

Foundryman's Reference Book

A convenient pocket-book of reference for all persons interested in iron or brass foundrys, either as draftsman, pattern makers, foundry foreman, moulders, or coremakers

BY
JAMES F. BOWE
Practical Moulder and Foundry Manager
PITTSFIELD, MASS.

PRICE \$2.50

EAGLE PRINTING AND BINDING CO.
Pittsfield, Mass.

Copyrighted by JAS. F. BOWE

PREFACE

All men engaged or interested in foundry work, it matters not in what capacity, often require information which cannot be carried in the mind or remembered at the moment.

To obviate the necessity of looking through several large and more pretentious volumes is the object sought. In preparing the following pages the aim has been to present in a convenient, brief and condensed form, tables, rules, formula and other data which experience has proved to be of value to foundrymen.

The Author

InN 151916
20 1

INDEX

Aluminum Page
Properties of 21
Castings
50
50
Bronze
51
51
Patterns
47
47
Solders
50
50
Flux
Flux
58
58
Hardener 50
Analysis of
Coke
29
29
Coal
Coal
29
29
Iron 30
Sand 28
Acids
For Cleaning Iron Castings
56
56
For Cleaning Brass Castings
For Cleaning Brass Castings 57 57
Resisting Metals 52
Arsenic
Properties of 22
Antimony
Properties of 21
Boron
Properties of
In Copper Castings 22
Bismuth 55
Blow Holes
To Control 44
Boxes
Capacity of 19
Brass
Yellow
Red 54 54
Bronzes
Phosper 53
Manganese
5ε
5ε
Silicon
Silicon
26
26
Bearing
Bearing
52
52
Bayberry Wax
48
48
Beeswax
Beeswax 48

I N D E X

Page
Cadmium
Properties of 22
Carbon
Properties of 23
Copper
Properties of 23
Castings. 55
Core
Sand Mixtures 38-9-40
Sand Binder 41
Paste 41
Putty 41
Chill Wash 42
Chills
Thickness of 16
Coatings for 42
Cupola
Capacity and How to Charge and other data 36
Crushes 45
Crucibles
Diam. and Capacity of 49
Coloring
Brass Castings 55
Composition or Red Metals 54
Contraction
How to Control 43
Casting One Metal on Another 44
Cost of Castings 60
Conversion Table
Metric and English 9
Castings
Light, Strong 34
Drops and Drawn Down Copes 45
Distance
Between American Cities 76-77
Decimal Equivalents. 10
Facing Sands
Green
Green 28 28
Skin Dry 37
Oven Dried 37
Follow Boards and Match Boards 42
First Aid to the Injured 19
Fluxes Used in
Brass Foundry 58
Iron Foundry 58-59
Figuring
Iron Mixtures 32

I NDEX

Page
Heat
Degrees Used in Metallurgy 11
Specific of Metals 20
Iron
Properties of 24
Analysis of Foundry 30
Mixtures of for Various Classes of Work 33
Mixing by Analysis 32
Filler 48
Cost of Castings 60
Estimating on New Work 61
Strength of 62
Weight of as usually piled 13
Lead
Properties of 24
Ladles
Dimension and Capacity 18
Mercury
Properties of 25
Metals
Strength of 20-62
Melting Point 20
Wt. per Cu . Inch 20
Conductivity Heat 20
Conductivity Electricial 20
Manganese
Properties of. 25
Magnesium
Properties of 24
Metaloids
Effect of on Cast Iron 31
Metric System 9
Melting
To Mix by Analysis 32
Magnalium 50
Nickel
Properties of 25
Oil
For Iron Moulds 42
Phosphorus
Properties of 25
Pattern
Metals Non-Shrinking 47
Varnishes 47-48
Filler 48
Wt. of Casting from Wt. of 46
Pressure in Moulds 17

INDEX

Relative Value of
Page
Net Tons and Gross Tons 15
Rat Tails
How to Prevent 45
Silicon
Properties of 26
Sands
Analysis of 28
Shrinkage
To Control 44
Of Castings 46
Scabbed Castings
To Prevent 45
Sulphur
Properties of 26
Specific
Heat 20
Gravity 20
Strength of
Ropes and Chains 12
Metals 62
Steam Metals 54
Tin
Properties of 27
Thermometer Conversion 18
Table
For Changing Percentages to Ounces and Drams 65-66Giving Diameter, Circumference, Area and Weightof Round Plates67-74
Titanium 59
Weights and Measures 7
Weight of
One Cubic Foot of Materials 13
Balls 64
Round Plates, Etc. 67-74
Hexagon and Octagon Section 73
To Find the Weight of Castings from Dimensions 63
To Find the Weight From Wt. of Patterns 46
Per Cubic Inch of Metals. 20
Vanadium 59
Vents
Wax Composition 41
Warping
To Control 43
Zinc
Properties of 27

Weights and Measures TROY

24 grains (gr.) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
20 pwt... 1 ounce-oz.
3.2 grains 1 carat, diamond wt.

By this weight gold, silver and jewels only are weighed. The ounce and pound in this are the same as in apothecaries' weight.

APOTHECARIES'

203 grains..........3	drs............. 1 ounce
	12 ozs............. 1 pound
AVOIRDUPOIS	
16 drachms......... 1 ounce	4 grs...... 100 weight-ewt.
5,760 grains apothecaries' or troy weight. 1 lb l	
7,000 grains avoirdupois weight................. 1 lb ;	
Therefore, 144 lbs . avoirdup	ois equal 175 lbs. apothecaries;
roy.	

LIQUIDS

1 gallon oil weighs $7.32 \mathrm{lbs} . . \quad 1$ gallon sea water. . 8.55 lbs. avoirdupois
1 gallon distilled water .8 .33 lbs . 1 gallon proof spirits 7.68 lbs .

MISCELLANEOUS

Iron, Lead, etc.
14 pounds............ 1 stone
8 pigs................. 1 fother

Beef, Pork, etc.
200 pounds. 1 barrel
196 lbs. (flour) 1 barrel 100 lbs. (fish)...... 1 quintal

DRY

2 pints.......... 1 quart-qt. 4 pecks....... 1 bushel-bu.

LIQUID OR WINE

4 gills.......... 1 pint-pt. U. S. Standard Gallon...... 2 pints........ 1 quart-qt. 231 cubic inches 4 quarts..... 1 gallon-gal. Beer gal......... 282 cubic in. $311 / 2$ gallons... 1 barrel-bbl. 36 beer gallons.......... 1 bbl. 21 barrels.. 1 hogshead-hhd.

TIME

Metric Equivalents

LINEAR MEASURE

1 centimeter- 0.3937 in.
1 decimeter-3.937 in. -0.328 feet
1 meter-39.37 in.- 1.0936 yards
1 dekameter- 1.9884 rods

1 kilometer- 0.62137 mile
1 in. 2.54 centimeters
$1 \mathrm{ft} .-3.048$ decimeters
1 yard- 0.9144 meter
1 rod- 0.5029 dekameter
1 mile- 1.6093 kilometers

SQUARE MEASURE

1 sq. centimeter -0.1550 sq.in. 1 sq. in. -6.452 sq. centimeters
1 sq. decimeter -0.1076 sq. ft. 1 sq. ft. -9.2903 sq. decimeters
1 sq. meter- 1.196 sq. yard 1 sq. yard- 0.8361 sq. meter
1 are. -3.954 square rods $\quad 1$ square rod -0.2529 are.
1 hektar- 2.47 acres $\quad 1$ acre- 0.4047 hektar
1 square kilometer- 0.386 sq. 1 sq mile- 2.59 sq. kilometer in.

MEASURE OF VOLUME

1 cu. centimeter- 0.061 cu . in. 1 cu . inch -16.39 cu . centi1 cu. decimeter- $0.0353 \mathrm{cu} . \mathrm{ft}$. $\left.\begin{array}{l}1 \mathrm{cu} . \mathrm{m} ' \mathrm{r} \\ 1 \text { ster }\end{array}\right\}-\left\{\begin{array}{l}1.308 \mathrm{cu} . \mathrm{yd} . \\ 0.2759 \mathrm{~cd} .\end{array}\right.$ 1 liter- $\left\{\begin{array}{l}0.908 \mathrm{qt.} \text { dry } \\ 1.0567 \mathrm{qt} . \text { liq. }\end{array}\right.$ 1 dekaliter- $\left\{\begin{array}{l}2.6417 \text { gal. } \\ .135 \text { pecks }\end{array}\right.$ meter
$1 \mathrm{cu} . \mathrm{ft}$. -28.317 cu . decimeters
$1 \mathrm{cu} . \mathrm{yd} .-0.7646 \mathrm{cu}$. meter
1 cord- 3.624 sters
1 qt. dry- 1.101 liters
1 qt liq. -0.9463 liter.
1 gallon- 0.3785 dekaliter
1 peck- 0.881 dekiliter 1 hektoliter- 2.8375 bush. $\quad 1$ bushel- 0.3524 hektoliter

WEIGHTS

1 gram- 0.03527 ounce
1 kilogram- 2.2046 lbs .
1 metric ton- 1.1023 English
ton
1 ource- $\mathbf{2 8 . 3 5}$ grams
1 pound- 0.4536 kilogram
metric ton-1.1023 English 1 English ton- 0.9072 metric

Approximate Metric Equivalents

1 decimeter-4 inches
1 meter- 1.1 yards
1 kelometer-5/8 of mile
1 hektar-21/2 acres
1 kilogram-2 $21 / 5$ pounds
1 ster. or cu. meter- $1 / 4$ of a 1 metric ton- 2200 pounds cord

1 liter- $\{1.06 \mathrm{qt}$. liquid
1 liter-i 0.9 qt . dry
1 hektoliter- $25 / 8$ bushels
1 kilogram-2 $1 / 5$ pounds ton

METRIC SYSTEM Measures of Weight (Unit Gramme)

	Grains	Oz. Troy	Lb. Avor.	Cwt.
Centigramme	0.15432			
Decigramme	1.54323	0.003		
Gramme	15.43235	0.032	0.002	
Decagram	154.32349	0.321	0.022	
Hectogramme	1543.23488	3.215	0.220	0.009
Kilogramme. .	15432.34880	32.150	2.204	0.011

Measures of Length

 (Unit Metre)| | Inches | Feet | Yards | Miles |
| :---: | :---: | :---: | :---: | :---: |
| Millime | 0.03937 | 0.003 | 0.001 | |
| Centimet | 0.39371 | 0.032 | 0.010 | |
| Decimetre | 3.93708 | 0.328 | 0.109 | |
| Metre | 39.37079 | 3.280 | 1.093 | |
| Decime | 393.70790 | 32.808 | 10.936 | 0.006 |
| Hectometre | 3937.07900 | 328.089 | 109.363 | 0.062 |
| Kilometre. . | 39370.79000 | 3280.899 | 1093.633 | 0.621 |

Convenient Multiples for Conversion

To Convert
Grains to Grammes. multiply by
Ounces to Grammes.................... "، "،
Pounds to Grammes.
Pounds to Grammes...................... ". "
Cwts. to \quad ".
Tons
Grammes to Grains
" Ounces

1 Yard=0.9144 Metre. 1 Sq. Metre $=1.196$ Sq. Yard. 1 Litre $=1.760$ Pintsor 0.22 Gals.

FRACTIONAL PART OF AN INCH (Expressed in Decimals.)

$1-8=.12500$	$1-64=.015625$
$1-4=.25000$	$3-64=.046875$
$3-8=.37500$	$5-64=.078125$
$1-2=.50000$	$7-64=.109375$
$5-8=.62500$	$9-64=.140625$
$3-4=.75000$	$11-64=.171875$
$7-8=.87500$	$13-64=.203125$
$1-16=.06250$	$15-64=.234375$
$3-16=.8750$	$17-64=.265625$
$5-16=.31250$	$19-64=.296875$
$7-16=.43750$	$21-64=.328125$
$9-16=.56250$	$23-64=.359375$
$11-16=.68750$	$25-64=.390625$
$13-16=.81250$	$27-64=.421875$
$15-16=.93750$	$29-64=.453125$
$1-32=.03125$	$31-64=.484375$
$3-32=.09375$	$33-64=.515625$
$5-32=.15625$	$35-64=.546875$
$7-32=.21875$	$37-64=.578125$
$9-32=.28125$	$39-64=.609375$
$11-32=.34375$	$41-64=.640625$
$13-32=.40625$	$43-64=.671875$
$15-32=.46875$	$45-64=.703125$
$17-32=.53125$	$47-64=.734375$
$19-32=.59375$	$49-64=.765625$
$21-32=.65625$	$51-64=.796875$
$23-32=.71875$	$53-64=.828125$
$25-32=.78125$	$55-64=.859375$
$27-32=.84375$	$57-64=.890625$
$29-32$	$=.90625$
$31-32$	$=.96875$
	$59-64=.921875$
	$61-64=.953125$
	$63-64=.984375$

Degrees of Heat Used in Metallurgy

400 to 600 core oven heat

Diameter and Safe Working Load in Pounds of Wire Ropes, Chains and Manilla Ropes of Good Quality
When used double or other multiples increase load proportionally.

Safety First

Wire Rope		Chain	
Diam.	Fibre Ropes		
$3 / 8$	Work. Load	Work. Load Work. Load	

Weight of 1 Cubic Foot of Materials Used in FoundryLbs. per Wt. lbs.cubic ft. per bush.
Ashes 37
Brass trimmings 157
Charcoal not crushed 18 20
Coke 32 40
Coal, Anthracite 60 86
Coal, Bituminous 53 80
Cast Iron turnings 140
Core compound (Tar) 35
Fire Clay 90
Flour 36
Fire Brick 102
Loam gravel 103
Limestone 90
Moulding sand 88
Plumbago 40
River sand 90
Sea coal 53
Soap stone 62
White sand 84
Pig iron as usually piled will average $71 / 2$ cubic feet per ton.
When piled very closely 7 cubic ft. to ton.
Loosely piled 8 cubic ft . to ton.
Cubic ft.: 1728 cubic inches.
One Bushel: 2150 cubic inches.

Equivalent of Tons in Pounds, 2240 Pounds to Ton

Ton	Pounds	Ton	Pounds	Ton	Pounds
17	38080	25	56000	33	73920
171/4	38640	251/4	56560	$331 / 4$	74480
171/2	39200	$251 / 2$	57120	$331 / 2$	75040
$173 / 4$	39760	$253 / 4$	57680	$333 / 4$	75600
18	40320	26	58240	34	76160
181/4	40880	261/4	58800	$341 / 4$	76720
1812	41440	261/2	59360	$341 / 2$	77280
183/4	42000	263/4	59920	343/4	77840
19	42560	27	60480	35	78400
191/4	43120	$271 / 4$	61040	$351 / 4$	78960
191/2	43680	271/2	61600	$351 / 2$.79520
193/4	44240	$273 / 4$	62160	$353 / 4$	80080
20	44800	28	62720	36	80640
201/4	45360	281/4	63280	$361 / 4$	81200
201/2	45920	281/2	63840	$361 / 2$	81760
203/4	46480	283/4	64400	$363 / 4$	82320
21	47040	29	64960	37	82880
$211 / 4$	47600	291/4	65520	$371 / 4$	83440
$211 / 2$	48160	291/2	66080	371/2	84000
$213 / 4$	48720	293/4	66640	$373 / 4$	84560
22	49280	30	67200	38	85120
221/4	49840	$301 / 4$	67760	$381 / 4$	85680
$221 / 2$	50400	$301 / 2$	68320	$381 / 2$	86240
$223 / 4$	50960	303/4	68880	$383 / 4$	86800
23	41520	31	69440	39	87360
$231 / 4$	52080	$311 / 4$	70000	$391 / 4$	87920
$231 / 2$	52640	$311 / 2$	70560	391/2	88480
$233 / 4$	53200	$313 / 4$	71120	$393 / 4$	89040
24	53760	32	71680	40	89600
241/4	54320	321/4	72240	401/4	90160
241/2	54880	$321 / 2$	72800	401/2	90720
$243 / 4$	55440	$323 / 4$	73360	403/4	91280

Relative Value of Net Ton of 2000 pounds and Gross Ton of 2240 pounds

Net Ton	Gross Ton	Gross Ton	Net Ton
$\$ 10.00-$	$\$ 11.20$	$\$ 10.00-\$ 8.929$	
$11.00-$	12.32	$11.00-9.821$	
$12.00-$	13.44	$12.00-10.714$	
$13.00-$	14.56	$13.00-11.607$	
$14.00-$	15.68	$14.00-12.50$	
$15.00-$	16.80	$15.00-13.392$	
$16.00-$	17.92	$16.00-14.286$	
$17.00-$	19.04	$17.00-15.179$	
$18.00-$	20.16	$18.00-16.072$	
$19.00-$	21.28	$19.00-16.966$	
$20.00-$	22.40	$20.00-17.858$	

Usual Thickness of Chills for Chilled Work

$3^{\prime \prime}$	21/2"	13	5"	23	81/2"
4	$21 / 2$	14	$51 / 4$	24	
5	3	15	$51 / 2$	25	$91 / 2$
6	3	16	6	26	$93 / 4$
7	$31 / 4$	17	$61 / 2$	27	10
8	$31 / 4$	18	$61 / 2$	28	$10^{1 / 2}$
9	$33 / 4$	19	7	29	101/2
10	$33 / 4$	20	$71 / 2$	30	11
11	$41 / 4$	21	$71 / 2$		
12	$41 / 2$	22	8		

R. R. car wheels chills run from 4 to $5^{\prime \prime}$ thick and give from $1 / 2$ to $3 / 4^{\prime \prime}$ chill.

Chill is increased by sulphur manganese and crominum also by pouring hot.

Pressure Per Sq. Inch in Moulds Below Cope Joint

1	. 26	19	4.94	37	9.62
2	. 52	20	5.20	38	9.88
3	. 78	21	5.46	39	10.14
4	1.04	22	5.72	40	10.40
5	1.30	23	5.98	41	10.66
6	1.56	24	6.24	42	10.92
7	1.82	25	6.50	43	11.18
8	2.08	26	6.76	44	11.44
9	2.34	27	7.02	45	11.70
10	2.60	28	7.28	46	11.96
11	${ }_{3}^{2.86}$	29	7.50	47	12.22
12	3.12	30	7.80	48	12.48
13	3.38	31	8.000	5 ft .	15.60
14	3.64	32	8.32	6 ft f.	18.72
15	3.90 4.16	33 34		7 ft \%	
17	4.16 4.42	34 35	8.84 9.10	8 ft 9 ft .	24.96 28.08
18	4.68	36	9.36	10 ft .	31.20

For each additional inch of depth add . 26 and multiply this by the number of sq. inches upon which pressure is exerted.

To find the weight required to resist the upward pressure on copes multiply the area in inches of surface acted against by the depth of cope plus the height of pouring heads and then divide by 4 or multiply by .26 .

How To Change One Thermometer Reading Into Another

$$
\begin{aligned}
& 1 \text { degree } \mathrm{F}=5556 \mathrm{C} \text {. } \\
& 1 \text { degree } \mathrm{C}=1.8 \mathrm{~F} .
\end{aligned}
$$

Boiling point of water Reaumur 80, Centigrade 100, Fahrenheit 212. Fahrenheit to Centigrade. Subtract 32 from Fahrenheit reading and multiply the remainder by $5 / 9$ ths. To Reaumur subtract 32 and multiply by $4 / 9$ ths. To change Centigrade to Fahrenheit multiply Centigrade by $9 / 5$ ths and add 32. To change Centigrade to Reaumur multiply Centigrade by $4 / 5$ ths. To change Reaumur to Fahrenheit multiply Reaumur reading by $9 / 4$ ths and add 32 degrees.

Ladles. Their Dimensions Lined Up and Capacity in Pounds of Molten Cast Iron

Diam	Depth	Capacity per inch	Total Capacity	
5 inches	6 inches	5.1 lbs .	30.6	lbs.
${ }_{7}^{6}$	8	7.3 9.5	${ }_{76}{ }_{7} .1$	
8		${ }_{13.5} 9$.	117.	"
9	10	16.5 "	165.	"
10	11	20.4 "	224.	
11	12	25.	300.	
13	13	35. "	455.	
17	18	59.	1062.	
20	20	82. "	1640.	
22	22	99. "	2178.	"
24	25	118.	2950.	
27	28	149. "،	4172.	
31	32	197. "،	6304.	"
34 39	35 40	311.	12440 .	"
43	44	379. ${ }^{\text {3 }}$	16676.	"
46	48	434. "/	20832.	"
49	50	491. "/	24550.	"
52	53 56	553. ${ }^{\text {597 }}$	29309.	"،
54 60	56 62	737. ${ }^{\text {7 }}$ "	33432.	،
66	68	892. ${ }^{\text {7 }}$	${ }_{60656 .}$.	"
72	74	1061.	78514.	"

Capacity of Boxes

Pint Box,
Quart "
Half Gallon,
Gallon,
Peck,
Half Bushel,
Bushel,
$3 \times 3 \times 31 / 2$ inches
$4 \times 4 \times 4^{1 / 5}$ inches
$7 \times 7 \times 23 / 4$ inches
$8 \times 8 \times 41 / 8$ inches
$8 \times 8 \times 8^{2 / 5}$ inches
$10 \times 10 \times 103 / 4$ inches
$18 \times 151 / 2 \times 8$ inches

Help in Care of Burns, Fainting, Etc. For Burns
Use a two per cent solution of picric acid or cover with cooking soda and lay wet cloth over it, or apply a mixture of linseed oil and lime water. Whites of eggs and olive oil or linseed oil plain or mixed with chalk or whitening may be applied.

Fainting

Loosen clothing, place flat on back with head lower than rest of body, allow plenty of fresh air, sprinkle with water, chafe hands, give patient twenty drops of spirit of ammonia in half glass of water. Strong coffee or wine glass of whiskey will help revive. Do not try to pour liquid down throat of unconscious person. It may cause death from choking. If partially overcome by gas get into the fresh air and take twenty drops of ammonia in glass of water at short intervals.

Table giving Sp. Gr., Sp. Heat, Tensile Strength, Heat and Electrical Conductivity, Melting Point and Wt. per cu. in. of Metals

							$\begin{aligned} & 4 . \sqrt{0} \\ & \text { \& } \\ & \text { जa } \\ & .00 \\ & 00 \\ & 00 \end{aligned}$
Aluminum	2.6	20000	. 225	31.33	54.20	1214	. 096
Antimony.	6.7		. 050	4.03	2.05	1166	. 244
Arsenic.	5.72		. 083		2.67	1562	
Bismuth	9.82		. 030	1.8	. 87	510	. 244
Cadmiu	8.65		. 055	20.06	13.46	612	. 312
Calcium	1.58		. 168	25.4	12.5	1490	. 057
Chromium	5.		. 099			2750	. 1804
Cobalt	8.55		. 107	17.2	9.68	2782	. 308
Coppe	8.85	36000	. 093	73.6	54.	1949	. 3195
Gold.	19.3	20000	. 0316	53.2	43.84	1947	. 6949
Iridium	22.38		. 0323			3960	. 8076
Iron Ca	7.48	25000	. 112	11.9	9.68	2350	. 2604
Lead.	11.35	3000	. 032	8.5	4.8	620	. 41
Magnesium	1.75		. 245	34.3	22.84	1200	. 064
Manganese .	8.		. 122			2273	. 288
Mercury	13.60		. 032	5.3		-39	. 49
Nickel.	8.6		. 108		7.37	2646	. 317
Platinum	21.5		. 032	37.9	8.042	3236	. 775
Potassiu	. 865		. 166	45.		144	. 031
Silver	10.53	40000	. 057	100.	63.84	1751	. 379
Sodiun	. 97		. 2734	36.5	18.3	208	. 035
Tin.	7.35	4600	. 056	15.2	12.4	450	. 265
Titanium	5.3		. 1135			3270	. 1913
Tungston	17.3					5430	. 6243
Vanadium	5.5					3146	. 1987
Zinc.	7.	7500	. 096	36.	29.	786	. 2526
Boron						4262	
Phosphorus						111	\ldots
Sulphur.						241	.
Silicon.						2588	
Carbon	\ldots	\ldots	over	6500	...

Aluminum: Al., At. Wt. 27.1, Sp. Gr. 2.6
A silvery white metal, weighs $1 / 3$ as much as cast iron and 5 times as much as white pine, tenacity being $1 / 3$ that of wrought iron. Hydrochloric Acid dissolves it with ease. Nitric and sulphuric do not act upon it at ordinary temperatures. Small percentages are used to deoxodize steel. $.1 \%$ added to cast iron in the ladle increases the fluidity, decreases the combined and increases the graphitic carbon. In the brass foundry 1 to S ounces may be added to 100 lbs . of molten brass to decrease the zinc fumes and cause the metal to run up sharp. Various percentages are used in the production of die castings, manganese and aluminum bronzes. Zinc when melted for castings is improved in casting quality by the addition of $.1 \%$. Aluminum castings in general use contain percentages of zinc or copper, often both.

It can be melted in either plumbago or cast iron pots and fluxed with salammoniac or chloride of zinc. The sand used for moulding should be fine, free from mica, worked quite dry and not rammed too hard. Use chills and risers to prevent shrinkage. Pour at a low heat.

Antimony: Sb., At. Wt. 120., sp. gr. 6.7
Bluish white metal, very crystalline and easily pulverized. Because of its property of expanding when it solidifies it is used largely in mixtures for patterns, type and Brittania ware, also in antifriction bearing metals and antimonial lead because of its hardening property. It melts at 1166 F . and burns in open air with a bluish white flame. Cubical expansion from 32 to 212 F , is .007 .

Arsenic: As., At. Wt. 75., Sp. gr. 5.7
Bright steel grey color. Volatilized at 356 F . When heated gives off an odor of garlic. 'It is used as a hardening element in Copper and Lead.

Bearing Bronzé, Copper 80, Tin 9, Lead 10, Arsenic 1, Arsenic Lead 2\% Arsenic.

Bismuth: Bi., At. Wt. 208.5, Sp. gr. 9.82
Hard, brittle and distinctly crystaline reddishwhite metal with a metallic lustre. It looks like Antimony but is distinguished from it by its reddish tint. Bismuth pulverizes readily, melts at about 510 F . Its tensile strength is 6400 lbs per sq. inch. Cubical expansion from 32 to 212 F . is .0040 . As it imparts the properties of low fusing points and expansibility it is used in making safety-plugs for boilers, fuseable alloys sterectype, pattern metals etc. A small percentage will harden and toughen lead. As alloys of Bismuth, tin and Lead take very fine impressions they are often used for moulds and medals.

Boron: E., At. Wt. 11.

Boron Suboxide is used as a flux in the production of copper castings where high electrical conductivity is required.

Cadmium: Cd., At. Wt. 112.4, Sp. gr. 8.65
A white metal closely resembling Tin and of about the same hardness. Like Tin it gives a creaking sound when bent. It melts at about 500 F . It is malleable and ductile, cubical expansion from 32 to 212 F. .0094. It is used in some fuseable alloys with Lead, Tin and Bismuth.

Carbon: C.
This element is more widely distributed than any other except Oxygen. Its melting point is above 6500 F. Graphite, Lampblack, Charcoal, Coal, Coke and Diamonds are composed very largely of Carbon. Regular foundry grades of cast Iron usually contain from three to four percent. The fluidity and life is largely determined by the amount and the ratio which exists between its two forms, graphitic and combined. Silicon decreases the total carbon and changes it from the combined to the graphitic state. Total Carbon may be increased by the use of Manganese. It also has a quality imparted to it by the kind of fuel with which the iron ore is smelted. This accounts in part for the difference between charcoal and coke iron.

Copper: Cu., At. wt. 63.6
Reddish colored metal, very tenacious, malleable, and ductile. With the exception of Silver it is the best known conductor of electricity. Its tenacity is next to Iron. Tensile strength from 20,000 to $30,000 \mathrm{lbs}$. per sq. inch. Its melting point is about 1950 F. It is used as a base in Bronze and Brass mixtures. Cubical expansion from 32 to 212 F . .0051. Nitric Acid dissolves it, Sulphuric Acid when heated with the metal will attack it, Hydrochloric Acid does not act upon it. There are many grades and brands of Copper. Lake and Electrolytic being considered the best for casting purposes.

Iron: Fe., At. Wt. 56., Sp. gr. 7.48
Pure Iron is almost unknown. Its melting point is given as 3000 F . The grades used in foundries usually have from 6 to 8% of metaloids and melt at 2360 F . The various grades of foundry Irons are determined by the percentages of the metaloids, carbon, silicon, sulphur, manganese and phosphorus which they contain. See table analysis of cast iron.

Lead: Pb., At. Wt. 206.9, Sp. gr. 11.38
Melts at about 625 F . It is a heary soft malleable dark grey metal of a brilliant lustre when first cut. Its tensile strength is about 1800 lbs . per sq. inch. Its weight per cubic foot 710 lbs . It is usad extensively for sulphuric acid chambers and evaporating pans, also as an alloy in many serviceable metals. In the brass foundry it is often used in mixtures to lower the cost of the metal. From 1 to 3% is frequently used in red metal castings which are to be rapidly finished on machine tools. From 5 to 10% is generally introduced into Acid Bronze and from 5 to 30% in Bearing Bronze. As an alloy it is used in the composition of pattern, type and white metals, also fusible alloys and soft solders, cheap babbits and box linings. It should not be used in mixtures containing Aluminum or Silicon.
Magnesium: Mg., At. Wt. 24.36, Sp. gr. 1.75
Silvery white metal with a high lustre, very malleable and ductile. It is used in taking flashlight pictures, in making fire-works and as an alloy in some Aluminum mixtures. It is one of the lightest of metals. It melts at about 1200 F . Cubical expansion of .0083 from 32 to 212 F .

Manganese: Mn., At. Wt. 55., Sp. gr. 8.
White-grey metal, melting at about 2280 F . Used as an alloy in cast Iron, steel and Manganese bronze. Its tendency is to reduce sulphur, increase density and combined carbon. It also raises the saturation point of total carbon. Light soft castings should have about $.60 \%$. Medium weight castings $.70 \%$. Heavy 1.00% chilled work 2.00%. Semi Steel from .75 to 1.25 Manganese Bronze .1. Small percentages of Manganese Copper are often used to deoxidize brass mixtures.

Mercury: Hg., At. Wt. 200.3, Sp. gr. 13.60
The only metal that is liquid at ordinary temperatures becoming solid at 39 F . below eero. It is silvery white with a high lustre.

Nickel: Ni., At. Wt. 58.7, Sp. gr. 8.6

A hard yet ductile metal with tenacity about the same as Iron. Its melting point is high, being about 2600 F . It is used as an alloy in making nickel-steel and for nickel plating, also with copper to produce German-Silver. Cubical expansion from 32 to 212 F. .0037. Mixtures of Copper and Lead for bearings contain small amounts to prevent lead sweat.

Phosphorus: P.

A pale amber colored metal, waxy in appearance. It ignites readily under ordinary temperatures and must be kept under water. It can be cut like wax, melts at 112 F . boils at 290 F . When heated to 240 F . out of contact with the air it changes to red or amorphous Phosphorus. This is not so poisonous nor does it ignite as readily as the other. It
adds fluidity and hot-shortness to Phospor Bronze. To Iron it adds fluidity and cold-shortness. Because it possesses a great affinity for oxygen it is often used in brass foundries as a deoxidizer to remove the surplus oxygen which the metal may contain or has absorbed while being melted. It is usually introduced in the shape of Phosphor Tin or Phosphor Copper. 1\% of Phosphorus is generally sufficient to remove the oxygen from copper alloys. Cast Iron for ordinary work usually contains about $.60 \%$.

Silicon: Si., At. Wt. 28.4

When obtained in the form of crystals, Silicon is of a grey color and harder than glass. It is one of the most widely distributed of the non-metalic elements. At a very high temperature it combines with Iron and other metal. Its melting point is about 3600 F. No. 1 Foundry Iron usually contains 3%. It has the property of adding fluidity to Iron and of changing the carbon from the combined to the graphitic state. It is also used in the Brass Foundry as a flux and deoxidizer. It burns out the oxids, gives to the castings an even smooth grain and increases the strength very perceptably. Do not use in mixtures containing Lead. It is generally introduced into the molten metal in the form of Silicon Copper which contains from 15% to 20% Silicon, about 1% of the latter being sufficient.

Sulphur: S.
A yellow brittle substance which melts at 114 F . It makes Iron hard, white, red-short and sluggish. It also gives rise to blow-holes during solidification.

It is removed to a limited extent by silicon, lime, flour spar and Manganese. It should never exceed $.07 \%$ in Iron, or .8 in coke when making the usual grade of machinery castings. Chilled rolls and car wheels often contain $.1 \%$ as it increases the combined carbon, closes the grain and promotes chill. 1% is used in mixtures of copper containing high percentages of lead to prevent lead sweat.

Tin: Sn.

Lustrous and white in color, tenacity about 3400 lbs. per sq. inch. It melts at 450 F , is soft and malleable, a bar of it giving forth a creaking sound when bent. It is used as an alloy in Bronze, Aluminum and composition castings, also as a base in many well known bearing, pattern, and die cast metal mixtures. Britanna metal and fusible alloys contain large percentages. Safety plugs for boilers are usually filled with pure tin. Billiton and Banca are two of the best known brands.

Zinc: Zr .
A bluish white metal, highly crystaline. Melts at about 788 F . and weighs 436 lbs . per cubic foot. Tenacity 6000 lbs . per sq. inch. Electric conductivity 29. Cubical expansion between 32 and 212 F. .0088. Specific heat .096. Heat conductivity 36.

As an alloy it is used extensively in the production of brass, bronze, German silver, die and aluminum castings. When used alone for castings flux with sal ammoniac and add $.01 \%$ of Aluminum. Bertha and Forse Head are the trade names of the two best brands.

Sands Analysis of Foundry

	$\frac{\stackrel{ே}{E}}{\bar{x}}$		$\underset{\text { E }}{\text { E }}$	$\frac{c}{\Xi}$			
Fire Sand	98	1.40					15
Silica Sand	95	1.50	. 30	1.50	. 50	. 20	
Coarse Molding Sand	$\delta 8$. 75	. 75	. 5	1.
Medium Molding Sand	87		2.15	. 50	. 85	. 5	
Stove plate Bench \& Brass Sand							
Freneh Moulding Sand	83	9.5	4.5	. 70		. 5	8

Green Sand Facing for Various Thickness of Casting

Thickness	New	Healding	Sand
Sear	Seal		
$1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime}$	6 parts	S parts	1 part
$3 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$	5 parts	6 parts	1 part
$1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime}$	4 parts	5 parts	1 part
$3 / 4^{\prime \prime}$ to $1^{\prime \prime}$	4 parts	4 parts	1 part
$1^{\prime \prime}$ to $11 / 2^{\prime \prime}$	4 parts	3 parts	1 part
$11 / 2^{\prime \prime}$ to $4^{\prime \prime}$	4 parts	$21 / 2$ parts	1 part

To make the facing more open mix with it coarse sharp sand.

For Skin dry work temper with beer or molasses water and mix with the facing 1 part flour to 15 or 20 parts sand.

Facing sand should be thoroughly mixed and carefully tempered.

Coke and Coal，Analysis of For Melting Iron

		$\begin{aligned} & \text { 髟 } \\ & \text { 号 } \end{aligned}$	䂞	
Coke．	88	． 85	10.	1.25
	to	to	to	to
	90	． 70	7.88	． 75
Coal，Anthracite．．．	84	． 75	8.	4.38

One pound of good coke will produce in blast furnace about 1 pound of pig iron．

In cupola 8 pounds of molten metal．
In Brass pit furnace 2 lbs ．molten metal．
In Brass pit furnace $21 / 2 \mathrm{lbs}$ ．with good hard coal．
Tilting coke furnace with blast 1 lb ．coke to $41 / 2$ lbs．melted metal．

Crucible oil furnace 3 gal．oil per 100 lbs ．of melted metal．

Open flame oil furnace 2 gal．oil per 100 lbs ．of melted metal．
Not many iron foundrys produce more than 4 1／2 lbs．of castings per lb．of coke purchased．

Approximate Analysis of Iron Used in Making Castings

	\%	\%	$\stackrel{\dot{\circ}}{\stackrel{\circ}{\Delta}}$		ט	0'		
No. 1 Foun	3.00	. 02	. 75	. 40		3.40	$\begin{gathered} \overline{\text { bar } 1} \\ 12 \prime \prime \\ .11 \end{gathered}$	$\times 1 \times$ 2200
$\because{ }_{4}{ }_{2}$	2.50	. 04	. 70	. 40		3.25	. 12	2300
" 3 "	1.75	. 05	. 70	. 55		3.00	. 13	2500
Spiegeleisen	. 75	nil.	. 10	. 20			.	.
Fero Phosphorus ..	. 25		20.	. 15		15	. .	
Malleable, Common	1.00	. 05	. 15	. 50		75	\ldots	.
Bressemer, Straight	1.25	. 04	. 10	. 60			\ldots	
Grey Forge.	1.00	. 09	. 65	. 50		80	-.	
Easic.............	. 75	. 05	. 40	. 75			\ldots	.
CharcoalNo. 1	2.60	. 021	. 35	. 45		3.55	125	2400
	2.40	. 031	. 35	. 44		3.50	125	2600
،	1.50	. 035	. 35	. 35		3.30	. 13	2900
" " 4	. 75	. 04	. 35	. 24		2.90	. 14	3300
Fero silicon	11.37	. 042	. 35	. 13	2.10	1.19		..
Fero Silicon....	11.00 2.5	. 04	. 80	$80^{.60}$			\cdots	.
Fero Manganese	2.5	. 04	. 70	80				.
Machinery Scrap, heavy	1.75	. 08	. 70	. 50			\cdots	.
Machinery Scrap, Light.	2.25	. 08	. 80	. 50				
Car Wheel Scrap	2. 60	. 14	. 40	. 60		3.25		
Stove Plate Scrap..	2.75	. 09	. 85	. 45		2.75		.
Steel Scrap 03	. 04	. 10	. 5	T.C.	. 60	-	.

Table showing the interaction of the metaloids on each other and cast iron.

	Fluidity	Softness	Shrinkage	Strength	Density	Chill	Sulphur	C. Carbon	G. Carbon
Silicon	Increases	Increases	Decreases	Decreases	Decreases	Decreases	Decreases	Decreases	Increases
G. Carbon	Increases	Increases	Decreases	Decreases	Decreases	Deereases	Decreases	Decreases
C. Carbon.	Decreases	Decreases	Increases	Increases	Increases	Increases	Neutral	
Manganese	Decreases	Decreases	Increases	Increases	Increases	Increases	Decreaess	Increases	Decreases
Phosphorous..	Increases	Neutral	Neutral	Decreases	Promotes	Decreazes	Neutral	Neutral	Neutral
Sulphur	Decreases	Decreases	Increases	Decreases	Increases	Promotes	Increases	Decreases

To Figure Iron Mixture for Cupola

Prepare the following form and fill it out with the analysis of the irons to be used in the mixture. Multiply the percentage of the element in the irons by the percentage it is proposed to use in 100 lbs . Should it not total up as wanted change the percentage to be used until the right result is obtained. After having found the percentage of each iron necessary to produce the required analysis in 100 lbs. multiply the amount of charge by these percentages.

By using ferro irons and steel any desired analysis may be produced.

The following form will help to explain
Analysis of Iron Used

			Sulicon		Sulphur		Phosphorus		Manganese	
			$\begin{aligned} & \text { in } \\ & \text { Iron } \end{aligned}$	$\begin{gathered} \text { in } \\ \mathrm{Cge} . \end{gathered}$	$\begin{aligned} & \text { in } \\ & \text { Iron } \end{aligned}$	$\operatorname{lin}_{\mathrm{Cge}}$	$\begin{array}{\|c\|} \hline \text { in } \\ \text { Iron } \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \text { in } \\ \text { Cing. } \end{array}$	$\begin{array}{\|l\|} \hline \text { in } \\ \text { Iron } \end{array}$	$\begin{gathered} \text { in } \\ \text { Chg. } \end{gathered}$
40	No. 2	1600	$2.50{ }^{\text {c }}$	1.000	. 04	. 016	. 70	. 28	. 40	. 16
10	No. 3	400	1.75	. 175	. 05	. 005	. 70	. 28	. 55	. 055
10	Remelt	400	2.25	. 225	. 06	. 006	. 70	. 07	. 50	. 050
30	Scrap	1200	2.25	. 675	. 08	. 024	. 80	. 24	. 50	. 150
10	Ferro Sil.	400	11.001	1.100	. 04	. 004	. 80	. 08	. 60	. 060
100%		4000	\#	2.175		. 055		. 74		. 475

Analysis of Iron Mixture as Charged

The usual loss of silicon in melting is .25 , of manganese .10 , and the gain in sulphur is approximately . 03.

Analysis of Iron Mixtures Used by Foundrys Specializing in the Following Classes of Work

	隹	号	$\frac{\dot{0}}{\dot{0}}$		$\begin{aligned} & \text { 픙 } \\ & \text { 을 } \\ & \text { En } \end{aligned}$
Acid	1.50	. 05	. 50	1.25	3.25
Agricultu	2.25	. 06	. 60	. 70	3.40
Air Cyl.	1.65	. 09	. 40	. 80	3.25
Ammonia	1.70	. 09	. 40	. 70 to .90	$3 \cdot 30$
Annealing P	1.50	. 06	. 20	. 60 to 1.	3.00
Auto Parts.	2.00	. 09	. 45	. 60 to . 80	3.25
Auto Cyl.	1.85	. 09	. 45	.60 to . 80	C. C. 60
R. R. Work	2.00	. 08	. 50	70	G. C. 3.15
Brake Shoes	1.50	. 10	. 30	. 50 to .70	3.25
Car Wheel	. 60	. 11	. 30	60	C. C. .75
Chilled Castings .	1.00	. 09	. 40	1.00	C.C. 3.00
Chills	2.00	. 07	. 30	. 80	C. C. 50
Crusher Jaws	1.00	. 09	. 30	. 90	3.25
Dies Hammer	1.40	. 07	. 20	. 70	3.20
Electrical Work	2.50	. 08	. 60	. 40	3.25
Fire Pots.	2.25	. 06	. 20	. 75	3.00
Fly Wheel	1.75	. 08	. 50	. 65	3.25
Friction Clutches	2.00	. 09	. 30	. 60	3.25
Furnace.	2.25	. 06	. 20	. 75	3.25
Gas Engine Cyl.	1.50	. 08	. 40	. 80	3.25
Gears, heavy .	1.25	. 09	. 40	. 90	3.25
Gears, mediu	1.50	. 09	. 50	. 80	3.50
Gears, light.	2.00	. 09	. 60	. 70	3.50
Grate Bars .	2.25	. 06	. 20	. 75	3.50
Gun Carriage	1.10	. 06	. 25	. 90	C. C. 75
Gun	1.00	. 06	. 20	1.00	C. C. . 80
Ingot Moulds.	1.40	. 06	. 20	. 75	G. C. 3.00
Locomotive Cyl.	1.25	. 09	. 40	. 90	$\begin{aligned} & \text { C. C. } .50 \\ & \text { G. C. } 3.00 \\ & \hline \end{aligned}$

	$\dot{\square}$	$\dot{\overline{5}}$	$\frac{\dot{\infty}}{\dot{0}}$	$\begin{aligned} & \text { 苞 } \\ & \text { 玉 } \end{aligned}$	
Machinery, heavy. .	1.25	. 10	. 40	. 90	$\text { C. } \stackrel{\text { Low }}{\text { C. }} 60$
Machinery, medium	1.75	. 09	. 50	. 75	3.00
Machinery, light. . .	2.50	. 06	. 75	. 30	3.80
Permanent Moulds.	2.25	. 07	. 30	. 75	3.75
Permanent Mould Castings.	2.50	. 06	. 40	. 25	3.75
Piano Plate.	2.25	$.09$. 50	. 60	3.50
Pipe Water.	2.00	$.09$. 50	. 75	3.75
Pipe Fittings	2.25	$.08$. 60	. 75	3.75
Plow Points.	1.00	$.08$. 30	1.00	3.50
Piston Rings. . .	1.75	$.08$. 40	. 50	3.50
Propeller Wheels	1.50	$.09$. 35	. 75	3.50
Pulleys, heavy.	2.00	$.09$. 60	. 75	3.50
Pulleys, light	2.50	. 08	. 60	. 50	3.75
Radiator	2.25	. 08	. 75	. 60	3.50
Rolls, Chilled	. 75	. 08	. 30	1.2	3.25
Scales.	2.25	. 08	. 75	. 50	3.75
Steam Cyl., heavy .	1.25	. 09	. 30	. 90	3.40
Steam Cyl., medium ...	1.50	. 09	. 40	. 70	3.50
Stove Plate.	2.75	. 08	. 75	. 75	3.75
Transformer Tank, medium Size	2.70	$.08$. 80	. 60	3.50
Valves, large.	1.50	. 09	. 30	. 70	3.25
Valves, medium.	2.25		. 50	. 60	3.50

Strength in light castings depends upon the amount of combined carbon in casting and varies with it.
The total carbon should be high in order to get plenty of combined carbon without hardness. Silicon rather low to enable combined carbon to form.
Phosphorous enough to cause the metal to run well.

Manganese high to get clean close grain and increase absorption of carbon. Castings should be left in sand until cold.

Semi Steel

To cupola charge of pig and machinery scrap add from five to forty per cent of clean soft steel horse shoes, rail ends, steel castings, boiler plate clippings, etc.

Use enough ferro manganese to give from 2 to 3% in mixture as charged depending on percent of steel used.

Add 10% of coke to amount used for regular grey iron.

Analysis of Mixtures as Charged and Used Successfully

	$\begin{aligned} & \widetilde{\#} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\dot{\bar{B}}$	$\dot{\bar{n}}$	$\stackrel{\dot{\infty}}{\underset{A}{6}}$	范	
Auto Cyl.. Gas Engine Corlis Cyl's. Heavy Frames	$\begin{aligned} & 20 \% \\ & 25 \% \\ & 30 \% \\ & 35 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.70 \\ & 1.75 \\ & 1.60 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{array}{r} .05 \\ .06 \\ .06 \\ \hline \end{array}$	$\begin{aligned} & .60 \\ & .60 \\ & .55 \\ & .50 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 2.50 \\ & 3.00 \end{aligned}$	2550 lbs. 2700 lbs. 3600 lbs.

Diameter of Cupola Newly Lined

Table giving capacity and other data of different sizes of cupolas.	$24^{\prime \prime}$	$30^{\prime \prime}$	$36^{\prime \prime}$	$42^{\prime \prime}$	48'	$54 \prime$	$60^{\prime \prime}$	$72^{\prime \prime}$	84
Thickness of sand bottom in inches........	$3^{\prime \prime}$	$31 / 2^{\prime \prime}$	$31 / 2^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$51 / 2^{\prime \prime}$	$6^{\prime \prime}$	$6^{\prime \prime}$
Depth from under side of tuyeres to san	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$						
Number of tuyeres.	6	6	8	8	10	12	12	14	14
Size of tuyeres.	$5 \times 31 / 2$	$8 \times 31 / 2$	$8 \times 4^{\prime \prime}$	9×4 "	$10 \times 41 / 2$	$11 \times 41 / 2$	$12 \times 5{ }^{\prime \prime}$	12×5	14×5
Diameter of blast pip	$7^{\prime \prime}$	$12^{\prime \prime}$	13	15	16	18	20	24	28
Cubic feet of air per m	800	1500	2000	3000	4000	5000	6500	9000	12500
Blast pressure oz.	$81 / 2$	10	11	12	13	14	16	16	16
Coke used on first charg	250	450	550	900	1400	1700	2100	2500	3000
Iron used on first charge.	700	1200	1500	2700	4000	5000	6000	7000	9000
Coke used on following ch	50	75	100	150	200	200	400	500	700
Iron used on following cli	500	700	1000	1500	200	3000	4000	5000	7000
Iron melted per hour.	3000	6000	8000	12000	16000	20000	26000	38000	50000

Dry Sand Facing Mixtures Oven Dried

$\begin{aligned} & \text { d } \\ & \frac{5}{y} \\ & \frac{1}{z} \end{aligned}$				su!pinow ossoo,								er with
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$		1	13/2	$\begin{aligned} & 1 \\ & 4 \\ & 1 \end{aligned}$	1	$\overline{21 / 5}$					"	
4	10				5		5		$\begin{gathered} \text { Tar Com } \\ \text { Flour: } \end{gathered}$		"	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	15		10	5	6	12	15 15	1	1 1 1 1 $1 / 2$		"	"

Nos. 1-2-3-4 for heavy work, large cylinders, engine beds, anvil blocks, balance wheels, etc.

Nos. 5 and 6 not so strong for medium heary work.
No. 7 for thin light castings.

Skin Dry Facing Mixtures

No. 1. Skin dry facing $1^{\prime \prime}$ thick on pattern. New coarse moulding sand 20 parts, flour 1 part, sea coal $21 / 2$ parts, wet with molasses water.

No. 2. Millville gravel 1, fire sand 1, coarse moulding 3 , flour $1 / 3$, sea coal $1 / 4$; wet with molasses water. Black wash before drying with Plumbago 5 parts, talc 1 part, charcoal 1 part, mixed with molasses water. Molasses 1 and water 8 to 10 parts. Used on large valves, elbows, planer beds, etc.

CORE SAND MIXTURES

Aluminum and Light Brass

Silica or lake sand,
Moulding sand, Linseed oil,

30 parts.
10 parts.
1 part.

Temper with water.
Fine gray bank or beach sand 10 parts.
Brass moulding sand 5 parts.
Rye flour 1 part.
Mix well and pass through No. 12 riddle while dry, then temper with weak molasses water.

Beach or fine bank sand 2 parts.
New brass moulding sand 1 part.
Gangway sand 1 part.
Have the sand quite dry and temper with molasses water. (molasses 1, water 8). Bake with care.

Glue Core

Dissolve 1 part of Lepage's liquid glue in 5 parts of warm water. Use fine dry beach sand and temper quite damp with the glue water. The dampness of the sand determines the hardness and strength of core. Bake with care. Glue cores soften if left in mould too long.

CORE SAND MIXTURES

Glue Cores. Light Small Work

Fine bank lake or beach sand and Gangway equal parts. Temper with the following: 1 lb . granulated glue dissolved in 12 quarts hot water.

Rosin Cores
Bench sand 8 parts.
Beach sand 8 parts.
Ground rosin 1 part.
Temper with water.
Small Cores. Jacket-Port-Valve, Etc.
Lake or silica sand 20 parts.
Bench moulding sand 10 parts.
Linseed oil 1 part.
Temper with molasses water.
Medium Size Cores. Cylinder Jackets, Etc.
Beach sand 14 parts
New moulding sand 6 parts
Mix together equal parts of dexterine and soy bean oil; add to sand 1 part.

Temper with water.
Large Solid Cores. Cylinder, Etc.
Sharp or bank sand 20 parts
Gangway sand 8 parts
Moulding sand 5 parts
Rosin 1 part
Dampen to suit with water.

CORE SAND MIXTURES

Large Size Cylinders, Columns, Etc.
Coarse bank sand
Gangway and old cores
New side floor moulding
Black tar compound
Rye flour
Temper with clay water.

Large Cyl. and Jacket Cores

Jersey or Millville gravel
Old dry sand
Rosin Rye flour Temper with clay water.

8 parts
8 parts
$1 / 2$ part
1/2 part

VENTLESS CORES

For cores nearly surrounded by metal and very difficult to vent the following mixture is being used successfully without venting.

Mix twenty parts of beach sand and one part of Phil Smith's Phelim core oil together in a thorough manner and place on oven floor or in some place where the heat is just sufficient to steam the sand thoroughly with the oil for about ten hours. When cold make cores and dry same as linseed oil. Black wash well and when placing in mould break skin on the prints or supports drawing vent wire through cope drag or joint same as when core is vented. Rods are seldom necessary.

Cupola Breast Core

Crushed fire brick four parts
Moulding sand one part
Temper with Linseed oil.

Or

Bank sand three parts
Silica sand one part
Temper with Linseed oil.

CORE SAND BINDERS

Glucose
Flour
Brown sugar
Alum 3 lbs. 8 ounces

Mix in one gallon hot water and use 1 part to 20 parts of core sand. If sand is not wet enough to work, dampen with plain or weak molasses water.

Wax and Composition Vents

Warm paraffine wax in hot water and force through vent machine.

Equal parts of beeswax and rosin. Melt the wax and stir in the powdered rosin. Mix thoroughly. Warm and force through vent machine.

Core Paste

Rye or wheat flour mixed with water. If boiled or mixed with molasses strength is added.

Core Putty

Moulding sand five parts, plumbago one part; dampened with molasses water.

Anchor Cores in Anvil Blocks

Where core is surrounded with a very heavy thickness of metal and there is danger of melting it wrap the core with asbestos wicking or fasten sheets of asbestos about it with heavy wrought iron wire.

Use a piece of wrought iron pipe the inside diameter of which is the same as size of hole desired. Clean and tin the pipe, then ram the inside with a facing made of fire sand and sea coal.

Iron cores and chills must be free from moisture rust and dirt.

Chill Wash

Dissolve $1 / 2 \mathrm{lb}$. of rosin in alcohol, thicken to suit with soapstone.

An iron screw well coated with this mixture can be removed from casting with ease.
Plumbago mixed with lard oil rub on chill. Plumbago mixed with molasses or glue water is often used.

Dip Iron core in silicate of soda or oil or shellac and cover with fine sharp sand. For iron moulds used in casting brass or bronze use lard oil.

SAND MATCHES, FOLLOW BOARDS, ETC.

 Plaster of ParisSieve the plaster into the water until it is of the right consistency to run well. Oil the patterns.

Connecticut Clay Match

Moisten and work into the condition of stiff putty any good plastic clay. Next flatten out into a form the shape of the match frame and about one inch thick. This is oiled and placed over the patterns which have been previously arranged in nowel with parting carefully made. Tuck the clay firmly all about the patterns, being careful to press it into all corners. After this is done ram up remainder of match frame with moulding sand. Fasten on bottom board roll over, remove nowel and finish match.

The advantage of a clay follow board is that light gated patterns rest evenly and firmly on them without rocking. The right degree of dampness must be maintained at all times.

FOLLOW BOARDS

Fine dry, sharp sand 20 parts
Litharge
1 part
Raw linseed oil enough to temper as damp as moulding sand in use.

Iron filings or fine cast iron chips $1 / 2$ part
Litharge $\quad 1 / 4$ part
Dry fine moulding sand $\quad 10$ parts
Put through No. 12 riddle and temper quite damp with linseed oil. After follow boards are finished spray surface with the oil and dry slowly.

Cement Follow Board

Portland cement 2 parts
Plaster of Paris 1 part
Fine sharp sand 1 part
Water 3 parts

Warping-To Control

1. Use an iron mixture with the least possible amount of shrinkage.
2. Make mould in such a way that casting will cool evenly. Strip heavy sections or pour hot iron near light parts to equalize cooling.
3. Place weights on parts which tend to rise.
4. Leave copes on light plates and free the sand around risers and sprues or remove them.
5. Make pattern out of line and let contraction pull it straight.

To Control Contraction

Decrease Sulphur, Manganese and combined carbon. Leaving casting in mould until completely cold often suffices.

Blow Holes To Control

When caused by the iron the sulphur is usually too high. An increase of manganese and pouring at a higher temperature help to remedy this trouble. Too much dampness in moulds, cores or chills often produce them. Mould rammed too hard or sand too fine and close also cause blow holes.

Shrinkage, To Control

1. Use high graphatic low sulphur, soft iron.
2. Increase the pressure on mould by using deep copes or high pouring heads.
3. Use feeding heads which will remain fluid until casting is solid.
4. Use chills on heary parts.
5. Churn casting through riser using hot iron to feed up with.
6. Keep risers and shrink heads open with thermit pieces of aluminum or hot iron. Covering risers with crushed charcoal or sand will help keep them liquid.
7. Use an iron misture having a low percentage of phosphorus.

Casting One Metal Upon Another

The metal which is to be surrounded by molten iron or other molten metal must be absolutely free from moisture, rust or other foreign substance. Inserts are often coated with silicate of soda, red lead and oil or tinned, all of which is unnecessary provided the metal insert is clean, dry and hot when the molten metal comes in contact with it. Hydrofluoric acid or the sand blast should be used to clean the metal upon which the molten metal is to be poured.

Scabbed Moulds

Are caused by using sand that is to wet or fine and close or is not properly vented. Avoid hard ramming and too much slicking.

Drops and Drawn Down Copes

Are caused by using sand that is old and burned out or too dry.

Bars too far removed from face of mould not enough gaggers and improper venting are other causes.

Leaving the risers open while pouring is bad practice except on light, thin work. It releases the air pressure and permits the sand to leave the face or cope of mould more easily.

Crushes

Result from imperfect mould joints and the use of old worn out flasks the joints of which do not match.

Rat Tails

These depressed lines and indentations are caused by the use of old burned out sand the bond of which is destroyed by repeated use. Add new sand to the heap and they usually disappear. Light bag facings which float and run before the metal must be avoided.

To Determine Weight of Casting From Weight of Pattern

Pattern weighing one pound when cast of the following metals will weigh:

	W. Pine	White Wood	$\begin{gathered} \text { Bay } \\ \text { Wood } \end{gathered}$	Cherry
Aluminum	5.	4.	3.5	4.
Y. Brass. .	18.5	19.	15.	18.
Bronze	19.	19.5	18.5	15.
Iron.	15.5	16.	15.	12.
Lead	26.	26.5	26.	${ }^{22}$.
Tin.	15.	15.5	15.2	12.5
Zinc......	15.	14.5	15.	12.

Make allowance for core prints and metal on pattern, etc.

Shrinkage of castings made in green sand:
Iron from $1 / 16$ to $3 / 16$ average $1 / 10$ inch per foot.

Steel about $\quad 1 / 4$ inch per foot
Malleable iron $\quad 1 / 8$ inch per foot
Brass, light 11/64 inch per foot
Brass, heavy 10/64 inch per foot
Bronze $\quad 9 / 64$ inch per foot
Lead $\quad 5 / 64$ inch per foot
Tin $4 / 64$ inch per foot
Zinc $\quad 6 / 64$ inch per foot
Aluminum (easting) 11/64.

NON-SHRINKING

White Metal Mixtures for Patterns

$\begin{array}{r} 1 \\ 1 \\ 30 \\ 15 \\ 7 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 1 \\ 2 \\ 17 \end{array}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 3 / 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	2	Melt, stir well and pour these mixtures at a low temperature

Aluminum Mixtures for Patterns

	$\begin{aligned} & \text { E } \\ & \frac{\pi}{3} \\ & \frac{3}{4} \end{aligned}$	릋	岩	
$\begin{aligned} & 92 \\ & 90 \\ & 88 \\ & 80 \\ & 75 \end{aligned}$	Parts 64 65	$\begin{aligned} & \text { Parts } \\ & 8 \\ & 12 \\ & 12 \\ & 20 \\ & 25 \end{aligned}$	8 parts	No. 12 Alloy Make allowance for shrinkage of about $\frac{3}{16}$ per ft.

Composition Pattern Mixture
Copper 16, Tin 1, Zinc 1, Lead 1.

PATTERN VARNISH

For Wood Patterns
Use gum shellac dissolved in grain or denatured alcohol. To color black use lampblack or black aniline soluble in alcohol. For red use Indian red powder. Copal varnish requires a longer time to dry but is more durable.

Color to suit same as shellac.

Pattern Varnishes

Red iron oxid varnish for wood or metal patterns.
First apply a priming coat of either orange or black shellac varnish. Then add enough dry red iron oxid to the orange shellac to give a good body and apply to pattern. This will dry very hard and produce a nice hard smooth surface.

Pattern Filler

For filling holes of any description on wood patterns.

Melt one lb . of rosin and 1-2 lb . of beeswax together, then cut into shavings $1-2 \mathrm{lb}$. of common yellow soap and mix with the hot beeswax and rosin. When mixed thoroughly add 4 lbs. of whiting, stirring continually. Cool enough to handle and roll into sticks $3-4^{\prime \prime}$ diam. and $6^{\prime \prime}$ to $8^{\prime \prime}$ long.

An alcohol lamp flame will cause it to melt and run into the holes, checks or cracks in the pattern which are to be filled.

. For Iron Patterns

Heat the pattern sufficient to melt beeswax and rub well into grain of metal.

Bayberry Wax

Make a soft paste by mixing or cutting the wax with benzine or turpentine. Apply with clean woolen cloth to pattern and rub to a polish. Keep the paste in an air tight box or can.

Iron Filler or Cement

Iron filings put through 60 mesh sieve 16 parts
Plaster of paris 16 parts
Gum Arabic powdered 3 parts
Color to suit with lamp black.

CRUCIBLES, DIMENSIONS AND CAPACITY

Nos.	Height Outside	Diam'tr at top Outside	Diam'tr at bilge Outside	Diam'tr at b'r'm Outside	$\begin{aligned} & \text { 長 } \\ & \frac{\overline{J n}}{} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { 歩 } \end{aligned}$	
	Inches	Inches	Inches	Inches			
10	$73 / 8$	$57 / 8$	61/4	$41 / 2$		2	0
12	8	$61 / 2$				2	1
14	85/8		$71 / 2$	$51 / 2$		3	0
16	$91 / 4$	$73 / 8$	$73 / 4$	$53 / 4$		3	1
18	$93 / 4$	75/8		$57 / 8$	1	0	0
20	101/2	$73 / 4$	$81 / 2$	$61 / 8$	1	0	1
25	11	833		611	,	1	0
30	115/8	$83 / 4$	$91 / 2$	$63 / 4$	1	2	1
35	12	9	$93 / 4$	7114	1	3	1
40	125/8	$91 / 2$	101/8	$71 / 2$,	1	0
45	13	97/8	101/2	$75 / 8$,	2	0
50	$133 / 4$	101/4	$111 / 4$	8	,	$\stackrel{3}{3}$	1
60	14	101/2	$111 / 2$	$81 / 4$,	0	1
70	$141 / 2$	$103 / 4$	12	$81 / 2$	3	2	1
80	$151 / 2$	111/2	$125 / 8$	$91 / 4$	4	0	0
90	$15^{3} / 4$	$115 / 8$	127/8	$91 / 2$	4	1	1
100	$161 / 2$	12	$131 / 4$	93/4	4	${ }_{3}^{3}$	0
125	171/2	123/8	$141 / 8$	10	6		0
150	$191 / 4$	131/4	15	$103 / 4$	7	3	0
200	201/2	15	$161 / 2$	111/2		3	1
225	21	$151 / 2$	$173 / 8$	113	10		0
250	$221 / 2$	15	17	$123 / 4$	11	,	0
300	$233 / 8$	167/8	18	12	13	0	0
400	24	$171 / 2$	191/4	$141 / 2$	15	0	0

The capacity is usually 3 lb . per number for Brass or Bronze.

ALUMINUM CASTINGS

$\dot{<}$	$\stackrel{シ}{E}$	会			
$\begin{aligned} & 92 \\ & 90 \\ & 85 \\ & 85 \\ & 90 \\ & 85 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ 5 \\ 5 \end{array}$	$\begin{array}{r} \mathrm{S} \\ 10 \end{array}$	2	$\begin{array}{r} 5 \\ 10 \end{array}$	No. 12 Alloy A1 for general work Stiff and strong works well Works well for general work A strong metal Magnalium

Aluminum Solders

Melt in separate crucibles, 1 of tin and 4 of zinc: pour together, mix well, and pour into pencil shapes.

Tin 11 parts, zinc 4 parts, aluminum 1 part Phosphor tin 1, zinc 11, tin 29 and aluminum1part.

Copper may be added to molten aluminum by the use of clean sheet copper or wire.

Heat the aluminum to about 1300 F. and it will dissolve the sheet or wire rapidly.

Hardener or temper metal for aluminum: Melt 50 lbs . of copper and just before it is all melted start adding 50 lbs . of aluminum. The al. will raise the heat sufficient to melt the remaining copper. Stir well with plumbago stirrer and pour into ingots. 16% of the temper metal will produce No. 12 alloy.

ALUMIINUM BRONZES

App. Melting Point 1700 F.
Aluminum Bronze

Copper	Aluminum	Zinc	Phosper Tin
85	1	12	2
85	10	1	4
90	2	6	2
90	7	3	
92	${ }^{6}$	2	
90	10		Tensile Strength 70000 lbs .

Melt the copper under a cover of charcoal and glass and introduce the aluminum as soon as copper becomes fluid.

Use skim gates and pour rapidly from bottom of mould in such a manner as to cause the least amount of agitation of metal.
Large risers and chills are necessary on heavy parts.

Keep all risers closed air tight.
Flux with one ounce of chloride of manganese per 100 lbs . when metal is ready to remove from fire.
1% of manganese copper helps to produce clean castings.

ACID RESISTING METALS

Approximate Melting Point 1735 F.

Cop.	Tin	Zinc	Lead	
85	10		5	Blue vitrol mine water
78	7		15	Blue vitrol mine water
86	5	3	6	Paper mill (Sulphite)
85	6	3	6	Paper mill Screen Plates
84	6		10	General
	Antimony			
75			$\left.\begin{array}{l} 20 \\ 85 \end{array}\right\}$	Excellent acid metals when possible to use

BEARING METALS, BRONZES

Appro. Melting 1735 F.

		Nickel		
65	4	1	30	Plastic Bronze
85	5	Phos.	10	Brass Rolling Mill
79	10	1	10	R. R. Engine
		Anti-		
70	9	mony		
77	8		20	R. R. Car
75		15	Auto Truck	

When lead content is high stir well and pour at low temperature. The addition of 1 per cent of nickel or $11 / 2 \%$ sulphur stirred well into the copper helps to prevent lead sweat.

MANGANESE BRONZE Melting Point 1600 F.
$\left.\begin{array}{c|c|c|c|c|c}\hline \text { Copper } & \text { Zinc } & \text { Tin } & \begin{array}{c}\text { Manganese }\end{array} & \text { Iron } & \text { Aluminum } \\ \hline 56 & \frac{41.25}{} & .75 & \begin{array}{c}\text { 1.25 } \\ 58 \\ 56\end{array} & \begin{array}{l}\text { 40. } \\ 38 .\end{array} & 1\end{array} \begin{array}{c}\text { manganese } \\ \text { copper 4 }\end{array}\right)$

Melt copper carefully under charcoal. Add the manganese copper.

To introduce iron use tin plate.
Heat the zinc before placing in crucible and add slowly to prevent chilling the bath. When zinc is all in add the aluminum and tin. Stir well and when molten metal flares zinc fumes remove from furnace and pour. Use large risers and chills to overcome shrinkage.

Pour from bottom when possible. The metals used should be the best.

Tensile strength about 70000 lbs.

Phosper Bronze

Melting Point 1800 F.

Copper	$\begin{gathered} 5 \% \\ \text { Phos. } \\ \text { Tin } \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \% \% \\ \text { Phos. } \\ \text { Copper } \end{array}$	Tin	Lead	
$\begin{aligned} & 80 \\ & 85 \\ & 90 \\ & 88 \\ & 90 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 8 \\ 10 \\ \hline \end{array}$	4	6	$\begin{array}{r} 10 \\ 10 \\ 4 \end{array}$	Bearings Acid Metal Gears Bushings Strong and tough

Use large gates and risers.
Pour cold and black mould well with plumbago.

YELLOW BRASS MIXTURES

Approximate Melting Point 1645 F.

Copper	Tin	Zinc	Lead	
50		50		Art Castings, Panels, Locks, etc.
60		40		Muntz Metal, Bolts \& Nuts
62	1	37		Naval Brass
62		38		Common High Brass
65	$11 / 2$	29	$11 / 2$	Passenger Car Trimmings
66		32	2	Plumbers' Goods
75 86	2	22	1	General Work
86		13	1	Brazing Metal

Steam Metal Appro. Melting Point 1780 F.

86	6	6	${ }_{41}{ }^{1}$	Steam Metal Flanges, Elbows, etc.		
88	10	2	412	" "،	"	"
87	6	5	2	" "، ${ }^{\prime \prime}$	،	
90	$41 / 2$	$31 / 2$	$2)$	Small Valve Bodies		
86	$71 / 2$	$31 / 2$	$3\}$	Half inch to six		
80	7	10	$3)$	inches diameter		

Red Metal or Composition General Work, Melting Point 1780 F.

80	6.5	6.5	6.5	Ounce metal Low pressure steam and general work
80	10	5	5	More dense and strong
87	8	4	1	General purpose
90	8	2		Hydrant and valve stems
88	9	3		Gun Metal
85	10	5		Pumps and liners
80	10	10		Propellers
88	10		2	Pump liners, acid water. Melt all new metal and pig then use the remelted metal for the castings

COPPER CASTINGS

Boronized Copper Castings

For high electrical conductivity use two clean crucibles. In one melt Lake copper well covered with charcoal to 2400 deg . F. Have the second crucible red hot and after placing 1% of Boron flux in it pour the molten copper and charcoal into second crucible. Stir well with plumbago skimmer. The metal may be cooled to proper pouring heat with gates and risers from previous casts. When cool enough to pour skim clean and pour quickly. Shrinkage is about the same as aluminum or manganese bronze.

Melt good grade of casting copper under charcoal. When thoroughly melted pole it with hard wood stick until oxygen is reduced. Then add from 2 to 5% zinc. Or 1 to $11 / 2 \%$ of silicon.

Phosper copper is also used.
10% of 15% phosper copper being usually sufficient.

Coloring Brass and Bronze Castings

Use metal free from iron or other impurities and leave castings in the mould until they attain the desired color. Then remove quickly and set the color by plunging into water.

The length of time to leave in mould must be determined by experience. Thickness of casting, heat at which it was poured and the metal in mixture are all to be taken into consideration. Valve bodies running from $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$ diam. usually require 10 to 30 minutes to cool before dipping in water.

Acids Used for Cleaning Castings and Remarks
Good ventilation and protection from the acid and fumes must be provided.

Aqua Regia is composed of one part Nitric and three parts Hydrochloric acid. It is the strongest solvent known.

Nitric acid or aqua fortis is a colorless liquid very powerful and active. The gases are poisonous.

Hydrochloric Acid. Known also as muriatic. Spirit of salt and marine acid is yellowish in color, has a sharp penetrating taste and smell. The fumes produce suffocation.

Acid Pickle for Iron Castings

Hydrofluoric acid in a concentrated state is very strong and powerful. The standard commercial solution on the market usually contains 30% acid and is diluted for use with about 20 parts water. Unlike sulphuric acid it acts upon the sand direct. As it attacks lead, glass or porcelain it is usually mixed in a wooden vat well lined with a coating of tar or asphaltum.

Should any of the acid or pickle come in contact with the skin wash at once with diluted ammonia water or apply linseed oil and lime water.

As the pickle produces a smooth, clean surface on cast iron it is used on work that is to be polished or nickled.

Always pour the acid slowly into the water.
For cleaning cast iron that is to be nickel plated use the following:

Hydrofluoric acid	1 part
Sulphuric acid	3 parts
Water	4 parts

Leave in pickle about 20 minutes.
Remove and rinse in lime water composed of lime 1, water 20 parts.

Acid Pickles for Iron Castings

Sulphuric acid (Oil of vitrol) is reduced or mixed with from two to ten parts of water, depending upon strength of the acid and the thickness of sand scale to be removed. Use a lead lined tank or earthenware jar. Pour the acid slowly into the water and stir well.

Dip the work in the pickle and let soak a moment. Then remove and place in drain rack until sand becomes loose. It can then be washed off with clean water.

Acid Pickles for Brass Castings
Nitric acid one part To clean and
Sulphuric acid one part brighten
Muriatic one eighth part
If work is too dull in color add muriatic. If too white add nitric. Rinse in hot, clear water.

Bright Yellow Brass Dip

Sulphuric acid three quarts
Nitric acid two quarts
Salt one tablespoon
Bright Dipping Pickle
Sulphuric acid one gallon
Muriatic acid one half pint
Nitric acid one half pint
Water one half pint
Nitre 6 lbs.
Fumeless Acid Dip
Water five lbs.
Sulphuric acid ten lbs.
Saltpetre two lbs.

Dip for Brass Casting to be Tinned
Heat castings and dip in muriatic acid cut with zinc, then dip into molten tin. Again dip in the acid and remove surplus tin by shaking.

FLUXES USED IN BRASS FOUNDRY

 Brass, Bronze and Copper CastingsCrushed charcoal enough to thoroughly cover the metal. Coke dust, saw dust and tan bark are also used.

Glass enough to produce a fluid slag covering over the metal.

Salt one tablespoon to 50 lbs . of copper.
Aluminum
Zinc cloride tablespoon to 50 lbs . metal. Place on molten metal and stir in. Do not breathe fumes.

Babbit Metals and All Zinc and White Metals
Sprinkle surface with Sal Ammoniac or tallow and rosin.

Borings and Sweepings

Plaster of paris.

German Silver

Plaster of paris and nitre equal parts. Stir well into metal.

FLUXES AND PURIFIERS OF IRON Fluorspar Marble Chips, Lime Stone or Oyster Shells
Use from 25 to 50 lbs. of either of the above per ton of iron. Vary the amount used until the slag attains the right degree of fluidity. Place the flux on third and each succeeding charge of coke.

Aluminum

.2 to $.1 . \%$ used in ladle to remove gases and add life to the iron. It increases the softness ${ }^{\circ}$ and strength of white iron and decreases the strength of soft iron.

Crominum

About 1% used in ladle to increase the density and strength.

Fero Manganese

Used in cupola or ladle to remove sulphur, close the grain and make castings more sound and clean. It toughens the chill on chilled work.

FLUXES AND PURIFIERS OF IRON

Titanium

2% of 10% Fero Titanium cleanses the iron of oxygen and nitrogen, adds to the strength and lessens the tendency to chill.

Vanadium

$.1 \%$ used in ladle to toughen, clean and strengthen iron.

Cost of Iron Castings
The labor cost of producing 100 lbs . of castings in foundry's well equipped for producing the following lines is taken from actual records for 1914: Coke per cwt. 6 1-2c, Sand 3c, facings, clays, core binders, etc., 4c. These items remain fairly constant while iron labor and indirect vary. The following figures represent labor cost only, and are obtained by dividing the foundry pay roll by the lbs. of good castings produced. Indirect and all other charges being omitted.
Pump Shop Capacity 40 ton. Labor cost per 100 lbs., \$.90
Power Transmission, Pulleys, Boxes, Hang- ers, etc. Labor cost per 100 lbs., 1.03
Jobbing Shop 30 ton, half light and heavy, 1.08
Electrical Transformer and Light Motor, 50 ton capacity, 1.07
Electrical Heavy Motor Turbine Engine, etc., 1.01
Corliss Engine Air Compressors Rock Drills, Capacity of Shop 80 ton, 1.19
Paper Mill Machinery, Rag Engine, Pulp Grinders, etc., capacity 12 ton, 92
Stone Working Machinery, rubbing beds, Stone Planers, Derrick Castings, 20 ton capacity, 73
Tool Work Shop, Lathes, Planers, Milling Machinery, capacity 40 ton, 82
Printing Press Work, 12 ton shop, 1.11
Valve and Hydrant Shop, capacity 30 ton, 88
Wages Average for Moulders, $\$ 3.00$
Core Makers, 2.50
Helpers, 1.80

Estimating on the Cost of Castings

Many cost accountants use the following form or schedule when figuring on new work Coke $\$ 6.50$ and Sand $\$ 2.50$ in fdy. bins:

	Per cwt.	Per ton
Coke	\$. 065	
Sand	. 030	
Sundries.	. 040	
Flasks and Rigging .	. 050	
Iron. 750	
Shrinkage	. 040	
Moulding.	. 400	
Cores. .	. 300	
Discount 6\%	. 050	
Cleaning...	. 300	
Shipping Fgt.		
Overhead. .	. 500	
Profit.	. 250	

For Small Orders and Single Castings
Foundries are rapidly adopting the method used in machine shops on repair work. The customer pays for stock used and time spent on job.

Strength of Metals Transverse and Tensile

Per Sq. Inch in Lbs.	Trsnsversz	Tensile
Cast Aluminurn		20000
-- Aluminum Bronxe		-5000
- Gov. Bromse S<-10-2		330000
- Phoe. -.		500000
Mang.		6.5000
Tobin		6 F 0 O
5% siliont		70000
Cest Copper		27000
Iron-Cast Soit	2100	20000
.. Medium	23001	224000
- Hard	2500	230000
- Malleable	3000	100000
\% Lead		1600
Steel Cast		-20000
Steel Tool		100000
-- Semi 2		30000
Tin		4000
Zine		6000

To Find the Weight of Castings From Measurements Given in Inches
If square or rectangular multiply length by breadth by thickness, which gives the total number of cubic inches. Then multiply total number of cubic inches by the wt. of one cubic inch of the metal to be used.

Round Plates, Solid Round Columns or Shafts, Capacity of Ladles, Etc.

Square the diameter and multiply by .7854 which gives the number of cubic inches for one inch of thickness. Again multiply by the number of inches in length or depth and lastly by the weight of one cubic inch of the metal to be used.

Cylinders, Pulley or Balance Wheel Rims, Straight Pipes, Etc.

To the inside diameter add the thickness of one side and multiply by 3.1416 then by the thickness, again by number of inches in length or depth. This gives total number of cubic inches contained which must again be multiplied by the weight of one cubic inch of the metal to be used.

Balls

Cube the diameter and multiply by .5236. The result will be the number of cubic inches contained in pattern. This multiplied by the weight of one cubic inch of metal to be used gives the weight of ball.

To find the weight per cubic inch specific gravity being given, multilpy specific gravity by .036085 Wt. per cu. ft. Multiply specific gravity by 62.425 .

Diameter, Weight and Capacity of Cast Iron, Lead, Brass, Copper and Steel Balls

				$\begin{aligned} & \text { 莅 } \\ & \text { 关 } \end{aligned}$		\bar{y}
$1 N$	$\begin{array}{r} .5236 \\ 1.0227 \end{array}$	$\begin{array}{r} 1365 \\ -2666 \end{array}$	$\begin{aligned} & 2145 \\ & 4195 \end{aligned}$	$\begin{array}{r} .155 \\ 306 \end{array}$	$\begin{aligned} & 168 \\ & \hline 327 \end{aligned}$	
		2666 4607	-4195	$\begin{aligned} & .306 \\ & -526 \end{aligned}$	$\begin{array}{r} 327 \\ 563 \end{array}$	
$1^{1 / 2}$	1. 2.7π	4607	-245	- 226	$.563$	495
184	2.8062	. -316	1.151	1.85	39% 1.33	
	4.1555	1.082	1.715	1.25	1.33	113
	5.9641	1. 554	2. 446	1.78	1.90	1.66
	8. 1812	2. 132	3.355	2.4	2.6	2.25
	10. 8592	2. 835	4.455	3.2	3.45	3.04
	14.1352	3.655	5.798	4.2	4.5	3.8
$31 / 4$	17.9742	4.655	7-32 $=$	5.3	5.6	5.01
$31 / 2$	22.4493	5.852	9.204	6.2	7-14	$6:$
$3{ }^{2}=$	27.611%	J. 195	11.32	5.2	8.5	$\bar{\square}$
	33.5104	8. 735	13. 74	9.9	10.6	9.27
$41 / 4$	40.1945	10.45	16.45	12	12.86	11.25
$41 / 2$	47.:130	12.43	19.56	14.2	15.2	13.3
$4_{5}^{8} 4$	56.1152	14.62	23.01	16.5	17.8	15.7
	65.4500	17. 06	26. 4	19.3		18.5
514	75.7655	19. -5	31.07	29	24.2	21.2
$5{ }^{1 / 2}$	87.1139	22.71	3572	25.9	27.7	24.4
$5^{3 / 4}$	99.5413	25.95	40.52	29.8	31.5	$2^{2}-5$
	113. (197	29.48	46.35	33.6	36	
614	127.702	33.29	52.37	35.3	40.5	35.55
612	143.793	37. 53	ES. 97	42-7	45.	40
$6^{3} 4$	161.031	41.95	66.04	453	51.52	45.
	179.394	46.82	73.65	53.3		30.5
514	199532	52.01	51.53	59.8	63.5	55.5
-12	229.883	57.55	90.59	65.7	20.3	68
7^{3}	243.727	63.53	99.96	-3.1	7. 9	65.23
5	265.053	69.83	109.95	79.4		-5
81/4	294.0109	76.64	120.55	58.	91.14	82.3
$81 / 2$	321.555	53.82	131.55	95.6	102.3	90
584	350.51	91.44	143.86	105.2	105.7	95.2
	381. 704	98.51	155.55	$113 .$	121.	136
	443.9210	116.03	214.-75	135.6	165	146
1012	606.132	15\%. 59	245.51	180	193	169
11	696.911	151.65	255.38	207.5	222	195
$111 / 2$	796.329	197. 04	326.49	236.4	253	222
12	$904 .-80$	235.87	371. 09	275	255	254
13	1150.35	299.59	471.81	34	365	31.
14	1436.755	3-4. 56	539.28	430	455	402
15	1768. 150	450.69	724.89	330	565	494
16	-2144-665	559.11	3.9.63	6.43	686	019
17	25:2. 44	6.0 .63	1055		823	20
15	13053.63	795	1252	915	976	(105
19	3591.37	936	14.3	45	114.	1172
20	4183.80	1092	1715.	1255.	1340	1172

Conversion Table for Reducing to Parts of One Pound i.e. Ounces and Drams, Any Mixture Written in Percentages
It will be noticed that the table covers only fifty pounds but by selecting two figures from the table equalling the figure to be reduced no difficulty need be encountered.

The two examples further explain its use.

		Ounces	Drams		
Copper	$80 .=40=$	6	6		
Tin	6.	$40=$	6		
Zinc	7.5	1	6		
Lead	6.5	1	3		
Pounds	100.0	15	1		
		1	$16=1 \mathrm{oz}$		
		$16=1 \mathrm{lb}$			

		Ounces	Drams
Copper	3.		8
Tin	42	6	12
Lead	38	6	1
Antimony	17	$\frac{2}{14 \mathrm{oz}}$	$33=2$
	$\frac{2 \mathrm{oz}}{}$		dram 12

	$\mathrm{Oz} . \mathrm{Dr}$.	年	Oz. Dr.		Oz.Dr.		$\mathrm{Oz} . \mathrm{Dr}$.
. 39	1	12.89	2-1	25.39	4-1	37.85	6-1
. 78	2	13.23	2-2	25.78	4-2	38.28	6-2
1.17	3	13.67	2-3	26.17	4-3	35.67	6-3
1.56	4	14.06	2-4	26.56	$4-4$	39.06	6-4
1.95	5	14.45	2-5	26.95	$4-5$	39.45	6-5
2.34	6	14.84	2-6	27.34	4-6	39.84	6-6
2.73	7	15.23	2-7	27.73	4-7	40.23	6-7
3.13	8	15.62	2-8	28.13	$4-8$	40.62	6-S
3.52	9	16.01	2-9	25.52	4-9	41.02	6-9
3.91	10	16.41	2-10	25.91	4-10	41.41	6-10
4.30	11	16.80	2-11	29.30	4-11	41.79	6-11
4.69	12	17.19	2-12	29.69	4-12	42.19	6-12
5.03	13	17.58	2-13	30.08	± 13	42.54	6-13
4.47	14	1\%.97	2-14	30.47	$4-14$	42.97	6-14
5.86	15	15.36	2-15	30.86	4-15	43.36	6.15
6.25	1-0	18.75	$3-00$	31.25	5-00	43.75	$7-00$
6.64	1-1	19.14	3-1	31.64	5-1	44.14	- -1
7.03	1-2	19.53	3-2	32.03	5-2	44.53	7-2
7.42	1-3	19.92	3-3	32.42	5-3	44.92	T-3
7.81	1-4	20.31	3-4	32.81	5-4	45.31	7-4
S. 20	1-5	20.70	3-5	33.20	5-5	45.60	7-5
8.59	1-6	21.09	3-6	33.59	5-6	46.09	7-6
8.95	1-7	21.45	3-7	33.98	5-7	46.48	$7-7$
9.35	1-5	21.85	3-8	34.37	5-8	46.87	7-8
9.7	1-9	22.27	3-9	34.69	5-9	45.27	--9
10.16	1-10	22.66	3-10	35.16	5-10	47.66	7-10
10.55	1-11	23.05	3-11	35.55	5-11	48.05	7-11
10.94	1-12	23.44	3-12	35.94	- -12	48.44	7-12
11.33	1-13	23.83	3-13	36.33	- -13	48.83	7-13
11.72	1-14	24.22	$3-14$	36.71	5-14	49.22	-14
12.10	1-15	24.61	3-15	37.11	5-15	49.61	7-15
12.50	2-0	25.00	4.00	37.50	6-00	50.00	8-00

Diameter, Circumference, Area and Weight of Round Sections from $1 / 2$ Inch to 36 " Diameter When Cast of Aluminum, Bronze Brass or Cast Iron
To find the weight of pipe or cylinder subtract the weight of inside diameter from weight of outside diameter and multiply by total length in inches.

No. 12 aluminum alloy 8% copper wt. per cu. in. .102. Bronze copper 88 , tin 10 , zinc 2 , wt. per cu. in. 3195 .

Brass copper 70.
Zinc 30 , wt. per cu. in. . 303 .
Cast iron wt. per cu. in. . 2604.

$\begin{gathered} \dot{\sim} \\ \stackrel{\sim}{\square} \end{gathered}$	تٍ	¢	$\frac{g}{4}$			
1. 2. 3.	1.5708	. 1963	. 02002	. 0627	. 0595	. 0511
	1.9635	. 3068	. 03129	. 0980	. 0929	. 0799
	2.3562	. 4417	. 04505	. 1411	. 1338	. 1150
	2.7489	. 6013	. 06133	. 1921	. 1822	. 1566
	3.1416	. 7854	. 08011	. 2509	. 2380	. 2045
	3.5343	. 9940	. 1014	. 3176	. 3012	. 2588
	3.9270	1.227	1.252	. 3920	. 3718	. 3195
	4.3197	1.484	. 1514	. 4741	. 4497	. 3864
	4.7124	1.767	. 1802	. 5646	. 5354	. 4601
	5.1051	2.073	2.114	. 6623	. 6281	. 5398
	5.4978	2.405	2.453	. 7684	. 7287	. 6263
	5.8905	2.761	2.816	. 8821	. 8366	. 7190
	6.2832	3.141	3.204	1.004	. 9517	. 8179
	6.6759	3.546	3.617	1.133	1.074	. 9234
	7.0686	3.976	4.056	1.270	1.205	1.035
	7.4613	4.430	4.519	1.415	1.342	1.154
	7.8540	4.908	5.006	1.568	1.487	1.278
	8.2467	5.411	5.519	1.729	1.640	1.409
	8.6394	5.939	6.058	1.898	1.800	1.547
	9.0321	6.491	6.621	2.074	1.967	1.690
	9.4248	7.068	7.209	2.258	2.142	1.841
	9.8175	7.669	7.822	2.450	2.324	1.997
	10.210	8.295	8.461	2.650	2.513	2.160
	10.603	8.946	9.125	2.858	2.711	2.330
	10.996	9.621	9.813	3.074	2.915	2.565
	11.388	10.321	10.53	3.298	3.127	2.688
	11.781	11.045	11.27	3.529	3.347	2.876
	12.174	11.793	12.03	3.768	3.573	3.071

$\underset{\sim}{\dot{E}}$			$\begin{aligned} & \sum \\ & \sum \\ & \sum \end{aligned}$	$\stackrel{\text { N }}{3}$	$\begin{aligned} & \text { 恐 } \\ & \text { 2n } \\ & \hline \end{aligned}$	
4.	12.566	12.566	12. 82	4.015	3.507	3.272
1/3	12.959	13.364	13.63	4.270	4.049	3.480
14	13.352	14.186	14.47	4.532	4.295	3.694
38	13.744	15.033	15.33	4.803	4.555	3.915
12	14.137	15.904	16.22	5.081	4.819	4.141
5	14.530	16.800	17.14	5.368	5.090	4.375
${ }^{3} 4$	14.923	17.721	15.08	5.66?	5.370	4.615
- 73	15.315	18.665	19.04	5.963	5.655	4.860
5.	15.708	19.635	20.03	6.273	5.949	5.113
$1 / 3$	16.101	20.629	21.04	6.591	6.251	3.372
14	16.493	21.645	22.05	6.917	6.559	5.637
3	16.SS6	22.691	23.14	7.250	6.575	5.909
12	17.279	23.758	24.23	7. 591	-. 199	6.157
5	17.671	24.850	25.35	7.940	7.530	6.471
3	18.064	25.967	26.49	8. 296	7.86 S	6.762
7^{4}	15.457	27.109	27.65	8.661	S. 214	-.059
6.	18.850	25.274	25.84	9.034	8.567	ㄴ.363
$1 / 8$	19.242	29.465	30.05	9.414	8.925	7.673
14	19.635	30.680	31.29	9.802	9.296	7.989
3	20.028	31.919	32.56	10.20	9.671	S.312
12	20.420	33.183	33.85	10.60	10.05	S. 641
5	20.813	34.472	35.16	11.01	10.45	8.977
3	21.206	35.755	36.42	11.43	10.84	9.318
- ${ }^{7} 8$	21.595	37.122	37.86	11.86	11.25	9.667
7.	21.991	38.485	39.25	12.30	11.66	10.02
1 19	22.384	39.871	40.67	12.74	12.08	10.35
14	22.776	41.282	42.11	13.19	12.51	10.75
3	23.169	42.718	43.57	13.65	12.94	11.12
12	23.562	44.179	45.06	14.12	13.39	11.50
5/3	23.955	45.664	46.35	14.59	13.84	11.89
3	24.347	47.173	48.12	15.07	14.29	12.28
[/8	24.740	45.707	49.68	15.56	14.76	12.68
8.	25.133	50.265	51.27	16.06	15.23	13.09
1/8	25.525	51.819	52.89	16.57	15.71	13.50
$1 / 4$	25.915	53.456	54.53	17.08	16.20	13.92
3, 8	26.311.	55.088	56.19	17.60	16.69	14.34
12	26.704	56.745	57.85	18.13	17.19	14.78
5	27.096	5 S .426	59.59	18.67	17.70	15.21
$3{ }^{3}$	27.489	60.132	61.33	19.21	18.22	15.66
78	27.882	61.862	63.10	19.76	18.74	16.11
9.	28.274	63.617	64.89	20.33	19.28	16.37
1/8	28.667	65.397	66.70	20.89	19.82	17.03
$1 / 4$	29.060	67.201	68.55	21.47	20.36	17.50
$3 / 3$	$29.45 ?$	69.029	70.41	22.05	20.92	17.98
12	29.845	70.882	72.23	22.65	21.48	18.46
53	30.238	72.760	74.22	23.25	22.05	18.95
3	30.631	64.662	76.11	23.85	22.62	19.44
$7 / 3$	31.023	76.589	78.12	24.47	23.21	19.94

甶	Ey	¢		$\begin{gathered} \text { Nㅡㄹ } \\ \text { OU } \end{gathered}$		
10.	31.416	78.540	80.11	25.09	23.86	20.45
	31.809	80.516	82.13	25.72	24.40	20.97
	32.201	82.516	84.17	26.36	25.	21.49
$3 / 8$	32.594	84.541	86.23	27.61	25.62	22.01
1/2	32.987	86.590	88.32	27.67	26.24	22.55
$5 / 8$	33.379	88.664	90.44	28.33	26.87	23.09
- $3 / 4$	33.772	90.763	92.58	29.00	27.50	23.63
	34.165	92.886	94.74	29.68	28.14	24.19
12.	34.558	95.033	96.93	30.36	28.79	24.75
	34.950	97.205	99.15	31.06	29.45	25.31
	35.343	99.402	10.13	31.76	30.12	25.88
	35.736	101.62	10.37	32.47	30.79	26.46
	36.128	103.87	10.59	33.19	31.47	27.05
	36.521	106.14	10.83	33.91	32.16	27.64
	36.914	108.43	11.03	34.64	32.85	28.24
	37.306	110.75	11.30	35.38	33.56	28.84
	37.699	113.10	11.54	36.14	34.27	29.45
13.	38.092	115.47	11.78	36.89	34.99	30.07
	38.485	117.86	12.02	37.66	35.71	30.69
	38.877	120.28	12.27	38.43	36.44	31.32
	39.270	122.72	12.46	39.21	37.18	31.96
	39.663	125.19	12.77	40.00	37.93	32.60
	40.055	127.68	13.02	40.79	38.69	33.25
	40.448	130.19	13.28	41.60	39.45	33.90
	40.841	132.73	13.54	42.41	40.22	34.56
$1 / 8$	41.233	135.30	13.80	43.23	41.	35.23
$1 / 4$	41.626	137.89	14.06	44.06	41.78	35.91
$3 / 8$	42.019	140.50	14.33	44.78	42.59	36.59
- $1 / 2$	42.412	143.14	14.60	45.73	43.37	37.27
- $51 / 8$	42.804	145.80	14.87	46.58	44.18	37.97
$3 / 4$	43.197	148.49	15.15	47.44	44.99	38.67
7/8	43.590	151.20	15.42	48.31	45.81	39.37
14.	43.982	153.94	15.70	49.19	46.64	40.09
$1 / 8$	44.375	156.70	15.98	50.07	47.48	40.80
$1 / 4$	44.768	159.48	16.27	50.95	47.72	41.53
3/8	45.160	162.30	16.55	51.85	49.18	42.26
1/2.	45.553	165.10	16.84	52.77	50.03	43.
5/8	45.946	167.99	17.11	53.67	50.90	43.74
$3 / 4$	46.338	170.87	17.43	54.59	51.77	44.49
7/8	46.731	173.78	17.73	55.52	52.66	45.25
15.	47.124	176.71	18.02	56.46	53.54	46.02
	47.517	179.67	18.33	57.40	54.44	46.79
	47.909	182.65	18.63	58.36	55.34	47.56
	48.302	185.66	18.94	59.32	56.25	48.35
	48.695	188.69	19.25	60.29	57.17	49.13
	49.087	191.75	19.56	61.26	58.10	49.93
$3 / 4$	49.480	194.83	19.87	62.25	59.03	50.73
$7 / 8$	49.873	197.93	20.19	63.24	59.97	51.54

E.	¢ ¢ U	¢	$\stackrel{E}{\sqrt{3}}$	-	¢	$\xrightarrow{\text { ¢ }}$
34.8	106.81	907.92	92.61	290.1	275.1	236.4
	107.20	914.61	93.29	292.2	277.1	238.2
	107.60	921.32	93.97	294.4	279.2	240.
	107.99	928.06	94.66	296.5	281.2	1241.7
	108.38	935.82	95.45	299.	\|283.6	243.7
	108.77	941.61	96.04	300.8	-285. 3	245.2
	109.17	948.42	96.71	302.9	287.3	246.9
	109.56	955.25	97.44	305.2	289.4	248.7
	109.95	962.11	98.14	307.4	291.5	250.5
	110.34	969.00	98.84	310.	293.6	252.3
	110.74	975.91	99.54	311.8	295.7	254.1
	111.13	982.84	100.2	314.	297.8	255.9
	111.52	989.80	100.9	316.2	300.	257.7
	111.91	996.78	101.6	318.5	302.	259.6
	112.31	1003.8	102.4	320.7	304.2	261.4
	112.70	1010.8	103.1	323.	306.3	263.2
36.	113.09	1017.9	103.8	325.2	308.4	265.1

To find the weight of hexagon section multiply the weight given for round section of same diameter by 1.12 . If octagon multiply by 1.082 .

Table Giving Circumference, Area and Weight of Round Plates 1 Inch Thick From 3 to 12 Feet Diam.

$\stackrel{.}{\dot{\Omega}}$			$\begin{aligned} & \stackrel{3}{5} \\ & -\frac{0}{0} \\ & 0 \end{aligned}$	$\begin{gathered} \text { घ゙g } \\ \stackrel{H}{\circ} \end{gathered}$			+
$37^{\prime \prime}$	116.23	1075.21	280	71 "	223.05	3959.2	1032
38	119.38	1134.11	296	72	226.19	4071.51	1061
39	122.52	1194.59	311	73	229.33	4185.4	1091
40	225.66	1256.64	327	74	232.47	4300.85	1122
41	128.80	1320.25	344	75	235.62	4417.87	1153
42	131.94	1385.45	361	76	238.76	4536.47	1183
43	135.08	1452.2	379	77	241.90	4656.64	11214
44	138.23	1520.53	396	78	242.04	4778.37	1246
45	141.37	1590.43	415	79	248.18	4901.68	1278
46	144.51	1661.91	434	80	251.32	5026.56	1310
47	147.65	1734.95	453	81	254.46	5153.01	1343
48	150.79	1809.56	472	82	257.61	5281.03	1377
49	153.93	1885.75	491	83	260.75	5410.62	1410
50	157.08	1963.5	512	84	263.89	5541.78	1445
51	160.22	2042.83	533	85	267.03	5674.51	1479
52	163.36	2123.72	553	86	270.17	5808.82	1515
53	166.50	2206.19	575	87	273.31	5944.69	1550
54	169.64	2290.23	597	88	276.46	6082.14	1586
55	172.78	2375.83	620	89	279.60	6221.15	1622
56	175.92	2463.01	642	90	282.74	6367.74	1658
57	179.07	2551.76	665	91	285.88	6503.90	1696
58	182.21	2642.09	689	92	289.02	6647.63	1733
59	185.35	2733.98	713	93	292.16	6792.92	1772
60	188.49	2827.44	737	94	295.31	6939.79	1809
61	191.63	2922.47	762	95	298.45	7088.24	1848
62	194.77	3019.08	787	96	301.59	7238.25	1887
63	197.92	3117.25	813	97	304.7	7389.83	1927
64	201.06	3217.65	838	98	307.8	7542.98	1967
65	204.20	3318.31	865	99	311.01	7697.71	2007
66	207.34	3421.2	892	100	314.16	7854.00	2048
67	210.48	3525.66	919	9 ft .	339.29	9160.88	2382
68	213.62	3631.69	945	10	376.99	11309.73	2941
69	216.77	3739.29	975	11	414.69	13684.78	3558
70	219.91	3848.46	1003	12	452.39	16286.02	4234

CUTTING PRICES (With Apologies to "Hamlet.")

To cut or not to cut. That is the question. Whether it is not better in the end To let the chap who knows not the worth Have the business at cut-throat prices, or To take up arms against his competition, And by opposing cut for cut, end it. To cut-and by cutting put the other cutter Out of business-'tis a consummation Devoutly to be wished. To cut-to slashPerchance myself to get it in the neck-Aye-there's the rub; for when one starts to meet The other fellow's prices, 'tis like as not He's up against it good and hard.
To cut and to slash is not to end the confusion And the many evils the trade is pestered with; Nay, nay, Pauline; 'tis but the forerunner Of debt and mortgage such a course portends. 'Tis well to get the price the goods are worth And not be bluffed into selling them for what So-and-so will sell his goods for.
Price-cutting doth appear unseemly And fit only for the man who knows not What his goods are worth, and who, ere long, By stress of making vain comparison 'Twixt bank account and liabilities, Will make his exit from the business.

Anon.

$\begin{gathered} \text { s!!o } \\ -\mathrm{de} \partial \mathrm{u} u! \end{gathered}$	
$\begin{array}{r} 401 \\ -8 \mathrm{u}!\mathrm{ys} \end{array}$	
$\begin{array}{r} \text { sure } \\ -10 \text { M } \end{array}$	
วэェルーツ	
$\begin{gathered} \text { !IEU } \\ -\dot{\square}!\partial u! \end{gathered}$	
Einqsil！	
ovstouery	
Oregn	
PUE［	
arou！lle	
U	
s！nor＂	
085อ！	
HIOX MəI	
$\underset{\sim}{E}$	

क人

Nづ上だ ลが N゙心
 －$\quad \mathrm{N} \quad-$ －ivan－

MEMORANDA
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MEMORANDA

MEMORANDA

MEMORANDA

MEMORANDA

Pig Iron
 Over 40 Brands

Spiegeleisen, Fluor Spar Ferro-Manganese

THE knowledge gained by daily contact with melters throughout the country since 1880 might prove valuable in making up mixtures for special work. This knowledge is yours for the asking.

ROGERS, BROWN \& CO.

New York-Cincinnati-Chicago Buffalo-Philadelphia-Boston St. Louis-Cleveland-Pittsburgh

The Vulcan Facing Co.

Producers and Distributers of the highest grade foundry facings for loam dry or green sand castings and cores. Graphite facings which will not run, peel or buckle from mold or core and always produce a clean blue satin finish with a minimum of cleaning expense.

Your inquiry and orders are solicited by The Vulcan Facing Co. Easton, Penna.

The various steps of the building of BARTLEY CRUCIBLES
are based on four important points: FIRST-The careful grading of the raw material by repeated analysis.
SECOND -Painstaking mixture and preparation.
TH IR D-Perfect molds and machinery for the formation of the crucibles under just the right pressure to make the walls homogeneous.
FOURTH-Exact and sufficient burning. RESULT: Barkley Crucibles show a service factor which makes them economical "tools" in all crucible work.
Send for our literature. It covers all Bartley products-tilting furnace crucibles, retorts, stoppers, color bowls, etc.

Jonathan Bartley Crucible Co.

Trenton, - - - N. J.

> Albany Molding SAND
"The World's Best"
Carefully selected and graded for the work required

FRENCH SAND

Sand Blast Sand
Jersey Fire Clay and Sand
Seacoal Facing
Etc., Etc.
ALBANY SAND \& SUPPLY CO. ALBANY, N. Y.

TOU are paying from 15 to 50% too much for your Castings, unless you are using

> Arcade Molding Machines

Forty years' foundry experience behind every one

Correspondence solicited

ARCADE MANUFACTURING COMPANY

1700 Arcade Avenue FREEPORT - - ILLINOIS

Pettinos Plumbago

The Best for Your Money

Gives your Castings a smooth, bright color \%

Pettinos Molding Sands

 Uniform and carefully selected by experienced men. $\therefore \quad \therefore \quad \therefore$Write us for prices

Pettinos Brothers

Main Office

new york Bethlehem, Pa. philadelphia

1．－The blades are of Mayari Chrome Nickel Steel，the toughest and finest spring steel ever put into a shovel．
2．－The handles are of selected XX Northern White Ash，second growth．
3．－Handle has our new patent malleable dirigo grip that is especially strong，immune against accidents and an excellent tamper．
4．－Very sturdy construction．
5．－Light weight $\}$ Easy to use．
回回回回回回回回回回回回回

回回回回回回回回回回回回

6．－Will outlast any other shovel two or three to one．

7．－The blade edge never curls up．It may eventually wear down，but the edge will always be in good shape．

8．－Every shovel guar－ anteed to the pur－ chaser＇s complete satisfaction．

9．－Red edge molder shovels have trebled our sale of molders．

10．－Steel rolled and han－ dles．made in our own factory．We are sole guardians of the quality．

The Wyoming Shovel Works WYOMING，PA．

Walter-Wallingford

$$
\& C_{0}
$$

Pig Iron
Coke
Alloys

CINCINNATI PITTSBURGH
CHICAGO
DETROIT

PREPAREDNESS and QUALITY mean SAFETY FIRST

That covers all the ground, when applied to the Miller Fluxes, for Foundry practice of all metals, ferrous and non-ferrous. The Miller Keystone Flux has been on the market for the last ten years and is well known for its all around saving and quality raising. Here is a brief outline of what it will do.

It saves its cost ten times over by the saving of Coke, dropping of Cupola clean, faster melting, hot fluid Iron and consequently clean Iron.

Our RADIOCLARITE for Brass, Bronze and Non-ferrous metals is the wonder of the metal trade. It is more than a Flux. It is an amalgamator, cleaner, strengthener, beautifyer and above all an economizer. It saves tin and will take care of from two to three per cent Iron particles. A great railroad company claims it takes care of five per cent for them.

Send for a trial keg of Radioclarite and a barrel of Keystone Cupolo Flux. We a re willing to send it free of charge to anyone in the Foundry business who will give it a fair trial.

Don't wait for correspondence, but send now.

THE BASIC MINERAL CO.

Box 276, N. S. Pittsburgh, Pa.

Just as interesting as this reference book is our BULLETIN---CATALOGUE OF FOUNDRY EQUIPMENT
We will send you on request, the full catalogue or the bulletin devoted to the subject in which you are interested.

Our New England Branch in Providence, R. I., will take good care of inquiries from that section, and we solicit orders and correspondence.
J. W. PAXSON CO.

Manufacturers and Jobbers 1021 N. Delaware Ave., Philada., Pa.
(ases)

LIBRARY OF CONGRESS

