Briggs (Ret)

COAL GAS ENGINEERING.

By ROBERT BRIGGS, C. E.

REPRINTED FROM THE: joUrNAL OF THE FRANKLIN INSTITUTE,

For April, 1878.

PHILADELPHIA: Wm. P. Kildare, Printer, 734 \& 736 Sansom Street.

COAL GAS ENGINEERING.

By Robt. Briggs, C.E.

Common Coal Gas-its Composition, ani Results of Combus-tron.-Some forty or more distinct gaseous chemical components are well known to have existence in the ordinary coal gas of the gas works, in four several groups: the first of which are gases which burn in air without, or with slight, emission of light; the second, gases which, when burned with the first for supply of heat, evolve carbon, which, becoming incandescent before burning itself, emits light; the third, incombustible gases; and the fourth, gases which are considered impurities. The first group is over four-fifths of the volume of coal gas, and is composed of only three substances or compounds, to wit: hydrogen, marsh gas and carbonic oxide; the second, which is only 7 to 9 per cent., comprises an almost endless list of hydro-carbon compounds, which are diffused, as gases or vapors, into the gases of the other groups; for the purpose of this paper this group will be considered as if composed entirely of olefiant gas (possibly most of these hydro-carbons are of the olefine series of compounds); the third comprises the carbonic acid, aqueous vapor and air, and is always 3 to 6 per cent. of coal gas; while the fourth, the impurities-ammonia and sulphur compounds; obnoxious as they are in quality, in any tolerably well purified gas the percentage of them in volume is so small, that in a discussion of results of combustion they do not become an element.

With this explanation to qualify the following statements and calculations, it is proper to say that common coal gas, of 14 to 15 candles illuminating power, has the following constituents in volumes per hundred parts: Hydrogen, $\mathrm{H}, 44$ to 48 ; marsh gas, $\mathrm{CH}_{4}, 34$ to 38 ; olefiant gas, $\mathrm{C}_{2} \mathrm{II}_{4}$, and other hydro-carbons, etc., 6 to 9 ; carbonic oxide, $\mathrm{CO}, 5$ to 7 ; carbonic acid, $\mathrm{CO}_{2}, 1$ to 3 ; air, $4 \mathrm{~N}+\mathrm{O}, 1$ to 3 ; aqueous vapor, $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ (saturation at 40° to 60°), 1 to 2 . The specific gravity of coal gas is about $0 \cdot 426$, which makes the volume of a pound of gas at 70° (barometer 29.9 in .) equal to $31 \cdot 3$ cubic feet (neglecting
fractions，too small to be of comserguence in this estimata ${ }^{2}$ — $0 \cdot 0.31!$ lb．per cubic foot．Taking an average of the constituents of coal gas by weight，they ean be reduced to＂21．8 parts of hydrorent，51：＂ parts of carbon，and $13 \cdot 6$ parts of carbonic oxide，which are com－ bustible；leaving $13: 3$ parts of non－combustible substances．The figures of the reduction of roluncs to weights are as follows ：

From these data，the heat given out by complete combustion can be calculated－hydrogen gas will evolve in its chemical change to vapor of water（including the latent heat of the vapor）$(i=0,000$ mits of heat，while carbon，in becoming carbonic acid，evolves 14,500 mits， and carbonic oxide，in changing to the same form，evolves 433() mits－ with the following result ：

Combeation of 100 Pouniss of Coal（ils．

Combustion．		Aif required Air required torffect com－			Tinita of heat pror		Promuct．	
		Oxygen re－ Inired．	to supply axyen．	whete coms－ Instion．	31．of comblus． tiblo	Unitaol heat tutal ＂volver．		
11	21.4	$17+4$	－8．）	1－911	A20）（\％）	1：351，（H）	$1!110 \cdot$	
1	．） $1 \cdot \%$	136．4	611；	$12 \% 2$	11.0101	71.8×5		$18.8 \cdot 1$
（1）	1：3．1；	$7 \cdot 8$	8.5	70	13：30	－ix4！ 11		$\because 1.1$
（1）：	$7 \cdot 2$	（）．						7：
$4 \mathrm{~N}+0$	$1 \cdot 6$	11.						
$12_{2}{ }^{1}$＊	$1 \because$	0.					1\％	
	100.	：1！ 1	14：3；	2ップ		$\because 154 \ldots 3$	1198.	21%
Dediuct	latent	reat of 13	$\underline{\sim}$ lbs．	（1）of 70	（．1） $10 \% 7$ ，	$\underline{-20406)}$		

Total units of heat from 100 1bs．chal gras fat； 7 com－ bustible $+19 \cdot 8$ of non－comburtible

119.5101

[^0]Accepting these quantitics for the prolucts of combustion of $1(1)$ pounds of coal gas，the absolute temperature attained inay be esti－
mated. Three different hypotheses present themselves: the first supposes the absolute heat to be that derived from the capacity of the product to take up the entire heat generated. The second limits the expenditure of heat in producing intensity, to the air needed to supply oxygen; while the third supposes the ultimate maximum intensity to be that derived from the chemical combination of oxygen and carbon, and of oxygen and hydrogen. The last is probably the correct value for the intensity of the source of radiating heat from a gas light. The foliowing table gives the three computations in the order named:

Founds \times Specific heat $\quad \begin{gathered}\text { Sumof weight } \\ \text { multiplied liy } \\ \text { Speeific heat. }\end{gathered}$	Pounds sum, ete.		l'ounds - simm, etc.	
$\mathrm{I}_{2} 0 \quad 1188 \times 0.47 \mathrm{~K}=94.050$	$\mathrm{H}_{2} \mathrm{O}$	198; $915 \cdot 0.50$	$11 .{ }^{\text {(}}$) 198 ;	19.450
$\mathrm{N} \quad 111 \% \times 0.245=273 \cdot 660$		1117; 273.66.		
$4 \mathrm{~N}+\mathrm{O} 1436 \times 0 \cdot 2388=341.768$				
(0) $3.217 \times 0 \cdot 217=4.089$	CO_{2}	217; $47.08!$	$\mathrm{CO}_{2} 2.217$;	$47 \cdot 089$
Total 2968 $\times 0 \cdot 25 \%$ - 55605%		153: ; 414.808	415 ;	11.189

If now the total number of units of heat, which resulted from the burning of 100 pounds of coal gas, be divided by the sum of weights of products of combustion, multiplied by their specific heat, the increment of heat to the products will be given by the result; which, added to the original or normal heat of the gas and air (here taken at 70°), will give the absolute temperature of the products as they are assumed to exist in the three suppositions.

Supposed absolute temperature of flame of coal gas, where the products of combustion are taken to include the volume of air, which is the requisite for complete combustion :

$$
=\frac{1945000}{756 \cdot 572}+70^{\circ}=26+1^{\circ} .
$$

Supposed absolute temperature of flame of coal gas, where the products of combustion are taken to include the air needed to supply oxygen of chemical combination :

$$
=\frac{1945000}{418 \cdot 804}+70^{\circ}=4760^{\circ} .
$$

Supposed absolute temperature of flame of coal gas, where only the exygen of chemical combination is taken into the estimate:

$$
=\begin{gathered}
1945000 \\
1+1 \cdot 139
\end{gathered}+70^{\circ}=13885^{\circ} .
$$

At the same time we are diseussing the absolute temperatures of cóal gas flames, it may prove interesting to examine, separately, those of the three gases which compose it, as follows :

The value for the heat effect of one pound of hydrogen is derived in the same way as was used in the estinate for eoal gas, as follows:

> Total heat effect of 1 lb . of hydrogen, $=62,032$ units. Deduct latent heat of 9 lbs. vapor of $70^{\circ}, 1065^{\circ}$,.

Heat effect of 1 lb . of hydrogen, without condensation of vapor, $\quad=52,447$ "
These estimates of the heat of the flame of gases have taken for granted the constaney of the relative values of speeifie heats at high temperatures, and the results may therefore be considered as only approximations of the truth; still they give, probably, the most nearly correct estimate of the values of intensity possible.

The heat evolved by the burning of coal gas is dispersed in two ways-as radiant, and as convected or imparted heat. With the open burner, it is fair to assume that a large portion of the heat is dispersed as radiant heat. According to Peclet, 50 per cent. of the heat of a flame of burning wood or coal is dispersed as radiant heat, and it does not seem to be an improper assumption, that one-half the heat of burning of eoal gas will be dispersed as radiant heat, and the other will be communieated to the gases of combustion, and disseminated by convection and intermixture with the surrounding air. The limited base from whieh the flame of a gas burner einerges, as compared to the magnitude of the flame or burning surface, prevents the loss or expenditure of radiant heat upon the fuel (which would again impart its heat to air in eontact before burning), and thus reluces the convected heat to its least quantity. The supposition appears the more reasonable when we consider the enormous intensity of the heat of chemical combination; nearly 14000°, as above indicated, when unmixed with other gases to absorb its heat. If we proeced on this supposition, it follows that the convected heat of 100 pounds of eoral gas becomes one-half of $1: 45400=972700$ units; and this heat
imparted to the products of combustion, when they are taken to include the volume of air necessary to effect complete combustion, gives the temperature of these products:

$$
=\frac{972500}{756 \cdot 572}+70^{\circ}=1356^{\circ} .
$$

The relations of volumes of the products of combustion of coal gas to the weights as ascertained, can be seen by the following table estimated at 70° :

Product.	Spec. gray.	Wt. per cu. ft .	Cubic ft. per pound.	W't. of product.		Cu . tt . of product.	Cu. ft. per ft. of gas.	Vol. per ct of product
$\mathrm{H}_{2} \mathrm{O}$	0.622	$0 \cdot 0466$	21.4 .5	198	=	4247	1-3.).)	$10 \cdot 4 . \%$
N	0.97%	(1.0729	13.73	1117	$=$	15332	$4 \cdot 891$	37-7:3
$4 \mathrm{~N}+0$	$1 \cdot 000$	().0750)	13.8. 4	1436	=-	19158	(6.111	47-15
CO_{2}	1-524	0.1142	8.7.54	217	=	1900	(). 600	$4 \cdot 67$
				2968	$=$	41638	$12 \cdot 963$	$100 \cdot 00$
Gas	$0 \cdot 426$	$0 \cdot 0315$	$31 \cdot 85$	100	$=$	3135)	1	$7 \cdot 71$
Oxygen*	$1 \cdot 106$	$0 \cdot 0829$	$12 \cdot 07$	819	=	3849	$1 \cdot 228$	$9 \cdot 47$
Air	$1 \cdot 000$	00750	$13 \cdot 34$	1432	$=$	1910:3	(6.0.)4	$47 \cdot 01$
Dbl. Air	$1 \cdot 000$	(0.0750	$13 \cdot 34$	2868	$=$	$38 \cdot 59$	$12 \cdot 204$	9 4.15
IIcat total, units			1945400			62.		
Heat convected, units			972700		311			

[* The oxygen taken is that of actual combination, and represents the quantity needed, with coal gas, when used for the lime light or Bunsen buruer.]

The preceding computation can be verified by another arrangement of data, in which volumes alone appear, taking the second column from the table of reduction of volumes to weight:

| | 100 vols.
 spec. grav. | II. | C. | 0. | N. |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |

In general, the combustion of all substances, oils, fat acids, or gases used for illuminating purposes, is unquestionably perfect combustion of the carbon and hydrogen elements into carbonic acid and aqueous vapor. Neither smoke nor carbonic oxide, nor hydrogen in free or combined state, other than water, can be found in the air of
any room where the lighting is at all satisfactory to the occupants， and the production of heat，as has been estinated，becomes one of the positive facts in physics beyond question as to existence and quan－ tity．With the case of the open gas burner，it is possible that one－ lalf the heat of the flame is dispersed as radiant heat，but this dispersal does not，however，get rid of the heat in a room；it merely transfers it to solid borlies of less temperature，more or less remote from the flame，which again are cooled in great measure by contact of the air of room，which takes up their excess of warmth，so that the heat emanating from a burner really is nearly all expended in the air．But when the burners are slraded by glins or other shades，and particularly for argand burners with clnmeys，the larger part of the radiant heat is cut off by the shade or chimney，or both together， and imparted to an unknown volume of air which accompanies the air for or of combustion．As a practical application，it may be well to consider what volumes of air are refuisite to disperse the heat of gas lights if the air in any part of a room is limited to some definite tem－ perature．

The following table exhibits the effect of gas burning from a single burner of the usual sizes：
（All figures refer to quantities per hour－air of room and gas at 70° ．）

（ias burncel，clu．ft．，	1	8	：3！	1	11	\％	（i）	x
Carhonie acil evolved，ch．It．，	11.1010	1＊2	$\because 12$	$\because 12$	$2 \cdot 7 \%$	\therefore（0）：	$1 \because 1$	$\|x\|$
Agueons vapur ．＂	1－3\％	1．11－	1.71	万1：	7－10	－－\％	x－1：；	16.41
،＂6 Ulı．，	（1） 116	（1．19	（1．2．21	（1）．2．\％$\%$	11．2．s．）	11.317	（1－6， 4	（1．）ハ！
Oxyeren reamoved，ell．It．，	1－208	Sar 6	430	4－11	可喪	6.11	7.37	8． （j）$^{\text {a }}$
Heat problucer，mats，	（i2）	［－17\％，	－17		ご！M	：1111	： $0: 3$	4゙ア！
（eat to produce ergual hasat，thes	（1）010	（1）1！	11.2 .2	（1）．-	11.2 sk	（1－：31	（1）． 37	（1）$\cdot 11$
$\left.\begin{array}{l} \text { Air sujply }=\text { locu. lit } \\ \text { fer min. percu.ft.gis } \end{array}\right\}$	Si（1）	Inuof	2100	$\because 100$	2700	：300）	36914	$18(1)$

With the supply of air to each gas burner given by the preeding table，the temperature of the current ascending from open burners， where one－lalf the heat is supposed to be radiated away，hecomes 93° ；white the temperature of the same current arising from an argand burner，where the glass chimney will have intercepted the ra－ diant heat，becomes 128° ．

The figures for this temperature are thus obtained：The weight of air at 70° is 0.075 pound per cubic foot，which，multiplien by $10 \cdot 2: 36$ ； the specific heat of air，gives 0.0178 .5 ，wit as the capacity of one cubic foot of air for each degree Fahr．；with（i0）fect of air supply
per hour to 1 foot of gas, the capacity of the 600 feet becomes $10 \cdot 71$ units for each degree of elevation of temperature ; and to absorb 62.2 units by the 600 cubic fcet of air, the latter will become heated

$$
\frac{6.22}{10.71}=58^{\circ}
$$

which, added to the 70° of primary temperature, give 128° as the final one when all the heat is taken up by the air. When but half the heat is assumed to be given to the air, we have $2!^{\circ}+70^{\circ}=99^{\circ}$.

The computation of the temperature to accompany any other volume of air supply is easy. Thus, if for each cubic foot of gas burned per hour-llormal temperature 70° :

diestuply per uimute, cu. fi.,	i)	10	1.5)	20	2.)	30
Correspulting airsmply per homr, cu. f.,	800	(1)0)	96	12010)	1:00	18100
$\left.\begin{array}{c}\text { Temperature of air asceuting from } \\ \text { open hurners. }\end{array}\right\}$	126°	949°	$5!)^{\circ}$	Sil 2°	$81 \frac{1}{2}^{\circ}$	$79 \frac{1}{\circ}^{\circ}$
$\left.\begin{array}{l}\text { Temperatme of air ascembing from } \\ \text { argatul burners, }\end{array}\right\}$	$18.7{ }^{\circ}$	128°	118°	99°	9:; ${ }^{\circ}$	89°

The estimate of weight of coal, the consumption of which will produce an equal effect in warming a room with gas burning, is not based on the theoretical value of coal as a producer of heat, but upon average usual results from heating apparatus, as stcam or hot water apparatus, hot air furnaces of best construction, or close stoves, in utilizing the heat of the fuel. That is, 10,000 units of heat have been assumed to be given out cfficiently by the consumption of one pound of good anthracite coal.

The capecity of the air requisite for dispersal of the hat of a gas flame, to take up the moisture generated by the process of burning. can be investigated. According to the best authority (Regnault, from Guyot's tables), saturated air has the following quantitics of moisture per cubic foot of air :
Temperature of air, $\quad 700^{\circ} \quad 75^{\circ} \quad 80^{\circ} \quad 8.50^{\circ} \quad 990^{\circ} \quad 955^{\circ} \quad 100^{\circ} \quad 10.5^{\circ}$ Weight of moisture, ths, $0.0011 \quad 0.101310 \cdot 0016 ; 0.0018 \quad 0.0021 \quad 0 \cdot 00240.0025 \quad 0.00: 32$ If it is assumed that the air of supply is 70°, and has 60 per cent. of saturation, then such air has 0.0007 pound of water to each cubic foot, whence the capacity of this air, to take up moisture in becoming saturated, is :
$0.04040 .000 f ; 0 \cdot 00090.00110 .00140 .00170 .00210 .0025$
and there will be nceded to carry off the 0.063 lb . of moisture which the burning of each cubic foot of gas per hour cvolves:

ir at givell tempera-	1.5	11.7	i)	57	4.5	37	80	9.5
								2.$)$

Comparison of these quantities, with the volune of air supply, and corresponding resulting temperatures as given in the previous table, demonstrates that the moisture generated by gas burning will be absorbed, in all cases, into the air for dispersal of heat.

While it appears to be impossible to discern any error in the method and data of this inquiry, and the mathematical accuracy (errors of computation excepted) of the results seems to be unquestionable, yet their application to practice is found to need great qualification. The inaterial products of combustion, i.e., aqueous vapor and carbonic acid, and the corresponding abstraction of oxygen from the air of a room, are established facts, but it is very difficult to account for the dispersion of the heat. Great allowance is needful for conductivity of the enclosing surfaces-floors, walls, ceilings, windows and doors-and also for fresh air currents, surreptitious or otherwise, before the heat inparted to the air, as derived from these computations, will conform to what is really found to be the heat effect of gas lighting. For instance, a 4 ft . gas burner woukl be hekl to be ample for lighting a small bed-room, and such a burner is frequently permitted to renain burning all night in a room of, not to exceed, 800 cubic feet capacity. This burner, by the computation, would produce 2488 units of heat each hour. In moterate weather no considerable loss of heat from the surfaces enclosing the room is supposable, and the figures give $7: 200$ cubic feet of air per hour (or - 120 feet per miuute) as the indispensable necessity to keep down the temperature to 13° above the normal one. To be sure, the current of gases ascending from the burner will reach the ceiling of the room at a greatly elevated temperature, perhaps 140° even, and a stratum of hot air next the ceiling be formed (unless some arrangement of ventilation removes the hot air at once), and then the conductivity of the ceiling will be brought into action, but yet it is hard to feel satisfied that this means is sufficient to account for all the loss of heat apparently demanderl.

It must be admitted that further inquiry and experiment are wanted to elucidate the subject of the dispersal of heat of gas lights, and perhaps to review the entire subject of the quantity of heat produced by them.

[^0]:
 for summer teats．］

