LIGHT DISTRIBUTION AND EFFICIENCY TESTS OF A THREE MANTLE GAS ARC

FRANK JONES V'OSBURGH

THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE

IN MECHANICAL ENGINEERING

IN THE

COLLEGE OF ENGINEERING

OF THE
UNIVERSITY OF ILLINOIS

$$
\begin{aligned}
& 1903 \\
& 192
\end{aligned}
$$

milion ox ions

UNIVERSITY OF ILLINOIS

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

FRANK JONES VOSBURGH

ENTITLED. LIGHT DISTRIBUTION AND EFFICIENCY TESTS OF A THREE MANTLE GAS ARC

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF -BACHELOR OF SCIENCE \qquad
DEGREE OF- BACHELOR OF SCIENCE

APPROVED:

HEAD OF DEPARTMENT OF MECHANICAL ENGINEERING

Index.

Introduction
Photographs
Drawing
Description of Apparatus
Descrintion of Tests
General Conclusions
Data and Curves

Page 2
Page 3 to Page 4
Page 5
Page 6 to Page 7
Page 8 to Page 9
Page 10 to Page 11
Page 12 to Fage 55

Introduction.

The object of the work done for thin thesis was to determine the light distribution of a three mantle gas arc, to determine the mean spherical intensity or candle power and from the latter estimate the cost per spherical candle power per hour and compare the same with other forms of illumination.

The work was subdivided into,
(1) The design and making of the lamp bracket,
(2) The centering of the light,
(3) The tosts for the coefficient of absorption of the mirror used,
(4) The tests of the lamp itself,
(5) The plotting of curves and the determination of the mean spherical intensity.

The thesis would be of greater value, in general, if comparative tests had been run on other lamps of a like description but the author wished only for the results on the one lamp used so further tests were not made.

Two photographs from different positions, one with and one without the tunnel in place, showing clearly the arrangement of the apparatus and mirror.

A photograph of the lamn when at an angle showing the tunnol of cloth, the gas meter, the mirror and the arrangement of the apparatus and tho table

Description of Apparatus.

The photographs and drawings on pages
show fully the arrangement of the lamp and table. These were mounted in one room and the light was reflected from a mirror through a tunnel of black cloth onto the screen of the photometer mounted in the adjoining room.

The table conslsted of a heavy plank that rested on iron collars fitting the threads of four gas pipes. On the other ends of the pipes were fitted feet that were screwed fast to the floor. By means of the collars, that could be raised or lowered on the threada the table itself could be moved and the light from the lamp centered as desired.

The lamp bracket consisted of two pieces of flat iron three inches wido and three oights of an inch thick, one being bent to form a brace,and the other straight and upright for the most part, though a portion was bent, as shown, to form a fixture for the mirror. The two portions were joined by a bolt and knurled hand nut shown at (a). The mirror was mounted on a small plate at forty five degrees from vertical, being held by small screws, and centered on the hand nut (a). The lamp was mounted on another piece, that joined the flat bar, at (b) by a hand nut and revolved about the nut as indicated. This plece holding the lamp was weighted so as to always remain vertical regardiess of the position of the bar.Inorder to permit adjustment of the lamp the piece ended in a gas pipe within which fitted a smaller pipe and the two were held by a set screw and collar, This gave vertical adjustment and the same idea was carried out with the horizontal adjustment. The gas was led to the lamp, after pessing
through an accurato meter, by rubber tubing. The tubing joined the short nipple shown and through a cast iron circular plate, that could rotate on an iron ring, and was secured by lock nuts on each side. The flat bar could be rotated about the center (a) at one end while the portion carrying the lamn could be rotated about the center (b) as desired thereby being kent constantly vertical and always the same distance separated the lamp and mirror while light might be taken off of any portion of the lamp's surface since it also rotated in a horizontal plane through the plate and ring mentioned above.

The photometer bar used was but five hundred centimeteris long so the lamp was located in an adjoining room making the total effective length from lamp to lamp nine hundred and seventy eight centimeters.

To avoid painting the walls black to prevent reflection of the-light the light was directed through a tunnel of black cloth onto the screen of the photometer.

The photometer was of the Lummer Brodhun tyne made by Queon and Co.of Philadelphia.

The light used on the ond opposite the lamp was a 20 candie power tungsten that had been carefully calibrated againat a $16 \mathrm{c} . \mathrm{p}$. Standard. The data taken wes checked with e. $16 \mathrm{c} . \mathrm{p}$. Standerd.

Description of the Tests.
First the light from the lamp was carefully centered on the screen of the photometer by means of the movable collars mentioned and the sliding contacts.

Secondly the tests for the absorntion of the mirror were made. In these two electric lights of know candle power were used one at either end, one taking the place of the gas lamp. The lights were balanced on the screen and a series of readings taken and the mean used for the calculations. Knowing what the reading gave for the candle power of the reflectod light the ratio of the actual and this gave the factor of absorvtion which was 1.33.

The lamp was then tested through every 30 degrees of each horizontal circle and the latter was varied by ten degree intervals from vertical to 130 degrees from vertical. The mean of six bar readings was taken and subtracted from the entire length, $978 \mathrm{~cm} \cdot$, and the equare of this difference divided by the square of the mean reading since the lights were to each other inversely as the squares of the readings.This gave a factor which was multiplied by the candle power of the lemp and divided by the number of cubic feet of gas consumed and by the factor of absorption thus giving the candle wer of the lamp per cubic foot of gas per hour. The sample calculations are shown on page

The electric light was run a storage battery the voltage being obtained by the proper manipulation of a notentiometer or "stove pipe" resistance.

The mean spherical intensity of the light was determined by formula and by Rousseau's diagram method. The formula $S=H / 2+M / 4$
where H is the mean horizontal cande power and M the maximum cande power, gave as a result 24.4 . The calculation by means of the diagram, which is shown on page 43 ,gavo 24.8 as the mean shherical intensity.

A description of the curves on the following pages is
not necessary as they are simply the plotted data of the test.

Conclusions.

The tests prove the lamp to be very economical, and for the desired use, the overhead lighting of stores and offices, very nearly ideal since the greater portion of the light is thrown either vertically or nearly so. The result obtained for the vertical illumination, 45 candle power per cubic foot cif gas per hour,is very high, exceeding the usual values in some instances by as much as fifty per cent.

The curves show with absolute clearness the exact distribution of the light in every direction, far better than it can be told. The horizontal circles vary, as would be exnected, the largest one being that for the vertical nosition and the smallest when 130 degre日s fromi vertical.

With gas at one dollar a thousand cubic feet the cost per spherical candle power ner hour is . 004 of a cent. With electric light at six cents fer Kw hour the cost per candle power of a carbon light is . 02 of a cent and of a tungsten light. 007 of a cent or at fifteen cents per $\mathrm{K} w$ hour the former costs. 05 of a cent and the latter . 0187 of a cent.Thus it may be seen that the gas lighting is much cheaper than the electric lighting in these forms. The cost can not be compared with arc light since the latter is sold on a different scale.

The up keep is greater for the gas light than for the carbon since new lights aro furnished by the Electric Light Co. free but it is below that of the tungsten lights.

The gas light gives out more heat that either of the electric lights and has the added disadvantage of being a little
dirtier perhaps but if the gas is clean this airt is negligible. Therefore for office or any overhead work the gas arc is better suited and more economical than any other form of light would be providing, of course, that the gas is suppliod at a rate approaching one dollar a thousand cubic feet.

The datermination of the factor of absorption of the mirror. Readings

562
560
561
565
562
564
563
560
561
502
502 Averago. Difference 416
$\frac{502}{416^{2}}=1.82 \times 16=29.3$
$\frac{39.0}{3.3}=1.333$ corrective factor.

Sample Calculations

Candle power per cubic foot of gas per hour corrected. Horizontal circlo,vertical, thirty degreos.

$$
\begin{aligned}
& \overline{193}^{2}=37249 \overline{785}^{2}=614225 \frac{614225}{37249}=16.6 \text { factor } \\
& 16.6 \times 16=265 \text { C.P. } \frac{265}{5.2}=32.3 \text { C.P.per cu. It. of gas per hr. } \\
& 32.3 \times 1.33=43.0 \text { C.P.per cu.ft.of gas per hour corrected. }
\end{aligned}
$$

Mean spherical intenaity.
Rousseau's diagram.
Arga of figure abed (page $)=10.37$ Unit $=47.2 \mathrm{C} . \mathrm{P}$.
Area of figure bcd $=5.47$
$\frac{b c d}{a b c d}=\frac{5.47}{10.37}=.526 \times 47.2=24.8$ mean sphorical intensity.
By formula

$$
\begin{gathered}
\frac{H}{2}+\frac{M}{1}=S \quad M=\text { average horizontal candle power } \\
M=\text { maxirnum candle power } \\
\frac{20}{2}+\frac{47.2}{4}=24.4 \text { mean sphorical intensity. } \\
\text { Spherical Reduction Factor } \\
\quad \frac{\text { Mean snherical candle nower }}{\text { Mean Horizontal candle power }}=\frac{24.8}{26.0}=.953
\end{gathered}
$$

Horizontal Circles

Vertical

Degree Average Difference Factor Candle C.P.per Corrected

	cm.	cm.		Power	cu.ft.	
0	198	780	15.1	248	30.4	40.4
30	193	785	16.6	265	32.3	43.0
60	190	788	17.2	276	33.6	44.7
90	190	788	17.2	276	33.6	44.7
120	189	188	789	17.8	284	34.3

Horizontal Circle
Vortical

Horizontal Circles
10 Degrees from Vertical
Degree Average Difference Factor Candle C.P.per Corrected

	cm.	cm .		Power	cu. ft.	
0	202	776	15.0	240	29.5	39.0
30	196	782	16.1	257	31.3	41.8
60	194	784	16.3	261	31.8	42.3
90	194	784	16.3	261	31.8	42.3
120	193	785	16.6	265	32.3	43.0
150	192	786	16.8	269	32.8	43.6
180	191	787	17.1	273	33.0	44.3
210	192	786	17.8	269	32.8	43.6
240	193	785	16.6	265	32.3	43.0
270	194	784	16.3	261	31.8	42.3
300	195	783	16.1	257	31.3	41.8
330	197	781	15.6	248	31.4	40.4
					Average	42.9

Horlzontal Cleclo
10 Degrees from Vertical

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Horizontal Circle
20 Degrees from Vertical

Horlzontal Circle
30 Degreas from Vertical

Horizontal Circle						
40 Degrees from Vertical						
Degree	Average	Difference	Factor	Candle	C.P.per	Correctod
	cm.	cra.		Power	cu. ft.	
0	214	764	12.5	199	24.3	32.3
30	210	768	13.4	214	26.2	34.8
60	209	769	13.6	217	26.5	35.6
90	207	771	13.9	22.2	27.2	36.2
120	206	772	14.2	228	27.8	37.0
150	204	774	14.4	231	28.2	37.6
180	205	773	14.2	228	27.8	37.0
210	206	772	14.2	228	27.8	37.0
240	207	771	13.9	222	27.2	35.2
270	208	770	13.8	220	26.9	36.9
300	209	769	13.6	217	26.5	35.6
330	210	768	13.4	214	26.2	34.8
					Average-	36.0

Horizontal Circle
40 Degre日s from Vertical

Horizontal Circle
60 Degrees from Vertical

Horizontal Circlo
70 Degrees from Vertical

Degree	Horizontal Circle					Corrected
	80 Degrees from Vertical					
	Average	Difference	Factor	Candle	C.P.per	
	cm.	cm.		Power	cu. ft.	
0	238	740	9.7	155	18.9	25.2
30	232	746	10.4	165	20.2	26.9
60	231	747	10.5	167	20.4	27.2
90	229	749	10.7	171	20.8	27.7
120	227	751	10.9	175	21.3	28.4
150	226	752	11.0	177	21.5	29.0
180	225	753	11.2	179	21.8	29.2
210	227	751	10.9	175	21.3	28.4
240	227	751	10.9	175	21.3	28.4
270	229	749	10.7	171	20.8	27.7
300	229	749	10.7	171	20.8	27.7
330	230	748	10.6	169	20.6	27.5
					erage -	28.9

Horizontal Circle
80 Degrees from Vertical

Horizontal Circles

90 Degrees from Vertical - Horizontal

Degree	Average	Difference	Factor	Candle	C.P.per	Corrected
	cm.	cm.		Power	cu. ft.	
0	242	736	9.3	148	18.1	24.0
30	238	740	:9.7	155	18.9	25.2
60	237	741	9.8	1.57	19.2	25.6
90	235	743	9.9	160	19.6	26.0
120	233	745	10.3	163	20.0	26.6
150	231	747	10.5	167	20.4	27.2
180	230	748	10.6	169	20.6	27.5
210	232	746	10.4	165	20.2	26.9
240	234	744	10.2	162	19.8	26.3
27.0	236	742	9.95	159	19.4	25.7
300	238	740	9.7	155	18.9	25.2
330	238	740	9.7	155	18.9	25.2
					өrege -	26.0

Horizontal Circlo
90 Degrees from Vertical

Horizontal Circlos
 100 Degrees from Vertical

Degree Average Difference Factor Candle C.P.per Corrected

	cr.	cm.		Power	cu.f. f.	
0	251	727	8.1	134	16.4	21.8
30	245	733	8.9	143	17.4	23.1
60	243	735	9.1	146	17.8	23.7
90	241	737	9.35	150	18.3	24.3
120	241	737	9.35	150	18.3	24.3
150	239	739	9.6	153	18.7	24.9
180	238	740	9.7	155	18.9	25.2
210	240	738	9.5	152	18.5	24.7
240	242	736	9.25	148	18.1	24.0
270	242	736	9.25	148	18.1	24.0
300	245	733	8.9	143	17.4	23.1
330	244	734	9.0	144	17.6	23.4
						Average

Horizontal Circle
100 Degrees from Vertical

Horizontal Circle
110 Degrees from Vertical

\left.| Horizontal Circle | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Degree | Average | Difference | Factor | Candie | C.P.per | Corrected |
| | cra. | cm. | | Power | cu. ft. | |$\right]$

Horizontal Circlo
120 Degreos from Vertical

Degree	Average	Horizontal Circle				Corrected
		130 Degrees fron Vertical				
		Difference	Factor	Candle	C.P.per	
	cm.	CIR.		Power	cu.ft.	
0	368	612	2.82	45.0	5.5	7.3
30	352	526	3.15	51.0	6.15	8.2
60	350	628	3.25	52.0	6.3	8.4
90	347	631	3.30	52.8	6.45	8.6
120	345	633	3.26	53.8	6.58	7.7
150	343	635	3.43	54.8	6.7	8.9
180	340	638	3.52	55.2	5.85	9.2
210	341	637	3.49	55.7	6.79	9.0
240	346	632	3.34	53.2	6.5	8.65
270	348	630	3.27	52.5	6.4	8.57
300	349	629	3.26	52.4	6.4	8.5
330	351	627	3.20	51.0	6.32	8.3
					Avera	- 8.1

Horizontal Circlo
130 Degrees from Vertical

Vertical Circles

$\begin{array}{llllllllllllllllllll}\text { Deg. } & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 13 C\end{array}$ $\begin{array}{llllllllllllllllllll}0 & 404 & 390 & 370 & 343 & 323 & 320 & 295 & 27 & 252 & 240 & 218 & 198 & 1.52 & 730\end{array}$ $\begin{array}{lllllllllllllllllll}30 & 43.0 & 418 & 39.3 & 370 & 3488 & 323 & 30.8 & 29.5 & 26.9 & 252 & 25.1 & 214 & 1607 & 820\end{array}$ $\begin{array}{lllllllllllllll}60 & 447 & 423 & 393 & 376 & 356 & 32.1 & 312 & 29.5 & 272 & 256 & 23.7 & 21.8 & 170 & 840\end{array}$ $\begin{array}{lllllllllllllll}90 & 44.7 & 423 & 395 & 376 & 362 & 34.8 & 3 & 107 & 298 & 275 & 260 & 24.3 & 220 & 170 \\ 861\end{array}$ $\begin{array}{llllllllllllllllllll}120 & 458 & 430 & 404 & 45.3 & 370 & 356 & 31.7 & 302 & 284 & 266 & 243 & 222 & 175 & 872\end{array}$ $\begin{array}{lllllllllllllll}150 & 464 & 436 & 404 & 39.3 & 375 & 369 & 320 & 30.3 & 290 & 272 & 240 & 2266 & 18.1 & 890\end{array}$ $\begin{array}{llllllllllllllllllll}180 & 472 & 443 & 418 & 404 & 370 & 348 & 323 & 312 & 292 & 27.5 & 252 & 220 & 180 & 920\end{array}$ $\begin{array}{lllllllllllllllllllllll}210 & 468 & 43.6 & 41.8 & 395 & 370 & 343 . & 323 & 308 & 284 & 269 & 24.7 & 22.17 .9 & 900\end{array}$
 $\begin{array}{lllllllllllllllll}270 & 440 & 42.3 & 39.5 & 38.3 & 36.9 & 32.1 & 320 & 29.5 & 27.7 & 257 & 240 & 220 & 170 & 857\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}300 & 436 & 41.8 & 39.5 & 376 & 356 & 327 & 312 & 298 & 27.7 & 252 & 23.1 & 21.8 & 170 & 853\end{array}$ $\begin{array}{lllllllllllllllll}330 & 430 & 404 & 39.5 & 370 & 348 & 32.7 & 312 & 295 & 275 & 252 & 234 & 214 & 16.5 & 830\end{array}$ Ave $\begin{array}{lllllllllllllllll}448 & 429 & 393 & 381 & 360 & 338 & 314 & 300 & 289 & 260 & 239 & 220 & 171 & 810\end{array}$

Vertical Circle

Average

Vertical Circles
0 Degrees

Vertical eirclo
30 Degrees

Vortical Circle
9 D Degrees

Vertical Circle
150 Degrees

Vertical Circlo
240 Degrees

Vortical Circle
300 Degrees

Vortical Sircla
330 Degrees

