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PREFACE.

The present Manual is intended as a Sequel to the

Author's Treatise on Plane Trigonometry, and is written

on the same plan. An examination of the Table of

Contents, or of the Index, will show the scope of the

work. It will he seen that, though moderate in size, it

contains a large amount of matter, much of which is

original.

The sources from which I have obtained information

are indicated in the text. The principal are Crelle's

Journal " fur die reine und angewandte Mathematik,"

Berlin, and Nouvelles Annates de Mathimatiques, Paris.

The examples, which are very numerous (over five

hundred) and carefully selected, illustrate every part

of the subject. Among them will be found some of

the most elegant Theorems in Spherical Geometry and

Trigonometry.
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In the preparation and arrangement of every part

of the work I have received invaluable assistance from

Professor Neuberg, of the University of Liege. For

this, as well as for similar assistance previously given

in the editing of my Plane Trigonometry, I beg to

return that gentleman my most grateful acknowledg

ments and best thanks.

JOHN CASEY.

86, South Circular Road, Dublin.

March 25, 1889.
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Page 3, last line, omit " the ".

9, line 6, for BD = read BD +.

22, ,, 1 0, for cos a cos b cos c, read cos a — cos b cos c.

72, ,, 13, insert a comma after (0 - ABC).

112, ,, 11, for %, y, z, read sines of %, y, z.

131, ,, Exercise 4, for three times, nw^ one-third.



SPHERICAL TRIGONOMETRY.

CHAPTER I.

SPHERICAL GEOMETRY.

Section I.—Preliminary Propositions and Definitions.

1. Def. I.—A sphere is the surface generated by the revolution

of a semicircle about its diameter, which remains fixed.

The term sphere is used in a two-fold signification—1°. As denoting the

surface. 2°. The solid bounded by the surface. These correspond to the

two-fold signification of the word circle in plane Geometry, namely, the

circumference, and the area included within it.

Def. II.—The centre of the generating semicircle is called the

centre of the sphere.

Def. III.—A radius of the sphere is any right line drawn

from the centre to a point in the surface.

Def. IV.—A diameter of a sphere is any right line drawn

through the centre, and terminated both ways by the surface.

From the definition of a spherical surface it follows at once—1°. That

every point in it is equally distant from the centre of the generating semi

circle. 2°. That any point P in space is outside, on, or inside the surface,

according as its distance from the centre is greater than, equal to, or less

than the radius- 3°. That spheres having equal radii are equal.



2 Spherical Geometry.

2. Every section of a sphere made by a plane is a circle.

1°. If the plane passes through the centre, such as ARC,

the proposition is evident, since every point in the surface is

equally distant from the centre.

2°. When the plane does not pass through the centre, such as

DEF. Let 0 be the centre. From 0 let fall a perpendicular

0/on DEF (Eve. XL xi.). Take any point F in the section

DEF. Join OF, IF. Then, since 01 is normal to the plane,

the angle OIF is right ; therefore IF2 = OF2 - OI2; but OF is

constant, being the radius of the sphere. Hence IF is constant,

and therefore the section DEF is a circle, whose centre is /

and radius IF,

 

Cor, 1 .—If R be the radius of the sphere, r the radius of the

section, d the distance of the plane of section from the centre

of the sphere,

r* = R*-d2. (1)

Cor. 2.—If R = <?, r = 0. Hence the section will reduce to

a point, and the plane will touch the sphere.
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Cor, 3.—Two circles, whose planes are equally distant from

the centre, are equal.

Def. Y.—The two points P, Pf in which the diameter perpen

dicular to the plane of the circle DEF meets the sphere are called

its POLES.

From this definition it follows—1°. That all circles whose

planes are parallel have the same poles. 2°. That the centre

of any circle, its poles, and the centre of the sphere, are col-

linear.

Dee. VI.—A circle of the sphere whose plane passes through the

centre is called a great circle, and a circle whose plane does not

pass through the centre is called a small circle. Thus, on the

earth, the meridians, the equator, the ecliptic, are great circles,

and the parallels of latitude are small circles.

3. The curve of intersection of two spheres is a circle.

 

Fig. 2.

Dem.—Let any plane passing through the centres Oy 0' of

both spheres cut them in the circles AEBF, CEDF. Join

EF, 00', and produce 00' to meet the circles in A, D.

Now 0 0' bisects EF perpendicularly in I, and it is evident

when the semicircles AEB, CED revolve round the line 00'

to describe the spheres, that the point E will describe a circle,

having ^feJfor its centre.

B 2
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4. Either pole of a circle {great or small) on the sphere is

equally distant from every point in its circumference.

For (see ftg., prop, n.), join PF. "We have PF2 = PI2 + IF2-,

but IF2 is constant = R2 - d2, and PI2 = {R - d)2. Hence P.F

is constant.

Cor. 1.— PF2 = 2R(R-d). (2)

<7or. 2.— P^2= 2i? (R + <Z). (3)

Dee. YII.—A great circle passing through the poles of another

circle {great or small) is called a secondary to that circle.

Def. YIII.—The spherical radius of a small circle is the arc of

a secondary, intercepted between any point in the circumference

and the nearest pole. Thus the spherical radius of the small

circle DFF (see fig., prop, n.) is the arc PD.

Cor. 1.—If OA he perpendicular to OP, the point A will

describe a great circle.

Cor. 2.—The spherical radius of a great circle is a quadrant.

This is evident ; since P, P' are the poles of the great circle

ABC, and AP, CP are quadrants.

5. Only one great circle can he drawn through two points on the

surface of the sphere, unless they are diametrically opposite.

For only one plane can be drawn through tVe centre and the

two points, unless they are collinear.

Cor. 1.—If two points A, C be each 90° distant from a third

point P, P is the pole of the great circle, determined by the

points A, C.

If 0 be the centre, the line OP is perpendicular to the lines

OA, OC, and therefore it is normal to their planes. Hence the

line PP' is the axis of the great circle in which the plane OA C

cuts the sphere, and P, P' are its poles.

Cor. 2.—If the planes of two great circles be at right angles

to each other, their axes are perpendicular, and each passes

through the poles of the other.
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6. The locus of all the points of a sphere which are equidistant

from two fixed points A, £ of the sphere, is the great circle, which

is perpendicular at its middle point to the arc of the great circle

AB.

Dem.—Let C be the middle point of the chord AB. At C

erect a plane P, perpendicular to the chord AB. P passes

through the centre of the sphere, and it is the locus of points

equally distant from A and B ; therefore the points of the sphere,

where P intersects it, are the only points on it which are equi

distant from the points A, B. Hence the proposition is proved.

7. Any two great circles of the sphere bisect each other.

Dem.—Let ABCB, AECF be the great circles ; then

(Def. vi.) the plane of each passes through the centre of the

sphere. Hence the common section A C of these planes passes

 

through the centre ; but the common section of two planes is

a right line (Euc. XI., in.) Hence AC is a diameter of the

sphere ; therefore ABC, AEC are semicircles, and the proposi

tion is proved.
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Def. IX.— When two arcs of circles intersect, the angle ofthe tan

gents at their points of intersection is called the angle of the arcs.

8. The angle of intersection of two great circles is equal to the

inclination of their planes.

Dem.—Let CG, CH be tangents to the semicircles ABC,

AEC; then (Eire. XL, Def. ix.), since each is perpendicular

to OC, the angle between them is equal to the angle of incli

nation of the planes of the great circles ; but (Def. ix.) the

angle between CG, CM is the angle of intersection of the

great circles. Therefore the angle between two great circles is

equal to the inclination of their planes.

Cor. 1.—If CB, CH be quadrants, OB, OE are at right

angles to OC, and the angle BOE is equal to the angle of

inclination of the planes of the great circles . Hence the

spherical angle BCE is equal to the angle BOE; but BOE

is measured by the arc BE. Hence the spherical angle con

tained ly any two great circles ABC, AEC is measured by the

arc of a great circle intercepted between them, and having the

point C for its pole.

Cor. 2.—The spherical angle BAE is equal to the angle

BCE.

Cor. 3.—The angle of intersection of two great circles is

measured by the arc between their poles.

For, if BEhe produced, since the plane BOEis perpendicular

to OC, BE will pass through the poles of ABC, AEC. Let

these be 7", K, respectively ; then, evidently, the arcs IB, KE

are quadrants. Hence IX = BE; but BE {Cor. 1) is the

measure of the spherical angle BCE. Hence IK is equal to

the measure of the spherical angle.

9. To find the radius of a solid sphere.

Sol.—From any point of the spherical surface as pole, with

any arbitrary opening of the compass describe a circle ABC;
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in the circumference of this circle take any three arbitrary

points A, B, C, and with the compass transfer the three recti

linear distances AB, BC, CA, and construct a triangle abe on

paper, having its sides ab, be, ca respectively equal to AB, B C,

CA. Eind i, the circumcentre of the triangle abe. Join ia.

 

Fig. 4.

Erect ip perpendicular to ia, and inflect from a to ip the dis

tance ap equal to the opening of the compass with which the

circle ABC was described on the sphere. Erect ap' at right

angles to ap, and produce ip to meet it in p' ; then ppf is equal

to the diameter of the solid sphere. Eor, from the construction,

it is evident, if we join AP', that jp// is equal to PP'.

10. Analogy between the geometry of the sphere and the plane.

In order to understand the analogy between plane and sphe

rical geometry, it is necessary to observe that to right lines on

the plane correspond on the sphere great circles, and to circles

on the plane correspond circles on the sphere, which may be

either great or small.

On a solid sphere can in general be resolved problems analo

gous to those on the plane, the instrument employed being the

compass. Thus (see fig., § 2), if we place one of the points

of the compass in P, we can, with an opening equal to the



8 Spherical Geometry.

chord PD, describe the circle DJEF. To describe a great circle,

it is necessary that the opening of the compass should be equal

to the chord of a quadrant. We can also, by the compass, divide

an angle into 2, 4, 8, &c, equal parts, erect an arc of a great

circle perpendicular to another, make a spherical angle equal

to a given spherical angle, describe a circle touching three given

circles, &e.

Exeecises.—I.

1. A great circle passing through the poles of two others cuts each at

right angles, and their points of intersection are its poles.

2-5. Solve the following problems with the compass :—

1°. Describe a great circle through two given points of the sphere.

2°. Through a given point of the sphere draw an arc of a great circle

perpendicular to a given great circle.

3°. Make, at a given point of a given great circle, an angle equal to

a given angle on the same sphere.

4°. Through a given point not on a given great circle draw a great

circle making a given angle with it.

6. The loci of the poles of great circles, making a given angle a with a

given great circle, consist of two small circles, having the same poles as the

given circle.

7. The tangents at a given point A of the sphere to all circles (great or

small) passing through A lie in the plane through A, perpendicular to the

radius of the sphere drawn to that point.

8. If a tangent line to a sphere passes through a given point, the locus of

the point of contact is a small circle.

9. If tangent lines to a sphere be parallel to a given line, the locus of the

points of contact is a great circle.

10. The arc of a great circle, perpendicular to the spherical radius of a

small circle at its extremity, touches the small circle.

11. Draw a great circle, touching two small circles.

12. Draw a great circle through a given point, touching a given small

circle.
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13. If a variable sphere touch three planes, the locus of its centre is a

right line.

14. Describe a sphere, passing through four points which are not co-

planar.

15. If A, B, C, D be four points on a great circle, prove that

sin BC. sin AD + sin CA . sin BD + sin AB . sin CD = 0.

16. In the same case, prove that

sin BC . cos AD + sin CA cos BD + sin AB cos CD = 0.

Section II.—Spherical Triangles.

11. Def. X.—The figure formed by the shorter arcs joining

three points on the surface of a sphere, no two of which are

diametrically opposite, is called a spherical triangle.

Two points on ihe surface of a sphere can be joined by two distinct arcs,

which together make a great circle. Hence, when the points are not diame

trically opposite, these arcs are unequal, and it follows from the definition

that each side of a spherical triangle is less than a semicircle.

If ABC be the triangle, 0 the centre of the sphere, the

planes OAB, OBC, OCA form a solid angle 0 - ABC

 

Fig. 5.

(Euc. XL, Def. in.), whose face angles A OB, BOO, COA

are measured by the sides of the spherical triangle ABC,
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and whose dihedral angles (Eire. XI., Def. u.) are equal to

the angles of the spherical triangle (§ 8). There is then a

correspondence between the spherical triangle ABC and the

solid angle O-ABC: every property of one gives a property

of the other.

Def. XI.—The portion of a sphere comprised "between two halves

of great circles is called a lune.

Three great circles intersect in six points A, A'; B, Br; C, C.

These are two by two diametrically opposite, and divide the

sphere into eight triangles.

Dee. XII.—-Two triangles BCA, B'CA, which have a common

side CAj and whose other sides belong to the same great circles,

are called colunak tkian&les. The triangle ABC has three

colunar triangles, viz. A'BC, B'CA, CAB.

Dee. XIII.—Two triangles ABC, A'B'C, whose correspond

ing vertices are diametrically opposite, me called antipodal

TBIANGLES.

12. Any two sides of a spherical triangle are together greater

than the third, and the sum of the three sides is less than a

great circle.

Dem.—Let ABC be the spherical triangle (see fig., § 11),

0 the centre of the sphere. Join OA, OB, OC; then (Euc.

XI., xx.) any two of the plane angles forming the trihedral

angle 0 - ABC are together greater than the third ; but the

arcs AB, B C, CA are the measures of the plane angles A OB,

BOC, COA. Hence the sum of any two of the arcs AB, BC, CA

is greater than the third.

Again, the sum of the three plane angles A OB, BOC, COA

is (Euc. XI., xxi.) less than four right angles. Hence the sum

of the three arcs AB, B C, CA is less than a great circle.

In the same manner it follows that the sum of the sides of any

convex spherical polygon is less than a great circle.
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13. Since every great circle has two poles, it will be neces

sary to make some convention in order to distinguish them.

For this purpose we employ, as in so many other cases, the

terms positive and negative. Thus, if BC be an arc of a great

circle, its positive pole will be that round which the rotation

from B to C will be from left to right ; that is, in the same

direction in which the hands of a watch move, and the 'other

will be the negative pole.

For example, if B, C be points on the equator, and C west

of B, the north pole will be the positive pole of BC, and the

south its negative pole.

Dee. XIY.—The spherical triangle, whose angular points cure

the positive poles of the sides of a triangle ABC is called the

POLAR TRIANGLE of ABC.

14. If two spherical triangles ABC, AIB'C he such that the

latter is the polar triangle of the former, the former is the polar

triangle of the latter.

 

Fig. 6.

Dem.—Join A' C, B' C by arcs of great circles ; then, because

A' is the pole of BC, A'C is a quadrant. Similarly, BfC is a

quadrant. Hence, since the arcs CA', CB' are quadrants, C is

the pole of A'B', and it is evidently the positive pole. Hence

the proposition is proved.
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15. The sides of either of two polar triangles are the supple

ments of the angles of the other.

Eem.—Produce the arcs A'B', A!C if necessary to meet BC

in E and F. Now, since 0 is the pole of A'B', the arc EC is

90°. In like manner, the arc BF is 90°. Hence EC + BF or

BC + EFis 180°; but EF is (Art. 8, Cor. 1) the measure

of the spherical angle B'A'C Hence the side BC is the sup

plement of the angle B'A'C, and similarly for the other sides

and angles.

Scholium.—On account of the property proved in this pro

position, polar triangles are also called supplemental triangles.

Cor.—If we denote the angles of the triangle ABC by

A, B, C; their opposite sides by a, b, c ; and the corresponding

elements in the polar triangle by the same letters accented, we

have

a' =180°-^, ^'=180° -a. (4)

V = 180° - B, B' = 180° - b. (5)

V = 180°-(7, C' = m>°-c. (6)

16. In every spherical triangle—1°. The sum of two angles is

less than the third increased by 180°. 2°. The sum of the three

angles is greater than two, and less than six right angles.

Dem.—1°. Erom the equations (4)-(6) we get

(a* + &'-•) = 180° + C-(A + B);

but a! + bf is greater than c', therefore 180° + C is greater than

A + B.

2°. From the same equations, we have

A + B + C = 540° - (a' + V + c').

Hence A + B + C is less than 540° ; that is, six right angles.

Again (from § 12), a' + V + c' is less than 360°. Hence

A + B + C is greater than 180°; that is, two right angles.
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Cor. 1.—If any side of a spherical triangle ABC be pro

duced, the exterior angle is less than the sum of the two

interior non-adjacent angles.

Cor. 2.—If all the sides of a convex spherical polygon be

produced, the sum of the exterior angles is less than four

right angles.

Dee. XY.—The amount ly which the sum of the three angles of

a spherical triangle exceeds two right angles is called the spherical

excess. We shall denote it ly 2E.

Denoting the spherical excess by IE instead of E has the same advantage

as putting 2s for the perimeter of a triangle instead of s, viz., it avoids

fractions, and makes certain formulae containing angles symmetrical with

the corresponding ones containing sides.

Cor. 3.—Any angle of a spherical triangle is greater than E.

This is merely another statement of 1°, supra.

17. Two antipodal triangles ABC, A'B'C are equal in area.

Dem.—Two antipodal triangles have evidently equal sides,

but are not superposable, except when each is isosceles, because

 

Fig. 7.

their elements are arranged in inverse order. To prove that in

the general case the areas are equal. Let P be the pole of the
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small circle, passing through A, B, C, and P' the pole of the

circle through A'B'C ; then evidently P' is diametrically oppo

site to P, and the pairs of triangles PAB, P'B'A'; PBC, P'C'B';

PCA, P'A!C, being antipodal and isosceles, are superposable.

Hence the area of ABC is equal to the area of A'B' C.

18. Two spherical triangles on the same sphere have all their

corresponding elements equal—1°. When two sides and the con

tained angle of one are respectively equal to two sides and the con

tained angle of the other. 2°. When the side and the adjacent

angles of one are equal to a side and the adjacent angles of the

other. 3°. When the three sides of one are equal to the three

sides of the other. 4°. When the three angles of one are equal

to the three angles of the other.

 

Fig. 8.

Cases 1°, 2°, 3° correspond to Euc. Book L, Props, rv., vin.,

xxvi. Case 4° has no analogue in Plane Geometry. It will be

sufficient to prove 1° and 3°, as 2° and 4° are inferred from

them by the properties of the supplemental triangle.

Dem. \°.—A = A', AB = A'B' ; AC = A'O. If these ele

ments are arranged in the same order, the demonstration follows

by superposition, as in Plane Geometry. If they are disposed

in an inverse order, such as A'B'C, ABC", we can superpose

either of them on the antipodal triangle of the other.



Spherical Triangles, 15

3°. If the arc A!B' be applied to AB, the point C will be

one of the points of intersection of the arcs of two small circles,

described from A and B as poles, and passing through the

point C : these arcs will intersect in two points C, C"', placed

on opposite sides of AB ; then, if the elements are disposed in

the same order in both triangles, C will coincide with C. If

in a different order, the triangle A'B'C can be superposed on

the antipodal triangle of ABC, and in each case we have the

corresponding angles equal each to each.

19. If two sides AB, AC of a spherical triangle be equal—

1°. The angles B, C are equal. 2°. The median AB, which bisects

BC, bisects the angle A.

Dem.—The arc AB divides the triangle ABC into two tri

angles, which are symmetrically equal (18, 3°).

Cor.—If two angles B, C are equal, the opposite sides AB,

A C, are equal. For the polar triangle of ABC has two sides

equal. Hence, &c.

20. To find the area of a lune.

A 

Let A CBD, AEBF be two lunes having equal angles at A ;

then, by superposition, it is evident that these lunes are equal.
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Hence, by a process similar to that employed in Euc. VI.,

i. and xxxin., it may be proved that lunes are proportional

to their angles. Therefore a lime : the whole spherical surface

: : angle of lune : 2tt. Now if r denote the radius of the

sphere, its surface is 4-n-r2 (Euc, App. 7). Hence, if A denotes

the angle of the lune, its area is 2Ar2. (7)

21. Girard's Theorem.—

The area of a spherical triangle = 2Fr2 (Dei. xv.).

Dem.—Produce the base AB round the sphere, and produce

BC, AC to meet it in E and JD ; also produce CB, CA through

B and A to meet again in F. Then the spherical triangle

BAF is, antipodal to the triangle J&DC, and therefore (Art. 17)

equal in area to it. Hence the lune C is equal to the sum of

H.
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the two triangles ABC, CFB ; also the lune A - to the sum

of the triangles ABC, BCB, and the lune B = to the sum of

ABC, CFA. Hence the sum of the three lunes is equal to

twice the area of the spherical triangle AB C, together with the

area of the hemisphere C =ABGBFIT. Hence, if A denote

the area of the triangle AB C, we have

2Ar2 + 2Br2 + 2 Cr2 = 2irr2 + 2A ;

.-. A = (-4 + B+-C-7r)r2 = 2Fr*. (8)
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This demonstration is taken from the works of Wallis, Vol. n.,

p. 875. The theorem is due to Albekt Girabd, a Flemish

Mathematician of the 17th century. In 1787, more than 150

years after its discovery, an important application of it was

made by General Eoy in correcting the spherical angles, ob

served in the Trigonometrical Survey of Britain, Phil. Trans.,

"Vol. vin., p. 163, year 1790. See also Mem. Acad., Paris, 1787,

p. 358, and Mem. Inst., Yol. vi., p. 511.

Cor. 1.—The area of a great circle : area of the spherical

triangle : : tt : 2E. (9)

Cor. 2.—If 2 denote the sum of the angles of a spherical

polygon of n sides, its area is

{2 + (2-n)ir}r». (10)

EXEECISES.—II.

1 . If a triangle coincides with its supplemental triangle, prove that all its

sides are quadrants and all its angles right.

2. The sum of two opposite angles of a spherical quadrilateral inscribed

in a small circle is equal to the sum of the two , others, and each sum is

greater than two right angles.

3. The spherical excess of a spherical triangle is equal to the circum

ference of a great circle diminished by the perimeter of the supplemental

triangle.

4. The sum of two opposite sides of a spherical quadrilateral, circum

scribed to a small circle, is equal to the sum of the remaining sides.

5. If A, 2?, C, D be four coneyclic points on a sphere, prove that

sin | BG. sinJ^LD + sin| CA . sin \BD + sin \AB . sin \ CD = 0.

(11)

This follows from Ptolemy's theorem, since chord BC = 2sin£2?C, &c.

6. In the same case, if

AB = a, BC=b, CD = c, DA = d, AC=e, BD=f;

prove that

sinjtf sin §«. sin \d -\- sin ^J. sin \c

sin \f sin \ a . sin \ b -f sin \ c . sin J d°

c

(12)
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Dep. XVI.—A spherical triangle ABO is said to be diametrical when its

circumcentre is the middle point D of one of its sides AB. This side is called

the DIAMETRICAL SIDE.

7. In a diametrical triangle, the angle opposite the diametrical side is

equal to the sum of »the two remaining angles, and is greater than a right

angle.

8. Two of the colunar triangles of a diametrical triangle are also diame

trical triangles, and the spherical excess of the third colunar triangle is equal

to two right angles.

9. If the opposite sides of a spherical quadrilateral he equal, the diagonals

bisect each other, and the opposite angles are equal.

10. If in a spherical quadrilateral ABCB the angle A ~ C and B - B ;

then the side AB = CB, and BC = AB.

Produce the sides AB> CB to meet in E and F; then triangles BBC,

FAB have the three angles of one respectively equal to the three angles

of the other.

Def. XVII.—If the diagonals of a spherical quadrilateral bisect each

other, it is called a spherical parallelogram.

11. If the four sides of a spherical quadrilateral be equal, the diagonals

are perpendicular to each other, and they bisect its angles. Such a figure is

called a spherical lozenge.

12. If the four angles of a spherical quadrilateral be equal, the diagonals

are equal.

13. In two supplemental triangles AB0, A'B'C, the arcs AA', BB', CO'

are perpendiculars to the corresponding sides of the two triangles, and the

corresponding altitudes of the two triangles are supplemental.

14. The poles of the small circle inscribed in a spherical triangle are also

the poles of the small circle circumscribed to its supplemental triangle, and

the spherical radii of both circles are complementary.

15. If two small circles on a sphere touch each other, the angle between

tbeir planes is equal to the sum or the difference of their spherical radii.

16. The angle of intersection of a great circle and a small circle is greater

than the inclination of their planes.

17. The length of a degree on a parallel of latitude is equal to the length

of a degree of the equator multiplied by cos lat.

For if r be the radius of the equator, and r' the radius of the parallel,

then, degree on parallel divided by degree on equator = r'jr = cos lat.



CHAPTER II.

FORMULAE CONNECTING THE SIDES AND ANGLES OF A

SPHERICAL TRIANGLE.

22. A spherical triangle has six elements, namely, the three

sides #, b, c1 and the three angles A, £, C respectively oppo

site to them. The triangle is completely determined when any

three of the six elements are given, as there exist relations

between the given and the sought parts by means of which the

latter may be found. The object of this chapter is to establish

these relations. Our formulae will be divided into three classes

as follows:—The first class includes all formulae into which

enter four elements of the triangle. The second those which

contain five elements, and the third class the formulae into

which enter all six. The formulae which we are going to

investigate apply equally to "trihedral angles." The sides of

the spherical triangle correspond to the plane angles, forming

the trihedral, and the angles of the spherical triangle to the

dihedral angles of the trihedral.

Section I.—First Class.

23. There are four Cases of the First Class :—

I. Three Sides and an Angle.

II. Two Sides and the Angle opposite to one of them.

III. Two Sides and two Angles, one of which is contained

by the sides.

IV. Three Angles and a Side.

Case I.—Three Sides and an Angle.

24. Let ABC be a spherical triangle, 0 the centre of the
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sphere. Join OA, OB, OC. From any point B in OA draw

in the planes A OB, AOC, respectively, the lines BE, BF, at

right angles to OA. Then (Euc. XI., Def. ix.), the angle

EBF is the inclination of the planes to each other, and there

fore (§8) is equal to the spherical angled. Join EF; then,

from the plane triangles EOF, EBF, we have

EF2 = OE2 + OF2 -20E.OF cos EOF.

EF2 = BE2 + BF2 - 2BE. BF cos EBF.

Hence 20E.OF. cos EOF = 20B2 + 2BE.BF . cos A;

OB OB BF BE

OF'OE+~dF' OE-C08A>cos EOF

cos a = cos b cos c + sin b sin c cos A.

A

(13)
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This is the fundamental formula of Spherical Trigonometry.

By interchanging letters we get

cos b = cos c cos a + sin c sin a cos B. (14)

cos c = cos a cos 5 + sin a sin 3 cos (7. (15)

25. The formula (13) has been proved only for the case in

which the arcs b, c are less than quadrants, to show that they

 

Fig. 12.

hold when one of them, c, is greater than a quadrant. Produce



First Class, 21

BA, BC to meet in B'. Then, from the triangle B'AC, in

which the sides B'A, A C are less than quadrants, we have

cos B'C = cos B'A cos A C + sin B'A sin A C cos ^'^ 0,

or cos (7r - #) = cos (tt - <?) cos b + sin (7r - c) sin 3 cos (7r - ^).

Hence cos a = cos J cos c + sin J sin 0 cos ^4.

If both b and 0 be greater than quadrants, produce AB, AC to

meet in -4', and the proposition will evidently hold for the tri

angle A'BC, and therefore for ABC.

26. Ey subtracting equation (13) from the identity

cos (b - c) = cos b cos c + sin b sin c,

we get cos (5 - c) - cos # = sin b sin 0 (1 - cos A).

Hence, putting a + b + 0 = 2s, we get

sinj^= hm(s-b)sm{sT7)9 (16)

\ sin # sin c

Similarly, 8inji?= /«h(« - «) sh C ^g (17)

\ sin 0 sin a

and sin* (7= /sin (' " *) sin (' zj). (18)

\ sin 0 sin b

27. Ey subtracting the identity

cos {b -\- c) - cos 5 cos c - sin 5 sin c

from (13), we get

cos a - cos (b + c) = sin J sin 0 (1 + cos A).

Hence cosM- /siu * «"*(«-*_). (19)

\ sin 6 sin 0

Similarly, cos J J? = / sin* sin (« -j) (20)

\ sin c sin a

and cosi(7= /IsZ^SZZ). (21)

\ sin a sin b

The radicals in the formulae (16)-(21) have the positive sign ;

i:or iA, %B, J C are each less than 90°.
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28. From (16) and (19), we get

tanj^= /rin(#->)rin(#--0

\ sm 5 sm {8 - a)

In like manner,

taniZ?= )rin(«-g)Bin(«-a) (23)

\ sm s sin (« - 0)

and tan*C = /sin (' ~a) sin (*zD. (24)

\ sin * sin (* - 0)

Cfo\— tan i A tan J 5 = ?EjLzl)m (25)

sm *

tan i B tan J 0 = 8MlZll. (26)

sin«

tan i C tan J ^ = ™£—^. (27)

sm «

Exercises.—III.

, t. . „ , 1 — cos2«-cos2# — cos2c + 2 cos # cos £ cose ,__.

1. Prove sm2A = . OT — * . (28)

sm20 sm2c

^r i p cos «^5os b cos c * 4 & £taOt
Make use of cos A - ——. . wl w^%^

sin o sm c **

2. „ cos c = cos (a + £) sin2 J C + cos {a - b) cos2 J C. (29)

3. „ cos2 J c = cos2J (a + 0) sin2£ C + cos2 J {a - b) cos2 J C. (30)

4. „ sin2JCr=sm2J(a + A)sin2^C7 + sin2J(«-&)cos2iC,. (31)

n2
5. „ sinj^sini^ sinj G = : . t . , (32)

sm s sina sm o sine

where « = \/sm * sm is - a) sm (5 — ^) sm (* ~ c)- (33)

The function « is so important in spherical trigonometry that it is con

venient to have a definite name for it. Prof. Statjdt*, of the University

of Erlangen, calls 2w the sine of the trihedral angle O-ABC (see fig., § 24).

Neuberg suggests two other names—1°. The First Staudtian of the triangle.

* Crelle's Journal, Band, xxiv., s. 255.
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2°. The Norm of the sides of the triangle ; and for the function N (see § 33)

he also suggests the names Second Staudtian, or the Norm of the angles of

the triangle.

n sin s
6. Prove cos \A cos \ B cos i G = - :—;—:— . (34)

am a sm o sin c

7. „ txn\A tan Jj5 tan JC= -r-^-. (35)

Notations.—The arcs which join the vertices of a triangle to the middle

points of the opposite sides are called medians, and are denoted "by ma, mi, mc,

respectively. The arcs of great circles, which are drawn from the vertices

at right angles to the opposite sides, are called the altitudes, and represented

hy ha, hi, hc. The arcs which bisect the interior angles, called the interior

bisectors, are denoted by da, db, dc ; and the bisectors of the exterior angles

by da', db, dc'.

8. Prove cos b + cos c = 2 cos - cos ma. (36)

9. Prove in a spherical parallelogram that the sum of the cosines of the

sides is equal to four times the product of the cosines of the halves of the

diagonals.

10. Prove that the norm of the sides of a triangle is equal to the norm of

the sides of any of its colunar triangles.

11. If ABGD be a spherical quadrilateral ; and if

AB = a, CD = a'; BC=b, DA = b' ; AC = c, BD = c\

and the arcs joining the middle points of ay a' ; of b> b' ; and c, c' = a, j8, 7,

respectively, it is required to prove

cos a + cos a' + cos b + cos b' = 4 cos \ c cos J c' cos 7. (37)

cos b + cos bf + cos c + cos e' = 4 cos % a cos J a' cos a. (38)

cos c + cos c' + cos a + cos «' = 4 cos f # cos J b' cos j8. (39)

12. Prove

cos a + cos a' + cos # + cos 6' -f cos c -f cos e' = 2 {cos J « cos J a' cos a

+ cos J # cos J A' cos j8 + cos J c cos ^ c' cos 7} . (40)

13. Prove

cos a + cos a' + 4 cos^a cos J a' cos a = cos 6+ cos 6'+ 4 cosJ# cos J 3' cos #

= cos e + cos <?' + 4 cos £ £ cos J c' cos 7. (41)
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14. Prove

cos2 \a + cos2 \a! + 2 cos \a cos \<x' cos a = cos2 J£+cos2 Jfl'-f- 2 cos JJ cos^' cos£

= cos2 \ c + cos2 J c' + 2 COS J 0 cos J c' cos 7.

15. Given the base of a spherical triangle and the sum of the cosines of

the sides, find the locus of the vertex.

16. In a spherical quadrilateral the arcs joining the middle points of

opposite sides, and the arc joining the middle points of the diagonals, are

concurrent. (Neuberg.)

17. If D be any point in the side BC of a spherical triangle, prove that

cos AD sin BC = cos AB sin DC + cos AC sin BD. (42)

The theorem of this exercise may be called Stewart's Theorem. It is

a generalization of a theorem due to that Geometer.—Sequel to Euclid,

Prop, ix., p. 24.

18. If ABC be an arc of a great circle, and AA' , BB'} CC, arcs per

pendicular to any other great circle, prove that

sin BC sin AA' + sin CA sin BB' + sin AB sin CC = 0. (43)

19. Prove n = J y/(l — cos2a — cos2£ — cos2c + 2 cos a cos b cos c).

(44)

20. If c be the diametral side of a diametral triangle, prove

sin2 - = sin2 - + sin2 -. (45)

2 2 2

Case II.—Two Sides and the Angles opposite to them.

29. The sines of the sides of a spherical triangle are proportional

to the sines of their opposite angles.

Dem.—Erom equations (16), (19) we get, by multiplication,

2 sini^ cosj^ = 2 s/ sin s sin (« - a) sin (s - b) sin (s - e)

sin b sin c

2n

sin b sin c '

sin ^4 2ra

or sin A = . . .— ; (46)
cm 11 cm /> x/

sin a sin 0 sin b sin *?'
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In like manner,

Hence

sin B 2n

sin b sin a sin b sin c

sinA sin B sin C

sin J

(47)

and the proposition is proved.

Or thus:—Let ABC be the triangle, 0 the centre of the

sphere. Prom any point B in OA draw DG perpendicular to*

the plane BOC; and from G draw GE, GF at right angles to

OB, OC. Join BE, IDF. Now since i)6r is perpendicular to

the plane, and GF perpendicular to OB, a line through G

parallel to OB would be perpendicular both to DG and GFr
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and therefore normal to the plane BGE. Hence the angle

BEG is equal to the spherical angle B (§ 8). In like manner,

BFG is equal to C. Now BE sin BEG = BG = BF sin BFG ;

therefore BE sin £ = BF sin (7 ; but BE = OZ) sin DOE = OB

sin <?, and i>i^= OB sin 2>GF= OZ) sin b. Hence

sin i? sin c = sin (7 sin b,

or

sin i? : sin C : : sin b : sin 0.
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Exeecises.—IV.

1 . If a, ft, c be the sides of a spherical triangle, a', ft', c' the sides of its

supplemental triangle, prove

sin a : sin b : sin c : : sin a' : sin ft' : sin c'. (48)

8w3
2. Prove that sin A sin B sin C = -r-^—. 0 , . 0■ . (49)

sm*a siq? b am*c

3. Prove that

tanJ(.4 + .B) : tan|(^-.B) :: tan J (a + ft) : tanj(a-ft). (50)

4. Prove that

tan J (^4 + a) : tan J (-4 -a) :: tan|(jB+ft) : tan J (5 -ft). (51)

5. If the bisector .42) of the angled of a spherical triangle divide the

side BC into the segments CD = b', BD — c\ prove

sin b : sin e : : sin ft' : sin c'. (52)

6. If the bisector of the exterior angle, formed by producing BA through

A, meet the base BC in 2)', and if BD' = c", CD' = ft", prove that

sin ft : sin c : : sin ft" : sin c". (53)

7. Prove that

cot | -4 : cot J B : cot J C : : sin (s - a) : sin (s - ft) : sin (s - c). (54)

8. If 2) be any point in the side BC of a spherical triangle,

sin .#2) sin .B^D sin C

sin CD sin £42) * sin B'

Cor.—If D be the middle point,

sin BAD _ sin B __ sin ft

sin C7^42> sin (7 sin c *

(55)

(56)

9. Prove that sin a sin ha — sin ft sin hb = sin c sin hc = 2w. (57)

10. Given the base of a spherical triangle and the norm of the sides,

prove that the locus of the vertex is a small circle.

11. If mb = wc, prove that either ft = c, or

sin2 J a = cos2 J ft + cos2 \ c + cos J ft cos \ c.

12. If a great circle touch two small circles, whose spherical radii are

p, p', and distance between their poles = 5, and if t denote the arc between

the points of contact, prove

sin dn^S-sinH^-/), (58)

cos p cos p
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13. If AD he the median, prove

cot^i)B = C08*a(COa*-COSC). (59)

2h

14. Prove that

cot (ma, a) sec \ a + cot (w&, b) sec \b + cot (mc, c) sec | c = 0. (60)

Case III.—Two Sides and two Angles, one of which is

contained by the Sides.

30. If we multiply equation (15) by cos b, and substitute the

result in (13), we get

cos a = cos a cos2# + sin a sin b cos b cos C + sin b sin c cos -4.

Hence, transposing cos# cos2 5, substituting sin2 5 for 1 - cos2 5,

and dividing by sin# sin b, we get

• z i •> sin ° A

cot «smft = cos o cos C + —— cos .4 ;

sin a

and substituting, -—-. for ,

sin-d. sin a

we get cot a sin 5 = cot^4 sin (7 + cos C cos 5. (61)

This important formula may be enunciated as follows, calling

a the first side, and b the second :—The cot of the first, by the

sine of the second, is equal to the cot of the angle opposite to the

first, by the sine of the contained angle, plus the cos of the contained

angle, by the cos of the second side.

By interchanging letters in (61), we get

cot «f sin <? = cot A sin B + cos B cos c. (62)

cot b sin a = cot B sin C + cos C cos a. (63)

cot b sin c = cot B sin A + cos A cos 0. (64)

cot c sin # = cot (7 sin 2? + cos B cos 0. (65)

cot c sin J = cot C sin -4 + cos A cos J. (66)
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Exercises.—Y.

1. If D be any point of the side BG, prove that

cotAB sin DAG + cot A0 sin DAB = cotAD sin BA G. (67)

2. cot ^.BC sin DC 4 cot AGB . sin BD = cot ADB . smBG. (68)

To prove 1, we have (Art. 29),

cot c sin AD = cot D sin j8 + cos j8 . cos AD,

cot b sin -42) = - cot D sin 7 + cos 7 cos .42). Eliminate cot D . . .

To prove 2, we have

cotAD sin m = cot B sin i) + cos D cos m,

cot AD sin » = cot G sin 2) — cos D cos w. Eliminate cot AD . . .

3. If we describe a great circle B'D'G\ with ^ as polar, equation (67)

gives us

tan DD'. sin B'G' = tan BB\ sin D'C" + tan GG\ sin £'2)\ (69)

 

Fig. 14.

a . A

4. Prove 2 cot m« . sin - = (cot B 4- cot (7) sin (ma • a) .

2

a A

5. „ 2 cos - cot (ma .a) — cotB — cot G.

a sin (5 + C) , A „

6. „ cotf»« . tan - = -T-y=—~ cos (m«.«).

4 sin \Jo — u)

(70)

(71)

(72)
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7- Prove cot b + cot c = 2 cos— cot ^fl. (73)

u4 J5 C

S. „ cos— cotdk + cos— cot ^6+ cos - cot dc - cot a + cot J + cot c.

(74)

5 . , , sin -— cot da' + sin ■— cot db + sin — cot dj = 0. ( 75)

z Z 4

10. „ cos2 a - cos2 b = 2w (cos a cot A- cos 5 cot 2?). (76)

€ase IV.—Three Angles and a Side.

31. Multiply (61) by sin a, and (63) by sin b cos c ; then

cos # sin l = sin # cot A sin (7 + sin # cos J cos C,

and

sin # cos b cos (7 = sin £ cot i? sin (7 cos C + cos 0 sin 3 cos2 &

Hence, by substitution and reduction, we get

cos a sin b sin C = sin # cot -4 + sin £ cos B cos (7.

Substitute in this expression for sin a cot A its equal

sin b cos ^

sin^ '

reduce, and we get

cos A = - cos B cos (7 + sin i? sin C cos #. (77)

Or thus :—Let A'B'C be the triangle supplemental to ABC;

then we have, equation (13),

cos a' = cos V cos c' + sin V sin 0' cos A' ;

but 0' = v -A, V = 7r-B, &c. (Art. 15).

Hence, substituting, we get

cos A = - cos i? cos (7 + sin i? sin C cos a.

Interchanging letters in (77), we get

cos B = - cos C cosA + sin (7 sin A cos J. (78)

cos C = - cos J[ cos B + sin -4 sin B cos 0. (79)
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32. If we add (77) to the identity

cos (B + C) - cos B cos C - sin B sin C,

we get

sin B sin C (1 - cos a) = - {cos ui + cos (B + 6Y)} .

Hence (Def. xv.), 2E denoting the spherical excess ; that is,

A + B + 0 - 7T, we get

sinia= /sinJfBin^-iQ (80)

\ sin i? sin Q

In like manner,

• i* /sini?sin(Z? - i?) /ft1x
smJJ = / r-—A— —>, (81)

\ sin (7 sin -4

and

. x I sin i? sin ( C - 2?) /ft0N
sin £ e = : .~4- 3 ;- (82)

\ sm ^i sm B

33. If we add (77) to the identity

cos (B - C) = cos B cos 6Y + sin B sin C),

we get sin B sin (7 (1 + cos 0) = cos A + cos (i? - C).

Hence, „_,„_ / sin {£-U) sin (C-tf)cos4«= /sin^7-^j»m^-^; (83)

\ sin £ sin C

In like manner,

coSJJ= jan(g-^)™U--g), (84)

\ sin (7 sin ^4

and

, lsin(^-^r)sin(^-jET) ,ftA;\
cos £ 0 = / • ^ . ;. ^ J. (85)

\ sm -4 sin B

34. From (80) and (83) we get

tan**- /. sin ^ Bin U-"^T (86)

2 yjsm(B-E)sm(<C-E) V ;

Prom (81) and (84) we get

* 1 -k I sin E sin (B - E) /$m
tan^ = V-sin(g-^)sin(^-^)- (87)
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Prom (82) and (85) we get

tan**- / smEsin(C-E) (88)

<s¡sm(A-E)smB-E) v '

Cor. 1.-—tan j-0.tan£¿ = sinjE-f sin(<7- E). (89)

tan i b . tan i e = sin^ -f sin (^ - ^). (90)

tan J c . tanja = sin j£-f sin(^-jE'). (91)

Cbr. 2.—tan i tf . cot i b = sin (-4 - E) - sin (.5 - E). (92)

tan i b . cot i <? = sin (B - E) + sm(C-E). (93)

tan^c . cotia = sin(C7-J0) vain (-4- j£). (94)

Cor. 3.—

tani^ : tan i 5 : tan \c : : sin (A-E) : sin(B- E) : sin (C-E).

(95)

EXEECTSES. YI.

1 . Prove cos C = - cos (A + B) cos2 J c — cos (.4 - B) sin2 J <?. (96)

JVsin.E

2. „ sinja sin \ b smf c = -— . , (97)

where JV = V sin ^sin (^t - E) sin (jS - E) sin (C- J£). (98)

2Vis called the Norm of the angles of the triangle. See note, § 28, Ex. 5.

3. Prove that cos \ a cos i b cos J c = -—=-:—-—.—_ . „. (99)
4 J d sin J? sin -4 sm J?smC

sin2^

4. ,, tan|« tan J¿> tan|<? = ——. (100)

2N . z 2N . _ 2#
5. ,, sm a = -——-:—-, sm b = -——-;—-, sin G = -——-—-.

" sm B sm G sm 0 sm A sm A sm i?

(101)

The value iV= f sin B sin tf sin «, and the corresponding value of n, viz.

| sin ¿ sin c sin .4, have a remarkable analogy to the equation 8 - \ be sin A

in plane trigonometry for the area of a triangle.

sin^i sin^ sin C iV , x

6. Prove - = -r-r- = -— = —. (102)
sm a sm ¿> sm c n
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■4

7. Prove 2JV = sin A sin ha = sin B sin hb = sin C sin hc. (103)

8. ,, in a right-angled spherical triangle, having the angle C right,

. _ / sin 2^
sin -k e — . / -—:—-—:—--•

2 \ 2 sin -4 sin 5

9. ,, in a diametral triangle, having c as the diametral side,

'C.B\ .—— , cos^c=Vcot^cotjB. (104)

sin \ a —\J — cotB cot (7, cos J a =\/ - cosec jB cot C. (105)

10. If AD he the hisector of the angle A, prove that

A
cos £ 4- cos C = 2 sin —- sin ALB cos -4i). (106)

cos C - cos .B = 2 cos —- cos ABB. (107)

11. What are the formulae analogous to (106), (107), for the hisector of

the external angle ?

Scholium.—In order to pass from a triangle to its polar, it is

useful to remark that we replace

a, b, c, *, A, B, C, s-a, s-b, s-c, A-E, B-E, C-E, n

by v-A', 7T-B', ir- Cf, ir-E', Tz-a', ir-b'yir-c\

A'-E, B'-Ef, C'-E', s'-a', s'-V, s>'- c' N.

In this manner we could infer the formulae of §§ 32, 33 from

those of §§ 25, 26.

Section II.—Eirst Class {continued).

35. The Right-angled Triangle.

The propositions in §§ 24-34 connecting four of the six

elements of a spherical triangle assume, in the case of the right-

angled triangle, a simpler form when one of the four elements

is the right angle, some of the terms vanishing, viz., those con

taining the cosine or the cotangent of the right angle. These

modified formulae are obtained as follows, making the angle O

right in each :—
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From the equation

sin^t sin C /n x t . M sin a

-. = -:— (§ 29), we get sin A = . (108)
sin a sine ° ' sm c K J

From the equation

cot c sin b = cot CsmA + cos -4 cos i? (§ 30),

tan 5
we get cos ^4 = . (109)

tan e

From the equation

cot a sin J = cot .4 sin (7 + cos C cos 5 (§ 30),

tan a

we get tan ^4 = -—-. (110)
sm b v '

From the equation

cos B = - cos (7 cos^ + sin (7 sin ^4 cos# (§ 31),

cosi?

we get sin^£= T. (Ill)
cos b v '

From the equation

cos C=-co&A cos -5 + sin ^4 sin i? cose (§ 31),

we get cos c = cot ^t cot i?. (112)

From the equation

cos c = cos a cos b + sin # sin ^ cos C (§ 24),

we get cos c = cos # cos b. (113)

36. The formulae (108)-(113) may he proved geometrically

as follows :—Let ABC be the triangle, C the right angle, O

the centre of the sphere. From any point D in OA erect DF

at right angles to OA, meeting OC in F, and draw FF at right

angles to OC. Join DF. Then ZZ? is perpendicular to FD,

because the plane BOC is perpendicular to ^4 OC. Hence

jDF2 = DF2 + FF2 = OF2- OD2 + OF2- OF2 = OF2- 0D*;

therefore the angle ODF is right.
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FE FE ED

N°W OE = ED ' ~0E ' tliat 1S' Sm a = sm A sin c" ^108^

FD__FD^ ED

OD~~ED~OD;

EF _EF FD

~of"fd'of;

OD^OD OF

~0E ~lW'~OEy

„ tan b = cosA .tan 0. (109')

,, tan# = tan^4 . sin 3. (110')

,, cos c = cos a cos 5. (113')

 

Multiply together (110) and the formula obtained by inter

changing letters, and we get

1

= tan A tan B.

Hence

cos a cos b

cos c = cot A cot B. (112')

Lastly, multiply crosswise (108') and the formula got from

(108') by interchange of letters; then

sin a cos B tan c = tan a sin -4 sin <? ;

therefore

_ sin^cosc . . 7
cos.Zr = • = sm A cos b. (mo

37. The equations (108)-(111) are easily remembered by

comparing them with the corresponding equations for the

right-angled plane triangle. Thus—
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Plane Triangle. Spherical Triangle.

• A tt , sin a

sm A = -,

c

sm A = - ,

sm c

tan J

cos A = -,

0

COSud s= ,

tan o

. tan #

tan A = r,

0

tan A = ——-,

sm o

cosB

sin -^[ = cos .5. \ sm A T.

cos V

If in these formulae we interchange the letters A, B, and at

the same time the small letters a, b, we get four others, which,

however, may be regarded as not essentially different. The

formula (113) has a remarkable analogy to Euc. I. xlvii. The

formula (112) has no analogue in Plane Trigonometry.

38. Napier's Mnemonic Rules. — If as in the annexed

diagram we trace in a plane a pentagon, whose sides have

respectively the same numerical measures as the quantities

a,i, --A, --c, --B,

we obtain a closed figure representing the system of five quanti

 

ties called Napier's Circular Parts. Any one of the ^ye may

be selected, and called the middle part, then the two next to it
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are called the adjacent parts, and the remaining parts the oppo-

sites. Thus, if a be selected as the middle part - - B, and

b are the adjacents, and - - c, and - - A the opposites ; then

Napier's rules are sin middle part = product of tangents of ad

jacents = product of cosines of opposites. These rules will be

evident from equation (138)-(113). Though given in most

treatises on Spherical Trigonometry, they are disapproved of

by some of the ablest writers—Delambre, De Morgan, Serret,

Baltzer, and others. We have found by experience that the

formulae are easily remembered by the method of § 37, which

we recommend to the student.

ExEECTSES. VII.

On the right-angled triangle, Ex. 1-20.

1. Prove that sin2^4 -4- sin2b - sin2c = sin2 a sin2b.

2. ,, sin2« cos2 b = sin (e -\- b) sin (c — b).

3. ,, tan2 a : tan2£ : : sin2c — sin2/>> : sin2c — sin2#.

4. „ cos2A . sin2c = sin2c — sin2 a.

5. ,, sin2^4 cos2<? = sin2A — sin2 a.

6 . „ sin2^ cos2 b sin2 c = sin2 c — sin2 b.

7. ,, cos2# cos2_5 = sin2^l — sin2#.

8 . , , cos2^4 ■+- cos2 c — cos1A cos2 c = cos2 a .

9. ,, sin2^4 - cos22? = sin2 a sin2i?.

• ^ a I sin (c-b)

10. „ miA =^

' 2 cos b sin c

i a I sin(c + b)

11. „ 008^ = ^2^

i 2 cosb sine'

12. „ sin (a 4- b) tan J (A + B) = sin {a - b) cot J {A - B).

_ _ ' / a , t>\ COS 0 + COS &

13. ,, Bin(A-hB) =

14. „ sin(^-.S) =

15. „ cos{A + B) =

16. „ cos(^-^) =

1 + cos a cos b

cos b - cos a

1 — cos a cos b'

sin a sin b

1 -f cos a cos b'

sin a sin b

1 — cos a cos &

114)

115)

116)

117)

118)

119)

120)

121)

122)

123)

124)

125)

126)

127)

128)

129)
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17. Prove that sin2- = sin2- cos2- + cos2- sin2-. (130)

2 2 2 2 2

A B

18. „ sin(a- b) = sin a tan— - sin# tan-. (131)

19. „ sin (<?-£) = sin (£ + <?) tan2-, (132)

20. ,, sm(c-a) = cos a sin# tan \B. (133)

21. Prove that in an equilateral spherical triangle

2 sin J ^t = sec J a. (134)

22. If the opposite angles A, C of a spherical quadrilateral ABCD be

right, and if the sides ^7), BC produced meet in E, prove

tanAE . tanBE = tan J?J£ . tan CE. (135)

23. If the internal and external bisectors of the angled of a spherical

triangle meet the base in D, D', prove

sin2# — sin2#

cot DD' = — r-r-r- • (136)

2 sin a sin 0 sm c

24. Given the base of a spherical triangle, and the sum of the base angles,

prove that the external bisector of the vertical angle passes through a given

point.

25. If CO' be the median from the right angle of a right-angled triangle,

prove that

sin2 a + sin2 5 = (2 cos °- sin CC J . (137)

26-34. If p be the perpendicular from the right angle 0 on the hypo

tenuse, prove—

C
 

A &'

1°. cot2i? = cot2« + cot2*. 2°. cos2i? = cos2^ + cos2J5. (138)

3°. tan2« = + tan a' tan c, tan2 b = ± tan V tan c. (139)

4°. tan2« : tan2£ : : tan a' : tan b'. (140)
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5°. sin2p = sin a' sin b'. 6°. sin p sin c = sin a sin b. (142)

7°. tan a tan b = tan c sin p. 8°. tan2 a + tan2 b - tan2c cos2^. (144)

9°. cot A : cot-B : : sin a' : sin J'. (145)

35. If MA', MB', MC be the perpendiculars let fall from a point M on

the sides of the triangle ABC ; then

cos AB'. cos BC. cos (L4' = cos A'B . cos B'C . cos C"^. (Steiner)

(146)

36. If the triangles ABC, afiy be such that perpendiculars let fall from

A, B, C on the sides of a, j8, y be concurrent, the perpendiculars from

a, /8, 7 on the sides of ABC are concurrent.

37-40. If AB be the altitude of the triangle ABG, prove—

1°. cos BB : cos CB :: cos BA : cos G4. (147)

2°. sin BB : sin CB : : cotB : cot C. (148)

3°. tan BB : tan CD : : tan BAB : tan CAB. (149)

4°. cos BAB : cos (L42) : : tan^^l : tan CA. (150)

41. If the base BChe fixed, and the ratio of the cosines of the sides con

stant, the locus of A is a great circle perpendicular to BC.

42. If the angled be fixed, and the ratio tan b : tan c constant, the side

BC passes through a fixed point.

43. If the base BC be fixed, and the ratio tani? : tan C constant, the

locus of A is a great circle.

44. If the angle A be fixed, and the ratio cos B : cos C constant, the side

i?<7 passes through a fixed point.

39. Quadrantal Triangles.

The triangle supplemental to a right-angled triangle has

one side a quadrant, and is called a quadrantal triangle. The

formulae pertaining to such triangles are obtained from the

equations (108)—(113) by the substitutions of the Scholium

(Art. 33). They are as follows, c being the quadrantal side :—

sin a = sin .4 -f sin C. (151)

cos a = - tan B -f tan C. (152)

tan a - tan A 4- sin B. (153)

sin a = cos b -f cos B. (154)

cos C - - cot a . cot b. (155)

cos C= - cob A . cosB. (156)
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Ey interchanging the letters a, b, and at the same time the

letters A, Bin the formulae (151)-(154), we get four others,

which, however, may be regarded as not differing essentially

from those given.

Section III.—Second Class.

Formulae containing Five Elements.

40. Napier's Analogies.—If we multiply the identity

4. ytA t>\ tan£^£ + tan^-i? n

tan^ +^ = l-tanM.tan^bytan*fi

and substitute for tan \ A . tan \ C, &c, their values, from

§ 28, Cor., we get

4. wi, mi in Bin(«-ft) + sJn(g-g) cos j(a-b)

tan J-L4 + 2?)tanJ-tf = —f . , x = —r7~TT\-
v J sm 8 - sin (* - «) cos J (« + 0)

Hence tan i(A+B) = 0OB *(»-') cot £ (7. (157)

v y cos i (a + J)

Similarly, tan i(A-B) = ^ *!*"!! cot i C. (158)

Cor. 1.—If in the expression for tanj(.^ + i?) we change

cos to sin, we get the expression for tan i (A -B).

41. Again, we have

7S t , tan J« cot*c + tani5 cot %c

tan J (a + b) cot J o = — r—i—r? >
v y 1 - tan J a tan £ 0

and substituting for tan \a cot £0, &c, their values from § 34,

Cors. 1, 2, we get

8m(A-E) + 8m(B-U) cosj(A-B)

tan £(« + #) cot ic =
8m(C-U)-smJS cos£(^ + j&)

Hence tan i (a + b) = C°S j ^ fj tan £ 0. (159)

2 v y cos J {A + #) '

Similarly, tani(a-t) = ™* (j + jg) tan**' (160)
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Cor.—If we change cos to sin in the expression for tan J (a - b)

we get that for tan J (a + b).

The theorems contained in the equations (157)-(160) may be

expressed as proportions, and are called Napier's Analogies,

after their discoverer. It may be remarked that the last pair

can be got from the first by means of the polar triangle ; also

that the second and fourth may be inferred from the first and

third by multiplying them respectively by the equation

tani(A-B) tan£(0-5)

tan i(A + B) ~ tan £ {a + b)'

Several proofs of these important theorems are known, but the

foregoing are probably the simplest.

Exercises.—VIII.

1. Show that cos a sin b — sin a cos b cos G 4- cos A sin c. (161)

Multiply equation (61) by sin a, and replace sin a cot A sin G by cos A

sine.

2. Prove that sin G cos a = cos A sin B + sin A cos B cos G. (162)

Section IV.—Third Class.

Formulae containing Six Elements.

42. Delambre's Analogies.—1°. To prove

sini(A + B) cosi(a-b)

cos J 0 cos i e

Dem.—sin i {A + B) = sin \A cos i B + cos %A sin J B ;

and substituting for sin J^, cos J -4, &c, their values from

§§ 26, 27, we get

Hence

l I (A l ff) - sin (* ~ ^ + sin^ " ^ /sing- sin ~(*-°)

sine ^ sin 0. sin &

&m%(A + B) sin(*-fl) + sin(*-0) cos £(«-#)

—^— = : = . (loo)
cosfC sine cos^e
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In like manner we get the three following equations :—

2° sinjU-ff) = sinlp-^ n 64)

cos % C sin i c

g0 cosj(^+.g) = cosi(a + ^ (165)

siniC cos^c

40 cosj-(A-B) = sin j Q + ft) .

sin |- (7 sin i 0

From any one of these formulae the others may be obtained by

the following rule:—Change the sign of the letter B {large or

small) on one side of the equation, and write sin for cos and cos for

sin on the other.

Cor.—Napier's analogies may be inferred from Delambre's by

division.

Delambre's analogies were discovered by him in 1807, and published

in the Connaissance des Temps for 1809, p. 443. They were subsequently-

discovered independently by Gauss, and published in his Theoria motus

corporis coelestium in sectionibus conicis solem ambientium. Both systems

may be proved geometrically, though not so directly as by the method in

§§41, 42. The geometrical proof is the one originally given by Delambre.

It was rediscovered by Professor Crofton, F.R.S., in 1869, and published in

the Proceedings of the London Mathematical Society, Vol. III.

43. Reidt's Analogies.—From Delambre's analogies we get

by an easy transformation four others, due to Reidt. See hi&

Sammlung von Aufgaben der Trigonometrie, Seite 233. These

may be used in the solution of triangles. Formulae nearly

identical with them are given in Seeket's Trigonometry, p. 156.

From (163) we get

cos \c- cos J- C cos % {a - b) - sin J (A + B)

eos^ + cos^ C cos % (a - b) + sin. i (A + B)'

Now, put A+ a = 4s', A- a = 4d',

B + b = 4s", B-b = 4d",

C + c = 4s'" C-e = 4d"\
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and we get

tan «'" tan d'" = tan { 45° - (*" + d') } tan { 45° - (sf + d") } .

(167)

Similarly, from equations (164)-(166), we get

tan (45° + d'") cot (45° + «'") = cot («' - «") tan(d' - d").

(168)

tan (45° + «'") tan (45° + d'") = cot (*' + «") cot (<*' + d")-

(169)

cot «'" tan <*'" = tan { 45° - («" - <*') } tan {45° - {s' - d") } .

(170)

44. From the formulae (167)-(170) we get, by an obvious

method,

tan2 (45° - «'") = cot (sf - s") tan (sf + «") tan (d - d") tan (d' + d").

(171)

tan2 (45° - d"')= tan («' - «") tan (*' + *") cot (# - d") tan (<*' + d").

(172)

tan2 «"' = tan { 45° - («" + #) } tan { 45° + («" - «*') }

tan{45°-(*' + <?")} tan {45° + (s'-tf")}- C1?3)

tan2 d'" = tan { 45° - («" + #) J tan { 45° - (*" - d') }

tan{450-(s'+^/)}tan{45°-(s,-^/)}. (174)

45. If in the original triangle a, b, B retain their values, and

the angle .4 change into ir - A, the formulae (171), (172) are

replaced by the following :—

tan2 «'" = tan («' - «") tan (sf + s") tan (# - d") cot (# + d").

(175)

tan2 «*'" = tan (sf - s") cot («' + «") tan (<*' - tf") tan (# + d").

(176)



Third Class. 43

46. Other Applications of Delambre's Formulae.

From the 3rd and 4th of Delambre's analogies, we have

c\ A + B . / e\ A-B

COS I 8 - - COS 6111 * - - I COS -

2 2 V 2 2

c I n C\ ' . e ( C

cos- cos I 90°-— sm- cos I 90- —

From the first of these equations, we get

I e\ c A + B / C

cosls-- +cos- cos — + cosl 90-—

c ( e\ / C\ A + B>

COS - - COS 8— cos 90 cos -

2 \ 2) \ 2J 2

or cot^ cot^ = coti^,tani(C-JE,); (177)

and from the second,

c\ . e A-B

sm l s - - + sm - cos —-— + cos

2 1 2 2 M)
sm | s - - -sm- cos—-—• - cos I 90 - —

or tan^ cot ^? = cot J (^ - jE') tot b(B-E). (178)

Hence, by division, and extracting the square root, we have

cot *- = v/cot iJE. tan i{A - E) tan b(B-E) tan i(C-JE).

(179)

By multiplying (177) and 178), we get

tan 8~ = V/tanJ^,.tanJ(^-^,)tanJ(^-^r)coti•(Cr-^,).

Ji

(180)

These simple and elegant proofs are due to Prouhet. See

Nouvelles Annales, 1856, p. 91.
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47. If we put

L = ytan i JE'Ttan J (^ - E) tan J (^ - E) tan £ ( 67 - E)}

(181)

equation (179) may be written

004 i-s^? (182)

and equation (180) may be written

tan *-^ = -——-——. (183)
2 tani((7-^) v ;

Prom (183) we get, interchanging letters,

& — a L ,« ^ .v

taQ— =tanMXr^)' <1M>

and tani^ = _A_. (i85)

48. If we multiply tbe four equations (182)-(185) we get

L = 'v/cot i 8 . tan i(s - a) tan i(s - b) tan £ (s - c) ;

(186)

and substituting this value in (182), we get

tan J E = V^tan £s . tan £ (* - a) tan J (5 - b) tan £• (* - 0).

(187)

This beautiful theorem is due to Simon Lhuilier of Geneva.

After him I propose to call the function L the Lhuilierian of

the triangle. It will be seen that on account of its double

value, viz., those given in (181) and (186), it will give the

solution of a spherical triangle either when the three sides or

the three angles are given, that the same system of equations

solves both cases, and that in each case the solution is self-

verifying.
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Exercises.—IX.

1 . Prove that

sin b sin c + cos b cos c cos A = sin i? sin C — cos i? cos G cos «. (188)

2. Prove Cagnoli's theorem that

cos a cos B cos C + cos -4 cos 5 cos v — cos ^4 cos B cos C sin b sin <?

+ cos a cos ¿ cos c sin B sin (7.

3. Prove tan A tan I? tan G

tan # tan b tan c =4.

5.

6.

7.

tan ^4 tan B tan (7

+ + _.
cos b cos i? cos b cos c

tan a tan 2> tan c

10.

11.

sin A

cos B cos C cos 2? cos G

tan C cos B + cos # sini?

tan b cos C — cos A sin c sin a

sin C cos ¿ = cos B smA + cos ^4 sin b cos C.

sin c cos 2? = cos b sin « — cos a sin d cos (7.

tan A sin i? — cos b cos c tan a tan ¿ + cos G

sin C tan # — tan a cos ¿"

tan a sin ¿ + cos # cos C tan^á tanl? — cose

sin G

sin G

sin J5 tan c

sin (7

tani?+ tandeóse"

sin a cos C + cos a cot ¿.

sin b tan C

sin -4 cos c — cos -4 cot B.

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

The Exercises 3-11 are due to Barbier. See Nouvelles Annates for 1866,

p. 349. The following is an outline of the method of proof:—

ABG, A'B'G' are two supplemental triangles.

To prove 3—A'AI is perpendicular to BG.

Hence cos c = cot B cot £, cos b — cot G cot 7, A = fi + 7 ;

.*. tan A = tanjS + tan 7 + tan A tan # tan 7, &c.

To prove 1—Compare HK in the triangles AUK, A'UK.

„ 5—Apply the formula (61) to the triangles A'UK, AHK.

„ 6—Compare BG in the triangles DGE, DBG.
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_ n , „ A^ tan GAG — tan ^4

To prove 8—tan GAB = 7rT7— -. . .r 1 + tan GAG. tan A

„ 10—The angles AFC, AFK, are complementary, &c.

 

Fig. 18.

The Exercises 4, 7, 9, 11 are inferred from 3, 6, 8, 10 by the properties of

supplemental triangles.

12. In a right-angled triangle, prove sin c = — . (199)

13. If the sides of a spherical quadrilateral be a, j8, 7, 5, and the diago

nals 2 and <p, prove that

A

cos (2(f>) = (cos o cos 7 - cos # cos 5) cosec 5 . cosec <p. (200)

14. Prove that

A

cos (C17) = (cos # cos 5 - cos 5 . cos (p) cosec a . cosec 7. (201)

15. Prove that

A

cos (£5) = (cos a cos 7 - cos 2 cos <p) cosec 0 cosec 8. (202)

16. Prove that the angle between the bisector of the angle Goi a spherical

triangle ABC and the perpendicular from C on ^4i?

= tan-1 J tan \ {A + B) tanJ (A -B) tan - j . (203)

17. ,, (cos3^ - cos2^) + (cot 0 cos A - cot £ cos B) = 2N. (204)

18. ,, sin A sin B sin C sin a sin b sin c = 4wiV. (205)

19. „ JV = 2w* -f sin « sin b sine. (206)

JV2 1 + cos A cos 2? cos G
20. „ -t = -j 1 • 207

nl 1 — cos a cos b coac '
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21. Prove that the sines of the perpendiculars from the orthocentre on

the sides of a spherical triangle are proportional to the secants of the oppo

site angles.

22. If the base BC of a spherical triangle be given in position and magni

tude, and the sum of the sides AB, AC be given in magnitude, prove that

the locus of the intersection of the bisector of the external vertical with a

great circle perpendicular to AB at B is a great circle.

23-30. Prove the following analogies due to Breitschneider. See Crelle?&

Journal, Band, xiii., Seite 145 :—

sin \ E . cos J {A — E) _ sin J s . sin %(s-a)

sin J A cos J a

cos J E . sin \ (A - E) cos Js . cos \ (s — a)

sin J A cos J a

sin J i? . sin \ {A — i£ ) sin |(s - £) sin \{s~c)

cos |^4 cosJ#

(208)

(209)

(210)

cos|ig.cos|(^--g) ^ cos ^ (s - b cos |- (s - g)

COS ^-4 COS^tf

5° cos 118-ff) cos | (£-.#) = sing*-cosi(*-g) /212v

sin J ^t sin | #

6° Binj(.g--^)siii|((7-^) ^ cos|s.sin|(*-^

sin 1^4 sinj#

cos|(£--i?) sin J(tf-i?) _ sinJ(s-#) cos|(s-c)

cosj^l sinjtf
(214)

smK£-^)cosj-(ff-ig)_cosj-(s-a)sinJKs-g) /01KV

cos J^l sin fa '

These analogies are all inferences from Delambre's. For example, 1° is-

obtained by subtracting both sides of the equation

cos \ (B + C) cos J {b + c)

« \ —-' = £-1- from unity.

sinfi cos^a



CHAPTER III.

SOLUTION OF SPHERICAL TRIANGLES.

49. Preliminary Observations.

1°. The logarithms of trigonometrical functions are obtained

from their " Tabular Logarithms'' by subtracting 10 from the

characteristics. For example,

log tan 37° 40' 16" = 1 . 8876649.

The ablest recent continental writers, such as Serret, Briot, et Bouquet,

and others, employ the logarithms thus reduced, instead of the Tabular

Logarithms. We may add that the late Prof. Boole was strongly in

favour of this alteration.

2°. It is necessary to avoid the calculation of very small

angles by their cosines, or of angles near 90° by their sines, for

their tabular differences vary too slowly. It is better to deter

mine such angles, for example, by means of their tangents.

3°. When angles greater than 90° occur in calculation, we

replace them by their supplements, and if the functions of

such angles be either cos, sec, tan or cot, we take account of the

change of sign.

4°. Formulae not adapted to logarithmic computation can be

rendered so by means of an auxiliary angle. Thus :—

(a) For A cos a + B sin a we put A-B tan <£,

, • -, • i?sin(<£+a) ,rt,„x
which gives ^~-—l. (216)

cos<£ '

(b) For A cos a + B we put B = A sin a tan <£,

which gives ^_x_'. (217)

cos</>
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Section I.—The Kight-angled Tbiangle.

50. The solution of right-angled spherical triangles presents

six distinct cases, which correspond to and are solved by the

six equations (108)—(113) of § 35. For their discussions the

following remarks are useful :—1°. The three sides of a spherical

triangle (omitting triangles birectangular or trirectangular), are

either all acute, or else one is acute and the other two obtuse.

This follows from the equation cos c - cos a cos b. 2°. Mther

of the sides containing the right angle is of the same species as the

opposite angle. This can be inferred from the equation

cos A = cos a sin B.

It will be a useful exercise for the student to prove these

propositions geometrically.

51. Fikst Case.—Being given c and a, to calculate b, A, B.

The required parts are given by the formulae

cos b = ^2L1 equation (113). (218)

cos a

sinA=S~, „ (108). (219)

sin c

cos S=~, „ (109). (220)

The formula (219) gives two supplementary values of sin A,

but the ambiguity is removed by considering that A must be of

the same species as a.

From the equations (218)-(220) we get, by obvious trans

formations, the three following :—

tan^3 = + v^tani (c + a) tan J- (c- a). (221)

tan(45+M) = ± /*—*^±4 (222)

taniJ? = + /8in(g-*j. (223)

\sin(tf + a)
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The equation (221) proves that if J (c + a) be greater than

90°, c is less than #, for the product of the quantities under

the radical must be +. The sign is + or - in (222), according

as a is less or greater than 90°. If the given parts c and a be

each 90°, the angle A is 90°, and b is indeterminate. It is also

evident, from the formulae (218)-(220), that c must lie between

a and ir - a, in order that the values of cos b, cos B, and sin A

may be numerically less than unity.

Example—

Given c = 37° 40' 20", a = 37° 40' 12"; find b, A, B.

Type of the Calculation.

c±a = 75° 20' 32", i (c + a) = 37° 40' 16".

c-a= 0 0 8, b(c-a)= 0 0 4.

I tan i(c + a) = 1*8876649, I sin (c + a) = 1*9856305,

I tan i (c - a) = 5-2876348 ; I sin (0 - a) = 5*5886648 ;

.-. J tan i b = 3*5876498. .\ Z tan (45 + i -4 j = 2*3000150,

Z tanJ-.£ = 3*8015172.

Hence J = 0° 26' 37"*2, A = 89° 25' 37", ^ = 0° 43' 33".

1. Given c = 63° 55' 43", a = 120° 10' 0"

2. )> c=54 20 0, a= 36 27 0;

3. >> c = 87 11 39-8, «= 86 40 0;

52. Second Case.—Being given c, A, to calculate a} b, B.

The unknown parts are found thus :—

sin a = sin c sin^t, equation (108). (224)

tan b = tan c cos A, „ (109). (225)

cot B = cose tan A, „ (112). (226)
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The ambiguity in finding a by its sine is removed in § 51. If

a be very near 90°, we commence by calculating tbe values of

b and B, and tben determine a by either of the formulae

tan a = sin b tan A. (227)

tan a = tan c cos B. (228)

Example—

Given e ~ 81° 29' 32", A = 32° 28' 17"; find.*, b, B.

Type of the Calculation,

c = 81° 29' 32", A = 32° 28' 17".

I sin c = 1-9951945 / tan 6 = -8250982

/sin .4= 1-7278843 I cos ^ = 1*9269687

I sin a ^ 1-7230788 ; /tan J = -7520669 ;

.-. a = 31° 54' 25". .-. b = 79° 51' 48"-65.

/cos <? = 1-1700960

I tan A = 1.8009157

IcotB = 2-9710117;

B = 84° 39' 21"-33.

EXERCISES.—XI.

1. Given c = 69° 25' 11", A = 54° 54' 42"

2.
it

<? = 112 48 0, ^ = 56 11 56;

3. »> c = 46 40 12, A = 37 46 9 ;

53. Third Case.—Being given a, b, to find A, B, c.

The formulae are—

tan A = tan a 4- sin b, equation (110). (229)

tan^ =tan£ ~ sin a, „ (110). (230)

cos c = cos a cos &, ,, (113). (231)
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If the side c be very small, instead of the formulae (231),

we may determine it by means of either of the following

equations—

tan c = tan b -f cos A = tan a -f cos B, (232)

A, B having been calculated from the formulae (229), (230).

EXEKCISES. XII.

1. Given a = 120° 10' 0", £ = 150° 59' 44"; find A, B, c,

2.
j*

a= 36 27 0, A= 43 32 31;
>» j>

3. >> a = 86 40 0, ft= 32 40 0;
>> jj

54. Fourth Case.—Being given a, A, to find c, b, B.

In this case we have

sin c = sin a -f sin ^4, equation (108). (233)

sin b = tan a -r ttmA, „ (HO). (234)

sini?= cos^-f- costf, ,, (HI). (235)

Since each of the sought parts is found by its sine, there will

be on the whole six solutions, the formulae (233)-(235) giving

two values for each of the sought parts c, b, B. The parts

a, A must be of the same species (see § 50). Also sin a

must be less than sin A (A is comprised between a and 90),

and the formula (233) gives two admissible values of cy say cx

and 180- cx ; the formula (234) gives two values of b, bx and

180 - hi, one of which goes with c1} and the other with 180 - cx ;

for the three sides a, b, c are all acute, or one alone is acute ; the

formula (235) gives two values of B, of which one goes with bl9

and the other with 180 - bx (b and B are of the same species).

If the sought parts are badly determined by the equations

(233)~(235), which happens when they are near 90°, the pre

ceding formulae may be written as follows (see Notation,

§43):-
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tan(450 + i,) = ±J^. (Mfl)

tan(45° + i8) = ± fe|C (237)
\ sin 4cdf

tan(45° + i#)=± /
/cot 2s'

I cot 2^'*
(238)

1. Given a = 34° 6' 13",

2.
5?

0 = 87 12 28,

Each of the radicals on the right-hand side must have the

double sign.

Exercises.—XIII.

A = 34° T 41"; find c, b, B.

A = 87 51 37;

55. Eieth Case.—Being given a, B, to find b, A, c.

The following equations give the required parts—

tan b = sin a tan B, equation (110). (239)

cos A = cos a sin B, ,, (111). (240)

tan o = tan a -f cos B ,, (109). (241)

If ^t be small instead of the equation (240), the following may

be used—

tan^ = -?^|, equation (110). (242)

Exercises.—XIV.

1. Given a = 92° 47' 32", B = 50° 2' 1"

2. >> a = 96 49 59, .# = 50 12 4;

3.
99

a = 20 20 20, £ = 38 10 10;

56. Sixth Case.—Being given Ay B, to find a, b, c.

Here we have

cos a- cos A -f sini?, equation (111). (243)

cos b = cos B 4- sin A, „ (HI). (244)

cos 0 = cot .4. cot #, „ (112). (245)
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If these formulae be not well adapted for the arithmetical

calculation, which happens when the sought parts are small,

we use the following—

Exercises.—XV.

1. Given A = 63° 15' 12", B = 163° 33' 39"; find a £, c.

2. „ ^ = 46 59 42, B = 57 59 17; „ „

3. „ .4 = 42; 24 9, B= 99 4 11; „ „

57. The triangle supplemental to a right-angled triangle is a

quadrantal spherical triangle, that is, a triangle one of whose

sides is a quadrant. The solution can be inferred from the

equations of § 39. Other triangles besides the quadrantal can

be reduced to the rectangular. 1°. Isosceles triangles, for the

median that bisects the base is perpendicular to it. 2°. Triangles

in which a + b = w, or A + B = 7r, for the colunar triangle

B'A C is isosceles.

Section II.—Oblique-angled Triangles.

58. The solution of oblique-angled triangles presents three

pairs of cases, each consisting of two which are reciprocals of

each other. They are as follows :—

I.—The three sides and its reciprocal the three angles.

II.—Two sides and the angle opposite to one of them; its re

ciprocal two angles and the side opposite to one of them.

III.—Two sides and their included angle; its reciprocal two

angles and the adjacent side.
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First Pair of Cases.

59. Being given the three sides a, b, c, to calculate the angles.

From equation (186) and equations (182)-(185), we get

log L = i { I cot i s + 1 tan J (s - a) + I tan i (s - b) + 1 tan i (s - c) } .

(249)

I tan i E = log L - I cot £ s. (250)

I tan i(A-J2)**logL-l tan i (« - a) . (25 1 )

7 tan i (_# - jtf) = log L- I tan £ (« - 5). (252)

JtanJ(C-J£)=:logZ- J tanj (*-*)• (253)

Example—

Given a = 100°, b = 37° 18', <? = 62° 46' ; find ^, B, C.

Type of the Calculation.

a = 100° 0' 0" I cot i s = 1-9235570

b = 37 18 0 Z tan J (s- a) = 4-4637261

<? = 62 46 0 JtanJ(*-&)= 1-7150481

£*-= 50 1 0 Jtanj-(*-0)= 1-5278682

£(*-«) = 0 10 2 [5-7001994

±(s-b)= 31 22 0 .*. logZ =3-8500997

i(s-c)= 18 38 0 Hence I tan J U = 3*9265427

„ /tani(^-Zr)= 1-3863736

„ Ztani(Z-Z) = 2-0650516

„ Jtanj(0-j0) = 2-3222315

.\ Z*= 0° 58' 3"-32, ^ = 176° 15' 46"*56, Z= 2° 17' 55"-08,

C=3°22'25"-46.
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Exeecises.—XYI.

1. Given « = 89° 59' 59', b= 88° 55' 58", c = 87° 57' 57"; find A, B, C.

2. „ «=120 55 35, 5=59 4 25, c=106 10 22; „ „

3. „ a= 20 16 38, 3=56 19 40, c= 66 20 44; „ „

60. If only one angle, say A, be required, the formula for

tsm^A in terms of the sides is simpler than the foregoing.

Thus in logarithms,

I tan £ A = J { I sin (s - b) + 1 sin (s - c) - I sin s - I sin (s - a) } .

(254)

a = 82° 33' 51" Z sin (*-&)= 1-9788195

b = 27 16 9 Z sin (« - o) = 1*2529286

c = S9 12 24 1-2317481

5=99 31 12 I Bins =1*9939773

s-a= 16 57 21 I sin (s -a) = 1*4648388

-5 = 72 15 3 1-4588161s

8-c= 10 18 48 L1'7729320

/. Itm^A =1-8864660

Hence A = 75° II7 22".

61. Being given the three angles A, B, C, to calculate the sides.

From equations (181)—(185) we have

logZ=J{?tanl^r+/tanf(^-^) + Ztan|(^-i6') + ^tan|((7-^,)}.

(255)

I cot i s = log L - I tan \ E. (250')

I tan \ (s - a) = log Z - I tan J (-4 - Z'). (251')

I tan J (5 - b) = log Z - I tan J (£ - JS). (252')

Z tan J (* - <■) = log Z - J tan J ( 0 - JP). (253')

On comparing the equations (250')-(253') with (250)-(253)

of § 59, it will be seen that they are identical
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Exercises.—XVII.

1. Given A = 161° 22' 10", B = 26° 58' 46", G= 39° 45' 10" ;

find a, bf e.

2. „ ^ = 127 22 7, -5 = 128 41 49, C= 107 33 20;

find #, #, <;.

3. „ A= 78 15 41, .5 = 153 17 6, (7= 87 43 36;

find a, b, c.

62. If only one side, say a, be required, we may use either of

the formulae

2 ^sm(B-E)sm(C-E)'

cos .4 + cos i? cos (7

or cos a = :—j.—t—^ .

sm B sin 6

The last can be adapted to logarithmic computation by mean&

of an auxiliary angle. Thus, if we put

sin B cos C

tan (j> =

cos a =

cos ^4

sm(B + cf>)cot C

sin B sin <j>

(256)

Example.—Given

A = 32° 54/ 28", 5 = 146° 58' 9", C= 24° 54' 47"; find a.

Zsin£ = 1-7364682

I cos C = 1-9575824

Z cot C = 0-3330492

Z sin 05+<£)= 2-6464053

1-6940506

Zcos-4 = 1-9240447 Z sinZ?

1 sin <£

2-9794545

= 1-7364682

Ittmcfy = 1-7700059 = 1-7053630

Hence <£ = 30° 29' 30"-4 1-4418312

.*. B + <t>= 111 27 39-4. .*. 1 COS 0 = 1-5376233

Hence a = 69° 49' 40".
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Second Pair of Cases.

63. Given two sides a, b, and the angle A opposite to one of

them, to calculate the remaining parts.

The sought parts are found by the following equations :—

. _ sin ^4. sin 5 ,rt-*v

sin£ = : . (257)

sin #

tanic = tan i(a-b) g^*^ + ^). (258)

smi(A -B)

tan i C= coti(A-B) ^ * ^ ~ S- (259)

The formula (257) gives for B two values Bu 180° -Bl9 if

sin A sin b be less than sin a. In order that either of these

may be admissible, it is necessary and sufficient that, when

substituted in (258), (259), they give positive values for tan %c

and tan % C, or, which is the same thing, that a - b and A - B

will be of the same sign. This condition is both necessary and

sufficient For a, b, A, being the given elements, denote by

B, c, C the other elements determined by the equations (257)-

(259). Now let us construct a triangle T, having the angle C

and the sides a, b, and calling Af9 B', c' the other elements of

this triangle, we have

tan* C= coti(A'-B') ^ j (* " *}. (259')
v sin £ (a + b) v y

(a)

(a + b)'

tan j (^' + B') _ tani (« + b)

tan i (^' - B') " tan £ (a - 6)'

and from (257) we infer

ta,ni(A + B) tan-|-(# + J)

tan£(.4 - B) tan i {a - b)'
oo
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If we compare (259) and (259'), we see that A'-B' = A-B.

Hence, from the two formulae (a) we have A' + B' = A + B ;

therefore A' = A, B' = B. Lastly, from (258) and (258') we

infer that c' = c. Hence we have the following Eule :—If each

of the two values of B which are got from (257) be such as that

(A - B) and {a - b) have like signs, there are two solutions. If

only one of them satisfies this condition, there is only one triangle

that satisfies the problem. The problem is impossible when neither

of the values of B make {A - B) and {a - b) of the same sign.

Instead of the formulae (258), (259), we may use the fol

lowing :—

I tan J c = I tan J (a + b) + I cos J {A + B) - I cos i(A - B).

(260)

I tan i C =1 tan i (A + B) + I cos J (a - b) - I cos J (a + b).

(261)

64. From Beidt's Analogies (§44) we get the following

equations :—

I tan (45° - d'") = I { Han (*' + «") + I tan («' - «")

+ I tan (<*' + <J") - I tan (£' - d") } . (262)

Z tan (45° - *'") = J {Z tan («' + *") - J tan (s' - s")

+ Z tan [df + d") + Z tan (d' -<*")}• (2*63)

These formulae determine C and 0 when the angle B is acute.

They possess the advantage of requiring only four logarithms

instead of six, which are necessary if we calculate by the equa

tions (258), (259). For the second triangle answering the given

conditions, or for B obtuse, the formulae are—

I tan a'" = J { Z tan (s' + s") + 1 tan (*' - *") + I tan {d' - d")

-ltm(d' + d")}. (264)

I tan d'" + i { I tan («' - s") + I tan {d' - d") + Z tan {df + <Z")

-Z tan (a' + *")}. (265)
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The formulae (263)-(265) may be replaced by the fol

lowing :—

J tan (45° - *'") = I tan (s' + *") + Z tan {d! + d") - Jtan (45° - d'").

(266)

I tan d'" = I tan (a' - *") + J tan (df - #') - J tan *"'. (267)

Or £te :—Let fall the perpendicular CD ; then, denoting the

arc AD by <j> and the angle A CD by \j/, we have, from the

right-angled triangle A CD,

tan <f> = tan 5 cos A} tan i^ = cot A/cos b.

 

Fig. 19.

Then the sought parts are given by the equations

sin B = sin b sin ^/sin a, cos (c-cj>) = cos # cos <£/cos J,

cos ( C - i/r) = cot # tan 5 cos i//.

Exeecises.—XYIII.

1. Given a= 73° 39' 38", b = 120° 55' 35", ^4= 88° 52' 42" ;

find ,5, C, e.

2. „ a = 150 57 5, £ = 134 15 54, A = 144 22 42;

find .B, (7. *.

3. „ a= 20 16 38, b= 56 19 40, ^t = 20 9 54;

find B, C, #.
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65. Given two angles A, B, and the side a opposite to one of

them, to solve the triangle.

The solution may be inferred at once from the reciprocal

case, §§ 63, 64. In fact, the same equations solve both cases.

Third Pair of Cases.

66. Being given the sides a, b, and the contained angle C, to

find A, B, c.

Napier's analogies give

I tan J {A + B) = I cot -J- C + I cos \ {a - b) - I cos \ {a + b).

(268)

I tan £ {A - B) = I cot i C + I sin \ {a - b) - I sin % {a + b).

(269)

These equations give i (A + B) and i (A - B) ; and therefore

A and B, and then c, can be found from equation (47), or from

(159) or (160).

Example.—Given

a = 113° 2' 56", b = 82° 39' 28", C= 138° 50' 14"; find A, B, c.

Type of the Calculation.

i(a-b)= 15° 11' 14" Ismi(a-b) = 1-4184891

i(tf + 5)=97 51 12 l&m±(a + b) =1*9959075

i C = 69 25 7 J cos i (a - 5) = 1*9845438

J {-cosi(fl + J)} = 1-1355722

IcotiC =1-5746163

Hence l{-tmi(A+B)} = -4235869

.-. i(-4 + .#) = 110° 39' 35",

and I tan i (^ - B) = 2-9971969 ;

.♦. i {A - B) = 5° 40' 27".

Hence J = 116° 20' 2", ^ = 104° 59' 8".
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To find 0 we have, from (159),

I tan -£- c = I { - tan -§- (a + J) j + I ( - cos i {A + B) ) - 1 cos \ {A - B).

Now

J{-tan£(tf + £)} = -8603353, l{-zo$±(A +B)} = 1-5475498,

I cos i (A -B)= 1~9978668.

Hence Han i e= -4100083 ; .-. 0=137° 29' 3".

Observation.—In the foregoing calculation it is seen that,

when an angle is between 90° and 180°, we have the sign

minus before its cosine and its tangent, the reason of which

is obvious.

Or thus :—Let fall the perpendicular BE; then denoting the

arc AE by 0, CE will be b - 0. Then, from the right-angled

triangles, we have

tan (b-6) = tan a . cos C, tan ^/tan C = sin (b - 0)/sin 0.

 

Fig. 20.

The first equation determines 6, and the second A. In a similar

manner B may be found. Lastly, from the same triangles, we

have cos tf/cos a = cos 0/cos (b - 6). Hence c is found.

Exeecises.—XIX.

1. Given a= 88° 12' 20", 6=124° 7' 17", C=50° 2' 1";

find A, B, e.

2. „ a = 110 55 35, b = 88 12 20, tf=47 42 1;

find Ay By e.

3. „ «= 65 15 12, 6 = 47 42 1, (7=59 4 25;

find Ay By e.
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67. Given two angles A, B, and the adjacent side c, to find

a, b, C.

From Napier's Analogies we get

I tan £ (a + b) = I tan -§- c + I cos \{A - B) - I cos \ (A + B).

(270)

Z tan \(a-b) = l tan -J- <? + I sin £ (-4 - B) - Z sin -J- (-4 + 2?).

(271)

Hence a, b are known, and C can be found from (268) or (269).

Or thus :—Let fall the perpendicular BE (see last fig.) ; then

denoting the angle ABB by <j>, the angle BBC will be B - <£.

Then from the triangles ABD, CBB, we get

cot 4> = tan A cos c, tan a = cos <£ tan (7/cos (B -</>).

The first of these formulae determines <£, and the second a.

Similarly b may be found.

Again, from the same triangles, we have

sin <£ : sin (B - <£) : : cos J[ : cos C.

Hence C is found.

68. The following simple and elementary methods of solving

the various cases of oblique-angled triangles, by dividing each

into two right-angled triangles, are due to Cauchy.

 

Let 0 be the centre of the sphere, ABC the spherical triangle.
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Draw CB perpendicular to the plane A OB, also BA', BB' per

pendicular to OA, OB. Then it is evident that CA', CBf are

also perpendicular to OA, OB.

Let B'OB = a, B0A'=/3, BOG = 8;

then we have

CB' = sin a, OB' = cos a ; &4' = sin 5, OA' = cos J ;

CD = sin 8, 0i) = cos 8 ; (L4'.D = A**€B'B = £.

The triangles A' OB, B'OB, A'CB, B'CB, have the angles

A' B' B right ;

05' 0^;

cos BUOB cosA'OB*

Hence

cos a cos J

cos o^ cos. 13'

(272)

BC = sin 8 = ££' sin <7$'D>- £4', sin CA'B

Hence sin a . sin B = sin 5 sin ^4.

= OB' tan B'OB = #£' cos ££'.#.

(273)

BB'

Hence tan a = tan # cos i?.

= OA' tmA'OB = <L4' cos <L4'i).

(274)

BA'

Hence tan/2 = tan# cos ^4. (275)

From (272) we get

tan i (a + b) tan i (a - b) = tan i (a + /?) tan i (a - ft) ;

but (a + 0) = o. (276)

Hence

tan £(« + £) tan i (a - b) = tan i <? . tan £ {a - /3). (277)

The formulae (272)-(277) solve all the cases of oblique-

angled triangles.

1st Case.—Given the three sides.

(276) gives (a + j8), (277) (a - /?), (274), (275) give A, B.

2nd Case.—Given the sides a, b, and the angle A.

(273) gives£, (274), (275) give a, p, (276) gives c, and (273) C.

3rd Case.—Given the angle A and the adjacent sides.

(275) gives /?, (276) a, (272) a, and (273) determines£ and C.
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Exercises.—XX.

1. Prove that

cos J (a + b) cos J (a - b) tan \ C = sin a cos B + cos -4 sin J. (278)

2-7. Solve a right-angled triangle, being given—1°. e, a+b; 2°. c, a-b;

3°. «,# + <;; 4°. a, b - c; 5°. c, ^t - B ; 6°. c, j?.

8. If 1 -f- cos a + cos £ + cos c — 0, prove that each median is the supple

ment of the corresponding side.

9. In the same case, prove that the spherical excess is two right angles.

10. In the same case, prove that the arcs joining the middle points of

two sides are each = 90°.

11-17. If a + b + c = 7r, prove—

A

1°. cos a — tan \ B tan \ C. 2°. sin2 -— = cot b cot c.

nA cos a A B j n A cos b cos c
3°. cos2 — = . T . • 4°. tan2 — =

2 sin bsinc 2 cos a

ABC
5°. sin2— 4- sin2 — 4- sin2— = 1. 6°. cos A 4- cos B + cos C= 1.

L L L

7°. cosec [A - E) 4- cosec {B - E) + cosec (C - E) = cosec E.

18. ABC is a spherical triangle right-angled at C; if with A, B as poles

great circles KFKL, BEFG be described, meeting the sides CA, CB, AB

of the triangle in the pairs of points E, EC; K, G ; X, D, respectively ;

prove that the five triangles ABC, ABE, KEF, FGK, KLB have all the

same circular parts.—(Napier.)

19-22.—Deduce from the analogies of Delambre or Napier the follow

ing convergent series :—

«-* c A B • o^ *B • n
1 . —-— = - — cot — tan — sin c 4- f cot2— tan2— sin 2c - &c.

2 2 2 2 2 2

e _(a — b\

2 = l"T"j
+ cot—- tan — sin (a - b) 4- £ cot2 — tan2— sin 2(« - b) + &c.

2 2 li 2

= - 4- tan— tan — sin c 4- \ tan2 — tan2 — sin 2e + &c,

2 2 2 2 2 2

4°. - = — tan —- tan — sin (a + b) 4- ^ tan2 — tan2 — sin 2 (# + b) — &c.

2 2 2 2 2 2

(Brtjnnow). (279)

B
n2— sin 2(« -£) + &(

(/Wrf.) (280)

an 2<? + &c.

(i&W.) (281)

i2- sin 2 (a + £)-&<

2

(/«.) (282)
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23. Prove

cos 2A + cos 2b - (cos 2a + cos 2B) - cos 2A cos 2b - cos 2a cos 2B.

(283)

24. Given any three of the six quantities s', s'\ s"\ d', d", d'" of § 43?

solve the triangle.

25-32. Solve a spherical triangle, being given—1°. A> B} a+b; 2°. A, B,

a-b; 3°. C,c, a + b; 4°. a,B, C+c; 5°. <?, &, V, 6°. a,J?,^; 7°. -4, $,

a + c; 8°. a b, E, &c.

33. Prove

tan (45° - *') cot (45° = d') = cot (*" - *'") tan (d" - #"). (284)

34. Prove

tan (45° - «') tan (45° -W) = tan (*" + *'") tan (d" - d"'). (285)

35. Prove

tan|(£ + 0) + tan J (B - 0) = 2 cotJ^sin£ ~ sin(# + c). (286)

36. If the cosines of the tangents drawn from any point P to two small

circles have a given ratio, prove that the locus of P is a great circle.

37. In the same case, if the sum or the difference of the cosines of the

tangents be given, prove that the locus of P is a circle.

38. State and prove the series similar to (279), (280) that may be obtained

from the first and second of Napier's Analogies.

39. If ci, ci be the values of the third side, when A, a, b are given, and

the triangle is ambiguous, prove that

tan — tan — = tan \ (a + b) tan \{a -b). (287)

40. If A, B, C, &c, be the angular points of a regular polygon of n sides

inscribed in a small circle, whose spherical centre is 0 and radius r ; prove,

if P be any point on the sphere, that

2 cos AP = n cos r . cos OP, (288)



OHAPTEE IV.

VAEIOUS APPLICATIONS.

Section I.—Theory of Transversals.

69. Def. XVIII.—Being given three points A, B, X on the

same arc of a great circle, the ratio ——=r^ is called the ratioJ * ' sin XB

of section (AB, X).

The arcs XA, XB are considered of the same or of different

signs, according as they are measured in the same or in diffe

rent directions from X. It is seen that it makes no difference

whether we take for XB the arc - XMB or + XAXB} these

arcs having the same sign.

 

If A', B', X' be the antipodes of A, B, X, the ratio of section

(AB, X) is positive if X be on BA' or AB',

negative if X be on AB or A'Bf,

null „ at A or A',

infinite „ at J? or Br.

F 2
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We may remark that

(AB, X) = (AB, X) = (A'B', X) = - (A'B, X) ;

since it follows that when an arc AB meets another XYX,

it is indifferent whether we take for the ratio (AB, X) or

(AB, X').

Def. XIX.—If Ay B, X, Y be four points on the same great

circle, the ratio of the two ratios of section (AB, X) (AB, Y) or

~——-- : ——=rr is called the anharmonic ratio of the four mints.
sznXB sm YB j j r

If the ratio = - 1, the points X, Y divide AB harmonically.

For example, the two bisectors of an angle of a triangle divide

the opposite side harmonically.

With four points on an arc of a great circle, the same as with four points

on a right line, we can, as in Sequel to Euclid, p. 127, form six anharmonic

ratios, any one of which may be called the anharmonic ratio of the points.

Definition XX.— When three arcs of great circles a, J3, y pass

through the same point M, and are intersected in A,C,Bby thegreat

 

Fig. 23.

circle described, with M as pole, the ratio of section (a/?, y)

sin CA sin (ya)

" sin CB "~ sin (yfi) '
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Definition XXI.—The anharmonie ratio offour great circles

(a, /?, y, 8) passing through the same point M is (a/3y8)

sin (ya) sin (8a) sin CA sin DA
-S 11 i » i L QJ> • . #

sin(yfi) ' sin($fi)' sin CB ' sin DB

If (a/?y8) = ~ 1, the pencil a, /S, y, 8 is said to be harmonic.

70. If a great circle intersects the sides of a triangle ABC in

the points A', B', C, then,

1°. (AB, C')(BC, A')(CA, B') = 1. (289)

2°. {aI, CC ) (be, AA') (ca, BB') = 1 . (290)

 

Fig. 24.

To prove 1°—If the sides AB, CA be cut internally, and

BC externally, and perpendiculars pf, p", p"' be drawn to the

transversal, we have by the properties of right-angled triangles,

(AJ>,0~*Lf, {BC,A>)^„ and(CM,ZO=-S4^;

am/ v sin £/" sin/

Hence, by multiplication, we have

(AB, C,)(BC.A')(CA.B')^\.

To prove 2°—We have, by equation (55), the equalities

sin jo sin o

x ' y v ' y $mA

Hence, by multiplication, the proposition is proved.
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Reciprocally.—If the points A', B', C satisfy either of these

relations, they lie on a great circle.

Cor. 1.—The great circle which bisects two sides of a tri

angle meets the third side at the distance of 90° from its

middle point.

Cor. 2.—The feet of two internal bisectors, and the foot of

the third external bisector, of the angles of a triangle lie on

the same great circle.

71. If the arcs which join the vertices of a triangle ABC to

the same point 0 of the sphere meet the opposite sides in the

points A', B', C, then,

1°. {ah, CC) {he, AA!) {ca, BB') = - 1. (291)

2°. {AB, C) {B C, A') {CA,B') = -1. (292)

1°. This follows from applying the theorem, § 29, to the

three triangles A OB, BOC, COA, and considering that if the

point 0 be inside the triangle ABC, the three ratios of section

{ah, CC), Sec, are negative ; and if 0 be outside, two are posi

tive and one negative.

2° follows from 1° by equation {55).

Reciprocally, if the points A', B', C satisfy either of the equa

lities (291), (292), the arcs AA', BB', CC are concurrent.

Cor. 1.—The three medians AA, BB', CC, are concurrent.

Cor. 2.—The three altitudes, ha, hb, hc of a spherical triangle

are concurrent.

Cor. 3.—The homologous sides of two supplemental triangles

intersect in points situated on the same great circle, having as

pole the common orthocentre of the two triangles.

Cor. 4.—The arcs which join the vertices of a spherical tri

angle to the points of contact of opposite sides with inscribed

circle, or with any of the escribed, meet in the same point.

(The Gekgonne point of the Triangle.)
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72. The anharmonic ratio of a pencil (a/3yS) of four great

circles (see fig., Def. in.) is equal to the anharmonic ratio

(ABCB) of the four points in which it is intersected by a

transversal.

Dem.—We have, equation (55),

and (ap, 8) = (AB, C) . ^^.

Hence, by division, (a£yS) = {ABCB). (293)

73. Each diagonal of a complete spherical quadrilateral is

divided harmonically by the two remaining diagonals.

 

Dem.—Let the quadrilateral be BCB'C; AA', BB', CC its

three diagonals. Let BB', CC intersect in M. Join AM, and

produce to cut BC in A".

Now we have (Art. 70),

(AB, C) (BC, A")(CA, B') = - 1,

and (Art. 71),

(AB, C) (BC, A')(CA, B') = +l.

Hence (BC, A") = - (BC, A'); .-. A', A", B, C

are harmonic points. Therefore (A- A'A"BC) is a harmonic

pencil. Hence the proposition is proved.
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Exeecises.—XXI.

1-2. If the medians AA', BB' , CC of the triangle ABC intersect in G,

prove—

1°. sin GA + sin GAl = 2 cos \ a. (294)

sin AA' sin BB' sin CC

2°. = - = . (295)sin A'G sin B'G sin C'G v ;

3. If through a fixed point P we draw any two transversals PAB, PA'B'

to a fixed angle XSY, the locus of the points of intersection of the arcs

AB', A'B is a great circle called the polar of P, with respect to the angle

xsr.

4. If two spherical triangles ABC, A'B'C are such that the arcs

AA', BB', CC are concurrent, the pairs of corresponding sides AB, A'B';

BO, B'C ; CAy G'A' intersect on the same great circle.

This may he proved hy transversals (see Sequel to Euclid, p. 131), or hy

considering the tetrahedrons (0 — ABC) (0 - A'B'C) cut by the same plane,

which gives two rectilineal triangles in perspective.

5. If we take on the three sides of a triangle from their middle points

arcs equal to a quadrant, the six points thus obtained are on the same

great circle.

6. If the arcs AP, BPt CP meet the sides BC, CA, AB in A', B', C ;

and if A", B", C" be the symmetriques* of A', B', C't with respect to the

middle points of the sides, then AA", BB", CC" meet in the same point P',

called the isotomic conjugate of P, with respect to the triangle.

7. Prove that the three arcs AD, BE, CF, each bisecting the area of

a spherical triangle ABC, are concurrent.—(Steiner.)

From the given conditions the spherical excess of each of the triangles

BAD, CAD is E. Hence

,ini^7)= /sm^-sin(.g-»i?) lanjJB.m

2 \j sin BAD . sin ADB " yj sin CAD .

sin {C-^E) m

sin ADC '

.-. siaBAD : sin CAD : : sin(i? - \E) : sin(C-iE),

from which and two similar proportions the proposition follows.

* For shortness, we say that the extremities of an arc of a great circle

are symmetriques, with respect to the middle of that arc.
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Def. XXII.—We shall call the normal co-ordinates of a point

M, with respect to a triangle ABC, quantities proportional to the

sines of arcs drawn from M perpendicular to the sides of the tri

angle^ and denote them hy 8a, 8b, 8C.

Def. XXIII.— We shall call the triangular co-ordinates ofM

half the products of the sines of the perpendiculars from Mon the

sides, multiplied hy the sines of the sides. The triangular co

ordinates of if are equal to the Staudtians of the triangles

AMB, BMC, CMA ; we shall denote them by na, nb, nc.

8. If arcs AM, BM, CM meet the sides of ABC in A', B', C, respec

tively, prove that

(BC, A') = nc : nb ; (CA, B') = na:nc; (AB, C) = nb : na.

9. If two points be isotomic conjugates, they have reciprocal triangular

co-ordinates.

10. If three arcs drawn through A, B, C he the symmetriques of any three

arcs AM, BM, CM, with respect to the bisectors of the angles A, B, C,

they meet in a common point M', called the isogonal conjugate of M.

11. If two points be isogonal conjugates with respect to a triangle, their

normal co-ordinates are reciprocals.

12. If a transversal T cuts the sides of ABC in A', B', C, the sym

metriques of A', B', C, with respect to the middle points of BC, CA, AB,are

upon the same arc of a great circle T , called the isotomic transversal of T.

13. In the same case, the symmetriques of the arcs AA', BB', CC , with

respect to the bisectors of the angles A, B, C, meet the sides of ABC in

points which lie on the same great circle T", called the isogonal transversal

of T.

14. Prove that the triangular co-ordinates of G, the point of intersection

of the medians of a triangle, are equal to one another.

15. If A\, B\, C\ be the harmonic conjugates of the points A', B', C, in

which a transversal Tcuts the sides of ABC with respect to the sides, then

the arcs AA\, BB\, CC\ co-intersect in a point r, called the trilinear pole

of T.

T is called the trilinear polar of t.

16. If G be the intersection of the medians, M any point of the sphere,

n' the Staudtian of the triangle BGC; then

cos MA + cos MB + cos MC L , ,„„,.,

r—; = constant = n t n . (296)cos MG v
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Dem.— cos MB + cos MC - 2 cos - cos MA'.

2

cos MA'. $mAG + cos MA . sin GA' = cos MG . sin AA' ;

Ti^-n . *™ « 0 (cos Jf(? . sin AA' cos J/L^ . sin GA
cos J/2? + cos MG = 2 cos - \ : :

2( sin AG smAG

 

cos MA + cos MB + cos MC n a sin AA'= 2 cos •

since

Hence

cos MG

a sin AG

2 cos - =

2 'sin AG'

2 sin GA''

cos MA + cos MB + cos Jf(7 sin AA' n

cosMG sin GA' ri

17. Calculate the norm of the sides of BGC.

We have

n sm GA' a sin (AA - GA)
- - -——r,, 2 cos - = v '-

w sm ^4^1 2
——ttt; , cos b + cos c = 2 cos - . cos -4^'.
sm GA' 2

"We shall eliminate GA' and ^^' between these equations. The second

gives

a

2 cos - sin £^' = sin AA' cos <r^£ - cos AA' sin G^' ;

L

.'. sin GL4' f 2 cos - + cos AA' J = cos GA' . sin AA! ;

n' f ~ a A \ n'"1

.-. - ( 2 cos - + cos ^^' J = cos GA' = / 1 sin2^*^',

4 cos2 - + 4 cos - cos AA' +1 4 cos2 - + 2 (cos b + cos <?) + 1

L Z 2
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Hence (297)
v^ i i_2 (i + cos a + cos * + cos c)

18. If tangents be drawn at A, B, 0 to the circumcircle of the triangle

ABC, forming a triangle A'B'C, the arcs AA', BB', CC, are concurrent.

The point of concurrence, K, is called the Lemoinb point of the Triangle.

19. Prove that the normal co-ordinates of K are

$m(A-E), sm(B-E), sm(C-JE).

20. The triangular co-ordinates of the orthocentre are tan A, tan B, tan C,

and the normal co-ordinates, sec A, sec B, sec C.

Def. XXIV.—The isogonal conjugate of 0, the intersection of

the medians, is called the Symmedian point.

21. Prove that the Symmedian point of a spherical triangle does not coin

cide with its Lemoine point. Its normal co-ordinates are sin a, sin b, sin c.

22. The normal co-ordinates of the pole of the circumcircle are

cos(A-E), cos{B-E), cos(C-E).

23. If M be any point of the sphere, and the arcs MA, MB, MC meet

the sides BC, CA, AB in A', B', C', if 0 be the pole of the circumcircle,

sin MA' sin MB' sin MO' cos MO tn v ,_,

+ -—^z. + ,:„ nn, = ' _ p • (Steiner.) (298)
sin AA' sin BB' sin CC cos B

24. If two equianharmonic pencils have a common ray, the intersection

of three corresponding pairs of rays lie on a great circle. Compare Sequel

to Euclid, Prop, v., p. 131.

Section II.—Incircles.

74, To find the radius of the incircle of a spherical triangle

ABC.  

D

Fig. 27.

Sol.—Bisect the angles A, B by the arcs AO, BO. 0 is the
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incentre required ; and the perpendiculars OD, OF, OF on the

sides are the angular radii.

Dem.—It is easy to see that OD, OH, OF are all equal ; also

that AF - s - a. Now from the right-angled triangle OAF we

have, equation (110),

tan OAF= tan OF ^ sin AF;

or, denoting the radius by r,

tan \A = tan r -f sin (s - a). (299)

Hence, substituting for tan i A its value, equation (22), we get

tanr= f sin(* " *T^(<zI) *™ (' - ') = JL. (300)

\ sin s sin $

Cor. 1 .—If in the expression for tan r we substitute for b, e

(?r - b), (it - <?), we get the expression for the in-radius of the

colunar triangle B CA! formed by producing the sides AB, A C.

Hence, denoting it by ra, we get

(301)tan ra =

sin (s -■a)'

n

tan rb =

sin (s --by

n

tan r, =

Similarly, tan rh = -^— -, (302)
J sm(s-6)

and tan rc = —~—r. (303)c sm(s-c) K J

Cor. 2.—From the equations (299), (300) we get the fol

lowing formulae for solving a spherical triangle when the three

sides are given :—

I tan r = i { I sin (s - a) + I sin (* - b) + I sin (s - c) - I sin s) .

(304)

I tan %A = l tan r - I sin (s - a), &c. (305)

Def. XXV.—The incirdes of the colunar triangles are called

escribed circles.
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Exercises.—XXII.

1 . Prove tan r = sin a sin J B sin J (7 sec J ^, (306)

2. „ tanr = N± 2 cos^^l cos \B cos J C. (307)

3. „ cotr= — {sin(^-^)+sin(^-J?)+sin((7-^)-sin^}.

(308)

4. „ if « + # + c = ir, prove tan r = tan J ^4 tan J 2? tanf 0. (309)

5. , , tan r . tan ra . tan r& tan rc— n2. (310)

6. ,, tan ra — sin a cos J 2? cos J C sec J ^4. (311)

7. „ cotra = — {sin E+ sin(J5 - J0) + sin (C- E) -sin (A - E)} .

(312)

8. „ cotr-cotr« = — {sin(^-j?) -sin-#}. (313)

9. Prove that the centre of the incircle is the orthocentre of the triangle

formed by the excentres.

10. Prove cot ra + cot n + cot rc = (cot J A + cot \ B + cot § C) -f- sin 5.

(814)

11. Prove that the common tangents of the escribed circles taken in

pairs are a + b, b + c, c + a, respectively.

12. If Oa, Ob, Oc be the centres of the escribed circles, prove that

™ nn r\r\ C0S Ta C0S n C0S r« /oin

cos OOa : cos OOb : cos OOc : : —- : —-—- : — -. (315)
cos(s-«) cos(s-o) cos(s-c)

13. Prove that cot r 4 cot ra + cot n + cot rc

= --{$mE+sm{A-E) + sm(B--E)+sm{C-E)}. (316)

14. Prove

**AO : dn«BO : sin* (70 : :**Zf> . °in('-*) : «liir£>. (317)

sin a sm 0 sin c

15. Prove that the cosines of the angles of the triangle Oa, Ob, Oc are

respectively equal to

cos s . sin J A, cos s . sin J J5, cos * . sin J C.
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Section III.—Circumctrcles.

75. To find the circumradius of a spherical triangle ABC.

Sol.—Bisect the arcs BC, CA at 2), JEJ, and let 0 be the inter

section of perpendiculars to BC, CA, at B, JEJ; then 0 is the

circumeentre.

 

Fig. 28.

Dem.—Join OA, OB, OC; then, equation (113), cos OB

= cos BB . cos OB, and cos OC = cos BC . cos OB. Hence OB

= OC. Similarly, 0 C = OA ; therefore 0 is the circumeentre

of the triangle ABC. Again, the angle

OAB= OBA, OBC= OCB, and OCA = OAC;

.'. OCB + A = i(A + B+C) = S;

.-. OCB = S~A = 90°-(A-JE).

Let OC = B; then, from the triangle 0 CB we have, equa

tion (109),

cos OCB = tan BC 4- tan OC = tan % a ~ tan R ;

.\ tan R = tan J # -f sin (A - JEJ) ; (318)

and, substituting for tan J # its value from equation (86), we

get

coti?= /s^^-^sin^TgyMnCC^^^ &

V " "sin ^ sin E'

(319)
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Cor. 1.—If in equation (319) we substitute for B, C, ir - B,

7r - C, respectively, we get the circumradius of the colunar

triangle BCA\ Hence, denoting it by RA, we have

' sin (A^ E)'

cot RA = ^zrni ^. (320)

Similarly, cot RB = sin(J_^y (321)

N_

$m\C-E)'

and cot RG = ^zrrFf—Wy (322)

Cor. 2.—From the equations (318), (319), we get the fol

lowing formulae for the solution of spherical triangles, when

the angles are given. Thus—

lcotR = i{lsm(A-E) + lBm(B-E) + lsm(C~E)-lsinE}.

(323)

I cot i a = I cot R - I sin (A - E), &c. (324)

Exercises.—XXIII.

^ sin h a

1. Prove xan jx — . .
sin .4 cos § £ cos ^ c

(325)

2 sin A # sin A J sin A c

2. „ tan i? = — . (326)
n

^ sin A #

3. „ f-rn 7? (327)
sin ^1 . sin ^ £ . sin \ c

2 sin J « cos J S cos J c

4. „ tan JL = . (328)A n

5. „ tan R - tan .R^ = - {sin s - sin (s - a) } . (329)

6. „ tan j£ . tan i^ . tau JRB . tan Mc - —-. (330)

7. „ tan E + tan i«U = cot n + cot rc. (331)

8. „ tan i2 jj + tan Be — cot r + cot ra. (332)

9. „ tan i2 + cot r = J {tan R + tan JS j. + tan RB 4-tanJKc}- (333)
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1 0 . Prove tan R . tan Rj, + tan RB . tan Rc = cot r . cot ra + cot n . cot rc-

(334)

11. „ (cot, + tan *)■ + 1 = p" + sy + Sin')2. (335)

12. „ (cot, + tan^+l=(Sin^S^g-sin^2. (336)

13. „ tan2i? + tan2i^ + tan2i?^ + tan2i?c

= cot2r + cot2r„ + cot2 n + cot2rc. (337)

14. Prove that the angles of intersection of the circumcircle of a sphe

rical triangle with the circumcircles of the colunar triangles are equal to

the angles of the triangle.

15. The angles of intersection of the sides of a spherical triangle with its

circumcircle are (A — B), (B — E), (C— B), respectively.

16. The angles of intersection of the circumcircles of the colunar tri

angles, in pairs, are equal to A + B, B + C, C + A} respectively.

17. If ABC he a triangle, right-angled at C, if the point C and the cir

cumcircle of the triangle ABC he given in position, prove that the locus of

the circumcentre of its colunar triangle ABC is a great circle.

18. If 5 he the spherical distance hetween the poles of the incircle and

circumcircle of a spherical triangle, prove that

cos2 5 - cos2i£ = cos2 (R ~ r) - cos2 22 cos2 r. (338)

19. If da denote the distance hetween the circumcentre and the incentre

•of BCA', prove

cos2 5« - cos2i2 = cos2 {R + ra) - cos2R cos2ra. (339)

™ -n * • .„/ sin « + sin £ + sine \

20. Prove cos 5 = sin r sin R [ A . _ ^-j-^—r—r ) . (340)

\4 smfa.sinfd.sin \cj

21. Prove cot ra + cot n + cot rc — cot r = 2 tan R. (341)

22. In an equilateral spherical triangle, tan R - 2 tan r.

■rv , ^ • , 2 sin A #. sin Ac ,« »

23. Prove that tan R sin ha = — — . (342)
cos \ a v '

24. Prove that the Lhuilierian of a spherical triangle is equal to the

Lhuilierian of each of its colunar triangles, or to that of its polar triangle,

or any of the colunar triangles of the polar triangle.

25. If a, )8, 7, 5 denote the perpendiculars from any point in a small

circle on the sides of an inscrihed quadrilateral, whose lengths are a, bye9d;

prove that

sin a sin y cos J a cos \ e — sin 0 sin 8 cos \ b cos § d. (343)
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26. In a quadrantal triangle, of which the side c is the quadrant, prove

that

coti«? = sin((7-i?), cotiiU = sin(J5-i?), cot BB = sin [A - E),

cot Bc = sin ^. (344)

27. If the angle A of a triangle remains constant, and also the perimeter,

the envelope of the side i?Cis a small circle.

28. If the angle A remains constant, and also b + c — a, the envelope of

BG is a small circle.

29-31. Construct and resolve a spherical triangle, heing given

1°. A, a, b + c; 2°. A, a, r ; 3°. A, a, B.

oo -n »■» tanU-^:)tan(5-^)tan(C-^) enAex
32. Prove cob** = Un{A_£) iJ{B_ ^ +Lc^y (346)

33. Find the simplest formulae for r, ra, n, rc ; B, Ba} Bjb, Be, for a

diametral triangle ; that is, for a triangle for which

C — A + I?, or sin2 - = sin2 - + sin2 -.

34. If a spherical quadrilateral be such that it is inscribed in a small

circle of radius B, and circumscribed to another of radius r, prove that if 8

he the distance between the poles,

sin (B + r+ 5) sin (B + r-d) sin (B -r + 5) sin (B-r-B) =sin4r cosiB,

(Steiner.) (346)

Section IY.—Spherical Mean Centres.

Def. XXYI.—If the triangular co-ordinates of a point M with

respect to a triangle ABC be na7 %, ncy we have seen (Ex. xxi., 8)

that the arcs AM, BM, CM divide BC, CA, AB in the spherical

ratios nc : nh) na : ncy nh : na. M is called the spherical mean

centre of the points with respect to the system of multiples

»•> Kb, »«•

76. If M be the mean centre of the points A, B, C for the

multiples na, nb, ncy and P be any other point, then

nacos AP + %cos BP + wccos CP = n . cos MP. (347)

3)em.—We have by Stewart's Theorem (Euc. III. 17), from

the triangle BPC,

cos PB sin A'C' + cos PCsin BA' = cos PA' sin a ;

Gt
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and from A'PA,

cos PA' sin AM+ cos PA sin MA' = cos PM sin -4-dt'.

Eliminating PA', we get

cos P^ sin A' C + cos PC sin P^f' +

cos PA sin 0 sin J£4'

sin AM

cos PJfsin J[^' sin a ^

sin AM '

but

2na - sin AMsin iL4' sin a ; 2% = sin AMsin (L4' sin a ;

2wc = sin a sin J/14' sin a ; 2n = sin # sin ^^r sin a.

 

Hence, eliminating P^', 614', Jf-4', AA'7 we get

wa cos PA + w6cos PP + ncPC =.n cos PJf.

Cor. 1.—If P be a point, such that for given multiples

/, m, n, I cos AP + m cos PP + n cos CP is constant, the locus

of P is a small circle.

Cor. 2.—If there be any number of fixed points A, P, C, &c,

and a corresponding system of multiples I, m, n, &c, and P any

point satisfying the condition 2 (I cos AP) - constant, the locus

of P is a circle.

Cor. 3.—If p be the spherical radius of the circle, touching

the inscribed and escribed circles of a spherical triangle (Hart's

circle),

tanp=itanP. (348)

Dem.—Let P be the pole of Hart's circle, 2", Ial Ib, Ic the

poles of the in- and circumcircles ; thus

IR= p-r, IaH= p + rfl, IbH = p + rb, ICH= p + rc.
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Then it is evident that the staudtians of the triangles

la^bl-v ■L*b*c> Uc*a> -"a-*fc>

are proportional to

1 1 1

sin r sm ra sin rb sin rc

Hence, from equation (347), we have

cos (p + ra) cos (p + r h) cos (p + rc) cos (p - r)

sin ra sin r6 sin rc sin r '

.*. 4 tan p = cot ra + cot r6 + cot rc - cot r = 2 tan i£.

Hence tan p = J tan i£.

I* A
 

6W\ 4.—If pa1 pb1 pc be the distances from A, B, C to a

great circle T passing through M, then

na sin j»a + % &mpb + wc sin ^?c = 0. (349)

This follows from (347) by supposing P to be the pole of T,

Cor. 5.—If T be any great circle, and if wasin pa + nbsmp9

+ we sin ^?c = constant, the envelope of T is a small circle.

G 2
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Cor. 6.—If A, JB} C, &c, be any system of fixed points, and

Ij m, n, &c, a system of multiples, and if pa, pb, pc, &c, be the

perpendiculars from A, B, C, &c, on any great circled; then,

if 2(? sin pa) = constant, the envelope of T is a small circle.

Exeecises.—XXIV.

1. If from the points Ia, lb, Ic perpendiculars be drawn to the sides BC,

CA, AB, respectively, these perpendiculars are concurrent.

2. If If be the pole of Hart's Circle, prove that

cos AS -f cos p ~ cos \ b cos \ c -f cos J a. (350)

3. The arcs of connection of the vertices of a triangle to the points of

contact of the opposite sides, with the circles inscribed in the corresponding

colunar triangle, meet in the same point, called the Nagel point of the

triangle.

4. If t\, t%, tz be the t gents from A, B, C to Hart's Circle, prove

a b c

cos t\ cos H cos H — cos - cos - cos -.

5. The normal co-ordinates of the pole of Hart's Circle are

cos(J?-(7), cos{C-A), cos(^~^).

6. The normal co-ordinates of Nagel's Point are

sin2 \ A , sin2 \ B> sin2 \ C.

7-10 Prove the following relations :—

1°. sin (B + (7)/sin A — (cos b -f cos c)j{\ + cos a).

2°. sin (B - C) j'sin A — (cose - cos b)j(I — cos a),

sin (B + C) cot \ a (cos B + cos C ) cot\A

3°.
cos b + cos c sin (b -f c)

sin (B + C) tan J a _ (cos C- cos B) tan J A

cos b - cos c sin (b + c)



CHAPTEE V.

SPHERICAL EXCESS.

77. In the preceding chapters we have made frequent use

of the function of the angles of a triangle, called the spherical

excess. In this chapter we shall enter into further detail, and

give a more systematic account of its theory than could have

been conveniently given in those chapters.

Section I.—Eoemulae Belative to E.

78. Lemma.—If the triangle B CA! be colunar with AB C, it

has two sides equal to it - b, ir-c, and their included angle is

equal to A ; therefore if 2E be the spherical excess of ABC,

2A - 2E will be the spherical excess of A'BC. Hence we

have the following rule of transformation :—

Rule.—In any formula containing the elements b, c, A, IE of a

spherical triangle, we may change the sides b, c into their supple

ment, and E into A-E.

This rule supplies easy proofs of several propositions.

79. Let^lZ?Cbe a spherical triangle; bisect BC, AC in

 

Fig. 31.

A!y B'. Join A'B\ and produce to meet AB in J), E; let fall
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the perpendiculars AF, BG, CJT. Then evidently the three

pairs of triangles AB'F, CB'JET; A'BG, A'CBT; ADF} BEG

are, two by two, equal in every respect. Hence it is easy to

see that the angle BAF = £ {A + B + C) ; that is, = 90° + E;

therefore DAF = 90°- E; also JDF is the complement of A'B',

and DA of half AB ; that is, DA = 90° - -.

2

80. Cagnoli's Theorem.—From the values of cos i a, sin £ £,

sin £<?(§§ 32, 33), we get

sin E =

but sin ^4 =

sin£# sin^c sinA

cosjtf '

n

sinb sine'

Hence sini?= - . (351)

2 cos J # cos J 6 cos J £

This is Cagnoli's Theorem.

81. By the transformation of § 78, we get

sin (A-E) = ? — . (352)

2 cos £ # sin £ 0 sin £ <?

Hence, by interchange of letters,

sin (B-E) = — —— . (353)
2 sin i a cos i o sin J c K '

sin ((7- E) = —— £— _. (354)

zsmjfl! sm J 0 cos %c

82. To find the value of cos E.

Erom the triangle BAF, § 79, we get

sin BAF= sin ZZ> -f sin ^*D,

or cos i? = — ; (355)
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but cos A'B1 = cos i a cos % b + sin £ a sin J J cos (7,

from the triangle .^'i?' C.

Hence

_ cos ^ a cos \ b + sin i« sin i J cos (7 , _,

cos i? = . (356)

cos ^ c

And substituting for cos C its value from equation (15), and

reducing, we get

cos E = ^a + c^ift + cos'^-M

2 cos i a cos J 0 cos \ c

Or thus : cos b + cos 0 = 2 cos .4-4' cos -,

z

cos ^4^; + cos - = 2 cos .4'i?' cos -.

2 2

Hence, eliminating cos AA', we get

2 cos2 - + cos b + cos c , .

j/ td; 2 1 + cos a + cos fl + cos c

a b ~~ a b

4 cos - cos - 4 cos - cos -

2 2 2 2

Hence from (355), (358)

1 + cos a + cos b + cos c
C0S E = —; a 1 T ■ (359)

4 cos - cos - cos -

2 2 2

Cor. 1.—From (351) and (354) we get

, cot \a cot A& , ., /rtrtrtv

cot ^ = 2. 2 + cot C ; (360)
sm 6' v '

and by interchange of letters we get

and

, _ cot^£ cot Jo J . ,^,s

cot -# = ^——*— + cot -4. (361)

sm A

, _ COtitfCOt^fl , _^ ,«„«v

cot .# = 2. n 2 + cot .5. (362)

sin i?

Cbr. 2.—If the area of a spherical triangle and one of its

angles be given, the product of the semitangents of the con

taining sides is given.
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83. By the transformation of § 78 we get, from (357),

, . ^ cos2* a + sin2* b + sin2 h c - 1

cos (A-E) = t >
K J a . b . c

2 cos - sin - sm -

2 2 2

_x sin2 J 5 + sm2ic - sin2i« ,n„ns

or cos (A-E) = 2 . . » - . . 2 ■ (363)

2 cos J# sinj-0 sm %c

Similarly,

cos (J? - E) = ■^,*« + rin'f-.mH* (364)

and

cos ( c - E) = ^VBinH3-sm^ (365)

2smJ«sinJo cos f c

Prom the formulae (360)-(362) we get, by transformation,

the following values for cot {A - E\ viz.,

, , t ^, cot^^tani-J , _, ,„„„v

cot (A-E) = . „ ~ cot C (366)
v sin C

tan^J tan^-0

sin A

tan ia cot^b

sin B

with similar values for cot (B - E), cot ( C - E).

84. To find sin £E, cos^E, tan^E.

+ cotA (367)

cot B, (368)

, , , , _ - cos E
smisini^= /—

-J

■J

1 -cos2ia- cos2 ib -cos2-§-tf-f 2 eos^a cos \b cos i c

4 cosifl cos-J-^ cos \c

(from (357))

sin \ s sin j (s - a) sin j(s -b) sin j (s - c) /q6q\

cos \a cos i5 cos \c

cos±E= lG0S*s cosi(s-fl) cosj(s- b) cosjjs^c) .^^

vL& > C0S a" ^ C0S 2" ^ cos 2 ^

Hence

tan \E = v^tan i s tan £ (s - a) tan -J- (s - 5) tan -J- (5 - 0). (371 )

Similarly,
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The same value as that obtained in § 48 by a different method.

85. If we put

L = y^cot i s tan %(s - a) tan i(s - b) tan i(s - c)

(see equation (186)), we have

tan £^=--iL. (372)

Hence (§ 78),

W(^-Jg)- ~ cy (373)

cot J s"

Z

tan ^ (s -

L

-tfy

tan i (s -*)'

tani(i?-^) = -——j., (374)

^^-^-fiSTTcTT)- (375)

Compare equations (182)-(185.)

86. Lhuilier's theorem can be proved, independently of

sinii?, cos-^i?, as follows. Thus:—

_ sinj(^ + ^+C-7r) _ sin-i-(^ + ^)-sini(7r- (7)

an2 " Gosi(A + £+C-^)~ cosi(A+ B) + cosi(7r- C)

_ smi{A +JB)-cosiC cosj(a - b) - cosjg cos •§- C

~~ cosi(^+i?) + sin-|-C ~ cos' -I (« + J) + cos £ c ' sin £ (7

(by Delambre's Analogies)

sin i (s - a) sin i (s - b) , n „

cos |-5 cos ~(s -c)

= y'tan is tan i (s - a) tan i(s-b) tan i (* - 0).

87. Prouhet's proof of Zhuilier's theorem.

From the third of Delambre's Analogies we have

sin — - jEM cos

2 ) _ V 2

. C c

sin — cos -

2 2
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therefore . C . / C \ c a + b

sin — + sm — - JE\ cos - + cos

2 \2 J 2 2

. C . (C \ e a+b

sm -— sin —- - j& cos - - cos

2 \2 1 2 2

Hence tan £2? cot -\(C - JE) = tan - tan -J- (5 - 0). (376)

Similarly, from the first of Delambre's Analogies,

tan \E tan i(C~JE)= tan i (,9 - a) tan i (* - b). (377)

Hence, multiplying and extracting square root, &c. See Nou-

velles Annates, 1856, p. 91.

Exercises XXV.

1. If the arc AD, drawn from A to a point D in the side BC, bisect the

area of the spherical triangle, prove that

cos J AB : cos J ^C : : sin J £D : sin J Z>C. (378)

2. If -4i?C be a triangle, having a — b =-, c = -, prove sini? = -.

3. If in fig., § 79, the arc EM be cut off equal to \ AB, and MN be

drawn perpendicular to the great circle BE ; then MN=E. (G-udermann.)

-1^ .-• . • / a ™ cos 2 b cos 4 c sin ^4 /nw„v

4. Prove that sm (A-E)^ 2- ^ . (379)

eosja

5. Prove that

, , ™ sin hb sin he 4- cos 4# cosio cos ^4 ,„„AV
cos (A-E) = ^ a ^ 2 ^ (380)

cosJ«

6. Prove that in a right-angled spherical triangle tan E — tan \ a tan ^ £.

7. If a', #', c', -4', B', C denote the sides and angles of the triangle

supplemental to ABC, prove

cot \ s cot Js' = tan J (s — a) tan J (s' — a'). (381)

8. In the same case, if IE' denote the spherical excess of the polar

triangle, prove that

tan \E tan \ E' = tan \{A-E) tan J {A' - E'). (382)

9. Prove that the arc joining the middle points of any two sides of a

spherical triangle is less than a quadrant.



Formulae Relative to E. 91

10. The cosines of the arcs joining the middle points of the sides of a

spherical triangle are proportional to the cosines of half the sides.

11. Solve a spherical triangle, being given a, b ± c, eltl&E.

12. If s denote the semiperimeter of a spherical triangle, A, Aa, A&, A,

its area, and the areas of its colunar triangles ; prove that

tan2 - = tan J A . cot £ A« . cot J A& . cot J Ac. (383)

13. Prove sin F - cot E tan \a tan \ b tan J c. (384)

14. ,., sins = sin« cos \B cos \ G — sin \A. (385)

15. If (a + b + c) = ir, prove cos A + cos B + cos C = 1, cos ^4. (385)

B C
16. In the same case, prove that cos ^4 = tan — tan -. (386)

,„ _ sin2i^ + sin2ii? + sin2iC- 1

17. Prove coss= .,,,?,„.?„ • (387)

18 sin2 - - ^iEMsi^-^MSJ^-^osltiC-i:)

" 2 4 sin J ^£ sin ±B sin J C ' \ )

b c

19. If E = J 7T, prove that cos A = - cot - cot -. (389)

™ -^ , cosHJB + cosHC-cos24,4 /onA,

20. Prove cos {a - a = ! t ^— ^-. 390
v 2 sin J ^4 cos J i? cos f C

21. If J he incentre of a spherical triangle, prove that

oA 2B 20

cos- -— cos4 — — cos-5 —

cos BIC = j £ . (Nbubbro.) (391)

2 cos —- cos —

22. If Itti lb, Ic he the incentres of the triangles colunar to ABO, prove

that

A . nB . C

cos2 sin* — — sm2 «

COS .5J«C = - n n (JW') <392)

2 sm — sm —

2 2

23. The angle BIa 0 corresponds in the supplemental triangle to the arc

joining the middle points of two sides. {Ibid.)

24. If Ia he the incentre of the colunar triangle A'BO, from Ia let fall

perpendiculars IaB, IaF, IaF on the sides BC, CA, AB, respectively;

then the angle BIa C=±FIaF = FIaA. The triangle FIaA gives

cos FIaA = cos AF. sin FAIa = cos s . sin J A.

Hence cos BIa G = cos s . sin \ A .
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Hence, from (392), we get

cos4—— sm2~- — snr2 —

cos* = . , . • (Neuberg.) (393)
2 sin J ^4 sin J i? sin J 6f ' x

This theorem is the correlative of 357. We can get, in the same manner,

t s , n , > s . s i s s—a

cos [s — a), cos(s — b), cos{s — c) ; cos-, sin r, tan-, tan——, &c.

Section II.—Lexell's Theorem.

88. If the base BC of a spherical triangle ABC be given in

magnitude and position, and the spherical excess in magnitude, the

locus of the vertex is a small circle of the sphere.

Steiner's Proof. Lemma.—If upon the base BC & spherical

triangle be constructed, such that A - E is given, the locus of

A is a small circle, namely, the circumcircle of the triangle.

For if 0 be the pole of the circumcircle (see fig., § 75), the

angle OBC = OCB = (A - E). Hence 0 is a given point, and

the circle is given in position.

IjXexell's Theorem.—Let ABC be one position of the triangle,

2E the spherical excess constant. Let the points B'y C be the

 

antipodes^ of B, C ; let P be the pole of the circle AB'C;

then we have 2E = A + B + C - it = B'AC + tt - AB'C + tt
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- A C'B' -tt^tt + A-B'-C. Hence B' + C - A is constant ;

and by the lemma the locus of A is the circumcircle of the

triangle B'C'A.

Or thus : Seeret's Proof.—Let, as before, B', C be the

antipodes of B, C; let E' be the spherical excess of B'C'A,

and R' its circumradius ; then we have (§ 75),

tan R' - tan J a -f- sin (-4 - i?') = tan J a 4 sin i?.

Hence since a and i? are given in magnitude, R' is given in

magnitude, and the circumcircle of B'C'A is evidently given in

position, and is the locus required.

89. Steiner's Theorem.—The great circles through angular

points of a spherical triangle ABC, and which bisect its area, are

concurrent. Let the circles bisecting the area meet the opposite

sides in the points a, f3, y, respectively ; also, let A', B', C be

the antipodes oiA,B, C. Now the areas of the triangles ABa,

AB/3 are equal, each being half of ABC. Hence, by Lexell's

theorem, the points A', B', a, ft are concyclic. Similarly, each

of the systems of points B'y C'f jB, y ; C, A', y, a, is concyclic.

 

Let the point common to the planes of these three small circles

be P, then the lines of intersection of these planes two by two

pass through P. Hence, if 0 be the centre of the sphere, the

planes OB'/3B, OC'yC, OA'aA have a common line of inter

section, namely, the line OP. Hence the proposition is proved.
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. c . Ba .
sm —■ sm —- sm Ji

2i Ji

. b . Ca .

sm- sm —- sm 6

2 2

cosi^a COSi^a

. Ba

sm —

2
COS -

. Ca

sm—

5'
COS -

2

Analytical Proof.—The triangles ABa, ACa having the same

spherical excess, we have, by Cagnoli's theorem, § 80,

Hence

and from this and two similar equations we get

sin i Ba sin i~ C/3 sin i Ay = sin \ a C sin % /3A sin -J- yB.

Also the triangles ABa, yBC having equal areas,

tonic taniBa = tan^yi? tan \a. (Art. 81, Cor. 2.)

Hence,

tan \Ba tan \ Cfi tan \Ay = tan \aC tan i/3A tan iyB.

(2)

From (1) and (2) we have

cos %Ba cos i C/3 cos, %Ay = cos£a£ cos J /?.4 cos JyB. (3)

From (1) and (3) we get

sin Ba sin Cfi sin ^4y = sin a (7 sin ftA sin yi?. (4)

Hence the arcs Aa, B/3, Cy are concurrent. (Keubekg.)

Cor.—The triangular co-ordinates of the point of intersection

of the arcs Aa, Bfi, Cy are

cos \a - cos \b cos^e, cos£# - cos j-e cos^a,

cos \c - cos \a cos J J. {Ibid.)

These values are obtained from the equation

sinjjfra cosjc

sin (i a - ^Ba) cos %V

which gives cot£i?a, and thus sini?a.
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90. Keogh's Theorem.—The sine of half the spherical excess

is equal to twice the Staudtian of the triangle formed by joining

the middle points of the sides.—Nouv. Annales, 1857, p. 142.

Dem.—Let A', B'y C be the middle points of the sides. (See

figure, § 79.) Then we have, from the right-angled triangle

DAF,

cos DAF= sin D cos DF, equation (111);

that is, sin E = sin D sin B'A'.

But sin B = sine of the perpendicular from C on B'A' . Hence,

if n' denote the Staudtian of A'B' C\ we have

sinF=2n'. (364)

91. To find the triangle of maximum area, two sides, b, <?, being

given.

G' 

Sol.—The following is Steiner's geometrical solution :—

Suppose the side AC to be fixed in position. Let A'C be

the antipodes of A and C; through A', C let a small circle be

described with pole P, such that the angle

PA'C' = ?-J2'9

then every triangle having A C as base, and vertex any point on
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the small circle, will have a constant area, namely, 2Er2. If

the side AB be given, the small circle BBX described with A as

pole, and spherical radius c, cuts Lexell's circle in the points

By Bu each of the two triangles ABC, ABXC will have an area

= 2Er2.

In order that the problem may be possible, Lexell's circle

must meet the circle BBX ; or, what is the same thing, the

angle PA'C equal to - - E, must be sufficiently large, the

minimum of - - E, or the maximum of E, corresponding to the

case where the small circles touch each other. Then the points

A, B, B, A' are on the same great cirele, and the triangle BC'Af

is a diametral triangle ;

/. C'=A' + B;

but A' = ir - A, and C - it - C.

Hence A = B + (7, and the required triangle is diametral,

a being the diameter.

Cor.—If AB be greater than A C, the circle BBY must inter

sect Lexell's circle, and there will be neither a maximum nor a

minimum ; but if AB be greater than A C, AB + AC will be

greater than AA ', or b + c greater than w. Hence, if I + c > ir,

there will be neither a maximum nor a minimum.

Trigonometrical Solution (Neubebg's).

1°. "We have, by Cagnoli's formulae (351), (352),

sin (A - E) = sin E cot J I cot \c.

If cot^J cot^6* > 1, or b + c > 180,

sin E may have any value, and then sin {A - E) may be found,

and the triangle is possible. Hence there is neither a maximum

nor a minimum.
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2°. If cot %b . cot ^c - 1, or 5 + <j = 7r,

we have A - E = E, and the triangle becomes a lnne formed

by the circle C'AC> and the greater circle tangential to

Lexell's circle in C.

3°. If cot J b . cot Jc < 1, or J 4- c < 7r, sin i? is no longer

arbitrary. In order that sin {A - E) < 1 , sin E must be

< tan J 5 tan^e. The maximum of i? corresponds to sin E

= tan J J . tan J 0, and then

A-E=^ or A=B+C.

Exeecises. XXYI.

1. Construct a lime equal in area to a given triangle (make use of Lexell's

circle).

2. Construct by means of Lexell's theorem a triangle AB\0\ equal in

area to a given triangle ABC, and having two given sides b\, c\.

3. Construct on the side BO of a given triangle ABO an equivalent

isosceles triangle.

4. Convert a triangle ABO into an equivalent isosceles triangle, having a

common angle A.

5. Transform a spherical polygon ABODE into an equivalent spherical

triangle.

[Employ Lexell's circle in the same manner as parallel lines are employed

in the corresponding question in Plane Geometry.']

6. Being given a spherical polygon ABODE, if the sides be produced in

the same sense, and with each vertex as pole, an arc of a great circle he

described, limited by the sides of the corresponding exterior angle of the

polygon, prove that the total figure thus formed is equal in area to a hemi

sphere.—(Neuberg. )

7. Being given A and E, prove that, if a is a minimum, b — c.

__ _ . _, sin hb sin \c sinA

Wq have sin E = —2 f .
cosf a

Hence, from the required condition, sin \ b sinfc is a maximum; but
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tan \ b tan Jc is constant (§ 82, Cor. 2) ; therefore cos \b cos|c is a

maximum ;

.*. sec \ b sec J c = «f (tan J £ - tan \ c)z + (1 + tan J ft tan J c)2

is a minimum. Hence b = c.—(Neuberg.)

8. Being given A and E, prove that if # + c be a maximum, b — c,

. ,_ . tan A 3 + tan ic __ , ,■,.,.,»
tan l(b + c) = —r-: 2_ Hence J = c.—llb%d.)

1 - tan | £ tan \ c

9. If ABC, ABB be two spherical triangles of equal areas on the same

side of the common base AB, prove that

sin ^ AB . sin J CD + cos J AC. cos J 2?D = cos J.4Z) . cos J BC.

10. Investigate the maximum or minimum of E, being given A and 5 + c.

, „ cot i b . cot J c , , ( , 2 cos h(b + c) ) 1

COtJ£= 2. , 2 +C0t^= 1 + T7I ^ T77~t} 7+ C0t^4

c)) sin^fsin^. ( cos i(b-c) ~cos^(b+c)) sin^t

2 cos * (3 + c) A

sin^t {cos J (3 — c) — cos J(# + tf)} 2'

If J (£ + c) < 90°, then cos %{b-c)~ cos £ (6 + c) > 0, and the minimum

of cot E or the maximum of E corresponds to cos \ (b - c) — 1 or to b == c.

If | (J + c) > 90°, in the colunar triangle A'BC, \ (b' + c') < 90° ; and since

A and b + e are constant in ABC, A and b' + <?' are constant in BCA'.

Hence the area of BCA' is a maximum when V — e' ; and therefore when

\{b + c) > 90°, the area of ABC is a minimum when b = c.—(Ibid.)

11. If £ = -, prove that cos A - - cot \ b cot J c.

12. If 0 be a point such that the areas of the triangles AOB, BOC, COA

are equal, prove that

tan— :tan— :tan— ::sw.(bOC-~) : sinf COA- — J

:sin/^OS- — J.

13. In the same case prove that the small circle passing through the

antipodes of O, and the extremities of any side of the spherical triangle,

intersects that side at an angle = E -f 3.



CHAPTER VI.

SMALL CIRCLES ON THE SPHERE.

Section I.—Coaxal Circles.

92. If an arc of a great circle passing through a fixed point 0

cut a small circle X in the points A, B, tan\AO .tan\ OB is

constant.
 

Fig. 35.

Dem.—Let P be the pole of the small circle. Join OP. Let

Ml the perpendicular PC; then, from the triangles A CP, OCP,

we have

cos A C cos AP

cos CO = cos OP'

Hence tan £ (A C + CO) tan i (A C - CO)

= ttmi(AP + PO)timi(AP-PO)',

or, denoting the radius of X by p and OP by 8,

tan i OA . tan i 0B = tan J (p + 8) tan£ (p - 8). -(3.95)

E2
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Def. XXVII.—The product tan -J- OA . tan \ OB is called the

spherical power of 0, with respect to the circle. It is positive or

negative, according as 0 is exterior or interior to the circle.

Cor. 1 .—If 8 be the distance of a point 0 from the pole of a

small circle, radius p, the spherical power

cos p - cos 8

cos p + cos S*

(396)

Cor. 2.—If from any point 0 outside a small circle two arcs

be drawn to it, of which one, OB, is a tangent, and the other

a secant, meeting it in the points A, B; then

tan2 J OB = tan J OA . tan J OB.

93. If two small circles cut orthogonally, the plane of either

passes through the vertex of the cone, touching the sphere along

the other.

 

Fig. 36.

Dem.—Let the circles be X, Y; 0, 0' their spherical centres,

A, B their points of intersection ; then it is evident that the

tangent line to the arc AO is in the plane of T, and that

it passes through the vertex of the cone, which touches the

sphere along the circumference of X. Hence the proposition

is proved.

Cor.—If any number of circles on the sphere have a common

orthogonal circle, their planes pass through a common point ;
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and conversely, if the planes of any number of circles pass

through a common point, they have a common orthogonal

circle.

94. If the planes of a system of circles S have a common line

L of intersection, the circles S have an infinite number of common

orthogonal circles.

Dem.—Take any point P in the line Z, and through it draw

tangent lines to the sphere ; these will touch along a circle

which (§93) cuts each circle of the system S orthogonally ;

and since the same thing holds for each point on L, we have an

infinite number of circles forming a system $', each of which

cuts each circle of S orthogonally.

Cor.—The planes of the circles of the system S' have a com

mon line of intersection.

For, take any two of them, say P and Q. Now (§ 93) the

plane of each passes through the vertex of each of the cones,

touching the sphere along the circles of the system S. Hence

the vertices are collinear, and the plane of each circle of S'

passes through the line of collinearity.

Dee. XXYIII.—A system of circles S, whose planes pass

through a common line L, is called a coaxal system.

Dee. XXIX.—The circle of the system S, whose plane passes

through the centre of the sphere, is called the radical circle of the

system.

Dee. XXX.—If through L two tangent planes be drawn to

the sphere, their points of contact, regarded as infinitely small

circles, are the limiting points of the system.

Cor.—Each circle of the system S' passes through the limiting

points of S.

95. If X, F, Z be three circles of a coaxal system, and from

any point P in X tangents PT, PT' be drawn to Y and Z\ then

sin %PT : sin J PT in a given ratio.
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Dem.—Let 0, 0' be the spherical centres of F, Z. Join OP,

O'P by arcs of great circles ; then, if the radius of the sphere

be unity, the perpendicular from P on the plane of F= cos OT

- cos OP = cos OT - cos OT . cos PT = cos OT, 2 sin2 \PT,

Similarly, the perpendicular from P on the plane of Z - cos

O'T , 2 sin2\PT, But since the planes of X, F, Z are collinear,

the perpendiculars have a given ratio. Hence the ratio of

cos OT, m£\PT\ cos O'T' , w£\PT is given, and OT, O'T

are given, being the spherical radii of F.and Z, Hence the

ratio of sin \PT': sin %PT is given.

Cor.—If PI^ PT', the locus of P is the radical circle of the

system.

Exekcises.—XXVII.

1. The radical circles of three small circles taken in pairs are concurrent.

2. If there be a coaxal system of circles S, and a circle X distinct from

it, then the radical circles of X, combined with each circle of S, are concur

rent.

3. If through a point on the radical circle of two small circles we draw a

spherical secant to each, the four points of intersection are coneyclic.

4. Through two points of the sphere describe a small circle touching

a given great circle.

5. If through a fixed point A we draw a great circle, cutting a given

small circle in the points B, 0, and if a point D be taken on it, such that

tan2 \AB=^i^\J)B . tan2|i)(7, prove that the locus of D is a great

circle.

6. If X, Y be two small circles ; FT, PT two tangents to them from a

point P, prove that the locus of P is a circle, if m cos PT+ ncos PT' be

constant, m and n being given numbers.

7. The locus of the poles of small circles, intersecting two small circles

X, Y at the extremities of two spherical diameters, is the radical circle

of X, Y,

8. Describe a circle cutting three small circles at the extremities of three

spherical diameters.
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9. If two rectangular secants intersecting in M cut a small circle in the

pairs of points A, B ; C, D, prove that

4 sin2 o

tm>\MA + tmUMJB + tanUMC + tan2|Jfi) = , ^—, (397)

* (cos p + cos 5)2

where 5 is the distance of M from the pole of the small circle.—(Neuberg.)

10. If from any poin* P of a great circle MP tangents PT, PT' he drawn

to a small circle, prove that tan \ MPT . tan J MPT' is constant.

11. The difference of the cosines of the tangent arcs, drawn from any

point P on the surface of a sphere to two small circles X, Y, is propor

tional to the sine of the perpendicular drawn from P to the radical axis

of X and Y.

Section II.—Cebttkes of Similitude.

96. Def. XXXI.—Two points, S, S', which divide the arc

PP'\ joining the poles of tivo small circles Y, Z externally and

internally in the spherical ratio of the sines of the radii, are called

the centres of similitude of the small circles.

 

Fig. 37.

Q0rt—Common tangents to the small circles pass through the

centres of similitude, viz., the direct common tangents through

the external centre, and the inverse common tangent through

the internal centre.

Def. XXXII.—If through a centre of similitude we draw a

secant cutting the circles, then the pairs ofpoints M> Mr ; JV", N'

are said to be homothetic, and M, JSP ; M\ N are inverse.
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97. If the secant through a centre of similitude S meets the

circles in the homothetic points M, M' ; then tan^SM: tan J SM'

in a given ratio.

Dem.—From the definition

sin SP : sin PM : : sin JSP' : sin P'M.

Hence it follows that the angle SMP = SM'P'.

Now since the triangles SMP, SM'P' have two angles in one

respectively equal to two angles in the other, it follows from

the third of Napier's Analogies that

tan±£Jf : ttmiSM' : : tan i(SP + PM) : tan*(SP' + P'M');

that is, in a given ratio. Similarly,

tan i SJV : tan i SN' in a given ratio. (398)

Car.—

tan i SM. tan \ &ZV7 is constant, as also tan \ SN . tan \ SM'.

This follows from §§ 92, . 97. (Compare Sequel, Prop, n.,

page 83.

Cor.—If there be given a point S and a circle Y, and on

the arc SMjoining S to any point Jfon Y a point N' be taken,

such that tan -J- SM. tan i SJV' is constant, the locus of N' is a

circle.

98. The six centres of similitude of three small circles taken in

pairs lie three by three on four great circles, called axes of simili

tude of the small circles.

Dem.—If a, b, c be the radii of the circles ; A, B, C their

spherical centres, A'B'C the internal centres of similitude,

and A"B"C" the externals ; then we have by definitions

(AB, C") = a±b, (BC, A") = b±c, (CA, B") = c + a.

Hence (AB, C") . (B C, A") . ( CA, B") = 1 .

Hence (§ 70) the points A", B", C" lie on a great circle.

Similarly, it may be shown that any two internal centres and

an external centre lie on a great circle.
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Cor. 1—If a variable circle touch, two fixed circles, the great

circle passing through the points of contact passes through a

fixed point, namely, a centre of similitude of the two circles ;

for the points of contact are centres of similitude.

Cor. 2.—If a variable circle touch two fixed circles, the

tangent drawn to it from the centre of similitude, through

which the chord of contact passes, is constant.

99. Def. XXXIII.—Being given a fixed point 8, and any line

whatever, y, on the sphere, if upon the arc of a great circle joining

8 to any point M of y a point Mf be taken, such that tan J SM :

tan \ SM' in a given ratio, the locus of M' is said to be nomo

thetic to y.

Def. XXXIV.—If M' be taken, such that tan^SM. tan\SM'

is constant, the locus of M' is called the inverse of y.

This method of inversion was first employed in the Author's Memoir on

Cyelides and Sphero-quarties. (Read before the Eoyal Society in 1871.)

Exercises.—XXYIII.

1. If two small circles touch two others, the radical axis of either pair

passes through a centre of similitude of the other.

2. The figure nomothetic to a circle is a circle.

3. The inverse of a circle is a circle.

4-5. 8 being the centre of similitude of two circles ; M, iV" two inverse

points on these circles—1°, the tangents at M and iV intersect on the radical

axis ; 2°, these points are points of contact of two circles touching the two

given circles.

6. The angle of intersection of two circles on the sphere is equal to the

angle of intersection of the circles inverse to them.

7. Any two circles can be inverted into two equal circles.

8. Any three circles can be inverted into three equal circles.

9. If two circles be the inverses of two others, then any circle touching

three of them will also touch the fourth.



106 Small Circles on the Sphere.

10. If two points be the inverses of two other points, the four points are

coneyclic.

11. If through the centre of similitude S (see fig., § 96) another great

circle be drawn, intersecting the circles T, Z in the points fi, p; p't *>, cor

responding to the points M, M\ 2V', 2V, the systems of points M, N\ /u, v ;

M', 2V", fiy v; M, 2V', //, v\ M'f 2V, /u, v\ are each concyclic, and the

planes of the four circles pass through a common point.

12. If a variable circle on the sphere touch two fixed circles, the sine of

its radius has a constant ratio to the sine of the perpendicular drawn from

its spherical centre to the radical axis of the fixed circles.

13. If a variable circle touch two fixed circles, the ratio of the sines of

half the tangents drawn to it from the limiting points is constant.

14. If a variable circle touch two fixed circles of a coaxal system, it cuts

any circle of the system at a constant angle.

15. The inverse of a coaxal system is a coaxal system.

16. The inverse of a system of great circles passing through two common

points is a coaxal system.

17. The inverse of a system of small circles having a common spherical

centre is a coaxal system.

Section III.—Poles and Polaes.

100. Lemmas.—If the segment AB he harmonically divided in

the points C, B ; and JE the middle point ofAB ; then

1°. tan2UB = tan EG . tan JED. (399)

2°. cot AB = \ {cot AC + cot AD). (400)

 

For, by definition,

sin CA sin DA

sin CB sin DB ?

sin CA - sin CB sin DA - sin DB

sin CA + sin CB sin DA + sin DB'
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Hence

tan EC tan EB

ttmEB tan ED'

Hence the proposition is proved.

To prove 2°—"We have

sin BC . sin AD = sin CA . sin DB,

or sin (AB -AC) sin AD = sin AC sin (-iD - AB).

Hence, expanding and dividing by sin AB sin A C sin AD, we

get

cot A C - cot AB = cot ^4i? - cot AD,

or cot -4i? = i (cot ^ (7 + cot AD).

Def. XXXY.—Being given a small circle X, spherical centre-

P : if C, D be two points dividing the spherical diameter AB

harmonically, an arc DDf of a great circle through one of these

points, D, perpendicular to the diameter AB, is called the harmonic

polar of the other', C, and C is called the harmonic pole of the are

DDf.

 

Fig. 39.

101. The arc of contact of spherical tangents, drawn from

an exterior point D to a small circle X, is the harmonic polar

of 2).

Dem.—The right-angled triangles DEP, ECP give

_„ tan^P tan OP

cos DPE =

tan DP tan EP'
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Hence tm2UP or tan2FA = tan BP . tan CP\ therefore the

points C, B are harmonic conjugates to A and B ; and there

fore, &c.

102. If a spherical chord AB of a small circle Xpass through a

Jixed point C, the locus of the intersection of tangents AB, BB is

the harmonic polar of C.

 

Fig. 40.

Dem.—Let P be the spherical centre of X. Join PB, PA, PC

by arcs of great circles, and let fall *the perpendicular BF

on PC, produced if necessary. 2sTow because in the spherical

quadrilateral BFCF the angles E, F are right, we have, equa

tion (134),

tan PC . tan PF = tan PF. tan PB.= ttm2PA.

Hence the proposition is proved.

Cor. 1.—If a variable point move along an arc of a great

circle, its harmonic polar passes through a given point.

Cor. 2.—If C be a fixed point in a small circle X; AC, CB

any two arcs of great circles at right angles to each other ; the

chord AB passes through a fixed point.
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Dem.—Let Y be the circumcircle of the colunar triangle

AC'B, and 00' the spherical centres of X and Y; and since

the angle C is right, the circles X, Y cut orthogonally ; there

fore A 0', O'JB are tangents to X Hence AB is the polar of

 

0', with respect to X; and since O'A = O'C, the locus of 0' is-

the radical axis of the circle X and the fixed point C ; and

therefore AB, the polar of 0' with respect to X, passes through

a given point.

103. Every secant ( OA) passing through a given point 0 is cut

harmonically by the circle X and the harmonic polar of 0.

 

Fig. 42.

Dem.—Let BC be the polar of 0, and let the sines of the
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perpendiculars from A on the sides 00, OB, BO of the triangle

OBC be denoted by x, y, z ; and the sines of the perpendiculars

from A' by xr, yf, z', respectively, then we have

x : z : : sin 0 CA : sin A OB ;

that is, x : z : : sin (-5 - i?) : sin C.

Similarly, y : z : : sin ( 0 - E) : sin B ;

#y sin(J?-.#) sin (#-.#)y - v v ' - cos2i«.

"' z2 sin i? sin 0

x'y'

In like manner, — = cos2 J 0.

s'2

Hence xy : x'y' : : s2 : z'2 ;

but

#y : #y : : sin2 (9-4 : sin2 OA', and s2 : z'2 : : sin2-4iV: sin2-4'^;

.-. sin 0-4 : 0-4' : : sin^iV: sin iV.4'. (401)

Exeecises.—XXIX.

1. If four points 4, B, 0, D lie on a great circle a, their anharmonic

ratio is equal to that of their harmonic polars, with respect to any small

circle X.

For if 0 be the spherical centre of X, P the harmonic pole of a, the

perpendiculars from P on the circles OA, OB, 00, OB will be the harmonic

polars of A, B, G, B, and will pass through the poles A', B', 0', D' of the

great circles OA, OB, 00, OB. Now it is evident that

(P- A'B'O'B') = (A'B'C'B') = (0 - ABCB) = (ABOB).

2. If A, B, C, B be four points on a small circle X, and if the arcs

AB, BO, OB, BA be denoted by a, b, c, d, respectively; then if P be any

variable point on X, the anharmonic ratio

(P-ABCB) =sin|tf .sin|c-hsinj# sin \d.

For if the perpendiculars from P on^P, BO, &c, be a, j8, &c, and the
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staudtians of the triangles PAB, PBC, PCD, PDA being denoted by

na, m, nc, na, we have evidently

(P-ABCD) — a' = sina since. sine sin7 v sin# . sinjS.sin^ . sinS

x ' m.na

= sin \ a sin \ c -f sin \ b . sin J <# (equation (343) ) . (402)

3. If A, B, C, D be four points on a small circle X, the spherical triangle

whose summits are the points of intersection of the arcs AB, CD; BC, DA,

and CAf DB, is such that each side is the harmonic polar of the opposite

vertex. This is called the harmonic triangle of the four points.

4. The harmonic polars of any point on the radical circle of two small

circles with respect to these circles intersect on the radical circle,

5. If X, ¥ are two small circles, Z a great circle perpendicular to the great

circle passing through the spherical centres of X, Y, the harmonic polars of

any point of Z intersect on a great circle.

6. If a spherical quadrilateral be inscribed in a small circle (X), and at its

angular points arcs of great circles be drawn touching X, their twelve points

of intersection lie four by four on the sides of the harmonic triangle.

7. Pascal's Theorem.—If a spherical hexagon be inscribed in a circle,

the opposite sides intersect in pairs on a great circle.

8. A, B, C; A', B'f 0", are two triads of points on two great circles ;

prove that the intersections of the three pairs of arcs AB', A'B ; BC, B'C;

CA\ G'A lie on a great circle.

9. Salmon's Theorem.—Given any two points A and B and their har

monic polars, with respect to a small circle X, whose spherical centre is 0.

Let fall a perpendicular AP from A on the polar of B, and a perpendicular

BQ from B on the polar of A ; then, if A! , B' be the harmonic conjugates

of A, B, with respect to X, prove that

cos OA : cos OB : : sin OA' sin AP : sin OB' sin BQ.

10. Brianchon's Theorem.—If a spherical hexagon be described about

a small circle X, the three arcs joining the opposite angular points are

concurrent.
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Section IV.—Mutual Power of Two Circles.

104. If a, /?, y be the arcs connecting any point P to the ver

tices A, B, C of a trirectangular triangle, then cos2 a + cos2 /?

+ cos2y - 1.

Dem.—Since the triangles PAB, PAC are quadrantal, we

have, from (equation (154),

cos /3 - sin a cos BAP, cos y = sin a cos CAP.

 

Fig. 43.

Hence cos2/? + cos2y = sin2 a ;

.-. cos2a + cos2/? + cos2y = 1. (403)

Cor.—If x, y, z be the perpendiculars from P on the sides of

the triangle ABC; %, y9 % are respectively equal cos a, cos/?,

cosy.

105. If a, /?, y, a', ft, y be the angular distances (jig. 44) of

two points P, P' from the vertices of the trirectangular triangle

ABC' ; then cos PP' = cos a cos a! + cos /? cos ft + cos y cos y',

cos PP'- cos a cos a' + sin a sin a' cos PAPf = cos a cos a'

+ sin a sin a' (cos PA C cos P'A C+smPA C sin FA C)

~ cos a cos a' + cos /? cos ft + cos y cos y' (equation (154) ).

(404)
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A 

Fig. 44.

Def. XXXVI.—The product of the cosines of the spherical

radii of two circles, subtracted from the cosine of the arcjoining

their spherical centres, gives a remainder, which is called the

mutual power of the two circles*

If the circles be denoted by letters with, suffixes, we shall

denote their mutual power by the suffixes. Thus the mutual

power of the circles sa, s$ shall be denoted by a/?.

106. Frobenius's Theorem.—If sly s2, *3, «4, s5; $/, s2f, s3f, */, *6'

be any two systems of five circles on the sphere ; then

11', 12', 13', 14', 15'

21', 22', 23', 24', 25'

31', 32', 33', 34', 35' =0. (405)

41', 42', 43', 44', 45'

51', 52', 53', 54', 55f

Dem.—Let #i, yiy zly &c, denote the normal co-ordinates of

the centres of the circles, with respect to a fixed trirectangular

* The introduction of this term into Geometry is due to Dabboux,

"Annales de PEcole Normale Superieure," vol. i., 1872.

I
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triangle, and ru r2, &c, their spherical radii ; then, multiplying

the determinants

o, xl9 yi> *i> cosri °> #l'> y/, */, - cos r/

o, x2, yz> 85a, COS 7*2

i °>
x% ,

y.', «/, - cos ra'

o, XZl 2/3, %> eosr3 ! °> X*9
y.'. - cos r3'

o, Xiy y*, %iy cosr4 i o, a?4',
y*',

24, - cos r4'

o, %5> y* %> cosr5 o, #5', ys', %', - cos ri

the proposition is evident.*

107. If the angle of intersection of the circles sa, s$ be

denoted by a/2, it follows at once, from equation (13), that

the mutual power (a/3) is equal to sin ra . sin r$ cos a/3. By

this substitution, equation (405) is transformed into

cos 11', cos 12', cos 13', cos 14', cos 15'

cos 217, cos 22', cos 2J37, cos 24>, cos 25~'

cos 31"', cos 32^ C0S337, cos 3?, cos 35' =0. (406)

cos 41', cos 42', cos 43', cos 44', cos 45'

cos 51', cos 52', cos 53', cos 54', cos 55'

108. If the second system of circles coincide with the first

we have, for any system of five circles on the sphere,

1, cos 12, cos 13, cos 14, cos 15

cos 21, 1, cos 23, cos 24, cos 25

cos 31, cos 32, 1, cos 34, cos 35 = °- (407)

cos 41, cos 42, cos 43, 1, cos 45

cos 51, cos 52, cos 53, cos 54, 1

* This theorem is the fundamental one in a Memoir by Herr G. Fro-

benius, • • Anwendungen der Determinantentheorie auf die Geometrie des

Maasses." Crelle's Journal, Band 79, pp. 185-245, for the year 1875. It

is also given in the Philosophical Transactions, vol. 177, part 2, for the year

1886, in a Memoir by R. Lachlin, b.a., "On Systems of Circles and

Spheres."
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Cor, 1.—The condition that four circles should be cut ortho

gonally by a fifth is

= 0. (408)

1, cos 12, cos 13, cos 14

cos 21, 1, cos 23, cos 24

cos 31, cos 32, 1, cos 34

cos 41, cos 42, cos 43, 1

For in this case cos 15, cos 25, &c, vanish.

Cor. 2.—The condition that four circles should be tangential

to a fifth is

0, sin2£12, sin2J13, sin2£14

sin2i21, 0, sin2J 23, sin2i24

sin21-31, sin2f32, 0, sin2i33

sinHil, sin2i42, sin2i43", 0

= 0. (409)

For if the circle s5 touch each of the circles sL, s2, *3, 8if

cos 15, cos 25, &c, become each equal to unity, and subtracting

each of the four first columns from the last, we get the result

just written.

109. If t12 be the arc of a great circle which is the common

tangent of two small circles whose spherical radii are rly r2,

and angle of intersection <£13, then it may be proved by equa

tion (13) that the mutual power of the two circles is equal to

sin rx sin r2 - 2 cos rx cos r2 sin2|^13 ; and equating with the

value sin rx sin r2 cos <£i2 of § 107, we get

sin2J <£i2 = sin2 \ t12 . cot rx cot r2. (410)

Hence in the determinant (409) the sines of half the angles of

intersection of the circles su s2, sd, s4 may be replaced by the sines
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of half their common tangents, and denoting for shortness by

12 the sine of half the common tangent of the circles slf s2> the

condition is

0,

122, 132, 142

21, 0, 23, 24

312, 322, 0,
34*

= 0, (411)

41 , 422, 43 , 0

which, expanded, is equal to the product of the four factors

12.34 ± 23.U ± 31.24 = 0. (412)

This theorem was first published in the Proceedings of the

Royal Irish Academy, in a Paper by the author " On the Equa

tions of Circles," in the year 1866.

110. If sly s2, s3, Si be a system of four great circles, and

si> h'j h', **' four other circles (great or small), then

11', 12', 13', 14'

21', 22', 23', 24'

31', 32', 33', 34'

41', 42', 43', 44'

= 0. (413)

This is proved like Frobenius's theorem by multiplying the

two determinants (#1, y2) &$, cos r4), (#/, y2l s'3> cos r4'), the first

of which vanishes ; since rlf r2} rz, r4, being the spherical radii of

great circles, are each equal to a quadrant, and their cosines

vanish.

111. If the second system in § 110 be great circles, and coin

cide with the first, we get, since the mutual power of two great
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circles is equal to the cosine of the arc joining their poles, a

relation identical with equation (408) for the six arcs joining

four points on a sphere 12,' &c, denoting in this case the arcs

joining the points 1, 2, &c. If the three first points be the

vertices A, B, C of a spherical triangle, and the fourth any

arbitrary point D, whose distances from A, B, C are denoted

by a, (3, y, respectively, we get—

1, cos c, cos b, cos a

cos c, 1, COS0, cos/3

cos b, cos a, 1, cosy

cos a, cos ft, cos y, 1

= 0. (414)

112. If the first three circles of the second system in § 110

coincide with the first three circles of the first system, and

the poles of these circles be the angular points of a spherical

triangle ABC. Also, if s/ be a great circle distinct from *4,

and the distances of the poles of these circles from the points

Ay B, C be a, /?, y; a', /3', y', respectively, and 8 the arc

joining their poles, we get—

1, cose, cos b, cos a

cose, 1, cos a, cos/?

cos b, cos a, 1, cos y

cos a', cos ft', cosy', cos 8

= 0. (415)

Exercises.—XXX.

1. The incircles of a triangle and its colunar triangles have a fourth

common tangential circle.—(Hart.)

For if a, b, c "be the sides of the original triangle, the direct common tan

gents of the incircles of the colunar triangles are (b + c), (e + a), (a + b)f

respectively ; and the transverse common tangents of the incircle of the
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original triangle and incircles of colunar triangles are (b — c), (c — a), (a - b).

Hence (see Art. 108) we have

23 = sinf(£ + c), 3l = sin £ (c + a), 12 = sin J(a+i),

U =sinj(£ + c), 24 =sin|(c-«), 34 = sin-|(«+ £).

Hence the condition (412) is fulfilled.

2. Prove that the mutual power of two cireles is equal to the mutual

power of two circles inverse to them.

3. If pf q, r be the normal co-ordinates of a point on the sphere, with

respect to the sides of a spherical triangle ABC; prove that they are con

nected by the relation

-1, cos C, cos B, P

COS Cy -1, COB Ay 9.

cos Bt COS ^4, -1, r

P, ?> *", -1

r 0
(416)

In the equation (414), Art. 110, let the triangle ABC be replaced by its

supplemental triangle, while the point D retains its position.

4. If a, by c be the mutual distances of the spherical centres of three small

circles whose radii are n, **2, rz; prove that if r be the radius of a circle

cutting them orthogonally,

4w2sec2r = 1, cos Cy cos by cos n

cose, 1, cos a, cos 7*2

cos by cos ay 1, cos r-3

cosn, cos 7*2, cosr3, 0



OHAPTEE VII.

INVERSIONS.

Section I.—Inveesion in Space.

113. Def. XXXYII.—Being given a fixed point S and a

system ofpoints A, B, C if upon the right lines SA, SB,

SC a system ofpoints A', B', C . . . . be determined by the rela

tion SA .SA' = SB.SB'=SC. SC, $c. = constant, say 7c2, the

two systems A,B, C . . . A'B'C . ... are said to he inverse of

each other. The point S is called the centre of inversion, and the

sphere whose centre is S and radius 7c, the sphere of inversion.

114. The figure inverse to a plane is a sphere passing through

the centre of inversion.

S

RA
\

A B

Fig. 45.

Dem.—Erom S draw the right line SA perpendicular to the

plane P, and in P draw any line AB through A ; then (Sequel,

Prop, xx., p. 41), the inverse of the line AB is a circle SA'B'

passing through S. Now, if the whole figure, consisting of the
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line AB and the circle SA'B', turn round the line SA, the line

AB will describe the plane P, and the circle SA'B' will describe

a sphere, which is the inverse of the plane.

Cor. 1.—The inverse of a sphere passing through the centre

of inversion is a plane.

Cor. 2.—If m'y n' be the inverses of the points m, n, then

mn=srt7^>- (417)

This follows from the triangles Smny Sm'n', which are evidently

similar.

115. The inverse of a sphere which does not pass through the

centre of inversion is a sphere.

Dem.—If X be any circle coplanar with S7 its inverse will

be another circle X', coplanar with 8 and X, and S will be the

centre of similitude of the two circles (Sequel, Prop, i., p. 95) ;

then, if the figure consisting of the two circles be turned round

the line through the centres of both circles, the spheres described

will be inverse to each other with respect to the point S.

Cor. 1—The inverse of a circle with respect to any point in

space is another circle.

For the first circle may be regarded as the curve of intersec

tion of two spheres ; its inverse will be the curve of intersection

of the inverse spheres.

Cor. 2.—The cone which has for base a small circle of the

sphere, and vertex any point, cuts the sphere again in another

circle.

Exeecises.—XXXI.

1. The locus of a point, from which two unequal spheres can be inverted

into two equal spheres, is a sphere.

2. The locus of a point, from which three unequal spheres can be inverted

into three equal spheres, is a circle.
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3. Dupuis' Theorem.—If a variable sphere touch three fixed spheres,

the locus of its point of contact with each fixed sphere is a circle.

For if a variable sphere be inscribed in a trihedral angle, the locus of its

point of contact on each face of the trihedral is a right line ; and when we

invert, the planes become spheres, and the right lines circles.

4. Prove that four unequal spheres can be inverted into four equal

spheres.

Section II.—Stereographic Projection.

116. Dee. XXXYIII.—Stereographic projection is the draw

ing of the circles of the sphere upon the plane of one of its great

circles {called the plane of the primitive) by lines drawnfrom the

pole of that great circle to all the points of the circles to be pro

jected.

It is evident that the plane is the projection in space of the

sphere, the value of the constant h2 being 2P2.

117. The stereographic projection of any circle is a circle.

This follows at once from § 115, Cor. 1, but we here give

an independent proof.

Dem.—1°. In the case of a small circle.

Let Pm be a generator of the cone, touching the sphere along

P

O

Fig. 46.

the given circle, and let P', m' be the projections of the summit
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of the cone, and of the point m of the circle, on the plane of the

primitive. Let 0 be the pole of the primitive, and let Pm

produced meet a tangent plane to the sphere at 0 in T; then,

since the plane of the primitive and the tangent plane at 0 are

parallel, the plane OmP cuts them in parallel lines (Euc. XI.,

xvi.). Hence the angle P'm' 0 is equal to m'OT) but the angle

m'OT is equal to OmT, since the tangents mT, OT are equal.

Hence the angle P'm! 0 is equal to the supplement of Pm 0,

and the angle 0 is common to the two triangles PmO, P'm' 0 ;

therefore OP : Pm : : OP' : P'm' ; and since the three first terms

of this proportion are given, the fourth, P'm', is given. Hence

the locus of m' is a circle whose centre is collinear with the pole of

the primitive and the vertex of the cone,—(Chasles.)

Cor.—If the cones circumscribed to a sphere along a system

of circles have their vertices in a line passing through the pole

of the primitive, their stereographic projections is a system of

concentric circles.

2°. In the case of a great circle.

Let A be the pole of the primitive, and let the plane of the

circle AIB be perpendicular to the line of intersection of the

 

plane of the primitive with the plane of the circle to be pro

jected, and let it intersect the plane of that circle in the line
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FF. Let IC be perpendicular to AB. Join AF, AF, inter

secting IC in the points G, II. 'Now, since GAIL is a right

angle, and ^4 C is perpendicular to 6riZ", the angle AUG - GA C

(Eire. VI. Tin.) = AFC (Euc. I. v.). Hence the triangles FAF

and .ZL4 G are inversely similar, and therefore the section made

by the plane of the primitive with the cone, whose vertex is A,

and which stands on the great circle FF, is an antiparallel

section. Hence it is a circle.

Cor. 1.—The projections of the poles P, Q of the great circle

FF will be inverse points with respect to its projection.

Cor. 2.—If the plane of a small circle be parallel to the

plane of FF, the projection of P and Q will be inverse points

with respect to its projection.

Cor. 3.—A system of small circles, whose planes are parallel,

will project into a system of coaxal circles.

Cor. 4.—Every circle whose plane passes through the pole

of the primitive is projected into a right line.

118. The angle made hy any two circles on the sphere is equal

to the angle made hy their projections on the plane of the primitive.

Dem.—Let 0 be the pole of the primitive, M the point in

which the circles intersect ; and let MT, MV the tangents to

the circles at Jf, meet the tangent plane to the sphere at 0 in

the points T, V. Join OT, OF, TV\ then evidently the angle

TMV= TO V; but since the tangent plane at 0 is parallel to

the plane of the primitive, the lines OT, 0 V are parallel to

the projections of the lines MT} MV. Hence the angle TO Vis

equal to the angle between the projections.

Cor. 1.—Any circle whose plane is perpendicular to the

plane of the primitive is projected into a circle orthogonal to

the primitive.

Cor. 2.—A system of coaxal circles on the sphere is projected

into a system of coaxal circles on the plane of the primitive.
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For a system of coaxal circles on the sphere is intersected

orthogonally by a system of circles passing through the two

limiting points (§ 94). Hence the projections are intersected

orthogonally by a system of circles passing through two points.

119. Applications to Spherical Trigonometry.

Let ABC be a spherical triangle, AB'C a colunar triangle ;

then, if 0, the pole of the primitive, be the antipodes of A, the

sides AB, AC, AB' will project into right lines ab, ac, ah', and

the circle BCB' into the circle bcV. Join be, cV ; then the

angles of the figure formed by the lines abj ac, and the arc be,

are respectively equal to the angles of the spherical triangle

ABC (Art. 117) ; but the sum of the angles of the rectilineal

triangle abc is two right angles, hence the sum of the angles

formed by the arc be with its chord is equal to the spherical

excess 2JE; therefore one of them is equal to JE.

 

Fig. 48.

Or thus :—If a circle be described about the triangle abc, the

angle made by this circle with the arc bo is (§ 118) equal to

the angle made by the circumcircle of the triangle ABC with

the side BC, and this is equal to {A - E) (Exercises xxiii. 15) ;
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and the angle made by the cireumcircle of abe with the chord

be is equal to A (Euc. III. xxxn.). Hence the angle between

the arc be and its chord is equal to JE.

Cor. 1 .—If the radius of the sphere be unity, the sides of the

rectilineal triangle can be expressed in terms of the spherical

triangle. Thus, evidently,

ab = tan AOB = tan \AB = tan %c. (418)

ac = tan AOC= tan ^ AC ^ tan \b. (419)

Again, be : ab : : sin bae : sin acb : : sin A : sin (C-E) ;

_ n n

.\ 5c : tan J 0 : : -t-t—.— : . . . r—r-r — ;
sm b . sm 0 2 sin f # . sin f 0 . cos J c

... »,, ff\. (420)
cos f 6 cos f e

Similarly, 8'« ~ ■ ?![** x • (421)
J cos J o sm J e '

The equation (420) may be got from equation (417) by put

ting k2 = 2. . Thus—■

2 chord 2? (7 smjtf

* = "OWTOC' = cos i# cos Jo J

and (421) from (420), by the substitution of § 78.

Cor. 2.—If the angles of the rectilineal triangle abe be

denoted by a, /?, y, we have

a = A, P~B-E, y=C-U. (422)

Exercises.—XXXII.

1. Prove the fundamental formula (13) by stereographic projection.

From the triangle abc we have

(bef = (caf + (abf - 2 (ca) (ab) cos A,

and substitute from equations (418)-(420).

2. Prove Napier's Analogies.

__ _ tan4(j3 — 7) ac -

We have —t^t—- = —
tan £ a ac -f ab'

And substitute from equations (418)-(422).
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3. Prove Delambre's Analogies.

(ac + ab) sin J a (ac - #£) cos J a

From «fo we have be =

and substitute as before.

cos JOB-?) BinJOS-?) '

4. Being given three circles on the sphere ; there are eight points on the

sphere, any one of which, if taken as the pole of the primitive, the three

circles will be projected into three equal circles.—(Steiner.)

5. tan J E = Vtan ^ s . tan J (* — a) tan \ (s — b) tan J (s — c).

Express tan \ the angle ab'c, in terms of the sides of ab'c.

1 + cos a + cos b + cos c

6. Prove that cos E - '-

4 cos J a cos J b cos J 0

In the triangle aJV, we have «&' = ac cos cai + £&' cos cb'a.

7. To express the spherical excess of a spherical quadrilateral in terms of

its sides and diagonals.

 

Fig. 49.

Let ABCD be the quadrilateral ; and denoting the sides and diagonals

AB, BC, CD, DA, AC, BD by a, b, c, d, e, f, respectively; then taking

the antipodes of A for the pole of the primitive, the arcs AB, AD, AC will

project into right lines ab, ac, ad; and the arcs BC, CD into arcs of circles
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o

be, cd ; then drawing bt, ct tangents to be, and cu du, tangents to cd, we

have in the plane hexagon abtcud the sum of the angles

A +JB+ (74 D + t + u = 4:ir; but A + B -f C + J) = 2ir + 2E;

.'. 2U=2TT-t~U.

Again, if the circles be, cd intersect again in e', c' is the stereographic

projection of the antipodes. Hence the right line ca produced will pass

through c. Join be, be' ; dc, de', then the angle tbe = be'e. Hence be'e is

half the supplement of t, and ce'd half the supplement of u ;

.-. 2bc'd-+t + u = 2v; .'.be'd=E.

Now from the plane triangle be'd, we have

sin4 bed = sm2f i? = ttt-t; *>
4cbc . ae

hut

sin if T , cos J ^ ™« i *

cos J « cos J ^' cos \ a sin J e ' cos J ^ sin J e *

.-. sin2i JS =

(sin |<9 . sinJ/+ cos \a cos Jc - cos \b cos Jd) (sin \e sin J/- cos J# cos \c-\- cos §£ eosj^)

4 cosJ« cosJ# cosfc cos Jd

8. If a spherical quadrilateral be cyclic, prove that

JJ" r .flin *(*"*) sJnj(g-g) sJnjfr-c) sin|(s-^

2 abed '

cos - cos - cos - cos -

2 2 2 2

9. If the cyclic quadrilateral be circumscribed to another circle, prove

sin2\ E = tan \ a . tan \ b tan \ c . tan \ d. (425)

10. Being given four circles in a plane, prove that the plane can be in

verted into a sphere, so that the four circles on the plane will be the

stereographic projections of four equal circles on the sphere.—(Steiner.)

11. If A', B', C be the stereographic projections of the angular points of

the spherical triangle ABC; and if the angles of the plane triangle A'B'C

be respectively equal to those of the spherical triangle, each diminished by

one-third of the spherical excess, prove that the arcs drawn from A, B, Cto

one of the poles of the primitive divides the area of ABO into three equal

parts.

Observation.—The applications of Stereographic Projection to Spherical

Trigonometry, contained in § 119 and in Exercises xxxn., are taken from

M. Paul Serret, Methodes des Geometrie, pp. 30-44.



CHAPTEE VIII.

POLYHEDB.A.

Section I.—Eegular Polyhedka.

120. If 8 be the number of solid angles, F the number of

faces, F the number of edges of any polyhedron (see Appendix to

Euclid, 6th edition, p. 283), 8+ F =F + 2.—(Euler.)

Dem.—With any point in the interior of the polyhedron as

centre, describe a sphere of radius r, and draw lines from the

centre to each solid angle ; let the points in which these meet

the surface of the sphere be joined by arcs of great circles.

These arcs will divide the surface into F spherical polygons.

Now if s denote the sum of the angles of any of these polygons,

and m the number of its sides, its area is r2(s-(m- 2)ir), but

the sum of the areas of all the polygons is equal to the surface of

the sphere or 47ir2. Hence, since there are F polygons, we have

47r = Ss - Tr%m + 2Fir ; but 2s is evidently equal to 2tt8, and

2w is the number of the sides of all the polygons, and therefore

«qual to 2F. Hence 4?r = 2tt8 - 2Ftt + 2Ftt;

.-. 8 + F=F+2. (426)

121. There can be only five regular polyhedra.

Dem.—Let m be the number of sides in each face, and n the

number of plane angles in each solid angle, then the entire

number of plane angles is equal to mF or n8 or 2F. Hence

we have the equations

mF=n8=2F and 8 + F=F+2.

Therefore solving for 8, F, and F, we get

s = 4A , f-^A , e= 2mn
2(m+n)-mny 2{m+n)-mn> 2(m+n)-mn

(427)
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Since the denominator in these expressions must be positive,

— + - must be greater than - ; but n cannot be less than 3,

since a solid angle cannot be formed by less than three plane

angles. Hence m cannot be greater than 5. The following

will be found to be the only admissible system of values for

m and n, viz.,

3,3; 4,3; 3,4; 5,3; 3,5;

and the corresponding polyhedra are the Tetrahedron, Cube,

Octahedron, Dodecahedron, and Icosahedron, or solids of 4, 6, 8,

12, 20 faces, which have respectively 4, 8, 6, 20, 12 vertices.

122. If I denote the inclination of two adjacent faces of a

regular polyhedron,

TC It

sin A/= cosec — . cos -. (428)
m n v '

 

Dem.—Let AB be the side common to the two faces, C and

D their centres, from which let CE, DE be drawn perpen

dicular to AB ; then the angle between CE and ED will be

equal to L In the plane of the lines CE, DE, let CO and DO

be drawn at right angles to them, and meeting in 0. Join

OA, OE, OB, and from 0 as centre suppose a sphere to be
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described, cutting OA, OJZ, OC in the points a, e, c, respec

tively ; then aec is a spherical triangle, having the angle e right ;

also cae - — and ace = — , and by equation (111), sin ace = cos cae

■f cos ce ; but cos ce = cos coe = sin ^i";

.*. sm i-/ = cosec — cos -.

m n

Cor. 1.—The following are the values of /for the five regular

polyhedra. Thus, denoting them by Pi} P6, P8, P12, P20 •—

1 7T 1

In P4, cos /= - ; in P6, /= - ; in P8, cos/= - - ;

in P12, cos /= —- ; in P20, cos I- - _ ^/5.

Cor. 2.—If r be the radius of the inscribed sphere, and a

a side of one of the faces,

r = - cot -.tan-. (429)
2 m 2 v ;

For r = Off. tan C#0 = 0#tan^ = ? cot - tan -.

2 2^2

Cor. 3.—If R be the cireumradius of the polyhedron,

R = % tan- tan-. (430)
2 w 2 v '

Cor. 4.—The surface of a regular polyhedron

ma2F , 7T ,,rt,.

cot -. (431)

4 m

Cor. 5.—The volume of a regular polyhedron

ma2rF J ir ,,n^

= ——- cot -. (432)
12 m v '

Cor. 6.—The octahedron is the reciprocal of the cube, and

the icosahedron of the dodecahedron.
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Exercises.—XXXIII.

1. Find the values of E, F, 8 for each of the regular polyhedra.

2. Prove that the centres of the faces of the polyhedra P*, P6, Ps, P12, P20

are respectively the summits of polyhedra P*, Ps, Ps, P20, P12.

3. Find the ratios hetween the volumes of a tetrahedron or cube and the

volume of the solid, whose summits are the centres of its faces.

4. Prove that the inradius of P4 = three times its circumradius.

5. In the same' case, the radius of the sphere touching its six edges is

a mean proportional between the inradius and circumradius.

6. Prove that the ratio of the inradius to circumradius is the same in

P6 and Ps, and also in P12 and P20.

7. In any convex polyhedron (regular or irregular), prove that the number

of faces having an odd number of sides is even, and that the number of solid

angles having an odd number of edges is uneven.

8. In every convex polyhedron, the number of triangular faces increased

by the number of trihedral angles is equal to or greater than eight.

9. Every convex polyhedron must have either triangular, or quadrangular,

or pentagonal faces, and trihedral, or tetrahedral, or pentrahedral angles.*

Section II.—Paeallelopipeds and Tetrahedra.

123. To find the volume of a parallelopiped in terms of three

conterminous edges and their inclinations.

Let OA, OB, OC be the three edges, and let their lengths

be a, b, c, respectively; and let the angles BOC, COA, A OB

be denoted by a, ft, y. Draw AD perpendicular to the plane

BOC, and describe a sphere, with 0 as centre, meeting the lines

OA, OB, OC, OB in the points a, b, c, d, respectively. The

* The most important recent works which treat of the polyhedra are

Allman's " Greek Geometry from Thales to Euclid," and " Lectures on

the Icosahedron,,, by Professor Klein, Gottingen. This is a very remark

able work, showing the great importance of the polyhedra in the higher

departments of modern Analysis.

E2
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volume of the parallelopiped is equal to the product of the base

and altitude == be sin a . AD ; butAD = a . sin A OD = a . sin aod ;

.'. vol. = abc sin a . sin aod = 2abc . w, (433)

n being the first staudtian of the solid angle 0 - ABC

= abc \/ 1 - cos2a - cos2/? - cos2y + 2 cos a cos /? cos y.

(434)

A 

Fig. 51.

Cor. 1.—The volume of the tetrahedron 0 - ABC -\ aben.

(435)

Cor. 2.—To find the volume of a tetrahedron in terms of its

six edges. Let BC = a', CA = b', AB = e' ; then we have

b2+c2-a'2 Q c2 + a2-b'2 a2 \-b2 - cn

COS a = ^y- , cos p = — , cos y -

2bc 2ca 2ab

V= i abc */ 1 - cos2a - cos2/? - cos2y + 2 cos a cos ft cos y.

Hence 144 F2 = 2aV2(J2 + 6'2 + *2 + <?'3 - a2 - a*)

- a2b'2c'2- b2cl2a'2- c2anb'2- a2b2c2. (436)

Cor, 3.—If 7;, T6, Tc be the areas of the three faces OBCy

OCA, OAB of the tetrahedron 0 - ABC, and N the second

staudtian of the solid angle O-ABC,

V* = ±TaThTcN. (437)
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For ra = Jfosiiia, Ti = ^ 00 sin /?, Tc = £ «£ sin y,

ir. 2M*

sina.sin/S.siny'

Hence J- TaThTcN=%aH2 c2 n2 = F2.

Cor. 4.—The second staudtians of the solid angles of a tetra

hedron are proportional to the areas of the opposite faces.

This follows at once from Cor. 3.

Cor. 5.—The volume of a tetrahedron is equal to f of the

product of the areas of two faces by the sine of their dihedral

angle divided by the length of their common edge.

For the vol. = J of the triangle OBCAD, and AD = 2 tri

angle ABC, multiplied by sine of the dihedral angle of the faces

OB C, AB C divided by B C.

Cor. 6.—The products of opposite edges of a tetrahedron are

proportional to the products of the sines of the corresponding

dihedral angles.

124. If a, /?, y, 8 denote the areas of the four faces of a

tetrahedron,

a2 = £2 + f + 82 + 2/3y cos (/3y) + 2yS cos (yS) + 28/3 cos (8)8).

(438)

Dem.—We have

a = /3 cos (a/2) + y cos (ay) + 8 COS (a8). (1)

P = a cos (/?a) + y cos (/?y) + 8 cos (08). (2)

y = a cos (ya) + ft cos (y/3) + 8 cos (y8). (3)

8 = a cos (8a) + 0 cos '(8/3) + y cos (8y). (4)

Multiplying by a, 0, y, 8, respectively, and subtracting the sum

of the three last products from the first, we get the above

result.
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Cor.—If we eliminate a, ft, y, 8 from the equations (1), (2),

(3), (4), we get the following relation between the six dihedral

angles of a tetrahedron :—

- 1 , cos a/3, cos ay, cos a8

cos/?a, -1, cos/?y, cos £8

cosya, cosy/3, -1, cosyS

cos 8a, cos 8/3, cos 8y, - 1

= 0. (439)

This relation may also be easily inferred from equation (414,)

125. To find the diagonal of a parallelopiped in terms of three

conterminous edges and their inclinations.

 

Let the edges OA, OB, OC be denoted by a, b, c; and the

angles OBC, OCA, OAB by a, f3, y, respectively; let OB be

the diagonal required, and OE the diagonal of the face OAB ;

then

OB2 = OE2 + EB2+20E.ED. cos COE

= a2 + b2 + 2ab cos y 4- e2 + 2c. OE . cos COE.

Describe a sphere, with 0 as centre, cutting OA, OB, OC, OE
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in the points a, b, c, e, respectively ; then we have, by Stewart's

theorem,

cos COJEJ = (cos a . sin a Oe + cos /? sin b Oe) -f sin y ;

.-. OB2 = a2 + b2 + c2 + 2ab cos y

^o.OJS . . .

+ —. ( Cos a . sin a Oe + cos p sm 0 Gte) ;
siny v

but OJE sin aOe -b sin y, and OE . sin 0 0# = a sin y.

Hence

OB2 = a2 + b2 + c2 + 2bc cos a + 2ca cos /? 4- 2ab cos y. (440)

126. To find the radius of a sphere circumscribed to a tetra

hedron.

D
 

Fig. 53.

Eiest Method (Statxdt's) :—

Through the centre 0 of the circumsphere draw a plane per

pendicular to the radius D 0, cutting the sides of the trihedral

angle B in the plane triangle A'B'C. This plane being parallel

to the tangent plane to the sphere at D,

A'B' is antiparallel to AB in the angle ABBt

B'C „ BC „ BBC,

C'A' „ CA „ CBA.
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Let DA = a, DB = 8, DC = 0, DC = 0', 04 = J', 4D = 0' ,

DA' = a, DD'= /?, DC"= y, D'<7= a', C'4' = £', 4'D' = y',

we have

a' /? y #'/? 0'/3£ tf'. tfa , 0a

-7 = — = r- ; .'. a = — = -=— = —r— = aa . -=- ;

a c 0 c be be aoG

ale ale

If 0' be the second extremity of the diameter DO' of the

sphere, we have

aa = 1/3 = cy = 2D2 = DO . DO'.

, aa'.Zfi2 IV. 2B* ,_cc'.2R2

ale ' ale f ale

Putting aa' = alf W - bXl cd - clf and ax + lx + cx = 2st, we have

triangle

"We have also

i)4^(7 afo a252c2 a252c2

DA'B'O a/3y aa.lfi.cy 8£6 '

then

2L42?tf «W . ft

4i£4 0 1 _ 8£6 ' * 6DABC

a2l2e2

Second Method (Dostor, JVouvelles Annales, 1874, p. 523):—

Let DABC be the tetrahedron, 0 its circumeentre ; Af, B', C

the middle points of the edges DA, DB, DC, which, as before,

are denoted by a, I, c, respectively. Draw 0M parallel to DA,

meeting the face BDC in if, and MN parallel to BD. Now,
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since the projection of BO, and of BN, NM, MO on DA, BB,

BC, BO are equal, we have

i a = BN cos ac + NM cos #5 + ifO.

J b = DiV cos fo + NM + Jf0 cos ab,

J c = Z?jV+ NMcosbc + JfO cos ac,

i2 = DiV" cos (*, R) + iOfcos (5, i?) +MO cos (a, i£).

 

Hence 2i23= MO.a + MN . b + BN. c.

a = 2M0 + 2MN cos ab + 2DiV cos <w.

b = 2Jf0 cosaJ + 2MN+ 2BN cos fo.

<? = 2Jf# cosca + 2MN cos cb + 2Z)JV.

Hence, eliminating JfO, MN, BN, we get

2_£2, a, b, c

a, 2, 2 cos #3, 2 cos ac

b1 2 cos ##, 2, 2 cos 5c

<?, 2 cos 00, 2 cos cb, 2

= 0.
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cos ab, cos ac

i, cos he

cos be, 1

Now*w being the first staudtian of the solid angle D - ABC,

we have 4n2 =

1,

cos ha,

COS 00,

Therefore 64i2V =

0, «, h, c

a, 2, 2 cos ah, 2 cos ac

h, 2 cos ##, 2, 2 cos fo

c, 2 cos ca, 2 cos 0#, 2

Hence 64a2£Vw2i£2 =

0, a2, h2, c2

a2, 0, c'2, V2

„/2

a2b2c'

0, a2, h2, c*

a2, 2a2, 2 ah cosah, 2 ac cosac

h2, 2hacosha, 2b2, 2hccoshc

c2, 2 ca cos ca, 2 cb cos ch, 2c2

^(aay+2^(aba,b')2, (442)

b2, c'2, 0, a

c2, V2, a!2 0

Cor.—24 VR = {25 {aba'bj- 2 (<w')M* .

127. The Isosceles Tetrahedron.—(Netjbekg.)

Def. XXXIX.—An isosceles tetrahedron is one whose opposite

edges are equal.

From the definition it follows at once (Euc. I., vin. xxxn.)

that the four faces are equal, and that the sum of the plane

angles forming each trihedral angle is equal to two right

angles.

128. If we suppose BC=AB = a, AC=DB=fi, AB=DC=y;

then denoting by a, h, c the angles of the triangle ABC, they

are also the face angles of the trihedral angle B - ABC; and
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representing by A, B, C the dihedrals BA, BB, DC, we have

(§ 29)-

1°. sin a : sin b : sin c : : sin A : sin B : sin C : : a : fi : y.

(443)

2°. The first staudtian oil) -ABC

= i \/l - cos2# - cos2 b - cos2 (J + 2 cos a cos 6 cos 0

= \/cos a cos J cos 0. (444)

3°. If if, iV", P, Q, i£, £ be the middle points of the six

edges, we have PQ=%AC=±BD= PN; then PQMJSF is a

lozenge, and MP is perpendicular to NQ. Hence the three

medians MP, NQ, RSform a system of three rectangular axes.

 

4°. Since the tetrahedron I)ABC can coincide with ADCB,

BCDA, CBAB, the four lines BG, AG, BG, CG are equal.

Hence G, the centre ofgravity of ABCL, is also the centre of the

circumscribed sphere, and of the inscribed sphere.

5°. The inscribed sphere touches the faces at the centres of the

circumcircles.
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6°. The medians PM, QN", PS are perpendicular to their cor

responding edges.

129. The four solid angles G-ABC, G - ABB, G-BCD,

G-ACB, are equal. Hence the spherical triangles which they

intercept on the sphere are each equal in area to one-fourth of

the spherical surface, and therefore the spherical excess of each

is two right angles.

Again, the angle MGg = supplement of MGB = supple

ment of MGC = PGC = W±AGB. Then, in the spherical

triangle ABC, the arc which joins a summit to the middle of

the opposite side is equal to the supplement of half that side,

and the arcjoining the point of concourse of the medians to the

middle of any side is equal to half that side. Hence the spherical

triangle ABC is divided by the antipodes of the point D into

three diametral triangles.

130. The volume of the tetrahedron is double of the octa

hedron MJSTPQPS = iQSMNG = f GM. GJSf . GS ; hut

GS*+GM* = iBC2 = la2, GM2+GJST2 = iP2, GJST2 + GS2 = iy2;

.-. Tr-S{F+y*-**)W + *t-P)(** + F-'f) (445)

Cor. 1.—The square of the radius of the circumscribed

sphere

_*±£±2_\ (446)

For AO* = AJP + MO>=i f + a' + ^ ~ ^ = t±^±^.

8 8

SV
Cor. 2.—The radius of the inscribed sphere = -. (447)

Ax* G
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Exeecises XXXIV.

1. If the four edges of a tetrahedron he tangents to a sphere, the sum of

each pair of opposite edges is constant.

For if t\, t2, h, ti he the tangents drawn to the sphere from the vertices

of the tetrahedron, it is evident that the sum = t\ -f £2 + h + £4.

2. If a, a' he two opposite edges of a tetrahedron, and d their shortest

distance, the volume

1 A

= - aa'd sin (aa'). (448)

3. The four escribed spheres of an isosceles tetrahedron are equal, and

the radius of each is equal to the diameter of the inscribed sphere.

4. Prove that the radius of the sphere in Ex. 1 =———— . (449)

3 v

5. If V he the volume of a tetrahedron, whose edges of a face are a, b, cf

and opposite edges a, b\ c' ; and V the volume of a tetrahedron, whose

edges of a face are a', b', c', and opposite edges a, b, c ; then

H4 ( F* - F'2) = («2 - «'2) (b* - £'*) (c2 - a**). (450)

("WOLSTENHOLME. )

6. If (a, a'), (b, b'), (c, c') he the three pairs of opposite edges of a tetra

hedron, and denoting by the same letters the dihedral angles adjacent to

these edges, prove that if the altitudes cointersect—

1°. a2 + «'2 = P + b'2 = c2 + c'*. (451)

2°. cos a cos a' — cos b cos V - cos c cos c'. (452)

7. If the lines joining the summits of a tetrahedron to the points of con

tact of opposite faces with the inscribed sphere cointersect, prove that

cos J a cos J a' =* cos \ b . cos \ b' = cos \ c . cos J$\ (453)

8. If the spherical triangles which are equivalent to the two trihedrals

D - ABC, G ~ ABC (fig. Art. 127), be denoted by ABC, A'B'C, respec

tively, prove

tan I a = — ——. (454)

\/sm£ sine cos a
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9. If ABCB be a tetrahedron, and if we denote by AB the angle between

the faces ABC, ABB, prove that

J AB2. CB2 . sin* (AB . CD) = ABC2 + ABB2 - 2ABC . ABB cos AB,

where ABC denotes the area of the triangle ABCr (455)

Project the triangle BCD into B'C'B' on a plane perpendicular to AB;

we have then /\

CD' = CD sin {AB . CD),

and C"i>'2 = 2B'C .B'B'. cos C'B'B';

 

then, multiplying by -4J52, and remembering that P'C, B'D' are equal to

the altitudes of the triangles ABC, ABB, the proposition is proved.

10. If MB be any point in the edge CB, prove that

ABM2 . cW-^ABC2.~MB2\ABB2. CM2+ 2ABC.ABB. CM.MB cos AB.

(456)

Draw MPparallel to BB, and we have

B'M'2 = B'P2 + JfP* + 2J'P. PIT cos ^£ ;

also
B'P

Wb'

CM

CB1

PM' MB

CB'
&c.

11. If M be the middle point of CB,

4ABM2 = ABC2 + ABB2 + 2ABC. ABB . cos AB. (457)



CHAPTER IX.

APPLICATIONS OF SPHERICAL TRIGONOMETRY TO GEODESY

AND ASTRONOMY.

Section I.—Geodesy.

131. To reduce an angle to the horizon—

1°. General Solution.—LetlOZ be the vertical of the observer

at 0; then, if the angle MON = a, NOZ = I, MOZ = c, it

is required to find the projection of MOW on a horizontal plane

passing through 0.

Z 

Fig. 57.

SoL—From 0 as centre, with a unit radius, describe a sphere,

cutting OZ, OM, ON in A, B, <7, respectively ; then the

sought angle is the measure of the dihedral angle BOAC, or of

the angle A of the spherical triangle BA C, which is given by

the formula

tan^A
/sin (s

\ sin

• b) sin (s - c)

s . sin (s - a)
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2°. Solution of Legendre.—This solution is applicable only

when the angles of elevation of the objects if, iVare very small ;

that is, when b and c are each near 90°. It depends on the

following lemma:—Being 'given a spherical triangle ABC, the

angle Ax of the rectilineal triangle formed by its chords {called the

chordal triangle) is given by the equation

cos Ax = sin \ b sin J c + cos J b cos J c cos A. (458)

 

Fig. 58.

Dem.—Let A'BC be the colunar triangle, M9 JV the middle

points of the arcs A'B, A'C; then the chords AB, AC are

parallel to the radii OM, ON of the sphere. Hence

cos Ai - cos MON= sin i b sin % c + cos J b cos J c cos A.

Cor.—If Ai= A - 0, then cos AY = cos A + 0 sin -4 approxi

mately ; and substituting in (458) for cos J b cos J 0, sin J b sin J0,

the values cos2 J (5 + 0) - sin2£ (5 - c), sin2 J (5 + 0) - sin2 J {b - c)>

we get, after an easy reduction,

0 = tan iA sin2 J (b + 0) - cot £ ^ sin2 J (b - 0). (459)

6W00W the oblique angle contained between two objects above the

horizon, to find the corresponding horizontal angle.
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Let A be the place of the observer, M, N the objects above

the horizon ; let a sphere of radius unity be described, touching

the horizon at A, and intersecting the lines AM, AN" in the

points B, C. Draw the great circles ABO, A CO; then if

H, H' denote the elevations of AM, AN above the horizon, we

have H= J arc AB, W = J-arc AC ; that is, considering the

spherical triangle ABC, H=%c, W = % b. Now the angle A

of the spherical triangle ABC is the horizontal angle which

corresponds to the oblique angle MAN. Hence, if 0 denote

the difference, we have (459)

0 = UniA sin2J (b + c) - cot^A sin2 J (b - c) ;

 

.-. 6 = tani.4 sin2J(J9r+ JET) - cot \A sin2i(J2*- #')• (460)

In practice H, W and 0 are very small. Hence this formula

may be replaced by the following, which is Legendre's :

0= {%(&+ H')} 2 tan iMAN- {£(.ff- H')}2 cot iMAN,

(461)

an approximate value of the difference between the circular

measures of the oblique and horizontal angles, which must be

added to the former to obtain the latter.

L
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132. Legendre's Theorem,—

If the sides of a spherical triangle he small compared with the

radius of the sphere, and if a plane triangle be constructed whose

sides are equal in length to those of the spherical triangle, then each

angle of the spherical triangle exceeds the corresponding angle of

the plane triangle by one-third of the spherical excess.

Dem.—Let a, b, c be the lengths of the sides of the spherical

triangle, r the radius of the sphere, then the circular measures

of the sides are

a b c

? ? ?

respectively; hence

cob A =

a b c

cos - — cos-. cos-

r r r

b . c

sin — . sm-

r r

and, substituting for cos -, cos -, &c, their values given in
r r

PI. Trig., § 158, we get, neglecting powers higher than the

fourth of -,
r

( tf_ a4* \ f b2_ ¥ \f c2 fi \

cos^= ^TTZvTTZa

r*\ 6r2)\ 6r2j

/ja4<*-0» a*- ^-g*-6&2g2\ . / _b2+c2\

V 23c + 24bc? J~\ 6?~)

+ TTTT—o U +
2bc 2ibcr2 A 6r2

b2 + c2- a2 a* + ¥ + c4 -2(a2b2 + b2c2+ c2a2)

2bc 2-iicr2
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Hence, if a, /?, y denote the angles of the plane triangle, whose

sides are a, b, c, we have

cos A = cos a -

ba

6r2

-, nearly.

Now, putting A = a + 0, we have cos A = cos a - 0 sin a.

_ . be sin a 8

Hence 0 = ——-— = —-,

6r% Sr2'

8 denoting'the area of the plane triangle ;

8

Similarly,

Hence

A - a

3r»

A
3r2'

8_

3r2'

8
= spherical excess ;

1

.*. A - a = - spherical excess. (462)

133. The area of the spherical triangle is approximately

equal to

"24H-7 (463)

Hem.—

si+:

, lT_ I s , s - a , s - b , s - c

tan J jo = /tan — . tan 0 . tan—— . tan

' 2r 2r 2r 2r '

J. i.JL

s 2r\ 24r2

but tan —

2r
1

5* 2r\1+12r2

Hence

, _ ^ Is s- a-a s~J>_ s-g/ s2 V Q?-fl)2

2r ' 2r V 12r2A 12r2 '

L 2



148 Applications of Spherical Trigonometry.

therefore &-*- r^±^W±^W±^S.

2 4rz \l I2r2

( a1 -4- h2 -4- ov

Hence 2JEr* = S 1 + * a

Cat.—The area of the spherical triangle is equal to the area

of the plane triangle, if we omit terms of the second degree

. 1
m -.

r

134. If n denote the number of seconds in the spherical

excess, A the area of the spherical triangle on the surface of

the earth in square feet; then log n - log A - 9*3267737.—

(General Roy.)

ft VlT^

Dem.—"We have 2i?= ——rrr ; .'. A = ^7-^-7-. Now the

206265 ' 206265

rrr

mean length of a degree = 365155 feet. Thus —- = 365155 ;
180

substituting the value of r from this equation in the value of A,

and taking logarithms, we get

log n = log A - 9-3267737. (464)

Exeecises.—XXXY.

1. The angles subtended by the sides of a spherical triangle at the pole of

its circumcircle are respectively double of the corresponding angles of its

chordal triangle.

2. Prove Legendre's theorem from either of the formulae ion sin ^-4,

cos \ A, tan \ A, respectively, in terms of the sides.

3. If the radius of the earth be 4000 miles, what is the area of a spherical

triangle whose spherical excess is 1°.

4. If A", B", G" be the chordal angles of the polar triangle of ABC,

prove

cos A" = sin \ A cos (s — a), &c. (465)

5. If A'BG be the colunar of ABC; prove that the cosines of the angles

of its chordal triangle are respectively equal to

cos J a cos JE, sin J b sin (C - E) , sin J c sin (B - E) : (466)
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6. If B be the circumradius of a spherical triangle, Ai, Bi9 Ci the angles

of its chordal triangle ; prove

sin A\ — sin \ a cosec B, sin B\ = sin J b cosec B, sin G\ — sin J c cosec B.

(467)

7. Prove sin Ax : sin (#x - &) : : sin -4 : sin {B- C). (468)

8. Prove the proposition of § 132 from equation (351).

9. Prove E = (tan J « tan ££) sin 0 - \ (tan J 0 tan \ bf sin 267. (469)

[Make use of the value of tan E drawn from equations (351), (356).]

10. Show that in every case of the solution of spherical triangles, except

where the three angles are given, that Legendre's theorem may he used for

an approximate solution.

Section II.—Astronomy.

135. Astronomical Definitions.

If PKNR represent the meridian of any place, produced to

meet the celestial sphere, P the north, pole, 0 the south pole of

 

Fig. 60.

the heavens, KR the horizon, JEQ the equator, Z the zenith ;

then, for a place whose zenith is Z, QZ is the latitude ; and
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since QZ is evidently equal to PR, PR is equal to the latitude ;

but PR is the elevation of the pole above the horizon. Hence

the elevation of the pole above the horizon is equal to the latitude.

Again, if S be any heavenly body, such as the sun or a star,

its position is denoted by any one of four systems of spherical

co-ordinates as follows :—

1°. The great circle ZST passing through the zenith and S,

and meeting the horizon in T, is called the vertical circle of S.

The arc HT, measured from the south point of the horizon, or

its equal the angle HZT, is called the azimuth, and ST the

altitude. RT, ST are the spherical co-ordinates of the star S ;

ZS is its zenith distance, and the arc RT its azimuth from the

north.

2°. Join SP, and produce to meet the equator in K. The

arcs QK, KS form the second system of spherical co-ordinates ;

QK, or its equal the angle ZPS, is called the hour angle of S,

and KS the declination. The declination is positive when S is

north of the equator, and negative when south. The great

circle PSK is called the declination circle, and PS the polar

distance of S.

3°. The great circle which the centre of the sun, seen from

the centre of the earth, appears to describe annually among the

stars is called the ecliptic; and its inclination to the equator,

which is nearly 23J°, the obliquity of the ecliptic. The points of

intersection of equator and ecliptic are called the equinoxes—

one the vernal equinox (called also the first point of Aries),

and the other the autumnal equinox (the first point of Libra).

If «y> denote the first point of Aries, then ^iT is called the right

ascension, and KS the declination of the star ; *PK, KS are the

third system of spherical co-ordinates of S. The right ascen

sion is counted eastward, from 0 to 360°.

4°. From S draw a great circle Scr perpendicular to the

ecliptic ; then opv, <rS are the fourth system of spherical co

ordinates of S, and are called respectively its longitude and
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latitude. The longitude is reckoned eastward, from 0 to 360°.

The latitude is positive when north, and negative when south.

136. If the small circle, M, M\ passing through S, and parallel

to the equator, represent the apparent diurnal motion of the

sun or other heavenly body (the declination being supposed

constant), it is evident he will be rising or setting at A (accor

ding as the eastern or the western hemisphere is represented by

the diagram). He will be east or west at co, will be at B at

6 o'clock, morning or evening, will be at noon at if, and at

midnight at M.

137. The foregoing definitions and diagram will enable us to

solve several astronomical problems of an elementary character,

such as the following :—

1°. To find the time of rising or setting of a known body.

Consider the spherical triangle APR. We have

cos RPA = tan RP. cot AP.

Hence, denoting the hour angle APZ by t, the latitude by <£,

and the declination by 8, we have

cos t - - tan c£ tan 8. (470)

And the hour angle being known, the time may be found. In

the case of the sun, the formula (470) gives the time from sun

rise to noon, and hence the length of the day.

2°. Being given the declination and the latitude, to find the

azimuth from the north at rising.

Let A denote the required azimuth, then A = AR. Hence,

from the triangle ARP, we have

sin S = cos <j> . cos A. (471)

3°. Being given the hour angle and declination of a star, to find

the azimuth and altitude.
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Let Z denote the zenith distance ZS, A the azimuth from

the north, p the angle ZSP at the star ; then, by Delambre's

Analogies,

cos iZ. &mi(p+A) = cosJ£. cos J (8- <£). (472)

cos iZ. cos i (p +A) = sin it. sin J (8 + <j>). (473)

sin iZ. sin J- (p - A) = cos it. sin i (8 - <£). (474)

sin £Z. cosJ(^ -^) = sin it. cos J (8 + <£). (475)

Hence, when t, 8, <j> are given; that is, the hour angle and

declination of a heavenly body, and the latitude of the observer,

z, p, A can be found. In a similar manner may be solved the

converse problem :—Given the azimuth and altitude, to find the

hour angle and the declination.

4°. If a denote the altitude of the sun at 6 o'clock, and a' the

altitude when east or west ; then

sin a = sin 8 . sin <j>. (476)

sin a' = sin 8 -4- sin <£. (477)

Exekcises.—XXXVI.

1. In latitude 45° N., prove that the shadow at noon of a vertical object

is three times as long when the sun's declination is 15° S. as when it

is 15° N.

2. The altitude of a star when due east was 20°, and it rose EbN; re

quired the latitude.

3. Given the sun's longitude, to find his right ascension and declination.

S 

Fig. 61.

Let a denote the right ascension, 5 the declination, a the obliquity of

the ecliptic. Now let S denote the sun's place in the ecliptic TS. Draw
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8D perpendicular to VD, the equator ; then, if A denote the longitude, we

have the triangle T8D,

tan a = cos a tan A. (478)

sin S = sin « sin A. (479)

4. Given the azimuth of the sun at setting, and at 6 o'clock, find the

sun's declination, and the latitude.

5. If the sun's declination be 15° N., and length of day four hours,

prove tan <\> = sin 60° tan 75°.

/» -n ax. j. sin </> . tan A + sin 8 . tan a ,sn^
6. Prove that coso> = ^— : . (480)

sin <p . tan a + sin 5 . tan A

7. Given the sun's declination and the latitude, show how to find the

time when he is due east.

8. If the sun rise N.E. in latitude <J>, prove that

cot hour angle at sunrise = - sin <j>.

9. Given the meridian altitude and altitude when east, find the latitude

and the declination.

10. Given the right ascension and the declination of a star 8, to find its

latitude and longitude.

 

Fig. 62.

Let vj)f rZ be the equator and the ecliptic, S the star, SD, SZ perpen

dicular to TZ>, VZ ; then, if a be the right ascension, 8 the declination, I the
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latitude, and A. the longitude of S, denoting the angle STD by 0, from the

right-angled triangles SvD, SrZ, we get

tan \ cos(0 — ew) sin? sin (0 — co) /Jrt,v

cot 0 = sin a cot 5, = -, -—- = . n . (481)
tan a cos 0 sin 5 sin 0

The first of these equations determines 0, and the others K and I.

11. Being given the latitudes and longitudes of two places on the earth

considered as a perfect sphere, to find the distance between them.

This is evidently a case of § 66, viz., when two sides and the contained

angle are given, to find the third side.

12. Find the latitude, being given the declination, and the interval be

tween the time the sun is west and sunset.

13. If the latitudes and longitudes of two places on the earth be given,

show how to find the highest latitude attained by a ship in sailing along

a great circle from one place to the other.

14. Being given the latitudes and longitudes of two places, find the sun's

declination when he is on the horizon of both at the same instant.

15. If the difference between the lengths of the longest and the shortest

day at a given place be six hours, find the latitude.

16. If two stars rise together at two places, prove that the places will

have the same latitude ; and if they rise together at one place, and set

together at the other, the places will have equal latitudes of opposite

names.

17. If pi, p2 be the radii vectors of two planets which revolve in circular

orbits, prove, if when they appear stationary to one another, the cotangent

of IV s elongation, seen from Pi, be \ tan 0, that

2pi = p2 tan J 0 . tan 0. (482)

18. If 5 be the declination of a heavenly body, which in its diurnal

motion passes in the minimum time from one to another of two parallels of

altitude, whose zenith distances are Z, Z\ prove that

sinS^'ffjsinlat. (483)
cos%(Z- Z ) x

19. If I be the latitude, « the obliquity of the ecliptic, prove that if the

lengths of the shadow of an upright rod at noon on the longest and the

shortest days be as 1 : n,

sin 21: sin 2&> : : n + 1 : n - 1. (484)
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20. Determine the latitude, and the sun's declination, being given that

the sun sets at 3 o'clock, and is 18° below the horizon at 4 o'clock.

21. Determine the latitudes of two. places A, B from the following data :—

When the sun is in the tropic of Cancer, he rises an hour earlier at A

than at B; and when at the tropic of Capricorn, an hour earlier at B

than at A.

22. If in latitudes h, fa, £3 on the same day, on the same meridian, the

lengths of meridian shadows of towers of equal heights be su st, S3, prove

gl (*2 " *3)2 + S2Q?3-*l)2 + S3 (Sl - S2)2 = Q

tan (fa - k) tan(fa - h) tan (£1 - fa)

23. If the time of the sun, being due east, be midway between sunrise

and 12 o'clock, find the latitude, the declination being given.

24. If the sun be due east at a given place two hours after the rising,

find the declination.

25. Given the right ascension and declination of four stars, find the right

ascension and declination of the point in the heavens where the diagonals of

the spherical quadrilateral which they determine intersect each other.
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Miscellaneous Exercises.

1 . Prove that in a right-angled spherical triangle

tan r — sin (s - c), tanr' = sin(s — b), tan r" = sin (s — a)y tan r'" = sin s.

2. If the plane angles of a trihedral angle be respectively equal to the

angles of a square, a hexagon, and a decagon, prove that the sum of its

dihedral angles is five right angles.—(Catalan.)

3. If A\ be a chordal angle of a spherical triangle ABC, prove

1 + cos a — cos 5 — cose ,,«„v

cos Ai = .— . 486
4 sm J 0 sin f c

4. If a spherical quadrilateral be inscribed in a small circle of the sphere,

prove that the cosine of its third diagonal is equal to the product of the

cosines of the tangents drawn to the small circle from the extremities of the

third diagonal.

5. Prove that the volume of the pyramid whose summits are the angular

points of a spherical triangle and the centre of the sphere, if the radius be

equal to unity, is J\Aan r . tan ra . tan n . tan rc.

6. Prove that the angles of intersection of Hart's circle with the sides

of a spherical triangle are (A - B), (B - C), (C - A), respectively.

7. If in a trihedral angle O-ABC we inscribe two spheres, which

touch each other, if jRi, R% be their radii, prove that

Ifa _ ( /sin (s - a) sin (s - b) sin (s - c) ll + sin(s-a) sin (s - b) sin (s - c) \

jRi ~ ( \ sins \ sins j"

(Steineb.) (487)

8. If any angle of a spherical triangle be equal to the corresponding

angle of its polar triangle, prove

sec2^ + sec2JB + sec2^ + 2sec4 sec.B sec C= 1. (488)

9. If ABC be a diametral triangle, of which the side c is the diameter,

sin2|c = sin2|« + sin2J5. (489)

10. Express sins, sin(s - a), &c, in terms of the in-radii of a triangle

and its colunar triangles.

11. Express sini?, sin (A - E)t in terms of the circumradii of a triangle

and its colunars.
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12. If A, /u denote the perpendiculars from the middle point ofBC on the

internal and external bisectors of the angle A, prove that

2 sin \ sin fi = n . sin J (P + C) sec J a. (490)

13. If there be any system of fixed points A\, Ai, As, &c, and a corre

sponding system of multiples l\, h, h, &c, and P a point satisfying the

condition 2 (I cos AT) = constant, the locus of P is a circle.

Dem.—Let x, y, z denote the normal co-ordinates of Pwith respect to a

fixed trirectangular triangle x\, y\9 z\, &c, those of A\, &c. Then (Art. 104)

we have 2 (lx\) . x + 2 {ty\) y + 5 (&i) s = constant. Put 2 (foi) =-3T, 5 (^i) =r,

2(fei) = Z; then, if 0 be a point whose normal co-ordinates are

J J |, where JP = JP + r» + Z»),

we have :§(/ cos .4P) = It cos OP = constant. Hence the locus of P is a

circle.

Cor.—If 5 {I cos -4P = 0, either OP = -, and the locus is a great circle,

or It = 0, and then X, Y, Z must each separately vanish.

14. The sum of the cosines of the arcs, drawn from any point on the

surface of a sphere to all the summits of an inscribed regular polygon,

is equal to zero.

15. If 0 be the incentre of a spherical triangle ABC, prove that

cos OA sin (b - c) + cos OB sin (c - a) + cos OC sin (a - b) = 0. (491 )

16. If the side AB of a spherical triangle be given in position and magni

tude, and the side AC in magnitude, prove, if PC meet the great circle, of

which A is the pole in P, that the ratio cosPP : cos CD is constant.

17. The eight circles tangential to any three given circles on the sphere

may be divided into two tetrads, say X, Y, Z, W\ X!, Y\ Z\ W\ of which

one is the inverse of the other, with respect to the circle, cutting the given

circles orthogonally.

18. Any three circles of either tetrad, and the non-corresponding circle

of the other tetrad, are touched by a fourth circle.—(Hart.)

19. Any two circles of the first tetrad, and the two corresponding circles

of the second, have a fourth common tangential circle.—(Ibid.)
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*20. If A, B, C, B be four points on the same great circle, and if <f> be

the angle of intersection of the small circles, whose spherical diameters are

AC and i?D, prove that the six anharmonic ratios of the points A, B, C, B

are

sin2|4>, cos2J<£, -tan2|4>, cosec2j4>, sec2|<£, -cot2|-<f>.

f21. The mutual power of two circles on the sphere is unaltered by

inversion.

22. Prove the relation (412) by inversion.

23. If from a fixed point 0 on a great circle three pairs of arcs OA, OA' ;

OB, OB' ; OC, OC be measured, such that tan OA .tan OA'- tan OB . tan OB'

= tan OC. tan OC — k2, where k is a constant ; then the anharmonic ratio

of any four of the six points A, A', &c, which contains only one pair of

conjugates, such as (ABCC), is equal to the anharmonic ratio of their four

conjugates [A'B'C'C).—(Compare Sequel to Euclid, p. 132.)

Draw a tangent to the great circle, and produce the radii through the

points A, A', &c, to meet the tangent.

Def. I.—A system of pairs of points, such as AA', BB', CC, fulfilling

the conditions that the anharmonic ratio of any four being equal to that of

theirfour conjugates, is called a system in involution.

Def. II.—If two points D, D' be taken in opposite directionsfrom 0, such

that tan2 OB = tan2 OB' = k2, each point being evidently its own conjugate, is

called a double point.

Def. III.—If a system ofpoints in involution on a great circle X be joined

by arcs of great circles to any point P not on X, the six joining arcs having

evidently the anharmonic ratio of the pencil formed by any four equal to that

formed by their four conjugates, is called a pencil in involution.

24. The double points B, B' are anharmonic conjugates to any pair AA'

of conjugate points.

25. The six arcs joining any point on a sphere to the intersection of the

sides of a spherical quadrilateral form a pencil in involution.

* This theorem in piano was first published by the author in the Philo

sophical Transactions, 1871, p. 704.

f This theorem, in a different form, viz., " the ratio of the sine squared of

half the common tangent of two small circles to the product of the tangents

of their radii is unaltered by inversion, " was first given by the author in a

Memoir " On the Equations of Circles," in the Proceedings of the Moyal

Irish Academy, 1866.
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26. Any great circle is cut in involution by the sides and diagonals of a

spherical quadrilateral.

27. If two diagonals of a spherical quadrilateral be quadrants, the third

is a quadrant.

28. Show that the method given in " Sequel," p. 121, for describing a

circle touching three circles, may be extended to the sphere.

29. Inscribe in a spherical triangle or in a small circle a triangle whose

sides shall pass through three given points.

30. Prove that if GC be the symmedian drawn from the angle C of a

spherical triangle,

tanW = 2 jcos^-cos^ + ^cos2^-^

\ cot a sin b + cot b sin a * * '

31. If ABCD be a cyclic quadrilateral, and P any point in the circum-

circle, prove that

smAPB . sin CPD _ sin j- AB . sin I CD

sinAPC. sinBPD " sin^AC. sm^BD' ^ '

32. If three great circles having two points common intersect the sides of

a spherical triangle in angles ai, a2, a$ ; j8i, £2, 03 : 71, 72, 73, respectively,

prove that

cos ai, cos ct2, cos az

cos j3i, cos £2, cos #3

cos 71, cos 72, cos 73

= 0. (494)

33. Given the base of a spherical triangle and the two bisectors of the

vertical angle, solve the triangle.

34. If two sides of a spherical triangle be given in position, and a point

in the base fixed, if the base be bisected at the fixed point, prove that the

area is either a maximum or a minimum.

35. If the sines of the perpendiculars let fall from a point on the sides of

a spherical polygon, each multiplied by a given constant, be given, the

locus of the point is a circle.

36. 0, S are two points on the surface of the sphere ; 0 is fixed, and S

suffers a small displacement along OS proportional to sin OS ; prove that the

displacement estimated in the directions of two great circles at right angles

to each other, passing through S, are proportional to the cosines of the

distances of their poles from 0.
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37. If a chord TQ of a small circle whose spherical centre is 0 pass through

a fixed point 0 on the sphere, prove that

tan \ PCO . tan J OCQ is constant.

38. If through a given point 0 a great circle he drawn, cutting a small

circle in the points A, A\ and on it a point X, taken so that cot OX= cot OA

+ cot OA', the locus of X is a great circle,

39. If arcs which intersect in a point 0 he drawn from the angles of a

triangle, meeting the opposite sides in the points A', B', C, prove

tan^'O tanJB'O tan CO _

tan A'O + tan OA + tan B'O + tan OB + tan CO + tan 0C * ' '

40. If a great circle, passing through a fixed point 0, cut the sides of a

spherical polygon in the points A, B, C, &c. ; and if X he a point, such

that cot OX = cot OA + cot OB + cot 00, &c, the locus of X is a great

circle.
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Mutual power of two circles on the sphere, 112-118.

JNTagel, 84.

Napier, 35, 36, 39, 41, 65, 66.
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Neuberg, theorems by, 22, 91, 94, 96, 97, 98, 103, 138, 139, 140.

Norm, 22, 31.

Oblique angle, reduction to the horizon, 143, 144.

Obliquity of the ecliptic, 150-155.

Octahedron, 129-131.

Parallelogram, 18.

Parallelopiped, 131-134.

Parts of a triangle, 19.

Pascal's theorem, 111.

Points, double of involution, 158.

nomothetic, 103.

inverse, 103, 123.

Poles of a circle on the sphere, 3.

of the heavens, 149.

of the primitive, 122.

Poles and polars, 106-111.

Polyhedra, 128-142.

Power, spherical, 100.

mutual, 112-118.

Primitive, 121-127.

Proceedings of the Royal Irish Academy, 116, 158.

Prouhet, proofs by, 43, 89.

Quadrantal triangles, 81, 112.

Ratio of section, 67.

anharmonic, 68, 69, 70, 158.

Radical circle, 101, 102.

Roy, application of Girard's theorem, 117.

Rule, mnemonic, Napier's, 35.

of transformation, 32, 85.

Roy's, 148.

Salmon, theorem by generalized, 111.

Serret, applications of stereographic projection, 124-127.

Similitude, axes of, 104.

centres of, 103-106.

Solution, oblique-angled triangles, 54-64.

right-angled triangles, 49-54.

Sphere, elementary properties, 1-8.

Staudt, definition of sine of solid angle, 22.

Staudtians, 22, 23, 132, 140.

Steiner, theorems, 72, 75, 81, 92, 93, 95, 127, 156.

Stereographic projection, 121—128.

Stewart, theorem by, generalised, 24.

Supplemental triangles, 11.

Symmedian lines of a triangle, 159.
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Symmedian point of a triangle, 75.

Tetrahedra, 128-142.

Transactions, Philosophical, 158.

Transversal isogonal, 73.

isotomic, 73.

Triangle, chordal, 144.

spherical, 9.

Volume of a parallelopiped, 131.

of a tetrahedron, 132, 141.

Vertical circle, prime, 150.

Wallis, 17.

Wolstenholme, 141.

Zenith, 150, 152, 154.

THE END.
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EXTRACTS FROM CRITICAL NOTICES.

From the li Lyceum," May, 1888.

. . . " There is a great deal of new matter not hitherto intro

duced into text-books on trigonometry, at least in these countries

—matter which is not only interesting in itself, but important on

account of the present requirements of the higher mathematical

teaching. . . . The author has given many proofs of well-known

theorems, as in the case of the four fundamental formuke. Some

of these are original, others are contributed by distinguished

correspondents, and last, though not least, many have been

derived by very extensive reading from the writings of well-

known authors, to whom reference is always carefully made.

Indeed this last fact adds a great interest from an historical point

of view to all Dr. Casey's works. It is a decided mistake, as

well as an injustice, to ignore the merits of other writers, and to

appropriate their work without due acknowledgment, as is too

often done. Many theorems owe much of their interest to the

fact that they are associated with the names of Euler, Jacobi,

Lagrange, Cauchy, or even stars of a much lesser magnitude. . . ."



From " Nature," July 5, 1888.

" Dr. Casey's * Treatise on Plane Trigonometry ' is quite inde

pendent of the ' Elementary Trigonometry' by the same author.

It is a most comprehensive work, and quite as exhaustive as any

ordinary student will require. Dr. Casey shows his usual mastery

of detail, due to thorough acquaintance, from long teaching, with

all the cruces of the subject. He has embraced in his pages all

the usual topics, and has introduced several points of extreme

interest from the best foreign text-books. A very rigid proof is

given of the exponential theorem, and a section is devoted to

interpolation. . . . Chapters v. and vi., which are devoted to

triangles and quadrilaterals, are exceedingly interesting, and con

tain quite a crop of elegant propositions culled from many fields.

Following the course adopted by other recent writers, he gives a

systematic account of imaginary angles and hyperbolic functions.

* The latter are very interesting, and their great and increasing

importance, not only in pure mathematics but in mathematical

physics, makes it essential that the student should become ac

quainted with them.' We may remark that Dr. Casey adopts

the following notation : sh, ch, th, coth, sech, cosech, for sin A,

cos hj &c, and has gone further than his English predecessors in

introducing at this early stage the angle t, Hoiiel's hyperbolic

amplitude of 6 (t = amh. 0). Numerous illustrative examples

and tables afford practice to the student in this branch . . .

The special results, which on Dr. Casey's useful plan are numbered

consecutively, reach 810. The book is rich in examples, and will

be sure to find for itself a place on the mathematician's shelves,

within easy reach of his hand."

From the " Athenjetjm," July 21, 1888.

"Dr. Casey is no mere compiler. His heart is evidently in

his work, and nearly every page of it bears the stamp of his

individuality. The space at our disposal does not allow us to

enter into details, but we can conscientiously say that we know

of no work on plane trigonometry which contains so much new

and useful matter, or which contains old matter better treated.

... The most interesting chapter is the last, which" gives an

exposition of imaginary angles and of hyperbolic functions—

novelties, we believe, hitherto in trigonometrical text-books,

though not in mathematical periodicals. The hyperbolic func

tions are not only interesting from their close resemblance to the

ordinary circular functions, but also important from their increasing

utility in physical problems—two good and sufficient reasons for

placing them early before mathematical students. ..."

From the "Academy," Sept. 22, 1888.

"Dr. Casey's object has been to write a work which shall be

abreast of the best text-books on the subject, and in this he has

succeeded. No difficulties are slurred over ; in fact, the demon

strations are full, accurate, and complete. The text is amply

illustrated by a rich collection of exercises. Not only have

preceding text-books been consulted, but considerable contribu

tions have been levied upon memoirs in mathematical journals,



and collections of problems (such as "Wolstenholme's). Chap

ters v. and vi. (on triangles and quadrilaterals) contain an

exceedingly interesting store of results, numbered for reference

in the manner the writer has adopted in his previous books. . . .

Adopting a practice introduced in one or two recent works on the

subject. Dr. Casey assigns a sufficient space to the explanation of

the hyperbolic series and cosines, and introduces some other

functions to the student. It will be inferred that the present

work is independent of the author's small introductory book—

in fact, no reference whatever, we believe, is made to it. This

treatise contains everything that one could expect, and, besides,

has fresh matter—a section on interpolation, and one or two

other small things—which we have not hitherto come across in

similar works."

From the "Educational Times," Oct. 1, 1888.

"This treatise is very comprehensive, and quite sustains the

author's reputation as a writer of mathematical text-books.

While including all the usual propositions, Dr. Casey has, as

usual, found room for much interesting matter derived from

continental writers. The exercises are made to introduce much

of the modern geometry of the triangle, and the chapters on

triangles and quadrilaterals, one of the main features of the

work, contain a large number of elegant and useful propositions.

Imaginary angles and hyperbolic functions are fully treated,

while an innovation is made by introducing the angle t, Hoiiel's

hyperbolic amplitude of 0. Dr. Casey fully recognises the value

of these functions, 'and their great and increasing importance

not only in pure mathematics but in mathematical physics.' ..."

From the "Practical Teacher," Oct. 1888.

" The book which we have before us contains, we believe, the

most remarkable and complete treatment of its subject which has

yet appeared in the English language. Too many writers have

supposed that a knowledge of trigonometry only was necessary

to enable them to write a book thereupon, and it has been rare,

indeed, that a writer in every direction as competent as Dr. Casey,

or with a mathematical eyesight so far-reaching, has grappled

with an elementary subject like the present. Dr. Casey, for

tunately for us, was known as an eminent mathematician before

he became a writer of text-books. His investigations into

geometry and higher algebra have gained him a European reputa

tion ; and when the first of his class text-books, the ' Sequel to

Euclid,' appeared some years ago, we welcomed it in these

columns as ' extraordinarily neat, ' and extremely satisfactory

even in the form it then assumed, which has since, in subsequent

editions, been improved almost out of all likeness to its former

self. This was followed in the course of last year by an equally

remarkable treatise on analytical geometry, and it is little to be

wondered at, therefore, if we open the present volume with very

high anticipations. Nor are we disappointed. Alike in grasp

and clearness, this book outdistances its only real rival, the

venerable Todhunter. Of course we cannot help differing in a
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few minor points from our author; but, on the whole, we are more

at one with him than we have been with any previous author.

" The examples—more than a thousand in number—are re

markably well- chosen and accurate. They are adapted not only

to form a Trigonometrician, but also to develope a comprehensive

mathematical talent. Many of them are original, and at least

one-third have not appeared in any previous text-book.

" In every case, some are solved as specimens (a point in which

all Todhunter's works, by the way, are very deficient), and the

answers of the remainder are given at the end of the book, where

we have the welcome novelty of a tolerably complete index of the

subject-matter, and the authors' names. . . . "We repeat that it

is not only an eminently good book, but that it is the best book on

the subject."

From "Mathesis," Oct., 1888.

" Ainsi qu'il le dit dans la Préface, M. Casey s'est proposé de

composer un Traité de Trigonométrie qui soit en harmonie avec

les récents manuels les plus avancés sur les autres branches des

mathématiques : démonstrations rigourenses et complètes, ordre

méthodique, développement clair et suffisant des connaissances

faisant habituellement partie des traités de trigonométrie, indica

tion des questions les plus initéressantes que l'on rencontre dans

les journaux périodiques. . . . Les ouvrages des maîtres français

(Serret, Briot et Bouquet, &c), se distinguent par la recherche de

la rigueur scientifique ; les manuels anglais se recommandent par

la richesse des matières traitées ou proposées en exercises, et par

un texte concis qui introduit rapidement le lecteur dans les régions

élevées de la science, en glissant quelque peu sur les difficultées

des éléments. Le savant professeur de Dublin, parfaitement au

courant de la littérature mathématique de l'Angleterre et de la

France, a cherché à réunir dans une juste mesure, les qualités

qu'on rencontre chez les auteurs renommés de l'un ou l'autre pays.

Il a pleinement réussi dans cette œuvre difficile ... La partie

qui se rapporte au programme des établissements belges et français

du degré moyen, est admirablement développée . . . Aucun

détail de quelque importance n'est omis ; ou trouve aussi bien les

notions indispensables pour connaître let but proprement dit de la

trigonométrie, que les ressources fournies par cette science aux

autres branches des mathématiques . . . Comme nous l'avons

déjà dit (Mathesis, t. viii., p. 114), ce traite de M. Casey con

stitue un repertoire très complet de trigonométrie : ou y retrouve,

soit dans le texte, soit dans les exercises, toutes les questions

intéressantes, publiées depuis un demi-siècle dans les journaux

mathématiques. Dans les trente dernières années, l'enseignement

de la trigonométrie plane a fait, en France des progrès con

sidérables ; ou en peut juger par les problèmes posés aux examens

publics (St. Cyr, baccalauréat, école polytechnique, &c), prob

lèmes que certains journaux (par example le J. M. E. de M.

de Longchamps) et même des recuiels spéciaux (publiés par les
librairies ]NTony ou Croville-Morant) reproduisent régulièrement ;

M. Casey a en la bonne idée de faire un bon choix parmi ces

problèmes pour ses exercices. En même temps, il a proposé un

très grand nombre de questiones originales."
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OPINIONS OF THE WORK.

From George Gabriel Stokes, President of the Royal Society.

" I write to thank you for your kindness in sending me your

book on the 'Analytical Geometry of the Point, Line, Circle,

and the Conic Sections.'

" I have as yet only dipped into it, being for the moment very

much occupied . Of course from the nature of the book there is

much that is elementary in it ; still I see there is much which I

should do well to study."

From Professor Cayley, Cambridge.

"I have to thank you very much for the copy you kindly

sent me of your treatise on 'Analytical Geometry.' I am glad to

see united together so many of your elegant investigations in this

subject."

From M. H. Brocard, Capetaine du Genie a Montpellier.

" J'ai en hier l'agreable surprise sur laquelle je me complais

d'ailleurs depuis un certain temps de recevoir votre nouveau

* Traite de Geometrie Analytique.' . .

" Je me suis emerveille du soin que vous avez apporte a la redac

tion de cet ouvrage, et je forme des aujourd'hui les vceux les plus

sinceres pour que de nombreuses editions de ce livre se repandent

rapidement dans le public mathematique et parmi la jeunesse

studieuse de nos universites."
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From Edward J. Bouth, M.A,, F.E.S., &c, Cambridge.

" It seems to me that so excellent a treatise will soon make its

way to the front, even against the severe competition which all

books on Conies now meet with. I fancy that many of the

theorems cannot be elsewhere found so conveniently explained."

From the " Freeman's Journal."

" This treatise exhibits in a marked degree the qualities which

distinguish the author's other works. It is at once compact and

comprehensive. . . . Dr. Casey's treatise, indeed, may well

accomplish for this generation what Dr. Salmon's did for their

fathers, namely, to introduce the young mathematician to the

latest developments in the highest departments of the Science.

. . . Scarcely any important step is there in the work which

he has not simplified, giving one, and sometimes several, original

methods. . . . The method of projection is treated of in an

entirely original manner, not requiring the consideration of space

of three dimensions, the projection being performed in one plane,

and the equation of the curve obtained by a simple transformation.

The properties of the M'Cay, Neuberg, and Brocard Circles are

considered at some length : indeed the latter has now a literature

of its own, to which Dr. Casey has largely contributed. . . .

There are considerably over a thousand examples, graduated

from easy applications of the formulas to exercises of the highest

class of difficulty. Many of these are original, and many are

historically interesting."

From the " Dublin Evening Mail."

" This work will give a new impulse to the study of Analytic

Geometry, introduce the student to new and more powerful

methods, and greatly enlarge his mathematical horizon. It has

been known for some time that Dr. Casey was engaged on a

' Conic Sections,' and people expected that notwithstanding the

many works in the field, Dr. Casey's would present a good many

valuable novelties ; but the work has, we venture to think, ex

celled all anticipation. . . . Dr. Casey makes a large use of

determinants. He introduces them in the very first chapter, and

employs them to the end. In the first chapter we find a section

devoted to complex variables, and Gauss's geometrical represen

tation of them ; and from Clebsch he takes the comparison of

* point ' and ' line ' co-ordinates. He gives a great development

to trilinear co-ordinates and tangential equations, discusses the

new circles (Tucker's, Brocard' s, Neuberg' s, M 'Cay's), applies

Aronhold's notation to the discussion of the general equation of

the second degree, and reproduces from his own Papers in the

Transactions of learned societies many important theorems and

problems relating to inscribed and circumscribed figures, ortho

gonal conies, and the tact-invariant of two-conics. . . . The

work is a noble monument to Dr. Casey's genius, and his master

ing of all the resources of Modern Analytic Geometry."
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From "Nature."

" Dr. Casey, by the publication of this third treatise, has

quite fulfilled the expectations we had formed when we stated

some months since that he was engaged upon its compilation.

It is a worthy companion of those which have preceded it. It

possesses many points of novelty, i.e. for the English mathe

matician. He has from the first introduction of certain recent

continental discoveries in geometry taken a warm interest in

them, and in the purely geometrical treatment of them, has him

self given several beautiful proofs, and has added discoveries of

his own. We may here note that this work has met with a very

warm welcome in France and Belgium. The author himself has

added so much in years now long past to several branches of the

subject treated of in the volume under notice—the equation of

the circle (and of the conic) touching three circles (three conies),

and other properties—that he is specially fitted, by his intimate

acquaintance with it, and by his long tuitional experience, to

write a book on analytical geometry."

From the " Educational Times," September, 1886.

"In this book the author has added to those propositions

usually met with in Treatises on Analytical Geometry many

which we have seen in no other books on the subject ; notably

extending the equations of circles inscribed in and circumscribed

about triangles to polygons of any number of sides, and extend

ing to Conies the properties of circles cutting orthogonally. The

demonstrations are concise and neat. In many cases the author

has substituted original methods of proof advantageously, and in

some has also added the old methods. "We would specially note

his treatment of the General Equation of the Second Degree,

which is more satisfactory than many we have seen. Throughout

the book there are numerous exercises on the subject matter, and

at the end of each section a collection of problems bearing on

that part of the subject. These problems have been obtained

from Examination Papers and other sources. They have been

selected with much care and judgment. The name of the pro

poser has in many cases been added, and will cause more interest

to be taken in the solution."
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OPINIONS OF THE WORK.

The following are a few of the Opinions received by

Dr. Casey on this Work :—

From the Kev. E. Townsend, F.T.C.D., &c.

" I have no doubt whatever of the general adoption of your

work through all the schools of Ireland immediately, and of

England also before very long."

From the " Practical Teacher."

"The preface states that this book ' is intended to supply a

want much felt by Teachers at the present day—the production

of a work which, while giving the unrivalled original in all its

integrity, would also contain the modern conceptions and de

velopments of the portion of Geometry over which the elements

extend.'

" The book is all, and more than all, it professes to be. . . . The

propositions suggested are such as will be found to have most

important applications, and the methods of proof are both simple

and elegant. We know no book which, within so moderate

a compass, puts the student in possession of such valuable results.

" The exercises left for solution are such as will repay patient

study, and those whose solution are given in the book itself will

suggest the methods by which the others are to be demonstrated.

We recommend everyone who wants good exercises in Geometry

to get the book, and study it for themselves."
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From the " Educational Times."

"The editor has been very happy in some of the changes he

has made. The combination of the general and particular enun

ciations of each proposition into one is good ; and the shortening

of the proofs, by omitting the repetitions, so common in Euclid, is

another improvement. The use of the contra-positive of a proved

theorem is introduced with advantage, in place of the reductio ad

absurdum ; while the alternative (or, in some cases, substituted)

proofs are numerous, many of them being not only elegant but

eminently suggestive. The notes at the end of the book are of

great interest, and much of the matter is not easily accessible.

The collection of exercises, ' of which there are nearly eight

hundred,' is another feature which will commend the book to

teachers. To sum up, we think that this work ought to be read

by every teacher of Geometry ; and we make bold to say that no

one can study it without gaining valuable information, and still

more valuable suggestions. "

From the "Journal or Education," Sept. 1, 1883.

" In the text of the propositions, the author has adhered, in all

but a few instances, to the substance of Euclid's demonstrations,

without, however, giving way to a slavish following of his occa

sional verbiage and redundance. The use of letters in brackets

in the enunciations eludes the necessity of giving a second or

particular enunciation, and can do no harm. Hints of other

proofs are often given in small type at the end of a proposition,

and, where necessary, short explanations. The definitions are

also carefully annotated. The theory of proportion, Book V., is

given in an algebraical form. This book has always appeared to

us an exquisitely subtle example of Greek mathematical logic,

but the subject can be made infinitely simpler and shorter by a

little algebra, and naturally the more difficult method has yielded

place to the less. It is not studied in schools ; it is not asked for

even in the Cambridge Tripos ; a few years ago, it still survived

in one of the College Examinations at St. John's ; but whether

the reforming spirit which is dominant there has left it, we do

not know. The book contains a very large body of riders and

independent geometrical problems. The simpler of these are

given in immediate connexion with the propositions to which

they naturally attach ; the more difficult are given in collections

at the end of each book. Some of these are solved in the book,

and these include many well-known theorems, properties of ortho-

centre, of nine-point circle, &c. In every way this edition of

Euclid is deserving of commendation. We would also express a

hope that everyone who uses this book will afterwards read the

same author's ' Sequel to Euclid,' where he will find an excellent

account of more modern Geometry."

Second Edition, Price 6s.

A KEY TO THE EXERCISES IN THE FIRST SIX BOOKS OF

CASEY'S "ELEMENTS OE EUCLID."
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EXTRACTS FROM CRITICAL NOTICES.

From the " School Guardian."

" This book is a well-devised and useful work. It consists of

propositions supplementary to those of the first six books of

Euclid, and a series of carefully arranged exercises which follow

each section. More than half the book is devoted to the Sixth

Book of Euclid, the chapters on the ' Theory of Inversion' and

on the ' Poles and Polars' being especially good. Its method

skilfully combines the methods of old and modern Geometry;

and a student, well acquainted with its subject-matter, would be

fairly equipped with the geometrical knowledge he would require

for the study of any branch of physical science."

From the " Practical Teacher."

"Professor Casey's aim has been to collect within reasonable

compass all those propositions of Modern Geometry to which

reference is often made, but which are as yet embodied nowhere.

. . . We can unreservedly give the highest praise to the matter

of the book. In most cases the proofs are extraordinarily neat.

. . . The notes to the Sixth Book are the most satisfactory.

Feuerbach's Theorem (the nine -points circle touches inscribed

and escribed circles) is favoured with two or three proofs, all of

which are elegant. Dr. Hart's extension of it is extremely well

proved. . . . We shall have given sufficient commendation

to the book when we say that the proofs of these (Malfatti's

Problem, and Miquel's Theorem), and equally complex problems,

which we used to shudder to attack, even by the powerful wea

pons of analysis, are easily and triumphantly accomplished by

Pure Geometry.

" After showing what great results this book has accomplished

in the minimum of space, it is almost superfluous to say more.

Our author is almost alone in the field, and for the present need

scarcely fear rivals."

From the i( Journal of Education."

" Dr. Casey's * Sequel to Euclid ' will be found a most valuable

work to any student who has thoroughly mastered Euclid, and

imbibed a real taste for geometrical reasoning. . . . The

higher methods of pure geometrical demonstration, which form

by far the larger and more important portion, are admirable ; the

propositions are for the most part extremely well given, and will

amply repay a careful perusal to advanced students."



From " Mathesis," April, 1885.

"A Sequel to Euclid de M. J. Casey est un de ces livres clas

siques dont le succès n'est plus à faire. La première édition a

paru en 1881, la seconde en 1882, la troisième en 1884, et l'on

peut prédire sans crainte de se tromper, qu'elle sera suivie de

beaucoup d'autres. C'est un ouvrage analogue aux Théorèmes

et Problèmes de Géométrie de M. Catalan, et il a les mêmes

qualités : il est clair, concis, et renferme beaucoup de matières,

sous un petit volume. ... Le sixième livre de louvrage de

Casey est aussi étendu à lui seul que les quatre premiers. Il

occupe les pages 67 à 158, c'est-à-dire la moitié du volume.

C'est en réalité une Introduction à la Géométrie Supérieure.

Dans cette partie de l'ouvrage, on rencontre des demonstrations

d'une rare élégance dues à M. Casey lui-même."

From "Mathesis," December, 1886.

" La troisième édition, publiée en 1884, et dont il a été rendu

compte dans ce journal (t. v. 1885, p. 76-78) fait aujourd'hui

place à une quatrième, dont la première partie, renfermant 164

pages, 152 figures et 293 exercices, est la reproduction de six

chapitres de la précédente édition, car l'auteur n'a pas eu le

temps d'en remanier la substance ; mais toute la seconde partie,

58 pages, 23 figures et 181 exercices, intitulée : Géométrie ré

cente du triangle, est absolument nouvelle et complètement

refondue.

" Elle se divise en six sections consacrées aux études sui

vantes: 1°. Théorie des points isogonaux et isotomiques, des

lignes antiparallèles et des symédianes ; 2°. théorie des figures

directement semblables ; 3°. cercles de Lemoine et de Tucker ;

4°. théorie générale d'un système de trois figures semblables ;

5°. applications particulières de la théorie des figures directement

semblables (au cercle de Brocard et au cercle des neuf points) ;

6°. théorie des polygones harmoniques.

" Chacune de ces subdivisions, notamment la dernière, est suivei

d'exercices intéressants, théorèmes à démontrer ou problèmes à

résoudre, parmi lesquels nous devons signaler à l'attention des

géomètres les élégantes généralisations dues à MM. Casey, G.

Tarry et J. Neuberg dans l'étude des polygones harmoniques.

" Nos lecteurs sont déjà familiarisés avec ces nouvelles théories,

et ils connaissent aussi 1' eminent géomètre qui, depuis trente ans,

fait autorité dans l'enseignement des universités delà Grande-

Bretagne. L'ouvrage est à la hauteur de la réputatio n du maître,

et à tous les degrés d'avancement de leurs études, les élèves y

trouveront un guide précieux et instructit. Mais cet ouvrage

n'est pas seulement utile aux étudiants auxquels il s'addresse ;

les professeurs y rencontreront des démonstrations nouvelles,

une abondante variété de problèmes (près de cinq cents (ré

ellement attrayants et judicieusement choisis, enfin une exposi

tion aussi claire que possible des derniers, progrès de la géométrie

du triangle, présentés avec toutes les simplifications désirables.

" Les souhaits que nous avions exprimés au sujet de la troisi

ème édition se sont trouvés bientôt réalisés ; nous ne pouvons

mieux faire que de les reproduire aujourd'hui, persuadé que le

nouvel ouvrage sera, comme il le mérité, chaleureusement ac

cueilli et justement apprécié par le public mathématique."
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