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PREFACE.

Much that is ordinarily included in treatises on Analy-

tics and Calculus, has been omitted from this book, not

because it was regarded as worthless,: but because it

was considered quite unnecessary for the student of

engineering.

In Analytics the attention is called, at the beginning, to

the fact that the commonest experiences of life lie at the

basis of the subject, and at all stages of its development

the student is encouraged to consider the matters pre-

sented in the most informal and untechnical way.

In the Calculus a somewhat radical departure has been

attempted, in order to avoid the difficult and somewhat

mystifying subject of limits, or rather to approach similar

ends by less technical paths.

The average engineer will assert that he never uses the

Calculus in his practical experience, and it is the author's

ambition to make it effective as a tool, believing, as they

do, that it is not used because it has never been presented

in sufficiently simple and familiar terms.

S. S. K.

Carfiegie Technical Schools,

Pittsburg, Pa.





ANALYTICAL GEOMETRY.

CHAPTER I.

Article i. Analytical Geometry may be called the

science of relative position. The principles upon which the

results of Analytical Geometry are based, are drawn directly

from daily experience.

When we measure or estimate distance, it is always from

some definite starting point previously fixed.

i Si

Fig. i.

For instance, most of our cities are laid out with refer-

ence to two streets intersecting each other at right angles.
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If it is desired to indicate the position of a certain building

in such city, it is customary to say, " it is located so many
squares north or south and so many squares east or west."

Let the double lines in Fig. i represent the reference

streets, and the lines parallel to them, the streets running

in the same direction, then the point A would be accu-

rately located, by saying it lies two squares east and three

squares north.

The government lays out the public lands upon the

same system; locating two lines intersecting at right angles

(called the Principal Meridian and the Base Line, respec-

tively) as reference lines. Then lines run parallel to these

at intervals of six miles, divide the territory into squares

each containing 36 square miles. In this region any piece of

land is easily located by indicating its distances by squares

from these two reference lines. In short, since our knowl-

edge is practically all relative, the principles of Analytical

Geometry lie at the foundation of all our accurate thinking.

Art. 2. The two intersecting lines are called Co-ordinate

Axes, and their point of intersection is called the Origin.

In the system most frequently used, the axes meet at

right angles, and hence it is known as the rectangular

system. In comparatively rare instances it is desirable to

have the lines oblique to each other, when the system is

known as oblique.

Art. 3. The vertical axis is called the axis of ordinates

and the horizontal axis, the axis of abscissas.

Art. 4. Distances are always measured from either axis,

parallel to the other; hence when the system is rectangular,

the distances mean always perpendicular distances. The

distance of any point from the axis of ordinates (right or

left), measured parallel to the axis of abscissas, is called

the abscissa of the point, usually represented by x. The
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distance from the axis of abscissas (up or down), measured

parallel to the axis of ordinates, is called the ordinate of the

point, usually represented by y.

Art. 5. Clearly if we would be accurate we must dis-

tinguish between distance to the right and to the left, and

upward and downward. For instance, suppose it is required

to locate a point whose abscissa, x = 5 and ordinate, y = 2

;

it is plain that the point might be located in any one of

four positions: to the right 5 units and up 2 units; to the

left 5 and up 2; to the right 5 and down 2; or to the left

5 and down 2.

If, however, it is agreed that abscissas measured to the

right from .the axis of ordinates shall be called plus, and

those to the left, minus; and that ordinates measured up-

ward from the axis of abscissas shall be called plus, and

those downward, minus, there need be no confusion.

* = +5i3/= + 2 will then indicate definitely the first

position referred to above; x = —
5, ^ = +2, the second;

x = + 5> y = — 2 the third, and x = —
5, y= — 2, the fourth.

Art. 6. The intersecting axes evidently divide the sur-

Fig. 2.

rounding space into four parts called quadrants, numbered

I, 2, 3,4, from the axis of abscissas (usually called the X-axis)
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around to the left back to the X-axis again. Thus XOY is

quadrant i; X'OY is quadrant 2; X'OY' is quadrant 3

(Fig. 2).

Art. 7. To locate a point let it be required to locate the

point x = —
5, y = + 3 J [written for brevity (—5, 3^)].

Let the axes be XOX' and YOX' as in Fig. 3.

By what has been said the point is located 5 units to the

left of the Y-axis and 3^ units above the X-axis.

Since, it is a matter of relative position only, any con-

venient unit may be used, if it is maintained to the end of

the problem; say in this case \"-

Then measuring 5 units or f" to the left on the X-axis,

and from there 3 J units or ^2- = y
7/' upward parallel to

8

the Y-axis we locate the point P as in Fig. 3.

The point (0,2) is clearly on the Y-axis, 2 units above the

Y

,P(-5,3£)

-5. (0,2)

(li.O)

Y'

Fig. 3.

origin, because the abscissa is zero, and since the abscissa

is the distance from the Y-axis, this point being at no dis-

tance, must be on the Y-axis. Likewise, the point (ij,

o) is on the X-axis i\ units to the right.

Locate the following points:

1. (3,2). (- 2
>
-1)1 (ii-3i)i (°» r )> (- 2

> 0)1

(o, o) (- 6, 5), (f, - f).
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2. The points (o, 2 J), ( - 3, -2) and (1$, - 2 J)

are the vertices of a triangle. Construct it.

3. Construct the quadrilateral whose vertices are

(- 1, 2), (3, 5). (
2

,
~ 3) and (- 2, - 2).

4. An equilateral triangle has its vertex at the point

(o, 4) and its base coincides with the X-axis. Find the co-

ordinates of its other vertices and the length of its sides.

5. The two extremities of a line are at the points (—3, 4)

and (5, 4). What is its position relative to the axes?

6. How far is the point (— 3, 4) from the origin?

7. The extremities of a line are at the points (3, 5) and

(— 2, 1), respectively. Construct it.

8. The extremities of a line are at the points (— 3, —5)
and (3, 5). Show that it is bisected at the origin.

9. By similar triangles find the point midway between

(- 2, 5) and (4, - 1).

10. A line crosses the axes at the points (15, o) and

(o, 8). What is its length between the axes.

THE POLAR SYSTEM.

Art. 8. Since two dimensions are sufficient to locate a

point in a plane, it is readily possible to use an angle and

a distance, instead of two distances.

By convention the angle is estimated from a fixed line

around counter-clockwise; the revolving line, called the

radius vector, is pivoted at the left end of the fixed line,

which is called the initial line, and the pivotal point is

known as the pole.

The angle is estimated either in degrees, minutes, and

seconds or in radians.

Art. 9. A radian is defined as the central angle which

is measured by an arc equal in length to the radius.
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Since the circumference of a circle is equal to 27zr (where

r is the radius and tz = 3.1416) and also contains 360 ,

27ZT = 360°

?6o° 180
and — ^ 1 radian.

2TZ TZ

Hence the number of radians in any angle

180 180

That is, the number of radians in an angle is the same

fraction of tz, that the angle is of 180 .

For example

6o° = tz radians = — tz radians.
180 3

22 2
—— tz radians =
180

tz radians.

225^ —2- tz radians = -5 tz radians, etc.
180 4

Art. 10. It is agreed for the sake of uniformity that

an angle described by the radius vector from its original

position of coincidence with the initial line, counter-clock-

wise, shall be positive; in the contrary direction, nega-

tive.

That when the distance to the point is measured

along the radius vector forward, it shall be positive;

when measured on the radius vector produced back-

ward through the pole it shall be negative. For example,

the point (3, -j would be located thus (Fig. 4) :

Draw an indefinite line OB (representing the radius

vector) making an angle of — radians = — of 180 = 6o°
3 3
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with the fixed initial line OA; measure off 3 units on the

radius vector from the pole, and the point P is located (see

Fig. 4).

If the point had been
(
— 3, — j

the 3 units would have

been measured back toward B' to P'. If the angle had

been the radius vector would have taken the positive

3

direction OB".

The usual notation for co-ordinates in the polar system

is (r, 0) or (/>, 0).

EXERCISE II.

1. Locate the points:

K)-M)< (-*-!)•
(
s'V"M--7).

(
3 - 2 '

_2
f)'

(2i '
750)

'

(-4> _3°0) -
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2. Express the following radians in degrees:

2 4 8 8 16

3. Express in radians

:

35 , 40 , 45°, 6 7 i°, 75°, 150°, 120°, -225
,
- 195°.

4. Construct the triangle whose vertices are,

(
3h

l)
•(''.-$' and (" 5'4)'

5. Construct the quadrilateral whose vertices are,

(
5
,f), (3, f), (

s
,-a)

r

(
3,_^.

What kind of quadrilateral is it ?

6. The extremities of a line are the points (6, —J and

(—6, — —V How is the line situated with reference to

8/

the initial line ?

7. Construct the equilateral triangle whose base coin-

cides with the initial line and whose vertex is the point

8. The co-ordinates of a point are (5, —J.
Give three

other ways of denoting the same point.

AREA OF A TRIANGLE.

Art. 11. The system of rectangular co-ordinates affords a

ready method of expressing the area of any triangle when

the co-ordinates of its vertices are known.
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Let ABC (Fig. 5) be any triangle. Draw the perpen-

diculars AD, BE and CF from the vertices to the ^-axis.

Then the co-ordinates of A = (OD, AD); of

Fig. 5.

B = (OE, BE); of C = (OF, CF); say,(- *', /), (*", /')

and (%"', y"').

Now the figure ABCFD is made up of the trapezoids

ABED, and BCFE; and if from ABCFD we take ACFD
the triangle ABC remains, that is,

ABED + BCFE - ACFD = ABC. . . (a)

By geometry, area ABED = \ (AD + BE) DE.

But AD = /, BE = /', and DE = DO + OE= -x'

+ x".

.-. area ABED = J (y' + y") (x" - x f

).

Also area BCFE = \ (BE + CF) EF.

But BE = y", CF =f and EF = OF- OE = x"'-x".

.'. area BCFE =!(/ + /") (*"' - *")

Again; area ACFD = J (AD + CF) DF.

But AD - /, CF=/"andDF=DO +OF = - xf+ x"''.

.-. area ACFD = (/ + /") (x"
f - a/).
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Substituting in (a):

Area ABC = J (/ + y") (x" - x') + i (/' + /")

(V" - x") - J (/ + y"f

) {x"
f - x') =

i tyty _ xy + ^/y _ ^y// _j_ xy _,<;//'^
The symmetrical arrangement of the accents in this

expression is manifest.

Example: Find the area of the triangle whose vertices are

(2, 3), (- 1, 4) and (3, - 6). Let (2, 3) be (V, /);

(- 1, 4) be O", /'), and (3, - 6) be (*»', /"). Then

area= i [(- 1 X 3>-(2X 4) + (3 X 4)-(-iX-6)
+ (2 X - 6) - (3 X 3)]= H-3-6 +12-6-12-9]
= — 12.

The minus sign has no significance except to indicate

the relation of the trapezoids.

(r'<e>) B
(r

//
(
0"j

c {r"\0[")

Fig. 6.

Po/ar System : A reference to Fig. 6 will show that a

similar process will give the area of ABC, when its vertices

are given in polar co-ordinates.

For area ABC = ABO + OBC - OAC.

Area ABO = J AO X OB sin AOB.
AO = /, OB = r» and AOB = (0' - Q").

A similar treatment of OBC and AOC will give the areas

of all the triangles.



CHAPTER II.

LOCI.

Art. 12. Whenever the relation between the abscissa

and ordinate of every point on a line is the same, the expres-

sion of this relation in the form of an equation is said to

give the equation of the line. For example, if the ordinate

is always 4 times the abscissa for every point on a line,

y = 4 x is called the equation of the line.

Again, if 3 times the abscissa is equal to 5 times the

ordinate plus 2, for every point on a line, then 3 x = 5 y + 2

is the line's equation.

Art. 13. Clearly since an equation represents the rela-

tion between the abscissa x and the ordinate y for every

point on a line, if either co-ordinate is known for any point

on the line, the other one may be found by substituting

the known one in the equation and .solving it for the

unknown.

For example, let 2 y = 7 x — 1 be the equation for a

line, and a point is known to have the abscissa, x = 2.

To find its ordinate, substitute x = 2 in the equation;

2 y = 7 (2) — 1 = 14 — 1 = iy,y*= 6£. Therefore the

ordinate corresponding to the abscissa, x = 2, is 6J.

Further, if the equation is given, the whole line may be

reproduced by locating its points. If x for example be

given a series of values from o to 10 inclusive, by substi-

tuting these values in the equation, the corresponding

values of y are found, and 11 points are thus located on

the desired line. If more points are needed the range of
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values for x may be indefinitely extended, and if these

points are joined, we have the line. For example, let the

equation of a line be x2 + y
2 = 9, to reproduce the curve

represented. For convenience in calculating solve for y;

y = ±\/g — x2
.

Then give x a series of values to locate points on this line.

Iix = y = ±\/VZ x2 = ±3-
Iix = 1 y'= ± v9 - 1 = ±Vs == ± 2.83.

Iix = 2 y = ±V9 - 4 = ±^J-= ± 2.24.

Iix = 3 y = ±Vg -
9 = ±Vo == 0.

Iix = 4 y = ± v9 - 16 = ±V- y
= an in

The last value for v shows that the point whose abscissa

is 4 is not on the curve at all; and since any larger values

of x would continue to give imaginary values for y, the

curve does not extend beyond x = 3.

Since we have given x only positive values so far, all

our points so determined lie to the right of the Y-axis.

To make the examination complete, let x take a series of

negative value thus

:

If x = - 1 y=±\/g-i=±Vs=± 2.83.

If x = — 2 y = ± V9 - 4 = ± V5 = ± 2.24.

If x = - 3 y = ± Vo -9=0= Vo.

The similarity of these results shows that the curve is

symmetrical with respect to the axes, that is, it is alike

on both sides of the axes.

If now these points are located with respect to the axes

XXr and YYr and are joined, the result is an approxima-

tion to the curve; it is only an approximation because the

points are few and not close enough together.

The result is shown in Fig. 7, using i inch as a unit for
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scale. The points are (o, + 3), (o, — 3) [being A and

A' in the figure], (1, VS), (1, - V8) [being B and B'],

(2, V5), 0». - Vj) [being C and C'], (3, o) [G],

(- i, V8),_(- i, - V8) [D and D'] (- 2,V5
~)

(- 2. - V5 ) [E and E'] and (- 3, o) [F].

Fig. 7.

Clearly if more points are needed to trace the curve

accurately through them (as is the case here), it is neces-

sary to take more values of x between —3 and +3, for

example

:

x= o y= ± V9 = ± 3.

X = .2 y = ± V9 - .04 = ± V8.96 = ± 2.99 .

x = .4 y = ± V9 - .16= ± V8.84= ± 2.97.

x = .6 y = ± v9
- .36 = ± V8.64 = ± 2.94.

#= .8 y = ± v9
- .64 = ± V8.36 = ± 2.89.

# = 1 y = ± v9
- 1 = ± V8 = ± 2.83, etc.

Making a similar table for the corresponding negative

values of x, the result is three times as many points on the
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curve as before, and as they are closer together the curve

is much more readily drawn through them, and it will be

much more accurate.

Take another example: 9 x2
-f 16 y

2 = 144.

Solving for y; y = ± f \/i6 — x2
.

Then if _
x = o y = ± j V16 = ± 3.

x= ± .2 y = ± i Vi 6 — .04= ± f ^15.96 = ± 2.99.

x = ± .4 y = ± IV16+ .16 = ± }V/
i 5 .84 = ± 2.98+

x = ± .6 y = ± IV16 - .36 = ± fv
/
i5.64= ± 2.96.

x = ± .8 v = ± IV16 - .64 = ± {^15.36 = ± 2.94.

# = -j- 1 y =±l\/i6 c = ± f V15 = ±2.9, etc.

The result is indicated in Fig. 8, same scale as before.

Fig. 8.

Art. 14. Clearly a curve can be traced thus represent-

ing almost any form of equation.

Suppose the equation 7 x2 + 7 x + 15 = y is given.

The location of a number of points by giving x a series of

values and calculating corresponding values of y from the

equation, will enable us to draw through them the curve

represented by the equation. In most cases, there will be

certain values of x which will make the value of y zero;
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such values of x will be roots of the equation x3 — 7 x2

+ 7 x + 15= o, that is, these values of x indentically

satisfy this equation.

But if y is zero for a point, the point must be on the

X-axis, for by definition the value of y is the distance

from the X-axis to the point, hence the curve must cross

the X-axis at those points where y is zero. If then none

of the values given to x make y exactly zero, but do make

y change from a positive value for one value of x to a

negative value for the next, or vice versa, it must pass

through zero to change from one sign to the other, and

hence the curve must cross the X-axis.

As an illustration, takt he equation x* — 5 x2 + x

+ 11 = y. As before make a table of values of x and y,

and locate the points as follows:

If X = y = 11.

x= .5 y = iQ-375-

X = I y = 8.

x = 1.5 y = 4.625.

X = 2 y = 1.

x= 2.5 y = - 2.125.

x= 3 y = - 4-

x= 3-5 y = - 3-875.

x = 4 y = — 1.

a?= 4.5 y = 5-375-

#= — 1 y = 4-

x= - 1.5 y= - 5- I2 5-

The curve connecting these points crosses the X-axis at

three points; one between 2 and 2.5; one between 4 and

4.5, and one between — 1, and — 1.5. Hence the three

roots of the equation x3 — 5 x 2 + x + 11= o are be-

tween 2 and 2.5; between 4 and 4.5, and between — 1 and

~ i-5-
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If the values of x in the above table had been taken

closer together, the points of crossing would have been

more accurately known.

INTERSECTIONS.

Art. 15. The point (or points) in which two lines

intersect, being common to both lines, its co-ordinates

must satisfy both equations, that is, the equations of the

two lines are simultaneous for this point (or these points)

and hence if the equations be solved as simultaneous by

any of the processes explained in algebra, the resulting

values of x and y will be the co-ordinates of the point (or

points) of intersection. For example :

To find the points of intersection of the circle x2 + y
2 =

24 and the parabola y
2 = 10 x. By substitution of the

value of y
2 from the parabola equation in the circle equa-

tion,

x2 + 10 x = 24 x2 + 10 x + 25 = 49.

x + 5 = ± 7 x = 2, or — 12

y= ±V2o, or, ±\/— i2,

o.

The second pair of values for y being imaginary shows

there are but two real points of intersection, (2, + V20)

and (2, — v 20). Verify by construction.

EXERCISE III.

Loci with Rectangular Co-ordinates.

1. Express the equation of the line for every point of

which the ordinate is f of its abscissa.

2. Express the equation of the line for every point of

which f the bascissa equals f of the ordinate + i.
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3. Express the equation of the line, for every point of

which 9 times the square of its abscissa plus 16 times the

square of its ordinate equals 144.

4. Construct the locus of x2 = 8 y.

5. Construct the locus of (x — 2)
2 + y

2 = 36.

6. Construct the locus of xy =• 16.

7. Construct the locus of x2 + 4 y
2 = 4.

8. Construct the locus of 25 x2 — 36 y
2 = 900.

9. Construct the locus of 3 x — 2 y = 5.

10. Construct the locus of J x — f = —
- y.

11. Construct the locus of x = 7.

12. Construct the locus of y = — 5.

Find the points of intersection of:

13. (x — i)
2 + (j — 2)

2 = 16 and 2 y — x ^= 3.

14. 2 x - 3 y = 7 and J rv + y = f

.

15. x2 + y
2 = 9 and x2 = 8 y.

16. #2 + y
2 == 16 and 2 x2 + 3 y

2 = 6.

17. x2 + v2 = 25 and 4 y = 3 ae + 25.

18. Find the vertices of the trangle whose sides are

x — y = 1.

2i + y= 5 and 3 y — 2 x = 7.

Art. 16. If the equation of a locus is expressed in polar

co-ordinates, the method of procedure is exactly similar

to the cases already discussed.

The presence of trigonometric functions introduces no

difficulties. For example: To construct the locus of

r = 4(1 — cos 6). Give d a series of values, and com-

puting r for each, as follows:

If 6 = o, r = o since cos 0=1.
r = 4 (1 — .996) = .016.

r = 4 (1 - .98) = .08.

r= 4 (1 - .97) = .12.

If = 5°,

If (9 = ro°

If = i5°,



i8 Analytical Geometry.

If 6 = 20°, r = 4 (i - -94) = -24-

if e = 3 o°, r = 4 (i - .87) = .52.

if e = 4o°, r= 4 (1 - .77) = -92.

if e = 50 ,
r = 4 (1 — ,64) = 1.44.

If d = 6o°, r = 4 (1 - .5 ) =2. ,etc

Fig. 9.

Completing the table to 6

curve as in Fig. 9.

360 and plotting we get a

TRANSCENDENTAL LOCI.

Art. 17. Certain curves have what are known as trans-

cendental equations, that is, equations which cannot be

solved alone by the algebraic processes of addition, sub-

traction, multiplication, and division.
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For example, y — log x.

The loci of such equations are found in the usual way,

by giving to one of the co-ordinates a series of values and

finding corresponding values for the other from tables.

EXERCISE IV.

1. Find the locus of r
2 = 9 cos 2 6.

2. Find the locus of r =10 cos 6.

3. Find the locus of r =

4. Find the locus of r =
5 + 3 cos d

5. Construct v = sin x.

6. Construct x = log y.

MISCELLANEOUS CURVES.

Art. 18. Curve-plotting is very widely applied in all

modern scientific research, to represent graphically the

results of observation. This method of presentation has

the immense advantage of showing at a glance the com-

plete result of an investigation.

For example, if a test is made of the speed of an engine

relative to its steam pressure, the pressures being repre-

sented as abscissas (by x) and the corresponding speeds as

ordinates (by y), a smooth curve drawn through the points

determined by these co-ordinates will reveal at once the

behavior of the engine. Especially does this method aid

in comparisons of different series of observations of the

same kind.



20 Analytical Geometry.

Suppose, for example, it is desired to represent thus

graphically the course of a case of fever.

The observations are as follows: —

7 a.m. temperature ioo

8 A.M.
a

ioof

9 A.M. a IOlf

IO A.M.
a I02§

II A.M.
:( IO3

12 M.
It I03*

I P.M.
a IO3

2 P.M.
it

I02f

3 P.M.
a IOI

Regarding the time of taking observations as abscissas

and the temperatures as ordinates, using any desired scale,

the result may be represented as follows, in Fig. 10.

I

1

103° <^•>

102°

101°

100°

J
<*" s

v

>f \
sr

IM : 1 INI
•

7 8 9 10 II 12 I 2 3 4
Fig. 10.

Fig. 10.

The figure shows at a glance that the maximum was at

noon.
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Again; in the test of an I-beam the following observations

were taken.

TEST OF CAST-IRON.

Stress Pounds. Unit Elongation.

6,95° 4-97

12,940 11.44

6,110 6.06

1. 1 2 (permanent set)

4,640 4.16

8,780 7-63

12,300 10.78

15,420 i5- 2

11,900 12.38

8,37o 9.42

4,960 6.66

IJ 3 2.41

Plot the curve.
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CHAPTER III.

THE STRAIGHT LINE. to

Art. 19. Since two points determine a straight line

and two points imply two conditions, there will be in the

equation to a straight line, two fixed quantities (called

constants), which must be predetermined for every straight

Fig. 11.

line. These constants may be furnished by two fixed points,

or by a point and an angle, evidently.

To determine the equation of a given straight line, then,

it is necessary to express the relation between the co-ordi-

nates of any (that is, every) point on the line, in terms of

the two given constants.
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Suppose first we take a point on the y-axis, through

which the line must pass, and determine its posi-

tion by giving its distance from the origin measured on

this axis.

Call this distance, b; and say the line makes an angle a

with the #-axis; the angle to be estimated as in trigo-

nometry, positively, that is, counter-clockwise, from the

#-axis.*

It is required, then, to determine the relation between

the co-ordinates of any point P, selected at random, on the

line AB (Fig. it), using b and any convenient function of a.

Drawing thej_ PR, OR = abscissa of P = x,

PR = ordinate of P"= y, OS = b.

Z BTR = a.

The character of the figure would suggest the use of the

similar triangles TSO and TPR, but a simple observation

shows that only the sides b and y are known; on the other

hand we know the angle a, and a line through S 1
1 to the

x-axis, from S to PR, will be equal in length to OR and

will also make the angle a with AB (alternate angles of

parallel lines).

Call this line SN. Then in the triangle SPN, Z PSN
= a SN = OR = *, and PN = PR - NR = PR - SO
= y — b. PN and SN being respectively opposite and

adjacent to a in the right triangle SPN, we have,

PN y - b
tan a = —- = -

SN x

* The conventions as to positive and negative direction for lines,

and positive and negative revolution for angles, is maintained in

Analytical Geometry, as indeed is necessary in order to accomplish

consistent results.
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Let tan a be represented by m;

then m = 2_Z_
?

x

mx = y — b

y = mx + b

which expresses the relation between the co-ordinates of

of any point, P, and hence of every point on the line in

terms of the known constants m and b. .'. y= mx + b

y

(A)

Fig. 12.

is the equation of AB. Had the line crossed the first quad-

rant the construction would have been as in Fig. 12 and

we would have

NPtanPSN= —>
SN

or tan (180 — a) =

— tan a =

— m =

x

b — y

x

b — y
x

y = mx + b as before.
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m is called the slope of the line and b its ^-intercept. The

equation is called the slope equation of a line.

If m = o in the equation to a straight line, then it takes

the form y = b, which is plainly (since if m =0, a = o)

a line
||

to the #-axis. If b = o, the equation becomes

v = ;;lt, which is the equation of a line through the origin,

making an angle whose tangent is m with the x-axis, etc.

Since a may be either acute or obtuse depending upon

whether the line crosses the 2d or 4th, or the 1st or 3d

quadrants; and b may be either plus or minus depending

upon the position of the point of intersection with ;y-axis,

above or below the origin, the form,

y = — mx + b represents a line crossing quad. I,

y = mx + b represents a line across quad. II,

y = — mx — b represents a line across quad. Ill,

y = mx — b represents a line across quad. IV.

Art. 20. If the line be determined by two points (x
f

,
y')

and (x", y"); to -find its equation.

Let AB (Fig. 13) be the line, P and Q the points (x
f

, y
f

)

and (x", /'), respectively.

Take any point P r whose co-ordinates are (x, y). Draw

QR, P'S and PT J_ to the x-axis, also PL J_ to QR, as

it is clearly here a case for similar triangles.

Then in the similar triangles PLQ and PKP',

P'K:KP::QL:LP, or g- = -gt.

But FK = Pr
S - KS = P'S - PT = y - /

KP = HP - HK = yf - x,

QL = QR - LR = QR - PT = f - /,
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and LP = LH + HP = - x" + x'.

y — y' y" — y
r

X* X" + x'

or symmetrically, y — y _ y" — y
f

*-V »/v vV »/v

(changing sign of both) which gives an equation between

x, y, x', /, x" , and /' as required.

B\.#",y")
V' y

\
L H K\P(z',*/')

#-
It £3 T

Fig. 13-

The same result might be reached by a purely analytical

method having the slope equation of a line given.

Let the slope equation of the line AB be y = mx -f b.

Since it must pass through the points P, P' and Q, the

co-ordinates of these points must satisfy the equation of
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the line, since the equation must give the relation between

the co-ordinates of every point on the line.

Hence, substituting these co-ordinates successively in

the equation y = mx + b, we know that the three following

equations must be true, if P, P' and Q are on the line:

y = mx' -f b (1)

y = mx + b (2)

y= mx" + b (3)

But since the line is to be determined only by the two

points P and Q, neither m nor b are known, and hence

must be eliminated.

Subtracting (1) from (2) and (1) from (3), we get

y — y
f = m (x — xf

) . . . (4)

and y — y' = m (x" — xf

) ... (5)

divide (4) by (5);
y-=^-

f
= "LJZJL

,

y — y x" — x

y-s = y-y .... . . (B)
x — xf x" — xr

For example: Find the equation of the line through

(- 2,3) and (-4, - 6).

Let (V, /) be (- 2, 3) and (V', /) be (4, - 6)*.

Substituting in (B),

* = « = — ^ , or 2 3/ t 3 x = o.
x + 2 4 + 2 2

* Since (B) is perfectly symmetrical it is a matter of indifference

which point be called (xf

,
y') and which, (x", y"). The results are

the same. It is to be observed that x and y with accent marks

usually mean definite points, while general co-ordinates are repre-

sented by unaccented x and y. So that substitutions are always

made for the accented variables, when definite points are involved.
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Art 21. When the line is determined by an angle and a

point situated otherwise than on the y-axis.

Let the tangent of the angle be m and the point be (x', y').

Then y = mx + b (i) can represent the slope equation to

the line. This equation satisfies the condition that the

line should have the slope m, but it must also pass through

the point (V, /).

Hence, if y = mx + b is to completely represent the

line, equation y' = mx' + b (2) must be true.

Since b is a third and unnecessary condition, it must be

eliminated between (1) and (2).

y = mx + b

V — mx/ + b
Subtract (2) from (1);

y-yf mx- mxf =m (x —x')
(C)'

y

Fig. 14.

Art. 22. When the line is determined by two points, one

on each axis.

* It is to be observed that the slope equation is a special

form of (C) where (xf

,
y') is (b, o).
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Let the points P and Q, respectively (0, b) and (a, 0),

be the determining points (Fig. 14), and let y = mx + b

be the slope equation of the line AB ; then b — b and

m tan = PQx = - tan PQO. Also

tanPQO = -• .-. m=-- .

a a

Substituting these values of m and b thus expressed, by

a and b in the slope equation,

6

y = - -x + b, or f + -=i . . (D)*
a b a

[dividing by b and transposing].

This form is known as the intercept equation of a straight

line, since a and & are called the intercepts of the line AB
on the co-ordinate axes.

Art. 23. There is still another form of equation to the

y

straight line determined by a perpendicular to the line

* The same result could be derived from (B) by substituting

(a, o) for (*', /) and (6, o) for (x", y").
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from the origin, and the angle which this perpendicular

makes with the #-axis.

Let OD be a J_ to the line AB from the origin, and /?

the angle it makes with the #-axis. Let P (x, y) be any

point on the line.

Drawing the ordinate (PE) of P, we have two similar

right triangles ODF (F being the point where AB crosses

the x-axis) and PEF.

Then PE : OD : : EF : DF [homologous sides].

Call OD, p, and OF, a, then above proportion becomes

y : p : : (a — x) : DF.

But in the right triangle ODF,

, and DF = p tan
p sin /?

cos /? cos /?

I p \ p sin B

\cos p ) cos p

7T~
= P \

— « — x) [extremes*and means]
cos p \cos p )

or 2-—5J- = —P—^ — x [dividing by p]
cos p cos p

that is, y sin
ft + x cos /? = p (E)

This is called the normal equation, p being known as a

normal.

The line AB is plainly a tangent to a circle with O as a

centre and p as a radius, hence we are practically deter-

mining the line AB as a tangent to a given circle, the posi-

tion of the radius being fixed by the angle /?.

Exercise: By determining the values of a and b from the

intercept equation, \- ~= i, in terms of ^ and /?, derive

the normal equation from the intercept equation.
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Art. 24. Each equation has its characteristic form.

For instance, the slope equation y = mx + b, has the

form of a first degree equation solved for y, hence if any

first degree equation be solved for y, it may be compared

directly with this slope equation. For example, given the

equation 2 y — 3 x = 8. Solving for y, y = § x + 4; com-

paring this with the typical form; m = § and b = 4.

Hence the locus of 2 v — 3 x = 8 may be constructed

as follows, remembering the meaning of m and b, (Fig. 16).

First to construct any line making an angle whose tan-

gent is § with the x-axis. By trigonometry if we lay off

on the y-axis a distance 3 and on the x-axis a distance 2

Fig. 16.

(remembering that the angle must be measured from right

to left), the line DE, drawn through the points so deter-

mined makes an angle whose tangent is f with the x-axis,

OF
for tan. FLO = 7^ = h hence any line drawn to ED

makes the same angle. If this line is drawn through the
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point G, 4 units above the origin (b = 4), it will be the

required line, as AB in the figure.

In this case m = § being positive shows that the line

crosses either the 2d or 4th quadrants, and b = 4 being

positive shows it is the 2d, hence the construction.

If m is negative, it crosses either the 1st or 3d quadrants,

and the sign of b will determine which one. Hence in every

case we know where to make the construction for m.

It is usually easier to make use of two points for the con-

struction of straight lines, and these points are most easily

determined on the axes, where the line crosses them.

Since the equation of a line expresses the relation between

the co-ordinates of every point on the line, it will express

the relation for these points on the line where it cuts the

axes; but at these points either x or y is o, depending on

whether it is the y or the #-axis. Hence to find the inter-

/ /A

y
Fig. 17.

cept on the #-axis, set y = o in the equation (for at the

point of crossing y = o); the value of x will then be the

x-intercept. Likewise, to find the ^-intercept set x = o

in the equation.
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In the preceding example,

2 y - 3 x = 8.

Set y = o, 0-31= 8

x= — § (# — intercept).

Set #=0 2 y — 0=8.
;y
= 4 (j — intercept).

Hence measuring — f to the left on the #-axis and 4

upward on the v-axis, the line passes through these two

points.

Art. 25. The characteristic property of the intercept

equation is that the right hand member of the equation is 1,

and the other member consists of the sum of two fractions

whose numerators are respectively x and y. For example,

to put the equation 3 # — 4 y = 7 into intercept form.

To make the right side 1, the equation must be divided

by 7.

.; ** - \y= 1 (1)

To change the left hand side to the sum of two fractions

having x and y only for numerators, the equation may be

written thus:

5+-?-- 1,

I ~i
comparing this with the type form,

x . v

a b

evidently a = § and b = — }.

These values may be verified by the method indicated in

the last article.

Let y— o in (1), then f x — o = 1 x = | = a.

Let x = o, then o — — = 1,

7

y = -
I = b.

What is typical of the normal equation ?
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Art. 26. Any equation of the first degree in two vari-

ables represents a straight line.

Any equation of the first degree in two variables may-

be represented by

A* + By = C.

This equation may be put in the form

?=-§*+ § (A')

which is clearly the slope equation of a straight line, whose

A . C A
slope is — — and y — intercept, — ; that is, m = and

Again: The equation Ax + By = C may be put in

x v
the form — + £= 1 (Dj) which is the intercept form,

A B
C C

where _ and — are the two intercepts.
A B F

Again: To put Ax + By = C in the normal form,

x cos /? + y sin /? = p, it is necessary to express cos /?,

sin /? and p in terms of A, B and C (Fig. 18). It has

been shown above that the intercepts OM and ON (MN
C C

being the line) are — and — •

Since Z OMN = Z PON = ft in the right triangle

MON,

X B
Sin p =

^> VA2 + B 2 VA2 + B 2



Analytical Geometry. 35

and cos /? =
*
^
-^ \/A2 + B 2 VA 2 + B 2

A^
In the similar triangles MON and PON, OM : OP :

MN : ON,

thatis,
C S#!{ £.^A. + B i

:

C

y

B

Whence -^ + B„

substituting these values in the normal equation,

Ax By = C

VA 2 + B 2 VA2 + B 2 VA^+B 2
• ' (

E i)*

* The sign of s/A2 + B 2
is readily determined from the sign of

C in A* + By = C, for p = ^^ + ^
and since p is essentially

positive, C and Va2 + B 2 must have the same sign that this equa-

tion may be true.
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which is plainly obtained from Ax + By = C, by

dividing through by VA 2 + B 2
, that is, the square root

of the sum of the squares of the coefficients of x and y.

For example, to put 3 x + 4 v = 9 m the normal form:

In this case Va2 + B 2 = V3 2 + 4
2 = V25~= 5-

Dividing then by 5; 3^ + 4^=9 becomes

-2 x + —y = —,

5 5 5

where 2- = Cos /?, — = sin /? and *- = p.

5 5 5

From the above it is seen that a general equation Ax +
By = C can assume any of the type forms for a straight

line, hence it may always represent a straight line.

Art. 26 (a). Another method of reducing Ax + By = C
to the normal form, is easily derived from the following

consideration

:

If two equations both represent the same" straight line,

they cannot be independent equations, but one must be

obtained from the other, by multiplying it through by

some constant factor, like

2 x ~ 3 y — I and 8x- 12 y =4.

That is, all the coefficients in one are the same number

of times the corresponding coefficients in the other, as

8=4X2, 12 = 4X3 and 4 = 4 X 1.

Now if A^ + By = C and x cos /? + y sin /? = p are

to represent the same straight line,ABC
then = ~r-- = — = if, say;

cos p sin p p
that is, A = n cos /? (1)

B = » sin J3 (2)

C=np (3)
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To find n, square (1) and (2) and add;

A2 = n 2 cos2

p
B 2 = n 2 sin2

/?

A2 + B 2 = n2
(sin

2
/? + cos 2

/?) = n 2

[since sin2
/? + cos2

/? = 1]

or w =

P =

Va2 + B 2

A

sin

Va 2 + B 2

B

Va2 + B 2

C

Va2+B 2

[from (1)]

[from (2)]

For sign of V

A

2 + B 2
, see note in Art. 26.

Art. 27. From what was said about intersections under

loci, it is clear that if two equations representing straight

lines are combined as simultaneous, the resulting values

of x and y are the co-ordinates of their point of intersection.

For example:

Let 2 x- 3 y= 5 (1)

x + $y= 17 (2)

be the equations of two lines.

Multiplying (2) by 2 and subtracting;

2X - 3^=5
2 x + 10 y = 34

i 3 y= 29

y — f!> whence x = Tf

.

That is, these two lines intersect at the point (Tf , f|).

Verify by construction.
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EXERCISE VI.

Straight Line.

What are the slope and intercepts of the following lines?

Construct them.

I. 2 y = 3 # + 1. 2. 3^ + 21 + 7=0.
3. 5 y = _ x - 6. 4- 4 y ~ 7 x + 1 = o.

5. f #- 1 £?= ij. 6. £y- 2x + 3 =? + £*•

7. x + y= o. 8. y= - 3.

9. A line having the slope § cuts the ;y-axis at the point

(o, — 3). What is its equation?

10. What are the vertices of the triangle whose sides are

2 y — # + 1 = 0, $y -{- x = 2, x = — 2 v + 1 ?

II. Find the vertices of the quadrilateral whose sides are

x = y, y + x = 2, 3 y — 2X= 5, 2 x -\- y = — 1.

12. The vertices of a triangle are (2, o), (—3, 1),

(— 5, —4). What are the equations of its sides?

13. A line passes through (— 3, 2) and makes an angle

of 45 with the ^c-axis. What is its equation ?

14. What is the equation to the common chord of the

circles (x — i) 2 + (y — s)
2 = 50 and x2 + y

2 = 25?

15. The points (6, 8) and (8, 4) are on a circle. What

is the equation of a chord joining them ?

16. Which of the following points are on the line

2;y = -3*- 2; (2, 1), (-2, f), (2, - 2), (5, 2)?

17. What is the slope of the line through (1, — 6) and

(-3,5)?
18. What slope must a line with the ^-intercept — 3

have that it may pass through (—3, 2)?

19. Show that (1, 5) lines on the line joining (o, 2)

and (2, 8).

20. Show that the line joining (— 1, |) and (3, — 2)

passes through the origin.
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Art. 28. To find the angle between two intersecting lines

jrom their equations.

Let y = mx + b, and y = m'x + b', be the equations of

two intersecting lines, AB and CD, in Fig. 19.

Fig. 19.

Since the slopes are m and mf respectively, tan FHx = m
and tan FGx = m'.

In the triangle GFH, formed by the intersecting lines and

the x-axis, the external angle

FHx = HGF + GFH
or GFH=FH*-HGF (1)

Call, for convenience, GFH, d; FHx, a; and HGF, /9.

Then by (1) 6 = a - ? (10)

Since the result must be expressed in m and m', that is,

in the tangents of a and /?, the trigonometric formula for
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the tangent of the difference of two angles (a — 3) must

be used, that is,

. ( ox tan a — tan 8 m — mf
tan (a — p) = •— =

i + tan a tan p i + mm!

But since = a —
/?, tan 6 = tan (a — /?).

.*. tan d = • (F)
i + mm

Which enables us to calculate 6 from m and m''. For

example, to find the angles between the two lines

2 X _ 3
y = j

and
i x +i y = j± m

Putting these equations in the slope form, they become,

y= I* -

1

y = - %x + |.

Since two lines intersecting always form two angles,

which are supplementary with each other, and since the

only difference that can result in the formula
_,

a m — m'
tan =

i + mm'

from interchanging m and mr
is a reversal of sign, that is,

a change from the value of 6 to its supplement, unless it

is distinctly specified, that the angle of intersection is the

acute or obtuse angle, it makes no difference which slope

be called m or mf
.

Say in above, m = f and m' = — f

.

Substituting in formula (F),

8.— f_3\ 8.-L3 .5 9.

tan = —« { 4J = &-Xjl = .af = f| = 4 .9 i6y.
i + (f) (-1) i-| i

4V

A table of logarithmic functions will show from this

value that 6 = 78 - 30' - 12" -f

.

Make the construction and test with protractor.
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Art. 29. To find condition for perpendicularity or

parallelism of lines from their equations.

In formula (F),

, a m — m'
tan a =

1 -+- mm

When the lines arej_, 6= 90 , and.", tan 6 = 00; that is,

m — m — 00 •

1 + mm'

Since a fraction whose numerator is finite equals 00 only

when its denominator = o, .*. in this case

1 + mm' — o or m' — — — (a)
m

That is, two lines are perpendicular to each other when

their slopes are negative reciprocals.

For example, 3 x — 2 y = 5 and 2^ + 3^=11 are

perpendiculars.

When the lines are parallel, = o and hence,

tan = o.

m, ,• m — m' ,
I hat is, =0 or m — m = o.

1 + mm

Whence m = m' (b)

That is, their slopes are equal. These conditions enable

us to readily draw a perpendicular or a parallel to a given

line through a given point.

For we can find the slope of the J_ from the slope of

the given line by (a) and of the parallel by (b).

Then the use of the formula for a line through a given

point with a given slope will give the required equation.

Example: Find the equation of aj_ to 3^ + 2^=5
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through the point (— i, 3). The slope of 3 x + 2 y = 5

is — f \y = — I x + f], hence the slope of the J_ is

3

The type equation for a line with a given slope through

a given point is y — y' = m (x — x') (C)

Here m = f , xf = — 1 and / = 3.

Substituting; y — 3 = f (#.-+ 1)

or 3 y ~ 21= 11.*

Art. 30. In Art. 11 it was shown how the area of a

triangle may be found when the co-ordinates of its vertices

{x",y")

Fig. 20.

are known. By the equation for a line through two given

points, the equations of the sides may now be found, and

* Comparing this equation to the _L with the original equation

it will be seen that the coefficients of x and y have simply inter-

changed, and one of them has changed sign, which suggests

a method of writing the 1 to a line. See example at end of

chapter.
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from them the angles by formula (F). Also we may
erect J_'s to the sides, at any point. It will now be shown

in Art. 31 how the lengths of the sides may be easily

obtained.

Art. 31. To find the length of a line between two given

points.

Let the points be (x', /) and (x", /'), respectively A and

B in Fig. 20.

Draw AF and BCJ_ to the x-axis. They are y' and /'

respectively. OF = x/ and OC = — x". Draw also AH
||

to the x-axis.

Then in the right triangle, ABH, AB 2 = AH 2 + BTP-

Call AB, L (length of AB). Then L2 = (OF + OC) 2 +
(BC - AF) 2 = (x' - x") 2 + if - y'Y or since (x'-x") 2

= (x" - x') 2
.

L = (x// — x') 2 + (/' — y')
2 (written symmetrically).

Example : Find the distance between (1, — § ) and (|, J).

Call the first (x', y') and the second (x", y").

Then I = V(|- i) 2 + (1 + f

)

2 = V^TV + II

Art. 32. To find the co-ordinates of a point which

divides a line between two given points into segments having

a given ratio.

Say the ratio is p : q, the points are (x
f

, y
f

) and (x", y")

(A and B in Fig. 21) and the required point P (x, y).

Draw BH, PG and AF J_ to the x-axis, and AK
||

to the

x-axis.

Then AF = /, PG = y, and BH = /'. Also OF = x',

OG - x, and OH = x" . Also AP : PB : : p : q.

To find PG and OG in terms of (x', /) and {x", f)
PG - PN + NG = PN + AF. (1)
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Since the triangles APN and ABK are similar, PN : BK :

AP : AB,

that is, PN : (BH - AF) : : AP : AB,

or PN : y" - y : : p : p + q.

P + q

... PG = y = * & ~ yf)

+ / [from (i)],

P + q

or y-Pf+W' <C

P + q

<!>
r

B

^^P
=^|A

|S In

r

*

H G i

Fig. 21.

Likewise,

OG = OH + HG = OH + KN - a* + (^ ~ *") g

(J)
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If the point is to bisect the line then p = q, and the

formulae become

y = Pf + P/ = f + /
2 p 2

(O

and x = ^ x—^~ = J—- .... (df)
2 p 2

Art. 33. To find the distance from a given point to a

given line.

Since parallel lines are everywhere equally distant, the

expedient suggests itself of drawing a line through the

given point parallel to the given line, and determining the

distance between these two lines at the most convenient

point.

Again, since perpendicular distance of course is meant,

the normal equation is naturally suggested, because it is

determined by a perpendicular from the origin.

Clearly, since these two lines are parallel, the angle /? in

the equation will be the same for both, and they will differ

only in the value of p. Also the difference in the values of

p for the two will be their distance apart, that is, will be

the distance from the given point to the given line.

Then let x cos /? and y sin [} = p, (E), be the equation to

the given line and x cos /? + y sin /? = p' be the equation

of a parallel line.

If this line passes through the given point (V, /) then

it must be satisfied by (x', y
f

).

.'. x' cos /? + / sin /? = f (2)

where

p' - p= ±d (3)

[d being the required distance]. The + sign will result

when the point-line is farther from the origin than the

given line; the minus sign, otherwise.



46 Analytical Geometry.

From (3), p' = p ±d.

.'. (2) becomes xf
cos ft

-\- y' sin
ft
= p ± d.

or ± d = *' cos /? + / sin /? - p (G)

Since any equation to a straight line may be put in nor-

mal form, the above expression is always applicable. By
taking advantage of the general form of normal equation,

Ax + By- = C
. • (E

x )

VA2 + B 2 VA2 + B 2 VA2 + B*

the formula (G) becomes easier of application. For in

above equations we know that

A
corresponds to cos p.VA2 + B 2

B

VA2 + B^

\/A 2T- 3

corresponds to sin /?,

and — corresponds to p.

+ d= Ax'

+ ^

(GO

VA2 +B 2 VA2 + B 2 VA 2 + B<

Ax'+ By - c

Va2+b 2

This formula (G') may be stated thus:

To find the distance from a given point to a given line,

put the equation oj the line into the form Ax + Bv — C = o.

Substitute for x and y the co-ordinates of the given point

and divide the left hand member of the equation by the square

root of the sum of the squares of the coefficients oj x and y.

The quotient is the required distance.

Example: Find distance from (— 2, 3) to 3 x + 4 y = — 9-

Comparing Ax + Bv = C,

A= 3, B = 4, C= - 9, and*' = -2,/= 3.



Analytical Geometry. 47

. ± d _ Ax + By - C = 3 (- 2) + 4 (3) ~ (-9)

Va2 + B 2 VFT?
-6 + 12+9 = I5_ =

3

Vli 5
""

Since it is merely distance wanted, the sign of d is not

important.

SYSTEMS OF LINES.

Art. 34. Since parallel lines have the same slope, but

different intercepts, and since the slope is determined

entirely by the coefficients of x and y, the equations of

parallel lines can differ only in the absolute term.

Thus Ax + By = K is the equation of a line
||

to Ax
+ By = C. Then two equations that differ only in their

absolute terms represent parallel lines.

Again; since the relation between the slopes of perpen-

dicular lines is given by the equation m' — — — , and m
m

and mf
are determined by dividing the coefficient of x by

the coefficient of y in the equations of the perpendicular

lines, if the coefficients of x and y be interchanged and the

sign of one of them reversed, the relation m' = will
m

be satisfied. The absolute term of course will be different

in the two equations.

Thus, Bx — Ay = L is the equation of a line perpen-

dicular to Ax + By = C.

Again; (Ax + By - C) + K (A'x + B'v - C r

) = o (1)

is the equation of a line through the intersection point of

Ax + By = C (2) and A'x + B'y = C . . . . (3)

For, transposing C and C in (2) and (3),
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Ax + By - C - o.

A'x + B'v - C = o.

Let (V, /) represent their intersection point. Since

this point is on both lines, it satisfies both equations; hence,

Ax' + By' - C = o (4)

and AV + By - C = o (5)

multiply (5) by K and add to (4)

;

(A*' + B/ - C) + K (AV + By - C) = o (6)

If (V, y) be substituted in (1) we get (6), but we know

(6) is true.

.*. (x', y') satisfies (1), and hence (1) is the equation of

a line through (V, /). Since K is an undetermined con-

stant, we can get the equations of any number of lines

through (x
f

, y) by giving K different arbitrary values.

Example: To find equation of a line through the inter-

section of 3 x — 5 y = 6 and 2 x + y = 9.

By above formula the equation is,

(3 x - 5 y - 6) + K (2 x + y - 9) = o.

If the line must also pass through another point, say

(3, — 1), K may be determined. For substituting (3, — 1)

for x and y,

(9 + 5 ~ 6) + K (6 - 1 - 9) = o,

whence K = 2 and above equation becomes

(3^-5^-6) + 2 (2 x + y - 9) = o,

or 7 x — 3 y = 24.

Example : Find the line X to ^—3^=5 through

(2,-1). Its equation by Art. 34 is

$x+ y= k.

Since (2, — 1) must satisfy it, 6 — 1 = k, or k= 5.

Hence 3 x + y = 5 is the required line.



Analytical Geometry. 49

EXERCISE VII.

1. Find the equation of a line whose intercepts are — 3

and - 5.

2. Put the following into symmetrical form and deter-

mine their intercepts.

1 . y -j- 2
- + < = -

3j 2 x - 3 y
2

x + y = 1.

3. The points (5, 1), (— 2, 3) and (1, — 4) are the

vertices of a triangle. Find the equations of its medians.

4. In Ex. 3, find the equations of the altitude lines.

5. What are the angles of the triangle in Ex. 3 ?

6. What is the equation of the line J_ to 2^—37=5
through (— 1, 2)?

7. What is the equation of line
||

to 2 # — 3 y = 5

through (— 1, 2)?

8. What is the angle between y -f 2 x = 5 and

3 v — x = 2?

9. The points (8, 4) and (6, 8) are on a circle whose

centre is (1, 3). What is the equation of the diameter J_

to the chord joining the two points ?

10. What are the co-ordinates of the point dividing the

line joining (— 3, — 5) and (6, 9) in the ratio 1:3?
11. Prove that the diagonals of a parallelogram bisect

each other.

12. Show that lines joining (3, o), (6, 4), (— 1, 3)

form a right triangle.

13. The vertices of a triangle are (4, 3), (2, — 2), (— 3, 5).

Show that the line joining the mid-points of any two sides

is parallel to, and equal to \ of, the third side.
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14. Show that (- 2, 3), (4, 1), (5, 3), and (-1, 5) are

the vertices of a parallelogram.

15. Show that the line joining (3, — 2) with (5, 1) is

perpendicular to the line joining (10, o) and (13, — 2).

16. (2, 1), (—4, —3), and (5 — 1) are the mid-points

of the sides of a triangle. What are its vertices ?

17. Three of the vertices of a parallelogram are (2, 3),

(-4, 1), (- 5,-2). What is the fourth?

18. Find the point of intersection of the medians of the

triangle whose vertices are (1, 2), (— 5, —3), (7 — 6).

19. What is the distance from the point (— 2, 3) to the

line $ x = 12 y — 7?

20. Find the distance between the sides of the parallelo-

gram in Ex. 14.

21. Change 3 x — 4y = 5 to the normal form.

22. Find the co-ordinates of the points trisecting the

line joining (2, 1) and (— 3, — 2).

23. Find the distance from (2, 5) to 2 x — ^ y — 6.

24. Find the altitude and base of the triangle whose vertex

is (3, 1) and whose base is the line joining (f , 1) and (4,— §).

25. Find the area of the quadrilateral whose vertices are

(6,8), (-4,0), (-2,-6), (4,-4).

26. Find the angles of the parallelogram whose vertices

are (1, 2), (- 5, -3), (7, - 6) (1, - 11).

27. _One side of an equilateral triangle joins the points

(2,V3) and (— 1, 4\/s). What are the equations of the

other sides?

28. What is the equation of a line passing through the

intersection of the lines 3 x — y = 5, and 2 x + 3 y = 7

and the point (— 3, 5)?

29. By Art. 34, find the equations to the medians of the

triangle whose sides are y = 2X + 1, y+x + i=o
and 5 x = 2 y + 2.
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30. Find the co-ordinates of the centre of the circle cir-

cumscribing the triangle whose vertices are (3, 4), (1, — 2),

31. The base of a triangle is 2 b and the difference of the

squares of the other two sides is d2
. Find the locus of the

vertex.



CHAPTER IV.

TRANSFORMATION OF CO-ORDINATES.

Art. 35. It sometimes simplifies an equation to change

the position of the axes of reference or even to change the

inclination of these axes from a right to an oblique angle,

1

B

V 1r

TP
1

1

1

!

I

1

'C
V*
1

1

1

0' A D

Fig. 22.

or both. To accomplish this it is only necessary to express

the original co-ordinates of any point on the line in terms

of new co-ordinates determined by the new axes and neces-

sary constants.

Art. 36. To change the position of the origin without

changing the direction of the axes or their inclination.

Let P be any point on a given line whose equation is to

be transformed.

Let its co-ordinates be x = OC and y = PC (Fig. 22),

52
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referred to the axes OX and OY. Let O'X' and O'Y' be

new axes, such that the origin O' is at the distance O'A =a,

from the axis OY, and at the distance O'B = b, from OY.
Extend PC to D_[_ to O'X', since the direction of the

axes is not changed.

Then the co-ordinates of P with respect to the new axes

are xf = O'D and / = PD.

Now, OC = AD = O'D - O'A, or x = x' -a )
(U)

PC = PD - CD = PD - O'B, or y = / - b )

{ }

It will be observed that (—a, — b) are the co-ordinates of

the new origin referred to the old axes, hence the old co-or-

dinates are equal to the new plus the co-ordinates of the

new origin, plus being taken in the algebraic sense.

Example: What will the equation x2— 4 x + y
2 — 6 y = 3

become, if the origin is moved to the point (2, 3), direction

being unchanged ?

Here, x = xf + 2 and y = y
f + 3-

Substituting,

{x' + 2)
2 - 4 (*'+ 2 ) + (/+3)

2-6 (/+ 3 ) = 3.

Expanding and collecting, x' 2 +y ' 2 = 16 or dropping

accents; .r
2 + y

2 = 16, which indicates how an equation

may be simplified by transferring the axes.

Art. 37. To change the direction of the axes, the angle

remaining a right angle.

Let O'X" and O'Y* be the new axes, the axis O rX" mak-

ing the angle with the old X-axis, and the new origin O'

being at the point (a, b).

Let the old co-ordinates of P [OD and PD in the figure]

be (x, y) and the new co-ordinates [O'A and PA in the

figure] be {x
f

, /). Draw O rC and BA
||
to OX and AE J_

to OX, then Zs AO rC and BPA both equal d.

OD= *= OF + O'C- BA . . . (1)
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In the right triangle, AO'C, O'C, = O'A cos AO'C
[by Trig.]. That is, O'C = *' cos 0.

«g- 23.

Also in BPA, BA = PA sin BPA or BA = / sin 0; and

OF= a.

Substituting in (1),

x = a + oc? cos — y sin d.

Again: PD = y = O'F + AC + PB . . . . (2)

OrF = b; AC - (TA sin AO'C or AC - x' sin

and PB = PA cos BPA or PB = / cos d.

Substituting in (2),

y = b + 00' sin d + y
f cos ^ )

x = a -\- xf
cos ^ — y sin 6 \

(K)

If in any equation these values be substituted for x

and y, the resulting equation will represent the same locus

referred to axes inclined at the angle d to the old X-axis,
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with the origin at (a, b). As a rule the origin remains

the same, hence a = o, b = o, and (K) becomes,

y = x' sin 6 + y
f
cos d ) ,^,.

x = x cos a — y sin

Example: What does equation 3 # — 2 v = 5 become

when the inclination of the axes is changed 30 ?

Here sin 30 = h; cos 30 = \ \/3

and y = J a/ + h \ZJY,
x=\\/zx' - £/.

Substituting, 3 (JV3^-i/)-2 (i^+iV3/)=5
or (I VI- i)*'- (l+V3)/= 5-

Art. 38. A very similar procedure in the case where

the axes are changed from rectangular to oblique, and the

origin moved to the point (a, b), gives rise to the formulae,

y = b + xr
sin d + y' sin </> ) ,j.

x = a + #' cos -\- y' cos <£ J

# and cf) being, respectively, the angles made by the new

Y-axis and Y-axis with the old X-axis.

When the origin is not changed,

a = o and b = o, and (J) becomes

v = xr
sin # + V sin

x = a/ cos + / cos
(JO

Art. 39. To change the co-ordinates jrom rectangular

to polar.

The method is entirely similar to the foregoing; the find-

ing of the simplest equational relation between the old

and the new co-ordinates, using necessary constants.

In Fig. 24, let O' be the pole and O'N the initial line,

the co-ordinates of O' being (a, b); the rectangular co-

ordinates of P being (x, y) and the polar, (r, 0), respec-
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tively, OB, PB, OT, and Z PO'N in the figure. The angle

between the initial line and the X-axis is
<f>.

It is then simply a question of expressing x and y in

terms of r, 6 and
<f>.

The right triangle usually supplies the simplest relations,

so we draw O'AJJo PB, giving us the right triangle PO'A

involving r, 6 and O'A = FB, a part of x.

Fig. 2 4-

Then OB = x = OF + FB = OF + O'A,

or x = a + r cos (6 + <j>)

[since O'A = O rP cos PO'A = r cos (d + 0)].

Also, PB = y = AB

y
or

PA = O'F + PA,

b + rsin (6 + <f>))

x = a + r cos (6 + <j>) )

If the initial line is
||
to the X-axis, <j> = o and (K) becomes

y = b -f r sin ^ )

^ = a + r cos (9 \

(K)

(K')
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If the pole is at the origin, a = o and b = o

.

y=r sin 6
}and *=,cos# ^

Art. 40. To change from polar to rectangular co-ordi-

nates.

It is here necessary only to solve equations (K"), say,

for r and 0, as (K") gives the usual form.

Thus, squaring equations (K"),

y
2 = r

2
sin2 6

x2 = r
2 cos 2

6.

Add; x2 + y
2 = r

2
(sin

2 d + cos2
0) = r

2

[since sin 2 6 + cos 2 = 1].

Dividing the first equation in (K") by the second,

y r sin . a at. 1 V* = = tan or = tan — x *- .

# r cos x

Example: Change to rectangular form

r
2 cos 2 d = a 2

.

Substituting in above equation, remembering that

cos 2 = cos 2 — sin2 = cos2
(9 (1 — tan 2

0)

__ 1 - tan 2

= _ 1 - tan 2

sec 2
1 + tan 2 6

r

(»" + »') (Sri)""''

or. x2 — v2 = a 2
.
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EXERCISE VIII.

Transformation of Co-ordinates.

1. What does y
2 = 2 px become when the origin is

moved to
j
— *-

> o ) without changing the direction of the

axes?

2. What does a 2

y
2 + b

2x2 = a2b
2 become when the

origin is moved to ( , o )
, axes remaining parallel ?

3. What does y
2 + x2 + 4 y — 4 x— S = o become when

origin is moved to (2, — 2) ?

4. What does y
2 = 8 x become when the axes are turned

through 6o°, origin remaining the same?

5. What does y
2 = 2 px become when the origin is

moved to the point (m, n)?

6. What does a 2

y
2 + b

2x2 = a2
b
2 become when the

origin is moved to (h, k)?

7. What does 2 x/3 x + 2 y = 9 become when the axes

are turned 30 , origin remaining the same ?

8. What does 6
2x2 — a 2

y
2 = a 2

b 2 become when the

Y-axis is turned to the right, cot
_1 — > and the X-axis to

a

the right, tan
-1 — [observe negative angle] ?

a

9. Transform the polar equation p = a (1+2 cos 6)

to a rectangular equation with the origin at the pole, and

the initial line coincident with the X-axis.

10. Change (x2 + y
2

)

2 = a 2 (x2 — y
2
) to the polar equa-

tion under the conditions of Ex. 9.

a'
11. Change p

2 = to rectangular co-ordinates,
cos 2 6

conditions remaining the same.
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12. Change to rectangular co-ordinates, under same
n

conditions, p = a sec2 — -

2

13. p = a sin 2
#:

14. p =
1 — cos o

15. Change to polar co-ordinates, under same conditions,

f = '

2 a — x

16. 4 a 2x = 2 ay2 — xy2
.

17. 4$ -f yl = a§

18. 4 X2 + 9 / = 36.



CHAPTER V.

THE CIRCLE.

Art. 41. To find the equation to the circle.

Remembering the definition for the equation of a locus,

namely, that it must represent every point on that locus, it

is only necessary as usual to find the relation between the

co-ordinates of any point on the circle in terms of the ne-

cessary constants, which are plainly in this case, the co-ordi-

nates of the centre and the radius.

Let P be any point on the circle A, the co-ordinates of

whose centre are (h, k). The condition determining the

D c

Fig. 25.

curve is that every point on it is equally distant from its

centre. Draw the co-ordinates of P [PC, OC] and call

them (x, y), also AB J_ to PC, forming the right triangle

APB, involving r and parts of x and y.

60
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Then AB 2 +PB 2 =AP2 ....... (i)

AB = DC = OC - OD = x - h,

PB = PC - BC = PC - AD = y - k.

Substituting in (i): (* - hf + (y - kf = r
2

. . (L)

Performing indicated operations in (L) and collecting,

x2 + y
2 — 2 hx — 2 ky = r

2 — h2 — k 2
.

Calling - 2 h, m; - 2 k, n and (h
2 + k 2 - r

2
), R 2

for simplicity, (L) becomes,

x2 + y
2 + mx + ny + R2 = o . . . . (L r

)

It is evident from (I/) that any equation of the second

degree between two variables in which no term containing

the product of the variable occurs, and where the coefficients

of the second power terms are either unity or both the

same, is the equation of a circle.

Putting (I/) in the characteristic form (L) by adding

. m2 n2

to both sides -f-
—

,

4 4

m2
fi

we have, x2
-f- mx + — -{- y

2
-\- nx + —

4 4

4 4

or, (*+-) 2 + (y+ -) 2

2 2

m2
. n2

-pi _ ra
2 + n2 — 4

R

2

- R
4 4 4

Comparing with (L), we find

h = ZLJH k = - — • r
2 = ^ 2 + ^ 2 ~ 4 R2

.

2 2 4

wi n
That is, the co-ordinates of the centre are ( , ),

2 2

and the radius is J \/m
2 + « 2 — 4 R2

.
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Example: Find the co-ordinates of the centre and the

radius of x2 + y
2 — 2 x + 6 y — 26 = o.

Comparing this with (L/), x2 + y
2 + mx + ny +R2 =0,

we find, m= — 2, n = 6, R2 = — 26; hence the co-ordi-

nates of the centre.

, m n. , — 2 6, f N
( , ),are ( , ) = (1, -3),22 22

and the radius

= iVw2 +w2 - 4 R2

iV4 +36 ~ (-104)

iV I44 = 6.

This equation put in form (L) would be,

(x— 1) + (y + 3)
2 = 36.

Art. 42. As it takes three conditions to determine a

circle, and as the above equations contain three arbitrary

constants, if three conditions are given that will furnish

three simultaneous independent equations^ between these

constants, their values can be found, and hence the equation

to the circle.

The three conditions may be, for instance, three given

points on the circle, or two given points and the radius, etc.

Example: Find the equation for the circle passing through

the points (3, 3), (1, 7), (2, 6).

Taking the general equation,

x2 + y
2 + mx + ny + R 2 = o . . . (V)

these three points must each satisfy this equation if it is to

represent the circle passing through them, since they are

on it. Hence, substituting them successively for x and y

in (I/), we get three equations between m, n and R2 as

follows:
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9 + 9 + 3 m + 3 n + R2 = o

1 + 49 + m + 7 « + R 2 = o Y

4 + 36 + 2 w + 6 « + R2 = o

3*1 + 3 w + R2 = - 18 '.
. . . (1)

m + 7 » + R2 = — 50 (2)

2 m + 6 w + R2 = — 40 (3

)

Subtract (2) from (1) and (2) from (3).

2 m — 4 n = 32 or m — 2 » = 16 ... (4)

m — m = 10 . . . (5)

Subtract (5) from (4); n = — 6.

whence w = 4,

and R2 = — 12.

Substituting these values of the constants in (I/),

x2
-\- y

2
-j- 4X — 6 y — 12 = 0,

the required equation.

Art. 43. When the origin is at the centre of the circle,

h and k are both zero, and the equation becomes,

x2 + /=r2 (L")

which is the form usually encountered.

Art. 44. The polar equation is readily derived from

(L) by making the substitutions for transformation from

rectangular to polar co-ordinates, taking the X-axis as

initial line and the pole at the origin.

Then y = p sin d,

x = p cos 6,

k = p' sin 0',

h = p' cos a,

where (p, 6) are the polar co-ordinates of any point on the

circle and (p', d
f

) are the polar co-ordinates of the centre.

Making these substitutions in (L), we get :

(p cos 6 - p' cos d')
2 + (p sin d - p' sin d'f = r

2
,

or, p
2 cos2 6 — 2 pp' cos 6 cos Q' + p' 2 cos 2 Q' +
P

2
sin

2 Q - 2 pp' sin 6 sin Q' + p
2 sin 2 0' = r

2
.
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Collecting, ^(cos2 + sin 2
0) + p' 2 (cos2 0' + sin

2 0')

— 2 pp
f
(cos cos 0' + sin sin 0') = r

2
.

whence

p
2 + P

' 2 - 2 PP
f cos ((9 - 0')= r

2

[since cos2 6 + sin 2 6 = i

and cos O' cos
r+ sin sin d'= cos (6 - 0')\

TANGENTS AND NORMALS.

Art. 45. To find the equation of a tangent to the

circle x2 + y
2 = r

2
. Since a line may be determined by

two conditions, and a tangent must be perpendicular to a

radius and touch the circle at one point, the radius being

in this case the distance from the origin to the line furnishes

one condition and the point of tangency another.

Knowing the equation to a line determined by two points,

(X"y")

Fig. 26.

and taking these two points on the circle, we are able to

convert this condition in the special case of the tangent

into the point of tangency and the distance from the origin.

The equation of a line through two points (#', /) and

(*",/) is,

?-/=£f^(*-*') • • • (B)
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Let these two points be B and C on circle O, then

(x', y
f

) and (of, /') must satisfy the equation to the

circle; hence

xn + y'2 = r
2

(2)

*"2 +/'2 = r
2

(3)

If these conditions be imposed on (x', y
f
) and (x", y") in

equation (B), it will become a secant line to the circle.

Subtracting (2) from (3),

of2 - x'2 + y"2 - y
n = o,

or, x»2 - x'2 = - if
2 - /2

);

factoring, (of - xf

) (of +x')=- (/'-/) (/'+/),

f - V x" + x'
whence J— jj= - -j——-.

x" — x' y" + y

Comparing (B) with the equation to a straight line

having a given slope and passing through a given point,

y-y' = $z~, (*-*'.)..
•

(B)

y — y' = m (x — x') (C)

V — V
It is evident that — = m, so that the slope of a

x" — x

line through two given points (x
f

, y
f

) and {xff

,
y") is repre-

f_ - y
sented by

x„ _ ^
'

yff — y
f %" + x'

Hence the value of l —, , — , represents
of — x y" + y

the slope of a secant line to the circle, and if this value

be substituted in (B) the result will be the equation of a

secant line through the point (V, /) with the slope

_ x" + x f

f +/''
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Then if (V', y") is taken nearer and nearer to (x', y
f

)

the secant will approach the position of the tangent at

(V, /), and when (x", /') coincides with (V, /) it will

be the tangent. Clearly we are at liberty to take (x", y")

where we please, since it was any point on the circle.

Substituting in (B), y — y
f = — ———- (x — x').

y" + /
Making x" = x' and y" = y

f

,

y - y = - — (x ~ x') = - — {x - x');
2 y y

clearing of fractions, yy' — y
n = — xxf + x' 2

;

transposing, xx' + yy' = xn + y'2
.

But by (2), x'
2 +/ 3 = r

2
.

.-. xx' + yy = r
2 (Tc)

Evidently it would serve as well to make (V, y
f

) approach

(x", y"), only the line would then be tangent at (x", y).

In (Tc) the accented variables always represent the point

of tangency.

Example: What is the equation of the tangent to the

circle x2 + y
2 = 10 at (— 1, 3) ?

Here r2 = 10, x* = — 1 and / = 3.

Substituting in (Tc ), —x + 3 y = ioor 3y-x-io=o.
Observe that (V, /) is point of tangency, not (x, y);

never substitute the co-ordinates of point of tangency "for

the general co-ordinates x and y.

Again: find equation of tangent to the circle x2 + y
2 = 9,

from the point (5, 7^) outside the circle.

The equational form is, xx' + yy' = 9 . . . . (1) and

it remains to find point of tangency (V, /). The point

(5, 71) being on this tangent must satisfy its equation, but it

is not the point of tangency and must not be substituted for
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(x, y). Hence substituting in (1), — 5 x* + y> / = g. (2)

Also, since (x
f

, y
f

) is on the circle it must satisfy circle

equation; that is,

*'2 +/ 2 =9 (3)

Combining the simultaneous equations (2) and (3), we get,

xf = V59 or - W / = ~ If or VV-
That is, there are two tangents, as we know by Geometry;

namely, 63 X — 16 y = 195 and 4 y — 3 x = 15. [Gotten

by substituting these values of (V, 3/) in (Tc ).]

CIRCLE.

Art. 46. To express the equation of a tangent to a

circle in terms of its slope.

Evidently the tangent being a simple straight line may
be determined by its slope as well as by the point of tan-

gency, if the slope be such that the line will touch the circle.

Hence it is a question of determining this necessary value

of m. If we take the general slope equation to a straight

line and find a relation between m, b and r such that the

line will touch the circle of radius, r, it is sufficient.

Again, regarding the tangent as the limiting position of

the secant line, as its two points of intersection with the

circle approach coincidence (as in Art. 45), if we combine

the slope equation of a straight line with the equation to a

circle, we get in general their two points of intersection

expressed in the constants they contain; if then we deter-

mine (by Algebra) the conditions these constants must

fulfil among themselves that the two points of intersection

shall coincide, or become one point, we have the desired

result.

Let y = mx -\- b, (1) be the slope equation of a straight

line, and x2 + y
2 = r2

, (2) be the equation to a circle.
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Regarding (i) and (2) as simultaneous, and substituting

the value of y from (1) in (2), we get a quadratic in x
y

whose two roots are the abscissas respectively of the two

points of intersection.

We get then, x2
-f- (mx -f b)

2 = r
2

,

x2 + m2x2 + 2 mbx + b
2 = r2

,

(1 + m2
) x2 + 2 w£w -f (b

2 — r2
) =0. (3)

By the theory of quadratics in algebra we know that the

two values of x will be the same in (3 ) if it can be separated

into two equal factors, that is, if it is a perfect square.

By the binomial theorem it will be a perfect square

if the middle term is twice the product of the square roots

of the first and last terms (like a2 + 2 ab + b
2
).

Hence (3) will have two equal values of x (that is, equal

roots) if

2 mbx = 2 y/(i + ?n
2

) (b
2 — r

2
) x2

,

or squaring; if 4 m 2
b
2x2 = 4 (1 + m2

) (b
2 — r2 ) x2 =

4 (b
2x2 — r2x2 + b

2m2x2 — r
2m2x2

),

dividing by 4 x2
; b

2m2 = b
2 — r2 + b

2m2 — r
2m2

,

b2 = r2 + r
2m2 = r

2
(1 + m2

),

or & = ± r \/i + m2
.

If this condition be fulfilled, clearly the equation of the

secant y = mx + b will become the equation of the tangent

y = mx ± ry/i + m2 ... (T Cj ro )

The ± sign indicates that there will be two tangents with

the same slope, as should be the case, having ^-intercepts

numerically equal, but opposite in sign, or vice versa.

Example : Find the value of b in y = T\ x + b, that the

line may be tangent to the circle x2 + y
2 = 25.



Analytical Geometry. 69

By condition formula, b = ± ryi — »i
2

,

we must have, b = ± 5 \/i — ^64 = ± 5 . 2S9 = ± __L

225 > 225 3

Hence the equations of the tangents are

8 , 17 , 8 17
y = — x — and v = — x —

,

x 5 3 J 5 3

or 15 y =8x + 85 and 15 y = 8 .v— 85.

.\rt. 47. The normal to any curve at a specified point

is denned as the line perpendicular to the tangent at that

point.

It is evident from geometry that the normal to the circle

at any point is the radius drawn to that point.

Since the normal is perpendicular to the tangent, if the

slope of the tangent is known the slope of the normal is

readilv found I in' = ), and as it must pass through
V * /

the point of tangency, we have all the conditions necessary

to determine its equation.

To find the equation of the normal to the circle x2 + y
2=r2

.

Let the point of tangency be (V, /). The equation to

the tangent at this point is xx* + yy' = r, or in slope form,

\
J r • x'y= —-— x H— (1), and its slope is — — •

y y y
Since the normal is perpendicular to it, its slope is

1 V

y
The equation of a line through (V, /) with slope m' is

y-y'= m' (x - x') . . . . [by (C)]

\
J

But, m' is here equal to —

,

/
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hence the normal equation is y — y' = -— (x — x/

),x

or x'y — xy' = xyf — x'y',

whence y — -L x (Nc)
x'

This may be written in slope form, using the slope of the

tangent, m, by substituting for -_, the slope of the normal,

its value
m

xy= - -
m

or my + x = o.

Art. 48. To find the length oj a tangent jrom any point

to the circle x2 + y
2 = r

2
.

By Art. 31, if (xv yx )
be the given point and (V, /)

the point of tangency, the length (d) of a line between them

is, d2 = {x
x
- x') 2 + (yt

- y
f

)

2 = x 2 + y
2 - 2 (x

x
x* +

yx
y') + x '2 + y* 2

>
Dut ^ (

x'i y') is on th e circle and (xv yx )

on the tangent, x'2 + y
n = r

2 and x
x
xf + y x

y' = r
2

.

.-. ^2= X 2 +y 2 - 2 r
2 + r

2 = x 2 + y* - r
2

. (D c )

If the origin is not at the centre of the circle, it is easy

to show in exactly the same way from equation (L), that

d = V(x
1
- h) 2 + {y1

- kf - r
2

.

Art. 49. The locus of points from which equal tangents

may be drawn to two given circles is called the radical

axis of these circles. Having the above expression for

the length of a tangent to any circle, it is only necessary to
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equate the two values of d for the two given circles, in order

to find the equation to the radical axis.

Let the circles be,

{x-hf + (v - k) 2 = r\ (Q)
Ov-;;z) 2 + (v-/*) 2 =R2,(C

2 )

be any point on the radical axis to these circles.

If d
x
and d

2
are the tangent lengths from (x

x , yx )
to (Q)

and (C 2 ) respectively, then,

,.-W„_.*=« '
andlet(^)

^ = \/(*i - hf + (y, - kf
and rf

2 = v/

(3pi
~~ mf + (?i

~" n ) ~ ^ •

But ^ = J
2
or ^2 = d

2

2
.

.-. fo - hf + (ft
- &)

2 - r
2 = (x

t
- m) 2

+ iyi -n) 2 -R2
(3)

Since (x
x , yx )

substituted in the equation

(x - h) 2 + (y - k) 2 - r
2 = (x- m) 2 + (y-n) 2 - R2

(4)

gives (3) which we know to be true, then (x
x , yx )

satisfies (4).

But (x
x , yx ) is any point on the radical axis, hence every

point on that axis satisfies (4), and .*. (4) is the equation

of the radical axis to (C
x )

and (C 2 ).

SUBTANGENT AND SUBNORMAL.

Art. 50. The Subtangent for any point on a curve is

the distance along the x-axis from the foot of the ordinate

of the point of tangency to the intersection of the tangent

with that axis.

The Subnormal for any point on a curve is the distance

measured on the x-axis from the foot of the ordinate of

the point of tangency to the intersection of the normal

with that axis.

Let O [Fig. 27] be a circle, PT a tangent at P (V, /),

OP a normal at the same point, PA the ordinate (y
f

) of P.

Then AT = subtangent and OA = subnormal for P.
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To find their values, it is to be observed that the subtangent

AT = OT - OA. OT = the x-intercept of the tangent,

which is found as in any other straight line by setting

Fig. 27.

y = o in its equation (y = o being the ordinate of the

point T). Then in equation (Tc ) setting y = o, we get

xx' + o = r
2
7

or x = OT =
X

Also, OA = x'.

.-. AT = r2
x> = r2 ~ x' 2

=

x x'

_ / :

x'

The subnormal, OA = xf
evidently.

Example: The subtangent for the point (3, 4) on a

circle is — . What is the equation of the circle?

3

Y* X 1

6

Here x' = 3, V = 4 and — = — •

From this last equation ° = —
f

3 3

whence r
2 — 25; r = 5.

Then the equation to the circle is #2 + y
2 = 25.
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The origin is taken at the centre of the circle in these

discussions because that is the usual form encountered,

and the processes are exactly the same wherever the origin

may be; the greater simplicity of results recommending

this form of equation for explanation.

INTERSECTIONS.

Art. 51. By what has been said in general about the

intersections of lines, it follows that if two circles intersect,

the points of intersection will be readily found by combining

the two equations as simultaneous. If the circles are

tangent, the unknowns x and y will have each one value,

or rather each will have its values coincident.

Example: Find where

( x2 + y
2 — 4#+ 2 y = o (1) ) ,

\ 2 T 2 / { \
mtersect.

\x2 + y
2 - 2y=4 (2) $

Subtracting (1) from (2), 4 # — 4 y = 4,

or x- y= 1 . . . . (3)

Substituting value of x from (3) [x = y + i]in (2),

;y
2 + 2v + i+v2 -2;y=4,

2 f =
3, y=± x/Jj

whence from (3), x = 1 ± \/%.

The points of intersection are then (1 + \/f , a/|) and

(1 - VI, - VI)-
Plot the figure and verify results.

(3) Is evidently the common chord, for both points

satisfy it, and it is the equation of a straight line.

Art. 52. A circle through the intersections of two given

circles.

Tf
{x2 + y

2 + A* + By + C = o (1) )

11
\ ->,->, a ,-r. . ,-. / w are anv two circles,
^x2 + y

2 + A
t
* + B^ + Q = o (2) J

*

then (x2 + ./ + Ax + By + C) +
n (x2 +y2 + A,x -f By + Q) = o . . . (3)
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is the equation of a circle through the intersections of (i)

and (2). For since (3) is a combination of (1) and (2) it

must contain the conditions that are common to both, and

the only conditions common to both, in general, are their

points of intersection. (3) is the equation to a circle, for

it can be put in the form,

(1 + ri) x2 + (1 + n) y
2 + (A + A

t
n) x +

(B +B in)y+ (C + C
l
n) = o,

2 . 2 . A + A
x
n

,
B + B,n

,
C + Q«

or x2 + y
2

-\ !
x— x + ! *— y -\ ! *- = o,

1 + » 1 + n 1 + n

which is clearly the equation to a circle of the general form.

Further, (3) is satisfied by any point that satisfies both

(1) and (2). for (3) is made up exclusively of (1) and (2).

If a third condition be supplied, n can be determined and

a definite circle through (1) and (2) results.

EXERCISE.

The Circle.

What are the co-ordinates of the centre and the radii of

following circles?

1. x2 + y
2 — 2 x + 4 y = 11.

2. x2 + y
2 — 6 y = o.

3. x2 + y
2 + x - 3 y = y\

4. 3X2 + sy
2 — 8 x — 2 y = 102 J.

5. x2 + y
2 + 8 x = S3-

6. x2 + y
2 + 6 * + 8 y = - 9.

7. 4 x2 + 4 v2 - 2 a; + y = - TV
8. 8 x2 + 8 y

2 - 16 * - 16 y = 56^
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Write the equations for the following circles, (h, k)

being the co-ordinates of the centre, and r the radius.

9. h = — 2 k = 3 p = 4J

10. // = J & = 2\ r = 4

1 1

.

& = ! k = — J ^ = V6

12. h = o k = i f = 5

Find the equations for tangent and normal to following

circles:

13. x2 +/= 9 at (- ij, 3).

14. x2 + f = 6 at (i
§).

15. x2 +/= 36 at (- 3, - 5).

16. x2 + y
2 = 25 at point whose abscissa is 3.

17. x2
-\- y

2 = 16 at point whose ordinate is — ^/j.

18. (x - 2)
2 + (J

- i) 2 = 100 at (6, 7).

19. x2 + (y - 3)
2 = 25 at (3, ?).

20. x2 + y
2 = 20 at (?, 2).

Find the intersection points of the following:

21. #2 + y
2 = 25 and x2

-f ;y

2 + 14 x + 13 = o.

22. x2 + ;y

2 = 6 and a;
2 + y

2 = 8 x — 8.

23. x2 +y2 — 2x — 4y —1=0,
and 2 x2 + 2^2 — 8 x — 12 y + 10= o.

24. x2 + y
2 = 4, and x2 + ;y

2 + 2 # — 3 = o.

25. Find the equation of the circle passing through the

intersections of x2 + y
2 = 9 and 3 .r

2 + $y
2 — 6x + 8y = i,

which also passes through the point (4, — 5).

26. Find the equation of the circle passing through the

intersections of x2 + y
2 = 16 and x2 + y

2 + 2 x = 8,

which also passes through the point (— 1, 2).

27. Find the equation of the circle through the three

points (o, o), (2, 3), and (3, 4). What are the co-ordinates

of its centre and its radius ?

28. Find the equation of the circle through the points

(2, ~ 3), (3> ~ 4), and (- 2, - 1).
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29. Find the equation of the circle through the points

(- 4, ~ 4); (~ 4, - 2); (- 2, + 2).

30. Find the equation of the circle passing through the

origin and having x and ^-intercepts respectively 6 and 8.

31. Find the equation of a circle circumscribing the tri-

angle whose sides are x + 2 y = o, 3 x — 2 y = 6, and

x-y= 5.

32. Find the equation of a circle passing through (1, 5)

and (4, 6) and having its centre on the line y — x + 4 = o.

33. Find the equation of a circle through (3, o) and

(2, 7) whose radius is 5.

34. Find the equation of a circle having the line joining

(f, f) to the origin as its diameter.

35. Plot by points the circular curve whose chord is

30' and sagitta, 9/.



CHAPTER VI.

CONIC SECTIONS.

Art. 53. The sections of a right circular cone made by

a plane intersecting it at varying angles with its axis, are

called conic sections.

If the plane is parallel to an element of the cone the

intersection is called a parabola.

If the plane cuts all the elements of one nappe of the

cone, the section is called an ellipse.

When the plane is parallel to the base of the right cone

the ellipse becomes a circle.

If the plane cuts both nappes of the cone, the section is

called a hyperbola.

The hyperbola evidently has two branches (where it

intersects the two nappes). All these sections are called

collectively conies.

Art. 54. The equation of a conic.

From the standpoint of analytical geometry, a conic is

denned as a curve, the distances of whose points from a

fixed straight line, called the directrix, and from a fixed

point, called the focus, bear a constant ratio to each other.

This ratio is called the eccentricity of the conic. It can be

readily proved geometrically that this definition follows

from the definitions of Art. 53.

In Fig. 28 let P be any point on a conic, the ^-axis the

directrix, and F the focus. Draw AP perpendicular to

the directrix, PB perpendicular to x-axis, and join P and

PF
F. Call the constant ratio e: then — = e,

PA
77
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or PF = e. PA
The co-ordinates of P are x = OB = AP, y = PB.

Represent the constant distance OF by p, then

PF2 = FB 2

FB = OB -

- PB 2
(2) [in the right triangle FPB].

OF = x - p. PB - y.

Substituting in (2); PF2 = (x - p)
2 + f.

(1)

Hence (1) becomes, \/(x — pf -f y
2 = ^^.

squaring; (x— p)
2 +y2=e2x2

,

collecting; (1 — e
2 )x2

-\-y
2— 2 px-\-p ?

--=o (a)

which is the equation for any conic in rectangular co-or-

dinates. The polar equation is much simpler. It may be

derived by transforming (a) to polar co-ordinates, or thus;

A P^-^"

v/ 1

F B

Fig. 28.

in Fig. 28, let the co-ordinates of P be p = PF, 6 = Z PFB,

the pole being at F and the #-axis being the initial line.

Then cos PFB

But

that is,

whence

FB
FP

FB=OB-OF =

p cos = AP - p,

AP = p cos + p

, or FB = FP cos PFB =p cos 0.

AP- OF= AP-£,
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Substituting in (i); p = e (p cos + p) =

Transposing and collecting;

p (i — e cos 6) = cp.

=-.

ep
•

p
i — e cos

79

ep cos + ep.

Art. i>y

THE PARABOLA.

The parabola is defined in analytical geom-

etry as a curve, every point of which is equally distant from

a -fixed point arid a fixed straight line. This definition is

in entire accord with Art. 53.

Clearly from this definition A r

e = 1 in the parabola, hence (a)

becomes y
2 — 2 px + p

2 = o,

or y
2 = 2 px — p

2
(1). As it

is usually convenient to have

the origin at the vertex O (in

Fig. 29) of the parabola, and

as the vertex is midway between

the directrix and the focus by definition, the above equa-

tion is transformed to new axes having their origin at the

vertex by substituting [xf + -
)

for x and leaving y un-

Fig. 29-

changed.

The co-ordinates of the new origin are [*-j o) with

respect to the old, hence the transformation equations are

as above,

Off -f £. and y — y'
;

2

(1) then becomes y' 2 = 2 p (x
; + 2.) — p

2 = 2 px'

,

2

or [dropping accents] y
2 = 2 px (B)

The equation is derived directly from the definition, thus:
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In Fig. 29, let P be any point on the parabola; AC, the

directrix, O the vertex and the origin. Draw AP
||
and

PB perpendicular to the jc-axis, and let F be the focus.

Then if DF be represented by p, OF will equal - by defi-
2

nition.

PF = PA (a) [by definition of parabola].

But PF = yJvW + FB*"= x/PB5 + (OB - OF) 2

= v^
2+(*-!)

2

'

and PA = OB + DO = x + £.
2

Substituting in (a); 4/^2 _j_ fx _ P\ = x.+ Z.
,

squaring; y
2 + fx - t \ = fx + *

j ,

y
2 +/- px + it = ^+ /w + ^A

;y
2 = 2 />x, as before.

From its equation, the characteristic property of a para-

bola is, that the ratio of the square of the ordinate of any

point on it to the abscissa of that point is a constant, for

y2

2— = 2 p. This relation is used in physics to show that the
x

path of a projectile is a parabola. When the curve is

symmetrical to the j-axis as in Fig. 30, the equation takes

the form, x2 = 2 py.

As an exercise prove this last equation.

Art. 56. If in the equation to the parabola (B), the

abscissa of the focus (F), x = * be substituted, the
2
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resulting values of y are the ordinates of the points on

the parabola immediately over and under the focus;

-.#(£)-*thus

whence y = ± p.

These two ordinates together, extending from the point

Fig- 3°-

above the focus to the point below on the curve, form what

is called the latus rectum. (GH, Fig. 29.)

The latus rectum evidently equals 2 p, and is often called

the double ordinate through the focus.

Art. 57. To construct the parabola.

First Method. The definition suggests a simple mechan-

ical means of constructing the parabola. Let the edge of

a T-square (AB, Fig. 31) represent the directrix; adjust a

triangle to it, with its other edge on the axis, as DEC.
Attach one end of a string whose length is EC, at C and

the other end at F. Keeping the string taut against the
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Fig. 31.

base of the triangle with a pen-

cil (as at G) slide the ruler

along the T-square and the

point of the pencil will de-

scribe a parabola, for every-

where it will be equally

distant from AB and F,

as at G; for EG = GF,

since GF = E'C - GC
= EC - GC and E'G
= E'C - GC

Second Method: For practical purposes it is more con-

venient to construct by points.

Let AB (Fig. 32) be the directrix; F, the focus, and OX,

the axis. Lay off as many points as desired on the axis,

as C, D, E, G, H, etc.; then with F as a centre and radii

successively equal to OC, OD, OE, OG, OH, etc., draw

arcs above and below OX, at C, D, E, G, H, etc.; erect

perpendiculars to OX in- a
tersecting these arcs at

C' and C", D' and D",

E' and E", etc.

These points of inter-

section will be points on

the parabola, for they

are all equally distant

from AB and F by the

construction.

By taking these points

sufficiently near together,

the parabola can be constructed as accurately as desired.

Art. 58. The polar equation to the parabola is easily

derived from the general polar equation to a conic, by

remembering that for a parabola, e = 1.

Fig. 32.
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Hence o — —
e cos '

becomes p = —
- cos

Art. 59. It is evident from the form of the parabola

equation, y
2 = 2 px, that x cannot be negative without

making y imaginary, hence no point on the parabola

y
2 = 2 px can lie to the left of the Y-axis; that is, the curve

has but one branch lying to the right of the Y-axis. In

order to represent a parabola lying to the left of the origin,

the equation would have to take the form

y
2 = — 2 px,

so that negative values of x would make y
2 positive.

In this latter case no positive value of x would satisfy.

EXERCISE.

What are the equations of the parabolas passing through

the following points, and what is the latus rectum in each

case?

I. (1,4); 2. (2,3); 3.
(i

i); 4. (3,-4).

5. The equation of a parabola is y
2 — 4 x. What

abscissa corresponds to the ordinate 7 ?

6. What is the equation of the chord of the parabola

y
2 — 8 x, which passess through the vertex and the nega-

tive end of the latus rectum ?

7. In the parabola y
2 = 9 x, what ordinate corresponds

to the abscissa 4? Construct the following parabolas.

8. y
2 = 6 x. 9. x2 = 9 y.

10. y
2 = — 4 x. 11. x2 = — 8 y.

12. For what points on the parabola y
2 = 8 x will

ordinate and abscissa be equal ?

13. What are the co-ordinates of the points on the



84 Analytical Geometry.

parabola y
2 = 10 x, if the abscissa equals % of the or-

dinate ?

Find intersection points of the following:

14. y
2 = 4X and y = 2^—5.

15. y
2 = 18 x and y =2^—5.

16. y
2 = 4 # and #2 + ^

2 = 12.

17. v2 = 16 x and x2 + v2 — 8 x = 33.

18. What does the equation y
2 = 2 ^w become when

the origin is moved back along the axis to the directrix ?

Art. 60. To find the equation of a tangent to the para-

bola.

The process employed to find the equation of a tangent

to the circle is just as effective. for the parabola.

If in the equation to

a line through two given

points, the points be

situated on a parabola,

and hence are deter-

mined by its equation,

-X the equation becomes

that of a secant to the

parabola. If the two

points are then made to

approach coincidence,

the secant becomes a
Fig. 33-

In the equation to a straight line,

tangent.

y (x — xf

)
(B)

x" — x

let the points (V, /) and {x", y") be on the parabola

y
2 = 2 px; then the two equations of condition

>'2 =•*.**/ (2)

(3)

2 px'

/'2 = 2 pof
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arise from substituting these values in the parabola

equation.

Subtracting (2) from (3);

y"2 - y
n = 2 px" - 2 px' = 2 p (x* - stf).

Factoring; (7* - /) (/' + /) = 2 p {x" — x').

Dividing through by (/' + /) (x" — x'),

y" — y' _ 2 p
x" - x'~ y" +yr

Substituting this value of the slope — «*--, in (B);
x" — x

y — y
f = *— (x — x') (4), which is now the equa-

y" + /

tion of a secant line to the parabola, say ABC (Fig. 33),

the point B being (x", y") and C being (x
1

', /).

If now the point B approach C, (x", y") approaches

(x
f

,
y') and eventually x" = xf and y " = y

f

, and the secant

ABC becomes the tangent DCE.
Making x" = x', y" = y' in (4), it becomes,

y _ y = £ {x _ y
}

(Tj>)>

y

which is the equation to the tangent DCE at the point

« /)•

Simplifying (Tp ), yy
f — y

n = px — px'

yy
f — 2 px' = px — px' [since y

n = 2 px'\

or yy
f = p (x + x') (Tp

r

)
[transposing, collecting and

factoring].

Corollary: The tangent intercept on the X-axis, OD, is

found by setting y = o in (Tp ).

Whence o = p (x + xf

),

x = — xf

.
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That is, the intercept is equal to the abscissa of the point

of tangency, with opposite sign.

Art. 6i. The equation to the normal.

Since the normal is perpendicular to the tangent through

the same point, it has the same equation except for its

slope, which is given by the relation for perpendicular lines,

, im = — — •

m

In the tangent equation m = %- •

y

Hence the normal equation is

/-/= ~ £(*-*) (N,).

P

In Fig. 33, CG is the normal at C.

Art. 62. The equation of the tangent in terms 0} its

slope.

As in the case of the circle it is only necessary to deter-

mine the constants in the slope equation of •& straight line,

so that it has but one point in common with the parabola.

The equations to parabola and line are,

y
2 = 2 px (1)

and y = mx + b (2)

Eliminating y, to find the intersection equation for x,

(mx + b) 2 = 2 px,

m2x2 + 2 mbx + b2 = 2 px,

m2x2 + (2 mb — 2 p) x + b 2 = o . . (3)

The two values of x in equation (3 ) will be the abscissas

of the two points of intersection. These two points will

coincide if the two values of x are the same, and this can
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only occur if m 2x2 + (2 mb — 2 p) x + b
2

is a perfect

square.

By the binomial theorem this is the case, if

x2 {mb — p)
2 = vi

2x2
b
2

or m 2
b
2 — 2 />/»£ + p

2 = w 2
6
2

,

whence 2 />//*& = />
2

6-Jt.
2 w

Substituting this value of b in (2),

? = mx + -2. (Tm ).

2 m
which is the equation of the tangent in terms of its slope.

Art. 63. Equation to the normal in terms of the slope

of the tangent.

Combining (Tm p ) with the equation to the parabola,

we get the co-ordinates of the point of tangency in terms of

m and p. Since the normal passes through this point it is

necessary to know these co-ordinates.

Combining then, y
n = 2 pxr

and y
f = mxf + J—

,

2 m
we get x f = —*—L . y' = — \x\ y

f being point of tangency].
2 wr 7/z

The slope of the normal is mr = [since it is perpen-
m

dicular to the tangent, whose slope is m\
The equation to a line through a given point with a

given slope, m', is y — y* = m' (x — x') (C)

Substituting in (C) values of xf

, /, and mf

,

y-t--l (x- -*
7 ),w w 2 m

7^
3v + m 2x = pm2 + 2- (Nj, m )



88 Analytical Geometry.

This equation being a cubic in m, three values of m will

satisfy it, hence through any point on the parabola three

normals can be drawn, having the three slopes given by

the three values of m.

Art. 64. The following property of a parabola has led

to its application for reflectors, making it of peculiar in-

terest in optics.

To show that the tangent to the parabola makes equal

angles with a line from the focus to the point of tangency

Fig. 34-

(a focal line), and a line drawn through the same point

parallel to the axis of the parabola.

LM (Fig. 34) is a tangent to the parabola PON at P,

intersecting the axis produced at L.

Draw the focal line FP and PK
||
to the axis OX. Then

ZLPF= ZMPK.
By Art. 60, Cor., the tangent ^-intercept, OL = — x'

[(x', /) being point of tangency, P].
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Also OF = L [by structure of the parabola].
2

.•. LF = x' + t- [the sign of x' is neglected for we
2

want only absolute length].

Let QS be the directrix. Then

PF = PQ = GT = GO + OT = £ + x'. [OT =*'.]
2

.*. LF = PF, and triangle LPF is isosceles;

:nce ZLPF:= Z PLF.

But ZPLF = Z MPK [since PK is
||

to]

ZLPF:= Z MPK.

Let PR be the normal; then Z FPR = z RPK
[since Z LPF = Z MPK, and LPR = MPR, being right

angles].

Since the angles of incidence and reflection are always

equal for light reflected from any surface, it follows that

light issuing from a source at F would be reflected from the

surface of a paraboloid mirror in parallel lines, (as PK).

Art. 65. The diameter of any conic may be defined as

the locus of the middle points of any series of parallel

chords.

A chord is understood to be a straight line joining any

two points on the curve. In Fig. 35, AB being the locus

of the middle points of the system of parallel chords, of

which CD is one, is a diameter of the parabola PON.
Art. 66. To -find the equation of a diameter in terms of

the slope of its system of parallel chords.
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Draw (Fig. 35) a series of chords (like CD)
||

to each

other. To determine the locus of the middle points of

these chords, that is, the diameter corresponding to them.

Let the equation of any one of the chords, as CD, be

and y

y = mx
2

2 px

(1),

(2) be the parabola equation.

If (1) and (2*) be combined as simultaneous, the co-ordi-

nates of C and D, the points of intersection, will be found.

First to find the abscissa, eliminating y by substituting

;

Fig. 35.

(mx + b) 2 = 2 px,

m2x2 + 2 mbx + b
2 = 2 px,

x2 + (2 mb — 2 p) x

m (3)

Now in a quadratic of the form z 2 + az + b = o, the sum
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of the two values of the unknown equals the coefficient (a)

of the first power of the unknown with its sign changed.*

Hence the two values of * in (3), which are the abscissas

respectively of C and D, added together, equal the coeffi-

cient of x in (3 ) with its sign changed.

Call the co-ordinates of C and D respectively (x
f

, /)
and O", /')•

Then *' + ** = - 2mb ~ 2 P
.

m 2

Eliminating * from (1) and (2), we get from (1)

*= y-
- b

m

Substituting in (2); y
2 = —^- %-

m

f -iPi + iPi =
. . . . (4)m m

by principle cited above, y' + y" = —*- •

m

In Art. 32 it was shown that the co-ordinates of the

middle point of a line joining (V, y') and (V', /') are,

(
x'+x" /+f\

*Tnz*+az+b=o, z==
-* + Va 2 ~4b

— a — \/a 2 — 4 b
and

. — a + \/a 2 — 4b — a — \/a2 — 4b
but +

2 2

coefficient of 2 with its sign changed.
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Calling the co-ordinates of the middle point (E) of CD,
(X, Y).

Then X = *'+*" = - "»-» ... (5)
2 TO

2 KiJ

and Y = t±f = j!
(6)

2 m
Remembering that an equation to a line must express

a constant relation between the co-ordinates of every point

on that line, it is clear that b cannot form a part of the equa-

tion we are seeking, for b, the ^-intercept, of the chords,

is different for every chord, but m is constant, since the

chords are all parallel. It would ordinarily be necessary

then to eliminate b between (5) and (6), but in this case

(6) does not contain b and hence it represents the true

equation for the diameter. We will designate it thus:

?-£ (D*>

It evidently represents every point on this diameter, for

CD was any chord, and hence the expression for its middle

point will apply equally well to all the chords.

Cor. I : The form of this equation shows that the diam-

eter is always parallel to the X-axis, that is, to the axis of

the parabola.

Cor. II : Combining (Dp ) with the parabola equation,

we get the co-ordinates of their point of intersection, (A).

y
2 = 2 px,

Py = L
m

whence -£— = 2 px

2 '
y

2 m* m
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By Art. 63 it was found that the tangent whose slope is

m touches the parabola at the point (—*—- , —), )
which is A

\2 mr m J

here. Hence in this case the tangent at A has the same

slope, m, as the parallel chords, and is, therefore,
||
to them.

That is, the tangent at the end of a diameter is parallel to

its system of parallel chords.

Definition: The chord that passes through the focus is

called the parameter of its diameter.

Art. 67. The two following propositions are interesting

as applications of the principles already discussed.

To find the equation to the locus of the intersection of

tangents perpendicular to each other.

It is plainly necessary to find the concordant equations

of any two perpendicular tangents and by combining their

equations get their intersection point.

The slope equation for any tangent is

y = mx + — (1)
2 m

then y = m'x -\ ^—
, (2) will represent any other tangent.

2 m'

If the two tangents are perpendicular to each other then

mf = — —
, and (2) becomes, y = — -

. . (3)
m m 2

Subtracting (3) from (1),

o=(w + -
j
x + £ I m +— ); whence x = — ^ •

\ m] 2 \ m) 2

This equation being the combination of (1) and (3)

represents their intersection, that is, it is the equation of

b .

the locus of all intersections. But x = — £ is the equa-
2

tion of the directrix, hence all tangents to the parabola
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that are perpendicular to each other intersect on the

directrix.

Art. 68. To find the locus of the intersection of any tan-

gent, with the perpendicular upon it from the focus.

The equation of any tangent line is y = mx + —
,
(i).

2 m

The equation to a line through the focus having the slope

mf is by (C), y = mf tx — —
J,

(2). The focus being the

point [*-o
)

. Since (2) is perpendicular to (t), mf = ,

\2 /J m

hence (2) becomes y = (x — £-), or y= + -*-, (3).m \ 2 / m 2 m

Subtracting (3) from (1), o =
[ 1 + —

) x.

\ m)

Whence x — o,

But x — o is the equation of the Y-axis, .'. every tangent

to the parabola intersects the perpendicular upon it from

the focus on the Y-axis.

Art. 69. It is sometimes desirable to express the

equation of a parabola with reference to a point of tangency

as origin, and with the tangent and a diameter through

the point of tangency as axes.

Knowing the co-ordinates of the point of tangency in

terms of the tangent slope and knowing that the diameter

is
||

to the axis, it is easy to apply the transformation

equations in Art. 38.

Remembering that the new X-axis (a diameter) is parallel

to the old, hence = o, and that tan <+> = m, since the

new Y-axis is a tangent and cf> is the angle it makes with

the old X-axis.
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Also (a, b) the co-ordinates of the new origin become,

\2 m l m I

( x = a + xf cos # + y cos 0,E1uatlons \y=b+x'sm0 + y'sm<f>,

become, x = —*-
f-

#' + V cos
2 w2

[since cos # = cos 0=1].

y = -*- + / sin #

[since sin = sin = o].

Substituting in the parabola equation,

y
2 = 2 /w,

we get,

or since

7> cos

[-£ + / sin<£ ) = 2 p (
—£— + cc* + y' cos 6

),

\;» / \ 2 ra
2

/

sinm = tan

sin / \2 sin
2

/

/T\QQS^
+ 2 py^Q§& + / 2 sin

2 =

j^sQOS2
(/>

sin

/2 sin 2

+ 2 /w' + 2 ^5^qos

2^',

^(gj}*— *""*-

Since esc2

<f)
— cot 2 0+1

m
+ 1,

this may be written, ^
2 = —|- # -f 2 ^,w2

or 2 _ 2 ft
(i + ^ 2

)

;>r
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where m is the tangent's slope, or the tangent of the

angle it makes with the axis of the parabola.

Art. 70. The parabola is of practical interest also in

its application to trajectories.

By the laws of physics a projected body describes a

path, determined by the resultant of the forces of projec-

tion and of gravity acting together upon the moving body

[neglecting air resistance].

In a given time, /, with a velocity, v, a body will move a

space, s = vt. (1). Meanwhile it falls through a space

S = — gt
2

. (2) [g = acceleration by gravity.]
2

Square (1) and divide by (2) .

s g

It is easy to see that the horizontal distance, s, which

the body would move if undiverted by gravity, is like an

abscissa, and that the vertical space, S, that the body

would fall by action of gravity, is like an ordinate.

Also is clearly a constant, (like 2 p).
g

s^
1

2 1) 2 1)

Hence —= or s
2 = S is exactly like y

2 = 2 px.
S g i

That is, the path of a projectile is a parabola, if we neglect

the resistance of the air.

EXERCISE.

Find the equations of the tangents to each of the followr

ing parabolas:

1. y
2 = 6x at (f, 4).

2. y
2 = 9 x at (4, 6).

3. x2 = 6 y at (6, 6).
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f= - 4X at (- 1, 2)

y
2 = 4 ax at (V, /).

f = 8 x at (4 - i, ?).

f= - s* at (?- 4 ).

/= if* at (6, ?).

Find the equation of the normal to each of the pre-

ceding parabolas.

10. Find the equations of the tangents to the parabola

y
2 = 8 x from the exterior point (i, 3).

11. Find the equation of the tangent to y
2 = 9 x par-

allel to the line 2 y = 3 # — 5.

12. Find the equation of the tangent to the parabola

y
2 = 4 .v perpendicular to the line y + 3 # = 1.

13. Find the slope equation of the tangent to the para-

bola x2 = 2 ^ry.

14. Find the equation of the tangent to the parabola

y
2 = 8 x from the point (1, 4).

15. Find the equation to the tangent at the lower end of

the latus rectum.

16. The equation to a chord of the parabola y
2 = 4 x

is 5 y — 2 x — 12 = o. What is the equation of the

diameter bisecting it ?

17. What is the equation of the parabola referred to

this diame er and the tangent at its extremity?

18. In the parabola y
2 = 8 x, what is the parameter of

the diameter whose equation is y = 16?

19. What is the equation of the parabola to which

2y=3#4-8is tangent ?

20. The equation of a tangent to the parabola y
2 — 9 x

is 3 y — x = 11. What is the equation of the diameter

through the point of tangency?

21. What is the equation to the chord of the parabola

y
2 = 6 x, which is bisected at the point (3, 4) ?
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22. The base of a triangle is 10 and the sum of the

tangents of the base angles is 2. Show that the locus of

the vertex is a parabola and find its equation.

23. The equation to a diameter of the parabola y
2 =9 x,

is y = — 3. Find the equation of its parameter.

24. Find the equation of the diameter to the parabola

x2 = 2 py.



CHAPTER VII.

THE ELLIPSE.

Art. 71. The ellipse is defined, for the purposes of

analytics, as a curve every point of which has the sum of

its distances from two fixed points, called foci, always the

same; that is, constant. It will be seen later that it is a

conic in which e < 1.

The line AA' (Fig. 36), through the foci, F and F', ter-

B

1 v. \ \

ri
F> D F J

B'

Fig. 36.

minated by the curve is called the major or transverse

axis: the line BB' perpendicular to AA' at its middle

point and terminated by the curve, is called the minor or

conjugate axis.

Art. 72. To find the equation of the ellipse, taking the

centre O (Fig. 36) as origin and the major and minor

axes as co-ordinates axes. Draw PF' and PF, lines from

any point, P, to the foci (focal lines).

Also PD perpendicular to AA'.

Call the co-ordinates of P, (x, y) [(OD, PD) in Fig. 36]

99

LOFC.
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represent | AA' = OA, by a; \ BB' = OB, by b, PF, by

r; PF', by /; OF = \ FF', by c.

It is required to find the relation between PD and OD,
using the constants, a, b, and c. The right triangles PDF
and PDF', immediately suggest the means, as they contain

together the co-ordinates (x, y) and part of the constants,

and also PF and PF' whose sum is a constant by definition.

In PDF, PF 2 = PD 2 + DF2
,

or r
2 = y

2 + (c — x) 2
,

r=Vy2 + (c~ ocf (i)

In PDF' PF' 2 = PD 2 + DF2
,

or r'
2 — y

2 + (c + x) 2

or r' = V/ + (c + x)< (2)

By definition r + r' = a constant; let us try to deter-

mine this constant. Since the points A and A' are on the

ellipse they must obey this definition ; hence FA -f F'A =
this constant.

But F'A + FA - FF' + 2 FA.

Also F'A + FA = FA' + FA' = 2 F^A' + F'F.

That is, pf + 2 FA = 2 F'A' + pf,

whence FA = F'A'.

.-. FA + F'A = F'F' + 2 FA = F'F + FA + F'A' = 2 a.

.'. r + r' = 2 a.

Adding (1) and (2);

V?2 + (c- x) 2 + vV + (c + x) 2 = r + r'= 2a (3)

Transposing and squaring;

f + (c + x) 2 = 4 a 2 - 4 a V>2 + {c- x) 2 + f
+ (c-x) 2

/+/-f 2a-f f =4fl2 - 4<z \Zy
2 + (c — x) 2

+ T + / — 2 ex -\- yr.

whence — 4 ex + 4 a 2 = 4 a \/y
2 + (c — x) 2

.
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Dividing by 4 and squaring again;

c
2x2 — 2jjycx + a 4 = a 2

y
2 + a2

c
2—2j^tx-\-a 2x2

a 2

y
2 + (a

2 - c
2
) x2 = a 2

(a
2 - c

2

) (4)

The form of this equation may be readily changed by

expressing c in terms of a and b.

The point B being on the ellipse,

BF + BF' = 2 a,

but BF = BF' (since BB' is perpendicular to AA' at its

middle).

BF= a.

In the right triangle BOF,

BP = 5^2 + 5^2 = b
2 + c

2
}

that is, a2 = b
2 + c

2

or b 2 = a2 — c
2

.

Substituting in (4)

a 2

y
2 + b 2x2 = a 2

b
2 (Ae ).

The form of this equation shows that the curve is sym-

metrical with respect to its two axes.

Corollary: The polar equation to the ellipse is that of

the conic in general,

epp= «'
1 — e cos

where p = distance from directrix to focus and e < 1.

Art. 73. There are, by definition, two latera recta, one

through each focus. Since they are ordinates, their values

are found by substituting in the equation the abscissas of

the foci, that is, x = ±.c= ± \Ja2 — b
2

.

Substituting this value of x in (Ac ),

a2
y
2 + b

2 {a2 - b
2
) = a 2b2

,

u 2 b* . b
2

whence y* = — y = ± — •

That is, 2 y = latus rectum =

a

a
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Art. 74. To find the value oj p in the ellipse.

In Fig. 37, NF' = p in general equation to a conic.

A'F'
Also —— = e, since A' is a point on the conic A'B AB'

A JN

(the ellipse), whence A'F' = e A'N '•
• (1)

Also AF' = eAN, (2). [Since A is a point on conic]

Add (1) and (2);

A'F' + AF' = e (A'N + AN) = e (A'N + A'N + AAr

)

or Kkf = e{2 ArN + 2 ArO) = 2 e (A'N + A'O) = 2 e ON,

that is, 2 a = 2 e ON or ON = - (3)

Subtract (1) from (2);

AF' - A'F' = e (AN - A'N) = e AA' = 2 a*.

But AF' - A'F' = AF' - FA
[since FA = A'F', Art. 82] = FF' = 2 c.

2 ae = 2 c [since FF' — 2 c\

c = ae (4)

B'

Fig. 37-

Again, NF' = NO - OF' = 5L _ c = - -
e e

XTTV a — ae2 a (1 — e
2

)

that is, NF' = p = = — L
•
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Hence the polar equation to the ellipse may be written,

a (1 - e
2
)

1 — e cos
[taking F' as pole].

Also from (4) e = — = •

a a

Since c < a, eh always less than 1, by above equation.

This is expressed thus; the eccentricity of the ellipse is

the ratio between its semi-focal distance and the semi-

major axis.

Art. 75. The sum oj the focal distances of any point on

the ellipse equals the major axis.

We know by the definition of the ellipse that this sum is

a constant; now we will show that this constant is the

major axis from its equation.

Let P be any point on the ellipse ABA'B'. (Fig. 3%.)

Draw the focal radii F'P and FP, also PD perpendicular

to AA', the major axis.

The co-ordinates of P are (OD, PD), say (x, y). In

I

\ \
\ \

I F' D F
J

B'

Fig. 38.

the right triangle F'PD,

FT 2 = PD 2 + FD2

but PD 2 = y
2 = ¥ (a2 - x2

)
[from (Ae )],

and F'D = F'O + OD = ae +x .

(1)
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Substituting these values in (i).

FP~2 = - (a
2 - x2

) + (ae + x) 2 = b 2 - ^-^- + a2 e2

a 2 a 2

+ 2 aex + x2 = Ir— —-

—

{- a 2 — l/ + 2 aex + x2
,

a 2

r • 2 a 2 - ^
2

i 2 , , O 2 - 62)*2

[since e* = J
= a z + 2 aex + *—

•

a 2 a 2

b2 x2

[adding — —— an(i x2] = a 2 + 2 aex + e
2 x2

a
2 — o

2

[for — x2 = e
2 x2

].

a2

;. FrP= a + ex (1)

By similar process in the right triangle FPD,

FP = a — ex (2)

Adding (1) and (2). FrP + FP = 2 a.

Since F'P and FP are any two focal radii, the sum of

the focal radii of any point equals 2 a.

To Construct the Ellipse.

Art. 76. The definition of the ellipse, as a curve the

sum of the distances of whose points is constant and always

equal to the major axis, gives us the method of construction.

First Method : Take a cord the length of the major axis,

and attach its extremities at the two foci with a pencil

caught in the loop thus formed, and keeping the cord

stretched, describe a curve. It will be an ellipse, for the

sum of the distances of the pencil point from the two points

of attachment (the foci) will always equal the length of

the cord, that is, the major axis.

Second Method: Taking one of the foci as centre and any

radius less than the major axis, describe two arcs above

and below the major axis, then with the other focus as
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centre and a radius equal to the difference between the

major axis and the first radius, describe intersecting arcs.

These points of intersection will be points on the ellipse, for

the sums of their distances from the foci will equal the

sum of the radii, that is, the major axis. As many points

as desired may be located in this way, and the curve joining

them will be an ellipse.

Fig. 39.

As in Fig. 39 let AA' be the major axis, F and F' the

foci. Taking, say, AB as radius and F' as centre describe

arcs m and mf.

Then taking A'B as radius, and F as centre describe

arcs n and n'\ their intersections R and S will be points on

the ellipse.

Taking any desired number of points as C, D, etc.,

perform the same operation, thus determining any desired

number of points. A smooth curve through these points

will be an approximate ellipse.

Art. 76a. The two following methods of ellipse con-

struction are used by draftsmen. The first based upon

the relation between the ordinates of points on the ellipse

and those on the auxiliary circles as shown in Art. 97
give a true ellipse; the second gives what is known as a

circular-arc-ellipse and is only an approximation.
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First Method : Let O be the centre of the ellipse- AA'
the major axis; BB' the minor axis; BCB' the minor circle

and ADA' the major circle. (Fig. 39a.) Take any num-

ber of points on the major circle as R, S, T, etc.

From these points draw radii and ordinates, and through

the points of intersection of the radii with the minor circle,

draw lines
||

to the major axis, AA'. Where these parallels

Fig. 39a.

intersect the ordinates will be points on the ellipse. The

points may be made as close together as desired by draw-

ing a great number of radii. A smooth curve joining these

points will form the ellipse. Take the point S, its radius, OS,

and its intersection with BCB', P. Draw PN.

In the triangle OSN'
OP : OS : : N'N : SN',

that is, b : a : : y : /, hence N is a point on the

ellipse.

Second Method : This is known as the three centre

method, or three point method, and is approximate only.

Let AA' and BB' be the axes, intersecting at O (Fig. 39ft).
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Complete the rectangle BOA'D and draw the diagonal A'B.

From D draw the line DE perpendicular to A'B and pro-

duce it to meet BB' at C; with C as a centre and BC as

radius describe arc MM; with E (whose DC cuts AA') as

centre and A'E as radius describe arc A'N'.

With O as centre and OB as radius describe arc BF,

Fig. 39b.

cutting AA' at F. On A'F as diameter construct the

semicircumference A'B"F, cutting B'B produced upward

at B." Lay off BB" from O toward B' to C. With C as

centre and CC as radius describe arc RS.

Lay OB" from A' on AA' to R'. With E as centre and

ER' as radius draw arc R'S', intersecting arc RS at T.

With T as a centre and suitable radius, an arc described

will touch A'N' and MN, and complete the elliptic quadrant

A rB. A similar construction to the right of BB r and also

below AA' will complete the ellipse.
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EXERCISE.

What are the axes and eccentricities of the following

ellipses

:

i. 9 x2 + 16 y
2 = 144. 3. x2 + 9 y

2 = 81.

2. 2 ^2 + 4 ;y

2 = 16. 4. J #
2 + I y

2 = 1.

5. In an ellipse, half the sum of the focal distances of

any point is 4', and half the distance between foci is 3'.

What is the ellipse equation ?

6. In a given ellipse the sum of the focal radii of any

point is 10", and the difference of the squares of half this

sum and of half the distance between the foci is 16. What
is the equation to the ellipse ?

7. The eccentricity of an ellipse is f and the distance of

the point whose abscissa is f from the nearer focus is 3.

What is the equation to the ellipse ?

8. The major axis of an ellipse is 34", and the distance

between foci is 16". What is its equation ?

9. Find equation of the ellipse, in which the major

axis is 14" and the distance between foci = V 3 times the

minor axis.

10. In the ellipse 2 x2 + y 2 = 8, what are the co-ordi-

nates of the point, whose abscissa is twice its ordinate?

What are the axes?

11. What are the co-ordinates of the point, on

the ellipse 4 x2 + 16 y
2 = 64, whose ordinate is 3 times its

abscissa ?

12. Find the intersection points of 9 x2
-\- 16 y

2 = 2$

and 2 y — x = 3.

13. Find the intersection points of the ellipse

16 y
2 + 9 x2 = 288, and the circle x2 + y

2 = 25.

14. In Ex. 13, find the equation of the common chord.

15. Find the angle between the tangents to the ellipse
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and circle of Ex. 13 at the point of intersection whose

co-ordinates are both positive.

16. An arch is an arc of the ellipse whose major axis is

30', and its chord, which is parallel to the major axis and is

bisected by the minor axis, is 24' long. The greatest height

of the arc is 8'. Find the equation of the ellipse and plot

the arc.

17. A section of the earth through the poles is approx-

imately an ellipse; a section parallel to the equator is a

circle. What is the circumference of the Tropic of Cancer,

the angle at the centre of the earth between a line to any

point on it and a line to a point on the equator being 23°-27' ?

18. If two points on a straight line, distant respectively

a and b, from its extremity, be kept on the Y-axis and X-

axis, respectively, as the line is moved around, the extremity

will describe an ellipse, whose axes are 2 a and 2 b.

From this, suggest a method of construction for the ellipse.

Art. 77. Tangent to the Ellipse.

The method of finding the tangent equation is exactly

similar to that for the circle and for the parabola,

equation (B)

Taking

w-y-y/ xT-a/
(x — x*).
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Let the points (V, /), (x", y") be on the ellipse, ABA'B',

say m and n, then they must satisfy the equation

a2
y

2 +b2 x2 = a2
b2

.

That is, a2
y
n

-\-b
2
x'2 = a2 b2

(i)

and a2 y"2 +b2 x"2 = a2
b
2 .... (2)

Subtracting (2) from (1);

a2 (y/2 _ y 2
) + b 2 ^,2 _ x,2^ = 0>

Factoring and transposing,

a2 (y> _ y) (y/ + y)= _ 52 ^ _ ^ ^ +^
whence ^ = - *

. ^±^1 . . (3)

Substituting this value of A £- in (B);
x" — x

b 2
!x"+x'\

a 2 \y" +?)
(x - x') . . (4)

which is the equation of the secant mn (Fig. 40). If

now the point n (x", f) is made to approach m (V, /),

when coincidence takes place, mn becomes the tangent SR,

and (4) becomes the equation of the tangent, namely,

, b
2 xf

, ,v -«

y - 7 = ——> (* ~ x j>
a* y

or a2 yy' — a2
y
n = — b

2 xxf + b2 x'2
.

a2 yy'+ b2 xx' = a2 y'2 + b
2
x'

2 = a2
b
2 [by (1)] . (Te )

Cor. Letting y = o in (Te ) we get the ^-intercept,

[OM, Fig. 41].

The subtangent, RM = OM - OR = OM - #'.*

Letting y = o in (Te )

a2 yy/ _|_ 2 xxf = a2
p^

a 2

x = — = OM.
x'

* It is to be observed that only length is considered in estimating

the subtangent and subnormal, hence it is unnecessary to regard

the sign of xf
.
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Then subtangent = RM = —— — x'

a 2 — xn _ a 2 y'2

b
2 x>

Art. 78. Equation oj the normal.

Since the normal is perpendicular to the tangent its slope

is the negative reciprocal of the tangent slope, by the rela-

tion m' = — — •

m

^^^B
P^

A7 F' F \

^^M R N

Fig. 41.

The tangent slope is — b
2 x'

a2 y'

a 2 /hence the normal slope is —— and its equation will be
b
2 xr

y
~ y,==<

¥b (* " ^ (Ne)

Cor. Letting y = o in (Ne ) we get the ^-intercept

of the normal, ON, and the subnormal,

RN = OR - ON = *f - ON.
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y = o in (Ne ), y- y = a2 y'

b2 x'
(x -x'),

— y = a2 y
b2 xf

(X -*'),

- ¥ xf = a2 x -- a- x',

X = a 2 -
a 2

b2
x' = (

RN = %'
a2 -b2

x' = b 2 xf

.Then
a

Art. 79. Slope equation of

Let y = mx + c (1)

be a secant line to the ellipse a 2
y

2 + b
2 x2 = a 2

b
2

. (2)

Combining (1) and (2) to find points of intersection,

a 2 (mx + c)
2 + b

2 x2 = a2 b2
.

a2 m2 x2 + 2 a 2 mcx + a 2
c
2 + b2 x2 = a 2 b2

.

x2 (a2 m2 + b
2
) + 2 a2 ?wc# + (a

2
c
2 — a 2

b
2
) = o.

Now if this secant becomes a tangent the two points of

intersection, whose abscissas are given by ihis equation,

become one point, the point of tangency. As we know

the condition that this equation should have equal roots is

(a2 m2 + b
2
) {a2

c
2 - a2

b
2
) = {a2 mc) 2

,

or, a*^c2 — a 4 m2 b
2 + a 2

b
2
c
2 — a2 ¥ = a^ynl^

or c
2 = a2 m2 + b

2
,

c = ± \/a2 m 2 + b
2

.

Substituting this value of c in (1) it becomes the equa-

tion of the tangent in terms of m, a and b, that is, the slope

equation of the tangent,

y= mx± V'a2 m 2 + b
2 (Te , m)

Art. 80. To draw a tangent to the ellipse.

It will be observed that the tangent to the ellipse has the
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same .v-intercept as the tangent to a circle having the

major axis for a diameter; hence to draw a tangent to an

ellipse on the major axis as a diameter, construct a circle

and produce the ordinate of the point of tangency to meet

the circle. This point on the circle and the point of tan-

Fig. 42.

gency on the ellipse will have the same abscissa, and hence

the ^-intercept of the tangents to the circle at this point

and to the ellipse will cut the X-axis in the same point.

Draw a tangent to the circle at this point and join the

point of intersection with X-axis with the point of tangency

on the ellipse. The last line will be a tangent to the ellipse

at the required point. (Fig. 42.)

P = point of tangency; P' = the point in which the

ordinate of P cuts the circle; R = intersection of circle-

tangent, RP', with the axis.

Then RP is the tangent to the ellipse.

Supplemental Chords.

Art. 81. The chords drawn from any point on an

ellipse to the extremities of the major axis are called sup-

plemental chords.
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Let AP and A'P be supplemental chords of the ellipse

ABA'B' for the point P. (Fig. 43.)

The equation of AP through the point A [whose co-

ordinates are (a, o)], and having say the slope m, is [by (C)]

y = m (x — a) (1)

B

The equation of A'P, through the point A' [whose co-

ordinates are (o, —a)], and having slope m', is [by (C)]

y = m' [x + a) (2)

multiplying (1) and (2) together,

y
2 = mm' (x2 — a2

) .... (3)

which expresses the relation between the co-ordinates of

P, their intersection. But P (x, y) is on the ellipse, hence

a2
y

2 + b 2 x2 = a 2
b
2

,

or
b
2

, 2

1a 1
x2

) (4)

Since (3) and (4) express the relation between the co-

ordinates of the same point, they must be the same equa-

b
2

tion; hence comparing; mm! — — , which gives the

relation between the slopes of supplemental chords.

Art. 82. The equation to a diameter of the ellipse.

The diameter it will be remembered, is the locus of the

middle points of a system of parallel chords.
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Let RS be any one of a system of parallel chords of the

ellipse ABA'B' (Fig. 44), and T its middle point.

Let y= mx + c (1) be the equation of RS, and a2
y
2

+ b
2 x2 = a 2

b2
(2) be the ellipse equation. Combining (1)

and (2), we get an equation whose roots are the abscissas

of R and S, respectively, if y be eliminated; an equation

whose roots are the ordinates of R and S, if x be eliminated.

Eliminating y; a2 (mx + c)
2 + b2 x2 = a 2

b
2

,

a2 m2 x2 + 2 a2 mxc + a2
c
2 + b2 x2 = a 2 b2

,

2 a2 mc
x2 + x + a - a2

b
2 = o

a2 m2 + b
2

Let the two roots of (3 ) be represented by x' and x".

Then by the structure of a quadratic,

, . ,, 2 a 2 mc
x? + x" = — —— — •

a2 m2 + b2

Calling the ordinates of T, (X, Y),

xf + x" a 2 mc

(3)

then X =
2 a2 m2 + b 2

Eliminating x from (1) and (2)

2 2 . b2 y
2 - 2 b 2 yc + b

2
c
2

a2
y

2
H L

f

(4) [by Art. 32]

a 2
b
2

,

a2 b 2
,
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a2 m2
y

2 + b
2
y

2 — 2 b2 yc + b2
c
2 = a2 &2 w2

,

?
2

2

2

2 ,^2 ?+ b2 c2 -a 2
b
2 m2 = o ... (5)

a2 w2 + b2

Calling the two roots of (5), y' and /',

2b2
C

... y + f = +
a2 m2 + b2

'

and Y = /±y:i +*»*
.

. . . (6)
2 a2 w2 + b2 \'

Since c is a variable it must be eliminated between (4)

and (6), for we must express the relations between the

co-ordinates of these mid-points of the chords in terms of

constants to get the true equation of their locus.

Divide (6 by (4)

+ b
2
c

Y a 2 m2 + b2

X — a 2 mc

- b2

a2 m

a 2 m2 + b
2

b 2

y — — x .

*

a z m
That is, y = — x (D c )

a 2 m

is the equation of the diameter, since it expresses a constant

relation between the co-ordinates of the mid-point of RS,

and RS stands for any one of the parallel chords, mis a

constant because the chords being parallel, all have the

same slope. The form of this equation shows that the

diameters pass through the centre, since the constant or

intercept term is missing.

Since this equation represents any diameter whatever,

it follows that any chord passing through the centre of the

ellipse is a diameter, and hence bisects a system of parallel

chords.
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Conjugate Diameters.

Art. 83. It will be observed in the equation

b
2 b

2
b
2

x, the slope is — —— ; that is, it is

a 1 m a* m
divided by m, the slope of the chords.

If a system of chords be drawn parallel to this first diam-

eter, their slope will be that of this diameter, namely,

b
2

a2 m
The slope of the diameter corresponding to this system

of chords, by above principle, will be

- - - — =
a2 a2 m

Hence the equation of this second diameter is y = mx.

The slope of this diameter is the same as that of the

chords of the first; hence each is parallel to the chords of

the system determining the other.

Such diameters are called conjugate diameters and are

determined by the condition that the product of their

slopes is,

°
2

t r n ^ / t>
2
\ b2

-for (w)X- ^— = - -
2

'

a1 \a z m) az

Art. 84. Tangents at the extremities of conjugate diameters.

The farther a chord is from the centre the nearer together

are its intersection points with the ellipse, evidently. Since

the mid-point must always lie between these intersection

points, in any system of parallel chords, as the chords are

drawn farther and farther from the centre, their points of

intersection and their mid-points approach coincidence,

and eventually the chord becomes a tangent at the end of

the diameter, when the three points coincide.



n8 Analytical Geometry.

Hence the tangent at the extremity of a diameter is

parallel to its system of chords.*

This fact, combined with the relation between conjugate

diameters, denned in Art. 83, enables us to readily draw

any pair of conjugate diameters. Thus: at the extremity

of any diameter draw a tangent to the ellipse; the diameter

drawn parallel to this tangent will be the conjugate to the

given diameter.

Art. 85. The co-ordinates 0} extremities of a diameter

in terms of the co-ordinates of the extremity of its conjugate.

Fig. 45.

Let the co-ordinates of R, the extremity of the diameter

RS, be (V, /), to find the co-ordinates of R'.

* This may be shown analytically thus: The intersection point
b 2

of the diameter y = — —^— x with the ellipse a 2 y2 + b2 x2

\/a2 m2 + b2
and= a2 b2

, is (by combining equations) x' =

b2

= /-£—.-j- Taking the tangent equation (T«), and substituting

these points for points of tangency, we find the slope of the tangent

at x', y', to be m, but this is the slope of the chords. Hence tangent

is parallel to chords.



Analytical Geometry. 119

Draw the tangent (Fig. 45) MN at R. By (Te ) its

equation is a2 yy' + b
2 xx' = a 2

b
2

.

Then the equation to R'S' is a2 yy' + b
2 xxf =0 . . (1)

since it is parallel to MN, but is drawn through the origin,

hence the absolute term is o.

Let the ellipse equation be as usual, a 2
y + b

2 x2 = a 2
b
2

.

Since {x
f

,y
f

) is on the ellipse;

a2 / 2 + b
2 x'

2 = a2 b
2

(2)

If (1) and the ellipse equation be combined, the resulting

values of x and y will be the co-ordinates of the points of

intersection, R' and S'.

• Substituting the value of y from (1 ) in the ellipse equation,

a2
(
~
f
*X'\ 2 + b

2 x2 = a 2
b
2
,

\ a 2

y
r

J

+ b
2 x2 = a2 b2

,

b4 x2x'2

,2 A /2a" y

b2 x2
(b

2 x'2 + a2 y' 2
) =aH2

a2 y'2

b2 x2 (a 2 b 2
) = 2

a2 / 2

[Since b
2 xf 2 + a 2 y'2 = a 2

b2
,

point (x', /) being on the ellipse.]

a2 V 2

Whence x2 = —-—

»

5 2

bxf

and hence y = =f
—
a
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Art. 86. The length of conjugate diameters. Draw the

co-ordinates RT and R'T' of R and R' respectively, R and

R' being the extremities of conjugate diameters. (Fig. 46.)

Then if (OT, RT) are (- x f

, /), (OT', R'T') are

In the right triangles ORT and OR'T'

OR2 = OT2 + RT2 = x'2 + y\

b
2
x'

2

andOR,2=OT,2 + R,T/2
a 2

y
n

b
2

Then OR 2 + OR' x/2 +
a 2 / 2

+ y 2 +
b2 x'2

_ b 2 x'2 + a 2 y' 2 a 2 y' 2 + b2 x'2

b
2 a 2

a 2
b
2 ^a 2

b
2

\
, h2= —— + =a 2 + b2

}

b2 a 2

for since (x', y
f
) is on the ellipse,

b
2 x'2 + a2

y
n = a 2

b
2

.

That is, the sum of the squares of any pair of conjugate

diameters equals the sum of the squares of the axes.



Analytical Geometry. 121

Conjugate diameters are usually represented by a! and

b'
y
hence

a'
2 + b'

2 = a2 + 6
2

.

Art. 87. Major and Minor auxiliary circles.

The circle drawn with the major axis as diameter is

called the major auxiliary circle.

The circle drawn with the minor axis as diameter is called

the minor auxiliary circle.

Fig. 47, the angle AOP', is called the eccentric angle of

the point P on the ellipse.

The eccentric angle of any point is determined, thus:

Produce the ordinate of the given point to meet the

Fig. 47.

major auxiliary circle, and join this point of meeting on

the circle with the centre. The angle between this joining

line and the axis, measured positively, is the eccentric angle

of the point on the ellipse.

Art. 88. Relation between the ordinates of a point on

the ellipse and of the corresponding point on the major circle.

The equation of the major circle, whose radius is a, is,

+ y
2 = a2 or y a' - x' (1)
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Call the Point P' (Fig. 47), (x
f

,
y") and P, (x', /).

(Observe P' and P have the same abscissa.)

Then from (1), y"2 = a2 — x'2
(2)

b 2

Also, y'2 = - (a 2 — x' 2

) (3) (from ellipse equation).

Dividing (3) by (2)

2_1 =- \

y
ff2 a

or ^— = — > whence V : y" : : b : a.
y" a

That is, //^ ordinate of any point on the ellipse is to the

ordinate of the corresponding point on the major circle as

the semi-minor axis is to the semi-major axis.

Corollary: Let Q be the intersection of OP' with the minor

circle. (Fig. 47.)

Join Q with P.

Then since OQ = b and OP' = a,

and / : y" : : b : a, / : f : : OQ : OP',

or PD : P'D : : OQ : OP'.

That is, QP is parallel to OD; that is, parallel to the

axis.

Hence RP, the prolongation of QP, to BB', equals OD =
the abscissa of P and Pr

. This furnishes another method

of drawing an ellipse. Thus:

Draw two concentric circles with the given major and

minor axes as diameters, respectively, in their normal

positions.

Make any angle with the major axis, as AOPr
in Fig. 47,

and let the terminal line of this angle intersect the two

circles in Q and P' respectively. Then the intersection of

the abscissa, RQ, of Q, with the ordinate, P'D, of P', will

be a point on the ellipse.
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This may be shown by analytical means, purely, for

(Fig. 47) in the right triangle OP'D, OD (= RP) =
OP' cos P'OD = a cos cf>, say, and drawing QE perpen-

dicular to OA,

PD = QE = OQ sin QOD = b sin </>, but the values

a cos
<f>

for x, and b sin <j> for y, satisfy the ellipse equation.

a2
y

2 +b 2 x2 = a 2
b
2

,

thus, a 2
b
2 sin2 $ + a2

b
2 cos2

cf>
= a2

b
2

,

sin2
<f)
+ cos2

<j) = i,

hence since OD and PD are the co-ordinates of P, P is on

the ellipse.

Art. 89. The eccentric angle between two conjugate

diameters.

Let the eccentric angle of R' (V, y'), the extremity of

R'S' be 6, and that of R (- & , +—Y the extremity of

1

/ A>\ §

>^h\ T'
J

Fig. 48.

the conjugate diameter RS be
(f>.

(Fig. 48.)

Then in the right triangle OP'T',
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cos P'OT' = 511 or cos = - . . (i)
OF a

W
In the right triangle OP"T,

-(RT)
P"T />

sin P'OT =— =
. . [Art. 88]

OP" OP" L J

a_/hS\

b\a) x'
That is, sin (180 —

(f>)
= sin

<f>
= —-—— = — . . (2)

a a

.'. sin cj) = cos 6 from (1) and (2),

whence by trigonometry,

(j> = 90 + 6 or
(f>
— 6 = 90°

That is, the difference between the eccentric angles of

the extremities of conjugate diameters is a right angle.

Art. 90. By combining the slope equations of two

perpendicular diameters, both expressed in terms of the

slope of one, it is readily proved, as was done under the

parabola, that the locus of their intersections is a circle,

whose equation is

x* + f = a2 + b\

This circle is called the director circle. Also by a similar

process it can be shown that the major auxiliary circle is

the locus oj the intersection of a tangent with the perpendic-

ular to it from a focus.

Art. 91. The ellipse possesses a physical property,

somewhat similar to that possessed by the parabola, namely:

The angle formed by.the focal mdii to any point on the

ellipse is bisected by the normal at that point.

Geometry tells us that the bisector of an angle of a tri-

angle divides the opposite side into segments proportional
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to the other sides, hence, if we can prove (Fig. 49) that

F'N : FN : : F'P : FP our proposition is established. It is

necessary then to find values for these four lines in the

same terms. ON the x-intercept of the normal was found

in Art. 78, Cor. to be

where x' is the point of tangency.

Fig. 49.

Let P (Fig. 49) be (x', /).

Then FN = F'O + ON = c + e
2x' = ae + e2x',

(since — = e, hence ae),

But

FN = FO - ON = ae - e
2
x'.

F'P = a + ex' and FP = a - exf
. . (Art. 75)

ae + e
2x' _ e{a + ex') _ a + exr

ae — e
2x' e(a — ex') a — ex'

F'N F'P

FN FP
or F'N : FN : : F'P : FP.

It follows from the law of reflection for vibrations, that

if light or sound issue from one focus of an ellipse it will

be reflected to the other focus.

I
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Art. 92. The area oj an ellipse.

Draw the major auxiliary circle to the ellipse ABA'B',

and construct rectangles as indicated in Fig. 50.

Then the area of one of these rectangles in the ellipse as

mnpo is

Area mnpo = mn X pn.

Let the points on the ellipse beginning with p be (V, y'),

(#", y"), {xf"
^ /"), etc., and the corresponding points on

the circle beginning with R, be (x
f

, y x ),
{oc"

y y 2 ),
(x"

f

, y 3 ) etc.

Then Area mnpo = (x' — x") y'

.

The corresponding rectangle in the circle

mnRS = (x
f — x") yv

. m^RS _ lx' — x"\ y x _ y t __ a

mnpo \x' — x") y
r yf

b

As this is a typical rectangle each circle rectangle is to

each ellipse rectangle as a is to b, hence by the law of con-

tinued proportion, the sum of all the circle rectangles is to

the sum of all the ellipse rectangles as a is to b.

As the above expression is independent of the size or

Fig. 50.

number of the individual rectangles the relation is the

same when the number of rectangles becomes infinite. But
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in this latter case the sum of the areas approach, respec-

tively, the area of the circle and that of the ellipse; hence,

finally,

Area of the circle _ a

Area of the ellipse b

That is, area of the ellipse = — times the area of the
a

circle, but area of the circle = ~a 2
.

.'. area of the ellipse = — . -a? = nab.
a

EXERCISE.

What are the equations of the tangents to the following

ellipses ?

1. x2 + 4 y
2 = 4 at the point (f , J).

2. 4 x2 + 9 y
2 = 36 at the point (1, f V2).

3. x2 + 3 y
2 =

3 at tne Pomt (l> i)-

4. 9 :v
2 + 25 v2 = 225 at the point (4, ?).

5. 25 x2 + 100 y
2 = 25 at the point (?, 2).

6. x2 + 2 y
2 = 18 at the point (?, 1).

7. Find the normal equation to the above ellipses.

8. What are the equations of the tangents to the ellipse

16 y
2 + 9 x2 = 144 from the point (— 3, 2) ?

9. What is the equation of the tangent to the ellipse

9 x2 + 25 y
2 = 225, that is parallel to the line 10 y—Sx = 5.

10. What is the equation of the tangent to the ellipse

x2 + 4 y
2 = 4, that is parallel to the line V31 = 1 ?

11. What is the equation of the tangent to the ellipse

4 x2 + 9 y
2 = 36, which is perpendicular to the line

y- 3 x= 5?
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12. The subtangent to an ellipse, whose eccentricity is

f, is f . What is the ellipse equation ?

13. Find the equation of the tangent to the ellipse in

terms of the eccentric angle of the point of tangency.

14. What are the equations of the tangents to the ellipse

— + — = 1, which form an equilateral triangle with the

9 4
,

axis?

15. What is the equation of the diameter conjugate to

4y + 9 X = ° ?

16. 2 y -{- x = 12 and 2 y = ^ x -f- 3 are supplementary

chords of an ellipse. What is its equation ?

17. The middle point of a chord of the ellipse 2$ y
2

-{- 9X2

= 225 is (— 5, 1). What is the equation of the chord?

18. The equation of a diameter to the ellipse 4 x2 + 16 y
= 64 is 4 y = x. What is the equation of a tangent to the

ellipse at the end of its conjugate diameter?

19. Find the equation of the tangents to the ellipse

2-*- -j— = i, which makes an angle whose tangent is 3
16 9

with the line 2 y = x — 1.

20. Find the equation of the normal to the ellipse x2
-\-

4 y
2 = 4, which is parallel to the line 4 x — 3 y = 7.

21. Show that the product of the perpendiculars from

the two foci upon any tangent is equal to the semi-minor

axis.

22. Find the equation to a diameter of the ellipse

— + 2L = i
t
which bisects the chords parallel to

16 9

3 x - 5 = 9.

23. Find the locus of the centres of circles which pass

through (1, 3) and are tangent internally to x2 + y
2 = 25.
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x2 y2

24. The equation of an ellipse is — + *— = i.

169 144

What is the eccentric angle of the point whose abscissa

is 5?

25. Find the equation of the chord joining the points

of contact [called the chord of contact] of two tangents to

the ellipse 9 x2 + 16 y
2 = 144, drawn from (4, 3) outside

the ellipse.

26. Find the locus of the vertices of triangles having the

base 2 a, and the product of the tangents of their base

angles - •

27. The minor axis of an ellipse is 18, and its area is

equal to that of a circle whose diameter is 24. What is

the equation to the ellipse ?

28. The axes of an ellipse are 40 and 50. Find the

areas of the two parts into which it is divided by the latus

rectum.



CHAPTER VII.

THE HYPERBOLA.

Art. 93. The characteristic of the hyperbola is that

the difference of the distances of any point on it, from

two fixed points, is constant.

With this understanding of the locus,

To find the equation of the hyperbola.

In Fig. 51, let P be any point on the hyperbola, whose

foci are F and F', and whose vertices are A and A'. Draw
the ordinate PD and the focal radii PF, PF'.

Fig. 51.

The co-ordinates of P are (OD, PD), say (x, y), O being

the origin, OX and OY the axes. It is our problem then

130
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to find a relation between OD and PD, and the right tri-

angle PFD suggests itself.

In the right triangle PFD, PF2 = PD 2 + FD 2
(1).

Call the focal distance OF, c. Then (1 ) becomes,

pp = r
2 = y

2 + ^ _ cy [
since FD = OD _ AF =x _ cj

r = vV + (x - cf (2)

In the right triangle F'PD,

PF/2 = PD 2 + F'D 2
. That is, r

n = y
2 + (x + cf [since

F'D = OD + OF' = x + c] or / = \/y
2 + {x+cf (3)

By definition, r
1 — r = constant = 2 m, say.

Subtract (2) from (3);

\/y2 + (^ + c) 2 — VV + (^ — c)
2 =/— r = 2 m.

Transpose and square;

X+X+2oc + <H= 4m2 + 4m \/y2 + (x — c) 2

-\- yK+xk — 2 ex -}- c\.

Transpose, collect, and divide by 4;

m \/y2 + (x — c)
2 = ex — m2

.

Square again;

m2
y
2 + m2 x2 — 2 m^a. + m2

e
2 = e

2 x2 — 2 ?^2~-ea:+ m4
.

Collect; m2
y

2 + (m2 — c
2
) x2 = m2 (m2—c2

) . . (4)

To determine m it is only necessary to give • x and y
suitable values, or rather to give y the particular value o,

since the above equation is true for every point on the

hyperbola. We then get the value of x for the vertex, since

the ordinates of A and A' are o.

Letting y = o in (4)

(m2 — c
2
) x2 = m2 (m2 — e

2
),
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whence x2 = m2
; x = ± m,

but x here equals OA or OA',

hence m = OA or OA';

that is, 2 m = the major axis AA'. As in the ellipse

call AA', 2 a; then m = a, and (4) becomes,

a2

y
2 + (a 2 - c

2
) x2 = a2

(a
2 - c

2
) . . . (5)

Let c
2 - a2 = b

2
,

which by analogy with the ellipse we may call the minor

axis. We shall see that this is justified. Then (5) becomes,

a 2
y

2 — b2 x2 = — a 2
b
2

,

or b
2 x2 - a 2

y
2 = a 2 b

2 (AA )

Art. 94. A glance at the figure will show that c is

greater than a
}
hence the eccentricity,

c . .

e = — is > 1.

a

Then in the polar equation for conies

p = —**—„ (« > 1).
1 — e cos (7

and by a process exactly like that in Art. 84, this becomes

for the hyperbola,

a (e
2 - 1)

P = n
'

1 — e cos

Art. 95. To determine b in the -figure of a hyperbola.

The relation c
2 — a2 = b

2
, immediately suggests a right

triangle with c as hypotenuse. Hence with c as radius

and A or A' as centre, describe arcs cutting the y-axis at

B and B r
, OB will equal

b, or BB' = 2 b; for OB 2 = AB 2 - OA2 = c2 - a2
.
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It is plain that the curve does not cut this minor axis,

for, setting x = o [the abscissa of any point on BB' = o]

in (Ah ),

a T a 2
b 2

y — ± V— b 2 = ± b\/— i, an imaginary value.

Art. 96. To find the length of the focal radii for any
point, r and /.

or

Fig. 51a.

In Fig. 51a, PF2 = r
2 = PD 2 + FD 2

,

r2 = y
2 + (x - c) 2

. .

Since e = — » c = ae,
a

and (1) becomes,

r
2 = y

2 + (x — ae) 2
,

(1)

or y
2 + x2 — 2 aex + a2

e
2

.
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By (Ah ),f =
b-
2

(x2 -a2
).

az

b2 x2— b2 + x2 — 2 aex + a 2 e2

a1

b2 x2 + a2 x2

b2 — 2 aex + a 2
e2

a"

= (fl2 + P
%2 - 2 _ 2 aex + a2 e2_ put ^2 + p

= c
2
] = —— — b2 — 2 aex -\- a 2

e
2 = e2 x2 — 2 aex

+ a2
e
2 — b

2 = e
2 x2 — 2 aex + a2 [since a2

e
2 — b2

- b2 = c
2 -b2 = a2

]

a 2
c
2

.'. r= ex- a (3)

By exactly similar treatment of (3) Art. 93, we get,

/ = ex + a (4)

Subtract (3) from (4), / — r = 2 a, which shows that

the constant difference r' — r is always equal to the major

axis.

Art. 97. A comparison of the ellipse and hyperbola

equations shows that if in the ellipse equation — b
2

is sub-

stituted for + b
2

, the hyperbola equation results; hence

since the fundamental processes in deriving tangent, nor-

mal, and diameter equations are the same for all curves,

the equations for these lines in relation to the hyperbola

can be derived from the corresponding equations in the

ellipse by substituting — b
2 for b

2
.
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For example

:

(a) The ellipse tangent has the equation,

a2
yy

f + b2 xx f = a2
b
2

,

hence the hyberbola tangent is,

a 2 yy' — b
2 xx' = — a2 b2

or b2 xxf — a 2
yy

r = a2 b2
. . . . (Th )

The slope form is,

y = mx ± \/a2m2 - b
2

. . . . (Thm )

(b) The normal equation for the ellipse is,

y- y' = TT^ (* "" *')'
b
l x

hence the normal equation for the hyperbola is,

?-/=-££<*-*') • • •
(N»)

(c) The subtangent then is , and the subnormal
x

b 2 x'
is —"—

, the same as for the ellipse.
a2

(d) The equation for a diameter of the ellipse is,

b
2

y= — *,
azm

hence a diameter to the hyperbola is,

b 2

y = -7— *.

Conjugate diameters are defined in the same way, hence

the product of their slopes, m and mf

, say, is

b2

mm' = — [— 6
2 replaces 62

].

a2
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Art. 98. As the ellipse becomes a circle when its axes

become equal, for when b = a,

a 2
y

2 + b
2 x2 = a 2

b
2 becomes y

2 + x2 = a2
,

so if the axes of a hyperbola become equal, we call it an

equilateral hyberbola, which is the hyperbola-analogue of

the circle.

In b
2 x2 — a 2

y
2 = a 2

b
2

, let b = a; then x2 — y
2 = a 2

is the equation of an equilateral hyperbola.

Art. 99. The latus rectum of the hyperbola is readily

found from its equation by setting

x = ± c = ± \/a 2 + b
2

.

Whence b
2
(a

2 + b
2
)
- a2

y
2 = a 2

b2

b
4

, b
2

y
2 = -

2
, y = ± -

a2 a

2 b2 ...
2 y = — = latus rectum, since it is the

a

double ordinate through the focus.

EXERCISE.

What are the axis and eccentricities of the following

hyperbolas

:

1. 2 x2 — 3 y
2 — 9. 2. x2 — 4 y

2 = 4.

3. 16 y
2 - 9 x

2 = 144. 4- 5 x
2 ~ 8 r* = 15-

5. 9 y
2 — 4 x2 = — 36. 6. 4 y

2 — 3 x2 = 12.

7. #2 — 16 y
2 = 16. 8. 4 x2 — 16 y

2 = — 64.

9. What is the equation of a hyperbola, if half the dif-

ference of the focal radii for any point is 7, and half the

distance between foci is 9 ?
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10. What is the equation of the hyperbola, whose con-

jugate axis is 6 and eccentricity, ij?

11. The co-ordinates of a certain point on a hyperbola,

whose major axis is 20, are x = 6, y = 4. Find its equa-

tion.

12. The eccentricity of a hyperbola is if, and the longer

focal radius of the point x = 5, is 32. Find hyperbola

equation.

13. In a hyperbola 2 a = 20, and the latus rectum = 5

Find its equation.

14. The conjugate axis = 10, and the transverse axis is

twice the conjugate. Find the equation.

15. The conjugate axis =16 and the transverse axis

= I of the distance between foci. Find the equation.

16. In the hyperbola 25 x2 — 4 y
2 = 100, find the

co-ordinates of the point whose ordinate is 2* times its

abscissa.

17. In the hyperbola 25 x2 — 169 y
2 = 4225, find the

focal radii of the point whose ordinate is 10 y/2.

Find the intersection points of the following :

18. 16 y
2 — 4 x2 = 16 and 2 x — y = 3.

X A. V I
19. -LJ-~ = — and 3 y — 2^ + 8=0.

4 9 9

20. 9 y
2 — 16 x2 = 144 and x2 + y

2 = 36.

21. 9 y
2 — 6 x2 = 36 and 4 x2 + 9 y

2 = 36.

22. 16 x2 — 25 y
2 = 400 and 4 x2 + 16 ;y

2 = 16.

23. x2 — v2 = — 50 and x2
-\- y

2 = 100.

24. Find the equation of the tangent to the hyperbola

16 y
2 — 9 x2 = 144 at the point (V

6
, 5).

25. At what angle do 'the curves in Ex. 22 inter-

sect?



i3» Analytical Geometry.

CONSTRUCTION OF THE HYPERBOLA.

Art. ioo. The definition of the hyperbola suggests a

method of mechanical construction similar to that for the

ellipse.

Since the difference between the focal radii is constant,

if a fixed length of string be taken, attached at the two

foci, and the same amount subtracted from each of two

branches, continually, the hyperbola results.

Fig. 52-

In Fig. 52, let a straight edge of length / + 2 a, be

pivoted at F', and one end of a string of length I be fastened

to its free end, N, and attached to the focus F, at its other

end.

A pencil pressed against the straight edge, keeping the

string stretched (as at P), will describe the right branch

of the hyperbola. For at any point as at P,

PF' - PF = (FN - PN) - (NPF - PN) =
FN - NPF = l + 2a-l= 2a.
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The other branch may be described similarly by pivot-

ing at F, and attaching the string at F'.

Second Method : The hyperbola may also be constructed

by points, making use of the definition. Let AA' [Fig. 52

(a)] be the major axis, F and F' the foci and O the centre.

Fig. 52a.

Let LK [Fig. 52 (b)] = AA'. Extend LK and take any

number of points on LK produced as P, R, S, T, etc. With

Fig. 52b.

LP > LK as radius and F and F', successively, as centres

describe arcs as at G, H, G' and H'; with the same centres

and KP as radius, describe intersecting arcs at G, H, G'

and H'. The intersections will be points on the ellipse for

the radii LP — KP = LK = AA'. The same process

with points R, S, T, etc., will give as many points as desired.

A smooth curve through these points will be the hyperbola.
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CONJUGATE HYPERBOLA.

Art. toi. The hyperbola whose axis coincides with

the axis of ordinates is called the conjugate hyberbola to the

one whose axis is the #-axis. MBN — RB'S (Fig. 53).

Fig. 53-

Its equation is readily found to be

a2
y

2 - b2x2 = a 2
b
2

.

Art. 102. If the equations of two conjugate diameters

be combined with the equation to the original hyperbola,

it will be found that the results will be imaginary for one

of the diameters, showing that both diameters do not

touch the original hyperbola. Thus:

Let y=mx (1)
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and y =— (2)
a2w

be conjugate diameters.

Combining these with

b2x2 - a2
y
2 = a2

b
2

(3)

we get from (1) and (3),

2 a262

b
2 — a2m2

from (2) and (3),

a2w2 — tf

If &
2 — a2m2

is plus, a 2w2 — b
2 must be minus, hence

if the first x2
is plus, and hence x, real, the second x2

is

minus, and hence x, imaginary, or vice versa.

But if (2) be combined with the conjugate hyperbola,

a2

y
2 — b

2x2 — a 2
b
2

}

" 2

which is real,
• a-rrr

., a2
b
2

. ,

II — r~T ls real-

b
2 — a2m2

Hence conjugate diameters intersect, one, the original

hyperbola, the other, its conjugate, as aa' and bb' (Fig. 53) .

ASYMPTOTES.

Art. 103. An asymptote of the hyperbola may be

defined as a tangent at a point whose co-ordinates are

infinite, which, nevertheless, intersects at least one of the

co-ordinates, axes at a finite distance from the origin.

To find the equation of the asymptotes then, it is neces-
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sary to determine a line that will touch the hyperbola at

infinity (Fig. 54).

(1)

N
Fig- 54-

Let the equation of a line be

y = mx + c . .

and the equation to the hyperbola be

b
2x2 - a 2

y
2 = a 2

b2
(2)

Combining (1) and (2),

b
2x2 — a2m2x2 — 2 a 2mcx — a2

c
2 = a2

b2
,

or x2
(b

2 — a2m 2
)
— 2 a2mcx — (a

2
c
2 + a2

b
2
) = o

wherein the values of x are the abscissas of the point of

intersection. By the theory of equations, these values will

be infinite if the coefficient of

that is, if

x' = o,

a"m

or m = ± —
a



Analytical Geometry. 143

For in the typical quadratic, ax2 + bx + c = o

— b + V^2 - 4 ac — & - V&2 — 4 ac
x = ! or - •

2 a 2 a

In either case if the denominator 2 a = o or a = o the

values of x will be infinite, having a denominator o; but a

is the coefficient of x2
; hence the rule.

.\ if m = ± — the line y = mx + c meets the hyperbola
a

b
2x2 — a2

y
2 = a2

b
2
at infinity.

We found, however, in Art. 107, that the slope equation,

of the tangent to the hyperbola is,

y = mx ± \/a2m2 — b
2

;

that is, in y = mx + c, if c = ±\/a2m2 — b
2

} y = mx + c

becomes a tangent.

If m = ± —
, however,

a

a2m2 - b
2=— - b

2 = b2 - b
2 = o.

a2

.'. at infinity 3/ = mx + c becomes a tangent if c = o

and m = ± — • Hence the equation to an asymptote is

a

y = — # or y = x.
a a

The form of these equations shows that the asymptotes

pass through the origin.

Art. 104. Relation between the equations of the asymp-

totes and that of the hyperbola.

Clearing the two above equations of fractions, trans-

posing and multiplying together,

(ay — bx) (ay + bx) = o,

or a2
y

2 — b2x2 = o or b
2x2 — a 2

y
2 — o.
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Comparing this with b2x2 — a 2
y

2 = a 2
b
2

, it is observed that

they are the same except for the constant term a 2
b
2

, hence

given its two asymptotes it is easy to write the equation of

the hyperbola, or vice versa.

If y = — x and y = — — x are the equations of the
a a

asymptotes to a hyperbola, its equation may be written,

b 2x2 - a2
y

2 ± C = o (n)

the minus sign of C indicating the primary hyperbola; the

plus sign, its conjugate. If in addition a point is given

through which the hyperbola must pass, C can be deter-

mined.

For example : The asymptotes of a hyperbola are y = J x

and y = — J x. If the hyperbola passes through the

point (6, 2X^2), to find its equation. The equation will be

(2 y — x) (2 y + x) ± C = o

or 4 y
2 — x2 ± C = o.

Substituting;

4 (2 V2) 2 - (6)
2 ± C= o,

whence C = ± 4, whence 4 y
2 — x2 ± 4 = o are the equa-

tions to primary and conjugate hyperbola.

Corollary: The same principle will clearly apply no matter

where the origin is taken, since both hyperbola and asymp-

totes are referred to the same point as origin, and hence

the relation between their equations remains the same.

For example, if 2 y — 3 x — 1 = and y-\-2x-\-^=o,

are the asymptotes of a hyperbola, its equation is,

(y + 2 x + 3) (
2 y - 3 x - 1) ± C - o.

Art. 105. It is often desirable to refer the equation of a

hyperbola to its asymptotes as axes.
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By determining the angles made by the new axes (the

asymptotes) and the old, and using the transformation

equations (J'), Art. 38, the result is most readily

achieved.

These equations are

6 = reflex Z *ON

y =

X =

= xf
sin

= x' cos

6 +y'

+ /
sin (j>) \
COS

(f))
)

N == z- xON, 6 = MO*

(JO

(Fig- 55 )•

Fig. 55-

Since the new axes are asymptotes, their slopes are

H— and — — from their equations, that is,

a a

tan
b

.

J
tan = &_

a a
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whence by Goniometry,

sin 6 = ,

b
, cos =

Va2 + b
2

'

Va2 + b
2

'

• , b r a
sin =

, cos =
Va2 + b

2 Va2 + b2

Substituting these values in (J'),

Va2 + 6
2

Va2 + 6
2

Substituting (1) and (2) in the hyperbola equation,

b
2x2 — a 2

y
2 = a 2

b
2

,

a2
b
2

, , , , x , a2
6
2

(/ + *') 2 - ~^~ (/ - *') 2 = M2
,

a2 + b
2 ' ' a2 + 6 2

or (/ + x') 2 - (/ - x') 2 = a2 +P,

whence 4 x'y' = a2 + &
2

.

Dropping accents,

4 xy= a2 + b2 = c
2

. . . . (A
fl> h )

which is the equation of a hyperbola referred to its asymp-

totes.

It shows that the co-ordinates of a hyperbola referred to

its asymptotes vary inversely as one another.

Art. 106. Equation of the tangent to the hyperbola

referred to its asymptotes.

Pursuing exactly the same method as before, we deter-

mine the equation of a secant line and revolve this line to a

tangent position.
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The equations of any line through (x', y') and (x", y") is

y - y - $^i (* - *o • • • (
fi

)

If the points (x', /) and (x", /') are on the hyperbola,

they must satisfy $xy = c
2

.

.'. 41'/ = c
2

(1)

4X"y» = c
2

(2)

Subtracting (1) from (2) and simplifying;

x"y — x'y' =0 or x"y" = x'y
f

. . . (3

)

Subtracting x"y' from both sides to get the value of —

'

x"— xf

x"f _ yy _ xf

y
f _ x»y'

.

Factoring; x" (y" - /) = - y'(x" - x')

or y
~

y =- y~

.

%A/ *V vV

Substituting in B,

y — y
f = — „ (x — x') (4). [The equation of a secant.]

As the points approach coincidence x" approaches x'

and y" approaches y', and eventually x" = x', y" = y'.

Substituting in (4);

y - y = - 2j (X - x')

x

whence x'y — x'y' = — xyf + x'y

x'y + xy' = 2 x'y',

or y- + ^=* CT4 .)
y x
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EXERCISE.

Tangents and Asymptotes.

Find the equation of a tangent to the following hyper-

bolas:

2 x2 — 3 y
2 — 12, at (12, 2).

2. 16 y
2 — g x2 = 144, at (4 v 3, 6).

3. x2 - 4 7*= 4 at (?, |).

4. 16 x2 - 9^2 = 144 at (?, 3).

5. 25 v2 - 16 x2 = 400 at (3f, ?).

6. 36 y
2 - 25 *2 = 900 at (3 J, ?).

7. Find the normal to each of the above.

8. What points on a hyperbola have equal subtangent

and subnormal ?

9. What are the equations of the tangents to the hyper-

bola 16 x2 — 9 y
2 = 144, parallel to the line 3 y— 5^ + 3=0?

10. What are the equations of the tangents to the hyper-

bola x2 — 4 y
2 = 4, perpendicular to the line y = — 2 # + 3 ?

11. What is the equation of the normal to the hyperbola

x2 — 4 y
2 — 4, perpendicular to the line y — — 2 x -f 3 ?

12. Find the equations of the common tangents to

16 x2 — 25 y
2 = 400 and x2 + y

2 = 9.

13. Find the slope equation of a tangent a 2

^
2 — b

2x2 =
a2b

2
.

14. Find the equations of tangents to the hyperbola

2 x2 — y
2 = 3, drawn through the point (3, 5).

15. Find the equations of tangents drawn from (2, 5) to

the hyperbola 16 x2 — 25 y
2 = 400.

16. Find the equations of the tangents to the hyperbola

16 y
2 — 9 x2 = — 144, which with the tangent at the

vertex form an equilateral triangle.

17. Find the angle between the asymptotes of the hyper-

bola t6 x2 — 25 y
2 = 400.
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18. What is the equation of the hyperbola having

y — 2 x + 7 = o and 3 x + 3 y — 5 = o for its asymp-

totes, if it passes through (o, 7 ) ?

19. Show that the perpendicular from the focus of a

hyperbola to its asymptote equals the semi-conjugate axis.

20. Find the equations of the tangents to the hyperbola

9 y
2 — 4 x2 — 56 at the points where y — x = o intersects it.

21. A tangent to the hyperbola g x2 — 25 y
2 = 22$ has

the x-intercept = — 3. Find its equation.

22. Two tangents are drawn to 9 x2 — 4 v2 = 36 from

(1, 2). Find the equation of the chord joining the points

of contact.

23. The product of the distances from any point on a

hyperbola to its asymptotes is constant. What is the

constant ?

24. Show that the sum of the squares of the reciprocals

of the eccentricities of conjugate hyperbolas equals unity.

25. The equation of a directrix of the hyperbola

b
2x2 — a2

y
2 = a 2

b
2

, being

x = — [c = Va2 + b
2

\
c

show that the major auxiliary circle passes through the

points of intersection of the directrix with the asymptotes.

Art. 107. Supplemental chords.

Supplemental chords in the hyperbola are denned as

they were in the circle and ellipse, hence from the relation

between ellipse and hyperbola the relation between the

slopes of supplemental chords in the hyperbola is,

b
2

mm' = —^ [putting — b
2 for b

2 in ellipse condition].

Since this is also the relation between the slopes of conjugate
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diameters, it follows that there is a pair of diameters parallel

to every pair of supplemental chords, which suggests an

easy method of drawing conjugate diameters.

Art. 108. The 'eccentric angle.

Since the ordinates of the hyperbola do not cut the

auxiliary circles, the eccentric angle of a point is not so

Fig. 56.

readily determined as in the ellipse and a more arbitrary

definition is necessary. The angle
<f>

so determined that

x = a sec cf) and y = b tan
<f),

is called the eccentric angle for the point (x, y). These

values will satisfy the equation

b
2x2 - a2

y
2 = a2

b
2

;

for substituting;

a2
b
2 sec2

<£ - a2b
2 tan2

<f>
= a2

b
2
,
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or sec2
(j) — tan2

<f>
= 1.

which is true by goniometry.

To construct this angle for a given point, the auxiliary

circles [with radii a and b] are drawn. (Fig. 56.)

Let P be any point on the hyperbola. Draw its ordinate

PD and from the foot of PD draw a tangent to the major

auxiliary circle touching it at C, then Z. COD = cj> for

point P, (x, y).

For, draw BE a parallel tangent to the minor circle, then

in the right triangle OCD,

cos COD = — = - [OD = abscissa of P]
OD x

L J

or x = a sec COD (1)

Again in the right triangle OBE
BF

tan BOE = tan COD = —- ... (2)OB
The triangles COD and BOE are similar.

.-. OB :OC : : BE : CD,
whence

BE _. OB X CD __ OBVOD 2 - OC2 _ b\/l

OC OC a

or BE 2 = — (x2 - a 2
).

a 2

But y
2 = -' (x2 - a 2

) from (A, ). .-, BE = y.
a 1

Hence from (2) tan COD = <-

b

or y= Man COD ... (3)

Comparing (1) and (3) with the condition equations

for cf>, we see that COD = <£.

Hence the eccentric angle is found by drawing from
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the foot of the ordinate of a point, a tangent to the major

auxiliary circle. Then the angle formed with the axis by

the radius drawn to the point of tangency is the eccentric

angle for that point. The eccentric angle is used to best

advantage in the calculus.

Art. 109. There are two interesting geometrical prop-

erties of the hyperbola when referred to its asymptotes.

(a) The product of the intercepts oj any tangent on the

asymptotes is the same.

Let BPC (Fig. 57) be a tangent at P, then its intercepts

on Ox and Oy (OB and OC), respectively, will be found

by setting successively y = o and x = o in its equation,

(x', y being point P),

£ 4-- =2
/ X

whence x = OB = 2 x'

and y= OC= 2/
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multiplying; OB . OC = 4 x' y
f = a2 + b 2

(a constant).

Since xfy' is on the hyperbola 4 x'y' = a2 + ft
2

.

(6) TVze area a/ ///e triangle formed by a tangent and the

asymptotes is constant. The area of the triangle BOC
(Fig. 57), by trigonometry, is

Area BOC = sin . BOC = sin 2 <h

2 2

[COA = BOA = 0, Art. 105] = OB . OC sin <£ cos </>

[since sin 2 = 2 sin cf> cos cj) ]
=

b a nh
OB . OC. / =OB . OC

\/a2 + b
2 Va2 + b

2 ~
" ' a 2 +62

'

But OB . OC = a2 + &
2

.

.*. area BOC = (a2 + o 2
) _^_ = ab.K

a2 + b
2

That is, the area of this triangle always equals the product

of the semi-axes.

EXERCISE.

General Examples.

1. If y = 3 x -\- 15 is a chord of the hyperbola

36 x2 — 16 y
2 = 576, what is the equation of the supple-

mentary chord ?

2. The point (5, f ) lies on the hyperbola 4 x2 — 9 ;y

2=36.

Find the equations of the diameter through this point and

of its conjugate.

3. Find the equation of the line passing through a focus

of a hyperbola and a focus of its conjugate hyperbola.

4. Find the angle between a pair of conjugate diameters

of the hyperbola, b
2x2 — a2

y
2 = a 2b2

.
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5. Find the equation of the chord of the hyperbola

9 x2 — 16 y
2 = 144, which is bisected by the point (2, 3).

6. Show that the locus of the vertex of a triangle, whose

base is constant, and the product of the tangents of its base

angels is a negative constant, is a hyperbola.

7. Show that the eccentric angles of the extremities of

a pair of conjugate diameters are complementary.

8. What is the equation of the focal chord which is

bisected by the line y = 6 x?

9. In the hyperbola 9 x2 — 16 y
2 = 144, what is the

equation of the diameter conjugate to y — 3^=0?
10. Show that tangents at the ends of conjugate diam-

eters intersect on the asymptotes.

11. The base of a triangle is 2 b and the difference of

the other sides is 2 a. Show that the locus of the vertex is

a hyperbola. [Take the middle of the base as origin.]

12. For what point of the hyperbola xy = 12 is the sub-

tangent = 4?

13. Show that an ellipse and hyperbola which have the

same foci intersect at right angles.

14. What are the equations of the tangents to the hyper-

bola x2 — 4 y
2 = 4, which are perpendicular to the asymp-

totes ?

15. In the hyperbola 25 x2 — 16 y
2 = 400, find the

equations of conjugate diameters that cut at an angle

of 45°.

16. In the hyperbola 16 x2 — 25 y
2 = 400, what are

the co-ordinates of the extremity of the diameter conjugate

to 25 y + 16 x = o?

17. In the hyperbola 4 x2 — 9 y
2 = 36, the equation of a

diameter is 3 y — 2 x = o. What is the equation of any

one of its system of chords ?



CHAPTER VIII.

HIGHER PLANE CURVES.

Art. ioi. There are several other curves known as

Higher Plane Curves because their equations are more

complex, that are used extensively in engineering. These

we will consider briefly.

THE CYCLOID.

The cycloid, much used in gear teeth, is the curve gener-

ated by a point on the circumference of a circle of given

radius, as the circle rolls along a straight line. The circle

may be called the generator circle, and the straight line the

directrix.

Fig. 58.

To -find its equation. Let P( Fig. 58) be the generating

point, r the radius CP, OE = x and PE = y for P, and

call Z PCB, 0.

Then PE = CD - CB = r - r cos 6.

J 55
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That is, y = r — r cos (1)

Also x = OE = OD - ED = OD - PB = rd -
r sin 6 (2)

Since 6 is an extra variable, its elimination is necessary.

From (1) cos = r ~ y = 1 — 2-
,

r r

whence

1 — cos 6 = vers 6 = 2. or = vers
-1 2. .

Substituting this value of 6 in (2),

x = r vers x 2- — ? in
(
vers x —

J

or x = r vers x 2- — >/2 ^ _ y* #

For vers
-1 2- = #,

r

Z. = vers d=i — cos 0,
?*

! _ 1 = COS 0, /?L^^
2

\ = COS2 0.

x _ (L^f\ = "?-y8

= , _ C0S2 d = sin2 ^

Whence sin = —^—2- 2—

,

and r sin 6 = r sin (vers
-1

<-
J =V'2 ry — y

2
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CONSTRUCTION OF THE CYCLOID.

Art. hi. From the nature of the development of the

cycloid, it is readily constructed by points. The first

method to be shown produces an accurate cycloid if suffi-

cient points be taken.

The second method, which is employed in mechanical

drawing, gives a cycloid of sufficient approximation.

First Method : Let M be the generator circle in its

middle position, and XX' the directrix. Make OV equal

\ the circumference of M. Divide the semi-circumference

OCN into 6 equal parts, also OV into 6 equal parts. Then

K '-4s
!g^---^

cx
(° \

N
B'/ \B

M
)

kI \A /
y t s

—1

—

R
—

+

P^- |

Q P #

—

x

Fig. 59-

clearly the 6 points on OCN would exactly coincide with

the 6 points on OV if the circle were rolled back toward V.

Through the division points on OCN: A, B, C, D, E,

draw lines parallel to the directrix. Now if the circle were

revolved toward V until A and P coincided, then N would

be on the level now occupied by E, that is, it would be

somewhere on the parallel through E; N would still be the

same distance from A that it now is; hence if we take a

radius AN, with P as a centre, we will cut the parallel

through E in the place where N was when A was at P.

Likewise with Q as a centre and radius BN, cut the parallel

through D, and we have the position of N when B was at

Q. The same process continued will give all the succes-
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sive positions of N, and if these be joined by a smooth

curve, we have the cycloid described by N.

Art. 112. Second Method: This approximate construc-

tion used in mechanical drawing is based on the fact that

for very small arcs the arc does not sensibly differ from its

chord, so the divisions are " stepped off " with the com-

passes, thus really getting chords not arcs, but by taking

the distances small enough, any degree of approximation

may be attained.

Draftsmen use this slightly modified method, which

gives a sufficient approximation, as follows:

Fig. 60.

Fig. 60. Let MN be the directrix and C the generator

circle. Lay off any small distance on MN a sufficient

number of times choosing the distance small enough so that

as a chord it would not sensibly differ from its arc, as AB.

Then AB, BC, CD, etc., will practically equal corresponding

arcs on C. Draw a series of circles (or parts of them)

having the radius of C. These represent the generator

circle in its successive positions.

From B, C, D, etc., successively " step off " with com-

passes on the arc passing through them, 1, 2, 3, etc., units

(as AB). These will give points on the cycloid as A', B',

C, D', etc. The curve drawn through these points will be

a very good approximation.
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ROULETTES.

The hypocydoid is described by a point on the circum-

ference of a circle, which rolls on the inner side of the

circumference of a second circle.

If the generator circle rolls on the outside of the circum-

ference of the directrix, the resulting curve is called an

epicycloid.

The two circles may have any relative radii, and if the

ratio between them is commensurable, the cycloids will be

closed curves, consisting of as many arches as the ratio con-

tains units. The common ratio is 4. If the ratio is 1, the

epicycloid resulting is called a cardioid (see Art. 16).

Curves described by rolling one figure upon another are

known collectively as roulettes.

Art. 114. To find the equation of the hypocydoid.

Let circle C be the directrix and circle C the generator

circle (Fig. 61). Let P be the generating point, starting

y

Fig. 61.

from coincidence with D. Draw the co-ordinates of P,

CF and PF (x, y);CE perpendicular to CD and PA
||
to

CD, and let CD and CY (J_ to CD through C) be the

axes. Let Z BCD = 0, Z BC'P = a; Z C'PA = 6;

CB = r and C'B = /.
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Then CF = CE - FE = CE - PA = CC' cos -
C'P cos d or x = (r — r') cos

(f>
— r' cos 6.

Extend C'P to meet CD at G; Z C'GD = d, and

a = cj) + C'GC =
<f> + (180 - 0)

[a is exterior angle of triangle C'GC].

Hence a — <j> = 180 — d.

cos (a —
<f>)

= cos (180 — 6) = — cos [Goniometry].

Substituting in (i);

x = (r — r') cos cf> + / cos (a — 0) . . (2)

Likewise, ;y
= (r — /) sin cj) — r' sin (a. — cj)) . . .(3)

But since arc BD = arc BP by method of descrip-

tion of the hypocycloid rd> = r' a, or a =-~
•

r

Substituting in (2) and (3);

a; = (f — /) cos
(f>
+ / cos ' ^-

. . (a)
r

y = (r — /) sin d> — r' sin - '-%
. . (b)

r'

If
<f>

be eliminated between (a) and (&) the rectangular

equation for the hypocycloid results, but in this general

form the equation would be exceedingly complicated.

But if r = 4 r
f

, as is customary, the result is compara-

tively simple, thus:

(a) becomes; x = f r cos </> -f i r cos 3 <£.

(ft) becomes; y = f r sin <£ — ^ r sin 3 0,

or » = - (3 cos (/>+ cos 3 <£) . . (a')

4

and y = _ (3 sin <£ — sin 3 0) . . (&')

4

By Trigonometry j
3 cos ^ + cos 3 ^ = 4 cos^

.

) 3 sin <£ — sin 3 <£ = 4 sin
3
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Hence (a
f

) becomes x = r cos3
cf> . (a")

and (b') becomes y = r sin
3

<f>
. (b")

Combining {a") and (b"); x$ = r* cos2
<j>,

yl = ^§ sin2 <^

Add; *3 + yi

Art. 115.

sin 2
<£ = 1

J,
r% [since cos 2

<£

T(7 construct the hypocycloid.

Let C be the directrix; (Fig. 62) C the generator circle;

P the generating point. Divide the quadrant P'K into 8

equal parts and the semicircle PE' into 4 equal parts. Let

P start at P', then when A' and A coincide as the circle C
K

Fig. 62.

rolls, P will be at the distance DD' from P' and at the dis-

tance AT from A. Hence with P' as a centre and DD'
as radius describe an arc intersecting another described

with A as centre and AT as radius. This intersection

point will be a point on the hypocycloid.

When B' is at B, P will be at the distance BB' from P'

and at the distance BT from B. The intersection of arcs

described with centres P' and B and radii BB' and BT,

respectively, will be a second point on the hypocycloid,

and so on.
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Evidently the greater the number of equal parts into

which the quadrant and the generator circle are divided

the more accurate will be the hypocycloid.

If the ratio of the radii of the two circles is 3, the entire

directrix will be divided into 3 times as many parts as the

circumference of the generator circle and similarly for any

ratio. In the figure 62 the ratio is 4.

Art. 116. Draftsman's method 0} constructing the hypo-

cycloid.

This method is almost exactly similar to that described

for the cycloid, using, however, angular division of the

directrix, which is now a circumference.

F

Fig. 63. Let C be the centre of the directrix and C the

generator circle. " Step off " on the circumference of C

any small equal arcs as AB, BD, DE, etc.; at A, B, D, etc.,

draw tangent circles equal to C. From A, B, C, D, E, etc.,



Analytical Geometry. 163

successively " step off "
1, 2, 3, 4, etc., times the distance

AB, the resulting points ^ill determine the hypocycloid.

An exactly similar process will produce the epicycloid, if

the generator circle be rolled on the outside.

Art. 117. Another form of roulette is the involute,

which is described by a fixed point on a straight line, that

rolls as a tangent on a fixed circle. Let C (Fig. 64) be the

directrix circle and MN the initial position of the line.

Fig. 64.

" Step off " any small equal arcs on the circumference of

C as AB, BD, DE, etc. Draw tangents at the points of

division and beginning with A stepoff, successively 1, 2,

3, 4, etc., times the distance AB on the tangent lines. The

resulting points will determine an involute. Any curve

whatever will produce an involute in this way, but the

circle is most commonly used. A gear tooth is made up

of cycloid, evolute, and circular arc in varying proportions.

SPIRALS.

Art. 118. A spiral is described by a point receding,

according to some fixed law, along a straight line that

revolves about one of its points. There are a number of
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spirals, one of which will illustrate this type of curve. The
revolving line is called the radius vector and the angle it

makes, in any position, with the initial line, is called the

vectorial angle.

The hyperbolic spiral is the curve generated by a point,

which moves so that the product of radius vector and

vectorial angle is constant.

Fig. 65.

Calling the radius vector, r; the vectorial angle 6 and the

constant C, we have by definition,

r 6= C.

To construct it when C = 11, then r = — •
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Make a table of values for r, as follows;

When = o, r = 00 , ^ = 3^.

= *, (45°), r= i4.

4

7T

3

' (6o°), r = 10.5

5£
12

(75°), r = 8.4.

7T

2
(9o°), r = 7.

Z_E (105), r == 6.
12

0= ^, (i35), r=4§,etc.
12

One complete revolution of the radius vector from o° to

360 describes a spire, as from 00 to B [Fig. 65], and the

circle described with the final radius vector of the first

spire, as radius, is called the measuring circle.
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ELEMENTARY CALCULUS,

CHAPTER I.

FUNDAMENTAL PRINCIPLES.

Art. i. Variables and constants. Suppose we wish to

plot a curve, corresponding to the relation y = x3 + 2 x2

— 5 x — 6; and for this purpose assign to x certain arbi-

trary values, calculating from these the corresponding and

dependent values of y. Now in such a case both x and y

are variable quantities, x being called an independent,

and y a dependent variable.

In general: A Variable is a quantity which is subject to

continual change of value, while an Independent Variable

is supposed to assume any arbitrary value, and a Depen-

dent Variable, is determined when the value of the Inde-

pendent Variable is known.

Examples : y = x*, y = tan x, y = log x.

In the above examples x is the independent, and y the

dependent variable.

When a quantity does not change or alter its value such

as iz — 3. 141 59 . . . , it is called a Constant Quantity, or

simply a Constant.

Art. 2. Functions. Let us again take the equation

y = x3 + 2 x2 — 5 x — 6 ; we know that for every value

of x there is a corresponding value of y; not necessarily

different, for if x = 3, v = o, and if # = 2, y = o, but

169
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nevertheless to each value of x there corresponds a certain

definite value of y. When two quantities, x and y, are

related in this manner we say that y is a function of x.

In the examples given above, namely, y = tan x, y = x4

,

y = log x, we see that in each case if we assign a value

to x there corresponds a definite y value; we therefore call

y a function of x.

Again, if we note the barometer readings corresponding

to each hour of the day, we can involve the observations

in a curve, and we say that the height of the barometer is a

function of the time, because to each change in the time

there corresponds a certain definite barometric height.

It is equally true that the barometer readings are a func-

tion of the time.

In general, A quantity P is a junction of a quantity Q,

when to every value which Q can assume there corresponds

a certain definite value 0} P.

It is customary to express the term " function of " by

the symbols F, /, (Phi); thus we write sin x = F (x),

sin x = / (x) or, sin x = cj> (x), meaning that the sine of

an angle is a quantity which assumes certain definite values

dependent upon the size of the angle x. Again, if y— cos x,

then y = f (x) or in the case of an equation such as

y = x3
-\- 2 x2 — 5 x — 6 we may also write y = f (x).

This latter mode of expressing an equation briefly by

the symbol y — F (x) or y = j (x) is in very general use.

From the definition of a function, given above, we see

that if an expression involves any quantity, it is itself a

function of that quantity; for example, —— is a function of

x, since this fraction has a definite value corresponding to

each change in the value of x, likewise 3 cos a + 5 tan a

is a function of a.
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Further, the area of a triangle is a function of its base

and also of its altitude. Such a double relation is indicated

thus: area A = / (b, h), while the area of a square is a

function of its side. If x is a side and y the area, then

y = x2
; we may write this equation in the general form

y = / (x). Again, the volume of a sphere is a function of

its radius, or V =
<f>

(r).

Art. 3. Object of the Differential Calculus. In algebra,

geometry, and trigonometry, the quantities which enter

into the calculations are fixed; they have absolute unchang-

ing values.

Now, suppose we wish to find the greatest value that y
can assume, between x = 3 and x = 2 when y = x3 + 2 x2

— 5 x — 6. Here we have two variables, x and y, entering

into the calculation, each of which may have an infinite

number of values and from which one special value of x

is sought, which is defined by the condition imposed.

A problem, such as the above, involving the relation of

two or more variable quantities, comes within the province

of the differential calculus. In general the differential

calculus supplies us with a means of obtaining informa-

tion regarding the properties of quantities, the number of

whose values are infinite, and which vary according to

some known law.

One of the chief advantages of the calculus lies in the

comparative simplicity with which complex problems

involving variable quantities are solved, problems, which

if attacked by other methods, would require long and

tedious operations and sometimes be impossible of solu-

tion.

Art. 4. The Differential Coefficient. Suppose an ob-

server to take notice of a passing bicyclist, and to estimate

his speed at 10 miles an hour; now, a statement to this



17 2 Elementary Calculus.

effect would imply that the bicycle at the moment of obser-

vation was travelling with a velocity, which if maintained

for the next hour, would cause the rider to cover 10 miles.

It does not follow, however, that this will be the case, for

5 seconds later the speed of the bicyclist might be either

reduced or accelerated; further, the above statement in

no way refers to the velocity of the bicycle prior to the

time of observation, having reference to the speed only, at

the exact moment when the bicyclist passed the observer.

Should it be desired to make an accurate determination

of the speed of the machine, we might place two electrical

contacts in its path, which on closing would cause the

time taken in traversing the space between them to be

automatically registered. Then if v = velocity, s = space,

s
t = time, we have v = — as a measure of the velocity.

In choosing a position for the second contact, we would

undoubtedly select a point near to the first; because the

speed of the machine at the moment of passing the first

contact would be unlikely to remain constant for a space

say of ioo yards, but would be less liable to change in 10

yards, less in i yard, still less in i foot, and so on.

Hence it is, that if we wish to obtain an accurate result,

giving the velocity of a body at the moment of passing a

certain point, we measure as short a, portion of its path as

is practicable, and divide by the correspondingly small

time interval.

Let us now examine a case of uniform motion ; suppose a

point to travel a distance of 30 miles in 6 hours with uni-

form velocity. Now, uniform velocity implies that equal

lengths of path are traversed in equal times, no matter how

small are the time intervals considered. Hence a point

travelling 30 miles in 6 hours, at uniform speed, travels
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5 miles in 1 hour, 1 mile in one-fifth of an hour, and so on,

as indicated in the following table

:

Space described
(in miles)

.

Time
(in hours).

Velocity
(in miles per hour)

.

SO 6 v = _22
6

= 5

5 1 V = 5

1

= 5

1
1

5

V = 1

.2

= 5

1 1
V = .1 = 5

10 50 .02

1 1
V — .01 = 5

100 500 .002

1 1
V = .000001 = 5

1000000 5000000 .0000002

1 1
- V = .000000000001 = 5

I000000000000 5000000000000 .0000000000002

Now it is most important to note, that no matter how

small the space traversed may be, even if beyond all possi-

bility of measurement and conception, the ratio of any

such exceedingly small space to the minute time interval

taken in traversing it, invariably gives as a quotient 5,

in the example cited. The last space taken, which is

.000000000001 miles is equivalent to about one-six hundred

millionth of an inch, while the corresponding time interval

is .0000000000002 hours, which is approximately three

billionths of a second; the ratio - is nevertheless equal to

5, giving a velocity of five miles an hour.
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In general we may state that the ratio of two quantities,

each of which is so small as to be entirely beyond our com-

prehension, may, nevertheless, result in an appreciable and

practically useful quotient, a fact which should be most

carefully noted.

When we wish in general to indicate that we are consid-

ering a small finite space, we employ the symbol As, while

As
At is used to express a short time interval. Thus —

A*

means that we are comparing a small space with a corre-

spondingly small time interval.

In the example above, we have:

4^ =5 or As = 5 . At.
At

Carrying this conception still further we may consider

As to become smaller than any imaginable quantity; in

other words, that the space taken is infinitely small This

we indicate by ds, and call ds a differential of space.

The same process of reasoning applied to "A^ gives dt

as representing an infinitely small time interval or a differ-

ential of time. We often refer to ds and dt simply as differ-

entials. The infinite reduction of the space and time will

not affect the value of their ratio. We will still have

— = c and ds = c . dt.

dt
5 5

The value of the ratio of two differentials such as ds

and dt, is referred to by German mathematicians as a

differential quotient; hence 5, in our case, is called a

differential quotient.

Again, if we write the expression, -j- = 5 in the form
dt

ds = 5 . dt, then 5 becomes a coefficient, for it multiplies
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the differential of the dependent variable dt and is there-

fore called a differential coefficient.

For the present the student might consider a differen-

tial quotient, in general, as the value of the ratio of two differ-

entials; while the term differential coefficient implies the

same quantity regarded as that factor of the differential of

the independent variable which makes it equal to the differ-

ential of the dependent variable.

It will be found later that these conceptions are suscep-

tible of a deeper meaning and lead to results of great prac-

tical value.

Progress in the study of the calculus, primarily depends

upon the thorough understanding of the meaning of the

differential quotient or coefficient. Much misunderstand-

ing has arisen from the fact, that when we have such

expressions as above, viz. —=5 and also ds = 5. dt, it is

dt

customary to speak of the 5 in either case as a differential

coefficient; in the former case it is strictly a quotient, which

quotient becomes a coefficient when we write ds = 5. dt.

Art. 5. Rates of Increase.

Suppose we have a square A
x
(see Fig. 1), a side of which

A, A 2 A 3

Fig. 1.

is of unit length; further imagine that while the left lower

corner remains fixed, the sides are capable of continuous
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uniform extension, so that the square A
1
assumes larger

and larger proportions, thus passing, during this continuous

expansion, through the dimensions shown by A
2 , A 3 , A4,

in which the side of each new square is one unit greater

than that of the preceding. Now by an inspection of

Aj, A
2 , A 3 , A4 , we see that

Square.
Side in Linear Area in Square Area Increase in

Units

.

Units. Square Units.

A
a

I I

A2 2 4
3

A
3 3 9

5

7A 4 4 16

Note that if the side of each square is increased by addi-

tions of one linear unit, the area increases by 3, 5, and 7

square units, and as the side lengthens, the greater is the

proportionate increase oj area, in fact the square might be

considered as growing with an accellerated inerease of area.

As before said we are considering that the square continu-

ously expands; now in order to compare the increase in

area with the increasing length of the side, we find it con-

venient to assume an arbitrary unit of time. Hence we

say the rate of increase oj the square is greater than the rate

oj increase of its side.

This assumption, which is very general, enables us to

compare the relative rate of increase or decrease of any

two mutually dependent quantities. Thus we say the rate

of increase of the volume of a sphere, in units of volume, is

greater than the rate of increase of its diameter,' in linear

units, and so on.

Let us return to the case of the bicycle and the observer

(Art. 4); we found, that if we wished to calculate the actual
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speed of the bicycle at the moment of passing the point of

observation, then the smaller the space measured, the more

accurate would be our results; this would clearly hold if

the bicyclist passed the observer with an accelerated velocity.

Now this case is similar to that of the square above men-

tioned, for suppose the side of the square, which is con-

tinuously lengthening, pass through the point at which

x = 3 linear units, we might ask ourselves, what is the

relation of the rate of increase of area of the square, at the

moment when x = 3 to the rate of linear increase of its

side.

Let the side x = 3 centimetres, and let y be the area of

the square on x; we thus get

y = x2 = 9. Now let the side x

receive a small increase, called

an increment, which we will

represent by Ax (read, delta x),

let A x = 0.1 centimeters; thus x

becomes x + Ax= 3 + 0.1 = 3.1.

Upon the increased side describe

a second square; we now have

two squares (see Fig. 2), and

the increase in area of y, due

to the increment Ax, is represented by the shaded strip;

this increment, which we will call Ay, is obviously an

increment of area. We thus have:

Area of square on (x + Ax) = {x-\-Ax) 2= (3.i) 2=9.6i.

Area of square on x = x2 = (3)
2 =9.

Difference (x + Ax) 2—

x

2 = Ay =0.61.

Now the difference Ay = 0.61, is the increase in area of

the square y, in square centimetres, during the time

that x increased from x = 3 to #=3.1 centimetres; intro-
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during the arbitrary unit of time before alluded to, we

say:

Rate of increase of square y _ 0.61 _ Ay _ ,

Rate of increase of side x .1 Ax

We will now tabulate a number of values, calculated

exactly as above, for —2-
, for x = 3 centimetres:

Ax

If Ax = 0.1 then —2. = '-— = 6.1
Ax .1

A Ay .0601 £Ax = .01 —z = = 6.01.
Ax .01

A Ay .006001 ,
Ax = .001 -~ — = 6.001.

Ax .001

* Ay .00000060000001 ,Ax = .0000001 —*- — = 6.0000001.
Ax .0000001

We thus see that —^ approaches the value 6 more and
Ax

more nearly, the less the increment Ax.

If Ax is infinitely small, in other words becomes the

differential dx, then the number of zeroes to the right hand

of the decimal point before the one would be infinite, and

the value of the quotient would be truly 6. If Ax becomes

a differential of length, dx, then Ay, becomes a differential

of area, dy; and as the quotient 6 is the result of the com-

parison of these two differentials, it is, therefore, a differen-

tial quotient; thus we write:

dx

TT the rate of increase of the square
Hence we say — ^— = 6 at

the rate of increase 01 the side

moment when the side is 3 units in length. As before
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mentioned we sometimes write dy = 6 dx; here, six figures

as the coefficient oj the differential dx 0} the independent

variable, and is therefore called a differential coefficient. We
might calculate this differential quotient in another man-

ner, which would lead us to a more general result; thus,

taking x = 3, and .*. y = x2 = 9 and Ax = .001, the side

x becomes x + Ax. Now area of square,

x2 + 2 x (Ax) + Ax
( (x + Ax) 2 = (3 + .001)

2 = 9 + 2 (3) (.001) + .000001

7 x2 = 3
2 = 9

By subtraction; A^= 2 (3) (.001) + .000001

2 (x) (Ax) + A?

Dividing by Ax = .001, we get —+ = 2 (3) + .001.
Ax

Now if Ax becomes dx, then the number of zeroes before

the 1 in the last term would be infinite and we would have

f -a(3)-&
dx

Now 3 is the length of the side x, which is as we see

introduced into the calculation in a perfectly general way,

as is also the factor 2. Thus if x = 8 and Ax = .00001

then -~- = 2 (8) + .00001
Ax

2 (#) + Ax
and similarly for any other values of x and Ax. Hence

it woidd seem that we might write for the differential

quotient the general value —• = 2 x, where x represents
dx

the length of a side at any moment. If x = 7 then 2 x =
14, and since dy = 2 xdx, we find that the rate of in-

crease of the square in square units =14 times the rate

of increase of the side in linear units at the moment when
the side is 7 units in length. We will now approach
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Ax
P-2 Ax

Ax

this matter more generally and see if the result above

indicated is a rigid truth.

Art. 6. Geometrical view oj the differential coefficient

of y = x2
.

Suppose we have a square the side of which is x (see

Fig. 3). The area x2
, we call y, thus we have y= x2

.

Now let x receive an incre-

ment Ax, then x + Ax can be

considered as the side of a lar-

ger square (x + Ax) 2
. Com-

pleting the construction shown

in Fig. 3, we notice that the

difference between the squares

(x + Ax) 2 and x2
, which is

(x + Ax2
) — x2

, is made up

of two rectangles P
x
and P

2

together with the small square

S. The rectangles have each

an area of x . Ax and the square S of Ax . Ax = Ax2
.

These parts taken together represent the increase Ay of

the square y when x changes to x + Ax, in virtue of its

increment Ax. We thus get :

Av= 2.x. Ax+ Ax2

(Increase of square y) = (Two rectangles P
x
P

2 . ) +
(Square S.).

We further notice that the square S is much less in area

than the two rectangles V
l
and P

2 . Now the smaller the

increment Ax, the narrower become the rectangles and

the less the relative area of S. This is easily seen, for sup-

pose Ax is exceedingly small, then the rectangles Pj and

P2
may be represented by long thin lines (see black line

Fig. 4), while S is reduced to their intersection.

Fig. 3.
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If now we consider the lines representing these rectangles

to be infinitely thin, then the sides of the squares become

infinitely short, while the lines

representing the rectangles re-

main of finite length, hence it

would take an infinite number

of such squares to make one of

the rectangles. Clearly the

square S tends to vanish if

the rectangles become infinitely

narrow, that is if Ax changes

to dx then (dx) 2
is evanes-

cent, that is, tends to vanish.

Ax

We had above,

If Ax becomes dx then

and

Ay

dy

dy

dx

Fig. 4.

2 xAx + (Ax) 2
.

2 xdx

2 x.

We thus find that if y = x2
, then

dy

dx
2 x. In other

words we have found that if a quantity y (in our case the

area of a square) is dependent upon another x (here the

side of a square), in such a manner that y = x2
, then the

rate of increase of y at any moment, compared to the rate of

increase of x at the same moment, is =2 x, which latter

quantity is called the differential quotient of the expres-

sion y or more generally, the differential coefficient

of x2 with respect to x.

Art. 7. Differential coefficient of y = x2
. Analytical

method.

We will now examine a general analytical method of

obtaining the differential coefficient of x2 with respect to x in

the case of the function y = x2
.
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Given y= x2
,

then y + Ay = (x + Ax) 2 = x2 + 2 xAx + Ax2
,

now y + Ay = x2 + 2 xAx + Ax2
,

and v = x2
.

Subtracting; Ay = 2 xAx + Ax2
.

.'. ~ = 2 x -f Ax.
Ax

If Ax becomes dx then the value of Ax alone tends to

vanish or is evanescent.

dy
-*- — 2 x.
dx

Hence again we find if y = x2
, then the differential

quotient of the expression y — x2
is 2 x; which is also the

differential coefficient of x2 with respect to x, for 2 x is the

multiplier of the differential dx of the independent variable

x when we write -2- = 2 x in the form of dy'= 2 x . dx.
dx

Art. 8. Differential coefficient of y = x3
.

We will now take another case; if y = / (x) and the

function be such that y = x3
, what is the relation of dy

to dx?

Suppose x to be a straight line, then x3
will represent

the volume of a cube = y.

Now let x increase by Ax, then x + Ax will form the side

of a second larger cube whose volume is y + Ay.

Now if we examine Fig. 5, we see that Ay which is the

difference in volume of the two cubes, (x + Ax)3 and x3
,

is made up of three slabs each of dimensions x. x . Ax
= x2Ax together with three parallelopipidons of dimen-

sions x . Ax . Ax = x . Ax2 and of one cube of volume

Ax . Ax . Ax = Ax3
.
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Hence we have Ay = 3 x2 Ax -f- 3 x Ax2 + Ax3
,

and

Fig. 5.

If Ax becomes dx then,

dy _
dx

3 x2 + 3 x . dx + (dx) 2

Now both 3^;.^ and (dx) 2 are evanescent, but remember-

ing the ratio of the infinitely small quantities dy, dx, is finite,

it is in fact the quotient 3 x2
.

Hence if y = x3 then — = 3 x2

,

dx

or dy = 3 x2 dx.

Therefore the differential coefficient of y = x3
, with

regard to x, is 3 x2 and the expression dy = 3 x2dx means

that at any moment the rate of increase of the volume in
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units of volume is 3 x2 times the rate of increase of the side

in linear units.

If the sides be 2 inches and the increment Ax is .001

then —2- = 3x2 +sxAx + Ax2
.

Ax

.'. ^ = 3(4) +3(2)(-ooi) + (.ooi) 2
.

= 12 + -006 + .OOOOOI.

Obviously if Ax becomes evanescent, the value of the

right hand member becomes =12.

.*. when —? becomes '—
, then -2- = 12.

Ax dx dx

This result we could obtain at once from the previous

expression -^- = 3 x2
; for putting x = 2,

dx

we get -2- = 3 (4)= 12.
dx

Meaning, that a/ the moment when the side x is two

units in length, the volume of the cube increases 12 times

as fast in units of volume as the side in linear units.

Art. 9. d.c. of y = x3
, analytically. Orders of Infini-

tesimals.

If y = x3
,

then y + Ay = (x + Ax)3
.

.'. y + Ay = x3 + 3 x2Ax + 3 x Ax2 + Ax3

,

y = x3
.

Subtracting; Ay = 3 x2Ax + 3 * A? + Ax3
-

And if Ax becomes dx,

then dy= 3 x2 dx -f 3 x (dx) 2 + (dx) 3
.
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Now dx is an infinitesimal, and when it occurs in the

first power, is said to be of the first order; similarly (dx) 2

and (dx)3 are of the second and third orders respectively.

Obviously the same reasoning that causes us to consider

an infinitesimal of the first order as unimportant when

compared to a finite quantity, leads us to regard an infin-

itesimal of any higher order as evanescent when com-

pared with one of lower order. Then the quantities

3 x(dx) 2 and (dx)3 are unimportant terms in the expres-

sion

dy = 3 x2dx + 3 x (dx) 2 + (dx)3
.

Hence dy = 3 x2dx

and -r~ = 3 x2
dx

Art. 10. The dx. and the gradient.

In engineering work grades are often described by refer-

ring the rise in level of a point to its corresponding hori-

zontal distance from some fixed position. We thus speak

of a grade of 20 ft. in 100 ft., meaning the slope resulting

from arise of 20 ft. in 100 ft., or 1 ft. in 5 ft., as indicated

in Fig. 6, and measured by the tangent Z BAC. The

1 FT,

Fig. 6.

term " gradient " is applied to the numerical value of the

vertical rise BC /c, J?-„ a n

ratio,
:

—
:

= — (See .tig. 6.)
horizontal distance AB

BC i
Now tangent BAC = -7^-= - = 0.2, and since the

natural tangent of (ii° 19') = 0.2 unit, therefore, the
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gradient of the slope AC is 0.2, and the angle BAC is approx-

imately ii° 19'.

Suppose a straight line AB to make an angle DCB with

the #-axis. (See Fig. 7.)

Fig. 7-

Let the co-ordinates of any point Q on AB be x and y.

Let x be increased by Ax, and y by Ay.

Completing the construction shown in Fig. 7, we have

PQ _ RQ'
CP

RQ'
QR

tan Z DCB =

and

QR
Ay .

A*

(by similar triangles),

Hence 4^ = tangent Z DCB.
Ax

If the increment Ax becomes infinitely small, then

&- = tangent Z DCB.
ax

This means that in the case of a linear function, that is,

a function whose graph is a straight line, the ratio of an

infinitely small increment of the v-ordinate to dx gives the
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tangent of the angle which the straight line makes with the

#-axis, and therefore its gradient.

We will now test this numerically by the following

example.

Given the linear function, y = 0.7 x + 2, to find the

differential coefficient with respect to x, namely, the value

of
dy

dx

We have

then

Hence

But

Subtracting;

and

and hence the gradient of the line.

y = 0.7 x + 2,

y + Ay = 0.7 (x + Ax) + 2.

y + Ay = 0.7 x + 0.7 Ax + 2.

y = 0.7 x + 2.

Ay = 0.7 Ax.

Ay

dy

dx
0.7.

Now 0.7 is the approximate natural tangent of 35 .

Hence by differentiating the

function y = 0.7 x + 2 we

have not only found the

ratio of the increase of the

ordinate to the abscissa

at any moment, but also the

gradient of the line and

hence the angle it makes

with the x-axis.

The line AB, Fig. 8, was

plotted from the equation

y = 0.7 x + 2, and the angle BAx will be found, upon

measurement with a protractor, to be approximately 35 .

Fig. 8.



x88 Elementary Calculus.

Art. ii. The gradient of a curve.

Suppose we have two bodies, B
t
and B

2 , travelling in

parallel paths, the former with an accelerated velocity of 2 ft.

per second per second and the latter with a uniform velocity

of 2 ft. per second. Further, imagine that B
x
starts upon a

line A
X
A

2 (see Fig. 9), while B
2
starts one foot to the left

of it but at the same moment.

B2
•

8 = V t

A 2

Fig. 9.

In the first case, that of B v where the velocity is acceler-

ated, we have s = J at
2

, where a = 2 is the acceleration,

hence s = J (2) t
2

, and therefore, s = t
2

.

In the second case, the velocity is constant, and we have

the space traversed by B
2
expressed by the equation 5 = vt,

and since v = 2, we have s = 2 t.

The following table gives the spaces traversed by B,

and B
2
at the conclusion of different time intervals.

b,.

Space traversed from

rest at the end of

J second = J ft.

1 second = 1 ft.

2 seconds = 4 ft.

3 seconds = 9 ft.

B2 .

Space traversed from

rest at the end of

J second = 1 ft.

1 second = 2 ft.

2 seconds = 4 ft.

2 seconds = 6 ft.

In Fig. 9, we have depicted the relative positions of the

two bodies B
x
and B

2
graphically, showing a portion of their

paths, and using the data given in the above table. Notice
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that during the first second, B
x
travels slower than B

2 , and

that B
2
has caught up with B

x
at the end of the first sec-

ond, and for one instant of time the two are abreast, and

travelling with the same velocity, after which the speed of

B
x
is greater than that of B

2
and is constantly growing, as

shown by the increasing distance covered in each ensuing

second.

Sin fi ET Bi/ Ir
7

6
°°l /5s

/ ^

5

4

/
3 K

/2

/ r
1J P Q

/N 1 M 2 3 4 5

/
t IN SEC.

Fig. 10.

Plotting the values given for s and / in the above table

we obtain in the case of B
t
a curve (see Fig. io), and in

that of B
2
a straight line; this latter, it will be noticed,

touches the curve at the point P; which point corresponds

to the positions of the two bodies when they are, for an

instant of time, one foot from the line A
2
A

2
and traveling

with the same velocity.
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We have already said (Art. 10) that the gradient of a

line is measured by the tangent of the angle that the line

makes with the abscissa; but if a line is a geometrical tan-

gent to a curve, then at the point of tangency the two have

the same direction. Hence the slope of the geometrical

tangent to a curve, at a point, shows the steepness of the

curve at that point, but the gradient of the line is measured

by the tangent of its abscissa angle. We thus have the fol-

lowing definition: The gradient of a curve at any point

is measured by the tangent of the angle which the geometrical

tangent, at that point, makes with the abscissa.

Now the gradient of the line NH is measured by

MP 1
tan MNP = = — = 2, and this quantity is also aNM J

measure of the gradient of the curve at the point P, from

the above definition.

Let us now take increments to the ordinates of P; let the

time increment of t he At = PQ, in both the case of the

curve, and that of the line; for the space increment we

have, for the line, A.? = QR, and for the curve, As = QK.

Hence for the line, —- = —— ,

At PQ

f fu As QK QR + RK
for the curve, -—

- = ^—- = -^ ! •

At PQ PQ

Now clearly in this case if At is infinitely small, then

ds
the latter expression becomes — , as can be inferred from

dt

the figure.

ds
Hence — at the point P has the same value for both the

dt

line and curve, namely — = 2.

dt
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That is, the value of the differential quotient of the

ds
function s =t2

, for the point P (1, 1), namely — = 2, is

at

the tangent of the angle the geometric tangent makes

at P.

We will now see if this statement is susceptible to a

general application.

Let y = / (x) be any curve of which a portion of the

y'

V

St

7/ /*

Q
Ax

K / 1

N
tf 13

?

Fig. ii.

graph is shown in Fig. 11. Suppose the point P upon

y = J (x) has the co-ordinates OM = x and MP = y.

If MB = Ax then QK = Ay, and the ratio of the rate

of increase of the function y to the rate of increase of the

independent variable x, will be expressed by -—- • Now

Ay
Ax

= tan KNB ; which latter is the tangent of the angle

that the geometrical secant NK makes with the x-axis.
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The value of ~~- will depend upon the size of the incre-

ment Ax, as we have already seen, except in the case of a

straight line when the function is linear. Further the

value of y
is dependent upon the position of the point P,

Ax
as can be readily inferred from the figure, for if P were

moved to the right, then an increment Ax would bring

about an immensely increased corresponding increment,

Ay, because of the steeper slope of the curve, and there-

fore -~- would assume a greater value.
Ax

If, however, Ax is gradually decreased, then the point K
will continually approach the point P, while the secant

NK will cut the abscissa at a more and more acute

angle, until finally, when Ax = dx, the secant will

take its limiting position AH, which is the geometric

tangent to the curve y = / (x) at the point P, and we have

^ = tanHOM.
dx

It is important to notice that the value of — depends
dx

wholly on the direction of the curve at the point P, and,

therefore, expresses its gradient at this point.

Hence, if y=f (x), then the differential coefficient of

this function is equal to the tangent of the angle which the

geometric tangent to the curve at any point upon it makes

with the x-axis, while, at the same time it expresses the

gradient of the curve at that point.

From Art. 9, we know that if y = x3 then -* = 3 x2
;

dx

putting x => 1.1 we find 3 x2 = 3 (i.i)
2 = 3.63, therefore
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= 3.63; which on referring to a table is found to be the
dx

natural tangent of 74 36'.

We thus have found that given y = x3 , the ratio of

the rate of increase of the ordinate to that of the

abscissa at a point where abscissa is 1.1, is 3.63. This

latter is the gradient of the curve at that point, while

the geometrical tangent makes an angle of 74 36' with

the x'-axis.

Let us test the above calculation by actually plotting the

curve and drawing the tangent. Fig. 12 shows a part of

V'

10

y=x 3

3^^
^^K

^^R 1 2
5
X

Fig. 12.

the curve, while P is that point whose abscissa is 1.1. If

the angle KR# be measured, it will be found to be about

20 , but the angle which the tangent to the curve at P
makes with the .v-axis, is, according to our previous calcu-

lation, 74 36'; the discrepancy is due to the fact that the

unit of measurement used on the ^-axis is 10 times that

used on the v-axis.

In order that the tangent should represent the true

gradient of the curve at P, we must refer the ordinates and

abscissas to the same scale, or we will not obtain the true

comparative rate of increase of y to x. Tan 20 = 0.363

(nearly), or t
!
q of the true value.
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In order to make this important point quite clear, we

have plotted the curve y = x3 a second time (see Fig. 13),

y k

2

y = x*

/P

1

I 2
• /R \

Fig. 13-

and have used the same scale for both ordinates and

abscissas. Upon measuring the angle PR# with a pro-

tractor it will be found to be 74 36' approximately, which

corresponds with the result -~ = 3.63.
dx

ILLUSTRATIVE EXAMPLES.

I. Derive the differential coefficient of the function

y = 2 x2 — 3^ + 1.

Now, y + Ay = 2 (x + Ax) 2 - 3 (x + A*) + 1.

.*. y + Ay = 2 x2+ 4X Ax + 2 Ax2 — 3 x — 3 Ax +1

but, ^ = 2 3* + :}
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Subtracting; Ay = 41 A1-3 A1 + 2 Ax.

.'. — = 4# — 3 + 2 Ax.
Ax

If Ax becomes dx, then 2 dx is evanescent.

Hence — = 4 x — 3.

II. Find the gradient of the curve x2 — x + 2 = y at

the point where x = 1.15, and the angle the geometrical

tangent at this point makes with the x-axis.

y = x2 — x + 2,

y + Ay = (x + Ax) 2 — (x + Ax) + 2,

y + Ay = x2 + 2 x Ax + Ax — x — Ax + 2,

y = x2 — x +2.

.'. Ay = 2 x Ax — Ax + Ax .

—— = 2 x — 1 + Ax. Hence -2- = 2 x — 1.

Ax dx

To find the gradient of the curve at the point where

x= 1. 1 5 we substitute as follows:

-_-- = 2 x - 1 = 2 (1.15) - 1 = 1.30.
ax

Hence 1.30 is the gradient required, and since tan 52

26' = 1.30, we find, therefore, that the geometrical tan-

gent at the point where x— 1.15 makes an angle of 52

26' with the x-axis.

III. Find the rate at which the area of a square is in-

creasing at the instant when the side is 6 feet long, suppos-

ing the latter to be subject to uniform increase of length at

the rate of 4.5 feet per second.
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Let x = length of side,

y = x2 = area.

By Art. 7, dy = 2 x dx,

that is, the rate of variation of area = 2 x times the rate of

variation of the side.

Substituting the given values, we get

dy = 2 (6) (4.5 ) = 54 sq. ft. per second.

EXERCISE I.

Find the differential coefficient of the following five

functions by the method of Art. 7.

1. y = 2 x2 — 3.

2. y= (*.- 2) O + 3).

2
3- w = —

•

4- V = X4
.

5-

X — I

^C + I

6. Plot the graph of x2 + 3 # — 2 = y.

(a) What can you tell about the roots of the equation

from the appearance of the graph ?

(b) Find the general expression for the gradient of the

curve at any point.

(c) Find the angle which the geometrical tangent makes

with the curve at those points on it where x = o, x = —
j,

X = — f , X = — 2.

(d) Draw tangents at the points where x = — f and

3: = — 2, and test your answers to question c by actual

measurement.

(e) What effect would it have upon the gradient of the

graph at any point, if the scale for the v-axis was made

10 times as large as that of the ^-axis?
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(/) If y = / (x) and—^ = a for a certain x value, what
dx

does this imply?

7. Differentiate the function s = \at2 with respect to /.

What does the result mean?

8. A man cuts a circular plate of brass the diameter of

which is 4 inches; after heating he finds the diameter to

have increased by .006 of an inch. What is the increase of

area?

9. If x be the side of a cube which is increasing uni-

formly at the rate of 0.5 inch per second per second, at

what rate is the volume increasing at that instant when

the side is exactly 2 inches in length?

10. If a body travels with an accelerated velocity of 2

ft. per second per second, and we call the space traversed

at the end of the first "second s, show by arithmetical

computation that if As is any positive increase of s, then

A 5
-r— approaches more nearly the actual momentary velocity

of the body at the end of the first second, the smaller As

is taken.



CHAPTER II.

DIFFERENTIATION.

I. Algebraic and Transcendental Functions.

Art. 12. An Algebraic Function is one in which the

only operations indicated are, addition, subtraction, multi-

plication, division, involution, and evolution; further, such

a function must be expressed by a finite number of terms,

and any exponents involved must be constant. Examples

of algebraic functions are,

21 / \i / \* ^x2 + 1 x — i
x* + 2 x, (x — my, (x — ny, -

.

(x - 4)

In distinction to the above we have the so-called Tran-

scendental Functions, which cannot be expressed algebrai-

cally in a finite number of terms; examples of which are as

follows:

sin x, tan x, vers x, loge x, ex .

The Binomial Theorem.

In works on algebra a general proof of the following

expansion may be found:

(a + b)
n = an + nan~ x b + n

(
n ~ T ) an~2

b
2

I . 2

n(n-i) (n-2) (n-s)
a
„_3 ^ +

1.2.3

For* convenience we will put n = Cv — = C2 , etc.;
1 . 2

we thus get,

(a + b)
n = an + Q an

~l
b + C2

an~2
b2 + C

3
an~3

b
3 + . . .

108
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Art. 13. Differentiation of ax
n and xn

.

If y = axn
,

then y + Ay = a (x + Ax) n
.

Expanding the right-hand member, as explained in the

previous paragraph, and multiplying through by a, we get

y + Ay = axn + a C
t
a;"-

1 A x + a C
2
xn~2 (A x) 2

+ aC
3
x"-3 (Ax)3 + .. . .

But, y = ax\

.*. Ay = aC^"-1 Ax + a C2
xn-2 (Ax) 2

+ a C
3
xn-3 (Ax) 3+ . . .

and ^ =aC
1
xn-1+aC

2
xn~2Ax+aC

3
xn-Ji(Axy + . . .

Ax

If Ax becomes dx, then all the terms of the right-hand

member after the first are evanescent (Art. 6); and remem-

bering C
t
= n (see Art. 12), we get

—2- = anx'1-1
.

dx

Now if in the function y = axn, a = 1,

we get y = xn
,

and _Z = wx"-1
.

ax

To differentiate y = x11 with respect to x. First, multiply

x by the index and then obtain the new power by diminish-

ing the index by unity.

Example : y = x4
;
—^- = 4 x4-1 — 4 x3

.

ox

To differentiate y = axn
; differentiate the function xn and

multiply the result by the constant.

Example : y = 5 x3
;
— = 5 (3) x

3-1 = 15 x2
.

ax
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The results above obtained are true for all values of n,

whether positive, negative, or fractional ; the proof of the

latter two cases is simple, and is left as an exercise for the

student.

Examples : y =
2 dx

- 1 aH»-
2

1 = - 2 #-
2

-4

>

y =
3 dx

9 2

5 3

u 6 4
* — — X*.

5

Example:* y = 2 VsF.\ y = 2x*;-2- =
ax 3

4

zVx
'

Art. 14. Difj
;erentiation of c5 constant.

We have defined a constant is a quantity which does not

change or alter its value. Hence if k is a, constant, A*

= and -— =
Ax

0, therefore
dx

Art. 15. Differentiation of a sum.

Suppose y = u + 2/, when both z* and z> are functions

of x. Now if x becomes x + Ax, then « and z; become

u + Aw and v + Av, respectively, and we get,

y + Ay = u + Aw + ^ + Av.

But y = « + v.

.*. Ay = Au -f At;.

tv -j u a .Ay Au . At;
Divide by Ax; . . 7-^-= - \- -— •

' Ax Ax Ax

* If the function involves a radical which can be reduced to the

11

form x° , then express the radical as a fractional power and proceed

as above.
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If Ax becomes dx,

to. du , dv

dx dx dx

In a similar manner we can show that if

y = u ± v ± w ±

then
dy_ _ du dv dw_

,

dx dx dx dx

By Art. 14,

Hence, the differential coefficient of the sum of several

functions is the sum of the differential coefficients of the

several parts, due regard being given to the signs.

Example: )»= 313 - 5 x2 + 2 x -{- 3.

i® = o.
dx

dy 2 .

. . -*- = 9 x* — 10 x + 2.

Art. 16. Differentiation of a product.

If y = u . v where u and v are each functions of x, re-

quired the value of — •

dx
In order to obtain a clear idea of the meaning of the

above function, suppose u = 5 x and v = 3 x. Then

g lux
Ay^

D C

63

m
n

A B

5 r Au

Fig. 14.

u . v can be geometrically represented by a rectangle ABCD
(see Fig. 14), two of whose opposite sides are each of
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length u = 5 x, while those adjacent are represented by

v = sx.

If x is increased by Ax then,

u + Au = 5 (x + Ax) = 5 x + 5 Ax = AE,

and v + Av = 3 (x + Ax) = 3 x + 3 Ax = AG.

Hence Au = 5 Ax and Av = 3 Ax.

Completing the figure as shown, we see that Ay, which is

the difference in area between the rectangles AEFG and

ABCD, is made up of three small rectangles whose areas

are obviously 3 x (5 Ax), 5 x (3 Ax), and (5 Ax) (3 Ax),

respectively.

Hence Ay = 3 x (5 Ax) + 5x (3 Ax) + (5 Ax) (3 Ax).

•'•zr = 3 x (5) + 5 x (3) + 5 (3 Ax).
Ax

Now if Ax is a small decimal say 0.0000001, clearly the

last term, which represents the least of the rectangles, will

tend to vanish; therefore, if Ax becomes dx, we have

~ = 3* (5) + 5* (3) • • • • (1)

But u = 5 x and t; = 3 x,

dx
and the differential of the first function is — = 5 and that

du

of the second is — = 7.

dx *

Hence substituting in (1);

dy __ du . &u_

dx dx dx

In general if y = u . v
;

y + Ay = (w + Aw) (v + Av).
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.*. y + Ay = uv + ^Aw + mAv + Az/. Av,

but y = av.

Hence Ay = I'Az* + uAv + Azz . Ai\

Dividing by Ax;

Ay Az* . Az/ . Au *-^ = w— + « -j— + — Az/.
Ax Ax Ax Ax

If Ax becomes dx then — Az/ = — dv which is evanes-
Ax dx

cent, for although the quotient —- is finite, it is multiplied
dx

by the differential dv, and therefore tends to vanish.

tt dy dx
,

dv
Hence -*- — v— + u —-

•

dx du dx

Again if y = u . v . w;

then putting u . v = z

we get y=z.w,

j dy dz . dw , sand -*- = w — + z— (a)
dx dx dx

But since z = u . v,

dz du . dz>
.'. = V \- u •

dx dx dx

dz
Substituting this value of — in (a)

dx

dy du . dv . dw
we get, -L.. = vw — + uw— + uv—

.

dx dx dx dx

A like form can be found for the differential coefficient of

any number of variables.

Hence, the Differential Coefficient of a Product of several

variables, is the sum of the products of the differential coeffi-

cients of each variable multiplied by all the others.
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Exa tuple: y = (3 x + 2) (5 x — 6)

dy

dx

= (5^-6) (3) + (3 * + 2) (5).

.'.-/- = 30 x- 8.
ax

Art 17. Differentiation of a quotient.

Let
u

y = -,

when vf and v are functions of x.

We have, u = vy,

du dv . dy

dx dx dx

•

dy _ du dv

dx dx dx

but
_ u . dy __ du u dv

v dx dx v * dx

du u dv

and
dy _ dx v dx

dx v

Multip lying numerator and denominator by v we get

du dv

dy dx dx

dx v2

Hence, the Differential Coefficient of a fraction whose num-

erator and denominator are variables, is equal to the product

of the denominator and the differential coefficient of the

numerator minus the numerator times the differential coeffi-

cient of the denominator, the whole divided by the square

of the denominator.
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If y = - where c is a constant, then, since the differential
V

of a constant is zero, we get,

dv

dy dx _ c dv

v2 dx

Example: y = ,

I + x2

, . 2X d (1 — x) , N d (1 + #2
)

(1 + X2
)

* ' — (1 — x)—*

—

! '—

dy __ dx dx

dx~ (1 + x2
)

2

_ (1 -f x2
) (— 1) — (1 — x) (2 #)

(1 + x2

)
2

dy _ x2 — 2 x — 1

dx (1 + ^2
)
2

Art. 18. Differentiation of a junction 0} a junction.

Suppose we wish to evaluate V x2 + 3^ + 2, when

x = 1, 2, etc. Putting

V x2 + 3 x + 2 = y and x 2
-\- 3 x + 2 = z,

then y = Vz

if x = 1, 2 = 6 and y = ^6 = 1.817

x = 2, 2 = 12 and y = ^/ 12 = 2.289.

Clearly 2 is a function of x, and further the value of y

depends upon that of 2, hence y is also a function of 2. We
thus see that y is a function of 2 which in turn is a function

of x, and we therefore say that y is a function of a

function.

This latter term is sometimes puzzling at first, and care
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should be taken that it is thoroughly understood. Let

us take the general case

y = F (z)

and z = j (x).

Now if x undergoes a small change in value then z will

change likewise.

If x becomes x + Ax,

z becomes z + Az,

but
Ay _ Ay Az

Ax Az ' Ax
[An identity, found

by multiplying and

dividing —2- by Az.]
Ax

and if Ax becomes dx,

then
dy dy dz

dx dz dx

Hence, if y= F(z) and z= f(x), the differential coeffi-

cient of y, with respect to x, is equal to the product of the

differential coefficient of y with respect to z, times the differ-

ential coefficient of z with respect to x.

Example I: y-= \/u, to find ^L,
dx

where x2 + 3-= u.

Since y.= \/u,

we have, y = F (u] ) and u - /(*)

From the above,
dy

dx

_ dy

du

du

dx

but y =; U%.

dy _i
du 2

uh- 1
I= — u~
2 2

(*» + 3)-*;
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and since u = x2 + 3,

du
.'.— = 2 x,

ax

In general we would proceed thus:

Given, y = \/x2 + 3,

•'. y= (*
2

+3)K

L==L
(x

2 _j_
3^ ^ 2 x =

dx 2 v x2 + 3

Example II: y = (x3 + 2) (x + 3)
3

.

Here we have a product, hence by Art. 16 we get,

dy / 1 \3 d (tf
3 + 2)

,

-T" = + 3)
3

-

V

,

; +
ax dx

/ -3 1 \ d (x + 3)
3

/ \(a3 + 2)
v

'

o;
(1)

dx

As the expression (x + 3)
3

is a function of a function,

, d (X3 + 2) 2 , Nwe have, —

2

!—'- = 3 x* (2)
dx

and
d(
-\+i)3 =3(x+ 3 y.

d(x+^ = 3 (x+ 3 y.i . . (3)
dx dx

Substituting (2) and (3) in (1) we find,

= (* + 3)
3

- 3^2 + O3 + 2 )' 3 + 3)
2
,

and — = 6 x5 + 45 x4 + 54 ^ + 6 #2 + 36 x -f- 135.
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EXERCISE II.

I. y = 5 x3 + 3 x2 -x+2. 2. y = ax2 + bx + c.

3-7 — •

4- y = —
2
= - *"2

.

a j x2
j

5- ? = 3 *§ - 5 ** + 7 ~ 8 x* + 2 # -S.

6.
<y = {/x. 7- y= V*4

-

8. y = x2
$fx.

9- y= 17=-

IO. )/

x2
^/ x3

ii. y= V# v^
12. y= ^/^7
1 3 . ^= (x2 + 2)

2
.

14. y = a (3 x2 — 2 x + i) 2
.

16. y = (ax2 + £w + c) n -

17. y = (3^2 - 2)~ 2
.

18. y = y/2 x3 + 3 x.

19. y =
v^2 -3^

20. y = \/x~+~b + \/# — b.

2
21. y = — =•

^(i-*3
)
2

22. y= (2X+1) (3 # — 2).

23. 3/ = X2
(2 ^ + 1).

24. y = (* + 1) (x2 — x + 1).

25. ^ = A\/l — x2
.
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26. y = X2 \/2 X2 — I.

y =
-7 h

27. 4v* 2 - *.
X2

28. y =
x2 — 3 x + 1

x2 — I

29. y =
b — x

b + x

3°- y =
lb - x

\b +x'

3*- y =
(x2 -b) 2

(x* - by

32. y =

y =

X2

33-
\/x — I

a/* + 1

y =
X

34-
<s/b

2 - x2

y =
X

3b-
\/a2 — x2 — x

36. y =

y =

4/1 - <s/x

1 + \/x

\/l + X — \/l — #
o7-

\/i + x +\/i — X

38. y = V |(i + *2n

'

y =
xn

39-
(1 + x) w

\/i — X2 + x\/
40. y -

Vi-
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II. Differentiation of Transcendental Functions.

. n 7 r sm a 7 tan a 7 LArt. 19. 1 he value 0) ana when a becomes
a a

infinitely small. In higher mathematics, angular meas-

urement is always expressed in radians. The choice of

the radian as a unit possesses many advantages. It en-

ables us, for example, to compare directly the rate of

change of a sine with the rate of change of its corre-

sponding angle.

It is important that the student should now examine the

values of the two expressions and as a dimin-
a a

ishes.

A glance at Fig. 15 will show that

for any angle a,

sin a < a < tan a.

Dividing by sin a, we. get

sin a: sin a; sin a 1

sin a a cos a sin a

Fig. 15.

But cos 0=1, hence

sin a 1

a cos a

= 1 ; and as a diminishes, the
cos o

more nearly does approach the value 1, and when
cos a

a is infinitely reduced, = 1; therefore; we may put
cos a

the expression -— or = 1 when the angle a is inn-
sin a: a

nitely small, for
a

sin a
stands constantly between 1 and a
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quantity, , which continually approaches i, as
(cos a)

shown by the inequality, hence —
:

must itself approach
sin a

1 in advance of , and will reach it when ar-
cos a cos a

rives at that value.

. • tan a sin a 1 u , , ...
Again, = . , but we have seen that

a a cos a

each of the expressions and tends to approach
a cos a

the value unity as the angle diminishes; hence we may put

= 1 Svhen a is infinitely small.
a

Art. 20. Differentiation of y = sin x and y = cos x.

If y = sin x,

then y + Ay = sin (x + Ax).

y + Ay = sin x cos Ax + cos x sin Ax.

And y = sin x.

.'. Ay = sin x cos Ax — sin x + cos x sin Ax.

.'. Ay = sin x (cos Ax — 1) + cos x sin Ax.

Hence -—2- = —— (cos Ax — 1 ) + cos x— >

Ax Ax Ax

but when Ax is infinitely small,

cos Ax = 1 and —

.*. when Ax becomes dx, then

dy

dx

dy

A , sin Ax
cos Ax = 1 and — = 1.

Ax

J- = 1 (o) + cos X (1)
dx

= COS X.
dx
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In an exactly similar manner to the above we may show

that if y — cos %, -2- = — sin x.
dx

Art. 2i. Differentiation of y = /an# a»<2 y= co/tf.

If y = tan x,

. , sin #
then y =

D A 4. *. <fy C0S # • ^ (Sln X ) ~ Sln ^ (C0S X )
J3y Art. 17, -f~ = * '— * '->

ax cosz x

dy _ cos x . cos x — sin x (— sin #)

dy _ cos2
3; -f sin2 x

dx cos2 #

dy d (tan x) 1 ,
' = —i l = . . = sec x.
dx dx cos 2 x

In like manner, if y = cot #, we may show that

dy 1 2

dx sm2 x

Art. 22. Differentiation of y = sec x and y= cosec x.

If y = sec x, then y =
cosx

Differentiating, we find

dy sin #-*— — = tan x sec x.
dx cos2 x

ro . sin a; sin* 1 , -i

[Since = —-— . = tan x sec x.J
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Similarly, when y = cosec x, then y= -— ,

sin x

. dy cos x ,

and -JL- = : = — cot x esc x.
dx sin2 x

The following convenient table should be committed to

memory :
*

dy dy
y=smx] -J- = cos x y=cosx; -f- = — sm#

dx dx

dy o dy 9
y = tan x; -^- = sec"

1 x v = cot #; —• — — csc^ #
dx dx

y = sec x; — = tan # sec x
dx

y = cosec x; -+- = — cot x esc #.

Since vers x = 1 — cos x, if ^ = vers x,

we have y = 1 — cos #, and, therefore, -2- = sin #;
dx

also if v = covers x = 1 — sin #, -2- = — cos x.
dx

EXERCISE III.

1. y= tan (bx). 2. y = cos — •

x

3. V = sin (3 x
2
). 4. v = tan \A«c.

5- ^ = 3 cos (^
n
)- 6. v = 6 sin — •

7. v = sin (1 + ax2
). 8. y = cos

\/*x

9. v = sin
5
x. 10. y = cos4 a^ . x2

.

* Note that //^e differential coefficients of all the co-functions have

a negative sign. The significance of this will be seen later.
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ii. y = — tan (nx). 12. y= cos5
(3 x).

n 15

13. y = cosn x sinn x.

14. ;y = cot x + J cot3
x.

tan3 x
15. v = x — tanx +

16. y =

3

sin x + cos x

sin # cos x

17. ;y = tan x (sin x).

sin 71 #
is. y =

cosw x

19. y = \/a cos 2
a; + b sin 2 #.

20. y = sin a# (sin x) a
.

Of what functions are the following the differential co-

efficients:

dy • 421. -f- = 5 sin
4 # cos x.

ax

22. -2- = a [cos (& + ax) + sin (6 — ax)].
ax

«

23- /" = 3 tan 3 x sec 3 #.
ax

24. — = — 20 x cos4
2 x2

sin 2 x2
.

25. 2 mcotmt cosec mx.
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DIFFERENTIATION OF LOGARITHMIC AND
EXPONENTIAL FUNCTIONS.

The series y = A + Bx -\- Cx2 + Dx3 + . . .

Art. 23. Consider the geometric series,

1 + i + (i)
2 + (if +

the value of which when the number of terms is infinite is

2. We can approach this value to any required degree

of accuracy by taking a sufficient number of terms.

The general notation for such a series is as follows:

y = A + Bx + Cx2 + Bx3 + . . .

when A, B, C, etc., are constants. The calculation of

numerical quantities and of experimental results is often

referred to a series of this form.

In order to calculate the logarithms of numbers, we

make use of a series in which x either is equal to or in-

volves the quantity whose logarithm is sought, and hence

the latter can be calculated to any required degree of

accuracy.

Such a series to be of practical value should possess the

following properties : it must converge rapidly, so that

it will not require a large number of terms to be taken

before the necessary accuracy is reached, and it must be

convenient of computation.

The binomial theorem supplies us with an expression

of the form y = A + Bx + Cx2 + Bx3
. . . ; and it

has been found that the determination of the value of

when n becomes infinite, forms a suitable start-

ing-point from which to begin investigations with a view of

obtaining a practical logarithmic series. This will be

discussed in its proper place.

( + 0"
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Art. 24. The value oj (1 ^— )
when n becomes in-

\ n)
finite.

Suppose in the expression ( 1 + —
)
we put n = 00 , we

1 ^
]

= (1 + o)°°= 1
00

; now i°° is indeter-

minate, for infinity has no definite value; we regard the

symbol 00 as referring to a magnitude which is greater than

any we can conceive.

We shall refer to the matter of indeterminate forms in a

subsequent article. In the mean time we shall show that

by approaching the calculation in another manner we can

obtain a more definite result for the evaluation of
f
1 + —

J

V n)
when n = qo .

By the Binomial Theorem, we have

( IT
. 1 . n (n — 1) /i N2

1 + n .
1

* J 1

n 1.2 \n,

n (n—i) (n — 2) /i\ 3

1.2.3 w
(
n — i\ In — i\ In — 2\

M / + \ n A n I
; u

1.2 I.2.3

= ! + ! + V W + V nj\ nj
j1.2 1.2.3

If w = 00
}
then terms such as — » — , etc., vanish;

= 2.71828

We will put e = 2.71828.

n n

2 + -^ +—x
-—

1.2 1.2.3
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The evaluation of e to any required degree of accuracy

can be conveniently performed as follows :

1 .000000

2 1 .000000

3 0.500000

4 0.166667

5 0.041667

6 0.008333

7 0.001389

8 0.000198

9 0.000025

0.000003

adding; 2.718281 = e.

Now if ax = N then loga N = x. If then we can obtain a

convenient series for ex we shall be able to calculate the

logarithms of numbers to the base e; for if ex = N1?
then

loge Nt
= x. Let us, therefore, endeavor to develop a series

for ex .

Art. 25. The expansion of ex and the logarithmic series.

If n = qo then,

But

1 + nx

KT-*
Kf

i_ , nx (nx—i) /i_V

w 1.2 \w/

. ^Jg (rac— 1) (nx

1.2.3

,
- 1 (nx

Z2 :

&)'

1) +

(nx — 1) (njc —2)

Z3
+
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x2 (n - ^)
= I+x -r^ V *J +

Z2 n

x2
(n — i-

) x In — -
)

/J> n . n

X> (i - J-)

* (. - -M (« - -M
, V nx I \ nx

)

,

Now if w = oo then the terms —> — > etc., vanish.
w# nx

Hence we have
/y»« /y*3 /y»4

Z2 /3 /4

Now put x = 2 then

e
2 =I+2 + ^-+ § + 5*

r

1.2 I.2.3 1-2.3.4
- 3i_ + . . .

2.3-4.5
= i + 2 + 2 + 1.333 + °-66 7 + 0-267 + . . .

= 7.266.

Hence we have log,, 7.266 = 2 nearly.

It is obvious that the above series would be far from

practical, since it converges slowly and it would be diffi-

cult to obtain the logarithms of consecutive integers. It

is, however, easily possible to obtain either by elementary

mathematics, or by an application of the calculus (see

Art. 54) the following series,

x2 ^ „4X3 X 4

loge (1 + x) = x — 1 +234
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This is known as the Logarithmic Series, and by its means

we could calculate many logarithms, but since it also con-

verges slowly and only between the values x = + i and

x = — 1 , it is not suitable for general logarithmic compu-

tation. From this latter series we can, however, obtain the

following:

Loge (Z + i)

= log* z + 2 r—-— +—-— +—-—

;

L2Z + 1 3 (2Z + 1) 5(2Z+i) 5

+
7(2Z + i) 7 *

*

}
This series is most convenient for our purpose, for in-

stance if Z = 1, then

loge 2 = loge 1 + 2 -

L
-4TT-+.

.3 3 (3)
3

5 (5)
5

.-. Loge 2 = 0.6931.

And in a similar manner the logarithms of other quantities

could be calculated.

Art. 26. The logarithmic modulus. Logarithms cal-

culated to the base e are known as Napierian logarithms,

because of their introduction by Napier; they are also called

Natural Logarithms. This latter term was applied because

they appeared first in the investigation conducted for the

purpose of discovering a method for calculating logarithms.

The base e is used exclusively in higher mathematics, but

this system is not suitable for practical computation; the

student will be aware that for the latter purpose the base

10 is chosen.

We will now show how logarithms to the base e can be

transformed to the base 10 and vice versa.

Let y = log, x and z = log
10

x,

then ey = x and 10s = x.

.'. ev = 102 .
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I. To transform log
10 x to log, x, we had

ey = io3
.

.*. y log, <? = z log, 10.

But log, e = i and log, 10 = 2.30258, and since y = loge x

and z = log
10

x,

:. log,x= 2.30258 log
10 x.

The quantity 2.30258 is called the Modulus of the Nap-

ierian logarithms and is often denoted by M. In this

notation we have

log, x = M log
10

x.

II. To transform log, x to log
10 x }

we had

ey = io*.

•*• 7 log
10

e = z log
10 10.

Now y = log, x and log10 e = 0.43429, while log10 10 = 1

and z = log10 x.

Hence log
10
x = 0.43429 log, x.

The quantity 0.43429 is called the Modulus of the Briggs

System and is denoted by m. We therefore have,

log10 x = m log, x.

Art. 27. The relation between M and m.

We have log10 x = m log, x and log, x = M log10 x.

Now loge
*= i^Sio^.

Substituting in the second equation above we get

^Sio£ = M . log10 x.
m

.'. M =— and m = —
m M

or M . m = 1.

Hence to transform logarithms from the base a to the

base b multiply by
T

• Note log, a =
loga b loga e
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Art. 28. The d. c. of y =loge x. We will now write Inx

for loge x.

We have y = Inx.

.'. y + Ay = ln(x + Ax)

Ay = ln{x + Ax) — Inx = In I ]•

Multiplying by — we get,
Ax

i. M~* ln (1 + ^) = ln(i + ^)t.
Ax Ax \ x J \ x J

Hence —2- = - In [1 + —W.
A# # \ x )

If A# becomes dx then —^ = o, while —— = oo

.

x Ax

Putting —-= n then — = -
, and

A„v x n

( +^- (+;)
which for w = 00 is equal to e (Art. 24).

Hence we get -2— = — /we,
dx x

but /we = 1,

</y _ i_

Art. 29. 77*e d. c. of y = logax,

y = logax,

.*. av = x.

ylna = Inx,

.'. y = Inx .

Ina
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But by Art. 26, = loga e.

log, a

.'. y = Inx . loga e,

and -2- = — logn e.

Note loga ^ is a constant, .'. -—^— = o, hence the sec-

ond term in the differentiation of the product is zero.

»„, The d. c. of y = a-
T

Art. 30. '—*

y = ax

:. Iny = x Ina,

.'. — . -2- = Ina.

y dx

- —2- = ax /wa .

dx

Art. 31.
T/ze d. c. of y = ex andy

y = e-

-. ^ = 1 + ^ H f-

1.2 1.2.3

+ - + •

1.2.3.4
Differentiating each term we get,

dy

dx

dy

dx

Hence

This is a function of great importance, and is the only

one known whose differential coefficient is equal to the

function itself. The appearance of ex and e
ax

in many
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physical formulae makes these quantities of particular

interest to the student, who will have no difficulty in show-

ing that when y = e
ax then -2- = aeax by a process similar

dx

to the above.

Art. 32. The d.c. oj y = uv
. Let y = uv when both

u and v are functions of x.

Iny = v Inu.

1 dy 1 du . j dv

y dx u dx dx

If we now multiply by u° we get,

dy v 1 du , v 7 dx>-*- = vuv~l — + uv Inu
dx dx dx

Hence, to differentiate a function of the form y = uv
;

first, differentiate as though u were variable and v constant,

{as when y = xn ,
-2- = nxn~l

) ; second, as though v were
dx

variable and u constant (as when y = ax ,
— = axlnx)
dx

and take the sum of the results.

The following table gives the differential coefficients thus

found:

y = logpc

;

dy

dx

1

X

y = logax

;

dy

dx
= - logae.

X

y= a*
;

dy

dx
— ax log,, a.

y= ex ;

dy

dx
= ex .

y = e™
;

dy = ae"*.
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EXERCISE IV.

i. y = In (2 x2 - 1). 2. y = 3 x3 In (5 x2 + x).

3. 3/ = e* . xa
. 4. y = xx .

5. y = ex sin x. 6. y = aln (\/x + a)

7. y = alnx
. 8. y = cos (/woe).

9. y = In (Inx). 10. y= (ex
)
x

.

11. y = (#*)*. 12. y = —
1 + e*

13. y = e ax sin nx. 14. -y - '»m'
ex — *e~

15. y= xx ' 16. y
ex + e

-x

I

17. y = log cot ex. 18. y = a V(a2—**)
.

19. y = te — In (a — \/a2 — x2
).

20. y = In
1 — cos Jg

1 + cos x

21 . y = In (-+ x + \/x2 + bx + a )

.

22. ;y = a"n *. 23. ;y = ex .

24. 3; = x uvw (u, v and w are functions of x).

25. y = ea* (cos ux) k
.

III. Differentiation of the Inverse Trigonometrical

Functions.

Art. ^^. When we wish to express in symbols that

y is an angle whose sine is x, we write y = sin
-1

x, and

similarly if we write y = cos-1 x, y = tan-1 x. we mean that

y is an angle whose cosine or tangent is x. Now sin^1

J

= 30 , from which we at once obtain the inverse expres-

sion sin 30 = J; clearly, if y = sin
-1 x then x = sin y.
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The German mathematicians write y = arc sin x instead

of y = sin
-1 x2

. The former expression may be read y is

an arc whose sine is x. A similar interpretation is given

to y = arc tan x and y = arc sec x, and so on.

The inverse trigonometrical functions y = sin
-1

x,

y = cos-1 x, etc., are of great importance in the Integral

Calculus.

Art. 34. The d. c. of y = sin~ x x and y = cos^x.

If y = sin
-1

x,

then x = sin y,

and tfo = cos y . dy = \A — sin
2
y dy.

dy _ 1

Hence

dx \/i — sin
2
y

dx \/i — x2

The sign of the root depends upon that of cos y in the

expression dx = cos y dy. For angles in the first quadrant

this is clearly positive.

By a similar process the student will find that if

y = cos-1 x,

then
dy

dx \A ~ %2

Art. 35. The d. c. of y = tan- 1 x and cot-1

If y = tan-1 x,

then x = tan y,

and dx = sec 2
y dy = (1 + tan2

y) dy.

• ^Z. — 1
'

" dx 1 + tan2
y

dy 1
Hence

dx 1 -\- x

Similarly, if y = cot
-1

x,
-f-dx 1 + x2
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Art. 36. The d.c. of y = sec- 1 x and y = cosec
-1

x.

If y = sec
_1

x,

then x = sec y,

dx = sec y tan y dy = sec y \/sec 2 y — ijy,

Hence -^~

dv_= 1

dx sec v \/sec2 y

dy

dx x\/x2 — 1

In like manner, if y = cosec-1 #,

dy 1

then ~r~ = —
^x xv^2

1

Art. 37. The d.c. of y — vers-1 x and covers'1
x.

If y = vers
-1

#,

then x = vers y = 1 — cos y,

dx = sin y dy = \/ 1 — cos2
y dy,

dx = \/i — (1 — vers y)
2 dy

= V 2 vers v — vers2 v dy

= \/ 2 x — x2 dy.

. dy_ = 1

dx v 2 X — X2

Similarly, if y= covers _1
x, then -^- == — , -

dx \/ 2 x — x2

Note that the differential coefficients of all the co-inverse

functions have a negative sign, and that in each case where

a root occurs any ambiguity of sign may be disposed of by

referring to some previous function of y.
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The following table gives the above results in concise

form:

dy__ 1

y = sin
-1 x;

dx v i-x2

1 dy
y = cos-1 ^;

dx \/ 1— x 2

y = tan-1 x;
dy_^ 1

dx 1 4- x2

y = cot- 1 x; -2- = f—dx 1 + xr

dy _ 1
y = sec

_i x;

y = cosec _1
x;

dx x\/x2—i

dy _ L
dx x\/x2 —

y = vers-1 x\
.1 „. dy _ 1

dx \/ 2 x — x'

i dy L_
y = covers-1 x;

dx v 2 x — x2

EXERCISE V.

1. y = sin- 1
(2 x). 2. y = tan- 1

3 a 2
.

3. y = cos- 1 - . 4. y = sin- 1 /
a ~ x

\

5. v = cos^xA*- 6. y = sin-1 \/i + jc
2

.

7. y = tan
- - 1 -4=. 8. y = tan- 1 l/*

*'.

V^ > 1 — x

9. v = arc sin 2 ajc
3

. 10. v = arc tan
a

\/i — x2
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i

ii. y = b arc cot ~~i= . 12. y = a . sin
-1

j
—-—

)

\a — xj

, • 1 n -f m cos x
13. y = sin

-1

w + n cos x

IS- y - cot-' y/
r _

14. y = cot
-1 x^/j -- X2

.

X

X

16. y = sec
-1 ax3

. i7- 3/ = x . etan
_1
*

.

18. y = e
lnx

. 19. y = ex sin
-1

2 x.

20.
X

y = covers-1 — •

a
21.

1
#

v = vers-1 — •

X

22. y = cot
-1

23. y= arc cos ycos x.

& 2/i

24. y = arc cos — •

y
x2n + 1

25. 3/ = J cot-1
/

' 7 + i sec_1—r"

V 1 — jr 2r-



CHAPTER III.

INTEGRATION.

Art. 38. In Chapter I we found that if y = f(x) be

the equation to a curve, then the Differential Coefficient

-2- expresses:
dx

(1) The rate of change of the function as compared with

the rate of change of the independent variable.

(2) The gradient of the curve at any point.

Now suppose the differential coefficient of a certain

function y = f(x) be given; would it be possible to obtain

a law which would enable us to find the original function

from which the given differential coefficient has been

derived? For example, if — = 3 ax2 or dy = 3 ax2
. dx,

dx

of what function is 3 ax2 the differential coefficient?

Let us examine the following table:

If y = ax, y = ax2
, y = ax3

, y = ax4
. . .

then

dy = a dx, dy = 2 ax * dx, dy = 3 ax2 dx, dy = 4 ax3 dx.

a 2 0, o a
xIf y = — x2

, y = — x3
,

2 3 4

dy = ax . dx, dy = ax2
<fo, dy = ax3 dx

(I) Notice, that in each case, if we multiply the differ-

ential coefficient by x, or, what is the same, raise the power

of x in the differential coefficient by unity, we obtain the

229
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index of x in the original function. (In differentiating we

diminished the power of x by unity.)

(II) Again, if we divide by the increased power we

obtain the numerical factor of the original function in each

case.

(III) The constant factor a remains unaltered.

(IV) The differential disappears.

Take the general case, -2- = axn or dy= axn dx. Apply-
dx

ing the above rules we obtain the original function,

y = a
w + 1

Note if we differentiated this latter expression, we would

have &- = —^— (» + 1) x n+1~\
dx » + 1

and hence, dy = axn
. dx.

The process of finding a function when its differential

coefficient is given, is called Integration, and we would say

in the above case we had integrated the expression axn . dx.

We have now the following rule:

To integrate a differential of the form axn dx, first raise the

power of x by unity, then divide by the raised power; omit

the differential of the variable.

Example: Suppose dy = 3 x
15 dx.

Integrating, we find y = 3 — = — xlQ
.

16 16

Art. 39. It was supposed by Leibnitz, that a function

was made up of an infinite number of infinitely small differ-

ences (differentials), and that their sum made up the func-
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tion. Hence, to show that the sum was to be taken, the

letter S was used. We might thus write S dy = S (3 x
2 dx),

and, therefore, y = x3
.

Later, for convenience, instead of the letter S the symbol

was employed. This symbol, it will be noticed, is simply/
an elongated S. It is called the Integral sign, and the

process which it represents, Integration. The word

"Integrate" means u
to form into one whole, or to give

the sum total of."

In modern mathematics we would write:

Given dy = 3 x2 dx.

I dy = I 3 x2 dx,

read, (The integral of dy) = (the integral of 3 x2 dx).

.'. y = x3
.

Notice that the integral sign, I , is only a symbol, which

can be looked upon as meaning that we are to find the

function whose derivative with respect to x is a certain

given quantity. Thus / 3 x2 dx = x3
, can be read, the

function whose derivative with respect to x is 3 x2 dx, is x3.

We see from the above discussion that Integration may
be looked upon as the inverse of Differentiation. In fact,

problems of Integral Calculus are dependent upon an

inverse operation to those of Differential Calculus.

Art. 40. The constant of integration. Let us now

take the equation y = x2
. If we plot the corresponding

graph we shall obtain a curve, known as a parabola, which
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will cut the ^-axis at y = o; from the equations, y = x2+ i,

y = x2 + 2, y = x2 + 3, etc., and again y = x2 — 1,

y = #2 — 2, v = #2 — 3, etc., we obtain a series of similar

curves, with coincident axes, which will cut the v-axis

at points y = 1, y = 2, y = 3, etc., and also at 3/ = — 1,

?= ~ 2
, ? = - 3, etc.

A general expression for all such curves would be

y = x2 + C, where C is a constant. When the value of

C is known, then a particular curve is indicated.

Let us take the differential coefficient — = 2 x. or

dy = 2 x dx. By integration we have from

dy = 2 x dx,

dx

y = x".

But — = 2 x would be obtained by differentiating an
dx

infinite number of expressions of the form y — x2 + C.

There is nothing to tell us definitely from which special

function the 2 x has been obtained, hence we see that we

must write:

Given
dy
-f-= 2X,
ax

or dy = 2 x dx,

then j dy = \ 2 x dx,

and y = x2 + C.

C is called a constant of Integration, and must always be

added when integrating an expression about which nothing

more is known than that it is the differential coefficient of

a certain function. An expression such as 1 2 x dx = x2 + C
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is called an Indefinite Integral, because, from the given

data, the function cannot be definitely determined. In

practical problems we can generally obtain one or more

conditions which will indicate the required functions.

Suppose, for instance, we had given dy = 2 x dx and the

condition that the curve pass through the point x = 2,

y= 5-

We have by integration, y = x2 + C.

.'. substituting, 5=4 + C,

and C = 1.

Hence the function is definitely found to be y = x2 + 1

.

This expression obtained from the Indefinite Integral is

called a Definite Integral.

Take dv = a dt.

Here / dv= I adt.

at + C

where a is the original acceleration, due to gravity, and

C the constant of integration. Now if the condition is

imposed that the body starts from rest, when t = o,

v = o, and .'. C = o, and we get the definite integral

v = at, where C stands for the initial velocity, which is

zero in this case.

From the above we see that strictly,

axn dx = a — + C,
n + 1

and therefore, I 3 x4 dx = -^ x5 + C.

In practice, however, the constant of integration is often

understood. We shall refer again to the integration con-

stant in a later article.
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Art. 41. A constant factor may be placed outside the

integration sign. The differential of ax is a dx,

hence, a . dx = ax =a I dx.f
Rule. If an expression to be integrated has a constant

factor, this factor may be placed without the integration

sign.

Art. 42. The integration oj a sum or difference. In the

Differential Calculus, we found

d (u ± v ± w) _ du_
,
dv_ dw_

dx dx dx dx
'

or d (u ± v ± w) = du ± dv ± dw,

hence / (du ± dv ± dw) = I du ± I dv ± j dw.

Ride. The integral of an algebraic sum is equal to the

algebraic sum of the integrals of the various term's.

Art. 42a. A problem of integral calculus geometrically

considered. Mechanics supplies us with the following

relation

:

v = at

where v = velocity, a = acceleration, and / = time. In

Chapter I we realized that v = — where 5 = space trav-
dt

ersed in the time /.

Hence
ds

and ds = at dt.

.'. / ds = j at dt.

.*. s = J at2 .
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We have thus found that the differential coefficient
ds

dt
at

results from the differentiation of the function s = \ at
2

.

We will now investigate this matter geometrically and

the student will at once be convinced that the Integral

Calculus has a much wider scope than has been thus far

indicated.

The graph of v = at is a straight line, and since we will

assume that there is no initial velocity, and, therefore, no

added constant, this straight line passes through the origin.

in

G
bL

f/w
/\ 1/ "1

J/ 1, i

0- c D

Fig. 16.

In Fig. 16 let OA represent the graph of v = at, while

the units of time and velocity are referred to the co-ordinates

as shown.

Suppose the time represented by OB, which is the

abscissa of any point A, to be divided into a number of

equal parts, and the construction of the figure completed

as shown. In the case of uniform velocity s = vt.

Take any small time interval CD and suppose the

velocity of the moving body constant for this short period.

The velocity of the body at the beginning of this time

interval would be represented by CE and at the end

by DEL
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Since s = vt is the space traversed by the body during

the time represented by CD, then, under the supposition,

that throughout this short time interval a constant velocity

equal to CE is maintained, CE X CD or the area of the

rectangle CDFE would geometrically represent the space

traversed.

Again, since DH represents the final velocity at the end

of the time interval CD, then the area of the rectangle

CDHG would represent the space traversed, under the

supposition that throughout the time CD this latter velocity

be constantly maintained. The actual space traversed

would be more than the first result would indicate, and

less than the latter.

Now the complete space traversed would be clearly more

than that represented by the shaded rectangles and less

than that indicated by the larger rectangles, of which

CDHG is a representative. The difference or error would

be given by the sum of the small rectangles, pne of which

is EFHG.
Now the sum of these latter is equal to the rectangle

D'BAK'. But the area of D'BAK' can be infinitely reduced

by making the time interval small, and when the latter is

dt or infinitely small, the area of D'BAK' is evanescent. In

this case the error or difference disappears and the whole

space traversed during the time OB is represented by the

area of the triangle OAB.

Now the area of the triangle OAB = § . OB X BA.

But OB = / and BA = v.

Hence OAB = J t . v — it .at,

or area of OAB = J at
2

.

But the area of OAB represents s,

.'. s= i at
2

.
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/

Hence we find that when we integrate thus, I ds =

at . dt, and find s = J a/2
, we have really obtained the

sum of an infinite number of elementary areas, each v . at

or at . J/, the total of which gives the space traversed by

the body during the time /, and moving in accordance with

the law v = at.

The summation of elementary areas with a view of

obtaining a result indicated by their total is a marked

feature of the Integral Calculus.

Art. 43. The definite integral. Should it be required

to determine the space traversed by a moving body under

the law v = at during a finite time interval CD we might

proceed thus: putting OD = t2
and OC = t

x
(Fig. 17), and

integrating ds I = / at . dt, we get s = \ at
2 + C, as we

have already seen, and if the initial velocity is zero we

have s = \ at
2

.

The space traversed from zero to t
2

is represented by the
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area of the triangle ODH = ^ at
2
2

, and that from zero to

tv by the area of OCE = J at
2

.

Subtracting, we have \ at
2

2 — \ at
2 = area CDHE, which

gives the required space traversed. In the language of the

Integral Calculus we express the above as follows :

J
5

atdt = I at
2
dt — I at

x
dt= \ at

2
2 — \ at

2
,

t2 J J
or thus,

h
atdt = [J at2^ = i at 2 - \ at

2
.£

The integral / atdt is called a Definite Integral; t2 and
Jt

t

tt
are referred to as the superior or upper, and inferior or

lower limit, respectively. We read the expression thus: the

integral from t
t
to t2

of at . dt.

It will be noticed that the quantity enclosed in brackets

is the solution of the general or indefinite integral, and

that the solution of the definite integral is obtained by sub-

stituting first the upper limit, then the lower, and taking

the difference.

The constant is clearly made to disappear by taking the

difference between the integrals formed by giving two

successive values to the independent variable.

To find the value 0} a definite integral solve the general

integral, then substitute first the upper, then the lower limit,

and take the difference. This process will be made clear

by the following simple example:

Required the space traversed between 5th and 7th seconds,

given the acceleration equal to 4 feet per second per second.

5= f7

at ,dt=[i at2\\

.'. * = 'i-4. (7)
2 -i'4-(5) 2 =48sq.ft.
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INTEGRATION OF GENERAL FORMS.

Art. 44. It is to be observed that in the formula,

/
xn + l

axn dx = a (A)
n + 1

x stands for any expression whatever. Hence, whenever

we have a quantity, monomial or polynomial, raised to any

power and the differential of this quantity (without its

exponent), formula (A) applies.

Example. I (2 x3 — 3 x2 + 5)* (x2 — x) dx = what?

Since a constant does not affect differentiation, it does not

affect integration, so that we are always at liberty to intro-

duce a constant factor behind the integral, if at the same

time we divide the integral by the same factor, in order

that the value be not altered. But no expression contain-

ing the variable can be removed from behind the integral or

introduced in any way.

In the example above,

d{2 x3 — 3 x2 + 5) = (6 x2 — 6 x) dx = 6 (x2 — x) dx.

Hence if the expression {x2 — x) dx be multiplied by 6, it

becomes the differential of 2 x3 — 3 x2 + 5 and we get

form (A); thus,

(2 x3 — 3 x2 + 5 )* (x2 — x) dx =

(2 x3 — 3 x2 + 5)* (6 x2 + 6 x) dx =

zHz [Like (A)], [where 2 = 2 x3 — 3 x2 + 5].

(2 x3 — 3 x2 +5)^ (x2 — #) <fo

^ (2 x* — 3 x
2 + 5)S _ (2 x3 — 3x2 + 5)1

I i5
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. p xdx
Agaln Jv^^ =what?

/
xdx

ye2 — x2

- i f (>
2 - *2 )~* (~ 2 *<&) = - (r

2 - x2
)

since — 2 x dx = d(r2 — x2
).

TRIGONOMETRIC INTEGRALS AND LOG
INTEGRALS.

Art. 45. Since integration is the reverse of differen-

tiation, we easily derive the following, by reversing the

formulae for differentiation:

I cos x dx = sin x + c.

/ sin x dx = — cos x + c.

I sec 2 xdx= tan x + c.

I esc 2 x dx = — cot x + £•

I sec x tan x dx = sec # -f- c.

I esc # cot x dx = — esc x + c.

/
dx

\/i — x2
sin

-1 x + c, or — cos-1 # + c.
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f
dx = tan- 1 x + c.

J 1 + x2

I
—

,
= sin

-1
-f c or — cos-1 —\- c.

1 x 1 1 .»_ 1 3£ 1

tan-1 h c or cot
-1 — + c.

a a a

\/a2 — x~

r dx = 1

J a2 + x2 a

— = log x + c, etc.

Put these all into rules.

EXERCISE VI.

Integrate

:

1. 1 x^ dx. 2. I (x — 2)
2 dx.

3-
J (3 * + 5)

§ <&.

4. / (2 x2 — 4 # + 5 )* (x — 1 ) dx.

5. / (x2 — i)i xdx. 6. / (x2 + 3 x) 2 dx.

7- f(5*§ ~ 3** + i)<&. 8. p
5

~ 1
dx.

J J x — 1

/xdx Ac3 — 2 x2 + 1 »

7-= ;• 10. / :

—

— ax
(x2 + 1)* J X2

11. / (1 — x)3 \/x dx. 12. I (\/n —\/xY dx

J3- I (3 x
2 — tf

3
)* (2 x — x2

) dx.
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16. / cos3 x sin x dx. 17. I (1 — cos x) 2 sin dx.

18. I tan^ # sec2 x dx. 19. I cot3 x esc 2 # <fo.

/ sec 2 x tan # d#. 21. I esc3 x cot x dx.20

22.

24.

32.

34-

/tanxd#. 2^. /
sin x cos #

26. / cos x2 # dx. 27. f e
3* d#./ cosx2 xdx. 27.

J
<

Q C xdx r (x2
-h'i) (foe

J^2 + i J^3 + 3^ -2

J ^ + 1 J x*

/2 x — 3 , /^3 sec 2 x dx

nr+3 33\T

If.

2^ + 3 J tan x

sin x dx

cos#

Art. 46. The sine curve; harmonic motion. Suppose

P
t

(Fig. 18) is a body moving in a circle with uniform

velocity, the centre of the circle being O ; let P
2
be a second

body moving in the fixed diameter AB, but in such a man-

ner that P
2 always maintains a position at the foot of the
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perpendicular from P
t
upon AB. Now the body P

2 travels

backwards and forwards upon the diameter and its velocity

y' ,

1P1
p3

B
\

p2 |A X

Fig. 18.

will be at a maximum as it passes O and diminishes as it

approaches B and A ; such motion executed by P
2

is called

Simple Harmonic Motion.

The distance from O to A or B is called the Amplitude.

If we fix upon any point in AB, then, once at each complete

revolution of P
x , the body P

2
will pass this fixed point,

travelling in the same direction. The time thus occupied by

P
2
in completing such a cycle of motion is called a Period.

The motion of a tuning fork, an oscillating pendulum and

an alternating current, are good examples of periodic

motion. The change of position or motion of the particle

P
2

is clearly a function of the time, and further since each

cycle of motion recurs periodically, we say that the Simple
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Harmonic Motion of a point is a periodic function of

time.

In general a Periodic Function is one, the value of

which recurs at fixed intervals, while the variable increases

uniformly.

In Fig. 18, suppose OP is a revolving radius, and tracing

a constantly increasing angle, a.

Putting the radius of the circle equal to unity

then sin a = P
2Pi,

or in general y — sin a.

.*. y = sin (a + 2 k).

Evidently, then, y = sin a is a periodic function, and

the period is the time taken to complete one revolution.

This is equal to 271 divided by the angular velocity, which

we will call 0. We thus have the Period T=
6

The Frequency, or the number of periods in a second, is

'•F
Note that = 2 n . — , and .'.6=2 nj.

In electrical work the number of alternations per minute

is often used instead of the frequency. From the annexed

diagram it will be seen that the motion of the Point P
3

is

exactly similar to that of P
2 , excepting that when P

2
is at

the extremity of its path, where the instantaneous velocity

is zero, the point P
3
is passing through the O with its maxi-

mum velocity and so on.

Calling the radius of the circle a (the Amplitude), we have,
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but

or

cos (90 -
v \js. y- a)=

dpf a'

cos (90 -- a) = sin a,

y = a cos (90 — a).

'. y = a sin a,

y — a sin (a + 2 7:).

Hence we see that y = a sin a represents the Simple

Harmonic Motion of the point P
3 ; where a is the Ampli-

tude and a the angle described from a fixed starting

point, and is the product of the angular velocity and time,

a = dt, we generally write y = a sin dt.

Note that since the sine can never be greater than + 1 or

less than — 1, hence the maximum and minimum values

of sin 6t are + 1 and — 1, respectively.

We will now draw a graph of the Simple Harmonic

Function y = sin a:

If a = y = a = 15
4

y = 0.707

it
a = —

4
y = 0.707 a = 7T y =

7t
a = —

2
?= 1 a = 1ZE

4
y = - .707

a = IE
2

y= - 1

a = 7 7T

4
y = - .707

;y = o.
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Referring a, expressed in radians to the #-axis, and

using the same scale as the ordinate, we obtain a sinuous

or wavy curve, known as the Curve of Sines or the Har-

monic Curve. If the motion of the point giving rise to

this graph be made quicker or slower, the undulations of

the curve will be more widely spread or brought nearer

together.

Increase in Amplitude gives increased rise to the undu-

lations and vice versa.

Fig. (18a) shows the same curve plotted by another

Fig. 18a.

method; the student should have no difficulty in understand-

ing the principle after an inspection of the figure. It will

be noticed that the curve does not begin upon the x-axis,

but that the periodic time is counted from the instant that

the point P
t
has passed through the angle e. This angle

e is called by electrical engineers the lead; when negative

it is known as the lag.

The term Phase is used to denote the interval of time

that has elapsed since the point P passed through its initial

position at A, and hence e is often called the Phase Con-

stant.
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Art. 47. Plane areas. Let y = f(x) be a curve, and

AB a fixed ordinate. Now suppose CD = y be a second

ordinate corresponding to the value # = OC (Fig. 19).

Fig. rg.

Consider the area ABDC, call this area u, let CF = Ax,

then Au = CFHD, and Ay = GH.
Now CDGF < Au < CEHF ; but CDGF = y . Ax,

and CEHF = FH . Ax.

Hence y . Ax < Aw < FHA*.

.*• y < -r- < FH.
Ax

Now the smaller A# becomes, the more nearly will y
Au

and FH approach — in value; hence when Ax becomes
Ax
du

dx, then FH = y = — and du = y . dx.
dx

Hence if any area is bounded by a curve (y = f(x)), a

portion of the abscissa, and two ordinates, then the differen-
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tial of such area (du) is equal to the product of the termi-

nating ordinate (y) and dx.

Adopting the notation of the last paragraph we have,

for the Definite Integral which expresses the area bounded

by the curve, part of the abscissa, and two ordinates, a

and b, this expression

x y . dx.

Or since y — J(x) we might write I j(x)dx.

NoTe: y . dx gives a numerical measure of an arer

which may be found as follows:

(I) Integrate the given differential expression, or as

we say find the indefinite integral.

(II) Substitute the given limits, first the higher, then

the lower; subtract the latter resulting expression from the

former.



CHAPTER IV.

TANGENTS, SUBTANGENTS, NORMALS AND
SUBNORMALS.

Art. 48. In Analytic Geometry it was found that the

form

y — y' = m (x — x') (C)

expressed the equation of a straight line in terms of its

slope (m) and a fixed point (V, y').

As any curve may be regarded as generated by a point

moving according to a definite law> expressed by its equa-

tion, the direction of a curve at any point is the direction in

which this point (taken as the generating point) is moving

at the instant. But the generating point if not constrained

to move in the curve, would at any instant move off in a

straight line (by the first law of motion) and this straight

line would be tangent to the curve at the point of departure;

hence

:

The slope of a curve at any point is the slope of its tan-

gent at that point, slope meaning as usual the tangent of

the angle made with the x-axis.

In equation (C), if {x
f
', y

f

) is a point on a given curve,

and m is the slope of the tangent at that point, then (C)

is the equation of the tangent at (x', y
f
). But if y = f (x)

(where / (x) is any expression containing only x and

known quantities) is the equation to a curve it has been

shown that — = the slope of the tangent to the curve, and if

dx

the coordinates of a definite point on the curve, like (x
f

, /),
249
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be substituted in the value of -f~ , it will then represent
dx

the slope of the tangent at that point; say
{

-j— ]= slope of the

tangent at (x'
f
y').

Then (C) becomes

'-'-SL.*" •
•

• (T)

which is clearly the tangent equation at (V, y').

Art. 49. From these considerations an expression for

the subtangent is readily found, in exactly the same way

as described in Analytic Geometry (see Art. 50).

Since the normal is a perpendicular to the tangent at the

point of tangency (x', /), its equation will be,

'' - - (¥) «* - *0 • • •
(N)

\aX /x', y'

by the relation between the slopes of J_ lines as developed

in Analytic Geometry.

This equation may be written:

y - / = - f-^\ (x - x'),

\dy/x>,y

dx dv
if we understand — to represent the reciprocal of— •

dy dx

As in the case of the subtangent the subnormal is

readily found by determining its ^-intercept from its equa-

tion (N).
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Let

then

whence

y = o in (N),

/ = - — (x- x'),
dy x>,y

;> + y>(<!f\
=0C . (Fig. 20)

Fig. 20.

But subnormal, BC = OC - OB [P = (V, /)]

\dx) x>,y> J W/^,r
Corollary : The lengths of tangent and normal are

readily found, since they are the hypotenuses, respectively,

of the triangles APB and BPC.

AP 2= AB 2+ PB 2=/ 2 f**-)
2

+ /2
\dy I x',y

-<•[+&..}
and PC

2 =PB 2+ BC2 = /2
fi + ^Y 1
L V**/ x>,y>\

Example : Find equation of tangent, subtangent and

subnormal to the ellipse 16 x2 + 25 y
2 = 400 at (3, 3 J).



252 Elementary Calculus.

From 16 x2 + 25 y
2 = 400

dy

dx
=
- 16 X

25 y

At the point (3, 33-) this becomes,

&h'- - 16X3
.

25 x V6
-3L

5

Hence tangent equation LS

[(*', /) = (3,34)1

y- _i6

5 5
5),

or sy + 3* - 25 = 0,

also
(£)

--,--1
Vty /a?' .2/'

—
^r

.

Hence subtangent = / '£) .- (4
_i6_

3

and subnormal = / f
— ) = — (

— -) = — — •

\dx

/

x>,y' 5 V 5/ 25

Art. 50. Subtangent, subnormal, etc., in polar co-ordi-

nates.

Using the Polar System, subtangent and subnormal are

defined as follows:

The subtangent and subnormal are respectively the dis-

tances cut off by tangent and normal from the pole on a

line drawn through it J_ to the radius vector of the tan-

gency point, as OT and ON (Fig. 21).
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Calling the angle TPO between radius vector and tan-

gent, {ftj we have in the right traingles OPT and OPN,

Fig. 21.

subtangent, OT = OP tan TPO = p tan (p. Subnormal,

ON = OP tan OPN = p cot <b (since OPN = 90 - TPO)
The angle

<fi
is determined thus:

Let ACE be any curve (Fig. 22), the co-ordinates of C

Fig. 22.

being (p, 6), and of A being (p + Ap, 6 + A0). Then

AB = \p and AOC = Ad. Tan BAC = — [since AdH AB L
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is a very small angle the arc BC does not differ sensibly

from a tangent at B, say]. Whence

tan BAC = eM

(arc BC = pA#, since an arc = its angle multiplied by the

radius). As the point A approaches C, the secant AC
approaches the position of a tangent at C (FG) and BAC
approaches the value </» (OCG), hence, finally,

tan (p = -
dp

•t a

Hence polar subtangent = p tan <p = p
2—

,

dp

and polar subnormal = p cot df = —- •

dd

EXERCISE VII.

i. Find the length of tangent and normal for the para-

bola y
2 = 16 x at x = 4.

2. Find the length of subtangent and subnormal to the

ellipse 9 x2 + 16 y
2 = 144 at (6, 6 y/$).

3. Find the equations of tangent and normal to

y
2 = 16 x3

at (1, 4).

4. Find the length of the normal to x2(x + y) = 4 (x — y)

at (o, o).

5. Find where the tangent to yax = x3 — a3
is parallel

to the x-axis.

6. Find where the normal is _L to the x-axis on the curve,

f = x2
(8 - x).

7. Find the angle at which x2 = y
2 + 9 intersects

4 x2 + 9 y
2 = 36.
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8. In the equilateral hyperbola x2 — y
2 — 16. The

area of the triangle formed by a tangent and the co-

ordinate axes is constant and equal to 16. Prove it.

9. At what angle do y
2 = 8 x and x2 + y

2 = 20 intersect?

10. Show that the subtangent to the parabola y
2 = 2 px

is twice the abscissa of the point of tangency.

n. Show that in a circle the length of the normal is

constant.

12. The equation of the tractrix being

x = \/a2 - y
2 + - log

v
7

7
,

2 a + \/a2 — y
2

show that the length of the tangent is constant.



CHAPTER V.

SUCCESSIVE DIFFERENTIATIONS.

Art. 51. Since -2— is, in general, purely a function of

x, its differential coefficient may be found as readily as that

d2y
of the original function. It is usually symbolized thus, —~ •

dx
For example, if y = 3 x3 + 2 x2 — 5 x%,

-2-* = gx2
-\- 4X — § x~%,

dx

f£= 18* + 4 + 1*-*.
CLX

Likewise the differential of this second differential may be

found in the same way, and is symbolized as —\\ the
dxr

fourth differential coefficient as — ; the n th
as —- • It

dx4 dxn

sometimes happens that the successive differential coeffi-

cient may be written by analogy after three or four have

been found. For example :

y = xm
,

mxm—1
dy _
dx

—2 = m (m — 1) xm-2
,

dx2

dty = m (m — 1) (m — 2) x— o\ -v-W—

3

dx3

256
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dny ( \ / x—— = m (m — 1) \m — 2) . . .

dxn

(m — n + 1 ) x m~n

If the function be an implicit function of x and y, it is

not necessary to put it in explicit form, as the previously

found derivatives may be used to find successively each

higher one. For example:

x2 + y
2 = r2

. . . . (1)

Take ^-derivative : 2 x + 2 y

solving for -2-

,

dx

dx
00

dy x

dx y
(3)

dy
y — x——

d2
y _

y
dx

dx2 y2 (4)whence

substituting value of ^— already found from (3) in (4),
dx

+ -
d2
y _ y _ _ x2 + y

2 _ _ r^

dx2
y

2
y
3 /

2 2 dy- 3 r y —

—

d?y ^x_ 3 r
2x

d*3
"

v6
~~

v
5 '

eC '

MACLAURIN'S AND TAYLOR'S FORMULAE.

Art. 52. It is frequently useful for purposes of calcula-

tion to express the value of a function in the form of a

series. For example, in algebra, the binomial theorem

enables us to develop a binomial raised to any power into a

series of powers of the single quantities involved, as,

(a + b)
4 = a 4 + 4 a3 b + 6 a2

b
2 + 4 a b

3 + b\ etc.
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Likewise the logarithms of numbers and the trigonometric

functions are computed from series.

Hence a general method for the expression of any func-

tion of x, say, in series, would prove exceedingly useful.

But such a series has utility only when its sum is a finite

quantity. In general, series have an unlimited number of

terms, and clearly, unless the sum of these terms is a finite

quantity, it is utterly useless. A series whose sum is finite

is called a convergent series.

It is only with such series that we shall deal here. Let

it be required to develop f(x) into a series of powers of

(x — m) say. Supposing such a development possible, let

f(x) = A + B (x - m) + C (x - mf + D (x - mf,
etc (a)

Differentiate (a) successively:

/'(*) = B + 2 C (x - m) + 3 D (x - mf
+ 4 E (x — m)3 + ' etc.

f"(x) = 2 C + 6 D (x - m) + 12 E (x - mf +

f"{x) = 6 D + 24 E [x - m) +
fw(x) = 24 E +

Since x is assumed to have any value, let

x = m.

Then f(m) = A or A =/(»);

f{m) = B, B = f(m);

rim) = 2 C,
Z2 '

/"'(») =3. 2 -D, D = CM
;

Z3

/*v(w ) = 4 . 3 . 2 E, E = ^) , etc.

Z4
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Substituting in (a)

t(x) = j(m) + f{m) (x - m) + tll&L {x-mf

1 f
UI(m) , N o , fr

v (m) , , 4 , /UN+ *—*

—

'- (x — mf + *—*—'- ix — my + . . . (b)

Example: Develop log x in powers of (x — 2).

/ (#) = log*, / (2) = log 2.

A'

/"(*)= -S' /"(2)=-i.

rw = ^ r(2) = *.

/
IV
(*) = --

4
. /

IV(2)= -I, etc.

Hence log x = log 2 + \ (x — 2) — \ (x — 2)
2

+ i(x- 2)
3 - %(x- 2)

4 +

Art. 53. If in formula (b), m be made o, which is

clearly permissible, since no restrictions were placed on its

value, the formula becomes the development for f{x) in

terms of x:

/(*)= /(o)+/'(o)x+ Q^-x2 +Q^a:3

+ ££>**+ (b)
Z4

where /(o), /'(o), etc., mean the values of fix), fix), etc.,

when x is replaced by o.

Example : Develop cos x in terms of x.

f (x) = cos x, f (o) = cos o = 1.

f (x) = — sin x, f
f

(°) = — sin o = o.

F'(x) = — cos#, f"(o) — — coso= — 1.
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/"'(*) = sin x, /'"(o) = sin o = o.

/iv (^ = cos Xj /
IV (o) = cos o = i, etc.

Substituting in (b):

x2 x*
Cos x = i —

. -f-
-—

, etc.,

Z.2 Z4
'

which is the expression from which cos x is computed.

For example, to find cos 30 = cos ( — rad.
)

»

(-) (-)' (-)'

cxx. 3o°= 1-^ +^L -X-L + etc. (w= 3.1416.)
2 24 720

I = I.

W _ (. 5 2 3 6)
4

24 24
= -00313

I-003I3

M..
2

- .I3708

- -I37II

approx. 720

- .OOOO3

cos 30 = .86602

- -13711

The series (b) (and its special form bj is known as

Maclaurin's Series from its discoverer.

Art. 54. It is frequently necessary to express a func-

tion of two quantities in the form of a series of powers of

one of them, as for example, f(h + x) in powers of x.

The process is entirely analogous to that employed in

the development of Maclaurin's Series, and the result is

known as Taylor's formula.

Assuming that }(h + x) can be developed in powers of

x, and regarding h as constant:

Let }{h + x) = A + Bx + Cx2 + Bx3 + Ex4 + (c)
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Taking the derivatives with respect to x,

f(x + h) = B + 2 Cx + 3 Di2 +4Ei3 +...
f'{p +k)= 2 C + 6 Da; + 12 Ex2 + . . .

/"'(# -f- h) = 6 D + 24 Ex + . . .

/*(* + A) = 24 E + . . .

Since this series must be true for all values of x
}
being an

identity, it is true when x = o; hence setting x = o in this

series of equations we are enabled to determine the con-

stants, thus:

A = f(h).

B = /'(/>).

c f"(h)

Z2

E = fzihL (6 = 3 x 2 x 1 = zs ).

Substituting in (c)

/(* + fc) = jilt) + f(/t) * + J^l x2 + l^lx3

Z4

Where /(/i), /'(/*)> etc -> mean the values of f(x+h), f'(x+h),

etc., when x = o.

Art. 55. It will be evident upon consideration, that the

binomial theorem as encountered in algebra is a special

form of Taylor's formula. The utility of these develop-

ments of Maclaurin and Taylor, depends upon the rapidity

vvith which they converge.
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As the series developed by these two formulae is usually

infinite, there is always a residual error in taking the sum

of a limited number of terms as the value of the function

thus expanded. A discussion of this error is unnecessary

here; it will be sufficient for us now to observe that a

series has satisfactory convergence, if the successive terms

decrease rapidly in value, and after a limited number of

terms, approach zero.

It is usuallly an effective test of convergence, when the

nth term of a series can be readily expressed, to find the

ratio between the (n + i) th and 11
th terms. If this ratio

approaches zero as n approaches infinity, the series is con-

vergent, otherwise divergent, and hence, useless for prac-

tical purposes.

Example : To test convergency of sine-series.

x3
. .v

5
.v

7
,

sin x = x + . . .

Z3 Z5 U
(-1) n-l

A.2U

Inspection of the relation between the coefficients of v,

the denominators, and the corresponding term number,

gives the nth term as above. The (n + 1)* term like-

wise is,

A.2 n + 1

If then the value approached by the ratio,

/ 2 ft —I— T—

—

as n approaches infinity,

Z_2 n — 1

is zero, the series is convergent, otherwise not.
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/_2 11 + 1 x
-r

o if n = 00

.

{211 -\- i) 2 n

Z.2 n — 1

Hence the sine-series is convergent.

It is to be observed that it is only the absolute values of

the terms that are considered, as the sign does not affect

the ratio. There are numerous more complicated tests

for convergency, but they do not come within the scope of

this book.

EXERCISE VIII.

1. y=4x3 -8x2 +2»-i, find —-
2

•

ax

2. y = x3
, find -2«

dx6

dny
7.. y = xn , find —— •

4. y = x log x, find —~ •

dx2

5. y= log (e* + e-x), find p- •

dx6

6. y= e* (x
2 - 4 x+ 8), find^ .

dx3

1 ^ j d4
y

8. y= xMogx, find^X

9. y = x3 — — find —2 •

10. y = log sin x, find —^

.

' & '

dx 4
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11. y = sin 2 x, find —~-
dx3

x2 d?v
12. y = , find —?-*

1 — x dx2

13. y = e2x (x
2 — 2 x + i),fmd ~^-

dxA

dny
14. y = eax , find —— •

dxn

15. y = exsin x
}
show —^ 2 -2- + 2 v = o.

dx2 dx

ex -f- c
—x

</
2/
v

16. y = , express -4 in terms of y.'
ex _ x-x

f ^2 '

17. ;y = ^2
ex , show that —^= 6^(x+ 1) + y.

18. z = 1 + #e2
,
find —-

•

dx2

19. x3 - 3 axy + y
3

, find —|-

20. 6
2*2 -a2

;y

2 = a2
6
2

, find^.

21. y
2 = 2 £#, find —\-

dx

22. xy — c
2

, find —?•y
' dx3

23. «•+*= ay, find ^.

a 1 & x \ d y
24. 3/ = —

(
<?^" -f-

0- —
], find

—
-5 in terms of y and a.

2 \ ) dx

25. f = a2
x, find -Z.

dx2

26. # = r vers
-1

2. — \A ry — y
2

, find —^ in terms
r ax'

5

of 3/ and r.
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EXERCISE IX.

Expand by Maclaurin's formula:

1. sin x (in powers of x).

2. tan-1
^.

3. \ogx (in powers of (x — 1))

4. (in powers of x).
1 — x

5. ex (in powers of (x — 2)).

6. — (in powers of (x — h)).
x

Expand by Taylor's formula in powers of x:

7. sin (n + x). 10. log sin (h + x).

8. \A— *2
- JI - sec (a + *)•

9. e
a+x

. 12. (a — #)n .



CHAPTER VI.

EVOLUTION OF INDETERMINATE FORMS.

Art. 56. Functions of a variable which reduce to such

forms as — — , o, 00, etc., for certain values of the vari-
o 00

able are called indeterminate, because we are unable to divide

o by o, or 00 by 00 directly, but must approach the quotients

by a circuitous path.

The consideration of a definite example may make the

idea clearer.

-v5 j

Take for example, when x = 1.

x — 1

Clearly, = — when x = 1.

x — 1 o

But also = - when x = 1,
x — I o

, x3 — 8 o ,

and — = — when x = 2,
x — 2 o

, 2 X — X2 — I O ,

and — = — when x = 1.

3 # — 2 x — 1 o

Evidently — does not mean the same thing in all these
o

cases, nor in the multitude of similar cases that might be

cited. Having practically an infinite number of possible

values then, the expression — is indeterminate. It will
o

be recalled that in discussing the differential quotient, it

266
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was remarked that although two quantities may each be

too small (or too large) for individual comprehension,

they might yet have a finite, readily expressible ratio, if

they belonged to the same order of smallness (or largeness).

To use a somewhat inadequate illustration, two typhoid

bacilli, though each hopelessly beyond the reach of our

ordinary senses, could be readily compared with one another

and their relative size could be expressed by a very simple

number. Although a bacillus is not infinitely small, the

same illustration may be extended indefinitely. As the

chemist has to approach the problem of his inconceivably

small atom and the astronomer of his inconceivably vast

distances, indirectly, so we will have to deal with our zeroes

and infinities.

To return to the expression
x— 1

Before giving x any definite value, divide the numerator

by the denominator, then = x4 + x3 +x2 + x-{- 1.

x — 1

If in this expression we give x a, constantly decreasing

value >i, the integral function will clearly approach more

and more nearly the value 5, while the fraction approaches

the value — . It is easy to infer then that when x is actually
o

1, the value of — becomes exactly 5.

Again the expression

2 x — x2 — 1

3 x2 — 2 x —1

may be shown to approach — J as x approaches 00

,

if we first divide both numerator and denominator by

x2
.
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Art. 57. To find a general method jor evaluating an

indeterminate.

Let -f^-f-
= — when x = a.

<p(x) o

By Maclaurin's formula,

/(*) = HP) + f(fi) (*-«) + -^ (* - af

+ tt) (x _«)3 + .

2

..

0(x) = 0(a) + 0'(a) (* - a) + ^^ (* - a)2

+ £l(x-af+ ...

But j(a) = o and (a) = o by hypothesis.

. /(*) =

f(a) (x - a) +i^) (* - a)
2+ ^^ (* - a)

3 + ...
Z2 /3

0(a) (x - a) + 41i*) (* - a) 2 + £^£1 (* - af + . . .

Z.2 Z3

/'(a) +/^I (x - a ) + ¥^(x - a) 2 + . . .

= Z2 Z3

,,, N , 0"(a) , N .

6'" (a),
, 2 .

9 (a) + (# — a) + t—!_£(# — ay + ...

(dividing numerator and denominator by x — a)

= ' ^
(since (5; — a), (x— a)2

, etc. = o when x = a).
0'(a)

If T7T~r still equals — for x = a,

(#) o

it is clear that the expression reduces to '
)

'
, if /'(#)

0"(#) •
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<f>'(x) are replaced by their values, o, and numerator and

denominator be again divided by x — a.

Hence when xLJ = _ ior x = a,
(p{x) o

/(*)_ r(*) - /'w
etc

A rule may be stated thus

:

Take the successive derivatives of numerator and denom-

inator (as distinct functions) until a derivative is found,

say f
n (x), which is not zero for x = a. Then,

' ^ ' = ' ^ '
is the value sought.

cf)
n (x) <j)(x)

^ t7 ^ , , tan x — sin x cos x o
Example : Evaluate = —

,

x3 o

when x = o.

tt tan x — sin x cos x __ j(x)

x3
(f>(x)

Xs 3X2

(taking derivatives).

}'(x) • o
This expression corresponding to ' v '

still equals _ •

(f>
(x) o

Hence taking second derivative,

tan x — sin x cos x __ sec
2 x — cos2 x + sin

2 x

Xs
3#

2

2 sec x tan x -\- 2 cos x sin x + 2 sin x cos x

6 x
sec x tan x + 2 sin x cos x

(collecting and dividing by 2).
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This is still - • Taking third derivative f"^
o

5
0"'(*)

sec
3 x -f sec x tan2 x + 2 cos

2 x — 2 sin
2
jg _ 3_

3 3

= 1, when x = o.

. tan x — sin x cos x

.v
3

= 1, when x = o.

Art. 58. If ^ ' . = — when ^ = a, a simple trans-
6{x) 00

formation reduces the expression to the form —
; for

o

iW =M = °
[or:c= „.

cj>(x) I o

If /(#) = o and (f>(x) = co for x = a,

then /(#) . <j)(x) = o . go, an indeterminate,

but /(*) .<£(*) = ^=--
I_ o

</>(x)

By using the logarithms of the functions as an interme-

diate step, expressions like i
00

, o
00

,
00 °, etc., may be

reduced likewise to — For example, let j(x) = 1 and
o

<f>(x) = co, when x = a.

Then /0)]^> = i°°.

Let v=[/(x)]*(*>.

Taking the log of both sides

:

Log y = <j>(x) log /(.x) = ° '^ ' = — when x = a.
1 o
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In these cases we get eventually the logarithm of the

function, from which the function itself is readily found.

/ x \ tan 3™-

Example : Evaluate (2 1 2 a
|
when x = a,

irx

/ X \ tan TT*- «

Let y = (2 - -
J

2 a

log (2 - -
)

Then log y = tan— log (2 - ~)= ^ CU = 2.

cot »

2 a

,\ log y
.

iog (-:-) _ -lull
cot H. _ _*

. .,.2 **— CSC
2 « 2« '2a

I I

2 a — x a 2
,= — = — , when x = a.

_£- csc2 nX X
_

7t

2a 2a 2a

That is, log y = log (2 - ~Yn

Ta = \ when x = a.

tan™- _2_
.*. (2 — a) 2 a = e n .

1

Example : Evaluate (a * -
1 ) x, when # = 00

.

— _i

(a
x - 1) x= (a

00 - 1) 00 = (a°- 1) oo = 0.00,

when # = 00

.
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But (a* - i)x
a* - 1 o

1 o

a;

_L JL

a — 1 — a log a

when x — 00

.

EXERCISE X.

Evaluate:

1.
°^ ^

, when y = 1.

gX g—

X

2. , when x = 1.

tan :v

^— = a * loga = log a,

3-
4 x sin # — 2 7r , ;r-

, when x =- .

COS # 2

4-
2 I whpn 8 — n

*

cos
2 # i — sin # 2

5- —, , when #= 1.

x*-1

6. (sin v) /aw y
f
when v = - •

2

7-
e* + g~* — 2 ,

, when z = 0.

8. *

—

!—'-
, when x = o.

when # = 00.
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sin-* x ,

10. ;— , when x = o.
tan x

ey sin y — y — y
2

,

losr sin 2 # ,

12. —s—
;

, when x = o.
log sin #

13. ( /«* — i)#, when# = 00.

14-
'— , when x = 1.

6* — 6 x — 1

15. : •

, when x = 1.
log » log x

i 2

16. (cos 2d) , when # = o.

17. (logx)*- 1
, when #= 1.

loo; x ,

10. —e—
, when # = o.

esc x

19. (1 — tan x) sec 2 x, when a; = -
4

20. 6-* log #, when x = 00

.

[log (e + z)]*, when z = o.

[2 )
tan — , when # = w.

\ 7?/ 2»

23. (
) ,

when x = o.

7rx
sec —

24- : ; -,whenx=i.
log (1 - x)
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25. cot x, when x = o.
x

, I — COS X ,

26. , when x = o.

# — sin
-1 x ,

27. —
, when x = o.

28. 2 X sin — , when # = 00

.

2 X

29. (sin #) '
, when x = o.

30. .t e*, when x = o.

31-

32. i °x" *"
'—

- — , when jc = — .

sin a; + cos x — 1 2

33- —=—H ^^ ^, when* =3.r - x' - 5 1 - 3

\/y tan y u
34. — / ,

when 3; = o.

35. # tan x — — sec #, when # = — .

2 2

36•(+*;• when 2 = 00

.



CHAPTER VII.

MAXIMA AND MINIMA.

Art. 59. When a function has a maximum value it is

an increasing function until it reaches the value then a

decreasing function just afterward, otherwise this value

would not be a maximum. Since the derivative of a func-

tion is the ratio between its increase and the increase of its

independent variable, if the function is increasing with the

variable the derivative will be positive; if it is decreasing

as the variable increases the derivative will be negative.

Hence when a function passes through a maximum value

its derivative changes from positive to negative, and in

order to do this it must pass through the value zero, if it is

continuous. A similar process of reasoning shows that

when a function passes through a minimum value the deri-

vative also passes through zero from negative to positive.

It is to be remembered that since a function depends upon

its variable for its value, it can be made to take any number

of values, as near together as we please, by giving the

variable a suitable series of values, that is provided always

that the function is continuous.

A graphic illustration may make this plainer.

Since in general any function may be represented graph-

ically by a curve, let the curve AB, Fig. 23, represent

y = /(*).

Since the derivative of a function, represented by a

curve, is the slope of its tangent at any given point, the

change of the derivative and the tangent slope are synony-

275
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mous. Suppose T is a maximum point for the value

x = OD. A glance at the figure will show that starting,

say with the tangent MN at A, the slope of this tangent as

the point of tangency moves from A to T will be constantly

positive (the inclination being an acute angle, as AMO ) but

constantly decreasing; at T the slope will be zero, for the

tangent, RS, is parallel to the .T-axis; beyond the point T,

the inclination of the tangent is an obtuse angle asj PQ#,
and hence its tangent is negative, but it will still decrease

Fig. 23.

in general. Therefore, as indicated, the derivative of the

function which is always equal to these slopes, will pass

from positive to negative through zero. But a function

may pass through zero or infinity without changing its

sign, so even when the derivative is zero there may not be a

maximum or minimum. Hence it is necessary to deter-

mine in a given case whether a maximum or minimum

exists.

Recall the fact cited above, that the slope decreases to

zero before a maximum and continues to decrease (because

it is negative) after a maximum, hence the derivative is a
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decreasing function at a maximum, hence its derivative,

that is, the second derivative of the original function, will

be negative from our definition of a derivative.

An examination of the figure around the point F (a

minimum) will show that at a minimum the slope, and

hence the derivative, passing from negative to positive

through zero, is an increasing function, hence its deriva-

tive, that is, the second derivative of the function, is

positive. This suggests a general method for determining

maxima and minima, as follows :

Since the first derivative is always zero at a maximum or

minimum point, if the first derivative is found and set

equal to zero, the value of the variable found from this

equation will, in general, be one of the co-ordinates (usually

the abscissa) of the maximum or minimum point on the

curve representing the function. To determine whether

it is a maximum or minimum, the second derivative is

found, and if it is negative in value for this value of the

variable, the point is a maximum; if positive, it is a minimum.

Art. 60. It may happen that the second derivative is

also zero for this value of the variable, and hence indeter-

minate as to sign. In this case it is clearly desirable to

expand the function in the neighborhood of this value of

the variable that its character may be more readily seen.

If (Jx) is the function, and x = a be the value found from

f(x) = o, then f(a — h) and f(a -f h) will represent the

value of the function immediately before and immediately

after, respectively, its value for x = a, h being a quantity

which can be made as small as desired.

By Taylor's formula:

f(X + h) = ax) + f(*)A+£g£ + rzig£ + . .

.
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j{x - h) = f(x) - j'{x)h + ^-^ h2 - Q^U3 +

Replacing x by the value a, and transposing }{a),

f(a +h)- j{a) = f{a)h + £&L h2 + ?-"&
Z.2 Z3

+

f(a -h)- j(a)=-f'{a)h + 1^1 h 2 = ^^- h* + . . .

Now since h is to be taken exceedingly small, its square,

cube, etc., in the developments will be insignificant, and

hence the values of the above expressions will practically

equal the first terms of their development. That is,

f(a + h) — }{a) will have the same sign as f'(a)h, and

I (a
— h) — f(a) will have the sign of — f'{a)h. But if

there is a maximum or minimum at a, j(a + h) and j(a— h)

must have the same value, because if it increases to a

maximum it must decrease beyond the maximum, and

hence have the same value just before and just after, as

the sun has the same altitude at the same time before noon

and after, noon being its maximum elevation.

But the only way f'(a)h and — f(a)h could both have

the same value would be, that both equal zero, that is, that

f{a) = o [f'{a) being value of f'{x) when x— a], which

verifies our former conclusion.

If f'(a) = o, then,

j{a + h)- f(a) = tl^L h2 + r{a) ^ J-

and

Z2 Z3

r(a) , 2 /"'(«) is
f(a -h)~ }{a) = ±^± W - L^l

Since h is so small, h2
is much larger than h3

or any

higher power, hence }{a + h) — }(a) and }(a — h) — f(a)
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are determined by '
^a ' h2

, and hence are positive if f"(a)

is positive, and negative if f"(a) is negative

for /" (a) determines the sign of the term ' ^
' h2

.

But, when }{a + h) — }{a) and f(a — h) — f(a) are

both negative, f(a) is a maximum, since it is greater

than the values on either side of it [}(a + h) and f(a — h)];

likewise, when they are both positive, f{a) is a minimum.

But these conditions prevail, respectively, when f" (a) is

negative and when f"(a) is positive, which verifies our

second conclusion above.

If f'{a) is also zero, then,

/(a+ /0 -/(a) ^-^U3 +^ /*'+.. .

and

M ; /W
/3 Z4

A course of reasoning exactly as before, will show that

for a turning value (maximum or minimum)

'—K—l- Jr and — ;—±-L h 3 must equal zero,
Z3 Z3

that is, /"'(a) = o,

and when /
iv (a) is positive there is a minimum; when f

iv (a)

is negative there is a maximum, etc.

Hence the rule:

A function has a maximum or minimum value at x =a,

if any number of the successive derivatives, beginning with

the first, is zero for x = a, provided the first that does not

equal zero is of even order, being negative for a maximum
and positive for a minimum.
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The values of the variable which cause the first deriva-

tives of a function to vanish are called critical values.

Example: Find turning values of (x — i)
B
(x — 2)

2
.

/(*)= (X- I)
3 (X- 2)

2

/'(*) = 3 (X - I)
2
(X - 2)

2 + 2(X - l)
3 (*-2)

whence (x — i)
2
(x — 2) (5 x — 8) = o,

x= 1, i, 2, f.

f"(x) = 2 (* - 1) (* - 2) (5 * - 8) + (* - i)
2

(5 * - 8)

+ 5 (*- i)
2 (x- 2).

When x= ij"{x)= o.

x = 2, /"(#) = 2 (positive).

* = f, /"(#) = -if (negative).

Hence for # = 2, there is a minimum,

and for x = f , there is a maximum.

Since /"(#) = o for x — 1, it is necessary to find the

third and fourth derivatives.

}'"{x) = 2 (30 x
2 — 84 x + 57) = 6 when # = 1.

Hence there is neither maximum nor minimum at x = 1.

Example : What are the dimensions of the cylindrical

vessel of largest contents that can be made from 3234

square inches of tin plate, not counting waste?

Since 3234 square inches will constitute the surface of the

cylinder (one base) when completed,

2 nrh + nr2 = 3234 (1)

Volume = 7tt*h (2)

which is to be a maximum.

From (I) ft=
3»34-^ = joaa^r _ 22.1;

2 7^ 2 f
|_ 7 J



Elementary Calculus. 281

Substituting in (2)

27 1020 Tzr — Tir
3

7i f 3,wrh = - —= —(1029 r — r).
2 2

Since a constant does not change value it cannot affect

a maximum or minimum, hence any constant factor may
be ignored, in searching for turning values.

Say then, / (r) = 1029 r ~ r*i

?(r)= 1029 - sr2 = o,

whence r
2 = 343, r = 7 V 7.

j
,f
{r) = — 6 r which is negative, hence r = 7 V7 gives a

maximum.

From (1) h= 7 V7 for f = 7V7. Hence the cylinder

will have greatest contents when its radius equals its

altitude.

EXERCISE XI.

Find maxima or minima

:

!. yj=JL. 2 .
(* + 9)(*-2)

f
4 X

(x *?

r — y+ 1

f + y- 1

1 i- ^ I — X

6
^2 + 2 M + 3 ,

u2 + I

7. Divide a line i' long into two parts, such that their

product will be a maximum.

8. Find the greatest rectangle that can be inscribed in

a circle of radius 6".

9. Find the volume of the greatest cylinder inscribed in

a sphere of 8" radius.

10. Find the greatest cone in the same sphere.

11. Show that it takes the least amount of sheet iron to

make a cylindrical tank closed at both ends, when its

diameter equals its height.
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12. Find the greatest cylinder that can be inscribed in

a right cone of radius, r, and height, h.

13. Calling the E.M.F. of a cell, E; internal resistance r,

external resistance, R, and current, C, C = and the
r+ R

power, P = RC2
. What value of R will make P a maxi-

mum?
14. Find the shortest straight line that can be drawn

through a given point (w, n) and limited by the axes.



CHAPTER VIII.

PARTIAL DERIVATIVES.

Art. 6i. Up to this time functions of one independent

variable only have been considered, but an expression

may be a function of two or more independent variables.

A function of two variables, x and y say, is symbolized

thus:

/ (*, y), <f> (*, y), F(x, y), etc.

Continuous functions only give important general results,

and a function of two variables is continuous about any

specific values of these variables, say x = h, y = k, when

the function runs through an unbroken series of values (as

near together as we please) as its variables run through

corresponding series of consecutive values, in the vicinity

of h and k.

Art. 62. The derivative of a function of two (or more)

variables found by considering all the variables except one,

as constants, is called its partial derivative with respect to

the variable that changes. For example, 4 xy + 3 y
2

is

the partial derivative with respect to x of the function

2 x?y + 3 xy2
-f y

3
(regarding y as a constant) and is

represented thus:

— (2 x
2
y + 3 xy2 + y

3
) = 4 xy + 3 y

2
-

--\

If z = 2 x2

y + 3 xy2 + y
3

, then —-*= 4 xy + 3 y
2

. (1

)

ox

Likewise the partial differential, with respect to x, is repre-

sented thus:

283
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d~xz = 4 xy dx + 3 y
2 dx (2)

~\

Evidently oxz =^ dx, since (2) equals (1) multiplied by dx.
ox

Similarly, dyz
= (2 x2 + 6 xy + 3 y

2
) dy (3)

By the principles of differentiation already known,

dz = 4xydx + 2 x2 dy + 3 y
2 dx + 6 #7 dv + 3^

2
dy. (4)

A comparison of (2), (3) and (4) will show that

dz = o xz + dyz
= —dx + -^-dy.

ox oy

That is, in this case the total differential equals the sum

of the partial differentials.

In Art. 4, and succeeding articles, it was explained that

a differential quotient (or derivative) was the ratio of the

increase of a function to the increase of its variable when

these increments were indefinitely small. TJhis may be

expressed thus: if y = }(x),

dy fix + Ax) — fix) A ,—

-

- = — -— *-*—', as Ax approaches o.
dx Ax ri^

Likewise in a function of two variables, x and y say, if

z = f (xy)

dz_ = / (x + Ax, y)
-

/ (x, y) as Ax i Q
dx Ax

[( = ) is a symbol meaning " approaches."]

Also |i = /(^,y+ Ay)-/fey)
as Ay ^

ov Av

in the first case y remaining constant while x changes to

x + Ax, and in the second x remaining constant while y
changes to y + Ay.
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Now let these changes take place together in the same

function and we have,

z + A2 = / (x + Ax, y + Ay) . . . (a)

But the result would plainly be the same, if instead of

changing simultaneously, x should change while y remained

constant and then y would change while x + Ax remained

constant.

From (a), Az = } (x + Ax, y + Ay) - j (x, y),

or changing successively,

Az = / (x + Ax, y) - f (x, y)

+ f(x+Ax,y+Ay)-f(x + Ax, y).

Az _ / (x + Ax, y) - j (x, y)

Ax Ax

[

/ (x + Ax, y + Ay) - } (x + Ax, y) ^
Ay

_

Ay Ax'

(Multiplying and dividing the last two terms by Ay, and

dividing through by Ax.) By definition of derivative,

/ (x + Ax, y) -} (x, y) , A _^ -, _ dz_— Las Aoo- oj- ^ ,

and

f(x+Ax,y+ Ay)-f(x + Ax,y) , A^ ^ o] =^ .

Ay dy

That is, |L=|L + |i§L or(fe =|2. (fc+f?L (jy.
ax ox oy ax ox oy

Hence the result found in the specific example above is

shown to be general for all continuous functions, namely:

The total differential equals the sum of the partial differen-

tials, each being multiplied by the differential oj its inde-

pendent variable.

This rule could be easily inferred from the rules already
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enunciated for the differentiation of specific forms as, for

example, the product of two or more variables, wherein

the differential is found by regarding all the variables but

one successively as constant, and taking the sum of the

results.

Art. 63. In implicit functions, which are presented

most frequently for partial differentiation, the form is

/ (x, y) = o.

An implicit function, it will be remembered, is one in

which the variables are thrown together in the various terms,

and the function is not solved explicitly for any one, like

3 x
2
y — xy + 7 ocy

3
, etc.

From our rule,

whence

/;
—

dx
1 u,y — w,

oy

dy

3/ (x, y)

dx

3/

, or shortly, ±!= §*
dx df

dy

dx df (x, y)

dx

The same process applies to any number of variables,

for example, if

w= <f)(x, y, z),

dw = -^ dx+ -^ dy + -^ dz, etc.
ox oy ' oz

Art. 64. If y is itself a function of x, say y = <f>(x),

then the form

dz _ dz_ . dz dy

dx dx dy dx
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is most effective, for—^ can be found from y = <b(x).
ax

Example : z = tan
-1— and x2 + 4 y

2 = 1.

x

By formula,

3/tan-'^ 3/tan-1^
dz __\ x_/

, \ xj dy

dx dx dy dx

~2 y 2

a;
2 x _

>
dv_

.2 + , ..2
* ^ (a )

1 +^ 1 + if *
or x 2.

From a-
2 + 4 / = 1 ; y

2 =
', y = i v^i — ^2

>

4

. 4? * x r . \/i-x2

iwhence -z-= ,
,

= since y = —
dx 2Vi-r 4 y L 2 J

Substituting in (a),

*L = 2 ? *2

= _ /*2

2>,\

(foe x2 + 4 v2
2 v (x

2 + 4 v2

) \ 2 y /

= _ *2 +4?2

= _ _L_
[
Since *2 + 4 v2 = 1].

2 y 2 y

Art. 65. Successive partial differentiation.

A function of two or more variables may have successive

partial derivatives for the same reason that was given for

the successive total differentiation of a function containing

but one variable.

The process is indicated thus:

9 O/V SV
. 9.(M = 9V,

etc.
d# (dy) dxdy ' 3x (3x) dx2 '
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It is readily shown that

3 2
/ ay

d#3;y oyox

EXERCISE XII.

Find^
dx

by partial derivatives:

i. a2

^
2 + &V = a2

b
2

.

2.

2 a — x

3- (x
2 + v2

)

2 = a2
(x

2 - y
2
).

4- 9 ay2
--= x (x - 3 a)

2
.

6. ** + / = a*.

y. x= r vers
-1 - — V2 r^ — y

5

.

8. z = tan
-1 2- ; show that x — + v —- = o.

9. z = log (tan x + tan 7 + tan u); show that

3z . . 3z ,
• 9z

sin 2 ^ 7— + sin 2 y —- + sin 2 ^ —- = 2.

ox oy ou

10. x3 + y
3

-f 3 a#;y = o; find -f- .

dx

11. z = afy + #;y
2

; show that
dxdy dydx
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12. s = =- ; show that — + —- + — = o.

VV + y
2 + «2 d* dy2 du2

13. 2= 2 + ;y

2
)*, y= logx; find-^| .

14. 3 = W2 - *2 - y
2' f = r

2 - jc
2

; find ^ .

ox



CHAPTER IX.

DERIVATIVES OF ARCS, AREAS, VOLUMES, ETC.

Art. 66. The most important applications of the deriva-

tive have to do with curves whose equations are known.

By the principle or minute increments the characteristics

of a curve of irregular curvature are discovered.

In dealing with curves it will be helpful to regard them

as described by a point moving according to a fixed law,

and at any given instant having the direction of a tangent

line to the curve at the position of the point at that instant.

Length of an Arc.

Art. 67. Let AB be an arc of any curve (Fig. 24),

P and Q two positions of the describing point, d and <j> the

Fig. 24.

angles made respectively by PQ, and the tangent at P,

MN, with the #-axis, to find the length of the arc PQ.

Draw the co-ordinates of P and Q, (OT, PT) (OS, QS).

Then TS = PR = Ax and QR = Ay.

290
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In the right triangle PQR,

chord PQ = PR
2

+ QR2

,

that is, PQ2 = Ax + ~Ay\

or PQ = yJAx + ~^y>

Dividing by Ax,

PQ
.-V-+^f (b)

But as Ax is taken smaller and smaller, approaching

zero, the chord PQ approaches the arc PQ (Q moving

down toward P), and eventually -^ becomes — (where s
Ax dx

represents the arc).

dx V \dx)

The same result may be obtained from (b) thus :

As A
Ax PQ Ax

—^- [multiplying and dividing by PQ];

As
But -— eventually equals 1, since the chord eventually

equals the arc, when,

As ds_

Ax ~~ dx

Corollary : The tangent MN gives the ultimate direction

of the chord PQ, and Ax becomes dx and Ay becomes dy
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at the same time. Since by what has been said in Art. 11,

from (c)

or

Likewise,

tan d> = -2
dx

ds
T- - Vi + tan

2
<j> = sec 0,dx

dx ,— = cos cp

.

ds

dy

ds
sin

<fi.

Volume of Solid of Revolution.

Art. 68. Let the arc LN revolve about the #-axis,

(Fig. 25) to find the volume whose surface is generated by

M

Fig. 25.

MN = As
t
a portion of LN. This volume plainly lies

between the volumes generated by the rectangles TNRQ
and MPRQ. Since these will be cylinders, calling the

volume generated by MNRQ (MN, the chord), AV, we

have,

it (y + Ay) 2Ax > AV> ny2Ax

[x = OQ, y = MQ, Ax = QR, Ay = NP].
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Dividing by Ax,

n(y + Ay) 2 > ^ > ny\
Ax

As the arc is taken shorter and shorter, N approaching

M, R approaches Q, and NR approaches the value MQ;
that is,

y + Ay approaches y.

But—— always lies between n(y + Ay) 2 and ny2
, hence

Ax
it cannot pass ny2

, but if n(y + Ay) 2
reaches the value

of ny2
, it

by the arc).

of ny2
, it must also reach it, becoming —- (generated

ax

dV 2

Tx=
ny '

To Find the Surface Generated.

Art. 69. The surface generated by chord MN will be

that of a cone-frustrum, hence calling it AS (Fig. 25),

AS = tt(2 y + Ay) MN.

As the arc is taken indefinitely small, N approaching M,
the chord MN approaches its arc ds, and hence AS
approaches dS, the surface generated by the arc, as Ax
approaches dx, hence finally (dividing through by Ax),

— = 2 ny— [since Ay = o as N approaches M].
dx dx

£=\M£)'
dS— = 2 ny
dx V- + O'



CHAPTER X.

DIRECTION OF BENDING AND CURVATURE.

Art. 70. A curve is said to be concave upward, at a given

point, when immediately before and after this point it lies

above the tangent line at that point.

It is concave downward when it lies below the tangent

line.

If the curvature changes concavity at a point, that point

is called a point of inflection.

In Fig. 26 the curve is concave downward at A, concave

Fig. 26.

upward at B, and has a point of inflection at C. It is

evident that at a point of inflection the tangent line crosses

the curve.

It is clear also that the conditions for downward con-

cavity are the same as for a maximum, and for upward

concavity are the same as for a minimum.

Since the second derivative is negative for a maximum
and positive for a minimum, at a point of inflexion where

294
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the curve changes from one to the other, the second deriva-

tive must change from positive to negative or vice versa,

that is, it must pass through zero (or infinity), hence solv-

ing the equation,

fix) = o,

gives the point (or points) of inflection if such exist. If

fix) = o changes sign for this value (or these values),

there is a point of inflexion.

8 a3
Example : Examine y = —

2
for inflexion.

/(*) =

/'(*) = -

ocr + 4 a'

8 a3

x2 + 4 a2

i6a3x

(x
2 + 4 a2

Y

i» {v \ _ i6as
(sx

2 - 4 a2
) .

; {X) ~
(x

2 + 4 a2

f >

when m - l6

f 2

(3/- ^^o.
(x

2 + 4 a2

)
3

,
2 a

Substitute in fix), x= —-= + h and x= 2JL _ fo

V3 V3

successively, where h is as small as we please.

Then j"{x)

i6a3 La2 + 4jt + h2 -4a2
\

3 V3
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14 ah

w3

l6a»(±^+hA

and f'(x) =

/4al + Aa| +A2 + 4a2y
V 3 V3 /

V 3 V3 /

Since h is so small, the denominator is positive in both

cases, but for the same reason —-= > h2
, hence the second

value of f"{x) is negative and the first positive, and hence

x = —— \y = — is a point of inflection, as is also

V3 L 2 J

—,—
), by the same proof.

V 3 2 /

CURVATURE.

Art. 71. If two curves have the same tangent at a

point of intersection they are said to have contact of the

-first order: that is, if y = f(x) and y = F(x) are the equa-

tions of the curves, then for a point of intersection the

equations are simultaneous and we may combine them

any way we please to find p, and

f(P)=F(p) (1)

Also their tangents being the same,

np) = f'(p).

[The values of }'{x) and F' (x) when x = p] . . . (2)

So these are the conditions for contact of the first order.

If in addition f(p) = F»(p),

they are said to have contact of the second order, and so on.
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In general, a straight line has only contact of the first

order with a curve, because the two equations above (1)

and (2) (one function representing the straight line, the

other the curve), are just sufficient to determine the two

arbitrary constants for the equation of a straight line, since

two simultaneous equations furnish only enough conditions

to determine two unknowns.

Likewise a circle requiring three conditions may have

contact of the second order, for three equations will then

be required, namely:

KP) = F(#),

l'(p) = ¥'(p),

np) = p'(p).

Total Curvature.

Art. 72. The total curvature of a continuous arc, of

which the bending is in the same direction, is measured by

the angle that the tangent swings through, as the point of

Fig. 27.

tangency moves from one end of the arc to the other; or

what is the same thing it is the difference between the slopes

at these two points. In Fig. 27 the total curvature of the

arc MN is </>' —
<f>
= A<£, say. It is evident from geometry
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that <// —
<f>
= AED. That is, the total curvature is the

angle between the two tangents, measured from the first to

the second, hence it may be either positive or negative,

according to our conventional rule for positive and negative

angle.

The average curvature is the ratio between the total

curvature and the length of the arc, say —~ , where As =
As

the arc length.

Measure of Curvature.

Art 73. Following the principle of minute increments,

the value of the average curvature, as the arc becomes

indefinitely small, is taken as the measure of curvature,

usually designated as k. But as As becomes indefinitely

small, Acf> likewise becomes indefinitely small, and even-

tually
A0
As

Since

Also

But

becomes -*- in our notation; that is,'

ds

dcf)

ds

tan d> = -f- t

dx

&y

dx y \dx

)

v Ktj

ds

d$

dx

ds_

dx

d2

y

dx2

[• + ©':
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RADIUS OF CURVATURE.

Art. 74. The circle tangent to a curve (or having con-

tact of the second order) at a given point and having the

same curvature as the curve at that point is called the

circle of curvature for the curve at that point. In a circular

arc, the angle made with each other by the tangents at the

extremity of the arc is the same as the angle between the

radii to these extremities, since a radius is _L to a tangent at

the point of tangency, and a central angle equals (in radians)

arc divided by the radius. But the angle between the

tangents is the total curvature, A<£.

dividing

A<£ = ai
;

c = —s— (calling r the radius),
radius r

by As,

M_ = L.
As r

'

ince r is a constant,

d<j> 1 1 [ + ©1
*

— k — — or y -— — —
as y k d2

y

dx2

Since a circle can always be found of such radius that it

will have the exact curvature of any curve at a given point,

the r as found above is called the radius of curvature of a

• • dv d v
given curve at any point for which — and —«£- are deter-

dx dx2

mined.

The radius of curvature is understood to be positive or

negative according as the direction of bending is positive

d?v
or negative; that is, according as —-j is positive or negative.

axr
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EVOLUTE AND INVOLUTE.

Art. 75. As every point on a curve in general has a

different centre of curvature, that is, the centre of its curva-

ture circle is different, these centres describe a locus as

the point on which the curve moves along. This locus is

called the evolute of the curve. It will be seen later on that

this name is peculiarly appropriate.

The curve itself is called the involute of its evolute.

Involute arcs are used extensively in modern gears,

where the evolute is usually a circle.

Art. 76. To find the equation of the evolute, let the

curve equation be y = }{x) (1)

The equation to a circle is,

(x - hf + (y - kf = r
2

. . . . (2)

If this be the curvature circle at the point (x, y) on

J = Kx )> tnen ^e x and y in (2) have the same value as

in (1) for that point, by definition of circle of curvature.

Taking derivative of (2) twice with respect to x,

(x - h) + (y - k) £ = o . . . . (3)

< +
(£)

!

+ <*-*>-&=
° • • w

Eliminating y between (3) and (4),

dx\_ \dxl J , dxj \dx) Jx — h = — r-^—^-J
, or h = x-

d2

y
'

cPy

dx2 dx2

(Si)

+

(

dx2 dx2

y- k =- -j^' ork=y+ Jy' c&)
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r =
d2

y

dx2

301

(6)

If no particular point on the curve be taken (5J, (53 )

and y = f{x) will, by combination, give the equation of

dy , tf<

dx

y -/(*).

Example : Find the evolute of the hyperbola ay =

the evolute of y = /(#), ~ and -^- being found from

c
2

y = -r • • • 'to fr = /(*)!
a

Here

whence

and

Substituting in (5J and (52 ),

dy c_

dx x

d?y _ 2 c*

dx2 x3

x — h =

c
2

\
j*l

^"L x2
I _ c* + a*

^2
"

2 a32^
a3

*+4
*=—^_

2£
X3

c
4 + X4

From (2), /* =
ci + *4

+ x= ^+3**
2 X3

2 X3

to

(3)

(4)

From (3), & = c
'

x
. + 3, (orsince^= — from (1))

2 c
2x x

= c*+ x*

±. <L- 3c* + x4

X (5)
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Adding and subtracting successively (4) and (5),

h+ k= c* + 3 c
"x2 + 3^ + *°

= (
g2 + ^2

)

3

2 c
2
x* 2 c

2
x*

h ~~ k = TT~ •

2 c
lxi

Extracting cube root and then squaring,

Subtract;

(h + kf - (h - k)

(h + tf-
(c

2 +x2
)

2

x2 (2c2y
'

<*- k)
% = (c

2 - x2

)

2

X2 {2C2f

. (h . h\% -
4 c

2x2
Ac'

x2 (2c2
y (2 c

2
)

2 (2 C
2
)

(2 ,7

The equation to the evolute is then,

§
= 2(2C2

r = (16 C
2Y= (4 C)l

(2 o

where h and £ are the general co-ordinates, like x and y

in the usual form.

PROPERTIES OF THE EVOLUTE.

Art. 77. An important relation between evolute and

involute is the following: The difference between any two

radii of curvature equals the length of the arc of the evolute

between the two centres of curvature from which they are

drawn. This important fact is proved thus:

Let (V, y
f

) be any point on the curve y = (fx); R, the

radius of curvature for this point; (h, k), the correspond-

ing centre of curvature, and a the angle R makes with the
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rt-axis. Then the equation of R, passing through (V, y')

and making angle a with the Y-axis, is

y — y
f = tan a (x — x') (1)

But R also passes through (h, k), hence (h, k) must sat-

isfy (1).

.-. (k - /) = tana (h - x')
y

k —V
whence *- = tan a.

h —x'

Squaring and adding 1 to both sides,

'- a 2—L- = 1 + tan2 a= sec2 a . (2)
(Ji — x') 2

But since R extends from (h, k) to (V, y') its length is

given by Analytics as,

(*.- x') 2 + (k- yy= r2
.

Substituting in (2), inverting both sides and extracting

square root,

h-x'
R

cos a.

whence h — x' = R cos a, or h = x' + R cos a ) , *

and & — 3/ = R sin a, or k = / + R sin a )

Differentiating (3), [x', y', R and a are all functions of x'\

dh = dxf + cos a dR — R sin a da ) , ,

,

dk = dy' + sin a dR + R cos a da )

d%
By Art. 67 — = cos cf> or dx = cos ^ds

and — = sin <j) or dy = sin ds
ds

(4)

Since the tangent to y = j(x) is also tangent to the cur-

vature circle at (V, y
f

), R is J_ to this tangent, hence

a = 90 + </>, whence cos cf>
— sin a and sin <j> = — cos a.
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Also da = dcf>.

dx' = sin a ds.

Substituting in (4), dyf = — cos a ds.

By Art. 74
d<l> _ 1 _ K
ds R '

or since dcj) = da,

da

and (4) finally becomes,

— = -
; that is, ds = Rda.

ds R'

dx' — R sin a da,

dy' = — R cos a da.

Substituting these values in (3d),

all — RTsimx^ + cos a dR — RTsm^t^a = cos a Rd.

dk = — Rco^ek(fa + sin a dR + Rcos^Ja: = sin a dR.

Squaring and adding,

~dh
2
+~dk

2 = (cos 2 a+sin 2 a)5R 2 = dR 2

[since cos 2 a + sin 2 a = 1].

But (h, k) being a point on the evolute, letting 5 be the

length of an arc from this point,

JL = yj 1 + (J^V oil? =~dh
2 + dk 2

. (By Art. 67.)

.*. J?"= dR2
, or (fa = ± </R,

which means that R either increases or decreases, but in

either case changes just as fast as s.

It follows from this, that the end of a stretched string

unwinding from the evolute will describe its involute, or a

straight line rolling on the evolute as a tangent, any point

on it describes an involute. This latter method is used

by draftsmen to draw gear teeth.
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ENVELOPES.

Art. 78. The equations of curves, in general, contain

one or more constants, and when these constants vary the

result is a family of curves, having the same generic quali-

ties, but differing in the constant. For example, in the

equation to a straight line,

y = mx + b.

If m varies, the result is a set of straight lines passing

through the same point, (0, b), and making different angles

with the .v-axis. Again in the ellipse equation,

<z
2
+

*» '

if a and b both vary, but always obeying the condition,

a2 — b
2 = c

2
[c

2 being a constant],

the result is a family of ellipses with the same foci but

different axes.

. The locus of the intersections of consecutive curves of a

family, as the points of intersection approach coincidence,

that is, when the constant (or constants) changes by infini-

tesmial increments, is called the envelope of this family.

TO FIND THE EQUATION OF AN ENVELOPE.

Art. 79. Let / (x, y, m) = p, be the equation of a

curve, m being originally a constant. Then

/ (x, y, m + Am) = o

will represent the curve immediately adjacent to

/ (x, y, m) = o,

Aw being indefinitely small, when m is allowed to vary.
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From / (x, y, w) = o (i)

and / (x, y, m + Aw) = o .... (2)

we get by subtracting and dividing by Aw,

/ (x, y,m + Aw) -
/ (x, y, m) = p ^ ^w

But by Art. 62 (3) may be represented by

3/ (X y, m)

hence

as Aw = o,
w

or more simply,

df(x,y,m )

dm

¥=°dm (4)

By definition of envelope (4) represents a point on the

envelope, since it is the intersection of two consecutive

curves j(x, y, w) = o and f(x, y, w + Am)* o, as they

approach coincidence, for in (3) these equations were

combined. If now w be eliminated between (4) and (1),

we get an equation free from the variable m, but deter-

mined by the condition (4), which gives a point in the

envelope, hence the result is the equation for this envelope.

The varying constant is called the variable parameter.

Example : Find the envelope of the straight line system

y = mx + b where b is determined by the relation

b = — (p being a constant),
w

Hence y = mx + -2—
; y — mx — — = o;

(y—mx -)
m), of \ m . p

whence —L = — = — x + -^ = o,

dm dm m*
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combining, y = mx -\—— ...... (1

)

m

and — x + -£- = o (2)
m2

To eliminate m, we get from (2),

m2 = £ . (3)
x

i>
2

squaring (1), v2 = m2x2 + 2 px + -*--
. . . (4)

m
substituting value of m2 from (3) and (4),

y
2 = px -{- 2 px + px = 4 px,

which shows that the envelope is a parabola.

Art. 80. It follows readily from the fact that the

evolute of a curve is the locus of its centres of curvature,

and that the radii are all normals to the curve (being _L

to the tangents of each point), that the envelope of the nor-

mals to any curve is its evolute, since these normals (the

radii) always pass through the centres of curvature, which

all lie on the evolute.

EXERCISE XIII.

1. Find the points of inflection of the curve

64

x2 + 16

2. Find the equation of the line through the points of

inflection of the curve y (x2 + 4) = x.

3. Find the radius of curvature of the parabola x2 = 8 y
at the origin.

4. Find the radius of curvature of

y .2

y
2 = —: at x = a.

2 a — x
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5. Find the radius of curvature of the hyperbola

4 x2 — 16 y
2 = 64.

6. Find the radius of curvature of the hypocycloid

xi + yi = ai

7. Find the evolute of the parabola y
2 = 2 px.

8. Find the evolute of the hyperbola xy = c
2

.

9. Find the co-ordinates of the centre of curvature of

4 x
2 + gy

2 = 36 at (Vs, *)

10. Find the co-ordinates of the centre of curvature of

y
2 = 9* at (3, 3).

1 1

.

Find the points on the ellipse a 2

y
2

-f b
2x2 = a2

6
2

,

where the curvature is a maximum and a minimum respec-

tively.

12. Find the radius of curvature of the cycloid,

x = r vers
-1 - — \/2 rJ ~ J

2
at the point whose ordinate

r

is 2 r.

13. Find the evolute of the circle, x2 + y
2 = r

2
.

14. Find the envelope of x cos 3^6 + y sin 3^ =

a (cos 20)
2

,
being the variable parameter.

15. Find the envelope of a straight line in the first quad-

rant which terminates in the co-ordinate axes, and makes a

constant area with the axes.

16. Find the envelope of a variable ellipse with constant

area, n ab.

17. Find the envelope of y
2 = m(x — m) where m is

the variable parameter.



CHAPTER XI.

INTEGRATION AS A SUMMATION.

Art. 8i. Integration has been considered, heretofore,

merely as the reverse of differentiation. We will now

consider its real and much more important meaning.

Let <j>(x) be such a function of x that its first deriva-

tive will be a given function, /(x); that is, denoting the

first derivative by an accent,

tf \ JLtf \ 4>(X + A#) — <1>(X) A
/(x) = 9 (x) = -^ -z-

—

yv ' as Ax =o,
ax

whence <f)(x + ax) — <j>(x) = /(x) Ax . . . (m)

In the language of integrals we may write,

// (x) dx — <f>(x).

Suppose in <fi(x), x to start with a value h and change to

a value k, <f>(x) would change from <j>(h) to </>(k), the

difference would be expressed by,

Suppose again that instead of one jump from h to k,

x changes by minute increments, say making n successive

changes of Ax each, then the successive steps would be,

4>(h + Ax) - <j, (h) = / (/z)Ax {by (m)]

cj)(h + 2 Ax) - <j>(h + Ax) = f(h + Ax)Ax

<f>(h + 3 Ax) - <f>(h + 2 Ax) = /(A + 2 Ax)

Ax
${h+ n Ax)-0(/*+(rc-i)Ax) = f(h+(n-i ) Ax)Ax

309
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adding

<f>(h + nAx) - <j>(h) = f(h)Ax + }{h + \x)\x +
jQi + 2 Ax)A* + /(ft + wAx)Ax;

or since h + wAx = k, by our hypothesis <f>(k) — <f>(h)

= J(h)Ax + }(h+Ax)Ax + f(h +2 Ax) Ax + +.

The left hand side of this equation may evidently be

gotten by integrating f(x)dx, and then taking the difference

between the values of this integral when x = k and when

x = h, for by hypothesis
J
f(x)dx = <j>(x).

This is usually written

l

/(x)dx= <j>(k) - <f>(h)

'h

and is known as a definite integral as was shown in a spe-

cific case under Art. 43.

The right hand member is plainly a sum qf n terms, as

x = o and hence as n = 00
, for there cannot be an infi-

nitely small increment unless there is an infinite number of

terms.

For brevity such a sum may be indicated thus:

'V f(x) Ax
[

^v being the symbol for summation] .

When Ax = o, this is modified to

f(x)dx,
'h

which brings us back to our integral symbol, for we have

found that this sum is actually equal to the definite integral

of j(x)dx (namely, <j>(k) — <f>(h)) f
hence definite integra-

tion is a summation.

Art. 82. Let us see what is the further significance of

this series whose sum we have been finding.

X
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Let liv (Fig. 28) be any curve whose equation is y = /(x).

Divide the x-axis from the point A to P into n equal parts,

A D G L P Q

Fig. 28.

calling OA, h, and OP, k, and the equal distances AD,
DG, etc., each Ax.

Then AB = /(/*)

DE= f(h+ Ax)

GH =/(/* + 2 Ax)

KP=f(h + nAx).

Form rectangles by drawing parallels to the x-axis from

B, E, H, etc.

The sum of these rectangles will be less than the area,

ABRP, but can be made to approach it as nearly as we

please by taking Ax indefinitely small, and hence n indefi-

nitely large.

The area of BCDA = f(h) Ax
" " EFGD = f(h + Ax) Ax
" " HKLG = f(h+ 2 Ax) Ax

" " RTQP = f(h + nAx) Ax.

Adding; Sum of the rectangles = f(h) Ax + f(h + Ax)Ax

+ j{h + 2 Ax) Ax + j{k) Ax [since h + n Ax = k\

As x = o this sum approaches ABRP, hence finally,

.ABRP = j(h) dx + f(h + dx) dx + + + . . f(k) dx. But
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the right Hand side is the same as obtained in the last article

and shown equal to I f(x)dx, hence

areaABRP= fk
}(x)dx.

The area would, be given as well by solving the equation

for x, say x = F (y) and integrating / F(y)dy, since the

rectangles could as easily be formed with respect to the

;y-axis and summed.

That is, the definite integral of f(x)dx between fixed

limits, where y= f(x) is the equation of the curve, is the

area bounded by the curve, the x-axis, and the two ordinates

corresponding respectively to these limits, which are the

abscissas in this case.

Example : Find the area of the parabola y
2 = 8 x,

between the origin and the point (2, 4). Here the limits

are o and 4, the two bounding ordinates, and we have,

rvYxdx^vi f
2

x*dx= § v? rT( 2 )§-o§]=-.
Jo Jo Jo [_ J 3

Corollary : Clearly if we reverse the limits we get the

same absolute result, but with contrary sign, that is,

f
k

f(x)dx = - f } (x) dx.
Jh Jk

It is also evident that we can take the area from y = h

to y = jj (being between h and k) and then the area from

y=jtoy=k, and if the curve be continuous, the sum

of these results will be the same as if we went directly from

h to k. That is,

f
k

f(x)dx= f
J
f(x)dx+ f

L

f(x)dx.
J h J h JJ
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Thus a definite integral may be readily expressed as the

sum of any number of definite integrals, if the difference

between their limits taken together equals the difference

between the original limits.

It must be carefully observed that f (x)dx does not

become infinite between the limits. When that occurs the

integral must be broken up into parts leading up to the gap

on either side.

Art. 83. Remembering that definite integration is a

summation between the limits, if the expression for the

length of an arc

=\M:-i^dx,
which represents any infinitesimal arc whatever of the

curve, y=f(x), be integrated betwreen the limits repre-

senting the co-ordinates of its extremities, the result will

be the sum of all the infinitesimal arcs making up the

total arc and hence the length of this arc, that is,

s being the arc from abscissa h to abscissa k.

Example : Find the circumference of the circle,

x2 + y
2 = r

2
.

Taking derivative; — = —
dx \/ r

2 - x2

~+r dxwhence s = 2 I ( 1 + ———-
j dx = 2 r I

J-r V r
2 -x2

} J_ r Vr2 -x2

= 2r
[
Sin

'1

-r]Z
=2r

[

E
2 -{-f)] =27:r-
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It is to be observed that the limits — r and r, which are

the extreme values of x, give the length of the semi-circum-

ference only, and hence the factor 2 above.

SURFACE OF REVOLUTION.

Art. 84. It has been shown (Art 69) that the surface

of revolution for a variable point, (x, y) on an arc, is given

by the formula,

*-»

V

i+ ®'*
where the revolving arc is indefinitely small.

By the same reasoning as before, the surface generated

by an arc of any length will be then,

s=2*IV i+
(S)^

where h and k represent the abscissas respectively, of the

two ends of the arc.

SOLID OF REVOLUTION.

Art. 85. In exactly the same way, using the expres-

sion found in Art. 68 for solid of revolution,

dv = ny2 dx,

which represents an infinitely thin strip,

v= n I y
2 dx,

gives us the volume between the limits h and k.

Art. 86. Clearly we are at liberty to divide a given

area into strips as we please and to apply the same reason-

ing to their summation, so that any one of the above for-
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mulae may be expressed in terms of y, if the limits be

determined according to y. For example, we may write,

for the length of the arc, if a and b are ^-limits, etc.

EXERCISE XIV.

1. Find the length of an arc of the cissoid y
2 =

2 a — x
from x = o to x' = a.

2. Find the total length of the cycloid

x = r vers-1 - — V2 ry — y
2

.

r

3. Find the length of the hypocycloid x3 + y
3 = r.

9 / x x \

4. Find the length of the catenary y = - ( e~ + e ~a)

from the origin to the point whose abscissa is b.

5. Find the length of ay2 =x3 from (o, o) to (3 a, 3V3 a).

6. Find the circumference of the circle,

(*- 2)
2 + (y+ i)

2 = 16.

7. Find the length of y = log x from x = 1 to x = 4.

8. Find the area of the ellipse.

9. Find the area of the circle in Ex. 6.

10. Find the area of the parabola y
2 = 8 x, between

the origin and the double ordinate corresponding to x = 2.

n. Find the area of the hypocycloid.

12. Find the area of the circle x2 + y
2 + 2 rx = o.

8 a3

13. Find the area bounded by y
2 = — -, the ordi-

x2 + 4 a2

nate a, and the axes.
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14. Find the area bounded by the axes and the line

a

15. Find the area between the #-axis and one loop of

the sine curve y = sin x.

Find the surface generated by revolving about the x-axis

the following curves:

16. The parabola y
2 = 2 px from x = o to x = p.

"17. The circle (x — 3)
2 + (y — a)

2 = 2 5 above the

#-axis.

18. The ellipse 9 x
2 + 16 y

2 = 144.

19. The line - -+- 2. = 1 between the axes.
a ^

20. The catenary from x = o to x = a.

21. Find the surfaces generated by revolving about the

;y-axis in Examples 16, 18, and 20.

Find the volumes generated by revolving the following

curves about the #-axis:

22. The ellipse— + ^— = 1.

a2 b
2

23. The circle x2 + y
2 = r

2
.

24. The hypocycloid.

25. The witch y =
x2 + 4 a2

26. The line—f- - = 1 between the axes.
a b

27. Find the volume generated about the v-axis by the

ellipse.

MISCELLANEOUS APPLICATION.

Art. 87. Since our determination of volume depends

on our ability to divide our solid into sections, whose areas
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can be generally expressed, and then summed, any solid

for which this is possible may be estimated.

For example, let it be required to find the volume de-

scribed by a rectangle moving from a fixed point, its plane

remaining parallel to its first position, one side varying as

its distance from this point, the other side, as the square of

this distance, the rectangle becoming a square 5' on the

side, at a distance of 4/ from the point.

Take the line _L to the plane of the rectangle through its

middle as the x-axis. Let v be one side and w the other,

then by conditions,, x being its distance from the point

taken as origin at any time,

v : x : : 5 : 4, whence v = ^—
,

4

c xw : x2
: : 5 : 16, whence w = -—

.

16

Hence the area of the rectangle at the distance x (being any

point between o and 4) is,

2< x3

VW = —J .

64

This area representing any section of the solid, if mul-

tiplied by dx, thus forming an infinitesimal slice, and

summed between o and 4, will evidently give the total

volume; hence volume =|| I Xs dx= -£$% [x4
]

4 = 25 cubic
1/0 °

feet.

Again : To find the part of the contents of a cylindrical

bucket of oil remaining in it, after the oil has been poured

out, until half the bottom is exposed (see Figure 29).

Let EGH be any section of the remaining contents,

taken parallel to the axes. Take the origin at the centre

of the base and the co-ordinate axes as the axis of the

cylinder and a diameter of the base.
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Then since EGH and DOC are similar,

GH = VBG X GA = Vr2 - x2 [where OG is *],

and EH : CD : : GH : OC,

or EH = h vV2 - x2

[where h = altitude and r = radius of base].

Hence area EGH = 4 EH X GH = h
h ^ ~ x^

r

hif - x2
) dx _ 2_hr2

r 32 J-r
= contents remaining.

EXERCISE XV.

MISCELLANEOUS PROBLEMS.

1. Find the volume generated by an isosceles triangle of

altitude, h, moving with its plane always perpendicular to

the plane of a circle of radius, r, and having always the

ordinates of the circle for bases.

2. What is the volume generated when the circle in

Ex. 3, is replaced by an ellipse whose axes are 2 a, and 2 b?

3. Through the diameter of the upper base of a right
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cylinder, whose altitude is h and radius, r, two planes are

passed, touching the base at the two extremities of a diam-

eter. Find the portion of the cylinder between the planes.

4. Two right cylinders each of radius 3 in., intersect each

other at right angles, their axes intersecting. Find com-

mon volume.

5. Find the volume of a pyramid whose altitude is h

and area of base B.

6. Find volume of a curve whose height is h and radius r.

7. In cutting a notch in a log, the sloping face of the

notch makes an angle of 45 with the horizontal face. The

log is 3 ft. in diameter; how much wood is cut out?

8. A right circular cone has a small circle of a sphere of

radius 6 in. as base, and its vertex is at the surface. If the

vertex angle of the cone is 30 , what is the volume of the

sphere outside the cone?

9. A square hole is cut through the axis of a grindstone

for a bearing. The grindstone is 18 in. in diameter, 2 in.

thick at the circumference, and 4 in. at the centre, and has

conical faces. If the hole is 3 in. square, how much material

is removed?



CHAPTER XII.

INTEGRATION BY PARTS.

Art. 8>8>. It is frequently a great aid in integration to

separate the parts of an expression containing two factors,

thus producing either a re-arrangement or a change in

form of the integral.

This is readily accomplished by using the formula for

differentiating the product of two factors,

d(uv) = udv + vdu.

Transposing, udv = d(uv) — vdu.

Taking the integral of both sides,

• • • (B)/ udv = uv — 1 vdi

Example

:

l x2 cos x dx = what ?

Let x2 = u and cos x dx = dv

then du = 2 x dx and v = sin x.

Substituting in the formula (B),

I udv = j x
2 cos x dx = x2 sin x — 2 j x sin x dx.

Where the x2 cos x dx is now made to depend upon the

integration of x sin x dx, in which the exponent of x is one

less than in the original expression. If we treat this inte-

gral the same way, using (B) again, letting x = u, du will

320
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equal d(x) = dx, which eliminates x from the final inte-

gral; then

2 / x sin x dx = — 2 x cos x +

2 1 cos x dx = — 2 x cos x + 2 sin c

by putting x = u and sin x dx = dv,

whence dx = dw, — cos x = v.

.". 1 x2 cos # dx = x2
sin # — 2 1 # sin x dx = x2

sin x—

[— 2 x cos jc + 2 sin x] = x2
sin x + 2 # cos x — 2 sin x.

In using the formula (B) no general rule of application

can be given for choosing the value for u and for dv, except

that they should be so chosen that one factor may be made

to disappear eventually or to take such a value that in

combination with the other, it may form an integrable

part of the original expression. For example, in the

expression

x2 tan
_1x dx,/•

dv can only equal x2dx since x2dx is the only integrable

part; tan
-1 x dx having no known simple integral, then

u = tan
-1

x, dv = x2dx,

j dx x3

du — , v = —
3

x3 tan"
and udv = x2 tan * x dx =

3

-
\ iffy* t£? = * ~ i"T72

[dividing * by x2 + ll
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. i C tf
3 dx i P , i P2 x dx

. . — I = — I xa^c — — I

3Ji + ^2
3 J 6ji + x2

= •7- -^-log(i + x2
).

6 6

^X/ teLIl .X OC
2

T
Hence x2 tan

-1 x dx = 1 log (1 + x2
).

3 6 6

EXERCISE XVI.

Integrate by parts:

1. Ixsm2xdx. 9. / cot
-1 x dx.

2. / ex cos x dx. 10. / xn log * dx.

3. / ex sin x dx. 11. / ze
az
dz.

4. jxsec2xdx. 12. I y tan2 ydy.

k. I at sin x dx. 1 o- I / ax -

D
J J V x + 2

6. / x tan
_1x d#. 14. /

°^ u u
n

.

7- fx
2 cot^xdx. I5 J

(\ogx)dx
^

. I log sin x esc x cot x dx. 16. jx2 cos~1 xdx.

INTEGRATION BY SUBSTITUTION.

Art. 89. An expression may often be simplified by

substituting another variable for a part of the expression

to be integrated. No general rule can be given, it being

largely a matter for the exercise of originality.
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An example or two may aid:

* = what ?

xVx2 - a2

Let x = —

,

y

then dx — % •

Substituting,

_ ^Z

/
dx r y

2 C dy

xVx2 -a2= J i_ /i_ _ ^2

=
" JVi-fl2 /

1 r ady 1 -1 / \= I — y = — cos * (a)/)

a J V 1 - a2 y2 a
y

1 _, a 1 *x= — cos *— = — sec * —
a x a a

what ?Again; /— —

-

J 3 xr — 2 x +

/
dx f*

3 dx

3

x

2 — 2X+| J gx2 — 6^+5
[multiplying and dividing by 3].

Let (3 x — 1 ) = y, then dy = 3^ and

r—^— = r_^L = l tan-i z
j 3 x2 - 2 ^ + 1 j r + 4 2 2

1 . _i 3 x — 1= - tan 1 * .

2 2

The suggestion (3 x — 1 ) = y comes from the fact that

9 x2 — 6 x + 5 can be put in the form,

9 x
2 -6x+i + 4= (3 # — 1 )

2 + 4j
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and the formula

= — tan
-1— is immediately suggested.

a2 + x2 a a

Art. 90. Expressions containing the form \/x2+ax+b
can usually be integrated by making the substitution,

\/x2 + ax + b= y — x.

Example

:

j

dx
p

Vx2 + x -

Let \/x2 + x — 2 = y — x.

x2 + x — 2 = y
2 — 2 yx + x2

;

whence x = -*- .

1 + 23/

dx
2 y + 4f- 2f-4d = 2(f + y -2)

(i + zy) 2
(i + 2>;)

2 7

v2
"4~ 2 *

#2 + # — 2 = 3/ — # = y — -^

1 + 2 y

_ y + 2 y
2 — y

2 — 2 _ y
2 + y — 2

J V X2 + X- 2 J 1

1 + 2y 1 + 2y

V y — 1

+ 2y)'

y
2 + y- 2

dy

Vx2 + x - 2 J y
2 + y - 2

1 + 2y

y = log (1 + 2y)
1 + 2 y/;

= log (i + 2 X + 2VV2 + # — 2) .

Art. 91. Expressions containing the form \/—x2+ ax -\-b,

where — x2 + ax + b can be resolved into two first degree

factors, can be integrated by making the substitution,

V— x2 + ax + b = \/(m — x) (n — x) = (m — x)y
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or (n — x)y, where {m — x)

and {n — x) are the factors of — x2 + ax + b

xdx
Example

:

I

J
= ?

V 2 + 2 X —

V^2 + 3 X — 2 X2 = V(l + 2 #) (2 — X) = (2 — #))>,

whence x = 2y ~ I
, dx = IQ ^

-f- , etc.
2 + y

2
(2 + ;y

2
)
2

EXERCISE XVII.

Integrate by substitution:

/x dx— [substitute z
3 for x].

x* + 1

[substitute z
6 for #].2

c^_
J xi + x%

J X1 - a;
1

x — Xs

5. f ^ dy
[substitute Vy2 + 1 = z].

J vy + 1

- [substitute a2 — x2 = z
3
].

(a
2 - x2 )*

R
C__^_x_dx__
J \ — x — 2 X2

9 . r *_ .

J ZVz2 - 2

o. C^Ay-y2

dy.
J yl
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ii.

12.

13-

14-

*5

fJ xV^x2 + 4X — i/x dx

Elementary Calculus,

dx

V2 + 5x

/
x2 dx

(x- i) 4

J xVx4 + X2 + I

/ x dx

(i_- x) 3 *

•^ Vx — I

f
ar* ifr

*/ \A ax — x2

substitute x = — •

[substitute x — 1 = z\.

[substitute e
z = x].

set x H c=

x

REDUCTION FORMULAE.

Art. 92. Integrals of the general form

Txm (a + bxn^ dx

are exceedingly common, as

/x2\/a2 — x2 dx, / , /

J (a2 - x2Y J
dx

v 2 ax — x2

etc.

Take for example,

/
x3 dx

(a
2 - x2

f
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/x3 dx
5 , can

(a
2 — x2

y/x dx
-, the expression is

(a
2 - x2

y
integrable, for the latter integral is in the form xndx or

can be readily reduced to it by inserting the factor 2.

dx
Again / —

J (a(a2 - x2
f

can be found if it can be made to

depend upon I = sin — .

J (a 2 -x2)^ a

In the former case the exponent of x (when the expres-

sion is in the form
f*.

(. +W*)is to be decreased,

and in the latter the exponent of the parenthesis is to be

decreased.

If then a general method can be devised for expressing

/ xm (a + bxnY dx in terms of other integrals where

m or p (or both) is increased or decreased as the case may
require, many of these forms can be integrated.

The process in one case will suffice to show how these

formulae, four in number, known as reduction formula,

are found. The formula for integration by parts is used,

as it is necessary to break up the original expression.

In I xm (a+ boc"Y dx, then,

let u = xm-n+l and dv = (a + bxn
)
p xn~x dx [xmdx

= (xm
-n+1 )(xn

-1dx)]

Substituting in I udv = uv — I vdu ..... (B)

/ nb(p+ 1)
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m ~ n + *
fxm~n (a + bxnY+1 dx . . . (1)

nb(p+ 1) J

Since du = (m - n + 1) #m-n^ and v = K ^ -1 •

nb(p+ 1)

But I xm-n (a+bxn
)
p+1dx=

f
xm~n (a+bxn

)
(a+bxnYdx

[since z
p+1 = 2.zp]

= a rxm~n (a + bxn
)
p dx + b

J
xm (a + £wn )

p dx

[multiplying out].

Substituting in (1) above,

fxm (a + bxnYdx = —~"+1
(a+ bxnY+1

_
J ' nb(p+ 1)

'("-"+ 1
) f*— (a + ft*"/,** _

nb (p + 1) J
b(m-n+i) r

xm(a+ bxnydx ( 2 )
nb (/> + 1) J

Transposing the last term of (2) and collecting,

bjnp±jn±_ll r
Pdx = x>»-n+Ha+ b*"Y«

nb (p + 1) J »ft (p+ 1)

a (m — n

1) Jnb (p +
bjnp-j- m + 1)

Dividing by »6(*+i) '

/m( .*. n\Pl Xm~n+1 (a+ bxnY+1

xm {a+bxnydx= -

b (np + ni + 1)

a(m-n+ 1) C m_n ^ + bxny dx < _ (A)
b (np + m + i)J

Here xm (a + foc")^ dx is plainly made to depend upon

the integral 1 xm
~n (a + bxn ) dx, which is exactly like

it except that the exponent of x, [m], is reduced by n.
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The other three formulas are as follows:

/

/

/

(B)

xm (a + bx*)?dx=
xm+1 (a + bxn-Z +
np + m + 1

& Cxm (a + bxny-x dx ....
np + m + 1 J

.v
m (a + o„v

n )P ax = L

a (m +1)

- b
(np + 1l + "' + I} f*»+» (« + ^n

)
p <& . (C)

a (;» +1) J

xm ra + oxny dx= - xm+1
(
a + bxn

)
P+1

an(p+ 1)

+ np + m + n+i C n
(fl + bxny+1& . . (D)

aw (/> + 1) J

(A) decreases m by w.

(B ) decreases p by unity.

(C) increases m by ».

(D ) increases p by unity.

In using these formulae, the expression to be integrated

is carefully inspected, and the known integrable form to

which it is to be reduced, is decided upon, then the formula

[(A), (B), (C), or (D)] suited to this reduction is applied.

Clearly these formulae may all be applied to one example

successively, or any one of them may be used any number

of times until the desired form is reached. These for-

mulae fail when the constants have such a value that the

denominators of the fractions reduce to zero. For ex-

ample, in (A) b (np + m + 1) must not reduce to o, etc.

Example: I x2V'a
2 — x2 dx = ?
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Here the form desired is plainly

dx . ! x= sin
-

Va2 - x2 a

To accomplish this, x2 must reduce to x2 = i and (a
2 — x2

)^

must reduce to (a
2 — x2

)*. That is, m must be decreased

by 2 and ^ by i (why can it not be reduced to the form

/xdx—
. To accomplish this, (A) must be used to

Vfl2 — x2

reduce xm to xm~n , and (B) to reduce p to p — i.

Comparing f*^*-**- /*<.._*)»&

with /jcm + bxn
)
p dx

m= 2, n = 2, p — ^, a= a2
, b = — i

using (A) then,

/V(a2 -x2
)* <&= * (a2j *2) * -

-^- f(a2 -*2)*^ ........ (i)

[since xm~n = x2~2= x° — i].

Applying (B) to I (a 2 — x2
)% dx, where m = o, n = 2,

^ = i
}
a = a2

,
5 = — i

21 f( « - *»)-* ,**=
y^2

- **)*
+

2 J 2

a2 C dx x (a2 — x2
)* . a2

. ,x—
/

= —* *~ H sin-1 - •

2 J vV - x2 2 2 a
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Substituting this value of I {a 2—

x

2
)* dx in (1),

J 48
• 1 x

sin -1 - »

a

where / x2 V# 2 — x2 dx is completely integrated. The value

of these formulae lies in the ability to see the integrable

form that lies within the original expression, and to select

the appropriate reduction formula. It is a matter for

observation and ingenuity purely.

Again JV^T^^what?
Here the required form is I

—

- = vers-1 - •

J V 2 ax — x2 a

To put I V'2 ax — x2 dx in the form / xm (a + bxn
)
p dx,

take out x from under the radical, and we have

/ x? (2 a —x)?dx.

This must be reduced to

r dx r dx f _* / n 1 j
I = /

-= —
- = I x~* (2 a — x)-* dx.

J 2 ax — x' J x* (2 a — xy J
Since n = 1, here xm~n = x%~x = x~* the desired form

for x, hence (A) is needed. Also p is to be reduced to

p — 1. [J — 1. = — H hence (B) is also needed. Apply-

ing these successively we get the desired form. Only prac-

tice and experience can give facility in the use of these

formulae, and familiarity with the simpler integral forms

is desirable, that the inspection of the expression to be

integrated should be effective.
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EXERCISE XVIII.

Integrate

:

i. / O2 + 62
)* dx.

7>
A/2 ry - y

2 dy.

2 ax — x£

2. lVr2 — x2 dx. n xdx
J 8. /

3. / x2
(r

2 — x2
)% dx.

<J Cw 2 ax — x2

x2 dx 9 ' J

fv

4- /y/x2 — a

x3

dxa

x\/~i

6
' J (a2 - z

2 )i
* IL JVJ

12. / — [substitute first z = x — il.

J (x2 — 2# + 5)
2

j. T/„ 2 . „2N3 j„ r x? drx

X3

13. J(a
2 +x2)Ux. I7< f-^

^
f (x2 - a2 )i ^ ,

I4J^-^^ l8 . f
^-x'dx

/»
*J x

\/i — 2 z — z
2
dz.

/' xr dx

10.yy + oay.
V^T-^

RATIONAL FRACTIONS.

Art. 93. If the fractions —-— and -— be added
1 — x 2 + 3 x

together, we get,

3 , 5 _ 11 +4 x 11 + 4 x

1 — x 2 + 3X (1 — x) (2 -\- 3 x) 2 + x — 3 X2
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It will be observed that the numerator of the sum gives

no indication of the numerators of the component fractions,

but that the denominator does indicate directly the denomi-

nators of the components. If the denominator is in the

form indicated in the final fraction above, it is easy to

factor it.

So that we may regard every rational fraction whose

denominator is factorable as made up of simpler fractions

having respectively the factors as denominators. If it is

required to integrate, for example,

" + 4X
2
dx,

2 + X — 3 Xz

it is clearly a gain to be able to express this fraction as the

sum (algebraic sum of course is meant) of two or more

simpler fractions; for when we discover that,

11 + 41 _ _j 5—
1 >

2 + x — $ x 1 — x 2 + 3^

we get the integral readily, since

—2

—

dx= —3 log (i — x) and 1
—- =-^log (2+ 3^:).

1 -

x

J 2 + 3 x 3

Since we know that this decomposition is possible, for

every denominator factor we set a fraction with a letter, or

letters, for numerator, which we determine by the principle

of identities.

It is necessary to descriminate between first degree and

second degree factors, as will appear, hence we have four

cases, as follows:

(a) where the factors are linear only, and not repeated.

(b) where the factors are linear and repeated.

(c) where the factors are quadratic and not repeated.

{d) where the factors are quadratic and repeated.
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Case (a).

: in t

component fraction of the form

For every linear factor in the denominator there is a

A
x ± a

}(x)
Suppose the fraction is l\-L

; where F (x) = (x ± a
)

F(x)

(x±b) (x±c) . . . (x± n).

Then

/(*) = A
{

B
|

C
|

N
F(x) (x ± a) (x±b) (x±c)' x±n

The original fraction should be a proper fraction, that is,

the degree of the numerator should be less than that of

the denominator, to avoid complications. If this is not the

case in the given fraction, it can be made so, by dividing

numerator by denominator until the remainder fraction

fulfills this condition. The remainder is, then decom-

posed and the integral quotient added to the result. An
example will make the process plainer:

(x2 — i ) dx

s(x2 - 4) (4*2 - 1)

= ?

(x2 — 4) (4X2 — 1) (x — 2) (x + 2) (2 x — 1) (2 x + 1)

A B C D
~~ X — 2 X + 2 2 X — I 2X+I

It is to be remembered that this is an identity, not a mere

equation, as the two sides must be exactly the same, when

cleared of fractions by our hypothesis, A, B, C and D being

used because we do not immediately know what their

values are.
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Clearing; x2 — 1 = A (# + 2) (2 # — 1) (2^+ i) + B
(x— 2) (2 x— 1) (2 x + 1)+ C (x — 2) (x + 2) (2 x + 1) +
D (# — 2)(# + 2) (2 x — 1). Since this is an identity it is

true for any value of x whatever; hence we can give x such

values that the terms will all disappear but one, and thereby

find the unknown constant it contains. For example, if we

let x = 2, all the terms containing (x — 2) will reduce to o,

hence

2
2 - i = 3 = A (4) (3) (5) + o + o + o = 60 A,

whence A = 2V

Let x = — 2, and all terms containing x + 2 will reduce

to o ; hence (- 2
)

2 - 1 = 3 - o + B (- 4) (- 5) (- 3)

+ o + 0= - 60 B,

whence B = — 2V

Let x = J ; then

(i)
2 - 1 = - I = o + o + C (- i) (|) (2) = - J/C,

whence C = + to*

Let x = — J ; then

-(i)
2-i = -f = o + o + o + D (_ f) (f) (_ 2 )=_¥Dj

whence D = — t
1
q.

rp, C (x
2 — 1) dx _ j_ f* dx _i_ C d&

J (x2 — 4) (4X2 — 1) 20J x — 2 20 J X +

_i_ C_dx_ _ _i f
IO J 2X- I IO J

dx _
2

2 x + 1

= 2V log (x - 2) - ^V log (x + 2) + 2V log (2 x - 1)

- 2V log (2* + 1).

j 1

(x — 2) (2 x — 1) (by the principles of

(x + 2) (2 x + 1) logarithms.)
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Case (b).

In using indeterminate coefficients of any sort, it is a

cardinal principle that every possible case that may arise

must be provided for in the supposition used.

Suppose —-— , ~^—
1 — x (1

-

- X 2 X2 + I j j j
o> and — -are added

- xf dnu
(1 - xf

3 5 - x

1 — x "^
(1 — x) 2

3 x2 + 1 7 — 12 x + x2

(1 — x)3 ~
(1 — x) 3

Here the (1 — x)3 gives no indication directly of the

factor (1 — x) 2
, that has disappeared in it. If (1 — x)3

is

separated into linear factors they would all be alike (1 — x),

(1 — x), (1 — x), and there would be no separation at all,

neither would the fractions having denominators (1 — x) 2

and (1 — x)3 be provided for. That nothing may be

omitted it is necessary then to provide a fraction for each

of these, hence for every factor of the form (x ± a)n a

series of fractions is assumed, thus:

}(x) A B
(x ± a)n ~~ (x ± a)n

+
(x ± a) 71-1

C N
+ (x± a)n

~2 ' '
' (x±a)>

thus accounting for all the powers.

/'%*> r j^2 ^
~ ~=z ?

X5 (x + 1)2

As this is an improper fraction, divide numerator by

denominator,

p
5 -5*2 -3 „ rxdx _ 2 rdx + 3

r^-oc2 -,
J x2 (x + i)

2 - J J
^ 3 Jx2(x+i) 2

x3 - x2 - 1 A ,

'B , C
,

D= ~~„ "i~
1—:—:

tz—

r

x2 {x + I.)
2 X2 x (x + i)

2 X + I
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[Thus accounting for all the powers of x and of (x + 1).]

Clearing;

x3 - x2 - 1 = A (x+ i)
2 + Bx (x+ i)

2 + Cx2 + Dx2 (x+ 1).

Let x = — 1 ; then

(- i)3 - (- i)
2 - 1 = - 3 = o + o + C (- i)

2 + o = C,

C=-3-
Let x = o; then

0-0-1= -i=A(i) 2 + o + o + o=A
A= - 1.

Since no rational value of x will cause the other terms to

disappear, we will give x any small values to get two

simultaneous equations for the two remaining constants,

B and D.

Let x = 1 ; then

i
3 - (i)

2 - 1 = - 1 = A ( 2 )
2 + B (1) ( 2 )

2 + C (i)
2

+ D(l) 2
(2),

or since A = — 1, and C = —
3

-i=- 4 +4B-3 + 2D

whence 2B + D= 3 (1)

Let x = 2 ; whence

3 B + 2D= 4 (2 )

Combining (1) and (2)

B= 2 andD= - 1.

Hence,

/ x3 — x2 — 1 _ Cdx Cdx _ C dx

x2 {x+ i) 2 " J x2
2

J x
3
J (x+1) 2

—— = - + 2 log x H log (x + 1)
X + 1 x X + 1
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= ±x±l + \og^— [collecting].
x(x+i) X + 1

x5 — < x2 — 3 # 2
. 12 a? + 3 . , x2

a = — — 2 x -\ a + 3 log .

X2 (X + i) 2 ^(^+l) #+I

Case (c).

If for a factor of the second degree we set a fraction of

A
the form — -, we overlook the possibility of the

x2 + a x +
Bxform— , since this is also a proper fraction, but

x2 + ax + b

if both are combined in one thus getting the most general

form, all contingencies are provided for. So for factors of

the form x2 + ax + b, we have fractions of the form

Ax + B
x2 + ax+ b

„ }(x) Ax + B . Cx + D .

Hence \\ = -:
7 + — — + . • .

<pl
(x) xl + ax + b xl + cx + a

where
<fi

(x) = (x2 + ax -\- b) (x2 + cx + d) ( . . .)

Example: / dx = ?' J(x+i)(x2 +i)

2 x2 + 1 A , Bap + C J., , v . 1. i

[(# + 1) is linear].
(x+i)(f-fi) # + 1 x2 + 1

Clearing;

2x2 + 1= A(jc2 + 1) + (^+ 1) (Bx+[C) (1)

It is plain that no rational value of x will make x2 + 1

equal to zero, and in general with quadratic factors this

process is useless. Either x can be given any arbitrary

values as in the last case or the following method be fol-
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lowed; a method that is entirely general and can be used

in every case if preferred.

Multiplying out in (1);

2 x2 + 1 = Ax2 + A + Bx2 + Cx + Bx + C.

Collecting;

2x2 + 1= (A + B)x2 + (C + B)x + (A+C).

Since this is an identity, the coefficients of like powers of x

on the two sides are identical; that is,

A + B = 2 coefficients of x2
.

C + B = o since there is no x on the left.

A + C = 1 absolute terms.

Combining these as simultaneous:

B=i A=|, C=-J.

^ r (2x2 + i)dx = 3 r dx
|

1 C x - 1
dx

' J (x + 1 ) ipc
2 + 1 ) 2JX+I 2jX2 +l

dx3 / * dx 1 C xdx _ 1 /*_

J X + I 2 J X2 + I 2J X2 + I

= I log (# + i ) + J log (x2 + 1 — i tan -1 x.

Case (d)

The same reasoning that was used in case (b), will show

that for every factor of the form (x2 + ax + b) n there is a

series of fractions with numerators of the form Ax + B
and denominators successively, (x2 + ax + b) n

,
(x2 + ax

+ b) n-\ (x2 + ax + b) n
~2

. . . O2 + ax + &)•

Example:

x2 -2x+i_A +
B Cx + D Ex + F Gx +H

x 2 (x2 + 2
)

3 x2 x (x2 + 2
)

3 (x2 + 2 )
2 x2 + 2
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EXERCISE XIX.

Separate into rational fractions and integrate:

i- / -= — dx. IO /
x dx j

J X2 + X~6 J (X
2_ 4)(9JC2_ l)

*

3 x2+2X dx.- J'f^'y
_

... ft
3. f 5 x+ x2— dx ^^
J (i- Xf{2-7,xf 12. I —————dx./%) x -\- x 3

dx..
X\l+X2)(l-2X) f

2X2 -X-l
dx

Px* - 2 x + 5 dx J (x2+x+i)(x-i)

JOC2 +2X- 3

X '

C(2X -l)dx
C (x-6)dx J 4- J

'

^3 +I

7

8

9

1

19.

(x — 6) dx

x3 — 6 x2 + 9 x

r (2x-i)dx 15. /4—
J {x^ + xf J (

^_I
/V - 2 + 1 , l6 f (* + 6)<fo

J ( z
2 + 2 )3

2
-

' J 5X-4X2 -

r <**
dx I7

n^ + i)^
J(x-i)0+i) 2

"

'' JxA +x2 +i

f f + 2 y- 2
d

J (y- 1) (;y
3 -;y2 + y- 1)

±4fa

dx_
x3

;
2

(x2 + 1 ) (x
2 — X + I

)

f-

J (*
2 +3)3

21. f —r dx.
ar + X//6 x "I

- 1
dx.

(X+ 2)
3 (X-I)

/Z3 — I

r+ 222
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x3 — x + 1

)(*
2 -2*4

ar — 1

(#
2 + 2)

S

+ I

/X~ -

—z ax.
(*

2 +iw

f ar
5 - 1

215. I aa;
^ J (.T

2 +2) 2

, fa X4 — 2 X3 + X2 — 2 X •

J x3 (x+ i) 2 (x2 + i)



CHAPTER XIII.

TRIGONOMETRIC INTEGRALS.

Art. 94. The integration of the more complex trig-

onometric functions can often be accomplished by substi-

tution, sometimes by breaking up the expression taking

advantage of the relations known to exist between the

different functions. There are very few general rules and

the chief assets are originality and a knowledge of the

simpler integrable forms. A few cases may be noted,

however.

Art. 95. Integrals of the form / sm m xcosn xdx

where either m or n is a positive, odd integer.

Say m is odd; then since sin2 x = 1 — cos2
#,

TO—

1

I sinm # cosn # dx = 1 (1 — cos2
#) cosn x sin # d#

TO —

1

= — I (1 — cos 2 x) cosn xd (cosx).

m —

1

— 1
2

[For sin m x = sin
w " sin x = (1 — cos2 x) sin x.]

Since m is odd, m — 1 is even and hence can be
2

expanded by the binomial theorem; then each term mul-

tiplied by cosn x d (cos x) becomes an integral of the form

342
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x -"dx = ,or — = log x, and the result is

n + 1 J x

easily found.

If n is odd, the cos x is reduced to sin x and the same

process followed.

/COS X dx= ?
sinx

/cos3 x j C 1 — sin 2 x j C d (sin x)
ax = I cos xax= I

—* -

sin x J sin x J sin x

— / sin x d (sin x) = log sin x — \ sin2
x.

If w + n is an even negative whole number,

1 sinw x cosn dx may be put in the form

/cos 71 X f*— sin m+n xdx = / cotn xcsc~(m + n)xdx, or,
sinn x J

/
Sin^X

cos m+n,y^ = / tanm x sec - (m + n) x fa
cos 71 X J

Since w + w is an even negative integer, — (tn+n)
will be a positive even integer, hence leaving sec2 xdx as

the d (tanx), sec - <™+ »i) - 2 x can be expressed entirely in

terms of the tangent by the relation sec 2 x = 1 + tan2
x.

. a dx= ? Here *# + »=— 6 + 2=— 4.
sin

b x

Hence

/—— dx = / sin
-4 xdx= I cot2 x esc 4 x dx.

sin
b x J sin 2 x J

The cot 2 x + 1 = esc 2 x, hence,

1 cot2 x esc 4 x dx = / cot2 x (1 + cot2 x) csc2 xdx
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= - f (cot
4 x + cot2 x) d (cot*) = - ^l£_£2^£.

J 3 5

Art. 96. If the integral is in the form, / sec2w x dx or

I csc2n xdx, where n and m are positive integers, the

expressions can be readily put in the forms,

1m — 2

(tan2 x + 1

)

sec2 x dx

= (tan2 x+ 1) m~ 1 d (tsm x)

2 H — 2

and (cot
2 * + 1 )

2
esc 2 # dx

= — (cot
2 * +i) n-1 d (cot*)

which are both readily integrable, since m — 1 and n — 1

are both integers and the parentheses may be expanded.

Example: / — = ?

J COS X

—^— = I sec6 xdx= I (tan2 x + 1 )
2
sec2 * dx

cos6 x J J

= f (tan2x+ i) 2 d(tanx)

= / tan4 #d (tan#) + 2 / tan2 x d (tan x) + / sec 2 xdx

= tan^ +
2teD»* +tan ^

5 3

Art. 97. If the integral is of the form,

secw x tann x dx or I cscw * cotn x dx,I secw * tann x dx or I
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where m is anything, and n is a positive odd integer, it may

be reduced to

secm-i x tann_1 x sec x tan x dxf
— I sec™--1 x tan"—1 x d (sec#),

/
= — I esc 171-1 x cot 11-1 x d (esc x),

or I cscm_1 x cotn
_1 # esc x cot # dx

and since n is odd, »- — 1 is even and tan x and cot x can

be expressed in terms of sec x and esc x respectively by

the relations, tan2^ = sec 2 x — 1 and cot2 x = esc2 x — 1.

Art. 98. If the integrals are in the forms,

/ tanm xdx or I cotm x dx,

they may be put in the forms,

j tanm~2
x. tan2 xdx= j tanm~2 x (sec2 x — i)dx,

and I cotm_2 x. cot2x^ = / cotm_2 ^ (csc2 a;— i) dx.

If these are multiplied out, the first term is always inte-

grable and the exponent of tan:x; or cotx is reduced by 2

in the second term; thus each application of the process

reduces the exponent m, until an integrable form is reached.

Example: I (tan4 x) dx — ?

tan4 xdx = j tan2 x (sec
2 x — 1 ) dx
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= / tan2 x d (tan x) — / tan2 x dx

— I (sec
2 x — i ) dx

I sec2 x dx +
J

tan*x

1

sec2 x dx + f <fo

3

tan3 x
tan # + x.

3

Art. 99. When m and w are both positive integers the

multiple angle formulae may be used to simplify, namely,

.0 1 — cos 2 x
sin'

1 x = >

2 1 + cos 2 #
cos"

5 # = — 3

2

sin 2 #
sin # cos x =

Example: JW.cc*,*-?

I sin4 # cos2 # <fo = / (sin # cos x) 2 sin2 # dx

r/sin2
2 x\ /i — cos 2 #\

= i I sin2 2 x dx — \ I sin2
2 # cos 2 x dx

= tV / (1 ~ cos 4%) dx — TV / sin2
2 x cos 2 5f i (2 1)

= TV I dx — ^ I C0S4X d (4X)— TV I sin
2 2xd (sin 2 #)

= tV - F? sin 4 x - ?V sin
3
2 x.
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Art. ioo. The following formulae will be useful, but

their derivation is not necessary here.

dx

m+n cos x \Zm2 — n 2
tan

tan
X \

2

m + 11

I m — n -

where m > n,

or
dx

m + n cos x \/n2 _ m2
log

tan — — * i
n + m
n — mV

, x ,

tan—

h

2 in —
m

n — m
where m < n.

The integration of
dx

is made to depend uponm + n sin x

the same form by first substituting x = z + 90 .

e«* sin nx dx = ^ (<* sin rc* - g cos gag)

a 2 + rc
2

e°* cos nx dx = g'* fo sin ^ + fl CQS "*)

.

a2 + w2

EXERCISE XX.

r dx

J cos 4 #

s-

smu x cos" x

dx

sec
2 x sin" x

/ esc 4 x dx.

/tan3 x

cos 4 x

6. / cot3 x esc3 x dx.

7- 1 tan3 x <fo.

8. 1 cos x tan3 x dx.

9- / tan 4 x <fo.

j10. / (tanx+ cotx) 2
<fo.
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ii. fcofxdx. 16. f——dx.
J J COS4 X

12. fcos*xsm*xdx. 17. /
>**<**

.

«/ J COS3 #

J cos2 X J COS4 #

/sin5 x r dx7= <fc. 19. J
—

.

cos x V cos x J cos 4 x sin
2 x

/
' sin3 x (ix (>

/
~'

20. I sin4 x cos4 # (foe.

Vi + cos # J

21, I sec3 x dx [set sec # = y\.

J si

(fo C dx
22.

23

sin x cos' #

/
cos3 x c

sin
5 x

/sec mx j—- dx.
cor mx

25

26

J 3 - 5 si3 — 5 sin #

(fo

4+5 sin 2 rv

32. / ewx (sin mx — cos mx) (fo.

33. / ex cos 3 x dx.

34. / e
3* (cos 2 # + sin 2 x) dx.

27.
J 13 - 5 cos x

28.
C dx

J 16 + 6 cos x

29. I ex sin 2 x (fo.

30. / e2x sin 4 x (fo.

31. / e
2* cos x (fo.
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Integrate the following by multiple angle formulae:

35. / sin
2 x cos 4 x dx. 37. I sin2 cos2 x dx.

36 . f—**
.. 38. [*£?-£ dx.

J sm 4 x cos4 x J cos4 x

MULTIPLE INTEGRALS.

Art. ioi. As we learned that a given function may have

a number of successive derivatives, it immediately follows

that a multiple derivative admits of successive integration,

thus recovering the lower derivatives and eventually the

original function. This process is indicated by repeating

the integral sign, thus,

JSP.dx3

Suppose we have, for example,

&y 2 ,—*- = 2 xl + 3 x.
dx3 d

This is what is known as a differential equation. To find

the relation between y and x it is necessary to integrate

three times, since the third derivative is involved. It

follows then, that

— = 2 x2 dx + 3 x dx,
dx2

or d (

—

-
)
= 2 x2 dx + $x dx.

\dx2
)

Integrating,

g = 2 fx
2 dx+ 3 fxdx=^? +$^-+Cl ;

d)=

3

2 x^ 3 x
dx + —— dx + Q dx.

3 2
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Integrating,

-^=§ fx*dx+i fxtdx+Ct fdx

= i x
4 + i x

3 + Cx
* + C 2 ;

dv = — d*H— dx + C
x
xdx + C2

dx.
6 2

Integrating,

/yJ> ,y.4 /"* ^
30 8 2

Q, C2 , and C 3 are the constants of integration which may

be determined in specific cases by the given conditions of

the problem. This process is useful in finding the equa-

tions of curves, when certain attributes expressed in terms of

their derivatives are given, for example, their radii of curva-

ture, although a general application to this end requires

a general knowledge of differential equations.

INTEGRATION OF A TOTAL DIFFERENTIAL.

Art. 102. Where several variables are involved it is

necessary to reverse the process of partial differentiation,

thus integrating for one variable at a time, regarding the

others as constant. In the case of a function of two vari-

ables say, z = f (x, y), the expression for the total differ-

ential is,

, dz , . dz ,dz= —dx+ — dy.
ox oy

Say a differential is given in the form P dx + Q dy,

where P and Q are functions of x and y. If the function

is not originally in this form, it may be made to assume it

by grouping.
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The question arises, is there a function z, of x and y,

which will have the expression P dx + Q dy for its differ-

ential?

02 uz
Comparing P dx + Q dy with —dx+— dy, it is appar-

ox dy

ent that if there is such a function,

P = — and Q - —- .

ox oy

Differentiating these equations with respect to y and x

respectively,

— _ 9 2
z

and 3Q_ A2

1

But

dy 3y3x 3x 3x9y

d 2
z d 2

z

dydx dxdy

. 3P = 3Q
3v 3x

And when this is true the function z exists, not otherwise.

Example : 3 x2 dx + 3 y
2 dy — 3 ax dy — 3 ay o*x, to find

/ (*, y)-

Put this in the form P dx + Q dv,

(3 x
2 - 3 ay) Ox + (sf - 3 ax) ^.

Here P = 3 x2 — 3 ay, Q = 3 y
2 — 3 ax.

Since

p =
3 x

2 -
3 0^ Q =8

3 7

3P_
dy

: - 3a
3x

3«-

3P_
dy -P and .exists.

OX

P = 3 x
2 --

3 av.

3z

Bx
P =3 x2 — 3 ay.
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Integrating this with respect to x, y being constant,

zp = x3 — 3 axy [Zp means partial value of z].

Since the terms in Q, which contain x, have already been

integrated in P, as will be evident if we remember how

partial differentiation is effected, it remains only to inte-

grate the terms in Q containing y alone, with respect to y.

Since Q = 3 y
2 — 2 ax, the integration of the term 3 y

2
,

containing only y, gives v3
.

Adding this to the partial integral already found in zp ,

the total integral becomes,

3 = x3 — 3 axy + y
3

.

Hence to integrate an expression of the form P dx + Q dy,

integrate P with respect to x, then integrate the terms in Q
not containing x, and add the results.

DEFINITE MULTIPLE INTEGRALS.

Art. 103. Evidently the conception of multiple integral

may include definite integration, where the limits of inte-

gration are determined for each variable separately.

/r f y/r2 _ X2

I (x2 + y
2
) dxdy

01/

means that the definite integral of this expression is taken

for y (x remaining constant) between the limits o and

\Zr2 — x2
, then the integral of this result with respect to x,

between o and r.

We integrate first for the outside differential.

Thus,

(*r f**Sri - x°- f*r I ^3\ vV - «2

I 1 (x2 + y
2
) dx dy =

J
(x2v+—

)

dx
Jo Jo Jo V 3 /o
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V2 + 2 X2^

353

= f
r

Vr 2 - x2 (
r2 + 2 x2

\ dx= - fVr2- x2 dx +

f
r

x2 Vr2 -x2 dx
3 Jo

-XT
— Vr2-*2 * -sin-1-+ — (2^2-r2)\/r2-^2

6 6 r 12

. r
4

. ill ;rr
4

H 'Sin- 1 - = —
12 ;-J 8

AREAS AND MOMENTS OF INERTIA.

Art. 104. The determination of areas comes readily

under the process of double integration. Take the circle

(Fig. 30) for example. Divide the circle up into minute

/ \
I \r A

1

r 7
\ /

\ y
Fig. 30.

squares, by lines drawn parallel respectively to the x-axis

and the y-axis, and let those parallel to the v-axis be at a

distance A.v apart; those parallel to the v-axis, Ay apart.

Then the area of each square is \x . Ay. The sum of all

these squares will be less than the area of the circle by the

minute spaces bounded by the sides of the extreme squares

and the circumference. But as A.v and Ay approach o,

these spaces also approach o, and eventually the sum of

the squares represents the actual area of the circle, that is,
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when Ax . Ay becomes dx . dy. We have learned that

definite integration is a summation, hence if we integrate

along a line parallel to the x-axis, that is for y, we get a

strip parallel to the x-axis, and then integrating parallel to

the v-axis, that is for x, we sum these strips and hence we

get the circle area. Since we must take limits for y, that

will apply to any strip, these limits or rather one of them

will be variable, and should be a function of x.

Taking the origin at the centre, the circle equation is

y
2 =. r

2 — X2
,

whence y = vV — x2
.

Since the value of y represents any point on the circle, it

will represent the distance of any strip from the #-axis,

hence starting with the v-axis and integrating to the right

along a parallel to the x-axis, the lower limit o is the same

for all strips (the starting point always being at the y-axis)

and the upper limit for any one will then be Vr2 — x2
(the

outer end of the strip).

Then these strips are integrated parallel to the v-axis,

from the x-axis, to the extreme distance of the last one

from the x-axis, that is, r.

We express all this,

= f
r

Vr2- x2 dx =J If Vr2 -x2 + -sin-1 -!

= — , the area of a quadrant.
4

— X 4 = Ttr
2

, the area of the circle.
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MOMENTS OF INERTIA.

Art. 105. The moment of inertia of a plane area about

a given point in its plane is denned in mechanics, as the

sum of the products of the area of each infinitesimal portion

by the square of its distance from the point.

Taking the point as origin and laying out the strips

parallel to the axes, taking the axes in a position most

convenient for laying out the strips, we have by Analytic

Geometry, that the distance of any point (x, y) from the

point (origin) is

Vx2 + y\

Also by the last article the area of any infinitesimal square

is dx dy.

Since an infinitesimal square is practically a point, we

have then the moment of inertia of any square is

(x2 + y
2
) dx dy.

Integrating this parallel to the ^-axis with proper limits,

determined as in the last article, and then parallel to the

^-axis with limits indicating the extreme of area, we have

the required sum. Calling the moment of inertia, I; the

limits for v-integration, (0, a) [where a is a function of x];

those for ^-integration, (o, b), the result is expressed,

«7o *J

(x2 + y
2
) dx dy.

This was illustrated in Art. 100. The same process may
be used in polar co-ordinates by taking radial strips, in-

stead of rectangular ones.
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EXERCISE XXI.

By double integration find the following:

1. The area between y
3 = x and x3 = y.

2. The area between y
2 = 8 x and x2 = 8 y.

3. The area between y
2 = 6 x and

;y

2 = iox- #2
.

4. Find the segment of the circle x2 + y
2 = 16 cut off

by the line 3/ — # = 4.

5". Find the area between y
2 = 2 px and the line y = 2 x.

6. Find the moment of inertia about the origin of the

circle (x — i) 2 + (y — 2)
2 = 9.

7. Find the moment of inertia of a right triangle, about

the origin, legs of length 6 in. and 8 in. respectively forming

the axes.

8. Find the moment of inertia of the area in Ex. 5.

9. Find the moment of inertia of the segment in Ex. 4.
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