SD 557
.B8

LU'MBERMAN'S =-and LOGGER'S GUIDE

Lumberman's and

\therefore Logger's Guide

es Merits and Uses of ee
Douglas Fir, California Redwood and the Leading Commercial Woods of *the Pacific Coast :

Rapid Methods of Computing Specifications, Contents and Weight of Squared and Tapering Lumber Octagon Spars and Logs

LOG TABLES

Log Scaling and Grading Rules THE METRIC SYSTEM
Includes Conversion Tables and Informatian Relative to Foreign Export Cargo Shipments

TABLE OF DISTANCES

From Pacific Coast Ports to Foreign Ports also Inland Waters of Puget Sound Columbia River and British Columbia

BERNARD BRERETON
 Author and Publisher

P. O. Box 1158

Tacoma, Wash., U. S. A.

> COPYRIGHT 1919
> BY
> BERNARD BRERETON

JAN 141919
C) CI A509620

PREFACE

The object of the author in presenting this book to the public is to furnish reliable data pertaining to the merits and uses of Douglas Fir, California Redwood and Pacific Coast Forest Products.

The various subjects treated will save the Lumberman and Logger many hours of research, as the numerous problems covered cannot be solved without the practical and technical knowledge that can only be gained by a long and varied experience in both the Lumber and Shipping industries.

As Belgium, France Italy and Countries using the "Metric System" require lumber and specifications to conform to their standard, the writer has specialized on this subject, so as to enable shipowners and lumbermen to successfully cater to this trade, which will increase to vast proportions if the demands of the Foreign buyer are satisfactorily complied with.

Owing to the destruction of Railroads, Bridges, Docks and Buildings of every description in the European Countries, devastated as a result of the "Great war," enormous quantities of lumber and especially long timbers will be required for repair work and permanent constructional purposes.

The eyes of the "World" will naturally turn to the Pacific Coast in quest of information relative to Douglas Fir, California Redwood and the methods of handling these shipments, and to those requiring this knowledge, the Lumberman's and Logger's Guide will furnish the answer.

Shipowners, Captains and officers of vessels, or any one connected with the operation of cargo carriers, will appreciate the information regarding the system for computing the lumber carrying capacity of steamers also the Table of Distances which will enable the reader to ascertain the distance from the leading ports of the World to any Douglas Fir or Redwood Cargo Mill on the Pacific Coast.

In the section of this book devoted to logs will be found the \log tables in general use in British Columbia, Washington, Oregon and California, the methods for computing same, also the log grading rules and a special table computed by the author showing the actual or solid contents in board feet of logs ranging from six to forty-eight inches in diameter.

To the Foreign or prospective lumber buyer who is desirous of obtaining reliable data concerning Douglas Fir or California Redwood, the information in this book can be absolutely relied upon as I have personally supervised the manufacture, inspection or shipment of upwards of fifty million board feet of Pacific Coast Lumber annually for a period of over twenty-five years.

In conclusion, I wish to express my appreciation to the officials of The United States Forest Service, the Bureau of Foreign and Domestic Commerce, the Lumber Trade Journals and my friends in the Lumber and Shipping In. dustries who have so courteously furnished me with much valuable material for this work.

DOUGLAS FIR
(Tsuga Taxifolia)

DOUGLAS FIR

Pseudotsuga Taxifolia

Douglas Fir, widely known as Oregon Pine, reaches its best development for commercial purposes on the Pacific Coast, from the head of the Skeena River, in British Columbia, and southward through the States of Washington and Oregon to Central California.

The wood is comparatively light but very strong; ; it is the strongest wood in the world for its weight that is obtainable in commercial sizes and quantities.

With the exception of Spruce, Douglas Fir is in greater demand for Airplane construction than any other wood, and material of excellent quality for this purpose can be furnished in unlimited amounts.

THE CORRECT NAME

Douglas Fir is named after David Douglas, botanist, who explored British Columbia (then called New Caledonia) in $\mathbf{1 8 2 5 - 3 0}$. It is the most important timber tree on the North American Continent, and is known by a great variety of names, such as Oregon Pine, Oregon Fir, Washington Fir, Yellow Fir, Red Fir, Douglas Spruce, Red Spruce, Puget Sound Pine, and British Columbia Pine.

The employment of so large a number of names for one class of tree is very confusing, detrimental and often misleading, and for these reasons the United States Forest Service some years ago took a lumber census which resulted in their adopting the name Douglas Fir, as it was used more than all others combined.

MERITS AND USES

The stand of timber in Oregon and Washington alone, it is estimated, comprises 25% of the remaining stand of timber in the United States, and in British Columbia is estimated to comprise one-third of the total timber supply of Canada. It is considered the strongest softwood in the world. (See United States Forest Service Bulletin No. 108.) Douglas Fir is moderately hard but easy to work, straight grained, resilient, tough and durable.

DOUGLAS FIR

Merits and Uses - Continued

Combining these qualities of great strength, light weight, ease of working and handling more than any other commercial timber, Douglas Fir is the ideal wood for practically all building and structural purposes. Owing to the great size of the trees Douglas Fir timber can be furnished in the largest dimensions required in modern heavy construction. As complying with qualities essential in a wood acceptable for general building purposes, Douglas Fir is practically impervious to water, holds nails firmly, takes stain well in any shade or color, and combines beauty, utility and durability. It is superior wood for bridge and wharf building, heavy joists where great strength is required, studding-in fact, all ordinary framing material, ship plank, ship decking, spars, derricks, car sills, car siding, car roofing, car lining, flooring, ceiling, silo stock, sash and doors, interior finish. The lower grades are also used in large quantities for under-ground mining purposes.

The United States Forest Service Bulletin No. 88, says: "Douglas Fir may, perhaps, be considered the most important of American woods. * * * It is manufactured into every form of lumber known to the saw mill operator. For house construction Douglas Fir is manufactured into all forms of dimension stock, and is used particularly for general building and construction purposes. Its strength and comparative lightness fit it for joists, floor beams, rafters, and other timbers which must carry loads.
"The comparative hardness of the wood fits it for flooring and it meets a large demand. Douglas Fir edge-grain flooring is considered superior to that made from any other softwood.
"Clear lumber, sawed flat grain, shows pleasing figures, and the contrast between the spring and summer wood has been considered as attractive as the grain of quarter-sawn oak. It takes stain well, and by staining, the beauty of the grain may be more strongly brought out and a number of rare woods can be successfully imitated."

The durability of the wood, and the fact that it resists saturation by water cause it to be used in large quantities for wooden piping, for continuous stave and jointed conduits used in power and irrigation works, for silos and tanks. It makes first-class railway ties, whether treated with preservatives or not. Street pavement of creosoted Douglas Fir blocks properly laid is noiseless, dustless, economical in upkeep, and is durable and long wearing even under heavy traffic such as that of freight and dock yards. The unusual valuable combination of qualities possessed by Douglas Fir adapt it to such a variety of uses that a complete list of them would cover nearly all the uses to which wood can be put.

AVERAGE STRENGTH VALUES FOR STRUCTURAL TIMBERS Taken from U. S. Forest Service Bulletin 108 GREEN

$\begin{aligned} & \text { 罢 } \\ & \text { 胃 } \\ & \sim_{2} \end{aligned}$		$\begin{gathered} \dot{v} \\ \ddot{Z} \\ 0 \\ E \\ H \\ 0 \\ \dot{B} \\ \dot{Z} \end{gathered}$								
Douglas Fir	8×16	134	10.9	31.8	28.9	4282	6605	1611	100.0	100.0
Western Hemlock	8×16	27	17.6	41.9	28.1	3761	5821	1489	88.1	92.4
Longleaf Pine	$\begin{array}{r} 12 \times 12 \\ 10 \times 16 \\ 8 \times 16 \\ 6 \times 16 \\ 6 \times 10 \end{array}$	13	14.6	29.2	35.4	3855	6437	1466	97.4	91.0
Shortleaf Pine	$\begin{aligned} & 8 \times 16 \\ & 8 \times 14 \\ & 8 \times 12 \end{aligned}$	33	12.3	48.4	31.4	3376	5948	1546	90.0	96.0
Loblolly Pine	$\begin{aligned} & 5 \times 12 \\ & 8 \times 16 \end{aligned}$	78	6.2	58.0	31.2	3266	5568	1467	84.4	91.1
Western Larch	$\begin{aligned} & 8 \times 16 \\ & 8 \times 12 \end{aligned}$	43	23.9	50.5	28.7	3677	5562	1364	84.2	84.6
Redwood	$\begin{aligned} & 8 \times 16 \\ & 6 \times 12 \\ & 7 \times 9 \end{aligned}$	30	19.5	90.2	23.3	4323	5327	1202	80.6	74.6

NOTE:-Care was taken in selecting Douglas Fir material to secure a large number of stringers of low grade. Douglas Fir contained more knots than its nearest competitor in strength Even with this handicap it shows greater strength values than other species.

AVERAGE STRENGTH VALUES FOR STRUCTURAL TIMBERS
Established by the U. S. Government

Green Stringers
SPECIES

	sq. in.	Percent
Douglas Fir	6605	100.0
Longleaf Pine	6437	97.4
Shortleaf Pine	5948	90.0
Western Hemlock	5821	88.1
Loblolly Pine	5568	84.4
Western Larch	5562	84.2
Redwood	5327	80.6
Tamarack	4984	75.5
Norway Pine	3767	57.0

Air-Seasoned
Stringers Breaking Strength Lbs.
sq.in. Percent $7142 \quad 100.9$

5957	83.6
7033	98.5
7109	99.6

$7109 \quad 99.6$
$6259 \quad 87.7$
$6534 \quad 91.5$
$\begin{array}{ll}6534 & 91.5 \\ 4573 & 64.1 \\ 5865 & 82.3\end{array}$
$\begin{array}{ll}5865 & 82.3 \\ 5255 & 73.7\end{array}$
Note that Douglas Fir is unequaled in strength by any other species. It is 25 percent. lighter in weight than its nearest competitor 'in strength.

WEIGHT OF FRESHLY SAWN DOUGLAS FIR 1000 BOARD FEET EQUALS 3333 POUNDS

To quickly ascertain the weight in pounds of "green" Douglas Fir: Add one cipher to the board feet, and divide by 3.

Example: Find the weight in pounds of 672 board feet Douglas Fir.

Process:

672×10 equals 6720 , divided by 3 equals 2240 pounds.
3) 6720

2240 pounds
The above is a very close estimate for all practical purposes, and has proved correct in thousands of instances.

Lumber for export shipments can be reckoned at the rate of 1,000 board feet to $1 \frac{1}{2}$ tons of 2240 pounds.

Example: Find the weight in long tons of 120,000 board feet Douglas Fir. Operation
$120 \times 11 / 2$ equals 180 long tons.

- KILN DRIED LUMBER

Kiln dried lumber of one inch in thickness loses about one third of its weight in the process of drying. Weights of kiln dried rough and finished stock can be obtained from any Local Price List or by applying to the West Coast Lumber Manufacturers Association, Seattle, Wash., U. S. A.

1 METRIC WEIGHT

Weight of Douglas Fir in kilograms and metric tons is given in the Metric Section.

SPECIFIC GRAVITY

The weight of wood is sometimes expressed by a comparison of the weight of a given volume of wood with that of an equal volume of water, or by what is known as "specific gravity." If the specific gravity of a certain kind of wood is stated as .300 , it means that a given volume of this wood weighs .300 times as much as an equal volume of water. Since a cubic foot of water weighs 62.5 pounds, or 1000 ounces, a cubic foot of wood of specific gravity of .300 weighs $.300 \times 62.5=18.75$ pounds.

A cubic foot of green Douglas Fir whose specific gravity is .640 , weighs $.640 \times 62.5=40$ pounds per cubic foot. Hence the weight per cubic foot of any kind of wood can be quickly ascertained when the specific gravity is known.

The specific gravity of a body or substance divided by 16 will give the weight of a cubic foot of it in pounds.

Example: The specific gravity of a cubic foot of green Douglas Fir is 640 ; what is the weight of it?

Process:

640 divided by 16 equals 40 , the weight of a cubic foot in pounds.
When the weight of a cubic foot of lumber is known, the specific gravity can be ascertained by multiplying the number of pounds by 16.

Example: Find the specific gravity of Dry Redwood weighing 26 pounds per cubic foot.

Process:

26×16 equals 416 , the specific gravity.

LATH

The standard for California and West Coast of South America is $1 / 3 \times 11 / 2$ in. -4 ft ., tied in bundles of 100 pieces.

The Australian standard is as follows:
$1 / 3 \times 1$ in. $41 / 2 \mathrm{ft}$., tied in bundles of 90 pieces.
$1 / 3 \times 11 / 4 \mathrm{in} .-41 / 2 \mathrm{ft}$., tied in bundles of 90 pieces.
$1 / 3 \times 11 / 2 \mathrm{in} .-41 / 2 \mathrm{ft}$., tied in bundles of 90 pieces

MEASUREMENTS, CONTENTS AND WEIGHTS

$1 / 3 \times 11 / 2 \mathrm{in} .-4 \mathrm{ft}$. 1000 Pcs. contain $1662 / 3 \mathrm{ft}$. B. M. 6000 Pcs. equal 1000 ft . B. M.
1000 Pcs. Kiln Dried, weigh 500 lbs.
1000 Pcs. Green, weigh 700 lbs.
$1 / 3 \times 1 \mathrm{in} .-41 / 2 \mathrm{ft}$. -
1000 Pcs. contain 125 ft . B. M.
8000 Pcs. equal 1000 ft . B. M.
1000 Pcs. Kiln Dried, weigh 375 lbs.
1000 Pcs. Green, weigh 530 lbs.
$1 / 3 \times 11 / 4 \mathrm{in} .-41 / 2 \mathrm{ft}$. 1000 Pcs. contain $1561 / 4 \mathrm{ft}$. B. M.
6400 Pcs. equal 1000 ft . B. M.
1000 Pcs. Kiln Dried, weigh 470 lbs.
1000 Pcs. Green, weigh 660 lbs.
$1 / 3 \times 11 / 2$ in. $-41 / 2 \mathrm{ft}$.-and
$3 / 8 \times 11 / 2$ in. -4 ft .
1000 Pcs. contain $1871 / 2 \mathrm{ft}$. B. M. 5333 Pcs. equal 1000 ft . B. M.
1000 Pcs. Kiln Dried, weigh 560 lbs.
1000 Pcs. Green, weigh 800 lbs.
When lath are made $3 / 8$ of an inch in thickness, the contents and weight can be computed by adding to the measurements given in the preceding table $1 / 8$ of the corresponding amount.

1000 Pcs. $1 / 3 \times 11 / 2-4 \mathrm{ft}$. lath will cover 70 yards of surface.

FREIGHT

When figuring lath of any of the foregoing sizes and length for cargo freight, the prevailing custom formerly was to reckon six pieces as being the equivalent of one foot board measure, but the correct way is to figure them at actual contents.

TO FIND THE NUMBER OF $11 / 2$ IN.X4-FT. LATH REQUIRED FOR A ROOM

Find the number of square yards in the walls and ceiling and multiply by 16 , the number estimated to a square yard. The result will be the number of lath necessary to cover the room.

At 16 lath to the square yard, 1,000 lath will cover 63 yards of surface, and 11 pounds of lath nails will nail them on.

STAVES

ACCORDING TO EXPORT "H" LIST

No. 1 Staves $1 \times 4 \mathrm{in}$. x 4 ft . Sawn full size clear. If seasoned will allow $1 / 8$ of an inch scant in width.

No. 2 Staves 1 x 3 in . x 4 ft . Will allow variations in size of $1 / 8$ of an inch in thickness and $1 / 8$ of an inch in width. Sap and two sound hard knots not over $3 / 4$ of an inch in diameter allowed.

Weight same as pickets. See page 10.

PICKETS ROUGH

The standard size, $1 \times 3-4$ feet and 4 feet 6 inches long, are tied in bundles of 10 pieces each; they are in great demand for the Australian market, and are used for fences, and occasionally are sawn into inch lath; they are also extensively utilized as staves for mutton-tallow barrels.

GRADE ACCORDING TO EXPORT "H" LIST

Pickets $1 \mathrm{x} 3 \mathrm{in} .-4 \mathrm{ft} .-4 \mathrm{ft} .6 \mathrm{in} .-5 \mathrm{ft}$. Will allow variations in size of $1 / 8$ of an inch in thickness and $1 / 8$ of an inch in width. Sap, pitch pockets, and two sound hard knots not over 1 inch in diameter allowed.

MANUFACTURE

Strict attention should be paid to their manufacture, and it is essential that they be uniform in thickness. They can be made from air or kiln dried stock and many mills rip 2×3 to $15 / 16$ of an inch to make them.

In most cases pickets are subject to rigid inspection, and it is useless to make them from anything but the best material.

DISCOLORATION

Unless there are prospects of shipping pickets within a short time after they are manufactured, they should be piled on their edge in bundles, and crossed in alternate courses with an air space between each bundle of about 4 inches. This prevents discoloration, and is the method employed by a number of mills who aim to ship their stock in a satisfactory condition.

MEASUREMENT, CONTENTS AND WEIGHT

1000 pcs. 1x3-4 feet contain 1000 feet Board Measure, and average 3500 lbs. in weight.

1000 pcs. $1 x 3-41 / 2$ feet contain 1125 feet Board Measure, and average 4000 lbs. in weight.

The above weight is for green stock; when seasoned lumber is used, due allowance must be made for difference in material.

CORD MEASURE

Firewood, small pulp wood, and material cut into short sticks for excelsior, etc., is usually measured by the cord. A cord is 128 cubic feet of stacked wood. The wood is usually cut into 4 -foot lengths, in which case a cord is a stack 4 feet high and wide, and 8 feet long. Sometimes, however, pulp wood is cut 5 feet long, and a stack of it 4 feet high, 5 feet wide and 8 feet long is considered 1 cord. In this case the cord contains 160 cubic feet of stacked wood. Where firewood is cut in 5 -foot lengths a cord is a stack 4 feet high and $61 / 2$ feet long, and contains 130 cubic feet of stacked wood. Where it is desirable to use shorter lengths for special purposes, the sticks are often cut $1 \frac{1}{2}, 2$, or 3 feet long. A stack of such wood, 4 feet high and 8 feet long, is considered 1 cord, but the price is always made to conform to the shortness of the measure.

A cord foot is one-eighth of a cord and equivalent to a stack of 4 -foot wood 4 feet high and 1 foot wide. Farmers frequently speak of a foot of cord wood, meaning a cord foot. By the expression "surface foot" is meant the number of square feet measured on the side of a stack.

In some localities, particularly in New England, cord wood is measured by means of calipers. Instead of stacking the wood and computing the cords in the ordinary way, the average diameter of each \log is determined with calipers and the number of cords obtained by cosulting a table which gives the amount of wood in logs of different diameters and lengths.

RELATION BETWEEN BOARD MEASURE, CUBIC MEASURE AND CORD MEASURE

In order to determine the number of feet in a standard cord of stacked wood (4 feet $x 4$ feet $x 8$ feet), and also to ascertain the number of solid cubic feet of wood in a cord, the class in forest mensuration of the Montana Forest School has just completed a study on this phase of the subject. A number of 16 -foot softwood logs (Douglas fir, western larch and western yellow pine), averaging about 12 inches in diameter at the small end, were first scaled with Scribner Decimal "C" Rule. The logs were next cut into 4 -foot lengths and the number of cubic feet in each piece accurately determined. The 4 -foot lengths were next split into the usually convenient cordwood stick and stacked into a pile 4 feet high and 8 feet long. The following were the results obtained:

A standard cord (128 cubic feet) of stacked wood (Douglas fir, western larch, western yellow pine) contains:

517 board feet (Scribner Dec. "C" Scale).
963 board feet (62.7 percent) of actual wood.
80.25 cubic feet of actual wood.
37.3 percent of a stacked coard is air space.

A similar study carried out by the forestry students of the University of Wisconsin (1914), in the university oak woodlot near Madison, Wis., gave 73 cubic feet (57 percent) of actual wood per cord. This was nearly all red and black oak, and the 73 cubic feet represented the average for 23 cords of wood, used by the university as fuel.-R. R. Fenska, acting dean, University of Montana, Missoula, Mont.

It is generally agreed that the conifers pile closer in cordwood than do the hardwoods and this explains the difference in the two sets of university figures referred to in the foregoing.

METRICAL EQUIVALENT

I Stere (Cubic Meter) equals 0.2759 of a cord.
I Cord equals 3.624 Steres.
Note: 1 Stere or cubic meter equals 35.314 cubic feet.

AMOUNT OF PULP WOOD IN A CORD

A cord of wood ordinarily yields about one ton of mechanical pulp or about one-half ton of chemical pulp.

AMOUNT OF HEMLOCK BARK FOR TANNING PURPOSES IN A CORD

Although the cord is used as a standard of measure for bark, it is usually sold by weight in order to avoid variation due to loose piling.

Throughout the East 2,240 pounds are usually called a cord, although in some places 2,000 pounds are accepted.

A long cord of 2,240 pounds equals about 77 cubic feet, a short cord of 2,000 pounds equals about $661 / 2$ cubic feet.

It is highly important to keep Hemlock bark intended for tanning purposes well protected from the rain, for it leaches out easily and is soon ruined. For the same reason bark from logs which have been towed or driven is of little value.

Salt water ruins it entirely.

HOW WOOD PULP IS MADE

Wood pulp is usually made by either one or two general processes, mechanical or chemical. In the mechanical process the wood, after being cut into suitable sizes and barked, is held against revolving grindstones in a stream of water and thus reduced to pulp. In the chemical process the barked wood is reduced to chips and cooked in large digesters with chemicals which destroy the cementing material of the fibers and leave practically pure cellulose. This is then washed and screened to render it suitable for papermaking. The chemicals ordinarily used are either bi-sulphite of lime or caustic soda. A little over half of the pulp manufactured is made by the soda process. Much of the mechanical pulp, or ground wood as it is commonly called, is used in the making of newspaper. It is never used alone in making white paper, but always mixed with some sulphite fiber to give the paper strength. A cord of wood ordinarily yields about one ton of mechanical pulp or about one-half ton of chemical pulp.

BURNED OVER TIMBER FOR PULPWOOD

It is a common error to regard burned over timber as being suitable for the manufacture of wood pulp. Young green timber gives the best results for this class of work, as dead wood breaks up when put through the process of manufacture. There is also a great waste on account of the charred surface of some parts of the timber, none of which must get into the pulp. If this should occur the whole batch would be valueless.

HOW TO FIGURE LUMBER

BOARD MEASURE

Lumber is usually reckoned by Board Measures, the unit being a square foot one inch thick.

Lumber less than one inch thick is usually figured as of one inch.
The ordinary way of finding the contents of squared lumber is to multiply together the length in feet, the width and thickness in inches and divide the product by 12 .

Figuring lumber by the above rule is a slow process, and the following system is adopted by experts whose business makes rapid calculation essential to their success.

Multiply together the thickness and width in inches, divide the product by 12 and multiply result by the length; the answer is Board Measure contents.

EXAMPLES

A few examples will show the system for finding the contents of standard sizes in a few seconds, and many of them without a moment's hesitation.

Example: Find the Board Measure contents of the following sizes:

Pcs.	Size.	Length.	B.M.
1	2×8 inches	30 feet	40
1	4×10 inches	18 feet	60
1	10×10 inches	36 feet	300
1	20×20 inches	60 feet	2000

Operation

2×8 equals 16 divided by 12 equals $16 / 12$ or $11 / 3$. When this is multiplied by the length the answer is 40 feet; in other words, add one-third to the length and you have the Board Measure contents.

Operation

4×10 equals 40 divided by 12 equals $31 / 3$ or $10 \frac{1}{3}$. In this instance a cipfer is: added to the length and when this is divided by three the result is 60 feet Board Measure contents.
10×10 equals 100 ; this divided by 12 equals $81 / 3$, or $100 / 12$. It is easier to multiply by 100 and divide by 12 than to multiply by $81 / 3$, therefore add two ciphers to the length and divide by 12 ; the result is 300 feet Board Measure contents.
20×20 equals 400 , divided by 12 equals $331 / 3$, or $100 / 3$. All that is necessary is to add two ciphers to the length and divide by 3 ; the result is 2000 feet, Board Measure contents.

After a short reflection on the above method, it will be apparent to everyone that when this system is used I have made good my statement that the contents of any ordinary stick of lumber can be figured inside of a few seconds.

The following standard sizes and multiples for same will serve as a basis for practice, and when memorized will benefit those who wish to become rapid in figuring lumber, and at the same time may prove a stepping stone to a better position and successful career.

STANDARD SIZES AND MULTIPLES

| 1×3 | Divide lineal feet by 4. |
| :--- | :--- | :--- |
| 1×4 | Divide lineal feet by 3. |
| 1×6 | Divide lineal feet by 2. |
| 1×8 | Multiply lineal feet by 2 and divide by 3. |
| 1×10 | Multiply lineal feet by 10 and divide by 12. |
| 1×12 | Lineal feet and Board Measure the same. |
| 2×3 | Divide lineal feet by 2. |
| 2×4 | Multiply lineal feet by 2 and divide by 3. |
| 2×8 | Add to lineal feet $1 / 3$ of amount. |
| 2×10 | Multiply lineal feet by 10 and divide by 6. |
| 2×12 | Multiply lineal feet by 2. |
| 3×3 | Multiply lineal feet by 3 and divide by 4. |
| 3×4 | Lineal feet and Board Measure the same. |
| 3×6 | Add to lineal feet $1 / 2$ the amount. |
| 3×8 | Multiply lineal feet by 2. |
| 3×10 | Multiply lineal feet by 10 and divide by 4. |
| 3×12 | Multiply lineal feet by 3. |
| 4×4 | Add to lineal feet $1 / 3$ of amount. |
| 4×6 | Multiply lineal feet by 2. |
| 4×8 | Multiply lineal feet by 3 and subtract $1 / 3$ |
| 4×10 | Mulineal feet from amoment. |
| 4×12 | Multiply lineal feet by 10 and divide by 3. |
| 8×8 | Multiply lineal feet by 4. |
| 10×10 | Multiply lineal feet by $51 / 3$. |
| 12×12 | Multipl lineal feet by 120 and divide by 12. |
| 14×14 | Multiply lineal feet by $161 / 3$. |
| 16×16 | Multiply lineal feet by $211 / 3$. |
| 18×18 | Multiply lineal feet by 27. |
| 20×20 | Multiply lineal feet by 100 and divide by 3. |
| 22×22 | Multiply lineal feet by $401 / 3$. |
| 24×24 | Multiply lineal feet by 48. |

ANOTHER METHOD

A handy method for computing Board Measure contents, preferred by a number of lumbermen, is as follows:

For all 12 ft . lengths, multiply width by thickness.
For all 14 ft . lengths, multiply width by thickness, and add $1 / 6$.
For all 16 ft . lengths, multiply width by thickness, and add $1 / 3$.
For all 18 ft . lengths, multiply width by thickness, and add $1 / 2$.
For all 20 ft . lengths, multiply width by thickness, and add $2 / 3$.
For all 22 ft . lengths, multiply width by thickness, and add $5 /$.
For all 24 ft . lengths, multiply width by thickness, and double.
Some objection may be taken to the use of $2 / 3$ and $5 / \%$, but often by transposition you can substitute $1 / 6,1 / 3$, or $1 / 2$, as in the following:

Examples:

10 pcs. $1 \times 18-22$ changed to 10 pcs. $1 \times 22-18$.
16 pcs. $1 \times 22-20$ changed to 20 pcs. $1 \times 22-16$.
In the first example, instead of multiplying 10×18 and adding 5 to the result, multiply 10×22 and add one-half to the result, which will give 330 ft . Board Measure. In the second item, instead of multiplying 16×22 and adding $2 / 3$, multiply 20×22 and add $1 / 3$; which gives $5862 / 3 \mathrm{ft}$. Board Measure.

The above system is very handy, when figuring lumber from 12 to 24 feet in length, and also where odd widths and thicknesses frequently occur.

MULTIPLICATION

In computing contents of lumber it is often necessary to multiply by the figures from 13 to 19. A simple process is to multiply by the unit of the multiplier, set down the product under, and one place to the right of, and then add to the multiplicand.

Example: Multiply 238 by 15.
238
1190
3570 Answer
To multiply any number by 101 to 109 .
Example: Multiply 24356 by 103.
24356
73068
2508668 Answer
Multiply by the unit of the multiplier, placing the product two figures to the right as in above example.

To multiply by 21-31-41-51-61-71-81-91.
Set the product by the tens under the multiplicand in proper position and add, thus:
F.xample: Multiply 76432 by 61.

Operation:
76432×61
458592
4662352
If ciphers occur between the two digits of the multiplier, the same method can be used by placing the figures in the correct position, thus:

Example: Multiply 76432 by 6001.
Operation:
76432×6001
458592
458668432
FRACTIONAL SIZES
To find the Board Measure contents of lumber $11 / 4$ and $11 / 2$ inches in thickness, proceed as if the lumber were of one inch and to the amount obtained add one-quarter or one-half, as the case may be.

To bring the lineal feet of fractional lumber to board measure when your time is limited, and you are not familiar with the correct multiple, multiply the lineal feet by the thickness, width and length and divide result by twelve.

ADDITION OF FRACTIONS

Find the sum of $3 / 8$ and $5 / 13$
$\frac{39}{3}+\frac{40}{8}=\frac{79}{13}$

Answer

Explanation: Multiply the denominator (8) of the first fraction by the numerator (5) of the second fraction, which gives 40 . Next multiply the numerator (3) of the first fraction by the denominator (13) of the second fraction, which gives, 39 . Now unite these products $(40+39=79)$, which gives the numerator of the answer. The denominator of the answer is the product of the denominators $(8 \times 13=104)$.

MULTIPLICATION OF FRACTIONS

When both the whole numbers are the same, and the sum of the fractions is a unit.

Examples:

Multiply $41 / 2 \times 41 / 2$ Answer 201/4
Multiply $73 / 875 / 8$ Answer $5615 / 64$
Multiply $91 / 3 \times 92 / 3$ Answer $902 / 9$
Operation:
$4 \times 4+4=20+1 / 2 \times 1 / 2=201 / 4$
$7 \times 7+7=56+3 / 8 \times 5 / 8=5615 / 64$
$9 \times 9+9=90+1 / 3 \times 2 / 3=902 / 9$
When the whole numbers are alike and the fractions are one-half, such as $11 / 2 \times 11 / 2,21 / 2 \times 21 / 2,121 / 2 \times 121 / 2$, add one to one of the whole numbers, then multiply the whole numbers together and to the result add the multiplication of the halves, which always equals one-quarter.

The following examples are self-explanatory:
As Common Fractions:

	$11 / 2$ equ		plus			
	$21 / 2$ equals	$2 \times$	3 plus	$1 / 4$ or	$61 / 4$	
	$31 / 2$ equals	3	plus	$1 / 4$ or	121/4	
	$121 / 2$ equals	12×13	plus	$1 / 4$ or	1561/4	
09	1/2				990	

AS DECIMAL FRACTIONS

$1.5 \times$	1.5 equals	1	plus 25/100 or	2.25
$2.5 \times$	2.5 equals	2×3	3 plus $25 / 100$ or	6.25
$3.5 \times$	3.5 equals	3×4	plus $25 / 100$ or	12.25
$12.5 \times$	12.5 equals	12×13	plus $25 / 100$ or	156.25
$109.5 \times$	09.5 equals	109×110	plus $25 / 100$ or	11990.25

MULTIPLICATION OF MIXED NUMBERS
Multiply $462 / 3$ by $217 / 8$.
Operation:

322)	$\begin{aligned} & 462 / 3 \\ & 217 / 8 \end{aligned}$
	966.14
	40.6
	14.0
	10202\% 24

Explanation: Find the product of the whole numbers (966) and to the right put down the product of the numerators of the fractions $(2 \times 7=14)$. Now multiply the numerator (7) of the lower fraction by the upper whole number (46), which gives 322 . Write this on the left of the upper number. Now divide the product thus obtained by the denominator (8) of the lower fraction, which gives 40 and a remainder of 2 . Write the 40 in the whole number column and the remainder (2) we multiply by the upper denominator (3), which gives a product of 6 and is written under 14 in the fraction column.

Now multiply the lower whole number (21) by the numerator (2) of the upper fraction, which gives 42 . Write it on the left. Now divide 42 by the denominator (3) of the upper fraction, which gives 14 and no remainder. Write a cipher in the fraction column. Now add the partial product and the product is complete. In cases where the partial products of the fractions amount to more than 1, carry the excess to the whole nundbers.

DIVISION OF MIXED NUMBERS

Divide $465 / 8$ by 7 .
Operation:

$$
\frac{\text { 7) } 465 / 8}{637 / 56}
$$

Explanation: In cases where the divisor is a whole number, the foregoing example does away with the usual method of reducing dividend and divisor to the same denomination.

Proceed as follows: 7 is contained 6 times in 46, with a remainder of 4. Write down 6 to produce the fraction of the quotient we multiply the remainder (4) by the denominator (8), which gives 32 ; to this is added the numerator (5) and we have the 37 , the numerator of the quotient.

The product of the divisor by the denominator is the denominator (56) of the answer.

SHORT RULES

3-inch Plank: One-half the width multiplied by half the length, gives the Board Measure contents.

12-foot Lengths: The Board Measure contents of any piece of lumber 12 feet long is equal to the thickness and width multiplied together.

Lumber 6 inches in Thickness: Half the width multiplied by the length gives the Board Measure contents.

To find Board Measure contents of $4 x \delta i n$. multiply lineal feet by 2 and add one-third to the product.

Example: How many feet board measure are there in a piece of 4×8-in. 30 feet long?

Operation:

30
Multiplied by 2
60
$1 / 3$ of $60=20$
80 ft. B. M. Answer.
To find board measure contents of $8 \times 8 \mathrm{in}$. divide lineal feet by 2 , add one cipher to the result and to this amount add one-third of the lineal feet. This system requires no mental effort in even lengths up to 26 feet long.

Example: Find board measure contents of 1 piece 8×8 in. -18 and 26 ft . long respectively.

Operation:
18 divided by 2 equals 9 .
18 divided by 3 equals 6 .
Place the 6 to the right of 9 and you have the answer, 96 ft . B. M.
26 divided by 2 equals 13 .
26 divided by 3 equals $82 / 3$.
Place the $82 / 3$ to the right of 13 and you have the answer, $1382 / 3 \mathrm{ft}$. B. M.

To Convert Board Measure to Lineal Feet, simply reverse the multiple used to bring lineal feet to Board Measure; in other words, multiply Board feet by 12 and divide by thickness and width.

Example: How many lineal feet are there in 1000 feet Board Measure of 2×8 ?

Process:

$$
1000
$$

12
2) 12000
8)

6000
750 lneal feet.. Answer.
Car orders frequently call for a specified amount of sizes containing special lengths. Before proceeding to load, it is necessary to find the number of pieces required.

Find the number of pieces in the following order:
1000 ft . B. M. $2 \times 4-14$.
1000 ft . B. M. $2 \times 4-16$.
1000 ft . B. M. $2 \times 4-20$.
Bring the Board Measure to lineal feet as shown in previous example, then divide the length into lineal feet. The result will be the number of pieces.

Process:

1500 lineal feet.
The lineal feet given is now divided by the respective lengths and the following answer is obtained:

107 Pcs. $2 \times 4-14$ containing 998 ft .8 in . B. M.
94 Pcs. $2 \times 4-16$ containing 1002 ft .8 in . B. M.
$75 \mathrm{Pcs} 2 \times 4-$.20 containing 1000 ft . B. M.
276
3001 ft .4 in. B. M.

This method of computing the Board Measure contents of square or rectangular timbers that exceed 12 inches one or both ways, is known to but very few, if any, lumbermen. It is a rapid way of figuring the majority of sizes, and on account of its simplicity the system is easily committed to memory.

Rule: Multiply length by width, and to the result add one-twelfth of the thickness for eaci inch that exceeds twelve.

Example: Find the Board Measure contents of a timber 13 -in x 17-in.48 feet long.

Operation:

48
$\left.\begin{array}{l}436 \\ 48 \text { multiplied by } 17 \text { equals } \\ 816 \text { divided } \\ 816 \\ 68\end{array}\right)$

844 Ans. in B. M. Contents.

Explanation: Multiply the length (48 ft .) by the width (17in.), which quals 816. Now as the thickness (13) exceeds 12 inches by one inch, consider this as one-twelfth, which is divided into 816 and equals 68 . This amount is added to the 816 and the result is 884 ft . Board Measure contents.

The following multiples will be of assistance to those who wish to practice this system of finding Board Measure contents of timbers by the preceding rule.

12×13 Multiply length by 13

13×14 Multiply length by 14 and add $1 / 12$ of result
14×14 Multiply length by 14 and add $1 / 8$ of result
14×15 Multiply length by 15 and add $1 / 8$ of result 15×15 Multiply length by 15 and add $1 / 4$ of result 15×16 Multiply length by 16 and add $1 / 4$ of result
16×16 Multiply length by 16 and add $1 / 3$ of result
16×17 Multiply length by 17 and add $1 / 3$ of result
16×18 Multiply length by 18 and add $1 / 3$ of result
18×18 Multiply length by 18 and add $1 / 2$ of result
24×24 Multiply length by 24 and 2
26x26 Multiply length by 26 and $21 / 8$
28×28 Multiply length by 28 and $21 / 3$
30x30 Multiply length by 30 and $21 / 2$
$\mathbf{3 6 x 3 6}$ Multiply length by 36 and 3

TAPERING LUMBER

How to Figure Trapezoids, or Boards With Only Two Parallel Sides
Find the Board Measure contents of a board one inch thick, whose parallel sides are 16 feet and 20 feet in length and 8 inches wide.

Add together the two parrellel sides, and divide their sum by 2, multiply the result by the inches in width and divide by 12. The answer is 12 feet Board Measure contents.

Operation:
16
20
2) 36

18
8
12) 144

12 ft . Board Measure.
Find the Board Measure contents of a board one inch thick, 24 feet long whose parallel ends are 10 inches and 18 inches respectively.

Operation:
10
18
2) 28

14
24
12) 336

28 ft . Board Measure.

HOW TO FIGURE THE FRUSTUM OF A PYRAMID, OR TAPERING TIMBER

As it frequently occurs there is a difference of opinion as to the correct way of ascertaining the Board Measure contents of tapering timber, the following method is both simple and correct, and will enable anyone to figure the exact contents without diving into square root.

Find the contents of a timber 40 feet high, 12×12 inches at the bottom and 6×6 inches at the top.

Square both ends separately, then multiply the top by the bottom side, add the sum together, and multiply this by the height and in all cases divide by 36 .

Operation:

12×12	144 bottom
6×6	36 top
6×12	72 top and bottom

$$
252
$$

40 ft . high
36) 10080 (280 ft . B. M.-Ans.

288
288
0
The common error that would be made in figuring a timber of this dimensiom would be to call it 9×9 the supposed size at the middle; the contents in that case would be 270 feet, or a difference of 10 feet. This is an important item that should be taken into consideration when figuring on contracts or freight.

I will now prove the method I use is correct by figuring a square timber on the same principal as a tapering stick.

Find the Board Measure contents of a timber 12 inches square and 40 feet long.

Operation:

12×12	144 bottom
12×12	144 top
12×12	144 top and bottom
	432
	40 ft . long.

36) 17280 (480 ft . B. M. contents.

144
288
288

CONTENTS BY PROGRESSIVE ADDITION

This rule is of great advantage when there is a range of odd and even lengths.

Example 1: Find the number of lineal feet in the following:

Ft. Long.	Pieces.	Lin. Ft
10	0	480
11	8	48
12	6	40
13	4	34
14	7	30
15	23	23
	-48	-655

Explanation: First put down the pieces of the longest length (23 Pcs.) to this, add the pieces of the next longest length (7 Pcs .), which makes 30 , put this down over the 23 ; now add to this the next number of pieces (4), which makes 34 ; add the next number (6), which makes 40 ; to this add the 8 , which makes 48. The last item, in this case 48, if correct, will correspond with the total number of pieces.

This number (48) is multiplied by the shortest length, minus one, which in this case is ten. Now 48×10 equals 480 ; add this amount to the figures already obtained and the grand total is the number of lineal feet (655), not board feet.

When there are missing lengths repeat the number of pieces as shown by the following example:

Example 2:

Ft. Long.	Pieces.	Lin. Ft.
12	0	924
13	15	77
14	0	62
15	19	62
16	0	43
17	43	43
	-77	$\underline{1211}$

Explanation: In the foregoing example there are no pieces 14 or 16 feet long, so the amounts are repeated when there is a blank length. As in Example No. 1, the total pieces are multiplied by the shortest length, minus one. In this instance the 77 pieces are multiplied by 12 , which gives 924 , and the total addition shows 1211, the lineal feet.

FOR EVEN LENGTHS ONLY
Find the number of lineal feet in the following:

Ft. Long.	Pieces.	Lin. Ft.
12	46	287
14	54	241
16	62	187
18	58	125
20	67	67
	287	907
		907
		2870

4684
Explanation: This system is the same as the preceding examples, with the exception that the addition (907) is repeated or doubled, and to this is added the number of pieces (287) multiplied by the next shortest even length (10). These items are now added together and the result shows the lineal feet (4684).

CARGO SPECIFICATIONS

As there does not seem to be any fixed rule for making up specifications in a uniform manner, reference to this subject will not be out of place. Some mills adopt the system of making all Domestic and Foreign Export Specifications out in feet Board Measure for each size and length, while others make out their specifications in lineal feet for each length and then add up their total and bring same to Board Measure.

The latter system of making out the extensions in lineal feet should be universally adopted, as everyone who is familiar with this class of work knows that a specification with the extensions in lineal feet, and showing the totals in Board Measure, can be finished in a quarter the time of a specification that. shows the feet Board Measure for each length.

Steam schooners often arrive at San Francisco before the cargo manifest reaches consignee; this inconvenience and delay could often be avoided by the time gained in making up specifications with the extensions in lineal feet instead of Board Measure.

Foreign buyers, especially in the British trade, use the lineal measure more extensively than any other, and when they receive specifications in feet Board Measure they are put to the unnecessary inconvenience of converting them to lineal feet to correspond with their tables and price lists.

SHORT METHOD OF FIGURING SPECIFICATIONS

A very easy and short method of obtaining the Board Measure contents of each size and length, when required, is to halve the length and double the thickness. Simple as this rule seems, it is unknown to many experts.

Example: Find the Board Measure contents of each length in the following size:

Pieces	Size.	Length	B. M.
			Feet
53	2×10	12	1060
42	2×10	14	980
36	2×10	16	960
48	2×10	10	1440
36	2×10	20	1200
30	2×10	22	1100
12	2×10	24	480
257			7220

In the above example, instead of saying twelve times fifty-three, halve the length and say six times fifty-three is three hundred and eighteen (318); now by doubling the thickness, we have the equal of 4×10 stead of 2×10; therefore, by adding a cipher to the 318 and dividing by 3 , we have the Board Measure contents of the first length. The same rule applies to the remainder of lengths.

When it is only necessary to find the total feet Board Measure in a size containing a range of lengths, halve the lengths or pieces, and multiply the total result by the multiple of double the thickness of the size.

Example: Find the total feet Board Measure contained in the following: Pieces. Size. Length Contents.

$224 \ldots \ldots 3 \times 6$	16	1792	
$112 \ldots \ldots .3 \times 6$	18	1008	
568	$\ldots \ldots .3 \times 6$	20	5680
45	$\ldots \ldots .3 \times 6$	22	495
120	$\ldots \ldots .3 \times 6$	24	1440
1069			10415
			3

Feet B. M. 31245

HOW TO DECREASE OR INCREASE ORDERS

The method of decreasing or increasing orders will now be explained. Reduce the following order by 44,000 feet Board Measure:

$$
\begin{aligned}
& 240,000 \text { feet } 12 \times 12-40 \text { to } 60 \\
& 280,000 \text { feet } 14 \times 14-40 \text { to } 60 \\
& 420,000 \text { feet } 16 \times 16-40 \text { to } 60 \\
& 160,000 \text { feet } 18 \times 18-40 \text { to } 60
\end{aligned}
$$

1,100,000

The first step necessary is to find the required percentage to reduce order in proportion. This is done by adding two ciphers to the amount that the order is to be reduced by and dividing the result by the amount of order. In this case it is 4 per cent. Each item must now be reduced separately by the percentage obtained, as follows:

If the above order of $1,100,000$ feet had to be increased by 44,000 feet, 4% would be added to each item, and the total would show the amount of order when increased.

FIGURING PERCENTAGES

Cargo orders for California usually call for stipulated percentages of Nos. 1 and 2 in the merchantable grades and clear and select in the uppers.

During progress of loading, it is essential to keep posted on the proportion of the percentage so as to avoid over-running or falling short on a grade.

Presume an order calls for 800,000 feet Nos. 1 and 2 Mcht., 25% No. 2 allowed, and in figuing up to see how your percentage is, you find your order stands thus:

```
306,600 ft. No. 1
\(1 \_3,400 \mathrm{ft}\). No. 2
\(420,000 \mathrm{ft}\). Total on board.
```

The following is the way to find your percentage:
Cut off the two right hand figures in your total $(420,000)$ and divide the remaining amount (4200) into the Nos. 1 and 2 respectively. If your answer is correct your combined percentages will add to 100 .

Operation:
No. 1 Mcht. 4200) 306600 (73% 29400
12600 12600

No. 2 Mcht.
$4200) 113400(27 \%$ 8400 29400 29400

Amount of Percentage
306,600 No. 1 or 73% of 420,000 113,400 No. 2 or 27% of 420,000

420,000 Total 100%
As your No. 2 in this instance exceeds the 25% allowed, notify the proper authorities of the fact, so that arrangements can be made to bring grade up to the required percentage.

STANDARDS

The "St. Petersburg Standard" is used in Great Britain, almost to the entire exclusion of all other standards.

The wholesale trade as a rule sells boards, battens, deals, planks, etc., by the Standard.

The Standard (St. Petersburg) deal contains 1 piece $3 \times 11-6$ feet and 120 pieces of this dimension make one Standard.

COMPOSITION OF				STANDARDS	
Pcs.	Size. Length.	B. M Cu. Ft.			

The Drontheim Standard varies for different kinds of lumber. It contains:
2376 feet B. M. of Sawn Deals.
2160 feet B. M. of Square Timber.
1728 feet B. M. of Round Timber.
The Wyburg Standard contains:
2160 feet B. M. of Sawn Deals.
$19632 / 3$ feet B. M. of Square Timber.
1560 feet B. M. of Round Timber.
100 St. Petersburg Stadard Deals equal 60 Quebec Deals.
The Riga "Last" contains 960 feet B. M. of Sawn Deals or Square Timber.
A Cubic Fathom of Lathwood is 6 ft . x 6 ft . and contains 216 cubic feet or 2592 feet B. M.

A Gross Hundred (120) pieces) makes a Standard Hundred.
FIGURING OF STANDARDS
Bring the following specification to Standard Measurement:
24 Pieces $3 / 4 \times 51 / 2 \quad 24$
20 Pieces 1×6
20 Pieces $1 \times 12 \quad 20$
40 Pieces $2 \times 10 \quad 24$
10 Pieces $2 \times 12 \quad 22$
Reduce each item as follows by multiplying the number of Pieces and all their dimensions together.

$24 \times 3 / 4 \times 51 / 2 \times 24$	$20 \times 1 \times 6-16$	$20 \times 1 \times 12-20$
$3 / 4$		
18	-1	1
$51 / 2$	20	20
99	6	$\frac{12}{240}$
24	120	16
2376	1920	

When the products are obtained, then add together the totad number of inches as shown in the specification below, which totals:

24 Pieces $3 / 4 \times 5 \frac{1}{1} 24-2376$ inches.
20 Pieces 1x6 16- 1920 inches.
20 Pieces 1x12 20-4800 inches.
40 Pieces $2 \times 10 \quad 24-19200$ inches.
10 Pieces $2 \times 12 \quad 22-5280$ inches.
33576 inches.

Always divide the total (in this instance 33576) by the following figures, which are standing divisors and never vary; thus:
11) 33576
18) 3052
30) $16910 / 18$
4) $5.1910 / 18$

Std. Quarters. Deals. Parts.

$$
\text { 1.1.19 1018 equals, } 1 \quad 1 \quad 19 \quad 10 / 18
$$

FREIGHT MEASUREMENT OF TIMBER AS USED IN ENGLAND

A St. Petersburg Standard Hundred contains 120 pieces of 12 feet $\times 11 / 2$ inches $\times 11$ inches $=165$ cubic feet, or 1,980 superficial feet of 1 inch.

Deals, battens, scantings, rough boards, and sawn pitch pine timber, pay freight per St. Petersburg Standard Hundred.

Planed boards pay freight on actual measure when dressed, not by the specification of nominal sizes from which they are manufactured.

Squared timber pays freight per load of 50 cubic feet, Queen's calliper measure delivered.

Mahogany and cedar from Cuba pay freight per load of 50 cubic feet, Queen's calliper measure, the captain paying the measuring charge.

Most furniture woods pay freight per ton weight delivered.
1 shipping ton equals 42 cubic feet of Timbers.
100 Superficial feet of planking
120 Deals
50 Cubic feet of squared timbers
40 Cubic feet of unhewn timbers
600 Superficial feet of inch boards
216 Cubic feet of lathwood
108 Cubic feet of wood
equal 1 square
equal 1 hundred
equal 1 load
equal 1 load
equal 1 load
equal 1 fathom
equal 1 stack
equal 1 cord
Timber at 50 cube feet to one ton.
Pitchpine, Spruce, Whitewood, Redwood, Elm, Walnut, Maple, Pine, Baltic, Dantzig, Riga, and Memel Fir Timber are computed as weighing 50 cubic feet to the ton.

Timber at 40 cube feet to one ton
Birch, Oak, Ash, Elm, Mahogany, Teak, Beech, Green Heart, Hickory, and Round Timber generally are computed as weighing 40 cubic feet to the ton.

TO FIGURE CAPACITY OF FREIGHT CARS LUMBER

To find the amount of Rough Green Lumber any car will carry, cut off a cipher from the marked capacity in pounds, add 10 per cent. and multiply by 3 ; the result will be the limit of feet Board Measure the car is allowed to carry.

Example: What is the limit in feet Board Measure allowed a car of 80,000 pounds capacity?

8000 pounds.
80010 per cent.
8800×3 equals $26,400 \mathrm{ft}$. Board Measure.-Answer.
SHINGLES
To find approximate number of 16 -inch Shingles that can be loaded in a box car.

Ascertain cubical capacity of the car, and to the number of cubic feet add two ciphers; the result will be the number of Shingles.

When loading Shingles or Lumber in furniture cars, precautions should be taken against exceeding the weight limit.

OCTAGON SPARS

As the custom is now becoming general to order Octagon Spars, both Sawn and Hewn, the information on this subject will be appreciated by those who make a specialty of this line.

An Octagon can be made out of a Square timber by the following rule:
From diagonal deduct one side of timber, and that will give one side of the Octagon.

To find the length of the side of the triangle to be taken off the corner of the timber at right angles to the diagonal, deduct half the diagonal from one side of the timber.

One side of a square timber dividid by .707 gives the diagonal.

Example:

Find the length of one side of an Octagon that can be made out of a timber 35 inches square.

Diagonal of $35 \times 35=49.50$ inches.
One side of $35 \times 35=35.00$ inches.
One side of Octagon $=14.50$ inches.

Example:

What is the length of the side of a triangle to be taken off the corner of a timber 35 inches square to make an Octagon?

Process

2) 49.50 Dagonal
24.75 Half the Diagonal.
35.00 Inches one side of timber.
24.75 Inches, half the diagonal.
10.25 Inches length of one side of triangle.

To find one side of an Octagon inscribed in a circle, multiply diameter by .38265.

To find area of an Octagon multiply square of side by 4.82843.
When one side of a square is given. to find one side of an Octagon. that can be made out of it-multiply one side of square by .41421 .

When one side of an Octagon is given, to find the diameter of the circumscribed circle, multiply one side of the Octagon by 2.613 .

TO COMPUTE THE BOARD FEET CONTENTS OF AN OCTAGON
To compute the board feet contents of an octagon multiply the square of one side of the Octagon by 4.82843 ; then multiply the result by the length and divide by 12 .

Example:

Find the board feet contents of an Octagon, one side of which is 4 inches and the length 60 feet.

Process:

Multiplied by $\quad \begin{array}{r}4.82843 \\ 16\end{array} \begin{aligned} & \text { decimal term } \\ & \text { the square of } 4\end{aligned}$
Multiplied by $\begin{array}{r}77.25488 \\ 60\end{array}$ the length
Divided by 12) 4635.29280
386.2744 Board Feet Contents.

ANOTHER METHOD

To compute the board feet contents of an Octagon manufactured out of a square timber.

First find the contents of the square timber in the usual way, then square one side of the Octagon; multiply it by the length and divide by 12 ; subtract this amount from the contents of the square timber and the result will give the board feet contents of the Octagon.

Example:

Find the board feet contents of an Octagon the side of which is $141 / 2$ inches, made of a timber 35 inches square and 60 feet long.

Process:

$35^{\prime \prime} \times 35^{\prime \prime}-63 \mathrm{ft}$. equals 6125 Board Feet.
$141 / 2 \times 141 / 2-60 \mathrm{ft}$. equals $10511 / 4$ Board Feet.
Contents of the Octagon $50733 / 4$ Board Feet.

Note:

The exact side of a square from which an Octagon of $141 / 2$ inches could be made, would be 35.0065 inches. In the foregoing example the figures past the decimal point, namely . 0064 are discarded as being unnecessary for practical furposes.

EXPLANATION OF OCTAGON TABLE

See Table on page 29.

First Column shows the size of the timber to be made into an Octagon.
Second Column shows the diagonal or the length of a line joining the opposite angles of the timber.

Third Column shows the length of one side of the Octagon that can be made from the timber in First Column.

Fourth Column shows the length of one side of the triangle to be cut off each corner of the timber at right angles to the diagonal to make the Octagon.

The above diagram illustrates the system used in determining the contents of an Octagon. Note that one side of the square (35) deducted from the diagonal ($491 / 2$) gives one side of the Octagon, and that the side of the small inner square equals one side of the Octagon. You will also observe that the area of the small square or combinel areas of the four sections of the small square is the equivalent to the total area of the four corners taken off the large square to make the Octagon.

USEFUL TABLE FOR MAKING OCTAGONS OUT OF SQUARE TIMBER

Square		One Side	One Side
Timber	Diagonal	of Octagon	of Corner
First	Second	Third	Fourth
Column	Column	Column	Column
6 x 6	8.48	2.48	1.76
7×7	9.90	2.90	2.05
8 x 8	11.31	3.31	2.35
9 x 9	12.73	3.73	2.63
10×10	14.14	4.14	2.93
11×11	15.56	4.56	3.22
12 x 12	16.97	4.97	3.51
13×13	18.39	5.39	3.81
14×14	19.80	5.80	4.10
15×15	21.22	6.22	4.39
16×16	22.63	6.63	4.69
17×17	24.05	7.05	4.97
18×18	.. 25.46	7.46	5.27
19×19	. 26.87	7.87	5.56
20x20	. 28.29	8.29	5.85
21×21	29.70	8.70	6.15

Square		One Side	One Side
Timber	Diagonal	of Octagon	of Corner
First	Second	Third	Fourth
Column	Column	Column	Column
22×22	31.12	9.12	6.44
23×23	32.53	9.53	6.73
24×24	33.95	9.95	7.02
25×25	35.36	10.36	7.32
26x26	36.78	10.78	7.61
27x27	38.19	11.19	7.90
28×28	39.60	11.60	8.20
29×29	41.02	12.02	8.49
30×30	42.43	12.43	8.78
31×31	43.85	12.85	9.07
32×32	45.26	13.26	9.37
33×33	46.68	13.36	9.66
34×34	48.09	14.09	9.95
35×35	49.50	14.50	10.25
36×36	. 50.90	14.92	10.54

TO COMPUTE THE AREA OF A BEGULAR POLYGON

When length of a side only is given.

Rale:

Multiply square of the side by multiplier opposite to term of polygon in the following table:

No. of		
Sides	Polygon	Multiplier
3	Trigon	.43301
4	Tetragon	1.72048
5	Pentagon	1.72048
6	Hexagon	2.59808
7	Heptagon	3.63391
8	Octagon	4.82843
9	Nonagon	6.18182
10	Decagon	7.69421
11	Undecagon	9.36564
12	Dodecagon	11.19615

TO COMPUTE THE BOARD FEET CONTENTS OF A REGULAR POIYGOM

Rale:

Multiply square of the side by multiplier opposite to the term of polygon in the foregoing table; then multiply the result by the length and divide by 12.
Example:
Find the board measure contents of a Nonagon (9 equal sides) one side of which is 6 inches and the length is 30 feet.
Process:

TO COMPUTE CONTENTS OF A TAPERING OCTAGON OR FRUSTUM OF A PYRAMID

Rale:

To the sums of the areas of the two ends of the tapering octagon or frustum add the square root of their product. Multiply the sum.by the height and take one-third of the product.
Example:
Find the cubic contents of a frustum of a pyramid whose height is 15 feet. The area of one end is 18 square feet and the other 98 square feet.
Operation:
$18+98=116$ (area of the two ends)
$98 \times 18=1764$ square root of $1764=42$.
$116+42=15815$ (height) $x 158=2370$, which divided by 3 gives 790 cubic feet.
Remark:
This rule also applies to frustums of cones.

Length.	WIDTH OF BOARD (INCHES).																					
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	CONTENTS (BOARD FEET).																					
6	${ }^{16}$	2	2^{6}	3	36	4	4^{6}	5	5^{6}	6	6^{6}	7	76	8	8^{6}	9	$9{ }^{6}$	10	10^{6}	11	116	12
7	19	2^{4}	211	3^{6}	41	48	5^{3}	510	6^{5}	7	77	8 8	89	9	911	10^{6}	11^{1}	11^{8}	12^{3}	1210	135	14
8	2	2^{8}	3^{4}	4	4^{8}	5^{4}	6	6^{8}	74	8	88	94	10	118	11^{4}	12	12^{8}	13^{4}	14	14^{8}	15^{4}	16
9	2^{3}	3	3^{9}	46	53	6	69	76	9^{3}	9	99	10^{6}	11^{3}	12	129	13^{6}	14^{3}	15	15^{9}	16^{6}	173	18
10	2^{6}	3^{4}	$4{ }^{2}$	5	510	6^{8}	76	84	$9{ }^{2}$	19	10^{10}	11^{8}	12^{6}	13^{4}	142	15	1510	16^{8}	17^{6}	184	192	20
11	2^{9}	3^{8}	4^{7}	5^{6}	$6{ }^{5}$	74	83	9^{2}	10^{1}	11	11^{11}	12:0	129	14^{8}	15^{7}	16^{6}	175	184	19^{3}	20^{2}	${ }_{21}{ }^{1}$	22
12	3	4	5	6	7	8	9	10	11	12	13	14	1.5	16	17	18	19	20	21	22	23	24
13	3^{3}	$4{ }^{4}$	55	66	77	88	99	10^{10}	11^{11}	13	141	15^{2}	16^{3}	174	18^{5}	196	20^{7}	21^{8}	22^{9}	2310	24^{11}	26
14	3^{6}	4^{8}	$5{ }^{10}$	7	82	94	10^{6}	11^{8}	12^{10}	14	15^{2}	164	17^{6}	19^{8}	1910	21	22^{2}	23^{4}	246	25^{8}	26^{10}	28
15	39	5	$6{ }^{3}$	7^{6}	83	10	11^{3}	126	13^{9}	15	16^{3}	176	18^{9}	20	21^{3}	$2^{22}{ }^{6}$	23^{3}	25	26^{3}	27^{6}	28^{9}	30
16	4	5^{4}	6^{8}	8	94	10^{8}	12	13^{4}	14^{8}	16	174	188	20	214	22^{8}	24	25^{4}	26^{8}	28	294	30^{8}	32
18	46	6	76	9	10^{6}	12	13^{6}	15	16^{6}	18	196	21	${ }^{22^{6}}$	24	25^{6}	27	${ }_{2}^{296}$	30	$31{ }^{6}$	33	346	36
20	5	6^{88}	84	10	118	13^{4}	15	16^{8}	184	20	${ }^{218}$	${ }_{2}^{234}$	25	26^{3}	284	30	318	${ }^{334}$	35	36^{8}	$3{ }^{34}$	40
22	5^{6}	${ }^{74}$	${ }^{92}$	11	12^{10}	148	16^{6}	18^{4}	20^{2}	22	${ }_{21}{ }^{10}$	25^{8}	${ }_{30}{ }^{6}$	294	31^{2}	33 36	34810	$36{ }^{8}$ 40	$3{ }^{3} 6$	40^{4}	$4_{46}{ }^{2}$	44
24	${ }_{6}^{6}$	8	10	12	14	176	18	${ }_{218}^{20}$	${ }_{2310}^{22}$	24	${ }_{28}^{26}$	${ }_{30}^{28}$	${ }_{30}^{30}$	32 348	34 3610	36 39	38 412	${ }_{434}^{40}$	42	44	496	48
28	${ }^{6}$	${ }^{88}$	${ }_{11^{18}}{ }^{10}$	14	15^{2} 164	174 188	${ }_{21}^{196}$	${ }_{21}{ }^{2}{ }^{8}$	${ }_{25}{ }^{2} 3^{9}$	24 28	28 ${ }^{2}$	30^{4} 32^{8}	32 35	348 374	36^{10} 39	49	44^{44}	$43{ }^{4}$ 4	49	474	53^{49}	$\stackrel{5}{56}$
30	7^{6}	10	12^{6}	15	176	20	22^{6}	25	27^{6}	30	${ }_{32}{ }^{6}$	35	$3{ }^{36}$	40	42^{6}	4.5	47^{6}	50	52^{6}	55	576	60
32	8	10^{8}	13^{4}	16	15^{8}	21^{4}	24	26^{8}	29^{4}	32	34^{8}	374	40	422^{8}	454	48	50^{8}	5.34	56	58^{8}	614	64

TO COMPUTE SIZES NOT GIVEN IN THE BOARD MEASURE TABLE

A great variety of sizes can be computed or checked by the ald of the foregoing table.

If you wish to figure the contents of fractional lumber. plank. square or rectangular timbers the table can be used for that purpose.

For lumber $11 / 4$ inches in thickness add $1 / 4$ to the amount given in the table for a board of corresponding width and length.

For lumber $11 / 2$ inches in thickness you would add half the amount to the contents.

For lumber 2 inches in thickness double the amount of contents. In other words when the thickness exceeds one inch multiply the board feet amounts given in the table by the thickness.

EXAMPIES

Fractional Sizes-Find the contents of 1 piece $11 / 4 \times 17.20$ feet long.
By referring to the table you will find 1 piece $1 \times 17,20$ feet long. contains) 28 feet and 4 inches. to this is added one quarter (7 ft .1 in .) which gives 35 feet 5 inches, the board feet contents of 1 piece $11 / 4 \times 17,20$ feet long.

If the board were $11 / 2$ inches in thickness you would add to the contents of 1×17, half the amount.

Square timbers-Find the contents of 1 piece 18×18.20 feet long.
According to the table. 1 piece 1×1820 contains 30 board feet. the amount multiplied by one side of the square (18) gives 540 , the board feet contents.

Bectangular Timbers-Find the contents of 1 piece 15×2432 feet long.
In this case you can multiply the contents of 1×1532 (40 feet contents) by 24 , or 1×2432 (64 feet contents) by 15 , the result will be the same, namely 960 board feet contents.

Totals-In the table the fractions are given in twelfths (small figures) making adding easier. Thus the following 1 inch lumber would be added:

To find the total contents of lumber thicker than 1 inch, proceed as if the lumber were 1 inch and multiply the total by the thickness.

In the foregoing example, if it were 3 -inch lumber the total would be multiplied by 3. or a total of 221 board feet.

TO COMPUTE AN AVERAGE RANGE OF LENGTHS

When an order such as 3×8 and wider calls for an average length, use the following system to compute it:

Rule:

Add together the total pieces of each length, and multiply the pieces by their respective lengths; then add separately the pieces and lengths, and divide the grand total of pieces into the grand total of lengths. The result will be the average length.

Example:

Find the average length of a range of widthis such as 3×8 and wider.

Process:

TO COMPUTE AVERAGE WIDTHS

Orders from E'urope frequently call for an average in width of a specifled thickness, such as 3×8 and wider, 4×10 and wider, 6×12 and wider. The following is the system for striking an average:

Rule:

Multiply the total pieces of each width separately; then add totals separately, and divide total of pieces into total of widthis. The result will be the average width.

Example:

An item on an order calls for a specified amount of 4×10 and wider, to average 15 inches or over in width. The following pieces and widths have been sawn on this item; what is the present average?

BOARD MEASUREMENT OF LOGS

Board measure is designed primarily for the measurement of sawed lumber. The unit is the board foot, which is a board 1 inch thick and 1 foot square, so that with inch boards the content in board measure is the same as the number of square feet of surface; with lumber of other thicknesses the content is expressed in terms of inch boards.

In recent years board measure has been used as a unit of volume for logs. When so applied the measure does not show the entire content of the log, but the quantity of lumber which, it is estimated, may be manufactured from it. The number of board feet in any given log is determined from a table that shows the estimated number which can be taken out from logs of different diameters and lengths. Such a table is called a log scale or log rule. and is compiled by reducing the dimensions of perfect logs of different sizes, to allow for waste in manufacture. and then calculating the number of inch boards which remain.

The amount of lumber which can be cut from logs of a given size is not uniform, because the factors which determine the amount of waste vary under different circumstances, such as the thickness of the saw, the thickness of the boards, the width of the smallest board which may be utilized, the skill of the sawyer, the efficiency of the machinery, the defects in the log, the amount of taper, and the shrinkage. This lack of uniformity has led to wide differences of opinion as to how log rules should be constructed. There have been many attempts to devise a log rule which can be used as a standard, but none of them will meet all conditions. The rules in existence have been so unsatisfactory that constant attempts have been made to improve upon them. As a result there are now actually in use in the United States 40 or 50 different log rules, whose results differ in some cases as much as 120 per cent for 20 -inch to 30 -inch logs, and 60 per cent for 6 -inch logs. Some of these are constructed from mathematical formulae; some by preparing diagrams that represent the top of a log and then determining the amount of waste in sawdust and slabs; some are based on actual averages of logs cut at the mill; while still others are the result of making corrections in an existing rule to meet special local conditions.

The large number of log rules, the differences in their values, and the variation in the methods of their application have led to much confusion and inconvenience. Efforts to reach an agreement among lumbermen on a single standard log rule have failed so far. A number of States have given official sanction to specific rules, but this has only added to the confusion, because the States have not chosen the same rule, so there are six different state log rules, and, in addition, three different official log rules in Canada. It is probable that a standard method of measuring logs will not be worked out satisfactorily until a single unit of volume, like the cubic or board foot, is adopted for the measurement of logs.-U. S. Forest Service Bulletin 36 .

The Brereton Solid Log Table shows the exact or solid contents in board feet of logs or round timbers, which will be found invaluable in a large number of instances as enumerated in the following pages, and also for comparison with the Pacific Coast and other numerous log scales now in use.

It is only a question of time when both buyer and seller will recognize the absolute fairness and benefit to be derived from making sales on the exact contents of a \log, as the variation in quality can then be adjusted by the variation in price.

It is unreasonable to measure pulp wood logs in terms of manufactured lumber, as the entire log is used in making pulp. Therefore a solid measure is more appropriate than the usual log scale making allowance for slab and saw kerf.

ADVANTAGES AND USES OF THE BRERETON SOLTD LOG TABLE SHOWITG EXACT BOARD MEASURE CONTENTS OF LOGS

Abstract

Situations arise where it is essential to arrive at a close estimate for freight purposes of the exact or solid contents of logs or piling which are often shipped by vessel to Foreign or Domestic ports or when it is necessary to compute their weight prior to shipping by rail, with a view of ordering cars that will stand the strain of heavy and long logs, spars or timbers.

It is also indispensable for ship's officers and stevedores to know the contents and weight of large logs and spars to enable them to judge as to the advisability of adjusting or doubling up their gear to avoid smashing derricks and winches or otherwise breaking down machinery.

POUNDS PER DEADWEIGHT TON

When computing deadweight of lumber, coal, or general cargo carried by British vessels, it is customary to use the long ton of 2240 pounds.

WHIGET OF DOUGLAS FIR LOGS OR PIIING

Rafted logs or piling on account of being partly submerged in salt or fresh water, or freshly felled in the early summer months, will naturally weigh more than those felled in winter, or shipped direct on cars from forest to destination. To compute the approximate weight in pounds of rafted logs or piling, take average diameter including bark, then ascertain board measure contents by referring to the Brereton Solid Log Table and multiply the amount by 3.5 .

For logs and piling shipped on cars multiply board measure contents by 3.4.

WEIGHT OF CREOSOTED DOUGLAS FIR PILES, POIES AND TIES

To compute weight in pounds of creosoted piles or poles, take average diameter, then ascertain board measure contents according to the Brereton Solid Log Table and multiply the amount by 3.5 .

Butt treated or butt and top treated telephone, telegraph or electric light poles weigh about 3.4 pounds per board foot, exact contents.

Creosoted ties (sleepers) or lumber of small dimensions weigh about 3.6 pounds per board foot. Creosoted timbers weigh about 3.5 pounds per board foot.

POINTER FOR CHARTERER OR OWNERS OF VESSELS-TAINT FROM CREOSOTE

In making charters for vessels to carry creosoted piling or lumber, if possible arrange to carry this material on deck. If carried under deck it will taint perishable cargo in same compartment, or perishable cargo carried on the return voyage.

EFPECT OF CREOSOTE ON CARRYING CAPACITY
The difference in weight between creosoted and untreated ties must also be taken into consideration as this affects the carrying capacity to a considerable extent; for instance, a steamer with a deadweight cargo carrying capacity of 5400 long tons that would ordinarily carry $3,620,000$ board feet of untreated fir ties would only carry $3,360,000$ board feet of creosoted ties, a difference of 260,009 board feet.

GROWTH OF TREES

Since there is a marked tendency among timberland owners to cut their timber with an eye to the future, some knowledge of the growth of forest trees becomes important.

Trees grow by adding each year a layer of wood underneath the bark. Since each year contains only one growing season and the spring and summer part of this layer are not alike, each year's growth. layer, or "annual ring" usually is distinguishable. The central fact of tree growth is that each ring means a year. The exceptions to this are not important enough to merit notice here.

Trees growing in the heart of the forest are generally straight and tall as it is necessary for their leaves to receive sunlight and air sufficient for vitalizing the sap; the lower branches of these trees only last a few years when they die and fall off. On the edges of the forest the lower branches of the trees remain alive and active so that timber cut from such places is knotty and occasionally cross-grained, while that cut from the inside trees is straight-grained and contains a larger percentage of clear lumber.

ANNUAL RINGS

Annual rings denote the spring and summer growth of the tree; the spring ring is distinguished by its light color; it is invariably wider than the summer ring on account of its more rapid growth which produces a softer fiber. The summer ring is darker in color, is harder and has a much more solid appearance than the spring ring. The line of separation in annual rings is caused by the suspension of the growth of the stem during winter.

The annual rings are not always uniform as they are generally thicker on that side of the tree which has the longest exposure to the sun. For this reason the distance from pith to bark will often vary several inches; for instance, the measurement of a log from heart center to bark would be, say 15 inches on one side and 20 inches on the other.

The widest rings are found around the heart centre from whence they gradually diminish in thickness as they radiate towards the sap, where their growth is so compact that it is almost impossible to count them without the aid of a microscope.

In determining the strength of lumber which is the principal point when inspecting the merchantable grades generally used for high class constructional purposes, the width, uniformity and compactness of the growth of the annual rings should be carefully noted. When the summer ring is narrow and the spring ring wide or porous, weakness is the result. When the spring and summer rings are nearly equal in width and uniformly close, it denotes natural strength so requisite in the quality of lumber used for ship and bridge work, masts, spars, dredger spuds, derricks or similar purposes for which Douglas Fir is unequalled.

In small trees the annual rings are proportionately closer and more uniform from heart centre to bark than the larger species, though there are occasional exceptions.

The annual rings are larger at the top than at the base of tree.
Small and medium sized logs which range from 17 to 36 inches in diametor, as a rule produce excellent timbers and a good grade of merchantable lumber.

ANNUAL RINGS DENSTTY AND DECAY

Specific gravity or density of lumber materially influences resistance to decay of the heart-wood; the more dense the wood the more durable it is. Specific gravity is a property which can not be determined from inspection, but it can be estimated by recourse to the proportion of summerwood to springwood in the annual growth rings which proves to be a safe criterion of the durability of heartwood; i. e., an increase in summer wood results in an increase in speecific gravity. The specific gravity of Douglas Fir when freshly sawn is 640.

The width of the growth rings furnishes a further index of durability; the summer wood, which is of greater density and contains more pitch, shows more resistance to fungus attack than the spring rings of porous growth.

The resisting qualities of pitch to decay is principally through its waterproofing effect on wood, and thus its influence on the absorption of moisture by wood containing it; that is, the power of wood to absorb moisture is very important in its decay. It is well known that below a certain maximum of moisture in wood, fungi will not grow. Any property of the wood which will influence this balance of moisture is of importance in decay resistance. Thus, if the wood contains enough pitch to have a material waterproofing effect, it must play a role in durability.

DURABILITY OF WOOD

Timber cut in spring or in summer is not so durable as that cut in winter, when the life processes of trees are less active. Scientific investigations sustain this statement. The durability depends not only upon the greater or less density but also upon the presence of certain chemical constituents in the wood. Thus a large proportion of resinous matter increases the durability, while the presence of easily soluble carbohydrates diminishes it considerably.

During the growing season the wood of trees contains sulphuric acid and potassium, both of which are solvents of carbohydrates, starch, resins and gums; they are known to soften also the ligneous tissue to a considerable degree. During the summer months the wood of living trees contains eight times as much sulphuric acid and five times as much potassium as it does during the winter months. The presence of these two chemical substances during the growing season constitutes the chief factor in dissolving the natural preservatives within the wood and in preparing the wood for the different kinds of wood-destroying fungi, such as polyporus and agaricus. The fungi can thus penetrate more quickly and easily into the interior of the wood when these wood gums are already partly dissolved and available for their own immediate use.

From this standpoint it seems that the best time to cut down the tree is in the winter, when sulphuric acid and potassium are present to a much smaller degree, and the fungi will not be assisted in dissolving the natural preservatives in the wood. The amount of wood gum is always less and more easily soluble in sapwood than in heartwood.-Scientific American.

OLD GROWTH LOGS

In reference to lumber manufactured from "old growth" logs, it means that the trees from which they were logged are mature, of large diameter and grown in a virgin forest, and not from trees in a process of decay through age.

Old growth Douglas Fir furnishes excellent lumber for high grade wide clears, in either edge or slash grain.

DIAMETER GEOWTE

Some trees grow so slowly that a hand lens is necessary to clearly distinguish the rings, others may have rings a half inch in width. In any case, a little practice improves the ability to note all the rings.

To find the age of a felled tree at any section, then, requires only the accurate counting of the rings. The total age of the tree is shown by the total number of rings at the ground; or the total number of rings on the stump plus the number of years required to grow as high as the stump. An examination of a number of small trees would give an idea of the time required to grow up to stump height. This varies from one year in trees coming up as stump sprouts to as high as twenty years or more in some Rocky Mountain, conifers, for heights of 1 to 3 feet.

Since trees often grow faster on one side than another, the average growth is gotten only by finding the average radius and counting and measuring the rings along it. Thus the radius of the tree may be found at ten, twenty, thirty years, etc., and by doubling these the diameters are found at these ages.

DIFFERENTIAL TABLE

Table showing difference in board feet between actual contents of logs, 40 feet in length, 12 to 40 inches in diameter, and the Pacific Coast Log Scale's; also their respective allowances for slabs and saw kerf.

	Allowance for Slabs		Allowance for Slabs		Allowance for Slabs	
Actual Contents	.. 589		757		945	
Scribner scale	196	393	286	471	396	549
Spaulding Scale	192	397	286	471	402	543
British Columbia Scale	210	379	297	460	400	545
	Allowance		Allowance		Allowance	
	18-in.	and Saw	20-in.	and Saw	for Slabs 22-in. and Saw	
	Diam.	Kerf.	Diam.	Kerf.	Diam.	Eerf.
Actual Contents:	1155		1385		1636	
Scribner Scale	534	621	700	685	836	800
Spaulding Scale	540	615	690	695	852	784
British Columbia scalo	518	637	652	733	800	836

		llowance or Slabs		llowance for Slabs	All	wance Slabs
	24-in.	and Saw	26-in.	and Saw	28-in.	Saw
	Diam.	Kerf.	Diam.	Kerf.	Diam.	zerf.
Actual Contents	. 1909		2202		2516	
Scribner Scale	1010	899	1250	952	1456	1060
Spaulding Scale	1030	879	1220	982	1422	1094
British Columbia	. 964	945	1145	1057	1337	1179

TAPER OF DOUGIAS FIR IOGS

The foregoing table is computed on the assumption that the 49 -foot logs used as an example have an increase in taper of 6 inches, which is a fair average for this length of log.

To gauge the correct actual contents of a log, it is necessary to take the mean diameter, not the diameter at the small end, which is the usual method of scaling Douglas Fir logs; therefore to arrive at the actual contents given in the table, an increase of three inches over the diameter at the small end is allowed to give the correct mean diameter upon which the actual contents given in this table are based.

To display that the increase of 6 inches in taper is not excessive or used for the purpose of creating a disparity between the actual contents of logs as shown in the "Differential Table" and the scale according to log rules; carefully note in the following table the increase in taper of Douglas Fir logs from records kept by the United States Forest Service Department.

TAPER OF DOUGLAS FIR LOGS

Total Iength Feet	Iog Iengths			
	Butt	Second	Third	Top
	Iog	Log	Log	Log
$80 \text { Increase }$	$\begin{array}{r} 28^{\prime} \\ -\quad 7^{\prime \prime} \end{array}$	$\begin{gathered} 26^{\prime} \\ 5^{\prime \prime} \end{gathered}$		$\begin{gathered} 26^{\prime} \\ 0^{\prime \prime} \end{gathered}$
$82 \text { Increase }$	$\begin{gathered} 28^{\prime} \\ e \quad 7^{\prime \prime} \end{gathered}$	$\begin{gathered} 28^{\prime \prime} \\ 5^{\prime \prime} \end{gathered}$	\ldots	
$84 \text { Increase }$	$\begin{array}{r} 28^{\prime} \\ e^{\prime \prime} 8^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 28^{\prime} \\ 5^{\prime \prime} \end{gathered}$...	$\begin{gathered} 28^{\prime} \\ 0^{\prime \prime} \end{gathered}$
$86 \text { Increase }$	$\begin{gathered} 30^{\prime} \\ e^{\prime \prime} \end{gathered}$	$\begin{aligned} & 28^{\prime} \\ & 5^{\prime \prime} \end{aligned}$.	28 $0^{\prime \prime}$ 1
$88 \text { Increase }$	$\begin{aligned} & 30^{\prime} \\ & e^{\prime \prime} 8^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{gathered} 30^{\prime} \\ 5^{\prime \prime} \end{gathered}$...	$\begin{gathered} 28^{\prime} \\ 0^{\prime \prime} \end{gathered}$
$90 \text { Increase }$	$\begin{aligned} & 30^{\prime} \\ & 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 30^{\prime} \\ 6^{\prime \prime} \end{gathered}$	30 0 0 1
$92 \text { Increase }$	$\begin{gathered} 32^{\prime} \\ 8^{\prime \prime} \end{gathered}$	$\begin{gathered} 30^{\prime} \\ 6^{\prime \prime} \end{gathered}$...	$\begin{aligned} & 30^{\prime} \\ & 0^{\prime \prime} \end{aligned}$
94 Increase	$\begin{gathered} 32^{\prime} \\ e 8^{\prime \prime} \end{gathered}$	$\begin{aligned} & 32^{\prime} \\ & 6^{\prime \prime} \end{aligned}$	\ldots	$\begin{aligned} & 30^{\prime} \\ & 6^{\prime \prime} \end{aligned}$
$96 \text { Increase }$	$\begin{gathered} 32^{\prime} \\ e^{\prime \prime} \end{gathered}$	$\begin{gathered} 32^{\prime} \\ 6^{\prime \prime} \end{gathered}$...	$\begin{gathered} 32^{\prime} \\ 0^{\prime \prime} \end{gathered}$
$98 \text { Increase }$	$\begin{array}{r} 26^{\prime} \\ \hline \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 24^{\prime} \\ & 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 24^{\prime} \\ 5^{\prime \prime} \end{gathered}$	$\begin{gathered} 24^{\prime} \\ 0^{\prime \prime} \end{gathered}$
$100 \text { Increase }$	$\begin{aligned} & 26^{\prime} \\ & 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 26^{\prime} \\ & 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 24^{\prime} \\ 5^{\prime \prime} \end{gathered}$	$24 \prime$ $0 \prime$ 1

This table is intended to be used simply as a guide; the allowances for taper shown should be varied to conform to the actual taper. These figures are based on the actual taper of 110 Douglas Fir trees of average height measured in Washington and Oregon.

AVERAGE CONTENTS OF LOGS

To enable loggers and lumbermen to arrive at the average board feet in Douglas Fir and other species of Pacific Coast logs, with a view of comparing the difference between the solid or actual contents of logs, and the amounts according to the log rules in general use, the following table covers a record of the number of logs scaled and their contents, during the years 1913, 1914, 1915, 1916 and 1917, by the Puget Sound Log Scaling and Grading Bureau, Everett, Wash.

In the five years mentioned this Bureau scaled 4.604 .000 logs containing $3,353,631,600$ board feet. If the foregoing had been scaled according to their solid contents; i. e., without allowance for saw kerf and slab, the result would be about double the amount stated.

A fact that should not be lost sight of when comparing the difference between the solid contents and the amounts given in the standard log tables, is that the present method of scaling logs is invariably to take the diameter at the small end of the log. whereas in computing the solid contents. the mean or diameter at center of \log is taken.

Table showing contents in board feet of an average log of Douglas Fir, Hemlock, Spruce, Cedar and miscellaneous species. Scaled by Puget Sound Log Scaling and Grading Bureau.

	Number of Logs.	Board Feet Scale.	Log Average.	Pctg.
No. 1 Douglas Fir	92,671	256,496,830	2768	13
No. 2 Douglas Fir	. 1,044,589	1,123,440,220	1074	55
No. 3 Douglas Fir	. 1,184,594	659,725,000	556	32
Total Douglas	2,321,854	2,039,662,050	878	61
Western Hemlock	635,838	303,023,270	476	09
Sitka Spruce	100,973	104,959,880	1039	03
Western Cedar	1,457,906	856,888,890	588	26
*Miscellaneous	87,429	49,097,510	564	01
Total	4,604,000	3,353,631,600	728	

[^0]BRERETON SOLID LOG TABLE
ACTUAI COXTENTS OF LOGS OR ROUND THMBERS IN BOARD FEFT

Length
in Feet

BRERETON SOLID LOG TABLE-Continued
ACTUAT COMTFNTS OF LOGS OT ROUND TIMBERS IN BOARD FEFT

BRERETON SOLID LOG TABLE-Continued ACtUAL CONTENTS OF LOGS OR ROUMD timbits in board fixf

BRERETON SOLID LOG TABLE-Continued
 ACTUAL COMTENTS OF LOGS OR ROUND TTMBERS IN BOARD FERT

Average Diameter in Inches

TO COMPUTE CONTENTS OF A LOG, ROUND TAPERING TIMBER OR FRUSTUM OF A CONE

To compute the board feet contents of a log, round tapering timber or frustum of a cone.

Rule:

Add together squares of the diameters of the smaller and larger ends and product of the two diameters; multiply their sum respectively by .7854 , and this product by length (height); then divide result by 12 and 3.

Example:

Find the board feet contents of a $\log 38$ inches diameter at the small end, and 44 inches diameter at the large end, 40 feet in length.

Process:

The exact mean diameter of the \log in the foregoing example is 41.1 inches, not 41 inches as would be generally supposed. The difference is due to the converging slant height of a tapering body which gives a very slight increase in mean diameter over the approximate diameter which is computed by adding the top and bottom diameter together and dividing by 2.

When the diameter of a round timber is given or the mean diameter of a log is known the board feet contents can be obtained by reference to the Actual Contents Table, or using the following rule. Rule:

Multiply the square of the diameter by .7854 , and the product by the length, then divide by 12 .

To comprite contents of round timber

Example:

Find the board measure contents of a round timber 20 inches diameter and 50 feet in length. Process:

Square of diam. 20×20 equals 400.
400 multiplied by .7854 equals 314.16
314.16 multiplied by length 50 ft ., equals 15708

15708 divided by 12 equals 1309, Board Feet.

COMPUTING CONTEITS OF LOGS BY CIRCUMFERENCE

When the mean circumference of a log or round timber is known, the following rule gives the actual board measure contents.
Rule:
Multiply the square of the circumference by twice the length and divide by 300 .

Example:

Find the actual board measure contents of a log 60 inches mean circumference and 50 feet in length.

Process:

60×60 equals 3600 , the square of the circumference.
3600×100, (twice 50 , the length,) equals 360,000 .
360,000 divided by 300 equals 1200 , the board measure contents.

Note:

The foregoing rule gives five feet more lumber in every thousand feet a log contains than if computed by the long and tedious rule of geometry and is sufficiently correct for all practical purposes.

The circumference of a \log or circle multiplied by 0.31831 will give the diameter.
The diameter multiplied by $3-1 / 7$ or for greater "accuracy" by 3.1416 will give the circumference of a log or circle.

HOW TO SAW TIMBERS

Diagram Mlustrating Correct Method of Making Two Timbers Out of a Log

When it is necessary to make two sound timbers out of a large log, splitting through the heart should always be avoided, and if the following system is adopted better timbers will be produced, and the danger of exposing heart shakes will be greatly minimized.

Presume it is necessary to make two 12×12 timbers out of a $\log 32$ inches in diameter. Square up a $12 \times 281 / 2$ (the $1 / 2$ inch allows for two cuts $1 / 4$ inch Kerf), then cut the first timber, and if free from heart shakes, turn cant over and saw off 4 inches, and you will then have the second timber on the carriage. If after the first cut, shakey heart or other defects are exposed, without turning cant make another cut of 4 inches, which leaves a 12×12 on the carriage, and a glance will show whether it is suitable or not for required order.

To find the diameter of a log to make a square timber, divide one side of square by .707 , or for practical purposes add a cipher to one side of square and divide by 7 .

To find the largest size square timber that can be made out of a log, multiply diameter by 7 and divide by 10.

Examples:

What is the diameter of a log that will make a timber 21 inches square.
Process:

2110			
7) 210			
30 inches diameter. Answ			
What size timber can be made o			
40			
7			
10) 280			
8			

TABLE SHOWIMG THE DIAMETER OF A TOG MKCESSARY TO MAIM A SQUARE TIMIBER

Diameter of 10 g .	Size of Timber.	Diameter of log .	Size of Timber.
$14^{1 / 2}$	10×10	34	24×24
16	11×11	$35^{1 / 2}$	25×25
17	12×12	37	26x26
$181 / 2$	13×13	$381 / 2$	27×27
20	14×14	40	28x28
$2.11 / 2$	15×15	$411 / 2$	29x29
23	16×16	$421 / 2$	30×30
$24^{1 / 2}$	17×17	44	31×31
$251 / 2$	18×18	$451 / 2$	32×32
27	19x19	47	. 33×33
$281 / 2$	20x20	$481 / 2$	34×34
30	21×21	$491 / 2$	35×35
$311 / 2$	22×22	$501 / 2$	36×36
33	23×23		

KNOTS AND HOW THEY ARE CLASSIFIED

DOUGLAS FIR

A Pin Knot does not exceed half inch in diameter.
Round Knots are of a circular or oval formation, the average measurement across the face being considered the diameter.

Spike and Slash Knots are the same, and mean that the knot is sawn in a lengthwise direction.

Encased Knots usually are found in upper stock and are recognized by the ring of pitch which surrounds them; the knots on the outside of a plank may be encased, while on the heart side they are solid.

A thorough knowledge of knots is essentially of the utmost importance when grading lumber.

Knots spring from the heart in the same direction as the spokes do from
hub of a wheel. the hub of a wheel.

The above illustration shows a 6×12 that has been sawn through the heart; the knots shown are classified as spike or slash.

The majority of knots are black at outside point, and encased about one-third the distance from outside point to the heart center.

The encased knots that penetrate lumber of one inch in thickness are liable to come out when seasoned and then surfaced; the damage is mostly caused by the force of the knife striking and loosening some of the knots as the board passes through the planer.

In lumber two inches and over in thickness, and of number 1 and 2 Merchantable grade, it is only in very rare instances that the knots come out.

Special attention should be paid to the grain surrounding the knots, and the direction it takes, as this indicates more than anything else the strength of the piece.

THE DOYLE RULE

The Doyle Rule is variously known as the Connecticut River Rule, the St. Croix Rule, the Thurber Rule, the Moore and Beeman Rule, and the Scribner Rule-the last name due to the fact that it is now printed in Scribner's Lumber and Log Book. It is used throughout the entire country, and is more widely employed than any other rule. It is constructed by deducting 4 inches from the small diameter of the log as an allowance for slab, squaring one-quarter of the remainder, and multiplying the result by the length of the log in feet.

The important feature of the formula is that the width of slab is always uniform, regardless of the size of the log. This waste allowance is altogether too small for large logs and is excessive for small ones. The principal is mathematically incorrect, for the product of perfect logs of different sizes follows an entirely different mathematical law, and it is. therefore, astonishing that this incorrect rule, which gives wrong results for both large and small logs, should have so general a use.

Where the loss by defects in the timber and waste in milling have accidentally about balanced the inaccuracies of the rule, fairly accurate results have been obtained. Frequently, however, mill men recognize the shortcomings of the rule and make corrections to meet their special requirements. In general, the mill cut overruns the Doyle log scale by about 25 per cent. for short logs 12 to 20 inches in diameter; and for long logs with a small top diameter the overrun is very nuch higher.

DESCRIPTION OF BRITISH COLUMBIA LOG SCALE

AS AUTHORIZED BY THE BRITISE COLUMBIA GOVERNMENT

Deduct one and a half inches from the mean diameter in inches at the small end of the log.

Square the result and multiply by .7854 to find area.
Deduct three elevenths.
Divide by 12 to bring to board measure and multiply by the length of the \log in feet.

The above is intended to apply to all logs whose length is not greater than 40 feet.

It is further provided that in cases of logs over 40 feet in length an allowance on half the length of the log is made, in order to compensate for the increase in diameter; this allowance consists of an increase in the mean diameter at the small end of one inch for each additional 10 feet in length over 40 feet. In other words, in cases of logs from 42 to 50 feet long the contents of half the length of the log are to be computed according to the mean diameter at the small end, the contents of the other half of the log according to a diameter one inch greater than the mean diameter at the small end; in cases of logs from 52 to 60 feet long, the contents of half the log according to the mean diameter at the small end, and those of the other half according to a diameter two inches greater than the mean at the small end, and so on; the contents of the second half to be computed according to a diameter one inch greater than that of the mean at the small end for each additional 10 feet in length after 40 feet.

It was not, however, considered necessary to extend the table for a length of \log greater than 49 feet, as the contents of such a log of given diameter may be obtained with sufficient accuracy by adding the tabular contents of half the length of the log at the given diameter to the tabular contents of a similar log at a diameter increased one inch for each additional 10 feet in length beyond 40 feet.

AS PROVIDED UNDER SFCTION 6 OF THE "ROYAITY ACT."

Cedar

No. 1.-Logs 16 feet and over in length, 20 inches and over in diameter, that will cut out 50 per cent. or over of their scaled contents in clear inch lumber: Provided that in cases of split timber the foregoing diameter shall not apply as the minimum diameter for this grade.

No. 2.-Shingle grade. Logs not less than 16 inches in diameter and not less than 16 feet in length that are better than No. 3 grade, but not grade No. 1. No. 3.-Rough logs or tops suitable only for shiplap or dimension.
Culls.-Logs lower in grade than No. 3 shall be classed as culls.

Douglas Fir

No. 1.-Logs suitable for flooring, reasonably straight, not less than 20 feet long, not less than 30 inches in diameter, clear, free from such defects as would impair the value for clear lumber.

No. 2.-Logs not less than 14 inches in diameter, not over 24 feet long or not lesis than 12 inches in diameter, and over 24 feet, sound, reasonably straight, free from rotten knots or bunch-knots, and the grain straight enough to ensure strength.

No. 3.-Logs having visible defects, such as bad crooks, bad knots, or other defects that would impair the value and lower the grade of lumber below merchantable.

Culls.-Logs lower in grade than No. 3 will be classed as culls.

Spruce, Pine, and Cottonwood

No. 1.-Logs 12 feet and over in length, 30 inches in diameter and over up to 32 feet long, 24 inches if over 32 feet long, reasonably straight, clear, free from such defects as would impair the value of clear lumber.

No. 2.-Logs not less than 14 inches in diameter and not over 24 feet, or not less thar 12 inches in diameter and over 24 feet long, sound, reasonably straight, free from rotten knots or bunch-knots, and the grain straight enough to ensure strength.

No.. 3.-Logs having visible defects, such as bad crooks, bad knots, or other defects that would lower the grade of lumber below merchantable.

Culls.-Logs lower in grade than No. 3 will be classed as culls.
Diameter measurements, wherever referred to in this Schedule, shall be taken at the small end of the log.

BRITISH COLUMBIA LOG TABLE
 CONTENTS OF LOGS IN BOARD FEET

$\begin{aligned} & \text { Length } \\ & \text { In Ft. } \end{aligned}$	Diameter in Inches									
	11	12	13	14.	15	16	17	18	19	20
10	43	52	63	74	87	100	114	130	146	163
12	52	63	76	89	104	120	137	156	175	195
14	60	73	88	104	121	140	160	181	204	228
16	69	84	101	119	139	160	183	207	233	261
18	77	94	113	134	156	180	206	233	262	293
20	86	105	126	149	174	200	229	259	292	326
22	95	115	138	164	191	220	252	285	321	358
24	103	126	151	178	208	240	274	311	350	391
26	112.	136	164	193	226	260	297	337	379	424
28	120	147	176	208	243	280	320	363	408	456
30	129	157	189	223	260	300	343	389	437	489
32	137	168	201	238	278	320	366	415	466	521
34	146	178	214	253	295	340	389	441	496	554
36	155	189	227	268	312	360	412	467	525	586
38	163	199	239	283	330	380	435	492	554	619
40	172	210	252	297	347	400	457	518	583	652
$\begin{aligned} & \text { Length } \\ & \text { in }{ }^{\prime} t \text {. } \end{aligned}$	Diameter in Inches									
	21	22	23	24	25	26	27	28	29	30
10	181	200	220	241	263	286	310	334	360	387
12	217	240	264	289	315	343	371	401	432	464
14	253	280	308	337	368	400	433	468	504	541
16	290	320	352	386	421	457	495	535	576	619
18	326	360	396	434	473	514	557	602	648	696
20	362	400	440	482	526	571	619	669	720	773
22	398	440	484	530	578	629	681	735	792	851
24	434	480	528	578	631.	686	743	802	864	928
26	471	520	572	626	683	743	805	869	936	1005
28	507	560	616	675	736	800	867	936	1008	1083
30	543	600	660	723	789	857	929	1003	1080	1160
32	579	640	704	771	841	914	990	1070	1152	1237
34	615	680	748	819	894	971	1052	1137	1224	1315
36	652	720	792	868	946	1029	1114	1203	1296	1392
38	688	760	836	916	999	1086	1176	1270	1368	1469
40	724	800	880	964	1051	1143	1238	1337	1440	1547

BRITISH COLUMBIA LOG TABLE-Continued CONTENTS OF LOGS IN BOARD FEET

Iength in $\mathrm{F}^{\prime} \mathrm{t}$.	Diameter in Inches									
	31	32	33	34	35	36	37	38	39	40
10	414	443	472	503	534	567	600	634	669	706
12	497	531	567	603	641	680	720	761	803	847
14	580	620	66.1	704	748	793	840	888	937	988
16	663	708	756	804	855	906	960	1015	1071	1129
18	746	797	850	905	962	1020	1080	1141	1205	1270
20	828	886	945	1005	1068	1133	1200	1268	1340	1411
22	911	974	1039	1106	1175	1246	1320	1395	1473	1552
24	994	1063	1134	1207	1282	1360	1440	1522	1606	1693
26	1077	1151	1228	1307	1389	1473	1560	1649	1740	1834
28	1160	1240	1322	1408	1496	1586	1680	1776	1874	1976
30	1243	1328	1417	1508	1603	1700	1800	1902	2008	2117
32	1326	1417	1511	1609	1709	1813	1920	2030	2142	2258
34	1408	1506	1606	1709	1816	1926	2040	2156	2276	2399
36	1491	1594	1700	1810	1923	2040	2160	2283	2410	2540
38	1574	1683	1795	1911	2030	2153	2280	2410	2544	2681
40	1657	1771	1889	2011	2137	2266	2400	2537	2677	2822
Inength in Ft.	Diameter in Inches									
	41	42	43	44	45	46	47	48	49	50
10	743	781	820	860	901	943	985	1029	1074	1120
12	891	937	984	1031	1081	1131	1183	1235	1289	1344
14	1040	1094	1148	1203	1261	1320	1380	1441	1504	1568
16	1188	1249	1312	1375	1441	1508	1577	1647	1718	1791
18	1337	1405	1476	1547	1621	1697	1774	1853	1933	2015
20	1485	1562	1640	1719	1801	1885	1971	2058	2148	2239
22	1634	1718	1804	1891	1982	2074	2168	2264	2363	2463
24	1782	1874	1967	2063	2162	2262	2365	2470	2578	2687
26	1931	2030	2131	2235	2342	2451	2562	2676	2792	2911
28	2080	2186	2295	2407	2522	2639	2759	2882	3007	3135
30	2228	2342	2459	2579	2702	2828	2956	3088	3222	3359
32	2377	2498	2623	2751	2882	3016	3153	3294	3437	3583
34	2525	2655	2787	2923	3062	3205	3350	3499	3652	3807
36	2674	2811	2951	3094	3242	3393	3548	3705	3866	4031
38	2822	2967	3115	3266	3423	3582	3745	3911	4081	4255
40	2971	3123	3279	3438	3603	3770	3942	4117	4296	4479

BRITISH COLUMBIA LOG TABLE-Continued CONTENTS OF LOGS IN BOARD FEET										
$\begin{aligned} & \text { Length } \\ & \text { in } F^{\prime} t \text {. } \end{aligned}$	Diameter in Inches									
	51	52	53	54	55	56	57	58	59	60
10	1166	1214	1262	1312	1360	1414	1466	1520	1574	1629
12	1400	1457	1515	1574	1632	1697	1759	1823	1889	1955
14	1633	1699	1767	1837	1904	1979	2053	2127	2203	2281
16	1866	1942	2020	2099	2176	2262	2346	2431	2518	2606
18	2099	2185	2272	2362	2448	2545	2639	2735	2833	2932
20	2333	2428	2525	2624	2721	2828	2932	3039	3148	3258
22	2565	2671	2777	2886	2993	3110	3226	3343	3462	3584
24	2799	2913	3030	3149	3265	3393	3519	3647	3777	3910
26	3032	3156	3282	3411	3537	3676	3812	3951	4092	4235
28	3266	3399	3535	3674	3809	3959	4105	4255	4407	4561
30	3499	3642	3787	3936	4081	4242	4399	4559	4721	4887
32	3732	3885	4040	4198	4353	4524	4692	4862	5036	5213
34	3965	4127	4292	4461	4625	4807	4985	5166	5351	5536
36	4199	4370	4545	4723	4897	5090	5278	5470	5666	5864
38	4432	4613	4797	4986	5169	5373	5572	5774	5980	6190
40	4665	4856	5050	5248	5441	5655	5865	6078	6295	6516
Iength In \mathbf{F} t.	Diameter in Inches									
	61	62	63	64	65	66	67	68	69	70
10	1685	1745	1800	1859	1919	1980	2042	2105	2169	2233
12	2022	2094	2160	2231	2303	2376	2451	2526	2603	2679
14	2359	2443	2520	2603	2687	2772	2859	2947	3036	3126
16	2696	2791	2881	2975	3071	3168	3267	3368	3470	3672
18	3033	3140	3241	3347	3455	3565	3676	3789	3904	4019
20	3370	3489	3601	3719	3839	3961	4084	4210	4338	4465
22	3707	3838	3961	4091	4223	4357	4493	4631	4771	4912
24	4044	4187	4321	4463	4606	4753	4901	5052	5205	5358
26	4381	4536	4681	4834	4990	5149	5310	5473	5639	5805
28	4718	4885	5041	5206	5374	5545	5718	5894	6073	6251
30	5055	5234	5401	5578	5758	5941	6126	6315	6506	6698
32	5393	5583	5761	5950	6142	6337	6535	6736	6940	7144
34	5730	5932	6121	6322	6526	6733	6943	- 7157	7374	7591
36	6067	6281	6481	6694	6910	7129	7352	7578	7808	8037
38	6404	6630	6841	7066	7293	7525	7760	7999	8241	8484
40	6741	6979	7201	7437	7677	7921	8169	8420	8675	8930

SCRIBNER LOG TABLE

CONTENTS OF LOGS IN BOARD FEET

SCRIBNER LOG TABLE-Continued

CONTENTS OF LOGS IN BOARD FEET

SCRIBNER LOG TABLE-Continued

CONTENTS OF LOGS IN BOARD PEET

Length In F't.	Diameter in Inches									
	31	32	33	34	35	36	37	38	39	40
20	888	920	980	1000	1095	1152	1287	1335	1400	1505
22	977	1012	1078	1100	1204	1267	1416	1468	1540	1655
24	1066	1104	1176	1200	1314	1382	1544	1602	1680	1806
26	1154	1196	1274	1300	1423	1498	1673	1735	1820	1956
28	1243	1288	1372	1400	1533	1613	1802	1869	1960	2107
30	1332	1380	1470	1500	1642	1728	1930	2002	2100	2257
32	1421	1472	1568	1600	1752	1843	2059	2136	2240	2408
34	1510	1564	1666	1700	1861	1958	2188	2269	2380	2558
36	1598	1656	1764	1800	1971	2074	2317	2403	2520	8709
38	1687	1748	1862	1900	2080	2189	2445	2536	2660	2859
40	1776	1840	1960	2000	2190	2304	2574	2670	2800	3010
42	1865	1932	2058	2100	2299	2419	2703	2803	2940	3160
44	1954	2024	2156	2200	2409	2534	2831	2937	3080	3311
46	2042	2116	2254	2300	2518	2650	2960	3070	3220	3461
48	2131	2208	2352	2400	2628	2765	3089	3204	3360	3612
50	2220	2300	2450	2500	2737	2880	3217	3337	3500	3762
52	2309	2392	2548	2600	2847	2995	3346	3471	3640	3913
54	2398	2484	2646	2700	2956	3110	3475	3604	3780	4063
56	2486	2576	2744	2800	3066	3226	3604	3738	3920	4214
58	2575	2668	2842	2900	3175	3341	3732	3871	4060	4364
60	2664	2760	2940	3000	3285	3456	3861	4005	4200	4515
62	2753	2852	3038	3100	3394	3571	3990	4138	4340	4665
64	2842	2944	3136	3200	3504	3686	4118	4272	4480	4816
66	2930	3036	3234	3300	3613	3802	4247	4405	4620	4966
68	3019	3128	3332	3400	3723	3917	4376	4538	4760	5117
70	3108	3220	3430	3500	3832	4032	4504	4672	4900	5267

SCRIBNER LOG TABLE-Continued

CONTENTS OF LOGS IN BOARD FEET

Length In $\mathbf{F t}$.	Diameter in Inches									
	41	42	43	44	45	46	47	48	49	50
20	1590	1679	1745	1850	1898	1983	2070	2160	2246	2340
22	1749	1847	1919	2035	2088	2181	2277	2376	2471	2574
24	1908	2015	2094	2220	2278	2380	2484	2592	2695	2808
26	2067	2183	2268	2405	2467	2578	2691	2808	2920	3042
28	2226	2351	2443	2590	2657	2776	2898	3024	3124	3276
30	2385	2518	2617	2775	2847	2974	3105	3240	3369	3510
32	2544	2686	2792	2960	3037	3173	3312	3456	3594	3744
34	2703	2854	2966	3145	3227	3371	3519	3672	3818	3978
36	2862	3022	3141	3330	3416	3569	3726	3888	4043	4212
38	3021	3190	3315	3515	3606	3768	3933	4104	4267	4446
40	3180	3358	3490	3700	3796	3966	4140	4320	4492	4680
42	3339	3526	3664	3885	3986	4164	4347	4536	4717	4914
44	3498	3694	3839	4070	4176	4363	4554	4752	4941	5148
46	3657	3862	4013	4255	4365	4561	4761	4968	5166	5382
48	3816	4030	4188	4440	4555	4759	4968	5184	5390	5616
50	3975	4197	4362	4625	4745	4957	5175	5400	5615	5850
Iength In Ft.	Diameter in Inches									
	51	52	53	54	55	56	57	58	59	60
20	2434	2530	2630	2730	2832	2938	3044	3154	3266	3380
82	2677	2783	2893	3003	3115	3232	3348	3469	3593	3718
24	2921	3036	3156	3276	3398	3526	3653	3785	3919	4056
26	3164	3289	3419	3549	3682	3819	3957	4100	4246	4394
88	3408	3542	3682	3822	3965	4113	4262	4416	4572	4732
30	3651	3795	3945	4095	4248	4407	4566	4731	4899	5070
32	3894	4048	4208	4368	4531	4701	4870	5046	5226	5408
34	4138	4301	4471	4641	4814	4995	5175	5262	5552	5746
36	4381	4554	4734	4914	5098	5288	5479	5677	5879	6084
38	4625	4807	4997	5187	5381	5582	5784	5993	6205	6422
40	4868	5060	5260	5460	5664	5876	6088	6308	6532	6760
42	5111	5313	5523	5733	5947	6170	6392	6623	6859	7098
44	5355	5566	5786	6006	6230	6464	6697	6939	7185	7436
46	5598	5819	6049	6279	6514	6757	7001	7254	7512	7774
8	5842	6072	6312	6552	6797	7051	7306	7570	7838	8112
50	6085	6325	6575	6825	7080	7345	7610	7885	8165	8450

SCRIBNER LOG TABLE-Continued

CONTENTS Of LOGS IN BOARD feet

Length In F t.	Diameter in Inches									
	61	62	63	64	65	66	67	68	69	70
20	3496	3614	3734	3858	3982	4110	4240	4374	4510	4648
22	3846	3975	4107	4244	4380	4521	4664	4811	4961	5113
24	4195	4337	4481	4630	4778	4932	5088	5249	5412	5578
26	4545	4698	4854	5015	5177	5343	5512	5686	5863	6042
28	4894	5060	5228	5401	5575	5754	5936	6124	6314	6507
30	5244	5421	5601	5787	5973	6165	6360	6561	6765	6972
32	5594	5782	5974	6173	6371	6576	6784	6998	7216	7437
34	5943	6144	6348	6559	6769	6987	7208	7436	7667	7902
36	6293	6505	6721	6944	7168	7398	7632	7873	3118	8366
38	6642	6867	7095	7330	7566	7809	8056	8311	8569	8831
40	6992	7228	7468	7716	7964	8220	8480	8748	9020	9296
42	7342	7589	7841	8102	8362	8631	8904	9185	9471	9761
44	7691	7951	8215	8488	8760	9042	9328	9622	9922	10226
46	8041	8312	8588	8874	9158	9453	9752	10060	10373	10791
48	8390	8674	8962	9260	9556	9864	10176	10498	10824	11156
50	8740	9035	9335	9645	9955	10275	10600	10935	11275	11620

TRE SCRIBNER RUTE

This is the oldest \log scale now in general use. It was originally published in Scribner's Lumber and Log Book, in later editions of which it was , replaced by the Doyle Rule. It is now usually called the "Old Scribner Rule," and is used to some extent in nearly every state. The rule was based on computations derived from diagrams drawn to show the number of inch boards that can be sawed from logs of different sizes after allowing for waste. The contents of these boards was then calculated and the table built up in this way. Sometimes the Scribner Rule is converted into what is known as the Scribner Decimal Rule by dropping the units and rounding the values to the nearest tens, Thus 107 board feet would be written 11 in the Decimal Rule; 104 would be written 10. The Hyslop Rule is practically the same as the Scribner Decimal Rule. The Scribner Rule is known in Minnesota as the Minnesota Standard Rule. In the original table no values were given below a diameter of 12 inches.

In the judgment of most sawyers, the Scribner Rule gives very fair results for small logs cut by circular saws (about 8 gauge), but that for larger logs, about 28 inches, for example, the results are too small. It of ten happens that defects are. greater in large logs than in small ones, because the larger are from older trees, which are more likely to be overmature. Even with these, however, the Scribner Rule is fairly satisfactory if the scaler does not make a further deduction for defects. As a matter of fact, a log rule should make no allowance for defect, because that is unfair to high-grade sound logs; only the scaler should make such allowance. In sound logs the saw cut has been known to overrun the Scribner scale from 10 to 20 per cent.

The Forest Service of the United States Department of Agriculture has adopted the Scribner Decimal Rule for timber sales on the National Forests. It has been in use for about four years and, in the main, has proved satisfactory, since competitive bids enable the buyer to bid higher if the character of the logs indicates a mill overrun.

SPAULDING LOG TABLE

CONTENTS OF TOGS IN BOARD EEET

Length In F't.	Diameter in Inches								
	12	13	14	15	16	17	18	19	20
16	77	94	114	137	161	188	216	245	276
18	87	106	129	154	181	211	243	276	310
20	96	118	143	171	201	235	270	306	345
22	106	130	157	188	221	258	297	337	379
24	116	142	172	206	242	282	324	368	414
26	125	153	186	223	262	304	360	398	448
28	134	164	200	240	282	328	378	428	482
30	144	176	214	257	302	352	404	460	516
32	154	188	228	274	322	376	432	490	552
34	164	200	243	291	342	398	458	520	586
36	174	212	258	308	362	422	486	552	620
38	183	224	272	325	382	446	512	582	654
40	192	236	286	342	402	470	540	612	690
42	202	248	300	359	422	492	566	644	724
44	212	260	314	376	442	516	596	674	758
46	222	272	329	394	463	540	620	704	792
48	232	284	344	412	484	564	648	734	828
50	241	295	358	429	503	587	674	766	861
52	250	306	372	446	524	608	720	796	896
54	259	317	386	463	544	632	728	826	930
56	268	328	400	480	564	656	764	858	964
58	278	340	414	497	584	680	782	888	998
60	288	352	428	514	604	706	808	920	1032

SPAULDING LOG TABLE-Continued contents of logs in board fert

Tength In \mathbf{F} 't.	Diameter in Inches									
	21	22	23	24	25	26	27	28	29	30
16	308	341	376	412	449	488	528	569	612	656
18	346	384	423	463	505	549	594	640	688	738
20	385	426	470	515	561	610	660	711	765	820
22	423	469	517	566	617	671	726	782	841	902
24	462	512	564	618	674	732	792	854	918	984
26	500	554	611	668	730	792	858	924	994	1066
28	538	596	658	720	786	854	924	996	1070	1148
30	576	640	704	774	842	915	990	1066	1146	1230
32	616	682	752	824	898	976	1056	1138	1224	1312
34	654	724	798	874	954	1036	1122	1208	1300	1394
36	692	768	846	926	1010	1098	1188	1280	1376	1476
38	730	810	892	978	1066	1158	1254	1352	1452	1558
40	770	852	940	1030	1122	1220	1320	1422	1530	1640
42	808	896	986	1080 !	1178	1281	1386	1493	1606	1722
44	846	938 ।	1034	11347	1234	1342	1452	1565	1682	1804
46	884	980	1080	1184	1290	1402	1518	1636	1758	1886
48	924	1024	1128	1236	1348	1464	1584	1708	1836	1968
50	961	1066	1174	1289	1404	1524	1650	1778	1911	2050
52	1000	1108	1220	1338	1460	1584	1716	1848	1988	2132
54	10381	1151	1268	1390	1516	1646	1782	1920	2064	2214
56	1076	1192	1316	1440	1572	1706	1838	1992	2140	
58	1114	1236	1362	1494	1628	1768	1914	2062	2226	
60	1152	1280	1408	1548	1684	1830	1980	2132	2292	

SPAULDING LOG TABLE-Continued contents of logs in board feet

	Diameter in Inches									
$\begin{aligned} & \text { Length } \\ & \text { In Ft. } \end{aligned}$	31	321	331	341	351	36	37	38	39	40
16	701	748	796 !	845	897	950	1006	1064	1124	1185
18	789	841	895	951	1009	1069	1132	1197	1264	1333
20	876	935 \|	995 \|	1056	1121	1188	1258	1330	1405	1481
22	964	1028	1094]	1162 \|	1233	1307	1384	1463	1545	1629
24	1052	1122 \|	1194 \|	1268 \|	1346	1426	1510	1596	1686	1778
26	1139 \|	1214	1292	1372]	1458	1544	1634	1728	1826	1926
28	1226	1308	1392	1478	1570	1662	1760	1862	1966	2074
30	1314	1402	1492	1584	1682	1782	1886	1994	2106	2222
32	1402	1496	1592	1690	1794	1900	2012	2128	2248	2370
34	1490	1588	1690	1796	1906	2020	2138	2261	2388	2518
36	1578	1682	1790	1902	2018	2138	2264	2394	2528	2666
38	1664	1776	1890	2006	2130	2256	2390	2526	2668	2814
40	1752	1870	1990	2112	2242	2376	2516	2660	2810	2962
42	1840	1963	2089	2218	2354	2495	2642	2793	2950	3110
44	1928	2056	2188	2324	2466	2614	2768	2926	3090	3258
46	2016	2150	2288	2430	2579	2732	2894	3059	3230	3407
48	2104	2244	2388	2536	2692	2852	3020	3192	3372	3556
50	2190	2337	2486	2640	2804	2970	3144	3324	3512	3704

Diameter in Inches

SPAULDING LOG TABLE-Continued
CONTENTS OF LOGS IN BOARD FEET

SGALING AND GRADING RULES OF THE COLUMBIA RIVER LOG SCALING AND GRADING BUREAU

No. 1 Logs shall be 30 inches and over in diameter inside the bark at the small end and not less than 16 or more than 40 feet in length, and shall, in the judgment of the scaler, be practically suitable for the manufacture of upper granes of lumber.

No. 2 Logs shall be 16 inches and over in diameter inside the bark at the small end and not less than 16 or more than 40 feet in length, and shall. in the jungment of the scaler, be practically suitable for the manufacture of merchantible lumber.

No. 3 Logs shall be 12 inches and over in diameter inside the bark at the small end and not less than 16 or more than 40 feet in length, and shall, in the judgment of the scaler, be practically suitable for the manufacture of inferior grades of lumber.

Cull Logs shall be any logs which in the judgment of the scaler are not practically suitable for manufacture.

All $\log s$ to be scaled by the Spaulding Rule.

THE SPAUIDING RUKE

The Spaulding is the statute rule of California, adopted by an act of the legislature in 1878. It is used also in Oregon, Washington, Utah, and Nevada. It was computed from carefully drawn diagram's of logs from 10 to 96 inches in diameter at the small end. Mill men seem to be well satisfied with its results. It is very similar to the Scribner Rule.

THE INTERNATIONAL METRIC SYSTEM

SYNOPSIS OF TEE SYSTEM

The fundamental unit of the metric system is the Meter-the unit of length. From this the units of capacity (Liter) and of weight (Gram) were derived. All other units are the decimal sub-divisions or multiples of these. These three units are simply related; e. g., for all practical purposes one Cubic Decimeter equals one Liter and one Liter of water weighs one Kilogram. The metric tables are formed by combining the words "Meter," "Gram," and "Liter" with the six numerical prefixes, as in the following tables:

PREFIXES MEANING

milli-	$=$ one thousandth	$1 / 1000$.001
centi-	$=$ one hundredth	$1 / 100$.01
deci-	$=$ one tenth	$1 / 10$.1
Unit	$=$ one		1
dera-	$=$ ten	$10 / 1$	10
hecto-	$=$ one hundred	$100 / 1$	100
kilo-	$=$ one thousand	$1000 / 1$	1000

UNITS
"meter" for length
"gram" for weight or mass
"Iiter" for capacity

UNITS OF LENGTH

milli-meter	$=$.001 meter			
centi-meter	$=$.01 meter			
deci-meter	$=$.1		meter	
---:	:---				
mersR	$=$				
meter					

Where miles are used in England and the United States for measuring distances, the kilometer (1,000 meters) is used in metric countries. The kilometer is about 5 furlongs. There are about 1,600 meters in a statute mile, 20 meters in a chain, and 5 meters in a rod.

The meter is used for dry goods, merchandise, engineering construction, building, and other purposes where the yard and foot are used. The meter is about. a tenth longer than the yard.

The centimeter and millimeter are used instead of the inch and its fractions in machine construction and similar work. The centimeter, as its name shows, is the hundredth of a meter. It is used in cabinet work, in expressing sizes of paper, books, and many cases where the inch is used. The centimeter is about two-fifths of an inch and the millimeter about one twenty-fifth of an inch. The millimeter is divided for finer work into tenths, hundredths, and thousandths.

If a number of distances in millimeters, meters, and kilometers are to be added, reduction is unnecessary. They are added as dollars, dimes, and cents are now added. For example, " $1,050.25$ meters" is not read "1 kilometer, 5 dekameters, 2 decimeters, and 5 centimeters," but "one thousand and fifty meters. twenty-five centimeters," just as " $\$ 1,050.25$ " is read "one thousand and fifty dollars and twenty-five cents."

Fig. 1. Comparison Scale: 10 Centimeters and 4 Inches. (Actual Size.)

Abstract

ATEA

The table of areas is formed by squaring the length measures, as in our common system. For land measure 10 meters square is called an "Are" (meaning "area".) The side of one are is about 33 feet. The Hectare is 100 meters square, and, as its name indicates, is 100 areas, or about $21 / 2$ acres. An acre is about 0.4 hectare. A standard United States quarter section contains almost exactly 64 hectares. A square kilometer contains 100 hectares.

For smaller measures of surface the square meter is used. The square meter is about 20 per cent larger than the square yard. For still smaller surfaces the square centimeter is used. A square inch contains about $61 / 2$ square centimeters.

VOLUME

The cubic measures are the cubes of the linear units. The cubic meter (sometimes called the stere, meaning "solid") is the unit of volume. A cubic meter of water weighs a metric ton and is equal to 1 kiloliter. The cubic meter is used in place of the cubic yard and is about 30 . per cent larger. This is used for "cuts and fills" in grading land, measuring timber, expressing contents of tanks and reservoirs, flow of rivers, dimensions of stone, tonnage of ships, and other places where the cubic yard and foot are used. The thousandth part of the cubic meter (1 cubic decimeter) is called the Liter.

For very small volumes the cubic centimeter (cc or cm3) is used. This volume of water weighs a gram, which is the unit of weight or mass. There are about 16 cubic centimeters in a cubic inch. The cubic centimeter is the unit of volume used by chemists as well as in pharmacy, medicine, surgery, and other technical work. One thousand cubic centimeters make 1 liter.

Fig. 2. Cubic Decimeter. (Actual Size.)
The hectoliter (100 liters) serves the same purposes as the United States bushel ($2,150.42$ cubic inches), and is equal to about 3 bushels, or a barrel. A peck is about 9 liters. The liter is used for measurements commonly given in the gallon, the liquid and dry quarts, a liter being 5 per cent larger than our liquid quart and 10 per cent smaller than the dry quart. A liter of water weighs exactly a kilogram, i. e., 1,000 grams. A thousand liters of water weigh 1 metric ton.

```
UNITS OF WFIGET (ON MASS)
milli-gram = 0.001 gram
centi-gram = .01 gram
    deci-gram = . }1\mathrm{ gram
            GRAM = 1 gram
deka-gram = 10.gram
hecto-gram = 100 gram
kilo-gram = 1000 gram
```


Fic.3. Relative Size of 2-Pound and 1-Kilogram (Brass) Weiohts. (actual Size.)

Measurements commonly expressed in gross tons or short tons are stated in metric tons (1,000 kilograms). The metric ton comes between our long and short tons and serves the purpose of both. The kilogram and "half kilo" serve for everyday trade, the latter being 10 per cent larger than the pound. The

Fig.4. Relative Size of Avoirdupois Ounce, 30-Gram, and Troy Ounce (Brass) Weights. (Actual Size.)

Fig. 5. Relative Size op Gram and Scruple (Brass) WEIGHTS. (Actual Size.)
kilogram is approximately 2.2 pounds. The gram and its multiples and divisions are used for the same purposes as ounces, pennyweights, drams, scruples, and grains. For foreign postage, 30 grams is the legal equivalent of the avoirdupois ounce.

EQUIVAIENTS OF METRIC WEIGETS AND MEASURES

In the metric system multiples of the units are expressed by the use of the Greek prefix deca, hecto, and kilo, which indicates, respectively, tens, hundreds, and thousands; decimal parts of the unit are expressed by use of the Latin prefix deci, centi, and milli, which indicates, respectively, tenth, hundredth, and thousandth. For all practical purposes 1 cubic decimeter equals 1 liter, and 1 liter of water weighs 1 kilogram or 1 kilo, as it is generally abbreviated. In the tables following are comparisons of the customary and metric units.

IERGTES

1 millimeter (mm.) equals 0.03937 inch.
1 centimeter (cm.) equals 0.3937 inch.
1 meter (m) equals 3.28083 feet.
1 meter equals 1.093611 yards.
1 kilometer (km .) equals 0.62137 mile.

1 inch equals 25.4001 millimeters.
1 inch equals 2.54001 centimeters.
1 foot equals 0.304801 meter.
1 yard equals 0.914402 meter.
1 mile equals 1.60935 kilometers.

AREAS

1 square millimeter equals 0.00155 square inch.
1 square centimeter equals 0.155 square inch.
1 square meter equals 10.764 square feet.
1 square meter equals 1.196 square yards.
1 square kilometer equals 0.3861 square mile.
1 hectare equals 2.471 acres.

1 square inch equals 645.16 square millimeters.
1 square inch equals 6.452 square centimeters.
1 square foot equals 0.0 .929 square meter.
1 square yard equals 0.8361 square meter.
1 square mile equals 2.59 square kilometers.
1 acre equals 0.4047 hectare.

VOLUMES

1 cubic centimeter equals 0.061 cubic 1 cubic inch equals 16.3872 cubic centiinch.
1 cubic meter equals 35.314 cubic feet.
1 cubic meter equals 1.3079 cubic yards.
meters.
1 cubic foot equals 0.02832 cubic meter.
1 cubic yard equals 0.7645 cubic meter.

CAPACITIES

1 milliliter (cc.) equals 0.03381 liquid ounce.
1 milliliter (cc.) equals 0.2705 dram.
1 milliliter (cc.) equals 0.8115 scruple.
1 liter equals 1.05668 liquid quarts.
1 liter equals 0.26417 gallon.
1 liter equals 0.9081 dry quart.
1 liter equals 0.11351 peck.
1 dekaliter equals 1.1381 pecks.
1 hectoliter (hl.) equals 2.83774 bushels.

1 liquid ounce equals 29.574 milliliters
1 dram equals 3.6967 milliliters.
1 scruple equals 1.2322 milliliters.
1 liquid quart equals 0.94636 liter.
1 gallon equals 3.78543 liters.
1 dry quart equais 1.1012 liters.
1 peck equals 8.80982 liters.
1 peck equals 0.881 dekaliter.
1 bushel equals 0.35239 hectoliter.

MASSES

1 gram equals 15.4324 grains.
1 gram equals 0.03527 avoir. ounce.
1 gram equals 0.03215 troy ounce.
1 kilogram (kg.) equals 2.20462 avoir. pounds.
1 kilogram equals 2.67923 troy pounds.

1 grain equals 0.0648 gram.
1 avoir. ounce equals 28.3495 grams.
1 troy ounce equals 31.10348 grams.
1 avoir. pound equals 0.45359 kilogram.
1 troy pound equals 0.37324 kilogram.

Iote: The unit of lumber measure is called the "Stere" and is equal to the cubic meter.

COMPARISON OF THE VARIOUS POUNDS ATD TONS IM USE IT THE UNITED STATES

1 Troy Pound Equals
0.822857 Avoirdupois Pounds.
0.37324

Kilograms.
0.00041143^{*} Short Tons.
0.00036735 Long. Tons.
0.00037324 Metric Tons.

1 Avoirdupois Pound Equals

1.21528 Troy Pounds.
0.45359 Kilograms.
0.0005 Short Tons.
0.00044643 Long Tons.
$0.00045359^{\text {Metric Tons. }}$

1 Kilogram Equals

2.67923
2.20462
0.0009831 Short Tons.
0.001
0.0011021 Avoirdupois P

Troy Pounds.
Avoirdupois Pounds.
Long Tons.
Metric Tons.

1 Short Ton Equals

$2430^{\circ} .56$
2000
Troy Pounds.
907.18 0.89287 Klograms. 0.80718 Long Tons.
0.90718 Metric Tons.

1 Long Ton Equals

2722.22 2240: 1016.05

Troy Pounds. Avoirdupois Pounds.
1.12 Kilograms.
1.01605 Metric Tons.
'
2679.23
2204.62 1200
1.10231
0.98421 Long Tons.

Troy Pounds. Kilograms.

1 Metric Ton Equals

Avoirdupois Pounds.

Note: A cubic meter of water weighs a metric ton and is equal to one kiloliter. The cubic meter is used in the place of the cubic yard and is about 30 per cent larger.

THE METRIC UNIT OF LUMBER MEASURE

The unit of lumber measure is called the stere, and is equal to the cubic meter.
1 Stere (cubic meter) equals 35.314 Cubic Feet
1 Cubic foot equals 0.028317 Cubic Steres
1 Stere equals 0.2759 Cords
1 Cord (128 cubic feet) equals 3.624 Steres
The term Stere is from the Greek stereos, meaning solid.

WEIGHT

One Stere or cubic meter of Green Douglas Fir contains 423.7734 Board Feet and weighs approximately 1413 pounds or 636 kilograms.

$$
\begin{aligned}
& 1 \text { Metric Ton equals } 0.984206 \text { Long Tons } \\
& 1 \text { Metric Ton equals } 1.102311 \text { Short Tons } \\
& 1 \text { Metric Ton equals } 1000 \text { Kilograms } \\
& 1 \text { Metric Ton equals 2204.62234 Pounds } \\
& 1000 \text { Board Feet Green Douglas Fir weighs 3333 Pounds } \\
& 1000 \text { Board Feet Green Douglas Fir weighs } 1512 \text { Kilograms }
\end{aligned}
$$

METHOD USED FOR COMPUTING APPROXIMATE WEIGHT OF FOREIGN EXPORT CARGO SHIPMENTS OF DOUGLAS EIR

1000 Board Feet weighs $11 / 2$ Long Tons 1000 Board Feet weighs $11 / 2$ Metric Tons 1 Board Foot weighs $11 / 2$ Kilograms

One St. Petersburg Standard of 165 cubic feet (1980 board feet) weighs 6593 pounds or 2970 kilograms.

HOW TO CUT METRIC LENGTHS

Orders from France and Belgium usually call for lengths of lumber to be eut to the metric foot, which represents the third part of a meter.

The required length is equivalent to $131 / 8$ inches. The thickness and width usually correspond to English measure.

French orders contain large amounts of 3×9 of number 1 and 2 Clear grade.

HOW TO FIGURE METRIC ORDERS

To convert Metric to English lengths, multiply by 35 and divide by 32 , or to the Metric Feet add one-twelfth and one-eighth of one-twelfth.

How many feet, Board Measure, are contained in the following iturns of 3×9 cut to Metric Feet?

Procesm:

Pcs.	Size	Met. Ft.	Extensions	
60	3x9	12	720	
114	3×9	14	1,596	
112	3x9	16	1,792	-
40	3×9	18	720	
60	3×9	20	1,200	
386			$\begin{array}{r} \overline{6,028} \\ 592.33 \\ 62.79 \end{array}$	Metric Lineal Feet
			$\begin{array}{r} 6,593.12 \\ 21 / 4 \end{array}$	English Lineal Feet.
			$\begin{array}{r} 13,186.24 \\ 1,648.28 \end{array}$	
			$\overline{14,834.52}$	Feet Board Measure.

The addition of the extensions shows the number of Metric Lineal Feet, the line below shows that amount divided by 12 . and this in turn is divided by 8.

The total thus obtained shows the English Lineal Feet. This is brought to Board Measure in the usual way by multiplying by $21 / 4$.

TO COMPUTE METRIC DRAFT

French and a number of foreign ships use the metric system, and the draft is painted on the forward and after end of vessel in meters and twentieth parts of a meter, as follows:

The height of figures and distance between figures is uniform, i. e.: each figure is one-tenth of a meter (3.937. inches) in height, and the blank distance between figures is also one-tenth of a meter.

Each advancing meter is indicated by the letter "M" to the right of the numeral.

For example: Presume the draft water line is at the bottom of 60 , and the first figure representing the meters above the water line is 4 M , the draft would be 3.60 meters or 11.811 feet ($11 \mathrm{ft} .93 / 4 \mathrm{in}$). If the water line was level with the top of the figure 60, the draft would then be 3.70 meters or 12.139 feet (12 ft . $13 / 4 \mathrm{in}$.).

4M

TO CONVERT METRIC TO ENGTISF DRAFT

Rule:

To convert the metric draft to English feet, multiply the meters by 3.281 .

Example:

Find the number of English Feet when the draft is 7.20 meters?

Operation:

7.20×3.281 equal's 23.6232 feet ($23 \mathrm{ft} .71 / 2 \mathrm{in}$.) Multiplying the meters by 105 and dividing by 32 gives the same result.

TO CONVERT ENGTISE TO METRIC DRAFT

Rule:

To convert English to Metric draft, multiply the feet by $\mathbf{3 . 0 4 8}$.

Example:

Find the number of Meters, when the English draft in feet is $23 \mathrm{ft} 71 / 2$ inches (23.6232 feet).

Operation:

23.6232×3.048 equals 7.20035136 Meters.
The same result is obtained by multiplying the English Feet by 32 and dividing by 105 .

Example:

Find the numbers of meters, where the English draft is 21 feet.

Operation:

21 multiplied by 32 equals $672 ; 672$ divided by 105 equals 6.40 meters.

USEFUI TABLES FOR CONVERTING DRAFT EQUIVATENTS OF DECIMAT AND BINARY FRACTIONS OF AN INCE IN MITITMETERS

Fractions
of an Inch.
$1 / 64$
$1 / 32$
$1 / 16$
$1 / 8$
$1 / 4$
$1 / 2$
$1 / 100$

		Decimals Millimeters.
of an Inch.		

$\left.\begin{array}{rr}\text { Inches to Millimeters } & \text { Millimeters to Inches } \\ 1 & \text { equals } \\ 2 & \text { equals } \\ 3 & 50.8001\end{array}\right)$

CONVERSION TABLES

CONVERSION OF FEET TO METERS

Feet Meters
1 .. 0.30480
$2 \ldots \quad .60960$

$$
\therefore \quad .91440
$$

$$
\because \quad 1.21920
$$

$$
\cdots \quad 1.52400
$$

$$
\therefore \quad 1.82880
$$

$$
\begin{array}{ll}
\cdots \quad+.13360 \\
\cdots \quad 2.1336
\end{array}
$$

$$
\begin{array}{ll}
\therefore \quad 2.43840 \\
\cdots
\end{array}
$$

$$
\because \quad 2.74321
$$

$$
\therefore \quad 3.04801
$$

$$
\cdots \quad 3.35281
$$

$$
\therefore \quad 3.65761
$$

$$
\begin{aligned}
& \therefore \quad 3.96241 \\
& \therefore
\end{aligned}
$$

$$
\begin{aligned}
& \because \quad 4.26721 \\
& \therefore \quad
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad 4.57201 \\
& \therefore \quad 47681
\end{aligned}
$$

$$
\because \quad 4.87681
$$

$$
\therefore \quad 5.18161
$$

$$
\begin{aligned}
& . \\
& \hline 5.48641
\end{aligned}
$$

$$
\because \quad 5.79121
$$

$$
\therefore \quad 6.09601
$$

$$
\begin{aligned}
& \because \quad 6.49081 \\
& \therefore \quad 6.70561
\end{aligned}
$$

$$
\begin{array}{ll}
\because \quad 6.70561 \\
\therefore & 6.7051
\end{array}
$$

$$
\begin{array}{r}
\because 7.01041 \\
\because \quad 7.31521
\end{array}
$$

$$
\because \quad 7.31521
$$

$$
\begin{array}{r}
\because \quad 7.62002 \\
\therefore 792482
\end{array}
$$

$$
\begin{array}{r}
7.92482 \\
\because \quad 822962
\end{array}
$$

$$
\begin{array}{r}
8.22962 \\
\therefore \quad 85442
\end{array}
$$

$$
\begin{array}{r}
8.53442 \\
\therefore \quad 83920
\end{array}
$$

Feet	Meters
51	15.54483
52	15.84963
53	16.15443
54	16.45923
55	16.76403
56	17.06883
57	17.37363
58	17.67844
59	17.98324
60	18.28804
61	18.59284
62	18.89764
63	19.20244
64	19.50724
65	19.81204
66	20.11684
67	20.42164
68	23.72644
69	21.03124
70	21.33604
71	21.64084
72	21.94564
73	22.25044
74	22.55525
75	22.86005
76	23.16485
77	23.46965
78	23.77445
79	24.07925
80	24.38405
81	24.68885
82	24.99365
83	25.29845
84	25.60325
85	25.90805
86	26.21285
87	26.51765
88	26.82245
89	27.12725
90	27.42205
91	27.73685
92	28.04165
93	28.34646
94	28.65126
95	28.9561 ¢
96	29.26n81i
97	29.5656f
98	29.87ndf
99	$30.175 ? 6$
00	30.4800

$\therefore \quad 9.83922$
$\therefore \quad 9.14402$

 .- \(\quad 9.44882\)
 .. 9.75362
 .. 10.05842
 .. 10.36322
 .. 10.66802
 .. 10.97282
 ․ 11.27762
 .. 11.58242
 9 .. 11.88722
 .. 12.19292
 .. 12.49682
 .. 12.80163
 .. 13.10643
 .. 13.41123
 .. 13.71603
 .. 14.02083
 .. 14.32563
 .. \(14.63 \cap 13\)
 \(\ldots 14.93523\)
 50 ... 15.24003

Kilometers to U.S. Miles

U. S. Miles to Kilometers

$$
\ldots \quad 1.6093
$$

$$
\therefore \quad 3.2187
$$

$$
\begin{aligned}
& \because \quad 4.8280 \\
& \cdots \quad
\end{aligned}
$$

$$
\therefore \quad 6.4374
$$

$$
\because \quad 8.0467
$$

$$
\cdots \quad 9.6561
$$

$$
\text { . } 11.2654
$$

$$
\begin{aligned}
& \cdots 2.8748 \\
& \cdots \quad 12
\end{aligned}
$$

$$
\cdots 14.4841
$$

$$
10 \quad \therefore 16.0935
$$

$\begin{array}{rrr}1 & \ldots & 0.62137 \\ 2 & \ldots & 1.24274 \\ 3 & \ldots & 1.86411 \\ 4 & \ldots & 2.48548 \\ 5 & \ldots & 3.10685 \\ 6 & \ldots & 3.72822 \\ 7 & \ldots & 4.34959 \\ 8 & \ldots & 4.97096 \\ 9 & \ldots & 5.59233 \\ 10 & \ldots & 6.21370\end{array}$

CONVERSION OF METERS TO EERT

Meters	Feet	Meters	Feet
1	3.28083	51	167.32250
2	0.00108	52	170.64333
3^{\prime}	y. 84200	53	173.88417
4	13.12333	54	177.16500
5	16.40416	55	180.44583
0	19.68000	56	183.72667
1	22.90083	57	187.90750
γ	20.2400 .6	58	190.28833
9	29.62750	59	193.56917
10	\$2.80833	60	196.85000
11	36.08917	61	200.13083
12	39.37090	62	203.41167
13	42.65083	63	206.69250
14	45.93167	64	209.97333
15	49.21250	65	213.25417
16	52.49333	66	216.53500
17	55.77417	67	219.81583
18	59.05500	68	223.09667
19	62.33583	69	226.37750
20	65.61667	70	229.65833
21	68.89750	71	232.93917
22	72.17833	72	236.22000
23	75.45917	73	239.50083
24	78.74000	74	242.78167
25	82.02083	75	246.06250
26	85.30167	76	249.34333
27	88.58250	77	252.62417
28	91.86333	78	255.90500
29	95.14417	79	259.18583
30	98.42503	80	262.46667
31	101.70583	81	265.74750
32	104.98667	82	269.02833
33	108.26750	83	272.30917
34	111.54833	84	275.59000
35	114.82917	85	278.87083
36	118.11000	86	282.15167
37	121.39083	87	285.43250
38	124.67167	88	288.71333
39	127.95250	89	291.99417
40	131.23333	90	295.27500
41	134.51417	91	298.55583
42	137.79500	92	301.83667
43	141.07583	93	395.11750
44	144.35667	94	308.39833
45	147.63750	95	311.67 .917
46	150.91833	96	314.9 6n00
47	154.19917	97	318.21083
48	157.48000	98	321.52167
4.9	160.76083	99	391.80950
50	164.04167	100	328.08333

Nautical Miles to Kilometers
 Kilometers to Kautical MLiles

1
2
3
4
5
6
7
8
9
10

\ldots	1.8532
\therefore	3.7065
	5.5597
\therefore	7.4130
	9.2662
	11.1195
	12.9727
\therefore	14.8260
\ldots	16.6792
\therefore	-18.5325

METRIC MEASUREMENTS USED IN ITALIAN LUMBER MARKET

The following is an excerpt from The American Lumberman, Chicago, November

The few cargoes of Spruce from Canada which before the war arrived at Genoa were almost without exception composed entirely of deals in various sizes, as 2×7-inch. 3×7-inch, 3×8-inch, 3×9-inch, - and in various lengths from 10 feet and longer,

The measurements of spruce boards, planks and beams, etc., used in Italy, ac-

 cording to a leading house of lumber importers in Genoa, are as follows:Small Boards-Thickness, 9 mm . Width, from 120 mm . to 400 mm . (graded), average width being about 250 mm . Length, 4, 4.25, 4.50, 4.75, 5.30 meters.

Boards-Thickness, $14,18,24,28,34,44,48,54 \mathrm{~mm}$., the greater part in demand averaging 14, 18 and 24 mm . Width and length: As in the foregoing.

Planks-Thickness, 68, $75,85,100 \mathrm{~mm}$. Width, $170,195,225 \mathrm{~mm}$. Length, $3.50,3.75,4.00,4.50$ meters (the greater part averaging 4.50 meters), and up to 10 meters in lergth, in grades of 25 cm .

Beams, Sawn-Thickness, 150 mm . up to about 400 mm . Length, from 6 meters to 15 meters in grades of 50 cm .

Small Beams, Sawn-Thickness and width, $38 \times 38,48 \times 48,58 \times 58,68 \times 68,78 \times 78$, $88 \times 88,98 \times 98 \mathrm{~mm}$. Length, $4.00,4.50,5.00,5.50,6.00$ meters, in greater part averaging $4.00,4.50$ and 5.00 meters.

Lath-Thickness and width, $8 \times 25,28 \times 28,34 \times 34 \mathrm{~mm}$. Length, $4.00,4.50$ meters.
To generalize, the boards and planks mostly used in Italy are of the following sizes:

Thickness-Boards of 14, 18, 24 mm .; to smaller extent boards of $28,34,38$ and 48 mm ., and to a still smaller extent planks of $54,68,75,85$ and 100 mm .

Widthis-Classified as follows: (1) sottomisure, which contains boards from 100 mm . to 180 mm .; (2) regular widths, which refer to boards and planks from 190 to 400 mm . and up. The average width of boards asked for is 250 mm .

Lengths-The greatest quantity of boards and planks used in Italy are 4 meters to 4.50 meters in length.

The Interpretation of Grade:

Mercantile Quality-For the boards of $12,18,24,28 \mathrm{~mm}$. in thickness there is required lumber of what is called in the trade a mercantile quality, by which is understood boards and planks which tho perfectly sound may contain knots, provided they are neither too numerous nor too large nor loose.

First Quality-A more choice quality of lumber (first quality) is required for greater thicknesses; that is, for boards and planks of $34,38,48,54,75,80$ and 100 mm. By first quality lumber is understood boards and planks which are perfectly healthy and which contain only few and small knots. Large and numerous knots are not allowable.

It is also understood that the boards and planks should have the parallel form and should be worked square edged.

Railroad Ties

According to the Government specifications the ties cut from the Italian forests to be accepted must have the following minimum measurements: Length, 2.60 meters; widths, 0.24 meters, and thickness, 0.14 meter.

These measurements must be verified at point of delivery and the supplying firm must therefore allow for natural contraction. As the price of the cross ties is based on number and not on contents no allowance is made the supplier for any extra inherent quantity of lumber over the indicated measurements of the specilications. However, a second dimension is also allowed, as follows: Length, 2.51 meters; width, 0.23 meters, and thickness, 0.135 meters. But the number of cross ties falling short of the measurements of the first specification must not be mors than 20 per cent. of the total number of ties accepted.

EXPORTERS SHOUFD USE MnTRIC SYSTEM

Dimension should, so far as possible, be given according to the metric system when negotiating with Italian merchants. In fact, the question of making boards and planks in the sizes required by the Italian market could be advisedly studied. According to some importers, it is more important to conform to the standard measurements of the country than to supply the kinds of lumber known and already used, as the Italian consumers eventually would be fully satisfied with the American woods. The Italians do not understand North American technical phraseology. Quotations for running feet are unintelligible and if the metric system is not used at least quotations should be made in cubic feet, which can without difficulty be translated into cubic meters. Adapting oneself to the market with which one is trading, however, is a thing American lumber manufacturers should learn, and the sooner they accustom themselves to the metric systern the better.

Italian lumber importers would, it is understood, be ready to pay cash against documents, on the condition, however, that prices are convenient and provided they have at least a clear idea of the quality of timber which they are to receive. Another practice sometimes adopted is 80 per cent. payment on delivery of document and the balance on actual receipt of parcel or cargo.
PACIFIC LUMBER INSPECTION BUREAU, INC.
HEAD OFFICE
1011-1014 WHITE BUILDING, SEATTLE, WASH., U. S. A. F. W. ALEXANDER, MANAGER L. C. LAURSEN, CHIEF SUPERVISOR
DISTRICT SUPERVISORS
B. F. Burgess 539 Finch Bldg Aberdeen, Wash.
R. C. Crakanthorp . 913 Metropolitan Bldg...... Vancouver, B. C.A. P. Davies............... 1011 White Bldg............. Seattle, Wash.
H. P. Falt North Bend, Ore.
A. H. Fairchild 216 Commercial St Raymond, Wash.
Fred T. Hayley 2 Purcell Bldg. Everett, Wash.
A. F. E. Irwin. P. O. Box 125 San Pedro, Calif.
J. S. Kelso 716 Lewis Bldg............. . Portland, Ore.
I. F. Richardson .1223 National Realty Bldg..Tacoma, Wash.
PACIFIC COAST GRADING RULES

Owing to the demand for grading rules by the public the Pacific Lumber Inspection Bureau, Inc., find it necessary to make the following charges as specifled below. The "lists" can be obtained from any of the district supervisors, or by addressing the head office at Seattle, direct.

Price List

Atlantic Coast List "A"

Douglas Fir-Western Hemlock-Sitka Spruce and Western Red Cedar
\qquad
Grading Rules only 20 cents
Domestic List Number " 7 "
Douglas Fir-Western Hemlock--Sitka Spruce-Western Red Cedar and PortOrford Cedar.
Grading Rules and Price List
40 cents
40 cents
Grading Rules only 20 cents
Export List "H"Douglas Fir-Western Hemlock-Sitka Spruce. 40 cents
Grading Rules and Price List
Grading Rules and Price List
Grading Rules only 20 cents 20 cents
Grading and dressing rules including diagrams and patterns of the finishedsizes of dressed lumber which are recognized as the standard for rail ship-ments, can be obtained from the following association at 50 cents per copy.
WEST COAST LUMBERMEN'S ASSOCIATION
Henry Bldg., Seattle, Wash., U. S. A.Lewis Bldg., Portland, Oregon, U. S. A.
LUMBER \& SHINGLE MANUFACTURERS, LTD.Metropolitan Bldg., Vancouver, B. C.
DOUGLAS FIR CAR MATERIAL
Standard speclfication, grading and dressing rules can be purchased at10 cents per copy from the WEST COAST LUMBERMEN'S ASSOCIATION,Seattie, Washington, U. S. A.Portland, Oregon, U. S. A.
Inmbermen ongased in the mhipmont of Zoreign Cargoes, whould send for

THE EXPORT LUMBER TRADE OF THE UNITED STATES
Price, 20 conte
Sold by the superintendent of pooumente,Govorament Printing oflee,

EXCERPT, FROM MISCELLANEOUS SERIES-NO. 67

THE EXPORT LUMBER TRADE OF THE UNITED STATES

By Edward Ewing Pratt
Formerly Chief, Bureau of Foreign and Domestio Commerce, Washington, District of Columbia

It can not be said in general that the American exporters have succeeded in having their grading rules universally recognized abroad. Disputes as to grades are the most serious obstacle to the selling of American lumber in foreign countries.

It is generally considered that the Douglas Fir inspection and grading rules concerning export shipments are the most satisfactory. Some years ago a bureau of inspection was formed, called the Pacific Lumber Inspection Bureau (Inc.), which is a separate establishment from the lumber associations. This bureau employs licensed inspectors and undertakes at a fixed charge per 1,000 feet to inspect cargoes for export. When the cargo has been found "up to grade" the bureau issues an inspection certificate, sworn to before a notary public and countersigned by one of the supervisors of the bureau, certifying to the quantity, character, and condition of the shipment. This certificate is always accepted as proof of the character and condition of the cargo at port of shipment and relieves the Shipping mill from any responsibility for impairment of condition during transit. When the exporter has loaded the cargo he presents the inspection certificate to the bank, together with the draft, bill of lading. insurance policy, and other shipping documents. It is understood that these certificates are of the greatest importance in facilitating the discounting of drafts, because the bank's main security is the value of the cargo.

This bureau has been in existence for fifteen years, and its services are considered very valuable and impartial to both importers and exporters. At present the bureau inspects practically all export shipments of Douglas Fir lumber from the Pacific Coast. Last year's report (1916) states that 13,696 inspection certificates were issued and only four complaints were received-two from Europe, one from South America; and one from Australia. One of these complaints was not concerned with grade.

With grades comparatively unknown in many markets, no general custom of branding. and terms often cash before the cargo leaves port, the American lumber trade needs the services of an Inspection Bureau of the highest standard.

The Pacific Lumber Inspection Bureau has been a very important factor in bringing the West Coast lumber trade into foreign markets.

A certificate of inspection is issued by the Pacific Lumber Inspection Bureau in the following form:

PACIFIC LUMBER INSPECTION BUREAU, INC.

LUMBER INSPECTOR'S CERTIFICATE

191....

We
I.
regularly approved

Lumber Inspector.... licensed by the Pacific Lumber Inspection Bureau (Inc.), and at the time acting in that capacity, do hereby certify, that we (I) have personally surveyed and inspected, according to the grading and survey rules as per $\ldots \ldots \ldots \ldots$ adopted by the West Coast Lumber Manufacturers Association, the cargo of lumber shipped on board the
by . bound for and the said cargo has been shipped in good order and condition and consists of

Remarks:

Inspector.
Subscribed and sworn to before me, the undersigned, a notary public in and for the to me as the person signing the above certiflcate.

Countersigned: Supervisor. Dated: 191....
[This Certificate is not valid unless bearing the seal of the Pacific Lumber Inspection Bureau (Inc.), countersigned by one of its supervisors and free from alterations.]

CALIFORNIA REDWOOD

(Sequoia Sempervirens)
 DESCRIPTION

Abstract

Redwood is Iumber from the "big trees" of California-the Eighth Wonder of the World. Scientists call them Sequoia sempervirens, which, when translated into our every-day tongue, means "Sequoia ever-living." Sequoia is an Indian name; the name of a chief of great power and influence among his people. It was natural, therefore, for the Indians to name the giant trees after their most powerful chief.

They are wonderful trees. Their living power is without peer among perishable and animal life. The secret of their great age is resistance to rot and fire, and practical immunity to the attack of insect life and fungus growth so destructive to most other kinds of wood. In the forests, the Redwoods have fought decay and fire down the sweep of many centuries-they lived on sturdy and strong while other forest trees matured and died in successive crops.

RANGE

By a freak of nature the Redwoods grow nowhere else in the world but in California. Their range is confined to a strip along the Pacific Coast north of San Francisco Bay to the Oregon State line, and extending inland not more than 10 to 20 miles. The principal stand of commercial lumber today is in the three north coast counties of Mendocino, Humboldt and Del Norte. Their growth ranges from the sea level to an altitude of 2500 feet.

YIELD

The Redwoods grow in what is known as the "fog belt," and thrive only in excessive moisture. There are millions of trees, and estimated by the Government to contain between $50,000,000,000$ and $60,000,300,000$ board measure feet of lumber -more than enough to keep all the saw-mills now cutting Redwood busy day and night for 100 years. The Redwoods grow big and dense, yielding on the average from 75,000 to 100,000 board feet of commercial lumber per acre. There are quite a number of instances where the Redwoods grow so dense and so big that a single acre has yielded more than $1,000,200$ board feet of lumber.

CALIFORNIA REDWOOD-Continued

HEIGHT

The Redwood forest is one of the sublimities of nature. The massive trees, with their straight trunks covered with cinnamon-colored bark and fluted from the base to the apex of the tree like a Corinthian column, are as impressive as the cold, silent walls of an ancient cathedral. They grow from 5 to 25 feet in diameter, and from 75 to 300 feet in height. The great size and height of these trees can best be appreciated when it is known that, if hollowed out, one of the large Redwoods would make an elevator shaft for the famous Flatiron Building in New York; in height it would tower 50° feet above the torch of the Statue of Liberty in New York Harbor! They are so large that a single tree has produced enough lumber to build a church at Santa Rosa, California, that will seat 500 people.

The enormous logs make it necessary, to use the most powerful and expensive logging machinery. Many of the large logs must be split with gun-powder before they can be handled on the saw carriage at the mill. It is not uncommon for a butt \log (the first cut above the ground) to weigh from 30 to 50 tons, according to the diameter of the tree. The butt cut is usually 16 feet in length.

ROOT FORMATION

One of the strange things about the Redwoods is the root formation, which is slight in comparison with the size of the tree. Redwood actually has an insecure fonting. There is no tap root to push straight down into the earth to give the tree stability. The roots radiate a few feet below the surface of the soil. It is supposed they protect themselves by dense growth. The floor of the forest is covered with a luxuriant growth of magnificent ferns and beautiful rhododendrons.

THE BIG TREPS OF CALIFORNIA

DESCRIPTION

The Sequoia gigantea, or \&equoia washingtonis, as the United States Forest Service refer to them, are the "big trees" of the tourist. They are first cousins of the Redwoods. Geologists assert that they are the lone living survivors of all plant and animal life that existed before the glacial age. The few remaining trees are confined to an area of about 50 square miles on the western slope of the Sierra Nevada Mountains, in central California, and of which the Yosemite Valley is a part. Many of these trees are 4000 years of age-and some bold scientists have estimated one to be from 8000 to 10,000 years old! They are located in an altitude of from 4000 to 7000 feet above sea-level, and bear evidence of having passed maturity and are in their decline. If the decline lasts proportionately as long as it took the trees to reach maturity, they are still good for untold centuries. Thes "big trees" are found only in protected valleys and spots in the mountains, indicating the cause of their survival of the glacial upheaval.

THE GRIZZLY GIANT

The "Grizzly Giant" in Mariposa Grove, Yosemite Park, is 91 feet in circumference at the ground, and its first branch, which is 125 feet from the ground, is 20 feet in circumference. The "General Sherman" is 280 feet high, 103 feet circumference at the ground, which means a diameter of $361 / 2$ feet, and at a point 100 feet from the ground it is 17.7 feet in diameter. These are two of the most noted of the "big trees."

[^1]

CALIFORNIA REDWOOD
(Sequoia Sempervirens)

SAP

Sap is always white. Some manufacturers make a specialty of turning out a "sappy clear" grade. Lumber of this description shows a streak of white along one edge and presents a most beautiful contrast between the red and white in the wood. This "sappy clear" is highly prized for interior finish.

COLOR AND GRAIT

In color Redwood shades from light cherry to dark mahogany; its grain is straight, fine and even. The color and grain present in combination a handsome appearance. It runs strong to upper grades, and phenomenal widths, sometimes as wide as 36 inches, entirely free from check or other defects.

PAINTING AND POIISHING

Redwood is easily worked, and when properly seasoned it neither swells, shrinks, nor warps-it "stays put," and being free from pitch takes paint well and absorbs it readily. The dark color of the wood makes three coat work necessary, since the priming coat must be mixed extremely thin to fully satisfy the surface. It also takes a beautiful polish, especially if given two coats of shellac and then a wax finish on top.

INTERIOR AND EXTERIOR FIMISE

For doors, windows, pattern or panel work, wainscoting, ceiling, casing, shelving, moulding, and every description of interior or exterior finish the finest results can be obtained. For interior finish Redwood should not be painted any more than you would cover oak or mahogany. Redwood's beauty for interior finish lies in its individuality, its soft, warm tone and color possibilities.

QUALITY

Redwood is the most durable of the coniferous woods of California and possesses lasting qualities scarcely equalled by any other timber. Although very light and porous, it has antiseptic properties, which prevent the growth of decay producing fungi. So far as is known, none of the ordinary wood rotting fungi grow in Redwood timber. This is an exceedingly valuable property which should extend the use of this wood for all kinds of construction purposes.

DURABIITTY

For tanks, stave water pipe, poles, posts, paving blocks or foundations, it will last almost indefinitely under the trying conditions of being placed in contact with the ground and subject to alternate wet and dry conditions.

For exterior boarding, finish and shingling, whether painted or not, its durability in thousands of instances has been demonstrated to be very great.

PATHERN WORE

Leading engineering and shipbuilding works in California have been using Redwood for pattern work during the past twenty-five years, as it works easily and time has proved that it retains it shape as well as any other wood used for this purpose.

CAR MATERIAT

Redwood is in great demand for all kinds of finish for car material. Its special recommendations for this class of work are its durability and well known fire resisting qualities. Examinations of car siding in use for twenty years have failed to show traces of dry rot or any other form of decay.

The hardest service to which wood can be subjected is the railway tie.
It is not only in constant contact with the ground, but it must stand the strain and stresses of swiftly-moving heavy trains. In his report on "Timber, An Elementary Discussion of the Characteristics and Properties of Wood," to the Division of Forestry, U. S. Department of Agriculture. Filbert Roth, special agent in charge of timber physics, gives the following table on

TEE RANGE OF DURABIIITY IN RAILROAD TIES

HOLDING OF SPIKES

Respecting the "holding of spikes" Redwood ties compare favorably with all other ties ordinarily classed as soft wood.

REDWOOD AND TEE TEREDO

The Teredo will attack and destroy Redwood piles or timber as quickly as any other wood.

REDWOOD AND THE WHITE ANT

Owing to its immunity from the ravages of the White Ant, this wood is almost exclusively used in the Philippine Islands for cabinets and boxes to hold important documents.

FIRE RESISTING QUATITIES

Redwood, owing to its freedom from pitch, will not ignite easily nor make a hot fire when burning and is very easily extinguished.

It is an actual fact that fires have been extinguished in Redwood buildings with comparatively slight damage, when the same fire would have made practically a total loss had the buildings been constructed of pine or cedar. The reason is plain. Redwood is not slow in combustion, but absorbs moisture readily and when moistened, resists fire wonderfully.

REDWOOD SHINGLES

Redwood shingles as a roof or side wall covering give long life and fire protection.

No other shingle, or substitute roof covering gives the ideal combination of rot resistance and fire retardance, with the additional merit of being rust proof and free from tar, gum or any other substance to melt in the sun and fill gutters, water pipes or drains.

Always lay Redwood shingles with zinc-coated cut iron nails. This will prolong the life of your roof many years. The ordinary steel shingle nail will rust out while the shingle itself is still in first-class condition. A Redwood shingled roof, laid with the right kind of nails, will give satisfactory service from 30 to 50 years.

You can buy Redwood shingles in two grades, No. 1 Clear and Star A. Star. The former is a carefully selected vertical grain shingle, free from all defects, and is used invariably on coverings where service demands first consideration. The latter is a 10 -inch clear butt shingle, "slash" grain being no defect, and it is recommended for side walls rather than for roofing.

In 1893 Redwood shingles were taken from the roof of General U. S. Grant's headquarters, at Fort Humboldt, California, where they had been for 40 years. The wood was absolutely sound and without a trace of rot, although the shingles were worn thin by wind-driven sand.

2EDWOOD 亡ATE

Redwood lath have given most satisfactory service for many years, the freretarding property of Redwood giving lath of this material a decided advantage over the ordinary kinds. For best results the rough coat of plaster should be allowed to dry thoroughly before applying the finish coat.

GROWS STRONGER WITH AGE

Redwood actually grows stronger with age! This has been demonstrated by tests made at the University of California. Timbers taken from a house built 37 years ago, on the Campus of the University, at Berkeley, were tested and found to be actually stronger than the day when the building was erected. There wasn't the slightest trace of decay in these timbers, and when sawn the wood was virile and healthy in color and texture. Air seasoning had taken place under the most favorable conditions.

The 37-year Redwood had a longitudinal crushing strength one-quarter greater than Redwood which had been air measoned two years.

WEIGHT OF REDWOOD IOGS

Butt logs absorb so much moisture that the first and second cuts usually sink in water. Left in the sun they require three to four years to dry.

A. STRONG WOOD FOR ITS WEIGHT

 weighs 26.2 pounds per cubic foot-slightly lesis than Cypress, which weighs 27.6. It is equal in strength to Cypress; and its breaking strength, according to U. S. Government figures, is 62 per cent of that of White Oak, which is one of the strongest and toughest of American woods.

The standard of lumber weight and measure is based on a "board-measure" foot. A board-measure foot means a piece one inch thick and 12 inches square. One-inch boards, in the rough, dry, weigh 2400 pounds per 1000 board-measure feet. The same boards dressed smooth on two sides would weigh 2000 pounds, and if dressed four sides will weigh 1800 pounds.

WEIGHT OF REDWOOD FOR EXPORT CARGO SHIPMENTS

Abstract

"Green" Redwood for cargo shipment weighs about 5 pounds per board foot. A simple method for computing the shipping weight is to multiply the board feet by 2.2 per thousand, this gives the weight in tons of 2243 pounds.

The weight in tons of 2240 pounds of seasoned redwood boards is computed by multiplying the board feet by 1.1 per thousand.

Redwood is frequently shipped to Foreign Ports in conjunction with Douglas Fir cargoes. In steamer shipments it is customary to stow "green" Redwood first in lower hold and dry Redwood in the Bridge space, Shelter deck or 'Tween decks. Douglas Fir is loaded last in the balance of space under deck and on deck. The object of combining Redwood and Douglas Fir cargoes is to balance the weight so as to carry the maximum amount of cargo with a minimum of water ballast.

Under ordinary circumstances a combined cargo with weight of lumber correctly balanced and stowed should only require one third the amount of water ballast that would be necessary with a straight cargo of Douglas Fir.

Redwood immersed in salt water or otherwise exposed to its action will gradually blacken on the surface and for this reason it should not be shipped on deck unless precautions are taken to protect it from the elements.

The exact proportion of green and seasoned redwood and Douglas Fir to obtain the best results cannot be given as so much depends on the specifications type of vessel and intelligent stowage.

The following proportions will give good results under usual circumstances for an ordinary tramp steamer.

20%	of cargo Green Redwood
15%	Dry Redwood
65%	Douglas Fir

If pickets or lath are not availnhle for stowage, about 5% of carge in Redwood doorstock would be a good substitute.

CALIFORNIA REDWOOD GRADES

Adopted April 5, 1917 by California Redwood Association San Francisco, California
Copyright 1917

SPECIAL NOTES

1. All worked lumber shall be measured and invoiced for contents before working.
2. All rough lumber unseasoned shall allow an occasional variation equivalent to $1 / 16$ of an inch in thickness per inch and $1 / 32$ of an inch in width per inch.
3. All rough lumber seasoned shall allow a variation equivalent to $3 / 32$ of an inch in thickness per inch.
4. All rough lumber seasoned shall allow a variation in width as follows: 6 -inch and less, $1 / 4$ of an inch in width.
8,10 and 12 inch, $1 / 2$ of an inch in width.
14 -inch and wider, $3 / 4$ of an inch in width.
5. Surfaced lumber will be $1 / 8$ of an inch less for one side and $3 / 16$ of an inch less for two sides. Rustic, T. \& G., T. G. \& B. will be $3 / 16$ of an inch less for one side and $1 / 4$ of an inch less for two sides. (Above less than rough thickness.)
6. Grain of all grades shall be as the lumber runs.
7. Worked lumber to be in accordance with patterns adopted by California Redwood Association, April 5, 1917.

KNOTS

In these Grading Rules, knots are classified as sound, loose and soft.
A Sound Knot, irrespective of color, is solid across its face, as hard or harder than the wood it is in, and so fixed by growth or position that it will retain its place in the piece.

A Loose Knot is one not held firmly in place by growth or position.
A Soft Knot is one not so hard as the wood itself.

GRADES

Uppers

(Under the heading of Uppers shall be included all Redwood of a grade higher than Extra Merchantable. including Clear. Sap. Select, Standard, Pickets, Battens, etc.)

Clear: Shall be good and sound, free from knots, shakes or splits. Will allow a reasonable amount of birdseye, and sap not exceeding four per cent of the area of all the surfaces. A fair proportion in each shipment may contain pin knots showing on one face only.

Sap Clear: Shall conform generally to the grade of clear, except that it may contain any amount of sap. Discolored sap, when sound, shall not be considered a defect.

CALIFORNIA REDWOOD GRADES-Continued

Select: Shall be good and sound, free from shakes or splits. Shall be graded from the face side and will allow birdseye and one small, sound knot one inch in diameter or its equivalent in each six superficial feet. In the absence of other defects. will allow one soft knot one-half inch in diameter in each six superficial feet. Sap allowed not exceeding four per cent of the area of all the surfaces.

Standard: Shall be graded from the face side and. will allow birdseye, any amount of sap, and in each six superficial feet. two sound knots not exceeding an inch and a quarter in diameter, or their equivalent. In the absence of sound knots. will allow one soft knot one inch in diameter or its equivalent in each six superficial feet.

Clear, Sap Clear and Select Whrked: Shall be well manufactured and workerl smoothly to uniform thickness. Will admit of slight roughness or variation in milling, and defects mentioned under grades of Clear, Sap Clear and Select.

Standard Worked: Will admit in addition to stock of regular Standard Grade, Clear, Sap Clear, and Select, which, owing to poor machinery, is unsuitable for these grades.

SUNDRY COMMONS

(Tnder the heading of Sundry Commons shall be included Extra
Merchantable, Merchantable, Construction, Shop, etc.)
Fxtra Merchantahle: In one inch shall be free from shakes and splits. Will admit any number of sound knots, but not more than one knot two and a half inches in diameter in each five superficial feet, and small, soft knots that do not materially affect the strength or usefulness of the board. Will allow sap not exceeding ten per cent of the area of all the surfaces.

In rimension Extra Merchantable shall consist of sound lumher free from shakes. large innse knots, or such othor defects as would materially impair its usefulness. Will allow sap not exceeding ten per cent of the area of all the surfaces.

Extra Merchantable Rustic and Shiplap: This grade shall conform to the grade of Extra Merchantable, except that Sap in any amount shall be allowed.

Construction: Shall be suitable for nrdinary construction. Will allow sap, loose and soft knots. shakes and other defects, and splits not extending over onesixth the length of the piece.

Merchantable: This grane is recommended for general building purposes. It consists of sixty per cent Extra Merchantable and not to exceed forty per cent Construction.

Shop: There shall be but one grade in Shop.
Inch Shop: Each piece shall contain not less than fifty per cent of cuittings five inches and wider and three feet and longer, having no defects except sap.

Inch and a Quarter to Two-Inch Shop: Each piece shall contain not less than fifty per cent of two face clear cuttings. exclusive of sap. five inches and wider, and of this fifty per cent of clear cuttings forty per cent shall be suitable for door stiles six feet seven inches and longer.

Two and a Half Inch and Thicker Shop: Shall contain sixty per cent of clear cuttings five inches and wider and two feet and longer.

HOW TO OBTAIN ADDITIONAL INFORMATION REGARDING CAIIFORNIA REDWOOD

The California Redwood Association has been organized by the manufacturers of this remarkable lumber for the purpose of supplving the public or prospective buyers with accurate and dependable information about Redwood.

Letters of enquiry will receive prompt and cheerful attention when addressed to the

```
Califormia Redwood Association
Call Building: San Francisco, Calif., U. S. A.
```


WESTERN OR SITKA SPRUCE

(Picca Sitchensis)

In comparison with other soft woods in the United States that are used for lumber, Western Spruce also known as Sitka and Pacific Spruce, is particularly clean and white, of a soft texture with totigh fiber and has a beautiful sheen or glow peculiar to itself.

WESTERN AND EASTERN SPRUCE COMPARED

Comparing Western Spruce with the Spruce of the Eastern States, it bears the same relation that the large tree does to the sapling. The Western Spruce grows very large, the average size of the logs being nearly four feet in diameter, while the average diameter of the Eastern Spruce is less than one foot.

The small tree is fine grained and contains many small red knots, while the larger tree is coarser in grain with a much larger percentage of clear, and what knots occur in the body of the tree are usually black and loose.

USE FOR FINISH

The uses for which Spruce is best adopted are finish, siding, doors, sash, factory work, musical instruments and boxes, especially those for containing pure food products.

Because Spruce is the best substitute for White Pine, now becoming scarce, it is used by sash and door factories in the manufacture of doors, windows, mouldings, frames, etc., and is found to be a very satisfactory wood for these purposes.

BOXES FOR FOOD PRODUCTS

Many of the manufacturers of spruce on the Pacific Coast have box factories and the lower grades are manufactured into box shooks for all purposes. The spruce lumber, however, should be reserved for use in those boxes which are to contain food products, such as crackers, corn starch, butter, dried fruits, etc., because it is so clean, sweet and odorless that it does not taint these substances. It is also largely used for eggs cases to be placed in cold storage, because eggs will taste if packed in boxes made from pine or wood containing pitch. Spruce is used for lining refrigerators for the same reason.

SECRET OF SURFACING

There has been a great तeql of complaint on the part of those who have bought and tried to work spruce because it works so hard. The factory man who was used to white pine with its short and brittle grain, has been disappointed because his methods did not bring the same results with spruce. There is but one secret about spruce and the man who knows this can get first class results without special effort. The secret is to have the wood thoroughly dry and use sharp knives. The fiber of spruce, being long and tough when wet, cuts very hard, but when dry there is no difficulty if the knives are sharp.

SPRUCE-Continued

HOW TO GRIND KNIVES FOR DRFSSING SPRUCE

The cut shows the back bevel on the planer knife successfully used by planing mill experts for surfacing "Green" or "Dry" Spruce. When the knife is ground with the bevel as illustrated, it makes a square cut and leaves a smooth surface, as it breaks off the chip instead of tearing it away from the board.

QUAIITY

Spruce grades are always good because of the character of the wood. The principal defect is knots and as these are largely black and loose, the wood must be cut up into practically clear lumber. After this is done, the grade is likely to be satisfactory to any buyer.

Spruce has just the right texture to receive and hold paint nicely and is the best known wood for making sign boards, first, because any size and length can be secured, and second, because two coats of paint on spruce will give as good a finish as three coats on almost any other soft wood.

The spruce trees of the Pacific Coast are so large that the percentage of sap is, small, indeed. For this reason spruce does not stain or discolor easily, even if the lumber is placed where it will become mouldy, the blue mould will dress off with a very light cut.

The above statement regarding the spruce of the Pacific Coast will enable the buyer to judge whether it is adapted to his purpose.

SPRUCE FOR AIRPIANES

Western Spruce is the ideal wood for airplane construction it is the toughest softwood for its weight, possesses tremendous shock absorbing qualities, and does not splinter when hit by a missile, it is used in the frames of airplane wings, ailerons, fins, rudders, elevators, and for the stabilizers, the struts, landing gear, fuselage, flooring, engine bed, after-deck, and even the seats are made of it. About 350 pieces of spruce are required in a single airplane, but not all of them are individually different; the wing beams are practically of similar dimensions, and the struts vary only in size according to the strains put upon them.

Roughly, the specifications for spruce parts are: Straight grain, clear from knots and defects so as to give maximum strength. The size of the rough pieces must be such as to insure a finished dimension after deducting losses for finishing, checking and shrinkage. Desirable pieces run $11 / 4$ inch to 3 inches thick, 3 inches and upward in width, and from 5 feet to 17 feet in length. Practically all the available spruce is in the United States and along the western coast of British Columbia. In this country, it grows close to the Pacific coast on the western slopes of the Cascade range in the States of Washington and Oregon. The stand of Sitka spruce, which is the best airplane stock, in these two States is estimated at $11,000,000,000$ feet. But less than half of it is near enough to transportation facilities, or in dense enough stands to be commercialized.

WESTERN OR SITKA SPRUCE

WESTERN HEMLOCK

(Tsuga Heterophylla)

The wood of Western Hemlock is light, fairly soft, strong and straightgrained. It is free from pitch or resin. Its strength and ease of working distinguish it from the Eastern Hemlock (tsuga canadensis and tsuga caroliniana). For ordinary building purposes Western Hemlock is equally as useful as Douglas Fir. It is manufactured into the common forms of lumber, and sold and used for the same purposes as Douglas Fir. It is suitable for inside joists, scantling, lath, siding, flooring and ceiling; in fact, it is especlally adapted to uses requiring ease of working, a handsome finish or lightness combined with a large degree of strength. For the manufacture of sash and door stock, fixtures, furniture, turned stock, wainscot and panel it is recognized as a wood of exceptional merit. It is also largely used in the manufacture of boxes and shelving.

The true value of Western Hemlock timber has not been appreciated on account of its name, since it has been confused with the Eastern Hemlock, which produces wood of inferior quality.-"Forest Trees of the Pacific Coast," by George B. Sudworth.

INTERIOR FINISH

Unlike its Eastern relative, Western Hemlock contains a good proportion of uppers. The clear grades are specially suitable for inside finish, are not easily scratched and when dressed have a smooth surface with a satin sheen, susceptible of a high polish. It will also take enamel finish to perfection, and is well adapted to use as core stock for veneered products. If sawn slash the figure of the grain presents a beautiful effect. The wood is non-resinous and odorless (when dry.)

ELOORING

Vertical Grain Hemlock makes an exceptionally satisfactory flooring. It hardens with age and as a proof of its lasting and wearing qualities the Hemlock floor laid in the Court House of Clatsop County. Oregon. was according to Judre Trenchard in good condition when the building was torn down, after 50 years continual service.

In the Judge's old home. built in 1860. the Hemlock flooring is in excellent condition and so hard that it is now difficult to even drive a tack into it.

BEVEI SIDING

Millions of feet of Clear Western Hemlock are annually manufactured into Bevel Siding. It is a great competitor of Spruce, which it closely resembles, aiul is often bought or sold as such, either through ignorance or misrepresentation.

USE EOR LIGET CONSTRUCTION

For sheathing, shiplap, roof or barn boards Western Hemlock is an ideal wood; it is noted for holding nails well, is free from pitch or gum, and the knots in merchantible grades are firm and small. For sanitary reasons it should have a decided preference in the construction of dwelling houses, as it is practically proof against insects, vermin or white ants, and is shunned by rats and mice.

MINING TIMEERS

Entire or part cargoes of Western Hemlock timbers, ties and planks are regularly shipped from the States of Washington and Oregon into Callfornia or Mexico, where the lumber is generally used for mining purposes.

PULP WOOD

Many millions of feet of Hemlock are yearly converted into pulp for the making of paper. Practically all of the Hemlock on the Columbia River is used for this purpose by the mills of Oregon City and La Camas.

BOXES AND PACKING CASES

Boxes or Packing Cases manufactured out of Hemlock compare very favorably with nther woods used for this purpose. A great number of Hemlock oil cases are shipped to the Orient. One firm in Washington is exporting 50,000 cases per month to Hong Kong and Singapore.

WESTERN HEMLOCK-Continued

WEIGET

Though Hemlock is very heavy when green, after seasoning it will weigh fron 300 to 500 pounds per 1,000 board feet less than Douglas Fir. When paying from 40 to 50 cents per hundred pounds for freight by rail, it means an additional profit that a business man should not lose sight of in cases where the competitive price of other woods is close.

GRADIEG

The same grading rules that apply to Douglas Fir are generally used for Hemlock.

KIIN DRYING

The regular and even structure of the wood and total absence of pitch renders it capable of rapid kiln drying at high temperature without injury.

STRENGTH

The strength of Western Hemlock will be found in the table "Average Strength Values for Structural Timbers" (Page 7).

WESTERN HEIMLOCK FOR FOREIGN CARGO SHIPIMENT

Buyers and sellers of Western Hemlock will find it to their advantage to act on the following suggestions:

Freshly sawn Hemlock is very heavy and often weighs from four to six pounds per board foot and if shipped in this condition, it displaces more deadweight than Douglas Fir.

The ordinary tramp steamer will carry about ten per cent. more in board feet measurement of Douglas Fir than Hemlock, therefore it would not be good policy to ship a straight cargo of freshly sawn Hemlock.

If Hemlock is shipped in amounts of ten to fifteen per cent. of cargo, it should be a paying proposition if stowed first in lower hold. as the heavy. Weight in the bottom of the vessel will increase the stability and should cause a reduction of water ballast. This equalizes matters as the extra weight of the Hemlock displaces water ballast upon which no freight is paid.

SIZES BEST ADAPTED FOR CARGO SHIPMENT

The following sizes and lengths can be manufactured to advantage, make good stowage, and can be used with satisfactory results for house construction or similar work.

CLEAR GRADES

```
1x3 to 1\times12-8 to 24 feet long.
2x3 to 2\times12-8 to 24 feet long.
```


MERCHANTABLE GRADES

1×3 to $1 \mathrm{x} 8-8$ to 24 feet long.

- 2×3 to $2 \times 12-8$ to 32 feet long.
3×3 to $3 \times 12-8$ to 32 feet long.
4×4 to $4 \times 12-8$ to 32 feet long.

SIZES FOR RE-SAWING PURPOSES

It is not advisable to ship Hemlock timbers or sizes of 6 inches in thickness or over. that contain boxed heart. if they are to be used for re-sawing purposes, as Hemlock usually opens up shakey at the heart. and this would cause a loss to the buyer, and result in general dissatisfaction.

WESTERN RED CEDAR (Thuja Plicata)

This cedar is by far the largest of the four true cedars in the world. Since ancient times ce dar has been famous for its resistance to decay and its remarkable durability. Western Red Cedar combines these qualities in the highest degree. The wood is exceptionally light, soft. and of close straight grain. making it easy to handle and work. It is free from pitch. Its qualities render it free from warping, shrinking or swelling.

Western Red Cedar is unsurpassed by any other wood where durability, lightness of weight or ease of working are essential. It also is an excellent wood for exterior siding, finish, corrugated decking and porch fooring, battens, porch columns, newels, lath, common boards, flume constructions, drains, canoes, rowboats, trellis-work, hothouse frames and sash, and for all other purposes in which the material used is exposed to the weather or comes in contact with damp soil. Cabinet makers use it for many purposes, including the backs and sides of drawers, shelves, boxes, and partitions.

From Western Red Cedar is made sixty-six per cent of all wooden shingles used in the United States. The red cedar shingle satisfies architecture's basic requirement of combining, utility, durability and beauty.

Western Red Cedar shingles are not a fire-hazard.

The life of a Western Red Cedar shingle roof is determined by the life of the shingle nail used. Such a roof put on with an old-fashioned iron nail coated with pure zinc should last from thirty to forty years. A soft bright wire nail, on the other hand, is sometimes eaten out by the decay-resisting chemicalis in the wood so that the life of the roof is greatly shortened. The same applies to the use of the so-called galvanized shingle nail, which, however, may resist the chemical action of the wood for from eight to ten years.

A Western Red Cedar roof will not rot, rust or corrode. Its light weight saves expense in the whole structure of the house. Such a roof is not torn off by wind or storm. It will not require constant up keep and painting. It is noiseless during heavy rain and hail storms. It is a non-conductor of heat and cold. It is easily put on.

RED CHDAR SHINGTJS

The standard length of shingles is 16 inches. The expression 6 to 2 and 5 to 2 means that the butt ends of 6 and 5 shingles, respectively, equals 2 inches in measurement. One bunch contains 25 double courses. One double course contains 10 pieces estimated at 4 inches wide. Four bundles are reckoned to the thousand.

One thousand feet log scale will make ten thousand shingles. When shingles are shipped by vessel, freight is usually paid at the rate of 10,000 shingles being equal to 1.000 feet Board Measure.

One thousand shingles can be stowed in a space equal to 10 cubic feet.
To estimate the number of shingles required for a roof when laid 4 inches to the weather, multiply the number of square feet of roof surface by 9.

It is easy to see why the foregoing rule is correct. Each shingle is 4 in. wide and 4 in. only of its length are left exposed, hence it covers 16 sq. inches, or $1 . / 9$ of a square foot- 9 shingles will cover a square foot.

Estimators usually allow 1,000 shingles to each 100 square feet of roof surface.

To find the number of shingles equal to 1 square foot:
When laid 4 inches to weather, multiply by 9.
When laid $41 / 2$ inches to weather, multiply by 8.
When laid 5 inches to weather, multiply by $71 / 5$.
When laid 6 inches to weather, multiply by 6.
APPROXIMATE WEIGET

1000 shingles, kiln dried. weigh 160 pounds. 1000 shingles, green, weigh 200 to 240 pounds.
To find approximate amount of shingles that can be loaded in a box car, ascertain the capacity of car in cubic feet. add two ciphers to this amount and ihs result will be the number of shingles required.

HOW TO BUILD A FORTY YEAR ROOF

Much of the following is taken from the American Lumberman Magazine First
 Prize answer in their International contest "How to Make a Forty-Year Roof."

The first essential is Rite-Grade Red Cedar Shingles. Second, nails, valleys and flashings the equal of good shingles. A roof is only as strong as its weakest part.

For Rafters use sized $2 \times 4 \mathrm{~s}$ or $2 \times 6 \mathrm{~s}$, spaced on not over 2 -foot centers, spiked solid and braced as load requires.

For Roof Boards or sheathing use good material, S. I. S. strips $1 x 4$ inches or random widths to not more than 8 inches, spaced not more than two inches apart and nailed solid with 8 d nails. Where building paper insulation is used shiplap solid instead of 1×4 inches.

Preparation of Shingles-If they are to be stained use dry shingles, dipping each one in the stain not less than 12 inches from butt. Shingles that are not to be stained should be wet thoroughly before laying. Stained shingles to be wetted before laying (allow time for stain to take full effect).

If additional fire-resistant quality is wanted, dip in good quality of mineral paint or such other approved fire-resistant treatment as may be available.

Shingle Nails-Solid copper, solid zinc, hot-dipped zinc coated or pure iron nails preferred. Where these are not available use old fashioned cut nails.

Size of Nails-For 5 to 2 inches or thinner shingles, 3 d ; for thicker shingles, 4 d .
Laying the Shingles-Start at eaves and lay first course 2-ply, giving first course $11 / 4$ inches projection over crown mold and 1 -inch projection at gables.

On one-third or more pitch lay 16 -inch shingles $41 / 2$ inches to the weather; on less than one-third pitch lay 16 -inch shingles 4 inches to the weather. On onethird or more pitch lay 18 -inch shingles $5 \frac{1}{2}$ inches to the weather; on less than one-third pitch lay 18 -inch shingles $41 / 2$ inches to the weather.

Use a straight edge to make sure courses are laid straight.
Break all joints at least $11 / 4$ inches (sidelap). seeing that no break comes directly over another on any three consecutive courses, thereby covering all nails.

Nail shingles 6 inches from butt (for $41 / 2$-inch to weather) and $5 / 8$ to $3 / 4$ inch from sides, and put only two nails in each shingle. Slash grain shingles need nails not over 6 inches apart. Shingles wider than 9 inches should be split.

Lay shingles so that water will run with the grain and do not drive nail heads into shingles.

Lay wet shingles with butts close together. Do not lay shingles dry, unless dipped in non-absorbent paint; then lay $1 / 8$ inch apart.

Use 14 -inch best quality old-style tin, heavily coated, for valleys, or copper. Same for ridge roll.

Use heavily coated tin flashing around chimneys.
Finish hips by laying a course of even width narrow shingles on both sides of hip over regular courses.

ROOF PITCHES

This diagram shows the three standard roof pitches that are used by all carpenters who put up buildings. But some good workmen are not sure of all the terms that are used to describe them.

Pitch means the angle or slant of the rafters in a straight line from the eaves to the peak of the roof.

Rise means the vertical elevation of the rafter at a given point. The term "rise" is always used in connection with the term "run." A roof rises a certain number of inches to each foot of the run.

Run is the horizontal measurement from the plate to the center line of the building.

Rise is the vertical climb of the rafter expressed in feet.
For example, the rise of a half pitch roof is equal to the run, which means that the distance from the plate to the center line of the building is the same as the distance from the center line to the peak. The rise of a one-quarter pitch roof is just half as much.

PORT ORFORD CEDAR; LAWSON CYPRESS (Chamaecyparis Lawsoniana)

On account of its great beauty as an ornamental evergreen, Lawson Cypress, the Port Orford Cedar of lumbermen, is widely known in this country and abroad. It is little known, however, as a forest tree. It is the largest of its genus and also the largest representative of its tribe (Cupressineoe) in North America.

TEE WOOD

Port Orford Cedar, also known as White Cedar, is very fine grained, and in color is creamy white, with the slightest tinge of red. The wood has a pleasant rose aromatic odor, which is strong when freshly sawn, but not so pronounced after seasoning. It is a rather hard and firm wood. works as easily as the choicest pine, and is very durable without protection under all sorts of exposure. Experiments have proven that it can be stained to imitate mahogany more closely than any other wood.

It is susceptible to a high polish, and possesses all the features necessary to class it as an excellent material for the better class of interior finish. It is also considered very desirable for airplane material, boat building, shelving, chests and wardrobes where expensive furs and valuable clothes are kept, as its odor is an absolute preventative from the attacks of moths. Its straight grain and the facllity with which it is worked gives this wood a high place among those used for match and pattern making.

Nearly all the knots are rotten, in fact in many cases nothing remains but the hole where the knot formerly existed. In spite of this defect, however, the surrounding wood does not decay but is practically everlasting.

FACTORY LUMBER

A large percentage of No. 3 Common would cut up into the best grade of factory lumber, as the knots usually of standard size are wide apart, say at interyals of 4 to 10 feet, and outside of this defect the lumber is clear without blemish.

SHIPPING PORTS

The shipping ports are Coos Bay, and Coquille River, Oregon, consignments destined for the United Kingdom or other Foreign Ports, would probably be reshipped at San Francisco.

As this wood splits easily, great care should be exercised in the handling to avoid breakages.

WESTERN LARCH•
 (Larix Occidentalis)

Western Larch is the largest and most massive of North American Larches. Its straight trunks grow ordinarily to a height of from 100 to 180 feet, and to a diameter of 3 or 4 feet. Not infrequently trees reach a height of over 200 feet and a diameter of from 5 to 8 feet. The tapering trunks are clear of branches for from 60 to 100 feet or more.

DESCRIPTION OF WOOD

The wood is heavy, clear reddish brown, and runs from medium coarse to fine in grain. It is very durable in an unprotected state, differing greatly in this respect from wood of the Eastern Larch.

USE AND DURABIIITY

It is used for structural purposes, and is especially valuable for railroad ties, as it holds spikes well, and its durability when in contact with the soil is very great. This wood is manufactured into ceiling, interior finish and moulding and when sawn vertical (edge grain) makes an excellent flooring, as the fiber of the wood wears evenly and smoothly.

Larch takes paint, oil, or stain readily, and with age ripens into a beautiful cherry color.

This lumber is widely known as "Montana Larch," and the growing demand for it is evidence of its increasing popularity with Eastern buyers.

As Western Larch is principally manufactured by Inland Mills, it cannot be profitably shipped in cargo lots to Foreign Countries on account of the extra cost of transportation by car to a shipping port, and the competition of other Coast woods.

NOBLE FIR
 (Abies Nobilis)

Of all true firs, Noble Fir is considered the most valuable. In the deep forests which it inhabits, it is, when at its best, one of the most magnificently tall and symmetrically formed trees of its kind. The remarkably straight, even and only slightly tapering trunks are often clear of branches for 100 feet or more. Large trees are from 140 to 200 feet in height, or exceptionally somewhat taller, and from 30 to 60 inches in diameter; trees 6 to 7 feet in diameter occur, but they are rare.

RANGE

Noble Fir grows chiefly on the western slope of the Cascade Mountains, ar elevations of from 2,000 to 5,000 feet, from Mount Baker in Northern Washington to the Siskiyou Mountains in Southern Oregon. It also occurs in the Olympic Mountains and in the coast ranges of Western Washington.

Though uncommon on the eastern slope of the Cascade Range, it is very abundant on the Western slope in the vicinity of the Columbia River in Oregon.

In Multnomah County, Oregon, near Bridal Veil, there are about six to eight thousand acres which are estimated to contain over 150 million board feet of Noble Fir, which is standing in a body of 15,000 acres, the balance of the stand being principally old growth Douglas Fir.

Noble Fir is abundant on Mount Rainier at elevations of 4,000 to 5,000 feet, and noted near Ashford at 3,500 feet.

COLOR AND GRAIN

The wood is of a creamy white color, irregularly marked with reddish brown areas, which adds much to its beauty. It is moderately hard, strong, firm, medium close grain, and compact. It is free from pitch, is of soft texture, but hard fiber and when dressed shows a peculiar satin sheen. In quality it is entirely differen't from and superior to any of the light, very soft fir woods. When seasoned this wood so closely resembles Western Hemlock that it is almost impossible to distinguish between the two when thoroughly dry.

EINTSEI

It is one of the best woods known for interior or exterior finish, siding, mouldings, sash and doors, and factory work for it retains its shape and "holds its place" well.

FHOORING

On account of the hard fiber, when sawn vertical (edge) grain, it makes a very satisfactory flooring, for it is close grained and presents a hard wearing surface.

GENERAI QUATITY

As the amount of surface clear cut from Noble Fir logs, generally runs from 60 to 80 per cent., the merchantable or common grades are consequently proportionately small.

The smaller trees are fine grained and sound knotted, the knots being firm and red, and interwoven with the fiber of the surrounding wood. For this reason an excellent "board" is the result. for stock boards, for barns, and other purposes where good sound common boards are wanted. This lumber holds a nail well, and produces good merchantable piece stuff such as studs, joists, planks, timbers, and ties.

In the butt cut of larger trees, the knots are often black and loose and lumber cut from this class of \log produces a fine grade of "cut up" material.

The wood is odorless, tasteless and non-resinous, making boxes fit for butter, and other articles which would taint from contact with some other kind of woods.

WEIGET

While the wet, green lumber is heavy-much heavier than Douglas Fir, it dries out so that it ships censiderably lighter.

GRANS FIR-WHITE FIR

Grand Fir (Abies Grandis) is a closely allied variety of White Fir (Abies Concolas) therefore, for all practical nurposes, a description of one serves for both.

WHITE FIR (Abies Concolor)

White Fir is a massive tree and generally averages from 140 to 200 feet in height, with a diameter of 40 to 60 inches.

WEIGET

When green the lumber is very heavy, and butt logs often sink in water. The wood naturally contains a large percentage of moisture, but after a thorough seasoning boards one inch in thickness will weigh about 2,000 pounds to 1,000 board feet.

THE WOOD

The wood is soft, straight grained and works easily. It is only used or suitable for a light class of construction work or temporary mining purposes. In color it is whitish-gray to light indistinct brown. The sawn product closely resembles Hemlock in appearance, but it is inferior to it for finish or construction. White Fir should on no account be classed or confused with Douglas Fir (Pseudotsuga Taxifolia) which botanically is not a Fir, and the wood of which is entirely different and vastly superior to that of the White Fir.

OUTPUT

More than half of the total output of White Fir is supplied by California, and approximately 10 per cent. each by Washington, Idaho and Oregon. Smali quantities are produced in Montana, Colorado and other Rocky Mountain States.

ITS USE FOR PUIPWOOD

Experiments conducted at the Forest Service laboratory at Washington show that this wood is admirably adapted for the production of paper pulp by the sulphite process. The wood is found to yield very readily to the action of the sulphite liquor used, which is of the usual commercial strength, viz., about 4.0 per cent total sulphur dioxide, 1.0 per cent combined and 3.0 per cent available. The length of treatment has varied in the different tests from eight to ten hours, and the steam pressure from 60 to 75 pounds. These pressures correspord to maximum temperatures of 153 to 160 degrees C.

The pulp produced in these experiments is from nearly white to light-brown in color, according to the variations in the method of cooking, and by selecting the proper conditions of treatment, it would be readily possible to produce a grade of fiber which could be used in many kinds of paper without the least bleaching. if, however, it is desired to employ the fiber for white book or writing papers, it could be readily bleached to a good white color. Results of laboratory tests show that the bleach required to bring. the fiber up to the usual color for bleached sulphite spruce fiber is from 15 to 23 per cent to the weight of unbleached fiber; that is, assuming the bleaching powder to contain 35 per cent available chloride. Sulphite spruce fiber now on the market requires from 175 to 500 pounds of 35 per cent bleach per ton of product or from 9 to 24 per cent of the unbleached fiber. It is seen, therefore, that so far as bleaching is concerned, the pulp made from white fir is just as good as that made from spruce.

The yields obtained in these experiments ranged from 43 to 49 per cent on the bone-dry basis. This is exclusive of screenings, which in no case exceed $11 / 4$ per cent of the dry wood used. From careful observation of the methods employed in determining the yields, it seems probable that those figures will be increased slightly when larger quantities of wood are used, and it is believed that in the matter of yield the Fir wood is fully equal to spruce.

The fiber from these cooks is in most cases light colored and somewhat lustrous, and the sheets formed from it without any beating are remarkably tough and strong. Microscopic examination and measurements show that the fibers are of very remarkable length, being from one-half to two-thirds as long again as the commercial sulphite spruce fiber.

It is believed from the results that, so far as the product is concerned, the manufacture of fiber from white fir would be a commercial success, and that the fiber produced would find its greatest usefulness in the production of manilas where great strength is required, and in tissues which need very long fibers. It seems probable, also, that it would make very good newspaper, for which purpose its naturally light color would particularly adapt it.

AUSTRALIAN CURRENCY WEIGHTS AND MEASURES

Abstract

Currency The currency of Australia is the same as that of Great Britain. The monetary unit is the pound sterling (\mathfrak{f}), equal to $\$ 4.8665$ United States currency. One pound contains 20 shillings. One shilling (s.) equals 12 pence. or $241 / 2$ cents United States currency. One penny (d.) equals 2 cents United States currency.

Weights and Measures

The weights and measures of Australia with a few exceptions are the same as those in use in the United States. some of the exceptions being as follows:

1 imperial gallon \ldots.
1 ale and beer gallon $\ldots \ldots \ldots \ldots \ldots=1 . \ldots 208$ United States gallons.
1 proof gallon ….................... $=1.374$ United States proof gallons.
1 hundredweight (cwi.) $=112$ pounds avoirdupois.
1 ton $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=2,240$ pounds avoidupois.

DUTIES ON LUMBER

DUTIES ON LUMBER ENTERING THE COMMONWEALTH OF AUSTRALIA

New Zealand white pine and rimu, undressed, n. e. i. 1s. 0d
Timber. undressed. n. e. i.. in sizes of 6×12 inches (or its equivalent) and over
Timber, undressed, n. e. i.. in sizes of $21 / 2 \times 7$ inches (or its equivalent) and upwards and less than 6×12 inches (or its equivalent)

1s. 0d.

Timber, undressed, n. e. i., in sizes less than $21 / 2 \times 7$ inches (or its equivalent) Timber, undressed, cut to sizes for making boxes

3s. 0d.
3s. 6 d .
5 s .0 d . dressed

6s. 0d.
Timber, dressed, n. e. i.

4s. 0d.

Veneer, 3 ply
7 s .6 d .
Veneers, n. e. i. 5 s .0 d .
Timber, undressed in sizes less than 7 feet 6 inches, by $21 / 2 \times 10$ inches, for door stock

3s. 0d.
Timber. for making doors. being cut into shape. and dressed or partly dressed

6 s .0 d .

Ad valorum
Logs, not sawn . 5%
Spars, in the rough . 5%
Timber, bent or cut into shape, dressed or partly dressed. n. e. i. 30%
Picture and room mouldings . 35%
Broom stocks, being square timber rough-sawn into sizes suitable for the
manufacture of broom handles . .. 20 .
Laths, for blinds . 30%

DUTIES ON LUMBER-Continued
 AUSTRALIA-Continued

	$\begin{aligned} & \text { Per } 1000 \\ & \text { Pcs. } \end{aligned}$
Laths, n. e. i.	10 s . 0d.
Palings	15s. 0d.
Shingles	$\begin{aligned} & 5 \mathrm{s.} .0 \mathrm{~d} . \\ & \text { Per } 100 \end{aligned}$
Pickets, undressed	Pcs. 3s. 6d.
Pickets, dressed	7s. 0d.
Staves, undressed	1s. 0 d.
Staves, dressed	4 s . 0\%.

Per 100
Iineal $\mathrm{F}^{\text {t. }}$
Architraves, moldings, n. e. i., and skirtings of any material 6s. 0d.
In the foregoing table the import duties are the same for the General Tariff, and Preferential Tariff on lumber the produce or manufacture of the United Kingdom. with the exception that on "Picture and room moldings." the Preferential Tariff is 30% Ad Valorum.
"N. e. i." mean's "not elsewhere included."

BERMUDA

BRIYISE INDIA

Railway sleepers (ties) ... $21 / 2 \%_{0}^{\prime}$
Firewood; racks for the withering of tea-leaf; also tea-chests, made up or not $21 / 2 \%$
All other wood and timber . $71 / 2 \%$

BRITISH SOUTH AFRICA

Wood. unmanufactured; ceiling and flooring boards. planed, tongued, and grooved; materials for use in construction of telegraph and telephone lines; posts, gates, hurdles, and other materials ordinarily used for agricultural or railway fencing; railway or tramway sleepers; permanent or fixed railway signals; staves, not further worked than roughly fashioned.
Under British Preferential Tariff
Free
Ad. Val.
Under General Tariff
3%
All other wood and timber:
Under British Preferential Tariff
12%
Under General Tariff . 15%

CEYLON

Timber, not prepared; shooks and staves; empty casks; sandal and dye-woods; and other woods, unwrought

Free
Wood, imported in shooks or in any form, in which it may be used in making tea boxes, or boxes used for the despatch of samples of tea or other Ceylon products

Free
Ad. Val .
All other wood and timber
$51 / 2 \%$

DUTIES ON LUMBER-Continued CHINA

Abstract

Haikwan Taels Timber, beams, hard wood ... per cubic foot 0.020 Soft wood, including Douglas fir and California redwood, on a thickness of 1 in. pėr 1,000 sup. ft. 1.150

Laths .. per thousand 0.210

Masts and Spars, hard wood .. Ad Val. 5% Masts and Spars, soft wood .. Ad Val. 5% Piles and Piling, including Douglas fir and California redwood, on a thicknesss of 1 in. .. 1,00 sup. ft. 1.150 Planks, hard wood .. per cubic foot 0.020 Planks and Flooring, soft wood, including Douglas fir and California redwood, and allowing 10 per cent. of each shipment to be tongued and groved, on 1.150

Planks and Flooring, soft wood, tongued and grooved, in excess of above 10 per cent.

Ad Val. 5\% Railway sleepers .. Ad Val. 5% Wood not otherwise specified Note:-The Haikwan (Customs) Tael is not a coin but a weight in silver, the exchange value fluctuates from 63 to 66 cents.

FIJI ISLANDS

General Tariff on Timber, August, 1916.
 Class of Timber-

Ad. Val.

Doors and sash ..
Timber dressed or undressed, not over two inches wide $121 / 2 \%$

DUTIES ON LUMBER-Continued JAMAICA

All materials for use exclusively in the construction and equipment of railways Free
and tramways
and tramways
Wood for hoops and truss-hoops; staves and headings; shooks for tierces, pun- cheons, barrels. hogsheads, and casks; shooks for boxes or crates to be used in packing native agricultural produce Free
Pitch pine. white pine. and other lumber
Rough or sawn, per 1,000 sup. ft. (1 in . thick) 9s
Planed, smoothed, grooved and tongued, ceiling and flooring boards; clinkeror beaded boards. not otherwise manufactured, per 1.000 sup. ft. (1 in.thick)14 s
Shingles. cypress, more than 12 in . in length, per 1,000 6 s
Shingles, wallaba, per 1,000
6 s
6 s
Shingles, other Ad. Val. 43
JAPAN
Wood, cut, sawn or split, simply: Pine, Douglas Fir, or Cedar:- Cedar not exceeding 20 cm . in length. 7 cm . in width and 17 mm . in thickness Free
Not exceeding 65 mm . in thickness per cubic metre 3.10 yen
Other per cubic metre 1.80 yen
Pulp for Paper making:- Mechanical Pulp per 100 kin 0.22 yen
Other $\ldots \ldots \ldots$ per 100 kin 0.27 yen The Japanese Yen equals 100 sen and is the equivalent to $\$ 0.498$ U. S. money. The Kin equals 1.32277 pounds.

NEW ZAㅗAND

Sleepers of common wood
Free Masts of all kinds, unwrought Free
Sawn in boards, joists, beams, girders and other unenumerated shapes, per0.023 m . in thickness:-Pine, laurel, larch, and similar FreeThe same, planed, tongued or grooved, or wrought in any manner, percubic meter14 c
TRINIDAD AND TOBAGO
Articles imported specially for the furnishing, decoration, construction, and repair of churches used for public worship, on the signed declarationof the head of the denomination for which they are intendedFree
Timber, unmanufactured:
Sawn or hewn, undressed, per $1,000 \mathrm{ft}$. 8s 4d
Sawn or hewn, wholly or partly dressed, per $1,000 \mathrm{ft}$. 12 s 6d
Shingles, per 1,000 S 6 d
All other wood and timber Ad Val. 10%
UNITED STATES

Paving posts, railroad ties, and telephone, trolley, electric light ,and telegraph poles of cedar or other woods
Casks, barrels, and hogsheads (empty) sugar-box shooks and packing boxes (empty) and packing-box shooks, of wood, n. s. p., Ad Val.
Veneers of wood
Wood: Logs, timber, round unmanufactured, hewn or sawed, sided or squared; pulp woods, kindling wood, firewood, hop poles, hoop poles, fence posts, handle bolts, shingle bolts, gun blocks for gunstocks, rough hewn or sawed, or planed on one side; hubs for wheels, posts, heading bolts. stave bolts, last blocks, wagon blocks, oar blocks, heading blocks, and all like blocks, or sticks, rough hewn, sawed or bored; sawed boards, planks. deals, and other lumber, not further manufactured than sawed, planed, and tongued and grooved; clapboards, laths, pickets, palings, staves, shingles, ship timber. ship planking, broom handles. sawdust, and wood flour; all the foregoing n. s. p.

Free
N. B.-Beaded ceiling and mouldings have been held to be free of duty.

NAUTICAL MEASURES

WEIGFT OF SATT WATER At 62° Eahrenheit

1 cubic inch 259 grs.
1 cubic foot 64.11 pounds.
1 imperial gallon 10.27 pounds.
1 U. S. gallon 8.558 pounds.
1 long ton (2240 pounds) 35 cubic feet.
1 long ton (2240 pounds) 218.11 imperial gallons.
1 long ton (2240 pounds) 240 U. S. gallons.
1 short ton (2000 pounds) 31.2 cubic feet.
1 short ton (2000 pounds) 194.74 imperial gallons.
1 short ton (2000 pounds) 233.7 U. S. gallons.

DENSITY OF WATER AND COAL CONSUMPTION

When figuring on a vessel's draft allowance must be made for density of water; that is, the difference $3 n$ weight between fresh and salt water, also consumption of coal on inland waters. The usual method employed is to add to draft at load line one or two inches according to circumstances.

IMMERSION IN SALT AND FRESH WATER

To find the difference of immersion or draft in salt and fresh water: If from salt to fresh, multiply the draft of salt water by 36 , and divide the product by 35 . If from fresh to salt, multiply the draft of fresh water by 35 and divide the product by 36 .
Example:
Required the draft of a vessel in fresh water when drawing 20 ft . in salt water: 20 ft . $\times 36=720 \div 35=20 \mathrm{ft} .7 \mathrm{in}$.

BARRELS

To find the number of gallons in a cask or barrel.

Rule:

Take all the dimensions in inches. Add the head and bung diameters and divide by 2 for the approximate mean diameter. Square the mean diameter and multiply by the depth. Multiply the result by . 0034 for gallons.
Example:
How many gallons are contained in a cask the bung diameter of which is 24 inches, the head diameter, 22 inches, and the depth 30 inches? Operation:
$22+24=46 \div 2=23$ (mean diameter). Square of $23=529 \times 30$ (depth) $=15870$. $15870 \times .0034=53.9$ gallons.

MEASURING TANKS

To ind the number of gallons contained in a tank.

Rale:

Multiply the cubic capacity in feet by 7.48 .
Example:
How many gallons in a tank $6 \times 6 \times 4$ feet? Explanation:
$6 \times 3 \times 4=72$ cubic feet. $7.48 \times 72=538.56$ gallons. $538.56 \div 311 / 2=17.10-$ bbl.

CISTERNS

To find the capacity of a cistern.

Rule:

Multiply the square of the diameter by the depth; this will give the cylindrical feet; multiply the cylindrical feet by $57 / 8$ for gallons; .1865 for barrels, or .09325 for hogsheads. Example:

How many gallons in a cistern 42 feet in diameter, 12 feet deep? Operation:
$42 \times 42=1764 ; 1764 \times 12=21168 ; 57 / 8 \times 21168=124362$ gallons:=Answer.
How many barrels?-Answer, 394.8 .

EXPLANATION OF TONNAGE AND DISPLACEMENT

Many different tonnage units are employed in the overseas export trade. Tonnage is of two general kinds: cargo tonnage, which expresses the quantity of cargo being shipped, and vessel tonnage, which expresses the size or capacity of the ship.

CARGO TONNAGE

Cargo tonnage may be stated in four ways: (1) Long tons of 2,240 pounds each, (2) metric tons of 2,204 pounds, (3) short tons of 2,000 pounds, or (4) measurement tons-usually of 40 cubic feet. Long tons and measurement tons are most commonly used in the overseas export trade of the United States, the former usually in connection with cargoes shipped in terms of their weight, and the latter in connection with light freight or general cargoes which are frequently shipped on the basis of the space which they occupy.

VESSEL TONNAGE

Vessel tonnage is expressed in four ways: (1) Displacement tonnage, (2) deadweight tonnage, (3) gross tonnage, (4) net tonnage. Displacement tonnage indicates the weight of the vessel or of the water displaced by it and in the United States is expressed in terms of the avoirdupois ton of 2,240 pounds. It may be either "light displacement," which represents the vessel's weight when its crew and supplies are on board, but before any fuel, cargo or passengers have been loaded; or, it may be "maximum" or "full load displacement," which represents the vessel's weight when fully loaded to its deep load line.

DEADWEIGET TONNAGE

A vessel's deadweight tonnage represents the maximum weight of cargo and fuel which it is able to carry when loaded to its deep load line. It is the difference between its light and maximum displacement tonnage, and is, in case of the United States, uisually expressed in terms of the long ton.

GROSS TONNAGE

The gross register tonnage of a vessel is its total inclosed content expressed in tons of 100 cubic feet, as ascertained by the measurement authorities of the vessel's home country.

NET TONNAGE

A vessel's net tonnage, theoretically, should represent the cubical contents of the space available for cargoes and passengers expressed in tons of 100 cubic feet. In practice, however, it understates the real net capacity of a vessel and varies according to the particular national measurement rules which are applied. Net tonnage is ascertained by making certain deductions from the vesisel's gross tonnage as prescribed by the measurement rules of various countries.

DOUGLAS FIR SHIPMENTS

POINTERS FOR SHIPOWNERS ON IUMBER CARRYING CAPACITY OF

 STEAMERSWhen figuring on the lumber carrying capacity of steamers, allowance must be made for bunker coal, stores, provisions, boiler and feed water, water ballast, type of vessel, and height of deckload she will safely carry, also proportion of sizes and lengths in the lumber specifications suitable for stowage on deck and in the various compartments under deck, the number of timbers to be carried, and whether short lumber, pickets and or lath will be supplied for broken stowage.

In a large number of instances specifications contain every requisite for making good stowage, but it is of no avail if the lengths and sizes are not piled on the dock prior to shipment so as to be available at the right time and place to fill the various compartments.

If the lumber for shipment is not placed on the dock right, poor stowage and a great decrease in the amount of cargo the vessel should carry will be the result ard the time of loading will often be increased several days.

Poor stowage under deck results in vessel becoming top heavy, and consequently the usual height of deckload cannot be carried, as extra ballast tanks have to be filled to stiffen vessel and keep her upright.

This seriously affects the cargo carrying capacity of a vessel; for instance, filling a ballast tank of 300 tons would decrease the amount of cargo carried by 200,000 board feet of lumber.

When a steamer lists before she has a reasonable deckload, the cause should be investigated. There are instances where the fuel for main or donkey boilers is taken from one side of the upper portion of bunkers, emptying or filling a boiler, feeding water in boilers from one side of an engine tank with a central division, filling or emptying ballast tanks, or slack water in ballast tanks; the latter being the principal cause.

TO COMPUTE IUMBER CARRYING CAPACITY UNDER DECE

To compute lumber carrying capacity of a steamer, ascertain from the builder's plan the cubical capacity (bale space) of the various compartments, add together and multiply the tolal by $81 / 3$; the result will be the capacity in board feet.

Example:

How much lumber in board feet will a steamer carry under deck with a total cargo carrying capacity of 300,000 cubic feet (bale space) ${ }^{\circ}$ Operation:
$300,000 \times 8 \frac{1}{3}=2,500,000$, the amount in board feet.
Note:
To multiply by $81 / 3$ add two ciphers and divide by 12 .

TO COMPUTE DEADWEIGHT IUMBER CARRYING CAPACTY OF A STEAMER

To ascertain the deadweight lumber carrying capacity of a steamer, the following particulars should be obtained:

Distance between sailing and discharging port.
Speed of vessel, and daily coal consumption.
Weight of ship's stores and provisions.
Estimate of water ballast required.
Bunker coal necessary for voyage.
The first thing to do is to find out from the builder's plan, owners or officers of vessel, the speed in knots per hour and daily coal consumption; then compute the bunker coal required for the voyage as follows:

Example:

How much bunker coal will a steamer consume on a voyage from Seattle, Wash., U. S. A., to Sydney, N. S. W., Australia, the distance being 6829 nautical miles, speed 8 knots (nautical miles) per hour, and the daily consumption 29 tons of coal?

Multiply the knots (8) by 24 ; this gives the distance traveled per day. Then divide the result (192) into the distance between loading and discharging port. In this case it is 6829 nautical miles; the answer will be the number of day's occupied on voyage. Now multiply the number of days by the coal consumption (29) and you will have the bunker coal required for the voyage.

Operation:

$8 \times 24=192$, the daily speed. $6829 \div 192=35.57$, the number of days on voyage. $35.57 \times 29=1031.53$, the amount of bunker coal in tons required for the voyage.

Note:

It is customary to allow a few days reserve coal so that if steamer meets with an accident or bad weather the extra coal should enable her to reach port in safety. In this case an allowance of three days reserve coal should suffice.

METHOD OF ESTIMATING DEADWEIGHT TOTALS BEPORE OR AFTER LOADING

Capacity of vessel 7200 tons deadweight.

TO COMPUTE LUMBER CARRYING CAPACITY OF A STEAMER ON DECK

This is practically impossible, as so much depends on the stowage of cargo under deck, and also the height at which the bunker coal is stowed, whether it is winter or summer loading, the type and beam of vessel and amount of water ballast required.

When estimating on the amount of deckload always take the possible height into consideration, and remember that a steamer cannot carry more than her deadweight according to displacement scale.

The trick in loading steamers with lumber is to load them with the minimum of water ballast, and that can only be done by having an expert supervise the assembling or piling of the cargo beforehand, and taking advantage of every point during loading. This will greatly assist the stevedore, the mill company and ship's officers, and be of immense benefit to all concerned.

NEWSPRINT PAPER

CARGO SHIPMENTS OE PAPER IN CONJUNCTION WITH DOUGIAS EIR AND REDWOOD

As the shipment of print paper in rolls from British Columbia and the Pacific ports of the United States to Australia, New Zealand and other countries will supplant this trade which formerly was held by Germany, the following information will be of considerable assistance to those interested in this particular line.

The ordinary tramp steamer of about 7000 tons deadweight can carry a full cargo of paper under deck, with Redwood doorstock and / or dry lath or pickets for stowage, also a deckload of lumber equal in capacity and height to the amount that the steamer would ordinarily carry with a straight cargo of Douglas Fir, provided that good stowage is made both under and on deck.

DIMENSIONS OF PAPER ROLIS

Paper rolls vary according to orders of foreign buyers, though they usually run from $211 / 4$ inches to 84 inches in height, with a preponderance of 39 -inch rolls. The diameter of rolls vary, but 34 to 36 inches could be considered a fair average. The height of roll is the net size (the width of paper) and an allowance of three inches extra in height should be made for wrapping paper.

In some cases the ends of rolls are wooded, which means that the top and/or bottom ends are protected by boards about three-quarters of an inch in thickness and shaped to conform to the circular area of the end of the roll. The length and gross weight in pounds is stencilled on the side of each roll.

Rolls about 21 inches in height are called cheese rolls at point of shipment. This is on account of their resembling a roll of cheese.

These rolls are a very valuable aid to stowage. They can be used on their bilge or flat side to great advantage in the wings, between the top course of paper and beams, or any place where a larger roll would not go.

The following is an original specification of a shipment of paper rolls for Sydney, Australia, which gives a very fair idea of the dimensions and weight of the average paper roll:

SPECIFICATIONS GIVING DIMENSIONS AND WEIGRT OF NEWSPAPER ROLLS FOR FOREIGN SHTPMENT

Number			Average	Gross	Tare	Net
of	Height	Diam.	Weight	Wetight	Weight	Weight
Rolls	Inches	Inches	in Pounds	in Pounds	in Pounds	in Pounds
641	39	34	710	454,972	13,621	441,351
180	35	34	650	117,107	3,600	113,507
600	39	34	650	390,348	12,750	377,598
1,844	84	36	1,700	3,126,236	95,888	3,030,348
1,827	42	36	836	1,526,682	39,280	1,487,402
1,023	$211 / 4$	36	435	445,386	14,322	431,064
6,115				6,060,731	179,461	5,881,270

HOW TO DUNNAGE AND STOW PAPER ROI工S IN A SEIP'S HOID

Stanchions, pillars. frames or any section of compartment composed of steel or iron should be covered with burlap or otherwise dunnaged so as to prevent paper from boing damaged through coming in contact with or chafing against the steel or iron parts mentioned.

Before loading, the floors of the various holds should be dunnaged with lumber to prevent damage and levelled to make a solid foundation for the paper rolls. The after holds and especially the aftermost hold where the rise of the floor is very acute, should be filled with cargo other than paper if available to about the top of the shaft tunnel.

Paper rolls must be stowed on end on a practically level floor; if stowed on bilge (side) they would be crushed out of shape by the upper courses and rendered uscless for the purpose for which they are intended as they would not then revolve evenly on the newspaper machine cylinder.

Cargo hooks must not be used to handle paper rolls, and extreme care must be used to guard against the rolls striking against side of vessel, hatch coamings or other obstructions during process of loading.

If order of loading permits, the longest rolls should be stowed first in the hold; then the next to the longest length in rotation, reserving the shorter rolls to be used where a long roll cannot be stowed.

NEWSPRINT PAPER-Continued

SHORT STOWAGE REQUIRED

Short stowage which must be dry is required to fill spaces between paper rolls; also in wings (sides), against iron bulkheads and in vacant spaces between the top course of rolls and beams of vessel.

One hundred thousand board feet of dry doorstock, box shooks, dry lath or dry pickets is required to stow one thousand gross long tons of paper.

If lumber or stowage is loaded on steamer prior to taking paper cargo, it should be stowed in one end of each compartment only, preferably the narrow end.

If spread over the entire floor space it would have to be rehandled and thus delay the work of loading. When stowed in one end of a compartment, work of loading can commence in the vacant end immediately vessel arrives at paper mill, and the stowage in the other end can be used when required without retarding the work.

It is a cardinal rule never to use a short roll except for an emergency, as they are easily handled and if they are not all utilized during loading they will come in very handy to finish off with.

CUBIC STOWAGE PER TON OF PAPER ROLIS

Under favorable conditions such as a vessel with large compartments or when the orders contain a large quantity of medium sized rolls or of a length that will stow from floor to beams without loss of space, about ninety-one cubic feet bale space should be allowed for one gross long ton of paper.

When there is a great variety of sizes, or the lengths are such that good stowage cannot be made owing to build of vessel or for any reason that results in a loss of space between the upper course and beams an allowance of at least ninetyfive cubic feet bale space should be made.

BUNKER SPACE

All available space under deck should be reserved for cargo, and only enough bunker capacity allowed to cover the run on the longest leg of the voyage. For instance, a steamer from British Columbia or the U. S. North Pacific Coast. with a cargo destined for Sydney, Australia, should not take coal for the entire voyage, but should replenish her bunkers at Honolulu, Hawaii, taking sufficient coal there to safely carry her to Sydney.

By referring to the following distances the benefit of replenishing bunkers at Honolulu will be apparent:

Distance from Victoria, B. C., to Honolulu, 2349 nautical miles.
Distance from Port Townsend, Wash., to Honolulu, 2366 nautical miles.
Distance from Honolulu to Sydney, Australia, 4420 nautical miles.
A vessel making nine knots per hour on a daily consumption of 28 tons of coal would be $201 / 2$ days on the voyage from Honolulu to Sydney, and would require a minimum of 574 tons of coal. To this amount should be added about four days' extra supply of coal or 112 tons as a reserve against accident or bad weather.

STABIIITY
Contrary to a general supposition a steamer with a full cargo of paper under deck, and broken spaces well filled with short stowage, and a full and complete deckload of about 800,000 board feet of Douglas Fir and averaging about eleven feet in height. will stand up as well at the finish as if the entire cargo was Douglas Fir.

The reason for this is, that with a paper cargo under deck all bottom ballast tanks would be full, and with a straight cargo of Douglas Fir about half of the bottom ballast tanks of a capacity of say 600 tons would be empty. Therefore the extra weight of ballast required for a paper cargo would be in the bottom of the vessel and offset the heavier weight of Douglas Fir at a higher elevation in the hold.

DEADWEIGHT

The ordinary tramp steamer loaded under foregoing conditions would probably be six to ten inches off her summer marks with all bottom ballast tanks full.

Therefore if it is possible to obtain as cargo about 500 tons deadweight of iron, lead, steel, tin, canned salmon or any commodity of a specific gravity several times heavier than water that can safely be stowed in bottom of vessel it would be an aid to stability and add to freight profits by replacing a large portion of water ballast with profitable cargo.

POINTERS ON FILIING BALIAST TANKS

In loading steamer with a combination of paper and lumber it is good policy to regulate the weight of cargo and stowage in such a manner that the vessel can be loaded to her marks with one or more small double bottom ballast tanks empty, so that in event of vessel becoming tender towards the end of the voyage, through burning the coal stowed in the lower part of bunkers, the bottom tanks could be filled and the steamer would retain her stability by substituting the water ballast for coal.

If possible leave tanks of small capacity empty, as they are only filled during voyage in case of emergency, it being considered a hazardous undertaking for a steamer with a high deckload to fill a large tank at sea, as the rolling of vessel would cause the slack water to rush to one side of the tank which would probably result in the steamer taking a very dangerous list.

CONVERSION OF U. S. AND ENGLISH MONEY

According to Act of Congress, March 8, 1873, the Pound Sterling of Great Britain equals $\$ 4.8665$; the value of one shilling equals $\$ 0.241 / 3$; the value of one penny equals $\$ 0.02$.

Table of Sterling Money

4 Farthings (far) equal 1 penny (d.).
12 Pence equal 1 shilling (s.).
20 Shillings equal 1 pound (£).

A Simple Process to Change Pounds, Shillings and Pence to Dollars and Cents

Reduce pounds to shillings, add in the shillings, if any, and multiply the sum by $.241 / 3$; if any pence are given, increase the product by TWICE as many cents.

Reduce £185, 17s. and 9d. to U. S. money:

$$
\begin{equation*}
185 \times 20=3700 \tag{17}
\end{equation*}
$$

Shillings, 3717
$3717 \times .241 / 3=904.47$
$+9 \mathrm{~d}=.18$
Ans. $\$ 904.65$

Another Simple Method to Reduce Pounds to Dollars, and Vice Versa Exchange Being at $\$ 4.8665$

Multiply the number of pounds by 73 , and divide the product by 15 ; the result will express its equivalent in dollars and cents. Or,

Multiply dollars by 15 and dividing the product by 73 , will give its equivalent in Pounds and decimals of a Pound.

> How many dollars in $£ 96 ?$ $£ 96 \times 73 / 15=\$ 467.20$. Ans.

How many pounds in $\$ 839.50$? $\$ 839.50 \times 15 / 73=£ 172.5$. Ans.

TO COMLUTE LUMBER SEIPMENTS IN POUNDS, SHILIINGS AND PENCE

In making up Bills of Lading for British countries, the rate per thousand is invariably figured in English mnoey. The following method explains the usual way of computing the freight in pounds, shillings and pence.

Example No. 1:
What will the total freight amount to in sterling money on a shipment of lumber containing 220,024 board feet at $£ 310 \mathrm{~s}$. 0d. per thousand.
Operation:
$220,024 \times £ 31 / 2$ ($£ 3$ 10s.) equals $£ 770.084$

Answer: $£ 770$ 1s. 8 d .

Explanation:

As the rate of freight is per thousand feet, point off three figures and multiply by $£ 31 / 2$, which is the equivalent of $£ 310 \mathrm{~s}$. 0 d . This gives $£ 770$ and decimal .084 of a pound. Multiply .084 by 20 to obtain the shillings and .680 by 12 to obtain the pence.

TO COMPUTE LUMBER SHI 'MENTS-Continued

Example No. 2:
What will the total freight amount to in sterling money on a shipment of lumber containing 86,976 board feet at $£ 26 \mathrm{~s}$. 9 d . per thousand?

In this instance it is advisable to bring the pounds and shillings to pencer. which in this case amounts to 561 perice.

Operation:

86.976 Board Feet

561 Pence
86976
521856
434880
12) 48793.536
20) 4066.128 (Multiply .128 by 12 to obtain the pence which is 1.536 or $11 / 2 \mathrm{~d}$., 203.6

Answer: $£ 2036$ 6s. $11 / 2 \mathrm{~d}$.

Explanation:

As the rate of freight is per thousand, point off three figures and multiply hy 561 (the pence). Divide the product by 12 which gives 4066 shillings and decimal point 128 of a shilling. Now divide 4066 shillings by 20 , to obtain the pounds. This gives 203 pounds and six shillings. To obtain the pence multiply .128 by 12 ; this gives 1.536 or $11 / 2$ pence.

TO MAKE A WATCF ANSWER FOR A COMPASS

If the watch is on time, turn it around so that the hour hand will point to the sun. Then just mid-way between where the hour hand points on the dial and 12 o'clock on the dial, is SOUTH.

It is of no consequence what time of day, or what time of year it is-the rule applies at all times any place north of the equator.

Absolute exactness is not claimed for this rule, but it is always near enough for practical purposes.

Note-Pay no attention to the minute hand.

LONGITUDE AND TIME

Since the earth revolves around its axis in 24 hours, and its circumference is divided into 360 degrees, the sun apparently passes over 15 degrees in 1 hour $(360 \div 24=15) ;$ and consequently over 1 degree in 4 minutes ($60 \div 15=4$). Hence, these simple Rules:

Rule-Multiplying the Longitude, expressed in degrees, by 4 gives the equivalent Time expressed in minutes.

Rule-Dividing the Time, expressed in minutes, by 4 gives the equivalent Longitude expressed in degrees.

The difference in Longitude between Boston and San Francisco is nearly $511 / 4$ degrees; what is the difference in Time?

Answer- $511 / 4 \times 4=205 \mathrm{~min}$., or 3 h . 25 min .
The difference in Time between London and New York is nearly 4 h . and $511 / 2$ min.; what is the difference in Longitude?

$$
\text { Answer }-4 \mathrm{~h} .551 / 2 \mathrm{~min} .=2951 / 2 \mathrm{~min} . \quad 2951 / 2 \div 4=737 / 8 \mathrm{deg} .
$$

Notes-A degree of Longitude at the equator is 69.16 miles ; at ten degrees of Latitude, 68 miles; at twenty degrees, 65 miles; at thirty degrees, 60 miles; at forty degrees, 53 miles; at fifty degrees. 44.5 miles; at sixty degrees, 34.6 miles. etc. Thus longitude gradually diminishes with each degree of latitude, till at the poles it runs to nothing. as all the meridians converge from the equator to a point at

- the poles.

The degrees of Latitude run parallel, and would be equally distant apart were the earth a perfect sphere, but owing to its polar diameter being $261 / 2$ miles shorter than its equatorial diameter, the first degree being 68.8 miles; th forty-fifth, 69 miles, and the ninetieth, 69.4 miles.

The earth's equatorial diameter is 7925.6 miles. Its polar diameter, 7899.1 miles.

BENEFIT OF TABLE OF DISTANCES AND DIFFERENCE IN TIME TABLE

Abstract

The table of distances and difference in time table included in this work will prove a valuable aid to shipowners and lumbermen engaged in the export cargo trade, as it will enable them to quickly arrive at the distance between loading and discharging ports, and the time that vessel would be due to arrive at destination.

Steamers on long voyages do not always go direct to destination. but invariably stop at one or more coaling ports for bunkers.

The distances in this book are arranged with this object in view, thereby enabling the reader to ascertain the distance from the principal ports of the world to any Douglas Fir or Redwood cargo mill on the Pacific Coast.

Vessels destined for British Columbia ports usually stop first at Victoria, Vancouver Island; for Puget Sound ports at Port Townsend, Wash.; for Portland and Columbia River ports at Astoria, Ore. This stop is made for any of the following reasons: To call for orders, pass quarantine, fumigate, enter, or take a local pilot if proceeding to inland waters.

To ascertain the distance between ports it is often necessary to refer to one or more route ports. As an illustration, presume you wish to find the distance from Seattle, Wash., to Liverpool, England, you would trace the distance by following the nearest navigable route, which is as follows:

Seattle, Wash., to Port Townsend 39 Nautical Miles Port Townsend to Panama, C. Z. ... 3985 Nautical Miles Panama, C. Z., to Colon, C. Z. ... 43 Nautical Miles Colon. C. Z., to Liverpool, via Mona Passage 4548 Nautical Miles Total distance 8615 Nautical Miles To trace the distance to the Mediterranean Sea ports, such as Barcelona, Spain; Marseilles, France; Genoa and Naples, Italy, and Alexandria and Port Said,

 Egypt, use the following route ports: Panama, Colon and Gibraltar.
LENGTH OF PANAMA CANAI

The distance from Panama Roads, Canal Zone, to Colon, Canal Zone, is 43 nautical ,or 50 statute, miles.

TO COMPUTE TTME OCCUPIED ON VOYAGE

To compute the number of days that a full powered steamer would occupy on a voyage, the following data is necessary.

Difference in time between port of departure and port of destination. Distance between ports, and the speed of steamer in knots (nautical miles) per hour.

Example:

A steamer averaging 10 knots per hour leaves Sydney, New South Wales, Eastern Australia, at 6 a. m., January 2nd (Australian time). bound for Portland, Oregon. When is she due at de'stination?

Process:

By referring to the "Difference in Time Table," you will note the difference in time between Eastern Australia and the U. S. Pacific Coast is 18 hours. Therefore the first thing to do is to adjust the Australian time to correspond to that of the U. S. Pacific Coast, which in this case will be noon, January 1st. The number of nautical miles from port to port is found by reference to the Honolulu "Distance Table," which gives the distance to both Sydney and Portland, the total being 6,752 nautical miles.

The number of knots per hour (10) is multiplied by (24) the hours per day, which equals 240 knots, or nautical miles, and is divided into 6752 , the number of nautical miles covered by steamer on voyage, which gives 28.133 days, or the equivalent of 23 days 3 hours.

This is added to the Pacific Coast time of steamer's departure from Sydney, making January 29 th three p. m. as the time vessel is due at Portland, Oregon, without allowing for stoppages.

Mote:

It is customary for a steamer destined for Portland, Oregon, to proceed to the entrance of the Columbia River, and there pick up a bar pilot, who takes the vessel to Astoria.

The services of the bar pilot are dispensed with at Astoria, where a Columbia River pilot is engaged to take the vessel to Portland.

DIFFERENCE IN TIME TABLE

When it is noon today from Vancouver, B, C.. to San Diego. California:

In Washington and Boston	it is	3:00 p.m.	today
In New York and Philadelphia		3:00 p.m.	today
In Chicago, St. Louis and New		2:90 p.m.	today
In Cheyenne and Denver		1:00 p.m.	today
In Sitka, Alaska	it is	11:00 a.m.	today
In Porto Rico	it is	4:00 p.m.	today
In Panama Canal Zone	it is	3:00 p.m.	today
In Honolulu, Hawaiian Islands	it is	9:30 a.m.	today
In Tutuila, Samoa	it is	8:30 a.m.	tomorrow
In Guam Islands	it is	5:30 a.m.	tomorrow
In Manila, Philippine Islands	it is	4:00 a.m.	tomorrow
In Argentine	it is	3:43 a.m.	tomorrow
In Australia, Western	it is	4:00 a.m.	tomorrow
In Australia, Central	it is	5:30 a.m.	tomorrow
In Australia, Eastern	it is	6:00 a.m.	tomorrow
In Austria-Hungary	it is	9:00 p.m.	today
In Belgium	it is	8:00 p.m.	today
In Borneo (British North) and	it is	4:00 a.m	tomorrow
In Brazil (Rio de Janeiro)	it is	5:00 p.m.	today
	it is	3:30 p.m.	today
In China (Hongkong)	it is	4:00 a.m	tomorrow
In China (Saigon)	it is	3:00 a.m	tomorrow
In Colombia (Bogota)	it is	3:00 p.m.	today
In Costa Rica	it is	3:00 p.m.	today
In Cuba	it is	3:30 p.m.	today
In Denmark	it is	9:00 p.m.	today
In Ecuador	it is	2:45 p.m.	today
In Egypt	it is	10:00 p.m.	today
In England	it is	8:00 p.m.	today
In Fiji Islands (Suva)	it is	8:00 a.m	tomorrow
In France	it is	8:00 p.m.	today
In Germany	it is	9:00 p.m.	today
In Gibraltar	it is	8:00 p.m.	today
In Greece	it is	9:30 p.m.	today
In Holland	it is	8:00 p.m.	today
In Honduras	it is	2:00 p.m.	today
In India (Madras)	it is	1:30 a.m	tomorrow
In Ireland	it is	7:30 p.m.	today
In Italy	it is	9:00 p.m.	today
In Jamaica (Kingston)	it is	3:00 p.m.	today
In Japan	it is	5:00 a.m	tomorrow
In Java	it is	3:00 a.m	tomorrow
In Korea	it is	5:00 a.m	tomorrow
In Madagascar (Tananarivo)	it is	11:00 p.m.	today
	it is	9:00 p.m.	today
In Mauritius	it is	midnight	tonight
In Mexico	it is	1:30 p.m.	today
In Newfoundland		4:30 p.m.	today
In New Zealand	it is	7:30 a.m	tomorrow
In Nicaragua	it is	2:15 p.m.	today
In Nome, Dutch Harbor	it is	9:00 a.m.	today
In Norway		9:00 p.m	today
In Peru	it is	3:00 p.m.	today
In Portugal	it is	7:30 p.m	today
In Russia (Irkutsk)	it is	3:00 a.m	tomorrow
In Russia (Pulkora)	it is	10:00 p.m.	today
In Russia (Vladivostok)	it is	5:00 a.m	tomorrow
In Singapore	it is	3:00 a.m	tomorrow
In Spain	it is	8:00 p.m	today
In Sweden	it is	9:00 p.m	today
In Switzerland	it is	9:00 p.m	today
In Tunis	it is	8:00 p.m.	today
In Turkey	it is	10:00 p.m	today
In Uruguay		4:15 p.m.	today
In Valdez, Fairbanks, Tanana	it is	10:00 a.m.	today
In Venezuela	it is	3:30 p.m.	today

INLAND WATERS

pUGEt SOUND, WASHINGTON AND BRITISH COLUMBIA PORtS

Nautical Miles

Prom undermentioned ports to					$\begin{aligned} & \text { さ! } \\ & \text { O } \\ & \text { H } \\ & \text { D } \\ & \text { م } \end{aligned}$			Port Blakeley	
Anacortes	15	96	126	107	62	75	43	67	45
Bellingham		111	130	122	77	60	58	82	59
Blaine	36	110	105	132	88	54	62	93	75
Bremerton	84	129	194	39	35	127	73	10	39
Cape Plattery	111		190	155	117	141	56	121	102
Comox, B. C.	130	190		208	170	53	143	175	157
Dungeness	44	72	136	84	46	88	15	51	33
Departure Bay	75	141	52	165	127	7	91	132	115
Dupont	122	155	208		56	165	98	35	59
Everett	77	117	170	56		127	60	28	24
Esquimalt, B. C.	50	59	132	102	64	90	19	69	50
Friday Harbor	38	80	110	95	57	65	42	62	44
James Island	52	78	114	105	67	70	36	72	54
Makijteo	73	113	165	52	4	120	53	23	22
Tanaimo, B. C.	60	141	53	165	127		94	132	114
Kroah Bay	97	7	183	148	110	134	50	115	97
Olympia	133	168	221	16	76	178	111	49	82
Port Angeles	58	56	143	98	60	94		65	47
Point Atrinson	64	133	74	159	121	28	88	126	108
Port Blakeley ...	82	121	175	35	28	132	65	\ldots	30
Port Crescent	63	44	146	108	71	88	12	76	58
Port Gamble	59	102	157	59	24	114	47	30	
Port Ludlow	53	98	153	56	22	110	43	26	6
Point INo Point	59	103	156	50	14	113	46	19	11
Port Townsend	42	89	141	69	31	97	30	36	17
Point Wilson	39	85	138	70	32	95	28	37	19
Powell River, B. C.	118	180	20	210	172	50	138	171	159
Seattle	81	123	179	34	28	134	69	7	33
Steilacoom	114	160	206	5	52	162	98	30	61
Tacoma	100	144	196	20	46	153	87	25	51
Union Bay, B. C.	125	185	5	203	165	54	140	170	152
Vancouver, B. C.	70	140	27	165	128	35	94	132	114
Victoria, B. C.	43	59	129	100	62	84	18	67	50
Possession Point	62	108	159	53	3	116	49	19	16

INLAND WATERS

PUGET SOUND, WASHINGTON, AND BRITISE COLUMBIA PORTS

Nautical Miles

From madermentioned ports to-	$\begin{aligned} & B \\ & 0 \\ & 0 \\ & \text { B } \\ & \text { H } \\ & \text { 荅 } \\ & \text { م } \end{aligned}$	puesumox fiod						
Anacortes	45	30	116	69	88	121	68	31
Bellingham	53	42	118	81	100	125	70	43
Blaine	69	58	98	94	114	100	49	53
Bremerton	36	44	184	13	25	190	139	74
Cape Flattery	98	89	180	123	144	185	140	59
Comox, B. C.	153	141	20	179	196	5	27	129
Dungeness	28	17	130	53	72	131	80	19
Departure Bay ...	109	98	48	135	150	45	34	82
Dupont	56	69	210	34	20	203	165	100
Everett	22	31	172	28	46	165	128	62
Esquimalt, B. C.	43	33	129	71	89	128	86	4
Friday Earbor..................	37	28	106	65	83	106	57	30
James Inland	50	37	112	72	93	115	67	23
Mrabilteo	18	24	167	25	43	160	120	55
Iranaimo, B. C. .	110	97	50	134	153	54	35	84
Keah Bay .	93	80	177	117	136	179	129	49
Olympia	78	81	223	50	24	216	178	115
Port Angeles	43	30	138	69	87	140	94	18
Point Atkinson	104	92	66	128	148	69	7	76
Port Blakeley	26	36	171	7	25	170	132	67
Port Crescent	54	41	143	78	97	148	106	19
Port Gamble	6	17	159	33	51	152	114	50
Port Ludlow		14	155	31	50	148	111	46
Port Townsend	14		143	39	58	136	97	31
Point Wilson ...	16	3	140	40	60	133	95	30
Powell River, B. C.	155	143		180	198	24	73	126
Seattl	31	39	180		24	173	135	68
Steilacoom	60	69	208	35	16	201	130	98
Tacoma	50	58	198	24	...	191	155	68
Union Bay, B. C.	148	136	24	173	191		77	125
Vancouver, B. C. .	111	97	73	135	155	77		84
Victoria, B. C. .	46	31	126	68	68	125	84	
Possession Point	13	20	160	19	39	154	116	52

Ocean Falls, Vancouver Island, B. C., to Port Townsend 372
Ocean Fialls, Vancouver Island, B. C., to Seattle, Wash. 410
Port Alberni, Vancouver Island, B. C., to Victoria, B. C. 130

TABLE OF DISTANCES
 ACAPULCO

Acapulco, Mexico, to-
Route- Nautical
Miles
Antofagasta, Chile 2.984
Arica, Chile
2,768
2,768
Caldera, Chile 3,130
Callao, Peru
Callao, Peru 2,198
Coquimbo, Chile 3,259
Corinto, Nicaragua 792
Esmeraldas, Ecuador 1,527
Guayaquil, Ecuador
1,708
1,708
Honolulu, Hawaii 3,289
Iquique, Chile 2,834
Lota. Chile
3,573
3,573
Magdalena Bay, Mexico 853
Mollendo, Peru 2,643 1,895
Pacasmayo, Peru
Pacasmayo, Peru
Paita, Peru 1,725
Panama, C. Z. 1,426
Pichilinque Harbor (U. S. coai depot) 778
Mexico.
Pisco, Peru 2,309
Punta Arenas, Chile 4,582
Punta Arenas, Costa Rica 1.011
Salina Cruz, Mexico 314
San Jose, Guatemala 574
Tahiti (Papeete), Society Is. 3,595
Talcahuano, Chile 3,558
Valdivia (Port Corral), Chile 3,712
Valparaiso. Chile3.406
ASTORIA
Nautical Astoria to - Miles Columbia River Bar 10
Dutch Harbor, Alaska 53
Grays Harbor Bar Pownsend, Wash. 214
Seattle, Wash 252
Tacoma, Wash 279
Willapa Bar 38
INLAND WATERS
ASTORIA
DISTANCES FROM ASTORIA, ORE., TO COIUMBIA RIVER AND WIITAMETTE RIVER TOADING POINTS
The distances are from Astoria at a point known as the Mack Dock, where all bearings are taken. The Portland distance terminates at the Steel Bridge.
Knappton, Wash. 12
Wauna, Ore. 30
Oak Point, Wash. 40
Stella, Wash $541 / 2$
Prescott, Ore. 57
Goble, Ore 60
Kalama, Wash. 60
73
Linnton, Ore. 92 1/2
Vancouver, Wash. 94
95
Portland, Ore. 100

To facilitate the loading and unloading of vessels the Port of Astoria has a
50-ton movable crane and bunkers that hold 20,000 tons of coal.

BORDEAUX

BREST

BUENOS AIRES

CALLAO
NauticalMiles
Route-Miles
Callao, Peru, to-
813
Antofagasta, Chile
593
593
Arica, Chile
Arica, Chile 980
Chimbote, Peru 206
Coquimbo, Chile 1,136 5,161
Houolulu, Hawai
Houolulu, Hawai
Iquique, Chile 659
Los Angeler Harbor (San Pedro), (ial. 3,655
U. S. A.
1,530
Lota, Chile
Magdalena Bay, Mexico
1,008
468
1,008
468
Mollendo, Peru
Mollendo, Peru
1,346
Pisco, Peru 128
Punta Arenas, Chile 2,671
Talcahuano, Chile
1,508
1,508
Valdivia (P. Corral), Chile 1,691
Valparaiso, Chile 1,306
COLON
Xautical
Boute- Miles
Colon, Canal Zone, to-
1,287
Apalachicola, Fla., U. S. A.
38
38
Baltimore, Mr., U. S. A. Via Windward and Crooked I. Passages 1,901
Barbados (Bridgetown), W. I. 1,237
Via Anegada Passage Bishops Rock, Eingland
Via Mona Passage 4,395 4,395
Bishops Rock, England 356 276
Bluefields, Nicaragua
Bluefields, Nicaragua
Bocas del T 4,598
Via Mona Passage
Boston, Mass., U. S. A.
2,157
2,157
Via Windward and Crooked I. Pas
Via Windward and Crooked I. Passages
Via Windward and Crooked I. Passages 1,550 1,550
North of South America 5,450
Brunswick, Ga., U. S. A
, 817
, 817
Campeche, Mexico
Campeche, Mexico
817
817
Carmen, Mexico 1,246
Cartagena, Colombia 281
Ceiba, Honduras 666
Charleston, S. C., U. S. A. Via Windward and Crooked I. Passages 1,564
Charleston, S. C.. U. S. A.Via Yucatan Channel; northbound
Charleston, S. C.. U. S. A.Via Yucatan Channel; northbound 1,636 1,636
Culebra I. (The Sound), W. I. . \ldots. 1,918
Curacao (Santa Ana Harbor), W. I. 699
Fort de France. Martinique, W. I. 1,159
Galveston, Tex., U. S. A. 1,493
Gigraltar Via St. Thomas 4,343
 4,308
long. $5^{\circ} 45^{\prime} \mathrm{W}$.).
4,523
4,523
Glasgow, Scotland Nicaragua 399
Grijalva (Tabasco) River, Mexico 1,280
Guantanamo Bay (Caimanera), 696
Cuba.
Gulfport, Miss., U. S. A. 1,388
Habana, Cuba Via Yucatan Channel 1,003
Halifax, Nova Scotia Via Windward and Crooked I. Passages 2,317
Hamburg, Germany Via Mona Passage 5,070
Hampton Roads, Va., U. S. A. Via Windward and Crooked I. Passages 1,768
Havre, France Via Mona Passage 4,614
Horn I. Arch., Gulf of Mexico Northbound 1,373
Hull. England 4,884
Iriona, Honduras 566
Jacksonville, Fla., U. S. A 1,53.
Key West, Fla., U. S. A.
Kingston, Jamaica, W.
Key West, Fla., U. S. A.
Kingston, Jamaica, W. 1,065 1,065 551
r,iverpool, England Via Mona Passage 4,548

COLON-Continued

NauticalRoute-
Miles
Colon, C. Z., to-
772
772 2,956
Livingston, Guatemala
1,012
U. S. A.
Margarita I. (La Mar Bay), Vene-
zuela.
Matagorda Bay (Entr.), Tex., U. S. A. 1,515
Mississippi River (South Pass; (lat.Northbound 1,308
$28^{\circ} 59^{\prime} \mathrm{N}$., long. $89^{\circ} 07^{\prime} \mathrm{W}$.).
Mississippi River (S. W. Pass; (lat............do 1,309
$28^{\circ} 53^{\prime} \mathrm{N} .$, long. $89^{\circ} 27^{\prime} \mathrm{W}$.)
1,3.93
1,3.93
 880
$67^{\circ} 47^{\prime}$ W.), W. I
259
259
Monkey Pt. Hbr., Nicaragua
Monkey Pt. Hbr., Nicaragua
1,403
1,403
New Orleans, La., U. S. A. Northbound; via South Pass
Do 1,419
New York (The Battery), N. Y., U.Via Windward and Crooked I. Passages 1,974S. A.
Newport, R. I., U. S. A. do 2,028
Newport News, Va., U. S. A. 1,776
do
Norfolk, Va., U. S. A 1.779
Do Via Yucatan Channel; northbound 2,00 b
Panama Roads, $\underset{\text { C }}{Z}$. Via Panama Canal 43
Pensacola, Fla., U. S. A. Nerthbound 1,369
Philadelphia, Pa., U. S. A. Via Windward and Crooked I. Passages 1,946
Plymouth, England Via St. Thomas 4,500
Do . Via Mona Passage 4,455
Do 4,494
Port Arthur, Tex. 1,485
Port Castries, St Lucia, $\underset{W}{ }$. 1,160
Port Limon, Costa Rica 192
Port Morelos, Yucatan 828
Port of Spain, Trinidad, W W. \dot{I} 1,159
Port Royal, Jamaica, W. I. 546
Port Tampa, Fla., U. S. A. 1,212
Portsmouth, N. H., U. S. A. Via Windward and Crooked I. Passages 2,174 outside Nantucket Lightvessel.
Provincetown, Mass., U. S. A. Via Windward and Crooked I. Passages 2,126
Puerto Barrios, Guatemala 780
Puerto Cabello, Venezuela 802
Puerto Cortes, Honduras 733
Puerto Mexico, Mexico 1,377
Rio de Janeiro, Brazil 4,348
Rio Grande (Entr.) 1,484
Roatan Island (Coxen Hole 641
Sabine, Tex., U. S. A 1,476
St. Thomas, W. I. 1,029
San Juan, P. R. 093
Sandy Hook, N. ‘J., ひ. . S. . A Via Windward and Crooked I. Passages 1,964
Savannah, Ga., U. S. A. Via Yucatan Channel! northbound 1,607
Southport, N. C., U. S. A. Via Windward and Crooked I. Passages 1,592
Tampico, Mexico' 1,485
Tela, Honduras 706
Trinidad (Dragons Mouths; lat 10° 1,142
$43^{\prime} \mathrm{N} .$, long. $\left.61^{\circ} 45^{\prime} \mathrm{W}.\right)$, W. I
Trujillo, Honduras 622
Tuxpam, Mexico 1,455
Vera Cruz, Mexico 1,420
Virgin Passage (lat. $18^{\circ} 20^{\circ}$ N.. long. 1,021
$\left.65^{\circ} 07^{\prime} \mathrm{W}.\right)$, W. I.
Wilmington, N. C., U. S. A. Via Yucatan Channel; northbound
1,730
1,730
Windward Passage (lat. $20^{\circ} 10^{\prime} \mathrm{N}$ 734
long. $74^{\circ}-30^{\prime} \mathrm{W}$.), W. I.
Yucatan Channel (lat. $21^{\circ} 50^{\prime} \mathrm{N}$ 812

EUREKA

Eureka, Humboldt Bay, California, NauticalU.S.A. to- Route-
Miles
Astoria, Oregon 343
Bellingham, Wash 594
Cape Flattery, Wash 464
Coos Bay, Oregon 159
Grays Harbor, Wash., "Whistle Buoy.' 371
Honolulu, Hawaii 2,139
Los Angeles Harbor (San Pedro), 584
Cal.
Manilla, P. I Via Honolulu 6,906
Panama Roads, Canal Zone 3,461
Port Townsend, Wash 548
San Francisco, Cal. 216
San Diego, Cal 668
Seattle. Wash 588
Tacoma, Wash 610
Union Bay, B. C. 65
Vancouver, B. C 617
Willapa Harbor, Wash., "Whistle 355
Buoy
GIBRALTAR

GIBRALTAR-Continued

HONOLULU

Nautical
Honolulu, Hawaii, to- Route-Astoria, Ore., U. S. A.2,246
Auckland, New Zealand 3,820
Brisbane Roads, Australia 4,169
Callao, Peru 5,161
Cape Horn, South America 6,472
Chimbote, Peru 5,015
Christmas I., N. Pacific Ocean 1,161
Dutch Harbor, Unalaska I., Alaska 2,046
Fanning Island 1,056
Gaum (Port Apra), Marianas 3,337
Via Tarawa I., Gilbert Is Do 4,038
Gulf of Fonseca (Monypenny Pt.) Ni-
caragua
caragua
Hobart, Tasmania 4,930
...........................Rhumb 4,939
Jaluit, Marshal I. 2,096
Johnston I., Hawaii 717
Juan Fernandez I. (San Juan Bautis 5,595
ta Bay)
2,467
Kusaie 1., Caroline 1
820
820 2,730
Laysan Island, H. I.
Laysan Island, H. I.
Lo's Angeles Harbor (San Pedro), Cal 2,228
U. S. A.
Magdalena Bay, Mexico 2,543
Manila, P. I Via north end of Luzon, P. I. 4,859
Do Via Guam and north end of Luzon, P. 5,079
Do
Via Guam and San Bern
Via Guam and San Bern 4,838
4,767 4,838
4,767Do
Marquesas Is, Nukuhiva (Taiohae) 2,102
2,375
Melbourne, Australia Via South Channel 4,94?
Midway Is. (Welles Hbr.) 1,149
New Hebrides (St. Philip and St 3,014
James Bay)
New York (The Battery). N. Y., U.Via Magellan Strait 13,312 S. A.Do.Via Panama Canal, and Windward and6,702Crooked I. Passages.
2,100
Nonuti, Gilbert Is
3.373
3.373
Noumea, New Caledonia 2,. 109
Pago Pago, Samoa Is. 2,276
Panama, C. Z 4,685
Pelew Is. (Korror Hbr.) 3,997
Petropavlovsk, Kamchatka 2,762
Point Conception, Cal., U. S. A 2.126
Ponape, Caroline Is. 2,685
Port Lloyd, Ogasawara Is. 3,283
Port Town'send, Wash., U. S. A. 2,3.66
Portland, Ore., U. S. A. 2,332
Punta Arenas, Chile 6,370
Raoul Is., Kermadec Is. 3,246
Rarotonga, Cook Is. 2,553
Salina Cruz, Mexico 3,580
San Bernardino Strait (Entr.), P. I 4,457
San Diego, Cal., U. S. A. 2,278
San Francisco, Cal., U. S. A 2,091
Sandakan, Borneo 5,044
Seattle. Wash., U. S. A. 2,409
Sitka, Alaska 2,386
Sydney, Australia 4,420
Tahiti (Papeete), Society Is 2.381
Tarawa Island, Gilbert Is. 2,190
Tongatabu (Nukualofa), Tonga Is. 2,749
Ugi Is. (Selwyn Bay), Solomon Is 3,047
Valparaiso, Chile ก̄,919
Vancouver, B. C. 2,423
Victoria, British Columbia 2,34.9
Vladivostok, Siberia 3,7.25
Wake Island 2,004
Wellington, New Zealand 4,113
Yap (Tomill Hbr.), Caroline Is. 3,757 3,445
okohama, Japan Rhumb Rhumb
Do
DoGreat Circle3,394

IQUIQUE

Iquique, Chile, to-	Route-	Nautical Miles
Antofagasta, Chile		
Caldera, Chile		420
Coquimbo, Chile		602
Lota, Chile ...		1,033
Punta Arenas, Chile		2.201
Valdivia (P. Corral),		1,205
Valparaiso, Chile		782
Yokohama, Japan		9,026

LIVERPOOL

Liverpool, England, to-	Route-	$\begin{aligned} & \text { Nautical } \\ & \text { Miles } \end{aligned}$
Acapulco, Mex	Via Panama Canal	6,017
Do	Via Magellan Strait.	11,891
Adelaide, Australia	ia Panama, Tahiti, Sydney, and Me bourne.	13,478
Do	. Via Suez Canal, Aden. Colombo, and King George Sound.	11,108
Baltimore, Md., U. S. A.	. Winter; westbound	3,373
	. Summer; westbound	3,454
Boston, Mass., U. S.	. Vinter; westbound	2,895
Do	mmer; westbound	3,010
Callao,	ia Panama Canal	5,937
Colon, ${ }_{\text {Do }}$. Via Magellan Strait	9,980 $4,54 \mathrm{~S}$
Coronel, Chile	-Via Panama Canal	7,413
Do	Via Magellan Strait	8,502
Galveston, Tex., U. S. A	.Winter; westbound; via NE. Providence Channel and south of Dry Tortugas.	4,749
Do	Summer; westbound; via NE. Providence Channel and south of Dry Tortugas.	4,766
Gibraltar		1,2:34
Guayaquil (Puna), Ecuador	Via Panama Canal	5,384
Do	Via Magellan Strait	13,582
Hongkong	Via Panama and direct	13,764
Do	Via Panama, San Francisco, and Yokohama.	13,957
Do	Via Suez Canal; Aden, Colombo, and Singapore.	9,743
Do	Via Magellan Strait, Pago Pago, and Guam.	17,432
Honolulu, Hawaii	Via Panama Canal	9,276
Do	Via Magellan Strait	13,679
Iquique, Chile	Via Panama Canal	6,578
Do	Via Magellan Strait	9,510
Las Palmas, Canary		1,661
Manila. P. I.	Via Magellan Strait, Pago Pago, and Guam.	17,111
Do	Via Panama Canal and San Bernardino Strait.	13,961
Do	Via Panama. San Francisco, and Yokohama.	14,129
Do	Via Suez Canal, Aden, Colombo, and Singapore.	9,659
Do	Via Suez Canal, Colombo, and Singapore.	9,649

LIVERPOOL-Continued

LONDON

MANILA

Manila, P. I., to-	Route-	
Batavia, Java	Via Palawan Passage	1,559
Borongan, Samar, P.		435
Bremen, Germany	a Suez Canal and Singap	9,055
Brisbane Roads, Australia	Via Mindoro and Torres Straits and inside route.	- 3,552
Cairns. Australia		2,723
Cebu, P	Verde I. and Jintotolo Passages	S $\quad 391$
Colombo		2,952
Friederich Wilhelmshafen, F'r	ia San Bernardino Strait	2,011
Guam (Port Apa). Marianas .	ia north end of Luzon, P.	1.742
Do	Via San Bernardino Strait	1,501
Honolulu, Hawaii	Via north end of Luzon, P.	4.869
	Via San Bernardino Strait	4,767
D	Via north end of Luzon, P. I. and Guam	- 5,079
Iloilo,	Via Verde I. and Jintotolo Passages	361
Jolo, Jolo	Via West Apo Channel	550
Limay, Luzon, P		22
Liverpool, England	Via Singapore, Colombo, and Suez Canal	1 9,649
	Via Guam, Pago Pago, and Magellan Strait.	n 17,111
London, England	Via Suez Canal	9,656
Mangarin, Mindoro, P		170
Melbourne, Australia	Via Mindoro and Torres Straits and inside route.	- 4,528
Mojı, Japan		1,436
Newcastle, Aus	Via Mondoro and Torres Straits and inside route.	- 3,917
Olongapa, Luzon, P .		64
Pago Pago, Samoa Is.	Via San Bernardino Strait	- 4,505
Panama, C. Z.	Via Balintang Channel and Cape San Lucas.	9,347
	ia San Bernardino Strait	9,370
Pelew Is. (Korror	Via Verde I. Passage and between Maranjos Gr. and Copul I.	- 1,044
Port Darwin, Australia	Via Mindoro, Basilan, Banka, and Manipa Straits.	- 1,834
Port Townsend, Wash., U. S. A	Composite Great Circle	5,931
Rabaul, Neu Pommern	ia San Bernardino Strait	2,281
Saigon, Cochin-China		907
San Francisco, Cal., U. S. A.	Via Balintang Channel	¢,221
Do . \quad.	Via San Bernardino Stra	6.301
Seattle, Wash., U. S.	Via Yokohama	6,012
	Via San Bernardino Strait, Guam, and Honolulu.	7,247
Singapore, Straits Settlements		1,379
Southampton, England .	Via Singapore and Suez Canal	9,488
Sydney, Australia ...	Via Mindoro and Torres Straits and inside route.	- 3,967
Torres Strait (Thursday Island)	Via Mindoro Strait	2,227
Townsville, Australia	Via Mindoro and Torres Straits and inside route.	2,881
Wake Island	Via San Bernardino Strait	2,772
Wyndham, Australia	Via Mindoro, Basilan, Banka, and Manipa Straits.	1.982
Yap I. (Tomill Hbr.), Caroline	Via San Bernardino Strait	1,154
Yokohama, Japan	Via Balintang Channel	1,757
	Via Hongkong, Shanghai, Nagasaki, In-	2,683
Zamboanga, Mindanao, P. I. . .	Via East Apo Channel.	532

NEWPORT NEWS, VA., U. S. A.

As the distance between Newport News, Va., and Norfolk, Va., is only three miles, use the Norfolk table as it is close enough for all practical purposes.

NORFOLK

Nautical Miles
Norfolk, Va., U. S. A., to-
Route-
3,248
Via Panama Canal
11,476
11,476
Via Magellan Strait 10,709
bourne.
Via St. Vincent and Cape Town 12,709 172
Great Circle C. Charles Light-vessel to
C. St. Vincent. 3,881
Via Straits of Florida; south-bound; 1,503
outside.
Via Crooked I. and Windward Passages 1,853
Via Vineyard Sound and Pollock Rip 518
Slue. 3.877
Summer, eastbound
Summer, eastbound
Winter, eastbound
Winter, eastbound 2,793 2,793
Via Panama Canal 3,168
9,5655,824
Via Magellan Strait
Via Magellan Strait
Via Crooked I. and Windward Passages 1,658
. Great Circle C. Charles Light-vessel to 8,769
C. St. Vincent.
Via Crooked I. and Windward Passages 1,779
Via Magellan Strait 8.08?
Via Panama Canal 4,644
Great Circle, C. Charles Light-vessel to 4,222C. St. Vincent.
Georgetown, British Guiana 2,090
Georgetown, S. C., U. S. A 388
Great Circle, C. Charles Light-vessel to 3,369
C. St: Vincent.
C. St: Vincent.
Via Magellan Strait 14,921
Guam (Port Apra), Marianas
Via Panama Canal
Via Panama Canal 9,810 9,810
Do Via Suez Canal and Sunda Strait 13,234
Guayaquil (Puna), Ecuador Via Panama Canal 2,615
Do Via Magellan Strait 10,167
Habana, Cuba (off light), Va. Southbound; outside Southbound; outside 985
U. S. A. Hongkong .Via Panama. San Francisco, Yokohama, 11.496and Shanghai.
Do
Via Shanghai Via Panama, Honolulu, Yokohama, 11,794and Shanghai.Via Panama, Honolulu, Guam, and Ma- 11,976nila.
Via Suez Canal, Colombo, and Singapore 11,808
Via Panama Canal 6,507
Via Magellan Strait 13,264
Via Panama Canal 3,809
Via Magellan Strait 9,095
Outside; southbound 927
Via Crooked I. and Windward Passages 1,279
Winter, eastbound 3,272
Summer, eastbound 3,367
Via Straits of Florida; southbound; out- 1,595
side.

Winter, eastbound

Winter, eastbound 3,506 3,506
Summer, eastbound 3,590
Via Panama, San Francisco, and Yoko- 11,366hama.
Via Panama, Honolulu, Yokohama, 12,425Shanghai, and Hongkong.
Yia Panama, Honolulu, and Yokohama. 11,658
Via Panama, Honolulu, and Guam. 11,345
Via Suez Canal, Colombo, and Singapore 11,724Via Panama, Tahiti, and Sydney 10,197
Via St. Vincent, Cape Town, and Ade- 13,221laide.
Melbourne, Australia
New York (The Battery), N. Y.. U'. 292
S. A
Via Crooked I. and Windward Passages 1,822
Panama, C. Z.
260
Philadelphia, Pa., U. S. A
Via Crooked I. and Windward Passages
Via Crooked I. and Windward Passages 1,228 1,228
Port Banes, Cuba Via Crooked I. Passage 1,018
Port Limori, Costa RicaVia Crooked I. and Windward Passages1,852
Port Said, Egypt5,287

NORFOLK-Continued

Route- Miles
STorfolk, Va., U. S. A., to-
Via Panama and San Francisco 5,837
Port Townsend, Wash., U. S. A.
Do
Do 3,857 3,857
Portland, Ore., U. S. A.
Do
5,717
5,717
Via Panama and San Francisco
Via Panama and San Francisco
13,737 Via Magellan Strait and San Francisco 1,021
Via Crooked I. Passage
Preston, Cuba . I. . $_{\text {Providence, }}$....... A.
398
Puerto Barrios, Guatemala
Puerto Barrios, Guatemala Via Straits of Florida; southbound; out- 1,603 side.
1,568
F.lerto Cortes, Honduris du.
6,900
6,900 5,765
Via Panama Canal
Punta Arenas, Chile
Punta Arenas, Chile East of South America East of South America
Rio de Janeiro, Brazil 4,723
Rritterdam, Netherlands Winter, eastbound 3,552
Do Summer, eastbound 3,636
St. Vincent (Porto Grande), C. Verde 2,973
Islands.
San Diego, Cal., U. S. A. Via Panama Canal 4,665
Do Via Magellan Strait 12,695
San Francisco. Cal., U. S. A. Via Panama Canal 5,067
Do
San Jose, Guatemala
Via Magellan Strait 13,087
Do Via Magellan Strait 11,190
San Juan del Norte (Greytown),Via Crooked I. and Windward Passages 1,837 Nicaragua.DoVia Straits of Florida, southboun; out-
1,846
side. 1,588
Via Crooked I. and Windward Passages 499
Santa Marta, Colombia
Via Panama, San Francisco, and Tsu-
Via Panama, San Francisco, and Tsu- 10,454 10,454
Shanghai, China
Shanghai, China
garu Strait. 10,942
Do
Via Suez, Colombo, Singapore, and
Via Suez, Colombo, Singapore, and 12,660 12,660
Sitka, Alaska Hongkong.
6,369
6,369
Via Panama and San Francisco
Via Panama and San Francisco
14,389
14,389
Sydney, Australia
Do
Via Magema and Tahiti ${ }^{9}, 616$
Via St. Vincent, Cape Town, Adelaide, 13,802and Melbourne.
Via Panama Canal 4,438
Valparaiso, Chile
Via Magellan Strait 8,332
Washington, D. C., U. S. A. Inside Tail of Horseshoe Light-vessel 173
Wellington, New Żealand Do
Outside Tall of Horses
Via Panama and Tahiti 8,656Do
Via Magellan Strait 11,296
Via St. Vincent, Cape Town, and Mel 14500
Wilmington, N. C., U. S. Abourne.358
Yokohama, Japan via Panama and San Francisco 9,603
Do
Do
Via Panama and Honolulu 9,901
Via Suez, Colombo, Singapore, Hong- 13,701kong, and Shanghai.

PAITA

Antofagasta, Chile 1,299
Apia, Samoa Is. 5,365
Arica, Chile 1.080
Caldera, Chile 1,461 $5 \cdot 5$
Callao, Peru
Callao, Peru
Coquimbo, Chile 1,609
Honolulu, Hawaii 4,725 1,146

Iquique, Chile

Iquique, Chile
Lota, Chile 1,983
Mollendo, Peru
955
955
Pascasmayo, Peru 201
Pisco, Peru
Pisco, Peru 617 617
Punta Arenas Chile 3,101
Tahiti (Papeete), Soclety Is. $4 . n 82$
Talcahuano, Chile 1,963
Valdivia (Port Corrai), Chile 2,141
Valparaiso, Chile 1,77!

PANAMA ROADS

Panama Roads, Canal Zone, to- Route-
INantical
Miles
1,426 745
Acapulco, Mexico
2,149
Amapala, Honduras
Amapala, Honduras
4,851
4,851
Antwerp, Belgium Via Mona Passage
1,330
1,330
Apalachicola, Fla., U. S. A
Apalachicola, Fla., U. S. A
5,710
5,710
Apia, Samoa I's.
1,921
1,921
Arica, Chile
6.512
6.512
Auckland, New Zealand
Auckland, New Zealand Via Windward and Crooked I. Passages 1,944
Baltimore, Md., U. S. A. $\underset{\text { Barbados }}{ }$ (Bridgetown),. 1,280
Belize, Irit. Honduras
Belize, Irit. Honduras 4,438
Bishops Rock (lat. $49^{\circ} 50^{\circ}$ N., long. Via Anegada Passage
$6^{\circ} 27^{\prime}$ W.)
 4,399
Blanche Bay, Neu Pommern 7,807
Bluefields, Nicaragua 319
Bocas del Toro, Panama 187
Bombay, India Via San Bernardino Strait 12,957
Bordeaux, France Via Mona Passage 4,641
Boston. Mass., U. S. A.
Brunswick, Ga., U. S. A.Via Windward and Crooked I. Passages2,200
and outside Nantucket Lightvessel.
Via Windward and Crooked I. Passages 1,593
Calcutta, India Via San Bernardino Strait 12,148
Caldera, Chile 2,302
Caleta Buena (Buena Cove), Chile 1,977
Callao, Peru 1,346
Campeche, Mexico 1,210
Cape Engano, Luzon I., P. I. 8,965
Cape Haitien, Haiti 860
Cape San Lucas, Mexico 2,100 2,100
Carmen, Mexico 1,289
Cartagena, Colombia 324
Ceiba, Honduras 709
Charleston, S. C., U. S. A 1,607
Chimbote, Peru 1,158
Christmas I., N. Pacific Ocean 4,752
Cienfuegos, Cuba 815
Colombo, Ceylon 12,087
Coquimbo Chile 2,451
Corinto, Nicaragua 683
Coronel, Chile 2,822
Curacao (Santa Ana Harbor), W. 742
Dutch Harbor, Alaska 5,245
Enderbury I., Phoenix Is. 5,599
Esmeraldas, Ecuador 474
Fakarava, Tuamotu Archipelago 4,256
Fort De France, Martinique, W. I. 1,202
Funafuti I., Ellice Is
6,217
6,217
Galapagos Is., San Cristobal I. 864
(Wreck Bay) 1,536
Galveston, Tex., U. S. A. 4,375
Do Via St. Thomas, W I 4,386
Gracias a Dios, Nicaragua 442
Grijalva [Tabasco R.], Mexico 1,323
Guam (Port Apra), Marianas 7,988
Guantanamo Bay (Caimanera), Cuba 739
Guayaquil (Puna), Ecuador 793
Guaymas. Mexico
2,370
2,370
Gulfport, Miss., U. S. A. 1,431
Habana, Cuba
Habana, Cuba 1,946
Hakodate, Japan 7,418
Halifax, N. S.
Hamburg, Germany Via Windward and Crooked I. Passages 2,360
Do
Via Mona Passage, direct
Via Mona Passage, direct 5,113 5,113Hampton Roads (off light), Va., U.Via Windward and Crooked I. Passages1,811
S. A.
Havre, France Via Mona Passage
4,653
4,653
Hilo, Hawali 4,527
Hongkong 9,195
Honolulu, Hawail
Honolulu, Hawail
4,685
4,685
Iquique, Chile 1,987
Iriona, Honduras
Iriona, Honduras 609
Jacksonville, Fla., UU. S. A
Jacksonville, Fla., UU. S. A
1,559
1,559
Jaluit, Marshall Is
6,666
6,666
Johnson I., Hawali
5,35s
5,35s
Junin, Chile 1.967

PANAMA ROADS-Continued

Panama Roads, C. Z., to- Route-
Nautical
wiles
Key West, Fla., U. S. A. 1,108
Kingston, Jamaica, W. I.
Kingston, Jamaica, W. I.
5,819
5
5,819
5
Kiska I., Alaska
7,059
Kusaie 1. (Lollo Hbr.), Caroline I's
884
884
La Guaira, Venezuela
La Guaira, Venezuela
748
748
Levuka, Fiji Is. 6,288
Libertad Anch., Sonora, Mexico 2,534
Liverpool ,England Via Mona Passage 4,591
Livingston, Guatemala 815 815
Los Angeles Hbr. (San Pedro), Cal 2,913
U. S. A.
2,825
Lota, Chile
Lota, Chile 2,265 2,265
Magdalena Bay, Mexico
Magdalena Bay, Mexico
9,347
9,347
Via Cape San Lucas and Balingtang
Via Cape San Lucas and Balingtang
9,370
9,370
Do Via San Bernardino Strait Via San Bernardino Strait
3,826
3,826
Marquesa Is., Nakuhiva (Taiohae)
Marquesa Is., Nakuhiva (Taiohae)
7,041
7,041
Matagorda Bay (Entr.), Tex., U. S. A 1,558
Mazatlan, Mexico 2,006
Mejillones Del Sur, Chile 2,109
Melbourne, Australia Via Foveaux Strait 7,928
Midway Is. (Welles Hbr.) 5,707
Mobile, Ala., U. S. A. Northbound 1,436
Mollendo, Peru 1,796
Monkey Pt. Hbr., Nicaragua 302
Montreal, Canada
Via Windward and Crooked I. Passages
Via Windward and Crooked I. Passages 3,203 3,203 and Gut of Canso.
Via Anegada Passage 5,351
Naples, Italy
New Hebrides (St. Philip and St 6,95 6James Bay)
New Orleans, La., U. S. A. Via South Pass; northbound
DQ Via Southwest Pass; northbound 1,446
New York (The Battery), N. Y. U.Via Windward and Crooked I. Passages 2,017S. A.
Newport News, Va., U. S. A. 1,81.9
Nonuti I., Gilbert Is. 6,439
Norfolk, Va.. U. S. A. Via Windward and Crooked I. Passages 1,822
Noumea, New Caledonia 6,982
Nukonono, Union Is. 5,688
Pacasmayo, Peru 1,040
Pago Pago, Samoa Is. 5,656
Paita, Peru
Paita, Peru 8,674
Pensacola, Fla., U. S. A. Northbound 1,412
Philadelphia, Pa., U. S. A. Via Windward and Crooked I. Passages 1,989
1,962
Pisagua, Chile 1,458
Plymouth, England 4,543
Point a Pitre, Guadeloupe, W. I. 1,211
Ponape, Caroline Is 7.321
Port Arthur, Tex., U. S. A. 1,528
Port au Prince, Haiti 817
Port Castries, S. Lucia, W. I. 1,203
Port Limon, Costa Rica 235
Port Lloyd, Ogasawara Is. 7,766
Port Morelos, Yucatan 871
Port Royal, Jamaica, W. I. 589
Port of Spain, Trinidad, W. I 1,202
Port Taltal, Chile 2,225
Port Tampa, Fla., U. S. A 1,255
Port Townsend, Wash., U. S. A. 3,985
Portland, Me., U. S. A. 2.241
Portland, Ore., U. S. A. 3,869
Puerto Barrios, Guatemala
823
823
Puerto Cabello, Venezuela 845
Puerto Cortes, Honduras 776
Puerto Mexico, Mexico 1,420
Punta Arenas, Chile
3,943
3,943
Punta Arenas, Costa Rica 471
Quebec, Canada Via Windward and Crooked I. Passages 3,965
and Gut of Canso.
Raoul I. (Fast Anch.), Kermadec Is 6,125
Rarotonga I. (Avarua Hbr.) 5,095
Rio de Janeiro, Brazil 4,392

PANAMA ROADS-Continued

Nautical

Nautical

Nautical miles miles miles

Route-

Route-

Route-
1,527
1,527
1,527 684 684 684 1,519 1,519 1,519 1,072 1,072 1,072 1,072
1,170 1,072
1,170 1,072
1,170 9,060 9,060 9,060
Panama Roads, C. Z., to-
Panama Roads, C. Z., to-
Panama Roads, C. Z., to-
Rio Grande (Entr.)
Rio Grande (Entr.)
Rio Grande (Entr.)
1,914 2,843
San Blas, Mexico
3,245
San Francisco," Cai S. A.
886
886
San Jose, Guatemala
1,036
1,036
San Juan, P. R
289
289
San Juan del Norte, Nicaragua
San Juan del Norte, Nicaragua
590
590
San Juan del Sur, Nicaragua
San Juan del Sur, Nicaragua
2,980
2,980
Santo Domingo, Dominican Rep. 845
Savannah, Ga., U. S. A. Via Windward and Crooked I. Passages 1,606
Seattle, Wash., U. S. A. 4,021
Via Honolulu Shanghai, China 9,015
Do 8,650
Via Osumi (Van D
Via Osumi (Van D 8,556 8,556
Singapore, Straits Settlements Via San Bernardino Strait 10,505
Southport, N. C., U. S. A.
Southport, N. C., U. S. A.
Strait of Gibraitar (lat. $35{ }^{\circ} 7^{\circ}$ N., Via Anegada Passage 1,63. 1,63.
long. $5^{\circ} 45^{\prime}$ W.).
Sydney, Australia 7,57
Tacoma, Wash., U. S. A. 1,041 4,4.86
Tahiti (Papeete), Society Is.
Tahiti (Papeete), Society Is. Talcahuano, Chile 2,805
Tampico, Mexico 1.528
Tela, Honduras T19
Tocopilla, Chile 2,0 (is
Tongatabu (Nukualofa), Tonga Is 5,953
Trujillo, Honduras fis
Tuxpam, Mexico 1,498
Ugi I. (Selwyn Bay), Solomon Is. 7. 248
Uracas I., Marianas $7,7.97$
Valdivia (P. Corral), Chile 2,983
Valparaiso, Chile 2,616
Vancouver, B. C. 4,032
Vera Cruz, Mexico 1,463
Vladivostok, Siberia
7,833
7,833
Wellington, New Zealand 6,595
Yap I. (Tomill Hbr.), Caroline Is. 8,430
Yokohama, Japan 7,682
Via Mazatlan Do 7,788
Do Via San Francisco 7,781
PORT TOWNSEND

PORT TOWNSEND-Continued

Port Townsend, Wash., U. S. A. to- Route-

PORT TOWNSEND-Continued

SAN DIEGO

Nautical
Route- Miles San Diego, Cal., U. S. A., to-.
1,431
Acapulco, Mexico
4,360
4,360
Antofagasta, Chile
Antofagasta, Chile
4,149
4,149
Caldera, Chile 4,492
Callao, Peru 3,585
C.himbote, Peru 3,402
Ccquimbo, Chile 4,605
Corinto, Nicaragua 2,211
Esmeraldas, Ecuador 2,940
Guayaquil (Puna), Ecuador 3,112
Guaymas, Mexico 1,088
Hilo, Hawaii 2.175
Iquique, Chile 4,218
Los Angeles Harbor, Cal., $亡$. S. A 92
Lota, Chile 4,881
Magdalena Bay, Mexico 600
Mazatlan, Mexico 939
Midway Is. (Welles Harbor) 3,097
Mollendo, Peru
4,024
4,024
Pacasmayo, Peru 3,286
Paita, Peru 3,121
Panama, C. Z 2,843
Pisco, Peru 3,695
Portland, Ore., \dot{U}. $\dot{\text { S. }}$. A. 1,073
Punta Arenas, Chile 5,801
Punta Arenas, Costa Rica 2,429
Salina Cruz, Mexico 1,733
San Blas, Mexico 1,015
San Jose, Guatemala 1,993
Talcahuano, Chile 4,869
Valdivia (Port Corral), Chile 5,007
Valparaiso, Chile 4,739

SAN FRANCISCO

SAN FRANCISCO-Continued

Nautical
San Francisco, Cal., U. S. A., to-RouteMiles

Brest, France	ia Magellan and Rio de Janeiro	13,271
Do	Via Panama and Mona Passage	7,708
Buenos Aires	Via Panama Canal	8,738

Buenos AiresVia Panama and Mona Passage71
Via Panama Canal 8,738
Caldera chile ,576
Caleta Buena (Buena Cove), Chile 4,894
Callao, Peru
3,987
3,987
Canton, China 6,132
Cape Ergano, Luzon L., P. I.
5,840
5,840
Cape Wrangell, Attu I., Alaska
2,798
2,798
Cebu, Cebu Island, P. I.
6,146
6,146
Charleston, S. C.. U. S. A. 4,852
Chefoo, China
Do
Chimbote, Peru
Chimbote, Peru Christmas Island, N. Pacific Ooean
Colombo, Ceylon
5,436
5,436 5,659 5,659 3,8.04 3,8.04 2,894 2,894
Via Tsugaru Strait
8,935
Via Balintang Channel and Malakka
8,638
Copenhagen, Denmark Via Panama and Mona Passage
5,007
5,007
Coquimbo, Chile
Coquimbo, Chile
2,613
2,613
orinto,
orinto, 2,3S6
Dutch Harbor, Alaska 3,65?
Esmeraldas, Ecuador 3,342
Fakarava I., Tuamoto Archipelago 3,503
Flavel, Oregon 561
Foochow, China Via Osumi (Van Diemen) Strait 5,683
Funafutí I., Ellice Is. 4,295 2,994
(Wreck Bay.)
Galveston, Texas Via Panama Canal 4,781
Do .. Via Magellan Strait 13,727
Gibraltar Via Panama Canal and Anegada Pass- 7,620
Guam (Port Apra) Marianas 5,053
Guayaquil (Puna) Ecuador
3,514
3,514
Guaymas, Mexico 190
Gulf of Fonseca (Moneypenny Pi.) 2,587
Nicaragua.
Habana, Cuba Via Panama Canal 4,291
Hakodate, Japan 4,249
Via Panama Canal Halifax, N. S. 5,605
Via Panama Canal Hamburg, Germany 8,358
Havre, France
7,898
7,898
Hongkong 6,306
Honolulu, Hawaii 2,091
Iloilo, P. I.
6,168
6,168
Iquique, Chile 4,62
Jacksonville, Fla. 4.804
Jaluit, Marshall Is
Jaluit, Marshall Is
4,150
4,150
Jinsen (Chemulpo), Chosen (Korea) Via Oisumi (Van Diemen) Strait 5,561
Johnson Island, Hawaii 2,779
Junin. Chile 4,598
Key West, Fla. 4,353
Kiska I., Alaska 2,629
Kusaie I., (Lollo), Caroline İs. 4,478
La Union, Salvadór
2,586
2,586
Levuka, Fiji Is. ,705
Libertad Anch., Sonora, Mexico 1,648
Liverpool, England Via Panama Canal 7,836

Do
Via Magellan Strait 13,502

SAN FRANCISCO-Continued

Nautical
Route Miles Miles San Francisco, Cal., U. S. A., to-
Via Panama Canal and Mona Passage 8,051
London, England 368
Lota, Chile 5,282
Magdalena Bay, Mexico 1,002
Manila, P. I. Via Balintang Channel 6,221 6,221
Do Via Honolulu and north end of Luzon, 6,960P. I.
Do Via Honolulu, Guam and north end of 7,170Luzon, P. I.
Do Via Honolulu, Guam and San Bernar- 6,929dino Strait.
Via Honolulu, Yokohama and Balin- 7,242tang Channel.
Via Yokohama and Balintang Channel 6,293
Via Yokohama, Osumi (Van Diemen) 6,752Strait and Hongkong.
Via Yokohama, Inland Sea, and Naga- 6,575saki.
Via Yokohama, Osumi (Van Diemen) 6,522Strait and Nagasaki.6,457Via Osumi (Van Diemen) Strait andNagasaki.
23
Mare I., (Navy Yard), Cal., U. S. A. 2,987
Marshal Islands (Eniwetok Atoll) 4,306
Mazatlan, Mexico 1,337
Mejillones del Sur, Chile 4,734
Midway Is., (Welles Hrabor)
Midway Is., (Welles Hrabor) Mobile, Alabama, U. S. A. Via Panama Canal 4,659
Do Via Magellan Strait 13,498 4,426
Mollendo, Peru
Mollendo, Peru
Monterey, Cal., U. S. A.
95
95
Nagasaki, Japan Via Yokohama and Inland Sea 5,269
Naples, Italy Via Panama Canal 8,596
New Hebrides (St. Philip and St. 5,086
James Bay.)
 4,691 4,698
New York (The Battery), N. Y., U.Via Cape Horn 13,328
S. A.
Do . Via Magellan Strait 13.135
Do
Do Via Panama Canal Via Panama Canal 5,262 5,262
Newcastle, Australia 6,467
Via Panama Canai Newport News, Va., U. S. A. 5,064
Nonuti Island, Gilbert Islands
Nonuti Island, Gilbert Islands 4,185
Via Panama Canal Norfolk Va., U. S. A 5,067
Noumea, New Caledonia 5,410
Nukonono, Union Is. 3,957
Pacasmayo, Peru
3,688
3,688
Pago Pago, Samoa Is. 4,150
Paita, Peru
Paita, Peru 3,523
Panama, C. z
3,245
3,245
Paramaribo, Guiana Via Panama Canal 4,936
Pelew Is. (Korror Hbr.) 5,751
Via Panama Canal Pensacola, Fla., U. S. A. 4,632
Petropavlovsk, Kamchatka Via Magellan Strait 13,458
Philadelphia, Pa., U. S. A. Via Unımak Passage 3,292 5,234
Pichilinque, Mexico
Pisagua, Chile 1,300
Pisco, Peru 4,593
Plymouth, England 4, 988
Via Panama and Mona Passage
Via Panama and Mona Passage
Pola, Austria Via Panama and Anegada Pasisage 9,255
Do Via Magellan Strait and Rio de Janeiro 14,323
Ponape, Caroline Is.
Ponape, Caroline Is. 4,641
Port Lioyd, Ogasawara İs.
Port Lioyd, Ogasawara İs.
4,675
4,675
Port Taltal, Chile
4,838
4,838
Port Tampa, Fla., U. S. A.
Port Tampa, Fla., U. S. A. 4,590
Do
Via Panama Canal
13,253
13,253
Portsmouth, England Via Magellan Strait Via Magellan Strait 7,875
Do Via Magellan Strait and Rio de Janeiro 13,471

SAN FRANCISCO-Continued

Nautical
Miles
Miles San Francisco, Cal., U. S. A., to- Route
770
Port Townsend, Wash., U. S. A.
5,486
5,486
Portland, Maine, U. S. A. 650
Punta Arenas, Chile 6,193
Punta Arenas. Costa Rica 2,831
Raoul Island, (East Anch.), Kermadec 5,090
arotonga I., (Avarua Hbr.), Cook
Rarotonga I., (Avarua Hbr.), Cook
4,124
4,124
Rio de Janeiro, Brazil Via Panama Canal 7,637
DoVia Magellan Strait 8,430
Ryojun (Port Arthur), Kwangtung, Via Osumi (Van Diemen) Strait 5,700
Manchuria.
St. Pa'ıl, Pribilof Is.; Alaska Via Dutch Harbor 2,289
Salina Cruz, Mexico 2,135
San Bernardino Strait (Entr.), P. I.
San Bernardino Strait (Entr.), P. I. 5,991 5,991
San Blas, Mexico 1,417
San Dlego, Cal., U. S. A.
San Dlego, Cal., U. S. A. 452 452
San Jose, Guatamala 2,395
San Juan, P. R. Via Panama Canal 4,281
Santa Sarbara, Cal., U. S. A. 288 5,185

Savanı ah, Georgia, Ư. . S. A.via Panama Canal

Savanı ah, Georgia, Ư. . S. A.via Panama Canal
Seattle, Wash., U. S. A 4,851 4,851
Sevastrpol, RussiaVia Panama and Anegada Passage 9.738
Shangl ai, ChinaVia Osumi (Van Diemen) Strait 5,505
Shimorıoseki. Japan Via Bungo Channel and Osumi (Van 5,505
5,008
Do Diemen) Strait
Singapore, Straits Settlement Via Balintang Channel 4,916
Sitka, Alaska ,30
Southa npton, England Via Panama Canal 7,863
Spezia, Italy Via Panama and Anegada Passage 8,496
Do Via Magellan Strait and Rio de Janeiro 13,564
Stockholm, Sweden 9,185
Swatow, China Via Osumi (Van Diemen) Strait 5,900 5,900
Sydney, Australia Via Honolulu, Pago Pago, and Auck- 7,212 land.
Do Via Honolulu and Pago Pago 6,744
Tacoma, Wash.. U. S. A. 826
Taku, China Via Osumi (Van Diemen) Strait 5,853
Via Tsugaru Strait 5,630
Talcahuano, Chile Talcahuano, Chile 5,270
Tansui Harbor, Taiwan (Formosa) Via Osumi (Van Diemen) Strait 5,611
Tientsin, China Via Yokohama, Bungo Channel and 5,918north of Quelpart 1 .
Tocopilla, Chile 4,699
Tongatabu (Nukualofa) Tonga Is. 4,628
Ugi I., (Selwyn Bay), Solomon Is 5,129
Uracas I., Marianas 4,779
Valdivia (Port Corral), Chile 5,407
Valparaiso, Chile
5,140
5,140
Vera Cruz, Mexico 4.798
Vladivostok, Siberia
Via Panama
Via Panama 4,570
Weihaiwei, China
Tsugaru Strait 4,664
Via Tsugaru Strait 5,402
Wellington, New Z̈ealand 5,905
Wilhelmshaven, Germany 8,294
Via Panama and Mona Passage
10
10 13,883 13,883
Wilmington, N. C., U. S. A.Via Panama Canal
4,901
4,901
Yap I. (Tomill Hbr.), Caroline Is 5,501 4.79 ?
Yokohama, Japan
Yokohama, Japan Great Circle Great Circle
SAN FRANCISCO
DISTANCES FROM SAN FRANCISCO, CAI., U. S. A., TO DOMESTIC, MFXICAN AND BRITISE COIUMEIA PORTS AND COAST POINTS
1872
Anchorage, Alaska
555
555
Astoria, Oregon 810
Bodega Head 51
Bolinas 16
Bremerton, Wash. 815
Cape Arago 372
Cape Blanco 341
Cape Disappointment 545
Cape Flattery, Wash. 680
Cape Fortuna 200
Cape Foulweather 464
Cape Lookout 486
Cape Mendocino 195
Cape Perpetua 433
Cape San Martin 147
Cape St. George 276
Carpenteria 312
Cayucos 193
Columbia River Bar 540
Coos Bay 375
Coquille River 360
Crescent City 274
Destruction Island 634
Douglas Island 1593
Dutch Harbor 2051
Dutch Harbor via Sitka 2386
Onsenada 496
Eureka (Humboldt Bay) 216
Everett, Wash. 797
False Tillamook 511
Flattery Rocks 667
Flavel, Oregon 561
Gaviota 275
Goleta 296
Grays Harbor 558
Guaymas, Mexico 1490
Hueneme 337
Humboldt Bay 216
Juneau, Alaska 1596°
Killisnoo 1299
Kiska Island, Alaska 2629
Klawak 1472
Kotzebue Sound 2927
Ladvsmith, B. C 804
La Paz 1722
Lompoc Landing 241
Loring 1381
Los Angeles Harbor 368
Magdalena Bay 1002
Mazatlan 1478
Mendocino 123
Monterey 93
Moro Bay 198
Nanaimo, B. C 828
Newport 411
New Westminster, B. C. 829
Nome, AlaskaNautical
Olympia, Wash. 862
Pigeon Point 45
26
Pillar Point 100
Point Arguello 252
Point Bonita 206
Point Buchon
Point Buchon
263
263
Point Conception
Point Conception
100
100
Point Cypress 361
Point Fermin 391
Point Gorda 184
Point Lobos Th
Point Loma 475
Point New Year 50
Point Pedro 19
Point Piedras Blancas 166
Point Reyes 33
Point Sal 232
Point San Luis -15
Point Sur 115
Point Tomales
8
8
Point Vincent 384
Port Clarence 2723
Portland, Oregon 650
Port Orford 336
Port San Luis 216
Port Townsend 770
Powell River, B. C. 868
Redondo 379
Rogue River 313
San Diego 482
San Jose del Cabo 1192
San Luis Obispo 295
San Simeon 172
Santa Barbara 2ハ3
Santa Cruz 71
Santa Monica 372
San Pedro 393
Santa Rosalia 18 \%
Seattle, Wash $8 \cup 4$
Shelter Cove 165
Shoalwater Bay 503 503
Sitka, Alaska 1302
St. Michael 2705
Table Bluff 212
Tacoma. Wash. 826
Tillamook Bay 499
Tillamook Head
Tillamook Head 523
Trinidad 233
Umpqua River 394
Unalaska 2051
Union Bay, B. C 875
Vancouver, B. C. 833
Ventura 327
Victoria, B. C. 750
Willapa Hbr. "Whistle Buoy" 588
Wrangel, Alaska 1448
Yakuina Bay 454

WILLAPA HARBOR

Willapa Earbor Wash.
"Whistle Buoy" to-
Route-
NauticalMiles
Astoria, Oregon
355
355
Eureka, Humboldt Bay 55
Grays Harbor, "Whistle Buoy" $151 / 2$
Honolulu, Hawaii 2,268
Los Angeles Harbor (San Peitro) 956
Cal.
Manila, P. I. Via Honolulu 7,035
Port Townsend, Wash. 194
San Francisco 588

INDEX

A

Acapulco, Mexico, Distances to Pacific Coast ports 106
Addition of fractions 15
Addition, To rapidly compute board feet contents by 22
Airplane lumber, Douglas Fir 5
Airplane lumber, Port Orford Cedar 87
Airplane lumber, Western or Sitka Spruce 80
Annular rings, Index of durability, density, decay 35
Annular rings, To determine strength by 34
Areas, Metric equivalents 63
Astoria, Distances to Columbia and Willamette River ports 106
Astoria, Distances to Pacific Coast ports 106
Australia, Currency 90
Australia, Duties on lumber entering 90
Australia, Weights and measures 90
Average contents of logs 37

B

Ballast tanks, Pointers on filling 99
Ballast water, Amount required for steamers carrying lumber 97
Barrels, To compute capacity of 95
Bermuda, Duties on lumber entering 91
Big trees of California 72
Bills of Lading, To compute lumber shipments in pounds, shillings, pence 100
Board feet, To convert to lineal feet 18
Board measure, Examples 13
Board measure, How to compute 13
Board measure, Logs 33
Board measure, Short methods for computing 14
Board measure, Standard sizes and their multiples 14
Board measure, Table giving contents in feet and twelfths 30
Board measure, Explanation and pointers for using table 31
Boards, tapering, To compute contents 20
Bordeaux, France, Distances to world ports 107
Brereton, Advantages and uses of solid log table 33
Brereton, Solid log table 38
Brest, France, Distances to world ports 107
British and European standard measurements of lumber 25
British Columbia, Distances between Inland ports and Puget Sound 104
British Columbia, Log grades 46
British Columbia, Log scale, construction of 46
British Columbia, Log Table 47
Buenos Aires, Distances to world ports 107
C
Callao, Peru, Distances to world ports 108
Capacities, Metric equivalents 63
Capacity of steamers, To compute lumber carrying 96
Cargo shipments, Douglas Fir and how to handle same 96
Cargo shipments, Hemlock, Pointers for shippers 83
Cargo shipments, Paper, cubic stowage, weights, stability 98
Cargo shipments, Redwood, Pointers on stowage 76
Cargo stowage, To compute lumber carrying capacity 96
Cargo tonnage, measurements and explanation 95
Carrying capacity, Effect of creosated lumber on 34
Carrying capacity of steamers under deck, To compute 96
Car shipments, To compute approximate capacity of lumber and shingles 26
Cedar, Port Orford, Description, use, shipping ports 87
Cedar, Western Red, Description and uses 84
Cedar shingles in 1000 feet log scale 84
Cedar shingles, Equivalent in 1000 board feet 84
Ceylon, Duties on lumber entering 91
China, Duties on lumber entering 92
Circumference, To compute contents of logs by 43
Cisterns, To compute capacity 95
Coal, Bunker, To compute amount for voyage 97
Colon, C. Z., Distances to world ports 108
Compass, To make a watch answer for one 101
Contents of lumber, short rules for computing 17
Cord, British measure 26
Cord, Metric equivalent 11
Cordwood, Hemlock bark in cord 11
Cordwood, Relation between board, cubic and cord measure 11
Creosoted lumber, E'ffect on cargo carrying capacity 34
Cubic measures of fresh and salt water 94
Cubic stowage, To compute lumber carrying capacity of steamers 96
Currency, Australian 90
Currency, English, How to compute and convert 100
D
Deadweight, capacity and stowage of paper 99
Deadweight, steamers lumber carrying capacity, to compute 97
Deadweight tonnage, explanation 96
Deals, British measure 25-26
Deckload of lumber that can be carried with hold full of paper-see stability 99
Deckloads, pointers on capacity and height 97
Diameter, growth of trees 35
Diameter of log necessary to make timbers-Table 44
Differential table, comparison of actual contents of logs with that of leading log scales 36
Displacement tonnage, explanation 95
Distances between ports, Benefit of table 102
Distances between ports-
Acapulco to Pacific coast ports 106
Astoria to Columbia river ports 106
Astoria to Pacific coast ports 106
Bordeaux, France to world ports 107
Brest, France to world ports 107
British Columbia, Inland waters and Puget Sound 104
Buenos Aires, to world ports 107
Callao, Peru, to world ports 108
Colon, C. Z. to world ports 108
Columbia and Willamette river sawmill ports to Astoria 106
Eureke, to Pacific coast ports 110
Gibraltar, to world ports 110
Grays Harbor to Pacific coast ports 111
Honolulu to world ports 112
Iquique to Chilean ports 113
Liverpool, England to world ports 113
London, England to world ports 115
Los Angeles Harbor (San Pedro) to world ports 115
Manila, to world ports 116
Newport News, Va., to world ports 116
Norfolk, Va., to world ports 117
Paita, Peru., to Pacific coast ports 118
Panama, C. Z. to world ports 119
Port Townsend, to world ports 121
Puget Sound, Inland waters and British Columbia 104
San Diego, Cal., to Pacific coast ports 124
San Francisco to Domestic, Mexican and B. C. ports and coast points 128
San Francisco to world ports 124
Willapa Harbor to Pacific coast ports 128
Division of mixed fractions 17
Douglas Fir, Correct and various names 5
Douglas Fir, Description, merits and uses 5
Douglas Fir Grading rules, How to obtain same 69
Douglas Fir, Range 5
Douglas Fir, Strength table 7
Doyle log rule, construction of 45
Draft, ships, table for converting metric equivalents 66
Draft, ships, to compute and convert English \& Metric 66
Draft, ships, to compute differences of immersion 94
Durability of wood, sclentific investigations 35
Duties on lumber entering-
Australia 90
Bermuda 91
British India 91
British South Africa 91
Ceylon 91
China 92
Fiji Islands 92
France 92
Jamaica 93
Japan 93
New Zealand 93
Peru 93
Trinidad and Tobago 93
United States 93
E
Eureka, Distances to Pacific coast ports 110
Export, Douglas Fir, pointers on handling cargo shipments 96
Export, Douglas Fir grading rules, how to obtain same 69
Export, Hemlock, pointers on handling cargo shipments 83
Export, Inspection 69
Export lumber for Italian market 68
Export lumber trade of the United States and commendation of Pacific Coast tally and inspection 70
Export, Redwood, pointers on handling cargo shipments 76
Export, shipments, to compute freight in pounds shillings, pence for Bill of Lading purposes 100
Export shipments, to compute metric weights of lumber 64
F
Fathom, nautical measure 94
Fathom of lathwood (British measure) cubic feet in 25-26
Feet to meters, conversion table 67
Fiji Isiands, Duties on lumber entering 92
Fir, Douglas 5
Fir, Grand 88
Fir Noble, Description, uses, quality 88
Fir White, Description and uses 89
Fir White, Use for pulpwood 89
Fractional sizes, To compute 15
Fractions, Addition, short methods 15
Fractions Division of mixed numbers 17
Fractions Multiplication, short methods 16
France, Duties on lumber entering 92
Freight measurements (British) 26
Freight on laths, to compute 9
Freight to compute in pounds, shillings, pence 100
Frustum of a cone, To compute contents 42

G

Gibraltar, Distances to be world ports 110
Grades, Italian lumber 68
Grades, Redwood 77
Grading rules. Douglas Fir. How to obtain them 69
Grand, Fir 88
Grays Harbor, Distances to Pacific coast ports 111
Gross tonnage, Explanation 96
Growth, Annular rings 34
Growth of trees 34
Growth of trees, Diameter 35
Growth, old logs, explanation 35
H
Hemlock, bark, amount in cord 11
Hemlock, kiln drying 83
Hemlock, merits and uses 82
Hemlock, pointers for cargo shippers 83
Hemlock, strength table 7
Hemlock, use for pulpwood 82
Hemlock, weight 83
Honolulu, Distances to world ports 112
I
Inches to millimeters, conversion table 66
India, British, Duties on lumber entering 91
Inspection of Douglas Fir 69
Iquique, Distances to Chilean ports 113
Italian lumber market, general information 68
Italian lumber market, metric measurements used 68
J
Jamaica, Duties on lumber entering 93
Japan, Duties on lumber entering 93
K
Kilogram, Metric comparison table 64
Kilometers to U. S. Miles, conversion table 67
Kilometers to nautical miles, conversion table 67
Knots and how they are classified 45
Knots, nautical measure 94
L
Larch, Western, Description, uses, durability 87
Larch, Western, strength table 7
Laths, Contents, weights, measurement's 9
Laths, To compute freight on 9
Laths, To estimate number required for a room 9
Laths, Redwood 76
Lengths, Metric equivalents 63
Lengths, Metric, how to cut for French orders 65
Lengths, Metric units of 59
Lengths, To compute average 32
Lineal feet, To convert to board feet 18
Liverpool, England, Distances to world ports 113
Load of squared timbers (British Measure) cubic feet in 26
Load of unhewn timbers (British Measure) cubic feet in 26
Log rule, British Columbia, construction of 46
Log rule, Doyle, construction of 45
Log rule, Scribner, construction of 54
Log rule, Spaulding, construction of 58
Log scales, Table comparing differences between actual contents and Pacific Coast log scales, also showing allowances for saw kerf and slabs 36
Log table, advantages of Brereton solid \log contents 33
Log table, Brereton solid \log or actual contents 38
Log table British Columbia 47
Log table Scribner 50
Log table Spaulding 55
Logs, average contents 37
Logs, board measurement 33
Logs, grades, British Columbia 46
Logs, grading and scaling rules, Spaulding 58
Logs, to compute contents by circumference 43
Logs, to compute content's by diameter 42
Logs, to compute diameter necessary to make square timbers 44
Logs, to compute inscribed square 44
Logs, old growth-explanation 35
Logs, weight of Douglas Fir 34
London, England-Distances to world ports 115
Longitude and time, to compute 101
Los Angeles Harbor (San Pedro) to world ports 115
Lumber shipments, to compute in English money 100
M
Manila, to world ports 116
Measures, nautical 94
Merits and uses of Douglas Fir 5
Meters to feet, conversion table 67
Metric, area-its uses 60
Metric comparison scale, diagrams 60-62
Metric equivalents, area 63
Metric equivalents, capacities 63
Metric equivalents, lengths 63
Metric equivalents, masses 63-64
Metric equivalents, volumes 63
Metric measurements used in Italian market 68
Metric system, synopsis 59
Metric units of capacity 61
Metric units of length 59
Metric units of weight 62
Metric volume and its uses 60
Miles nautical, comparison of European 94
Miles nautical to Kilometers-conversion table 67
Miles U. S. to Kilometers-conversion table 67
Millimeters to inches-conversion table 66
Multiplication of mixed fractions 16
Multiplication, short methodss 15
N
Nautical measures 94
Nautical miles to Kilometers-conversion table 67
Net tonnage, explanation 96
Newport News, Va., Distances to world ports 116
New Zealand, Duties on lumber entering 93
Noble Fir, Description, uses quality 88
Norfolk, Va., Distances to world ports 117

0

Octagon spars, Explanation of table and diagram for making same 28
Octagon spars, How to manufacture out of square timbers 27
Octagon spars, Table for making octagons out of square timbers 29
Octagon spars, tapering, to compute contents 29
Octagon spars, to compute contents 27
Oregon Pine, see Douglas Fir, the correct name 5
P
Pacific Lumber Inspection Bureau, copy of certificate 70
Pacific Lumber Inspection Bureau, general information 69-73
Paita, Peru, distances to Pacific Coast ports 118
Panama Canal, length in statute and nautical miles 102
Panama C. Z. distances to world ports 119
Paper, cargo shipments in conjunction with Douglas Fir and Redwood 98
Paper rolls, dimensions 98
Paper for export, cubic stowage per ton 99
Paper rolls, how to dunnage and stow in ships hold 98
Paper rolls, short stowage (lumber) required 99
Paper rolls under deck and proportion of deckload of lumber, see stability 99
Paper rolls, weights 98
Percentages, how to decrease or increase specifications 24
Peru, duties on lumber entering 93
Pickets, contents, grade, measurements, weight 10
Piling and poles, weight of creosoted Douglas Fir 34
Pine, strength table 7
Polygon, To compute area 29
Polygon, To compute contents of lumber 3 to 12 even sides 29
Port Orford cedar, description, uses and shipping ports 87
Port Townsend, distances to world ports 121
Pounds, metric comparison table 64
Pounds, shillings, pence, to compute and convert to U. S. Money 100
Puget Sound, distances between inland waters and B. C. 104
Pulpwood, burned over timber for 12
Pulpwood, Hemlock 82
Pulpwood, how it is made 12
Pulpwood in a cord 11
Pulpwood, use of White Fir 89
R
Redwood, California Redwood Association 78
Redwood; car material 74
Redwood, durability and quality 74
Redwood, export-pointers for cargo shippers 76
Redwood, general description 71
Redwood, grades 77
Redwood, illustration of giant tree 73
Redwood, lath 76
Redwood, shingles 75
Redwood, strength 76
Redwood, strength table 7
Redwood, ties, durability 75
Redwood weight for export shipment 76
Riga "Last" board feet contents of 25
Roof, how to build shingle 85
Roof pitches, diagram and explanation 86
Roof, shingles required 84-85
Round timber, to compute contents 42
INDEX 135
S
San Diego, Cal., distances to Pacific Coast ports 124
San Francisco, distances to Domestic, Mexican and British Columbia Coast ports and coast points 128
San Francisco, distances to world ports 124
San Pedro (Los Angeles Harbor) distances to world ports 115
Sawing timbers, correct method 43
Scribner \log rule, construction of 54
Scribner log table 50
Shingles, box car capacity, to compute 84
Shingles, cubic stowage 84
Shingles, estimate for a roof 84
Shingles in 1000 ft . log scale 84
Shingles, Redwood 75
Shingles, weight of Cedar 84
Short rules for computing contents of lumber 17
Short rules for computing contents of timbers 18-19
Short rules for computing specifications 23
South Africa-"British" Duties on lumber entering 91
Spaulding, log grading and scaling rule 58
Spaulding log rule, construction of 58
Spaulding log table 55
Specifications, examples and short methods for computing 23
Specifications, metric, to compute 65
Specific gravity, explanation and methods for computing 8
Spruce Western for airplanes 80
Spruce Western, illustration of tree 81
Spruce Western, merits and uses 79
Spruce Western, pointers on surfacing 79
Stack "British Measure, cubic feet in 26
Standards, cubic feet in the Christiana, Drammen Drontheim, Irish, London, Petersburg, Quebec, Wyburg 25
Standards, composition of and methods for computing same 25
Staves, Douglas Fir, export grade 9
Sterling money, to compute lumber shipments in pounds, shillings, pence 100
Sterling money to convert to dollars and cents 100
Stowage Douglas Fir cargo shipments 96
Stowage Hemlock cargo shipments 83
Stowage, Paper for export 98
Stowage Redwood cargo shipments 76
Stowage Shingles, cubic 84
Stowage, To compute lumber carrying capacity of steamers 96
Strength, table of camparisons, Douglas Fir, Hemlock Larch, Pine, Redwood Tamarack 7
Supervisors of Pacific Lumber Inspection Bureau 69
T
Tamarack, strength table 7
Tanks, to compute capacity 95
Tapering boards, to compute contents 20
Tapering octagons, to compute contents 29
Tapering round timber, to compute contents 42
Tapering square timber, to compute contents 21
Taper of Douglas Fir logs 36-37
Ties creosoted, weight of Douglas Fir 34
Ties, durability of various species 75
Ties, metric measurements used in Italy 68
Ties, Redwood, durability 75

INDEX

Timbers, correct method of sawing 43
Timber measurements as used in England 25-26
Timbers, short methods for computing contents 18-19
Timbers, tapering, to compute contents 21
Timbers, to compute diameter of \log to make a square timber 44
Time and longitude, to compute 101
Time, benefit of table of difference 102
Time occupied on voyage, to compute 132
Time table, difference between Pacific Coast and countries of the world 103
Ton deadweight for British cargo vessels 33
Tons, fresh water weights and measures 94
Tons, metric comparison table 64
Tons salt water weights and measures 94
Tons shipping "British measure" cubic feet in 26
Ton weight British measure for softwood and hardwood, cubic feet in 26
Tonnage, Deadweight, explanation 96
Tonnage, Displacement, explanation 95
Tonnage, Gross, explanation 96
Tonnage, Net, explanation 96
Tonnage units, explanation 95
Trees, growth, diameter 35
Trees, growth, height 34
Trinidad and Tobago, Duties on lumber entering 93
U
United States, Duties on lumber entering 93
Units of capacity, metric 61
Units of length, metric 59
Units of lumber measures, metric 64
Units of weight, metric 62
V
Vessel tonnage, explanation 95
Volumes, metric 60
W
Water, fresh and salt, weights and measures 94
Weight, Douglas Fir, creosoted piling and poles 34
Welght, Douglas Fir creosoted ties 34
Weight, Douglas Fir, to compute 8
Weight, Hemlock 83
Weight, Laths -
Weight, Logs, Douglas Fir 34
Weight, Masses, metric equivalents 63
Weight, of lumber, metric 64
Weight Pickets 10.
Weights, and measures, Australian 90.
Weights and measures Paper rolls for export 98
Weights and measures, water, fresh and salt 94
Weights, metric equivalents 63-64
Weights Redwood for cargo shipments 76
Weights Shingles, Red Cedar 84
Weights Staves 9.
White Fir, Description and uses 89
Widths, to compute average 32
Willapa Harbor, Distances to Pacific Coast ports 128

[^0]: wood and Boomsticks.

[^1]: The "big trees" of California afford an inexhaustible reservoir of information for the scientist who reads this story of the past by the study of the annular growth. By means of this he is able to determine the season and locate with a degree of definiteness climatic conditions and changes on the Pacific Coast as far back as 4000 years ago!

