PRIMARY TRIANGULATION 0N THE 0NE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA

U. S. Coast and Geodetio Survey

SPECIAL PUBLICATION NO. 19

washington

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation
http://www.archive.org/details/geodesyprimarytr00uscouoft

DEPARTMENT OF COMMERCE
 U. S. COAST AND GEODETIC SURVEY
 O. H_ TITTMIANIN
 SUPERINTENDENT

GEODESY

PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA

WIL工IAM BOWIR

Inspeotor of Geodetio Work and Chief of the Computing Division
U. 8. Coast and Geodetio Survey

SPECIAL PUBLICATION No. 19

ADDITIONAL COPIES

of this publication may be procured from TEE SUPERiNTENDENT OF DOCUMENTS government printing office

Washington, D. C.
AT
25 CENTS PER COPY
∇
$Q B$
311
445
1914

CONTENTS.

Page.
General statement 5
Reconnoissance 6
General instruetions for reconnoissance 6
Cost of reconnoissance. 8
Measurement of bases on the one hundred and fourth meridian 9
Ambrose base 10
Provo base 13
El Paso base, diseussion of old measurement 15
Base measurements in 1913 19
El Paso base 19
Cheyeune base 22
Conclusions from base measurements 28
Building signals and marking stations. 28
Instruments used on triangulation 30
Light keepers 31
Signal code and instruetions to light keepers 32
Observations for horizontal directions 35
General instructions to observers on primary triangulation 35
Methods of observing employed 37
Program of oeeupation of stations, one hundred and fourth meridian 38
Connections made-between the one hundred and fourth meridian triangulation and stations and monuments of other surveys. 39
Connections made between the thirty-ninth parallel triangulation and stations and monuments of other surveys. 40
Statement of costs 40
Statement of adjustments 41
Abstract of horizontal directions and elevation of telescope above the station mark 42
Condition equations 47
Aeeuracy as indicated by corrections to observed directions. 53
Aecuracy as indicated by corrections to angles and elosures of triangles 56
Accord of bases. 63
Aecord of azimuths. 63
Study of errors 64
Deviation of triangulation in azimuth 65
Effect of drag 76
Aecuraey of the primary triangulation in the United States 79
The North American datum 80
Explanation of tables of positions 83
Tables of positions 88
One hundred and fourth meridian 88
Thirty-ninth parallel. 95
Descriptions of stations 114
One hundred and fourth meridian 115
Thirty-ninth parallel. 126
Vertical eirele 140
Computation, adjustment, and accuraey of the elevations 140
Table of elevations 146
Determination of astronomic longitude 148
Astronomie azimuths 151
Astronomie latitudes. 152
Triangulation sketches 154
Index to positions, descriptions, elevations, and sketches 155
General index 162

ILLUSTRATIONS.

No.1. Reel for invar tape (two vicws)10
2. Twclve-inch theodolite 28
3a. Vcrtical collimator (two views) 30
3b. Box heliotrope used on triangulation. 32
3c. Largo acctylcno signal lamp used on triangulation 32
4. Standard triangulation station and reference marks. 114
5. Vertical circle used in trigonometric leveling and for making time observations 140
6a. Zenith telescope used for latitudo obscrvations. 150
6b. Portable wooden support with adjustablo Icgs for tho zenith telescope 152
6c. Motor truck uscd by latitude party. 152
7. Index map showing areas covered by published triangulation which has been rigidly computed on the North Amcrican datum 154
8. Index map showing tho main scheme of the triangulation published in this report and showing also tho limits of cach of the following sketches-Nos. 9 to 17. 154
9. Triangulation, one hundred and fourth meridian, stations Pikes Peak and Divide to Ragged and Whitaker. 154
10. Triangulation, one hundred and fourth meridian, stations Ragged and Whitaker to Alkali and Elk 154
11. Triangulation, one hundred and fourth mcridian, stations Alkali and Elk to Black and Rainy 154
12. Triangulation, onc hundred and fourth meridian, stations Black and Rainy to Canada boundary. 154
13. Triangulation, onc hundred and fourth meridian, Missouri River connection 154
14. Triangulation, thirty-ninth parallel, Kansas-Colorado boundary to stations Divide, Pikes Peak, and Plateau. 154
15. Triangulation, thirty-ninth parallel, stations Divide, Pikes Peak, and Plateau to Patmos Head and Mount Ellen 154
16. Triangulation, thirty-ninth parallel, stations Patmos Head and Mount Ellen to Diamond Peak and White Pine 154
17. Triangulation, thirty-ninth parallel, stations Diamond Peak and White Pine to California-Ncvada boundary. 154

PRIMARE TRIANGULATION 0N THE 0NE HUNDRED AND FOURTH MERIDIAN, aNd ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA.

By William Bowie,
Inspector of Geodetic Work and Chief of the Computing Division, United States Coast and Geodetic Survey.

GENERAL STATEMENT.
The primary object of this publieation is to give the geographic positions, elevations, and descriptions of the main scheme, subsidiary and intersection stations determined by primary triangulation in the State of Colorado and northward, from the line Pikes Peak-Divide of the thirty-ninth parallel triangulation, approximately along the one hundred and fourth meridian to the Canadian border, and also similar data for the various stations of the thirty-ninth parallel triangulation whieh lie in the States of Colorado, Utah, and Nevada.

The geographic positions are on the North American datum, and, as far as geographic purposes are concerned, they will probably not be changed. The geographie positions of stations of the thirty-ninth parallel within the States mentioned above, as given in Special Publieation No. 4 (The Transeontinental Triangulation), are superseded by the positions contained herein. That publieation was issued before the adoption of the North Ameriean datum.

The author desires to express his appreciation of the valuable serviees performed in the field and in the offiee by members of the Survey in conneetion with the one hundred and fourth meridian triangulation; also in the office work eonneeted with the readjustment of the thirtyninth parallel triangulation in Colorado, Utah, and Nevada, and the preparation of the results for publication. ${ }^{1}$

Especial mention should be made of E. H. Pagenhart and C. V. Hodgson, who were in eharge of the base measurements and triangulation observations; also of J. S. Bilby, who laid out the sehcme and selected the stations in the field and then prepared the stations for the observing party. In the offiee A. L. Baldwin had direet supervision of the eomputations and adjustments and prepared portions of the text. The heavy adjustments were made by W. F. Reynolds and O. S. Adams under Mr. Baldwin's direction. C. H. Swiek prepared the deseriptions of stations, assembled the tables, and edited the text. Of the others who assisted in the work, including the preparation of this report, W. D. Lambert, H. R. Tolley, E. F. Church, and E. M. Panopio should be mentioned.

The engineer intent only on seeuring the neeessary information to extend this triangulation or to basc other surveys on it will find the information he desires on pages 80 to 148 , eommencing with the explanation of the table of positions, lengths, and azimuths. The index, printed on pages 155 to 161, used in conneetion with the sketehes at the end of this publieation will enable him to find quiekly the data for any given locality.

Illustration No. 7, at the baek of this volume, shows graphieally the area eovered by each of the publieations of the United States Coast and Geodetie Survey and by onc publieation of the United States Army Engineers, which give the results of triangulation, whieh has been rigidly adjusted and computed on the North American datum.

In illustration No. 8 are shown the main scheme of the triangulation eovered by this report and the area eovered by each of the illustrations Nos. 9 to 17, whieh give the details of the triangulation nets.

[^0]There are also given in this publication deseriptions of the methods employed in the triangulation and base measurements on the one hundred and fourth meridian are and data necessary to show the aceuraey of the results of that work.

The methods employed on the thirty-ninth parallel triangulation and the aecuracy of the results are described in Special Publication No. 4 of the Coast and Geodetic Survey.

RECONNOISSANCE.

The reconnoissance for the triangulation on the one hundred and fourth meridian was done by Signalman J. S. Bilby in 1911. His party consisted of only one man besides himself; his equipment was three mules, one wagon, one riding saddle, uecessary tools for repairing the outfit, one tent, eots and bedding for two persons, and a few cooking utensils. The instruments he earried were a 4-ineh surveyor's transit, a prismatic azimuth compass, a field teleseope, binoculars, and a set of drawing instruments. He also earried copies of all the available maps covering all or parts of the area within whieh he operated.

The new seheme began with the line Pikes Peak-Divide of the transcontinental triangulation, with station Bison as the third and eheck point; it was earried northward to the ColoradoWyoming boundary, thence northeastward just across the Wyoming-South Dakota boundary, thenee northward to the international boundary.

Base lines were provided for at Provo, S. Dak. (approximate latitude $43^{\circ} 12^{\prime}$), and at Ambrose, N. Dak., at the northern end of the scheme.

Provision was made for connecting with a number of triangulation stations of the United States Geological Survey, with monuments of each State boundary erossed, with the triangulation stations of the Missouri River Commission where the seheme erossed that river, with triangulation stations of the international boundary, and with a number of beneh marks of various organizations.

The statistics of the reconnoissance are:
Length of scheme along its axis in miles. 720
Area of scheme in square miles. 17000
Number of stations in the main scheme 74
Number of subsidiary stations. 23
Number of base lines selected 2
Date of beginning field work. May 2, 1911
Date of ending field work. Aug. 10, 1911
Total length of season, months. 3.3
Rate of progress per month, miles. 218
Average number of stations selected per month:Primary.22
Subsidiary 7

GENERAL INSTRUCTIONS FOR RECONNOISSANCE.

1. Character of figures.-The chain of triangulation between base nets shall be made up of eompleted quadrilaterals and of central-point figures, with all stations oceupied. It must not be allowed to degenerate even for a single figure to simple triangles. Thero must bo two ways of computing the lengths through each figure. On the other hand there must be no overlapping of figures and no exeess of observed lines beyond those necessary to secure a double determination of every length, exeept that in a four-sided eentral-point figure one of the diagonals of the figure may be observed.
2. Strength of figures.-In the ehain of triangulation between base nets the value of the quantity $R=\left(\frac{D-C}{D}\right)$ $\Sigma\left[\hat{\delta}^{2}{ }_{A}+\delta_{A} \partial_{B}+\hat{\delta}^{2}{ }_{B}\right]$ for any one figure must not in the selected best ehain (eall it R_{t}) exeeed 25 , nor in the second best (eall it R_{2}) exceed 80 , in units of the sixth place of logarithms. These are extreme limits never to be exceeded. Keep the quantities R_{1} and R_{2} down to the limits 15 and 50 for tho best and seeond best ehains, respeetively, whenever the estimated total eost does not exeeed that for a ehain barely within the extreme limits by more than 25 per eent. The values of R may be readily obtained by the use of the following "Table for determining relative strength of figures iu triangulation."

In the above formula tho two terms $\frac{D-C}{D}$ and $\Sigma\left[\delta^{2}{ }_{A}+\delta_{A} \delta_{B}+\delta^{2}{ }_{B}\right]$ depend entirely upon the figures ehosen and are independent of the aeeuracy with which the angles are measured. The produet of these two terms is therefore a measure of the strength of the figures with respeet to length, in so far as the strength depends upon the selection of stations and of lines to be observed over.

In the following table the values tabulated are $\Sigma\left[\delta^{2}{ }_{A}+\delta_{A} \delta_{B}+\delta^{2}{ }_{B}\right]$. Tho unit is one in the sixth plaee of logarithms. The two arguments of the table are the distaneo angles in degrees, the smaller distauce angle being given at
the top of the table. The distance angles are the angles in each triangle opposite the known side and the side required. δ_{A} and δ_{B} are the logarithmic differences corresponding to one second for the distance angles A and B of a trianglc.

The square of the probablc error of the logarithm of a side of a triangle $i \frac{4}{3}\left(d^{2}\right) \frac{D-C}{D} \sum\left[\delta^{2}{ }_{\mathrm{A}}+\delta_{\mathrm{A}} \delta_{\mathrm{B}}+\delta_{\mathrm{B}}^{2}\right]$, in which d is the probable error of an observed direction. D is the number of directions observed in a figure and C is the number of conditions to be satisfied in the figure. The summation indicatcd by Σ is to be taken for the triangles used in computing the value of the side in question from the side supposed to be absolutely known.

The strength table is to be used in connection with the values of $\frac{D-C}{D}$ to decide during the progress of the reconnoissance which of the two or more possible figures is the strongest and to dctermine whether a sufficiently strong scheme has been obtained to make it inadvisable to spend more time in reconnoissance.

Table for determining relative strength of figures in triangulation.

Some values ${ }^{1}$ of the quantity $\frac{D-C}{D}$.-
For a completed quadrilateral, $\frac{10-4}{10}=0.60$.
For a three-sided, central point figure, $\frac{10-4}{10}=0.60$.
For a four-sided, central point figure, $\frac{14-5}{14}=0.64$.
For a five-sided, central point figure, $\frac{18-6}{18}=0.67$.
For a six-sided, central point figure, $\frac{22-7}{22}=0.68$.
For a four-sided, central point figurc, with one diagonal also observed, $\frac{16-7}{16}=0.56$.
3. Lengths of lines.-No line of the primary triangulation outside of the baso nets should be less than 6 kilometers long. There is little if any advantage, in so far as accuracy is concerned, in making tho lines much longer than this. Therefore endeavor, in laying out the triangulation scheme, to use the economie length of line; that is, endeavor to use in each region lines of such lengths as to mako the total cost of reconnoissance, building, and triangulation a minimum per mile of progress, subject to tho limitations stated in these instructions.
4. Frequency of bases.-If the character of tho country is such that a base site can bo found near any desired location ΣR_{1} between base lines should be mado about 130. This will bo found to correspond to a chain of from 15 to 35 triangles, according to the strength of the figures secured. With strong figures but few baso lines will be needed and a corresponding saving will be made on this part of the work. If topographic conditions make it difficult to secure a base sito at the desired location, ΣR_{1} may be allowed to approach but not exceed 200 . There will be danger when this is done that an intervening baso may be necessary, for if in any case the discrepancy between adjacent basos is found to exceed 1 part in 25000 an intervening baso must be measured.
5. Base sites and base nets.-In seleeting baso sites keep in mind that a base can be measured with the required degree of accuracy on any site where the grade on any 50 -meter tape length does not exceed 10 per cent, and that narrow valleys or ravines less than 50 meters wide in the direction of the base are not obstacles to measurement. The length of each base is to be not less than 4 kilometers. In each baso net great care should be taken to secure as good geometrical conditions as possible. There should be no hesitancy in placing the base on rough ground, provided the roughness is not greater than that indicated above, if by doing so tho geometrical conditions in tho base net are improved. Each base net should not be longer than two ordinary figures of the main chain between bases. Tho base net may also be strengthened by observing over as many lines between stations of the net as can be made intervisible without excessive cost for building or cutting. Caution is necessary in thus strengthening a base net by observing extra lines to avoid making the figure so complicated as to be excessively difficult and costly to adjust.

COST OF RECONTOISSANCE.

The total cost of the field work, including Mr. Bilby's salary and traveling expenses to the field, was $\$ 1,995$. As most of the cquipment of the party had been in use in previous scasons, new articles cost the party only about $\$ 75$. The cost of this reconnoissance per mile of progress was $\$ 2.77$, and is the lowest with which the writer is familiar. On page 168 of Appendix 4, Report for 1911, and page 10 of Spccial Publication No. 11 may be found statements of cost of provious reconnoissances.

As a proof of the accuracy of this reconnoissance, involving the sclection of 97 stations (main and subsidiary schemes) in a triangulation 720 miles (1160 kilomoters) in length, in only two places was it necessary to alter the proposed schemc, one at the cxtreme southern end and the other in the vicinity of Cheyenne.

An occasional obstructed line is to be expected, for the officer carrying on the reconnoissance is supposed to adopt such methods and makc such selections of stations as to make the total cost, including rcconnoissance, erecting signals, and observing, a minimum. It is obvious that the total would be greatcr if on the reconnoissance the officer spent cnough time testing each line to insure against every obstruction than if he took only the time ncccssary to make it reasonably sure that only an occasional line must be abandoned or an occasional station introduced into the scheme by the observing party. Besides, it is frequently the case that the party building the signals can tost any doubtful lines, and thus avoid dolays to the observing party.

The rcconnoissanco party obtainod the geographic locations of the stations by any moans available, such as estimated distance and compass bearing to a railroad station, topographic maps, Gencral Land Office maps, bcarings on mountain peaks whose positions were known, etc. Only such accuracy is required in the geographic positions of reconnoissance stations as to enable the light kecper and observer to signal cach other and to permit the computation of the strength of the figurcs. As the work progressed the chicf of party made sketches showing the approximate location of the stations and the lines to be obscrved.

Descriptions of the stations were written which enabled the building and obscrving partics and the light kcepers to find the stations selected. They also gave information as to the ncarest water for drinking and cooking and for stock, nearest post office, railroad station, and place where supplies might be purchased; also as to the best approach to the station, if it were in a rough or rugged country.

MEASUREMENT OF BASES ON THE ONE HUNDRED AND FOURTH MERIDIAN.

General statement.-According to the strength of the separate figures of the scheme of triangulation on the one hundred and fourth meridian only two new base lines were neccssary besides the known length, Pikes Peak-Divide, a line of the transcontinental triangulation. These two bases were located by the reconnoissance party at Ambrosc, N. Dak., near the Canadian boundary, and at Provo, in the southwestern corner of South Dakota, and were measured by the observing partics with invar tapes in 1912.

After the triangulation had been completed and a preliminary computation had been made, it was found that the length discrepancy between the Provo and the Ambrose bases was only 1 part in 83000 . However, the discrepancy between the line Pikes Peak-Divide and the Provo base was found to be 1 part in 13500 . A revised computation of the Provo base made no change in the length given by the first computation, and a close inspection of the computation of the old El Paso base and of the triangulation from that base to the line Pikes Peak-Divide showed that no error in computation had been made there. After considering all the facts the conclusion reached was that the discrepancy in length was probably due in part to some systematic or constant error in the measurement of the El Paso base with the base bars in $1878,{ }^{1}$ and also to accumulated errors in the triangulation between the Provo base and the line Pikes Peak-Divide.

It was thercfore decided to remeasure the El Paso base with the invar tapes, and this was done by Assistant C. V. Hodgson in the summer of 1913. A computation on the field showed a change of 1 part in 59000 in the old length of the El Paso base, but this change still left a discrepancy in length between the El Paso and Provo bases of 1 part in 24000. This showed a rather large accumulation of error in the triangulation, and it was decided to introduce an additional base in the scheme in the vicinity of Cheyenne, Wyo. This base also was measured with the invar tapes, by Assistant Hodgson, in 1913. The discrepancies in lengths are now:

Betwcen the El Paso basc (new length) and Cheyenne base, 1 part in 31000.
Bctween the Cheyenne base and Provo base, 1 part in 40000.
Between the Provo base and Ambrose base, 1 part in 109000.
Methods employed.-The following instructions for the measurement of the Ambrose and Provo bases were issued to Assistants E. H. Pagenhart and C. V. Hodgson, the chiefs of the two observing parties engaged on the triangulation on the one hundred and fourth meridian in 1912:

Abstract

The two bases shown by the reconnoissance scheme, one at Ambroso and ono at Provo, will be measured by the observing parties during the progress of the triangulation.

Very little increase in the average accuracy of the lengths of the triangle sides in the triangulation connected with a base will result from increasing the accuracy of the base measurement beyond that represented by a probable error of 1 part in 500000 in the length of the base. The following limits of accuracy are selected with a view of attaining a probable error but little, if any, greater than 1 part in 500000 . You will strive to keep as far within these limits as is possible by the use of good judgment and skill, but you will restrict the time and money expended upon each opcration substantially to that required to keep barely within them.

Four invar tapes are to be standardized at the Bureau of Standards, both before and after the measurement of the bases. Each base is to be measured with three of these invar tapes used in daylight or at night.- A base shall be measured in sections approximately 1 kilometer in length, except that one shorter section may bo used. Each section of a baso shall be mcasured with at least two different invar tapes. Different pairs of invar tapes shall be used on different sections, so that the threc tapes used on the base shall thereby be thoroughly intercompared. Two, and only two, measurements of each section shall be made, unless the discrepancy between these two measurements exceeds 20 millimeters $\sqrt{\mathrm{K}}$ (in which K is tho length of the section in kilometers), in which case additional measurements must be made until two are obtained which agree within this limit. The fourth invar tape standardized is to bo retained for use in case of serious damage to any of the three tapes with which the measurements would otherwise be mado.

Such precautions should be taken to secure accurate horizontal and vertical alignment of the tapes and the determination of the tension applied to the tapes as is necossary to insure that the crrors arising from these sources on a base shall cach be less than 1 part in 1000000 .

[^1]On the Stanton base, in Texas, the wind blowing against the tapes which had only three supports caused some trouble. The wind effect was mado negligible on the Deming base measurements by using five tape supports. In tho measurements of tho Ambrose and Provo bases either three or fivo supports may be used, but in no case should the effect of wind on tho length of a base be more than 1 part in 1000000 . The wind when at an appreciable angle with the direction of the baso tends to draw the ends of the tape closer together, and thus introduces a systematic error which makes the measured length of the base too long.

The remeasurement of the El Paso base and the measurement of the Cheyenne base in 1913 were made under the same instruetions as the bases at Ambrose and Provo.

Standardization of tapes.-The tapes were standardized at the Bureau of Standards, at Washington, D. C., both before and after the measurement of the Ambrose and Provo bases, and again after the remeasurement of the El Paso base and the measurement of the Cheyenne base. The length of the 50 -meter comparator was measured with iced bar B_{17} just before and after the comparison of the tapes with the comparator. In the determinations at the Bureau of Standards the tapes were used in practically the same manner as in the field. They were supported at the ends and at the middle point with all three supports in a straight line. Two thermometers were attached to each tape about 1 meter from the graduation mark at each end, and the fixed tension of 15 kilograms was applied. The tapes were suspended under the end mieroseopes of the eomparator, using the cut-off cylinders for the end supports. For a full description of the standardization of base tapes, sce pages 115-119 of Appendix 4, Report for 1907.

The same set of tapes has been used for all the primary bases measured since the season of 1906. These tapes have been standardized six times and the results are shown in tables on pages 25 and 26 .

AMBROSE BASE.

This base was located by the reeonnoissanee party in 1911, to the northwest of the town of Ambrose, in northwestern North Dakota. Its eonncction with the seheme of triangulation is shown on illustration 12 at the ond of this volumc. Ambrose northeast base is identieal with triangulation station School of the International Boundary Survey.

The land is level and comparatively smooth, and at the time of the base measurement all of it was covered with short prairie grass exeopt some sections which had been under cultivation.

Organization of party.-The Ambrose base was prepared for measurement by Signalman J. S. Bilby, who was assisted by some members of the triangulation observing party of Assistant E. H. Pagenhart. The setting of stakes began on May 11 and was finished on the 15th, the actual measurements with the tapes was done on three days between May 16 and 20, and on May 25 the field eomputation of the results was eompleted. Nine persons were engaged for all or part time upon the preparation, lcveling, and tapc measures. The party lived in tents while engaged on the measurement of this base.

Division of the base.-The base was divided into three main portions, the first extending from Northeast base to the end of the third kilometer, the second from the beginning of the fourth kilometer to the end of the seventh kilometer, and the third from the beginning of the eighth kilometer to Southwest basc. The total length of the base is 10479 meters. Each of the three main divisions was measured at least twice in opposite directions with different tapes, and a different pair was used on each division in order to obtain an intercomparison of the three tapes used in the measurements. Each of the main portions was in turn divided into kilometer sections.

The following table shows the divisions of the base with the tapes used on eaeh and the approximate length of the divisions.

Division.	Tapes used.	Length of divisions.
No. 1.....	Numbers. 516 and 517	Meters. 3000
No.2.....	517 and 521	4000
No. 3.	516 and 521	3.79

REEL FOR INVAR TAPES (TWO VIEWS).

The descriptions of the location and markings of the base ends are given on page 124.
Apparatus used.-As stated above, the same invar tapes have been used for measuring the primary bases since the compaign of 1906 , when six primary bases were measured with both steel and invar tapes. After those measurements it was dccided to discard the steel and do all primary measuring with the invar tapes. This decision has been justified by the results obtained.

These invar tapes are 50 meters in length and are similar to those described on pages 111113 of Appendix 4 of the Report for 1907. The stretcher and other minor parts of the base apparatus were of the same types as those described on pages 149 and 154 of Appendix 4 of the Report for 1910 and are shown in illustrations 4 and 5 of that publication. The reel used for the invar tape is shown in illustration No. 1 of this publication.

Setting stakes and measuring.-The method of setting the stakes on which the tape is supported while making the measurements and the method of carrying on those measurements are rather fully described in the three publications of this Survey giving the results of base measurements in recent years. They are Appendix 1 of the Report for 1901, Appendix 4 of the Report for 1907, and Appendix 4 of the Report for 1910. It is not necessary to go into the details of the methods here. Any one or all of those publications may be obtained free of cost by application to the Superintendent of the United States Coast and Geodetic Survey.

On all of the bases measured on the one hundred and fourth meridian only three supports for a tape were used, as the wind on many days was found to be light and to have a negligible effect. When the wind was strong no measurements were attempted.

Equations of tapes.-The equations of the tapes, furnishcd by the Bureau of Standards and resulting from the standardization in March, 1912, are:

$$
\begin{aligned}
& T_{\mathrm{B} 11}=50 \mathrm{~m}+(9.573 \mathrm{~mm} \pm 0.029 \mathrm{~mm})+(0.0178 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) ; \\
& T_{\mathrm{B17}}=50 \mathrm{~m}+(9.960 \mathrm{~mm} \pm 0.022 \mathrm{~mm})+(0.0160 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.9^{\circ} \mathrm{C}\right) ; \\
& T_{\mathrm{B} 21}=50 \mathrm{~m}+(10.124 \mathrm{~mm} \pm 0.021 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) ; \\
& T_{\mathrm{B} 22}=50 \mathrm{~m}+(10.988 \mathrm{~mm} \pm 0.017 \mathrm{~mm})+(0.0614 \mathrm{~mm} \pm 0.0011 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right)
\end{aligned}
$$

The equations of the same tapes, furnished by the Bureau of Standards and resulting from the restandardization in January, 1913, are:

$$
\begin{aligned}
& T_{516}=50 \mathrm{~m}+(9.556 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 23.3^{\circ} \mathrm{C} ; \\
& T_{\mathrm{b17}}=50 \mathrm{~m}+(9.953 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 23.3^{\circ} \mathrm{C} ; \\
& T_{\mathrm{s} 21}=50 \mathrm{~m}+(10.077 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 23.3^{\circ} \mathrm{C} ; \\
& T_{\mathrm{s} 22}=50 \mathrm{~m}+(10.793 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 23.3^{\circ} \mathrm{C} .
\end{aligned}
$$

The determination of the coefficient of expansion of each of these tapes was made by the Bureau of Standards in January, 1909. Tape No. 522 was carried to the field, but was not used in the measurements.

The equations resulting from the January, 1913, standardization, reduced to the temperatures of the March, 1912, standardization, are:

$$
\begin{aligned}
& T_{518}=50 \mathrm{~m}+(9.618 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; \\
& T_{517}=50 \mathrm{~m}+(10.011 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.9^{\circ} \mathrm{C} ; \\
& T_{521}=50 \mathrm{~m}+(10.149 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; \\
& T_{522}=50 \mathrm{~m}+(11.008 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} .
\end{aligned}
$$

The adopted equations of the tapes used in the final computations of the Ambrose base are:

$$
\begin{aligned}
& T_{515}=50 \mathrm{~m}+(9.582 \mathrm{~mm} \pm 0.012 \mathrm{~mm})+(0.0178 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) ; \\
& T_{517}=50 \mathrm{~m}+(9.970 \mathrm{~mm} \pm 0.014 \mathrm{~mm})+(0.0160 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.9^{\circ} \mathrm{C}\right) ; \\
& T_{521}=50 \mathrm{~m}+(10.129 \mathrm{~mm} \pm 0.007 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

These values are based upon the assumptions that the difference between the lengths as given by the two standardizations are actual differences in the lengths (that is, that the standardizations were made without error), and also that this change had taken place gradually and at a uniform rate from March, 1912, to January, 1913, the dates of the two standardizations.

In ordor to eompare the lengths of the tapes, the results of the two standardizations are given in the following table:

$$
\begin{aligned}
& \text { Mar., 1912, } T_{\text {s10 }}=50 \mathrm{~m}+(9.573 \mathrm{~mm} \pm 0.029 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=+0.023 \mathrm{~mm} \text {; } \\
& \text { Jan., 1913, } T_{516}=50 \mathrm{~m}+(9.618 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=-0.022 \mathrm{~mm} \text {. } \\
& \text { Mean }=9.596 \mathrm{~mm} \\
& \text { Mar., 1912, } T_{517}=50 \mathrm{~m}+(9.960 \mathrm{~mm} \pm 0.022 \mathrm{~mm}) \text { at } 26.9^{\circ} \mathrm{C} ; v=+0.026 \mathrm{~mm} \text {; } \\
& \text { Jan., 1913, } T_{517}=50 \mathrm{~m}+(10.011 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.9^{\circ} \mathrm{C} ; v=-0.025 \mathrm{~mm} \text {. } \\
& \text { Mean }=9.986 \mathrm{~mm} \\
& \text { Mar., 1912, } T_{621}=50 \mathrm{~m}+(10.124 \mathrm{~mm} \pm 0.021 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=+0.012 \mathrm{~mm} \text {; } \\
& \text { Јan., 1913, } T_{521}=50 \mathrm{~m}+(10.149 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=-0.013 \mathrm{~mm} \text {. } \\
& \text { Mean }=10.136 \mathrm{~mm} \\
& \text { Mar., 1912, } T_{622}=50 \mathrm{~m}+(10.988 \mathrm{~mm} \pm 0.017 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=+0.010 \mathrm{~mm} \text {; } \\
& \text { Jan., 1913, } T_{523}=50 \mathrm{~m}+(11.008 \mathrm{~mm} \pm 0.016 \mathrm{~mm}) \text { at } 26.8^{\circ} \mathrm{C} ; v=-0.010 \mathrm{~mm} \text {. } \\
& \text { Mean }=10.998 \mathrm{~mm}
\end{aligned}
$$

Five of these residuals are smaller than the probable errors of the standardizations, and in no ease do they exceed these probable errors by an appreciable amount. Therefore it is reasonable to suppose that between the standardizations the tapes underwent no permanent change in length and that the differences were due to errors in the standardization itself. This shows that a straight mean of the results of the January, 1912, and March, 1913, standardizations could have been used in making the computations of the two bases without introdueing any error as great as the probable error of the standardization of a tape, which is on an average less than 1 part in 1000000.

Reduction to sea level. -The elevation of Ambrose Northeast base, as given by a conneetion with the spirit leveling along the international boundary, is 623.521 meters. The mean elevation of each section of the base was obtained from the leveling which was run for the purpose of getting the inelination corrections necessary to reduce the measures to the horizontal.

The formula used in reducing the base to sea level is

$$
C=-S \frac{h}{r}+S \frac{h^{2}}{r^{2}}-S \frac{h^{3}}{r^{3}}, \text { etc. }
$$

in which C is the reduction to sea level for a section of length S and mean olevation h, and r is the radius of the earth's eurvature for the section in question. The reduction to sea level for each section of the base is given in the following table in the eolumn headed "Reduetion to sea level."

Results of the measurement.-The results of the measurement of the Ambrose base are given in the following table:

The Ambrose base line.

Section.	Date and hour.	Di-rec-tlonofmeas-ure.	$\left.\begin{array}{\|c} \text { Tape } \\ \mathbf{N o .} \end{array} \right\rvert\,$	Weather and wind. ${ }^{1}$	Temperature (centigrade).		Correc tlon to length for tem. perature.	Set-up or setback.	Grade correctlon.	Tape correct10n.	Reductlon tosealevel.	Reduced lengths of sea tions.	Adopted lengths of sectlons	v.	จv.
					$\begin{aligned} & \mathrm{R}, \\ & \mathrm{~F}, \\ & \text { or } \\ & \mathrm{S} .8 \end{aligned}$										
I, N. E. B.-20..	$\begin{gathered} \text { May, } 1912 . \\ 18,8: 10 \text { a. m. } \\ 16,11: 10 \text { a. m. } \end{gathered}$	$\underset{\mathbf{E}}{\mathbf{W}}$	$\begin{aligned} & 517 \\ & 516 \end{aligned}$	$\begin{gathered} \mathbf{C}, \mathrm{L} \\ \mathrm{C}, \mathrm{~L} \\ \mathrm{~S} \\ \mathrm{~W} \end{gathered} .$	R	26.2	m -0.0063 0.0000	m - -0.0395 -0.0312	$\begin{gathered} m \\ -0.1592 \\ -0.1592 \end{gathered}$	$\begin{gathered} m \\ +0.1994 \\ +0.1916 \end{gathered}$	$\begin{gathered} m \\ -0.0969 \\ -0.0969 \end{gathered}$	$\begin{gathered} m \\ 999.8975 \\ 999.9043 \end{gathered}$	$\begin{gathered} m \\ 999.9009 \end{gathered}$		$\begin{aligned} & m m \\ & 11.56 \\ & 11.56 \end{aligned}$
II, 20-40........		$\begin{aligned} & \mathbf{W} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 517 \\ & 516 \end{aligned}$	C, I, F........	$\begin{gathered} \mathrm{R} \\ \mathrm{R} \end{gathered}$	8.9 25	-0.0058 -0.0006	-0.0072	-0.2346 -0.2346	+0.1994 +0.1916	$\left\lvert\, \begin{aligned} & -0.0965 \\ & -0.0968 \end{aligned}\right.$	$\begin{aligned} & 999.8550 \\ & 999.8596 \end{aligned}$	999.8573	$\left\{\begin{array}{l}+2.3 \\ -2.3\end{array}\right.$	$\begin{aligned} & 5.29 \\ & 5.29 \end{aligned}$
III, 40-60..	$\left\{\begin{array}{ll} 18, & 9: 25 \mathrm{a} . \mathrm{m} . \\ 16, & 8: 50 \mathrm{a} . \mathrm{m} . \end{array}\right\}$	$\underset{\mathrm{E}}{\mathbf{W}}$	$\begin{aligned} & \mathbf{5 1 7} \\ & \mathbf{5 1 6} \end{aligned}$	$\begin{aligned} & \text { Cy, L E...... } \\ & \text { C, L, BE...... } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathbf{R} \end{aligned}$	$\begin{aligned} & 10.8 \\ & 20.1 \end{aligned}$	$\left\|\begin{array}{l} -0.0052 \\ -0.0024 \end{array}\right\|$	$\begin{array}{r} +0.0185 \\ +0.0257 \end{array}$	$\left\lvert\, \begin{aligned} & -0.1056 \\ & -0.1056 \end{aligned}\right.$	$\begin{aligned} & +0.1994 \\ & +0.1916 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0976 \\ & -0.0976 \mid \end{aligned}\right.$	$\left[\begin{array}{l} 1000.0095 \\ 1000.0117 \end{array}\right.$	1000.0106	$\left\{\begin{array}{l}+1.1 \\ -1.1\end{array}\right\}$	$\begin{aligned} & 1.21 \\ & 1.21 \end{aligned}$

[^2]The Ambrose base line-Continued.

The length of the Ambrose base $=10479.1774 \pm 0.0035$ meters.
The logarithm of this length is 4.0203272 ± 1.
This probable crror of the length corresponds to 1 part in 3029000.
The computation of the probable error was made in a manner similar to that described on pages 160-161 of Appendix 4 of the Report for 1910.

Cost of Ambrose base.-The cost of preparing and measuring the Ambroso base was about $\$ 500$. This amount includes the salary or pay of each person while engaged on this base, and such other expenses incurred as were not properly chargeable to tho triangulation. It docs not includo any traveling expenses of the members of the party to the field, or the costs of any articles of outfit. The length of this base was 10.5 kilometers, hence the cost per kilometer was about $\$ 48$, or $\$ 77$ per milo.

If there be included $\$ 200$ for the cost of one standardization of the four tapes (see p. 15), and also about $\$ 40$ for the cost of making the final computation at the office, then tho total cost of the base to the Government would be about $\$ 740$. This is at the rate of about $\$ 70$ per kilometer, or $\$ 113$ per mile.

PROVO BASE.

This base line was located in the southwestern portion of the State of South Dakota, near Provo railroad station and village.

Tho ground over which the base passed is gently rolling, with some gulches, none of which wero too wide to be spanned by a 50 -metcr tape. Except in one case the grade of a singlo tape length was not greater than 5 per cent. The land was free from trees and clear except for sagebrush over about 3 kilometers. This brush was only about 15 inches high and the line through it was casily clearcd. Only a small portion of the land along the base had ever. been under cultivation.

Organization of party.-As on the Ambrose base, the building party prepared the Provo base for measurement. There were six persons in all cngaged on this work, and the total time consumed was scven working days, betwcen August 23 and 30, 1912, inclusive.

Tho observing party of Assistant Hodgson, aided by Mr. Bilby, was engaged on the measurement between October 3 and 8, 1912. Including five hands, the observing party consisted of a total of seven persons.

Division of the base.-As in the case of the Ambrose base (see p. 10) this base was divided into three parts, each of which was measured twiee in opposite direetions with different tapes. The measurements were so planned that it was possible to obtain an intereomparison between each two tapes used.

The following table shows the divisions of the base, with the tapes used on each and the approximate length of the divisions:

Division.	Tapes used.	Length of division.
$\begin{aligned} & \text { No. } 1 \\ & \text { No. } 2 \\ & \text { No. } 3 \end{aligned}$	Numbers. 516 and 521 517 and 516 521 and 517	Melers 5000 5000 4550

The descriptions of the loeation and markings of the base ends are given on page 119.
Apparatus used. -The same tapes and other apparatus which were used on the Ambrose base were used at Provo. (See p. 11.)

Setting stakes and measuring.-Three stakes were used for each tape length, one at each end and one in the eenter. The measurements were made in the same way as on the Ambrose base. (See p. 11.) The wind effect on the Provo base was negligible.

Equations of tapes.-The equations of the tapes as determined in Mareh, 1912, and January, 1913, are given on page 11, and need not be repeated here.

The adopted equations of the tapes used in the final computation of the Provo base are:

$$
\begin{aligned}
& T_{516}=50 \mathrm{~m}+(9.605 \mathrm{~mm} \pm 0.014 \mathrm{~mm})+(0.0178 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) ; \\
& T_{517}=50 \mathrm{~m}+(9.996 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0160 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-26.9^{\circ} \mathrm{C}\right) ; \\
& T_{531}=50 \mathrm{~m}+(10.142 \mathrm{~mm} \pm 0.008 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-26.8^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

These values were based upon the assumptions that the difference between the lengths, as given by the two standardizations, were actual differences in lengths (that is, that the standardizations were made without error), and also that this change had taken place gradually and at a uniform rate from Marel, 1912, to January, 1913, the dates of the two standardizations.

Reduction to sea level.- The elevation of Provo west base, as given by a connection with a line of precise leveling running through Provo, is 1177.19 meters. A double line of spirit levels was run over the base for the purpose of getting the grade corrections and the mean elevations above sea level of each seetion. The correction to reduce to sea level was computed by the formula shown on page 12, and is given for each section in the column headed, "Reduction to sea level" in the following table.

Results of the measurement.-The results of the measurement of the Provo base are given below:

The Prom buse line.

[^3]The Provo base line-Continued.

Section.	Date and hour.	Di-rec-tionofmeas-ure.	$\begin{array}{\|c} \text { Tape } \\ \text { No. } \end{array}$	Weather and wind.	Temperature (centigrade).		Correction to length for tem-perature.	Set-up or set back.	Grade correction.	Tape correction.	$\begin{aligned} & \text { Reduc- } \\ & \text { tion to } \\ & \text { sea } \\ & \text { level. } \end{aligned}$	Reduced lengths of sections.	Adopted lengths of sections.	v.	vv.
					R, \mathbf{F}, or S.										
V, 80-100......	Oct., 1912.	W	$\begin{aligned} & 516 \\ & \mathbf{3} 21 \end{aligned}$	$\begin{aligned} & \mathrm{Cy}, \frac{\mathrm{II}}{\mathrm{~N}} \mathrm{~W} . . \\ & \mathrm{C}, \mathrm{~L} \\ & \mathrm{SE} \end{aligned}$	S	$\begin{array}{r} 15.6 \\ 6.3 \end{array}$	$\begin{gathered} m \\ -0.0040 \\ -0.0084 \end{gathered}$	m+0.0408+0.0371	m-0.2234	m+0.1921+0.2028	m-0.1769	$\left.\begin{array}{c} m \\ 999.8286 \\ 999.8312 \end{array}\right\}$	$\begin{gathered} m \\ 999.8299 \end{gathered}$	$\left\{\begin{array}{c} m m \\ +1.3 \\ -1.3 \end{array}\right.$	$\begin{gathered} m m \\ 1.69 \\ 1.69 \end{gathered}$
	2:20 p.m..														
	7:45 a.m.-								-0.2234		-0.1769				
VI, 100-120.	$\left\|\begin{array}{l} 3,12: 25 \\ 3,11: 00 \mathrm{a} . \mathrm{m} . . \end{array}\right\|$	$\underset{\text { W }}{\text { F }}$	517	$\begin{gathered} \text { C, L W. W...... } \\ \text { C, L } \end{gathered}$	S	$\begin{aligned} & 24.3 \\ & 20.8 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0008 \\ & -0.0021 \end{aligned}\right.$	$\left[\begin{array}{r} -0.0099 \\ 0.0000 \end{array}\right]$	$\begin{aligned} & -0.1170 \\ & -0.1170 \end{aligned}$	$\begin{aligned} & +0.1999 \\ & +0.1921 \end{aligned}$	-0.1766	$\left\{\begin{array}{l} 999.8936 \\ 999.8964 \end{array}\right\}$	999.8950	.	0.160.16
											-0.1766				
VI1, 120-140....	$\left\{\begin{array}{l}3,1: 00 \mathrm{p.m..} \\ 3,10: 30 \mathrm{a.m.} .\end{array}\right.$	$\underset{\mathbf{W}}{\mathbf{W}}$	517316	C. L W......	S	$\begin{aligned} & 24.0 \\ & 19.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0009 \\ & -0.0026 \end{aligned}\right.$	$\begin{array}{\|} -0.0133 \\ 0.0000 \end{array}$	$\begin{array}{r} -0.0936 \\ -0.0936 \end{array}$	$\begin{aligned} & +0.1999 \\ & +0.1921 \end{aligned}$	-0.1758	$\left.\begin{array}{l} 999.9158 \\ 999.9201 \end{array}\right\}$	\} 999.9180	$\left\{\begin{array}{l}+2.2 \\ -2.1\end{array}\right.$	4.844.41
											-0.1758				
V111, 140-160...	$\left\{\begin{array}{l}3, \\ 3, \\ 3, \\ \text { 9:50 } \\ \text { a }\end{array}\right.$	$\underset{\text { W }}{\text { E }}$	517516	$\begin{aligned} & \text { C, L W...... } \\ & \text { C, L W...... } \end{aligned}$	$\underset{\mathrm{F}}{\mathrm{F}}$	$\begin{aligned} & 24.9 \\ & 17.4 \end{aligned}$	$\left[\begin{array}{l} -0.0006 \\ -0.0034 \end{array}\right.$	- $\begin{array}{r}0.0106 \\ 0.0000\end{array}$	$\begin{aligned} & -0.1048 \\ & -0.1048 \end{aligned}$	$\begin{aligned} & +0.1999 \\ & +0.1921 \end{aligned}$	$\begin{aligned} & -0.1770 \\ & -0.1770 \end{aligned}$	$\begin{aligned} & 999.9069 \\ & 999.9069 \end{aligned}$	999.9069	$\left\{\begin{array}{l} 0.0 \\ 0.0 \end{array}\right.$	0.000.00
1X, 160-180.	$\left\{\begin{array}{l}3, \\ 3, \\ 3, \\ 9: 100 \\ \text { a } \\ \text { a m. m. }\end{array}\right.$	$\underset{\text { E }}{\text { E }}$	517516	$\begin{gathered} \text { C, L W...... } \\ \text { C, L W...... } \end{gathered}$	S	$\begin{aligned} & 24.3 \\ & 14.9 \end{aligned}$	$\begin{aligned} & -0.0008 \\ & -0.0042 \end{aligned}$	$\begin{aligned} & +0.0384 \\ & +0.0522 \end{aligned}$	$\begin{aligned} & -0.3527 \\ & -0.3527 \end{aligned}$	$\begin{aligned} & +0.1999 \\ & +0.1921 \end{aligned}$	$\begin{aligned} & -0.1754 \\ & -0.1754 \end{aligned}$	$\left\{\begin{array}{c} 999.7094 \\ 999.7120 \end{array}\right\}$	999.7107	$7\left[\left\{\begin{array}{l} +1.3 \\ -1.3 \end{array}\right]\right.$	1.691.69
X,180-200.....	$\left\{\begin{array}{l}3, \\ 3, \\ 3, \\ \text { 8:20 } \\ \text { a } \\ \text { a m. m. }\end{array}\right.$	$\underset{\text { E }}{\text { E }}$	$\begin{gathered} 517 \\ 516 \end{gathered}$	$\begin{aligned} & \text { C, L W...... } \\ & \text { C, L W...... } \end{aligned}$	S	124.4	-0.0008	$\begin{aligned} & +0.0303 \\ & +0.0418 \end{aligned}$	$\begin{aligned} & -0.5497 \\ & -0.5497 \end{aligned}$	$\begin{aligned} & +0.1999 \\ & +0.1921 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.1745 \\ & -0.1745 \end{aligned}\right.$	$\left.\begin{array}{l} 999.5052 \\ 999.5047 \end{array}\right\}$	999.5050	$\left\{\left.\begin{array}{l} -0.2 \\ +0.3 \end{array} \right\rvert\,\right.$	0.040.09
XI, 200-220...	$\left\{\begin{array}{l} 3, \\ 3: 15 \\ \mathrm{R}, \mathrm{p} . \mathrm{m} . . \\ 11: 30 \mathrm{a} . \mathrm{m} . . \end{array}\right.$	$\underset{\text { W }}{\text { E }}$	$\begin{aligned} & 521 \\ & 517 \end{aligned}$	$\begin{aligned} & \text { C, O} \\ & \text { c, } \mathbf{M} \ldots \end{aligned}$	F	$\begin{aligned} & 23.6 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 0.0013 \\ & -0.0028 \end{aligned}$	$\begin{aligned} & +0.0450 \\ & +0.0461 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.1158 \\ & -0.158 \end{aligned}\right.$	$\begin{aligned} & +0.2028 \\ & +0.1999 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.1742 \\ & -0.1742 \end{aligned}\right.$	$\left.\begin{array}{l} 999.9565 \\ 999.9532 \end{array}\right\}$	999.9549	$\left\|\begin{array}{l} -1.6 \\ +1.7 \end{array}\right\|$	$\begin{aligned} & 2.56 \\ & 2.89 \end{aligned}$
X11, 220-240...	$\left\{\begin{array}{l} 3, \quad 3: 50 \mathrm{p} . \mathrm{m..} \\ 8,11: 00 \mathrm{a} . \mathrm{m} . . \end{array}\right.$	$\underset{\text { E }}{\text { E }}$	521	$\begin{aligned} & \text { c, o........ } \\ & \text { c, }, ~ \end{aligned}$	$\frac{\mathrm{S}}{\mathrm{~F}}$	$\begin{aligned} & 22.4 \\ & 17.7 \end{aligned}$	$\begin{aligned} & -0.0018 \\ & -0.0029 \end{aligned}$	$\begin{array}{r} +0.0273 \\ +\quad 0.0255 \end{array}$	$\begin{aligned} & -0.2201 \\ & -0.2201 \end{aligned}$	$\begin{aligned} & +0.2028 \\ & +0.1999 \end{aligned}$	$\left.\begin{array}{\|l\|} -0.1747 \\ -0.1747 \end{array} \right\rvert\,$	$\left\{\begin{array}{\|c\|} 999.8335 \\ 999.8277 \end{array}\right\}$	999.8306	$\left\{\begin{array}{l} -2.9 \\ +2.9 \end{array}\right.$	$\begin{aligned} & 8.41 \\ & 8.41 \end{aligned}$
XIIL, 240-260...	$\left\{\begin{array}{l} 8,8: 20 \mathrm{a} . \mathrm{m} . . \end{array}\right.$	$\underset{\text { E }}{\text { E }}$	$\begin{aligned} & 521 \\ & 517 \end{aligned}$	$\begin{aligned} & \text { C, L NW.... } \\ & \text { C, M NW... } \end{aligned}$	$\xrightarrow{\mathbf{R}}$	9.716.8	$\begin{aligned} & -0.0070 \\ & -0.0032 \end{aligned}$	$\begin{array}{r} 0.0000 \\ -0.0051 \end{array}$	$\begin{aligned} & -0.2744 \\ & -0.2744 \end{aligned}$	$\begin{aligned} & +0.2028 \\ & +0.1999 \end{aligned}$	$\left\|\begin{array}{l} -0.1746 \\ -0.1746 \end{array}\right\|$	$\begin{aligned} & 999.7468 \\ & 999.7426 \end{aligned}$	999.7447	$\left\{\begin{array}{l} -2.1 \\ +2.1 \end{array}\right.$	$\begin{aligned} & 4.41 \\ & 4.41 \end{aligned}$
XIV, 260-280.	\{ ${ }_{8}, 8: 50 \mathrm{a}, \mathrm{m} .$.	$\underset{\text { E }}{ }$	521	C, I, N	S	10.8	-0.0066	0.0000	-0.0589	+0.2028	-0.1752	999.9621		$\underline{+0.8}$	0.64
XN, 260-2s0.	8, 10:15 a.m..	W	517	C	S	16		+ 0.0013	-0.0589	+0.1999	-0.17	999.9637		-0.8	0.64
XV, 280-E.B..	8, 9:20 a.m..	E	521	C, L NW	R	11.8	-0.0034	$+0.2109$	-0.0164	$+0.1116$	-0.0966	550.2061	550.2049	$\left\{\begin{array}{l} -1.2 \\ +1.2 \end{array}\right.$	$\begin{aligned} & \text { 1. } 44 \\ & \text { 1. } 44 \end{aligned}$
	8, 10:00 a.m..	W	517	C, L NW	S	15.0	-0.0021	+ 0.2088	-0.0164	+0.1100	-0.0966	550.2037			

The length of the Provo base is 14559.2511 ± 0.0046 meters.
The logarithm of this length is 4.1631390 ± 1.
This probable error of the length corresponds to one part in 3165000 :
The computation of the probable error was made in a manner similar to that described on pages 160-161 of Appendix 4 of the report for 1910.

Cost of the Provo base.-The cost of preparing this base and making the measurements was about $\$ 525$. This includes all salaries, but there was nothing charged for traveling expenses or outfit.

As the base is 14.5 kilometers in length, the field work cost at the rate of about $\$ 36$ per kilometer. If to the above amount is added one-half the cost of the two standardizations of the four tapes (the cost is $\$ 50$ to anyone not connected with the Government for the fundamental standardization of a base tape by the Bureau of Standards), and also about $\$ 40$ for the cost of making the revised or office computation, the total cost will be $\$ 765$, a rate of about $\$ 53$ per kilometer, or $\$ 85$ per mile. This low cost was due in part to the absence of traveling expenses and any unproductive period before or after the preparation and the measurement of the base.

EL PASO BASE, DISCUSSION OF OLD MEASUREMENT.

This base was located in 1878 by former Assistant O. H. Tittmann (now superintendent) on the eastern slope of the Rocky Mountains, in El Paso County, Colo., about 30 miles (48 kilometers) east-northeast of Pikes Peak. The middle point of the base is in approximate latitude $38^{\circ} 58^{\prime}$ and longitude $104^{\circ} 31^{\prime}$. The length is about $11 \frac{1}{4}$ kilometers.

The base was measured by the party of Mr. Tittmann between August 7 and September 4, 1879, onee forward and once baekward, with the 6-meter contact-slide steel rods Nos. 3 and 4. The methods employed in the measurement of this base and the results obtained are given on pages 101-107 of Special Publication No. 4, The Transcontinental Triangulation.

Length of the contact-slide rods Nos. 3 and 4.-It is stated in the above-mentioned publication that these rods were compared at the survey office with the standard iron 6 -meter bar No. 1 just before and just after the measuroments in the field. The length of bar No. 1 was obtaincd from comparisons with six stcel meter bars cspecially constructed for the purpose. The coefficient of expansion of bar No. 1 was determined by cxtensive observations made in 1860. An account of these observations is given in Appendix 26 of the report for 1862.

The observations in 1877 for the length of the 6 -meter standard (No. 1) consisted in the first place of intercomparisons of the six stcel meter bars (Nos. 1, 12, 13, 19, 28, 35) and of bar No. 19 with the committeo meter; and, secondly, of comparisons of length of the six 1 -meter bars (joined together) with the 6 -meter bar (No. 1). In these comparisons scveral thermometers were used and their readings were corrected for index crror and defects in graduation. The avcrage temperature during the comparisons was about $7 \frac{1}{2}^{\circ} \mathrm{C}$. The resulting value of the length of 6 -meter bar No. 1 was 5.9999547 ± 25 at $0^{\circ} \mathrm{C}$.

The value derived from a comparison in 1860 was 5.9999407 ± 8 at $0^{\circ} \mathrm{C}$.
An additional value for the length of 6 -meter bar No. 1 was obtained from comparisons made in 1882 at the survey office with a 5 -meter standard to which was joined a single meter bar, both of known length. This value was 5.9999461 ± 46 at $0^{\circ} \mathrm{C}$. For the final valuo of 6 -metcr bar No. 1, the weighted mean of the thrce values of 1860,1877 , and 1882 , with their respective weights $\frac{1}{2}, 1$, and $\frac{1}{2}$, were taken. The resulting length of the standard was 5.999949 ± 3 at $0^{\circ} \mathrm{C}$.

A comparison in May, 1879, of the 6 -meter contact-slide rods Nos. 3 and 4 with standard No. 1 gave the following rcsults:

Length of No. $3=6.001076 \pm 5$ at $17.28^{\circ} \mathrm{C}$.
Length of No. $4=6.001142 \pm 4$ at $17.28^{\circ} \mathrm{C}$.
A second comparison, made in Novomber, 1879, gave the following lengths:
Length of No. $3=6.000514 \pm 4$ at $7.74^{\circ} \mathrm{C}$.
Length of No. $4=6.000476 \pm 4$ at $7.74^{\circ} \mathrm{C}$.
Beforc using the El Paso base length in the computation and adjustment of the transcontinental triangulation it was decided to redetermine the coefficients of cxpansion of these rods. 'This was done in 1897, and the resulting coefficients were:

For 6-meter bar No. $3=0.00001149$.
For 6-meter bar No. $4=0.00001141$.
The lengths of the bars at the mean temperature of the two standardizations and at $0^{\circ} \mathrm{C}$ are:

$$
\begin{aligned}
& \text { No. } 3 \text { at } 12 .^{\circ} 51 \mathrm{C}=6.000795 \mathrm{~m} \text {. or at } 0^{\circ} \mathrm{C}=5.999933 \mathrm{~m} \text {. } \\
& \text { No. } 4 \text { at } 12 .^{\circ} 51 \mathrm{C}=6.000809 \mathrm{~m} \text {. or at } 0^{\circ} \mathrm{C}=5.999953 \mathrm{~m} \text {. }
\end{aligned}
$$

These are the final lengths used in the computations of the El Paso base.
Since the question of the degrce of accuracy of this base measurement is an important onc, it is believed to be advisable to reproduce here the tablc on pages 104-106 of Special Publication No. 4, which gives a summary of the forward and backward measurements of the base.

Section measures of the El Paso base.

Section marks.	$\begin{gathered} \text { Mean } \\ \text { tempera- } \\ \text { ture } \mathrm{F} . \\ \text { corrected, } \\ \text { for- } \\ \text { ward. } \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { tempera- } \\ \text { ture F. } \\ \text { corrected, } \\ \text { backk- } \\ \text { ward. } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { (average) } \\ & \text { bars. } \end{aligned}$	Corrected distance, forward.	Corrected distance backward.	Mean.	Difference from mean.
	-	-			m	m	mm
East base to A (day).	57.41			\{ 240.01450			1.39
East base to A (night	57.38		40	. 01309		240.01311	0.02
Do................	59.79			. .01174			1.37
A to \mathbf{B} (day).	60.76			198.02356			0.26
13 to A (day).		68.37	33	-108.0.0-	198.02533	198. 02382	1.51
A to 13 (night)	51.11			198.02237			1.25
${ }^{\text {B to }}$ C (day).	66.45	70.09		222.03368			1. 1.60
B to C (night)	49.29	70.09	37	-22202872	222.03385	22203208	1.6 3.36
C to D (day).	68.35			204.02329			0.32
B to C (day)..		66.96	34		204.02571	204.02361	2.10
C to D (night).	46.39			204.02182			1.79

Section measures of the El Paso base-Continued.

Section marks.	Mean tempera- ture F. corrected for- ward.	$\begin{aligned} & \text { Mean } \\ & \text { tempera. } \\ & \text { ture F. } \\ & \text { corrected } \\ & \text { back. } \\ & \text { ward. } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { (average) } \\ & \text { bars. } \end{aligned}$	Corrected distance, forward.	Corrected distance backward.	Mean.	Difference from mean.
	-	-		m			
D to E	69.18	75.61	46	276. 03080	276.03100	276. 03090	${ }_{0.10}$
E to F	54.22	66.71	33	198.00429	198.00368	198.00399	0. 30
F to G	63.01	72.44	35	210. 01696	210. 02012	210.01854	1. 58
G to H	71.12	77.59	32	192.02778	192, 02788	192.02783	0.05
H to I.	80.45	76. 84	37	222.04679	222.04399	222.04539	1. 40
	88. 96	68.72	39	234.06044	234.05621	234.05832	2.11
J to K.	82.34	${ }_{7}^{61.63}$	30	180.02254	180.02129	180.02191	0.62
K to L L	63.08 74.47	73. 68	34	203. 98348	203.98378	203.98363	0.15
Ridge to	74.47 60.10	78.74	36 34	215.97432	215.97716	215. 97574	1.42
M to N .	64.99	82.80	29	174.02009	174.02008	174.02009	0.01
N to O	71.00	85.27	32	192.00614	192.00253	192.00433	1.81
O to P	62.44	81.02	34	204.00622	204.00138	204,00530	0.92
P to Q	58.20	76.99	34	203.97690	203.97706	203.97698	0.08
Q to R	69.26	82.50	37	222.02792	222.02639	222.02716	0.77
R to S .	78.36	84.43	34	204.03384	204.03109	204.03247	1.37
8 to Signal	65.71	86.37	40	239.99341	239.99571	239.99456	1.15
Signal to	76.98	86.34	34	204. 02239	204.02165	204.02202	0.37
T to U	84.91	88.65	34	204. 04262	204.04120	204.04191	0.71
U to V	$94.10{ }^{\text {a }}$	82.22	34	204.04997	204.04668	204.04832	1.65
V to W	67.34	77.59	34	204.03096	204. 03242	204.03169	0.73
W to X	66.91	87.06	34	204. 02970	204.03318	204.03144	1.74
\mathbf{X} to Y	75.15	84.87	34	204.01104	204.01162	204.01133	0.29
Y to Z	82.47	81.43	34	204.04171	204.04092	204.04132	0.40
Z to Gulch....	87.16	77.20	31	186.05494	186.05522	186.05508	0.14
Gulch to Range	61.91	69.70	44	264.00555	264.00899	264.00727	1.72
Range to Dot.	71.60	60.43	34	204.03409	204.03496	204.03452	0.43
Dot to Spring.	79.23	88. 42	24	144.00645	144.00729	144.00687	0.42
Spring to Road Road to a . .	89.39 72.89	82.30 85.97	33 49	198.01723 294.00815	198.01803 294.00508	198.01763 294.00662	0.40 1.53
a to β	87.74	89.22	32	192.02830	192.02421	192.02625	2.04
β to r .	67.33	80.81	37	222.00464	222.00468	222.00466	0.02
r to 8	81.18	84.83	32	192.03881	192.03636	192.03758	1.23
8 to	88.18	87.22	35	210.02544	210.02297	210.02420	1.23
- to $\mathrm{C}^{\text {c }}$	87.47	86.59	34	203.99345	203.99205	203.99275	0.70
\checkmark to \dagger.	68.53	83.41	34	203.99583	203.99445	203.99514	0.69
η to 0.	76.06	82.01	35	210. 02995	210. 02866	210. 02931	0.64
θ to 8.	83.31	78.00	35	210.03734	210.03546	210.03640	0.94
cto k -	60.29	73.60	34	203.98739	203.98855	203.98797	0.58
κ to 2 .	66.83	66.87	35	209.97726	209.97842	209.97784	0.58
λ to μ.	74.57	56.61	41	246.03364	246. 03364	246.03364	0.00
μ to \%	65. 18	91.09	28	167.94530	167.94447	167.94488	0.41
ν to 5.	67.83	87.96		143.99969	143.99988	143.99979	0.10
\% to	75.54	79. 20	40	239.96708	239.96539	239.96623	0.83
- toz.	68.68	69.70	35	210.00583	210.00477	210.00530	0.53
π to ρ.	80.51	61.15	36	215.95311	215.95094	215.95202	1. 09
\bigcirc to 6	85.41	53.60	34 36	203.98544	203.98431	203.98488	0.56
- to 5	85.84	48.28 78.41	36	215.97809	215.97683 173.97361	215.97746	0.63
₹ to u......... u to West base	80.77 60.95	78.41	29	$\begin{array}{r} 173.97449 \\ \text { r } 258.20793 \end{array}$	173.97361	173.97405	0.44 4.62
Lo Do........	61. 62			258. 21512			4. 62
West base		74.92	43		358.21588	258.21255	3.31
Do.		85.08			258.21127		1.27

The length of the base as measured with rods is 11292.8231 meters. The reduetion to sea level is 3.6467 meters; therefore the length of the base reduced to sea level is $11289.1764 \pm$ 0.0150 meters. Since the length, as brought through the triangulation from the Provo base to the El Paso base, differed from the above value by one part in 13500 , it was deeided to remeasure the El Paso base, and, if necessary, to insert an additional base in the one hundred and fourth meridian triangulation.

Tho length of the El Paso base reduced to sea level, as measured in 1913 with three invar tapes, is 11288.9852 meters. (See p.22.) There appeared to be no uneertainty whatever in the reeovery of the ends of the base, nor was there any uneertainty in the reeovery of the marks of the triangulation stations Pikes Peak, Divide, and Bison, the stations in or near the El Paso base net, from whieh the one hundred and fourth meridian triangulation started. Consequently, the difference botween the new and old measures of the El Paso base must be due to systematie or constant errors in one or both measures.

A eareful study of the results of various standardizations of the same set of invar tapes (see table on p. 25) makes it seem reasonably certain that there is no eonstant error in the mean length of any group of three tapes as great as one part in 500000 . The iced bar is used at the Bureau of Standards in determining the length of the 50 -meter eomparator, and from time to time the ieed bar has been eompared direetly with the prototype meter held at that bureau.

Moreover, the measurements on the field with invar tapes give a very small probable error for the result. There seems to be nothing which could cause a large systematic or constant error in the field measurements. The possibility of a blunder in reading setups and setbacks or in obtaining the grade corrections is almost entirely eliminated by making independent measuremonts in opposite directions and by leveling in both directions over the tape supports to determine the differences in elevation. Any error which is likely to occur in reading the temperatures of the tapes will have only a very slight effect, owing to the extremely small coefficient of expansion of the metal of which the tapes are made. Therefore it seems probable that the error is in the early measurement of the El Paso base with the bars.

That the error in this measurement is not due to the effect of aecidental crrors alone is indicated by the small differences of the individual measures from the mean of two or more moasures of a section, as shown in the last column of the above table.

The orror in the length of the base, by the bar measurement, is probably due to the standardization of the bars or to differences between the true temperature of the bars and that read from the thermometers during the field measurements.

Errors of standardization.-The bars used in the field were compared direetly with standard bar No. 1. That bar in turn was compared with six especially constructed meter bars and with a 5 -meter and a 1 -meter bar, all of which had been compared with the committee meter. The length of the latter standard was obtained from comparisons with the international prototype meter. Each one of the bars mentioned above, except the prototype meter, was an end measure. It is believed that the gencral experience has been that it is impossible to obtain as great aceuracy in comparisons with an end-measure standard as with a line-measure one. No doubt there was an error of appreciable size in the lengths of bars 3 and 4 due to this fact. Again there were doubtless appreciable errors in the values of the lengths of bars 3 and 4 due to errors in the observed temperatures during the various comparisons. The metal was steel and the temperatures of the various bars were obtained by reading thermometers placed near them.

Temperature errors in the field measurements.-Assistant C. A. Sehott, on page 106, of Special Publication No. 4, made the following statements:

The forward and backward measures of the subdivisions were frequently made with greatly different average temperatures, yet when we compare their respective sums we find 11292.8331^{1} meters and 11292.8157^{1} meters, showing the small difference of 17.4 millimeters.

The matter as to whether the thermometers indicate the true temperature of the rods has been inquired into, and it seemed as if the rods were lagging somewhat behind the thermometer indications, but there are so many exceptions to this that no satisfactory result (numerical value) could be deduced.

A comparison between the day and the night measures of the first four sections, as given in the above table, shows that the latter always gave shorter lengths. The average difference between the two is about one part in 75000 . This difference could have been caused by an average temperature $1.2^{\circ} \mathrm{C}$. lower than the average recorded temperature. It is probable-that the thermometers did not record the temperature of the bar with a high degree of aceuracy, even at night, consequently the systematic error due to erroneous observed temperatures in the El Paso base measurements may be somewhat greater or less than one part in 75000.

Other sources of error.-Errors in the alignment of the bars would affect the results in a systematic manner, making the length too great, but as the alignment was earefully made the total effeet could only be very small in amount. The errors made in observing the slope of the bars might be systematic on account of a possible index error in the sector attached to the outside of the rods, but the effect would be of the opposite sign in the second running which was made in the opposite direction. The settling of the bar supports down the grade could not have caused any appreciable error; first, beeause the slope upward from east to west was only about 16 meters per kilometer on an average; and, second, because any effect of settling while running up a slope would be counteracted by the effect while running down. The effeet of the errors made in bringing the rear end of one bar in contact with the forward end of the other is $n o$ doubt very small as the errors in making the contact are aceidental in character. The errors
made in transferring the ends of a bar to the ground mark at the end of a seetion, or possibly at other points, were very small and should have been aceidental in character.

There is a possibility of movements in the upper portion of the earth's crust between the dates of the first and second measurements which might change the distances between any two given points. However, this could probably not happen to any appreciable extent, such as one part in 60000 , on a line of triangulation without serious earthquake shocks, none of which have been noted in recent years in the vicinity of the El Paso base, or the stations Pikes Peak, Bison, and Divide.

After this discussion of the various possible sources of error in the old measurement of the El Paso base, the question at onee presents itself: To what degree are other primary bases measured with bars unreliable? This question is a very difficult one to answer.

There was only one other primary base line measured with 6 -meter bars Nos. 3 and 4 (those used on the El Paso base) and there are very few bases which were measured with single rod bars. Most of the bar measurements of primary bases were with various kinds of compensating bars. In a number of cases these were used in connection with steel tapes with very aecordant results. The bar and tape measurements of the Holton base agreed within one part in about 340000 , as given in Appendix 8 of the Report for 1892. Also in the measurement of the nine bases on the ninety-eighth meridian with steel tapes and the duplex base apparatus, as given in Appendix 3 of the Report for 1901, the measures agreed on an average within one part in about 140000 .

In the writer's opinion, it may safely be assumed that there are very few primary bases in the United States with actual errors in their lengths as great as one part in 59000 , the difference between the bar and invar tape measures of the El Paso base. It is believed that by far the greater number of primary bases measured by bars have a much smaller actual error. The uncertainty of the length of a line in a section of primary triangulation between bases, due entirely to inaceuracies in the angle measures, is that represented by a probable error of about onc part in 80000 . Thercfore, if the actual error in the length of a base is comparable in size with the probable error of a line of the triangulation due to angle errors, then there is no great decrease in the accuraey of the lengths of the triangulation duc to the error in the length of the bases, it being assumed, of course, that the actual errors of the bases would vary in sign.

BASE MEASUREMENTS IN 1913.
EL PASO BASE.
On July 7, 1913, Signalman J. S. Bilby began the preparation of the El Paso base for remeasurement in compliance with instructions from the superintendent, direeting him to do all the work on the base except the actual tape measurements and to cooperate with Assistant C. V. Hodgson in that operation. Mr. Hodgson in the meantime was engaged in organizing and outfitting a latitude party for work on the one hundred and fourth meridian.

Mr. Bilby completed the stake-setting and leveling over the base on July 22, 1913, and the tape measurements were made on four days, between July 16 and 20, inclusive. The results of the measurements werc obtained and telegraphed to the office on July 23. As the result did not give a satisfactory agreement with the length as brought down from the Provo base through the triangulation, Messrs. Hodgson and Bilby were directed to loeate and measure a base in the vicinity of Cheyenne, Wyoming, and to connect it with the main scheme of triangulation.

Methods used.-The instruetions issued to Messrs. Hodgson and Bilby were similar to those regarding the Ambrose and Provo bases (see p. 9), and the methods employed in making the measurements were the same as those used in all measurements of primary bases in recent years. (See p. 11.)

Standardization of tapes.-The tapes had been standardized in January, 1913; by the Bureau of Standards, in eonnection with the Ambrose and Provo bases, and it was decided that no additional determination of the lengths need be made before sending them to the field again in July of the same year. (See also p. 10, under heading "Standardization of tapes.") A restandardization, for the purpose of checking the lengths of the tapes as used, was made at
the Bureau of Standards in Oetober, 1913. The results of these standardizations are given under the heading "Equations of tapes," below.

Size of party.-During the preparation of the base, Mr. Bilby had in his party five temporary hands. For the measurement the party eonsisted of Messrs. Hodgson and Bilby, the recorder of the astronomic party, and the five hands mentioned above, eight persons in all.

The party lived in a camp pitched close to the base line, in order to make a minimum amount of traveling in going to and from the work.

Division of the bases.-There were, as usual, three main divisions in the El Paso base, the approximate length of each being shown in the table which follows. Each division was measured at least twiee in opposite directions with different tapes, and a different pair was used on each division in order to obtain an intercomparison of the tapes.

Division.	Tapes used.	Length of dirision.
	Numbers.	Meters. 4000 No. 1 No.2
No. 516 and 517	3990	
	517 and 521	321

The descriptions of the ends of the base, with the monuments used to hold the points, are given on page 128 of this publieation.

Apparatus used.-The tapes which had been used in measuring the bascs at Ambrose and Provo were also used on the El Paso base. The tape streteher and other apparatus were similar to the ones used on those bases. (See p. 11.)

Stake setting and measuring.-As the wind was found to be light most of the time while preparing the basc, it was decided to use only three supports for a tape length, one at each end (the marking tables or stakes) and one at the middle. Very little trouble was eneountered on aceount of the wind. The measuring was done in the usual manncr. (See p. 11 of this report and also p. 154 of Appendix 4 of the Report for 1910.)

Equations of tapes.-The equations of the tapes furnished by the Bureau of Standards, resulting from the standardization in January, 1913, are:

$$
\begin{aligned}
& T_{516}=50 \mathrm{~m}+(9.556 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0178 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-23.3^{\circ} \mathrm{C}\right) ; \\
& T_{\mathrm{s} 12}=50 \mathrm{~m}+(9.953 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0160 \mathrm{~mm} \pm 0.0007 \mathrm{~mm}) \times\left(t-23.3^{\circ} \mathrm{C}\right) ; \\
& T_{521}=50 \mathrm{~m}+(10.077 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-23.3^{\circ} \mathrm{C}\right) ; \\
& T_{622}=50 \mathrm{~m}+(10.793 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0614 \mathrm{~mm} \pm 0.0011 \mathrm{~mm}) \times\left(t-23.3^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

The equations of these same tapes, furnished by the Bureau of Standards, resulting from the standardization in October, 1913, are:

$$
\begin{aligned}
& T_{518}=50 \mathrm{~m}+(9.724 \mathrm{~mm} \pm 0.020 \mathrm{~mm}) \text { at } 28.9^{\circ} \mathrm{C} ; \\
& T_{517}=50 \mathrm{~m}+(9.978 \mathrm{~mm} \pm 0.017 \mathrm{~mm}) \text { at } 29.0^{\circ} \mathrm{C} \\
& T_{621}=50 \mathrm{~m}+(10.205 \mathrm{~mm} \pm 0.018 \mathrm{~mm}) \text { at } 28.9^{\circ} \mathrm{C} \\
& T_{622}=50 \mathrm{~m}+(11.128 \mathrm{~mm} \pm 0.020 \mathrm{~mm}) \text { at } 28.9^{\circ} \mathrm{C} .
\end{aligned}
$$

The standardization was made under the same conditions of suspension and tension as during the field measures, that is, three supports and 15 -kilogram tension.

In order to compare the lengths of the tapes obtained by these two standardizations, one before and one after the measurement of the El Paso and Cheyenne bases, the following tabulation has been prepared, giving the results of the two standardizations all reduced to the temperatures of the first standardization:

$$
\begin{gathered}
\text { Jan. 1913, } T_{515}=50 \mathrm{~m}+9.5 \mathrm{5} 6 \mathrm{~mm} \pm 0.016 \mathrm{~mm} ; v=+0.034 \mathrm{~mm} \\
\text { Oct. 1913, } T_{516}=50 \mathrm{~m}+9.624 \mathrm{~mm} \pm 0.020 \mathrm{~mm} ; v=-0.034 \mathrm{~mm} \\
\text { Mean=9.590mm} \\
\begin{aligned}
& \text { Jan. 1913, } T_{517}=50 \mathrm{~m}+9.953 \mathrm{~mm} \pm 0.016 \mathrm{~mm} ; v=-0.033 \mathrm{~mm} \\
& \text { Oct. 1913, } T_{517}=50 \mathrm{~m}+9.887 \mathrm{~mm} \pm 0.017 \mathrm{~mm} ; v=+0.033 \mathrm{~mm} \\
& \text { Mean }=9.920 \mathrm{~mm} \\
& \text { Jan. 1913, } T_{521}=50 \mathrm{~m}+10.077 \mathrm{~mm} \pm 0.016 \mathrm{~mm} ; v=+0.007 \mathrm{~mm} \\
& \text { Oct. 1913, } T_{521}=50 \mathrm{~m}+10.090 \mathrm{~mm} \pm 0.018 \mathrm{~mm} ; v=-0.006 \mathrm{~mm} \\
& \text { Mean }=10.084 \mathrm{~mm}
\end{aligned}
\end{gathered}
$$

The lengths of the tapes as given by the January, 1913, standardization had been uscd in computing the lengths of the El Paso and Chcyenne bases, and those lengths had been used in the adjustments of the triangulation on the one hundred and fourth meridian beforc the October, 1913, values of the tapes became available. The mean length of the thrce tapes uscd in the measurement of the El Paso and Cheyenne bases as given by the January standardization differed only 0.005 millimeter, or 1 part in 10000000 , from the mean length as given by the standardization in October, 1913. So it was decided that the results by the first standardization were satisfactory, and the second values were considered only as chccks. (Sce p. 25 for a tabular statement of the values of the tapes resulting from the standardizations for the years 1909 to 1913, inclusive.) If the mean of the values by the two standardizations had been used, the probablc error of the base would have been changed slightly, but the length of the base would not have differed by as much as 1 millimeter.

Reduction to sea level.-The elevation of the top of the monument at El Paso west base, as determined by spirit leveling, is 2167 meters. The average elevation of each of the sections of the base was obtained from spirit levels run in both ways over the tape supports to get the grade corrections. The corrections to reduce the various sections to sca level are shown in the table which follows. It is ccrtain that the above elevation is correct within 1 meter, and therefore the reduction to sea level is not subject to any appreciable error.

Corrections to spring balances.-In the table of the results of measurement is a column headed "Correction for erroneous tension," in which is given a correction to the length of each section of the base due to index errors of the spring balances used. Inadvertently, the observer did not have his attention called to the fact that the index errors of the balances sent to the ficld had not been corrected. He used onc balance as a standard when the index read exactly 15 kilograms. It was learned later, when there were sent to the Cheyenne base additional balances which had no index error, that the standard balance at the El Paso base had an index error of 338 grams. This made the actual pull on this balance, while it was being used as a standard, only 14.66 kilograms instead of 15 . After the effect of this difference is applied the resulting length is free of crror from this source.

Results of remeasurement.-The results of the remeasurcment of the El Paso base are given in the following table:

The El Paso base line.

Section.	Date and hour.			Weather and wind. ${ }^{1}$	Temperature (centigrade).										-	$>$				
					$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \text { an } \\ \text { zn } \end{gathered}$															
I, E. B. $=20$.	$\left\{\begin{array}{c} \text { July, } 1913 . \\ \{0,9: 45 \mathrm{a} . \mathrm{m} . \\ 16,9: 45 \mathrm{a} . \mathrm{m} . \end{array}\right.$	W	516	$\begin{aligned} & \text { Cy, L sE.... } \\ & \text { Cy, S S....... } \end{aligned}$	R	$\begin{gathered} \circ \\ 18.9 \\ 28.8 \end{gathered}$	$\begin{gathered} m \\ -0.0016 \\ +0.0019 \end{gathered}$	$\left\lvert\, \begin{gathered} m \\ +0.0110 \\ -0.0097 \end{gathered}\right.$	m-0.0723	m+0.1911	$\underset{\substack{m \\-0.0105}}{ }$	$\left\lvert\, \begin{gathered}m \\ -0.3130\end{gathered}\right.$		$\begin{gathered} m \\ 999.8047 \end{gathered}$	$\mathrm{mm}_{0.0}$	$m m$0.000.00				
									-0.0723	+0.1991	-0.0013	-0.3130			10.0					
II, 20-40...	$\left\{\begin{array}{l} 20,10: 25 \mathrm{a} . \mathrm{m} . \\ 16,9: 00 \mathrm{a} . \mathrm{m} . \end{array}\right.$		$\left.\begin{array}{\|c\|} 516 \\ 517 \end{array} \right\rvert\,$	$\begin{aligned} & \text { Cy, I, S...... } \\ & \text { Cy, S S....... } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & 18.9 \\ & 27.3 \end{aligned}$	$\begin{aligned} & -0.0016 \\ & +0.0013 \end{aligned}$	$\begin{aligned} & +0.0953 \\ & +0.0784 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0916 \\ & -0.0916 \end{aligned}\right.$	$\begin{aligned} & +0.1911 \\ & +0.1991 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0105 \\ & -0.0013 \end{aligned}\right.$	$\|-0.3141\|$	$\begin{aligned} & 999.8686 \\ & 999.8718 \end{aligned}$	999.8702	$\left\{\begin{array}{l} +1.6 \\ -1.6 \end{array}\right.$	2.562.56				
III, 40-60...	$\left\{\begin{array}{l} 20,11: 05 \mathrm{a} . \mathrm{m} . \\ 16,8: 20 \mathrm{a} . \mathrm{m} . \end{array}\right.$		516517	$\begin{aligned} & \text { Cy, L S...... } \\ & \text { Cy, L } \mathrm{S} \ldots \ldots . . \end{aligned}$	S		$\begin{aligned} & -0.0015 \\ & +0.0011 \end{aligned}$	$\begin{array}{l\|l} 50.0836 \\ +0.0661 \end{array}$	$\begin{aligned} & -0.2359 \\ & -0.2359 \end{aligned}$	$\begin{aligned} & +0.1911 \\ & +0.1991 \end{aligned}$	$\begin{aligned} & -0.0105 \\ & -0.0013 \end{aligned}$	$\begin{array}{\|l\|l} & -0.3158 \\ \hline-0.3158 \end{array}$	$\begin{aligned} & 999.7110 \\ & 999.7133 \end{aligned}$	$\} 999.7121$	$\left\{\begin{array}{l} +1.1 \\ -1.2 \end{array}\right.$	1.211.44				
IV, 60-80...	$\left\{\begin{array}{l} 20,12: 15 \mathrm{p} . \mathrm{m} . \\ 16,7: 40 \mathrm{a} . \mathrm{m} . \end{array}\right.$	W	$\left.\begin{array}{\|l\|} \hline 516 \\ 517 \end{array} \right\rvert\,$	$\begin{aligned} & \text { Cy, L S..... } \\ & \text { Cy, L SW... } \end{aligned}$	S	$\begin{aligned} & 18.2 \\ & 25.4 \end{aligned}$	$\begin{aligned} & -0.0018 \\ & +0.0007 \end{aligned}$	$\begin{aligned} & 8+0.1027 \\ & +0.0861 \end{aligned}$	$\left\|\begin{array}{l} -0.1224 \\ -0.1224 \end{array}\right\|$	$\begin{aligned} & +0.1911 \\ & +0.1991 \end{aligned}$	$\left\|\begin{array}{l} -0.0105 \\ -0.0013 \end{array}\right\|$	$\left\|\begin{array}{l} -0.3177 \\ -0.3177 \end{array}\right\|$	$\left.{ }_{999.8445}^{999.8414}\right\} 999.8430$		$\left\{\begin{array}{l} +1.6 \\ -1.5 \end{array}\right.$	$\begin{aligned} & 2.56 \\ & 2.25 \end{aligned}$				
V, 80-100...	$\begin{cases}17, & 5: 40 \mathrm{a} . \mathrm{m} . \\ 18,11: 20 \mathrm{a} . \mathrm{m} .\end{cases}$	W	$\begin{aligned} & 521 \\ & 516 \end{aligned}$	$\begin{aligned} & \text { PCy, L W... } \\ & \text { PCy, L E... } \end{aligned}$	R		-0.00210.0000	$\begin{aligned} & +0.0488 \\ & +0.0644 \end{aligned}$	-0.1356-0.1356	$\left\lvert\, \begin{aligned} & +0.2015 \\ & +0.1911 \end{aligned}\right.$	$\begin{aligned} & -0.0012-0.3196 \\ & -0.0105-0.3196 \end{aligned}$		$\left.\begin{array}{l} 999.7918 \\ 999.7898 \end{array}\right\}^{999.7908}$		$\left\{\begin{array}{l} -1.0 \\ +1.0 \end{array}\right.$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$				
	17, 6:20 a.m.		$\begin{array}{lll} 521 & \mathrm{PCy}, \mathrm{I}, \mathrm{~W} . . . \\ 516 & \mathrm{Cy}, \mathrm{~L} \\ \text { SE.... } \end{array}$		$\begin{aligned} & \mathrm{S} \\ & \mathbf{S} \end{aligned}$	$\begin{array}{l\|l} 19.8 & -0.0015 \\ 24.2 & +0.0003 \end{array}$		$\begin{array}{r} 0.0000-0.0945 \\ +0.0148-0.0945 \end{array}$		$\begin{aligned} & +0.2015 \\ & +0.1911 \end{aligned}$	$\begin{aligned} & -0.0012-0.3215 \\ & -0.0105-0.3215 \end{aligned}$		$\left.\begin{array}{l} 999.7828 \\ 999.7797 \end{array}\right\} 999.7812$			2.562.25				
.	(18, 10:45 a. m.				$1-1.6$															
VII,120-140.	$\left\{\begin{array}{l} 17, \quad 7: 10 \mathrm{a} . \mathrm{m} . \\ 18,10: 05 \mathrm{a} . \mathrm{m} . \\ \mathrm{W} \end{array}\right.$		$\stackrel{521}{521} \stackrel{\mathrm{P} C y, L \ldots}{\mathrm{Cy}, \ldots \ldots . .} \stackrel{\mathrm{R}}{\mathrm{R}}$			$20.8-0.0010-9.6844-0.1562+0.2015-0.0012-0.3205$ $22.2-0.0004-9.6654-0.1562+0.1911-0.0105-0.3205$							$\left.\begin{array}{c} 990.0382 \\ 990.0381 \end{array}\right\} 090.0382\left\{\begin{array}{rr} 0.0 & 0.00 \\ +0.1 & 0.01 \end{array}\right.$							

The El Paso base line-Continued.

Station.	Date and hour.			Weather and wind.	Tempera ture (centigrade).											
																$\dot{\square}$
	July, 1913.															
VIII, 140-160	\{17, 7:45 a.m.	W	521	PCy, LSW.	S	21.8	-0.0006	$+0.0486$	-0.1815	+0.2015	-0.0012	-0.3281	999.740%		f-1.6	${ }_{2.56}$
VII, 140-100	[18, 8:558. m.	E	516	Cy, 0.	F	17.7	-0.0019	$+0.0664$	-0.1815	+0.1911	-0.0105	-0.3261	999.7375	999. 73	$\mid+1.6$	2.56
IX, 160-180.	$\{17,8: 45 \mathrm{a} . \mathrm{m}$.	W	517	PCy, $1.5 W$.	S	23.1	-0.0001	+0.0975	-0.2237		-0.0013				\{ +1.7	2.89
1X, 100-180.	(17, 2:40 p.m.	E	521	Cy, L W	S	25.8	+0.0010	+0.0973	-0.2237	+0.2015	-0.0012	-0.3288	999.7461	999. 7444	$(-1.7$	2. 89
X, 180-200..	\{17, 9:25 \%.m.	W	517	PCy, LSW..	S	24.0	+0.0002	-2.8474	-0.3426	+0.1991	-0.0013	-0.3307				
2,180-200.-	(17, 2:10 p.m.	E	521	Cy, M S......	S	25.1	+0.0007	-2.8471	-0.3426	+0.2015	-0.0012	-0.3307	996.6806	996.6790	[-1.6	2.56
XI, 200-220.	[17, 10:20 a. m.	W	517	C, L SW....	S	25.5	+0.0007	$+0.0323$	-0.3459	+0.1991	-0.0013	-0.3351	999.5498		+1.4	1.96
X1, 200-220.	(17, 11:35 a.m.	E	521	C, L SE.....	R	27.6	+0.0018	+0.0315	-0.3459	+0.2015	-0.0012	-0.3351	999.5526	909.55	$\left\{\begin{array}{l}1.4 \\ -1.4\end{array}\right.$	1.96
XII,220-W.	\{17, 11:15 a.m.	W	517	C, O	F	20.4	+0.0003	+4.8315	-0.3566	+0.0597	-0.0003	-0.1030	304.4316		$\{-0.3$	
B.	\{17, 11:25 a.m.	E	521		S	26.7	+0.0004	+4.8300	-0.3566	+0.0605	-0.0003	-0.1030	304.4310	304.4313	$\{+0.3\}$	0.09

The length of the El Paso baso is 11288.9852 ± 0.0031 meters.
The logarithm of this length is 4.0526549 ± 1.
This probable error of the length corresponds to one part in 3642000.
The probable error was computed in a manner similar to that described on pages 160-161 of Appendix No. 4 of the Report for 1910.

CHEYENNE BASE.

When it was found that the new length of the El Paso base did not agree closely with the computed length as carried through the triangulation from the Provo base, it was decided to introduce a new base in the one hundred and fourth meridian triangulation. (See p.9.) After making a reconnaissance, Mr. Bilby located this base in the vicinity of Cheyenne, Wyo. Ho also selected several triangulation stations at which horizontal directions were later observed for the purpose of connecting the base with the main scheme of triangulation. See illustrations at the ond of this volume.

Organization of party.-The proparation of the base for measurement was made by Mr. Bilby with the assistance of five temporary hands employed in the vicinity of the work. The preparation and leveling over the base occupied the time botween July 28 and August 6, 1913.

Upon the completion of the above work, Mr. Hodgson, who had been engaged upon latitude observations since the completion of the measurements of the El Paso base, moved to the Choyonne base and carried on the actual tape measurements with the cooperation of Mr. Bilby. The measuring party consisted of Mossrs. Hodgson and Bilby and six hands. The actual tape moasurements were made on two days only, August 8 and 10.

Divisions of the base.-Like the other bases on the one hundrod and fourth moridian, this one had three main divisions, each of which was measured twice in opposite directions with different tapes. Each division was moasured with a different pair of tapes in order that an intercomparison of the three tapes used might be made.

The following table shows the divisions of the base, the tapes used, and the approximate length of each division:

Division.	Tapes used.	Length of division.
	Numbers. No. 1 No.2 No. 516 and 517 517 and 521 516 and 521	Meters. 20000 2000

The descriptions of the locations and permanent monuments at the base ends are shown on page 117.

Apparatus used.-The same tapes were used on the Cheyenne base that had been used on the Ambrose, Provo, and El Paso bases. (See p. 11.) The other articles of apparatus were similar in character to those used on those three bascs.

Methods employed.-The base was measured in the same manner as the others on this arc. Since the wind was not found to be troublesome, only three supports were used for each tape length, one at each end and one at the center point. (See p. 11)

Standardization and equations of tapes.-On page 20, under the same heading, are given the equations of the tapes used on the Cheyenne base as furnished by the Bureau of Standards. As on the El Paso base, the equations of the tapes resulting from the standardization in January, 1913, were used in the final computations of the base. The results of the second standardization were not available when the computation and adjustment of the one hundred and fourth meridian triangulation was begun. After the results of the second standardization were received it was found that the average difference between the two standardizations was only 1 part in 10000000 which was negligible.

Reduction to sea level.-The elevation above sea level of Cheyenne west base as determined by trigonometric leveling is 2074.20 meters. The average elevation of the various sections of the base was determined by a line of levels run over the base in opposite directions for the purpose of obtaining the grade corrections. The correction to sea level for each section is shown in the following table. Since the uncertainty in the adopted elevation of West base is less than one meter, the corrections shown in the table for reducing the measured lengths to sea level are free from any appreciable error from this source.

Corrections to spring balances.-Like the table of results of the remeasurement of the El Paso base, the table for the Cheyenne base also contains a column of corrections for erroneous tension. The discussion on page 21 states that there were sent to the Cheyenne base spring balances which had no index error. These did not arrive, however, until after the measurement had been completed. Therefore, corrections similar to those explained for the El Paso base, must be applied to the results for the Cheyenne base.

Results of measurement.-The results of the measurement of the Cheyenne base are shown in the following table:

The Cheyenne base line.

Sectlon.	Date and hour.			Weather and wind.	Temperature (centigrade).											
															\therefore	\dot{B}
I, W. B.-20.	$\left\{\begin{array}{r} \text { Aug., } 1913 . \\ 10,4: 15 \text { a. m.. } \\ 8,0: 25 \text { a. m.. } \end{array}\right.$	W	517 516	c, O.........	$\stackrel{S}{\mathbf{R}}$	19.0	$\begin{gathered} m \\ -0.0014 \\ +0.0008 \end{gathered}$	$\begin{gathered} m \\ +0.0776 \\ +0.0788 \end{gathered}$	$\left\lvert\, \begin{gathered} m \\ -0.3750 \\ -0.350 \end{gathered}\right.$	$\begin{gathered} m \\ +0.1991 \\ +0.191 \end{gathered}$	$\begin{gathered} m \\ -0.011 \\ -0.0105 \end{gathered}$	$\left.\begin{gathered} m \\ 1 \\ 1 \\ -0.3234 \\ -0.3234 \end{gathered} \right\rvert\,$	$\begin{gathered} m \\ 99.5658 \\ 999.5618 \end{gathered}$	m 999.5638	$\left\{\begin{array}{l} m m \\ -2.0 \\ +2.0 \end{array}\right.$	$m m$ 4.00 4.00
II, 20-40.	$\left\{\begin{array}{l} 10,4: 35 \mathrm{a} . \mathrm{m} . . \\ 8,8: 55 \mathrm{~g} . \mathrm{m} . \end{array}\right.$	$\underset{\mathbf{W}}{\mathbf{E}}$	517 516	C, O	${ }_{\text {S }}$	18.6 24.2	$\begin{array}{r} -0.0015 \\ +0.0003 \\ \hline \end{array}$	$\begin{aligned} & +0.0917 \\ & +0.0949 \end{aligned}$	$\begin{aligned} & -0.4632 \\ & -0.4632 \end{aligned}$	$\begin{aligned} & +0.1991 \\ & +0.1911 \end{aligned}$	$\begin{aligned} & -0.0111 \\ & -0.0105 \end{aligned}$	$\begin{array}{l\|l\|} 1 & -0.3205 \\ 5 & -0.3205 \end{array}$	$\begin{aligned} & 999.4945 \\ & 999.4921 \end{aligned}$	$\text { 1\}999.4933 }$	$\left\{\begin{array}{l} -1.2 \\ +1.2 \end{array}\right.$	1. 1.44
III, 40-60...	$\left\{\begin{array}{r} 10,5: 15 \mathrm{~g} . \mathrm{m} . . \\ 8,8: 05 \mathrm{~g} . \mathrm{m} . \end{array}\right.$	$\underset{W}{\mathbf{W}}$	521 517	$\begin{aligned} & \mathrm{C}, \mathrm{O} . \ldots \\ & \mathrm{C}, \mathrm{~L} \\ & \hline \end{aligned}$	R	19.2 23.2	-0.0017 0.0000	+0.0575 +0.0569	$\begin{aligned} & -0.2186 \\ & -0.2186 \end{aligned}$	$\begin{aligned} & +0.2015 \\ & +0.1091 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0101 \\ & -0.0111 \end{aligned}\right.$	$\begin{array}{r} -0.3185 \\ -0.3185 \end{array}$	999.7101	6999.7089	$\left\{\begin{array}{l} -1.2 \\ +1.1 \end{array}\right.$	$\begin{aligned} & 1.44 \\ & 1.21 \end{aligned}$
IV, 60-80...	$\left\{\begin{array}{r} 10,5: 40 \mathrm{a} . \mathrm{m} . . \\ 8,7: 35 \mathrm{a} . \mathrm{m} . . \end{array}\right.$	$\underset{\mathrm{W}}{\mathrm{E}}$	521 517	$\begin{aligned} & \text { C, L NW } \\ & \text { C, L SW } \end{aligned}$	S	19.1	-0.0017 -0.0001	+0.0609 +0.0607	-0.4054 -0.4054	+0.2015 +0.1991	-0.0101 -0.011	-0.3175	$\begin{aligned} & 999.5277 \\ & 999.5257 \end{aligned}$	\}999. 5267	$\left\{\begin{array}{l}1.0 \\ +1.0\end{array}\right.$	1.00 1.00
V, 80-100...	$\left\{\begin{array}{l} 10,8: 10 \mathrm{a} . \mathrm{m} . \\ 10,10: 50 \mathrm{~m} . \mathrm{m} . \end{array}\right.$	$\underset{\mathrm{W}}{\mathrm{E}}$	$\left\|\begin{array}{l} 516 \\ 521 \end{array}\right\|$	$\begin{aligned} & \mathrm{C}, \mathrm{~L} \\ & \mathrm{C}, \mathrm{~S} \mathrm{~N} \mathrm{E} \end{aligned}$	S	20.0 23.8	-0.0012 +0.0002	$\begin{array}{r} +0.0506 \\ +0.0424 \end{array}$	$\begin{aligned} & -0.3876 \\ & -0.3876 \end{aligned}$	$\begin{aligned} & +0.1911 \\ & +0.2015 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.0105 \\ & -0.0101 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0.3168 \\ & -0.3168 \end{aligned}\right.$	$\begin{aligned} & 999.5256 \\ & 999.5296 \end{aligned}$	$\text { 3. }\}^{999.5276}$	$\left\{\begin{array}{l} +2.0 \\ -2.0 \end{array}\right\}$	4.00 4.00
VI, 100-120.	$\left\{\begin{array}{l} 10, \\ 10,10: 40 \mathrm{a} . \mathrm{m} . \end{array}\right.$	$\stackrel{\mathrm{F}}{\mathrm{~W}}$	516 521	C, I	$\stackrel{\mathrm{R}}{\mathrm{F}}$	20.8 23.8	-0.0000 +0.0002	+0.0894 +0.0819	-0.1769 -0.1769	+0.1911 +0.2015	$\left\lvert\, \begin{aligned} & -0.0105 \\ & -0.0101 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0.3160 \\ & -0.3160 \end{aligned}\right.$	$\begin{aligned} & 999.7762 \\ & 999.7806 \end{aligned}$	999.7784	$\left\{\begin{array}{l} +2.2 \\ -2.2 \end{array}\right.$	4.84
$\begin{aligned} & \text { VII, }{ }_{\text {E. }} 120-\ldots . . \end{aligned}$	$\left\{\begin{array}{l} 10,9: 35 \mathrm{a} . \mathrm{m} \\ 10,10: 00 \mathrm{z} . \mathrm{m} . \end{array}\right.$	$\left\lvert\, \begin{gathered} \mathbf{E} \\ \mathbf{W} \end{gathered}\right.$	516 521	$\begin{aligned} & \mathrm{C}, \mathrm{~L} \\ & \mathrm{C}, \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	R	21.8 22.8	$\begin{array}{r} -0.0003 \\ -0.0001 \end{array}$	+3.0353 +3.0256	$\begin{aligned} & -0.1086 \\ & -0.1086 \end{aligned}$	+0.1242 +0.1310	$\left\{\begin{array}{l} -0.0068 \\ -0.0066 \end{array}\right.$	$\begin{array}{\|c} 8-0.2059 \\ -0.2059 \\ \hline \end{array}$	$\begin{aligned} & 652.8379 \\ & 652.8382 \\ & \hline \end{aligned}$	${ }_{2}^{9}(652.8380$	$\left\{\begin{array}{l} +0.1 \\ -0.2 \end{array}\right.$	0.01 0.04

[^4]The length of the Cheyenne base is 6650.4367 ± 0.0028 meters.
The logarithm of this length is 3.8228501 ± 2.
The probable error of the length corresponds to 1 part in 2367000 .
The computation of the probable error was made in a manner similar to that deseribed on pages 160-161 of Appendix 4 of the Report for 1910.

The length of the El Paso base, as computed through the triangulation from this measured length of the Cheyenne base, is now shorter than the measured length of the El Paso base by 1 part in 30800 . Since the adjustment of the triangulation between these bases gives small corrections to directions, the accidental orrors thercin are not sufficient to account for this discropancy in length. The difference, therefore, must be due to some systematie errors in the triangulation.

One of the causes of the diserepancy between these bases may be the elevation of the surface of the geoid above that of the ellipsoid, although the effect of this is not large enough to cause the total difference stated above.

An attempt to show the geoid contours in the United States was made on illustration No. 17 of the United States Coast and Geodetic Survey publication entitled "The Figure of the Earth and Isostasy from Measurements in the United States," but the area within which these contours were drawn is very limited in cxtent. In the vieinity of the El Paso base the geoid contour is marked 32 meters. It is impossible, of course, to tell what will be the number for the geoid contour at the Cheyenne base which is in southeastern Wyoming, but as the geoid contours seem to conform somewhat to the topographic contours, it may be expected that the number at the Cheyenne base will be between 24 and 30 meters. These contours of the geoid should not be considered as giving anything more than relative elevations above the ellipsoid, for the initial point used in constructing the geoid contours was given a value of 10 meters, in order that negative values might be avoided.

If the difference between the geoid elevation at the Cheyenne and El Paso bases is 8 meters, a relative error of 1 part in about 800000 would result. If the reduction to sea level at Cheyenne were considered correct then the reduction at El Paso would be in error by 0.014 meter. This error would make the El Paso base as measured too long. This agrees in sign with what is shown by the comparison of that length with the one brought through the triangulation from the Cheyenne base. However, there must be some other cause for the difference of 0.367 meter between those two bases,

The average clevation of the geoid above the spheroid along the transcontinental triangulation, as indicated by the illustration in The Figure of the Earth and Isostasy from Measurements in the United States, is about 12 meters (after subtracting 10 meters, the assumed elevation of the starting point). Thereforc, the average crror in the measured lengths of the base lines along that arc caused by the elevation of the geoid surface is 1 part in about 500000 . Although this crror is constant in its effect, it is practically impossible to apply a correction for it, owing to the fact that available data showing relative geoid clevations are very limited, and that no data whatever as to the absolute elevation of the geoid above or below the surface of the cllipsoid are available.

Cost of the El Paso and Cheyenne bases.-The total cost of the measurement of these two bases was $\$ 980$. In addition to the cost of labor, materials, ete., this ineluded the salary of Mr. Bilby from the time he reached Colorado until he left for work on reconnoissance, one-half of his traveling expenses and those of Mr. Hodgson from Washington to Littleton, Colo., and the salary of Mr. Hodgson while not on his latitude work. The cost per base was $\$ 490$ and the cost per kilometer was $\$ 55$, both bases being considered. The office computation of the two bases took the equivalent of 22 days of one computer, with a cost of $\$ 105$. The Bureau of Standards makes a charge of $\$ 50$ for a fundamental standardization of a base tape; therefore to get the total cost of the bases to the Government the cost of two standardizations of four tapes, $\$ 400$, should be added to the field expenses and the cost of computation. ${ }^{1}$

[^5]The total cost of the bases was $\$ 980+\$ 105+\$ 400=\$ 1485$; this is $\$ 742$ for each base, and at the rate of $\$ 83$ per kilometer.

While the measurements were being made at the Cheyenne base, the party also observed horizontal direetions at the base ends and at the two stations Waddill and Whitaker for the purpose of connecting the base with the main scheme of triangulation. The work on the base was only slightly interrupted by these operations. The stands used at Waddill and at Whitaker in 1912 were still in place, so it was only necessary to place stands at the base ends, which required very little lumber. As nearly as the writer could determine, the cost of the additional work of connecting the base with the main triangulation seheme was only about $\$ 130$. The observing was done at night on signal lamps.

Summary of tape values.-The following table shows for each of the four tapes the length as determined by six different standardizations, the probable error of each determination, the mean of the results from the six standardizations, and the residuals. The values given are for the lengths of the tapes when resting upon three points of support and subjected to a fixed tension of 15 kilograms. In order to make the values comparable, they have all been reduced to the same temperature, namely, $21.2^{\circ} \mathrm{C}$.

Values of tapes with three supports at temperature of $21.2^{\circ} \mathrm{C}$.

Date of standardization.	$T_{\text {B16 }}=$		$T_{617}=$	
	$50 m+$	v.	$50 \mathrm{~m}+$	0
January, 1909.		$m m$ -0.044	$m m \quad m m$ 9.735 ± 0.018	$m m$ +0.081
May, $1009 . . .$.	9.454 ± 0.028	+0.044	9.782 ± 0.025	+0.034
March, 1910.	9.415 ± 0.017	+0.053	9.738 ± 0.015	+0.078
March, 1912.	9.473 ± 0.029	+0.025	9.869 ± 0.022	-0.053
January, 1913.	9.519 ± 0.016	-0.021	9.919 ± 0.016	-0.103
October, 1913.	9.587 ± 0.020	-0.089	9.853 ± 0.017	-0.037
	9.498		-9.816	
Date of standardization.	$T_{B 21}=$		$T_{522}=$	
	$50 m+$	v	$50 m+$	0
January, 1909 May, 1909. March, 1910 March, 1912. January, 1913 October, 1913	$m m$ 9.750 ± 0.018 9.835 ± 0.021 9.878 ± 0.015 10.009 ± 0.021 10.034 ± 0.016 10.047 ± 0.018 9. 925	$\begin{gathered} m m \\ +0.175 \\ +0.090 \\ +0.047 \\ -0.084 \\ -0.109 \\ -0.122 \end{gathered}$	$m m \quad m m$	$\begin{gathered} m m \\ +0.068 \\ +0.045 \\ +0.018 \\ -0.033 \\ -0.053 \\ -0.044 \end{gathered}$
			10.543 ± 0.019	
			10.566 ± 0.024	
			10.593 ± 0.018	
			10.644 ± 0.017	
			10.664 ± 0.016	
			10.655 ± 0.020	
			10.611	

The above table gives very valuable data as to the constancy of the lengths of the invar tapes. The total ranges for four years in the values of the various tapes are:

Tape No.	Total range.	Proportion.
T516	$m m$ $=0.172$	1 part in 290000
	$=0.182$	1 part in 270000
T_{53}	$=0.297$	1 part in 170000
T_{532}	$=0.121$	1 part in 410000

The differenees in length between the values resulting from the first and last standardizations are:

Tape No.	Range.	Proportion.
	$\begin{gathered} m m \\ =0.045 \end{gathered}$	1 part in 1110000
	$=0.118$	1 part in 420000
	$=0.297$	1 part in 170000
T_{623}	$=0.112$	1 part in 450000

Each of the tapes was longer at the time of the last standardization than at the first one, the average increase being 0.143 millimeter, or 1 part in 350000 . These changes are within the possible effect of the aceidental and constant errors of standardization, except in the case of T_{521}. That tape shows a continuous inerease from January, 1909, to October, 1913, but the maximum change in the length of this tape between any two consecutive standardizations is only 0.131 millimeter (Mareh, 1910, to March, 1912), or 1 part in 380000 . The maximum change between two consecutive standardizations for T_{518} is 0.088 millimeter, or 1 part in 570000 ; for T_{517} it is 0.131 millimeter, or 1 part in 380000 (the same as for T_{521}); and for T_{522} it is only 0.051 millimeter, or 1 part in 980000 .

The following table is similar to the preceding one, except that the values given are for the lengths of the tapes when resting upon five points of support. The common temperature to which these values are reduced is $26.8^{\circ} \mathrm{C}$.

Values of tapes with five supports at temperature of $26.8^{\circ} \mathrm{C}$.

Date of standardizan tlon.	$T_{516}=$		$T_{517}=$	
	$50 \mathrm{~m}+$	v	$50 \mathrm{~m}+$	v
May, 1909.	$\underset{12.446 \pm 0.026}{m m}$	$\begin{gathered} m m \\ +0.002 \end{gathered}$	$\begin{gathered} m m \\ 12.817 \pm 0.026 \end{gathered}$	$\begin{gathered} m m \\ +0.031 \end{gathered}$
March, 1910.	12.370 ± 0.017	+0.078	12.768 ± 0.015	+0.080
March, 1912.	12.399 ± 0.014	+0.049	12.857 ± 0.017	-0.009
January, 1913.	12.482 ± 0.021	-0.034	12.938 ± 0.017	-0.090
October, 1913..	12.543 ± 0.019	-0.095	12.862 ± 0.016	-0.014
	12.448		12.848	
Date of standardization.	$T_{60}=$		$T_{6 \pm 1}$	
	$50 \mathrm{~m}+$	0	$50 \mathrm{~m}+$	v
May, 1909. March, 1910 March, 1912 January, 1913 October, 1913.	$\underset{13.055 \pm 0.021}{m m}$	$\begin{gathered} m m \\ +0.106 \\ +0.095 \\ -0.034 \\ -0.073 \\ -0.098 \end{gathered}$	$\begin{gathered} m m \\ 14.051 \pm 0.020 \end{gathered}$	$\begin{gathered} m m \\ +0.018 \\ +0.040 \\ +0.010 \\ -0.046 \\ -0.020 \end{gathered}$
	13.066 ± 0.015		14.029 ± 0.017	
	13.195 ± 0.019		14.059 ± 0.017	
	13.234 ± 0.017		14.115 ± 0.021	
	13.257 ± 0.016		14.089 ± 0.017	
	13.161		14.069	

The above table is shown in order that the values obtained in the past for the lengths of the tapes with five supports may be available for purposes of eomparison with the values which may be determined in the future under similar conditions. It is probable that the invar tapes will be supported at five points whenever a base is measured in a locality subject to strong and constant winds.

The values in this table result from the same standardizations as those shown in the table on page 25. Thē changes in the lengths of the tapes between the standardization in May, 1909, and October, 1913, while on five supports, are in each ease smaller than when supported at three points.

Tape T_{522} was earried to the field by each party measuring the bases on the Texas-California are and on the one hundred and fourth meridian, but in no ease was it used in the measurements. In faet, it was never unrecled in the field. Thereforo any change in length of that tape has been due to other eauses than those incident to the use of tapes in the field during measurements.

The data in the abovo tables indieate a remarkable constancy in the values of the lengths of the tapes, considering the fact that three of them were used in the field in the measurement of six bases, totaling about 156 kilometers of single measures (including remeasuring of eertain sections), about 52 kilometers for each tape. It may be stated also that the invar tapes are not so susceptible to injury during field work as was supposed to be the ease soon after their introduction. Each of the base parties which used the tapes under discussion, with the exception of two members, consisted entirely of men unskilled in the use and treatment of tapes.

The members of eaeh party were eautioned to use every eare in handling the tapes, but even so it seems remarkable that none of the tapes have been injured.

Rapidity of base measurements.-The following table shows the speed attained in the measurements of the four bases. The times given are the hours of actual work, ineluding the time spent in changing tapes and in placing the eopper strips on the end stakes, but not long delays such as the stops for luneheor:

Ambrose hase.				Provo base.			
Date.	Time.	Distance.	Kilometers per hour.	Date.	Time.	Distance.	Kilome ters per hour.
1912 May 16 18 20	$\begin{array}{ll}h & m \\ 2 & m 5 \\ 5 & 50 \\ 5 & 40 \\ 5 & 15\end{array}$	$\begin{aligned} & k m \\ & 3.00 \\ & 8.00 \\ & 9.90 \end{aligned}$	1.03 1.41 1.89	$\begin{array}{rr}1912 . \\ \text { Oct. } & \\ 7 \\ 7 \\ 8\end{array}$	$\begin{array}{ll}h & m \\ 7 & 15 \\ 6 & 00 \\ 3 & 35\end{array}$	$k m$ 12.00 10.00 7.10	1.66 1.67 1.98
El Paso base.				Cheyenne base.			
$\begin{array}{r} \text { July } 16 \\ 17 \\ 18 \\ 20 \end{array}$	$\begin{array}{ll}h & m \\ 3 & 00 \\ 7 & 35 \\ 3 & 05 \\ 2 & 55\end{array}$	$\begin{gathered} k m \\ 4.00 \\ 10.60 \\ 4.00 \\ 4.00 \end{gathered}$	1.33 1.40 1.30 1.37	1913. July 10	$\begin{array}{ll}h & m \\ L^{\prime} \\ 2 & 30 \\ 5 & 00\end{array}$	$k m$ 4.00 9.30	1.60 1.86

The average speed for each of the four bases is:

	Kilometers per hour.
Ambrose base..	1.51
Provo base.	1.73
El Paso base.	1.36
Cheyenne base.	1.77

The speed attained on other bases measured with invar tapes is given on page 151 of Appendix 4, Report for 1907, and on page 170 of Appendix 4, Report for 1910.

Tapes v . Wires.-It is only necessary to toueh briefly on the use in some other eountries of steel or invar wires in the measurement of bases. Exeellent results have been obtained with them, but in the opinion of the writer the tapes are more easily handled than the wires. It is always possible to deteet a twist in the tape, but the wire may have a twist without detection during the field measures. Also the wires may be injured during reeling, while there is only a remote possibility that an injury while reeling might oeeur to a tape. The tape is probably affeeted by strong wind more than is a wire, but the experience in the United States has been that no material delay has been eaused by the wind. At the Stanton base only was the wind troublesome. (See Appendix 4, 1910.) At the Deming base the wind effect was made negligible by the use of five supports instead of three for the 50 -meter tape.

Stakes ∇. Movable supports. - When measurements of primary bases were made with steel tapes, it was necessary to work at night in order to take advantage of the more eonstant temperature; and in order that night work might be done it was necessaly to have the supports for the tape set during the daylight. In general stakes 4 inehes in eross seetion were used as the end supports, and very mueh lighter material for the intermediate supports. This method of supporting the steel tape has been continued with the invar tapes.

Where stakes are used, all the members of the party may be inexperieneed exeept one observer; and no preliminary training is required, as the first measurements by the new party will nearly always be found satisfaetory. The stake setting and the leveling over the base may go on simultaneously and then the combined foree may do the aetual measurements with the tapes. For measuring with the movable suppo1ts the party must be larger and must include several especially trained men. With the stakes the setting and leveling ean be done in windy weather while with the movable supports no measuring ean be done at such times. In the plains region of the United States where frequently the wind is strong in the day but light at
night, the stake supports would be preferable. Either method will enable the party to secure results far more aceurate than are really required for the highest grade of triangulation.
conclusions from base measurements.
Some of the conelusions which may be drawn from the measurements of the four base lines discussed in this publication are:
(a) The plan adopted on the Texas-California are of having the observing party on triangulation measure the bases as they are reached, is an effieient one, and should be continued. This method insures that the lengths of the bases may be known in time for use in an adjustment of the arc of triangulation as soon as the last field work of the triangulation has been done.
(b) Tapes of the invar metal make an entirely satisfactory apparatus for base measurements.
(c) There is no evidence that a different length than 50 meters should be used for the base tape.
(d) The 50 -meter invar tape is affected by wind of even moderate strength, when supported at only three points. But ordinarily, during the progress of the various operations at a base, sufficiently long periods of favorable wind conditions may be found for making the measurements. All four of the bases on the one hundred and fourth meridian had only three supports for each tape length, one at each end and one in the center. No serious trouble with the wind was encountered. An effieient remedy for the wind effect, if troublesome, is to use five supports for eaeh tape length, as on the Deming base in 1910. (See pp. 154-155 of Appendix 4, Report for 1910.)
(e) Owing to the small time and cost needed to measure a base, it is believed that the ummation of R_{1} (see p. 8) between bases should be between 90 and 140 , instead of between 130 and 200. With the higher values there is the possibility of having to introduce other bases after the completion of the triangulation and the measurement of the bases provided for by the reconnaissance.
(f) While the index error in the spring balance did not introduce an error into the El Paso and Cheyenne base lengths, at the same time it was a cause of annoyance. The index of the balance should be rigidly fastened to its stem to prevent a change in the index error if the balance were roughly handled.
(g) After the use of the same tapes on six bases in four different seasons between 1909 and 1913, inclusive, the lengths of one tape show a maximum range of only 0.297 millimeters, or 1 part in 170000 , while the average maximum variation of all the tapes is only 0.193 millimeters, or 1 part in 260000 . If the aetual unecrtainty in the length of each tape should be as much as the total range in values as shown in the table on page 25 , even then the uncertainty of a base measured with three or more tapes would be less than the uncertainty in the length of any one tape. Such aceuracy is far greater than that of the triangulation, and hence the invar metal must be considered as a most satisfactory material from which to make a base measuring apparatus.

BUILDING SIGNALS AND MARKING STATIONS.

The erection of the signals or instrument stands and the marking of stations were done by a party under the direction of Signalman J. S. Bilby. He arrived on the working ground April 12, 1912. Actual field operations of the building party began on April 24 and ended August 28, 1912, a total time of four months and five days.

The building party consisted of Mr. Bilby and two men, with occasional temporary employees who assisted in cutting lines or erecting signals. One of the regular men began work at Cheyenne, Wyo., worked southward to the end of the scheme and then northward from Cheyenne to meet the other man who had started at the Canadian border and worked southward. Mr. Bilby was with the one or the other of these men, depending upon where his assistance and guidance were most needed.

TWELVE-INCH THEODOLITE.

The building party crected stands or signals for mounting the theodolite at 102 stations, prepared the base lines at Ambrose and Provo, and gave some assistance to the observing parties in the measurement of the bases. The stations were also marked in a permanent manner by the building party. The character of the marks is described in notes 1 to 8 on page 115, and the metal tablet placed in the concrete or cemented to solid rock is shown in illustration No. 4.

Signals.-The type of signal is that shown by illustrations and described in Appendix 4, Report of the United States Coast and Geodetic Survey for 1903. In that publication are also given detailed directions for its erection. The signal is a double structure consisting of an inner tower, called the tripod, on which the instrument rests, and the outer tower, called the scaffold, near the top of which there is a platform for supporting the observer. The two structures do not touch each other at any point and consequently the observer may move about on the platform without disturbing the level or azimuth of the theodolite. The heliotrope and lamp are sometimes posted on the tripod and at other times on the scaffold.

The signals shown in the illustrations in Appendix 4 of the Report for 1903 were designed for use by a double observing party, and the upper platform enabled the light keeper to post his heliotrope or lamp centrally over the station even when one of the observers was at his station. When there is only one observing party the scaffold does not extend above the tripod, as the top platform is not needed.

It has been found that it is more economical to build the tripod to only a moderate height, say less than 70 feet, and then extend the scaffold to a sufficient height to make clear the line from its top to the tripod head at a second station and likewise to extend the scaffold at the second station to such a height that the line between its top and the tripod head at the first station will also be clear, rather than to attempt to build the double structures to such heights that the line between the tripod heads at the two stations will be clear of obstructions.

Illustration No. 10 of Appendix 4, Report for 1903, shows a signal which has the tripod about 66 feet high and the light stand at the top of the superstructure on the scaffold 137 feet above the ground.

The one hundred and fourth meridian arc is rather remarkable for the low average elevation of the instrument above the ground. The tables on pages 43 to 47 give the elevation of the telescope of the theodolite above the station mark. There were only eight stations at which the height of the instrument was greater than that necessary to bring the telescope to the cye of the observer as he stood upon the ground. The height of the simple stand for mounting the theodolite was about $3 \frac{1}{2}$ feet. The average height of the tripods of the eight signals was 28.15 feet. Inasmuch as the country traversed was at most points distant from lumber yards, the reconnaissance party made such selections of stations as to make the amount of building a minimum.

On the Texas-California arc of primary triangulation (reported in Special Publication No. 11, United States Coast and Geodetic Survey) the plan previously employed of always having the telescope of the theodolite at least 10 feet above the ground except on sharp peaks, was abandoned. Where the line was clear of obstructions only stands for the instruments were used even though the country was flat for some distance in all directions from the station.

The accuracy of the Texas-California triangulation was better, on an average, than that of the other great arcs in the United States. The writer, who observed part of one season on the Texas-California arc, noticed that the lights and heliotropes observed from a station where tho theodolite was only a few feet from the ground were more unsteady than when the lines were higl, and especially when high near the station occupied by the observer.

The plan used on the Texas-California are was adopted on the one hundred and fourth meridian arc of primary triangulation, and the instrument was never mounted at a greater licight than was barely necessary to clear the line. The accuracy of the work on the one hundred and fourth meridian is discussed later in this report.

Cost of building signals and marking the stations.-The total cost of the work of the building party was about $\$ 4200$. This includes the salaries and traveling expenses for the chief and all the inembers of the party, also the cost of lumber and cement delivered to the stations,
and various small expenditures. This is at the rate of $\$ 5.83$ per mile of progress, a remarkably low amount.

The use of instrument stands instead of signals, even of low height, decreased greatly the expenses of preparing the stations for the observing parties. The lumber necessary for signals would have been expensive and hauling it to the stations would also have been costly.

INSTRUMENTS USED ON TRIANGULATION.

Theodolites.-The type of instrument used for the horizontal measures is deseriber in detail in Appendix 8 of the Report for 1894. It is believed that the portion of that description shown below will be of interest and value to the reader. These theodolites have been used on all of the primary triangulation done by the United States Coast and Geodetic Survey since they were made in the early nineties. One of them is shown in illustration No. 2.

The base is of cast iron, into the socket of which is fitted another cast-iron socket, to which is rigidly attached the brass circle and into which is fitted the center which carries the alidade. Under tho circle is a device for firmly clamping this socket to the base in any position of the circle. The center is 22.2 centimeters (8 inehes) long, its two bearing surfaces being cones of different angles. It is made of the best quality of tool steel, and the cones are made glass hard. No pains were spared in the construction of these centers and sockets, and it is believed they are the most perfect ever made for theodolites, and are probably the first theodolite centers with glass-hard bearing surfaces.

In the alidade the cover of the circle, the supports for the micrometer microscopes, the wye supports, axis, and setting circle of telescope are made of aluminum. The bearing surfaces of the wyes are of brass, and the pivots of telescope axis are of bell metal. The draw tube of telescope, micrometer microscopes, clamps, and other small parts are of brass.

The use of aluminum in the construction of these instruments was not with the special purpose of redueing the total weight of the instrument, but to reduce the weight supported upon the centers. The cast-iron bases of these instruments, in proportion to the whole mass of the instruments, are much heavier than is usual in other theodolites of the same size. These heavy bases and long centers give great stability to the instruments. The weight of the whole alidade is 7.5 kilograms (17 pounds), whereas in other instruments of the same size that have been used in the Survey the weight of similar parts is 18 kilograms (40 pounds). The centers of the old instruments are of various forms, and the friction is so great that it has to be relieved by some device at lower end of centers. No such device is necessary with the new instruments. The total weight of one of the new instruments is 18.5 kilograms (41 pounds).

The telescope objective was made by J. Brashear, and is 6.1 centimeters (2.4 inches) aperture, and 73.7 centimeters (29 inches) focus. The teleseope has an ocular micrometer, with three Ramsden eyepieces, giving powers of 30,45 , and 60 . Several levels, all made by A. Pesseler, of Germany, are attached to the alidade for convenience. The stride level has divisions of 2 millimeters, with arc value of 4 seconds.

The graduation of the circle is on coin silver and is 30.5 centimeters (12 inches) in diameter. It is divided to 5 minutes and reads to seconds by three equidistant micrometer microscopes. Each degree of the graduation is numbered. The degrees and nearest 5 minutes are read by a low power index microscope 50 degrees to the right of micrometer microscope A. Attached to the cover of the eirele is a small camel's-hair brush which sweeps over the graduation.

The circles were graduated on the United States Coast and Geodetic Survey engine. This graduating engine was originally made by Troughton \& Simms, of London, and bears the date of 1841. In the hands of the Survey it has rcceived various improvements, the chief of which are a new tracing apparatus and new support for the same. The engino is driven by a small turbine wheel upon which a constant water pressure is maintained. To graduate a circle to 5 minutes takes about 3 hours and 35 minutes. The graduations are made at a temperature of $36^{\circ} .66 \mathrm{C}$. $\left(95^{\circ}\right.$ F.), that temperature being most easily maintained at any season of the year and least affected by the occasional presence of the operator. For the last nine years this engine has been manipulated exclusively by the present chief instrument maker of the Survey and in his hands has produced some very fine graduations, as the results with the two new theodolites, Nos. 145 and 146, show.

Vertical collimator. - In centering a signal over the mark of a previously established station, when placing a mark under a new signal, and for centering the theodolite over the station mark, there was used a vertieal collimator which is shown in illustration No. 3a. In order that this instrument may be used there must be an opening in the center of the cap block of the tripod head of the signal. Into the vertieal socket of the base of the instrument fits a teleseope earrying a fixed level and having adjustable eross wires in its reticule. The axis of the level is at right angles to the line of sight of the telescope. The base rests on three leveling serews.

The adjustments of the instrument are extremely simple. After liaving focussed the eyepiece on the eross wires, the eross of the wires is adjusted to make it remain on a point as the teleseope is revolved about its axis. Then the level is adjusted to make the bubble remain in

VERTICAL COLLIMATOR (TWO VIEWS).
the center as the telescope is revolved. With the instrument in perfect adjustment and the bubble brought to the center in two positions at right angles, the line through the cross of the wires will be vertical. In actual use it is not essential that the instrument be in perfect adjustment, for if the bubble is brought to the center in each of four positions of the telescope, about 90 degrces between cach two positions, four points may be detcrmined and the mean position of them will be in the vertical line through the center of the telescope.

After the instrument has been placed dircetly over some mark the telescope is withdrawn and there is insertcd a plunger, the lower end of which is a point. The center of the instrument may be marked by the intersection of two strings at right angles drawn across the tripod head with their intersection at the point of the plunger; or small nails may be used to mark two lines approximately at right angles whose intersection is at the point of the plunger. These are only two of various methods which may be used to indicate on the tripod head the center of the vertical collimator.

When only a stand is used for mounting the theodolite, heliotrope, and lamp, the centering is done by means of a plummet.

Heliotropes and lamps.-The observations for the horizontal directions in the main scheme were made entirely on heliotropes and acctylenc signal lamps. The heliotrope is of the box type and is shown in illustration No. 3b. The diameter of the fixcd mirror is $2 \frac{3}{4}$ inches (70 millimeters). The lamp is shown in illustration No. 3c. It is an ordinary automobilc acetylene headlight fitted with a basc which may be easily sct up centrally over a triangulation station. One charge of calcium carbide will give a satisfactory light for about four hours.

LIGHT KEEPERS.

The plan of having the same men throughout all or a large part of a season and the method of directing them by heliographing with the Morse alphabet were first used on triangulation in the United States on the ninety-eighth meridian in 1902. (See pp. 826-S29 of Appendix 4 of the Report for 1903.) Previous to that time it had been the custom to employ some one near a triangulation station to show the heliotrope and to attend to the signal lamp. A simple code of signals was sometimes used to indicate to the man that the work had bcen completed, but no systematic and elaborate method of signaling had been used, and serious delays were incritable, as an officer would have to visit and post men at the new stations before the observations could proceed. The method of signaling by means of the Morse alphabet was used in guiding and directing a heliotroper by Prof. J. F. Hayford when he was the astronomer on tho United States-Mexican Boundary Commission, and it was he who proposed its use in the 1902 work.

There are a number of causes which have contributed to the rapid progress made by the observing partics of the United States Coast and Geodetic Survey engaged on primary triangulation in recent ycars, but onc of the most important is the trained corps of light kecpers and the ease with which their movements can be directed and controlled by the observer with the aid of the signaling.

Six regular heliotropers (or light keepers) were used by each observing party on the one hundred and fourth meridian triangulation. Sometimes, in order to avoid delays, an additional light kecper was engaged for work at a single station, and in a few cases the driver of the observing party showed the heliotrope and lamp at a station. It was only occasionally that one of the stations to be observed on did not have a light keeper when the observer was ready to begin work.

Each light keeper's outfit consisted of a tent, bedding, a small number of cooking utensils, binoculars, signal lamp, heliotrope, prismatic compass, sketch of the triangulation, a few tools, and such other small articles of camp equipage as were decmed necessary. At some of the stations the light kecpers were able to get their meals with a farmer or ranchman, but ncarly always they prepared their own food. They made their moves between stations in farm wagons hired especially for the trip.

The light keepers posted their own lights and heliotropes during the entire season. At all stations occupied by the observer lines were aeeurately drawn on the light stand to each signal observed upon, and a light keeper following had simply to use these lines. The stations ahcad of the observer had no lines laid out; consequently the light keepers had to use their ingenuity in finding the direction to the observer. This, however, did not prove very difficult, as each man was given a sketch of the reconnaissanee, and by placing the sketeh on the light stand and orienting it approximately by the magnetic meridian line as gotten by his eompass he was enabled to loeate at least one of the stations. He would then orient the sketch accurately over this direction and lightly mark on the stand the directions to all of the stations as given by the sketch. He would then begin showing to the observer. If he did not get lights from him in reply, he would swing his heliotrope or lamp through a small angle to each side of the approximate direction. (The term "light" will be used hereafter to indicate either the heliotrope or lamp.) As soon as the observer saw a light from one of the stations ahead he showed a steady light to enable the light keeper to get a correet line. Most of the forward lines were found at night, as the lamps would show over a wider angle than the heliotropes and were not affected by clouds.

A light keeper was usually able to find some object in the line to a station, such as a lone or high tree or a rock, by which he could post his heliotrope and also the lamp if put up before dark. This method was preferable to simply using the lines drawn on the light stand.

A man to be a good light keeper must have education enough to keep his aceounts, but, what is more essential, he should have a practical turn of mind which will enable him to overeome difficulties and get his lights posted in spite of floods, breakdowns, etc.; of course it goes without saying that he must be conscientious and faithful. Unless a man shows the above qualities, it is not advisable to keep him in the party a longer time than is required to get another man.

SIGNAL CODE AND INSTRUCTIONS TO LIGHT KEEPERS.

In order to facilitate the work, written directions were given the light keepers, whieh ineluded the Continental Morse alphabet, the eode signals, and such other information as the light keepers might need in conducting their work. The signal code and instructions, as issued to the light keepers for the one hundred and fourth meridian triangulation, are as follows:

Continental Morse alphabet.-

	A.-
	B -
	C - .
	D - .
	E.
	F.. - .
	G - -
	H
	I . .

$$
\begin{aligned}
& \mathrm{B}-\ldots \\
& \mathrm{C}-. . \\
& \mathrm{D}-\ldots \\
& \mathrm{E} . \\
& \mathrm{F} \ldots- \\
& \mathrm{G}-- \\
& \mathrm{H} \ldots . \\
& \mathrm{I} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J} .--- \\
& \mathrm{K}-.- \\
& \mathrm{L} .-\ldots \\
& \mathrm{M}-- \\
& \mathrm{N}-. \\
& \mathrm{O}--- \\
& \mathrm{P} \cdot--. \\
& \mathrm{Q}--\cdot \\
& \mathrm{R} .-
\end{aligned}
$$

$$
\underset{T}{\text { S }} \ldots
$$

U.
V...-
V...—

$$
\underset{X}{W}-\ldots-
$$

$$
\mathrm{Y}-. \mathrm{B}
$$

$$
Z-\text { - }
$$

The notations for numerals will be dispensed with and the numbers spelled out when required.
The Continental Morse differs from the American Morse in that there are no "spaces" between the elements of the letters.

Signaling.-Dots should be short, just long enough to permit the lights to be seen clearly.
Light should shine for dash about two seconds. Duration of darkness between elements of letters, one second.
Duration of darkness between letters, three seconds; duration of darkness between words, fivo seconds. If the lights are dim these periods may be somewha; louger. It is not important that these periods should be absolutely observed, but the relative proportion should be maintained.

The alphabet must be committed to memory; also, what is more difficult, all letters must be easily recognized by secing or hearing their elements. Perfection in this matter will climinate much trouble, as most of the difficulty is due to the receiver not being able to recognize a letter beforo the next one has begun.

Maintain a uniform speed in sending, for varying speeds make tho receiviug of the message difficult.
Be careful that all light is cut off between elements of letters.
Do not use hand in signaling.
Cut tho light off and on by quick movements.
No. 3b.

$\dot{3}$
$\dot{\circ}$
$\dot{2}$

boX heliotrope used on triangulation.

An observer calls a light keeper by showing a steady light to him until answered.
A light keeper calls the observer by sending his own letter until answered.
Answer a call by a series of slow dots (not more than seven), then watch for the signal by aid of the binoculars.
Repeat every few minutes until answered by observer.
Darken light before beginning message for a period of about 15 seconds.
All messages are to be repeated by the receiver, except in case of messages from light keeper to observer. Here the observer will answer by sending slow dots. Never repeat a word unless you are sure it is right. This is a decided annoyance to the observer and a source of a great deal of trouble. If an observer knows that a messago has not been received, he is at least in a position to know what to do to remedy matters.

Code signals.-A series of quick dots means, "I have made a mistake and will begin again."
An A means, "Wait a while."
A G, followed by the name of a station, means, "Get person at that station by calling him, and tell him where observer is."

An N : "Your light is too faint."
An R : "Repeat message; I could not get it."
A series of slow dots: "I understand your message."
An M: "Moderate your light; it is too strong."
Signals to be used by the observer when communicating with a light keeper.-S T, followed by name of station and date, means: "Stop showing light to this station; show to the station indicated on datc named, and look for observer's call."
$S T$, with no name of station, means: "Stop showing light to this station, and show light to the station to which observer goes, which is indicated in the written schedule of observer's moves, a copy of which has been furnished to you. If no date is given, show to new station at next observing period."
$T H D$: "Have finished on you for this afternoon (or night)."
$D G$, followed by name of station and date, means: "Done where you are; go to the station named, show light, and look for observer's call on date given."
$D G$, with no name, means: "Done where you are; go to the next station mentioned in your written schedule of moves, and show light to the observer at his old or new station, according to the schedule. If no date is given, begin showing light at first observing period after station is reached."

If the observer sends an " A " after 10.00 p . m., it means that the light keeper is to stay on the tower and keep a sharp lookout until called again. Should this be followed by an " L," it signifies that the light keeper is to recharge the lamp and leave the station for the night.

FINI: "Have finished on you; obey written instructions."
"Money," "Mail," etc., followed by name of place, means: "The article is at the place named."
Signals to be used by light keepers to observer.-"Money," "Carbide," etc., means: "I am in need of same."
Other necessary messages will be spelled out in full.
Keep a sharp lookout for signals for 10 minutes after each recharging of lamp and for 10 minutes after each hour and half hour.
$N^{\prime} s$ may be sent any time if your light is poor.
Signals to be used by a light keeper to another light keeper.- O, followed by the name of a station, means: "Observer is at that station; show to him at once."

General considerations.-Before starting out alone be sure that some one of the party has taught you how to use the signal lamp and how to test and adjust a heliotrope and to put on the cut-off rings on the heliotrope and lamp.

Test your heliotrope and lamp so that the light goes to the observer, for the line through the sights may point to tho observer but the light may not be centered on him.

Every day, if necessary, see that your lamp drops water fast enough to give a strong light.
Keep your heliotrope and lamp in good condition. When the air is clear, a poor light possibly may be seen, but if it is hazy only a clean lamp and reflector will give good results. The carbide chamber should be cleaned as, soon as possible after getting through using the lamp, as the metal is corroded if carbide is allowed to stand in it.

At every opportunity get the correct standard time and keep your watch within a few minutes of it.
The first thing to do when reaching a station is to try to locate all of the stations to which you will show. By doing this at the first opportunity, and not waiting for the exact moment that you expect your light to be used on a line, you will avoid causing delays to the observing party.

Whero smoke, clouds, and fog are encountered, the value of getting your pointings on the clear days is evident. After finding a station you should hold the direction to it by lines marked on the stand or by any other means practicable. When you are on a wooded peak and there has been a delay in seeing the observer's light, watch carefully for him, for the light might be obstructed close to your station and you might be able to see the call from the top of a tree or from some other point on the mountain. In other words, do not be absolutely sure that tho line is open unless you have seen a light from the other station, and unless you are sure keep trying to get tho observer's call by watching very closely.

When the observer's light is once seen, set your telescope on it and fasten or mark it so that you will know you havo the direction of the line even if the weather should become cloudy or smoky. Then point your heliotrope, using thin wedges if necessary to get the proper elevation, and mark the place on the stand where each wedge belongs
and also mark the wedge to show how far it is to bo pushed under the heliotrope; also mark along the side of tho heliotrope box for the direetion. Then you can replace your heliotrope exaetly after it has been disturbed. Tho lamp may be set and pointed by the lines mado for the heliotrope. When in troublo about the direetion of tho lines, always keep watching for calls from stations other than tho obscrver's, for the observer may bo sending a message to you through ono of the other light keepers.

Your work on the tower begins at 1 p. m. From then until 4.30, unless instrueted otherwise by tho observer, you should show your heliotrope all the timo if there is sun enough to make a shadow. If your heliotrope is pointed with care, a faint sun is just as good to show the observer as a bright sun on comparatively short lines; also, if you get only a faint sun every 10 minutes or so, whieh lasts for a short time, it may be used by tho observer. It is not for you to decido whether you think it worth while, or whether the observer can use it or not. An effort will be made to send you THD as often as practicable.

At night go on the tower eaeh hour and each half hour and look for signals from the observer, remaining 10 minutes each time. Begin doing this as soon as you have finished your evening meal.

At $11 \mathrm{p} . \mathrm{m}$. begin sending slow dots (about 20 at a time) and remain on the lookout for signals for 15 minutes (until 11.15). If no signals are reeeived, see that the light is burning well (rechanging if desirable) and then you can leave the tower for the night.

Keep a lookout for the observer's eall from his next station, as he may hąe moved without notifying you.
The lamp should be set up and lighted a half hour before sundown.
Bo eareful to sight your lamp and heliotrope aceurately; if in doubt, send your initial, then the observer will show you a light.

Be extremely careful not to have lanterns or other extra lights about the tower. They are often mistaken for the signal lights by the observer. Frequently they ean be seen at the foot of the tower as well as on the top.

When your line is 10 miles long, or less, wateh for an M, meaning that your light is too strong and should be reduced by means of the eoneentrie rings provided, or by paper rings eut out true.

Keep your tents, mess outfits, instruments, and other artieles of equipment elean and in order.
It should be remembered that the towers are built with the least material required for safety; that the signal notices apply to light keepers as well as to other people, and therefore you should in no way weaken the scaffold by removing any of its parts.

An extra effort should be made to move between stations as rapidly as possible to prevent holding back the observing party longer than is necessary.

So much depends upon the effieieney and faithfulness of the light keeper that an indifferent one must be disposed of as soon as convenient.

Light keepers' accounts.-Each light keeper was given in writing detailed directions for making out his accounts, for shipping by freight or express, and he was also given copies of the various kinds of bills, receipted, of which he might have need in his accounting.

In addition to the sketches showing the seheme of triangulation as located by the reconnoissance party, the light kecpers were given descriptions of the stations which enabled them to move from one station to another. They were given lists of the triangulation stations in the crder in which they would be occupied by the observer and each light keeper was also given a statement of his own moves and for each of his stations the line or lines over which he was to show a light. This information was tabulated in the following form:

Schedule of moves for observer and light keepers.

Observer.	Light keeper "B."	Light keeper "D."	Light keeper "11."	Light keeper "K."	Light keeper "P."	Light keeper "V."	Light keeper (extra).
Haystack.	Rawhide.	Hobbs..	Willow.	Coleman.	Notch..	Chuswat	
Coleman..	1Iaystack.	.ido....		...do...	. .do.do.	
Notch...	..do......	Whitaker	Ragged.	. . .do.	do	do	
Whitaker	Wadili....	.dodo.	Greentop	do		
Ragged.	..do.	.do	.do.	...do.....	do.	do..	

Each light keeper was assigned a letter so chosen as not to be identical with or similar to any of the code letters. The stations which each light keeper was to occupy in suceession were shown in the vertical column under his letter, while the location of the observer and the various light keepers at any time were shown in the horizontal lines. Thus, when the observing party was at Haystack, light keeper "B" was at Rawhide, "D" at Hobbs, etc., and when the observer moved to Coleman, " B " moved to Haystack, and the other light keepers kept their stations:

By arranging the schedule carefully with regard to the time required for the various moves it was nearly always possible to adhere closely to the prearranged plan of operation.

OBSERVATIONS FOR HORIZONTAL DIRECTIONS.

Two observing parties, under Assistants E. H. Pagenhart and C. V. Hodgson, completed all of the observations for horizontal directions in one season, extending from the spring to the autumn of 1912. The actual days on which observations for horizontal directions were made are shown in the tables on pages 38 and 39.

Each party was organized practically in the same manner as the observing party of the season of 1908-9 on the Texas-California arc of primary triangulation except that each had a second officer. Assistant C. M. Cade was with Mr. Hodgson during the whole season and for a part of the time conducted a second observing party under his direction. Assistant T. I. Warner was in the party of Mr. Pagenhart from the beginning of the season until September 28, 1912. Besides the chicf of party and his assistant, there were in each observing party a teamster and a recorder. They lived in tents and carried a small mess outfit, cooking their food over an open fire.

Each party had a freight wagon and a light spring wagon, each drawn by two horses or mules, for transporting the instruments and camp equipage from station to station.

A number of the stations occupied by Mr. Hodgson were on mountain peaks to which the instruments and observing tent were carried by pack animals. This was the case also for several of the stations occupied by Mr. Pagenhart.

GENERAL INSTRUCTIONS TO OBSERVERS ON PRIMARY TRIANGULATION.

There are given below the general instructions to chiefs of the observing parties on primary triangulation, under which practically all of the primary triangulation in the United States has been done in recent years. They were approved by the Supcrintendent of the United States Coast and Geodetic Survey in 1905, upon the rccommendation of Prof. John F. Hayford, at that time inspector of geodetic work in the survey. The general instructions were first printed on pages 170-174 of Appendix 4 of the report for 1911. The observers on the one hundred and fourth meridian triangulation worked under thesc instructions.

1. Instruments.-Ingeneral, direction instruments of the highest grade should be used in triangulation of this class. Repeating theodolites are to be used only when the station to be occupied is in such a position as to be difficult of oceupation with a direction instrument or when there is doubt of the instrument support being of such a eharacter as to insure that the movement of the observer about the instrument does not disturb it in azimuth. Such stations usually occur on lighthouses and buildings.
2. Number of observations-Main scheme-Direction instrument.-In making the measurements of horizontal directions measure each direction in the primary seheme 16 times, a direet and reverse reading being considered one measurcment, and 16 positions of the circle arc to be used, corresponding approximately to the following readings upon the initial signal:

3. When a broken scries is observed, the missing signals are to be observed later in connection with the chosen initial or with some other one, and only one, of the stations already observed in that series. With this system of observing no local adjustment is nceessary. Little time should be spent in waiting for the doubtful signal to show. If it is not showing within, say, one minute of when wanted, pass to the next. A saving of time results from observing many or all of the signals in each scries, provided there are no long waits for signals to show, but not otherwise.
4. Standard of accuracy.-In selecting the conditions under which to observe primary dircctions, proceed upon the assumption that the maximum speed consistent with the requirement that the closing error of a single trianglo in the primary seheme shall scldom exceed threo seconds, and that the averago elosing error shall be but little greater than one second, is what is desired rather than a greater accuracy than that indicated with slower progress. This standard of accuracy uscd in connection with other portions of these instructions defining the necessary strength of figures and frequency of bascs will in general insure that the probaiole error of any base line, as computed from an
adjacent base, is ahout 1 part in 88000 , and that the actual discrepancy between hases is always less than 1 part in 25000.
5. Rejections-Direction observations.-The limit for rejection of observations upon directions in the main seheme shall bo 5 secouds from the mean. No observation agreeing with tho mean within this limit is to bo rejected unless tho rejection is made at the time of taking the observation and for somo other reason than simply that the residual is large. A new observation is to he substituted for tho rejected one beforo leaving tho station, if possible without much delay.
6. Number of observations-Supplementary stations-Direction instrument.-In observing upon supplementary stations and in observing from supplementary stations upon stations in the main scheme, four measures of tho character outlined abovo shall he mado of each direction, using tho circlo in the first four positions stated in that paragraph. A supplementary station is one which is not in tho main scheme, hut which is observed upon or from which observations aro taken for the purposo of connecting with stations which can not he effectively reached from the stations in the main schemo and with which a connection is required by specific instructions.
7. Number of observations-Intersection stations-Direction instrument.-An intersoction station is a station of which the position is determined by intersections from stations of the main schomo or supplementary stations and which is not occupied. One such measure as is outliued on pago 35 shall he mado of each direction to each intersection station. A sccond such measure shall be made if it can be secured under conditions nearly as favorable to accuracy as were the conditions when tho first measure was made and without much delay to observations in the main scheme. Each series of observations on intersection stations is to contain some one, and only one, of tho main scheme or supplementary stations. It is important to havo at least three lines to each intersection station in order to secure a check, but a possible intersection station should not be neglected simply becauso only two lines to it can be secured.
8. Observing-Supplementary and interscction stations.-Ohservations upon and from supplementary stations and observations upon intersection stations may be taken under any atmospheric conditions whenever the ohject to he pointed upon is visihle and no delay is likely to he mado to secure good seeing beforo ohserving.
9. Land section corners and other survey marks. - Whenever it is feasible to do so without incurring undue expense and delay, the section corners estahlished by the United States Land Survey, and survey marks of any kind found upon the ground, shall be connected with the triangulation either hy direct measuroment of a distance and direction from a station or by using them as intersection stations.
10. Value of intersection stations.-In selecting intersection stations it should be kept in mind that the geographic value of a piece of triangulation depends upon the numher of points determined, tho size of the area over which they are distrihuted, and the permanenco with which they are marked. The geographic value of the triangulation is lost for a given area when points can not he recovered within that area. The chance of permanency is increased hy increasing the numher of points as well as hy thorough marking. Theso considerations should lead to the determination as intersection stations of many artificial ohjects of a permanent character, such as lighthouses, church spires, cupolas, towers, and large chimneys; should lead occasionally to the determination of specially marked stations established for this particular purpose; and should frequently lead to tho permanent marking upon the ground of topographic or hydrographic stations and their determination as intersection stations. The practice of permanently marking such hydrographic points as are in commanding positions-on promontories, for example-and which are so situated that the station is not likely to disappear if permanently marked (on firm ground not likely to he washed away or on rocks), and determining their positions as intersection stations will frequently ohviate the necessity which would otherwise exist for new triangulation whon a later hydrographic survey is made. It is especially desirahle to increase the area effectively covered for geographic purposes by selecting intersection stations which are outside the area covered by the main scheme.
11. Vertical measures in main scheme.-At each station in tho main scheme vertical measures aro to be made over all lines in the main scheme radiating from it. These vertical measures should he made on as many days as possible during the occupation of the station, but in no caso should the occupation of the station he prolonged in order to secure such measures. Three measures, cach with tho telescope in both tho direct and the reversed positions, on each day, are all that aro required. These measures may be made at any time between $11.00 \mathrm{a} . \mathrm{m}$. and $4.30 \mathrm{p} . \mathrm{m}$., except that in no case should primary vertical measures be mado within one hour of sunset. It is desirable, however, with a view of avoiding errors due to diurnal variation of refraction, to havo a fixed habit of ohserving the verticals in tho main scheme at a certain hour, as, for examplo, between 2 and 3 p . m. If tho vertical measures at a station are made hy the micrometric method, douhlo zenith distance measures shall be made on at least two of the lines radiating from that station.
12. Vertical measures-Supplementary and intersection stations.-In addition to the vertical measuros required in the main scheme, vertical measures must be mado at each station, whother in tho main schemo or supplementary, over every lino of which tho horizontal direction is measured. Three measures each with tho telescopo in both the diroct and reverso positions aro all that are required on all liues to or from supplementary or intersection stations, except when the observations upon such stations are made for the purpose of connecting with hench marks of which the elovations aro fixed by preciso leveling or tidal observations. In the latter caso ohservations should bo made on as many days as possihle during the occupation of the station, but in no case should tho occupation of a station be prolonged in order to ohtain measures. Also, in tho latter caso, tho vertical observations aro to ho made in both directions over every lino more than 5 kilometers long, ovon though horizontal measures may bo necessary in but ono direction over the line.
13. Marking of stations.-Every station, whether it is in the main scheme or is a supplementary or intersection station, which is not in itself a permanent mark, as are lighthouscs, church spires, cupolas, towers, large chimneys, sharp peaks, etc., shall be marked in a permanent manner. At least one referenco mark of a permanont character shall be established not less than 10 meters from each station of the main scheme and accurately referred to it by a distance and direction. Such reference marks shall preforably be established on fence or property lines, and always in a locality chosen to avoid disturbance by cultivation, erosion, or building. It is desirable to establish such reference marks at all marked stations. At all stations where digging is feasible both underground and surface marks which are not in contact with each other shall be established. Wood is not to be used in permanent marks.
14. Descriptions of stations. - Descriptions shall be furnished of all marked stations. For each station which is in itself a mark, as are lighthouses, church spires, cupolas, towers, large chimneys, sharp peaks, etc., either a description must be furnished, or tho records, lists of directions, and lists of positions must be made to show clearly in connection with eacli point by special words or phrases if necessary the exact point of the structure or object to which the horizontal and vertical measures refer. Every land section corner connccted with the triangulation must be fully described. The purpose of the description is to enable one who is unfamiliar with the locality to find the exact point determined as the station and to know positively that he has found it. Nothing.should be put into the description that does not servo this purpose. A sketch accompanying the description should not be used as a substitute for words. All essential facts which can be stated in words should be so stated, even though they are also shown in the sketch.
15. Abstracts and duplicates.-The field abstracts of horizontal directions and vertical measures are to be kept up and checked as the work progresses, and all notes as to eccentricities of signals or instrument, of height of point observed abovo ground, etc., which are necessary to enable the computation to be made, are to be incorporated in the abstracts. As soon as each volume of the original record has been fully abstracted and the abstracts checked, it is to be sent to the Office, the corresponding abstracts being retained by the observer. A duplicate of the description of stations is to be made. If the original descriptions of stations are written in the record books, a copy of these descriptions compiled in a separate book may bo considered the duplicate and should then be marked as such. A duplicate of tho miscellaneous notes mentioned above may also be made if considered desirable. No other duplicates of the original records are to be made. Pencil originals should not bo inked over.
16. Number of observations-Main scheme-Repeating theodolite.-If a repeating theodolite is used for observations in the main scheme, corresponding to those indicated in paragraph 2, make the observations in sets of six repetitions each. For each angle measured follow each set of six repetitions upon an angle with the telescope in the direct position immediately by a similar set of six on the explement of the angle with the telescope in the reversed position. It is not ncccssary to reverse the telescope during any set of six. Make the total number of sets of six repetitions on each anglo ten-fivo directly on the anglo and five on its explement. Measure only the single angles between adjacent lines of the primary scheme and the angle necessary to close tho horizon. With this scheme of observing no local adjustment is necessary, except to distribute tho horizon closure uniformly among the angles measured. The limit of rejection corresponding to that stated in paragraph 5 shall be for a set of six repetitions $4^{\prime \prime}$ from the mean.
17. Number of observations-Supplementary stations-Repeating theodolite.-If the observations at a supplementary station or upon a supplementary station, corresponding to those indicated in paragraph 6, are made with a repeater, our sets of six repetitions each should be made, two directly upon each angle with the telescope in the direct position and two upon its explement with the telcscope in the reversed position. No measures introducing station conditions other than closure of horizon are to be made upon or at supplementary stations.
18. Number of observations on intersection stations-Repeating theodolite.-If the observations upon intersection stations, corresponding to those indicated in paragraph 7, are made with a repeater, two sets of three repetitions each should be made, one directly upon an angle with the telescopo in the direct position and one upon its explement with the telescope in the reversed position. Fix tho direction to each intersection station by measuring the angle between it and some line in the main scheme or to a supplementary station. No measurements introducing conditions are to be mado.
19. Field computations.-The field computations are to be carried to hundredths of seconds in the angles, azimuths, latitudes, and longitudes, and to seven places in the logarithms. The field computation may be stopped with the completion of the lists of directions for all stations and objects, and the triangle sido computation for the main scheme and supplementary stations, unless there are special reasons for carrying it further. Tho computation to this point should be kept up as closely as possible as the work progresses to enable the observer to know that the obscrvations are of the required degreo of accuracy. No least square adjustments aro to be made in the field. All of the computation, taking of means, etc., which is dono in the record books and the lists of directions should be so thoroughly checked by some person other than the one who originally did it as to mako it unnecessary to examine it in tho Office. The initials of the person making and checking the computations in tho record books and the lists of directions should be signed to the record as tho computation and checking progress.

METHODS OF OBSERVING EMPLOYED.

All the angle measures were made by the direction method, using the 12 -inch (30-centimeter) theodolites which had been made in the Instrument Division of the Survey and which are described on page 30 .

The telescope of the theodolite has two parallel vertical wires, about 20 seconds apart, for making the pointings for horizontal angles. The results from a number of seasons' work indicate that this arrangement of the wires in the telescope is more satisfactory than either the single vertical wire or the oblique cross. The double wire is especially effective when the image of the light or heliotrope is large and unsteady.

The theodolites used on the one hundred and fourth meridian primary triangulation had two pairs of lines, about four minutes apart, in the micrometer microscope. This arrangement saved much time, for, when a reading backward or forward was made by placing one pair of linos on a five-minute graduation of the circle, then the other pair of lines would have to be moved through the space of only one minute to bring it in contact with a second graduation to make the forward or backward reading.

The readings upon the initial signal were so selected that the mean value of any angle is practically free from errors due to periodic errors of graduation and is almost entirely free from the effects of the run of the micrometers. However, the micrometer microscopes were adjusted whenever tests showed that the mean run of the three was more than one second for a fiveminute space or when any one micrometer microscope had a run greater than three seconds.

Program of occupation of stations, one hundred and fourth meridian.

In the following tables the stations occupied during 1912 by each of the observers are arranged in the chronological order in which the observations were made. The second column indicates the days on which observations on the primary stations were taken, and the third column gives the number of dates at each station on which primary horizontal directions were observed.

In the party of Mr. Hodgson there was a second observing party in charge of Assistant C. M. Cade, from September 4 to November 24, 1912. During part of this period the first observing party (Mr. Hodgson, observer) was engaged in revising the reconnoissance at the southern end of the scheme and in measuring the Provo base line.

Several stations were reoccupicd in order to strengthen the angles of some of the triangles. The reoccupied stations are shown by a reference to a footnote in the tables below.

Mr. Pagenhart's party, working south from the Canadian boundary, suffered no interruptions, as the Ambrose base was measured before observing began. He had only one observing party under him.

Stations occupied.
Assistant E. H. Pagenhart, Chief of Party and Observer; Season of 1912.

Station.	Days on which observations of primary horizontal directions were made.	Total ${ }^{\circ}$ days.	Station.	Days on which observations of primary horizontal directions were made.	Total days.
Ambrose northeast base...	May 28, 29.	2	Bonetraill .	June 27. . .	
Ambrose southwest base. .	May 29, 31; June 1, 3	4	Marmon.	June 28.	
Norge....	June 10,11..	2	Bull...	July $\mathbf{~ J o , ~} 0,11$.	
Ambrose.	June 12.	1	Snake	July 12....	
Crosby.	June 13, 15	2	Bahnvill	July 13.	
Stady..	June 18...	1	Lanark.	July 15.	
Muddy ${ }^{1}$	June 19, 23.	2	Buford.	July 17, 15,19	
Howard ${ }^{1}$	June 20, 21; July 1, 2	4	Montana	July 20, 22, 23	
Gladys.................	June 24.	1	Mond	July 24, 25, 27	

Assistant E. H. Pagenhart, Chief of Party;"Assistant T. L. Warner, Observer; Season of 1912.

Ferry	July 30	1	Cook.	Aug. 23, 24.	
Cut-otf.	July 31; Aug. 1	2	lump.	Aug. 26.	
Jackson..	Aug. 2, 3, 5.	3	Sentinel	Aug. 29, 30	
Lovering	Aug. 6, 8,9	3	Saddlo.	Sept. 2,3,4.	
Shaep..	Aug. 10, 12	2	Radland	Sept. 6.	
Trottor	Aug. 15	1	Black.	Sept. 12.	1
Blue..	Aug. 17, 20, 21.	3	Butte.	Sept. 16,17	

${ }^{1}$ This station was roccupled.

Stations occupied-Continued.
Assistant E. H. Pagenuart, Chlef of Party and Ohserver; Season of 1912.

Station.	Days on whlch observations of primary horizontal directions were made.	Total days.	Station.	Days on which observations of primary horizontal directions were made.	Total days.
Whetstone ${ }^{1}$..	Sept. 24, 25, 26.	3	Wymonkota.	Oct. 20, 21, 22.	3
Lodge.	Sept. 29, 30.	2	Terry....	Oct. 26, 29.....	
Reva..	Oct. 2.7	1	Sundance.	Nov. 4,5.	2
Harding.	Oct. 10, 11.	2	Laird......	Nov. 12.13.	1
Moreau.	Oct. 12...............................	1	Alkaiiz.	Nov.21...	1
Castle	Oct. 14, 15, 16	3			

Assistant C. V. Hodgson, Chiel of Party and Ohserver; Season of 1912.

Haystack ${ }^{\text {² }}$.	May 14, 15, 16, 17.	4	Brighton ${ }^{3}$.	Aug. 5, 6, 8 b.	3
Coleman..	May 21, 22.......	2	Watkins astr	Aug. 10,	1
Notch ${ }^{3}$	May 25, 28	2	Indian ${ }^{5}$	Aug. 15, 16, 17, 18; Sept. 20	5
Chugwater ${ }^{\text {8 }}$	May 31; June 1.	2	Morrison ${ }^{\text {s }}$.	Aug. 19, 20, 21, 22, 23; Sept. 23,25 ,	10
Ragged ${ }^{\text {a }}$.	June 4, 5, 7.	3		26,27,30.4	
Whitaker ${ }^{3}$	June 10, 11, 12; No	4	Hinitop.	Sept. 6, 7, 8, 10, 12, 16^{5}.	6
Wadill ${ }^{18}$	June 11, 15, 17; July	5	Dougias	Sept. 17,18.	2
Twin ${ }^{\text {a }}$	June 21, 25, 20	3	Manville	Oct. 15, 16,	3
Warren ${ }^{\text {a }}$	June 28, 29; July 1	3	Cottonwood.	Oct. 27, $29 .$.	
Dewey..	July 9, 11, 13, 16, 19	5	Suilivan.	Nov.1...	1
1 l orsetoo	July 22, 23.	2	Elk.	Nov. $4,5,8$	3
Boulder ${ }^{3}$.	Juiy 27, 29; Aug. 2	3	Camhria	Nov. 10, 11, 12, 14	4

Assistant C. V. Hodgson, Chicf of Party; Assistant C. M. Cade, Ohserver; Season of 1912.

Greentop	June 19, 20; Nov. 22.	3	Kirtiey.	Oct. 19, 20.	2
Brighton ${ }^{\text {d }}$.	Aug. 28.	1	Provo east hase.	Oct. 24.	1
Indian ${ }^{\text {8 }}$.	Alug. 29, 31...........................	2	Provo astronomi	Oct. 25.	1
Pikes Peak	Sept. 16, 17, 18.....................	3	Provo west hase.		1
Divide ${ }^{\text {a }}$.	Sept. 22, 23, 24, 25; Oct. 4, 5	${ }_{6}^{6}$	Parker..	Oct. 28, 29, 31; Nov. 1, 2	5
Elbert.	Sept. $26,27,30 ~$	3 3	Alkali.	Nov. 5, 6 Nov. 13, 14	${ }_{2}^{2}$
Hohbs.	Oct. 14, 15.	2	Russeil 6	Nov. 21 .	1
Rawhide..	Oct.16..	1			

${ }^{1}$ At this station some of tho ohservations were made by Assistant T. L. Wamer.
a This is a rooccapation of station Alkali. The first occupation was hy Assistant C. M. Cade.
${ }^{3}$ At this station some of the observatlons were made by Assistant C. M. Cado whilo with Mr. Hodgson's ohserving party.
4 This station was reoccupied.
${ }^{5}$ This station was also occupied by Assistant C. M. Cade while in charge of a second observing party.

- This station was also occupled by Mr. Hodgson.

CONNECTIONS MADE BETWEEN THE ONE HUNDRED AND FOURTH MERIDIAN TRIANGULATION AND STATIONS AND MONUMENTS OF OTHER SURVEYS.

The one hundred and fourth meridian are started from Pikes Peak and Divide, two stations of the thirty-ninth parallel primary triangulation.

Stations or monuments of the following organizations were conneeted with the triangulation stations on the one hundred and fourth meridian are:

The United States Geologieal Survey;
The Missouri River Commission;
The General Land Office;
The United States and Canada Boundary Commission.
Connections were also made with monuments of the following boundaries betwcen States:
Colorado and Wyoming boundary;
Wyoming and Nebraska boundary;
South Dakota and Nebraska boundary;
South Dakota and Wyoming boundary;
North Dakota and South Dakota boundary;
North Dakota and Montana boundary;
Northeast corner of Wyoming;
Southeast corner of Montana.
The connctions were made by having the stations identical, by connections by subsidiary stations or by an observed direction and a direct mcasurement.

The data in regard to these connections may be found by consulting the index and illustrations at the end of the report, and the table of gcographic positions and the descriptions which begin on pages 88 and 115 , respectively.

The bench marks connected with the oue hundred and fourth meridian triangulation for the purpose of controlling the elcvations detcrmined by trigonometric leveling are referred to on page 141 and 145, under the heading, "Computation, adjustment, and accuracy of the elevations."

CONNECTIONS MADE BETWEEN THE THIRTY-NINTH PARALLEL TRIANGUIATION AND STATIONS AND MONUMENTS OF OTHER SURVEYS.
The United States Geological Survey, and no doubt other organizations which have carried on survcys in Colorado, Utah, and Nevada, have connceted their work with the stations of the thirty-ninth parallel triangulation. At the time the triangulation of the Coast and Geodetic Survey was donc in those States, the other organizations of the Government had not carried on very extensive opcrations in them. Several conncctions wcre made, however, between the stations of the thirty-ninth parallcl triangulation, at the time they werc established, and stations of the United States Gcological Survey and the Gencral Land Office. Monuments of the Colorado-Utah and the Utah-Nevada boundarics were also connected with the triangulation. The geographic positions of the stations of other organizations and of the statc boundary monuments are given in the table beginning on page 88 . The index of stations and the sketches should also be consulted.

The bench marks connected with the thirty-ninth parallel triangulation for the purpose of controlling the elevations determined by trigonometric leveling are referred to on page 145 , under the heading "Computation, adjustment, and accuracy of the elevations."

STATEMENT OF COSTS.

The following table gives a statement of the cost of the triangulation along the one hundred and fourth meridian for each of the two observing parties, and also the cost of the entire work. For comparison and for use in estimating the cost of future work, there are given similar data for the primary triangulation on the ninety-eighth meridian, donc later than 1901, and ou the Texas-California arc.

Name of observer or are.	Months of observations.	Primary stations occupied.	Stations occupied per month.	Total field expenses.	Cost per station occupied.	Totai points mined.	Cost per point deter. mined.	Miles of progress.	Cost per mile of progress.	Area in main scheme in square miles.	Cost per square mile.
E. H. Pagenhart.................	5.5 8.2	49 3	$\begin{array}{r}8.9 \\ -\quad 4.0 \\ \hline\end{array}$	$1 \$ 13550$ 115300	$\$ 277$ 464	87 80	$\$ 156$ 191	330 390	541 39	$\begin{aligned} & 7800 \\ & 9200 \end{aligned}$	51.74 1.66
Total arc, one hundred and fourth meridian. Ninety-elghth meridian triangu-	13.7	. 82	6.0	128850	352	167	173	720	- 40	17000	1.70
lation after 1901...............	30.5	265	8.6	78187	293	849	109	1329	63	21655	5. 19
Toxas-Cailfornla arc..............	16.7	94	5.6	38384	408	262	147	1207	32	49220	0.78

${ }^{1}$ These amounts include the costs of measuring the Provo and A mbrose bases. (See pp. 13 and 15.)
During about two and one-half months there werc two observers in Mr. Hodgson's party. The number of months of obscrvations given in the table for that party is the sum of the times of the two observers. The observations were made by that party betwcen May 14 and November 23,1912 . The time this party was engaged on revision of reconnoissance and the ineasurement of the Provo base line is not included in the number of months of observing.

There was no intcrruption to the work of Assistant Pagenhart's single observing party, as he lad measured the Ambrose base line before observations were begun on the triangulation.

To make the ninety-eighth meridian triangulation comparable with the work of the other two ares, 9.3 months should be added to the number of months of observation, for during that time there werc two observers at work under one chief of party. Then the total obscrving period would be 39.8 months, and the stations occupied per month would be 6.7.

The total expenses include the cost of preparing and marking the stations and all salaries, but not the cost of the reconnoissance.

The cost per mile of progress, which the writer believes is the fairest unit for comparison, is practically the same for the two parties- $\$ 41$ for Mr. Pagenhart and $\$ 39$ for Mr. Hodgson. In Mr. Pagenhart's party there was only one observer, while in that of Mr. Hodgson's there was one observer for about half the season and two observers for the other half.

The cost per mile of progress is only about 60 per cent of that of the ninety-eighth meridian triangulation after 1901, but it is 25 per cent greater than the cost per mile of the TexasCalifornia arc. The cost of the building on the one hundred and fourth meridian triangulation was much less than that on the ninety-eighth meridian triangulation and only slightly less than the building on the Texas-California arc. The weather conditions on the one hundred and fourth meridian were not so favorable on an average as those on the Texas-California arc. Considering the fact that no one of the observers on the one hundred and fourth meridian triangulation had ever done primary triangulation previously, it must be concluded that the work was done in a remarkably rapid and cfficient manner. The completion of a continuous arc of primary triangulation 720 miles (1159 kilometers) in length during one summer is an exceptional and noteworthy performance.

There were 8 subsidiary stations occupied by Mr. Pagenhart and 12 such stations occupied by Mr. Hodgson which have not been classed as occupied stations in the above table. At each of these stations the amount of observing was much less than at a primary station, and as a rule the additional time required in traveling for a subsidiary station was not so much as for a primary station. It would seem to be advisable, therefore, to give a weight of onehalf to the subsidiary stations and then obtain the rates of progress and the costs per stations occupied, which are given below.

Name of observer.	Months of observations.	Primary stations occupied.	Stations occupied per month	Total fleld expenses.	Cost per station occupied
E. H. Pagenhart	5.5 8.2	53 39	9.6 4.8	$\$ 13550$ 15300	$\$ 256$ 392

The following is a summary of the costs of the primary triangulation and other geodetie work on the one hundred and fourth meridian:

$$
\begin{aligned}
& \text { Reconnoissance... } \$ 2000 \\
& \text { Observing, building signals, marking stations, observing azimuths, and measuring the Ambrose and Provo } \\
& \text { Included in the above are all travcling expenses and salaries connected with the field and } \\
& \text { office work, except the salary of the Inspector of Geodetic Work. There is also included the } \\
& \text { entire cost (} \$ 2935 \text {) of the automobile truck, although that truck was in good condition at the } \\
& \text { end of the season and will be used for future geodetic work. }
\end{aligned}
$$

STATEMENT OF ADJUSTMENTS.

No loeal adjustments were made, these having become unnecessary since the adoption of the present method of supplying missing obselvations in broken series. ${ }^{1}$

The remeasurement of the El Paso base and the adoption of a new value for its length (differing one part in 59000) made the problem of adjustment a difficult one. The one liundred

[^6]and fourth meridian triangulation starts from the line Pikes Peak-Divide adjoining the El Paso base not which had been fully adjusted as roported in Special Publication No. 4, pages 101-114.

The length discrepancies developed in the triangulation along tho thirty-ninth parallel assembled on page 614 of Special Publication No. 4 disclosed the fact that the lengths in the El Paso base not were too long by 85 in the seventh decimal place of logarithms (one part in 51000) whea compared with the Salt Lake base and also too long by 92 in the seventh decimal place of logarithms (one part in 47000) when compared with the Salina base to the castward. This not only strengthened the decision to adopt the now measured length for the El Paso base but also made necessary a readjustment of the triangles in and adjoining the El Paso baso net to distribute this length change without changing the standard positions along the parallel to the east and west for any very great distance.

It was determined to readjust the triangulation of the thirty-ninth parallel from the line Arapahoe-Monotony ncar the Colorado-Kansas boundary to the line Tushar-Mount Nebo of the Nevada-California series, adjoining the Salt Lake base net. The geodetic positions already adopted for these two lines were held fixed and by means of one adjustment the 191 conditional or observation equations relating to the one hundred and fourth meridian were combined with the 14 equations of the El Paso base net, ${ }^{1}$ the 28 observation oquations of the Rocky Mountain series, ${ }^{2} 27$ of the observation equations of the Kansas-Colorado series, ${ }^{3} 2$ azimuth equations, 1 latitude equation and 1 longitude cquation. The last-mentioned two and one of the azimuth equations were necessary to hold fixed the standard positions at the east and west ends of this scetion of the thirty-ninth parallel. The extra azimuth equation was necessitated by the introduction of the Laplace azimuth as the true geodetic azimuth at station Watkins. The total number of normal equations solved was 264 .

Three Laplace azimuths were computed and adopted at stations Watkins astronomic, Provo astronomic, and Mondak. The introduction of thesc into the adjustment made two other azimuth equations necessary.

The fixed lengths in the adjustment were six, viz., the line Arapahoc-Monotony, with its length as adjusted in the thirty-ninth parallel; ${ }^{4}$ the El Paso base; the line Tushar-Mount Nobo, with its length as ajusted in the Nevada series of the thirty-ninth parallel; ${ }^{5}$ the Cheyenne base; the Provo base; and the Ambrose base.

ABSTRACT OF HORIZONTAL DIRECTIONS AND ELEVATION OF TELESCOPE ABOVE THE STATION MARK.

All observed directions in the ono hundred and fourth meridian triangulation have been given equal or unit weight. Those directions were reduced to center where either the instrument or the object observed was not coincident with the center of the station mark.

The horizontal directions are all reduced to sea level. The correction expressed in seconds is given by

$$
\frac{e^{2} h \sin 2 \alpha \cos ^{2} \phi}{2 \rho \sin 1^{\prime \prime}}
$$

where $e^{2}=\frac{\left(a^{2}-b^{2}\right)}{a^{2}}, h=$ height of station sighted, $\rho=$ the radius of curvature in a plane normal to the meridian, $\phi=$ the latitude, and $\alpha=$ the azimuth counted from the south westward.

In the following table are also given the elevations of the telescope of the theodolite above the station mark at each of the primary stations of the one hundred and fourth meridian and at those primary stations of the thirty-ninth parallel where the data were available. Theso elevations enable the reader to judge of the amount of building done and they permit the engineer or surveyor who uses the stations to form an estimate of the probable amount of building required to make any particular line clear.

The abstracts of horizontal directions and the condition equations in the thirty-ninth parallel triangulation are reprinted, but the numbers assigned to the directions were preserved. The table of corrections to the observed directions enables the reader to compare directly with the corresponding corrections in the original adjustment.

Station occupied and elevation of instrument above station mark.	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { direc- } \\ & \text { tion. } \end{aligned}$	Object observed.	Observed direction reduced to sea level.	Final seconds after flgure adjustment.	Station occupied and elevation of instrument above station mark.	Number of direction.	Object observed.	Observed direction reduced to sea level.	Final second after nlgure adjustment.
Stady, 1.37 meters..	$\left\{\begin{array}{l}399 \\ 400 \\ 397 \\ 398\end{array}\right.$	Norge. Crosby Muddy Howard	$$	59.60 15. 40 20.74 51.32	Ambrose, $1.35 \mathrm{me}-$ ters.	$\left\{\begin{array}{l} 409 \\ 410 \\ 411 \\ 408 \end{array}\right.$	Ambrose southwest base. Bowie	${ }_{0}^{\circ} 000 \frac{\prime \prime}{}$	00. 27
								05635.24	35.31
							School.	740254.17	54.04
							Crosby	2674851.92	51.67
Crosby, 9.25 meters.	(${ }^{4} \begin{aligned} & 403 \\ & 404 \\ & 405 \\ & 406\end{aligned}$	Stady.............	$\begin{array}{r} 00000.03 \\ 631636.70 \\ 1004859.14 \\ 1173501.79 \end{array}$	$\begin{aligned} & 59.71 \\ & 36.48 \\ & 59.43 \\ & 02.34 \end{aligned}$	Bowie, 1.27 meters..	$\left\{\begin{array}{l}420 \\ 421 \\ 422\end{array}\right.$	School.............. Ambrose... Ambrose soutbwest base.	$\begin{array}{r} 00000.00 \\ 273638.57 \\ 28 \quad 2526.13 \end{array}$	$\begin{aligned} & 59.64 \\ & 38.84 \\ & 26.05 \end{aligned}$
		Norge..							
		Ambrose southwest base.							
	407	Ambrose.	1680459.73	59. 65			Bowie..	00000.00	$\overline{58.96}$
		Muddy	32112 358 46 49.88 18	26.22 49.67		412		2804256.81	56. 50
		Howard	3584649.88	49.67	scbool, 1.15 meters.		Ambrose soutbwest base.	3325922.94	24.29
Norge, 6.35 meters..	$\left\{\begin{array}{l}418 \\ 419 \\ 415 \\ 416 \\ 417\end{array}\right.$	Stady. Howard \qquad Bowie \qquad Ambrose southwest base. Crosby \qquad	000 $\overline{59.97}$ 46 46 16.05 241 13 49.88 284 52 32.85 324 41 52.95	$\begin{aligned} & 00.20 \\ & 16.27 \\ & 49.39 \\ & 33.48 \end{aligned}$	Ambrose southwest base, 9.25 meters.	$\left\{\begin{array}{l}425 \\ 426 \\ 427 \\ 428 \\ 429\end{array}\right.$	School. \qquad Ambrose. Crosby Norge \qquad Bowie \qquad	$\begin{array}{r} 00000.02 \\ 534038.69 \\ 905932.76 \\ 1765147.79 \\ 2352600.16 \end{array}$	$\overline{59.71}$38.3332.5748.2200.57
				52.37					

CONDITION EQUATIONS.

ONE HUNDRED AND FOURTH MERIDIAN.
No.

1. $0=+1.82-(2)+(4)-(5)+(7)-(12)+(14)$
2. $0=-0.81-(6)+(7)+(8)-(11)-(12)+(13)$
3. $0=+0.70-(3)+(4)-(5)+(6)-(8)+(9)$
4. $0=+2.87-(10)+(11)-(13)+(15)-(30)+(31)$
5. $0=-0.33-(1)+(3)-(9)+(10)-(31)+(32)$
6. $0=+0.38-(15)+(17)-(21)+(23)-(28)+(30)$
7. $0=-0.85-(19)+(20)-(22)+(23)-(28)+(29)$
8. $0=+0.61-(16)+(17)+(18)-(20)-(21)+(22)$
9. $0=-0.62-(23)+(24)-(26)+(28)-(36)+(37)$
10. $0=-0.05-(23)+(25)-(27)+(28)-(38)+(39)$
11. $0=-0.96-(26)+(27)-(35)+(37)-(39)+(40)$
12. $0=-1.80-(41)+(42)-(43)+(45)-(50)+(51)$
13. $0=+0.19-(33)+(34)-(44)+(45)-(50)+(52)$
14. $0=-0.99-(34)+(35)-(40)+(42)-(43)+(44)$
15. $0=+1.03-(45)+(46)-(48)+(50)-(57)+(58)$
16. $0=+2.70-(46)+(47)-(56)+(57)-(59)+(61)$
17. $0=+1.01-(48)+(49)-(56)+(58)-(60)+(61)$
18. $0=-0.33-(55)+(56)-(61)+(63)-(64)+(65)$
19. $0=-0.02-(53)+(55)-(65)+(66)-(71)+(73)$
20. $0=+1.00-(53)+(56)-(61)+(62)-(72)+(73)$
21. $0=-2.20-(54)+(55)-(65)+(67)-(76)+(77)$
22. $0=-0.12-(66)+(67)-(70)+(71)-(76)+(78)$
23. $0=-0.55-(67)+(68)-(74)+(76)-(87)+(88)$
24. $0=+1.36-(68)+(69)-(79)+(81)-(86)+(87)$
25. $0=-0.34-(74)+(75)-(80)+(81)-(86)+(88)$
26. $0=-0.62-(81)+(83)-(85)+(86)-(89)+(90)$
27. $0=-0.07-(82)+(83)-(89)+(91)-(96)+(97)$
28. $0=-0.41-(84)+(85)-(90)+(91)-(96)+(98)$
29. $0=+0.52-(91)+(92)-(94)+(96)-(108)+(109)$
30. $0=+0.62-(92)+(93)-(99)+(101)-(107)+(108)$
31. $0=-0.79-(94)+(95)-(100)+(101)-(107)+(109)$
32. $0=+1.00-(101)+(102)-(105)+(107)-(123)+(124)$
33. $0=-0.52-(102)+(104)-(114)+(116)-(121)+(123)$
34. $0=+2.06-(101)+(103)-(106)+(107)-(110)+(111)$
$35.0=-0.74-(105)+(106)-(111)+(112)-(122)+(124)$
35. $0=+1.10-(112)+(113)-(115)+(116)-(121)+(122)$
36. $0=-0.25-(116)+(117)-(119)+(121)-(127)+(128)$
37. $0=+1.24-(117)+(118)-(126)+(127)+(131)-(134)$
38. $0=+0.05-(116)+(118)-(120)+(121)+(130)-(134)$

No.
40. $0=-2.25+(126)-(129)-(131)+(132)-(150)+(151)$
41. $0=-0.39-(125)+(126)-(131)+(133)-(137)+(139)$
42. $0=+0.86-(132)+(133)-(137)+(141)-(148)+(153)$
43. $0=+0.39-(140)+(141)-(148)+(149)-(152)+(154)$
44. $0=+2.42-(138)+(140)-(154)+(157)-(158)+(159)$
45. $0=+0.44-(155)+(157)-(158)+(161)-(166)+(168)$
46. $0=+0.13-(135)+(140)-(154)+(155)-(168)+(169)$
47. $0=+0.92-(136)+(140)-(154)+(156)-(163)+(164)$
48. $0=+0.01-(135)+(136)-(164)+(165)-(167)+(169)$
49. $0=-0.41-(160)+(161)+(162)-(165)-(166)+(167)$
$50.0=-1.31-(140)+(142)-(153)+(154)-(170)+(171)$
51. $0=+2.15-(147)+(149)-(152)+(153)-(171)+(172)$
52. $0=-2.28-(141)+(143)-(146)+(148)-(174)+(176)$
53. $0=-1.33-(142)+(143)+(170)-(173)-(174)+(175)$
54. $0=+96.5+7.31(2)-13.75(3)+6.44(4)-0.45(5)-68.67(6)+69.12(7)-92.35(12)-94.80(13)+2.45(14)$
55. $0=-9.4+2.91(1)-10.22(2)+7.31(3)-1.38(9)-3.02(10)+4.40(11)+6.21(30)-7.68(31)+1.47(32)$
56. $0=+15.8+1.73(15)-5.91(16)+4.18(17)+9.93(21)-10.84(22)+0.91(23)+6.70(28)-24.68(29)+17.98(30)$
57. $0=+4.7+4.04(23)-6.46(24)+2.42(25)+1.90(26)-1.42(27)-0.48(28)-0.40(38)-2.90(39)+3.30(40)$
58. $0=+5.1+0.63(33)-3.03(34)+2.40(35)+3.39(43)-3.91(44)+0.52(45)+1.59(50)-4.02(51)+2.43(52)$
59. $0=-2.3+1.16(45)-5.81(46)+4.65(47)+3.20(48)-4.12(49)+0.92(50)+2.14(56)-2.56(57)+0.42(58)$
60. $0=-6.9-1.20(53)+3.21(55)-2.01(56)-4.10(61)+6.46(62)-2.36(63)-0.99(64)+3.73(65)-2.74(66)-2.89(71)$ $+4.92(72)-2.03(73)$
61. $0=-31.0-46.55(53)+47.75(54)-1.20(55)-2.74(65)+7.85(66)-5.11(67)-0.91(76)+28.28(77)-27.37(78)$
$62.0=+12.0+7.57(67)-8.81(68)+1.24(69)-0.02(79)-5.91(80)+5.93(81)+0.58(86)-1.70(87)+1.12(88)$
63. $0=-0.2+0.47(81)-6.67(82)+6.20(83)+3.38(84)-4.33(85)+0.95(86)+3.10(96)-5.25(97)+2.15(99)$
64. $0=+1.6-2.15(91)+2.85(92)-0.70(93)-3.48(99)+6.56(100)-3.08(101)+0.83(107)+3.34(108)-4.17(109)$
$65.0=+0.2+9.67(102)-17.77(103)+8.10(104)+1.13(114)-3.38(115)+2.25(116)+4.94(121)-9.40(122)+4.46(123)$.
66. $0=+23.5-0.16(101)-9.67(102)+9.83(103)+7.83(105)-11.14(106)+3.31(107)+3.92(122)-4.46(123)+0.54(124)$
67. $0=-5.5+2.98(116)-2.68(117)-0.30(118)-0.91(126)-3.03(127)+3.94(128)-11.09(130)+5.53(131)+5.56(134)$
68. $0=-14.3-2.67(125)+2.41(126)+0.26(129)+5.30(137)-5.55(139)+0.25(141)+1.91(148)-6.41(150)+4.50(151)$
69. $0=+19.6+4.47(135)-8.42(138)+3.95(140)+2.83(154)-8.54(155)+5.71(157)-0.19(158)-2.30(159)+2.49(161)$ $+4.62(166)-4.62(168)$
$70.0=+53.5+21.65(155)-29.69(156)+8.04(157)-1.76(158)-20.31(160)+22.07(161)+20.34(166)-26.61(167)+6.27(168)$
$71.0=+40.2+7.70(135)-19.73(136)+12.03(138)+3.03(159)-25.10(160)+22.07(161)+20.34(166)-19.63(167)-0.71(169)$
72. $0=+7.2+0.92(140)-6.48(141)+5.56(142)+5.84(147)-7.83(148)+1.99(149)+1.89(152)-3.53(153)+1.64(154)$
73. $0=+15.4-6.48(141)+17.19(142)-10.71(143)-4.91(146)+12.74(147)-7.83(148)-4.67(174)+4.73(175)-0.06(176)$
74. $0=+18.0-0.05(2)+0.05(3)-0.41(8)+0.41(9)+1.88(10)-1.88(12)+0.24(11)-0.24(14)+1.77(16)-1.77(18)$
$+4.06(25)-4.06(26)+1.82(27)-2.78(54)-1.82(67)-2.91(1)+2.91(2)+2.78(4)+0.52(5)-0.52(7)+2.34(12)$
$-2.34(14)-0.47(17)+0.43(21)-0.43(23)-2.42(24)+2.42(25)+0.48(26)-0.48(28)+1.47(30)-1.47(32)-0.63(33)$
$+0.63(35)+1.78(36)-1.78(37)-0.40(38)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48)$
$+3.20(49)+2.43(51)-2.43(52)-1.32(54)+1.32(55)+0.42(56)-0.42(58)+1.61(59)-1.61(60)-0.81(61)+0.81(63)$
$+0.99(64)-0.99(65)-3.68(75)+4.79(76)-1.11(77)-0.02(79)+0.02(80)-3.70(79 \mathrm{a})+3.70(79 \mathrm{~b})-2.30(69 \mathrm{a})$
$+2.30(69)+1.19(433)-1.19(434)-0.67(430)+0.67(432)$
75. $0=+0.32-(145)+(146)-(176)+(177)-(185)+(186)$
76. $0=-0.03-(177)+(178)-(179)+(180)-(184)+(185)$
77. $0=-2.28-(180)+(181)-(183)+(184)-(187)+(188)$
78. $0=-0.63-(144)+(145)+(182)-(186)-(195)+(196)$
79. $0=+2.70-(189)+(191)-(193)+(194)-(197)+(198)$
80. $0=+0.57-(189)+(190)-(192)+(194)-(205)+(206)$
81. $0=-0.53-(192)+(193)-(198)+(199)-(204)+(206)$
82. $0=+1.17-(182)+(183)-(188)+(189)-(194)+(195)$
83. $0=+0.03-(199)+(201)-(203)+(204)-(207)+(208)$
84. $0=-0.69-(199)+(200)-(202)+(204)-(216)+(217)$
85. $0=-0.82-(202)+(203)-(208)+(209)-(215)+(217)$
86. $0=+0.97-(209)+(210)-(213)+(215)-(222)+(223)$
87. $0=+1.11-(209)+(211)-(214)+(215)-(224)+(225)$
88. $0=-0.47-(210)+(211)-(221)+(222)-(224)+(226)$
89. $0=+0.57-(210)+(212)-(220)+(222)-(228)+(230)$
90. $0=+0.84-(220)+(221)-(226)+(227)-(229)+(230)$
91. $0=+0.69-(218)+(220)-(230)+(231)-(236)+(237)$
92. $0=-2.36-(219)+(220)-(230)+(232)-(238)+(239)$

No.
93. $0=-2.28-(231)+(232)-(235)+(236)-(238)+(240)$
94. $0=-1.41-(234)+(235)-(240)+(242)-(248)+(249)$
95. $0=-1.78-(233)+(235)-(240)+(241)-(246)+(247)$
96. $0=+0.10-(233)+(234)-(245)+(247)-(249)-(250)$
97. $0=+1.16-(244)+(245)-(250)+(252)-(258)+(259)$
98. $0=-1.58-(243)+(245)-(250)+(251)-(256)+(257)$
99. $0=+2.63-(251)+(252)-(255)+(256)-(258)+(260)$
100. $0=-0.34-(253)+(255)-(260)+(261)-(278)+(279)$
101. $0=+0.79-(261)+(263)-(276)+(278)-(268)+(270)$
102. $0=+0.43-(254)+(255)-(260)+(262)-(264)+(265)$
103. $0=-0.05-(261)+(262)-(264)+(266)-(277)+(278)$
104. $0=-1.61-(266)+(267)-(269)+(270)-(276)+(277)$
105. $0=+0.48-(270)+(272)-(274)+(276)-(284)+(286)$
106. $0=+1.92-(273)+(274)-(286)+(287)-(294)+(296)$
107. $0=+0.93-(271)+(272)-(282)+(283)-(284)+(285)$
108. $0=+0.52-(273)+(275)-(280)+(281)-(295)+(296)$
109. $0=-0.95-(274)+(275)-(280)+(282)-(285)+(286)$
110. $0=-0.60-(287)+(289)-(292)+(294)-(300)+(302)$
111. $0=-0.80-(287)+(288)-(293)+(294)+(297)-(299)$
112. $0=-0.62-(288)+(289)-(298)+(299)-(300)+(301)$
$1130=-1.16-(290)+(292)-(302)+(303)-(308)+(309)$
114. $0=-0.22-(291)+(292)-(302)+(304)-(310)+(311)$
115. $0=+0.87-(303)+(304)-(307)+(308)-(310)+(312)$
116. $0=-0.46-(306)+(307)-(312)+(314)-(315)+(316)$
117. $0=-1.94-(305)+(307)-(312)+(313)-(329)+(330)$
118. $0=-0.02-(305)+(306)-(316)+(317)-(328)+(330)$
119. $0=-0.52-(317)+(318)-(327)+(328)-(353)+(357)$
120. $0=+0.03-(313 a)+(314)-(315)+(318)-(353)+(354)$
121. $0=-1.41-(317)+(320)-(323)+(328)-(333)+(335)$
122. $0=-1.67-(317)+(319)-(324)+(328)-(343)+(344)$
123. $0=+1.75-(319)+(320)-(333)+(334)-(342)+(343)$
124. $0=+1.68-(320)+(322)-(332)+(333)-(336)+(337)$
125. $0=-1.15-(325)+(326)-(346)+(347)-(348)+(349)$
126. $0=-1.73-(345)+(346)-(349)+(350)-(358)+(359)$
127. $0=+1.75-(321)+(322)-(336)+(338)-(368)+(369)$
128. $0=+0.17-(331)+(332)-(337)+(338)-(368)+(370)$
129. $0=+0.82-(326)+(327)+(348)-(350)-(357)+(358)$
130. $0=-2.28-(338)+(339)-(366)+(368)-(379)+(380)$
131. $0=+0.57-(339)+(341)-(377)+(379)-(381)+(383)$
132. $0=+0.80-(338)+(340)-(367)+(368)-(371)+(372)$
133. $0=-1.05-(350)+(352)-(356)+(358)-(363)+(364)$
134. $0=+0.68-(351)+(352)-(360)+(361)-(363)+(365)$
135. $0=-1.67-(350)+(351)-(355)+(358)-(361)+(362)$
136. $0=-2.60-(366)+(367)-(372)+(373)-(378)+(380)$
137. $0=-0.89-(373)+(374)-(377)+(378)-(382)+(383)$
138. $0=-1.04-(376)+(377)-(383)+(385)-(386)+(387)$
139. $0=-0.08-(375)+(377)-(383)+(384) .-(395)+(396)$
140. $0=+0.30-(375)+(376)-(387)+(388)-(394)+(396)$
141. $0=+0.22-(388)+(390)-(393)+(394)-(401)+(402)$
142. $0=+1.62-(388)+(389)-(392)+(394)-(397)+(398)$
143. $0=-0.69-(391)+(393)-(402)+(404)-(417)+(419)$
144. $0=+1.02-(392)+(393)+(398)-(400)-(402)+(403)$
145. $0=-1.58-(399)+(400)-(403)+(404)-(417)+(418)$
146. $0=-0.09-(404)+(405)-(415)+(417)-(423)+(424)$
147. $0=+0.08-(405)+(407)-(408)+(410)-(421)+(423)$
148. $0=-0.18-(404)+(406)-(416)+(417)-(427)+(428)$
149. $0=-1.09-(415)+(416)-(422)+(424)-(428)+(429)$
150. $0=+1.35-(409)+(410)-(421)+(422)+(426)-(429)$
151. $0=+2.83-(413)+(414)-(420)+(422)+(425)-(429)$
152. $0=+0.30-(410)+(411)-(412)+(414)-(420)+(421)$
153. $0=-1.50+6.63(144)-8.63(145)+2.00(146)+0.08(176)-3.87(177)+3.79(178)+0.54(179)-0.87(180)+0.33(181)$
$+1.68(187)-3.34(188)+1.66(189)+1.45(194)-3.66(195)+2.21(196)$
$48310^{\circ}-14-4$

No.
154. $0=+3.60-0.60(192)-6.44(193)+7.04(194)+3.14(197)-4.23(198)+1.09(199)+5.37(204)-8.43(205)+3.06(206)$
155. $0=-3.00+1.41(199)-4.29(200)+2.88(201)+3.89(202)-4.16(203)+0.27(204)+0.84(207)-2.83(208)+1.99(209)$
156. $0=+5.40+1.16(209)-10.43(210)+9.27(211)+7.04(213)-8.70(214)+1.66(215)+3.07(221)-2.72(222)-0.35(223)$ 157. $0=-0.90+10.43(210)-12.51(211)+2.08(212)+2.90(220)-5.62(221)+2.72(222)+2.53(228)-14.65(229)$ $+12.12(230)$
158. $0=+8.50+3.31(218)-10.39(219)+7.08(220)+0.80(230)-1.85(231)+1.05(232)+2.56(235)-3.69(236)+1.13(237)$ $+3.55(238)-5.56(239)+2.01(240)$
159. $0=+2.60+3.54(233)-4.53(234)+0.99(235)+1.63(240)-3.80(241)+2.17(242)+0.59(248)-3.55(249)+2.96(250)$
160. $0=-3.00+1.95(243)-1.62(244)-0.33(245)+3.60(250)-5.28(251)+1.68(252)+0.27(258)-3.51(259)+3.24(260)$
161. $0=-1.5-2.19(253)+3.58(254)-1.39(255)-1.58(260)+13.04(261)-11.46(262)-1.22(264)+0.78(265)+0.44(266)$ $-15.29(277)+19.54(278)-4.25(279)$
162. $0=+6.20+11.46(261)-15.15(262)+3.69(263)+3.70(268)-4.87(269)+1.17(270)+2.38(276)-17.67(277)$ $+15.29(278)$
163. $0=-7.10+11.25(270)-14.77(271)+3.52(272)+33.05(274)-34.38(275)+1.33(276)+0.54(284)-81.13(285)$ $+80.59(286)$
164. $0=-25.70-1.93(273)+33.05(274)-31.12(275)-80.85(285)+80.59(286)+0.26(287)-3.44(294)+16.49(295)$ $-13.05(296)$
165. $0=-4.30+2.29(287)-12.96(288)+10.67(289)+4.50(292)-7.56(293)+3.06(294)+6.89(300)-8.68(301)+1.79(302)$
166. $0=-1.50+0.99(290)-7.73(291)+6.74(292)+4.02(307)-7.07(308)+3.03(309)+5.49(310)-5.53(311)+0.04(312)$
167. $0=+7.80+3.66(305)-3.40(306)-0.26(307)+4.07(312)-7.26(313)+3.19(314)+0.38(315)-4.36(316)+3.98(317)$
168. $0=+58.4+4.15(313)-22.63(313 \mathrm{a})+18.48(314)+0.07(315)-14.36(317)+14.29(318)+61.52(327)-62.34(328)$ $+0.82(329)$
169. $0=+4.45-(136)+(143)-(162)+(164)-(174)+(178)-(179)+(181)-(187)+(191)-(197)+(201)-(207)+(212)$. $-(228)+(232)-(238)+(242)+(252)-(258)+(263)-(268)+(272)-(284)+(289)-(300)+(304)-(310)+(313 \mathrm{a})$ $-(354)+(355)$
170. $0=+21.7+0.51(317)-11.15(319)+10.64(320)+36.29(323)-38.68(324)+2.39(328)+3.17(333)-11.59(334)$ $+8.42(335)$
171. $0=-1.20+4.89(320)-7.13(321)+2.24(322)+2.77(331)-2.41(332)-0.36(333)+0.49(336)-5.20(337)+4.71(338)$
172. $0=+19.10+2.76(325)-38.45(326)+35.69(327)+2.92(345)-5.23(346)+2.31(347)+22.63(357)-24.06(358)+1.43(359)$
173. $0=-1.50+1.89(338)-17.01(339)+15.12(340)+6.68(366)-8.18(367)+1.50(368)+4.34(378)-4.21(379)-0.13(380)$
174. $0=-8.90+17.01(339)-18.87(340)+1.86(341)+2.36(377)-6.57(378)+4.21(379)+2.03(381)-13.84(382)$
+11.81 (383)
175. $0=+5.20+5.80(350)-10.91(351)+5.11(352)+4.38(355)-4.97(356)+0.59(358)-0.62(363)-5.69(364)+6.31(365)$
176. $0=+0.7+2.94(375)-3.53(376)+0.59(377)+1.75(383)-3.94(384)+2.19(385)+0.47(386)-2.99(387)+2.52(388)$
177. $0=-66.50+0.54(388)-4.73(389)+4.19(390)+202.98(392)-205.43(393)+2.45(394)+2.62(401)-98.91(402)$ $+96.29(403)$
178. $0=+0.40+0.54(388)-4.73(389)+4.19(390)+3.26(391)-5.71(392)+2.45(394)+2.62(401)-3.68(403)+1.06(404)$ $+2.97(417)-4.95(418)+1.98(419)$
179. $0=+6.90+1.51(404)-6.99(405)+5.48(406)+2.21(415)-4.74(416)+2.53(417)+5.73(422)-6.19(423)+0.46(424)$
180. $0=+22.50-6.99(405)+8.73(406)-1.74(407)+0.08(408)+127.83(409)-127.91(410)-148.32(421)+154.51(422)$ -6.19(423)
181. $0=-14.8-6.99(405)+8.73(406)-1.74(407)+0.08(408)+0.52(409)-0.60(411)-1.63(412)+5.76(413)-4.13(414)$ $-3.89(420)+10.08(422)-6.19(423)$
182. $0=-1.40+4.47(135)-4.47(138)-3.78(141)+3.78(143)-2.00(145)+2.00(146)+3.43(148)-3.43(149)+0.38(152)$ $+0.99(154)-1.37(157)+0.19(158)-0.19(159)+0.96(166)-0.96(169)-0.88(174)+0.88(176)-3.79(177)+3.79(178)$ $+0.54(179)-0.87(180)+0.33(181)-0.65(182)+0.65(183)+2.05(185)-2.05(186)+1.68(187)-1.68(188)+2.14(189)$ $-2.14(191)-0.08(192)+0.08(193)+1.45(194)-1.45(195)+4.23(197)-4.23(198)-2.88(200)+2.88(201)-0.27(202)$ $+1.69(204)-1.42(206)+0.84(207)-0.84(209)-1.38(210)+1.38(212)-0.83(213)+0.83(215)+2.42(216)-2.42(217)$ $-1.83(218)+1.83(220)+1.12(222)-1.12(223)+1.79(228)-1.79(230)-1.05(231)+1.05(232)-0.99(233)+0.99(235)$ $+1.13(236)-1.13(237)+0.48(238)-0.48(240)-2.17(241)+2.17(242)-1.62(243)+1.62(244)+1.08(246)-1.08(247)$ $+0.59(248)-0.89(250)+0.30(252)-2.19(253)+2.19(254)-0.25(255)+0.25(257)+1.66(258)-1.66(259)-1.05(260)$ $+1.05(262)+1.22(264)-1.22(265)-0.46(266)+0.46(267)+1.17(269)-3.55(270)+2.38(272)-2.19(273)+2.19(274)$ $+3.10(277)-3.10(279)+0.48(284)-0.48(286)-1.55(287)+1.55(289)-0.99(290)+0.99(292)+2.46(294)-2.36(296)$ $+0.91(300)-0.91(302)-1.06(303)+106(304)+0.26(305)-0.26(307)+3.05(308)-3.05(309)+0.04(310)-0.04(312)$ $-3.19(313)+3.19(314)+0.38(315)-0.38(317)-0.91(320)+0.91(322)-2.13(323)+2.13(328)+1.43(329)-1.43(330)$ $-2.41(331)+2.41(332)+1.92(333)-1.92(335)+1.48(336)-1.48(337)-1.44(339)+1.44(341)-0.68(366)-0.38(368)$ $+1.06(370)-0.59(375)+0.59(377)+0.89(379)-0.89(380)+1.41(381)-1.41(383)-2.19(384)+2.19(385)+0.47(386)$ $-0.01(388)-0.46(390)-3.19(391)+3.19(393)+1.46(395)-1.46(396)+2.74(401)-2.74(402)-1.74(406)+1.74(407)$ $-0.08(408)-0.52(409)+0.60(411)+1.63(412)-1.63(413)-2.53(416)+2.52(417)-0.29(419)+0.15(427)-0.15(428)$
183. $0=+2.49-(24 \mathrm{c})+(24 \mathrm{~d})-(26)+(27 \mathrm{a})-(35 \mathrm{a})+(37)$
184. $0=-2.25-(23)+(24 a)-(27 a)+(28)-(24 b)+(24 c)$
185. $0=-39.0+0.44(23)-1.72(24)+1.28(24 \mathrm{a})-0.07(26)-11.00(27 \mathrm{a})+11.07(28)+15.49(35 \mathrm{a})-16.86(36)+1.37(37)$

No.
186. $0=+4.81-(24 a)+(25)-(38)+(42)-(43)+(47)-(59)+(63)-(64)+(69)-(79)+(83)-(89)+(93)-(99)+(104)$
$-(114)+(118)+(133)-(134)+(136)-(137)+(162)-(164)$
259. $0=+1.50-(69 a)+(69 b)-(431)+(432)+(433)-(435)$
260. $0=-0.28-(79 \mathrm{a})+(79 \mathrm{~b})-(430)+(431)-(433)+(434)$
261. $0=+2.53-(79)+(79 b)-(69 a)+(69)-(430)+(432)$
262. $0=+11.530-0.023(69 a)+2.356(69 b)-2.333(69)-10.279(79)+10.316(79 a)-0.037(79 \mathrm{~b})+0.065(431)-0.065(432)$
257. $0=+5.36+(1)-(5)+(8)-(15)+(17)-(19)+(23)-(29)+(33)-(39)+(43)-(50)+(4)-(5)+(7)-(12)+(17)-(21)$
$+(24 a)$
258. $0=+13.4-2.02(68)-0.28(69)-0.47(81)+0.47(83)-3.38(84)+3.38(85)+4.81(86)-4.81(87)+2.80(89)-2.80(90)$
$-2.98(92)+2.98(93)+0.82(94)+1.33(96)-2.15(98)+0.96(99)-0.96(101)-4.16(102)+4.16(104)-1.93(105)$
$+1.93(107)+3.34(104)-3.34(109)-0.56(114)+0.56(116)-1.22(117)+1.22(118)+0.65(119)-0.65(121)$
$+1.74(123)-1.74(124)+0.26(126)+3.03(127)-3.03(128)-0.26(129)-2.37(131)-1.83(132)+1.83(133)$
$+2.37(134)-4.47(135)+0.25(137)+4.47(138)-0.25(141)-3.43(148)+3.43(149)+4.50(150)-4.50(151)$
$-0.38(152)-0.99(154)+1.37(157)-0.19(158)+0.19(159)-0.96(166)+0.96(169)-1.19(433)+1.19(434)$
$+0.67(430)-0.67(432)+3.70(79 \mathrm{a})-3.70(79 \mathrm{~b})+2.30(69 \mathrm{a})$
ROCKY MOUNTAIN SERIES.
187. $0=+0.68+(1)-(4)-(5)+(6)$
188. $0=-0.22-(1)+(2)+(5)-(8)-(14)+(15)$
189. $0=+0.27-(3)+(4)-(6)+(7)-(12)+(13)$
190. $0=-1.08-(7)+(8)-(11)+(12)-(15)+(16)$
191. $0=-0.13-(10)+(11)-(16)+(17)-(19)+(20)$
192. $0=-1.27-(9)+(10)-(20)+(21)-(26)+(27)$
193. $0=+0.19-(21)+(22)-(24)+(26)-(37)+(38)$
194. $0=-0.23-(22)+(23)-(29)+(31)-(36)+(37)$
195. $0=+0.61-(24)+(25)-(30)+(31)-(36)+(38)$
196. $0=+0.47-(17)+(18)+(19)-(23)-(28)+(29)$
197. $0=+0.61-(31)+(33)-(35)+(36)-(39)+(40)$
198. $0=+1.37-(31)+(32)-(34)+(36)-(48)+(49)$
199. $0=+1.13-(32)+(33)-(39)+(41)-(47)+(48)$
200. $0=-1.00-(41)+(42)-(45)+(47)-(58)+(59)$
201. $0=-1.44-(41)+(43)-(46)+(47)-(50)+(51)$
202. $0=+0.39-(45)+(46)-(51)+(52)-(57)+(59)$
203. $0=+0.76-(43)+(44)+(50)-(55)-(60)+(61)$
204. $0=-0.18+(4)-(5)-(52)-(56)+(57)+(65)$
205. $0=+2.31-(54)+(55)-(61)+(63)-(66)+(67)$
206. $0=-1.09-(4)+(5)-(16)+(27)+(54)-(67)$
236. $0=-0.79+5.52(1)-1.42(2)-1.43(3)+4.00(4)-1.72(11)+4.30(12)-2.58(13)-1.79(14)+4.11(15)-2.32(16)$
$237.0=-0.64-1.72(9)+3.05(10)-1.33(11)-1.45(16)+7.56(17)-6.11(18)-1.78(25)+2.21(26)-0.43(27)-6.88(28)$ $+10.26(29)-3.38(30)$
238. $0=-0.18+1.04(21)-4.09(22)+3.05(23)+3.15(24)-3.48(25)+0.33(26)+0.09(27)-1.44(30)+1.35(31)$
239. $0=+2.44+4.11(31)-5.69(32)+1.58(33)+1.19(39)-4.20(40)+3.00(41)-0.10(47)-2.42(48)+2.52(49)$
$240.0=+7.68+1.86(41)-5.41(42)+3.55(43)+4.71(45)-4.87(46)+0.16(47)+0.67(50)-3.14(51)+2.47(52)$
241. $0=-4.36-2.24(5)-0.14(16)+1.82(27)+3.55(42)-7.97(43)+4.42(44)+2.88(56)-3.37(57)+0.49(58)+1.91(60)$ $-2.53(61)+0.62(63)+2.38(65)+0.99(66)-2.80(67)$
242. $0=+6.35+2.78(4)-0.14(5)+0.24(11)-0.24(14)+1.91(16)-1.77(18)+1.09(25)-5.17(54)+2.39(55)+0.62(61)$ $-3.90(62)+3.28(63)-1.09(66)$
$254.0=+5.76-1.42(1)+1.42(2)-2.56(4)-0.91(5)+0.91(6)-0.11(7)+0.11(8)-1.72(9)+1.72(10)+1.72(11)-1.72(12)$
$+1.79(14)-1.79(15)-1.45(16)+1.45(17)+0.90(19)-0.90(20)-3.05(22)+3.05(23)-0.34(24)+0.77(26)-0.43(27)$
$+0.09(29)-1.67(31)+1.58(33)-1.63(34)+1.63(35)+2.97(37)-2.97(38)+1.19(39)-1.19(40)-3.55(42)+3.55(43)$
$-0.16(45)+0.06(47)+0.10(49)+0.67(50)-0.67(52)+2.78(54)-2.88(56)+2.88(57)+2.04(58)-2.04(59)-2.38(65)$
$+1.82(67)-2.78(4)+2.38(5)-0.81(3)+0.81(5)+0.41(8)-0.41(9)-1.88(10)-0.24(11)+1.88(12)+0.24(14)$
$-2.85(17)+2.85(18)-3.17(25)+1.35(27)$

EI. PASO BASE NET.
207. $0=-0.17-(4)+(5)-(6)+(8)-(17)+(19)$
208. $0=-0.76-(3)+(4)-(8)+(9)-(10)+(12)$
209. $0=+0.41-(3)+(5)-(11)+(12)-(17)+(18)$
210. $0=+1.33+(1)-(4)-(7)+(8)-(22)+(23)$
211. $0=+0.38+(1)-(5)-(15)+(17)-(22)+(24)$
212. $0=+0.07-(1)+(3)-(12)+(13)-(21)+(22)$
213. $0=+1.24-(2)+(3)-(12)+(14)-(25)+(26)$

No.

```
214. 0=-2.12+(2)-(5)-(16)+(17)-(26)+(27)
215. 0=-2.60-(1)+(2)-(20)+(22)-(26)+(28)
243. 0=+7.79-1.60(3)+2.91(4)-1.31(5)-5.65(10)+7.54(11)-1.89(12)-1.65(17)+7.61(18)-5.96(19)
244. 0=+21.22-6.06(7)+6.47(8)-0.41(9)-1.89(10)+15.95(12)-14.06(13)-12.80(21)+20.22(22)-7.42(23)
245. 0=-10.97-0.77(6)+6.06(7)-5.29(8)-1.98(15)+3.63(17)-1.65(19)-5.41(22)+7.42(23)-2.01(24)
246. 0=-15.94-3.30(11)+4.33(12)-1.03(14)-8.79(16)+11.64(17)-2.85(18)-4.06(25)+23.43(26)-19.37(27)
247. 0=+1.59-3.30(11)+4.33(12)-1.03(14)-1.98(15)+4.83(17)-2.85(18)-0.40(20)+2.41(22)-2.01(24)-4.06(25)
    +8.14(26)-4.08(28)
                                    coloramo series.
```

216. $0=+1.44+(20)-(28)-(214)+(215)-(223)+(224)$
217. $0=+0.10-(213)+(214)-(219)+(220)-(224)+(225)$
218. $0=-3.17-(205)+(206)-(212)+(213)-(220)+(221)$
219. $0=-1.59+(210)-(215)-(217)+(218)-(222)+(223)$
220. $0=-2.85-(203)+(204)-(210)+(211)-(216)+(217)$
221. $0=+3.92-(202)+(203)-(206)+(207)-(211)+(212)$
222. $0=-0.20-(198)+(199)-(200)+(202)-(207)+(20 S)$
223. $0=+0.28-(190)+(192)-(197)+(198)-(208)+(209)$
224. $0=-2.21-(191)+(192)-(197)+(199)-(200)+(201)$
225. $0=+1.00-(188)+(189)-(192)+(193)-(195)+(197)$
226. $0=+1.59-(181)+(182)-(187)+(189)-(195)+(196)$
227. $0=-1.03-(180)+(182)-(187)+(188)-(183)+(194)$
228. $\dot{0}=-1.18-(169)+(170)-(182)+(184)-(186)+(187)$
229. $0=-0.33-(178)+(179)-(182)+(183)-(185)+(187)$
230. $0=-0.42-(170)+(171)-(177)+(179)-(185)+(186)$
231. $0=-2.85-(163)+(164)+(165)-(168)-(175)+(176)$
232. $0=+1.57-(162)+(164)-(171)+(173)-(175)+(177)$
233. $0=+0.13-(154)+(155)-(166)+(167)-(172)+(174)$
234. $0=-1.61-(154)+(162)-(173)+(174)$
235. $0=-0.86-(155)+(163)-(165)+(166)$
236. $0=-13.3-1.34(20)-0.21(28)-2.24(202)+5.09(203)-2.85(204)-1.48(205)+2.93(206)-1.45(207)-0.98(216)$
$+0.08(217)+0.90(218)-0.57(219)+1.95(220)-1.38(221)-3.76(222)+5.10(223)+2.03(224)-1.82(225)$
237. $0=+4.9+2.94(197)-2.72(198)-0.22(199)+2.64(200)-4.53(201)+1.89(202)+1.11(207)-4.11(208)+3.00(209)$
$250.0=+3.7+2.45(180)-3.32(181)+0.87(182)+1.44(187)-3.25(188)+1.81(189)+0.45(195)-2.69(196)+2.24(197)$
238. $0=+5.5+0.35(169)+2.33(170)-2.68(171)-2.40(182)+6.33(183)-3.93(184)-3.54(185)+3.85(186)-0.31(187)$
$252.0=+1.4-3.23(154)+7.25(155)+7.42(163)-7.10(164)-1.90(171)+3.22(172)-1.32(174)-7.37(175)+7.74(176)$ $-0.37(177)$
239. $0=-16.0-3.23(154)+7.25(155)+10.43(162)-10.11(163)-13.15(172)+14.47(173)-1.32(174)$
$255.0=-11.1+0.81(3)-0.81(5)-0.41(8)+0.41(9)+1.88(10)-1.88(12)-1.45(13)+1.45(14)-1.77(16)+2.85(17)$
$-1.08(18)+2.11(20)-0.77(21)+3.17(25)-3.17(27)+1.18(154)+3.97(162)-3.97(164)-0.35(169)+0.35(171)$
$-1.80(173)+1.80(174)+0.22(175)-0.22(177)+1.36(178)-1.36(179)+0.87(180)-0.87(182)-3.93(183)+3.93(184)$
$-0.31(185)+0.31(187)+1.81(188)-1.81(189)+0.78(190)-0.78(171)-1.38(193)+1.38(194)-0.45(195)$
$+0.23(197)+0.22(199)-2.64(200)+2.64(201)+2.24(202)-2.24(203)+1.48(205)-1.48(206)-1.11(207)$
$+1.11(209)-0.32(211)+0.32(212)+2.66(214)-2.66(215)+0.57(219)-1.96(220)+1.39(221)-1.34(223)$
$-1.82(224)+1.82(225)$
240. $0=-3.34+(1)-(5)+(8)-(15)+(17)-(19)+(23)-(29)+(33)-(39)+(43)-(50)+(54)-(67)+(225)-(219)+(221)$
$-(205)+(209)-(190)+(194)-(180)+(184)-(169)+(174)-(154)$

ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS.

The corrections to observed directions resulting from the figure adjustments indicated by the preceding observation equations are as follows:

Table of corrections to observed directions.
ROCKY MOUNTAIN SERIES.

Number of direction.	Correction to direction.	Number of direc. tion.	Correction to direction.	Number of direction.	Correction to direc tion.	Namber of direction.	Correction to direc tion.
	"		"		"		"
1	+0.038	21	+0.020	36	-0.120	51	+0.945
2	+1.020	22	+0.327	37	+0.392	52	-0.128
3	-0.263	23	-0.080	38	-0.178	54	+0.434
4	+0.187	24	+0.060	39	+0.641	55.	-0.049
5	+0.225	25	-0.453	40	+0.368	56	-0.024
6	-0.307	26	+0.133	41	-0.410	57	-0.445
7	-0.207	27	+0.261	- 42	+0.404	58	+0.330
8	+0.289	28	+0.510	43	-0.275	59	+0.139
9	-0.462	29	-0.006	44	-0.727	60	+0.476
10	+0.224	30	+0.159	45	-0.236	61	+0.199
11	+0.123	31	+0.121	46	-0.140	62	-0.064
12	+0.467	32	-0. 227	47	+0.139	63	-0.611
13	-0.352	33	-0. 555	48	+0.389	65	+0.838
14	+0.120	34	+0.363	49	-0.153	66	$+0.583$
15	-0.576	35	-0.457	50	-0.081	67	-0.435
16	-0.336						
17	$+0.497$						
18 19	$+0.295$						
20	-0. 434						

el Paso base net.

	"		"		"		"
1	-0.623	11	-0.362	21	+0.510	25	+0.137
2	+0.998	12	-0.236	22	-0.112	26	-0.498
3	-0.332	13	+0.027	23	+0.191	27	-0.727
4	-0.051	14	+0.492	24	-0.415	28	+0.234
5	+0.008	15	+0.219				
6	-0.702	16	-0.583				
7	+0.678	17	+0.774				
8	-0.383	18	-0.103	-			
9	+0.408	19	$+0.565$				
10	+0.078	20	-0.360				

colorado series.

	$\prime \prime$		$\prime \prime$		\prime			
225	+0.131	205	-0.621	190	+0.428	175	-0.260	
224	+0.575	204	-0.120	189	-0.300	174	+0.100	
223	+0.922	203	-0.414	188	+0.299	173	-0.144	
222	-0.734	202	-0.214	187	+0.181	172	-0.518	
221	+0.335	201	+0.841	186	-0.466	171	+0.642	
220	+0.036	200	-0.093	185	+0.286	170	+0.010	
219	-0.369	199	+0.144	184	+0.274	169	-0.089	
218	+0.218	198	-0.010	183	-0.034	168	-0.884	
217	+0.352	197	-0.082	182	-0.161	167	+0.095	
216	-0.570	196	-0.263	181	+0.473	166	+0.755	
215	-0.403	195	+0.211	180	-0.552	165	+0.035	
214	+0.096	194	+0.493	179	+0.060	164	+0.413	
213	+0.158	193	-0.028	178	-0.247	163	-0.335	
212	-0.811	192	+0.079	177	-0.477	162	+0.979	
211	+1.298	191	-0.973	176	+0.924	155	-0.475	
210	-0.338					154	-0.387	
209	-0.165							
208	-0.163							
207	-0.332							
206	+1.282							

Table of corrections to observed directions-Continued.
ONE IIUNDRED AND FOURTL MERIDLAN.

Number of direotlon.	Correction to direction.	Number of direc tion.	Correction to directlon.	Number of directlon.	Correction to dírection.	Number of direction.	Correction to direc. tlon.
	"		"		"		"
1	+0.025	73	-0.479	151	+0.989	231	-0.410
2	-0.719	74	-0.466	152	+0.418	232	+0.668
3	-0.163	75	+0.221	153	-0.319	233	-0.332
4	-0.263	76	-0.851	154	+0.244	234	-0.239
5	+0.105	77	+1.249	155	+0.185	235	$+0.036$
6	-0.484	78	-0.152	156	+0.188	236	+0.629
7	-1.332	79	+0.756	157	-0.716	237	-0.093
8	+0.558	793	-0.371	158	+0.211	238	-0.885
9	+0.545	79 b	-0.555	159	-0.065	239	+0.511
10	-0.335	80	+0.632	160	+0.229	210	-0.272
11	-0.768	81	-0.285	161	-0.375	241	+0.454
12	+0.813	82	+0.060	162	-0.471	242	+0.192
13	+1.142	83	-0.237	163	+0.365	243	+0.110
14	-0.031	84	-0.101	164	+0.108	244	-0.440
15	-0.612	85	-0.441	165	-0.002	245	+0.378
16	-0.217	86	-0.139	166	-0.934	246	-0.367
17	-1.090	87	+0.246	167	+0.550	247	$+0.320$
18	+0.354	88	+0.435	168	+0. 114	248	-0.299
19	-0.223	89	+0.100	169	+0.270	249	$+0.373$
20	-0.132	90	+0.367	170	-0.045	250	+0.238
21	+0.600	91	+0. 265	171	+0.370	251	+0.102
22	+0.382	92	+0.093	172	-0.381	252	-0.414
23	+0.292	93	-0.823	173	+0.056	253	-0.198
24	+0.109	94	-0.030	174	-0. 516	254	$+0.706$
24.	-0.896	95	+0.095	175	-0.138	255	+0.330
24 b	-1.072	96	-0.375	176	+0.410	256	-1.143
24 c	+0.648	97	-0.171	177	+0.015	257	+0.305
$2+d$	+0.424	98	+0.481	178	+0.231	258	+0.754
25	-0.488	99	+0.468	179	-0.229	259	-0.570
26	-0.398	100	+0.094	180	-0.174	260	+0.113
27	+0.338	101	+0.110	181	+0.402	261	+0.243
27 a	-1.774	102	+0.115	182	+0.359	262	+0.312
28	-0.056	103	-0.310	183	-0. 590	263	-0.853
29	+0.792	104	-0.477	184	+0.173	264	-0.144
30	+0.352	105	-0.514	185	-0.065	265	-0.398
31	-0.327	106	+0.980	186	+0. 123	266	-0.060
32	+1.073	107	-0.590	187	-0.401	267	+0.602
33	+0.263	108	+0.064	188	+0.537	268	+0.278
34	-0.567	109	+0.060	189	+0.282	269	-0.259
35	-0.945	110	+0.355	190	+0.184	270	-0.043
35 a	+1.162	111	+0.283	191	-0.602	271	+0.361
36	-0.188	112	-0.042	192	+0.019	272	-0.337
37	+0.275	113	-0.596	193	+0.597	273	+0.230
38	-0.426	114	-0.341	194	-0.433	274	-0.195
39	+0.800	115	+0.817	195	-0.396	275	+0.225
40	-0.197	116	-0.094	196	+0.212	276	-0.482
41	-0.106	117	-0.216	197	+0.493	277	+0.250
42	-0.072	118	-0.166	198	-0.291	278	+0.144
43	-0.457	119	+0.106	199	-0.173	279	-0.172
44	+0.789	120	-0.658	200	-0.014	280	-0.172
45	+0.807	121	-0.153	201			+0.144
46	-0.124	122	+0.211	202	+0.130	282	+0.004
47	-1.015	123	+0.710	203	-0.214	283	+0.024
48	+0.579	124	-0.216	204	+0.133	284	+0.169
49	-0.493	125	-0.337	205	-0.015	285	-0.083
50	-0.402	126	+0.652	206	-0.036	286	$+0.273$
51	+0.099	127	-0.308	207	+0.215	287	-0.376
52	+0.217	128	+0.323	208	-0.318	288	-0.147
53	-0.025	129	-0.330	209	+0.361	289	+0.164
54	-0.249	130	-0.150	210	+0.070	290	-0.207
55	+0.215	131	+0.001	211	-0.153	291	+0.156
56	+0.186	132	-0.192	212	-0.175	292	+0.138
57	-0.506	133	$+0.006$	213	+0.062	293	-0.176
58	+0.377	134	+0.335	214	+0.275	294	+0.318
59	+ 0.842	135	-0.436	215	-0.261	295	+0.302
60	-0.117	136	-0.055	216	-0.302	296	-0.531
61	-0.275	137	+0.288	217	+0.225	297	+0.110
62	-0.202	138	+0.519	218	-0.018	298	-0.144
63	-0.248	139	-0.312	219	+0.124	299	+0.034
64	-0.269	140	-0.666	220	+0.074	300	-0.065
65	+0.063	141	+0.278	221	-0.251	301	+0.068
66	+0.041	142	-0.335	222	+0.213	302	-0.185
67	-0.302	143	+0.721	223	-0.143	303	+0.229
68	+0.449	144	-0.011	224	-0. 051	304	-0.047
69	-0.252	145	-0.229	225	-0.114	305	-0.355
69 a	+0. 508	146	-0.339	226	+0.179	306	+0.123
69 b	-0.236	147	+0.075	227	-0.014	307	+0.163
70	-0.043	148	+0.575	228	+0.116	308	-0.168
71	-0. 283	149	-0. 587	229	-0.024	309	+0.237
72	+0.805	150	-0.472	230	-0.349	310	-0.060

Table of corrections to observed directions-Continued.
one hundred and fourtr merminn-Continued.

Number of direotion.	Correction to directín.	Number of direc tion.	Correction to direction.	Number of direction.	Correction to direetion.	Number of direction.	Correction to direction.
	"		"		"		"
311	+0.041	345	-0.631	375	-0.068	405	+0.294
312	-0.324	346	+0.182	376	-0.173	406	+0.558
313	+0.503	347	+0.449	377	+0.128	407	-0.077
31314	+0.027	348	-0.449	378	-0.115	408	-0.247
314	-0.189	349	-0.212	379	-0.651	409	+0.302
315	-0.190	350	-0.019	380	+0.880	410	+0.074
316	+0.094	351	+0. 431	381	+0.126	411	-0.128
317	+0.006	352	+0.249	382	-0.770	412	-0.310
318	-0.187	353	+0.033	383	+0.275	413	+1.349
319	+0.613	354	+0.216	384	+0.198	414	-1.039
320	+0.100	355	-0.359	385	+0.170	415	-0.488
321	+0.041	356	-0.366	386	-0.358	416	+0.632
322	-0.477	357	-0.114	387	+0.489	417	-0.586
323	-0.410	358	-0.067	388	+0.144	418	+0.222
324	+0.202	359	+0.656	389	-0.463	419	+0.219
325	-0.420	360	+0.118	390	+0.188	420	-0.358
326	+0.226	301	-0.523	391	+0.014	421	$+0.222$
327	-0.210	362	+0.405	392	+0.270	422	-0.078 .
328	+0.648	363	-0.211	393	-0.091	423	+0.244
329	-0.315	364	+0.276	394	-0.175	424	-0.082
330	+0.279	365	-0.065	395	+0.010	425	-0.310
331	+0.151	366	-0.376	396	-0.029	426	-0.360
332	+0.135	367	+0.225	397	+0.318	427	-0.184
333	-0.096	368	+0.436	398	-0.248	428	+0.440
334	-0.356	369	-0.245	399	-0.370	429	+0.414
335	+0.166	370	-0.042	400	+0.300	430	$+0.167$
336	+0.502	371	+0.334	401	-0.030	431	+0.124
337	-0.374	372	-0.811	402	-0.208	432	-0.291
338	-0.051	373	+0.195	403	-0.319	433	-0.283
339	-0.109	374	+0.282	404	-0.220	434	$+0.224$
340	+0.085						
341	-0.053						
342	+0.443						
343	-0.530						
344	+0.087						

The maximum eorreetion to an observed direetion for the different seetions is shown in the following table:

Maximum correction to an observed direction by sections.

Section.	Direction number.	Between stations.	Correction.
			"
El Paso base net.	2	El Paso east base and Big Springs.	1.00
Rocky Mountain series.	2	Tushar and Mount lillen..-.......	1.02
Colorado series.......	211	Square Blufis and Hugo.	1.30
El Paso to Cheyenne.	7	Divide and Hilltop.....	1.33
Cbeyenne to Provo..	151	Alkali and Manville..	0.99
Provo to Ambrose.	256	Black and Whetstone	1.14

The maximum eorreetion to a direction on the ninety-eighth meridian triangulation was $1^{\prime \prime} .96$, and the average maximum eorrection for the 17 seetions into which that are was divided was $0^{\prime \prime} .99$.

The probable error of an observed direetion is

$$
d=0.674 \sqrt{\frac{\Sigma v^{2}}{c}}
$$

in whieh Σv^{2} is the sum of the squares of the eorreetions to direetions and c is the number of conditions.

The probable error of an observed direetion resulting from the new adjustment for each of the three seetions of the thirty-ninth parallel was found to be slightly larger than that resulting from the original adjustment.

El Paso base net, original adjustment, $\pm 0^{\prime \prime} .40$ beeame $\pm 0^{\prime \prime} .44$.
Rocky Mountain series, original adjustment, $\pm 0^{\prime \prime} .32$ beeame $\pm 0^{\prime \prime} .40$.
Colorado series, original adjustment, $\pm 0^{\prime \prime} .50$ beeame $\pm 0^{\prime \prime} .52 .{ }^{1}$

The probable orror of an observed direction resulting from the figure adjustment for the entire one hundred and fourth meridian is $\pm 0^{\prime \prime} .38$. When eonsidered as divided into three sections by the base lines, the probable error of an observed direetion for eaeh seetion is as follows:

> Divide-Pikes Peak to Cheyenne base $\pm 0^{\prime \prime} .41 .^{1}$ Cheyenne base to Provo base $\pm 0^{\prime \prime} .39$.
> Provo base to Ambrose base $\pm 0^{\prime \prime} .36$.

accuracy as indicated by corrections to angles and closures of triangles.

The correction to eaeh angle is the algebraie sum of the corrections to two directions. In order to make it possible to study the correetions to the separate angles, they are shown in the following table for every triangle in the primary seheme. There are shown the correetions to the angles resulting from the figure adjustment, the errors of elosure of the triangles, the eorreeted spherieal angles, and the spherieal exeess for each triangle. The plus sign prefixed to the error of elosure of a triangle indieates that the sum of the angles is less than 180° plus the spherieal exeess. The spherieal exeess is a convenient indieation of the size of the triangle, since it is proportional to the area.

Table of triangles.

rocky mountain series.

'This probahle error when computed after the introduction of the 1 aplace azimuth at Watkins astronomic was ± 0 ". 56 .

Table of triangles-Continued.
EL PASO BASE NET.

Station.	Correction to angles from figure adjustment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correc- tlon to angles from figure adjustment.	Error of closureof triangle.	Corrected spherlcal angles.	Spherlcal excess.
	"	"	$\bigcirc{ }^{\circ}$	"		"	"	- " 1	"
Corsl Bluffs	+0.85		$\left\{\begin{array}{l}96 \\ 29 \\ 49 \\ 37.91\end{array}\right.$		Holcolm Hills.	+0.25		[791208.36	
Divlde. Big Spring	+0.48	+0.47	$\left\{\begin{array}{l}49 \\ 49 \\ 33 \\ 35\end{array} 442.728\right.$	1.91	Big Springs...	+0.73 +1.62	+2.60	$\left\{\begin{array}{lllll}27 & 18 & 38.29 \\ 73 & 29 & 14.31\end{array}\right.$	0.96
El Paso west base.	+1.11		1485454.32		Holcolm Hills.				
Divide.	+0.67	+1.34	$\left\{\begin{array}{llll}15 & 28 & 13.79\end{array}\right.$	0.19	Big Springs.	-0.06 +0.96	+0.10	$\left\{\begin{array}{rrrr}125 & 34 & 08.84 \\ 21 & 06 & 23.86\end{array}\right.$	1.09
Corsl Bluff	-0.44		153652.08	0.10	Divide......	-0.80	$+0.10$	$\left\{\begin{array}{llll}21 & 19 & 28.39\end{array}\right.$	1.09
E1 Paso east base	-1.33		(883922.04		Holcolm Hills.	-0.62			
Big Springs.	-0.63	-1.24	$\left\{\begin{array}{l}27 \\ 23 \\ 260.85\end{array}\right.$	1.10	Coral Bluffs.	+0.26	-0.07	83053.35	0.16
Coral Blufts.	+0.72		$\left\{\begin{array}{l}63 \\ 63 \\ 57 \\ 12.21\end{array}\right.$		El Paso east ba	+0.29		$\left\{\begin{array}{r}1620836.35\end{array}\right.$	0.10
E1 Paso east base	+0.28		\{ 525051.20		Holcolm Hills	-0.32			
Coral Blufts.-	-0.31	+0.76	$\{480917.78$	0.34	Coral Bluffs.	-0.05	-0.64	$\{5640$ 11.13	0.72
E1 Paso west base.	+0.79		$\left\{\begin{array}{l}785951.36\end{array}\right.$		El Paso wes	-0.27		$\ 980856.59$	- 0.72
El Paso east base	+0.34		1110124.13		Holcolm Hills.	-0.93	,	[554230.94	
Coral Bluffs.	+0.13	-0.41	$\{323225.70$	0.48	Coral Bluffis.	+0.39	-0.86	$\left\{\begin{array}{l}51 \\ 0319.05\end{array}\right.$	1.10
Divide.	-0.88		$\left\{\begin{array}{llll}36 & 2610.65\end{array}\right.$		Divide	-0.32		¢ 831411.11	
El Paso east base	+0.06		\{ 581032.93		Holcolm Hills.				
El Paso west base	+0.32	+0.17	$\{695502.96$	0.33	El Paso east base	-0.57	-1.33	1450032.45	0.22
Divide...........	-0.21		[515424.44		El Paso west base	-1.06	-1.33	$\left\{\begin{array}{r}19 \\ 19\end{array}\right.$	0.22
El Paso east base	+0.99		$\left(\begin{array}{llll}160 & 19 & 13.83\end{array}\right.$		Holcolm Hills.	-0.30			
Divide...	+1.36	+2. 12	$\left\{\begin{array}{lll}13 & 28 & 32.07\end{array}\right.$	0.33	El Paso east ba	-0.63	-0.38	¢ 864959.52	0.46
Blg Spring	-0.23		$\left\{\begin{array}{l}61214.43\end{array}\right.$		Divide.	+0.55		$\left\{\begin{array}{l}464760.45\end{array}\right.$	
Holcolm Hills.			695137.90		Holcolm Hills				
Big Springs.	+0.10	+1.43	\{ 544205.14	1.90	El Paso west b	+1.38	+1.12	50 45 57.73	0.57
Coral Blufts.	+0.46		55 2618.86		Dlvide.	+0.35		984224.90	

colorado series.

Table of triangles-Continued.
ONE IIUNDRED AND FOURTH MERIDIAN.

Station.	Correc- tion to angles from figure adjust- ment.	Eitror of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correa tlon to angles from fgure ment.	Error of elosure of triangle.	Corrected spherleal angles.	Spherical excess.
	"	"	- " "	"		"	"	- , "	"
Elbert.	-0.01		\{ 595104.09		Twin.	-0.69		\{ 392832.88	
Divide.... 1'ikes l'ea	-0.59 -0.10	-0.70	$\left\{\begin{array}{r}102 \\ 18 \\ 18 \\ 02\end{array} 23.23 .18\right.$	2.48	Warre	-1.12 -0.89	-2.70	$\left\{\begin{array}{rrrr}120 & 36 & 32.34 \\ 19 & 54 & 50.40\end{array}\right.$	4.62
Hillop	$+0.33$		11822.139		Twin.				
Divido	$\stackrel{+0.85}{+0.35}$	+0.81	118440.274	0.06	Warren.	${ }_{-0.16}^{+0.19}$	-1.04	$\begin{cases}78 & 38 \\ 68 & 23.82 \\ \hline 0.85\end{cases}$	4. 76
Fibert	+1.33	+0.81	11765657.646	0.06	Horsetoo	-1.07	-1.04	$\left\{\begin{array}{llll}68 \\ 33 & 19 & 52.82\end{array}\right.$	4.6
Hillop.	-0.84		1200149.05		Twin.	+0.85		\{ 391053.94	
Dlvide.	-1.43	-1.82	103 4703.49	5.74	Dewey	-0.93	-1.03	$\left\{\begin{array}{llll}41 & 11 & 09.53 \\ \hline\end{array}\right.$	7.75
1'lkes I'ea	+0.45		$\left[\begin{array}{llll}34 & 11 & 13.20\end{array}\right.$		Horset	-0.98		1993804.28	\} 7.75
Hillop	-1.17		$\{404320.91$		Wadill.			(644411.88	
Elbert	-1.31	-1.83	123 1158.27	3. 20	W arren	+0.03	+0.33	$\left\{\begin{array}{l}68 \\ 684 \\ 54 \\ 54.02\end{array}\right.$	2.15
Plkes l'eak	$+0.55$	-1.83	$\left\{\begin{array}{rl}16 & 04 \\ 1\end{array}\right.$	3.20	Twin..	${ }_{-0.03}^{+0.03}$	+0.33	$\left\{\begin{array}{l}68 \\ 46 \\ 46 \\ 20\end{array}\right.$	2.15
Morrison.	-0.68		(151944.86		Russell.	+1.09		\| 360215.11	
Hilltop	-1.76	-2.87	$\{1294758.48$	2.70	Wadill	+0.30	+1.35	102 1431.16	2.03
Elbert	-0.43		$\left(\begin{array}{l}34 \\ \hline 1\end{array}\right.$		W	-0.04		fr 414315.76) 2.03
Morrison.	+0.72		550114.51		Russell.	-0.19		$\left\{\begin{array}{l}820906.29\end{array}\right.$	
Hilltop.	-0.59	-0.61	$\{890431.57$	10.61	Wadill.	-0.03	+0.02	$\left\{\begin{array}{l}37 \\ 37 \\ 30\end{array} 19.28\right.$	1.63
Pikes	-0.74		[35 54 24.53		Twin	+0.24		$1 \begin{aligned} & 602033.03\end{aligned}$	
Morrison.	+1.40		\| 394129.65		Russell.	-1.28			
Elbert.	-0.88	+0.33	881938.91	11.11	Warre	+0.07	-1.00	$\left\{\begin{array}{llll}27 & 11 & 38.26\end{array}\right.$	1.75
Plkes 1'ea	-0.19	+0.33	515862.55		Twin	$+0.21$		1064132.31	$1 . \%$
Douglas	-0.58		122 4340.87		Greentop	+0.70		663140.94	
Hilltop.	+0.40	-0.62	$\left\{\begin{array}{r}12035 \\ 50\end{array}\right.$	0.81	Wadill	-0.33	+0.12	$\left\{\begin{array}{l}22 \\ 24 \\ 24 \\ 26.10\end{array}\right.$	0.98
Mortiso	-0.44) 0.62	[64042.16		Russell	-0.25		910353.94	
Indian.	-0.22		(115804.27		Greentop				
Hilltop.	-0.87	-0.61	$\{264532.34$	0.19	Wadill.	-0.36	+2.20	595445.38	2.53
Douglas	+0.48	-0.61	1411623.58	0.19	Twin	+0.46	$+2.20$	57 9	2.53
Indian.	-0.31		(783121.96		Greentop	-1.40		41531.35	
Hilltop.	-0.47	-0.38	$\left\{\begin{array}{l}772110.12 \\ 24\end{array}\right.$	3.08	Twin	-0.22	-2.06	23125.50	0.08
Morrisom	+0.40)	240731.00) 3.05	Russe	-0.44) 2.0	1731300.23	
Indlan.	-0.09		663317.69		Whitaker.	-0.12			
Dourlas	+0.10	+0.85	955 5955.55	2.08	Wadill.	+0.05	-1.15	$\left\{\begin{array}{rl}59 & 3420.17\end{array}\right.$	1.20
Morrison	+0.84)	172648.84) 2.08	Greento	-1.08		1294533.40) 1.20
Watkins astrono	+1.72		[905620.85		Ragged	+0.38			
Indian.	-1.19	+2.25	7817 40.90	1.37	Whitaker	-1.04	-1.36	$\{1101231.52$	1.16
Morriso	+1.72	+2.20	(10 4559.62		Wadill.	-0.70	-1.36	$\left\{\begin{array}{r}16 \\ 46 \\ 07\end{array}\right.$	1.10
Watkins astrono	+1.50				Ragged.	+0.57			
Indian.	-1.01	-0.86	$\left\{\begin{array}{r}120 \\ 50 \\ 76\end{array}\right.$	1.39	Whitake	-0.92	+0.34	$\left\{\begin{array}{l}19 \\ 32 \\ 23.89\end{array}\right.$	0.72
Boulde	-1.35	-0.8	¢ 70652.67	,	Greentop	+0.69	+0.34	$\left\{\begin{array}{l}195 \\ 85 \\ 45 \\ 41 \\ 41.54\end{array}\right.$	0.72
Watkins astrono	-0.22		\{ 310955.63		Ragged.				
Morrison.	-1.38	-2.49	$\{915732.95$	4.46	Wadill.	+0.75	+0.55	$\{132638.69$	0.76
Boulder	-0.89	-2.40	$\left\{\begin{array}{l}56 \\ 56 \\ 52 \\ 52 \\ 35.88\end{array}\right.$		Greentop	-0.39	+0.5s	[115 3114.94	0.76
Boulder.	+0.46		\{ 494543.21		Cheyenne west b	-0.46		$\{1074224.75$	
Indian.	-0.18	+0.62	273048.68	4.44	Whitaker.	-1.31	-2.53	$\{294608.36$	0.24
Mortison	+0.34	,	1024332.57		Wadill.	-0.76	2. 5	$\left\{\begin{array}{l}4231 \\ 27.13\end{array}\right.$	
Brighton.	+1.23				Cheyemne east base	+0.51			
Indian.	-0.78	+0.05	6835 22.08	5.64	Cheyenne west has	-0.05	+0.28	895301.93	0.20
Morrison	-0.40		464246.96		Whitaker.	-0.18	+0.28	$\{293907.08$	0.20
Brighton.	+0.23		$(1003956.33$		Cheyenne east be	-0.17			
Indian.	-0.60	+0.39	41 0433.42	5.09	Whitaker.	-1.12	-1.31	$\left\{\begin{array}{r} \\ 0\end{array} 0701.29\right.$	0.00
Bo	+0.76		381535.34		Wadill.	-0.02		$\left\{\begin{array}{llll}0 & 31 & 01.87\end{array}\right.$	\% 0.00
Brighton.	-1.00		35 5759.73		Cberenne cast ha	-0.34		1201011.97	
Morrison.	+0.74	$+0.96$	560045.61	3.89	Wadill.	-0.75	-1.50	$\{420025.25$	0.04
Boulder.	+1.22		880118.55	;	Cheyenno west b	-0.41		$1 \begin{array}{llll}17 & 49 & 22.82\end{array}$) 0.04
Horsetooth.	+0.12		$\|$ 405237.08		Chugwater.				
Brighton.	+0.09	-1.00	\{ 655129.28	7.33	Whitaker	+0.05	+0.62	772517.54	3.29
Boulder.	-1.21		1731560.97		Ragged	$+0.30$		653608.00] 3.2
Dewey..	+1.25		$\left\lvert\, \begin{array}{llll}25 & 19 & 29.16\end{array}\right.$		Noteh.	+0.20		215037.50	
Brighton	+0.12	+0.08	116 5020.55	5.90	Chugwater	+0.17	+0.07	$\{1403842.01$	2.61
Boulder	-0.38	+0.08	$\left\{\begin{array}{r}134 \\ 34 \\ 50 \\ 16.19\end{array}\right.$		Whitaker	-0.30		1173043.10) 2.61
Dewey.					Notch.				
Brighton.	+0.03	+1.80	$\{505851.27$	7.52	Chugwate	-0.10	+0.41	$\{1034004.26$	4.29
Morsetooth.	+0.50	+1.80	$\left\{\begin{array}{l}525861.45\end{array}\right.$		Ragged..	-0.34	+0.41	$\left\{\begin{array}{rl}141 & 53 \\ 31 & 37.51\end{array}\right.$	4.29
Dewey.	+0.02		474245.64		Noteh.	+0.65			
Boulder	-0.83	-0.19	$\{382544.78$	8.95	Whitak	+0.35	$+0.96$	595434.44	4. 97
Horsetooth.	+0.62	-0.10	$\left\{\begin{array}{llll}93 & 51 & 38.53\end{array}\right.$		Ragged	${ }_{-0.04}^{+0.05}$	$+0.00$	97 97 29 45.51	4.97
Warren	-0.96				Coleman.	0.00			
Dewey.	-1.82	-2.69	610608.03	7.61	Chugwat	-0.17	-0. 52	362445.60	3.46
Horsetooth	+0.09		$\left\{\begin{array}{llll}66 & 18 & 11.46\end{array}\right.$		Noteh.	-0.35		11112128.49	

PRIMARY TRIANGULATION.
Table of triangles-Continued.
one hundred and. Fourth meridlan-continued.

Station.	Correction to angles from figure adjust- ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correction to angles from figure adjustment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
	"	"	, "	"		"	"	- ,	"
Haystack	-0.37		311002.08		Provo west base.	-0.28		(950345.53	
Chugwater	-1.09	-1.93	\% 713941.09	5.96	Cottonwood	-0.96	-2.42	$\left\{\begin{array}{l}565322.09\end{array}\right.$	1.37
Notch...	-0.47		$1 \begin{array}{llll}77 & 1022.79\end{array}$		Parker...	-1.18		(280253.75	
Haystack.	-0.35		\| 653354.32		Provo east base.	+1.05		(242840.05	
Chugwate	-0.92	-0.62	25 1455.49	6.33	Provo west base	-0. 59	-0.44	\{135 1731.94	0.45
Coleman.	+0.65		$1 \begin{array}{ll}79 & 11 \\ 16.52\end{array}$		Cottonwood	$-0_{5} 90$	-0.44	$\left\{\begin{array}{r}20 \\ 20\end{array} 1348.46\right.$	
Haystack.	+0.02		\| 342352.24		Provo east base.	+1.20		11143248.44	
Notch.	+0.12	+0.79	$\{341105.70$	3.83	Provo west bas	-0.31	+1.85	$\left\{\begin{array}{r}10 \\ 40 \\ 25\end{array} 1346.41\right.$	0.74
Colemar	+0.65		$111 \begin{array}{lll}11 & 25 & 05.89\end{array}$		Parker.	+0.96		$\left(\begin{array}{llll}25 & 13 & 25.89\end{array}\right.$	
Hobbs.	-0.07		\| 531021.67		Provo east base.	+0.15		\| 900408.39	
Haystack	-0.42	-2.06	$\{942403.84$	2.73	Cottonwood	-0.06	-0.13	$\{363933.63$	1.66
Coleman.	-1.57		1322537.22		Parker.	-0. 22		$\left(\begin{array}{llll}53 & 1619.64\end{array}\right.$	
Willow.	+0.50		f 251629.26		Provo astronomic	+0.84		[352856.73	
Hobbs.	-0.39	-0.32	1422634.70	0.56	Provo west base	+0.02	-0.05	$\{1295038.85$	0.28
Haystack	-0.43		1121656.60		Cottonwood	-0.91		1144024.68	
Willow.	-0.43		\| 754054.04		Provo astronomic	+0.58		$\left(\begin{array}{llll}135 & 17 & 41.93\end{array}\right.$	
Hobbs	-0.32	+0.74	\{ 891613.03	1.70	Provo west base	+0.30	+1.45	$\{344653.32$	0.34
Colems	+1.49		150254.63		Parker.	+0.57		195525.09	
Willow	-0.93		(502424.78		Provo astronom	-0.26		\| 994845.20	
Haystack	+0.01	-1.00	$\{820707.24$	3.87	Cottonwood	-0.05	-0.92	42 4257.41	1.45
Coleman.	-0.08		$1 \begin{aligned} & 47 \\ & 47 \\ & 28\end{aligned} 31.85$		Parker..	-0.61		[375818.84	
Rawhide.	+1.16		(614224.88		Provo astronomic	-0.37		$1 \begin{array}{ll}155 & 5239.35\end{array}$	
Haystack	-0.17	+1.94	$\left\{\begin{array}{l}143412.43\end{array}\right.$	0.51	Cottonwood.	$+0.01$	-0.80	$\left\{\begin{array}{rrrr}5 & 33 & 23.78 \\ 18 & 33 & 57\end{array}\right.$	0.16
Hobbs.	+0.95		1034323.20		Provo east ba	-0. 44		183357.03	
Rawhide.	+0.25		1044825.01		Provo astronomi	-0.11		\{ 560354.15	
Haystack	-0.60	$+0.52$	\{ 265109.03	1.31	Parker.	+0.39	-0.01	$\{15-1800.80$	0.37
Willow.	+0.87		$\left[\begin{array}{llll}48 & 20 & 27.27\end{array}\right.$		Provo east	-0.29		1083805.42) 0.35
Rawhide	-0.91)	[430600.13		Provo astronomlc	-0.47		$(1683823.92$	
Hobbs.	-0.56	-1.10	1135002.10	0.24	Provo east base.	+1.49	+0.41	$\left\{\begin{array}{r}5 \\ 5\end{array} 4443.02\right.$	0.03
Willow	+0.37		$\left(\begin{array}{llll}13 & 3 & 03 & 58.01\end{array}\right.$		Provo west ba	-0.61		[52653.09	
Manville.	+0.63		\| 344644.47		Elk.	+0.38		\{ 241625.49	
Rawhld	-0.12	+0.25	$\{380835.60$	0.84	Parker	+1.06	+1.33	$\{110721.67$	0.76
Walow	-0.26	+0.25	$\left\{\begin{array}{llll} \\ 107 & 04 & 40.77\end{array}\right.$	0.84	Sulllva	-0.11		11443613.60	-
Kirtley	-0.48		(204525.53		Elk.	+0.93		11123558.77	
Rawhid	-0.07	-0.05	$\{980051.92$	2.00	Parker		+2.28	$\{290753.48$	4.01
Wfliow	+0.50	-0.0.	$\left[\begin{array}{llll}61 & 1344.55\end{array}\right.$		Aikail	+0.91		38 38 1611.76	
Kirtley					Elk.	+0.55		\| 881933.28	
Rawhide	+0.05	-1.24	\{ 595216.32	2.93	Sulliva	+0.44	+1.40	$\left\{\begin{array}{l}68 \\ 27 \\ 23\end{array}\right.$	1.44
Manville	${ }_{-0.96}^{+0.05}$	-1.24	$\left\{\begin{array}{l}58 \\ 78 \\ 31\end{array} 121.87\right.$	2.93	Alkali.	+0.41	+1.10	231245.18	
Kirtley	+0.15		(205059.21		Cambria	+0.19		\| 454647.23	
Willow	-0.76	-0.94	$\left\{\begin{array}{l}20 \\ 50 \\ 50.22\end{array}\right.$	1.77	Elk.	-0.40	-0.32	$\{874517.34$	3.45
Manv	-0.33	-0.01	$\left[\begin{array}{llll}113 & 18 & 06.34\end{array}\right.$		Alka	-0.11		[468758.88	
Alkali.					Crow	+0.05		(754452.92	
Kirtley	-0.19	$+2.25$	$\{720161.32$	8.65	Elk.	+0.22	+0.03	$\{290 \pm 20.52$	1.69
Manville	+0.98	$+2.25$	l $\begin{aligned} & 82 \\ & 52 \\ & 52 \\ & 32.19\end{aligned}$		Cam	-0.24		$\left\lvert\, \begin{array}{llll}75 & 10 & 48.25\end{array}\right.$	
Parker.	-0.61] 0.39	(204614.29		Laird	+0.93		512249.19	
Kirtley	+0.01	+ +3.39	$\{1210012.32$	5.81	Crow.	+0.59	+2.28	$\{811048.42$	0.82
Manvill	+0.99	+0.3	$\left[\begin{array}{rrrr}38 & 13 & 39.20\end{array}\right.$	5.81	Camb	+0.76		$\left\{\begin{array}{llll}47 & 20 & 23.21\end{array}\right.$	
Parker.					Inyankara	+0.04		[55 2414.64	
Kirtley	+0.20	-0.86	$\{485811.00$	11.97	Laird.	-0. 26	-1.17	\{ 514147.21	1.28
Alkali.	-1.05	-0.80	$\left\{\begin{array}{l}47 \\ 47652.00\end{array}\right.$	11.97	Camb	-0.95		$\left\{\begin{array}{l}725359.43\end{array}\right.$	
Parker.	+0.60)	\| 622854.68		Inyankara.	+0.60		1434018.72	
Manville	-0.01	+1.00	$\left\{\begin{array}{l}44 \\ 38 \\ 52 \\ 52.99\end{array}\right.$	14.81	Cambria.	+0.2t	+0.63	1184201.88	2.55
Alkalí.	+0.41		[725227.14		Alkali	-0.21		173741.95	
Cottonwood.	-0.18)	1000943.36		Terry	-0.78		\| 262813.83	
Alkall.	-1.16	-0.39	$\left\{\begin{array}{l}31 \\ 31 \\ \hline 15\end{array}\right.$	4.87	Laird	-0.89	-2.70	$\left\{\begin{array}{l}135 \\ 25 \\ \hline 18\end{array}\right.$	0.92
P	+0.95		$\left\{\begin{array}{l}48 \\ 18 \\ 18 \\ 45.75\end{array}\right.$		Inyankara....	-1.03		180559.71	
Sullivan.									
Parker..	+0.33	+1.31	$\left\{\begin{array}{llll}61 & 19 & 17.56 \\ 52 & 18\end{array}\right.$	2.85	Terry	-0.66	-1.60	¢2 3801.41	2.22
Cottonwood	+0.56		\} 5 2 0 3 1 2 2 . 1 2		Lairú	-0. 79		1955640.31	.
Sullivan.	-0.33		1465003.42		Sundance.	-0.17		\{ 555915.04	
Parker.	-0.62	-0.45	$\{18.0031 .81$	1.81	Terry	+0.12	+0.53	$\{360947.58$	3.34
Alkali.	+0.50		$\left\{\begin{array}{l}15 \\ 15\end{array} 0326.58\right.$		Inyankara....	+0.58		875060.72	
Sultivan.	-0.75		[851840.25		Sundance.	-0.02			
Cottonwo	-0.74	-2.15	480621.24	3.83	Laird.	-0.10	-0.57	$\left\{\begin{array}{l}39 \\ 23 \\ 07.07\end{array}\right.$	2.04
Alkali.	-0.66		$\left\{\begin{array}{l}463502.34\end{array}\right.$		Inyankara	-0.45		105 5660.43	

Table of triangles-Continued.
ONE HUNDRED AND FOURTH MERIDIAN-contlaued.

Station.	Correc tion to angles from figure adjustment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Statlon.	Correc tion to angles figure adjust ment.	Ertor of closure of triangle.	Corrected spherlcal angles.	Spherical excess.
	"	"	-" "	"		"	"	- ${ }^{\prime}$	"
Wymonkota.	+0.53		[410144.61		Black.	+1.45			
Terry....	+0.16 +0.00	+0.09		8.57	Whetsion	+0.14	+1.58	$\left\{\begin{array}{llll}50 & 44 & 4.29 \\ 30 & 19 \\ 98 & 56 & 10.16\end{array}\right.$	1.81
Terry.	-0. +0.16	-0.03	$\left\{\begin{array}{l}314238.38 \\ 92 \\ 27 \\ \hline 15.10\end{array}\right.$		Radland.	-0.26		¢ 595245.69	
Sundanc	+0.16 +0.34	-0.03	$\left\{\begin{array}{l}92 \\ 92 \\ 55 \\ 5 \\ 50\end{array} 117.105\right.$	10.73	Rainy	+0.20 -0.37	-0.43	$\left\{\begin{array}{llll}63 & 35 & 56.77 \\ 56 & 31 & 19.99\end{array}\right.$	2.45
Castle.	+0.14		(681917.31		Sentinel.	-0.10		[75028.71	
Terty.	0.00	+0.10	$\{361113.01$	9.58	Badland	+0.08	+0.05	161 4144.23	1.09
Wymonkota	-0.04		752939.26		Rainy.	+0.07		$\left\{\begin{array}{lll}10 & 24 \\ 10\end{array}\right.$	
Castle.	+0.67		\{ 363638.73		Sentinel.	-0.42		$\left\{\begin{array}{llll}34 & 1245.21\end{array}\right.$	
Sundance	-0.34	+0.82	$\left\{\begin{array}{rl}26 & 52 \\ 116 & 0.82\end{array}\right.$	7.42	Badlan	+0.34	+0.82	$\{1015158.54$	3.68
W ymonkota.	+0.49		116 3123.87		Black.	+0.90		$\left\{\begin{array}{l}43 \\ 55 \\ 1519.93\end{array}\right.$	
Moreau.	-0.06		(670555.79		Sentinel.	-0.32		262216.50	
Castle..	-0.51	-1.11	$\left\{\begin{array}{llll}61 & 06 & 05.85\end{array}\right.$	4.69	Ratiy	+0.13	+0.34	$\left\{\begin{array}{rlll}53 & 11 & 08.62\end{array}\right.$	5.04
W ymonkots	-0.54		1514803.05		Black	+0.53		100 2639.92	J 5.01
Harding.	+0.46		$\mid 374141.93$		Saddle.	-0.54		\| 293642.40	
Moreau	+0.23	+0.47	$\{1305339.91$	1.12	Rainy	-1.17	-2.45	$\{294424.12$	2.28
Castle.	-0.22		1112439.23		Badlan	-0.74		1203855.76	2.2
Harding	+0.11		[993342.68		Saddle.	-0.32		(903203.17	
Moreau	+0.29	+0.61	$\left\{\begin{array}{l}634744.12 \\ 16\end{array}\right.$	1.48	Rainy	-1.10	-0.79	$\left\{\begin{array}{l}40 \\ 40912.27\end{array}\right.$	6. 80
Wymonkots	+0.21		$1 \begin{array}{lll}163834.68\end{array}$		Sentil	+0.63		49 18 181.36	
Harding.	-0.35		[615160.75		Saddle.	+0.22		(605520.77	
Castle..	-0.29	-0.97	$\{494126.57$	5.05	Badland	+0.66	+1.61	$\left\{\begin{array}{l}77 \\ 3620.01\end{array}\right.$	3.43
Wymonkota	-0.33		682637.73		Sentine	+0.73		$1 \begin{array}{ll}412822.65\end{array}$	
Reva.	-0.14) 0.0	\{ 394406.99		Hump	-0.19		$1 \begin{array}{llllllllllllll}111 & 43 & 34.97\end{array}$	
Castle	-0.02	-0.20	$\{451654.07$	5.06	Saddle	+0.40	-0.50	$\left\{\begin{array}{l}103607.12\end{array}\right.$	0.97
Moreau	-0.04		945904.00		Sentin	-0.71		\} 5 7 4 0 1 8 . 8 8) 0.07
Reva.	-0.47		$\left\{\begin{array}{l}493531.12\end{array}\right.$		Cook	-0.25		754129.74	
Castle.	-0.24	-0.57	\{ 564133.35	7.36	Saddle.	-0.70	-0.93	305337.54	2. 43
Harding	+0.14)	73 4302.89		Hump.	+0.02) 0.03	732455.15	,
Reva.	-0.33		[95124.13		Cook	+0.11		(781118.44	
Moreau.	-0.19	-0.84	$\{1340716.09$	1.18	Saddle.	-0.30	-0.48	$\begin{cases}41 & 29 \\ 014.66\end{cases}$	3.45
Harding	-0.32		$\left(\begin{array}{llll}36 & 01 & 20.06\end{array}\right.$		Sentine	-0.29		$6 \begin{array}{lll}61 & 18 & 60.35\end{array}$	
Table.	-0.72	-	614412.66		Cook.	+0.36		12948.70	
Reva.	-0.06	-0.69	$\{691605.85$	6.74	Hump	+0.17	$+0.95$	174 5129.88	0.05
Harding	+0.09)	[485943.23		Sentine	+0.42		$1 \begin{array}{r} \\ 3 \\ 38\end{array}$	
Lodge.	+1.39		\{ 304052.57		Blue.	-0.02		312655.93	
Reva..	+1.02	+2.36	$\{1324540.75$	3.45	Cook	-0.29	-0.45	970111.04	2. 00
Harding	-0.05	+2.30	$1 \begin{aligned} & 1633 \\ & 160.13\end{aligned}$	3.45	Hump	-0.14	J 0	513155.03	
Lodge.	+0.61		[770353.49		Blue.	-0.85		(403650.00	
Reva.	+1.08	+2.28	$\left\{\begin{array}{l}63 \\ 29 \\ 34.90\end{array}\right.$	3.61	rook.	-0.65	-1.92	953122.34	2. 83
Table	+0.59)	[392635.22		Sentin	-0.42		- 435150.49	- 2.8
Lodge.	-0.78	- 7	[462260.92		Blue.	-0.83		90954.07	
Harding	+0.14	-0.77	$\left\{\begin{array}{r}32 \\ 2618.10\end{array}\right.$	0.90	Hump	+0.31	-0. 52	1231934.85	c. 88
Table.	-0.13)	11011047.88		Sentin	0.00		1473031.96	
Butte.	+0.69		(625511.42		Trotter	+0.08			
Lodge	+0.72	+1.78	\{ 521647.96	4.19	Cook.	+0.23	$+0.80$	$\left\{\begin{array}{r}42 \\ 32\end{array}\right.$	1.19
Table.	+0.37)	644804.81		Blue	+0.49		1343301.88	
Wbetstone.	+0.07		\| 434449.58)	Flat.	+0.13		\| 165935.45	
Lodge.	+0.46	+1.41	$\{962242.29$	4.80	Cook	+0.31	$+0.62$	$\{110930.51$	0.32
Table	+0.28)	\| 395232.93		Trotter	+0.18		$151 \quad 5054.30$	
Wbetstone	+0. 54	-	[742424.96		Flat:	-0.12)	664113.69	
Lodge.	-0.26	-0.47	44405 54.33	3.41	Cook.	+0.54	+0.60	$\left\{\begin{array}{l}53 \\ 52 \\ 5121.92\end{array}\right.$	2. 29
Butto.	-0.75)	$1 \begin{array}{ll}612944.12\end{array}$		Blue	+0.18		59 36 26.68	2.
Wbetstone	-0.13	-	\{ 303935.38)	Flat	-0.25		\| 494138.24	
Table.	+0.09	-0.10	$\{245531.88$	2.80	Trotter	-0.26	-0.82	$\{1051457.74$	0.78
Bu	-0.06		$(1242455.54$		Blue	-0.31		$\left[\begin{array}{llll}25 & 03 & 24.80\end{array}\right.$	
Rainy.	-1.32		\{ 514400.06		Lovering	+0.40		343707.07	
Whetstone	-0.66	-1.16	$\{814503.62$	2.57	Flat....	+0.42	+1.16	$\{803428.34$	3.65
Butte.	+0.82		$1 \begin{aligned} & 46 \\ & 30\end{aligned} 57.89$		Blue.	+0.34		(64 4828.26	
Black.	-1.47)	(455502.71		Sheep.	+0.10		205043.39	
Rainy	-0.64	-2.63	\{ 823943.42	2.59	Flat.	+0.14	+0.22	1435440.46	1.02
Whetstone	-0.52		\| 512516.46		Blu	-0.02	+0.22	$\left\{\begin{array}{l}15 \\ 15 \\ 14\end{array}\right.$	
Black.	-0.02		[903907.00		Sheep.	-0.26		890149.48	
Rainy	+0.08	+0.11	$\{305542.46$	1.83	Flat.	-0.28	-0.87	$\left\{\begin{array}{llll}63 & 2012.12\end{array}\right.$	2.45
Butte.	-0.55)	$\left\{\begin{array}{l}52251237\end{array}\right.$		Lovering.	-0.33		$\{273800.85$	

Table of triangles-Continued.
ONE HUNDRED AND FOURTH MERIDIAN-continued.

Station.	Correction to angles from figure adjustment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.	Station.	Correction to angles from figure adjustment.	Frror of closure of triangle.	Corrected spherical angles.	Spherical excess.
	"	"	- , "			"	"	- " 1	"
Sheep.	-0.36		\{ 6811106.09		Williston.	-0.56		(765805.88	
Blue.	$+0.36$	+0.07	$\left\{\begin{array}{llll}49 & 33 & 51.09 \\ 62 & 15 & 07\end{array}\right.$	5.10	Buford	-0.51	-1.75	$\{431646.34$	1. 62
Lovering	$+0.07$		62 62507.92			-0.68		1594509.40	
Jackson.	+0.59		[5545121.17		Williston.	+0.32		220137.46	
Sheep.	+0.83	+1.94	$\{271936.91$	2.61	Snake	-0.01	-0.17	410948.30	0.67
Lovering	+0.52		$\left\{\begin{array}{l}265501.53\end{array}\right.$		Bull	-0.48	-0.17	1164834.91	0.68
Buford.	+0.28		\{ 540539.08		Bonetraill	-1.15		[772418.17	
Sheep.	+0.14	+0.46	$\{604438.44$	4.62	Williston	+0.14	-0.80	480016.30	0.82
1overing	+0.04		1650947.10		Bull..	+0.21	-	$1 \begin{array}{llll}54 & 35 & 26.35\end{array}$	
Buford.	+0.19		(795254.31		Gladys.	-0.54		[263358.67	
Sheep.	-0.69	-1.46	$\{332501.53$	3.50	Bonetrail	-0.14	-0.48	1462252.62	0.14
Jackson	-0.96		664207.66		Williston	+0.20		$\left\{\begin{array}{r}7 \\ 7\end{array}\right.$	0.14
Buford	-0.09		\| 254715.23		Gladys.	+0.99		933212.50	
Lovering	+0.48	+0.02	$\left\{\begin{array}{r}31 \\ 120 \\ 127 \\ 27 \\ \hline 8.43\end{array}\right.$	1.49	Bonetrai	+1.01	+2.60	685834.45	0.22
Jackson..	-0.37		1222728.83		Bull.	+0.60		$\left\{\begin{array}{llll}17 & 29 & 13.27\end{array}\right.$	
Montana.	+0.18		\| 851709.20		Gladys.	+1.53		665813.83	
Buford	0.00	-0.03	$\{881257.71$	0.67	Williston	-0.06	+2.28	$\left\{\begin{array}{l}40 \\ 57 \\ 07 \\ 07.45\end{array}\right.$	0.90
Sheep.	-0.21	-	- 62953.76		Bull...	+0.81		[720439.62	
Montana.	-0.15		16943 51:64		Marmon.	-0.89		\{ 460023.64	
Buford.	-0.19	+0.52	$\{82003.40$	0.06	Williston	-0.14	-0.98	$\left\{\begin{array}{l}48 \\ 30 \\ 35.57\end{array}\right.$	0.96
Jackson	+0.86)	15605.02		Bonetrail	+0.05		852901.75	
Montana.	-0.33		842642.44		Marmon.	+0.15		560707.74	
	-0.48	-0.91	$\left\{\begin{array}{l}26 \\ 585 \\ 585\end{array}\right.$	2.89	Williston	+0.06	-0.57	\{ 553344.42	1.31
Jackson	-0.10		683812.68		Gladys.	-0.78		(681909.15	
Lanark.	+1.08		\| 780917.37		Marmon.	+1.04		\| 100844.10	
Montana	+0.77	+2.06	611017.93	0.82	Bonetrail	+0.09	+0.89	1280805.63	0.21
Jackson.	+0.21		1404025.52		Gladys.	-0.24		$1 \begin{array}{lllllllll}41 & 10.48\end{array}$	
Cutoff.	$+0.23$		$\left(\begin{array}{l}100 \\ 20 \\ 36.50\end{array}\right.$		Howard.	-0.04		551740.62	
Jackson	+0.65	+1.15	37 1752.91	0.47	Marmon	-0.08	+0.08	$\left\{\begin{array}{rlll}50 \\ 74 & 66.39\end{array}\right.$	1.26
Lanark	+0.27		422131.06		Gladys.	+0.20	.	742524.25	
Cutoff.	+0.20		(882052.43		Muddy .	+0.84		\{ 421440.60	
Lanark.	+0.81	+1.73	$\left\{\begin{array}{l}35 \\ 50 \\ 47 \\ 51\end{array}\right.$	0.30	Marmon	-0.10	+1.04-	940720.84	1.43
Montana.	+0.72		(55 5121.56)	Gladys.	+0.30		433759.99	
Cutoff.	-0.43		[171 1831.07		Muddy .	$+0.50$		772440.93	
Montana	+0.05	-0.82	$\left\{\begin{array}{r}5 \\ 5 \\ 3\end{array} 8586.37\right.$	0.05	Marmon	-0.02	+0.66	$\left\{\begin{array}{l}43 \\ 50 \\ \hline 14.45\end{array}\right.$	1.16
Jackson.	-0.44		[32232.61		How			15844 55.78	
Mondak	+0.93		[853953.27		Muddy	-0.34		351000.33	
Cutoff.	+0.45	+1.67	\{ 195603.42	0.07	Gladys.	-0.10	-0.30	-30 4724.26	0.99
Montana.	+0.29		742403.38		Howard	+0.14		1140236.40	
Ferry	+0.48		\| 861144.59		Stady.	-0.57		\| 033830.58	
Cutoff	$+0.27$	+1.05	4220 50.92	0.11	Muddy	-0.61	-1.62	$\left\{\begin{array}{l}75 \\ 41 \\ 10\end{array} 29.46\right.$	0.68
Montana	+0.30		1512724.60		Howe	-0.44		404000.64	
	+0.14		106 3001.59		Crosby.	-0.30		3.84733 .49	
Cutoff	-0.18	-0.68	22 24 47.50	0.00	Muddy	+0.66	+0.38	203921.50	0.33
Mondak	-0.64		$\left[\begin{array}{llll}51 & 0510.97\end{array}\right.$		Stady.	+0.02		11143305.34	
Ferry..	-0.34		201817.00		Crosby.	-0. 19		(373423.45	
Montana	-0.01	-0.06	$\{225638.78$	0.02	Muddy	+0.05	-0.22	$\{1022050.98$	0.99
Mondak.	+0.29	-0.00	11364504.24		Howar	-0.08		400446.58	
Bainville			620953.44		Crosby	-0.11		11310.04	
Buford.	$+0.61$	+1.67	$76 \quad 2517.04$	1.55	Howard	-0.36	-1.02	$\left\{\begin{array}{r}0 \\ 0 \\ 3 \\ 178 \\ 114 \\ 14.06\end{array}\right.$	0.02
Jackson.	+0.45		1412451.07		Stady.	-0. 55		1781135.92	
Snake.	-0.26		[333023.06		Norge..	+0.81		351807.83	
Buford	-0.52	-1.75	$\left\{\begin{array}{lllll}11 & 1137.70\end{array}\right.$	0.30	Crosby.	$+0.10$	+1.58	$\left\{\begin{array}{l}63 \\ 10 \\ 81\end{array} 036.77\right.$	0.40
Bainvile	-0.97		11351159.54		Stady.	+0.67		1812515.80	
Snake.	+0.26		[473902.32		Norge.	+0.80		820423.90	
Buford	+0.09	+1.41	8 873654.74	2.03	Crosby	-0.01	+0.69	642946.81	1.24
Jackson	$+1.06$		444404.97		Howar	-0.10		332550.53	
Snake.	+0.52		$\{140239.26$		Norge.	-0.01		[$46 \begin{array}{ll}46 & 16.07\end{array}$	
Bainville	$+0.36$	+1.49	$\{1623807.02$	0.18	Stady.	-0.12	+0.13	$\{1002308.28$	0.82
Jackson.	+0.61		$\left[\begin{array}{l}31913.90\end{array}\right.$	18	Howa	+0.26		[325036.47	
Bull.	+0.20		[570325.51		Bowie.	+0.28		\{ 282526.41	
Buford	-0.06	-0.10	$\{231657.93$	0.90	School	-2.39	-2.83	270034.67	0.22
Snake	-0.24		$\left\{\begin{array}{l}293937.40\end{array}\right.$		Ambrose southw	-0.72		1243359.14	
Williston.	-0.88		545628.42		Ambrose.......	-0.23		[05635.04	
Buford	-0.57	-1.63	663344.27	1.85	Ambrose south	-0.77	-1.35	178 1437.76	0.01
Snake.	-0.23		582949.10		Bowio...	-0.35		104847.21	

Table of triangles-Continued.
one hundred and fourtir meridian-continued.

Statlon.	Correc thon to angles from agure adjust- ment.	Error of closureof triangle.	Corrected spherlcal angles.	Spherical excess.	Statlon.	Correc tlon to angles from figure adjust ment.	Error of closure of triangle.	Corrected spherical angles.	Spherical excess.
	"	"	- 11	"		"	"	- , "	"
Amhrose.	-0.20		[730618.73		Croshy.	-0.63		(502957.31	
School	${ }_{-0.73}^{+0.63}$	-0.30	$\left\{\begin{array}{llll}27 & 36 & 39.20 \\ 79 & 17 & 02.46\end{array}\right.$	0.39	Amhrose southwest base.	+0.17 +0.55	+0.09	$\left\{\begin{array}{l}37 \\ 37 \\ 92 \\ 18 \\ \hline 11\end{array} 08.24 .60\right.$	0.15
Amhrose southwest base...	-0.05	+1.18	$\left\{\begin{array}{llll}53 & 40 \\ 38.62\end{array}\right.$	0.18	Nowle.	+1.12	+1.09	$\left\{\begin{array}{l}43 \\ 77 \\ 77 \\ 48 \\ 503.68\end{array}\right.$	0.30
School......................	+1.66	+1.18	($\begin{aligned} & 52 \\ & 516 \\ & 16\end{aligned} 127.79$		Amhrose southwest base..	-0.02	+1.09	$\left\{\begin{array}{llll} \\ 58 & 34 & 12.35\end{array}\right.$	0.30
Crosby	$+0.26$		(164602.91		Norge.	-0.09		832802.88	
Bowle.	$+0.32$	+1.18	$\left\{\begin{array}{lll}18 & 47 & 29.25\end{array}\right.$	0.16	Bowle.	-0.33	$+0.09$	585934.61	0.54
Ambrose southwest base.	$+0.60$		$\left(\begin{array}{lll}144 & 2628.00\end{array}\right.$		Croshy	+0.51		1373222.95	\} 0.54
Crosby.			+671600.22						-
Bowle.	-0.03	-0.08	$\left\{\begin{array}{l}19 \\ 36 \\ 16.46\end{array}\right.$	0.32	Ambrose southwest baso...	+0.62	+0.18	855215.65	0.40
Ambrose.	+0.32)	(9307 43.64		Croshy.....................	+0.77		1541825.86	

The maximum correction $2^{\prime \prime} .39$ to any angle is to the angle at Sehool between Ambrose southwest base and Bowie.

The statistics as to closures of triangles and the mean error of an angle for the sections of the one hundred and fourth meridian are given in the following table. The mean error of an angle $a=\sqrt{\frac{\Sigma J^{2}}{3 n}}$, in which $\Sigma \Delta^{2}$ is the sum of the squares of the elosing errors of the triangle and n is the number of triangles in the season's work or in the seetion.

Season.	Number of triangles.			Average closure.	Maximum closure.	$\begin{aligned} & \text { Mean er- } \\ & \text { ror of } \\ & \text { an angle. } \end{aligned}$
	Total.	With plus closures.	$\begin{gathered} \text { With } \\ \text { minus } \\ \text { closures. } \end{gathered}$			
				"	"	"
Pikes Peak-Dlvide to Cheyenne base.	41	18	23	1.14	2.87	± 0.81
Cheyenne base to Provo hase.	40	19	21	0.96	2.42	± 0.68
Provo base to Ambrose base.	105	54	51	0.94	2.83	± 0.69
For the whole arc.	186	91	95	0.99	2. 87	± 0.71

The average elosing error of a triangle for the 186 triangles of the one hundred and fourth meridian are is $0^{\prime \prime} .99$. This mean elosing error indieates that the methods employed and the number of observations made will give the aceuraey ealled for by the general instruetions, viz, $1^{\prime \prime} .00$ on an average. The instructions also state that the closing error shall seldom exeeed $3^{\prime \prime} .00$. The one hundred and fourth meridian are has no triangle with a elosure as great as $3^{\prime \prime} .00$, and there are only 23 of the 186 triangles which have closing errors greater than $2^{\prime \prime} .00$. It is not desirable to cut down the standard number of positions, 16, selected in 1900 . Nor is it necessary to increase the number of observations in order to obtain greater accuraey. If the triangulation of the Survey should eonsistently have mueh smaller elosing errors than $1^{\prime \prime} .00$ on an average, then it would probably be advisable to reduce the number of observations if by so doing time and cost could be, lessened. See under the heading "Discussion of errors" the ehanges made in the method and time of observing in an effort to secure smaller. deviation of the triangulation in azimuth.

Of the six definite arcs of primary triangulation in the United States the one hundred and fourth meridian arc stands third in aceuraey, using the average elosing error of a triangle as the standard.

The comparison of the average closing errors is given below:

	Averag error. !
Texas-California.	0.90
Ninety-eighth meridian.	0.92
Dne hundred and fourth meridian.	0.99
Transcontinental triangulation.	1.06
Eastern oblique..	1.19
California-Oregon.	1.22

Ninety-eighth meridian 0.92Transcontinental triangulation1. 06
California-Oregon 1.22

No attempt has been made here to set forth the agreement of the separate measures of each direction as a criterion of accuracy, since it is well known that it is of little value for that purpose. A close agreement of the separate measures of a given direction is of little consequence, since such measures are usually subject to constant errors of considerable size, which become evident as soon as the closures of the triangles are studied or an attempt is made to adjust a figure.

ACCORD OF BASES.

As already stated, there are six bases which serve to fix the length in the triangulation under discussion. Four of these bases are connected directly by the triangles adjusted. The Salt Lake base determines the length of the line Tushar-Mount Nebo adjacent to the base net, with little loss of accuracy. The Salina base is more remote from the line Arapahoe-Monotony, which was the fixed length in this adjustment, and the outstanding discrepancy is consequently somewhat greater than would have been the case if the intervening triangles had been readjusted.

In solving the normal equations of the figure adjustment the length equation was, as usual, assigned to the last place, so that after all the conditions relating to triangle closures and ratios of lengths had been satisfied the discrepancy in length became known. In the following table the discrepancies developed between bases are given in terms of the seventh place of logarithms and are also expressed as ratios. A plus sign before the discrepancy expressed in terms of logarithms means that the first base mentioned is longer as measured than as computed through the intervening triangulation from the second base mentioned.

Bases.	Discrepancy in seventh place of logarithms.	Discrepancy expressed as a ratio.
Arapahoe-Monotony to El Paso.	$+31$	1:140000
- El Paso to Tushar-Mount Nebo (Salt Lake).	+ 6	1:724000
El Paso to Cheyenne.	+141	1:30800
Cheyenne to Provo.	+108	1:40200
Irovo to Ambrose.	- 40	1:109000

ACCORD OF AZIMUTHS.

Laplace azimuths were computed at three stations of the one hundred and fourth meridian triangulation, viz, at Watkins astronomic, Provo astronomic, and Mondak. It was reasonably certain that the Laplace azimuths computed for these stations were more accurate than the geodetic azimuth computed through the triangulation, and they were therefore introduced into the triangulation. The azimuth equations which reconciled the computed and the Laplace azimuths were placed at or near the last of the group of normal equations so that after the conditions relating to triangle closures and ratios of lengths had been satisfied, the discrepancy in azimuth became known.

The azimuth computed to Watkins astronomic station, through the triangulation, from the North American Datum azimuth at the edge of the Salt Lake base net, was found to be too large by $5^{\prime \prime} .05$ when compared with the Laplace azimuth at Watkins. The azimuth computed to Provo astronomic station, through the triangulation, from the Watkins Laplace azimuth, was too large by $2^{\prime \prime} .37$ when compared with the Laplace azimuth at Provo. The azimuth computed to Mondak, through the triangulation, from the Provo Laplace azimuth, was too small by $1^{\prime \prime} .08$ when compared with the Laplace azimuth at Mondak.

STUDY OF ERRORS.

While the primary triangulation done by the Coast and Geodetic Survey is sufficiently aceurate for geographic and geodetie purposes, at the same time it is well to search for tbe causes of the larger errors and to try to eliminate them, if possible without an inerease in the time and cost of the triangulation. Or, if the causes of tbe largest errors can be found and removed, it might be possible to obtain the present accuracy with fewer observations over each direction in the seheme of triangulation. It is known to all observers of experience that large errors are likely to occur in observations made on a heliotrope before tbe late afternoon, when the wind makes the support of the instrument vibrate badly, and when a line passes close to a steep slope or a factory or heated stack. There must be other more obscure sources of error. In the text below are given data which may help to diseover some of the sources of errors in primary triangulation.

Beginning with the season of 1904 each observer on the northern portion of the ninetyeighth meridian triangulation and on the Texas-California are kept a record, ealled the error book, in which he made notes of the weather conditions, the character of the line observed over, and the appearance of the object observed upon. For each period of observations of primary horizontal angles there were entered in the record the date, with the hour; the direction of the wind; the strength of the wind; the station observed; the intensity, size, and degree of steadiness of the image of the heliotrope or lamp; the character of the image, whether symmetrical or asymmetrical; and the character of the line, whether high, low, grazing, or clear only at night as a result of elevation by refraction. In a column of remarks notes were made regarding the condition of the atmosphere, whether clear, hazy, or smoky. It has been impossible for the author, in the limited time at his disposal for such work, to make an analysis of all the accumulated data. ${ }^{1}$

High, low, grazing, and refraction lines.-As considered in tbe error book, a high line is one with its greater portion elevated well above the ground and obstruetions. This usually occurs when the line crosses a depression or valley. A low line passes over a very flat country or just over ridges, trees, houses, or other obstructions. Grazing was the term employed to describe a line which was barely clear during the day. A refraction line was one which was clear only at night as a result of great refraction. A refraction line is, strictly speaking, a grazing line.

The following table gives certain data regarding the number of high, low, and grazing or refraction lines on the triangulation along the one hundred and fourth meridian and the average corrections to directions for the different kinds of lines:

The mean correction to a direction for high lines is about 17 per cent smaller than for low lines and about 29 per eent smaller tban for grazing or refraction lines.

[^7]The following table gives the number of large corrections to all the directions and the number of them on the several classes of lines:

.	Corrections greater than $0^{\prime \prime} 34$.		Corrections greater than $0^{\prime \prime} .49$.	
	Number.	Percentage of all.	Number.	Percentage of all.
On all lines. .	151	100	80	100
On high lines.	122	81	63	79
On low lines...	21	14	11	14
On grazing or refraction lines.	8	5	6	7

The evidence in this table is that the large corrections come on the low and the grazing or refraction lines more in proportion than on the high lines.

Corrections to directions observed in a single period and in two or more periods.-The following tables arc similar to the preceding, except that the lines are classified with regard to the number of periods during which they were observed instead of with regard to height. The total number of dircctions and the total number of corrections exceeding a certain amount may not be exactly equal in the different tables owing to the fact that a few lines may have been omitted from a table when information was lacking for classifying the line in that particular table.

The data in the above two tables are slightly in favor of the observations made in only one period.

Inasmuch as there were only four directions observed in daytime alone, no comparison is obtained betwcen day and night observations. The mcan correction to the four dircetions obscrved in the daytime only is $0^{\prime \prime} .34$.

DEVIATION OF TRIANGULATION IN AZIMUTH.

In many cases the gcodetic azimuth as somputed through an arc of triangulation differs from the Laplace or true azimuth by an amount much greater than can be accounted for by the accidental crrors in the obscrvations of the triangulation. This deviation of triangulation in azimuth has been studicd for years by gcodesists without any definite conclusion as to the cause of the systematic crrors.

In the United States Coast and Gcodetic Survey publication entitled "The CaliforniaWashington Are of Primary Triangulation" (Special Publication No. 13), the author, A. L. Baldwin, made the statement:

Confronted with these values for twist (differenees between the eomputed and Laplaee azimuths), the writer suggests that they may be eaused by the unequal heating of the theodolite by the sun, even though the theodolite is protected from the direet rays. On triangulation extending in a north-and-south direetion, as this are does. Where
the observations were mainly made in the late afternoon, the west side of the instrument is undoubtedly warmer than the east side, and the resulting angles opening to the west and to the east should be subjeet to systematic errors of opposite signs, and therefore twist would develop. If this theory is correct, an east-and-west are should develop only a small amount of twist, well within the limits for the expected error. Arcs on which the observing was done at night should develop no twist exceeding that allowed by the probable error, for the temperature of the east and west sides of the instrument would be equal. It is expeeted that this theory will be tested in the near future on all of the ares of primary triangulation now existing in the United States.

In the following tables are given the data, for each section of primary triangulation in the United States, which may throw some light upon this deviation in triangulation. It is believed that if similar data for tho primary tringulation of other countries were in print it would be possible evontually to diseover the eause or eauses of deviation in triangulation, and with this knowledge to earry on the work in such a way as to minimize or eliminate its effect.

The seetions of triangulation between Laplace stations are arranged in two tables. In the first are given data for the sections whose axes lie approximately in the meridian, while in the second table data are given for those seetions which run east and west or nearly so.

On page 74 aro given the data for three seetions of the Eastern Oblique Are.
Explanation of tables.-The data for any section are given in the direetion south to north. In columns 1 and 2 are given the names of the Laplace stations at tho south and north ends of the seetion, respeetively.

Column 3 contains the correction neeessary to make the computed and adjusted azimuth agree with the Laplace azimuth at the northern end of the section in question. In each ease the triangulation started with a truo or Laplace azimuth at the southern end and the difference given is the amount of the aceumulated systematic error or the deviation of the triangulation in azimuth at the northern end. This correction results from the figure adjustment and the adjustment for diserepaney in length between bases. It does not inelude the effocts of any adjustment for latitude, longitude, or azimuth.

Where the triangulation had been adjusted without equations for latitude, longitude, or azimuth, the values for the correetions in column 3 were taken from the table on pago 20 of the "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy."

Where an equation for latitude, longitude, or azimuth was used in the adjustment of the triangulation to the North Ameriean datum, various expedients were adopted to obtain the values for column 3, and the numbers given are subjeet to some error.

Column 4 eontains the values of the probable error of the adjusted azimuth. The method of deriving these values is explained below in the text relating to column 8 .

In column 5 are given for eaeh seetion the values of the ratio of the deviation itself (column 3) to the probable error of the deviation (eolumn 4).

If the deviation of triangulation in azimuth were due to aecidental errors alone and the probable error in column 4 wero free from errors of eomputation, then tho values of the ratio between the value and its probable error for any seetion should on an average be about unity (theoretieally 1.18), with few values as great as 2 or 3 . It will be seen in the tables on pages 67 and 69 that the values of this ratio are frequently larger than 3 and the mean is 3.7 without regard to sign.

In eolumns 6 and 10 is given the number of lines between the Laplace stations at the ends of the sections for the eastern and the western sides of the seheme of triangulation, respeetively.

In eolumn 7 are given the eorrections necessary to make the azimuth earried along the eastern side of the seheme from the south agree with the Laplace azimuth at the seeond or northern station. The eomputation starts with the Laplace azimuth at the first station and is earried through the observed direetions. These direetions are unadjusted, exeept for any loeal eonditions at the stations at whiel they were observed.

The above paragraph applies also to column 11, exeept that in this ease the azimuth is carried through the unadjusted direetions on the west side of the seheme of triangulation.

PRIMARY TRIANGULATION.
Deviation data for north-and-south arcs.

	Section of triangulation.		(3)	(4)	(5)	Eastern side of triangulation.				Wostern side of triangulation.				(14)	(15)	(16)	(17)	Accumulation per direction.			
	(1)	(2)				(6)	(7)	(S)	(9)	(10)	(11)	(12)	(13)					(18)	(19)	(20)	(21)
	From (station)-	To (station)-	Accumulated carrection to adjusted azlmuth	Prob. sble error of adJusted azimuth	$\underset{(3)+(4) .}{\text { Ratio }}$	Number of lines between stations.		Probabio error of observed azimuth.	Ratio (7) + (8).	Number of lines between statlons.		Probabie error of observed azimuth.	Ratio (11)+ (12).	Time of observing line.	$\begin{gathered} \text { Appar- } \\ \text { ent } \\ \text { conver- } \\ \text { gence } \\ \text { (7)- } \\ \text { (11). } \end{gathered}$	Probable error of con-vergence.	Ratio (15) + (16).	In adjusted $\underset{\text { muth. }}{\text { azl- }}$	In observed azimuth, east side.	In observed azt muth, west side.	In con-vergence.
			"	"			"	"			"	$"$			"	-"		"	"		
1	Donna, Tex	Alice, Tex.	+ 1.73	0.68	$+2.5$	15	+ 1.47	1. 40	+1.0	13	+2.88	1.40	+2.1	D. \&	- 1.41	1.98	-0.71 -0.45	${ }_{-0.339}^{+0.062}$	${ }_{-0.390}^{+0.052}$	${ }_{-0.344}^{+0.103}$	-0.050 -0.046
2	Alice, Tex.	Austin (capitol) Tex...	-10.51	1.14	-9.2	15	-12.09	2.23	-5.4	16	-10.65	2.31 1.83	-4.6 +1.4	D. $\&$ N.	- 1.44	1.21 2.44	-0.45	-0.084	-0.050	$+0.088$	-0.138
3	Austin (capitol), Tex.	Bowie northwest base,	+2.44	0.86	+ 2.8	13	- 1.45	1.61	-0.90	16	$+2.55$	1.83	+1.4	D. \&N.	- 4.00	2.44					
4	Bowie northwest base	Saiina west base,	+ 1.99	1.22	+ 1.6	24	+2.22	2.48	$+0.90$	22	+ 4.45	2.40	+1.9	D. \& N.	- 2.23	3.45	-0.65	+0.043	+0.048	+0.097	-0.048
	Tex.	Kans.										2.03	+2.3	D.	+ 6.82	2.75	+2.5	+0.347	+0.361	+0.148	+0.213
5	Salina west base, Kans.	Page southwest base, Nebr.	+11.09	0.97	+11.4	15	+11.54	1.85	+6.2	17	$+4.72$	2.03	+2.3	D.	+ 6.82	2.75		+0.34			
6	Page southwest b	Dalton (astronomic	+ 6.62	1.28	+ 5.2	19	+ 1.40	2.50	$+0.56$	21	+ 5.79	2.63	+2.2	D. \& N.	-4.39	3.63	-1.2	+0.166	+0.035	+0.145	-0.110
7	Nebr. (astronomlc	station), Stephen west	$+3.00$	0.94	+ 3.2	13	+ 4.13	1.81	+2.3	16	+ 4.16	1.93	+2.2	D. \& N.	- 0.03	2.65	-0.01	+0.103	+0.142	+0.143	-0.001
	station), Minn.	Minn.																			
8	San Diego (astronomic station), Cal	Gazelle (astronomic station), Cal.	+11.91	1.68	+ 7.1	22	+14.50	3.30	+4.4	22	+ 8.88	3.33	+2.7	D.	+	4.6	+1	+0.271	+0.330	+0.202	+0.128
9	Gazelio (astronomle	Eugeno (astronomic	+2.98	0.88	+ 3.4	6	+ 4.55	1.76	+2.6	6	+2.05	1.76	+1.2	D.	+2.50	2.49	+1.0	+0.249	+0.379	+0.171	+0.208
	station), Cal.	station), Oreg.						2.49		11	+ 6.29	2.60	+2.4	D.	- 5.23	3.61	-1.4	+0.188	$+0.050$	$+0.300$	-0.249
10	$\begin{aligned} & \text { Eugene (astronomlc } \\ & \text { station), Oreg. } \end{aligned}$	$\begin{aligned} & \text { Tacoma (astronomle } \\ & \text { station), Wash. } \end{aligned}$	+ 3.95	1.27	+ 3.1	10	+ 1.00	2.49	$+0.43$	11	+ 6.29	2.60	+2.4	D.							
1	Tacoma (astronomic	Port Townsend (azi-	+ 1.3	2.54	+ 0.5	22	+11.59	5.02	+2.3	22	-8.55	5.14	-1.7	D.	+20.14	7.19	+2.8	+0.030	+0.263	-0.194	+0.458
12	station), Wash. Watkins (astronomic),	$\underset{\text { Provo }}{\text { muth station), Wash. }}$ (astronomic),	- 2.37	0.93	-2.5	12	- 4.78	1.86	-2.6	11	- 3.63	1.86	-1.9	D. \& N.	- 1.15	2.63	-0.44	-0.103	-0.208	-0.158	-0.050
	Coio.	S. Dak.																		+0.001	+0.014
13	Provo (astronomlc),	Mondak, Mont..........	+ 1.08	1.06	+ 1.0	16	$+0.45$	2.15	+0.21	15	+ 0.03	2.08	$+0.01$	D. \& N.	+ 0.42	2.99	+0.14	+0.035	+0.015	+0.001	
4	Parkersburg, Il	Willow Springs, Ill	+ 1.91	0.90	$+2.1$	16	+ 5.41	1.74	+3.1	17	- 0.07	1.86	-0.04	D.	+ 5.48	2.55	+2.1	+0.058	+0.164	-0.002	+0.166
5	Willow Springs, ili...	Ford River (2), Mich...	-1.30	1. 82	-0.71	26	-4.41	3. 83	-1.2	26	+ 2.93	3.44	+0.85	D.	- 7.34	5.15	-1.4	-0.025	-0.085	+0.056	-0.141

Columns 8 and 12 contain the valucs of the probable error of the azimuths carried through the observed directions on the eastern and western sides, respectively, of the scheme of triangulation. These are the azimuths referred to in columns 7 and 11.

The probable error, ε_{α}, of the azimuth as earried through ono side of the scheme is computed by the formula

$$
\varepsilon^{\alpha}=\varepsilon \sqrt{d},
$$

where ε is the probable error of a single observed direction and d is the number of directions used to carry the azimuth.

As there are four independent ways for carrying the azimuth through a scheme of quadrilaterals with the diagonals also observed, then the probable crror of the azimuth carried through the scheme which has bcen adjusted for figure or for figure and length conditions is obtained by the approximate formula,

$$
\varepsilon_{\Delta}=\frac{\varepsilon_{\alpha}}{\sqrt{4}}
$$

ε_{A} is the probable error of the adjusted azimuth, and ε_{α} is the same as in the preceding paragraph.

In column 9 are given the values of the ratio of the difference between the observed and Laplace azimuth to the corresponding probable error of the observed azimuth. The observed azimuth referred to is that carried through the observed directions on the eastern side of the triangulation. Column 13 contains similar data for the western side of the scheme.

The time at which the observing was done is given in column 14, D standing for day and N for night.

There are given in column 15 the apparent convergences of the two sides of the scheme of triangulation. This is the value in column 7 minus the value in column 11.

In column 16 are given the values of the probable errors of the apparent convergenees. The probable error is the square root of the sum of the squares of the probable errors of the corrections to the azimuth as carried by the two sides of the scheme of the triangulation.

There are given in column 17 the ratios of the apparent convergence to the probable error of that convergence.

The last four columns- 18 to 21 -give the accumulation for a single direction, in the adjusted azimuth, in the azimuth as carried through the observed directions on the eastern side of the scheme, the same for the western side of the scheme, and in the convergencc. The figures are obtained by dividing the numbers in columns $3,7,11$, and 15 , respectively, by the sum of the corresponding numbers in columns 6 and 10.
Deviation data for cast-and-west arcs.

	Sectlon of triangulation.		(3)	(4)	(5)	Northern side of triangulation.				Southern slde of triangulation.				(14)	(15)	(16)	(17)	Ascumulation per direction.			
	From (station)-	(2)				(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)					(18)	(19)	(20)	(21)
		To (station) -	Accu- mulated correc- tion to ed- justed azimuth.	$\begin{array}{\|c\|} \text { Prob- } \\ \text { able } \\ \text { error } \\ \text { of add } \\ \text { justed } \\ \text { azlo } \\ \text { muth. } \end{array}$	$\begin{gathered} \text { Ratlo } \\ (3)+(4) . \end{gathered}$	Number of lines between stations.		Probable error of observed azi- mutb.	$\left\lvert\, \begin{gathered} \text { Retlo } \\ (7)+(8) . \end{gathered}\right.$	Numlines between statlons.		Proboble error of ohserved muth.	Ratio (11) \div (12).	Tlme of observing line.	Apparent conrergence (11).	Probable error or conver. gence.	Ratlo (15) + (18).	In ad-azlmuth.	In observed azimuth, north side.	In observed azlmith, south side.	In con-vergence.
			"	-			"	*				"			"				"	"	"
1	Mount Weather, Va...	Parkersburg, Ill.	-2.31	1. 44	-1.6	26	+6.93	2. 79	+2.5	25	-6.47	2.99	-2.2	D. \& N.	+13.40	4.09	+3.3	-0.045	$+0.136$	-0.127	+0.263
2	Parkersburg, Ifl	Berger, Mo.............	+6.44	1.36	+4.7	13	+12.66	2. 66	+4.8	14	$+2.86$	2.76	+1.0	D. \& N.	+9.80	3.83	+2.6	+0.239	$+0.469$	+0.106	$+0.363$
	Berger, Mo...	Knob Noster, Mo.......	-4.66	1.22	-3.8	9	-3.72	2.57	-1.4	10	- 4.84	2.33	-2.1	D.	+1.12	3.47	+0.32	-0.245	-0. 196	-0.255	+0.059
4	Knob Noster, Mo......	Salua west base, Kans.	-6. 11	0.96 1.27	-6.4 -0.93	14	+ 2.90	1.95 2.59	-1.5 +0.42	13	-10.04 -0.41	1.91 2.49	-5.3 -0.17	D.	+ 7.14 +1.51	2.73 3.59	+2.6 +0.42	-0.226 -0.044	-0.107 +0.041	-0.372	+0.264
6	Wallace, Kans	Gunnison, Colo	-0.50	1.16	-0.43	13	+3.18	2.41	+1.3	12	+ 0.71	2.23	+0.32		+ 2.47	3.28	+0.75				
7	Gunnison, Colo	Salt Lake, Utah	+3.69	0.58	+6.4	7	+ 4.81	1.11	+4.3	7	+ 3.53	1.20	$+3.0$	D.	+ 1.28	1.64	+0.78	-0.264	+0.124	+0.028	+0.099 +0.091
8	Ogden, U'tah	Gazelle, Cal	+5.88	1. 05	+5.6	12	+9.83	1.72	+5.7	15	- 0.87	2.49	-0.35	D.	+10.70	3.03	+3.5	+0.218	+0.364	${ }_{-0.032}^{+0.282}$	+0.396
9	Fronton, Tex	Donna, Tex	-2.88	0.43	-6.7	6	-3.59	0.86	-4.2	7	- 1.43	0.86	-1.6		-2.16	1.21	-1.8	-0.222	-0.276	-0.110	+0.396 -0.167
10	Bowie, Tex	Stanton, Tex	+2.23	1.05	+2.1	16	- 2.08	2.04	-1.0	18	+ 6.64	2.15	+3.1	D. \& N .	-8.72	2.96	-2.9	+0.066	-0.061	+0.195	-0.256
11	Stanton, Tex	Jarilla, N. Mex	+2.38	0.94	+2.5	16	+ 4.86	1.87	+2.6	16	+ 2.29	1.87	+1.2	D. \& N.	+ 2.57	2.64	+0.97	+0.074	+0.152	+0.072	+0.080
12	Jarilla, N. Mex	San Diego, Cal	+0.96	1.06	+0.91	15	+3.82	2.45	+1.6	11	-2.36	1.80	-1.3	D. \& N.	+6.18	3.04	$+2.0$	+0.037	+0.147	-0.091	+0.238
13	Mannsville, $\mathrm{N}^{\text {. }}$	Tonawanda, N .	-0.44	0.99	-0.44	9	+ 1.51	2.14	+0.71	11	+ 1.66	1.82	+0.91	D.	- 0.15	2.81	-0.05	-0.022	$+0.076$	+0.083	-0.007
14	Tonawranda, N .	Bundey, Mich.	-6. 87	1.25	-5.5	22	- 7.88	2.35	-3.4	21	-7.54	2.64	-2.9	D.	- 0.34	3.54	-0.10	-0.160	-0.183	-0.175	-0.008
15	Bunday, Mich.	Willow Springs, Ill.	+8.04	0.86	+9.3	11	+4.55	1.57	+2.9	13	+12.08	1.88	+6.4	D.	- 7.53	2.45	-3.1	+0.335	+0.190	+0.503	-0.314
16	Ford River, Mich.....	Minnesota Point, Minn.	+2.17	1.32	+1.6	15	+ 4.95	2. 50	$+2.0$	16	- 5.44	2. 79	-1.9	D.	+10.39	3.75	+2.8	+0.070	+0.160	-0.175	+0.335
17	Minnesota Point, Minn.	Dalton, Minn...........	+5.60	1.16	+4.8	20	+8.18	2.31	+3.5	20	+8.04	2.31	+3.5		+ 0.14	3.27	+0.04	+0.140	$+0.204$	$+0.201$	+0.003
18	Watkins, Colo.	Gunnison, Colo.........	-1.48	0.70	-2.1	7	- 2.32	1.58	-1.5	5	- 1.01	1.23	-0.82	D. \& N.	-1.31	2.00	-0.65	-0.123	-0.193	-0.084	-0.109

The explanation on pages 66 to 68 of the table giving data for the north-and-south seetions applies to the above table for the east-and-west seetions of triangulation, exeept that for eastern should be placed the word northern and for western the word southern. It is not neeessary to repeat the explanation. The azimuth is carried westward from the east end of the seetion. The columns with the same number in the two tables eontain similar data, exeept as noted above.

Analysis of data in the above tables.-In order that one may fully eomprehend and see the bearing of the data in the above two tables, it was thought advisable to give the summaries contained in the following six tables. The first three relate to the north-and-south ares and the others to the ares whieh run in an east-and-west direction.

The eorrection to an adjusted or observed azimuth earried from one station to another through the triangulation is positive when the azimuth is smaller than the Laplace or true geodetie azimuth at the seeond station. As the azimuths are reekoned cloekwise, a positive correetion indieates that the azimuth as earried through the triangulation has worked to the left, or westward, looking north. If the azimuth had been eomputed southward, the correction would have been negative, showing that the azimuth had worked to the right, but again westward. It is readily seen that the effect of systematic error in azimuth is to make eurved what otherwise might be a straight linc. If either end of the eurved line is held eoineident with the straight line, the other end will go to the westward. If the curvatures are reversed, the line as actually observed will deviate to the eastward regardless of which end is held to a Laplace azimuth.

The data for the north-and-south sections given in the preceding and following tables were gotten by computing from south to north; henee a positive eorreetion indieates a westerly deviation of the azimuth and a negative correction an easterly deviation.

Summary for all north-and-south sections.

	Accumulated correction to adjusted azimuth.	Accumul rection served	ted corto obzimuth.	$\begin{aligned} & \text { Converg- } \\ & \mathbf{e n c e}-W . \end{aligned}$		Accumulated correction to adjusted azimuth.	Accumulated correction to observed azimuth.		$\begin{aligned} & \text { Converg- } \\ & \text { ence } \\ & E-W . \end{aligned}$
		Eastern side.	Western side.				Fastern side.	Western side.	
Number of sections...........	15	15	15	15	Number of + ratios (corrn.				
Number of + values.	12	11	11	6	to p.e.).....................	12	11	11	6
Number of - values..........	3	4	4	9	Number of - ratios...........	3	4	4	9
Mean value, sign not considered.	" 4.28	5.40	" ${ }^{\prime \prime}$	4.55	Mean of ratios, sign not considered	3.8	2.3	1.9	1.2
Mean + value.	4.17	5.30	4.07	6.83	Mean of + ratios..............	3.7	2.2	1.9	0.9
Mean - value.................	4.73	5.68	5.72	3.02	Mean of - ratios...............	4.1	2.5	2.1	1.6
Mcan value, sign considered. -	+2.39	+2.37	$+1.46$	+0.92	Mean ratio, sign considered..	+2.1	+0.9	+0.8	$+0.13$
Weighted mean of accumulation per direction.	+0.072	$+0.072$	+0.044	+0.028	Probable error of mean ratio.	± 0.79	± 0.49	± 0.36	± 0.25

There are 15 north-and-south sections considered in this investigation, and in 12 of them the adjusted azimuth deviates to the west. The mean values per section of the deviation without and with regard to sign are respectively $4^{\prime \prime} .28$ and $+2^{\prime \prime} .39$.

The mean, without regard to sign, of the ratios between the correction to the azimuth as adjusted and the probable error of the azimuth is 3.8 . This means that the correction is on an average much greater than the probable error of the azimuth and elearly indieates systematic error. This fact is shown also by the mean ratio with regard to sign of +2.1 . If there were no systematic or constant error in the observed horizontal dircetions, the mean ratio without regard to sign should be close to unity and with regard to sign it should be close to zero.

The third and fourth eolumns in the above table give data for the azimuths as carried northward through the observed directions on the eastern and western sides of the scheme of triangulation. The azimuth by each side deviates to the west, but the deviation is 62 per eent greater for the east than for the west sides, $2^{\prime \prime} .37$ against $1^{\prime \prime} .46$. The rate of accumula-
tion of the deviation is about 60 per cent greater for the eastern than the western sides, $+0^{\prime \prime} .072$ against $+0^{\prime \prime} .044$.

Tho evidence is strong that the western side of the scheme is less affected by systematic error than the eastern side.

In the last column in the above table are given data regarding the convergence of the two sideg of the triangulation.

There is given below a summary of azimuth data for those north-and-south scctions which were observed entirely during the day.

Summary for north-and-south sections observed in the day.

	Accumulated correction to adjusted azimnth.	Accumulated correction to observed azimuth.		$\begin{aligned} & \text { Converg- } \\ & \text { ence } \\ & \mathbf{E}-W . \end{aligned}$		Accumulated correction to adjusted azimuth.	Accumulated correctinn to observed azimuth.		$\begin{aligned} & \text { Converg- } \\ & \text { ence }-W . \end{aligned}$
		Eastern side.	Western side.				Esstern side.	Western side.	
Number of sections..	7	7	7	7	Number of + ratios (corrn.				
Number of + values..	6	6	5			6	6	5	5
Number of - valnes..........	$1{ }^{\prime \prime}$	1.	2	2 ,	Number of - ratios..........	1	1	2	2
Mean value, sign not considered.	4.92	7.58	4.78	7.59	Mean of ratios, sign not considered	4.0	2.9	1.6	1.8
Mcan + value	5. 52	8.11	4.97	8.11	Mean of + ratios.	4.6	3.2	1.9	1.9
	1.30	4.41	4. 31	6. 28	Mean of - ratios.	0.7	1.2	0.8	1.4
Mean value, sign considered..	+4.55	+6.32	+2.32	$+4.00$	Mean ratio, sign considered..	+3.8	$+2.5$	+1.1	$+1.0$
Weigbted mean of accumulation per direction.	+0.134	+0.186	+0.068	+0.118	Probable error of mean ratio.	± 1.06	± 0.61	± 0.41	± 0.44

Of the 15 north-and-south sections there were 7 on which all of the observations were made during the day. The objects sighted upon were heliotropes, poles, and various kinds of targets.

The data given abovo show that the observations made during the day were much more subject to the effect of systematic error than the mean of all of the north-and-south sections, the data for which are summarized on page 70.

The above table shows also that the western side of the scheme carries the azimuth with much less systematic error than the eastern side of the scheme. The mean value for the accumulation without regard to sign is 59 per cent greater on the east than on the west, while the mean value with regard to sign is nearly three times greater on the eastern than on the western side, $6^{\prime \prime} .32$ against $2^{\prime \prime} .32$.

The values given in the last column of the table for the convergence show that the mean of all sections has less systematic orror than the mean of the day sections.

In the table below is given a summary of the data for 8 north-and-south sections obscrved entirely at night or partly in daylight and partly at night.

Summory for north-and-south sections observed at night and both day and night.

	Accumulated correction to adjusted azimuth.	Accumulated correction to observed azimuth.		Convergance E-W.		Accumillated correction to adjusted azimuth.	Accumul rection served	ted corto obzimuth.	Convergence E-W.
		Eastern side.	Western side.				Eastern	Western side.	
Number of sections.	8	8	8	8	Number of + ratios (corrn.				
Number of + values.	6	5	6		top.e.).	6	,	6	1
Number of - values......... Mean	2 "	3 ,	2 ,1	7	Number of - ratios.	2	3	2	7
sidered.....................	3.72	3.50	4.27	1.88	sidered.....................	3.5	1.7	2.0	0.6
Mean + value.	2.81	1.93	3.31	0.42	Mean of + ratios.	2.7	1.0	2.0	0.1
Mean - value.................	16.44	26.11	37.14	2.09	Mean of - ratios.	5.8	3.0	3.2	0.8
Mean value, sign considered.- Weighted mean of accumu-		-1.08			Mean ratio, slgn considered. Probable error of mean ratio.	+0.6 ± 1.07	-0.5 ± 0.61	+0.4 ± 0.64	-0.6 ± 0.14
lation per direction.......	$+0.015$	-0.034	+0.021	-0.055					

${ }^{1}$ Only two values, $-10^{\prime \prime} .51$ and $-2^{\prime \prime} .37$.
2^{2} Only three values, $-12^{\prime \prime} .09,-1^{\prime \prime} .45$, and $-4^{\prime \prime} .78$.
${ }^{3}$ Only two values, $-10^{\prime \prime} .65$ and $-3^{\prime \prime} .63$
The data given above for the 8 sections obscrved ontirely or partly during the night show less systematic error in the azimuth than the data given on page. 70 .

That there is somo systomatie error present is indicated by the fact that most of the sections have positive corroetions to the azimuths, which shows that in general tho lino deviates to tho westward. This is the same dircetion of deviation as obtains when the obscrving was done during the day.

The mean positive values of tho aceumulation of orror to the azimuth aro much smaller than for day observations, and the positive aecumulation is only $1^{\prime \prime} .93$ against $8^{\prime \prime} .11$ for the day work. The largest positivo value for the adjusted azimuth is only $6^{\prime \prime} .62$, this bcing the only positivo value groater than $4^{\prime \prime} .00$.

For the oastern side of the seheme tho largost positive value is only $4^{\prime \prime} .13$.
Tho western sido has threo positive values greater than $4^{\prime \prime} .00$, with the largest one $5^{\prime \prime} .79$.
Tho negativo values are all eomparatively small oxeept for one scction. That value is more than $10^{\prime \prime} .00$ for the adjusted azimuth, tho azimuth by the cast side and the azimuth by the west side. If that one section were not eonsiderod, the mean values for the negative azimuths would be comparable with tho mean positive values.

The mean valuo of tho convergence for the night observations is only about one-half that for the day work and is of opposite sign.

Discussion of data for east-and-west arcs.-In the following tablo is a summary of the data given in the table on page 69 for tho seetions of triangulation which run in an east-and-west direction:

Summary for all sections of east-and-west arcs.

	AccumuIated correction to adjusted azimuth.	Accumulated correction to observed azimuth.		Convergence $\mathrm{N}-\mathrm{S}$.		Accumulated correction to adjusted azimuth.	Accumulated correction to observed azimuth.		Convergence N -S.
		Northern side.	$\begin{aligned} & \text { Southern } \\ & \text { side. } \end{aligned}$				Northern side side.	Southern side.	
Number of sections.	18	18	18	18	Number of + ratios (corrn.				
Number of + values.	9	12	8	12	to p.e.)....................	9	12	8	12
Number of - values......i.-	9	${ }^{6}$	10.	$6{ }^{\prime \prime}$	Number of - ratios.	9	6	10	
ered.......................	3.54	4.94	4.35	4.83	sidcred....................	3.6	2.5	2.1	1.6
Mean + value.	4.75	5.53	4.73	5. 56	Meau of + ratios.	4.2	2.7	2.4	1.7
Mean - value.................	2.94	3.75	4.04	3.37	Mean of - ratios.	3.1	2.2	1.9	1.4
Mean value, sign considered..	+0.61	+2.44	-0.14	+2.58	Mean ratio, sign considered..	+0.56	+1.07	+0.04	+0.63
Weighted mean of the accumulations per direction....	+0.022	+0.089	-0.005	+0.094	Probable error of mean ratio.	± 0.75	± 0.52	± 0.43	± 0.33

One-half the seetions in the above table deviate in adjusted azimuth to the south and one-half to the north. The deviation is on an average 3.6 times the probable error of the deviation, and therefore it must be coneluded thero is much systematie error in the adjusted azimuth.

For the aeeumulated eorrection to the azimuth, as earried along the northern side of the scheme through the unadjusted observations, there are 12 plus and 6 minus eorreetions. This shows a deeided tendeney for the lines on the northern side of the triangulation to bend toward the south. This is elearly shown by the mean value of the aecumulation in azimuth with regard to sign, which is $+2^{\prime \prime} .44$. The valuo of the accumulation per direetion is also comparatively large, $+0^{\prime \prime} .089$.

On the south side of the triangulation the azimuth has 8 positive and 10 negative values, with a mean value of only $-0^{\prime \prime} .14$, and a value of $-0^{\prime \prime} .005$ for the aecumulation per direction, sign considered. It is true that the average value of the aceumulation per section without regard to sign for the southern side shows systematie error in azimuth; at the same time these errors for many seetions aet as aecidental errors.

The last eolumn gives the data for the eonvergenee, whieh naturally agree closely with the valucs shown for the accumulated error in azimuth through lines on the northern side of the selieme.

In tho following table are given tho data for the 11 seetions on east-and-west ares whiel were observed in daylight only:

Summary for east-and-west sections observed in the day.

	Accumuiated correction to adjusted azimuth.	Accumul rection served	ated corto obazimuth.	Conver-$\begin{gathered} \text { gence } \\ \mathrm{N}-\mathrm{S} \end{gathered}$		Accumulated correction to adjusted azimuth.	Accumnlated correction to observed azimith.		Conver-$\begin{aligned} & \text { gences. } \\ & \mathrm{N}-\mathrm{S} . \end{aligned}$
		Northern side.	Southern side.				Northern side.	Soutbern side.	
Number of sections............	11	11	11	11	Number of + ratios (corrn.				
Number of + values..........	5	8	5	8	- to p.e.).....................	5	8	5	8
Number of - values..........	6	3	6	3	Number of - ratios...........	6	3	6	3
Mean values, sign not considered	" 4.10	4.78	" ${ }^{\prime \prime}$	" 3.89	Mean of ratios, sign not con- sidered.	4.1	2.5	2.4	1.3
Mean + value.	5.08	4.76	5.20	4.34	Mean of + ratios.	5.5	2.6	2.8	1.4
Mean - value.	3.29	4.83	4.86	2.67	Mean of - ratios.	2.9	2.1	2.1	1.1
Mean vaiue, sign considered..	+0.51	+2.14	-0.28	+2.43	Mean ratio, sign considered..	$+0.9$	+1.3	+0.13	$+0.7$
Weighted mean of accumuiation per direction.	+0.019	+0.079	-0.011	$+0.090$	Probable error of mean ratio.	± 1.04	± 0.56	± 0.67	± 0.36

For the sections considcred in the above table, 5 have positive and 6 negative values for the accumulated error in azimuth as carried through the adjusted triangulation, but the positive values are the larger, and the mean value, sign considered, is $+0^{\prime \prime} .51$. The mean value of the ratio between the accumulated azimuth and its probable error (4.1) indicates the presence of systematic error.

The accumulated azimuth carried by the observed directions in the northern side of the scheme are mostly positive, 8 of the 11 sections having that sign. The mean value with regard to sign is $+2^{\prime \prime} .14$ which shows large systematic error.

The column giving data for the southern side has 5 positive and 6 negative values. The mean value with regard to sign is $-0^{\prime \prime} .28$, which is less than one-seventh of the value for the northern side and is of the opposite sign.

The values in the column headed "Convergence" follow closely those given in the column for the accumulated azimuth for the northern side of the triangulation.

In the table which follows there are given mean data for the seven east-and-west sections which were observed at night or partly during the night.

Summary for east-and-west sections observed at night and both day and night.

	Accumulated correction to adjusted azimutb.	Accumulated correction to observed azimuth.		$\begin{gathered} \text { Converg- } \\ \text { ence } \\ \mathrm{N}-\mathrm{S} . \end{gathered}$		Acciumulated correction to adjusted azimuth.	Accumulated correction to ohserved azimuth.		$\begin{aligned} & \text { Converg- } \\ & \text { ence } \\ & \mathrm{N}-\mathrm{S} . \end{aligned}$
		Northern side.	Soutbern side.				Nortbern side.	Southern side.	
Number of sections.	7	4	7	7	Number of + ratios (corr'n.				
Number of + vaiues	3	4			to p.e.)				
Number of - values......... Mean values, sign not con-	3.	3.	4.	3	Number of - ratios......... Mean of ratios, sign not con-	3	3	4	3
Mean values, sign not considered.	2. 67	5.18	3.29	6.31	Mean of ratios, sign not con- sidered...............	2.9	2.6	1.6	2.0
Mean + value..	3.00	7.07	3.93	7.99	Mean of + ratios.	2.6	2.9	1.8	2.2
Mean - value..............	2. 22	2.66	2.82	4.06	Mean of - ratios..............	3.5	2.2	1.5	1.8
Meau value, sign considered..	+0.76	+2.90	+0.07	+2.82	Mean ratio, sign considered...	-0.03	+0.69.	-0.09	$+0.50$
Welghted mean of accumulation per direction.	+0.027	+0.104	+0.003	+0.101	Probable error of mean ratio..	± 0.96	± 0.78	± 0.48	± 0.60

Of the seven sections considered in the above table there were three on which nearly all the observing was done during the day. There were three other sections on which about 75 per cent of the observing was done at night.

The data in the above table, for the sections observed entirely or in part at night, show definitely that the deviation by the observed dircetions on the southern side is much smaller than for the northern side. The mean values per section are, respectively, $3^{\prime \prime} .29$ and $5^{\prime \prime} .18$, while the means with regard to sign are, respectively, $+0^{\prime \prime} .07$ and $+2^{\prime \prime} .90$. While the southern side carried the azimuth better than it did with the day observations, the northern side of the sections, observed all or in part at night, did not carry the azimuth any better than the sections observed entirely during the day. The sections in the above table are about equally divided between positive and negative values.

Deviation of eastern oblique arc in azimuth. -The axis of this are of primary triangulation runs in a northeast and southwest dircetion. The are may be considered in three seetions, as is shown in the small table below.

1 Values given are in each case one-half the sum of the lines on the two sides of the scheme.
The computation was carricd from northeast toward the southwest, therefore the deviation of the triangulation in azimuth is toward the northwest. As all of the observations were made in the day and the greater percentage of them in the late afternoon, when the sun was in the west, it is seen that the deviation in azimuth is toward the sun. This is in agreement with what was found for the sections running north and south and for those in an east-and-west dircction. The small deflcction may be due to the fact that during the observing the sun was on an average not far from the center line of the arc.

That the deviation for each of these sections is small is shown by the fact that it is comparable in size with the probable error of the section. The deviation of the triangulation in azimuth as earried by the two sides of the scheme and the convergence of the two sides were not computed.

It may be concluded that in triangulation running north and south: (1) The work done in whole or in part at night carries tho azimuth much better than the day work; (2) there is very littlo difference in the size of the accumulated errors in azimuth as carried by the eastern and the western sides of the triangulation for the night or night-and-day sections; (3) the accuracy of the azimuth as carried by the observations in the western side of tho scheme is much greater than that in the eastern side in day work; (4) there is a strong tendeney for the north and south arcs of triangulation to deviate in azimuth to the westward and toward the sun; (5) it seems to be probable that sections observed entirely at night would be almost free from systematic error in the azimuth and that the convergence would also be of an aecidental nature; (6) as the day work shows the greatest offect of systematic error, the eauso of that error must be unequal heating of the different parts of the instrument by the sun; (7) the day observations on the western side of the scheme give results freer from systematic error in azimuth than the eastern sido because the instrument on the western side is better protected from the heat of tho sun. Practically all the day observations were made in tho afternoon.

The data given for the east-and-west sections justify the conclusions that: (1) The deviation of triangulation in azimuth is less for the sections observed entircly or in part at night, than for the scetions observed during the day; (2) the unadjusted dircctions on the southern side of the schemc carry the azimuth with less deviation than on the northern side; (3) the deviation of the triangulation in azimuth is in gencral to the south and toward the sun; (4) the data for the east-and-west scetions also indicate that the unequal heating of the instrument is a cause of the deviation of triangulation in azimuth, but the evidence that this is true is not so strong as that from the north-and-south sections.

The obscrver on the triangulation in Texas made observations for horizontal directions only at night. This work is shown as section 1 in the table on page 67 and section 9 in the table on page 69. The aecumulated crrors in azimuth for these scetions are comparatively small.

A party which began obscrving on the are of primary triangulation which cxtends from Memphis, Tenn., to Huntsville, Ala., was directed to observe over the main-scheme lines only at night. The results of that work are not available as this report gocs to press.

The writer, believing the unequal heating of the cirele of the theodolite to be the principal cause of systematie error in the azimuth, recommended to the Superintendent of the Coast and Geodetic Survey, in Oetober, 1913, that the theodolites be equipped with niekel-iron circles instead of eircles of brass. The former metal has a coeffieient of only 0.000004 per degrec eentigrade, while the brass has a eoeffieient of about 0.000018 , or more than four times as great. One of tile theodolites is now (May, 1914) equipped with a niekel-iron eirele and it will be used on the Memphis-Huntsville triangulation. The results should be of great interest.

The observer was also requested to change the eircle about 180° in azimuth for each new position by using the settings given in the table below in plaee of those shown on page 14 of Special Publication No. 11.

Circle readings for initial directions.

Position.	Telescope direct.	Telescope reversed.	Position.	Telescope direct.	Telescope reversed.
	- ' $"$	- ' $"$,	- , "
1	00040	1800040	9	1280040	3080040
2	1950150	150150	10	3230150	1430150
3	300310	2100310	11	1580310	3380310
4	2250420	450420	12	3530420	1730420
5	640040	2440040	13	1920040	120040
6	2590150	790150	14	270150	2070150
7	940310	2740310	15	2220310	420310
8	2890420	1090420	16	570420	2370420

While the deviation of triangulation in azimuth ean at eertain plaees be eliminated by the introduction of Laplace stations into the scheme, it is nevertheless most desirable that this error be minimized by ehanged methods of observations if praetieable. For geographic purposes the amount of remaining deviations at points between Laplace stations is of no importanee, but in geodetic investigations, when the deflection of the vertieal in the prime vertical is wanted, the deviation of the triangulation in azimuth remaining after the adjustment is a serious matter.

It is believed that with the theodolite equipped with a nickel-iron horizontal eirele and with the observations made entirely at night and the eircle moved nearly 180° in azimuth between each two positions or series the deviation will be much smaller than at present, and possibly almost entirely absent.

It is possible that these changes may add somewhat to the aeeuracy of the triangulation, as indicated by the closing errors of the triangles and the probable error of an observed direetion.

It should be noted that the deviation of the triangulation in azimuth in the United States is of the same order as that found in other countries earrying on triangulation of the highest grade.

Effect of the deflection of the vertical.-A eomputation was made to determine the effect of the deflections of the vertical at stations to the north of Pikes Peak, Colo., on the angles of the triangulation. The results indieated that the greatest error eaused by ignoring the deflections was $0^{\prime \prime} .52$ for one direetion, that the aecumulated effect was small, and that for an are of triangulation so long that the station error undergoes several changes of sign the separate values follow elosely the law of aeeidental errors in their size and sign. It may therefore be concluded that the effeet of the deflection of the vertical on the deviation of triangulation in azimuth is negligible in comparison with the much greater systematie effects from other causes.

The effect of twist in the instrument support.-For many years the observers of the Coast and Geodetic Survey engaged upon primary triangulation shielded the signal (on which the instrument was mounted) from the direct rays of the sun by canvas or other material. This was done to prevent movements in the wooden strueture which might cause a shift of the instrument in azimuth and produce errors in the observed angles. Sinee the beginning of the season of 1902 no screens have been used.

In the report ${ }^{1}$ on the work done in 1902 its author, Prof. J. F. Hayford, in eommenting upon the possible effect of twist, stated that:

Abstract

Abeut two days were spent by computers at the office in oxamining tho records after tho elose of the season for evideneo of twist. No eonvincing evidence that any systomatic twist occurs could bo found. Whatover twisting of the tripod head in azimuth oceurs, if regular and centinuous in one direction for considerable periods, is so slew as to be concealed by aecidental errors in peinting and reading. There is possibly a very irregular twisting, with frequent reversals or stops, the effeet of which is to introduee orrors of the aceidental class into the results whieh ean not bo separated from the other aceidental errors.

No further investigations for the effect of twist have been made. It is generally held that the effect of the sun is to twist the signal in the same direction. If this is true and the motion is continuous and constant in rate, then the mean of two series of observations made in opposite directions and at uniform speed should eliminate the effect of twist. If the motion is irregular, the effect can be eliminated only if many observations are made. After sundown the signal should twist in the opposite direction for an indefinite time, and again affect a single series of observations taken in the early part of the night.

It is probable that the cffect of twist may increase slightly the sizes of the accidental errors, but there seems to be no reason why it should cause a systematic deviation of triangulation in azimuth.

EFFECT OF DRAG.

The observed angles or direetions at a station may be affected by two sources of error whieh are sometimes confused or not clearly distinguished. One is the twisting of the signal, on which the theodolite is mounted, by the sun. If the signal is not protected by screens from the direct rays of the sun, the material of the structure (assumed to be wood in this discussion), is unequally heated or dried and as the sun ehanges in azimuth during the observations, the structure may also change in azimuth. This change is probably not at a uniform rate, but by a series of jerky movements. The effect on the mean angles at the station is probably the same as if the motion were uniform. The effeet of this torsion will be made negligible by the method of observing in which one-half of the observations in any position of the eirele are made in a elockwise direction and the other half immediately afterwards, eounterclockwise. The directions or angles in one case will be too small and in the other too large, but the means should be free from the effeet. This will be practically true for the mean of the observations made in 16 positions of the eircle.

The other error has its souree in the lost motion or nonelasticity of the materials forming the structure on which the theodolite stands and the base of the theodolite itself. When the alidade of the theodolite is moved in azimuth, the friction between the movable parts, even though very small, will tend to drag the lower part of the instrument with it. The error due to this may be termed the effect of drag. It tends to make the measured angle too small whether the alidade is moved from left to right or from right to left.

When the motion of the alidade eeases the lower part of the instrument will assume its previous position only if it and the support (all eonsidered as one structure) are perfectly elastic.

If the elasticity is not perfect then the teleseope revolved through 360° should register 360° minus the drag or effect of nonelasticity in the instrument and stand. The alidade of the instrument is assumed to move eontinuously in one direction. For instance, let it be assumed that the theodolite is graduated elockwise, then if some object is sighted on and the reading of the eirele is zero or 360° the reading at the seeond pointing on the same object, after revolving the alidade 360° should be something less than 360° or zero. Also, if the first reading is zero and the instrument is turned eounterclockwise or right to left, the sccond reading should be greatcr than zero or 360°. These differences in the readings will be the same in amount if the degree of pliability is the same for the two directions.

It would also be reasonable to assume that in a series of angles all of the effect of drag would appear in the first or left-hand angle for the first round of observations (made from left

[^8]to right), and on the last angle (the right hand one of the series) for the second round which would be in a direction opposite to that of the first round. This assumption is based on the idea that after the lower part of the instrument and the support have been dragged as a result of revolving the alidade to the second direction the structure will be perfectly elastic to any further strains due to the movement of the alidade to the third, fourth, and other directions. That is, after the telescope has been turned to the second direction, all of the drag caused by moving the telescope farther from the initial will be due to the flexibility of the materials of the lower part of the instrument and its support and not to looseness of the parts. The structure should act as if it were perfectly elastic and should recover the same position it had at the second direction.

If the above theory is correct, one-half the total effect of drag should be present in the angle which lies between the first or initial and the second directions and one-half in the angle formed by the last direction and the initial one (if the horizon were closed in the round). If the horizon is not closed then the first and last angles would each be affected by one-half the amount of the drag. The intermediate angles should be free from the effect of drag.

To test these theories an investigation was made of the work done on the one hundred and fourth meridian in 1912.

The observers in the United States Coast and Geodetic Survey work do not try to prevent "overshooting" the mark and therefore it may be assumed that in some cases the telescope went beyond and had to be brought back, that is moved in the reverse order in which the directions were being made. One therefore will not get as definite an idea of the effect of drag as if the telcscope had always stopped exactly on the mark.

Of the stations occupied by Assistant E. H. Pagenhart, there were 17 at which he closed the horizon in each one of the double measurements of the directions. In all the horizon was closed for 297 . such measurements.

Of the 297 times the horizon was closed while revolving the telescope from left to right, there were 146 cases where the last pointing on the initial was greater than the first, and in 136 cases the reverse was true. The sum of the plus closures was $244^{\prime \prime} .2$, while that of the negative closures was $245^{\prime \prime} .0$. The averages were, respectively, $1^{\prime \prime} .67$ and $1^{\prime \prime} .80$.

There seems to be no effect of drag in these observations.
Of the 297 measures closing the horizon when the telescope was swung from right to left, 106 had positive closures, with a total of $174^{\prime \prime} .8$ and an average of $1^{\prime \prime} .65$, and 172 had negative closures, with a total closing error of $290^{\prime \prime} .9$ and an average of $1^{\prime \prime} .75$. The closure is considered positive if the second reading passes the first one in the revolution of the telcscope.

The evidence is strong that the right-to-left measures are affected by drag. Why there should be drag in these measures and not in the left-to-right ones is not clear. The resultant drag in each position-that is, the mean of the two measures of a position-is $0^{\prime \prime} .20$. The sum of the angles at a station is affected by this amount, and averages only $359^{\circ} 59^{\prime} 59^{\prime \prime} .80$.

Values of first and last angles of a position, left to right, and the reverse.-If the drag is only on the first angle of a series measured in any one direction, say left to right, then this angle should be free from drag when measuring this series in the reversed order-right to left.

In the work of Assistant Pagenhart on the one hundred and fourth meridian triangulation in 1912 he made observations at 49 primary stations and 8 subsidiary ones. Several stations were occupied a second time. Of the 863 measurements of the first angle of a series (the angle between the initial and second directions) the second half of the measurement was greater than the first in 437 cases. The first half of the measurement is greater than the second in 426 cases. The sums of the differences are, respectively, $1079^{\prime \prime} .2$ and $1049^{\prime \prime} .1$, and the averages are $2^{\prime \prime} .47$ and $2^{\prime \prime} .46$.

The first measure of the last angle of a series was greater than the sccond in 375 cases with a total difference of $921^{\prime \prime} .6$ and an average difference of $2^{\prime \prime} .48$. There were 400 cases in which the sccond measure of the angle was greater than the first, with a total of the differences of $985^{\prime \prime} .7$ and an average difference of $2^{\prime \prime} .46$.

There is no indication in the above data that there is any systematic cffect of drag in the first and second measures of the first and last angles of a series.

Angles measured in series or singly.-In Mr. Pagenhart's work there were 28 angles measured partly in a series of angles and partly alone or singly.

The average of the single measures was greater than that of the measures in series in 14 cases and the reverse was true in the other 14 cascs. The sum of the positive differcnces (series minus single) was $11^{\prime \prime} .5$ and an average diffcrence of $0^{\prime \prime} .82$, while the sum of the negative differences was $8^{\prime \prime} .9$ with an average of $0^{\prime \prime} .64$. Thirty-five of the angles measured by Assistant C. V. Hodgson on the one hundred and fourth meridian triangulation were obscrved partly in a scries of angles and partly singly. In 18 cascs the measure in sories was greater than the single measure, and in 17 cases the reverso was true. The sum of the differences when the series was larger was $16^{\prime \prime} .4$ and the average difference $0^{\prime \prime} .91$. The sum of the differences when the single mcasures werc larger was $17^{\prime \prime} .0$ and the average difference was $1^{\prime \prime} .00$.

The above data do not indicate the presence of any systematic effect of drag.
If any errors of considerable size, due to drag, were present in the obscrved horizontal angles these angles would be too small and the sum of the observed angles of the triangles should on the average be less than 180° plus the spherical excess. The custom in the United States Coast and Geodetic Survey has been to take, whenever practicable, the extreme left-hand object as the initial direction, assuming that the observer is facing his scheme of triangulation. This applies only to the side points of the scheme and not to those stations which are within the area covered by the triangulation. Also in gencral the horizon is not closed, the initial station being observed upon only once in a half series, left to right or right to left. Therefore the angle, which is nearly always about 180°, necessary to close the horizon at stations on the sides of the scheme is not measured.

With the methods employed the drag, if present to any extent, should appear in those angles which form the triangles of the scheme.

The following table gives the data in regard to positive and negative closing errors for several arcs of primary triangulation in the United States.

The plus sign indicates that the sum of the observed angles of a triangle is less than 180° (plus the spherical excess of the triangle). The negative sign has, of coursc, the opposite mcaning, that is, the sum of the three observed angles is more than 180° (plus the spherical excess of the triangle).

Arc.	Number of trlangles closed.	Number of + closures.	Sum of + closures.	Number closures.	Sum of - closures.	Average + closures.	A verage - closures.	Average closure of 811 triangles.	Average closures with regard to sign.
			"		"	"	"	"	"
Ninety-eighth meridian, Canada to Alice, Tex.	729	366	328. 76	363	334.31	0.898	0.921	0.909	-0.008
Texas-California...	183	99	84.91	84	79.83	0.858	0.950	0.900	+0.028
California-Washington.	148	72	75. 81	76	105.07	1.053	1.352	1.220	-0.198
One hundred and fourth meridian	186	91	86.44	95	96.87	0.950	1.020	0.930	-0.036
Ninety-eighth meridian, Allce-Brownsville ${ }^{1}$	68	26	15.75	42	31.55	0.606	0.751	0.696	-0.232
Sum or mean.	1314	654	591.67	660	647. 63	0.905	0.998	0.943	-0.043

${ }^{1}$ Fleld computations.
The above table gives evidence which tends to disprove the presence of drag in the angles forming the triangles. As stated above, the effect of drag, if present at all, is to make the angles too small, and therefore the triangle should close too small; that is, the sum of the three angles should necd a positive correction. This statement, of course, leaves out of account errors due to other causes than drag.

Of the 1314 triangles for which data are given in the above table 654 have the sum of the observed angles too small and 660 have them too large.

On four of the five arcs considered the average closing error with regard to sign is negative (the sum of the observed angles being too large), and the average closing error with regard to
sign for the 1314 triangles is $-" .043$. This mean with regard to sign is so small that it can not be attributed safely to any cause except the unbalanced effect of accidental errors.

Conclusion in regard to study of drag.-As a result of the above investigations to discover the effect of drag in the observed horizontal directions or angles of the primary triangulation by the Tinited States Coast and Geodetic Survey, it must be concluded that there is no appreciable systematic drag.

While the above data do not indicate the presence of any systematic error due to drag there may be some errors of an accidental nature in the results due to that cause. It is believed that the method of observing employed in India is somewhat preferable though probably slower in operation than that used by the United States Coast and Geodetic Survey. There the observer brings his cross wires up to the object but never overshoots it. The party of this survey now at work on the are between Huntsville, Ala., and Memphis, Tenn., has been instructed to test the Indian method. After setting the circle for a new position, he will move the telescope to the left of the initial direction and will then bring it up to the initial from the left as will be done for the other directions. Similarly, when making the observations in the reversed order, he will move the telescope from right to left for each of the pointings, including the first. When using the tangent screw to make the contact he will not limit himself to the direction in which the observations are being made.

aCCURACY OF THE PRIMARY TRIANGULATION IN THE UNITED STATES.

In the following table, 66 sections of triangulation in the United States, for which the required tabular values can be conveniently obtained, have been arranged in the order of accuracy, the most accurate being placed first. The most severe, and therefore the best, test of accuracy is believed by the writer to be the quantity d, expressing the probable crror of the observed direction as derived from the corrections to directions resulting from the figure adjustment before the introduction of equations necessary to hold fixed positions of previously adjusted triangulation. Accordingly the various sections of triangulation have been placed in the order of the values of d. In the few cases in which d is the same to the nearest hundredth of the second for several sections the ncxt column, a, has been used to decide their relative rank. The methods of computing d and a have alrcady becn explaincd fully on pages 55 and 62 .

Sections of triangulation in order of accuracy.

${ }^{1}$ The discrepancy between bases in the last column of the table is expressed in terms of tbe seventb decimal place of logaritbms. It is the discrepancy remaining after the angle and slde equatlons have been satisfled. A plus slen before the discrepancy means that the first base mentiscred is longer as measured than as computed through the intervening triangulaton from the seeond base mentloned.
${ }_{2}$ Tbere were 3 bases connected by this section, Epplng, Massachusetts, and Fire lsland. The 3 diserepancies were $+44,+3$, and +41 .

Sections of triangulation in order of accuracy-Continued.

No.	Sectlon.	Probable error of an observed direction $-d$.	$\begin{aligned} & \text { Mean } \\ & \text { error of an } \\ & \text { angle=a. } \end{aligned}$	A verage closing error of a triangle.	Maximum correction to 8 direction.	Haximum closing error of a triangle.	Discrepancy hetween bases.
		"	"	"	"	\cdots	
26	Transcontinental triangulation to Anthony base..	± 0.35	± 0.54	0.79	1.39	1.88	+ 41
27	Missouri-Kansas series.	± 0.35	± 0.60	0.88	1.12	2.37	+ 169
28	Atlanta base net to Dauphin 1sland base net,	± 0.35	± 0.68	0.97	1.12	2.87	+ 2
29	PROVO BASE TO AMBROSE BASE..	± 0.26	± 0.69	0.94	1.14	2.83	- 40
30	Anthony base net to El Reno base net.....	± 0.36	± 0.69	1.05	0.81	2.17	+ 7
31	Brown Valley base net to Royalton base.	± 0.36	± 0.70	0.96	0.98	3.81	
32	Itlanta hase net to Danphin Island base net, ili.	± 0.36	± 0.77	1.10	0.81	2.69	+ 2
33	Royalton base net to Dulutb............	± 0.36	± 0.86	1.16	1.22	4.41	+ 80
34	Kyle-McClenny to Stanton baso	± 0.37	± 0.71	1.02	0.82	3.11	- 11
35	CHEYENNE BASE TO PROVO BASF	± 0.39	± 0.68	0.96	0.99	2.42	$+108$
30	Versailles base net.	± 0.40	± 0.64	0.90	0.95	2.71	
37	El Paso base net.	± 0.40	± 0.68	0.94	0.93	2. 60	
38	Seguin base net to Alice base	± 041	± 0.78	1.01	1.09	3.25	-144
39	EL PASO BASE NET TO CHEYENNE	± 0.41	± 0.81	1.14	1.33	2.87	+141
40	Kent lsland base net to Atlanta base net, 1.	± 0.41	± 0.88	1.14	1.48	3.60	
41	Yolo base net to Los Angeles base net.	± 0.41	± 0.91	1.16	1.34	5.52	41
42	Kent lsland hase net.	± 0.41	± 0.91	1.33	0.75	2.97	
43	Pace base net to Brown Valley base	± 0.42	± 0.77	1.03	1.44	3.81	+65
44	Salina base net..	± 0.44	± 0.75	1. 13	1.11	2.37	
45	Los Angeles base net	± 0.44	± 0.91	1.39	1.22	3.09	
46	Lampasas base net to Seguin base	± 0.45	± 0.82	1.13	1.96	3.31	- 7
47	Ohlo serles	± 0.45	± 0.85	1.14	1.32	5.08	- 24
48	Allegheny series.	± 0.45	± 0.98	1.37	1.37	4.03	+ 11
49	Epping base net.	± 0.47	± 0.63	0.90	1.25	2.63	
50	Fire 1sland base net to Kent lsland base net	± 0.47	± 0.56	1.29	2.02	3.35	+ 46
51	St. Albans base net.	± 0.47	± 1.04	1.38	1.53	4.94	
52	Kansas-Colorado serles.	± 0.50	± 0.75	1.00	1.43	3.92	92
53	Los Angeles base net to Soledad-Cuyamaea	± 0.50	± 0.82	1.16	1.15	2.53	
54	Epping base net to Canadian boundary	± 0.51	± 0.71	1.15	1.12	2.09	
55	Daupbin Island westward, 1	± 0.53	± 0.78	1.12	1.31	2.80	
56	Callfornla-Washington are.	± 0.53	± 0.97	1.22	2.03	6.35	+179
57	Kent Island base net to Atlanta base net, 111	± 0.62	± 0.78	1.66	1.72	4.03	
58	Atlanta base net.	± 0.65	± 1.00	1.19	1.31	4.35	
59	Missouri serles.	± 0.66	± 0.81	1.09	1.89	4.64	+ 86
60	Atlanta base net to Dauphin 1sland base net, 11	± 0.67	± 0.78	1.03	1.84	2.88	+ 2
61	Coast Rance serles..	± 0.67	± 1.37	1.80	2.73	6.49	
62	Eastern Shore series.	± 0.72	± 1.22	1.75	1.85	5.24	
63	Kent 1sland base net to Atlanta base net. 11	± 0.72	± 1.31	1.80	2.05	4.64	+ 24
61	Dauphin 1sland base net to New Orleans.	± 0.78	± 1.20	1.50	2.65	5. 40	
65	Atlanta base net to Dauphin Island base net,	± 0.79	± 0.97	1.35	2.19	3.44	+ 2
66	Ameriean Bottom base net.	± 0.82	± 1.59	2.22	1.50	6.36	

1 The fixed length Mount Helena-Snow Mountain West of the thirty-ninth parallel triangulation, Willamette base, and Tacoma base, are connected by this ate wlth discrepancles of $+79 \mathrm{and}-19$, respectively.

Of the 66 sections of triangulation tabulated, the three seetions of the one hundred and fourth meridian arc rank as numbers 29,35 , and 39 . The mean value of $d, 0^{\prime \prime} .38$, for the whole arc comes between those for the sections numbered 34 and 35 . The average accuracy as shown by this value of d is only slightly lower than the average accuracy for all the 66 sections done in the United States.

THE NORTH AMERICAN DATUM.

Early in the year 1913 the Superintendent of the United States Coast and Geodetic Survey was notified by the director of the Comisóin Geodésica Mexicana and by the chief astronomer of the Dominion of Canada Astronomical Observatory that the so-called United States Standard Datum had been adopted as the datum for the triangulation of those organizations. They also reported that the Clarke Spheroid of 1866 , now used in the United States, would be used by them.

Owing to the international character of the datum now adopted by the three countries, the Superintendent of the United States Coast and Geodetic Survey has changed its designation from the "United States Standard Datum" to the "North American Datum."

EXPLANATION OF POSITIONS, LENGTIS, AND AZIMUTIS, AND OF TIE NORTII AMERICAN DATUM.

The lengths, as already fully explained in eonneetion with the adjustments, all depend upon the Salina, El Paso, Salt Lake, Cheyenne, Provo, and Ambrose bases. The lengths as given are all reduced to sea level. If the actual length of a line simply redueed to the horizontal is desired,
it may be obtained with all the accuracy ordinarily needed by adding to the sea level length as given a correction $=($ length of line as given $)\left[\frac{\text { mcan elevation of the two ends of the line in metcrs }}{6370000}\right]$. The maximum value of this correction does not cxceed ${ }^{\frac{1}{4} 50}$ of the length for any portion of the triangulation herc published. The maximum error made in the use of the above approximate formula for the correction does not exceed $\frac{15}{450000}$ of the length for any portion of this triangulation.

The positions-that is, the latitudes, longitudes, and azimuths-need spccial explanation.
All of the positions and azimuths have been computed upon the Clarke spheroid of 1866, as expressed in meters, which has been in use in the Coast and Geodetic Survey for many ycars.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience, the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The primary triangulation in the Unitcd States was commenced at various points and existed at first as a number of detached portions in each of which the gcodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and threc scparate portions of triangulation in California, in the latitude of San Francisco, in the vicinity of Santa Barbara. Channel, and in the vicinity of San Dicgo. With the lapse of time these scparate picces expanded until they touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in 1899, joined all of the detached portions mentioned and made them one continuous triangulation. As soon as this took place the logical necessity existcd of discarding the old geodetic data used in these various pieces and substituting onc for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this was a very heary picce of work, and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the Superintendent adopted what was known from that time until 1913 as the United States Standard Datum, but is now known as the North American Datum (see p. 80), and it was decided to reduce the positions to that datum as rapidly as possiblc. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had bcen used for geographic purposes in New England and along the Atlantic coast to North Carolina, nor those in the Statcs of New York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in The Transcontinental Triangulation and in The Eastern Oblique Arc of the United States, publications which deal primarily with the purely scientific problem of the determination of the figure of the earth and which were prepared for publication before the adoption of the new datum.

As the adoption of such a standard datum was a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to bo attaincd by the geodetic operations of the Coast and Gcodetic Survey are, first, the control of the charts published by the Survey; sccond, the furnishing of geographic positions (latitudes and longitudes), of accurately determined clevations, and of distances and azimuths, to officers connected with the Coast and Geodetic Survey and to other organizations; third, the detcrmination of the figure of the earth. For the first and sccond objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the arca covercd, nor that the adopted geodetic datum should be
absolutely the best that can be derived from the astronomic observations at hand. It is simply desirable that the reference spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now or may become available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one sphcroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function, it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they be rigidly adhered to, without change, for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are thercfore concerncd in this problem. However, in marked contrast to the statements made in preceding paragraphs, it is desirable in dealing with this problem that, with each new important accession of data, a new sphcroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard (now the North American) Datum was adopted with reference to positions furnished for geographic purposes, but has no refercnce to tho problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in the publications of the Survey, including its charts; and, third, it was desirable, other things being cqual, to adopt that datum which allowed the maximum number of positions already in the office registers to remain unchanged, and therefore necessitated a minimum amount of now computation. These considerations led to the adoption, as the standard, of that datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far south as North Carolina.

An cxamination of the station errors availablo in 1903 on the United States Standard Datum at 246 latitudo stations, 76 longitude stations, and 152 azimuth stations, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely the ideal with which the algebraic sum of the station errors of each class would be zero. ${ }^{1}$

The North American Datum, upon which the positions and azimuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch as follows:

$$
\begin{array}{rlrl}
\phi & =39 & 13 & 26.686 \\
\lambda & =98 & 32 & 30.506 \\
\alpha \text { to Waldo } \begin{aligned}
& =75
\end{aligned} & 28 & 14.52
\end{array}
$$

Points are then said to be upon the North American Datum when they are connected with the station Mcades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866, as expressed in meters, starting from the above data.

[^9]The principal lists of geographic positions published on the adoptcd datum throughout the whole United States are contained in the following publications of tho Coast and Gcodetic Survey and of other organizations:

> Appendix 8 of the Report for 1885, positions in Massachusetts and Rhode Island.
> Appendix 8 of the Report for 1888, positions in Connecticut.
> Appendix 8 of the Report for 1893, positions in Peunsylvania, Delaware, and Maryland.
> Appendix 10 of the Report for 1894, positions in Massachusetts.
> Appendix 6 of the Report for 1901, positions in Kansas and Nebraska.
> Appendix 3 of the Report for 1902, positions in Kansas, Missouri, Nebraska, and Colorado.
> Appendix 4 of the Report for 1903, positions in Kansas, Oklahoma, and Texas.
> Appendix 9 of the Report for 1904, positions in California.
> Appendix 5 of the Report for 1905, positions in Texas.
> Appendix 3 of the Report for 1907, positions in California.
> Appendix 5 of the Report for 1910, positions in California.
> Appendix 4 of the Report for 1911, positions in Nebraska, Minnesota, North Dakota, and South Dakota.
> Appendix 5 of the Report for 1911, positions in Texas.
> Appendix 6 of the Report for 1911, positions in Florida.
> Special Publication No. 11, positions in Texas, New Mexico, Arizona, and California. .
> Special Publication No. 13, positions in California, Oregon, and Washington.
> Special Publication No. 16, positions in Florida.
> Special Publication No. 17, positions in Texas.
> Special Publication No. 19, positions in Colorado, Utah, Nevada, Wyoming, Montana, South Dakota, and North Dakota.
> Appendix EEE, pages 2905-3031, Annual Report of the Chief of Engineers, 1902, positions of points on and near the Great Lakes.
> Publications of the Masachusetts Harbor and Land Commission.
> Various bulletins of the United States Geological Survey.

EXPLANATION OF TABLES OF POSITIONS.

In the tables of positions, the latitudc and longitude of each point are given on the North American datum (see p. 80), also the length and azimuth of oach lino obsorved ovor, whether in one or both ways. Along with the latitude and longitude of each point the lengths and azimuths are given of lines from that point to other points of the triangulation. No lengths or azimuths are repoated, and for a given line the length and azimuth will generally be found opposito the position of the last mentioned of the two stations involved.

For the convenience of tho draftsman a column of "seconds in meters" is given, in which is placed the length (in motors) of each small arc of a moridian or parallel corresponding to the seconds of the given latitude or longitude. To facilitate furthor tho use of the tables, a column is given of the logarithms of the lengths. It must be remembered that it is the logarithm which is derived first from the computation, the lengths given in this table being then dorived from tho corresponding logarithms.

Tho rule followed in recent publications of this office has been to give latitudes and longitudes to thousandths of seconds for all points the positions of which are fixed by fully adjusted triangulation. Points, the positions of which aro given to hundrodths of seconds only, are marked by footnotes as being without chock (observed from only two stations) or checked by verticals only.

In the columns giving azimuths, distances, and logarithms of distances, the accuracy is indicated to a certain extont by the number of docimal places given, it boing understood that in each case two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, while in a few cases some doubt may be cast on the third figure from the right.

These tablos may be convegiontly consulted by using as finders the 11 sketches and the index at the ond of this publieation. In the third column of the index will be found for each point a reference to the page on which its description is givon, in the fourth column the page on which its olevation above sea lovel will be found, and in the fifth column the number of the sketch on which it appoars.

Tho following conversion tables are insorted for the convonience of those who may wish to convert the distances or elevations given in this publication from moters to feet or from foet to moters.
Lengths-Feet to meters (from 1 to 1,000 units).
[Reduction factor: 1 foot $\mathbf{= 0 . 3 0 4 5 0 0 6 0 9 6}$ meter.]

Lengths－Meters to feet（from 1 to 1,000 units）．
［Reduction factor： 1 meter $=3.250833333$ feet．］

等					
咅					
管					
酋					
$\stackrel{3}{4}$					
袁					
年					

		yuty		
\checkmark	$\square^{\text {grame }}$			
	）	ใ	裉	
\％utu wix	\＃umbutumin	Hutum	HEx	
\％－ame oumom		${ }_{\text {\％}}$		
			${ }^{\text {g \％}}$	
TEME	tust		\％	Eita
		－		
	）			
\ldots		${ }_{\text {Hixita }}$	\％	Hemmand
\％			Plun	
\％			צyy yux	\％
	รuti fux	楼		Hetit
\＃bist		HEx 3 3x	54x	
		\％ 3 ［退	（1）	
（vixit itut	Kixul itid	Wux ：		
		\％－man oomad		grane mormom
\％its futw			8\％s	：
\％uty	Sxax jurlit	Hutat matis	1atama	

- GEOGRAPHIC POSITIONS.

One hundred and fourth meridian.

GEOGRAPHIC POSITIONS-Continued.
One hundred and fourth meridian-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station. \& Latitude and iongitude. \& Seconds in meters. \& Azimuth. \& Back azimuth. \& Tostation. \& Distance. \& Logarithm. \\
\hline Principal points-Continued. \& , " \& \& - " " \& - . 11 \& \& Meters. \& \\
\hline \multirow[t]{3}{*}{Willow, 1912} \& \multirow[t]{2}{*}{\(\left\{\begin{array}{r}4241 \\ 10439 \\ 50.037\end{array}\right.\)} \& \multirow[t]{2}{*}{339.3
1139.2} \& 3310755.45 \& 1511107.52 \& Hobbs. \& 13394.48 \& 4.1289258 \\
\hline \& \& \& 356
4648484.71
4649.49 \& \& Havstac \& 38380.37
51585.62 \& 4.5841032
4.7125287 \\
\hline \& \& \& \& \& \& \& \\
\hline \multirow[t]{2}{*}{Rawhide, 1912.} \& \multirow[t]{2}{*}{\(\left\{\begin{array}{r}423512.227 \\ 1042930.902\end{array}\right.\)} \& 377.3
704.6 \& 23
82
85
04
04
51
56.68 \& 2031644.75
2650109.62 \& Havstack \& \(\begin{array}{r}29659.32 \\ 7680.46 \\ \\ \hline\end{array}\) \& \[
\begin{aligned}
\& 4.4721611 \\
\& 3.8853872
\end{aligned}
\] \\
\hline \& \& \& 1281056.81 \& 3080357.44 \& Wiilow \& 17931.62 \& 4.2536195 \\
\hline \multirow[t]{2}{*}{Manville, 1912.} \& \multirow[t]{2}{*}{\[
\left\{\begin{array}{lll}
42 \& 50 \& 58.350 \\
104 \& 34 \& 43.766
\end{array}\right.
\]} \& 1800.5 \& 3461600.17 \& 1661932.41 \& Rawhlde. \& 30050.12 \& 4.4778463 \\
\hline \& \& 993.7 \& 210244.64 \& 2005916.67 \& Willow \& 19415.93 \& 4. 2881582 \\
\hline \multirow[t]{2}{*}{Kirtiey, 1912.} \& \multirow[t]{2}{*}{\(\left\{\begin{array}{lll}42 \& 51 \& 44.682 \\ 104 \& 06 \& 00.914\end{array}\right.\)} \& 1378.7 \& 462745.37 \& 2261148.73 \& Rawhldo \& 44350.40 \& 4.6468975 \\
\hline \& \& 20.8 \& \begin{tabular}{l}
67 \\
88 \\
88 \\
\hline 13
\end{tabular} 110.90 \& \begin{tabular}{l}
246 \\
267 \\
264 \\
44 \\
\hline 18.30
\end{tabular} \& Willow \& 50102.43
39141.23 \& \begin{tabular}{l}
4. 6998588 \\
4. 5926345
\end{tabular} \\
\hline \multirow[b]{2}{*}{Alkali, 1912............................} \& \multirow[t]{2}{*}{\[
\left\{\begin{array}{lll}
43 \& 38 \& 12.937 \\
104 \& 29 \& 11.373
\end{array}\right.
\]} \& \& \& \& \& \& \\
\hline \& \& \[
\begin{array}{r}
399.3 \\
255.0
\end{array}
\] \& \[
\begin{array}{r}
3395018.69 \\
45553.83
\end{array}
\] \& \[
\begin{array}{lll}
160 \& 06 \& 11.43 \\
184 \& 52 \& 06.11
\end{array}
\] \& Kirtley Manvil \& \[
\begin{aligned}
\& 91584.60 \\
\& 87796.36
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 4. } 9618224 \\
\& 4.9431765
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Parker, 1912.} \& \multirow[t]{2}{*}{\(\left\{\begin{array}{rrrr}43 \& 23 \& 56.397 \\ 103 \& 41 \& 26.178\end{array}\right.\)} \& 1740.5 \& 292110.66 \& 2090422.43 \& Kirticy \& 68298.02 \& \\
\hline \& \& 589.1 \& 500724.95
1123619.63 \& \begin{tabular}{l}
229 \\
292 \\
293 \\
\hline 03 \\
\hline 26.69
\end{tabular} \& Manvill \& \[
\begin{array}{|l|}
\hline 94607.37 \\
69568.86
\end{array}
\] \& \[
\begin{aligned}
\& 4.9759250 \\
\& 4.8424149
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Cottonwood, 1912....................} \& \multirow[t]{2}{*}{- \(\left\{\begin{array}{lll}43 \& 15 \& 14.290 \\ 104 \& 06 \& 02.351\end{array}\right.\)} \& 441.0 \& 1435057.64 \& 3233502.45 \& Alkali. \& 52780.57 \& 4.7224741 \\
\hline \& \& 53.0 \& 2440041.00 \& 641733.88 \& Parke \& 36956.39 \& 4.5676896 \\
\hline \multirow{3}{*}{Sullivan, 1912.} \& \multirow[t]{3}{*}{\(\left\{\begin{array}{rrrr}43 \& 35 \& 33.573 \\ 104 \& 00 \& 07.127\end{array}\right.\)} \& 1036.1 \& 3102359.88 \& 1303651.44 \& Parker \& 33124.53 \& 4.5201497 \\
\hline \& \& 159.9 \& 120123.05 \& 1915718.88 \& Cottonwood \& 38167.43 \& 4.5850932 \\
\hline \& \& \& 972003.30 \& 2770000.11 \& Alkali. \& 39420.55 \& 4.5957226 \\
\hline \multirow{3}{*}{Elk, 1912.} \& \multirow[t]{3}{*}{\(\left\{\begin{array}{lll}43 \& 43 \& 41.793 \\ 104 \& 02 \& 57.536\end{array}\right.\)} \& 1289.8 \& 3212923.15 \& 1414413.11 \& Parker. \& 46672.02 \& 4.6690566 \\
\hline \& \& 1287.8 \& 3454548.64 \& 1654746.28 \& Sulliva \& \[
15543.90
\] \& 4. 19155599 \\
\hline \& \& \& 740521.92 \& 2534714.93 \& Alkali \& 36683.60 \& 4.5644719 \\
\hline \multirow[b]{2}{*}{Provo west base, 1912.................} \& \multirow[t]{2}{*}{\(\left\{\begin{array}{ccc}43 \& 10 \& 23.438 \\ 103 \& 54 \& 59.622\end{array}\right.\)} \& 723.3 \& 1210136.87 \& 3005403.09 \& Cottonwood. \& 17445.44 \& 4.2416820 \\
\hline \& \& 1346.7 \& \(21605 \quad 22.40\) \& 361440.13 \& Parker \& 31076.54 \& 4. 4924327 \\
\hline \multirow{3}{*}{Provo east base, 1912.} \& \multirow[t]{3}{*}{\(\left\{\begin{array}{llll}43 \& 12 \& 14.546 \\ 103 \& 44 \& 33.014\end{array}\right.\)} \& 449.0 \& 762617.66 \& 2561908.81 \& Provo west base. \& 14559.251 \& 4. 1631390 \\
\hline \& \& 745.3 \& 1005457.71 \& 2804014.63 \& Cottonwood. \& 29619.95 \& 4.4715843 \\
\hline \& \& \& 1905906.10 \& 110114.24 \& Parker \& 22061.98 \& 4. 3437035 \\
\hline \multirow{4}{*}{Provo astronomic, 1912..............} \& \multirow[t]{4}{*}{\(\left\{\begin{array}{rrr}43 \& 11 \& 44.159 \\ 103 \& 49 \& 41.058\end{array}\right.\)} \& 1362.7 \& 705553.73 \& 2505215.72 \& Provo west base. \& 7613.22 \& 3.8815683 \\
\hline \& \& 927.4 \& 1062450.46 \& 28613 38.41 \& Cottonwood \& \({ }^{23075.86}\) \& 4.3631578 \\
\hline \& \& \& 2061335.66 \& \({ }_{2} 211915.04\) \& Prover. \& \(\begin{array}{r}25200.59 \\ 7017 \\ \hline\end{array}\) \& 4.4014107
3.8461975 \\
\hline \& \& \& 2821729.81 \& 822100.68 \& Provo east b \& 7017.74 \& 3.8461975 \\
\hline \multirow[t]{2}{*}{Cambria, 1912..........................} \& \multirow[t]{2}{*}{\[
\left\{\begin{array}{llll}
44 \& 02 \& 43.952 \\
104 \& 11 \& 36.919
\end{array}\right.
\]} \& 1356.7 \& 3414439.20 \& 1615039.26 \& Elk. \& 37108.73 \& 4.5694761 \\
\hline \& \& 821.9 \& 273126.43 \& 2071916.05 \& \& 51147.53 \& 4. \(708 \times 247\) \\
\hline \multirow[b]{2}{*}{Crow, 1912..............................} \& \multirow[t]{2}{*}{\[
\int \begin{array}{lll}
44 \& 03 \& 19.230 \\
103 \& 57 \& 42.632
\end{array}
\]} \& 593.6 \& 105838.10 \& 1905459.78 \& Filk. \& 37013.47 \& 4.56\$3598 \\
\hline \& \& 949.0 \& 864331.02 \& 2663350.95 \& Camb \& 18604.16 \& 4.2696101 \\
\hline \multirow[b]{2}{*}{Laird, 1912..............................} \& \multirow[t]{2}{*}{\[
\left\{\begin{array}{lll}
44 \& 12 \& 34.829 \\
104 \& 00 \& 28.154
\end{array}\right.
\]} \& 1075.1 \& 3475224.18 \& 1675419.44 \& Crow. \& 17538.85 \& 4. 2440010 \\
\hline \& \& 625.1 \& 391513.37 \& 2190727.74 \& \& 23530.07 \& 4.3716232 \\
\hline \multirow[t]{3}{*}{Inyankara, 1912..} \& \multirow[t]{3}{*}{\(\left\{\begin{array}{lll}44 \& 12 \& 47.667 \\ 104 \& 20 \& 58.646\end{array}\right.\)} \& 1471.2 \& 2704242.55 \& 905700.58 \& Laird. \& 27320.84 \& 4. 4364940 \\
\hline \& \& 1302.0 \& 3260657.19 \& \(14613 \quad 28.31\) \& Cambri \& 22431.32 \& 4.3508548 \\
\hline \& \& \& 94715.91 \& 1894134.10 \& Alkali \& 64970.54 \& 4.8127165 \\
\hline \multirow[b]{4}{*}{Sundance, 1912....................
Terry,

1912......................} \& \multirow[t]{2}{*}{$$
\left\{\begin{array}{lll}
44 & 28 & 44.696 \\
104 & 27 & 02.821
\end{array}\right.
$$} \& 1379.6 \& 3100733.02 \& 1302607.65 \& Laird. \& 46302.10 \& 4.6656007

\hline \& \& 62.4 \& 3444127.56 \& 1644542.12 \& Inyankara. \& 30621.32 \& 4.4860240

\hline \& \multirow[t]{3}{*}{$\left\{\begin{array}{l}44 \\ 103 \\ 190 \\ 50\end{array} 39.971\right.$} \& 1233.7 \& 463002.25 \& 2262247.96 \& Laird \& 19042.37 \& 4.2797210

\hline \& \& 132.7 \& 725816.08 \& 2523642.84 \& Inyankara \& 43014.97 \& 4.6336196

\hline Terry, 1912.. \& \& \& 1090803.66 \& 2884212.52 \& Sundance \& 51856.71 \& 4.7148050

\hline \multirow[t]{2}{*}{W ymonkota ${ }^{\text {I }}$ (U. S. G. S.), 1912.} \& \multirow[t]{2}{*}{$$
\left\{\begin{array}{rrr}
45 & 00 & 35.551 \\
104 & 05 & 07.832
\end{array}\right.
$$} \& 1097.6 \& $345 \quad 13 \quad 31.72$ \& 1652405.75 \& Terry \& 78358.54 \& 4. 8940863

\hline \& \& 171.5 \& 261516.33 \& 2055950.65 \& Sundance \& 65696.98 \& 4.8175454

\hline \multirow[b]{3}{*}{Castlo, 1912........................} \& \multirow[t]{2}{*}{$\left\{\begin{array}{lll}45 & 00 & 36.830 \\ 103 & 27 & 14.399\end{array}\right.$} \& 1137.0 \& 215123.00 \& 2013518.76 \& Terry. \& 81634.76 \& 4.9118751

\hline \& \& 315.3 \& | 533401.58 |
| :--- |
| 90 |
| 10 | \& $\begin{array}{llll}232 & 51 & 55.47 \\ 269 & 43 & 52.46\end{array}$ \& Sundance... \& 98568.51

49785.14 \& 4.9937382
4.6970997

\hline \& \& 442.0 \& 3193343.52 \& 1395206.88 \& Castle. \& 52506.52 \& 4.7202132

\hline Harding, 1912. \& 11035309.605 \& 209.1 \& 212544.27 \& 2011714.73 \& W ymonkota....... \& 43050.45 \& 4.6339777

\hline \multirow{3}{*}{Moreau, 1912.} \& \multirow[t]{3}{*}{$\left\{\begin{array}{rlrl}45 & 20 & 42.313 \\ 103 & 42 & 51.869\end{array}\right.$} \& 1306.4 \& 3310541.20 \& 1511646.16 \& Castle. \& 42472.10 \& 4.6281037

\hline \& \& 1129.3 \& 381136.99 \& 2175549.41 \& W ymonkota \& 47315.27 \& 4. 6750013

\hline \& \& \& 1015921.11 \& 2815201.59 \& Harding. \& 13742.23 \& 4.1380573

\hline \multirow{3}{*}{Reva, 1912.} \& \multirow[t]{3}{*}{$$
\left\{\begin{array}{rll}
45 & 34 & 51.060 \\
103 & 12 & 44.169
\end{array}\right.
$$} \& 1578.3 \& 164358.75 \& 1963340.23 \& Castle. \& 66190.86 \& 4.8207980

\hline \& \& 957.6 \& $56 \quad 2805.74$ \& 2360637.20 \& Moreau. \& 47211.66 \& 4. 6740493

\hline \& \& \& 661929.87 \& 2455040.63 \& Harding. \& 57629.33 \& 4.7606436

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& 1559.2 \& 3151627.88 \& 1353535.72 \& Reva. \& 49377.81 \& 4.6935318

\hline \& \& 580.2 \& 170040.54 \& 1965052.40 \& Harding. \& 61193.14 \& 4.7867027

\hline
\end{tabular}

${ }^{1}$ Identical witb a tertlary station of the U. S. Geologicai Survey.

GEOGRAPAIC POSITIONS-Continued.
One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Jocarithm.
Princijal points-Continued.	- ' 1		- ' "	- ' "		Metrs. 32188. 90 82920.96 43337.63	4. 5076792 4.9186643 4. 6504588
	$\left\{\begin{array}{lll}45 & 51 & 15.997 \\ 103 & 04 & 36.336\end{array}\right.$	493.9 784.0	19 49 49 51 51 51 52.84	$\begin{array}{llll}199 & 05 & 10.62 \\ 229 & 17 & 10.50\end{array}$	Rera....		
Lodge,			961453.36	2754952.60	Table.		
Butte, 1912	$\left\{\begin{array}{lll}46 & 12 & 27.224 \\ 103 & 23 & 18.308\end{array}\right.$	840.6	3281813.75	1483141.32	Lodge...................	$\begin{aligned} & 46074.28 \\ & 40288.12 \end{aligned}$	4.6634585 4.6050692
		890.6 394.4	$3113 \quad 25.17$	2110147.85			
Whetstone, 1912........................	$\left(\begin{array}{lll}46 & 13 & 24.329\end{array}\right.$	751.2	$\begin{array}{llll}12 & 42 & 44.28 \\ 56 & 27 & 38\end{array}$	192 235 37 57 35 19.65	Lodge.	42036.25	4.6238240
	$\left\{\begin{array}{lll}102 & 57 & 27.579\end{array}\right.$	591.1	$\begin{array}{lll} 56 & 27 & 33.86 \\ 87 & 07 & 09.24 \end{array}$	$\begin{array}{lll} 235 & 57 & 19.73 \\ 266 & 48 & 29.63 \end{array}$	Table.	$\begin{aligned} & 65161.12 \\ & 33257.78 \end{aligned}$	$\begin{aligned} & 4.8133885 \\ & 4.5222849 \end{aligned}$
R\&	$\left\{\begin{array}{rrr}46 & 29 & 41.772 \\ 103 & 02 & 06.026\end{array}\right.$	1289.8128.5	3484851.35403252.31	$\begin{aligned} & 1685212.86 \\ & 2201731.64 \end{aligned}$	Whetstone Butte.	30762.09 41958.75	$\begin{aligned} & \text { 4. } 4880158 \\ & 4.6228225 \end{aligned}$
Blaek, 1912.	$\left\{\begin{array}{rrr}46 & 23 & 54.639 \\ 103 & 20 & 51.919\end{array}\right.$	$\begin{aligned} & 1687.1 \\ & 1109.1 \end{aligned}$	2511037.89 2970540.50 347 1944.89		Rainy Whetstone	$\begin{aligned} & 33477.75 \\ & 42473.41 \\ & 21711.48 \end{aligned}$	4. 52475624.6211714.230903
					Butt		4.3366893
Badland, 1912..........................	$\left\{\begin{array}{lll} 46 & 42 & 00.620 \\ 103 & 19 & 59.087 \end{array}\right.$	$\begin{array}{r} 19.1 \\ 1255.3 \end{array}$	$\begin{array}{r} 3145131.91 \\ 144417.60 \end{array}$	$\begin{aligned} & 1350431.54 \\ & 1943917.90 \end{aligned}$	Rainy Black	$\begin{aligned} & 32292.90 \\ & 34667.28 \end{aligned}$	4.5089728 4.5399198
Sentinel, 1912.	$\left\{\begin{array}{llll}46 & 52 & 16.945 \\ 103 & 50 & 04.820\end{array}\right.$	$\begin{aligned} & 523.2 \\ & 102.1 \end{aligned}$	$\begin{array}{lll} 296 & 14 & 20.12 \\ 304 & 04 & 48.83 \\ 330 & 27 & 05.33 \end{array}$	$\begin{aligned} & 1163616.14 \\ & 1243943.39 \\ & 15043 \\ & \hline 7.97 \end{aligned}$	Badland Rainy.	$\begin{aligned} & 42770.06 \\ & 74121.36 \\ & 60339.54 \end{aligned}$	4.6311399 4. 8699434 4.7806020
					Black		
Saddle, 1012.	$\left\{\begin{array}{llll}46 & 58 & 57.890 \\ 103 & 13 & 42.639\end{array}\right.$	$\begin{array}{r} 1787.7 \\ 901.2 \end{array}$	$\begin{array}{r} 3444028.36 \\ 141710.76 \\ 751231.53 \end{array}$	$\begin{aligned} & 1644855.66 \\ & 1941236.15 \\ & 25445 \\ & 27.47 \end{aligned}$	Rainy. Badland	$\begin{aligned} & 56207.90 \\ & 32409.96 \\ & 47797.60 \end{aligned}$	4.74979734.51067854.6794061
					Senti		
IIump, 1	$\left\{\begin{array}{lll} 46 & 57 & 09.936 \\ 103 & 47 & 53.230 \end{array}\right.$	$\begin{array}{r} 306.8 \\ 1125.6 \end{array}$	$\begin{array}{r} 265 \quad 2339.72 \\ 170714.69 \end{array}$	$\begin{array}{r} 854838.65 \\ 1970538.59 \end{array}$	Saddie. Sentinei. \qquad	$\begin{array}{r} 43477.43 \\ 9466.45 \end{array}$	4.6382639 3.9761872
Cook, 1912.	$\left\{\begin{array}{lll} 47 & 09 & 19.652 \\ 103 & 44 & 06.248 \end{array}\right.$	$\begin{aligned} & 606.9 \\ & 131.6 \end{aligned}$	$\begin{array}{rrr} 296 & 20 & 00.98 \\ 12 & 01 & 30.72 \\ 13 & 31 & 19.42 \end{array}$	$\begin{aligned} & 1164216.19 \\ & 1915844.57 \\ & 19326 \\ & 57.12 \end{aligned}$	Saddle..	43002.68	4. 6334956
						23037.92	4.3624433
					Sent	32477. 36	4.5115807
Blue, 1912.	$\left\{\begin{array}{rrr}47 & 15 & 22.033 \\ 104 & 10 & 00.510\end{array}\right.$	$\begin{array}{r} 680.4 \\ 10.7 \end{array}$	$\begin{array}{lll} 288 & 43 & 41.25 \\ 320 & 10 & 37.18 \\ 329 & 20 & 31.25 \end{array}$	$\begin{aligned} & 1090241.76 \\ & 14026 \\ & 149 \\ & 35 \\ & 06.54 \end{aligned}$	Cook. Hump	34572.39	4.5387294
						43825.42	4. 6417261
					Sent	49660.30	4.6960093
ter,	$\left\{\begin{array}{lll}47 & 18 & 52.318 \\ 103 & 51 & 41.870\end{array}\right.$	$\begin{array}{r} 1615.7 \\ 879.4 \end{array}$	$\begin{array}{r} 3312958.68 \\ 742406.58 \end{array}$	$\begin{array}{lll} 151 & 35 & 33.17 \\ 254 & 10 & 39.37 \end{array}$	Cook. Blue.	$\begin{aligned} & 20114.92 \\ & 23983.39 \end{aligned}$	$\begin{array}{\|l\|l} 4.3035182 \\ 4.3799106 \end{array}$
Flat, 1912.	$\left\{\begin{array}{lll}47 & 26 & 03.601 \\ 103 & 51 & 45.739\end{array}\right.$	$\begin{aligned} & 111.2 \\ & 958.5 \end{aligned}$	$\begin{array}{r\|rrr} 342 & 39 & 28.02 \\ 359 & 39 & 01.47 \\ 49 & 20 & 39.71 \end{array}$	$\begin{aligned} & 1624503.68 \\ & 179 \\ & 299 \\ & 229 \\ & 07 \\ & 07 \\ & \hline 14.56 \end{aligned}$	Cook................................	32472.54	4.5115163
						13319.41	4.1244849
					Blue	30342.22	4.4820474
Lovering, 1912...........................	$\left\{\begin{array}{lll} 47 & 42 & 43.969 \\ 104 & 21 & 23.935 \end{array}\right.$	$\begin{array}{r} 1357.9 \\ 499.0 \end{array}$	$\begin{array}{lll} 309 & 33 & 15.48 \\ 344 & 10 & 22.55 \end{array}$	$\begin{aligned} & 1295508.05 \\ & 1641846.30 \end{aligned}$		48329.26 52688.29	4. 68421014.7217141
Sheep, 1912	$\left\{\begin{array}{r}47 \\ 1037 \\ 103 \\ 47 \\ \hline\end{array}\right.$	1547.4825.0	$\begin{array}{r} 131821.80 \\ 340905.19 \\ 1022011.28 \end{array}$	$\begin{array}{lll} 193 & 15 & 20.17 \\ 213 & 52 & 37.39 \\ 281 & 55 & 14.63 \end{array}$	Flat...................	22418.8850226.1343195.98	4.3506139 4. $\mathbf{2} 0$ r9297 4.6354433
					Lover		
Jackison ' (U. S. G. S.), 1912...........	$\left\{\begin{array}{lll} 47 & 55 & 37.687 \\ 104 & 19 & 43.166 \end{array}\right.$	$\begin{array}{r} 1163.9 \\ 896.1 \end{array}$	$\begin{array}{r} 3091603.61 \\ 50124.78 \end{array}$	$\begin{array}{\|ll} 1293948.19 \\ 185 & 0010.11 \end{array}$	Sheep Lovering.	$\begin{aligned} & 51874.17 \\ & 23988.15 \end{aligned}$	$\begin{aligned} & 4.7149511 \\ & 4.3799968 \end{aligned}$
Buford, 1912............................	$\left\{\begin{array}{lll} 48 & 02 & 48.713 \\ 103 & 58 & 59.573 \end{array}\right.$	$\begin{aligned} & 1504.5 \\ & 1233.8 \end{aligned}$	$\begin{array}{r} 34256 \\ 37 \\ 37 \\ 62 \\ 49 \\ 49.64 .70 \\ 19.93 \end{array}$	$\begin{aligned} & 1630449.72 \\ & 2164527.54 \\ & 2423355.95 \end{aligned}$	Sheep. Lovering. Jaekson.	$\begin{aligned} & 48397.04 \\ & 44527.14 \\ & 29019.77 \end{aligned}$	4.6548188 4. 6677064 4.4626940
Montana : (Mo. River Com. and U. S.G.S.), 1912 .	$\left\{\begin{array}{lll}48 & 01 & 51.167 \\ 104 & 03 & 10.628\end{array}\right.$	1580.3	$\begin{array}{r} 2510016.65 \\ 336 \\ 33 \\ 60 \\ 60 \end{array} \mathbf{5 0} 08.29$	$\begin{array}{r} 710923.33 \\ 1563455.96 \\ 2403750.93 \end{array}$	Buford. Sheep. Jackson	$\begin{array}{r} 5495.79 \\ 48537.78 \\ 23595.47 \end{array}$	3.7400299 4. 6 S 60799 4.3728287
		220.2					
Cutofl ${ }^{2}$ (Mo. River Com. and U. S. G. S.), 1912.	$\left\{\begin{array}{lll}47 & 59 & 50.607 \\ 104 & 09 & 56.269\end{array}\right.$	$\begin{aligned} & 1562.9 \\ & 1166.5 \end{aligned}$	572234.212460403.14	$\begin{array}{r}237 \\ 66 \\ 66 \\ \hline 15\end{array} 18.32$	Jackson..............................	14465.749194.39	4.16034063.9635227
$\begin{aligned} & \text { Lansrk }{ }^{2} \text { (Mo. River Com. and U.S. } \\ & \text { G. S.), 1912. } \end{aligned}$	$\left\{\begin{array}{llll}48 & 06 & 20.308 \\ 104 & 13 & 54.701\end{array}\right.$	1131.6	$\left\lvert\, \begin{array}{r\|rr} 301 & 52 & 27.07 \\ 337 & 40 & 13.38 \\ 20 & 01 & 44.44 \end{array}\right.$	$\begin{aligned} & 1220026.22 \\ & 15743 \\ & 19957 \\ & 50 \end{aligned}$	Montana Cutoff. Jackson	15712.96	4. 1962579
						13009.91	4. 1142743
						21121.00	4.3247144
Mondak, 1912.............................	$\left\{\begin{array}{lll} 48 & 00 & 10.435 \\ 104 & 02 & 48.867 \end{array}\right.$	$\begin{array}{r} 322.3 \\ 1012.9 \end{array}$	$\begin{array}{r} 860524.18 \\ 1714517.45 \end{array}$	$\begin{aligned} & 26600006.56 \\ & 3514501.28 \end{aligned}$	Cutoff. Montana	$\begin{aligned} & 8881.14 \\ & 3143.75 \end{aligned}$	3.9484687 3.4974476
Ferry ${ }^{\text {a }}$ (Mo. River Com.), 1912.	$\left\{\begin{array}{lll}47 & 58 & 36.762 \\ 104 & 04 & 26.550\end{array}\right.$	$\begin{array}{r} 1135.3 \\ 550.7 \end{array}$	$\begin{aligned} & 108 \quad 2859.04 \\ & 1944043.63 \\ & 2145900.63 \end{aligned}$	2882454.06	Cutoff.	7207.17	3.8577646
				144140.06	Montana	6207.25	3.7928989
				350013.21	Mond	3531.67	3.5479803
	\{481140.535	1252.1	3190606.03	1391436.97	Buford.	21708.24	. 4.3306246
ainvilie, 1912	104 1025.812	533.0	211559.47	2010904.88	Jackso	31899.61	4.5037854
	(4815 46.468	1435.4	3301802.17	1502614.67	Buford	27636.58	4.4414843
Snake, 1912.	1041000.691	14.2	35425.23	1835406.49	Bainvilie	7613.90	3.8816071

[^10]${ }^{1}$ Identical with a tertiary station of the Missourl liver Commission.

GEOGRAPHIC POSITIONS-Continued.
One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Sbeonds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logar rithm.
Principal points-Continued.	, "		- " "	,		Meters.	
Bull, 1912.............................	$\left\{\begin{array}{llll}48 & 2013.441\end{array}\right.$	415.2	3534104.07	1734312.60	Buford.	32464.61	4.5114102
	1040152.003	1071.0	504429.58	2303824.71	Snak	13016.79	4.1145040
Williston, 1912..........................	103 4448 15 12.182	376.31232.8	371024.51	2165958.94	Buford.	28786.18	4.4591840
			920652.93	2714813.01	Snake	30976.71	4.4910353
Bonetraill, 1912.........................	$\left\{\begin{array}{r}48 \\ 103 \\ 103 \\ 49 \\ 49 \\ 44.219\end{array}\right.$	0.0	3420514.19	1620846.69	Will	19078.27	4.2805390
		909.2	592932.36	2392028.32	Bull	17396. 74	4.2404680
Gladys, 1912.	(482645.434	1403.4	3082537.52	1282806.81	Bonetraill.	5237.51	3.7191251
	$\begin{cases}103 & 53 \\ 03.761\end{cases}$	1403.477.3	3345936.19	1550537.84	Williston.	23618.45	4.3732514
			415750.02	2215115.05	Bull.	16269.66	4.2113784
Marmon, 1912...........................	\| 482727.934	862.875.7	304732.53	2103922.26	Williston	26436.68	4.4222069
	$\{1033403.685$		764756.17	2563612.44	Bonetrail	19864.58	4. 2950793
			865440.27	2664027.04	Gladys.	23463.31	4.3703892
Howard, 1912............................	$\left\{\begin{array}{rrr}48 & 38 & 19.918 \\ 103 & 49 & 16.219\end{array}\right.$	615.2	3170012.70	1371136.66	Marmon.	27492.80	4.4392190
		332.0	121753.32	1921502.79	Giàdys	21953.82	4.3415101
Muddy, 1912............................	$\int 484027.449$	847.9	10217.03	1810201.11	Marmon.	24082.56	4. 3817027
	$\left\{\begin{array}{l}103 \\ 33 \\ 42.450\end{array}\right.$	868.4	431657.63	2230227.05	Gladys	34809.99	4.5417039
			782657.96	2581516.92	Howar	19511.88	4.2902991
Stady, 1912............................	$\left\{\begin{array}{lll} 48 & 47 & 20.723 \\ 103 & 38 & 45.669 \end{array}\right.$	640.1	3340439.51	1540827.42	Muddy	14190.38	4.1519940
		932.2	374310.09	2173516.28	Howar	21100.27	4.3242881
Crosby, 1912.............................	$\left\{\begin{array}{rrrr}103 & 33 & 28.392\end{array}\right.$	1060.6	04759.49	1804748.92	Muddy	20602.30	4.3139157
		578.7	382222.94	2181030.34	Howard	31258.44	4. 4949673
			393532.98	2193134.17	Stady	10161.57	4.0069608
Norge, 1912...............................	$\left\{\begin{array}{lll} 48 & 53 & 38.866 \\ 103 & 47 & 20.556 \end{array}\right.$	1200.5 418.7	2824142.89 3175950.72	102 138 182 18 09.78 .37	Crosby Stady.	17387.23 15705.83	4.2402305 4.1960608
			44606.79	1844439.81	Howar	28484.69	4.4546115
Ambrose sonthwest base, 1912.	$\left\{\begin{array}{lll} 48 & 57 & 07.378 \\ 103 & 37 & 01.232 \end{array}\right.$	227.9	3370755.21	1571035.61	Crosby	11163.82	4.0478126
		25.1	630010.86	2425224.00	Norge	14157.90	4.1509988
Bowle, 1912.............................	$\left\{\begin{array}{rrr}48 & 59 & 56.626 \\ 103 & 44 & 00.295\end{array}\right.$	1749.1	3012907.06	1213423.21	Ambrose southwest base	9998.09	3. 9999169
		6.0	3201636.31	1402432.70	Crosby	20154.33	4.3043684
			191610.92	1991339.91	Nor	12360.50	4.0920359
Ambrose, 1912..........................	$\left\{\begin{array}{rrr}48 & 54 & 48.459 \\ 103 & 30 & 53.905\end{array}\right.$	1497.0	274229.31	2074032.92	Crosby	6772.40	3.8307427
		1097.6	1195337.91	2994900.97	Ambrose southwest bas	8620.45	3.9355299
			1205012.95	3004019.85	Bowie	18616.36	4.2698948
School, or Ambrose northeast base, 1912.	$\left\{\begin{array}{ccc} 48 & 59 & 24.331 \\ 103 & 29 & 09.836 \end{array}\right.$	751.6	135750.17	1935631.68	Ambrose.	8781.15	3.9435513
		200.0	661417.96	2460822.35	Ambrose southwest base	10479.177	4.0203272
			931452.63	2730340.65	Bowle..	18129.03	4.2583746
Supplementary points.							
Denver University, observatory dome, 1895.	$\left\{\begin{array}{rrr}39 & 40 & 34.185 \\ 104 & 57 & 08.710\end{array}\right.$	$\begin{array}{r} 1054.3 \\ 207.6 \end{array}$	45258.9 88	1844931.0	Pikes Peak.	93092.5	4. 9689146
			881135.8 1371359.1	2680122.7 3170050.2	Morrison	22902.5 43060.8	4.3598826 4.6340818
Denver, Loretto Ilelghts school, belify, 1912.	$\left\{\begin{array}{l}39 \\ 105 \\ 39 \\ 09 \\ \hline 1 \\ 47 . \\ 37.646\end{array}\right.$	$\begin{array}{r} 1292.4 \\ 897.4 \end{array}$	930205.8	2725444.4	Morrison	16504.1	4.2175931
			1452726.0	3251709.4	Boulder	43308.7	4.6053987
			2093534.0	294557.3	Bright	46714.6	4. 6694524
Denver, county courthonse, dome, 1895.	$\left\{\begin{array}{rrr} 39 & 4432.976 \\ 104 & 59 & 21.160 \end{array}\right.$	$\begin{array}{r} 1017.0 \\ 503.8 \end{array}$	24216.8	1824012.6	Pikes Peak.	100233.4	5.0010123
			674144.4	2473255.5	Morrison	21330.0	4. 3289915
			1325303.9	3124119.4	Boulder.	35613.9 373380	4.5516194 4.5721507
			2120504.2	321400.6	Brighton	37338.0	4.5721507
Denver, State Capitol, dome, 1895....	$\int \begin{array}{r} 394421.662 \\ 1045903.598 \end{array}$	$\begin{array}{r} 668.0 \\ 85.7 \end{array}$	25724.3	1825509.0	Pikes Peak.	99899.4	4.9995629
			685836.5	2484936.4	Morrison	21589.9	4.3342500
			1325030.2	3123834.4	Boulder.	36157.8	4. 55882017
			2850722.7	312425.5 1052241.1	Indian..	37415.4 35006.6	4.5730500 4.5503095
Denver, Grant smelter, chimney, 1912.	$\left\{\begin{array}{rrr}39 & 46 & 35.932 \\ 104 & 58 \\ 22.557\end{array}\right.$	$\begin{array}{r} 1108.1 \\ 536.8 \end{array}$	603850.6	2402924.0	Morrison	24243.3	4.3845924
			1263852.9	3062630.5	Boulder.	34258.5	4.5347687
			2133125.3	333944.2 1121043	Briphton	33394.5	4.5236753
			2915601.4	1121053.8	Indian	35896.9	4.5550570
Denver, Daniels \& Fisher's tower, gilded dome, 1912.	$\left\{\begin{array}{r}39 \\ 104 \\ 59 \\ \hline 93 \\ 42.502\end{array}\right.$	1652.5	653421.7	2452546.4	Morrison.	21115.6	4.3246033
		1011.9	1324059.8 213 16	3122928.9	Boulder.	34809.3	4. 5416954
			$\begin{array}{llll}213 & 16 & 03.7 \\ 286 & 13 & 25.4\end{array}$	332513.8 1062908.8	Brighton Indian.	37077.3 36664.5	4.5691086 4.5642459
Westminster schoolhouse belfry, 1912.	$\int \begin{array}{rrr}39 & 50 & 50.209 \\ 105 & 01 & 53.135\end{array}$	$\begin{aligned} & 1548.4 \\ & 1263.2 \end{aligned}$	391326.9	2190614.6	Morrison.	25479.1	4.4061833
			11914 229 30 37.1 27.4	2990426.3	Boulder.	25772.7	4.4111601
			2985906.5	494102.0 1191614.4	Brighton	30817.3	4.4887947
				1910	Indan.	43805.6	4.6415299
Section 36, T. 4S. , R. 65 W., southeast corner stone.	$\left\{\begin{array}{lll} 39 & 39 & 22.420 \\ 104 & 35 & 02.550 \end{array}\right.$	$\begin{array}{r} 691.4 \\ 60.8 \end{array}$	345806	2145804	Indian	135.251	2. 131140

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimnth.	Back azimuth.	To station.	Distance.	Logarithm.
Supplementary points-Continued.	'		- ' ${ }^{\prime \prime}$	- ' 1		Meters.	
Bench mark G,	$\left\{\begin{array}{lll} 39 & 44 & 47.559 \\ 104 & 36 & 08.850 \end{array}\right.$	$\begin{array}{r} 1466.7 \\ 210.7 \end{array}$	641543.6	2441537.2	Watkins astronomic. .	266.017	2.424909
	(400001.628	50.1	431844.08	2230314.63	Morrison	50415.64	4. 7025653
Brigbton bencb mark eccentrle, 1912..	$\{1044858.148$	1379.4	83 5625.13	2633758.40	Boulder	41111.89	4. 61391774 3. 7884346
			2393522.18	593739.39	Brighton		
Brighton bench mark R2 (U.S. G. S.).	$\left\{\begin{array}{lll} 40 & 00 & 01.640 \\ 104 & 48.56 .469 \end{array}\right.$	$\begin{array}{r} 50.5 \\ 1339.4 \end{array}$	8922	26922	Brighton bench mark eccentric.	39.832	1. 60023
Greeley tall tank, 1912.	$\left\{\begin{array}{lll} 40 & 25 & 07.923 \\ 104 & 40 & 35.853 \end{array}\right.$	244.4 845.3	107 226 21	$\begin{array}{r}28645 \\ 46369.8 \\ \hline 8.7\end{array}$	Horsetooth. Dewey....	46055.0 14268.1	4. 663277 4. 154304
Greeley sugar factory chlmney, 1912..	$\left\{\begin{array}{llll}40 & 25 & 06.241\end{array}\right.$	192.5	1070904.0	2864848.6	Horsetooth.	46108. 7	4. 663783
Greeley sugar lactory chimney, 192..	$[1044034.144$	805.0	2261615.1	462059.3	Dewey	14272.6	4.154504
La Salle tank near coal chute, $1912 . .$.	$\left\{\begin{array}{lll}40 & 20 & 46.859\end{array}\right.$	1445.4	1172547.6	2970641.3	Horsetooth.	46852.8	4.670736
La Salle tank near coal chute, 1912...	[104 4219.228	453.8	2153513.9	354106.1	Dewey	21974.4	4.341917
Loveland red brick chimne	$\left\{\begin{array}{l}40 \\ 24 \\ 10\end{array} 10.806\right.$	327.1	220946.9	2020043.0	Boulder	53033.2	4.724548
	402410.770	332.2	221220.9	2020315.8	Boulder.	53054.7	4.724724
Loveland tall white chlmney, 1912	$\{1050335.817$	844.7	$\begin{array}{r}83 \\ 142454506.9 \\ \hline 1.5\end{array}$	$\begin{aligned} & 263 \\ & 32240 \\ & 30.5 .7 \end{aligned}$	Loveland red hrick chlmney Horsetooth	$\begin{gathered} 44.82 \\ 19076.1 \end{gathered}$	$\begin{aligned} & 1.651486 \\ & 4.250490 \end{aligned}$
	(403135.067	1081.6	921142.8	2715237.9	Horsetoot	41486. 5	4.6179069
Eaton, sugar factory chimney, 1912	104 4224.722	581.9	1623111.7	3422705.8	Dover be	29460.3	4.4692378
Eato			2792005.5	992601.7	Dewey.	13090.5	4. 1169546
	404223.296	718.6	620732.9	2415128.4	Horsetooth.	39440.1	4. 5959378
Nunn schoolhouse, belfr	1044704.840	113.6	$\begin{array}{lll} 164 & 1630.2 \\ 318 & 33 & 48.0 \end{array}$	$\begin{aligned} & 3441526.9 \\ & 1384247.4 \end{aligned}$	Dover bench Dewey.	$\begin{array}{r} 8414.8 \\ 29484.3 \end{array}$	$\begin{aligned} & 3.9250455 \\ & 4.4695911 \end{aligned}$
Dover bench mark eccentrlc, 1912	$\left\{\begin{array}{l}40 \\ 46 \\ 46 \\ 45.871 \\ \hline 18\end{array}\right.$	1414.9	504910.70	2303408.79	Horsetooth	42024.1	4.6234992
Dover bench mark eccantric, 1012	104 4842.095	987.1	1280152.69	3074358.33	Twi	48638.6	4.6869813
Dover bench mark $\mathrm{E}_{2}, 1912$	$\left\{\begin{array}{lll} 40 & 46 & 45.705 \\ 104 & 48 & 42.483 \end{array}\right.$	$\begin{array}{r} 1409.8 \\ 996.2 \end{array}$	2403803.8	603804.1	Dover bench mark eccent	10.44	1.01870
Dover bench mark reference mark,	$\{404647.346$	1460.5	3304236	1504237	Dover bench mark eccen	52.180	1.717504
1912.	1044843.183	1012.6	3420116	1620116	Dover bench mark E_{3}	53.21	1.726027
	(410133.472	1032.6	942444.23	2740911.10	Twin	33291.34	4.5223313
Terry ${ }^{2}$ (U. S. G. S.), 1912.	1045221.266	496.8	1644123.84	3443808.34	Wadi	26202.40	4. 4183811
			3345647.95	1545650.75	Wa	739.75	2.8690837
Colorado-Wyoming boundary monu-	$\left\{\begin{array}{l}405954.156\end{array}\right.$	1670.6	2085214.81	285302.26	Terry	3498.70	3.543907
ment, milepost 44, 1912.	1045333.575	784.7	2195500.85	395557.09	Warre	3121.06	$\text { 3. } 494302$
Otto, Unlon Pacific Railway black	$\left\{\begin{array}{llll}41 & 05 & 27.677 \\ 105 & 04 & \end{array}\right.$	853.8	2925650.6	1130449.0	Terry	18479.9	4. 2666699
water tank, 1912.	1050429.681	682.7	$\begin{array}{r} 2942600.4 \\ 734407.6 \end{array}$	$\begin{array}{ll} 114 & 34 \\ 253 & 07.6 \\ 32.4 \end{array}$	Warre	$\begin{aligned} & 19037.2 \\ & 16855.7 \end{aligned}$	$\begin{aligned} & \text { 4. } 2796026 \\ & \text { 4. } 2267459 \end{aligned}$
	$\left(\begin{array}{lll}41 & 09 & 23.623\end{array}\right.$	728. 8	3593342.5	1793345.8	Warre	15174.0	4. 1810997
Fort D. A. Russoll, water tank, 1912.	$\{1045212.826$	299.1	701917.3	2500337.4	Twin.	35960.8	4. 5497491
			$\begin{aligned} & 1032858.7 \\ & 1191907.0 \end{aligned}$	2831117.3 2990055.0	Russell..	$\begin{aligned} & 38592.5 \\ & 44155.5 \end{aligned}$	$\begin{aligned} & \text { 4. } 5865029 \\ & 4.6449852 \end{aligned}$
	(4108 25.342	781.8	171119.8	1970923.5	Warre	13999.8	4.1461203
Cheyenne, State capitol dome, 1912...	1044910.786	251.5	745652.2	2543912.8	Twin.	38978.6	4. 5908259
Cheyenne, state capfol dome, 1912...			1043118.9	2841137.8	Russell	43146.6	4. 8349462
	-		1184458.6	2982446.8	Greentop.	48739.7	4. 6878830
East Twin ${ }^{\text {2 }}$ (U.S. G. S.)	$\left\{\begin{array}{ccc} 41 & 02 & 54.074 \\ 105 & 16 & 02.648 \end{array}\right.$	$\begin{array}{r} 1668.2 \\ 61.8 \end{array}$	2760840	960840	Twin	2. 764	0.44154
	$\int^{41} 1680.626$	1253.3	172313.7	1972249.6	Wadill.	2845.2	3.454117
Kipp's, winiam, square bouse, chimney, 1912.	1045641.913	975.4	1040705.6 1630013.5	283 51 49.9 342 58 16.7	Greento	33248.4 14057.4	$\begin{aligned} & 4.521771 \\ & 4.147906 \end{aligned}$
	\| 411703.586	110.6	1041520.7	2840134.8	Greentop.	30003.7	4. 477175
$\begin{aligned} & \text { Holingswood's, Gien, new barn, west } \\ & \text { gable, } 1912 . \end{aligned}$	104 5858.032	1350.5	$\begin{array}{llll}175 & 44 \\ 325 & 47.6 \\ 33 & 11.4\end{array}$	$\begin{array}{llll}355 & 44 & 20.7 \\ 145 & 54 & 17.1\end{array}$	Whadtake	12769.2 4134.7	4.106165 3.616439
	411523.872	736.5	690017.2	2485951.5	Wadill	069.6	2.986584
Ritzke's windmill, center, 1912.	1045639.551	920.8	1075824.9	2874307.8	Greentop	33956.1	4. 530918
			1651445.4	3451247.0	Whitake	16350.4	4.213529
	\| 411546.185	1424.8	1120535.6	2915413.0	Greentop.	25943.6	4. 414030
Tali new house, west gable, 1912......	105 0234.880	812.0	$\begin{array}{llll}195 & 08 & 05.1 \\ 277 & 58 & 27.8\end{array}$	1.510 98 0151.4 15.5	Whitaker	15666.4 7439.4	$\begin{aligned} & 4.194908 \\ & \hline \end{aligned}$
Section 33, T. 17 N., R. 68 W., stone post, soutbwest corner, 1912.	$\left\{\begin{array}{ccc} 41 & 23 & 38.222 \\ 105 & 00 & 03.418 \end{array}\right.$	$\begin{array}{r} 1179.2 \\ 79.4 \end{array}$	2253708	453722	Whitake	800.12	2.903155
$\begin{aligned} & \text { Bench mark "Denver" } 6702 \text { (U. S. } \\ & \text { G. S.). } \end{aligned}$	$\left\{\begin{array}{lll} 41 & 23 & 38.315 \\ 105 & 00 & 20.178 \end{array}\right.$	$\begin{array}{r} 1182.0 \\ 488.8 \end{array}$	2395502	595529	Whitaker	1110.82	3.045644

${ }^{2}$ Identical with a tertiary station of tbe U. S. Geological Survey.

GEOGRAPHIC POSITIONS-Continued.
One hundred and fourth meridian-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	Tostation.	Distance.	Logarithm.
Supplementary points-Continued.	-4202 43.815		1232	1022009.05		Meters	
	$\left\{\begin{array}{r}420243.815 \\ 1045726.898\end{array}\right.$	1351.9	123204.16 88 50 104.50	192 2688509.95 80.55	Chugwater	27736.64 30812.33	4.4430538 4.4887246
Wheatland standplpe, 1912			1592606.16	3391931.86	Coleman	38232.68	4. 4887246 4.5824348
			2185531.77	390832.17	Haystack	42333.06	4. 6266796
Nebraska-Wyoming boundary monument eccentric, 1912.	(424648.822	1506.5	591847.09	2390054.90	Rawhlde.	41934.33	4. 6225697
	104 0309.368	212.9	782641.82	2580148.48	Villow.	51135.87	4.7087257
			1565404.68	3365208.09	Kirtley	9926.49	3.9967957
Nebraska-Wyoming boundary monument 123, 1912.	$\left\{\begin{array}{lll}42 & 46 & 48.332\end{array}\right.$	1491.3	1423550	3223550	Nebraska-Wyoming boundary	19.052	1.27994
	$\left\{\begin{array}{llll}104 & 03 & 08.859\end{array}\right.$	201.4			monument eccentrle.		
Bluft, 1912.	[43 0144.498	1373.3	1613906.12	3412740.02	Alkali.	71193.08	4.8524378
	$\{1041231.590$	715.2	2253051.08	4.55208 .38	Parker	58941.43	4.7696832
			3342328.75	1542754.92	Kirtley	20519.31	4.3121628
South Dakota-Nebraska boundary monument eccentric, 1912.	$\left\{\begin{array}{rrrr}43 & 00 & 06.456 \\ 104 & 00 & 02 & 469\end{array}\right.$	199.2	274349.60	2073945.45	Kirtley	17487.61	4.2427305
		55.9	1001059.03	2800227.98		17231.71	4. 2363285
South Dakota-Nebraska boundary monument, 1912.	$\left\{\begin{array}{ccc} 43 & 00 & 06.539 \\ 104 & 00 & 02.457 \end{array}\right.$	$\begin{array}{r} 201.8 \\ 55.6 \end{array}$	55644	1855644	South Dakota-Nebraska boundary monument eccentric.	2.572	0.41027
South Dakota-Wyoming boundary monnment, 1912.	$\left\{\begin{array}{lll} 43 & 03 & 30.992 \\ 104 & 03 & 09.845 \end{array}\right.$	950.5	100612.02	1900415.44	Klrtle	22137.84	4.3451353
		222.8	753342.76	2552719.34	Blut	13132.82	4.1183579
Jireh Coll	$\left\{\begin{array}{llll}42 & 46 & 29.82 \\ 104 & 42 & 34.38\end{array}\right.$	920.1	2321053	521613	Manv	13527.2	4.131208
		781.6	3391034	1591226	Will	10524.7	4.022208
Manville, C. \& N. W. Ry. water tank, ${ }^{3} 1912$.	$\left\{\begin{array}{lll} 42 & 46 & 54.90 \\ 104 & 36 & 52.11 \end{array}\right.$	1694.0	2011203	211330	Manvill	8058.3	3.906245
		1184.5	205339	2005138	Whllo	11357.6	4.055288
Manville Congregational steeple, 1912.	1424645.09	1391.3	212459	2012258	Willo	11072.8	4.044256
	104 3652.44	1192.0	2002951	203118	Manv	8343.8	3.921363
Sullvan (U. S. G. S.).................	$\left\{\begin{array}{rrr} 43 & 35 & 33.447 \\ 104 & 00 & 07.229 \end{array}\right.$	$\begin{array}{r} 1032.2 \\ 162.2 \end{array}$	2102932	302932	Sullivan.	4.53	0.65610
Alkall (U.S. G. S.)....................	$\cdot\left\{\begin{array}{lll} 43 & 38 & 12.066 \\ 104 & 29 & 11.815 \end{array}\right.$	$\begin{aligned} & 372.4 \\ & 264.9 \end{aligned}$	2001401	201401	Alkali	28.64	1.45697
Elk (U.S. G. S.)........................	$\left\{\begin{array}{lll} 43 & 43 & 41.826 \\ 104 & 02 & 57.528 \end{array}\right.$	$\begin{aligned} & 1290.8 \\ & 1287.6 \end{aligned}$	102015	1902015	Elk	1.035	0.01494
Crows Nest (U. S. G, S.)	$\left\{\begin{array}{lll} 44 & 03 & 19.216 \\ 103 & 57 & 42.721 \end{array}\right.$	$\begin{aligned} & 593.1 \\ & 951.0 \end{aligned}$	25756	7756	Crow.	2.016	0.30449
Bear Lodge Mountaln, highest peak, 1912.	$\left\{\begin{array}{r}44 \\ 10428 \\ \hline 183 \\ 34.364\end{array}\right.$	$10 ¢ 0.7$	1181624.4	2981605.6	Sundan	673.5	2.828328
		795.2	205 23230479.6	25 53 53 12 164.5	Castle	65727.0 98290.2	4.817244 4.992510
Peak, south of Terry, ${ }^{2}$ 1912...........	$\left\{\begin{array}{lll} 44 & 14 & 39.77 \\ 103 & 44 & 04.08 \end{array}\right.$	1227.6	1390830.4	3190417.8	Terr	12257.6	4.088407
		90.5	1943329.2	144518.5		87968.2	4.944316
Castle Rock (U. S. G. S.)..............	$\left\{\begin{array}{lll} 45 & 00 & 36.784 \\ 103 & 27 & 14.232 \end{array}\right.$	$\begin{array}{r} 1135.6 \\ 311.7 \end{array}$	11110	29110	Castle	3.92	0.59329
Haystack Butte, hlghest point, 1912..	$\left\{\begin{array}{rrr} 45 & 03 & 46.269 \\ 103 & 27 & 05.071 \end{array}\right.$	1428.4	2 8 0001.5	1815954.9	Castle.	$\begin{array}{r} 58.31 .6 \\ 50312 \end{array}$	
		111.0	833015.5 1464300.7	26310320.4 3263148.8	Wymon	50312.2 37560.8	4.701673 4.574735
East Deer Ear Butte, ${ }^{2} 1912$.	$\left\{\begin{array}{r} 450001.63 \\ 1031047.73 \end{array}\right.$	50.3	925832.2	2724654.5	Castle.	21635.8	4.335173
		1045.4	1323225.3	3120940.6	Mo	56853.5	4.754757
West Deer Ear Butte, ${ }^{2} 1912$. .	$\left\{\begin{array}{lll} 44 & 59 & 55.20 \\ 103 & 11 & 05.42 \end{array}\right.$	1703.8	933339.1	$\begin{array}{llll}273 & 2213.9\end{array}$	Castle.	21260.4	4. 327571
		118.7	1325657.7	3123425.6	Moreau	56703.8	4.753612
Montana, sontheast comer eccentrlc, 1912.	$\left\{\begin{array}{ccc} 44 & 59 & 49.837 \\ 104 & 02 & 31.798 \end{array}\right.$	1538.3	3472817.6	1673701.9	Terry.	76180.3	4. 8818425
		696.5	292912.9	2091157.5	Sundari	66047.1	4. 8198540
Montana, southeast corner monument, 1912.	$\left\{\begin{array}{lll} 44 & 59 & 53.739 \\ 104 & 02 & 20.681 \end{array}\right.$	$\begin{array}{r} 1658.8 \\ 453.0 \end{array}$	634049.9	2434042.0	Montana, southeast corner eccentrlc.	271.66	2.434026
W yoming, northeast corner eccentrle, 1912.	$\left\{\begin{array}{llll}44 & 59 & 59.117 \\ 104 & 03 & 18.515\end{array}\right.$	1824.8	3464545.3	1665502.4	Terry	76687.7	4. 8847255
		405.5	283445.8	2081803.2	Su	65801.0	4. 8182325
Wyoming, northeast corner monument, 1912.	$\left\{\begin{array}{ccc} 44 & 59 & 51.995 \\ 104 & 03 & 25.623 \end{array}\right.$	$\begin{array}{r} 1605.0 \\ 561.3 \end{array}$	2151811.2	351816.2	Wyoming, northeast corner eccentric.	269.41	2.430414
North Dakota-South Dakota, mllepost 333 eccentrle, 1912.	$\left\{\begin{array}{lll} 45 & 56 & 49.625 \\ 103 & 28 & 33.658 \end{array}\right.$	1532.1	1930821.6	131208.7	Butte	29731.01	4. 4732096
		724.9	683701.3	2482912.0		15124.01	4.1796671
North Dakota-South Dakota, milepost 333, 1912.	$\left\{\begin{array}{lll} 45 & 56 & 43.386 \\ 103 & 28 & 21.443 \end{array}\right.$	$\begin{array}{r} 1339.4 \\ 461.9 \end{array}$	1261235.5	3061226.7	North Dakota-South Dakota milepost 333 eccentric.	326.07	2.513315
Eagles Nest Butte, cairn, 1912	$\left\{\begin{array}{llll}45 & 55 & 26.182 \\ 103 & 29 & 21.280\end{array}\right.$	808.3	771832.6	2571117.6	Table..	13383.3	4.126562
		458.5	2014231.6	214305.8	North Dakota-South Dakota milepost 333 eccentrlc	2773.0	3.442956

GEOGRAPHIC POSITIONS-Continued.

One hundred and fourth meridinn-Continued.

Statlon.	Latitude and longitude.	Seo onds in moters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Supplementary points-Continued.	(16 1057		17149	517		Meters.	
	1032410.452	224.2	17149 2015312.59 12		Biack.	24250.44 2993.58	$\begin{aligned} & 4.38+7197 \\ & 3.4761909 \end{aligned}$
Bowman water tank, 1912			2621843.05	823800.01	Whetst	34663.33	4. 53988702
			3251048.82	1452453.68	Lodge..	44363.02	4.6470211
			315728.41	2114028.71	Table.	37327.27	4.5720202
Bowman longitude,	$\left\{\begin{array}{lll}46 & 10 & 57.528 \\ 103 & 24 & 11.012\end{array}\right.$	1776.3 236					
Buffalo Springs, 1912...................	$\begin{cases}46 & 10.20 .683 \\ 103 & 14 \\ 00.696\end{cases}$	$\begin{array}{r} 638.6 \\ 14.9 \end{array}$					
			1080851.6	2880209.2	Butte.	12581.71	4.0997397
			2545920.9	751117.7	Whetstone	22035.78	4.3431284
Sentinol Butte schoolhouse flagpole, ${ }^{1}$ 1912.	$\left\{\begin{array}{ccc} 46 & 55 & 04.277 \\ 103 & 50 & 19.054 \end{array}\right.$	132.1	2182800.6	382947.1	Hump	4957.0	3.695219
		403.2	3563940.9	1763951.3	Sentin	5176.0	3.713994
Beach Catholic church, cross, ${ }^{1} 1912 . .$.	$\left\{\begin{array}{rrr}46 & 54 & 49.726 \\ 104 & 00 & 05.435\end{array}\right.$	1535.4	2541828.8	742723.7	Hump	16082.5	4.200354
		115.0	2901748.3	1102507.0	Sentin	13561.9	4.132320
Schoolhouse north of Hump, chimney, ${ }^{1} 1912$.	$\left\{\begin{array}{lll} 47 & 01 & 23.379 \\ 103 & 47 & 25.308 \end{array}\right.$	721.9	41851.5	181831.1	Hump	7848.7	3.894797
		534.5	111916.9	1911720.4	Sentin	17208.0	4.235730
North Dakota-Montana boundary monument eccentric, 1912.	$\left\{\begin{array}{lll} 47 & 12 & 42.065 \\ 104 & 02 & 39.376 \end{array}\right.$	1299.1	3265436.05	1470525.00	Hump	34322.2	4. 53555757
		828.5	1180430.63	2975906.78	Blue.	10512.3	4. 0216980
North Dakota-Montana boundary monument, 1912.	$\left\{\begin{array}{lll} 47 & 12 & 41.959 \\ 104 & 02 & 39.375 \end{array}\right.$	$\begin{array}{r} 1295.8 \\ 828.5 \end{array}$	1793941	3593941	North Dakota-Montans houndary monument eccentric.	3.28	0.51587
Section 7, T. 143 N., R. 105 W., southwest corner.	$\left\{\begin{array}{lll} 47 & 12 & 40.981 \\ 104 & 02 & 39.380 \end{array}\right.$	$\begin{array}{r} 1265.6 \\ 828.7 \end{array}$	1800738	00738	North Dakota-Montana houndary monument eccentric.	33.48	1. 52479
Section 22, T. 17 N., R. 60 E., southeast corner.	$\left\{\begin{array}{lll} 47 & 12 & 33.603 \\ 104 & 02 & 39.408 \end{array}\right.$	$\begin{array}{r} 1037.8 \\ 829.3 \end{array}$	1800856	00856	North Dakota-Montana boundary monument eccentric.	201.31	2.417156
Lovering (U. S. G. S.)................	$\left\{\begin{array}{llll}47 & 42 & 43.961 \\ 104 & 21 & 24.073\end{array}\right.$	$\begin{array}{r} 1357.7 \\ 501.8 \end{array}$	26514	8514	Lovering.	2.88	0. 45939
Bencb mark ${ }^{\text {232 }}$ (Mo. River Com.)...	$\left\{\begin{array}{ccc}48 & 01 & 49.033 \\ 104 & 05 & 18.270\end{array}\right.$	1514.6	3494540.22	1694618.66	Ferr	6034.53	3.7806436
		378. 6	573705.53	2373338.89		6824.39	3. 8340636
Bencb mark 21 (Mo. Rlver Com.)....	$\left\{\begin{array}{llll}48 & 03 & 39.440 \\ 104 & 07 & 53.275\end{array}\right.$	1218. 3	195019.99	1994848.55	Cutoff.	7513.15	3.8758223
		1103.1	1233751.17	3033322.23	Lanark	8980.07	3.9532796
Bench mark ${ }^{\text {P3 }}$ ((Mo. Rlver Com.)....	$\left\{\begin{array}{lll} 48 & 00 & 11.187 \\ 104 & 02 & 44.329 \end{array}\right.$	$\begin{aligned} & 345.6 \\ & 918.9 \end{aligned}$	760804	2560801	Mondak	96.89	1.98828
Steibl's house, chimney, 1912.........	$\begin{array}{r}48 \\ 104 \\ \hline\end{array}$	71.0	2142055.0	342132.0	Montan	1828.2	3.262027
		8.7	65229.0	1865209.6	Ferry	4527.7	3.655873
			731933.6	2531509.1	Cutof	7700.9	3.880544
Snowden water tank, ${ }^{1} 1912$.	$\left\{\begin{array}{lll}48 & 02 & 17.694 \\ 104 & 05 & 47.337\end{array}\right.$	546.5	3461216.3	1661316.3	Ferr	7026.2	3. 846720
		980.6	1263911.6	3063309.0	Lanar	12567.4	4.099246
Bainville Cathoilc Church, bighest spire, 1912.	$\left\{\begin{array}{lll}48 & 08 & 12.190 \\ 104 & 13 & 16.423\end{array}\right.$	376.5	1960256.6	160522.5	Snake.	14601.9	4.164410
		339.5	2084152.5	284359.6	Bail	7337.6	3. 865551
Section 13, T. 155 N., R. 102 W., northwest corner.	$\left\{\begin{array}{lll}48 & 15 & 21.313 \\ 103 & 45 & 16.617\end{array}\right.$	658.3 342	3090247	1290300	Wilisto	447. 70	2.650987
		3428					
Section 4, T. 157 N., R. 102 W., southwest corner.	$\left\{\begin{array}{lll}48 & 26 & 44.321 \\ 103 & 53 & 04.372\end{array}\right.$	1369.0	2000324	200325	Glady	36.61	1. 56360
	$\left\{\begin{array}{lll}48 & 24 & 53.802 \\ 103 & 50 & 26.702\end{array}\right.$	1661.9	1365356.7	3165159.2	Gladys	4723.8	3.674287
Bonetraill scboolhouse, beliry, 1912...		549.0	2573803.5	773835.3	Bonetraill	894.3	2.951476
			3392509.5	1592913.9	Will is	19185. 5	4.282973
Bilby (U, S. and Canada boundary survey), 1912.	$\left(\begin{array}{rrr}48 & 54 & 47.587 \\ 103 & 32 & 50.957\end{array}\right.$	1469.9	1250613.4	3045748.6	Bowie.	16630.1	4.220895
		1037.5	1301854.6	310 15. 46.0	Ambrose	6678.1	3.824650
			2074356.3	274643.1	Schooi.	9660.5	3.984999
			2692023.4	892151.7	Amhros	2353.5	3.377214
Jasper (U. S. and Canada boundary survey), 1912.	$\left\{\begin{array}{ccc}48 & 53 & 27.806 \\ 103 & 39 & 27.787\end{array}\right.$	858.9		3351125.8	Borrie.	13229.4	
		566.0	228 252 59 58 58.6	$\begin{array}{llll}48 & 51 & 11.6 \\ 73 & 04 & 57.6\end{array}$	School.	16716.5 849.2	$\begin{aligned} & 4.223145 \\ & 3.926818 \end{aligned}$
Ambrose Presbyterian Church steeple. 1812.	$\left\{\begin{array}{rrr}48 & 57 & 11.468 \\ 103 & 28 & 52.441\end{array}\right.$	354.2	291438.8	2091307.2	Ambrose	5062.4	3.704360
		1086.9	891923.0	2691314.4	Ambrose	9945. 5	3.997625
			105323.3	2852110.4	Bowle	19154.0	4. 282259
			1750431.6	3550418.6	Scho	4119.5	3.614845

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To statlon.	Distance.	Logarithm
Principal points.	- ' ${ }^{\prime}$		- " ${ }^{\prime \prime}$	- ' "		Mefers.	
Arapahoe, 1891............	$\left\{\begin{array}{r}38 \\ 102 \\ 46 \\ 06\end{array} 01.519 .832\right.$	46.8 1059.4	$\begin{array}{llll}201 & 13 & 23.16 \\ 295 & 04.48\end{array}$	21 4611 18 18 49	McLane.	31530.12 40747	4. 4987257
	$\{1020543.882$	1059.4		46 73 24 1	Curlew	40747.11 28396.26	4.6150968
Monotony, 1892.	(390144.752	1350.1	2691317.61	892405.78	McLane.	24759. 27	4. 3937378
	102 14 58.626	1410.2	2971024.65	1172801.65	Curlew	45596. 54	4. 6589319
			3351603.18	1552151.53	Arapahoo	32010.98	4. 5052989
Cheyenne Wells, 1892	$\{385703.559$	109.7	2362324.28	562905.06	Monotony.	15684. 55	4. 1954719
	$\{1022401.683$	40.5	3073245.61	1274414.39	Arapahoe.	33427. 32	4.5241016
First View, 1892.	(38 4742.811	1320.2	2163611.70	364146.63	Cheyenne Wells.	21552.31	4. 3334939
	102 32 55.360	1336.0	2245300.40	450416.73	Monotony.	36702.02	4. 5646899
			$274 \begin{array}{llll}23 & 34.75\end{array}$	944036.62	Arapahoe.	39503.36	4. 5966341
Landsman, 1892.	385652.445	1617.3	2524651.94	725937.29	Monotony.	30633.15	4. 4861917
	$\{1023515.085$	363.2	2684349.68	885053.00	Cheyenne W	16219.55	4. 2100388
			3484450.91	1684618.60	First View	17280.17	4. 2375479
Kit Carson,	$\{384207.623$	235.1	2204917.49	405931.89	Landsman.	36101.18	4. 5575214
	$\{1025135.083$	847.7	2485900.89	691041.73	First View	28947. 57	4. 4616121
Eureka, 1881.	$\mid 385840.110$	1237.0	2775007.94	980031.08	Landsman.	24088.66	4.3818126
	1025146.059	1108.7	3063229.34	1264419.16	First V lew	33963.08	4. 5310070
			359301257	1793019.45	Kit Carson	30605. 63	4. 4858014
Aroya, 18	$\left\{\begin{array}{l}38 \\ 48 \\ 10.006\end{array}\right.$	308.5	2345124.77	550326.50	Eureka.	33839.18	4. 5294198
	$\{1031055.610$	1341.9	2913819.34	1115025.78	Kit Carson	30169.10	4. 4795624
Overland, 1	$\left\{\begin{array}{lll}39 & 02 & 20.344 \\ 103 & 10 & 15.645\end{array}\right.$	627.4 376.3	2841031.14 324 1	$\begin{array}{lll}104 & 22 & 09.55 \\ 144 & 15 \\ 15.36\end{array}$	Eureka. .	27547.64	4. 4400844 4, 6640046
			20622.47	1820557.36	Aroya.	26239.18	4. 4189503
Hugo,	\{ 390433.113	1021.2	2774510.33	975807.46	Overland.	29936.01	4. 4781939
	$\{1033048.995$	1177.7	3162521.51	1363751.55	Aroya.	41774. 60	4. 6209123
Adobe, 1881	[38 4040.853	1259.8	1843508.04	43640.53	Hugo.	44308.31	4. 6464851
	$\{1033316.360$	395.5	2193557.43	395023.69	Overland	52095.98	4.7168042
			2464334.10	665733.13	Aroya	35218.28	4.5467881
quare Blufi	¢ 385108.351	257.5	2273851.91	475045.42	Hugo.	36906. 45	4.5671023
	$\{1034943.645$	1052.4	3085858.77	1290916.94	Adobe	30700.94	4.4871516
Holt, 1880.		647.5	2635912.25	841630.89	Hugo.	39842.50	4. 6003466
	(103 58 17.376	417.9	32908 28.63	1491351.55	Square Bluff	24151.46	4.3829433
Cramer Guich, 1880.	$\left\{\begin{array}{l}38 \\ 35 \\ 36.137\end{array}\right.$	1114.3	1971618.69	172010.59	Square Bluffs.	30108. 03	4. 4786823
	$\{1035554.360$	1315.6	2535505.62	740913.51	Adobe.	34162.64	4. 5335514
BIg Springs, 1880.	$\left\{\begin{array}{l}38 \\ 45 \\ 06.471\end{array}\right.$	199.5	2530032.12	731628.40	Square Bluffs.	38478.04	4.5852130
	$\{1041509.707$	234.4	3020550.30	1221752.24	Cramer Gulch	33004.99	4.5185796
Holcolm Hills, 1880.	[390008.200	252.9	2620524.21	821826.48	Holt.	30168.27	4. 4795504
	$\{1041859.830$	1439.7	2911938.13	1113801.61	Square Blufis	45460. 73	4. 6576364
Hololm Hill, 1880			3484152.39	1684416.83	Big Springs.	28353.95	4.4526136
Divide, 1879.	$\left\{\begin{array}{l}39 \\ 04 \\ 04 \\ 15.307\end{array}\right.$	472.0	2940837.34	1141601.23	Holcolm Hills.	18585.24	4. 2691681
	$\{1043044.631$	1072.9	3272805.73	1473752.97	Blg Springs.	41981.08	4.6230536
Corral Blufts, 1879.	\| 385211.680	360.2	1971946.26	172248.45	Divide.	23378.69	4.3688201
	1043534.310	827.2	2382305.31	583330.29	Holcolm Hills.	28100.32	4.4487113
			2934924.17	1140211.69	Big Springs.	32325.13	4. 5095403
EI Paso east base, 1	385722.331	688.6	495708.67	2295211.96	Corral Bluffs.	14875. 45	4.1724701
	1042741.954	1010.2	1605832.80	3405637.80	Divide.	13472.04	4.1294334
			2474832.32	675400.75	Holcolm Hills	13568.80	4.1325413
			3211746.63	1412538.54	Big Springs........	29050.07	4. 4631471
EI Paso west base, 1879..	(38 588 43.188	1331.9	2124809.30	325102.24	Divide..	12187. 82	4.0859261
	1043519.292	464.4	2833407.03	834423.29	Holcolm Hills....	23717.78	4.3750740
			2824312.26	1024759.87	E1 Paso east base	11288.98	4. 0526549 4.0820023
			14303.62	1814254.18	Corral Bluff	12078.20	4.0820023
Plateau, 1894.	$\left\{\begin{array}{l}38 \\ 23 \\ \\ 104 \\ 32.404\end{array}\right.$	999.2	1762559.15	3562433.57	Corral Blufis.	53117.55	4. 7252380
	$(1043317.232$	418.2	2131918.60	333036.67	Big Springs.	47804.45	4. 6794683
Pikes Peak, 1895	385026.293	810.8	2404755.04	610757.56	Divide.	52672.80	4. 7215864
	1050237.268	898.8	2775508.54	982452.70	Blg Springs	69422.24	4. 8414986
			3191743.98	1393602.44	Plateau.	65494.52	4.8162049
Bison, 1894.	391418.521	571.2	2820051.85	1023810.61	Dlvide	87140.73	4.9402212
	1052950.196	1203.8	3181249.14	1382957.66	Pikes Peak.	59100.81	4.7715934
Mount Ouray,	$\left\{\begin{array}{lll}38 & 25 & 22.175 \\ 108 & 13 & 27.238\end{array}\right.$	683.8		350640.72			
	1061327.238	660.8	245 270 20 854.84 .82	660508.20 915053.46	Pikes Peak Plateau...	$\left\lvert\, \begin{aligned} & 112774.26 \\ & 145857.21 \end{aligned}\right.$	$\begin{aligned} & 5.0522100 \\ & 5.1639279 \end{aligned}$

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Iogarithm.
Supplementary points-Continued.	- ' 10		- 46			Meters.	
Mount Harvard, cairn, 1894	$\left\{\begin{array}{rrr}38 & 55 & 28.365 \\ 106 & 19 & 12.944\end{array}\right.$	874.6 311.8	464810.9 1532119.1	$\begin{array}{llll}226 & 05 & 33.1 \\ 333 & 16 & 36.7\end{array}$	Uncompahgre.	137380.1 24022.1	5. 1379237 4.3806105
			2742421.1	951226.0	Pikes Peak.	111160.6	5. 0459510
			3512610.9	1712946.9	Mount Ouray	56317.8	4.7506458
Mount Princeton, cairn, 1894.	(384457.560	1774.9	550926.2	2342358.2	Uncompahgre.	130397.9	5. 1152705
	106 1431.029	749.2	1564756.3	3364017.3	Mount Elbert	44536.5	4. 6487164
			264 357 353 3	844850.7 1773358.2	Pikes Peak Mount Oura	104594.7 36275.6	5. 0195096 4.5596151
Mount Yale, 1894.	(38 5039.561	1219.9	494830.5	2290539.4		131906.6	
	10618 47.823	1153.3	1592808.6	3392310.8	Mount Elbert.	32437.9	5. 4.5110530
			2694852.1	${ }^{9} 96338.8$	Pikes Peak.	110226.9	5. 0422876
			3503344.5	1703704.7	Mount Ouray	47426.8	4. 6760239
Leadville, Ninth Street schoolhouse,	$\{391505.26$	162.2	41050	1840941	Mount Harvard.	36389.0	4.560970
cupola, ${ }^{1} 1894$.	$\{1061722.82$	547.2	420948	2220355	Mount Elbert.	19990.2	4.300818
Mount Massive, cairn, 1894.	\| 391115.376	474.2	3411622.6	1611731.6	Mount Elbert.	8171.8	3.912320
	$\{1062830.586$	734.0	703426.9	2501051.6	Treasury Mountain	57248.6	4.757765
			2655154.8	862900.6	Bison......	84646.5	4.927609
Mount of the Holy Cross, cairn, ${ }^{1} 1893$. .	\{ 392801.17	36.1	3552200.1	1752322.9	Mount Elhert.	38884	4. 589766
	(106 2852.12	1246.0	465314.4	2262948.4	Treasury Mountain.	73248	4.864797
La Garita, king summit, 1893..........	375520.52	632.8	1015148.1	2811746.1	Uncompahgre.	82612.6	4.917046
	1063224.77	605.0	1581631.4	3375541.0	Treasury Moun	130647.2	5.116100
La Garita, range peak. 1893.	380123.690	730.4	963951.4	2761956.2	Uncompahgre.	47591.8	4. 677532
	1065522.370	545.6	1720742.7	3520108.9	Treasury Mountain	111085.9	5.045659
			2335036.9	541633.1	Mount Ouray.	75564.3	4.878317
Gunnison aximuth,	1383246.597	1436.8	2822550.09	1025157.92	Mount Ouray.	62581.67	4. 7964471
	10655 26.644	645.2	415509.28	2213509.72	Uncompahgre.	70599.94	4.8488043
West Elk Peak, cairn,	384305.077	156.5	174915.2	1973927.8	Uncompahgre	75322.0	4. 876922
	1071155.992	1352.8	841323.1	2625724.0	Mount Waas.	177741.6	5. 249789
			1944755.8	14.5142 .4	Treasury Mountain	34031.6	4.531882
			2904741.0	1112408.6	Mount Ouray .	91044.1	4.959252
Gunnison Peak, cairn, 1893.	384844.035	1357.8	44953.7	1844656.5	Uncompahgre.	82482.9	4. 916364
	1072256.680	1367.6	795325.0	2584414.3	Mount Waas.	163378.2	5. 213194
			2273332.2	474414.2	Treasury Mountain	33318.1	4.522680
Leon Peak, low cairn, 1893.	390446.496	1433.9	635506.5	2430303.9	Mount Waas	134339.8	5.1282046
	1075036.104	867.8	1172323.4	2968913.3	Tavaputs.	112498.9	5.0511484
			2760957.0	963800.2	Treasury Mountain	64885.8	4.8121500
orth Mann, cairn,	$\{392312.25$	377.8	515213.2	2310050.7	Mount Waas.	150924.2	5.178759
	\{107 5156.34	1348.3	1001210.6	2792842.9	Tavaputs	99544.9	4.998019
South Mann, cairn,	$\{392108.58$	264.6	522300.4	2313248.6	Mount Was .	146490.0	5. 165808
	(107 5347.10	1127.8	1023937.8	2815721.4	Tavaputs.	97701.4	4.989901
Mount Sneffels, cairn, 1895.	380014.236	438.9	1154532.0	2945211.0	Mount Waas	138962.6	5.1428980
	1074730.523	744.7	1483830.5	3275254.5	Tavaputs.	200485.9	5. 3020839
			1612148.0	3410721.4	Mesa.	105090.0	5. 0215613
			2080653.5	283247.6	Treasury Mount	127427.3 29952.1	5. 1052225
			2552034.2	753246.8	Uncompahgre..	29952.1	4.4764271
Wetterhom, cigar peak, 1835.	380338.972	1201.7	1100016.2	2885625.0	Mount Waas.	159305. 1	5. 2022298
	1073037.123	905.0	1420726.8	3211114.0	Tavaputs.	209346.3	5. 3208653
			1480938.4	3274440.6	Mesa..........	109951.0	5. 0411992
			1983628.5 2540718.4	18 74 1	Treasury Moun Uncompahgre.	111776.6 4445.6	5.0483509 3.6479338
Lone Cone, 1893	\| 375317.100	527.2	1303730.1	3100124.6	Mount Waas.	111697.3	5. 0480428
	1081517.852	436.2	1832134.3	32424.3	Mesa.	112566.2	5. 0514081
			2183336.0	391645.1	Treasury Mountain.	160690.6	5. 2059905
Mount Wilson,	(375021.321	657.3	1260221.2	3051629.6	Mount Waas.	133289.3	5. 1247952
	1075928.028	685.4	155 172 175 15	3343749.5	Tavaputs.	208393.2	5. 3185835
			$\begin{array}{llll}172 & 08 & 32.9 \\ 210 & 34 \\ 57.6\end{array}$	$\begin{array}{r}352 \\ 310033.2 \\ \\ \hline 1\end{array}$	Mesa..........	118927.3 151956.9	5.0752817 5.1817205
			2404939.1	610011.6	Uncompahgre.......	53216.5	4.7260459
Mesa, 1893.	\| 385401.482	45.7	3253233.86	1455921.02	Uncompahgre.	111255.70	5. 0463223
	1081044.122	1063.2	663542.47	2455621.62	Mount Waas	99599. 56	4. 9982574
			1350652.01	3143530.84	Tavaputs.	100670.85	5.0029038
Chiquita, 1895.	\|38 5438.264	1179.9	1563045.38	3361720.66	Tavaputs	76245.93	4.8822167
	108 3906.632	159.8	2712606.85	914356.10	Mesa..	41038. 42	4. 6131906
			3113037.10	1321504.15	Uncompahgre	139476.30	5.1445004
dunction stand pipe,	(39 0418.567	572.6	1434052.71	3232357.38	Taraputs.	64622.87	4. 8103862
	$\{1083336.340$	873.6	23 58 298 47.80	2035519.98	Chiquita	19580.84	4.2918314
			2994945.10	1200408.41	Mesa...	38116. 54	4.5811135

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azlmuth.	Back azimuth.	Tostatlon.	Distance.	Logar rlthm.
Supplementary points-Continued.	283248012		3285757.8	1485810.5		Meters.	
La Salle, northwest peak, cairn, 1893..	$\left\{\begin{array}{rrr}38 & 32 & 48.012 \\ 109 & 13 & 58.653\end{array}\right.$	1480.5 1420.3	3285757.8 3581244.0	$\begin{array}{llll}148 & 58 & 10.5 \\ 178 & 12 & 53.7\end{array}$	Mount Wass...................	$\begin{array}{r} 958.0 \\ 11998.5 \end{array}$	$\begin{aligned} & 2.980469 \\ & 4.079199 \end{aligned}$
La Salle, northwest plak, cairn, 18J..			105749.2	1905650.2	Mount Wass azimuth mark.	12099.3	4.082761
La Salle, north peak, cairn, 1893......	383302.190	67.5	3563208.6	1763210.6	Mount Waas.	1258.7	3.099912
	1091341.442	1003.5	122652.1 433756.4	1922542.4 223 37	Mlount Wass azimuth mark La Salle northwest peak....	12012.0 604.0	$\begin{aligned} & 4.100781 \\ & 2.781035 \end{aligned}$
	$\left(\begin{array}{rrrr}38 & 31 & 38.608 \\ 102 & 13 & 59.456\end{array}\right.$	1190.4	3574240.3	1774250.5	Mount Peale.	9860.6	3.993901
C. V. South, cairn, 1893..		1440.1	131110.1	1931011.6	Mount Waas azimuth mark	10002.2	4.000095
			1803114.1	03114.6	La Salle northwest peak.	2140.1	3.330435
			1893622.9 2011200.2	9 21 12 12 1313.4	La Salle north peak	2613.9 1416.7	3.417282 3.151283
C. V. North, cairn, 1893...............	$\left\{\begin{array}{ccc}38 & 32 & 04.699 \\ 109 & 14 & 04.874\end{array}\right.$	$\begin{aligned} & 144.9 \\ & 118.1 \end{aligned}$	3504408.9	1704412.3	C. V. South	815.2	2.911237
			3571043.5	1771057.1	Mount Peale	10670.1	4.028169
			$\begin{array}{r}113138.8 \\ 186 \\ \hline 1\end{array}$	1913043.7	Mount Waas azimuth	10760.1	4.031815
			1862607.6	17 1750808.0	La Salle north peak	1344.0 1861.3	3. 2698812
			2311530.0	511546.6	Mount Wass.	825.1	2.916486
North boundary, flag, Colorado-Utah, 1893.	(38 3357.976	1787.7	741235.0	2540605.3	C. V. South.	15739.7	4.196996
	1090334.184	827.6	783303.2	258 261 261 40	Mount Waas.	14928.0	4.174001
			$\begin{array}{llll}81 & 56 & 02.4 \\ 83 & 22 & 47.1\end{array}$	$\begin{array}{llll}26149 & 33.2 \\ 263 & 16 & 28.6\end{array}$	La Salle northwest p La Salle north peak.	$\begin{aligned} & 15273.4 \\ & 14803.4 \end{aligned}$	$\begin{aligned} & 4.183935 \\ & 4.170361 \end{aligned}$
North boundary, stone, ColoradoUtah, 1893.	$\left\{\begin{array}{lll} 38 & 33 & 56.987 \\ 109 & 03 & 34.184 \end{array}\right.$	$\begin{array}{r} 1757.2 \\ 827.6 \end{array}$	180	0	North boundary, flag.	30.48	1. 48402
Mlddle boundary, monument, ${ }^{1}$ Colo-rado-Utah, 1893.	$\left\{\begin{array}{llll} 38 & 30 & 44.20 \\ 109 & 03 & 34.29 \end{array}\right.$	1362.7	1013804.2	2813148.0	Mount Waas.	14935.2	4.174211
		830.9	1061122.5	2860504.3	La Salle, north	15309.2	4.184953
	(382746.723	1440.7	1200612.2	2995956.0	Mount Waas.	16915.6	4.228287
South boundary, Colorado-Utah, 1893	1090334.058	825.7	1213551.4	3012922.5	La, Salle northwest p	17758.0	4.249394
			1233057.0	3032438.8	La Salle north peak	17640.8	4.246520
	$\left\lvert\, \begin{array}{rrr} 38 & 26 & 19.073 \\ 109 & 13 & 43.219 \end{array}\right.$	$\begin{array}{r} 588.1 \\ 1048.2 \end{array}$	761500.2	2551604.3	Mount Ellen	143118.4	5. 1556954
			1414457.6	3210355.4	Patmos Head	151081.5	5.1792112
Mount Peale, 1883......................			1803638.1	03641.1	Mount Was.	11174.1	4.0482135
			1885525.9 2402235	$\begin{array}{r}9 \\ 610351.8 \\ 6101 \\ \hline\end{array}$	Tavaputs	123780.6	5.0926735
			2841205.2	1051744.2	Uncompahgre.	159939.9	5. 5.2039567
	$\left\lvert\, \begin{array}{ccc} 38 & 27 & 48.256 \\ 109 & 14 & 00.343 \end{array}\right.$	$\begin{array}{r} 1487.9 \\ 8.3 \end{array}$	750825.9	2540939.6	Mount Ellen.	143395. 5	5.1565337
			1411257.5	3203205.5	Patmos Head.	148671.4	5.1722274
Middle La Salle			1833733.9	33747.6	Mount Wass	8440.5	3.9263693
Midal La Salle peak,180			2414323.6	622756.2	Mess. .	103791.3	5. 0161608
			2850638.1	1061228.8	Uncompahgr	161037.4	5. 2069268
Mount Waas azimuth mark, cairn, 1893.	$\left\{\begin{array}{r}38 \\ 38 \\ 109 \\ 15\end{array}\right.$	701.9	1193325.5	2992306.6	Moab.	27669.6	4.4420026
		813.4	1461545.4	3255838.9	Thompsons Springs, west tank	71153.1	4. 8521938
			1940943.3	141055.0	Mount Wass	11406.8	4.0571630
Tbompsons Springs, west tank, 1893. .	$\left\{\begin{array}{r}38 \\ 189818.490 \\ 1295.086\end{array}\right.$	$\begin{array}{r} 570.1 \\ 1326.2 \end{array}$	$\begin{array}{lllll}318 & 23 & 10.3 \\ 323 & 15 & 05.5\end{array}$	$\begin{array}{llll}138 & 41 & 30.1 \\ 143 & 33 & 10.6\end{array}$	Mount Was...	64067.1 70295.1	4.8066349 4.8469252
			$\begin{array}{r}323 \\ 45 \\ 45 \\ 45 \\ \hline 15.6\end{array}$	143 225 04 12.6 10.6	Mount Ellen...	134482.8	4.8469252 5.1286669
Moah (Warner's ranch), 1893.........	$\left\{\begin{array}{ccc} 38 & 33 & 44.255 \\ 109 & 32 & 07.662 \end{array}\right.$	1364.6	2752001.8	953133.2	Mount Waas.	26984.1	4.43110s0
		185.5	2970330.2	1171457.8	Mount Pea	30077.6	4.4782438
Moab dltcb mark, 1893................	$\left\{\begin{array}{lll} 38 & 33 & 45.268 \\ 109 & 32 & 07.541 \end{array}\right.$	$\begin{array}{r} 1395.8 \\ 182.6 \end{array}$	52103.8	1852103.9	Moah (Warner's ranch)	31.387	1.49675
Valley Knoh, 1890..	$\cdot\left\{\begin{array}{lll} 38 & 59 & 05 . \\ 110 & 04 & 18.536 \end{array}\right.$	176.6	1595509.07	3394552.74	Patmos IIead.	61195.29	4. 7867180
		446.2	3034245.63	1241429.12	Mount Wa	88516.10	4.9470223
Hartman, 1898.	$\left\{\begin{array}{lll} 39 & 01 & 49.899 \\ 110 & 09 & 54.939 \end{array}\right.$	1538.7	3015943.3	1220315.0	Valley Knoh.	9546.9	3.979864
Mlca, 1898...............................	$\left\{\begin{array}{lll}38 & 59 & 06.040 \\ 110 & 10 & 04.782\end{array}\right.$	186.3	1824057.3	24103.5	Hartman.	5058.5	3. 704018
		115.1	2700211.0	900548.8	Valley Knoh	8333.6	3.920831
Reservoir, 1898.	$\left\{\begin{array}{l}38 \\ 110 \\ 11093950.031 \\ \hline 0.250\end{array}\right.$	926.1	1812238.5	12241.2	Hartman.	4314.4	3. 634918
		1425.9	2751133.0	951507.3	Valley Knol	8234.2	3.915623
			101206.3	1901202.8	Mlea	751.7	2.876024
Wash, 1898.	$\left\{\begin{array}{r}30 \\ 110 \\ 10 \\ \hline 11\end{array}\right.$	332.0	2160538.9	360637.2	Hartman.	3783.5	3. 577892
		664.4	3003404.0	1203459.6	Reservoir	2469.6	3. 392620
			3150158.9	1350251.0	Mlca	2820.8	3. 450366
Green Rlver east base, 1898.	$\left\{\begin{array}{rrr}38 & 59 & 37.589 \\ 110 & 10 & 15.338\end{array}\right.$	$\begin{array}{r} 1159.1 \\ 369.1 \end{array}$	1202831.6	3002746.1	Wash.	2017.7	3.304849
			1865126.4	65139.2	Hartman	4109.4	3. 613783
			3452149.9	1652156.5	Mlica.	1005.5	3.002381
			3010256.6	1210306.7	Reser	451.9	2.655053
Green Rlver west hase, 1808.	$\left\{\begin{array}{rrr}38 & 59 & 36.264 \\ 110 & 11 & 03.438\end{array}\right.$	$\begin{array}{r} 1118.3 \\ 82.7 \end{array}$	1512028.0	3312012.8	Wash	1212.5	3. 083697
			2675825.6	875855.9	Green lilver east	1158.3	3. 063808
			$\begin{array}{llll}277 & 05 & 16.3 \\ 303 & 25 & 41.9\end{array}$	$\begin{array}{r}97 \\ 123 \\ \hline 25\end{array}$	Rescrvoir.	1556.6 1691.6	3.192187

${ }^{2}$ No check on this position.

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga rithm.
Supplementary points-Continued.	- ' ${ }^{\text {c }}$		- ' "	4		Meters.	
	$\left(\begin{array}{c}38 \\ 110\end{array} 5950.639\right.$	1561.6	7 9 4453.3	1874451.0	Reservoir	641.4	2.807099
Green River north meridian, 1898....	1100955.658	1339.4	90420,8 10540	1890415.0	Mica.	1392.7	3.143858
			1801609.6	- 161610.0	Hartman.	3677.7	3.361345 3.565572
Green River south meridian, $1898 .$. .	$\{385930.690$	946.4	764603.3	2564601.0	Reservoir	88.8	1.948533
	$\begin{cases}110 & 09 \\ 55.658\end{cases}$	1339.5	1800000.3	00000.3	Green River north meridian.	615.2	2.785994
Green River longitude, 1898............	$\left\{\begin{array}{rrr} 38 & 59 & 30.288 \\ 110 & 09 & 55.658 \end{array}\right.$	$\begin{array}{r} 934.0 \\ 1339.5 \end{array}$	1800000.3	00000.3	Green River south meridian. .	12.40	1.09342
Green River latitude, 1898.............	$\left\{\begin{array}{rrr} 38 & 59 & 30.288 \\ 110 & 09 & 55.712 \end{array}\right.$	$\begin{array}{r} 934.0 \\ 1340.8 \end{array}$	2700000.0	900000.0	Green River longitude.	1.30	0.1139
Cliff, 1898. .	$\int \begin{array}{rrr} 39 & 03 & 51.601 \\ 110 & 12 & 22.122 \end{array}$	$\begin{array}{r} 1591.2 \\ 531.8 \end{array}$	3163953	1364126	Hartman.	5158.7	3.712538
				1584419	Green River east bas	8405.7	3.924574
			339 349 25	1592650 1690621	Mica.	9405.2 6935.0	$\begin{aligned} & 3.973368 \\ & 3.841045 \end{aligned}$
Green R iver scboolhouse, 1898........	$\left\{\begin{array}{rrr} 38 & 59 & 39.11 \\ 110 & 09 & 40.91 \end{array}\right.$	$\begin{array}{r} 1206.0 \\ 984.5 \end{array}$	292402	2092347	Mica.	1170	3.06836
			573702	2373650	Reservoi	523	2.71826
			1104938	2904831	Wasb.	2747	3.43884
			1751301	3551252	Hartman.	4047	3.60716
Green R iver botel, 1898.	$\left\{\begin{array}{r}38 \\ 110 \\ 110 \\ \hline 0\end{array}\right.$	$\begin{array}{r} 890.6 \\ 1265.0 \end{array}$	223931	2023923	Mica.	763	2. 88274
			1022230	2822225	Reservo	165	2.21686
			1192740	2992640	Wash.	2627	3.41939
San Rafael Knob, 1890.	$\left\{\begin{array}{llll}38 & 48 & 47.802 \\ 110 & 51 & 14.159\end{array}\right.$	$\begin{array}{r} 1473.9 \\ 341.6 \end{array}$	1230033.3	3023756.4	Wasatcb...	61817.2	4. 7911092
			$\begin{array}{llll}211 & 07 & 00.8 \\ 357 & 23 & 37.9\end{array}$	312723.5 1772507.2	Patmos Head	89518.6 76877.0	4.9519133 4.8857965
Mount Hilgard, cairn, 1884.	$\left\{\begin{array}{ccc}38 & 40 & 06.364 \\ 111 & 38 & 25.973\end{array}\right.$	$\begin{aligned} & 196.2 \\ & 627.9 \end{aligned}$	675421.3	2472530.9	Tusbar.	72705.0	4.8615643
			1484900.7	3282737.3	Scipio.	94182.8	4.9739716
			1980451.4	181154.6	Wasatcb	52178.2	4. 7174887
			3094819.2	1301907.1	Mount Ellen	94339.1	4.9746916
Monroe, 1885 .	$\int \begin{array}{rrr} 38 & 37 & 33.071 \\ 112 & 00 & 57.117 \end{array}$	$\begin{aligned} & 1019.7 \\ & 1381.6 \end{aligned}$	563434.7	2361946.7	Tusbar.	41443.3	4. 617454
			1651913.5	3451434.6	Lone Tree	42267.7	4.626009
			1690446.0	3485733.8	Scipio....	86738.3	4. 938211
			2194402.2	400032.5	Mooseneah	59416.8	4.773909
			2214637.0	420748.0	Wasatch.....	73029.6	4.863499
			2613904.9	815308.9	Mount Hilgard.	33014.1	4.518700
Mount Alice, cairn, ${ }^{2} 1990$.	$\left\{\begin{array}{rrr} 38 & 41 & 03.66 \\ 111 & 32 & 35.74 \end{array}\right.$	112.8	1891424.0	91747.3	Wasatch	48450.8	4.6853010
		863.8	3141324.9	1344035.6	Mount Ellen.	89227.7	4.9504999
	[390211.911	367.3	465509.2	2262349.2	Tushar.	99807.0	4.999161
	1113437.961	913.0	1261411.7	3055019.2	Scipio.	67222.7	4. 827516
Mooseneah, 1890.			1692138.0	3491426.8	Mount Neh	87476.0	4.941889
			2014334.0	215008.8	Sanpete.	40386.7	4. 606238
			$\begin{array}{llll}230 & 52 & 19.3\end{array}$	$\begin{array}{r}50 \\ 157 \\ 147 \\ \hline 180.4\end{array}$	Wasatch.	13814.0	4.140318
			3263315.0	1470148.3	Mount Elie	121421.9	5.084297
Gunnison astronomic, 1890...........	$\left\{\begin{array}{rrr}39 & 09 & 31.032 \\ 111 & 49 & 13.671\end{array}\right.$	$\begin{aligned} & 957.0 \\ & 328.2 \end{aligned}$	2345609.2	551113.7	West Sanpete.	41790.6	4. 621079
			$\begin{array}{r}3024103.1 \\ 1603 \\ \hline 1.8\end{array}$	1225015.3 1955600.0	Moosenea	25024.1	4.398359 4. 789051
	111 2413.389	$\begin{aligned} & 865.0 \\ & 320.5 \end{aligned}$	82821.75	1882628.81	Wasatch	29109.9	4.4640406
Sanpete, 1884..........................			395036.98	2191237.77	Tushar.	137431.6	5.1380865
			${ }^{91} 5653.72$	2712619.72	Scipio.	69205.8	4.8401427
			1472459.19 2614	3271108.42	Mount Nebo	57576.4	4.7602447 4.9763759
			2610149.09	814316.41	Patmos Hea	94705.7	4.9763759
West Sanpete, 1884.....................	$\left\{\begin{array}{lll}39 & 22 & 27.122 \\ 111 & 25 & 24.621\end{array}\right.$	$\begin{aligned} & 836.4 \\ & 589.4 \end{aligned}$	2090159.9	890245.1	Sanpete..	1705.3	
			$\begin{array}{rrr}5 & 0714.9 \\ 19 & 33 & 25.1\end{array}$	1850607.0 199 27	Wasatcb.	- 28879.7	4.460592 4.599416
Salt Creek, cairn, 1884.	$\left\{\begin{array}{rrr}39 & 39 & 54.642 \\ 111 & 44 & 33.450\end{array}\right.$	$\begin{array}{r} 1685.1 \\ 797.4 \end{array}$	525933.0	2324149.9	Scipio.	50053.8	4.6994371
			1394717.7	3191311.5	Deseret...	116021.0	5.0645366
			1730008.5	3525915.1	Mount Nebo	16296.8	4.2121034
			3374221.7	1575322.7	Wasatch	65960.5	4.8192841
Nephi Bench, 1887....................	$\left\{\begin{array}{llll}39 & 42 & 16.447 \\ 111 & 50 & 28.717\end{array}\right.$	507.2	2084231.3	284525.2	Mount Nebo.	13459.0	4.129013
		684.1	2971718.6	1172105.4	Salt Creek	9528.8	3.979039
Cedar, 1884.	$\left\{\begin{array}{rrrr}39 & 37 & 30.677 \\ 111 & 56 & 40.083\end{array}\right.$	$\begin{aligned} & 946.1 \\ & 956.0 \end{aligned}$	2163333.0	364024.0	Mount Nebo.	25683.8	4.409660
			2250535.4	450932.4	Nephi Bencb.	12491.4	4.096610
			2553343.0	754126.5	Salt Crcek.	17885.3	4.252497
			411427.6	2210427.3	Sciplo...........	34256.0	4.534737
Levan, 1884.	$\left\{\begin{array}{rrr}39 & 31 & 07.576 \\ 111 & 48 & 40.403\end{array}\right.$	$\begin{aligned} & 233.6 \\ & 965.1 \end{aligned}$	674750.6	2473246.1	Scipio.	36788.8	4.565716
			1355634.4	3155128.8	Cedar.	16452.3	4.216227
			1865015.4	65159.7	Mount Nebo	32663.3	4.514060
South Juab base, 1884................	$\left\{\begin{array}{lll}39 & 32 & 14.201 \\ 111 & 55 & 01.457\end{array}\right.$	$\begin{array}{r} 438.0 \\ 34.8 \end{array}$			Scipio.	29628.7	4.471712
			$\begin{array}{llll}166 & 27 & 00.6 \\ 203 & 05 & 13.4\end{array}$	346 23 23 11	Cedar. Mount Nebo	10040.0 33031.7	$\begin{aligned} & 4.031732 \\ & 4.518931 \end{aligned}$

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	$\begin{aligned} & \text { Latitude } \\ & \text { and } \\ & \text { iongitudo. } \end{aligned}$	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distanco.	Logarithin.
Supplementary points-Continued.	41		- ' "	- ' "		Meters.	
Mount Bruin, summit, 1887. .	$\begin{cases}30 & 38 \\ 110 & 41.473 \\ \hline 0\end{cases}$	1279.0	$\begin{array}{r}350 \\ 58 \\ \hline 80\end{array}$	1702239.1	Patmos Head.	16044.3	4.2023214
			990416.4	2780952.5	Mount Neb	122095.1	5.0890020
Spanish Fork, cairn, 1887.	[400517.553	541.4	3014208.0	1222838.5	1'atmos Head.	122430.6	5.0875901
	$\{1113137.650$	892.0	33 3549.3	2132637.5	Mlount Nebo	36936.9	4.5674605
			1141048.2	2932811.5	Deseret.	102142.4	$5.00920 c 3$
Mount Bartles, summit, 1887.........	394206.1	188.1	3441233	1641520	Patmos Head.	22994	4.301613
	$\{1102319.8$	471.8	545705	2341632	Wasateb	112456	5.050981
			961817	2752527	Mount Neb	118625	5.074175
Strawberry North, summit, 1887.....	$\left\{\begin{array}{llll}40 & 02 & 50.77 \\ 110 & 59 & 02.22\end{array}\right.$	1566.0	3162325 684747	$\begin{array}{lll}136 \\ 248 \\ 49 & 17 & 40\end{array}$	Patmos IIead Mount Neho.	${ }_{71813} 8384$	4.920561
			1084043	2873704	Deserct...	146991	5.167292
Indian Head, summit, 1884.	$\int 395235.50$	1094.8	3085842	1292129	Patmos IIcad.	65770	4.818026
	$\{1105437.87$	899.9	843512 151	$\begin{array}{llll}264 & 02 & 19 \\ 330\end{array}$	Mount Nebo	73566	4. 8666680
			151 of 58	3302706	Ogdon Peak	168433	5.226427
Springville Peak, monument, 1884...	(401440.528	1250.1	3072607.87	1281350.42	Patmos Head.	134347.9	5.1282309
	111 3322.854	540.2	3555605.08	1760001.94	Wasatch	125714.5	5. 0993853
			202610.71	2001805.73	Mount Nebo	51370.0	4.7107099
			304147.90	2101648.81	Scipio.	109736.5	5.0403511
Lone Tree, cairn, 1884.	(38 5938.822	1197.1	202801.3	2001748.0	Tushar.	68043.3	4.8327831
	$\{1120822.199$	534.3	1723336.9	3523104.3	Scipio.	44647.5	4.6497973
			1992531.0 257	193945.0 772830.3	Mount Neb	96219.4	4.9832627
			2570233.8	772830.3	Wasatch	60897.4	4.7845954
Soutb Sciplo, cairn, 1884.	(39 1742.192	1301.2	1753148.5	3553126.0	Scipio.	10894.0	4.0371802
	1121148.302	1157.5	2124525.2	330153.0	Mount N	68201.5	4. 8337941
			2870244.6	1073056.3	Wasatcb	67252.5	4.8277085
			. 105646.0	1904839.9	Tushar	98970.5	4.9955060
Scipio, 1884.	$\left(\begin{array}{rrrr}39 & 23 & 34.370 \\ 112 & 12 & 23.783\end{array}\right.$	1060.0	92528.85	1891744.59	Tushar.	109510.83	5.0394571
		569.2	764354.91	2552402.27	Wheeier Peak	187526.51	5.2730627
			1084447.91	2873917.01	Ibepah.	154815.27	5.1898138
			1631823.68 219	$\begin{array}{r}343 \\ 39 \\ 20 \\ \hline 158.28 \\ \hline 15\end{array}$	Meseret Nobo	123760.97 59890.96	5.0325373
			2950806.11	1153642.09	Wasatcb.	71965.13	4.8571221
Cervera, 1898.	$\left\{\begin{array}{lll}39 & 18 & 25.893 \\ 112 & 28 \\ 46.596\end{array}\right.$	798.5 116.5	2475409.8	680433.0	Scipio.	25383.1	4.404544
	$\begin{cases}39 & 2207.166\end{cases}$	221.0	2642231.4	- 843448.8	Scipio.	27945.8	4.446317
Camara,	\{112 3145.985	1100.8	3274726.0	1474919.7	Cervera	8063.6	3.906528
Manterols, 1898........................	$\left\lvert\, \begin{array}{lll}39 & 20 & 01.292\end{array}\right.$	39.8	2231216.2	431352.8	Camara.	5326.6	3.726454
	112 3418.321	438.8	2580524.3	781918.0	Scipio..	32148.7	4.507163
			2901713.2	1102043.4	Cervera	8473.5	3.928062
Montijo, 1898.	$\left\lvert\, \begin{array}{rrr}39 & 17 & 50.608 \\ 112 & 32 & 43.312\end{array}\right.$	1560.7 1037.8	$\begin{array}{llll}150 & 33 & 08.8 \\ 189 & 50 & 23.3\end{array}$	$\begin{array}{r}330 \\ 92 \\ 90 \\ 5089.6 \\ \hline 89.5\end{array}$	Manterola.	4628.4 80302	3.60543.5
			1845627.2	700920.4	Scipio.	31067.8	4.492310
			2590708.7	790938.6	Cervera	5775.4	3.761579
Aug	$\left\{\begin{array}{llll}39 & 17 & 47.732\end{array}\right.$	1472.0	1742257.9	3542247.2	Manterola.	4138.7	3.616866
	$\{1123401.406$	33.7	2671646.3	871735.8	Montijo.	1873.4	3.272639
Blanco, 1898.	(39 1906.870	211.9	2293511.6	493603.8	Manterola.	2589.2	3. 413164
	1123540.632	973.4	2985708.4	1185900.8	Montijo.	4855.9	3.686271
			3154431.8	1354534.7	Augusti	3407.0	3.532318
Canovas, 1898.	(391755.150	1700.8	1892519.1	92523.8	Blanco.	2242.0	3.350637
	1123555.954	1340.8	2110028.1	310130.0	Manteroia	4539.1	3.656968
			2744514.6	944627.2	Augusti.	2754.4	3.440021
Oasis northeast base, 1808.	(39 1843.279	1334.7	2475614.2	675701.7	Blanco.	1937.4	3.287210
	$\{1123655.584$	1331.6	285 292 18 18 09.9	1050349.8	Montijo.	6258.9	3.796497
-			$\begin{array}{llll}292 & 18 & 03.9 \\ 316 & 11.4\end{array}$	112 136 195494 19.2	Augusti.	4511.2 2060.2	3.651215
Oasis southwest base, 1898.	$\left\lvert\, \begin{array}{llll}39 & 17 & 56.185\end{array}\right.$	1732.7	2093123.7	293145.4	Oasis northeast baso.	1669.1	3.222483
	1123729.916	716.8	230.1241 .0	501350.2	Blanco.	3406.9	3. 532361
			$270-4813.8$	904913.3	Can	2251.7	3.352519
Oasis north meridian, 1898.	$\left(\begin{array}{lll}39 & 18 & 16.544\end{array}\right.$	510.2	2344641.1	544712.0	Oasis nortbeast base.	1429.7	3.155251
	1123744.336	1062.4	242 284 284 14 14.4 41.3	622214.8 1041550.0	Bjanco...	3345.4 2679.5	3.524452 3.428046
			2311021.7	1511030.9	Canovas..............	2679.5 716.6	3.4285401 2.85301
Oasis south meridian, 1898.	(391738.149	1176.5	1800001.7	00001.7	Oasis north meridlan.	118.0	3.073370
	1123744.336	1082.4	2101038.0	301108.8	Oasis northeast base.	2323.5	3. 361148
			2115103.0	315172.1	Oasis southwest baso.	654.8	${ }_{2} 2.816120$
			2271641.2	471759.6	Blanco	4033.7	3.605701
Oasis astronomic, 1898.	$\left\{\begin{array}{lll} 39 & 17 & 37.980 \\ 112 & 37 & 44.336 \end{array}\right.$	$\begin{aligned} & 1171.3 \\ & 1062.4 \end{aligned}$	1800001.7	00001.7	Oasis south meridian.	5.22	0.71767
Sagasta, 189	(39 2122.358	689.5	00913.2	1800912.8	Cervera.	$54+2.0$	3.735759
	1122845.987	1101.0	410339.0	2210108.6	Montijo	8657.7	3. 937404
			723522.9 107474.6	2523152.1 287 45	Manterol	8341.6 4525.3	3.921250 3.655652

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Supplementary points-Continued.	$\left\{\begin{array}{ccc}\circ & \prime & \prime \prime \\ 39 & 17 & 18.819 \\ 112 & 37 & 27.884\end{array}\right.$	$580.4$$668.3$	\circ $\prime \prime$ $\prime \prime$ 177 34 51 196 32 46 243 02 06 261 47 40		Oasis southwest base..		3.061957
				3573450 163306		1153.3 2717.2	
Oasis schoolhouse tower, 1998				630304	Canovas	2471.5	3.434123 3.392967
				815040	Montio	6889.6	3.838194
Delano, cairn, 1885	$\left\{\begin{array}{llll}38 & 22 & 09.985 \\ 112 & 22 & 15.090\end{array}\right.$	$\begin{aligned} & 307.9 \\ & 366.4 \end{aligned}$	$\begin{array}{r} 742447.9 \\ 14710306 \\ 1870556.0 \end{array}$	253327327888.37127	Pioche Tushar	$\begin{array}{r} 153261.1 \\ 6617.6 \\ 114503.5 \end{array}$	$\begin{aligned} & 5.1854318 \\ & 3.8207007 \\ & 5.0588188 \end{aligned}$
					Scipio.		
Milford Needle, 1883.	$\left\{\begin{array}{rrr}38 & 23 & 04.355 \\ 112 & 48 & 54.330\end{array}\right.$	$\begin{array}{r} 134.3 \\ 1318.7 \end{array}$	$\begin{array}{r} 681104.9 \\ 2050337.1 \\ 2092940.3 \\ 2933454.0 \end{array}$	$\begin{array}{rrr} 247 & 25 & 13.5 \\ 25 & 26 & 32.4 \\ 30 & 09.4 \\ 83 & 49 & 55.6 \end{array}$	Pioche. Scipio. Mount Nebo Tushar.	$\begin{array}{r} 116980.5 \\ 123761.4 \\ 18251.7 \\ 35430.5 \end{array}$	5.0681136 5.0925851 5. 2612932 4.5493771
Beaver, 1885.	$\left\{\begin{array}{l}38 \\ 112 \\ 24 \\ 24 \\ 0607.205 \\ 00.733\end{array}\right.$	$\begin{array}{r} 222.2 \\ 17.8 \end{array}$	$\begin{aligned} & 1121242.7 \\ & 2240639.6 \\ & 3032417.3 \end{aligned}$	$\begin{array}{rl} 291 & 02 \\ \hline 11.9 \\ 44 & 07 \\ 123 & 27 \\ \hline 27.9 \end{array}$	Wheeler Peak Tushar.	$\begin{array}{r} 175919.1 \\ 2710.4 \\ 6561.6 \end{array}$	$\begin{aligned} & \text { 5.2453132 } \\ & 3.433039 \\ & 3.817007 \end{aligned}$
					De		
Birch Creek, cairn, 1885.	$\left\{\begin{array}{rrr}38 & 13 & 45.847 \\ 112 & 28 & 08.541\end{array}\right.$	$\begin{array}{r} 1413.7 \\ 207.7 \end{array}$	1194439.4	2993147.1		34824.1	4.541850
			1891140.6	91259.8		19408.5	4.287993
			1931740.3 2085328.1		Tushar	21687.2	4.336203
Beaver flagstaff (U. S. Engineers astronomic station, 1872-1885), 188.	$\left\{\begin{array}{llll}38 & 16 & 25.616 \\ 112 & 38 & 27.323\end{array}\right.$	$\begin{aligned} & 789.8 \\ & 664.2 \end{aligned}$	$\begin{aligned} & 1285803.2 \\ & 23148 \\ & 288 \\ & 48 \\ & 04 \\ & 33.9 \end{aligned}$	$\begin{array}{ccc} 308 & 51 & 34.3 \\ 51 & 56 & 04.0 \\ 108 & 10 & 56.8 \end{array}$	Milford Needie...	$\begin{aligned} & 19572.7 \\ & 23050.5 \\ & 15831.5 \end{aligned}$	$\begin{aligned} & \text { 4. } 291650 \\ & 4.362680 \\ & 4.199523 \end{aligned}$
					Birch Cr		
West Beaver, monument, 1885	$\left\{\begin{array}{r}28 \\ 112 \\ 24 \\ 24 \\ 08\end{array}\right.$	$\begin{aligned} & 235.0 \\ & 202.8 \end{aligned}$	$\begin{array}{rrr} 226 & 58 & 41.9 \\ 2733 & 57 & 53.7 \\ 302 & 37 & 35.4 \\ 8 & 40 & 10.2 \end{array}$	$\begin{array}{r} 465934.9 \\ 935758.4 \\ 1224000.3 \\ 1883855.7 \end{array}$	Tushar..	$\begin{array}{r} 2833.6 \\ 185.5 \\ 6723.7 \\ 19392.5 \end{array}$	3.452337 2. 268374 3.827611 4.287633
					Delano		
					Birch C		
Beaver meetimghouse, ${ }^{1} 1885$	$\left\{\begin{array}{llll}38 & 16 & 27.27 \\ 112 & 38 & 21.16\end{array}\right.$	$\begin{aligned} & 840.9 \\ & 514.4 \end{aligned}$	2312582525	514810,31083143.7	Beaver. Birch Creek	$\begin{aligned} & 22901.2 \\ & 15705.2 \end{aligned}$	4. 3598594.196043
Herriman, 1884.	$\left\{\begin{array}{lll}40 & 25 & 33.199 \\ 112 & 11 & 53.258\end{array}\right.$	$\begin{aligned} & 1024.0 \\ & 1255.4 \end{aligned}$	$\begin{array}{r} 960356.8 \\ 1970938.6 \\ 3313020.3 \\ 02153.7 \end{array}$	$\begin{array}{lll} 275 & 47 & 18.3 \\ 17 & 22 & 03.8 \\ 151 & 47 & 03.2 \\ 180 & 21 & 34.2 \end{array}$	Deseret Ogden Peak. Mount Neho Scipio.		4.5619574 4.9544545 4.8898558 5. 0595561
Draper, 1887.	$\left\{\begin{array}{rrr}40 & 30 & 51.924 \\ 111 & 47 & 10.553\end{array}\right.$	$\begin{array}{r} 1601.6 \\ 248.4 \end{array}$	$\begin{array}{r} 3584256.01 \\ 852407.49 \\ 1440313.62 \\ 1740103.50 \end{array}$	$\begin{array}{lll} 178 & 43 & 43.51 \\ 264 & 51 & 25.36 \\ 323 & 46 & 25.34 \\ 353 & 57 & 19.43 \end{array}$	Mount Neho Deseret. Antelope. Ogden I'eak.	$\begin{aligned} & 78139.6 \\ & 71430.9 \\ & 61546.9 \\ & 76577.7 \end{aligned}$	4.8928711 4.8538863 4.7892065 4.8841024
Lone Peak, needle, 1884	$\left\{\begin{array}{rrr}40 & 31 & 37.936 \\ 111 & 45 & 19.779\end{array}\right.$	$\begin{array}{r} 1170.1 \\ 465.6 \end{array}$	$\begin{array}{r} 03810.8 \\ 170942.7 \\ 842924.3 \\ 1715724.0 \end{array}$	$\begin{array}{lll} 180 & 37 & 46.9 \\ 196 & 52 & 19.7 \\ 263 & 55 & 30.0 \\ 351 & 52 & 27.4 \end{array}$	Mount Nebo - .Scipio....................	$\begin{array}{r} 79544.3 \\ 131711.9 \\ 74158.6 \\ 75487.2 \end{array}$	4.9006090 5. 1196251 4.8701319 4.8778734
					Deseret..		
					Ogden Pe		
Oquirrh, 1887.........................	$\left\{\begin{array}{rrr}40 & 36 & 30.350 \\ 112 & 11 & 12.651\end{array}\right.$	$\begin{array}{r} 1553.1 \\ 297.3 \end{array}$	$\begin{array}{r} 652507.30 \\ 1762626.13 \\ 2012810.19 \\ 3375800.24 \end{array}$	245 08 00.46 356 25 18.91 21 40 10.24 158 14 18.86	Deseret...		4.6120854 4. 5883572 4. 8451133 4.9827660
					Ogden Peak		
					Mount Ne		
Onaqui, 1887...........................	$\left\{\begin{array}{rrr}40 & 36 & 10.481 \\ 112 & 36 & 52.528\end{array}\right.$	$\begin{array}{r} 323.3 \\ 1235.0 \end{array}$	$\begin{array}{rrrr} 220 & 02 & 28.81 \\ 222 & 43 & 31.13 \\ 320 & 18 & 58.12 \\ 3 & 23 & 45.93 \end{array}$	$\begin{array}{r} 401807.43 \\ 431222.38 \\ 1405150.73 \\ 1832319.92 \end{array}$	Antelope. Ogden Peak	$\begin{array}{r} 52233.1 \\ 99643.9 \\ 13825.4 \\ 15018.8 \end{array}$	4.7179456 4.9573386 5.0562391 4.2019090
					Mount N		
					Deseret		
Lake Shore bench, 1887.	$\left\{\begin{array}{lll}40 & 40 & 28.680 \\ 112 & 25 & 42.249\end{array}\right.$	$\begin{aligned} & 884.6 \\ & 992.3 \end{aligned}$	$\begin{array}{r} 350422.1 \\ 631413.6 \\ 2880949.1 \end{array}$	$\begin{aligned} & 2145640.2 \\ & 2430657 . \\ & 1081915.5 \end{aligned}$	Deseret Onaqui Oquirrh	$\begin{aligned} & 29124.9 \\ & 1764.7 \\ & 21513.8 \end{aligned}$	4.4642644.2467384.332718
Grantsvile flagstaff, 1887.	$\left\{\begin{array}{lll}40 & 36 & 07.456 \\ 112 & 28 & 23.257\end{array}\right.$	$\begin{aligned} & 230.0 \\ & 546.8 \end{aligned}$	$\begin{array}{r} 392044.8 \\ 90 \quad 2932.8 \\ 2064652.1 \end{array}$	$\begin{array}{r} 2191447.9 \\ 2702401.4 \\ 865802.9 \end{array}$	Deseret Onaqui. oquirrh	$\begin{aligned} & 20413.4 \\ & 11974.0 \\ & 24265.0 \end{aligned}$	$\begin{aligned} & 4.309915 \\ & 4.078240 \\ & 4.384981 \end{aligned}$
Deseret magnetic, 1887	$\left\{\begin{array}{l}40 \\ 112 \\ 112 \\ 36 \\ 55 . \\ 55.352\end{array}\right.$	$\begin{array}{r} 824.0 \\ 1304.3 \end{array}$	$\begin{array}{lll} 180 & 14 & 07.7 \\ 213 & 3 & 22.9 \\ 244 & 16 & 25.0 \end{array}$	01409.5332040.6643307.6	Onaqui. Lake Shore hench. Oquirrh	16155.928853.040254.7	4. 208330 4.460191 4.604817
Hili, flag, 1887..........................	$\left\{\begin{array}{rrr}40 & 27 & 36.847 \\ 112 & 36 & 30.564\end{array}\right.$	1136.6720.1	$\begin{array}{r} 6151 \quad 11.7 \\ 1780759.1 \\ 2123503.9 \end{array}$	$\begin{array}{r} 241 \\ 350 \\ 358 \\ 35 \\ 32 \\ 42 \\ 45.6 \\ \hline 0.6 \end{array}$	Deseret magnetle Onaqui. Lake Shore bench	$\begin{aligned} & 662.38 \\ & 15851.7 \\ & 28273.4 \end{aligned}$	2.821107 4.200075 4. 451378
Fiag in flat, ${ }^{1} 1887 .$.	$\left\{\begin{array}{llll}40 & 27 & 50.04 \\ 112 & 36 & 38.96\end{array}\right.$	1543.5917.9	$\left\lvert\, \begin{array}{rrr} 334 & 05 & 19 \\ 28 & 14 & 10 \end{array}\right.$	$\begin{array}{lll} 154 & 05 & 24 \\ 208 & 13 & 59 \end{array}$	Hill, flag. Deseret magnetic	$\begin{aligned} & 452.43 \\ & 816.60 \end{aligned}$	$\begin{aligned} & \mathbf{2 . 6 5 5 5 5} \\ & \mathbf{2 .} 91201 \end{aligned}$
City Creek, 1893	$\left\{\begin{array}{lll}40 & 48 & 27.055 \\ 111 & 52 & 49.276\end{array}\right.$	$\begin{array}{r} 834.5 \\ 1155.0 \end{array}$	$\begin{aligned} & 354 \\ & 56 \end{aligned} 04.18$	$\begin{array}{llll}175 & 00 & 30.96 \\ 301 & 13 & 15.44 \\ 359 & 52 & 59.12\end{array}$	Mount Neho Anteiope. Ogden Peak.	$\begin{array}{r} 111094.2 \\ 33062.5 \\ 43609.9 \end{array}$	5. 0456914 4.5193355 4. 6395852
Sait Lake City Temple east spire, 1893.	$\left\{\begin{array}{rrr}40 & 46 & 14.599 \\ 111 & 53 & 27.668\end{array}\right.$	450.3648.9	$\begin{array}{lll} 127 & 59 & 16.51 \\ 192 & 25 & 14.51 \end{array}$	$\begin{array}{r} 3074632.37 \\ 122539.59 \end{array}$	Antelope City Creek	$\begin{array}{r} 34652.0 \\ 4183.8 \end{array}$	4. 5397279$\mathbf{3 . 6 2 1 5 7 1 3}$
	$\left\{\begin{array}{rrr}40 & 4614.602 \\ 111 & 53 & 29.618\end{array}\right.$	$\begin{aligned} & 450.4 \\ & 694.6 \end{aligned}$	$\begin{aligned} & 1280202.50 \\ & 1430149.03 \\ & 1930151.42 \end{aligned}$	3074919.63	Anteiope.	34615.9	4.5392754
1893.				2224101.90	Promontor	73491.7 4193.8	4.8662386

[^11]GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

[^12]GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Sirtion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Supplementary points-Continued.	- '"		- " $"$	"		Meters.	
	(411646.678	1440.0	3391602.3	1591736.7	Ogden Peak.	9430.2	3.974519
Cliff, flag, 1891.	$\left\{\begin{array}{llll}111 & 55 & 16.345\end{array}\right.$	380. 4	$\begin{array}{llll}35 & 18 & 31.1 \\ 42 & 42 & 26.8\end{array}$	215151541.9 2223934.3	Weber bench....	10316.3 8985.8	4.014786 3.953556
Sandy, 1891.	$(411302.989$	92.2	1915020.2	115156.7	North Ogden.	16568.2	4.219275
	$\{1120002.529$	58.9	2424139.9	624156.1	Ogden longitu	643.3	2. 808395
			2804917.7	1005400.7	Ogden Peak.	10187.8	4.008080
			3355947.8	1560007.3	Weber bench	1691.2	3.228190
North Ogden public school, ${ }^{1} 1891$	$\left\{\begin{array}{lll}41 & 18 & 25.65 \\ 1111 & 57 & 38\end{array}\right.$	791.3	$\begin{array}{lll}13 & 05 & 49.8\end{array}$	1930434.1	Weber bench...	11805.2	4.072074
	$\begin{array}{lllll}111 & 5738.19\end{array}$	858.4	160658.3	1960539.3	Ogden longitude	10053.1	4.002302
North Ogden Peak, 1891...............	$\left(\begin{array}{ll}41 & 2148.605\end{array}\right.$	1499.5	3400003.50	1600310.35	Ogden Peak	19295.1	4.2854472
	1115736.283	843.3	254624.74	2053619.67	Antelope.	49439.3	4. 6940724
			292454.31	2085844.94	Deseret.	114960.5	5. 0605486
			792829.35	2591017.71	Promontory	39116.1	4.5923554
Box Elder Peak, or Willards Peak, cairn, 1888.	$\begin{cases}41 & 3809.520\end{cases}$	293.7	3470359.2	1670914.7	Ogden Peak	49647.4	4.6958965
	$\{1120049.969$	1156.6	421239.8	2215633.5	Promontory	50533.9	4.7035830
Cache, ${ }^{1} 1888$.	$\left\{\begin{array}{lll}42 & 11 & 09.38\end{array}\right.$	289.4	3055242.1	1270342.2	Ogden Peak	184167.7	5. 2652134
	[113 3937.51	860.8	150937.1	1945301.9	Pilot Peak	133907.6	5.1268052
Oxford, ${ }^{1} 1888$.	$\left\{\begin{array}{lll}42 & 1611.72\end{array}\right.$	361.6	3512004.6	1712841.8	Ogden Peak	120157.5	5.0797507
	(112 0549.97	1145.2	503615.7	2291719.6	Pilot Peak	215451.6	5.3333497
Desert Peak, cairn, 1892.	(411110.835	334.2	2840150.04	1044715.21	Antelope	99970.0	4.9998697
	$\left\{\begin{array}{l}1132203.116\end{array}\right.$	72.6	3215726.35	1422632.26	Deseret.	102082.8	5. 0089526
			730853.84	${ }^{259}, 4055.31$	Pilot Peak	62328.0	4.7946831
Grassy, calrn, 1892.	(411553.946	1664.2	2515633.15	1030733.86	Antelope	154859.3	5.1899373
	\{11400 54.859	1276.9	3065343.77	1274816.72	Deseret.	147374.0	5. 1634209
			104947.67	1904721.99	1'ilot Peak.	27533.7	4.4398647
Tecoma railroad signboard eccentrlc, ${ }^{1}$ 1892.	(411913.659	421.4	3180615.4	1380852.1	Grassy	8274.1	3.917720
	$\{1140452.221$	1214.6	3592127.4	1792137.9	Pilot Peak	33208.3	4.521246
Nevada-Utah boundary monument, 11892 .	$\left\{\begin{array}{lll}41 & 20 & 31.33\end{array}\right.$	966.5	3462602.7	1662701.2	Grassy..........................	8802.5	3.944606
	$\{1140223.56$	547.8	551709.5	2351531.3	Tecoma railroad signboard eccentrle.	4206.3	3.623896
Bntte ${ }^{1}$, 1892.	$\left\{\begin{array}{lll}41 & 09 & 41.07\end{array}\right.$	1267.0	501635.6	2300750.2	Pilot Peak	24282.4	4.385291
	$\{1135116.91$	394.2	1303343.6	3102722.8	Grassy-......................	17708.6	4.248183
East Peninsula Peak, 1889.	(405424.875	767.3	34739.0	1834402.6	Ibepah.	120009.3	5.079215
	$\{1134935.012$	819.4	$\begin{array}{llll}121 & 11 & 44.9 \\ 175 & 11 & 42.3\end{array}$	$\begin{array}{llll}301 & 01 & 54.0 \\ 355 & 10 & 35.4\end{array}$	Pilot Peal	24616.8 28362.8	$\begin{aligned} & 4.391232 \\ & 4.452749 \end{aligned}$
West Peninsula Peak, 1889..	(405003.588	110.7	02735.7	1802711.3	Ibepah.	111694.0	5.048030
	\{113 5431.231	731.7	1454726.9	3254050.5	Pilot P'eal	25144.2	4.400438
	-		1870633.7	70841.2	Butte	36605.5	4.563546
Pilot Peak azimuth mark, 1892	$\{410230.426$	938.7	2575040.7	785554.6	Promontory.....................	141491.1	5.150729
	11140414.748	344.4	123355.8	1923341.6	Pilot Peak	2313.0	3.364183
Willow Springs, 1892.	(405923.485	724.4	1134229.1	2933844.4	Pllot Peak	8738.2	3.941424
	113 5853.844	1258.6	1273532.9	3073202.3	Pilot Peak azimuth mark	9459.3	3.975860
	-		2091211.0	291711.2	Butte	21834.3	4.339139
White boundary stake, 1892.	(405607.791	240.3	1624907.7	3424744.9	Plot Peak	9992.3	3.999665
	114 0229.952	700.7	2795136.2	1000003.8	East Peninsula Peak.	18408.9	4.265027
			3150129.4	1350642.8	West Peninsula Peak	15869.3	4.200557
Black boundary stake, 1892.	(405525.283	779.9	1644825.6	3444702.9	Pilot Peak.....................	11250.9	4.051186
	114 0230.087	703.9	1800818.0	00818.1	White boundary stake........	$1311.2 \times$	3.117685
			3112802.8	1313316.3	West Peninsula Peak.........-	14972.8	4.175302
Camp stake, 1892.	(405923.584	727.4	3050705.2	1251311.6	East Peninsula Peak.	15997.5	4.204053
	113 5854.116	1265.0	3402222.8	1602515.0	West Peninsula Peak	18337.2	4.263334
			1134223.6	2933839.1	Pilot Peak	8731.2	3.941074
Flag, 1892.	405901.495	46.1	1190126.3	2985754.2	Pilot Peak	8638.8	3.936453
	$113 \quad 5912.972$	303.3		325358.5	Camp stake.........	811.5	2.909302
			3021225.7	1221844.5	East I'eninsula Peak.	15986.7	4.203758
			3381808.6	1582113.2	West Peninsula Peak	17855.1	4.251763
Nevads-U'tah boundary stake, ${ }^{1} 1892 .$.	$\left\{\begin{array}{llll}41 & 01 & 16.84\end{array}\right.$	519.5	3045230.4	1245451.1	Camp stake.	6107.2	3.785839
	11140228.46	665.0	3122417.6	1322625.9	Flag.....	6189.1	3.791624
Ibepah azlmuth mark, 1889	$\left\{\begin{array}{rrr}39 & 51 \\ 113 & 14.729\end{array}\right.$	454.2	2375524.2	584455.6	Deseret.	128115.6	5.107602
	$\{1135420.077$	477.3	221230.2	2021158.9	Ibepah..........................	3073.7	3.487661
Red Squaw, calrn, 1889	$\left\{\begin{array}{r}39 \\ 48 \\ 02 \\ 02 \\ \hline 8\end{array}\right.$	85.1	2092020.8	292107.3	Ibepah..........................	3527.5	3.547471
	$\left\{\begin{array}{lll}113 & 56 & 21.615\end{array}\right.$	514.2	2362438.7	571526.8	Deseret. .	133755.0	5. 126310
Red Chiel, calrn, 1889.	$\{394800.739$	22.8	2040654.7	240732.5	Ibepah............................	3437.3	3.536215
	$\{1135607.989$	190.0	2361850.2	570929.5	Deseret.	133519.6	5.125545

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel.-Continued.

Station.	Latilude and loniture.	Seconds in metprs.	Azimuth.	Back azimulh.	To station.	Distance.	Logarithm.
Supplementary point:-Continued.	$\left\{\begin{array}{ccc} 0 & \prime & \prime \prime \\ 113 & 52 & 33.668 \\ 39.547 \end{array}\right.$	$\begin{array}{r} 1038.3 \\ 939.8 \end{array}$	1765247.6	3564935.0	Pilot Peak....................	$\begin{gathered} \text { Meters. } \\ 127382.9 \end{gathered}$	5.105111
			1765247.6 257 44 56.7	356 107 182351.5			
Benc			3092119.3	1292412.7	Ibepah....	8322.7	3.920263
			3303428.3	1503735.1	Rod Squ	9589.5	3.981796
South boundary flag, 1889............	$\left\{\begin{array}{rrr}39 & 53 & 47.060 \\ 114 & 02 & 25.038\end{array}\right.$	$\begin{array}{r} 1451.3 \\ 616.2 \end{array}$	2920553.9	1121105.5	Ibepah azimuth mark..........	124	4.0957043.658552
			2994642.1	1194828.8		4555.7	
			3055704.8	1260144.9	Inepah..	12×37.5	4.109450
			3204554.6	1404948.2	Red Squs	13703.1	4.136520
Middle boundary, 1889................	$\left\{\begin{array}{llll}39 & 58 & 58.301 \\ 114 & 02 & 46.356\end{array}\right.$	1798.01099.8	3195330.6	$\begin{array}{lllll}139 & 58 & 55.6\end{array}$	Ibepah. Red Squaw	18681.2	$\begin{aligned} & 4.271404 \\ & 4.307621 \\ & 4.346125 \end{aligned}$
			$\begin{aligned} & 3273532.2 \\ & 3353814.2 \end{aligned}$	147 155 4 42 25 21.0		20296.522188.3	
North bonndary flag, 1889.............	$\left\{\begin{array}{rrr}40 & 00 & 19.318 \\ 114 & 02 & 44.732\end{array}\right.$	$\begin{array}{r} 595.9 \\ 1060.9 \end{array}$	$\begin{array}{ll} 324 & 26 \\ 336.2 \\ 331 & 05 \\ 335 & 56.4 \\ 3 & 08 \\ 01.5 \end{array}$	$\begin{aligned} & 14432 \quad 20.1 \\ & 1511048 . \\ & 1581207.3 \end{aligned}$	Ibepah azimuth mark Ibepah. Red Squaw	$\begin{aligned} & 20632.7 \\ & 22427.4 \\ & 24471.9 \end{aligned}$	$\begin{aligned} & 4.314556 \\ & 4.350779 \\ & 4.385668 \end{aligned}$
North I'eak, 1ree, east prong, 1859....	$\int \begin{aligned} & 400249.559 \\ & 1135339.388 \end{aligned}$	$\begin{array}{r} 1529.6 \\ 933.7 \\ \hline \end{array}$	50046.4241533.9364753.6611427.9701947.9	1845948.9	Ibepah.........................	24369.6	4.386849
				2041142.6	Bench -.....	20831.0	4.318710
				2164215.3	South boundary	20853.5	4.319804
				250 250 13 13	North boundar	13736.8	4.170378 4.137886
South Peak, middle tree, 1889........	$\int \begin{array}{rrr} 40 & 02 & 20.264 \\ 113 & 53 & 19.365 \end{array}$	$\begin{aligned} & 625.0 \\ & 459.1 \end{aligned}$	$\begin{array}{r} 62140.9 \\ 263236.1 \\ 392301.8 \\ 651148.0 \\ 743006.9 \end{array}$	$\begin{array}{lll} 186 & 20 & 30.6 \\ 206 & 28 & 32.0 \\ 219 & 17 & 10.7 \\ 245 & 05 & 43.4 \\ 254 & 24 & 03.3 \end{array}$	Itbepah. . Bench. South boundary flag. Middle boundary. North boundary flag.	23516.5 20217.5 20464.4 14820.2 13916.2	4.371373 4.305727 4.311000 4. 170853 4.143521
Tbepah teiegraph office flay, 1889......	$\left\{\begin{array}{lll} 40 & 03 & 25.137 \\ 113 & 59 & 15.179 \end{array}\right.$	$\begin{aligned} & 775.4 \\ & 359.8 \end{aligned}$	$\begin{array}{lll} 283 & 18 & 48.5 \\ 342 & 42 & 04.2 \\ 347 & 00 & 11.7 \end{array}$	$\begin{array}{lll} 103 & 22 & 27.4 \\ 162 & 45 & 1.7 \\ 167 & 02 & 39.8 \end{array}$	South Peak. Ibepah azimuth mark. lbepah.	$\begin{array}{r} 8669.7 \\ 23591.2 \\ 26038.0 \end{array}$	3.935002 4. 372751 4.415607
Ibepah post office eccentric, 1883.....	$\left\{\begin{array}{ccc}40 & 03 & 32.150 \\ 113 & 59 & 02.607\end{array}\right.$	991.761.8	$\begin{array}{r} 3474450.2 \\ 540132.7 \end{array}$	$\begin{array}{lll} 167 & 47 & 20.2 \\ 234 & 01 & 24.6 \end{array}$	Ibepah. Ibepah telegraph office flag....	$\begin{gathered} 28183.9 \\ 368.20 \end{gathered}$	$\begin{aligned} & 4.418034 \\ & 2.568094 \end{aligned}$
Tbepah post office, soulheast corner,1\$59.	$\left\{\begin{array}{llll}40 & 03 & 32.51 \\ 113 & 59 & 03.02\end{array}\right.$	$\begin{array}{r} 1002.8 \\ 71.6 \end{array}$	$\begin{array}{r} 3184135 \\ 514307 \end{array}$	$\begin{aligned} & 1384135 \\ & 2314259 \end{aligned}$	Ibepah post office eccentric... Ibepah telegraph office flag...	${ }_{367.12} 14$	$\begin{aligned} & 1.17155 \\ & 2.56481 \end{aligned}$
Ibepah telegraph office chimney, I889.	$\left\{\begin{array}{cccc}40 & 03 & 24.581 \\ 113 & 59 & 18.193\end{array}\right.$	$\begin{aligned} & 758.2 \\ & 431.2 \end{aligned}$	$\begin{aligned} & 237 \\ & 256 \\ & 22 \\ & 346 \\ & 30 \\ & 30.2 \\ & \hline 27.5 \end{aligned}$	$\begin{array}{r} 574235.2 \\ 762945.4 \\ 1665307.9 \end{array}$	Ibepah post office eccentric. I bepah telegraph office flag. Ibepah.	$\begin{array}{r} 436.98 \\ 73.46 \\ 26037.4 \end{array}$	2.640462 1. 866029 4.41559 S
Devine's eranary	$\left\{\begin{array}{lll}40 & 03 & 33.19 \\ 113 & 59 & 02.52\end{array}\right.$	1023.759.7	347460034615	1674830183.4615	Ibepah. Ibepah post office eccentric....	$\begin{gathered} 26214.7 \\ 32.034 \end{gathered}$	$\begin{aligned} & 4.418545 \\ & 1.50561 \end{aligned}$
Granite Peak, 1884	$\left\{\begin{array}{llll}40 & 07 & 42.222 \\ 113 & 16 & 13.481\end{array}\right.$	$\begin{array}{r} 1302.3 \\ 319.1 \end{array}$	$\begin{array}{r} 591219.2 \\ 1454252.0 \\ 235 \\ 55 \\ \hline 0.0 \end{array}$	$\begin{array}{r} 2384718.7 \\ 3251123.9 \\ 5620 \quad 07.2 \end{array}$	Ibepah. Pilot Peak Deseret.	$\begin{array}{r} 64653.3 \\ 120395.8 \\ 66024.1 \end{array}$	$\begin{aligned} & \text { 4. } 8105009 \\ & 5.0806222 \\ & 4.8197025 \end{aligned}$
Anteiope Mountain or Swasey Peak, 1884.	$\left(\begin{array}{llll}39 & 23 & 15.44 \\ 113 & 18 & 56.17\end{array}\right.$	$\begin{array}{r} 568.7 \\ \mathbf{I} 344.2 \end{array}$	$\begin{array}{lll} 133 & 29 & 44.2 \\ 206 & 09 & 0.4 \\ 269 & 21 & 12.5 \\ 323 & 37 & 53.0 \end{array}$	$\begin{array}{r} 3130639.0 \\ 2635 \\ 90 \\ 923 \\ 144.4 \\ 111 \\ 14.2 \end{array}$	Ibepah. Deseret Scipio. Tushar.	$\begin{array}{r} 71226 \\ 132771 \\ 95541 \\ 133093 \end{array}$	4. $\$ 526387$ 5.1231030 4.9801504 5.1241565
Sawtooth Peak or Sevier Mountain, 1884.	$\left\{\begin{array}{lll}39 & 08 & 36.600 \\ 113 & 24 & 31.620\end{array}\right.$	1128.7759.3	$\begin{array}{r} 774203.2 \\ 1500937.2 \\ 2544042.9 \\ 3123232.0 \end{array}$		Wheeier Peak. Ibepah. scipio. Tushar.	$\begin{array}{r} 80212.3 \\ 87811.6 \\ 107378.2 \\ 18159.3 \end{array}$	4.9042407 4. 9435518 5.0309160 5.0724679
Frisco Mount, tree, 1884...............	$\left\{\begin{array}{rrr}38 & 31 & 14.526 \\ 113 & 17 & 13.176\end{array}\right.$	$\begin{aligned} & 447.9 \\ & 319.2 \end{aligned}$	$\begin{aligned} & 1202336.8 \\ & 22342 \\ & 278 \\ & 278 \\ & \hline 05 \\ & \hline \end{aligned}$	2994504.0442310.6983815.8	Wheeler Peak. Scipio. Tushar.	103092.0	5.01322515.12336914.8575514
						134700.577188.3	
Indian Peak, 1881....................	$\left\{\begin{array}{ccc}38 & 16 & 02.302 \\ 113 & 52 & 29.343\end{array}\right.$	$\begin{array}{r} 71.0 \\ 713.3 \end{array}$	$\begin{array}{r} 262706.8 \\ 9250030.7 \\ 1543344.1 \\ 1784443.7 \\ 2620112.8 \end{array}$	$\begin{array}{r} 2062034.4 \\ 2715002.1 \\ 3341718.6 \\ 3584302.8 \\ 8255540.0 \end{array}$	Pioche. White l'ino. Whecler 1'eak. Ibepah. Tushar.	$\begin{array}{r} 34813.9 \\ 142409.7 \\ 84453.5 \\ 173522.8 \\ 129000.4 \end{array}$	4.5417522 5. 1535395 4.9467150 5.2359308 5.1105909
Butte, 1883	$\left\{\begin{array}{rrr}37 & 56 & 42.122 \\ 114 & 01 & 09.712\end{array}\right.$	1298.6	$\begin{aligned} & 14831 \\ & 167 \\ & 164 \\ & 249 \\ & 249 \end{aligned} \mathbf{1 1 . 4} 8$	$\begin{array}{r}328 \\ 387 \\ 38 \\ 69 \\ 59 \\ 39 \\ 39.4 \\ \hline\end{array}$	Piocho. Wheeler I'eak. Tushar	5379.3118371.6150361.0	3. 7307228 5.0732473 5. 1771352
		237.1					
East Ridgo, 1883.......................	$\left\{\begin{array}{llll}37 & 59 & 06.29 \\ 114 & 01 & 19.01\end{array}\right.$	193.9478.5	$\begin{array}{r}356 \\ \hline 53 \\ 93 \\ \hline 10\end{array}$	$\begin{array}{lll}176 & 5319 \\ 273 & 09\end{array}$	Butto. 1'ioche.	4451.62571.4	$\begin{aligned} & 3.64852 \\ & 3.41017 \end{aligned}$
Road summit, 1883.....................	$\left\{\begin{array}{llll}37 & 57 & 59.34 \\ 114 & 02 & 39.57\end{array}\right.$	1829.4965.9		$\begin{array}{llll}344 & 23 & 17 \\ 43 & 23 & 54 \\ 137 & 21 & 04\end{array}$	Pioche. East Ridge Butto.	$\begin{aligned} & 2230.7 \\ & 2840.5 \\ & 3237.4 \end{aligned}$	$\begin{aligned} & 3.35996 \\ & 3.45340 \\ & 3.51019 \end{aligned}$
North boundary signal, 1883.				14516216818619	East Ridge. Butle. Piocho.		
	$\left\{\begin{array}{r}380051.70 \\ 1140250.21\end{array}\right.$	1594.11224.8				3930.2	3. 59441 3. 90721 3.49528
						8076.33128.1	
Canyon Peak, 1883....................	(380034.56	1065.6	2065530	285537	North boundary sims	592.7	2.77283
	1140301.21	29.5	317 3	13740388	Eas1 Rid	3681.0	3.56597
			3391151 1157	1591300 1815726	Bulte.	7665.7 2550.8	3.84455 3.41175

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel.-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Boundary stake No. 1,1 1883	- ' "		- "	,		Metrrs.	
	$\left\{\begin{array}{lll}38 & 00 & 47.89 \\ 114 & 02 & 59.31\end{array}\right.$	1476.6	2420742 6025	$\begin{array}{r}620748 \\ 186 \\ \hline 25\end{array}$	North houndary signai	251.2	2.40009
	11140259.31	1446.7	62536	1862535	Canyon Peak	413.6	2.61657
Pine ITill, 1883.	$\left\{\begin{array}{lll} 37 & 58 & 13.34 \\ 114 & 01 & 57.66 \end{array}\right.$	$\begin{array}{r} 411.3 \\ 1407.5 \end{array}$	670806	2470740	Road summit.	1110.1	3.04538
			1371650	3171608	Pioche.	2415.9	3.38307
			2093730 337 23 51	$\begin{array}{r}293753 \\ 157 \\ \hline\end{array}$	East R id	1878.3	3.27377
			3372351	1572420	Butte..	3046.1	3.48375
Boundary stake No. 2,1 $1883 . \ldots$.	$\left\{\begin{array}{l}375848.70 \\ \hline 1140259\end{array}\right.$	1501.4	$\begin{array}{llll}306 & 00 & 33 \\ 340 & 36\end{array}$	1260111	Pine Hill.	1853.2	3. 26792
	1114 0259.08	1441.8	3423650	1623702	Road sum	1593.9	3.20246
	$\left(\begin{array}{rrrr}39 & 16 & 24.515 \\ 114 & 11 & 53.573\end{array}\right.$	$\begin{array}{r} 756.0 \\ 1284.1 \end{array}$	2011053.9	-21 2133.6	Ibepah.	66120.7	4. 8203371
			2250624.7	460653.8	Deseret.	188281.7	5. 2748081
			2531809.7	745105.2	Mount Neb	217435.3	5.3373301
Mount Moriah, cairn, 1883............			2645717.6	861302.3	Scipio..	172225.6	5. 2360976
			3005228.0	1215941.8	Tushar	181750.3	5. 2591750
			172132.2	1971710.7	Wheeler Pea	33422.1	4.5240336
			471929.5	2263029.9	White Pine.	155005.7	5.1903477
Snake Creek, 1883	$\{1135829.544$	711.3	$\begin{array}{rrrrr}94 & 11 & 55.7 \\ 150 \\ 298 & 28 & 24\end{array}$	2735909.3	Wheeler Peak.	29402.1	4.468378
			150 28 248 24.0 8 46.9	3301956.7 682411.0	Mount Moriah	39107.1 52766.2	4.592256 4.72356
Wheeler Peak reference mark, 1882...	$\left\{\begin{array}{llll}39 & 01 & 13.696\end{array}\right.$	422.3	2810043.7	1011350.7	Snake Creek	30674.2	4.486773
	114 1920.216	486.3	3482849.5	1682909.8	Wheeler Pea	3896.9	3. 590723
Nevada-Utah boundary monument, 1883.	$\left\{\begin{array}{llll}39 & 09 & 45.918 \\ 114 & 02 & 53.130\end{array}\right.$	1416.0	3434223.6	1634509.7	Snake Creek	22618.3	4. 354460
		1275.6	$\begin{array}{lllll}49 & 33 & 56.2\end{array}$	2292354.3	Wheeler Peak.......	30190.1	4.479864
			562541.9	2361519.3	Wheeler Peak reference mark	28499.8	4.454812
Cedar Spur, 1883.	$\left\{\begin{array}{ccc} 38 & 56 & 40.132 \\ 114 & 09 & 08.704 \end{array}\right.$	$\begin{array}{r} 1237.6 \\ 209.6 \end{array}$	1082220.8	2881616.6	Whecler Peak	14688.4	4.166976
			2002424.8	202821.4	Nevada-U'tah boundary monument.	25859.7	4.412623
			2603853.4	804535.3	Snake Creek	15594.8	4.192979
Transit Venus station, 1883.	390041.514	1280.2	2150712.8	3512 23. 1	Nevada-Utah boundary monu-	20535.5	4.312506
	1141105.208	125.3	2850504.0		Snake Creek	18941.5	4.275116
			3392044.4	1592157.7	Cedar Spur.	7954.2	3.900596
Shell Creek, south peak, 1881..........	$\left\lvert\, \begin{array}{rrr} 39 & 20 & 12.047 \\ 114 & 35 & 57.638 \end{array}\right.$	$\begin{array}{r} 371.5 \\ 1380.4 \\ \hline \end{array}$	350206.8	2142810.7	White Pine	137408.5	5.1380137
			1050741.1	2842112.6	Diamond Pe	108454.8	5. 0352487
			2264342.8	470942.1	Ihepah	79975.5	4.9029571
			3272911.8	1474002.1	Wheeier Pea	46111.0	4.6638042
Shell Creek, north peak, 1881.	$\int \begin{array}{rrr} 39 & 24 & 48.819 \\ 114 & 35 & 56.796 \end{array}$	$\begin{aligned} & 1505.5 \\ & 1358.7 \end{aligned}$	330555.7	2123157.4	White Pine	144491.4	5.1598420
			1004128.7	2795457.4	Diamond Pea	106566.1	5.0276190
			2313040.9	${ }_{51}^{51} 5641.9$	Ibepah	74369.2 20608.6	4. 87113929
			$\begin{array}{llll}269 & 52 & 43.7 \\ 332 & 25 & 28.3\end{array}$	$\begin{array}{r}91 \\ 152 \\ 156 \\ 36 \\ \hline 18\end{array}$	Scipio......	206084.6 53496.3	$\begin{aligned} & 5.3140456 \\ & 4.7283238 \end{aligned}$
Ward, north summit, 1881.	$\left\{\begin{array}{rrr} 39 & 08 & 29.8 \\ 114 & 56 & 38.2 \end{array}\right.$	$\begin{aligned} & 919.0 \\ & 917.3 \end{aligned}$	280906	2074811	White Pine	103318	5. 014178
			$123 \quad 2713$	3025306	Diamond Peak	90004	4.954264
			2972120	1074511	Wheejer Peak	57248	4.757762
Ward, smail cairn. 1881................	$\mid \int_{114}^{39} 06061.912$	$\begin{array}{r} 50.0 \\ 286.4 \end{array}$	2832429.8	1034725.6	Wheeler Peak	54038.5	4.7327033
			328 30 26 145 20.0	1484723.6 210	Pioche ${ }^{\text {Whine }}$	145019.5 100354.4	5.1614265
			1250510.5	3043100.9	D lamond Pea	94286.0	4.9744470
Mount Gralton, summit, 1881.........	$\int \begin{array}{lll}38 & 41 & 32.972 \\ 114 & 44 & 30.698\end{array}$	$\begin{array}{r} 1016.7 \\ 741.9 \end{array}$	581431.3	2374609.0	White Pine	78112.0	4.892718
			1370846.9	3162801.3	Dlamond Peak	135940.8	5.133350
			2283905.8	485513.4	Whecier Peak	49464.0	4.694289
			3221051.4	1423633.5	Pioche	98934.8	4.995349
White Rock, 1881.	$\left\{\begin{array}{rrr} 38 & 08 & 47.033 \\ 114 & 19 & 30.168 \end{array}\right.$	1450.2	1005624.2	2801243.4	White Pine	104769.9	5. 0202364
		734.6	1803732.3	03758.6	Whecler Pea	93213.8	4. 9694803
			3062400.4	1263407.9	Pioche.	29874.0	4. 4752941
Pioche Peak, monument, 1881.	$\left\{\begin{array}{lll} 37 & 56 & 01.546 \\ 114 & 28 & 54.342 \end{array}\right.$	47.7	2101124.3	301712.0	White Rock.	27318.4	4. 4364550
		1327.0	2345942.7	${ }^{65} 2221.0$	Indian Peak	64815.0	4.8118762
			2610538.1	812131.2	Pioch	38274.3	4. 5829070
White cairn, 1883.	$\left\{\begin{array}{lll}37 & 55 & 19.160 \\ 114 & 26 & 57.704\end{array}\right.$	590.7	1143912.6	2943800.9	Pioche Peak	3134.0	3. 4961040
		1409.4	2033724.6	234200.4	White Rock	27194.4	4. 4344797
			2582002.3	783443.7	Pioche	35704.1	4. 5527179
Highland Peak, summit, 1881........	$\left\lvert\, \begin{array}{rrr}37 & 53 & 38.346 \\ 11434 & 40.972\end{array}\right.$	1182.21001.2	1203244.2	2995832.9	White Pine.	93753.0	4.9719854
			1904247.0	105239.6	Wheeler Peak	123408.4	5. 0913446
			2422553.2	622926.2	Pioche Peak	9519.1	3.9799610
			2543610.8	744055.4	White cair	11736.2	4.0695285
			2572106.2	774032.1	Pioche	47422.3	4.6759828
White Pine, azimuth mark, 1883.	$\left\{\begin{array}{rrr}38 & 18 & 43.768 \\ 115 & 30 & 25.198\end{array}\right.$	$\begin{array}{r} 1349.6 \\ 612.2 \end{array}$	2104848.68	304901.33	White Pine	967.8	2.9857973
			2335242.97	543726.98	Wheeler Pcak	128041.7	5.1073514
			2852222.07	1061619.23	Pioch	132621.5	5.1226139
White Pine, south summit, 1880.	$\left\{\begin{array}{llll}38 & 17 & 37.860 \\ 115 & 31 & 19.351\end{array}\right.$	$\begin{array}{r} 1167.4 \\ 470.3 \end{array}$	804801.7	2593455.7	Lone Mountain.	175374	5.243964
			1110757.3	2895929.4	Tolyabe Dome	170384	5. 231428
			1695636.3	3494526.5	Dlamond Peak.	145640	5.163281

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

GEOGRAPHIC POSITIONS-Continued
Thirty-ninth parallel-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm
Supplementary points-Continued.	- ' "		- ' "	"		Meters.	
Toquema, 1880.......................	$\left\{\begin{array}{rrr}38 & 40 & 12.453 \\ 116 & 57 & 39.072\end{array}\right.$	384.0 944.6	286 32 33 11 11 58.2	1072635.9 2125207.7	White Pine.....	133139.4	5. 1243065
	116573.072		1180559.6	2975117.3	Toiyrabe Dome.	38541.4	4. 5859274
Lyon, south summit ,1880-81........	381721.887	674.8	725819.0	2521833.4	Lone Mountain.	98491.4	4. 9933982
	11625 16.472	400.3	1265510.2	3062020.6	Toiyabe Dome	101132.9	5. 0048926
			2671936.3	875348.9	White Pine.	80534.4	4.9059814
Kawich Peak, 1880-81.................	375743.052	1327.3	944214.6	2740405.8	Lone Mountain.	90988.6	4. 9589870
	116 2739.620	967.3	1412542.7	3205229.5	Toiyabe Dom	124144.6	5. 0939278
			2442628.6	650202.3	White Pine.	93027.9	4. 9686134
Montezuma Peak, 1879-1881...........	\| 374141.99	1294.5	1281424.1	3072127.0	Mount Grant.	158579	5.200246
	1172141.56	1018.1	1622346.0 1802136.7	3421853.8 02157.1	Lone Mountain	38396 126321	$\begin{aligned} & 4.584283 \\ & 5 \end{aligned}$
Butler, 1902.	$\left\{\begin{array}{ccc} 38 & 03 & 02.463 \\ 117 & 13 & 54.294 \end{array}\right.$	$\begin{array}{r} 75.9 \\ 1323.8 \end{array}$	825522.6	2624541.3	Lone Mountain	23185.3	4.365213
Bradford, 190	$\{330843.821$	1351.2	51403.9	1851339.5	Butler	10568.8	4.024024
	$\{1171314.747$	359.1	605009.6	2404003.3	Lone Mounta	27453.0	4.438599
Booker, 1902	$\{380557.986$	1788.0	362121.9	2161941.2	Butler.	6718.5	3.827271
	(117 1110.845	266.6	1492846.0	3292729.6	Bradford	5936.1	3.773502
Oddie, 1902.	(38 0422.362	689.5	203400.6	2003337.2	Butler.	2631.1	3. 420133
	$\{1171316.385$	399.4	772826.8	2571821.6	Lone Mountain	24516.9	4. 389465
			1801659.7 2260134.4	01700.8 460251.8	Bradford Booker..	8061.4 4247.0	3. 906412 3. 628085
Tonapah astronomic, 1902............	f 380408.546	263.5	2460522.0	660546.3	Oddie.	1051.1	3.021649
	$\{11713$ 55.808	1360.4	3585744.9	1785745.8	Butler.	2037.8	3.309161
Tonopah north meridian, 1902........	(380444.665	1377.2	3054511.0	1253535.3	Oddie.	1181.6	3.072462
	$\{1171355.808$	1360.3	3591944.8	1791945.7	Butler.	3151.3	3. 498489
			00000.0	1800000.0	Tonopah astronom	1113.6	3.046738
Golden, 1902	(380346.914	1446.6	542933.8	2342845.2	Butler.	2359.3	3.372777
	1171235.524	866.0	1084933.9	2884844.4	Tonopah astronom	2067.6	3.315459
			1373935.8	3173910.6	Oddie.	1478.7	3. 169878
			2070104.8	270156.9	Booker	4536.6	3.656726
Tonopah southeast base, 1902.........	$\left\{\begin{array}{l}38 \\ 03 \\ 30.833\end{array}\right.$	950.7	1624125.8	3424113.3	Oddie.	1664.1	3.221184
	\{117 1256.071	1367.0	2251726.0	451738.7	Golden	704.8	2.848056
Tonopah northwest base, 1902........	$\left(\begin{array}{ccc}38 & 03 & 42.306 \\ 117 & 13 & 09\end{array}\right.$	1304.5	412935.4	2212907.9	Butler.	1639.9 1245	3.214818
	1171309.732	237.2	1723114.0 2601940.1	$\begin{array}{r}3523109.9 \\ 802001.2 \\ \hline 103\end{array}$	Oddie.	1245.6 845.9	3.095383 2.927338
			3164324.2	1364332.6	Tonopah southeast	485.84	2. 686493
Davis, 1902.	(380251.881	1599.7	954851.3	2754730.1	Butler.	3226.8	3. 508775
	1171142.628	1039.4	1404047.2	32039494.4	Oddie	3606.5	3. 5577080
			1424605.7	3224533.1	Golden	2131.2 5789.7	3. 328628 3. 762655
			1873945.2	74004.8	Book	5789.7	3.762655
Douglas, 1902.	37 5959.544	1835.7	960928.1	2755834.5	Lone Mountain.	26026.2	4.415411
	1171156.728	1384.1	1530334.2	3330221.8	Butler.	6326.8	3.801185
			1731748.7	3531700.6	Bradfor	16275.9	4.211545
			1834206.7 1854549.9	$\begin{array}{llll}3 & 42 & 15.4 \\ 5 & 46 & 18.2\end{array}$	Davis.	5324.6 11107.6	$\begin{aligned} & 3.7262855 \\ & 4.045622 \end{aligned}$
Lothrop, 1902.	380139.863	1229.2	405922.8	2205815.0	Douglas.	4097.0	3.612471
	1171006.584	160.6	1143926.1	2943705.8	Butler	6109.0	3.785967
			1332849.6	3132750.4	Davis.	3227.4	3.508850
			1685110.9	3485031.3	Book	8111.6	3.909105
Ralston, 1902...........................	\{ 380038.967	1201.5	760901.2	2560656.9	Douglas.	5071.5	3. 705133
	\117 0834.912	851.7	1300135.7	3100039.2	Lothrop.	2919.8	3.465352
Cutting, 1902.	375915.706	484.2	1055852.8	2855653.6	Douglas.	4914.1	3. 691445
	$\{1170843.102$	1051.8	1552319.9	3352228.3	Lothrop	4889.0	3. 689221
			1842701.8	42706.8	Ralston	2574.8	3.410750
Short, 1902.............................	$\left\{\begin{array}{l}38 \\ 00 \\ 12.960\end{array}\right.$	399.6	2482019.4	$68 \% 10.4$	Ralston.	2173.0	3.337055
	11170957.696	1407.6	3140701.0	1340746.9	Cutting.	2535.5	3.404065
Crest, 1902.	380004.653	143.5	1942820.5	142822.2	Short.	264.5	2.422441
	1171000.406	9.9	2430550.4	630643.1	Ralston	2338. 7	3. 368980
			3083920.0	1284007.6	Cutting	2415.6	3.383033
Watch, 1902.	380007.103	219.0	601716.7	2401713.3	Crest.	152.4	2. 182975
	1170954.980	1341.4	1595109.8	3395108.1	Short.	192.4	2.284095
			3120532.9	1320617.0	Cutting	2363.7	3. 373595
Esmeralda County corner stone, 1902.	380007.283	224.6	704022	2504022	Watch	16.806	1.22546
	1170954.330	1325.5	1385147.4	3181320.0	Hot Spring.	135852.8	5.1330685
Toiyabe Peak, 1880.	392135.275	1087.9	222549.5	2021518.7	Toiyabe Dome.	63228.5	4.800913
	1170428.411	680.4	600244.2	2385758.8	Mount Grant.	172616.4	5. 237082
			$195 \quad 2058.6$ 2563359.1	$\begin{array}{llll}15 & 25 & 43.6 \\ 77 & 21 & 54.7\end{array}$	Mount Callahan	40295.2 110981.1	4.605253 5.045249

GEOGRAPHIC POSITIONS-Continued.

Thirly-ninth parallel-Continued.

PRIMARY TRIANGULATION.

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Statlon.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Loga rithm.
Supplementary points-Continued.	- ' " 11		- ' ${ }^{\prime \prime}$	- ' ${ }^{\prime \prime}$		Meters.	
North Aususta, 1880.) $\begin{array}{r}39 \\ 117 \\ 418\end{array}$	${ }_{533.5}^{262.4}$	2673845.7	88 1134.1	Mount Callahan.	73471.8	4. 866121
			725847.4	158 2524238.3	Taiyabe Dom.	102448.1 38502.4	5.010504
Fairview, cairn, 1880.	(391331.450	969.9	373144.6	2170740.3	Mount Grant.	91402.8	4.9609595
	1180906.612	158.6	1695024.1	3494714.6	Carson Sink.	40381.5	4. 6061825
			3363147.2	1225556.2 15656.0	Lone Mountain	81791.0 145085.5	4. 9127055
Mount Lincoln, peak, 1880.	393259.137	1823.8	2122544.2	322647.5	Carson Sink.	4425.0	3.645912
	11815 44. 525	1063.0	3150328.0	1353758.1	Toiyabe Dome	111857.2	5.048664
			225907.7	2023909.1	Mount Grant.	117920.7	5.071590
Carson Table, summlt,	(393230.34	935.7	2294258.5	494524.1	Carson Sink.	7152.5	3. 854459
	1181753.73	1283.0	3133655.2	1341246.8	Toiyabe Dome	113443.3	5. 054779
			21 13 ${ }^{48.6}$	2012511.5	Mount Grant	115925.5	5. 064179
			1055636.6	2851135.8	Pah-Rah.	104687.3	5. 019894
Augusta, monument, 1878.	(393225.167	776.1	351840.6	2144542.8	Mount Grant.	131465.7	5.1188124
	1175507.696	183.8	1000522.2	2795317.8	Carson Sink	27569.9	4. 4404349
			1022716.9	2812744.1	Pah-Rah.	136366. 4	5. 1347074
			256 327565519.9	773359.8 1481448.1	Mount Callahan Toiyabe Dome	85267.1 92525.4	4.9307815 4. 9662608
Desatoiya, 1879..	392155.959	1725.8	454316.1	2250418.9	Mount Grant.	125659.1	5.099194
	1174530.306	725.5	1204147.8	3002337.6	Carson Sink.	47591.0	4.677525
			2405605.8	612658.0	Mount Callahan	79297.4	4. 899259
			3290924.4	1492446.2	Toiyabe Dome	68766.7	4.837378
			3510729.3	1711724.9	Lone Mountain	150618.4	5.177878
Desatoiya, north twin, 1879.	$\left(\begin{array}{lll}39 & 22 & 10.740 \\ 117 & 45 \\ \hline\end{array}\right.$	331.2	453319.5	2245423.6	Mount Grant.	125940.1	5.100164
	1174532.527	778.7	1201515.3 2411430.3	2995706.5 614524.0	Carson Sink...	47314.0 79123.4	4.674990 4.898305
			2611338.4	822741.1	Diamond Peak.	168712.4	5.227147
Wassack, 1879.	(384704.532	139.8	1535956.39	3333537.87	Pah-Rah.	125001.09	5. 0969138
	1185001.542	37.2	2100449.55	302732.06	Carson Sink..	102678.84	5. 0114810
			2670839.72	88 17104 03 02.10	Toiyabe Dome	128784.01	5. 1098819
			3510123.19	1710300.02	Mount Grant.	24039.63	4. 3809278
Sherman Peak, 1870-80..	(385613.790	425.2	3462323.5	1663348.9	Lone Mountain.	104179.6	5.0177828
	$\{1174622.716$	547.1	653725.6	2445912.1	Mount Grant	97375.3	4.9884488
			1510532.9	3304800.9	Carson Sink	82070.7	4.9141879
Paradise Peak, cairn, 1879-80.	(38 4825.733	793.5	2655141.1	860930.3	Toiyabe Dome.	41246.8	4.6153898
	1174934.244	826.2	3412457.7	1613721.2	Lone Mountain	91580.8	4. 9618044
			725557.3	2521946.9	Mount Grant.	87930.5	4.9441397
			1575121.3	3373551.8	Carson Stink	93124.9	4.9690656
Pilot Cone or Basalt, cairn, 1878-1880.	(38 5919.447	599.6	2800451.0	1004541.5	Toiyabe Dome	95573.2	4. 9803360
	1182609.952	239.5	334144.6	2132825.0	Mount Grant.	55707.3	4. 7459122
			923927.8 1944044.3	2720017.9 144823.3	Mount Como	89912.5 68266.1	4.9538200
	\{ 385747.314	1458.9	985558.6	2784802.7	Basalt.	18432.1	4. 265574
Mill, 1902.	[118 1333.388	803.8					
11ot Spring, 19	$\begin{cases}38 & 55 \\ 09.407\end{cases}$	290.1	1102211.9	2901307.5	Basalt.	22230.2	4. 346944
	\{118 1144.044	1061.0	1513616.7	3313508.0	Mi	5535.8	3.743182
Miller,1902.	[385329.527	910.4	1194942.1	2994129.6	Basalt.	21738.7	4.337233
	$\{1181306.371$	153.5	1751919.7	3551902.7	Mill.	7975.9 3663.5	3.901780 3.563896
Mount Annle, 1902.	(385831.472	970.4	370455.2	2170151.6	Miller.	11667.3	4. 0666971
	1180814.470	348.3	390126.4	2185914.7	1 Iot Spring	8018.5	3. 904093
			795814.0	2595453.4	Mill.	7797. 4	3.891952 4.413780
			932153.5	2731036.9	Basalt	25928.7	4. 413780
1Iot Spring west base, 1902.	(38 5623.729	731.7	1790120.2	3590119.1	Mill.	2577.9	3. 411263
	1181331.561	760.0	2424051.3	624410.9	Mount Annio	8591.2	3.934053
			311 353 353 39	1313059.6 1733323.5	1 1rot Spring	3458.3 5406.0	3.538859 3.732873
			3533307.6	1733323.5	Miller..	5406.0	3.732873
1fot Spring east l,ase, 1902.	(385613.478	415.6	122855.6	1922826.5	Miller.	5178.0	3.714163
	$\{1181219.934$	480.0	1002323.7	2802238.7	110 Spring west base	1753.82	3.243985
			1483411.0	328 158 1524 24.8	Mill	3391.4 2156.6	3. 530381
			3362151.8	1562214.4	110t Spring	2156.6	3.333771
Churchill, 1902	[390236.668	1130.8	3162539.6	1362921.4	Mill	12309.5	4. 090239
	1181925.794	620.3	3210547.2	1411037.7	110 t Spring	17713.0	4. 248293
			3313209.8	1513608.1	Miller.	19186.1	4.282986
			580036.7	2375622.3	Basalt	11468.6	4. 059512
Mount Grant, hlghest peak, 1902.....	(383407.850	242.0	2131946.9	333305.6	Basalt	558.58. 1	4.747086
	1184725.184	609.7	2280450.3	482602.9	Mill.	65741.6	4.817840
			2325134.3	531354.3	1 fot Sprin	64707.1	4. 810952
			2340320.4	542448.5	Miller.	61287.6	4.787373

GEOGRAPIIC POSITIONS-Continued.

Thirly-ninth parallel-Continued.

Station.	Latlude and lonsllude.	Seconds in meters.	Azimuth.	Back azimutb.	To station.	Dlstance.	Losarlibm.
Supplementary points-Continued.	- ${ }^{\text {c }}$		- " "	- "		Meters.	
Cory Peak or Mount IIull, summit, 1879.	$\left\{\begin{array}{r}38 \\ 118 \\ 1865454.263 \\ 54.096\end{array}\right.$	1673.1 1311.8	2002556.6 2275751.7		Carson Slink....	134608.9 211472.1	5. 1230739 5.3252531
			2503708.4	713041.5	Tolyaho Dome.	131559.5	5.1191224
			2921436.3	1130225.9	Lone Mountain	122173.8	5. 0869780
Volcano, 1879...........................	382344.08	1359.2	3050324	1252804	Lono Mountain	71314	4. 853177
	$\{1180931.09$	754.5	1093635	2891259	Mount Grant	58477	4.766936
			2350509	${ }^{5} 51250$	Tolyabe Dome	85374	4.931324
Two Tlps, north summit, 1878........	394301.227	37.8	190320.6	1985138.0	Mount Como	81622.5	4.911810
	$\{1190955.873$	1330.8	$\begin{array}{llll}108 & 13 & 31.4 \\ 280 & 13 & 19.2\end{array}$	288 10048 185.4	Pah-Rah..	$\begin{aligned} & 2774.3 \\ & 81253.5 \end{aligned}$	4.443643 4. 908842
Mucca or Elephant Peak, 1879.........	395835.137	1083.7	2881023.9	1090818.9	Carson Sink	136406.5	5. 134835
	1194436.027	854.9	3315511.0	1523122.0	Mount Grant	176388.0	5. 246469
			3473302.1	1674320.6	Mount Como.	108514.8	5.035489
Pond Summlt, monument, 1879......	393909.079	280.0	1764351.2	3564327.0	Pah-Rah.	15826.6	4.199389
	1192746.758	1114.8	2734612.2	943311.8	Carson Sink	105747.2	5.024269
			$\begin{array}{llll}295 & 51 & 48.0 \\ 333 & 57 & 13.7\end{array}$	1171155.2 1542240.6	Tolyabe Dora Mount Grant.	203655.0 133435.4	5. 308895 5.125271
Virginia Peak, monument, 1878......	394521.628	667.0	1652502.3	3452432.1	Pah-Rah.	4454.7	3. 648822
	$\{1192737.550$	893.9	2795607.8	1004304.5	Carson Sink	106902.0	5.028986
			3360241.6	1562804.2	Mount Gran	143757.6	5.157631
Sage, 1879...............................	390742.324	1305.2	2441621.7	650327.4	Carson sink.	118037.5	5.072020
	1192820.987	504.1	3160436.5	1363016.1	Nount Grant	85653.1	4. 93274
			01823.2 414630.6	1801821.5 2212637.4	Mount Como Round Top.	$\begin{aligned} & 11849.8 \\ & 68957.1 \end{aligned}$	4.073712 4. 838579
Galena Saddle, 1879....................	385324.068	742.1	600527.1	2394642.4	Round Top	50086. 2	4. 699718
	1193005.376	129.6	1893025.7	93129.6	Mount Como	14820.3	4. 170858
			2342742.2	551546.8	Carson Sink	133741.1	5. 126265
			2711608.1 2993650.6	923702.7 1200331.5	Toiyabe Dom	186638.8 71250.7	$\begin{aligned} & 5.271002 \\ & 4.852789 \end{aligned}$
Freel Peak, 1893..	385128.456	877.4	221130.64	2020743.28	Round Top	23244.72	4.3663244
	1195357.980	1398.0	1475818.55	3274041.98	Mount Lola	75474. 16	4.8777983
			2434006.69	635611.04	Mount Com	41183.83	4.6147267
Rose Knob, 1893.	$\left\lvert\, \begin{aligned} & 3917 \\ & 25.836\end{aligned}\right.$	796.8	3513741.62	1714046.37	Freel Peak.	48539.62	4. 6860964
	$\{1195851.080$	1224.1	112341.26	1812257.20	Round Top	69573.68	4. 8424450
			1154515.32	2953039.77	Mount Lola	36657. 70	
Rubicon	\{ 385958.883	1815.6	1970122.39	170542.83	Rose Knob	33771.56	$\text { 4. } 5285511$
	11200543.631	1049.9	3124418.44	1325141.84	Freel Peak	23165.81	4.3648476
Observatory Point, 1893..	391113.437	414.4	2203312.51	403732.03	Rose Knob.	15122.84	4.1706334
	1200541.358	992.6	3350531.61	1551254.47	Freel Peak	40268.74	4. 6049650
Genoa Peak, 1803.	390236.137		43118.84	1843036.38	Freel Peak	20653.22	4.3149877
	1195250.448	1213.2	752718.24	2551911.43	Rubicon Point	19221.58	4.2837892
			1304824.00	31040 17.65	Observatory Point	24443.62	4.3881655
Ilot Spring Mountain, 1897	\{ 390358.888	1816.1	335212.53	2134527.72	Freel Peak.	27852.11	4. 4448581
	1194314.210	341.6	793654.08	2593051.01	Genoa Pea	14088. 63	4.1488688
Folsom Peak, 1893.	[385909.518	293.5	965431.33	2764900.63	Rubicon Point	12739. 44	4. 1051504
	1195658.068	1397.6	1503858.86	3303328.93	Observatory Point	25622.83	4. 4086271
			$\begin{aligned} & 2230315.90 \\ & 3430055.57 \end{aligned}$	$\begin{array}{r} 4305 \\ 163024.77 \\ 1802 \end{array}$	Genoa Peak Freel Peak.	$\begin{array}{r} 8722.75 \\ 14864.74 \end{array}$	$\begin{aligned} & 3.9406533 \\ & \text { 4.1721573 } \end{aligned}$
Anderson, 1897.	385827.953	861.9	574515.26	2373622.12	Freel Peak.	24195.19	4.3837290
	1193949.279	1186.3	1121326.01	2920514.31	Genoa Peak	20293.73	4. 3073620
			1541400.09	3341151.07	Iot Spring Mountain.	11333. 49	4.0543636
Mount Rose or Washoe Peak, 1893....	392038.952	1201.3	3125300.01	1330949.74	Mount Como	52468.75	4.7199007
	1195501.797	43.0	3310617.04	1511344.30	1 Iot Spring Mountain	35204.44	4.5465974
			3543545.57	1743708.57	Genoa Peak.	33540.36	4.5255678
			424218.76	2223953.50	Rose Knob	8101.66	3.9053740
			1043327.24	2841625.69	Mount Lol	39776.86	4.5996305
Overlook, 1897.	(390914.204	438.0	3072327.95	1272901.41	IIot Spring Mountain	15995.51	4.2039982
	$\{1195202.831$	68.0	51946.60	1851916.57	Genoa Peak	12328.64	4.0909151
	-		1683141.72	3482948.50	Mount Rose	21548.14	4.3334099
Mount Davidson flagstaft, 1897.......	$\int 391830.756$	948.5	103412.62	1903200.76	Hot Spring Mountain.	27349.17	4. 4369442
	1193945.529	1090.8	324119.35	2123303.51	Genos Peak	34951.54	4.5434663
			455517.38	2254731.07	Overlook.	24643.48	4.3917021
			1001731.44	2800750.77	Mount Ros	22300.18	4.3483084
Peavine, 1893..	[393514.157	436.6	3230806.03	1431820.71	Mount Davidson flagst	38634. 71	4.5869777
	1195552.952	1263.7	3274011.57	1475738.34	Mount Como.	74190.84	4. 8703503
			3572405.02	1772437.54	Mount Rose	27018.61	4. 4316630
			72258.57 62911.03	1872105.41 2451239.38	Roso Knob Mount Lola	33220.61 40969.32	4.5214079 4. 6124588
			2392659.14	594431.79	Pah lah.	45536.45	4. 65×3592

GEOGRAPHIC POSITIONS-Continued.
Thirty-ninth parallel-Continued.

Station.	$\begin{aligned} & \text { Latitude } \\ & \text { and } \end{aligned}$ longitude.	Seconds in meters.	Azimuth.	Back azimuth.	Tostatlon.	Distance.	Logarlthm.
Supplementary points-Continued.	$\left\lvert\, \begin{array}{ccc} \circ & \prime & \prime \prime \\ 39 & 07 & 36.944 \\ 119 & 43 & 13.903 \end{array}\right.$	$\begin{array}{r} 1139.3 \\ 334.0 \end{array}$	$\begin{array}{lcc} \circ & \prime \prime \\ 0 & 03 & 46.7 \end{array}$	$\begin{array}{cc} \circ & \prime \prime \\ 180 & 03 \\ 46.4 \end{array}$	Hot Spring Mountain.	Meters. 6724.3	
							3. 82727849
Prison Hill, 1897..			1031953.2	$\begin{array}{llll}2 \times 3 & 14 & 19.3\end{array}$	Genoa Peak O verlook...	16675.3 13051.9	4.222073 4.115675
			1445458.5	3244730.7	Mount Ros	29492.6	4.469713
			1935422.1	135633.8	Mount Davidson fiagstaf	20772.8	4.317495
East Peak, 1893.	$\left\lvert\, \begin{array}{rrr} 33 & 56 & 34.312 \\ 119 & 54 & 23.944 \end{array}\right.$	$\begin{array}{r} 1058.2 \\ 576.6 \end{array}$	1421337.7	3221200.8	Folsom Peak.	6058.0	3.782186
			1912335.6	112434.5	Genoa Peak	11382.2	4.056225
			${ }_{229} 3311.0$	494012.6	Hot Spring Mountain	21157.6	4.325466
			2602834.3	803744.3	Anderson..	21349.3	4.329384
			3561209.1	1761225.4	Freel Peak	9452.2	3.975535
Deadman, 1893.	$\left\lvert\, \begin{array}{rrr} 39 & 06 & 42.011 \\ 119 & 57 & 00.080 \end{array}\right.$	$\begin{array}{\|r} 1295.6 \\ 1.9 \end{array}$	452421.03	2251851.15	Rubicon Point.	17692.16	4.2477808
			1234856.64	3034327.54	Observatory Poin	15058.02	4.1777680
			1722208.61	3522058.45	Rose Knob.	20032.18	4. 3017281
			3510827.21	1711021.77	Freel Peak.	28510.15	4. 4549995
			3594804.32	1794805.59	Folsom Pea	13953.74	4.1446907
Tallac Peak, 1893.	$\left\{\begin{array}{lll}38 & 54 & 22.889 \\ 120 & 05 & 53.748\end{array}\right.$	705.91295.1	2092054.8	292630.8	Deadman.	26160.4	4.417644
			2353208.5	553745.3	Folsom Peak	15637.6	4. 194171
			2871513.5	1072242.8	Freel Peak	18071.4	4. 256993
			3422458.9	1622839.8	Round Top	28220.6	4. 450566
Carson, capitol dome, 1897.			185315.1	1984811.3	Freel Peak.	35936.7	4. 555538
		1583.9	3165214.4	136 53 56.5 160 3	Prison Hill	5678.3	3. 754217
		1332.6	3402148.4	1602330.1	Hot Spring Mountain	11539.5	4.062187
			823747.8	2623355.9	Overlook.	8898.2	3.949060
Genoa flagstaff, 1897...................	$\left\{\begin{array}{r}39 \\ 119 \\ 50\end{array}\right.$	382.61057.8	2181440.0	381923.7	Prison Hill.	17464.1	4. 242145
			2370644.8	571128.1	Hot Spring Mountain	12876.0	4. 109780
			2812946.4	1013638.3	Anderson.	16082.2	4. 206346
Sutro, 1897	$\left\{\begin{array}{lll} 39 & 17 & 47.965 \\ 119 & 36 & 09.568 \end{array}\right.$	1479.2	282508.4	2082040.2	Prison Hill.	21417.1	4.330760
		229.3	1041932.9	2841716.1	Mount Davidson flags	5340.2	3. 727556
Cedar Hill, 189	$\left\{\begin{array}{rrr} 39 & 19 & 26.020 \\ 119 & 39 & 00.635 \end{array}\right.$	802.4	3062420.6	1262609.0	Sutro.	5093.2	3.706994
		15.2	321528.8	2121500.4	Mount Davidson flagstaf	2015.3	3. 304329
Virginia City astronomic, 1889.	$\int \begin{array}{llll}39 & 18 & 39.641\end{array}$	1222.5	2923000.7	1123142.4	Sutro..	4161.9	3.619287
	$\{1193850.028$	1198.5	782141.1	2582106.0	Mount Davidson flagstaf	1357.6	3.132785
			1695538.3	3495531.6	Cedar Hill.	1452.7	3. 162167
Wbeeler Monument	$\left\{\begin{array}{rrr} 39 & 17 & 44.784 \\ 119 & 39 & 14.733 \end{array}\right.$	1381.1353.0	1861024.3	61033.2	Cedar IItll.	3140.2	3.496961
			2684302.0	884459.3	Sutro......................	4438.2	3. 647202
			1523023.3	3323003.8	Mount Davidson flagstaff.	1598.3	3. 203650
Vlrginia City Catbolic Church spire, 1897.	$\left\{\begin{array}{r} 3918 \\ 119 \\ 1198 \\ \hline \end{array}\right.$	1258.0	1990422.3	190423.8	Virginla Clty astronomic	181.8	2.259697
			2895945.2	1100123.4	Sutro.	4155.0	3.618566
			1730421.3	3530416.1	Cedar III	1613.9	3. 207882
Verdl Peak, 1897.	$\left\{\begin{array}{lll} 39 & 28 & 22.128 \\ 120 & 02 & 20.140 \end{array}\right.$	692.4	2160036.7	360443.2	Peavine.	15715.5	4.196328
		481.4	3234032.3	1434510.6	Mount R	17720.4	4.248474
Ranch Hill, 1897.	$\left\{\begin{array}{lll} 39 & 30 & 01.818 \\ 119 & 55 & 26.064 \end{array}\right.$	56.1	724638.3	2524215.0	Verdi Peak	10362.1	4.015447
		622.8	1761120.8	3561103.7	Peavin	9653.9	3. 984703
Bender, 1897...........................	$\left\{\begin{array}{l}392917.956 \\ 1195745.055\end{array}\right.$	503.8 1076.7		$\begin{array}{r}255 \\ 13 \\ 13 \\ 42 \\ 42 \\ \hline 20.9\end{array}$	Verdl Peak.	67906.2 110606	3. 832266
		1076.7	$\begin{array}{r}1934108.9 \\ 247 \\ \hline 19\end{array}$	$\begin{array}{lll}13 & 42 & 20.3 \\ 67 & 51 & 06.8\end{array}$	Peavine:	11308.7 3586.1	4. 0.03336 3.554621
Verdi Bluff, 1872......................	$\left\{\begin{array}{rrr} 39 & 31 & 06.515 \\ 119 & 58 & 53.680 \end{array}\right.$	200.9	2915343.1	1115555.2	Ranch H ill.	5346.2	3.728045
		1282.3	3335405.2	1535448.9	Bender.	3727.8	3. 571458
			441414.9	2241203.6	Verdi	7073.8	3. 849653
North Flat, 1872.......................	$\left\{\begin{array}{lll} 39 & 31 & 35.895 \\ 119 & 58 & 02.314 \end{array}\right.$	1107.0	3075038.9	1275218.3	Ranch Hill.	4727.6	3.674637
		55.3	3542744.1	$\begin{array}{llll}174 & 27 & 55.1 \\ 233 & 32 & 55.9\end{array}$	- Bender.	4273.9 1525.2	3.630829 3.183329
Point of liocks, 1872...................	$\left\{\begin{array}{lll} 39 & 31 & 41.224 \\ 119 & 58 & 48.852 \end{array}\right.$	1271.3	2782421.0	992450.6	North Flat.	1123.6	3. 050607
		1166.8	60856.1	1860853.0	Verdi Blufi.	1076.6	3.032058
Verdl east base, 1872	$\left\{\begin{array}{rrr}39 & 31 & 06.103 \\ 119 & 57 & 51.869\end{array}\right.$	188.2	902954.4	2702915.1	Verdi Bluff.	1476.5	3.169239
		1239.0	1283133.6	3083027.4	Point of Rocks	1739.4	3.240407
			1644833.8	3444827.2	North Flat	952.1	2.978664
Verdi west base, 1872..	$\left\{\begin{array}{r}39 \\ 119 \\ 58 \\ 58 \\ 21.174\end{array}\right.$	1848.0	1044041.7	2844021.0	Verdl Bluff.	802.7	2.904530
		505.8	1523420.5	3323402.9	Point of Rock	1435.1	3. 156884
			2020552.6	220604.6	Nortb Flat.	1197.4	3.078241
			2544546.5	744605.1	Verdi eas	725.510	2. 860643
Callfornia-Nevada fron monument, 1897.	$\int \begin{array}{rll} 39 & 31 & 29.513 \\ 120 & 00 & 04.052 \end{array}$	$\begin{array}{r} 910.2 \\ 96.8 \end{array}$	2583727.3	783915.2	Point of Rocks	1832.0	3. 262937
			2660700.4	860917.9	North Flat.	2914.3	3. 464535
			2925216.7	1125301.5	Verdi Blufi	1824.4	3. 261125
			3204115.4	1404243.9	Bender.	5242.9	3.719574
			292238.4	2092111.9	Verdl Peal	6630.9	3.821572

GEOGRAPHIC POSITIONS-Continued.

Thirty-ninth parallel-Continued.

Station.	Latitude and fongitude.	Seconds in meters.	Azimuth.	Back azimuth.	Tostation.	Distance.	Logarithm.
Supplementary points-Continued.	- ' $"$		- '	- ,		Meders.	
	(393114.486	446.7	1062423.3	2862341.3	Caifornia-Nevada iron monu-	1641.1	3.215211
Verdi longltude, 1889.	1195858.129	1388.5	1950226.0	150231.9	moint of Rocks.	853.9	2.931383
			2433850.5	633926.0	North Flat...	1487.7	3.172516
Cone Peak, while flag, 1872.	(392723.582	727.3	1780328.8	3580322.6	Verdi Bluff.	6879.1	3.837533
	\{119 5843.921	1050.1	1790902.6	3590859.5	Point of rocks.	7946.4	3.900173
			1901609.7	101542.8	Verdi east base.	6974.3	3.843500
Crystal Peak, flagstafl, 1872.	(393129.937	923.3	2600843.7	800937.1	Point of Rocks.	2035.4	3.308660
	$\{1200012.818$	300.2	2663651.7	863814.7	North Flat.	3122.4	3.494492
			2905421.1	1105511.4	Verdi Bluff	2023.6	3.306122
Crystal Peak, mountain top, 1872.....	$1 \begin{aligned} & 393329.938\end{aligned}$	923.3	2884625.7	1085101.0	North Fiat.	10906.9	4. 037700
	1200514.676	350.4	2895748.0	1100153.7	Point of Rocks.	9804.0	3.991403
			2924307.3	1124749.2	Verdi east base	11467.0	4.059451
California-Nevada stone monument, 1872.	39 3134.863	1075.2	2661633.2	861753.8	Point of Rocks.	3029.2	3.481321
	$\{1200055.414$	1323.6	2693236.9	893427.1	North Flat	4134.5	3.615419
			2564325.4	1064442.9	Verdi Bluff	3036.3	3.482342
California-Nevada wood monument, ${ }^{1}$ 1872.	\{ 393133.85	1043.9	2654120.0	854240.6	Point of Rocks	3032.0	3.481724
	120 12055.44	1324.2	2860919.7	1061037.2	Verdi Bluff.	3028.1	3.481165
Lone tree, 1872.	$\int 393443.398$	1338.4	171941.4	1971845.6	Verdi east base	7019.7	3.846318
	1195624.341	580.9	220157.1	2020054.7	North Flat.	6237.8	3.795029
			280430.1	2080255.0	Verdi Bluff	7579.7	3.879654
Verdi meridian mark, 1872.	(39 33 47.747	1472.5	3595947.8	1795947.8	Verdi east base.	4985.1	3.697674
	119 5751.882	1233.5	33023.7	1833017.1	North Flat.	4073.9	3.610014
			74157.8	1874139.2	Verdi west base	${ }_{5}^{5222.8}$	3.717903
			163206.6	1963127.3	Verdi Bluff.	5186.7	3.714895
Watertank, brick chimney, 1872.	$\left\lvert\, \begin{array}{rrr}39 & 31 & 05.416 \\ 119 & 59 & 12.697\end{array}\right.$	167.0	1101915.5	2901810.1	California-Nevada stone mon-	2616.1	3.417659
		303.3	2071650.8	271706.0	Point of rocks..............	1242.5	3.094304
			2404659.5	604744.3	North Flat	1926.1	3.284674
Verdi azimuth mark, 1872.	(393205.015	154.7	114144.7	1914134.7	Verdi east base.	1855.3	3.268425
	$\{1195736.124$	862.8	345135.3	2145118.7	North Flat.	1004.4	3. 039179
			454544.8	2254455.5	Verdi Bluff	2585.7	3.412586
Peavine East, cairn, 1897	\|3935 23.444	723.0	144732.2	1944612.9	Bender..	11657.3	4.066600
	$\{1195540.509$	986.6	362003.8	2161549.4	Verdi Peal	16122.0	4.207418
			460220.7	2260212.8	Peavine.	412.5	2.615457
Reno Congregational Church spire, ${ }^{1}$	$\{393033.02$	1018.3	692840.8	2492556.4	Bender.	6596.3	3.819300
1897.	11195326.54	634.1	1580316.0	3380142.7	I'eavin	9348.5	3.970742
White house, chimney, ${ }^{1} 1$	$\left\{\begin{array}{lll} 39 & 31 & 20.24 \\ 119 & 57 & 38 \end{array}\right.$	624.2	764239.9	2564152.2	Verdi Biuff.	1840.0	3. 264822
	$\{1195738.71$	924.6	1110751.1	2910706.5	Point of lroc	1796.0	3.254296
Railway whistle post, ${ }^{1} 1872$.	$\left\{\begin{array}{lll}39 & 31 \\ 13.83 \\ \hline 12\end{array}\right.$	426.5	1693602.6	3493558.5	Point of Rock	858.9	2. 933944
	11195842.36	1011.8	2343407.0	543432.5	North Fla	1173.9	3.069618

DESCRIPTIONS OF STATIONS

This list may be conveniently consulted by refercnce to the illustrations at the end of this publication or to the index. All azimuths given in these descriptions are reckoned continuously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. Where magnctic azimuths are given they are indicated as such. All distances to reference marks are horizontal distances unless otherwise stated.

In gencral the surface and underground marks are not in contaet, so that a disturbance of the surface mark will not nccessarily affect the underground mark. The underground mark should be resorted to only in case where there is cvidence that the surface mark has been disturbed.

The dates and initials given in each description immediately after the county refer to the date of establishment of the station, the man by whom it was established, and the date when the station was last visited.

Any person who finds that one of the stations hercin described has been disturbed, or that the description no longer fits the facts, is requested to send such information to the Superintendent, Coast and Geodetic Survey, Washington, D. C.

STANDARD TRIANGULATION STATION AND REFERENCE MARKS.

Marking of stations.-The standard triangulation disk station mark referred to in the following notcs and descriptions consists of a disk and shank, as shown in illustration No: 4, made of brass and cast in one piece. The disk is 90 millimeters in diameter, with a small hole at the conter surrounded by a 20 -millimetcr equilateral triangle, and has the following inscribed legend: "U. S. Coast and Geodetic Survey triangulation station. For information write to Supcrintendent, Washington, D. C. $\$ 250$ fine or imprisonment for disturbing this mark." The shank is 25 millimeters in diameter and 80 millimeters long, with a slit at the lower end into which a wedge is inscrted so that when it is driven into a drill hole in the rock it will bulge at the bottom and hold the mark securely in placc.

Another type of station mark is made in the form of a cap, to fit a 3 -inch pipe, instead of with the shank, but in other respects is similar to the disk station mark described above.

The standard disk reference mark referred to in the following notes and descriptions and shown in illustration No. 4 is similar to the standard disk triangulation station mark described above, except that the center of the disk is inscribed with an arrow instead of with the triangle and that the words "reference mark" replace the words "triangulation station" in the legend. A short perpendicular groove across the shank of the arrow indicates the point to which the measurements are made. The mark is sct so that the arrow points toward the station.

> general notes in regard to station marks.

Note 1.-The station is marked by a standard disk station mark, deseribed above, set in the top of a concrete cylinder 7 inches in diameter and 30 inches long ineased in a galvanized-iron pipe whieh was used for the form. The cylinder projects 3 inches above the ground. The underground mark is a brass bolt one-fourth inch in diameter and 2 inches long set in a block of concrete 6 inches square on top and 4 inehes thick. The bolt projects one-fourth or one-half inch above the conerete and is about 33 inches below the surface of the ground.

Note 2.-The station is marked by a standard disk station mark, described above, cemented in solid roek.
Note 3.-The station is marked by a standard cap station mark, described above, screwed to the top of a 3-inch iron pipe, which is embedded in a cylinder of concrete 10 inches in diameter and 30 inches long. The cylinder projects 3 inches above the ground.

Note 4.-Tho station is marked by a heavy cast-iron cap on the top of a 5 -inch iron pipe. The cap is marked by a small hole at the center surrounded by a raised triangle and has on it the legend "U. S. Missouri River Commission."

Note 5.-Tho station is marked by a heavy cast-iron cap on the top of a 5 -inch iron pipe. On the cap is a concentric cylindrical knob one-half inch high and the legend "Missouri River Commission U. S. B. M."

Note 6.-The station is marked by a United States Gcological Survey disk station mark cemented in a rock. The rock is embcdded in the ground flush with the surface. The disk is marked with a triangle in outline at the centcr and with the legend "U. S. Geologieal Survey B. M."

General notes in regard to peference marks.
Note 7.-This mark consists of a standard disk reference mark, described above, set in the top a conerete cylinder $5 \frac{1}{2}$ inches in diameter and 30 inches long ineased in a galvanized-iron pipe which was used for the form. The eylinder projects about 3 inches above the ground.

Note 8.-This mark is a standard disk reference mark, described on above, cemented in solid rock.

one hunided and fourti meridian.

PRINCIPAL POINTS.
Elbert (Elbert County, Colo., C. V. H., 1912).-Two and one-half miles west and one-half mile north of Elbert in a cultivated field one-fourth mile north of a large square house. The station is on the highest knoll iu the vicinity and is marked according to note $1 .{ }^{1}$ A reference mark, described in note 7, ${ }^{1}$ is about 0.4 meter west of a fence line, 0.9 meter south of the fence corner where there is a flag left by the United States Geological Survey, and 92.053 meters from the station. Latitudc observations were made in 1913 at a point, not marked, 0.025 meter east and 0.045 meter south of the station. Station Table is on this same hill.

Jilltop (Elbert County, Colo., C. V. H., 1912).-One and one-half miles east and one-half mile north of the railroad station at Hilltop, on the highest point of a low hill in the pasture of Daniel Mayer, near the northeast corner of the SE. $\frac{1}{2}$ scc. 10, T. 7 S., R. 65 W . The station is marked according to note $1 .{ }^{1}$ A reference mark, described in
noto $7,{ }^{1}$ is in tho fence lino at tho northeast corner of the quarter section mentioned above, 321.810 meters from tho station in azimuth $231^{\circ} 02^{\prime}$.

Morrison (Jefferson County, Colo., F. D. G., 1895; 1912). -This station is identical with tho United States Geologieal Survey station of the same name. It is about 3 miles northwest of the town of Morrison, on the highest point of Mount Morrison, 40 meters northwest of the upper landing of the cable railway. The station is marked aceording to note $2,{ }^{1}$ in a drill hole in a largo bowlder. The copper bolt marking the eccentrie station oceupied by the United States Geologieal Survey is 3.130 meters distant in azimuth $311^{\circ} 45^{\prime}$. Latitudo observations were made in 1913 at a point, not marked, 3.71 meters from the station in azimuth $322^{\circ} 13^{\prime}$.

Douglas (Douglas County, Colo., C. V. II., 1912).-About 7 miles east of Parker on tho south side of the section road running east from that town, about 5 feet south of the south road-fenco at the highest point of the road in that vicinity. The station is on land belonging to Androw Johnson, near the middle of the north side of see. 21, T. 6 S ., R. 65 W ., and is marked according to note 1.1^{1} A reference mark, cleseribed in note $7,{ }^{1}$ is in the fence line on the opposite sido of the road, 20.06 meters from the station in azimuth $170^{\circ} 33^{\prime}$.

Indian (Arapahoe County, Colo., C. V. H., 1912).-This station is identical with the United States Geological Survey station "Indian Mound." It is on the center one of a group of mounds known as tho Indian Mounds, about 6miles south and 1 mile east of Watkins, near the southeast corner of see. 36, T. 4 S., R. 65 W . Tho station is marked by a United States Geological Survey iron-pipe station mark projecting 20 inches above the ground. A reference mark, described in note $7,{ }^{1}$ is 188.922 meters from the station in azimuth $199^{\circ} 21^{\prime}$. The southeast eorner stone of seetion 36 is 135.251 meters distant in azimuth $214^{\circ} 58^{\prime}$. A cairn is 3.0 meters from the reference mark and 192.0 meters from the station in azimuth $199^{\circ} 31^{\prime}$.

Watkins astronomic (Adams County, Colo., C. V. H., 1912).-On the Union Paeific Railroad right of way at Watkins, 35.2 meters south of the main-line track on the north side of the Watkins-Denver wagon road. The station is marked aceording to note $1,{ }^{1}$ with the addition of 6 inches of concrete outside the iron pipe of the surface mark. A refereneo mark, deseribed in note $7,{ }^{1}$ except that there is a nail in place of the brass disk, is on the south side of the wagon road running southeast from Watkins and nearly on line with the north-and-south section fenee, and is 289.603 meters from the station in azimuth $308^{\circ} 51^{\prime}$. A United States Geological Survey iron-pipo beneh mark (U. S. Coast and Geodetic Survey beuch mark G_{2}) is 266.017 meters distant in azimuth $244^{\circ} 16^{\prime}$. The southeast corner of the depot is 27.85 meters from the station in azimuth $142^{\circ} 54^{\prime}$, and a railroad water tank is about 175 meters distant in azimuth $103^{\circ} 09^{\prime}$. Azimuth observations were made at this station and longitude observations were mado at a point, not marked, 48.64 meters south and 4.60 meters east of the station.

Brighton (Weld County, Colo., C. V. H., 1912).-This station is identical with the United States Geological Survey station of the same name. It is about $4 \frac{1}{2}$ miles northeast of the town of Brighton on the highest hill in the NE. $\frac{1}{\text { see. } 27, ~ T . ~} 1$ N., R. 66 W. The station is marked by a United States Geological Survey iron pipe triangulation mark projecting 1 foot above the ground. A reference mark, described in note $7,{ }^{1}$ is 0.27 meter below the station and 93.563 meters distant in azimuth $124^{\circ} 24^{\prime}$.

Boulder (Boulder County, Colo., C. V. H., 1912).-This station is identical with the United States Geological Survey station of the same name. It is about 4 miles direet and 9 miles by road and trail from the town of Boulder, on the northeastern one of the two peaks loeally known as South Boulder Peak, between South Boulder and Bear Canyons. The station is marked by a United States Geologieal Survey bronze tablet set in solid rock. A reference mark, deseribed in note $8,{ }^{1}$ is 0.43 meter above the station and 4.454 meters distant in azimuth $8^{\circ} 59^{\prime}$. A cross cut in the solid rock 1 meter above the station and 0.08 meter below the top of the highest rock on the peak is 1.88 meters from tho station in azimuth $90^{\circ} 51^{\prime}$. Azimuth observations wero made at this station.

Horsetooth (Larimer County, Colo., C. V. H., 1912). -This station is identical with tho United States Geological Survey station of the same name. It is 8 miles southeast of Fort Collins on a high bare rocky point of the divide, immediately cast of Redstone Creek, and 17 miles north of the point where the Fort Collins-Estes Park road crosses the divide. Deep vertical elefts divide the peak into three noarly equal parts, which havo the appearance of gigantie teeth when viewed from the eastward. The station is on the highest and most southern one of the three divisions of the peak and is marked by a United States Geologieal Survey triangulation tablet set in solid rock. A reference mark, described in note $8,{ }^{1}$ is 0.04 meters below the station and 4.74 meters distant in azimuth $171^{\circ} 24^{\prime}$.

Dewey (Weld County, Colo., C. V. II., 1912).-This station is identical with the United States Geologieal Survey station of the samo name. It is 8 miles east and 1 mile south of Eaton, a town on the Union Pacific Railroad, and $1 \frac{1}{2}$ miles east and 1 milo south of Galeton, a new town on a braneh of the Union Pacifie Railroad. The station is on a round-topped knoll on the open prairio near the eenter of the north side of see. 9, T. $6 \mathrm{~N} ., \mathrm{R} .64 \mathrm{~W}$., and is marked by a United States Geologieal Survey iron-pipe bench mark projeeting about 20 inches above the surface of the ground. A reference mark, deseribed in note $7,{ }^{1}$ is 136.190 meters from tho station in azimuth $309^{\circ} 56^{\prime}$. Azimuth and latitude observations were mado at this station.

Warren (Laramie County, Wyo., C. V. II., 1912).-At the extreme western end of a high ridge about $10 \frac{1}{2}$ miles south 17° west from Cheyenne, 2 miles north 57° east from the old Terry ranch, now the headquarters of the Warren Live Stock Co., and one-half mile northeast of the seetion house at Gleason, a station on the Union Pacific Railroad. Tho station is marked aceording to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 0.18 meter below the station and 10.728 meters distant in azimuth $127^{\circ} 54^{\prime}$. Tho conspicuous conical hill on which Titry is located is about three-eighths mile north-northwest from the station.

Twin (Laramie County, Wyo., C. V. H., 1912).-On the lighest point of the more eastern one of the two peaks known as Twin Mountain, about 20 miles a little south of west from Cheyenne and 7 miles by road southwest of Granite Canyon, a station on the Union Pacific Railroad. The station is marked according to note $2 .{ }^{1}$ A reference mark, described in noto $S_{1}{ }^{1}$ is 0.15 meter above the station and 3.494 meters distant in azimuth $159^{\circ} 58^{\prime}$. The bronzo tablet marking the United States Geological Survey triangulation station "East Twin" is 0.16 meter above the station and 2.674 meters distant in azimuth $96^{\circ} 08^{\prime}$. Azimuth observations were made at this station.

Wadill \langle Laramie County, Wyo., C. V. H., 1912).-Thirteen miles by road northwest of Cheyenne, 2 miles west of the Cheyenne-Chugwater road, and $1 \neq$ miles west of the Cheyenne-Whitaker ranch road along which there is a telephono line. The station is on a ridge on the open prairie at the highest point of the divide between Lodge Pole Creek and Crow Creek, and about 300 meters south 31° west from the center of sec. 24, T. 15 N., R. 68 W., on homestead land belonging to James Wadill, who lives about three-eighths mile south of the station. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on the quarter section line, 1.74 meters below the station and 88.778 meters distant in azimuth $274^{\circ} 38^{\prime}$. The chimney of William Kipp's house is in azimuth $197^{\circ} 23^{\prime}$ from the station and Mr. Ritzke's windmill in azimuth $249^{\circ} 00^{\prime}$.

Russell (Laramie County, Wyo., C. V. H., 1912).-Near the eastern edge of Fort D. A. Russell target and maneuver reserve on top of a bare rocky peak about $3 \frac{1}{2}$ miles east of Pole Mountain. The peak is the highest in that immediate vicinity and has a rocky, partially wooded ridge making off from it toward the west. The station is on the south side of the peak slightly below a high bowlder to the north, with Greentop Mountain showing through a small notch in the summit. It is marked according to note $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 1.03 meters above the station and 10.27 meters distant in azimuth $168^{\circ} 41^{\prime}$.

Greentop (Albany County, Wyo., C. V. H., 1912)--On the timbered, rocky summit of Greentop Mountain, 8 miles west and 4 miles south of station Horse Creek on the Colorado \& Southern Railway, and about one-eighth mile south of the south fork of Horse Creek. The station is marked according to note $2 .{ }^{3}$ A reference mark, described in note $8,{ }^{1}$ is 0.5 meter above the station and 3.13 meters distant in azimuth $59^{\circ} 03^{\prime}$. A cairn is 6.0 metcrs from the station in azimuth 90°.

Whitaker (Laramie County, Wyo., C. V. H., 1912)-About 18 miles north and $8 \frac{1}{2}$ miles west of Cheyenne and 3 miles south and three-fourths mile east of the D. R. Whitaker ranch buildings on Horse Creek. Tho station is on rolling prairie land at the highest point of the divide between Pole Creek and Horse Creek, about three-fourths mile northeast of the Cheyenne- Whitaker ranch road at the point where the road passes the quarter section corner and bench mark referred to below. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 1.17 meters below the station and 91.038 meters distant in azimuth $270^{\circ} 57^{\prime}$. The southwest corner post of sec. 33, T. 17 N., R. 68 W., is 800.12 meters distant in azimuth $45^{\circ} 37^{\prime}$. The United States Geological Survey iron-pipe bench mark " 6702 Denver" is 1110.82 meters distant in azimuth $59^{\circ} 55^{\prime} 30^{\prime \prime}$. A cairn is 8 meters from the station on the line toward Ragged Top Mountain. Latitude observations were made at this station in 1913.

Ragged (Albany County, Wyo., C. V. H., 1912).-About 10 miles west of Horse Creek, a post office on the Colorado \& Southern Railway, 8 miles west of McLaughlin's ranch, and one-half mile south of the North Fork of Horse Creek, on the highest rock of a group of pinnacles known as Ragged Top Mountain. The rock referred to is the middle one of three prominent peaks on the most western ridge and is about 300 meters west of an old wood road in a canyon opening to the south. The station is marked by a United States Geological Survey bench mark tablet set in solid rock. The tablet has a triangle cut in the top and is stamped "Elevation above sea level 8230 feet." A reference mark, described in note $8,{ }^{1}$ is 0.20 meter below the station and 3.12 meters distant in azimuth $185^{\circ} 04^{\prime}$. Azimuth observations were made at this station.

Cheyenne west base (Laramie County, Wyo., C. V. H., 1913).-About 17 miles by road northwest of Cheyenne and one-half mile south of the house of Mr. William Pellis, on the highest part of an east-and-west ridge and about 15 meters south of the quarter section corner on the line between secs. 5 and $6, T .15 \mathrm{~N} ., \mathrm{R} .68 \mathrm{~W}$. The station is marked by a standard disk station mark, described on page -, set in a cylinder of concrete 16 inches in diameter and 24 inches long, the top of which is flush with the surface of the ground. The underground mark is similar to the surface mark except that the cylinder of concrete is only 10 inches in diameter and 10 inches long. It is 30 inches below the ground and 6 inches below the bottom of the surface mark. A standard disk reference mark, described on page - , set in a cylinder of concrete 12 inches in diamcter and 24 inches long is on the section line 18.80 meters from the station in azimuth $7^{\circ} 28^{\prime}$.

Cheyenne east base (Laramie County, Wyo., C. V. H., 1913).-About 14 miles by road northwest of Cheyenne, on the highest point of a ridge extending east and west, and about 25 meters south of the quarter section corner on tho line between secs. 11 and 12, T. 15 N., R. 68 W. Section 11 is owned by Mr. Clarence Sorenson, who lives five-eighths mile north of the station. The station is marked by a standard disk station mark, described on page -, set in a cylinder of concrete 16 inches in diameter and 24 inches long, the top of which is flush with the surface of the ground. The underground mark is a 20 -penny nail set in a cylinder of concrete 10 inches in diameter and 10 inches long, about 30 inches below the surface of the ground. A standard disk reference mark, described on pago - set in a cylinder of concrete 12 inches in diameter and 24 inches long, is 16.47 meters from the station in azimuth $180^{\circ} 51^{\prime}$.

Chugwater (Laramie Connty, Wyo., C. V. H., 1912).-About 9 miles west of Chugwater and 18 miles south 12° west of Wheatland, towns on the Colorado \& Southern Railway. The station is about 5 miles east of the Hugh Ferguson
ranch, 2 miles west of Reshaw Creek, and one-half mile north of Maxwell Creek, on the extreme northeastern roundtopped hill of tho Reshaw Range. Tho top of the hill is about 100 meters in diameter, covered with large ragged bowlders and almost surrounded by a small cliff 4 to 10 feet high. The station is marked according to note $2 .{ }^{1}$ A reference mark, consisting of a horizontal drill hole 0.56 meter above the ground in the west face of the largest bowlder on the peak, is 1.78 meters from tho station in azimuth $259^{\circ} 36^{\prime}$. The chimney of a large stone house on Rainsford's "Hill Ranch" on Maxwell Creek is about 1 mile distant in azimuth $359^{\circ} 20^{\prime}$.

Notch (Albany County, Wyo., C. V. H., 1912).-About 21 miles west of Wheatland and 2 miles southwest of the Wheatland-Owen wagon road, near the center of the highest part of Collins Peak, which is also called Notch Peak because of the deep notch in its top as seen from the east. The station is marked according to noto $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is in a largo bowlder 0.41 meter abovo the station and 3.095 meters distant in azimuth $240^{\circ} 23^{\prime}$.

Coleman (Laramie County, Wyo., C. V. H., 1912).-Alout 13 miles northwest of Hartville Junction, on the Colorado \& Southern Railway, and $7 \frac{1}{2}$ miles west of north from M. F. Coleman's ranch, which is on the Wheatland-Douglas wagon road where it erosses Cottonwood Creek. The station is $1 \frac{1}{2}$ miles north of this wagon road, just west of a largo table-topped ridge devoid of trees, on the top and near the western slopo of a round-topped knoll on which slope are three trees, two near the top and one near the bottom. The station is marked according to note 2. ${ }^{1}$ A reference mark, described in noto $8,{ }^{1}$ is in the top of a large rounded bowlder at the top of the western slope of the knoll, 0.26 meter below the station and 20.90 meters distant in azimuth $122^{\circ} 36^{\prime}$. A cairn 6 feet in diameter at the bottom and 6 feet high is 11.8 meters distant in azimuth $107^{\circ} 48^{\prime}$. A triangular blaze on the nearest pine tree is 13 meters from the station in azimuth $62^{\circ} 02^{\prime}$. Latitude observations were made in 1913 at a point, not marked, 0.045 meter south and 0.05 meter west of the station.

Haystack (Laramic County, Wyo., C. V. H., 1912).-About $7 \frac{1}{2}$ miles northeast of Guernsey, $1 \frac{1}{2}$ miles north 79° east (magnetic) from the Chicago Iron Mines, and $1 \frac{1}{2}$ miles east of the Guernsey-Lusk wagon road. The station is near the highest point at the western end of the middle one of the three highest peaks of the Haystack Hills, about onefourth mile south of a slightly lower ridge, known locally as Haystack Hill, which has an abrupt descent at its northwest end and a natural cairn at its southeast end. The station is marked according to note $2 .{ }^{1}$ A referenco mark, described in note $8,{ }^{1}$ is in the top of a large bowlder 0.35 meter above the station and 3.293 meters distant in azimuth $121^{\circ} 52^{\prime}$. A triangular blaze on a pine tree is 19 meters from the station in azmuth $122^{\circ} 15^{\prime}$.

Hobbs (Laramie County, Wyo., C. V. H., 1912).-About 15 miles direct and 20 miles by road south 30° west from Lusk, $6 \frac{1}{2}$ miles north 55° west from the Rawhide ranch, and 4 miles south of the Hobbs ranch, on the most easterly of a group of hills and the only wooded hill in the vieinity. The station is at the intersection of three lines cut through the timber to other triangulation stations and is marked according to note 2. ${ }^{1}$ A reference mark, described in note 8, ${ }^{1}$ is 0.92 meter below the station and 19.172 meters distant in azimuth $111^{\circ} 12^{\prime}$.

Willow (Converse County, Wyo., C. V. H., 1912).-About 5 miles north of Willow post office and 7 miles south 21° west from Manville, on the most northern and western high hill in that vicinity. The hill is a bare-topped ridge about 350 meters in length north and south, with a rim of rock along the east side and gentle slopes to the west. The station is near the south end of the highest part of the ridge, about 190 meters from the north end of the hill, and is marked according to noto $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is in the top of a small bowlder 10 inches above the surface of the ground and 11.218 meters from the station in azimuth $286^{\circ} 41^{\prime}$. Azimuth observations were mado at this station.

Rawhide (Laramie County, Wyo., C. V. H., 1912).-About 12 miles south of Lusk, $2 \frac{1}{2}$ miles north of the Rawhide raneh, and 2 miles east of the Guernsey-Lusk wagon road, on the highest point of Rawhide Butte. The station is on the erest of a narrow rocky ridge extending north and south and is marked according to note $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 0.55 meter above the station and 2.810 meters distant in azimuth $302^{\circ} 13^{\prime}$.

Manville (Converse County, Wyo., C. V. H., 1912).-About $4 \frac{3}{3}$ miles direct and 6 miles by road north 20° east from Manville, on a small round-topped knob about 8 meters in diameter, which marks the highest point of the ridge in that vicinity. The station is marked aceording to note 1. ${ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on an adjacent conical mound 274.38 meters from the station in azimuth $83^{\circ} 13^{\prime} 35^{\prime \prime}$.

Kirtley (Converse County, Wyo., C. V. H., 1912).- A bout $3 \frac{1}{8}$ miles north and $1 \frac{1}{8}$ miles east of Kirtley post office, on the highest knob in the SE. $\frac{1}{} \mathrm{sec} .5, \mathrm{~T} .33 \mathrm{~N} ., \mathrm{R} .60 \mathrm{~W}$., one-fourth mile south of some conspicuous high chalky bluffs. The station is 375 meters north 43° east from the southwest corner of the above section and is marked according to note $1 .^{1}$ A reference mark, described in note $7,{ }^{1}$ is 0.49 meter below the station and 125.713 meters distant in azimuth $158^{\circ} 50^{\prime} 30^{\prime \prime}$. Latitude observations were made in 1913 at a point, not marked, 0.04 meter west and 0.07 meter south of the station.

Alkali (Weston County, Wyo:, C. V. H., 1912).-On Alkali Butte, the best-known butte within 30 miles, at the head of Muskrat, Robbers Roost, and Alkali Creeks, about 22 miles west of south from Newcastle. The station is 29 meters from the south end of the butte and is marked according to note 2. ${ }^{1}$ A 1 -inch drill hole in solid rock is 0.92 meter below the station and 17.180 meters distant in azimuth $177^{\circ} 48^{\prime}$. The United States Geological Survey station "Alkali," marked by a 1 -inch copper bolt set in bedrock, is 0.17 meter below the station and 28.640 meters distant in azimuth $20^{\circ} 14^{\prime}$. Azimuth observations were made at this station in 1913. Latitude observations were made in 1913 at a point, not marked, 5.060 meters from the station in azimuth $8^{\circ} 32^{\prime}$.

Parker (Fall River County, S. Dak., C. V. H., 1912).-About $2 \frac{3}{4}$ miles south of Minnekahta and about threefourths mile northeast of Arnold's raneh house, on the highest point of Parkers (or Arnolds) Peak, the top of which is about 150 meters long north and south and about 40 meters wide. The station is 50 meters from the north end of the peak and is marked according to note $1 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 0.34 meter above the station and 25.471 meters distant in azimuth $206^{\circ} 15^{\prime}$, and a 1 -ineh drill hole in solid rock is 1.42 meters below the station and 11.450 meters distant in azimuth $124^{\circ} 49^{\prime}$.

Cottonwood (Converse County, Wyo., C. V. H., 1912).-About $14 \frac{1}{2}$ miles direct and 18 miles by road south 76° west from Edgemont, S. Dak., 2 miles north of east of the Valentine Phester ranch, and $2 \frac{1}{2}$ miles west of the State boundary line, on the highest part of the bald Cottonwood divide in that vicinity. The United States Geological Survey station "Cottonwood" is in this same loeality, but it could not be found in 1912. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 41.228 meters from the station in azimuth $347^{\circ} 21^{\prime}$.

Sullivan (Custer County, S. Dak., C. V. H., 1912).-About $4 \frac{1}{2}$ miles northwest of Dewey and 3 miles by road northwest of the Sullivan ranch, on the highest point of a sparsely timbered peak known locally as Sullivan Peak. The station is marked according to note 2. ${ }^{1}$ A 1-inch drill hole in solid rock is 0.72 meter below the station and 4.595 meters distant in azimuth $152^{\circ} 30$. The United States Geological Survey station "Sullivan," marked by a copper bolt, is 0.4 meter above the station and 4.53 meters distant in azimuth $30^{\circ} 29^{\prime}$.

Elk (Custer County, S. Dak., C. V. H., 1912).-About 15 miles north of Dewey, 15 miles southeast of Newcastle, and one-fourth mile east of the State boundary, at the extreme north end of the Elk Mountains, on a timbered peak whieh has abrupt slopes to the west and north. The station is marked aecording to note 2. ${ }^{1}$ A reference mark, deseribed in note $8,{ }^{1}$ is 0.2 meter above the station and 4.497 meters distant in azimuth $333^{\circ} 20^{\circ}$. The United States Geological Survey station "Elk," marked by a copper bolt, is 1.035 meters from the station in azimuth $190^{\circ} 20^{\prime}$.

Provo west base (Fall River County, S. Dak., C. V. H., 1912).- (bout $4 \frac{1}{4}$ miles west and $1 \frac{1}{2}$ miles south of Provo and 60 meters southeast of the southeast corner of a \log schoolhouse. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is one-half meter east of the west section line fence, 0.11 meter below the station, and 58.860 meters distant in azimuth $359^{\circ} 35{ }^{\circ}$.

Provo east base (Fall River County, S. Dak., C. V. H., 1912).-About 4 $4 \frac{1}{2}$ miles east of Provo, on the homestead of A. G. Riley, 270 meters north 55° west from the southeast corner of see. 3, T. 10 S., R. 3 E., 155 meters from the south section line and 200 meters from the east section line. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is in the fence line 4.01 meters below the station and 151.348 meters distant in azimuth $358^{\circ} \cdot 14^{\prime}$.

Provo astronomic (Fall River County, S. Dak., C. V. H., 1912).-About 600 meters northeast of the railroad station at Provo, on the highest point of a low hill on the open prairie. The station is marked according to note 1. ${ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 0.16 meter below the station and 29.294 meters distant in azimuth $355^{\circ} 07^{\prime}$. The center of sec. 12 , T. $10 \mathrm{~S} ., \mathrm{R} .2 \mathrm{~W}$., is 4.56 meters from the station in azimuth $201^{\circ} 33^{\prime}$. Azimuth observations were made at this station. Observations for longitude were made at a point, not marked, 12.355 meters north and 1.404 meters west of the station. Latitude observations were made in 1913 at a point, not marked, 3.598 meters from tho station in azimuth $95^{\circ} 04^{\prime}$.

Cambria (Weston County, Wyo., C. V. H., 1912).-About 7 miles north of Cambria and $1 \frac{1}{2}$ miles west of the Cambria-Horton wagon road, on a flat-topped ridge extending east and west, locally known as Sweetwater Mountain. The station is on the highest part of the ridge, a few meters from the abrupt slope to the north and about 140 meters east of a small cultivated field. It is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 1.4 meters below the station and 27.67 meters distant in azimuth $52^{\circ} 38^{\prime}$. Azimuth observations were made at this station in 1913. Latitude observations were made in 1913 at a point, not marked, 0.115 meter north and 1.865 meters east of the station.

Crow (Pennington County, S. Dak., C. V. H., 1912).-About three-fourths of a mile east of the road from Neweastle to Deadwood and $2 \frac{1}{2}$ miles south of where a branch of that road turns down Castle Creek, in the SE. $\frac{1}{3}$ sec. 10 , T. 1 N., R. 1 E., on a flat-topped ridge sloping gently in all directions and covered with a growth of eottonwoods and small pines. The station is marked aecording to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 1.26 meters below the station and 33.488 meters distant in azinuth $285^{\circ} 40$. The United States Geological Survey station "Crows Nest," marked by a 1 -inch copper bolt, is 2.016 meters from the station in azimuth $77^{\circ} 56^{\prime}$.

Laird (Lawrenee County, S. Dak., E. I. P., 1912).-About 3 miles northwest of the Laird water tank on the McLaughlin tio and timber road, 2 miles west of the Ham ranch (old Mequaig homestead), and about 2 miles east of tho State boundary line, on the highest hill in the vicinity. The hill has a considerable area cleared of trees. The station is marked at the surfaco according to note $1,{ }^{1}$ but has for an underground mark a brass bolt set in solid rock 2 feet below the surface of the ground. A reference mark, deseribed in nute $7,{ }^{1}$ is in the clearing on the west slope of the hill, 14.62 meters from the station in azimuth $73^{\circ} 35^{\prime}$.

Inyankara (Crook County, Wyo., E. II. P., 1912).-On the top of Inyankara Mountain, about 14 miles south of Sundanee and 2 miles west of the ranch of F. M. Clark. The station is in a slight depression, about 3 feet lower than the highest point of the peak, and is marked according to note $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is about 1 foot higher than the station and 6.38 meters distant iu azimuth $236^{\circ} 56^{\prime}$.

Sundance (Crook County, Wyo., E. H. P., 1912).-About 6 miles northwest of Sundance, on the most westerly one of the Warren Peaks, which are the highest peaks of the Bearlodge Mountains. The peak is sharp and the station
is about 3 meters from the highest point, on which there is a cairn 8 feet high. The station is marked according to note 1.' A reference mark, described in note $8,{ }^{1}$ is on the north slope of the hill about 11 feet below the station and 22.77 meters clistant in azimuth $288^{\circ} 20^{\prime}$. The azimuth of the cairn is $261^{\circ} 31^{\prime}$. Latitude observations were made in 1913 at a point, not marked, 0.05 meter north and 0.03 meter east of the station.

Tcrry (Lawrence County, S. Dak., E. II. P., 1912).-About $1 \frac{1}{2}$ miles southwest ef Terry, on the top ef Terry Peak, a well-known peak of the Black Iills. The station is en the south end of the peak, about 3 feet below the highest point, which is at the north end of the peak. It is marked according to note 2. ${ }^{1}$ A reference mark, described in note 8, ${ }^{1}$ is on the north end of the peak at the edgo of the pile of rocks marking the highest point and is 17.51 meters from the station in azimuth $156^{\circ} 28^{\prime}$.

Wymonkota (Custer County, Mont., E. H. P., 1912).-This station is identical with the United States Geological Survey station of the same name. It is abeut $2 \frac{1}{2}$ miles west-northwest of the southeast cerner of the State, at the edge of the breaks and just south of the wagon road leading into the Badlands, on a small conical-shaped hill, the highest in that vicinity. The station is marked by a United States Geological Survey bronzo tablet cemented in a large rock set in the ground. A l-inch drill hole in solid rock is 4 meters from the station in azimuth $260^{\circ} 31^{\prime}$. Azimuth observations were made at this station.

Castle (Butte County, ,S. Dak., E. H. P., 1912).-About 28 miles east of Bellefourche on the west spur of Castle Rock Butte, which is a well-known peak. The station is about 4 meters west of the highest part of the butte and is marked according to note $1 .{ }^{1}$ The United States Geological Survey station "Castle Rock," marked by a bronze tablet cemented in a flat rock flush with the surface of the ground, is on the highest point of the butte, 3.92 meters from the station in azimuth $291^{\circ} 10^{\prime}$.

Harding (Harding County, S. Dak., E. H. P., 1912).-Abeut 4 miles southwest of LIarding, on the highest point about 1 mile from the southeast end of a prominent mesa which is a part of the Sioux National Forest. The station is in the NE. 3 sec. 9, T. 16 N., R. 2 E., and is marked according to note $3,{ }^{1}$ with the addition of an underground mark as described in note 1. ${ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on the west brow of the mesa, 49.15 meters from the station in azimuth $112^{\circ} 28^{\prime}$. Latitude ebservations wers made in 1913 at a point, not marked, 0.005 meter north and 0.010 meter east of the station.

Moreau (Harding County, S. Dak., E. H. P., 1912).-About 7 miles southeast of Harding, in the northeast corner of sec. 23, T. 16 N., R. 3 E., en the southwest end of a prominent mesa which is a part of the Sioux National Forest. The station is about 25 meters from the south edge of the mesa and about 50 meters from the southwest end, and is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is en the south edge of the bluff, 22.68 meters from the station in azimuth $342^{\circ} 34^{\prime}$. Another reference mark, described in note $8,{ }^{1}$ is also en the south edge of the bluff, 66.41 meters from the station in azimuth $253^{\circ} 53^{\prime}$.

Reva (1Iarding County, S. Dak., E. H. P., 1912).-About 16 miles east of Buffalo and about one-half mile north of the top ef the old Moonshine trail, on the highest point at the north end ef the Slim Buttes, on an isolated knob connected to the main butte by a short low spur. It is the highest point in sec. $25, \mathrm{~T} .19 \mathrm{~N} ., \mathrm{R} .8 \mathrm{E}$. The station is marked according to note $1,{ }^{1}$ except that the underground mark is a brass bolt set in solid rock 25 inches below the surface. A reference mark, described in note $8,{ }^{1}$ is on the south end of the knob 7 meters lower than the station and 48.72 meters distant in azimuth $345^{\circ} 23^{\prime}$. Latitude and azimuth observations were made at this station.

Table (Harding County, S. Dak., E. II. P., 1912).-About 2 miles east of Karinen post office, on the highest point of Table Mountain, a flat-topped butte with steep rocky slopes and bluffs. The station is on the east side of the summit a little north of the center and just west of the head ef the more northerly large cove with sheer rocky walls on the east side of the mountain. The station is marked at the surface as in note $1,{ }^{1}$ except that the cylinder is $9 \frac{1}{2}$ inches in diameter and 14 inches long. The underground mark is a brass bolt set in solid rock 12 inches below the surface. A reference mark, described in note $8,{ }^{1}$ is within 1 foot of the edge of the bluff, 28.71 meters from tho station in azimuth $275^{\circ} 27^{\prime}$, and a drill hole in solid reck is at the edge of the bluff, 48.65 meters from the station in azimuth $306^{\circ} 56^{\prime}$.

Lodge (IIarding County, S. Dak., E. H. P., 1912).-About 18 miles south and 4 miles west of Reeder, N. Dak., and ene-half mile south of the ranch house of L. B. Vines, in the NE. f sec. 24, T. 22 N., R. 8 E., on the flat grassy mesa at the west end of the Lodgepole Buttes, about ene-fourth mile seuth of the northwest end and 15 meters from the brow of the hill. The station is marked according to note $1,{ }^{1}$ except that the underground mark is a brass bolt set in solid rock 28 inches below the surface. A reference mark is near the edge of the mesa, 40.18 meters from the station in azimuth $172^{\circ} 46^{\prime}$. A 1 -inch drill hole in a large bowlder at the extreme western edge of the mesa is on the lower flat about 8 meters below the station and 90.46 meters distant in azimuth $79^{\circ} 24^{\prime}$, and a cross chiseled in solid rock near the second reference mark is 92.23 meters from tho station in azimuth $82^{\circ} 16^{\prime}$.

Butte (Bowman County, N. Dak., E. H. P., 1912).-About $1 \frac{1}{2}$ miles north of Bowman, on the northeast one of the Twin Buttes near the middle of the summit north and south and about 40 meters from tho west edge of the slope. The station is in range with the east slope of tho southwest one of the Twin Buttes and the water-tank tower at Bowman, the base of which is just visible ever the edge of the butte on which the station is located. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is at the top of the slope en tho southwest edge of the butte, 38.31 meters from the station in azimuth $59^{\circ} 57^{\prime}$.

Whetstone (Adams County, N. Dak., E. II. P., 1912).-About 10 miles north of Reeder, a town on the Chicago, Milwaukee \& Puget Sound Railway, en the middle and highest peak of the Whetstone Buttes, which peak is quite
sharp, the other two having rounded or flat tops. The station is just west of a mass of crumbling rock which is on the highest point of the peak, and is marked according to note $1,{ }^{1}$ except that the brass bolt of the underground mark is set in rock. The highest point of the butte near the west edge of the mass of crumbling rock is 2.32 meters above the station and 5.80 meters distant in azimuth $278^{\circ} 58^{\prime}$.

Rainy (Billings County, N. Dak., E. H. P., 1912).-About 8 miles west-southwest of New England, a town on a branch of the Chicago, Milwankee \& Puget Sound Railway, near the center of the south side of West Rainy Butte, which is a large grassy: flat-topped hill about 2 miles long east and west and one-half mile wide at the widest point. About 200 meters west of the station the ridge narrows to low rough, rocky knobs extending for several hundred meters, beyond which there is high flat top again. The station is about one-half mile northwest of the house of J. O. Hanson, who lives in a cove on the south side of the butte, and it is about 100 meters west of the southwest point of the bluff overlooking the cove and 12 meters from the south edge of the cliff. The station is marked according to note $1,{ }^{1}$ except that the brass bolt of the underground mark is in a rock 22 inches below the surface. The reference mark, described in note $8,{ }^{1}$ is 11.79 meters from the station in azimuth $287^{\circ} 25^{\prime}$. The chimney of John Moord's house is 2 miles distant in azimuth $65^{\circ} 57^{\prime}$.

Black (Billings County, N. Dak., E. H. P., 1912).-About 15 miles north and 2 miles west of Bowman, on the southwest end of Black Butte, a grassy flat-topped butte about 2 miles long east and west and one-fourth to threefourths mile wide, formerly known as Π. T. Butte, as it was included in the range of the H. T. ranch. The station is about 20 meters from the west edge of the bluff and about 30 meters from the ledge at the southwest corner of the butte. It is marked according to note $1,{ }^{1}$ except that the brass bolt of the underground mark is in rock 24 inches below the surface. A reference mark, described in note $7,{ }^{1}$ is about 15 meters from the sheer wall on the west side of the butte, and is 13.44 meters from the station in azimuth $130^{\circ} 22^{\prime}$. A drill hole in solid rock is on a corner made by a break in the ledge on the south side of the butte, 1 meter from the edge and 28.18 meters from the station in azimuth $18^{\circ} 06^{\prime}$.

Badland (Billings County, N. Dak., E. II. P., 1912).-About 13 miles south and 7 miles west of Belfield and about 7 miles west and 1 mile south of Gaylord, in the NE. $\frac{1}{l}$ sec. 8, T. 137 N., R. 100 W ., on the highest point in the section. The station is at the edge of the "Breaks," where the level land breaks off abruptly into the Badlands to the west, and is near the road which leads west along section 8 and turns to the southwest, passing between the station and the reference mark just beforo it descends into the Badlands. The station is marked according to note $1 .{ }^{1}$ A refcrence mark, described in note $7,{ }^{1}$ is on the opposite side of the road on the highest point of a somewhat lower knob and is 56.77 meters from the station in azimuth $26^{\circ} 34^{\prime}$. The chimney of E. Meyer's house is about 600 meters from the station in azimuth $275^{\circ} 45^{\prime}$. Latitude observations were made at this station in 1913.

Sentinel (Billings County, N. Dak., E. H. P., 1912).-About 4 miles south of the town of Sentinel Butte, on the highest point of Sentinel Butte, a high well-known mesa about 2 miles long east and west and one-fourth to one-half mile wide. The top of the butte is divided by a ravine which is just south of a rocky bluff visible from the town. The station is on a knoll near the middle of the southeast section and is in range with the east tangent of the rocky bluff described above and the point in the town of Sentinel Butte where the road from the north crosses the railroad. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is near the north edge of the knoll in range from the station to the highest point of Camel Hump Butte, 67.62 meters distant in azimuth $197^{\circ} 10^{\prime}$.

Saddle (Billings County, N. Dak., E. H. P., 1912).-About $6 \frac{1}{2}$ miles north and $1 \frac{1}{2}$ miles west of Belfield, in the SE. $\frac{1}{4} \mathrm{sec} .33$, T. 141 N., R. 99 W., on the south end and highest point of Saddle Butte, the only butto in this vicinity. The northwest corner of Stark County is about 400 meters in a southwesterly direction from the station, but a large cairn about 8 feet high on the edge of the cliff 7 meters to the south obstructs the view to the county corner. The station is on a smooth rock ledge and is marked according to note 2. ${ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 8.96 meters from the station in azimuth $113^{\circ} 53^{\prime}$, and a 1 -inch drill hole in solid rock is 8.93 meters distant in azimuth $187^{\circ} 09^{\prime}$. Azimuth observations wero made at this station.

Ifump (Billings County, N. Dak., E. H. P., 1912).-About 5 miles northeast of the town of Sentinel Butte, on the highest point of Camel Hump Butte, on a narrow ridge running east and west. Large bowlders are scattered about over the top and down the sides of tho ridge. The station is marked according to note $2 .{ }^{1}$ A cross cut in the eastern oblique face of a large bowlder on the ridge is 6.32 meters from the station in azimuth $104^{\circ} 27^{\prime}$, and a 1 -inch drill hole in another bowlder is 2.14 meters distant in azimuth $269^{\circ} 46^{\prime}$.

Cook (Billings County, N. Dak., E. H. P., 1912).-About 18 miles north and 4 miles east of the town of Sentinel Butte, about 5 miles northeast of the ranch of Almond T. Stono on Elk Creek, and about 1 mile north of the ranch of James E. Cook. There is a petrified stump about 10 feet high about 200 meters northwest of the northwest corner of Mr. Cook's pasture and about one-half mile south of the station. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on the south point of the ridge somewhat lower than the station, 30.42 meters distant, in azimuth $32^{\circ} 01^{\prime}$.

Blue (Dawson County, Mont., E. H. P., 1912).-About 20 miles due north of Wibaux and three-fourths mile west of the road from that place, on the highest point of Blue Mountain. The station is marked according to note 2. ${ }^{1}$ The United States Geological Survey station "Blue Camel," marked by a bronze tablet set in solid rock over which is a cairn 6 feet high, is 4.09 meters from the station in azimuth $138^{\circ} 47^{\prime}$. A 1 -inch drill hole in solid rock is 6.76 meters
from the station in azimuth $340^{\circ} 57^{\prime}$, and a cross chiseled in solid rock is 15.81 meters distant in azimuth $334^{\circ} 03^{\prime}$. Azimuth observations wero mado at this station.

Trotter (Billings County, N. Dak., E. H. I'., 1912).-About $2 \frac{1}{2}$ miles a little south of east of the Trotter post office and about 1 mile south of tho county line, in tho SE. $\frac{1}{4}$ sec. 4, T. 144 N., R. 104 W. , on tho most southern one of the three rounded hills just east of the rough eroded land at the head of Smith Creek. Tho station is about 300 meters north of the section line and is marked aecording to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 22.07 meters from the station in azimuth $92^{\circ} 13^{\prime}$.

Flat (McKenzio County, N. Dak., E. I. P., 1912).-About 7 miles north and 31 miles east of Trotter post office, about 9 miles east of the state line, about 7 miles north of the county line, and 3 miles in a northwesterly direction from Parson's ranch, on the top of a very prominent hill, the highest in the vicinity, known locally as Flat Top. The hill or butte is at tho head of the south fork of Bene Pierre Creek and is conical in shape with a flat top of solid rock 10 meters in diameter having nearly perpendicular sides 10 to 30 feet in height. The station is on the northwest or main section of the rock about 4 meters from the northwest corner and 2 meters from the west face. It is marked according to note 2. ${ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 8.80 metcrs from tho station in azimuth $356^{\circ} 24^{\prime}$, on tho overhanging southwest section of tho rock, which is separated from the main top by a crack about 9 inches wide.

Lovering (Dawson County, Mont., E. H. P., 1912).-About 10 miles due west of Sidney, on the highest point of a grassy hill whose top is a nearly level ridge of varying width. The station is on range land belonging to Charles Oldfelt and is about one-fourth mile west of the head of the draw leading up from the group of trees and the spring on the east slope of tho hill. The station is marked according to note $1 .{ }^{1}$ The United States Geological Survey station "I.overing," marked by an aluminum tablet in a block of quartzite flush with the surface of the ground, is 2.88 meters from the station in azimuth $85^{\circ} 14^{\prime}$.

Sheep (McKenzie County, N. Dak., E. H. P., 1912).-About 12 miles east of the state boundary, 3 miles south of the county boundary, and $1 \frac{1}{2}$ miles east of the ranch houso of R. B. Burns, in sec. 22, T. $148 \mathrm{~N} ., \mathrm{R} .103 \mathrm{~W}$., on the highest point of the most prominent butte in this vicinity, locally known as Sheep Butte. The north side of the butte is partly grass covered and has a cluster of small trees and brush in a recess half way up the slope, but the other three sides are steep and jagged. The station is marked according to note $1 .{ }^{1}$ A reference mark is 39.15 meters from the station in azimuth $164^{\circ} 04^{\prime}$. A schoolhouse flagstaff is about $1 \frac{1}{4}$ miles distant in azimuth $178^{\circ} 36^{\prime}$. Latitude observations were made at this station in 1913.

Jackson (Dawson County, Mont., E. H. P., 1912).-This station is identical with the United States Geologieal Survey station of the same name. It is about 15 miles southwest of Mendak, one-half mile southwest of the Sioux Pass post office and store, and about one-half mile west of the wagon road leading through the pass, on a high flat ridge about 250 meters in a westerly direction from the brow of the hill facing the pass. The station is on land belonging to George C. Peterson, about 3 meters from an old Indian grave, a hole in the ground 4 feet long, 2 feet wide, and 4 feet deep. The station is marked according to note 6. ${ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is on a large white bowlder on the south side of the ridge near the head of a draw leading up from the south and is about 10 feet lower than the station and 64.51 meters (inclined distance) from tho station in azimuth $138^{\circ} 24^{\prime}$.

Buford (Williams County, N. Dak., E. I. P., 1912).-About 3 miles north of Buford, in sec. 30, T. 153 N., R. 103 W ., on the highest point of a prominent knob overlooking the Missouri and Yellowstono Rivers, the lighest knob in this vicinity. Tho top of the knob is about 40 meters long southeast and northwost and has a gentle grassy slopo on the northeast side and an abrupt bare face on the southwest. As viewed either from tho northeast or the southwest tho knob has the appearance of a flat-topped hill. The station is on the middlo of the top about 4 meters from a red stone ledge on the southwest side of the hill and is marked aceording to note $3,{ }^{1}$ with an underground mark as described in note $1 .{ }^{1}$ A cross cut in the more western one of two bowlders on the north slope of tho hill is about 25 feet below the station and 46.99 meters (inclined distanco) from the station in azimuth $173^{\circ} 24^{\prime}$. A drill hole in solid rock is near tho bottom of tho slopo on the northeast side, about 15 feet below the station and 22.59 meters (inclined distanee) from the station in azimuth $226^{\circ} 25^{\prime}$. Joseph Evans's houso is about 1 milo distant in azimuth $154^{\circ} 07^{\prime}$, and C. L. Barr's \log house is about three-fourths mile distant in azimuth $225^{\circ} 32^{\prime}$.

Montana (Valley County, Mont., E. H. P., 1912).-This station is identical with tho Missouri River Commission station and the United States Goological Survey station of the same name. It is about 2 miles north by west from Mondak, on the highest point of tho bluff along which is tho wagon road. Tho station is nearly in range with a small, conieal, whito-topped hill from the lowest point of the road from Mondak whero it crosses a wide ravine. To reach tho station, follow tho road referred to abovo until the prairio level is reached, then turn southeast to the station about one-fourth mile distant. The station is the center of a 5 -inch iron pipe. The chimney of Frank Steihl's house is about $1 \frac{1}{1}$ miles from tho station in azimuth $34^{\circ} 21^{\prime}$.

Lanark (Valley County, Mont., E. I. P., 1912).-This station is identical with tho Missouri River Commission station and tho United States Geologieal Survey station of the same name. It is about $2 \frac{1}{2}$ miles south of Bainville, about $4 \frac{1}{2}$ miles north of the Missouri River, and $2 \frac{1}{2}$ miles northwest of tho bridge on the Mondak-Bainvillo wagon'road over the Littlo Muddy River, on a prominent conical hill with white bluffs and a largo bowlder on tho south side. The station is marked according to note 4. ${ }^{1}$

Cutoff (Dawson County, Mont., E. II. P., 1912).-This station is identical with the Missouri River Commission station and the United States Goological Survoy station of the samo namo. It is about $5 \frac{1}{3}$ miles noarly west of

Mondak, on the bluff south of the Missouri River, about 90 meters west of the top of Beaver Slide, the point where the Beaver Slide wagon road reaches the top of the bluff. The station is marked according to note $4 .{ }^{1}$

Mondak (Valley County, Mont., E. H. P., 1912). -In Mondak, about 93 meters south of the main-line track of the Great Northern Railway, on vacant land belonging to Jacob Seel, of the townsite company. The station is marked according to note $3,{ }^{1}$ with an underground mark as described in note $1 .{ }^{1}$ A rough cross about 1 foot above the ground on the south face of the concrete foundation at the southeast corner of the engine room and office of the W. I. Saxton elevator is about 40 meters south of the main-line track of the railway and 53.25 meters from the station in azimuth $208^{\circ} 16^{\prime}$. Bench mark $123 / 2$ of the Missouri River Commission, marked by a 5 -inch iron pipe, is at the edge of the weeds just south of a wagon track, 46.6 meters nearly south of the southeast corner of the depot, and 96.89 meters from the station in azimuth $256^{\circ} 08^{\prime}$. The southeast corner of the depot is 119.60 meters from the station in azimuth 234° 22^{\prime}. Latitude and azimuth observations were made at this station. Observations for longitude were made at a point, not marked, 3.995 meters north, 0.25 meter east of the station.

Ferry (Dawson County, Mont., E. H. P., 1912).-This station is identical with the Missouri River Commission station of the same name. It is about $1 \frac{1}{2}$ miles west of the ferry at Mondak and $1 \frac{3}{3}$ miles south of the Missouri River, on a knoll a short distance back from the bluff overlooking the river. The edge of the bluff on the line to station Mondak was dug away a little in order to make the two stations intervisible. The station is marked according to note $4,{ }^{1}$ the pipe projecting about 3 feet above the ground.

Bainville (Valley County, Mont., E. II. P., 1912).-About $4 \frac{1}{2}$ milcs north 30° east from Bainville, in sec. 12, T. 28 N., R. 58 E., on the highest point of the highest hill in the immediate vicinity, on land recently filed on by Lesley Wilde. The hill is abrupt and nearly bare to the west and southwest, and there is a large, bare, black ridge with a flat top making out to the westward about 100 meters west and 50 feet below the station. The station is marked according to note 1.1^{1} A reference mark is 38.14 meters from the station in azimuth $311^{\circ} 12^{\prime}$. Another referenco mark is on a rock, 76.41 meters from the station in azimuth $225^{\circ} 59^{\prime}$. The Catholic Church at Bainville is in azimuth $28^{\circ} 44^{\prime}$.

Snake (Valley County, Mont., E. H. P., 1912).-About 12 miles north 15° east of Bainville, three-fourths mile southwest of the ranch of George Reynolds and one-fourth mile west of the Bainville-Snake Creek wagon read, on a prominent rocky hill known as Snake Butte, in sec. 15 , T. 29 N., R. 58 E. The station is marked according to noto 1. ${ }^{1}$ A 1 -inch drill hole in solid rock is 24.84 meters from the station in azimuth $112^{\circ} 54^{\prime}$. A cross chiseled on a ledge of rock about 15 feet below the level of the station is 17.83 meters distant in azimuth $25^{\circ} 45^{\prime}$, and a 1 -inch drill hole in a rocky ledge about 10 feet below the station is 40.64 meters (inclined distance) from the station in azimuth $322^{\circ} 01^{\prime}$.

Bull (Williams County, N. Dak., E. H. P., 1912).-About 22 miles north of Mondak, Mont., 4 miles east of John C. Dwyer's ranch, and one-third mile east of the State line, in the NW. $\frac{1}{}$ sec. 14, T. 156 N., R. 104 W., on the highest point of a prominent grassy hill locally known as Bull Butte. The station is marked according to note 1. ${ }^{1}$ A drill hole in solid rock is 34.57 meters from the station in azimuth $119^{\circ} 19^{\prime}$, a cross cbiseled in solid rock is 23.33 meters from the station in azimuth $147^{\circ} 10^{\prime}$, and another drill hole in the rock is 3.18 meters distant in azimuth $5^{\circ} 56^{\prime}$.

Williston (Williams County, N. Dak., E. I. P., 1912).-About 10 miles northwest of Williston, in the NW. $\frac{1}{3}$ sec. 13, T. 155 N., R. 102 W ., on a round-topped knoll at the highest point in the vicinity, about 1 mile south of west of the house of G. A. Rutledge, who lives on the old Bonetraill Road. The station is marked according to note 1.1 A reference mark, described in note $7,{ }^{1}$ is on the section line, 365.62 meters from the station in azimuth $110^{\circ} 11^{\prime}$. The northwest corner of section 13 is 447.70 meters distant in azimuth $129^{\circ} 03^{\prime}$.

Bonetraill (Williams County, N. Dak., E. H. P., 1912).-About one-half mile east of the town of Bonetraill, on the south section line near the center of sec. 14, T. 157 N., R. 102 W ., on the highest point on the north side of the wagon road running east from the town. The land to the north belongs to Samuel Meek. The station is marked according to note $2,{ }^{1}$ in a large bowlder 2 feet in diameter. A reference mark, described in note $8,{ }^{1}$ is in a large bowlder on the south side of the road, 20.70 meters from the station in azimuth $54^{\circ} 38^{\prime}$. A 1 -inch drill hole in a large bowlder on the north side of the road is 14.03 meters from the station in azimuth $92^{\circ} 29^{\prime}$. The schoolhouse at Bonetraill is in azimuth $77^{\circ} 39^{\prime}$. Latitude observations were made at this station in 1913.

Gladys (Williams County, N. Dak., E. H. P., 1912).-About 2 miles west and 2 miles nerth of Bonetraill, on a knoll locally known as Observation Butte, the highest point in the SW. $\frac{1}{4}$ sec. 4, T. 157 N., R. 102 W. The station is on land belonging to R.W. Nudd, who lives in Williston, and is marked according to note $1 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is 28.20 meters from the station in azimuth $99^{\circ} 45^{\prime}$. The seuthwest eorner of section 4 is 36.61 meters distant in azimuth $20^{\circ} 03^{\prime}$. Azimuth observations werc made at this statien.

Marmon (Williams County, N. Dak., E. I. P., 1912).-About $2 \frac{1}{2}$ miles east and 1 mile north of Marmon, on the bare prairie at the highest point of a small rounded kneb in the NW. $\frac{1}{4}$ NE. $\frac{1}{4}$ scc. 2, T. 157 N., R. 100 W . The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is one-feurth meter south of the rock that marks the center of the north side of section 2 and is 278.86 meters from the station in azimuth $154^{\circ} 29^{\prime}$.

Howard (Williams County, N. Dak., E. I. P., 1912).-About 4 miles north and 1 mile east of tho town of Howard, on the highest point in the NE. $\frac{1}{2}$ SE. sec. $35, \mathrm{~T} .160 \mathrm{~N} ., \mathrm{R} .102 \mathrm{~W}$., in the yard of R. A. Witsee. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on the section line west of the road 162.77 meters from the statiou in azimuth $272^{\circ} 15^{\prime}$.

Muddy (Divide County, N. Dak., E. If. P., 1912).-About $4 \frac{1}{2}$ miles east and 2 miles nerth ef Rudser and about three-fourths mile south of east of Nora post office, on a round-topped hill known as Smoky Butte, the highest point of
land in tho NE. $\frac{1}{}$ soc. 23, T. 160 N., R. 100 W. Tho station is marked according to note $2 .{ }^{1}$ A reference mark, described in note $8,{ }^{1}$ is just over tho crest of the hill, 17.49 meters from the station in azimuth $340^{\circ} 29^{\prime}$. A drill hole in solid rock is 2.99 meters from the station in azimuth $201^{\circ} 55^{\prime}$, and a third reference mark is 10.35 meters distant in azimuth $43^{\circ} 15^{\prime}$.

Stady (Divide County, N. Dak., E. H. P., 1912).-About $4 \frac{1}{2}$ miles north and $3 \frac{1}{2}$ miles east of Stady, in the SE. $\frac{1}{2}$ NE. $\frac{1}{}$ sec. 10, T. 161 N., R. 100 W., called Alexandria Township, and just south of a piece of land belonging to a Miss Brady, of Ambrose. The station is on level land at about tho highest point just north of a deep coulee and is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is in the fence lino which follows the half section line and is 33.27 meters from the station in azimuth $186^{\circ} 30^{\circ}$. The belfry of a schoolhouse about $2 \frac{1}{2}$ miles distant is in azimuth $187^{\circ} 50^{\prime}$.

Crosby (Divido County, N. Dak., E. H. P., 1912).-About $6 \frac{3}{2}$ miles south and $3 \frac{1}{2}$ miles west of Ambrose, in the NE. $\frac{1}{4}$ sec. 17, T. 162 N., R. 99 W., on land belonging to C. J. Christianson, who lives about 2 miles east. Tho station is marked according to note $1,{ }^{1}$ except that there is no underground mark. A reference mark, described in note $7,{ }^{1}$ is on the half section line on the south slope of the knoll, 137.46 meters distant (measured over the ground) in azimuth $349^{\circ} 59^{\prime}$. The chimney of a white schoolhouse a little more than one-half milo distant is in azimuth $209^{\circ} 47^{\prime}$.

Norge (Divide County, N. Dak., E. H. P., 1912).-About 14 miles west and 4 miles south of Ambrose and about $\frac{1}{2}$ miles west and 1 mile south of Norge post office, in tho NW. \ddagger NW. \ddagger sec. 3, T. 162 N., R. 101 W., on a rounded ridge in a cultivated field belonging to Martin Knutson, whose house is about 400 meters southwest by west from the station. The station is about 90 meters south of the township road and is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is on tho township road on the west slope of the hill, 87.10 meters from the station in azimuth $173^{\circ} 20^{\circ}$.

Ambrose southwest base (Divide County, N. Dak., E. H. P., 1912).-About 6 miles west of Ambrose and 34 miles south of tho Canadian boundary, in tho NE. $\frac{1}{1}$ NW. $\sec .13$, T. 163 N., R. 100 W., about 60 meters south of an east-and-west road and 70 meters east of a north-and-south road. The station is marked according to note $3,{ }^{1}$ with the addition of an underground mark as described in note $1 .{ }^{1}$. A reference mark, described in note $7,{ }^{1}$ is close to the property line in the southeast corner of the road crossing and is 79.58 meters from the station in azimuth $127^{\circ} 37^{\prime}$.

Bowie (Divide County, N. Dak., C. H. S., 1911; 1912).-This is one of the stations of the United States and Canada Boundary Survey. It is about $11 \frac{1}{2}$ miles west and 3 miles north of Ambrose, in the SW. $\frac{1}{}$ SE. $\frac{1}{4}$ sec. 25, T. 164 N., R. 101 W., on a knoll about 65 meters south of the Canadian boundary on land belonging to Frank Christianson. The station is marked by a boundary survey tablet in a block of concrete 12 by 12 by 19 inches, set firmly in the ground and surmounted with a cairn. Boundary monument No. 232 A is 90.70 meters from the station in azimuth $134^{\circ} 05^{\prime}$. Ivar Eideness's house is about three-fourths mile distant in azimuth $268^{\circ} 47^{\prime}$, and a small shack at the west end of a lako is $1 \frac{1}{2}$ miles distant in azimuth $304^{\circ} 31^{\prime}$. Azimuth observations were made at this station.

Ambrose (Divide County, N. Dak., E. H. P., 1912).-About 3 miles south and $1 \frac{1}{2}$ miles west of Ambroee, in the SE. f sec. 27, T. 163 N., R. 99. W., about 175 meters southeast of a house. The station is marked according to noto $1 .{ }^{\text {I }}$ A reference mark, described in note $7,{ }^{1}$ is about 2 meters from the southeast corner of the house and 173.43 meters from the station in azimuth $150^{\circ} 30^{\prime}$.

School, or Ambrose northeast base (Divide County, N. Dak., C. H. S., 1911; 1912).-This is the station of the United States and Canada Boundary Survey called School. It is about $2 \frac{1}{2}$ miles north of Ambrose, 0.7 mile south of the Canadian boundary, and about 0.1 mile north of a deep ravine, in the SW. NW. sec. 36, T. 164 N., R. 99 W., in the public road on top of the highest knoll in the vicinity. The station is marked by a bench-mark post projecting 16 inches above tho ground. A drill holo in the top of a stone post projecting 4 inches above the ground is 17.09 meters from the station in azimuth $352^{\circ} 28^{\prime}$. The east gable of T. O. Moan's house is about 180 meters from tho station in azimuth $99^{\circ} 01^{\prime}$. Latitude observations wero made in 1913 at a point, not marked, 0.030 meter north and 0.025 meter west of the station.

SUPPLEMENTARY POINTS.

Brighton bench mark R_{2} (Adams County, Colo., C. V. II., 1912).-This station is identical with tho United States Geological Survey bench mark " R_{2}." It is about 1 milo north of Brighton, near the north county line, on the south side of the baso line road 1 meter north of the fence lino and 7.25 meters west of the west rail of the Union Pacific Railroad. The station is marked by an iron pipe and a cap on which are the figures 4966. Brighton bench mark eccentric, the point occupied, is 39.832 meters distant in azimuth $89^{\circ} 22^{\prime}$. A reference mark, described in note $7{ }^{\prime}{ }^{1}$ with the arrow pointing toward the eccentric point, is in the fence line on the north side of the base line road and 1 meter west of tho west fenco line of tho county road and is 54.30 meters from the beuch mark in azimuth $110^{\circ} 00^{\circ}$. Latitude observations were made in 1913 at a point, not marked, 14.256 meters south and 0.285 meter west of the eccentric station.

Loveland tall white chimney (Larimer County, Colo., C. V. II., 1912). The center of a tall white chimney in the town of loveland. Latitudo observations wero made in 1913 at a point, not markod, 196.20 meters from the station in azimuth $193^{\circ} 55^{\prime}$.

Dover bench mark E_{3} (Weld County, Colo., C. V. H., 1912). -This station is identical with precise loveling bench mark E_{3} established by this Survey. It is in the southeast comer of tho Union Pacific Railroad section-house yard, 17 metors from tho southoast corner of tho section house and 25 meters west of the center of the track. It is marked by a granito post 6 inches square on top and $4 \frac{1}{2}$ feot long, projecting 6 inches above the ground, and inscribed on tho
top with a square and the letters U.S.B.M. The station was occupied eccentrically. Dover bench mark eccentric, which is not marked, is 10.44 meters from the station in azimuth $240^{\circ} 38^{\prime}$. Dover bench mark reference mark, described in note $7,{ }^{1}$ with the arrow pointing toward the eccentric point, is on the railroad right of way 16 meters west of the center of the track, 36 meters north of tho east gable of the section house, and 53.23 meters from the station in azimuth $162^{\circ} 00^{\prime}$. The reference mark is on the east side of the Denver-Cheyenne wagon road and is south of the wagon road which crosegs the track at this point.

Terry (Laramie County, Wyo., C. V. H., 1912).-This station is identical with the United States Geological Surveystation of the same name. It is about 10 miles south 17° west from Cheyenne and about 2 miles northeast of the house on the old Terry ranch, now the headquarters of the Warren Live Stock Co. The station is on a bare conical hill and is marked by a United States Geological Survey iron bench-mark post set 3 feet in the ground. A reference mark, described in note $7,{ }^{1}$ is 0.94 meter below the station and 10.87 meters distant in azimuth $202^{\circ} 55^{\prime}$.

Colorado-Wyoming boundary monument, milepost 44 (Weld County, Colo., and Laramie County, Wyo., C. V. H., 1912).-About 11 miles west of south of Cheyenne, on the ranch of the Warren Live Stock Co., about one-half milo southeast of their ranch house. The monument is a dressed red sandstone post standing about 4 feet above the surface of the ground and is surrounded by a mound of loose rock. It is marked as follows: "44M" on the east side, "Colorado" on the south, " 41 N. L. 1873 " on the west, and "Wyoming" on the north side. It is the only permanent boundary monument for several miles in either direction. The station is marked by a standard disk station mark, described on page - , set in the top of the monument. A reference mark, described in note $7,{ }^{1}$ is in a fence line near an angle in the fence, 3.92 meters below the station and 110.184 meters distant in azimuth $75^{\circ} 18^{\prime}$. Latitude observations were made in 1913 at a poiut, not marked, 14.838 meters directly north of the monument.

Wheatland standpipe (Laramie County, Wyo., C. V. I., 1912).-The center of the conical top of the tall red steel water tank at Wheatland, on a ridge on the open prairie about 1100 meters south 29° west from the railroad and telegraph offico and 400 meters east of the railroad. Observations for latitude and longitude were made at a point, not marked, 25.21 meters east and 6.41 meters south of the station.

Nebraska-Wyoming boundary monument 123 (Converse County, Wyo., and Sioux County, Nebr., C. V. I., 1912).-About $3 \frac{1}{2}$ miles east and $2 \frac{1}{2}$ miles south of Kirtley, on open prairie land at the center of the east side of sec. 3, T. 32 N., R. 60 W., at the northeast corner of tho farm of H. Z. Bayles and one-half mile north of his home. The monument is a granite post 10 inches square and $3 \frac{1}{2}$ feet high, marked as follows: "Neb." on the east side, " 123 M " on the south side, and "Wyo." on the west side. Nebraska-Wyoming boundary monument eccentric, the station occupied, is marked by a nail in the top of a stake 3 inches square, 19.052 meters from the monument in azimuth $142^{\circ} 36^{\prime}$.

Bluff (Converse County, Wyo., C. V. H., 1912).-About 30 miles west of Ardmore, 12 miles north of west from the Hermann ranch, and 9 miles north 78° west from the boundary monument common to the northwest conner of Nebraska, the southwost corner of South Dakota, and the east line of Wyoming. The station is on the most northeasterly ono of the high flat-topped buttes in this vicinity, on the northeast edge of the highest knob along the north bluff and 10 meters back from the edge of the bluff. The station is marked according to note $1 .{ }^{1}$ A reference mark, described in note $7,{ }^{1}$ is 1.51 meters below the station and 204.667 meters distant in azimuth $51^{\circ} 41^{\prime}$.

South Dakota-Nebraska boundary monument (Fall River County, S. Dak., and Sioux County, Nebr., C. V. H., 1912). -About 2 miles east of the point common to the northwest corner of Nebraska, the southwest corner of South Dakota, and the eastern line of Wyoming, 1 mile northwest of the Hermann ranch and three-fourths mile northwest of the Kirtley-Eckard wagon road, in a pasture 500 meters east of Indian Creek. The monument is a granite post 10 inches square on top, projecting $2 \frac{1}{2}$ feet above tho ground, and marked as follows: " $222 \frac{1}{2} \mathrm{M}$ " on the east side, " N " on the south side, and "N. D." on the north side. South Dakota-Nebraska boundary monument eccentric, the station occupied, is 2.572 moters from tho monument in azimuth $5^{\circ} 57^{\prime}$.

South Dakota-Wyoming boundary monument (Converse County, Wyo., and Fall River County, S. Dak., C. V. H., 1912). -About $4 \frac{1}{2}$ miles north and $2 \frac{1}{2}$ miles west of the Hermann ranch and 4 miles north of the point common to the northwest corner of Nebraska, the southwest corner of South Dakota, and tho east line of Wyoming. The monument is a granite post 10 inches square, projecting $2 \frac{1}{2}$ feet above the ground, and is marked as follows: " 1904 " on the north side, "S. D." on tho east side, "4 M" on the south side, and "Wy." on the west side.

Jireh College cupola (Converse County, Wyo., C. V. H., 1912). -The cupola of Jireh College, which is east of the town of Keeline. Latitude observations were made in 1913 at a point, not marked, 67.868 meters from the station in azimuth $180^{\circ} 13^{\prime}$.

Montana, southeast comer eccentric (Butte County, S. Dak., E. II. P., 1912).-On the northeastern gentle slope of a ridge about one-half mile east of the point on the Hash Knife wagon road, where it crosses the Montana-South Dakota State line. Tho station is marked according to note 1. ${ }^{1}$ The southeast corner of Montana is marked by a granite post 11 inches square, projecting 30 inches above the ground, and is 271.66 meters from the eccentric station in azimuth $243^{\circ} 41^{\prime}$.

Wyoming, northeast comer ecceniric (Custer County, Mont., E. II. P., 1912).-About 2 meters east of the center of the Ilash Knife wagon road, a short distanco north of the Montana-South Dakota Stato line, on the first knoll covered with red rock seen on approaching along the road from the south. The station is marked according to note 1. ${ }^{1}$ The northeast comer of Wyoming is marked by a red granite post 12 inches square, projecting 3 feet above the ground, and is 269.41 meters from the eccentric station in azimuth $35^{\circ} 18^{\prime}$. About 3 feet west of the corner monument is a block of soft white sandstone 18 by 22 inches on top and projecting about 2 feet above the ground. Thirty-seven paces east
of the corner monument is a 2 -inch iron pipe with bronzo cap projecting 1 foot above the surface of the ground and marked: "U. S. General Land Offico Survey, 1910. $\$ 250$ fine for removal. Mont.-Wyo.-S. D., T. 9, R. 62-63, sec. 36 -ece. 31." Latitudo observations wero made in 1913 at a point, not marked, 0.01 meter north and 0.06 moter east of the eccentric station.

North Dakota-South Dakota, milepost sss, eccentric (Bowman County, N. Dak., E. H. P., 1912) -About 16 miles south and 2 miles west of Bowman, about 50 meters south of the highest point of a low ridge, on top of the first knoll west of the shack of Emil Thom. The station is marked according to note $1,{ }^{1}$ except that the brass bolt of tho underground mark is set in solid rock 25 inches below the ground. North Dakola-South Dakola milepost sss is a red granite post 10 inches square, projecting about 40 inches above the ground and is 326.07 meters from the station in azimuth $306^{\circ} 12^{\prime}$.

Bowman longitude (Bowman County, N. Dak., H. A. S., 1912).-About 10 meters northwest of the northwestern support of tho Bowman city water tank, which is on a slight elevation on the western edge of the town. The station is marked by a concrete pier. Latitude observations wero made at this station in 1913.

Buffalo Springs (Bowman County, N. Dak., E. H. P., 1912).-At Buffalo Springs, south of the Chicago, Milwaukeo \& Puget Sound Railway track, in a lot on which a church is to be built. The station is marked according to note 1. ${ }^{1}$ The northwest corner of the parsonage is 47.48 meters from the station in azimuth $273^{\circ} 49$. The rail in front of the box car used as a depet is 294.26 meters distant in azimuth $191^{\circ} 08^{\prime}$.

North Dakota-Montana boundary monument eccentric (Billings County, N. Dak., and Dawson County, Mont., E. H. P., 1912).-About 20 miles north of Beach, in a small saddle on the crest of the divide about 300 meters west of the house of L. C. Callender, wholives on the Wibaux-Trotter wagon road, and 3.28 meters north of the North DakotaMontana boundary monument, which is an old oak post. The station is marked according to note 1^{1}. The southwest corner of section 7, T. 143 N., R. 105 W ., is 33.48 meters from the station in azimuth $00^{\circ} 08^{\prime}$, and the southeast corner of section 22 , T. 17 N., R. 60 E., is 261.31 meters distant in azimuth $00^{\circ} 09^{\prime}$. The old oak boundary post is in azimuth $359^{\circ} 40^{\prime}$, and the chimney of Mr. Callender's house is in azimuth $293^{\circ} 21^{\prime}$. Latitudo observations were made at the eccentric station in 1913.

Bench mark $\frac{122}{2}$ (Valley County, Mont., E. H. P., 1912).-This station is a bench mark of the Missouri River Commission. It is about 2 miles west of Mondak, three-fourths mile east of Snowden, and 100 feet south of the Great Northern Railway track, ou the north side of a public road close to the gate at the private road crossing opposite Dan Steele's house. The station is marked according to note 5. ${ }^{1}$

Bench mark $\frac{121}{2}$ (Valley County, Mont., E. H. P., 1912). -This station is a bench mark of the Missouri River Commission. It is about 2 miles west of Snowden water tank and section house, 350 meters north of tho Great Northern Railway track, and about 15 moters south of the Mondak-Bainville wagon road, in a hay field owned by Peter Belland. The station is marked according to note $5,{ }^{1}$ the pipe projecting about 6 inches above the ground.

Bilby (Divide County, N. Dak., C. I. S., 1911).-This is one of tho United States and Canada Boundary Survey stations. It is about 5 miles southwest of Ambrose and about 2 miles south of the road from Ambrose to Colgan, on a hill about one-half mile southeast of a house having a sun parlor on the east side. The houso is gray and there is a yellow barn nearit. The station is marked by a boundary survey bronze tablet set in a block of concrete.

Jasper (Divide County, N. Dak., C. H. S., 1911).-This is one of tho United States and Canada Boundary Survey stations. It is about 10 miles southwest of Ambroso and $2 \frac{1}{2}$ miles nearly due south of Colgan, on a prominent rounded knoll of a range of hills running east and west. The station is marked by a boundary survey bronze tablet set in concrete. There are a few large bowlders about 6 feet northwest of the station. Mr. Heury Highland's house is about $1 \frac{1}{2}$ miles northeast of the station.

THIRTY-NINTH PARALLEL

principal points.
Arapahoe (Cheyenne County, Colo., F. W. P., 1892).-About 7 miles southeast of Arapahoe and 11 miles southwest of Weskan, towns on the Union Pacific Railroad, and 3 miles west of the Kansas-Colorado boundary line, on the highest and most prominent hill in the vicinity, in tho NW. $\frac{1}{4}$ NE. $\frac{1}{4}$ sec. 10, T. 15 S., R. 42 W . The station is marked at tho surfaco by a tack in the top of a squared white-aak stake. Below the stako are two underground marks, a 4 -gallonstone jar with a small hole in the bottom buried with the top down about 2 feet below the surface, and a 1-gallon stone jug buried mouth upward about 3 feet below the surface.

Monotony (Cheyenne County, Colo., F. W. P., 1892).-Near the north boundary of tho county, in the NW. $\frac{1}{4}$ NE. $\frac{1}{1}$ sec. 8, T. 12 S., R. 43 W., on the highest point of the divide between tho north fork of tho Smoky Mill River to the north and Sand Creek to the south and about 3 miles distant from each. The nearest house is on the Cheyenne WellsBurlington road, about $4 \frac{1}{3}$ miles northwest of the station and belongs to Mr. A. Eichels. The station is marked at the surface by a tack in the top of a squared white-oak stake. Below the stake are two underground marks, a 3 -gallon stone jar with a small hole in tho bottom, buried with the top down, about $2 \frac{1}{2}$ feet below the surface, and a 1 -gallon jug, buried mouth upward, about 4 feet below tho surface. Some broken crockery was mixed with the soil about the stake and a pyramid of large rocks was built over the station. There are two reference marks similar to the surface marks of the station, one 10 feet to the east and the other the same distance to the west.

Cheyenne Wells (Cheyenne County, Colo., F. W. P., 1892).-About 9 miles northwest of Cheyenne Wells, a town on the Union Pacific Railroad, on the highest part of a ridge about one-half mile west of the Cheycnne Wells-Beloit road about $2 \frac{1}{2}$ miles toward Beloit from where the road crosses the Smoky Hill River. The station is in the northern part of T. $13 \mathrm{~S} ., \mathrm{R} .45 \mathrm{~W}$., and is marked at the surface by a cross in the top of a limestone post which projects about 2 inches above the ground. Below the post are two underground marks, a 1 -gallon crock with a small hole in the bottom, buried with the top down, about $3 \frac{1}{2}$ feet below the surface, and a 1 -gallon jug, buried mouth upward, about $4 \frac{1}{2}$ feet below the surface. Pieces of broken crockery were mixcd with the soil when the marks were set and a 4 -foot pyramid of rocks was built over the station.

First View (Cheyenne County, Colo., F. W. P., 1892).-About $1 \frac{1}{2}$ miles south by west of First View, a town on the Union Pacific Railroad, on the western extremety of the plateau east of the Big Sandy Creek, and 221.19 meters south 83° west of the half-section corner between sections 27 and 34 , T. $14 \mathrm{~S} ., \mathrm{R} .46 \mathrm{~W}$., which corner is marked by a block of limestone surrounded by four pits. The station is marked at the surface by a cross in the top of a block of soft limestone and underground by a cross in an irregular-shaped stone about 3 feet below the surface. Just below the surface mark is a circular paving 3 feet in diameter consisting of pieces of broken tile, and below this paving other pieces of tile are mixed with the soil.

Landsman (Cheyenne County, Colo., F. W. P., 1892).-About 9 miles north-northwest of First View, a town on the Union Pacific Railroad, about 4t miles north-northwest of a large lake, and 3 miles north of the old Overland Trail, on the highest hill at the extreme western edge of the plateau, and about one-half mile east of a deep ravine which extends northwest and southeast. The station is in the northwest corner of T. $13 \mathrm{~S} ., \mathrm{R} .46 \mathrm{~W}$., and is marked at the surface by a cross in the top of a sandstone post, which projects about 2 inches above the ground and is surrounded at a depth of 3 inches by a circular paving 4 feet in diameter made of pieces of broken tile. The underground mark is a cross in an irregular-shaped black rock about 3 feet below the surface. Between the upper and lower marks are several rings 3 or 4 feet in diameter made with pieces of sandstone.

Kit Carson (Cheyenne County, Colo., O. H. T., 1882).-About 5 miles southwest of Kit Carson, a town on the Union Pacific Railroad, on top of a high sand dune west of the Pueblo trail at a point about 1 mile southwest of where the trail crosses the old abandoned roadbed of the Arkansas Valley Railroad. The station is marked both at the surface and underground by a cross in the top of a lead bolt embedded in an irregular-shaped stone, which is inscribed with the letters U. S. T. S. Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station.

Eureka (Cheyenne County, Colo., O. H. T., 1881).-About 14 miles north of Kit Carson, a town on the Union Pacific Railroad, and 2 miles north-northwest of the Big Springs ranch house, on a hill just west of a side road that branches from the main road a short distance north of the ranch house. The station is marked at the surface by a cross cut in stone, and underground by a cross in the top of a lead bolt in an irregularly shaped stone, which is marked with the letters U. S. T. S., and is set about $2 \frac{1}{2}$ feet below the surface.' Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. There is a pyramid of loose stones about 3 feet high over the station mark.

Aroya (Lincoln County, Colo., O. H. T., 1881).-About 4 miles south 21° west (magnetic) from the telegraph office at Aroya, a town on the Union Pacific Railroad, on the eastern slope of a high ridge of sand hills which forms the watershed between Rush Creek and Big Sandy Creek. There is an unobstructed view from the station to the north, east, and south. The station is marked at the surface by a cross in a lead bolt in a bowlder, and underground by a cross and the letters U. S. T. S. in a bowlder about 3 feet below the surface. Four bowlders, each marked with a cross, are respectively 1 meter distant, and they form a square whose diagonals intersect at the station.

Overland (Lincoln County, Colo., O. H. T., 1881).-About 20.6 kilometers north 22° west (magnetic) from Aroya, a town on the Union Pacific Railroad, and 734.8 meters north $82^{\circ} 50^{\prime}$ west (magnetic) from the stake at the corner of townships 11 and 12 , ranges 51 and 52 west, north of the old stage road, on one of the highest southern spurs of the ridge which forms the divide between Big Sandy Creek and Republican Creek. There is higher land north and northwest of the station. The station is marked at tho surface by a cross cutin a bowlder, and underground by a cross in the top of a lead bolt in a bowlder about $1 \nmid$ feet below the surface. Four stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. There is a pile of stones over the station mark.

Hugo (Lincoln County, Colo., O. I. T., 1880).-On a high sand dune about 4 miles south 18° west (magnetic) from the railroad office at Hugo, a town on the Union Pacific Railroad. On the north side of the dune a deep sand pit has been hollowed out by the erosive action of wind and water, and the pit presents the appearance of a huge excavation. The station is marked at the surface by a cross in the top of a lead bolt in a soft grayish stone marked with a triangle and the letters U. S. T. S. The underground mark, 3 feet below tho surface, is similar to the surface mark, except there is no triangle marked on tho stone. Four small stones, eacli marked with a cross, aro at the following distances from the station: North, 1.52 meters; east, 1.80 meters; south, 1.45 meters; and west, 1.80 meters. The diagonal lines from these four stones intersect at the station.

Adobe (Lincoln County, Colo., O. H. T., 1881).-On the highest one of the bold bluish-colored bluffs on the south side of the head of Adobe Creek, about 4 miles south of the Las Animas road. The station is marked at the surface by a cross in the top of a lead bolt in a round conglomerato bowlder marked with the letters U. S. T. S., and underground by a cross in the top of a lead bolt in a block of sandstone $2 \frac{1}{2}$ feet below the surface. Four stones, each
marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a squaro whose diagonals intersect at the station.

Square Bluffs (Lincoln County, Colo., O. H. T., 1880).-On tho high land known as the Horse Creek Square Bluffs, on the eastern side of Horso Creek, and about I $\frac{1}{2}$ miles northeast of Seldomridge's sheep corral, which is besido the creek. Tho station is marked at the surfaco by a lead bolt in a bowlder which is inscribed U. S. T. S., and underground by a small bowlder marked with a trianglo and tho letters U. S. T. S. and set 2 feet below the surface. Four refercnco stones, each marked with a cross, are respectively 4 fcet distant north, east, south, and west, and they form a squaro whoso diagonals intersect at the station. There is a pile of stones over the station mark.

Holt (Elbert County, Colo., O. I. T., 1880).-About 6 miles a littlo east of north of Col. Holt's homo ranch on Horse Creek and about 4 miles due north of Antelope Springs, near the southern cxtremity of a point of tho high plateau which forms tho divide between Big Sandy Creek and Rush Creek. The station is marked by a cross on a bowlder slightly below the surface, and by a cross in the top of a lead bolt in a bowlder 3 feet below the ground. Four referenco stones, each marked with a cross, are respectively 1 meter distant north, east, south, and west, and they form a square whose diagonals intersect at the station. The west referenco stone is red.

Cramer Gulch (Lincoln County, Colo., O. II. T., 1880; 1895).-About 8 miles south of tho "M. C." ranch, on one of the sand dunes forming the eastern border of Cramer Gulch or Creek, about 2 miles in a northerly direction from the springs and the adobe house in tho gulch. Tho house is not visible from the station, as tho view is cut off by a hill about 1000 meters to tho southward. The station is marked at the surface by a cross in a small bowlder, and underground by a similar mark 3 feet below the surface. Four reference stones, each marked with a cross, are at the following distances from tho station: North, 0.995 meter; cast, 1.040 meters; south, 1.004 meters; and west, 1.000 meter. The diagonal lines from theso four stones intersect at the station.

Big Springs (El Paso County, O. I. T., 1880; 1895).-About 30 miles east of Colorado Springs and about 6 miles south of Mr. Pebble's home ranch, which is known as Big Springs. The station is a short distance southwest of a road connecting various outlying ranches with the home ranch and is on the highest point within a radius of 6 miles. It is marked at the surface by a lead bolt in a red sandstone bowlder and underground by a triangle in a white conglomerato rock inscribed U.S. T. S. and set one-half meter below the surface. Four reference marks of red sandstone, each marked with a lead bolt in its upper surface, are respectively 1 meter distant, and they form a square whose diagonals intersect at the station. A pile of loose stones is over the station.

Holcolm Hills (El Paso County, O. H. T., 1880).-About 1 mile northeast of tho Paint Rocks, on the highest land bordering Bracket Creek valley on the east. The station overlooks the plain to the westward and the head of the valley of Big Sandy Creek to the northeastward and eastward. It is marked at the surface by a lead bolt in a large irregular stone inscribed U. S. T. S., and underground by a cross in a lead bolt in a bowlder marked with a triangle and the letters U. S. T. S. and set 3 feet below the surface. Four small reference stones, each marked with a cross, are respectively 4 feet distant, north, east, south, and west. There is a cairn over the station mark.

Divide (El Paso County, O. H. T., 1880; 1912).-About 3 miles east of Eastonville, a town on the Colorado \& Southern Railway, and about one-fourth mile south of the bluffs forming the southern edge of a large plateau or mesa, near the western end of the middle and largest one of three small hills or buttes. The station is marked at the surface by a drill hole in a stone 20 inches square and 6 inches thick set flush with the surface of the ground. The underground mark is a cross in a lead bolt in a bowlder $1 \frac{1}{2}$ feet below the ground. Four reference stones, in each of which is a lead bolt marked with a cross, are respectively 1.83 meters from the station, north, east, south, and west. A large cairn, visible from the Eastonville road, is on the edge of the bluff 14 meters from the station in azimuth $30^{\circ} 10^{\prime}$. Two pine trees, one marked with a square blaze and the other with a triangular blaze, are respectively 22.93 meters from the station in azimuth $212^{\circ} 12^{\prime}$, and 21.43 meters in azimuth $232^{\circ} 15^{\prime}$.

Corral Bluffs (El Paso County, Colo., O. H. T., 1879).-On the edge of the bluff forming the northern boundary of what is known as the Big Corral, a natural formation used to pen up cattle during the round-up. The station is on the highest land in the vicinity and commands a view of the plains as far south as the Arkansas River. It is marked by a solid brick pier, capped by a hewn stone, the top of which is 1.3 meters above the ground. There is an underground mark below the pier.

El Paso east base (El Paso County, Colo., O. H. T., 1878; 1913).-On Munson and Hamlin's ranch, commonly known as tho Townsend ranch, which is included in tho SW. $\frac{1}{6} \mathrm{sec} .33$ and the SE. $\frac{1}{6}$ sec. $32, \mathrm{~T} .12$ S., R. 63 W . Tho west gable of Munson and Hamlin's barn is 376.6 meters north $14^{\circ} 35^{\prime}$ east (magnetic) from the station. The station is marked by a copper tack in a lead plug in the top of a granite post 1 foot squaro and $2 \frac{1}{2}$ feet long which is set in concrete and inscribed with the letters U. S. E. B. The underground mark, $3 \frac{1}{2}$ fect below the ground, is similar to the surface mark.

El Paso west base (El Paso County, Colo., O. II. T., 1878; 1913).-About 15 miles northeast of Colorado Springs and about 1 mile north of tho sheep corral and main spring of water of the so-called Pugsley ranch. The station is on a knoll somewhat higher than a similar one to the southward and lower than a knoll to the northward. It is marked in tho same manner as El Paso east base above, except that tho letters W. B. are substituted for the letters E. B.

Platcau (Pueblo County, Colo., F. D. G., 1894; 1895).-About 9 miles north-northeast of Pueblo and $3 \frac{1}{2}$ miles northeast of Overton, on tho highest ground at tho north end of the plateau near the east line fence of M. Steele's property, whose home ranch is on the county road $1 \frac{1}{2}$ miles north of Overton. Tho station is near the trail which branches from the main road one-fourth mile from Burke's rancli and is 77.1 meters northwest of tho north gatepost in the fence described abovo and 51.2 meters west of the second post from the north gatepost where tho fence bends a little to the
north. The station is marked at the surface by a cross in the top of a granite post dressed 6 inches square and inscribed U. S. C. S. Below the post are two underground marks, a half-gallon stone jug 3 feet below the surface, and above this an inverted milk crock with a small hole in the bottom. Two lava stone posts, each dressed 6 inches square at the top and marked with an arrow pointing toward the station, are respectively 3.04 meters northward and 3.00 meters southward from the station.

Pikes Peak (El Paso County, Colo., O. H. T., 1879; 1912).-On the summit of Pikes Peak, just north of the apex of the first forthward bend in the burro trail leading west from the Summit Hotel and the terminus of the cogwheel railway. The nearest point of the precipice is about 25 meters north 25° west from the station and the northwest corner of the hotel is 160 meters distant in azimuth $273^{\circ} 29^{\prime}$. The station is marked by a wire nail leaded in a drill hole in the concrete foundation of an old masonry pier. The pier, only a part of which remains, was built on four pillars in order to leave access to this nail. The station is also marked by a nail in a 4 by 4 inch scantling at the top of the remnants of the pier about 1 meter above the foundation. A United States Geological Survey triangulation station mark is on the southwest corner of the pier 0.467 meter distant in azimuth $50^{\circ} 46^{\prime}$. A United States Geological Survey bench-mark tablet is embedded in the top of a large bowlder 13.594 meters from the station in azimuth $99^{\circ} 52^{\prime}$. In the south face of this same bowlder is an aluminum tablet inscribed with the latitude and longitude, but it is badly defaced by bullet marks.

Bison (Park County, Colo., F. W. P., 1894).-On the highest point of rocks on Bison Peak, the king peak of the Tarryall Range, which is between Tarryall Creek and Goose Creek. The station is near the ninth meridian west, in township 9 south, and is marked by a nail leaded in a drill hole in the granite rock. A rough masonry pier used in mounting the instrument is above the station mark. Four drill holes in the rock near the station bear, respectively, $0^{\circ}, 180^{\circ}, 240^{\circ}$, and 300°.

Mount Ouray (Saguache County, Colo., W. E., 1894).-On the Great Continental Divide on the summit of Mount Ouray, about 4 kilometers in a northeasterly direction from Marshall Pass, a station on the Denver \& Rio Grande Railroad. The station is marked by a cross in a copper bolt set in the solid surface rock. It is also marked by a drill hole filled with charcoal and plaster of Paris in a brick embedded in the top of a brick and concrete pier built above the lower mark. The station is surrounded by a ring wall of loose stones 4 feet high with an inner diameter of 11 feet. Four reference marks, each consisting of a brick set on end and marked with a drill hole filled with plaster of Paris, are just outside the wall at the following distances and azimuths from the station: 2.75 meters, $5^{\circ} 31^{\prime} ; 2.80$ meters, $96^{\circ} 46^{\prime} ; 2.74$ meters, $186^{\circ} 11^{\prime}$; and 2.73 meters, $275^{\circ} 54^{\prime}$. Mount Ouray latitude station, marked by a brick and concrete pier, is 20.514 meters distant in azimuth $188^{\circ} 23^{\prime}$.

Mount Elbert (Lake County, Colo., P. A. W., 1894).-On the summit of Mount Elbert, about 7 miles by trail from the town of Twin Lakes (also called Dayton). The station is marked by a copper bolt leaded into a drill hole in a large surface rock. It is also marked, 5 inches above the bolt, by a drill hole in a rock embedded in a 5 -inch layer of masonry built between the bases of the three small brick piers used in mounting the instrument. At a distance of 5 feet in each of the directions north, east, south, and west is a reference stone marked with a drill hole. The station is nearly surrounded by a square rock wall.

Treasury Mountain (Gunnison County, Colo., W. E., 1893).-On the summit of Treasury Mountain, a prominent peak in the Elk Mountain Range, about 2 miles southeast of the mining town of Crystal. The station is marked by a copper bolt set in a drill hole in the solid surface rock. It is also marked, 6 inches above the bolt, by a drill hole filled with plaster of Paris in a brick embedded in a layer of masonry built between the bases of the three small brick piers used in mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high with an inner diameter of 10 feet. Four reference marks, each consisting of a drill hole in a surface rock, are just outside the wall at the following distances and azimuths from the station: 2.31 meters, $267^{\circ} 10^{\prime} ; 2.25$ meters, $351^{\circ} 25^{\prime} ; 2.39$ meters, $81^{\circ} 45^{\prime}$; and 2.39 meters, $177^{\circ} 20^{\prime}$. Treasury Mountain latitude station, marked by a brick pier, is 31.13 meters from the station in azimuth $327^{\circ} 43^{\prime}$.

Uncompahgre (Hinsdale County, Colo., W. E., 1895).-On the summit of Uncompahgre Peak, one of the most prominent and best known peaks in southwestern Colorado, about 8 miles northwest of Lake City. The station is within about 10 feet of the perpendicular cliff on tho north sido of the summit. It is marked by a cross in a copper bolt which is leaded in a drill hole in the solid surface rock. The station is also marked, 4 inches above the copper bolt, by a drill hole in a brick embedded in a layer of concrete which connects the bases of three small brick piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high with an inner diameter of 11 fcet. Four reference marks, each consisting of a drill hole in a rock filled with lead, are at the following distances and azimuths from the station: 2.48 meters, $3^{\circ} 36^{\prime} ; 2.85$ meters, $89^{\circ} 58^{\prime} ; 2.65$ meters, $179^{\circ} 49^{\prime}$; and 2.87 meters, 269° 56^{\prime}. Uncom pahgre latitude station, marked by a brick picr with a concrete foundation, is 15.275 meters from the station in azimuth $305^{\circ} 55^{\prime}$.

Mount Waas (Grand County, Utah, W. E., 1893).-On the highest point of Mount Waas, which is the third prominent peak from the north end of the La Sal Mountains. The station is marked by a cross in a copper bolt which is set in a drill hole in the rock between the bases of three small brick piers used for mounting the instrument. The station is surrounded by a ring wall of rocks 4 feet high with an inner diametes of 10 feet. Four refercnce marks, each probably consisting of a drill hole in the rock, are just outside the wall at the following distances and azimuths from the station: 2.24 meters, $3^{\circ} 58^{\prime} ; 2.29$ meters, $104^{\circ} 19^{\prime} ; 2.18$ meters, $186^{\circ} 37^{\prime}$; and 2.21 meters, $275^{\circ} 45^{\prime}$. Mount Waas astronomic station, marked by a concrete pier, is 28.213 meters from the station in azimutb about 329°.

Tavaputs (Garfield County, Colo., W. E., 1891).-On the sonthern cdge of the Book Mlountains, which in this vicinity consist of low flat ridges sparsely covered with pine and aspen trees. The station is between West Salt Wash, 3 miles to the southeast, and Bitter Creek, three-fourths mile to the west. Bitter Creek has its source in a fresh-water spring $1 \frac{1}{\text { miles distant to the north. The marking of the station is similar to that of Uncompahgre (see above) except }}$ that there are only three reference marks which are at the following distances and azimuths from the station: 2.43 meters, $74^{\circ} 41^{\prime}$; 2.40 meters, $196^{\circ} 31^{\prime}$; and 2.43 meters, $322^{\circ} 12^{\prime}$.

Patmos Ifead (Carbon County, Utah, W. E., 1890).-On Patmos Head, one of the peaks of the range of mountains known as West Tavaputs Plateau, and the highest point within several miles. It is about $12 \frac{1}{2}$ miles southeast from Sunnyside and 3 miles southeast of the upper end of Dry Canyon. The station is marked by a copper bolt in a rock bedded in the ground, and about 8 inches above the bolt by a drill hole in another rock which is cemented to the lower one. Three small brick piers, used for mounting the instruneut, are about the station, and the whole is surrounded by a ring wall of rocks $3 \frac{1}{2}$ feet high with an inner diameter of 11 feet. Four reference marks are outside the ring wall at the following distances and azimuths from the station: Drill hole in a rock, 2.59 meters, $233^{\circ} 16^{\prime}$; drill hole iu a rock, 2.62 meters, $327^{\circ} 07^{\prime}$; copper bolt in a rock, 3.45 meters, $343^{\circ} 16^{\prime}$; and a stump, 3.35 meters, $90^{\circ} 06^{\prime}$. Patmos Head astronomic station is 56.76 meters from the station in azimuth $190^{\circ} 12^{\prime}$.

Mount Ellen (Garfield County, Utah, W. E., 1891).-On the summit of Mount Ellen, the uorthern peak of the Henry Mountains, a conical barren peak the upper part of which is covered with rough broken pieces of granite rock. The station is marked by a copper bolt in a rock embedded in concrete and a few inches above the bolt by a drill hole in another rock set between the bases of three small brick piers used for supporting the instrument. Tho station is nearly surrounded by a ring wall of rocks $4 \frac{1}{3}$ feet high with an inner diameter of 11 feet. Three reference marks, each consisting of a drill hole filled with plaster of Paris in the solid surface rock, are just outside of the wall at the following distances and azimuths from the station: 2.41 meters, $23^{\circ} 35^{\prime} ; 2.44$ meters, $144^{\circ} 45^{\prime}$; and 2.39 meters, $263^{\circ} 34^{\prime}$. Mount Ellen astronomic station, marked by a brick pier, is 15.02 meters from the station iu azimuth $5^{\circ} 20^{\prime}$.

Wasatch (San Pete County, Utah, W. E., 1890).-On a small peak or table near the southern end of the Wasatch Mountain Range, the highest point of tlis part of the range. It is between the South Fork of Ferron Creek to the uorth and the North Fork of Muddy Creek to the south, the sources of both creeks being within short distances of the station. The station is marked by two copper bolts in a drill hole in a limestonc rock, the lower bolt being leaded and the upper one cemented in the hole. About the station are three small brick piers used in mounting the instrument, and the whole is surrounded by a ring wall of rocks 4 feet high with an inner diameter of $11 \frac{1}{2}$ feet. Four reference marks, each consisting of a brick set on end and marked with a drill hole filled with plaster of Paris, are just outside the wall at the following distances and azimuths from the station: 2.40 meters, $32^{\circ} 12^{\prime} ; 2.33$ meters, $91^{\circ} 39^{\prime} ; 2.51$ meters, $164^{\circ} 26^{\prime}$; and 2.33 meters, $305^{\circ} 39^{\prime}$. Wasatch astronomic station, narked by a brick pier, is 121.0 meters from the station in azimuth $218^{\circ} 41^{\prime}$.

Tushar (Piute County, Utah, W. E., 1885).-On the summit of Mount Belknap, tho northern one of the three highest peaks of the Tushar Mountains. The station is marked by a copper bolt leaded in a drill hole in the solid rock. It is also marked, above the bolt, by a drill hole in a flat rock fitted between the bases of the three small brick piers used in mounting tho instrument. The station is nearly surrounded by a circular wall of rocks $4 \frac{1}{2}$ feet high, with an inner diameter of 11 feet.

Mount Nebo (Juab County, Utah, W. E., 1887).-On the southernmost summit of Mount Nebo. The station is marked by a copper bolt in a drill hole in the solid rock. Three small brick piers used in mounting the instrument are about the station, and these in turn are nearly surrounded by a ring wall of rocks 10 or 12 feet in diameter. Four reference marks, each consisting of a drill hole in the rock, are just outside the wall at the following distances and azimuths from the station: 2.56 meters, $38^{\circ} 01^{\prime} ; 2.66$ meters, $121^{\circ} 28^{\prime} ; 4.25$ meters, $204^{\circ} 16^{\prime}$; aud 3.32 meters, $309^{\circ} 39^{\prime}$. Mount Nebo astronomic station, marked by a brick picr, is 23.25 meters (given 25.25 meters in latitude record) from the station in azimuth $321^{\circ} 35^{\prime}$. The vertical circle statiou is 4.60 meters distant in azimuth $49^{\circ} 00^{\prime}$. The latitude pier is partly surrounded by a square rock wall, and the vertical circle station by a circular wall similar to that about the station but smaller.

Ibepah (Juab County, Utah, W. E., 1889).-About 15 miles a little east of south from Ibepah post office, on Ibepah Peak, in the Deep Creek range of mountains. The peak has the general appearance of a roof of a house with the ridge extending east and west. The peak terminates in two principal summits of equal height, one at the extreme western end of the crest and the other near the middle, the station being on the latter. The station is marked by a copper bolt in a drill hole in solid rock, over which is a layer of masonry built between the bases of three small brick piers used in mounting the instrument. The station is nearly surrounded by a riug wall of rocks 5 feet high, with an inner diameter of 11 feet. Four drill holes in solid rock aro just outside the wall at the followiug distances and azimuths from the station: 2.97 meters, $246^{\circ} 20^{\prime} ; 3.07$ meters, $300^{\circ} 12^{\prime} ; 3.25$ meters, $91^{\circ} 32^{\prime}$; and 3.18 meters, $134^{\circ} 32^{\prime}$. Ibepah astronomic station, marked by a masonry pier, is 21.2 meters from the station in azimuth $105^{\circ} 51^{\prime}$.

Wheeler Peak (White Pine County, Nev., W. E., 1882).-On Wheeler Peak, the highest and most prominent mountain of the Snake Range, on the western or higher prong of the double peak. The station is marked by a copper bolt leaded in a drill holo in solid rock. It is also marked, a few iuches above the bolt, by a drill hole in a flat stono secured in position by the masonry foundation built for the iustrument. The station is nearly surrounded by a ring wall of rocks. Three drill holes in solid rock are just outside the ring wall at the following distances from the station: 2.40 meters north, 2.60 meters east, and 2.40 meters southwest. The vertical circle station, also surrounded by a ring wall, is 57.75 meters east of the station.

Pilot Peak (Elko County, Nev., W. E., 1889).-On Pilot Peak, the highest peak of a prominent range of mountains bordering the Great American Desert on the west. The peak is very rugged and rocky and is almost inacessible. The station is on the highest point of the summit at the junction point of the three main spurs of the peak. Itis marked by a copper bolt in a drill hole in solid rock. It is also marked about 10 inches above the bolt hy a drill hole in a flat stone embedded in the masonry built between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, about $4 \frac{1}{2}$ feet high, with an inner diameter of 11 feet. Four reference marks, each a drill hole in solid rock filled with lead, are just outside the wall at the following distances and azimuths from the station: 2.98 meters, $47^{\circ} 36^{\prime} ; 2.73$ meters, $123^{\circ} 29^{\prime} ; 2.67$ meters, $189^{\circ} 13^{\prime}$; and 2.97 meters, 324° 59'. Pilot Peak latitude station, marked by a brick pier, is 12.65 meters from the station in azimuth $276^{\circ} 26^{\circ}$.

Ogden Peak (Weber County, Utah, W. E., 1888).-On a peak of the Wasatch Mountains, about 4 miles east of Ogden. The west slope of the mountain is very steep and rough, and the station is more easily reached from the east. The station is marked by a copper bolt in a drill hole in solid rock. It is also marked by a drill hole in a flat rock embedded in the masonry built between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, with an inner diameter of about 11 feet. -Three reference marks, each a drill hole in solid rock filled with lead, are just outside the ring wall at the following distances and azimuths from the station: 2.84 meters, $22^{\circ} 35^{\prime} ; 2.93$ meters, $177^{\circ} 55^{\prime}$; and 2.55 meters, $288^{\circ} 43^{\prime}$. Ogden Peak astronomic station, marked by a brick pier, is 13.2 meters from the station in azimuth $92^{\circ} 01^{\prime}$. The vertical circle station, with a ring wall similar to that about the station, is 7.0 meters distant in azimuth $310^{\circ} 43^{\prime}$. The magnetic station is 20.4 meters from the station in azimuth $323^{\circ} 56^{\prime}$.

Deseret (Tooele County, Utah, W. E., 1892).-On the summit of the highest peak of the Onaqui Mountains, about 8 miles a little west of south from Grantsville and about 12 miles east of Stockton. The station is marked by a copper bolt set in solid rock between the bases of three small piers used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks 4 feet high, with an inner diameter of 11 feet. Three reference marks are just outside the wall at the following distances and azimuths from the station: 3.10 meters, $322^{\circ} 53^{\prime} ; 2.18$ meters, $88^{\circ} 08^{\prime}$; and 2.62 meters, $198^{\circ} 38^{\prime}$. Deseret latitude station, marked by a stone and brick pier, is 10.85 meters from the station in azimuth $27^{\circ} 42^{\prime}$.

Promontory (Boxelder County, Utah, W. E., 1892).-On the most southeastern summit of the Promontory Mounains, on Promontory Peninsula, which extends into Great Salt Lake from the north. The summit is very rocky and. rough, being composed of bare, sharp, stratified rocks, with the dip nearly vertical. The station is marked by a, cross in a copper bolt set in solid rock and surrounded by a hollow brick pier 32 inches square supporting a red sandstone cap, which bears a second copper bolt directly abovo the first and is inscribed with a triangle and the legend "U.S. C. \& G. Survey, 1892." The station is nearly surrounded by a ring wall of rocks 4 feet high, with an inner diameter of 12 feet. Three reference marks, each consisting of a drill hole in solid rock, are just outside the wall at the following distances and azimuthe from the station: 2.50 meters, $213^{\circ} 32^{\prime}$; 2.44 meters, $314^{\circ} 08^{\prime}$; and 2.71 meters, $70^{\circ} 48^{\prime}$. Promontory latitude station, marked by a stone and brick pier, is 16.61 meters from the station in azimuth $88^{\circ} 41^{\prime}$. The vertical circle station is in azimuth $11^{\circ} 11^{\prime}$.

Antelope (Davis County, Utah, W. E., 1892).-On the highest point of Antelope Island, in Great Salt Lake The station is marked by a copper bolt set in solid rock and surrounded by a hollow brick pier 28 inches square supporting a red sandstone cap, which bears a second copper bolt directly above the first and is inscribed with a triangle and the legend "U. S. C. \& G. Survey, 1892." The station is nearly surrounded by a ring wall of rocks about 4 feet high, with an inner diameter of 10 feet. Three reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.43 meters, $40^{\circ} 57^{\prime} ; 2.58$ meters, $174^{\circ} 22^{\prime}$; and 2.30 meters, $293^{\circ} 42^{\prime}$. Antelope latitude station, marked by a brick pier, is 10.44 meters from the station in azimuth $13^{\circ} 34^{\prime}$. The vertical circle station is 8.75 meters distant.

Waddoup (Davis County, Utah, W. E., 1892). - About three-fourths mile southeast of Centerville and 27 meters north and 88 meters west of the southeast corner of the NW. \& sec. 18, T. 2 N., R. 1 E., on the west side of Thomas Waddoup's barnyard, 24 meters west of his residence. The Union Pacific Railroad station at Centerville is in the northwest quarter of the same quarter section. The station is marked by a copper bolt in the top of a granite post 2 feet long, dressed 7 inches square on top, set 2 feet below the general surface of the ground. This mark is surrounded by a hollow brick pier 32 inches square and 4 feet high above the ground, on the top of which is a sandstone cap 4 inches thick. The station is marked on this cap by a drill hole surrounded by a triangle and the inscription "U. S. C. \& G. Survey, 1892.'

Salt Lake southeast base (Davis County, Utah, W. E., 1896). -In the second field southwest of Mr Hill's house and orchard, which is on the road between Kaysville and Syracuse. The station is about lalfway between the first fence to the eastward and the edge of the salt grass to the southwest. It is marked underground by a cross in a copper bolt set in a block of sandstone 2 feet square and 10 inches thick, $4 \frac{1}{2}$ feet below the surface of the ground. Above this mark is a brick pier 4 feet square at the base built to a height of about 9 feet above the ground. There is an opening in the pier at the surface of the ground to give access to the surface mark, which is exactly the same as the underground mark and is embedded in the center of the pier.

Salt Lake northwest base (Davis County, Utah, W. E., 1896).-About $1 \frac{1}{2}$ miles north of Syracuse Grove, the terminus of the Syracuse Branch Railroad, in the field southeast of a road crossing, 51 meters from the fence to the north and 63 meters from the fence to the west. The station is on property belonging to Mr. Cato Love, whose house is abont 350 meters to the eastward. Mr. Gilbert Parker's house is across the road southwest of the station, and Mr.

John W. Singleton's house is diagonally across the road crossing to the northwest. The station is marked the same as Salt Lake southeast base, except that the underground mark is only about $2 \frac{1}{2}$ feet below the surface.

Pioche (Lincoln County, Nov., W. E., 1883).-About 33 miles by road and 22.5 miles direct in an easterly direction from the town of Pioche, on tho summit of Pioche Peak. The station is marked by a copper bolt leaded in a drill hole in solid bedrock. It is also marked a few inclies above the bolt by a drill hole in a flat stone in the masonry foundation used for supporting the instrument. The station is nearly surrounded by a ring wall of rocks having an inner diameter of about 11 feet. Four reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.52 meters, $214^{\circ} 28^{\prime} ; 2.41$ meters, $271^{\circ} 38^{\prime} ; 2.72$ meters, $344^{\circ} 46^{\prime}$; and 2.35 meters, $92^{\circ} 30^{\prime}$. Pioche latitude station, marked by a masonry pier, is 12.10 meters from the station iu azimuth $135^{\circ} 57^{\prime}$. The vertical circlostation, nearly surrounded by a ring wall of rocks with an inner diameter of 8 feet, is 21.1 meters noath-northwest from the station.

White Pine (Nye County, Nev., W. E., 1881).-On a peak locally known as Troy Peak, the highest and boldest point of the Grant Range of mountains. The station is marked by a copper bolt in a drill hole in solid rock, and above the bolt by a bottle embedded in plaster at the center of a low pier used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks. Three drill holes in solid rock are just outside the wall at the following distances from the station: 3.14 meters northeast, 2.33 meters southeast, and 2.74 meters west. The vertical circle station, partly surrounded by a ring wall of rocks, is 8.42 meters north of the station.

Diamond Peak (Eureka County, Nev., W. E., 1881).-About 12 miles northeast of Eureka, on Diamond Peak, the highest point of the Diamond Range of mountains. The station is marked by a copper bolt set in solid rock. The bolt is protected by the low masonry foundation used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks, and just outside this wall are four drill holes in the solid rock at the following distances and azimuths from the station: 2.65 meters, $10^{\circ} 04^{\prime}$; 2.84 meters, $92^{\circ} 59^{\prime} ; 3.27$ meters, $204^{\circ} 29^{\prime}$; and 4.72 meters, $291^{\circ} 44^{\prime}$. Diamond Peak latitude station, marked by a masonry pier, is 25.85 meters from the station in azimuth $250^{\circ} 24^{\prime}$. The vertical circle station, partly surrounded by a small ring wall of rocks, is 23.65 meters south of the station.

Toiyabe Dome (Nye County, Nev., W. E., 1880). - On a peak locally known as Bold Mountain and Mount Poston, the highest and boldest southern extremity of the Toiyabe Range of mountains. The peak is steep on the western side and very abrupt on the eastern side. The station is marked by a copper bolt set in solid rock under the center of the low masonry foundation used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks. Four drill holes in the solid rock are outside the wall at the following distances and azimuths from the station: 4.70 meters, $135^{\circ} 16^{\prime}$; 5.13 meters, $258^{\circ} 20^{\prime}$; 2.48 meters, $308^{\circ} 08^{\prime}$; and 5.61 meters, $6^{\circ} 14^{\prime}$: Toiyabe Dome latitude station, marked by a masonry pier, is 24.86 meters from the station in azimuth $148^{\circ} 56^{\prime}$. The vertical circle station, partly surrounded by a small ring wall of rocks, is 43.10 meters distant in azimuth $151^{\circ} 03^{\prime}$.

Mount Callahan (Lander County, Nev., W. E., 1881).-About 20 miles north of Austin, on the summit of Mount Callahan, a large flat-topped mountain at the northern extremity of the Toiyabe Range of mountains. The station is marked by a copper bolt set with plaster of Paris in a drill hole in a large rock. This rock is embedded in the foundation of a masonry pier which is 4 feet square and 3 feet high with an opening at the center 6 inches square to give access to the bolt from the top of the pier. There is a bottle set with plaster of Paris in this opening or pit and the pier is capped with a large stone having a drill hole directly above the bolt. The station is uearly surrounded by a ring wall of rocks. Three drill holes in solid rock are outside the wall at the following distances and azimuths from the station: 3.38 meters, $60^{\circ} ; 3.48$ meters, 180°; and 3.71 meters, 300°. Mount Callahan astronomic station, marked by a masoury pier, is 34.44 meters from the station in azimuth $248^{\circ} 12^{\prime}$. The vertical circle station, nearly surrounded by a ring wall of rocks, is 11.53 meters from the station in azimuth $4^{\circ} 10^{\circ}$. The magnetic station protected by a right angled wall of rocks is 18.60 meters from the station in azimuth $194^{\circ} 12^{\prime}$.

Carson Sink (Churchill County, Nev., W. E., 1850).-About 20 miles in an easterly direction from the town of Stillwater, on the highest point of the Carson Sink Range of mountains. The station is marked by a copper bolt in a drill hole in solid rock. It is also marked, a few inches above the bolt, by a drill hole in a porous rock embedded in the masonry foundation used for mounting the instrument. The station is partly surrounded by a ring wall of rocks about $5 \frac{1}{2}$ meters in diameter. Four drill holes in solid rock are at the following aistances and azimuths from the station: 5.36 meters, $253^{\circ} 58^{\prime}$; 5.38 meters, $328^{\circ} 07^{\prime}$; 3.12 meters, $69^{\circ} 12^{\prime}$; and 1.99 meters, $163^{\circ} 42^{\prime}$. Carson Sink latitude station pier is 22.68 meters from the station in azimuth $230^{\circ} 40^{\prime}$. The vertical circle station, partly surrounded by a small ring wall of rocks, is 8.13 meters from the station in azimuth $39^{\circ} 15^{\prime}$.

Lone Mountain (Esmeralda County, Nev., W. E., 1880; 1902).-On the summit of Lone Mountain. The statiou is marked by a copper bolt set in a drill hole in a solid ledge of slate. The bolt is protected by a hollow masonry pier built around it. The station is nearly surrounded by a ring wall of rocks about $4 \frac{1}{2}$ meters in diameter. Four drill holes in solid rock are outside the wall at the following distances and azimuths from the station: 2.50 meters, $103^{\circ} 37^{\prime} ; 2.79$ meters, $188^{\circ} 16^{\prime} ; 4.20$ meters, $226^{\circ} 52^{\prime}$; and 6.58 meters, $351^{\circ} 15^{\prime}$. The vertical circlo station, nearly surrounded by a small ring wall of rocks, is 21.67 meters from the station in azimuth $241^{\circ} 57^{\prime}$.

Mount Grant (Mineral County, Nev., W. E., 1879).-West of Walker Lake, on the central one of the three peaks which form the summit of Mount Grant, about 200 meters north of the highest one of the three peaks. The station is marked by a copper bolt in a rock embedded in a masonry pier about 3 feet above the base and 8 inches below the top of the pier. An opening or pit in the top of the pier allows access to the bolt. The station is nearly surrounded by a ring wall of rocks about 4 or 5 meters in diamoter, from which there is a hook-shaped spur wall extending to and part way around the vertical circle station which is 9.9 meters southsoutheast of the station.

Mount Conness (Tuolumne County, Cal., L. A. S., 1879; 1890).-On Mount Conness, a lofty peak of the Sierra Nevada Range, about 25 miles a little cast of north from the Yosemite Valley. The station is on the highest pinnacle of the summit which is a very small irrcgular crag. It is marked by a cross in a copper bolt set in solid rock and 40 inches above this by another copper bolt in the top of a masonry pier built over the lower mark. The bolt in the top of the pier has a broad spherical head with a small silver pin in the center and a cross a little to one side of the pin to mark the station. Mount Conness latitude station marked by a concrete pier is 194.5 meters from the station in azimuth $301^{\circ} 59^{\prime}$. The magnetic station pier is 180.4 meters from the station in azimuth $298^{\circ} 20^{\prime}$; and the vertical circle station pier is about 30 meters southwest of the magnetic station.

Mount Como (Douglas County, Nev., W. E., 1879).-About 20 miles east of Genoa, on the summit of Mount Como, a sharp conical peak having a smooth outline and a flat western slope. The station is marked by a copper bolt in a large well-bedded granite rock. A masonry pier built around and over this bolt has a large flat cap stone in which there is a drill hole 9 inches directly above the bolt. A wall of rocks in the shape of a reversed 6 , nearly surrounds the station and partly protects the vertical circle station which is 7.24 meters distant in azimuth $338^{\circ} 12^{\prime}$. Another vertical circle station is 10.60 meters distant in azimuth $179^{\circ} 04^{\prime}$, and a drill hole in solid rock is 6.25 meters from the station in azimuth $49^{\circ} 13^{\prime}$. An old monument of a previous survey is in the wall described above about 10 feet southwest of the station.

Pah Rah (Washoe County, Nev., W. E., 1878).-On the most northern one of the three principal summits of the Virginia Mountains south of Pyramid Lake, about 35 miles by road and trail northeast of Reno and about 20 miles by road and trail northwest of Wadsworth. The station is marked by a copper bolt in solid rock and a few inches above the bolt by a drill hole in a flat stone cemented in place over the lower mark. The station is nearly surrounded by a ring wall of rocks. The vertical circle station, marked by a pier, is 2.5 meters from the station in azimuth $217^{\circ} 30^{\prime}$.

Round Top (Alpine County, Cal., W. E., 1876; 1893).-About 20 miles south of Lake Tahoe, on the crest of the Sicrra Nevada Range of mountains, on the highest and most easterly pinnacle, popularly known as Round Top, about 1 mile south of Carson Pass or the main summit of the Amador Grada. The station is marked by a copper bolt in a drill hole in solid rock with a rough masonry pier built over it. Round Top latitude station marked by a rough stone pier, is about 11 meters west of the station. There is another pier near the latitude pier and a third pier north of the station.

Mount Lola (Nevada County, Cal., W. E., 1876; 1893).-A bout 25 feet northwest from the highest part of the most southern summit of the high ridge between Weber and Independence Lakes and the town of Meadow Lake. Independence Lako lics at the southeast base of this ridgo and Browns Valley is on tho opposite sidc. The station is marked by a cross in a copper bolt set in a drill holo in a large flat stono embedded in a masonry pier about 15 inches above the ground. It is also marked by a drill hole in the capstone of the pier. The station is nearly surrounded by a ring wall of rocks. Mount Lola latitude station, marked by a brick pier, is 9.5 meters north 45° east from the station. Two other brick piers are respectively 8.5 meters north 36° east from the station and north 28° west.

SUPPLEMENTARY POINTS.

Glen Eyrie (E1 Paso County, Colo., O. H. T., 1880).-About 7 miles northwest of Colorado Springs and 2 miles northwest of General Parmer's dwelling house, on the foothills north of the Garden of the Gods and about 3 miles from the Gateway. Tho station is on the first ridge west of Glen Eyrie, and about 500 meters northwest of the point where a high bald hill beside the glen joins the main ridge. The station is marked by a cross on a lead bolt in a flat stone about 1 foot below the surface of the ground.

Bear Creek (El Paso County, Colo., O. H. T., 1879).-About 4 miles west-southwest of Colorado Springs and just south of Bear Creek on one of tho front foothills of Pikes Peak. The station is marked by a cross in the lead which fills a hole 3 inches in diameter and $1 \frac{1}{2}$ inches deep in a flat stone about 1 foot below the surface of the ground.

Colorado Springs latitude and longitude (El Paso County, Colo., E. S., 1873; 1879).-Just east of the Denver \& Rio Grande Railroad passenger depot at Colorado Springs, in tho experimental garden just north of the main walk, about 60 meters west of the east gate. The station is marked by the foundation of an old masonry pier.

Colorado Springs astronomic (U. S. E.) (El Paso County, Colo., O. H. T., 1879).-On a rise of ground southeast of the freight depot of the Denver \& Rio Grande Railroad at Colorado Springs. The station is marked by a drill hole in the top of a solid stono pier.

Table (Elbert County, Colo., F. D. G., 1895).-About 21 miles northwest of the town of Elbert, on the highest hill in this vicinity, called Tablo Mountain by the owner, Mr. W. E. Foote, who lives just north of the hill. Tho station is marked at the surface by a nail in a small pine stub, and underground by a drill hole in a flat stono about 15 inches below the ground. A United States Geological Survey station is 1.12 meters east of the station and a fence post, to which is nailed a piece of wood 8 feet high with two cross pieces attached, is 1.55 meters north. Station Elbert is on the samo hill.

Mesa (Delta County, Colo., W. E., 1893).-A short distanco north of the most western point of that part of the Grand Mesa which is southeast of Connah Crcek, within about 40 feet of tho edge of the rim rock which limits tho mosa. The station is marked by a copper bolt set in the solid lava rock. It is also marked about 10 inches abovo tho ground by a drill hole in a brick embedded in tho masonry which fills tho space betwecn tho bases of the three small brick piers used to support tho instrument.

Chiquita (Mcsa County, Colo., W. E., 1895).-About 12 miles south-southwest from Grand Junction, on the northern rim or brow or Piñon Mesa. The station is marked by a low brick pier used in mounting the instrument.

Grand Junction standpipe (Mesa County, Colo., W. E., 1895).-The center of the standpipe at Grand Junction, which is 10 feet in diameter and about 100 feet high. The station was occupied eccentrically at a point 12.03 meters distant in azimuth 166°. The eccentric point is marked by a brick pier.

Valley Knob (Grand County, Utah, W. E., 1890; 1898). - About 5 miles east of Green River, on a bare knoll 50 feet above the valley, one-fourth mile north of the railroad track. The station is marked by a drill driven into the ground. The signal pole and the heliotrope stand weighted down with stones were left in position.

Hartman (Emery County, Utah, C. H. S., 1898).-About 2 miles north of the town of Green River and one-half mile wost of the Green River, on the southoast end of a mess which rises about 40 feet above the general level, the first prominent bank north of a deep wash. The station is marked by a drill hole in a rock over which is a pile of rocks used to secure the base of the signal pole.

Mica (Emery County, Utah, C. II. S., 1898).-About 800 meters south of the depot at Green River, on the east end and highest point of a conspicuous hill sloping toward the westward. The station is marked by a drill hole in a piece of sandstone above which is a pile of bricks used for securing the base of the signal pole.

Reservoir (Emery County, Utah, C. H. S., 1898).-On the high hill just south of the railroad at Green River, near an eld abandoned reservoir. The station is marked by a drill hole in a piece of sandstone, 6 feet from the north edge of the reservoir.

Wash (Emery County, Utah, C. H. S., 1898).-About $1 \frac{1}{2}$ miles northwest of the town of Green River on the high bluff that ferms the rim of the plain just north of the railroad track. The station is about 10 feet north of the edge of the bluff and 75 feet above the plain. It is marked by a drill hole in a shale rock, over which is a pile of rocks used for securing the base of the signal pole.

Green River east base (Emery County, Utah, C. II. S., 1898).-Just west of the first curve of the railroad west of the depot at Green River, about 200 meters from the west water tank and 9 paces north of the track. A low ridge extending north and seuth is about 20 or 30 meters east of the station. The station is on the top of a low dirt pier and is marked by a drill hole in a piece of sandstone.

Green River west base (Emery County, Utah, C. H. S., 1898).-About one-half mile west of the first curve west of the depot at Green River, 194 meters west of wooden culvert No. 221A and 9 paces north of the north rail of the track. The station is between the line of telegraph poles and the track, and is about 15 or 20 meters southeast of an old railroad grade extending northeast and southwest. The station is marked by a drill hole in a shale rock set flush with the surface of the ground.

Green River north meridian (Emery County, Utah, C. H. S., 1898).-About 625 meters directly north of Green River longitude station, about 30 meters nerth of a large wash and just west of a wagon road. The station is marked by a drill hole in a sandstone block 10 inches square and 18 inches long having a pile of bricks around the top.

Green River south meridian (Emery County, Utah, C. H. S., 1898).-Fifty paces south of the railroad and 12.40 meters north of Green River longitude station. The station is marked by a drill hole in a piece of sandstone with four reference bricks placed around it just below the surface of the ground.

Green River longitude (Emery County, Utah, C. H. S., 1898).-On the railroad right of way, 65 paces west of the depot at Green River, 64 paces southwest of the railroad water tank and 50 paces from the railroad. The station is marked by a brick pier 17 by 25 inches, 3 feet high above the ground. Green River latitude station, marked by a brick pier 17 inches square, is 51 inches due west of the station.

Cliff (Emery County, Utah, C. H. S., 1898). This station was neither occupied or marked as its location is ncarly inaccessible. It is north-northwest of the town of Green River on a lofty butte about 3 miles long east and west which rises about 2,000 feet above the plain. The upper part of the cliff is composed of stratified rock with the dip vertical and has the general appearance of a huge battleship. The station is the highest point of the cliff which is near the middle of its length.

Green River schoolhouse (Emery County, Utah, C. H. S., 1898). -The flagstaff on the cupola of the small wooden schoolhouse about one-eighth mile northeast of the depot at Green River.

Green River hotel (Emery County, Utah, C. II. S., 1898).-The flagstaff on the railroad hotel just south of the depot at Green River.

Sanpete (Sanpete County, Utah, W. E., 1884).-In the Wasatch Mountain Range, on the north end of the east spur of what is locally known as the Horseshoe. (See West Sanpete below.)

West Sanpete (Sanpete County, Utah, W. E., 1890).-In the Wasatch Range of mountains, on the north end of the west spur of what is locally known as the Herseshoe. The Horseshoe is formed by two spurs about two-thirds of a mile apart extending north from an undulating table which slopes teward the south. The station is marked by a copper bolt in a drill hole in solid rock.

Cedar (Juab Connty, Utah, W. E., 1884).-On the highest peak of the mountains immediately west of Levan. The station is marked by a copper belt in a drill hole in the rock at the highest point of the peak.

Levan (Juab County, Utah, W. E., 1884).-South 60° east (magnetic) from Levan, on the highest peak of the mountains immediately east of Levan. The station is marked by a copper bolt in a drill hole in the rock at the highest point of the peak about 20 inches below the general surface of the ground.

Scipio (Millard County, Utah, W. E., 1881). -On the highest peak' of the Canon Mountains, east of the town of Oak City and northwest of the town of Scipio. The station is on the highest part of the summit, abont 10 or 12 feet from the edge of the alorupt slope on the eastern and northeastern side of the peak. The station is marked by a copper bolt set in a drill hole in solid rock. It is also marked, about 15 inches above the bolt, by a drill hole in a flat stone

PRIMARY TRIANGULATION.

embedded in the top of a low masonry pier used for mounting the instrument. The station is nearly surrounded by a ring wall of rocks about 5 feet high, with an inner diameter of about 11 feet. Four reference marks, each a drill hole in solid rock, are just outside the wall at the following distances and azimuths from the station: 2.74 meters, $177^{\circ} 55^{\prime}$; 2.77 meters, $284^{\circ} 55^{\prime}: 2.94$ meters, $41^{\circ} 33^{\prime}$; and 2.47 meters, $126^{\circ} 51^{\prime}$.

Cervera (Millard County, Utah, C. H. S., 1S98).-On the top of a large sand hill about 8 miles east of Oasis and about 1 mil south of the Dak Creek road. The station is marked hy a 2 hy 4 inch stub.

Camara (Millard County, Utah, C. H. S., 1898).-On a high sand hill across the valley and about 8 miles northeast of the depot at Oasis. The station is marked by a 2 by 4 inch stub.

Monterola (Millard County, Utah, C. H. S., 1898).-About $3 \frac{1}{2}$ miles northeast of Oasis, on high', ground overlooking a depression extending northwest and southeast. The station is marked by a 2 by 4 inch stub.

Montijo (Millard County, Utah, C. I. S., 1898).-On a sand hill ahout $4 \frac{1}{4}$ miles east of Oasis, on the north side of the Oak Creek road. The station is marked hy a 2 by 4 inch stub.

Augusti (Millard County, Utah, C. H. S., 1898).-On a sand hill on the desert about 3 miles east of the depot at Oasis. The station is marked by a 2 by 4 inch stub.

Blanco (Millard County, Utah, C. H. S., 1898).-On a very prominent sand hill abont 24 miles northeast of the depot at Oasis. This station is marked by a 2 by 4 inch stub.

Canovas (Millard County, Utah, C. H. S., 1898).-On the desert about $1 \frac{3}{8}$ miles east of Oasis, about 200 meters southeast of the first sand hill. The station is marked by a 2 by 4 inch stub.

Oasis northeast base (Millard County, Utah, C. H. S., 1898).-About $1 \frac{1}{4}$ miles northeast of the depot at Oasis, on the open desert on the southeast side of the railroad, 24.46 meters from the rail. The station is marked by a 2 by 4 inch stub.

Oasis southwest brse (Millard County, Utah., C. H. S., 1898).-One-fourth milo north-northeast of the depot at Oasis, on the bank of a large irrigation ditch on the southeast side of the railroad, 24.61 meters from the rail. The station is marked by a 2 by 4 inch stub.

Oasis north meridian (Millard County, Utah, C. H. S., 1898).- A bout 1 kilometer north-northwest of the depot at Oasis, on the south side of a large irrigation ditch lined with willows near the Sevier River. The station is 4 paces south of the line of willows and 10 paces west of the third fence post south of the ditch. It is marked by a 4 -inch spike driven in the top of a section of an old brick pier, 17 inches square and $2 \frac{1}{2}$ feet long, which projects 1 foot above the ground.

Oasis south meridian (Millard County, Utah, C. H. S., 1898). -This station is 5.22 meters due north of Oasis astronamic station and is marked by a 2 by 4 inch stub.

Oasis astronomic (Millard County, Utah, C. I. S., 1898).-About 75 meters southwest of the depot at Oasis. The station is marked by a 4 -inch spike in the top of the pier.

Oasis schoolhouse tover (Millard County, Utah, C. H. S., 1898). -The sc hoolhouse is about one-fourth mile southeast of the depot at Oasis.

City Creck (Salt Lake County, Utah, W. E., 1893).-About $2 \frac{1}{2}$ miles north of Salt Lake City, on a low east-andwest ridge of the Wasatch Mountains. The station is marked by a cross in a brass bolt in a granite monument 7 inches equare on top and 18 inches long. The nnderground mark is a bottle, and both it and the surface mark are embedded in a mass of concrete.

Salt Lake City longitude.(Salt Lake County, Utah, G. W. D., 1869; 1898).-Near the southeast corner of Temple Block, in Salt Lake City. The station is marked by a brass bolt in the top of a sandstone pier.

Sall Lake City latitude (Salt Lake County, Utah, G. W. D., 1869).-This station is 4.8 feet directly east of Sall Lake City longitude station. It is marked by a red sandstone post, 22 incbes square and 5 feet long, projecting 3 feet above the ground.

Ogden longitude (Weber County, Utah, C. H. S., 1886).-The station is the east pier in the west room of the brick and stone observatory established by Lieut. Wheeler in 1873. It is on the ridge above the west bank of the Weber River, dircctly opposite Ogden, and about $\frac{1}{3}$ miles from the courthouse.

Bullurhacker (Eureka County, Nev., C. H. S., 1898). - About 2 miles west of the town of Eureka, on a flat-topped hill on the most western part of the nesa, about 30 meters north of the hoisting mill of the Bullwhacker mine. The station is marked by a drill hole in a stone and by a pile of rocks around the foot of the signal pole.

Descrt (Eureka County, Nev., C. II. S., 1898).-About one-third mile west of the ranch house of Morris Regli and about 90 meters north of the east-and-west road. The station is marked by a piece of 1 -inch pipo 2 feet long at the center of a piece of 2 -inch pipe 14 inches long, both pipes projecting about 2 inches above the ground. There are six stones around the top of the pipes and the base of the signal pole.

Richmond (Eureka County, Nev., C. H. S., 1889; 1898).-On the slope of tho hill northeast of the old Richmond smelter. The station is marked by a drill hole in a rock and by a pile of rocks around the foot of the signal pole.

Leo (Fureka County, Nev., C. II. S., 1898).-On the slope of a high hill north-northeast of Eureka courthouse. The station is marked by a drill hole in a rock and by a pile of rocks around the haso of the signal pole.

Tank (Eureka County, Nev., C. H. S., 1889; 1898).-West of the courthouse at Eureka, on a hill known locally as Maupin Hill, about 50 meters north of a large round water tank and 12 meters from the east brow of the hill. The station is marked by a drill hole in a fast rock nearly flush with the surface of the ground, with a pile of rocks over it.

Eureka courthouse (Fureka County, Nev., C. H. S., 1889; 1898).-The flagstaff on the east front of the large red brick building on the southwest corner of Main and Bateman Streets, Eureka.

Eureka Catholic Church (Eureka County, Nev., C. H. S., 1889; 1898).-The wonden eross on tho wonden 1ower of a small stono church, near tho echonlhouso on tho west side of the town of Eureka.

Eureka longitude (Eureka County, Nev., C. H. S., 1889; 1898). -In a stone quarry just east of a large ditcb on the east side of the town of Eureka, about 11 meters north of the north line of Bateman Street and about the eame distance west of tho nearly vertical wall of the quarry. There is a stone wall about 25 meters north of the station and a similar wall about 30 meters south. The station is marked by a drill hole in a large black stone placed on tbe stone foundation of the old pier.

Prospect Peak (Eureka County, Nev., W. E., 1881; 1898).-On tho summit of Prospect Peak, south-southwest from Eureka and overlonking the town. Tho station is marked by a short signal polo with a cairn around the base.

Butler (Esmeralda County, Nev., C. H. S., 1902).-On the highest summit of tbe small range of mountains 14 miles due south of Tonopah longitude station. Tho station is marked by a drill hole in solid rock surmounted by a cainn about the base of the signal pole.

Bradford (Nye County, Nev., C. H. S., 1902).- Λ bout 6 miles north of Tonopah and about 1 mile south of the ice. plant, on the soutliwest part of a conspicuous mountain witb a long palisade top extending southwest and northeast. The mountain is on the the west side of the wagon road and just southeast of a conical peak. The station is marked by a drill hole in solid roek, over which is a pile of stones about the base of the signal pole.

Booker (Nye County, Utab, C. H. S., 1902).-About 3 miles northeast of the town of Tonopall, on tho highest point of high mesa land which rises gradually to a rounded top. The station is marked by a drill hole in a rock surmounted by a pile of stones about the base of the signal pole.

Oddie (Nye County, Nev., C. H. S., 1902).-On the summit of Mount Oddie, a mountain well known ou account of the Mispah mine. The station is marked by a drill hole in solid rock over which is a pile of rocks about tho base of the signal pole.

Tonopah astronomic (Nye County, Nev., C. H. S., 1902). -In tho town of Tonopah, on the east edge of Central Street about 30 meters south of Oddie Avenue, just west of the office of the Tonopah Miner, and on the same lot. The station is marked by a drill hole in the top of the longitude pier, which consists of two long stone blocks set on end side by side with the bases embedded in concrete.

Tonopah north meridian (Nye County, Nev., C. H. S., 1902).-About three-fourths mile due north of Tonopah astronomic station, on the farthest one of the ridges near Tonopah. The station is marked by a drill hole in the top of a stone post 48 inches long dressed 7 inches square on top and projecting $1 \frac{1}{\frac{1}{2}}$ feet above the ground.

Golden (Nyc County, Nev., C. H. S., 1902).-On the southern one of two summits near together, a short distance east of the town of Tonopah. The station is marked by a drill hole in solid rock over which is a pile of rocks about the base of the signal pole.

Tonopah southeast base (Nye County, Nev., C. H. S., 1902).-About one-third mile southeast of the town limits of Tonopah, on the northeast side of the wagon road leading southeast from the town. The station is marked by a drill bole in the top of a stone post 20 inches long set flush with the surface of the ground.

Tonopah northwest base (Nye County, Nev., C. П. S., 1902).-Just outside the town limits southeast of the town of Tonopah, on the east sidc of a wagon road. The station is marked by a drill hole in the top of a stone post 20 inches long set flush witb the surface of the ground.

Davis (Nye County, Nev., C. H. S., 1902).-About 2 miles southeast of the town of Tonopah, on a high summit northeast of the wagon road which extends southeast from the town. The station is marked by a drill hole in solid rock, surmounted by a pile of rocks about the base of the signal pole.

Douglas (Esmeralda County, Nev., C. H. S., 1902)-About 4 milcs south-southeast of the town of Tonopah, on a conspicuous black-top mountain on the west side of the San Antonio Range. The station is on the highest part of tbe summit and is marked by a drill hole in a rock over which is a pile of black lava rocks around the base of the signal pole.

Lothrop (Nye County, Nev., C. H. S., 1902).-About 4 miles southeast of the town of Tonopah, at the edgc of the Ralston Desert on the east side of the San Antonio Range, on a black summit southwest of the wagon road. The station is marked by a drill hole in a fast rock over which is a pilo of rocks about the base of the signal pole.

Ralston (Nye County, Nev., C. H. S., 1902).-On the Ralston Desert about 6 miles sout heast of the town of Tonopah, a little more than a mile east of the east side of the San Antonio Range, and just east of a north-and-south wagon road a short distance north of where this road joins the road extending southeast from Tonopah. The station is marked by a drill hole in a rock and by a pilc of rocks around the base of tho signal pole.

Cutting (Nyo County, Nev., C. H. S., 1902).-About $7 \frac{1}{2}$ miles southeast of the town of Tonopah, on the east side of the San Antonio Range on a prominent rock sumnit rising vertically above the hill about one-half mile southwest of the road from Tonopah. The hill is jagged on the north side and is easily recognized from the road. The station is marked by a drill hole in a roek and by a pile of rocks around the base of the sigual pole.

Short (Esmeralda County, Nev., C. H. S., 1902).-About 6 miles southeast of the town of Tonopah, a short distance northwest of the comer of Esmeralda County, on the summit of the first hill almost duc north of station Crest. The station is not marked except by a pile of rocks around the base of a short signal pole.

Crest (Esmeralda County, Nov., C. H. S., 1902).-About 6 miles southeast of the town of Tonopah, ncar the comer of Esmeralda County on the backbono of tho second hill west of the edge of Ralston Desert. Tho station is not on tho higbest part of the summit. It is marked by a drill hole in a rock and by a pile of rocks around tbo base of a short signal pole.

Watch (Esmeralda County, Nev., C. H. S., 1902).-About 6 miles southeast of the town of Tonopah, near the corner of Esmeralda County, in a pocket surrounded on all sides by hills, on a small ridge extending eastward from the summit on which station Crest is located. The station is marked by a drill hole in solid rock and by a pile of rocks around the base of the signal pole.

Esmeralda County corner stone (Esmeralda County, Nev., C. H. S., 1902).-About 6 milcs southeast of the town of Tonopah, 16.806 meters northeast of station Watch. The comer stone is supposed to mark the intersection of latitude parallel 38^{\jmath} and the meridian $40^{\circ} 07^{\prime}$ west of Washington. The station is marked by a slender stone post 8 feet long, projecting 5 feet above the ground and surrounded by a pile of rocks.

Tioyabe Peak (Lander County, Nev., W. E., 1881; 1898).-On a small prominent peak on a long-top mountain about 9 miles south and east of Austin. The station is marked by a cairn of shaly rocks 3 feet in diameter at the base and $5 \frac{1}{2}$ feet high.

Vigus (Lander County, Nev., C. H. S., 1898).-On the west side of the valley about 7 miles west-northwest of Austin, on a hill about 1 mile west of the ranch rented by the Vigus brothers. There is another and somewhat higher hill about one-half mile west of the station. The station is at about the center of the summit and is marked by a drill hole in a small fast rock and by a pile of rocks around the foot of the signal pole.

Mount Prometheus or Lander Hill (Lander County, Nev., W. E., 1880; 1898).-On the summit of Mount Prometheus about 1 mile northeast of Austin. The station is marked by a drill hole in a rock near the bottom of a cairn $5 \frac{1}{2}$ feet high.

Wheeler stone (U.S. E.) (Lander County, Nev., C. H. S., 1898).-On a gentle slopc at the base of Mount Prometheus, 100 meters north of the road leading up over the divide, a short distance west of a dwelling house and ncar the last big dump extending north and south across the ravine. The station is marked by a cross in the top of a granite post 6 inches square on top, projecting 8 inches above the ground and inscribed U.S. E. 1871.

Pilot Cone or Basalt (Mineral County, Nev., W. E., 1878; 1902).-On a conspicuous black bell-shaped mountain rising about 2000 feet above the plain just west of the large soda and borax flat or old lake bed. The summit is a mass of huge basaltic crystals. The station is marked by a copper cylinder in a cairn.

Mill (Mineral County, Nev., C. H. S., 1902).-Near the intersection of several roads north of an old lake bed, on a light-colored pile of earth a short distance southeast of the old Eagle mill. The station is marked by a 1 -inch iron pipe 15 inches long.

South Hill (Lander County, Nev., C. H. S., 1898).-On the top of a high hill south of the courthouse at Austin. The station is marked by an iron bolt in an outcrop of granite rock.

North Hill (Lander County, Nev., C. H. S., 1898).-On the first prominent hill almost due north of the courthouse at Austin. The station is marked by a drill hole in a fast rock and by a pile of rocks around the foot of the signal pole. An iron bolt, marking one of the points of the mining company's survey, is 2.82 meters northwest of the station.

Union (Lander County, Nev., C. H. S., 1898).-On the steep slope of a hill northeast of the hoisting works of the Union mine. The station is marked by a drill hole in a fast rock near an outcropping ledge.

Reservoir (Emery County, Utah, C. H. S., 1898).-On a high hill just south of the railroad at Green River, 6 feet from the northwest edge of an old abandoned cement-lined reservoir. The station is marked by a drill hole in a piece of sandstone.

Austin longitude (Lander County, Nev., C. H. S., 1889; 1898).-On the west side of the courthouse at Austin, on the south side of the main street of the town. The station is marked by the foundation of a picr.

Hot Spring (Mineral County, Nev., C. H. S., 1902).-South of the east end of a large soda and borax flat which marks an old lake bed, near a hot spring known as Woodruff's Hot Spring, which is at the northwest end of the oblique boundary line between Mineral and Nye Counties. The station is 4.5 meters southeast of the center of the spring and is marked by a drill hole in a hard rock 18 inches long, which projects 6 inches above the ground. The chimney of an old adobe ruin is west of the spring and 34 paces from the station, and the foundation of an old rock-grinding mill is just east of the spring and northeast of the station.

Miller (Mineral County, Nev., C. H. S., 1902).-On a small conical knoll about 75 feet high. on the north side of the range, about 2 miles south of the soda and borax flat or old lake bed and about 21 miles southwest of Hot Spring. The station is marked by a drill holc and a cross in a fast rock which is cracked in several places, and by a pile of rocks about the foot of the signal pole.

Mount Annie (Nye County, Nev., C. II. S., 1902).-On the summit of Mount Annie. The station is marked by a cairn.

Hot Spring west base (Mineral County, Nev., C. H. S., 1902). -On the soda and borax flat or lake bed, about 2.1 miles northeast of Hot Spring and 1.6 miles duc south of the old Eagle mill. The station is marked by a 2 -inch iron pipe 30 inches long driven in the ground nearly flush with the surface.

Hot Spring east base (Mineral County, Ncv., C. H. S., 1902).-On the soda and borax flat or old lake bed, about $1 \frac{1}{3}$ miles north-northwest from Hot Spring and 2 miles southeast of the old Fagle mill. The station is marked by a 1-inch iron pipe 2 feet long driven in the ground nearly flush with the surface.

Churchill (Mineral County, Nev., C. H. S., 1902).-About $7 \frac{3}{3}$ miles northwest of the old Eagle mill, on the highest peak of the Sinkavata Hills. The station is marked by a large cairn.

Mount Grant highest peak (Mineral County, Nev., C. II. S., 1902).-On the highest and most southern one of tho three peaks which form the summit of Mount Grant, about 200 meters south of station Mount Grant. Tho station is marked hy a cairn.

Freel Peak (Eldorado County, Cal., W. B. F., 1893; 1897).-On Freel Peak, the more western one of two high, sharp peaks about 7 miles southeast of Lake Tahoe. The station is marked by a half-inch copper bolt in a drill hole in a rock and by a cairn, 6 feet high and 8 feet in diameter at the base, built around the foot of the signal pole.

Rose. Knob (Washoo County, Nev., W. B. F., 1893).-On Rose Knoh, an isolated sharp conical peak of the Rose Mountain Range about 3 miles north of the north end of Lake Tahoe. The statiou is marked by a half-inch copper bolt in a drill hole in the solid rock at the top of tho peak.

Rubicon Point (Eldorado County, Cal., W. B. F., 1893).-On the northern one of two projections of a well-known bold rocky point, called Ruhicon Point, on the southwest shoro of Lake Tahoe. The station is on a ledgo which slopes from a height of about 10 feet down to the water's edge. Back of this ledge is a vertical cliff 50 feet high. The station is marked by a half-inch copper bolt in a drill hole in the solid rock ledge.

Observatory Point (Placer County, Cal., W. B. F., 1893). -On Observatory Point, a well-known point on the northwest shore of Lake Tahoe. The station is not on the highest part of the hill, which is heavily wooded, hut on the first rise or level above the lake, where most of tho heavy timber has heen cut. Tho station is marked by a halfinch copper bolt in a drill hole in a solid ledge of rock. Three hlazed trees are, respectively, about 20 meters southwest, 40 meters west, and 40 meters northwest.

Genoa Peak (Douglas County, Nev., C. H. S., 1893; 1897).-On a bare rocky summit of the mountain range along the east side of Lake Tahoe about 5 miles southeast of Glenbrook, $3 \frac{1}{2}$ miles east of Cave Rock, and just northwest of the town of Genoa, which it overlooks. The peak is very conspicuous from Carson Valley. The station is marked by a copper bolt in a loose stone at the center of tho haso of a pile of stones.

Hot Spring Mountain (Douglas County, Nev., C. H. S., 1897).-On the more westerly one of the two summits of Hot Spring Mountain, which derives its name from a hot spring at its hase on the southwest side. The station is marked hy a five-eighths inch drill hole in the outcropping ledge at the highest point of the peak and by a large pile of rocks about the hase of the signal pole.

Folsom Peak (Douglas County, Nev., C. H. S., 1893; 1897).-On the west side of the summit of Folsoms Knoh or Little Round Top, a symmetrical hill about 500 feet high, about three-fourths milc northwest of Hohart post office and a short distance north of Hobarts Wharf on Lake Tahoe. The station is marked by a five-eighths inch copper bolt inserted 3 inches in a drill hole in a rock.

Anderson (Douglas County, Nev., C. H. S., 1897).-On a foothill about one-fourth mile south of the road that hranches from the Anderson Ranch-Desert Station Road and heads nearly for Mineral Peak. The station is about 10 meters from the highest point of the hill and is marked hy a five-eighths inch drill hole in a granite bowlder and hy a pile of rocks about the base of the signal pole.

Deadman (Douglas County, Nev., W. B. F., 1893).-Just north of Glenhrook, on the highest part of a rough rocky point, known as Deadmans Point, on the east side of Lake Tahoe. The hill is about 800 feet above the level of the lake, and the top of it is composed of enormous granite bowlders. The station is on the highest part of the hill and is marked hy a half-inch copper bolt in a drill hole in the top of a large irregular granite bowlder about 10 by 15 feet in crose section and 25 feet high.

Tallac Peak (Eldorado County, Cal., C. H. S., 1893).-On Tallac Peak, about 7 miles hy trail south of Tallac Hotel, on the south shore of Lake Tahoe. The station is marked by a drill holo in tho rock at the top of the peak.

Sutro (Lyon County, Nev., C. H. S., 1897).-On the south end of a high ridgo northwest of the town of Sutro. The station is marked hy a three-fourths inch drill hole in the top of a pyramidal rock projecting about 1 foot above the ground, and hy a small pile of rocks around the base of the signal pole. A cairn of small rocks 4 feet in diametcr and 4 feet high is about 10 meters northeast of the station.

Cedar Hill (Storey County, Nev., C. H. S., 1897).-On a reddish-colored hill, known as Cedar Hill, just north of Virginia City. The station is marked by a five-eighths inch drill hole in the most southern one of three outcropping ledges, each of which projects about 8 inches above the ground. There is a cairn around the base of the signal pole.

Overlook (Ormshy County, Nev., C. H. S., 1897).-On the second rocky point overlooking Carson City on a ridge projecting from Snow Valley Mountain. The station is marked hy a half-inch drill hole in a projecting rock ledge and by a cairn huilt around the hasc of the signal pole. There is a large pile of rocks about 5 meters back of tho station.

Mount Davidson flagstaff (Storey County, Nev., C. II. S., 1897).-A pointed iron mast about 15 meters high about 12 meters from the highest point of Mount Davidson.

Peavine (Washoe County, Nev., W. B. F., 1893; 1897).-On Peavine Mountain about 5 miles northeast of Reno. The station is marked hy a copper bolt in a drill hole in a solid rock ledge. A cairn 6 feet in diameter is about 3 meters west of the station.

Prison IIll (Ormsby County, Nev., C. H. S., 1897).-On the highest part of the hill about 2 miles back of the penitentiary at Carson City. The station is marked by a drill hole in a fast rock and hy a large pile of stones around the base of the signal pole.

East Peak (Douglas County, Nev., C. I. S., 1893; 1897).-The highest summit of the mountains duo east of the southeast end of Lake Tahoe. The station is marked by á drill hole in a rock at the highest point of the peak and by a pilo of rocks 5 feet high and 8 feet in diameter at the haso around the foot of the signal polc.

Virginia City astronomic (Storey County, Nev., C. H. S., 1889; 1897).-In the yard south of the office of the Consolidated California \& Virginia Mines Co. and directly opposite the railroad station at Virginia City. The station is marked by a drill hole in the top of the pier used for supporting the transit. Due to mining opcrations the ground on which the whole of Virginia City is situated is moving slowly to the eastward and this station should be used with caution.

Verdi Peak (Sierra County, Cal., C. H. S., 1897).-The highest peak at the south end of the range of mountains west of the town of Verdi, Nev. It projects boldly above the timber and is also known locally as Bald Mountain. The station is marked by a drill hole in a fast rock, and by a pile of loose stones built around the base of the signal pole.

Ranch Hill (Washoe County, Nev., C. H. S., 1897).-On the south end and nearly the highest point of a ridge making out into the Truckee Valley just east of Robert's ranch. From the station the barns at Robert's ranch are nearly in range with the railroad bridge across the Truckee River. The station is marked by a five-eighths inch drill hole in a large bowlder and by a cairn built around the base of the signal pole.

Bender (Washoe County, Nev., C. H. S., 1897).-On a ridge about 3 miles southeast of Verdi, in the prolongation of the road running north from Christianson's ranch. The station is marked by a drill hole in a large rock and by a pile of rocks above it.

Verdi Bluff (Washoe County, Nev., G. D., 1872; 1897).-On the northeastern brow of the bluff which is south of Verdi and just south of the railroad track at a point 55 rails east of the water tank at Verdi. The station is marked by a half-inch drili hole in a reddish granite rock which projects but slightly above the surface of the ground. A large mass of granite rock projecting 6 feet above the ground is about 40 meters from the brow of the bluff and about 16 meters from the station in azimuth 355° (magnetic).

North Flat (Washoe County, Nev., G. D., 1872; 1897).-About 2 miles northeast of the water tank at Verdi, on a plateau on the north side of the Truckee River and about 200 meters north of the Henness Pass Road where it crosses a small stream. The station is about 30 meters south of the highest part of the plateau and about 5 feet lower and is marked by a drill hole in the top of a large irregular rock.

Point of Rocks (Washoe County, Nev., G. D., 1872).-On a steep hillside about 1 mile north of Verdi on the north side of the Truckee River and about 200 meters north of the Henness Pass wagon road. The station is marked by a half-inch drill hole in solid rock.

Verdi east base (Washoe County, Nev., G. D., 1872; 1897). -This station has been destroyed. It has been approximately recovered and re-marked by a drill hole in the top of a large, triangular, granite block, but the geodetic position of this new point has never been determined.

Verdi west base (Washoe County, Nev., G. D., 1872).-About three-fourths mile east of Verdi on the second rise or plateau south of the railroad about midway between the first cut east of Verdi and the next curve of the track east. The station is on the north slope of the plateau and about 125 meters west of a small arroyo. It is marked by a halfinch drill hole in the top of a granite bowlder 5 or 6 feet in diameter which projects about 2 feet above the surface of the ground. A blasted granite rock about 6 feet in diameter is about 9 meters from the station in azimuth 16° (magnetic).

California-Nevada iron monument (Sierra County, Cal., and Washoe County, Nev., C. H. S., 1897).-On the south side of the road leading from Verdi, Nev., to Truckee, Cal., and just southeast of three pine trees, the only trees in the vicinity. The monument is of cast iron with a flange at the bottom and is 6 inches square at the top, 12 inches square at the bottom, and 6 feet high above the ground. It is about 5 inches out of plumb to the eastward.

Verdi longitude (Washoe County, Nev., C. H. S., 1889; 1897).-About one-third mile east of the town of Verdi, on the slight elevation back of O. Lonkey's residence, about 40 meters north of a stone fence and directly opposite the water faucet in the garden. The station is marked by the remains of a brick and cement pier, projecting a few inches above the surface of the ground.

Cone Peak, white flag (Washoe County, Nev., G. D., 1872). -The highest point of a conical peak 5 or 6 miles south of Verdi and a little more than a mile southeast of the Truckce River.

Crystal Peak flagstaff (Sierra County, Cal., G. D., 1872).-A large unpainted flagstaff on the main street of Crystal Peak village, in front of Mr. Hollingshead's housc.

Crystal Peak mountain top (Sierra County, Cal., G. D., 1872).-A sharp mountain peak about 5 or 6 miles to the westward of Crystal Peak village.

California-Nevada stone monument (Sierra County, Cal., and Washoe County, Nev., G. D., 1872).-West of the town of Crystal Peak near the base of the mountain range which in this locality is somewhat back from the Truckee River. The station is south of the Henness Pass Road along the south bank of tho west branch of Dog Creek and is about 8 meters south of a large outcrop of fine dark sandstone beside the road. A similar outcrop of rock is about 120 meters east of the station on the north side of the road. The station is marked by a half-inch drill holc in the top of the lower part of a stone boundary monument the top of which has been broken of."

California-Nevada wood monument (Sierra County, Cal., and Washoe County, Nev., G. D., 1872).-On the slope south of California-Nevada stone monument (see above), 31 meters distant and 7.5 meters higher. The station is marked by a roughly squared \log set in the ground and surrounded by a large cairn.

Lone tree (Washoe County, Nev., G. D., 1872).-A prominent lone tree on the Peavine Ridge about 5 miles in a northeasterly direction from Verdi.

Verdi meridian mark (Washoe County, Nev., G. D., 1872). -On a summit of Peavine ridge about 3 miles northnortheast of Vcrdi and about 40 meters northeast of the old Bull Ranch Road: About 300 meters southwest by west

> from the station is a point of rocks distinctly visible from the Henness Pass Road at the point where the ranch road mentioned above intersects it. The station is marked by a pilc of rocks about the base of a I-inch board used as a signal pole.
> Verdi azimuth mark (Washoe County, Nev., G. D., 1872). - About $1 \frac{1}{2}$ milcs northeast of Vcrdi and 1 mile north of the Truckce River on a black-topped hill bctwecn two branches of a small strcam which flows to the southward. The station is marked by a half-inch drill hole in a rock and by a pile of rocks about the base of the signal pole.

VERTICAL CIRCLE.

The vertical circles in use by the United States Coast and Geodetic Survey for the trigonometric leveling and for some of the time detcrminations ${ }^{1}$ arc, in general form, like that shown in illustration No. 5.

The instrument is practically a theodolite with the graduated circle in a vertical position and its axis horizontal, with the telescope fastened rigidly to the alidade. The circle and alidade arc fastened to a horizontal support, which rests upon the top of a vertical axis, the latter fitting into a stand. There is a counterpoise to the circle and alidade on the opposite side of the vertical axis. The stand has three levcling screws, and on some of the instruments there is a graduated circle near the base for measuring horizontal angles approximately.

Before starting observations the usual adjustments of the eyepiece and object glass should be made and the cross wires should be brought approximately into the center of the field. There is no adjustment for collimation in either the vertical or horizontal plane. A coarse stride level is used to make the horizontal axis of the circle approximately horizontal, and, consequently, the circle vertical, and a sensitive level is fastened to the circle and made parallel with it to define a horizontal line through the instrument. If, after leveling by the two levels, the instrument is rotated on its vertical axis through 180° and the bubbles remain on the graduated scales of the level vials, then the adjustments for level are satisfactory.

When making the observations on an object, its image is brought into the field of the telescope, the horizontal wire is placed on it, and readings are made of the bubble of the fixed level and of the verniers of the vertical circle. The telescope is then rotated on its horizontal axis and revolved 180° about the vertical axis of the instrument. A second observation is made on the object, and the level and vertical circles are again read. These observations constitute one complete determination of the double zenith distance, and are called a set.

If upon revolving the instrument through 180° in azimuth for the second reading on the object for any one set it is found that one end of the bubble extends beyond the graduations of the level vial, it may be brought back by the foot screws of the instrument. It should never be brought back to the graduations by moving the tangent screw, which controls the relation between the bubble and the graduations of the circle. In other words, the relation between the fixed level and the vertical circle of the instrument should remain undisturbed during a set. If the level is badly out of adjustment, it should be adjusted between sets.

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THE ELEVATIONS.

The zenith distances directly observed at each station were first computed. These zenith distances were corrected for height of the object observed and of instrument so as to refer them all to the ground at each station or to the surface marks at the station.

The difference of elevation of each pair of stations in the main scheme was then computcl from the observations over the line joining them by the formula

$$
h_{2} \rightarrow h_{1}=s \tan 1 / 2\left(\zeta_{2}-\zeta_{1}\right)\left[1+\frac{h_{2}+h_{1}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}\right]
$$

in which h_{2} and h_{1} are elevations of the stations, ζ_{2} and ζ_{1} are the measured zenith clistances as corrected for height of instrument and of object observed, s is the horizontal distance between the stations, and ρ is the radius of curvature.

As there are always two or more lines to each new station, many rigid conditions exist between the observed difference of elevation, even if the connections with the precise leveling

[^13]

VERTICAL CIRCLE USED IN TRIGONOMETRIC LEVELING AND FOR MAKING TIME OBSERVATIONS.
were ignored, and the least square adjustment furnishes the readiest accurate means of deriving the required elevations.

The elevations of stations of the primary scheme from the thirty-ninth parallel triangulation to the Canada boundary were adjusted in two sets of equations. The solution of the first set fixed all the elevations of the primary stations between the thirty-ninth parallel and latitude 40°, and the solution of the second set fixed the elevations of the primary stations between latitudc 46° and the Canada boundary.

In the first set the elevations of Pikes Peak and Divide, the stations of the thirty-ninth parallel triangulation, were held fixed at 4300.63 and 2259.46 meters, respectively.

These elevations differ slightly from the values published in Special Publication No. 4, ${ }^{1}$ due to more recent leveling by the United States Geological Survey and to the 1913 level net adjustment.

In addition to these fixed elevations, seven other stations, determined by precisc leveling and less accurate spirit leveling, werc assumed to be fixed.

These stations are Watkins astronomic, Brighton B. M. eccentric, Dover B. M. eccentric, Whitaker, Provo east base, Provo west base, and Buffalo Springs. Their elevations are 1683.47, $1514.35,1648.01,2041.98,1123.05,1177.19$, and 878.93 meters, respectively. The precise leveling by the base measuring party connected the ends of the Provo base with bench mark Provo 3708 DW, the elevation of which was adopted as 1130.93 meters. ${ }^{2}$

The elevation of the top of the rail at Buffalo Springs was adopted as 870.81 meters (2857.0 feet), as furnished by the engineers of the Chicago, Milwaukee \& Puget Sound Railway Co.

The elevation of Whitaker was obtained from the bench mark, 6702 Denver, of the United States Geological Survey. The value 2042.136 meters (6699.909 feet) was adopted for the elevation of this bench mark.

The elevations of Watkins astronomic, Brighton B. M. eccentric, and Dover B. M. eccentric depend on the precise level bench marks $\mathrm{G}_{2}, \mathrm{R}_{2}$, and E_{3}, the elevations of which are published in Special Publication No. 18 as $1681.21,1514.21$, and 1648.19 meters, respectivcly.

The elevation of the 53 remaining stations connected by the observations are unknowns to be determined by the method of least squares from the 139 differences of elevations indicated below.

In the following tabulation there are shown the observed differences of elevation treated in the first set of equations, together with their adjusted values. The weight p, assigned to each observed difference of elevation, is inversely proportional to the square of the length, in meters, s, of the line between stations and is conveniently computed by the formula $\log p=$ $10-2 \log s$. The observed diffcrence of elevation is given the sign of the elevation of the second station minus the elevation of the first. The quantity contained in the last column but one is the correction to be added to an observed difference of elevation to obtain the adjusted difference of elevation.

Station 1.	Station 2.	$\begin{gathered} \text { Weigbt, } \\ p . \end{gathered}$	Observed difference of elevatlon, $h_{2}-h_{1}$.	Adjusted dlfference of elevatlon, $h_{2}-h_{1}$.	Adjusted minus observed, v.	pve.
Plkes Peak.	Dlvide.	0.36	Meters. -2044. 54	Meters. -2041.17	Meters. $+3.37$	
Pikes Peak	Elbert.	0.28	-2154. ${ }^{\text {-215 }}$			
Divide.	Elbert..	2.79	-2112.35	-2112.76 -112.59	+0.03 +0.24	0.000 0.161
Elbert.	Hilltop.	1.56	- 138.83	- 139.92	-0.24 -1.09	0.185 1.853
Plkes Peak	Hilltop.	0.17	-2296.63	-2293.68	+2.95	1.479
Plkes Peak.	Morrison..	0.12	-1898.65	-1899.47	-0.82	
Elbert....	Morrison..	0.18	+ 248.43	-183.47 +254	-0.82 +5.86	6.181
Ifilitop..	Douglas.	17.50	[$\begin{array}{r}\text { a } \\ +\quad 51.56 \\ \hline\end{array}$	+5.86 +0.00	6.181 0.000
Morrison.	Douglas.	0.40	- 445.39	- 44.5.77	-0.38	0.058
Morrison.	Indian..	0.34	- 553.57	- 553.09	+0.48	0.078
Douglas.	Indian.	3.71	- 107.28			
Ililltop.	Indian.	1.92	-158.24	- 107.38	-0.04	0.006 0.786
Morrison.	Bouíder.	0.92	+ 174.67	+174.71	+0.04	0.001
Indian.	Boulder...........	0.21	+ 728.63	+ 727.80	-0.83	0.145
Lndian.	Watkins astronomic.	9.66	- 164.41	-164.60	-0.19	0.349
1 See pp. 265 and 266.		2 See Special Publlcation No. 18, p. 148.				

Station 1.	Station 2.	Weight, p.	Ohserved difference of eieration, $h_{5}-h_{1}$	Adjusted difference of eierstion, $h_{4}-h_{1}$	Adjusted minus observed, v.	pev.
Boulder	Watkins astronomic.	0.25	Meters. -888.21	Meters. -892.40	Meters. -4.19	4.389
Boulder	Brighton.	0.46	- 984.76	- 983.21	+1.55	1. 105
Morrison	Brighton.	0.32	- 809.66	- 808.50	+1.16	0.431
Indian..	Brighton.	0.52	- 257.00	- 255.41	+1.59	1.315
lirighton.	Brighton B. M., ecc	29.05	- 78.41	- 78.31	+0.10	0.290
130 lider	Brighton B. M., ece	0.59	-1061.28	-1061. 52	-0.24	0.034
Morrison	Brighton B. M., ecc	0.39	- 858.22	- 886.81	+1.41	0. 775
Brighton	Dewey.	0.32	- 90.83	- 94.62	-3.79	4.621
Boulder.	Dewey.	0.13	-1077.64	-1077.83	-0.19	0.005
Dewey.	Horsetoot	0.37	+ 714.88	+ 713.23	-1.65	1.007
Brighton.	Horsetooth.	0.22	+ 617.69	+ 618.61	+0.92	0.182
Boulder.	Horsetooth.	0.24	- 366.08	+ 364.60	+1.48	0.519
IIorsetoot	Dover B. M.,	0.57	- 562.37	- 563.26	-0.89	0.441
Dewey..	Warren.	0.25	+ 475.58	+ 472.74	-2.84	2. 002
Horsetooth.	Warren	0.28	-238.55	- 240.49	-1.94	1.043
Warren.	Twin.	0.88	+ 512.73	+ 511.98	-0.75	0. 508
Dover 13. M., ece	Twin.	0.42	+832.09	+ 834.75	+2.60	2.819
Dewey........	Twin.	0.14	+ 954.15	+ 984.72	$+0.57$	0.045
Horsetoot Warren.	Twin	0.31 1827.9	+ 268.29 $-\quad 0.04$	$\begin{array}{r}\text { a } \\ +\quad 271.49 \\ \hline \quad 0.04\end{array}$	+3.20 +0.00	3.174 0.000
Twin.	Terry.	0.90	- 512.52	- 512.02	+0.50	0.225
Warren	Colo.-Wyo. boundary monument.	102.69	- 110.72	- 110.72	-0.00	0.002
Terry.	Colo-Wyo. boundary monument.	81.72	- 110.69	- 110.68.	$+0.01$	0.002
Warren	Wadili.	1.38	+ 37.25	+ 36.62	-0.63	0.55
Terry.	Wadll	1.46	+ 36.19	+ 36.65	+0.46	0.315
Twin..	Wadill.	0.83	- 478.55	- 475.36	+3.19	8.436
Warren	Russell..	0.50	+ 538.74	+ 536.88	+0.14	0.010
Twin.	Russell.	2.20	+ 25.27	$+\quad 24.90$	-0.37	0.301
Russeil	Greentop.	6.34	- 35.29	- 35.41	-0.12	0.057
Twin.	Greentop	0.87	- 9.63	- 10.51	-0.88	0.634
Wadill.	Greentop.	0.91	+ 464.16	+ 464.86	+0.70	0.446
Wadill.	Ragged.	0.67	+ 501.04	+ 501.29	$+0.25$	0.044
Greentop	Ragred.	10.14	+ 36.39	+ 36.44	+0.05	0.024
Ragged.	Whitaker	1.14	- 466.28	- 466.71	-0.43	0.211
Greentop	Whitaker	1.22	- 429.15	- 430.27	-1.12	1. 533
Wadill.	Whitaker.	3.68	+ 34.14	+ 34.58	+0.44	0.729
Ragged.	Chugwater.	0.43	- 475.71	- 474.61	+1.10	0.520
Whitaker	Chugwater	0.50	- 9.39	- 7.90	+1.49	1.110
Chugwater	Noteh.	0.76	+ 381.17	+ 381.59	+0.42	0.134
Whitaker.	Notch.	0.17	+ 373.84	+ 373.69	-0.15	0.004
Ragged.	Notch..	0.22	- 96.14	- 93.02	+3.14	2. 169
Chugwat	Coleman.	0.25	- 343.44	- 340.89	+2.55	1.626
Notch.	Coleman.	0.61	- 723.57	- 722.48	+1.09	0.725
Coleman	Haystack	0.62	+ 30.17	+ 32.27	+2.10	2.734
Notch.	Haystack.	0.23	- 691.57	- 690.21	+1.36	0.425
Chugwater.	Haystack	0.21	- 309.88	- 308.62	+1.26	0.333
Ilaystack..	Hohhs.	1.38	+ 132.18	+ 132.62	+0.44	0.267
Ilobbs.	Rawhide	16.95	- 11.54	- 11.53	+0.01	0.001
Haystack	Rawhide	1.14	+120.06	+ 121.09	+1.03	1.209
Coleman.	Willow.	0.13	+ 162.20	+ 162.19	-0.01	0.000
Haystack.	Willow.	0.23	+ 129.52	+ 129.92	+0.40	0.037
Ilobhs..	Willow	5.57	- 2.79	- 2.70	+0.09	0.043
Rawhide	Willow	3.11	+ 8.73	+ 8.83	+0.10	0.031
Willow	Manvili	2.65	- 139.70	- 139.57	+0.13	0.046
Rawhide	Manvill	1.11	- 131.30	- 130.74	+0.56	0.349
Manville.	Kirtley	0.65	- 139.07	- 137.50	+1.57	1. 592
Willow	Kirtley.	0.40	- 279.24	- 277.07	+2.17	1.877
Rawhide	Kirtley	0.51	- 268.96	- 268.24	+0.72	0.281
Wiliow	Nehr. Wyyo. boundary monument, ecc.	0.38	- 295.51	- 296.36	-0.85	0.276
Kirtley	Nehr.-W yo. boundary monument, ecc.	10.15	- 19.32	- 19.29	+0.03	0.010
Kirtley	Bluff.	2.38	- 119.95	- 119.54	+0.41	0.304
Kirtiey	S. Dak--Nebr. boundary monurment.	3.27	- 388.11	- 397.07	+1.04	3.564
13iuff.	S. Dak,-Nebr. boundary monument..	3.37	- 268.51	- 267.52	-1.01	3.458
Kirtley	S. Dak. Wyo. boundary monument....	2.04	- 324.31	- 325.83	-1.52	4. 707
Bluti..	S. Dak.-Wyo. boundary monument...	5.80	- 206.82	- 206.29	+0.53	1.654
Manvilie.	Parker	0.11	- 244.73	- 240.57	+4.16	1.899
Kirtley.	1'arker	0.21	- 106.15	- 103.07	+3.08	1.902
Mantilie	Alkali.	0.13	- 343.45	- 347.33	-3.88	1.958
- Kirtiey.	Alkali.	0.12	- 209.77	- 209.83	-0.06	0.000
Parker..	Alkali.	0.21	- 108.06	- 106.76	+1.30	0.357
Alkali.	EIk	0.74	+ 357.64	+ 358.49	+0.85	0. 530
Alkail.	Sulitran.	0.64	+ 141.85	+ 145.08	+2.23	3.191
Eik	Sullivan.	4.14	- 214.32	- 214.40	-0.08	0.029
Parker	Suliivan.	0.91	+ 38.52	+ 37.33	-1.19	1.295
Alkali.	Cottonwood.	0.36	- 51.44	- 54.23	-2.79	2.802
Parker.	Cottonwood.	0.73	- 160.05	-160.90	-0.94	0.640
Cottonwood	1 1rovo west base.	3.28	- 136. 50	- 137.06	-0.36	0.425
Parker.	1 1rovo west base.	2.60	- 293.88	- 298.04	+0.84	1.826
Provo west bas	Provo east base.	4.72	- 54.39	- 54.15	+0.24	
Cottnawood	Provo east inase	1.14	- 191.76	- 191.20	+0.56	0.355

Station 1.	Station 2.	$\begin{gathered} \text { Weight, } \\ p . \end{gathered}$	Observed difference of elevation, $h_{9}-h_{1}$.	Adjusted difference of elevation, $h_{2}-h_{1}$	Adjusted minus observed, v.	pvo.
Parker..	Provo east base	2.05	Meters. -352.89	Meters. -352.19	Meters. $+0.70$	1.010
Provo west base.	Provo astronomic	17.25	- 29.22	- 29.26	-0.04	0.030
Cottonwood...	Provo astronomic	1.88	- 165.71	- 166.32	-0.61	0.702
Parker.	Provo astronomic.	1.57	- 327.48	- 327.31	+0.17	0.030
Proro east base.	Provo astronomic.	20.30	+ 24.80	+ 24.88	+0.08	0.133
Alkali.	Cambria.	0.38	+ 595.88	+ 592.49	-3.39	4.357
Elk.	Cambria.	0.73	+ 232.68	+ 234.01	+1.33	1.287
lnyank	Cambria.	1.99	+ 21.43	+ 21.42	-0.01	0.000
Laird.	Cambria.	1.81	-143.22	-143.20	+0.02	0.001
Bluff.	Parker.	0.29	+ 12.04	+ 16.47	+4.43	5.699
Cambria.	Crow.	2.89	+ 186.96	+ 186.86	-0.10	0.030
Laird..	Crow	3.25	$+\quad 43.57$ $+\quad 1$	+ 43.66	+0.09	0.027
1aird.	lnyankara.	1.34	- 165.07	- 164.62	+0.45	0.276
Terry.	1nyankara.	0.54	- 213.33	- 213.54	-0.21	0.024
Sundanc	Inyankara.	1.07	- 88.88	- 89.36	-0.48	0.251
Terry.	Laird.	2.76	- 49.50	- 48.92	+0.58	0.916
Sundance	Laird.	0.47	+ 76.61	+ 75.25	-1.36	0.868
Sundan	Mont., southeast corner,	0.23	- 992.22	- 992.83	-0.61	0.084
Terry.	Mont., soutbeast corner,	0.17	-1117.82	-1117.00	+0.82	0.114
Castle.	Terry.	0.15	+1003.24	+1004.44	+1.20	0.217
Wymonkota.	Terry.	0.16	+1058.09	+1059.18	$+1.09$	0.191
Sundance.	Terry.	0.37	+ 120.77	+ 124.17	+3.40	4.290
Castle..	Sundance	0.10	+ 875.45	+ 880.27	+4.82	2.320
Wymonkota.	Sundance	0.23	+937.26	+ 935.00	-2.26	1.170
Castle.......	W ymonkota	0.40	- 53.98	+ 54.74	-0.76	0.230
Moreau.	Wymonkota.	0.45	- 90.91	- 91.53	-0.62	0.171
H1arding	Wymonkota.	0.54	- 131.51	- 131.07	+0.44	0.104
Reva..	Castle.	0.23	+ 44.55	+ 44.01	-0.54	0.066
Moreau.	Castle.	0.55	- 36.87	- 36.79	+0.08	0.004
11arding.	Castle	0.36	- 77.55	- 76.33	+1.22	0.532
Reva	Moreau.	0.45	+ 82.32	+ 80.81	-1.51	1.029
Hlarding	Moreau.	5.30	+ 39.63	- 39.54	+0.09	0.038
Reva.	Ilarding.	0.30	+ 121.17	+120.35	-0.82	0.203
Lodge.	Harding.	0.14	+ 242.46	+ 242.80	+0.34	0.016
Table.	Harding.	0.27	+ 120.65	+ 125.55	+4.90	6. 493
Lodge.	Reva.	0.96	+ 123.17	+ 122.45	-0.72	0.491
Table.	Reva...............	0.41	+ 6.10	+ 5.21	-0.89	0.327
Table.	N. Dak.-8. Dak., milepo	4.37	- 177.89	- 177.92	-0.03	0.004
Butte.	N. Dak.-S. Dak., milepo	1.13 0.49	$\begin{array}{r}\text { r } \\ \hline\end{array}$	+85.50 $+\quad 117.25$	+0.12 +1.04	0.016 0.528
Butte.	Table.	0.62	+ 91.92	+ 92.42	+0.50	0.156
Whetstone.	Lodge.	0.57	+ 24.23	+ 24.20 $+\quad 20$	-0.03	0.001
Butte.	Lodge	0.47	- 24.59	- 24.83	-0.24	0.026
Wbetstone	C. M. \& P.S. Ry. B. M	2.06	- 79.09	- 79.06	+0.03	0.002
Butte.	C. M. \& P.S. Ry. B. M	6.32	- 128.02	- 128.08	-0.06	0.024
Bntte	Whetstone.	0.90	- 49.07	- 49.02	+0.05	0.002

The probablo error of an observation of weight unity derived from the preceding adjustment is ± 0.83 meter. In other words, the reciprocal observations over a lino 31.7 kilometers (19.7 miles) long, this bcing tho length of the line corresponding to unit weight, determined the difference of elevation of two points with such a degree of accuracy that it is an even chance whethor the error is greater or less than 0.83 meter. Tho probable errors for other lines wore assumed to be proportional to their lengths.

The probablo crrors of the olevations of the four stations fixed by precise loveling do not exceed ± 0.05 meter. The probablo errors of tho clevations of the fivo other stations determined by spirit leveling may be ostimated at about ± 0.15 meter.

The probable error approaches this value for stations adjacent to thoso fixed by the spirit leveling and is greatest for the most remote stations. Station Terry, Wyo., was assumed to be the one least accurately determined, and its probable error was thereforo computed as a limiting value. It was found to be ± 0.98 meter from tho vertical angles alono. When combincd with tho probable orror of the clevation fixed by the spirit leveling, it is 0.99 meter.

In other words, for the loast accurately determined station in tho main scheme between the thirty-ninth parallel triangulation and latitudo 46° there is an even chance that the elevation is correct within 1 meter (or 3.3 fect), and for most stations the accuracy is greater than this.

The results of the solution of the second set of equations, in which the stations concerned are these frem the line Butte-Whetstone (latitude 46°) to the Canada boundary, are shewn bolow in the form used for the first set:

Station 1.	Station 2.	$\begin{aligned} & \text { Welght, } \\ & p . \end{aligned}$	Observed diference of elevation, $h_{5}-h_{1}$.	Adjusted difference of elav8. tion, $h_{2}-h_{1}$.	Adjusted minus observed, v.	pov.
Blaek.	Whetstone.	0.55	Meters. -99.64	Mfeters. -99.10	Meters. $+0.54$	0.162
1 lainy	Whetstone	1.06	- 60.31	- 60.09	+0.22	0.051
Rainy	Butte..	0.57	- 10.90	- 11.07	-0.17	0.017
Rainy	Butte..	2.12	- 50.24	- 50.08	+0.16	0.054
Rainy	Black	0.89	$+37.79$	+ 39.01	+1.22	1.330
Badland.	Black	0.83	+134.83	+134.08	-0.75	0.465
Sentinel.	Black	0.28	+ 11.00	+ 11.62	+0.62	0.105
Sentlnel	Rainy	0.18	-29.83	- 27.39	+2.44	1.074
Saddle.	Ralny	0.32	+149.74	+150.35	+0.61	0.122
Badland.	Rainy	0.06	+ 94.47	+ 95.07	$+0.60$	0.348
Saddle.	Badland.	0.95	$+58.01$	+ 55.28	-0.73	0.504
Sentinel	Badland	0.55	-123.65	-122.46	+1.19	0.774
Sentinel.	Saddle.	0.44	-178.14	-177.74	+0.40	0.072
Hump.	Saddle	0.53	-129.57	-130.01	-0.44	0.101
	Saddle	0.54	$+35.69$	+ 34.90	-0.79	0.340
Blue.	Sentlnel.	0.40	+107.98	+108.02	+0.04	0.001
Cook.	Sentinel.	0.95	+211.89	+212.64	+0.75	0.532
Mump	Sentinel	11.16	+ 47.67	+ 47.73	+0.06	0.042
Hump.	Mont.-N. Dak. boundary monument, ecc.	0.85	-180.81	-179.91	+0.90	0.684
Blue..	Mont.-N. Dak. boundary monument, ecc.	9.05	-119.53	-119.62	-0.09	0.702
Cook.	IIump..................................	1.88	+164.52	+164.91	+0.39	0.253
Blue	Hump...................................	0.52	+ 59.31	+ 60.29	+0.98	0.500
Flat.	Cook	0.95	- 13.74	- 13.45	+0.29	0.051
Trotter	Cook	2.47	- 0.69	- 0.32	+0.37	0.333
Blue..	Cook	0.84	-104.40	-104.62	-0.22	0.040
Blue.	Trotter	1.74	-104.64	-104.30	+0.34	0.201
	Trotter	5.64	- 13.18	- 13.13	+0.05	0.015
Flat	Blue.	1.09	+91.29	+91.17	-0.12	0.016
Sheep	Blue.	0.40	+111.83	+112.52	$+0.69$	0.193
Lovering	Blue	0.36	+131.19	+131.29	+0.10	0.004
Sheep.	Flat.	1.99	$+21.09$	+ 21.35	+0.26	0.135
Lovering	Flat.	0.43	+ 40.26	+ 40.12	-0.14	0.008
Sheep	Lovering	0.54	- 19.52	-18.77	+0.75	0.300
Buford	Lovering.	0.46	$+50.47$	+ 49.86	-0.61	0.171
Jackson	Lovering.	1.74	$+25.31$	+ 25.22	-0.09	0.014
Buford	Sheep	0.43	+ 68.74	+68.63	-0.11	0.006
Montana.	Sheep.	0.42	+127.65	+128.84	+1.19	0.595
Jackson.	Sheep	0.37	+ 41.96	+ 43.99	+2.03	1.522
Ferry	Missouri River Commisslon B. M. 17.	27.46	-87.84	- 87.95	-0.11	0.326
Cutoft	Missourl River Commission B. M. 11^{2}.	21.47	-129.38	-129.32	+0.06	0.073
Mondak	Ferry	80.18	+ 86.71	+ 86.61	-0.10	0.839
Cutoff.	Ferry	19.25	- 41.43	- 41.38	+0.05	0.058
Montana.	Ferry.	25.95	- 28.42	- 28.26	+0.16	0.664
Montana	Mondak	101.18	-114.79	-114.87	-0.08	0.647
Cutoft	Mondak	12.68	-127.97	-127.98	-0.01	0.002
Cutoff.	Missourl RIver Commission 13. M. ${ }^{131}$	17.72	-126.63	-126. 58	+0.05	0.044
Lanark	Missouri River Commisslon B. M. 211.	12.40	-109.33	-109.40	-0.07	0.061
Jackson	Cutoff.	4.78	- 71.83	- 71.73	+0.10	0.048
Lanark.	Cutoff.	5.91	+16.94	+ 17.18	+0.24	0.346
Montana.	Cutoff	11.83	+ 13.02	+13.11	+0.09	0.100
Montana.	Lanark..................................	4.05	- 4.51	- 4.07	+0.44	0.783
Jackson.	Lanark.	2.24	-88.40	- 88.91	-0.51	0.581
Jackson	Montana.	1.80	-84.29	- 84.85	-0.56	0.566
Buford	Montana	33.12	- 60.22	- 60.21	+0.01	0.004
Bu	Jackson	1.19	+ 25.01	+24.64	-0.37	0.163
Balnville	Jackson.	0.98	+ 17.82	+ 17.42	-0.40	0.156
Snake.	Jackson.	0.65	- 30.11	- 30.46	-0.35	0.080
Wullston	13uford.	1.21	+33.38	+33.27	-0.11	0.014
Bull.	Buford.	0.95	- 35.15	- 35.52	-0.37	0.130
Snake	Buford.	1.31	- 54.88	- 55.10	-0.22	0.064
Buford.	Balnville.	2.12	+ 7.41	+ 7.22	-0.19	0.074
Wllliston.	Snake........ ?	1.04	+88.43	+ 88.37	-0.06	0.004
Bull	Snake.	5.90	+ 19.66	+ 19.58	-0.08	0.036
Willston.	Bull.	1.92	+ 68.17	+68.79	+0.62	0.738
Bonetraill.	Bull...	3.30	+ 52.84	+ 52.63	-0.21	0.145
Gladys.	Bull.	3.78	+ 32.20	+ 31.86	-0.34	0.439
Marmon	Williston.	1.43	+ 45.66	+ 45.04	-0.62	0.352
Bonetrail	Williston.	2.75	- 16.33	- 16.15	+0.18	0.086
Gladys.	Williston.	1.79	- 37.70	- 36.92	+0.78	1.092
Marmon	Bonetraill	2.53	+61.57	+ 61.19	-0.38	0.361

Station 1.	Station 2.	Weigbt, p.	Observed difference of elevation, $h_{2}-h_{1}$	Adjusted difference of elevation, $h_{2}-h_{1}$	Adjusted minus observed, v.	pvo.
Gladys.	Bonetraill.	3.65	Metcrs. -20.97	Meters. -20.77	Meters. $+0.20$	0.148
Marmon	Gladys.	1.82	+81.96	+81.96	0.00	0.000
Howard	Gladys.	2.08	+ 51.93	+ 52.33	+0.40	0.336
Muddy	Marmon	1. 72	+ 1.91	+ 0.46	-1.45	3.610
Howard	Marmon	1.32	- 30.12	- 29.63	+0.49	0.318
Muddy	Howard.	2. 63	+ 30.14	+ 30.09	-0.05	0.007
Stady.	Howard.	2.25	- 3.75	- 3.46	+0.29	0.188
Crosby	Howard.	1.02	- 22.51	- 22.19	+0.32	0.106
Norge.	Howard.	1.23	- 4.02	- 3.47	+0.55	0.374
Crosby	Muddy.	2.36	- 52.23	- 52.27	-0.04	0.004
Stady.	Muddy.	4.97	- 33.04	-33.55	-0.51	1.290
Crosby	Stady.	9.68	- 18.46	-18.73	-0.27	0.694
Norge.	Stady.	4.05	- 0.18	- 0.01	+0.17	0.116
Crosby	Norge.	3.31	- 18.60	- 18.71	-0.11	0.042
Bowie.	Norge.	6.54	- 4.57	- 4.30	+0.27	0.472
Ambrose.	Crosby.	21.80	$+31.80$	+ 31.81	+0.01	0.002
Ambrose southwest base.	Crosby.	8.04	+ 79.33	+ 78.89	-0.44	1.562
Rowie.	Crosby.	2.46	+14.15	+ 14.41	+0.26	0.166
Luwie.	Ambrose.	2.88	-17.28	- 17.40	-0.12	0.041
Ambrose southwest base.	Ambrose.	13.46	$+47.13$	+ 47.08	-0.05	0.033
A mbrose northeast base.	Ambrose.	12.90	+ 74.39	+ 74.48	+0.09	0.104
Ambrose nortbeast base	Ambrose southwest base	9.11	+28.15	+ 27.40		
Bowle.	A mbrose southwest base	10.00	-64.61	-64.48		
Bowle.	A mbrose northeast base.	3.04	- 91.84	-91.88		

In this second set of equations the elevations of six stations were taken as fixed. The elevations of Butte and Whetstone had been fixed by the solution of the first set as 1007.01 nnd 957.99 meters, respectively. The stations Ambrose southwest base, Ambrose northeast base, and Bowie were held fixed from the results of the spirit leveling by the United States and Canada Boundary Survey, their elevations being 650.920, 623.521, and 715.398 meters, respeetively. Precise leveling by the Missouri River Commission fixed the elevation of two beneh marks, which were made secondary stations of the triangulation and ineluded in this adjustment, viz, Missouri River Commission B. Ms. $\frac{121}{2}$ and $\frac{122}{2}$. Their elevations were held fixed at 582.626 and 579.883 meters, respectively.

The elevations of the remaining 33 stations conneetcd by the observations are the unknowns determined by the method of least squares from the 91 observed differences of elevation in the above table.

The probable error of an observation of weight unity derived from the adjustment is ± 0.48 meter. Unit weight corrosponds as in the first set to reeiprocal observations over a line 31.7 kilometers (19.7 miles) long.

Station Cook may be assumed to be the station least accurately determined, and the probable error computed for its elevation is ± 0.37 meter from the vertieal angles alone. This probable error, eombined with a probable error of ± 0.15 meter, assumed for the stations fixed by spirit leveling, may be stated to be ± 0.4 meter (1.3 feet).

Referring to the table where the 25 sections of vertical angle results of previous triangulation are assembled in order of their accuraey, ${ }^{1}$ this section is exeeeded in aecuraey by only two sections.

The eompletion of the transcontinental line of precise levels since the publieation of the transeontinental triangulation ${ }^{2}$ gave a new elevation for the Salt Lake base. This new elevation differed 5.7 meters from the value obtained from the vertieal angles alone, whieh had been assigned a probable error of ± 2.5 meters.

The two adjustments set forth on pages 336 to 340 of Special Publication No. 4 were combined, thercfore, and three additional fixed elevations introduced, viz, Salt Lake northwest base, Salt Lake southeast base, and the United States Engineers' Observatory near Ogden, their elevations being $1289.47,1283.94$, and 1332.70 meters, respectively. ${ }^{3}$ The elevations of

[^14]Round Top (3165.6 meters) and Mount Lola (2786.8 meters) were held undisturbed. The precise level elevation for the top of the rail in front of the railroad station at Truckee is 1772.76 meters. This is nearly the same point from which Assistant J. J. Gilbert's levels of 1898 started. Applying the 1898 difference of elevation ($\Delta h=1013.87$ meters), the new elevation of Mount Lola is 2786.63 meters.

The elevations of the three stations Divide, Pikes Peak, and Plateau were held fixed as $2259.46,4300.63$, and 1644.4 meters, respectively. New leveling by the United States Geological Survey changed the elevation published for Pikes Peak on page 266 of Special Publication No. 4. The amount of the eorrection, +0.4 meter, was applied to station Plateau, adjusted at the same time.

The probable error of an observation of unit weight is ± 3.62 meters for this adjustment.
To get the probable error of an adjusted height, this quantity must be divided by the square root of the weight coefficient derived from the normal equation. Mount Was was selected as the least accurately determined of any in the seheme, and its probable error was found to be ± 1.02 meters from the vertical angle determination alone. This, combined with the uncertainty of the fixed elevations, would remain unchanged.

TABLE OF ELEVATIONS.
Thirty-ninth parallel to latitude 46°.

Station.	Point to whlch elevatlon refers.	Elevation.		Station.	Point to which elevatlon refers.	Elevation.	
		Meters.	Feet.			Meters.	Feet.
Class 1.				Class 2-Continued.			
Watkins astronomic	Top of surface mark.	1683.47	5523.18	Inyank	Top of surface mark.	1939. 55	6363.3
Brighton bench mark, ecc		1514.35	4968.32	Crow		2147.83	7046.7
Dover hench mark, ecc.	do	1648. 01	5406.84	Lair		2104.17	6903.4
Bench mark 6702 Denver	do	2042.14	6699.91	Terry.	do	2153.09	7063.9
Whitaker.....................		2041.98	6699.40	Sundance		2028.92	6656.5
Provoastronomic bench mark 3708 DW	do	1130.03	3710.39	Wymonkota.		1093.91	3588.9
3708 DW. ${ }_{\text {Provo east base. }}$		1123.05		Castle.......................	do...............	1145.65	3768.5 3391.2
Provo west base.do...............	1177.19	${ }_{3662.16}$	Montana, southeast corner, ecc.	.do...............	1036.09	3391.2
Buffalo Springs.	Top of rail...........	870.82	2857.02	Harding	.do.	1224.99	4019.0
Do........	Top of surface mark.	878.93	2883.62	Morea	.do	1185.44	3589.2
				Reva.		1104. 64	3624.1
Elbert..............				Lodge		932.18	3222.4
Hilltop..	Top of	2006.95	70434.5	Table........		1099.43	3607.0
Douglas.		1955.39	6415.3	milepost 333 , cce.		92.51	3023.3
Indlan.		1848.07	6063.2	Butte.............	do	1007.01	3303.8
Morrison	do	2401.16	7877.8	Whetstor		957.99	3143.0
Boulder.	do	2575.87	8451.0				
Brighton	do	1592.66	5225.3	Class S .			
Dewey.	d	1498.04	4914.8				
1 I Irsetoo	do	2211.27	7254.8	Danicls \& Fisher's tower.....	Top of dome.	1687.0	5335
Warren.	do.	1970.78	6465.8	Denver University observa-		1656.9	5436
Twin.		1970.74	8145.5 6465.7	tory.	Top of gilded dome.	1672.9	
Wadil.	do	2007.40	6585.9	Denver county courthousedo..............	1645.9	5400
Greentopdo	2472.25	8111.0	Loretto Iteights school.	Top of belfry tower.	1718.1	5637
Russell.	do.	2507.66	8227.2	Denver, Grant smeltcr.	Top of chimncy.	1680.2	5512
Ragged..	. do.	2508.69	8230.6	Westminster schoolhous	Top of belfry.	1726.6	5665
Cheyenne east b	.do	2011.22	6598.5	Grecley tall tank.	Top of tank	1466.3	4811
Cheyenne w		2074.20	6805.1	Grecley sugar factory.	Top of chimnc	1464.5	4805
Chugwater	do	2034.08	6673.5	La Salle, tank ncar coal chute.	Top of tank....	1450.0	4757
Notch.do	2415.67	7925.4	Eaton sugar factory..........	Top of chimncy	1513.6	4966
Coleman.		1693.19	5555.1	Lovcland red-brick chlmney..		1554.1	5099
Maystack	.do	1725.46	5660.9	Loveland tall white chimney.		1563.0	5128
Colorado-W yoming houndary	do.	1860.06	6102.5	Cheyenne State Capitol.	Top of small dome.	1900.0	6234
Hobbs........................	.do.	1838.08	6096.1	Fort D.A. Russell watcr tank Otto, U.P. Ry., black water	Top of	1908.0 2131.9	6260 6994
Rawhid	.do.	1846.55	6058.2	tank.			
Willow.	d	1835.38	6082.2	Rltzke's wlndmill..	Center of wheel.	2001.9	6568
Manville	do	1715.81	5629.3	Kipp's, William, square	Top of chimncy	1999.9	6561
Kirtley.....................		1578.31 1559.02	5178.2 5114.9	housc.			
vehraska-W yoming hound. ary monument, ecc.			5114.9	Hollingswood's Tall new house.	West gable	$\begin{aligned} & 2029.4 \\ & 2083.9 \end{aligned}$	$\begin{aligned} & 6658 \\ & 6837 \end{aligned}$
Blufin.................	do	1458. 76	4785.9	Jirch College.	Top of cupol	1856.3	5434
South Dakota-W yoming boundary monument.		1252.48	4109.2	Manville Congregational Church.	Ground.	1603.1	5260
Alkali..................	do	1308.48	4489.8	Manville, C. \& N. W. Ry.	Top of tank.	1613.0	5292
South DakotanNebraska boundary monument.		1191.24	3908.3	water tank. Bear Lodge Mountain	Highest pea	2030.2	6601
Suillvan...............	do	1512.56	4962.5	Peak south of Terry..	...do...	2074.0	6504
Cottonwood	do	1314.25	4311.8	Maystack Buttc...	iiighest point	1128.7	3703
Provo astro	do	1147.93	3766.2	East Deer Ear Buttc	. ${ }^{\text {do }}$	1047.3	3436
Parker	do.	1475.24	4840.0	West Deer Ear l3uttdo	1050.7	3447
Flk....		1726.97	5665.9	Wheatland standplp	Top	1500.9	4924
Cambrla		1960.97	6433.6	Eagles Nest Butte..	Top of cairn	1003. 4	3292

TABLE OF ELEVATIONS-Continued.
Thirty-ninth parallel to latitude 46° - Continued.

Station	Point to which elevation refers.	Elevation.		Station.	Point to which eiovation refers.	Elevation.	
		Meters.	Feet.			Meters.	Feet.
Class s-Continued.				Class 3-Continued.			
Section 33, T. 17 N., R. 68 W.,	Top of stone post....	2035.1	6677	East Twin.	Top of mark.	2481.4	8141
southwest corner. Crows Nest (U. S. G. S.)				Nebraska-W yoming bound-	Top of stone.	1558, 6	5114
Sullivan (U. S. G. S.)...	Top of mar....	1513.0	4964	Alkali (U. S. G. S.)	Top of mark	1368. 3	4489
Eik (U. S. G. S.).	do	1727.0	5666	W yoming, northeast corner,do.......	1052.2	3452
North Dakota-South Dakota, milepost 333.	Top of post	907.3	2977	W yoming, northeast corner,	Top of red granite.	1051.6	3450
Section 36, T. 4 S., R. 65 W., southeast corner.	X on stone	1843.3	6048	monument. Montana, southeast corner,	Top of mark.	1027.0	3369
Dover B. M., reference mark. .	Top of mark	1648. 5	5408	monument.			

Latitude 46° to Canada.

Class 1.				Class 2-Continued.			
Bench mark 1g: Missouri	Top of cap...	582.81	1912.10	Bainvili	Top of surface mark.	763. 52	2505.0
Rlver Commission.				Snake.		811.40	2662.1
Bench mark 41, Missouri	do	582.63	1911.51	Wilisto		723. 03	${ }_{2} 2372.1$
River Commission.		579.88	100249	Bull.....		791.82	2597.8
River Commission.				Giadys.	do	739.19 759	2425.2
Armhrose southwest base	Top of surface mark.	650.92	2135.56	Marmon	do	677.99	2493.3
Ambrose northeast base		623.52	2045. 67	Howard	d	707. 62	2321.6
Bowio.		715.40	2347.11	Muddy	d	677.53	2322.9
				Stady	do.	711.08	2332.9
Class 2.				Norge		711.09	2333.0
Black.	Top of surface mark.	1057.09	3468. 1	Crosby.	do	729.81	2394.4
12ainy.do................	1018.08	3340.2	Ambros	do	698.00	2290.0
Badlan	do..................	923.01	302s. 2	Bilby...	do.	${ }_{712}^{695.2}$	${ }_{2}^{2281}$
Saddle.	do	867. 73	2846.9	Jasper.			
Sentinel	do	1045.47	3430.0				
Iump.	do	997.74	3273.4	Class 3.			
Cook	do	832.83	2732.4				
Trotter.	do.	833.15	2733.4	Sentinel Butte public school.	Base of flagstaff.	845.6	2774
Montana-North Dakota		817.83	2683.2	Beach Catholic Church		866.5	$\stackrel{2843}{ }$
boundary monument, ece. Biue. \qquad	do.	937.45	3075.6	Schoolhouse, 6 miles north of Hump	Top of chimney	849.2	2786
Flat.		846.28	2776.5	Bainvilie Cathoiic Church ...	Tip of highest spire..	628.5	2062
Loverin		806.16	2644.9	Snowden water tank.	Top.................	592.6	1944
Sheep.	do.	824.93	2706.5	Steihl's house...	Top of chimney	596.8	1958
Jackson		780.94	-2562.1	Ambrose Presbyterian Church	Top of flat steepie.	645.8	2119
Monda		581.22	1906. 9	Bonctraill schoolhouse belfry.	Base of flagstaf.	741.5	2433
Ferry.	do	667.83	2191.0	Bowman water tank.	Top.	945.9	3103
Cutoff		709.21	2326.8	Section 22, T. 17 N., R. 60 E.,	Top of mark	816.1	2677
Buford	do	756.30	2481.3	southeast corner.			
Lanark	do.	692.02	2270.4	Section 7, T. 143 N., R. 105 W.,	do...............	817.2	2681
Montans		696.09	2283.8	southwest corner.			

Thirty-ninth parallel, east of Pikes Peak.

Class 1.				Class 2-Continued.			
First View	Top of surface mark.	1400. 48	4594.74	Eureka	Top of surface mark.	1442.5	4732.6
Kit Carson		1345.67	4.414 .92	Overiand		1609.4	5280.2
Hugo.	do	1625. 54	5333.13	Aroya.		1495.9	4907.8
Divide.		2259.46	741291	Adobe	do...............	-1575. 6	5169.3
E1 Paso west base	Top of monument...	2167.03	7109.66	Hoit.	do	1868.4	6129.9
Do..	Top of surface mark.	2165.98	7106.22	Square Blufis	do	1711.9	5616.5
F1 Paso cast base.do.	1993.94	6541.78	Cramer Guich	do	1605. 4	5267.0
Pikes P'eak.	do	4300.63	14109.65	Dry Camp		1705.0	
				Corrai Blufi		2070.4	6792.6
Class 2.				Piateall...		1644.4 1903.6	5395.0 6245.4
Landsman.	Top of surface mark.	1418.1	4652.5	Holcolm Hill	.do...............	2138.9	6245.4 7017.4

TABLE OF ELEVATIONS-Continued.
Thirty-ninth parallel, Pikes Peak to California.

Station.	Point to which olevation refers.	Elevatlon.		Station.	Point to which ole vation refcrs.	Elevation.	
		Meters.	Feet.			Meters.	Feet.
Class 1.				Class s-Continned.			
Salt Lake northwest base..	Top of surlace mark.	1259.47	4230.54	Bountiful Peak or Francls	Base of cairn........	2559.8	9481
Salt Lake southeast base.	- 7 ...do	${ }_{1332} 1280$	4212.39 4372.37	1'eak.			
Ogdon longitude..........	Top of west pler	133270	4372.37	Temple, east splre	Conter of figure Gabriel.	1385.1	4.544
Class 2.				North Ogden Peak	Ground at station...	2961.8 3040.6	9717
Round Top.	Top of surface mark.	3165.6	10385, 8	Desatolya Blonitor.		3040.6 3309.0	
Mount Lola.	-	2786.8	9143.0	Onaqui.		2787.0	9144
Mount Como	.do	2747.9	9015.4	Salt Creek		3045.4	9991
l'ah Rah....		2513.2	8245.4	Lone Tree.	Tangent to summit.	3068.5	10067
Mount Grant	do	3427.4	11244.7	South Sclplo	Ground at station...	${ }^{2} 21313.5$	9231
Carson Sink.	do	2050.0	8792.6	1Iorriman.	..do...............	3220. 2	10585
Tolyabe Dome.	do	3389.0	11774.9	Lone Peak		3430.3	1125
Lone Mountain.	do	2775.5	9106.0	Springville	Top of peak	3369.2	11054
Mount Callahan	do	3109.7	10202.4	Draper.do...............	2840.5	9319
Dlamond Peak.	do	3238.9	10626.3	Frisco Mount.	do................	2946.7	9668
White line.	do	3434.6	11268.4	Sawtooth Peak or Sevier		2942.6	9654
Wbeeler Peak	do	3976.7	13046.9	Mountain.			
Pioche.		2675.8	8778.9	Beaver	Top of aignal.	3679.2	12064
Ibepah.	do	3684.3	12087.6	Indlan Peak	Top of peak.	2981.9	97×3
Tushar.		3697.8	12131.9	Antelope Mountain or Swasey	do	2950.3	9679
Mount Nob	do	36182	11870.7	Peak.			
Seseret.	do	3362.2 2962.4	11030.8 9719.1	Crestone Poak	do	12876.2 4355.9	9436 14291
Wasatch.	do	3393.3	11132.9	Slerra Blance	d	4377.7	14363
Patmos Ifead	do	2999.5	8840.9	Antero	do	4037.0	13245
Mount Ellen.	do	3496.9	11472.7	Rito Alto.	do.	4137.2	13573
Mlount Was	do	3752.3	12310.7	East Spanish Peak	IIIghest point	3865.8	12683
Tavaputs.do	2677.8	8785.4	Mount Harvard	Top of peak..........	4358.9	14399
Mess.	do	3046.0	9993.4	Mount Yale.do.	4319.7	14172
Uncompahgro	.do	4354.5	14286.4	Mount Princeton	d	4321.3	14177
Gunnison azimuth	do	2342.2	7684.4	Monte Ross.	do	3506. 4	11504
Treasury Mountain.	. do	4097. 1	13441.9	Mount Shavano.	d	4321.8	14179
mount Ouray do	4253.5	13955.0	Mount Mass	.do...............	4390.2	14404
Mlount Elbort	do	4395.1	14419.6	Augusta..	d	${ }^{1} 3041.6$	9078
Bison.	do	3787.8	12427.1	Fairview.	d	2532.1	8307
Pllot Peak	do	3262.5	10703.7	Mount Lin	do	${ }^{1} 2615.7$	8352
Ogaen 1'eak	do	2918.4	9574.8	Star Peak	d	${ }^{1} 2997.7$	9835
Antelope.	do	2010.3	6595.5	Lyon Soutb Summi	d	2794.8	9169
Promontory	do.	2008.5	6589.6	Montezuma Peak.	do	125520	8373
Waddoup.		1302.4	4273.0	Shoshone Poak, nort	do	3146.0	10322
City Creek.	do	1876. 4	6156.2	Bunker Hill.	d	3498.2	11477
Chiquita..................		2603.7	85423	Shoshone Peak, south	.do...............	${ }^{1} 3099.8$	10072
Grand Junction standplpe.	Top of pipe	1403.3	4604.0	Sharp Peak.	do	3078.1	10099
				Mount Hamlito	d	3273.9	10741
Class 3.				Prospect Peak.	do	12918.0	95%
Sarpeto.				Duckwater.	do	3503.0	11493
Sanpeto.	Ground at station...	3376.8	11079	Broken Back	do	3190.0	10466
Oquirrb.	do	2353.6	9362	Ward	do	3331.3	10929
Mooseneah..do...............	3348.5	10986	Mount Lewis.	do	12951.6	9684
Mount Hilgard	do	3336. 4	11602	Granite Peak.	do	12980.7	9779
Monroe.	,	13417.8	11213	Mount Morlah		3672.6	12049
Delano	do	13707.3	12163	Pioche Peak.	Sigual.	12225.7	7302
San Rafael K		12418.2	7934	Highland Peak	Top of peak	12843.9	9330
Mount Alico.		3513.5	11527	White Rock.	Stone morument...	${ }^{1} 2714.3$	8005
Desert Peak	Top of peak.	2128.6	6984	Mount Grafton.	Top of peak........	3347.7 13598	109×3
Framis Peak.	Top of cairn	1522.4 2823.7	4995 9264	Mount Jefferson............... South Promontory	Base of monument.	13598.7 12156.6	11807 7075
Francis Peak.	Top of peak	2823.7	9264	South Promonto	Base of peak.	${ }^{1} 2156.6$	7075

${ }^{1}$ No check on this clevation.

DETERMINATION OF ASTRONOMIC LONGITUDE.

The astronomic longitudes of five triangulation stations along the one hundred and fourth meridian were determined in 1912 by the observing parties under Assistants H. A. Seran and G. D. Cowie. Each of those stations was connected by wire tclegraph with the old longitude station in Omaha, at which Mr. Cowie made the time observations. Mr Seran observed time at the new stations and exclianged time signals with Mr. Cowic. The transits used were equipped with the self-registering mierometers. The methods and instruments are described in the astronomic manual (Special Publication No. 14 of the Coast and Geodetic Survey).

The deseriptions of the new longitude stations and the data connected with each of the five determinations of the difference in longitude are given on the following pages:

Summary of the determination of the differences of longitude.

Station.		Date of oxchange of time signals.	Difference of longitude 42.	จ.	Transmission time.
Eastern.	Western.				
$\begin{array}{r} \text { Omaha, Nebr.... } \\ \text { Do............................ } \\ \text { Mean.... } \end{array}$	Mondak longitude, Mont.	${ }_{\text {Sept. }} 1912.6$	$\begin{array}{cc}\text { m } & { }^{8} \\ 32 & 24.761\end{array}$	$\begin{array}{r}8 \\ +0.034 \\ \hline\end{array}$	${ }^{8} .156$
	-....do...................	Sept. 7	$32 \quad 24.803$	+0.037 -.008	0.151
		Sept. 8	24.821	-. 026	. 162
			$32 \quad 24.795$	$\pm .012$	

At Omaha the transit was mounted on the same picr used in 1907. This picr is 89.896 meters west and 39.315 meters north of the old longitude station of 1882 , reference to which may be found on pages 218 and 254 of Appendix No. 2, Report for 1897. The adjusted longitude of the 1882 station is $6^{\mathrm{h}} 23^{\mathrm{m}} 46^{\mathrm{s}} .087$, and the 1907 pier is $0^{\mathrm{s}} .257$ west of it, making the longitude of the 1907 pier $6^{\mathrm{h}} 23^{\mathrm{m}} 46^{\circ} .344=95^{\circ} 56^{\prime} 35^{\prime \prime} .16$.

At Mondak the transit was mounted on a temporary wooden pier 3.995 meters north and 0.250 meter east of the triangulation station Mondak. (See description on p. 123.) The longitude station, not marked, is $32^{\mathrm{m}} 24^{\ominus} .795=8^{\circ} 06^{\prime} 11^{\prime \prime} .93$ west of the Omaha longitude station of 1907 . The longitude of the temporary station is therefore $104^{\circ} 02^{\prime} 47^{\prime \prime} .09$ and the longitude of the triangulation station Mondak is $0.01^{\prime \prime}$ greater or $104^{\circ} 02^{\prime} 47^{\prime \prime}$. 10 .

Station.			$\begin{gathered} \text { Date of } \\ \text { oxchange } \\ \text { of time } \\ \text { signals. } \end{gathered}$	Difference of longitude 4λ.		v.	Transmission time.
Eastern.		estern.					
Cmaha, Nebr.	Bowman longitude, N. Dak.		$\begin{gathered} 1912 . \\ \text { Sept. } 18 \end{gathered}$		$\begin{array}{cc} m & \stackrel{8}{29} \\ 50.060 \end{array}$	$\begin{gathered} 8.036 \\ +0.036 \end{gathered}$	$\stackrel{8}{0.118}$
Do.			Sept. 28		50.084	+. 012	. 117
			Sept. 29		50.147 50.095	-. 0501	. 1111
Mean.							
					50.096	$\pm .012$	

At Bowman the transit was mounted on a concrete pier 12.018 meters west and 8.219 meters north of Bowman water tank. The pier is $29^{m} .50^{8} .096=7^{\circ} 27^{\prime} 31^{\prime \prime} .44$ west of the Omaha longitude station of 1907 (see above). The longitude of the Bowman longitude station is therefore $103^{\circ} 24^{\prime} 06^{\prime \prime} .60$.

Station.		Date of exchange of time signals.	Difference of longitude 4λ.	v.	Transmission time.
Eastern.	Western.				
Omaha, Nebr.Do........	Provo longitude, S. Dak........do..	1912. Oct. 11 Oct. 12 Oct. 13	$\begin{array}{ll}m & 8 \\ 31 & 32.210\end{array}$	8 -0.038	$\stackrel{8}{0.050}$
			- 32.127	+.045	. 043
			32.178	-. 006	. 046
Mean.			$31 \quad 32.172$	$\pm .016$	

At Provo the transit was mounted on a temporary wooden pier 12.355 meters north and 1.404 meters west of Provo astronomic station. (See description on p. 119.) The longitude station, not markcd, is $31^{\text {m }} 32^{s} .172=7^{\circ} 53^{\prime} 02^{\prime \prime} .58$ west of Omaha longitude station of 1907 (see above) and its longitude is thereforc $103^{\circ} 49^{\prime} 37^{\prime \prime} .74$. Provo astronomic station is $0^{\prime \prime} .06$ east of the longitude station and its longitude is therefore $103^{\circ} 49^{\prime} 37^{\prime \prime} .68$.

Station.			Date of exchange of time signals.	Difference of longitude $\Delta \lambda$.		v.	Transmission time.
Eastern.	Western.						
Omaha, Nebr.Do.........Do........Do.......	Wheatland Wyo.do.....	longitude,	$\begin{aligned} & 1912 . \\ & \text { Oct. } 19 \end{aligned}$	$\begin{aligned} & m \\ & 36 \end{aligned}$	$02 .^{8} 296$	$+\stackrel{8}{+0.009}$	${ }_{0}^{8.069}$
			$\begin{array}{ll} \text { Oct. } & 22 \\ \text { Oct. } & 24 \\ \text { Oct. } & 25 \end{array}$		02.385	-. 080	. 079
					02. 299	+.006	. 078
					02.240	+.065	. 077
					02.305	$\pm .021$	

At Wheatland the transit was mounted on a temporary wooden pier 25.21 meters cast and 6.41 meters north of Wheatland standpipe. (Sce deseription on p. 125.) The longitude station not marked, is $36^{\mathrm{m}} 02^{\circ} .305=9^{\circ} 00^{\prime} 34^{\prime \prime} .58$ west of Omaha longitude station of 1907 (see above), and its longitude is thercfore $104^{\circ} 57^{\prime} 09^{\prime \prime} .74$. Wheatland standpipe is $1^{\prime \prime} .09$ west of the temporary station, and its longitude is therefore $104^{\circ} 57^{\prime} 10^{\prime \prime} .83$.

Station.		Dato of exchange of timo signals.	Difference of longltude $\Delta \lambda$.	v.	Transmission time.
Eastern.	Western.				
$\begin{array}{r} \text { Omaha, Nobr.... } \\ \text { Do................................ } \\ \text { Mean..... } \end{array}$	Watkins iongitude, Colo...	1912. ${ }^{\text {Nov. }}$	$\begin{array}{ll}\text { m } & \\ 34 & 38.536\end{array}$	8 +0.027	${ }^{8} .061$
 do.	Nov. 7	33.628	-.085	. 064
		Nov. 8	38.524	+.039	. 066
			3438.563	± 0.022	

At Watkins the transit was mounted on a temporary woodon pier 4.60 meters east and 48.64 meters south of Watkins astronomic station. (See description on p.116.) The longitude station, not marked, is $34^{\mathrm{m}} 38^{\mathrm{s}} .563=S^{\circ} 39^{\prime} 38^{\prime \prime} .45$ west of Omaha longitude station of 1907 (see above), and its longitude is therefore $104^{\circ} 36^{\prime} 13^{\prime \prime} .61$. Wathins astronomic station is $0^{\prime \prime} .19$ west of the temporary longitude station, and its longitude is thercfore $104^{\circ} 36^{\prime} 13^{\prime \prime} .80$.

The following table gives for each longitude station on the one hundred and fourth meridian the name of the station, the geodetic latitude and longitudc, the astronomic longitude, the difference betwecn the astronomic and goodetie longitude ($A-G$), the cosine of the latitude, and finally the deflection in the prime vertical. The table is arranged like that shown on page 152, except that the cosine of the latitude is the faetor for reducing the difference between the astronomic and geodetie longitudes to the prime vertical, while the negative of the cotangent of the latitude is used in the latter table to reduce the difference in azimuths to the prime vertical.

The astronomic longitudes have not been corrected for the variation of latitude.
Deflections in prime vertical.

Station. .	Geodetic lat1tude.	Geodeticiongitude.	Astronomie iongitude.	A-G.	$\cos \phi^{\prime}$.	$\begin{gathered} A-G \\ (\mathrm{P} . \mathrm{V} .) \end{gathered}$
	- "	- , ir	"	"		"
Watkins astronomic, Coio...	394443.813	1043618.915	13.80	-5.12	0.7689	-3.94
Wheatlandstandpipe, W yo.	420243.815	1045726.898	10.83	-16.07	0.7426	-11.93
Provo astronomic, S. Dak..	431144.159	1034941.058	37.68	- 3.38	0.7290	-2.46
Bowman iongitude, N. Dak.	461057.528	1032411.012	06.60	-4.41	0.6924	-3.05
Mondak, Mont...	480010.435	1040248.867	47.10	- 1.77	0.6691	- 1.18

At cach of three of the stations the astronomie longitude and azimuth were determined. The Laplace azimuths computed at these stations are undoubtedly more accurate than the geodetie azimuths computed through the triangulation, and therefore the former were considered as being free from crror. The diserepancies between the Laplace and the geodetie azimuths were considered as deviations of the triangulation in azimuth. In the adjustment the attempt was made to hold the Laplace azimuths as absolute by means of azimuth equations. If the adjustment had been rigid, the defleetions in the prime vertical from the differences between the astronomie and geodetic longitudes would have been identical with those from the azimuths. The largest outstanding diserepancy is $0^{\prime \prime} .57$ at Provo, and this was considered too small to necessitate a further adjustment to completely eliminate it. This is within the limit allowable when the probable error of the Laplaee azimuth is taken into consideration.

ZENITH TELESCOPE USED FOR LATITUDE OBSERVATIONS.

ASTRONOMIC AZIMUTHS.

All except two of the astronomic azimuths on the one hundred and fourth mcridian triangulation were obscrved in 1912 by the triangulation partics. Those two were observed in 1913 by the latitude party. The methods described in the publication of the United States Coast and Geodetic Survey entitled "The determination of time, longitude, latitude, and azimuth, Special Publication No. 14," were employed on this work. At the Laplace stations, Mondak, Provo, and Watkins, observations on more than one night and an accuracy of the azimuth as great as that represented by a probable error of $\pm 0^{\prime \prime} .30$ were required. At the other stations one night's observations were considered sufficient, provided the probable error of the result was not greater than $\pm 0^{\prime \prime} .50$, and observations in at least ten positions of the horizontal circle had been obtained.

The instrument used in the azimuth work was the 12 -inch theodolite shown in illustration No. 2 and described briefly on page 30 . The error and weight of the ehronometer used were determined by observations made with the vertical circle. See page 140.

The following table shows for the azimuths observed by the party of Assistant C. V. Hodgson, the name of the station occupied, the dates on which observations were madc, the number of positions, and the probable error of the result:

Program of occupation of azimuth stations by party of Assistant C. V. Hodgson.

Station.	Date of occupation.	Number of positions.	Probable error of result.	Station.	Date of occupation.	Number of positions.	Probable error of result.
	1912.				1912.		"
Ragned, Wyo..	June 4....	16	± 0.31 ± 0.21	Willow, Wyo.	Oct. 15...	16	± 0.24
Dewey, Colo.	July 10...	16	± 0.34		1913.		
Boulder, Colo...........	Aug. 1...	16	± 0.22	Alkail, WYo	Sept. 9.	14	
Watkins a stronomic, Colo	Aug. 11, 13...	32	± 0.18	Cambria, Wyo	Sept. 12.	14	± 0.29
Provo astronomic, S. Dak	Oct. 6, 7...	24	± 0.36				

The following table gives data, similar to that contained in the one above, for the azimuths obscrved by the party of Assistant E. H. Pagenhart:

Program of occupation of azimuth stations by party of Assistant E. II. Pagenhart.

Station.	Date of occupation.	Number of positions.	Probable error of result.	Station.	Date of occupation.	Number of positions.	Probable error of result.
	1912.		"		1912.		"
Bowle, N. Dak..	June 4,5.	16 16	± 0.53	Saddie, N. Dak.	Sept. 5.	16	± 0.20
Mondak, Mont.	July 24, $25 . \ldots$	24	± 0.40 ± 0.20	Wymonkota, Mont.	Oct. 20. .	16 16	
Blue, Mónt.	Aug. 20.........	18	± 0.24				

The table below gives for each azimuth station its geographic position, the geodetic azimuth of a line of the main scheme of the triangulation, the astronomic azinuth, the difference between the astronomic and geodetic azimuths (A-G), the negative cotangent of the latitude of the occupied station ($-\cot \varphi^{\prime}$), and finally the value of "A-G" as the deflection in the prime vertical (P. V.). The table is arranged like those shown in the two publications of the United States Coast and Geodetic Survey on the figure of the earth. ${ }^{1}$

In each case the azimuth and triangulation stations are coincident. The mark used was the signal lamp accurately eentered over the triangulation station at the distant end of the line of triangulation for which the azimuth is given.

The astronomic azimuths have been corrected for the elevation of the station sighted upon, but not for the variation of latitude.

[^15]Deffections in prime verlical.

Station.	Geodetic latttude.	Geodetic longltude.	Geodetic azlmuth.	To statlon-	Astronomic azimuth.	A-G.	$-\cot \phi^{\prime}$.	$\begin{gathered} A-G \\ \left(1^{3}, V\right) . \end{gathered}$
	- "	- "	- " 1		"	"		"
Watkins astronomle, Colo	394443.813	1043618.915	35008123.53	Indian.	02.88	+3.25	-1.2026	-4.03
Boulder, Colo..	395737.355	1051740.611	3484025.56	Morrison.	48. 59	$+23.03$	-1.1934	-27.48
Dewey, Colo.	403025.868	1043316.100	940017.52	IIorsetooth	19.08	$+1.56$	-1.1706	-1.83
Twin, Wyo.	410254.064	1051602530	3535424.76	Horsetooth.	38.82	$+14.00$	-1.1484	-16.15
Ragred, Wyo.	412620.835	1052039.192	2125623.95	Chugwater.	35. 45	$+11.50$	-1.1327	-13.03
Willow, Wyo.	424110.995	1043950.037	464849.49	Coleman.	47.56	-1.83	-1.0842	+2.09
l'rovo astronomic,	4311144.159	1034941,058	705553.73	Provo West base	56.62	+289	-1.0651	-3.05
Alkall, WYo.......	433812.937.	1042911.373	2071916.05	Cambria.	14.82	-1.23	-1.0488	$+1.29$
Cambria, Vyo	440243.952	1041136.919	273126.43	Alkall...	18.95	- 7.48	-1.0339	$+7.73$
Wymonkota,	450035.551	1040507.832	2011714.73	Harding	21.73	+ 7.00	-0.9997	-7.00
Reva, S. Dak	453431.060	10312 44. 169	1353535.72	Table.	39.48	+3.76	-0.9790	-3.68
Saddle, N. Dak	46 58-57. 890	1031342639	1164216.19	Cook.	17.99	+ +1.80	-0.9331	-1.68
Blue, Mont.	471522.033	1041000.310	2290714.56	Flat.	13.44	$+0.88$	-0.9242	-0.81
Mondak, Mont	480010.435	1040248.867	1714517.45	Montan	18.75	$+1.30$	-0.9003	-1.17
Gladys, N. Dak	482645434	1035303.761	1921502.79	lloward	59.64	- 3.15	-0.8864	+2.79
Bowle, N. Dak	485956.626	1034400.295	2730340.65	Ambrose north. east base.	43.87	+3.22	-0.8693	-280

ASTRONOMIC LATITUDES.

In July, 1913, a party under the direction of Assistant C. V. Hodgson began the obscrvations for latitude at stations of the one hundred and fourth meridian primary triangulation. The work was interrupted while the party was engaged in measuring the Cheyenne base and in making the necessary horizontal observations to connect the base with the main scheme of triangulation. (Sce p. 22.) The party consisted of two men besides the chicf, who was also the observer. The mcans of transportation was a White automobile truck of $1 \frac{1}{2}$ tons carrying capacity, with a 30 -horsepower gasoline engine. The truck was provided with the nccessary tanks for carrying gasoline for the engine and water for cooking and drinking purposes. The outfit comprised two tents, cots and bedding for three persons, a sinall mess outfit, a box of tools, a portable wooden tripod for the latitude instrument, a few short boards of which a platform was made for the observer, an 8 by 8 foot observing tent, a zenith telcscope, and a chronometer. Besides the above-mentioned articles, there were a few small instruments for usc when connecting the astronomic and triangulation stations. as well as lamps, lanterns, and other small articles of outfit.

The truck is shown in illustration No. 6c. The zenith telescope is shown in illustration No. 6a, and the wooden stand, which had legs capable of adjustment to various licights, is shown in illustration No. 6b. The obscrving tent used by the party is like that shown in illustration No. 17 of Special Publication No. 14. That the truck was a much more economical means of transportation than tcams is clearly shown by a statement in Mr. Hodgson's scason's report, which reads:

During the 2.2 months spent on latitude we accomplished what would have taken seven months to complete with teams, while the cost per station was reduced from $\$ 212$ to $\$ 119$. Counting in the entire cost of the truck on this season's work, brings the cost per station to only $\$ 199$, so that the truck more than paid for itself in 2.2 months.

The truck could be run at a maximum rate of 25 miles per hour.
The wooden stand was very satisfactory, in the opinion of Mr. Hodgson, and the accuracy of the results proves that it must have been very stable.

The chicf of party followed the methods given in Special Publication No. 14 of the Coast and Gcodetic Survey, entitled "The determination of time, longitude, latitude, and azimuth."

The accuracy desired was that represented by a probable error of the result at a station of about $\pm 0^{\prime \prime} .10$. The observer was permitted to complete the obsc vations in one uight, if it was found practicable to do so. He was directed to make computations of the latitude at the first fow stations, but, after ascertaining the number of pairs nocossary to give the desired accuracy, he was not to make any further computations in the field. After computations were mado in the field at three stations it was found that, in general, 18 pairs would give the accuracy required. That this was a satisfactory numbor was proved by the probable orrors

PORTABLE WOODEN SUPPORT WITH ADJUSTABLE LEGS FOR THE ZENITH TELESCOPE.
Speciai Publicatlon No. 19.

[^16]of the results, only one station having a probable error greater than $\pm 0^{\prime \prime} .10$, and that one only $\pm 0^{\prime \prime} .11$.

The program of the oeeupation of the stations is given in the following table. The Cheyenne base was measured between the oceupation of stations Morrison and Whitaker. The astronomie azimuth of a line of the triangulation was observed at stations Alkali and Cambria.

Program of occupation of latitude stations.

Station.	Date of occupation.	Pairs observed.	Probable error of result.	Station.	Date of occupation.	Pairs observed.	Probable error of result.
	1913.		"		1913.		"
Elbert, Colo.	July 30, 31....	17	± 0.10	Alkali, WYo.	Sept. 9.	17	± 0.08
Morrison, Col	Aug. $2,3$.	18	± 0.07	Cambria, Wyo.	Sept. 13.	19	± 0.05
Whitaker, W yo. .-.................	Aug. 12....	16	± 0.05	Sundance, W yo....................	Sept. 17.......	18	± 0.07
Loveland tall white chimney, Colo.	Aug. 14, 15..	15	± 0.11	Wyoming, northeast corner eccentric.	Sept. 19.......	18	± 0.05
Brighton bench mark eccentric,	Aug. 16, 17.	18	± 0.06	Harding, S. Dak.	Sept. 21.......	18	± 0.08
Colo.				Reva, S. Dak...............	Sept. 25.	17	± 0.08
Dewey, Colo.....................	Aug. 20.	18	± 0.08	Bowman longitude, N. Dak	Sept. 27.	18	± 0.08
Colorado-W yoming boundary monument 44	Aug. 22.	18	± 0.08	Badland, N. Dak. North Dakots Montana bound-	Sept. 30 Ot.	17 17	± 0.06 +0.08
Wheatland standpipe, Wyo.	Aug. 23	18	± 0.07	ary monument eccentric.			
Coleman, W yo........	Aug. 28	17	± 0.08	Sheep, N. Dak.	Oct. 6........	17	± 0.10
Jireh College, W yo	Aug. 31	17	± 0.10	Mondak, Mont	Oct. 8, 10, 11...	17	± 0.07
Kirtley, Wyo...	Sept. 3, 4	18	± 0.05	$3 \mathrm{Bonetraill}, \mathrm{N}. \mathrm{Dak.........}$.	Oct. 13......	18	± 0.07
Provo astronomic, S. Dak........	Sept. 5.	18	± 0.10	Ambrose northeast base, N. Dak..	Oct. 14	17	± 0.08

In every ease the astronomic station was referred to the triangulation station and in the table given below the geodetie and astronomie latitudes refer to the triangulation stations whose geodetie positions are shown also on pages 88 to 94 . Deseriptions of the stations are given on pages 115 to 126 , unless the name of the station is suffieient for its identifieation.

The following table gives the names of the latitude stations, their geodetic latitudes and longitudes, their astronomic latitudes redueed to sea level, and the values of $\mathrm{A}-\mathrm{G}$, the astronomic minus the geodetic latitude. The astronomic values have not been reduced for variation of the pole.

Deflections in the meridian.

Station.	Geodetic latitude.	Geodetic longitude.	AstronomIc latitude.	A-G.
	- ${ }^{\prime}$	- ' ${ }^{\prime}$	"	"
Elbert, Colo	391402.936	1043433.167	2.40	-0.54
Morrison, Colo.	394009.669	1051309.104	11.77	+2.10
Whitaker, Wyo	412356.362	1045938.801	53.00	-3.36
Loveland tall whito chimney, Colo	402410.770	10503 35. 817	4.62	-6.15
Brighton bench mark eccentric, Colo	400001.626	1044858.148	3. 40	+1.77
Dewey, Colo..........................	40302 2 .868	1043316.100	19.53	-6.34
Colorado-W yoming boundary	405954.156	1045333.575	49. 74	-4.42
Wheatland standpipe, Wyo..	420243.815	1045726.898	42.33	-1.49
Coleman, W yo...............	422203.568	1050713.823	5.98	+2.41
Jireh College, Wyo	424629.82	${ }_{104}^{104} 4234.388$	43. 70	+2.70 +0.98
Kırtley, W yo......	425144.682 431144.159	1040600.914 1034941.058	43.70 40.07	-0.98 -4.09
Alkall, W yo......	433812.937	1042911.373	7.79	-5.15
eambria, WYo.	440243.952	1041136.919	41. 76	-2.19
Sundance, Wyo	442844.696	1042702.821	45.35	+0.65
W yoming northeast corner eccentric	445959.117	1040318.515	60.39	+1.27
Harding, S. Dak.	452214.317	1035309.605	12.95	-1.37
Reva, S. Dak.	453451.060	1031244.169	49.54	-1.52
Bowman longitude, N. Dak	461057.528	1032411.012	56.96	-0.57
Badland, N. Dak.	464200.620	1031959.087	. 87	+0.25
North Dakota-Montana boundary monument eccentric.	471242.065	1040239.376	44.39	+2.33
Sheep, N, Dak......................	473750.103	1034739.515	51.93	+1.83
Mondak, Mont.	480010.435	1040248.867	11. 93	+1.55 +0.73
Bonetraill, N. Dak ${ }_{\text {Ambrose }}$ northeast base, ${ }^{\text {a }}$. ${ }^{\text {D }}$	482500.000 485924.331	1034944.219 1032909.836	. 73 26.47	+0.73 +2.14

It was not found to be practieable before the manuseript of this report went to press to correet the observed deflections for the effect of the topography and isostatic eompensation. It seems to be reasonably eertain from an inspeetion of the topographic maps in Colorado that these correetions will reduce many of the observed deflections. This seems to be the case especially with the defleetion of the vertical in the prime vertieal at station Boulder (latitude $39^{\circ} 57^{\prime}$ and longitude $105^{\circ} 18^{\prime}$). The observed defleetion in this ease was $27^{\prime \prime} .48$, the nadir being drawn toward the west. The mountains just west of the station rise to an elevation of more than 13000 feet (4000 meters).

INDEX MAP SHOWING AREAS COVERED BY PUBLISHED TRIANGULATION WHICH HAS BEEN RIGIDLY COMPUTED ON THE NORTH AMERICAN DATUM.

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, STATIONS BLACK AND RAINY TO CANADA

TRIANGULATION, ONE HUNDRED AND FOURTH MERIDIAN, MISSOURI RIVER CONNECTION.
Speclal Publication No. 19.
Special Publlcation No. 19.

triangulation, thirty-ninth parallel, stations divide, pikes peak, and plateau to patmos head and mount ellen.

Index to positions, descrip'ions, elevations, and sketches.

Station.	Position.	De scription.	$\begin{gathered} \text { Ele- } \\ \text { va- } \\ \text { tion. } \end{gathered}$	Sketch.	Station.	Position.	De scription.	Ele-vation.	Sketch.
	Page.	Page.	Page.			Page.	Page.	Page.	Number
Adobe	95	127	147	14	Bison	95	129	148	9,15
Alkali	89	118	146	10, 11	Black	90	121	147	11,12
Alkali (U. S. G. S.)	93		147	10,11	Black boundary stake.	105			16
A mbrose	91	124	147	12	Blanco	102	135	16
A mbrose northcast base or School (U. S. \&					Blue	90	121	147	12
C., B. S.).	91	124	147	12	Bluff	93	125	146	10
Ambrose Presbyterian Church steeple......	94		147	12	Bonctraill	91	123	147	12
Ambrose southwest base.	91	124	147	12	Bonetraill schoolhouse belfry.	94		147	12
Anderson	112	138		17	Booker	109	136		17
Antelope	98	131	148°	16	Boulder	83	116	146	9
Antelope Mountain or Swasey Peak.	106		148	16	Boundary stake No. 1	107			16
Antero, cairn	98		148	15	Boundary stake No. 2.	107			16
Arapahoe	95	126		14	Bountiful Peak or Francis Peak, cairn..	104		148	16
Arapahoe Peak, summit	98			15	Bowie	91	124	147	12
Aroya.	95	127	147	14	Bowman longitude	94	126:	11
Aroya section house chimney.	97			14	Bowman water tank	94		147	11
Astronomic:					Box Elder Peak or Willards Peak, cairn.	105			16
Colorado Springs (U. S. E.).	97	133		14	Bradford	109	136	17
Oasls	102	135		16	Brighton	88	116	146	9
Tonopah	109	136		17	Brighton bench mark, eccentric.	92		146.	9
Virginia City	113	139		17	Brighton bench mark R 9 .	92	124	9
Augusta, monument.	111		148	17	Broken Back, king summit monument	108		148	17
Augusti.	102	135		16	Buffalo Peak	98			15
Austin:					Buffalo Springs	94	126	146	11
Catholic Church spire.	110			17	Buford	90	122	147	12, 13
Courthouse flagstaff.	110			17	Bull.	91	123	147	12
Episcopal Church spire..	110			17.	Bullwhacker	108	135	17
Longitude.	110	137	17.	Bunker Hill, cairn	110		148	17
Longitude eccentric.	110			17	Butler	109	136		17
Methodist Church spire.	110			17	Butte	106			16
Azimuth:					Butte	105			16
Mark, Ibepah	105			16	Butte	90	120	146	11
Mark, Verdi	114	140		17					
Ogden	104			16	Cache	105			16
Salt Lake City	104			16	California-Nevada, iron monument	113	139		17
					Calformia-Nevada, stone monument.	114	139		17
Badland	90	121	147	12	Califormis-Nevada, wood monument	114	139		17
Bainville.	90	123	147	12	Camara	102	135	16
Bainville Catholic Church, highest spire....	94		147	12	Cambria	89	119	146	11
Basalt or Pllot Cone, cairn..	111	137	17	Camerons Cone	98			14
Beach Catholic Church, cross..	94		147	12	Camp stake.	105			16
Bear Creek.	97	133		14	Canovas	102	135		16
Bear lodge Mountain, highest peak	93		146	11	Canyon Peak	106			16
Beaver.	103		148	16	Carson, capitol dome	113			17
Beaver flagstafl.	103			16	Carson Sink	97	132	148	17
Beaver meetinghouso.	103			16	Carson Table, summit	111			17
Bench .	106			16	Castle	89	120	146	11
Bench mark 121/2.	94	126	147	13	Castle Rock (U.S. G. S.).	93			11
Bench mark 122/2.	94	126	147	13	Catholic Church, Eureka	108	136		17
Bench mark 123/2.	94		147	13	Catholic Church spire, Austin	110			17
Bench mark "6702 Denver".	92		146	9	Cedar	101	134		16
Bench mark Gg.	92			9	Cedar Hill	113	138		17
Bender	113	139		17	Cedar Spur	107			16
Big Springs.	95	128	147	14	Cervera	102	135		16
Bilby.	94	126	147	12	Cheyenne cast base	88	117	146	9
Birch Creek, cairn .	103			16	Cheyenne, State capitol dome	92		146	9

Statlon.	Pos? tion.	$\begin{gathered} \text { De } \\ \text { serip- } \\ \text { tíon. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ele- } \\ & \text { vion. } \end{aligned}$	Sketeh.	Station.	Posi- tion.	$\begin{gathered} \text { De- } \\ \text { serip- } \\ \text { tion. } \end{gathered}$	$\begin{gathered} \text { Elo } \\ \text { Ya- } \\ \text { tion. } \end{gathered}$	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page.	Number
Cheyenne Wells	95	127		14	Desert	108	135		17
Cheyenne west base	88	117	146	9	Desert Peak, caim.	105		148	16
Chiquita	99	133	148	15	Devino's granary	106			16
Chugwater	88	117	148	10	Dewey	88	116	146	9
Churchill, cairn	111	137		17	Diamond Peak	96	132	148	16,17
City Creek	103	135	148	16	Divide	95	128	147	9,14, 15
City Hall, Ogden	104			16	Douglas	109	136		17
Cliff	101	134		15	Douglas	88	116	146	9
Cliff, flag	105			16	Dover beneh mark Ez	92	124		9
Coleman	88	118	146	10	Dover bench mark, eccentric.	92		146	9
College cupola, Colorado Springs	97			14	Dover bench mark, reference mar	92		147	9
Colorado Springs:					Draper.	103		148	16
College cupola	97			14	Dry Camp	97		147	14
Latitude and longitude	97	133		14	Duckwater, cairn	108		148	17
Publie schoolhouse, flagstafl on clock tower \qquad	98			14	Eagles Nest Butte, cairn	93 100		146	11
United States Engineers, astronomic...	97	133	14	East base, Green	100	134		17
Colorado-Utah:					East Deer Ear Butto	93		146	11
Middle boundary monument North boundary flag	100			15	Eastonville church spire..	92			14
North boundary flag	100			15	Eastonville creamery tower.	97			14
North boundary stone....................	100			15	East Peak.	113	138		17
South boundary	100			15	East Peninsula Peak	105			16
Colorado-W yoming boundary monument, milepost 44.	92	125	146	9	East Ridge..........	106			16
Cone Peak, white flag.	114	139		17	East Spanish Peak	98		148	15
Cook	90	121	147	12	East Twh	92		147	8
Corral Bluff	95	128	147	14	Eaton sugar factory, chimney	92		146	9
Cory Peak, or Mount Hull, summit.	112			17	Elbert	88	115	146	9
Cottonwood	89	119	146	10	Elephant, or Muca	112			17
Coulson's house, main chimney.	97			14	E1	89	119	146	10,11
County courthouse dome, Denver	91		146	9	Elk (U.S. G.	93		147	10,11
Courthouse, Eureka.	108	135		17	E1 Paso eas	95	128	147	14
Courthouse flagstaff, Austin.	110			17	El Pas	95	128	147	14
Courthouse flagstaft, Ogden..	104			16	Episcopal ehurch spire,	110			17
Cramer Guleh .	95	128	147	14	Esmeralda County,	109	137		17
Crest.	109	136		17	Ev	95	127	147	14
Crestone Peak	98		148	15	Eurek				17
Crosby	91	124	147	12	Cathole chur	108	136		17
Crow	89	119	146	11	Courthons	108	135		17
Crows Nest (U. S. G. S.)	93		147	11	Longitud	10	13.		17
Crystal Peak, flagstaft.	114	139	17	Fairview, cairn.	111		148	17
Crystal Peak, mountain top.	114	139	17	Farmington eourthouse spire.	104			16
Cutofl	90	122	147	13	Ferry	90	123	147	13
Cutting	109	136		17	First View.	95	127	147	14
C. V. North, cairn	100			15	First View section-house ehimney.	97			14
C. V. South, cairn...	. 100			15	Flag...	105			16
					Flag in flat	103			16
Daniels \& Fisher's tower, gilded dome,	91		146	9	Flat.......	90	122	147	12
			146	9	Folsom Peak	112	138		17
Davis	109	136	17	Fort D. A. Russell water tank	92		146	9
Deadman	113	138		17	Francis Peak.	104		148	16
Delano, cairn	103		148	16	Franneis Peak, or Bountiful Peak, cairn	104		148	16
Denver:					Freel Peak..	112	138		17
County courthouse dome.....	91		146	9	Fremont Island, cairn	104		148	16
Daniels \& Fisher's tower, gilded dome	91		146	9	Frisco Mount, tree...	106		148	16
Grant smelter, chimney..	01		146	9	Galens saddle.	112			17
Loretto Heights school, beliry.	91		146	9	Genoa flagstaff.	113			17
Stato capitol dome...	91		146	9	Genoa Peak	112	138		17
University, observatory dome..	91		146	9	Gladys.	91	123	147	12
Desstolya.	111		148	17	Glen Eyrie.	97	133		14
Desatolya, north twin.	111			17	Golden	109	136		17
Deseret.	96	131	148	16	Grand Junction standpipe	99	134	148	15
Deseret magnetie.	103			16	Granite Peak.	108		148	16

Station.	Position.	De scription.	$\begin{aligned} & \text { Ele- } \\ & \text { va- } \\ & \text { tion. } \end{aligned}$	Sketeh.	Station.	Position.	$\begin{aligned} & \text { De } \\ & \text { serip } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \text { Ele- } \\ \text { ya- } \\ \text { tion. } \end{gathered}$	Sketch.
	P ge.	Paye.	Page.	Number.		Page.	Page.	Page.	Number
Granite Peak summit, south end..	110			17	Kawich Peak	109			17
Grant smelter ehimney, Denver.	91		146	9	Kaysville meeting-house spire.	104			16
Grantsville flagstaff.	103			16	Kaysville 1R. G. W. depot, ehimney......	104			16
Grassy, eairn.................................	105			16	Kipp's, William, square house ehimney....	92		146	9
Grays Peak, summit	98			15	Kirtley	89	118	146	10
Greeley sugar-factory ehimney	92		146	9	Kit Carson	95	127	147	14
Greeley tall tank	92		146	9					
Greenhorn Mountain, cairn	98			15	La Garita king summit	99			15
Green River:					La Garita range peak	99			15
East base	100	134		15	Laird	89	119	146	11
Hotel flagstaff.	101	134		15	Lake Park pavilion, flag	104			16
Latitude.	101	134		15	Lake Shore Beneh	103			16
Longitude	101	134		15	Lanark	90	122	147	13
North meridian.	101	134		15	Lander Hill or Mount Prometheus.	110	137		17
Schoolhouse flagstaff.	101	134		15	Landsman	95	127	147	14
South meridian.	101	134		15	La Salle, north peak, cairn	100			15
West base	100	134		15	La Salle, northwest peak, cairn.	100			15
Greentop	88	117	146	9	La Salle, tank near coal chute.	92		146	9
Gunnison astronomic	101			16	Latitude and longitude, Colorado Springs..	97	133		14
Gunnison azimuth.	99		148	15	Latitude, Green River	101	134		15
Gunnison Peak, cairn.	99			15	Latitude, Salt Lake City	104	135		16
					Leadville, Ninth Street schoolhouse cupola..	99			15
Harding .	89	120	146	11	Leo	108	135		17
Hartman	100	134	\therefore	15	Leon Peak, low cairn	99			15
Haystack	88	118	146	10	Levan	101	134		16
Haystack Butte, highest point	93		146	11	Lodge	90	120	146	11
Herriman.	103		148	16	Lone Cone.	99			15
Highland Peak, summi	107		148	16	Lone Mountain	97	132	148	17
Hill, flag	103			16	Lone Peak, needle	103		148	16
Hilltop	88	115	146	9	Lone tree.	114	139	148	17
Hobls	88	118	146	10	Lone tree, cairn	102			16
Holcolm Hills.	95	128	147	14	Longitude:				
Hollingswood's, Glen, new barn, west gable.	92		146	9	Austin.	110	137	17
Holt	95	128	147	14	Eccentric, Austin	110			17
Horsetooth	88	116	146	9	Eureka	108	136	17
Hot Creek, north summit.	108			17	Green River	101	134	15
Hotel flagstaff, Green River..................	101	134		15	Ogden	104	135	148	16
Hot Spring.	111	137	17	Salt Lake City	104	135		16
Hot Spring east base	111	137		17	Verdi	114	139		17
Hot Spring Mountain	112	138		17	Longs Peak..	98			15
Hot Spring west base	111	137		17	Loretto Heights school beliry, Denver.	91		146	9
Howard	91	123	147	12	Lothrop.	109	136		17
Hugo.	95	127	147	14	Loveland, red brick ehimney.	92		146	9
Hugo schoolhouse chimney.	97			14	Loveland, tall white chimney	92	124	146	9
Hugo section-house chimney	97			14	Lovering.	90	122	147	12
Hump .	90	121	147	12	Lovering (U. S. G. S.)	94			12
Hunts Peak	98			15	Lyon, south summit.	109	148	17
Ibepah.	96	130	148	16					
Ibepah:					Manterola	102	135	16
Azimuth mark.	105			16	Manville	89	118	146	10
Post offlce eccentrie...	106			16	Manville, C. \& N. W. Ry. water tank.....	93		146	10
Post office southeast corner.	106			16	Manville, Congregational Church steeplo...	93	-...	146	10
Telegraph office chimney..	106			16	Marmon	91	123	147	12
Telegraph office flag.	106			16	Meridian mark, Verdi	114	139		17
Lodian	88	116	146	9	Mesa	99	133	148	15
Indian Head, summit	102			16	Methodist Church, Ogden.	104			16
Indian Peak	106	...	148	16	Methodist Chureb spire, Austin	110			17
Inyankara.	89	119	146	11	Miea	100	134		15
Iron monument, Callfornia-Nevada .	113	139		17	Middle boundary .	108			16
					Middlo boundary monument, Colorado-				
Jackson	90	122	147	12, 13	Utah	100			15
Jasper....	94	126	147	12	Middlo La Salle Peak	100			15
Jireh College cupola.	93	125	146	10	Middle Promontory, cairn.	104			16

Station.	Pos: tion.	Descrip tion.	$\begin{gathered} \text { Ele- } \\ \text { Va- } \\ \text { tion. } \end{gathered}$	Sketch.	Station.	Posi- tion.	$\begin{aligned} & \text { De } \\ & \text { scrip } \\ & \text { tion. } \end{aligned}$	$\begin{aligned} & \mathrm{Fle-} \\ & \text { va- } \\ & \text { tion. } \end{aligned}$	Sketch.
	Page.	Page.	Page.	Number.		Page.	Page.	Page.	Number
Otto, U. P. Ry., black water tank.	92		146	9	Salt Lake City:				
Ovcrland	95	127	147	14	Azimuth.	104			16
Overiook	112	138		17	Latitude	104	135		16
Oxford	105			16.	Longltude	104	135	16
					Temple east spire.	103		148	16
Pah Rah	97	133	148	17	Temple west spire.	103			16
Paradise Peak, cairn	111			17	U.S.Land Survey standard meridian..	104			16
Parker.	89	119	146	10	Sait Lake northwest base	96	131	148	16
Patmos Mead	96	130	148	15,16	Sait Lake southeast base.	96	131	148	16
Peak south of Terry	93		146	11	Sandy.	105			16
Peavine.	112	138		17	Sanpete .	101	134	148	16
Peavine east, cairn	114			17	San Rafael Knob	101		148	16
Pennington's large white house, center					Sawtooth Peak or Sevler Mountain	106		148	16
chimney	97			14	Schoolhouse flagstaif, Green River.........	101	134		15
Pikes Peak.	95	129	147	9,14,15	Schoolhouse north of Hump, chimney	94		147	12
Pilot Cone or Basalt, caim	111	137		17	Schoolhouse tower, Oasis.	103	135		16
Pilot Peak.	96	131	148	16	School (U. S. \& C., B. S.) or Ambrose				
Pilot Peak azlmuth mark	105			16	northeast base	91	124	147	12
Plne Hill.	107			16	Scipio	102	134	148	16
Pioche.	96	132	148	16	Section 4, T. 157 N., R. 102 W., southwest				
Ploche Peak, monument.	107		148	16	corn	94			12
Plateau	95	128	147	14,15	Section 7, T. 143 N., R. 105 W. , southwest				
Platte Peak.	98			15	corner	94		147	12
Point of Rocks.	113	139		17	Section 13, T. 155 N., R. 102 W. , northwest				
Pond Summit, monument	112			17	corner	94			12
Post office eccentric, Ibepah.	106			16	Scetion 22, T. 17 N., R. 60 E., southeast				
Post office southeast corner, Ibepah..	106			16	corner	94		147	12
Prison Hill.	113	138		17	Section 33, T. 17 N., R. 68 W., stone post,				
Promontory	96	131	148	16	southwest corner	92		147	9
Prospect Peak.	108	136	148	17	Section 36, T. 4 S., R. 65 W ., southeast corner				
Provo astronomic.	89	119	146	10	stone	91		147	9
Provo astronomic bench mark 3708D W			146		Sentinel	90	121	147	12
Provo east base.	89	119	146	10	Sentinel Butte schoolhouse, flagpolo	94		147	12
Provo west base	89	119	146	10	Sevier Mountain or Sawtooth Peak	106		148	16
Pubileschoolhouse, flagstafl on clock tower,					Sharp Peak	108		148	17
Colorado Springs.....	98			14	Shecp	90	122	147	12,13
					Shell Creek, north peak.	107			16
Ragged	88	117	146	9,10	Shell Creek, south peak	107			16
Rallway whistle post	114			17	Sherman Peak	111			17
Rainy	90	121	147	11, 12	Short.	109	136		17
Ralston.	109	136		17	Shoshone Peak, north.	110		148	17
Ranch Hill	113	139		17	Shoshone Peak, south	110		148	17
Rawhlde	89	118	146	10	Sierra Blanca, peak	98		148	15
Red Chlef, cairn.	105			16	Smoky Valley, northeast summit	108			17
Red Squaw, cairn	105			16	Smoky Valley, southwest summit	108			17
Relorm Sehool, Ogden.	104			16	Snake.	90	123	147	12
Reno Congregational Church splre.	114			17	Snake Creek	107			16
Reservoir.	110	137		17	Snowden water tank	94		147	13
Reservoir.	100	134	15	South Antel ope 1, cairn	104			16
Reva	89	120	146	11	South Antelope 2.....	104			16
Rlchmond.	108	135		17	South boundary, Colorado-Utah	100			15
Rito Alto, calm	98		148	15	South boundary flag..	106			16
Ritzke's windmill, center.	92	.	146	9	South Dakota-Nebraska boundary monu-				
Road summit.	106			16	ment......................................	93	125	146	10
Roberts Creek.	110			17	South Dakota-Nebraska boundary monu-				
Rose Knob.	112	138		17	ment eccentric	93	125		10
Round Top	97	133	148	17	South Dakota-North Dakota milcpost 333..	93	126	147	11
Rubicon Point.	112	138		17	South Dakota-North Dakota milopost 333				
Russell .	88	117	146	9	cccentric....................	93	126	146	11
Saddic	90	121	147	12	South Dakota-Wyoming boundary monument \qquad	93	125	146	10
Sagasta.	102			16	Southeast base, Tonopah	109	136		17
Bage.	112			17	Southeast corner, Montana, eccentric.	93	125	146	11
Salt Creek, cairn.	101		148	16	Southeast corner. Montana. monument.....	93		147	11

INDEX TO POSITIONS, DESCRIPTIONS, ETC.

GENERAL INDEX.

Abstract of horizontal directions
Page.
Accuracy:Elevations140
Indicated by corrections to anglos and elosures of triangles. 56
Indicated by corrections to observed directions. 53
Primary triangulation in the United States. 79
Table of sections of triangulation in the United States in the order of 79
Adjustment of elevations 140
Adjustment of triangulation 41
Ambrose base. 10
Cost 13
Table of results of the measurement 12
Azimuth, deviation of triangulation in 65
Azimuths:
Accord of. 63
Astronomic 151
Base:
Ambrose10
Cheyenne 22
Conelusions from measurements of 28
El Paso, discussion of old measurement of 15
E1 Paso, measurement in 1913 19
Measurements in 1913 19
Nets$\begin{array}{r}8 \\ 13 \\ \hline\end{array}$
Provo
Rapldity of measurements 27
Sites$\begin{array}{r}27 \\ 8 \\ \hline\end{array}$
Stakes versus movable supports for measurement of
Tapes versus wires for measurement of
Bases:
Accord of27Frequency of638
Frequey or Instructions for the measurement ofOne hundred and fourth meridian, measurement of9Bench marks, connections of the triangulation with precise lev-eling
Boundaries:
International, connections made with 39
State, connections made with 40
Cheyenne base 22

Cost| 24 |
| :--- |
| 23 |

Table of results of the measurement
Computation of elevations 140
Condltion equations$\begin{array}{r}140 \\ 47 \\ 52 \\ \hline\end{array}$
Colorado series
El Paso base net 51

One hundred and fourth meridian| 51 |
| :--- |
| 47 |

Rocky Mountain series 51Connections made between the one hundred and fourth meridiantriangulation and stations and monuments of other surveys....Connections made between the thirty-ninth parallel triangulationand stations and monuments of other surveys.Conversion tables, feet to meters and meters to feetCorrect lons to angles and closures of triangles, accuracy as indi-cated by.Corrections to directions, high, low, grazing, and refraction lines.
corrections tomore periods
Corrections to observed directions, table of Page.
Colorado series53
53
El Paso base nct53
One hundred and fourth merldian 54
Rocky Mountain series 53
Cost of:
Ambrose base 13
Cheyenne base 24
El Paso base 24
Provo base 15
Reconnoissance 8
Signals 29
Triangulation 40
Datum:
North American 80
Unlted States Standard 80
Deflection of the vertical, effect on deviation of triangulation in azimuth 75
Deflections in the merldian from astronomic latitudes, table of.. 153
Deflections in the prime vertical from astronomic azimuths, table of 152
Deflect lons in the prime vertical from astronomic longltudes, table of 150
Descriptions of stations 114
Index to 155
Ono hundred and fourth meridian 115
Thirty-ninth parallel 126
Deviation:
Eastern oblique arc in azimuth 34
Tables for cast-and-west ares, analysis of data 72
Tables for north-and-south ares, analysis of data 70
Triangulation in azimuth 65
Deviatlon data:
East-and-west ares, table for 69
Explanation of tables 66
North-and-south ares, table for 67
Directlons:
Abstract of horizontal. 42
Accuraey as indieated by correctlons to observed 53
Observations for horizontal 35
Table of corrections to observed 53
Drag, study of ellect of 76
Elevations:
Computation, adjustment and accuracy of 140
Of telescope above the station marks 42
Index to 155
Table of 146
E1 Paso base:
Cost of 24
Discusslon of old measurement of. 15
Measurement in 1913 19
Table of results of 1913 measurement 21
Equatlons, condltion 47
Colorado series 52
E1 Paso base net 51
One hundred and fourth merldian 47
Rocky Mountain series 51
Errors, study of 64
Devlatlon of trlangulation in ezimuth 65
Effect of drag 76
GENERAL INDEX. 163
Reconnoissance-Continued.
Page.
Page.
Page.
General Land Office triangulation, connections made wlth
Geographic positions 88
Explanation of tables 83
Index to 155
One hundred and fourth meridian. 88
Publicatinns containing, on North American datum83
Thirty-niuth parallel 95
Geological Survey triangulation, connections made with 39
Heliotropes
Index togeographic positions, descriptions, elevations, and sketchesInstructions for:General instructions for6
Lengths of lines 8
Strength of figures 6
Table for determining relative strength of figures 7
Signal code for light keepers 32
Signals:
Building of. 28
Cost 29
Type 29
Sketches, triangulatlon 154
Sketches, triangulation, index to 155
Stakes versus movable supports 27
Base measurementState boundaries, connections made with39Light keeper
Strength of figures 6
Strength of figures, tabie for deternining relative
Primary triangulatlon5
Reconnoissance, general7
Instruments.Heliotropes

Lamps. 31Table:
Theodolites 30
Vertical circle 140
Vertical collimator 30
International boundaries, connections made with 39
Lamps. 31
Latitudes, astronomic 152 152
Light keepers
Code slgnals for 33
Continental Morse alphabet used by 32
Instructions to 32
Longitude, determination of astronomle 148
Marks:
General notes in regard to reference 115
General notes in regard to statlon 115
Missourl River triangulatlon, connections made with 11
Morse alphabet 32
North Amerlcan datum:
Explanation of 80
Publications containing geographic positions on 83
O bservations:
For horizontal directions 35
Methods employed in making 37
Occupation of stations, one hundred and fourth meridian 38
Positlons, geographic:
Explanation of tables
Index to
Index to 155
One humdred and fourth meridian.
83
Publications containing, on North American datum 83
Thirty-ninth parallel 95
Precise leveling bench marks, connections made with
Provo base.40
Cost of. 15
Table of results of the measurement. 14
Reconnolssance 62
Base sites and base nets
CharacCost of
Frequeney of bases6
Vertical circle
Vertical collimator 30
Wires versus tapes for base measurements. 27

[^0]: ${ }^{1}$ Acknowledgments are made for the field and omce work connected with the transcontinental triangulation in Special Publication No. 4.

[^1]: ${ }^{1}$ For an account of the measurement of the E1 Paso base, see pp. 101-107 of the Transcontinental Triangulation, Special Publication No. 4, of the U.S. Coast and Geodetic Surveg. A description of the bars used in tho measurements will be found in Appendix 17, Report for 18s0, pp. 341-345.

[^2]: ${ }^{1}$ These letters represent the following: C, clear; Cy, cloudy; L, light; M, moderate; NE, northeast; SE, southeast; SW, southwest; E, east; $\mathrm{P} C g$, partly cloudy

 These letiers, R, F, and S, Indicate whether the temperature was rising, falling, or statlonary.

[^3]: ${ }^{1}$ These letters represent the following: C , clear; Cy , cloudy; P Cy, partly cloudy; 0, calm; 1 , light; M , moderate; W , west; NW, northwest; SLi, southeast.
 ${ }^{2}$ These ietters R, F, and S indicate whether the temperature was rising, falling, or stationary.

[^4]: ${ }^{1}$ These letters are used to represent the lollowing: C, clear; O, calm; L, light; M, moderate; S, strong; N, north; NF, northeast; NW, northwest; SW, southwest.
 ${ }^{\prime}$ 'Thesc letters, R, F, and S , indicato whether the temperature was rising, falling, or stationary.

[^5]: ${ }^{1}$ The cost of one of these standardizations was charged to the Provo and Ambrose bases but is included here also to make the total cost comparable with that of the other bases.

[^6]: ${ }^{1}$ See U. S. Coast and Geodetic Survey Report for 1911, A ppendix 4, p. 171

[^7]: 1 See also pages 224 to 231 of Appendix 4, Report for 1911, Triangulation along the ninety eighth merldian, Nobraska to Canada and conneotion with the Great Lakes, and pages 59 to 63 of Special Publication No. 11, "The Texas-California Arc of Primary Triangulation."

[^8]: ${ }^{1}$ U. S. Coast and Geodetic Survey Report for 1903, Appendix 4, p. 824.

[^9]: 1This is further borne out in the reduction of 765 astronomic stations in connection with the "Supplementary investigation in 1909 of the figure of the earth and isostasy," by J. F. llayford, published by the Coast and Geodetic Survey.

[^10]: 1 Identical with a tertiary station of the U. S. Geological Survey.
 Identicai with a tertiary station of the Missouri kiver Commission and the U. S. Geological Survey.

[^11]: ${ }^{1}$ No check on this position.

[^12]: ${ }^{1}$ No check on this position.

[^13]: ${ }^{1}$ See p. 151, under the heading Astronomic azimuth.

[^14]: ${ }^{1}$ See Sprecial Publication No. 13, p. 63.
 ${ }^{2}$ Special Publication No. 4, 1900.
 ${ }^{2}$ Seo Special Publication No. 18, p. 146.
 $48310^{\circ}-14-10$

[^15]: 1 "The Figure of the Earth and Isostasy from Measurements in the United States" and "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy."

[^16]: MOTOR TRUCK USED BY LATITUDE PARTY.

