DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY "" O. H. TITTMANN SUPERINTENDENT

PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA

BY

WILLIAM BOWIE Inspector of Geodetic Work and Chief of the Computing Division U. S. Coast and Geodetic Survey

WASHINGTON GOVERNMENT PRINTING OFFICE 1914 Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

http://www.archive.org/details/geodesyprimarytr00uscouoft

DEPARTMENT OF COMMERCE U.S. COAST AND GEODETIC SURVEY O. H. TITTMANN SUPERINTENDENT

GEODESY

PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA

BY

WILLIAM BOWIE Inspector of Geodetic Work and Chief of the Computing Division U. S. Coast and Geodetic Survey

SPECIAL PUBLICATION No. 19

WASHINGTON GOVERNMENT PRINTING OFFICE 1914

ADDITIONAL COPIES

OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY

 ∇

QB 311 U45 1914

-

CONTENTS.

	Page.
General statement.	5
Reconnoissance.	6
General instructions for reconnoissance.	6
Cost of reconnoissance.	8
Measurement of bases on the one hundred and fourth meridian	9
Ambrose base.	10
Provo base.	13
El Paso base, discussion of old measurement.	15
Base measurements in 1913.	19
El Paso base	19
Cheyeune base.	22
Conclusions from base measurements	28
Building signals and marking stations	28
Instruments used on triangulation	- 30
Light keepers	31
Signal code and instructions to light keepers	32
Observations for horizontal directions	35
General instructions to observers on primary triangulation	35
Methods of observing employed	37
Program of oceupation of stations, one hundred and fourth meridian	38
Connections made between the one hundred and fourth meridian triangulation and stations and monuments of	
other surveys	39
Connections made between the thirty-ninth parallel triangulation and stations and monuments of other surveys.	40
Statement of costs	40
Statement of adjustments	41
Abstract of horizontal directions and elevation of telescope above the station mark	42
Condition equations	47
Accuracy as indicated by corrections to observed directions	53
Accuracy as indicated by corrections to angles and elosures of triangles	56
Accord of bases	63
Accord of azimuths.	63
Study of errors	64
Deviation of triangulation in azimuth.	65
Effect of drag	76
Accuracy of the primary triangulation in the United States.	79
The North American datum	80
Explanation of tables of positions	83
Tables of positions	88
One hundred and fourth meridian	88
Thirty.ninth parallel	95
Inity minut passion	114
One hundred and fourth meridian	115
Thirty-ninh wallel	126
Varticel circle	140
Computation adjustment and accuracy of the elevations	140
Table of clouding	140
Determination of astronomic longitude	140
Automonia agimutha	140
Astronomia latitudas	101
Astronomic addited	152
In angulation sketches.	104
index to positions, descriptions, elevations, and sketches.	100
General Index	162

CONTENTS.

ILLUSTRATIONS.

No.		Page.
1.	Reel for invar tape (two views)	10
2.	Twelve-inch theodolite	28
3a.	Vertical collimator (two views)	30
3b.	Box heliotropc used on triangulation	32
3c.	Largo acctylcno signal lamp used on triangulation	32
4.	Standard triangulation station and reference marks	114
б.	Vertical circle used in trigonometric leveling and for making time observations	140
6a.	Zenith telescope used for latitudo obscrvations	150
6b.	Portable wooden support with adjustable lcgs for the zenith telescope	152
6c.	Motor truck used by latitude party	152
7.	Index map showing areas covered by published triangulation which has been rigidly computed on the	
	North American datum.	154
8.	Index map showing the main scheme of the triangulation published in this report and showing also the	
	limits of each of the following sketches-Nos. 9 to 17.	154
9.	Triangulation, one hundred and fourth meridian, stations Pikes Peak and Divide to Ragged and Whitaker.	154
10.	Triangulation, one hundred and fourth meridian, stations Ragged and Whitaker to Alkali and Elk	154
11.	Triangulation, one hundred and fourth meridian, stations Alkali and Elk to Black and Rainy	154
12.	Triangulation, one hundred and fourth meridian, stations Black and Rainy to Canada boundary	154
13.	Triangulation, one hundred and fourth meridian, Missouri River connection	154
14.	Triangulation, thirty-ninth parallel, Kansas-Colorado boundary to stations Divide, Pikes Peak, and Plateau.	154
15.	Triangulation, thirty-ninth parallel, stations Divide, Pikes Peak, and Plateau to Patmos Head and Mount	
	Ellen	154
16.	Triangulation, thirty-ninth parallel, stations Patmos Head and Mount Ellen to Diamond Peak and White	
	Pine	154
17.	Triangulation, thirty-ninth parallel, stations Diamond Peak and White Pine to California-Nevada boundary.	154

.

PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA.

By WILLIAM BOWIE,

Inspector of Geodetic Work and Chief of the Computing Division, United States Coast and Geodetic Survey.

GENERAL STATEMENT.

The primary object of this publication is to give the geographic positions, elevations, and descriptions of the main scheme, subsidiary and intersection stations determined by primary triangulation in the State of Colorado and northward, from the line Pikes Peak-Divide of the thirty-ninth parallel triangulation, approximately along the one hundred and fourth meridian to the Canadian border, and also similar data for the various stations of the thirty-ninth parallel triangulation which lie in the States of Colorado, Utah, and Nevada.

The geographic positions are on the North American datum, and, as far as geographic purposes are concerned, they will probably not be changed. The geographic positions of stations of the thirty-ninth parallel within the States mentioned above, as given in Special Publication No. 4 (The Transcontinental Triangulation), are superseded by the positions contained herein. That publication was issued before the adoption of the North American datum.

The author desires to express his appreciation of the valuable services performed in the field and in the office by members of the Survey in connection with the one hundred and fourth meridian triangulation; also in the office work connected with the readjustment of the thirtyninth parallel triangulation in Colorado, Utah, and Nevada, and the preparation of the results for publication.¹

Especial mention should be made of E. H. Pagenhart and C. V. Hodgson, who were in eharge of the base measurements and triangulation observations; also of J. S. Bilby, who laid out the scheme and selected the stations in the field and then prepared the stations for the observing party. In the office A. L. Baldwin had direct supervision of the computations and adjustments and prepared portions of the text. The heavy adjustments were made by W. F. Reynolds and O. S. Adams under Mr. Baldwin's direction. C. H. Swiek prepared the descriptions of stations, assembled the tables, and edited the text. Of the others who assisted in the work, including the preparation of this report, W. D. Lambert, H. R. Tolley, E. F. Church, and E. M. Panopio should be mentioned.

The engineer intent only on securing the necessary information to extend this triangulation or to base other surveys on it will find the information he desires on pages 80 to 148, commencing with the explanation of the table of positions, lengths, and azimuths. The index, printed on pages 155 to 161, used in connection with the sketches at the end of this publication will enable him to find quickly the data for any given locality.

Illustration No. 7, at the back of this volume, shows graphically the area covered by each of the publications of the United States Coast and Geodetic Survey and by one publication of the United States Army Engineers, which give the results of triangulation, which has been rigidly adjusted and computed on the North American datum.

In illustration No. 8 are shown the main scheme of the triangulation eovered by this report and the area eovered by each of the illustrations Nos. 9 to 17, which give the details of the triangulation nets.

5

¹ Acknowledgments are made for the field and office work connected with the transcontinental triangulation in Special Publication No. 4.

There are also given in this publication descriptions of the methods employed in the triangulation and base measurements on the one hundred and fourth meridian arc and data necessary to show the accuracy of the results of that work.

The methods employed on the thirty-ninth parallel triangulation and the accuracy of the results are described in Special Publication No. 4 of the Coast and Geodetic Survey.

RECONNOISSANCE.

The reconnoissance for the triangulation on the one hundred and fourth meridian was done by Signalman J. S. Bilby in 1911. His party consisted of only one man besides himself; his equipment was three mules, one wagon, one riding saddle, necessary tools for repairing the outfit, one tent, eots and bedding for two persons, and a few cooking utensils. The instruments he earried were a 4-ineh surveyor's transit, a prismatic azimuth eompass, a field teleseope, binoculars, and a set of drawing instruments. He also earried eopies of all the available maps covering all or parts of the area within which he operated.

The new scheme began with the line Pikes Peak-Divide of the transcontinental triangulation, with station Bison as the third and check point; it was carried northward to the Colorado-Wyoming boundary, thence northeastward just across the Wyoming-South Dakota boundary, thence northward to the international boundary.

Base lines were provided for at Provo, S. Dak. (approximate latitude 43° 12'), and at Ambrose, N. Dak., at the northern end of the scheme.

Provision was made for connecting with a number of triangulation stations of the United States Geological Survey, with monuments of each State boundary crossed, with the triangulation stations of the Missouri River Commission where the scheme crossed that river, with triangulation stations of the international boundary, and with a number of bench marks of various organizations.

The statistics of the reconnoissance are:

Length of scheme along its axis in miles	 	720
Area of scheme in square miles	 	17 000
Number of stations in the main scheme	 	74
Number of subsidiary stations.		23
Number of base lines selected		2
Date of beginning field work	May f	2 1911
Date of ending field work	 110 10	0 1911
Total length of season, months	 	3.3
Bate of process per month miles		218
A verse number of stations selected per month:		=10
Primary		22
Subsidiary.		7

GENERAL INSTRUCTIONS FOR RECONNOISSANCE.

1. Character of figures.—The chain of triangulation between base nets shall be made up of completed quadrilaterals and of central-point figures, with all stations occupied. It must not be allowed to degenerate even for a single figure to simple triangles. There must be two ways of computing the lengths through each figure. On the other hand there must be no overlapping of figures and no excess of observed lines beyond those necessary to secure a double determination of every length, except that in a four-sided central-point figure one of the diagonals of the figure may be observed.

2. Strength of figures.—In the chain of triangulation between base nets the value of the quantity $R = \left(\frac{D-C}{D}\right)$

 $\Sigma[\partial^2_A + \partial_A \partial_B + \partial^2_B]$ for any one figure must not in the selected best chain (call it R_1) exceed 25, nor in the second best (call it R_2) exceed 80, in units of the sixth place of logarithms. These are extreme limits never to be exceeded. Keep the quantities R_1 and R_2 down to the limits 15 and 50 for the best and second best chains, respectively, whenever the estimated total cost does not exceed that for a chain barely within the extreme limits by more than 25 per cent. The values of R may be readily obtained by the use of the following "Table for determining relative strength of figures in triangulation."

In the above formula the two terms $\frac{D-C}{D}$ and $\Sigma[\delta^2_A + \delta_A \delta_B + \delta^2_B]$ depend entirely upon the figures chosen and are independent of the accuracy with which the angles are measured. The product of these two terms is therefore a measure of the strength of the figures with respect to length, in so far as the strength depends upon the selection of stations and of lines to be observed over.

In the following table the values tabulated are $\Sigma[\partial^2_A + \partial_A \partial_B + \partial^2_B]$. The unit is one in the sixth place of logarithms. The two arguments of the table are the distance angles in degrees, the smaller distance angle being given at

the top of the table. The distance angles are the angles in each triangle opposite the known side and the side required. ∂_A and ∂_B are the logarithmic differences corresponding to one second for the distance angles A and B of a triangle.

The square of the probable error of the logarithm of a side of a triangle is $\frac{4}{3}(d^2) \frac{D-C}{D} \Sigma[\delta^2_A + \delta_A \delta_B + \delta^2_B]$, in which *d* is the probable error of an observed direction. *D* is the number of directions observed in a figure and *C* is the number of conditions to be satisfied in the figure. The summation indicated by Σ is to be taken for the triangles used in computing the value of the side in question from the side supposed to be absolutely known.

The strength table is to be used in connection with the values of $\frac{D-C}{D}$ to decide during the progress of the reconnoissance which of the two or more possible figures is the strongest and to determine whether a sufficiently strong scheme has been obtained to make it inadvisable to spend more time in reconnoissance.

Table for determining relative strength of figures in triangulation.

Some values ¹ of the quantity $\frac{D-C}{D}$.— For a completed quadrilateral, $\frac{10-4}{10} = 0.60$. For a three-sided, central point figure, $\frac{10-4}{10} = 0.60$. For a four-sided, central point figure, $\frac{14-5}{14} = 0.64$. For a five-sided, central point figure, $\frac{18-6}{18} = 0.67$. For a six-sided, central point figure, $\frac{22-7}{22} = 0.68$. For a four-sided, central point figure, with one diagonal also observed, $\frac{16-7}{16} = 0.56$.

¹ The starting line is supposed to be completely fixed and is not considered in computing the number of directions.

3. Lengths of lines.—No line of the primary triangulation outside of the base nets should be less than 6 kilometers long. There is little if any advantage, in so far as accuracy is concerned, in making the lines much longer than this. Therefore endeavor, in laying out the triangulation scheme, to use the economic length of line; that is, endeavor to use in each region lines of such lengths as to make the total cost of reconnoissance, building, and triangulation a minimum per mile of progress, subject to the limitations stated in these instructions.

4. Frequency of bases.—If the character of the country is such that a base site can be found near any desired location ΣR_1 between base lines should be made about 130. This will be found to correspond to a chain of from 15 to 35 triangles, according to the strength of the figures secured. With strong figures but few base lines will be needed and a corresponding saving will be made on this part of the work. If topographic conditions make it difficult to secure a base site at the desired location, ΣR_1 may be allowed to approach but not exceed 200. There will be danger when this is done that an intervening base may be necessary, for if in any case the discrepancy between adjacent bases is found to exceed 1 part in 25 000 an intervening base must be measured.

5. Base sites and base nets.—In selecting baso sites keep in mind that a base can be measured with the required degree of accuracy on any site where the grade on any 50-meter tape length does not exceed 10 per cent, and that narrow valleys or ravines less than 50 meters wide in the direction of the base are not obstacles to measurement. The length of each base is to be not less than 4 kilometers. In each base net great care should be taken to secure as good geometrical conditions as possible. There should be no hesitancy in placing the base on rough ground, provided the roughness is not greater than that indicated above, if by doing so the geometrical conditions in the base net are improved. Each base net should not be longer than two ordinary figures of the main chain between bases. The base net may also be strengthened by observing over as many lines between stations of the net as can be made intervisible without excessive cost for building or cutting. Caution is necessary in thus strengthening a base net by observing extra lines to avoid making the figure so complicated as to be excessively difficult and costly to adjust.

COST OF RECONNOISSANCE.

The total cost of the field work, including Mr. Bilby's salary and traveling expenses to the field, was \$1,995. As most of the equipment of the party had been in use in previous seasons, new articles cost the party only about \$75. The cost of this reconnoissance per mile of progress was \$2.77, and is the lowest with which the writer is familiar. On page 168 of Appendix 4, Report for 1911, and page 10 of Special Publication No. 11 may be found statements of cost of previous reconnoissances.

As a proof of the accuracy of this reconnoissance, involving the selection of 97 stations (main and subsidiary schemes) in a triangulation 720 miles (1160 kilometers) in length, in only two places was it necessary to alter the proposed scheme, one at the extreme southern end and the other in the vicinity of Cheyenne.

An occasional obstructed line is to be expected, for the officer carrying on the reconnoissance is supposed to adopt such methods and make such selections of stations as to make the total cost, including reconnoissance, erecting signals, and observing, a minimum. It is obvious that the total would be greater if on the reconnoissance the officer spent enough time testing each line to insure against every obstruction than if he took only the time necessary to make it reasonably sure that only an occasional line must be abandoned or an occasional station introduced into the scheme by the observing party. Besides, it is frequently the case that the party building the signals can test any doubtful lines, and thus avoid delays to the observing party.

The reconnoissance party obtained the geographic locations of the stations by any means available, such as estimated distance and compass bearing to a railroad station, topographic maps, General Land Office maps, bearings on mountain peaks whose positions were known, etc. Only such accuracy is required in the geographic positions of reconnoissance stations as to enable the light keeper and observer to signal each other and to permit the computation of the strength of the figures. As the work progressed the chief of party made sketches showing the approximate location of the stations and the lines to be observed.

Descriptions of the stations were written which enabled the building and observing parties and the light keepers to find the stations selected. They also gave information as to the nearest water for drinking and cooking and for stock, nearest post office, railroad station, and place where supplies might be purchased; also as to the best approach to the station, if it were in a rough or rugged country.

PRIMARY TRIANGULATION.

MEASUREMENT OF BASES ON THE ONE HUNDRED AND FOURTH MERIDIAN.

General statement.—According to the strength of the separate figures of the scheme of triangulation on the one hundred and fourth meridian only two new base lines were necessary besides the known length, Pikes Peak-Divide, a line of the transcontinental triangulation. These two bases were located by the reconnoissance party at Ambrosc, N. Dak., near the Canadian boundary, and at Provo, in the southwestern corner of South Dakota, and were measured by the observing parties with invar tapes in 1912.

After the triangulation had been completed and a preliminary computation had been made, it was found that the length discrepancy between the Provo and the Ambrose bases was only 1 part in 83 000. However, the discrepancy between the line Pikes Peak-Divide and the Provo base was found to be 1 part in 13 500. A revised computation of the Provo base made no change in the length given by the first computation, and a close inspection of the computation of the old El Paso base and of the triangulation from that base to the line Pikes Peak-Divide showed that no error in computation had been made there. After considering all the facts the conclusion reached was that the discrepancy in length was probably due in part to some systematic or constant error in the measurement of the El Paso base with the base bars in 1878,¹ and also to accumulated errors in the triangulation between the Provo base and the line Pikes Peak-Divide.

It was therefore decided to remeasure the El Paso base with the invar tapes, and this was done by Assistant C. V. Hodgson in the summer of 1913. A computation on the field showed a change of 1 part in 59 000 in the old length of the El Paso base, but this change still left a discrepancy in length between the El Paso and Provo bases of 1 part in 24 000. This showed a rather large accumulation of error in the triangulation, and it was decided to introduce an additional base in the scheme in the vicinity of Cheyenne, Wyo. This base also was measured with the invar tapes, by Assistant Hodgson, in 1913. The discrepancies in lengths are now:

Between the El Paso base (new length) and Cheyenne base, 1 part in 31 000.

Between the Cheyenne base and Provo base, 1 part in 40 000.

Between the Provo base and Ambrose base, 1 part in 109 000.

Methods employed.—The following instructions for the measurement of the Ambrose and Provo bases were issued to Assistants E. H. Pagenhart and C. V. Hodgson, the chiefs of the two observing parties engaged on the triangulation on the one hundred and fourth meridian in 1912:

The two bases shown by the reconnoissance scheme, one at Ambroso and one at Prove, will be measured by the observing parties during the progress of the triangulation.

Very little increase in the average accuracy of the lengths of the triangle sides in the triangulation connected with a base will result from increasing the accuracy of the base measurement beyond that represented by a probable error of 1 part in 500 000 in the length of the base. The following limits of accuracy are selected with a view of attaining a probable error but little, if any, greater than 1 part in 500 000. You will strive to keep as far within these limits as is possible by the use of good judgment and skill, but you will restrict the time and money expended upon each operation substantially to that required to keep barely within them.

Four invar tapes are to be standardized at the Bureau of Standards, both before and after the measurement of the bases. Each base is to be measured with three of these invar tapes used in daylight or at night. A base shall be measured in sections approximately 1 kilometer in length, except that one shorter section may be used. Each section of a base shall be measured with at least two different invar tapes. Different pairs of invar tapes shall be used on different sections, so that the three tapes used on the base shall thereby be thoroughly intercompared. Two, and only two, measurements of each section shall be made, unless the discrepancy between these two measurements exceeds 20 millimeters \sqrt{K} (in which K is the length of the section in kilometers), in which case additional measurements must be made until two are obtained which agree within this limit. The fourth invar tape standardized is to be retained for use in case of serious damage to any of the three tapes with which the measurements would otherwise be made.

Such precautions should be taken to secure accurate horizontal and vertical alignment of the tapes and the determination of the tension applied to the tapes as is necessary to insure that the errors arising from these sources on a base shall each be less than 1 part in 1 000 000.

¹ For an account of the measurement of the El Paso base, see pp. 101-107 of the Transcontinental Triangulation, Special Publication No. 4, of the U. S. Coast and Geodetic Survey. A description of the bars used in the measurements will be found in Appendix 17, Report for 1880, pp. 341-345.

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

On the Stanton base, in Texas, the wind blowing against the tapes which had only three supports caused some trouble. The wind effect was made negligible on the Deming base measurements by using five tape supports. In the measurements of the Ambrose and Prove bases either three or five supports may be used, but in no case should the effect of wind on the length of a base be more than 1 part in 1 000 000. The wind when at an appreciable angle with the direction of the base tends to draw the ends of the tape closer together, and thus introduces a systematic error which makes the measured length of the base too long.

The remeasurement of the El Paso base and the measurement of the Cheyenne base in 1913 were made under the same instructions as the bases at Ambrose and Provo.

Standardization of tapes.—The tapes were standardized at the Bureau of Standards, at Washington, D. C., both before and after the measurement of the Ambrose and Provo bases, and again after the remeasurement of the El Paso base and the measurement of the Cheyenne base. The length of the 50-meter comparator was measured with iced bar B_{17} just before and after the comparison of the tapes with the comparator. In the determinations at the Bureau of Standards the tapes were used in practically the same manner as in the field. They were supported at the ends and at the middle point with all three supports in a straight line. Two thermometers were attached to each tape about 1 meter from the graduation mark at each end, and the fixed tension of 15 kilograms was applied. The tapes were suspended under the end microseopes of the eomparator, using the cut-off cylinders for the end supports. For a full description of the standardization of base tapes, see pages 115–119 of Appendix 4, Report for 1907.

The same set of tapes has been used for all the primary bases measured since the season of 1906. These tapes have been standardized six times and the results are shown in tables on pages 25 and 26.

AMBROSE BASE.

This base was located by the reconnoissance party in 1911, to the northwest of the town of Ambrose, in northwestern North Dakota. Its connection with the scheme of triangulation is shown on illustration 12 at the end of this volume. Ambrose northeast base is identical with triangulation station School of the International Boundary Survey.

The land is level and comparatively smooth, and at the time of the base measurement all of it was covered with short prairie grass except some sections which had been under cultivation.

Organization of party.—The Ambrose base was prepared for measurement by Signalman J. S. Bilby, who was assisted by some members of the triangulation observing party of Assistant E. H. Pagenhart. The setting of stakes began on May 11 and was finished on the 15th, the actual measurements with the tapes was done on three days between May 16 and 20, and on May 25 the field computation of the results was completed. Nine persons were engaged for all or part time upon the preparation, leveling, and tapc measures. The party lived in tents while engaged on the measurement of this base.

Division of the base.—The base was divided into three main portions, the first extending from Northeast base to the end of the third kilometer, the second from the beginning of the fourth kilometer to the end of the seventh kilometer, and the third from the beginning of the eighth kilometer to Southwest base. The total length of the base is 10 479 meters. Each of the three main divisions was measured at least twice in opposite directions with different tapes, and a different pair was used on each division in order to obtain an intercomparison of the three tapes used in the measurements. Each of the main portions was in turn divided into kilometer sections.

The following table shows the divisions of the base with the tapes used on each and the approximate length of the divisions.

Division.	Tapes used.	Length of divisions.
No. 1 No. 2 No. 3	Numbers. 516 and 517 517 and 521 516 and 521	<i>Metcrs.</i> 3000 4000 3479

Special Publication No. 19.

NO. 1,

REEL FOR INVAR TAPES (TWO VIEWS).

PRIMARY TRIANGULATION.

The descriptions of the location and markings of the base ends are given on page 124.

Apparatus used.—As stated above, the same invar tapes have been used for measuring the primary bases since the compaign of 1906, when six primary bases were measured with both steel and invar tapes. After those measurements it was decided to discard the steel and do all primary measuring with the invar tapes. This decision has been justified by the results obtained.

These invar tapes are 50 meters in length and are similar to those described on pages 111– 113 of Appendix 4 of the Réport for 1907. The stretcher and other minor parts of the base apparatus were of the same types as those described on pages 149 and 154 of Appendix 4 of the Report for 1910 and are shown in illustrations 4 and 5 of that publication. The reel used for the invar tape is shown in illustration No. 1 of this publication.

Setting stakes and measuring.—The method of setting the stakes on which the tape is supported while making the measurements and the method of carrying on those measurements are rather fully described in the three publications of this Survey giving the results of base measurements in recent years. They are Appendix 1 of the Report for 1901, Appendix 4 of the Report for 1907, and Appendix 4 of the Report for 1910. It is not necessary to go into the details of the methods here. Any one or all of those publications may be obtained free of cost by application to the Superintendent of the United States Coast and Geodetic Survey.

On all of the bases measured on the one hundred and fourth meridian only three supports for a tape were used, as the wind on many days was found to be light and to have a negligible effect. When the wind was strong no measurements were attempted.

Equations of tapes.—The equations of the tapes, furnished by the Bureau of Standards and resulting from the standardization in March, 1912, are:

$$\begin{split} T_{516} &= 50m + (\ 9.573mm \pm 0.029mm) + (0.0178mm \pm 0.0007mm) \times (t-26.8^{\circ} \text{ C}); \\ T_{517} &= 50m + (\ 9.960mm \pm 0.022mm) + (0.0160mm \pm 0.0007mm) \times (t-26.9^{\circ} \text{ C}); \\ T_{521} &= 50m + (10.124mm \pm 0.021mm) + (0.0205mm \pm 0.0008mm) \times (t-26.8^{\circ} \text{ C}); \\ T_{522} &= 50m + (10.988mm \pm 0.017mm) + (0.0614mm \pm 0.0011mm) \times (t-26.8^{\circ} \text{ C}). \end{split}$$

The equations of the same tapes, furnished by the Bureau of Standards and resulting from the restandardization in January, 1913, are:

 $\begin{array}{l} T_{516}{=}50m{+}(9.556mm\pm0.016mm) \mbox{ at } 23.3^{\circ}\mbox{ C};\\ T_{517}{=}50m{+}(9.953mm\pm0.016mm) \mbox{ at } 23.3^{\circ}\mbox{ C};\\ T_{521}{=}50m{+}(10.077mm\pm0.016mm) \mbox{ at } 23.3^{\circ}\mbox{ C};\\ T_{522}{=}50m{+}(10.793mm\pm0.016mm) \mbox{ at } 23.3^{\circ}\mbox{ C}. \end{array}$

The determination of the coefficient of expansion of each of these tapes was made by the Bureau of Standards in January, 1909. Tape No. 522 was carried to the field, but was not used in the measurements.

The equations resulting from the January, 1913, standardization, reduced to the temperatures of the March, 1912, standardization, are:

 $\begin{array}{l} T_{516}{=}50m{+}(\ 9.618mm{\pm}0.016mm) \ {\rm at} \ 26.8^\circ \ {\rm C}; \\ T_{517}{=}50m{+}(10.011mm{\pm}0.016mm) \ {\rm at} \ 26.9^\circ \ {\rm C}; \\ T_{521}{=}50m{+}(10.149mm{\pm}0.016mm) \ {\rm at} \ 26.8^\circ \ {\rm C}; \\ T_{522}{=}50m{+}(11.008mm{\pm}0.016mm) \ {\rm at} \ 26.8^\circ \ {\rm C}. \end{array}$

The adopted equations of the tapes used in the final computations of the Ambrose base are:

$$\begin{split} T_{515} = & 50m + (\ 9.582mm \pm 0.012mm) + (0.0178mm \pm 0.0007mm) \times (t-26.8^{\circ} \text{ C}); \\ T_{517} = & 50m + (\ 9.970mm \pm 0.014mm) + (0.0160mm \pm 0.0007mm) \times (t-26.9^{\circ} \text{ C}); \\ T_{521} = & 50m + (10.129mm \pm 0.007mm) + (0.0205mm \pm 0.0008mm) \times (t-26.8^{\circ} \text{ C}). \end{split}$$

These values are based upon the assumptions that the difference between the lengths as given by the two standardizations are actual differences in the lengths (that is, that the standardizations were made without error), and also that this change had taken place gradually and at a uniform rate from March, 1912, to January, 1913, the dates of the two standardizations.

In order to compare the lengths of the tapes, the results of the two standardizations are given in the following table:

 $\begin{array}{r} \text{Mar., 1912, } T_{516}{=}50m{+}(\ 9.573mm{\pm}0.029mm) \text{ at } 26.8^\circ \text{ C}; \ v{=}{+}0.023mm; \\ \text{Jan., 1913, } T_{516}{=}50m{+}(\ 9.618mm{\pm}0.016mm) \text{ at } 26.8^\circ \text{ C}; \ v{=}{-}0.022mm. \\ \hline & \\ \hline & \\ \text{Mean}{=} \quad 9.596mm \end{array}$

Mar., 1912, $T_{817}=50m+(9.960mm\pm0.022mm)$ at 26.9° C; v=+0.026mm; Jan., 1913, $T_{817}=50m+(10.011mm\pm0.016mm)$ at 26.9° C; v=-0.025mm.

Mean= 9.986mm

Mar., 1912, $T_{521}=50m+(10.124mm\pm0.021mm)$ at 26.8° C; v=+0.012mm; Jan., 1913, $T_{521}=50m+(10.149mm\pm0.016mm)$ at 26.8° C; v=-0.013mm.

Mean = 10.136mm

Mar., 1912, $T_{522}=50m+(10.988mm\pm0.017mm)$ at 26.8° C; v=+0.010mm; Jan., 1913, $T_{522}=50m+(11.008mm\pm0.016mm)$ at 26.8° C; v=-0.010mm.

Mean = 10.998mm

Five of these residuals are smaller than the probable errors of the standardizations, and in no ease do they exceed these probable errors by an appreciable amount. Therefore it is reasonable to suppose that between the standardizations the tapes underwent no permanent ehange in length and that the differences were due to errors in the standardization itself. This shows that a straight mean of the results of the January, 1912, and March, 1913, standardizations could have been used in making the computations of the two bases without introdueing any error as great as the probable error of the standardization of a tape, which is on an average less than 1 part in 1 000 000.

Reduction to sea level.—The elevation of Ambrose Northeast base, as given by a connection with the spirit leveling along the international boundary, is 623.521 meters. The mean elevation of each section of the base was obtained from the leveling which was run for the purpose of getting the inclination corrections necessary to reduce the measures to the horizontal.

The formula used in reducing the base to sea level is

$$C = -S\frac{h}{r} + S\frac{h^2}{r^2} - S\frac{h^3}{r^3}$$
, etc.,

in which C is the reduction to sea level for a section of length S and mean elevation h, and r is the radius of the earth's curvature for the section in question. The reduction to sea level for each section of the base is given in the following table in the column headed "Reduction to sea, level."

Results of the measurement.—The results of the measurement of the Ambrose base are given in the following table:

Section.	Date and hour.	Di- rec- tion of meas- ure.	Tape No.	Weather and wind. ¹	Tem ture tigr R, F, or S. ³	Mean cor- rect- ed.	Correc- tion to length for tem- pcra- ture.	Set-up or set- back.	Grade correc- tlon.	Tape correc- tion.	Reduc- tion to sea level.	Reduced lengths of sec- tions.	Adopted lengths of sections.	v.	vv.
I, N. E. B20	May, 1912. (18, 8:10 a.m. (16, 11:10 a.m.	WE	517 516	C, L E C, L SW	RS	° 7.2 26.7	m = -0.0063 = 0.0000	m = 0.0395 = 0.0312	m -0.1592 -0.1592	m +0.1994 +0.1916	m 0.0969 0.0969	m 999.8975 999.9043	m } 999.9009	mm' {+3.4 {-3.4	mm 11.56 11.56
II , 20–40	(18, 8:45 a. m. 16, 9:50 a. m.	W E	517 516	C, L E C, L SE	R R	8.9 25.0	$-0.0058 \\ -0.0006$	- 0.0072 0.0000	$-0.2346 \\ -0.2346$	+0, 1994 +0, 1916	-0.0968 -0.0968	999.8550 999.8596	} 999.8573	$\left\{ {+2.3 \atop -2.3} \right\}$	5.29 5.29
III, 40-60	{18, 9:25 a.m. 16, 8:50 a.m.	WE	517 516	Cy, L E C, L SE	S R	10.8 20.1	$-0.0052 \\ -0.0024$	+ 0.0185 + 0.0257	-0.1056 -0.1056	+0.1994 +0.1916	-0.0976 -0.0976	1000.0095 1000.0117	}1000.0106	$\binom{+1.1}{-1.1}$	1.21 1.21
1 These le	tters represent	the foll	owing	: C, clear; Cy,	cloud	ly; L,	light; M,	moderate	; NE, n	ortheast	SE, sou	theast; S	W, southw	est; E	,east;

The Ambrose base line.

¹ These letters represent the following: C, clear; Cy, cloudy; L, light; M, moderate; NE, northeast; SE, southeast; SW, southwest; P Cy, partly cloudy. ² These letters, R, F, and S, indicate whether the temperature was rising, falling, or stationary.

PRIMARY TRIANGULATION.

The Ambrose base line-Continued.

		Di- rec-			Ter ture tig	npera- e (cen- rade).	Correc- tion to	Cat up	Grada	(T)====	Reduc-	Reduced	Adopted		
Section.	Date and hour.	tion of meas- ure.	Tape No.	Weather ar wind.	d F, or S.	Mean cor- rect- ed.	length for tem- pera- ture.	or set- back.	correc- tion.	tion.	tion to sea level.	lengths of sec- tions.	lengths of sections.	⊽.	ν۳.
	May, 1912.														
IV,60-80	(18, 10:20 a.m. (20, 3:15 p.m.	W E	517 521	Cy, L E P Cy, L N	F. F.	• 12.4 14.0	m = -0.0046 - 0.0052	m = 0.0000 - 0.0019	m = -0.0748 = -0.0748	m + 0.1994 + 0.2026	m = -0.0982 = -0.0982	m 1000.0218 1000.0225	m }1000.0222	$mm \\ \{+0.4 \\ -0.3$	mm 0.16 0.09
V, 80-100	{18, 10:55 a.m. {20, 2:45 p.m.	W E	517 521	Cy, L E P Cy, L N	R E. S	11.8	-0.0048 -0.0043	+ 0.0480 + 0.0458	-0.1073 -0.1073	+0.1994 +0.2026	-0.0986 -0.0986	1000.0367 1000.0382	}1000.0374	$\left\{\substack{+0.7\\-0.8}\right.$	0.49 0.64
VI, 100-120	{18, 11:30 a.m. 20, 2:05 p.m.	WE	517 521	C, L E C, L NE	R S	14.6 14.6	-0.0039 -0.0050	+ 0.0917 + 0.0906	-0.1061 -0.1061	+0.1994 +0.2026	-0.0990 -0.0990	1000.0821 1000.0831	}1000.0826	$\left\{\substack{+0.5\\-0.5}\right.$	0.25 0.25
VII, 120-140	{18, 1:05 p.m. {18, 2:05 p.m.	W E	517 521	H, LSE H, MSE	s	16.0	-0.0035 -0.0038	+ 0.0760 + 0.0777	-0.2600 -0.2600	+0.1994 +0.2026	-0.0992 -0.0992	999.9127 999.9173	} 999.9150	$\left\{ {{+2.3}\atop{-2.3}} \right.$	$5.29 \\ 5.29$
V111 , 140–160	{20, 5:05 p.m. 20, 8:15 p.m.	W E	521 516	P Cy, L N P Cy, L N	E. F	14.2	-0.0052 -0.0068	+35.6425 +35.6560	-0.1364 -0.1364	+0.2026 +0.1916	-0.1032 -0.1032	1035.6003 1035.6012	}1035.6008	$\{+0.5\-0.4$	0.25 0.16
IX,160-180	{20, 5:40 p.m. 20, 7:50 p.m.	W E	521 516	Cy, L NE. Cy, L NE.	S F	13.4 9.7	-0.0055 -0.0061	0.0000 + 0.0135	-0.1986 -0.1986	+0.2026 +0.1916	-0.1005 -0.1005	999, 8980 999, 8999	} 999.8989	$\{ \substack{+0.9 \\ -1.0 }$	0.81 1.00
X,180-200	{20, 6:15 p.m. 20, 7:25 p.m.	W E	521 516	Cy, L NE. Cy, L NE.	F	13.6	-0.0054 -0.0058	0.0000	-0.3906 -0.3906	+0.2026 +0.1916	-0.1011 -0.1011	999.7055 999.7050	} 999.7052	${=0.3 \\ +0.2}$	0.09 0.04
XI,200-S.W.B.	{20, 6:45 p.m. 20, 7:15 p.m.	W E	521 516	Cy, L NE. Cy, L NE.	F F	12.8 11.8	-0.0026 -0.0024	-5.8370 -5.8318	$-0.0602 \\ -0.0602$	+0.0912 +0.0862	-0.0451 -0.0451	444.1463 444.1467	} 444.1465	$\left\{ {{+0.2}\atop{-0.2}} \right.$	0.04

The length of the Ambrose base = 10479.1774 ± 0.0035 meters.

The logarithm of this length is 4.0203272 ± 1 .

This probable error of the length corresponds to 1 part in 3 029 000.

The computation of the probable error was made in a manner similar to that described on pages 160-161 of Appendix 4 of the Report for 1910.

Cost of Ambrose base.—The cost of preparing and measuring the Ambroso base was about \$500. This amount includes the salary or pay of each person while engaged on this base, and such other expenses incurred as were not properly chargeable to the triangulation. It does not include any traveling expenses of the members of the party to the field, or the costs of any articles of outfit. The length of this base was 10.5 kilometers, hence the cost per kilometer was about \$48, or \$77 per mile.

If there be included \$200 for the cost of one standardization of the four tapes (see p. 15), and also about \$40 for the cost of making the final computation at the office, then tho total cost of the base to the Government would be about \$740. This is at the rate of about \$70 per kilometer, or \$113 per mile.

PROVO BASE.

This base line was located in the southwestern portion of the State of South Dakota, near Provo railroad station and village.

The ground over which the base passed is gently rolling, with some gulches, none of which were too wide to be spanned by a 50-meter tape. Except in one case the grade of a single tape length was not greater than 5 per cent. The land was free from trees and clear except for sagebrush over about 3 kilometers. This brush was only about 15 inches high and the line through it was easily cleared. Only a small portion of the land along the base had ever been under cultivation.

Organization of party.—As on the Ambrose base, the building party prepared the Provo base for measurement. There were six persons in all engaged on this work, and the total time consumed was seven working days, between August 23 and 30, 1912, inclusive.

The observing party of Assistant Hodgson, aided by Mr. Bilby, was engaged on the measurement between October 3 and 8, 1912. Including five hands, the observing party consisted of a total of seven persons. Division of the base.—As in the ease of the Ambrose base (see p. 10) this base was divided into three parts, each of which was measured twice in opposite directions with different tapes. The measurements were so planned that it was possible to obtain an intercomparison between each two tapes used.

The following table shows the divisions of the base, with the tapes used on each and the approximate length of the divisions:

Division.	Tapes used.	Length of division.
No. 1 No. 2 No. 3	Numbers. 516 and 521 517 and 516 521 and 517	<i>Mclers.</i> 5000 5000 4550

The descriptions of the location and markings of the base ends are given on page 119.

Apparatus used.—The same tapes and other apparatus which were used on the Ambrose base were used at Provo. (See p. 11.)

Setting stakes and measuring.—Three stakes were used for each tape length, one at each end and one in the center. The measurements were made in the same way as on the Ambrose base. (See p. 11.) The wind effect on the Provo base was negligible.

Equations of tapes.—The equations of the tapes as determined in March, 1912, and January, 1913, are given on page 11, and need not be repeated here.

The adopted equations of the tapes used in the final computation of the Provo base are:

 $\begin{array}{l} T_{516} = 50m + (\ 9.605mm \pm 0.014mm) + (0.0178mm \pm 0.0007mm) \times (t - 26.8^{\circ} \ {\rm C}); \\ T_{517} = 50m + (\ 9.996mm \pm 0.016mm) + (0.0160mm \pm 0.0007mm) \times (t - 26.9^{\circ} \ {\rm C}); \\ T_{521} = 50m + (10.142mm \pm 0.008mm) + (0.0205mm \pm 0.0008mm) \times (t - 26.8^{\circ} \ {\rm C}). \end{array}$

These values were based upon the assumptions that the difference between the lengths, as given by the two standardizations, were actual differences in lengths (that is, that the standardizations were made without error), and also that this change had taken place gradually and at a uniform rate from March, 1912, to January, 1913, the dates of the two standardizations.

Reduction to sea level.—The elevation of Provo west base, as given by a connection with a line of precise leveling running through Provo, is 1177.19 meters. A double line of spirit levels was run over the base for the purpose of getting the grade corrections and the mean elevations above sea level of each section. The correction to reduce to sea level was computed by the formula shown on page 12, and is given for each section in the column headed, "Reduction to sea level" in the following table.

Results of the measurement.—The results of the measurement of the Provo base are given below:

The	Provo l	buse i	line.
-----	---------	--------	-------

Section.	Date and hour _g	Di- rec- tion of meas- ure.	Tape No.	Weather and wind.1	Tem ture tigr R, F, or S. ¹	Mean cor- rect- ed.	Correc- tion to length for tem- pera- ture.	Set-up or set- back.	Grade correc- tion.	Tape correc- tion.	Reduc- tion to sea level.	Reduced lengths of sec- tions.	Adopted iengths of sections.	v.	vv.
	Oct., 1912.			2											
I, W. B20	{7, 11:00 a. m 7, 10:10 a. m	EW	516 521	C, M W C, M W	S R	17.8 16.6	m = -0.0032 = -0.0042	m + 0.1982 + 0.1928	$\begin{bmatrix} m \\ -0.2306 \\ -0.2306 \end{bmatrix}$	m + 0.1921 + 0.2028	m = -0.1834 = -0.1834	m 999.9731 999.9774	m 999.9753	$mm \\ \{+2.2 \\ -2.1 \end{bmatrix}$	mm 4.84 4.41
[1, 20-40	{7, 11:35 a. m 7, 9:25 a. m	EW	516 521	C, M W C, L SE	S R	16.7 13.6	-0.0036 -0.0055	+10.9178 +10.9136	-0.1695 -0.1695	+0.1921 +0.2028	-0.1821 -0.1821	1010.7547 1010.7593	}1010.7570	$\left\{\substack{+2.3\\-2.3}\right.$	5.29 5.29
I11, 40-60	{7, 1:20 p.m., 7, 8:50 a.m.	EW	516 521	P Cy, M NW C, L SE	F R	$16.3 \\ 10.0$	-0.0037 -0.0069	+ 0.0874 + 0.0848	-0.0730 -0.0730	+0.1921 +0.2028	-0.1782 -0.1782	1000.0246 1000.0295	}1000.0271	$\left\{ {{+2.5\atop -2.4}} \right\}$	6.25 5.76
IV, 60-80	{7, 1:50 p.m 7, 8:15 a.m.	EW	516 521	PCy, MNW C, LSE	S R	15.6 8.3	-0.0040 -0.0076	+ 0.0745 + 0.0710	-0.0604 -0.0604	+0.1921 +0.2028	$-0.1768 \\ -0.1768$	1000.0254 1000.0290	}1000.0272	$\binom{+1.8}{-1.8}$	$3.24 \\ 3.24$
1 These le	tters represent	the foll	owing	g: C, clear; Cy,	cloud	ly; PC	y, partly	cloudy;	O, calm;	L, light	; M, mod	lerate; W	, west; NV	V, north	awest;

SE, southeast. ² These letters R, F, and S indicate whether the temperature was rising, falling, or stationary.

	Deteend	Di- rec-	Tana	Weather and	Tem ture tigr:	pera- (cen- ade).	Correc- tion to	Set-up	Grade	Tape	Reduc-	Reduced	Adopted		
Section.	hour.	of meas- ure.	No.	wind.	R, F, or S.	Mean cor- rect- ed.	for tem- pera- ture.	or sét- back.	correc- tion.	correc- tion.	lion to sea level.	of sec- tions.	lengths of sections.	v.	vv.
	Oct., 1912.			-											
V, 80-100	{7, 2:20 p.m 7, 7:45 a.m	E W	516 521	Cy, M NW C, L SE	S R	15.6 6.3	$ \begin{array}{c} m \\ -0.0040 \\ -0.0084 \end{array} $	m + 0.0408 + 0.0371	m = -0.2234 = -0.2234	m + 0.1921 + 0.2028	m = -0.1769 = -0.1769	m 999.8286 999.8312	$\begin{pmatrix} m \\ 999.8299 \end{pmatrix}$	${mm \atop \{+1.3 \\ -1.3 }$	$mm \\ 1.69 \\ 1.69$
VI, 100–120	{3, 12:25 p.m {3, 11:00 a.m	E W	517 516	C, L W C, L W	s s	24.3 20.8	-0.0008 -0.0021	- 0.0099 0.0000	-0.1170 -0.1170	+0.1999 +0.1921	-0.1766 -0.1766	999.8956 999.8964	} 999.8950	$\{ \substack{+0.4 \\ -0.4 }$	$\begin{array}{c} 0.16 \\ 0.16 \end{array}$
VI1, 120-140	{3, 1:00 p.m {3, 10:30 a.m	EW	517 516	C. L W C, L W	8 S	24.0 19.5	-0.0009 -0.0026	- 0.0138 0.0000	$-0.0936 \\ -0.0936$	+0.1999 +0.1921	-0.1758 -0.1758	999.9158 999.9201	} 999.9180	$\left\{ {{+2.2\atop -2.1}} \right\}$	$\substack{\textbf{4.84}\\\textbf{4.41}}$
V111, 140-160	{3, 1:30 p.m }3, 9:50 a.m	EW	517 516	C, L W C, L W	F R	24.9 17.4	-0.0006 -0.0034	$ \begin{array}{c} 0.0106 \\ 0.0000 \end{array}$	-0.1048 -0.1048	+0.1999 +0.1921	-0.1770 -0.1770	999,9069 999,9069	} 999.9069	$\left\{ \begin{array}{c} 0.0 \\ 0.0 \end{array} \right.$	0.00 0.00
1X, 160-180	{3, 2:00 p.m {3, 9:10 a.m	E W	517 516	C, L W C, L W	S R	$24.3 \\ 14.9$	-0.0008 -0.0042	+ 0.0384 + 0.0522	-0.3527 -0.3527	+0.1999 +0.1921	$-0.1754 \\ -0.1754$	999.7094 999.7120	} 999.7107	$\left\{ {+1.3 \atop -1.3} \right.$	$\begin{array}{c} 1.69\\ 1.69\end{array}$
X,180-200	{3, 2:30 p.m 3, 8:20 a.m	EW	517 516	C, L W C, L W	S R	$24.4 \\ 12.9$	-0.0008 -0.0050	+ 0.0303 + 0.0418	$-0.5497 \\ -0.5497$	+0.1999 +0.1921	$-0.1745 \\ -0.1745$	999.5052 999.5047	} 999.5050	$\begin{cases} -0.2 \\ +0.3 \end{cases}$	0.04 0.09
XI, 200–220	{3, 3:15 p.m {8, 11:30 a.m	EW	521 517	С, О С, M W	FS	$23.6 \\ 18.0$	-0.0013 -0.0028	+ 0.0450 + 0.0461	-0.1158 -0.1158	+0.2028 +0.1999	$-0.1742 \\ -0.1742$	999.9565 999.9532	} 999.9549	$\left\{ { -1.6 \atop +1.7} \right\}$	$2.56 \\ 2.89$
X11,220-240	{3, 3:50 p.m {8, 11:00 a.m	E W	521 517	С, О С, М W	S F	$22.4 \\ 17.7$	-0.0018 -0.0029	+ 0.0273 + 0.0255	$-0.2201 \\ -0.2201$	+0.2028 +0.1999	-0.1747 -0.1747	999.8335 999.8277	} 999.8306	$\left\{ {\substack{-2.9\+2.9}} ight\}$	8.41 8.41
XIII,240260	{8, 8:20 a.m 8, 10:35 a.m	EW	521 517	C, L NW C, M NW	R S	$9.7 \\ 16.8$	-0.0070 -0.0032	- 0.0000 - 0.0051	$-0.2744 \\ -0.2744$	+0.2028 +0.1999	-0.1746 -0.1746	999.7468 999.7426	} 999.7447	$igl\{ -2.1 \\ +2.1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4.41 4.41
XIV, 260-280	{ ⁸ , 8:50 a.m 8, 10:15 a.m	EW	521 517	C, I, NW C, M NW	s s	10.8 16.2	$-0.0066 \\ -0.0034$	0.0000 + 0.0013	-0.0589 -0.0589	+0.2028 +0.1999	-0.1752 -0.1752	999.9621 999.9637	} 999.9629	$\{ \substack{+0.8 \\ -0.8}$	0.64 0.64
XV, 280-E.B	{8, 9:20 a.m 8, 10:00 a.m	EW	521 517	C, L NW C, L NW	R S	11.8 15.0	-0.0034 -0.0021	+ 0.2109 + 0.2088	$-0.0164 \\ -0.0164$	+0.1116 +0.1100	-0.0966 -0.0966	550.2061 550.2037	} 550.2049	${-1.2 \\ +1.2}$	1.44 1.44

The Provo base line-Continued.

The length of the Provo base is 14559.2511 ± 0.0046 meters.

The logarithm of this length is 4.1631390 ± 1 .

This probable error of the length corresponds to one part in 3 165 000:

The computation of the probable error was made in a manner similar to that described on pages 160-161 of Appendix 4 of the report for 1910.

Cost of the Provo base.—The cost of preparing this base and making the measurements was about \$525. This includes all salaries, but there was nothing charged for traveling expenses or outfit.

As the base is 14.5 kilometers in length, the field work cost at the rate of about \$36 per kilometer. If to the above amount is added one-half the cost of the two standardizations of the four tapes (the cost is \$50 to anyone not connected with the Government for the fundamental standardization of a base tape by the Bureau of Standards), and also about \$40 for the cost of making the revised or office computation, the total cost will be \$765, a rate of about \$53 per kilometer, or \$85 per mile. This low cost was due in part to the absence of traveling expenses and any unproductive period before or after the preparation and the measurement of the base.

EL PASO BASE, DISCUSSION OF OLD MEASUREMENT.

This base was located in 1878 by former Assistant O. H. Tittmann (now superintendent) on the eastern slope of the Rocky Mountains, in El Paso County, Colo., about 30 miles (48 kilometers) east-northeast of Pikes Peak. The middle point of the base is in approximate latitude 38° 58' and longitude 104° 31'. The length is about 11¹/₄ kilometers.

The base was measured by the party of Mr. Tittmann between August 7 and September 4, 1879, once forward and once backward, with the 6-meter contact-slide steel rods Nos. 3 and 4. The methods employed in the measurement of this base and the results obtained are given on pages 101–107 of Special Publication No. 4, The Transcontinental Triangulation.

Length of the contact-slide rods Nos. 3 and 4.—It is stated in the above-mentioned publication that these rods were compared at the survey office with the standard iron 6-meter bar No. 1 just before and just after the measurements in the field. The length of bar No. 1 was obtained from comparisons with six steel meter bars especially constructed for the purpose. The coefficient of expansion of bar No. 1 was determined by extensive observations made in 1860. An account of these observations is given in Appendix 26 of the report for 1862.

The observations in 1877 for the length of the 6-meter standard (No. 1) consisted in the first place of intercomparisons of the six steel meter bars (Nos. 1, 12, 13, 19, 28, 35) and of bar No. 19 with the committee meter; and, secondly, of comparisons of length of the six 1-meter bars (joined together) with the 6-meter bar (No. 1). In these comparisons several thermometers were used and their readings were corrected for index error and defects in graduation. The average temperature during the comparisons was about $7\frac{1}{2}^{\circ}$ C. The resulting value of the length of 6-meter bar No. 1 was 5.9999547 ± 25 at 0° C.

The value derived from a comparison in 1860 was 5.9999407 ± 8 at 0° C.

An additional value for the length of 6-meter bar No. 1 was obtained from comparisons made in 1882 at the survey office with a 5-meter standard to which was joined a single meter bar, both of known length. This value was 5.9999461 ± 46 at 0° C. For the final value of 6-meter bar No. 1, the weighted mean of the three values of 1860, 1877, and 1882, with their respective weights $\frac{1}{2}$, 1, and $\frac{1}{2}$, were taken. The resulting length of the standard was 5.999949 ± 3 at 0° C.

A comparison in May, 1879, of the 6-meter contact-slide rods Nos. 3 and 4 with standard No. 1 gave the following results:

Length of No. $3 = 6.001076 \pm 5$ at 17.28° C.

Length of No. $4 = 6.001142 \pm 4$ at 17.28° C.

A second comparison, made in November, 1879, gave the following lengths:

Length of No. $3 = 6.000514 \pm 4$ at 7.74° C.

Length of No. $4 = 6.000476 \pm 4$ at 7.74° C.

Before using the El Paso base length in the computation and adjustment of the transcontinental triangulation it was decided to redetermine the coefficients of expansion of these rods. This was done in 1897, and the resulting coefficients were:

For 6-meter bar No. 3 = 0.00001149.

For 6-meter bar No. 4 = 0.00001141.

The lengths of the bars at the mean temperature of the two standardizations and at 0° C are:

No. 3 at 12.°51 C=6.000795 m. or at 0° C=5.999933 m.

No. 4 at 12.°51 C=6.000809 m. or at 0° C=5.999953 m.

These are the final lengths used in the computations of the El Paso base.

Since the question of the dcgree of accuracy of this base measurement is an important onc, it is believed to be advisable to reproduce here the table on pages 104-106 of Special Publication No. 4, which gives a summary of the forward and backward measurements of the base.

Section measures of the El Paso base.

Section marks.	Mean tempera- ture F. corrected, for- ward.	Mean tempera- ture F. corrected, back- ward.	No. of (average) bars.	Corrected distance, forward.	Corrected distance, backward.	Mean.	Difference from mean.
East base to A (day) East base to A (night) Do	57.41 57.38 59.79		} 40	${ \begin{array}{c} m \\ 240.01450 \\ .01309 \\ .01174 \end{array} } }$	m }	m 240.01311	mm 1.39 0.02 1.37
A to B (day). B to A (day). A to B (night). B to C (day).	60.76 51.11 66.45	68.37	33	198. 02356 198. 02257 222. 03368	198. 02533	198. 02382	$ \begin{array}{c c} 0.26\\ 1.51\\ 1.25\\ 1.60\\ 1.50\end{array} $
C to B (day). B to C (night). C to D (day). D to C (day). C to D (night).	49. 29 68. 35 46. 39	70, 09 66, 96	37 34	222. 02872 204. 02329 204. 02182	222. 03385	222. 03208	$ \begin{array}{c} 1.76\\ 3.36\\ 0.32\\ 2.10\\ 1.79 \end{array} $

PRIMARY TRIANGULATION.

Section measures of the El Paso base-Continued.

Section marks.	Mean tempera- ture F. corrected for- ward.	Mean tempera- ture F. corrected back- ward.	No. of (average) bars.	Corrected distance, forward.	Corrected distance, backward.	Mean.	Difference from mean.
1							
	°	•		m	m	m	mm
D to E.	64.18	75.61	46	276.03080	276.03100	276.03090	0.10
E to F	54. 22	66.71	33	198.00429	198.00368	198.00399	0.30
G to H	03.01	77.50	35	210.01696	210.02012	210.01854	1.58
H to L	80.45	76 84	37	222 04670	192,02788	192.02783	0.05
I to J.	88,96	68.72	39	234, 06044	234. 05621	222. 04009	1.40
J to K	82.34	61.63	30	180.02254	180.02129	180, 02191	0.62
K to L.	63.08	73.68	34	203.98348	203.98378	203.98363	0, 15
L to Ridge	74.47	83.44	36	215.97432	215.97716	215.97574	1.42
Ridge to M	60.10	74.74	34	203.98388	203.98487	203.98438	0.50
N to O	04.99	82.80	29	174.02009	174.02008	174.02009	0.01
O to P	62.44	81.02	34	204 00622	192.00203	192.00433	1.81
P to Q	58.20	76,99	34	203, 97690	203.97706	203 07608	0.92
[Q to R	69.26	82.50	37	222.02792	222,02639	222,02716	0.77
R to S.	78.36	84.43	34	204.03384	204.03109	204.03247	1.37
S to Signal.	65.71	86.37	40	239.99341	239,99571	239.99456	1.15
Signal to 1	76.98	86.34	34	204.02239	204.02165	204.02202	0.37
I to U	04.91	85.00	34	204.04202	204.04120	204.04191	0.71
V to W	67.34	77 59	34	209.04997	204.03008	204.04832	1.65
W to X	66.91	87.06	34	204.02970	204. 03318	204.03109	1 74
X to Y	75.15	84.87	34	204.01104	204.01162	204.01133	0.29
Y to Z	82.47	81.43	34	204.04171	204.04092	204.04132	0.40
Z to Guleh	87.16	77.20	31	186.05494	186.05522	186,05508	0.14
Bange to Det	61.91	69.70	44	264.00555	264.00899	264.00727	1.72
Dot to Spring	70.93	00.43	34	204.03409	204.03490	204.03452	0.43
Spring to Road	89.39	82.30	33	199.01793	198 01803	198 01763	0.42
Road to a	72.89	85.97	49	294.00815	294,00508	294.00662	1.53
α to β	87.74	89.22	32	192.02830	192.02421	192,02625	2.04
β to γ	67.33	80.81	37	222.00464	222.00468	222.00466	0.02
7 to 8	81.18	84.83	32	192.03881	192.03636	192.03758	1.23
8 10 e	88.18	81.22	35	210.02544	210.02297	210.02420	1.23
7 to 2	68 53	83 41	34	203, 99343	203.99203	203.99275	0.70
π to θ	76.06	82.01	35	210. 02995	210.02866	210 02931	0.05
0 to	83.31	78.00	35	210.03734	210.03546	210.03640	0.94
e to x	60.29	73.60	34	203.98739	203.98855	203.98797	0.58
κ to λ	66.83	66.87	35	209.97726	209.97842	209.97784	0.58
λ το μ	74.57	56.61	41	246.03364	246.03364	246.03364	0.00
μ to \$	00.18	91.09	28	167.94530	107. 94447	167.94488	0.41
f to a	75 54	79 20	40	230 96706	239 96539	230 06623	0.10
e to π	68,68	69.70	35	210,00583	210,00477	210,00530	0.53
π to ρ	80.51	61.15	36	215.95311	215.95094	215.95202	1, 09
p to	85.41	53.60	34	203.98544	203.98431	203.98488	0.56
o to	85.84	48.28	36	215.97809	215.97683	215.97746	0.63
to Wast base	80.77	78, 41	29	173.97449	173.97361	173.97405	0.44
Do West Dase	61 62	••••••		208. 20/93	• • • • • • • • • • • • •		4.02
West base to n	01.02	74.92	} 43	208, 21012	258, 21586	258.21255	3.31
Do		85.08			258, 21127		1.27

The length of the base as measured with rods is 11 292.8231 meters. The reduction to sea level is 3.6467 meters; therefore the length of the base reduced to sea level is $11 289.1764 \pm 0.0150$ meters. Since the length, as brought through the triangulation from the Provo base to the El Paso base, differed from the above value by one part in 13 500, it was decided to remeasure the El Paso base, and, if necessary, to insert an additional base in the one hundred and fourth meridian triangulation.

The length of the El Paso base reduced to sea level, as measured in 1913 with three invar tapes, is 11 288.9852 meters. (See p. 22.) There appeared to be no uncertainty whatever in the recovery of the ends of the base, nor was there any uncertainty in the recovery of the marks of the triangulation stations Pikes Peak, Divide, and Bison, the stations in or near the El Paso base net, from which the one hundred and fourth meridian triangulation started. Consequently, the difference between the new and old measures of the El Paso base must be due to systematic or constant errors in one or both measures.

A eareful study of the results of various standardizations of the same set of invar tapes (see table on p. 25) makes it seem reasonably certain that there is no eonstant error in the mean length of any group of three tapes as great as one part in 500 000. The iced bar is used at the Bureau of Standards in determining the length of the 50-meter eomparator, and from time to time the ieed bar has been eompared directly with the prototype meter held at that bureau.

48310°-14---2

Moreover, the measurements on the field with invar tapes give a very small probable error for the result. There seems to be nothing which could cause a large systematic or constant error in the field measurements. The possibility of a blunder in reading setups and setbacks or in obtaining the grade corrections is almost entirely eliminated by making independent measurements in opposite directions and by leveling in both directions over the tape supports to determine the differences in elevation. Any error which is likely to occur in reading the temperatures of the tapes will have only a very slight effect, owing to the extremely small coefficient of expansion of the metal of which the tapes are made. Therefore it seems probable that the error is in the early measurement of the El Paso base with the bars.

That the error in this measurement is not due to the effect of accidental errors alone is indicated by the small differences of the individual measures from the mean of two or more measures of a section, as shown in the last column of the above table.

The error in the length of the base, by the bar measurement, is probably due to the standardization of the bars or to differences between the true temperature of the bars and that read from the thermometers during the field measurements.

Errors of standardization.—The bars used in the field were compared directly with standard bar No. 1. That bar in turn was compared with six especially constructed meter bars and with a 5-meter and a 1-meter bar, all of which had been compared with the committee meter. The length of the latter standard was obtained from comparisons with the international prototype meter. Each one of the bars mentioned above, except the prototype meter, was an end measure. It is believed that the general experience has been that it is impossible to obtain as great accuracy in comparisons with an end-measure standard as with a line-measure one. No doubt there was an error of appreciable size in the lengths of bars 3 and 4 due to this fact. Again there were doubtless appreciable errors in the values of the lengths of bars 3 and 4 due to errors in the observed temperatures during the various comparisons. The metal was steel and the temperatures of the various bars were obtained by reading thermometers placed near them.

Temperature errors in the field measurements.—Assistant C. A. Schott, on page 106, of Special Publication No. 4, made the following statements:

The forward and backward measures of the subdivisions were frequently made with greatly different average temperatures, yet when we compare their respective sums we find 11 292.8331¹ meters and 11 292.8157¹ meters, showing the small difference of 17.4 millimeters.

The matter as to whether the thermometers indicate the true temperature of the rods has been inquired into, and it seemed as if the rods were lagging somewhat behind the thermometer indications, but there are so many exceptions to this that no satisfactory result (numerical value) could be deduced.

A comparison between the day and the night measures of the first four sections, as given in the above table, shows that the latter always gave shorter lengths. The average difference between the two is about one part in 75 000. This difference could have been caused by an average temperature 1.2° C. lower than the average recorded temperature. It is probable-that the thermometers did not record the temperature of the bar with a high degree of accuracy, even at night, consequently the systematic error due to erroneous observed temperatures in the El Paso base measurements may be somewhat greater or less than one part in 75 000.

Other sources of error.—Errors in the alignment of the bars would affect the results in a systematic manner, making the length too great, but as the alignment was earefully made the total effect could only be very small in amount. The errors made in observing the slope of the bars might be systematic on account of a possible index error in the sector attached to the outside of the rods, but the effect would be of the opposite sign in the second running which was made in the opposite direction. The settling of the bar supports down the grade could not have caused any appreciable error; first, because the slope upward from east to west was only about 16 meters per kilometer on an average; and, second, because any effect of settling while running up a slope would be counteracted by the effect while running down. The effect of the errors made in bringing the rear end of one bar in contact with the forward end of the other is no doubt very small as the errors in making the contact are accidental in character. The errors

made in transferring the ends of a bar to the ground mark at the end of a section, or possibly at other points, were very small and should have been accidental in character.

There is a possibility of movements in the upper portion of the earth's crust between the dates of the first and second measurements which might change the distances between any two given points. However, this could probably not happen to any appreciable extent, such as one part 1. 60 000, on a line of triangulation without serious earthquake shocks, none of which have been noted in recent years in the vicinity of the El Paso base, or the stations Pikes Peak, Bison, and Divide.

After this discussion of the various possible sources of error in the old measurement of the El Paso base, the question at onee presents itself: To what degree are other primary bases measured with bars unreliable? This question is a very difficult one to answer.

There was only one other primary base line measured with 6-meter bars Nos. 3 and 4 (those used on the El Paso base) and there are very few bases which were measured with single rod bars. Most of the bar measurements of primary bases were with various kinds of compensating bars. In a number of cases these were used in connection with steel tapes with very accordant results. The bar and tape measurements of the Holton base agreed within one part in about 340 000, as given in Appendix 8 of the Report for 1892. Also in the measurement of the nine bases on the ninety-eighth meridian with steel tapes and the duplex base apparatus, as given in Appendix 3 of the Report for 1901, the measures agreed on an average within one part in about 140 000.

In the writer's opinion, it may safely be assumed that there are very few primary bases in the United States with actual errors in their lengths as great as one part in 59 000, the difference between the bar and invar tape measures of the El Paso base. It is believed that by far the greater number of primary bases measured by bars have a much smaller actual error. The uncertainty of the length of a line in a section of primary triangulation between bases, due entirely to inaccuracies in the angle measures, is that represented by a probable error of about one part in 80 000. Therefore, if the actual error in the length of a base is comparable in size with the probable error of a line of the triangulation due to angle errors, then there is no great decrease in the accuracy of the lengths of the triangulation due to the error in the length of the bases, it being assumed, of course, that the actual errors of the bases would vary in sign.

BASE MEASUREMENTS IN 1913.

EL PASO BASE.

On July 7, 1913, Signalman J. S. Bilby began the preparation of the El Paso base for remeasurement in compliance with instructions from the superintendent, directing him to do all the work on the base except the actual tape measurements and to cooperate with Assistant C. V. Hodgson in that operation. Mr. Hodgson in the meantime was engaged in organizing and outfitting a latitude party for work on the one hundred and fourth meridian.

Mr. Bilby completed the stake-setting and leveling over the base on July 22, 1913, and the tape measurements were made on four days, between July 16 and 20, inclusive. The results of the measurements were obtained and telegraphed to the office on July 23. As the result did not give a satisfactory agreement with the length as brought down from the Provo base through the triangulation, Messrs. Hodgson and Bilby were directed to locate and measure a base in the vicinity of Cheyenne, Wyoming, and to connect it with the main scheme of triangulation.

Methods used.—The instructions issued to Messrs. Hodgson and Bilby were similar to those regarding the Ambrose and Provo bases (see p. 9), and the methods employed in making the measurements were the same as those used in all measurements of primary bases in recent years. (See p. 11.)

Standardization of tapes.—The tapes had been standardized in January, 1913; by the Bureau of Standards, in connection with the Ambrose and Provo bases, and it was decided that no additional determination of the lengths need be made before sending them to the field again in July of the same year. (See also p. 10, under heading "Standardization of tapes.") A restandardization, for the purpose of checking the lengths of the tapes as used, was made at

the Bureau of Standards in October, 1913. The results of these standardizations are given under the heading "Equations of tapes," below.

Size of party.—During the preparation of the base, Mr. Bilby had in his party five temporary hands. For the measurement the party consisted of Messrs. Hodgson and Bilby, the recorder of the astronomic party, and the five hands mentioned above, eight persons in all.

The party lived in a camp pitched close to the base line, in order to make a minimum amount of traveling in going to and from the work.

Division of the bases.—There were, as usual, three main divisions in the El Paso base, the approximate length of each being shown in the table which follows. Each division was measured at least twice in opposite directions with different tapes, and a different pair was used on each division in order to obtain an intercomparison of the tapes.

Division.	Tapes used.	Length of division.
No. 1 No. 2 No. 3	Numbers. 516 and 517 516 and 521 517 and 521	<i>Meters.</i> 4000 3990 3300

The descriptions of the ends of the base, with the monuments used to hold the points, are given on page 128 of this publication.

Apparatus used.—The tapes which had been used in measuring the bases at Ambrose and Provo were also used on the El Paso base. The tape stretcher and other apparatus were similar to the ones used on those bases. (See p. 11.)

Stake setting and measuring.—As the wind was found to be light most of the time while preparing the base, it was decided to use only three supports for a tape length, one at each end (the marking tables or stakes) and one at the middle. Very little trouble was encountered on account of the wind. The measuring was done in the usual manner. (See p. 11 of this report and also p. 154 of Appendix 4 of the Report for 1910.)

Equations of tapes.—The equations of the tapes furnished by the Bureau of Standards, resulting from the standardization in January, 1913, are:

$$\begin{split} T_{516} &= 50m + (\ 9.556mm \pm 0.016mm) + (0.0178mm \pm 0.0007mm) \times (t-23.3^{\circ} \ \mathrm{C}); \\ T_{517} &= 50m + (\ 9.953mm \pm 0.016mm) + (0.0160mm \pm 0.0007mm) \times (t-23.3^{\circ} \ \mathrm{C}); \\ T_{521} &= 50m + (10.077mm \pm 0.016mm) + (0.0205mm \pm 0.0008mm) \times (t-23.3^{\circ} \ \mathrm{C}); \\ T_{522} &= 50m + (10.793mm \pm 0.016mm) + (0.0614mm \pm 0.0011mm) \times (t-23.3^{\circ} \ \mathrm{C}). \end{split}$$

The equations of these same tapes, furnished by the Bureau of Standards, resulting from the standardization in October, 1913, are:

 $\begin{array}{l} T_{516}{=}50m{+}(9.724mm{\pm}0.020mm) \mbox{ at } 28.9^{\circ}\mbox{ C};\\ T_{517}{=}50m{+}(9.978mm{\pm}0.017mm) \mbox{ at } 29.0^{\circ}\mbox{ C};\\ T_{521}{=}50m{+}(10.205mm{\pm}0.018mm) \mbox{ at } 28.9^{\circ}\mbox{ C};\\ T_{522}{=}50m{+}(11.128mm{\pm}0.020mm) \mbox{ at } 28.9^{\circ}\mbox{ C}. \end{array}$

The standardization was made under the same conditions of suspension and tension as during the field measures, that is, three supports and 15-kilogram tension.

In order to compare the lengths of the tapes obtained by these two standardizations, one before and one after the measurement of the El Paso and Cheyenne bases, the following tabulation has been prepared, giving the results of the two standardizations all reduced to the temperatures of the first standardization:

> Jan. 1913, $T_{515}=50m+9.556mm\pm0.016mm$; v=+0.034mmOct. 1913, $T_{516}=50m+9.624mm\pm0.020mm$; v=-0.034mm

Mean=9.590mm

Jan. 1913, T_{517} =50m+9.953mm±0.016mm; v=-0.033mm Oct. 1913, T_{517} =50m+9.887mm±0.017mm; v=+0.033mm

Mean=9.920mm

Jan. 1913, $T_{521}=50m+10.077mm\pm0.016mm$; v=+0.007mmOct. 1913, $T_{521}=50m+10.090mm\pm0.018mm$; v=-0.006mm

Mean=10.084mm

20

PRIMARY TRIANGULATION.

The lengths of the tapes as given by the January, 1913, standardization had been used in computing the lengths of the El Paso and Cheyenne bases, and those lengths had been used in the adjustments of the triangulation on the one hundred and fourth meridian before the October, 1913, values of the tapes became available. The mean length of the three tapes used in the measurement of the El Paso and Cheyenne bases as given by the January standardization differed only 0.005 millimeter, or 1 part in 10 000 000, from the mean length as given by the standardization in October, 1913. So it was decided that the results by the first standardization were satisfactory, and the second values were considered only as checks. (See p. 25 for a tabular statement of the values of the tapes resulting from the standardizations for the years 1909 to 1913, inclusive.) If the mean of the values by the two standardizations had been used, the probable error of the base would have been changed slightly, but the length of the base would not have differed by as much as 1 millimeter.

Reduction to sea level.—The elevation of the top of the monument at El Paso west base, as determined by spirit leveling, is 2167 meters. The average elevation of each of the sections of the base was obtained from spirit levels run in both ways over the tape supports to get the grade corrections. The corrections to reduce the various sections to sca level are shown in the table which follows. It is certain that the above elevation is correct within 1 meter, and therefore the reduction to sea level is not subject to any appreciable error.

Corrections to spring balances.—In the table of the results of measurement is a column headed "Correction for erroneous tension," in which is given a correction to the length of cach section of the base due to index errors of the spring balances used. Inadvertently, the observer did not have his attention called to the fact that the index errors of the balances sent to the field had not been corrected. He used one balance as a standard when the index read exactly 15 kilograms. It was learned later, when there were sent to the Cheyenne base additional balances which had no index error, that the standard balance at the El Paso base had an index error of 338 grams. This made the actual pull on this balance, while it was being used as a standard, only 14.66 kilograms instead of 15. After the effect of this difference is applied the resulting length is free of error from this source.

Results of remeasurement.—The results of the remeasurement of the El Paso base are given in the following table:

Section.	Date and hour.	Direction of measure.	Tape No.	Weather and wind. ¹	E, F, or S. ³	Mean corrected.	Correction to length for tem- perature.	Set-up or setback.	Grade correction.	Tape correction.	Correction for erroneous tension.	Reduction to sea level.	Reduced lengths of sections.	Adopted lengths of sections.	٧.	vv.
I, E. B20	July, 1913. (20, 9:45 a.m.)	W.	516 517	Cy, L SE	R R	18.9	m -0.0016	m +0.0110 -0.0097	m -0.0723 -0.0723	m +0.1911 +0.1991	m -0.0105 -0.0013	m -0.3130 -0.3130	- <i>m</i> 999.8047 990.8047	m }999.8047	$mm \\ \{ 0.0 \\ 0.0$	mm 0.00
II, 20-40	(10, 9.45 a. m. {20, 10:25 a. m. 16, 9:00 a. m.	W E	516 517	Cy, L S Cy, S S	SS	18.9 27.3	+0.0019 -0.0016 +0.0013	+0.0953 +0.0784	-0.0916 -0.0916	+0.1931 +0.1911 +0.1991	-0.0105 -0.0013	$-0.3141 \\ -0.3141$	999.8686 999.8718) }999.8702	$\left\{ \begin{array}{c} +1.6\\ -1.6 \end{array} \right\}$	2.56 2.56
III, 40–60	{20, 11:05 a. m. {16, 8:20 a. m.	$_{\rm E}^{\rm W}$	516 517	Cy, L S Cy, L S	SS SS	19.1 26.7	-0.0015 +0.0011	+0.0836 + 0.0661	-0.2359 -0.2359	+0. 1911 +0. 1991	-0.0105 -0.0013	-0.3158 -0.3158	999.7110 999.7133	}999. 7121	$\left\{ {+1.1 \atop -1.2} \right.$	1.21 1.44
IV, 60-80	{20, 12:15 p.m. {16, 7:40 a.m.	W E	516 517	Cy, L S Cy, L SW	S R	18.2 25.4	-0.0018 +0.0007	+0.1027 +0.0861	-0.1224 -0.1224	+0.1911 +0.1991	-0.0105 -0.0013	-0.3177 -0.3177	999, 8414 999, 8445	}999. 8430	$\left\{ {+1.6 \atop -1.5} \right\}$	2.56 2.25
V, 80-100	{17, 5:40 a.m. {18, 11:20 a.m.	WE	521 516	P Cy, L W P Cy, L E	R S	$18.2 \\ 23.3$	-0.0021 0.0000	+0.0488 +0.0644	-0. 1356 -0. 1356	+0.2015 +0.1911	-0.0012 -0.0105	$-0.3196 \\ -0.3196$	999.7918 999.7898	}999. 7908	${-1.0 \\ +1.0}$	$\begin{array}{c} 1.00\\ 1.00\end{array}$
VI, 100-120.	{17, 6:20 a.m. 18, 10:45 a.m.	W E	521 516	P Cy, L W Cy, L SE	s s	19.8 24.2	-0.0015 + 0.0003	0.0000 + 0.0148	-0.0945 -0.0945	+0.2015 +0.1911	-0.0012 -0.0105	-0.3215 -0.3215	999. 7828 999. 7797	}999.7812	$\left\{ \substack{-1.6\\+1.5} \right\}$	2.56 2.25
VII,120-140.	{17, 7:10 a.m. 18, 10:05 a.m.	W E	521 516	P Cy, L W Cy, O	R S	20. 8 22. 2	-0.0010 -0.0004	-9.6844 -9.6654	-0.1562 -0.1562	+0.2015 +0.1911	-0.0012 -0.0105	-0.3205 -0.3205	990.0382 990.0381	}990 . 03 82	${0.0 \\ +0.1}$	$0.00\\0.01$

The El Paso base line.

¹ These letters represent the following: C, clear; Cy, cloudy; P Cy, partly cloudy; O, calm; L, light; M, moderate; S, south; W, west; E, east; SW, southwest; SE, southeast. ² These letters R, F, and S indicate whether the temperature was rising, falling, or stationary.

			LTB.			Ter ture tig	npera- e (cen- rade).	1 for tem-				rroneous	vel.	sections.	sections.		-
Station.	Date and	bour.	Direction of measu	Tape No.	Weather and wind.	R, F, or S.	Mean corrected.	Correction to length perature.	Set-up or set back.	Grade correction.	Tape correction.	Correction for e tension.	Reduction to sea le	Reduced lengths of	Adopted lengths of	Y.	vv.
	July, 19	913.		_													
VIII,140–16	17, 7:45 18, 8:55	a. m.	W E	521 516	P Cy, L SW Cy, 0	SF	21.8 17.7	-0.0006 -0.0019	m + 0.0486 + 0.0664	-0.1815 -0.1815	m + 0.2015 + 0.1911	m = -0.0012 = -0.0105	m = -0.3261 = -0.3261	m 999.7407 999.7375	m }999.7391	$mm \\ \{-1.6 \\ +1.6 \}$	mm 2.56 2.56
IX, 160-180	{17, 8:45 17, 2:40	a. m. p. m.	W E	517 521	P Cy, L SW Cy, L W	8 S	23.1 25.8	-0.0001 +0.0010	+0.0975 +0.0973	-0.2237 -0.2237	+0.1991 +0.2015	-0.0013 -0.0012	-0.3288 -0.3288	999.7427 999.7461	}999.7444	$\{^{+1.7}_{-1.7}$	2. 89 2. 89
X, 180–200.	{17, 9:25 17, 2:10	a.m. p.m.	W E	517 521	Р Су, L SW Су, M S	s s	24.0 25.1	+0.0002	-2.8474 -2.8471	$-0.3426 \\ -0.3426$	+0.1991 +0.2015	-0.0013 -0.0012	-0.3307 -0.3307	996.6773 996.6806	}996. 679 0	${+1.7 \\ -1.6}$	2.89 2.56
XI, 200–22 0	{17, 10:20 17, 11:35	a. m.	WE	517 521	C, L SW C, L SE	S R	25.5 27.6	+0.0007 +0.0018	+0.0323 +0.0315	-0.3459 -0.3459	+0.1991 +0.2015	-0.0013 -0.0012	-0.3351 -0.3351	999.5498 999.5526	}999. 5 512	$\{+1.4 \\ -1.4$	1.96
XII,220-W. B.	{17, 11:15 17, 11:25	a. m.	W E	517 521	C, O C, O	FS	26.4 26.7	+0.0003 +0.0004	+4. 8315 +4. 8300	-0.3566 -0.3566	+0.0597 +0.0605	-0.0003 -0.0003	-0.1030 -0.1030	304.4316 304.4310	304. 4313	$\begin{cases} -0.3 \\ +0.3 \end{cases}$	0.09 0.09

The El Paso base line-Continued.

The length of the El Paso base is $11\ 288.9852 \pm 0.0031$ meters.

The logarithm of this length is 4.0526549 ± 1 .

This probable error of the length corresponds to one part in 3 642 000.

The probable error was computed in a manner similar to that described on pages 160-161 of Appendix No. 4 of the Report for 1910.

CHEYENNE BASE.

When it was found that the new length of the El Paso base did not agree closely with the computed length as carried through the triangulation from the Provo base, it was decided to introduce a new base in the one hundred and fourth meridian triangulation. (See p. 9.) After making a reconnaissance, Mr. Bilby located this base in the vicinity of Cheyenne, Wyo. He also selected several triangulation stations at which horizontal directions were later observed for the purpose of connecting the base with the main scheme of triangulation. See illustrations at the end of this volume.

Organization of party.—The preparation of the base for measurement was made by Mr. Bilby with the assistance of five temporary hands employed in the vicinity of the work. The preparation and leveling over the base occupied the time between July 28 and August 6, 1913.

Upon the completion of the above work, Mr. Hodgson, who had been engaged upon latitude observations since the completion of the measurements of the El Paso base, moved to the Cheyenne base and carried on the actual tape measurements with the cooperation of Mr. Bilby. The measuring party consisted of Messrs. Hodgson and Bilby and six hands. The actual tape measurements were made on two days only, August 8 and 10.

Divisions of the base.—Like the other bases on the one hundred and fourth meridian, this one had three main divisions, each of which was measured twice in opposite directions with different tapes. Each division was measured with a different pair of tapes in order that an intercomparison of the three tapes used might be made.

The following table shows the divisions of the base, the tapes used, and the approximate length of each division:

Division.	Tapes used.	Length of division.
No. 1 No. 2 No. 3	<i>Numbers.</i> 516 and 517 517 and 521 516 and 521	Meters. 2000 2000 2652

The descriptions of the locations and permanent monuments at the base ends are shown on page 117.

Apparatus used.—The same tapes were used on the Cheyenne base that had been used on the Ambrose, Provo, and El Paso bases. (See p. 11.) The other articles of apparatus were similar in character to those used on those three bases.

Methods employed.—The base was measured in the same manner as the others on this arc. Since the wind was not found to be troublesome, only three supports were used for each tape length, oné at each end and one at the center point. (See p. 11)

Standardization and equations of tapes.—On page 20, under the same heading, are given the equations of the tapes used on the Cheyenne base as furnished by the Bureau of Standards. As on the El Paso base, the equations of the tapes resulting from the standardization in January, 1913, were used in the final computations of the base. The results of the second standardization were not available when the computation and adjustment of the one hundred and fourth meridian triangulation was begun. After the results of the second standardization were received it was found that the average difference between the two standardizations was only 1 part in 10 000 000 which was negligible.

Reduction to sea level.—The elevation above sea level of Cheyenne west base as determined by trigonometric leveling is 2074.20 meters. The average elevation of the various sections of the base was determined by a line of levels run over the base in opposite directions for the purpose of obtaining the grade corrections. The correction to sea level for each section is shown in the following table. Since the uncertainty in the adopted elevation of West base is less than one meter, the corrections shown in the table for reducing the measured lengths to sea level are free from any appreciable error from this source.

Corrections to spring balances.—Like the table of results of the remeasurement of the El Paso base, the table for the Cheyenne base also contains a column of corrections for erroneous tension. The discussion on page 21 states that there were sent to the Cheyenne base spring balances which had no index error. These did not arrive, however, until after the measurement had been completed. Therefore, corrections similar to those explained for the El Paso base, must be applied to the results for the Cheyenne base.

Results of measurement.—The results of the measurement of the Cheyenne base are shown in the following table:

Section.	Date and hour.	Direction of measure.	Tape No.	Weather and wind. ¹	R, F, or S. ³	Mean corrected.	Correction to length for tem- perature.	Set-up or setback.	Grade correction.	Tape correction.	Correction for erroneous tension.	Reduction to sea level.	Reduced lengths of sections.	Adopted lengths of sections.	ν.	·44
	Aug., 1913.					0	177)	m	m	m	772	m	m	m	mm	
I, W. B20.	{10, 4:15 a. m 8, 9:25 a. m	E W	$517 \\ 516$	C, O C, S SW	S R	19.0 25.4	-0.0014 +0.0008	+0.0776	-0.3750 -0.3750	+0.1991 +0.1911	-0.0111 -0.0105	-0.3234 -0.3234	999.5658 999.5618	}999.5638	$\begin{cases} -2.0 \\ +2.0 \end{cases}$	4.00 4.00
II, 20-40	{10, 4:35 a. m 8, 8:55 a. m	$_{\mathrm{W}}^{\mathrm{E}}$	517 516	С, О. С, М SW	8 8	18.6 24.2	-0.0015 +0.0003	+0.0917 +0.0949	-0.4632 -0.4632	+0.1991 +0.1911	$-0.0111 \\ -0.0105$	-0.3205 -0.3205	999. 4945 999. 4921	} 999. 4933	${-1.2 \\ +1.2}$	1.44 1.44
III, 40-60	{10, 5:15 a. m 8, 8:05 a. m	EW	521 517	C, O C, L SW	R R	19.2 23.2	-0.0017 0.0000	+0.0575 +0.0569	-0.2186 -0.2186	+0.2015	-0.0101 -0.0111	-0.3185 -0.3185	999.7101 999.7078	}999.7089	$\begin{pmatrix} -1.2\\ +1.1 \end{pmatrix}$	1.44
IV, 60-80	{10, 5:40 a. m 8, 7:35 a. m	$_{\mathrm{W}}^{\mathrm{E}}$	521 517	C, L NW C, L SW	S R	19.1 22.9	-0.0017 -0.0001	+0.0609	-0. 4054 -0. 4054	+0.2015 +0.1991	-0.0101 -0.0111	-0.3175 -0.3175	999. 5277 999. 5257	} 999. 5 2 67	$\begin{cases} -1.0 \\ +1.0 \end{cases}$	1.00
V, 80-100	(10, 8:10 a.m. (10, 10:50 a.m.	E W	516 521	C, L NW C, S NE	S R	20. 0 23. 8	-0.0012 +0.0002	+0.0506 +0.0424	-0.3876 -0.3876	+0.1911 +0.2015	-0.0105 -0.0101	-0.3168 -0.3168	999. 5256 999. 5296	} 999. 5276	$\left\{ {+2.0 \atop -2.0} \right\}$	4.00
VI, 100-120.	(10, .8:40 a. m. (10, 10:20 a. m.	E W	516 521	C, L NW C, M NE	$_{ m F}^{ m R}$	20. 8 23. 8	-0.0000 + 0.0002	+0.0894 +0.0819	-0.1769 -0.1769	+0.1911 +0.2015	-0.0105 -0.0101	-0.3160 -0.3160	999.7762 999.7806	}999.7784	$\left\{ {+2.2 \atop -2.2} \right\}$	4.84
VII, 120- E.B	{10, 9:35 a.m. 10, 10:00 a.m.	E W	516 521	C, L N C, L NE	R F	21.8 22.8	-0.0003 -0.0001	+3.0353 +3.0286	-0.1086 -0.1086	+0.1242 +0.1310	0. 0068 0. 0066	-0.2059 -0.2059	652, 8379 652, 8382	652. 8380	$\left\{ \begin{array}{c} +0,1\\ -0,2 \end{array} \right.$	0.01 0.04

The Cheyenne base line.

¹ These letters are used to represent the following: C, clear; O, calm; L, light; M, moderate; S, strong; N, north; NE, northeast; NW, northwest; SW, southwest. ³ These letters, R, F, and S, indicate whether the temperature was rising, falling, or stationary. The length of the Cheyenne base is 6650.4367 ± 0.0028 meters.

The logarithm of this length is 3.8228501 ± 2 .

The probable error of the length corresponds to 1 part in 2 367 000.

The computation of the probable error was made in a manner similar to that described on pages 160–161 of Appendix 4 of the Report for 1910.

The length of the El Paso base, as computed through the triangulation from this measured length of the Cheyenne base, is now shorter than the measured length of the El Paso base by 1 part in 30 800. Since the adjustment of the triangulation between these bases gives small corrections to directions, the accidental errors therein are not sufficient to account for this discrepancy in length. The difference, therefore, must be due to some systematic errors in the triangulation.

One of the causes of the discrepancy between these bases may be the elevation of the surface of the geoid above that of the ellipsoid, although the effect of this is not large enough to cause the total difference stated above.

An attempt to show the geoid contours in the United States was made on illustration No. 17 of the United States Coast and Geodetic Survey publication entitled "The Figure of the Earth and Isostasy from Measurements in the United States," but the area within which these contours were drawn is very limited in extent. In the vicinity of the El Paso base the geoid contour is marked 32 meters. It is impossible, of course, to tell what will be the number for the geoid contour at the Cheyenne base which is in southeastern Wyoming, but as the geoid contours seem to conform somewhat to the topographic contours, it may be expected that the number at the Cheyenne base will be between 24 and 30 meters. These contours of the geoid should not be considered as giving anything more than relative elevations above the ellipsoid, for the initial point used in constructing the geoid contours was given a value of 10 meters, in order that negative values might be avoided.

If the difference between the geoid elevation at the Cheyenne and El Paso bases is 8 meters, a relative error of 1 part in about 800 000 would result. If the reduction to sea level at Cheyenne were considered correct then the reduction at El Paso would be in error by 0.014 meter. This error would make the El Paso base as measured too long. This agrees in sign with what is shown by the comparison of that length with the one brought through the triangulation from the Cheyenne base. However, there must be some other cause for the difference of 0.367 meter between those two bases,

The average elevation of the geoid above the spheroid along the transcontinental triangulation, as indicated by the illustration in The Figure of the Earth and Isostasy from Measurements in the United States, is about 12 meters (after subtracting 10 meters, the assumed elevation of the starting point). Therefore, the average error in the measured lengths of the base lines along that are caused by the elevation of the geoid surface is 1 part in about 500 000. Although this error is constant in its effect, it is practically impossible to apply a correction for it, owing to the fact that available data showing relative geoid clevations are very limited, and that no data whatever as to the absolute elevation of the geoid above or below the surface of the ellipsoid are available.

Cost of the El Paso and Cheyenne bases.—The total cost of the measurement of these two bases was \$980. In addition to the cost of labor, materials, etc., this included the salary of Mr. Bilby from the time he reached Colorado until he left for work on reconnoissance, one-half of his traveling expenses and those of Mr. Hodgson from Washington to Littleton, Colo., and the salary of Mr. Hodgson while not on his latitude work. The cost per base was \$490 and the cost per kilometer was \$55, both bases being considered. The office computation of the two bases took the equivalent of 22 days of one computer, with a cost of \$105. The Bureau of Standards makes a charge of \$50 for a fundamental standardization of a base tape; therefore to get the total cost of the bases to the Government the cost of two standardizations of four tapes, \$400, should be added to the field expenses and the cost of computation.¹

¹ The cost of one of these standardizations was charged to the Provo and Ambrose bases but is included here also to make the total cost comparable with that of the other bases.

The total cost of the bases was 980+105+400=1485; this is 742 for each base, and at the rate of \$83 per kilometer.

While the measurements were being made at the Cheyenne base, the party also observed horizontal directions at the base ends and at the two stations Waddill and Whitaker for the purpose of connecting the base with the main scheme of triangulation. The work on the base was only slightly interrupted by these operations. The stands used at Waddill and at Whitaker in 1912 were still in place, so it was only necessary to place stands at the base ends, which required very little lumber. As nearly as the writer could determine, the cost of the additional work of connecting the base with the main triangulation scheme was only about \$130. The observing was done at night on signal lamps.

Summary of tape values.—The following table shows for each of the four tapes the length as determined by six different standardizations, the probable error of each determination, the mean of the results from the six standardizations, and the residuals. The values given are for the lengths of the tapes when resting upon three points of support and subjected to a fixed tension of 15 kilograms. In order to make the values comparable, they have all been reduced to the same temperature, namely, 21.2° C.

Date of standardiza-	$T_{516} =$		<i>T</i> ₅₁₇ =			
tion.	50m+	v _	50 <i>m</i> +	v		
January, 1909 May, 1909 March, 1910 March, 1912 January, 1913 October, 1913	$\begin{array}{cccc} mm & mm \\ 9,542\pm 0,017 \\ 9,454\pm 0,028 \\ 9,415\pm 0,017 \\ 9,473\pm 0,029 \\ 9,519\pm 0,016 \\ 9,587\pm 0,020 \\ \hline 9,498 \end{array}$	$\begin{array}{c} mm \\ -0.044 \\ +0.044 \\ +0.053 \\ +0.025 \\ -0.021 \\ -0.089 \end{array}$	$\begin{array}{c} mm & mm \\ 9.735 \pm 0.018 \\ 9.782 \pm 0.025 \\ 9.738 \pm 0.015 \\ 9.869 \pm 0.022 \\ 9.919 \pm 0.016 \\ 9.853 \pm 0.017 \\ \hline 9.853 \pm 0.017 \\ \hline 9.816 \end{array}$	$\begin{array}{c} mm \\ +0.081 \\ +0.034 \\ +0.078 \\ -0.053 \\ -0.103 \\ -0.037 \end{array}$		
Date of standardiza-	T 521=		$T_{522} =$.			
tion.	50m+	υ.	50 <i>m</i> +	ΰ.		
January, 1909 May, 1909 March, 1910 March, 1912 January, 1913 October, 1913	$\begin{array}{cccc} mm & mm \\ 9, 750 \pm 0, 018 \\ 9, 835 \pm 0, 021 \\ 9, 878 \pm 0, 015 \\ 10, 009 \pm 0, 021 \\ 10, 034 \pm 0, 016 \\ 10, 047 \pm 0, 018 \end{array}$	$\begin{array}{c} mm \\ +0.175 \\ +0.090 \\ +0.047 \\ -0.084 \\ -0.109 \\ -0.122 \end{array}$	$\begin{array}{cccc} mm & mm \\ 10,543 \pm 0,019 \\ 10,566 \pm 0,024 \\ 10,593 \pm 0,018 \\ 10,644 \pm 0,017 \\ 10,664 \pm 0,016 \\ 10,655 \pm 0,020 \end{array}$	$\begin{array}{c} mm \\ +0.068 \\ +0.045 \\ +0.018 \\ -0.033 \\ -0.053 \\ -0.044 \end{array}$		

values of lupes with three supports at temperature of 21.2	pports at temperature of 21.2°	hree supports at	with th	tapes	lues of	V_{0}
--	--------------------------------	------------------	---------	-------	---------	---------

The above table gives very valuable data as to the constancy of the lengths of the invar tapes. The total ranges for four years in the values of the various tapes are:

Tape No.	Total range.	Proportion.
T_{516} T_{517} T_{521} T_{522}	$\begin{array}{c} mm \\ = 0.172 \\ = 0.184 \\ = 0.297 \\ = 0.121 \end{array}$	1 part in 290 000 1 part in 270 000 1 part in 170 000 1 part in 410 000

The differences in length between the values resulting from the first and last standardizations are:

Tape No.	Range.	Proportion.
T_{516} T_{517} T_{521} T_{522} T_{522} T_{522} T_{522} T_{522} T_{523}	$\begin{array}{c} mm \\ = 0.045 \\ = 0.118 \\ = 0.297 \\ = 0.112 \end{array}$	1 part in 1 110 000 1 part in 420 000 1 part in 170 000 1 part in 450 000

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

Each of the tapes was longer at the time of the last standardization than at the first one, the average increase being 0.143 millimeter, or 1 part in 350 000. These changes are within the possible effect of the accidental and constant errors of standardization, except in the case of T_{521} . That tape shows a continuous increase from January, 1909, to October, 1913, but the maximum change in the length of this tape between any two consecutive standardizations is only 0.131 millimeter (March, 1910, to March, 1912), or 1 part in 380 000. The maximum change between two consecutive standardizations for T_{516} is 0.088 millimeter, or 1 part in 570 000; for T_{517} it is 0.131 millimeter, or 1 part in 380 000 (the same as for T_{521}); and for T_{522} it is only 0.051 millimeter, or 1 part in 980 000.

The following table is similar to the preceding one, except that the values given are for the lengths of the tapes when resting upon five points of support. The common temperature to which these values are reduced is 26.8° C.

Date of standardiza-	T 516-		T ₅₁₇ —		
tlon.	50m+	v	50m+	v	
May, 1909. March, 1910. March, 1912. January, 4913. October, 1913.	$\begin{array}{cccc} mm & mm \\ 12, 446 \pm 0, 026 \\ 12, 370 \pm 0, 017 \\ 12, 399 \pm 0, 014 \\ 12, 482 \pm 0, 021 \\ 12, 543 \pm 0, 019 \\ \hline 12, 448 \end{array}$	$\begin{array}{c} mm \\ +0.002 \\ +0.078 \\ +0.049 \\ -0.034 \\ -0.095 \end{array}$	$\begin{array}{cccc} mm & mm \\ 12, 817 \pm 0, 026 \\ 12, 768 \pm 0, 015 \\ 12, 857 \pm 0, 017 \\ 12, 938 \pm 0, 017 \\ 12, 862 \pm 0, 016 \\ \hline 12, 848 \end{array}$	$\begin{array}{c} mm \\ +0.031 \\ +0.080 \\ -0.009 \\ -0.090 \\ -0.014 \end{array}$	
Date of standardiza-	T ₅₂₁ =		T ₆₂₇		
Date of standardiza- tion.	<i>T</i> ₅₂₃ =	v	50m+	v	

Values of tapes with five supports at temperature of 26.8° C.

The above table is shown in order that the values obtained in the past for the lengths of the tapes with five supports may be available for purposes of comparison with the values which may be determined in the future under similar conditions. It is probable that the invar tapes will be supported at five points whenever a base is measured in a locality subject to strong and constant winds.

The values in this table result from the same standardizations as those shown in the table on page 25. The changes in the lengths of the tapes between the standardization in May, 1909, and October, 1913, while on five supports, are in each case smaller than when supported at three points.

Tape T_{522} was carried to the field by each party measuring the bases on the Texas-California are and on the one hundred and fourth meridian, but in no case was it used in the measurements. In fact, it was never unreeled in the field. Therefore any change in length of that tape has been due to other causes than those incident to the use of tapes in the field during measurements.

The data in the above tables indicate a remarkable constancy in the values of the lengths of the tapes, considering the fact that three of them were used in the field in the measurement of six bases, totaling about 156 kilometers of single measures (including remeasuring of certain sections), about 52 kilometers for each tape. It may be stated also that the invar tapes are not so susceptible to injury during field work as was supposed to be the ease soon after their introduction. Each of the base parties which used the tapes under discussion, with the exception of two members, consisted entirely of men unskilled in the use and treatment of tapes. The members of each party were eautioned to use every eare in handling the tapes, but even so it seems remarkable that none of the tapes have been injured.

Rapidity of base measurements.—The following table shows the speed attained in the measurements of the four bases. The times given are the hours of actual work, including the time spent in changing tapes and in placing the copper strips on the end stakes, but not long delays such as the stops for luncheon:

	Amhros	se hase.		Provo base.				
Date.	Time.	Distance.	Kilome- ters per hour.	Date.	Time.	Distance.	Kilome- ters per hour.	
1912, May 16 18 20	h m 2 55 5 40 5 15	km 3.00 8.00 9.90	1.03 1.41 1.89	1912. Oct. 3 7 8	$\begin{array}{cccc} h & m \\ 7 & 15 \\ 6 & 00 \\ 3 & 35 \end{array}$	km 12.00 10.00 7.10	1.66 1.67 1.98	
*	El Pas	o base.		Cheyenne base.				
1913. July 16 17 18 20	$\begin{array}{cccc} h & m \\ 3 & 00 \\ 7 & 35 \\ 3 & 05 \\ 2 & 55 \end{array}$	km 4.00 10.60 4.00 4.00	1.33 1.40 1.30 1.37	1913. July 8 10		km 4.00 9.30	1.60 1.86	

The average speed for each of the four bases is:

	kilometers per hour.
Ambrose base	1.51
Provo base	1.73
El Paso base	1.36
Chevenne base	1.77

The speed attained on other bases measured with invar tapes is given on page 151 of Appendix 4, Report for 1907, and on page 170 of Appendix 4, Report for 1910.

Tapes v. Wires.—It is only necessary to touch briefly on the use in some other countries of steel or invar wires in the measurement of bases. Excellent results have been obtained with them, but in the opinion of the writer the tapes are more easily handled than the wires. It is always possible to detect a twist in the tape, but the wire may have a twist without detection during the field measures. Also the wires may be injured during reeling, while there is only a remote possibility that an injury while reeling might occur to a tape. The tape is probably affected by strong wind more than is a wire, but the experience in the United States has been that no material delay has been caused by the wind. At the Stanton base only was the wind troublesome. (See Appendix 4, 1910.) At the Deming base the wind effect was made negligible by the use of five supports instead of three for the 50-meter tape.

Stakes v. Movable supports.—When measurements of primary bases were made with steel tapes, it was necessary to work at night in order to take advantage of the more constant temperature; and in order that night work might be done it was necessary to have the supports for the tape set during the daylight. In general stakes 4 inches in cross section were used as the end supports, and very much lighter material for the intermediate supports. This method of supporting the steel tape has been continued with the invar tapes.

Where stakes are used, all the members of the party may be inexperienced except one observer; and no preliminary training is required, as the first measurements by the new party will nearly always be found satisfactory. The stake setting and the leveling over the base may go on simultaneously and then the combined force may do the actual measurements with the tapes. For measuring with the movable supports the party must be larger and must include several especially trained men. With the stakes the setting and leveling can be done in windy weather while with the movable supports no measuring can be done at such times. In the plains region of the United States where frequently the wind is strong in the day but light at night, the stake supports would be preferable. Either method will enable the party to secure results far more accurate than are really required for the highest grade of triangulation.

CONCLUSIONS FROM BASE MEASUREMENTS.

Some of the conclusions which may be drawn from the measurements of the four base lines discussed in this publication are:

(a) The plan adopted on the Texas-California arc of having the observing party on triangulation measure the bases as they are reached, is an efficient one, and should be continued. This method insures that the lengths of the bases may be known in time for use in an adjustment of the arc of triangulation as soon as the last field work of the triangulation has been done.

(b) Tapes of the invar metal make an entirely satisfactory apparatus for base measurements.

(c) There is no evidence that a different length than 50 meters should be used for the base tape.

(d) The 50-meter invar tape is affected by wind of even moderate strength, when supported at only three points. But ordinarily, during the progress of the various operations at a base, sufficiently long periods of favorable wind conditions may be found for making the measurements. All four of the bases on the one hundred and fourth meridian had only three supports for each tape length, one at each end and one in the center. No serious trouble with the wind was encountered. An efficient remedy for the wind effect, if troublesome, is to use five supports for each tape length, as on the Deming base in 1910. (See pp. 154–155 of Appendix 4, Report for 1910.)

(e) Owing to the small time and cost needed to measure a base, it is believed that the ummation of R_1 (see p. 8) between bases should be between 90 and 140, instead of between 130 and 200. With the higher values there is the possibility of having to introduce other bases after the completion of the triangulation and the measurement of the bases provided for by the reconnaissance.

(f) While the index error in the spring balance did not introduce an error into the El Paso and Cheyenne base lengths, at the same time it was a cause of annoyance. The index of the balance should be rigidly fastened to its stem to prevent a change in the index error if the balance were roughly handled.

(g) After the use of the same tapes on six bases in four different seasons between 1909 and 1913, inclusive, the lengths of one tape show a maximum range of only 0.297 millimeters, or 1 part in 170 000, while the average maximum variation of all the tapes is only 0.193 millimeters, or 1 part in 260 000. If the aetual uncertainty in the length of each tape should be as much as the total range in values as shown in the table on page 25, even then the uncertainty of a base measured with three or more tapes would be less than the uncertainty in the length of any one tape. Such aceuracy is far greater than that of the triangulation, and hence the invar metal must be considered as a most satisfactory material from which to make a base measuring apparatus.

BUILDING SIGNALS AND MARKING STATIONS.

The erection of the signals or instrument stands and the marking of stations were done by a party under the direction of Signalman J. S. Bilby. He arrived on the working ground April 12, 1912. Actual field operations of the building party began on April 24 and ended August 28, 1912, a total time of four months and five days.

The building party consisted of Mr. Bilby and two men, with occasional temporary employees who assisted in cutting lines or erecting signals. One of the regular men began work at Cheyenne, Wyo., worked southward to the end of the scheme and then northward from Cheyenne to meet the other man who had started at the Canadian border and worked southward. Mr. Bilby was with the one or the other of these men, depending upon where his assistance and guidance were most needed.

 $\mathbf{28}$

Special Publication No. 19.

NO. 2.

TWELVE-INCH THEODOLITE.

The building party crected stands or signals for mounting the theodolite at 102 stations, prepared the base lines at Ambrose and Provo, and gave some assistance to the observing parties in the measurement of the bases. The stations were also marked in a permanent manner by the building party. The character of the marks is described in notes 1 to 8 on page 115, and the metal tablet placed in the concrete or cemented to solid rock is shown in illustration No. 4.

Signals.—The type of signal is that shown by illustrations and described in Appendix 4, Report of the United States Coast and Geodetic Survey for 1903. In that publication are also given detailed directions for its erection. The signal is a double structure consisting of an inner tower, called the tripod, on which the instrument rests, and the outer tower, called the scaffold, near the top of which there is a platform for supporting the observer. The two structures do not touch each other at any point and consequently the observer may move about on the platform without disturbing the level or azimuth of the theodolite. The heliotropé and lamp are sometimes posted on the tripod and at other times on the scaffold.

The signals shown in the illustrations in Appendix 4 of the Report for 1903 were designed for use by a double observing party, and the upper platform enabled the light keeper to post his heliotrope or lamp centrally over the station even when one of the observers was at his station. When there is only one observing party the scaffold does not extend above the tripod, as the top platform is not needed.

It has been found that it is more economical to build the tripod to only a moderate height, say less than 70 feet, and then extend the scaffold to a sufficient height to make clear the line from its top to the tripod head at a second station and likewise to extend the scaffold at the second station to such a height that the line between its top and the tripod head at the first station will also be clear, rather than to attempt to build the double structures to such heights that the line between the tripod heads at the two stations will be clear of obstructions.

Illustration No. 10 of Appendix 4, Report for 1903, shows a signal which has the tripod about 66 feet high and the light stand at the top of the superstructure on the scaffold 137 feet above the ground.

The one hundred and fourth meridian arc is rather remarkable for the low average elevation of the instrument above the ground. The tables on pages 43 to 47 give the elevation of the telescope of the theodolite above the station mark. There were only eight stations at which the height of the instrument was greater than that necessary to bring the telescope to the eye of the observer as he stood upon the ground. The height of the simple stand for mounting the theodolite was about $3\frac{1}{2}$ feet. The average height of the tripods of the eight signals was 28.15 feet. Inasmuch as the country traversed was at most points distant from lumber yards, the reconnaissance party made such selections of stations as to make the amount of building a minimum.

On the Texas-California arc of primary triangulation (reported in Special Publication No. 11, United States Coast and Geodetic Survey) the plan previously employed of always having the telescope of the theodolite at least 10 feet above the ground except on sharp peaks, was abandoned. Where the line was clear of obstructions only stands for the instruments were used even though the country was flat for some distance in all directions from the station.

The accuracy of the Texas-California triangulation was better, on an average, than that of the other great arcs in the United States. The writer, who observed part of one season on the Texas-California arc, noticed that the lights and heliotropes observed from a station where tho theodolite was only a few feet from the ground were more unsteady than when the lines were high, and especially when high near the station occupied by the observer.

The plan used on the Texas-California arc was adopted on the one hundred and fourth meridian arc of primary triangulation, and the instrument was never mounted at a greater height than was barely necessary to clear the line. The accuracy of the work on the one hundred and fourth meridian is discussed later in this report.

Cost of building signals and marking the stations.—The total cost of the work of the building party was about \$4200. This includes the salaries and traveling expenses for the chief and all the members of the party, also the cost of lumber and cement delivered to the stations, and various small expenditures. This is at the rate of \$5.83 per mile of progress, a remarkably low amount.

The use of instrument stands instead of signals, even of low height, decreased greatly the expenses of preparing the stations for the observing parties. The lumber necessary for signals would have been expensive and hauling it to the stations would also have been costly.

INSTRUMENTS USED ON TRIANGULATION.

Theodolites.—The type of instrument used for the horizontal measures is described in detail in Appendix 8 of the Report for 1894. It is believed that the portion of that description shown below will be of interest and value to the reader. These theodolites have been used on all of the primary triangulation done by the United States Coast and Geodetic Survey since they were made in the early nineties. One of them is shown in illustration No. 2.

The base is of cast iron, into the socket of which is fitted another cast-iron socket, to which is rigidly attached the brass circle and into which is fitted the center which carries the alidade. Under the circle is a device for firmly clamping this socket to the base in any position of the circle. The center is 22.2 centimeters (8 inches) long, its two bearing surfaces being cones of different angles. It is made of the best quality of tool steel, and the cones are made glass hard. No pains were spared in the construction of these centers and sockets, and it is believed they are the most perfect ever made for theodolites, and are probably the first theodolite centers with glass-hard bearing surfaces.

In the alidade the cover of the circle, the supports for the micrometer microscopes, the wye supports, axis, and setting circle of telescope are made of aluminum. The bearing surfaces of the wyes are of brass, and the pivots of telescope axis are of bell metal. The draw tube of telescope, micrometer microscopes, clamps, and other small parts are of brass.

The use of aluminum in the construction of these instruments was not with the special purpose of reducing the total weight of the instrument, but to reduce the weight supported upon the centers. The cast-iron bases of these instruments, in proportion to the whole mass of the instruments, are much heavier than is usual in other theodolites of the same size. These heavy bases and long centers give great stability to the instruments. The weight of the whole alidade is 7.5 kilograms (17 pounds), whereas in other instruments of the same size that have been used in the Survey the weight of similar parts is 18 kilograms (40 pounds). The centers of the old instruments are of various forms, and the friction is so great that it has to be relieved by some device at lower end of centers. No such device is necessary with the new instruments. The total weight of one of the new instruments is 18.5 kilograms (41 pounds).

The telescope objective was made by J. Brashear, and is 6.1 centimeters (2.4 inches) aperture, and 73.7 centimeters (29 inches) focus. The telescope has an ocular micrometer, with three Ramsden eyepieces, giving powers of 30,45, and 60. Several levels, all made by A. Pesseler, of Germany, are attached to the alidade for convenience. The stride level has divisions of 2 millimeters, with arc value of 4 seconds.

The graduation of the eircle is on coin silver and is 30.5 centimeters (12 inches) in diameter. It is divided to 5 minutes and reads to seconds by three equidistant micrometer microscopes. Each degree of the graduation is numbered. The degrees and nearest 5 minutes are read by a low power index microscope 50 degrees to the right of micrometer microscope A. Attached to the cover of the eircle is a small camel's-hair brush which sweeps over the graduation.

The circles were graduated on the United States Coast and Geodetic Survey engine. This graduating engine was originally made by Troughton & Simms, of London, and bears the date of 1841. In the hands of the Survey it has received various improvements, the chief of which are a new tracing apparatus and new support for the same. The engine is driven by a small turbine wheel upon which a constant water pressure is maintained. To graduate a circle to 5 minutes takes about 3 hours and 35 minutes. The graduations are made at a temperature of 36°.66 C. (98° F.), that temperature being most easily maintained at any season of the year and least affected by the occasional presence of the operator. For the last nine years this engine has been manipulated exclusively by the present chief . instrument maker of the Survey and in his hands has produced some very fine graduations, as the results with the two new theodolites, Nos. 145 and 146, show.

Vertical collimator.—In centering a signal over the mark of a previously established station, when placing a mark under a new signal, and for centering the theodolite over the station mark, there was used a vertical collimator which is shown in illustration No. 3a. In order that this instrument may be used there must be an opening in the center of the cap block of the tripod head of the signal. Into the vertical socket of the base of the instrument fits a telescope earrying a fixed level and having adjustable cross wires in its reticule. The axis of the level is at right angles to the line of sight of the telescope. The base rests on three leveling serews.

The adjustments of the instrument are extremely simple. After having focussed the eyepiece on the cross wires, the cross of the wires is adjusted to make it remain on a point as the telescope is revolved about its axis. Then the level is adjusted to make the bubble remain in

Special Publication No. 19.

NO. 3a.

VERTICAL COLLIMATOR (TWO VIEWS).

.

the center as the telescope is revolved. With the instrument in perfect adjustment and the bubble brought to the center in two positions at right angles, the line through the cross of the wires will be vertical. In actual use it is not essential that the instrument be in perfect adjustment, for if the bubble is brought to the center in each of four positions of the telescope, about 90 degrees between each two positions, four points may be determined and the mean position of them will be in the vertical line through the center of the telescope.

After the instrument has been placed directly over some mark the telescope is withdrawn and there is inserted a plunger, the lower end of which is a point. The center of the instrument may be marked by the intersection of two strings at right angles drawn across the tripod head with their intersection at the point of the plunger; or small nails may be used to mark two lines approximately at right angles whose intersection is at the point of the plunger. These are only two of various methods which may be used to indicate on the tripod head the center of the vertical collimator.

When only a stand is used for mounting the theodolite, heliotrope, and lamp, the centering is done by means of a plummet.

Heliotropes and lamps.—The observations for the horizontal directions in the main scheme were made entirely on heliotropes and acctylenc signal lamps. The heliotrope is of the box type and is shown in illustration No. 3b. The diameter of the fixed mirror is 2³/₄ inches (70 millimeters). The lamp is shown in illustration No. 3c. It is an ordinary automobile acetylene headlight fitted with a base which may be easily set up centrally over a triangulation station. One charge of calcium carbide will give a satisfactory light for about four hours.

LIGHT KEEPERS.

The plan of having the same men throughout all or a large part of a season and the method of directing them by heliographing with the Morse alphabet were first used on triangulation in the United States on the ninety-eighth meridian in 1902. (See pp. 826-829 of Appendix 4 of the Report for 1903.) Previous to that time it had been the custom to employ some one near a triangulation station to show the heliotrope and to attend to the signal lamp. A simple code of signals was sometimes used to indicate to the man that the work had been completed, but no systematic and elaborate method of signaling had been used, and serious delays were inevitable, as an officer would have to visit and post men at the new stations before the observations could proceed. The method of signaling by means of the Morse alphabet was used in guiding and directing a heliotroper by Prof. J. F. Hayford when he was the astronomer on the United States-Mexican Boundary Commission, and it was he who proposed its use in the 1902 work.

There are a number of causes which have contributed to the rapid progress made by the observing parties of the United States Coast and Geodetic Survey engaged on primary triangulation in recent years, but one of the most important is the trained corps of light keepers and the ease with which their movements can be directed and controlled by the observer with the aid of the signaling.

Six regular heliotropers (or light keepers) were used by each observing party on the one hundred and fourth meridian triangulation. Sometimes, in order to avoid delays, an additional light keeper was engaged for work at a single station, and in a few cases the driver of the observing party showed the heliotrope and lamp at a station. It was only occasionally that one of the stations to be observed on did not have a light keeper when the observer was ready to begin work.

Each light keeper's outfit consisted of a tent, bedding, a small number of cooking utensils, binoculars, signal lamp, heliotrope, prismatic compass, sketch of the triangulation, a few tools, and such other small articles of camp equipage as were deemed necessary. At some of the stations the light keepers were able to get their meals with a farmer or ranchman, but nearly always they prepared their own food. They made their moves between stations in farm wagons hired especially for the trip.

The light keepers posted their own lights and heliotropes during the entire season. At all stations occupied by the observer lines were accurately drawn on the light stand to each signal observed upon, and a light keeper following had simply to use these lines. The stations ahead of the observer had no lines laid out; consequently the light keepers had to use their ingenuity in finding the direction to the observer. This, however, did not prove very difficult, as each man was given a sketch of the reconnaissance, and by placing the sketch on the light stand and orienting it approximately by the magnetic meridian line as gotten by his eompass he was enabled to locate at least one of the stations. He would then orient the sketch accurately over this direction and lightly mark on the stand the directions to all of the stations as given by the sketch. He would then begin showing to the observer. If he did not get lights from him in reply, he would swing his heliotrope or lamp through a small angle to each side of the approximate direction. . (The term "light" will be used hereafter to indicate either the heliotrope or lamp.) As soon as the observer saw a light from one of the stations ahead he showed a steady light to enable the light keeper to get a correct line. Most of the forward lines were found at night, as the lamps would show over a wider angle than the heliotropes and were not affected by clouds.

A light keeper was usually able to find some object in the line to a station, such as a lone or high tree or a rock, by which he could post his heliotrope and also the lamp if put up before dark. This method was preferable to simply using the lines drawn on the light stand.

A man to be a good light keeper must have education enough to keep his accounts, but, what is more essential, he should have a practical turn of mind which will enable him to overeome difficulties and get his lights posted in spite of floods, breakdowns, etc.; of eourse it goes without saying that he must be conscientious and faithful. Unless a man shows the above qualities, it is not advisable to keep him in the party a longer time than is required to get another man.

SIGNAL CODE AND INSTRUCTIONS TO LIGHT KEEPERS.

In order to facilitate the work, written directions were given the light keepers, which included the Continental Morse alphabet, the eode signals, and such other information as the light keepers might need in conducting their work. The signal code and instructions, as issued to the light keepers for the one hundred and fourth meridian triangulation, are as follows:

Continental Morse alph	abet.—		
	A . —	J. — — —	S
	В —	К — . —	т —
	С — . — .	L	U —
	D —	M — —	V —
	Е.	N — .	W
	F – .	0	x
	G — — .	P	Y — . — —
	н	Q — — . —	Z — —
	·I	R. — .	

The notations for numerals will be dispensed with and the numbers spelled out when required.

The Continental Morse differs from the American Morse in that there are no "spaces" between the elements of the letters.

Signaling .- Dots should be short, just long enough to permit the lights to be seen clearly.

Light should shine for dash about two seconds. Duration of darkness between elements of letters, one second. Duration of darkness between letters, three seconds; duration of darkness between words, five seconds. If the lights are dim these periods may be somewhat louger. It is not important that these periods should be absolutely observed, but the relative proportion should be maintained.

The alphabet must be committed to memory; also, what is more difficult, all letters must be easily recognized by seeing or hearing their elements. Perfection in this matter will eliminate much trouble, as most of the difficulty is due to the receiver not being able to recognize a letter before the next one has begun.

Maintain a uniform speed in sending, for varying speeds make the receiving of the message difficult.

Be careful that all light is cut off between elements of letters.

Do not use hand in signaling.

Cut the light off and on by quick movements.

LARGE ACETYLENE SIGNAL LAMP USED ON TRIANGULATION.

3 -

.

An observer calls a light keeper by showing a steady light to him until answered.

A light keeper calls the observer by sending his own letter until answered.

Answer a call by a series of slow dots (not more than seven), then watch for the signal by aid of the binoculars. Repeat every few minutes until answered by observer.

Darken light before beginning message for a period of about 15 seconds.

All messages are to be repeated by the receiver, except in case of messages from light keeper to observer. Here the observer will answer by sending slow dots. Never repeat a word unless you are sure it is right. This is a decided annoyance to the observer and a source of a great deal of trouble. If an observer knows that a message has not been received, he is at least in a position to know what to do to remedy matters.

Code signals .- A series of quick dots means, "I have made a mistake and will begin again."

An A means, "Wait a while."

A G, followed by the name of a station, means, "Get person at that station by calling him, and tell him where observer is."

An N: "Your light is too faint."

An R: "Repeat message; I could not get it."

A series of slow dots: "I understand your message."

An M: "Moderate your light; it is too strong."

Signals to be used by the observer when communicating with a light keeper.—S T, followed by name of station and date, means: "Stop showing light to this station; show to the station indicated on date named, and look for observer's call."

S T, with no name of station, means: "Stop showing light to this station, and show light to the station to which observer goes, which is indicated in the written schedule of observer's moves, a copy of which has been furnished to you. If no date is given, show to new station at next observing period."

T H D: "Have finished on you for this afternoon (or night)."

D G, followed by name of station and date, means: "Done where you are; go to the station named, show light, and look for observer's call on date given."

D G, with no name, means: "Done where you are; go to the next station mentioned in your written schedule of moves, and show light to the observer at his old or new station, according to the schedule. If no date is given, begin showing light at first observing period after station is reached."

If the observer sends an "A" after 10.00 p. m., it means that the light keeper is to stay on the tower and keep a sharp lookout until called again. Should this be followed by an "L," it signifies that the light keeper is to recharge the lamp and leave the station for the night.

FINI: "Have finished on you; obey written instructions."

"Money," "Mail," etc., followed by name of place, means: "The article is at the place named."

Signals to be used by light keepers to observer .- "Money," "Carbide," etc., means: "I am in need of same."

Other necessary messages will be spelled out in full.

Keep a sharp lookout for signals for 10 minutes after each recharging of lamp and for 10 minutes after each hour and half hour.

N's may be sent any time if your light is poor.

Signals to be used by a light keeper to another light keeper.—O, followed by the name of a station, means: "Observer is at that station; show to him at once."

General considerations.—Before starting out alone be sure that some one of the party has taught you how to use the signal lamp and how to test and adjust a heliotrope and to put on the cut-off rings on the heliotrope and lamp.

Test your heliotrope and lamp so that the light goes to the observer, for the line through the sights may point to the observer but the light may not be centered on him.

Every day, if necessary, see that your lamp drops water fast enough to give a strong light.

Keep your heliotrope and lamp in good condition. When the air is clear, a poor light possibly may be seen, but if it is hazy only a clean lamp and reflector will give good results. The carbide chamber should be cleaned as soon as possible after getting through using the lamp, as the metal is corroded if carbide is allowed to stand in it.

At every opportunity get the correct standard time and keep your watch within a few minutes of it.

The first thing to do when reaching a station is to try to locate all of the stations to which you will show. By doing this at the first opportunity, and not waiting for the exact moment that you expect your light to be used on a line, you will avoid causing delays to the observing party.

Where smoke, clouds, and fog are encountered, the value of getting your pointings on the clear days is evident. After finding a station you should hold the direction to it by lines marked on the stand or by any other means practicable. When you are on a wooded peak and there has been a delay in seeing the observer's light, watch carefully for him, for the light might be obstructed close to your station and you might be able to see the call from the top of a tree or from some other point on the mountain. In other words, do not be absolutely sure that the line is open unless you have seen a light from the other station, and unless you are sure keep trying to get the observer's call by watching very closely.

When the observer's light is once seen, set your telescope on it and fasten or mark it so that you will know you have the direction of the line even if the weather should become cloudy or smoky. Then point your heliotrope, using thin wedges if necessary to get the proper elevation, and mark the place on the stand where each wedge belongs

48310°-14-3

and also mark the wedge to show how far it is to be pushed under the heliotrope; also mark along the side of the heliotrope box for the direction. Then you can replace your heliotrope exactly after it has been disturbed. The lamp may be set and pointed by the lines made for the heliotrope. When in trouble about the direction of the lines, always keep watching for calls from stations other than the observer's, for the observer may be sending a message to you through one of the other light keepers.

Your work on the tower begins at 1 p. m. From then until 4.30, unless instructed otherwise by the observer, you should show your heliotrope all the time if there is sun enough to make a shadow. If your heliotrope is pointed with care, a faint sun is just as good to show the observer as a bright sun on comparatively short lines; also, if you get only a faint sun every 10 minutes or so, which lasts for a short time, it may be used by the observer. It is not for you to decide whether you think it worth while, or whether the observer can use it or not. An effort will be made to send you *THD* as often as practicable.

At night go on the tower each hour and each half hour and look for signals from the observer, remaining 10 minutes each time. Begin doing this as soon as you have finished your evening meal.

At 11 p. m. begin sending slow dots (about 20 at a time) and remain on the lookout for signals for 15 minutes (until 11.15). If no signals are received, see that the light is burning well (recharging if desirable) and then you can leave the tower for the night.

Keep a lookout for the observer's call from his next station, as he may have moved without notifying you.

The lamp should be set up and lighted a half hour before sundown.

Bo eareful to sight your lamp and heliotrope accurately; if in doubt, send your initial, then the observer will show you a light.

Be extremely careful not to have lanterns or other extra lights about the tower. They are often mistaken for the signal lights by the observer. Frequently they can be seen at the foot of the tower as well as on the top.

When your line is 10 miles long, or less, watch for an *M*, meaning that your light is too strong and should be reduced by means of the concentric rings provided, or by paper rings cut out true.

Keep your tents, mess outfits, instruments, and other articles of equipment elean and in order.

It should be remembered that the towers are built with the least material required for safety; that the signal notices apply to light keepers as well as to other people, and therefore you should in no way weaken the scaffold by removing any of its parts.

An extra effort should be made to move between stations as rapidly as possible to prevent holding back the observing party longer than is necessary.

So much depends upon the efficiency and faithfulness of the light keeper that an indifferent one must be disposed of as soon as convenient.

Light keepers' accounts.—Each light keeper was given in writing detailed directions for making out his accounts, for shipping by freight or express, and he was also given copies of the various kinds of bills, receipted, of which he might have need in his accounting.

In addition to the sketches showing the scheme of triangulation as located by the reconnoissance party, the light keepers were given descriptions of the stations which enabled them to move from one station to another. They were given lists of the triangulation stations in the order in which they would be occupied by the observer and each light keeper was also given a statement of his own moves and for each of his stations the line or lines over which he was to show a light. This information was tabulated in the following form:

Observer.	Light keeper "B."	Light keeper "D."	Light keeper "11."	Light keeper "K."	Light keeper "P."	Light keeper "V."	Light keeper (extra).
Haystack	Rawhide	Hobbs	Willow	Coleman	Notch	Chugwater	
Notch	do	Whitaker .	Ragged	do	do	do	•••••
Whitaker Ragged	Wadill	do	do	Greentop .	do	do	
TEAPPort							

Schedule of moves for observer and light keepers.

Each light keeper was assigned a letter so chosen as not to be identical with or similar to any of the code letters. The stations which each light keeper was to occupy in succession were shown in the vertical column under his letter, while the location of the observer and the various light keepers at any time were shown in the horizontal lines. Thus, when the observing party was at Haystack, light keeper "B" was at Rawhide, "D" at Hobbs, etc., and when the observer moved to Coleman, "B" moved to Haystack, and the other light keepers kept their stations.

By arranging the schedule carefully with regard to the time required for the various moves it was nearly always possible to adhere closely to the prearranged plan of operation.

OBSERVATIONS FOR HORIZONTAL DIRECTIONS.

Two observing parties, under Assistants E. H. Pagenhart and C. V. Hodgson, completed all of the observations for horizontal directions in one season, extending from the spring to the autumn of 1912. The actual days on which observations for horizontal directions were made are shown in the tables on pages 38 and 39.

Each party was organized practically in the same manner as the observing party of the season of 1908–9 on the Texas-California arc of primary triangulation except that each had a second officer. Assistant C. M. Cade was with Mr. Hodgson during the whole season and for a part of the time conducted a second observing party under his direction. Assistant T. L. Warner was in the party of Mr. Pagenhart from the beginning of the season until September 28, 1912. Besides the chief of party and his assistant, there were in each observing party a teamster and a recorder. They lived in tents and carried a small mess outfit, cooking their food over an open fire.

Each party had a freight wagon and a light spring wagon, each drawn by two horses or mules, for transporting the instruments and camp equipage from station to station.

A number of the stations occupied by Mr. Hodgson were on mountain peaks to which the instruments and observing tent were carried by pack animals. This was the case also for several of the stations occupied by Mr. Pagenhart.

GENERAL INSTRUCTIONS TO OBSERVERS ON PRIMARY TRIANGULATION.

There are given below the general instructions to chiefs of the observing parties on primary triangulation, under which practically all of the primary triangulation in the United States has been done in recent years. They were approved by the Superintendent of the United States Coast and Geodetic Survey in 1905, upon the recommendation of Prof. John F. Hayford, at that time inspector of geodetic work in the survey. The general instructions were first printed on pages 170–174 of Appendix 4 of the report for 1911. The observers on the one hundred and fourth meridian triangulation worked under these instructions.

1. Instruments.—In general, direction instruments of the highest grade should be used in triangulation of this class. Repeating theodolites are to be used only when the station to be occupied is in such a position as to be difficult of occupation with a direction instrument or when there is doubt of the instrument support being of such a character as to insure that the movement of the observer about the instrument does not disturb it in azimuth. Such stations usually occur on lighthouses and buildings.

2. Number of observations—Main scheme—Direction instrument.—In making the measurements of horizontal directions measure each direction in the primary scheme 16 times, a direct and reverse reading being considered one measurement, and 16 positions of the circle arc to be used, corresponding approximately to the following readings upon the initial signal:

Num- ber.	Reading.	Num- ber.	Reading.
1 2 3 4 5 6 7 8	o / // 0 00 40 15 01 50 30 03 10 45 04 20 64 00 40 79 01 50 94 03 10 109 04 20	9 10 11 12 13 14 15 16	• · · 128 00 40 143 01 50 158 03 10 173 04 20 192 00 40 207 01 50 222 03 10 237 04 20

3. When a broken scries is observed, the missing signals are to be observed later in connection with the chosen initial or with some other one, and only one, of the stations already observed in that series. With this system of observing no local adjustment is necessary. Little time should be spent in waiting for the doubtful signal to show. If it is not showing within, say, one minute of when wanted, pass to the next. A saving of time results from observing many or all of the signals in each series, provided there are no long waits for signals to show, but not otherwise.

4. Standard of accuracy.—In selecting the conditions under which to observe primary directions, proceed upon the assumption that the maximum speed consistent with the requirement that the closing error of a single trianglo in the primary scheme shall soldom exceed three seconds, and that the average closing error shall be but little greater than one second, is what is desired rather than a greater accuracy than that indicated with slower progress. This standard of accuracy used in connection with other portions of these instructions defining the necessary strength of figures and frequency of bases will in general insure that the probable error of any base line, as computed from an adjacent base, is about 1 part in 88 000, and that the actual discrepancy between hases is always less than 1 part in 25 000.

5. *Rejections—Direction observations.*—The limit for rejection of observations upon directions in the main scheme shall be 5 seconds from the mean. No observation agreeing with the mean within this limit is to be rejected unless the rejection is made at the time of taking the observation and for some other reason than simply that the residual is large. A new observation is to be substituted for the rejected one before leaving the station, if possible without much delay.

6. Number of observations—Supplementary stations—Direction instrument.—In observing upon supplementary stations and in observing from supplementary stations upon stations in the main scheme, four measures of the character outlined above shall he made of each direction, using the circle in the first four positions stated in that paragraph. A supplementary station is one which is not in the main scheme, hut which is observed upon or from which observations are taken for the purpose of connecting with stations which can not he effectively reached from the stations in the main scheme and with which a connection is required by specific instructions.

7. Number of observations—Intersection stations—Direction instrument.—An intersection station is a station of which the position is determined by intersections from stations of the main scheme or supplementary stations and which is not occupied. One such measure as is outlided on pago 35 shall he made of each direction to each intersection station. A second such measure shall be made if it can be secured under conditions nearly as favorable to accuracy as were the conditions when the first measure was made and without much delay to observations in the main scheme. Each series of observations on intersection stations is to contain some one, and only one, of the main scheme or supplementary stations. It is important to have at least three lines to each intersection station in order to secure a check, but a possible intersection station should not be neglected simply because only two lines to it can be secured.

8. Observing—Supplementary and intersection stations.—Observations upon and from supplementary stations and observations upon intersection stations may be taken under any atmospheric conditions whenever the object to he pointed upon is visible and no delay is likely to he mado to secure good seeing before observing.

9. Land section corners and other survey marks.—Whenever it is feasible to do so without incurring undue expense and delay, the section corners established by the United States Land Survey, and survey marks of any kind found upon the ground, shall be connected with the triangulation either by direct measurement of a distance and direction from a station or by using them as intersection stations.

10. Value of intersection stations.—In selecting intersection stations it should be kept in mind that the geographic value of a piece of triangulation depends upon the number of points determined, the size of the area over which they are distributed, and the permanence with which they are marked. The geographic value of the triangulation is lost for a given area when points can not he recovered within that area. The chance of permanency is increased hy increasing the number of points as well as hy thorough marking. These considerations should lead to the determination as intersection stations of many artificial objects of a permanent character, such as lighthouses, church spires, cupolas, towers, and large chimneys; should lead occasionally to the determination of specially marked stations established for this particular purpose; and should frequently lead to the permanent marking upon the ground of topographic or hydrographic points as are in commanding positions—on promontories, for example—and which are so situated that the station is not likely to disappear if permanently marked (on firm ground not likely to he washed away or on rocks), and determining their positions as intersection stations will frequently obviate the necessity which would otherwise exist for new triangulation whon a later hydrographic survey is made. It is especially desirable to increase the area effectively covered for geographic purposes by selecting intersection stations which are outside the area covered by the main scheme.

11. Vertical measures in main scheme.—At each station in the main scheme vertical measures are to be made over all lines in the main scheme radiating from it. These vertical measures should he made on as many days as possible during the occupation of the station, but in no case should the occupation of the station he prolonged in order to secure such measures. Three measures, each with the telescope in both the direct and the reversed positions, on each day, are all that are required. These measures may be made at any time between 11.00 a. m. and 4.30 p. m., except that in no case should primary vertical measures be made within one hour of sunset. It is desirable, however, with a view of avoiding errors due to diurnal variation of refraction, to have a fixed habit of observing the verticals in the main scheme at a certain hour, as, for example, between 2 and 3 p. m. If the vertical measures at a station are made hy the micrometric method, double zenith distance measures shall be made on at least two of the lines radiating from that station.

12. Vertical measures—Supplementary and intersection stations.—In addition to the vertical measures required in the main scheme, vertical measures must be made at each station, whether in the main scheme or supplementary, over every line of which the horizontal direction is measured. Three measures each with the telescope in both the direct and reverse positions are all that are required on all lines to or from supplementary or intersection stations, except when the observations upon such stations are made for the purpose of connecting with hench marks of which the elevations are fixed by precise leveling or tidal observations. In the latter case observations should be made on as many days as possible during the occupation of the station, but in no case should the occupation of a station be prolonged in order to obtain measures. Also, in the latter case, the vertical observations are to he made in both directions over every line more than 5 kilometers long, even though horizontal measures may be necessary in but one direction over the line.

13. Marking of stations.—Every station, whether it is in the main scheme or is a supplementary or intersection station, which is not in itself a permanent mark, as are lighthouses, church spires, cupolas, towers, large chimneys, sharp peaks, etc., shall be marked in a permanent manner. At least one reference mark of a permanent character shall be established not less than 10 meters from each station of the main scheme and accurately referred to it by a distance and direction. Such reference marks shall preferably be established on fence or property lines, and always in a locality chosen to avoid disturbance by cultivation, erosion, or building. It is desirable to establish such reference marks at all marked stations. At all stations where digging is feasible both underground and surface marks which are not in contact with each other shall be established. Wood is not to be used in permanent marks.

14. Descriptions of stations.—Descriptions shall be furnished of all marked stations. For each station which is in itself a mark, as are lighthouses, church spires, cupolas, towers, large chimneys, sharp peaks, etc., either a description must be furnished, or the records, lists of directions, and lists of positions must be made to show clearly in connection with each point by special words or phrases if necessary the exact point of the structure or object to which the horizontal and vertical measures refer. Every land section corner connected with the triangulation must be fully described. The purpose of the description is to enable one who is unfamiliar with the locality to find the exact point determined as the station and to know positively that he has found it. Nothing should be put into the description that does not serve this purpose. A sketch accompanying the description should not be used as a substitute for words. All essential facts which can be stated in words should be so stated, even though they are also shown in the sketch.

15. Abstracts and duplicates.—The field abstracts of horizontal directions and vertical measures are to be kept up and checked as the work progresses, and all notes as to eccentricities of signals or instrument, of height of point observed above ground, etc., which are necessary to enable the computation to be made, are to be incorporated in the abstracts. As soon as each volume of the original record has been fully abstracted and the abstracts checked, it is to be sent to the Office, the corresponding abstracts being retained by the observer. A duplicate of the description of stations is to be made. If the original descriptions of stations are written in the record books, a copy of these descriptions compiled in a separate book may be considered the duplicate and should then be marked as such. A duplicate of the miscellaneous notes mentioned above may also be made if considered desirable. No other duplicates of the original records are to be made. Pencil originals should not be inked over.

16. Number of observations—Main scheme—Repeating theodolite.—If a repeating theodolite is used for observations in the main scheme, corresponding to those indicated in paragraph 2, make the observations in sets of six repetitions each. For each angle measured follow each set of six repetitions upon an angle with the telescope in the direct position immediately by a similar set of six on the explement of the angle with the telescope in the reversed position. It is not nccessary to reverse the telescope during any set of six. Make the total number of sets of six repetitions on each angle ten—fivo directly on the angle and five on its explement. Measure only the single angles between adjacent lines of the primary scheme and the angle necessary to close the horizon. With this scheme of observing no local adjustment is necessary, except to distribute the horizon closure uniformly among the angles measured. The limit of rejection corresponding to that stated in paragraph 5 shall be for a set of six repetitions 4" from the mean.

17. Number of observations—Supplementary stations—Repeating theodolite.—If the observations at a supplementary station or upon a supplementary station, corresponding to those indicated in paragraph 6, are made with a repeater, our sets of six repetitions each should be made, two directly upon each angle with the telescope in the direct position and two upon its explement with the telescope in the reversed position. No measures introducing station conditions other than closure of horizon are to be made upon or at supplementary stations.

18. Number of observations on intersection stations—Repeating theodolite.—If the observations upon intersection stations, corresponding to those indicated in paragraph 7, are made with a repeater, two sets of three repetitions each should be made, one directly upon an angle with the telescope in the direct position and one upon its explement with the telescope in the reversed position. Fix the direction to each intersection station by measuring the angle between it and some line in the main scheme or to a supplementary station. No measurements introducing conditions are to be made.

19. Field computations.—The field computations are to be carried to hundredths of seconds in the angles, azimuths, latitudes, and longitudes, and to seven places in the logarithms. The field computation may be stopped with the completion of the lists of directions for all stations and objects, and the triangle sido computation for the main scheme and supplementary stations, unless there are special reasons for carrying it further. The computation to this point should be kept up as closely as possible as the work progresses to enable the observer to know that the observations are of the required degree of accuracy. No least square adjustments are to be made in the field. All of the computation, taking of means, etc., which is dono in the record books and the lists of directions should be so thoroughly checked by some person other than the one who originally did it as to make it unnecessary to examine it in the Office. The initials of the person making and checking the computations in the record books and the lists of directions should be signed to the record as the computation and checking progress.

METHODS OF OBSERVING EMPLOYED.

All the angle measures were made by the direction method, using the 12-inch (30-centimeter) theodolites which had been made in the Instrument Division of the Survey and which are described on page 30.

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

The telescope of the theodolite has two parallel vertical wires, about 20 seconds apart, for making the pointings for horizontal angles. The results from a number of seasons' work indicate that this arrangement of the wires in the telescope is more satisfactory than either the single vertical wire or the oblique cross. The double wire is especially effective when the image of the light or heliotrope is large and unsteady.

The theodolites used on the one hundred and fourth meridian primary triangulation had two pairs of lines, about four minutes apart, in the micrometer microscope. This arrangement saved much time, for, when a reading backward or forward was made by placing one pair of lines on a five-minute graduation of the circle, then the other pair of lines would have to be moved through the space of only one minute to bring it in contact with a second graduation to make the forward or backward reading.

The readings upon the initial signal were so selected that the mean value of any angle is practically free from errors due to periodic errors of graduation and is almost entirely free from the effects of the run of the micrometers. However, the micrometer microscopes were adjusted whenever tests showed that the mean run of the three was more than one second for a fiveminute space or when any one micrometer microscope had a run greater than three seconds.

PROGRAM OF OCCUPATION OF STATIONS, ONE HUNDRED AND FOURTH MERIDIAN.

In the following tables the stations occupied during 1912 by each of the observers are arranged in the chronological order in which the observations were made. The second column indicates the days on which observations on the primary stations were taken, and the third column gives the number of dates at each station on which primary horizontal directions were observed.

In the party of Mr. Hodgson there was a second observing party in charge of Assistant C. M. Cade, from September 4 to November 24, 1912. During part of this period the first observing party (Mr. Hodgson, observer) was engaged in revising the reconnoissance at the southern end of the scheme and in measuring the Provo base line.

Several stations were reoccupied in order to strengthen the angles of some of the triangles. The reoccupied stations are shown by a reference to a footnote in the tables below.

Mr. Pagenhart's party, working south from the Canadian boundary, suffered no interruptions, as the Ambrose base was measured before observing began. He had only one observing party under him.

Stations occupied.

Station.	Days on which observations of primary horizontal directions were made.	Total [°] days.	Station.	Days on which observations of primary horizontal directions were made.	Total days.
Ambrose northeast base. Ambrose southwest base. Bowle 1 Norge. Ambrose. Crosby. Stady. Muddy 1 Howard 1 Gladys.	May 28, 29 May 29, 31; June 1, 3. June 4, 5, 17 June 10, 11 June 13, 15 June 13, 15 June 19, 29 June 20, 21; July 1, 2 June 20, 21; July 1, 2	2 4 3 2 1 2 1 2 1 2 4 1	Bonetraill Marmon Williston Bull Snake Balnyille Lanark Buford Montana Montak	June 27 June 28. July 6, 8, 9. July 10, 11. July 12. July 13. July 15. July 15. July 17, 18, 19. July 20, 22, 23. July 24, 25. 27.	. 1

Assistant E. H. PAGENHART, Chief of Party and Observer; Season of 1912.

Assistant E. H. PAGENHART, Chief of Party," Assistant T. L. WARNER, Observer; Season of 1912.

Ferry Cut-oif Jackson. Lovering. Sheep. Flat. Trotter. Blue.	July 30. July 31; Aug. 1. Aug. 2, 3, 5. Aug. 6, 8, 9. Aug. 10, 12. Aug. 13. Aug. 15. Aug. 17, 20, 21.	1 3 3 2 1 1 3	Cook Hump Sentlinel Saddle Badland. Ralny. Black. Butte	Aug. 23, 24. Aug. 20. Aug. 20. 30. Sept. 2, 3, 4. Sept. 6. Sept. 9, 10. Sept. 12. Sept. 16, 17.	2 1 2 3 1 2 1 2
		-			

¹ This station was reoccupied.

Stations occupied-Continued.

Assistant E. H. PAGENHART, Chlef of Party and Ohserver; Season of 1912.

Station.	Days on which observations of primary horizontal directions were made.	Total days.	Station.	Days on which observations of primary horizontal directions were made.	Total days.
Whetstone ¹ Lodge Tahle Reva Harding Moreau Castle	Sept. 24, 25, 26 Sept. 29, 30 Oct. 2 Oct. 7, 8 Oct. 10, 11 Oct. 12 Oct. 14, 15, 16	32 1 2 2 1 3	Wymonkota. Terry. Sundance. Inyankara Laird. Aikaii ² .	Oct. 20, 21, 22. Oct. 26, 29. Nov. 4, 5. Nov. 8. Nov. 12, 13. Nov. 21.	3 2 2 1 2 1

Assistant C. V. HODGSON, Chief of Party and Observer: Season of 1912.

		,		-	
Haystack ³	May 14, 15, 16, 17.	4	Brighton ³	Aug. 5, 6, 85	3
Coleman	May 21, 22	2	Watkins astronomic	Aug. 10	l ī
Notch ³	May 25, 28	2	Indian 5	Aug. 15, 16, 17, 18; Sept. 20	5
Chugwater ³	May 31; June 1	2	Morrison ⁸	Aug. 19, 20, 21, 22, 23; Sept. 23, 25,	10
Ragged *	June 4, 5, 7	3		26, 27, 30,4	
Whitaker ³	June 10, 11, 12; Nov. 21 4	4	Hillitop	Sept. 6, 7, 8, 10, 12, 16 ⁵	6
Wadill ⁸	June 14, 15, 17; July 2, 74	5	Dougias	Sept. 17, 18	2
Russeii ⁵	June 21	1	Willow	Oct. 15, 16, 18.	3
Twin ⁸	June 24, 25, 26	3	Manville	Oct. 19, 20, 21	3
Warren ^a	June 28, 29; July 1	3	Cottonwood	Oct. 27, 29	2
Dewey	July 9, 11, 13, 16, 19	5	Suiiivan	Nov. 1	1
Horsetooth	July 22, 23	2	Elk	Nov. 4, 5, 8	3
Boulder ⁸	July 27, 29; Aug. 2.	3	Camhria	Nov. 10, 11, 12, 14	4
				, , , ,	

Assistant C. V. HODGSON, Chief of Party; Assistant C. M. CADE, Ohserver; Season of 1912.

Greentop ⁴ Brighton ⁸ Indian ⁶ Pikes Peak Divide ⁴ . Elbert. Hilltop ⁸ Rawhide	June 19, 20; Nov. 22. Aug. 28. Aug. 29, 31. Sept. 16, 17, 18. Sept. 22, 23, 24, 25; Oct. 4, 5. Sept. 26, 27, 30. Oct. 1, 2, 3. Oct. 14, 15. Oct. 16.	3 1 2 3 6 3 3 2 1	Kirtley. Provo east hase. Provo astronomic. Provo west hase. Parker. Alkali. Crow. Russell ⁶ .	Oct. 19, 20 Oct. 24. Oct. 25 Oct. 26. Oct. 28, 29, 31; Nov. 1, 2 Nov. 5, 6. Nov. 13, 14. Nov. 21.	2 1 1 5 2 2 1
		_			

¹ At this station some of the observations were made by Assistant T. L. Warner. ² This is a reoccupation of station Alkali. The first occupation was hy Assistant C. M. Cade. ³ At this station some of the observations were made by Assistant C. M. Cado while with Mr. Hodgson's observing party.

⁴ This station was recompled.
 ⁵ This station was also occupied by Assistant C. M. Cade while in charge of a second observing party.
 ⁶ This station was also occupied by Mr. Hodgson.

CONNECTIONS MADE BETWEEN THE ONE HUNDRED AND FOURTH MERIDIAN TRIANGULATION AND STATIONS AND MONUMENTS OF OTHER SURVEYS.

The one hundred and fourth meridian are started from Pikes Peak and Divide, two stations of the thirty-ninth parallel primary triangulation.

Stations or monuments of the following organizations were connected with the triangulation stations on the one hundred and fourth meridian are:

The United States Geological Survey;

The Missouri River Commission;

The General Land Office;

The United States and Canada Boundary Commission.

Connections were also made with monuments of the following boundaries between States: Colorado and Wyoming boundary;

Wyoming and Nebraska boundary;

South Dakota and Nebraska boundary;

South Dakota and Wyoming boundary;

North Dakota and South Dakota boundary;

North Dakota and Montana boundary;

Northeast eorner of Wyoming;

Southeast corner of Montana.

The connections were made by having the stations identical, by connections by subsidiary stations or by an observed direction and a direct measurement.

The data in regard to these connections may be found by consulting the index and illustrations at the end of the report, and the table of geographic positions and the descriptions which begin on pages 88 and 115, respectively.

The bench marks connected with the one hundred and fourth meridian triangulation for the purpose of controlling the elevations determined by trigonometric leveling are referred to on page 141 and 145, under the heading, "Computation, adjustment, and accuracy of the elevations."

CONNECTIONS MADE BETWEEN THE THIRTY-NINTH PARALLEL TRIANGULATION AND STATIONS AND MONUMENTS OF OTHER SURVEYS.

The United States Geological Survey, and no doubt other organizations which have carried on surveys in Colorado, Utah, and Nevada, have connected their work with the stations of the thirty-ninth parallel triangulation. At the time the triangulation of the Coast and Geodetic Survey was done in those States, the other organizations of the Government had not carried on very extensive operations in them. Several connections were made, however, between the stations of the thirty-ninth parallel triangulation, at the time they were established, and stations of the United States Geological Survey and the General Land Office. Monuments of the Colorado-Utah and the Utah-Nevada boundaries were also connected with the triangulation. The geographic positions of the stations of other organizations and of the state boundary monuments are given in the table beginning on page 88. The index of stations and the sketches should also be consulted.

The bench marks connected with the thirty-ninth parallel triangulation for the purpose of controlling the elevations determined by trigonometric leveling are referred to on page 145, under the heading "Computation, adjustment, and accuracy of the elevations."

STATEMENT OF COSTS.

The following table gives a statement of the cost of the triangulation along the one hundred and fourth meridian for each of the two observing parties, and also the cost of the entire work. For comparison and for use in estimating the cost of future work, there are given similar data for the primary triangulation on the ninety-eighth meridian, done later than 1901, and on the Texas-California are.

Name of observer or arc.	Months of obser- vations.	Primary stations occupied.	Stations occupied per month.	Total field ex- penses.	Cost per station occupied.	Totai points deter- mined.	Cost per point deter- mined.	Miles of progress.	Cost per mile of progress.	Area in main scheme in square miles.	Cost per square mile.
E. H. Pagenhart C. V. Hodgson	5.5 8.2	49 33	= 8.9 = 4.0	¹ \$13 550 1 15 300	\$277 464	87 80	\$156 191	330 390	\$41 39	7800 9200	\$1.74 1.66
Total arc, one hundred and fourth meridian. Ninety-eighth meridian triangu- lation after 1901. Texas-California arc.	13.7 30.5 16.7	.82 265 94	6.0 8.6 5.6	1 28 850 78 187 38 384	352 293 408	167 849 262	173 109 147	720 1329 1207	· 40 63 32	17 000 21 655 49 220	1.70 5.19 0.78

¹ These amounts include the costs of measuring the Provo and Ambrose bases. (See pp. 13 and 15.)

During about two and one-half months there were two observers in Mr. Hodgson's party. The number of months of observations given in the table for that party is the sum of the times of the two observers. The observations were made by that party between May 14 and November 23, 1912. The time this party was engaged on revision of reconnoissance and the measurement of the Provo base line is not included in the number of months of observing.

There was no interruption to the work of Assistant Pagenhart's single observing party, as he had measured the Ambrose base line before observations were begun on the triangulation.

To make the ninety-eighth meridian triangulation comparable with the work of the other two arcs, 9.3 months should be added to the number of months of observation, for during that time there were two observers at work under one chief of party. Then the total observing period would be 39.8 months, and the stations occupied per month would be 6.7.

The total expenses include the cost of preparing and marking the stations and all salaries, but not the cost of the reconnoissance.

The cost per mile of progress, which the writer believes is the fairest unit for comparison, is practically the same for the two parties—\$41 for Mr. Pagenhart and \$39 for Mr. Hodgson. In Mr. Pagenhart's party there was only one observer, while in that of Mr. Hodgson's there was one observer for about half the season and two observers for the other half.

The cost per mile of progress is only about 60 per cent of that of the ninety-eighth meridian triangulation after 1901, but it is 25 per cent greater than the cost per mile of the Texas-California arc. The cost of the building on the one hundred and fourth meridian triangulation was much less than that on the ninety-eighth meridian triangulation and only slightly less than the building on the Texas-California arc. The weather conditions on the one hundred and fourth meridian were not so favorable on an average as those on the Texas-California arc. Considering the fact that no one of the observers on the one hundred and fourth meridian triangulation had ever done primary triangulation previously, it must be concluded that the work was done in a remarkably rapid and efficient manner. The completion of a continuous arc of primary triangulation 720 miles (1159 kilometers) in length during one summer is an exceptional and noteworthy performance.

There were 8 subsidiary stations occupied by Mr. Pagenhart and 12 such stations occupied by Mr. Hodgson which have not been classed as occupied stations in the above table. At each of these stations the amount of observing was much less than at a primary station, and as a rule the additional time required in traveling for a subsidiary station was not so much as for a primary station. It would seem to be advisable, therefore, to give a weight of onehalf to the subsidiary stations and then obtain the rates of progress and the costs per stations occupied, which are given below.

Name of observer.	Months of obser- vations.	Primary stations occupied.	Stations occupied per month.	Total field ex- penses.	Cost per station occupied.
E. H. Pagenhart	5.5	53	- 9.6	\$13 550	\$256
C. V. llodgson	8.2	39	4.8	15 300	392

The following is a summary of the costs of the primary triangulation and other geodetic work on the one hundred and fourth meridian:

Reconnoissance	\$2000
Observing, building signals, marking stations, observing azimuths, and measuring the Ambrose and Provo	
bases	28 850
Base measurements at El Paso and Cheyenne in 1913	980
Determinations of 5 astronomic longitudes	2100
Determinations of 25 astronomic latitudes	4970
Computation and adjustment of triangulation and astronomic observations at the office	3200
Total	42 100

Included in the above are all traveling expenses and salaries connected with the field and office work, except the salary of the Inspector of Geodetic Work. There is also included the entire cost (\$2935) of the automobile truck, although that truck was in good condition at the end of the season and will be used for future geodetic work.

STATEMENT OF ADJUSTMENTS.

No local adjustments were made, these having become unnecessary since the adoption of the present method of supplying missing observations in broken series.¹

The remeasurement of the El Paso base and the adoption of a new value for its length (differing one part in 59 000) made the problem of adjustment a difficult one. The one hundred

and fourth meridian triangulation starts from the line Pikes Peak-Divide adjoining the El Paso base net which had been fully adjusted as reported in Special Publication No. 4, pages 101-114.

The length discrepancies developed in the triangulation along the thirty-ninth parallel assembled on page 614 of Special Publication No. 4 disclosed the fact that the lengths in the El Paso base net were too long by 85 in the seventh decimal place of logarithms (one part in 51 000) when compared with the Salt Lake base and also too long by 92 in the seventh decimal place of logarithms (one part in 47 000) when compared with the Salina base to the eastward. This not only strengthened the decision to adopt the new measured length for the El Paso base but also made necessary a readjustment of the triangles in and adjoining the El Paso base net to distribute this length change without changing the standard positions along the parallel to the east and west for any very great distance.

It was determined to readjust the triangulation of the thirty-ninth parallel from the line Arapahoe-Monotony near the Colorado-Kansas boundary to the line Tushar-Mount Nebo of the Nevada-California series, adjoining the Salt Lake base net. The geodetic positions already adopted for these two lines were held fixed and by means of one adjustment the 191 conditional or observation equations relating to the one hundred and fourth meridian were combined with the 14 equations of the El Paso base net,¹ the 28 observation equations of the Rocky Mountain series,² 27 of the observation equations of the Kansas-Colorado series,³ 2 azimuth equations, 1 latitude equation and 1 longitude equation. The last-mentioned two and one of the azimuth equations were necessary to hold fixed the standard positions at the east and west ends of this section of the thirty-ninth parallel. The extra azimuth equation was necessitated by the introduction of the Laplace azimuth as the true geodetic azimuth at station Watkins. The total number of normal equations solved was 264.

Three Laplace azimuths were computed and adopted at stations Watkins astronomic, Provo astronomic, and Mondak. The introduction of these into the adjustment made two other azimuth equations necessary.

The fixed lengths in the adjustment were six, viz., the line Arapahoe-Monotony, with its length as adjusted in the thirty-ninth parallel;⁴ the El Paso base; the line Tushar-Mount Nebo, with its length as ajusted in the Nevada series of the thirty-ninth parallel;⁵ the Cheyenne base; the Provo base; and the Ambrose base.

ABSTRACT OF HORIZONTAL DIRECTIONS AND ELEVATION OF TELESCOPE ABOVE THE STATION MARK.

All observed directions in the one hundred and fourth meridian triangulation have been given equal or unit weight. Those directions were reduced to center where either the instrument or the object observed was not coincident with the center of the station mark.

The horizontal directions are all reduced to sea level. The correction expressed in seconds is given by

$$\frac{e^2h\,\sin 2\alpha\,\cos^2\phi}{2\,\rho\,\sin\,1^{\prime\prime}}$$

where $e^2 = \frac{(a^2 - b^2)}{a^2}$, h = height of station sighted, $\rho =$ the radius of curvature in a plane normal to the meridian, $\phi =$ the latitude, and $\alpha =$ the azimuth counted from the south westward.

In the following table are also given the elevations of the telescope of the theodolite above the station mark at each of the primary stations of the one hundred and fourth meridian and at those primary stations of the thirty-ninth parallel where the data were available. These elevations enable the reader to judge of the amount of building done and they permit the engineer or surveyor who uses the stations to form an estimate of the probable amount of building required to make any particular line clear.

The abstracts of horizontal directions and the condition equations in the thirty-ninth parallel triangulation are reprinted, but the numbers assigned to the directions were preserved. The table of corrections to the observed directions enables the reader to compare directly with the corresponding corrections in the original adjustment.

Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.	Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.
Arapahoe, 12.68 me- ters.	154 155 	First View. Cheyenne Wells. Monotony: McLane. Curlew. McLane.	0 00 59.98 33 03 37.83 60 41 14.87 106 32 46.02 158 31 39.74 0 00 00.00	$ \begin{array}{r} & & \\ & 59.80 \\ 37.56 \\ 14.70 \\ 46.33 \\ 40.21 \\ \hline 59.71 \end{array} $	Big Springs	$\begin{cases} 25\\ 26\\ 27\\ 28\\ 224\\ 225 \end{cases}$	Corral Bluffs El Paso east base Divide Hoicolm Hills Square Bluffs Cramer Gulch Dry Camp.	0 00 59.90 27 23 27.38 33 35 42.043 54 42 04.94 138 58 19.89 188 03 38.51 235 37.57 070	" 00.03 26.88 41.31 05.17 20.46 38.64
Monotony, 12.68 me- ters.	162 163 164	Curlew. Arapahoe. First View. Cheyenne Wells Landsman.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06.76 45.29 58.84 48.08 19.41			Plateau. Pikes Peak. Holcolm Hills Big Springs	279 28 24. 430 344 22 41. 480 0 00 59. 89 33 19 29. 08	25.01 41.04 00.11 28.50
Cheyenne Wells	$\left\{\begin{array}{c} 165\\ 166\\ 167\\ 168\end{array}\right.$	Monotony. Arapahoe. Flrst View. Landsman.	0 00 00.08 71 09 20.69 160 18 22.37 212 27 29.72	$\begin{array}{c} 00.11 \\ 21.44 \\ 22.46 \\ 28.83 \end{array}$	Divide, 1.45 meters	17 18 19 5 65 6	ElPaso east base Corral Bluffs El Paso west base. Pikes Peak Blson. Elbert	$\begin{array}{r} 464759,79\\ 831411,32\\ 984224,44\\ 1265920,22\\ 1682932,54\\ 229014402 \end{array}$	60.56 11.21 25.00 20.33 33.38 43.54
Flrst Vlew, 9.62 me- ters.	$\left\{\begin{array}{c} 169\\ 170\\ 171\\ 172\\ 173\\ 174\end{array}\right.$	Klt Carson Eureka. Landsman. Cheyenne Wells Monotony. Arapahoe.	0 00 00.06 57 33 37.39 99 35 36.20 147 25 30.46 155 42 18.79 205 12 52.89	59.97 37.40 36.84 29.94 18.64 52.99		55 50	Hilltop Azimuth mark, Mount Rosa. Plateau Mount Ouray	230 46 25.14 0 00 00.00 0 24 12.57 107 11 36.82	12.52 36.74
Landsman	175 176 177 178 179	Monotony Cheyenne Wells First View Kit Carson. Eureka.	0 00 00.05 15 56 56.61 95 57 59.24 148 12 39.99 205 13 38.86	59.79 57.53 58.76 39.74 38.92	Pīkes Peak, 1.33 meters.	51 52 4 54 1 2 3	Mount Elbert Bison Divide Big Springs Morrison Hilltop Elbert	$\begin{array}{c} 145\ 46\ 20.\ 91\\ 179\ 36\ 26.\ 33\\ 281\ 54\ 23.\ 84\\ 319\ 01\ 36.\ 65\\ 211\ 48\ 45.\ 82\\ 247\ 43\ 11.\ 09\\ 263\ 47\ 48\ 56\\ \end{array}$	21.86 26.20 23.58 37.08 45.85 10.38 48.40
Kit Carson, 2.11 me- ters.	$\left\{ \begin{array}{c} 180 \\ 181 \\ 182 \\ 183 \\ 184 \end{array} \right.$	Aroya. Overland. Eureka. Landsman. First View.	$\begin{array}{c} 0 \ 00 \ \overline{59.93} \\ 32 \ 24 \ 48.48 \\ 67 \ 39 \ 53.21 \\ 108 \ 58 \ 51.12 \\ 137 \ 08 \ 34.21 \end{array}$	59.38 48.96 53.05 51.09 34.49	El Paso east base		Azimuth mark Holcolm Hills Big Springs Corral Bluffs El Paso west base.	0 00 00.00 67 48 34.55 141 17 47.24 229 57 10.61 282 48 01 53	33.93 48.24 10.28 01.48
Eureka, 1.90 meters.	$\left\{ \begin{array}{c} . \ 185 \\ 186 \\ 187 \\ 188 \\ 189 \end{array} \right.$	Landsman. First Vlew Kit Carson. Aroya Overland.	$\begin{array}{c} 0 \ 00 \ \overline{59.97} \\ 28 \ 42 \ 22.12 \\ 81 \ 40 \ 04.71 \\ 137 \ 13 \ 18.52 \\ 186 \ 32 \ 02.17 \end{array}$	00.26 21.66 04.89 18.82 01.87	El Paso west base	6 7 8 9	Divlde Divide Holcolm Hills El Paso east base Corral Bluffs	340 58 34. 40 0 00 00. 14 50 45 56. 49 69 55 02. 78 148 54 53. 35	34.41 59.44 57.17 02.40 53.76
Aroya, 1.90 meters	$\left\{ \begin{array}{c} 190 \\ 191 \\ 192 \\ 193 \\ 194 \end{array} \right.$	Adobe. Hugo. Overland. Eureka. Klt Carson.	0 00 00.08 69 40 19.90 115 08 24.66 167 53 52.18 224 40 46.23	$\begin{array}{c} 00.51\\ 18.93\\ 24.74\\ 52.15\\ 46.72 \end{array}$	• -	10 11	Bear Creek Glen Eyrie El Paso west basc. Divide	202 33 37.97 219 44 24.05 0 00 00.01 15 36 52.53	00.09
Overland, 1.75 me- ters.	$\begin{bmatrix} & & & & \\ & 195 \\ & 196 \\ & 197 \\ & 198 \\ & 199 \end{bmatrix}$	Azimuth mark Eureka. Kit Carson Aroya. Adobe. Hugo	0 00 00.00 104 10 37.47 144 03 38.94 182 06 29.09 219 50 30.24 277 58 13.86	37.68 38.68 29.01 30.23 14.00	Corral Bluffs	$ \begin{bmatrix} 12 \\ 13 \\ 14 \\ \dots \\ \ $	Holcolm Hills Big Springs Bear Creek Glen Eyrie Reference mark	$\begin{array}{r} 480918.10\\ 564011.19\\ 1120629.59\\ 2551513.89\\ 2751841.66\\ 00000.000\end{array}$	17.87 11.22 30.08
Hugo, 1.91 meters	$ \left\{\begin{array}{c} 200 \\ 201 \\ 202 \\ 203 \\ 204 \end{array}\right. $	Overland. Aroya Adobe. Square Bluffs Holt.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.88 11.06 30.08 34.96 20.43	Blson	57 58 59 56 (61	Pikes Peak Mount Ouray Mount Elbert Divlde Pikes Peak.	8 05 07.647 84 58 58.452 130 53 06.876 331 53 09.941 0 00 59.714	07.21 58.78 07.02 09.92
Adobe, 5.61 meters	207 208 209 205	Mark. Hugo. Overland. Aroya. Cramer Gulch.	0 00 00.00 4 35 07.30 39 35 56.52 66 43 33.19 254 09 13.06	06.97 56.36 33.03 12.44	Plateau	62 63 	Corral Biuffs Big SprIngs Dry Camp Mount Ouray Reference mark	36 49 56. 694 73 43 16. 683 98 12 57. 315 312 14 50. 449 0 00 00. 000	56.62 16.07 50.93
Square Bluffs, 1.83 meters.	$ \left\{\begin{array}{c} 210\\ 211\\ 212\\ 213\\ 214\\ 215 \end{array}\right. $	Holt. Hugo. Adobe. Cramer Gulch Big Springs.	0 00 59.89 78 24 58.62 159 45 07.59 228 06 18.44 284 02 36.32	59.55 59.92 06.78 18.60 36.42	Mount Ouray	39 40 41 42 43	Uncompany Treasury Moun- tain. Mount Elbert Blson Plkes Peak	143 02.572 73 31 43.901 134 01 13.790 169 02 58.555 217 35 12.159 248 16 47.931 972 44.22 19.255	44.54 14.16 48.15 12.56 47.65
Holt, 1.83 meters	$ \left\{\begin{array}{c} 213 \\ 216 \\ 217 \\ 218 \end{array}\right. $	Hugo Square Bluffs Holcolm Hllls	0 00 00.02 65 09 15.48 178 19 13.47	59.45 15.83 13.68		28 29 20	Azimuth mark Mount Ellen Mount Waas	0 00 00.000 17 57 20.789 34 57 59.822	21.30 59.81
Cramer Gulch, 6.22 meters.	$\begin{cases} 219 \\ 220 \\ 221 \\ \dots \end{pmatrix}$	Blg Springs Square Bluffs Adobe Dry Camp	$\begin{array}{c} 0 & 00 & \overline{59.89} \\ 74 & 58 & 25.93 \\ 131 & 37 & 12.56 \\ 319 & 47 & 03.96 \end{array}$	59.52 25.97 12.90	Uncompangre	30 31 32 33	Treasury Moun- tain. Mount Elbert Mount Ouray	122 33 55.882 142 52 07.746 175 40 48.333	01.38 56.00 07.52 47.77
Holcolm Hiils	$\begin{cases} & & & \\ & $	Holt Square Bluffs Big Springs Corral Bluffs El Paso east basc El Paso west base. Divide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.29 13.21 27.47 05.37 35.83 58.37 36.31	Tushar		Beaver. Ploche. Wheeler Peak Ibepah. Mount Nebo. Wasatch. Mount Ellen	$\begin{array}{c} 0 \ 00 \ 00. \ 000 \\ 27 \ 52 \ 18. \ 310 \\ 67 \ 17 \ 11. \ 920 \\ 96 \ 32 \ 30. \ 837 \\ 155 \ 33 \ 43. \ 204 \\ 182 \ 45 \ 10. \ 509 \\ 238 \ 41 \ 36. \ 230 \end{array}$	$18.40 \\ 12.29 \\ 39.44 \\ 43.20 \\ 10.56 \\ 37.26$

.

Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion,	Object observed.	Observed direction reduced to sea levei.	Final seconds after figure adjust- ment.	Station occupied and elevation of instrument above station mark.	Num- her of direc- tion.	Object observed.	Observed direction reduced to sea level.	Finai seconds after figure adjust- ment.
	34	Azimuth mark Patmos Head Wasatch Tushar	0 00 00. 000 99 26 42. 181 155 13 16. 371 194 36 40. 201	" 41.97 16.61 40.43	Watkins astronom- lc, 3.23 meters.	24b 240 24d	Indian. Morrison. Boulder	0 00 59.96 90 56 19.09 122 06 14.94	" 58.89 19.74 15.37
Mount Nebo		Wheeler Peak Ibepah Pilot Peak Deseret Ogden Peak	$\begin{array}{r} 242\ 40\ 45.\ 872\\ 265\ 48\ 49.\ 516\\ 299\ 41\ 12.\ 903\\ 309\ 18\ 29.\ 602\\ 350\ 55\ 13.\ 503 \end{array}$	45.93 49.37 12.85 29.47 13.83	Warren, 1.27 meters.	$\left\{\begin{array}{c} 61 \\ 62 \\ 63 \\ 59 \\ 60 \end{array}\right.$	Twin Russeli Wadill. Dewey Horsetooth	0 00 59.97 27 11 38.16 68 54 53.96 239 23 26.51 291 59 14.69	59.69 37.05 53.71 27.35 14.57
Patmos Head	0 10 11 12	Azimuth mark Tavaputs Mount Waas Mount Ellen Wasatch.	0 00 00.000 98 42 01.717 149 29 04.862 207 09 05.278 257 55 46.513	01.25 05.08 05.40 46.98	Dewey, 0.96 meter	45 46 47 43 44	Horsetooth Twin Warren. Brlghton. Boulder	$\begin{array}{c} 0 \ 00 \ \overline{59.98} \\ 41 \ 11 \ 10.44 \\ 61 \ 06 \ 10.73 \\ 283 \ 57 \ 46.45 \\ 312 \ 17 \ 14.36 \end{array}$	00.79 10.32 09.72 45.99 15.15
Wasatch	13 6 7 8	Azimuth mark Mount Nebo Patmos Head Mount Ellen	$\begin{array}{c} 0 & 00 & 00. & 000 \\ 56 & 15 & 21. & 300 \\ 141 & 19 & 25. & 472 \\ 228 & 22 & 19. & 500 \\ 229 & 10 & 50 & 500 \end{array}$	30.22 20.99 25.26 19.79	Horsetooth, 1.36 meters.	50 51 52 48 49	Dewey. Brighton. Boulder. Twin. Warren.	0 00 59.99 52 59 00.94 93 51 37.90 260 21 54.73 293 41 48.62	59.59 01.04 38.12 55.31 48.13
Mount Waas	19 20 21	Azimuth mark Mount Ellen Patmos Head Tavaputs	0 00 00.000 57 49 34.078 124 44 59.353 175 33 49.680	34.25 58.92 49.70	Boulder, 1.26 meters	33 34 35 35a 36	llorsetooth Dewey Brighton Watkins astro- nomic. Indian	0 00 00.04 38 25 45.65 73 16 02.22 104 24 42.78 111 31 36.80	00.30 45.08 01.27 43.94 36.61
	22 23	Treasury Mountain Uncompangre	239 14 21. 688 273 50 30. 935	22.02 30.86		37	Morrison Indian	161 17 19.55 0 00 00.09	19.82 59.96
Mount Ellen	$\begin{bmatrix} 14 \\ 15 \end{bmatrix}$	Azimuth mark Tushar Wasatch	0 00 00.000 121 30 16.781 171 06 54.365	16.90 53.79	Douglas, 1.40 meters	18	Morrison	141 16 23.19 264 00 04.64	23.54 04.41
AQUITO EMCL	16 17 18	Patmos Ilead Mount Waas Uncompangre	213 17 51.574 268 43 14.464 287 44 08.352 0.00 00.000	51.24 14.96 08.65	Ragged, 1.40 meters.	87 88 84 85	Wadili Greentop Notch. Chugwater	23 39 47.74 74 41 54.68 262 30 14.41 294 23 52.26	47.98 55.11 14.31 51.82
Treasury Mountain.	34 35 36 37 38	Mount Elbert Mount Ouray Uncompahgre Mount Waas Tavaputs	137 13 55.336 189 27 23.228 255 51 27.047 313 40 06.691 349 02 27.958	55.70 22.77 26.93 07.08 27.78	Wadill, 1.38 meters.	67 68 69 64 65	Greentop Ragged. Whitaker Warren. Twin	$\begin{array}{c} 0 & 00 & \overline{59.91} \\ 13 & 26 & 37.85 \\ 59 & 34 & 20.03 \\ 235 & 21 & 02.62 \\ 300 & 05 & 14.17 \\ 300 & 05 & 14.17 \\ \end{array}$	59.61 38.30 19.78 02.35 14.23
	24	Azimuth mark Treasury Moun-	0 00 00.000 87 15 56.924	56.98		69a	Cheyenne west base.	337 35 33.48 17 02 52.14	33.51 52.65
Tavaputs	25 26 27	Uncompanyre Mount Waas Patmos Head	118 24 50.337 168 13 53.180 246 38 30.060	49.89 53.31 30.32		(76	base. Wadill	0 00 59.92	59.07
Mount Eibert	45 46 47	Reference mark Bison Pikes Peak Mount Ouray	0 00 00.000 176 00 16.476 199 22 22.679 261 34 00.140	16.24 22.54 00.28	Greentop, 1.28 me- ters.	77 78 74 74 75	Twin. Russell. Ragged. Whitaker.	62 16 07.41 66 31 40.16 244 28 44.59 330 14 25.44	08.66 40.01 44.13 25.67
	48 49	Uncompany Moun- tain.	313 14 39.165 354 19 11.010	39.55 10.86	Russell, 1.30 meters.	$\left\{\begin{array}{c} 70\\71\\72\\72\end{array}\right.$	Greentop. Wadiil. Warren.	0 00 59.98 91 03 54.17 127 00 08.19	59.05 53.89 09.00
Hilltop, 1.34 meters.	$ \left\{\begin{array}{c} 17\\ 12\\ 13\\ 14\\ 15\\ 16 \end{array}\right. $	Indian. Dlvide Eihert. Pikes Peak Morrison Dowrles	0 00 00.05 151 32 27.41 152 50 49.22 193 34 17.30 282 38 49.46 233 14 26 84	58.96 28.22 50.36 17.27 48.84 26.62	Twin, 1.42 meters	58 53 54 55	Horsetooth. Russeli. Greentop. Wadill.	$\begin{array}{c} 173 \ 13 \ 00, 05\\ 0 \ 00 \ \overline{59.97}\\ 174 \ 39 \ 01.24\\ 177 \ 10 \ 29.96\\ 234 \ 59 \ 37.06 \end{array}$	00.18 00.35 01.22 29.72 37.28
	25	Brighton	0 00 59.94	59.45 18.27		56 57	Warren Dewey	281 20 33.34 320 49 06.91	33.53 06.41
Indian, 1.10 meters	21	nomic. Hilitop	212 53 14.81 224 51 19.30	15.41	Cheyenne west hase, 1.44 meters.	431	Cheyenne east hase.	89 53 02.02	02.14
	23 24	Morrison Bouider	291 24 37.08 318 55 25.92	37.37 26.03	Chevenne east base,	435	Wadiil. Cheyenne west	0 00 00.20	00.26
	26 27 27a	Boulder Brighton Watkins astro-	0 00 59.94 56 00 44.81 91 57 34.27	59.55 45.16 32.50	1.44 meters.	434	hase. Whitaker	180 38 03.19	03.42
Morrison, 1.42 me- ters.	28 29 30 31	nomic. Indian. Dougias. Hijitop. Eihert.	102 43 32.17 120 10 20.17 126 51 02.77 142 10 48.31	32. 12 20. 96 03. 12 47. 98	Haystack, 1.22 me- ters.	$ \begin{array}{c c} 101 \\ 102 \\ 103 \\ 104 \\ 99 \\ 100 \\ \end{array} $	Viliow. Hobbs. Rawhide. Chugwater. Noteh.	$\begin{array}{c} 0 \ 00 \ 59.98 \\ 82 \ 07 \ 07.21 \\ 94 \ 24 \ 04.24 \\ 108 \ 58 \ 16.84 \\ 294 \ 26 \ 05.31 \\ 325 \ 36 \ 07.76 \end{array}$	00.09 07.33 03.93 16.36 05.77 07.85
Elbert, 1.36 meters	11 8 9 10	11iiltop. Divide. Plkes Peak. Morrison.	0 00 59.94 176 56 56.26 236 48 00.36 325 07 40.15	59.18 56.82 00.91 39.82	Coieman, 1.31 me- ters.	$\left\{\begin{array}{c} 107\\ 108\\ 109\\ 105\\ 106\end{array}\right.$	Haystack Chugwater Notch. Willow Hobbs.	$\begin{array}{c} 0 \ 00 \ \overline{59.99} \\ 79 \ 11 \ 15.86 \\ 111 \ 25.05.23 \\ 312 \ 31 \ 28.00 \\ 327 \ 34 \ 21.20 \end{array}$	59.40 15.92 05.29 27.55 22,18
Brighton, 1.36 me- ters.	38 39 40 41 42	Indian. Morrison. Boulder. Ilorsetooth Dewey.	$\begin{array}{c} 0 & 00 & \overline{59.92} \\ 64 & 41 & 55.29 \\ 100 & 39 & 56.02 \\ 166 & 31 & 25.21 \\ 217 & 30 & 16.45 \end{array}$	59.49 56.09 55.82 25.10 16.37	Notch, 1.42 meters.	96 97 98 94 95	Chngwater. Whitakcr. Raggcd. Coleman. Havstack	0 00 59.88 21 50 37.18 44 26 21.55 248 38 31.04 282 49 36.62	59.51 37.01 22.03 31.02 36.72

.

Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.	Station occupied and elevation of instrument above- station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.
Chugwater, 1.41 me- ters.	91 92 93 89 90	Notch Coleman Haystack. Whitaker Ragged.	0 00 59.85 36 24 45.62 71 39 42.03 219 21 18.01 256 19 55.49	" 00. 12 45. 72 41. 21 18. 11 55. 86	Elk, 1.40 meters	$ \left\{\begin{array}{c} 176\\ 177\\ 178\\ 174\\ 175 \end{array}\right. $	Alkali. Cambria. Crow. Parker. Sullivan.	0 00 00.04 87 45 17.78 116 49 38.08 247 24 02.20 271 40 27.31	00. 45 17. 79 38. 31 01. 68 27. 17
Whitaker, 1.38 me- ters.	80 81 82 83 79 79a	Greentop. Ragged. Notch. Chugwater. Wadill. Cheyenne east	$\begin{array}{c} 0 & 00 & 00. \ 06 \\ 19 & 32 & 24. \ 87 \\ 79 & 26 & 58. \ 96 \\ 96 & 57 & 42. \ 36 \\ 269 & 19 & 52. \ 31 \\ 269 & 26 & 54. \ 72 \end{array}$	00.70 24.59 59.02 42.13 53.07 54.35	Cambria, 1.24 meters	$ \left\{\begin{array}{c} 182\\ 183\\ 184\\ 185\\ 186 \end{array}\right. $	Inyankara Laird. Crow Elk. Alkall.	$\begin{array}{c} 0 \ 00 \ \overline{59.90} \\ 72 \ 54 \ 00.28 \\ 120 \ 20 \ 22.73 \\ 195 \ 31 \ 11.22 \\ 241 \ 17 \ 58.26 \\ \end{array}$	00.26 59.69 22.90 11.15 58.38
	79b	Cheyenne west base.	299 06 01.98	01.43	Crow, 19.28 meters	180 181 179	Laird Elk	81 10 47.84 284 15 07.14	48.25 06.91
Hobbs, 1.32 meters	$\left\{\begin{array}{c} 110\\ 111\\ 112\\ 112\\ 113\end{array}\right.$	Haystack Coleman Willow Rawhide	0 00 00.03 53 10 21.77 142 26 35.12 256 16 37.78	00. 38 22. 05 35. 08 37. 18	Laird, 1.19 meters	$\begin{cases} 188 \\ 189 \\ 190 \\ 191 \\ 191 \\ 191 \\ 191 \\ 191 \\ 197 \\ 19$	Cambria Inyankara Sundance Terry	0 00 00.00 51 41 47.47 91 10 54.64 187 07 35.74	00.54 47.75 54.82 35.13
Rawhide, 1.46 me- ters.	$\left\{\begin{array}{c} 116\\ 117\\ 118\\ 114\\ 115\end{array}\right.$	Willow Manville Kirtley Haystack Hobbs	$\begin{array}{c} 0 \ 00 \ \overline{59.89} \\ 38 \ 08 \ 35.61 \\ 98 \ 00 \ 51.88 \\ 255 \ 11 \ 35.13 \\ 316 \ 53 \ 58.85 \end{array}$	59.8035.4051.7234.7959.67	Inyankara, 1.42 me- ters.	$ \left\{\begin{array}{c} 187\\ 192\\ 193\\ 194\\ 195\\ 196 \end{array}\right. $	Sundance Terry Laird Cambria. Alkali	$\begin{array}{c} 0 & 00 & \overline{59.94} \\ 87 & 51 & 00.08 \\ 105 & 57 & 00.82 \\ 161 & 21 & 15.42 \\ 205 & 01 & 33 & 54 \end{array}$	59.96 00.68 00.39 15.03 33.75
Willow, 1.42 meters.	$\left\{\begin{array}{c} 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ \end{array}\right.$	Manville Kirtley Rawhide. Hobbs. Haystack Coleman.	$\begin{array}{c} 0 \ 00 \ 00. \ 07 \\ 45 \ 50 \ 57. \ 05 \\ 107 \ 04 \ 41. \ 10 \\ 130 \ 08 \ 38. \ 74 \\ 155 \ 25 \ 07. \ 50 \\ 205 \ 49 \ 33. \ 21 \end{array}$	00. 17 56. 39 40. 94 38. 95 08. 21 32. 99	Terry, 1.52 meters	$\left\{\begin{array}{c} 197\\198\\199\\200\\.201\end{array}\right.$	Laird . Inyankara. Sundance Wymonkota. Castle.	0 00 00.12 26 28 14.73 62 38 02.19 118 54 04.12 155 05 17.13	00.61 14.44 02.02 04.11 17.12
Manville, 1.37 me- ters.	$\left\{ \begin{array}{c} 126 \\ 127 \\ 128 \\ 129 \\ 125 \end{array} \right.$	Kirtley Rawhide Willow Alkali Parker	$\begin{array}{c} 0 & 00 & 00. & 01 \\ 78 & 31 & 22. & 84 \\ 113 & 18 & 06. & 68 \\ 277 & 07 & 28. & 80 \\ 321 & 46 & 21. & 80 \end{array}$	00.66 22.53 07.00 28.47 21.46	Sundance, 1.37 me- ters.	$\left\{\begin{array}{c} 208\\ 202\\ 203\\ 204\\ 205\end{array}\right.$	Inyankara Wymonkota Castle Terry. Laird	0 00 59.94 221 18 22.86 248 10 28.02 304 00 44.73 325 26 05.38	59.90 22.99 27.81 44.86 05.36
Kirtley, 1.23 meters.	$\left\{ \begin{array}{c} 134\\ 130\\ 131\\ 132\\ 133\\ 133\\ \end{array} \right.$	Rawhide Willow Manville Alkali Parker	0 00 00.11 20 45 26.12 41 36 25.18 113 38 26.69 162 36 37.49	00. 44 25. 97 25. 18 26. 50 37. 50	Castle, 1.32 meters	$\left\{\begin{array}{c} 210\\ 211\\ 212\\ 207\\ 208\\ 209\end{array}\right.$	Harding Moreau Reva Terry. Sundance. Wymonkota	$\begin{array}{c} 0 & 00 & \overline{59.93} \\ 11 & 24 & 39.43 \\ 56 & 41 & 33.52 \\ 241 & 59 & 15.90 \\ 273 & 41 & 55.01 \\ 310 & 18 & 33.07 \end{array}$	00.00 39.28 33.35 16.12 54.70 33.43
Cottonwood, 1.33 meters.	153 Sullvan. 154 Parker. 155 Provo east base. 156 Provo astronomic. 157 Provo west base. 152 Alkali.		$\begin{array}{c} 0 & 00 & 00.04 \\ 52 & 03 & 21.60 \\ 88 & 42 & 55.29 \\ 94 & 16 & 19.06 \\ 108 & 58 & 44.65 \\ 311 & 53 & 38.06 \end{array}$	59.72 21.84 55.47 19.25 43.93 38.48	Table, 1.31 meters	$ \begin{bmatrix} 233 \\ 234 \\ 235 \\ 236 \\ 237 \end{bmatrix} $	Butte. Whetstone. Lodge Reva. Harding.	0 00 00.05 24 55 31.84 64 48 04.49 104 14 39.12 165 58 52.50	59.72 31.60 04.53 39.75 52.41
Sullivan, 1.37 me- ters.	$\left\{\begin{array}{c} 172\\ 173\\ 170\\ 171\end{array}\right.$	Alkali Elk. Parker Cottonwood	$\begin{array}{c} 0 & 00 & \overline{59.98} \\ 68 & 27 & 42.52 \\ 213 & 03 & 56.23 \\ 274 & 41 & 18.98 \end{array}$	59.60 42.58 56.18 19.35	Reva, 1.27 meters	$ \left\{\begin{array}{c} 232\\ 228\\ 229\\ 230\\ 231 \end{array}\right. $	Lodge. Castle Moreau. Harding. Table	0 00 00.03 177 38 48.71 217 22 55.84 227 14 20.30 296 30 26.21	00.70 48.83 55.82 19.95 25.80
Provo east base, 9.70 meters.	$\left\{ \begin{array}{c} 169 \\ 166 \\ 167 \\ 168 \end{array} \right.$	Parker Provo west base Provo astronomic. Cottonwood	0 00 00.03 245 27 12.79 251 21 54.32 269 55 51.79	00.30 11.86 54.88 51.91	Harding, 1.38 me-	218 219 220	Table. Lodge Reva.	0 00 00.03 32 26 17.99 48 59 48.17	00.01 18.11 48.24
Provo astronomic, 1.35 meters.	$\left\{ \begin{array}{c} 164 \\ 165 \\ 162 \\ 163 \end{array} \right.$	Parker. Provo east base Provo west base Cottonwood	0 00 00.07 56 03 54.33 224 42 18.72 260 11 14.61	$\begin{array}{r} 00.18\\54.33\\18.25\\14.98\end{array}$	ters.	221 222 223	Moreau. Castle Wymonkota	85 01 09.45 122 42 50.92 184 34 52.02	09.20 51.13 51.88
Provo west base, 4 14 meters.	$\left\{\begin{array}{c} 160\\ 161\\ 158\\ 159\end{array}\right.$	Provo astronomic. Provo east base Cottonwood Parker	0 00 00.04 5 26 53.74 230 09 21.21 325 13 07.02	00.27 53.36 21.42 06.95	Moreau, 1.30 meters.	$ \left\{\begin{array}{c} 227 \\ 224 \\ 225 \\ 226 \end{array}\right. $	Reva Castle Wymonkota Harding	0 00 00.06 94 59 04.10 162 04 59.95 225 52 43.78	00.05 04.05 59.84 43.96
Parker, 1.33 meters.	$ \left\{\begin{array}{c} 140\\ 141\\ 142\\ 143\\ 135\\ 136\\ 127 \end{array}\right. $	Cotton wood. Alkali. Sullivan. Elk. Provo east base Provo east base Kirtley.	0 00 00.08 48 18 44.86 66 19 17.29 77 26 37.90 306 43 40.20 322 01 40.61	59.40 45.15 16.96 38.63 39.76 40.56 36.19	Wymonkota, 1.44 meters.	$\left\{\begin{array}{c} 213\\ 214\\ 215\\ 216\\ 217\end{array}\right.$	Harding. Moreau. Castle Terry. Sundance.	0 00 00.04 16 38 34.51 68 26 38.10 143 56 17.40 184 58 01.48	00.11 34.79 37.84 17.10 01.71
	137 138 139 (144	Provo west base Manville Inyankara	0 00 00.04	05.65 50.47 00.03	Lodge, 1.28 meters	$ \begin{bmatrix} 238 \\ 239 \\ 240 \\ 241 \\ 242 \end{bmatrix} $	Reva. Harding. Table Butte. Whetstone	0 00 00.04 30 40 51.22 77 03 52.92 129 20 40.16 173 26 34.75	59. 16 51. 73 52. 65 40. 61 34. 94
Alkali, 1.41 meters.	145 146 147 148 149 150 151	Elk Sullivan. Parker. Cottonwood. Kirtley. Manville.	$\begin{array}{c} 17 \ 37 \ 42.20 \\ 64 \ 05 \ 41.19 \\ 87 \ 18 \ 25.96 \\ 102 \ 21 \ 52.04 \\ 133 \ 53 \ 28.96 \\ 150 \ 08 \ 45.09 \\ 175 \ 14 \ 18.77 \end{array}$	41.98 40.86 26.04 52.62 28.38 44.62 19.76	Whetstone, 1.05 me- ters.	248 249 250 251 252	Lodge Table. Butte. Black. Rainy	0 00 00.02 43 44 48.93 74 24 24.44 104 44 11.74 156 09 28.72	59.72 49.30 24.68 11.84 28.30

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

	1			1	1	1			1
Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.	Station occupied and elevation of instrument above station mark.	Num- ber of direc- tlon.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.
Butte, 1.19 meters	243 244 245 246 247	Black Rainy Whetstone Lodge Table	$\begin{array}{c} 0 & 00 & \overline{59.98} \\ 52 & 25 & 12.90 \\ 98 & 56 & 10.07 \\ 160 & 25 & 54.94 \\ 223 & 21 & 05.67 \end{array}$	" 00.09 12.46 10.45 54.57 05.99	Buford, 1.24 meters.	317 318 319 320 321 322	Jackson Montana Bainville Snake. Bull Williston	$\begin{smallmatrix} & & & & & \\ & 0 & 00 & 00.03 \\ & 8 & 20 & 03.62 \\ & 76 & 25 & 16.46 \\ & 87 & 36 & 54.68 \\ & 110 & 53 & 52.67 \\ & 154 & 10 & 39.52 \\ \end{smallmatrix}$	00.04 03.44 17.08 54.78 52.71 39.05
Black, 1.15 meters	$\left\{ \begin{array}{c} 257 \\ 253 \\ 254 \\ 255 \\ 256 \end{array} \right.$	Butte. Sentinel. Badland Rainy. Whetstone.	0 00 59.98 162 54 13.57 206 49 32.60 263 20 52.96 309 15.57.14	00.29 13.37 33.30 53.29 56.00		315 316 348 349	Sheep. Lovering Jackson Lanark	280 07 05.91 334 12 44.71 0 00 00.07 100 20 36.34	05.73 44.81 59.62 36.12
Rainy, 1.08 meters	258 259 260 261 262	Whetstone Butte. Black Sentinel Badland	$\begin{array}{c} 0 & 00 & \overline{59.98} \\ 51 & 44 & 02.26 \\ 82 & 39 & 44.04 \\ 135 & 50 & 52.53 \\ 146 & 15 & 40.61 \end{array}$	$\begin{array}{c} 00.73 \\ 01.69 \\ 44.15 \\ 52.77 \\ 40.92 \end{array}$	Mondak, 1.25 meters.	$ \begin{bmatrix} 350 \\ 351 \\ 352 \end{bmatrix} $ $ \begin{bmatrix} 362 \\ 360 \end{bmatrix} $	Montana Mondak Ferry Montana Ferry	$\begin{array}{c} 188 \ 41 \ 28.57 \\ 208 \ 37 \ 31.54 \\ 231 \ 02 \ 19.22 \\ 0 \ 00 \ \overline{59.99} \\ 223 \ 14 \ 56.04 \end{array}$	28.55 31.97 19.47 00.40 56.16
Badland, 1.22 me- ters.	263 264 265 266 266	Saddle Rainy Black. Sentinel	$\begin{array}{c} 176 \ 00 \ 05.90 \\ 0 \ 00 \ \overline{59.95} \\ 59 \ 52 \ 45.90 \\ 161 \ 44 \ 44.10 \\ 000 \ 000 \ 000 \ 44.10 \\ 000 \ 000 \ 000 \ 44.10 \\ 000 \ 000$	05.04 59.81 45.50 44.04	Ferry, 0.28 meter	361 363 364 365	Cutoff Cutoff Montana Mondak	274 20 C7.65 0 00 59.98 86 11 44.09 106 30 01.43	07.13 59.77 44.36 01.36
Sentinel, 1.20 me- ters.	$ \left(\begin{array}{c} 267\\ 274\\ 275\\ 276\\ 277\\ 278\\ 279\\ 273 \end{array}\right) $	Saddle. Hump Saddle. Badland. Rainy. Black. Blue.	239 21 03.43 0 00 00.02 3 38 41.07 61 19 00.66 102 47 22.58 110 37 51.39 137 00 08.21 316 08 09.11	59.83 41.30 00.18 22.83 51.54 08.04 09.34	Montana, 1.18 me- ters.	$\left\{\begin{array}{c} 357\\ 358\\ 359\\ 353\\ 354\\ 355\\ 356\end{array}\right.$	Jackson. Cutoff. Lanark Buford. Sheep. Mondak. Ferry.	$\begin{array}{c} 0 & 00 & 00.03 \\ 5 & 18 & 56.35 \\ 61 & 10 & 17.19 \\ 190 & 16 & 08.24 \\ 275 & 33 & 17.26 \\ 290 & 54 & 53.26 \\ 313 & 51 & 32.05 \end{array}$	59.92 56.29 17.85 08.28 17.48 52.91 31.69
Saddle, 1.28 meters	$\left\{\begin{array}{c} 272 \\ 268 \\ 269 \\ 270 \end{array}\right.$	Cook. Rainy. Badland	0 00 59.97 227 58 11.52 257 34 54.46 318 30 15.01	59.63 11.80 54.20 14.97	Bainville, 1.30 me- ters.	$ \left\{ \begin{array}{c} 342 \\ 343 \\ 344 \\ 344 \end{array} \right. $	Snake Buford Jackson	0 00 00.01 135 12 00.52 197 21 53.35 0 00 00.02	0C. 45 59. 99 53. 43
Hump, 1.22 meters	$ \begin{bmatrix} 271 \\ 282 \\ 283 \\ 280 \\ 001 \end{bmatrix} $	Hump. Cook. Saddle. Sentinel.	329 06 21.73 0 00 00.02 73 24 55.15 185 08 30.31	22.09 00.02 55.17 30.14	Lanark, 1.09 meters.	345 346 368 369	Montana Cutoff Williston Buford	281 50 43.73 317 38 29.23 0 00 59.97 59 45 10.05	43.10 29.41 00.41 09.81
Cook, 1.21 meters	281 285 286 287 288 289 289 284	Hump Sentinel. Blue. Trotter. Flat. Saddle	0 00 00.02 1 29 48.36 97 01 11.35 139 34 02.53 150 43 32.73 284 18 30 03	04.99 59.94 48.64 10.98 02.39 32.90 30.20	Bull, 1.32 meters Snake, 1.25 meters	$ \begin{array}{c} 366\\ 367\\ 370\\ 331\\ 332\\ 333\\ 333\\ 333\\ 333\\ 333\\ 333$	Gladys. Bonetraill Snake Bull. Williston. Buford.	287 55 21.16 305 24 33.83 116 48 35.36 0 00 00.04 41 09 48.35 99 39 37.74	20.79 34.06 35.32 00.19 48.49 37.65
Blue, 1.29 meters	$\left\{\begin{array}{c} 292\\ 293\\ 294\\ 295\\ 296\\ 290\\ 291\end{array}\right.$	Flat. Trotter. Cook. Hump. Sentinel. Lovering. Sheep.	0 00 00.04 25 03 25.15 59 36 26.49 91 03 22.49 100 13 17.39 295 11 32.12 344 45 22.85	00.18 24.98 26.86 22.79 16.86 31.92 23.01	Williston, 1.25 me- ters.	335 335 336 337 338 339 340	Jackson Marmon Buford Snako. Bull Gladys. Bonetraill	147 18 39.80 0 00 00.03 186 31 01.72 241 27 31.02 263 29 08.16 304 26 15.67 311 29 24.32	59, 98 02, 23 30, 65 08, 11 15, 56 24, 41
Flat, 1.33 meters	$ \left\{\begin{array}{c} 300\\ 301\\ 302\\ 303\\ 304 \end{array}\right. $	Cook. Trotter. Blue. Lovering. Sheep.	$\begin{array}{c} 0 & 00 & \overline{59.98} \\ 16 & 59 & 35.30 \\ 66 & 41 & 13.79 \\ 147 & 15 & 41.71 \\ 210 & 35 & 54.11 \end{array}$	$\overline{59.91}$ 35.36 13.60 41.94 54.06	Bonctraill, 1.27 me- ters.	$\left\{\begin{array}{c} 374\\ 371\\ 372\\ 372\\ 373\end{array}\right.$	Marmon. Williston Bull. Gladys.	0 00 00.01 85 29 01.71 162 53 21.03 231 51 54.47	00.29 02.04 20.21 54.66
Trotter, 1.26 meters.	299 297 298 298	Cook Blue Flat	$\begin{array}{c} 0 \ 00 \ \overline{59.97} \\ 102 \ 54 \ 07.79 \\ 208 \ 09 \ 05.79 \end{array}$	00.00 07.90 05.64	Gladys, 1.40 meters.	375 376 377 378 378 379	Howard Muddy Marmon Bonetraill. Williston	0 00 00.01 30 47 24.37 74 25 24.06 116 10 34.78 142 44 33.99	59.94 24.20 24.19 34.67 33.34
Lovering, 1.23 me- ters.	$ \left\{\begin{array}{c} 305 \\ 306 \\ 307 \\ 308 \\ 309 \end{array}\right. $	Jackson Buford Sheep Flat Blue	0 00 00.01 31 45 16.96 96 55 04.02 124 33 05.20 159 10 11.87	59.65 17.08 04.18 05.03 12.10	Marmon, 1.28 meters	380 381 382 383	Bull Williston Bonetraill Gladys.	209 42 46.29 0 00 00.03 46 00 24.56 56 07 07.62	47.17 00.15 23.79 07.89
Sheep, 1.17 meters	310 311 312 313 313	Flat. Blue. Lovering. Jackson. Montana.	0 00 00.02 20 50 43.31 89 01 49.76 116 21 25.84 143 16 34.09	59.96 43.35 49.44 26.25 34.12		384 385 386 387	Howard Muddy Marmon Gladys	106 24 04.09 150 14 28.56 0 00 00.00 42 14 39.76	04.28 28.73 59.64 40,24
	314 330 323 325	Buford Lovering Snake Lanark.	149 46 28.06 0 00 00.01 192 48 26.90 194 56 01.34	27.88 00.29 26.49 00.92	Muddy, 1.42 meters.	388 389 390	Howard Stady Crosby	77 24 40.43 153 06 10.50 179 45 31.34 0 00 00.01	40.57 10.03 31.53
Jackson, 1.30 me- ters.	324 326 327 328 329	Bainville. Cutoff. Montana Buford	196 07 40.19 232 13 53.60 235 36 26.65 237 32 30.81 304 14 39.43	40.39 53.83 26.44 31.46 39.12	Howard, 9.27 meters	392 393 394 395 396	Stady. Crosby. Muddy. Marmon. Gladys.	32 50 36.22 33 25 50.64 73 30 37.30 132 15 32.90 187 33 13.56	36.49 50.55 37.13 32.91 13.53

Station occupied and elevation of instrument above station mark.	Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds rection after alevel. Final station occupied and elevation of instrument above station mark.		Num- ber of direc- tion.	Object observed.	Observed direction reduced to sea level.	Final seconds after figure adjust- ment.
Stady, 1.37 meters	399 400 397 398	Norge. Crosby. Muddy Howard.	$\begin{array}{c} 0 & 0 & \overline{59.97} \\ 81 & 25 & 15.10 \\ 195 & 58 & 20.42 \\ 259 & 36 & 51.57 \end{array}$	77 59.60 15.40 20.74 51.32	Ambrose, 1.35 me- ters.	409 410 411 408	Ambrose south- west base. Bowie	$\begin{array}{c} \circ & i & i' \\ 0 & 00 & \overline{59.97} \\ 0 & 56 & 35.24 \\ 74 & 02 & 54.17 \\ 267 & 48 & 51.92 \end{array}$	" 00. 27 35. 31 54. 04 51. 67
Crosby, 9.25 meters.	403 404 405 406 407	Stady Norge Bowie Ambrose south- west base. Ambrose	0 00 00.03 63 16 36.70 100 48 59.14 117 35 01.79	59.71 36.48 59.43 02.34	Bowie, 1.27 meters	$\left\{ \begin{array}{c} 420 \\ 421 \\ 422 \end{array} \right.$	School Ambrose Ambrose soutb- west base.	0 00 00.00 27 36 38.57 28 25 26.13	59.64 38.84 26.05
	401 402	Muddy Howard	$\begin{array}{c} 321 \\ 358 \\ 46 \\ 49 \\ 88 \\ 0 \\ 0 \\ \overline{59} \\ 97 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	26.22 49.67	Sebool, 1.15 meters	$\left\{\begin{array}{c}414\\412\\413\end{array}\right.$	Bowie Ambrose Ambrose soutb- west base.	0 00 00.00 280 42 56.81 332 59 22.94	58, 96 56, 50 24, 29
Norge, 6.35 meters	413 419 415 416 417	Howard. Bowie. Ambrose south- west base. Crosby.	46 46 16.05 241 13 49.88 284 52 32.85 324 41 52.95	16. 27 49. 39 33. 48 52. 37	Ambrose southwest base, 9.25 meters.	$\left\{\begin{array}{c} 425\\ 426\\ 427\\ 428\\ 429\end{array}\right.$	School. Ambrose. Crosby. Norge. Bowie.	$\begin{array}{c} 0 & 00 & 00. 02 \\ 53 & 40 & 38. 69 \\ 90 & 59 & 32. 76 \\ 176 & 51 & 47. 79 \\ 235 & 26 & 00. 16 \end{array}$	59.71 38.33 32.57 48.22 00.57

CONDITION EQUATIONS.

ONE HUNDRED AND FOURTH MERIDIAN.

No. 1. 0 = +1.82 - (2) + (4) - (5) + (7) - (12) + (14)2. 0 = -0.81 - (6) + (7) + (8) - (11) - (12) + (13)3. 0 = +0.70 - (3) + (4) - (5) + (6) - (8) + (9)4. 0 = +2.87 - (10) + (11) - (13) + (15) - (30) + (31)5. 0 = -0.33 - (1) + (3) - (9) + (10) - (31) + (32)6. 0 = +0.38 - (15) + (17) - (21) + (23) - (28) + (30)7. 0 = -0.85 - (19) + (20) - (22) + (23) - (28) + (29)8. 0 = +0.61 - (16) + (17) + (18) - (20) - (21) + (22)9. 0 = -0.62 - (23) + (24) - (26) + (28) - (36) + (37)10. 0 = -0.05 - (23) + (25) - (27) + (28) - (38) + (39)11. 0 = -0.96 - (26) + (27) - (35) + (37) - (39) + (40)12. 0 = -1.80 - (41) + (42) - (43) + (45) - (50) + (51)13. 0 = +0.19 - (33) + (34) - (44) + (45) - (50) + (52)14. 0 = -0.99 - (34) + (35) - (40) + (42) - (43) + (44)15. 0 = +1.03 - (45) + (46) - (48) + (50) - (57) + (58)16. 0 = +2.70 - (46) + (47) - (56) + (57) - (59) + (61)17. 0 = +1.04 - (48) + (49) - (56) + (58) - (60) + (61)18. 0 = -0.33 - (55) + (56) - (61) + (63) - (64) + (65)19. 0 = -0.02 - (53) + (55) - (65) + (66) - (71) + (73)20. 0 = +1.00 - (53) + (56) - (61) + (62) - (72) + (73)21. 0 = -2.20 - (54) + (55) - (65) + (67) - (76) + (77)22. 0 = -0.12 - (66) + (67) - (70) + (71) - (76) + (78)23. 0 = -0.55 - (67) + (68) - (74) + (76) - (87) + (88)24. 0 = +1.36 - (68) + (69) - (79) + (81) - (86) + (87)25. 0 = -0.34 - (74) + (75) - (80) + (81) - (86) + (88)26. 0 = -0.62 - (81) + (83) - (85) + (86) - (89) + (90)27. 0 = -0.07 - (82) + (83) - (89) + (91) - (96) + (97)28. 0 = -0.41 - (84) + (85) - (90) + (91) - (96) + (98)29. 0 = +0.52 - (91) + (92) - (94) + (96) - (108) + (109)30. 0 = +0.62 - (92) + (93) - (99) + (101) - (107) + (108)31. 0 = -0.79 - (94) + (95) - (100) + (101) - (107) + (109)32. 0 = +1.00 - (101) + (102) - (105) + (107) - (123) + (124)33. 0 = -0.52 - (102) + (104) - (114) + (116) - (121) + (123)34. 0 = +2.06 - (101) + (103) - (106) + (107) - (110) + (111)35. 0 = -0.74 - (105) + (106) - (111) + (112) - (122) + (124)36. 0 = +1.10 - (112) + (113) - (115) + (116) - (121) + (122) $37. \ 0 = -0.25 - (116) + (117) - (119) + (121) - (127) + (123)$ 38. 0 = +1.24 - (117) + (118) - (126) + (127) + (131) - (134)39. 0 = +0.05 - (116) + (118) - (120) + (121) + (130) - (134)

No. 40. 0 = -2.25 + (126) - (129) - (131) + (132) - (150) + (151)41. 0 = -0.39 - (125) + (126) - (131) + (133) - (137) + (139)42. 0 = +0.86 - (132) + (133) - (137) + (141) - (148) + (150)43. 0 = +0.39 - (140) + (141) - (148) + (149) - (152) + (154)44. 0 = +2.42 - (138) + (140) - (154) + (157) - (158) + (159)45. 0 = +0.44 - (155) + (157) - (158) + (161) - (166) + (168)46. 0 = +0.13 - (135) + (140) - (154) + (155) - (168) + (169)47. 0 = +0.92 - (136) + (140) - (154) + (156) - (163) + (164)48. 0 = +0.01 - (135) + (136) - (164) + (165) - (167) + (169) $49. \ 0 = -0.41 - (160) + (161) + (162) - (165) - (166) + (167)$ 50. 0 = -1.31 - (140) + (142) - (153) + (154) - (170) + (171)51. 0 = +2.15 - (147) + (149) - (152) + (153) - (171) + (172)52. 0 = -2.28 - (141) + (143) - (146) + (148) - (174) + (176)53. 0 = -1.33 - (142) + (143) + (170) - (173) - (174) + (175)54. 0 = +96.5 + 7.31(2) - 13.75(3) + 6.44(4) - 0.45(5) - 68.67(6) + 69.12(7) - 92.35(12) - 94.80(13) + 2.45(14) - 2.45(55. 0 = -9.4 + 2.91(1) - 10.22(2) + 7.31(3) - 1.38(9) - 3.02(10) + 4.40(11) + 6.21(30) - 7.68(31) + 1.47(32)56. 0 = +15.8 + 1.73(15) - 5.91(16) + 4.18(17) + 9.93(21) - 10.84(22) + 0.91(23) + 6.70(28) - 24.68(29) + 17.98(30) + 17.98(30) + 10.98(20) + 10.98(57. 0 = +4.7 + 4.04(23) - 6.46(24) + 2.42(25) + 1.90(26) - 1.42(27) - 0.48(28) - 0.40(38) - 2.90(39) + 3.30(40) + 3.30(58. 0 = +5.1 + 0.63(33) - 3.03(34) + 2.40(35) + 3.39(43) - 3.91(44) + 0.52(45) + 1.59(50) - 4.02(51) + 2.43(52) + 0.52(45)
+ 0.52(45) + 0.52(59. 0 = -2.3 + 1.16(45) - 5.81(46) + 4.65(47) + 3.20(48) - 4.12(49) + 0.92(50) + 2.14(56) - 2.56(57) + 0.42(58) + 0.42(60. 0 = -6.9 - 1.20(53) + 3.21(55) - 2.01(56) - 4.10(61) + 6.46(62) - 2.36(63) - 0.99(64) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.74(66) - 2.89(71) + 3.73(65) - 2.89(71) + 3.73(65) - 2.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.73(65) - 3.74(66) - 3.89(71) + 3.74(+4.92(72)-2.03(73) $61. \ 0 = -31.0 - 46.55(53) + 47.75(54) - 1.20(55) - 2.74(65) + 7.85(66) - 5.11(67) - 0.91(76) + 28.28(77) - 27.37(78) - 27.$ 62. 0 = +12.0 + 7.57(67) - 8.81(68) + 1.24(69) - 0.02(79) - 5.91(80) + 5.93(81) + 0.58(86) - 1.70(87) + 1.12(88) + 1.24(69) - 0.02(79) - 5.91(80) + 5.93(81) + 0.58(86) - 1.70(87) + 1.12(88) + 1.24(87) + 1.12(88) + 1.1263. 0 = -0.2 + 0.47(81) - 6.67(82) + 6.20(83) + 3.38(84) - 4.33(85) + 0.95(86) + 3.10(96) - 5.25(97) + 2.15(98) + 0.95(86) + 3.10(96) - 5.25(97) + 2.15(98) + 0.95(86)
+ 0.95(86) + 0.95(64. 0 = +1.6 - 2.15(91) + 2.85(92) - 0.70(93) - 3.48(99) + 6.56(100) - 3.08(101) + 0.83(107) + 3.34(108) - 4.17(109) + 0.83(107) + 0.33(65. 0 = +0.2 + 9.67(102) - 17.77(103) + 8.10(104) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 4.94(121) - 9.40(122) + 4.46(123) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 2.25(116) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.38(115) + 1.13(114) - 3.13(114) - $66. \ 0 = +23.5 - 0.16(101) - 9.67(102) + 9.83(103) + 7.83(105) - 11.14(106) + 3.31(107) + 3.92(122) - 4.46(123) + 0.54(124)$ $67. \ 0 = -5.5 + 2.98(116) - 2.68(117) - 0.30(118) - 0.91(126) - 3.03(127) + 3.94(128) - 11.09(130) + 5.53(131) + 5.56(134) - 5.56(134) + 5.56(134)$ $68. \ 0 = -14.3 - 2.67(125) + 2.41(126) + 0.26(129) + 5.30(137) - 5.55(139) + 0.25(141) + 1.91(148) - 6.41(150) + 4.50(151) + 0.50(151) +
0.50(151) + 0.50(151)$ 69. 0 = +19.6 + 4.47(135) - 8.42(138) + 3.95(140) + 2.83(154) - 8.54(155) + 5.71(157) - 0.19(158) - 2.30(159) + 2.49(161) ++4.62(166) - 4.62(168)70. 0 = +53.5 + 21.65(155) - 29.69(156) + 8.04(157) - 1.76(158) - 20.31(160) + 22.07(161) + 20.34(166) - 26.61(167) + 6.27(168) - 20.61(167) + 6.27(167) + 20.67(167) + 6.27(167) + 20.67(167) + 271. 0 = +40.2 + 7.70(135) - 19.73(136) + 12.03(138) + 3.03(159) - 25.10(160) + 22.07(161) + 20.34(166) - 19.63(167) - 0.71(169) + 20.34(166) - 0.72(167) + 0.72(167)72. 0 = +7.2 + 0.92(140) - 6.48(141) + 5.56(142) + 5.84(147) - 7.83(148) + 1.99(149) + 1.89(152) - 3.53(153) + 1.64(154) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 1.64(156) + 173. 0 = +15.4 - 6.48(141) + 17.19(142) - 10.71(143) - 4.91(146) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) -
0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 4.73(175) - 0.06(176) + 12.74(147) - 7.83(148) - 4.67(174) + 12.74(17674. 0 = +18.0 - 0.05(2) + 0.05(3) - 0.41(8) + 0.41(9) + 1.88(10) - 1.88(12) + 0.24(11) - 0.24(14) + 1.77(16) - 1.77(18) + 0.41(9) + 0.+4.06(25)-4.06(26)+1.82(27)-2.78(54)-1.82(67)-2.91(1)+2.91(2)+2.78(4)+0.52(5)-0.52(7)+2.34(12)+2.91(1)+2.91(2)+2.78(4)+0.52(5)-0.52(7)+2.34(12)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91(1)+2.91(2)+2.91-2.34(14) - 0.47(17) + 0.43(21) - 0.43(23) - 2.42(24) + 2.42(25) + 0.48(26) - 0.48(28) + 1.47(30) - 1.47(32) - 0.63(33) + 0.48(26) -
0.48(26)+0.63(35)+1.78(36)-1.78(37)-0.40(38)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+0.40(40)-1.70(47)+0.40(40)-1.70(47)+0.40(47)+0.40(47)+0.40(47)+0.40(47)+0.40(47)+0.40(48)+0.40(47)++3.20(49)+2.43(51)-2.43(52)-1.32(54)+1.32(55)+0.42(56)-0.42(58)+1.61(59)-1.61(60)-0.81(61)+0.81(63)++0.99(64) - 0.99(65) - 3.68(75) + 4.79(76) - 1.11(77) - 0.02(79) + 0.02(80) - 3.70(79a) + 3.70(79b) - 2.30(69a) - 3.68(75) + 4.79(76) - 1.11(77) - 0.02(79) + 0.02(80) - 3.70(79a) + 3.70(79b) - 2.30(69a) - 3.68(75) + 3.70(79b) - 3.68(75) + 3.70(79b) - 3.70(70b) - 3.70(70b) - 3.70(70b) - 3.70(70b) - 3.70(70b) -+2.30(69)+1.19(433)-1.19(434)-0.67(430)+0.67(432)75. 0 = +0.32 - (145) + (146) - (176) + (177) - (185) + (186)76. 0 = -0.03 - (177) + (178) - (179) + (180) - (184) + (185)

77. 0 = -2.28 - (180) + (181) - (183) + (184) - (187) + (188)78. 0 = -0.63 - (144) + (145) + (182) - (186) - (195) + (196)79. 0 = +2.70 - (189) + (191) - (193) + (194) - (197) + (198) $80. \ 0 = +0.57 - (189) + (190) - (192) + (194) - (205) + (206)$ 81. 0 = -0.53 - (192) + (193) - (198) + (199) - (204) + (206)82. 0 = +1.17 - (182) + (183) - (188) + (189) - (194) + (195)83. 0 = +0.03 - (199) + (201) - (203) + (204) - (207) + (208)84. 0 = -0.69 - (199) + (200) - (202) + (204) - (216) + (217)85. 0 = -0.82 - (202) + (203) - (208) + (209) - (215) + (217)86. 0 = +0.97 - (209) + (210) - (213) + (215) - (222) + (223)87. 0 = +1.11 - (209) + (211) - (214) + (215) - (224) + (225)88. 0 = -0.47 - (210) + (211) - (221) + (222) - (224) + (226) $89. \ 0 = +0.57 - (210) + (212) - (220) + (222) - (228) + (230)$ 90. 0 = +0.84 - (220) + (221) - (226) + (227) - (229) + (230)91. 0 = +0.69 - (218) + (220) - (230) + (231) - (236) + (237)92. 0 = -2.36 - (219) + (220) - (230) + (232) - (238) + (239)

740.						
93.	0 = -2.28 -	(231)+	-(232) —	(235)+(2	(36) - (238) + (240)))
94.	0 = -1.41 -	(234)-	-(235) -	(240)+(2	(42) - (248) + (248)	9)
95.	0 = -1.78 -	(233) +	-(235) -	(240)+(2	(41) - (246) + (247)	7)
96.	0 = +0.10 -	(233) +	-(234)-	(245)+(2	47) - (249) - (250)))
97.	0 = +1.16 -	(244)-	-(245)	(250)+(2	(52) - (258) + (259)	ń
98.	0=58-	(243) +	-(245)	(250) + (2	(51) - (256) + (257)	$\overline{\mathbf{n}}$
99	0 = +2.63 =	(251) +	-(252) -	(255) + (2	(258) + (258) + (260)	'n
100	0 = -0.34 =	(253) 1	(255) -	$(260) \perp (2$	$(200)^{-1}(200)^{-1}(200)$	<i>7</i>
100.	0 = -0.34 =	(200) 7	(200)	(200) + (2)	(270) - (270) + (270)	<i>י</i> י
101.	0 = +0.79 -	$(201)^+$	-(203)	(270) + (2	(200) + (200) + (200)	り
102.	0 = +0.43 -	(204) - (204	-(200) -	(200) + (2)	(204) + (203))
103.	0 = -0.05 -	(261)-	-(262)	(264) + (2	(66) - (277) + (278)	3)
104.	0 = -1.61 -	(266) +	-(267) -	(269)+(2	(270) - (276) + (277)	7)
105.	0 = +0.48 -	(270)+	-(272) -	(274)+(2	(76) - (284) + (286)	3)
10 6.	0 = +1.92 -	(273)+	-(274) -	(286)+(2	(87) - (294) + (296)	3)
107.	0 = +0.93 -	(271) +	-(272) —	(282)+(2	(83) - (284) + (285)	5)
108.	0 = +0.52 -	(273) +	-(275) -	(280)+(2	(81) - (295) + (296)	6)
109.	0 = -0.95 -	(274) +	-(275) -	(280)+(2	(82) - (285) + (286)	3)
110.	0 = -0.60 -	(287) +	-(289)-	(292)+(2	(94) - (300) + (302)	$\dot{2}$
111.	0 = -0.80 -	(287) +	(288) -	(293) + (2	94)+(297)-(299)	ń
112.	0 = -0.62 -	(288) +	(289) -	(298) + (2	(99) - (300) + (301)	ń
113	0 = -1.16 = -1.16	(290) +	(292) -	$(302) \pm (3$	$(308) \pm (308) \pm (308)$	N.
114	0 = -0.22 =	(200) 1	(202)	(302) + (3)	(300) + (300) + (300)	2
115	0 = -0.22 = 0 = 10.97	(201) -	(204) -	(302) + (302	(310) + (310) + (310)	5
110.	0 = +0.07 - 0.46	(303) +	(207)	(307) + (3)	(310) + (312)	2
110.	0 = -0.40 -	(300)-+	(307) - (307)	(312) + (3)	(313) + (315) + (315)	2
117.	0 = -1.94 -	(305) +	-(307) -	(312)+(3)	(329) + (330)	り
118.	0 = -0.02 -	(305) +	(306) -	(316) + (3	17) - (328) + (330)	り
119.	0 = -0.52 -	(317)+	-(318) -	(327) + (3	28) - (353) + (357)	0
120.	0 = +0.03 -	(313a)·	+(314)-	-(315)+(318) - (353) + (353)	54
121.	0 = -1.41 -	(317)+	-(320) -	(323)+(3	(28) - (333) + (335)	5)
122.	0 = -1.67 -	(317) +	-(319) -	(324)+(3	(28) - (343) + (344)	E)
123.	0 = +1.75 -	(319) +	-(320) -	(333) + (3	34) - (342) + (343)	3)
304				(000) 1 (0	/ (/ ((1
124.	0 = +1.68 -	(320) +	-(322)-	(332)+(3)	(33) - (336) + (337)	7)
124. 125.	0 = +1.68 - 0 = -1.15 - 0 =	(320) + (325	-(322) — -(326) —	(332)+(3) (346)+(3)	(33) - (336) + (337) (347) - (348) + (348)	7) 9)
124. 125. 126.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 =	(320) + (325) + (345	-(322) — -(326) — -(346) —	(332)+(3) (346)+(3) (349)+(3)	(33) - (336) + (337) (347) - (348) + (349) (50) - (358) + (359)	7) 9)
124. 125. 126. 127.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = -1.75 - 0 =	(320) + (325) + (345) + (345) + (321	-(322) - -(326) - -(346) - -(322) -	(332)+(3) (346)+(3) (349)+(3) (336)+(3)	(33) - (336) + (337) (347) - (348) + (348) (350) - (358) + (359) (38) - (368) + (369)	7) 9) 9)
124. 125. 126. 127. 128.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0.17 - 0.17 +	(320) + (325) + (345) + (345) + (321) + (331	-(322) - (326) - (326) - (346) - (322) - (322) - (33	(332)+(3) (346)+(3) (349)+(3) (336)+(3) (337)+(3)	$\begin{array}{c} 33) - (336) + (337) \\ 447) - (348) + (348) \\ 500 - (358) + (359) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 38) - (368) + (370) \\ 380 - (368) \\ 380 - (368$	ッ 7) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9
124. 125. 126. 127. 128. 129.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = +0.82 - 0 = -0.82 - 0.8	(320) + (325) + (345) + (321) + (331) + (326) +	-(322) - (326) - (326) - (346) - (322) - (322) - (332) - (332) - (327) + (32	(332)+(3) (346)+(3) (349)+(3) (336)+(3) (337)+(3) (348)-(3)	$\begin{array}{c} 33) - (336) + (337) \\ 447) - (348) + (348) \\ 500 - (358) + (359) \\ 380 - (368) + (369) \\ 380 - (368) + (370) \\ 500 - (357) + (358) \\ \end{array}$	ッ 7) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9
124. 125. 126. 127. 128. 129. 130.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 =	(320) + (325) + (345) + (321) + (331) + (326) + (338) +	-(322) - (326) - (326) - (346) - (342) - (322) - (332) - (332) - (327) + (339) - (33	(332)+(3)+(3) (346)+(3) (349)+(3) (336)+(3) (337)+(3) (348)-(3) (366)+(3)	$\begin{array}{c} 33 \\ -(336) +(337) \\ 447 \\ -(348) +(348) \\ +(348) \\ +(348) \\ +(350) \\ -(358) +(356) \\ +(350) \\ +(368) \\ +(370) \\ +(350) \\ +(357) \\ +(356) \\ +(370) \\ +(380) \\ +(370) \\ +(380) \\ +(370) \\ +(380) \\ +(370) \\ +(380) \\ $	
124. 125. 126. 127. 128. 129. 130. 131.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = -0.57 - 0 = +0.57 - 0 = -0.57 - 0 =	(320) + (325) + (345) + (321) + (331) + (326) + (338) + (339) +	-(322) - (-(326) - (-(346) - (-(322) - (-(322) - (-(327) - (-(327) + (-(339) - (-(341) - (-(341) - (-(-(341) - (-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-	(332)+(3) (346)+(3) (346)+(3) (336)+(3) (337)+(3) (348)-(3) (366)+(3) (377)+(3)	$\begin{array}{c} 33) - (336) + (337) \\ 447) - (348) + (348) \\ 50) - (358) + (356) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 50) - (357) + (358) \\ 68) - (379) + (380) \\ 79) - (381) + (380) \\ 79) - (381) + (380) \\ 78) + $	
124. 125. 126. 127. 128. 129. 130. 131. 132.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.57 - 0 = +0.80 - 0 =	(320) + (325) + (345) + (321) + (331) + (326) + (338) + (339) + (338) +	-(322) - (326) - (-(326) - (-(346) - (-(322) - (-(332) - (-(332) - (-(332) - (-(339) - (-(341) - (-(340) - (-(340) - (-(340) - (-(-(340) - (-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-	(332)+(3) (346)+(3) (346)+(3) (336)+(3) (336)+(3) (337)+(3) (348)-(3) (366)+(3) (377)+(3) (367)+(3)	$\begin{array}{c} 33 \\ -(336) +(337) \\ +(348) +(348) \\ +(348) \\ +(350) -(358) +(356) \\ +(356) \\ +(368) +(369) \\ +(370) \\ +(358) \\ +(370) +(358) \\ +(370) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(381) \\ +(382) \\ +(3$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 =	(320) + (325) + (345) + (321) + (331) + (326) + (338) + (339) + (338) + (350) +	-(322) - (326) - (-(326) - (-(326) - (-(322) - (-(327) + (-(327) + (-(339) - (-(341) - (-(340) - (-(340) - (-(340) - (-(352)	(332)+(3) (332)+(3) (346)+(3) (336)+(3) (336)+(3) (337)+(3) (348)-(3) (366)+(3) (377)+(3) (367)+(3) (356)+(3)	$\begin{array}{c} 33 \\ -(336) +(337) \\ +(348) +(348) \\ +(348) \\ +(350) -(358) +(356) \\ +(356) \\ +(368) \\ +(366) \\ +(370) \\ +(358) \\ +(370) \\ +(381) \\ +(383) \\ +(371) \\ +(372) \\ +(363) \\$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 =	(320)+ (325)+ (325)+ (321)+ (321)+ (326)+ (338)+ (339)+ (338)+ (350)+ (351)+	-(322) - (-(326) - (-(326) - (-(322) - (-(322) - (-(322) - (-(327) + (-(339) - (-(341) - (-(340) - (-(340) - (-(352) - (-((352) - (-((352) - (-((352) - (-((((((((((((((((((((((((((((((((((332)+(332)+(332)+(332)+(332)+(332)+(332)+($\begin{array}{c} 33) - (336) + (337) \\ (336) + (337) \\ (348) + (348) \\ (50) - (358) + (356) \\ (350) - (358) + (366) \\ (38) - (368) + (370) \\ (50) - (357) + (358) \\ (68) - (379) + (380) \\ (68) - (371) + (372) \\ (58) - (363) + (364) \\ (51) - (364) + (364) \\ (51) -$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -1.67 - 0 = -1.07 - 0 =	(320)+ (325)+ (325)+ (325)+ (321)+ (321)+ (326)+ (338)+ (339)+ (339)+ (338)+ (350)+ (350)+	-(322) - (-(326) - (-(326) - (-(326) - (-(322) - (-(322) - (-(322) - (-(332) - (-(332) - (-(339) - (-(340) - (-(340) - (-(340) - (-(352) - (-(35	(332)+(3) (346)+(3) (349)+(3) (336)+(3) (337)+(3) (348)-(3) (366)+(3) (366)+(3) (356)+(3) (356)+(3) (360)+(3) (36	$\begin{array}{c} 33) - (336) + (337) \\ - (336) + (337) \\ - (348) + (346) \\ - (358) + (356) \\ - (358) + (366) \\ - (368) + (370) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (361) + (363) \\ - (363) + (364) \\ - (363) + (365) \\ - (361) + (365) \\ -$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60	(320)+ (325)+ (325)+ (321)+ (321)+ (326)+ (338)+ (339)+ (339)+ (350)+ (350)+ (350)+ (350)+	-(322) - (-(322) - (-(326) - (-(322) - (-(322) - (-(322) - (-(322) - (-(322) - (-(322) - (-(341) - (-(340) - (-(340) - (-(352) - (-(35	(332)+(332)+(332)+(332)+(332)+(332)+(332)+(332)+(332)+	$\begin{array}{c} 33) - (336) + (337) \\ - (336) + (337) \\ - (348) + (343) \\ - (358) - (358) + (356) \\ - (358) + (369) \\ - (368) + (366) \\ - (379) + (358) \\ - (368) - (379) + (386) \\ - (379) + (381) \\ - (381) + (383) \\ - (363) + (364) \\ - (363) + (365) \\ - (361) + (365) \\ - (361) + (362) \\ - (362) + (366) \\ - (366) + (366) \\ - ($	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60 - 0 =	(320)+ (325)+ (325)+ (321)+ (321)+ (326)+ (338)+ (338)+ (339)+ (350	-(322) - (-(322) - (-(326) - (-(326) - (-(322) - (-(322) - (-(322) - (-(327) + (-(340) - (-(341) - (-(340) - (-(352) - (-(352) - (-(352) - (-(352) - (-(351) - (-(351) - (-(357) - (-(35	(332) + (332) + (333) + (336) + (336) + (336) + (336) + (337) + (3363) + (3363) + (3366) + (366) + ($\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (349) \\ 500 - (358) + (359) \\ 380 - (368) + (369) \\ 380 - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 580 - (363) + (364) \\ 611 - (363) + (365) \\ 580 - (361) + (362) \\ 580 - (378) + (380) \\ 680 - (378) + (380) \\ 680 - (378) + (380) \\ 680 - (378) + (380) \\ 680 - (380) + (380) \\ 880 - (380$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60 - 0 = -0.89 - 0 = -0.80 - 0 = -0.80 - 0 = -0.80 - 0 = -0.80 - 0 =	(320)+ (325)+ (325)+ (321)+ (321)+ (326)+ (338)+ (338)+ (338)+ (350	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (339) - (339) - (341) - (340) - (352) - (352) - (352) - (352) - (352) - (352) - (351) - (367) - (367) - (374) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (342) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (367) + (3\\ (356) + (3\\ (356) + (3\\ (355) + (3\\ (372) + (3\\ (372) + (3\\ (377) + (3\\ (372) + (3\\ (377) + (3\\ (372) + (3\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (349) \\ 500 - (358) + (359) \\ 380 - (368) + (369) \\ 380 - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 580 - (363) + (364) \\ 611 - (363) + (365) \\ 580 - (361) + (362) \\ 73) - (378) + (380) \\ 780 - (382) + (383) \\ 780 - (383) + (383) \\ 780 - (383)$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60 - 0 = -0.89 - 0 = -1.04 - 0 = -0.89 - 0 = -1.04 - 0 = -0.89 - 0 = -1.04 - 0 = -0.89 - 0 =	(320) + (325) + (325) + (325) + (325) + (321) + (326) + (338) + (338) + (339) + (350) + (350) + (350) + (350) + (366) + (373) + (376) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (322) - (332) - (339) - (339) - (341) - (340) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (367) - (374) - (374) - (377) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (349) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (356) + (3\\ (356) + (3\\ (355) + (3\\ (372) + (3\\ (377) + (3\\ (383) + (383) + (3\\ (383) + (383) + (383) + (383) + (383) + (383) + (383) + (383) +$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (348) \\ 500 - (358) + (358) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 68) - (379) + (380) \\ 68) - (371) + (372) \\ 58) - (363) + (364) \\ 61) - (363) + (365) \\ 58) - (361) + (362) \\ 73) - (378) + (380) \\ 78) - (386) + (383) \\ 85) - (386) + (386) \\ 78) - (386) + (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (387) \\ 85) - (38$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60 - 0 = -0.89 - 0 = -1.04 - 0 = -0.08 - 0 = -1.04 - 0 = -0.08 - 0 =	(320) + (325) + (325) + (325) + (325) + (321) + (326) + (338) + (338) + (339) + (350) + (350) + (350) + (350) + (350) + (366) + (373) + (376) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (377) -$	(332) + (3) (332) + (3) (346) + (3) (336) + (3) (336) + (3) (337) + (3) (366) + (3) (367) + (3) (356) + (3) (355) + (3) (372) + (3) (372) + (3) (373) + (3) (383) + (3)	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (359) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 588) - (363) + (364) \\ 611 - (363) + (365) \\ 588) - (361) + (362) \\ 73) - (378) + (380) \\ 78) - (382) + (383) \\ 85) - (386) + (387) \\ 84) - (395) + (396) \\ 4360 + (395) + (396) \\ 840 - (396) \\ 840 - (396$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140.	0 = +1.68 - 0 = -1.15 - 0 = -1.73 - 0 = +1.75 - 0 = +0.17 - 0 = +0.82 - 0 = -2.28 - 0 = +0.57 - 0 = +0.80 - 0 = -1.05 - 0 = +0.68 - 0 = -1.05 - 0 = +0.68 - 0 = -1.67 - 0 = -2.60 - 0 = -0.89 - 0 = -1.04 - 0 = -0.08 - 0 = +0.30 - 0 =	$\begin{array}{c} (320) + \\ (325) + \\ (325) + \\ (325) + \\ (325) + \\ (321) + \\ (326) + \\ (326) + \\ (338) + \\ (339) + \\ (338) + \\ (339) + \\ (350) + \\ (350) + \\ (350) + \\ (350) + \\ (375) + \\$	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (357) - (357) - (377) - (377) - (377) - (377) - (376) -$	(332)+(3) (346)+(3) (346)+(3) (336)+(3) (337)+(3) (366)+(3) (367)+(3) (356)+(3) (356)+(3) (355)+(3) (372)+(3) (377)+(3) (383)+(3) (383)+(3) (387)+(3)	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (359) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 580 - (363) + (364) \\ 611 - (363) + (365) \\ 580 - (361) + (362) \\ 73) - (378) + (380) \\ 78) - (378) + (380) \\ 78) - (386) + (383) \\ 85) - (386) + (387) \\ 84) - (395) + (396) \\ 88) - (394) + (396) \\ 880 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (394) + (396) \\ 810 - (396) + (387) \\ 810 - (396) + (396) \\ 810 - (396)$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -0.87 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -1.04 - \\ 0 = -0.08 - \\ 0 = -1.04 - \\ 0 = -0.08 - \\ 0 = +0.30 - \\ 0 = +0.22 - \\ \end{array}$	$\begin{array}{c} (320)+\\ (325)+\\ (325)+\\ (325)+\\ (325)+\\ (321)+\\ (326)+\\ (326)+\\ (338)+\\ (338)+\\ (339)+\\ (338)+\\ (350)+\\ (350)+\\ (350)+\\ (350)+\\ (350)+\\ (375)+\\ (375)+\\ (375)+\\ (388)+\\ (388)+\\ \end{array}$	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (357) - (357) - (377) - (377) - (377) - (377) - (376) - (376) - (390) -$	(332)+(3) (346)+(3) (349)+(3) (336)+(3) (337)+(3) (366)+(3) (367)+(3) (356)+(3) (356)+(3) (355)+(3) (372)+(3) (372)+(3) (372)+(3) (383)+(3) (383)+(3) (393)+(3)	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (356) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 68) - (379) + (380) \\ 68) - (371) + (372) \\ 58) - (363) + (363) \\ 68) - (371) + (372) \\ 58) - (363) + (363) \\ 68) - (371) + (372) \\ 58) - (361) + (362) \\ 73) - (378) + (380) \\ 78) - (378) + (380) \\ 78) - (386) + (383) \\ 84) - (395) + (396) \\ 88) - (394) + (396) \\ 94) - (401) + (402) \\ \end{array}$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = +0.57 - \\ 0 = -0.80 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -1.04 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = +0.30 - \\ 0 = +0.22 - \\ 0 = +1.62 - \\ \end{array}$	$\begin{array}{c} (320)+\\ (325)+\\ (325)+\\ (325)+\\ (325)+\\ (321)+\\ (326)+\\ (338)+\\ (338)+\\ (338)+\\ (338)+\\ (338)+\\ (350)+\\$	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (357) - (357) - (377) - (377) - (377) - (377) - (376) - (376) - (390) - (389) - (380) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (342) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (367) + (3\\ (356) + (3\\ (355) + (3\\ (355) + (3\\ (372) + (3\\ (372) + (3\\ (383) + (3\\ (383) + (3\\ (387) + (3\\ (392) + (3\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (356) \\ 38) - (368) + (356) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (386) \\ 668) - (371) + (372) \\ 588) - (363) + (363) \\ 668) - (371) + (372) \\ 588) - (363) + (363) \\ 668) - (371) + (372) \\ 588) - (361) + (362) \\ 73) - (378) + (386) \\ 78) - (386) + (387) \\ 84) - (395) + (396) \\ 888) - (394) + (396) \\ 94) - (401) + (402) \\ 94) - (397) + (398) \\ 848 - (398) + (398) \\ 848 -$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -0.87 - \\ 0 = -1.65 - \\ 0 = -1.65 - \\ 0 = -1.65 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -1.04 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = +0.30 - \\ 0 = +0.22 - \\ 0 = +1.62 - \\ 0 = -0.69 - \\ \end{array}$	$\begin{array}{c} (320) + \\ (325) + \\ (325) + \\ (325) + \\ (325) + \\ (321) + \\ (326) + \\ (338) + \\ (338) + \\ (338) + \\ (339) + \\ (350) + \\ (355) + \\ (355) + \\ (355) + \\ (355) + \\ (375) + \\ (375) + \\ (375) + \\ (388) + \\ (388) + \\ (391) + \end{array}$	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (357) - (357) - (377) - (377) - (377) - (377) - (376) - (376) - (390) - (393) -$	$\begin{array}{c} (332) + (3) \\ (332) + (3) \\ (346) + (3) \\ (349) + (3) \\ (336) + (3) \\ (337) + (3) \\ (366) + (3) \\ (367) + (3) \\ (367) + (3) \\ (367) + (3) \\ (355) + (3) \\ (372) + (3) \\ (372) + (3) \\ (372) + (3) \\ (383) + (3) \\ (383) + (3) \\ (383) + (3) \\ (392) + (3) \\ (402) + (4) \end{array}$	$\begin{array}{c} 33) - (336) + (337) \\ - (336) + (337) \\ - (348) + (346) \\ - (358) + (356) \\ - (358) + (356) \\ - (358) + (356) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (363) + (363) \\ - (363) + (365) \\ - (363) + (365) \\ - (361) + (362) \\ - (363) + (363) \\ - (363) + (365) \\ - (361) + (362) \\ - (363) + (363) \\ - (363) + (363) \\ - (361) + (362) \\ - (363) + (363) \\ -$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -0.87 - \\ 0 = -0.80 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.65 - \\ 0 = -0.68 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.68 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -0.69$	$\begin{array}{c} (320) + \\ (325) + \\ (325) + \\ (325) + \\ (325) + \\ (321) + \\ (326) + \\ (338) + \\ (338) + \\ (338) + \\ (339) + \\ (350) + \\ (351) + \\ (350) + \\ (355) + \\ (355) + \\ (375) + \\ (375) + \\ (375) + \\ (388) + \\ (388) + \\ (391) + \\ (392) + \end{array}$	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (322) - (332) - (332) - (332) - (332) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (357) - (377) - (377) - (377) - (377) - (377) - (376) - (376) - (393) - (393) - (393) - (393) +$	$\begin{array}{c} (332) + (3) \\ (332) + (3) \\ (342) + (3) \\ (349) + (3) \\ (336) + (3) \\ (337) + (3) \\ (337) + (3) \\ (366) + (3) \\ (367) + (3) \\ (367) + (3) \\ (355) + (3) \\ (355) + (3) \\ (372) + (3) \\ (372) + (3) \\ (383) + (3) \\ (383) + (3) \\ (383) + (3) \\ (392) + (3) \\ (392) + (4) \\ (398) - (4) \end{array}$	$\begin{array}{c} 33) - (336) + (337) \\ 33) - (336) + (337) \\ 447) - (348) + (346) \\ 500 - (358) + (356) \\ 38) - (368) + (356) \\ 38) - (368) + (357) \\ 500 - (357) + (358) \\ 68) - (379) + (380) \\ 68) - (379) + (380) \\ 68) - (371) + (372) \\ 58) - (363) + (363) \\ 68) - (371) + (372) \\ 58) - (363) + (363) \\ 68) - (371) + (362) \\ 73) - (378) + (380) \\ 73) - (378) + (380) \\ 78) - (382) + (383) \\ 88) - (395) + (396) \\ 88) - (395) + (396) \\ 88) - (394) + (396) \\ 94) - (401) + (402) \\ 94) - (397) + (398) \\ 04) - (417) + (419) \\ 00) - (402) + (403) \\ \end{array}$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.68 - \\ 0 = -1.65 - \\ 0 = -1.65 - \\ 0 = -1.65 - \\ 0 = -1.65 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -1.58 - \\ \end{array}$	(320) + (325) + (325) + (325) + (325) + (321) + (326) + (338) + (338) + (339) + (338) + (350) + (350) + (350) + (375) + (375) + (375) + (388) + (388) + (391) + (388) + (392) + (392) + (399) +	$\begin{array}{c} -(322) \\ -(326) \\ -(326) \\ -(326) \\ -(322) \\ -(322) \\ -(322) \\ -(332) \\ -(332) \\ -(332) \\ -(339) \\ -(339) \\ -(352$	$\begin{array}{c} (332)+(3)\\ (332)+(3)\\ (346)+(3)\\ (336)+(3)\\ (336)+(3)\\ (336)+(3)\\ (337)+(3)\\ (366)+(3)\\ (366)+(3)\\ (367)+(3)\\ (367)+(3)\\ (355)+(3)\\ (355)+(3)\\ (372)+(3)\\ (372)+(3)\\ (383)+(3)\\ (383)+(3)\\ (383)+(3)\\ (383)+(3)\\ (392)+(3)\\ (402)+(4)\\ (403)+(4)\end{array}$	$\begin{array}{c} 33) - (336) + (337) \\ - (336) + (337) \\ + (343) + (344) \\ - (358) + (356) \\ - (358) + (356) \\ - (357) + (356) \\ - (357) + (358) \\ - (357) + (358) \\ - (357) + (358) \\ - (379) + (381) + (383) \\ - (363) + (363) \\ - (363) + ($	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144. 144. 145.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.60 - \\ 0 = -1.67 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ \end{array}$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (338) + (338) + (350) + (350) + (350) + (350) + (350) + (375) + (375) + (388) + (388) + (388) + (391) + (392) + (399) + (404) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (322) - (322) - (327) + (339) - (339) - (341) - (367) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (367) - (377) - (377) - (377) - (377) - (377) - (376) - (376) - (393) - (393) - (393) - (393) + (400) - (40) - (400) - (40$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (346) + (3\\ (346) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (356) + (3\\ (356) + (3\\ (355) + (3\\ (357) + (3\\ (383) + (3\\ (383) + (3\\ (387) + (3\\ (387) + (3\\ (392) + (3\\ (392) + (3\\ (392) + (4\\ (403) + (4\\ (415) + (4\\ (4\\ (415) + (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (349) \\ 500 - (358) + (359) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 588) - (361) + (362) \\ 588) - (361) + (362) \\ 588) - (361) + (362) \\ 73) - (378) + (380) \\ 780 - (382) + (383) \\ 881) - (386) + (337) \\ 881) - (395) + (396) \\ 881) - (395) + (396) \\ 881) - (397) + (398) \\ 941) - (401) + (412) \\ 941) - (417) + (418) \\ 17) - (423) + (424) \\ \end{array}$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.60 - \\ 0 = -1.67 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -0.69 - \\ 0 = -0.68 - \\ 0 = -0.68 - \\ 0 = -0.68 - \\ 0 = -0.68 - \\ 0 = -0.69 - \\ 0 = +1.62 - \\ 0 = -1.58 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = +0.08 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.09 - \\ 0 = -0.08$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (338) + (338) + (350) + (350) + (350) + (350) + (375) + (375) + (375) + (388) + (388) + (388) + (392) + (404) + (405) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (332) - (332) - (337) - (339) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (377) - (377) - (377) - (377) - (377) - (377) - (376) - (393) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (346) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (356) + (3\\ (356) + (3\\ (355) + (3\\ (357) + (3\\ (383) + (3\\ (383) + (3\\ (387) + (3\\ (387) + (3\\ (392) + (4\\ (398) - (4\\ (403) + (4\\ (408) + (4\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (349) \\ 500 - (358) + (359) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 588) - (363) + (364) \\ 611 - (363) + (365) \\ 588) - (361) + (362) \\ 73) - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (378) + (380) \\ 730 - (395) + (398) \\ 94) - (397) + (398) \\ 94) - (401) + (412) \\ 94) - (421) + (423) \\ 720 - (422) + (423) \\ 720 - (421) + (423) \\ 730 - (421) + (421) \\ 730 - (421) + (421) \\ 730 - (421) + (421) \\ 730 - (421) + (421) \\ 730 - (421) + (421) \\ 730 - (421) + (421) \\ 730 - (4$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.60 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -0.69 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = +0.08 - \\ 0 = -0.18$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (338) + (338) + (350) + (350) + (350) + (350) + (350) + (375) + (375) + (375) + (375) + (375) + (388) + (392) + (392) + (392) + (404) + (404) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (332) - (332) - (339) - (339) - (339) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (377) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (332) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (356) + (3\\ (356) + (3\\ (356) + (3\\ (357) + (3\\ (372) + (3\\ (383) + (3\\ (383) + (3\\ (383) + (3\\ (393) + (3\\ (393) + (4\\ (398) - (4\\ (403) + (4\\ (416) + (4\\ (4\\ (416) + (4\\ (4\\ (416) + (4\\ (4\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (358) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 588) - (363) + (364) \\ 611 - (363) + (365) \\ 588) - (361) + (362) \\ 730 - (378) + (386) \\ 461) - (363) + (363) \\ 461) - (363) + (363) \\ 480) - (361) + (362) \\ 730 - (378) + (386) \\ 480) - (386) + (387) \\ 884) - (395) + (396) \\ 884) - (395) + (396) \\ 884) - (395) + (396) \\ 884) - (397) + (398) \\ 940 - (397) + (398) \\ 940 - (417) + (419) \\ 940 - (417) + (418) \\ 170 - (422) + (423) \\ 170 - (427) + (428) \\ 170 - (427) + (428) \\ 180 - (421) + (428) \\ 180 - (427) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (421) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ 180 - (428) + (428) \\ $	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -1.67 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -1.67 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -1.08 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = -0.18 - \\ 0 = -0.09 - \\ 0 = -0.18 - \\ 0 = -1.09 - \\ \end{array}$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (338) + (338) + (350) + (350) + (350) + (350) + (350) + (375) + (376) + (392) + (404) + (404) + (405) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (332) - (332) - (339) - (339) - (339) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (377) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (332) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (367) + (3\\ (356) + (3\\ (355) + (3\\ (355) + (3\\ (357) + (3\\ (372) + (3\\ (377) + (3\\ (383) + (3\\ (383) + (3\\ (392) + (3\\ (392) + (4\\ (398) - (4\\ (403) + (4\\ (416) + (4\\ (422) + (4\\ (42) + (4\\ (4\\ (42) + (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\ (4\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (337) \\ 447) - (348) + (344) \\ 500 - (358) + (358) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 500 - (357) + (358) \\ 668) - (379) + (380) \\ 668) - (379) + (380) \\ 668) - (371) + (372) \\ 588) - (361) + (362) \\ 588) - (361) + (362) \\ 588) - (361) + (362) \\ 730 - (378) + (386) \\ 461) - (363) + (363) \\ 461) - (362) + (383) \\ 88) - (395) + (386) \\ + (385) - (386) + (383) \\ 88) - (395) + (396) \\ 884) - (395) + (396) \\ 884) - (395) + (396) \\ 884) - (397) + (398) \\ 940 - (401) + (402) \\ 940 - (417) + (419) \\ 940 - (417) + (418) \\ 17) - (423) + (424) \\ 10) - (427) + (428) \\ 24) - (428) + (429) \\ \end{array}$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 144. 145. 147. 148. 149. 150.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = -2.28 - \\ 0 = -2.28 - \\ 0 = -0.87 - \\ 0 = -1.67 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.67 - \\ 0 = -2.60 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.18 - \\ 0 = -0.18 - \\ 0 = -1.09 - \\ 0 = +1.35 - \\ \end{array}$	(320) + (325) + (325) + (325) + (325) + (321) + (326) + (338) + (338) + (339) + (338) + (350) + (350) + (350) + (350) + (350) + (350) + (375) + (392) + (392) + (404) + (405) + (409) +	$\begin{array}{c} (322) - (326) - (326) - (326) - (326) - (326) - (322) - (332) - (332) - (339) - (332) - (332) - (352) - (352) - (352) - (352) - (352) - (352) - (352) - (357) - (377) - (377) - (377) - (377) - (377) - (377) - (377) - (377) - (393) - (393) - (393) - (393) - (393) + (400) - (405) - (406) - (406) - (406) - (406) - (416) - (416) - (410) -$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (332) + (3\\ (349) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (356) + (3\\ (356) + (3\\ (356) + (3\\ (356) + (3\\ (357) + (3\\ (357) + (3\\ (372) + (3\\ (372) + (3\\ (383) + (3\\ (392) + (3\\ (392) + (3\\ (402) + (4\\ (403) + (4\\ (415) + (4\\ (422) + (4\\ (421) + (4\\$	$\begin{array}{c} 33) - (336) + (337) \\ 336) - (336) + (348) \\ 50) - (358) + (358) \\ 38) - (368) + (369) \\ 38) - (368) + (370) \\ 50) - (357) + (358) \\ 68) - (379) + (380) \\ 79) - (381) + (383) \\ 68) - (371) + (372) \\ 58) - (363) + (364) \\ 61) - (363) + (365) \\ 58) - (361) + (362) \\ 73) - (378) + (380) \\ 78) - (386) + (337) \\ 88) - (395) + (336) \\ 88) - (396) + (336) \\ 88) - (396) + (396) \\ 88) - (396) + (396) \\ 88) - (396) + (396) \\ 88) - (396) + (396) \\ 88) - (396) + $	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 144. 145. 144. 145. 151. 150. 151. 151. 150. 151. 151. 155.	$\begin{array}{l} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = +0.57 - \\ 0 = -2.28 - \\ 0 = +0.57 - \\ 0 = -0.57 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.89 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.69 - \\ 0 = +1.02 - \\ 0 = -0.69 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = -0.18 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.09 - \\ 0 = +1.35 - \\ 0 = -2.83 - \\ 0 = -2.83 - \\ 0 = -1.09 - \\ 0 = -1.08 - \\ 0 = -1.08 - \\ 0 = -1.09 - \\ 0 = -1.08$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (339) + (339) + (339) + (350) + (350) + (350) + (350) + (350) + (375) + (399) + (404) + (405) + (403) + (413) +	$\begin{array}{c} (-322) - (-326) - (-326) - (-326) - (-326) - (-322) - (-322) - (-323) - (-339) - (-339) - (-339) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-377$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (332) + (3\\ (343) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (357) + (3\\ (356) + (3\\ (355) + (3\\ (355) + (3\\ (357) + (3\\ (357) + (3\\ (372) + (3\\ (372) + (3\\ (383) + (3\\ (383) + (3\\ (383) + (3\\ (392) + (3\\ (392) + (3\\ (393) + (3\\ (392) + (3\\ (393) + (4\\ (403) + (4\\ (415) + (4\\ (422) + (4\\ (421) + (4\\ (422) + (4\\ (421) + (4\\ (421) + (4\\ (420) + (4\\$	$\begin{array}{c} (33) - (336) + (337) \\ (343) + (348) + (344) \\ (50) - (358) + (358) \\ (358) - (368) + (369) \\ (38) - (368) + (370) \\ (50) - (357) + (358) \\ (68) - (379) + (380) \\ (79) - (381) + (383) \\ (68) - (371) + (372) \\ (58) - (363) + (364) \\ (58) - (361) + (362) \\ (73) - (378) + (380) \\ (73) - (380) + (380) \\ (73) - (380) \\ (73) - (380) \\ (73) - (380) \\ (73) - (380) \\$	
124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 144. 145. 151. 152. 152. 152. 152. 152. 152. 152. 152. 155.	$\begin{array}{c} 0 = +1.68 - \\ 0 = -1.15 - \\ 0 = -1.73 - \\ 0 = +1.75 - \\ 0 = +0.17 - \\ 0 = +0.82 - \\ 0 = +0.57 - \\ 0 = -2.28 - \\ 0 = +0.57 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.05 - \\ 0 = -1.67 - \\ 0 = -0.68 - \\ 0 = -0.89 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = -0.08 - \\ 0 = +0.22 - \\ 0 = -1.62 - \\ 0 = -0.69 - \\ 0 = +0.22 - \\ 0 = +1.62 - \\ 0 = -0.69 - \\ 0 = +0.22 - \\ 0 = -1.58 - \\ 0 = -0.09 - \\ 0 = +1.02 - \\ 0 = -0.18 - \\ 0 = -0.18 - \\ 0 = -1.09 - \\ 0 = +1.35 - \\ 0 = +2.83 - \\ 0 = +0.30 - \\ 0 = +0.30 - \\ 0 = +0.30 - \\ 0 = -0.48 - \\ 0 = -1.09 - \\ 0 = -1.09 - \\ 0 = +2.83 - \\ 0 = -0.30$	(320) + (325) + (325) + (325) + (325) + (325) + (326) + (338) + (339) + (339) + (350) + (350) + (350) + (350) + (350) + (350) + (375) + (392) + (404) + (415) + (410) + (410) +	$\begin{array}{c} (-322) - (-326) - (-326) - (-326) - (-326) - (-322) - (-322) - (-332) - (-332) - (-332) - (-332) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-352) - (-373) - (-373) - (-377$	$\begin{array}{c} (332) + (3\\ (332) + (3\\ (332) + (3\\ (343) + (3\\ (336) + (3\\ (337) + (3\\ (337) + (3\\ (366) + (3\\ (377) + (3\\ (366) + (3\\ (357) + (3\\ (356) + (3\\ (355) + (3\\ (355) + (3\\ (357) + (3\\ (357) + (3\\ (372) + (3\\ (377) + (3\\ (383) + (3\\$	$\begin{array}{c} (33) - (336) + (337) \\ (337) - (338) + (347) \\ (348) + (348) \\ (50) - (358) + (358) \\ (358) - (368) + (369) \\ (357) + (358) \\ (350) - (357) + (358) \\ (350) - (357) + (358) \\ (360) - (377) + (372) \\ (50) - (357) + (363) \\ (50) - (371) + (372) \\ (50) - (363) + (363) \\ (50) - (363) + (363) \\ (50) - (363) + (363) \\ (50) - (361) + (362) \\ (73) - (378) + (380) \\ (73) - (380) + (380) \\ ($	

 $153. \ 0 = -1.50 + 6.63(144) - 8.63(145) + 2.00(146) + 0.08(176) - 3.87(177) + 3.79(178) + 0.54(179) - 0.87(180) + 0.33(181) + 1.68(187) - 3.34(188) + 1.66(189) + 1.45(194) - 3.66(195) + 2.21(196)$

48310°-14---4

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

No.	
154.	0 = +3.60 - 0.60(192) - 6.44(193) + 7.04(194) + 3.14(197) - 4.23(198) + 1.09(199) + 5.37(204) - 8.43(205) + 3.06(206) - 1.06
155.	0 = -3.00 + 1.41(199) - 4.29(200) + 2.88(201) + 3.89(202) - 4.16(203) + 0.27(204) + 0.84(207) - 2.83(208) + 1.99(209) + 1.99
156.	0 = +5.40 + 1.16(209) - 10.43(210) + 9.27(211) + 7.04(213) - 8.70(214) + 1.66(215) + 3.07(221) - 2.72(222) - 0.35(223) + 1.06(215) + 1.0
157.	0 = -0.90 + 10.43(210) - 12.51(211) + 2.08(212) + 2.90(220) - 5.62(221) + 2.72(222) + 2.53(228) - 14.65(229) - 14.65(29) - 14.65(29) - 14.65(29) - 14.65(29) - 14.65(29) - 1
	+12.12(230)
158.	0 = +8.50 + 3.31(218) - 10.39(219) + 7.08(220) + 0.80(230) - 1.85(231) + 1.05(232) + 2.56(235) - 3.69(236) + 1.13(237) + 1.13(27) + 1.13(27) + 1.13(27) + 1.13(2
	+3.55(233) - 5.56(233) + 2.01(240)
159.	0 = +2.60 + 3.54(233) - 4.53(234) + 0.99(235) + 1.63(240) - 3.80(241) + 2.17(242) + 0.59(248) - 3.55(249) + 2.96(250)
160.	0 = -3.00 + 1.95(243) - 1.62(244) - 0.33(240) + 3.00(250) - 5.28(251) + 1.68(252) + 0.27(258) - 3.51(259) + 3.24(250)
161.	0 = -1.3 - 2.19(233) + 3.38(234) - 1.39(233) - 1.38(200) + 13.04(201) - 11.40(202) - 1.22(204) + 0.78(203) + 0.44(206) + 0.4
1.00	-15.29(277)+19.39(278)-9.20(279)
102.	11.40(20) + 1.10(20) + 10.10(202) + 3.00(203) + 3.00(203) + 3.00(203) + 1.11(20) + 2.30(203) + 1.10(201) + 2.30(203) + 3.00(
163	-7 10.2(10)
103.	= -1.0 + 11.20(210) - 1.11(211) + 3.02(212) + 30.00(213) - 34.00(210) + 1.03(210) + 0.04(203) - 61.13(200) + 1.05(200) + 0.
164	-0.00(200)
10.1.	
165	$10:00\pm 20$
166.	0 = -1.50 + 0.9(290) - 7.73(291) + 6.74(292) + 4.02(307) - 7.07(308) + 3.03(309) + 5.49(310) - 5.53(311) + 0.04(312)
167.	0 = +7.80 + 3.66(305) - 3.40(306) - 0.26(307) + 4.07(312) - 7.26(313) + 3.19(314) + 0.38(315) - 4.36(316) + 3.98(317) + 0.38(315) - 0.26(316) + 0.26(316) + 0.26
168.	0 = +58.4 + 4.15(313) - 22.63(313a) + 18.48(314) + 0.07(315) - 14.36(317) + 14.29(318) + 61.52(327) - 62.34(328) + 61.52(327) - 62.54(328) + 61.52(327) - 62.54(328) + 61.52(327) - 62.54(328) + 61.52(327) - 62.54(328) + 61.52(327) - 62.54(328) + 61.52(327) - 61.52
	+0.82(329)
169.	0 = +4.45 - (136) + (143) - (162) + (164) - (174) + (178) - (179) + (181) - (187) + (191) - (197) + (201) - (207) + (212) - (207) + (212) -
	-(228)+(232)-(238)+(242)+(252)-(258)+(263)-(268)+(272)-(284)+(289)-(300)+(304)-(310)+(313a)-(268)+(262)+(2
	-(354)+(355)
170.	0 = +21.7 + 0.51(317) - 11.15(319) + 10.64(320) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 2.39(328) + 3.17(333) - 11.59(334) + 36.29(323) - 38.68(324) + 36.29(328) + 36.29(323) - 38.68(324) + 36.29(328) + 36.29(38) + 36.29(38) + 36.29(38) + 36.29(38) + 36.29(38)
	+8.42(335)
171.	0 = -1.20 + 4.89(320) - 7.13(321) + 2.24(322) + 2.77(331) - 2.41(332) - 0.36(333) + 0.49(336) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(337) + 4.71(338) - 5.20(37) + 4.71(338) - 5.20(37) +
172.	0 = +19.10 + 2.76(325) - 38.45(326) + 35.69(327) + 2.92(345) - 5.23(346) + 2.31(347) + 22.63(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 1.43(359) + 2.43(357) - 24.06(358) + 2.43(357) - 24.06(357) + 2.43(357) - 24.06(357) + 2.43(357) - 24.06(357) - 24
173.	0 = -1.50 + 1.89(338) - 17.01(339) + 15.12(340) + 6.68(366) - 8.18(367) + 1.50(368) + 4.34(378) - 4.21(379) - 0.13(380) - 10.000 + 10.0000 + 10.000 + 10.0000 + 10.0000 + 10.0000 + 10.0000 + 10.0000 + 10.0000 + 10.0000
174.	0 = -8.90 + 17.01(339) - 18.87(340) + 1.86(341) + 2.36(377) - 6.57(378) + 4.21(379) + 2.03(381) - 13.84(382)
	+11.81(383)
175.	0 = +5.20 + 5.80(350) - 10.91(351) + 5.11(352) + 4.38(355) - 4.97(356) + 0.59(358) - 0.62(363) - 5.69(364) + 6.31(365) + 0.59(354) + 0.5
176.	$0 = +0.7 + 2.94(37_0) - 3.53(37_0) + 0.59(37_1) + 1.70(38_0) - 3.94(38_1) + 2.19(38_0) + 0.47(38_0) - 2.99(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52(38_0) + 0.59(38_1) + 2.52($
177.	0 = -66.30 + 0.34(388) - 4.73(389) + 4.13(390) + 202.98(392) - 203.43(393) + 2.42(394) + 2.02(401) - 95.91(402) + 1.02(402) + 1.02(401) - 95.91(402) + 1.02(401) - 95.91(402) + 1.02(401) - 95.91(402) + 1.02(401) + 1.02(401) - 95.91(402) + 1.02(401) + 1.02(4
170	+96.29(403) = 1.0 1.0 54(282) 4.72(280) 1.4 10(200) 1.2 98(201) 5.71(202) 1.2 45(204) 1.2 82(401) 2.82(402) 1.1 08(404)
170.	0 = +0.30 + 0.3(360) - 4.10(360) + 7.10(360) + 3.20(361) - 5.11(362) + 2.30(364) + 2.02(361) - 5.00(403) + 1.00(404) + 1.00(
170	+2.9((317)-3.90(310)-7.1.90(315)) - $-1.6.90(-315)(3164)-6.90(365)+5.48(306)+2.91(315)-4.74(316)+2.53(317)+5.73(329)-6.10(323)+0.46(323)$
180	$0 = \pm 0.59 \pm 1.51(107) = 0.50(100) \pm 0.10(100) \pm 0.10(100) \pm 0.10(100) \pm 0.00(107) \pm 0.00(107) \pm 0.00(100) \pm 0.10(100) \pm 0.1$
. 100.	
181.	0 = -14.8 - 6.99(405) + 8.73(406) - 1.74(407) + 0.08(408) + 0.52(409) - 0.60(411) - 1.63(412) + 5.76(413) - 4.13(414)
	-3.89(420)+10.08(422)-6.19(423)
182.	0 = -1.40 + 4.47(135) - 4.47(138) - 3.78(141) + 3.78(143) - 2.00(145) + 2.00(146) + 3.43(148) - 3.43(149) + 0.38(152) + 0.38
	+0.99(154)-1.37(157)+0.19(158)-0.19(159)+0.96(166)-0.96(169)-0.88(174)+0.88(176)-3.79(177)+3.79(178)+0.96(169)-0.88(176)-0.96(169)-0.88(176)-0.96(169)-0.88(176)-0.96(169)-0.88(176)-0.96(169)-0.88(176)-0.96(169)-0.88(176)-0.96(176)-0.9
	+0.54(179) - 0.87(180) + 0.33(181) - 0.65(182) + 0.65(183) + 2.05(185) - 2.05(186) + 1.68(187) - 1.68(188) + 2.14(189) + 0.54(179) - 0.65(186) + 0.54(179) - 0.65(186) + 0.54(179) - 0.55(186) + 0.5
	-2.14(191) - 0.08(192) + 0.08(193) + 1.45(194) - 1.45(195) + 4.23(197) - 4.23(198) - 2.88(200) + 2.88(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.27(202) + 0.28(201) - 0.28(201) - 0.28(201) - 0.27(202) + 0.28(201) - 0.2
	+1.69(204)-1.42(206)+0.84(207)-0.84(209)-1.38(210)+1.38(212)-0.83(213)+0.83(215)+2.42(216)-2.42(217)+0.83(215)+0.83(215)+0.84(207)-0.8
	-1.83(218) + 1.83(220) + 1.12(222) - 1.12(223) + 1.79(228) - 1.79(230) - 1.05(231) + 1.05(232) - 0.99(233) + 0.99(235) + 0.99(255) + 0.9
	+1.13(236) - 1.13(237) + 0.48(238) - 0.48(240) - 2.17(241) + 2.17(242) - 1.62(243) + 1.62(244) + 1.08(246) - 1.08(247) + 1.08(246) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(26) + 1.08(
	+0.59(243) - 0.89(250) + 0.30(252) - 2.19(253) + 2.19(254) - 0.25(255) + 0.25(257) + 1.66(258) - 1.66(259) - 1.05(260) + 0.25(257) + 0.2
	+1.05(262)+1.22(264)-1.22(265)-0.46(266)+0.46(267)+1.17(269)-3.55(270)+2.38(272)-2.19(273)+2.19(274)+2.19(276)+2.19(276)+2.19(276)+2.19(276)+2.19(276)+2.19(276)+2.1
	+3.10(277) - 3.10(279) + 0.48(284) - 0.48(286) - 1.55(287) + 1.55(289) - 0.99(290) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 0.99(292) + 2.46(294) - 2.36(296) + 0.99(292) + 0.9
	+0.91(300) - 0.91(302) - 1.06(303) + 1.06(304) + 0.26(305) - 0.26(307) + 3.05(308) - 3.05(309) + 0.04(310) - 0.04(312) + 0.00(015) + 0.0
	-3.19(313)+3.19(314)+0.38(315)-0.38(317)-0.91(320)+0.91(322)-2.13(323)+2.13(328)+1.43(329)-1.43(330)
	-2.41(331)+2.41(332)+1.92(333)-1.92(333)+1.48(336)-1.48(337)-1.44(339)+1.44(341)-0.68(366)-0.38(368)
	+1.00(370) - 0.39(373) + 0.39(377) + 0.59(379) - 0.59(380) + 1.41(381) - 1.41(383) - 2.19(384) + 2.19(385) + 0.47(386)
	-0.01(300) - 0.40(390) - 3.19(391) + 3.19(393) + 1.40(390) - 1.40(390) + 2.74(401) - 2.74(402) - 1.74(400) + 1.74(407) - 0.09(408) - 0.59(400) + 0.69(410) + 1.69(410) - 2.59(416) + 2.99(417) - 0.99(410) + 0.15(407) - 0.15(409) - 0.1
100	-0.00(400) - 0.02(400) + 0.00(411) + 1.00(412) - 1.00(413) - 2.00(410) + 2.02(417) - 0.20(410) + 0.10(427) - 0.10(428) 0 - 1 2 40 - (240) + (24d) - (26) + (270) - (350) + (27)
109.	$- \pm 2.10 - \pm 2.10 - \pm 2.10 - \pm 2.00 -$

 $184. \ 0 = -2.25 - (23) + (24a) - (27a) + (28) - (24b) + (24c) \\ 185. \ 0 = -39.0 + 0.44(23) - 1.72(24) + 1.28(24a) - 0.07(26) - 11.00(27a) + 11.07(28) + 15.49(35a) - 16.86(36) + 1.37(37)$

50

No.

- 186. 0 = +4.81 (24a) + (25) (38) + (42) (43) + (47) (59) + (63) (64) + (69) (79) + (83) (89) + (93) (99) + (104) + (-(114)+(118)+(133)-(134)+(136)-(137)+(162)-(164)
- 259. 0 = +1.50 (69a) + (69b) (431) + (432) + (433) (435)
- 260. 0 = -0.28 (79a) + (79b) (430) + (431) (433) + (434)
- 261. 0 = +2.53 (79) + (79b) (69a) + (69) (430) + (432)
- $262. \ 0 = +11.530 0.023(69a) + 2.356(69b) 2.333(69) 10.279(79) + 10.316(79a) 0.037(79b) + 0.065(431) 0.065(432) 0.065(43$ 257. 0 = +5.36 + (1) - (5) + (8) - (15) + (17) - (19) + (23) - (29) + (33) - (39) + (43) - (50) + (4) - (5) + (7) - (12) + (17) - (21) + (17) + (17) - (21) + (17+(24a)
- 258. 0 = +13.4 2.02(68) 0.28(69) 0.47(81) + 0.47(83) 3.38(84) + 3.38(85) + 4.81(86) 4.81(87) + 2.80(89) 2.80(90) 2.8-2.98(92) + 2.98(93) + 0.82(94) + 1.33(96) - 2.15(98) + 0.96(99) - 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 4.16(104) - 1.93(105) + 0.96(101) - 4.16(102) + 0.96(101) - 4.16(102) + 0.96(101) - 0.96(101)+1.93(107)+3.34(104)-3.34(109)-0.56(114)+0.56(116)-1.22(117)+1.22(118)+0.65(119)-0.65(121)+1.74(123) - 1.74(124) + 0.26(126) + 3.03(127) - 3.03(128) - 0.26(129) - 2.37(131) - 1.83(132) + 1.83(133) + 1.8+2.37(134) - 4.47(135) + 0.25(137) + 4.47(138) - 0.25(141) - 3.43(148) + 3.43(149) + 4.50(150) - 4.50(151) + 0.25(141) - 0.2-0.38(152) - 0.99(154) + 1.37(157) - 0.19(158) + 0.19(159) - 0.96(166) + 0.96(169) - 1.19(433) + 1.19(434) + 0.19(159) - 0.96(166) + 0.96(169) - 0.9+0.67(430) - 0.67(432) + 3.70(79a) - 3.70(79b) + 2.30(69a)

ROCKY MOUNTAIN SERIES.

- 187. 0 = +0.68 + (1) (4) (5) + (6)188. 0 = -0.22 - (1) + (2) + (5) - (8) - (14) + (15)
- 189. 0 = +0.27 (3) + (4) (6) + (7) (12) + (13)
- 190. 0 = -1.08 (7) + (8) (11) + (12) (15) + (16)
- 191. 0 = -0.13 (10) + (11) (16) + (17) (19) + (20)
- 192. 0 = -1.27 (9) + (10) (20) + (21) (26) + (27)
- 193. 0 = +0.19 (21) + (22) (24) + (26) (37) + (38)
- 194. 0 = -0.23 (22) + (23) (29) + (31) (36) + (37)
- 195. 0 = +0.61 (24) + (25) (30) + (31) (36) + (38)
- 196. 0 = +0.47 (17) + (18) + (19) (23) (28) + (29)
- 197. 0 = +0.61 (31) + (33) (35) + (36) (39) + (40)
- 198. 0 = +1.37 (31) + (32) (34) + (36) (48) + (49)
- $199. \ 0 = +1.13 (32) + (33) (39) + (41) (47) + (48)$
- 200. 0 = -1.00 (41) + (42) (45) + (47) (58) + (59)
- 201. 0 = -1.44 (41) + (43) (46) + (47) (50) + (51)
- 202. 0 = +0.39 (45) + (46) (51) + (52) (57) + (59)
- 203. 0 = +0.76 (43) + (44) + (50) (55) (60) + (61)
- 204. 0 = -0.18 + (4) (5) (52) (56) + (57) + (65)
- 205. 0 = +2.31 (54) + (55) (61) + (63) (66) + (67)
- 206. 0 = -1.09 (4) + (5) (16) + (27) + (54) (67)
- $236. \ 0 = -0.79 + 5.52(1) 1.42(2) 1.43(3) + 4.00(4) 1.72(11) + 4.30(12) 2.58(13) 1.79(14) + 4.11(15) 2.32(16) 1.43($
- $237. \ 0 = -0.64 1.72(9) + 3.05(10) 1.33(11) 1.45(16) + 7.56(17) 6.11(18) 1.78(25) + 2.21(26) 0.43(27) 6.88(28) 0.43(27) 0.$ +10.26(29) - 3.38(30)
- $238. \ 0 = -0.18 + 1.04(21) 4.09(22) + 3.05(23) + 3.15(24) 3.48(25) + 0.33(26) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 1.35(31) + 0.09(27) 1.44(30) + 0.09(27) 1.44(30) + 0.09(27) 1.44(30) + 0.09(27) 0$
- $239. \ 0 = +2.44 + 4.11(31) 5.69(32) + 1.58(33) + 1.19(39) 4.20(40) + 3.00(41) 0.10(47) 2.42(48) + 2.52(49) + 2$
- 240. 0 = +7.68 + 1.86(41) 5.41(42) + 3.55(43) + 4.71(45) 4.87(46) + 0.16(47) + 0.67(50) 3.14(51) + 2.47(52) + 0.16(47) + 0.67(50) 3.14(51) + 2.47(52) + 0.16(47) + 0.1
- $241. \ 0 = -4.36 2.24(5) 0.14(16) + 1.82(27) + 3.55(42) 7.97(43) + 4.42(44) + 2.88(56) 3.37(57) + 0.49(58) + 1.91(60) + 1.92(57) + 1.$ -2.53(61)+0.62(63)+2.38(65)+0.99(66)-2.80(67)
- **242.** 0 = +6.35 + 2.78(4) 0.14(5) + 0.24(11) 0.24(14) + 1.91(16) 1.77(18) + 1.09(25) 5.17(54) + 2.39(55) + 0.62(61)-3.90(62) + 3.28(63) - 1.09(66)
- 254. 0 = +5.76 1.42(1) + 1.42(2) 2.56(4) 0.91(5) + 0.91(6) 0.11(7) + 0.11(8) 1.72(9) + 1.72(10) + 1.72(11) 1.72(12) ++1.79(14)-1.79(15)-1.45(16)+1.45(17)+0.90(19)-0.90(20)-3.05(22)+3.05(23)-0.34(24)+0.77(26)-0.43(27)+0.90(19)-+0.09(29)-1.67(31)+1.58(33)-1.63(34)+1.63(35)+2.97(37)-2.97(38)+1.19(39)-1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+3.55(43)+1.19(40)-3.55(42)+-0.16(45) + 0.06(47) + 0.10(49) + 0.67(50) - 0.67(52) + 2.78(54) - 2.88(56) + 2.88(57) + 2.04(58) - 2.04(59) - 2.38(65) + 2.88(57) + 2.04(58) - 2.04(59) - 2.38(56) + 2.88(57) + 2.04(58) - 2.04(58)+1.82(67)-2.78(4)+2.38(5)-0.81(3)+0.81(5)+0.41(8)-0.41(9)-1.88(10)-0.24(11)+1.88(12)+0.24(14)+0.24(1-2.85(17)+2.85(18)-3.17(25)+1.35(27)

EL PASO BASE NET.

207. 0 = -0.17 - (4) + (5) - (6) + (8) - (17) + (19)208. 0 = -0.76 - (3) + (4) - (8) + (9) - (10) + (12)209. 0 = +0.41 - (3) + (5) - (11) + (12) - (17) + (18)**210.** 0 = +1.33 + (1) - (4) - (7) + (8) - (22) + (23)211. 0 = +0.38 + (1) - (5) - (15) + (17) - (22) + (24)212. 0 = +0.07 - (1) + (3) - (12) + (13) - (21) + (22)213. 0 = +1.24 - (2) + (3) - (12) + (14) - (25) + (26) U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

52 No.

- 214. 0 = -2.12 + (2) (5) (16) + (17) (26) + (27)
- 215, 0 = -2.60 (1) + (2) (20) + (22) (26) + (28)
- 243. 0 = +7.79 1.60(3) + 2.91(4) 1.31(5) 5.65(10) + 7.54(11) 1.89(12) 1.65(17) + 7.61(18) 5.96(19) 1.65(17) + 7.61(18) 5.96(19) 1.65(17) + 7.61(18) 5.96(19) 1.65(17) + 7.61(18) 5.96(19) 1.65(17) + 7.61(18) 5.96(19) 5.65(1

244, 0 = +21.22 - 6.06(7) + 6.47(8) - 0.41(9) - 1.89(10) + 15.95(12) - 14.06(13) - 12.80(21) + 20.22(22) - 7.42(23) - 1.20(21) + 1.20(21) + 1.

- 245, 0 = -10.97 0.77(6) + 6.06(7) 5.29(8) 1.98(15) + 3.63(17) 1.65(19) 5.41(22) + 7.42(23) 2.01(24) + 1.65(19) 5.41(22) + 7.42(23) 5.41(22) + 7.42(23) + 7.42(23) 7.42(23) + 7.42(
- $246. \ 0 = -15.94 3.30(11) + 4.33(12) 1.03(14) 8.79(16) + 11.64(17) 2.85(18) 4.06(25) + 23.43(26) 19.37(27) + 23.43(26) 19.47(27) + 23.43(26) 19.47(27) + 23.43(26) 19.47(27) + 23.43(26) + 23.47(27) + 23$
- 247. 0 = +1.59 3.30(11) + 4.33(12) 1.03(14) 1.98(15) + 4.83(17) 2.85(18) 0.40(20) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(22) 2.01(24) 4.06(25) + 2.41(25) 2.4
 - +8.14(26) 4.08(28)

COLORADO SERIES.

216.	0 = +1.44 + (20) - (28) - (214) + (215) - (223) + (224)
217.	0 = +0.10 - (213) + (214) - (219) + (220) - (224) + (225)
2 18.	0 = -3.17 - (205) + (206) - (212) + (213) - (220) + (221)
219.	0 = -1.59 + (210) - (215) - (217) + (218) - (222) + (223)
220.	0 = -2.85 - (203) + (204) - (210) + (211) - (216) + (217)
221.	0 = +3.92 - (202) + (203) - (206) + (207) - (211) + (212)
222.	0 = -0.20 - (198) + (199) - (200) + (202) - (207) + (208)
223.	0 = +0.28 - (190) + (192) - (197) + (198) - (208) + (209)
224.	0 = -2.21 - (191) + (192) - (197) + (199) - (200) + (201)
225.	0 = +1.00 - (188) + (189) - (192) + (193) - (195) + (197)
226.	0 = +1.59 - (181) + (182) - (187) + (189) - (195) + (196)
227.	0 = -1.03 - (180) + (182) - (187) + (188) - (193) + (194)
2 28.	$\dot{0} = -1.18 - (169) + (170) - (182) + (184) - (186) + (187)$
229.	0 = -0.33 - (178) + (179) - (182) + (183) - (185) + (187)
230.	0 = -0.42 - (170) + (171) - (177) + (179) - (185) + (186)
231.	0 = -2.85 - (163) + (164) + (165) - (168) - (175) + (176)
232.	0 = +1.57 - (162) + (164) - (171) + (173) - (175) + (177)
233.	0 = +0.13 - (154) + (155) - (166) + (167) - (172) + (174)
234.	0 = -1.61 - (154) + (162) - (173) + (174)

 $235. \ 0 = -0.86 - (155) + (163) - (165) + (166)$

 $248. \ 0 = -13.3 - 1.34(20) - 0.21(28) - 2.24(202) + 5.09(203) - 2.85(204) - 1.48(205) + 2.93(206) - 1.45(207) - 0.98(216) - 0.98(216) -$ +0.08(217)+0.90(218)-0.57(219)+1.95(220)-1.38(221)-3.76(222)+5.10(223)+2.03(224)-1.82(225)249. 0 = +4.9 + 2.94(197) - 2.72(198) - 0.22(199) + 2.64(200) - 4.53(201) + 1.89(202) + 1.11(207) - 4.11(208) + 3.00(209) + 1.11(207) - 4.11(207) + 1.11(207) - 4.11(207) + 1.11(207) +

250. 0 = +3.7 + 2.45(180) - 3.32(181) + 0.87(182) + 1.44(187) - 3.25(188) + 1.81(189) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) - 2.69(196) + 2.24(197) + 0.45(195) +

- 251. 0 = +5.5 + 0.35(169) + 2.33(170) 2.68(171) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 2.40(182) + 6.33(183) 3.93(184) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) + 3.85(186) 0.31(187) 3.54(185) - $252. \ 0 = +1.4 - 3.23(154) + 7.25(155) + 7.42(163) - 7.10(164) - 1.90(171) + 3.22(172) - 1.32(174) - 7.37(175) + 7.74(176)$ -0.37(177)
- 253. 0 = -16.0 3.23(154) + 7.25(155) + 10.43(162) 10.11(163) 13.15(172) + 14.47(173) 1.32(174) + 14.47(173) 14.47(173) + 14.47(173) 14.47(173) + 1

 $255. \ 0 = -11.1 + 0.81(3) - 0.81(5) - 0.41(8) + 0.41(9) + 1.88(10) - 1.88(12) - 1.45(13) + 1.45(14) - 1.77(16) + 2.85(17) - 0.41(16) - 0.40(16) - 0.40($ -1.08(18) + 2.11(20) - 0.77(21) + 3.17(25) - 3.17(27) + 1.18(154) + 3.97(162) - 3.97(164) - 0.35(169) + 0.35(171-1.80(173) + 1.80(174) + 0.22(175) - 0.22(177) + 1.36(178) - 1.36(179) + 0.87(180) - 0.87(182) - 3.93(183) + 3.93(184) + 3.9-0.31(185) + 0.31(187) + 1.81(188) - 1.81(189) + 0.78(190) - 0.78(171) - 1.38(193) + 1.38(194) - 0.45(195) - 0.4+0.23(197)+0.22(199)-2.64(200)+2.64(201)+2.24(202)-2.24(203)+1.48(205)-1.48(206)-1.11(207)+1.11(209) - 0.32(211) + 0.32(212) + 2.66(214) - 2.66(215) + 0.57(219) - 1.96(220) + 1.39(221) - 1.34(223) + 0.57(219) - 1.96(220) + 0.57(219) - 1.96(220) + 0.57(219) - 0.5-1.82(224)+1.82(225)

 $256. \ 0 = -3.34 + (1) - (5) + (8) - (15) + (17) - (19) + (23) - (29) + (33) - (39) + (43) - (50) + (54) - (67) + (225) - (219) + (221) + (2$ -(205)+(209)-(190)+(194)-(180)+(184)-(169)+(174)-(154)

ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS.

The corrections to observed directions resulting from the figure adjustments indicated by the preceding observation equations are as follows:

20

ROCKY MOUNTAIN SERIES.

Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Nnmber of direc- tion.	Correction to direc- tion.
1 2 2	+0.038 +1.020	21 22	+0.020 +0.327	36 37	-0.120 +0.392	51 52	+0.945 -0.128
3 4 5 6	-0.203 +0.187 +0.225 -0.307	23 24 25 26	-0.080 +0.060 -0.453 ± 0.133	39 40 41	-0.178 +0.641 +0.368 -0.410	54 55 56	+0.434 -0.049 -0.024 -0.445
7 8 9 10	-0.207 +0.289 -0.462 +0.224	27 28 29 30	+0.261 +0.510 -0.006 +0.159	* 42 43 44 45	+0.404 -0.275 -0.727 -0.236	58 59 60 61	$\begin{array}{r} +0.330 \\ +0.139 \\ +0.476 \\ +0.199 \end{array}$
11 12 13 14 15	+0.123 +0.467 -0.352 +0.120 -0.576	31 32 33 34 35	$\begin{array}{r} +0.121 \\ -0.227 \\ -0.555 \\ +0.363 \\ -0.457 \end{array}$	46 47 48 49 50	$\begin{array}{r} -0.140 \\ +0.139 \\ +0.389 \\ -0.153 \\ -0.081 \end{array}$	62 63 65 66 67	$\begin{array}{r} -0.064 \\ -0.611 \\ +0.838 \\ +0.583 \\ -0.435 \end{array}$
16 17 18 19 20	$\begin{array}{r} -0.336 \\ +0.497 \\ +0.295 \\ +0.168 \\ -0.434 \end{array}$,	

EL PASO BASE NET.

1 23 4 5	" -0.623 +0.998 -0.332 -0.051 +0.008	11 12 13 14 15	" -0.362 -0.236 +0.027 +0.492 +0.219	21 22 23 24	" +0.510 -0.112 +0.191 -0.415	25 26 27 28	" +0.137 -0.498 -0.727 +0.234
6 7 8 9 10	$\begin{array}{r} -0.702 \\ +0.678 \\ -0.383 \\ +0.408 \\ +0.078 \end{array}$	16 17 18 19 20	$\begin{array}{r} -0.583 \\ +0.774 \\ -0.103 \\ +0.565 \\ -0.360 \end{array}$				

COLORADO SERIES.

Table of corrections to observed directions—Continued.

	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.
	1 2 3 4 5	" +0.025 -0.719 -0.163 -0.263 +0.105	73 74 75 76 77	$\begin{array}{c} '' \\ -0.479 \\ -0.466 \\ +0.221 \\ -0.851 \\ +1.249 \end{array}$	151 152 153 154 155	" +0.989 +0.418 -0.319 +0.244 +0.185	231 232 233 234 235	$\begin{array}{c} '' \\ -0.410 \\ +0.668 \\ -0.332 \\ -0.239 \\ +0.036 \end{array}$
	6 7 8 9 10	$\begin{array}{r} -0.484 \\ -1.332 \\ +0.558 \\ +0.545 \\ -0.335 \end{array}$	78 79 79a 79b 80	$\begin{array}{r} -0.152 \\ +0.756 \\ -0.371 \\ -0.555 \\ +0.632 \end{array}$	136 157 158 159 160	$\begin{array}{c} +0.188 \\ -0.716 \\ +0.211 \\ -0.065 \\ +0.229 \end{array}$	236 237 238 239 210	$\begin{array}{r} +0.629 \\ -0.093 \\ -0.885 \\ +0.511 \\ -0.272 \end{array}$
	11 12 13 14 15	$\begin{array}{r} -0.768 \\ +0.813 \\ +1.142 \\ -0.031 \\ -0.612 \end{array}$	81 82 83 84 85	0. 285 +0. 060 0. 237 0. 101 0. 441	161 162 163 164 165	$\begin{array}{r} -0.375 \\ -0.471 \\ +0.365 \\ +0.108 \\ -0.002 \end{array}$	241 242 243 244 245	+0.454 +0.192 +0.110 -0.440 +0.378
	16 17 18 19 20	$\begin{array}{r} -0.217 \\ -1.096 \\ +0.354 \\ -0.222 \\ -0.132 \end{array}$	86 87 88 89 90	-0. 139 +0. 246 +0. 435 +0. 100 +0. 367	166 167 168 169 170	$\begin{array}{r} -0.934 \\ +0.550 \\ +0.114 \\ +0.270 \\ -0.045 \end{array}$	246 247 248 249 250	$\begin{array}{r} -0.367 \\ +0.320 \\ -0.299 \\ +0.373 \\ +0.238 \end{array}$
	21 22 23 24 24a	$\begin{array}{r} +0.600 \\ +0.382 \\ +0.292 \\ +0.109 \\ -0.896 \end{array}$	91 92 93 94 95	$\begin{array}{r} +0.\ 265 \\ +\ 0.\ 093 \\ -0.\ 823 \\ -0.\ 030 \\ +0.\ 095 \end{array}$	171 172 173 174 175	+0.370 -0.381 +0.056 -0.516 -0.138	251 252 253 254 255	+0.102 -0.414 -0.198 +0.706 +0.330
	24b 24c 24d 25 26	$\begin{array}{r} -1.072 \\ +0.648 \\ +0.424 \\ -0.488 \\ -0.398 \end{array}$	96 97 98 99 100	-0.375 -0.171 +0.481 +0.468 +0.094	176 177 178 179 180	$\begin{array}{r} +0.410 \\ +0.015 \\ +0.231 \\ -0.229 \\ -0.174 \end{array}$	256 257 258 259 260	$\begin{array}{r} -1.143 \\ +0.305 \\ +0.754 \\ -0.570 \\ +0.113 \end{array}$
	27 27a 28 29 30	+0.338 -1.774 -0.056 +0.792 +0.352	101 102 103 104 105	$\begin{array}{r} +0.110 \\ +0.115 \\ -0.310 \\ -0.477 \\ -0.514 \end{array}$	181 182 183 184 185	+0. 402 +0. 359 -0. 590 +0. 173 -0. 065	261 262 263 264 265	$\begin{array}{r} +0.243 \\ +0.312 \\ -0.853 \\ -0.144 \\ -0.398 \end{array}$
	31 32 33 34 35	$\begin{array}{r} -0.327 \\ +1.073 \\ +0.263 \\ -0.567 \\ -0.945 \end{array}$	106 107 108 109 110	$\begin{array}{r} +0.980 \\ -0.590 \\ +0.064 \\ +0.060 \\ +0.355 \end{array}$	186 187 188 189 190	$\begin{array}{r} +0.123 \\ -0.401 \\ +0.537 \\ +0.282 \\ +0.184 \end{array}$	266 267 268 269 270	$\begin{array}{r} -0.060 \\ +0.602 \\ +0.278 \\ -0.259 \\ -0.043 \end{array}$
	35a 36 37 38 39	$\begin{array}{r} +1.162 \\ -0.188 \\ +0.275 \\ -0.426 \\ +0.800 \end{array}$	111 112 113 114 115	$\begin{array}{r} +0.283 \\ -0.042 \\ -0.596 \\ -0.341 \\ +0.817 \end{array}$	191 192 193 194 195	$\begin{array}{r} -0.602 \\ +0.019 \\ +0.597 \\ -0.433 \\ -0.396 \end{array}$	271 272 273 274 275	$\begin{array}{r} +0.361 \\ -0.337 \\ +0.230 \\ -0.195 \\ +0.225 \end{array}$
	40 41 42 43 44	-0.197 -0.106 -0.072 -0.457 +0.789	116 117 118 119 120	$\begin{array}{r} -0.094 \\ -0.216 \\ -0.166 \\ +0.106 \\ -0.658 \end{array}$	196 197 198 199 200	$\begin{array}{r} +0.212 \\ +0.493 \\ -0.291 \\ -0.173 \\ -0.014 \end{array}$	276 277 278 279 280	$\begin{array}{r} -0.482 \\ +0.250 \\ +0.144 \\ -0.172 \\ -0.172 \end{array}$
	45 46 47 48 49	+0.807 -0.124 -1.015 +0.579 -0.493	121 122 123 124 125	$\begin{array}{r} -0.153 \\ +0.211 \\ +0.710 \\ -0.216 \\ -0.337 \end{array}$	201 202 203 204 205	$\begin{array}{r} -0.015 \\ +0.130 \\ -0.214 \\ +0.133 \\ -0.015 \end{array}$	281 282 283 284 285	+0.144 +0.004 +0.024 +0.169 -0.083
THE R. P. LEWIS CO., LANSING MICH.	50 51 52 53 54	$\begin{array}{c} -0.402 \\ +0.099 \\ +0.217 \\ -0.025 \\ -0.249 \end{array}$	126 127 128 129 130	$\begin{array}{r} +0.652 \\ -0.308 \\ +0.323 \\ -0.330 \\ -0.150 \end{array}$	206 207 208 209 210	$\begin{array}{r} -0.036 \\ +0.215 \\ -0.318 \\ +0.361 \\ +0.070 \end{array}$	286 287 288 289 290	$\begin{array}{r} +0.273 \\ -0.376 \\ -0.147 \\ +0.164 \\ -0.207 \end{array}$
	55 56 57 58 59	$\begin{array}{c} +0.215 \\ +0.186 \\ -0.506 \\ +0.377 \\ +0.842 \end{array}$	131 132 133 134 135	$\begin{array}{r} +0.001 \\ -0.192 \\ +0.006 \\ +0.335 \\ -0.436 \end{array}$	211 212 213 214 215	$\begin{array}{r} -0.153 \\ -0.175 \\ +0.062 \\ +0.275 \\ -0.261 \end{array}$	291 292 293 294 295	+0.156 +0.138 -0.176 +0.318 +0.302
	60 61 62 63 64	$\begin{array}{c} -0.117 \\ -0.275 \\ -0.202 \\ -0.248 \\ -0.269 \end{array}$	136 137 138 139 140	$\begin{array}{r} -0.055 \\ +0.288 \\ +0.519 \\ -0.312 \\ -0.666 \end{array}$	216 217 218 219 220	$\begin{array}{r} -0.302 \\ +0.225 \\ -0.018 \\ +0.124 \\ +0.074 \end{array}$	296 297 298 299 300	$\begin{array}{r} -0,531 \\ +0.110 \\ -0.144 \\ +0.034 \\ -0.065 \end{array}$
	65 66 67 68 69	$\begin{array}{r} +0.063 \\ +0.041 \\ -0.302 \\ +0.449 \\ -0.252 \end{array}$	141 142 143 144 145	$\begin{array}{r} +0.278 \\ -0.335 \\ +0.721 \\ -0.011 \\ -0.229 \end{array}$	221 222 223 224 225	$\begin{array}{r} -0,251 \\ +0,213 \\ -0,143 \\ -0,051 \\ -0,114 \end{array}$	301 302 303 304 305	$\begin{array}{r} +0.068 \\ -0.185 \\ +0.229 \\ -0.047 \\ -0.355 \end{array}$
	69a 69b 70 71 72	+0.508 -0.236 -0.043 +0.283 +0.805	146 147 148 149 150	-0.339 +0.075 +0.575 -0.587 -0.472	226 227 228 229 230	$\begin{array}{r} +0.179 \\ -0.014 \\ +0.116 \\ -0.024 \\ -0.349 \end{array}$	306 307 308 309 310	+0.123 +0.163 -0.168 +0.237 -0.060
a 1		19				,		

ONE HUNDRED AND FOURTH MERIDIAN.

Table of corrections to observed directions—Continued.

fumber of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.
311 312 313 313a 314	$\begin{array}{r} & & \\ & +0.041 \\ & -0.324 \\ & +0.503 \\ & +0.027 \\ & -0.189 \end{array}$	345 346 347 348 349	$\begin{array}{c} '' \\ -0.631 \\ +0.182 \\ +0.449 \\ -0.449 \\ -0.212 \end{array}$	375 376 377 378 379	$\begin{array}{c} & & \\ & -0.068 \\ & -0.173 \\ & +0.128 \\ & -0.115 \\ & -0.651 \end{array}$	405 406 407 408 409	'' +0.294 +0.558 -0.077 -0.247 +0.302
315 316 317 318 319	$\begin{array}{r} -0.190 \\ +0.094 \\ +0.006 \\ -0.187 \\ +0.613 \end{array}$	350 351 352 353 354	$\begin{array}{r} -0.019 \\ +0.431 \\ +0.249 \\ +0.033 \\ +0.216 \end{array}$	380 381 382 383 384	$\begin{array}{r} +0.880 \\ +0.126 \\ -0.770 \\ +0.275 \\ +0.198 \end{array}$	410 411 412 413 414	+0.074 -0.128 -0.310 +1.349 -1.039
320 321 322 323 324	$\begin{array}{c} +0.100 \\ +0.041 \\ -0.477 \\ -0.410 \\ +0.202 \end{array}$	355 356 357 358 359	$\begin{array}{r} -0.359 \\ -0.366 \\ -0.114 \\ -0.067 \\ +0.656 \end{array}$	385 386 387 388 389	$\begin{array}{r} +0.170 \\ -0.358 \\ +0.489 \\ +0.144 \\ -0.463 \end{array}$	415 416 417 418 419	$\begin{array}{r} -0.488 \\ +0.632 \\ -0.586 \\ +0.222 \\ +0.219 \end{array}$
325 326 327 328 329	-0.420 +0.226 -0.210 +0.648 -0.315	360 361 362 363 364	$\begin{array}{r} +0.118 \\ -0.523 \\ +0.405 \\ -0.211 \\ +0.276 \end{array}$	390 391 392 393 394	$\begin{array}{r} +0.188 \\ +0.014 \\ +0.270 \\ -0.091 \\ -0.175 \end{array}$	420 421 422 423 424	$\begin{array}{r} -0.358 \\ +0.222 \\ -0.078 \\ +0.244 \\ -0.082 \end{array}$
330 331 332 333 334	$\begin{array}{r} +0.279 \\ +0.151 \\ +0.135 \\ -0.096 \\ -0.356 \end{array}$	365 366 367 368 369	$\begin{array}{r} -0.065 \\ -0.376 \\ +0.225 \\ +0.436 \\ -0.245 \end{array}$	395 396 397 398 399	$\begin{array}{r} +0.010\\ -0.029\\ +0.318\\ -0.248\\ -0.370\end{array}$	425 426 427 428 429	$\begin{array}{c} -0.310 \\ -0.360 \\ -0.184 \\ +0.440 \\ +0.414 \end{array}$
335 336 337 338 339	$\begin{array}{r} +0.166 \\ +0.502 \\ -0.374 \\ -0.051 \\ -0.109 \end{array}$	370 371 372 373 374	$\begin{array}{r} -0.042 \\ +0.334 \\ -0.811 \\ +0.195 \\ +0.282 \end{array}$	400 401 402 403 404	$\begin{array}{c} +0.300 \\ -0.030 \\ -0.208 \\ -0.319 \\ -0.220 \end{array}$	430 431 432 433 434	+0.167 +0.124 -0.291 -0.283 +0.224
340 341 342 343 344	+0.085 -0.053 +0.443 -0.530 +0.087					435	+0.058

ONE HUNDRED AND FOURTH MERIDIAN-Continued.

The maximum correction to an observed direction for the different sections is shown in the following table:

Maximum correction to an observed direction by sections.

Section.	Direction number.	Between stations.	Correction.
El Paso base net	2	El Paso east base and Big Springs	$\begin{array}{c} '' \\ 1.00 \\ 1.02 \\ 1.30 \\ 1.33 \\ 0.99 \\ 1.14 \end{array}$
Rocky Mountain series.	2	Tushar and Mount Ellen	
Colorado series.	211	Square Bluffs and Hugo.	
El Paso to Cheyenne.	7	Divide and Hilltop.	
Cbeyenne to Provo.	151	Alkali and Manville.	
Provo to Ambrose.	256	Black and Whetstone	

The maximum correction to a direction on the ninety-eighth meridian triangulation was $1^{\prime\prime}.96$, and the average maximum correction for the 17 sections into which that are was divided was $0^{\prime\prime}.99$.

The probable error of an observed direction is

$$d = 0.674 \sqrt{\frac{\Sigma v^2}{c}}$$

in which Σv^2 is the sum of the squares of the corrections to directions and c is the number of conditions.

The probable error of an observed direction resulting from the new adjustment for each of the three sections of the thirty-ninth parallel was found to be slightly larger than that resulting from the original adjustment.

El Paso base net, original adjustment, $\pm 0^{\prime\prime}.40$ became $\pm 0^{\prime\prime}.44$. Rocky Mountain series, original adjustment, $\pm 0^{\prime\prime}.32$ became $\pm 0^{\prime\prime}.40$. Colorado series, original adjustment, $\pm 0^{\prime\prime}.50$ became $\pm 0^{\prime\prime}.52$.¹ U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

The probable error of an observed direction resulting from the figure adjustment for the entire one hundred and fourth meridian is $\pm 0^{\prime\prime}.38$. When considered as divided into three sections by the base lines, the probable error of an observed direction for each section is as follows:

Divide-Pikes Peak to Cheyenne base $\pm 0^{\prime\prime}.41.^{1}$ Cheyenne base to Provo base $\pm 0^{\prime\prime}.39$. Provo base to Ambrose base $\pm 0^{\prime\prime}.36$.

ACCURACY AS INDICATED BY CORRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES.

The correction to each angle is the algebraic sum of the corrections to two directions. In order to make it possible to study the corrections to the separate angles, they are shown in the following table for every triangle in the primary scheme. There are shown the corrections to the angles resulting from the figure adjustment, the errors of closure of the triangles, the corrected spherical angles, and the spherical excess for each triangle. The plus sign prefixed to the error of closure of a triangle indicates that the sum of the angles is less than 180° plus the spherical excess. The spherical excess is a convenient indication of the size of the triangle, since it is proportional to the area.

Table of triangles.

ROCKY MOUNTAIN SERIES.

Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
Wasatch Tushar Mount Nebo	-0.53 + 0.04 - 0.19	-0.68	$\begin{cases} 113 \ 25 \ 30.46 \\ 27 \ 11 \ 27.36 \\ 39 \ 23 \ 23.82 \end{cases}$	21.64	Mount Elbert Mount Ouray Uncompangre	+0.25 -1.05 -0.33	-1.13	$\left\{\begin{array}{c} 51 \ 40 \ 39.27 \\ 95 \ 30 \ 63.61 \\ 32 \ 48 \ 40.25 \end{array}\right.$	23.13
Mount Ellen Tushar Wasatch	-0.70 +0.98 -0.06	} +0.22	$\left\{\begin{array}{r} 49 \ 36 \ 36.88 \\ 55 \ 56 \ 26.70 \\ 74 \ 27 \ 30.75 \end{array}\right.$	} 34.33	Mount Elbert Mount Ouray Treasury Mountain	$ \begin{array}{r} -0.29 \\ -0.78 \\ -0.82 \end{array} $	} -1.89	$\left\{\begin{array}{c}92 \ 45 \ 10.58\\35 \ 01 \ 33.99\\52 \ 13 \ 27.07\end{array}\right.$	} 11.64
Patmos Head Wasatch Mount Nebo	-0.82 +0.10 +0.45	} -0.27	$\left\{\begin{array}{l} 39 \ 09 \ 43.24 \\ 85 \ 03 \ 64.27 \\ 55 \ 46 \ 34.64 \end{array}\right.$	22.15	Mount Elbert Uncompangre. Treasury Mountain	$-0.54 \\ -0.35 \\ -0.48$	} -1.37	$\begin{cases} 41 & 04 & 31.31 \\ 20 & 18 & 11.52 \\ 118 & 37 & 31.23 \end{cases}$	} 14.06
Patmos Head Mount Ellen Wasatch	+0.34 +0.24 +0.50	+1.08	$\left\{\begin{array}{c} 50 \ 46 \ 41.57 \\ 42 \ 10 \ 57.45 \\ 87 \ 02 \ 54.53 \end{array}\right.$	} 33.55	Bison. Mount Ouray. Mount Elbert	-0.19 +0.81 +0.38	+1.00	$\left\{\begin{array}{r} 45 \ 54 \ 08. \ 24 \\ 48 \ 32 \ 24. \ 41 \\ 85 \ 33 \ 44. \ 04 \end{array}\right.$	} 16.69
Mount Waas. Mount Eilen. Patmos Head	$ \begin{array}{c} -0.60 \\ +0.83 \\ -0.10 \end{array} $	+0.13	$\left\{\begin{array}{c} 66 \ 55 \ 24. 67 \\ 55 \ 25 \ 23. 72 \\ 57 \ 39 \ 60. 32 \end{array}\right.$	} 48.71	Pikes Peak Mount Ouray Mount Elbert	$^{+1.03}_{+0.13}_{+0.28}$	+1.44	$\left\{\begin{array}{r} 38 \ 34 \ 45.12 \\ 79 \ 13 \ 59.50 \\ 62 \ 11 \ 37.74 \end{array}\right.$	22.36
Tavaputs Mount Waas Patmos Head	+0.13 +0.45 +0.69	+1.27	$\left\{\begin{array}{c}78&24&37.01\\50&48&50.78\\50&46&63.83\end{array}\right.$	31.62	Pikes Peak Mount Ouray Bison	$-0.05 \\ -0.68 \\ +0.78$	+0.05	$\left\{\begin{array}{c} 72 \ 24 \ 49.46 \\ 30 \ 41 \ 35.09 \\ 76 \ 53 \ 51.58 \end{array}\right.$	} 16.13
Uncompanyee Mount Eilen. Mount Waas	-0.52 -0.20 +0.25	} -0.47	$\left\{\begin{array}{c}17 & 00 & 38, 51\\19 & 00 & 53, 69\\143 & 58 & 63, 39\end{array}\right.$	35.59	Pikes Peak. Mount Elbert. Bison.	$^{-1.08}_{+0.10}_{+0.59}$	} -0.39	$\begin{cases} 33 \ 50 \ 04.34 \\ 23 \ 22 \ 06.30 \\ 122 \ 47 \ 59.82 \end{cases}$	} 10.46
Uncompangre Mount Waas Tavaputs	+0.17 -0.10 +0.58	+0.65	$\left\{\begin{array}{l} 31 \ 54 \ 61.57 \\ 98 \ 16 \ 41.16 \\ 49 \ 48 \ 63.42 \end{array}\right.$	} 46.15	Plateau Mount Ouray Pikes Peak	-0.28 -0.45 -0.03	-0.76	$\begin{cases} 47 \ 45 \ 08.98 \\ 25 \ 27 \ 44.75 \\ 106 \ 47 \ 24.22 \end{cases}$	} 17.95
Treasury Mountain Uncompangre Mount Waas	+0.51 +0.13 -0.41	+0.23	$\left\{\begin{array}{c} 57 \ 48 \ 40.15 \\ 87 \ 35 \ 56.19 \\ 34 \ 35 \ 68.84 \end{array}\right.$	} 45. 18	Divide. Pikeš Peak. Bison.	+0.73 -0.13 -0.42	+0.18	$\begin{cases} 41 \ 30 \ 13.05 \\ 102 \ 17 \ 57.38 \\ 36 \ 11 \ 57.29 \end{cases}$	} 7.72
Treasury Mountain Uncompangre Tavaputs	$\begin{array}{c} -0.06 \\ -0.04 \\ -0.51 \end{array}$	-0.61	93 10 60. 85 55 40 54. 62 31 08 52. 91	} 48.38	Big Springs Plateau Pikes Peak	-1.02 -0.81 -0.48	} -2.31	$\left\{\begin{array}{c} 64 \ 54 \ 16.03 \\ 73 \ 43 \ 16.16 \\ 41 \ 32 \ 35.44 \end{array}\right.$	} 7.63
Treasury Mountain Mount Waas Tavaputs	-0.57 +0.31 +0.07	-0.19	$\left\{\begin{array}{l} 35 & 22 & 20.70 \\ 63 & 40 & 32.32 \\ 80 & 57 & 56.33 \end{array}\right.$	} 49.35	Big Springs. Pikes Peak. Divide	-0.29 +0.69 +0.69	+1.09	$\left\{\begin{array}{l} 49 \ 12 \ 60. 27 \\ 37 \ 07 \ 13. 50 \\ 93 \ 39 \ 51. 83 \end{array}\right.$	5.60
Mount Ouray Uncompangre Treasury Mcuntain	$ \begin{array}{c} -0.27 \\ -0.68 \\ +0.34 \end{array} $	} -0.61	$\left\{\begin{array}{cccc} 60 & 29 & 29. 62 \\ 53 & 06 & 51. 77 \\ 66 & 23 & 64. 16 \end{array}\right.$	25.55	Coral Bluffs. Big Springs. Plateau.	-0.45 -0.54	}	$\left\{\begin{array}{l} 62 \ 35 \ 09.40 \\ 80 \ 31 \ 35.02 \\ 36 \ 53 \ 19.45 \end{array}\right.$	} 3.87

¹ This probable error when computed after the introduction of the Laplace azimuth at Watkins astronomic was ±0".56.

.

.

Table of triangles-Continued.

EL PASO BASE NET.

			a contraction of the second se				and the second se	and the second se	
Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
	,,		B / //						
Coral Bluffs. Divlde. Big Springs	+0.85 +0.48 -0.86	+0.47	$\left\{\begin{array}{l} 96 \ 29 \ 37. \ 91 \\ 49 \ 54 \ 42. \ 72 \\ 33 \ 35 \ 41. \ 28 \end{array}\right.$	} 1.91	Holcolm Hills. Big Springs. El Paso east base	+0.25 +0.73 +1.62	+2.60	$\left\{\begin{array}{c} 79 \ 12 \ 08.36 \\ 27 \ 18 \ 38. 29 \\ 73 \ 29 \ 14.31 \end{array}\right.$	0.96
El Paso west base Divide Coral Bluffs	+1.11 +0.67 -0.44	+1.34	$\begin{cases} 148 \ 54 \ 54. 32 \\ 15 \ 28 \ 13. 79 \\ 15 \ 36 \ 52. 08 \end{cases}$	} 0.19	Holcolm Hills. Big Springs. Divide	-0.06 +0.96 -0.80	+0.10	$\begin{cases} 125 & 34 & 08.84 \\ 21 & 06 & 23.86 \\ 33 & 19 & 28.39 \end{cases}$	} 1.09
El Paso east base Big Springs Coral Bluffs	-1.33 -0.63 +0.72	} -1.24	$\left\{\begin{array}{l} 88 & 39 & 22.04 \\ 27 & 23 & 26.85 \\ 63 & 57 & 12.21 \end{array}\right.$	} 1.10	Holcolm Hills Coral Bluffs El Paso east base	-0.62 +0.26 +0.29	} -0.07	$\begin{cases} 9 \ 20 \ 30. \ 46 \\ 8 \ 30 \ 53. \ 35 \\ 162 \ 08 \ 36. \ 35 \end{cases}$	0.16
El Paso east base Coral Bluffs El Paso west base	+0.28 -0.31 +0.79	+0.76	$\left\{\begin{array}{l} 52 \ 50 \ 51. \ 20 \\ 48 \ 09 \ 17. \ 78 \\ 78 \ 59 \ 51. \ 36 \end{array}\right.$	} 0.34	Holcolm Hills. Coral Bluffs. El Paso west base	$-0.32 \\ -0.05 \\ -0.27$	} -0.64	$\left\{\begin{array}{c} 25 \ 10 \ 53.00 \\ 56 \ 40 \ 11.13 \\ 98 \ 08 \ 56.59 \end{array}\right.$	} 0.72
El Paso east base Coral Bluffs Divide	+0.34 +0.13 -0.88	· -0.41	$ \left\{ \begin{matrix} 111 & 01 & 24.13 \\ 32 & 32 & 25.70 \\ 36 & 26 & 10.65 \end{matrix} \right.$	0.48	Holcolm Hills. Coral Bluffs. Divide	$-0.93 \\ +0.39 \\ -0.32$	-0.86	$\left\{\begin{array}{c} 55 \ 42 \ 30. \ 94 \\ 41 \ 03 \ 19. \ 05 \\ 83 \ 14 \ 11. \ 11 \end{array}\right.$	} 1.10
El Paso east base El Paso west base Divide	+0.06 +0.32 -0.21	+0.17	$\left\{\begin{array}{l} 58 \ 10 \ 32. \ 93 \\ 69 \ 55 \ 02. \ 96 \\ 51 \ 54 \ 24. \ 44 \end{array}\right.$	0.33	Holcolm Hills El Paso east base El Paso west base	$+0.30 \\ -0.57 \\ -1.06$	} -1.33	$\begin{cases} 15 50 22.54 \\ 145 00 32.45 \\ 19 09 05.23 \end{cases}$	0.22
El Paso east base Divide Blg Springs	+0.99 +1.36 -0.23	+2.12	$\begin{cases} 160 \ 19 \ 13. \ 83 \\ 13 \ 28 \ 32. \ 07 \\ 6 \ 12 \ 14. \ 43 \end{cases}$	} 0.33	Holcolm Hills El Paso east base Divide	-0.30 -0.63 +0.55	} -0.38	$\left\{\begin{array}{l} 46 \ 22 \ 00. \ 49 \\ 86 \ 49 \ 59. \ 52 \\ 46 \ 47 \ 60. \ 45 \end{array}\right.$	0.46
Holcolm Hills Big Springs Coral Bluffs	+0.87 +0.10 +0.46	} +1.43	$\left\{\begin{array}{l} 69 \ 51 \ 37.90 \\ 54 \ 42 \ 05.14 \\ 55 \ 26 \ 18.86 \end{array}\right.$	} 1.90	Holcolm Hills. El Paso west base Dlvide	$-0.61 \\ +1.38 \\ +0.35$	} +1.12	$\left\{\begin{array}{l} 30 \ 31 \ 37. \ 94 \\ 50 \ 45 \ 57. \ 73 \\ 98 \ 42 \ 24. \ 90 \end{array}\right.$	0.57
				COLORAD	O SERIES.				

		"	0 / //	,,		,,			
Square Bluffs Big Springs Holcolm Hills	-0.50 +0.34 -1.28	} -1.44	$\left\{\begin{array}{l} 38 \ 21 \ 33. \ 21 \\ 84 \ 16 \ 15. \ 29 \\ 57 \ 22 \ 14. \ 26 \end{array}\right.$	2.76	Kit Carson Overland Eureka	-0.64 -0.47 -0.48	} -1.59	$\begin{cases} 35 \ 15 \ 04. \ 09 \\ 39 \ 53 \ 01. \ 00 \\ 104 \ 51 \ 56. \ 98 \end{cases}$	2.07
Cramer Gulch Big Springs Square Bluffs	+0.40 -0.44 -0.06	} -0.10	$\left\{\begin{array}{l} 74 \ 58 \ 26. \ 45 \\ 49 \ 05 \ 18. \ 18 \\ 55 \ 56 \ 17. \ 81 \end{array}\right.$	2. 44	Landsman. Kit Carson. Eureka	$^{+0.31}_{+0.13}_{-0.11}$	+0.33	$\left\{\begin{array}{l} 57 00 59.18 \\ 41 18 58.04 \\ 81 40 04. 63 \end{array}\right.$	} 1.85
Holt. Square Bluffs. Holcolm Hills.	-0.14 + 0.07 + 1.66	+1.59	$\begin{cases} 113 & 09 & 57.85 \\ 37 & 35 & 49.93 \\ 29 & 14 & 13.92 \end{cases}$	} 1.70	First View Kit Carson Eureka	$^{+0.10}_{+0.44}_{+0.64}$	} +1.18	$\left\{\begin{array}{cccc} 57 & 33 & 37.43 \\ 69 & 28 & 41.44 \\ 52 & 57 & 43.23 \end{array}\right.$	2.10
Hugo Square Bluffs Holt	+0.29 +1.64 +0.92	+2.85	$\left\{\begin{array}{l} 36 \ 25 \ 45. 47 \\ 78 \ 24 \ 60. 37 \\ 65 \ 09 \ 16. 38 \end{array}\right.$	} 2.22	First View Kit Carson Landsman	+0.73 +0.31 +0.23	} +1.27	$\left\{\begin{array}{l}99&35&36.87\\28&09&43.40\\52&14&40.98\end{array}\right.$	1.25
Adobe Cramer Gulch Square Bluffs	+1.90 +0.30 +0.97	} +3.17	$\left\{\begin{array}{l} 55 \ 00 \ 03.43 \\ 56 \ 38 \ 46.93 \\ 68 \ 21 \ 11.82 \end{array}\right.$	2.18	First View Eureka Landsman.	$+0.63 \\ -0.75 \\ +0.54$	+0.42	$\begin{cases} 42 \ 01 \ 59.44 \\ 28 \ 42 \ 21.40 \\ 109 \ 15 \ 40.16 \end{cases}$	1.00
A dobe. Squarc Bluffs. Hugo	-1.61 -2.11 -0.20	} -3.92	$\left\{\begin{array}{l} 55 \ 25 \ 51.10 \\ 81 \ 20 \ 06.86 \\ 43 \ 14 \ 04.88 \end{array}\right.$	2.84	Cheyenne Wells Flrst View Landsman	-0.98 -1.16 -1.40	} -3.54	$\left\{\begin{array}{l} 52 \ 09 \ 06.37 \\ 47 \ 49 \ 53.10 \\ 80 \ 01 \ 01.23 \end{array}\right.$	0.70
Overland Adobe Hugo	+0.15 +0.17 -0.12	+0.20	$\left\{\begin{array}{l} 58 & 07 & 43.77 \\ 35 & 00 & 49.39 \\ 86 & 51 & 30.20 \end{array}\right.$	3.36	Monotony. Flrst Vlew. Cheyenne Wells.	-1.31 + 0.37 + 0.06	} -0.88	$\begin{cases} 11 & 24 & 49, 24 \\ 8 & 16 & 48, 70 \\ 160 & 18 & 22, 35 \end{cases}$	0-29
Aroya. Adobe. Hugo	-1.40 +0.17 -1.06	} -2.29	$\left\{\begin{array}{c} 69 \ 40 \ 18. \ 42 \\ 62 \ 08 \ 26. \ 06 \\ 48 \ 11 \ 19. \ 02 \end{array}\right.$	} 3.50	Monotony First Vlew Landsman	-0.56 -0.79 -0.22	· -1.57	$\left\{\begin{array}{l} 27 \ 55 \ 20.57 \\ 56 \ 06 \ 41.80 \\ 95 \ 57 \ 58.97 \end{array}\right\}$	} 1.34
Aroya. Adobe. Overland.	-0.35 0.00 +0.07	} -0.28	$ \begin{cases} 115 \ 08 \ 24. \ 23 \\ 27 \ 07 \ 36. \ 67 \\ 37 \ 44 \ 01. \ 22 \end{cases} $	2.12	Monotony. Cheyenne Wells. Landsman.	$^{+0.75}_{+0.92}_{+1.18}$	} +2.85	$\begin{cases} 16 \ 30 \ 31.33 \\ 147 \ 32 \ 31.28 \\ 15 \ 56 \ 57.74 \end{cases}$	0.35
Aroya. Hugo. Overland.	$^{+1.05}_{+0.94}_{+0.22}$	+2.21	$\left\{\begin{array}{l} 45 \ 28 \ 05. \ 81 \\ 38 \ 40 \ 11. \ 18 \\ 95 \ 51 \ 44. 99 \end{array}\right.$	} 1.98	Arapahoe First View Cheyenne Wells	-0.09 +0.62 -0.66	} -0.13	$\left\{\begin{array}{l} 33 \ 03 \ 37.76 \\ 57 \ 47 \ 23.05 \\ 89 \ 09 \ 01.02 \end{array}\right.$	1.83
Eureka. Aroya. Overland	$\begin{array}{c} -0.60 \\ -0.11 \\ -0.29 \end{array}$	} -1.00	$\left\{\begin{array}{l} 49 \ 18 \ 43.05 \\ 52 \ 45 \ 27.41 \\ 77 \ 55 \ 51.33 \end{array}\right.$	} 1.79	Arapahoe First Vlew Monotony	+0.38 +0.25 +0.98	} +1.61	$\left\{\begin{array}{c} 60 \ 41 \ 14.90 \\ 49 \ 30 \ 34.35 \\ 69 \ 48 \ 13.55 \end{array}\right.$	2.80
Klt Carson Aroya. Overland	+1.03 +0.41 +0.18	+1.62	$\begin{cases} 32 \ 24 \ 49.58 \\ 109 \ 32 \ 21.98 \\ 38 \ 02 \ 50.33 \end{cases}$	} 1.89	Arapahoe Cheyenne Wells Monotony	+0.47 +0.72 -0.33	+0.86	$\left\{\begin{array}{cccc} 27 & 37 & 37 & 14 \\ 71 & 09 & 21 \\ 81 & 13 & 02 \\ 79 \end{array}\right.$	1.26
Klt Carson Aroya Eureka	$^{+0.39}_{+0.52}_{+0.12}$	} +1.03	$\left\{\begin{array}{c} 67 & 39 & 53.67 \\ 56 & 46 & 54.57 \\ 55 & 33 & 13.93 \end{array}\right.$	2.17		-		_	

Table of triangles-Continued.

ONE HUNDRED AND FOURTH MERIDIAN.

Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of elosure of triangle.	Corrected spherical angles.	Spherical excess.
Elbert Divide l'ikes l'eak		-0.70	• / // 59 51 04.09 102 02 23.21 18 06 35.18	// 2.48	Twin. Warren. Dewey	" -0.69 -1.12 -0.89	// } -2.70	• / // · · · · · · · · · · · · · · · · ·	4.62
Hilltop. Dlvldo Elbert	$^{+0.33}_{-0.85}_{+1.33}$	+0.81	$\begin{cases} 1 & 18 & 22.139 \\ 1 & 44 & 40.274 \\ 176 & 56 & 57.646 \end{cases}$	0.06	Twin. Warren. Horsetooth.	$+0.19 \\ -0.16 \\ -1.07$	} -1.04	78 39 26.82 68 00 45.12 33 19 52.82	4.76
Hilltop. Divide Pikes Peak	$-0.84 \\ -1.43 \\ +0.45$	} -1.82	$\begin{cases} 42 \ 01 \ 49.05 \\ 103 \ 47 \ 03.49 \\ 34 \ 11 \ 13.20 \end{cases}$	5.74	Twin. Dewey. Horsetooth	+0.88 -0.93 -0.98	} -1.03	$\left\{\begin{array}{l} 39 \ 10 \ 53. 94 \\ 41 \ 11 \ 09. 53 \\ 99 \ 38 \ 04. 28 \end{array}\right.$	7.75
Hilltop. Elbert. Plkes Peak.	$-1.17 \\ -1.31 \\ +0.55$	} -1.93	$\begin{cases} 40 \ 43 \ 26. 91 \\ 123 \ 11 \ 58. 27 \\ 16 \ 04 \ 38. 02 \end{cases}$	3. 20	Wadill Warren Twin	$^{+0.33}_{+0.03}_{-0.03}$	+0.33	$\left\{\begin{array}{c} 64 \ 44 \ 11. \ 88 \\ 68 \ 54 \ 54. \ 02 \\ 46 \ 20 \ 56. \ 25 \end{array}\right.$	2.15
Morrison. Hilltop Elbert.	$ \begin{array}{r} -0.68 \\ -1.76 \\ -0.43 \end{array} $	-2.87	$\begin{cases} 15 \ 19 \ 44.86 \\ 129 \ 47 \ 58.48 \\ 34 \ 52 \ 19.36 \end{cases}$	2.70	Russell Wadill. Warren	$^{+1.09}_{+0.30}_{-0.04}$	+1.35	$\begin{cases} 36 & 02 & 15.11 \\ 102 & 14 & 31.16 \\ 41 & 43 & 15.76 \end{cases}$	2.03
Morrison. Hilltop. Pikes Peak.	$+0.72 \\ -0.59 \\ -0.74$	} -0.61	$\left\{\begin{array}{c} 55 \ 01 \ 14.51 \\ 89 \ 04 \ 31.57 \\ 35 \ 54 \ 24.53 \end{array}\right.$	} 10.61	Russell Wadill Twin	$-0.19 \\ -0.03 \\ +0.24$	+0.02	$\left\{\begin{array}{l} 82 \ 09 \ 06. \ 29 \\ 37 \ 30 \ 19. \ 28 \\ 60 \ 20 \ 33. \ 03 \end{array}\right.$	1.63
Morrison Elbert Plkes Peak	$^{+1.40}_{-0.88}$ -0.19	+0.33	$\left\{\begin{array}{l} 39 \ 41 \ 29, 65 \\ 88 \ 19 \ 38, 91 \\ 51 \ 58 \ 62, 55 \end{array}\right.$	} 11.11	Russell Warren Twin	-1.28 + 0.07 + 0.21	} -1.00	$\begin{cases} 46 & 06 & 51.18 \\ 27 & 11 & 38.26 \\ 106 & 41 & 32.31 \end{cases}$	} 1.75
Douglas Hilltop Morrison	-0.58 + 0.40 - 0.44	} -0.62	$\begin{cases} 122 \ 43 \ 40. \ 87 \\ 50 \ 35 \ 37. \ 78 \\ 6 \ 40 \ 42. \ 16 \end{cases}$	0.81	Greentop Wadill Russell	+0.70 -0.33 -0.25	+0.12	$\left\{\begin{array}{cccc} 66 & 31 & 40. \ 94 \\ 22 & 24 & 26. \ 10 \\ 91 & 03 & 53. \ 94 \end{array}\right.$	} 0.98
Indian Hilltop Douglas	$-0.22 \\ -0.87 \\ +0.48$	} -0.61	$\begin{cases} 11 \ 58 \ 04.27 \\ 26 \ 45 \ 32.34 \\ 141 \ 16 \ 23.58 \end{cases}$	} 0.19	Greentop Wadill Twin	$^{+2.10}_{-0.36}_{+0.46}$	} + 2.20	62 16 09.59 59 54 45.38 57 49 07.56	2.53
Indian. Hilltop. Morrison.	$-0.31 \\ -0.47 \\ +0.40$	} -0.38	$\left\{\begin{array}{c} 78 \ 31 \ 21.96 \\ 77 \ 21 \ 10.12 \\ 24 \ 07 \ 31.00 \end{array}\right.$	3.08	Greentop Twin Russell	-1.40 -0.22 -0.44	} -2.06	$\begin{cases} 4 \ 15 \ 31. \ 35 \\ 2 \ 31 \ 28. \ 50 \\ 173 \ 13 \ 00. \ 23 \end{cases}$	} 0.08
Indlan Douglas Morrison	$-0.09 \\ +0.10 \\ +0.84$	+0.85	$\left\{\begin{array}{c} 66 & 33 & 17.69 \\ 95 & 59 & 55.55 \\ 17 & 26 & 48.84 \end{array}\right.$	2.08	Whitaker. Wadill. Greentop	-0.12 +0.05 -1.08	} -1.15	$\left\{\begin{array}{r}90 \ 40 \ 07. 63\\59 \ 34 \ 20. 17\\29 \ 45 \ 33. 40\end{array}\right.$	} 1.20
Watkins astronomic Indian Morrison	$^{+1.72}_{-1.19}_{+1.72}$	+2.25	$\left\{\begin{array}{l}90 \ 56 \ 20.85\\78 \ 17 \ 40.90\\10 \ 45 \ 59.62\end{array}\right.$	} 1.37	Ragged . Whitaker Wadill	+0.38 -1.04 -0.70	-1.36	$\begin{cases} 23 \ 39 \ 48.16 \\ 110 \ 12 \ 31.52 \\ 46 \ 07 \ 41.48 \end{cases}$	} 1.16
Watkins astronomle Indian Boulder	$^{+1.50}_{-1.01}_{-1.35}$	} -0.86	$\begin{cases} 122 \ 06 \ 16. 48 \\ 50 \ 46 \ 52. 24 \\ 7 \ 06 \ 52. 67 \end{cases}$	} 1.39	Ragged. Whitaker. Greentop	+0.57 -0.92 +0.69	+0.34	$\left\{\begin{array}{rrrr} 74 & 41 & 55. \ 29 \\ 19 & 32 & 23. \ 89 \\ 85 & 45 & 41. \ 54 \end{array}\right.$	0.72
Watkins astronomie Morrison Boulder	$\begin{array}{c} -0.22 \\ -1.38 \\ -0.89 \end{array}$	} -2.49	$\left\{\begin{array}{l} 31 \ 09 \ 55.63 \\ 91 \ 57 \ 32.95 \\ 56 \ 52 \ 35.88 \end{array}\right.$	4.46	Ragged Wadill Greentop	+0.19 +0.75 -0.39	+0.55	$\begin{cases} 51 & 02 & 07.13 \\ 13 & 26 & 38.69 \\ 115 & 31 & 14.94 \end{cases}$	} 0.76
Boulder Indian Morrison	$+0.46 \\ -0.18 \\ +0.34$	+0.62	49 45 43.21 27 30 48.68 102 43 32.57	4.44	Cheyenne west base Whitaker Wadill	-0.46' -1.31 -0.76	-2.53	$\begin{cases} 107 \ 42 \ 24.75 \\ 29 \ 46 \ 08.36 \\ 42 \ 31 \ 27.13 \end{cases}$	0.24
Brighton Indian. Morrison	$+1.23 \\ -0.78 \\ -0.40$	+0.05	$\left\{\begin{array}{c} 64 \ 41 \ 56.60 \\ 68 \ 35 \ 22.08 \\ 46 \ 42 \ 46.96 \end{array}\right.$	5.64	Cheyenne east base Cheyenne west base Whitaker	+0.51 -0.05 -0.18	+0.28	$\left\{\begin{array}{cccc} 60 & 27 & 51.19 \\ 89 & 53 & 01.93 \\ 29 & 39 & 07.08 \end{array}\right.$	0.20
Brighton Indian. Boulder	$+0.23 \\ -0.60 \\ +0.76$	+0.39	$\begin{cases} 100 & 39 & 56.33 \\ 41 & 04 & 33.42 \\ 38 & 15 & 35.34 \end{cases}$	5.09	Cheyenne east base Whitaker Wadill	$\begin{array}{c} -0.17 \\ -1.12 \\ -0.02 \end{array}$	} -1.31	$\begin{cases} 179 \ 21 \ 50.84 \\ 0 \ 07 \ 01.29 \\ 0 \ 31 \ 01.87 \end{cases}$	0.00
Brighton Morrison Boulder	-1.00 +0.74 +1.22	+ 0.96	$\left\{\begin{array}{l} 35 & 57 & 59.73 \\ 56 & 00 & 45.61 \\ 88 & 01 & 18.55 \end{array}\right.$	3.89	Cheyenne east hase Wadlll Cheyenno west base	$\begin{array}{c} -0.34 \\ -0.75 \\ -0.41 \end{array}$	} -1.50	$\begin{cases} 120 \ 10 \ 11. 97 \\ 42 \ 00 \ 25. 25 \\ 17 \ 49 \ 22. 82 \end{cases}$	0.04
Horsetooth Brighton Boulder	$^{+0.12}_{+0.09}_{-1.21}$	} -1.00	40 52 37.08 65 51 29.28 73 15 60.97	7.33	Chugwater Whitaker Ragged	+0.27 +0.05 +0.30	+0.62	$\left\{\begin{array}{c} 36 & 58 & 37.75 \\ 77 & 25 & 17.54 \\ 65 & 36 & 08.00 \end{array}\right.$	3.29
Dewey. Brighton. Boulder	$^{+1.25}_{+0.12}_{-0.38}$	+0.98	$\begin{cases} 28 & 19 & 29. 16 \\ 116 & 50 & 20. 55 \\ 34 & 50 & 16. 19 \end{cases}$	5.90	Noteh. Chugwater Whitaker	$\begin{array}{c} +0.20 \\ +0.17 \\ -0.30 \end{array}$	+0.07	21 50 37.50 140 38 42.01 17 30 43.10	2.61
Dewey. Brighton. Horsetooth	+1.27 +0.03 +0.50	+1.80	$\left\{\begin{array}{cccc} 76 & 02 & 14.80 \\ 50 & 58 & 51.27 \\ 52 & 58 & 61.45 \end{array}\right.$	7.52	Noteh. Chugwater Ragged	$\begin{array}{c} +0.85 \\ -0.10 \\ -0.34 \end{array}$	+0.41	$\begin{cases} 44 \ 26 \ 22. \ 52 \\ 103 \ 40 \ 04. \ 26 \\ 31 \ 53 \ 37. \ 51 \end{cases}$	4.29
Dewey Boulder. Horsetooth	$^{+0.02}_{-0.83}_{+0.62}$	-0.19	47 42 45.64 38 25 44.78 93 51 38.53	8.95	Noteh Whitaker Ragged	+0.65 +0.35 -0.04	+0.96	$\left\{\begin{array}{c} 22 \ 35 \ 45.02 \\ 59 \ 54 \ 34.44 \\ 97 \ 29 \ 45.51 \end{array}\right\}$	4.97
Warren. Dewey Horsetooth	-0.96 -1.82 +0.09	-2.69	$\left\{\begin{array}{c} 52 \ 35 \ 47. 22 \\ 61 \ 06 \ 08. 03 \\ 66 \ 18 \ 11. 46 \end{array}\right\}$	7.61	Coleman	$\begin{array}{c} 0.00 \\ -0.17 \\ -0.35 \end{array}$	-0.52	$\left\{\begin{array}{c} 32 \ 13 \ 49. \ 37 \\ 36 \ 24 \ 45. \ 60 \\ 111 \ 21 \ 28. \ 49 \end{array}\right\}$	3.46

Table of triangles-Continued.

ONE HUNDRED AND FOURTH MERIDIAN-continued.

Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
Haystack Chugwater Notch	" -0.37 -1.09 -0.47	" } -1.93	<pre>31 10 02.08 71 39 41.09 77 10 22.79</pre>	,	Provo west base Cottonwood Parker	-0.28 -0.96 -1.18	// } -2.42	• / // 95 03 45.53 56 53 22.09 28 02 53.75	//] 1.37
Haystack. Chugwater	$-0.35 \\ -0.92 \\ +0.65$	-0.62	$\left\{\begin{array}{c} 65 \ 33 \ 54.32 \\ 35 \ 14 \ 55.49 \\ 79 \ 11 \ 16.52 \end{array}\right.$	6.33	Provo east base Provo west base Cottonwood	$^{+1.05}_{-0.59}$ $^{-0,90}_{-0,90}$	} -0.44	$\begin{cases} 24 \ 28 \ 40.05 \\ 135 \ 17 \ 31.94 \\ 20 \ 13 \ 48.46 \end{cases}$	} 0.45
Haystack Notch Coleman	+0.02 +0.12 +0.65	+0.79	$\begin{cases} 34 \ 23 \ 52. \ 24 \\ 34 \ 11 \ 05. \ 70 \\ 111 \ 25 \ 05. \ 89 \end{cases}$	3.83	Provo east base Provo west base Parker	$^{+1.20}_{-0.31}_{+0.96}$	+1.85	$\begin{cases} 114 & 32 & 48. 44 \\ 40 & 13 & 46. 41 \\ 25 & 13 & 25. 89 \end{cases}$	} 0.74
Hobbs Haystack Coleman	-0.07 -0.42 -1.57	} -2.06	$\left\{\begin{array}{c} 53 \ 10 \ 21.67 \\ 94 \ 24 \ 03.84 \\ 32 \ 25 \ 37.22 \end{array}\right.$	2.73	Provo east base Cottonwood Parker	$+0.15 \\ -0.06 \\ -0.22$	-0.13	$\left\{\begin{array}{l}90 & 04 & 08.39\\36 & 39 & 33.63\\53 & 16 & 19.64\end{array}\right.$	} 1.66
Willow Hobbs Haystack	+0.50 -0.39 -0.43	-0.32	$\begin{cases} 25 \ 16 \ 29. \ 26 \\ 142 \ 26 \ 34. \ 70 \\ 12 \ 16 \ 56. \ 60 \end{cases}$	0.56	Provo astronomic Provo west base Cottonwood	$^{+0.84}_{+0.02}_{-0.91}$	} -0.05	$\begin{cases} 35 \ 28 \ 56.73 \\ 129 \ 50 \ 38.85 \\ 14 \ 40 \ 24.68 \end{cases}$	0.26
Willow. Hobbs	$-0.43 \\ -0.32 \\ +1.49$	+0.74	$\left\{\begin{array}{c} 75 \ 40 \ 54.04 \\ 89 \ 16 \ 13.03 \\ 15 \ 02 \ 54.63 \end{array}\right.$	} 1.70	Provo astronomic Provo west base Par ker	+0.58 +0.30 +0.57	+1.45	$\begin{cases} 135 & 17 & 41.93 \\ 34 & 46 & 53.32 \\ 9 & 55 & 25.09 \end{cases}$	} 0.34
Willow Haystack Coleman.	-0.93 +0.01 -0.08	} -1.00	$\left\{\begin{array}{c} 50 \ 24 \ 24.78 \\ 82 \ 07 \ 07.24 \\ 47 \ 28 \ 31.85 \end{array}\right.$	3.87	Provo astronomic Cottonwood Parker	-0.26 -0.05 -0.61	} -0.92	$\left\{\begin{array}{c} 99 \ 48 \ 45.20 \\ 42 \ 12 \ 57.41 \\ 37 \ 58 \ 18.84 \end{array}\right.$	} 1.45
Rawhide Haystack Hobbs	+1.16 -0.17 +0.95	+1.94	$\begin{cases} 61 \ 42 \ 24.88 \\ 14 \ 34 \ 12.43 \\ 103 \ 43 \ 23.20 \end{cases}$	0.51	Provo astronomic Cottonwood Provo east base	-0.37 + 0.01 - 0.44	} -0.80		} 0.16
Rawhide Haystack Willow	+0.25 -0.60 +0.87	+0.52	$\begin{cases} 104 \ 48 \ 25.01 \\ 26 \ 51 \ 09.03 \\ 48 \ 20 \ 27.27 \end{cases}$	} 1.31	Provo astronomic Parker Provo east base	-0.11 +0.39 -0.29	-0.01	$\begin{cases} 56 \ 03 \ 54.15 \\ 15 \ 18 \ 00.80 \\ 108 \ 38 \ 05.42 \end{cases}$	0.37
Rawhide Hobbs Willow	-0.91 -0.56 +0.37	} -1.10	$\begin{cases} 43 \ 06 \ 00.13 \\ 113 \ 50 \ 02.10 \\ 23 \ 03 \ 58.01 \end{cases}$	0.24	Provo astronomic Provo east base Provo west base	-0.47 + 1.49 - 0.61	+0.41	$\begin{cases} 168 \ 38 \ 23. 92 \\ 5 \ 54 \ 43. 02 \\ 5 \ 26 \ 53. 09 \end{cases}$	0.03
Manville. Rawhide Willow.	+0.63 -0.12 -0.26	+0.25	34 46 44.47 38 08 35.60 107 04 40.77	0.84	Elk Parker: Sullivan	$^{+0.38}_{+1.06}_{-0.11}$	+1.33	$\begin{cases} 24 \ 16 \ 25. \ 49 \\ 11 \ 07 \ 21. \ 67 \\ 144 \ 36 \ 13. \ 60 \end{cases}$	} 0.76
Kirtley Rawhide Willow	-0.48 -0.07 +0.50	-0.05	$\left\{\begin{array}{c} 20 \ 45 \ 25.53 \\ 98 \ 00 \ 51.92 \\ 61 \ 13 \ 44.55 \end{array}\right.$	2.00	Elk Parker Aikaii.	$^{+0.93}_{+0.44}_{+0.91}$	+2.28		4.01
Kirtley Rawhide	-0.33 +0.05 -0.96	-1.24	41 36 24.74 59 52 16.32 78 31 21.87	2.93	Elk. Sullivan Alkali.	+0.55 +0.44 +0.41	+1.40	$\left\{\begin{array}{l} 88 \ 19 \ 33. \ 28 \\ 68 \ 27 \ 42. \ 98 \\ 23 \ 12 \ 45. \ 18 \end{array}\right.$	} 1.44
Kirtley Willow Manville	+0.15 -0.76 -0.33	-0.94	$\begin{cases} 20 50 59.21 \\ 45 50 56.22 \\ 113 18 06.34 \end{cases}$	} 1.77	Cambria Elk. Alkali.	$+0.19 \\ -0.40 \\ -0.11$	} -0.32	45 46 47.23 87 45 17.34 46 27 58.88	3.45
Alkali Kirtley Manville	+1.46 -0.19 +0.98	+2.25	$\left\{\begin{array}{c} 25 \ 05 \ 35.14 \\ 72 \ 01 \ 61.32 \\ 82 \ 52 \ 32.19 \end{array}\right.$	8.65	Crow Elk. Cambria	$^{+0.05}_{+0.22}_{-0.24}$	+0.03	$\left\{\begin{array}{c} 75 \ 44 \ 52. \ 92 \\ 29 \ 04 \ 20. \ 52 \\ 75 \ 10 \ 48. \ 25 \end{array}\right.$	} 1.69
Parker Kirtley Manville	-0.61 +0.01 +0.99	+0.39	$\begin{cases} 20 \ 46 \ 14. \ 29 \\ 121 \ 00 \ 12. \ 32 \\ 38 \ 13 \ 39. \ 20 \end{cases}$	5.81	Laird Crow Cambria	+0.93 +0.59 +0.76	+2.28	$\left\{\begin{array}{cccc} 51 & 22 & 49. 19 \\ 81 & 10 & 48. 42 \\ 47 & 20 & 23. 21 \end{array}\right.$	0.82
Parker Kirtley Alkali	-0.01 +0.20 -1.05	-0.86	83 15 08.97 48 58 11.00 47 46 52.00	} 11.97	Inyankara Laird Cambria	$+0.04 \\ -0.26 \\ -0.95$	} -1.17	$\left\{\begin{array}{c} 55 & 24 & 14.64 \\ 51 & 41 & 47.21 \\ 72 & 53 & 59.43 \end{array}\right.$	} 1.28
Parker Manviile Alkali	+0.60 -0.01 +0.41	+1.00	$\left\{\begin{array}{c} 62 \ 28 \ 54.68 \\ 44 \ 38 \ 52.99 \\ 72 \ 52 \ 27.14 \end{array}\right.$	} 14.81	Inyankara Cambria Alkali	+0.60 +0.24 -0.21	+0.63	$\begin{cases} 43 \ 40 \ 18.72 \\ 118 \ 42 \ 01.88 \\ 17 \ 37 \ 41.95 \end{cases}$	2.55
Cottonwood Alkali. Parker	-0.18 -1.16 +0.95	} -0.39	$\begin{cases} 100 \ 09 \ 43.36 \\ 31 \ 31 \ 35.76 \\ 48 \ 18 \ 45.75 \end{cases}$	4.87	Terry. Laird Inyankara	-0.78 -0.89 -1.03	} -2.70	$\begin{cases} 26 & 28 & 13.83 \\ 135 & 25 & 47.38 \\ 18 & 05 & 59.71 \end{cases}$	0.92
Sullivan Parker. Cottonwood	+0.42 +0.33 +0.56	+1.31	$\left\{\begin{array}{cccc} 61 & 37 & 23.17 \\ 66 & 19 & 17.56 \\ 52 & 03 & 22.12 \end{array}\right.$	2.85	Sundance Terry Laird	-0.15 -0.66 -0.79	} -1.60	$\left\{\begin{array}{cccc} 21 & 25 & 20.50 \\ 62 & 38 & 01.41 \\ 95 & 56 & 40.31 \end{array}\right.$	2.22
Sullivan Parker. Alkali.	-0.33 -0.62 +0.50	} -0.45	$\begin{cases} 146 \ 50 \ 03.42 \\ 18 \cdot 00 \ 31.81 \\ 15 \ 03 \ 26.58 \end{cases}$	} 1.81	Sundance. Terry. Inyankara	-0.17 +0.12 +0.58	+0.53	$\left\{\begin{array}{l} 55 \ 59 \ 15.04 \\ 36 \ 09 \ 47.58 \\ 87 \ 50 \ 60.72 \end{array}\right.$	} 3.34
Suliivan. Cottonwood Alkali	-0.75 -0.74 -0.66	-2.15	85 18 40.25 48 06 21.24 46 35 02.34	3.83	Sundance Laird Inyankara	$-0.02 \\ -0.10 \\ -0.45$	} -0.57	$\begin{cases} 34 \ 33 \ 54.54 \\ 39 \ 29 \ 07.07 \\ 105 \ 56 \ 60.43 \end{cases}$	2.04

Table of triangles-Continued.

ONE HUNDRED AND FOURTH MERIDIAN-continued.

Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Statlon.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
Wymonkota	+0.53	1	41 01 44.61 50 00 50 15 00 00	//	Black.	" +1.45	"	50 44 04.29	"
Sundance	+0.10	+0.09	82 42 21.87	5 0.01	Butte	-0.14 +0.27	+1.58	30 19 47.16 98 56 10.30	} 1.81
Castle Terry Sundance	-0.53 +0.16 +0.34	} -0.03	$\left\{\begin{array}{l} 31 \ 42 \ 38.58 \\ 92 \ 27 \ 15.10 \\ 55 \ 50 \ 17.05 \end{array}\right.$	} 10.73	Badland Rainy. Black.	-0.26 +0.20 -0.37	} -0.43	$\left\{\begin{array}{cccc} 59 & 52 & 45. 69 \\ 63 & 35 & 56. 77 \\ 56 & 31 & 19. 99 \end{array}\right.$	2. 45
Castle Terry Wymonkota	$^{+0.14}_{-0.00}$	+0.10	$\left\{\begin{array}{l} 68 & 19 & 17.31 \\ 36 & 11 & 13.01 \\ 75 & 29 & 39.26 \end{array}\right.$	9.58	Sentinel. Badland. Rainy	$ \begin{array}{r} -0.10 \\ +0.08 \\ +0.07 \end{array} $	+0.05	$\begin{cases} 7 50 28.71 \\ 161 44 44.23 \\ 10 24 48.15 \end{cases}$	} 1.09
Castle Sundance Wymonkota	+0.67 -0.34 +0.49	+0.82	$\begin{cases} 36 & 36 & 38.73 \\ 26 & 52 & 04.82 \\ 116 & 31 & 23.87 \end{cases}$	} 7.42	Sentinel Badland Black	-0.42 + 0.34 + 0.90	+0.82	$\begin{cases} 34 \ 12 \ 45, 21 \\ 101 \ 51 \ 58, 54 \\ 43 \ 55 \ 19, 93 \end{cases}$	3.68
Moreau Castle W ymonkota	-0.06 -0.51 -0.54	} -1.11	$\left\{\begin{array}{l} 67 \ 05 \ 55. \ 79 \\ 61 \ 06 \ 05. \ 85 \\ 51 \ 48 \ 03. \ 05 \end{array}\right.$	4.69	Sentinel. Rainy. Black	-0.32 + 0.13 + 0.53	+0.34	$\begin{cases} 26 & 22 & 16.50 \\ 53 & 11 & 08.62 \\ 100 & 26 & 39.92 \end{cases}$	5.04
Harding Moreau Castle	+0.46 +0.23 -0.22	+0.47	$\begin{cases} 37 \ 41 \ 41.93 \\ 130 \ 53 \ 39.91 \\ 11 \ 24 \ 39.28 \end{cases}$	} 1.12	Saddle. Rainy. Badland.	-0.54 -1.17 -0.74	-2.45	29 36 42.40 29 44 24.12 120 38 55.76	2.28
Harding Moreau Wymonkota	$^{+0.11}_{+0.29}_{+0.21}$	+0.61	$\left\{\begin{array}{l} 99 \ 33 \ 42.68 \\ 63 \ 47 \ 44.12 \\ 16 \ 38 \ 34.68 \end{array}\right.$	} 1.48	Saddle. Rainy. Sentinel.	$\begin{array}{c} -0.32 \\ -1.10 \\ +0.63 \end{array}$	-0.79	$\left\{\begin{array}{l} 90 \ 32 \ 03. 17 \\ 40 \ 09 \ 12. 27 \\ 49 \ 18 \ 51. 36 \end{array}\right.$	6.80
Harding Castle W ymonkota	$ \begin{array}{r} -0.35 \\ -0.29 \\ -0.33 \end{array} $	-0.97	$\left\{\begin{array}{c} 61 \ 51 \ 60.75 \\ 49 \ 41 \ 26.57 \\ 68 \ 26 \ 37.73 \end{array}\right.$	5.05	Saddle. Badland. Sentinel	+0.22 +0.66 +0.73	+1.61	$\left\{\begin{array}{c} 60 \ 55 \ 20.77 \\ 77 \ 36 \ 20.01 \\ 41 \ 28 \ 22.65 \end{array}\right.$	3.43
Reva Castle Moreau	$\begin{array}{c} -0.14 \\ -0.02 \\ -0.04 \end{array}$	} -0.20	$\left\{\begin{array}{l} 39 \ 44 \ 06. \ 99 \\ 45 \ 16 \ 54. \ 07 \\ 94 \ 59 \ 04. \ 00 \end{array}\right.$	5,06	Hump. Saddle. Sentinel	-0.19 +0.40 -0.71	} -0.50	$\begin{cases} 111 \ 43 \ 34.97 \\ 10 \ 36 \ 07.12 \\ 57 \ 40 \ 18.88 \end{cases}$	0.97
Reva Castle Harding	-0.47 -0.24 +0.14	} -0.57	$\left\{\begin{array}{c} 49 \ 35 \ 31.12 \\ 56 \ 41 \ 33.35 \\ 73 \ 43 \ 02.89 \end{array}\right.$	7.36	Cook Saddle. Hump.	$\begin{array}{c} -0.25 \\ -0.70 \\ +0.02 \end{array}$	-0.93	$\left\{\begin{array}{c} 75 \ 41 \ 29.74 \\ 30 \ 53 \ 37.54 \\ 73 \ 24 \ 55.15 \end{array}\right.$	2. 43
Reva Moreau. Harding	$\begin{array}{c} -0.33 \\ -0.19 \\ -0.32 \end{array}$	} -0.84	$\begin{cases} 9 \ 51 \ 24.13 \\ 134 \ 07 \ 16.09 \\ 36 \ 01 \ 20.96 \end{cases}$	} 1.18	Cook Saddle. Sentinel	$\begin{array}{c} +0.11 \\ -0.30 \\ -0.29 \end{array}$	-0.48	$\left\{\begin{array}{c} 77 \ 11 \ 18.44 \\ 41 \ 29 \ 44.66 \\ 61 \ 18 \ 60.35 \end{array}\right.$	3. 45
Table Reva Harding	$ \begin{array}{r} -0.72 \\ -0.06 \\ +0.09 \end{array} $	-0.69	$\left\{\begin{array}{cccc} 61 & 44 & 12.66 \\ 69 & 16 & 05.85 \\ 48 & 59 & 48.23 \end{array}\right.$	6.74	Cook Hump. Sentinel	+0.36 +0.17 +0.42	+0.95	$\begin{cases} 1 & 29 & 48.70 \\ 174 & 51 & 29.88 \\ 3 & 38 & 41.47 \end{cases}$	0.05
Lodge Reva Harding	$ \begin{array}{c} +1.39 \\ +1.02 \\ -0.05 \end{array} $	+2.36	$\begin{cases} 30 \ 40 \ 52. 57 \\ 132 \ 45 \ 40. 75 \\ 16 \ 33 \ 30. 13 \end{cases}$	3.45	Blue. Cook. Hump.	$\begin{array}{c c} -0.02 \\ -0.29 \\ -0.14 \end{array}$	} -0.45	$\left\{\begin{array}{l} 31 \ 26 \ 55. 93 \\ 97 \ 01 \ 11. 04 \\ 51 \ 31 \ 55. 03 \end{array}\right.$	2.00
Lodge Reva Table	$\begin{array}{c} +0.61 \\ +1.08 \\ +0.59 \end{array}$	+ 2. 28	$\left\{\begin{array}{cccc} 77 & 03 & 53. \ 49 \\ 63 & 29 & 34. \ 90 \\ 39 & 26 & 35. \ 22 \end{array}\right.$	3.61	Blue Cook Sentinel	-0.85 -0.65 -0.42	} -1.92	$\left\{\begin{array}{l} 40 \ 36 \ 50.00 \\ 95 \ 31 \ 22.34 \\ 43 \ 51 \ 50.49 \end{array}\right.$	2.83
Lodge. Harding. Table	$\begin{array}{c c} -0.78 \\ +0.14 \\ -0.13 \end{array}$	-0.77	$\begin{cases} 46 \ 22 \ 60.92 \\ 32 \ 26 \ 18.10 \\ 101 \ 10 \ 47.88 \end{cases}$	0.90	Blue. Hump. Sentinel	$\begin{array}{c} -0.83 \\ +0.31 \\ 0.00 \end{array}$	-0.52	9 09 54.07 123 19 34.85 47 30 31.96	} c. 88
Butte. Lodge. Table.	+0.69 +0.72 +0.37	+1.78	$\left\{\begin{array}{l} 62 \ 55 \ 11. \ 42 \\ 52 \ 16 \ 47. \ 96 \\ 64 \ 48 \ 04. \ 81 \end{array}\right.$	}. 4.19	Trotter. Cook Blue	+0.08 +0.23 +0.49	+0.80	$ \left\{ \begin{matrix} 102 & 54 & 07.90 \\ 42 & 32 & 51.41 \\ 34 & 33 & 01.88 \end{matrix} \right.$	1.19
Wbetstone Lodge Table	+0.07 +0.46 +0.28	+1.41	$\left\{\begin{array}{l}43&44&49.58\\96&22&42.29\\39&52&32.93\end{array}\right.$	4.80	Flat. Cook. Trotter.	+0.13 +0.31 +0.18	+0.62	$ \left\{ \begin{array}{l} 16 \ 59 \ 35. \ 45 \\ 11 \ 09 \ 30. \ 51 \\ 151 \ 50 \ 54. \ 30 \end{array} \right. $. 0. 32
Wbetstone Lodge Butto	+0.54 -0.26 -0.75	} -0.47	$\left\{\begin{array}{c} 74 \ 24 \ 24.96 \\ 44 \ 05 \ 54.33 \\ 61 \ 29 \ 44.12 \end{array}\right.$	3. 41	Flat: Cook Blue	-0.12 + 0.54 + 0.18	+0.60	$\left\{\begin{array}{c} 66 \ 41 \ 13. \ 69 \\ 53 \ 42 \ 21. \ 92 \\ 59 \ 36 \ 26. \ 68 \end{array}\right.$	2. 29
W betstone Table Butte	$\begin{array}{c} -0.13 \\ +0.09 \\ -0.06 \end{array}$	-0.10	$\begin{cases} 30 \ 39 \ 35.38 \\ 24 \ 55 \ 31.88 \\ 124 \ 24 \ 55.54 \end{cases}$	2.80	Flat. Trotter. Blue.	$\begin{array}{c} -0.25 \\ -0.26 \\ -0.31 \end{array}$	} -0.82	$\begin{cases} 49 \ 41 \ 38. 24 \\ 105 \ 14 \ 57. 74 \\ 25 \ 03 \ 24. 80 \end{cases}$	0.78
Rainy. Whetstone Butte	$\begin{array}{c} -1.32 \\ -0.66 \\ +0.82 \end{array}$	} -1.16	$\left\{\begin{array}{c} 51 \ 44 \ 00.96 \\ 81 \ 45 \ 03. 62 \\ 46 \ 30 \ 57. 99 \end{array}\right.$	2.57	Lovering Flat Blue	+0.40 +0.42 +0.34	} +1.16	$\left\{\begin{array}{l} 34 \ 37 \ 07. \ 07 \\ 80 \ 34 \ 28. \ 34 \\ 64 \ 48 \ 28. \ 26 \end{array}\right.$	3.67
Black. Rainy. Whetstone	$\begin{array}{c} -1.47 \\ -0.64 \\ -0.52 \end{array}$	} -2.63	$\left\{\begin{array}{l} 45 \ 55 \ 02.71 \\ 82 \ 39 \ 43.42 \\ 51 \ 25 \ 16.46 \end{array}\right.$	2.59	Sheep Flat Blue	+0.10 +0.14 -0.02	+0.22	$\begin{cases} 20 \ 50 \ 43.39 \\ 143 \ 54 \ 40.46 \\ 15 \ 14 \ 37.17 \end{cases}$	} 1.02
Black. Rainy Butte	-0.02 +0.68 -0.55	+0.11	$\left\{\begin{array}{c} 90 \ 39 \ 07.00\\ 30 \ 55 \ 42.46\\ 52 \ 25 \ 12.37\end{array}\right.$	1.83	Sheep Flat Lovering.	-0.26 -0.28 -0.33	-0.87	89 01 49.48 63 20 12.12 27 38 00.85	2.45
Table of triangles-Continued.

ONE HUNDRED AND FOURTH MERIDIAN-continued.

	1			1					
Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected sp herical angles,	Spherical excess,
Sheep Blue. Lovering	-0.36 +0.36 +0.07	// +0.07	68 11 06.09 49 33 51.09 62 15 07.92	} 5.10	Williston Buford Bull	-0.56 -0.51 -0.68	// } -1.75	6 / // 76 58 05.88 43 16 46.34 59 45 09.40	· · · · · · · · · · · · · · · · · · ·
Jackson Sheep Lovering	+0.59 +0.83 +0.52	} +1.94	$\left\{\begin{array}{l} 55 \ 45 \ 21.17 \\ 27 \ 19 \ 36.91 \\ 96 \ 55 \ 04.53 \end{array}\right.$	2.61	Williston Snake Bull	$+0.32 \\ -0.01 \\ -0.48$	-0.17	$\begin{cases} 22 \ 01 \ 37.46 \\ 41 \ 09 \ 48.30 \\ 116 \ 48 \ 34.91 \end{cases}$	} 0.67
Buford Sheep Lovering	$^{+0.28}_{+0.14}_{+0.04}$	+0.46	$\left\{\begin{array}{c} 54 \ 05 \ 39.08 \\ 60 \ 44 \ 38.44 \\ 65 \ 09 \ 47.10 \end{array}\right.$	} 4.62	Bcnetraill Williston Bull	-1.15 +0.14 +0.21	} -0.80	$\left\{\begin{array}{c} 77 \ 24 \ 18. 17 \\ 48 \ 00 \ 16. 30 \\ 54 \ 35 \ 26. 35 \end{array}\right.$	0.82
Buford Sheep Jackson	$+0.19 \\ -0.69 \\ -0.96$	} -1.46	$\left\{\begin{array}{c} 79 \ 52 \ 54.31 \\ 33 \ 25 \ 01.53 \\ 66 \ 42 \ 07.66 \end{array}\right.$	3.50	Gladys. Bonetraill. Williston	$-0.54 \\ -0.14 \\ +0.20$	-0.48	$\begin{cases} 26 \ 33 \ 58. 67 \\ 146 \ 22 \ 52. 62 \\ 7 \ 03 \ 08. 85 \end{cases}$	0.14
Buford Lovering Jackson	-0.09 + 0.48 - 0.37	+0.02	$\begin{cases} 25 & 47 & 15.23 \\ 31 & 45 & 17.43 \\ 122 & 27 & 28.83 \end{cases}$	} 1.49	Gladys Bonetraill Bull	$^{+0.99}_{+1.01}_{+0.60}$	+2.60	$\left\{\begin{array}{r} 93 \ 32 \ 12.50 \\ 68 \ 58 \ 34.45 \\ 17 \ 29 \ 13.27 \end{array}\right.$	0.22
Montana Buford Sheep	+0.18 0.00 -0.21	} -0.03	$\left\{\begin{array}{c} 85 \ 17 \ 09. \ 20 \\ 88 \ 12 \ 57. \ 71 \\ 6 \ 29 \ 53. \ 76 \end{array}\right.$	0.67	Gladys Williston Bull.	$^{+1.53}_{-0.06}_{+0.81}$	+2.28	$\left\{\begin{array}{c} 66 \ 58 \ 13.83 \\ 40 \ 57 \ 07.45 \\ 72 \ 04 \ 39.62 \end{array}\right.$	0.90
Montana Buford Jackson	-0.15 -0.19 +0.86	+0.52	$\begin{cases} 169 \ 43 \ 51; 64 \\ 8 \ 20 \ 03, 40 \\ 1 \ 56 \ 05, 02 \end{cases}$	0.06	Marmon Williston Bonetraill	$-0.89 \\ -0.14 \\ +0.05$	} -0.98	$\left\{\begin{array}{r} 46 \ 00 \ 23. 64 \\ 48 \ 30 \ 35. 57 \\ 85 \ 29 \ 01. 75 \end{array}\right.$	0.96
Montana Sheep Jackson	$ \begin{array}{r} -0.33 \\ -0.48 \\ -0.10 \end{array} $	} -0.91	$\left\{\begin{array}{r} 84 \ 26 \ 42. \ 44 \\ 26 \ 55 \ 07. \ 77 \\ 68 \ 38 \ 12. \ 68 \end{array}\right.$	2.89	Marmon. Williston Gladys	+0.15 +0.06 -0.78	} -0.57	$\left\{\begin{array}{cccc} 56 & 07 & 07.74 \\ 55 & 33 & 44.42 \\ 68 & 19 & 09.15 \end{array}\right.$	} 1.31
Lanark Montana Jackson	+1.08 +0.77 +0.21	+2.06	$\left\{\begin{array}{c} 78 & 09 & 17.37 \\ 61 & 10 & 17.93 \\ 40 & 40 & 25.52 \end{array}\right\}$	0.82	Marmon Bonetraill Gladys	$^{+1.04}_{+0.09}_{-0.24}$	+0.89	$\begin{cases} 10 \ 06 \ 44.10 \\ 128 \ 08 \ 05.63 \\ 41 \ 45 \ 10.48 \end{cases}$	0.21
Cutoff Jackson Lanark	+0.23 +0.65 +0.27	+1.15	$\begin{cases} 100 \ 20 \ 36.50 \\ 37 \ 17 \ 52.91 \\ 42 \ 21 \ 31.06 \end{cases}$	0.47	Howard Marmon Gladys	$-0.04 \\ -0.08 \\ +0.20$	+0.08	$\left\{\begin{array}{c} 55 & 17 & 40.62 \\ 50 & 16 & 56.39 \\ 74 & 25 & 24.25 \end{array}\right.$	1.26
Cutoff Lanark Montana	$^{+0.20}_{+0.81}_{+0.72}$	+1.73	$\left\{\begin{array}{c} 88 \ 20 \ 52.43 \\ 35 \ 47 \ 46.31 \\ 55 \ 51 \ 21.56 \end{array}\right\}$	0.30	Muddy. Marmon Gladys	$^{+0.84}_{-0.10}_{+0.30}$	+1.04	$\left\{\begin{array}{c} 42 \ 14 \ 40. \ 60 \\ 94 \ 07 \ 20. \ 84 \\ 43 \ 37 \ 59. \ 99 \end{array}\right.$	1.43
Cutoff Montana Jackson	-0.43 +0.05 -0.44	} -0.82	$\begin{cases} 171 \ 18 \ 31.07 \\ 5 \ 18 \ 56.37 \\ 3 \ 22 \ 32.61 \end{cases}$	0.05	Muddy. Marmon Howard	+0.50 -0.02 +0.18	+0.66	77 24 40.93 43 50 24.45 58 44 55.78	} 1.16
Mondak Cutoff Montana	$^{+0.93}_{+0.45}_{+0.29}$	+1.67	85 39 53.27 19 56 03.42 74 24 03.38	0.07	Muddy Gladys Howard	$-0.34 \\ -0.10 \\ +0.14$	} -0.30	$\left\{\begin{array}{l} 35 \ 10 \ 00.33 \\ 30 \ 47 \ 24.26 \\ 114 \ 02 \ 36.40 \end{array}\right.$	0.99
Ferry Cutoff Montana	+0.48 +0.27 +0.30	+1.05	$\left\{\begin{array}{c} 86 \ 11 \ 44.59 \\ 42 \ 20 \ 50.92 \\ 51 \ 27 \ 24.60 \end{array}\right.$	} 0.11	Stady Muddy. Howard	$-0.57 \\ -0.61 \\ -0.44$	-1.62	03 38 30.58 75 41 29.46 40 40 00.64	0.68
Ferry Cutoff Mondak	$^{+0.14}_{-0.18}$ -0.64	} -0.68	$\begin{cases} 106 & 30 & 01.59 \\ 22 & 24 & 47.50 \\ 51 & 05 & 10.97 \end{cases}$	} 0.00	Crosby Muddy Stady	$ \begin{array}{c} -0.30 \\ +0.66 \\ +0.02 \end{array} $	+0.38	$\left\{\begin{array}{c} 38 \ 47 \ 33. 49 \\ 20 \ 39 \ 21. 50 \\ 114 \ 33 \ 05. 34 \end{array}\right.$	0.33
Ferry Montana Mondak	$^{-0.34}_{-0.01}_{+0.29}$	} -0.06	$\left\{\begin{array}{c} 20 \ 18 \ 17.00 \\ 22 \ 56 \ 38.78 \\ 136 \ 45 \ 04.24 \end{array}\right.$	0.02	Crosby Muddy Howard	$ \begin{array}{c} -0.19 \\ +0.05 \\ -0.08 \end{array} $	-0.22	$\left\{ \begin{matrix} 37 & 34 & 23.45 \\ 102 & 20 & 50.96 \\ 40 & 04 & 46.58 \end{matrix} \right.$	0.99
Bainville Buford Jackson	$^{+0.61}_{+0.61}_{+0.45}$	+1.67	$\left\{\begin{array}{cccc} 62 & 09 & 53.44 \\ 76 & 25 & 17.04 \\ 41 & 24 & 51.07 \end{array}\right.$	} 1.55	Crosby Howard Stady	$\begin{array}{c} -0.11 \\ -0.36 \\ -0.55 \end{array}$	-1.02	$\begin{cases} 1 \ 13 \ 10.04 \\ 0 \ 35 \ 14.06 \\ 178 \ 11 \ 35.92 \end{cases}$	0.02
Snake. Buford. Bainville	$\begin{array}{c} -0.26 \\ -0.52 \\ -0.97 \end{array}$	} -1.75	$\left\{\begin{array}{c} 33 \ 30 \ 23.06 \\ 11 \ 11 \ 37.70 \\ 135 \ 11 \ 59.54 \end{array}\right\}$	0.30	Norge Crosby Stady	+0.81 +0.10 +0.67	+1.58	35 18 07.83 63 10 36.77 81 25 15.80	0.40
Snake. Buford. Jackson.	+0.26 +0.09 +1.06	+1.41	47 39 02.32 87 36 54.74 44 44 04.97	2.03	Norge Crosby Howard	$\begin{array}{c} +0.80\\ -0.01\\ -0.10\end{array}$	+0.69	$\left\{\begin{array}{c} 82 \ 04 \ 23.90 \\ 64 \ 29 \ 46.81 \\ 33 \ 25 \ 50.53 \end{array}\right\}$	1.24
Snake Bainville Jackson	+0.52 +0.36 +0.61	} +1.49	$ \left\{ \begin{matrix} 14 & 02 & 39.26 \\ 162 & 38 & 07.02 \\ 3 & 19 & 13.90 \end{matrix} \right\} $	0.18	Norge Stady Howard	$\begin{array}{c} -0.01 \\ -0.12 \\ +0.26 \end{array}$	+0.13	$\left\{\begin{array}{cccc} 46 & 46 & 16.07 \\ 100 & 23 & 08.28 \\ 32 & 50 & 36.47 \end{array}\right\}$	0.82
Bull Buford Snake	+0.20 -0.06 -0.24	} -0.10	57 03 25.51 23 16 57.93 99 39 37.40	0.90	Bowie School Ambrose southwest base	+0.28 -2.39 -0.72	-2.83	28 25 26.41 27 00 34.67 124 33 59.14	0.22
Williston	-0.88 -0.57 -0.23	-1.63	54 56 28.42 66 33 44.27 58 29 49.10	1.85	Ambrose. Ambrose southwest base Bowie.	$ \begin{array}{c} -0.23 \\ -0.77 \\ -0.35 \end{array} $	-1.35	0 56 35.04 178 14 37.76 0 48 47.21	0,01

.

Statlon.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tion to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
Amhrose Bowle School	-0.20 +0.63 -0.73	// } -0.30	• / // { 73 06 18.73 27 36 39.20 79 17 02.46	,, 0.39	Croshy Amhrose southwest base Amhrose	" -0.63 +0.17 +0.55	+0.09	• / // 50 29 57.31 37 18 54.24 92 11 08.60	0.15
Amhrose Amhrose southwest base School	$-0.43 \\ -0.05 \\ +1.66$	+1.18	74 02 53.77 53 40 38.62 52 16 27.79	0.18	Norge Bowle Amhrose southwest base	$^{+1.12}_{-0.01}$ -0.02	+1.09	$\left\{\begin{array}{r} 43 & 38 & 44.09 \\ 77 & 47 & 03.68 \\ 58 & 34 & 12.35 \end{array}\right.$	} 0.30
Crosby Bowle Amhrose southwest base	$^{+0.26}_{+0.32}_{+0.60}$	+I. 18	$\begin{cases} 16 \ 46 \ 02.91 \\ 18 \ 47 \ 29.25 \\ 144 \ 26 \ 28.00 \end{cases}$	0.16	Norge Bowle Croshy	$-0.09 \\ -0.33 \\ +0.51$	+0.09	$\left\{\begin{array}{c} 83 \ 28 \ 02. 98 \\ 58 \ 59 \ 34. 61 \\ 37 \ 32 \ 22. 95 \end{array}\right.$	0.54
Crosby Bowle Ambrose	-0.37 -0.03 +0.32	} -0.08	67 16 00.22 19 36 16.46 93 07 43.64	} 0.32	Norge. Ambrose southwest base Croshy	-1.21 +0.62 +0.77	+0.18	$\left\{\begin{array}{l} 39 \ 49 \ 18.89 \\ 85 \ 52 \ 15.65 \\ 54 \ 18 \ 25.86 \end{array}\right.$. 40

Table of triangles—Continued.

The maximum correction 2".39 to any angle is to the angle at School between Ambrose southwest base and Bowie.

The statistics as to closures of triangles and the mean error of an angle for the sections of the one hundred and fourth meridian are given in the following table. The mean error of an angle $a = \sqrt{\frac{\Sigma d^2}{3n}}$, in which Σd^2 is the sum of the squares of the closing errors of the triangle and n is the number of triangles in the season's work or in the section.

	Num	ber of tria	ngles.		March		
Season.	Total.	With plus closures.	With minus closures.	Average closure.	mum closure.	ror of an angle.	
Pikes Peak-Divide to Cheyenne base Cheyenne base to Provo hase Provo base to Ambrose base For the whole arc	41 40 105 186	18 19 54 91	23 21 51 95	" 1. 14 0. 96 0. 94 0. 99	" 2.87 2.42 2.83 2.83 2.87	" ± 0.81 ± 0.63 ± 0.69 ± 0.71	

The average closing error of a triangle for the 186 triangles of the one hundred and fourth meridian are is 0".99. This mean closing error indicates that the methods employed and the number of observations made will give the accuracy called for by the general instructions, viz, 1".00 on an average. The instructions also state that the closing error shall seldom exceed 3".00. The one hundred and fourth meridian are has no triangle with a closure as great as 3".00, and there are only 23 of the 186 triangles which have closing errors greater than 2".00. It is not desirable to cut down the standard number of positions, 16, selected in 1900. Nor is it necessary to increase the number of observations in order to obtain greater accuracy. If the triangulation of the Survey should consistently have much smaller closing errors than 1".00 on an average, then it would probably be advisable to reduce the number of observations if by so doing time and cost could be lessened. See under the heading "Discussion of errors" the changes made in the method and time of observing in an effort to secure smaller deviation of the triangulation in azimuth.

Of the six definite arcs of primary triangulation in the United States the one hundred and fourth meridian arc stands third in accuracy, using the average closing error of a triangle as the standard.

The comparison of the average closing errors is given below:

	closing error.
Texas-California	0.90
Ninety-eighth meridian	0.92
One hundred and fourth meridian	0.99
Transcontinental triangulation	1.06
Eastern oblique	1.19
California-Oregon	1.22

No attempt has been made here to set forth the agreement of the separate measures of each direction as a criterion of accuracy, since it is well known that it is of little value for that purpose. A close agreement of the separate measures of a given direction is of little consequence, since such measures are usually subject to constant errors of considerable size, which become evident as soon as the closures of the triangles are studied or an attempt is made to adjust a figure.

ACCORD OF BASES.

As already stated, there are six bases which serve to fix the length in the triangulation under discussion. Four of these bases are connected directly by the triangles adjusted. The Salt Lake base determines the length of the line Tushar-Mount Nebo adjacent to the base net, with little loss of accuracy. The Salina base is more remote from the line Arapahoe-Monotony, which was the fixed length in this adjustment, and the outstanding discrepancy is consequently somewhat greater than would have been the case if the intervening triangles had been readjusted.

In solving the normal equations of the figure adjustment the length equation was, as usual, assigned to the last place, so that after all the conditions relating to triangle closures and ratios of lengths had been satisfied the discrepancy in length became known. In the following table the discrepancies developed between bases are given in terms of the seventh place of logarithms and are also expressed as ratios. A plus sign before the discrepancy expressed in terms of logarithms means that the first base mentioned is longer as measured than as computed through the intervening triangulation from the second base mentioned.

Bases.	Discrepancy in seventh place of logarithms.	Discrepancy expressed as a ratio.
Arapahoe-Monotony to El Paso El Paso to Tushar-Mount Nebo (Salt Lake) El Paso to Cheyenne Cheyenne to Provo Provo to Ambrose	$ \begin{array}{r} + 31 \\ + 6 \\ + 141 \\ + 108 \\ - 40 \end{array} $	1: 140 000 1: 724 000 1: 30 800 1: 40 200 1: 109 000

ACCORD OF AZIMUTHS.

Laplace azimuths were computed at three stations of the one hundred and fourth meridian triangulation, viz, at Watkins astronomic, Provo astronomic, and Mondak. It was reasonably certain that the Laplace azimuths computed for these stations were more accurate than the geodetic azimuth computed through the triangulation, and they were therefore introduced into the triangulation. The azimuth equations which reconciled the computed and the Laplace azimuths were placed at or near the last of the group of normal equations so that after the conditions relating to triangle closures and ratios of lengths had been satisfied, the discrepancy in azimuth became known.

The azimuth computed to Watkins astronomic station, through the triangulation, from the North American Datum azimuth at the edge of the Salt Lake base net, was found to be too large by 5".05 when compared with the Laplace azimuth at Watkins. The azimuth computed to Provo astronomic station, through the triangulation, from the Watkins Laplace azimuth, was too large by 2".37 when compared with the Laplace azimuth at Provo. The azimuth computed to Mondak, through the triangulation, from the Provo Laplace azimuth, was too small by 1".08 when compared with the Laplace azimuth at Mondak.

STUDY OF ERRORS.

While the primary triangulation done by the Coast and Geodetic Survey is sufficiently accurate for geographic and geodetic purposes, at the same time it is well to search for the causes of the larger errors and to try to eliminate them, if possible without an increase in the time and . cost of the triangulation. Or, if the causes of the largest errors can be found and removed, it might be possible to obtain the present accuracy with fewer observations over each direction in the scheme of triangulation. It is known to all observers of experience that large errors are likely to occur in observations made on a heliotrope before the late afternoon, when the wind makes the support of the instrument vibrate badly, and when a line passes close to a steep slope or a factory or heated stack. There must be other more obseure sources of errors. In the text below are given data which may help to discover some of the sources of errors in primary triangulation.

Beginning with the season of 1904 each observer on the northern portion of the ninetyeighth meridian triangulation and on the Texas-California are kept a record, ealled the *error book*, in which he made notes of the weather conditions, the character of the line observed over, and the appearance of the object observed upon. For each period of observations of primary horizontal angles there were entered in the record the date, with the hour; the direction of the wind; the strength of the wind; the station observed; the intensity, size, and degree of steadiness of the image of the heliotrope or lamp; the character of the image, whether symmetrical or asymmetrical; and the character of the line, whether high, low, grazing, or clear only at night as a result of elevation by refraction. In a column of remarks notes were made regarding the condition of the atmosphere, whether clear, hazy, or smoky. It has been impossible for the author, in the limited time at his disposal for such work, to make an analysis of all the accumulated data.¹

High, low, grazing, and refraction lines.—As considered in the error book, a high line is one with its greater portion elevated well above the ground and obstructions. This usually occurs when the line crosses a depression or valley. A low line passes over a very flat country or just over ridges, trees, houses, or other obstructions. Grazing was the term employed to describe a line which was barely clear during the day. A refraction line was one which was clear only at night as a result of great refraction. A refraction line is, strictly speaking, a grazing line.

The following table gives certain data regarding the number of high, low, and grazing or refraction lines on the triangulation along the one hundred and fourth meridian and the average corrections to directions for the different kinds of lines:

	Number.	Percentago of all.	Average correction to a direction.
All lines High lines Low lines. Grazing or refraction lines	420 352 50 18	100 84 12 4	" 0.32 0.31 0.37 0.41

The mean correction to a direction for high lines is about 17 per cent smaller than for low lines and about 29 per cent smaller than for grazing or refraction lines.

¹ See also pages 224 to 231 of Appendix 4, Report for 1911, Triangulation along the ninety-eighth meridian, Nebraska to Canada and connection with the Great Lakes, and pages 59 to 63 of Special Publication No. 11, "The Texas-California Arc of Primary Triangulation."

The following table gives the number of large corrections to all the directions and the number of them on the several classes of lines:

	Correction than	ons greater 0''.34.	Corrections greater than 0''.49.			
	Number.	Percentage of all.	Number.	Percentage of all.		
On all lines On high lines On low lines On grazing or refraction lines	151 122 21 8	$ \begin{array}{r} 100 \\ 81 \\ 14 \\ 5 \end{array} $	80 63 11 6	100 79 14 7		

The evidence in this table is that the large corrections come on the low and the grazing or refraction lines more in proportion than on the high lines.

Corrections to directions observed in a single period and in two or more periods.—The following tables are similar to the preceding, except that the lines are classified with regard to the number of periods during which they were observed instead of with regard to height. The total number of directions and the total number of corrections exceeding a certain amount may not be exactly equal in the different tables owing to the fact that a few lines may have been omitted from a table when information was lacking for classifying the line in that particular table.

	Numbe	or. Perce	entage all.	Average correction to a direction.		
All lines. Lines observed in but one period Lines observed in more than one pe- riod.		436 194 242	100 44 56	,, 0.32 0.31 0.33		
	Correction than	ons greater 0''.34.	Correcti- than	tions greater an 0''.49.		
•	Number.	Percentage of all.	Number.	Percentage of all.		
On all lines. On lines observed in but one period On lines observed in more than one	156 62	100 40	82 34	100 41		
period	94	60	48	59		

The data in the above two tables are slightly in favor of the observations made in only one period.

Inasmuch as there were only four directions observed in daytime alone, no comparison is obtained between day and night observations. The mean correction to the four directions observed in the daytime only is 0''.34.

DEVIATION OF TRIANGULATION IN AZIMUTH.

In many cases the gcodetic azimuth as computed through an arc of triangulation differs from the Laplace or true azimuth by an amount much greater than can be accounted for by the accidental errors in the observations of the triangulation. This deviation of triangulation in azimuth has been studied for years by geodesists without any definite conclusion as to the cause of the systematic errors.

In the United States Coast and Geodetic Survey publication entitled "The California-Washington Arc of Primary Triangulation" (Special Publication No. 13), the author, A. L. Baldwin, made the statement:

Confronted with these values for twist (differences between the computed and Laplace azimuths), the writer suggests that they may be caused by the unequal heating of the theodolite by the sun, even though the theodolite is protected from the direct rays. On triangulation extending in a north-and-south direction, as this are does, where

48310°-14-5

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

the observations were mainly made in the late afternoon, the west side of the instrument is undoubtedly warmer than the east side, and the resulting angles opening to the west and to the east should be subject to systematic errors of opposite signs, and therefore twist would develop. If this theory is correct, an east-and-west are should develop only a small amount of twist, well within the limits for the expected error. Arcs on which the observing was done at night should develop no twist exceeding that allowed by the probable error, for the temperature of the east and west sides of the instrument would be equal. It is expected that this theory will be tested in the near future on all of the arcs of primary triangulation now existing in the United States.

In the following tables are given the data, for each section of primary triangulation in the United States, which may throw some light upon this deviation in triangulation. It is believed that if similar data for the primary triangulation of other countries were in print it would be possible evontually to discover the cause or causes of deviation in triangulation, and with this knowledge to earry on the work in such a way as to minimize or eliminate its effect.

The sections of triangulation between Laplace stations are arranged in two tables. In the first are given data for the sections whose axes lie approximately in the meridian, while in the second table data are given for those sections which run east and west or nearly so.

On page 74 aro given the data for three sections of the Eastern Oblique Are.

Explanation of tables.—The data for any section are given in the direction south to north. In columns 1 and 2 are given the names of the Laplace stations at the south and north ends of the section, respectively.

Column 3 contains the correction necessary to make the computed and adjusted azimuth agree with the Laplace azimuth at the northern end of the section in question. In each ease the triangulation started with a true or Laplace azimuth at the southern end and the difference given is the amount of the accumulated systematic error or the deviation of the triangulation in azimuth at the northern end. This correction results from the figure adjustment and the adjustment for discrepancy in length between bases. It does not include the effects of any adjustment for latitude, longitude, or azimuth.

Where the triangulation had been adjusted without equations for latitude, longitude, or azimuth, the values for the eorrections in column 3 were taken from the table on page 20 of the "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy."

Where an equation for latitude, longitude, or azimuth was used in the adjustment of the triangulation to the North American datum, various expedients were adopted to obtain the values for column 3, and the numbers given are subject to some error.

Column 4 eontains the values of the probable error of the adjusted azimuth. The method of deriving these values is explained below in the text relating to column 8.

In column 5 are given for each section the values of the ratio of the deviation itself (column 3) to the probable error of the deviation (column 4).

If the deviation of triangulation in azimuth were due to accidental errors alone and the probable error in column 4 wero free from errors of computation, then the values of the ratio between the value and its probable error for any section should on an average be about unity (theoretically 1.18), with few values as great as 2 or 3. It will be seen in the tables on pages 67 and 69 that the values of this ratio are frequently larger than 3 and the mean is 3.7 without regard to sign.

In columns 6 and 10 is given the number of lines between the Laplace stations at the ends of the sections for the eastern and the western sides of the scheme of triangulation, respectively.

In column 7 are given the corrections necessary to make the azimuth earried along the eastern side of the scheme from the south agree with the Laplace azimuth at the second or northern station. The computation starts with the Laplace azimuth at the first station and is carried through the observed directions. These directions are unadjusted, except for any local conditions at the stations at which they were observed.

The above paragraph applies also to column 11, except that in this ease the azimuth is carried through the unadjusted directions on the west side of the scheme of triangulation.

.

ction.	(21)	In con- ver- gence.		0.0	-0.04	+0.21	-0, 11(-0,00	+0.12	+0.20	-0.24	+0.45	-0.05	+0.01	+0,16	
per dire	\$ (20)	In ob- served azi- muth, west side.	"	+0.103 +0.344 +0.088	+0.097	+0.148	+0.145	+0.143	+0.202	+0.171	+0.300	-0.194	-0.158	+0.001	-0.002 +0.056	
nulation	(19)	In ob- served azi- muth, east side.		+0.052 -0.390 -0.050	+0.048	+0.361	+0.035	+0.142	+0.330	+0.379	+0.050	+0.263	-0.208	+0.015	+0.164 -0.085	
Accur	(18)	In ad- justed azi- muth.	"	+0.062 -0.339 +0.084	+0.043	+0.347	+0.166	+0.103	+0.271	+0.249	+0.188	+0.030	-0.103	+0.035	+0.058 -0.025	
	(17)	Ratio (15)+ (16).		-0.71 -0.45 -1.6	-0.65	+2.5	-1.2	-0.01	+1.2	+1.0	-1.4	+2.8	-0.44	+0.14	+2.1 -1.4	
	(16)	Prob- able error of con- ver- gence.		1.98 3.21 2.44	3.45	2.75	3.63	2.65	4.69	2.49	3.61	7.19	2.63	2.99	2.55 5.15	
	(15)	Appar- ent conver- gence (7)- (11).	"	-1.41 -1.41 -4.00	- 2.23	+ 6.82	- 4.39	- 0.03	+ 5.62	+ 2.50	- 5.23	+20.14	- 1.15	+ 0.42	+ 5.48 - 7.34	
	(+1)	Time of observ- fing iine.		D. & N. D. & N.	D. & N.	D.	D. & N.	D. & N.	D.	D.	D.	D.	D. & N.	D. & N.	D.	
lation.	(13)	Ratio (11)+ (12).		+2.1 -4.6 +1.4	+1.9	+2.3	+2.2	+2.2	+2.7	+1.2	+2.4	-1.7	-1.9	+0.01	-0.04 +0.85	
triangu	(12)	Prob- abie error of ob- served azi- muth.	"	$ \begin{array}{c} 1.40 \\ 2.31 \\ 1.83 \\ 1.83 \end{array} $	2.40	2.03	2.63	1.93	3.33	1.76	2.60	5.14	1.86	2.08	1.86 3.44	
n side of	(11)	Ac- cumu- lated correc- tion to ob- served azl- muth.		+ 2.88 + 2.55 + 2.55	+ 4.45	+ 4.72	+ 5.79	+ 4.16	+ 8,88	+ 2.05	+ 6.29	- 8.55	- 3.63	+ 0.03	- 0.07 + 2.93	
Woster	(10)	Num- ber of lines be- tween sta- tlons.		13 16 16	22	17	21	16	22	9	11	22	11	15	17 26	
liation.	(6)	Ratio (7)+ (8).		+1.0 -5.4 -0.90	+0.90	+6.2	+0.56	+2.3	+4.4	+2.6	+0.43	+2.3	-2.6	+0.21	$+3.1 \\ -1.2$	
triangu	(8)	Prob- abie eror of ob- served azi- muth.	"	1.40 2.23 1.61	2.48	1.85	2.50	1.81	3.30	1.76	2.49	5.02	1.86	2.15	1. 74 3. 83	
n side of	(2)	Ae- cumu- lated correc- tion to ob- served azi- muth.	"	+ 1.47 -12.09 - 1.45	+ 2.22	+11.54	+ 1.40	+ 4.13	+14.50	+ 4.55	+ 1.06	+11.59	- 4.78	+ 0.45	+ 5.41 - 4.41	
Easter	(9)	Num- ber of lines be- tween sta- tions.		15 15 13	24	15	19	13	53	9	10	22	12	16	16 26	
	(5)	Ratio (3)+(4).		+ 1 2 5 4 + 1 2 5 5 4 + 1 2 5 5 4 1 2 5 5 4 1 2 5 5 5 4 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ 1.6	+11.4	+ 5.2	+ 3.2	+ 7.1	+ 3.4	+ 3.1	+ 0.5	- 2.5	+ 1.0	+ 2.1 - 0.71	
	(1)	Prob- able error of ad- justed azi- muth.	"	0.68 1.14 0.86	1.22	26.0	1.28	0.94	1.68	0.88	1.27	2.54	0.93	1.06	$0.90 \\ 1.82$	
	(3)	Accum- ulated correc- tion to ad- justed azimuth.	"	+ 1.73 -10.51 + 2.44	+ 1.99	+11.09	+ 6.62	+ 3.00	+11.91	+ 2.98	+ 3.95	+ 1.3	- 2.37	+ 1.08	+ 1.91 - 1.30	
iangulation.	(2)	To (station)—		Alice, Tex. Austin (capitol) Tex. Bowie northwest base,	Tex. Saiina west base,	Kans. Page southwest base, Nebr.	Dalton (astronomic	station), Minn. Stephen west base,	Minn. Gazelle (astronomic	station), Cal. Eugeno (astronomic	station), Oreg. Tacoma (astronomic station), Wash.	Port Townsend (azi-	Provo (astronomic),	8. Dak. Mondak, Mont.	Willow Springs, Ill Ford River (2), Mich	
Section of tr	(1)	From (station)—		Donna, Tex Alice, Tex Austin (capitol), Tex	Bowle northwest base,	Tex. Saifna west base, Kans.	Page southwest base,	Nebr. Dalton (astronomic	station), Minn. San Diego (astronomic	station), Cal. Gazelie (astronomic	station), Cal. Eugene (astronomic station), Oreg.	Tacorna (astronomic	station), Wash. Watkins (astronomic),	Provo (astronomic),	S. Dak. Parkersburg, III Willow Springs, III	
		NO. OI SECTOR.		-10100	-	10	9	E-	00	6	0	-	2	3	40	

Deviation data for north-and-south arcs.

Columns 8 and 12 contain the values of the probable error of the azimuths carried through the observed directions on the eastern and western sides, respectively, of the scheme of triangulation. These are the azimuths referred to in columns 7 and 11.

The probable error, ϵ_{α} , of the azimuth as carried through one side of the scheme is computed by the formula

 $\varepsilon \alpha = \varepsilon \sqrt{d},$

where ϵ is the probable error of a single observed direction and d is the number of directions used to carry the azimuth.

As there are four independent ways for carrying the azimuth through a scheme of quadrilaterals with the diagonals also observed, then the probable error of the azimuth carried through the scheme which has been adjusted for figure or for figure and length conditions is obtained by the approximate formula,

$$\epsilon_{\rm A} = \frac{\epsilon_{\alpha}}{\sqrt{4}}$$

 ϵ_{A} is the probable error of the adjusted azimuth, and ϵ_{α} is the same as in the preceding paragraph.

In column 9 are given the values of the ratio of the difference between the observed and Laplace azimuth to the corresponding probable error of the observed azimuth. The observed azimuth referred to is that carried through the observed directions on the eastern side of the triangulation. Column 13 contains similar data for the western side of the scheme.

The time at which the observing was done is given in column 14, D standing for day and N for night.

There are given in column 15 the apparent convergences of the two sides of the scheme of triangulation. This is the value in column 7 minus the value in column 11.

In column 16 are given the values of the probable errors of the apparent convergences. The probable error is the square root of the sum of the squares of the probable errors of the corrections to the azimuth as carried by the two sides of the scheme of the triangulation.

There are given in column 17 the ratios of the apparent convergence to the probable error of that convergence.

The last four columns—18 to 21—give the accumulation for a single direction, in the adjusted azimuth, in the azimuth as carried through the observed directions on the eastern side of the scheme, the same for the western side of the scheme, and in the convergence. The figures are obtained by dividing the numbers in columns 3, 7, 11, and 15, respectively, by the sum of the corresponding numbers in columns 6 and 10.

Deviation data for east-and-west arcs.

ction.	(21)	In con- ver- gence,	* * * * * * * * * * * * * * * * * * *	+0.099 +0.091 +0.396 -0.167 -0.256	$\begin{array}{c} +0.080 \\ +0.238 \\ -0.007 \\ -0.008 \\ -0.314 \end{array}$	+0.335 +0.003 -0.109
per dire	(20)	In ob- served azl- muth, south	" -0.127 +0.106 -0.255 -0.372 -0.372	+0.028 +0.252 -0.032 +0.110 +0.195	+0.072 -0.091 +0.083 -0.175 +0.503	-0.175 +0.201 -0.084
mulation	(194	In ob- served azi- muth, north side.		+0.127 +0.344 +0.364 -0.276 -0.061	+0.152 +0.147 +0.076 -0.183 +0.190	+0.160 +0.204 -0.193
Accu	(18)	In ad- justed azl- muth.	-0.045 -0.239 -0.245 -0.245 -0.245	-0.020 +0.264 +0.218 +0.218 +0.222 +0.066	+0.074 +0.037 -0.022 -0.160 +0.335	+0.070 +0.140 -0.123
	(11)	Ratio (15)+ (16).	+2.6 +2.6 +2.6 +2.6 +2.6 +2.6	+0.75 +0.78 +10.78 -1.8 -2.9	+0.97 +2.0 -0.10 -3.1	+2.8 +0.04 -0.65
	(16)	Prob- able error ver- gence.	4.09 3.83 3.47 3.59 3.59	2.96	2.64 3.54 2.45	3.75 3.27 2.00
	(15)	Appar- ent conver- gence (11).	+ 13.40 + 13.40 + 1.12 + 1.12 + 1.51	+ 2.47 + 1.28 + 10.70 - 2.16 - 8.72	$\begin{array}{c} + & 2.57 \\ + & 6.18 \\ - & 0.15 \\ - & 0.34 \\ - & 7.53 \end{array}$	+10.39 + 0.14 - 1.31
	(14)	Thme of observ- ing line.	D.&N. D.&N. D.	D. & N.	0.&N. 0.&N. 0.0. 0.0.	D. & N.
ulation.	(13)	Ratio (11)+ (12).	-2.2 -2.1 -5.3 -5.3 -0.17	+0.32 +3.0 -0.35 +3.1 +3.1 +3.1	+1.2 +1.2 +0.91 +6.4	-1.9 + 3.5 - 0.82
of triang	(12)	Prob- eble error of oh- served nzl- muth.	2.99 2.76 2.33 1.91 2.49	$\begin{array}{c} 2.23 \\ 2.49 \\ 0.86 \\ 0.86 \\ 2.15 \end{array}$	$\begin{array}{c} 1.87\\ 1.80\\ 1.80\\ 1.82\\ 1.88\\ 1.88\\ 1.88\end{array}$	2.79 2.31 1.23
ern slde	(11)	Ac- cumu- lated correc- tion to oh- served azi- muth.	+ 2.86 + 2.86 - 4.84 - 10.04	+ 0.71 + 3.53 - 0.87 - 1.43 + 6.64	+ 2.29 + 2.36 + 1.66 + 1.54 + 12.08	- 5.44 + 8.04 - 1.01
Southe	(10)	Num- her of lines be- tween sta- tions.	25 14 13 13	12 15 18	11 11 13 13	16 20 5
ulation.	(6)	Retlo (7)+(8).	+2.5 +4.8 -1.4 +0.42 +0.42	++4.3 +5.7 -1.0	$^{+2.6}_{-3.4}$	$^{+2.0}_{-1.5}$
oftriang	(8)	Prob- able error of ob- served azi- mutb.	* 2.79 2.57 1.95 2.59	2.41 1.11 0.86 2.04	1.87 2.45 2.14 2.14 1.57	2.50 2.31 1.58
ern side	(1)	Ac- cumu- lated correc- tion tion azl- muth.	+ 6.93 +12.66 - 3.72 - 2.90 + 1.10	+++3.18 +++4.81 -3.59 -2.08	+ + + + 3.86 + - + 1.51 + - 7.88 + - 55	+ 4.95 + 8.18 - 2.32
Northe	(9)	Num- ber of lines be- tween sta- tions.	26 13 14 14	13 6 16 16	15 9 11 22 9 11	15 20 7
	(3)	Ratlo (3)+(4).	-1.6 +4.7 -3.8 -0.93	+6.4 +6.4 +2.1 +2.1	+2.5 +0.91 +0.44 +9.3 +9.3	+1.6 +4.8 -2.1
	(4)	Prob- able error of ad- justed azi- muth.	* 1.44 1.36 1.22 0.96 1.27	1.16 0.58 1.05 0.43 1.05	0.94 1.06 0.99 0.86 0.86	${\begin{array}{c} 1.32\\ 1.16\\ 0.70\end{array}}$
	(3)	Accu- mulated correc- tion justed azimuth.	-2.31 -2.31 -4.66 -4.66 -6.11	+2.23	+2.38 +0.96 +6.87 +8.04	+2.17 +5.60 -1.48
angulation.	(2)	To (station)—	Parkersburg, Ill. Berger, Mo. Krob Noster, Mo. Saltua west base, Kans. Wallace, Kans.	Gunnison, Colo	Jarilla, N. Mex. San Diego, Cal. Tonawanda, N. Y Bundey, Mich.	Minnesota Point, Minn. Dalton, Minn Gunnison, Colo
Section of th	(1)	From (station)—	Mount Weather, Va Parkersburg, III Berger, Mo Knob Noster, Mo Salina west base, Kans.	Wallsce, Kans. Gunnison, Colo. Ogden, Utah. Fronton, Tex.	Stanton, Tex Jarilla, N. Mex Mannsville, N. Y Tonawanda, N. Y	Ford River, Mich Minnesota Point, Minn. Watkins, Colo
		No. of section.	-0300 4410	0008-40	27222	112

PRIMARY TRIANGULATION.

.

The explanation on pages 66 to 68 of the table giving data for the north-and-south sections applies to the above table for the east-and-west sections of triangulation, except that for eastern should be placed the word northern and for western the word southern. It is not necessary to repeat the explanation. The azimuth is carried westward from the east end of the section. The columns with the same number in the two tables contain similar data, except as noted above.

Analysis of data in the above tables.—In order that one may fully comprehend and see the bearing of the data in the above two tables, it was thought advisable to give the summaries contained in the following six tables. The first three relate to the north-and-south ares and the others to the ares which run in an east-and-west direction.

The correction to an adjusted or observed azimuth earried from one station to another through the triangulation is positive when the azimuth is smaller than the Laplace or true geodetic azimuth at the second station. As the azimuths are reckoned clockwise, a positive correction indicates that the azimuth as carried through the triangulation has worked to the left, or westward, looking north. If the azimuth had been computed southward, the correction would have been negative, showing that the azimuth had worked to the right, but again westward. It is readily seen that the effect of systematic error in azimuth is to make curved what otherwise might be a straight line. If either end of the curved line is held coincident with the straight line, the other end will go to the westward. If the curvatures are reversed, the line as actually observed will deviate to the custward regardless of which end is held to a Laplace azimuth.

The data for the north-and-south sections given in the preceding and following tables were gotten by computing from south to north; hence a positive correction indicates a westerly deviation of the azimuth and a negative correction an easterly deviation.

	Accumu- lated cor- rection to	Accumulated cor- rection to ob- served azimuth.		Converg- ence		Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Converg- ence
	adjusted azimuth.	Eastern side.	Western side.	E W.		adjusted azimuth.	Fastern side.	Western side.	E -W.
Number of sections. Number of + values. Number of - values. Mean value, sign not consid- ered. Mean + value. Mean - value. Mean value, sign considered. Weighted mean of accumula- tion per direction.	$ \begin{array}{r} 15\\12\\3\\\4.28\\4.17\\4.73\\+2.39\\+0.072\end{array} $	$15 \\ 11 \\ 4 \\ \\ 5.40 \\ 5.30 \\ 5.68 \\ +2.37 \\ +0.072 $	$15 \\ 11 \\ 4 \\ \\ 4.51 \\ 4.07 \\ 5.72 \\ +1.46 \\ +0.044$	15 6 9 ,,, 4,55 6,83 3,02 +0,92 +0,028	Number of + ratios (corrn. to p. e.) Number of - ratios Mean of ratios, sign not con- sidered Mean of + ratios Mean of - ratios Mean ratio, sign considered Probable error of mean ratio.	1233.83.74.1+2.1±0.79	$ \begin{array}{c} 11\\ 4\\ 2.3\\ 2.2\\ 2.5\\ +0.9\\ \pm 0.49\\ \end{array} $	$ \begin{array}{c} 11 \\ 4 \\ 1.9 \\ 1.9 \\ 2.1 \\ +0.8 \\ \pm 0.36 \end{array} $	$ \begin{array}{r} 6\\ 9\\ 1.2\\ 0.9\\ 1.6\\ +0.13\\ \pm 0.25 \end{array} $

Summary for all north-and-south sections.

There are 15 north-and-south sections considered in this investigation, and in 12 of them the adjusted azimuth deviates to the west. The mean values per section of the deviation without and with regard to sign are respectively 4''.28 and +2''.39.

The mean, without regard to sign, of the ratios between the correction to the azimuth as adjusted and the probable error of the azimuth is 3.8. This means that the correction is on an average much greater than the probable error of the azimuth and elearly indicates systematic error. This fact is shown also by the mean ratio with regard to sign of +2.1. If there were no systematic or constant error in the observed horizontal directions, the mean ratio without regard to sign should be close to unity and with regard to sign it should be close to zero.

The third and fourth eolumns in the above table give data for the azimuths as carried northward through the observed directions on the eastern and western sides of the scheme of triangulation. The azimuth by each side deviates to the west, but the deviation is 62 pcr eent greater for the east than for the west sides, 2".37 against 1".46. The rate of accumulation of the deviation is about 60 per cent greater for the eastern than the western sides, $+0^{\prime\prime}.072$ against $+0^{\prime\prime}.044$.

The evidence is strong that the western side of the scheme is less affected by systematic error than the eastern side.

In the last column in the above table are given data regarding the convergence of the two sides of the triangulation.

There is given below a summary of azimuth data for those north-and-south sections which were observed entirely during the day.

	Accumu- lated cor- rection to		ated cor- to ob- azimuth.	Converg- ence		Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Converg- ence
	adjusted azimuth.	Eastern side.	Western side.	E – W.		adjusted azimuth.	Eastern side.	Western side.	E -W.
Number of sections Number of + values Number of - values Mean value, sign not consid- ered Mean + value Mean - value Mean value, sign considered Weigbted mean of accumula- tion per direction	7614.925.521.30+4.55+0.134	7 6 1 ,, 7.58 8.11 4.41 +6.32 +0.186	7 5 2 4.78 4.97 4.31 +2.32 +0.068	7 5 2 7, 59 8, 11 6, 28 +4, 00 +0, 118	Number of + ratios (corrn. to p. e.) Number of - ratios, Mean of ratios, sign not con- sidered. Mean of + ratios Mean of - ratios Mean ratio, sign considered Probable error of mean ratio.	6 1 4.0 4.6 0.7 +3.8 ±1.06	$ \begin{array}{c} 6 \\ 1 \\ 2.9 \\ 3.2 \\ 1.2 \\ +2.5 \\ \pm 0.61 \end{array} $	$521.61.90.8+1.1\pm 0.41$	52 1.8 1.9 1.4 +1.0 ±0.44

Summary for north-and-south sections observed in the day.

Of the 15 north-and-south sections there were 7 on which all of the observations were made during the day. The objects sighted upon were heliotropes, poles, and various kinds of targets.

The data given above show that the observations made during the day were much more subject to the effect of systematic error than the mean of all of the north-and-south sections, the data for which are summarized on page 70.

The above table shows also that the western side of the scheme carries the azimuth with much less systematic error than the eastern side of the scheme. The mean value for the accumulation without regard to sign is 59 per cent greater on the east than on the west, while the mean value with regard to sign is nearly three times greater on the eastern than on the western side, 6''.32 against 2''.32.

The values given in the last column of the table for the convergence show that the mean of all sections has less systematic orror than the mean of the day sections.

In the table below is given a summary of the data for 8 north-and-south sections observed entirely at night or partly in daylight and partly at night.

-	Accumu- Inted cor- rection to	Accumulated cor- rection to ob- served azimuth.		Conver-		Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Conver-
	adjusted azimuth.	Eastern side.	Western side.	Ĕ –W.		adjusted azimuth.	Eastern side.	Western side.	E W.
Number of sections Number of + values Number of - values Mean value, sign not con- sidered Mean + value Mean - value Mean value, sign considered Weighted mean of accumu- lation per direction	8 6 2 ,,, 3.72 2.81 1 6.44 +0.50 +0.015	8 5 3,,,, 3,50 1,93 \$6,11 -1,08 -0,034	8 6 2 ,,, 4.27 3.31 3.7.14 +0.70 +0.021	8 1 7, 1, 88 0, 42 2, 09 -1, 78 -0, 055	Number of + ratios (corrn. to p. e.)ratios, Number of - ratios, Mean of ratios, sign not con- sidered Mean of + ratios Mean of - ratios Mean ratio, sign considered Probable error of mean ratio	$ \begin{array}{r} 6 \\ 2 \\ 3.5 \\ 2.7 \\ 5.8 \\ +0.6 \\ \pm 1.07 \end{array} $	$5 \\ 3 \\ 1.7 \\ 1.0 \\ 3.0 \\ -0.5 \\ \pm 0.61$	$ \begin{array}{r} 6 \\ 2 \\ 2.0 \\ 2.0 \\ 3.2 \\ +0.4 \\ \pm 0.64 \end{array} $	$ \begin{array}{c} 1 \\ 7 \\ 0.6 \\ 0.1 \\ 0.8 \\ -0.6 \\ \pm 0.14 \end{array} $

Summary for north-and-south sections observed at night and both day and night.

 1 Only two values, $-10^{\prime\prime}.51$ and $-2^{\prime\prime}.37.$ 2 Only three values, $-12^{\prime\prime}.09,$ $-1^{\prime\prime}.45,$ and $-4^{\prime\prime}.78.$

³ Only two values, -10".65 and -3".63.

The data given above for the 8 sections obscrved entirely or partly during the night show less systematic error in the azimuth than the data given on page 70.

That there is some systematic error present is indicated by the fact that most of the sections have positive corrections to the azimuths, which shows that in general the line deviates to the westward. This is the same direction of deviation as obtains when the observing was done during the day.

The mean positive values of the accumulation of error to the azimuth are much smaller than for day observations, and the positive accumulation is only 1".93 against 8".11 for the day work. The largest positive value for the adjusted azimuth is only 6".62, this being the only positive value greater than 4".00.

For the eastern side of the scheme the largest positive value is only 4".13.

The western side has three positive values greater than 4".00, with the largest one 5".79.

The negative values are all comparatively small except for one section. That value is more than 10".00 for the adjusted azimuth, the azimuth by the cast side and the azimuth by the west side. If that one section were not considered, the mean values for the negative azimuths would be comparable with the mean positive values.

The mean value of the convergence for the night observations is only about one-half that for the day work and is of opposite sign.

Discussion of data for east-and-west arcs.—In the following table is a summary of the data given in the table on page 69 for the sections of triangulation which run in an east-and-west direction:

	Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Conver- gence		Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Conver- gence
	azimuth.	Northern side.	Southern side.	N -5.		azimuth.	Northern side.	Southern side.	N -S.
Number of sections. Number of + values. Number of - values. Mean value, sign not consid- ered. Mean + value. Mean - value. Mean value, sign considered. Weighted mean of the accu- mulations per direction.	18 9 9 ,, 3.54 4.75 2.94 +0.61 +0.022	18 12 6,,, 4.94 5.53 3.75 +2.44 +0.089	$ \begin{array}{c} 18\\ 8\\ 10\\ ,,\\ 4.35\\ 4.73\\ 4.04\\ -0.14\\ -0.005 \end{array} $	18 12 6 ,, 4.83 5.56 3.37 +2.58 +0.094	Number of + ratios (corrn. to p.e.). Mean of ratios, sign not con- sidered. Mean of + ratios. Mean of + ratios. Mean ratio, sign considered Probable error of mean ratio.	9 9 3.6 4.2 3.1 +0.56 ±0.75	$ \begin{array}{c} 12 \\ 6 \\ 2.5 \\ 2.7 \\ 2.2 \\ +1.07 \\ \pm 0.52 \end{array} $	$ \begin{array}{c} 8 \\ 10 \\ 2.1 \\ 2.4 \\ 1.9 \\ +0.04 \\ \pm 0.43 \\ \end{array} $	12 6 1.6 1.7 1.4 +0.63 ±0.33

Summary for all sections of east-and-west arcs.

One-half the sections in the above table deviate in adjusted azimuth to the south and one-half to the north. The deviation is on an average 3.6 times the probable error of the deviation, and therefore it must be concluded there is much systematic error in the adjusted azimuth.

For the accumulated correction to the azimuth, as carried along the northern side of the scheme through the unadjusted observations, there are 12 plus and 6 minus corrections. This shows a decided tendency for the lines on the northern side of the triangulation to bend toward the south. This is clearly shown by the mean value of the accumulation in azimuth with regard to sign, which is +2''.44. The value of the accumulation per direction is also comparatively large, +0''.089.

On the south side of the triangulation the azimuth has 8 positive and 10 negative values, with a mean value of only $-0^{\prime\prime}.14$, and a value of $-0^{\prime\prime}.005$ for the accumulation per direction, sign considered. It is true that the average value of the accumulation per section without regard to sign for the southern side shows systematic error in azimuth; at the same time these errors for many sections act as accidental errors.

The last column gives the data for the convergence, which naturally agree closely with the values shown for the accumulated error in azimuth through lines on the northern side of the scheme.

In the following table are given the data for the 11 sections on east-and-west arcs which were observed in daylight only:

	Accumu- iated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Conver-		Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Conver-
6	adjusted azimuth.	Northern side.	Southern side.	N -S.		adjusted azimuth.	Northern side.	Soutbern side.	Ň −8.
Number of sections Number of + values Mean values, sign not con- sidered. Mean + value. Mean - value. Mean value, sign considered. Weighted mean of accumula- tion per direction	$ \begin{array}{c} 11 \\ 5 \\ 6 \\ ,'' \\ 4.10 \\ 5.08 \\ 3.29 \\ +0.51 \\ +0.019 \end{array} $	11 8 3, 4.78 4.76 4.83 +2.14 +0.079	$ \begin{array}{c} 11 \\ 5 \\ 6 \\ ,'' \\ 5.01 \\ 5.20 \\ 4.86 \\ -0.28 \\ -0.011 \end{array} $	11 8 3. 4.34 2.67 +2.43 +0.090	Number of + ratios (corrn. • to p. e.) Number of - ratios. Mean of ratios, sign not con- sidered. Mean of + ratios Mean of + ratios Mean of - ratios Probable error of mean ratio.	$564.15.52.9+0.9\pm 1.04$	$8 \\ 3 \\ 2.5 \\ 2.6 \\ 2.1 \\ +1.3 \\ \pm 0.56$	5 6 2.4 2.8 2.1 +0.13 ±0.67	8 3 1.3 1.4 1.1 +0.7 ±0.36

Summary for east-and-west sections observed in the day.

For the sections considered in the above table, 5 have positive and 6 negative values for the accumulated error in azimuth as carried through the adjusted triangulation, but the positive values are the larger, and the mean value, sign considered, is $+0^{\prime\prime}.51$. The mean value of the ratio between the accumulated azimuth and its probable error (4.1) indicates the presence of systematic error.

The accumulated azimuth carried by the observed directions in the northern side of the scheme are mostly positive, 8 of the 11 sections having that sign. The mean value with regard to sign is +2''.14 which shows large systematic error.

The column giving data for the southern side has 5 positive and 6 negative values. The mean value with regard to sign is $-0^{\prime\prime}.28$, which is less than one-seventh of the value for the northern side and is of the opposite sign.

The values in the column headed "Convergence" follow closely those given in the column for the accumulated azimuth for the northern side of the triangulation.

In the table which follows there are given mean data for the seven east-and-west sections which were observed at night or partly during the night.

	Accumu- lated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Converg- ence		Accumu- iated cor- rection to	Accumul rection served	ated cor- to ob- azimuth.	Converg- ence
	adjusted azimutb.	Northern side.	Soutbern side.	N -S.		adjusted azimuth.	Nortbern side.	Southern side.	N -8.
Number of sections Number of + values Mean values, sign not con- sidered Mean + value. Mean - value. Meau value, sign considered Weighted mean of accumu- lation per direction	7 4 3, 2.67 3.00 2.22 +0.76 +0.027	7 4 3,,, 5.18 7.07 2.66 +2.90 +0.104	7 3 4 3.29 3.93 2.82 +0.07 +0.003	7 4 3,,, 6.31 7.99 4.06 +2.82 +0.101	Number of + ratios (corr'n. to p. e.) Mean of ratios, sign not con- sidered Mean of + ratios Mean of - ratios Mean ratio, sign considered Probable error of mean ratio	$\begin{array}{c} 4\\3\\2.9\\2.6\\3.5\\-0.03\\\pm 0.96\end{array}$	$\begin{array}{c} 4\\ 3\\ 2.6\\ 2.9\\ 2.2\\ +0.69\\ \pm 0.78\end{array}$	3 4 1.6 1.8 1.5 -0.09 ±0.48	4 3 2.0 2.2 1.8 +0.50 ±0.60

Summary for east-and-west sections observed at night and both day and night.

Of the seven sections considered in the above table there were three on which nearly all the observing was done during the day. There were three other sections on which about 75 per cent of the observing was done at night.

The data in the above table, for the sections observed entirely or in part at night, show definitely that the deviation by the observed directions on the southern side is much smaller than for the northern side. The mean values per section are, respectively, 3''.29 and 5''.18, while the means with regard to sign are, respectively, +0''.07 and +2''.90. While the southern side carried the azimuth better than it did with the day observations, the northern side of the sections, observed all or in part at night, did not carry the azimuth any better than the sections observed entirely during the day. The sections in the above table are about equally divided between positive and negative values.

Deviation of eastern oblique arc in azimuth.—The axis of this are of primary triangulation runs in a northcast and southwest direction. The arc may be considered in three sections, as is shown in the small table below.

Eastern oblique arc.	Lines.1	Accumu- lated cor- rection to adjusted azimuth.	Probable error of adjusted azimuth.
Camhridge, MassMount Weather, Va Mount Weather-Atlanta middle hase, Ga Atlanta middle hase-Fort Morgan, Ala	25 15 20	" 1.17 3.76 0.26	" 1.50 1.53 1.54

¹ Values given are in each case one-half the sum of the lines on the two sides of the scheme.

The computation was carried from northeast toward the southwest, therefore the deviation of the triangulation in azimuth is toward the northwest. As all of the observations were made in the day and the greater percentage of them in the late afternoon, when the sun was in the west, it is seen that the deviation in azimuth is toward the sun. This is in agreement with what was found for the sections running north and south and for those in an east-and-west direction. The small deflection may be due to the fact that during the observing the sun was on an average not far from the center line of the arc.

That the deviation for each of these sections is small is shown by the fact that it is eomparable in size with the probable error of the section. The deviation of the triangulation in azimuth as earried by the two sides of the scheme and the convergence of the two sides were not computed.

It may be concluded that in triangulation running north and south: (1) The work done in whole or in part at night carries the azimuth much better than the day work; (2) there is very little difference in the size of the accumulated errors in azimuth as carried by the eastern and the western sides of the triangulation for the night or night-and-day sections; (3) the accuracy of the azimuth as carried by the observations in the western side of the scheme is much greater than that in the eastern side in day work; (4) there is a strong tendency for the north and south arcs of triangulation to deviate in azimuth to the westward and toward the sun; (5) it seems to be probable that sections observed entirely at night would be almost free from systematic error in the azimuth and that the convergence would also be of an accidental nature; (6) as the day work shows the greatest offect of systematic error, the eause of that error must be unequal heating of the different parts of the instrument by the sun; (7) the day observations on the western side of the scheme give results freer from systematic error in azimuth than the eastern side because the instrument on the western side is better protected from the heat of the sun. Practically all the day observations were made in the afternoon.

The data given for the east-and-west sections justify the conclusions that: (1) The deviation of triangulation in azimuth is less for the sections observed entirely or in part at night than for the sections observed during the day; (2) the unadjusted directions on the southern side of the scheme carry the azimuth with less deviation than on the northern side; (3) the deviation of the triangulation in azimuth is in general to the south and toward the sun; (4) the data for the east-and-west sections also indicate that the unequal heating of the instrument is a cause of the deviation of triangulation in azimuth, but the evidence that this is true is not so strong as that from the north-and-south sections.

The observer on the triangulation in Texas made observations for horizontal directions only at night. This work is shown as section 1 in the table on page 67 and section 9 in the table on page 69. The accumulated errors in azimuth for these sections are comparatively small.

A party which began observing on the arc of primary triangulation which extends from Memphis, Tenn., to Huntsville, Ala., was directed to observe over the main-scheme lines only at night. The results of that work are not available as this report goes to press.

The writer, believing the unequal heating of the circle of the theodolite to be the principal cause of systematic error in the azimuth, recommended to the Superintendent of the Coast and Geodetic Survey, in October, 1913, that the theodolites be equipped with niekel-iron circles instead of eircles of brass. The former metal has a coefficient of only 0.000004 per degree centigrade, while the brass has a coefficient of about 0.000018, or more than four times as great. One of the theodolites is now (May, 1914) equipped with a niekel-iron circle and it will be used on the Memphis-Huntsville triangulation. The results should be of great interest.

The observer was also requested to change the eircle about 180° in azimuth for each new position by using the settings given in the table below in place of those shown on page 14 of Special Publication No. 11.

Position.	Telescope direct.	Telescope reversed.	Position.	Telescope direct.	Telescope reversed.
1 2 3 4 5 6 7 8	• •	° , " 180 00 40 15 01 50 210 03 10 45 04 20 244 00 40 79 01 50 274 03 10 109 04 20	9 10 11 12 13 14 15 16	• / // 128 00 40 323 01 50 158 03 10 353 04 20 192 00 40 27 01 50 222 03 10 57 04 20	• , , , , , , , , , , , , , , , , , , ,

0	0 1		7.*	~	* *. 4 7	1 2
	mel	P	readina	s tor	imitial	directions
~	0100		rounderby	0,00	010000000	1 100000000000

While the deviation of triangulation in azimuth can at certain places be eliminated by the introduction of Laplace stations into the scheme, it is nevertheless most desirable that this error be minimized by changed methods of observations if practicable. For geographic purposes the amount of remaining deviations at points between Laplace stations is of no importance, but in geodetic investigations, when the deflection of the vertical in the prime vertical is wanted, the deviation of the triangulation in azimuth remaining after the adjustment is a serious matter.

It is believed that with the theodolite equipped with a nickel-iron horizontal eirele and with the observations made entirely at night and the eircle moved nearly 180° in azimuth between each two positions or series the deviation will be much smaller than at present, and possibly almost entirely absent.

It is possible that these changes may add somewhat to the accuracy of the triangulation, as indicated by the closing errors of the triangles and the probable error of an observed direction.

It should be noted that the deviation of the triangulation in azimuth in the United States is of the same order as that found in other countries earrying on triangulation of the highest grade.

Effect of the deflection of the vertical.—A computation was made to determine the effect of the deflections of the vertical at stations to the north of Pikes Peak, Colo., on the angles of the triangulation. The results indicated that the greatest error eaused by ignoring the deflections was 0''.52 for one direction, that the accumulated effect was small, and that for an arc of triangulation so long that the station error undergoes several changes of sign the separate values follow elosely the law of accidental errors in their size and sign. It may therefore be concluded that the effect of the deflection of the vertical on the deviation of triangulation in azimuth is negligible in comparison with the much greater systematic effects from other causes.

The effect of twist in the instrument support.—For many years the observers of the Coast and Geodetic Survey engaged upon primary triangulation shielded the signal (on which the instrument was mounted) from the direct rays of the sun by canvas or other material. This was done to prevent movements in the wooden structure which might cause a shift of the instrument in azimuth and produce errors in the observed angles. Since the beginning of the season of 1902 no screens have been used. In the report ¹ on the work done in 1902 its author, Prof. J. F. Hayford, in commenting upon the possible effect of twist, stated that:

About two days were spent by computers at the office in examining the records after the close of the season for evidence of twist. No convincing evidence that any systematic twist occurs could be found. Whatever twisting of the tripod head in azimuth occurs, if regular and continuous in one direction for considerable periods, is so slew as to be concealed by accidental errors in pointing and reading. There is possibly a very irregular twisting, with frequent reversals or stops, the effect of which is to introduce errors of the accidental class into the results which can not be separated from the other accidental errors.

No further investigations for the effect of twist have been made. It is generally held that the effect of the sun is to twist the signal in the same direction. If this is true and the motion is continuous and constant in rate, then the mean of two series of observations made in opposite directions and at uniform speed should eliminate the effect of twist. If the motion is irregular, the effect can be eliminated only if many observations are made. After sundown the signal should twist in the opposite direction for an indefinite time, and again affect a single series of observations taken in the early part of the night.

It is probable that the effect of twist may increase slightly the sizes of the accidental errors, but there seems to be no reason why it should cause a systematic deviation of triangulation in azimuth.

EFFECT OF DRAG.

The observed angles or directions at a station may be affected by two sources of error which are sometimes confused or not clearly distinguished. One is the twisting of the signal, on which the theodolite is mounted, by the sun. If the signal is not protected by screens from the direct rays of the sun, the material of the structure (assumed to be wood in this discussion), is unequally heated or dried and as the sun changes in azimuth during the observations, the structure may also change in azimuth. This change is probably not at a uniform rate, but by a series of jerky movements. The effect on the mean angles at the station is probably the same as if the motion were uniform. The effect of this torsion will be made negligible by the method of observing in which one-half of the observations in any position of the eircle are made in a elockwise direction and the other half immediately afterwards, counterclockwise. The directions or angles in one case will be too small and in the other too large, but the means should be free from the effect. This will be practically true for the mean of the observations made in 16 positions of the eircle.

The other error has its source in the lost motion or nonelasticity of the materials forming the structure on which the theodolite stands and the base of the theodolite itself. When the alidade of the theodolite is moved in azimuth, the friction between the movable parts, even though very small, will tend to drag the lower part of the instrument with it. The error due to this may be termed the *effect of drag*. It tends to make the measured angle too small whether the alidade is moved from left to right or from right to left.

When the motion of the alidade ceases the lower part of the instrument will assume its previous position only if it and the support (all considered as one structure) are perfectly elastic.

If the elasticity is not perfect then the telescope revolved through 360° should register 360° minus the drag or effect of nonelasticity in the instrument and stand. The alidade of the instrument is assumed to move continuously in one direction. For instance, let it be assumed that the theodolite is graduated elockwise, then if some object is sighted on and the reading of the eirele is zero or 360° the reading at the second pointing on the same object, after revolving the alidade 360° should be something less than 360° or zero. Also, if the first reading is zero and the instrument is turned counterclockwise or right to left, the second reading should be greater than zero or 360°. These differences in the readings will be the same in amount if the degree of pliability is the same for the two directions.

It would also be reasonable to assume that in a series of angles all of the effect of drag would appear in the first or left-hand angle for the first round of observations (made from left

to right), and on the last angle (the right hand one of the series) for the second round which would be in a direction opposite to that of the first round. This assumption is based on the idea that after the lower part of the instrument and the support have been dragged as a result of revolving the alidade to the second direction the structure will be perfectly elastic to any further strains due to the movement of the alidade to the third, fourth, and other directions. That is, after the telescope has been turned to the second direction, all of the drag caused by moving the telescope farther from the initial will be due to the flexibility of the materials of the lower part of the instrument and its support and not to looseness of the parts. The structure should act as if it were perfectly elastic and should recover the same position it had at the second direction.

If the above theory is correct, one-half the total effect of drag should be present in the angle which lies between the first or initial and the second directions and one-half in the angle formed by the last direction and the initial one (if the horizon were closed in the round). If the horizon is not closed then the first and last angles would each be affected by one-half the amount of the drag. The intermediate angles should be free from the effect of drag.

To test these theories an investigation was made of the work done on the one hundred and fourth meridian in 1912.

The observers in the United States Coast and Geodetic Survey work do not try to prevent "overshooting" the mark and therefore it may be assumed that in some cases the telescope went beyond and had to be brought back, that is moved in the reverse order in which the directions were being made. One therefore will not get as definite an idea of the effect of drag as if the telescope had always stopped exactly on the mark.

Of the stations occupied by Assistant E. H. Pagenhart, there were 17 at which he closed the horizon in each one of the double measurements of the directions. In all the horizon was closed for 297 such measurements.

Of the 297 times the horizon was closed while revolving the telescope from left to right, there were 146 cases where the last pointing on the initial was greater than the first, and in 136 cases the reverse was true. The sum of the plus closures was 244".2, while that of the negative closures was 245".0. The averages were, respectively, 1".67 and 1".80.

There seems to be no effect of drag in these observations.

Of the 297 measures closing the horizon when the telescope was swung from right to left, 106 had positive closures, with a total of 174".8 and an average of 1".65, and 172 had negative closures, with a total closing error of 290".9 and an average of 1".75. The closure is considered positive if the second reading passes the first one in the revolution of the telescope.

The evidence is strong that the right-to-left measures are affected by drag. Why there should be drag in these measures and not in the left-to-right ones is not clear. The resultant drag in each position—that is, the mean of the two measures of a position—is 0".20. The sum of the angles at a station is affected by this amount, and averages only 359° 59' 59".80.

Values of first and last angles of a position, left to right, and the reverse.—If the drag is only on the first angle of a series measured in any one direction, say left to right, then this angle should be free from drag when measuring this series in the reversed order—right to left.

In the work of Assistant Pagenhart on the one hundred and fourth meridian triangulation in 1912 he made observations at 49 primary stations and 8 subsidiary ones. Several stations were occupied a second time. Of the 863 measurements of the first angle of a series (the angle between the initial and second directions) the second half of the measurement was greater than the first in 437 cases. The first half of the measurement is greater than the second in 426 cases. The sums of the differences are, respectively, 1079''.2 and 1049''.1, and the averages are 2''.47 and 2''.46.

The first measure of the last angle of a series was greater than the second in 375 cases with a total difference of 921''.6 and an average difference of 2''.48. There were 400 cases in which the second measure of the angle was greater than the first, with a total of the differences of 985''.7 and an average difference of 2''.46.

There is no indication in the above data that there is any systematic effect of drag in the first and second measures of the first and last angles of a series.

Angles measured in series or singly.—In Mr. Pagenhart's work there were 28 angles measured partly in a series of angles and partly alone or singly.

The average of the single measures was greater than that of the measures in series in 14 cases and the reverse was true in the other 14 cases. The sum of the positive differences (series minus single) was 11''.5 and an average difference of 0''.82, while the sum of the negative differences was 8''.9 with an average of 0''.64. Thirty-five of the angles measured by Assistant C. V. Hodgson on the one hundred and fourth meridian triangulation were observed partly in a series of angles and partly singly. In 18 cases the measure in series was greater than the single measure, and in 17 cases the reverse was true. The sum of the differences when the series was larger was 16''.4 and the average difference 0''.91. The sum of the differences when the single measures were larger was 17''.0 and the average difference was 1''.00.

The above data do not indicate the presence of any systematic effect of drag.

If any errors of considerable size, due to drag, were present in the observed horizontal angles these angles would be too small and the sum of the observed angles of the triangles should on the average be less than 180° plus the spherical excess. The custom in the United States Coast and Geodetic Survey has been to take, whenever practicable, the extreme left-hand object as the initial direction, assuming that the observer is facing his scheme of triangulation. This applies only to the side points of the scheme and not to those stations which are within the area covered by the triangulation. Also in general the horizon is not closed, the initial station being observed upon only once in a half series, left to right or right to left. Therefore the angle, which is nearly always about 180°, necessary to close the horizon at stations on the sides of the scheme is not measured.

With the methods employed the drag, if present to any extent, should appear in those angles which form the triangles of the scheme.

The following table gives the data in regard to positive and negative closing errors for several arcs of primary triangulation in the United States.

The plus sign indicates that the sum of the observed angles of a triangle is less than 180° (plus the spherical excess of the triangle). The negative sign has, of course, the opposite meaning, that is, the sum of the three observed angles is more than 180° (plus the spherical excess of the triangle).

Are.	Number of trl- angles closed.	Number of + closures.	Sum of + clo- sures.	Number of – closures.	Sum of - clo- sures.	A verage + clo- sures.	A verage - clo- sures.	A verage closure of all triangles.	A verage closures with re- gard to sign.
Ninety-eighth meridian, Canada to Alice, Tex Texas-California California-Washington One hundred and fourth meridian Ninety-eighth meridian, Alice-Brownsville ¹	729 183 148 186 68	366 99 72 91 26	" 328.76 84.91 75.81 86.44 15.75	363 84 76 95 42	" 334.31 79.83 105.07 96.87 31.55	" 0.898 0.858 1.053 0.950 0.606	" 0.921 0.950 1.382 1.020 0.751	" 0.909 0.900 1.220 0.930 0.696	" -0.008 +0.028 -0.198 -0.056 -0.232
Sum or mean	1314	654	591.67	660	647.63	0.905	0.998	0.943	-0.043

¹ Fleld computations.

The above table gives evidence which tends to disprove the presence of drag in the angles forming the triangles. As stated above, the effect of drag, if present at all, is to make the angles too small, and therefore the triangle should close too small; that is, the sum of the three angles should need a positive correction. This statement, of course, leaves out of account errors due to other causes than drag.

Of the 1314 triangles for which data are given in the above table 654 have the sum of the observed angles too small and 660 have them too large.

On four of the five arcs considered the average closing error with regard to sign is negative (the sum of the observed angles being too large), and the average closing error with regard to

sign for the 1314 triangles is - ".043. This mean with regard to sign is so small that it can not be attributed safely to any cause except the unbalanced effect of accidental errors.

Conclusion in regard to study of drag.—As a result of the above investigations to discover the effect of drag in the observed horizontal directions or angles of the primary triangulation by the United States Coast and Geodetic Survey, it must be concluded that there is no appreciable systematic drag.

While the above data do not indicate the presence of any systematic error due to drag there may be some errors of an accidental nature in the results due to that cause. It is believed that the method of observing employed in India is somewhat preferable though probably slower in operation than that used by the United States Coast and Geodetic Survey. There the observer brings his cross wires up to the object but never overshoots it. The party of this survey now at work on the arc between Huntsville, Ala., and Memphis, Tenn., has been instructed to test the Indian method. After setting the circle for a new position, he will move the telescope to the left of the initial direction and will then bring it up to the initial from the left as will be done for the other directions. Similarly, when making the observations in the reversed order, he will move the telescope from right to left for each of the pointings, including the first. When using the tangent screw to make the contact he will not limit himself to the direction in which the observations are being made.

ACCURACY OF THE PRIMARY TRIANGULATION IN THE UNITED STATES.

In the following table, 66 sections of triangulation in the United States, for which the required tabular values can be conveniently obtained, have been arranged in the order of accuracy, the most accurate being placed first. The most severe, and therefore the best, test of accuracy is believed by the writer to be the quantity d, expressing the probable error of the observed direction as derived from the corrections to directions resulting from the figure adjustment before the introduction of equations necessary to hold fixed positions of previously adjusted triangulation. Accordingly the various sections of triangulation have been placed in the order of the values of d. In the few cases in which d is the same to the nearest hundredth of the second for several sections the next column, a, has been used to decide their relative rank. The methods of computing d and a have already been explained fully on pages 55 and 62.

No.	Section.	Probable error of an observed direction =d.	Mean error of an angle $=a$.	A verage closing error of a triangle.	Maximum eorrection to a direction.	Maximum closing error of a triangle.	Discrep- ancy between bases. ¹
		"	,,	,,	,,	,,	
$\frac{1}{2}$	Nevada-California series. Stephenville base net to Lampasas base. Yolo base net.	± 0.23 ± 0.23 ± 0.24	$\pm 0.42 \\ \pm 0.45 \\ \pm 0.51$	0.57 0.56 0.68	0.60 0.60 0.64	1.57 2.09 2.60	+ 83 - 47
45	Point Isabel base net Elliff-Nolan to Laguna Madre base	$\pm 0.25 \pm 0.25$	$\pm 0.40 \pm 0.62$	0.50 0.85	$ \begin{array}{c} 0.60 \\ 0.62 \end{array} $	$1.61 \\ 2.23$	+ 73
6 7 8 9 10	Daupbin Island base net New England section. Meades Ranch-Waldo to Sbelton base net. Deming base net to San Jacinto-Cuyamaca. Shelton base net to Page base.	$\pm 0.26 \\ \pm 0.26 \\ \pm 0.27 \\ \pm 0.28 \\ \pm 0.29$	± 0.51 ± 0.53 ± 0.35 ± 0.57 ± 0.44	0, 83 0, 75 0, 50 0, 77 0, 60	0.49 1.17 0.62 0.80 0.87	$1.25 \\ 2.02 \\ 1.42 \\ 3.01 \\ 1.77$	+ * 44 + 75 + 72 - 16
11 12 13 14 15	Olney base net Bowle base net to Stephenville base Eastern oblique arc to Augusta Rocky Mountain series Stanton base to Deming base	$\pm 0.29 \\ \pm 0.29 \\ \pm 0.30 \\ \pm 0.32 \\ \pm 0.32$	$\pm 0.54 \\ \pm 0.63 \\ \pm 0.60 \\ \pm 0.57 \\ \pm 0.64$	0.78 0.90 0.78 0.84 0.87	0.70 0.70 0.74 0.80 0.72	1.78 2.50 2.73 2.31 2.91	-77 + 85 - 59
16 17 18 19 20	Salt Lake base net. Shelton base net. Stephen base net to Canada. El Reno base to Bowle base. Fire Island base net.	± 0.32 ± 0.33 ± 0.33 ± 0.33 ± 0.33 ± 0.34	$\pm 0.66 \\ \pm 0.45 \\ \pm 0.61 \\ \pm 0.97 \\ \pm 0.49$	0.81 0.80 0.84 1.19 0.70	$\begin{array}{c} 0.84 \\ 0.88 \\ 0.78 \\ 1.40 \\ 1.43 \end{array}$	3,18 2.07 2.38 4.43 1.43	- 64 - 6
21 22 23	Illinois series Holton base net. Indiana series	$\pm 0.34 \\ \pm 0.34 \\ \pm 0.34 \\ \pm 0.34 \\ \pm 0.34$	± 0.57 ± 0.58 ± 0.60 ± 0.63	0.79 0.79 0.80 0.85	0.99 0.84 1.31	1.72 2.28 3.20 2.19	-71 + 2
25	Fergus Falls to Stephen base	± 0.34 ± 0.34	±0.63	0.85	0.93	3.07	+ 24

Sections of triangulation in order of accuracy.

¹ The discrepancy between bases in the last column of the table is expressed in terms of the seventh decimal place of logarithms. It is the discrepancy remaining after the angle and side equations have been satisfied. A plus sign before the discrepancy means that the first base mentioned is longer as measured than as computed through the intervening triangulation from the second base mentioned. ² There were 3 bases connected by this section, Epping, Massachusetts, and Fire Island. The 3 discrepancies were +44, +3, and +41.

No.	Section.	Probable error of an observed direction = d.	Mean error of an angle—a.	A verage closing error of a triangle.	Maximum correction to a direction.	Maximum closing error of a triangle.	Discrep- ancy between bases.
		"		·· ·	"		
26 27 28 29 30	Transcontinental triangulation to Anthony base Missouri-Kansas series. Atlanta base net to Dauphin Island base net, V. PROVO BASE TO AMBROSE BASE. Anthony base net to El Reno base net.	$\pm 0.35 \pm 0.35 \pm 0.35 \pm 0.35 \pm 0.36 \pm 0.36$	$\pm 0.54 \\ \pm 0.60 \\ \pm 0.68 \\ \pm 0.69 \\ \pm 0.69 $	0,79 0,88 0,97 0,94 1,05	1.39 1.12 1.12 1.14 0.84	1.98 2.37 2.87 2.83 2.17	+ 41 + 169 + 2 - 40 + 7
31 32 33 34 35	Brown Valley base net to Royalton base	$\begin{array}{c} \pm 0.36 \\ \pm 0.36 \\ \pm 0.36 \\ \pm 0.37 \\ \pm 0.39 \end{array}$	$\pm 0.70 \\ \pm 0.77 \\ \pm 0.86 \\ \pm 0.71 \\ \pm 0.68$	$\begin{array}{c} 0.96 \\ 1.10 \\ 1.16 \\ 1.02 \\ 0.96 \end{array}$	0.98 0.84 1.22 0.82 0.99	3.84 2.69 4.41 3.11 2.42	+ 98 + 2 + 80 - 11 + 108
36 37 38 39 40	Versailles base net El Paso base net Seguin base net to Allee base EL PASO BASE NET TO CHEYENNE BASE Kent Island base net to Atlanta base net, 1	$\begin{array}{c} \pm 0.40 \\ \pm 0.40 \\ \pm 0.41 \\ \pm 0.41 \\ \pm 0.41 \\ \pm 0.41 \end{array}$	$\pm 0.64 \\ \pm 0.68 \\ \pm 0.78 \\ \pm 0.81 \\ \pm 0.83$	$\begin{array}{c} 0.90 \\ 0.94 \\ 1.04 \\ 1.14 \\ 1.14 \end{array}$	$\begin{array}{c} 0.95 \\ 0.93 \\ 1.09 \\ 1.33 \\ 1.48 \end{array}$	2.71 2.60 3.25 2.87 3.60	-144 + 141
41 42 43 44 45	Yolo base net to Los Angeles base net Kent Island base net Page base net to Brown Valley base. Salina base net Los Angeles base net	$\begin{array}{c} \pm 0.41 \\ \pm 0.41 \\ \pm 0.42 \\ \pm 0.44 \\ \pm 0.44 \end{array}$	$\begin{array}{c} \pm 0. 91 \\ \pm 0. 91 \\ \pm 0. 77 \\ \pm 0. 75 \\ \pm 0. 91 \end{array}$	1.16 1.33 1.03 1.13 1.39	$1.34 \\ 0.75 \\ 1.44 \\ 1.11 \\ 1.22$	5.52 2.97 3.81 2.37 3.09	- 41 + 65
46 47 48 49 50	Lampasas base net to Seguin base Ohlo serles Allecheny series Epping base net Fire Island base net to Kent Island base net	± 0.45 ± 0.45 ± 0.45 ± 0.47 ± 0.47	$\pm 0.82 \\ \pm 0.85 \\ \pm 0.98 \\ \pm 0.63 \\ \pm 0.86$	$1.13 \\ 1.14 \\ 1.37 \\ 0.90 \\ 1.29$	$1.96 \\ 1.32 \\ 1.37 \\ 1.25 \\ 2.02$	3.31 5.08 4.03 2.63 3.35	$ \begin{array}{r} - & 7 \\ - & 24 \\ + & 11 \\ . + & 46 \end{array} $
51 52 53 54 55	St. Albans base net Kansas-Colorado serles Los Angeles base net to Soledad-Cuyamaea Epping base net to Canadian boundary Daupbin Island westward, 1.	± 0.47 ± 0.50 ± 0.50 ± 0.51 ± 0.53	$\begin{array}{c} \pm 1.04 \\ \pm 0.75 \\ \pm 0.82 \\ \pm 0.71 \\ \pm 0.78 \end{array}$	$1.38 \\ 1.00 \\ 1.16 \\ 1.15 \\ 1.12$	$1.53 \\ 1.43 \\ 1.15 \\ 1.12 \\ 1.31$	4.94 3.92 2.53 2.09 2.80	- 92
56 57 58 59 60	Callfornia-Washington are. Kent Island base net to Atlanta base net, 111. Atlanta base net. Missouri serles. Atlanta base net to Dauphin Island base net, 11.	± 0.53 ± 0.62 ± 0.65 ± 0.66 ± 0.67	$\pm 0.97 \\ \pm 0.78 \\ \pm 1.00 \\ \pm 0.81 \\ \pm 0.78$	$1.22 \\ 1.66 \\ 1.19 \\ 1.09 \\ 1.03$	$\begin{array}{c} 2.03 \\ 1.72 \\ 1.31 \\ 1.89 \\ 1.84 \end{array}$	6.35 4.03 4.35 4.64 2.88	+ 179 + 86 + 2
61 62 63 61 65 66	Coast Range series. Eastern Shore series. Kent Island base net to Atlanta base net, 11. Dauphin Island base net to New Orleans. Atlanta base net to Dauphin Island base net, 1. American Bottom base net.	$\begin{array}{c} \pm 0.67 \\ \pm 0.72 \\ \pm 0.72 \\ \pm 0.78 \\ \pm 0.78 \\ \pm 0.82 \end{array}$	$\begin{array}{c} \pm 1.37 \\ \pm 1.22 \\ \pm 1.31 \\ \pm 1.20 \\ \pm 0.97 \\ \pm 1.59 \end{array}$	$ \begin{array}{r} 1.80 \\ 1.75 \\ 1.80 \\ 1.50 \\ 1.35 \\ 2.22 \\ \end{array} $	2.73 1.85 2.05 2.63 2.19 1.80	$\begin{array}{c} 6.49 \\ 5.24 \\ 4.64 \\ 5.40 \\ 3.44 \\ 6.36 \end{array}$	+ 24 + 2

Sections of triangulation in order of accuracy-Continued.

¹ The fixed length Mount Helena-Snow Mountain West of the thirty-ninth parallel triangulation, Willamette base, and Tacoma base, are connected by this arc with discrepancies of +79 and -19, respectively.

Of the 66 sections of triangulation tabulated, the three sections of the one hundred and fourth meridian arc rank as numbers 29, 35, and 39. The mean value of d, 0''.38, for the whole arc comes between those for the sections numbered 34 and 35. The average accuracy as shown by this value of d is only slightly lower than the average accuracy for all the 66 sections done in the United States.

THE NORTH AMERICAN DATUM.

Early in the year 1913 the Superintendent of the United States Coast and Geodetic Survey was notified by the director of the Comisóin Geodésica Mexicana and by the chief astronomer of the Dominion of Canada Astronomical Observatory that the so-called United States Standard Datum had been adopted as the datum for the triangulation of those organizations. They also reported that the Clarke Spheroid of 1866, now used in the United States, would be used by them.

Owing to the international character of the datum now adopted by the three countries, the Superintendent of the United States Coast and Geodetic Survey has changed its designation from the "United States Standard Datum" to the "North American Datum."

EXPLANATION OF POSITIONS, LENGTHS, AND AZIMUTHS, AND OF THE NORTH AMERICAN DATUM.

The lengths, as already fully explained in connection with the adjustments, all depend upon the Salina, El Paso, Salt Lake, Cheyenne, Provo, and Ambrose bases. The lengths as given are all reduced to sea level. If the actual length of a line simply reduced to the horizontal is desired,

it may be obtained with all the accuracy ordinarily needed by adding to the sea level length as given a correction = (length of line as given) $\frac{\text{mcan elevation of the two ends of the line in meters}}{6.370,000}$.

The maximum value of this correction does not exceed $\frac{1}{1450}$ of the length for any portion of the triangulation here published. The maximum error made in the use of the above approximate formula for the correction does not exceed $\frac{1}{450000}$ of the length for any portion of this triangulation.

The positions—that is, the latitudes, longitudes, and azimuths—need special explanation.

All of the positions and azimuths have been computed upon the Clarke spheroid of 1866, as expressed in meters, which has been in use in the Coast and Geodetic Survey for many years.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience, the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The primary triangulation in the United States was commenced at various points and existed at first as a number of detached portions in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California, in the latitude of San Francisco, in the vicinity of Santa Barbara Channel, and in the vicinity of San Diego. With the lapse of time these separate pieces expanded until they touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in 1899, joined all of the detached portions mentioned and made them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this was a very heavy piece of work, and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the Superintendent adopted what was known from that time until 1913 as the United States Standard Datum, but is now known as the North American Datum (see p. 80), and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had been used for geographic purposes in New England and along the Atlantic coast to North Carolina, nor those in the Statcs of New York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in The Transcontinental Triangulation and in The Eastern Oblique Arc of the United States, publications which dcal primarily with the purely scientific problem of the determination of the figure of the earth and which were prepared for publication before the adoption of the new_datum.

As the adoption of such a standard datum was a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of geographic positions (latitudes and longitudes), of accurately determined elevations, and of distances and azimuths, to officers connected with the Coast and Geodetic Survey and to other organizations; third, the determination of the figure of the earth. For the first and second objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the area covered, nor that the adopted geodetic datum should be

48310°-14---6

absolutely the best that can be derived from the astronomic observations at hand. It is simply desirable that the reference spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now or may become available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one spheroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function, it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they be rigidly adhered to, without change, for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are therefore concerned in this problem. However, in marked contrast to the statements made in preceding paragraphs, it is desirable in dealing with this problem that, with each new important accession of data, a new spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard (now the North American) Datum was adopted with reference to positions furnished for geographic purposes, but has no reference to the problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in the publications of the Survey, including its charts; and, third, it was desirable, other things being equal, to adopt that datum which allowed the maximum number of positions already in the office registers to remain unchanged, and therefore necessitated a minimum amount of new computation. These considerations led to the adoption, as the standard, of that datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far south as North Carolina.

An examination of the station errors available in 1903 on the United States Standard Datum at 246 latitude stations, 76 longitude stations, and 152 azimuth stations, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely the ideal with which the algebraic sum of the station errors of each class would be zero.¹

The North American Datum, upon which the positions and azimuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch as follows:

> • *i ''* $\phi = 39$ 13 26.686 $\lambda = 98$ 32 30.506 α to Waldo = 75 28 14.52

Points are then said to be upon the North American Datum when they are connected . with the station Mcades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866, as expressed in mcters, starting from the above data.

¹ This is further borne out in the reduction of 765 astronomic stations in connection with the "Supplementary investigation in 1909 of the figure of the earth and isostasy," by J. F. Hayford, published by the Coast and Geodetic Survey.

The principal lists of geographic positions published on the adopted datum throughout the whole United States are contained in the following publications of the Coast and Geodetic Survey and of other organizations:

Appendix 8 of the Report for 1885, positions in Massachusetts and Rhode Island.

Appendix 8 of the Report for 1888, positions in Connecticut.

Appendix 8 of the Report for 1893, positions in Peunsylvania, Delaware, and Maryland.

Appendix 10 of the Report for 1894, positions in Massachusetts.

Appendix 6 of the Report for 1901, positions in Kansas and Nebraska.

Appendix 3 of the Report for 1902, positions in Kansas, Missouri, Nebraska, and Colorado.

Appendix 4 of the Report for 1903, positions in Kansas, Oklahoma, and Texas.

Appendix 9 of the Report for 1904, positions in California.

Appendix 5 of the Report for 1905, positions in Texas.

Appendix 3 of the Report for 1907, positions in California.

Appendix 5 of the Report for 1910, positions in California.

Appendix 4 of the Report for 1911, positions in Nebraska, Minnesota, North Dakota, and South Dakota.

Appendix 5 of the Report for 1911, positions in Texas.

Appendix 6 of the Report for 1911, positions in Florida.

Special Publication No. 11, positions in Texas, New Mexico, Arizona, and California.

Special Publication No. 13, positions in California, Oregon, and Washington.

Special Publication No. 16, positions in Florida.

Special Publication No. 17, positions in Texas.

Special Publication No. 19, positions in Colorado, Utah, Nevada, Wyoming, Montana, South Dakota, and North Dakota.

Appendix EEE, pages 2905-3031, Annual Report of the Chief of Engineers, 1902, positions of points on and near the Great Lakes.

Publications of the Massachusetts Harbor and Land Commission.

Various bulletins of the United States Geological Survey.

EXPLANATION OF TABLES OF POSITIONS.

In the tables of positions, the latitude and longitude of each point are given on the North American datum (see p. 80), also the length and azimuth of each line observed over, whether in one or both ways. Along with the latitude and longitude of each point the lengths and azimuths are given of lines from that point to other points of the triangulation. No lengths or azimuths are repeated, and for a given line the length and azimuth will generally be found opposito the position of the last mentioned of the two stations involved.

For the convenience of the draftsman a column of "seconds in meters" is given, in which is placed the length (in meters) of each small arc of a moridian or parallel corresponding to the seconds of the given latitude or longitude. To facilitate further the use of the tables, a column is given of the logarithms of the lengths. It must be remembered that it is the logarithm which is derived first from the computation, the lengths given in this table being then derived from the corresponding logarithms.

The rule followed in recent publications of this office has been to give latitudes and longitudes to thousandths of seconds for all points the positions of which are fixed by fully adjusted triangulation. Points, the positions of which are given to hundredths of seconds only, are marked by footnotes as being without check (observed from only two stations) or checked by verticals only.

In the columns giving azimuths, distances, and logarithms of distances, the accuracy is indicated to a certain extent by the number of decimal places given, it being understood that in each case two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, while in a few cases some doubt may be cast on the third figure from the right.

These tables may be conveniently consulted by using as finders the 11 sketches and the index at the end of this publication. In the third column of the index will be found for each point a reference to the page on which its description is given, in the fourth column the page on which its olevation above sea level will be found, and in the fifth column the number of the sketch on which it appears.

The following conversion tables are inserted for the convenience of those who may wish to convert the distances or elevations given in this publication from meters to feet or from feet to meters. Lengths-Feet to meters (from 1 to 1,000 units). [Reduction factor: 1 foot = 0.3048006096 meter.]

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

950 289,56058 2 290,17018 2 290,17018 3 290,171978 4 290,171978 5 291,09458 6 291,38038 7 291,69418 7 291,69418 7 291,99998 9 292,30378	900 292.00859 2 292.1339 2 293.1339 3 293.5299 4 293.82779 6 294.43739 7 294.43739 7 294.43739 8 295.04699 9 295.53779	970 295,65659 1 295,96130 1 295,96130 2 296,25619 3 296,5709 4 296,5709 5 297,18069 6 297,18069 7 297,19050 8 298,00500 9 298,39960	DSO 298. 70460 299. 70460 299. 70460 2 299. 71420 3 299. 61300 4 299. 92380 6 300. 22860 6 300. 23860 7 300. 83820 7 301. 43200 8 301. 14300 9 301. 44780	990 301.75260 2 302.36220 3 302.9720 3 302.97181 4 302.97181 5 303.27661 5 303.27661 5 303.27661 7 303.86621 7 303.86621 8 304.19101 8 304.49561	
259,08052 259,38532 259,38012 3 259,39492 3 259,99492 3 259,99492 3 250,0012 2 260,00132 7 201,21412 7 201,21412 8 201,51892 7 201,31412 8 201,51892 7 201,32372 9 261,82372	262.12852 1262.43332 2262.43332 2262.43332 2263.4313 2263.4313 2263.4713 4 263.4773 5 263.6553 6 263.9573 6 264.5663 8 264.5663 9 264.8713	265, 17653 1 265, 17653 2 2255, 78413 2 2256, 78413 2 2256, 78413 2 256, 78413 2 266, 39673 3 266, 09093 4 266, 39673 5 266, 70053 6 267, 01033 8 267, 01034 8 267, 01974 9 267, 01974	268.22454 1 268.52454 2286.83414 288.52344 2286.83414 289.4314 229.61.84414 289.44574 4 260.44574 6 270.65334 8 270.65334 8 270.65394 8 270.96774	271.27254 1 271.57734 2 271.57734 2 271.57734 2 271.57734 2 271.85914 3 272.18694 4 272.49174 5 272.49174 6 272.49174 6 272.49176 7 273.4015 8 273.10135 8 274.01575 9 274.01575	
88	800	810	88	890	
228, 60046 228, 90526 229, 21006 229, 21006 229, 31966 229, 31966 230, 3466 230, 34366 231, 34366	231.64846 231.95225806 232.25806 232.25806 232.25806 233.65807 232.86767 233.17247 233.47727 233.47727 233.47727 233.478207 233.47877 233.478777 233.4787777 233.4787777777777777777777777777777777777	234,60647 235,00127 235,00127 235,91067 235,91067 236,91067 236,91067 236,5257 236,5257 236,5257 236,52577 236,52577 237,43967	237.74448 238.04928 238.04928 238.55408 238.65888 238.65888 239.65888 239.57328 239.57328 239.57328 239.57328 239.57328 239.57328 239.57328 239.57328 239.57328 239.57328 239.57728 239.57728 239.57728 239.57728 239.57728 239.57728 239.57728 239.57728 239.57768 239.577768 239.577768 239.577768 239.5777777777777777777777777777777777777	240.72248 241.09728 241.40208 241.40208 242.0168 242.0168 242.0168 242.31648 242.3269 242.2369 243.23089 243.5369	1 5 5 5
10 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25400 mete 27940 mete 30480 mete
50 198.12040 2 198.73000 3 198.73000 5 199.03460 5 199.64440 6 199.94920 7 200.55800 9 200.55580	BO 201.16840 1 201.47320 2 201.77320 3 202.08280 4 202.38760 6 202.38760 6 202.38760 7 202.38760 8 203.38760 9 203.302011	70 204. 21641 2 204. 22641 2 204. 22641 3 204. 23611 4 206. 43561 6 206. 43561 7 206. 43561 7 206. 55061 7 206. 55061 8 206. 55061 8 206. 55061	BO 207.56441 2 207.56922 3 207.87402 4 208.47842 4 208.48362 6 208.48362 6 208.78842 6 209.09322 8 209.70282 9 210.00762	90 210.31242 1 210.61722 2 210.2023 3 211.22692 4 211.53162 6 211.83642 6 212.41122 7 212.4102 8 212.7663 9 213.05563	10 inches = . 11 inches = . 12 inches = .
ē	õ	0	Ö	8	meter. meter.
167, 64034 167, 94514 168, 54494 168, 55474 168, 155875 168, 16436 169, 16436 169, 46914 160, 77394 170, 38355	170, 68834 170, 99314 171, 99754 171, 90754 171, 90754 172, 21234 172, 21234 172, 82195 173, 43164	173 73638 174. 041.18 174. 55078 174. 55078 174. 95568 175. 26038 175. 26038 175. 56518 176. 47958 176. 47958	176, 78432 177, 06910 177, 06910 177, 06970 177, 00356 178, 00356 178, 90363 178, 91796 179, 52756	179, 83236 180, 13711 180, 44196 180, 74676 181, 05156 181, 05156 181, 35636 181, 95596 181, 95596 182, 57557	= .17780 = .20320 = .22860
01 01 01 01 00 4 00 10 00 0	10 0 0 − 0 8 8 4 10 0 1 0 0	10 1- 0	80 80 0∟9844 №81-899	01 01 01 01 01 00 01 00 01 00 00 00 00 0	7 inches 8 inches 9 inches
137, 16027 137, 46507 137, 46508 138, 76998 138, 37948 138, 37948 138, 37948 138, 58428 139, 29038 139, 290388 139, 90348	$\begin{array}{c} 140,\ 20828\\ 140,\ 51308\\ 140,\ 51308\\ 141,\ 12268\\ 141,\ 12268\\ 141,\ 42748\\ 141,\ 73228\\ 142,\ 03708\\ 142,\ 03708\\ 142,\ 04669\\ 142,\ 64669\\ 142,\ 64669\\ 142,\ 64669\end{array}$	143. 25629 143. 55109 144. 17069 144. 47549 144. 47549 144. 68029 145. 08509 145. 089469 145. 099469	146. 30429 146. 60909 147. 21869 147. 21869 147. 22350 147. 52350 148. 13310 148. 13310 148. 13310 148. 13710 149. 04750	$\begin{array}{c} 149.\ 35230\\ 149.\ 65710\\ 149.\ 65710\\ 150.\ 57150\\ 150.\ 57750\\ 150.\ 57750\\ 150.\ 87630\\ 151.\ 18110\\ 151.\ 18200\\ 151.\ 79070\\ 152.\ 09550\\ 152.\ 09550\end{array}$	0160 meter. 2700 meter. 5240 meter.
4 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	4 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	41014 01024 007000 0001000	4 8 0-994 68589	490 10 22 20 20 20 20 20 20 20 20 20 20 20 20	ches = .1 ches = .1 ches = .1
106, 68021 106, 68021 106, 98501 107, 89482 107, 89942 108, 20422 108, 50902 108, 50902 108, 51392 108, 42342 100, 42342	109, 72822 110, 03302 110, 33782 110, 94742 111, 94742 111, 55702 111, 55702 111, 56182 112, 16662 112, 16662	$\begin{array}{c} 112,\ 77623\\ 113,\ 08103\\ 113,\ 08103\\ 113,\ 08563\\ 113,\ 99543\\ 114,\ 30023\\ 114,\ 50023\\ 114,\ 50023\\ 114,\ 50053\\ 115,\ 51943\\ 115,\ 51943\\ \end{array}$	115.82423 116.12903 116.12903 116.73363 117.01343 117.9584 117.95784 117.95784 118.56744	$\begin{array}{c} 118.\ 87224\\ 119.\ 17704\\ 119.\ 48184\\ 119.\ 48184\\ 120.\ 09144\\ 120.\ 09144\\ 120.\ 39624\\ 120.\ 39624\\ 121.\ 00584\\ 121.\ 01064\\ 121.\ 01544\end{array}$	eter. 5 in eter. 6 in
0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 0 1 2 8 4 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	8 9 9 1 2 2 2 2 2 3 2 3 2 3 2 3 2 3 3 2 3	.02540 m .05080 m .07620 m
0 76, 20015 1 76, 50495 3 77, 11455 4 77, 41935 5 77, 72416 6 78, 02356 6 78, 02356 9 78, 94336 9 78, 94336	0 79.24816 1 79.55296 2 99.165776 3 90.16256 4 80.46736 5 80.77216 6 81.07696 6 81.07696 8 81.07696 8 81.077696 9 81.99136	0 82. 29616 1 82. 60097 2 82. 90577 2 82. 90577 3 82.10577 4 83. 61537 6 83. 82017 6 84. 12497 7 84. 12497 8 84. 12497 8 84. 12497 8 84. 12497 8 84. 12497 8 84. 12497 9 85. 03937	0 85.3417 2 85.94897 2 85.95877 4 86.258377 4 86.25837 4 86.25837 4 86.25837 4 86.25837 5 86.86817 7 87.4777 8 81.17297 8 81.78258 8 81.78258 9 88.08738	0 88, 39218 1 88, 69698 2 89, 00078 3 89, 00078 4 89, 01138 5 89, 91618 6 90, 22098 8 90, 13538 9 91, 13538	1 inch = 2 inches = 3 inches =
50 20	00	576	88 8	S.	
46, 72009 46, 72909 46, 32489 46, 33269 46, 33299 46, 3329 47, 54890 47, 54890 47, 54890 47, 55390 48, 15850 48, 15850 48, 46330	48, 76510 49, 07290 49, 37770 49, 68260 49, 68260 49, 68260 49, 59590 50, 59590 51, 20550 51, 20550 51, 20550 51, 21130	 81.81610 82.12090 82.42570 52.42570 52.73051 53.03531 53.34011 53.34011 54.25451 54.25451 54.25451 	64. 86411 55. 16891 55. 16891 55. 47371 56. 98331 56. 98331 56. 69291 57. 39271 57. 39271 57. 39271 57. 60732	57, 91212 58, 821692 58, 82662 59, 13132 59, 13132 59, 74092 60, 94572 60, 94572 60, 94572 60, 65532 60, 65532	
10 10 0-102 4 00-00	₩ 0 0 1004 00500	Ц Счаза4 гостос Счаза4	1 8 0-10104 1001-000	H 0 0 ⊡ 03 03 44 10 10 10 00 00	
(0) 15, 2403 2 15, 64948 3 16, 15443 4 16, 45923 6 16, 74903 6 17, 05858 6 17, 05858 9 17, 38324 9 17, 38324	0 18.2804 118.69284 3 19.20244 4 19.20724 5 19.81204 5 20.11684 7 20.22164 8 20.72644 9 21.03124	0 21.33604 1 21.64084 231.64564 3.22.5604 8 222.56525 6 222.86005 6 222.86005 7 23.16448 7 23.17445 8 23.77445	(0 24, 38405 1 24, 68855 3 20, 289855 4 25, 60825 6 25, 90805 6 25, 90805 8 26, 81769 8 26, 81769 9 27, 12725 9 27, 12725	0 27, 43205 1 28, 13266 2 28, 14166 3 28, 34546 4 28, 65126 5 28, 95666 6 29, 95666 8 29, 87046 8 29, 87046 9 30, 17526 9 30, 17526	

.

Lengths-Meters to feet (from 1 to 1,000 units).

[Røduction factor: 1 meter = 3.280833333 feet.]

	Feet.	2, 962, 75000 2, 956, 06083 2, 959, 31167 2, 962, 87333 2, 965, 87333	2, 969. 16 117 2, 975. 43500 2, 975. 71583 2, 978. 99667 2, 982. 27760	2, 985, 55833 2, 988, 83917 2, 992, 12000 2, 995, 40083 2, 998, 68167	3,001.96250 3,005.24333 3,008.52417 3,011.80500 3,015.08583	3, 018, 36667 3, 021, 64760 3, 024, 92833 3, 028, 20917 3, 031, 49000	, 004, 77063 5, 008, 05167 5, 041, 33250 5, 041, 61333 5, 047, 80417	3, 051, 17500 3, 054, 45683 3, 057, 73667 3, 057, 73667 061, 01750 3, 064, 29833	3, 067, 57917 3, 070, 86020 5, 074, 14083 5, 077, 42167 3, 080, 70250	, 083, 083333 , 087, 26417 , 090, 54500 , 093, 82583 , 097, 10667	3, 100. 38750 3, 103. 66833 3, 106. 94917 3, 110. 23000 5, 113. 61083
	Meters.	900 4 3 2 1	602-00	910 1 2 2 2 8 4	600-100	050 010004	600-100	930	600-100	840 1 3 2 2 4	10 Q 1- 00 G
	Feet.	2, 624, 66667 2, 627, 94760 2, 631, 22833 2, 631, 22833 2, 634, 50917 2, 637, 79000	2, 641.07083 2, 644.35167 2, 647.63250 2, 650.91333 2, 654.19417	2, 657, 47500 2, 660, 75583 2, 664, 03667 2, 667, 31750 2, 670, 59833	2, 673, 87917 2, 677, 16000 2, 680, 44083 2, 687, 00250 2, 687, 00250	2, 690, 28333 2, 693, 56417 2, 696, 84500 2, 700, 12583 2, 703, 40867	2, 706, 68750 2, 709, 96833 2, 713, 24917 2, 719, 81083 2, 719, 81083	2, 723, 09167 2, 726, 37250 2, 729, 65333 2, 732, 93417 2, 736, 21500	2, 739, 49683 2, 742, 77667 2, 746, 05750 2, 749, 33833 2, 752, 61917	2, 755, 90000 2, 759, 18083 2, 762, 46167 2, 765, 74250 2, 769, 02333	2, 772, 30417 2, 775, 58500 2, 778, 86633 2, 782, 14667 2, 785, 42750
	Meters.	800	n9 @ ⊱- @ Ø	810 101014	10 00 1= 00 00	8 0 1 0 0 7 1 0 0 7 7	1065-000	830 830 4 83 83	00-100	840 322 4	ng eo t- co co
	Feet.	2, 296, 58333 2, 299, 56417 2, 303, 14500 2, 306, 42583 2, 309, 70667	2, 312, 98750 2, 316, 26833 2, 319, 54917 2, 372, 8300 2, 372, 8300 2, 326, 11083	2, 329, 39167 2, 332, 39167 2, 335, 957250 2, 335, 95333 2, 339, 23417 2, 342, 51500	2, 345, 79683 2, 349, 07667 2, 352, 35750 2, 355, 63833 2, 358, 91917 2, 358, 91917	$\begin{array}{c} 2,362,20000\\ 2,365,48093\\ 2,368,76167\\ 2,372,04250\\ 2,375,3233\\ 2,375,32333\\ \end{array}$	2, 378, 60417 2, 381, 88500 2, 385, 16583 2, 385, 16583 2, 391, 72750 2, 391, 72750	2, 395, 00833 2, 398, 28917 2, 401, 57000 2, 404, 85083 2, 408, 13167 2, 408, 13167	$\begin{array}{c} 2,411.41250\\ 2,414.69333\\ 2,417.97417\\ 2,421.25500\\ 2,424.53583\\ 2,424.53583\end{array}$	2, 427, 81667 2, 431, 09760 2, 434, 37833 2, 434, 37833 2, 440, 94000	2, 444. 22083 2, 447. 50167 2, 450. 78250 2, 454. 06333 2, 457. 34417
	Meters.	700 1 322 4	0040	710 1 22 28 4	no ⇔1 ⇔ oc	780 1087 1088	±000 +100 Cl	730 4 88 2 1	KO 60 −1 60 64	740 1 32 33	KO 00 −1 00 01
	Feet.	1, 968, 50000 1, 971, 78083 1, 975, 06167 1, 978, 34250 1, 981, 62333	$\begin{matrix} 1, 984. 90417\\ 1, 988. 18500\\ 1, 991. 46583\\ 1, 994. 74667\\ 1, 998. 02760\end{matrix}$	2,001.30833 2,004.58917 2,007.87000 2,011.15083 2,014.43167	2, 017. 71250 2, 020. 99333 2, 024. 27417 2, 024. 255500 2, 030. 83583	2, 034. 11667 2, 037. 39750 2, 040. 67833 2, 043. 95917 2, 047. 24000	2, 050, 52083 2, 057, 82250 2, 060, 36333 2, 063, 64417 2, 063, 64417	2, 066, 92500 2, 070, 20583 2, 073, 48667 2, 076, 76750 2, 080, 04833	2,083,32917 2,086,61000 2,089,89083 2,093,17167 2,096,45250	2, 099. 73333 2, 103. 01417 2, 106. 29500 2, 109. 57683 2, 112. 85667	2, 116, 13750 2, 119, 41833 2, 122, 69917 2, 125, 98000 2, 129, 26083
	Meters.	000 1 01 07 44	no co t~ co ca	610 1 2 2 2 4	n0 este es es	620 1 22 22 4	no⇔t⊷∞©	630 4 32 4 32	000-100	640 1 1 2 8 8 8 8 8	0000000
-	Feet.	1, 640, 41667 1, 643, 69760 1, 643, 97833 1, 650, 25917 1, 653, 54000	1, 656, 82083 1, 660, 10167 1, 663, 38250 1, 666, 66333 1, 669, 94417	$\begin{array}{c} 1, 673, 22500\\ 1, 676, 50583\\ 1, 679, 78667\\ 1, 683, 06760\\ 1, 688, 34833\\ 1, 686, 34833\\ \end{array}$	$\begin{matrix} 1, 689, 62917\\ 1, 692, 91000\\ 1, 696, 19083\\ 1, 699, 47167\\ 1, 702, 75250\\ 1, 702, 75250\\ \end{matrix}$	$\begin{array}{c} 1,706.03333\\ 1,709.31417\\ 1,712.59500\\ 1,715.87583\\ 1,719.15667\\ 1,719.15667\\ \end{array}$	$\begin{matrix} 1, 722. 43750 \\ 1, 725. 71833 \\ 1, 728. 99917 \\ 1, 732. 28000 \\ 1, 735. 56083 \\ 1, 735. 56083 \end{matrix}$	$\begin{matrix} 1,738.84167\\ 1,742.12250\\ 1,745.40333\\ 1,745.40333\\ 1,748.68417\\ 1,748.68417\\ 1,751.96500 \end{matrix}$	$\begin{matrix} 1,755.24583.\\ 1,758.52667\\ 1,761.80750\\ 1,765.08833\\ 1,768.36917\\ 1,768.36917\end{matrix}$	1, 771. 65000 1, 774. 93083 1, 778. 23167 1, 781. 49250 1, 784. 77333	1, 738, 05417 1, 791, 33500 1, 794, 61683 1, 797, 89667 1, 801, 17760
	Meters.	500 101014	£0 60 −4 60 60	510 1288 4	±000 ≠100 00	520 102 402 4	66700	530 22 4	∞∞ ~1 & Ci	540 32 33 4	⊷ ¢ t~ 60 Ø
	Feet.	1, 312, 33333 1, 315, 61417 1, 318, 89500 1, 322, 17583 1, 325, 45667	1, 328, 73750 1, 332, 01833 1, 332, 29917 1, 338, 58000 1, 341, 86083	$\begin{matrix} 1,345.14167\\ 1,348.42250\\ 1,351.70333\\ 1,351.70333\\ 1,354.98417\\ 1,358.26500\end{matrix}$	$\begin{array}{c} 1, 361. 54583\\ 1, 364. 82667\\ 1, 368. 10750\\ 1, 371. 38833\\ 1, 374. 66917\\ 1, 374. 66917\end{array}$	$\begin{array}{c} 1,377.95000\\ 1,381.23083\\ 1,384.51167\\ 1,384.51167\\ 1,387.79250\\ 1,391.07333\end{array}$	$\begin{array}{c} 1, 394. 35417\\ 1, 397. 63500\\ 1, 400. 91583\\ 1, 404. 19667\\ 1, 407. 47750\\ \end{array}$	$\begin{matrix} 1,410,75833\\ 1,414,03917\\ 1,417,32000\\ 1,420,60083\\ 1,423,88167\\ 1,423,88167\end{matrix}$	$\begin{matrix} 1, 427. 16250 \\ 1, 430. 44333 \\ 1, 433. 72417 \\ 1, 437. 00500 \\ 1, 440. 28583 \\ 1, 440. 28583 \end{matrix}$	$\begin{matrix} 1, 443.56667\\ 1, 446.84760\\ 1, 450.12833\\ 1, 453.40917\\ 1, 456.69000\end{matrix}$	1,459.97083 1,403.25167 1,466.53250 1,469.81333 1,459.81333
	Meters.	$400\\1\\3\\2\\4\\4\\4\\4\\2\\3\\2\\4\\4\\4\\4\\3\\2\\4\\4\\4\\4\\4$	KO CO ≪1 CO CI	410 22. 4	667-00	4 0 1 0 8 0 4	₩ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	430 430 430 430 430	20 00 00 OJ	440	kG ¢2 k− 00 G
	Feet.	984. 25000 987. 53083 990. 81167 994. 09250 997. 37333	1,000.65417 1,003.93500 1,007.21583 1,010.49667 1,013.77750	$\begin{array}{c} 1,017,05833\\ 1,020,33917\\ 1,023,62000\\ 1,023,62000\\ 1,026,90083\\ 1,030,18167\\ 1,030,18167 \end{array}$	$\begin{array}{c} 1,033,46250\\ 1,036,74333\\ 1,040,02417\\ 1,043,30500\\ 1,046,58583\\ 1,046,58583\end{array}$	$\begin{array}{c} 1,049,86667\\ 1,053,14750\\ 1,056,42833\\ 1,059,70917\\ 1,062,99000\\ 1,062,99000\\ \end{array}$	$\begin{array}{c} 1,066.\ 27083\\ 1,069.\ 65167\\ 1,072.\ 83250\\ 1,076.\ 11333\\ 1,079.\ 39417\\ 1,079.\ 39417 \end{array}$	$\begin{array}{c} 1,082,67500\\ 1,085,95583\\ 1,085,95667\\ 1,092,51750\\ 1,092,51750\\ 1,095,79833\end{array}$	$\begin{matrix} 1,099.07917\\ 1,102.36000\\ 1,105.64083\\ 1,108.92167\\ 1,112.20250\\ 1,112.20250 \end{matrix}$	$\begin{matrix} 1,115.48333\\ 1,118.76417\\ 1,122.04500\\ 1,125.32583\\ 1,128.6067\\ 1,128.6067\end{matrix}$	1, 131, 88750 1, 135, 16833 1, 138, 44917 1, 141, 73000 1, 145, 01083
	Meters.	. 300 1 8 8 8 1 1 1 1 1 1	io \$0 ≈1 \$0 0.	310 1 2 2 2 4 4	KG 69 t⊷ 60 Gi	83 10 10 10 10 10 10 10 10 10	\$\$\$\$	8 0 1 2 2 3 0 4	n0¢0t⊷ 00 CD	340 22 33 4	10 00 t= 00 00
	Feet.	656, 16667 659, 44750 662, 72833 666, 00917 669, 29000	672.57083 675.85167 679.13250 682.41333 685.69417	638, 97500 692, 25583 696, 53667 698, 81760 702, 09833	705.37917 708.66000 711.94088 715.22167 718.60250	721. 78333 725. 06417 728. 34500 731. 62583 734. 90667	738. 18750 741. 46833 744. 74917 748. 03000 751. 31083	754. 59167 757. 87250 761. 15333 764. 43417 767. 71500	770, 99583 774, 27667 777, 55750 780, 83833 784, 11917	787,40000 790,68083 793,96167 797,24250 800,52333	803.80417 807.08500 810.36583 813.64667 816.92750
	Meters.	800 1084	00400	01 01 01 02 04	00-100	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		530 530 530 530 530 530 530 530 530 530	0,00,000	240 1 2 2 2 4 0 2 2 4	000000
	Feet.	328, 08333 331, 36417 334, 64500 337, 92583 341, 20667	344, 48750 347, 76833 351, 04917 354, 33000 357, 61083	360, 89167 364, 17250 367, 45333 370, 73417 374, 01500	377. 29583 390. 57667 383. 85750 387. 13833 390. 41917	393, 70000 396, 98083 400, 26167 403, 54250 404, 82333	410.10417 413.38500 416.66583 419.94667 423.22750	426, 50833 429, 78917 433, 07000 436, 35083 439, 63167	442. 91250 446. 19333 449. 47417 456. 03583	469.31667 462.59750 465.87833 469.15917 472.44000	475. 72083 479. 00167 482. 28250 485. 56333 488. 84417
	Meters.	100 2 3 8 4	00400	110 1 22 232 44	662-00	120 120 1 22 2 4	¢ ∞ -4 © ⇔	130 130 22 24	iQ @ ⊷3 @ Qi	140 2 3 3 4	000-100
	Feet.	3, 28083 6, 56167 9, 84250 13, 12333	16, 40417 19, 68500 22, 96583 26, 24667 29, 52750 29, 52750	32. 80833 36. 08917 39. 37000 42. 65083 45. 93167	49. 21250 52. 49333 56. 77417 59. 05500 62. 33583	65. 61667 68. 89750 72. 17833 75. 45917 78. 74000	82. 02083 85. 30167 88. 58250 91. 86333 95. 14417	98, 42500 101, 70583 104, 98667 108, 26750 111, 54833	114.82917 118.11000 121.39083 124.67167 127.95250	131.23333 134.51417 137.79500 141.07583 144.35667	147.63750 150.91833 154.19917 157.48000 160.76083
	Meters.	0-10184	10 00 −1 00 00	0-00*	∞∞ ≠ 00	0 1 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00 01 03 00 4	® ⊗ ≁3 © Qi	40 1 4 8 8 4	no co t= co ca
1											

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

9.50 3, 116, 79167 1 3, 120, 07250 2 3, 120, 35333 3 3, 126, 63417 4 3, 129, 91600	 5 3, 133, 19683 6 3, 136, 47667 7 3, 136, 75760 8 3, 143, 03533 9 3, 146, 31917 	960 3, 149, 60000 1 3, 152, 89083 2 3, 156, 16167 3 3, 156, 14250 4 3, 162, 72333	 5 3, 166, 00417 6 3, 169, 28500 7 3, 172, 56883 8 3, 175, 84667 9 3, 179, 12750 	970 3, 182, 40833 1 3, 185, 68917 2 3, 188, 97000 3 3, 192, 25083 4 3, 195, 53167	 5 3, 198, 81250 6 3, 202, 09333 7 3, 203, 37417 8 3, 208, 65500 9 3, 211, 93583 	980 3, 215, 21667 1 3, 218, 49750 2 3, 221, 77833 3 3, 225, 05917 4 3, 228, 34000	 5 3, 231, 62083 6 3, 234, 90167 7 3, 238, 18250 8 3, 241, 44333 9 3, 244, 74417 	 990 3, 248. 02500 1 3, 251. 30583 2 3, 254. 58667 3 3, 257. 86750 4 3, 261. 14833 	 5, 264, 42917 6, 3, 264, 42917 6, 3, 267, 71000 7, 3, 270, 99083 8, 3, 274, 27167 9, 8, 277, 55250
850 2, 788. 70833 1 2, 791, 98917 2 2, 795. 27000 3 2, 798. 65083 4 2, 801, 83167	 2, 805, 11250 2, 808, 39333 2, 811, 67417 2, 811, 67417 8, 2314, 95500 2, 818, 2353 	860 2, 821,51667 1 2, 824, 19750 2 2, 828,07833 3 2, 831, 35917 4 2, 834, 64000	 2, 837, 92083 6, 2, 841, 20167 7, 2, 844, 4200 8, 847, 76333 9, 2, 851, 04417 	870 2, 854, 32500 1 2, 857, 06583 2 2, 860, 88667 3 2, 864, 10750 4 2, 867, 44833	 2, 870, 72917 6, 2, 874, 01000 7, 2, 877, 29083 8, 800, 57167 9, 2, 883, 85250 	880 2,887,13333 1 2,890,41417 2 2,893,69500 3 2,896,97583 4 2,900,25667	 2. 903. 53750 2. 903. 53750 2. 906. 81833 7. 2, 910. 69917 8. 2, 913. 38000 9. 2, 916. 66083 	890 2, 919, 94167 1 2, 923, 22250 2 2, 926, 50333 3 2, 929, 50333 4 2, 933, 06500	 2, 936, 34583 2, 939, 62667 2, 942, 90760 2, 949, 46917 9, 949, 46917
750 2, 460, 62500 1 2, 463, 90583 2 2, 467, 18667 3 2, 473, 74833 4 2, 473, 74833	 5 2, 477. (v2017 6 2, 480. 31000 7 2, 483. 60063 8 2, 486. 87167 9 2, 490, 15250 	760 2, 493. 43333 1 2, 496. 71417 2 2, 499. 96500 3 2, 503. 27583 4 2, 506. 56667	 5 2, 509. 83750 6 2, 513. 11833 7 2, 516. 58917 8 2, 519. 68903 9 2, 522. 96083 	770 2, 526, 24167 1 2, 529, 62250 2 2, 532, 80333 3 2, 530, 08417 4 2, 539, 38600	 2. 542. 64083 2. 545. 92667 7. 2, 649. 20760 8. 2, 555. 48833 9. 2, 555. 76917 	780 2, 559, 05000 1 2, 565, 33083 2 2, 565, 61167 3 2, 568, 89250 4 2, 572, 17333	 2, 575, 46417 2, 578, 73500 2, 582, 01583 2, 588, 57750 2, 588, 57750 	790 2, 691, 85833 1 2, 595, 13917 2 2, 598, 42000 3 2, 601, 70083 4 2, 604, 98167	 2, 608, 26250 2, 611, 64333 2, 611, 64333 2, 611, 82417 2, 611, 82417 2, 621, 38583 2, 621, 38583
650 2, 132. 64167 1 2, 133. 82250 2 2, 133. 10333 3 2, 142. 38417 4 2, 145. 36500	 2, 148. 94583 2, 152. 22667 2, 152. 50760 2, 155. 50760 8, 2, 155. 678833 9, 2, 162, 04917 9, 2, 162, 04917 	GGO 2, 165, 35000 1 2, 168, 63083 2 2, 171, 91167 3 2, 175, 19250 4 2, 178, 47333	 2, 181. 75417 2, 185. 03500 2, 188. 31663 2, 194. 87760 2, 194. 87760 	GTO 2, 198, 16833 1 2, 201, 43917 2 2, 204, 72000 3 2, 208, 00083 4 2, 211, 28167	 5 2, 214. 56250 6 2, 217. 84333 7 2, 221. 12417 8 2, 224. 40500 9 2, 227. 68583 	GSO 2, 230, 96667 1 2, 234, 24750 2 2, 237, 62833 3 2, 240, 80917 4 2, 244, 09000	 2, 247, 37083 2, 250, 65167 2, 250, 65167 7, 2, 255, 33250 8, 2, 257, 21333 9, 2, 260, 49417 	G90 2, 263. 77500 1 2, 261. 05583 2 2, 270. 33667 3 2, 273. 61750 4 2, 276. 89333	 2, 280, 17917 2, 283, 46000 2, 286, 74088 2, 290, 02167 2, 293, 30250
550 1,604,45833 1 1,807.73917 2 1,811.02000 3 1,814.90083 4 1,817.58167	 1,820,86250 1,824,14333 1,827,42417 1,837,10500 1,833,98583 1,833,98583 	5G0 1, 837, 26667 1 1, 840, 54760 2 1, 843, 82833 3 1, 847, 10917 4 1, 850, 39000	5 1, 853, 67083 6 1, 866, 95167 7 1, 860, 23250 8 1, 863, 61333 9 1, 866, 79417	570 1, 870, 07500 1 1, 873, 35583 2 1, 876, 63667 3 1, 879, 91750 4 1, 883, 19833	5 1,886.47917 6 1,889.76000 7 1,813.04083 8 1,896.32167 9 1,899.60250	580 1, 902. 88333 1 1, 906. 16417 2 1, 909. 44500 3 1, 912. 72583 4 1, 916. 00667	 5 1,919.28760 6 1,922.56833 7 1,925.84917 8 1,929.13000 9 1,922.41083 	590 1, 935, 69167 1 1, 938, 97250 2 1, 942, 25333 3 1, 945, 53417 4 1, 948, 81600	5 1,952.09583 6 1,955.3767 7 1,958.65750 8 1,961.93533 9 1,965.21917
450 1,476.37600 1 1,479.65583 2 1,482.33667 3 1,486.21750 4 1,489.49833	5 1,492,77917 6 1,496,06000 7 1,499,34988 8 1,502,62167 9 1,502,60250	400 1,509.18333 1 1,612.46417 2 1,515.74600 3 1,519.02583 4 1,522.30667	5 1, 525, 58750 6 1, 628, 86833 7 1, 532, 14917 8 1, 535, 4300 9 1, 533, 71083	470 1, 541, 99167 1 1, 545, 27250 2 1, 548, 55333 3 1, 551, 83417 4 1, 555, 11500	5 1,558.39583 6 1,561.6767 7 1,664.95750 8 1,568.23833 9 1,571.51917	480 1, 674, 80000 1, 578, 08083 2, 1, 581, 36167 3, 1, 584, 64250 4, 1, 587, 92333	6 1, 591, 20417 6 1, 594, 45500 7 1, 504, 45500 8 1, 601, 0467 9 1, 604, 32750	4.90 1,607.60833 1 1,610.86917 2 1,614.17000 3 1,617.45083. 4 1,620.73167	5 1, 624. 01250 6 1, 627. 29333 7 1, 630. 57417 8 1, 633. 85500 9 1, 637. 13583
350 1, 148. 29167 1 1, 161. 57250 2 1, 154. 85333 3 1, 158. 13417 4 1, 161. 41500	5 1,164,69583 6 1,167,97667 7 1,171,25569 8 1,174,253833 9 1,177,81917	360 1, 181, 10000 1 1, 184, 38083 2 1, 187, 66167 3 1, 190, 94260 4 1, 194, 22333	 1, 197, 50417 1, 200, 78000 1, 201, 00583 1, 201, 3467 1, 201, 62750 1, 210, 62750 	370 1, 213, 90833 1 1, 217, 18917 2 1, 220, 47000 3 1, 223, 75083 4 1, 227, 03167	 5 1, 230, 31250 6 1, 233, 59333 7 1, 238, 57417 8 1, 240, 15600 9 1, 243, 43583 	380 1, 246. 71667 1 1, 249. 99760 2 1, 253. 27833 3 1, 256. 55917 4 1, 259. 84000	5 1, 263, 12063 6 1, 266, 40167 7 1, 266, 40167 8 1, 272, 96333 9 1, 276, 24417	390 1, 279, 52500 1 1, 282, 80583 2 1, 266, 08667 3 1, 289, 36760 4 1, 292, 64833	5 1, 295, 92917 6 1, 299, 21000 7 1, 302, 49083 8 1, 305, 77167 9 1, 309, 06250
250 820, 20833 1 823, 48917 2 626, 77000 3 830, 05083 4 833, 33167	 5 836, 61250 6 639, 89333 6 639, 89333 7 848, 17417 8 846, 45600 9 849, 73583 	260 853,01667 1 856,29750 2 859,57833 3 862,85917 4 866,14000	 5 869, 42063 6 672, 70167 7 879, 96330 9 882, 54417 	270 885, 82500 1 889, 10583 2 892, 38667 3 895, 66760 4 898, 94833	 5 902.22917 6 905.51000 7 908.79083 8 912.07167 9 915.35250 	280 918.63333 1 921.91417 2 925.19500 3 928.47683 4 931.76667	 5 935, 03750 6 938, 31633 6 938, 31633 7 944, 5900 9 948, 16083 9 948, 16083 	290 951.44167 1 954.72250 2 958.00333 3 961.28417 4 964.56500	 5 967, 84583 6 971, 12667 7 974, 40750 8 977, 65833 9 980, 96917
150 492, 12500 1 495, 4053 2 498, 68667 3 561, 98750 4 505, 24333	 5 608, 52917 6 511, 81000 7 515, 070033 8 518, 37167 9 521, 65250 	160 624.93333 1 528.21417 2 531.49500 3 534.77583 4 638.05667	 641.33750 641.33750 641.61633 544.61633 554.46083 554.46083 	170 557.74167 "1 561.02250 2 564.30333 3 567.68417 4 570.66500	5 674.14583 6 577.4267 7 530.70750 7 583.98833 9 587.26917 9 587.26917	180 690.55000 1 593.83083 2 597.11167 3 600.39250 4 603.67333	 6 606.95417 6 610.23500 6 610.23500 7 613.01583 8 616.79667 9 620.07750 	190 623. 35833 1 626. 63917 2 629. 92000 3 633. 20063 4 636. 46167	 6 639. 76250 6 643. 04333 6 643. 04333 7 646. 32417 8 649. 6650 9 652. 85583
50 164.04167 1 167.32250 2 170.60333 3 173.884.7 4 177.16500	5 180, 44583 6 183, 72667 7 187, 00750 8 190, 28833 9 193, 56917	GO 196.85000 1 200.13083 2 203.41167 3 206.69250 4 209.97333	 5 213. 25417 6 216.63500 7 219.81563 8 223.09667 9 226.37750 	TO 229, 65833 1 232, 93917 2 236, 2300 2 236, 2200 3 239, 50083 4 242, 78167	 5 246,00250 6 249,34333 7 252,62417 8 255,90500 9 259,18583 	80 1 2 269, 02833 3 272, 30917 4 275, 59000	 5 278, 87083 6 262, 16167 7 285, 43250 8 288, 71333 9 291, 99417 	90 295.27500 1 298.65583 2 301.83767 3 301.11750 4 308.39833	 5 311.67917 6 314.96000 7 318.21083 8 321.62167 9 324.80250

GEOGRAPHIC POSITIONS.

•

One hundred and fourth meridian.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Principal points. Elbert, 1912	39 14 02.936 104 34 33.167	90.5 795.5	343 07 56.47 42 59 00.56	• , " 163 10 20.77 222 41 19.86	Divide Pikes Peak	Meters. 18933.89 59573.16	4.2772398 4.7750507
Hilltop, 1912	$\begin{cases} 39 \ 27 \ 19. \ 099 \\ 104 \ 38 \ 45. \ 755 \end{cases}$	589.0 1003.9	344 49 56.55 346 08 18.69 26 51 45.60	164 55 01.05 166 10 58.83 206 36 41.84	Divlde Elbert Pikes Peak	44205.34 25286.81 76407.25	4.6454747 4.4028941 4.8831345
Morrison 1 (U. S. G. S.), 1912	$\begin{cases} 39 \ 40 \ 09.669 \\ 105 \ 13 \ 09.104 \end{cases}$	298.2 217.0	295 34 22.98 310 54 07.84 350 35 37.49	115 56 17.17 131 18 39.47 170 42 17.31	Hilitop. Elbert. Pikes Peak.	54688.99 73489.54 93241.38	4.7378999 4.8662255 4.9696087
Dougias, 1912	{ 39 31 17.498 104 39 59.472	539.6 1420.5	346 31 08.07 109 14 48.94	166 31 54.95 288 53 40.82	Hilltop Morrison	7560.25 50230.47	3.8785359 4.7009672
Indian ¹ (U. S. G. S.), 1912	39 39 18.826 104 35 05.801	580.6 138.3	13 19 47.36 23 47 37.97 25 17 51.63 59 47 09.64 91 51 09.32	$\begin{array}{c} 193 \ 17 \ 27.29 \\ 203 \ 30 \ 13.10 \\ 205 \ 14 \ 44.49 \\ 239 \ 12 \ 22.83 \\ 271 \ 26 \ 51.98 \end{array}$	Hill'op Pikes Peak. Douglas. Bison. Morrison.	22809.08 98724.61 16415.27 91149.94 54450.86	4.3581077 4.9944254 4.2152479 4.9597564 4.7360048
Watkins astronomic, 1912	{ 39 44 43.813 104 36 18.915	1351.2 450.4	350 08 03.53 81 04 24.38	170 08 50.23 260 40 52.36	Indian Morrison	10173.11 53325.64	4.0074536 4.7269361
Brighton ¹ (U. S. G. S.), 1912	$\left\{\begin{array}{cccc} 40 & 01 & 37.866 \\ 104 & 45 & 24.750 \end{array}\right.$	1167.9 586.9	340 19 54.87 45 01 51.47	160 26 31.41 224 44 05.02	Indian. Morrison	43841.69 56071.86	4.6418873 4.7487449
Boulder ¹ (U. S. G. S.), 1912	39 57 37.355 105 17 40.611	1152.1 963.9	260 39 07.01 291 47 49.68 298 54 42.35 348 40 25.56	80 59 51.20 112 14 20.01 119 21 57.99 168 43 19.41	Brighton. Watkins astronomic Indian. Morrison.	46520.13 63635.83 69578.17 32951.10	4.6676409 4.8037017 4.8424730 4.5178699
Horsetooth ¹ (U. S. G. S.), 1912	$\left\{\begin{array}{cccccc} 40 & 32 & 22.856 \\ 105 & 11 & 46.319 \end{array}\right.$	705.0 1090.0	326 34 17.88 7 26 54.96	146 51 20.48 187 23 06.04	Brighton Boulder	68074.92 64867.40	4.8329872 4.8120265
Dewey ¹ (U. S. G. S.), 1912	$\begin{cases} 40 \ 30 \ 25.868 \\ 104 \ 33 \ 16.100 \end{cases}$	797.9 379.1	17 58 02.72 46 17 31.88 94 00 17.52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Brighton. Boulder Horsetooth	56009.99 87486.98 54499.80	4.7482655 4.9419434 4.7363949
Warren, 1912	$\left\{\begin{array}{c} 41 \ 01 \ 11.747 \\ 104 \ 52 \ 07.859 \end{array}\right.$	362.4 183.7	334 54 07.47 27 29 54.69	155 06 26.45 207 17 04.97	Dewey. Horsetooth	$\begin{array}{c} 62822, 61 \\ 60064.56 \end{array}$	4.7981160 4.7786183
Twin, 1912	$\left\{\begin{matrix} 41 & 02 & 54.064 \\ 105 & 16 & 02.530 \end{matrix}\right.$	1667.9 59.1	275 14 57.94 314 43 30.83 353 54 24.76	95 30 39.81 135 11 27.05 173 57 12.15	Warren Dewey Horsetooth	$33661.38 \\ 85048.51 \\ 56805.20$	4.5271319 4.9296667 4.7543881
Wadill, 1912	$\left\{\begin{array}{c} 41 \ 15 \ 12.609 \\ 104 \ 57 \ 18.432 \end{array}\right.$	389.0 429.2	344 22 09.52 49 06 21.40	$\begin{array}{c} 164 \ 25 \ 33.83 \\ 228 \ 54 \ 01.69 \end{array}$	Warren. Twin.:	26931.76 34729.35	4.4302648 4.5406967
Russell, 1912	$\left\{ \begin{matrix} 41 & 14 & 12 \\ 105 & 19 & 04.365 \end{matrix} \right.$	375.7 101.7	266 22 19.71 302 24 34.83 348 31 26.00	86 36 40.68 123 42 18.07 168 33 25.63	Wadill. Warren Twin	30465.35 44737.06 21344.32	4.4838061 4.6506675 4.3292824
Greentop, 1912	$\begin{cases} 41 \ 21 \ 01.198 \\ 105 \ 19 \ 48.921 \end{cases}$	37.0 1137.3	288 46 15.42 351 02 25.01 355 17 56.36	109 01 06.78 171 04 54.13 175 18 25.77	Wadili. Twin. Russell	$\begin{array}{r} 33207.90\\ 33949.22\\ 12660.57\end{array}$	4.5212413 4.5308298 4.1024531
Whitaker, 1912	$\left\{\begin{array}{rrr} 41 & 23 & 56 & 362 \\ 104 & 59 & 38 & 801 \end{array}\right.$	1738.8 901.3	348 33 54.26 79 14 01.89	$\begin{array}{c} 168 \ 35 \ 26.95 \\ 259 \ 00 \ 42.02 \end{array}$	Wadill Greentop	16484.04 28636.04	4.2170637 4.4569130
Ragged, 1912	$\begin{cases} 41 \ 26 \ 20.835 \\ 105 \ 20 \ 39.192 \end{cases}$	642.8 909.8	278 32 31.95 302 12 20.11 353 14 27.24	98 46 25.78 122 27 45.47 173 15 00.48	Whitaker Wadill. Greentop	29607.27 38542.13 9929.70	4.4713984 4.5859357 3.9969363
Cheyenno west base, 1913	$\left\{\begin{array}{r} 41 \ 17 \ 56. \ 459 \\ 105 \ 02 \ 16. \ 930 \end{array}\right.$	1741.8 393.9	198 18 18.15 306 00 42.90	$\begin{array}{c} 18 \ 20 \ 02.62 \\ 126 \ 03 \ 59.82 \end{array}$	Whitaker Wadill	11695.67 8591.41	4.0680250 3.9340644
Choyenno east base, 1913	$\begin{cases} 41 \ 16 \ 49.077 \\ 104 \ 57 \ 45.442 \end{cases}$	1514.0 1057.5	108 14 19.23 168 42 10.42 348 04 07.26	288 11 20.08 348 40 55.54 168 04 25.07	Cheyenne west base Whitaker Wadiii	6650.437 13442.53 3041.67	3.8228501 4.1284810 3.4831115
Chugwater, 1912	$\left\{\begin{array}{c} 41 \ 48 \ 06.161 \\ 105 \ 01 \ 47.644 \end{array}\right.$	190.1 1100.0	356 10 17.77 33 08 55.52	176 11 43.32 212 56 23.95	Whitaker Ragged	44827.29 48041.56	4.6515425 4.6816171
Notch, 1912	$\begin{cases} 42 \ 02 \ 21.540 \\ 105 \ 19 \ 46.264 \end{cases}$	664.6 1064.0	316 36 59.15 338 27 36 65 1 03 21.67	136 48 59.78 158 41 00.22 181 02 46.44	Chugwater	36252, 52 76399, 49 66672, 95	4.5593383 4.8830905 4.8239497
Coleman, 1912	$\left\{ \begin{matrix} 42 & 22 & 03.568 \\ 105 & 07 & 13.823 \end{matrix} \right.$	110.1 316.3	353 10 06.76 25 23 50.13	$\begin{array}{c} 173 \ 13 \ 45.38 \\ 205 \ 15 \ 30.66 \end{array}$	Chugwater Notch	63307.03 40349.54	4.8014519 4.6058386
Haystack, 1912	$\begin{cases} 42 \ 20 \ 29.575 \\ 104 \ 38 \ 04.961 \end{cases}$	912.6 113.6	28 44 34.16 59 54 36.24 94 18 28.48	208 28 40.87 239 26 36.36 273 58 50.24	Chugwater Notch Coleman	68300.94 66491.43 40130.24	4.8344267 4.8227657 4.6034718
Hobbs, 1912	{ 42 34 50.753 104 35 06.461	1566.1 147.3	8 44 32.82 61 54 54.49	188 42 32.32 241 33 13.02	Haystack Coleman	26883.46 49987.22	4.4294852

¹ Identical with a tertiary . solon of the U.S. Geological Survey.

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

Station.	Latitude and iongitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Principal points-Continued. Willow, 1912.	42 41 10.095 104 39 50.037	339.3 1139 .2	* / // 331 07 55.45 356 24 24.71 46 48 49.49	• , , , 151 11 07.52 176 25 35.72 226 30 18.39	Hobbs Havstack. Coleman	<i>Meters.</i> 13394.48 38380.37 51585.62	4.1269258 4.5841092 4.7125287
Rawhide, 1912	$\left\{\begin{matrix} 42 & 35 & 12.227 \\ 104 & 29 & 30.902 \end{matrix}\right.$	377.3 704.6	23 22 31.80 85 04 56.68 128 10 56.81	203 16 44.75 265 01 09.62 308 03 57.44	Haystack. Hobbs. Willow.	29659.32 7680.46 17931.62	4.4721611 3.8853872 4.2536195
Manville, 1912.	{ 42 50 58.350 {104 34 43.766	1800.5 993.7	346 16 00.17 21 02 44.64	166 19 32.41 200 59 16.67	Rawhlde	30050.12 19415.93	4.4778463 4.2881582
Kirtiey, 1912.	$\left\{\begin{matrix} 42 \ 51 \ 44.682 \\ 104 \ 06 \ 00.914 \end{matrix}\right.$	1378.7 20.8	46 27 45.37 67 13 10.90 88 04 10.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rawhlde. Willow. Manville	44350.40 50102.43 39141.23	4.6468975 4.6998588 4.5926345
Alkali, 1912	$\begin{cases} 43 \ 38 \ 12.937 \\ 104 \ 29 \ 11.373 \end{cases}$	399.3 255.0	339 50 18.69 4 55 53.83	$\begin{array}{c} 160 \ 06 \ 11.43 \\ 184 \ 52 \ 06.11 \end{array}$	Kirtley Manville	91584.60 87796.36	4.9618224 4.9434765
Parker, 1912	$\begin{cases} 43 \ 23 \ 56.397 \\ 103 \ 41 \ 26.178 \end{cases}$	1740.5 589.1	29 21 10.66 50 07 24.95 112 36 19.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kirtley Manville Alkali	$\begin{array}{c} 68298.02\\ 94607.37\\ 69568.86\end{array}$	4.8344081 4.9759250 4.8424149
Cottonwood, 1912	$\begin{cases} 43 \ 15 \ 14. \ 290 \\ 104 \ 06 \ 02. \ 351 \end{cases}$	441.0 53.0	143 50 57.64 244 00 41.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alkali. Parker	52780.57 36956.39	4.7224741 4.5676896
Sullivan, 1912	$\left\{\begin{matrix}43 & 35 & 33.573\\104 & 00 & 07.127\end{matrix}\right.$	1036.1 159.9	310 23 59.88 12 01 23.05 97 20 03.30	130 36 51.44 191 57 18.88 277 00 00.11	Parker Cottonwood. Alkali	33124.53 38467.43 39420.55	$\begin{array}{r} 4.5201497 \\ 4.5850932 \\ 4.5957226 \end{array}$
Elk, 1912	$\begin{cases} 43 \ 43 \ 41.793 \\ 104 \ 02 \ 57.536 \end{cases}$	1289.8 1287.8	321 29 23.15 345 45 48.64 74 05 21.92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parker. Sullivan. Alkali	46672.02 15543.90 36683.60	4.6690566 4.1915599 4.5644719
Provo west base, 1912	$\begin{cases} 43 \ 10 \ 23.438 \\ 103 \ 54 \ 59.622 \end{cases}$	723.3 1346.7	121 01 36.87 216 05 22.40	300 54 03.09 36 14 40.13	Cottonwood Parker	17445.44 31076.54	4.2416820 4.4924327
Provo east base, 1912	$\begin{cases} 43 \ 12 \ 14.546 \\ 103 \ 44 \ 33.014 \end{cases}$	449.0 745.3	76 26 17.66 100 54 57.71 190 59 06.10	256 19 08.81 280 40 14.63 11 01 14.24	Provo west base Cottonwood. Parker	$\begin{array}{r} 14559.251\\ 29619.95\\ 22064.98 \end{array}$	4. 1631390 4. 4715843 4. 3437035
Provo astronomic, 1912	$\left\{\begin{matrix} 43 & 11 & 44.159 \\ 103 & 49 & 41.058 \\ \end{matrix}\right\}$	1362.7 927.4	70 55 53.73 106 24 50.46 206 13 35.66 262 17 29.81	250 52 15.72 286 13 38.41 26 19 15.04 82 21 00.68	Provo west base Cottonwood. Parker Provo east base.	$\begin{array}{r} 7613.22\\ 23075.86\\ 25200.59\\ 7017.74 \end{array}$	3.8815683 4.3631578 4.4014107 3.8461975
Cambria, 1912	$\left\{ \begin{matrix} 44 & 02 & 43. \\ 104 & 11 & 36. \\ 919 \end{matrix} \right.$	$\begin{array}{c}1356.7\\821.9\end{array}$	341 44 39.20 27 31 26.43	161 50 39.26 207 19 16.05	Elk Alkali	37108.73 51147.53	4.5694761 4.7088247
Crow, 1912	{ 44 03 19.230 103 57 42.632	593.6 949.0	10 58 38.10 86 43 31.02	190 54 59.78 266 33 50.95	Elk. Cambria	37013.47 18604.16	4.5683598 4.2696101
Laird, 1912	$\Big\{ \begin{array}{c} 44 \ 12 \ 34.829 \\ 104 \ 00 \ 28.154 \end{array} \Big.$	$1075.1 \\ 625.1$	347 52 24.18 39 15 13.37	167 54 19.44 219 07 27.74	Crow. Cambria.	$17538.85 \\ 23530.07$	4.2440010 4.3716232
Inyankara, 1912	$\left\{\begin{matrix} 44 & 12 & 47.667 \\ 104 & 20 & 58.646 \end{matrix}\right.$	1471.2 1302.0	270 42 42.55 326 06 57.19 9 47 15.91	90 57 00.58 146 13 28.31 189 41 34.10	Laird Cambria Alkali	$\begin{array}{c} 27320.84\\ 22431.32\\ 64970.54\end{array}$	4.4364940 4.3508548 4.8127165
Sundance, 1912	{ 44 28 44.696 104 27 02.821	1379.6 62.4	310 07 33.02 344 41 27.56	130 26 07.65 164 45 42.12	Laird. Inyankara.	46302.10 30621.32	4.6656007 4.4860240
Теггу, 1912	$ \begin{cases} 44 \ 19 \ 39. 971 \\ 103 \ 50 \ 05. 990 \end{cases} $	1233.7 132.7	46 30 02.25 72 58 16.08 109 08 03.66	226 22 47.96 252 36 42.84 288 42 12.52	Laird Inyankara. Sundance	19042.37 43014.97 51856.71	4.2797210 4.6336196 4.7148050
Wymonkota ¹ (U. S. G. S.), 1912	$\left\{\begin{array}{c} 45 & 00 & 35.551 \\ 104 & 05 & 07.832 \end{array}\right.$	1097.6 171.5	$\begin{array}{r} 345 \ 13 \ 31.72 \\ 26 \ 15 \ 16.33 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Terry. Sundance.	78358.54 65696.98	4.8940863 4.8175454
Castlo, 1912	$\begin{cases} 45 \ 00 \ 36.830 \\ 103 \ 27 \ 14.399 \end{cases}$	1137.0 315.3	21 51 23.00 53 34 01.58 90 10 40.31	201 35 18.76 232 51 55.47 269 43 52.46	Terry. Sundance. Wymonkota	81634.76 98568.51 49785.14	4.9118751 4.9937382 4.6970997
Harding, 1912	$\left\{ \begin{matrix} 45 & 22 & 14.317 \\ 103 & 53 & 09.605 \end{matrix} \right.$	442.0 209.1	319 33 43.52 21 25 44.27	139 52 06.88 201 17 14.73	Castle Wymonkota	52506.52 43050.45	4.7202132 4.6339777
Moreau, 1912	$\begin{cases} 45 \ 20 \ 42.313 \\ 103 \ 42 \ 51.869 \end{cases}$	1306.4 1129.3	331 05 41.20 38 11 36.99 101 59 21.11	151 16 46.16 217 55 49.41 281 52 01.59	Castle. Wymonkota. Harding.	42472.10 47315.27 13742.23	4.6281037 4.6750013 4.1380573
Reva, 1912	$\begin{cases} 45 \ 34 \ 51.060 \\ 103 \ 12 \ 44.169 \end{cases}$	1576.3 957.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	196 33 40.23 236 06 37.20 245 50 40.63	Castle Moreau Harding	66190.86 47211.66 57629.33	4.8207980 4.6740493 4.7606436
Table, 1912	$\left\{ \begin{matrix} 45 & 53 & 50.506 \\ 103 & 39 & 26.917 \end{matrix} \right.$	1559.2 580.2	315 16 27.88 17 00 40.54	135 35 35.72 196 50 52.40	Reva Harding	49377.81 61193.14	4.6935318 4.7867027

¹ Identical with a tertiary station of the U.S. Geological Survey.

Nig.

GEOGRAPAIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

							Statement of the local division in which the local division in the
Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Principal points—Continued. Lodge, 1912	45 51 15.997 103 04 36.336	493. 9 784. 0	• , , , 19 10 59.87 49 51 52.44 96 14 53.36	• , , , , , , , , , , , , , , , , , , ,	Reva Harding Table.	Meters. 32186.90 82920.96 45337.63	4.5076792 4.9186643 4.6564588
Butte, 1912		840.6 394.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148 31 41.32 211 01 47.85	Lodge Tabie	46074.28 40278,12	4.6634585 4.6050692
Whetstone, 1912	$ \{ \begin{matrix} 46 & 13 & 24 & 329 \\ 102 & 57 & 27 & 579 \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & $	751.2 591.1	12 42 44.28 56 27 33.86 87 07 09.24	192 37 35.65 235 57 19.73 266 48 29.63	Lodge Table Butte	$\begin{array}{r} 42036,25\\65161,12\\33287,78\end{array}$	4.6236240 4.8139885 4.5222849
Rainy, 1912	$\left\{ \begin{matrix} 46 & 29 & 41.772 \\ 103 & 02 & 06.026 \end{matrix} \right.$	1289.8 128.5	348 48 51.35 40 32 52.31	$\begin{array}{c} 168 \ 52 \ 12.86 \\ 220 \ 17 \ 31.64 \end{array}$	WhetstoneButte	30762.09 41958.75	4.4880158 4.6228225
Black, 1912	$\begin{cases} 46 \ 23 \ 54. \ 639 \\ 103 \ 26 \ 51. \ 919 \end{cases}$	1687.1 1109.1	251 10 37.89 297 05 40.50 347 49 44.89	71 28 34.77 117 26 56.40 167 52 19.27	Rainy Wheistone Butte	33477.75 42473.41 21711.48	4.5247562 4.6281171 4.3366893
Badland, 1912	$\left\{\begin{array}{l} 46 \ 42 \ 00. \ 620 \\ 103 \ 19 \ 59. \ 087 \end{array}\right.$	$19.1 \\ 1255.3$	314 51 31.91 14 44 17.60	135 04 31.54 194 39 17.90	Rainy Black	32282.90 34667.28	4.5089726 4.5399198
Sentinel, 1912	$\begin{cases} 46 \ 52 \ 16.945 \\ 103 \ 50 \ 04.820 \end{cases}$	523.2 102.1	296 14 20.12 304 04 48.83 330 27 05.33	116 36 16.14 124 39 43.39 150 43 57.97	Badland Rainy Black.	42770.06 74121.36 60339.54	4.6311399 4.8699434 4.7806020
Saddle, 1912	$\begin{cases} 46 \ 58 \ 57.890 \\ 103 \ 13 \ 42.639 \end{cases}$	1787.7 901.2	344 40 28.36 14 17 10.76 75 12 31.53	164 48 55.66 194 12 36.15 254 45 57.47	Rainy Badland. Sentinel.	56207.90 32409.96 47797.60	4.7497973 4.5106785 4.6794061
Hump, 1912	$\Big\{ \begin{matrix} 46 & 57 & 09.936 \\ 103 & 47 & 53.230 \end{matrix} \Big\}$	306.8 1125.6	265 23 39.72 17 07 14.69	85 48 38.65 197 05 38.59	Saddie Sentinei	43477.43 9466.45	4.6392639 3.9761872
Cook, 1912	$\begin{cases} 47 \ 09 \ 19.652 \\ 103 \ 44 \ 06.248 \end{cases}$	606.9 131.6	296 20 00.98 12 01 30.72 13 31 19.42	116 42 16.19 191 58 44.57 193 26 57.12	Saddle Hump Sentinei	43002.68 23037.92 32477.36	4. 6334956 4. 3624433 4. 5115807
Blue, 1912	$\left\{ \begin{matrix} 47 & 15 & 22.033 \\ 104 & 10 & 00.510 \end{matrix} \right.$	680.4 10.7	288 43 41.25 320 10 37.18 329 20 31.25	$\begin{array}{c} 109 \ 02 \ 41.76 \\ 140 \ 26 \ 49.54 \\ 149 \ 35 \ 06.63 \end{array}$	Cook. Hump. Sentinei.	34572.39 43825.42 49660.30	4.5387294 4.6417261 4.6960093
Trotter, 1912	$\left\{ \begin{matrix} 47 & 18 & 52.318 \\ 103 & 51 & 41.870 \end{matrix} \right.$	1615.7 879.4	331 29 58.68 74 24 06.58	151 35 33.17 254 10 39.37	Cook. Blue	26114.92 23983.39	4.3035182 4.3799106
Flat, 1912	$\begin{cases} 47 \ 26 \ 03.601 \\ 103 \ 51 \ 45.739 \end{cases}$	111.2 958.5	342 39 26.02 359 39 01.47 49 20 39.71	162 45 03.68 179 39 04.32 229 07 14.56	Cook. Trotter. Blue.	32472.54 13319.41 30342.22	4.5115163 4.1244849 4.4820474
Lovering, 1912	$\left\{ \begin{matrix} 47 & 42 & 43.969 \\ 104 & 21 & 23.935 \end{matrix} \right.$	1357.9 499.0	309 33 15.48 344 10 22.55	129 55 08.05 164 18 46.30	Flat Blue	48329,26 52688,29	4.6842101 4.7217141
Sheep, 1912	$\begin{cases} 47 \ 37 \ 50.103 \\ 103 \ 47 \ 39.515 \end{cases}$	1547.4 825.0	13 18 21.80 34 09 05.19 102 20 11.28	193 15 20.17 213 52 37.39 281 55 14.63	Flat Blue Lovering	22418.88 50226.13 43195.98	4.3506139 4.70°9297 4.6354433
Jackson 1 (U. S. G. S.), 1912	$\left\{\begin{array}{c} 47 \ 55 \ 37.687 \\ 104 \ 19 \ 43.166 \end{array}\right.$	1163.9 896.1	309 16 03.61 5 01 24.78	129 39 48.19 185 00 10.11	Sheep Lovering.	51874.17 23988.15	4.7149511 4.3799968
Buford, 1912	$ \begin{cases} 48 & 02 & 48.713 \\ 103 & 58 & 59.573 \end{cases} $	1504.5 1233.8	342 56 25.62 37 02 04.70 62 49 19.93	163 04 49.72 216 45 27.54 242 33 55.95	Sheep. Lovering. Jaekson.	48397.04 46527.14 29019.77	4.6848188 4.6677064 4.4626940
Montana ² (Mo. River Com. and U. S. G. S.), 1912.	$\left\{\begin{matrix} 48 & 01 & 51.167 \\ 104 & 03 & 10.628 \\ & & \cdot \end{matrix}\right.$	1580.3 220.2	251 06 16.65 336 23 25.85 60 50 08.29	71 09 23.33 156 34 55.96 240 37 50.93	Buford. Sheep. Jackson	5495.79 48537.78 23595.47	3.7400299 4.6860799 4.3728287
Cutoff ² (Mo. River Com. and U. S. G. S.), 1912.	$\left\{\begin{array}{c} 47 \ 59 \ 50.607 \\ 104 \ 09 \ 56.269 \end{array}\right.$	1562.9 1166.5	57 22 34.21 246 04 03.14	$\begin{array}{c} 237 \ 15 \ 18.32 \\ 66 \ 09 \ 04.66 \end{array}$	Jackson Montana	14465.74 9194.39	4.1603406 3.9635227
Lanark ² (Mo. River Com. and U. S. G. S.), 1912.	$\left\{ \begin{matrix} 48 & 06 & 20.308 \\ 104 & 13 & 54.701 \end{matrix} \right.$	627.3 1131.6	301 52 27.07 337 40 13.38 20 01 44.44	122 00 26.22 157 43 10.71 199 57 25.41	Montana Cutoff. Jackson	15712.96 13009.91 21121.00	4. 1962579 4. 1142743 4. 3247144
Mondak, 1912	{ 48 00 10.435 104 02 48.867	322.3 1012.9	86 05 24.18 171 45 17.45	266 00 06.56 351 45 01.28	Cutoff. Montana	8881.14 3143.75	3.9484687 3.4974476
Ferry ⁸ (Mo. River Com.), 1912	47 58 36.762 104 04 26.550	1135.3 550.7	108 28 59.04 194 40 43.63 214 59 00.63	288 24 54.06 14 41 40.06 35 00 13.21	Cutoff Montana Mondak	7207.17 6207.25 3531.67	3.8577646 3.7928989 3.5479803
Bainville, 1912	{ 48 11 40.535 {104 10 25.812	1252.1 533.0	319 06 06.03 21 15 59.47	139 14 36.97 201 09 04.88	BufordJackson	21708.24 31899.61	4.3366246
Snake, 1912	48 15 46.468	1435.4 14.2	330 18 02.17 3 54 25.23 17 57 04.49	150 26 14.67 183 54 06.49 197 49 50.98	Buford. Bainville. Jaekson	27636.58 7613.90 39232.37	4.4414843 3.8816071 4.5936445

,

Identical with a tertiary station of the U. S. Geological Survey.
 Identical with a tertiary station of the Missouri River Commission and the U. S. Geological Survey.
 Identical with a tertiary station of the Missouri River Commission.

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Principal points—Continued. Buil, 1912	48 20 13.441 104 01 52.003	415.2 1071.0	353 41 04.07 50 44 29.58	7 7 7 7 7 7 7 7 7 7	Buford	Meters. 32464.61 13016.79	4.5114102
Williston, 1912	$\begin{cases} 48 \ 15 \ 12.182 \\ 103 \ 44 \ 59.761 \end{cases}$	376.3 1232.8	37 10 24.51 92 06 52.93 114 08 30.39	216 59 58.94 271 48 13.01 293 55 54.67	Buford. Snake. Bull	28786.18 30976.71 22844.69	4.4591840 4.4910353 4.3587853
Bonetraill, 1912.	$\left\{\begin{array}{c} 48 \ 25 \ 00.000 \\ 103 \ 49 \ 44.219 \end{array}\right.$	0.0 909.2	342 05 14.19 59 29 32.36	162 08 46.69 239 20 28.32	Williston	19078.27 17396.74	4.2805390 4.2404680
Gladys, 1912	$\begin{cases} 48 \ 26 \ 45.434 \\ 103 \ 53 \ 03.761 \end{cases}$	1403.4 77.3	308 25 37.52 334 59 36.19 41 57 50.02	128 28 06.81 155 05 37.84 221 51 15.05	Bonetraill. Williston Bull.	$\begin{array}{r} 5237.51\\ 23618.45\\ 16269.66\end{array}$	3.7191251 4.3732514 4.2113784
Marmon, 1912	48 27 27.934 103 34 03.685	862.8 75.7	$\begin{array}{c} 30 \ 47 \ 32.53 \\ 76 \ 47 \ 56.17 \\ 86 \ 54 \ 40.27 \end{array}$	$\begin{array}{c} 210 \ 39 \ 22.26 \\ 256 \ 36 \ 12.44 \\ 266 \ 40 \ 27.04 \end{array}$	Williston Bone traill Gladys.	$\begin{array}{c} 26436.68 \\ 19864.58 \\ 23463.31 \end{array}$	4.4222069 4.2980793 4.3703892
Howard, 1912	$\left\{ \begin{matrix} 48 & 38 & 19.918 \\ 103 & 49 & 16.219 \end{matrix} \right.$	615.2 332.0	$\begin{array}{c} 317 \ 00 \ 12.70 \\ 12 \ 17 \ 53.32 \end{array}$	$\begin{array}{c} 137 \ 11 \ 36.66 \\ 192 \ 15 \ 02.79 \end{array}$	Marmon. Giadys.	27492.80 21953.82	4.4392190 4.3415101
Muddy, 1912	48 40 27.449 103 33 42.450	847.9 868.4	$\begin{array}{r}1 & 02 & 17.03 \\43 & 16 & 57.63 \\78 & 26 & 57.96\end{array}$	$\begin{array}{c} 181 \ 02 \ 01.11 \\ 223 \ 02 \ 27.05 \\ 258 \ 15 \ 16.92 \end{array}$	Marmon, Gladys, Howard,	$\begin{array}{r} 24082.56\\ 34809.99\\ 19511.88\end{array}$	4.3817027 4.5417039 4.2902991
Stady, 1912	$\left\{\begin{array}{r} 48 \ 47 \ 20.723 \\ 103 \ 38 \ 45.669 \end{array}\right.$	640.1 932.2	334 04 39.51 37 43 10.09	$\begin{array}{c} 154 \ 08 \ 27.42 \\ 217 \ 35 \ 16.28 \end{array}$	Muddy. Howard	$\frac{14190.38}{21100.27}$	4.1519940 4.3242881
Crosby, 1912	$\begin{cases} 48 \ 51 \ 34. 335 \\ 103 \ 33 \ 28. 392 \end{cases}$	1060.6 578.7	0 47 59.49 38 22 22.94 39 35 32.98	180 47 48.92 218 10 30.34 219 31 34.17	Muddy Howard Stady	$\begin{array}{c} 20602.30\\ 31258.44\\ 10161.57 \end{array}$	4.3139157 4.4949673 4.0069608
Norge, 1912	48 53 38.866 103 47 20.556	1200.5 418.7	$\begin{array}{r} 282 \ 41 \ 42.89 \\ 317 \ 59 \ 50.72 \\ 4 \ 46 \ 06.79 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Crosby Stady Howard	$\begin{array}{c} 17387.23\\ 15705.83\\ 28484.69 \end{array}$	$\begin{array}{r} 4.2402305 \\ 4.1960608 \\ 4.4546115 \end{array}$
Ambrose sonthwest base, 1912	{ 48 57 07.378 103 37 01.232	$227.9 \\ 25.1$	$\begin{array}{c} 337 \ 07 \ 55.21 \\ 63 \ 00 \ 10.86 \end{array}$	$\begin{array}{c} 157 \ 10 \ 35.61 \\ 242 \ 52 \ 24.00 \end{array}$	Crosby Norge	$\frac{11163.82}{14157.90}$	4.0478126 4.1509988
Bowie, 1912	$\begin{cases} 48 59 56.626 \\ 103 44 00.295 \end{cases}$	1749.1 6.0	301 29 07.06 320 16 36.31 19 16 10.92	121 34 23.21 140 24 32.70 199 13 39.91	Ambrose southwest base Crosby Norge	9998.09 20154.33 12360.50	$\begin{array}{c} 3.9999169\\ 4.3043684\\ 4.0920359 \end{array}$
Ambrose, 1912	$\begin{cases} 48 \ 54 \ 48. 459 \\ 103 \ 30 \ 53. 905 \end{cases}$	1497.0 1097.6	27 42 29.31 119 53 37.91 120 50 12.95	207 40 32.92 299 49 00.97 300 40 19.85	Crosby. Ambrose southwest base Bowie	$\begin{array}{r} 6772.40\\ 8620.45\\ 18616.36\end{array}$	$\begin{array}{r} 3.8307427\\ 3.9355299\\ 4.2698948 \end{array}$
School, or Ambrose northeast base, 1912.	$\begin{cases} 48 \ 59 \ 24. \ 331 \\ 103 \ 29 \ 09. \ 836 \end{cases}$	751.6 200.0	$\begin{array}{c} 13 \ 57 \ 50.17 \\ 66 \ 14 \ 17.96 \\ 93 \ 14 \ 52.63 \end{array}$	$\begin{array}{c} 193 \ 56 \ 31.68 \\ 246 \ 08 \ 22.35 \\ 273 \ 03 \ 40.65 \end{array}$	Ambrose. Ambrose southwest base Bowie	8781.15 10479.177 18129.03	3.9435513 4.0203272 4.2583746
Supplementary points.							
Denver University, observatory dome, 1895.	39 40 34.185 104 57 08.710	1054.3 207.6	4 52 58.9 88 11 35.8 137 13 59.1	184 49 31.0 268 01 22.7 317 00 50.2	Pikes Peak. Morrison Boulder.	93092.5 22902.5 43060.8	4.9689146 4.3598826 4.6340818
Denver, Loretto Heights school, belfry, 1912.	39 39 41.908 105 01 37.646	1292.4 897.4	93 02 05.8 145 27 26.0 209 35 34.0	272 54 44.4 325 17 09.4 29 45 57.3	Morrison Boulder. Brighton.	16504.1 40308.7 46714.6	$\begin{array}{r} 4.2175931 \\ 4.6053987 \\ 4.6694524 \end{array}$
Denver, county courthonse, dome, 1895.	39 44 32.976 104 59 21.160	1017.0 503.8	$\begin{array}{c} 2 & 42 & 16.8 \\ 67 & 41 & 44.4 \\ 132 & 53 & 03.9 \\ 212 & 05 & 04.2 \end{array}$	$\begin{array}{c} 182 \ 40 \ 12.6 \\ 247 \ 32 \ 55.5 \\ 312 \ 41 \ 19.4 \\ 32 \ 14 \ 00.6 \end{array}$	Pikes Peak. Morrison Boulder. Brighton.	100233.4 21330.0 35613.9 37338.0	$\begin{array}{c} 5.0010123\\ 4.3289915\\ 4.5516194\\ 4.5721507 \end{array}$
Denver, State Capitol, dome, 1895	$\left\{\begin{array}{c} 39 \ 44 \ 21. \ 662 \\ 104 \ 59 \ 03. \ 598 \end{array}\right\}$	668.0 85.7	$\begin{array}{c} 2 \ 57 \ 24.3 \\ 68 \ 58 \ 36.5 \\ 132 \ 50 \ 30.2 \\ 211 \ 15 \ 40.5 \\ 285 \ 07 \ 22.7 \end{array}$	$\begin{array}{c} 182 \ 55 \ 09.0 \\ 248 \ 49 \ 36.4 \\ 312 \ 38 \ 34.4 \\ 31 \ 24 \ 25.5 \\ 105 \ 22 \ 41.1 \end{array}$	Pikes Peak Morrison. Boulder. Brighton. Indian.	99899.4 21589.9 36157.8 37415.4 35506.6	$\begin{array}{r} 4.9995629\\ 4.3342500\\ 4.5582017\\ 4.5730500\\ 4.5503095 \end{array}$
Denver, Grant smelter, chimney, 1912.	$\left\{\begin{matrix} 39 & 46 & 35, 932 \\ 104 & 58 & 22, 557 \end{matrix}\right\}$	1108.1 536.8	60 38 50.6 126 38 52.9 213 31 25.3 291 56 01.4	$\begin{array}{c} 240 \ 29 \ 24.0 \\ 306 \ 26 \ 30.5 \\ 33 \ 39 \ 44.2 \\ 112 \ 10 \ 53.8 \end{array}$	Morrison Boulder. Brighton. Indian.	$\begin{array}{c} 24243.3\\ 34258.5\\ 33394.5\\ 35896.9 \end{array}$	4.3845924 4.5347687 4.5236753 4.5550570
Denver, Daniels & Fisher's tower, glided dome, 1912.	$\begin{cases} 39 \ 44 \ 53.583 \\ 104 \ 59 \ 42.502 \end{cases}$	1652.5 1011.9	$\begin{array}{c} 65 & 34 & 21.7 \\ 132 & 40 & 59.8 \\ 213 & 16 & 03.7 \\ 286 & 13 & 25.4 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morrison. Boulder. Brighton. Indian.	$\begin{array}{c} 21115.6\\ 34809.3\\ 37077.3\\ 36664.5 \end{array}$	$\begin{array}{r} 4.3246033\\ 4.5416954\\ 4.5691086\\ 4.5642459\end{array}$
Westminster schoolhouse belfry, 1912.	$\left\{\begin{matrix} 39 & 50 & 50, 209 \\ 105 & 01 & 53, 135 \\ \end{matrix}\right.$	$1548.4 \\ 1263.2$	39 13 26.9 119 14 34.1 229 30 27.4 298 59 06.5	219 06 14.6 299 04 26.3 49 41 02.0 119 16 14.4	Morrison Boulder, Brighton. Indian.	25479.1 25772.7 30817.3 43805.6	$\begin{array}{r} 4.\ 4061833\\ 4.\ 4111601\\ 4.\ 4887947\\ 4.\ 6415299 \end{array}$
Section 36, T. 4S., R. 65 W., southeast corner stone.	1 39 39 22.420 104 35 02.550	691.4 60.8	34 58 06	214 58 04	Indian	135.251	2.131140

•

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimnth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued. Bench mark G ₂	{ 39 44 47.559 {104 36 08.850	1466.7 210.7	64 15 43.6	244 15 37.2	Watkins astronomic	Meters. 266.017	2.424909
Brighton bench mark eccentric, 1912	40 00 01.626 104 48 58.148	50.1 1379.4	43 18 44.08 83 56 25.13 239 35 22.18	223 03 14.63 263 37 58.40 59 37 39.39	Morrison Boulder. Brighton	50415.64 41111.89 5867.25	4.7025653 4.6139674 3.7684346
Brighton bench mark R ₂ (U. S. G. S.).	{ 40 00 01.640 104 48 56.469	50.5 1339,4	89 22	269 22	Brighton bench mark eccentric	39. 832	1.60023
Greeley tall tank, ¹ 1912	{ 40 25 07.923 104 40 35.853	244.4 845.3	107 06 14.1 226 31 58.3	286 45 59.8 46 36 43.7	Horsetooth Dewey	46055.0 14266.1	4.663277 4.154304
Greeley sugar factory chimney, ¹ 1912	40 25 06.241 104 40 34.144	192.5 805.0	107 09 04.0 226 16 15.1	286 48 48.6 46 20 59.3	Horsetooth Dewey	46108.7 14272.6	4. 663783 4. 154504
La Salle tank near coal chute, ¹ 1912	{ 40 20 46.859 104 42 19.228	1445.4 453.8	117 25 47.6 215 35 13.9	297 06 41.3 35 41 06.1	Horsetooth Dewey	46852.8 21974.4	4.670736 4.341917
Loveland red brick chimney	{ 40 24 10.606 105 03 37.705	327.1 889.2	22 09 46.9 142 52 42.9	202 00 43.0 322 47 25.7	Boulder	53033.2 19053.2	4.724548 4.279969
Loveland tall white chimney, 1912	$\begin{cases} 40 \ 24 \ 10.770 \\ 105 \ 03 \ 35.817 \end{cases}$	332.2 844.7	22 12 20.9 83 31 06.9 142 45 47.5	$\begin{array}{c} 202 \ 03 \ 15.8 \\ 263 \ 31 \ 05.7 \\ 322 \ 40 \ 29.1 \end{array}$	Boulder. Loveland red hrick chimney Horsetooth.	53054.7 44.82 19076.1	4.724724 1.651486 4.280490
Eaton, sugar factory chimney, 1912	$\begin{cases} 40 \ 31 \ 35.067 \\ 104 \ 42 \ 24.722 \end{cases}$	1081.6 581.9	92 11 42.8 162 31 11.7 279 20 05.5	271 52 37.9 342 27 05.8 99 26 01.7	Horsetootb Dover bench mark eccentric Dewey	41486.5 29460.3 13090.5	4.6179069 4.4692378 4.1169546
Nunn schoolhouse, belfry, 1912	$\begin{cases} 40 \ 42 \ 23.296 \\ 104 \ 47 \ 04.840 \end{cases}$	718.6 113.6	62 07 32.9 164 16 30.2 318 33 48.0	241 51 28.4 344 15 26.9 138 42 47.4	Horsetooth Dover bench mark eccentric Dewey.	39440.1 8414.8 29484.3	4.5959378 3.9250455 4.4695911
Dover bench mark eccentric, 1912	{ 40 46 45.871 104 48 42.095	1414.9 987.1	50 49 10.70 128 01 52.69	230 34 08.79 307 43 58.33	Horsetooth Twin	42024.1 48638.6	4.6234982 4.6869813
Dover bench mark E ₂ , 1912	$\begin{cases} 40 \ 46 \ 45.705 \\ 104 \ 48 \ 42.483 \end{cases}$	1409.8 996.2	240 38 03.8	60 38 04.1	Dover bench mark eccentric	10.44	1.01870
Dover bench mark reference mark, 1912.	{ 40 46 47.346 104 48 43.183	1460.5 1012.6	330 42 36 342 01 16	150 42 37 162 01 16	Dover bench mark eccentric Dover bench mark E ₃	52. 180 53. 21	1.717504 1.726027
теггу ² (U. S. G. S.), 1912	$\begin{cases} 41 \ 01 \ 33.472 \\ 104 \ 52 \ 21.266 \end{cases}$	1032.6 496.8	94 24 44.23 164 41 23.84 334 56 47.95	274 09 11.10 344 38 08.34 154 56 56.75	Twin Wadill. Warren	33291.34 26202.40 739.75	4.5223313 4.4183411 2.8690837
Colorado-Wyoming boundary monu- ment, milepost 44, 1912.	$\left\{ \begin{matrix} 40 & 59 & 54.156 \\ 104 & 53 & 33.575 \end{matrix} \right.$	1670.6 784.7	208 52 14.81 219 55 00.85	28 53 02.26 39 55 57.09	Terry. Warren	3498.70 3121.06	3.543907 3.494302
Otto, Unlon Pacific Railway black water tank, 1912.	$\left\{\begin{matrix} 41 & 05 & 27.677 \\ 105 & 04 & 29.681 \end{matrix}\right.$	853.8 692.7	292 56 50.6 294 26 00.4 73 44 07.6	113 04 49.0 114 34 07.6 253 36 32.4	Terry. Warren Twin	18479.9 19037.2 16855.7	4.2666994 4.2796026 4.2267459
Fort D. A. Russell, water tank, 1912.	$\left\{\begin{array}{c} 41 \ 09 \ 23. \ 623 \\ 104 \ 52 \ 12. \ 826 \end{array}\right.$	728.8 299.1	359 33 42.5 70 19 17.3 103 28 58.7 119 19 07.0	179 33 45.8 250 03 37.4 283 11 17.3 299 00 55.0	Warren Twin Russell Greentop.	$\begin{array}{c} 15174.0\\ 35460.8\\ 38592.5\\ 44155.5\end{array}$	4. 1810997 4. 5497491 4. 5865029 4. 6449852
Cheyenne, State capitol dome, 1912	41 08 25.342 104 49 10.786	781.8 251.5	17 11 19.8 74 56 52.2 104 31 18.9 118 44 58.6	$\begin{array}{c} 197 \ 09 \ 23.5 \\ 254 \ 39 \ 12.8 \\ 284 \ 11 \ 37.8 \\ 298 \ 24 \ 46.8 \end{array}$	Warren Twin Russeli, Greentop	13999.8 38978.6 43146.6 48739.7	4.1461203 4.5908259 4.6349462 4.6878830
East Twin ³ (U. S. G. S.)	41 02 54.074 105 16 02.648	1668.2 61.8	276 08 40	96 08 40	Twin	2.764	0. 44154
Kipp's, Wiliiam, square bouse, chim- ney, 1912.	$\left\{\begin{matrix} 41 & 16 & 40.626 \\ 104 & 56 & 41.913 \end{matrix}\right.$	1253.3 975.4	$\begin{array}{c} 17 \ 23 \ 13.7 \\ 104 \ 07 \ 05.6 \\ 163 \ 00 \ 13.5 \end{array}$	197 22 49.6 283 51 49.9 342 58 16.7	Wadill. Greentop. Whitaker	2845.2 33248.4 14057.4	3.454117 4.521771 4.147906
Hollingswood's, Glen, new barn, west gable, 1912.	$\left\{ \begin{matrix} 41 & 17 & 03.586 \\ 104 & 58 & 58.032 \end{matrix} \right.$	110.6 1350.5	104 15 20.7 175 44 47.6 325 53 11.4	284 01 34.8 355 44 20.7 145 54 17.1	Greentop Whitaker Wadill	30003.7 12769.2 4134.7	4.477175 4.106165 3.616439
Ritzke's windmill, center, 1912	$\left\{ \begin{matrix} 41 & 15 & 23 \\ 104 & 56 & 39 \\ . & 551 \end{matrix} \right.$	736.5 920.8	69 00 17.2 107 58 24.9 165 14 45.4	248 59 51.5 287 43 07.8 345 12 47.0	Wadiil Greentop. Whitaker	969.6 33956.1 16350.4	$\begin{array}{c} 2.986584 \\ 4.530918 \\ 4.213529 \end{array}$
Tali new house, west gable, 1912	$\begin{cases} 41 \ 15 \ 46.185 \\ 105 \ 02 \ 34.880 \end{cases}$	1424.8 812.0	112 05 35.6 195 08 05.1 277 58 27.8	291 54 13.0 15 10 01.4 98 01 56.5	Greentop Whitaker Wadill	25943.6 15666.4 7439.4	4.414030 4.194968 3.871538
Section 33, T. 17 N., R. 68 W., stone post, southwest corner, 1912.	{ 41 23 38.222 105 00 03.418	1179.2 79.4	225 37 06	45 37 22	Whitaker	800.12	2.903155
Bench mark "Denver" 6702 (U. S. G. S.).	{ 41 23 38.315 105 00 20.178	1182.0 468.8	239 55 02	59 55 29	Whitaker	1110. 82	3.045644

.

² Identical with a tertiary station of the U.S. Geological Survey.

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued. Wheatland standplpe, 1912	42 02 43.815 104 57 26.898	1351.9 618.6	° / // 12 32 04.16 88 50 47.50 159 26 06.16 218 55 31.77	• / // 192 29 09.95 268 35 50.55 339 19 31.86 39 08 32.17	Chugwater Notch. Coleman. Haystack.	<i>Meters</i> 27736.64 30812.33 38232.68 42333.06	4.4430538 4.4887246 4.5824348 4.6266796
Nebraska-Wyoming boundary mon- ument eccentric, 1912.	$\begin{cases} 42 \ 46 \ 48.822 \\ 104 \ 03 \ 09.368 \end{cases}$	1506.5 212.9	59 18 47.09 78 26 41.82 156 54 04.68	239 00 54.90 258 01 48.48 336 52 08.09	Rawhlde. Willow. Kirtley	41934.33 51135.87 9926.49	4.6225697 4.7087257 3.9967957
Nebraska-Wyoming boundary mon- ument 123, 1912.	$\left\{ \begin{matrix} 42 & 46 & 48.332 \\ 104 & 03 & 08.859 \end{matrix} \right.$	1491.3 201.4	142 35 50	322 35 50	Nebraska-Wyoming boundary monument eccentric.	19.052	1,27994
Bluff, 1912	$\begin{cases} 43 \ 01 \ 44.498 \\ 104 \ 12 \ 31.590 \end{cases}$	1373.3 715.2	161 39 06.12 225 30 51.08 334 23 28.75	341 27 40.02 45 52 08.38 154 27 54.92	Alkali. Parker Kirtley	71193.08 58841.43 20519.31	4.8524378 4.7696832 4.3121628
South Dakota-Nebraska boundary monument eccentric, 1912.	$\Big\{ \begin{array}{c} 43 \ 00 \ 06. 456 \\ 104 \ 00 \ 02 \ 469 \end{array} \Big.$	$\begin{array}{c}199.2\\55.9\end{array}$	27 43 49.60 100 10 59.03	$\begin{array}{c} 207 \ 39 \ 45.45 \\ 280 \ 02 \ 27.98 \end{array}$	Kirtley Bluff	17487.61 17231.71	4.2427305 4.2363285
South Dakota-Nebraska boundary monument, 1912.	$\left\{\begin{array}{c} 43 00 06. 539 \\ 104 00 02. 457 \end{array}\right.$	$\begin{array}{c} 201.8\\ 55.6 \end{array}$	5 56 44	185 56 44	South Dakota-Nebraska bound- ary monument eccentric.	2.572	0.41027
South Dakota-Wyomlng boundary monument, 1912.	$\Big\{ \begin{matrix} 43 & 03 & 30.992 \\ 104 & 03 & 09.845 \end{matrix} \Big\}$	956.5 222.8	$\begin{array}{c} 10 \ 06 \ 12.02 \\ 75 \ 33 \ 42.76 \end{array}$	190 04 15.44 255 27 19.34	Klrtley Bluff.	$\begin{array}{c} 22137.84 \\ 13132.82 \end{array}$	4.3451353 4.1183579
Jireh College, cupola, ¹ 1912	$\left\{ \begin{array}{c} 42 \ 46 \ 29.82 \\ 104 \ 42 \ 34.38 \end{array} \right.$	920.1 781.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Manville Willow	13527.2 10524.7	$\begin{array}{c} 4.131208 \\ 4.022208 \end{array}$
Manville, C. & N. W. Ry. water tank, ² 1912.	$\left\{\begin{array}{l} 42 \ 46 \ 54.90 \\ 104 \ 36 \ 52.11 \end{array}\right.$	$1694.0 \\ 1184.5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 13 30 200 51 38	Manville Willow	8058.3 11357.6	$3.906245 \\ 4.055288$
Manville Congregational Church steeple, ² 1912.		$1391.3 \\ 1192.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Willow Manville	11072.8 8343.8	4.044256 3.921363
Sullivan (U. S. G. S.)	$\left\{\begin{array}{c} 43 \ 35 \ 33. \ 447 \\ 104 \ 00 \ 07. \ 229 \end{array}\right.$	$\substack{1032.2\\162.2}$	210 29 32	30 29 32	Sullivan	4.53	0.65610
Alkall (U. S. G. S.)	43 38 12.066 104 29 11.815	372.4 264.9	200 14 01	20 14 01	Alkali	28.64	1.45697
Elk (U. S. G. S.)	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	1290.8 1287.6	10 20 15	190 20 15	Elk	1,035	0.01494
Crows Nest (U. S. G. S.)	$\left\{\begin{array}{c} 44 \ 03 \ 19.216 \\ 103 \ 57 \ 42.721 \end{array}\right.$	593.1 951.0	257 56	77 56	Crow	2.016	0.30449
Bear Lodge Mountain, highest peak, 1912.	$\begin{cases} 44 \ 28 \ 34.364 \\ 104 \ 26 \ 35.982 \end{cases}$	1060.7 795.2	118 16 24.4 205 24 57.6 232 30 49.3	$\begin{array}{c} 298 \ 16 \ 05.6 \\ 25 \ 40 \ 04.4 \\ 53 \ 12 \ 36.5 \end{array}$	Sundance Wymonkota Castle.	$\begin{array}{c} 673.5\\65727.0\\98290.2\end{array}$	2.828328 4.817744 4.992510
Peak, south of Terry, 2 1912	{ 44 14 39.77 103 44 04.08	$1227.6 \\ 90.5$	139 08 30.4 194 33 29.2	319 04 17.8 14 45 18.5	Terry Castle	12257.6 87966.2	4.088407 4.944316
Castle Rock (U. S. G. S.)	{ 45 00 36.784 103 27 14.232	$1135.6 \\ 311.7$	111 10	291 10	Castle	3,92	0.59329
Haystack Butte, highest point, 1912	$\begin{cases} 45 \ 03 \ 46.269 \\ 103 \ 27 \ 05.071 \end{cases}$	$1428.4 \\ 111.0$	2 00 01.5 83 30 15.5 146 43 00.7	181 59 54.9 263 03 20.4 326 31 48.8	Castle Wymonkota Moreau	5851.6 50312.2 37560.8	$\begin{array}{c} 3.767272\\ 4.701673\\ 4.574735 \end{array}$
East Deer Ear Butte, ² 1912	{ 45 00 01.63 103 10 47.73	50.3 1045.4	92 58 32.2 132 32 25.3	272 46 54.5 312 09 40.6	Castle Moreau	$21635.8 \\ 56853.5$	4.335173 4.754757
West Deer Ear Butte, ² 1912	{ 44 59 55.20 103 11 05.42	1703.8 118.7	93 33 39.1 132 56 57.7	273 22 13.9 312 34 25.6	Castle Moreau	21260.4 56703.8	$\substack{4.327571\\4.753612}$
Montana, sontheast corner eccentric, 1912.	$\left\{\begin{array}{c} 44 \ 59 \ 49. \ 837 \\ 104 \ 02 \ 31. \ 798 \end{array}\right.$	1538.3 696.5	347 28 17.6 29 29 12.9	167 37 01.9 209 11 57.5	Terry. Sundance	76180.3 66047.1	$\begin{array}{c} 4.8818425\\ 4.8198540 \end{array}$
Montana, southeast corner monu- ment, 1912.	$\left\{\begin{array}{c} 44 \ 59 \ 53.739 \\ 104 \ 02 \ 20.681 \end{array}\right.$	$1658.8 \\ 453.0$	63 40 49.9	243 40 42.0	Montana, southeast corner ec- centric.	271.66	2.434026
Wyoming, northeast corner eccentric, 1912.	$\Big\{ \begin{array}{c} 44 \ 59 \ 59. 117 \\ 104 \ 03 \ 18. 515 \end{array} \Big.$	1824.8 405.5	346 45 45.3 28 34 45.8	166 55 02.4 208 18 03.2	Terry Sundance	$76687.7 \\ 65801.0$	4.8847255 4.8182325
Wyoming, northeast corner monu- ment, 1912.	$\Big\{ \begin{matrix} 44 & 59 & 51. \\ 104 & 03 & 25. \\ 623 \end{matrix} \Big\}$	$1605.0 \\ 561.3$	215 18 11.2	35 18 16.2	Wyoming, northeast corner ec- centric.	269.41	2.430414
North Dakota-South Dakota, mlle- post 333 eccentric, 1912.	$\begin{cases} 45 \ 56 \ 49. \ 625 \\ 103 \ 28 \ 33. \ 658 \end{cases}$	1532.1 724.9	193 08 21.6 68 37 01.3	13 12 08.7 248 29 12.0	Butte Tahle	29731.01 15124.01	4.4732096 4.1796671
North Dakota-South Dakota, mile- post 333, 1912.	$\left\{\begin{matrix}45 & 56 & 43.386\\103 & 28 & 21.443\end{matrix}\right.$	1339.4 461.9	126 12 35.5	306 12 26.7	North Dakota-South Dakota milepost 333 eccentric.	326.07	2.513315
Eagles Nest Butte, cairn, ² 1912	$\left\{\begin{array}{c} 45 \ 55 \ 26.182 \\ 103 \ 29 \ 21.280 \end{array}\right.$	808.3 458.5	77 18 32.6 201 42 31.6	257 11 17.6 21 43 05.8	Table. North Dakota-South Dakota milenost 333 eccentric	13383.3 2773.0	4.126562 3.442956

¹ No check on this position.

² Checked by vertical angles only.

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

the second se							
Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued. Bowman water tank, 1912	46 10 57.262 103 24 10.452	1768.1 224.2	• / // 171 49 20.59 201 53 12.72 262 18 43.05 325 10 48.82 31 57 28.41	° / '' 351 47 23.88 21 53 50.29 82 38 00.01 145 24 53.68 211 46 28.71	Biack Butte Whetstome Lodge Table	Meters. 24250.44 2993.58 34663.33 44363.02 37327.27	4.3847197 3.4761909 4.5398702 4.6470211 4.5720262
Bowman longitude, 1912	$\left\{\begin{array}{rrrr} 46 \ 10 \ 57.528 \\ 103 \ 24 \ 11.012 \end{array}\right.$	1776.3 236.2					
Buffalo Springs, 1912	$\left\{\begin{array}{c} 46 \ 10, 20, 683 \\ 103 \ 14 \ 00, 696 \end{array}\right.$	638.6 14.9	108 08 51.6 254 59 20.9	288 02 09.2 75 11 17.7	Butte	$\frac{12581.71}{22035.78}$	4.0997397 4.3431284
Sentinel Butte schoolhouse flagpole, ¹ 1912.	$\left\{\begin{array}{l} 46 \ 55 \ 04. \ 277 \\ 103 \ 50 \ 19. \ 054 \end{array}\right.$	$\begin{array}{c}132.1\\403.2\end{array}$	218 28 00.6 356 39 40.9	38 29 47.1 176 39 51.3	Hump. Sentinel	4957.0 5176.0	3.695219 3.713994
Beach Catholic church, cross, 1 1912	{ 46 54 49.726 104 00 05.435	$1535.4 \\ 115.0$	254 18 28.8 290 17 48.3	74 27 23.7 110 25 07.0	Hump. Sentinel	16082.5 13561.9	4.206354 4.132320
Schoolhouse north of Hump, chim- ney, 1 1912.	$\left\{\begin{array}{c} 47 \ 01 \ 23.379 \\ 103 \ 47 \ 25.308 \end{array}\right.$	721.9 534.5	4 18 51.5 11 19 16.9	184 18 31.1 191 17 20.4	Hump. Sentinei	7848.7 17208.0	3.894797 4.235730
North Dakota-Montana boundary monument eccentric, 1912.	$\left\{\begin{array}{c} 47 \ 12 \ 42.065 \\ 104 \ 02 \ 39.376 \end{array}\right.$	$1299.1 \\828.5$	326 54 36.05 118 04 30.63	147 05 25.00 297 59 06.78	Hump Blue.	34322.2 10512.3	4.5355757 4.0216980
North Dakota-Montana boundary monument, 1912.	$\left\{\begin{array}{c} 47 \ 12 \ 41,959 \\ 104 \ 02 \ 39,375 \end{array}\right.$	1295.8 828.5	179 39 41	359 39 41	North Dakota-Montana hound- ary monument eccentric.	3.28	0.51587
Section 7, T. 143 N., R. 105 W., south- west corner.	$\left\{\begin{array}{c} 47 \ 12 \ 40. 981 \\ 104 \ 02 \ 39. 380 \end{array}\right.$	1265.6 828.7	180 07 38	0 07 38	North Dakota-Montana hound- ary monument eccentric.	33, 48	1.52479
Section 22, T. 17 N., R. 60 E., south- east corner.	$\left\{\begin{array}{r} 47 \ 12 \ 33. \ 603 \\ 104 \ 02 \ 39. \ 408 \end{array}\right.$	1037.8 829.3	180 08 56	0 08 56	North Dakota-Montana bound- ary monument eccentric.	261.31	2. 417156
Lovering (U. S. G. S.)	$\left\{ \begin{matrix} 47 & 42 & 43.961 \\ 104 & 21 & 24.073 \end{matrix} \right.$	1357.7 501.8	265 14	85 14	Lovering	2.88	0. 45939
Bench mark 132 (Mo. River Com.)	{ 48 01 49.033 104 05 18.270	1514.6 378.6	349 45 40.22 57 37 05.53	169 46 18.66 237 33 38.89	Ferry. Cutoff	6034.53 6824.39	3.7806436 3.8340636
Bench mark 131 (Mo. River Com.)	{ 48 03 39.440 104 07 53.275	1218.3 1103.1	19 50 19.99 123 37 51.17	199 48 48.55 303 33 22.23	Cutoff Lanark	7513, 15 8980, 07	3. 8758223 3. 9532796
Bench mark 133 (Mo. River Com.)	$\left\{ \begin{matrix} 48 & 00 & 11. 187 \\ 104 & 02 & 44. 329 \end{matrix} \right.$	345.6 918.9	76 08 04	256 08 01	Mondak	96.89	1.98628
Steihl's house, chimney, 1912	48 01 02.300 104 04 00.418	71.0 8.7	214 20 55.0 6 52 29.0 73 19 33.6	34 21 32.0 186 52 09.6 253 15 09.1	Montana. Ferry. Cutoff.	1828. 2 4527. 7 7700. 9	3.262027 3.655873 3.886544
Snowden water tank, ¹ 1912	$\left\{ \begin{matrix} 48 & 02 & 17. 694 \\ 104 & 05 & 47. 337 \end{matrix} \right.$	546.5 980.6	346 12 16.3 126 39 11.6	166 13 16.3 306 33 09.0	Ferry. Lanark	7026.2 12567.4	3.846720 4.099246
Bainville Cathoiic Church, bighest spire, ¹ 1912.	$\left\{\begin{array}{r} 48 & 08 & 12.190 \\ 104 & 13 & 16.423 \end{array}\right.$	376.5 339.5	$\begin{array}{c} 196 \ 02 \ 56.6 \\ 208 \ 41 \ 52.5 \end{array}$	16 05 22.5 28 43 59.6	Snake. Bainville.	14601.9 7337.6	4.164410 3.865551
Section 13, T. 155 N., R. 102 W., north- west corner.	$\left\{\begin{array}{l} 48 \ 15 \ 21, 313 \\ 103 \ 45 \ 16, 617 \end{array}\right.$	658.3 342.8	309 02 47	129 03 00	Wiliiston	447.70	2.650987
Section 4, T. 157 N., R. 102 W., south- west corner.	$\Big\{ \begin{array}{cccc} 48 & 26 & 44 , 321 \\ 103 & 53 & 04 , 372 \end{array} \Big.$	1369.0 89.8	200 03 24	20 03 25	Gladys	36.61	1.56360
Bonetraill schoolhouse, belfry, 1912	$\begin{cases} 48 \ 24 \ 53. \ 802 \\ 103 \ 50 \ 26. \ 702 \end{cases}$	1661.9 549.0	136 53 56.7 257 38 03.5 339 25 09.5	316 51 59.2 77 38 35.3 159 29 13.9	Gladys. Bonetraill Williston	4723.8 894.3 19185.5	3.674287 2.951476 4.282973
Bilby (U. S. and Canada boundary survey), 1912.	48 54 47.587 103 32 50.957	1469.9 1037.5	$\begin{array}{c} 125 & 06 & 13.4 \\ 130 & 18 & 54.6 \\ 207 & 43 & 56.3 \\ 269 & 20 & 23.4 \end{array}$	304 57 48.6 310 15.46.0 27 46 43.1 89 21 51.7	Bowie Ambrose southwest hase Schooi Ambroso	$16630.1 \\ 6678.1 \\ 9660.5 \\ 2383.5$	4.220895 3.824650 3.984999 3.377214
Jasper (U. S. and Canada boundary survey), 1912.	$\begin{cases} 48 \ 53 \ 27.806 \\ 103 \ 39 \ 27.787 \end{cases}$	858.9 566.0	155 14 51.3 228 43 25.6 252 59 58.6	335 11 25.8 48 51 11.6 73 04 57.6	Bowie. School. Bilhy.	13229.4 16716.5 8449.2	4. 121539 4. 223145 3. 926818
Amhrose Presbyterian Church stee- ple. 1812.	$\left\{\begin{matrix} 48 & 57 & 11.468 \\ 103 & 28 & 52.441 \\ \cdot \\ $	354.2 1066.9	29 14 38.8 89 19 23.0 105 22 35.3 175 04 31.6	209 13 07.2 269 13 14.4 285 21 10.4 355 04 18.6	Ambrose. Ambrose southwest base. Bowle. School.	5062.4 9945.5 19154.0 4119.5	$\begin{array}{c} 3.704360\\ 3.997625\\ 4.282259\\ 3.614845 \end{array}$

¹ Cbecked by vertical angles only.

.

.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Principal points. Arapahoe, 1891	° ′ ″ 38 46 01.519 102 05 43.832	46. 8 1059. 4	° / // 201 13 23.16 225 59 04.46 253 12 17.04	° ' '' 21 18 21.15 46 11 49.31 73 24 03.41	McLane Turtle. Curlew	<i>Meters.</i> 31530, 12 40747, 11 28396, 26	4. 4987257 4. 6100968 4. 4532612
Monotony, 1892	$\begin{cases} 39 \ 01 \ 44.752 \\ 102 \ 14 \ 58.626 \end{cases}$	1380. 1 1410. 2	269 13 17.61 297 10 24.65 335 16 03.18	89 24 05.78 117 28 01.65 155 21 51.53	McLane Curlew Arapahoe	24759. 27 45596. 54 32010. 98	4. 3937378 4. 6589319 4. 5052989
Cheyenne Wells, 1892	$\left\{ \begin{matrix} 38 & 57 & 03. & 559 \\ 102 & 24 & 01. & 683 \end{matrix} \right.$	109.7 40.5	236 23 24.28 307 32 45.61	56 29 05.96 127 44 14.39	Monotony Arapahoe.	15684.55 33427.32	4. 1954719 4. 5241016
First View, 1892	$\begin{cases} 38 \ 47 \ 42.811 \\ 102 \ 32 \ 55.360 \end{cases}$	1320. 2 1336. 0	216 36 11.70 224 53 00.40 274 23 34.75	36 41 46.63 45 04 16.73 94 40 36.62	Cheyenne Wells Monotony Arapahoe.	21552, 31 36702, 02 39503, 36	4. 3334939 4. 5646899 4. 5966341
Landsman, 1892	$\begin{cases} 38 \ 56 \ 52. \ 445 \\ 102 \ 35 \ 15. \ 085 \end{cases}$	1617.3 363.2	252 46 51.94 268 43 49.68 348 44 50.91	72 59 37.29 88 50 53.00 168 46 18.60	Monotony Cheyenne Wells. First View	30633.15 16219.55 17280.17	4. 4861917 4. 2100388 4. 2375479
Kit Carson, 1881	$\begin{cases} 38 & 42 & 07.623 \\ 102 & 51 & 35.083 \end{cases}$	235.1 847.7	220 49 17.49 248 59 00.89	40 59 31.89 69 10 41.73	Landsman First View	36101.18 28947.57	4. 5575214 4. 4616121
Eureka, 1881	$\begin{cases} 38 58 40.110 \\ 102 51 46.059 \\ - \end{cases}$	1237.0 1108.7	277 50 07.94 306 32 29.34 359 30 12.57	98 00 31.08 126 44 19.16 179 30 19.45	Landsman First Vlew Kít Carson.	24088.66 33963.08 30605.63	4.3818126 4.5310070 4.4858014
Aroya, 1881	$\Big\{ \begin{matrix} 38 & 48 & 10,006 \\ 103 & 10 & 55,610 \end{matrix} \Big.$	308.5 1341.9	234 51 24.77 291 38 19.34	55 03 26.50 111 50 25.78	Eureka. Kit Carson	33839.18 30169.10	4. 5294198 4. 4795624
Overland, 1881	$\begin{cases} 39 \ 02 \ 20, 344 \\ 103 \ 10 \ 15, 645 \end{cases}$	627.4 376.3	284 10 31.14 324 03 32.14 2 06 22.47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Eureka. Kit Carson. Aroya	27547.64 46132.24 26239.18	4. 4400844 4. 6640046 4. 4189503
Hugo, 1880	$\begin{cases} 39 & 04 & 33. 113 \\ 103 & 30 & 48. 995 \end{cases}$	1021.2 1177.7	277 45 10.33 316 25 21.51	97 58 07.46 136 37 51.55	Overland. Aroya	29936.01 41774.60	4. 4761939 4. 6209123
Adobe, 1881	$\begin{cases} 38 \ 40 \ 40. 853 \\ 103 \ 33 \ 16. 360 \end{cases}$	1259.8 395.5	184 35 08.04 219 35 57.43 246 43 34.10	4 36 40.53 39 50 23.69 66 57 33.13	Hugo Overland. Aroya	44308, 31 52095, 98 35218, 28	4.6464851 4.7168042 4.5467681
Square Bluffs, 1880	$\left\{ \begin{matrix} 38 & 51 & 08. 351 \\ 103 & 49 & 43. 645 \end{matrix} \right.$	257.5 1052.4	227 38 51.91 308 58 58.77	47 50 45.42 129 09 16.94	Hugo. Adobe	36906.45 30700.94	4.5671023 4.4871516
Holt, 1880	{ 39 02 20.996 103 58 17.376	647.5 417.9	263 59 12.25 329 08 28.63	84 16 30.89 149 13 51.55	Hugo Square Bluffs	39842.50 24151.46	4.6003466 4.3829433
Cramer Gulch, 1880	$\left\{\begin{array}{l} 38 \ 35 \ 36.137 \\ 103 \ 55 \ 54.360 \end{array}\right.$	1114.3 1315.6	197 16 18.69 253 55 05.62	17 20 10.59 74 09 13.51	Square Bluffs Adobe	30108.03 34162.64	4. 4786823 4. 5335514
Blg Springs, 1880	$\left\{\begin{array}{l} 38 \ 45 \ 06. \ 471 \\ 104 \ 15 \ 09. \ 707 \end{array}\right.$	199.5 234.4	253 00 32.12 302 05 50.30	73 16 28.40 122 17 52.24	Square Bluffs. Cramer Gulch.	38478.04 33004.99	4.5852130 4.5185796
Holcolm Hills, 1880	$\begin{cases} 39 \ 00 \ 08. \ 200 \\ 104 \ 18 \ 59. \ 830 \end{cases}$	252.9 1439.7	262 05 24.21 291 19 38.13 348 41 52.39	82 18 26.48 111 38 01.61 168 44 16.83	Holt. Square Bluffs Big Springs	30168, 27 45460, 73 28353, 95	$\begin{array}{r} 4.\ 4795504\\ 4.\ 6576364\\ 4.\ 4526136\end{array}$
Divide, 1879	$\begin{cases} 39 \ 04 \ 15. \ 307 \\ 104 \ 30 \ 44. \ 631 \end{cases}$	472.0 1072.9	294 08 37.34 327 28 05.73	114 16 01.23 147 37 52.97	Holcolm Hills Blg Springs	18585. 24 41981. 08	4. 2691681 4. 6230536
Corral Bluffs, 1879	$\begin{cases} 38 \ 52 \ 11. \ 680 \\ 104 \ 35 \ 34. \ 310 \end{cases}$	360.2 827.2	197 19 46.26 238 23 05.31 293 49 24.17	17 22 48.45 58 33 30.29 114 02 11.69	Divide Holcolm Hills Big Springs	23378.69 28100.32 32325.13	4.3688201 4.4487113 4.5095403
El Paso east base, 1879	38 57 22.331 104 27 41.954	638.6 1010.2	49 57 08.67 160 58 32.80 247 48 32.32 321 17 46.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Corral Bluffs. Divide. Holcolm Hills. Big Springs.	14875.45 13472.04 13568.80 29050.07	4. 1724701 4. 1294334 4. 1325413 4. 4631471
El Paso west base, 1879	$\left\{ \begin{matrix} 38 & 58 & 43.188 \\ 104 & 35 & 19.292 \end{matrix} \right.$	1331.9 464.4	$\begin{array}{c} 212 \ 48 \ 09.30 \\ 263 \ 34 \ 07.03 \\ 282 \ 43 \ 12.26 \\ 1 \ 43 \ 03.62 \end{array}$	32 51 02.24 83 44 23.29 102 47 59.87 181 42 54.18	Divide Holcolm Hills. El Paso east base Corral Bluffs	12187.82 23717.78 11288.98 12078.20	4.0859261 4.3750740 4.0526549 4.0820023
Plateau, 1894	$\begin{cases} 38 \ 23 \ 32. \ 404 \\ 104 \ 33 \ 17. \ 232 \end{cases}$	999.2 418.2	176 25 59.15 213 19 18.60	356 24 33.57 33 30 36.67	Corral Bluffs Big Springs	53117.55 47804.45	4. 7252380 4. 6794683
Pikes Peak, 1895	$\left\{\begin{matrix} 38 & 50 & 26.293 \\ 105 & 02 & 37.268 \end{matrix}\right.$	810.8 898.8	240 47 55.04 277 55 08.54 319 17 43.98	61 07 57.56 98 24 52.70 139 36 02.44	Divide Blg Springs Plateau	52672.80 69422.24 65494.52	4. 7215864 4. 8414986 4. 8162049
Bison, 1894	$\left\{ \begin{matrix} 39 & 14 & 18.521 \\ 105 & 29 & 50.196 \end{matrix} \right.$	571.2 1203.8	282 00 51.85 318 12 49.14	102 38 10.61 138 29 57.66	Dlvide Pikes Peak	87140.73 59100.81	4.9402212 4.7715934
Mount Ouray, 1894	$\begin{cases} 38 \ 25 \ 22.175 \\ 106 \ 13 \ 27.238 \end{cases}$	683.8 660.8	214 39 19.73 245 20 54.82 270 48 39 57	35 06 40.72 66 05 08.20 91 50 53 46	Blson Pikes Peak Plateau	110376.78 112774.26 145857 21	5.0428777 5.0522100 5.1639270

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Statlon.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued.	38 50 11.423 104 49 27.609	352.2 665.9	26 52 25.0	° / ″ 206 52 13.8	Colorado Springs United States Engineers astronomic	Meters. 951.4	2.978388
Colorado Springs public schoolhouse, flagstaff on clock tower, 1879.			35 37 28.6 67 53 25.6	215 37 23.9 247 50 59.3	Station. Colorado Springs Coast and Geodetic Survey latitude and longitude. Bear Creek.	310.8 6077.6	2.492500 3.783730
Monte Rosa, 1895	38 45 15.218 104 56 50.785	469.3 1226.3	134 10 27.4 138 57 09.00 226 53 18.30	314 07 19.0 318 53 31.90 47 09 42.06	Glen Eyrie Pikes Peak Divide	10090.4 12724.92 51573.01	4.003908 4.1046552 4.7124225
Table, 1895	$\begin{cases} 39 \ 14 \ 02.700 \\ 104 \ 34 \ 33.222 \end{cases}$	83.3 796.8	240 02 18.43 343 07 19.5 42 59 14.4 131 18 57.3	90 28 24.02 163 09 43.8 222 41 33.7 310 54 25.7	Divide Pikes Peak. Morrison	18927.3 59566.9 73493.4	4.2770884 4.7750052 4.8662481
Arapahoe Peak, summit, 1895	40 01 19.800 105 38 37.018	610.7 877.9	313 19 25.4 317 00 08.9 338 29 55.4 351 44 12.1	133 00 17.1 137 43 21.9 157 52 47.1 171 49 48.1	Table. Divide. Pikes Peak. Bison.	126723.7 143555.2 140042.0 87911.8	5. 1028578 5. 1570188 5. 1462523 4. 9440471
Longs Peak, 1895	$\left\{\begin{array}{c} 40 \ 15 \ 22,539 \\ 105 \ 36 \ 57,124 \end{array}\right\}$	695.2 1350.0	321 31 08.6 323 54 37.3 342 26 27.0 354 49 19.8	142 11 02.7 144 36 53.1 162 48 18.7 174 53 52.7	Table. Divide. Pikes Peak. Bison.	144308.4 162127.0 164682.3 113458.0	5.1592910 5.2098553 5.2166469 5.0548352
Camerons Cone, ¹ 1895	$ \begin{cases} 38 50 34.31 \\ 104 59 01.61 \end{cases} $	1057.9 38.8	134 48 43.3 238 04 10.3	314 29 18.9 58 21 57.3	Bison. Divide	62493 48068	4.795829 4.681852
Greenhorn Mountain, cairn, 1895	$\left\{\begin{matrix} 37 & 52 & 53.319 \\ 105 & 00 & 46.325 \end{matrix}\right.$	1643.8 1132.1	164 29 33.0 178 33 37.2 198 08 51.5 215 10 01.1	$\begin{array}{r} 344 \ 11 \ 25.9 \\ 358 \ 32 \ 28.4 \\ 18 \ 27 \ 32.5 \\ 35 \ 26 \ 59.5 \end{array}$	Bison Pikes Peak. Divide. Plateau	156438.3 106501.8 139066.6 69484.8	5.194343 5.027357 5.143223 4.841890
East Spanish Peak, 1879	$\left\{ \begin{matrix} 37 & 23 & 36.421 \\ 104 & 55 & 10.560 \end{matrix} \right.$	1122.8 259.8	176 09 46.0 190 42 51.7 196 01 51.0 201 00 29.0	$\begin{array}{c} 356 & 05 & 10.2 \\ 10 & 57 & 58.9 \\ 16 & 15 & 17.6 \\ 21 & 25 & 09.6 \end{array}$	Pikes Peak Divide. Plateau Big Springs	161000.6 189578.7 115418.6 161727.4	5.2068274 5.2777898 5.0622758 5.2087833
West Spanish Peak, 1879	$\left\{\begin{matrix} 37 & 22 & 41.316 \\ 104 & 59 & 32.927 \end{matrix}\right.$	1273.7 810.0	178 25 51.8 192 27 48.2 198 44 58.5 202 50 13.1	358 23 58.0 12 45 37.6 19 01 06.1 23 17 35.2	Pikes Peak. Divide. Plateau. Big Springs.	162393.3 192539.8 118969.8 165713.6	5. 2105683 5. 2845200 5. 0754360 5. 2193581
- Platte Peak, 1895	$\left\{\begin{matrix} 39 & 15 & 37,709 \\ 105 & 06 & 02,702 \\ \end{matrix}\right\}$	1162.9 64.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	347 18 23.8 93 51 57.5 112 40 04.0 173 58 04.0	Morrison Table Divide Pikes Peak	46524.9 45403.4 55031.5 46869.0	4.667685 4.657088 4.740611 4.670886
Sierra Blanca Peak, ¹ 1894	$\left\{\begin{array}{rrrr} 37 & 34 & 39.19 \\ 105 & 29 & 06.57 \end{array}\right.$	$1208.2 \\ 161.2$	145 32 48.3 195 16 56.3	$\begin{array}{c} 325 \ 05 \ 30.3 \\ 15 \ 33 \ 19.6 \end{array}$	Mount Ouray Pikes Peak	114088 145434	5.057241 5.162665
Crestone Peak, 1894	$\begin{cases} 37 \ 57 \ 58.955 \\ 105 \ 35 \ 02.866 \end{cases}$	1817.5 70.0	$\begin{array}{c} 132 \ 17 \ 47.0 \\ 183 \ 02 \ 23.5 \\ 205 \ 46 \ 25.1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mount Ouray. Bison Pikes Peak	75572.5 141412.9 107917.3	4.878364 5.150489 5.033091
Hunts Peak, 1894	$\left\{\begin{matrix} 38 & 22 & 59. 973 \\ 105 & 56 & 46.061 \\ \end{matrix}\right.$	1849, 2 1117, 9	$\begin{array}{c} 100 \ 19 \ 02. \ 8 \\ 202 \ 11 \ 13. \ 2 \\ 269 \ 05 \ 48. \ 2 \\ 236 \ 51 \ 47. \ 7 \end{array}$	280 08 40.9 22 28 06.0 89 57 38.7 57 25 35.3	Mount Ouray Bison. Plateau. Pikes Peak.	24685.4 102623.5 121564.8 93569.2	4.392441 5.011247 5.084807 4.971133
Rito Alto, cairn, 1894	$\left\{\begin{matrix} 38 & 13 & 10.\ 209 \\ 105 & 45 & 21.\ 582 \end{matrix}\right\}$	314.8 525.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298 43 01.1 11 19 48.0 42 14 11.5 80 01 30.1	Mount Ouray. Blson Pikes Peak Piateau	46755.2 115329.9 92799.4 106804.1	4.669830 5.061942 4.967545 5.028588
Grays Peak, summit, 1894	$\begin{cases} 39 \ 38 \ 01.563 \\ 105 \ 49 \ 00.008 \end{cases}$	48.1 0.2	298 39 04.8 322 35 41.1 327 49 40.9	119 28 42.2 143 05 01.2 148 01 51.2	Divide Pikes Peak Bison	$\begin{array}{c} 128621.4 \\ 110484.5 \\ 51788.8 \end{array}$	5. 1093133 5. 0433016 4. 7142353
Mount Evans, 1894	39 35 18.780 105 38 35.495	579.2 847.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 232 \ 38 \ 57.0 \\ 76 \ 17 \ 28.6 \\ 143 \ 30 \ 54.2 \\ 120 \ 52 \ 19.7 \\ 148 \ 14 \ 31.1 \\ 162 \ 07 \ 42.1 \end{array}$	Mount Elbert Morrison Table Divide Pikes Peak Bison.	$\begin{array}{c} 86630, 0\\ 37492, 0\\ 99997, 9\\ 113176, 9\\ 97851, 8\\ 40846, 6\end{array}$	4. 937668 4. 5739391 4. 9999900 5. 0537579 4. 9905690 4. 6111559
Buffalo Peak, 1894	$\begin{cases} 38 \ 59 \ 30. \ 76 \\ 106 \ 07 \ 28. \ 01 \end{cases}$	948.5 674.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	296 39 59 63 25 05 187 47 33	Mount Elbert Bison Mount Ouray	31061 60760 63762	4. 492217 4. 783616 4. 804565
Antero, cairn, 1894	$\left\{\begin{matrix} 38 & 19 & 30.234 \\ 106 & 13 & 04.362 \end{matrix}\right.$	932. 2 106. 0	75 54 53.6 135 13 48.1 177 04 21.5	255 08 44.8 314 40 47.1 357 04 07.3	Uncompany Mountain Mount Ouray	$\begin{array}{c} 112513.3\\ 108303.9\\ 10865.8 \end{array}$	5.051204 5.034644 4.036063
Mount Shavano, 1893	$\left\{\begin{matrix}38&37&09.150\\106&14&19.575\end{matrix}\right.$	282.1 473.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 19 08.1 176 40 33.5 240 00 22.3 300 09 59.2	Bison Mount Ouray Uncompabgre Treasury Mountain	94129.1 21836.0 122961.4 86605.2	4.973724 4.339174 5.089769 4.937544

¹ No check on this position.

.

.
GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Mount Harvard, cairn, 1894	38 55 28.365 106 19 12.944	874.6 311.8	° ' " 46 48 10.9 153 21 19.1 274 24 21.1 351 26 10.9	° , " 226 05 33.1 333 16 36.7 95 12 26.0 171 29 46.9	Uncompahgre Mount Elbert Pikes Peak. Mount Ouray	<i>Meters.</i> 137380.1 24022.1 111160.6 56317.8	5. 1379237 4. 3806105 5. 0459510 4. 7506458
Mount Princeton, cairn, 1894	$\left\{\begin{matrix} 38 & 44 & 57.560 \\ 106 & 14 & 31.029 \end{matrix}\right\}$	1774.9 749.2	55 09 26.2 156 47 56.3 264 03 47.9 357 33 18.4	234 23 58.2 336 40 17.3 84 48 50.7 177 33 58.2	Uncompahgre Mount Elbert Pikes Peak Mount Ouray	$\begin{array}{r} - \\ 130397.9 \\ 44536.5 \\ 104594.7 \\ 36275.6 \end{array}$	5. 1152705 4. 6487164 5. 0195096 4. 5596151
Mount Yale, 1894	38 50 39.561 106 18 47.823	1219.9 1153.3	49 48 30.5 159 28 08.6 269 48 52.1 350 33 44.5	229 05 39.4 339 23 10.8 90 36 38.8 170 37 04.7	Uncompahgre Mount Elbert Pikes Peak Mount Ouray	131906.6 32437.9 110226.9 47426.8	$\begin{array}{c} 5.1202666\\ 4.5110530\\ 5.0422876\\ 4.6760239 \end{array}$
Leadville, Ninth Street schoolhouse, cupola, ¹ 1894.	$\begin{cases} 39 \ 15 \ 05.26 \\ 106 \ 17 \ 22.82 \end{cases}$	$162.2 \\ 547.2$	4 10 50 42 09 48	184 09 41 222 03 55	Mount Harvard Mount Elbert	36389.0 19990.2	4.560970 4.300818
Mount Massive, caim, 1894	$\begin{cases} 39 \ 11 \ 15. \ 376 \\ 106 \ 28 \ 30. \ 586 \end{cases}$	474.2 734.0	341 16 22.6 70 34 26.9 265 51 54.8	$\begin{array}{c} 161 \ 17 \ 31.6 \\ 250 \ 10 \ 51.6 \\ 86 \ 29 \ 00.6 \end{array}$	Mount Elbert. Treasury Mountain. Bison.	8171. 8 57248. 6 84646. 5	3. 912320 4. 757765 4. 927609
Mount of the Holy Cross, cairn, ¹ 1893	$\left\{\begin{array}{r} 39 \ 28 \ 01.17 \\ 106 \ 28 \ 52.12 \end{array}\right.$	36.1 1246.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175 23 22.9 226 29 48.4	Mount Elhert Treasury Mountain	38884 73248	4.589766 4.864797
La Garita, king summit, 1893	$\begin{cases} 37 \ 55 \ 20.52 \\ 106 \ 32 \ 24.77 \end{cases}$	632.8 605.0	101 51 48.1 158 16 31.4 206 23 47.3	$\begin{array}{c} 281 \ 17 \ 46.1 \\ 337 \ 55 \ 41.0 \\ 26 \ 35 \ 30.3 \end{array}$	Uncompanyee. Treasury Mountain Mount Ouray	82612.6 130647.2 62068.0	$\begin{array}{r} 4.917046\\ 5.116100\\ 4.792868 \end{array}$
La Garita, range peak, 1893	$\begin{cases} 38 \ 01 \ 23. \ 690 \\ 106 \ 55 \ 22. \ 370 \end{cases}$	730. 4 545. 6	96 39 51.4 172 07 42.7 233 50 36.9	$\begin{array}{c} 276 \ 19 \ 56.2 \\ 352 \ 01 \ 08.9 \\ 54 \ 16 \ 33.1 \end{array}$	Uncompany Mountain Treasury Mountain Mount Ouray	47591.8 111085.9 75564.3	4.677532 5.045659 4.878317
Gunnison azimuth, 1894	$\left\{ \begin{array}{l} 38 \\ 32 \\ 106 \\ 55 \\ 26 \\ 644 \end{array} \right. 644$	1436.8 645.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102 51 57.92 221 35 09.72	Mount Ouray Uncompangre	62581.67 70599.94	4. 7964471 4. 8488043
West Elk Peak, cairn, 1894	38 43 05.077 107 11 55.992	156.5 1352.8	17 49 15.2 84 13 23.1 194 47 55.8 290 47 41.0	197 39 27.8 262 57 24.0 14.51 42.4 111 24 08.6	Uncompanyre. Mount Waas. Treasury Mountain Mount Ouray	75322.0 177741.6 34031.6 91044.1	4.876922 5.249789 4.531882 4.959252
Gunnison Peak, caim, 1893	$\begin{cases} 38 \ 48 \ 44. \ 035 \\ 107 \ 22 \ 56. \ 680 \end{cases}$	1357.8 1367.6	4 49 53.7 79 53 25.0 227 33 32.2	184 46 56.5 258 44 14.3 47 44 14.2	Uncompangre Mount Waas Treasury Mountain	82482.9 163378.2 33318.1	4.916364 5.213194 4.522680
Leon Peak, low cairn, 1893	{39 04 46.496 107 50 36.104	1433.9 867.8	63 55 06.5 117 23 23.4 276 09 57.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mount Waas Tavaputs Treasury Mountain	134339.8 112498.9 64885.8	5.1282046 5.0511484 4.8121500
North Mann, cairn, ¹ 1891	$\left\{\begin{array}{rrrr} 39 \ 23 \ 12. \ 25 \\ 107 \ 51 \ 56. \ 34 \end{array}\right.$	377.8 1348.3	51 52 13.2 100 12 10.6	231 00 50.7 279 28 42.9	Mount Waas Tavaputs	150924.2 99544.9	5.178759 4.998019
South Mann, cairn, ¹ 1891	$\left\{\begin{array}{rrrr} 39 & 21 & 08.58 \\ 107 & 53 & 47.10 \end{array}\right.$	264.6 1127.8	52 23 00.4 102 39 37.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mount Waas Tavaputs	146490.0 97701.4	5.165808 4.989901
Mount Sneffels, cairn, 1895	$\left\{\begin{matrix} 38 & 00 & 14.236 \\ 107 & 47 & 30.523 \end{matrix}\right.$	438.9 744.7	$\begin{array}{c} 115 \ 45 \ 32.0 \\ 148 \ 38 \ 30.5 \\ 161 \ 21 \ 48.0 \\ 208 \ 06 \ 53.5 \\ 255 \ 20 \ 34.2 \end{array}$	294 52 11.0 327 52 54.5 341 07 21.4 28 32 47.6 75 32 46.8	Mount Waas. Tavaputs. Mesa. Treasury Mountain. Uncompahgre	138962, 6 200485, 9 105090, 0 127427, 3 29952, 1	$\begin{array}{c} 5.1428980\\ 5.3020839\\ 5.0215613\\ 5.1052625\\ 4.4764271 \end{array}$
Wetterhorn, cigar peak, 1895	$\left\{\begin{array}{cccc} 38 & 03 & 38 & 972 \\ 107 & 30 & 37 & 123 \\ \end{array}\right.$	1201.7 905.0	110 00 16.2 142 07 26.8 148 09 38.4 198 36 28.5 254 07 18.4	288 56 25.0 321 11 14.0 327 44 40.6 18 51 52.2 74 09 06.5	Mount Waas Tavaputs Mesa. Treasury Mountain Uncompangre	$\begin{array}{c} 159305.1\\ 209346.3\\ 109951.0\\ 111776.6\\ 4445.6 \end{array}$	$\begin{array}{c} 5.\ 2022298\\ 5.\ 3208653\\ 5.\ 0411992\\ 5.\ 0483509\\ 3.\ 6479338 \end{array}$
Lone Cone, 1893	$\begin{cases} 37 \ 53 \ 17.100 \\ 108 \ 15 \ 17.852 \end{cases}$	527.2 436.2	130 37 30.1 183 21 34.3 218 33 36.0	310 01 24.6 3 24 24.3 39 16 45.1	Mount Waas Mesa Treasury Mountain	111697.3 112566.2 160690.6	5.0480428 5.0514081 5.2059905
Mount Wilson, 1893	$\left\{\begin{matrix} 37 & 50 & 21.321 \\ 107 & 59 & 28.028 \\ \end{matrix}\right.$	657.3 685.4	126 02 21.2 155 15 52.1 172 07 32.9 210 34 57.6 240 49 39.1	$\begin{array}{c} 305 \ 16 \ 29.6 \\ 334 \ 37 \ 49.5 \\ 352 \ 00 \ 33.2 \\ 31 \ 08 \ 14.8 \\ 61 \ 09 \ 11.6 \end{array}$	Mount Waas. Tavaputs. Mesa. Treasury Mountain. Uncompahgre	$\begin{array}{c} 133289.\ 3\\ 208393.\ 2\\ 118927.\ 3\\ 151956.\ 9\\ 53216.\ 5\end{array}$	5. 1247952 5. 3188835 5. 0752817 5. 1817205 4. 7260459
Mesa, 1893	$\begin{cases} 38 \ 54 \ 01. \ 482 \\ 108 \ 10 \ \ 44. \ 122 \end{cases}$	45.7 1063.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Uncompangre Mount Waas Tavaputs	$\begin{array}{c} 111255.\ 70\\99599.\ 56\\100670.\ 85\end{array}$	5.0463223 4.9982574 5.0029038
Chiquita, 1895	$\begin{cases} 38 & 54 & 38.264 \\ 108 & 39 & 06.632 \end{cases}$	1179.9 159.8	156 30 45.38 271 26 06.85 311 30 37.10	336 17 20.66 91 43 56.10 132 15 04.15	Tavaputs. Mesa Uncompahgre.:	76245, 93 41038, 42 139476, 30	4.8822167 4.6131906 5.1445004
Grand Junction stand pipe, 1895	$\begin{cases} 39 \ 04 \ 18,567 \\ 108 \ 33 \ 36,340 \end{cases}$	572.6 873.6	143 40 52.71 23 58 47.80 299 49 45.10	323 23 57.38 203 55 19.98 120 04 08.41	Tavaputs. Chiquita Mesa	64622.87 19580.84 38116.54	$\begin{array}{r} 4.8103862 \\ 4.2918314 \\ 4.5811135 \end{array}$

¹ No check on this position.

1

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

	and the second se						
Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rlthm.
Supplementary points-Continued. La Salle, northwest peak, cairn, 1893	38 32 48.012 109 13 58.653	1480. 5 1420. 3	• / // 328 57 57.8 358 12 44.0 10 57 49.2	• / // 148 58 10.5 178 12 53.7 190 56 50.2	Mount Waas Mount Peale Mount Waas azimuth mark	<i>Meters</i> , 956.0 11998.5 12099.3	2.980469 4.079129 4.082761
Le Salle, north peak, cairn, 1893	$\begin{cases} 38 \ 33 \ 02.190 \\ 109 \ 13 \ 41.442 \end{cases}$	67.5 1003.5	356 32 08.6 12 26 52.1 43 37 56.4	176 32 10.6 192 25 42.4 223 37 45.7	Mount Waas. Mount Waas azimuth mark La Salle northwest peak	1258.7 12612.0 604.0	3.099912 4.100784 2.781035
C. V. South, cairn, 1893	38 31 38.608 109 13 59.456	1190. 4 1440. 1	357 42 40.3 13 11 10.1 180 31 14.1 189 36 22.9 201 12 00.2	177 42 50.5 193 10 11.6 0 31 14.6 9 36 34.1 21 12 13.4	Mount Peale Mount Waas azimuth mark La Salle northwest peak La Salle north peak. Mount Waas	9860. 6 10002, 2 2140. 1 2613. 9 1416. 7	3.993901 4.000095 3.330435 3.417282 3.151283
C. V. North, cairn, 1893	38 32 04.699 109 14 04.874	144.9 118.1	350 44 08.9 357 10 43.5 11 31 38.8 186 26 07.6 197 44 53.4 231 15 30.0	$\begin{array}{c} 170 \ 44 \ 12.3 \\ 177 \ 10 \ 57.1 \\ 191 \ 30 \ 43.7 \\ 6 \ 26 \ 11.5 \\ 17 \ 45 \ 08.0 \\ 51 \ 15 \ 46.6 \end{array}$	C. V. South Mount Peale Mount Wass azimuth mark La Salle northwest peak La Salle north peak Mount Wass	815.2 10670.1 10760.1 1344.0 1861.3 825.1	2. 911237 4. 028169 4. 031815 3. 128390 3. 269812 2. 916486
North boundary, flag, Colorado- Utah, 1893.	38 33 57.976 109 03 34.184	1787.7 827.6	74 12 35.0 78 33 03.2 81 56 02.4 83 22 47.1	$\begin{array}{c} 254 & 06 & 05.3 \\ 258 & 26 & 46.7 \\ 261 & 49 & 33.2 \\ 263 & 16 & 28.6 \end{array}$	C. V. South Mount Waas La Salle northwest peak La Salle north peak	15739.7 14928.0 15273.4 14803.4	4. 196996 4. 174001 4. 183935 4. 170361
North boundary, stone, Colorado- Utah, 1893.	{ 38 33 56.987 {109 03 34.184	1757.2 827.6	180	0	North boundary, flag	30.48	1.48402
Middle boundary, monument, ¹ Colo- rado-Utah, 1893.	{ 38 30 44.20 {109 03 34.29	1362.7 830.9	101 38 04.2 106 11 22.5	281 31 48.0 286 05 04.3	Mount Waas La Salle, north peak	14935.2 15309.2	4.174211 4.184953
South boundary, Colorado-Utah, 1893	38 27 46.723 109 03 34.058	1440.7 825.7	120 06 12.2 121 35 51.4 123 30 57.0	299 59 56.0 301 29 22.5 303 24 38.8	Mount Waas. La Salle northwest peak. La Salle north peak	16915.6 17758.0 17640.8	4.228287 4.249394 4.246520
Mount Peale, 1893	38 26 19.073 109 13 43.219	588.1 1048.2	$\begin{array}{c} 76 \ 15 \ 00.2 \\ 141 \ 44 \ 57.6 \\ 180 \ 36 \ 38.1 \\ 188 \ 55 \ 25.9 \\ 240 \ 22 \ 35.7 \\ 284 \ 12 \ 05.2 \end{array}$	$\begin{array}{c} 255 \ 16 \ 04.3 \\ 321 \ 03 \ 55.4 \\ 0 \ 36 \ 41.1 \\ 9 \ 03 \ 51.8 \\ 61 \ 01 \ 57.0 \\ 105 \ 17 \ 44.2 \end{array}$	Mount Ellen Patmos Head Mount Waas Tavaputs Mesa Uncompahgre	$\begin{array}{c} 143118. 4\\ 151081. 5\\ 11174. 1\\ 123786. 6\\ 104757. 2\\ 159939. 9 \end{array}$	5. 1556954 5. 1792112 4. 0482135 5. 0926735 5. 0201837 5. 2039567
Middle La Salle peak, 1893	$\left\{\begin{matrix} 38 & 27 & 48.256 \\ 109 & 14 & 00.343 \end{matrix}\right.$	1487.9 8.3	75 08 25.9 141 12 57.5 183 37 33.9 241 48 23.6 285 06 38.1	254 09 39.6 320 32 05.5 3 37 47.6 62 27 56.2 106 12 28.8	Mount Ellen Patmos Head Mount Wass. Mesa. Uncompangre	143395.5 148671.4 8440.5 103791.3 161037.4	5. 1565357 5. 1722274 3. 9263693 5. 0161608 5. 2069268
Mount Waas azimuth mark, cairn, 1893.	$\begin{cases} 38 \ 26 \ 22. \ 765 \\ 109 \ 15 \ 33. \ 537 \end{cases}$	701.9 813.4	119 33 25.5 146 15 45.4 194 09 43.3	299 23 06.6 325 58 38.9 14 10 55.0	Moab Thompsons Springs, west tank Mount Waas	27669.6 71153.1 11406.8	4.4420020 4.8521938 4.0571630
Thompsons Springs, west tank, 1893.	$\begin{cases} 38 \ 58 \ 18.490 \\ 109 \ 42 \ 55.086 \end{cases}$	570. 1 1326. 2	318 23 10.3 323 15 05.5 45 45 47.6	138 41 30.1 143 33 10.6 225 04 42.6	Mount Waas Middle La Salle peak Mount Ellen	64067.1 70295.1 134482.8	4.8066349 4.8469252 5.1286669
Moah (Warner's ranch), 1893	$\begin{cases} 38 \ 33 \ 44.255 \\ 109 \ 32 \ 07.662 \end{cases}$	1364.6 185.5	275 20 01.8 297 03 30.2	95 31 33.2 117 14 57.8	Mount Waas	26984.1 30077.6	4.4311080 4.4782433
Moab ditch mark, 1893	38 33 45.268 109 32 07.541	1395.8 182.6	5 21 03.8	185 21 03.9	Moah (Warner's ranch)	31.387	1.49675
Valley Knoh, 1890	{ 38 59 05.726 110 04 18.539	176.6 446.2	159 55 09.07 303 42 45.63	339 45 52.74 124 14 29.12	Patmos Head Mount Waas	61195.29 88516.10	4.786718 4.947022
Hartman, 1898	39 01 49.899 110 09 54.939	1538.7 1321.4	301 59 43.3	122 03 15.0	Valley Knoh	9546.9	3.979864
Mlca, 1898	38 59 06.040 110 10 04.782	186.3 115.1	182 40 57.3 270 02 11.0	2 41 03.5 90 05 48.8	Hartman Valley Knoh	5058.5 8333.6	3.704018 3.920831
Reservoir, 1898	$\left\{\begin{matrix} 38 & 59 & 30.031 \\ 110 & 09 & 59.250 \end{matrix}\right.$	926.1 1425.9	181 22 38.5 275 11 33.0 10 12 06.3	1 22 41.2 95 15 07.3 190 12 02.8	Hartman Valley Knoh Mica	4314.4 8234.2 751.7	3. 634918 3. 915623 2. 87 6 024
Wash, 1398	39 00 10.767 110 11 27.605	332. 0 664. 4	216 05 38.9 300 34 04.0 315 01 58.9	36 06 37.2 120 34 59.6 135 02 51.0	Hartman Reservoir Mica	3783.5 2469.6 2820.8	3.577892 3.392620 3.450366
Green River east base, 1898	$\left\{\begin{matrix} 38 & 59 & 37.589\\ 110 & 10 & 15.338 \end{matrix}\right.$	1159.1 369.1	120 28 31.6 186 51 26.4 345 21 49.9 301 02 56.6	300 27 46.1 6 51 39.2 165 21 56.5 121 03 06.7	Wash. Hartman. Mica. Reservoir.	2017.7 4109.4 1005.5 451.9	3. 304849 3. 613783 3. 002381 2. 655053
Green River west hase, 1898	38 59 36.264 110 11 03.438	1118.3 82.7	151 20 28.0 267 58 25.6 277 05 16.3 303 25 41.9	331 20 12.8 87 58 55.9 97 05 56.7 123 26 18.8	Wash. Green River east base Reservoir. Mica.	1212.5 1158.3 1556.6 1691.6	3. 083697 3. 063808 3. 192187 3. 228293

¹ No check on this position.

2

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Green River north meridian, 1898	38 59 50. 639 110 09 55. 658	1561. 6 1339. 4	7 44 53.3 9 04 20.8 105 40 43.1 180 16 09.6	° , , , , 187 44 51.0 189 04 15.0 285 39 45.2 0 16 10.0	Reservoir. Mica. Wash. Hartman.	<i>Meters.</i> 641. 4 1392. 7 2298. 0 3677. 7	2.807099 3.143858 3.361345 3.565572
Green River south meridian, ¹ 1898	$\begin{cases} 38 59 30.690 \\ 110 09 55.658 \end{cases}$	946.4 1339.5	76 46 03.3 180 00 00.3	$\begin{array}{c} 256 \ 46 \ 01.0 \\ 0 \ 00 \ 00.3 \end{array}$	Reservoir. Green River north meridian	$\substack{\textbf{88.8}\\615.2}$	1.948533 2.788994
Green River longitude, 1898	38 59 30.288 110 09 55.658	934.0 1339.5	180 00 00.3	0 00 00.3	Green River south meridian	12.40	1.09342
Green River latitude, 1898	{ 38 59 30.288 110 09 55.712	934.0 1340.8	270 00 00.0	90 00 00.0	Green River longitude	1.30	0.1139
Cliff, 1998	$\left\{\begin{matrix} 39 & 03 & 51. & 601 \\ 110 & 12 & 22. & 122 \\ \end{matrix}\right.$	1591.2 531.8	316 39 53 338 42 59 339 25 23 349 05 46	136 41 26 158 44 19 159 26 50 169 06 21	Hartman Green River east base Mica Wasb	5158.7 8405.7 9405.2 6935.0	3.712538 3.924574 3.973368 3.841045
Green River schoolhouse, 1898	$\left\{\begin{matrix} 38 & 59 & 39.11 \\ 110 & 09 & 40.91 \\ \end{matrix}\right.$	1206.0 984.5	29 24 02 57 37 02 110 49 38 175 13 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mica. Reservoir. Wasb. Hartman.	1170 523 2747 4047	3.06836 2.71826 3.43884 3.60716
Green River botel, 1898	$\begin{cases} 38 \ 59 \ 28. 88 \\ 110 \ 09 \ 52. 56 \end{cases}$	890.6 1265.0	22 39 31 102 22 30 119 27 40	202 39 23 282 22 25 299 26 40	Mica. Reservoir Wash	763 165 2627	2.88274 2.21686 3.41939
San Rafael Knob, 1890	$\begin{cases} 38 \ 48 \ 47. \ 802 \\ 110 \ 51 \ 14. \ 159 \end{cases}$	1473.9 341.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302 37 56.4 31 27 23.5 177 25 07.2	Wasatch. Patmos Head Mount Ellen	$\begin{array}{c} 61817.2\\ 89518.6\\ 76877.0\end{array}$	4. 7911092 4. 9519133 4. 8857965
Mount Hilgard, cairn. 1884	$\left\{\begin{matrix} 38 & 40 & 06.364 \\ 111 & 38 & 25.973 \\ \end{matrix}\right.$	196.2 627.9	67 54 21.3 148 49 00.7 198 04 51.4 309 48 19.2	$\begin{array}{c} 247 \ 25 \ 30. 9 \\ 328 \ 27 \ 37. 3 \\ 18 \ 11 \ 54. 6 \\ 130 \ 19 \ 07. 1 \end{array}$	Tusbar. Scipio. Wasateb. Mount Ellen.	72705.0 94182.8 52178.2 94339.1	4. 8615643 4. 9739716 4. 7174887 4. 9746916
Monroe, 1885	38 37 33.071 112 00 57.117	1019.7 1381.6	$\begin{array}{c} 56 \ 34 \ 34.7 \\ 165 \ 19 \ 13.5 \\ 169 \ 04 \ 46.0 \\ 219 \ 44 \ 02.2 \\ 221 \ 46 \ 37.0 \\ 261 \ 39 \ 04.9 \end{array}$	$\begin{array}{c} 236 \ 19 \ 46.7 \\ 345 \ 14 \ 34.6 \\ 348 \ 57 \ 33.8 \\ 40 \ 00 \ 32.5 \\ 42 \ 07 \ 48.0 \\ 81 \ 53 \ 08.9 \end{array}$	Tusbar. Lone Tree. Scipio. Mooseneah. Wasatch. Mount Hilgard.	$\begin{array}{c} 41443.3\\ 42267.7\\ 86738.3\\ 59416.8\\ 73029.6\\ 33014.1\end{array}$	4. 617454 4. 626009 4. 938211 4. 773909 4. 863499 4. 518700
Mount Alice, cairn, ² 1890	$\left\{\begin{array}{r} 38 \ 41 \ 03. \ 66 \\ 111 \ 32 \ 35. \ 74 \end{array}\right.$	112. 8 863. 8	189 14 24.0 314 13 24.9	9 17 47.3 134 40 35.6	Wasatch	48450.8 89227.7	4.6853010 4.9504999
Mooseneah, 1890	$\left\{\begin{matrix} 39 & 02 & 11.911 \\ 111 & 34 & 37.961 \\ \\ \end{matrix}\right.$	367.3 913.0	$\begin{array}{c} 46 \ 55 \ 09.2 \\ 126 \ 14 \ 11.7 \\ 169 \ 21 \ 38.0 \\ 201 \ 43 \ 34.0 \\ 230 \ 52 \ 19.3 \\ 326 \ 33 \ 15.0 \end{array}$	$\begin{array}{c} 226 \ 23 \ 49.2 \\ 305 \ 50 \ 19.2 \\ 349 \ 14 \ 26.8 \\ 21 \ 50 \ 08.8 \\ 50 \ 57 \ 00.4 \\ 147 \ 01 \ 48.3 \end{array}$	Tushar Scipio Mount Neho Sanpete. Wasatch Mount Elien	$\begin{array}{c} 99807.0\\ 67222.7\\ 87476.0\\ 40386.7\\ 13814.0\\ 121421.9 \end{array}$	4.999161 4.827516 4.941889 4.606238 4.140318 5.084297
Gunnison astronomic, 1890	$\begin{cases} 39 \ 09 \ 31. \ 032 \\ 111 \ 49 \ 13. \ 671 \end{cases}$	957.0 328.2	$\begin{array}{c} 234 \ 56 \ 09.2 \\ 302 \ 41 \ 03.1 \\ 16 \ 03 \ 21.8 \end{array}$	$\begin{array}{c} 55 \ 11 \ 13.7 \\ 122 \ 50 \ 15.3 \\ 195 \ 56 \ 00.0 \end{array}$	West Sanpete Mooseneah Monroe	41790.6 25024.1 61524.9	4.621079 4.398359 4.789051
Sanpete, 1884	39 22 28.049 111 24 13.389	865.0 320.5	$\begin{array}{c} 8 \ 28 \ 21.75 \\ 39 \ 50 \ 36.98 \\ 91 \ 56 \ 53.72 \\ 147 \ 24 \ 59.19 \\ 261 \ 01 \ 49.09 \end{array}$	$\begin{array}{c} 188 \ 26 \ 28.81 \\ 219 \ 12 \ 37.77 \\ 271 \ 26 \ 19.72 \\ 327 \ 11 \ 08.42 \\ 81 \ 43 \ 16.41 \end{array}$	Wasatch. Tushar. Scipio. Mount Nebo. Patmos Head.	$\begin{array}{c} 29109.9\\ 137431.6\\ 69205.8\\ 57576.4\\ 94705.7\end{array}$	4.4640406 5.1380865 4.8401427 4.7602447 4.9763759
West Sanpete, 1884	$\begin{cases} 39 \ 22 \ 27.122 \\ 111 \ 25 \ 24.621 \end{cases}$	836.4 589.4	269 01 59.9 5 07 14.9 19 33 25.1	89 02 45.1 185 06 07.0 199 27 35.3	Sanpete Wasatcb Mooseneah	1705.3 - 28879.7 39757.2	$3.231795 \\ 4.460592 \\ 4.599416$
Salt Creek, cairn, 1884	39 39 54.642 111 44 33.450	1685.1 797.4	52 59 33.0 139 47 17.7 173 00 08.5 337 42 21.7	$\begin{array}{c} 232 \ 41 \ 49.9 \\ 319 \ 13 \ 11.5 \\ 352 \ 59 \ 15.1 \\ 157 \ 53 \ 22.7 \end{array}$	Scipio. Deseret. Mount Nebo. Wasatch.	$\begin{array}{r} 50053.8\\ 116021.0\\ 16296.8\\ 65960.5\end{array}$	4.6994371 5.0645366 4.2121034 4.8192841
Nephi Bench, 1887	$\left\{\begin{array}{c} 39 \ 42 \ 16.447 \\ 111 \ 50 \ 28.717 \end{array}\right.$	507.2 684.1	208 42 31.3 297 17 18.6	$\begin{array}{c} 28 \ 45 \ 25.2 \\ 117 \ 21 \ 05.4 \end{array}$	Mount Nebo Salt Creek	$13459.0 \\ 9528.8$	4.129013 3.979039
Cedar, 1884	$\left\{\begin{matrix} 39 & 37 & 30.677 \\ 111 & 56 & 40.083 \\ \end{matrix}\right\}$	946.1 956.0	216 33 33.0 225 05 35.4 255 33 43.0 41 14 27.6	36 40 24.0 45 09 32.4 75 41 26.5 221 04 27.3	Mount Nebo. Nephi Bencb. Salt Crcek. Scipio.	$\begin{array}{r} 25683.8\\ 12491.4\\ 17885.3\\ 34256.0 \end{array}$	4.409660 4.096610 4.252497 4.534737
Levan, 1884	$\begin{cases} 39 \ 31 \ 07.576 \\ 111 \ 48 \ 40.403 \end{cases}$	233.6 965.1	$\begin{array}{c} 67 \ 47 \ 50.6 \\ 135 \ 56 \ 34.4 \\ 186 \ 50 \ 15.4 \end{array}$	$\begin{array}{c} 247 \ 32 \ 46.1 \\ 315 \ 51 \ 28.8 \\ 6 \ 51 \ 59.7 \end{array}$	Scipio. Cedar. Mount Nebo.	36788.8 16452.3 32663.3	$\begin{array}{r} \textbf{4.565716} \\ \textbf{4.216227} \\ \textbf{4.514060} \end{array}$
South Juab base, 1884	$\begin{cases} 39 \ 32 \ 14.201 \\ 111 \ 55 \ 01.457 \end{cases}$	438.0 34.8	57 20 06.5 166 27 00.6 203 05 13.4	237 09 04.1 346 25 57.8 23 11 01.1	Scipio. Cedar Mount Nebo.	29628.7 10040.0 33031.7	4.471712 4.001732 4.518931

¹ No check on this position.

² Cbecked by vertical angles only.

GEOGRAPHIC POSITIONS—Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and iongitudo.	Sec- onds in meters,	Azimuth.	Back azimuth.	To station.	Distanco.	Loga- rithm.
Supplementary points—Continued. Mount Bruin, summit, 1887	$\begin{cases} 39 \ 38 \ 41.473 \\ 110 \ 20 \ 50.412 \end{cases}$	1279.0 1202.0	• / // 350 21 27.5 58 40 11.4 99 04 16.4	• / // 170 22 39.1 237 58 05.2 278 09 52.5	Patmos Head Wasateb Mount Nebo	<i>Meters.</i> 16044.3 111980.9 122999.1	4.2053214 5.0491441 5.0899020
Spanish Fork, cairn, 1887	$\begin{cases} 40 \ 05 \ 17.553 \\ 111 \ 31 \ 37.650 \end{cases}$	541.4 892.0	301 42 08.0 33 35 49.3 114 10 48.2	122 28 38.5 213 26 37.5 293 28 11.5	Patmos Head Mount Nebo Deseret.	$\begin{array}{c} 122430.6\\ 36936.9\\ 102142.4 \end{array}$	5.0378901 4.5674605 5.0092063
Mount Bartles, summit, 1887	$\begin{cases} 39 \ 42 \ 06.1 \\ 110 \ 23 \ 19.8 \end{cases}$	$\begin{array}{c} 188.1\\ 471.8\end{array}$	344 12 33 54 57 05 96 18 17	164 15 20 234 16 32 275 25 27	Patmos Head Wasateb Mount Nebo	22994 112456 118625	$\begin{array}{r} \textbf{4.361613} \\ \textbf{5.050981} \\ \textbf{5.074175} \end{array}$
Strawberry North, summit, 1887	$\begin{cases} 40 \ 02 \ 50.77 \\ 110 \ 59 \ 02.22 \end{cases}$	1566.0 52.6	316 23 25 68 47 47 108 40 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Patmos Head. Mount Nebo. Deserct.	83284 71813 146991	$\begin{array}{r} 4.920561 \\ 4.856201 \\ 5.167292 \end{array}$
Indian Head, summit, 1884	$\begin{cases} 39 & 52 & 35.50 \\ 110 & 54 & 37.87 \end{cases}$	1094.8 899.9	308 58 42 84 35 12 151 04 58	129 21 29 264 02 19 330 27 06	Patmos Head Mount Nebo Ogden Peak	65770 73566 168433	$\begin{array}{r} 4.818026 \\ 4.866680 \\ 5.226427 \end{array}$
Springville Peak, monument, 1884	$\left\{\begin{matrix}40 & 14 & 40.528\\111 & 33 & 22.854\end{matrix}\right\}$	$1250.1 \\ 540.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128 13 50.42 176 00 01.94 200 18 05.73 210 16 48.81	Patmos Head. Wasalch. Mount Nebo. Sciplo.	134347.9 125714.5 51370.0 109736.5	$\begin{array}{c} 5.1282309\\ 5.0993853\\ 4.7107099\\ 5.0403511 \end{array}$
Lone Tree, cairn, 1884	$\left\{\begin{matrix} 38 & 59 & 38.822 \\ 112 & 08 & 22.199 \end{matrix}\right\}$	1197.1 534.3	20 28 01.3 172 33 36.9 199 25 31.0 257 02 33.8	$\begin{array}{c} 200 \ 17 \ 48.0 \\ 352 \ 31 \ 04.3 \\ 19 \ 39 \ 45.0 \\ 77 \ 28 \ 30.3 \end{array}$	Tushar. Scipio. Mount Nebo. Wasatch.	68043.3 44647.5 96219.4 60897.4	4.8327851 4.6497973 4.9832627 4.7845984
South Scipio, cairn, 1884	$\left\{\begin{matrix} 39 & 17 & 42.192 \\ 112 & 11 & 48.302 \\ \end{matrix}\right.$	1301.2 1157.5	$\begin{array}{c} 175 \ 31 \ 48.5 \\ 212 \ 45 \ 25.2 \\ 287 \ 02 \ 44.6 \\ . 10 \ 56 \ 46.0 \end{array}$	355 31 26.0 33 01 53.0 107 30 56.3 190 48 39.9	Scipio. Mount Nebo. Wasatcb. Tushar.	$\begin{array}{c} 10894.0\\ 68201.5\\ 67252.5\\ 98970.5\end{array}$	4.0371862 4.8337941 4.8277085 4.9955060
Scipio, 1884	$\left\{\begin{array}{c} 39 \ 23 \ 34.370 \\ 112 \ 12 \ 23.783 \\ \end{array}\right\}$	1060.0 569.2	9 25 28.85 76 43 54.91 108 44 47.91 163 18 23.66 219 04 05.78 295 08 06.11	$\begin{array}{c} 189 \ 17 \ 44.59 \\ 255 \ 24 \ 02.27 \\ 287 \ 39 \ 17.01 \\ 343 \ 02 \ 15.28 \\ 39 \ 20 \ 57.34 \\ 115 \ 36 \ 42.09 \end{array}$	Tushar Wheejer Peak. Ibepah. Deseret. Mount Nebo. Wasatcb.	$\begin{array}{c} 109510.83\\ 187526.51\\ 154815.27\\ 123760.97\\ 59890.96\\ 71965.13 \end{array}$	$\begin{array}{c} 5.0394571\\ 5.2730627\\ 5.1898138\\ 5.0925837\\ 4.7773613\\ 4.8571221\end{array}$
Cervera, 1898	$\begin{cases} 39 \ 18 \ 25.893 \\ 112 \ 28 \ 46.596 \end{cases}$	798.5 1116.5	247 54 09.8	68 04 33.0	Scipio	25383.1	4.404544
Camara, 1898	$\left\{ \begin{array}{c} 39 \ 22 \ 07.166 \\ 112 \ 31 \ 45.985 \end{array} \right.$	221.0 1100.8	264 22 31.4 327 47 26.0	84 34 48.8 147 49 19.7	Scipio Cervera	27945.8 8063.6	4.446317 3.906528
Manterola, 1898	$\begin{cases} 39 \ 20 \ 01.292 \\ 112 \ 34 \ 18.321 \end{cases}$	39.8 438.8	223 12 16.2 258 05 24.3 290 17 13.2	43 13 52.8 78 19 18.0 110 20 43.4	Camara. Scipio. Cervera.	5326.6 32148.7 8473.5	$3.726454 \\ 4.507163 \\ 3.928062$
Montijo, 1898	$\left\{\begin{matrix} 39 & 17 & 50.608\\ 112 & 32 & 43.312 \end{matrix}\right\}$	1560.7 1037.8	150 33 08.8 189 50 23.3 249 56 27.2 259 07 08.7	330 32 08.6 9 50 59.5 70 09 20.4 79 09 38.6	Manterola. Camara. Scipio. Cervera.	4628.4 8030.2 31067.8 5775.4	3.665435 3.904727 4.492310 3.761579
Augusti, 1898	$\left\{ \begin{matrix} 39 & 17 & 47.732 \\ 112 & 34 & 01.406 \end{matrix} \right.$	1472.0 33.7	174 22 57.9 267 16 46.3	$354 22 47.2 \\ 87 17 35.8$	Manterola. Montijo	4138.7 1873.4	3.616866 3.272639
Blanco, 1898	$\begin{cases} 39 \ 19 \ 06.870 \\ 112 \ 35 \ 40.632 \end{cases}$	211.9 973.4	229 35 11.6 298 57 08.4 315 44 31.8	49 36 03.8 118 59 00.8 135 45 34.7	Manterola. Montijo. Augusti.	2589.2 4855.9 3407.0	$\begin{array}{r} 3.413164 \\ 3.686271 \\ 3.532378 \end{array}$
Canovas, 1898	$\begin{cases} 39 \ 17 \ 55.150 \\ 112 \ 35 \ 55.954 \end{cases}$	1700.8 1340.8	$\begin{array}{c} 189 \ 25 \ 19.1 \\ 211 \ 00 \ 28.1 \\ 274 \ 45 \ 14.6 \end{array}$	$\begin{array}{r} 9 \ 25 \ 28.8 \\ 31 \ 01 \ 30.0 \\ 94 \ 46 \ 27.2 \end{array}$	Bianco. Manteroia. Augusti.	2242.0 4539.1 2754.4	3.350637 3.656968 3.440021
Oasis northeast base, 1898	$\left\{\begin{array}{c} 39 \ 18 \ 43.279 \\ 112 \ 36 \ 55.584 \end{array}\right\}$	1334.7 1331.6	$\begin{array}{c} 247 \ 56 \ 14.2 \\ 285 \ 01 \ 09.9 \\ 292 \ 18 \ 03.9 \\ 316 \ 05 \ 11.4 \end{array}$	67 57 01.7 105 03 49.8 112 19 54.3 136 05 49.2	Blanco. Montijo. Augusti. Canovas.	$1937.4 \\ 6258.9 \\ 4511.2 \\ 2060.2$	$\begin{array}{r} 3.287210\\ 3.796497\\ 3.654295\\ 3.313902 \end{array}$
Oasis southwest base, 1898	$\begin{cases} 39 \ 17 \ 56.185 \\ 112 \ 37 \ 29.916 \\ . \end{cases}$	1732.7 716.8	209 31 23.7 230 12 41.0 270 48 13.8	29 31 45.4 50 13 50.2 90 49 13.3	Oasis northeast baso Bianco Canovas	$1669.1 \\ 3406.9 \\ 2251.7$	3.222483 3.532361 3.352519
Oasis north meridian, 1898	39 18 16.544 112 37 44.336	510.2 1062.4	234 46 41.1 242 20 56.4 284 14 41.3 331 10 21.7	54 47 12.0 62 22 14.8 104 15 50.0 151 10 30.9	Oasis nortbeast base Blanco Canovas Oasis southwest base	$\begin{array}{r} 1429.7\\ 3345.4\\ 2679.5\\ 716.6\end{array}$	$\begin{array}{r} 3.155251 \\ 3.524452 \\ 3.428046 \\ 2.855301 \end{array}$
Oasis south meridian, 1898	$\left\{\begin{matrix} 39 \ 17 \ 38.149 \\ 112 \ 37 \ 44.336 \end{matrix}\right.$	1176.5 1062.4	180 00 01.7 210 10 38.0 211 51 03.0 227 16 41.2	0 00 01.7 30 11 08.8 31 51 12.1 47 17 59.6	Oasis north meridian. Oasis northeast base. Oasis southwest baso. Bianco.	$1184.0 \\ 2323.5 \\ 654.8 \\ 4033.7$	$\begin{array}{r} 3.073370\\ 3.366148\\ 2.816120\\ 3.605701 \end{array}$
Oasis astronomic, 1898	$\left\{ \begin{matrix} 39 & 17 & 37.980 \\ 112 & 37 & 44.336 \end{matrix} \right.$	1171.3 1062.4	180 00 01.7	0 00 01.7	Oasis south meridian	5.22	0.71767
Sagasta, 1898	39 21 22.358 112 28 45.987	689.5 1101.0	0 09 13.2 41 03 39.0 72 35 22.9 107 47 43.6	180 09 12.8 221 01 08.6 252 31 52.1 287 45 49.3	Cervera. Montijo. Manterola. Camara.	5442.0 8657.7 8341.6 4525.3	$\begin{array}{r} 3.735759\\ 3.937404\\ 3.921250\\ 3.655652 \end{array}$

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Oasis schoolhouse tower, 1898	39 17 18.819 112 37 27.884	580.4 668.3	° 7 77 177 34 51 196 32 46 243 02 06 261 47 40	° ' '' 357 34 50 16 33 06 63 03 04 81 50 40	Oasis southwest base Oasis northeast hase Canovas Montijo	<i>Meters.</i> 1153.3 2717.2 2471.5 6889.6	$\begin{array}{r} 3.061957\\ 3.434123\\ 3.392967\\ 3.838194 \end{array}$
Delano, cairn, 1885	$\begin{cases} 38 \ 22 \ 09.985 \\ 112 \ 22 \ 15.090 \end{cases}$	307.9 366.4	74 24 47.9 147 10 30.6 187 05 56.0	253 22 28.3 327 08 58.7 7 12 07.2	Pioche . Tushar. Scipio.	$153261.1\\6617.6\\114503.5$	5.1854318 3.8207007 5.0588188
Milford Needle, 1883	$\left\{\begin{matrix} 38 & 23 & 04.355 \\ 112 & 48 & 54.330 \\ \end{matrix}\right.$	134.3 1318.7	$\begin{array}{c} 68 \ 11 \ 04.9 \\ 205 \ 03 \ 37.1 \\ 209 \ 29 \ 40.3 \\ 263 \ 34 \ 54.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pioche. Scipio Mount Nebo Tushar.	116980.5 123761.4 182512.7 35430.5	$\begin{array}{c} 5.0681136\\ 5.0925851\\ 5.2612932\\ 4.5493771 \end{array}$
Beaver, 1885	$\begin{cases} 38 \ 24 \ 07.205 \\ 112 \ 26 \ 00.733 \end{cases}$	222.2 17.8	$\begin{array}{c} 112 \ 12 \ 42.7 \\ 224 \ 06 \ 39.6 \\ 303 \ 24 \ 17.3 \end{array}$	291 02 11.9 44 07 27.9 123 26 37.5	Wheeler Peak. Tushar. Delano	$175919.1 \\ 2710.4 \\ 6561.6$	5.2453132 3.433039 3.817007
Birch Creek, cairn, 1885	$\left\{\begin{matrix} 38 & 13 & 45.847 \\ 112 & 28 & 08.541 \\ \end{matrix}\right.$	1413.7 207.7	119 44 39.4 189 11 40.6 193 17 40.3 208 53 28.1	299 31 47.1 9 12 59.8 13 19 47.8 28 57 07.2	Milford Needle Beaver Tushar Deiano	34824.1 19408.5 21687.2 17759.1	4.541880 4.287993 4.336203 4.249420
Beaver flagstaff (U. S. Engineers as- tronomic station, 1872-1885), 1885.	$\begin{cases} 38 \ 16 \ 25.616 \\ 112 \ 38 \ 27.323 \end{cases}$	789.8 664.2	$\begin{array}{c} 128 \ 58 \ 03. \ 2\\ 231 \ 48 \ 20. \ 9\\ 288 \ 04 \ 33. \ 7\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Milford Needie Beaver Birch Creek	$\begin{array}{r} 19572.7\\ 23050.5\\ 15831.5\end{array}$	$\begin{array}{c} 4.291650\\ 4.362680\\ 4.199523 \end{array}$
West Beaver, monument, 1885	$\left\{\begin{matrix} 38 & 24 & 07.621 \\ 112 & 26 & 08.359 \\ \end{matrix}\right.$	235.0 202.8	226 58 41.9 273 57 53.7 302 37 35.4 8 40 10.2	46 59 34.9 93 57 58.4 122 40 00.3 188 38 55.7	Tushar. Beaver. Delano. Birch Creek.	2833.6 185.5 6723.7 19392.5	3.452337 2.268374 3.827611 4.287633
Beaver meetinghouse, ¹ 1885	$\left\{ \begin{matrix} 38 & 16 & 27.27 \\ 112 & 38 & 21.16 \end{matrix} \right.$	840.9 514.4	231 40 31.0 288 25 24.4	51 48 10,3 108 31 43.7	Beaver. Birch Creek	$22901.2 \\ 15705.2$	4.359859 4.196043
Herriman, 1884	$\begin{cases} 40 \ 25 \ 33.199 \\ 112 \ 11 \ 53.256 \end{cases}$	1024.0 1255.4	96 03 56.8 197 09 38.6 331 30 20.3 0 21 53.7	$\begin{array}{c} 275 & 47 & 18.3 \\ 17 & 22 & 03.8 \\ 151 & 47 & 03.2 \\ 180 & 21 & 34.2 \end{array}$	Deseret Ogden Peak Mount Neho Scipio	36471. 8 90043. 9 77598. 9 114698. 1	4.5619574 4.9544545 4.8898558 5.0595561
Draper, 1887	$\left\{\begin{matrix} 40 & 30 & 51.924 \\ 111 & 47 & 10.553 \end{matrix}\right\}$	1601.6 248.4	358 42 56.01 85 24 07.49 144 03 13.62 174 01 03.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mount Neho Deseret. Antelope Ogden Peak	78139.6 71430.9 61546.9 76577.7	4.8928711 4.8538863 4.7892065 4.8841024
Lone Peak, needle, 1884	$\left\{\begin{matrix} 40 & 31 & 37.936 \\ 111 & 45 & 19.779 \end{matrix}\right.$	1170. 1 465. 6	0 38 10.8 17 09 42.7 84 29 24.3 171 57 24.0	$\begin{array}{c} 180 \ 37 \ 46.9 \\ 196 \ 52 \ 19.7 \\ 263 \ 55 \ 30.0 \\ 351 \ 52 \ 27.4 \end{array}$	Mount Nebo Scipio. Deseret. Ogden Peak	79544.3 131711.9 74153.6 75487.2	4.9006090 5.1196251 4.8701319 4.8778734
Oquirrh, 1887	$\begin{cases} 40 \ 36 \ 50.350 \\ 112 \ 11 \ 12.651 \end{cases}$	1553.1 297.3	65 25 07.30 176 26 26.13 201 28 10.19 337 58 00.24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Deseret Antelope Ogden Peak Mount Nebo	40934.1 38757.6 70002.5 96109.4	$\begin{array}{r} 4.6120854\\ 4.5883572\\ 4.8451133\\ 4.9827660\end{array}$
Onaqui, 1887	$\begin{cases} 40 \ 36 \ 10.481 \\ 112 \ 36 \ 52.528 \end{cases}$	323.3 1235.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 18 07.43 43 12 22.38 140 51 50.73 183 23 19.92	Antelope Ogden Peak Mount Neho Deseret	$\begin{array}{c} 52233.1\\ 90643.9\\ 113825.4\\ 15918.8 \end{array}$	$\begin{array}{r} 4.7179456\\ 4.9573386\\ 5.0562391\\ 4.2019090 \end{array}$
Lake Shore bench, 1887	$\begin{cases} 40 \ 40 \ 28.680 \\ 112 \ 25 \ 42.249 \end{cases}$	884.6 992.3	35 04 22.1 63 14 13.6 288 09 49.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Deseret Onaqui Oquirrh	29124.9 17649.7 21513.8	4. 464264 4. 246738 4. 332718
Grantsviile flagstaff, 1887	$\begin{cases} 40 \ 36 \ 07.456 \\ 112 \ 28 \ 23.257 \end{cases}$	230.0 546.8	39 20 44.8 90 29 32.8 266 46 52.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Deseret. Onaqui. Oquirrh	$\begin{array}{r} 20413.4 \\ . 11974.0 \\ 24265.0 \end{array}$	4. 309915 4. 078240 4. 384981
Deseret magnetic, 1887	$\begin{cases} 40 \ 27 \ 26,715 \\ 112 \ 36 \ 55,352 \end{cases}$	824.0 1304.3	180 14 07.7 213 13 22.9 244 16 25.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Onaqul. Lake Shore hench. Oquirrh	16155.9 28853.0 40254.7	4. 208330 4. 460191 4. 604817
Hlil, flag, 1887	$\begin{cases} 40 \ 27 \ 36.847 \\ 112 \ 36 \ 30.564 \end{cases}$	1136.6 720.1	61 51 11.7 178 07 59.4 212 35 03.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Deseret magnetlc Onaqui Lake Shore bench	$\begin{array}{r} 662.38 \\ 15851.7 \\ 28273.4 \end{array}$	2.821107 4.200075 4.451378
Fiag in flat, ¹ 1887	$\begin{cases} 40 \ 27 \ 50.04 \\ 112 \ 36 \ 38.96 \end{cases}$	1543.5 917.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hill, flag. Deseret magnetic	452.43 816.60	2.65555 2.91201
City Creek, 1893	$\begin{cases} 40 \ 48 \ 27.055 \\ 111 \ 52 \ 49.276 \end{cases}$	834.5 1155.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 175 \ 00 \ 30.96 \\ 30i \ 13 \ 15.44 \\ 359 \ 52 \ 59.12 \end{array}$	Mount Neho Anteiope Ogden Peak	111094.2 33062.5 43609.9	5.0456914 4.5193355 4.6395852
Sait Lake City Temple east spire, 1893.	$\begin{cases} 40 \ 46 \ 14.599 \\ 111 \ 53 \ 27.668 \end{cases}$	450.3 648.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	307 46 32.37 12 25 39.59	Antelope City Creek	34652.0 4183.8	$\begin{array}{c} 4.5397279 \\ 3.6215713 \end{array}$
Salt Lake Clty Temple west spire, 1893.	40 46 14.602 111 53 29.618	450.4 694.6	128 02 02.50 143 01 49.03 193 01 51.42	307 49 19.63 222 41 01.90 13 02 17.78	Anteiope Promontory City Creek	34615.9 73491.7 4193.8	4.5392754 4.8662386 3.6226054

¹ No check on this position.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

						the second se
Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azlmuth.	To station.	Distance.	Loga- rlthm.
40 46 11.574 111 53 27.343	357.0 611.3	• , , , , , , , , , , , , , , , , , , ,	* / // 330 15 20.00 355 19 16.88 12 03 31.38	Salt Lake Clty Temple west spire. Salt Lake City Temple east spire. Clty Creek.	Meters, 107.6 93.6 4273.4	2.0317042 1.9713155 3.6307699
$\begin{cases} 40 \ 46 \ 12.38 \\ 111 \ 53 \ 27.30 \end{cases}$	381.9 640.3					
	381.9 638.9					
$\begin{cases} 40 \ 46 \ 11.36 \\ 111 \ 53 \ 27.96 \end{cases}$	350.4 655.8					
$\begin{cases} 40 \ 52 \ 55.542 \\ 112 \ 11 \ 33.591 \end{cases}$	1713.3 786.5	38 17 30.5 167 51 38.5 220 12 31.8	217 50 34.5 347 50 44.8 40 19 24.1	Deseret. Antelope. Salt Lako southeast base	59495.3 9113.8 22760.9	4.774483 3.959699 4.357190
{ 40 52 30.536 112 11 15.510	941.9 363.2	38 54 44.2 166 24 57.3	218 37 36.5 346 23 51.8	Deseret	59155.3 9960.1	4.771994 3.998263
40 57 52.798 111 49 02.634	1628.6 61.6	$\begin{array}{c} 42 \ 17 \ 35.1 \\ 50 \ 53 \ 07.9 \\ 89 \ 41 \ 10.1 \\ 115 \ 58 \ 55.9 \\ 123 \ 23 \ 42.1 \\ 126 \ 26 \ 26.7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Waddoup. Deseret. Antelope. Salt Lake southeast base. Salt Lake northwest base. Promontory.	8620.7 88365.0 33508.8 18757.4 29534.7 62660.3	3.9355445 4.9462804 4.5251588 4.2731737 4.4703332 4.7969928
{ 40 58 49.65 111 53 11.20	$\begin{array}{c} 1531.5\\ 261.9 \end{array}$	359 53 01.8 85 56 55.8	179 53 02.3 265 43 59.2	Waddoup. Antelope	8133.0 27765.0	3.910249 4.443497
$ \begin{cases} 41 & 01 & 52.61 \\ 111 & 50 & 20.08 \end{cases} $	$1623.0 \\ 469.1$	16 08 50.6 111 10 35.0	196 06 58.9 290 59 51.5	Waddoup Salt Lake northwest base	14341.5 24506.3	4.156596 4.389277
{ 41 01 31.21 {111 57 58.14	962.8 1358.3	332 49 34.4 71 38 00.2	$\begin{array}{c} 152 \ 52 \ 43.0 \\ 251 \ 28 \ 11.5 \end{array}$	Waddoup Antelope	14740.6 22112.2	4.168516 4.344632
	350.8 672.0	$\begin{array}{c} 337 \ 09 \ 42.5 \\ 69 \ 15 \ 55.6 \end{array}$	157 12 31.8 249 05 47.6	Waddoup Antelope	15574.0 23173.4	4.192399 4.364989
	1226.4 488.8	330 20 34.7 85 53 20.2	$\begin{array}{c} 150 \ 22 \ 39.5 \\ 265 \ 42 \ 28.1 \end{array}$	Waddoup. Antelope	9006.3 23319.4	3.954546 4.367718
$\begin{cases} 41 \ 10 \ 27, 922 \\ 112 \ 20 \ 33, 503 \end{cases}$	861.4 781.0	154 59 33.34 265 36 55.25 335 32 35.33	334 56 31.56 85 55 08.68 155 37 36.18	Promontory Ogden 1'eak Antelope	$\begin{array}{c} 15177.2\\ 38802.5\\ 25867.2 \end{array}$	4.1811907 4.5888598 4.4127501
41 29 26.038 112 30 27.523	803.3 638.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121 48 26.9 157 25 39.8 160 56 07.7 184 55 22.6	Ogden Peak Antelope Promontory Deseret	61538.8 63575.5 22602.4 114898.1	4.789149 4.803290 4.354154 5.060313
$ \begin{cases} 41 \ 23 \ 55.025 \\ 112 \ 29 \ 07.065 \end{cases} $	1697.5 164.1	293 20 26.9 333 35 58.2 6 31 04.5	113 44 21.7 153 38 35.3 186 25 33.4	Ogden Peak Promontory Deseret	55170.0 12442.7 104924.4	4.7417022 4.0949131 5.0208766
$\begin{cases} 41 \ 18 \ 26. \ 224 \\ 112 \ 26 \ 47. \ 534 \end{cases}$	809.0 1105.8	283 54 23.2 293 41 37.3 333 03 35.7	104 16 44.7 113 42 42.2 153 12 43.0	Ogden Peak Promontory Antelope	48835.4 2496.7 42943.6	4.6887347 3.3973642 4.6328986
$\left\{ \begin{matrix} 41 & 13 & 12.554 \\ 111 & 59 & 37.990 \end{matrix} \right.$	387.3 884.9	190 04 31.4 283 10 30.4	10 05 51.7 103 14 57.2	North Ogden Peak Ogden Peak	16169.8 9689.9	4.208704 3.986320
$\left\{\begin{matrix} 41 & 12 & 12, 908 \\ 111 & 59 & 33, 002 \end{matrix}\right.$	398.2 768.8	176 23 12.7 188 41 05.0 272 15 57.3	356 23 09.4 8 42 21.9 92 20 20.7	Ogden longitude North Ogden Peak Ogden Peak	1843.7 17966.4 9325.9	3.265689 4.254461 3.969692
$\left\{ \begin{matrix} 41 & 13 & 12,406 \\ 111 & 59 & 37,959 \end{matrix} \right.$	382.7 884.2	103 49 14.95 190 04 12.26 283 08 59.55	283 32 25.09 10 05 32.56 103 13 26.30	Promontory North Ogden Peak Ogden Peak	36689.3 16174.1 9688.2	4.5645397 4.2088211 3.9862423
$\begin{cases} 41 \ 13 \ 15.870 \\ 111 \ 58 \ 44.718 \end{cases}$	489.6 1041.6	285 45 36.2 30 04 50.1 85 17 34.0	105 49 27.8 210 04 18.3 265 16 58.9	Ogden Peak Weber bench Ogden longltude	8513.7 2244.5 1245.1	3.930116 3.351123 3.095202
41 13 13.158 111 58 13.797	405.9 321.4	286 36 42.2 44 47 56.6 89 27 49.4	106 40 13.5 224 47 04.4 269 26 53.9	Ogden Peak Weber bench Ogden longltude	7798.6 2619.0 1961.2	$\begin{array}{c} \textbf{3.892016} \\ \textbf{3.418140} \\ \textbf{3.292530} \end{array}$
$\left\{ \begin{matrix} 41 & 13 & 24.096 \\ 111 & 58 & 06.727 \end{matrix} \right.$	743.3 156.7	289 21 14.9 42 28 21.4 80 29 58.9	109 24 41.5 222 27 24.6 260 28 58.8	Ogden Peak Weber bench. Ogden longltude	7746.1 2977.0 2155.4	3.889084 3.473775 3.333530
{ 41 13 23.740 111 58 05.375	732.4 125.2	43 03 35.8 80 55 13.1	223 02 38.1 260 54 12.1	Weber bench Ogden longltude	2990.3 2184.7	3.475714 3.339394
$\left\{\begin{array}{c} 41 \ 13 \ 57.097 \\ 111 \ 57 \ 23.867 \end{array}\right.$	1761.4 555.8	43 06 55.6 66 16 09.7	223 05 30.5 246 14 41.3	Weber bench Ogden longitude	4402.2 3412.7	3.643668 3.533104
	Latitude and longitude. • , , , , , , , , , , , , , , , , , , ,	Latitude and longitude. Sec- meters. • · · 40 46 11.574 111 53 27.343 357.0 111 53 27.343 641.3 40 46 12.38 111 53 27.30 640.3 40 46 12.38 111 53 27.24 638.9 40 46 11.36 115 32 7.24 638.9 40 46 11.36 111 53 27.24 638.9 40 45 12.38 111 53 27.24 638.9 40 45 12.38 112 11 33.591 786.5 40 52 25.542 111 53 1.50 786.5 40 57 52.798 114 90 2.634 61.6 111 49 02.634 61.6 111 53 11.20 261.9 41 01 52.61 111 50 20.08 409.1 115 02 0.08 409.1 115 02 0.08 409.1 115 52 20.91 488.8 41 02 11.37 1156 20.91 488.8 41 10 27.922 861.4 803.3 112 20 33.603 781.0 41 22 26.038 112 30 27.523 638.5 41 12 22.907.065 164.1 41 13 25.54 377.3 111 58 47.718 1105.8 41 13 12.554 377.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Latitude and longitude. Sec. meters. Azimuth. Back alimuth. To station. 40 46 11. 53 37.0 150 15 21.40 330 15 20.00 Sait Lake City Temple west spire. Sait Lake City Temple west spire. City Creek Sait Lake City Temple west spire. City Creek Sait Lake City Temple west spire. Sait Lake City Temple west spire. City Creek Sait Lake City Temple west spire. Sait Lake Sait Sait Sait Sait Sait Sait Sait Sait	Latitude angliude. Sec- meters. Azimuth. Back azimuth. To station. Distance. * / ''' 10 0 61 11574 357.0 150 15 21.49 330 15 20.00 Salt Lake City Temple west apple. Meters. 107.6 40 0 61 12.28 351.9 107.30 355 19 16.88 Salt Lake City Temple west apple. 4773.4 40 0 61 12.38 351.9 60.3 12 0 3 31.38 City Creek 4773.4 40 0 61 12.80 351.4 135 27.30 355 17 30.5 217 50 34.5 Antelope. 99103.8 40 0 52 35.53 173.3 35 17 30.5 217 50 34.5 Antelope. 99103.8 40 52 35.54 173.51 31 13 1.8 10 19 222 53 0.18 Antelope. 9913.8 111 11 15 10 15.20 355 10 15.2 138 54 1.28 138 54 1.28 3336.9 9113.8 111 11 11 15 10 15.20 10 13 12.22 18 57.3 10 58 54 2.5 3516.7 3336.9 9113.8 111 11 15 20.10 10 13 12.20 25 30.7 310 12.8 228 30.7 3336.9 3336.9 9113.8

¹ No check on this position.

² Checked by vertical angles only.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued. Cliff, flag, 1891	41 16 46.678 111 55 16.345	1440.0 380.4	° / // 339 16 02.3 35 18 31.1 42 42 26.8	° / // 159 17 36.7 215 15 41.9 222 39 34.3	Ogden Peak Weber bench Ogden longitude	<i>Meters.</i> 9430.2 10346.3 8985.8	3.974519 4.014786 3.953556
Sandy, 1891	$ \left\{ \begin{matrix} 41 & 13 & 02. 989 \\ 112 & 00 & 02. 529 \end{matrix} \right\} $	92, 2 58, 9	191 50 20.2 242 41 39.9 280 49 17.7 335 59 47.8	$\begin{array}{c} 11 \ 51 \ 56.7 \\ 62 \ 41 \ 56.1 \\ 100 \ 54 \ 00.7 \\ 156 \ 00 \ 07.3 \end{array}$	North Ogden Ogden longitude Ogden Peak Weber bench	$\begin{array}{r} 16568.2\\ 643.3\\ 10187.8\\ 1691.2 \end{array}$	$\begin{array}{r} 4.219275\\ 2.808395\\ 4.008080\\ 3.228190 \end{array}$
North Ogden public school, ¹ 1891	$\left\{\begin{array}{rrr} 41 & 18 & 25.65 \\ 111 & 57 & 38.19 \end{array}\right.$	791.3 888.4	$\begin{array}{c} 13 \ 05 \ 49.8 \\ 16 \ 06 \ 58.3 \end{array}$	193 04 34.1 196 05 39.3	Weber bench. Ogden longitude	$\frac{11805.2}{10053.1}$	4.072074 4.002302
North Ogden Peak, 1891	$\left\{ \begin{matrix} 41 & 21 & 48,605 \\ 111 & 57 & 36,283 \\ \end{matrix} \right\}$	1499.5 843.3	340 00 03.50 25 46 24.74 29 24 54.31 79 28 29.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ogden Peak. Antelope. Deseret. Promontory.	$19295.1 \\ 49439.3 \\ 114960.5 \\ 39116.1$	$\begin{array}{r} \textbf{4.2854472} \\ \textbf{4.6940724} \\ \textbf{5.0605486} \\ \textbf{4.5923554} \end{array}$
Box Elder Peak, or Willards Peak, cairn, 1888.	$\left\{\begin{array}{l} 41 \ 38 \ 09.520 \\ 112 \ 00 \ 49.969 \end{array}\right.$	$\begin{array}{c} 293.7 \\ 1156.6 \end{array}$	347 03 59.2 42 12 39.8	$\begin{array}{c} 167 \ 09 \ 14.7 \\ 221 \ 56 \ 33.5 \end{array}$	Ogden Peak Promontory	`49647.4 50533.9	$\begin{array}{r} 4.6958965 \\ 4.7035830 \end{array}$
Cache, ¹ 1888	$ \begin{cases} 42 \ 11 \ 09.38 \\ 113 \ 39 \ 37.51 \end{cases} $	289.4 860.8	305 52 42.1 15 09 37.1	$\begin{array}{c} 127 \ 03 \ 42.2 \\ 194 \ 53 \ 01.9 \end{array}$	Ogden Peak Pilot Peak	184167.7 133907.6	$\begin{array}{c} 5.2652134 \\ 5.1268052 \end{array}$
Oxford,1 1888	$\left\{ \begin{matrix} 42 & 16 & 11.72 \\ 112 & 05 & 49.97 \end{matrix} \right.$	361.6 1145.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171 28 41.8 229 17 19.6	Ogden Peak Pilot Peak	$\frac{120157.5}{215451.6}$	5.0797507 5.3333497
Desert Peak, cairn, 1892	$\begin{cases} 41 \ 11 \ 10.835 \\ 113 \ 22 \ 03.116 \end{cases}$	334.2 72.6	$\begin{array}{c} 284 \ 01 \ 50.04 \\ 321 \ 57 \ 26.35 \\ 73 \ 08 \ 53.84 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Antelope. Deseret. Pilot Peak.	99970.0 102082.8 62328.0	4.9998697 5.0089526 4.7946831
Grassy, cairn, 1892	$\left\{\begin{matrix}41 & 15 & 53,946\\114 & 00 & 54,859\end{matrix}\right.$	1664.2 1276.9	281 56 33.15 306 53 43.77 10 49 47.67	103 07 33.86 127 48 16.72 190 47 21.99	Antelope. Deseret. Pilot Peak.	$\begin{array}{r} 154859.3\\ 147374.0\\ 27533.7\end{array}$	$\begin{array}{c} 5.1899373 \\ 5.1684209 \\ 4.4398647 \end{array}$
Tecoma railroad signboard eccentric, ¹ 1892.	$\left\{ \begin{array}{l} 41 \ 19 \ 13.659 \\ 114 \ 04 \ 52.221 \end{array} \right.$	421.4 1214.6	318 06 15.4 359 21 27.4	138 08 52.1 179 21 37.9	Grassy. Pilot Peak	8274.1 33208.3	3.917720 4.521246
Nevada-Utah boundary monument, ¹ 1892.	$\left\{ \begin{matrix} 41 & 20 & 31.33 \\ 114 & 02 & 23.56 \end{matrix} \right.$	966.5 547.8	346 26 02.7 55 17 09.5	166 27 01.2 235 15 31.3	Grassy. Tecoma railroad signboard eccentric.	8802.5 4206.3	3.944606 3.623896
Bntte ¹ , 1892	$\left\{\begin{array}{c} 41 \ 09 \ 41.07 \\ 113 \ 51 \ 16.91 \end{array}\right.$	1267.0 394.2	50 16 35.6 130 33 43.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pilot Peak Grassy	$\begin{array}{c} 24282.4\\ 17708.6\end{array}$	4.385291 4.248183
East Peninsula Peak, 1889	$\begin{cases} 40 \ 54 \ 24.875 \\ 113 \ 49 \ 35.012 \end{cases}$	767.3 819.4	3 47 39.0 121 11 44.9 175 11 42.3	183 44 02.6 301 01 54.0 355 10 35.4	Ibepah. Pilot Peak. Butte	$\begin{array}{r} 120009.3\\ 24616.8\\ 28362.8\end{array}$	5.079215 4.391232 4.452749
West Peninsula Peak, 1889	$\begin{cases} 40 \ 50 \ 03.588 \\ 113 \ 54 \ 31.231 \end{cases}$	110.7 731.7	0 27 35.7 145 47 26.9 187 06 33.7	$\begin{array}{c} 180 \ 27 \ 11.3 \\ 325 \ 40 \ 50.5 \\ 7 \ 08 \ 41.2 \end{array}$	Ibepah Pilot Peak Butte	$\begin{array}{r} 111694.0\\ 25144.2\\ 36605.5\end{array}$	5.048030 4.400438 4.563546
Pilot Peak azimuth mark, 1892	$\left\{\begin{array}{l} 41 \ 02 \ 30. \ 426 \\ 114 \ 04 \ 14. \ 748 \end{array}\right.$	938.7 344.4	$\begin{array}{c} 257 \ 50 \ 40.7 \\ 12 \ 33 \ 55.8 \end{array}$	78 55 54.6 192 33 41.6	Promontory Pilot Peak	141491.1 2313.0	5.150729 3.364183
Willow Springs, 1892	$\begin{cases} 40 \ 59 \ 23. \ 485 \\ 113 \ 58 \ 53. \ 844 \end{cases}$	724.4 1258.6	113 42 29.1 127 35 32.9 209 12 11.0	293 38 44.4 307 32 02.3 29 17 11.2	Pllot Peak. Pilot Peak azimuth mark Butte	8738.2 9459.3 21834.3	3.941424 3.975860 4.339139
White boundary stake, 1892	$\begin{cases} 40 \ 56 \ 07.791 \\ 114 \ 02 \ 29.952 \end{cases}$	240.3 700.7	162 49 07.7 279 51 36.2 315 01 29.4	$\begin{array}{c} 342 \ 47 \ 44.9 \\ 100 \ 00 \ 03.8 \\ 135 \ 06 \ 42.8 \end{array}$	Pllot Peak East Peninsula Peak West Peninsula Peak	9992.3 18408.9 15869.3	3.999665 4.265027 4.200557
Black boundary stake, 1892	$\begin{cases} 40 \ 55 \ 25.283 \\ 114 \ 02 \ 30.087 \end{cases}$	779.9 703.9	164 48 25.6 180 08 18.0 311 28 02.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pilot Peak. White boundary stake West Peninsula Peak	11250.9 1311.2 14972.8	4.051186 3.117685 4.175302
/ Camp stake, 1892	$\begin{cases} 40 \ 59 \ 23.584 \\ 113 \ 58 \ 54.116 \end{cases}$	727.4 1265.0	$\begin{array}{c} 305 \ 07 \ 05.2 \\ 340 \ 22 \ 22.8 \\ 113 \ 42 \ 23.6 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	East Peninsula Peak West Peninsula Peak Pilot Peak	15997.5 18337.2 8731.2	4.204053 4.263334 3.941074
Flag, 1892	$\left\{\begin{matrix} 40 & 59 & 01.495 \\ 113 & 59 & 12.972 \\ \end{matrix}\right.$	46.1 303.3	$\begin{array}{c} 119 \ 01 \ 26.3 \\ 212 \ 53 \ 46.1 \\ 302 \ 12 \ 25.7 \\ 338 \ 18 \ 08.6 \end{array}$	298 57 54.2 32 53 58.5 122 18 44.5 158 21 13.2	Pilot Peak. Camp stake East Peninsula Peak. West Peninsula Peak	$\begin{array}{r} 8638.8\\811.5\\15986.7\\17855.1\end{array}$	$\begin{array}{c} 3.936453\\ 2.909302\\ 4.203758\\ 4.251763\end{array}$
Nevada-Utah boundary stake, ¹ 1892	$ \begin{cases} 41 \ 01 \ 16.84 \\ 114 \ 02 \ 28.46 \end{cases} $	$\begin{array}{c} 519.5\\ 665.0\end{array}$	304 52 30.4 312 24 17.6	124 54 51.1 132 26 25.9	Camp stake Flag	$\begin{array}{c} 6107.2 \\ 6189.1 \end{array}$	$3.785839 \\ 3.791624$
Ibepah azlmuth mark, 1889	$\left\{ \begin{matrix} 39 & 51 & 14.729 \\ 113 & 54 & 20.077 \end{matrix} \right.$	454.2 477.3	$\begin{array}{c} 237 \ 55 \ 24.2 \\ 22 \ 12 \ 30.2 \end{array}$	58 44 55.6 202 11 58.9	Deseret Ibepah	128115.6 3073.7	$\begin{array}{c} 5.107602\\ 3.487661 \end{array}$
Red Squaw, calm, 1889	$\begin{cases} 39 \ 48 \ 02.759 \\ 113 \ 56 \ 21.615 \end{cases}$	85.1 514.2	209 20 20.8 236 24 38.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ibepah. Deseret.	3527.5 133755.0	3.547471 5.126310
Red Chief, cairn, 1889	{39 48 00.739 113 56 07.989	22.8 190.0	204 06 54.7 236 18 50.2	24 07 32.5 57 09 29.5	Ibepah. Deseret	3437.3 133519.6	3.536215 5.125545

¹ No check on this position.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel.—Continued.

Station.	Latilude and lonnitude.	Sec- onds in meters.	Azimuth.	Back azimulh.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Bench, 1889	39 52 33.668 113 59 39.547	1038.3 939.8	• , , , , , , , , , , , , , , , , , , ,	• , , , , , , , , , , , , , , , , , , ,	Pilot Peak. Ibepah azimuth mark. Ibepah. Rod Squaw.	Meters. 127382.9 7973.8 8322.7 9589.5	5.105111 3.901667 3.920263 3.981796
South boundary flag, 1889	$\left\{\begin{matrix} 39 & 53 & 47.060 \\ 114 & 02 & 25.938 \end{matrix}\right.$	I451.3 616.2	292 05 53.9 299 46 42.1 305 57 04.8 320 45 54.6	112 11 05.5 119 48 28.8 126 01 44.9 140 49 48.2	Ibepah azimuth mark Bench Ibepah. Red Squaw	I2465.3 4555.7 12837.5 13703.1	4.095704 3.658552 4.108480 4.136820
Middle boundary, 1889	39 58 58.301 114 02 46.356	1798.0 1099.8	319 53 30.6 327 35 32.2 335 38 14.2	I39 58 55.6 147 40 25.7 155 42 21.0	Ibepah azimuth mark. Ibepah. Red Squaw	$\begin{array}{c} 18681.2\\ 20296.5\\ 22188.3 \end{array}$	4.271404 4.307421 4.346125
North bonndary flag, 1889	40 00 19.318 114 02 44.732	595.9 1060.9	324 26 56.2 331 05 56.4 338 08 01.5	144 32 20.1 151 10 48.9 158 12 07.3	Ibepah azimuth mark Ibepah. Red Squaw	20632.7 22427.4 24471.9	4.314556 4.350779 4.388668
North Peak, 1ree, east prong, 1889	40 02 49.589 113 53 39.388	1529.6 933.7	5 00 46.4 24 15 33.9 36 47 53.6 61 14 27.9 70 19 47.9	184 59 48.9 204 11 42.6 216 42 15.3 241 08 36.1 250 13 57.1	Ibepah Bench South boundary flag Middle boundary North boundary flag	24369.6 20831.0 20883.5 14804.0 13736.8	4.386849 4.318710 4.319804 4.170378 4.137886
South Peak, middle tree, 1889	$\left\{\begin{matrix} 40 & 02 & 20.264 \\ 113 & 53 & 19.365 \\ \end{matrix}\right.$	625.0 459.1	6 21 40.9 26 32 36.1 39 23 01.8 65 11 48.0 74 30 06.9	186 20 30.6 206 28 32.0 219 17 10.7 245 05 43.4 254 24 03.3	Ibepah Bench South boundary flag Middle boundary North boundary flag	23516.5 20217.5 20464.4 14820.2 13916.2	4.371373 4.305727 4.311000 4.170853 4.143521
Ibepah telegraph office flag, 1889	40 03 25,137 113 59 15,179	775.4 359.8	283 18 48.5 342 42 04.2 347 00 11.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	South Peak. Ibepah azimuth mark. Ibepah.	8669.7 23591.2 26038.0	3.938002 4.372751 4.415607
Ibepah post office eccentric, 1889	{ 40 03 32.150 113 59 02.607	991.7 61.8	347 44 50.2 54 01 32.7	167 47 20.2 234 01 24.6	Ibepah Ibepah telegraph office flag	26183.9 368.20	4.418034 2.566084
Ibepah post office, southeast corner, 1889.	{ 40 03 32.51 {113 59 03.02	1002.8 71.6	318 41 35 51 43 07	138 41 35 231 42 59	Ibepah post office eccentric Ibepah teiegraph office flag	14.844 367.12	1.17155 2.56481
Ibepah telegraph office chimney, 1889.	$\begin{cases} 40 \ 03 \ 24,581 \\ 113 \ 59 \ 18,193 \end{cases}$	758.2 431.2	237 42 25.2 256 29 43.5 346 50 27.9	57 42 35.2 76 29 45.4 166 53 07.9	Ibepah post office eccentric Ibepah telegraph office flag Ibepah.	436.98 73.46 26037.4	2.640462 1.866029 4.415598
Devine's granary, 1889	40 03 33.19 113 59 02.52	1023.7 59.7	347 46 00 3 46 15	167 48 30 183 46 15	Ibepah Ibepah post office eccentric	26214.7 32.034	4.418545 1.50561
Granite Peak, 1884	40 07 42.222 113 16 13.481	1302.3 319.1	59 12 19.2 145 42 52.0 235 55 06.2	238 47 18.7 325 11 23.9 56 20 07.2	Ibepah Pilot Peak Deseret	64653.3 120398.8 66024. I	4.8105909 5.0806222 4.8197025
Anteiope Mountain or Swasey Peak, 1884.	39 23 18.44 113 18 56.17	568.7 1344.2	133 29 44.2 206 09 08.4 269 21 12.5 323 37 53.0	313 06 39.0 26 35 42.4 90 03 26.2 144 11 56.2	Ibepah. Deseret. Scipio. Tushar.	71226 132771 95541 133093	4. 8526387 5. 1231030 4. 9801894 5. 1241565
Sawtooth Peak or Sevier Mountain, 1884.	39 0S 36.600 113 24 31.620	1128.7 759.3	77 42 03.2 150 09 37.2 254 40 42.9 312 32 32.0	257 07 51.0 329 50 08.8 75 26 22.2 133 09 59.7	Wheeler Peak Ibepah. Scipio. Tushar	80212.3 87811.6 107378.2 118159.3	4.9042407 4.9435518 5.0309160 5.0724679
Frisco Mount, tree, 1884	$\begin{cases} 38 \ 31 \ 14.526 \\ 113 \ 17 \ 13.176 \\ \cdot \end{cases}$	447.9 319.2	120 23 36.8 223 42 25. I 278 05 36.0	299 45 04.0 44 23 10.6 98 38 15.8	Wheeler Peak. Scipio. Tushar.	103092.0 134700.5 77188.3	5.0132251 5.1293691 4.8875514
Indian Peak, 1881	$\left\{\begin{matrix} 38 & 16 & 02.302 \\ 113 & 52 & 29.343 \end{matrix}\right.$	71.0 713.3	26 27 06.8 92 50 30.7 154 33 44.1 178 44 43.7 262 01 12.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pioche White Pino Wheeler Peak. Ibepah. Tushar.	34813.9 142409.7 88453.5 173352.8 129000.4	4.5417522 5.1535395 4.9467150 5.2389308 5.1105909
Butte, 1883	37 56 42.122 114 01 09.712	1298.6 237.1	148 31 11.4 167 34 28.9 249 00 02.0	328 30 00.6 347 23 30.7 69 59 39.4	Piocho. Wheeler Peak. Tushar.	5379.3 118371.6 150361.0	3.7307228 5.0732473 5.1771352
East Ridgo, 1883	{ 37 59 06.29 {114 01 19.61	193.9 478.5	356 53 13 93 I0 29	176 53 19 273 09 24	Butto Pioche	4451.6 2571.4	3.64852 3.41017
Road summit, 1883	$\begin{cases} 37 \ 57 \ 59.34 \\ 114 \ 02 \ 39.57 \end{cases}$	1829.4 965.9	164 23 32 223 23 05 317 20 09	344 23 17 43 23 54 137 21 04	Pioche East Ridge Butto	2290.7 2840.5 3237.4	3.35996 3.45340 3.51019
North boundary signal, 1883	$\begin{cases} 38 \ 00 \ 51.70 \\ 114 \ 02 \ 50.21 \end{cases}$	1594.1 1224.8	325 46 11 342 18 44 6 32 49	145 47 07 162 19 46 186 32 40	East Ridge Butle Piocho	3930.2 8076.3 3128.1	3.59441 3.90721 3.49528
Canyon Peak, 1883	38 00 34.56 114 03 01.21	1065.6 29.5	206 55 30 317 39 35 339 11 51 1 57 28	26 55 37 137 40 38 159 13 00 181 57 26	North boundary signal Easl Ridge. Bulte. Pioche	592.7 3681.0 7665.7 2580.8	2.77283 3.56597 3.88455 3.41175

...

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel.-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Boundary stake No. 1, ¹ 1883	38 00 47 .89 114 02 59.31	1476.6 1446.7	242 07 42 6 25 36	62 07 48 186 25 35	North houndary signai Canyon Peak	Meters. 251.2 413.6	2. 40009 2. 61657
Pine II/ill, 1883	$\left\{\begin{matrix} 37 & 58 & 13.34 \\ 114 & 01 & 57.66 \end{matrix}\right\}$	411.3 1407.5	67 08 06 137 16 50 209 37 30 337 23 51	$\begin{array}{c} 247 & 07 & 40 \\ 317 & 16 & 08 \\ 29 & 37 & 53 \\ 157 & 24 & 20 \end{array}$	Road summit Pioche East Ridge Butte.	1110. 1 2415. 9 1878. 3 3046. 1	3.04538 3.38307 3.27377 3.48375
Boundary stake No. 2,1 1883	$\begin{cases} 37 58 48.70 \\ 114 02 59.08 \end{cases}$	1501.4 1441.8	306 00 33 342 36 50	126 01 11 162 37 02	Pine Hill. Road summit	1853.2 1593.9	3.26792 3.20246
Mount Moriah, cairn, 1883	39 16 24.515 114 11 53.573	756.0 1284.1	$\begin{array}{c} 201 \ 10 \ 53. 9 \\ 225 \ 06 \ 24. 7 \\ 253 \ 18 \ 09. 7 \\ 264 \ 57 \ 17. 6 \\ 300 \ 52 \ 28. 0 \\ 17 \ 21 \ 32. 2 \\ 47 \ 19 \ 29. 5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ibepah. Deseret. Mount Nebo. Scipio. Tushar. Wheeler Peak. White Pine.	$\begin{array}{c} 66129. 7\\ 188281. 7\\ 217435. 3\\ 172225. 6\\ 181750. 3\\ 33422. 1\\ 155005. 7\end{array}$	$\begin{array}{c} 4.8203371\\ 5.2748081\\ 5.3373301\\ 5.2360976\\ 5.2594750\\ 4.5240336\\ 5.1903477\end{array}$
Snake Creek, 1883	$\begin{cases} 38 \ 58 \ 01.824 \\ 113 \ 58 \ 29.544 \end{cases}$	56.2 711.3	94 11 55.7 150 28 24.0 248 02 46.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wheeler Peak. Mount Moriah. Sawtooth Mountain.	$\begin{array}{c} 29402.1\\ 39107.1\\ 52766.2 \end{array}$	4.468378 4.592256 4.722356
Wheeler Peak reference mark, 1882	$\begin{cases} 39 \ 01 \ 13.696 \\ 114 \ 19 \ 20.216 \end{cases}$	$\begin{array}{c} 422.3 \\ 486.3 \end{array}$	281 00 43.7 348 28 49.5	101 13 50.7 168 29 09.8	Snake Creek Wheeler Peak	30674.2 3896.9	4.486773 3.590723
Nevada-Utah boundary monument, 1883.	$\begin{cases} 39 \ 09 \ 45. 918 \\ 114 \ 02 \ 53. 130 \end{cases}$	1416.0 1275.6	343 42 23.6 49 33 56.2 56 25 41.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Snake Creek. Wheeler Peak. Wheeler Peak reference mark	22618.3 30190.1 28499.8	$\begin{array}{r} 4.354460\\ 4.479864\\ 4.454812 \end{array}$
Cedar Spur, 1883	$ \left\{ \begin{matrix} 38 & 56 & 40.132 \\ 114 & 09 & 08.704 \end{matrix} \right.$	1237.6 209.6	108 22 20.8 200 24 24.8	288 16 16.6 20 28 21.4	Wheeler Peak. Nevada-Utah boundary monu- ment. Snake Creak	14688.4 25859.7	4.166976 4.412623
	39 00 41.514	1280.2	215 07 12.8	35 12 23.1	Nevada-Utah boundary monu-	20535.5	4.312506
Transit Venus station, 1883	{114 11 05.208	125.3	285 05 04.0 339 20 44.4	$\begin{array}{c} 105 \ 12 \ 59.5 \\ 159 \ 21 \ 57.7 \end{array}$	ment Snake Creek Cedar Spur	18841.5 7954.2	4.275116 3.900596
Shell Creek, south peak, 1881	$\begin{cases} 39 \ 20 \ 12.047 \\ 114 \ 35 \ 57.638 \end{cases}$	371.5 1380.4	35 02 06.8 105 07 41.1 226 43 42.8 327 29 11.8	214 28 10.7 284 21 12.6 47 09 43.1 147 40 02.1	White Pine Diamond Peak. Ibepah. Wheeler Peak.	137408.5 108454.8 79975.5 46111.0	$\begin{array}{c} 5.1380137\\ 5.0352487\\ 4.9029571\\ 4.6638042 \end{array}$
Shell Creek, north peak, 1881	39 24 48.819 114 35 56.796	1505.5 1358.7	$\begin{array}{c} 33 & 05 & 55.7 \\ 100 & 41 & 28.7 \\ 231 & 30 & 40.9 \\ 269 & 52 & 43.7 \\ 332 & 25 & 28.3 \end{array}$	212 31 57.4 279 54 57.4 51 56 41.9 91 23 51.4 152 36 18.6	White Pine. Diamond Peak. Ibepah. Scipio. Wheeler Peak.	$\begin{array}{c} 144491.4\\ 106566.1\\ 74369.2\\ 206084.6\\ 53496.3\end{array}$	$\begin{array}{c} 5.1598420\\ 5.0276190\\ 4.8713929\\ 5.3140456\\ 4.7283238 \end{array}$
Ward, north summit, 1881	$\begin{cases} 39 \ 08 \ 29.8 \\ 114 \ 56 \ 38.2 \end{cases}$	919.0 917.3	28 09 06 123 27 13 287 21 20	207 48 11 302 53 06 107 45 11	White Pine Diamond Peak Wheeler Peak	103318 90004 57248	5.014178 4.954264 4.757762
Ward, smail cairn, 1881	$\left\{\begin{matrix} 39 & 06 & 01.912 \\ 114 & 55 & 11.920 \\ \end{matrix}\right.$	59.0 286.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103 47 25.6 148 47 23.6 210 04 31.8 304 31 00.9	Wheeler Peak Pioche White Pine Diamond Peak	54038.5 145019.5 100354.4 94286.0	4.7327033 5.1614265 5.0015364 4.9744470
Mount Grafton, summit, 1881	$ \left\{ \begin{matrix} 38 & 41 & 32.972 \\ 114 & 44 & 30.698 \\ \end{matrix} \right.$	1016.7 741.9	58 14 31.3 137 08 46.9 228 39 05.8 322 10 51.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	White Pine Diamond Peak Wheeler Peak Pioche	78112.0 135940.8 49464.0 98934.8	4.892718 5.133350 4.694289 4.995349
White Rock, 1881	$\begin{cases} 38 \ 08 \ 47.033 \\ 114 \ 19 \ 30.168 \end{cases}$	1450.2 734-6	100 56 24.2 180 37 32.3 306 24 00.4	280 12 43.4 0 37 58.6 126 34 07.9	White Pine Whecler Peak Pioche	104769.9 93213.8 29874.0	5. 0202364 4. 9694803 4. 4752941
Pioche Peak, monument, 1881	$\begin{cases} 37 \ 56 \ 01.546 \\ 114 \ 28 \ 54.342 \end{cases}$	47.7 1327.0	210 11 24.3 234 59 42.7 261 05 38.1	30 17 12.0 55 22 21.0 81 21 31.2	White Rock Indian Peak Pioche	27318.4 64845.0 38274.3	4. 4364550 4. 8118762 4. 5829070
White cairn, 1883	$\begin{cases} 37 \ 55 \ 19.160 \\ 114 \ 26 \ 57.704 \end{cases}$	590.7 1409.4	114 39 12.6 203 37 24.6 258 20 02.3	294 38 00.9 23 42 00.4 78 34 43.7	Pioche Peak White Rock Pioche	3134.0 27194.4 35704.1	3. 4961040 4. 4344797 4. 5527179
Highland Peak, summit, 1881	37 53 38.346 114 34 40.972	1182.2 1001.2	$\begin{array}{c} 120 & 32 & 44. \\ 190 & 42 & 47. \\ 242 & 25 & 53. \\ 254 & 36 & 10. \\ 257 & 21 & 06. \\ 2 \end{array}$	299 58 32.9 10 52 39.6 62 29 26.2 74 40 55.4 77 40 32.1	White Pine	93753.0 123408.4 9549.1 11736.2 47422.3	4.9719854 5.0913446 3.9799610 4.0695285 4.6759828
White Pine, azimuth mark, 1883	$\begin{cases} 38 \ 18 \ 43.768 \\ 115 \ 30 \ 25.198 \end{cases}$	1349.6 612.2	210 48 48.68 233 52 42.97 285 22 22.07	30 49 01.33 54 37 26.98 106 16 19.23	White Pine Wheeler Pcak. Pioche	967.8 128041.7 132621.5	$\begin{array}{c} 2,9857973\\ 5,1073514\\ 5,1226139 \end{array}$
White Pine, south summit, 1880	$\begin{cases} 38 \ 17 \ 37.860 \\ 115 \ 31 \ 19.351 \end{cases}$	1167.4 470.3	80 48 01.7 111 07 57.3 169 56 36.3	259 34 55.7 289 59 29.4 349 45 26.5	Lone Mountain. Tolyabe Dome. Diamond Peak.	175374 170384 145640	5.243964 5.231428 5.163281

' No check on this position.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rlthm.
Supplementary points-Continued. Mount 1rish, 1881-83	37 38 41.93 115 24 02.93	1292.7 71.8	° ' '' 173 18 19.3 212 14 22.4 251 54 04.4	• , , , , , , , , , , , , , , , , , , ,	White Pine Wheeler Peak Pioche	<i>Meters.</i> 75402.9 176648 124720	4.877388 5.247109 5.095936
Duckwater caim, 1881	$\left\{\begin{matrix} 38 & 54 & 36, 238 \\ 115 & 25 & 26, 384 \\ \end{matrix}\right.$	1117.4 635.7	5 53 30.8 87 40 44.9 124 28 43.3 155 42 55.6 264 38 34.6	$\begin{array}{c} 185 \ 50 \ 37.0 \\ 266 \ 28 \ 07.9 \\ 303 \ 30 \ 42.4 \\ 335 \ 27 \ 58.1 \\ 85 \ 20 \ 28.2 \end{array}$	White Pine. Toiyabe Dome. Mount Callahan Diamond Peak. Wheeler Peak.	65885.2 167571.7 158768.0 82315.1 96656.6	4.8187880 5.2242008 5.2007629 4.9154796 4.9852317
Mount Hamiiton, 1890	39 13 58.012 115 32 26.379	1789.1 632.7	358 03 22.9 74 46 30.9 114 01 52.7 148 41 01.3	178 04 51.5 253 38 03.1 293 08 06.9 328 30 27.3	White Pine Toiyabe Dome Mount Callahan Diamond Peak	101423.6 163029.1 132343.0 45847.9	$\begin{array}{c} 5.006139\\ 5.212265\\ 5.121701\\ 4.661319 \end{array}$
Buliwhacker, 1898	{ 39 31 28.408 {115 59 32.906	876.1 786.0	245 44 28.9 3 34 51.9	65 51 08.8 183 34 38.1	Diamond Peak Prospect Peak	16436.7 8290.6	4.215815 3.918585
Desert, 1898	$\begin{cases} 39 \ 34 \ 37.016 \\ 116 \ 01 \ 15.657 \end{cases}$	1141.6 373.7	266 54 32.4 337 07 21.2 352 09 53.9	87 02 18.0 157 08 26.7 172 10 45.5	Diamond Peak Bullwhacker Prospect Peak	$17462.8\\6312.9\\14223.6$	4. 242114 3. 800226 4. 153010
Richmond, 1898	{ 39 30 30.354 {115 57 18.843	936.1 450.2	29 52 08.6 119 13 12.3	209 50 29.6 299 11 47.0	Prospect Peak Builwhacker	7476.2 3668.9	3.873683 3.564539
Leo, 1898	$\begin{cases} 39 \ 31 \ 00. 855 \\ 115 \ 57 \ 30. 815 \end{cases}$	26.4 736.1	24 50 33.9 106 15 20.2 343 05 13.8	204 49 02.3 286 14 02.5 163 05 21.4	Prospect Peak Bullwhacker Richmond	8181.0 3037.5 983.2	3.912804 3.482521 . 2.992630
Tank, 1898	$\left\{\begin{array}{l} 39 \ 30 \ 42.745 \\ 115 \ 57 \ 54.820 \end{array}\right.$	1318.2 1309.6	225 45 09.6 293 58 02.0	45 45 24.9 113 58 24.9	Leo. Richmond.	800.5 940.6	2.903352 2.973407
Eureka courthouse, 1898	$\begin{cases} 39 \ 30 \ 45. \ 430 \\ 115 \ 57 \ 37. \ 345 \end{cases}$	1401.0 892.1	$\begin{array}{r} 78 \ 46 \ 51.5 \\ 198 \ 09 \ 10.6 \\ 316 \ 26 \ 53.1 \end{array}$	258 46 40.4 18 09 14.8 136 27 04.9	Tank Leo Richmond	425.6 500.6 641.5	2.629007 2.699511 2.807207
Eureka Catholic Church, 1898	$\begin{cases} 39 \ 30 \ 46.190 \\ 115 \ 57 \ 46.050 \end{cases}$	1424.5 1100.1	63 06 38.8 218 49 15.7 306 55 05.8	243 06 33.2 38 49 25.4 126 55 23.1	Tank. Leo. Richmond.	234.9 580.5 813.0	2.370889 2.763817 2.910091
Eureka iongltude, 1889	39 30 48.342 115 57 30.639	1490.8 731.9	60 43 36.4 73 21 54.0 79 46 53.1 179 22 30.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Eureka courthouse Tank Eureka Catholic Chureh Leo	183.6602.9374.1385.9	$\begin{array}{c} 2.263973\\ 2.780243\\ 2.572973\\ 2.586507 \end{array}$
Broken Back King summit monu- ment, 1880.	$\begin{cases} 39 \ 22 \ 37, 265 \\ 116 \ 27 \ 40, 611 \end{cases}$	1149.2 972.0	52 12 10.1 131 28 05.9 247 07 25.7	231 38 26.7 311 09 25.4 67 31 58.1	Toiyabe Dome Mount Cailahan Diamond Peak	97923.1 55952.2 59977.9	4. 990885 4. 747817 4. 777991
Prospect Peak, 1880	$\begin{cases} 39 \ 27 \ 00. \ 103 \\ 115 \ 59 \ 54. \ 563 \end{cases}$	3.2 1304.6	60 05 32.4 109 43 35.0 225 53 19.6	239 14 15.6 289 07 12.1 46 00 13.0	Toiyabe Dome Mount Callahan. Diamond Peak	135620.7 86700.4 21591.1	5. 132326 4. 938021 4. 334275
Sharp Peak, 1880	39 08 48.770 116 15 02.447	1504.1 58.8	$\begin{array}{c} 70 \ 17 \ 35.1 \\ 136 \ 16 \ 32.8 \\ 217 \ 19 \ 07.3 \\ 324 \ 24 \ 25.7 \end{array}$	249 35 59.6 315 49 53.5 37 35 35.2 144 52 33.6	Toiyabe Dome Mount Callahan Diamond Peak White Pine	101613.9 86788.3 61308.5 112596.8	5.006953 4.938461 4.787521 5.051526
Smoky Valley, southwest summit, 1880.	39 00 55.958 116 49 56.631	1725.7 1362.4	65 57 56.6 172 32 02.0 233 49 06.3 303 16 45.8	245 38 20.5 352 27 33.1 54 27 39.3 124 06 39.9	Toiyabe Dome. Mount Caliahan Diamond Peak. White Pine	49438 77733 107964 139237	4.694065 4.890608 5.03?279 5.143756
Smoky Valley, northeast summit, 1880.	39 02 05.485 116 46 59.331	169.1 1427.0	$\begin{array}{c} 65 & 45 & 42.2 \\ 169 & 10 & 42.2 \\ 233 & 24 & 48.0 \\ 305 & 02 & 23.7 \end{array}$	245 24 14.4 349 04 20.8 54 01 29.2 125 50 27.6	Toiyabe Dome Mount Callahan Diamond Peak White Pine	54207 76294 103259 136912	4. 734058 4. 882490 5. 013927 5. 136441
Monitor, 1881	38 49 10.763 116 35 26,210	331.9 632.3	42 04 16, 29 91 31 18, 35 162 40 43, 71 217 53 40, 51 299 58 22, 76	$\begin{array}{c} 221 \ 30 \ 35. \ 60 \\ 271 \ 02 \ 38. \ 94 \\ 342 \ 27 \ 04. \ 43 \\ 38 \ 22 \ 58. \ 49 \\ 120 \ 39 \ 07. \ 70 \end{array}$	Lone Mountain	$\begin{array}{c} 118356, 1\\ 66169, 6\\ 103571, 7\\ 108062, 2\\ 109965, 7\end{array}$	5.0731906 4.8206587 5.0152410 5.0336738 5.0412572
Hot Creek, north summit, 1881	$\begin{cases} 38 \ 37 \ 51. \ 249 \\ 116 \ 17 \ 06. \ 318 \\ , \circ \end{cases}$	1580.3 152.8	200 43 29.2 256 25 10.4 296 33 25.5	21 01 09.8 77 39 19.4 117 02 41.0	Diamond Peak Wheeler Peak White Pine.	113387.7 175748.3 76625.6	5, 054566 5, 244891 4, 884374
Mount Jefferson, north summit mon- ument, 1879.	$\left\{\begin{matrix} 38 & 47 & 45, 284 \\ 116 & 55 & 36, 996 \\ \end{matrix}\right\}$	1396.3 892.8	81 49 07.9 96 29 28.3 178 52 29.2 227 12 08.0	260 39 14.0 276 13 28.2 358 51 36.2 47 54 10.6	Mount Grant Toiyabe Dome Mount Callahan Diamond Peak	164086.7 37181.2 101469.4 129834.3	5.2150733 4.5703230 5.0063350 5.1133894
Mount Jefferson, mlddie summit, 1880.	$\left\{\begin{matrix} 38 & 46 & 16.505\\ 116 & 56 & 20.398 \end{matrix}\right.$	508.9 492.4	291 21 02.3 30 29 32.3 100 56 10.8 129 15 01.6	112 14 47.7 210 08 51.7 280 40 38.2 308 25 54.7	White Pine Lone Mountain Toiyabe Dome Carson Sink	134987.5 96004.2 36560.0 143753.9	5. 1302934 4. 9822900 4. 5630058 5. 1576198
Mount Jefferson, south summit, 1879.	$\left\{\begin{matrix}38 & 45 & 06.8\\116 & 55 & 35.1\end{matrix}\right\}$	209.7 847.5	103 48 25 225 38 48 290 40 08 31 43 44 83 30 58	283 32 24 46 20 48 111 33 24 211 22 36 262 21 05	Toiyabe Dome Diamond Peak White Pine. Lone Mountain. Mount Grant	38088 133170 133197 94729 163508	4.580792 5.124408 5.124495 4.976484 5.213538

GEOGRAPHIC POSITIONS—Continued

Thirty-ninth parallel-Continued.

,

Station.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points—Continued. Toquema, 1880	° / // 38 40 12:453 116 57 39.072	384.0 944.6	° / // 286 32 04.2 33 11 58.1 118 05 59.6	• / // 107 26 35.9 212 52 07.7 297 51 17.3	White Pine Lone Mountain Toiyabe Dome	<i>Meters</i> . 133139, 4 85462, 4 38541, 4	5.1243065 4.9317751 4.5859274
Lyon, south summit ,1880-81	$\begin{cases} 38 \ 17 \ 21.887 \\ 116 \ 25 \ 16.472 \end{cases}$	674.8 400.3	72 58 19.0 126 55 10.2 267 19 36.3	252 18 33.4 306 20 20.6 87 53 48.9	Lone Mountain. Toiyabe Dome. White Pine.	98491.4 101132.9 80534.4	4, 9933982 5, 0048926 4, 9059814
Kawich Peak, 1880-81	$\begin{cases} 37 \ 57 \ 43.052 \\ 116 \ 27 \ 39.620 \end{cases}$	1327.3 967.3	94 42 14.6 141 25 42.7 244 26 28.6	274 04 05.8 320 52 29.5 65 02 02.3	Lone Mountain. Toiyabe Dome. White Pine.	90988.6 124144.6 93027.9	4. 9589870 5. 0939278 4. 9686134
Montezuma Peak, 1879–1881	$\begin{cases} 37 \ 41 \ 41. 99 \\ 117 \ 21 \ 41. 56 \end{cases}$	1294.5 1018.1	128 14 24.1 162 23 46.0 180 21 36.7	307 21 27.0 342 18 53.8 0 21 57.1	Mount Grant. Lone Mountain. Toiyabe Dome.	158579 38396 126321	5.200246 4.584283 5.101474
Butler, 1902	$\left\{\begin{array}{cccc} 38 & 03 & 02.463 \\ 117 & 13 & 54.294 \end{array}\right.$	75.9 1323.8	82 55 22.6	262 45 41.3	Lone Mountain	23185.3	4.365213
Bradford, 1902	{ 38 08 43.821 {117 13 14.747	1351.2 359.1	5 14 03.9 60 50 09.6	185 13 39.5 240 40 03.3	Butler Lone Mountain	10568.8 27453.0	4.024024 4.438599
Booker, 1902	{ 38 05 57.986 {117 11 10.945	1788, 0 266, 6	36 21 21.9 149 28 46.0	216 19 41.2 329 27 29.6	Butler Bradford	6718, 5 5936, 1	3.827271 3.773502
Oddie, 1902	$\left\{ \begin{matrix} 38 & 04 & 22, 362 \\ 117 & 13 & 16, 385 \\ \end{matrix} \right.$	689.5 399.4	$\begin{array}{c} 20 \ 34 \ 00.6 \\ 77 \ 28 \ 26.8 \\ 180 \ 16 \ 59.7 \\ 226 \ 01 \ 34. 4 \end{array}$	200 33 37.2 257 18 21.6 0 17 00.8 46 02 51.8	Butler. Lone Mountain. Bradford. Booker.	2631, 1 24516, 9 8061, 4 4247, 0	3. 420133 4. 389465 3. 906412 3. 628085
Tonapah astronomic, 1902	$\left\{\begin{array}{r} 38 \ 04 \ 08, 546 \\ 117 \ 13 \ 55, 808 \end{array}\right.$	263, 5 1360, 4	246 05 22.0 358 57 44.9	66 05 46.3 178 57 45.8	Oddie. Butler	1051,1 2037.8	3.021649 3.309161
Tonopah north meridian, 1902	$\begin{cases} 38 \ 04 \ 44. \ 665 \\ 117 \ 13 \ 55. \ 808 \end{cases}$	1377.2 1360.3	305 45 11.0 359 19 44.8 0 00 00.0	125 35 35.3 179 19 45.7 180 00 00.0	Oddie. Butler. Tonopah astronomic	1181.6 3151.3 1113.6	3.072462 3.498489 3.046738
Golden, 1902	$ \left\{ \begin{matrix} 38 & 03 & 46, 914 \\ 117 & 12 & 35, 524 \end{matrix} \right.$	1446.6 866.0	54 29 33.8 108 49 33.9 137 39 35.8 207 01 04.8	234 28 45.2 288 48 44.4 317 39 10.6 27 01 56.9	Butler. Tonopah astronomic. Oddie. Booker.	2359.3 2067.6 1478.7 4536.6	3.372777 3.315459 3.169878 3.656726
Tonopah southeast base, 1902	$\left\{\begin{array}{r} 38 & 03 & 30,833 \\ 117 & 12 & 56,071 \end{array}\right.$	95 0.7 1367.0	$\begin{array}{c} 162 \ 41 \ 25.8 \\ 225 \ 17 \ 26.0 \end{array}$	342 41 13.3 45 17 38.7	Oddie Golden	1664.1 704.8	3.221184 2.848056
Tonopah northwest base, 1902	$\left\{\begin{matrix} 38 & 03 & 42. \\ 38 & 03 & 42. \\ 117 & 13 & 09. \\ 732 \end{matrix}\right.$	1304.5 237.2	$\begin{array}{r} 41 \ 29 \ 35. \ 4 \\ 172 \ 31 \ 14. \ 0 \\ 260 \ 19 \ 40. \ 1 \\ 316 \ 43 \ 24. \ 2 \end{array}$	$\begin{array}{c} 221 \ 29 \ 07. \ 9 \\ 352 \ 31 \ 09. \ 9 \\ 80 \ 20 \ 01. \ 2 \\ 136 \ 43 \ 32. \ 6 \end{array}$	Butler. Oddie. Golden Tonopah southeast base	1639.9 1245.6 845.9 485.84	3. 214818 3. 095383 2. 927338 2. 686493
Davis, 1902	$ \left\{ \begin{matrix} 38 & 02 & 51,881 \\ 117 & 11 & 42,628 \\ \end{matrix} \right.$	1599.7 1039.4	95 48 51.3 140 40 47.2 142 46 05.7 187 39 45.2	$\begin{array}{c} 275 \ 47 \ 30.1 \\ 320 \ 39 \ 49.4 \\ 322 \ 45 \ 33.1 \\ 7 \ 40 \ 04.8 \end{array}$	Butler. Oddie. Golden. Booker.	3226.8 3606.5 2131.2 5789.7	3, 508775 3, 557080 3, 328628 3, 762655
Douglas, 1902	$\left\{\begin{array}{c} 37 \ 59 \ 59, 544 \\ 117 \ 11 \ 56, 728 \end{array}\right\}$	1835.7 1384.1	96 09 28.1 153 03 34.2 173 17 48.7 183 42 06.7 185 45 49.9	$\begin{array}{c} 275 \ 58 \ 34.5 \\ 333 \ 02 \ 21.8 \\ 353 \ 17 \ 00.6 \\ 3 \ 42 \ 15.4 \\ 5 \ 46 \ 18.2 \end{array}$	Lone Mountain. Butler. Bradford. Davis. Booker.	$\begin{array}{c} 26026.2\\ 6326.8\\ 16275.9\\ 5324.6\\ 11107.6 \end{array}$	4. 415411 3. 801185 4. 211545 3. 726285 4. 045622
Lothrop, 1902	38 01 39.863 117 10 06.584	1229.2 160.6	$\begin{array}{r} 40 \ 59 \ 22.8 \\ 114 \ 39 \ 26.1 \\ 133 \ 28 \ 49.6 \\ 168 \ 51 \ 10.9 \end{array}$	220 58 15.0 294 37 05.8 313 27 50.4 348 50 31.3	Douglas Butler. Davis. Booker	4097.0 6109.0 3227.4 8111.6	3, 612471 3, 785967 3, 508850 3, 909105
Ralston, 1902	{ 38 00 38.967 117 08 34.912	1201.5 851.7	76 09 01.2 130 01 35.7	256 06 56.9 310 00 39.2	Douglas Lothrop	5071.5 2919.8	3, 705133 3, 465352
Cutting, 1902	$\begin{cases} 37 \ 59 \ 15.706 \\ 117 \ 08 \ 43.102 \end{cases}$	484.2 1051.8	105 58 52.8 155 23 19.9 184 27 01.8	285 56 53.6 335 22 28.3 4 27 06.8	Douglas. Lothrop. Ralston.	4914.1 4889.0 2574.8	3.691445 3.689221 3.410750
Short, 1902	{ 38 00 12.960 (117 09 57.696	399.6 1407.6	248 20 19.4 314 07 01.0	68 21 10.4 134 07 46.9	Ralston Cutting	2173.0 2535.5	3,337055 3,404065
Crest, 1902	$\begin{cases} 38 \ 00 \ 04. 653 \\ 117 \ 10 \ 00. 406 \end{cases}$	143.5 9.9	$\begin{array}{c} 194 \ 28 \ 20.5 \\ 243 \ 05 \ 50.4 \\ 308 \ 39 \ 20.0 \end{array}$	14 28 22.2 63 06 43.1 128 40 07.6	Short Ralston Cutting	264. 5 2338. 7 2415. 6	2. 422441 3. 368980 3. 383033
Watch, 1902	$\begin{cases} 38 \ 00 \ 07. \ 103 \\ 117 \ 09 \ 54. \ 980 \end{cases}$	219.0 1341.4	60 17 16.7 159 51 09.8 312 05 32.9	240 17 13.3 339 51 08.1 132 06 17.0	Crest Short Cutting	$152.4 \\ 192.4 \\ 2363.7$	2.182975 2.284095 3.373595
Esmeralda County corner stone, 1902.	$\left\{ \begin{matrix} 38 & 00 & 07.283 \\ 117 & 09 & 54.330 \end{matrix} \right.$	$224.6 \\ 1325.5$	70 40 22 138 51 47.4	250 40 22 318 13 20.0	Watch. Hot Spring	16. 806 135852. 8	$1.22546 \\ 5.1330685$
Toiyabe Peak, 1880	39 21 35.275 117 04 28.411	1087.9 680.4	22 25 49.5 60 02 44.2 195 20 58.6 256 33 59.1	202 15 18.7 238 57 58.8 15 25 43.6 77 21 54 7	Toiyabe Dome Mount Grant Mount Callahan Diamond Peak	63228.5 172616.4 40295.2 110981.1	$\begin{array}{r} 4.800913 \\ 5.237082 \\ 4.605253 \\ 5.045249 \end{array}$

.

.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitudo and longitude.	Sec onds in meters.	Azimuth.	Back azimuth.	To statlon.	Distance.	Loga- rithm,
Supplementary points-Continued. Shoshone Peak, north. 1880	39 09 02.762 117 28 45.574	85.2 1094.4	60 54 50.7 126 39 30.6 216 07 03.5 342 38 44.8	• / // 240 05 28.5 306 10 45.0 36 27 13.4 162 43 32.3	Nount Grant Carson Sink Mount Callahan Tolyabe Dome	Meters. 130777.8 80902.0 76984.8 36950.4	5.116534 4.907959 4.886405 4.567619
Shoshone Peak, south, 1880	$\begin{cases} 39 \ 03 \ 24.100 \\ 117 \ 33 \ 36.864 \end{cases}$	743.2 886.3	323 58 09.3 63 36 03.0 135 21 50.4	144 05 58.6 242 49 46.4 314 56 11.7	Tolyabe Dome Mount Grant Carson Sink	30681.3 119718.4 82478.0	4.486874 5.078161 4.916338
Tolyabe Range Peak, 1880	38 55 11.97 117 18 33.30	369.1 802.3	21 12 19.0 73 42 32.2 132 57 54	201 10 42.0 252 46 54.6 312 22 46	Toiyabe Dome. Mount Grant. Carson Sink.	10357.0 134505.2 108657.6	4.015235 5.128739 5.036060
Tolyabe Range Peak, ¹ cairn, 1880	$\left\{\begin{array}{r} 39 \ 06 \ 55.86 \\ 117 \ 12 \ 18.55 \end{array}\right.$	1725.7 445.7	22 11 02 198 19 51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tolyabe Dome Mount Callahan	33862, 1 69525, 3	4.529714 4.842143
Toiyabe Dome, southeast summlt, 1880.	$\begin{cases} 38 \ 47 \ 53.37 \\ 117 \ 15 \ 04.98 \end{cases}$	1645.7 120.1	234 20 26 288 39 07 13 55 37	55 14 47 109 44 34 193 46 35	Diamond Peak White Pine Lone Mountain	151554.9 161521.7 88431.9	5.180570 5.208231 4.946609
Bunker Hill, cairn, 1880	39 15 11.538 117 07 31.514	355.8 755.7	$\begin{array}{c} 22 \ 54 \ 53.4 \\ 62 \ 50 \ 41.9 \\ 111 \ 20 \ 42.2 \\ 196 \ 30 \ 40.5 \\ 251 \ 27 \ 19.1 \\ 305 \ 46 \ 56.7 \end{array}$	$\begin{array}{c} 202 \ 46 \ 18.7 \\ 241 \ 47 \ 56.0 \\ 290 \ 38 \ 26.3 \\ 16 \ 37 \ 21.6 \\ 72 \ 17 \ 07.8 \\ 126 \ 47 \ 59.4 \end{array}$	Toiyabe Dome Mount Grant Carson Sink Nount Callahau. Diamond Peak White Pine	$\begin{array}{c} 50618.3\\ 163103.8\\ 102322.2\\ 52878.9\\ 118465.3\\ 175075.4 \end{array}$	4.704308 5.212464 5.009970 4.723282 5.073591 5.243225
Vlgus, 1898	$\left\{\begin{array}{c} 39 \ 33 \ 15.109 \\ 117 \ 10 \ 09.657 \end{array}\right.$	465.9 230.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47 31 37.9 159 19 22.1	Mount Callahan Tolyabo Peak	25539.0 23073.1	4.407203 4.363106
Mount Prometheus or Lander Hill, 1880.	$\begin{cases} 39 \ 29 \ 46.801 \\ 117 \ 02 \ 39.813 \end{cases}$	1443.2 951.3	9 43 58.1 120 54 56.2 198 49 38.3	189 42 49.2 300 50 09.9 18 53 14.5	Tolyabe Peak Vigus Mount Callahan	15379.3 12518.4 24522.4	4.186936 4.097550 4.389563
South Hill, 1898	$\begin{cases} 39 \ 29 \ 13.950 \\ 117 \ 04 \ 15.285 \end{cases}$	430.3 365.3	$\begin{array}{c} 131 \ 20 \ 06.7 \\ 246 \ 02 \ 48.1 \\ 1 \ 16 \ 21.0 \end{array}$	$\begin{array}{c} 311 \ 16 \ 21.2 \\ 66 \ 03 \ 48.8 \\ 181 \ 16 \ 12.7 \end{array}$	Vlgus Mount Prometheus Toiyabe Peak	11267.8 2496.2 14148.7	4.051838 3.397288 4.150717
North Hill, 1898	39 29 57.837 117 04 01.826	1783.7 43.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	182 20 48.4 193 21 56.0 304 40 12.6 99 51 38.2	Toiyabe Peak South Hill Vigus Mount Prometheus	15511.8 1391.2 10686.2 1989.0	$\begin{array}{r} 4.190661\\ 3.143380\\ 4.028822\\ 3.298625\end{array}$
Union, 1898	$\begin{cases} 39 \ 29 \ 11.345 \\ 117 \ 03 \ 34.389 \end{cases}$	349.8 821.9	94 42 14.3 155 25 46.8 230 06 59.5	274 41 48.3 335 25 29.3 50 01 34.2	South Hill. North Hill Mount Prometheus	980.6 1576.6 1701.9	2.991510 3.197731 3.230935
Reservoir, 1898	$\begin{cases} 39 \ 29 \ 35. \ 207 \\ 117 \ 03 \ 59. \ 923 \end{cases}$	1085.8 1432.0	$\begin{array}{c} 29 \ 15 \ 03.9 \\ 176 \ 16 \ 18.1 \\ 320 \ 20 \ 00.1 \end{array}$	209 14 54.1 356 16 16.8 140 20 16.3	South Hlil. North Hill. Union.	751.3 699.4 956.0	2.875835 2.844741 2.980442
Austin longitude eccentric, 1898	{39 29 32.650 117 04 11.991	1006.9 286.4	197 21 46.5 254 42 40.8 306 10 20.1	$\begin{array}{rrrrr} 17 & 21 & 52.9 \\ 74 & 42 & 48.5 \\ 126 & 10 & 44.0 \end{array}$	North Hill. Reservoir. Union.	813.9 299.0 1113.2	2.910549 2.475613 3.046570
Austin longltude, 1889	$\left\{\begin{array}{r} 39 \ 29 \ 32.59 \\ 117 \ 04 \ 12.21 \end{array}\right.$	$1005.1 \\ 291.7$	250 41	70 41	Austin longitude eccentric	5.56	0.74507
Wheeler Stone, U. S. E., 1898	$\left\{\begin{matrix} 39 & 29 & 21.081 \\ 117 & 03 & 27.551 \end{matrix}\right.$	650.1 658.4	28 33 20.0 79 05 34.2 119 23 21.1	$\begin{array}{c} 208 \ 33 \ 16.7 \\ 259 \ 05 \ 04.9 \\ 299 \ 23 \ 01.6 \end{array}$	Union. South Hill Reservoir.	341.8 1161.7 887.8	2,533821 3,065103 2,948314
Austin courthouse flagstaff, 1898	$\left\{\begin{array}{ccc} 39 & 29 & 32.38 \\ 117 & 04 & 11.70 \end{array}\right.$	998.6 279.6	196 43 28 306 01 49	$\begin{array}{r} 16 \ 43 \ 34 \\ 126 \ 02 \ 13 \end{array}$	North Hill. Union	819.9 1102.6	2.91377 3.04243
Austin Catholic Church spire, 1898	$\begin{cases} 39 \ 29 \ 36.85 \\ 117 \ 04 \ 12.29 \end{cases}$	1136.4 293.7	279 42 18 356 52 33	99 42 26 176 52 33	Reservoir. Austin longitude eccentric	299.7 129.5	2.47673 2.11243
Austin Methodist Church splre	$\begin{cases} 39 \ 29 \ 31. 89 \\ 117 \ 04 \ 06. 91 \end{cases}$	983.5 165.1	188 37 37 309 11 14	8 37 40 129 11 35	North Hill. Union	809.4 1002.7	2.90818 3.00115
Austin Episcopal Church splre, 1898.	$\left\{\begin{array}{c} 39 \ 29 \ 28.42 \\ 117 \ 04 \ 08.22 \end{array}\right.$	876.4 196.5	189 33 21 303 04 43	9 33 25 123 05 05	North Hill. Union	920.0 964.8	2.96378 2.98445
Roberts Creek, 1880	$\left\{\begin{matrix} 39 & 52 & 12.925\\ 116 & 18 & 35.762\\ \cdot & \cdot \end{matrix}\right.$	398.6 849.9	306 43 30.1 337 37 42.0 3\$17 49.9 72 12 01.7 79 41 33.1	127 02 21.9 158 08 17.8 217 38 10.2 251 47 26.6 258 27 44.2	Diamond Peak White Pine Tojyahe Dome. Mount Callahau. Carson Sink	$\begin{array}{c} 52723.2\\ 185810.0\\ 146063.9\\ 57665.1\\ 168066.4 \end{array}$	4.722002 5.269069 5.164543 4.760913 5.225481
Mount Lewis, 1880	$\begin{cases} 40 \ 24 \ 13.25 \\ 116 \ 51 \ 38.72 \end{cases}$	408.8 913.0	315 14 38 5 41 03 13 45 58	135 54 51 185 37 36 193 27 10	Diamond Peak Mount Callahan Toiyabe Dome	127229 77430 179422	5.104586 4.888907 5.253875
Granite Peak, summit, south eud, 1880.	$ \left\{ \begin{matrix} 40 & 22 & 36.653 \\ 117 & 31 & 31.432 \\ \end{matrix} \right\} $	1130.6 741.5	300 31 29.9 326 16 51.7 354 59 25.3 34 44 53.7	121 37 19.5 146 39 04.0 175 06 02.4 214.17 32.9	Diamond Peak. Mount Callahan Tolyabo Dome Carson Sink.	170273.9 88863.0 172048.1 106923.7	5.231148 4.948721 5.235650 5.029074
Star Peak, 1879	$\begin{cases} 40 \ 31 \ 22.011 \\ 118 \ 10 \ 12.323 \end{cases}$	678,9 290,1	310 33 56.9 339 14 06.9 3 02 55.7	131 21 06.7 159 45 26.5 183 00 25.8	Mount Callahan Tolyahe Dome Carson Sink	137713.7 200295.0 104448.9	5.138977 5.301670 5.018904
		1 N	o check on this	position.			

GEOGRAPHIC POSITIONS—Continued.

Thirty-ninth parallel-Continued.

					the second secon		
Statlon.	Latitude and longitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued. North Augusta, 1880	, , , , , , , , , , , , , , , , , , ,	262. 4 533. 5	° / // 267 38 45.7 337 22 39.1 72 58 47.4	° / // 88 11 34.1 157 39 53.0 252 42 23.3	Mount Callahan. Toiyabe Dome Carson Sink.	<i>Meters.</i> 73471.8 102448.1 38502.4	4.866121 5.010504 4.585488
Fairview, cairn, 1880	39 13 31.450 118 09 06.612	969.9 158.6	37 31 44.6 169 50 24.1 301 55 43.9 336 31 47.2	$\begin{array}{c} 217 \ 07 \ 40.3 \\ 349 \ 47 \ 14.6 \\ 122 \ 25 \ 56.2 \\ 156 \ 56 \ 26.0 \end{array}$	Mount Grant. Carson Sink. Tolyabe Dome. Lone Mountain.	91402.8 40381.5 81791.0 145085.5	4,9609595 4,6061825 4,9127055 5,1616241
Mount Lincoln, peak, 1880	39 32 59.137 118 15 44.525	1823.8 1063.0	212 25 44.2 315 03 28.0 22 59 07.7	32 26 47.5 135 37 58.1 202 39 09.1	Carson Sink Toiyabe Dome Mount Grant	4425.0 111857.2 117920.7	3.645912 5.048664 5.071590
Carson Table, summit, 1880	39 32 30.34 118 17 53.73	935.7 1283.0	229 42 58,5 313 36 55,2 21 43 48,6 105 56 36,6	49 45 24.1 134 12 46.8 201 25 11.5 285 11 35.8	Carson Sink. Toiyabe Dome. Mount Grant. Pah-Rah.	7152.5 113443.3 115925.5 104687.3	3.854459 5.054779 5.064179 5.019894
Augusta, monument, 1873	39 32 25.167 117 55 07.696	776. 1 183, 8	$\begin{array}{c} 35 \ 18 \ 40.\ 6 \\ 100 \ 05 \ 22.\ 2 \\ 102 \ 27 \ 16.\ 9 \\ 256 \ 56 \ 55.\ 9 \\ 327 \ 53 \ 19.\ 7 \end{array}$	$\begin{array}{c} 214 \ 45 \ 42.8 \\ 279 \ 53 \ 17.8 \\ 281 \ 27 \ 44.1 \\ 77 \ 33 \ 59.8 \\ 148 \ 14 \ 48.1 \end{array}$	Mount Grant Carson Sink Pah-Rah Mount Callahan Toiyabe Dome	131465.7 27569.9 136366.4 85267.1 92525.4	$\begin{array}{c} 5.1188124\\ 4.4404349\\ 5.1347074\\ 4.9307815\\ 4.9662608\\ \end{array}$
Desatoiya, 1879	39 21 55.959 117 45 30.306	1725.8 725.5	45 43 16.1 120 41 47.8 240 56 05.8 329 09 24.4 351 07 29.3	225 04 18.9 300 23 37.6 61 26 58.0 149 24 46.2 171 17 24.9	Mount Grant Carson Sink Mount Callahan. Toiyabe Dome. Lone Mountain.	$125659.1 \\ 47591.0 \\ 79297.4 \\ 68766.7 \\ 150618.4$	5.099194 4.677525 4.899259 4.837378 5.177878
Desatoiya, north twin, 1379	39 22 10.740 117 45 32.527	331.2 778.7	45 33 19.5 120 15 15.3 241 14 30.3 261 13 38.4	$\begin{array}{c} 224 \ 54 \ 23.6 \\ 299 \ 57 \ 06.5 \\ 61 \ 45 \ 24.0 \\ 82 \ 27 \ 41.1 \end{array}$	Mount Grant. Carson Sink. Mount Callahan. Diamond Peak.	$125940.1 \\ 47314.0 \\ 79123.4 \\ 168712.4$	5. 100164 4. 674990 4. 898305 5. 227147
Wassack, 1879	38 47 04.532 118 50 01.542	139.8 37.2	153 59 56.39 210 04 49.55 267 08 39.72 351 01 23.19	333 35 37.87 30 27 32.06 88 04 22.10 171 03 00.02	Pah-Rah Carson Sink. Toiyabe Dome. Mount Grant.	$\begin{array}{c} 125001.09\\ 102678.84\\ 128784.01\\ 24039.63 \end{array}$	5.0969138 5.0114810 5.1098619 4.3809278
Sherman Peak, 1879-80	$\begin{cases} 38 56 13. 790 \\ 117 46 22. 716 \end{cases}$	425.2 547.1	346 23 23.5 65 37 25.6 151 05 32.9	166 33 48.9 244 59 12.1 330 48 00.9	Lone Mountain Mount Grant Carson Sink	104179.6 97375.3 82070.7	5.0177828 4.9884488 4.9141879
Paradise Peak, cairn, 1879-80	38 48 25, 733 117 49 34, 244	793.5 826,2	265 51 41.1 341 24 57.7 72 55 57.3 157 51 21.3	86 09 30.3 161 37 21.2 252 19 46.9 337 35 51.8	Toiyabe Dome. Lone Mountain Mount Grant. Carson Sink.	41246.8 91580.8 87930.5 93124.9	4. 6153898 4. 9618044 4. 9441397 4. 9690656
Pilot Cone or Basalt, cairn, 1873-1880.	38 59 19.447 118 26 09.952	599.6 239.5	280 04 51.0 33 41 44.6 92 39 27.8 194 40 44.3	$\begin{array}{c} 100 \ 45 \ 41.5 \\ 213 \ 28 \ 25.0 \\ 272 \ 00 \ 17.9 \\ 14 \ 48 \ 23.3 \end{array}$	Toiyabe Dome Mount Grant Mount Como. Carson Sink	95573.2 55707.3 89912.5 68266.1	4. 9803360 4. 7459122 4. 9538200 4. 8342049
Mill, 1902	$\left\{\begin{array}{l} 38 \ 57 \ 47.314 \\ 118 \ 13 \ 33.388 \end{array}\right.$	1458,9 803,8	98 55 58.6	278 48 02.7	Basalt	18432.1	4.265574
11ot Spring, 1902	{ 38 55 09.407 118 11 44.044	290.1 1061.0	110 22 11.9 151 36 16.7	290 13 07.5 331 35 08.0	Basalt Mill	$22230.2 \\ 5^{5}35.8$	4.346944 3.743182
Miller, 1902	$\begin{cases} 38 \ 53 \ 29.527 \\ 118 \ 13 \ 06.371 \end{cases}$	910.4 153.5	119 49 42.1 175 19 19.7 212 46 38.5	299 41 29.6 355 19 02.7 32 47 30.2	Basalt Mill. 11ot Spring	$21738.7 \\7975.9 \\3663.5$	4.337233 3.901780 3.563896
Mount Annle, 1902	$\left\{\begin{matrix} 38 & 58 & 31. & 472 \\ 118 & 08 & 14. & 470 \\ \end{matrix}\right.$	970.4 348.3	37 04 55.2 39 01 26.4 79 58 14.0 93 21 53.5	217 01 51.6 218 59 14.7 259 54 53.4 273 10 36.9	Miller. Hot Spring Mill. Basalt	11667.3 - 8018.5 7797.4 25928.7	4.066971 3.904093 3.891952 4.413780
11ot Spring west base, 1902	$\left\{\begin{matrix} 38 & 56 & 23.729 \\ 118 & 13 & 31.561 \\ \end{matrix}\right.$	731.7 760.0	$\begin{array}{c} 179 \ 01 \ 20. 2 \\ 242 \ 40 \ 51. 3 \\ 311 \ 29 \ 52. 0 \\ 353 \ 33 \ 07. 6 \end{array}$	$\begin{array}{c} 359 \ 01 \ 19.1 \\ 62 \ 44 \ 10.9 \\ 131 \ 30 \ 59.6 \\ 173 \ 33 \ 23.5 \end{array}$	Mill Mount Annie Ifot Spring* Miller	$\begin{array}{r} 2577.9\\ 8591.2\\ 3458.3\\ 5406.0 \end{array}$	3. 411263 3. 934053 3. 538859 3. 732873
1fot Spring east base, 1902	$\begin{cases} 38 \ 56 \ 13. \ 478 \\ 118 \ 12 \ 19. \ 934 \end{cases}$	415.6 480.0	12 28 55.6 100 23 23.7 148 34 11.0 336 21 51.8	192 28 26.5 280 22 38.7 328 33 24.8 156 22 14.4	Miller. 11 ot Spring west base Mill. 11 ot Spring	5178.0 1753.82 3391.4 2156.6	3.714163 3.243985 3.530381 3.333771
Churchill, 1902	$\begin{cases} 39 \ 02 \ 36. \ 668 \\ 118 \ 19 \ 25. \ 794 \end{cases}$	1130.8 620.3	316 25 39.6 321 05 47.2 331 32 09.8 58 00 36.7	136 29 21.4 141 10 37.7 151 36 08.1 237 56 22.3	Mill. 11ot Spring Miller. Basalt	12309.5 17713.0 19186.1 11468.6	4.090239 4.248293 4.282986 4.059512
Mount Grant, highest peak, 1902	38 34 07.850 118 47 25.184	242.0 609.7	213 19 46.9 228 04 50.3 232 51 34.3 234 03 20.4	33 33 05.6 48 26 02.9 53 13 54.3 54 24 48.5	Basalt Mill. 1fot Spring Miller	55858.1 65741.6 64707.1 61287.6	4.747086 4.817840 4.810952 4.787373

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

and the second se							
Station.	Latitude and longitude.	Sec- onds in meters.	Azlmuth.	Back azimutb.	To station.	Distance.	Loga- rltbm.
Supplementary points—Continued. Cory Peak or Mount Hull, summit, 1879.	38 26 54.263 118 46 54.096	1673.1 1311.8	• , , ,, 200 25 56.6 227 57 51.7 250 37 08.4 292 14 36.3	• 7 77 20 46 36.2 49 07 08.6 71 30 41.5 113 02 25.9	Carson Sink Mount Callahan. Tolyaho Dome Lone Mountain	Meters. 134608.9 211472.1 131559.5 122173.8	5, 1290739 5, 3252531 5, 1191224 5, 0869780
Volcano, 1879	38 23 44.08 118 09 31.09	1359.2 754.5	305 03 24 109 36 35 235 05 09	125 28 04 289 12 59 55 35 20	Lono Mountain. Mount Grant. Tolyabe Dome	71314 58477 85374	4. 853177 4. 766986 4. 931324
Two Tips, north summit, 1878	{39 43 01.227 119 09 55.873	37.8 1330.8	19 03 20.6 108 13 31.4 280 13 19.2	198 51 38.0 288 01 42.3 100 48 57.4	Mount Como. Pah-Rah. Carson Sink.	81622.5 27774.3 81253.5	4. 91 1810 4. 443643 4. 909842
Mucca or Elephant Peak, 1879	{39 58 35.137 119 44 36.027	1083.7 854.9	288 10 23.9 331 55 11.0 347 33 02.1	109 08 18.9 152 31 22.0 167 43 20.6	Carson Sink. Mount Grant. Mount Como	136406.5 176388.0 108514.8	5.134835 5.246469 5.035489
Pond Summlt, monument, 1879	39 39 09.079 119 27 46.758	280.0 1114.8	176 43 51.2 273 46 12.2 295 51 48.0 333 57 13.7	356 43 27.0 94 33 11.8 117 11 55.2 154 22 40.6	Pah-Rah Carson Sink. Tolyabe Dome. Mount Grant	15826.6 105747.2 203655.0 133435.4	4.199389 5.024269 5.308895 5.125271
Virginia Peak, monument, 1878	$\begin{cases} 39 \ 45 \ 21, 628 \\ 119 \ 27 \ 37, 550 \end{cases}$	667.0 893.9	165 25 02.3 279 56 07.8 336 02 41.6	345 24 32.1 100 43 04.5 156 28 04.2	Pah-Rah Carson Sink Mount Grant	4454.7 106902.0 143757.6	3.648822 5.028986 5.157631
Sage, 1879	39 07 42.324 119 28 20.987	1305.2 504.1	244 16 21.7 316 04 36.5 0 18 23.2 41 46 30.6	65 03 27.4 136 30 16.1 180 18 21.5 221 26 37.4	Carson Sink. Mount Grant. Mount Como. Round Top.	$\begin{array}{c} 118037.5\\ 85653.1\\ 11849.8\\ 68957.1 \end{array}$	5,072020 4,932743 4,073712 4,838579
Galena Saddle, 1879	38 53 24.068 119 30 05.376	742.1 129.6	60 05 27.1 189 30 25.7 234 27 42.2 271 16 08.1 299 36 50.6	239 46 42.4 9 31 29.6 55 15 46.8 92 37 02.7 120 03 31.5	Round Top. Mount Como. Carson Sink. Toiyabe Dome. Mount Grant.	50086.2 14820.3 133741.1 186638.8 71250.7	4.699718 4.170858 5.126265 5.271002 4.852789
Freel Peak, 1893	38 51 28,456 119 53 57,980	877.4 1398.0	22 11 30.64 147 58 18.55 243 40 06.69	202 07 43.28 327 40 41.98 63 56 11.04	Round Top. Mount Lola Mount Como	23244.72 75474.16 41183.83	4.3663244 4.8777983 4.6147267
Rose Knob, 1893	$\begin{cases} 39 \ 17 \ 25, 836 \\ 119 \ 58 \ 51, 080 \end{cases}$	796, 8 1224, 1	351 37 41.62 1 23 41.26 115 45 15.32	171 40 46 37 181 22 57 20 295 30 39 77	Freel Peak. Round Top Mount Lola	48539, 62 69573, 68 36657, 70	4. 6860964 4. 8424450 4. 5641652
Rubicon Point, 1893	{ 38 59 58.883 120 05 43.631	1815.6 1049.9	197 01 22.39 312 44 18.44	17 05 42.83 132 51 41.84	Rose Knob Freel Peak	33771, 56 23165, 81	4.5285511 4.3648476
Observatory Point, 1893	$\begin{cases} 39 \ 11 \ 13. \ 437 \\ 120 \ 05 \ 41. \ 358 \end{cases}$	414.4 992.6	220 33 12.51 335 05 31.61 0 09 02.46	40 37 32.03 155 12 54.47 180 09 01.02	Rose Knob Freel Peak Rublcon Point	15122, 84 40268, 74 20801, 64	4. 1796334 4. 6049680 4. 3180976
Genoa Peak, 1893	{39 02 36.137 119 52 50.448	1114.5 1213.2	4 31 18.84 75 27 18.24 130 48 24.00	184 30 36.38 255 19 11.43 310 40 17.65	Freel Peak Rubicon Point Observatory Point	20653.22 19221.58 24443.62	4.3149877 4.2837892 4.3881655
Hot Spring Mountain, 1897	{ 39 03 58.888 {119 43 14.210	1816, 1 341, 6	33 52 12.53 79 36 54.08	213 45 27.72 259 30 51.01	Freel Peak Genoa Peak	27852.11 14088.63	4. 4448581 4. 1488688
Folsom Peak, 1893	38 59 09.518 119 56 58.068	293. 5 1397. 6	96 54 31.33 150 38 58.86 223 03 15.90 343 00 55.57	276 49 00.63 330 33 28.93 43 05 51.77 163 02 48.71	Rubicon Point Observatory Point Genoa Peak Freel Peak.	12739.44 25622.83 8722.75 14864.74	4. 1051504 4. 4086271 3. 9406533 4. 1721573
Anderson, 1897	$\begin{cases} 38 58 27.953 \\ 119 39 49.279 \end{cases}$	861.9 1186.3	57 45 15.26 112 13 26.01 154 14 00.09	237 36 22,12 292 05 14.31 334 11 51.07	Freel Peak Genoa Peak Hot Spring Mountain	24195.19 20293.73 11333.49	4.3837290 4.3073620 4.0543636
Mount Rose or Washoe Peak, 1893	39 20 38.952 119 55 01.797	1201.3 43.0	$\begin{array}{c} 312 \ 53 \ 00. 01 \\ 331 \ 06 \ 17. 04 \\ 354 \ 35 \ 45. 57 \\ 42 \ 42 \ 18. 76 \\ 104 \ 33 \ 27. 24 \end{array}$	133 09 49.74 151 13 44.30 174 37 08.57 222 39 53.50 284 16 25.69	Mount Como Hot Spring Mountain Genoa Peak. Rose Knob. Mount Lola.	$\begin{array}{c} 52468.75\\ 35204.44\\ 33540.36\\ 8101.66\\ 39776.86\end{array}$	4.7199007 4.5465974 4.5255678 3.9085740 4.5996305
Overlook, 1897	$\begin{cases} 39 \ 09 \ 14.204 \\ 119 \ 52 \ 02.831 \end{cases}$	438.0 68.0	307 23 27.95 5 19 46.60 168 31 41.72	127 29 01.41 185 19 16.57 348 29 48.50	Hot Spring Mountain Genoa Peak Mount Rose	15995.51 12328.64 21548.14	4.2039982 4.0909151 4.3334099
Mount Davidson flagstaff, 1897	$\begin{cases} 39 \ 18 \ 30,756 \\ 119 \ 39 \ 45,529 \end{cases}$	948.5 1090.8	10 34 12.62 32 41 19.35 45 55 17.38 100 17 31.44	190 32 00.76 212 33 03.51 225 47 31.07 280 07 50.77	Hot Spring Mountain Genoa Peak. Overlook. Mount Rose	27349.17 34951.54 24643.48 22300.18	4.4369442 4.5434663 4.3917021 4.3483084
Peavine, 1893	39 35 14.157 119 55 52.952	436.6 1263.7	$\begin{array}{c} 323 & 08 & 06.03 \\ 327 & 40 & 11.57 \\ 357 & 24 & 05.02 \\ 7 & 22 & 58.57 \\ 65 & 29 & 11.03 \\ 239 & 26 & 59 & 14 \end{array}$	143 18 20.71 147 57 36.34 177 24 37.54 187 21 05.41 245 12 39.38 59 44 31 79	Mount Davidson flagstaff Mount Como Mount Rose Rose Knob Mount Lola Pah Rah	38634.71 74190.84 27018.61 33220.63 40969.32 45536.45	$\begin{array}{r} \textbf{4.5869777} \\ \textbf{4.8703503} \\ \textbf{4.8703503} \\ \textbf{4.4316630} \\ \textbf{4.5214079} \\ \textbf{4.6124588} \\ \textbf{4.6583592} \end{array}$

.

5

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and	Sec- onds in	Azimuth.	Back azimuth.	To station.	Distance.	Loga-
Supplementary points—Continued. Prison Hill, 1897	39 07 36.944 119 43 13.903	1139.3 334.0	0 03 46.7 56 15 05.1 103 19 53.2 144 54 58.5 193 54 22.1	° ' 180 03 46.4 236 09 01.6 283 14 19.3 324 47 30.7 13 56 33.8	Hot Spring Mountain Genoa Peak Overlook Mount Rose Mount Davidson flagstaff	<i>Meters</i> . 6724.3 16675.3 13051.9 29492.6 20772.8	3.827649 4.222073 4.115675 4.469713 4.317495
East Peak, 1893	$\left\{\begin{matrix} 38 & 56 & 34.312 \\ 119 & 54 & 23.944 \\ \end{matrix}\right.$	1058.2 576.6	$\begin{array}{c} 142 \ 13 \ 37.7 \\ 191 \ 23 \ 35.6 \\ 229 \ 33 \ 11.0 \\ 260 \ 28 \ 34.3 \\ 356 \ 12 \ 09.1 \end{array}$	322 12 00.8 11 24 34.5 49 40 12.6 80 37 44.3 176 12 25.4	Folsom Peak. Genoa Peak. Hot Spring Mountain. Anderson. Freel Peak.	6056.0 11382.2 21157.6 21349.3 9452.2	3.782186 4.056225 4.325466 4.329384 3.975535
Deadman, 1893	39 06 42.011 119 57 00.080	1295.6 1.9	$\begin{array}{r} 45 \ 24 \ 21.03 \\ 123 \ 48 \ 56.64 \\ 172 \ 22 \ 08.61 \\ 351 \ 08 \ 27.21 \\ 359 \ 48 \ 04.32 \end{array}$	$\begin{array}{c} 225 \ 18 \ 51.15 \\ 303 \ 43 \ 27.54 \\ 352 \ 20 \ 58.45 \\ 171 \ 10 \ 21.77 \\ 179 \ 48 \ 05.59 \end{array}$	Ruhicon Point Observatory Point Rose Knob Freel Peak. Folsom Peak.	17692, 16 15058, 02 20032, 18 28510, 15 13953, 74	4. 2477808 4. 1777680 4. 3017281 4. 4549995 4. 1446907
Tallac Peak, 1893	38 54 22,889 120 05 53,748	705.9 1295.1	209 20 54.8 235 32 08.5 287 15 13.5 342 24 58.9	$\begin{array}{c} 29 \ 26 \ 30.8 \\ 55 \ 37 \ 45.3 \\ 107 \ 22 \ 42.8 \\ 162 \ 28 \ 39.8 \end{array}$	Deadman Folsom Peak Freel Peak. Round Top	$\begin{array}{c} 26160.4\\ 15637.6\\ 18071.4\\ 28220.6 \end{array}$	4. 417644 4. 194171 4. 256993 4. 450566
Carson, capitol dome, 1897	$\begin{cases} 39 \ 09 \ 51.358 \\ 119 \ 45 \ 55.513 \end{cases}$	1583.9 1332.6	18 53 15.1 316 52 14.4 340 21 48.4 82 37 47.8	$\begin{array}{c} 198 \ 48 \ 11.3 \\ 136 \ 53 \ 56.5 \\ 160 \ 23 \ 30.1 \\ 262 \ 33 \ 55.9 \end{array}$	Freel Peak. Prison Hill. Hot Spring Mountain Overlook.	35936.7 5678.3 11539.5 8893.2	4.555538 3.754217 4.062187 3.949060
Genoa flagstaff, 1897	$\begin{cases} 39 \ 00 \ 12.405 \\ 119 \ 50 \ 43.962 \end{cases}$	382.6 1057.8	218 14 40.0 237 06 44.8 281 29 46.4	38 19 23.7 57 11 28.1 101 36 38.3	Prison Hill. Hot Spring Mountain Anderson	$17464.1 \\ 12876.0 \\ 16082.2$	4.242145 4.109780 4.206346
Sutro, 1897	$\left\{ \begin{matrix} 39 & 17 & 47,965 \\ 119 & 36 & 09,568 \end{matrix} \right.$	1479.2 229.3	28 25 08.4 104 19 32.9	208 20 40.2 284 17 16.1	Prison Hill. Mount Davidson flagstaff	21417.1 5340.2	4.330760 3.727556
Cedar Hill, 1897	$\left\{\begin{array}{r} 39 \ 19 \ 26,020 \\ 119 \ 39 \ 00,635 \end{array}\right.$	802.4 15.2	306 24 20.6 32 15 28.8	126 26 09.0 212 15 00.4	Sutro Mount Davidson flagstaff	5093.2 2015.3	3.706994 3.304329
Virginia City astronomic, 1889	$\begin{cases} 39 \ 18 \ 39.641 \\ 119 \ 38 \ 50.028 \end{cases}$	1222.5 1198.5	292 30 00.7 78 21 41.1 169 55 38.3	$\begin{array}{c} 112 \ 31 \ 42.4 \\ 258 \ 21 \ 06.0 \\ 349 \ 55 \ 31.6 \end{array}$	Sutro Mount Davidson flagstaff Cedar Hill	4161.9 1357.6 1452.7	3.619287 3.132785 3.162167
Wbeeler Monument,	39 17 44.784 119 39 14.733 ,	1381.1 353.0	186 10 24.3 268 43 02.0 152 30 23.3	$\begin{array}{r} 6 \ 10 \ 33.2 \\ 88 \ 44 \ 59.3 \\ 332 \ 30 \ 03.8 \end{array}$	Cedar Hill Sutro Mount Davidson flagstaff	31 40. 2 4438. 2 1598. 3	3.496961 3.647202 3.203650
Vlrginia City Catbolic Church spire, 1897.	$\begin{cases} 39 \ 18 \ 34.068 \\ 119 \ 38 \ 52.508 \end{cases}$	1050. 6 1258. 0	199 04 22.3 289 59 45.2 173 04 21.3	$\begin{array}{r} 19 \ 04 \ 23.8 \\ 110 \ 01 \ 28.4 \\ 353 \ 04 \ 16.1 \end{array}$	Virginla Clty astronomic Sutro. Cedar Hill.	181.8 4155.0 1613.9	$\begin{array}{c} 2.259697 \\ 3.618566 \\ 3.207882 \end{array}$
Verdl Peak, 1897	{ 39 28 22.128 120 02 20.140	$\begin{array}{c} 682.4\\ 481.4\end{array}$	216 00 36.7 323 40 32.3	36 04 43.2 143 45 10.6	Peavine Mount Rose	15715.5 17720.4	4.196328 4.248474
Ranch Hill, 1897	$\left\{ \begin{matrix} 39 & 30 & 01.818 \\ 119 & 55 & 26.064 \end{matrix} \right.$	$\begin{array}{c} 56.1\\622.8\end{array}$	72 46 38.3 176 11 20.8	252 42 15.0 356 11 03.7	Verdi Peak Peavine	10362.1 9653.9	4.015447 3.984703
Bender, 1897	$\begin{cases} 39 \ 29 \ 17.956 \\ 119 \ 57 \ 45.055 \end{cases}$	533.8 1076.7	75 20 57.8 193 41 08.9 247 49 38.4	255 18 02.9 13 42 20.3 67 51 06.8	Verdl Peak Peavine. Ranch Hill	6796.2 11306.7 3586.1	$\begin{array}{c} 3.832266\\ 4.053336\\ 3.554621 \end{array}$
Verdi Bluff, 1872	$\begin{cases} 39 \ 31 \ 06.515 \\ 119 \ 58 \ 53.680 \end{cases}$	200. 9 1282. 3	$\begin{array}{c} 291 \ 53 \ 43.1 \\ 333 \ 54 \ 05.2 \\ 44 \ 14 \ 14.9 \end{array}$	$\begin{array}{c} 111 \ 55 \ 55.2 \\ 153 \ 54 \ 48.9 \\ 224 \ 12 \ 03.6 \end{array}$	Banch Hill. Bender Verdi Peak	5346.2 3727.8 7073.8	3.728045 3.571458 3.849653
North Flat, 1872	$\begin{cases} 39 \ 31 \ 35.895 \\ 119 \ 58 \ 02.314 \end{cases}$	1107.0 55.3	307 50 38.9 354 27 44.1 53 33 28.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Banch Hill. Bender. Verdl Bluff	$\begin{array}{r} 4727.6\\ 4273.9\\ 1525.2\end{array}$	3.674637 3.630829 3.183329
Point of Rocks, 1872	$ \{ \begin{matrix} 39 & 31 & 41.224 \\ 119 & 58 & 48.852 \end{matrix} \}$	$1271.3 \\ 1166.8$	$\begin{array}{c} 278 \ 24 \ 21.0 \\ 6 \ 08 \ 56.1 \end{array}$	98 24 50.6 186 08 53.0	North Flat Verdl Bluff	1123.6 1076.6	3.050607 3.032058
Verdl east base, 1872	$\begin{cases} 39 \ 31 \ 06.103 \\ 119 \ 57 \ 51.869 \end{cases}$	188.2 1239.0	90 29 54.4 128 31 03.6 164 48 33.8	270 29 15.1 308 30 27.4 344 48 27.2	Verdi Bluff Point of Rocks North Flat	1476.5 1739.4 952.1	3.169239 3.240407 2.978664
Verdi west base, 1872	$\left\{\begin{matrix} 39 & 30 & 59, 921 \\ 119 & 58 & 21, 174 \\ \end{matrix}\right\}$	1848.0 505.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 284 \ 40 \ 21.0 \\ 332 \ 34 \ 02.9 \\ 22 \ 06 \ 04.6 \\ 74 \ 46 \ 05.1 \end{array}$	Verdl Bluff. Point of Rocks. North Flat. Verdl east base.	802.7 1435.1 1197.4 725.510	2.904530 3.156884 3.078241 2.860643
California-Nevada iron monument, 1897.	39 31 29.513 120 00 04.052	910.2 96.8	258 37 27.3 266 07 00.4 292 52 16.7 320 41 15.4 29 22 38.4	78 39 15.2 86 09 17.9 112 53 01.5 140 42 43.9 209 21 11.9	Point of Rocks. North Flat. Verdi Bluff. Bender Verdl Peak.	1832.0 2914.3 1824.4 5242.9 6630.9	3. 262937 3. 464535 3. 261125 3. 719574 3. 821572

48310°-14----8

- 5

113

,

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and iongitude.	Sec- onds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga- rithm.
Supplementary points-Continued.	° , " (39 31 14.486	446.7	• / // 106 24 23.3	° / ″ 286 23 41.3	California-Nevada iron monu-	Meters. 1641.4	3.215211
Verdi longitude, 1889	119 58 58.129	1388.5	$\begin{array}{c} 195 \ 02 \ 26.0 \\ 243 \ 38 \ 50.5 \end{array}$	15 02 31.9 63 39 26.0	Point of Rocks North Flat	853.9 1487.7	2.931383 3.172516
Cone Peak, white flag, 1872	$\begin{cases} 39 \ 27 \ 23.582 \\ 119 \ 58 \ 43.921 \end{cases}$	727.3 1050.1	178 03 28.8 179 09 02.6 190 16 09.7	358 03 22.6 359 08 59.5 10 15 42.8	Verdi Bluff Point of Rocks Verdi east hase	6879.1 7946.4 6974.3	3.837533 3.900173 3.843500
Crystal Peak, flagstaff, 1872	$\left\{\begin{matrix} 39 & 31 & 29.937 \\ 120 & 00 & 12.818 \end{matrix}\right.$	923.3 306.2	260 08 43.7 266 36 51.7 290 54 21.1	80 09 37.1 86 38 14.7 110 55 11.4	Point of Rocks North Flat Verdi Bluff	$\begin{array}{r} 2035.4\\ 3122.4\\ 2023.6\end{array}$	3.308660 3.494492 3.306122
Crystal Peak, mountain top, 1872	$\left\{\begin{matrix} 39 & 33 & 29. 938 \\ 120 & 05 & 14. 676 \end{matrix}\right.$	923.3 350.4	288 46 25.7 289 57 48.0 292 43 07.3	108 51 01.0 110 01 53.7 112 47 49.2	North Fiat Point of Rocks Verdi east base	10906.9 9804.0 11467.0	4.037700 3.991403 4.059451
California-Nevada stone monument, 1872.	39 31 34.863 120 00 55.414	1075.2 1323.6	$\begin{array}{c} 266 \ 16 \ 33.2 \\ 269 \ 32 \ 36.9 \\ 286 \ 43 \ 25.4 \end{array}$	86 17 53.8 89 34 27.1 106 44 42.9	Point of Rocks. North Flat. Verdi Bluff.	3029.2 4134.5 3036.3	3.481321 3.616419 3.482342
California-Nevada wood monument, ¹ 1872.	$\left\{\begin{array}{l} 39 \ 31 \ 33. 85 \\ 120 \ 00 \ 55. 44 \end{array}\right.$	$1043.9 \\ 1324.2$	$\begin{array}{c} 265 \ 41 \ 20.0 \\ 286 \ 09 \ 19.7 \end{array}$	$\begin{array}{r} 85 \ 42 \ 40.6 \\ 106 \ 10 \ 37.2 \end{array}$	Point of Rocks Verdi Bluff	3032.0 3028.1	3. 481724 3. 481165
Lone tree, 1872	$\begin{cases} 39 \ 34 \ 43. \ 398 \\ 119 \ 56 \ 24. \ 341 \end{cases}$	1338.4 580.9	17 19 41.4 22 01 57.1 28 04 30.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Verdi east base North Flat Verdi Bluff	7019.7 6237.8 7579.7	3.846318 3.795029 3.879654
Verdi meridian mark, 1872	39 33 47.747 119 57 51.882	1472.5 1238.5	$\begin{array}{c} 359 \ 59 \ 47. 8 \\ 3 \ 30 \ 23. 7 \\ 7 \ 41 \ 57. 8 \\ 16 \ 32 \ 06. 6 \end{array}$	$\begin{array}{c} 179 \ 59 \ 47.8 \\ 183 \ 30 \ 17.1 \\ 187 \ 41 \ 39.2 \\ 196 \ 31 \ 27.3 \end{array}$	Verdi east base North Flat. Verdi west base. Verdi Bluff.	$\begin{array}{r} 4985.1\\ 4073.9\\ 5222.8\\ 5186.7\end{array}$	$\begin{array}{r} \textbf{3.697674}\\ \textbf{3.610014}\\ \textbf{3.717903}\\ \textbf{3.714895} \end{array}$
Watertank, brick chimney, 1872	39 31 05.416 119 59 12.697	167.0	110 19 15.5	290 18 10.1	California-Nevada stone mon- ument.	2616.1	3.417659
	l	303.3	207 16 50.8 240 46 59.5	60 47 44.3	North Flat	1926.1	3.284674
Verdi azimuth mark, 1872	$\left\{\begin{matrix} 39 \ 32 \ 05.015 \\ 119 \ 57 \ 36.124 \end{matrix}\right.$	154.7 862.8	$\begin{array}{c} 11 \ 41 \ 44.7 \\ 34 \ 51 \ 35.3 \\ 45 \ 45 \ 44.8 \end{array}$	191 41 34.7 214 51 18.7 225 44 55.5	Verdi east base. North Flat. Verdi Bluff	1855.3 1094.4 2585.7	3.268425 3.039179 3.412586
Peavine East, cairn, 1897	$\begin{cases} 39 \ 35 \ 23. \ 444 \\ 119 \ 55 \ 40. \ 509 \end{cases}$	723.0 966.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194 46 12.9 216 15 49.4 226 02 12.8	Bender Verdi Peak Peavine.	$11657.3 \\ 16122.0 \\ 412.5$	4.066600 4.207418 2.615457
Reno Congregational Church spire, ¹ 1897.	$\left\{\begin{array}{c} 39 30 33.02 \\ 119 53 26.54 \end{array}\right.$	1018.3 634.1	69 28 40.8 158 03 16.0	249 25 56.4 338 01 42.7	Bender Peavine	6596.3 9348.5	3.819300 3.970742
White house, chimney,1 1872	$\left\{ \begin{array}{l} 39 \ 31 \ 20.24 \\ 119 \ 57 \ 38.71 \end{array} \right.$	624.2 924.6	76 42 39.9 111 07 51.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Verdi Biuff. Point of Rocks	1840.0 1796.0	3.264822 3.254296
Railway whistle post, ¹ 1872	{ 39 31 13.83 119 58 42.36	426.5 1011.8	169 36 02.6 234 34 07.0	349 35 58.5 54 34 32.5	Point of Rocks. North Flat.	858.9 1173.9	2.933944 3.069618

¹ No check on this position.

DESCRIPTIONS OF STATIONS.

This list may be conveniently consulted by reference to the illustrations at the end of this publication or to the index. All azimuths given in these descriptions are reckoned continuously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. Where magnetic azimuths are given they are indicated as such. All distances to reference marks are horizontal distances unless otherwise stated.

In general the surface and underground marks are not in contact, so that a disturbance of the surface mark will not necessarily affect the underground mark. The underground mark should be resorted to only in cases where there is evidence that the surface mark has been disturbed.

The dates and initials given in each description immediately after the county refer to the date of establishment of the station, the man by whom it was established, and the date when the station was last visited.

Any person who finds that one of the stations herein described has been disturbed, or that the description no longer fits the facts, is requested to send such information to the Superintendent, Coast and Geodetic Survey, Washington, D. C. Special Publication No. 19.

STANDARD TRIANGULATION STATION AND REFERENCE MARKS.

Marking of stations.—The standard triangulation disk station mark referred to in the following notes and descriptions consists of a disk and shank, as shown in illustration No. 4, made of brass and cast in one piece. The disk is 90 millimeters in diameter, with a small hole at the center surrounded by a 20-millimeter equilateral triangle, and has the following inscribed legend: "U. S. Coast and Geodetic Survey triangulation station. For information write to Superintendent, Washington, D. C. \$250 fine or imprisonment for disturbing this mark." The shank is 25 millimeters in diameter and 80 millimeters long, with a slit at the lower end into which a wedge is inserted so that when it is driven into a drill hole in the rock it will bulge at the bottom and hold the mark securely in place.

Another type of station mark is made in the form of a cap, to fit a 3-inch pipe, instead of with the shank, but in other respects is similar to the disk station mark described above.

The standard disk reference mark referred to in the following notes and descriptions and shown in illustration No. 4 is similar to the standard disk triangulation station mark described above, except that the center of the disk is inscribed with an arrow instead of with the triangle and that the words "reference mark" replace the words "triangulation station" in the legend. A short perpendicular groove across the shank of the arrow indicates the point to which the measurements are made. The mark is set so that the arrow points toward the station.

GENERAL NOTES IN REGARD TO STATION MARKS.

Note 1.—The station is marked by a standard disk station mark, described above, set in the top of a concrete cylinder 7 inches in diameter and 30 inches long incased in a galvanized-iron pipe which was used for the form. The cylinder projects 3 inches above the ground. The underground mark is a brass bolt one-fourth inch in diameter and 2 inches long set in a block of concrete 6 inches square on top and 4 inches thick. The bolt projects one-fourth or one-half inch above the concrete and is about 33 inches below the surface of the ground.

Note 2 .- The station is marked by a standard disk station mark, described above, cemented in solid rock.

Note 3.—The station is marked by a standard cap station mark, described above, screwed to the top of a 3-inch iron pipe, which is embedded in a cylinder of concrete 10 inches in diameter and 30 inches long. The cylinder projects 3 inches above the ground.

Note 4.—Tho station is marked by a heavy cast-iron cap on the top of a 5-inch iron pipe. The cap is marked by a small hole at the center surrounded by a raised triangle and has on it the legend "U. S. Missouri River Commission."

Note 5.—The station is marked by a heavy cast-iron cap on the top of a 5-inch iron pipe. On the cap is a concentric cylindrical knob one-half inch high and the legend "Missouri River Commission U. S. B. M."

Note 6.—The station is marked by a United States Goological Survey disk station mark cemented in a rock. The rock is embedded in the ground flush with the surface. The disk is marked with a triangle in outline at the center and with the legend "U. S. Geological Survey B. M."

GENERAL NOTES IN REGARD TO REFERENCE MARKS.

Note 7.—This mark consists of a standard disk reference mark, described above, set in the top of a concrete cylinder 5½ inches in diameter and 30 inches long incased in a galvanized-iron pipe which was used for the form. The cylinder projects about 3 inches above the ground.

Note 8.-This mark is a standard disk reference mark, described on above, cemented in solid rock.

ONE HUNDRED AND FOURTH MERIDIAN.

PRINCIPAL POINTS.

Elbert (Elbert County, Colo., C. V. H., 1912).—Two and one-half miles west and one-half mile north of Elbert in a cultivated field one-fourth mile north of a large square house. The station is on the highest knoll in the vicinity and is marked according to note $1.^1$ A reference mark, described in note $7,^1$ is about 0.4 meter west of a fence line, 0.9 meter south of the fence corner where there is a flag left by the United States Geological Survey, and 92.053 meters from the station. Latitude observations were made in 1913 at a point, not marked, 0.025 meter cast and 0.045 meter south of the station. Station *Table* is on this same hill.

Hilltop (Elbert County, Colo., C. V. H., 1912).—One and one-half miles east and one-half mile north of the railroad station at Hilltop, on the highest point of a low hill in the pasture of Daniel Mayer, near the northeast corner of the SE. 4 sec. 10, T. 7 S., R. 65 W. The station is marked according to note 1.¹ A reference mark, described in noto 7,¹ is in the fence line at the northeast corner of the quarter section mentioned above, 321.810 meters from the station in azimuth 231° 02'.

Morrison (Jefferson County, Colo., F. D. G., 1895; 1912).—This station is identical with the United States Geological Survey station of the same name. It is about 3 miles northwest of the town of Morrison, on the highest point of Mount Morrison, 40 meters northwest of the upper landing of the cable railway. The station is marked according to note 2,¹ in a drill hole in a largo bowlder. The copper bolt marking the eccentric station occupied by the United States Geological Survey is 3.130 meters distant in azimuth 311° 45′. Latitudo observations were made in 1913 at a point, not marked, 3.71 meters from the station in azimuth 322° 13′.

Douglas (Douglas County, Colo., C. V. H., 1912).—About 7 miles east of Parker on the south side of the section road running east from that town, about 5 feet south of the south road-fence at the highest point of the road in that vicinity. The station is on land belonging to Androw Johnson, near the middle of the north side of see. 21, T. 6 S., R. 65 W., and is marked according to note 1.¹ A reference mark, described in note 7,¹ is in the fence line on the opposite side of the road, 20.06 meters from the station in azimuth 170° 33'.

Indian (Arapahoe County, Colo., C. V. H., 1912).—This station is identical with the United States Geological Survey station "Indian Mound." It is on the center one of a group of mounds known as the Indian Mounds, about 6miles south and 1 mile east of Watkins, near the southeast corner of see. 36, T. 4 S., R. 65 W. The station is marked by a United States Geological Survey iron-pipe station mark projecting 20 inches above the ground. A reference mark, described in note 7,¹ is 188.922 meters from the station in azimuth 199° 21'. The southeast corner stone of section 36 is 135.251 meters distant in azimuth 214° 58'. A cairn is 3.0 meters from the reference mark and 192.0 meters from the station in azimuth 199° 31'.

Watkins astronomic (Adams County, Colo., C. V. H., 1912).—On the Union Paeific Railroad right of way at Watkins, 35.2 meters south of the main-line track on the north side of the Watkins-Denver wagon road. The station is marked according to note 1,¹ with the addition of 6 inches of concrete outside the iron pipe of the surface mark. A reference mark, described in note 7,¹ except that there is a nail in place of the brass disk, is on the south side of the wagon road running southeast from Watkins and nearly on line with the north-and-south section fence, and is 289.603 meters from the station in azimuth 308° 51'. A United States Geological Survey iron-pipe bench mark (U. S. Coast and Geodetic Survey bench mark G_2) is 266.017 meters distant in azimuth 244° 16'. The southeast corner of the depot is 27.85 meters from the station in azimuth 142° 54', and a railroad water tank is about 175 meters distant in azimuth 103° 09'. Azimuth observations were made at this station and longitude observations were mado at a point, not marked, 48.64 meters south and 4.60 meters east of the station.

Brighton (Weld County, Colo., C. V. H., 1912).—This station is identical with the United States Geological Survey station of the same name. It is about $4\frac{1}{2}$ miles northeast of the town of Brighton on the highest hill in the NE. $\frac{1}{4}$ see. 27, T. 1 N., R. 66 W. The station is marked by a United States Geological Survey iron pipe triangulation mark projecting 1 foot above the ground. A reference mark, described in note 7,¹ is 0.27 meter below the station and 93.563 meters distant in azimuth 124° 24'.

Boulder (Boulder County, Colo., C. V. H., 1912).—This station is identical with the United States Geological Survey station of the same name. It is about 4 miles direct and 9 miles by road and trail from the town of Boulder, on the northeastern one of the two peaks locally known as South Boulder Peak, between South Boulder and Bear Canyons. The station is marked by a United States Geological Survey bronze tablet set in solid rock. A reference mark, described in note 8,¹ is 0.43 meter above the station and 4.454 meters distant in azimuth 8° 59'. A cross cut in the solid rock 1 meter above the station and 0.08 meter below the top of the highest rock on the peak is 1.88 meters from the station in azimuth 90° 51'. Azimuth observations were made at this station.

Horsetooth (Larimer County, Colo., C. V. H., 1912).—This station is identical with the United States Geological Survey station of the same name. It is 8 miles southeast of Fort Collins on a high bare rocky point of the divide, immediately east of Redstone Creek, and 11 miles north of the point where the Fort Collins-Estes Park road crosses the divide. Deep vertical elefts divide the peak into three noarly equal parts, which have the appearance of gigantic teeth when viewed from the eastward. The station is on the highest and most southern one of the three divisions of the peak and is marked by a United States Geological Survey triangulation tablet set in solid rock. A reference mark, described in note 8,¹ is 0.04 meters below the station and 4.74 meters distant in azimuth 171° 24'.

Dewey (Weld County, Colo., C. V. H., 1912).—This station is identical with the United States Geological Survey station of the samo name. It is 8 miles east and 1 mile south of Eaton, a town on the Union Pacific Railroad, and 1¹/₂ miles east and 1 mile south of Galeton, a new town on a branch of the Union Pacific Railroad. The station is on a round-topped knoll on the open prairio near the center of the north side of see. 9, T. 6 N., R. 64 W., and is marked by a United States Geological Survey iron-pipe bench mark projecting about 20 inches above the surface of the ground. A reference mark, described in note 7,¹ is 136.190 meters from the station in azimuth 309° 56'. Azimuth and latitude observations were made at this station.

Warren (Laramie County, Wyo., C. V. H., 1912).—At the extreme western end of a high ridge about $10\frac{1}{2}$ miles south 17° west from Cheyenne, 2 miles north 57° east from the old Terry ranch, now the headquarters of the Warren Live Stock Co., and one-half mile northeast of the section house at Gleason, a station on the Union Paeific Railroad. Tho station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 0.18 meter below the station and 10.728 meters distant in azimuth 127° 54′. The conspicuous conical hill on which *Terry* is located is about three-eighths mile north-northwest from the station.

¹ See p. 115.

Twin (Laramie County, Wyo., C. V. H., 1912).—On the highest point of the more eastern one of the two peaks known as Twin Mountain, about 20 miles a little south of west from Cheyenne and 7 miles by road southwest of Granite Canyon, a station on the Union Pacific Railroad. The station is marked according to note 2.¹ A reference mark, described in noto 8,¹ is 0.15 meter above the station and 3.494 meters distant in azimuth 159° 58′. The bronzo tablet marking the United States Geological Survey triangulation station "East Twin" is 0.16 meter above the station and 2.674 meters distant in azimuth 96° 08′. Azimuth observations were made at this station.

Wadill Laramie County, Wyo., C. V. H., 1912).—Thirteen miles by road northwest of Cheyenne, 2 miles west of the Cheyenne-Chugwater road, and 14 miles west of the Cheyenne-Whitaker ranch road along which there is a telephono line. The station is on a ridge on the open prairie at the highest point of the divide between Lodge Pole Creek and Crow Creek, and about 300 meters south 31° west from the center of sec. 24, T. 15 N., R. 68 W., on homestead land belonging to James Wadill, who lives about three-eighths mile south of the station. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is on the quarter section line, 1.74 meters below the station and 88.778 meters distant in azimuth 274° 38'. The chimney of William Kipp's house is in azimuth 197° 23' from the station and Mr. Ritzke's windmill in azimuth 249° 00'.

Russell (Laramie County, Wyo., C. V. H., 1912).—Near the eastern edge of Fort D. A. Russell target and maneuver reserve on top of a bare rocky peak about $3\frac{1}{2}$ miles east of Pole Mountain. The peak is the highest in that immediate vicinity and has a rocky, partially wooded ridge making off from it toward the west. The station is on the south side of the peak slightly below a high bowlder to the north, with Greentop Mountain showing through a small notch in the summit. It is marked according to note $2.^1$ A reference mark, described in note $8.^1$ is 1.03 meters above the station and 10.27 meters distant in azimuth 168° 41'.

Greentop (Albany County, Wyo., C. V. H., 1912).—On the timbered, rocky summit of Greentop Mountain, 8 miles west and 4 miles south of station Horse Creek on the Colorado & Southern Railway, and about one-eighth mile south of the south fork of Horse Creek. The station is marked according to note 2.¹ A reference mark, described in note 8,¹ is 0.5 meter above the station and 3.13 meters distant in azimuth 59° 03'. A cairn is 6.0 meters from the station in azimuth 90°.

Whitaker (Laramie County, Wyo., C. V. H., 1912).—About 18 miles north and 8½ miles west of Cheyenne and 3 miles south and three-fourths mile east of the D. R. Whitaker ranch buildings on Horse Creek. Tho station is on rolling prairie land at the highest point of the divide between Pole Creek and Horse Creek, about three-fourths mile northeast of the Cheyenne-Whitaker ranch road at the point where the road passes the quarter section corner and bench mark referred to below. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 1.17 meters below the station and 91.038 meters distant in azimuth 270° 57′. The southwest corner post of sec. 33, T. 17 N., R. 68 W., is 800.12 meters distant in azimuth 45° 37′. The United States Geological Survey iron-pipe bench mark "6702 Denver" is 1110.82 meters distant in azimuth 59° 55′ 30″. A cairn is 8 meters from the station on the line toward Ragged Top Mountain. Latitude observations were made at this station in 1913.

Ragged (Albany County, Wyo., C. V. H., 1912).—About 10 miles west of Horse Creek, a post office on the Colorado & Southern Railway, 8 miles west of McLaughlin's ranch, and one-half mile south of the North Fork of Horse Creek, on the highest rock of a group of pinnacles known as Ragged Top Mountain. The rock referred to is the middle one of three prominent peaks on the most western ridge and is about 300 meters west of an old wood road in a canyon opening to the south. The station is marked by a United States Geological Survey bench mark tablet set in solid rock. The tablet has a triangle cut in the top and is stamped "Elevation above sea level 8230 feet." A reference mark, described in note 8,¹ is 0.20 meter below the station and 3.12 meters distant in azimuth 185° 04'. Azimuth observations were made at this station.

Cheyenne west base (Laramie County, Wyo., C. V. H., 1913).—About 17 miles by road northwest of Cheyenne and one-half mile south of the house of Mr. William Pellis, on the highest part of an east-and-west ridge and about 15 meters south of the quarter section corner on the line between secs. 5 and 6, T. 15 N., R. 68 W. The station is marked by a standard disk station mark, described on page —, set in a cylinder of concrete 16 inches in diameter and 24 inches long, the top of which is flush with the surface of the ground. The underground mark is similar to the surface mark except that the cylinder of concrete is only 10 inches in diameter and 10 inches long. It is 30 inches below the ground and 6 inches below the bottom of the surface mark. A standard disk reference mark, described on page —, set in a cylinder of concrete 12 inches in diameter and 24 inches long is on the section line 18.80 meters from the station in azimuth 7° 28'.

Cheyenne east base (Laramie County, Wyo., C. V. H., 1913).—About 14 miles by road northwest of Cheyenne, on the highest point of a ridge extending east and west, and about 25 meters south of the quarter section corner on the line between secs. 11 and 12, T. 15 N., R. 68 W. Section 11 is owned by Mr. Clarence Sorenson, who lives five-eighths mile north of the station. The station is marked by a standard disk station mark, described on page —, set in a cylinder of concrete 16 inches in diameter and 24 inches long, the top of which is flush with the surface of the ground. The underground mark is a 20-penny nail set in a cylinder of concrete 10 inches in diameter and 10 inches long, about 30 inches below the surface of the ground. A standard disk reference mark, described on page —, set in a cylinder of concrete 12 inches in diameter and 24 inches long, is 16.47 meters from the station in azimuth 180° 51'.

Chugwater (Laramie Connty, Wyo., C. V. H., 1912).—About 9 miles west of Chugwater and 18 miles south 12° west of Wheatland, towns on the Colorado & Southern Railway. The station is about 5 miles east of the Hugh Ferguson

ranch, 2 miles west of Reshaw Creek, and one-half mile north of Maxwell Creek, on the extreme northeastern roundtopped hill of the Reshaw Range. The top of the hill is about 100 meters in diameter, covered with large ragged bowlders and almost surrounded by a small cliff 4 to 10 feet high. The station is marked according to note $2.^{1}$ A reference mark, consisting of a horizontal drill hole 0.56 meter above the ground in the west face of the largest bowlder on the peak, is 1.78 meters from the station in azimuth 259° 36′. The chimney of a large stone house on Rainsford's "Hill Ranch" on Maxwell Creek is about 1 mile distant in azimuth 359° 20′.

Notch (Albany County, Wyo., C. V. H., 1912).—About 21 miles west of Wheatland and 2 miles southwest of the Wheatland-Owen wagon road, near the center of the highest part of Collins Peak, which is also called Notch Peak because of the deep notch in its top as seen from the east. The station is marked according to noto 2.¹ A reference mark, described in note 8,¹ is in a largo bowlder 0.41 meter above the station and 3.095 meters distant in azimuth 240° 23'.

Coleman (Laramie County, Wyo., C. V. H., 1912).—About 13 miles northwest of Hartville Junction, on the Colorado & Southern Railway, and $7\frac{1}{2}$ miles west of north from M. F. Coleman's ranch, which is on the Wheatland-Douglas wagon road where it crosses Cottonwood Creek. The station is $1\frac{1}{2}$ miles north of this wagon road, just west of a large table-topped ridge devoid of trees, on the top and near the western slope of a round-topped knoll on which slope are three trees, two near the top and one near the bottom. The station is marked according to note 2.¹ A reference mark, described in noto 8,¹ is in the top of a large rounded bowlder at the top of the western slope of the knoll, 0.26 meter below the station and 20.90 meters distant in azimuth 122° 36′. A cairn 6 feet in diameter at the bottom and 6 feet high is 11.8 meters distant in azimuth 107° 48′. A triangular blaze on the nearest pine tree is 13 meters from the station in azimuth 62° 02′. Latitude observations were made in 1913 at a point, not marked, 0.045 meter south and 0.05 meter west of the station.

Haystack (Laramie County, Wyo., C. V. H., 1912).—About $7\frac{1}{2}$ miles northeast of Guernsey, $1\frac{1}{2}$ miles north 79° east (magnetic) from the Chicago Iron Mines, and $1\frac{1}{2}$ miles east of the Guernsey-Lusk wagon road. The station is near the highest point at the western end of the middle one of the three highest peaks of the Haystack Hills, about one-fourth mile south of a slightly lower ridge, known locally as Haystack Hill, which has an abrupt descent at its northwest end and a natural cairn at its southeast end. The station is marked according to note 2.¹ A reference mark, described in note 8,¹ is in the top of a large bowlder 0.35 meter above the station and 3.293 meters distant in azimuth . 121° 52′. A triangular blaze on a pine tree is 19 meters from the station in azmuth 122° 15′.

Hobbs (Laramie County, Wyo., C. V. H., 1912).—About 15 miles direct and 20 miles by road south 30° west from Lusk, 6½ miles north 55° west from the Rawhide ranch, and 4 miles south of the Hobbs ranch, on the most easterly of a group of hills and the only wooded hill in the vicinity. The station is at the intersection of three lines cut through the timber to other triangulation stations and is marked according to note 2.¹ A reference mark, described in note 8,¹ is 0.92 meter below the station and 19.172 meters distant in azimuth 111° 12'.

Willow (Converse County, Wyo., C. V. H., 1912).—About 5 miles north of Willow post office and 7 miles south 21° west from Manville, on the most northern and western high hill in that vicinity. The hill is a bare-topped ridge about 350 meters in length north and south, with a rim of rock along the east side and gentle slopes to the west. The station is near the south end of the highest part of the ridge, about 190 meters from the north end of the hill, and is marked according to noto $2.^{1}$ A reference mark, described in note $8.^{1}$ is in the top of a small bowlder 10 inches above the surface of the ground and 11.218 meters from the station in azimuth 286° 41′. Azimuth observations were mado at this station.

Rawhide (Laramie County, Wyo., C. V. H., 1912).—About 12 miles south of Lusk, $2\frac{1}{2}$ miles north of the Rawhide ranch, and 2 miles east of the Guernsey-Lusk wagon road, on the highest point of Rawhide Butte. The station is on the erest of a narrow rocky ridge extending north and south and is marked according to note 2.¹ A reference mark, described in note 8,¹ is 0.55 meter above the station and 2.810 meters distant in azimuth 302° 13'.

Manville (Converse County, Wyo., C. V. H., 1912).—About $4\frac{3}{4}$ miles direct and 6 miles by road north 20° east from Manville, on a small round-topped knob about 8 meters in diameter, which marks the highest point of the ridge in that vicinity. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is on an adjacent conical mound 274.38 meters from the station in azimuth 83° 13′ 35″.

Kirtley (Converse County, Wyo., C. V. H., 1912).—About $3\frac{1}{3}$ miles north and $1\frac{1}{3}$ miles east of Kirtley post office, on the highest knob in the SE. $\frac{1}{4}$ sec. 5, T. 33 N., R. 60 W., one-fourth mile south of some conspicuous high chalky bluffs. The station is 375 meters north 43° east from the southwest corner of the above section and is marked according to note 1.¹ A reference mark, described in note 7,¹ is 0.49 meter below the station and 125.713 meters distant in azimuth 158° 50′ 30″. Latitude observations were made in 1913 at a point, not marked, 0.04 meter west and 0.07 meter south of the station.

Alkali (Weston County, Wyo., C. V. H., 1912).—On Alkali Butte, the best-known butte within 30 miles, at the head of Muskrat, Robbers Roost, and Alkali Creeks, about 22 miles west of south from Newcastle. The station is 29 meters from the south end of the butte and is marked according to note 2.¹ A 1-inch drill hole in solid rock is 0.92 meter below the station and 17.180 meters distant in azimuth 177° 48′. The United States Geological Survey station "Alkali," marked by a 1-inch copper bolt set in bedrock, is 0.17 meter below the station and 28.640 meters distant in azimuth 20° 14′. Azimuth observations were made at this station in 1913. Latitude observations were made in 1913 at a point, not marked, 5.060 meters from the station in azimuth 8° 32′.

Parker (Fall River County, S. Dak., C. V. H., 1912).—About 2³/₄ miles south of Minnekahta and about threefourths mile northeast of Arnold's raneh house, on the highest point of Parkers (or Arnolds) Peak, the top of which is about 150 meters long north and south and about 40 meters wide. The station is 50 meters from the north end of the peak and is marked according to note 1.¹ A reference mark, described in note 8,¹ is 0.34 meter above the station and 25.471 meters distant in azimuth 206° 15', and a 1-ineh drill hole in solid rock is 1.42 meters below the station and 11.450 meters distant in azimuth 124° 49'.

Cottonwood (Converse County, Wyo., C. V. H., 1912).—About $14\frac{1}{2}$ miles direct and 18 miles by road south 76° west from Edgemont, S. Dak., 2 miles north of east of the Valentine Phester ranch, and $2\frac{1}{2}$ miles west of the State boundary line, on the highest part of the bald Cottonwood divide in that vicinity. The United States Geological Survey station "Cottonwood" is in this same locality, but it could not be found in 1912. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 41.228 meters from the station in azimuth 347° 21′.

Sullivan (Custer County, S. Dak., C. V. H., 1912).—About $4\frac{1}{2}$ miles northwest of Dewey and 3 miles by road northwest of the Sullivan ranch, on the highest point of a sparsely timbered peak known locally as Sullivan Peak. The station is marked according to note 2.¹ A 1-inch drill hole in solid rock is 0.72 meter below the station and 4.595 meters distant in azimuth 152° 30′. The United States Geological Survey station "Sullivan," marked by a copper bolt, is 0.4 meter above the station and 4.53 meters distant in azimuth 30° 29′.

Elk (Custer County, S. Dak., C. V. H., 1912).—About 15 miles north of Dewey, 15 miles southeast of Newcastle, and one-fourth mile east of the State boundary, at the extreme north end of the Elk Mountains, on a timbered peak which has abrupt slopes to the west and north. The station is marked according to note $2.^{1}$ A reference mark, described in note $8,^{1}$ is 0.2 meter above the station and 4.497 meters distant in azimuth 333° 20′. The United States Geological Survey station "Elk," marked by a copper bolt, is 1.035 meters from the station in azimuth 190° 20′.

Provo west base (Fall River County, S. Dak., C. V. H., 1912).—About $4\frac{1}{4}$ miles west and $1\frac{1}{2}$ miles south of Provo and 60 meters southeast of the southeast corner of a log schoolhouse. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is one-half meter east of the west section line fence, 0.11 meter below the station, and 58.860 meters distant in azimuth 359° 35'.

Provo east base (Fall River County, S. Dak., C. V. H., 1912).—About $4\frac{1}{2}$ miles east of Provo, on the homestead of A. G. Riley, 270 meters north 55° west from the southeast corner of see. 3, T. 10 S., R. 3 E., 155 meters from the south section line and 200 meters from the east section line. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is in the fence line 4.01 meters below the station and 151.348 meters distant in azimuth 358° 14'.

Provo astronomic (Fall River County, S. Dak., C. V. H., 1912).—About 600 meters northeast of the railroad station at Provo, on the highest point of a low hill on the open prairie. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 0.16 meter below the station and 29.294 meters distant in azimuth 355° 07′. The center of sec. 12, T. 10 S., R. 2 W., is 4.56 meters from the station in azimuth 201° 33′. Azimuth observations were made at this station. Observations for longitude were made at a point, not marked, 12.355 meters north and 1.404 meters west of the station. Latitude observations were made in 1913 at a point, not marked, 3.598 meters from tho station in azimuth 95° 04′.

Cambria (Weston County, Wyo., C. V. H., 1912).—About 7 miles north of Cambria and $1\frac{1}{2}$ miles west of the Cambria-Horton wagon road, on a flat-topped ridge extending east and west, locally known as Sweetwater Mountain. The station is on the highest part of the ridge, a few meters from the abrupt slope to the north and about 140 meters east of a small cultivated field. It is marked according to note 1.¹ A reference mark, described in note 7,¹ is 1.4 meters below the station and 27.67 meters distant in azimuth 52° 38′. Azimuth observations were made at this station in 1913. Latitude observations were made in 1913 at a point, not marked, 0.115 meter north and 1.865 meters east of the station.

Crow (Pennington County, S. Dak., C. V. H., 1912).—About three-fourths of a mile east of the road from Neweastle to Deadwood and 2½ miles south of where a branch of that road turns down Castle Creek, in the SE. ½ sec. 10, T. 1 N., R. 1 E., on a flat-topped ridge sloping gently in all directions and covered with a growth of eottonwoods and small pines. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 1.26 meters below the station and 33.488 meters distant in azimuth 285° 40′. The United States Geological Survey station "Crows Nest," marked by a 1-inch copper bolt, is 2.016 meters from the station in azimuth 77° 56′.

Laird (Lawrenee County, S. Dak., E. H. P., 1912).—About 3 miles northwest of the Laird water tank on the McLaughlin tio and timber road, 2 miles west of the Ham ranch (old McQuaig homestead), and about 2 miles east of tho State boundary line, on the highest hill in the vicinity. The hill has a considerable area cleared of trees. The station is marked at the surface according to note 1,¹ but has for an underground mark a brass bolt set in solid rock 2 feet below the surface of the ground. A reference mark, described in note 7,¹ is in the clearing on the west slope of the hill, 14.62 meters from the station in azimuth 73° 35'.

Inyankara (Crook County, Wyo., E. II. P., 1912).--On the top of Inyankara Mountain, about 14 miles south of Sundance and 2 miles west of the ranch of F. M. Clark. The station is in a slight depression, about 3 feet lower than the highest point of the peak, and is marked according to note 2.¹ A reference mark, described in note 8,¹ is about 1 foot higher than the station and 6.38 meters distant in azimuth 236° 56'.

Sundance (Crook County, Wyo., E. H. P., 1912).—About 6 miles northwest of Sundance, on the most westerly one of the Warren Peaks, which are the highest peaks of the Bearlodge Mountains. The peak is sharp and the station is about 3 meters from the highest point, on which there is a cairn 8 feet high. The station is marked according to note $1.^1$ A reference mark, described in note $8,^1$ is on the north slope of the hill about 11 feet below the station and 22.77 meters distant in azimuth 288° 20'. The azimuth of the cairn is 261° 31'. Latitude observations were made in 1913 at a point, not marked, 0.05 meter north and 0.03 meter east of the station.

Terry (Lawrence County, S. Dak., E. H. P., 1912).—About 14 miles southwest of Terry, on the top of Terry Peak, a well-known peak of the Black Hills. The station is on the south end of the peak, about 3 feet below the highest point, which is at the north end of the peak. It is marked according to note 2.¹ A reference mark, described in note 8,¹ is on the north end of the peak at the edge of the pile of rocks marking the highest point and is 17.51 meters from the station in azimuth 156° 28'.

Wymonkota (Custer County, Mont., E. H. P., 1912).—This station is identical with the United States Geological Survey station of the same name. It is abeut 2½ miles west-northwest of the southeast cerner of the State, at the edge of the breaks and just south of the wagon road leading into the Badlands, on a small conical-shaped hill, the highest in that vicinity. The station is marked by a United States Geological Survey bronzo tablet cemented in a large rock set in the ground. A 1-inch drill hole in solid rock is 4 meters from the station in azimuth 260° 31'. Azimuth observations were made at this station.

Castle (Butte County, S. Dak., E. H. P., 1912).—About 28 miles east of Bellefourche on the west spur of Castle Rock Butte, which is a well-known peak. The station is about 4 meters west of the highest part of the butte and is marked according to note $1.^{1}$ The United States Geological Survey station "Castle Rock," marked by a bronze tablet cemented in a flat rock flush with the surface of the ground, is on the highest point of the butte, 3.92 meters from the station in azimuth 291° 10′.

Harding (Harding County, S. Dak., E. H. P., 1912).—About 4 miles southwest of Harding, on the highest point about 1 mile from the southeast end of a prominent mesa which is a part of the Sioux National Forest. The station is in the NE. $\frac{1}{4}$ sec. 9, T. 16 N., R. 2 E., and is marked according to note 3,¹ with the addition of an underground mark as described in note 1.¹ A reference mark, described in note 7,¹ is on the west brow of the mesa, 49.15 meters from the station in azimuth 112° 28′. Latitude ebservations were made in 1913 at a point, not marked, 0.005 meter north and 0.010 meter east of the station.

Moreau (Harding County, S. Dak., E. H. P., 1912).—About 7 miles southeast of Harding, in the northeast corner ef sec. 23, T. 16 N., R. 3 E., en the southwest end of a prominent mesa which is a part of the Sioux National Forest. The station is about 25 meters from the south edge of the mesa and about 50 meters from the southwest end, and is marked according to note $1.^{1}$ A reference mark, described in note $7,^{1}$ is en the south edge of the bluff, 22.68 meters from the station in azimuth 342° 34'. Another reference mark, described in note $8,^{1}$ is also en the south edge of the bluff, 66.41 meters from the station in azimuth 253° 53'.

Reva (Harding County, S. Dak., E. H. P., 1912).—About 16 miles east of Buffalo and about one-half mile north ef the top of the old Moonshine trail, on the highest point at the north end of the Slim Buttes, on an isolated knob connected to the main butte by a short low spur. It is the highest point in sec. 25, T. 19 N., R. 8 E. The station is marked according to note 1,¹ except that the underground mark is a brass bolt set in solid rock 25 inches below the surface. A reference mark, described in note 8,¹ is on the south end of the knob 7 meters lower than the station and 48.72 meters distant in azimuth 345° 23'. Latitude and azimuth observations were made at this station.

Table (Harding County, S. Dak., E. II. P., 1912).—About 2 miles east of Karinen post office, on the highest point of Table Mountain, a flat-topped butte with steep rocky slopes and bluffs. The station is on the east side of the summit a little north of the center and just west of the head of the more northerly large cove with sheer rocky walls on the east side of the mountain. The station is marked at the surface as in note $1,^1$ except that the cylinder is $9\frac{1}{2}$ inches in diameter and 14 inches long. The underground mark is a brass bolt set in solid rock 12 inches below the surface. A reference mark, described in note $8,^1$ is within 1 foot of the edge of the bluff, 28.71 meters from the station in azimuth 275° 27', and a drill hole in solid reck is at the edge of the bluff, 48.65 meters from the station in azimuth 306° 56'.

Lodge (Harding County, S. Dak., E. H. P., 1912).—About 18 miles south and 4 miles west of Reeder, N. Dak., and ene-half mile south of the ranch house of L. B. Vines, in the NE. $\frac{1}{2}$ sec. 24, T. 22 N., R. 8 E., on the flat grassy mesa at the west end of the Lodgepole Buttes, about ene-fourth mile south of the northwest end and 15 meters from the brow of the hill. The station is marked according to note 1,¹ except that the underground mark is a brass bolt set in solid rock 28 inches below the surface. A reference mark is near the edge of the mesa, 40.18 meters from the station in azimuth 172° 46′. A 1-inch drill hole in a large bowlder at the extreme western edge of the mesa is on the lower flat about 8 meters below the station and 90.46 meters distant in azimuth 79° 24′, and a cross chiseled in solid rock near the second reference mark is 92.23 meters from tho station in azimuth 82° 16′.

Butte (Bowman County, N. Dak., E. H. P., 1912).—About $1\frac{1}{2}$ miles north of Bowman, on the northeast one ef the Twin Buttes near the middle of the summit north and south and about 40 meters from tho west edge of the slope. The station is in range with the east slope of tho southwest one of the Twin Buttes and the water-tank tower at Bowman, the base of which is just visible ever the edge of the butte on which the station is located. The station is marked according to note 1.¹ A reference mark, described in note 8,¹ is at the top of the slope on tho southwest edge of the butte, 38,31 meters from the station in azimuth 59° 57′.

Whetstone (Adams County, N. Dak., E. H. P., 1912).—About 10 miles north of Reeder, a town on the Chicago, Milwaukee & Puget Sound Railway, en the middle and highest peak of the Whetstone Buttes, which peak is quite sharp, the other two having rounded or flat tops. The station is just west of a mass of crumbling rock which is on the highest point of the peak, and is marked according to note 1,¹ except that the brass bolt of the underground mark is set in rock. The highest point of the butte near the west edge of the mass of crumbling rock is 2.32 meters above the station and 5.80 meters distant in azimuth 278° 58′.

Rainy (Billings County, N. Dak., E. H. P., 1912).—About 8 miles west-southwest of New England, a town on a branch of the Chicago, Milwaukee & Puget Sound Railway, near the center of the south side of West Rainy Butte, which is a large grassy. flat-topped hill about 2 miles long east and west and one-half mile wide at the widest point. About 200 meters west of the station the ridge narrows to low rough, rocky knobs extending for several hundred meters, beyond which there is high flat top again. The station is about one-half mile northwest of the house of J. O. Hanson, who lives in a cove on the south side of the butte, and it is about 100 meters west of the southwest point of the bluff overlooking the cove and 12 meters from the south edge of the cliff. The station is marked according to note 1,¹ except that the brass bolt of the underground mark is in a rock 22 inches below the surface. The reference mark, described in note 8,¹ is 11.79 meters from the station in azimuth 287° 25'. The chimney of John Moord's house is 2 miles distant in azimuth 65° 57'.

Black (Billings County, N. Dak., E. H. P., 1912).—About 15 miles north and 2 miles west of Bowman, on the southwest end of Black Butte, a grassy flat-topped butte about 2 miles long east and west and one-fourth to three-fourths mile wide, formerly known as H. T. Butte, as it was included in the range of the H. T. ranch. The station is about 20 meters from the west edge of the bluff and about 30 meters from the ledge at the southwest corner of the butte. It is marked according to note $1,^1$ except that the brass bolt of the underground mark is in rock 24 inches below the surface. A reference mark, described in note 7,¹ is about 15 meters from the sheer wall on the west side of the butte, and is 13.44 meters from the station in azimuth $130^{\circ} 22'$. A drill hole in solid rock is on a corner made by a break in the ledge on the south side of the butte, 1 meter from the edge and 28.18 meters from the station in azimuth $18^{\circ} 06'$.

Badland (Billings County, N. Dak., E. H. P., 1912).—About 13 miles south and 7 miles west of Belfield and about 7 miles west and 1 mile south of Gaylord, in the NE. $\frac{1}{4}$ sec. 8, T. 137 N., R. 100 W., on the highest point in the section. The station is at the edge of the "Breaks," where the level land breaks off abruptly into the Badlands to the west, and is near the road which leads west along section 8 and turns to the southwest, passing between the station and the reference mark just before it descends into the Badlands. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is on the opposite side of the road on the highest point of a somewhat lower knob and is 56.77 meters from the station in azimuth 26° 34'. The chimney of E. Meyer's house is about 600 meters from the station in azimuth 275° 45'. Latitude observations were made at this station in 1913.

Sentinel (Billings County, N. Dak., E. H. P., 1912).—About 4 miles south of the town of Sentinel Butte, on the highest point of Sentinel Butte, a high well-known mesa about 2 miles long east and west and one-fourth to one-half mile wide. The top of the butte is divided by a ravine which is just south of a rocky bluff visible from the town. The station is on a knoll near the middle of the southeast section and is in range with the east tangent of the rocky bluff described above and the point in the town of Sentinel Butte where the road from the north crosses the railroad. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is near the north edge of the knoll in range from the station to the highest point of Camel Hump Butte, 67.62 meters distant in azimuth 197° 10'.

Saddle (Billings County, N. Dak., E. H. P., 1912).—About $6\frac{1}{2}$ miles north and $1\frac{1}{2}$ miles west of Belfield, in the SE. $\frac{1}{2}$ sec. 33, T. 141 N., R. 99 W., on the south end and highest point of Saddle Butte, the only butto in this vicinity. The northwest corner of Stark County is about 400 meters in a southwesterly direction from the station, but a large cairn about 8 feet high on the edge of the cliff 7 meters to the south obstructs the view to the county corner. The station is on a smooth rock ledge and is marked according to note 2.¹ A reference mark, described in note 8,¹ is 8.96 meters from the station in azimuth 113° 53', and a 1-inch drill hole in solid rock is 8.93 meters distant in azimuth 187° 09'. Azimuth observations were made at this station.

Hump (Billings County, N. Dak., E. H. P., 1912).—About 5 miles northeast of the town of Sentinel Butte, on the highest point of Camel Hump Butte, on a narrow ridge running east and west. Large bowlders are scattered about over the top and down the sides of the ridge. The station is marked according to note 2.¹ A cross cut in the eastern oblique face of a large bowlder on the ridge is 6.32 meters from the station in azimuth 104° 27′, and a 1-inch drill hole in another bowlder is 2.14 meters distant in azimuth 269° 46′.

Cook (Billings County, N. Dak., E. H. P., 1912).—About 18 miles north and 4 miles east of the town of Sentinel Butte, about 5 miles northeast of the ranch of Almond T. Stono on Elk Creek, and about 1 mile north of the ranch of James E. Cook. There is a petrified stump about 10 feet high about 200 meters northwest of the northwest corner of Mr. Cook's pasture and about one-half mile south of the station. The station is marked according to note $1.^1$ A reference mark, described in note $7,^1$ is on the south point of the ridge somewhat lower than the station, 30.42 meters distant, in azimuth $32^\circ 01'$.

Blue (Dawson County, Mont., E. H. P., 1912).—About 20 miles due north of Wibaux and three-fourths mile west of the road from that place, on the highest point of Blue Mountain. The station is marked according to note $2.^{1}$ The United States Geological Survey station "Blue Camel," marked by a bronze tablet set in solid rock over which is a cairn 6 feet high, is 4.09 meters from the station in azimuth 138° 47′. A 1-inch drill hole in solid rock is 6.76 meters

from the station in azimuth 340° 57′, and a cross chiseled in solid rock is 15.81 meters distant in azimuth 334° 03′. Azimuth observations were made at this station.

Trotter (Billings County, N. Dak., E. H. P., 1912).—About $2\frac{1}{2}$ miles a little south of east of the Trotter post office and about 1 mile south of the county line, in the SE. $\frac{1}{4}$ sec. 4, T. 144 N., R. 104 W., on the most southern one of the three rounded hills just east of the rough eroded land at the head of Smith Creek. The station is about 300 meters north of the section line and is marked according to note 1.¹ A reference mark, described in note 7,¹ is 22.07 meters from the station in azimuth 92° 13'.

Flat (McKenzio County, N. Dak., E. H. P., 1912).—About 7 miles north and 3½ miles east of Trotter post office, about 9 miles east of the state line, about 7 miles north of the county line, and 3 miles in a northwesterly direction from Parson's ranch, on the top of a very prominent hill, the highest in the vicinity, known locally as Flat Top. The hill or butte is at the head of the south fork of Bene Pierre Creek and is conical in shape with a flat top of solid rock 10 meters in diameter having nearly perpendicular sides 10 to 30 feet in height. The station is on the northwest or main section of the rock about 4 meters from the northwest corner and 2 meters from the west face. It is marked according to note 2.¹ A reference mark, described in note 8,¹ is 8.89 meters from the station in azimuth 356° 24′, on the overhanging southwest section of the rock, which is separated from the main top by a crack about 9 inches wide.

Lovering (Dawson County, Mont., E. H. P., 1912).—About 10 miles due west of Sidney, on the highest point of a grassy hill whose top is a nearly level ridge of varying width. The station is on range land belonging to Charles Oldfelt and is about one-fourth mile west of the head of the draw leading up from the group of trees and the spring on the east slope of the hill. The station is marked according to note 1.¹ The United States Geological Survey station "Lovering," marked by an aluminum tablet in a block of quartzite flush with the surface of the ground, is 2.88 meters from the station in azimuth 85° 14'.

Sheep (McKenzie County, N. Dak., E. H. P., 1912).—About 12 miles east of the state boundary, 3 miles south of the county boundary, and 1½ miles east of the ranch houso of R. B. Burns, in sec. 22, T. 148 N., R. 103 W., on the highest point of the most prominent butte in this vicinity, locally known as Sheep Butte. The north side of the butte is partly grass covered and has a cluster of small trees and brush in a recess half way up the slope, but the other three sides are steep and jagged. The station is marked according to note 1.¹ A reference mark is 39.15 meters from the station in azimuth 164° 04′. A schoolhouse flagstaff is about 1¼ miles distant in azimuth 178° 36′. Latitude observations were made at this station in 1913.

Jackson (Dawson County, Mont., E. H. P., 1912).—This station is identical with the United States Geological Survey station of the same name. It is about 15 miles southwest of Mendak, one-half mile southwest of the Sioux Pass post office and store, and about one-half mile west of the wagon road leading through the pass, on a high flat ridge about 250 meters in a westerly direction from the brow of the hill facing the pass. The station is on land belonging to George C. Peterson, about 3 meters from an old Indian grave, a hole in the ground 4 feet long, 2 feet wide, and 4 feet deep. The station is marked according to note $6.^1$ A reference mark, described in note $8.^1$ is on a large white bowlder on the south side of the ridge near the head of a draw leading up from the south and is about 10 feet lower than the station and 64.51 meters (inclined distance) from tho station in azimuth 138° 24'.

Buford (Williams County, N. Dak., E. H. P., 1912).—About 3 miles north of Buford, in sec. 30, T. 153 N., R. 103 W., on the highest point of a prominent knob overlooking the Missouri and Yellowstono Rivers, the highest knob in this vicinity. The top of the knob is about 40 meters long southeast and northwest and has a gentle grassy slope on the northeast side and an abrupt bare face on the southwest. As viewed either from the northeast or the southwest the knob has the appearance of a flat-topped hill. The station is on the middle of the top about 4 meters from a red stone ledge on the southwest side of the hill and is marked according to note 3,¹ with an underground mark as described in note 1.¹ A cross cut in the more western one of two bowlders on the north slope of the hill is about 25 feet below the station and 46.99 meters (inclined distance) from the station in azimuth 173° 24'. A drill hole in solid rock is near the bottom of the slope on the northeast side, about 15 feet below the station and 22.59 meters (inclined distance) from the station in azimuth 226° 25'. Joseph Evans's house is about 1 mile distant in azimuth 154° 07', and C. L. Barr's log house is about three-fourths mile distant in azimuth 225° 32'.

Montana (Valley County, Mont., E. H. P., 1912).—This station is identical with the Missouri River Commission station and the United States Goological Survey station of the same name. It is about 2 miles north by west from Mondak, on the highest point of the bluff along which is the wagon road. The station is nearly in range with a small, conical, white-topped hill from the lowest point of the road from Mondak where it crosses a wide ravine. To reach the station, follow the road referred to above until the prairie level is reached, then turn southeast to the station about one-fourth mile distant. The station is the center of a 5-inch iron pipe. The chimney of Frank Steihl's house is about 14 miles from the station in azimuth 34° 21'.

Lanark (Valley County, Mont., E. H. P., 1912).—This station is identical with the Missouri River Commission station and the United States Geological Survey station of the same name. It is about $2\frac{1}{2}$ miles south of Bainville, about $4\frac{1}{2}$ miles north of the Missouri River, and $2\frac{1}{2}$ miles northwest of the bridge on the Mondak-Bainville wagon road over the Little Muddy River, on a prominent conical hill with white bluffs and a large bowlder on the south side. The station is marked according to note 4.¹

Cutoff (Dawson County, Mont., E. H. P., 1912).—This station is identical with the Missouri River Commission station and the United States Goological Survoy station of the samo namo. It is about 5¹/₂ miles noarly west of

Mondak, on the bluff south of the Missouri River, about 90 meters west of the top of Beaver Slide, the point where the Beaver Slide wagon road reaches the top of the bluff. The station is marked according to note 4.¹

Mondak (Valley County, Mont., E. H. P., 1912).—In Mondak, about 93 meters south of the main-line track of the Great Northern Railway, on vacant land belonging to Jacob Seel, of the townsite company. The station is marked according to note 3,¹ with an underground mark as described in note 1.¹ A rough cross about 1 foot above the ground on the south face of the concrete foundation at the southeast corner of the engine room and office of the W. I. Saxton elevator is about 40 meters south of the main-line track of the railway and 53.25 meters from the station in azimuth 208° 16′. Bench mark 123/2 of the Missouri River Commission, marked by a 5-inch iron pipe, is at the edge of the weeds just south of a wagon track, 46.6 meters nearly south of the southeast corner of the depot, and 96.89 meters from the station in azimuth 256° 08′. The southeast corner of the depot is 119.60 meters from the station in azimuth 234° 22′. Latitude and azimuth observations were made at this station. Observations for longitude were made at a point, not marked, 3.995 meters north, 0.25 meter east of the station.

Ferry (Dawson County, Mont., E. H. P., 1912).—This station is identical with the Missouri River Commission station of the same name. It is about $1\frac{1}{4}$ miles west of the ferry at Mondak and $1\frac{3}{4}$ miles south of the Missouri River, on a knoll a short distance back from the bluff overlooking the river. The edge of the bluff on the line to station Mondak was dug away a little in order to make the two stations intervisible. The station is marked according to note $4,^{1}$ the pipe projecting about 3 feet above the ground.

Bainville (Valley County, Mont., E. H. P., 1912).—About 4½ milcs north 30° east from Bainville, in sec. 12, T. 28 N., R. 58 E., on the highest point of the highest hill in the immediate vicinity, on land recently filed on by Lesley Wilde. The hill is abrupt and nearly bare to the west and southwest, and there is a large, bare, black ridge with a flat top making out to the westward about 100 meters west and 50 feet below the station. The station is marked according to note 1.¹ A reference mark is 38.14 meters from the station in azimuth 311° 12′. Another reference mark is on a rock, 76.41 meters from the station in azimuth 225° 59′. The Catholic Church at Bainville is in azimuth 28° 44′.

Snake (Valley County, Mont., E. H. P., 1912).—About 12 miles north 15° east of Bainville, three-fourths mile southwest of the ranch of George Reynolds and one-fourth mile west of the Bainville-Snake Creek wagon read, on a prominent rocky hill known as Snake Butte, in sec. 15, T. 29 N., R. 58 E. The station is marked according to noto 1.¹ A 1-inch drill hole in solid rock is 24.84 meters from the station in azimuth 112° 54′. A cross chiseled on a ledge of rock about 15 feet below the level of the station is 17.83 meters distant in azimuth 25° 45′, and a 1-inch drill hole in a rocky ledge about 10 feet below the station is 40.64 meters (inclined distance) from the station in azimuth 322° 01′.

Bull (Williams County, N. Dak., E. H. P., 1912).—About 22 miles north of Mondak, Mont., 4 miles east of John C. Dwyer's ranch, and one-third mile east of the State line, in the NW. $\frac{1}{4}$ sec. 14, T. 156 N., R. 104 W., on the highest point of a prominent grassy hill locally known as Bull Butte. The station is marked according to note 1.¹ A drill hole in solid rock is 34.57 meters from the station in azimuth 119° 19', a cross chiseled in solid rock is 23.33 meters from the station in azimuth 147° 10', and another drill hole in the rock is 3.18 meters distant in azimuth 5° 56'.

Williston (Williams County, N. Dak., E. H. P., 1912).—About 10 miles northwest of Williston, in the NW. sec. 13, T. 155 N., R. 102 W., on a round-topped knoll at the highest point in the vicinity, about 1 mile south of west of the house of G. A. Rutledge, who lives on the old Bonetraill Road. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is on the section line, 365.62 meters from the station in azimuth 110° 11′. The northwest corner of section 13 is 447.70 meters distant in azimuth 129° 03′.

Bonetraill (Williams County, N. Dak., E. H. P., 1912).—About one-half mile east of the town of Bonetraill, on the south section line near the center of sec. 14, T. 157 N., R. 102 W., on the highest point on the north side of the wagon road running east from the town. The land to the north belongs to Samuel Meek. The station is marked according to note 2,¹ in a large bowlder 2 feet in diameter. A reference mark, described in note 8,¹ is in a large bowlder on the south side of the road, 20.70 meters from the station in azimuth 54° 38′. A 1-inch drill hole in a large bowlder on the north side of the road is 14.03 meters from the station in azimuth 92° 29′. The schoolhouse at Bonetraill is in azimuth 77° 39′. Latitude observations were made at this station in 1913.

Gladys (Williams County, N. Dak., E. H. P., 1912).—About 2 miles west and 2 miles nerth of Bonetraill, on a knoll locally known as Observation Butte, the highest point in the SW. $\frac{1}{4}$ sec. 4, T. 157 N., R. 102 W. The station is on land belonging to R. W. Nudd, who lives in Williston, and is marked according to note 1.¹ A reference mark, described in note 8,¹ is 28.20 meters from the station in azimuth 99° 45′. The seuthwest eorner of section 4 is 36.61 meters distant in azimuth 20° 03′. Azimuth observations were made at this statien.

Marmon (Williams County, N. Dak., E. H. P., 1912).—About $2\frac{1}{2}$ miles east and 1 mile north of Marmon, on the bare prairie at the highest point of a small rounded kneb in the NW. $\frac{1}{4}$ NE. $\frac{1}{4}$ scc. 2, T. 157 N., R. 100 W. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is one-feurth meter south of the rock that marks the center of the north side of section 2 and is 278.86 meters from the station in azimuth 154° 29'.

Howard (Williams County, N. Dak., E. H. P., 1912).—About 4 miles north and 1 mile east of the town of Howard, on the highest point in the NE. $\frac{1}{4}$ SE. $\frac{1}{4}$ sec. 35, T. 160 N., R. 102 W., in the yard of R. A. Witsee. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is on the section line west of the road 162.77 meters from the station in azimuth 272° 15'.

Muddy (Divide County, N. Dak., E. H. P., 1912).—About 4½ miles east and 2 miles nerth of Rudser and about three-fourths mile south of east of Nora post office, on a round-topped hill known as Smoky Butte, the highest point of

land in the NE. $\frac{1}{4}$ soc. 23, T. 160 N., R. 100 W. The station is marked according to note 2.¹ A reference mark, described in note 8,¹ is just over the crest of the hill, 17.49 meters from the station in azimuth 340° 29'. A drill hole in solid rock is 2.99 meters from the station in azimuth 201° 55', and a third reference mark is 10.35 meters distant in azimuth 43° 15'.

Stady (Divide County, N. Dak., E. H. P., 1912).—About $4\frac{1}{2}$ miles north and $3\frac{3}{4}$ miles east of Stady, in the SE. $\frac{1}{4}$ NE. $\frac{1}{4}$ sec. 10, T. 161 N., R. 100 W., called Alexandria Township, and just south of a piece of land belonging to a Miss Brady, of Ambrose. The station is on level land at about the highest point just north of a deep coulee and is marked according to note 1.¹ A reference mark, described in note 7,¹ is in the fence line which follows the half section line and is 33.27 meters from the station in azimuth 186° 30′. The belfry of a schoolhouse about $2\frac{1}{2}$ miles distant is in azimuth 187° 56′.

Crosby (Divido County, N. Dak., E. H. P., 1912).—About $6\frac{3}{4}$ miles south and $3\frac{1}{2}$ miles west of Ambrose, in the NE. $\frac{1}{4}$ sec. 17, T. 162 N., R. 99 W., on land belonging to C. J. Christianson, who lives about 2 miles east. The station is marked according to note 1,¹ except that there is no underground mark. A reference mark, described in note 7,¹ is on the half section line on the south slope of the knoll, 137.46 meters distant (measured over the ground) in azimuth 349° 59′. The chimney of a white schoolhouse a little more than one-half mile distant is in azimuth 209° 47′.

Norge (Divide County, N. Dak., E. H. P., 1912).—About 14 miles west and 4 miles south of Ambrose and about $1\frac{1}{2}$ miles west and 1 mile south of Norge post office, in the NW. $\frac{1}{4}$ NW. $\frac{1}{4}$ sec. 3, T. 162 N., R. 101 W., on a rounded ridge in a cultivated field belonging to Martin Knutson, whose house is about 400 meters southwest by west from the station. The station is about 90 meters south of the township road and is marked according to note 1.¹ A reference mark, described in note 7,¹ is on the township road on the west slope of the hill, 87.10 meters from the station in azimuth 173° 20'.

Ambrose southwest base (Divide County, N. Dak., E. H. P., 1912).—About 6 miles west of Ambrose and $3\frac{1}{4}$ miles south of the Canadian boundary, in the NE. $\frac{1}{4}$ NW. $\frac{1}{4}$ sec. 13, T. 163 N., R. 100 W., about 60 meters south of an eastand-west road and 70 meters east of a north-and-south road. The station is marked according to note $3,^1$ with the addition of an underground mark as described in note $1.^1$ A reference mark, described in note $7,^1$ is close to the property line in the southeast corner of the road crossing and is 79.58 meters from the station in azimuth 127° 37'.

Bowie (Divide County, N. Dak., C. H. S., 1911; 1912).—This is one of the stations of the United States and Canada Boundary Survey. It is about 11½ miles west and 3 miles north of Ambrose, in the SW. ½ SE. ½ sec. 25, T. 164 N., R. 101 W., on a knoll about 65 meters south of the Canadian boundary on land belonging to Frank Christianson. The station is marked by a boundary survey tablet in a block of concrete 12 by 12 by 19 inches, set firmly in the ground and surmounted with a cairn. Boundary monument No. 232A is 90.70 meters from the station in azimuth 134° 05'. Ivar Eideness's house is about three-fourths mile distant in azimuth 268° 47', and a small shack at the west end of a lake is 1½ miles distant in azimuth 304° 31'. Azimuth observations were made at this station.

Ambrose (Divide County, N. Dak., E. H. P., 1912).—About 3 miles south and $1\frac{1}{2}$ miles west of Ambrose, in the SE. $\frac{1}{2}$ sec. 27, T. 163 N., R. 99. W., about 175 meters southeast of a house. The station is marked according to noto $1.^{1}$ A reference mark, described in note 7,¹ is about 2 meters from the southeast corner of the house and 173.43 meters from the station in azimuth 150° 30'.

School, or Ambrose northeast base (Divide County, N. Dak., C. H. S., 1911; 1912).—This is the station of the United States and Canada Boundary Survey called School. It is about $2\frac{1}{2}$ miles north of Ambrose, 0.7 mile south of the Canadian boundary, and about 0.1 mile north of a deep ravine, in the SW. $\frac{1}{4}$ NW. $\frac{1}{4}$ sec. 36, T. 164 N., R. 99 W., in the public road on top of the highest knoll in the vicinity. The station is marked by a bench-mark post projecting 16 inches above the ground. A drill holo in the top of a stone post projecting 4 inches above the ground is 17.09 meters from the station in azimuth 352° 28'. The east gable of T. O. Moan's house is about 180 meters from the station in azimuth 99° 01'. Latitude observations were made in 1913 at a point, not marked, 0.030 meter north and 0.025 meter west of the station.

SUPPLEMENTARY POINTS.

Brighton bench mark R_2 (Adams County, Colo., C. V. II., 1912).—This station is identical with the United States Geological Survey bench mark " R_2 ." It is about 1 mile north of Brighton, near the north county line, on the south side of the base line road 1 meter north of the fence line and 7.25 meters west of the west rail of the Union Pacific Railroad. The station is marked by an iron pipe and a cap on which are the figures 4966. Brighton bench mark eccentric, the point occupied, is 39.832 meters distant in azimuth 89° 22′. A reference mark, described in note 7,¹ with the arrow pointing toward the eccentric point, is in the fence line on the north side of the base line road and 1 meter west of the west fence line of the county road and is 54.30 meters from the bench mark in azimuth 110° 00′. Latitude observations were made in 1913 at a point, not marked, 14.256 meters south and 0.285 meter west of the eccentric station.

Loveland tall white chimney (Larimer County, Colo., C. V. H., 1912).—The center of a tall white chimney in the town of Loveland. Latitudo observations were made in 1913 at a point, not marked, 196.20 meters from the station in azimuth 193° 55'.

Dover bench mark E_3 (Weld County, Colo., C. V. H., 1912).—This station is identical with precise loveling bench mark E_3 established by this Survey. It is in the southeast corner of the Union Pacific Railroad section-house yard, 17 metors from the southeast corner of the section house and 25 meters west of the center of the track. It is marked by a granite post 6 inches square on top and $4\frac{1}{2}$ feet long, projecting 6 inches above the ground, and inscribed on the top with a square and the letters U.S.B.M. The station was occupied eccentrically. Dover bench mark eccentric, which is not marked, is 10.44 meters from the station in azimuth 240° 38'. Dover bench mark reference mark, described in note 7,¹ with the arrow pointing toward the eccentric point, is on the railroad right of way 16 meters west of the center of the track, 36 meters north of the east gable of the section house, and 53.23 meters from the station in azimuth 162° 00'. The reference mark is on the east side of the Denver-Cheyenne wagon road and is south of the wagon road which cros as the track at this point.

Terry (Laramie County, Wyo., C. V. H., 1912).—This station is identical with the United States Geological Survey station of the same name. It is about 10 miles south 17° west from Cheyenne and about 2 miles northeast of the house on the old Terry ranch, now the headquarters of the Warren Live Stock Co. The station is on a bare conical hill and is marked by a United States Geological Survey iron bench-mark post set 3 feet in the ground. A reference mark, described in note 7,¹ is 0.94 meter below the station and 10.87 meters distant in azimuth 202° 55'.

Colorado-Wyoming boundary monument, milepost 44 (Weld County, Colo., and Laramie County, Wyo., C. V. H., 1912).—About 11 miles west of south of Cheyenne, on the ranch of the Warren Live Stock Co., about one-half milo southeast of their ranch house. The monument is a dressed red sandstone post standing about 4 feet above the surface of the ground and is surrounded by a mound of loose rock. It is marked as follows: "44M" on the east side, "Colorado" on the south, "41 N. L. 1873" on the west, and "Wyoming" on the north side. It is the only permanent boundary monument for several miles in either direction. The station is marked by a standard disk station mark, described on page —, set in the top of the monument. A reference mark, described in note 7,¹ is in a fence line near an angle in the fence, 3.92 meters below the station and 110.184 meters distant in azimuth 75° 18'. Latitude observations were made in 1913 at a point, not marked, 14.838 meters directly north of the monument.

Wheatland standpipe (Laramie County, Wyo., C. V. H., 1912).—The center of the conical top of the tall red steel water tank at Wheatland, on a ridge on the open prairie about 1100 meters south 29° west from the railroad and telegraph office and 400 meters east of the railroad. Observations for latitude and longitude were made at a point, not marked, 25.21 meters east and 6.41 meters south of the station.

Nebraska-Wyoming boundary monument 123 (Converse County, Wyo., and Sioux County, Nebr., C. V. II., 1912).—About 3½ miles east and 2½ miles south of Kirtley, on open prairie land at the center of the east side of sec. 3, T. 32 N., R. 60 W., at the northeast corner of the farm of H. Z. Bayles and one-half mile north of his home. The monument is a granite post 10 inches square and 3½ feet high, marked as follows: "Neb." on the east side, "123 M" on the south side, and "Wyo." on the west side. Nebraska-Wyoming boundary monument eccentric, the station occupied, is marked by a nail in the top of a stake 3 inches square, 19.052 meters from the monument in azimuth 142° 36'.

Bluff (Converse County, Wyo., C. V. H., 1912).—About 30 miles west of Ardmore, 12 miles north of west from the Hermann ranch, and 9 miles north 78° west from the boundary monument common to the northwest corner of Nebraska, the southwest corner of South Dakota, and the east line of Wyoming. The station is on the most northeasterly one of the high flat-topped buttes in this vicinity, on the northeast edge of the highest knob along the north bluff and 10 meters back from the edge of the bluff. The station is marked according to note 1.¹ A reference mark, described in note 7,¹ is 1.51 meters below the station and 204.667 meters distant in azimuth 51° 41'.

South Dakota-Nebraska boundary monument (Fall River County, S. Dak., and Sioux County, Nebr., C. V. H., 1912).—About $2\frac{1}{4}$ miles east of the point common to the northwest corner of Nebraska, the southwest corner of South Dakota, and the eastern line of Wyoming, 1 mile northwest of the Hermann ranch and three-fourths mile northwest of the Kirtley-Eckard wagon road, in a pasture 500 meters east of Indian Creek. The monument is a granite post 10 inches square on top, projecting $2\frac{1}{2}$ feet above tho ground, and marked as follows: " $222\frac{1}{2}$ M" on the east side, "N" on the south side, and "N. D." on the north side. South Dakota-Nebraska boundary monument eccentric, the station occupied, is 2.572 motors from tho monument in azimuth 5° 57'.

South Dakota-Wyoming boundary monument (Converse County, Wyo., and Fall River County, S. Dak., C. V. H., 1912).—About 4½ miles north and 2½ miles west of the Hermann ranch and 4 miles north of the point common to the northwest corner of Nebraska, the southwest corner of South Dakota, and the east line of Wyoming. The monument is a granite post 10 inches square, projecting 2½ feet above the ground, and is marked as follows: "1904" on the north side, "S. D." on the east side, "4 M" on the south side, and "Wy." on the west side.

Jirch College cupola (Converse County, Wyo., C. V. II., 1912).—The cupola of Jirch College, which is east of the town of Keeline. Latitude observations were made in 1913 at a point, not marked, 67.868 meters from the station in azimuth 180° 13'.

Montana, southeast corner eccentric (Butte County, S. Dak., E. H. P., 1912).—On the northeastern gentle slope of a ridge about one-half mile east of the point on the Hash Knife wagon road, where it crosses the Montana-South Dakota State line. The station is marked according to note 1.¹ The southeast corner of Montana is marked by a granite post 11 inches square, projecting 30 inches above the ground, and is 271.66 meters from the eccentric station in azimuth 243° 41'.

Wyoming, northeast corner eccentric (Custer County, Mont., E. H. P., 1912).—About 2 meters east of the center of the Hash Knife wagon road, a short distance north of the Montana-South Dakota State line, on the first knoll covered with red rock seen on approaching along the road from the south. The station is marked according to note 1.¹ The northeast corner of Wyoming is marked by a red granite post 12 inches square, projecting 3 feet above the ground, and is 269.41 meters from the eccentric station in azimuth 35° 18′. About 3 feet west of the corner monument is a block of soft white sandstone 18 by 22 inches on top and projecting about 2 feet above the ground. Thirty-seven paces east of the corner monument is a 2-inch iron pipe with bronze cap projecting 1 foot above the surface of the ground and marked: "U. S. General Land Office Survey, 1910. \$250 fine for removal. Mont.-Wyo.-S. D., T. 9, R. 62-63, sec. 36-sec. 31." Latitude observations were made in 1913 at a point, not marked, 0.01 meter north and 0.06 meter east of the eccentric station.

North Dakota-South Dakota, milepost 333, eccentric (Bowman County, N. Dak., E. H. P., 1912) — About 16 miles south and 2 miles west of Bowman, about 50 meters south of the highest point of a low ridge, on top of the first knoll west of the shack of Emil Thom. The station is marked according to note 1,¹ except that the brass bolt of tho underground mark is set in solid rock 25 inches below the ground. North Dakota-South Dakota milepost 335 is a red granite post 10 inches square, projecting about 40 inches above the ground and is 326.07 meters from the station in azimuth 306° 12'.

Bowman longitude (Bowman County, N. Dak., H. A. S., 1912).—About 10 meters northwest of the northwestern support of the Bowman city water tank, which is on a slight elevation on the western edge of the town. The station is marked by a concrete pier. Latitude observations were made at this station in 1913.

Buffalo Springs (Bowman County, N. Dak., E. H. P., 1912).—At Buffalo Springs, south of the Chicago, Milwaukeo & Puget Sound Railway track, in a lot on which a church is to be built. The station is marked according to note 1.¹ The northwest corner of the parsonage is 47.48 meters from the station in azimuth 273° 49'. The rail in front of the box car used as a depot is 294.26 meters distant in azimuth 191° 08'.

North Dakota-Montana boundary monument eccentric (Billings County, N. Dak., and Dawson County, Mont., E. H. P., 1912).—About 20 miles north of Beach, in a small saddle on the crest of the divide about 300 meters west of the house of L. C. Callender, who lives on the Wibaux-Trotter wagon road, and 3.28 meters north of the North Dakota-Montana boundary monument, which is an old oak post. The station is marked according to note 1¹. The southwest corner of section 7, T. 143 N., R. 105 W., is 33.48 meters from the station in azimuth 00° 08', and the southeast corner of section 22, T. 17 N., R. 60 E., is 261.31 meters distant in azimuth 00° 09'. The old oak boundary post is in azimuth 359° 40', and the chimney of Mr. Callender's house is in azimuth 293° 21'. Latitudo observations were made at the eccentric station in 1913.

Bench mark 122/2 (Valley County, Mont., E. H. P., 1912) .- This station is a bench mark of the Missouri River

Commission. It is about 2 miles west of Mondak, three-fourths mile east of Snowden, and 100 feet south of the Great Northern Railway track, ou the north side of a public road close to the gate at the private road crossing opposite Dan Steele's house. The station is marked according to note 5.¹

Bench mark $\frac{121}{2}$ (Valley County, Mont., E. H. P., 1912).—This station is a bench mark of the Missouri River

Commission. It is about 2 miles west of Snowden water tank and section house, 350 meters north of the Great Northern Railway track, and about 15 meters south of the Mondak-Bainville wagen road, in a hay field owned by Peter Belland. The station is marked according to note 5,¹ the pipe projecting about 6 inches above the ground.

Bilby (Divide County, N. Dak., C. H. S., 1911).—This is one of the United States and Canada Boundary Survey stations. It is about 5 miles southwest of Ambrose and about 2 miles south of the road from Ambrose to Colgan, on a hill about one-half mile southeast of a house having a sun parlor on the east side. The house is gray and there is a yellow barn near it. The station is marked by a boundary survey bronze tablet set in a block of concrete.

Jasper (Divide County, N. Dak., C. H. S., 1911).—This is one of the United States and Canada Boundary Survey stations. It is about 10 miles southwest of Ambroso and 2½ miles nearly due south of Colgan, on a prominent rounded knoll of a range of hills running east and west. The station is marked by a boundary survey bronze tablet set in concrete. There are a few large bowlders about 6 feet northwest of the station. Mr. Henry Highland's house is about 1½ miles northeast of the station.

THIRTY-NINTH PARALLEL

PRINCIPAL POINTS.

Arapahoe (Cheyenne County, Colo., F. W. P., 1892).—About 7 miles southeast of Arapahoe and 11 miles southwest of Weskan, towns on the Union Pacific Railroad, and 3 miles west of the Kansas-Colorado boundary line, on the highest and most prominent hill in the vicinity, in the NW. $\frac{1}{4}$ NE. $\frac{1}{4}$ sec. 10, T. 15 S., R. 42 W. The station is marked at the surface by a tack in the top of a squared white-oak stake. Below the stake are two underground marks, a 4-gallon stone jar with a small hole in the bottom buried with the top down about 2 feet below the surface, and a 1-gallon stone jug buried mouth upward about 3 feet below the surface.

Monotony (Cheyenne County, Colo., F. W. P., 1892).—Near the north boundary of the county, in the NW. $\frac{1}{4}$ NE. $\frac{1}{4}$ sec. 8, T. 12 S., R. 43 W., on the highest point of the divide between the north fork of the Smoky Hill River to the north and Sand Creek to the south and about 3 miles distant from each. The nearest house is on the Cheyenne Wells-Burlington road, about $4\frac{1}{3}$ miles northwest of the station and belongs to Mr. A. Eichels. The station is marked at the surface by a tack in the top of a squared white-oak stake. Below the stake are two underground marks, a 3-gallon stone jar with a small hole in the bottom, buried with the top down, about $2\frac{1}{2}$ feet below the surface, and a 1-gallon jug, buried mouth upward, about 4 feet below the surface. Some broken crockery was mixed with the soil about the stake and a pyramid of large rocks was built over the station. There are two reference marks similar to the surface marks of the station, one 10 feet to the east and the other the same distance to the west.

Cheyenne Wells (Cheyenne County, Colo., F. W. P., 1892).—About 9 miles northwest of Cheyenne Wells, a town on the Union Pacific Railroad, on the highest part of a ridge about one-half mile west of the Cheyenne Wells-Beloit road about $2\frac{1}{4}$ miles toward Beloit from where the road crosses the Smoky Hill River. The station is in the northern part of T. 13 S., R. 45 W., and is marked at the surface by a cross in the top of a limestone post which projects about 2 inches above the ground. Below the post are two underground marks, a 1-gallon crock with a small hole in the bottom, buried with the top down, about $3\frac{1}{2}$ feet below the surface, and a 1-gallon jug, buried mouth upward, about $4\frac{1}{2}$ feet below the surface. Pieces of broken crockery were mixed with the soil when the marks were set and a 4-foot pyramid of rocks was built over the station.

First View (Cheyenne County, Colo., F. W. P., 1892).—About $1\frac{1}{2}$ miles south by west of First View, a town on the Union Pacific Railroad, on the western extremety of the plateau east of the Big Sandy Creek, and 221.19 meters south 83° west of the half-section corner between sections 27 and 34, T. 14 S., R. 46 W., which corner is marked by a block of limestone surrounded by four pits. The station is marked at the surface by a cross in the top of a block of soft limestone and underground by a cross in an irregular-shaped stone about 3 feet below the surface. Just below the surface mark is a circular paving 3 feet in diameter consisting of pieces of broken tile, and below this paving other pieces of tile are mixed with the soil.

Landsman (Cheyenne County, Colo., F. W. P., 1892).—About 9 miles north-northwest of First View, a town on the Union Pacific Railroad, about 4½ miles north-northwest of a large lake, and 3 miles north of the old Overland Trail, on the highest hill at the extreme western edge of the plateau, and about one-half mile east of a deep ravine which extends northwest and southeast. The station is in the northwest corner of T. 13 S., R. 46 W., and is marked at the surface by a cross in the top of a sandstone post, which projects about 2 inches above the ground and is surrounded at a depth of 3 inches by a circular paving 4 feet in diameter made of pieces of broken tile. The underground mark is a cross in an irregular-shaped black rock about 3 feet below the surface. Between the upper and lower marks are several rings 3 or 4 feet in diameter made with pieces of sandstone.

Kit Carson (Cheyenne County, Colo., O. H. T., 1882).—About 5 miles southwest of Kit Carson, a town on the Union Pacific Railroad, on top of a high sand dune west of the Pueblo trail at a point about 1 mile southwest of where the trail crosses the old abandoned roadbed of the Arkansas Valley Railroad. The station is marked both at the surface and underground by a cross in the top of a lead bolt embedded in an irregular-shaped stone, which is inscribed with the letters U. S. T. S. Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station.

Eureka (Cheyenne County, Colo., O. H. T., 1881).—About 14 miles north of Kit Carson, a town on the Union Pacific Railroad, and 2 miles north-northwest of the Big Springs ranch house, on a hill just west of a side road that branches from the main road a short distance north of the ranch house. The station is marked at the surface by a cross cut in stone, and underground by a cross in the top of a lead bolt in an irregularly shaped stone, which is marked with the letters U. S. T. S., and is set about 2½ feet below the surface. Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. There is a pyramid of loose stones about 3 feet high over the station mark.

Aroya (Lincoln County, Colo., O. H. T., 1881).—About 4 miles south 21° west (magnetic) from the telegraph office at Aroya, a town on the Union Pacific Railroad, on the eastern slope of a high ridge of sand hills which forms the watershed between Rush Creek and Big Sandy Creek. There is an unobstructed view from the station to the north, east, and south. The station is marked at the surface by a cross in a lead bolt in a bowlder, and underground by a cross and the letters U. S. T. S. in a bowlder about 3 feet below the surface. Four bowlders, each marked with a cross, are respectively 1 meter distant, and they form a square whose diagonals intersect at the station.

Overland (Lincoln County, Colo., O. H. T., 1881).—About 20.6 kilometers north 22° west (magnetic) from Aroya, a town on the Union Pacific Railroad, and 734.8 meters north 82° 50' west (magnetic) from the stake at the corner of townships 11 and 12, ranges 51 and 52 west, north of the old stage road, on one of the highest southern spurs of the ridge which forms the divide between Big Sandy Creek and Republican Creek. There is higher land north and northwest of the station. The station is marked at the surface by a cross cut in a bowlder, and underground by a cross in the top of a lead bolt in a bowlder about 14 feet below the surface. Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. There is a pile of stones over the station mark.

Hugo (Lincoln County, Colo., O. H. T., 1880).—On a high sand dune about 4 miles south 18° west (magnetic) from the railroad office at Hugo, a town on the Union Pacific Railroad. On the north side of the dune a deep sand pit has been hollowed out by the erosive action of wind and water, and the pit presents the appearance of a huge excavation. The station is marked at the surface by a cross in the top of a lead bolt in a soft grayish stone marked with a triangle and the letters U. S. T. S. The underground mark, 3 feet below the surface, is similar to the surface mark, except there is no triangle marked on the stone. Four small stones, each marked with a cross, are at the following distances from the station: North, 1.52 meters; east, 1.80 meters; south, 1.45 meters; and west, 1.80 meters. The diagonal lines from these four stones intersect at the station.

Adobe (Lincoln County, Colo., O. H. T., 1881).—On the highest one of the bold bluish-colored bluffs on the south side of the head of Adobe Creek, about 4 miles south of the Las Animas road. The station is marked at the surface by a cross in the top of a lead bolt in a round conglomerato bowlder marked with the letters U. S. T. S., and underground by a cross in the top of a lead bolt in a block of sandstone 2½ feet below the surface. Four stones, each

marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a squaro whose diagonals intersect at the station.

Square Bluffs (Lincoln County, Colo., O. H. T., 1880).—On the high land known as the Horse Creek Square Bluffs, on the eastern side of Horse Creek, and about 1½ miles northeast of Seldomridge's sheep corral, which is beside the creek. The station is marked at the surface by a lead bolt in a bowlder which is inscribed U. S. T. S., and underground by a small bowlder marked with a triangle and the letters U. S. T. S. and set 2 feet below the surface. Four reference stones, each marked with a cross, are respectively 4 feet distant north, east, south, and west, and they form a square whose diagonals intersect at the station. There is a pile of stones over the station mark.

Holt (Elbert County, Colo., O. H. T., 1880).—About 6 miles a little east of north of Col. Holt's homo ranch on Horse Creek and about 4 miles due north of Antelope Springs, near the southern extremity of a point of the high plateau which forms the divide between Big Sandy Creek and Rush Creek. The station is marked by a cross on a bowlder slightly below the surface, and by a cross in the top of a lead bolt in a bowlder 3 feet below the ground. Four reference stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. The west reference stone is red.

Cramer Gulch (Lincoln County, Colo., O. H. T., 1880; 1895).—About 8 miles south of the "M. C." ranch, on one of the sand dunes forming the eastern border of Cramer Gulch or Creek, about 2 miles in a northerly direction from the springs and the adobe house in the gulch. The house is not visible from the station, as the view is cut off by a hill about 1000 meters to the southward. The station is marked at the surface by a cross in a small bowlder, and underground by a similar mark 3 feet below the surface. Four reference stones, each marked with a cross, are at the following distances from the station: North, 0.995 meter; cast, 1.040 meters; south, 1.004 meters; and west, 1.000 meter. The diagonal lines from these four stones intersect at the station.

Big Springs (El Paso County, O. H. T., 1880; 1895).—About 30 miles east of Colorado Springs and about 6 miles south of Mr. Pebble's home ranch, which is known as Big Springs. The station is a short distance southwest of a road connecting various outlying ranches with the home ranch and is on the highest point within a radius of 6 miles. It is marked at the surface by a lead bolt in a red sandstone bowlder and underground by a triangle in a white conglomerato rock inscribed U. S. T. S. and set one-half meter below the surface. Four reference marks of red sandstone, each marked with a lead bolt in its upper surface, are respectively 1 meter distant, and they form a square whose diagonals intersect at the station. A pile of loose stones is over the station.

Holcolm Hills (El Paso County, O. H. T., 1880).—About 1 mile northeast of the Paint Rocks, on the highest land bordering Bracket Creek valley on the east. The station overlooks the plain to the westward and the head of the valley of Big Sandy Creek to the northeastward and eastward. It is marked at the surface by a lead bolt in a large irregular stone inscribed U. S. T. S., and underground by a cross in a lead bolt in a bowlder marked with a triangle and the letters U. S. T. S. and set 3 feet below the surface. Four small reference stones, each marked with a cross, are respectively 4 feet distant, north, east, south, and west. There is a cairn over the station mark.

Divide (El Paso County, O. H. T., 1880; 1912).—About 3 miles east of Eastonville, a town on the Colorado & Southern Railway, and about one-fourth mile south of the bluffs forming the southern edge of a large plateau or mesa, near the western end of the middle and largest one of three small hills or buttes. The station is marked at the surface by a drill hole in a stone 20 inches square and 6 inches thick set flush with the surface of the ground. The underground mark is a cross in a lead bolt in a bowlder $1\frac{1}{2}$ feet below the ground. Four reference stones, in each of which is a lead bolt marked with a cross, are respectively 1.83 meters from the station, north, east, south, and west. A large cairn, visible from the Eastonville road, is on the edge of the bluff 14 meters from the station in azimuth 30° 10′. Two pine trees, one marked with a square blaze and the other with a triangular blaze, are respectively 22.93 meters from the station in azimuth 212° 12′, and 21.43 meters in azimuth 232° 15′.

Corral Bluffs (El Paso County, Colo., O. H. T., 1879).—On the edge of the bluff forming the northern boundary of what is known as the Big Corral, a natural formation used to pen up cattle during the round-up. The station is on the highest land in the vicinity and commands a view of the plains as far south as the Arkansas River. It is marked by a solid brick pier, capped by a hewn stone, the top of which is 1.3 meters above the ground. There is an underground mark below the pier.

El Paso east base (El Paso County, Colo., O. H. T., 1878; 1913).—On Munson and Hamlin's ranch, commonly known as the Townsend ranch, which is included in the SW. $\frac{1}{4}$ sec. 33 and the SE. $\frac{1}{4}$ sec. 32, T. 12 S., R. 63 W. The west gable of Munson and Hamlin's barn is 376.6 meters north 14° 35′ east (magnetic) from the station. The station is marked by a copper tack in a lead plug in the top of a granite post 1 foot square and 2½ feet long which is set in concrete and inscribed with the letters U. S. E. B. The underground mark, 3½ feet below the ground, is similar to the surface mark.

El Paso west base (El Paso County, Colo., O. H. T., 1878; 1913).—About 15 miles northeast of Colorado Springs and about 1 mile north of the sheep corral and main spring of water of the so-called Pugsley ranch. The station is on a knoll somewhat higher than a similar one to the southward and lower than a knoll to the northward. It is marked in the same manner as *El Paso east base* above, except that the letters W. B. are substituted for the letters E. B.

Plateau (Pueblo County, Colo., F. D. G., 1894; 1895).—About 9 miles north-northeast of Pueblo and 3½ miles northeast of Overton, on the highest ground at the north end of the plateau near the east line fence of M. Steele's property, whose home ranch is on the county road 1½ miles north of Overton. The station is near the trail which branches from the main road one-fourth mile from Burke's ranch and is 77.1 meters northwest of the north gatepost in the fence described above and 51.2 meters west of the second post from the north gatepost where the fence bends a little to the

north. The station is marked at the surface by a cross in the top of a granite post dressed 6 inches square and inscribed U. S. C. S. Below the post are two underground marks, a half-gallon stone jug 3 feet below the surface, and above this an inverted milk crock with a small hole in the bottom. Two lava stone posts, each dressed 6 inches square at the top and marked with an arrow pointing toward the station, are respectively 3.04 meters northward and 3.00 meters southward from the station.

Pikes Peak (El Paso County, Colo., O. H. T., 1879; 1912).—On the summit of Pikes Peak, just north of the apex of the first forthward bend in the burro trail leading west from the Summit Hotel and the terminus of the cogwheel railway. The nearest point of the precipice is about 25 meters north 25° west from the station and the northwest corner of the hotel is 160 meters distant in azimuth 273° 29'. The station is marked by a wire nail leaded in a drill hole in the concrete foundation of an old masonry pier. The pier, only a part of which remains, was built on four pillars in order to leave access to this nail. The station is also marked by a nail in a 4 by 4 inch scantling at the top of the remnants of the pier about 1 meter above the foundation. A United States Geological Survey triangulation station mark is on the southwest corner of the pier 0.467 meter distant in azimuth 50° 46'. A United States Geological Survey bench-mark tablet is embedded in the top of a large bowlder 13.594 meters from the station in azimuth 99° 52'. In the south face of this same bowlder is an aluminum tablet inscribed with the latitude and longitude, but it is badly defaced by bullet marks.

Bison (Park County, Colo., F. W. P., 1894).—On the highest point of rocks on Bison Peak, the king peak of the Tarryall Range, which is between Tarryall Creek and Goose Creek. The station is near the ninth meridian west, in township 9 south, and is marked by a nail leaded in a drill hole in the granite rock. A rough masonry pier used in mounting the instrument is above the station mark. Four drill holes in the rock near the station bear, respectively, 0°, 180°, 240°, and 300°.

Mount Ouray (Saguache County, Colo., W. E., 1894).—On the Great Continental Divide on the summit of Mount Ouray, about 4 kilometers in a northeasterly direction from Marshall Pass, a station on the Denver & Rio Grande Railroad. The station is marked by a cross in a copper bolt set in the solid surface rock. It is also marked by a drill hole filled with charcoal and plaster of Paris in a brick embedded in the top of a brick and concrete pier built above the lower mark. The station is surrounded by a ring wall of loose stones 4 feet high with an inner diameter of 11 feet. Four reference marks, each consisting of a brick set on end and marked with a drill hole filled with plaster of Paris, are just outside the wall at the following distances and azimuths from the station: 2.75 meters, 5° 31⁷; 2.80 meters, 96° 46'; 2.74 meters, 186° 11'; and 2.73 meters, 275° 54'. Mount Ouray latitude station, marked by a brick and concrete pier, is 20.514 meters distant in azimuth 188° 23'.

Mount Elbert (Lake County, Colo., P. A. W., 1894).—On the summit of Mount Elbert, about 7 miles by trail from the town of Twin Lakes (also called Dayton). The station is marked by a copper bolt leaded into a drill hole in a large surface rock. It is also marked, 5 inches above the bolt, by a drill hole in a rock embedded in a 5-inch layer of masonry built between the bases of the three small brick piers used in mounting the instrument. At a distance of 5 feet in each of the directions north, east, south, and west is a reference stone marked with a drill hole. The station is nearly surrounded by a square rock wall.

Treasury Mountain (Gunnison County, Colo., W. E., 1893).—On the summit of Treasury Mountain, a prominent peak in the Elk Mountain Range, about 2 miles southeast of the mining town of Crystal. The station is marked by a copper bolt set in a drill hole in the solid surface rock. It is also marked, 6 inches above the bolt, by a drill hole filled with plaster of Paris in a brick embedded in a layer of masonry built between the bases of the three small brick piers used in mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high with an inner diameter of 10 feet. Four reference marks, each consisting of a drill hole in a surface rock, are just outside the wall at the following distances and azimuths from the station: 2.31 meters, 267° 10'; 2.25 meters, 351° 25'; 2.39 meters, 81° 45'; and 2.39 meters, 177° 20'. Treasury Mountain latitude station, marked by a brick pier, is 31.13 meters from the station in azimuth 327° 43'.

Uncompahyre (Hinsdale County, Colo., W. E., 1895).—On the summit of Uncompahyre Peak, one of the most prominent and best known peaks in southwestern Colorado, about 8 miles northwest of Lake City. The station is within about 10 feet of the perpendicular cliff on the north side of the summit. It is marked by a cross in a copper bolt which is leaded in a drill hole in the solid surface rock. The station is also marked, 4 inches above the copper bolt, by a drill hole in a brick embedded in a layer of concrete which connects the bases of three small brick piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high with an inner diameter of 11 feet. Four reference marks, each consisting of a drill hole in a rock filled with lead, are at the following distances and azimuths from the station: 2.48 meters, 3° 36'; 2.85 meters, 89° 58'; 2.65 meters, 179° 49'; and 2.87 meters, 269° 56'. Uncompahyre latitude station, marked by a brick picr with a concrete foundation, is 15.275 meters from the station in azimuth 305° 55'.

Mount Waas (Grand County, Utah, W. E., 1893).—On the highest point of Mount Waas, which is the third prominent peak from the north end of the La Sal Mountains. The station is marked by a cross in a copper bolt which is set in a drill hole in the rock between the bases of three small brick piers used for mounting the instrument. The station is surrounded by a ring wall of rocks 4 feet high with an inner diameter of 10 feet. Four reference marks, each probably consisting of a drill hole in the rock, are just outside the wall at the following distances and azimuths from the station: 2.24 meters, 3° 58'; 2.29 meters, 104° 19'; 2.18 meters, 186° 37'; and 2.21 meters, 275° 45'. Mount Waas astronomic station, marked by a concrete pier, is 28.213 meters from the station in azimuth about 329°.

48310°-14----9

Tavaputs (Garfield County, Colo., W. E., 1891).—On the southern cdge of the Book Mountains, which in this vicinity consist of low flat ridges sparsely covered with pine and aspen trees. The station is between West Salt Wash, 3 miles to the southeast, and Bitter Creek, three-fourths unile to the west. Bitter Creek has its source in a fresh-water spring 14 miles distant to the north. The marking of the station is similar to that of Uncompahyre (see above) except that there are only three reference marks which are at the following distances and azimuths from the station: 2.43 meters, 74° 41'; 2.40 meters, 196° 31'; and 2.43 meters, 322° 12'.

Patmos Head (Carbon County, Utah, W. E., 1890).—On Patmos Head, one of the peaks of the range of mountains known as West Tavaputs Plateau, and the highest point within several miles. It is about 12½ miles southeast from Sunnyside and 3 miles southeast of the upper end of Dry Canyon. The station is marked by a copper bolt in a rock bedded in the ground, and about § inches above the bolt by a drill hole in another rock which is cemented to the lower one. Three small brick piers, used for mounting the instrument, are about the station, and the whole is surrounded by a ring wall of rocks 3½ feet high with an inner diameter of 11 feet. Four reference marks are outside the ring wall at the following distances and azimuths from the station: Drill hole in a rock, 2.59 meters, 233° 16'; drill hole in a rock, 2.62 meters, 327° 07'; copper bolt in a rock, 3.45 meters, 343° 16'; and a stump, 3.35 meters, 90° 06'. Patmos Head astronomic station is 56.76 meters from the station in azimuth 190° 12'.

Mount Ellen (Garfield County, Utah, W. E., 1891).—On the summit of Mount Ellen, the uorthern peak of the Henry Mountains, a conical barren peak the upper part of which is covered with rough broken pieces of granite rock. The station is marked by a copper bolt in a rock embedded in concrete and a few inches above the bolt by a drill hole in another rock set between the bases of three small brick piers used for supporting the instrument. Tho station is nearly surrounded by a ring wall of rocks 4½ feet high with an inner diameter of 11 feet. Three reference marks, each consisting of a drill hole filled with plaster of Paris in the solid surface rock, are just outside of the wall at the following distances and azimuths from the station: 2.41 meters, 23° 35'; 2.44 meters, 144° 45'; and 2.39 meters, 263° 34'. Mount Ellen astronomic station, marked by a brick pier, is 15.02 meters from the station iu azimuth 5° 20'.

Wasatch (San Pete County, Utah, W. E., 1890).—On a small peak or table near the southern end of the Wasatch Mountain Range, the highest point of this part of the range. It is between the South Fork of Ferron Creek to the uorth and the North Fork of Muddy Creek to the south, the sources of both creeks being within short distances of the station. The station is marked by two copper bolts in a drill hole in a limestonc rock, the lower bolt being leaded and the upper one cemented in the hole. About the station are three small brick piers used in mounting the instrument, and the whole is surrounded by a ring wall of rocks 4 feet high with an inner diameter of 11½ feet. Four reference marks, each consisting of a brick set on end and marked with a drill hole filled with plaster of Paris, are just outside the wall at the following distances and azimuths from the station: 2.40 meters, 32° 12'; 2.33 meters, 91° 39'; 2.51 meters, 164° 26'; and 2.33 meters, 305° 39'. Wasatch astronomic station, marked by a brick pier, is 121.0 meters from the station in azimuth 218° 41'.

Tushar (Piute County, Utah, W. E., 1885).—On the summit of Mount Belknap, the northern one of the three highest peaks of the Tushar Mountains. The station is marked by a copper bolt leaded in a drill hole in the solid rock. It is also marked, above the bolt, by a drill hole in a flat rock fitted between the bases of the three small brick piers used in mounting the instrument. The station is nearly surrounded by a circular wall of rocks 4½ feet high, with an inner diameter of 11 feet.

Mount Nebo (Juab County, Utah, W. E., 1887).—On the southernmost summit of Mount Nebo. The station is marked by a copper bolt in a drill hole in the solid rock. Three small brick piers used in mounting the instrument are about the station, and these in turn are nearly surrounded by a ring wall of rocks 10 or 12 feet in diameter. Four reference marks, each consisting of a drill hole in the rock, are just outside the wall at the following distances and azimuths from the station: 2.56 meters, 38° 01'; 2.66 meters, 121° 28'; 4.25 meters, 204° 16'; and 3.32 meters, 309° 39'. Mount Nebo astronomic station, marked by a brick picr, is 23.25 meters (given 25.25 meters in latitude record) from the station in azimuth 321° 35'. The vertical circle statiou is 4.60 meters distant in azimuth 49° 00'. The latitude pier is partly surrounded by a square rock wall, and the vertical circle station by a circular wall similar to that about the station but smaller.

Ibepah (Juab County, Utah, W. E., 1889).—About 15 miles a little east of south from Ibepah post office, on Ibepah Peak, in the Deep Creek range of mountains. The peak has the general appearance of a roof of a house with the ridge extending east and west. The peak terminates in two principal summits of equal height, one at the extreme western end of the crest and the other near the middle, the station being on the latter. The station is marked by a copper bolt in a drill hole in solid rock, over which is a layer of masonry built between the bases of three small brick piers used in mounting the instrument. The station is nearly surrounded by a ring wall of rocks 5 feet high, with an inner diameter of 11 feet. Four drill holes in solid rock aro just outside the wall at the following distances and azimuths from the station: 2.97 meters, 246° 20'; 3.07 meters, 300° 12'; 3.25 meters, 91° 32'; and 3.18 meters, 134° 32'. Ibepah astronomic station, marked by a masonry pier, is 21.2 meters from the station in azimuth 108° 51'.

Wheeler Peak (White Pine County, Nev., W. E., 1882).—On Wheeler Peak, the highest and most prominent mountain of the Snake Range, on the western or higher prong of the double peak. The station is marked by a copper bolt leaded in a drill hole in solid rock. It is also marked, a few inches above the bolt, by a drill hole in a flat stono secured in position by the masonry foundation built for the instrument. The station is nearly surrounded by a ring wall of rocks. Three drill holes in solid rock are just outside the ring wall at the following distances from the station: 2.40 meters north, 2.60 meters east, and 2.40 meters southwest. The vertical circle station, also surrounded by a ring wall, is 57.75 meters east of the station.

Pilot Peak (Elko County, Nev., W. E., 1889).—On Pilot Peak, the highest peak of a prominent range of mountains bordering the Great American Desert on the west. The peak is very rugged and rocky and is almost inacessible. The station is on the highest point of the summit at the junction point of the three main spurs of the peak. It is marked by a copper bolt in a drill hole in solid rock. It is also marked about 10 inches above the bolt hy a drill hole in a flat stone embedded in the masonry built between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, about 4½ feet high, with an inner diameter of 11 feet. Four reference marks, each a drill hole in solid rock filled with lead, are just outside the wall at the following distances and azimuths from the station: 2.98 meters, 47° 36'; 2.73 meters, 123° 29'; 2.67 meters, 189° 13'; and 2.97 meters, 324° 59'. Pilot Peak latitude station, marked by a brick pier, is 12.65 meters from the station in azimuth 276° 26'.

Ogden Peak (Weber County, Utah, W. E., 1888).—On a peak of the Wasatch Mountains, about 4 miles east of Ogden. The west slope of the mountain is very steep and rough, and the station is more easily reached from the east. The station is marked by a copper bolt in a drill hole in solid rock. It is also marked by a drill hole in a flat rock embedded in the masonry built between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, with an inner diameter of about 11 feet. Three reference marks, each a drill hole in solid rock filled with lead, are just outside the ring wall at the following distances and azimuths from the station: 2.84 meters, $22^{\circ} 35'$; 2.93 meters, $177^{\circ} 55'$; and 2.55 meters, $288^{\circ} 43'$. Ogden Peak astronomic station, marked by a brick pier, is 13.2 meters from the station in azimuth $92^{\circ} 01'$. The vertical circle station, with a ring wall similar to that about the station, is 7.0 meters distant in azimuth $310^{\circ} 43'$. The magnetic station is 20.4 meters from the station in azimuth $323^{\circ} 56'$.

Deseret (Tooele County, Utah, W. E., 1892).—On the summit of the highest peak of the Onaqui Mountains, about 8 miles a little west of south from Grantsville and about 12 miles east of Stockton. The station is marked by a copper bolt set in solid rock between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high, with an inner diameter of 11 feet. Three reference marks are just outside the wall at the following distances and azimuths from the station: 3.10 meters, 322° 53'; 2.18 meters, 88° 08'; and 2.62 meters, 198° 38'. Deseret latitude station, marked by a stone and brick pier, is 10.85 meters from the station in azimuth 27° 42'.

Promontory (Boxelder County, Utah, W. E., 1892).—On the most southeastern summit of the Promontory Mounains, on Promontory Peninsula, which extends into Great Salt Lake from the north. The summit is very rocky and. rough, being composed of bare, sharp, stratified rocks, with the dip nearly vertical. The station is marked by a cross in a copper bolt set in solid rock and surrounded by a hollow brick pier 32 inches square supporting a red sandstone cap, which bears a second copper bolt directly above the first and is inscribed with a triangle and the legend "U. S. C. & G. Survey, 1892." The station is nearly surrounded by a ring wall of rocks 4 feet high, with an inner diameter of 12 feet. Three reference marks, each consisting of a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.50 meters, 213° 32′; 2.44 meters, 314° 08′; and 2.71 meters, 70° 48′. Promontory latitude station, marked by a stone and brick pier, is 16.61 meters from the station in azimuth 88° 41′. The vertical circle station is in azimuth 11° 11′.

Antelope (Davis County, Utah, W. E., 1892).—On the highest point of Antelope Island, in Great Salt Lake The station is marked by a copper bolt set in solid rock and surrounded by a hollow brick pier 28 inches square supporting a red sandstone cap, which bears a second copper bolt directly above the first and is inscribed with a triangle and the legend "U. S. C. & G. Survey, 1892." The station is nearly surrounded by a ring wall of rocks about 4 feet high, with an inner diameter of 10 feet. Three reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.43 meters, 40° 57'; 2.58 meters, 174° 22'; and 2.30 meters, 293° 42'. Antelope latitude station, marked by a brick pier, is 10.44 meters from the station in azimuth 13° 34'. The vertical circle station is 8.75 meters distant.

Waddoup (Davis County, Utah, W. E., 1892).—About three-fourths mile southeast of Centerville and 27 meters north and 88 meters west of the southeast corner of the NW. 4 sec. 18, T. 2 N., R. 1 E., on the west side of Thomas Waddoup's barnyard, 24 meters west of his residence. The Union Pacific Railroad station at Centerville is in the northwest quarter of the same quarter section. The station is marked by a copper bolt in the top of a granite post 2 feet long, dressed 7 inches square on top, set 2 feet below the general surface of the ground. This mark is surrounded by a hollow brick pier 32 inches square and 4 feet high above the ground, on the top of which is a sandstone cap 4 inches thick. The station is marked on this cap by a drill hole surrounded by a triangle and the inscription "U. S. C. & G. Survey, 1892."

Salt Lake southeast base (Davis County, Utah, W. E., 1896).—In the second field southwest of Mr Hill's house and orchard, which is on the road between Kaysville and Syracuse. The station is about halfway between the first fence to the eastward and the edge of the salt grass to the southwest. It is marked underground by a cross in a copper bolt set in a block of sandstone 2 feet square and 10 inches thick, 4½ feet below the surface of the ground. Above this mark is a brick pier 4 feet square at the base built to a height of about 9 feet above the ground. There is an opening in the pier at the surface of the ground to give access to the surface mark, which is exactly the same as the underground mark and is embedded in the center of the pier.

Salt Lake northwest base (Davis County, Utah, W. E., 1896).—About 1½ miles north of Syracuse Grove, the terminus of the Syracuse Branch Railroad, in the field southeast of a road crossing, 51 meters from the fence to the north and 63 meters from the fence to the west. The station is on property belonging to Mr. Cato Love, whose house is about 350 meters to the eastward. Mr. Gilbert Parker's house is across the road southwest of the station, and Mr. John W. Singleton's house is diagonally across the road crossing to the northwest. The station is marked the same as Salt Lake southeast base, except that the underground mark is only about 2½ feet below the surface.

Pioche (Lincoln County, Nov., W. E., 1883).—About 33 miles by road and 22.5 miles direct in an easterly direction from the town of Pioche, on the summit of Pioche Peak. The station is marked by a copper bolt leaded in a drill hole in solid bedrock. It is also marked a few inches above the bolt by a drill hole in a flat stone in the masonry foundation used for supporting the instrument. The station is nearly surrounded by a ring wall of rocks having an inner diameter of about 11 feet. Four reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.52 meters, 214° 28'; 2.41 meters, 271° 38'; 2.72 meters, 344° 46'; and 2.35 meters, 92° 30'. *Pioche latitude* station, marked by a masonry pier, is 12.10 meters from the station in azimuth 135° 57'. The vertical circle station, nearly surrounded by a ring wall of rocks with an inner diameter of 8 feet, is 21.1 meters noath-northwest from the station.

White Pine (Nye County, Nev., W. E., 1881).—On a peak locally known as Troy Peak, the highest and boldest point of the Grant Range of mountains. The station is marked by a copper bolt in a drill hole in solid rock, and above the bolt by a bottle embedded in plaster at the center of a low pier used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks. Three drill holes in solid rock are just outside the wall at the following distances from the station: 3.14 meters northeast, 2.33 meters southeast, and 2.74 meters west. The vertical circle station, partly surrounded by a ring wall of rocks, is 8.42 meters north of the station.

Diamond Peak (Eureka County, Nev., W. E., 1881).—About 12 miles northeast of Eureka, on Diamond Peak, the highest point of the Diamond Range of mountains. The station is marked by a copper bolt set in solid rock. The bolt is protected by the low masonry foundation used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, and just outside this wall are four drill holes in the solid rock at the following distances and azimuths from the station: 2.65 meters, 10° 04'; 2.84 meters, 92° 59'; 3.27 meters, 204° 29'; and 4.72 meters, 291° 44'. Diamond Peak latitude station, marked by a masonry pier, is 25.85 meters from the station in azimuth 250° 24'. The vertical circle station, partly surrounded by a small ring wall of rocks, is 23.65 meters south of the station.

Toiyabe Dome (Nye County, Nev., W. E., 1880).—On a peak locally known as Bold Mountain and Mount Poston, the highest and boldest southern extremity of the Toiyabe Range of mountains. The peak is steep on the western side and very abrupt on the eastern side. The station is marked by a copper bolt set in solid rock under the center of the low masonry foundation used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks. Four drill holes in the solid rock are outside the wall at the following distances and azimuths from the station: 4.70 meters, 135° 16'; 5.13 meters, 258° 20'; 2.48 meters, 308° 08'; and 5.61 meters, 6° 14'. Toiyabe Dome latitude station, marked by a masonry pier, is 24.86 meters from the station in azimuth 148° 56'. The vertical circle station, partly surrounded by a small ring wall of rocks, is 43.10 meters distant in azimuth 151° 03'.

Mount Callahan (Lander County, Nev., W. E., 1881).—About 20 miles north of Austin, on the summit of Mount Callahan, a large flat-topped mountain at the northern extremity of the Toiyabe Range of mountains. The station is marked by a copper bolt set with plaster of Paris in a drill hole in a large rock. This rock is embedded in the foundation of a masonry pier which is 4 feet square and 3 feet high with an opening at the center 6 inches square to give access to the bolt from the top of the pier. There is a bottle set with plaster of Paris in this opening or pit and the pier is capped with a large stone having a drill hole directly above the bolt. The station is nearly surrounded by a ring wall of rocks. Three drill holes in solid rock are outside the wall at the following distances and azimuths from the station: 3.38 meters, 60°; 3.48 meters, 180°; and 3.71 meters, 300°. Mount Callahan astronomic station, marked by a masonry pier, is 34.44 meters from the station in azimuth 248° 12′. The vertical circle station, nearly surrounded by a ring wall of rocks, is 11.53 meters from the station in azimuth 4° 10′. The magnetic station protected by a right angled wall of rocks is 18.60 meters from the station in azimuth 194° 12′.

Carson Sink (Churchill County, Nev., W. E., 1880).—About 20 miles in an easterly direction from the town of Stillwater, on the highest point of the Carson Sink Range of mountains. The station is marked by a copper bolt in a drill hole in solid rock. It is also marked, a few inches above the bolt, by a drill hole in a porous rock embedded in the masonry foundation used for mounting the instrument. The station is partly surrounded by a ring wall of rocks about $5\frac{1}{2}$ meters in diameter. Four drill holes in solid rock are at the following distances and azimuths from the station: 5.36 meters, 253° 58'; 5.38 meters, 328° 07'; 3.12 meters, 69° 12'; and 1.99 meters, 163° 42'. Carson Sink latitude station pier is 22.68 meters from the station in azimuth 230° 40'. The vertical circle station, partly surrounded by a small ring wall of rocks, is 8.13 meters from the station in azimuth 39° 15'.

Lone Mountain (Esmeralda County, Nev., W. E., 1880; 1902).—On the summit of Lone Mountain. The station is marked by a copper bolt set in a drill hole in a solid ledge of slate. The bolt is protected by a hollow masonry pier built around it. The station is nearly surrounded by a ring wall of rocks about 4½ meters in diameter. Four drill holes in solid rock are outside the wall at the following distances and azimuths from the station: 2.50 meters, 103° 37'; 2.79 meters, 188° 16'; 4.20 meters, 226° 52'; and 6.58 meters, 351° 15'. The vertical circlo station, nearly surrounded by a small ring wall of rocks, is 21.67 meters from the station in azimuth 241° 57'.

Mount Grant (Mineral County, Nev., W. E., 1879).—West of Walker Lake, on the central one of the three peaks which form the summit of Mount Grant, about 200 meters north of the highest one of the three peaks. The station is marked by a copper bolt in a rock embedded in a masonry pier about 3 feet above the base and 8 inches below the top of the pier. An opening or pit in the top of the pier allows access to the bolt. The station is nearly surrounded by a ring wall of rocks about 4 or 5 meters in diamoter, from which there is a hook-shaped spur wall extending to and part way around the vertical circle station which is 9.9 meters south-southeast of the station.
Mount Conness (Tuolumne County, Cal., L. A. S., 1879; 1890).—On Mount Conness, a lofty peak of the Sierra Nevada Range, about 25 miles a little east of north from the Yosemite Valley. The station is on the highest pinnacle of the summit which is a very small irregular crag. It is marked by a cross in a copper bolt set in solid rock and 40 inches above this by another copper bolt in the top of a masonry pier built over the lower mark. The bolt in the top of the pier has a broad spherical head with a small silver pin in the center and a cross a little to one side of the pin to mark the station. Mount Conness latitude station marked by a concrete pier is 194.5 meters from the station in azimuth 301° 59'. The magnetic station pier is 180.4 meters from the station in azimuth 298° 20', and the vertical circle station pier is about 30 meters southwest of the magnetic station.

Mount Como (Douglas County, Nev., W. E., 1879).—About 20 miles east of Genoa, on the summit of Mount Como, a sharp conical peak having a smooth outline and a flat western slope. The station is marked by a copper bolt in a large well-bedded granite rock. A masonry pier built around and over this bolt has a large flat cap stone in which there is a drill hole 9 inches directly above the bolt. A wall of rocks in the shape of a reversed 6, nearly surrounds the station and partly protects the vertical circle station which is 7.24 meters distant in azimuth 338° 12'. Another vertical circle station is 10.60 meters distant in azimuth 179° 04', and a drill hole in solid rock is 6.25 meters from the station in azimuth 49° 13'. An old monument of a previous survey is in the wall described above about 10 feet southwest of the station.

Pah Rah (Washoe County, Nev., W. E., 1878).—On the most northern one of the three principal summits of the Virginia Mountains south of Pyramid Lake, about 35 miles by road and trail northeast of Reno and about 20 miles by road and trail northwest of Wadsworth. The station is marked by a copper bolt in solid rock and a few inches above the bolt by a drill hole in a flat stone cemented in place over the lower mark. The station is nearly surrounded by a ring wall of rocks. The vertical circle station, marked by a pier, is 2.5 meters from the station in azimuth 217° 30'.

Round Top (Alpine County, Cal., W. E., 1876; 1893).—About 20 miles south of Lake Tahoe, on the crest of the Sicrra Nevada Range of mountains, on the highest and most easterly pinnacle, popularly known as Round Top, about 1 mile south of Carson Pass or the main summit of the Amador Grada. The station is marked by a copper bolt in a drill hole in solid rock with a rough masonry pier built over it. Round Top latitude station marked by a rough stone pier, is about 11 meters west of the station. There is another pier near the latitude pier and a third pier north of the station.

Mount Lola (Nevada County, Cal., W. E., 1876; 1893).—About 25 feet northwest from the highest part of the most southern summit of the high ridge between Weber and Independence Lakes and the town of Meadow Lake. Independence Lako lics at the southeast base of this ridgo and Browns Valley is on the opposite side. The station is marked by a cross in a copper bolt set in a drill holo in a large flat stono embedded in a masonry pier about 15 inches above the ground. It is also marked by a drill hole in the capstone of the pier. The station is nearly surrounded by a ring wall of rocks. Mount Lola latitude station, marked by a brick pier, is 9.5 meters north 45° east from the station. Two other brick piers are respectively 8.5 meters north 36° east from the station and north 28° west.

SUPPLEMENTARY POINTS.

Glen Eyrie (El Paso County, Colo., O. H. T., 1880).—About 7 miles northwest of Colorado Springs and 2 miles northwest of General Parmer's dwelling house, on the foothills north of the Garden of the Gods and about 3 miles from the Gateway. Tho station is on the first ridge west of Glen Eyrie, and about 500 meters northwest of the point where a high bald hill beside the glen joins the main ridge. The station is marked by a cross on a lead bolt in a flat stone about 1 foot below the surface of the ground.

Bear Creek (El Paso County, Colo., O. H. T., 1879).—About 4 miles west-southwest of Colorado Springs and just south of Bear Creek on one of the front foothills of Pikes Peak. The station is marked by a cross in the lead which fills a hole 3 inches in diameter and 1½ inches deep in a flat stone about 1 foot below the surface of the ground.

Colorado Springs latitude and longitude (El Paso County, Colo., E. S., 1873; 1879).—Just east of the Denver & Rio Grande Railroad passenger depot at Colorado Springs, in the experimental garden just north of the main walk, about 60 meters west of the east gate. The station is marked by the foundation of an old masonry pier.

Colorado Springs astronomic (U. S. E.) (El Paso County, Colo., O. H. T., 1879).—On a rise of ground southeast of the freight depot of the Denver & Rio Grande Railroad at Colorado Springs. The station is marked by a drill hole in the top of a solid stono pier.

Table (Elbert County, Colo., F. D. G., 1895).—About $2\frac{1}{2}$ miles northwest of the town of Elbert, on the highest hill in this vicinity, called Tablo Mountain by the owner, Mr. W. E. Foote, who lives just north of the hill. Tho station is marked at the surface by a nail in a small pine stub, and underground by a drill hole in a flat stone about 15 inches below the ground. A United States Geological Survey station is 1.12 meters east of the station and a fence post, to which is nailed a piece of wood 8 feet high with two cross pieces attached, is 1.55 meters north. Station *Elbert* is on the same hill.

Mesa (Delta County, Colo., W. E., 1893).—A short distance north of the most western point of that part of the Grand Mesa which is southeast of Connah Creek, within about 40 feet of the edge of the rim rock which limits the mosa. The station is marked by a copper bolt set in the solid lava rock. It is also marked about 10 inches above the ground by a drill hole in a brick embedded in the masonry which fills the space between the bases of the three small brick piers used to support the instrument.

Chiquita (Mesa County, Colo., W. E., 1895).—About 12 miles south-southwest from Grand Junction, on the northern rim or brow or Piñon Mesa. The station is marked by a low brick pier used in mounting the instrument.

Grand Junction standpipe (Mesa County, Colo., W. E., 1895).—The center of the standpipe at Grand Junction, which is 10 feet in diameter and about 100 feet high. The station was occupied eccentrically at a point 12.03 meters distant in azimuth 166°. The eccentric point is marked by a brick pier.

Valley Knob (Grand County, Utah, W. E., 1890; 1898).—About 5 miles east of Green River, on a bare knoll 50 feet above the valley, one-fourth mile north of the railroad track. The station is marked by a drill driven into the ground. The signal pole and the heliotrope stand weighted down with stones were left in position.

Hartman (Emery County, Utah, C. H. S., 1898).—About 2 miles north of the town of Green River and one-half mile west of the Green River, on the southeast end of a mesa which rises about 40 feet above the general level, the first prominent bank north of a deep wash. The station is marked by a drill hole in a rock over which is a pile of rocks used to secure the base of the signal pole.

Mica (Emery County, Utah, C. H. S., 1898).—About 800 meters south of the depot at Green River, on the east end and highest point of a conspicuous hill sloping toward the westward. The station is marked by a drill hole in a piece of sandstone above which is a pile of bricks used for securing the base of the signal pole.

Reservoir (Emery County, Utah, C. H. S., 1898).—On the high hill just south of the railroad at Green River, near an eld abandoned reservoir. The station is marked by a drill hole in a piece of sandstone, 6 feet from the north edge of the reservoir.

Wash (Emery County, Utah, C. H. S., 1898).—About 1½ miles northwest of the town of Green River on the high bluff that ferms the rim of the plain just north of the railroad track. The station is about 10 feet north of the edge of the bluff and 75 feet above the plain. It is marked by a drill hole in a shale rock, over which is a pile of rocks used for securing the base of the signal pole.

Green River east base (Emery County, Utah, C. H. S., 1898).—Just west of the first curve of the railroad west of the depot at Green River, about 200 meters from the west water tank and 9 paces north of the track. A low ridge extending north and south is about 20 or 30 meters east of the station. The station is on the top of a low dirt pier and is marked by a drill hole in a piece of sandstone.

Green River west base (Emery County, Utah, C. H. S., 1898).—About one-half mile west of the first curve west of the depot at Green River, 194 meters west of wooden culvert No. 221A and 9 paces north of the north rail of the track. The station is between the line of telegraph poles and the track, and is about 15 or 20 meters southeast of an old railroad grade extending northeast and southwest. The station is marked by a drill hole in a shale rock set flush with the surface of the ground.

Green River north meridian (Emery County, Utah, C. H. S., 1898).—About 625 meters directly north of Green River longitude station, about 30 meters north of a large wash and just west of a wagon road. The station is marked by a drill hole in a sandstone block 10 inches square and 18 inches long having a pile of bricks around the top.

Green River south meridian (Emery County, Utah, C. H. S., 1898).—Fifty paces south of the railroad and 12.40 meters north of Green River longitude station. The station is marked by a drill hole in a piece of sandstone with four reference bricks placed around it just below the surface of the ground.

Green River longitude (Emery County, Utah, C. H. S., 1898).—On the railroad right of way, 65 paces west of the depot at Green River, 64 paces southwest of the railroad water tank and 50 paces from the railroad. The station is marked by a brick pier 17 by 25 inches, 3 feet high above the ground. Green River latitude station, marked by a brick pier 17 inches square, is 51 inches due west of the station.

Cliff (Emery County, Utah, C. H. S., 1898).—This station was neither occupied or marked as its location is nearly inaccessible. It is north-northwest of the town of Green River on a lofty butte about 3 miles long east and west which rises about 2,000 feet above the plain. The upper part of the cliff is composed of stratified rock with the dip vertical and has the general appearance of a huge battleship. The station is the highest point of the cliff which is near the middle of its length.

Green River schoolhouse (Emery County, Utah, C. H. S., 1898).—The flagstaff on the cupola of the small wooden schoolheuse about one-eighth mile northeast of the depot at Green River.

Green River hotel (Emery County, Utah, C. H. S., 1898).—The flagstaff on the railroad hotel just south of the depot at Green River.

Sanpete (Sanpete County, Utah, W. E., 1884).—In the Wasatch Mountain Range, on the north end of the east spur of what is locally known as the Horseshoe. (See West Sanpete below.)

West Sanpete (Sanpete County, Utah, W. E., 1890).—In the Wasatch Range of mountains, on the north end of the west spur of what is locally known as the Herseshoe. The Horseshoe is formed by two spurs about two-thirds of a mile apart extending north from an undulating table which slopes toward the south. The station is marked by a copper bolt in a drill hole in solid rock.

Cedar (Juab County, Utah, W. E., 1884).—On the highest peak of the mountains immediately west of Levan. The station is marked by a copper belt in a drill hole in the rock at the highest point of the peak.

Levan (Juab County, Utah, W. E., 1884).—South 60° east (magnetic) from Levan, on the highest peak of the meuntains immediately east of Levan. The station is marked by a copper bolt in a drill hole in the rock at the highest point of the peak about 20 inches below the general surface of the ground.

Scipio (Millard County, Utah, W. E., 1884).—On the highest peak of the Canon Mountains, east of the town of Oak City and northwest of the town of Scipio. The station is on the highest part of the summit, about 10 or 12 feet from the edge of the abrupt slope on the eastern and northeastern side of the peak. The station is marked by a copper bolt set in a drill hole in solid rock. It is also marked, about 15 inches above the bolt, by a drill hole in a flat stone

embedded in the top of a low masonry pier used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks about 5 feet high, with an inner diameter of about 11 feet. Four reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.74 meters, 177° 55'; 2.77 meters, 284° 55'; 2.94 meters, 41° 33'; and 2.47 meters, 126° 51'.

Cervera (Millard County, Utah, C. H. S., 1898).—On the top of a large sand hill about S miles east of Oasis and about 1 mil south of the Oak Creek road. The station is marked by a 2 by 4 inch stub.

Camara (Millard County, Utah, C. H. S., 1898).-On a high sand hill across the valley and about 8 miles northeast of the depot at Oasis. The station is marked by a 2 by 4 inch stub.

Manterola (Millard County, Utah, C. H. S., 1898).—About 3½ miles northeast of Oasis, on high ground overlooking a depression extending northwest and southeast. The station is marked by a 2 by 4 inch stub.

Montijo (Millard County, Utah, C. H. S., 1898).—On a sand hill about 41 miles east of Oasis, on the north side of the Oak Creek road. The station is marked by a 2 by 4 inch stub.

Augusti (Millard County, Utah, C. H. S., 1898).—On a sand hill on the desert about 3 miles east of the depot at Oasis. The station is marked by a 2 by 4 inch stub.

Blanco (Millard County, Utah, C. H. S., 1898).—On a very prominent sand hill about 21 miles northeast of the depot at Oasis. This station is marked by a 2 by 4 inch stub.

Canovas (Millard County, Utah, C. H. S., 1898).—On the desert about 1³/₄ miles east of Oasis, about 200 meters southeast of the first sand hill. The station is marked by a 2 by 4 inch stub.

Oasis northeast base (Millard County, Utah, C. H. S., 1898).—About 11 miles northeast of the depot at Oasis, on the open desert on the southeast side of the railroad, 24.46 meters from the rail. The station is marked by a 2 by 4 inch stub.

Oasis southwest base (Millard County, Utah., C. H. S., 1898).—One-fourth milo north-northeast of the depot at Oasis, on the bank of a large irrigation ditch on the southeast side of the railroad, 24.61 meters from the rail. The station is marked by a 2 by 4 inch stub.

Oasis north meridian (Millard County, Utah, C. H. S., 1898).—About 1 kilometer north-northwest of the depot at Oasis, on the south side of a large irrigation ditch lined with willows near the Sevier River. The station is 4 paces south of the line of willows and 10 paces west of the third fence post south of the ditch. It is marked by a 4-inch spike driven in the top of a section of an old brick pier, 17 inches square and 2½ feet long, which projects 1 foot above the ground.

Oasis south meridian (Millard County, Utah, C. H. S., 1898).-This station is 5.22 meters due north of Oasis astronomic station and is marked by a 2 by 4 inch stub.

Oasis astronomic (Millard County, Utah, C. H. S., 1898).—About 75 meters southwest of the depot at Oasis. The station is marked by a 4-inch spike in the top of the pier.

Oasis schoolhouse tower (Millard County, Utah, C. H. S., 1898).—The schoolhouse is about one-fourth mile southeast of the depot at Oasis.

City Creck (Salt Lake County, Utah, W. E., 1893).—About 2½ miles north of Salt Lake City, on a low east-andwest ridge of the Wasatch Mountains. The station is marked by a cross in a brass bolt in a granite monument 7 inches square on top and 18 inches long. The underground mark is a bottle, and both it and the surface mark are embedded in a mass of concrete.

Salt Lake City longitude. (Salt Lake County, Utah, G. W. D., 1869; 1898).—Near the southeast corner of Temple Block, in Salt Lake City. The station is marked by a brass bolt in the top of a sandstone pier.

Salt Lake City latitude (Salt Lake County, Utah, G. W. D., 1869).—This station is 4.8 feet directly east of Salt Lake City longitude station. It is marked by a red sandstone post, 22 inches square and 5 feet long, projecting 3 feet above the ground.

Ogden longitude (Weber County, Utah, C. H. S., 1886).—The station is the east pier in the west room of the brick and stone observatory established by Lieut. Wheeler in 1873. It is on the ridge above the west bank of the Weber River, directly opposite Ogden, and about 1¹/₂ miles from the courthouse.

Bullwhacker (Eureka County, Nev., C. H. S., 1898).—About 2 miles west of the town of Eureka, on a flat-topped hill on the most western part of the mesa, about 30 meters north of the hoisting mill of the Bullwhacker mine. The station is marked by a drill hole in a stone and by a pile of rocks around the foot of the signal pole.

Descrt (Eureka County, Nev., C. H. S., 1898).—About one-third mile west of the ranch house of Morris Regli and about 90 meters north of the east-and-west road. The station is marked by a piece of 1-inch pipo 2 feet long at the center of a piece of 2-inch pipe 14 inches long, both pipes projecting about 2 inches above the ground. There are six stones around the top of the pipes and the base of the signal pole.

Richmond (Eureka County, Nev., C. H. S., 1889; 1898).—On the slope of the hill northeast of the old Richmond smelter. The station is marked by a drill hole in a rock and by a pile of rocks around the foot of the signal pole.

Leo (Eureka County, Nev., C. H. S., 1898).—On the slope of a high hill north-northeast of Eureka courthouse. The station is marked by a drill hole in a rock and by a pile of rocks around the base of the signal pole.

Tank (Eureka County, Nev., C. H. S., 1889; 1898).—West of the courthouse at Eureka, on a hill known locally as Maupin Hill, about 50 meters north of a large round water tank and 12 meters from the east brow of the hill. The station is marked by a drill hole in a fast rock nearly flush with the surface of the ground, with a pile of rocks over it.

Eureka courthouse (Eureka County, Nev., C. H. S., 1889; 1898).—The flagstaff on the east front of the large red brick building on the southwest corner of Main and Bateman Streets, Eureka.

Eureka Catholic Church (Eureka County, Nev., C. H. S., 1889; 1898).—The wooden eross on the wooden tower of a small stone church, near the schoolhouse on the west side of the town of Eureka.

Eureka longitude (Eureka County, Nev., C. H. S., 1889; 1898).—In a stone quarry just east of a large ditch on the east side of the town of Eureka, about 11 meters north of the north line of Bateman Street and about the same distance west of the nearly vertical wall of the quarry. There is a stone wall about 25 meters north of the station and a similar wall about 30 meters south. The station is marked by a drill hole in a large black stone placed on the stone foundation of the old pier.

Prospect Peak (Eureka County, Nev., W. E., 1881; 1898).-On the summit of Prospect Peak, south-southwest from Eureka and overlooking the town. The station is marked by a short signal polo with a cairn around the base.

Butler (Esmeralda County, Nev., C. H. S., 1902).—On the highest summit of the small range of mountains 14 miles due south of *Tonopah longitude* station. The station is marked by a drill hole in solid rock surmounted by a cairn about the base of the signal pole.

Bradford (Nye County, Nev., C. H. S., 1902).—About 6 miles north of Tonopah and about 1 mile south of the ice. plant, on the southwest part of a conspicuous mountain with a long palisade top extending southwest and northeast. The mountain is on the the west side of the wagon road and just southeast of a conical peak. The station is marked by a drill hole in solid rock, over which is a pile of stones about the base of the signal pole.

Booker (Nye County, Utab, C. H. S., 1902).—About 3 miles northeast of the town of Tonopalı, on the highest point of high mesa land which rises gradually to a rounded top. The station is marked by a drill hole in a rock surmounted by a pile of stones about the base of the signal pole.

Oddie (Nye County, Nev., C. H. S., 1902).—On the summit of Mount Oddie, a mountain well known on account of the Mispah mine. The station is marked by a drill hole in solid rock over which is a pile of rocks about the base of the signal pole.

Tonopah astronomic (Nye County, Nev., C. H. S., 1902).—In the town of Tonopah, on the east edge of Central Street about 30 meters south of Oddie Avenue, just west of the office of the Tonopah Miner, and on the same lot. The station is marked by a drill hole in the top of the longitude pier, which consists of two long stone blocks set on end side by side with the bases embedded in concrete.

Tonopah north meridian (Nye County, Nev., C. H. S., 1902).—About three-fourths mile due north of Tonopah astronomic station, on the farthest one of the ridges near Tonopah. The station is marked by a drill hole in the top of a stone post 48 inches long dressed 7 inches square on top and projecting 1½ feet above the ground.

Golden (Nyc County, Nev., C. H. S., 1902).—On the southern one of two summits near together, a short distance east of the town of Tonopah. The station is marked by a drill hole in solid rock over which is a pile of rocks about the base of the signal pole.

Tonopah southeast base (Nye County, Nev., C. H. S., 1902).—About one-third mile southeast of the town limits of Tonopah, on the northeast side of the wagon road leading southeast from the town. The station is marked by a drill bole in the top of a stone post 20 inches long set flush with the surface of the ground.

Tonopah northwest base (Nye County, Nev., C. H. S., 1902).—Just outside the town limits southcast of the town of Tonopah, on the east side of a wagon road. The station is marked by a drill hole in the top of a stone post 20 inches long set flush with the surface of the ground.

Davis (Nye County, Nev., C. H. S., 1902).—About 2 miles southeast of the town of Tonopah, on a high summit northeast of the wagon road which extends southeast from the town. The station is marked by a drill hole in solid rock, surmounted by a pile of rocks about the base of the signal pole.

Douglas (Esmeralda County, Nev., C. H. S., 1902).—About 4 miles south-southeast of the town of Tonopah, on a conspicuous black-top mountain on the west side of the San Antonio Range. The station is on the highest part of the summit and is marked by a drill hole in a rock over which is a pile of black lava rocks around the base of the signal pole.

Lothrop (Nye County, Nev., C. H. S., 1902).—About 4 miles southeast of the town of Tonopah, at the edge of the Ralston Desert on the east side of the San Antonio Range, on a black summit southwest of the wagon road. The station is marked by a drill hole in a fast rock over which is a pile of rocks about the base of the signal pole.

Ralston (Nye County, Nev., C. H. S., 1902).—On the Ralston Desert about 6 miles southeast of the town of Tonopah, a little more than a mile east of the east side of the San Antonio Range, and just east of a north-and-south wagon road a short distance north of where this road joins the road extending southeast from Tonopah. The station is marked by a drill hole in a rock and by a pilc of rocks around the base of the signal pole.

Cutting (Nyo County, Nev., C. H. S., 1902).—About 7½ miles southeast of the town of Tonopah, on the east side of the San Antonio Range on a prominent rock summit rising vertically above the hill about one-half mile southwest of the road from Tonopah. The hill is jagged on the north side and is easily recognized from the road. The station is marked by a drill hole in a rock and by a pile of rocks around the base of the signal pole.

Short (Esmeralda County, Nev., C. H. S., 1902).—About 6 miles southeast of the town of Tonopah, a short distance northwest of the corner of Esmeralda County, on the summit of the first hill almost due north of station *Crest*. The station is not marked except by a pile of rocks around the base of a short signal pole.

Crest (Esmeralda County, Nov., C. H. S., 1902).—About 6 miles southeast of the town of Tonopah, near the corner of Esmeralda County on the backbone of the second hill west of the edge of Ralston Desert. The station is not on the highest part of the summit. It is marked by a drill hole in a rock and by a pile of rocks around the base of a short signal pole.

Watch (Esmeralda County, Nev., C. H. S., 1902).—About 6 miles southeast of the town of Tonopah, near the corner of Esmeralda County, in a pocket surrounded on all sides by hills, on a small ridge extending eastward from the summit on which station *Crest* is located. The station is marked by a drill hole in solid rock and by a pile of rocks around the base of the signal pole.

Esmeralda County corner stone (Esmeralda County, Nev., C. H. S., 1902).—About 6 miles southeast of the town of Tonopah, 16.806 meters northeast of station *Watch*. The corner stone is supposed to mark the intersection of latitude parallel 38^d and the meridian 40° 07' west of Washington. The station is marked by a slender stone post 8 feet long, projecting 5 feet above the ground and surrounded by a pile of rocks.

Tioyabe Peak (Lander County, Nev., W. E., 1881; 1898).—On a small prominent peak on a long-top mountain about 9 miles south and east of Austin. The station is marked by a cairn of shaly rocks 3 feet in diameter at the base and $5\frac{1}{2}$ feet high.

Vigus (Lander County, Nev., C. H. S., 1898).—On the west side of the valley about 7 miles west-northwest of Austin, on a hill about 1 mile west of the ranch rented by the Vigus brothers. There is another and somewhat higher hill about one-half mile west of the station. The station is at about the center of the summit and is marked by a drill hole in a small fast rock and by a pile of rocks around the foot of the signal pole.

Mount Prometheus or Lander Hill (Lander County, Nev., W. E., 1880; 1898).—On the summit of Mount Prometheus about 1 mile northeast of Austin. The station is marked by a drill hole in a rock near the bottom of a cairn 53 feet high.

Wheeler stone (U. S. E.) (Lander County, Nev., C. H. S., 1898).—On a gentle slope at the base of Mount Prometheus, 100 meters north of the road leading up over the divide, a short distance west of a dwelling house and near the last big dump extending north and south across the ravine. The station is marked by a cross in the top of a granite post 6 inches square on top, projecting 8 inches above the ground and inscribed U. S. E. 1871.

Pilot Cone or *Basalt* (Mineral County, Nev., W. E., 1878; 1902).—On a conspicuous black bell-shaped mountain rising about 2000 feet above the plain just west of the large soda and borax flat or old lake bed. The summit is a mass of huge basaltic crystals. The station is marked by a copper cylinder in a cairn.

Mill (Mineral County, Nev., C. H. S., 1902).—Near the intersection of several roads north of an old lake bed, on a light-colored pile of earth a short distance southeast of the old Eagle mill. The station is marked by a 1-inch iron pipe 15 inches long.

South Hill (Lander County, Nev., C. H. S., 1898).—On the top of a high hill south of the courthouse at Austin. The station is marked by an iron bolt in an outcrop of granite rock.

North Hill (Lander County, Nev., C. H. S., 1898).—On the first prominent hill almost due north of the courthouse at Austin. The station is marked by a drill hole in a fast rock and by a pile of rocks around the foot of the signal pole. An iron bolt, marking one of the points of the mining company's survey, is 2.82 meters northwest of the station.

Union (Lander County, Nev., C. H. S., 1898).—On the steep slope of a hill northeast of the hoisting works of the Union mine. The station is marked by a drill hole in a fast rock near an outcropping ledge.

Reservoir (Emery County, Utah, C. H. S., 1898).—On a high hill just south of the railroad at Green River, 6 feet from the northwest edge of an old abandoned cement-lined reservoir. The station is marked by a drill hole in a piece of sandstone.

Austin longitude (Lander County, Nev., C. H. S., 1889; 1898).—On the west side of the courthouse at Austin, on the south side of the main street of the town. The station is marked by the foundation of a picr.

Hot Spring (Mineral County, Nev., C. H. S., 1902).—South of the east end of a large soda and borax flat which marks an old lake bed, near a hot spring known as Woodruff's Hot Spring, which is at the northwest end of the oblique boundary line between Mineral and Nye Counties. The station is 4.5 meters southeast of the center of the spring and is marked by a drill hole in a hard rock 18 inches long, which projects 6 inches above the ground. The chimney of an old adobe ruin is west of the spring and 34 paces from the station, and the foundation of an old rock-grinding mill is just east of the spring and northeast of the station.

Miller (Mineral County, Nev., C. H. S., 1902).—On a small conical knoll about 75 feet high on the north side of the range, about 2 miles south of the soda and borax flat or old lake bed and about 24 miles southwest of Hot Spring. The station is marked by a drill hole and a cross in a fast rock which is cracked in several places, and by a pile of rocks about the foot of the signal pole.

Mount Annie (Nye County, Nev., C. H. S., 1902).—On the summit of Mount Annie. The station is marked by a cairn.

Hot Spring west base (Mineral County, Nev., C. H. S., 1902).—On the soda and borax flat or lake bed, about 2.1 miles northeast of Hot Spring and 1.6 miles due south of the old Eagle mill. The station is marked by a 2-inch iron pipe 30 inches long driven in the ground nearly flush with the surface.

Hot Spring east base (Mineral County, Ncv., C. H. S., 1902).—On the soda and borax flat or old lake bed, about $1\frac{1}{3}$ miles north-northwest from Hot Spring and 2 miles southeast of the old Eagle mill. The station is marked by a 1-inch iron pipe 2 feet long driven in the ground nearly flush with the surface.

Churchill (Mineral County, Nev., C. H. S., 1902).—About 73 miles northwest of the old Eagle mill, on the highest peak of the Sinkavata Hills. The station is marked by a large cairn. Mount Grant highest peak (Mineral County, Nev., C. H. S., 1902).—On the highest and most southern one of the three peaks which form the summit of Mount Grant, about 200 meters south of station Mount Grant. The station is marked hy a cairn.

Freel Peak (Eldorado County, Cal., W. B. F., 1893; 1897).—On Freel Peak, the more western one of two high, sharp peaks about 7 miles southeast of Lake Tahoe. The station is marked by a half-inch copper bolt in a drill hole in a rock and by a cairn, 6 feet high and 8 feet in diameter at the base, built around the foot of the signal pole.

Rose. Knob (Washoo County, Nev., W. B. F., 1893).—On Rose Knoh, an isolated sharp conical peak of the Rose Mountain Range about 3 miles north of the north end of Lake Tahoe. The statiou is marked by a half-inch copper bolt in a drill hole in the solid rock at the top of the peak.

Rubicon Point (Eldorado County, Cal., W. B. F., 1893).—On the northern one of two projections of a well-known bold rocky point, called Ruhicon Point, on the southwest shore of Lake Tahoe. The station is on a ledge which slopes from a height of about 10 feet down to the water's edge. Back of this ledge is a vertical cliff 50 feet high. The station is marked by a half-inch copper bolt in a drill hole in the solid rock ledge.

Observatory Point (Placer County, Cal., W. B. F., 1893).—On Observatory Point, a well-known point on the northwest shore of Lake Tahoe. The station is not on the highest part of the hill, which is heavily wooded, hut on the first rise or level above the lake, where most of the heavy timber has heen cut. The station is marked by a half-inch copper bolt in a drill hole in a solid ledge of rock. Three hlazed trees are, respectively, about 20 meters southwest, 40 meters west, and 40 meters northwest.

Genoa Peak (Douglas County, Nev., C. H. S., 1893; 1897).—On a bare rocky summit of the mountain range along the east side of Lake Tahoe about 5 miles southeast of Glenbrook, 3½ miles east of Cave Rock, and just northwest of the town of Genoa, which it overlooks. The peak is very conspicuous from Carson Valley. The station is marked by a copper bolt in a loose stone at the center of the haso of a pile of stones.

Hot Spring Mountain (Douglas County, Nev., C. H. S., 1897).—On the more westerly one of the two summits of Hot Spring Mountain, which derives its name from a hot spring at its hase on the southwest side. The station is marked hy a five-eighths inch drill hole in the outcropping ledge at the highest point of the peak and by a large pile of rocks about the hase of the signal pole.

Folsom Peak (Douglas County, Nev., C. H. S., 1893; 1897).--On the west side of the summit of Folsoms Knoh or Little Round Top, a symmetrical hill about 500 feet high, about three-fourths mile northwest of Hohart post office and a short distance north of Hobarts Wharf on Lake Tahoe. The station is marked by a five-eighths inch copper bolt inserted 3 inches in a drill hole in a rock.

Anderson (Douglas County, Nev., C. H. S., 1897).—On a foothill about one-fourth mile south of the road that hranches from the Anderson Ranch-Desert Station Road and heads nearly for Mineral Peak. The station is about 10 meters from the highest point of the hill and is marked by a five-eighths inch drill hole in a granite bowlder and by a pile of rocks about the base of the signal pole.

Deadman (Douglas County, Nev., W. B. F., 1893).—Just north of Glenhrook, on the highest part of a rough rocky point, known as Deadmans Point, on the east side of Lake Tahoe. The hill is about 800 feet above the level of the lake, and the top of it is composed of enormous granite bowlders. The station is on the highest part of the hill and is marked hy a half-inch copper bolt in a drill hole in the top of a large irregular granite bowlder about 10 by 15 feet in cross section and 25 feet high.

Tallac Peak (Eldorado County, Cal., C. H. S., 1893).—On Tallac Peak, about 7 miles hy trail south of Tallac Hotel, on the south shore of Lake Tahoe. The station is marked by a drill holo in the rock at the top of the peak.

Sutro (Lyon County, Nev., C. H. S., 1897).—On the south end of a high ridgo northwest of the town of Sutro. The station is marked hy a three-fourths inch drill hole in the top of a pyramidal rock projecting about 1 foot above the ground, and hy a small pile of rocks around the base of the signal pole. A cairn of small rocks 4 feet in diameter and 4 feet high is about 10 meters northeast of the station.

Cedar Hill (Storey County, Nev., C. H. S., 1897).—On a reddish-colored hill, known as Cedar Hill, just north of Virginia City. The station is marked by a five-eighths inch drill hole in the most southern one of three outcropping ledges, each of which projects about 8 inches above the ground. There is a cairn around the base of the signal pole. Overlook (Ormshy County, Nev., C. H. S., 1897).—On the second rocky point overlooking Carson City on a ridge projecting from Snow Valley Mountain. The station is marked hy a half-inch drill hole in a projecting rock ledge and by a cairn huilt around the hase of the signal pole. There is a large pile of rocks about 5 meters back of the station.

Mount Davidson flagstaff (Storey County, Nev., C. H. S., 1897).-- A pointed iron mast about 15 meters high about 12 meters from the highest point of Mount Davidson.

Pearine (Washoe County, Nev., W. B. F., 1893; 1897).—On Peavine Mountain about 5 miles northeast of Rcno. The station is marked by a copper bolt in a drill hole in a solid rock ledge. A cairn 6 feet in diameter is about 3 mcters west of the station.

Prison Hill (Ormsby County, Nev., C. H. S., 1897).—On the highest part of the hill about 2 miles back of the penitentiary at Carson City. The station is marked by a drill hole in a fast rock and hy a large pile of stones around the base of the signal pole.

East Peak (Douglas County, Nev., C. H. S., 1893; 1897).—The highest summit of the mountains due east of the southeast end of Lake Tahoe. The station is marked by a drill hole in a rock at the highest point of the peak and by a pilo of rocks 5 feet high and 8 feet in diameter at the base around the foot of the signal pole.

Virginia City astronomic (Storey County, Nev., C. H. S., 1889; 1897).—In the yard south of the office of the Consolidated California & Virginia Mines Co. and directly opposite the railroad station at Virginia City. The station is marked by a drill hole in the top of the pier used for supporting the transit. Due to mining operations the ground on which the whole of Virginia City is situated is moving slowly to the eastward and this station should be used with caution.

Verdi Peak (Sierra County, Cal., C. H. S., 1897).—The highest peak at the south end of the range of mountains west of the town of Verdi, Nev. It projects boldly above the timber and is also known locally as Bald Mountain. The station is marked by a drill hole in a fast rock, and by a pile of loose stones built around the base of the signal pole.

Ranch Hill (Washoe County, Nev., C. H. S., 1897).—On the south end and nearly the highest point of a ridge making out into the Truckee Valley just east of Robert's ranch. From the station the barns at Robert's ranch are nearly in range with the railroad bridge across the Truckee River. The station is marked by a five-eighths inch drill hole in a large bowlder and by a cairn built around the base of the signal pole.

Bender (Washoe County, Nev., C. H. S., 1897).—On a ridge about 3 miles southeast of Verdi, in the prolongation of the road running north from Christianson's ranch. The station is marked by a drill hole in a large rock and by a pile of rocks above it.

Verdi Bluff (Washoe County, Nev., G. D., 1872; 1897).—On the northeastern brow of the bluff which is south of Verdi and just south of the railroad track at a point 55 rails east of the water tank at Verdi. The station is marked by a half-inch drill hole in a reddish granite rock which projects but slightly above the surface of the ground. A large mass of granite rock projecting 6 feet above the ground is about 40 meters from the brow of the bluff and about 16 meters from the station in azimuth 355° (magnetic).

North Flat (Washoe County, Nev., G. D., 1872; 1897).—About 2 miles northeast of the water tank at Verdi, on a plateau on the north side of the Truckee River and about 200 meters north of the Henness Pass Road where it crosses a small stream. The station is about 30 meters south of the highest part of the plateau and about 5 feet lower and is marked by a drill hole in the top of a large irregular rock.

Point of Rocks (Washoe County, Nev., G. D., 1872).—On a steep hillside about 1 mile north of Verdi on the north side of the Truckee River and about 200 meters north of the Henness Pass wagon road. The station is marked by a half-inch drill hole in solid rock.

Verdi east base (Washoe County, Nev., G. D., 1872; 1897).—This station has been destroyed. It has been approximately recovered and re-marked by a drill hole in the top of a large, triangular, granite block, but the geodetic position of this new point has never been determined.

Verdi west base (Washoe County, Nev., G. D., 1872).—About three-fourths mile east of Verdi on the second rise or plateau south of the railroad about midway between the first cut east of Verdi and the next curve of the track east. The station is on the north slope of the plateau and about 125 meters west of a small arroyo. It is marked by a halfinch drill hole in the top of a granite bowlder 5 or 6 feet in diameter which projects about 2 feet above the surface of the ground. A blasted granite rock about 6 feet in diameter is about 9 meters from the station in azimuth 16° (magnetic).

California-Nevada iron monument (Sierra County, Cal., and Washoe County, Nev., C. H. S., 1897).—On the south side of the road leading from Verdi, Nev., to Truckee, Cal., and just southeast of three pine trees, the only trees in the vicinity. The monument is of cast iron with a flange at the bottom and is 6 inches square at the top, 12 inches square at the bottom, and 6 feet high above the ground. It is about 5 inches out of plumb to the eastward.

Verdi longitude (Washoe County, Nev., C. H. S., 1889; 1897).—About one-third mile east of the town of Verdi, on the slight elevation back of O. Lonkey's residence, about 40 meters north of a stone fence and directly opposite the water faucet in the garden. The station is marked by the remains of a brick and cement pier, projecting a few inches above the surface of the ground.

Cone Peak, white flag (Washoe County, Nev., G. D., 1872).—The highest point of a conical peak 5 or 6 miles south of Verdi and a little more than a mile southeast of the Truckce River.

Crystal Peak flagstaff (Sierra County, Cal., G. D., 1872).—A large unpainted flagstaff on the main street of Crystal Peak village, in front of Mr. Hollingshead's house.

Crystal Peak mountain top (Sierra County, Cal., G. D., 1872).—A sharp mountain peak about 5 or 6 miles to the westward of Crystal Peak village.

California-Nevada stone monument (Sierra County, Cal., and Washoe County, Nev., G. D., 1872).—West of the town of Crystal Peak near the base of the mountain range which in this locality is somewhat back from the Truckee River. The station is south of the Henness Pass Road along the south bank of the west branch of Dog Creek and is about 8 meters south of a large outcrop of fine dark sandstone beside the road. A similar outcrop of rock is about 120 meters east of the station on the north side of the road. The station is marked by a half-inch drill hole in the top of the lower part of a stone boundary monument the top of which has been broken of.

California-Nevada wood monument (Sierra County, Cal., and Washoe County, Nev., G. D., 1872).—On the slope south of California-Nevada stone monument (see above), 31 meters distant and 7.5 meters higher. The station is marked by a roughly squared log set in the ground and surrounded by a large cairn.

Lone tree (Washoe County, Nev., G. D., 1872).—A prominent lone tree on the Peavine Ridge about 5 miles in a northeasterly direction from Verdi.

Verdi meridian mark (Washoe County, Nev., G. D., 1872).—On a summit of Peavine ridge about 3 miles northnortheast of Vcrdi and about 40 meters northeast of the old Bull Ranch Road: About 300 meters southwest by west from the station is a point of rocks distinctly visible from the Henness Pass Road at the point where the ranch road mentioned above intersects it. The station is marked by a pile of rocks about the base of a 1-inch board used as a signal pole.

Verdi azimuth mark (Washoe County, Nev., G. D., 1872).—About 1½ miles northcast of Verdi and 1 mile north of the Truckee River on a black-topped hill between two branches of a small stream which flows to the southward. The station is marked by a half-inch drill hole in a rock and by a pile of rocks about the base of the signal pole.

VERTICAL CIRCLE.

The vertical circles in use by the United States Coast and Geodetic Survey for the trigonometric leveling and for some of the time determinations ¹ are, in general form, like that shown in illustration No. 5.

The instrument is practically a theodolite with the graduated circle in a vertical position and its axis horizontal, with the telescope fastened rigidly to the alidade. The circle and alidade are fastened to a horizontal support, which rests upon the top of a vertical axis, the latter fitting into a stand. There is a counterpoise to the circle and alidade on the opposite side of the vertical axis. The stand has three leveling screws, and on some of the instruments there is a graduated circle near the base for measuring horizontal angles approximately.

Before starting observations the usual adjustments of the eyepiece and object glass should be made and the cross wires should be brought approximately into the center of the field. There is no adjustment for collimation in either the vertical or horizontal plane. A coarse stride level is used to make the horizontal axis of the circle approximately horizontal, and, consequently, the circle vertical, and a sensitive level is fastened to the circle and made parallel with it to define a horizontal line through the instrument. If, after leveling by the two levels, the instrument is rotated on its vertical axis through 180° and the bubbles remain on the graduated scales of the level vials, then the adjustments for level are satisfactory.

When making the observations on an object, its image is brought into the field of the telescope, the horizontal wire is placed on it, and readings are made of the bubble of the fixed level and of the verniers of the vertical circle. The telescope is then rotated on its horizontal axis and revolved 180° about the vertical axis of the instrument. A second observation is made on the object, and the level and vertical circles are again read. These observations constitute one complete determination of the double zenith distance, and are called a set.

If upon revolving the instrument through 180° in azimuth for the second reading on the object for any one set it is found that one end of the bubble extends beyond the graduations of the level vial, it may be brought back by the foot screws of the instrument. It should *never* be brought back to the graduations by moving the tangent screw, which controls the relation between the bubble and the graduations of the circle. In other words, the relation between the fixed level and the vertical circle of the instrument should remain undisturbed during a set. If the level is badly out of adjustment, it should be adjusted between sets.

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THE ELEVATIONS.

The zenith distances directly observed at each station were first computed. These zenith distances were corrected for height of the object observed and of instrument so as to refer them all to the ground at each station or to the surface marks at the station.

The difference of elevation of each pair of stations in the main scheme was then computed from the observations over the line joining them by the formula

$$h_2 - h_1 = s \tan \frac{1}{2} (\zeta_2 - \zeta_1) \left[1 + \frac{h_2 + h_1}{2\rho} + \frac{s^2}{12\rho^2} \right]$$

in which h_2 and h_1 are elevations of the stations, ζ_2 and ζ_1 are the measured zenith distances as corrected for height of instrument and of object observed, s is the horizontal distance between the stations, and ρ is the radius of curvature.

As there are always two or more lines to each new station, many rigid conditions exist between the observed difference of elevation, even if the connections with the precise leveling Special Publication No. 19.

VERTICAL CIRCLE USED IN TRIGONOMETRIC LEVELING AND FOR MAKING TIME OBSERVATIONS.

were ignored, and the least square adjustment furnishes the readiest accurate means of deriving the required elevations.

The elevations of stations of the primary scheme from the thirty-ninth parallel triangulation to the Canada boundary were adjusted in two sets of equations. The solution of the first set fixed all the elevations of the primary stations between the thirty-ninth parallel and latitude 40°, and the solution of the second set fixed the elevations of the primary stations between latitude 46° and the Canada boundary.

In the first set the elevations of Pikes Peak and Divide, the stations of the thirty-ninth parallel triangulation, were held fixed at 4300.63 and 2259.46 meters, respectively.

These elevations differ slightly from the values published in Special Publication No. 4,¹ due to more recent leveling by the United States Geological Survey and to the 1913 level net adjustment.

In addition to these fixed elevations, seven other stations, determined by precise leveling and less accurate spirit leveling, were assumed to be fixed.

These stations are Watkins astronomic, Brighton B. M. eccentric, Dover B. M. eccentric, Whitaker, Provo east base, Provo west base, and Buffalo Springs. Their elevations are 1683.47, 1514.35, 1648.01, 2041.98, 1123.05, 1177.19, and 878.93 meters, respectively. The precise leveling by the base measuring party connected the ends of the Provo base with bench mark Provo 3708 DW, the elevation of which was adopted as 1130.93 meters.²

The elevation of the top of the rail at Buffalo Springs was adopted as 870.81 meters (2857.0 feet), as furnished by the engineers of the Chicago, Milwaukee & Puget Sound Railway Co.

The elevation of Whitaker was obtained from the bench mark, 6702 Denver, of the United States Geological Survey. The value 2042.136 meters (6699.909 feet) was adopted for the elevation of this bench mark.

The elevations of Watkins astronomic, Brighton B. M. eccentric, and Dover B. M. eccentric depend on the precise level bench marks G_2 , R_2 , and E_3 , the elevations of which are published in Special Publication No. 18 as 1681.21, 1514.21, and 1648.19 meters, respectively.

The elevation of the 53 remaining stations connected by the observations are unknowns to be determined by the method of least squares from the 139 differences of elevations indicated below.

In the following tabulation there are shown the observed differences of elevation treated in the first set of equations, together with their adjusted values. The weight p, assigned to each observed difference of elevation, is inversely proportional to the square of the length, in meters, s, of the line between stations and is conveniently computed by the formula log p = $10-2 \log s$. The observed difference of elevation is given the sign of the elevation of the second station minus the elevation of the first. The quantity contained in the last column but one is the correction to be added to an observed difference of elevation to obtain the adjusted difference of elevation.

Station 1.	Station 2.	Weigbt,	Observed difference of eleva- tion, $h_2 - h_1$.	Adjusted dlflerence of eleva- $tlon, h_2-h_1$.	Adjusted minus observed, v.	pvv.
Plkes Peak. Plkes Peak. Elbert. Plkes Peak. Elbert. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Douglas. Hilltop. Morrison. Morrison. Douglas. Hilltop. Morrison.	Divide Elbert. Elbert. Hilltop. Hilltop. Morrison Morrison Douglas. Douglas. Indian Indian Indian. Bouider. Bouider. Watkins astronomic.	$\begin{array}{c} 0.36\\ 0.28\\ 2.79\\ 1.56\\ 0.17\\ 0.12\\ 0.18\\ 17.50\\ 0.34\\ 3.71\\ 1.92\\ 0.92\\ 0.21\\ 9.66\\ \end{array}$	$\begin{array}{c} Meters. \\ -2044, 54 \\ -2153, 79 \\ -112, 35 \\ -138, 83 \\ -2296, 63 \\ -1898, 65 \\ +248, 43 \\ -51, 56 \\ -445, 39 \\ -553, 57 \\ -107, 28 \\ -158, 24 \\ +174, 67 \\ +728, 63 \\ -164, 41 \\ \end{array}$	$\begin{array}{c} Meters.\\ -2041.17\\ -2153.76\\ -112.59\\ -139.92\\ -2233.68\\ -1399.47\\ +254.29\\ -51.56\\ -445.77\\ -553.09\\ -553.08\\ -107.32\\ -158.88\\ +174.71\\ 727.80\\ +727.80\\ -164.60\\ \end{array}$	$\begin{array}{c} \textit{Meters.} \\ +3.37 \\ +0.03 \\ -0.24 \\ -1.09 \\ +2.95 \\ -0.82 \\ +5.86 \\ +0.00 \\ -0.38 \\ +0.48 \\ +0.48 \\ -0.64 \\ +0.04 \\ +0.03 \\ -0.19 \end{array}$	$\begin{array}{c} 0.000\\ 0.161\\ 1.853\\ 1.479\\ 0.081\\ 6.181\\ 0.000\\ 0.058\\ 0.078\\ 0.078\\ 0.006\\ 0.786\\ 0.001\\ 0.145\\ 0.349\\ \end{array}$

¹ See pp. 265 and 266.

²See Special Publication No. 18, p. 148.

	a second could be a second as a second se	and the second s				
Station 1.	Station 2.	Weight, P.	Observed difference of eleva- tion, h ₂ -h ₁ .	A djusted difference of eieva- tion, h ₃ h ₁ .	Adjusted minus observed, v.	pvv.
Bouider Bouider Morrison Indian Brighton	Watkins astronomic Brighton. Brighton. Brighton. Brighton B. M., ecc.	0.25 0.46 0.32 0.52 29.05	Meters. - 888.21 - 984.76 - 809.66 - 257.00 - 78.41	Meters. - 892.40 - 983.21 - 808.50 - 255.41 - 78.31	<i>Meters.</i> -4.19 +1.55 +1.16 +1.59 +0.10	4.389 1.105 0.431 1.315 0.290
Bouider Morrison Brighton Bouider Dewey	Brighton B. M., ecc Brighton B. M., ecc. Dewey. Horsetooth.	0.59 0.39 0.32 0.13 0.37	$\begin{array}{r} -1061,28\\ -888,22\\ -90,83\\ -1077,64\\ +714,88\end{array}$	$\begin{array}{r} -1061.52 \\ - 886.81 \\ - 94.62 \\ -1077.83 \\ + 713.23 \end{array}$	$\begin{array}{r} -0.24 \\ +1.41 \\ -3.79 \\ -0.19 \\ -1.65 \end{array}$	0.034 0.775 4.621 0.005 1.007
Brighton Boulder. Horsetooth. Dewey Horsetooth	Horsetooth Horsetooth Dover B. M., ecc Warren. Warren.	0.22 0.24 0.57 0.25 0.28	$\begin{array}{r} + \ 617.69 \\ - \ 366.08 \\ - \ 562.37 \\ + \ 475.58 \\ - \ 238.55 \end{array}$	$\begin{array}{r} + \ 618. 61 \\ - \ 364. 60 \\ - \ 563. 26 \\ + \ 472. 74 \\ - \ 240. 49 \end{array}$	+0.92 +1.48 -0.89 -2.84 -1.94	0.182 0.519 0.441 2.002 1.043
Warren Dover B. M., ecc Dewey Horsetooth Warren	Twin Twin Twin Twin Terry	0.88 0.42 0.14 0.31 1827.9	$\begin{array}{r} + 512.73 \\ + 832.09 \\ + 984.15 \\ + 268.29 \\ - 0.04 \end{array}$	$\begin{array}{r} + 511.98 \\ + 834.75 \\ + 984.72 \\ + 271.49 \\ - 0.04 \end{array}$	$\begin{array}{r} -0.75 \\ +2.66 \\ +0.57 \\ +3.20 \\ +0.00 \end{array}$	0.508 2.949 0.045 3.174 0.000
Twin. Warren. Terry. Warren. Terry	Terry ColoWyo. boundary monument ColoWyo. boundary monument Wadili. Wadili.	$\begin{array}{r} 0.90 \\ 102.69 \\ 81.72 \\ 1.38 \\ 1.46 \end{array}$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} -512.02 \\ -110.72 \\ -110.68 \\ +36.62 \\ +36.65 \end{array}$	$\begin{array}{r} +0.50 \\ -0.00 \\ +0.01 \\ -0.63 \\ +0.46 \end{array}$	0,225 0,002 0,002 0,556 0,315
Twin	Wadili. Russell. Russell. Greentop. Greentop.	$\begin{array}{c} 0.83 \\ 0.50 \\ 2.20 \\ 6.34 \\ 0.87 \end{array}$	$\begin{array}{r} -478.55\\ +536.74\\ +25.27\\ -35.29\\ -9.63\end{array}$	$\begin{array}{r} - 475.36 \\ + 536.88 \\ + 24.90 \\ - 35.41 \\ - 10.51 \end{array}$	$\begin{array}{r} +3.19 \\ +0.14 \\ -0.37 \\ -0.12 \\ -0.88 \end{array}$	8.436 0.010 0.301 0.087 0.674
Wadill Wadill Greentop. Raged. Greentop.	Greentop Ragged Whitaker Whitaker	$\begin{array}{c} 0.91 \\ 0.67 \\ 10.14 \\ 1.14 \\ 1.22 \end{array}$	$\begin{array}{r} + 464.16 \\ + 501.04 \\ + 36.39 \\ - 466.28 \\ - 429.15 \end{array}$	$\begin{array}{r} + 464.86 \\ + 501.29 \\ + 36.44 \\ - 466.71 \\ - 430.27 \end{array}$	$\begin{array}{r} +0.70 \\ +0.25 \\ +0.05 \\ -0.43 \\ -1.12 \end{array}$	0.446 0.044 0.024 0.211 1.533
Wadill Ragged. Whitaker. Chugwater. Whitaker.	Whitaker. Chugwater. Chugwater. Noteh. Noteh.	3.68 0.43 0.50 0.76 0.17	$\begin{array}{r} + & 34.14 \\ - & 475.71 \\ - & 9.39 \\ + & 381.17 \\ + & 373.84 \end{array}$	$\begin{array}{r} + & 34.58 \\ - & 474.61 \\ - & 7.90 \\ + & 381.59 \\ + & 373.69 \end{array}$	$\begin{array}{r} +0.44 \\ +1.10 \\ +1.49 \\ +0.42 \\ -0.15 \end{array}$	0.729 0.520 1.110 0.134 0.004
Ragged Chugwater. Notch. Coleman. Notch.	Notch Coleman Haystack Haystack	0.22 0.25 0.61 0.62 0.23	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} - & 93.02 \\ - & 340.89 \\ - & 722.48 \\ + & 32.27 \\ - & 690.21 \end{array}$	$\begin{array}{r} +3.14 \\ +2.55 \\ +1.09 \\ +2.10 \\ +1.36 \end{array}$	2, 169 1, 626 0, 725 2, 734 0, 425
Chugwater Ilaystack	Haystack Hohhs Rawhide. Rawhide. Willow	0.21 1.38 16.95 1.14 0.13	$\begin{array}{r} - 309.88 \\ + 132.18 \\ - 11.54 \\ + 120.06 \\ + 162.20 \end{array}$	$\begin{array}{r} -308.62 \\ +132.62 \\ -11.53 \\ +121.09 \\ +162.19 \end{array}$	$\begin{array}{ c c c } +1.26 \\ +0.44 \\ +0.01 \\ +1.03 \\ -0.01 \end{array}$	$\begin{array}{c} 0.333 \\ 0.267 \\ 0.001 \\ 1.209 \\ 0.000 \end{array}$
Haystack. Hobhs. Rawhide Willow Rawhide.	Willow Willow Willow Manville Manville	0.23 5.57 3.11 2.65 1.11	$\begin{array}{r} + 129.52 \\ - 2.79 \\ + 8.73 \\ - 139.70 \\ - 131.30 \end{array}$	$\begin{array}{c c} + & 129.92 \\ - & 2.70 \\ + & 8.83 \\ - & 139.57 \\ - & 130.74 \end{array}$	$\begin{array}{c c} +0.40 \\ +0.09 \\ +0.10 \\ +0.13 \\ +0.56 \end{array}$	0.037 0.043 0.031 0.046 0.349
Manville. Willow Rawhide Willow Kirtley	Kirtley Kirtley Kirtley NehrWyo. boundary monument, ecc NehrWyo, boundary monument, ecc	0.65 0.40 0.51 0.38 10.15	$ \begin{array}{c c} - & 139.07 \\ - & 279.24 \\ - & 268.96 \\ - & 295.51 \\ - & 19.32 \end{array} $	$\begin{array}{r} - 137.50 \\ - 277.07 \\ - 268.24 \\ - 296.36 \\ - 19.29 \end{array}$	$\begin{array}{r} +1.57 \\ +2.17 \\ +0.72 \\ -0.85 \\ +0.03 \end{array}$	$\begin{array}{c} 1.592 \\ 1.877 \\ 0.261 \\ 0.276 \\ 0.010 \end{array}$
Kirtley. Kirtley. Biuff. Kirtley. Biuff.	Bluff S. DakNebr. boundary monument S. DakNebr. boundary monument S. DakWyo. boundary monument S. DakWyo. boundary monument	2.38 3.27 3.37 2.04 5.80	$\begin{array}{ c c c c c }\hline &-& 119.95 \\ &-& 388.11 \\ &-& 266.51 \\ &-& 324.31 \\ &-& 206.82 \end{array}$	$\begin{array}{r} - 119.54 \\ - 387.07 \\ - 267.52 \\ - 325.83 \\ - 206.29 \end{array}$	$\begin{array}{c c} +0.41 \\ +1.04 \\ -1.01 \\ -1.52 \\ +0.53 \end{array}$	0.394 3.564 3.458 4.707 1.654
Manville. Kirtley. Manvilie. Kirtley. Parker.	Parker Parker Aikali Aikali Aikali	0.11 0.21 0.13 0.12 0.21	$\begin{array}{r} - 244.73 \\ - 106.15 \\ - 343.45 \\ - 209.77 \\ - 108.06 \end{array}$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} +4.16 \\ +3.08 \\ -3.88 \\ -0.06 \\ +1.30 \end{array}$	$\begin{array}{c} 1.899 \\ 1.992 \\ 1.958 \\ 0.000 \\ 0.357 \end{array}$
Alkali. Alkali. Elk. Parker. Alkali.	Elk	0.74 0.64 4.14 0.91 0.36	$\begin{array}{r} + 357.64 \\ + 141.85 \\ - 214.32 \\ + 38.52 \\ - 51.44 \end{array}$	$\begin{array}{r} + 358.49 \\ + 144.08 \\ - 214.40 \\ + 37.33 \\ - 54.23 \end{array}$	$\begin{array}{r} +0.85 \\ +2.23 \\ -0.08 \\ -1.19 \\ -2.79 \end{array}$	$\begin{array}{c} 0,530\\ 3,191\\ 0,029\\ 1,295\\ 2,802 \end{array}$
Parker Cottonwood Parker. Provo west base : Cottonwood	Cottonwood. Provo west base. Provo west base. Provo east base. Provo east base.	0.73 3.28 2.60 4.72 1.14	$ \begin{vmatrix} - & 160.05 \\ - & 136.70 \\ - & 298.88 \\ - & 54.39 \\ - & 191.76 \end{vmatrix} $	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c c} -0.94 \\ -0.36 \\ +0.84 \\ +0.24 \\ +0.56 \end{array} $	0.640 0.425 1.826 0.355

. Station 1.	Station 2.	Weight, p.	Observed difference of eleva- tion, $h_1 - h_1$.	Adjusted difference of eleva- tion, h_3-h_1 .	Adjusted minus observed, v.	pvv.
Parker Provo west base Cottonwood Parker Provo east base	Provo east base Provo astronomic Provo astronomic Provo astronomic Provo astronomic	2.05 17.25 1.88 1.57 20.30	$\begin{array}{r} Meters. \\ - 352.89 \\ - 29.22 \\ - 165.71 \\ - 327.48 \\ + 24.80 \end{array}$	<i>Meters.</i> - 352.19 - 29.26 - 166.32 - 327.31 + 24.88	<i>Meters.</i> +0.70 -0.04 -0.61 +0.17 +0.08	1.010 0.030 0.702 0.030 0.133
Alkali Elk. Inyankara. Laird. Bluff.	Cambria Cambria Cambria Cambria Cambria Parker	0.38 0.73 1.99 1.81 0.29	$\begin{array}{r} + 595.88 \\ + 232.68 \\ + 21.43 \\ - 143.22 \\ + 12.04 \end{array}$	$\begin{array}{r} + 592.49 \\ + 234.01 \\ + 21.42 \\ - 143.20 \\ + 16.47 \end{array}$	$\begin{array}{r} -3.39 \\ +1.33 \\ -0.01 \\ +0.02 \\ +4.43 \end{array}$	4.357 1.287 0.000 0.001 5.699
Cambria Laird. Laird. Terry. Sundance.	Crow. Crow. Inyankara. Inyankara. Inyankara. Inyankara.	2.893.251.340.541.07	$\begin{array}{r} + 186.96 \\ + 43.57 \\ - 165.07 \\ - 213.33 \\ - 88.88 \end{array}$	$\begin{array}{r} + 186.86 \\ + 43.66 \\ - 164.62 \\ - 213.54 \\ - 89.36 \end{array}$	$\begin{array}{r} -0.10 \\ +0.09 \\ +0.45 \\ -0.21 \\ -0.48 \end{array}$	0.030 0.027 0.276 0.024 0.251
Terry Sundance Sundance Terry Castle	Laird Laird Mont., southeast corner, ecc Mont., southeast corner, ecc Terry.	2.76 0.47 0.23 0.17 0.15	$\begin{array}{r} - & 49.50 \\ + & 76.61 \\ - & 992.22 \\ -1117.82 \\ +1003.24 \end{array}$	$\begin{array}{r} - & 48.92 \\ + & 75.25 \\ - & 992.83 \\ -1117.00 \\ +1004.44 \end{array}$	+0.58 -1.36 -0.61 +0.82 +1.20	0.916 0.868 0.084 0.114 0.217
Wymonkota Sundance. Castle Wymonkota. Castle.	Terry Terry Sundance Sundance Wymonkota	0.16 0.37 0.10 0.23 0.40	+1058.09 + 120.77 + 875.45 + 937.26 - 53.98	$\begin{array}{r} +1059.18 \\ +124.17 \\ +880.27 \\ +935.00 \\ -54.74 \end{array}$	+1.09 +3.40 +4.82 -2.26 -0.76	$\begin{array}{c} 0.191 \\ 4.290 \\ 2.320 \\ 1.170 \\ 0.230 \end{array}$
Moreau Harding. Reva. Moreau Harding.	Wymonkota. Wymonkota. Castle. Castle. Castle.	0.45 0.54 0.23 0.55 0.36	$\begin{array}{r} - & 90.91 \\ - & 131.51 \\ + & 44.55 \\ - & 36.87 \\ - & 77.55 \end{array}$	$\begin{array}{rrrr} - & 91.53 \\ - & 131.07 \\ + & 44.01 \\ - & 36.79 \\ - & 76.33 \end{array}$	-0.62 +0.44 -0.54 +0.08 +1.22	$\begin{array}{c} 0.171 \\ 0.104 \\ 0.066 \\ 0.004 \\ 0.532 \end{array}$
Reva Harding. Reva . Lodge Table.	Moreau Moreau Ilarding. Harding. Harding.	0.45 5.30 0.30 0.14 0.27	$\begin{array}{r} + & 82.32 \\ - & 39.63 \\ + & 121.17 \\ + & 242.46 \\ + & 120.65 \end{array}$	$\begin{array}{r} + & 80.81 \\ - & 39.54 \\ + & 120.35 \\ + & 242.80 \\ + & 125.55 \end{array}$	$\begin{array}{r} -1.51 \\ +0.09 \\ -0.82 \\ +0.34 \\ +4.90 \end{array}$	1.029 0.038 0.203 0.016 6.493
Lodge Table Table Butte Lodge	Reva. Reva. N. DakS. Dak., milepost 333, ecc N. DakS. Dak., milepost 333, ecc Table.	0.96 0.41 4.37 1.13 0.49	$\begin{array}{r} + 123.17 \\ + 6.10 \\ - 177.89 \\ - 85.62 \\ + 116.21 \end{array}$	$\begin{array}{r} + 122.45 \\ + 5.21 \\ - 177.92 \\ - 85.50 \\ + 117.25 \end{array}$	$\begin{array}{r} -0.72 \\ -0.89 \\ -0.03 \\ +0.12 \\ +1.04 \end{array}$	$\begin{array}{c} 0.\ 491 \\ 0.\ 327 \\ 0.\ 004 \\ 0.\ 016 \\ 0.\ 528 \end{array}$
Butte	Table. Lodge. C. M. & P. S. Ry. B. M. C. M. & P. S. Ry. B. M. Whetstone.	0.62 0.57 0.47 2.06 6.32 0.90	$\begin{array}{r} + & 91.92 \\ + & 24.23 \\ - & 24.59 \\ - & 79.09 \\ - & 128.02 \\ - & 49.07 \end{array}$	$\begin{array}{r} + & 92.42 \\ + & 24.20 \\ - & 24.83 \\ - & 79.06 \\ - & 128.08 \\ - & 49.02 \end{array}$	$\begin{array}{r} +0.50 \\ -0.03 \\ -0.24 \\ +0.03 \\ -0.06 \\ +0.05 \end{array}$	$\begin{array}{c} 0.156 \\ 0.001 \\ 0.026 \\ 0.002 \\ 0.024 \\ 0.002 \end{array}$

The probable error of an observation of weight unity derived from the preceding adjustment is ± 0.83 meter. In other words, the reciprocal observations over a lino 31.7 kilometers (19.7 miles) long, this being the length of the line corresponding to unit weight, determined the difference of elevation of two points with such a degree of accuracy that it is an even chance whether the error is greater or less than 0.83 meter. The probable errors for other lines were assumed to be proportional to their lengths.

The probable errors of the elevations of the four stations fixed by precise leveling do not exceed ± 0.05 meter. The probable errors of the elevations of the five other stations determined by spirit leveling may be estimated at about ± 0.15 meter.

The probable error approaches this value for stations adjacent to those fixed by the spirit leveling and is greatest for the most remote stations. Station Terry, Wyo., was assumed to be the one least accurately determined, and its probable error was therefore computed as a limiting value. It was found to be ± 0.98 meter from the vertical angles alone. When combined with the probable error of the elevation fixed by the spirit leveling, it is 0.99 meter.

In other words, for the least accurately determined station in the main scheme between the thirty-ninth parallel triangulation and latitude 46° there is an even chance that the elevation is correct within 1 meter (or 3.3 feet), and for most stations the accuracy is greater than this. The results of the solution of the second set of equations, in which the stations concerned are these from the line Butte-Whetstone (latitude 46°) to the Canada boundary, are shewn below in the form used for the first set:

		Weight	Observed	Adjusted	Adjusted	
Station 1.	Station 2.	p.	of eleva- tion, h_3 — h_1 .	of elava- tion, $h_2 - h_1$.	observed, v.	pvv.
Risek	Whatstone	0.55	Meters.	Meters.	Meters.	0.18
Rainy	Whetstone	1.06	- 60.31	- 60.09	+0.22 -0.17	0.051
Black Bainy	Butte Black	2.12	-50.24 -37.79	- 50.08	+0.16	0.054
Badland	Black	0.83	±134.83	± 134 08	-0.75	0.463
Sentinel.	Black.	0.28	+ 11.00 - 20.82	+ 11.62	+0.62	0.10
Saddle	Rainy.	0.32	+149.74	+150.35	+0.61	0.122
Saddle	Badland	0.00	± 58.01	T 55.07	-0.73	0.54
Sentinel	Badland	0.55	-123.65	-122.46	+1.19	0.774
Hump	Saddle	0.53	-129.57	-130.01	-0.44	0.101
Blue	Sentinel	0.40	- 107 98	± 108.02	-0.75	0.040
Cook.	Sentinel	0.95	+211.89 + 47.67	+212.64 + 47.73	+0.75	0.532
Hump	MontN. Dak. boundary monument,	0.85	-180.81	-179.91	+0.90	0.684
Blue	MontN. Dak. boundary monument, ecc.	9-05	-119.53	-119.62	-0.09	0.702
Cook	Hump.	1.88	+164.52	+164.91	+0.39	0.285
Blue Flat	Hump Cook	0.52 0.95	+ 59.31 - 13.74	+ 60.29 - 13.45	+0.98	0.500
TrotterBlue	Cook	2.47 0.84	- 0.69 -104.40	-0.32 -104.62	+0.37 -0.22	0.333
Blue	Trotter	1.74	-104.64	-104.30	+0.34	0.201
Flat	TrotterBlue	$5.64 \\ 1.09$	- 13.18 + 91.29	-13.13 + 91.17	+0.05 -0.12	0.012
Sheep Lovering	Blue Blue	0.40 0.36	+111.83 +131.19	+112.52 +131.29	+0.69 +0.10	0.193
Sheep	Flat	1.99	+ 21.09	+ 21.35	+0.26	0.13
Lovering	Lovering.	0.43 0.54	+ 40.26 - 19.52	+40.12 - 18.77	-0.14 +0.75	0.008
Buford	Lovering	0.46	+ 50.47 + 25.31	+ 49.86 + 25.22	-0.61 -0.09	0.171 0.014
Buford	Sheep.	0.43	+ 68.74	+ 68.63	-0.11	0.006
Jack son	Sheep.	0.42	+127.05 + 41.96	+125.84 + 43.99	+1.19 +2.03	0.395
Cutoff	Missouri River Commission B. M. 44. Missouri River Commission B. M. 41.	27.46 21.47	-87.84 -129.38	-87.95 -129.32	-0.11 +0.06	0.326
Mondak	Ferry	80.18	+ 86.71	+ 86.61	-0.10	0.839
Montana	Ferry	25.95	- 28.42	- 28.26	+0.16	0.664
Cutoff	Mondak	12.68	-127.97	-127.98	-0.08	0.047
Cutoff	Missouri River Commission B. M. 121.	17.72	-126.63	-126.58	+0.05	0.044
Jackson	Cutoff.	4.78	- 71.83	- 71.73	+0.10	0.048
Montana	Cutoff	11.83	+ 10.94 + 13.02	+ 17.18 + 13.11	+0.24	0.340
Montana	Lanark	4.05	- 4.51	- 4.07	+0.44	0.783
Jackson	Montana	1.80	- 84.29	- 84.85	-0.56	0.566
Buford	Jackson	1.19	+ 25.01	+ 24.64	-0.37	0.004
Balnville	Jackson	0.98	+ 17.82	+ 17.42	-0.40	0.156
Williston	Buford	1.21	+ 33.38	+ 33.27	-0.11	0.014
Snake	Buford	1.31	-54.88	- 55.10	-0.37	0.130
Buford	Balnville	2.12	+ 7.41	+ 7.22	-0.19	0.074
Bull.	Snake	5.90	+ 19.66	+ 19.58	-0.08	0.036
Bonetraill.	Bull	3.30	+ 52.84	+ 52.63	-0.21	0.738
Gladys	Bull. Williston	3.78	+ 32.20	+ 31.86	-0.34	0.439
Bonetraill. Gladys	Williston Williston	2.75	-16.33	- 16.15	+0.18	0.086
Marmon	Bonetraill.	2, 53	+ 61.57	+ 61.19	-0.38	0.361

144

Station 1.	Station 2.	Weigbt, p.	Observed difference of eleva- tion, h_2-h_1 .	Adjusted difference of eleva- tion, $h_2 - h_1$.	Adjusted minus observed, v.	pvv.
Gladys Marmon Howard	Bonetraili	3.65 1.82 2.08 1.72 1.32	$\begin{array}{c} Meters. \\ - 20.97 \\ + 81.96 \\ + 51.93 \\ + 1.91 \\ - 30.12 \end{array}$	$\begin{array}{c} Meters. \\ - 20.77 \\ + 81.96 \\ + 52.33 \\ + 0.46 \\ - 29.63 \end{array}$	$\begin{array}{c} Meters. \\ +0.20 \\ 0.00 \\ +0.40 \\ -1.45 \\ +0.49 \end{array}$	0.148 0.000 0.336 3.610 0.318
Muddy	Howard Howard Howard Howard Muddy	2.63 2.25 1.02 1.23 2.36	$\begin{array}{r} + 30.14 \\ - 3.75 \\ - 22.51 \\ - 4.02 \\ - 52.23 \end{array}$	$\begin{array}{r} + 30.09 \\ - 3.46 \\ - 22.19 \\ - 3.47 \\ - 52.27 \end{array}$	$\begin{array}{r} -0.05 \\ +0.29 \\ +0.32 \\ +0.55 \\ -0.04 \end{array}$	0.007 0.188 0.106 0.374 0.004
Stady Crosby Norge Crosby Bowie	Muddy Stady Stady Norge Norge	4.97 9.68 4.05 3.31 6.54	$\begin{array}{r} - 33.04 \\ - 18.46 \\ - 0.18 \\ - 18.60 \\ - 4.57 \end{array}$	$\begin{array}{rrrr} - & 33.55 \\ - & 18.73 \\ - & 0.01 \\ - & 18.71 \\ - & 4.30 \end{array}$	$\begin{array}{r} -0.51 \\ -0.27 \\ +0.17 \\ -0.11 \\ +0.27 \end{array}$	$\begin{array}{c} 1.290 \\ 0.694 \\ 0.116 \\ 0.042 \\ 0.472 \end{array}$
Ambrose southwest base, Bowie Lowie Ambrose southwest base,	Crosby. Crosby. Crosby. Ambrose. Ambrose.	21.80 8.04 2.46 2.88 13.46	$ \begin{array}{r} + 31.80 \\ + 79.33 \\ + 14.15 \\ - 17.28 \\ + 47.13 \end{array} $	$\begin{array}{r} + 31.81 \\ + 78.89 \\ + 14.41 \\ - 17.40 \\ + 47.08 \end{array}$	$ \begin{array}{r} +0.01 \\ -0.44 \\ +0.26 \\ -0.12 \\ -0.05 \end{array} $	0.002 1.562 0.166 0.041 0.033
Ambrose northeast base Ambrose nortbeast base Bowie Bowie	Ambrose. Ambrose southwest base. Ambrose southwest base. Ambrose northeast base.	12.90 9.11 10.00 3.04	$\begin{array}{r} + 74.39 \\ + 28.15 \\ - 64.61 \\ - 91.84 \end{array}$	+ 74.48 + 27.40 - 64.48 - 91.88	+0.09	0.104

In this seeond set of equations the elevations of six stations were taken as fixed. The elevations of Butte and Whetstone had been fixed by the solution of the first set as 1007.01 and 957.99 meters, respectively. The stations Ambrose southwest base, Ambrose northeast base, and Bowie were held fixed from the results of the spirit leveling by the United States and Canada Boundary Survey, their elevations being 650.920, 623.521, and 715.398 meters, respectively. Precise leveling by the Missouri River Commission fixed the elevation of two bench marks, which were made secondary stations of the triangulation and included in this adjustment, viz, Missouri River Commission B. Ms. $\frac{121}{2}$ and $\frac{122}{2}$. Their elevations were held fixed at 582.626 and 579.883 meters, respectively.

The elevations of the remaining 33 stations connected by the observations are the unknowns determined by the method of least squares from the 91 observed differences of elevation in the above table.

The probable error of an observation of weight unity derived from the adjustment is ± 0.48 meter. Unit weight corresponds as in the first set to reciprocal observations over a line 31.7 kilometers (19.7 miles) long.

Station Cook may be assumed to be the station least accurately determined, and the probable error computed for its elevation is ± 0.37 meter from the vertical angles alone. This probable error, combined with a probable error of ± 0.15 meter, assumed for the stations fixed by spirit leveling, may be stated to be ± 0.4 meter (1.3 feet).

Referring to the table where the 25 sections of vertical angle results of previous triangulation are assembled in order of their accuracy,¹ this section is exceeded in accuracy by only two sections.

The completion of the transcontinental line of precise levels since the publication of the transcontinental triangulation ² gave a new elevation for the Salt Lake base. This new elevation differed 5.7 meters from the value obtained from the vertical angles alone, which had been assigned a probable error of ± 2.5 meters.

The two adjustments set forth on pages 336 to 340 of Special Publication No. 4 were combined, therefore, and three additional fixed elevations introduced, viz, Salt Lake northwest base, Salt Lake southeast base, and the United States Engineers' Observatory near Ogden, their elevations being 1289.47, 1283.94, and 1332.70 meters, respectively.³ The elevations of

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

Round Top (3165.6 meters) and Mount Lola (2786.8 meters) were held undisturbed. The precise level elevation for the top of the rail in front of the railroad station at Truckee is 1772.76 meters. This is nearly the same point from which Assistant J. J. Gilbert's levels of 1898 started. Applying the 1898 difference of elevation ($\Delta h = 1013.87$ meters), the new elevation of Mount Lola is 2786.63 meters.

The elevations of the three stations Divide, Pikes Peak, and Plateau were held fixed as 2259.46, 4300.63, and 1644.4 meters, respectively. New leveling by the United States Geological Survey changed the elevation published for Pikes Peak on page 266 of Special Publication No. 4. The amount of the correction, +0.4 meter, was applied to station Plateau, adjusted at the same time.

The probable error of an observation of unit weight is ± 3.62 meters for this adjustment.

To get the probable error of an adjusted height, this quantity must be divided by the square root of the weight coefficient derived from the normal equation. Mount Waas was selected as the least accurately determined of any in the scheme, and its probable error was found to be ± 1.02 meters from the vertical angle determination alone. This, combined with the uncertainty of the fixed elevations, would remain unchanged.

TABLE OF ELEVATIONS.

Thirty-ninth parallel to latitude 46°.

04.45	Point to which ele-	Elev	ation.	Clotion	Point to which ele-	Eleva	tion.
Station.	vation refers.	Meters.	Feet.	Station.	vation refers.	Meters.	Feet.
Class 1.				Class 2-Continued.			
Watkins astronomic	Top of surface mark.	1683.47	5523.18	Inyankara	Top of surface mark.	1939.55	6363.3
Brighton bench mark, ecc	do	1514.35	4968.32	Crow	do	2147.83	7046.7
Dover hench mark, ecc	do	1648.01	5406.84	Laird	do	2104.17	6903.4
Bench mark 6/02 Denver	0D	2042.14	6600 40	Sundanas	0D	2153.09	4003.9 CCER E
Provo astronomia banch mark	do	1130 03	3710 30	Wymonkota	do	2028.92	2599.0
2708 DW		1100.00	5110.05	Castle	do	1148 65	3768 5
Provo east base	do	1123.05	3684.54	Montana southeast corner.	do.	1036 09	3391 2
Provo west base	do	1177.19	3862.16	ecc.		2000000	0001.2
Buffalo Springs	Top of rail	870.82	2857.02	Harding	do	1224.99	4019.0
Do	Top of surface mark.	878,93	2883.62	Moreau	do	1185.44	3889.2
				Reva	do	1104.64	3624.1
Class 2.		01 40 07		Lodge	do	982.18	3222.4
ElDert	Top of surface mark.	2140.8/	7043.5	Table.	do	1099.43	3607.0
Hillop	0D	2000,90	0384.5	North Dakota-South Dakota,	ao	921.51	3023.3
Indian	do	1848 07	6063 2	Butto	do	1007-01	2203 9
Morrison	do	2401.16	7877.8	Whetstone	do	057 00	3143 0
Boulder.	do	2575.87	8451.0			001.00	0110.0
Brighton	do	1592.66	5225.3	Class S.			
Dewey	do	1498.04	4914.8				
Horsetooth	do	2211.27	7254.8	Daniels & Fisher's tower	Top of domc	1687.0	5535
Warren	do	1970.78	6465.8	Denver University observa-	do	1656.9	5436
Twin	do	2482.76	8145.5	tory.	man sentidad dana	1000 0	
Wedill	do	19/0.74	0405.7	Denver State Capitol	Top of gudea dome	10/2.9	5489
Greenton	do	2472 25	8111 0	Lorotto Heights school	Top of helfry tower	1719 1	5627
Russell	do	2507 66	8227 2	Denvor Grant smelter	Top of chimpey	1680.2	5512
Ragged	do	2508.69	8230.6	Westminster schoolhouse	Top of belfry	1726.6	5665
Cheyenne east base	do	2011.22	6598.5	Greeley tall tank	Top of tank	1466.3	4811
Cheyenne west base	do	2074.20	6805.1	Greeley sugar factory	Top of chimney	1464.5	4805
Chugwater	do	2034.08	6673.5	La Salle, tank near coal chute.	Top of tank	1450.0	4757
Notch.	do	2415.67	7925.4	Eaton sugar factory	Top of chimney	1513.6	4966
Uovetaal	do	1093.19	5860 0	Lovcland red-brick chimney.	0D	1554.1	5099
Colorado-Wyoming houndary	do	1860 06	6102.5	Chavenna State Consitel	Top of small doma	1000.0	5128
monument.		1000.00	0102.0	Fort D A Russell watertank	Eaves	1908.0	6260
Hobbs	do	1858.08	6096.1	Otto, U. P. Ry., black water	Top of tank	2131.9	6994
Rawhide	do	1846.55	6058.2	tank.	100	2-0-00	
Willow	do	1855.38	6082.2	Rltzke's windmill	Center of wheel	2001.9	6568
Manville	do	1715.81	5629.3	Kipp's, William, square	Top of chimney	1999.9	6561
Kirtley.	do	1578.31	5178.2	house.		0000	
Neuraska-wyoming nound-		1559.02	5114.9	Hollingswood's harn	West gable	2029.4	6658
Rinff	do	1458 76	4785 0	Tall new nouse	Top of gupolo	2083.9	0337
South Dakota-Wyoming	do	1252 48	4109.9	Manyille Congregational	Ground	1603 1	5260
boundary monument.		1202.30	1103.2	Church	Ground	1000.1	5200
Alkali	do	1368.48	4489.8	Manville, C. & N. W. Ry.	Top of tank	1613.0	5292
South Dakota-Nebraska	do	1191.24	3908.3	water tank.	- of		
boundary monument.				Bear Lodge Mountain	Highest peak	2030.2	6661
Sullivan	do	1512.56	4962.5	Peak south of Terry	do	2074.0	6804
Cottonwood	do	1314.25	4311.8	Haystack Butte	Highest point	1128.7	3703
Parker		1147.93	3766.2	East Deer Ear Butte	do	1047.3	3430
Elk	do	1726 07	5665 0	Wheatland standplpa		1500.0	4024
Cambria	do	1960.97	6433.6	Eagles Nest Butte	Top of cairn	1003.4	3292

146

TABLE OF ELEVATIONS—Continued.

Thirty-ninth parallel to latitude 46°-Continued.

Station	Point to which ele-	Eiev	ation.	Station	Point to which eie-	Eleva	Elevation.	
Station	vation refers.	Meters.	Feet.	Station.	vation refers.		Feet.	
Class 3-Continued.				Class 3-Continued.				
Section 33, T. 17 N., R. 68 W., southwest corner. Crows Nest (U. S. G. S.) Sulliyan (U. S. G. S.). Eik (U. S. G. S.). North Dakota-South Dakota, milepost 333. Section 36, T. 4 S., R. 65 W., southeast corner. Dover B. M., reference mark	Top of stone post Top of mark do do Top of post X on stone Top of mark	2035. 1 2147. 8 1513. 0 1727. 0 907. 3 1843. 3 1648. 5	6677 7047 4964 5666 2977 6048 5408	East Twin Nebraska-Wyoming bound- ary mounment 123. Alkali (U. S. G. S.). Wyoming, northeast corner, ecc. Wyoming, northeast corner, monument. Montana, southeast corner, monument.	Top of mark Top of stone Top of mark Top of red granite Top of mark	2481, 4 1558, 6 1368, 3 1052, 2 1051, 6 1027, 0	8141 5114 4489 3452 3450 3369	

Latitude 46° to Canada.

				•	1		
Class 1.				Class 2-Continued.			
Bench mark 131, Missouri	Top of cap	582.81	1912.10	Bainvilie	Top of surface mark.	763.52	2505.0
River Commission.				Snake	do	811.40	2662.1
Bench mark 11, Missouri	ob	582.63	1911.51	Williston.	do	723.03	2372.1
River Commission.			1000 10	Bull.	do	791.82	2597.8
Bench mark 144, Missouri	ao	579.88	1902.49	Bonetrall.	00	739.19	2425.2
A mbmore couth most base	Then of musicase mark	450.00	0125 56	Marmon		159.95	2493.3
A man more month and the act	Top of surface mark.	600.92	2135. 50	Marmon	0D	077.89	2224.4
Rowio	do	715 40	2347 1)	Muddy	do	677 53	2021.0
		110.10	2011.11	Stady	do	711 08	2322.0
Class 2	1			Norge	- ob	711 09	2333 0
D1 1		1000 00	0.000 4	Crosby	do	729.81	2394.4
Black.	Top of surface mark.	1057.09	3468,1	Ambrose.		698,00	2290.0
Ramy		1018,08	3340.2	Bilby	do	695.2	2281
Badiand	00	923.01	3028.2	Jasper	do	712.8	2339
Santinol	do	807.73	2540.9				
Jump	do	1043.47	2072 4	(Tana 9			
Cook	do	829 82	0720 4	C1488 0.			
Trotter	do	833 15	2132. 2 9733 A	Sentinel Butte public school	Base of flagstaff	845.6	9774
Montana-North Dakota	do .	817.83	2683 2	Beach Catholic Church	Cross	866 5	2843
boundary monument, ecc.		011100	2000.2	Schoolhouse, 6 miles north of	Top of chimney	849.2	2786
Biue.	do	937.45	3075.6	Hump.	, op or on one of the of	0.01.1	
Flat	do	846,28	2776.5	Bainville Catholic Church	Tip of highest spire.	628.5	2062
Lovering	do	806.16	2644.9	Snowden water tank	Тор	592.6	1944
Sheep	do	824.93	2706.5	Steihl's house	Top of chimney	596.8	1958
Jackson	do	780.94	2562.1	Ambrose Presbyterian Church	Top of flat steepie	645.8	2119
Mondak	do	581.22	1906.9	Bonctraill schoolhouse belfry.	Base of flagstaff	741.5	2433
Ferry	do	667.83	2191.0	Bowman water tank	Тор	945.9	3103
Cutoff	do	709.21	2326.8	Section 22, T. 17 N., R. 60 E.,	Top of mark	816.1	2677
Bulord	do	756.30	2481.3	southeast corner.			
Lanark	do	692.02	2270.4	Section 7, T. 143 N., R. 105 W.,	0D	817.2	2681
Montana	ob	696.09	2283.8	southwest corner.			
	,						

Thirty-ninth parallel, east of Pikes Peak.

Class 1. First View. Top of s Kit Carson. do. Divide.	urface mark. 1400, 48 4594 1345, 67 4414 1625, 54 533 nonument. 2269, 46 7412 nonument. 2165, 98 7100 urface mark. 2165, 98 7100 1993, 94 6541 4300, 63 14109	Class 2—Continued. 74 Eureka	Top of surface mark. do	1442. 5 1609. 4 1495. 9 1575. 6 1868. 4 1711. 9 1605. 4 1705. 0 2070. 4 1644. 4 1903. 6 9138 9	4732, 6 5280, 2 4907, 8 5169, 3 6129, 9 5616, 5 5267, 0 5593, 8 6792, 6 5395, 0 6245, 4 7017, 4
Landsman Top of s	urface mark. 1418.1 4652	5 Holcolm Hills	do	1903. 6 2138. 9	6245.4 7017.4

TABLE OF ELEVATIONS-Continued.

Thirty-ninth parallel, Pikes Peak to California.

Class 1. Top of surface mark. 1289.47 4230.54 Class 3—Continued. Base of cairn	Feet. 9481 4544 9717 9976 10856 9144 9991
Class 1. Top of surface mark. 1289.47 4230.54 Class 3—Continued. Base of cairn	9481 4544 9717 9976 10856 9144 9991
Salt Lake northwest base Top of surface mark. 1289.47 4230.54 Bountiful Peak or Francis Base of cairn 2889.8 Salt Lake southeast base do 1283.94 4212.39 Peak. Temple, east spire Conter of figure Gabriel. 1385.1 Class 2. Class 2. North Ogden Peak	9481 4544 9717 9976 10856 9144 9991
Class 2. Top of west pler 1233.70 4212.35 Temple, east spire Conter of figure Gabriel. Class 2. Class 2. Destolya Destolya Ogdon Peak Conter of figure Gabriel.	4544 9717 9976 10856 9144 9991
Class 2. North Ogden Peak	9717 9976 10856 9144 9991
1 1/esatorya	9976 10856 9144 9991
Round Top for an angle mark 3165 6 10385 8 Monitor do 3309 0	9144 9991
Mount Lola do 2787.0	9991
Mount Como	
Pah Rah	10067
Mount Grant	9231
Carson Sink	10585
Tolyabe Dome	11254
Lone Mountain	11054
Mount Callahan	9319
Diamond Peak	9668
What has the last d_0 and d_0 and d_0 and d_0 has a set of sevier \dots do 2942.0	9054
Ploche do 2675.8 S778.9 Beaver Ton of signal 3679.2	12064
Ibenah	9783
Tushar	9679
Mount Nobodo	
Deseret	9436
Scipio	14291
Wissuch	14363
Autor Filen do 2406.0 1479.7 Rito Alto do 4187.9	13240
Mount Price do 3752 3 12412 / Rub Allo Allo Allo	19683
Tayaputs do 2677.8 S75.4 Mount Harvard Top of peak 4388.9	14399
Mesadodo	14172
Uncompahgro	14177
Gunnison azimuth	11504
Treasury Mountain	14179
Mount Ouray	14404
Augusta	9919
Pilot Peak do 3262.5 10703.7 Mount Lincoln do 12615.7	8582
Orden Peak do 2018.4 9574.8 Star Peak do 12997.7	0.835
Antelopedo	9169
Promontorydo	8373
Waddoupdodo	10322
City Creek	11477
Consider and the stand has been a stand has been a stand has been a stand has been a stand has a stand has been a stand has been a stand has been a stand has been been been a stand has been been been been been been been bee	10072
Maint Frances and provide the stand provide the	10741
Class 3. Prospect Peak do 12918.0	9573
Duck water	11493
Sanpete	10466
Oquirrbdo	10929
Moosenean	9684
arount Hugard	9779
atom construction and a 13417.8 11213 Month Mortan	12049
Sen Rafael Knob do 12119 110010 F08K Signal 12223 0	1302
Mount Alico	8005
Desert Peak Top of peak 2128.6 6984 Mount Grafton Top of peak 337.7	10983
Fremont Island	11807
Francis Peak Top of peak 2823.7 9264 South Promontory Base of peak 12156.6	7075

¹ No check on this clevation.

DETERMINATION OF ASTRONOMIC LONGITUDE.

The astronomic longitudes of five triangulation stations along the one hundred and fourth meridian were determined in 1912 by the observing parties under Assistants H. A. Seran and G. D. Cowie. Each of those stations was connected by wire telegraph with the old longitude station in Omaha, at which Mr. Cowie made the time observations. Mr Seran observed time at the new stations and exchanged time signals with Mr. Cowie. The transits used were equipped with the self-registering micrometers. The methods and instruments are described in the astronomic manual (Special Publication No. 14 of the Coast and Geodetic Survey).

The descriptions of the new longitude stations and the data connected with each of the five determinations of the difference in longitude are given on the following pages:

	Station.	Date of exchange	Difference		Trans-
Eastern.	Western.	of time signals.	of longi- tude ⊿λ.	ν.	time,
Omaha, Nebr Do Do	Mondak longitude, Mont	1912. Sept. 6 Sept. 7 Sept. 8	m 8 32 24.761 24.803 24.821	*+0.034 008 026	* 0.156 .151 .162
Mean			32 24.795	± .012	

Summary of the determination of the differences of longitude.

At Omaha the transit was mounted on the same picr used in 1907. This picr is 89.896 meters west and 39.315 meters north of the old longitude station of 1882, reference to which may be found on pages 218 and 254 of Appendix No. 2, Report for 1897. The adjusted longitude of the 1882 station is $6^{h} 23^{m} 46^{s}.087$, and the 1907 picr is $0^{s}.257$ west of it, making the longitude of the 1907 pier $6^{h} 23^{m} 46^{s}.344 = 95^{\circ} 56' 35''.16$.

At Mondak the transit was mounted on a temporary wooden pier 3.995 meters north and 0.250 meter east of the triangulation station *Mondak*. (See description on p. 123.) The longitude station, not marked, is $32^m 24^{\circ}.795 = 8^{\circ} 06' 11''.93$ west of the Omaha longitude station of 1907. The longitude of the temporary station is therefore $104^{\circ} 02' 47''.09$ and the longitude of the triangulation station Mondak is 0.01'' greater or $104^{\circ} 02' 47''.10$.

	Station.	Date of exchange	Difference		Trans-
Eastern.	Western.	of time signals.	of longi- tude Δλ.	٧.	time.
Omaha, Nebr Do Do Do Mean	Bowman longitude, N. Dak. do. do. do.	1912. Sept. 18 Sept. 28 Sept. 29 Sept. 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} & & \\ & +0.036 \\ & + & .012 \\ - & .051 \\ & + & .001 \\ & \pm & .012 \end{array} $	8 0.118 .117 .109 .111

At Bowman the transit was mounted on a concrete pier 12.018 meters west and 8.219 meters north of *Bowman water tank*. The pier is $29^{\text{m}} \cdot 50^{\text{s}} \cdot 096 = 7^{\circ} \cdot 27' \cdot 31'' \cdot 44$ west of the Omaha longitude station of 1907 (see above). The longitude of the Bowman longitude station is therefore $103^{\circ} \cdot 24' \cdot 06'' \cdot 60$.

	Date of exchange	Difference		Trans-	
Eastern.	Western.	of time signals.	tude Δλ.	v.	time.
Omaha, Nebr Do Do	Provo longitude, S. Dak do	1912. Oct. 11 Oct. 12 Oct. 13	$\begin{array}{cccc} m & s \\ 31 & 32.210 \\ & 32.127 \\ & 32.178 \end{array}$		* 0.050 .043 .046
Mean			31 32.172	± .016	

At Provo the transit was mounted on a temporary wooden pier 12.355 meters north and 1.404 meters west of *Provo astronomic* station. (See description on p. 119.) The longitude station, not marked, is $31^{\text{m}} 32^{\text{s}} . 172 = 7^{\circ} 53' 02'' . 58$ west of Omaha longitude station of 1907 (see above) and its longitude is therefore $103^{\circ} 49' 37'' . Provo astronomic$ station is 0'' . 06 east of the longitude station and its longitude is therefore $103^{\circ} 49' 37'' . 68$.

	Date of exchange	Difference		Trans-		
Eastern.	Western.	of time signals.	tude Δλ.	v.	time.	
Omaha, Nebr Do Do Do Mean	Wheatland longitude, Wyo. do. do. do.	1912. Oct. 19 Oct. 22 Oct. 24 Oct. 25	m 8 36 02.296 02.385 02.299 02.240 36 02.305	$ \begin{array}{r} & * \\ +0.009 \\080 \\ + .006 \\ + .065 \\ \hline \pm .021 \end{array} $	8 0.069 .079 .078 .077	

U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19.

At Wheatland the transit was mounted on a temporary wooden pier 25.21 meters cast and 6.41 meters north of *Wheatland standpipe*. (See description on p. 125.) The longitude station not marked, is $36^{m} 02^{s} . 305 = 9^{\circ} 00' 34'' .58$ west of Omaha longitude station of 1907 (see above), and its longitude is therefore 104° 57' 09''.74. Wheatland standpipe is 1''.09 west of the temporary station, and its longitude is therefore 104° 57' 10''.83.

	Station.	Date of	Difference		Trans-
Eastern.	Western.	of timo signals.	tude 11.	ν.	time.
Omaha, Nobr Do Do	Watkins iongitude, Coio dodo.	1912. Nov. 1 Nov. 7 Nov. 8	m $s34 38.53638.62838.524$	$^{\$}_{027}$ $^{065}_{039}$	8 0.061 .064 .066
Mean			34 38.563	±0.022	

At Watkins the transit was mounted on a temporary wooden pier 4.60 meters east and 48.64 meters south of *Watkins astronomic* station. (See description on p. 116.) The longitude station, not marked, is 34^{m} $38^{s}.563 = 8^{\circ}$ 39' 38''.45 west of Omaha longitude station of 1907 (see above), and its longitude is therefore 104° 36' 13''.61. *Watkins astronomic* station is 0''.19 west of the temporary longitude station, and its longitude is therefore 104° 36' 13''.80.

The following table gives for each longitude station on the one hundred and fourth meridian the name of the station, the geodetic latitude and longitude, the astronomic longitude, the difference between the astronomic and geodetic longitude (A-G), the cosine of the latitude, and finally the deflection in the prime vertical. The table is arranged like that shown on page 152, except that the cosine of the latitude is the factor for reducing the difference between the astronomic and geodetic longitudes to the prime vertical, while the negative of the cotangent of the latitude is used in the latter table to reduce the difference in azimuths to the prime vertical.

The astronomic longitudes have not been corrected for the variation of latitude.

Station	Geodetic lati- tude.	Geodetic iongi- tude.	Astro- nomie longitude.	A0.	cos φ'.	A-G (P. V.).
Watkins astronomic, Coio Wheatland standpipe, Wyo. Provo astronomic, S. Dak Bowman iongitude, N. Dak Mondak, Mont	39 44 43.813 42 02 43.815 43 11 44.159 46 10 57.528 48 00 10.435	104 36 18.915 104 57 26.898 103 49 41.058 103 24 11.012 104 02 48.867	" 13.80 10.83 37.68 06.60 47.10	$'' = 5.12 \\ -16.07 \\ - 3.38 \\ - 4.41 \\ - 1.77$	0.7689 0.7426 0.7290 0.6924 0.6691	" - 3.94 -11.93 - 2.46 - 3.05 - 1.18

Deflections in prime vertical.

At each of three of the stations the astronomic longitude and azimuth were determined. The Laplace azimuths computed at these stations are undoubtedly more accurate than the geodetic azimuths computed through the triangulation, and therefore the former were considered as being free from error. The discrepancies between the Laplace and the geodetic azimuths were considered as deviations of the triangulation in azimuth. In the adjustment the attempt was made to hold the Laplace azimuths as absolute by means of azimuth equations. If the adjustment had been rigid, the deflections in the prime vertical from the differences between the astronomic and geodetic longitudes would have been identical with those from the azimuths. The largest outstanding discrepancy is 0".57 at Provo, and this was considered too small to necessitate a further adjustment to completely eliminate it. This is within the limit allowable when the probable error of the Laplace azimuth is taken into consideration. Special Publication No. 19.

NO. 6a.

ZENITH TELESCOPE USED FOR LATITUDE OBSERVATIONS.

ASTRONOMIC AZIMUTHS.

All except two of the astronomic azimuths on the one hundred and fourth meridian triangulation were observed in 1912 by the triangulation parties. Those two were observed in 1913 by the latitude party. The methods described in the publication of the United States Coast and Geodetic Survey entitled "The determination of time, longitude, latitude, and azimuth, Special Publication No. 14," were employed on this work. At the Laplace stations, Mondak, Provo, and Watkins, observations on more than one night and an accuracy of the azimuth as great as that represented by a probable error of ± 0 ".30 were required. At the other stations one night's observations were considered sufficient, provided the probable error of the result was not greater than ± 0 ".50, and observations in at least ten positions of the horizontal circle had been obtained.

The instrument used in the azimuth work was the 12-inch theodolite shown in illustration No. 2 and described briefly on page 30. The error and weight of the chronometer used were determined by observations made with the vertical circle. See page 140.

The following table shows for the azimuths observed by the party of Assistant C. V. Hodgson, the name of the station occupied, the dates on which observations were made, the number of positions, and the probable error of the result:

Station.	Date of occu- pation.	Number of posi- tions.	Probable error of result.	Station.	Date of occu- pation.	Number of posi- tions.	Probable error of result.
Ragged, Wyo Twin, Wyo Dewey, Colo Boulder, Colo Watkins astronomic, Colo Provo astronomic, S. Dak	1912, June 4 June 25 July 10. Aug. 1. Aug. 11, 13 Oct. 6, 7	16 16 16 18 32 24	$ \begin{array}{c} & \\ \pm 0. \ 31 \\ \pm 0. \ 21 \\ \pm 0. \ 34 \\ \pm 0. \ 36 \\ \pm 0. \ 36 \end{array} $	Willow, Wyo Alkaii, Wyo Cambria, Wyo	1912. Oct. 15 1913. Sept. 9 Sept. 12	16 14 14	" ±0.24 ±0.38 ±0.29

Program of occupation of azimuth stations by party of Assistant C. V. Hodgson.

The following table gives data, similar to that contained in the one above, for the azimuths observed by the party of Assistant E. H. Pagenhart:

Program of occupation of azimuth stations by	party of	Assistant E.	H. Pagenhart.
---	----------	--------------	---------------

Station.	Date of occu- pation.	Number of posi- tions.	Probable error of result.	Station.	Date of occu- pation.	Number of posi- tions.	Probabie error of result.
Bowie, N. Dak Gładyś, N. Dak Mondak, Mont Biue, Mont	1912. June 4, 5 June 22 July 24, 25 Aug. 20	16 16 24 16	$\begin{array}{c} '' \\ \pm 0.53 \\ \pm 0.40 \\ \pm 0.20 \\ \pm 0.24 \end{array}$	Saddie, N. Dak Reva, S. Dak Wymonkota, Mont	1912. Sept. 5 Oct. 7. Oct. 20	16 18 16	" ±0.20 ±0.35 ±0.36

The table below gives for each azimuth station its geographic position, the geodetic azimuth of a line of the main scheme of the triangulation, the astronomic azimuth, the difference between the astronomic and geodetic azimuths (A—G), the negative cotangent of the latitude of the occupied station (-cot φ'), and finally the value of "A—G" as the deflection in the prime vertical (P. V.). The table is arranged like those shown in the two publications of the United States Coast and Geodetic Survey on the figure of the earth.¹

In each case the azimuth and triangulation stations are coincident. The mark used was the signal lamp accurately centered over the triangulation station at the distant end of the line of triangulation for which the azimuth is given.

The astronomic azimuths have been corrected for the elevation of the station sighted upon, but not for the variation of latitude.

1 "The Figure of the Earth and Isostasy from Measurements in the United States" and "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy."

Station.	Geodetic latitude.	Geodetic longitude.	Geodetic azimuth.	To station	Astro- nomic azimuth.	л -G.	-cot \$\phi'\$.	A-G (P.V.).
Watkins astronomic, Colo Boulder, Colo Twin, Wvo Ragged, Wyo. Willow, Wyo. Provo astronomic, S. Dak. Alkali, Wyo. Cambria, Wyo. Cambria, Wyo. Cambria, Wyo. Saddle, N. Dak. Saddle, N. Dak. Blue, Mont. Mondak, Mont. Gladys, N. Dak. Bowle, N. Dak.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \circ \ \ , \ \ $	$\begin{array}{c} \bullet & , & , & , \\ 350 & 08 & 03.53 \\ 343 & 40 & 25.56 \\ 94 & 00 & 17.52 \\ 353 & 54 & 24.76 \\ 212 & 56 & 23.95 \\ 46 & 48 & 40.49 \\ 70 & 55 & 53.73 \\ 207 & 19 & 16.05 \\ 27 & 31 & 26.43 \\ 201 & 17 & 14.73 \\ 135 & 35 & 35.72 \\ 116 & 42 & 16.19 \\ 135 & 35 & 35.72 \\ 116 & 42 & 16.19 \\ 125 & 35 & 35.72 \\ 116 & 42 & 16.19 \\ 125 & 35 & 35.72 \\ 116 & 42 & 16.19 \\ 125 & 35 & 35.72 \\ 116 & 42 & 16.19 \\ 125 & 277 & 14.56 \\ 171 & 45 & 17.45 \\ 192 & 15 & 02.79 \\ 273 & 03 & 40.65 \end{array}$	Indian. Morrison. Horsetooth. Chugwater. Coleman. Provo west base. Cambria. Alkail Harding. Table. Cook. Flat. Montana. Nowana. Nowana. Nowana.	$\begin{matrix} & & \\ & 06.88 \\ & 48.59 \\ & 19.08 \\ & 38.82 \\ & 35.45 \\ & 47.56 \\ & 56.62 \\ & 14.82 \\ & 18.95 \\ & 21.73 \\ & 30.48 \\ & 17.99 \\ & 15.73 \\ & 30.48 \\ & 17.99 \\ & 15.75 \\ & 59.64 \\ & 43.87 \\ \end{matrix}$	$ \begin{array}{c} '' \\ + 3.25 \\ + 23.03 \\ + 1.56 \\ + 14.06 \\ + 11.50 \\ - 1.93 \\ - 1.23 \\ - 7.48 \\ + 7.00 \\ + 3.76 \\ + 1.80 \\ + 0.88 \\ + 1.30 \\ - 3.22 \end{array} $	$\begin{array}{c} -1,2026\\ -1,1934\\ -1,1706\\ -1,1484\\ -1,1327\\ -1,0842\\ -1,0651\\ -1,0438\\ -1,0339\\ -1,0339\\ -0,9997\\ -0,9799\\ -0,9799\\ -0,9799\\ -0,9799\\ -0,9997\\ -0,9997\\ -0,9997\\ -0,9997\\ -0,9997\\ -0,9997\\ -0,9997\\ -0,9854\\ -0,8693\end{array}$	$\begin{array}{c} & & & \\ & -4.03 \\ -27.48 \\ -1.83 \\ -16.15 \\ -13.03 \\ +2.09 \\ +1.20 \\ +7.7.00 \\ +3.68 \\ -1.68 \\ -0.81 \\ -1.17 \\ +2.80 \end{array}$

Deflections in prime vertical.

ASTRONOMIC LATITUDES.

In July, 1913, a party under the direction of Assistant C. V. Hodgson began the observations for latitude at stations of the one hundred and fourth meridian primary triangulation. The work was interrupted while the party was engaged in measuring the Cheyenne base and in making the necessary horizontal observations to connect the base with the main scheme of triangulation. (See p. 22.) The party consisted of two men besides the chief, who was also the observer. The means of transportation was a White automobile truck of $1\frac{1}{2}$ tons carrying capacity, with a 30-horsepower gasoline engine. The truck was provided with the necessary tanks for carrying gasoline for the engine and water for cooking and drinking purposes. The outfit comprised two tents, cots and bedding for three persons, a small mess outfit, a box of tools, a portable wooden tripod for the latitude instrument, a few short boards of which a platform was made for the observer, an 8 by 8 foot observing tent, a zenith telescope, and a chronometer. Besides the above-mentioned articles, there were a few small instruments for use when connecting the astronomic and triangulation stations. as well as lamps, lanterns, and other small articles of outfit.

The truck is shown in illustration No. 6c. The zenith telescope is shown in illustration No. 6a, and the wooden stand, which had legs capable of adjustment to various heights, is shown in illustration No. 6b. The observing tent used by the party is like that shown in illustration No. 17 of Special Publication No. 14. That the truck was a much more economical means of transportation than teams is clearly shown by a statement in Mr. Hodgson's season's report, which reads:

During the 2.2 months spent on latitude we accomplished what would have taken seven months to complete with teams, while the cost per station was reduced from \$212 to \$119. Counting in the entire cost of the truck on this season's work, brings the cost per station to only \$199, so that the truck more than paid for itself in 2.2 months.

The truck could be run at a maximum rate of 25 miles per hour.

The wooden stand was very satisfactory, in the opinion of Mr. Hodgson, and the accuracy of the results proves that it must have been very stable.

The chief of party followed the methods given in Special Publication No. 14 of the Coast and Geodetic Survey, entitled "The determination of time, longitude, latitude, and azimuth."

The accuracy desired was that represented by a probable error of the result at a station of about $\pm 0''.10$. The observer was permitted to complete the observations in one night, if it was found practicable to do so. He was directed to make computations of the latitude at the first fow stations, but, after ascertaining the number of pairs necessary to give the desired accuracy, he was not to make any further computations in the field. After computations were made in the field at three stations it was found that, in general, 18 pairs would give the accuracy required. That this was a satisfactory number was proved by the probable errors Special Publication No. 19.

-

NO. 6b.

PORTABLE WOODEN SUPPORT WITH ADJUSTABLE LEGS FOR THE ZENITH TELESCOPE.

11

MOTOR TRUCK USED BY LATITUDE PARTY.

1. 1.

of the results, only one station having a probable error greater than $\pm 0^{\prime\prime}.10$, and that one only $\pm 0^{\prime\prime}.11$.

The program of the occupation of the stations is given in the following table. The Cheyenne base was measured between the occupation of stations Morrison and Whitaker. The astronomie azimuth of a line of the triangulation was observed at stations Alkali and Cambria.

Station.	Date of occu- pation.	Pairs ob- served.	Probable error of result.	Station.	Date of occu- pation.	Pairs ob- served.	Probable error of result.
	1012		,,	~	1012		,,
Fibert Colo	Tuly 20 21	17	10.10	Alkali Wyo	Sent 0	17	1.0.09
Morrison Colo	Aug 2 2	10	±0.10	Cambria Wro	Sopt 12	10	±0.08
Whiteker Wwo	Aug. 4, 0	10	+0.07	Sundance Wro	Sept. 13	19	±0.05
Y milakel, WyO.	Aug. 12	10	±0.03	Warming Bootheast as a	Sept. 17	18	±0.07
Colo.	Aug. 14, 15	15	±0.11	centric,	Sept. 19	18	± 0.05
Brighton bench mark eccentric.	Aug. 16, 17	18	+0.06	Harding, S. Dak	Sept. 21	18	± 0.08
Colo			10000	Reva. S. Dak	Sent. 25	17	10.08
Dewey, Colo	A 110. 20	18	+0.08	Bowman longitude, N. Dak	Sent. 27	18	10.08
Colorado Wyoming houndary	Ang 99	18	10.08	Radland N Dak	Sopt 20	17	10.08
monument 4	Aug. 44	10	±0.00	North Dakota-Montana, hound	Oot 2	17	10.00
Wheetland standpine Was	Aug. 02	10	10.07	North Das ota-Montana, Dound-	000. 4	11	±0.08
wheatland standpipe, wyo	Aug. 20	15	±0.07	aly monument eccentric.	0.1.0		
Coleman, w yo	Aug. 28	17	± 0.08	Sneep, N. Dak	Oct. 0	17	± 0.10
Jireh College, Wyo	Aug. 31	17	± 0.10	Mondak, Mont	Oct. 8, 10, 11	17	± 0.07
Kirtley, Wyo	Sept. 3, 4	18	±0.05	Bonetraill, N. Dak	Oct. 13	18	± 0.07
Provo astronomic, S. Dak	Sept. 5	18	±0.10	Ambrose northeast base, N. Dak	Oct. 14	17	±0.08

Program of occupation of latitude stations.

In every ease the astronomic station was referred to the triangulation station and in the table given below the geodetic and astronomic latitudes refer to the triangulation stations whose geodetic positions are shown also on pages 88 to 94. Descriptions of the stations are given on pages 115 to 126, unless the name of the station is sufficient for its identification.

The following table gives the names of the latitude stations, their geodetic latitudes and longitudes, their astronomic latitudes reduced to sea level, and the values of A—G, the astronomic minus the geodetic latitude. The astronomic values have not been reduced for variation of the pole.

Deflections	in t	he m	eridian.
-------------	------	------	----------

Statlon.	Geodetic latitude.	Geodetic longitude.	Astronom- ic latitude.	A←G.
Elbert, Colo. Morrison, Colo. Whitaker, W yo. Loveland tall white chimney, Colo. Brighton bench mark eccentric, Colo. Dewey, Colo. Colorado-Wyoning boundary monument 44. Wheatland standpipe, W yo. Coleman, W yo. Jireh College, Wyo. Kirtley, W yo. Provo astronomic, S. Dak. Alkall, W yo. Cambria, W yo. Sundance, W yo. Wyorning northeast corner eccentric. Harding, S. Dak. Reva, S. Dak. Reva, S. Dak. Bowinan longitude, N. Dak. Badland, N. Dak. North Dakota-Montana boundary monument eccentric. Sheep, N. Dak. Mondak, Mont. Bonetraill, N. Dak. Mondak, Mont. Boretraill, N. Dak. Mondak, Mont. Boretraill, N. Dak. Mondak, Mont. Boretraill, N. Dak.	$\begin{array}{c} \circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} \circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} \prime \prime \\ 2.40 \\ 11.77 \\ 53.00 \\ 4.62 \\ 3.40 \\ 19.53 \\ 49.74 \\ 42.33 \\ 5.98 \\ 32.52 \\ 43.70 \\ 40.07 \\ 40.77 \\ 7.79 \\ 41.76 \\ 45.35 \\ 60.39 \\ 12.95 \\ 49.54 \\ 56.96 \\ 6.96 \\ 6.97 \\ 11.93 \\ 11.99 \\ 51.93 \\ 11.99 \\ 51.93 \\ 11.99 \\ 7.73 \\ 26.47 \end{array}$	$\begin{matrix} \text{''} & -0.54 \\ +2.106 \\ -3.36 \\ -6.157 \\ +1.77 \\ -1.49 \\ +2.410 \\ +2.4$

It was not found to be practicable before the manuscript of this report went to press to correct the observed deflections for the effect of the topography and isostatic compensation. It seems to be reasonably certain from an inspection of the topographic maps in Colorado that these corrections will reduce many of the observed deflections. This seems to be the case especially with the deflection of the vertical in the prime vertical at station Boulder (latitude $39^{\circ} 57'$ and longitude $105^{\circ} 18'$). The observed deflection in this case was 27''.48, the nadir being drawn toward the west. The mountains just west of the station rise to an elevation of more than 13 000 feet (4000 meters).

.

Special Publication No. 19.

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, STATIONS PIKES PEAK AND DIVIDE TO RAGGED AND WHITAKER.

Special Publication No. 19.

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, STATIONS RAGGED AND WHITAKER TO ALKALI AND ELK. ,

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, STATIONS ALKALI AND ELK TO BLACK AND RAINY.

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, STATIONS BLACK AND RAINY TO CANADA BOUNDARY.

Special Publication No. 19.

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, MISSOURI RIVER CONNECTION.

TRIANGULATION, THIRTY-NINTH PARALLEL, KANSAS AND COLORADO BOUNDARY TO STATIONS DIVIDE, PIKES PEAK, AND PLATEAU.

•

TRIANGULATION, THIRTY-NINTH PARALLEL, STATIONS DIVIDE, PIKES PEAK, AND PLATEAU TO PATMOS HEAD AND MOUNT ELLEN.

· · · · · · · · Lo.

A LAND A

INDEX TO POSITIONS, DESCRIPTIONS, ELEVATIONS, AND SKETCHES.

Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.	Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.
	Page.	Page	Page.	Nu .		Page.	Page	Page.	Number
Adobe	95	127	147	14	Bison	95	129	148	9,15
Alkali	89	118	146	. 10,11	Black	90	121	147	11,12
Alkali (U. S. G. S.)	93		147	10,11	Black boundary stake	105			16
Ambrose	91	124	147	12	Blanco	102	135		16
Ambrose northcast base or School (U.S. &					Blue	90	121	147	12
C., B. S.)	91	124	147	12	Bluff	93	125	146	10
Ambrose Presbyterian Church steeple	94	[147	12	Bonctraill	91	123	147	12
Ambrose southwest base	91	124	147	12	Bonetraill schoolhouse belfry	94	1	147	12
Anderson	112	138		17	Booker	109	136		17
Antelope	96	131	148	16	Boulder	88	116	146	9
Antelope Mountain or Swasey Peak	106		148	16	Boundary stake No. 1	107			16
Antero, cairn	98		148	15	Boundary stake No. 2	107	[• • • • • • •	16
Arapahoe	95	126		14	Bountiful Peak or Francis Peak, cairn	104		148	16
Arapahoe Peak, summit	98			15	Bowie	91	124	147	12
Агоуа	95	127	147	14	Bowman longitude	94	126	•••••	11
Aroya section house chimney	97			14	Bowman water tank	94		147	11
Astronomic:					Box Elder Peak or Willards Peak, cairn	105	•••••	•••••	16
Colorado Springs (U. S. E.)	97	133	•••••	14	Bradford	109	136	:	17
Oasis	102	135	• • • • • •	16	Brighton	88	116	146	9
Tonopah	109	136	•••••	17	Brighton bench mark, eccentric	92	•••••	146	9
Virginia City	113	139		17	Brighton bench mark Rg.	92	124	•••••	9
Augusta, monument	111		148	17	Broken Back, king summit monument	108	• - • • • •	148	17
Augusti	102	135		16	Bunalo Peak	98		•••••	15
Austin:	110			15	Bunalo Springs	94	126	146	11
Catholic Untren spire	110		• • • • • • •	17	Bulord	90	122	147	12, 13
Enineenal Church on im	110	•••••		17	Bull mbooker	91	123	147	12
Longitudo	110	127	• • • • • •	17	Bunkar Hill coirn	108	135	140	17
Longitude eccentric	110	107	•••••	17	Butter	100	12.0	148	17
Mathadist Church spins	110	*****		17	Butte	109	100	•••••	10
Asimuth.	110			11	Butta	105	•••••	•••••	10
Mark Thenah	105			16	Butte	100	120	148	10
Mark, Verdi	114	140		10		00	120	140	11
Ogden .	104			16	Cache	105			16
Salt Lake City.	104			16	California-Nevada, iron monument	113	139		17
					California-Nevada, stone monument	114	139		17
Badland	90	121	147	12	California-Nevada, wood monument	114	139		17
Bainville	90	123	147	12	Camara	102	135		16
Bainville Catholic Church, highest spire	94		147	12	Cambria	89	119	146	11
Basalt or Pilot Cone, cairn	111	137		17	Camerons Cone	98			14
Beach Catholic Church, cross	94		147	12	Camp stake	105			16
Bear Creek	97	133		14	Canovas	102	135		16
Bear Lodge Mountain, highest peak	93		146	11	Canyon Peak	106			16
Beaver	103		148	16	Carson, capitol dome	113			17
Beaver flagstaff	103			16	Carson Sink	97	132	148	17
Beaver meetinghouse	103			16	Carson Table, summit	111			17
Bench	106			16	Castle	89	120	146	11
Bench mark 121/2	94	126	147	13	Castle Rock (U.S. G. S.)	93			11
Bench mark 122/2	94	126	147	13	Catholic Church, Eureka	108	136		17
Bench mark 123/2	94	•••••	147	13	Catholic Church spire, Austin	110			17
Bench mark "6702 Denver"	92	• • • • • • •	146	9	Cedar	101	134		16
Bench mark G ₂	92	• • • • • •		9	Cedar Hill.	113	138	• • • • • • •	17
Bender	113	139	• • • • • •	17	Cedar Spur	107			16
Big Springs	95	128	147	14	Cervera	102	135		16
Bilby	94	126	147	12	Cheyenne cast base	88	117	146	9
Birch Creek, cairn	103			16	Cheyenne, State capitol dome	92		146	9

Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketch.	Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page.	Number
Cheyenne Wells	95	127		14	Desert	108	135		17
Cheyenne west base	88	117	146	9	Desert Peak, cairn	105		148	16
Chiquita	99	133	148	15	Devine's granary	106			16
Chugwater	88	117	146	10	Dewey	88	116	146	9
Churchill, cairn	111	137		17	Diamond Peak	96	132	148	16, 17
City Creek	103	135	148	16	Divide	95	128	147	9, 14, 15
City Hall, Ogden	104			16	Douglas	109	136		17
Cliff	101	134		15	Douglas	88	116	146	9
Cliff, flag	105			16	Dover bench mark E ₃	92	124		9
Coleman	88	118	146	10	Dover bench mark, eccentrie	92		146	9
College cupola, Colorado Springs	97			14	Dover bench mark, reference mark	92		147	9
Colorado Springs:					Draper	103		148	16
College cupola	97	• • • • • •		14	Dry Camp	97	• • • • • •	147	14
Latitude and longitude	97	133		14	Duekwater, cairn	108		148	17
Public schoolhouse, flagstaff on elock					Fagles Nest Butto saim	02		148	11
tower	98	•••••	•••••	14	Eagles Nest Dutte, carn	100	124	140	11
United States Engineers, astronomic	97	133		14	East base, Green Alver	110	134	•••••	15
Colorado-Utah:					East Dase, Verul	113	139	148	11
Middle boundary monument	100	•••••		15	East Deer Lar Butto	93	• • • • • • •	140	14
North boundary flag	100	•••••	•••••	15	Eastonville graemary towar	07	•••••	•••••	14
North boundary stone	100	•••••		15	Fast Dask	112	190	• • • • • •	14
South boundary	100		•••••	15	East Penincula Peak	105	100	• • • • • • •	16
Colorado-Wyoming boundary monument,					Fast Ridga	100	•••••	•••••	10
milepost 44	92	125	146	8	Fast Spanish Paak	00	•••••	149	15
Cone Peak, white flag	114	139	••••••	17	Fact Twin	02	•••••	147	0
Cook	90	121	147	12	Eaton sugar factory obimney	02	•••••	146	Q
Corral Bluffs	95	128	147	14	Flbert	22	115	146	Ő
Cory Peak, or Mount Hull, summit	112	•••••	•••••	17	Elephant, or Mucca Peak	112	**0	140	17
Cottonwood	89	119	146	10	Elk	89	119	146	10 11
Coulson's house, main chimney	97		•••••	14	Elk (IL S. G. S.)	93	115	147	10,11
County courthouse dome, Denver	91	•••••	146	9	El Paso east hase	95	128	147	14
Courthouse, Eureka	108	135	•••••	17	El Paso west base	95	128	147	14
Courthouse flagstaff, Austin	110	•••••	•••••	17	Episeonal church spire Austin	110	140	131	17
Courthouse flagstaff, Ogden	104	• • • • • •	• • • • • •	16	Esmeralda County, corner stone	109	137		17
Cramer Guleh	95	128	147	14	Eureka	95	127	147	14
Crest	109	136	•••••	17	Eureka:				
Crestone Peak	98	•••••	148	15	Catholie church	108	136		17
Crosby	91	124	147	12	Courthouse	108	135		17
Crow	89	119	146	11	Longitude	108	136		17
Crows Nest (U. S. G. S.)	93	• • • • • •	147	11	0				
Crystal Peak, flagstaff	114	139	•••••	17	Fairview, cairn	111		148	17
Crystal Peak, mountain top	114	139		17	Farmington courthouse spire	104			16
Cuton	90	122	147	13	Ferry	90	123	147	13
Cutting	109	130	•••••	17	First View	95	127	147	14
C. V. North, Calm	100	• • • • • •	•••••	15	First View section-house chimney	97			14
C. V. South, carn	. 100		•••••	15	Flag	105			16
Daniela & Disharia terrer aildad terre					Flag in flat	103			16
Daniels & Fisher's tower, glided dome,	01		140		Flat	90	122	147	12
Denver	100	126	140	9	Folsom Peak	112	138	• • • • • •	17
Davis	109	130	•••••	17	Fort D. A. Russell water tank	92		146	9
Delana asim	102	100	140	17	Françis Peak	104		148	16
Donmort	103	•••••	140	10	Francis Peak, or Bountiful Peak, cairn	104		148	16
County courthouse dome	01		1.48	0	Freel Peak	112	138		17
Daniela de Fisher's tower gilded	01	•••••	140	5	Fremont Island, cairn	104		148	16
dome	01		146		Frisco Mount, tree	106		148	16
Grant smelter abimner	01	•••••	146	0	Galena saddle	112			17
Lorotto Heights school balfer	01	•••••	146	9	Genoa flagstaff	113			17
State capital dome	01	* * * * * *	146	0	Genoa Peak	112	139		17
University observatory dome	01	•••••	140	9	Gladys	01	123	147	12
Desatoiva	111		149	17	Glen Evrie	97	133		14
Desatolya north twin	111		170	17	Golden	109	136		17
Deseret.	96	131	148	16	Grand Junction standpipe	99	134	148	15
Deseret magnetic	103		- 30	16	Granite Peak	106		148	16

Pair Page Page <th< th=""><th>Station.</th><th>Posi- tion.</th><th>De- scrip- tion.</th><th>Ele- va- tion.</th><th>Sketch.</th><th>Station.</th><th>Posi- tion.</th><th>De- serip- tion.</th><th>Ele- va- tion.</th><th>Sketch.</th></th<>	Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.	Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketch.
Grant metric south end. 10		P ge.	Paye.	Page.	Number.		Page.	Page.	Page.	Number
Grant smaller e.himsey, Deaver. 0 16 9 Kayeville K. O. W. depct. ehimsey. 104 16 Granzy Ends, summit. 00 16 Kipvil, Willan, square house ehimsey. 104 16 10 Granzy Ends, summit. 00 16 10 Kipvi, Willan, square house ehimsey. 04 16 10 Greenbarm Mannialo, chir 00 16 0 Kit Canon 00 15 Greenbarm Mannialo, chir 00 16 10 13 16 10 16 10 16 10 16 10 16 10 16 10 16 16 10 16 16 10 16 16 16 10 16 16 10 17 17 16 16 12 17 17 17 17 16 16 12 16 16 16 16 16 16 16	Granite Peak summit, south end	110			17	Kawich Peak	109			17
Gramsyn, eifn. 10 Kayv III al. G. W. dept. eklinner, 10 16 Kayv III al. G. W. dept. eklinner, 10 16 9 Grays, exim. 00 16 Kirtly 9 16 9 Grays, Park, summit. 00 16 16 16 16 17 14 Greek parketery eklines,	Grant smelter ehimney, Denver	91		146	9	Kaysville meeting-house spire	104			16
Grassy, akin. 16 Kupps, Willan, squar-house chimey. 92 16 6 Kupps, Willan, squar-house chimey. 93 18 16 10 Greeky all task. 90 16 90 16 10 Greek Iver 90 16 16 16 16 17 17 East buse. 10 13 16 16 16 16 16 17 17 East buse. 10 13 16 13 16 13 16 13 16 16 17 17 14 I dot flagstaf. 10 13 16 13 16 16 17 18 18 12 16 17 16 17 16 17 16 18 13 14 15 13 13 13 14 15 14 16 13 13 14 14 16 11 16 11 16	Grantsville flagstaff	103			16	Kaysville R. G. W. depot, chimney	104			16
Gray Fack, Similat. B Low Fack, Similat. B Low Fack Similat. Similat. <thsimilat.< th=""> Similat. <ths< td=""><td>Grassy, eairn.</td><td>105</td><td></td><td></td><td>16</td><td>Kipp's, William, square house chimney</td><td>92</td><td></td><td>146</td><td>9</td></ths<></thsimilat.<>	Grassy, eairn.	105			16	Kipp's, William, square house chimney	92		146	9
Schedig ruli make, J., Jamey J.,	Grays Peak, summit	02		146	15	Kif Cerson	89	118	140	10
Green Aiver 90 15 Ja Gartia king summit. 90 15 Bart have. 100 34 15 Jaft 15 Bart have. 100 34 15 Jaft 16 Bart have. 100 34 15 Jaft 16 Langthude. 101 34 15 Jaft 16 Schoolmose fagtaff. 101 34 15 Jaft Jaft 15 Schoolmose fagtaff. 101 34 15 Jaft Jaft 15 Green River 100 15 Jaft Jaft 15 Schoolmose fagtaff. 101 34 15 Jaft	Greeley tall tank	92		146	9	hit calou	50	121	7.34	14
Green River: La Cartia range peak. 90	Greenhorn Mountain, cairn	98			15	La Garita king summit	99			15
East base 100 134 15 Lafe! 161 11 161 11 161 11 161 11 161 11 161 11 161 11 161 11 161 111 161 161 161 161 161 161 161 161 161 161 161 161 163	Green River:					La Garita range peak	99			15
Hotel Agetaff. 101 134 15 Lako Park pawillon, flag. 104	East base	100	134		15	Laird	89	119	146	11
Latitude 101 134 135 Lake Store Hench 103	Hotel flagstaff	101	134	•••••	15	Lake Park pavilion, flag	104			16
Longuing 101 103 103 103 104 105 105 106 127 147 147 South meridian	Latitude	101	134	• • • • • •	15	Lake Shore Beneh	103			16
School house all agistaff. 10 10 10 10 10 10 10 11 <th< td=""><td>Longitude</td><td>101</td><td>134</td><td></td><td>15</td><td>Lander Hill or Mount Prometheus</td><td>90</td><td>122</td><td>147</td><td>13</td></th<>	Longitude	101	134		15	Lander Hill or Mount Prometheus	90	122	147	13
South meridian. 101 134 15 La Salle, north peak, cairn. 100 15 West base. 100 134 115 La Salle, north peak, cairn. 100	Schoolhouse flagstaff	101	134		15	Landsman	95	127	147	. 14
West base. 100 134 15 La Salle, northrest pesk, caff. 100 146 9 Greentop 68 117 146 9 La Sule, tark nar concletute. 97 133 144 Gunnison asimuth 99 148 15 Latitude, Oreen River 101 134 155 Grannison relax, caff 99 15 Latitude, Sult Laks City 101 134 155 Grannison Peak, caff 99 15 Latitude, Sult Laks City 101 135 164 101 135 164 116 106 118 165 116 106 118 166 116 103 145 161 106 118 166 106 118 161 106 116 101 144 161 116 106 116 116 106 116 106 116 106 116 106 116 116 116 116	South meridian	101	134		15	La Salle, north peak, cairn	100		121	15
Greentop 88 117 146 9 1a Eable, tank near coal chuico. 92 148 Gunnison astmuth. 99 18 15 Lattitude, Green River 10 134 135 Gunnison astmuth. 99 18 15 Lattitude, Salt Lake CBy	West base	100	134		15	La Salle, northwest peak, cairn	100			15
Gunnison astronomic. 101 161 Latitude and longitude, Colored Spring. 97 133 14 Gunnison Peak, cairn. 99 15 Latitude, Green Rivero. 101 134 15 Harding. 99 15 Latitude, Green Rivero. 108 135 15 Harding. 89 120 146 11 Leo. 108 135 15 Harding. 89 120 146 11 Leo. 108 135 15 Haystack. 88 138 146 10 Lowan 101 134 15 Haystack. 136 148 16 Lone Cono. 99 15 Highand Peak, summit. 107 148 16 Lone trees, cairn 106 148 16 Hill, fag. 65 128 147 14 Lowetree, cairn 106 137 16 Lone trees, cairn 101 13	Greentop	88	117	146	9	La Salle, tank near coal chute	92		146	9
Gunnison arimuth. 99 148 15 Latitude, Green River 101 134 15 Harding. 99 15 Latitude, Satt Lake City. 104 135 15 Harding. 89 120 16 Latitude, Satt Lake City. 104 135 15 Harding. 80 120 146 11 Leon Peak, Nuch Street schoolhouse cupoh. 99 15 Haystack Butte, highest point. 60 16 Loon Conc. 99 15 Highand Peak, summit. 103 148 15 Lone Conc. 99 15 Highand Peak, summit. 103 146 10 Lone tree, cahr. 103 16 Holinswood's, Gien, new barn, west gable. 21 147 14 Longitude: 101 137 16 Holinswood's, Gien, new barn, west gable. 21 137 14 Longitude: 101 136 17 Holinspirod's, Gien, new	Gunnison astronomic	101			16	Latitude and longitude, Colorado Springs	97	133		14
Gunnison Peak, cairn. 99 15 Latitude, Sali Lake Chy. 104 135 15 Harding. 88 120 146 11 Leo. 106 135 15 Haystack. 88 118 16 1 Levan 99 15 Haystack Butte, highest point. 63 16 106 104 14 16 Harding. 103 146 11 Levan 99 15 Haystack Butte, highest point. 106 146 11 Lodge 99 15 Highand Peak, summit. 107 148 16 Lone Cone. 99 16 Holking. 55 128 147 1 Long tree, spin 101 137 17 Holking.wood's, Glen, new barn, west gable. 52 147 14 Lecentric, Austin. 110 137 17 Holking. 15 134 15 Lode (spin<	Gunnison azimuth	99		148	15	Latitude, Green River	101	134	•••••	15
Harding 9 120 146 11 Leadville, Ninth Street econolouse cupela. 99 15 Hartman 100 134 15 Leon Peak, low cairn 99 16 Haystack 88 118 16 Low Peak, low cairn 99 16 Haystack Batte, highest point. 46 11 Loon Peak, low cairn 90 120 146 11 Horizan 163 146 11 Loone Yountain. 90 183 185 165 Lone Yountain. 90 184 17 Hulltop 88 115 146 10 Lone Yree, cairn 102 147 Holeshandte: 177 Hore Schandte: 177 Hore Schandte:	Gunnison Peak, cairn	99	· · · · · ·		15	Latitude, Salt Lake City	104	135		16
Harring			100	1.10		Leadville, Ninth Street schoolhouse cupola.	99	105		15
Instrumt 100 103 100 103 104 105 104 105 105 106	Harding	100	120	146	11	Leo	108	135	•••••	17
Ing. Stack. Inute, highest point. 68 15 16 16 16 16 16 16 16 17 16 17 16 17 16 11 17 18 16 </td <td>Hartingal</td> <td>100</td> <td>112</td> <td>146</td> <td>10</td> <td>Leven</td> <td>99</td> <td>124</td> <td>•••••</td> <td>10</td>	Hartingal	100	112	146	10	Leven	99	124	•••••	10
Herriman 108 148 16 Lone Cons	Haystack Butte, highest point	93	110	146	10	Lodge	90	120	146	11
Highland Peak, summit. 107 148 16 Lone Mountain. 97 132 148 17 Hill, fag. 103 163 Lone Tree, a.needle. 103 148 16 Hobbs 88 118 146 10 Lone tree, c.atr. 102 16 Hobbs 96 128 147 14 Longitude: 101 137 17 Holingswood's, Gien, new barn, west gable 92 146 9 Austin. 110 137 17 Horestooth 108 116 146 9 Eurika 108 138 17 Hore fagstaff, Green River 101 134 15 Ogden 104 135 146 16 Hot Spring Mountain 112 138 117 Userlin, 114 139 115 Hot Spring Mountain 112 138 117 Lorein River, 109 136 116	Herriman	103		148	· 16	Lone Cone.	99			15
Hill, fag. 103 16 Lone Peak, needle. 103 148 16 Hilltop 88 115 146 9 Lone tree, catr. 114 139 148 17 Holbs 88 118 146 9 Lone tree, catr. 110 137 160 Holdum Hills. 65 128 147 14 Lone tree, catr. 110 137 17 Horestooth 88 116 146 9 Austin 100 137 17 Horestooth 88 116 146 9 Euroka 100 134 15 Hot Spring cast base 111 137 17 Green River 104 135 166 Hot Spring cast base 111 137 17 Loretto Heights school belfty, Denver. 91 146 9 Howard 19 134 137 17 Loretto Heights school belfty, Denver. 91 146 9	Highland Peak, summit	107		148	16	Lone Mountain.	97	132	148	17
Hilltop 88 115 146 9 Lone tree. 114 129 148 17 Hobbs 88 118 146 10 Lone tree. cairn 102 16 Holoidin 118 146 10 Lone tree. cairn 100 2 147 14 Lone tree. cairn 100 2 16 17 Holinswood's, Glen, new barn, west gable 92 146 9 Austin 110 137 17 Hole flagstaff, Green River 101 134 15 Opden 104 135 148 166 Hot Spring (Green River 111 137 17 Loreto River 104 135 148 166 Hot Spring west base 111 137 17 Loreto Heights school belfry, Denver 91 146 9 Hot Spring Wountain 112 138 17 Loreto Heights school belfry, Denver 91 146 9 Hugo schoolhouse chimney 97	Hill, flag	103			16	Lone Peak, needle	103		148	16
Hobbs 88 118 146 10 Lone tree, eairn 102	Hilltop	88	115	146	9	Lone tree	114	139	148	17
Holdingswood's, Glen, new barn, west gable. 92 144 144 Longitude: 110 137 17 Holt 95 128 147 14 Longitude: 110 137 17 Holt 95 128 147 14 Eccentric, Austin 110 137 17 Hotscotch 88 116 146 9 Euréka 108 136 137 17 Hot Creck, north summit. 106 17 Green River 101 134 15 Hot Spring cast base 111 137 17 Verdl 104 135 146 9 Hot Spring west base 111 137 17 Longs Peak 98 126 147 14 Loverdlan, du brick chimney 92 146 9 Hugo schoolhouse chimney 91 122 147 14 Loveland, du brick chimney 92 146 9 Hugo schoolhouse chimney 97 14 Lovering 109 122	Hobbs	88	118	146	10	Lone tree, cairn	102	• • • • • •	•••••	16
Houlingswood 3, Uien, hew barn, west gable. 92	Holcolm Hills.	95	128	147	14	Longitude:	110	105		17
Hort-continuent 99 L25 147 147 Leeweka 100 110 117 Horsetooth 108 116 166 9 Eureka 101 134 115 Hot Creek, north summit. 108 111 137 17 Green River 101 134 115 Hot Spring 111 137 117 Sait Lake City 104 135 166 Hot Spring Mountain 112 138 117 Longs Peak 98 111 137 17 Hot Spring Mountain 112 138 117 Longs Peak 98 116 164 99 Hugo schoolhouse chimney 91 123 147 12 Lothrop 109 136 176 Hugo schoolhouse chimney 97 144 Loverland, tall white chimney 92 124 146 9 Hugo schoolhouse chimney 97 144 Loverland, tall white chimney 92 124 142 Hugo schoolhouse chimney 97 144 Loverl	Hollingswood's, Glen, new barn, west gable.	92	100	146	9	Austin	110	137		17
Hotsbodie Jos Jos <thjos< th=""> Jos Jos</thjos<>	Horsetaoth	88	116	146	14	Euroka	110	136		17
Hotel flagstaff, Green River. 101 134 15 Ogden 104 135 148 16 Hot Spring 111 137 17 Salt Lake City 104 135 16 Hot Spring Mountain 112 138 17 Verdi 114 139 16 Hot Spring Wountain 112 138 17 Loretto Heights school belfry, Denver. 91 146 9 Howard 91 123 147 12 Lothop 109 136 17 Hugo schoolhouse chimney. 97 14 Loveland, tall white chimney. 92 146 9 Hugo section-house chimney. 97 14 Lovering (U. S. G. S.) 94 122 147 12 Hugo section-house chimney. 97 14 Lovering (U. S. G. S.) 94 143 17 Huge sect dine eccentrie. 106 16 Manville, C. & N. W. Ry. water tank	Hot Creek, north summit	108	110	110	17	Green River	101	134		15
Hot Spring 111 137 17 Salt Lake City 104 135 16 Hot Spring aest base 111 137 17 Verd1 114 139 17 Hot Spring Mountain 112 138 17 Longs Peak 98	Hotel flagstaff, Green River	101	134		15	Ogden	104	135	148	16
Hot Spring east base. 111 137 17 Verdi 114 139 117 Hot Spring Mountain 112 138 117 Lorgs Peak	Hot Spring	111	137		17	Salt Lake City	104	135		16
Hot Spring Mountain 112 138 17 Longs Peak 98 98 15 Hot Spring west base 111 137 17 Longs Peak 98 146 9 Howard 91 123 147 12 Lothrop 109 136 17 Hugo 95 127 147 14 Loveland, red brick ehimney 92 146 9 Hugo schoolhouse chimney 97 14 Loveland, tall white chimney 92 124 146 9 Hugo schoolhouse chimney 97 14 Lovering 01 122 147 12 Hump 90 121 147 12 Lovering (U. S. G. S.) 94 12 Hunts Peak 98 15 Lyoa, south summit. 109 143 17 Ibepah: 96 130 148 16 Manterola 102 135 16 Azimuth mark 105 16 Manville, Congregational Church steeplo 93 146	Hot Spring east base	111	137		17	Verdi	114	139		17
Hot Spring west base 111 137 17 Loretto Heights school belfry, Denver 91 146 9 Howard 91 123 147 12 Lothrop 109 136 146 9 Hugo 95 127 147 14 Loveland, red brick chimney 92 146 9 Hugo schoolhouse chimney 97 14 Loveland, tall white chimney 92 124 146 9 Hugo schoolhouse chimney 97 14 Lovering 90 122 147 12 Hunts Peak 98 15 Lyon, south summit. 109 148 17 Ibepah 98 15 Lyon, south summit. 109 135 16 Manterola 105 16 Manville, C. & N. W. Ry. water tank 93 146 10 Post office southeast corner 106 16 Marwille, Congregational Church steeplo. 93	Hot Spring Mountain	112	138		17	Longs Peak	98	• • • • • •	•••••	15
Howard 91 123 147 12 126 throp 109 136 17 Hugo 95 127 147 14 Loveland, red brick ehimney 92 146 9 Hugo schoolhouse chimney 97 14 Loveland, tall white chimney 92 124 146 9 Hugo schoolhouse chimney 97 14 Lovering 90 122 147 12 Hump 90 121 147 12 Lovering 90 122 147 12 Hump 90 121 147 12 Lovering 90 122 147 12 Hump 90 121 147 12 Lovering 109 145 17 Hump 90 121 145 16 Manterola 109 145 17 Hoepah 130 145 16 Manterola 109 146 10 Post office eccen	Hot Spring west base	111	137		17	Loretto Heights school belfry, Denver	91		146	9
Hugo schoolhouse chimney	Howard	91	123	147		Lothrop	109	136	140	17
Hugo schouldes chimney 97 111 Lovering, and white chimney 92 121 141 Lovering, and white chimney 90 122 147 12 Hump 90 121 147 12 Lovering, and white chimney 90 122 147 12 Humps 90 121 147 12 Lovering (U. S. G. S.) 94 12 Humps 98	Hugo schoolhouse chimper	95	127	14/	14	Loveland, fed brick entitliey	92	194	140	9 Q
Hump 90 121 147 12 Lovering (U. S. G. S.) 94 12 12 Hunts Peak 98 15 Lyon, south summit. 109 148 17 Ibepah 96 130 148 16 Manterola 102 135 16 Azimuth mark 105 16 Manterola 102 135 16 Post office ccentrie 106 16 Manville, C. & N. W. Ry. water tank 93 146 10 Post office southeast corner 106 16 Manville, Coargregational Church steeplo 93 146 10 Telegraph office flag 106 16 Marroll, Coargregational Church steeplo 93 146 10 Indian Mead, summit. 102 16 Meridian mark, Verdi 114 139 17 Indian Head, summit. 102 16 Methodist Church, Ogden 104 16 Indian Peak 106 </td <td>Hugo section-house chimney</td> <td>97</td> <td></td> <td></td> <td>14</td> <td>Lovering</td> <td>90</td> <td>122</td> <td>147</td> <td>12</td>	Hugo section-house chimney	97			14	Lovering	90	122	147	12
Hunts Peak 98	Hump.	90	121	147	12	Lovering (U. S. G. S.)	94			12
Ibepah 96 130 148 16 Manterola 97 135 16 Ibepah: Manterola 102 135 16 Azimuth mark 105 Manterola 102 135 16 Post office eccentrie 106 Image: Construct office southeast corner 106 Manville, C. & N. W. Ry. water tank 93 118 146 10 Post office southeast corner 106 Image: Construct office southeast corner 106 Manville, Congregational Church steeplo 93 146 10 Telegraph office chimney 106 Image: Construct office southeast corner 106 Image: Construct office southeast corner 106 Image: Construct office southeast corner 146 10 Telegraph office flag 106 Image: Construct office southeast corner 106 Image: Construct office southeast corner 114 139 117 Indian Mead, summit 102 Image: Construct office southeast corner 104 Image: Construct office southeast corner 114 139 133 148 15 Indian Head, summit 102 Image: Constructoffice	Hunts Peak	98			15	Lyon, south summit	109		148	17
Ibepah: 102 135 16 Azimuth mark. 105 106 16 Manterola 102 135 16 Post office eccentrie 106 106 16 Manville, C. & N. W. Ry. water tank 93 1.16 Post office southeast corner 106 106 16 Manville, C. & N. W. Ry. water tank 93 146 10 Telegraph office chimney 106 16 Maron 91 123 147 122 Indian 106 16 Maron 91 123 147 12 Indian Head, summit. 102 116 Meridian mark, Verdi 114 139 17 Indian Peak 106 146 9 Mesa 99 133 148 15 Indian Peak 106 148 16 Methodist Church, Ogden 104 10 114 139 117 Inyankara 89 119 146 11 Miea 100 134 15 Iron monument, California-Nevada 113 139 17 Middle b	Ibepah	96	130	148	16		•			
Azimuth mark. 105 105 16 Manville, C. & N. W. Ry. water tank. 89 118 146 10 Post office eccentrie 106 106 116 Manville, C. & N. W. Ry. water tank. 93 118 146 10 Post office southeast corner. 106 106 116 Manville, C. & N. W. Ry. water tank. 93 1146 10 Telegraph office chimney. 106 106 16 Marville, Congregational Church steeplo. 93 123 146 10 Telegraph office flag. 106 106 114 139 17 123 146 10 114 139 17 Indian Head, summit. 102 106 146 9 Mesa 99 133 148 15 Indian Peak 106 148 16 Methodist Church, Ogden. 104 104 117 17 Inyankara 89 119 146 11 Miea 100 134 15 Iron monument, California-Nevada 113 139 13 148 16 Middle boundary monument, Colorad	Ibepah:					Manterola	102	135	•••••	16
Post office scentrife. 106 106 106 106 106 106 Post office southeast corner. 106 106 106 106 107 108 109 123 146 10 114 139 17 108 114 139 17 108 114 139 17 108 114 139 17 104 104 104 104 104 104 106 104 106 114 139 117 119 146 114 114 139 117 119 114 114 <td< td=""><td>Azimuth mark</td><td>105</td><td></td><td>• • • • • •</td><td>16</td><td>Manville</td><td>89</td><td>118</td><td>146</td><td>10</td></td<>	Azimuth mark	105		• • • • • •	16	Manville	89	118	146	10
Telegraph office chimney. 106 106 107 108 109 123 114 123 114 123 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 114 129 117 114 129 <t< td=""><td>Post office eccentrie</td><td>106</td><td></td><td>• • • • • •</td><td>16</td><td>Manvule, C. & N. W. Ky. water tank</td><td>93</td><td>• • • • • •</td><td>146</td><td>10</td></t<>	Post office eccentrie	106		• • • • • •	16	Manvule, C. & N. W. Ky. water tank	93	• • • • • •	146	10
Telegraph office flag 106 116 Meridian mark, Verdi 114 139 17 Indian 88 116 146 9 Mesa 99 133 148 15 Indian 102 16 Meridian mark, Verdi 104 16 Indian 102 16 Methodist Church, Ogden 104 16 Indian Peak 106 148 16 Methodist Church, Ogden 104 16 Ingankara 89 119 146 11 Miea 100 133 15 Iron monument, California-Nevada 113 139 17 Middle boundary 106 16 Jackson 90 122 147 12, 13 Utah 100 15 Jarper 94 126 147 12 Middlo La Salle Peak 100 15 Jirch Coilege cupola 93 125 146 10 Middle Promontory, cairn	Telegraph office chimney	106			10	Marmon	91	123	147	10
Indian 88 116 146 9 Mesa 99 133 148 15 Indian Head, summit. 102 166 Methodist Church, Ogden 104 16 Indian Peak 106 148 16 Methodist Church, Ogden 104 16 Indian Peak 106 148 16 Methodist Church, Ogden 100 134 16 Inyankara 89 119 146 11 Miea 100 134 15 Iron monument, California-Nevada 113 139 17 Middlo boundary 106	Telegraph office flag	106			16	Meridian mark, Verdi	114	139		17
Indian Head, summit. 102 16 Methodist Church, Ogden	Indian	88	116	146	9	Mesa	99	133	148	15
Indian Peak 106 148 16 Methodist Chureb spire, Austin 110 17 Inyankara 89 119 146 11 Miea 100 134 15 Iron monument, California-Nevada 113 139 17 Miea 100 134 15 Jackson 90 122 147 12, 13 Utah 100 15 Jackson 90 122 147 12, 13 Utah 100 15 Jackson 90 122 147 12 Middlo boundary monument, Colorado- 15 Jackson 90 122 147 12 Middlo La Salle Peak 100 15 Jackson 93 125 146 10 Middle Promontory, cairn 104	Indian Head, summit	102			16	Methodist Church, Ogden	104			16
Inyankara 89 119 146 11 Miea 100 134 15 Iron monument, California-Nevada 113 139 17 Midale boundary 106 106 16 Jackson 90 122 147 12, 13 Utah 100 15 Jasper 94 126 147 12 Middlo La Salle Peak 100 15 Jirch College cupola 93 125 146 10 Middle Promontory, cairn 104 16	Indian Peak	106		148	16	Methodist Church spire, Austin	110	•••••		17
Iron monument, California-Nevada 113 139 17 Middle boundary 106 16 Jackson 90 122 147 12, 13 Utah 100 15 Jasper 94 126 147 12 Middle beamstere 100 15 Jireh College cupola 93 125 146 10 Middle Promontory, cairn 104 16	Inyankara	89	119	146	11	Miea	100	134		15
Jackson 90 122 147 12, 13 Utah 100 15 Jasper 94 126 147 12 Middlo La Salle Peak 100 15 Jireh College cupola 93 125 146 10 Middlo Promontory, cairn 104 16	Iron monument, California-Nevada	113	139	•••••	17	Middle boundary	106	•••••		16
Jasper	Tackson	00	199	147	12 12	Utah	100			15
Jireh College cupola	Jasper	94	126	147	12, 13	Middlo La Salle Peak	100			15
	Jireh College cupola.	93	125	146	10	Middle Promontory, cairn	104			16

Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketcb.	Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page.	Number
Milford Needle	103			16	Nebraska-South Dakota boundary mon-		10-		
Mill	111	137	•••••	17	ument.	93	125	146	10
Mooh ditch mark	100	191		15	ument eccentric	03	125		10
Moab (Warner's ranch)	100			15	Nebraska-Wyoming boundary monument	00	100		10
Mondak	90	123	147	13	123	93	125	147	10
Monitor	108		148	17	Nebraska-Wyoming boundary monument				
Monotony	95	126		14	eccentrie	93	125	146	10
Monroe	101		148	16	Nephi Bench	101			16
Montana	-90	122	147	13	Nevada-California, iron monument	113	139	• • • • • •	17
Montana-North Dakota boundary mon-					Nevada-California, stone monument	114	139	• • • • • •	17
ument	94	126	•••••	12	Nevada-California, wood monument	114	139	•••••	17
Montana-North Dakota boundary mon-		100		10	Nevada-Utah boundary monument	107	• • • • • •	•••••	16
ument eccentrie	94	120	147	12	Nevada-Utan boundary monument	105	• • • • • •	• • • • • •	16
Montana southeast corner eccentrie	02	120	140	11	Nevada-Utan boundary stake	01	194	147	10
Monte Rosa	98		149	• 14	North Augusta	111	101		17
Montezuma Peak	109		148	17	North boundary flag	106			16
Montilo	102	135		16	North boundary flag, Colorado-Utah	100			15
Mooseneah	101		148	16	North boundary signal	106			15
Moreau	89	120	146	11	North boundary stone, Colorado-Utah	100			16
Morrison	88	116	146	9,15	North Dakota-Montana boundary mon-				
Mount Alice, cairn	101		148	16	ument	94	12 6	• • • • • • •	12
Mount Annie, cairn	111	137	• • • • • • •	17	North Dakota-Montana boundary monu-				
Mount Bartles, summit	102	• • • • • •	• • • • • •	16	ment eccentric	94	126	147	12
Mount Bruin, summit	102			16	North Dakota-South Dakota milepost 333.	93	126	147	11
Mount Callahan	97	132	148	17	North Dakota-South Dakota milepost 333	00	100	140	
Mount Como	97	133	148	17	eccentric	93	120	146	11
Mount Davidson flomtoff	112	100	•••••	17	Northeast corper Wyoming eccentric	102	100	147	10
Mount Elbert	96	129	148	15	Northeast corner, Wyoming, eccentric	93	125	147	11
Mount Ellen	96	130	148	15.16	North Flat	113	139		17
Mount Evans	98			15	North Hill	110	137		17
Mount Grafton, summit	107		148	16	North Maan, cairn	99			15
Mount Grant	97	132	148	17	North meridian, Green River	101	134		15
Mount Grant, highest peak	111	138		17	North meridian, Oasis	102	135		16
Mount Hamilton	108		148	17	North meridian, Tonopah	109	136		17
Mount Harvard, cairn	99	•••••	148	15	North Ogden Peak	105		148	16
Mount Hilgard, cairn	101		148	16	North Ogden, public school	105			16
Mount Hull or Cory Peak, summit	112		• • • • • •	17	North Peak, tree, east prong	106			16
Mount Irisn	108		•••••	10	North Promontory, carn	104	126		10
Mount Jefferson, north summit monument	108		149	17	Notch	88	118	146	10
Mount Jefferson, south summit	108		120	17	Nunn sehoolhouse, belfry	92			9
Mount Lewis	110		148	17	,				
Mount Lincoln, peak	111		148	17	Oasis:				
Mount Lola	97	133	148	17	Astronomie	102	135		16
Mount Massive, cairn	. 99		148	15	Northeast base	102	135		16
Mount Moriah, cairn	107		148	16	North meridian	102	135	·····	.16
Mount Nebo	96	130	148	16	Schoolhouse tower	103	135		16
Mount of the Holy Cross, cairn	. 99			15	South meridian	102	135		16
Mount Ouray	. 95	129	148	15	Southwest base	102	130		10
Mount Princeton saim	100		140	15	Oddio	100	138		17
Mount Prometheus or Lander Hill	110	137	C#L	10	Ogden.	100	100	1	1
Mount Rose or Washoe Peak	112	101		17	Azimuth	104			16
Mount Shavano	98		148	15	City Hall	104			16
Mount Sneffels, cairn	. 99			15	Courthouse flagstaff	104			16
Mount Waas	96	129	148	15	Longitude	104	135	148	- 16
Mount Waas azimuth mark, cairn	100			15	Methodist Church	104			. 16
Mount Wilson	99			15	Reform School	104			. 16
Mount Yale	. 99		148	15	Union depot	. 104			16
Mucca or Elephant Peak	. 112			17	Ogden Peak	. 96	131	148	16
Muddy	. 91	123	147	12	Onaqui	103		148	16
Munson and Hamlin's barn, west gable	. 97	1		14	Uquitth	103	1	1 149	10

158

Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.	Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.
Otto II P. Ry. block water tank	Page.	Page.	Page.	Number.	Solit I also Ottan	Page.	Page.	Page.	Number
Overland	92	127	140	14	Azimuth	104			10
Overlook	112	138	171	17	Latitude	104	125		10
Oxford	105			16	Longitude	104	135		16
					Temple east spire	103		148	16
Pah Rah	97	133	148	17	Temple west spire	103			16
Paradise Peak, cairn	111			17	U.S. Land Survey standard meridian	104			16
Parker	89	119	146	10	Sait Lake northwest base	96	131	148	16
Patmos Head	96	130	148	15,16	Sait Lake southeast base	96	131	148	16
Peak south of Terry	93		146	11	Sandy	105			16
Peavine	112	138		17	Sanpete	101	134	148	16
Peavine east, cairn	114			17	San Rafael Knob	101		148	16
Pennington's large white house, center					Sawtooth Peak or Sevler Mountain	106	•••••	148	16
Chimney	97			14	Schoolhouse flagstaff, Green River	101	134		15
Pikes Peak	95	129	147	9, 14, 15	Schoolhouse north of Hump, chimney	94		147	12
Pilot Poalt	111	137	140	17	Schoolhouse tower, Oasis	103	135	• • • • • • •	16
Pilot Peak azimuth mark	105	131	148	10	School (U. S. & C., B. S.) or Ambrose		1.01		
Pine Hill	105	•••••	•••••	10	northeast base	91	124	147	12
Pioche	107	120	149	10	Section 4 T 157 N D 100 W southment	102	134	148	16
Pioche Peak, monument.	107	102	148	16	corner	04			10
Plateau	95	128	147	14.15	Section 7 T 143 N R 105 W conthwest	94	•••••	•••••	12
Platte Peak.	98			15	corner	0.4		147	17
Point of Rocks	113	139		17	Section 13, T. 155 N., B. 102 W., northwest	9.2		7.21	12
Pond Summit, monument	112			17	corner	94 .			12
Post office eccentric, Ibepah	106			16	Section 22, T. 17 N., R. 60 E., southeast				
Post office southeast corner, Ibepah	106			16	corner	94		147	12
Prison Hill	113	138		17	Section 33, T. 17 N., R. 68 W., stone post,				
Promontory	96	131	148	16	southwest corner	. 92		147	9
Prospect Peak	108	136	148	17	Section 36, T.4 S., R. 65 W., southeast corner				
Provo astronomic	89	119	146	10	stone	91		147	9
Provo astronomic bench mark 3708DW		• • • • • •	146		Sentinel	90	121	147	12
Provo east base	89	119	146	10	Sentinel Butte schoolhouse, flagpolo	94	•••••	147	12
Provo west base	89	119	146	10	Sevier Mountain or Sawtooth Peak	106	•••••	148	16
Public schoolhouse, flagstaff on clock tower,					Sharp Peak	108	•••••	148	17
Colorado Springs	98	• • • • • •	•••••	14	Sheep.	90	122	147	12, 13
Raggod	00	117	140	0.10	Shell Creek, north peak.	107	• • • • • •	•••••	16
Railway whistle nost	114	117	140	9,10	Sherman Book	107	•••••		16
Rainy	00	191	147	11 12	Shert	100	190	•••••	17
Ralston	109	136	111	17	Shoshone Peak north	110	100	148	17
Ranch Hill	113	139		17	Shoshone Peak, south	110		148	17
Rawhide	89	118	146	10	Sierra Blanca, peak	98		148	15
Red Chief, cairn	105			16	Smoky Valley, northeast summit	108			17
Red Squaw, cairn	105			16	Smoky Valley, southwest summit	108			17
Reform School, Ogden	104			16	Snake	90	123	147	12
Reno Congregational Church spire	114			17	Snake Creek	107			16
Reservoir	110	137		17	Snowden water tank	94		147	13
Reservoir	100	134		15	South Antelope 1, cairn	104			16
Reva.	89	120	146	11	South Antelope 2	104		•••••	16
Richmond	108	135		17	South boundary, Colorado-Utah	100	•••••	•••••	15
Rito Alto, calm	98	•••••	148	15	South boundary flag	106	•••••	•••••	16
Ritzke s windmill, center	92	•••••	146	9	South Dakota-Nebraska boundary monu-		105		
Roberts Creek	110	•••••	•••••	10	ment.	93	125	146	10
Rose Knob	112	138		17	ment eccentric	03	195		10
Round Top	97	133	148	17	South Dakota-North Dakota milepost 333	03	120	147	11
Rubicon Point.	112	138		17	South Dakota-North Dakota milopost 333	00	120	111	11
Russeil	88	117	146	9	cccentric	93	126	146	11
					South Dakota-Wyoming boundary mon-				
Saddie	90	121	147	12	ument	93	125	146	10
Sagasta	102			16	Southeast base, Tonopah	109	136		17
Sage	112			17	Southeast corner, Montana, eccentrie	93	125	146	11
Salt Creek, cairn	101		148	16	Southeast corner. Montana. monument	93	·····/	147	11

159

Station.	Posi- tion.	De- scrip- tion.	Eie- va- tion.	Sketch.	Station.	Posi- tion,	De- serip- tion.	Eie- va- tion.	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page	Number
South Hill	110	137		17	Utah-Colorado middie boundary monn-		y		
South Juah hase	101			16	ment	100			15
South Mann, cairn	99			15	Utah-Colorado north boundary flag	100			15
South meridian, Green River	101	134		15	Utah-Colorado north boundary stone	100			15
South meridian, Oasis	102	135		16	Utah-Coiorado south boundary	100			15
South Peak, middle tree	106	• • • • • •		16	Utah-Nevada boundary monument	105			16
South Promontory, cairn	104	•••••	148	16	Utah-Nevada houndary monument	107	• • • • • •		16
South Sciplo, cairn	102		148	16	Utah-Nevada boundary stake	105			16
Southwest base, Oasis	102	135		16	11 H				
Spanish Fork, caim	102	•••••	1/0	10	Valley Knob	100	134	•••••	15
Springvine reak, monument	102	199	140	10	A simuth most	114	140		17
Stady	01	124	147	12	Rhoff	113	130		17
Star Peak	110		148	17	East base	113	139		17
State Capitoi domo, Denver	91		146	9	Longitude	114	139		17
Steihl's house, chimney	94		147	13	Merldian mark	114	139		17
Stone monument, California-Nevada	114	139		17	Peak	113	139		17
Strawberry North, summit	102			16	West hase	113	139		17
Subsidiary	97			14	Vlgus	110	137		17
Suliivan	89	119	146	10	Virginia City astronomie	113	139		17
Sullivan (U.S.G.S.)	93		• • • • • •	10	Virginla City Catholic Church spire	113	- • • • • •		17
Sundance	89	119	146	11	Virginia Peak, monument	112			17
Sutro	113	138		17	Volcano	112		148	17
Swasey Peak or Antelope Mountain	106	• • • • • •	148	10	Waddoup	96	131	148	16
(D.1).	60	100	148	11	Wadill	88	117	146	9
Table	09	120	140	15	Ward, north summit	107			16
Tallee Peak	113	138		10	Ward, small cairn	107		148	16
Tall new house, west gable	92	100	146	9	Warren	88	116	146	9
Tank	108	135		17	Wasatch	96	130	148	16
Tavaputs	96	130	148	15	Wash	100	134	·····	15
Tecoma railroad signboard eccentrie	105			16	Washoe Peak or Mount Rose	112	·····	·····	17
Telegraph office chimney, Ibcpah	106			16	Wassack	111	·····	[17
Telegraph office flag, Ibepah	106		۰	16	Watch	109	137	·····	17
Temple east spire, Salt Lake Clty	103		148	16	Water tank, nrick chiliney	114	110	140	11
Temple west spire, Salt Lake City	103		•••••	16	Water Banch	104	110	140	16
Terry	92	125	146	9	West base Green River	100	134		15
Terry.	89	120	146	11	West hase, Verdl.	113	139		17
Thompsons Springs, west tank	100	190	•••••	10	West Beaver monument	103			16
Tolyabe Dome southpast summit	110	104	148	17	West Deer Ear Butte	93		146	11
Toiyabe Done, southeast summit	100	137	140	17	West Elk Peak, cairn	99			15
Tolyabe Range Peak	110			17	Westminster schoolhouse helfry	91		146	9
Toivabe Range Peak, cairn	110			17	West Peninsula Peak	105			16
Tonopah:					West Sanpete	101	134		16
Astronomie	109	136		17	West Spanish Peak	98			15
North meridian	109	136		17	Wetterhorn, cigar peak	99			15
Northwest base	109	136		17	Wheatland standpipe	93	125	146	10
Southeast hase	109	136		17	Wheeler monument	113	120	140	11
Toquema	109		•••••	17	Wheeler Peak	107	100	145	16
Transit Venus station	107	• • • • • •		16	Wheeler stone	110	137		17
Treasury Mountain	96	129	148	15	Whetstone	90	120	146	11
Trotter	90	122	147	12	Whitaker	88	117	146	9,10
Tusnar	80	117	140	10	White boundary stako	105			16
Two Tipe north summit	112		140	17	Whito cairn	107			16
a no arps, norm summite					White house ehimncy	114			17
Uncompangre	96	129	148	15	White Pino	96	132	148	16, 17
Union	110	137		17	White Pino azimuth mark	107			16
Union depot, Ogden	104	•••••		16	White Pine south summit	107			17
United States Land Survey standard me-					White Rock	107		148	16
ridian, Salt Lake City	104	•••••		16	Willards Peak or Box Elder Peak, cairn	105	*****		16
University observatory dome, Denver	91		146	9	w miston	91	123	147	12

Station.	Posi- tion.	De- scrip- tion.	Ele- va- tion.	Sketch.	Station.	Posi- tion.	De- serip- tion.	Ele- va- tion.	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page.	Number
Willow	89	118	146	10	Wyoming-Nebraska boundary monument,				
Willow Spring	105			16	eccentric	93	125	146	10
Wood monnment, California-Nevada	114	139		17	Wyoming northeast corner, eccentric	93	125	147	11
Wymonkota	89	120	146	1.	Wyoming northeast corner, monument	93	125	147	11
Wyoming-Colorado boundary monument,					Wyoming-South Dakota boundary monu-				
milepost 44	92	125	146	9	ment	93	125	146	10
Wyoming-Nebraska boundary monument 123.	93	125	147	10					

48310°---14-----11

GENERAL INDEX.

	Page
Abstract of horizontal directions	49
A contract.	92
Flamations	1.0
Indicated by corrections to engles and elements of the	140
Indicated by corrections to aligns and closures of triangles.	00
Inducated by corrections to observed directions	53
Primary triangulation in the United States	79
Table of sections of triangulation in the United States in the	
order of	79
Adjustment of elevations	140
Adjustment of triangulation	41
Ambrose base	10
Cost	13
Table of results of the measurement	12
Azimuth, deviation of triangulation in	65
Azimuths:	
Accord of	63
Astronomia	151
ASUMINING	101
Base:	
Ambrose	10
Cheyenne	22
Conclusions from measurements of	28
El Paso, discussion of old measurement of	15
El Paso, measurement in 1913	19
Measurements in 1913	19
Nets	8
Provo	13
Readily of measurements	- 10
Citor	44
Oluca	ð
Stakes versus movable supports for measurement of	27
Tapes versus wires for measurement of	27
Bases:	
Accord of	63
Frequency of	8
Instructions for the measurement of	9
One hundred and fourth meridian, measurement of	9
Bench marks, connections of the triangulation with precise lev-	
eling	40
Boundaries:	
International, connections made with	39
State, connections made with	40
	10
Cheyenne base	22
. Cost	24
Table of results of the measurement	23
Computation of elevations	140
Condition equations	47
Colorado series	52
El Paso base net	51
One hundred and fourth meridian	47
Rocky Mountain series	51
Connections made between the one hundred and fourth meridian	
triangulation and stations and monuments of other surveys	20
Connections made between the thirty winth nemlial televeristion	0.0
and stations and menuments of ather station	10
and stations and monuments of other surveys	40
Conversion tables, feet to meters and meters to feet	84
Corrections to angles and closures of triangles, accuracy as indi-	
cated by	56
Corrections to directions, high, low, grazing, and refraction lines.	64
Corrections to directions observed in a single period and in two or	
more periods	65
Corrections to observed directions, accuracy as Indicated by	53

1		Page.
	Corrections to observed directions, table of	53
	Colorado series	53
	El Paso base net	53
1	Une hundred and fourth meridian	54
l	Rocky Mountain series	53
l	Cost of:	
	Allorose base	13
1	El Dere hare	24
1	Date has	24
	Papannoissen oo	15
I	Reconnoissance	8
I	Bignats	29
I	Trangulation	40
I	Dotum	
I	North American	20
ł	Unital States Standard	00
Į	Deflection of the monthl offect on deviction of triangulation in	00
ł	azimuth	75
ł	Deflections in the meridian from estronomia latitudes table of	152
ł	Deflections in the prime vertical from astronomic azimuths table	100
Ì	of	159
I	Deflections in the prime vertical from astronomic longitudes table	104
1	of	150
ł	Descriptions of stations	114
i	Index to	155
l	One hundred and fourth meridian	115
l	Thirty-ninth parallel	126
l	Deviation:	120
l	Eastern oblique arc in azimuth	74
l	Tables for east-and-west arcs, analysis of data	72
Ì	Tables for north-and-south arcs, analysis of data	70
ł	Triangulation in azimuth	65
ł	Deviation data:	
l	East-and-west arcs, table for	69
l	Explanation of tables.	66
	North-and-south ares, table for	67
ľ	Directions:	
1	Abstract of horizontal	42
l	Accuracy as indicated by corrections to observed	53
l	Observations for horizontal	35
l	Table of corrections to observed	53
ĺ	Drag, study of effect of	76
I		
	Elevations:	
l	Computation, adjustment and accuracy of	140
1	Of telescope above the station marks	42
I	Index to	155
ŀ	Table of	146
l	El Paso base:	
Į	Cost of	24
ĺ	Discussion of old measurement of	15
Í	Measurement in 1913	19
l	Table of results of 1913 measurement	21
1	Equations, condition	47
۱	Colorado series	52
l	El Paso base net	51
I	One hundred and fourth meridian	47
I	Rocky Mountain series	51
I	Errors, study of	64
l	Devlation of triangulation in azimuth	65
l	Effect of drag	76

GENERAL INDEX.

	Page.
General Land Office triangulation, connections made with	39
Geographic positions	88
Explanation of tables.	83
One hundred and fourth meridian	88
Publications containing, on North American datum	83
Thirty-ninth parallel	95
Geological Survey triangulation, connections made with	39
Halletnamer	- 21
Henotropes	31
Index to geographic positions, descriptions, elevations, and sketches	155
Instructions for:	
Base measurement	9
Light keepers.	32
Becompaissance general	30 A
Instruments.	30
Heliotropes	31
Lamps	31
Theodolites	30
Vertical circle	140
Vertical commator	30
International boundaries, confections made with	39
Lamps	31
Latitudes, astronomic	152
Light keepers	31
Continental Moree alphabet used by	33
Instructions to	32
Longitude, determination of astronomlc	148
	110
Marks:	
Ceneral notes in regard to station	115
Missourl River triangulation, connections made with	30
Morse alphabet	32
NY 14 A second 2 A second	
North American datum:	
Publications containing geographic positions on	80
r aparentene confining Poolabilic bootions out	00
Observations:	
For horizontal directions	35
Occupation of stations one hundred and fourth moridian	37
occupation of Santons, one manares and fourth metrulan	00
Positions, geographic:	
Explanation of tables	83
Index to	155
Publications containing on North American datum	88
Thirty-ninth parallel	03
Precise leveling bench marks, connections made with	40
Provo base	13
Cost of	15
Table of results of the measurement	• 14
Reconnolesance	0
Base sites and base nets	0
Character of figures	6
Cost of	8
Frequency of bases	- 8

	Page.
Reconnoissance—Continued.	
General Instructions for	6
Strongth of figures	8
Table for determining relative strength of Same	5
a sole for determining relative strength of lightes	1
Signal code for light keepers	32
Signals:	
Building of	28
Cost	29
Type	29
Sketches, triangulation.	154
Sketches, triangulation, index to	155
State boundaries connections made with	27
Strength of figures	39
Strength of figures table for determining relative	0
a stand of inguites, there is the television of the second stand is the second stand i	
Table:	
Ambrose base, results of measurement	12
Cheyenne base, results of measurement	23
Conversion, feet to meters and meters to feet	84
Corrections to observed directions	53
Deflections in the meridian from astronomic latitudes	153
Deflections in the prime vertical from astronomic azimuths	152
Deflections in the prime vertical from astronomic longitudes	150
Deviation data for east-and-west arcs	69
Deviation data for north-and-south arcs	67
Elevations	148
El Paso base, results of 1913 measurement.	21
Geographic positions	88
Geographic positions, explanation of	83
Provo Dase, results of measurement	14
Sections of triangulation in order of accuracy	79
Stations occupied on the one hundred and fourth meridian	38
Strength of ugures.	7
Tape values with five supports	26
Tape values with three supports	25
Tenes.	56
Standardization of	10
Supports for.	27
Versus wires	27
Tape values:	
Flve supports	26
Summary	25
Three supports	25
Theodolites	30
Triangles, accuracy as indicated by corrections to angles and	
closures of	56
Triangles, table of	56
Colorado series	57
El Paso base net.	57
Une nundred and jourth meridian.	58
Rocky Mountain series.	56
tion in estimath	
tion mazimuta	75
United States Standard datum	80
	00
Vertical circle	140
Vertical collimator	30
Wine vorens to not for hase measurements	~
TI DO TUTORO NOTION INT MADO INTOROMICITOTIOS	41

