July, 1903, were used in connection with those at Yellow and Fairview in October, 1904. The necessary assumption that the refraction is the same in the reciprocal observations was undoubtedly wrong in this case. The reason the four lines were retained in the adjustment was to connect the elevations of the two seasons. A rejection of the two lines, Yollow-Spencer and Yellow-White, reduces the probable error of an observation of unit weight from ± 1.08 to ± 0.77 meter. The latter is believed to represent more faithfully the value of the vertical angle results in this work.

The probable errors for lines of other than unit length were assumed to be proportional to thicir lengths.

The probable errors of the elevations of the six stations fixed by the spirit leveling done by the United States Geological Survey are doubtless well within ± 0.3 meter. The probable error approaches this value for stations adjacent to those fixed by the leveling and is greatest for the most remote stations. The probable error of the elevation of Mount Helena was computed as ± 0.62 meter and of Snow Mountain West as ± 1.14 metcrs. ${ }^{2}$ Snow Mountain West may be considered as the lcast accurately dotermined and this probable error, derived from the old work, ± 1.14 meters, may be assumed to be as large as for any station in the entire arc.

The new elevation here computed for Marysville Butte, 638.0 meters, very properly supersedes that published on page 312 of Special Publication No. 4, which was determined solely from nonreciprocal observations from which the early morning and late evening observations were not eliminated.

The elevations of the stations of the main scheme from the Tacoma base to the connection with the Puget Sound triangulation were obtained from the second adjustment as shown in the tabulation below. The elevation of Tacoma City Hall, a bench mark of the United States Geological Survey, was held fixed at 33.518 meters, a published elevation derived from tidal observations by this Survey. In addition to this the observed difference of elevation, - i.93 meters, between Tacoma north base and south base was superseded by the difference of elevation, -2.13 meters, from the precise levels run over the base line by the party measuring the base.

There is, then, in this section one fixed elevation and one fixed difference of elevation. The elevations of the 13 remaining stations connected by the observations are the unknowns to be determined by least squares from the 34 differences of elevation indicated in the following tabulation. They are shown in the same form used for the first adjustment, except that the weight p assigned to each difference of elevation was computed by the formula $\log p=9-2 \log s$.

[^8]Adjustment of elevations.-Puget Sound to Tacoma base.

Station 1	Station 2	Weight	Observed difference of elevations $h_{2}-h_{1}$	$\begin{gathered} \text { Adjusted } \\ \text { difference of } \\ \text { elevations } \\ h_{2}-h_{1} \end{gathered}$	$\begin{gathered} \text { Adjusted } \\ \text { minusob- } \\ \text { served } \\ v \end{gathered}$	$p v^{2}$
Tacoma City Hall	Kiu	99	Meters $+\quad 69.00$	Meters +68.946	Meters -0.054	
Tacoma City Hall	Вов	54	+ 30.96	+ 30.925	+0.035	0. 287
Kin	Bos	53	- 99.83	- 99.871	${ }_{-0.041}^{+0.055}$	0. 090
Kin	Gull	19	- 50.87	- 50.789	+0.081	0. 125
Bos	Gull	39	+ 49.14	+ 49.082	-0.058	0. 133
Tacoma City Hall	Gull	50	+ 18.09	+ 18.157	+0.067	0.225
Tacoma City Hall	Dron	45	- 5.93	- 5.928	+0.002	0. 000
Kin	Dron	17	- 74.95	- 74.874	$+0.076$	0. 099
Bos	Dron	30	+ 24.94	+ 24.997	+0.057	0. 096
Kin	Wash	23	+ 13.94	+ 13.814	-0.126	0. 366
Bos	Wash	17	+113. 67	+113.685	$+0.015$	0.003
Gull	Wash	40	+ 64. 57	+ 64.603	+0.033	0. 044
Dron	Wash	46	+ 88.52	+ 88.688	+0.168	1. 297
Wash	Smelt	58	- 20.03	- 20.140	-0.110	0. 702
Dron	Smelt	25	+ 68.50	+ 68.548	$+0.048$	0. 058
Dron	Neill 2	37	- 23.41	- 23.567	-0.157	0.910
Wash	Neill 2	21	-112. 11	-112. 255	-0.145	0. 441
Smelt	Neill 2	45.	-92.00	- 92.115	-0.115	0. 594
Wash	Piner 2	14	-104. 47	-104.039	+0.431	2. 601
Wash	Dash	21	-114.21	-113.894	+0.316	2. 098
Neill 2	Dash	41	- 1.33	- 1.639	-0.309	3.916
Piner 2	Dash	92	- 9.92	-9.855	$+0.065$	0. 386
Wash	Burn	49	+ 5.81	+ 5.860	+0.050	0. 122
Kin	Burn	28	+ 19.74	+ 19.674	-0.066	0. 123
Tacoma north base	Kin	33	- 22.27	- 22.231	+0.039	0. 036
Wash	Tacoma north base	10	+ 8.35	+ 8.417	+0.067	0.045
Burn	Tacoma north base	21	+ 2.62	+ 2.557	-0.063	0. 084
Gull	Tacoma astronomic station	62	+ 43.09	+ 43.112	+0.022	0. 031
Neill 2	Tacoma astronomic station	14	+ 90.86	+ 90.764	-0.096	0. 129
Burn	Tacoma south base	3.2	+ 0.56	+ 0.427	-0.133	0.057
Tacoma south base	Hurst	28	+ 6.66	+ 6. 635	-0.025	0. 017
Tacoma north base	Hurst	6.1	+ 4.77	+ 4.505	-0.265	0. 428
Burn	Hurst	3.7	+ 6.43	+ 7.062	+0.632	1. 478
Tacoma north base	Tacoma south base	6.9	- 1.93	- 2.13	-0. 200	0. 276

The probable error of an observation of weight unity derived from the preeeding adjustment is ± 0.61 meter. In other words, the reeiproeal observations over a line 31.7 kilometers (193 miles) long, this being the length of the line corresponding to unit weight, determined the difference of elevation of two points with such a degree of aceuracy that it is an even chance whether the error is greater or less than 0.61 metcr. The probable errors for lines of other lengths were assumed to be proportional to their lengths.

The probable error of the elevation of the station fixed by conneetion with the mean tide at Taeoma may be safely assumed at ± 0.15 meter. The probable error approachcs this value for stations adjacent to this station and is greatest for the most remote stations. The ends of the Taeoma base, connected as they are by precise levels, are the most remote and the probable error was computed for the base as a limiting value and was found to be ± 0.09 meter from the vertieal angle measures alone. When eombined with the probable error of the fixed elevation it becomes ± 0.17 meter.

In the third adjustment the elevations of the stations Mary and Pcterson were held fixed as determined by the first adjustment, as 1248.82 and 437.22 meters, respectively. Similarly, the elevations of Tacoma north base, Tacoma south base, and Hurst were known from the seeond adjustment and their fixed elevations are $124.70,122.57$, and 129.20 meters, respectively. The sceondary station Oregonian was fixed in elevation from a beneh mark of the United States Geological Survey in Portland, Oreg. The elevation of top of tower is 69.22 meters.

The elevations of the 18 remaining stations connected by the observations are unknowns to be determined by least squares from the 52 observed differenees of elevation indieated below. In this tabulation the observed differences of elevation are treated as in the first adjustment.

Adjustment of elevations - Willamette base net to Tacoma base.

Station 1	Station 2	Weight P	Observed difference of clevations $h_{8}-h_{1}$	Adjusted difierence of plevations $h_{s}-h_{s}$. djusted minus observed v.	$p v^{2}$
			Meters	Mcters	Meters	
Mary	Yam	2.05	- 896. 20	- 894.41	+1.79	6. 6
Peterson	Yam	2.53	- 82.62	- 82.81	-0.19	0.1
Mary	Hult	1.43	- 866.86	- 865.54	$+1.32$	2.5
Peterson	Hult	3.40	- 52.48	- 53.94	-1.46	7.2
Yam	Hult	7.87	$+\quad 29.00$	$+\quad 28.87$	-0.13	0.1
Yam	Barnes	2. 77	+ 27.45	+ 29.10	+1.65	7.5
Mult	Barnes	2.55	$+\quad 0.40$	$+\quad 0.23$	-0.17	0.1
Yam	Larch	1.04	+ 880.84	+ 880.48	-0. 36	0.1
Hult	Larch	1.56	+ 853.94	+ 851.61	-2.33	8.5
Barnes	Larch	3. 72	+ 852.41	+ 851.38	-1.03	3.9
Barnes	Warren	9.33	- 344.26	- 344.61	-0.35	1.1
Larch	Warren	2.15	- 1197.05	- 1195.99	+1.06	2.4
Barnes	Rocky Butte	46.77	- 198.36	- 198.22	+0.14	0.9
Warren	Rocky Butte	7.10	+ 147.67	+ 146.39	-1.28	11.6
Barnes	River	242.10	- 333.32	- 333.36	-0.04	0.4
Rocky Butte	River	78.90	- 135.21	- 135.14	$+0.07$	0.4
Barnes	Harncy	50.23	- 344.69	- 344.82	-0.13	0.9
Rocky Butte	Harney.	102. 80	- 146.66	- 146.60	+0.06	0.4
Rocky Butte	Oregonian	116. 40	- 115.94	- 116.07	-0.13	2.0
River	Oregonian	245.50	+ 19.08	+ 19.07	-0.01	0.0
Barnes	Davis	3.52	+ 514.86	+ 516.81	+1.95	13.4
Warren	Davis	11. 48	+ 860.72	+ 861.42	+0.70	5. 7
Barnes	Star	4.57	+ 942.41	+ 945.15	+2.74	34.3
Larch	Star	14.26	$+\quad 95.20$	$+\quad 93.77$	-1. 43	29.1
Davis	Star	6.55	+ 427.60	+ 428.34	+0.74	3. 6
Larch	Red	4. 12	+ 279.93	$+\quad 282.42$	+2.49	25.5
Davis	Red	2. 74	+ 617.64	+616.99	-0.65	1.2
Star	Red	6.70	+ 189.10	+ 188.65	-0.45	1.3
Davis	Lam	28.91	+481.99	$+\quad 188.76$ $+\quad 48$.	$+0.77$	17.1
Rcd.	Lam	3.39	- 137.31	$\bigcirc \quad 134.23$	+3.08	32.2
Davis	Len	- 3.95	+ 886.21	+ 885.30	-0.91	3.3
Red	Len	- 4.27	+ 269.47	$+\quad 268.31$	-1.16	5.8
Lam	Len	9.62	+ 401.47	+ 402.54	$+1.07$	11.0
Davis	Toutle	9.35	+ 102.09	+ 101.38	-0.71	5.1
Lam	Toutle	29.58	- 382.14	- 381.38	+0.76	17.1
Len	Toutle	9.59	- 784.05	- 783.92	-0.13	0.2
Len	Huck	3. 98	- 624.84	- 624.72	+0.12	0.1
Toutle	Huck	4.30	+ 156.61	+ 159.20	+2.59	28.9
Toutle	Bel	1. 90	+ 664.25	+ 667.36	+3.11	18.4
Hal	Bel	6.31	$+\quad 560.40$	$+\quad 561.61$	+1.21	9.2
Huck	Rain	18. 03	- 621.29	- 622.91	-1.62	47.2
Hal	Rain	22.13	- 570.56	- 569.46	$+1.10$	26.8
Bel	Rain	3.06	- 1132.58	- 1131.07	+1.51	7.0
Hal	Pen	7.71	- 825.37	- 825.34	+0.03	0.0
Rain	Pen	7.06	- 255.30	- 255.88	-0.58	2.4
Hurst	Pen	30.83	'+ 152.41	+ 152.91	$+0.50$	7.7
Tacoma soutll base	Pen	67.00	+ 159.54	+ 159.54	0.00	0.0
Tacoma north base	Pen	24.67	+ 157.87	+ 157.41	-0.46	5.2
Tacoma south base	Rain	9. 18	+ 415.77	+ 415.42	-0.35	1. 1
Tacoma nortli base	Rain	5.30	+ 413.37	+413.29	-0.08	0.3
Hurst	Bel	3. 32	+ 1542.54	+ 1539.86	-2.68	23.8
Tacoma south base	Hal	6. 74	+ 986.18	+ 984.88	-1.30	11.4

The probable crror of an observation of weight unity derived from the preceding adjustment is ± 0.78 meter. The reciprocal observations, therefore, over a line 31.7 kilometers (192 z miles) long determined the difference of elevation of two points with such a degree of accuracy that it is an even chance whether the error is greater or less than 0.78 meter. The probable errors for lines of other lengths were assumed to be proportional to their lengths.

The probable error of the Tacoma base was found to be ± 0.17 meter. The probable error of the stations Mary and Peterson, being directly connected with the Willamette base, probably does not exceed this, and the probable error of the bench mark Oregonian must be well within this same 0.17 meter. The probable error approaches this value for stations adjacent to these and is greatest for the most remote stations. It is a safe assumption that the probable error of the other stations nowhere exceeds 1 meter.

Elevation of mount shasta.
One of the results of the vertieal angle adjustments was a new elevation of Mount Shasta. This elevation was computed from reeiproeal observations over six lines varying from 38 to 97 kilometers in length. The first eomputation was made using a mean value of the coeffieient, m, of 0.066 , and the results had a range of 14.6 meters. A final eomputation was made using the value for the coefficient of refraction whieh was a mean of the values eomputed from the lines radiating from the observing station, but correeted for the mean elevation of the line. The following are the values for the height of Mount Shasta:

From Round.	$1043.36+3272.69=4316.05$	$p=2.0$
From Bally.	$1892.35+2424.21=4316.56$	1.1
From Mears.	$2174.00+2142.55=4316.55$	6.9
From Boliver.	$2451.45+1867.28=4318.73$	3.7
From Sterling.	$2239.03+2070.00=4309.03$	1.3
From Soda.	$1857.11+2558.37=4315.48$	1.7
Weighted mean.	$\begin{array}{r} 4316.5 n \\ (\text { or } 14162 \end{array}$	eters feet).

ACCURACY OF VERTICAL ANGLE RESULTS IN THE UNITED STATES.

In the following table 25 sections of vertieal angle results of triangulation in the United States having separate least square adjustments have been arranged in order of accuraey, the most aecurate being placed first. The best test of aecuraey is believed to be the probable error of an observation of unit weight. Such an observation is here considered as the reeiproeal nonsimultaneous observations over the length of line eorresponding to unit weight, considered as

Sections of triangulation in order of accuracy.

$\substack{\text { Sec- } \\ \text { tion }}^{\text {S }}$	Season	Section of triangulation	Observations	$\begin{gathered} \text { Un- } \\ \text { known } \\ \text { eleva- } \\ \text { tilons } \end{gathered}$	Probable error of an observation
1	1899-1900	Ninety-eighth Meridian, Shelton-Page	39	15	± 0.23
2	1902	Ninety-eighth Meridian, El Reno-Duncan	14	7	± 0.24
3	1900-1903	Ninety-eighth Meridian, Page to Brown Valley	74	28	± 0.39
4	1904-1905	Ninety-eighth Meridian, Brown Valley-Duluth	109	48	± 0.42
5	1902	Ninety-eighth Meridian, Bowie-Stephenville	41	15	± 0.42
6	1890-1899	Ninety-eighth Meridian, Salina-Shelton	87	29	± 0.47
7	1902	Ninety-eighth Meridian, Duncan-Bowie	22	10	± 0.52
8	1902	Ninety-eighth Meridain, Stephenville-Lampasas	35	11	± 0.55
9	1906-1907	Ninety-eighth Meridian, Fergus Falls-Canada	86	29	± 0.58
10	1902	Ninety-eighth Meridian, Waukomis-El Reno	18	8	± 0.59
11	1905	California-Washington arc, Tacoma base northward	34	11	± 0.61
12	1908-1909	Texas-California arc, Kyle-McClenny to Stanton	71	26	± 0.70
13	1873-1885	California arc, Mount Toro Santa Cruz.	28	9	± 0.77
14	1303-1904	California-Washington arc, south end	83	27	± 0.77
15	1903-1906	California-Washington are, Willamette base to Tacoma base	52	18	± 0.78
16	1903-1904	Ninety-eighth Meridian, Brown Valley base	31	10	± 0.85
17	1904-1905	Ninety-eighth Meridian, Seglin to Laguna Madre	57	29	± 0.88
18	1890-1899	California arc, San Pedro-Soledad	23	7	± 0.88
19	1899-1901	Ninety-eighth Meridian, Thirty-ninth Parallel-Anthony	53	19	± 0.91
20	1910-1911	Texas-California are, Deming to California	72	26	± 0.91
21	1909-1910	Texas-California arc, Stanton-Deming	106	38	± 0.92
22	1873-1898	California arc, Santa Cruz-San Pedro	20	7	± 1.05
23	1901-1902	Ninety-eighth Meridian, Anthony-Waukomis	16	6	± 1.09
					${ }^{1} \pm 0.68$
24	1878-1895	Thirty-ninth Parallel, Pikes Peak-Round Top	71	28	± 1.20
25	1859-1892	Thirty-ninth Parallel, Point Arena-Mount Diablo	48	15	± 1.83

It has been deelared to be "nseless to aim at a high degree of aecuraey in vertical measures since the irregular variation of the refration from hour to hour and day to day produces changes in vertieal angles which affect the tens of seconds and sometimes even the minutes." ${ }^{1}$ Should not this declaration be modified?

In considering the results in the above table it should be noted that the least accurate groups are those of the Transcontinental Are where the observations extended over a great many days but at hours of the day when the refraction was great. The most accurate of the sections are the ones of the Ninety-cighth Meridian where the observations were confined to the hours nearest the time of minimum refraction, $11 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$. The indiscriminate mean of the probable errors, excluding the two least accurate sections, is ± 0.68 meter or an uneertainty of $4^{\prime \prime} .43$ in the zenith distance. Zenith distances, which are affected by unusual refraction to the extent of "tens of seconds and sometimes minutes," would exceed $3 \frac{1}{2}$ times the probable error and would be subject to rejection.

The sections where the lines are longest appear to have less accuracy, and this can be readily aecounted for by the effect of the differences in the station errors between the ends of the line over which the zenith distances are observed. No effort has been made to corrcet the zenith distances for this difference in station errors. A second eause for the decrease in aceuracy on the long lines is the necessarily longer interval between the observations at the ends of these lines allowing seasonal changes in the refraction to occur.

In conclusion, the results would indicate that the aim should be for a few accurate measures of the zenith distances on more than one day and between 12 and $2 \mathrm{p} . \mathrm{m}$. (or better, between 10 and $12 \mathrm{a} . \mathrm{m}$. if the lines are near the coast), with no long interval of time between the observations at the two ends of a line. (See pages 253 to 256 of Special Publication No. $4{ }_{2}^{2}$ for a discussion of the times of maximum and minimum refraction at coast and interior stations.)

ELEVATIONS

The datum for all the elevations is mcan sea level.
The stations are in three classes: First, those fixed directly by the spirit leveling, and of which the elevations are subject to a probable error varying from 0.15 to 0.3 meters; second, the stations in the main scheme fixcd by reciprocal measures of vertical angles and which are subject to probable crrors varying from ± 0.2 to ± 1.1 meters, and, third, the intersection stations, of which the elevations are fixed by measurements of vertical angles which are not reciprocal, the intersection stations not being occupied, and whose elevations are subject to probable errors which may be great as ± 3 metcrs in some cases.

The accuracy with which each elevation in the main scheme is determined depends mainly upon the remoteness of that station from the nearest one of which the elevation is fixed by spirit levaling, as indicated in class 1 of the following table. Station Snow Mountain west is probably least accurately determined of all the stations in the main scheme.

For a table to be used in converting feet to mcters, or vice versa, see page 34.

TABLE OF ELEVATIONS

Thirty-ninth Parallel to Willamette base

Station	Point to which elevation reters	Elevation
Class 1		
		Meters
Redding astronomic station	Station mark	202.16
Gazelle astronomic station	Station mark	848.28
Central Point astronomic station	Station mark	369.92
Roseburg latitude station	Station mark	165.24
Willamette north base	Station mark	101.36
Willamette south base	Station mark	

[^9]${ }^{3}$ The Transcontlnental Triangulatlon, by Chas, A. Schott, Speclal Publication No. 4, U. S. Coast and Geodetle Survey.

TABLE OF ELEVATIONS-Continued.
Thirty-ninth Parallel to Willamette base-Continued.

Station	Point to which elevation refers	Elevation
Class 2		Meters
Mount Helena	Station mark	1322.1
Snow Mountain west	Top of pier	2145.7
Snow Mountain east	Station mark	2150.6
Marysville Butte	Station mark	638.0
Kent	Station mark	2032.9
L yons	Station mark	2031.4
Bally	Station mark	1892.4
Round	Station mark	1043.4
Spur	Station mark	2766.9
Boliver	Station mark	2451.5
Mears	Station mark	2174.1
Sterling	Station mark	2239.3
Soda	Station mark	1857.4
Onion	Station mark	1597.1
Rust	Station mark	1891.2
White	Station mark	1222.7
Black	Station mark	1874.1
Scott	Station mark	1294.6
Burg	Station mark	608.7
Rose	Station mark	453.3
Fairview	Station mark	1806.3
Yellow	Station mark	746.3
Roman	Station mark	872.3
Spencer	Station mark	626.2
Mary	Station mark	1248.8
Peterson	Station mark	437.2
Twin	Station mark	389.8
Ridge	Station mark	361.0
Rauch	Station mark	202.2
Class 3		
Lassen Peak	Top	3189.9
Mount Linn	Top	2463.8
Mount St. John	Top	2057.6
Bully Choop	Top	2126.8
Saw Tooth	Summit	2717.4
Thompson Peak .	Top	2555.0
Russian Peak, north point	Highest summit	2494.3 1803.9
Pilot Rock	Summit	1803. 9
Ashland Peak	Summit	2296.7
Marble Mountain	Summit	2533.3
Mount Eddy	Summit	2754. 8
Mount Shasta	Top of peak	4316.3
Goose Nest	Tree-top	2398.5
Redding Courthouse	Tangent to roof Top of peak	198.2 2532.9
Little Shasta	Top of peak	2532.9 1933.8
Preston Peak	Top of peak	2232.2
Greyback	Top of peak	2149.5
Siskiyou	Top of peak	2178.4
Wagner	Highest summit	1689.5
Kerby Mount Pitt	Summit	2893.6
Lost Peak	Top	2446.2
Aspen Peak	Top	2502.0
Mount Scott	Top of peak	2717.7
Liao Rock	Top	2484.0
High Rock Union Peak	Top	1893.8 2347.9
Union Peak	Top	2548.3
Dodson (U. S. G. S.)	Top of peak	984.5
Diamond Peak	Top of peak	2679.7
Quartz	Top of peak	1686.4
Mount Washington	Top of peak	2368.0

$77002^{\circ}-13-5$

TABLE OF ELEVATIONS-Continued
Thirty-ninth Parallel to Williamette base-Continued

Station	Point to which elevation refers	Elevation
Class s-Continued		
Mount Zion	Top of peak	1406.4
North Sister	Top of peak	3068.4
Hayrick	Top of peak	2375.2
Middle Sister	Top of peak	3059.6
Nebo	Top of peak	1037.4
South Sister	Top of peak	3155.2
Ball Butte	Top of peak	2756.6
St. Mary Butte	Top of peak	2789.6
Prairie Peak	Top of peak	1047.6
Alsea Peak	Top of peak	1100.8
Cannibal	Top of peak	869.4
IIerman	Top of peak	634.7
Seavies (U.S. G. S.)	Top of peak	607.3
Mount Jefferson	Top of peak	3207.2
Left Nipple	Top of peak -	1243.4
Corvallis closed cupola	Bottom of cupola, top of roof	96.3
Corvallis open cupola	Bottom of cupola, top of roof	98. ${ }^{\text {2 }}$
Albany Courthouse	Base, large cupola	- 88. 1
Lebanon	Top of tall brick chimney	135.3 100.4
Capitol, Salem	Top, large part of dome	100.4

Willamette base net to Tacoma base

Oregonian Class 1	Top of Tower	69.22
Class 2		
Yam	Station mark	354.4
Hult	Station mark	383.3
Barnes	Station mark	383.5
Larch	Station mark	1234.9
Warren	Station mark	38.9
Rocky Butte	Station mark	185.3
River	Station mark	50.2
Harney	Station mark	38.7
Davis	Station mark	900.3
Star	Station mark	1328.7
Red	Station mark	1517.3
Lam	Station mark	1383.1
Len	Station mark	1785.6
Toutle	Station mark	1001.7
Huck	Station mark	1160.9
Hal	Station mark	1107.5
Bel	Station mark	1669.1
Rain	Station mark	538.0
Pen	Station mark	282.1
Cem	Station mark	825.8
Hill	Station mark	296.8
Eir	Station mark	345.9
Monument, General Land Survey	Station mark	289.7
Class 3		
Round Peak	Top of peak	1312.8
Thomas	Top of peak	1320.5
Forest Peak -	Top of peak	671.9
White church spire	Top of square part Top of peak	72.0 984.6
Monmouth Peak	Top of peak Top of peak	984.6 1487.8
Table Rock	Top of peak	1417.4
Squaw	Top of peak	1455.9
Chemawa tank	Foot of tank, top of tower	77.0
Sheridan	Top of peak	941.1
Fairdale	Top of peak	780.5
Mount Hood	Top of peak	3421.2
Mount Adams	Top of peak	3757.0

TABLE OF ELEVATIONS-Continued
Willamette base net to Tacoma base-Continued

\% Station	Point to which elevation refers	Elevation
Class 3-Continued		
Mount St. Helens	Top of peak	Melers 2955.6
Deschutes Peak	Top of peak	1318.8
High Rock	Top of peak	1733.5
Sharp Peak	Top of peak	1769.4
Mineral Peak	Top of peak	1446.5
Mount Rainier	Bare summit	4389.5
Mount Rainier	Highest point	4410.7
Goat Mountain	Top of peak	1847.8
Mitchell	Top of peak	1213.7
Eagle, cairn	Top of peak	1283.0

Tacoma base to Puget Sound

Tacoma City Hall Class 1	U.S.G.S.B.M.	33.52
Gull Class 2		51.67
Gull	Station mark	51.67 27.59
Bos	Station mark	2.59
Kin	Station mark	102.46
Wash	Station mark	115.86
Smelt	Station mark	96.14
Neill 2	Station mark	4.02
Dash	Station mark	2.38
Piner 2	Station mark	12. 24
Tacoma astronomic	Station mark	94.79
Tacoma north base	Station mark	124.70
Burn	Station mark	122.14
Tacoma south base	Station mark	122.57
Hurst	Station mark	129.20
Class 3		
Smelter stack	Top of stack	132.7
Brown Point Lighthouse	Top of light shaft	8.5
Tacoma Courthouse	Top of cupola	153.1

No. 2.

Index Map.

No. 3.

Thirty-ninth Parallel to Bally-Round.

No. 4.

Bally-Round to Onion-Rust.

No. 5.

Onion-Rust to Mary-Peterson.

No. 6.

Mary-Peterson to Davis-Red.

No. 7.

Davis-Red to Puget Sound.

Index to positions, descriptions, sketches, and elevations

Station	Position	Description	Sketch	Elevation
	Page	Page	Number	Page
Albany courthouse cupola.	40		6	66
Alsea Peak, partly cleared, wooded summ	40		5	66
Arquett, cairm..........................	41		6	66
Ashland Peak, cairn.	38		4	65
Aspen Peak.	38		4	65
Astronomic station:				
Central Point.	38	54	4	64
Corning.	37	54	3	
Eugene.	35	48	5	
Gazelle.	35	45	4	64
Redding.	37	54	3	64
Tacoma.	37	- 54	7	67
Balch...	41	56	6	
Ball Butte.	39		5	66
Bally.	34	44	3, 4	65
Baptist Church spire, Eugene.	39	55	5	
Barnes......................	36	49	6	66
Bel....	36	51	7	66
Bench mark, Portland.	41		6	
Black..................	35	45	5	65
Black Butte, cairn	37		4	65
Boliver (Cal.)	35	45	4	65
Bos.........	36	53	7	67
Brown Point Lighthouse.	42		7	67
Bully Choop...	37		3	65
Burg.	39	55	5	65
Burn.	36	52	7	67
Cannibal Peak, highest wooded summit	40		5	66
Cem.	41		6	66
Central Point astronomic station.	38	54	4	64
Central Point latitude station...	38	55	4	
Chemawa tank.	41		6	66
China Mountain (not the cairn).	37		4	65
Christian Church spire, Springfield.	39	55	5	
City Hall, Tacoma.	42		7	67
Corning astronomic station	37	54	3	
Corning tower....	37	54	3	
Corvallis, closed cupola.	40		6	66
Corvallis, open cupola..	40		6	66
Courthouse:				
Eugene, flagpole.	39	55	5	
Redding.........	37	54	3	65
Tacoma, cupola	42		7	67
Crater Peak........	37		3, 4	65
Dash..	42	57	7	67
Davis..	36	50	6,7	66
Deady Hall, west tower, Eugene.	39	55	5	
Deschutes Peak.	42		7	67
Dianond Peak.	39		5	65
Dodson (U. S. G. S.).	39		5	65
Dron...............	36	53	7	67
Eagle, cairn.	41		6	67
Eugene:				
Astronomic station.	35	48	5
I 3 aptist Church spire	39	55	5
(${ }^{\text {courthouse flagpole..... }}$	39	55	5	
Deady IIall, west tower.	39	55	5	
Geary School spire...	39	55	5
Methorlist Church.	39	56	5	
I'atterson School spire.	39	55	5	
United Brethren Church epire	39	55	5	
W. O. W. Hall spire......	39	55	5	
			75	

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.

Station	Position	Description	Sketch	Elevation
Tacoma:	Page	Page	Number	Page
Astronomic station.	37	54	7	67
City IIall cupola	42		7	67
Courthouse cupola	42		7	67
North base.	36	52	7	67
South base.	36	52	7	67
Thomas, cairn.	40		6	66
Thompson Peak.	37		4	65
Toutle.	36	50	7	66
Twin.	35	47	5	65
Union Peak	38		5	65
United Brethren Church spire, Eugene	39	55	5	
Vancouver Barracks flagstaff, west	41		6	
Wagner.	38		4	65
Walker Peak	38		5	
Warren.	36	50	6	66
Warren Schoolhouse cupola	41		6	
Wash.	36	53	7	67
White.	35	46	5	65
White Church spire, west of Brooks	41		6	66
Willamette north base.........	- 35	48	5	64
Willamette south base.	35	47	5	64
W. O. W. Hall spire, Eugene	39	55	5	
Yam...	36	49	6	66
Yellow.	35	46	i)	65

[^0]: I Sce Appendix 4, U. S. Coast and Geodetic Survey Report for 1907, "Six primary bases measured with steel and invar tapes.

[^1]: ${ }^{1}$ See Appendix 4, U. S. Coast and Geodetic Survey Report for 1911, p. 171.
 2 A Laplace azimuth (also called a true geodetic azimuth), as used in this publication, is one computed at a station of the triangulation from comefdent Jongitude and àzimuth observations, using the Laplace equation: (Astronomic azimuth-Laplace azimuth) + sine of latitude (astronomic longitude-grodetic longitude) $=$ zero. (See pp. 17 and 18 of the Supplementary Investigation in 1909 of the Figure of the Earth and lsostasy.)

[^2]: Lee Supplementary lnvestigation in 1909 of the Figure of the Earth and Isostasy, p. 20.
 2 See p. 99 of Appendix 3, U. S. Coast and Geodetic Survey Report for 1907.

[^3]: "This is further borne ont in the reduction of 765 astronomic stations in connection with the "Supplementary investigatlon in 1900 of the ngure of the earth and isostasy;" by J. F. Hayford, published by the U. S. Coast and Geodetic Survey.
 $77002^{\circ}-13-3$

[^4]: I No cheek on this position.

[^5]: t No check on this position.

[^6]: 1 See p. 43.

[^7]: 1 See p. 43.

[^8]: ${ }^{1}$ Thls is the usual unit welght: A welght ten times as large was used in the above table.
 ${ }^{2}$ See p. 279, U. S. Coast and Geodetle Survey Speclal Publication No. 4.

[^9]: ${ }^{1}$ See j. 282, Appendix 3, Report for 1902.

