MOUNT

Design of a
Jib Crane for a Foundry

Mechanical Engineering
B. S.

1902
为

DESIGN OF A JIB CRANE FOR A FOUNDRY

MADISON HOGE MOUNT

THESIS FOR DEGREE OF BACHELOR OF SCIENCE
IN MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING
UNIVERSITY OF ILLINOIS
PRESENTED JUNE 1902

UNIVERSITY OF ILLINOIS

119\% 29. 2902
190

THIS IS TO CERTIFY THAT THE THESIS IRIREARED UNDER MY SUPERVISION BY

Madison Hose Mount,

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR TIE DEGREE

IIEAD OF DEPARTMENT OF

Digitized by the Internet Archive in 2013

http://archive.org/details/designofjibcrane00moun

DFGIGIN FOK A TIRRFR TON JIB CRANF FOR THF FOUNDRY OF THF UNIVFRSI'Y OF IJIJINOIS.

Due to the increaser railroak industry, shipning, and nanufacture of iron and steel in the pisit fen years, the demand for oranes of various designs has becone so great that the attent,ion of several large concorns is no: devotod solely to the nanufacture of hoisting machinerv.

The books desrintive of eranes are few and by reason of improvenents which have been erfected they do not contain information concerning the most recent nractioe. The best information on modern practice winch I was able to obtain was from various ataloves rublishec by American manufacturers of crames and hoisting machonery as a means of advortising their products, also from articles in the recent technical perincioals.

TYPF OF CRANE.
In deaiding unon the type of crane requirect, the nature of its duties must of eourse receive the first consideration, aiso the character of the nower to use. The orame in conside ation is to be Dlaced in tho foundry of the University of IIlinois. The foundry roon is not large, the maximum inad that the erane will ever be required to lirt ill not be more then five or six thousand pounds and usually much less. Tre work is done by students, usiually or larye classes, thus help is abundant, therefore hand nower is the most economieal and best adanted to the cowditions. Mnother equally important reature consictered in this design is neatness and general anvearancé.

Plate II in the complete assemiled draning showing the
final result aftor axrefully working out al: the details requirod to meet as conpletoly as possible all tile requirementos.

GFNTRAL DFSCRIPTIOIN OF CRANF.
Jach member of the frame consists of two partis, serarated 12" so as to yermit, the chain and block to pass between thers, so that the ioad san be moved slose in to the mast. The hoisting meshanism is attached to the mast near its foot, ard the running block, Which sarries the load, is suspended frol: a trolley travelling on thr jib and aanaibe of movement in and out by means of indenendent gearins attached to the jib at its intersection with the mat.

The frame consistis of steel chamnel beams, each of the memhers of the frame being eomposed of two such channels. The dimensions are such as to give a high factor of shfoty, and the several partis are very securely connected at their intersections by riveting.

Hoisting is effected througin a train of syur goaring, operated ' y two cranks. It is nrovided with an automatic raohet and a safety friotion slutch. Thus arranged the machine is self. sus taining and can be iert at any time with the load in susvension Withou' danger of the load runnin' down or handles flying back. The hoist is nrovider with two shanges of speed, the change from fast to slow sleed or viop versa being sontrollec by simply shifting the orank shaft endwine.

The load is lowered by simply turning the handles nackurard which releases the friction dises and as soon as the backward motion of the hanciles stons the dises again become engaged and the load is held.

Hotation is easily effenter by mulling or nushing the susnenden load. Motion of the trolly on the jin, in cither direction, is effected by gearing operater from berow, and by an eadiess hand

figure 1.

Figure 2.
 (2)

chain.

THF DFSIGN.

Bufore beginning the design, I examined the foundry in which the crane was to be located arm took such measurements as were essential in aetermining the prinoinle dimensions. The orane is to be placed noar the mothth wall so as to necurn as littie room as possible and not to be in the way.

Th' lower mambers of the roor tmasses are $16^{\prime}-2 "$ pove the floor of the foundry sinee the jib should be 16^{\prime} or $i 8^{\prime}$ in length I deeider that the jii should be sumrorted by inolined struts, and that the unper bearine should be supnorted by the roof trusses While the lower bearing rests on a solid foundation. Figure I is a sketoh showing the location aici pronortions of the roof t musses.

As tie hoisting chain will be sumported by a trolley containing four rollers, this will prevent th? load from eoming entirely to the end of the jib, and the weigint of the trolley, hoisting chain, block arit nook will add to the weight, earried by tho jib. The the maximum wright, to be lifter is three tons, the maximum load on the crane is three tons plus weight of trolley, nlus weight of hoisting chain, nlus waight of hook and blook. Consiclering the trolley rollers to be six inones in diameter and l2" from centers of rollers, $1 / 2 "$ hoisting chain and chain sheaves 6" in diametor,
a rough estimate of the weight is about 300 mounds. Thus, the maximun ioad on the arane is 6300 nounds. Then the load cannot ampoach eloser to the end of the jib tha $9 "$. Figure ?. THF FRAME.

After making several investigations on the positions and number of supports ron the jib. I decider that the neatest arnange-

ment would be to sumport the jiblin three maneos. One eid numporteat at the mast and the otiner tio sumportas at the bost advantasecuss noints, minioh are foumd, as rollows. In sase one stmit is us , seee Figure 3,the host advantageors yoint, to Dlace the stmut would be to make $b=1 / 5$ a: but an arrangement like this ramimn 7 ninannels in the jib than look woll, and a botter arrangenent is flown in Figure 4. This requires equal stresses in the jib at the dangerous loonts. Thus $a=a$ and. $a+a=8 b$ or $b=7 / a$ ar (981 $-9 \prime$.). $b=1 / 9 \times\left(18^{1}-9 \prime\right)=\frac{207}{} 9^{\prime \prime}=23 \prime$
$a+a=8 \times 23^{\prime \prime}=184^{\prime \prime}$.
Therefore $a=92^{\prime \prime}$

$$
b=2 . z^{\prime \prime}
$$

In order to give ample room for all parts above the jib, I decided to place the center line of the fib ? " helow the lower edge of roof t,musses. Then I made a sketon showing the anproximate positions of vivots ams cross piede to support the unper bearing of the erare. See Figure 5.

I had now detemined the linear dimensions of the mast and jib. I next laid out a iraring similar to Figure 6 and made sone graphical tosts so as to detemane the positions of tin merner R on L, so as to amproach a uniform stress in the two merbers. After several trials I deninen to Diac? then as show in the figure, the senter line of R intersects the center zine of I ?t, noint 22' 3" from the lower end.

I now macie a complete graminisal solution of al the stresses in the orane with the maximum loar at the greatest dist, anse from the mast. I aonsidered sach joint as eing he d by one pin and the line of astion of the forses asting along the e nter line of
the nieces connosin; tho we: bers. See Plate I. Ty jisadne, R so that the center Line passes timorerh A...A, tha point where the masit shouid be sumporier, the points Λ... Λ ridd not some over the supnont, as R was so oblique, See Finur 7. This causer the moment, arm of the eind of the j ib wo beecoit preater tizen was first, intenciex so I changed the position of R so that the nend of the center line same direet, ly under the noint. $1 .$. A. as shown in pigure 6 .

The lightest wight onaniels were chosen ration than smaller and heavier ones, as the broad channels make a better a yearance than saialler ones of cawal strength. The l ngthoof the meabors
were figuren acouratexy from the intersestion of the center lines sroont, at the joint betwen K and R winh was axloulater from the intersection of the center iir: Y. Arim the inwer pdge of K. for reasons given berore. I now cletermined the reaz lengtins that tine bran-a shouid be out, and the shane of the ends by the followins method. I laid off very carefully the entire nian of the center lines of the crane to a reauced soale, seeing that all dimensions checked with the calulat, ions. These lines at the intersotions gave the relative positions of the members. Then I lizic off carefully to fuli scale the exact wicths of the channels to be used on each of their aenter lines. The intersections of the edges of the shannels lair nff gave the exact forr of the joint to ruli soale. Prom this fisure I measured carefully the fom of the ends of the nembers aiso the a;ount to be taken from the saloulated valuen to get the lengths which the nieces siould be out. I now desisned each joint to Culi scale in order to ore acourately ontain a strong and good looking joint.

Reforemees to artioles and boots on orancos. נ) iu ilebezenge von Ad krmst. Towne on cranes.

The Design of crames and Crane Detaiis.
1..1. Jin.:', Jan. 12, Feh. 24, liaroh 21, 1002. Twenty Ton wreok Crane, R.R. Ga\%. Nov. Io, 1893, n. 81.3. Compresseat Air Shon. " " " Feh.10, 1823, ?. 106. Trans A.S.C.J. XV ? 369.

Fing. Neirs Jan. 25, 2887.
" " inus. 22, 1891.
" " Nov. 25, 1880.
" " Alve 5. 1890.
$"$ "Nov. 5, 18.81.
R.P.Giz. Aug. . 44, 1891.

Jon. Eng. Jan. 13, 1888.
R.P. Gaz. July 10, 189J.

Jnt. News Feb. 7, 1891.
R.R.Ga\%. July 31, 2891.

HOISTING GEARING.
Ffficieney.

Refore desisning the hoisting maninery it is essesntial to know something about whatefficiancy the apparatus wizj have. In order to do this something must be deedred unon as to the size and arraigement of the parts. Let Figure 8, reoresent rowyhy the arrangement, of the mechanism. I,JI,III, ans IV are chain sheaves and V is the noisting mindless. When the load is raiss the chain passes over II, III, IV and is wound on the dmurt, consequently the moverent of these narts amses friotion ant ahsorbs some of
the wnek ammlex at the orank.
Fron Profossor Goodenough's notas on Menmamisi; of Nachinery nage 25 and $48, I$ obtainerl the followins erdaiencies.

Fffiedency of fixad onain mizer.
Are of contact 180° efficiency .358 .
" " 90° " .964.
Frficiency of hoisting drmand winones from . 30 to . 97 . Fnom this I consinered that the different parts of the hoisting apparatus would have efficienoies as folioms:-

Hoisting windless an efficiency of .90 .
Then the entime efficiency of the apnaratus would be $.95 \times .96 \times .96 \times . .90=.788$. For use in the design. I considered the efficiency to be 75 per onnt.

The maximum load to be lifted is 6000 pounds. 4 his rives a load of 3000 poinds acting on sach side of the chain sunmorting the load. Then tine power ampled at the oranks must be sufficient to pili 3000 nounds on the hoisting shain and to over some the friction, or the sane as to pull $3000 \div .75=4000$ pounds.

The folloving notes regarding hoisting drums are taken from Professor Goodenough's"Notes on Hechanies of Mashinery" and originally from "Des Ins nieures Tascheniouch."

> "HOISTING BY HAND POWRR".
"Numher of workmen 1,2 , or 4 ; force applied by each workman, $15 \mathrm{~kg}(33 / \mathrm{lbs}$.$) for an eight hour working neriod. Crank velocity$ 0.8 to 7.0 metres ($21 / 4$ to $31 / 4 \mathrm{ft}$.) rer second. Crank arm $\overline{5}$ to 40 cm . (14 to 16 inches) Iong: the arank sinft shorirl be about
$31 / 4$ from the fionor. Pairs o goars in reducing train 2 , at most 3 ; if greater reduction is noeder a block and tackle is interposed betreen drum and load . Greatest single reduction J.:8. The rediuction bewteen crank and drum is; to be so designed as to give gears of maxi.um dlameters. The gear train should be arranged so that one or more naims may be thrown out in order that lient loadss may be iiftod at highers sneed."
"The smaijost number of teeth in gear or pinion $=10$; the pitch is deterrained fron the pressure between teetin; breadth of tooth $=$?itch \times 2. The efficienoy of cach pair of train is about 0.92, taking account of tooth and journal friction. The speed of the loar may be 0.10 to 0.35 metres (4 to 14 inenes) per seaond." From the ainove the foliowing conowsions aro draw : In this sase one an wili not continue to wrk at the handie very long,then it is safe to consid re that one nan san exert a prossure of 35 pounds on the orank handles. Let the greatost numben of workmen $=2$, and let there be a crank for each workman. Let the orank ranius $=16$ inches and iet the revolutions ner minute of the crank $=20$. Then the volocity of the orank handles will be

$$
\frac{3.1416 \times 2 \times 16}{60 \times 22} \times 20=2.79 \text { per second. }
$$

The power exerted per minute on the cranks is

$$
\frac{2 \times 16 \times 3.1416 \times 2 \times 35 \times 20}{13}=12733 \mathrm{ft} .105
$$

The maximum resistance due to load and friction is equal to a pull of 4000 lbs. on the circumference of the hoisting drum. Then to wind in one foot of shain on the noisting drum per minute requires 4000 ft . Ilns mork, but $: 1732 \mathrm{ft}$ lhs., or work ne minute can be done at the orank. Inen the number or foet of chain that san bo wound on the drun por minute $=\frac{11732}{4000}=2.933$ feet.

$$
-1 / \text { nt Irnot }
$$ $\frac{4 \times 1 \pi}{3.1416}=15.30^{\circ \prime}$. The revolution c per minute of the drum $=$ $\frac{2.933}{4}=0.73385$. The revolutions per yimute of tho crank $=30$. Then the velocity ratio between the crank and drum $=\frac{20}{0.733 .25}=27.3$ With this velocity it will require two pairs of gear when ls. Referring to plate IV the wheel Al turns with the drum: , Wheels As and 13 twin together and minion A4 turns with the cranks.

$$
\text { Let } a=\text { number of teeth in } A I
$$

Tinen $\quad \frac{x_{2}}{x_{2}}=\frac{a}{4 b}$ and $\quad \frac{x_{3}}{x_{2}}=\frac{c}{d}$
and

$$
\frac{x_{2}}{\bar{x}_{1}} \times \frac{x_{3}}{x_{2}}=\frac{a}{k b} \times \frac{c}{\tilde{a}}
$$

Therefore $\frac{x_{3}}{x_{1}}=\frac{a}{b} \times \frac{0}{d}=0.7 \frac{20}{3} \frac{25}{2}=27.2$
Make the reduction betien A. ans A ? $=5$ or $\frac{\bar{b}}{b}=5$
Then $\frac{X_{3}}{X \frac{3}{1}}=5 \times \frac{c}{d}=27.2$

$$
\begin{aligned}
\frac{c}{d}=\frac{27}{2} \cdot 2 & =5.45 \\
& \frac{x_{3}^{5}}{x_{1}}=5 \times 5.45
\end{aligned}
$$

Then $\quad \frac{2}{\bar{B}}=\frac{2}{I 5}=5$

$$
a=15 \times 5=75 \text { anti }
$$

$$
\begin{aligned}
& \text { Let } X_{I}=\mathrm{R} . \mathrm{P} . \mathrm{H} \text {. of wheel AI and cirurn. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c}{d}=\frac{0}{15}=5 \cdot 45 \\
& c=10 \times 5 \cdot 45=06
\end{aligned}
$$

Thus the number of teeth in eson wheel is detemminert．

$10=15$	＂	＂	＂	＂	11	A品。
$a=G C$	＂	＂	＂	＂	${ }^{\prime \prime}$	A． 3
$\mathrm{cl}=12$	＂	$1 \cdot$	＂	＂	＂	＾4．

By ohoosing the roper pitch so as to give a faco of the tooth？to 3 ti．es the ciroular nitsh ajk of surfisiont，strength， I obtained the following dimensions for the wheels．

Wheel	Circular niton inches	$\begin{aligned} & \text { Fioce } \\ & \text { incines. } \end{aligned}$	$\begin{aligned} & \text { Diarnetor } \\ & \text { inones. } \end{aligned}$
AI	2.25	3	29.84
$\Lambda 2$	1.25	3	5.971
$\Lambda 3$	． 75	$?$	15.756
A4	． 75	2	2.865

Soveral trials weme made before these mesults were obtained．Some dificuity was exporienced in obtaining the prower sivod wheel定，so that 13 would not come in contact with the drurn．

In order that there way io a sinange in the spead of hoisting，a second nair of minels must be tromow in the vase of one pair of the whoghs．fot this patr of whoels be throm int in niase of whepls $A 3$ and 4 ．This pain of whesls mist work on the same shafts，with $A 3$ and $\Lambda 4$ ，themefore，they ．ust have the same distances betweon centers．

Jet this extra pair of goars be known as A．5 and A6．The Wheel 16 is locater on the sane shaft with A4，and A5 is vlaced on the salle shaf．t with A3．The dist，ance between the senteris
 and whee $A S$ and $A G$ are thrown in the velocity ratio should be about nome hale of 37. 3 or 13.6.

```
Iset, }\mp@subsup{X}{5}{}\mathrm{ aide }\mp@subsup{X}{6}{}=\mathrm{ rosmonetivoly time R.P.M. of A5 and nG.
```

Then

$$
\frac{X_{G}}{X_{1}}=1.3 .6
$$

an $\quad \frac{\mathrm{K}_{6}}{\mathrm{X}_{5}} \times \frac{\mathrm{X}_{2}}{\mathrm{X}_{1}}=2.3 .6$
but $--\quad \frac{X_{2}}{X_{1}}=5$ and $\frac{X_{6}}{X_{5}} \times 5=1.3 .6$
miserere $\frac{X_{6}}{X_{5}}=\frac{23.5}{5}=2.7$ or the riaduetion between X_{5} and X_{6} is 2.7 .

$$
\text { Jet.; } c_{5}=\text { number of teeth oi A5 }
$$

$$
" d_{6}=" \quad " \quad " \quad A G
$$

Then

$$
\frac{e_{5}}{a_{6}}=2.7
$$

$$
\text { Let } r_{5}=\text { radius of } 15
$$

$$
" \quad r_{\epsilon}=" \quad " A G
$$

Then

$$
\begin{align*}
& r_{5}=\frac{5}{2} \frac{5}{2}=2.7 \\
& r_{6}+r_{5}=9.32^{\prime \prime} \tag{1}\\
& r_{5}=2.7 \\
& r_{6}=2.7 \\
& r_{5}=r_{6} \times 2.7 \tag{2}\\
& r_{5}-2.7 r_{6}=0
\end{align*}
$$

Subtract (2) from (I)

$$
\begin{aligned}
& 3.7 r_{6}=9.31^{\prime \prime} \\
& r_{6}=2.52^{\prime \prime}
\end{aligned}
$$

Then

$$
r_{5}=9.31^{\prime \prime}-2.52^{\prime \prime}=6.78^{\prime \prime}
$$

Therefore

$$
\text { Me deanotier of } \lambda=\frac{1 n}{2.58^{\prime \prime}} \times 8=5.04^{\prime \prime}
$$

Cut wo have int yet interminad the milen of these wheole
 a ciroular: nitici of $3 / 4$ inches; mitiply tion dianeter found hy $4 /: 3$ to shange then to the dianeters of wheels of I inch circular. niton havins tio shas inumer of teeth, on nage 889 in Kent is a tablo giving the diametoms of smir wheels from 10 to 0 on teeth of I inch airoular ntoh. Find the nair on wheels that gives the olosest, valuos to the sianoter: foma and chan them baok to gear whencs having $3 / 4$ inch oiroulog pitoh by axltiplying by $3 / 4$. The following is the calculation acoordinig to the above method.

$$
\begin{aligned}
& 13.58^{\prime \prime} \times 4 / 3=18.104=\text { aia. of A5if oircular pitoh vias } 1 \text { inoh。 } \\
& 5.04 \times 4 / 3=6.72=" \text { " }=16 \text { " " " " }
\end{aligned}
$$

A wineel of 57 teeth 1 inoh circulan pitoh has a diameter of 18.144 " " " g2 " " " " " " " " \quad ".685"

$$
\begin{aligned}
& 18.144^{\prime \prime} \times 3 / 4=13.608^{\prime \prime} \\
& 6.685^{\prime \prime} \times 3 / 4=5.013^{\prime \prime}
\end{aligned}
$$

Then the diameter of the pitch oiroules of gear wheels As snd $A 6$ equals 13.60 " $^{\prime \prime}$ and $5.013^{\prime \prime}$ respeotive y.

The racius of $A 5=6.804$

$$
" \quad \because \quad " A G=2.506 .
$$

Then the aistance between centers of $A 5$ ani $A 6=6.809+2.5265=$ 9.32"

The following is a table of dimensiors of all the gear Wheels in the hoisting windless.

FIGURE 9.

FIGUPE 11 .

Gear whoel llo. of teetin
Diametor Face Cirouias Diemetial of ndtco circie inches.

$\overline{\text { A. } 17}$	75	29.84	3	$11 / 4$	2.513 .3
A.3	55	15.756	3	$12 / 4$	2.51 .3 .3
A2	15	5.971	2	$3 / 4$	$4.18 २ 8$
A4	12	2.865	2	$3 / 4$	4.1888
A 5	57	13.608	$13 / 4$	$3 / 4$	4.3 .888
A6	21	5.01 .3	$13 / 4$	$3 / 4$	4.1888

THF FRICTIONAI SABFTY RATCHTT. Reforence, Towne on cranes.
" Altrouth somewhat somplicated to cescribe, the action of this machine is exceedingly simple and absolutoly reliable under all conditions." The safety rriotional ratchet I have designed is a madification of the form here dosoribod blit the aotion is the sarne and the deserintion will serve to establish the principles involveri.

In Figure 3,"A is a prinary shaft of a hoist, is a spur ninion campied by said shatt and gearing into a vrover nour wheel upon the second shaft. C is a ratohet wheel haviju terth on its periphery which engage with an ordinary nawl pivoted to the frame of the machine thereby vreventing its rotation excent in one direction. Fis a collar screwed and pinned fast to th rhaft a so that it robates witin it, ami B a similar coliar at the opnosite side. The collar F has a rlelix formed unon its side whion adjoins the pinion D, and the hub of the iatter has a corresponding helix, so that the two when in coimcidence appear as shown in the figure. F consists of a sot of brass friotion disos, the disos boing alternately attracherl to the spur pinion and the ratchet wheel.

The ionion D and tin ratehet, c arn loose won the mast A. Arsuming that to mpreot inoistimg the shaft A unt, be revolvoxi so that its whon murface moves toward tho eye, in whioh sase the ronistance dike to the load temiss to retard or holi backthe minion mothe shovirer mon the collar E , as the intion movolvos with the sinaft , Wi=l novt disay from the compespondints shoulder unon the hub of the pinion π, the effeet of which is to cause the two holies to to rownt; wilon ench other thensby bushing the ninion D to the rifint unon the shaft and roraing it into frictional engagenent with the
 B, the several partis are thus Incked togetion and will thereapon rotate simataneously, the toeth of tha matonot C being ineinen so as to lemeit of notion in this dirmation. If at any tiae the rotation of the shast A be disoontinuei she pressure dut to the loar will tend to rotate the pinion D backwaris, met all the ?arts boing looked togother, as almoary oxplained, baovwark notion is prevented by tho aution or the ratonet, wheel C and the Soaci wilj thus menain susmencore"
"Men i^{t}, is cesimod to oreet, lowning, the shajt A most be Dositiveiy rotatuel hackurns, the effect or mhich wiln be to relax the Ionfiturinal engagement of the several partis by the rotation of the sollar. F, the helix unon wion will thus rave forwad into coincidnnee with the corresponiing helix on the hub of the pinion J. As soon as this movement of the coliar fis sufficient, to relax the longitudimal pressure, the pull of th. Load wils oavse the pinion D to follow the rotation of the shafet and to over take the collar F, thereby again armiving the longitudinal pressure unloss the continued backward motion of tine shaft again releases it, This alternate roleasing and re-enpagement
wili thom cont,ime so iong ass tine sha rt is revolver bask ward. Thu saruty friotinj ratchot, ass shom in Figume 3 , is not woll ariantese in this fore to muit the sondit, ins perquinert in the
 with tile pin os. AZ an mevious y mentioner. This minion sion ld be 011 the outaice of tine bracket, sumporting the shart, but if hoth the ratchet axi pinion were set motsicte it wound mot, look whlo, and thene is mot roone enourg for botin of tinen betwem the brackets. This can weti, er br seen in Plate IV. In orier to maje this arrangercet it is neeessary to eonmet, the ninion and frietion הiscs by means of a sleeve mich fits over tine main shaft ant nasses throuph the bearing of the bracket sumporting the shaft, Instear of a suiral collar. I have threareck the shart ant sieere ifish square thmoans. Mis method givos a positive roiease of the disos as woll ass a positive aotion im the nmosite direction. thus for hackward motion the lowering of tile load is sure to be steaciy as tine Aiscs san in o way fait to omen. In order to nreveint ton groat a inmast on the sleave or tension in the shast fion :axintu? it is neces.ary to rive the threacis trimple pitoh. Sne Figurs 10.

Whe following are the nathematoal minoinlaes amo oficultions of the saroty friotional ratohet. When the shaft is rotatoa so hat vopor surfase of ninion is noving from the eve, Tigure 10, the threads push the sleeve tomarl the right, thus the risos becowe engagon, and the pinion rotatos in tho same way as in the previous examie. The frietion botroen the disos is aanoed by thoin being pressed together or 'he thrust of the risove. The thrust of the sloeve is pronortional to the loai on the teeth of the pinion and niton of the thrads. The maximum load on the tereth of the minion
is about 2000 1us. i) iameter of niten aimole of nimion 5.96 .
ภimater of shait - ? inomonth of threacis $=0$. , in. Then mean dianeter of timenar $=1.8$ in.

Then the axiaum tangential load on the threars -

$$
\because \frac{2000 \times 2.98}{0}=636222105 .
$$

Lengtin of mean oimounfermen of thread $=3.1476 \mathrm{x} 1.8$ ine
In one turn of the shart a noint on tire shaft winl tend to arvanos 1.2 in. as the thisknesa of one threai is 0.2 in. See Figure J.l, Iret $P=$ tho thrust on the sleeve. Then $P=W \cot X$

$$
\cot \ddot{X}=\frac{3.7416 x .1 .8}{1 . ?}
$$

Therefore $P=\frac{6023 \times 3.1410 \times 1.8}{1 . ?}=32: 304$ 1ดs.

This gives the maximun pressure that will evor some on the fristion dises. But in this vaiue ror p loss due to friction in the sorew has not bren considwer. yith poor lubrication the efficienov may run as loiv as 60 ner eont, or the maximm prossure on firiation dises would he about 18700 lbs.

These discs act the san as nivots and the friction between them aan be figured by the sane method. For rriction or pivots see Professor Gnodenough's Notes on Meshanios hf Machinery, page 11.

$$
\begin{aligned}
& M=u P-\frac{I}{2}+\frac{r}{2} \\
& \frac{12}{2}+\frac{I I}{2}=\text { mean radius of dise. } \\
& P=18700 \text { LDs. }
\end{aligned}
$$

Let $\mu=.05$ for coefficient of friction of brass on brass.

$$
M=\text { the moment of resistanse of the friction dines at the }
$$

mean ractius of two rubbing surneocs in contast.

Let $\frac{r_{2}-r_{1}}{2}=31 / 2^{17}$
Then $M=.05 \times 18700 \times 2.5=3.3 .37 .5$.
The nonmt of the force actine at the witeh oirole whoin
M resists: $=2.98 \times 3000=5960$ 2bs.
Then the muber of rubing surfaces required to resist this moment $=\frac{5960}{2357}=2+$ say 3.

But for greater safety, I nado 5 rubiong surfaees, this requires 3 pans of discs altermately attached to the slecve and ratchet. See Plate. VII.

THF TROLIFY.

The trolley travelis on the jib see plate If, which shows its construction. In oder to design the mechanish to move the trolley when loader it is necessary to know about what foree wi.i be required to do the work. The load is neither raised nor lowered by the movement of the trolley, thererore the entire resistance due to its movenent is due to the frictional resistanee in the moving nart,f. When the troliey moves the hoisting chain runs over the two sheaves with the troiley and the sheav in the blook sumorting the hook. Thus there is friotion in the sheaves, there is alsc rolling and joumal friction catsed by the hovement of the four roliers.

We saw in the iesign of the hoisting gearing that tho erficiensy of the sheaves or chain muleys, see Figure 8 , is as follows: frioiemey or sheaves I and III $=.96$, am II $=.95$, or this means that sheavos I and III reoquires 04 of the work recuired to move the sumported load to hove th sheave and, shoave III requires .05 of the :"ork done on load. Then the maximum resistance of the trolley due to friction in chain sheaves $=\frac{W}{2}(.04+.04+.05)=$
$3000{ }^{\circ} \mathrm{x} .13=390$ 2105.
From no'es on rolizing and axle frietion hy Professor talunt

$$
\begin{aligned}
& p=\frac{a}{r} W \mu+\frac{b}{r} i \\
& a=\text { ractius of } a x l e=2.125^{\prime \prime} \\
& r=" \text { " wheel }=3 " \\
& I V=\text { Ioat on whee }=\frac{6000}{4} \text { nor maximum. } \\
& \mu=\text { coefficint of friation }=.06 \\
& 1 b=.0 .3 \\
& P=\left(\frac{1}{-1} \cdot \frac{125}{3} \times \frac{6060}{4} \times .06+\frac{.03}{3} \times \frac{6000}{4}\right) 4=1.9510 \text {. } 3 .
\end{aligned}
$$

Then the entire muli requireci to nove trol.ey $=390$ 21) $\div 1951 \mathrm{~b} .=585 \mathrm{~b}$
This rorce mast be exerted by a maz on the sand ohain. por
maximu laods on trolley considoring losses clue to frietion in the gearing to move the tmozloy it wing require a nul of about 60 lbs., on the nand siain. This mull san sasily be exerted by eitiner one or tivo men.

Tive pivots and bearings at the unver millow end of the mast was desiged witil an ampe factor or safety and the princiniess envoiving their designs is simple and does not require mont ioning. The hook is designod according to urincinles given in professor Goodencurn's wotes on Nechanion of liohinwmy.

