MOWARD \& BULLOUGH

AMERICAN MACHINE CO. LTD.
PAWTUCKER,-R. 1.

COTTON MACHINERY 1909

SPECIAL COLL
TS
1583
H60
1909

PLAN'T OF
HOWARD \& BULLOUGH AMERICAN MACHINE COMPANY LTD
PAWTUCKET, R. I.

Illustrated Catalogue of
 COTTON MACHINERY

 Built by HOWARD \& BULLOUGH AMERICAN MACHINE COMPANY, Ltd. PAWTUCKET, R. I., U. S. A.OPENING, PICKING, CARDING, DRAWING, ROVING, SPINNING, TWISTING AND WINDING MACHINERY

WARPERS AND SLASHERS

Containing Also Floor Spaces, Speeds, Productions, Gearing Diagrams, Useful Tables and Other Information

$$
1909
$$

Boston Office, 65 Franklin Street C. E. Riley, Treasurer

INTRODUCTION.

We take pleasure in presenting this book, trusting that the information it contains will be of interest and service.

In compiling this catalogue we have included such descriptive matter as will set forth the main features and advantages of our machinery, also outline drawings, gearing diagrams, floor spaces, speeds, production and other tables, and information of use to all those interested in Cotton Mills.

Some of the information contained in this book has hitherto been presented in circular and book form, but at the request of numerous friends and users of our machinery we now issue this complete catalogue which contains considerable additional information, besides which it is in a compact and convenient form.

Our machinery is extensively used, and is well and favorably known.

It will be our endeavor in the future to continue to make improvements and maintain the high standard which has characterized our machinery in the past.

INDEX.

OPENING AND PICKING MACHINERY Page
Hopper Bale Opener 8
General Description 9
Floor Plans and Elevations 12
Automatic Hopper Feeder 14
Self-feeding Opener 16
Trunking 20
Breaker Lappers 24
Combination Machines 30
Intermediate and Finisher Lappers 32
Production Tables 36
Gearing Diagrams 38
Calculations 43
Floor Plans and Elevations 52
REVOLVING FLAT CARDS
General Description 61
Patent Setting Arrangement for Flats 67
Williams' Patent Stripping Motion 68
Floor Plan 72
Gearing Diagram 72
Calculations 75
Production Tables 78
Gearing Tables 77
Clothing 80
DRAWING FRAMES
General Description 82
Floor Plans 88
Table of Lengths 90
Production Tables 91
Gearing Diagram 92
Calculations 94
Gearing and General Tables 96
Electric Stop Motions 98
SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES
General Description 103
Improved Differential Motion 107
Improved Lay Gearing 109
Speed Tables 111
Floor Plans 118
Tables of Lengths 119
Production Tables 113
Gearing Diagrams 123UMass Darimouith
SLUBBING, ETC.-CONTINUED Page
Calculations 127
Gearing Tables 130
Roving Tables 136
RING SPINNING FRAMES
General Description 141
Improved Builder 151
H. \& B. Separator 152
Floor Plan 154
Table of Lengths 155
Production Tables 156
Gearing Diagrams 160
Calculations 164
Gearing Tables 166
Yarn Twist Tables 176
Table for Numbering Cotton Yarn 179
Breaking Weights of American Yarns 184
SPOOLERS
Table of Lengths and Productions 186
REELS 187
TWISTERS
General Description 188
Floor Plan 193
Table of Lengths 195
Production Tables 198
Gearing Diagrams 203
Calculations 206
Gearing Tables 208
Twist Tables 210
CONE AND TUBE WINDERS
General Description 222
Floor Plan 225
WARPERS 226
SLASHERS 227
MISCELLANEOUS
Shipping Weights 232
Table of English Weights and Measures 233
Classification of Cotton 237
General Rules with Examples 234
Power Required by Cotton Machinery 238
Belting Required for Various Machines 240
Horse-power Tables of Shafting 242
Horse-power Tables of Belting 246
Data on Manila Transmission Rope 250
Spindles in U. S. 252
World’s Cotton Spindles 253

OPENING AND PICKING MACHINERY.

The Opening and Picking of cotton should have the same careful attention as the Carding and Spinning, although the latter processes may seem to some to be more important. Much more attention is being given to this Department everywhere to-day than formerly, and better equipments of machinery are being used. The same equipment is not equally good for all classes of work, as the machinery must be designed and adjusted for the particular kind of stock to be used.

Unless the cotton is well opened and cleaned, and good even laps are made, the Carding will suffer, and the Card Clothing will soon be damaged, which means poor and costly work.

We invite with every confidence all possible investigation into the construction and improved design of our Opening and Picking machinery, and the work it is doing in the mills. This entire line of machinery is substantially built, very simple, and contains many valuable improvements.

PATENT HOPPER BALE OPENER

HOPPER BALE OPENER.

An investigation of the present methods of handling cotton before it reaches the Pickers shows that in a large percentage of mills there are opportunities for greatly reducing the labor cost and at the same time improving in a marked degree the quality of opening and mixing. The saving which can be effected in labor, and the better results obtained by a more thorough opening of the cotton and a more even mixing, can hardly be appreciated except by those who have seen it demonstrated by the use of our Hopper Bale Opener.

This machine is extensively used in England and on the Continent, where it is giving most satisfactory results. It is filling a need which has long existed.

LABOR SAVING-A bale of cotton can be thoroughly opened without damage to the staple in six to ten minutes, which means that one hand can open upwards of 150,000 to $200,000 \mathrm{lbs}$. per week and still have time for taking care of bagging, ties, etc. Even when the weekly consumption of cotton is very much less than this there is a saving in labor, as the quick completion of the work means that the attendant can give his attention to something else.

QUALITY OF WORK-The fluffy condition of the cotton as it is delivered from the Hopper Bale Opener shows the very thorough manner in which it is opened. Although the cotton is fed to the machine in large matted sections taken directly from the bales as they lie around the horizontal feeding apron, no bunches come through. When cotton is opened and mixed by hand the result is not what is generally supposed. The stock is still in large bunches and matted to such an extent that when fed into the Hoppers of ordinary Openers it is impossible to obtain an even or thorough mixing.
the feeding apron of the Hopper Bale Opener usually extends four feet back of the Hopper which enables the operator to group a number of bales around the machine so as to take cotton first from one and then from another. This gives an even mixing of the stock from the various bales. If it is desired this idea can be carried still further by making the Feeding Apron longer, so as to allow of taking cotton from a greater number of bales.

METHOD OF WORKING-The matted sections taken direct from the bale and placed on the slowly driven Horizontal Feeding Apron move forward into the Hopper and are taken by the more rapidly moving Spiked Elevating Apron, which subjects the cotton to a sort of combing action. At the top of this \backslash pron there is a spiked Cylinder which further combs the cotton and throws back into the Hopper any unopened pieces. A Stripping Beater with stiff leather blades strips the stock from the Spiked A pron and delivers it onto the short delivery A pron at the front of the machine.

DELIVERY ARRANGEMENTS-The ordinary or standard delivery arrangement is shown in the cut, page 8 , and in the outline drawing, page $12 . \mathrm{We}$ have recently designed a double apron delivery for use with Condenser and Blower systems, where the cotton has to be carried quite a distance. This arrangement does away with the necessity of passing the stock through a fan and is approved by the Insurance Companies.

The cotton being delivered into the conveying pipe ahead of the "Blower Fan," there is no fire risk due to hard substances passing through or stock getting caught in the fan. We have designed many special delivery arrangements to meet the various conditions which present themselves, including a suitable delivery for use with either lattice distributing systems or blowing systems.
distributing systems-The installation of this Hopper Bale Opener makes a distributing system more advantageous and satisfactory. We have equipped many Opening Rooms with Distributing Lattices which deliver the cotton directly into the Hoppers of the Self-feeding Openers, thus saving another handling.

When the Hopper Bale Opener is located some distance from the distributing lattice, the latter may be fed by a blower and condenser system, and when the distance is very short an elevating lattice is used, dropping the cotton directly on the distributing lattice. We are always glad to take up special cases and make recommendations in connection with the conveying and distribution of cotton either for short or long distances.

An advantage which is not usually thought of or appreciated is the more even Breaker laps obtained where a Hopper Bale Opener and distributing system are used. The Hoppers of the Feeders are more evenly fed and the stock is in a much better condition than when mixed and fed by hand.

CONSTRUCTION-The machine is very strongly built throughout. An extra large Hopper is an advantage possessed by this Upener. The Spiked Elevating Lattice is made on a new patented system and the slats on same are of heavy selected stock.
driving pulleys and speeds-The Driving Pulleys are on the right hand side when facing the Hopper or Feed and are 11 in . dia., 3 in . face, tight and loose, and should be driven at about 582 revs. per minute.

PRODUCTION $-150,000$ to $200,000 \mathrm{lbs}$. per week of 60 hours.
floor space-The machine with short Feeding Lattice, as shown on the illustration, page 8, is 13 $\mathrm{ft} .11 / 4 \mathrm{in} . \mathrm{x} 6 \mathrm{ft} .10 \mathrm{in}$.

HOPPER BALE OPENER
WITH STANDARD SHORT APRON DELIVERY

HOPPER BALE OPENER WITH DOUBLE APRON DELIVERY

AU'TOMATIC HOPPER FEEDER

AUTOMATIC HOPPER FEEDER.

HOPPER-This is extra large and capable of holding 400 to 450 pounds of cotton.

SPIKED ELEVATING APRON runs over large flanged blocks and is extra strong.

StRIPPING COMB OR ROLLER-This works in conjunction with the Spiked Apron, and is very simple and durable. It is self-cleaning and is easily adjusted by means of a handle on one side of the machine. This handle can be locked in position after an adjustment is made, and the arrangement, although operated from one side of the Feeder, gives a positive parallel motion, and consequently a true setting of the Stripping Comb.

PIN BEATER takes the cotton from the Spiked Apron. The stock, after passing over the cleaning grids, drops on the Delivery Apron.
knock-off arrangement-This is simple and durable, and is so designed as to be easily connected to the knock-off on the Breaker Lapper or other machine which follows.

APRONS all have strong and easily adjusted tightening devices.

SIMPLICITY-Our Feeder is reduced to the simplest design possible consistent with even and good work, and has no troublesome cone drums.
combinations of this Feeder with the various Opening and Picking Machines are made to suit any special requirements of the mill. The Feeder when combined with an Opener is driven from a pulley on the Cylinder or Beater shaft, and when feeding on to the Apron of a Lapper is driven from the Lapper Countershaft.
driving pulley and speed-The Driving Pulley is 10 in . dia., $21 / 4 \mathrm{in}$. face, and should be driven at about 550 revs. per minute.

FLOOR SPACE-Length, 10 ft .5 in . ; width, 5 ft .6 in.
floor plan and elevation-See page 5%.

SELF-FEEDING OPENER WITH 30-IN. CYLINDER

SELF-FEEDING OPENER.

This is a combination of the Autoniatic Hopper Feeder with an Opener Section built as one machine. The Beater in the Opener Section may be a two-blade rigid Beater, 18 in . dia., or a 30 -in. dia. Special Cylinder, which is shown and described on page 18 .

This machine may be arranged for trunking connections, as shown in the cut on the opposite page, or it may be attached directly to a Breaker Lapper, forming a Combined Self-feeding Opener and Breaker Lapper (see page 30 for cut of this machine).
driving pulley Self-feeding Opener with 18 in. Beater, 9 in . dia., $41 / 4 \mathrm{in}$. face ; with $30-\mathrm{in}$. Cylinder, 16 in. dia., $41 / 4$ in. face. Other sizes can be furnished.

SPEEDS $-1,450$ revs. per minute for 18 - in. Beater and 550 revs. per minute for $30-\mathrm{in}$. Cylinder when running with ordinary cotton. For long staple cottons the Beater speed is reduced to 800 to 1,050 revs. per minute and the Cylinder speed to 300 to 450 revs. per minute.
production-See Breaker Lappers.
floor plans and elevations-See pages 56 and 5\%.

30-IN. SPECIAL CYLINDER

3O-INCH SPECIAL CYLINDER.

This 30 -inch Cylinder is specially designed for use in Self-Feeding Openers where these machines are arranged for trunk connection or combined with Breaker Lappers.

The large diameter makes it possible to use more grid bars than with the blade beaters. The main points considered in the design of this 30 -inch cylinder were, more thorough opening of the cotton, greater production without injury to the staple, and better cleaning.

These Cylinders are made from steel boiler plates, and the steel fingers are fastened on by rivets. These fingers are so arranged that in one revolution they strike all points along the entire width of the feed rolls. In case of accident to fingers, caused by some hard substance getting into the machine, the damaged fingers can be easily replaced.

We have adopted the 30 -inch Special Cylinder, believing it to be preferable to those of larger diameter.

CLEANING TRUNK.

On the opposite page is shown a $10-\mathrm{ft}$. section of Automatic Cleaning Trunk. It is usual to install two of these sections, making 20 ft ., and to suspend same from the ceiling.

The cotton passes over Transverse Grids A and the leaf and dirt drop between the Grids into a series of compartments B, which are automatically cleaned out by air draft from a Fan. Each compartment has a hinged door or bottom C , which when dropped leaves an opening into the exhaust air pipe D. The hinged doors are dropped one at a time, and the openings are shown at G.

The Fan is connected to the exhaust air pipe D, and is only running while the Trunk is being cleaned.

The removable doors E give access to the top of the Trunk, and the brackets F are for the supporting rods.

One of the advantages of this Trunk is that it can be hung from the ceiling out of the way and not occupy valuable floor space. It is carefully built and the joints of the doors are covered with leather to prevent leaks.

Page 59 shows a system where 20 ft . of Automatic Cleaning Trunk is used together with the necessary Conducting Trunk; the Opener being on
the first floor and the Breaker Lapper with Gange Box and Condenser on the second.

Cleaning Trunk is of special advantage to mills using low grade stock. All cotton contains more or less light dirt and leaf, which it is difficult to entirely remove in the Lappers, on account of the fan draft essential to the formation of a good sheet on the screens carrying some of the lighter impurities along with the cotton. The passing of the stock over the transverse Grids in the Cleaning Trunk at a low velocity provides an efficient means for removing this dirt and leaf.

We also build an English pattern Trunk, which is shown in the illustration on page 2d. This Trunk is supported by stands which rest on the floor, and is built in t-ft. sections, several of these being coupled together. Although not automatic, it is easily cleaned by dropping the doors which cover the entire bottom of the Trunk and carry the Grids. In the illustration one of these doors is shown down, and the sheet iron Grids are plainly visible.

BREAKER LAPPERS.

On page 24 is shown our Single Beater Breaker Lapper with Gauge Box and Condenser, and on page 28 the same machine with a Cage Section.

GAUGE BOX AND CONDENSER-We strongly recommend the use of Gauge Boxes and Condensers when the Breaker Lappers and Openers are on different floors, or the stock has to be carried any distance. Under these conditions there is a considerable quantity of cotton passing between the Opener and Lapper, which on account of the stopping and starting of the latter is liable to make thick and thin places in the lap.

The use of the Condenser and Gauge Box overcomes this difficulty as the cotton is received under these varying conditions and the Gauge Box acts as an Evener and delivers a uniform supply to the Feed Rolls behind the Beater. When the connection between the Opener and Breaker Lapper is short the Cage Section can be used without difficulty.

The Condenser Fan, which is of extra large size, is conveniently placed under the Gauge Box and Condenser Section. The Gauge Box has glass panels on the two sides and front, so that the cotton can be seen and the feed regulated.

BEATERS-Although the cuts show Single Beater machines, we build them with two Beaters if required or with one Cylinder and one Beater.

IMPROVED CALENDER HEAD-Our Lappers have many valuable special features, including our improved Calender Head, which allows the machine to be stopped by the Drop Handle without breaking the lap. When the lap is of the required length and the machine knocks off, the large Lap Rolls as well as the Calender Rolls, Feed Apron and Cages stop, and the lap is not broken.

If the lap continues to revolve after the machine has knocked off, it becomes sticky and there is likely to be trouble from split laps back of the Cards. Our arrangement preatents this and also enables the machine to be stopped at any time during the formation of a lap without breaking the lap.

GEARS EASILY REMOVED-All the large gears are fastened by an improved method. Instead of driving them onto

FEED ROLLS, TOP CAGE AND COVER
Showing Bushed Bearings and Easy Method of Removing the Top Cage
keys, which makes their removal difficult, we use with each large gear a square key let into the shaft, and two set screws. The gears fit the keys, but not tightly enough to prevent their easy removal after loosening the set screws.

CLUTCH GEARS-The Calender Rolls are stopped and started by large Clutch Gears which are a great improvement over the common Drop Shaft and Gear. With this method the starting strain is distributed over all the teeth in the Clutch Gears, entirely doing away with the frequent breakages under the old system.

BEARINGS-Where it is possible the bearings are made in bush form, as shown in cut page 26 , thus reducing to a minimum the time taken to make replacements and the cost of same. Our bearings are very easy to adjust, and their special form prevents oil from getting to the inside of the machine. All high speed Shafts, viz., Fan, Side and Beater Shafts, have ring oiling bearings.

TOP CAGES AND COVERS-The Top Cages of our Lappers are easily removed, as will be seen by referring to the cut, page 26 . The sides of the cage cover or bonnet fit snugly over the bushed bearings. To remove the cage or bushings, it is only necessary to turn back the cover. These covers are all made with oil holes directly over the bearing, so it is not necessary to raise the cover for the purpose of oiling.

NO TILTING OF LAP RACKS-The Lap Racks slide up and down on steel shafts, which entirely prevent the tilting of the Racks and consequent breakages.

SHAFTS-Our Beater and Fan shafts are made from a very hard iron specially mixed to give long life to these high speed shafts.

A countershaft complete with pulleys is attached to each Lapper.

DRIVING PULLEYS-One-beater Breaker Lappers 16 in . dia., $41 / \nmid \mathrm{in}$. face, T. $\&$ L.

Two-beater Breaker Lappers or One-beater Breaker Lappers with extra Cage Section or Condenser and Gauge Box Section 16 in . dia., $5 \frac{1}{4} \mathrm{in}$. face, T. \& L.

In combinations which have 3 beaters to be driven from one countershaft of machine, 16 in. dia., $6 \frac{1}{4} \mathrm{in}$. face, T. \& L.

Other sizes can be furnished.
SPEEDS-The usual speed of all lapper countershafts is 435 revs. per minute, which gives 1,450 revs. per minute of the Beaters, and 550 revs. per minute of Cylinders, for ordinary cotton. For long staple cottons the beater speed is reduced to 800 to 1,050 revs. per minute and the Cylinder speed to 300 to 450 revs. per minute.

PRODUCTION-On ordinary cotton 15,000 to $20,000 \mathrm{lbs}$. per week of 60 hours. In some cases the production is far in excess of these figures. For long staple cottons, 10,000 to $15,000 \mathrm{lbs}$.

See production table, page 36.
FLOOR PLANS AND ELEVATIONS-See pages 54 to 5%. These plans are for $40-\mathrm{in}$. or $41-\mathrm{in}$. machines, and $45-\mathrm{in}$. machines are 4 in . wider.

SELF-FEEDING OPENER (30-IN. CYLINDER) ANI) SINGLE BEATER BREAKER LAPPER

COMBINATION MACHINES.

On the opposite page is shown a Self-feeding Opener with $30-\mathrm{in}$. Cylinder combined with a Single Beater Breaker Lapper. This is a very popular combination and, it will be noted, is built as one straight machine. A floor plan and elevation are shown on page 54 . This same combination with an 18 -in. Beater instead of the 30 -in. Cylinder in the Opener Section is shown in plan and elevation on page 55 .

We also build a Self-feeding Opener with Cage Section and Calender Head, which is well adapted to work Egyptian and Sea Island cottons. (See page 53 for plan and elevation.)

Self-feeding Openers when built as separate machines can be placed on any floor above or below the Breaker Lappers, or on the same floor, the connections being made by Automatic Cleaning Trunks, Conducting Trunks, and galvanized iron pipe, as the conditions may require.

On pages 56 and 5% we show Single Beater Breaker Lappers with Gauge Boxes and Condensers connected to Self-feeding Openers by short sections of Conducting Trunk. The Breakers are on the floor above the Openers. One drawing shows the Self-feeding Opener with 18 -in. Beater, and the other with $30-\mathrm{in}$. Cylinder.

INTERMEDIATE AND FINISHER LAPPERS.

These machines have our improved Calender Head, which has already been described in connection with Breaker Lappers. Each machine has a countershaft and pulleys complete with stands as shown.

BEATER BOXES-All our beater boxes are fixed and our feed rolls adjustable, which we consider superior to having the beaters adjustable. After thorough investigation and long practice we have found that adjustable beaters are liable to get out of line, causing them to heat and wear quickly.

DRAFT REGULATION-The air chamber from fan to cage section on each side of the machine is supplied with a damper, operated from the outside of the machine. With this arrangement the air can be drawn through the top and bottom cages in any desired proportion, and the operator can regulate the drafts to give the best results.

BEATERS-Two-blade (18 in. dia.) beaters are mostly used, but we furnish the Houghton patent beater with corrugated teeth, or carding beaters, when specified.

OUTSIDE HANDLES FOR DUST DOORS-We have recently added handles on the outside of the machine for dropping the cut-off board under the grids. The dirt and leaf which collect on this board are liable to fill up the grids if not regularly removed. The outside handles make the dropping of the cut-off boards very convenient and much reduce the liability of neglect on the part of the attendant.

DRIVING PULLEYS

One-beater machines, 16 in . dia., $41 / 4 \mathrm{in}$. face, T. \& L.
Two-beater machines, 16 in . dia., $51 / \not \mathrm{in}$. face, T. \& L. Other sizes can be furnished.

SPEEDS-The usual speed of countershafts is 435 revs. per minute, which gives 1,450 revs. of the two-blade beaters and 1,063 revs. of carding beaters. For long staple cottons the beater speed is reduced to 800 to 1,050 revs. per minute.

PRODUCTION-On ordinary cotton 12,000 to 15,000 pounds per week of sixty hours. These productions are often exceeded. For long staple cottons, 8,000 to 10,000 pounds. For production table, see page 37 .

FLOOR PLANS AND ELEVATIONS-See page 58 for floor plan of 40 -inch one-beater Intermediate or Finisher Lapper. 45 -inch machines are 4 inches wider.

IMPROVED EVENER.

The obtaining of even laps is a matter of prime importance. The demand for more perfect work has emphasized the need for better picking, and for laps which are even not only in total weight, but throughout. Our improved design fills the following essential qualifications of a good Evener.

1st-Sensitiveness and prompt action, so that any variation in the weight passing under the Evener Plates will be taken care of immediately.

2d-Steadiness of running and action, so that there is no tendency to "hunt," i. c., the cone belt will at once take its new position without traveling up and down.

3d-Simplicity and few moving parts.
th-Small amount of attention required.
The direct method of communicating any movement of the Evener Plates to the cone belt, the multiplication of this movement and the short cones are features which help to secure sensitiveness and prompt action.

The small amount of lost motion between the Evener Plates and the cone belt, and the free movement of the belt shipper rod, which runs on rollers, make the action positive and steady.

The cut on page $3 \pm$ shows our Evener and indicates the simplicity of same. The number of moving parts has been reduced to a minimum. The Evener Plates and feed roll give great cleaning capacity on account of the bite of the Plates being close to the Beater. The Evener Plates are on top of a 3 -in. dia. steel feed roll, which gives a very rigid support and ensures all the variation in the thickness of the cotton under the plates being communicated to the Evener belt.

The cones are conveniently placed under the feeding apron, and the lower cone runs in an adjustable cradle which allows the belt to be made endless and keeps it at an even tension at all times.

BREAKER LAPPER.

PRODUCTION IN POUNDS PER TEN HOURS

Dia. of Feed Pul- ley In.	Rev. per Min. of 9 -in. Calender Roll	Weight of Lap in Ounces per Yard							
		10	$10^{1 / 2}$	11	111/2	12	$12^{1 / 2}$	13	$13^{1 / 2}$
3	4,153	1100	1160	1210	1270	1320	1380	1430	1490
$31 / 2$	4,845	1280	1350	1410	1480	1540	1610	1670	1730
4	5,537	$14 \% 0$	1540	1610	1690	1760	1830	1910	1980
41/2	6,229	1650	1730	1820	1900	1980	2060	2150	2230
5	6,921	1830	1930	2020	2110	2200	2290	2390	2480
$51 / 2$	7,613	2020	2120	2220	$23 \geqslant 0$	2420	2520	2620	2720
6	8,305	2200	2310	$24 \geqslant 0$	2530	2640	2750	2860	2970
$61 / 2$	8,997	2390	2500	2620	2740	2860	2980	3100	3220
7	9,689	2570	2700	2830	2950	3080	3210	3340	3470
$71 / 2$	10,382	2750	2890	3030	3170	3300	3440	3580	3720
8	11,074	2940	3080	$3 刃 30$	3380	3520	3670	3820	3960
		14	141/2	15	$15^{1 / 2}$	16	161/2	17	18
3	4,153	1540	1600	1650	1710	1760	1820	$18 \% 0$	1980
$31 / 2$	4,845	1800	1860	1930	1990	2060	2120	2180	2310
4	5,537	2060	2130	2200	2280	2350	2420	2500	2640
$41 / 2$	6,229	2310	2390	2480	2560	2640	27.0	2810	2970
5	6,921	2570	2660	2750	2840	2940	3030	3120	3300
$51 / 2$	7,613	2830	2930	3030	3130	3230	3330	3430	3630
6	8,305	3080	3190	3300	3410	3520	3630	3740	3960
$61 / 2$	8,997	3340	3460	3580	3700	3820	3940	4060	4290
7	9,689	3600	3730	3850	3980	4110	4240	$43 \% 0$	4620
$71 / 2$	10,382	3850	3990	4130	4270	4400	4540	4680	4950
8	11,074	4110	4260	4400	45.50	4700	4840	4990	5280

Note-Ten per cent. has been deducted in the above table for stops, etc. 1,450 revolutions per minute of beater.

INTERMEDIATE AND FINISHER LAPPERS.

PRODUCTION IN POUNDS PER TEN HOURS.

$\begin{aligned} & \text { Dia. } \\ & \text { of } \\ & \text { Feed } \\ & \text { Pul- } \\ & \text { leys } \\ & \text { In. } \end{aligned}$	Rev. per Min. of Calen der Roll	Weight of Lap in Ounces per Yard							
		8	$8^{1 / 2}$	9	91/2	10	$10^{1 / 2}$	11	111/2
3	4,360	920	980	1040	1100	1160	1210	1270	1330
$31 / 2$	5,087	1080	1150	1210	1280	1350	1420	1480	1550
4	5,814	1230	1310	1390	1460	1540	1620	1.00	$17 \% 0$
41/2	6,540	1390	1470	1560	1650	1730	1820	1910	1990
5	7,26\%	1540	1640	1730	1830	1930	2020	2120	2210
$51 / 2$	7,994	1690	1800	1910	2010	2120	2220	2330	2440
6	8,720	1850	1960	2080	2200	2310	2430	2540	2650
$61 / 2$	9,447	2000	2130	2250	2380	2500	2630	2750	2880
7	10,174	2160	2290	2430	2560	$2 \% 00$	2830	2970	3100
$71 / 2$	10,900	2310	2450	2600	2740	2890	3030	3180	3320
8	11,62\%	2470	2620	$2 \pi 0$	2930	3080	3240	3390	3540
		12	$12^{1 / 2}$	13	131/2	14	141/2	15	16
3	4,360	1390	1440	1500	1560	1620	1680	1730	1850
$31 / 2$	5,087	1620	1690	1750	1820	1890	1960	2020	2160
4	5,814	1850	1930	2000	2080	2160	2230	2310	2460
$41 / 2$	6,540	2080	2170	2250	2340	2430	2510	2600	2750
5	7,267	2310	2410	2500	2600	2700	2790	2890	3080
51/2	7,994	2540	2650	2750	2860	29.0	3070	3180	3390
6	8,720	2770	2890	3000	3120	3240	3350	$34 \% 0$	3700
$61 / 2$	9,447	3000	3130	3250	3380	3500	3630	3750	4010
7	10,174	3240	3370	3510	3640	3780	3910	4040	4310
$71 / 2$	10,900	3470	3610	3750	3900	4040	4190	4330	4620
8	11,62\%	3700	3850	4010	4160	4310	$44 \% 0$	4620	4930

Note-Ten per cent. has been deducted in the above table for stops, etc. 1,450 revolutions per minute of beater with 18 T . and 60 T . bevels in calender drive

BREAKER LAPPER WITH CAGE SECTION PLAN VIEW OF GEARING

BREAKER LAPPER.

ALPHABETICAL REFERENCES TO DRAWINGS.

A Main Driving Pulley, 16 in . dia. x $41 / 4 \mathrm{in}$. face; $51 / 4 \mathrm{in}$. face for Two-beater Machine.
A^{1} Beater Driving Pulley, 30 in . dia. $\mathrm{x} 4 \frac{1}{4} \mathrm{in}$. face.
B Beater Pulley, 9 in . dia. x $41 / 4$ face (occasionally 10 in . dia.)
B^{1} Feed Pulley, 3 in . to 13 in . dia. x $21 / 4 \mathrm{in}$. face; advancing by $1 / 2 \mathrm{in}$. increments.
B ${ }^{2}$ Calender Section Fan Driving Pulley, 6 in. dia. $\times 2 \frac{1}{4}$ in. face.
B^{3} Calender Fan Pulley, 8 in . dia. x $21 / 4 \mathrm{in}$. face.
B ${ }^{4}$ Cage Section Fan Driving Pulley, 6 in. dia. x $21 / 4$ face for Straight Machine or direct connected Opener and Breaker Lapper. If with Trunking Connection, B^{4} is 8 in . dia. and B^{5} is 6 in . dia., to give higher speed of Fan.
B^{5} Cage Fan Pulley, 8 in . dia. $\mathrm{x} 21 / \mathrm{in}$. face for Straight Machine or direct connected Opener and Breaker Lapper. If with Trunking Connection, B^{4} is 8 in . dia. and B^{5} is 6 in . dia., to give higher speed of Fan.
C Driving Pulley for Bottom Cross Shaft, etc., 18 in . dia. x $21 / 4 \mathrm{in}$. face.
C ${ }^{1}$ Clutch Driving Gear, 15 T.
D Large Clutch Gear, 35 T.
D1 Small Clutch Gear, or Bottom Shaft Driving Gear, 17 T.
E Bottom Cross Shaft Driven Gear, 96 T.
E ${ }^{1}$ Front Lap Calender Roll Driving Gear, 12 T.
E2 Bottom Cross Shaft Gear, driving Calender Rolls and Top Cross Shaft, 14 T.
F Large Double Intermediate, driving Top Cross Shaft, 50 T.
F1 Small Double Intermediate, driving Bottom Calender Roll, 27 T.
F2 Bottom Calender Roll, 7 in. dia.
G Top Cross Shaft Gear, 30 T.
G ${ }^{1}$ Side Shaft Driving Bevel Gear, 24 T.
H Side Shaft Bevel Gear, Calender End, 24 T.
H^{1} Side Shaft Bevel Gear, Feed End, 28 T.
I Compound Intermediate Bevel Gear, 28 T.
I ${ }^{1}$ Compound Intermediate Gear, driving Bottom Feed Roll, 37 T.
J Bottom Feed Roll, 2 in. dia.
J^{1} Bottom Feed Roll Gear, 33 T .
J² Cage Section Top Stripping Roll Driving Gear, 9 T.; 8 T. Gear may be used to vary speed.
K Cage Section Top Stripping Roll Intermediate Gear, 52 T.
L Cage Section Top Stripping Roll Gear, 14 T.
M Cage Section Bottom Stripping Roll Gear, 14 T.
M 1 Cage Section Bottom Cage Driving Gear, 23 T.
N Cage Section Bottom Cage Intermediate Gear, 20 T .
O Cage Section Bottom Cage Gear, 181 T.
O^{1} Cage Section Top Cage Gear, 181 T .
P Front Lap Calender Roll, 9 in. dia.
P^{1} Front Lap Calender Roll Gear, 53 T .
P2 Back Lap Calender Roll Driving Gear, 24 T.
Q Back Lap Calender Roll Intermediate Gear, 22 T.
R Back Lap Calender Roll Gear, 24 T.
R^{1} Back Lap Calender Roll, 9 in. dia.
S 3d Calender Roll Gear, 21 T.
$\mathrm{S}^{1} 3 \mathrm{~d}$ Calender Roll, $51 / 2 \mathrm{in}$. dia.
T $2 d$ Calender Roll Gear, 22 T.
T^{1} 2d Calender Roll, $51 / 2 \mathrm{in}$. dia.
U Top Calender Roll Gear, 23 T.
U ${ }^{1}$ Top Calender Roll, $51 / 2 \mathrm{in}$. dia.
V Calender Section Top Stripping Roll Intermediate Gear, 17 T .
V^{1} Calender Section Top Stripping Roll Intermediate Gear, 17 T.
W Calender Section Top Stripping Roll Gear, 14 T.
X Calender Section Bottom Stripping Roll Gear, 14 T.
X^{1} Calender Section Bottom Cage Driving Gear, 23 T.
Y Calender Section Bottom Cage Intermediate Gear, 20 T.
Z Calender Section Bottom Cage Gear, 181 T.
Z^{1} Calender Section Top Cage Gear, 181 T.

BREAKER LAPPERS.

DRAFT CALCULATIONS.

Rule:

$$
\frac{J^{1} \times I \times H \times G \times E^{1} \times d i a . \text { of } P}{I^{1} \times H^{1} \times G^{1} \times E^{2} \times P^{1} \times d i a . \text { of } J}=\text { Draft. }
$$

Example:
If all standard gears,
$\frac{33 \times 28 \times 24 \times 30 \times 12 \times 9}{37 \times 28 \times 24 \times 14 \times 53 \times 2}=1.95=$ Draft.

PRODUCTION CALCULATIONS

Rules:
R. P. M. of Beater x dia. of $B^{1} x^{1} \mathrm{C}^{1}$

$\frac{\mathrm{D}^{1} \times \mathrm{E}^{1}}{\text { dia. of } \mathrm{C} \times \mathrm{D} \times \mathrm{E} \times \mathrm{P}^{1}}=$| R. P. M. of 9-in. |
| :---: |
| Calender Roll (P). |

> R.P.M. of 9-in. Calender Roll (P) x Circum. of P $\frac{\times \text { oz. per yd. of Lap } \times 600(\text { min. in } 10 \text { hours })}{36 \text { (inches in } 1 \mathrm{yd}) \times 16(\mathrm{oz} . \text { in } 1 \mathrm{lb} .)}=\begin{aligned} & \text { Lbs. in } \\ & 10 \text { hours. }\end{aligned}$

Examples:
If R. P. M. of Beater $=1,450$, dia. of Feed Pulley $\left(\mathrm{B}^{1}\right)=$ 5 in . Lap, 14 oz . per yd. Ten per cent. allowance for stops, etc.
$\frac{1,450 \times 5 \times 15 \times 17 \times 12}{18 \times 35 \times 96 \times 53}=\begin{aligned} & \text { 6.921 R. P. M. of } 9 \text {-in. } \\ & \text { Calender Roll (P). }\end{aligned}$
$\frac{6.921 \times 28.27 \times 14 \times 600 \times .90}{36 \times 16}=2,570 \mathrm{lbs}$. in 10 hours.
Short rule for figuring production in lbs. per 10 hours when Beater makes 1,450 R. P. M. Ten per cent. allowance for stops, etc., and all gears standard.
36.7 x dia. of Feed Pulley xoz. per yd. of Lap $=$ Lbs. in 10 hours.

INTERMEDIATE OR FINISHER LAPPER
PLAN VIEW OF GEARING

INTERMEDIATE AND FINISHER LAPPERS.

ALPHABETICAL REFERENCES TO DRAWINGS.

A Main Driving Pulley, 16 in . dia. x $41 / \not \mathrm{in}$. face; $51 / 4 \mathrm{in}$. face for Two-beater Machine.
A^{1} Beater Driving Pulley, 30 in . dia. $\mathrm{x} 4 \frac{1}{4} \mathrm{in}$. face for 18 - in . Rigid Beater ; 22 in. dia. x $41 / 4 \mathrm{in}$. face for Carding Beater.
B Beater Pulley, 9 in. dia. $\mathrm{x} 41 / 4 \mathrm{in}$. face (occasionally 10 in. dia.)
B^{1} Feed Pulley, 3 in . to 13 in . dia. x $21 / 4 \mathrm{in}$. face; advancing by $1 / 2 \mathrm{in}$. increments.
B2 Calender Section Fan Driving Pulley, 6 in. dia. x $21 / \nmid \mathrm{in}$. face for $18-\mathrm{in}$. Rigid Beater, and 8 in . dia. $\mathrm{x} 21 / 4 \mathrm{in}$. face for Carding Beater.
B^{3} Calender Fan Pulley, 8 in . dia. x $21 / 4 \mathrm{in}$. face.
C Driving Pulley for Side Shaft, etc., 12 in . dia. x $21 / 4 \mathrm{in}$. face.
C^{1} Evener Cross Shaft Bevel Gear, 27 T.
C² Evener Cross Shaft Change Gear, 55-35 T; diminishing by one tooth.
D Side Shaft Bevel Gear, Feed End, 27 T.
D ${ }^{1}$ Side Shaft Bevel Gear, Calender End, 18 T.
E Large Clutch Bevel Gear, 60 T.
E ${ }^{1}$ Small Clutch Gear, 17 T.
F Calender Cross Shaft Driven Gear, 96 T.
F^{1} Front Lap Calender Roll Driving Gear, 12 T.
F 2 Calender Cross Shaft Gear, driving Calender Rolls, 14 T.
G Large Double Intermediate, driving Buttom Calender Roll, 50 T.
G ${ }^{1}$ Small Double Intermediate, driving Third Calender Roll 27 T .
G ${ }^{2}$ Bottom Calender Roll, 7 in. dia.
H 3d Calender Roll Gear, 21 T.
$\mathrm{H}^{1} 3 \mathrm{~d}$ Calendar Roll, $51 / 2 \mathrm{in}$. dia.
I \quad d Calender Roll Gear, 22 T.
$I^{1} \quad 2 d$ Calender Roll, $51 / 2$ in. dia.
J Top Calender Roll Gear, 23 T.
J^{1} Top Calender Roll, $51 / 2 \mathrm{in}$. dia.
K Top Stripping Roll Intermediate Gear, 17 T .
K^{1} Top Stripping Roll Intermediate Gear, 17 'T.
L Top Stripping Roll Gear, 14 T.

M Bottom Stripping Roll Gear, 14 T.
M^{1} Bottom Cage Driving Gear, 23 T .
N Bottom Cage Intermediate Gear, 20 T.
O Bottom Cage Gear, 181 T.
O^{1} Top Cage Gear, 181 T .
P Bottom Cone Change Gear, $35-55 \mathrm{~T}$; advancing by one tooth.
P^{1} Bottom Cone, driving Top Cone. Letters also represent diameters near the middle of Cones.
Q Top Cone.
Q^{1} Worm Shaft Driving Spiral Gear, 9 T.
R Worm Shaft Spiral Gear, 9 T.
R1 Worm Shaft Worm, double threaded, right hand; equivalent to Gear having two teeth.
S Worm Gear, 78 T.
S ${ }^{1}$ Feed Roll and Apron Roll Driving Gear, 12 T.
T Feed Roll, 3 in. dia.
T^{1} Feed Roll Gear, 24 T .
U Apron Roll Gear, 29 T .
V Front Lap Calender Roll, 9 in. dia.
V^{1} Front Lap Calendar Roll Gear, 53 T.
V2 Back Lap Calendar Roll Driving Gear, 24 T.
W Back Lap Calender Roll Intermediate Gear, 22 T.
X Back Lap Calender Roll Gear, 24 T.
X^{1} Back Lap Calender Roll, 9 in. dia.

INTERMEDIATE AND FINISHER LAPPERS.

DRAFT CALCULATIONS.

Rules:
$\frac{T^{1} \times S \times R \times Q \times P \times C^{1} \times D^{1} \times E^{1} \times F^{1} \times \text { dia. of } V}{S^{1} \times R^{1} \times Q^{1} \times P^{1} \times C^{2} \times D \times E \times F \times V^{1} \times d i a . \text { of } T}=$ Draft.
The draft is variable and is figured between the Feed Roll and the Lap Calender Roll. The normal position of the Evener Cone Belt when four laps are on the apron is 5 in . from the large end of the top cone, and at this point the ratio of diameters is 1.6 ; that is, $\frac{Q}{\mathrm{P}^{1}}=1.6$.
The draft change gears are Bottom Cone Change Gear (P) and Evener Cross Shaft Change Gear C².
Omitting these gears in the above rule,
$\frac{T^{1} \times S \times R \times Q \times C^{1} \times D^{1} \times E^{1} \times F^{1} \times \text { dia. of } V}{S^{1} \times R^{1} \times Q^{1} \times P^{1} \times D \times E \times F^{1} \times V^{1} \times d i a \text { of } T}=\begin{gathered}\text { Draft Con- } \\ \text { stant. }\end{gathered}$
Draft Constant $x \frac{P}{C^{2}}=$ Draft.
$\frac{\text { Draft Constant }}{\text { Draft required }}=\frac{\mathrm{C}^{2}}{\mathrm{P}}$
Examples:
If the various gears are standard and the ratio 1.6 is used for $\frac{\mathrm{Q}}{\mathrm{P}^{1}}$
$\frac{24 \times 78 \times 9 \times 1.6 \times 27 \times 18 \times 17 \times 12 \times 9}{12 \times 2 \times 9 \times 1 \times 27 \times 60 \times 96 \times 53 \times 3}=\begin{aligned} & 4.503=\text { Draft Con- } \\ & \text { stant. }\end{aligned}$
If Bottom Cone Change Gear $(\mathrm{P})=40 \mathrm{~T}$, Evener Cross Shaft Change Gear $\left(\mathrm{C}^{2}\right)=50 \mathrm{~T}$. (The sum of the teeth on gears P and C^{2} must be 90 .)
$\frac{4.503 \times 40}{50}=3.602=$ Draft.
If Draft required $=4.50$,
$\frac{4.503}{4.50}=1.0=\frac{45}{45}=\frac{\mathrm{C}^{2}}{\mathrm{P}}$

PRODUCTION CALCULATIONS.

Rules:
R.P.M. of Beater x dia. of $\mathrm{B}^{1} \times \mathrm{C}^{1} \mathrm{x}$

$\frac{D^{1} \times E^{1} \times F^{1}}{\text { dia. of C' } \times \mathrm{D} \times \mathrm{E} \times \mathrm{F}^{1} \times V^{1}}=$| R.P.M. of 9 -in. Cal- |
| :---: |
| ender Roll (V). |

R. P. M. of 9 -in. Calender Roll (V) x Circum.
of $\mathrm{V} \times \mathrm{x}$. per yd . of Lap x 600 (min. in 10
hours)
36 (inches in 1 yd .) $\times 16$ (oz. in 1 lb .) $=$ hours.
Examples:
If R. P. M. of Beater $=1,450$, dia. of Feed Pulley (B^{1}) $=5$ inches. Lap, 12 oz . per yd. Ten per cent. allowance for stops, etc.
$\underline{1,450 \times 5 \times 27 \times 18 \times 17 \times 12}=7.267 \mathrm{R} . \mathrm{P} . \mathrm{M}$. of $9-\mathrm{in}$. Cal$12 \times 27 \times 60 \times 96 \times 53=\quad$ ender Roll (V).
$\frac{7.267 \times 28.27 \times 12 \times 600 \times .90}{36 \times 16}=2,310 \mathrm{lbs}$. in 10 hours.
Short rule for figuring production in lbs. per 10 hours when Beater makes 1,450 R. P. M. Ten per cent. allowance for stops, etc., and all gears standard.
$38.5 \times$ dia. of Feed Pulley x oz. per yd . of Lap $=$ Lbs. in 10 hours.

CALCULATIONS FOR LENGTH OF LAP.

Rules:
Knock-off Gear x Cir. of 7 in. Roll x Bevel

$\frac{\text { Driven Gear }}{\text { Bevel Driving Gear x } 36 \text { in. }}=$| No. of Yds. |
| :---: |
| in Lap. |

Example:

$$
\frac{5 \times 21.9912 \times 31}{19 \times 36 \mathrm{in} .}=54.81 \mathrm{Yds}
$$

NOTE-With our latest gearing arrangement, the number of teeth in Knock-off Worm Gear corresponds to the number of yards in the lap.

INTERMEDIATE AND FINISHER LAPPERS.

DRAFT TABLE.

		苞			\#			范
5.	35	7.08	48	42	5.15	41	49	3.75
54	36	6.75	$4 i$	43	4.92	40	50	3.60
53	$3 i$	6.45	46	44	4.71	39	51	3.14
52	38	6.16	45	4)	4.50	38	52	3.29
31	39	5.89	4	46	4.31	37	53	3.14
50	40	5. 63	43	47	4.12	36	54	3.00
49	41	5.38	42	48	3.94	35	5.5	2.86

AUTOMATIC HOPPER FEEDER

SELF-FEEDING OPENER (30-IN. CYLINDER) WITH CAGE SECTION AND CALENDER HEAD

BEATER BREAKER LAPPER

SELF-FEEDING OPENER (18-IN. BEATER) AND SINGLE
BEATER BREAKER LAPPER

SELF-FEEDING OPENER (18-IN. BEATER) CONNECTED BY TRUNKING TO A SINGLE BEATER BREAKER LAPPER WITH GAUGE BOX AND CONDENSER

SELF-FEEDING OPENER (30-IN. CYLINDER) CONNECTED BY TRUNKING TO A SINGLE BEATER BREAKER LAPPER WITH GAUGE BOK AND CONDENSER

SINGLE BEATER INTERMEDIATE OR FINISHER LAPPER

THREE-PROCESS SYSTEM OF PICKING WITH 20 FT. OF AUTOMATIC CLEANING TRUNK
ALSO CONDUCTING TRUNK BETWEEN OPENER AND BREAKER

REVOLVING FLAT CARDS.

Our Cards are extensively used, and have won for themselves a high reputation for the quality and quantity of work they will do, the small percentage of waste made, and their durability and simplicity.

CHARACTERISTICS.

1-Rigid Bend, mathematically correct at all stages of wear of the wire.

2-Perfect concentricity of Flats to Cylinder. Cylinder Pedestals are adjustable.

3-Arrangements for adjusting Flats whereby accuracy to the thousandth part of an inch is obtained.

4-Better quality of yarn made from the same cotton, or equally good yarn made from cheaper cotton.

5-Card Clothing throughout is of best Hardened and Tempered Steel Wire, Plough Ground or Needle Pointed.

6-Patent Doffer Slow Motion, to facilitate piecing up of broken sliver.
r-Patent method of securing Clothing to the Flats; neatest, cleanest and most effective.

8-Patent Top Flat Grinding Arrangement for grinding from the working seating of the Flats.

9—Patent Flat Stripping Motion, which insures perfect stripping without damage to the Clothing on the Flats.

10-Back Bends or Circles for supporting Flats and preventing sagging and stretching of chains.

The following paragraphs briefly describe some of the points of advantage in the design and construction of our machines:

CYLINDERS AND DOFFERS are carefully balanced at a high speed and are ground after being turned, making a perfectly true surface for the Card Clothing.
good selvages - Both Cylinders and Doffers are clothed to the extreme edges, which prevents ragged selvages.

PROTECTION OF CLOTHING-The Doffers are provided with flanges to protect the Clothing, keep the edges firm and prevent the wire from being knocked down. Turned iron flanges on the Bends, and Segment Rings fixed to the inside of the lower part of the framing protect the edges of the Cylinders all the way round. The Doffers are made $3 / 8 \mathrm{in}$. wider than the Cylinders in order to keep the edges of the latter clean.

PREVENTION OF ACCUMULATION OF FLY-The Segment Rings which are fitted close to the edges of the Cylinder project in such a way as to form a circle two inches larger than the diameter of the Cylinder. The Underscreens are attached to these Segment Rings, and this arrangement makes it impossible for fly to collect inside the Screens or about the edges of the Cylinders and Doffers.
electrical tests-All Bends and Flats are tested at our works by special electrical apparatus, and this method of testing gives greater accuracy than can be obtained in any other way. More accurate Bends and Flats make closer settings possible.

PERCENTAGE AND ALL CASING-OFF PLATES are made of steel, polished inside and out, and bent to conform to the surface of the cylinder. Each plate is set by gauge to the Cylinder, and the closing up of all air spaces makes the accumulation of fly and cloudy carding impossible.

ADJUSTMENTS-Convenient adjusting arrangements with setting screws and lock nuts are provided for the Knife Plates, Doffers and Licker-ins. These are all on the outside of the machine and are accessible and easily adjusted.

REVOLVING FLAT CARD (LEF'T HAND)

LICKER-IN SHIELDS-To prevent the accumulation of fly around the bearings and pedestals and the climbing of oil over the ends of the Licker-in onto the clothing, we supply stationary shields at each end.

UNDERSCREENS AND FEED PLATES - Our Underscreens are specially heavy and well constructed, and our Feed Plates are very carefully finished and fitted. We supply special Underscreens and Feed Plates for long staple cotton.

ADJUSTABLE CYLINDER PEDESTALS-The bearings for the Cylinders are made of phosphor bronze and the pedestals are adjustable either vertically or horizontally. This is a very important point, because the concentricity of the Cylinder with the Bends can be maintained as the bearings wear. The construction of our Card side is such that a very rigid support is given to the pedestals.

FLAT RELEASE-This is a very simple and convenient attachment to the Flat Driving Arrangement, which makes one of the worm gears loose on its shaft and enables the Flats to be easily turned by hand with a suitable wrench.

CONICAL BUSHINGS-The Cylinders are fastened onto the shafts by means of split conical bushings which are forced into place and prevent any possibility of the Cylinders working loose.

PLAN VIEW

PATENT SETTING ARRANGEMENT FOR FLATS.

The cuts on page 66 are sectional and plan views of this arrangement.

A-Index Nut which bears against outside of Rigid Bend D.

B-Setting Key with fluted teeth, which gear into the teeth on Nut C.

C-Toothed Steel Nut which bears against the inside of Rigid Bend D.

D-Rigid Conical Bend which is moved in or out.

E-Flexible Conical Bend which rests on D and carries the Flats.

As the Index Nuts A and the Toothed Nuts C are turned one way or the other, they move the Rigid Bend D in or out, and thus raise or lower the Flexible Bend E.

The Flats rest on the Flexible Bend E and are raised or lowered with it. Each division on the Index Nuts A represents $\frac{10}{1000}$ part of an inch, and by turning these Nuts one division, the Flats are raised or lowered to this extent.

Our Patent Conical Concentric Bends have five setting points on each side of the machine. The Bends and Flats can be kept perfectly concentric with the Cylinder at every point until the Clothing is worn out. No other arrangement has secured such accuracy nor has any adjustment yet been invented which approaches this one for reliability and simplicity.

When the Flats are once set they remain set, and cannot be tampered with. Special wrenches are required for turning the Index Nuts A and Lock Nuts C, and if these wrenches are kept by the one who has charge of the settings, no unauthorized person can change same.

Close accurate settings enable our Card to do the finest quality of work and at the same time give the maximum production.

WILLIAMS PATENT STRIPPING MOTION.

This Motion enables the Card to do better work and increases the life of the Flat clothing.

Perfect Flat Stripping can only be obtained with a Motion which keeps the Comb at an even and fixed distance from the wire clothing at all points over the entire width of the Flat. The Williams Patent Stripping Motion, for which we hold sole

rights for America, meets this essential requirement and therefore does what no other Motion has succeeded in doing. In the old system, the Comb is kept at a fixed distance from the framing of the machine, which is correct as long as there is no variation in the position of the Flats as they pass under the Comb. In practice, it is impossible to
prevent a certain amount of tilting or raising of the Flats, due to the wearing of the chains and sprockets and also to dirt getting under the Flats. With the Williams system the stripping is perfectly done no matter what the tilting may be, and even if the Flats are forced away from their true position through any cause, the Comb follows the Flat and maintains its distance. There is no comb which will not catch and damage the wire if the setting becomes too close on account of the clearance not being kept uniform.

In the Williams Stripping Motion the Comb stock is mounted at each end in bearings which slide in guides away from or toward the Flats. The accurate setting of the Comb is maintained by means of shoes which press against the working seatings of the Flats and govern the position of the sliding Comb stock bearings. The shoes have adjusting screws to regulate the setting of the Comb, and the shape of the shoes is such as to allow for the heel of the flat. The sliding bearings of the Comb stock are pressed inward by springs which keep the shoes against the working seatings of the Flat. The Comb blade is given a receding motion which effectually strips all impurities from the wire. This action, together with the fact that it is impossible for the wire on the Flats to be forced into the Comb through the accumulation of dirt or fly on the blocks or Flat seatings, makes this Stripping Motion the most perfect on the market.

REVOLVING FLAT CARD

STANDARD DIMENSIONS.

Cylinder, 50 in . dia. on iron.
Doffer, 26 in. dia. on iron.
Licker-in, 9 in. dia., clothed with inserted metallic Saw Teeth.

110 Flats, 43 of which are working on the Cylinder at the same time.

HAND OF MACHINE-Cards are usually built Right Hand, i. e., with driving pulleys on right hand side when facing feed or lap. Left hand machines are built when specified.

DRIVING PULLEYS-20 in. dia., $31 / 8 \mathrm{in}$. face, T. \& L.

SPEED-Cylinder, 160 to $1 \% 0$ r. p. m., usually 165 r. p. m.

PRODUCTION-This is determined by the quality of carding required and the kind and grade of cotton used, and varies largely.

American 600 to $1,200 \mathrm{lbs}$. in 60 hours.
Egyptian 400 to 650 lbs . in 60 hours.
Sea Island 200 to 400 lbs . in 60 hours.
Peeler $\quad 300$ to 600 lbs in 60 hours.

FLOOR SPACE.

Length of Card over all ($10-\mathrm{in}$. coiler) 10 ft .4 in . Length of Card over all ($12-\mathrm{in}$. coiler) 10 ft .5 in . Width of Card, 40 in . wide on wire (40 in . to 41 in. lap) 5 ft .6 in .

Width of Card, 45 in . wide on wire (45 in. to 46 in. lap) 5 ft .11 in .

See page $\overbrace{2}$ for floor plan.

PLAN OF REVOLVING FLAT CARD

REVOLVING FLAT CARD.

ALPHABETICAL REFERENCES TO DRAWING.

A Feed Roll, $21 / 4 \mathrm{in}$. dia.
A ${ }^{1}$ Feed Roll Spur Gear, 17 Teeth.
A ${ }^{2}$ Large Plate Bevel Gear, usually 120 Teeth.
B Draft Change Gear, 10 to 30 Teeth.
B^{1} Side Shaft Bevel Gear, 22 Teeth 34.
C Doffer Bevel Gear 22 Teeth $;$ or 24 .
C^{1} Grinding Pulley, 11 in . dia., $23 / 4 \mathrm{in}$. face.
C2 Doffer Gear, 180 Teeth.
D Disengaging Intermediate Gear, 51 Teeth.
E Calender Intermediate Gear, 51 Teeth.
F Calender Change Gear, 18 or 19 Teeth.
F^{1} Bottom Calender, $27 / 8 \mathrm{in}$. dia.
F ${ }^{2}$ Coiler Driving Gear, 24 or 25 Teeth.
G Coiler Change Gear, 16 Teeth.
G^{1} Coiler Driving Bevel Gear, 20 Teeth.
H^{1} Coiler Top Upright Bevel Gear, 20 Teeth.
I Coiler Calender Bevel Gear, 20 Teeth-
I $^{1} \quad 1$ st Coiler Calender Spur Gear, 20 Teeth.
I ${ }^{2}$ 1st Coiler Calender, 2 in. dia.
J and Coiler Calender, 2 in. dia.
J^{1} 2nd Coiler Calender Spur Gear, 20 Teeth.
N Driving Pulley, 20 in . dia., $31 / 8 \mathrm{in}$. face; Band Pulley, $213 / 4$ in. dia.
N1 Licker-in Driving Pulley, 19 in . dia., $21 / 4 \mathrm{in}$. face.
N2 Flat Driving Pulley, $6^{1 / 2}$ in. dia., $3^{1 / 4}$ in. face.
N^{3} Comb Driving Band Pulley, 22 in . dia. for $\frac{5}{16} \mathrm{in}$. dia. band.
O Licker-in Driven Pulley, 7 in . dia., $21 / 4 \mathrm{in}$. face.
O^{1} Barrow Gear Driving Pulley, 6 in. dia., $21 / 8 \mathrm{in}$. face.
P Barrow Gear Driven Pulley, 9 in. dia., $1 \frac{1}{2}$ in. face.
P^{1} Barrow Spur Gear, usually 26 Teeth, also 24 and 28 Teeth.
Q Doffer Lever Intermediate Gear, 104 Teeth.
Q^{1} Doffer Change Gear, 17 to 40 Teeth.
R 1st Lap Roll Intermediate Gear, 40 Teeth.
S 2nd Lap Roll Intermediate Gear, 40 Teeth.
T Lap Roll Gear, 48 Teeth.
T ${ }^{1}$ Lap Roll, 6 in. dia.
$\left.\mathrm{U}^{1}\right\}$ Double Band Intermediate Pulley for Comb $\left\{\begin{array}{l}93 / \mathrm{in} \text {. dia. } \\ { }_{6} \mathrm{in} \text {. dia. }\end{array}\right.$
$\stackrel{V}{V 1}\}$ Comb Box Pulley $\left\{\begin{array}{l}33 / 8 \mathrm{in} . \text { dia. } \\ 41 / 8 \mathrm{in} . \text { dia. }\end{array}\right.$
W Doffer Comb.

REVOLVING FLAT CARD.

F^{2} Coiler Driving Gear $\left\{\begin{array}{l}24 \text { Teeth for } 10-\mathrm{in} \text {. Coiler. } \\ 25 \text { Teeth for } 12-\mathrm{in} . \text { Coiler. }\end{array}\right.$
F 3 Top Calender Driving Gear, 23 Teeth.
G Coiler Change Gear, 16 Teeth.
G^{1} Coiler Driving Bevel Gear, 20 Teeth.
H Coiler Middle Upright Bevel Gear, 20 Teeth.
H^{1} Coiler Top Upright Bevel Gear, 20 Teeth.
H^{2} Tube Gear Driving Gear, 25 Teeth.
H^{3} Upright Shaft Can Bottom Driving Gear, 15 Teeth.
H^{4} Coiler Double Intermediate Gears $\{44$ Teeth.
H^{5} \}Coiler Double Intermediate Gears $\{15$ Teeth.
I Coiler Calender Bevel Gear, 20 Teeth.
I $^{1} \quad 1$ st Coiler Calender Spur Gear, 20 Teeth.
$\mathrm{I}^{2} \quad 1$ st Coiler Calender, 2 in . dia.
$\left.\begin{array}{l}\mathrm{K} \\ \mathrm{K}^{1}\end{array}\right\}$ Coiler Double Intermediate Gears $\left\{\begin{array}{l}44 \text { Teeth. } \\ 15 \text { Teeth. }\end{array}\right.$
L Tube Gear, 55 Teeth for $10-\mathrm{in}$. Coiler, 98 Teeth for $1 \because-\mathrm{in}$. Coiler.
L^{1} Can Bottom Intermediate Gear $\left\{\begin{array}{l}17 \text { Teeth for } 10-\mathrm{in} . \text { Coiler. } \\ 22 \text { Teeth for } 12-\mathrm{in} \text {. Coiler. }\end{array}\right.$
L² Can Bottom Gear, 84 Teeth.
M Top Calender Gear, 34 Teeth.
M^{1} Top Calender, $4 \frac{1}{4} \mathrm{in}$. dia.

REVOLVING FLAT CARDS.

DRAFT CALCULATIONS.

Rules:
$\frac{T \times A^{2} \times B^{1} \times C^{2} \times F^{2} \times \text { dia. of } I^{2}}{A^{1} \times C \times F \times G \times d i a . \text { of } T^{1}}=$ Draft Constant.
$\frac{\text { Draft Constant }}{\text { Draft Change Gear (B) }}=$ Draft.
$\frac{\text { Draft Constant }}{\text { Draft required }}=$ Draft Change Gear (B).
Examples:
If Plate Bevel Gear $\left(\mathrm{A}^{2}\right)=120 \mathrm{~T}$, Side Shaft Bevel Gear $\left(\mathrm{B}^{1}\right)=22 \mathrm{~T}$, Doffer Bevel Gear $(\mathrm{C})=22 \mathrm{~T}$. All other gears standard.
$\frac{48 \times 120 \times 22 \times 180 \times 24 \times 2}{17 \times 22 \times 19 \times 16 \times 6}=1604.95=$ Draft Constant.
If Draft Change Gear $(B)=18 \mathrm{~T}$,
$\frac{1604.95}{18}=89.2=$ Draft .
If Draft required $=100$,
$\frac{1604.95}{100}=16 \mathrm{~T}=$ Draft Change Gear (B).

PRODUCTION CALCULATIONS.

Rule:
R. P. M. of Cylinder x dia. of $N^{1} x$ dia. of

$\frac{\mathrm{O}^{1} \times \mathrm{P}^{1} \times \mathrm{Q}^{1}}{\text { dia. of } \mathrm{O} \times \text { dia. of } \mathrm{P} \times \mathrm{Q} \times \mathrm{C}^{2}}=$| R. P. M. of |
| :---: |
| Doffer. |

Example:
If R. P. M. of Cylinder $=165$, Barrow Spur Gear $\left(\mathrm{P}^{1}\right)=$ 26 T , Doffer Change Gear $\left(Q^{1}\right)=29 \mathrm{~T}$. All other gears standard.

$$
\frac{165 \times 19 \times 6 \times 26 \times 29}{7 \times 9 \times 104 \times 180}=12.03 \text { R. P. M. of Doffer. }
$$

Rule:
R.P. M. of Dofferx $C^{2} \times \mathrm{F}^{2} \times$ Circum. of $\mathrm{I}^{2} \mathrm{x}$ Wt. $\frac{\text { of Sliver in grains x } 600(\mathrm{~min} \text {. in } 10 \text { hours) }}{\mathrm{F} \times \mathrm{Gx} \times, 000 \text { (grains in } 1 \mathrm{lb} \text {.) } \times 36 \text { (inches in }}=\begin{gathered}\text { Lbs. in } \\ 10 \text { hours. }\end{gathered}$ 1 yd .)

Example:
If R. P. M. of Doffer $=12$. Sliver 60 grains per yd. Five per cent. allowance for cleaning, stripping, etc. All gears standard.
$\frac{12 \times 180 \times 24 \times 6.283 \times 60 \times 600 \times .95}{19 \times 16 \times 7,000 \times 36}=145 \mathrm{lbs}$. in 10 hours.
Short rule for production in lbs. per 10 hours with standard gears and 5 per cent. allowance for cleaning, stripping, etc.
.202 x R. P. M. of Doffer x grains per yd. of Sliver $=$ Lbs. in 10 hours.
To find the proper Doffer Change Gear for any required production, determine the proper R. P. M. of Doffer for the weight of Sliver in use from table on page 78, and then select the corresponding Doffer Change Gear by referring to table on page $i \%$.

REVOLVING FLAT CARD.

DOFFER CHANGE GEAR TABLE.

Doffer Change Gear	Rev. per Min. of 26 -in. Doffer based on 165 Rev. per Min. of Cylinder		
	Barrow Spur Gear		
	24 Teeth	26 Teeth	28 Teeth
17	6.51	7.05	7.59
18	6.89	7.46	8.04
19	7.27	7.88	8.49
20	7.66	8.29	8.93
21	8.04	8.71	9.38
22	8.42	9.12	9.83
23	8.80	9.54	10.27
24	9.19	9.95	10.72
25	9.57	10.37	11.17
26	9.95	10.78	11.61
27	10.34	11.30	12.06
28	10.78	11.61	12.50
29	11.10	12.03	12.95
30	11.48	12.44	13.40
31	11.8%	12.86	13.84
32	12.25	13.27	14.29
33	12.63	13.68	14.74
34	13.02	14.10	15.18
35	13.40	14.51	15.63
36	13.78	14.93	16.08
37	14.16	15.34	16.52
38	14.55	15.76	16.97
39	14.93	16.17	17.42
40	15.31	16.59	17.86

Note-Licker-in Driving Pulley, 19 in. dia.
Licker-in Driven Pulley, 7 in. dia.
Barrow Gear Driving Pulley. 6 in. dia.
Barrow Gear Driven Pulley, 9 in. dia.
Doffer Lever Intermediate Gear, 104 Teeth.
Doffer Gear, 180 Teeth.

REVOLVING FLAT CARD.

PRODUCTION PER DAY OF TEN HOURS.

Doffer $26^{\prime \prime}$ Dia.	Weight in grains of one yard of Sliver												
	30	35	40	45	50	55	60	65	70	75	80	85	90
R. P. M.	Lbs.	Lbs,	Lbs.	Lbs,	Lbs.	Lbs.							
6	36	42	48	55	61	67	73	79	85	91	97	103	109
$61 / 2$	39	46	53	59	66	72	\%9	85	92	98	105	112	118
7	42	49	57	64	71	78	85	92	99	106	113	120	127
71/2	45	53	61	68	76	83	91	98	106	114	121	129	136
8	18	57	65	73	81	89	97	105	113	121	129	13%	145
81/2	51	60	69	77	86	94	103	112	120	129	137	146	154
9	55	64	73	82	91	100	109	118	127	136	145	154	164
91/2	58	67	77	86	96	106	115	125	134	144	153	163	173
10	61	71	81	91	101	111	121	131	141	151	162	172	182
101/2	64	74	85	95	106	117	127	138	148	159	170	180	191
11	67	78	89	100	111	122	133	144	155	167	178	189	200
111/2	70	81	93	105	116	128	139	151	163	174	186	19\%	209
12	73	85	97	109	121	133	145	157	170	182	194	206	218
$12^{1 / 2}$	76	88	101	114	126	139	151	164	177	189	202	215	227
13	79	92	105	118	131	144	158	171	184	197	210	223	236
$13^{1 / 2}$	82	95	109	123	136	150	164	177	191	204	218	232	245
14	85	99	113	127	141	156	$1 \% 0$	184	198	212	226	240	254
$14^{1 / 2}$	88	102	117	132	146	161	176	190	205	220	234	249	264
15	91	106	121	136	151	16%	182	19%	212	227	242	257	273
151/2	94	110	125	141	15%	172	188	203	219	235	250	266	282
16	97	113	129	145	162	178	194	210	226	242	258	275	291
$161 / 2$	100	117	133	150	167	183	200	217	233	250	267	283	300
17	103	120	137	154	172	189	206	223	240	257	275	292	309
$171 / 2$	106	124	141	159	177	194	212	230	247	265	283	300	318
18	109	12%	145	164	182	200	218	236	254	273	291	309	327

Note -5 per cent. has been deducted in the above table for cleaning, stripping, etc.

REVOLVING FLAT CARD.

DRAFT TABLE.

Draft Change Gear	Plate Bevel Gear, 120 T. Side Shaft Bevel 22 T. Doffer Bevel Gear, 22 T. Draft Constant, 1604.95	Plate Berel Gear 120 T . Side Shaft Bevel 34 T. Doffer Bevel Gear, 24 ' 1 Draft Constant, 2273.68	Plate Bevel Gear 170 T. Side Shaft Bevel, 34 T. Doffer Bevel Gear, 24 T. Draft Constant, 3221.15
10	160.5		
11	145.9		
12	133.7	189.5	
13	123.5	174.9	
14	114.6	162.4	230.0
15	107.0	151.6	214.7
16	100.3	142. 1	201.3
17	94.4	133.7	189.5
18	89.2	126.3	179.0
19	84.5	119.7	169.5
20	80.2	113.7	161.0
21	76.4	108.3	153.4
22	73.0	103.3	146.4
23	69.8	98.9	140.0
24	66.9	94.7	134.2
25	64.2	90.9	128.8
26	61.7	87.4	124.0
27	59.4	84.2	119.3
28	57.3	81.2	115.0
29	55.3	78.4	111.1
30	53.5	75.8	107.4

Note-The draft is figured between the 6 in. dia. Lap Roll and 2 in. dia. Coiler Calender Rolls.

DECIMAL EQUIVALENTS.

1 ounce $=437.5$ grains	11 ounces $=4812.5$ grains
2 ounces $=875$ grains	$11 \frac{1}{2}$ ounces $=5031.25$ grains
3 ounces $=1312.5$ grains	12 ounces $=5250$ grains
4 ounces $=1750$ grains	$12 \frac{1}{2}$ ounces $=5468.75$ grains
5 ounces $=2187.5$ grains	13 ounces $=5687.5$ grains
6 ounces $=2625$ grains	$13 \frac{1}{2}$ ounces $=5906.25$ grains
7 ounces $=3062.5$ grains	14 ounces $=6125$ grains
8 ounces $=3500$ grains	$14 \frac{1}{2}$ ounces $=6343.75$ grains
9 ounces $=3937.5$ grains	15 ounces $=6562.5$ grains
10 ounces $=4375$ grains	$15 \frac{1}{2}$ ounces $=6781.25$ grains
$10 \frac{1}{2}$ ounces $=4593.75$ grains	16 ounces $=7000$ grains

CARD CLOTHING.

The English system of numbering Card Clothing is now generally used by Cotton Mills. We give below the numbers and points per square foot:

Numbers	Pts. per Square Foot	Numbers	Pts. per Square Foot	
80 s	.	57,600	110 s	.
90 s	.	64,800	120 s	
100 s	.	72,000	130 s	

The following numbers are generally used for Cylinders: Coarse, heavy work, 80 s and 90 ; medium to fine work, 100 s and 110 s ; fine work, 120 s and 130 s .

Doffers are usually 10 numbers higher or finer than Cylinders.

There is considerable variation in the Clothing used for Tops. Some prefer thinner set than the Cylinders, others about the same as the Cylinders, and a few the same numbers as the Doffers.

DRAWING FRAME (ONE HEAD OF FOUR DELIVERIES)-ELECTRIC STOP MOTIONS

DRAWING FRAMES.

The Howard \& Bullough Patent Electric Stop Motion Drawing Frame has proved one of the most successful machines ever invented, and there are large numbers of deliveries at work in every Cotton Spinning country.

We build both Electric and Mechanical Stop Motion Frames, but the great majority of our orders are for machines with Electric Stop Motions.

The quality of sliver produced by these machines cannot be surpassed; a great saving in waste "single" and roller laps is effected, and production is increased.

Machines stop:
1st-When sliver breaks at back or a can runs out.
$2 d$-When top or bottom front roll laps up.
3d-When sliver breaks in front.
4th-When cans are full.
5 th-When back electric roll or clearer laps up.
On account of the positive and quick action of the Electric Stop Motions, machines can be run at a much higher speed, in case of necessity, than Mechanical Stop Motion Frames.

The tops of Electric Stop Motion Frames, being free from the many small parts and projections which are a necessity on Mechanical Stop Motion Frames, are much more easily kept clean, and "fly" is not carried into the sliver, besides which a great many delicate and troublesome Mechanical Stop Motion parts are done away with.

DRAWING FRAME (ONE HEAD OF FOUR DELIVERIES) - MECHANICAL STOP MOTIONS

FRAMING AND CONSTRUCTION-The machines are built with low, rigid framing. Can tables set into or on top of the floor.

BOTTOM FLUTED ROLLS are made in one length and are irregularly fluted so as to prevent cutting of top rolls. The usual diameters are $13 / 8 \mathrm{in}$. front, $11 / 8 \mathrm{in}$. second, third and fourth lines.

TOP ROLLS are usually 1 in . dia. on iron. The front line can have Loose Boss or Loose Ends; the latter are now in extensive use and are generally preferred.

ROLLER STANDS are made with separate adjustable slides or bearings, so arranged that the top and bottom rolls move together when setting for different lengths of staple. The Roller Stands and Slides have brasses cast in them for roller bearings.

CALENDER ROLLS are made of steel, turned, ground and polished.

DRAFT GEARING-All Draft and Roller Gears are cut. Changes of Draft are very easily made, and the gearing is well protected with polished covers.

COILERS are made for cans 36 ins. long, $9,10,11$ or 12 ins. dia. as required.

TENSION-Our fine pitch gearing for the take-up of the sliver between the fluted rolls and the Calender rolls enables a nice adjustment to be made for either ordinary or metallic rolls. and reduces the stretching, sagging and breakage of the sliver, preventing stoppage and waste.

TRUMPETS-These are made separate from the calender plates and can easily be taken out. This method is an advantage over the old style, as trumpets wear in time and when worn do not sufficiently condense the sliver. With this system they can easily be replaced.

BACK GUIDES for both Electric and Mechanical Stop Motion Frames are designed so as to separate the slivers and keep kinks from going into the rolls, thus preventing lumpy and uneven work.

FRONT VIEW OF DRAWING FRAME WITH CANS REMOVED

CLEARERS-Both top and bottom rolls have Clearers. We apply a patented and very successful Clearer to the Calender rolls which prevents fly from sticking to them and being carried into the sliver.

WEIGHT RELIEVING MOTION-This is applied to all frames for taking the pressure off the rolls when the frames are stopped.

All rolls are weighted separately. Usual weights are 20 lbs. front line; 18 lbs . second line; 16 lbs . third line; 14 lbs . fourth line.

TRAVERSE MOTION is applied to all frames with leather covered top rolls.

METALLIC TOP AND BOTTOM ROLLS-The front bottom roll is usually $13 / 8 \mathrm{in}$. dia., and the other three lines of bottom rolls as well as the top rolls, all $11 / 8 \mathrm{in}$. dia.

Front and second lines are usually 32 pitch; third line 24 pitch and back line 16 pitch. The top rolls have Loose Ends. Weights usually 14 lbs . on all lines.

ERMEN TOP CLEARERS-The cloth of these Clearers revolves over 2 rolls (one of which is positively driven) and comes in contact with all the top rolls. This revolving clearer is placed inside of our top clearer cover, and is stripped by a Comb through an opening in the top of the cover. This clearer meets with great favor in fine mills, where combed long staple cotton is worked.

DRIVING PULLEY AND SPEED-The Driving Pulley on the Bottom Shaft is usually 16 in . dia., 3 in . or 4 in . face and can be placed at either end of the frame. The usual speed of this shaft is $250 \mathrm{r} . \mathrm{p}$. m., which gives a calculated speed of 363 r. p. m. of Front Roll. One rev. of shaft equals $1_{1 \frac{5}{1}}^{\frac{5}{1}}$ of Front Roll.

FLOOR PLANS OF DRAWING FRAMES.

ONE HEAD OF FIVE DELIVERIES. $10^{\prime \prime}$ COILER.

ONE HEAD OF FIVE DELIVERIES $12^{\prime \prime}$ COILER.

ONE HEAD OF SIX DELIVERIES. $10^{\prime \prime}$ COILER.

ONE HEAD OF SIX DELIVERIES 12'COILER.

> TWO HEADS OF SIX DELIVERIES EACH. $10^{\prime \prime}$ COILER.

TWO HEADS OF SIX DELIVERIES EACH 12" COILER.

10"COILER ZIGZAG.

LENGTHS OF DRAWING FRAMES, 16-IN. GAUGE.

Number of Heads per Frame	Number of Deliveries per Head						
	2	3	4	5	6	7	8
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 5-61 / 2^{\prime \prime} \\ & 10^{\prime}-11^{\prime \prime} \\ & 14^{\prime}-8^{\prime \prime} \\ & 19^{\prime}-234^{\prime \prime} \\ & 23^{\prime}-91^{\prime \prime} \\ & 28^{\prime}-41^{\prime \prime \prime} \\ & 32^{\prime}-11^{\prime \prime} \\ & 37^{\prime}-53^{\prime} \end{aligned}$	$\begin{aligned} & 6^{\prime}-101 / 2 \\ & 12^{\prime}-91^{\prime \prime} \\ & 18^{\prime}-8^{\prime \prime} \\ & 24^{\prime}-63^{\prime \prime \prime} \\ & 30^{\prime}-51^{\prime \prime \prime} \\ & 36^{\prime}-41^{\prime \prime \prime} \\ & 42^{\prime}-3^{\prime \prime} \\ & 48^{\prime}-13 / 4 \end{aligned}$	$\begin{aligned} & 8^{\prime}-21 / 1^{\prime \prime} \\ & 15^{\prime}-51^{\prime \prime \prime} \\ & 22^{\prime}-8^{\prime \prime} \\ & 29^{\prime}-103^{\prime} \\ & 3 \gamma^{\prime}-11 / 2^{\prime \prime} \\ & 44^{\prime}-41^{\prime \prime \prime} \\ & 51^{\prime}-7^{\prime \prime} \\ & 58^{\prime}-93 / 4 \end{aligned}$	$\begin{aligned} & 9^{\prime}-61^{\prime \prime \prime} \\ & 18^{\prime}-11^{\prime \prime \prime} \\ & 26^{\prime}-8^{\prime \prime} \\ & 35^{\prime}-23^{\prime \prime \prime} \\ & 43^{\prime}-91^{\prime \prime} \\ & 52^{\prime}-41^{\prime \prime \prime} \\ & 60^{\prime}-11^{\prime \prime} \\ & 69^{\prime}-53_{+}^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10^{\prime}-10^{1 / 2} \\ & 20^{\prime}-91^{\prime \prime} \\ & 30^{\prime}-8^{\prime \prime} \\ & 40^{\prime}-63 / 4 " \\ & 50^{\prime \prime}-51 / 2^{\prime \prime} \\ & 60^{\prime}-41^{\prime \prime} \\ & 60^{\prime}-3^{\prime \prime} \\ & 80^{\prime}-13_{4}^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime}-21_{2}^{\prime \prime} \\ & 23^{\prime}-51^{\prime \prime \prime} \\ & 34^{\prime}-8^{\prime \prime} \\ & 45^{\prime}-103^{\prime \prime \prime} \\ & 57^{\prime}-11^{\prime \prime \prime} \\ & 68^{\prime}-4^{1 / 4} \\ & 79^{\prime}-7^{\prime \prime} \\ & 90^{\prime}-93 / 4 \end{aligned}$	$\begin{aligned} & 13^{\prime}-61 / 2^{\prime \prime} \\ & 26-11^{\prime \prime} \\ & 38^{\prime}-8^{\prime \prime} \\ & 51^{\prime}-23 / 4^{\prime \prime} \\ & 63^{\prime}-91^{\prime \prime} \\ & 76^{\prime}-41^{\prime \prime} \\ & 88^{\prime}-11^{\prime \prime} \\ & 101^{\prime}-55^{\prime \prime \prime} \end{aligned}$
Add for each Additional Head	$4-63 / 4$	$5^{\prime}-103 /{ }^{\prime \prime}$	$7-23 / 4$	$8-63 / 4$	$9^{\prime}-103 / 4{ }^{\prime \prime}$	11-23/4"	$12-6{ }^{3}+{ }^{\prime \prime}$

Above lengths are over all, including Driving Pulley.
For widths, see Floor Plans, pages 88 and 89 .
Drawing Frames are usually made with 4,5 or 6 deliveries per head or table, and 2,3 or 4 heads per frame, but can be made with more or less deliveries per head, and more or less heads per frame.

DRAWING FRAMES.

PRODUCTION PER DAY OF TEN HOURS.

	$\begin{gathered} \text { R. P.M. } \\ \text { of } \\ 13 / 8^{\prime \prime} \text { dia. } \\ \text { Front } \\ \text { Roll } \end{gathered}$	Weight in grains of one yard of sliver													
		35	40	45	50	55	60	65	70	75	80	85	90	95	100
		Lbs	Lbs.												
$\stackrel{n}{2}$$\stackrel{2}{2}$000	250	\%5	85	96	106	117	128	138	149	160	170	181	192	202	213
	275	82	94	105	117	129	141	152	164	176	18%	199	211	223	234
	300	$\delta 9$	102	115	128	141	153	166	179	192	204	217	230	243	256
	325	97	111	125	138	152	166	180	194	208	222	235	249	263	277
	350	104	119	134	149	164	179	194	209	224	239	253	268	283	298
	375	112	128	144	160	176	192	208	224	240	256	272	288	304	320
	400	119	136	153	170	18%	204	222	239	256	273	290	30%	324	341
	425	12%	145	163	181	199	217	235	253	$2 \% 2$	290	308	326	344	362
	450	134	153	173	192	211	230	249	268	288	30%	326	345	364	383
$\begin{aligned} & \stackrel{n}{3} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \cline { 1 - 5 } \\ & 0 \end{aligned}$	250	99	113	12%	141	155	169	183	19\%	211	225	239	253	26%	282
	275	108	124	139	155	170	186	201	217	232	248	263	279	294	310
	300	118	135	152	169	186	203	220	236	253	$2 \% 0$	297	304	321	338
	325	128	146	165	183	201	220	238	256	2 T 4	293	311	329	348	366
	350	138	158	17%	197	217	236	256	$2 \% 6$	296	315	335	355	374	394
	375	148	169	190	211	232	253	$2 \pi 4$	296	317	338	359	380	401	422
	400	158	180	203	225	248	270	293	315	338	360	383	405	428	450
	425	167	191	215	239	263	287	311	335	359	383	407	431	455	479
	450	177	203	228	253	279	304	329	355	380	405	431	456	481	507

Note-In the above table 20 per cent. has been deducted for stops, cleaning, etc.

DRAWING FRAMES.

ALPHABETICAL REFERENCES TO DIAGRAM.

A Electric Roll Gear, 24 Teeth for Common Rolls, 20 Teeth for Metallic Rolls.

B Off End Back Roll Gear, 24 Teeth for Common Rolls, 29 Teeth for Metallic Rolls.
*C Small Double Intermediate, driving 3d Roll.
D Large Double Intermediate, driving 3d Roll, 40 Teeth for Common Rolls, 36 Teeth for Metallic Rolls.

E Off End 3d Roll Gear, 24 Teeth.
*F Off End $2 d$ Roll Gear.
*G Small Double Intermediate, driving 2d Roll.
*H Large Double Intermediate, driving 2d Roll.
I Off End Front Roll Gear, 20 Teeth.
J Back Roll Gear, 45 to 80 Teeth.
K Draft Change Gear, 45 to 70 Teeth.
*L Crown Gear.
*M Front Roll Gear.
N Front Roll Calender Driving Gear, 16 Teeth for Common Rolls, 19 Teeth for Metallic Rolls.
O and P Double Intermediate Gear, 52 and 91 Teeth for $10-\mathrm{in}$. Coiler, 62 and 108 Teeth for 12 -in. Coiler.
Q Calender Roll Gear, 58, 59, 60 Teeth for Common Rolls, 52, 53, 54 Teeth for Metallic Rolls.
R Coiler Horizontal Shaft Gear, 21 to 26 Teeth (driven by O through Carrier Gear).
\leftrightarrow Tube Wheel, 75 Teeth for $10-\mathrm{in}$. Coiler, 98 Teeth for 12 in. Coiler.

T Coiler Vertical Shaft, Top Bevel Gear, 32 Teeth for 10 in. Coiler, 37 Teeth for 12 -in. Coiler.

NOTE-For teeth on gears marked * refer to table on page 96.

DRAWING FRAMES.

DRAFT CALCULATIONS.

Rules:
$\frac{\text { AxJxLxNxPxdia. of Calender Roll }}{\text { B x M x O x } \mathrm{Q} \text { xdia. of Electric Roll }}=$ Draft Constant
Draft Constant
$\overline{\text { Draft Change Gear (K) }}=$ Draft.
$\frac{\text { Draft Constant }}{\text { Draft required }}=$ Draft Change Gear (K).
Examples:
If Common Rolls and $10-\mathrm{in}$. Coilers. Back Roll Gear (J) $=68$ T. Crown Gear $(\mathrm{L})=98$ T. Front Roll Gear (M) $=22 \mathrm{~T}$.
$\frac{24 \times 68 \times 98 \times 16 \times 91 \times 3}{24 \times 22 \times 52 \times 59 \times 1 / 8 \mathrm{in}}=383.34$ Draft Constant.
If Draft Change Gear $(\mathrm{K})=64 \mathrm{~T}$.
$\frac{383.34}{64}=5.99=$ Draft .
If Draft required $=5.48$
$\frac{383.34}{5.48}=\pi 0$ T. = Draft Change Gear (K).
The above figures are for Total Draft up to and including the 3 -in. dia. Calender Rolls. When Graduated Pitch Metallic Rolls are used, and it is desired to figure drafts between them, the following equivalents are approximately correct:
$13 / 2$-in. dia. Roll, 32 pitch, taken as $\frac{11}{6}$-in. or 1.83 -in. dia.
$1 / 1 /$-in. dia. Roll, 32 pitch, taken as $\frac{10}{6}$-in. or 1.67 -in. dia.
$11 /-\mathrm{in}$. dia. Roll, 32 pitch, taken as $\frac{9}{6}$-in. or 1.50 - in. dia.
1 -in. dia. Roll, 32 pitch, taken as $\frac{8}{6}$-in. or 1.33 -in. dia.
$11 / 8$-in. dia. Roll, 16 pitch, taken as 16 -in. or 1.67 -in. dia.
1 -in dia. Roll, 16 pitch, taken as $\frac{9}{6}$-in. or 1.50 -in. dia.

PRODUCTION CALCULATIONS

Rule:
R. P. M. of Front Roll \times N $\times \mathrm{P} \times$ Circum. of

Cal. Roll x Wt. of Sliver in grains $\times 600$ (min. in 10 hours)
$O \times \underset{\sim}{\mathrm{O}} 7,000$ (grains in 1 lb .) $\times 36$ (inches in 1 yd .)
Examples:
If Common Rolls, R. P. M. of $13 / 8-\mathrm{in}$. Front Roll $=350$, Front Roll Calender Driving Gear $(\mathbb{N})=16$ T., Double Intermediate Gear $(O)=5$ T. and $(P)=91$ T., Calender Roll Gear $(Q)=59$ T., Circum. of 3 -in. Cal. Roll $=9.42 \mathrm{Jin}$. Wt. of Sliver per yd. $=60$ grains. Twenty per cent. allowance for stops, etc. $10-\mathrm{in}$. Coiler.
$\frac{350 \times 16 \times 91 \times 9.425 \times 60 \times 600 \times .80}{52 \times 59 \times 7,000 \times 36}=179 \mathrm{lbs}$. in 10 hours.
If Metallic Rolls, R. P. M. of $13 / 8-\mathrm{in}$. Front Roll $=350$, Front Roll Calender Driving Gear (N)=19 T., Double Intermediate Gear $(O)=5 \cong T$. and $(P)=91$ T., Calender Roll Gear $(Q)=53$ T., Circum. of 3-in. Cal. Roll $=9.425 \mathrm{in}$. Wt. of Sliver per yd. $=60$ grains. Twenty per cent. allowance for stops, etc. $10-\mathrm{in}$. Coiler.
$\frac{350 \times 19 \times 91 \times 9.425 \times 60 \times 600 \times .80}{52 \times 53 \times 7,000 \times 36}=236 \mathrm{lbs}$. in 10 hours.
The greater production with Metallic Rolls over Common Rolls for a given number of revs. is due to the meshing of the flutes, which increases the effective circum. of the rolls about 33 per cent. This accounts for the difference in the gears driving the Calender Rolls.

Short rules for production in 10 hours based on 20 per cent. allowance for stops, etc., and $13 / 8 \mathrm{in}$. dia. front bottom roll.
Common Rolls-. $852 \times \mathrm{R}$. P. M. of Front Roll \times Wt. of Sliver in grains $=$ Lbs. in 10 hours.
Metallic Rolls-1.126 x R. P. M. of Front Roll x Wt. of Sliver in grains $=$ Lbs. in 10 hours.

DRAWING FRAMES.

GEARING COMBINATIONS, DRAFT CONSTANTS AND DRAFTS FOR MACHINES WITH $13 / 8-I N$.

FRONT ROLL.

	Number of Teeth in Gears								Draft Constant with 10 -in. Coiler	Total Draft with 10-in. Coiler	Draft Constant with 12 -in. Coiler	Total Draft with 12-in. Coiler
	C	F	G	H	J	K	L	M				
	36	29	30	38	45	68	94	26	205.90	3.03	204.95	3.01
	36	29	30	38	45	63	94	26	205.90	3.27	204.95	3.25
	36	30	29	40	45	59	94	26	205.90	3.49	204.95	3.47
	36	30	29	40	45	55	94	26	205.90	3.74	204.95	3.73
	36	30	26	40	48	67	98	22	270.60	4.04	269.35	4.02
	36	30	26	40	48	63	98	22	270.60	4.30	269.35	4.28
	36	34	26	40	48	60	98	22	270.60	4.50	269.35	4.48
	36	34	26	40	48	57	98	22	270.60	4.75	269.35	4.73
	36	34	24	40	48	54	98	22	270.60	5.01	269.35	4.99
	36	34	24	40	48	51	98	22	270.60	5.30	269.35	5.28
	36	36	24	40	68	70	98	22	383.34	5.48	381.58	5.45
	36	36	24	40	68	6%	98	22	383.34	5. 72	381.58	5.70
	36	38	24	40	68	64	98	22	38334	5.99	381.58	5.96
	36	38	24	40	68	61	98	22	383.34	6.28	381.58	6.25
	36	38	24	40	68	59	98	22	383.34	6.50	381.58	6.47
	36	38	24	40	68	57	98	22	383.34	6.73	381.58	6.70
	33	26	32	40	48	66	94	26	-200.22	3.04	199.30	3.02
	33	26	32	40	48	61	94	26	200.22	3.28	199.30	3.26
	33	26	32	40	48	57	94	26	200.22	3.51	199.30	3.50
	33	26	32	40	48	53	94	26	200.22	3.78	199.30	3.76
	33	28	32	40	53	68	98	22	272.40	4.01	271.14	3.99
	33	28	32	40	53	64	98	22	272.40	4.26	271.14	4.24
	31	28	30	40	53	60	98	22	272.40	4.54	271.14	4.52
	31	28	30	40	53	57	98	22	272.40	4.78	271.14	4.76
	31	30	30	40	53	54	98	22	272.40	5.04	271.14	5.02
	31	30	30	40	66	64	98	22	339.20	5.30	337.64	5.28
	31	32	30	40	66	61	98	22	339.20	5.56	337.64	5.54
	31	32	30	40	66	59	98	22	33920	5.75	337.64	5.73
	31	33	30	40	66	56	98	22	339.20	6.06	337.64	6.03
	31	33	30	40	66	54	98	22	339.20	6.28	337.64	6.25
	31	33	30	40	66	52	98	22	339.20	6.52	337.64	6.49
	31	33	28	40	66	50	98	22	339.20	6.78	337.64	6.75

The above constant and drafts are figured up to and including the $3-\mathrm{in}$. Calender Rolls. Draft Gear K is the usual change gear.

When making extreme draft changes the best results will be obtained by following the above arrangements of gearing.

TABLE FOR NUMBERING CARD OR DRAWING SLIVERS.

$\begin{aligned} & \text { Grains } \\ & \text { per } \\ & \text { Yard } \end{aligned}$	Hank	Grains per Yard	Hank	$\begin{aligned} & \text { Grains } \\ & \text { par } \\ & \text { lard } \end{aligned}$	Hank	$\begin{aligned} & \text { Grains } \\ & \text { par } \\ & \text { Yard } \end{aligned}$	Hank
30	. 278	48	. 174	66	. 126	84	. 099
31	. 269	49	. 170	67	. 124	85	. 098
32	. 260	50	. 167	68	. 122	86	. 097
33	. 252	51	. 163	69	. 121	87	. 096
34	. 245	52	. 160	\%0.	. 119	88	. 095
35	238	53	. 157	71	. 117	89	. 094
36	232	54	. 154	72	. 116	90	. 093
37	. 225	55	. 151	\%3	. 114	91	. 092
38	. 219	56	. 149	74	. 113	92	. 091
39	. 214	57	. 146	\%	. 111	93	. 090
40	. 208	58	. 144	76	. 110	94	. 089
41	. 203	59	. 141	77	. 108	95	. 088
42	. 198	60	. 139	78	. 107	96	. 08%
43	. 194	61	. 137	79	. 105	97	. 086
44	. 189	62	. 134	80	. 104	98	. 085
45	. 185	63	. 132	81	. 103	99	. 084
46	. 181	64	. 130	8 ?	. 102	100	. 083
47	. 17%	65	. 128	83	. 100		

$8.333 \div$ Wt. in grains of 1 yd . of Sliver = Hank.
$8.333 \div$ Hank $=$ Wt. in grains of 1 yd . of Sliver. $100 \div$ Wt. in grains of 12 yds. of Sliver $=$ Hank.
Refer to Table of Dividends, page 233.

EXPLANATION OF ELECTRIC STOP MOTIONS.

Our improved Magneto or Dynamo for producing current to operate the Stop Motions is designed on the "Induction" principle, so that the current is generated in the stationary winding, and no brushes or collectors are needed. This type of machine is very simple, requires little attention, and gives a steady current, no matter how much dirt, lint or oil collects on same.

The Drawing Frame is divided into two parts by means of insulations (indicated by the solid black portions of cut on opposite page). One part, shown with double cross lines, is connected to the Magneto through the down-rod A, and the other part through the down-rod B.

It will be seen that in the case of each Stop Motion the parts are kept from touching each other by cotton passing between them (cotton being a non-conductor of electricity) or are brought into contact with each other by rollers lapping up or by the pressure of the cotton in the full cans.

The machine stops when the electric circuit is completed, allowing the current to flow through Magnet T , which attracts finger U into engagement with Revolving Clutch V, and by a mechanical arrangement shifts the belt on to the loose pulley.

As the frame stops, the part X forces the finger U away from the Clutch, and the current is broken by the piece Y which moves out of contact with the spring Z. When the frame is running, Y is in contact with both the springs Z and J. As the machine stops, the movement of Y takes it out of contact with Z, but J should always press against Y .

STOP MOTION No. 1-C is the top electric roll which rests in Cap Bar D, and E is the bottom electric roll. As long as the sliver remains between the rolls they are kept apart and there is no circuit. When the sliver breaks or a can runs out the rolls come together and the frame knocks off.

STOP MOTION No. 2-The Top Clearer Cover H has a screw K on the under side. If the cotton laps around the top or bottom front roll, the top roll is lifted and comes in contact with screw K, which completes the circuit and the machine stops.

STOP MOTION No. 3-The cotton sliver prevents the calender rolls L and M from touching each other. If the sliver breaks, the rolls touch and the machine stops instantly.

STOP MOTION No. 4-When the cans at the front are full and cotton presses against the coiler top N , it is lifted into contact with the spring O, and the circuit is completed, stopping the machine.

STOP MOTION No. 5-The Underclearer P presses against the bottom electric roll E . In case the cotton laps around E or P, the screw Q is lifted and touches the Back Plate G, completes the circuit and the frame knocks off.

SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES.

These frames are so well known to the users of Cotton Machinery that no general description is necessary. They have extra heavy framing, are made entirely by special tools, and all parts are exact duplicates. They are of superior construction and finish, and will stand the highest speeds without vibration or breakage. They contain many valuable patented improvements, some of which are described below.

PATENT SWING-Well supported and with one (large) Carrier Gear only.

IMPROVED DIFFERENTIAL MOTION-This motion effects a great saving in power, wear and tear, and gives more accurate winding and consequently evener and better work. See page 106.

IMPROVED LAY GEARING dispenses with all bevel change gears, gives two change places instead of one, is simple and convenient, and allows free access to the main gearing. See page 109.

IMPROVED METHOD OF LIFTING AND LOWERING BOTTOM CONE DRUM-Both ends of the cone are raised or lowered together from the front of the machine. The belt is kept at a uniform tension from one end of the cone to the other. A patent locking device secures the cone in its proper working position, after doffing, preventing all movement or vibration.

IMPROVED METHOD OF TIGHTENING THE CONE

 BELT does away with frequent taking-up. When slack, the belt may be tightened in a few moments by means of a Quadrant Bracket. Over 5 in . of stretch can be taken care of without re-piecing. A great saving is effected in labor, stoppages and cone belts.WINDING BACK THE RACK AND CONE BELT is done from the front of the machine.

IMPROVED SYSTEM OF BALANCING THE TOP OR BOBBIN RAIL-This rail, with its gearing, collars, bobbins, etc., is now supported under its center of gravity by a set of levers, thus relieving the slides and racks of this weight. This system prevents friction and wear of slides, also the

ROVING FRAME (RIGHT HAND)
tendency to dwell at the changes of the traverse both top and bottom.

If slides wear, the Long Collars tilt forward, the top rail, spindles, bobbins and flyers vibrate, causing bad work and loss of production. This is prevented by our improved system.

PATENT REVERSING AND LET-OFF MOTION entirely prevents the roving running over the ends on the changes. The speed of the bobbin changes simultaneously with the reversal of the lifting rail and thus overcomes the liability of stretching the roving.

FULL BOBBIN STOP MOTION is very effective in its action and prevents overfilling the bobbins. The frame cannot be started after the completion of a set until doffed and the rack has been wound back.

IMPROVED TOP CLEARERS-These are made of polished steel, very light and easy to clean. The hinging is so arranged that any clearer can be easily removed.

LONG COLLARS OR BOLSTERS are fastened in a vertical position by an improved method which prevents their working loose. They are bored throughout their entire length, thus reducing the liability of dirt accumulating inside and causing the spindles to bind.

PATENT RECESSED SELF-LUBRICATING SPINDLE FOOT-This has proved one of the most successful inventions, and is in extensive use. It ensures constant lubrication, prevents wear, and is easily kept clean.

BEARINGS INLAID WITH BRASS-All Bobbin and Spindle Shaft Bearings, Roller Stands and Slides are inlaid with brass.

DRIVING ENDS OF BOBBIN AND SPINDLE SHAFTS are case hardened and are in short lengths, so that they can be easily taken out even when frames are placed end to end with narrow passages between them. This is a great convenience, as it avoids the necessity of having to remove a great many shaft gears. The shafts can be lifted out with the gears on them.

AUTOMATIC PANEL LOCKING ARRANGEMENT prevents the frame from being started if any of the gearing end panels are not in place.

DIFFERENTIAL MOTION

IMPROVED DIFFERENTIAL MOTION.

All the gears on the Jack Shaft revolve in the same direction as the shaft itself. This reduces considerably the work the cone belt has to do, saves power, and gives more accurate winding and evener and better work.
A^{1} (40 teeth) drives the Spindle Shafts and S^{1} (50 teeth) drives the Bobbin Shafts. The gears on the Spindle and Bobbin Shafts are alike, i. e., they have the same number of teeth.

As the cut shows the number of teeth in all the gears of the Differential, it will readily be seen that if Q and Q^{1} are held stationary, the speed of S^{1} will be retarded 1 rev. for every 5 revs. the Jack Shaft makes, and the spindles and bobbins will be running at the same speed, no winding taking place. Winding is produced by the bobbins running faster than the spindles, therefore Q, which is driven from the bottom cone through carrier gears, must revolve. Its speed changes as the bobbins increase in diameter, being governed by the position of the cone belt, which is shifted slightly as each layer is put on the bobbins.

CASING-OFF PLATES-The Front Casing-off Plates for Bobbin and Spindle Shafts are made of polished steel and are circular in shape. They are light, strong, cannot be broken, and are easily kept clean.

IMPROVED CAP BARS-Cast-iron Cap Bars give trouble on account of the fingers being twisted, and frequent breakages. The illustrations show the construction of our improved Cap Bar, which entirely obviates these difficulties. Figure 1 is a back view of our Cap Bar applied to a machine with four spindles in a box, and Figure 2 an end view of same. Figures 3, 4 and 5 show enlarged details.

Improved Cap Bars

The Cap Bars are fastened to the Roller Stands by brackets which are independent of the slides, and consequently the rolls can be set without moving the Cap Bars. When resetting the rolls it is only necessary to adjust the nebs for the middle and back lines, as the front nebs do not have to be disturbed.

IMPROVED LAY GEARING.

To facilitate making changes in the Lay Gears, we have provided two change places instead of one. Formerly it was the practice to change the gear on the end of the Reversing Shaft or the one between the Reversing Bevels.

In order to bring the change gears into a more convenient position and at the same time increase the range, we have introduced two additional spur gears. One of these is now the regular change gear, and is on a stud carried by an adjustable Quadrant Bracket. The short shaft carrying the bevel gears is now in a horizontal position instead of vertical.

Besides providing for two change places, this improvement dispenses with the Back Cross Rail and allows free access to the main gearing. Any part of the gearing can be taken out and replaced with ease.

There is no longer any necessity of changing any bevel gears. There are two spur gear changes, either of which may be used and which give a very wide range. The entire arrangement is very simple and convenient.

USUAL ROLLER WEIGHTS.

	Front	Middle	Back
Slubbing Frame, single boss rolls Intermediate Frame, single boss rolls	18	14	10
Roving Frame, single boss rolls Roving Frame, double boss rolls	14	10	8

STANDARD DIMENSIONS.

	Slub.	Inter.	Rov.	Jack
Dia. of Spindles	$3 / 4$	$3 / 4$	5\%	58
Dia. of Long Collars .	$11 / 8$	$11 / 8$	1	8
Dia. of Bobbin Gear Tops	$11 / 4$	$11 / 4$	$11 / 8$	11/8
Dia. of Front Bottom Roll	$11 / 4$	$11 / 4$	$11 / 8$	11/8
Dia. of Middle Bottom Roll	1/4	$1{ }^{1 / 4}$	1/8	1
Dia. of Back Bottom Roll.	$11 / 4$	$11 / 4$	11/8	11/8
Dia. of Top Rolls on iron .	,	1	1	1

Other sizes of Spindles, Long Collars, Bobbin Gear Tops and Rolls will be supplied when necessary.

DRIVING PULLEYS are usually 16 in . dia., 3 in . face.
SPEEDS-See pages 111 and 112.
PRODUCTION-See pages 113 to 11%.

SPEED TABLE.

SLUBBING AND INTERMEDIATE FRAMES

R. P. M. of Driving Pulley	R. P. M. of Spindles	R. P. M. of Driving Pulley	R. P. M. of Spindles	R. P. M. of Driving Pulley	$\begin{aligned} & \text { R. P. M. } \\ & \text { of } \\ & \text { Spindles } \end{aligned}$
300	523.80	395	689.68	490	8.55 .55
305	532.54	400	698.41	495	864.28
310	541.27	405	\%07.14	500	873.01
315	550.00	410	715.87	505	881.73
320	558.73	415	724.60	510	890.46
325	567.46	420	733.33	515	899.19
330	576.19	425	742.06	520	907.92
335	584.92	430	750.79	525	916.65
340	593.65	435	759.52	530	925.38
345	602.38	440	768.25	535	934.11
350	611.11	445	$7 \% 6.98$	540	942.84
355	619.84	450	78.5. 71	54.5	951.5%
360	628.57	455	794.44	550	960.30
365	637.30	460	803.17	555	969.03
370	646.03	465	811.90	. 60	$97 \% .76$
375	654.76	470	820.63	565	986.49
380	663.49	475	829.36	570	995.20
385	672.22	480	838.09	575	1003.95
390	680.95	485	846.82	580	1012.68

One rev. of Driving Pulley $=1.746$ revs. of Spindles.

USUAL SPEEDS.

	Size of Bobbin	Revs. of Spindles	Revs. of Driving Pulley
Slubbing Frame	12×6	630	361
Slubbing Frame	$11 \times 51 / 2$	700	401
Slubbing Frame .	$10 \times 5^{1 / 4}$	750	430
Intermediate Frame	10×5	850	487
Intermediate Frame	$9 \times 45 / 8$	950	544
Intermediate Frame	$9 \times 41 / 8$	1000	$5 \% 3$

SPEED TABLE.

ROVING AND JACK FRAMES.

$\begin{aligned} & \text { R. P. M. } \\ & \text { of } \\ & \text { Driving } \\ & \text { Pulleys } \end{aligned}$	$\begin{aligned} & \text { R. P. M. } \\ & \text { of } \\ & \text { Spindles } \end{aligned}$	$\begin{aligned} & \text { R. P. M. } \\ & \text { of } \\ & \text { Driving } \\ & \text { Pulley } \end{aligned}$	R. P. M. Spindles	$\begin{aligned} & \text { R. P. M. M. } \\ & \text { of } \\ & \text { Driving } \\ & \text { Pulley } \end{aligned}$	R. P. M. Spindles
336	908.10	412	1113.51	488	1318.92
340	918.92	416	1124.32	492	1329.73
344	929.73	420	1185.13	496	1340.54
348	940.54	424	1145.94	500	1351.35
352	951.35	428	1156.75	504	1362.16
356	962.16	432	1167.56	508	1372.97
360	972.97	436	1178.37	512	1383.78
364	983.78	440	1189.18	516	1394.59
368	994.59	444	1200.00	520	1405.41
372	1005.40	448	1210.81	524	1416.22
376	1016.21	452	1221.62	528	$142 \% .03$
380	1027.02	456	1232.43	532	1437.84
384	1037.83	460	1243.24	536	1448.65
388	1048.64	464	1254.05	540	1459.46
392	1059.45	468	1264.86	544	1470.27
396	1070.27	472	1275.67	548	1481.08
400	1081.08	476	1286.48	552	1491.89
404	1091.89	480	1297.30	556	1502.70
408	1102.70	484	1308.11	560	1513.51

One rev. of Driving Pulley $=2.7027$ revs. of Spindles.

USUAL SPEEDS.

	Size of Bobbin	Revs. of Spindles	Revs. of Driving Pulley
Roving Frame .	8×4	1050	388
Roving Frame.	$8 \times 35 / 8$	1100	408
Roving Frame.	$7 \times 31 / 2$	1150	426
Roving Frame.	$7 \times 31 / 4$	1200	520
Jack Frame . . .	$6 \times 31 / 4$	1250	463
Jack Frame	6×3	1300	481
Jack Frame .	$6 \times 23 / 4$	1350	500
Jack Frame	$6 \times 21 / 2$	1400	518

SLUBBING FRAMES.

PRODUCTION PER DAY OF TEN HOURS.

Size of Bobbin		$12 \times 6 \mathrm{ln}$.				$11 \times 51 / 2 \mathrm{ln}$.			
Cotton on Full Bobbin		44-oz.				32-oz.			
Revs. of Spindle		630				700			
Revs. of Pulley		361				401			
Dia. of Bot. Front Roll.		11/4-in.				11/4-in.			
Hank Rov- ing	Twist per In.	Revs Front	$\begin{aligned} & \text { Sets } \\ & \text { per } \\ & \text { Day } \end{aligned}$	$\begin{gathered} \text { Hanks } \\ \text { per } \\ \text { Day } \end{gathered}$	$\begin{aligned} & \text { Lbs. } \\ & \text { per } \\ & \text { Day } \end{aligned}$	Revs Front Roll	$\begin{aligned} & \text { Sets } \\ & \text { per } \\ & \text { Day } \end{aligned}$	$\begin{gathered} \text { Hanks } \\ \text { per } \\ \text { Day } \end{gathered}$	Lbs. per Day
. 20	. 54	297	20.51	11.28	56.40				
. 25	. 60	267	17.24	11.85	47.41				
. 30	. 66	243	14.59	12.03	40.11	270	18.69	11.21	37.38
. 35	. 71	226	12.55	12.08	34.52	251	16.45	11.52	32.90
. 40	. 76	211	10.88	11.97	29.93	234	14.54	11.63	29.08
. 45	. 80	201	9.60	11.88	26.39	223	13.02	11.71	26.04
. 50	. 85	189	8.44	11.61	23.21	210	11.60	11.60	23.20
. 55	. 89	180	7.54	11.40	20.72	200	10.47	11.52	20.94
. 60	. 93	173	6.71	11.17	18.61	192	9.49	11.38	18.98
. 65	. 97	165	6.11	10.92	16.80	184	8.64	11.23	17.28
. 70	1.00	160	5.59	10.75	15.36	178	7.95	11.13	15.90
. 75	1.04	154	5.09	10.49	13.99	171	7.28	10.92	14.56
. 80	1.07	150	4.69	10.31	12.89	166	6.75	10.80	13.50
. 85	1.11	145	4.30	10.05	11.82	160	6.22	10.57	12.44
. 90	1.14	141	3.99	9.87	10.97	156	5.79	10.42	11.58
. 95	1.17	137	3.71	9.69	10.20	15	5.41	10.28	10.82
1.00	1.20	134	3.46	9.52	9.52	148	5.06	10.12	10.12
1.05	1.23					145	4.74	9.95	9.48
1.10	1.26					141	4.45	9.79	8.90
1.15	1.29					138	4.19	9.64	8.38
1.20	1.31	\ldots				136	3.98	9.55	7.96

NOTE-The above table is based on ordinary twist, $1.20 \times$ square root of hank, with an allowance of 15 minutes per set for doffing and stops.

PRODUCTION PER DAY OF TEN HOURS.

Size of Bobbin		$10 \times 5 \mathrm{ln}$				$9 \times 45 / 8 \mathrm{ln}$			
Cotton on Full Bobbin		$24-\mathrm{oz}$.				18-oz.			
Revs. of Spindle		850				950			
Revs. of Pulley		487				544			
Dia. of Bot. Front Roll		1/4-in.				$11 / 4$-in.			
Hank Roving	Twist per in.	Revs. Front Roll	$\begin{gathered} \text { Sets } \\ \text { per } \\ \text { Day } \end{gathered}$	Hanks per Day	Lbs. per Day	Revs. Front Roll	Sets per Day	Hanks per Day	Lbs. per Day
. 60	. 93	233	13.40	12.06	20.10				
.65	. 97	223	12.33	12.03	18.50				
. 70	1.00	216	11.46	12.03	17.19				
. 75	1.04	208	10.67 9.89	12.00	16.00				
. 85	1.11	195	9.18	11.70	13.77				
. 90	1.14	190	8.60	1161	12.90	212	11.60	11.75	13.05
. 95	1.17	185	8.07	11.50	12.11	207	10.95	11.70	12.32
1.00	1.20	180	7.59	11.39	11.39	202	10.35	11.64	11.64
1.05	1.23	176	${ }_{6}^{7.15}$	11.27	10.73	197	9.80 9.28	11.5 y	11.03 10.44
1.10 1.15	1.26 1.29	172 168	6.75 6.37	11.14 10.99	10.13 9.56	192	9.28 8.81	11.48 11.40	10.44 9.91
1.20	1.31	165	6.07	10.93	9.11	184	8.42	11.36	9.47
1.25	1.34	161	5.75	10.79	8.63	180	8.00	11.25	9.00
1.30	1.37	158	5.45	10.63	8.18	176	7.62	11.13	8.56
1.35	1.39	156	5.21	10.56	7.82	114	7.30	11.08	8.21
1.40	1.42	152	4.96	10.42	7.44 7.13	170	${ }^{6.96}$	10.96	7. 83
1.50	1.47	147	4.52	10.17	6.78	164	6.39	10.79	7.52 7.19
1.55	1.49	145	4.34	10.09	6.51	162	6.14	10.71	6.91
1.60	1.58	142	4.14	9.94	6.21	159	5.88	10.59	6.62
1.65	1.54	140	398	9.85	5.97	157	5.66	10.51	6.37
1.70	1.56	139	3.83	9.78	5.75	155	5.46	10.44	6.14
1.75	1.59	...				152	5.23	10.29	5.88
1.80	1.61	\ldots	150	5.05	10.22	5.68
1.90	1.65 1.70	\ldots	\ldots	\ldots	147 142	4.71 4.39	10.07 9.88	5.30
2.10	1.74	\cdots	\ldots	\ldots	\ldots	139	4.11	9.70	4.62
2.20	1.78	\ldots				136	3.87	9.57	4.35
2.30	1.82	\ldots				133	3.64	9.41	4.09
2.40 2.50	1.86 1.90	\cdots				130	3.43 3.24	9.26 9.13	3.86 3.65

NOTE-The above table is based on ordinary twist, $1.20 \times$ square root of hank, with an allowance of $\mathbf{1 5}$ minutes per set for doffing and stops.

ROVING FRAMES.
PRODUCTION PER DAY OF TEN HOURS

Size o bin	f $\mathrm{Bob-}$	$8 \times 4 \mathrm{ln}$				$8 \times 35 / 8 \mathrm{ln}$.			
Cotton on Full Bobbin		14-OZ				12-oz.			
Revs. of Spindle		1,050				1,100			
Revs. of Pulley		388				408			
Dia. of Bot. Front Roll		1/s-in.				11s-in.			
Hank Roving	Twist per In.	Revs. Front Roll	Sets per Day	Hanks per Day	Lbs. per Day	Revs. Front Roll	Sets per Day	Hanks per Day	Lbs. per Day
1.20	1.31	227	10.99	11.53	9.61				
1.30	1.37	217	10.02	11.40	8.77				
1.40	1.42	209	9.22	11.30	8.07				
1.50	1.47	202	8.50	11.16	7.44	212	9.92	11.16	T. 44
1.60	1.52	195	7.87	11.01	6.88	205	9.21	11.06	6.91
1.70	1.56	190	T.33	10.91	6.42	200	8.61	10.93	6.46
1.80	1.61	185	6.88	10.73	5. 96	198	8.03	10.84	6.02
1.90	1.65	180	6.38	10.6\%	5.59	189	7.53	10.74	5.65
2.00	1.70	175	5.96	10.42	5.21	183	7.05	10.58	5.29
2.10	1.74	171	5.60	10.29	4.90	179	6.64	10.46	4.98
2.20	1.78	167	5.28	10.16	4.62	175	6.27	10.34	4.70
2.30	1.82	163	4.98	10.03	4.36	171	5.92	10.21	4.44
2.40	1.86	160	4.71	9.89	4.12	167	5.61	10.08	4.20
2.50	1.90	156	4.45	9.75	3.90	164	5.31	9.95	3.98
2.60	1.93	154	4.24	9.65	3.71	161	5.07	9.88	3.80
2.70	1.97	151	4.03	9.50	3.52	158	4.81	9.75	3.61
2.80	2.01	148	3.83	9.38	3.35	155	4.58	9.60	3.43
2.90	2.04	146	3.66	9.28	3.20	153	4.38	9.54	3.29
3.00	2.08	143	3.48	9.15	3.05	150	4.18	9.39	3.13
3.10	2.11	141	3.34	9.05	2.98	148	4.00	9.30	3.00
3.20	$\underset{.}{2.15}$	138	3.19	8.93	2.79	145	3.83	9.18	2.87
3.30	2.18	136	3.06	8.84	2.68	143	3.67	9.11	2.76
3.40	2.21	134	2.94	8.74	2.5%	141	3.53	9.01	2.65
3.50	2.24	133	2.82	8.65	2.47	139	3.40	8.93	2.55
3.75	2.32	128	2.56	8.40	2.24	134	3.09	8.70	2.32
4.00	2.40	124	2.34	8.20	2.04	130	2.82	8.48	2.12
4.25	2.47	120	2.15	8.00	1.88	126	2.59	8.25	1.94
4.50	2.55	117	1.97	7.74	1.72	120	2.38	8.06	1.79
4.75	$\stackrel{2.62}{ }$	113	1.83	$\% .60$	1.60	119	2.21	7.88	1.66
5.00	2.68	111	1.70	7.45	1.49	116	2.06	7.75	1.55
5.25	$\stackrel{2.75}{9.81}$	113	1.92	7.56	1.44
5.50	2.81	\cdots	\ldots	111	1.80	\%.43	1.35
5.75	2.88 2.94	. \cdot			.	108	1.68	\%.24	1.26
6.00	2.94	\cdots	\ldots	\ldots	.	106	1.58	\%.14	1.19

Note-The above table is based on ordinary twist, $1.20 \times$ square root of hank, with an allowance of 15 minutes per set for doffing and stops.

ROVING FRAMES.
 PRODUCTION PER DAY OF TEN HOURS.

Size of Bobbin.		$7 \times 3 \mathrm{l} / 2 \mathrm{ln}$.				$7 \times 31 / 8 \mathrm{ln}$.			
Cotton on Full Bobbin		10-oz.				$9-\mathrm{oz}$.			
Revs. of Spindle		1,150				1,200			
Revs. of Pulley		426				520			
Dia. of Bot. Front Roll .		11/8-in.				11/8-in.			
Hank Roving	Twist per In.	Revs. Front Roll	Sets per Day Day	Hanks per Day	$\begin{aligned} & \text { Lbs. } \\ & \text { per } \\ & \text { Day } \end{aligned}$	Revs Front Roll	Sets per Day	Hanks per Day	Lbs. per Day
2.00	1.70	191	8.47	10.58	5.29				
2.25	1.80	181	7.36	10.35	4.60				
2.50	1.90	171	6.45	10.08	4.03				
2.75	1.99	164	5.72	9.85	3.58				
3.00	$\stackrel{2.08}{ }$	156	5.10	9.57	3.19				
3.25	2.16	151	4.60	9.36	2.88				
3.50	2. 24	145	4.17	9.14	2.61	152	4.76	9.38	2.68
3.75	2.32	140	3.80	88.93	2.38	146	${ }_{3}^{4.34}$	9.15 8.92	$\stackrel{2}{2.44}$
4.00	2.40	136	3.47	8.68	2.17	142	3.97	8.92	2.23
4.25 4.50	2.47	132	3.20	8.50	2.00	137	3.66	8.76	2.06
4.50	2.54	128	2.96	8.33	1.85	134	3.39	8.60	1.91
4.75 5.00	${ }^{2.60}$	125	$\stackrel{2}{2} 5$	${ }_{7} .17$	1.72	131	${ }_{2}^{3.16}$	8.46	1.78
5.25	$\stackrel{2.75}{ }$	118	2.38	7.82	1.49	123	2.73	8.09	1.54
5.50	2.81	116	2.23	7.70	1.40	121	2.56	7.92	1.44
5.75	$\stackrel{2}{2} 88$	113	2.09	7.53	1.31	118	2.40	${ }^{7.76}$	1.35
6.00	$\stackrel{2.94}{ }$	111	1.97	7.38	1.23	115	2.26	7.62	1.27
6.25	3.00	108	1.86	7.25	1.16	113	2.14	7.50	1.20
6.50	3.06	106	1.76	7.15	1.10	111	2.02	7. 41	1.14
6.75	3.12 3.17	104	1.66 1.58	7.02 6.93	1.04 .99	109	1.91 1.82	7.22	1.07
7.25	3.23	101	1.50	6.82	. 94	105	1.73	7.03	. 98
7.50	3.29	99	1.43	6.68	. 89	103	1.64	6.90	. 92
7.75	3.34	102	1.57	6.82	. 88
8.00	3.39	\ldots			\ldots	100	1.50	6.72	. 8
8.50	3.50	\ldots	\ldots		\ldots	97	1.37	6.55	. $\% 1$
9.00	3.60	\ldots	\ldots	94	1.27	${ }^{6.39}$. 71
9.50 10.00	3.70 3.79	\ldots	\ldots		\ldots	92 90	1.17 1.09	6.27 6.10	. 66

NOTE-The above table is based on ordinary twist, $1.20 \times$ square root of hank, with an allowance of 15 minutes per set for doffing and stops.

JACK FRAMES.
 PRODUCTION PER DAY OF TEN HOURS.

Size of Bobbin.		$6 \times 3 \mathrm{ln}$.				$6 \times 21 / 2 \mathrm{ln}$.			
Cotton on Full Bobbin		7-Oz.				5-oz.			
Revs. of Spindle		1,300				1,400			
Revs. of Pulley		481				518			
Dia. of Bot. Roll Front		1/8-in.				$1 \mathrm{~m} / \mathrm{s}$-in.			
Hank Roving	Twist per In.	Revs. Front Roll	Sets per Day	Hanks per Day	$\begin{aligned} & \text { Lbs. } \\ & \text { per } \\ & \text { Day } \end{aligned}$	Revs. Front Roll	Sets per Day	Hanks per Day	Lbs. Der
5.00	2.68	137	3.96	8.65	1.73				
5.25	2.75	134	3.71	8.51	1.62				
5.50	$\stackrel{2.81}{2.88}$	131	3.48	8.36	1.52				
5.75 6.00	2.88 2.94	128	3.27 3.08	8.22 8.10	1.43 1.35				
6.25	3.00	123	${ }_{2} .92$	8.00	1.28				
6.50	3.06	120	${ }_{2} .76$	7.87	1.21				
6.75	3.12 3.17	118	$\stackrel{2.62}{9}$	7.76	1.15 1.09				
7.00	3.17 3.23	116 114	2.49 2.37	7.63 7.54	1.09 1.04				
7.50	3.29	112	2.25	\%.39	. 985				
7.75	3.34	110	2.16	7.32	. 945				
8.00	3.39	109	2.06	7.21	. 901	117	3.03	7.58	. 947
8.50	3.50	105	1.89	7.03	.827	113	${ }_{2}^{2.78}$	$\begin{array}{r}7.39 \\ \hline\end{array}$. 869
9.00 9.50	3.60 3.70	102 99	1.74 1.61	6.85 6.69	. 761	110	2.57 2.38	7.23 7.07	. 803
10.00	3. 79	97	1.50	6.56	. 656	105	2.22	6.94	. 694
10.50	3.89	95	1.39	6.38	. 608	102	2.06	6.76	. 644
11.00	3.98	92	1.30	6.26	. 569	100	1.93	6.63	. 603
11.50	4.07	91	1.22	6.14	. 534	97	1.81	6.50	. 566
12.00	4.16	89	1.15	6.04	. 503	95	1.70	6.36	. 531
12.50	4.24	87	1.08	5.91	. 473	93	1.61	6.29	. 503
13.00	4.33	85	1.02	5.80	. 446	91	1.52	6.18	. 475
13.50	4.41	83	. 97	5.72	. 424	90	1.44	6.08	. 450
14.00	4.49	82	. 92	5.64	. 403	88	1.37	5.99	. 428
15.00	4.65	79	. 83	5.45	. 363	85	1.24	5.82	. 358
16.00	4.80 4.95	77 74	. 75	5.25 5.13	. 328	88	1.12 1.03	5.60 5.47	. 350
18.00	5.09	72	. 63	4.97	. 276	78	1.05 .95	5.35	. 297
19.00	5.23	\%0	. 58	4.83	. 254	76	. 88	5.23	.275
20.00	5.37	69	. 54	4.72	. 236	74	. 81	5.06	. 253
21.00	5.50	72	. 76	5.00	. 238
22.00	5.63	\ldots		70	. 71	4.89	. 222
23.00 24	5.75 5.88	\ldots	\ldots	\ldots	69 67	. 66	4.74	. 206
25.00	6.00	\ldots				66	. 58	4.53	. 181

NOTE-The above table is based on ordinary twist, $1.20 \times$ square root of hank, with an allowance of 15 minutes per set for doffing and stops.

FLOOR PLANS OF SPEEDERS.

NOTE-The HAND of a speeder is determined by the end on which the driving pulley is located when facing the spindles.

LENGTHS OVER ALL OF SLUBBING FRAMES.

Space	8 ln.	83/4 In.	93/4 In.	$10^{3 / 4} \mathrm{In}$.
Gauge	4 Spindles in 16 In .	4 Spindles in $17^{1 / 2} \mathrm{In}$.	4 Spindles in $191 / 2 \mathrm{In}$.	4 Spindles in $211 / 2$ In.
Size of Bobbin	$10 \times 51 /+\ln$.	$11 \times 51 / 2 \ln$.	$12 \times 6 \mathrm{ln}$	$12 \times 6 \mathrm{ln}$
No. of Spindles	Ft. In.	Ft. In.	Ft. In.	Ft. In.
40	16-4	17-7	19-3	20-11
42	17-0	18-33/4	20-03/4	21-93/4
44	17-8	$19-0 \frac{1}{2}$	$20-101 / 2$	22-81/2
46	18-4	19-91/4	21-81/4	23-71/4
48	19-0	20-6	22-6	24-6
50	19-8	21-23/4	23-33/4	25-43/4
52	20-4	21-111/2	24-11/2	26-31/2
54	21-0	22-81/4	24-111/4	27-21/4
56	21-8	23-5	25-9	28-1
58	22-4	24-13/4	26-63/4	28-113/4
60	23-0	24-101/2	$27-41 / 2$	29-10 $1 / 2$
62	23-8	25-71/4	28-21/4	30-91/4
64	2) 4 -4	26-4	29-0	31-8
66	25-0	27-03/4	29-93/4	$32-63 / 4$
68	$\stackrel{\text { 2 }}{ }$ - 8	27-91/2	30-71/2	$33-51 / 2$
70	26-4	28-61/4	$31-51 / 4$	34-41/4
72	27-0	29-3	$32-3$	35-3
74	2\%-8	29-113/4	33-03/4	36-13/4
76	28-4	$30-81 / 2$	$33-10$ 1/2	$37-1 / 2$
78	29-0	31-5 ${ }^{1 / 4}$	34-81/4	$37-11^{1 / 4}$
80	29-8	32- 2	35-6	38-10
82	30-4	$32-103 / 4$	$36-33 / 4$	39-83/4
84	31-0	$33-71 / 2$	$37-11 / 2$	40-71/2
86	31-8	$34-41 / 4$	$37-11^{1 / 4}$	41-61/4
88	32-4	35-1	38-9	42-5
90	33-0	35-93/4	39-63/4	43-33/4
92	33-8	36-61/2	40-41/2	44-21/2
94	34-4	$37-31 / 4$	41-21/4	45- $11 / 4$
96	$35-0$	38-0	42-0	46-0
98	35-8	38-83/4	$42-93 / 4$	$46-103 / 4$
100	$36-4$	$39-51 / 2$	43-71/2	47-91/2

NOTE-If the projection of fender bracket be taken into account, add 2 inches to the above lengths.

FRAMES.

Space	6 ln.	$61 / 2 \ln$.	7 ln .
Gauge	6 Spindles in 18 In .	$6 \text { Spindles }$ $\text { in } 191 / 2 \mathrm{In} \text {. }$	6 Spindles in 21 In .
Size of Bobbin	$9 \times 41 / 8 \mathrm{ln}$.	$9 \times 45 / 8 \mathrm{ln}$	$10 \times 5 \mathrm{ln}$
No. of Spindles	Ft. In.	Ft. In.	Ft. In.
72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138	$21-0$ $21-6$ $22-0$ $22-6$ $23-0$ $23-6$ $24-0$ $24-6$ $25-0$ $25-6$ $26-0$ $26-6$ $2 \pi-0$ $27-6$ $28-0$ $28-6$ $29-0$ $29-6$ $30-0$ $30-6$ $31-0$ $31-6$ $32-0$ $32-6$ $33-0$ $33-6$ $34-0$ $34-6$ $35-0$ 356 $36-0$ $36-6$ $37-0$ 37 37		$24-0$ $24-7$ $25-2$ $25-9$ $26-4$ $26-11$ $27-6$ $28-1$ $28-8$ $29-3$ $29-10$ $30-5$ $31-0$ $31-7$ $32-2$ $3-3-9$ $33-4$ $33-11$ $31-6$ $35-1$ $35-8$ $36-3$ $36-10$ $37-5$ $38-0$ $38-7$ $39-2$ $39-9$ $40-4$ $40-11$ $41-6$ $42-1$ $42-8$ $43-3$

NOTE-If the projection of fender bracket be taken into account add 2 inches to the above lengths.

LENGTHS OVER ALL OF ROVING FRAMES.

Space	5 ln.	5\% In.	$51 / 4 \mathrm{ln}$.	$51 / 2 \mathrm{ln}$.
Gauge	8 Spindles in 20 In .	8 Spindles in $201 / 2 \mathrm{In}$.	8 Spindles in 21 In .	8 Spindles in 22 In .
Size of Bobbin	7×3 1/4 In.	7×3 1/2 ln.	$8 \times 35 / 8 \mathrm{ln}$	$8 \times 4 \mathrm{ln}$
No. of Spindles	Ft. In.	Ft. In.	Ft. In.	Ft. In.
100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186	$23-10$ $24-3$ $24-8$ $25-1$ $25-6$ $25-11$ $26-4$ $26-9$ $22-2$ $2 \pi-7$ $23-0$ $28-5$ $28-10$ $29-3$ $29-8$ $30-1$ $30-6$ $30-11$ $31-4$ $31-9$ $32-2$ $32-7$ $33-$ $33-5$ $33-10$ $34-3$ $34-8$ $35-1$ $35-6$ $35-11$ $36-4$ $36-9$ 37 $37-2$ $38-0$ $38-5$ $38-10$ $39-3$ $39-8$ $40-1$ $40-6$ $40-11$ $41-4$ $41-9$	$24-41 / 4$ $24-93 / 8$ $25-21 / 2$ $25-75 / 8$ $26-03 / 4$ $26-57 / 8$ $26-11$ $27-4^{1 / 8}$ $27-91 / 4$ $28-23 / 8$ $28-71 / 2$ $29-05 / 8$ $29-53 / 4$ $29-107 / 8$ $30-4$ $30-91 / 8$ $31-21 / 4$ $31-73 / 8$ $32-01 / 2$ $32-55$ $32-103$ $33-37 / 8$ $33-9$ $34-21 / 8$ $34-71 / 4$ $35-03 / 8$ $35-51 / 2$ $3 .-105 / 8$ $36-33 / 4$ $36-878$ $37-2$ $37-71 / 8$ $38-01 / 4$ $3 x-53 / 8$ $38-101 / 2$ $39-35 / 8$ $39-83$ $40-17 / 8$ $40-7$ $41-01 / 8$ $41-51 / 4$ $41-103 / 8$ $42-31 / 2$ $42-85 / 8$		

NOTE-If the projection of fender bracket be taken into account, add \approx inches to the above lengths.

If double boss rolls, the number of spindles must divide by four.

LENGTHS OVER ALL OF JACK FRAMES.

Space	4 ln.	$41 / 4 \mathrm{ln}$.	$41 / 2 \mathrm{ln}$.	43/4 In.
Gauge	8 Spindles in 16 In .	8 Spindles in 17 In .	8 Spindles in 18 In .	8 Spindles in 19 In .
Size of Bobbin	$6 \times 21 / 2 \ln$.	$6 \times 23 / 4 \mathrm{ln}$.	$6 \times 3 \mathrm{ln}$	$6 \times 31 / 4 \mathrm{ln}$.
No. of Spindles	Ft. In.	Ft. In.	Ft. In.	Ft. In.
140	26-4	27- 91/2	29-3	30-81/2
142	26-8	28-13/4	29- $\boldsymbol{\tau}^{1 / 2}$	31-11/4
144	27-0	28-6	30-0	31-6
146	$27-4$ $27-8$	$28-101 / 4$ $29-21 / 2$	30- ${ }^{\text {4 }}$ 1/2	$31-103 / 4$ $32-3^{1 / 2}$
150	28-0	29-63/4	$31-11 / 2$	32-81/4
152	$28-4$	29-11	31-6	33-1
154	28-8	30-31/4	$31-101 / 2$	33-53/4
156	29-0	30- $71 / 2$	$32-3$	33-101/2
160	29-8	31-4 ${ }^{30-1 / 4}$	33-0 $0^{1 / 2}$	$34-31 / 4$ $34-8$
162	$30-0$	31-81/4	$33-41 / 2$	$35-03 / 4$
164	30-4	$32-01 / 2$	33-9	35- $51 / 2$
166	30-8	32-43/4	34- $11 / 2$	35-101/4
168	$31-0$	32-9	34-6	36-3
170	31-4	33-11/4	$34-101 / 2$	36- ${ }^{3} 3$
172	31-8	33-51/2	35-3	37-01/2
174	$32-0$	33- $93 / 4$	35- $7^{1 / 2}$	$3{ }^{2}-51 / 4$
176	$32-4$	34-2	36-0	$37-10$
178 180	32-8	$34-61 / 4$ $34-101 / 2$	$36-41 / 2$ $36-9$	38-23/4,
182	33-4	$35-23 / 4$	$37-11 / 2$	39-01/4
184	33-8	35- ${ }^{\text {\% }}$	$37-6$	39-5
186	34-0	35-111/4	$37-101 / 2$	39-93/4
188	34-4	36-31/2	${ }^{38}-38$	40-21/2
192	350	${ }_{37-1}{ }^{\text {a }}$	38- $0^{1 / 2}$	41-0- ${ }^{1 / 4}$
194	35-4	$37-41 / 4$	39- $41 / 2$	41-43/4
196	350	$37-81 / 2$	39-9	41-91/2
198	$36-0$ $36-4$	38-03/4	40-11/2	42-21/4
202	36-8	38-91/4	40-10 ${ }^{1 / 2}$	42-113/4
204	$37-0$	39-11/2	41-3	43-41/2
206	${ }_{37}^{37-4}$	39-53/4	41- $7^{1 / 2}$	43-91/4
208	37-8	39-10	$42-0$	44-2
212	38-4	40-61/2	$42-91 / 2$	$44-11^{1 / 1 / 2}$
214	$38-8$	40-103/4	43-11/2	45-41/4
216	39-0	41-3	43-6	45-9
218	39-4	41-71/4	13-101/2	46-13/4
220	$39-8$ $40-0$	41-111/2	44-3	46-61/2
224	$40-0$ $40-4$	42-83/4	$45-0^{1 / 2}$	+ $46-11 / 4$
226	40-8	43-01/4	$45-41 / 2$	$47-83 / 4$
228	41-0	43-41/2	45-9	48-11/2

NOTE-If the projection of fender bracket be taken into account, add \approx inches to the above lengths.

If double boss rolls, the number of spindles must divide by four.

FRONT ELEVATION OF HEAD END GEARING-ROVING FRAME

ROVING FRAMES.

ALPHABETICAL REFERENCES TO DRAWINGS

	Slub. and Inter.	Roving and Jack
A Driving Pulley, 16 in. dia. x 3 in. face		
A^{1} Spindle Shaft Driving Gear	40 T.	40 T .
A^{2} Twist Gear, 20 to 70 T . .		
A^{3} Balance Wheel		
B Spindle Shaft Intermediate Gear	75 T	70 T .
C End Back Spindle Shaft Gear	42 T .	37 T .
C ${ }^{1}$ Spindle Shaft Skew Bevel Gear	55 T .	5.5 T .
D End Front Spindle Shaft Gear	42 T .	37 T.
D ${ }^{1}$ Spindle Bevel Gear .	30 T .	22 T .
D2 Flyer . . .		
F Back Intermediate Gear, 128, $120,112,104,96,88,80$ and 72 T .		
G Middle Top Cone Shaft Gear, 32, 40, 48 and 56 T.		
G^{1} End Top Cone Shaft Gear	48 T.	44 T .
G^{2} Top Cone, driving Bottom Cone		
H Large Front Roll Gear	130 T.	130 T .
H^{1} Small Front Roll Gear	20 T.	18 and 20 T.
H^{2} Front Roll, usually .	$1 \frac{1}{4} \mathrm{in}$. dia.	$1 \frac{1}{8}$ in. dia.
I Crown Gear .	80 T.	82 and 120 T .
I ${ }^{1}$ Draft Gear, 30 to 67 T.		
J Back Roll Gear	52 T.	52 and 60 T .
J^{1} Middle Roll Driving Gear	30 T.	27 T.
J ${ }^{2}$ Back Roll, usually	$1 \frac{1}{4} \mathrm{in}$. dia.	$1_{8}^{1} \mathrm{in}$. dia.
K Broad Top Intermediate Gear	\% 0 T.	70 T.
L Middle Roll Gear	20 T .	20 T .
M Bottom Cone		
M^{1} Bottom Cone Shaft Gear, 14 to 36 T.: 16, 17 and 18 T. regular		

ROVING FRAMES-CONTINUED.
 ALPHABETICAL REFERENCES TO DRAWINGS.

	Slub. and Inter.	Roving and Jack
N Fender Gear	68 T.	68 T.
N^{1} Fender Shaft Gear	44 T .	30 T .
O Fender Intermediate Gear	56 T.	56 T.
P Differential Motion Intermediate Gear	44 T.	36 T.
Q Differential Spur Gear	34 T.	34 T .
Q ${ }^{1}$ Differential Bevel Gear	18 T.	18 T.
R Jack Large Bevel Gear	30 T .	30 'T.
R ${ }^{1}$ Jack Small Bevel Gear	16 T.	16 T .
S Bell Gear Bevel Gear	48 T.	48 T.
S^{1} Bell Gear	50 T .	50 T .
T Swing Gear	37 ' T .	42 T .
U Back Bobbin Shaft Gear	42 T.	37 T.
U ${ }^{1}$ Back Bobbin Shaft Skew Bevel Gear .	55 T.	05 T.
V Front Bobbin Shaft Gear	42 T.	37 T.
$V^{1} 1$ Bobbin Bevel Gear	30 T .	22 T .
V2 Bobbin		
W Swivel Bracket Gear	31 T.	31 T.
W^{1} Lay Change Gear, 12 to 30 T. .		
I Gear on Stud Bevel Gear	44 T.	44 T.
X^{1} Bevel Gear driving Horizontal Bevel Gear	22 T .	22 and 15 T .
Y Horizontal Bevel Gear	22 'T.	22 and 30 T .
Y ${ }^{1}$ Bevel Gear, driving Reversing Bevel Gear, 12 to 20 T .	15 T .	15 and 13 T .
Z Reversing Bevel Gear, short hub .	70 T	\% 0 T.
Z^{1} Reversing Bevel Gear, long hub	70 T.	70 T.
Z* Reversing Shaft Change Gear, 14 to 22 'T.		
Z^{3} Gear, driven by Reversing Shaft Change Gear .	68 'T.	96,80 \& 68 T.
Z ${ }^{4}$ Lifting Shaft Driving Gear	13 T.	13 T .
Z^{5} Lifting Shaft Gear	57 T.	73 T .

SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES. DRAFT CALCULATIONS.

Rules:
$\frac{\mathrm{J} \times \mathrm{I} \times \text { dia. of Front Roll }}{\mathrm{H}^{1} \mathrm{x} \text { dia. of Back Roll }}=$ Draft Constant.
$\frac{\text { Draft Constant }}{\left.\text { Draft Change Gear (I }{ }^{1}\right)}=$ Draft.
$\frac{\text { Draft Constant }}{\text { Draft required }}=$ Draft Change Gear $\left(I^{1}\right)$.
Examples:
If Front and Back Rolls, $11 / 8 \mathrm{in}$. dia. Back Roll Gear (J) $=52$ T. Crown Gear $(\mathrm{I})=80$ T. Small Front Roll Gear $\left(\mathrm{H}^{1}\right)=20 \mathrm{~T}$.
$\frac{52 \times 80 \times 11 / 8}{20 \times 1 / 8}=208=$ Draft Constant.
If Draft Change Gear $\left(\mathrm{I}^{1}\right)=50 \mathrm{~T}$,
$\frac{208}{50}=4.16=$ Draft .
If Draft required $=4.00$,
$\frac{208}{4.00}=52 \mathrm{~T}=$ Draft Change Gear $\left(I^{1}\right)$.

TWIST CALCULATIONS.

Rules:
$\frac{\mathrm{H} \times \mathrm{G} \times \mathrm{A}^{1} \times \mathrm{C}^{1}}{\mathrm{G}^{1} \times \mathrm{C} \times \mathrm{D}^{1} \times \text { Circum } \text { of Front Roll }}=$ Twist Constant.
$\frac{\text { Twist Constant }}{\text { Twist Change Gear }\left(\mathrm{A}^{2}\right)}=$ Twist per Inch.
$\frac{\text { Twist Constant }}{\text { Twist per Inch required }}=$ Twist Change Gear $\left(A^{2}\right)$.
Examples:
Take twist combination No. 3 on page 131.
Circum. of $1 \frac{1}{4} \mathrm{in}$. Front Roll $=3.9270 \mathrm{in}$.
$\frac{130 \times 40 \times 40 \times 55}{48 \times 42 \times 30 \times 3.9270}=48.17=$ Twist Constant.
If Twist Change Gear $\left(\mathrm{A}^{2}\right)=45 \mathrm{~T}$,
$\frac{48.17}{45}=1.07=$ Twist per Inch.
If Twist per Inch required $=1.34$,
$\frac{48.17}{1.34}=36 \mathrm{~T}=$ Twist Change Gear (A^{2}).

LAY CALCULATIONS.

Rules:
$\frac{Z^{5} \times Z^{3} \times Z \times Y \times N \times W \times Q^{1} \times R^{1} \times S^{1} \times U^{1}}{Z^{4} \times Z^{2} \times Y^{1} \times X^{1} \times Q \times R \times S \times U \times V^{1} \times 6^{1 / 3}}=$ Lay Constant.
Lay Constant
$\overline{\text { Lay Change Gear }\left(W^{1}\right)}=$ Laps per Inch on Bobbin.
$\frac{\text { Lay Constant }}{\text { Laps per Inch required }}=$ Lay Change Gear (W^{1}).
Note-The distance traversed by the top rail for one revolution of the Lifting Shaft is $61 / 3 \mathrm{in}$.

Examples:
Take Lay Combination No. 1 on page 134, and Reversing Shaft Change Gear $\left(Z^{2}\right)=16 \mathrm{~T}$.
$5 \% \times 68 \times 70 \times 22 \times 44 \times 31 \times 18 \times$
$\frac{16 \times 50 \times 5 .}{13 \times 16 \times 18 \times 2 \times 24 \times 30 \times 48 \times}=200.4=$ Lay Constant. $42 \times 30 \times 61 / 3$
If Lay Change Gear $\left(\mathrm{W}^{1}\right)=24 \mathrm{~T}$,
$\frac{200.4}{24}=8.35=$ Laps per Inch on Bobbin.
If Laps per Inch required $=9.5$,
$\frac{200.4}{9.5}=21 \mathrm{~T}=$ Lay Change Gear $\left(\mathrm{W}^{1}\right)$.
The following table may be used in calculating the required Laps per Inch on Bobbin for any given hank roving:

1 hank or below, $7.5 \times$ square root of hank= Laps per Inch 1 hank to 2 hanks, $8.5 \times$ square root of hank $=$ Laps per Inch 2 hanks to 3 hanks, $9.5 x$ square root of hank $=$ Laps per Inch 3 hanks to 4 hanks, 10.0 x square root of hank $=$ Laps per Inch 4 hanks and above, 10.5 x square root of hank $=$ Laps per Inch

Good results are obtained by using $9.3 \times$ square root of hank.

TAPER AND TENSION CALCULATIONS.
It is difficult to give hard and fast rules for figuring the Taper and Tension Gears, as the required number of teeth on these gears is affected by the kind of stock, length of staple, amount of twist, temperature and humidity.

PRODUCTION CALCULATIONS.

Rule:
840 (yds. in 1 hank) x 36 (inches in 1
$y d$.) x Twist per inch x hank $x=$ Minutes required weight of bobbin in lbs. for 1 set.

R. P. M. of Spindles

Allowing 15 min . per set for doffing, etc.,
$\frac{600 \text { (Min. in } 10 \text { hours) }}{\text { Min. per set }+15 \text { (for doffing, etc.) }}=$ Sets in 10 hours.
Sets in 10 hours x weight of bobbin in lbs. $=\mathrm{lbs}$. in 10 hours.

Example:
If 4.00 hank, Twist per Inch 2.40 , Spindle Speed 1,150 , bobbin $7 \times 31 / 2$ in., weight of bobbin 10 oz. or $\frac{10}{16} 1$ bs.
$\frac{840 \times 36 \times 2.40 \times 4.00 \times 10}{1,150 \times 16}=15 \% .8 \mathrm{~min}$. for 1 set.
$\frac{600}{15 \pi .8+10}=3.4^{7}$ sets in 10 hours.
$3.47 \times \frac{10}{16}=2.16 \mathrm{lbs}$. per spindle in 10 hours.

SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES.

DRAFT TABLES.

NOTE-The above is for front and back rolls the same dia.

Twist	Combination .	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14
	Twist Constant .	38.53	57.80	48.17	67.43	C5.0\%	81.34	97.60	113.87	147.74	T2.30	90.38	108.46	126.53	164.17
	Diameter of Front Roll, In	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/8	11/8	11/8	11/8	11/8
G	Middle Top Cone Gear	32	48	40	56	32	40	48	56	56	32	40	48	56	56
H	Large Front Roll Gear	130	130	130	130	130	130	130	130	138	130	130	130	130	138
Gr^{1}	End Top Cone Gear	48	48	48	48	44	44	44	44	36	44	44	44	44	36
A^{1}	Spindle Shaft Driving Gear	40	40	40	40	40	40	40	40	40	40	40	40	40	40
$C \& D E$	End Spindle Shaft Gear . .	42	42	42	42	37	37	37	37	37	37	37	37	37	37
C^{1}	Spindle Shaft Skew Bevel Gear	55	55	55	55	55	55	55	55	55	55	55	55	55	55
D^{1}	$\begin{gathered} \text { Spindle Bevel } \\ \text { Gear } \end{gathered}$	30	30	30	30	22	22	22	22	22	22	22	22	22	22

[^0]
SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES-TWIST TABLES.

(See page 131 for key to these tables.)

Twist Comb.	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	Twist Comb.
Twist Constant	38.53	57.80	48.17	67.43	65.07	81.84	97.60	Twist Constant
'Twist Gear	1¼-inch Diameter Front Roll Turns of Twist per Inch							Twist Gear
70	. 55	. 83	. 69	. 96	. 93	1.16	1.39	70
69	. 56	. 84	. 70	. 98	. 94	1.18	1.41	69
68	. 57	. 85	. 71	. 99	. 95	1.20	1.44	68
67	. 51	. 86	.12	1.01	. 97	1.21	1.46	67
66	. 58	. 88	. 73	1.02	. 98	1.23	1.48	66
65	.59 .60	. 89	. 14	1.04 1.05	1.00 1.02	1.25	1.50 1.52	65
63	. 61	. 92	. 76	1.07	1.03	1.29	1.55	63
62	. 62	. 93	. 78	1.09	105	1.31	1.57	62
61	. 63	. 95	. 79	1.10	1.07	1.33	1.60	61
60	. 64	. 96	. 80	1.12	1.09	1.35	1.63	60
59	. 65	. 98	. 82	1.14	1.10	1.38	1.66	59
58	. 66	1.00	. 83	1.16	1.12	1.40	1.68	58
57	. 68	1.01	. 84	1.18	1.14	1.43	1. 71	57
56	. 69	1.03	. 86	1.20	1.16	1.45	1.74	56
55	. 70	1.05	. 88	1.23	1.18	1.48	1.77	55
54 53	. 71	1.07 1.09	. 89	1.25	1.20 1.23	1.51	1.81	54 53
52	. 74	1.11	. 93	1.30	1.25	1.57	1.88	52
51	. 76	1.13	. 94	1.32	1.25	1.60	1.92	51
50	.	1.16	. 96	1.35	1.30	1.63	1.95	50
49	. 89	1.18	. 98	1.38	${ }_{1}^{1.33}$	1.66	1.99	49
47	. 82	1.23	1.02	1.43	1.38	1.73	2.03	47
46	. 84	1.20	1.05	1.47	1.41	$1 . \%$	2.12	46
45	. 86	1.2\%	1.07	1.50	1.45	1.81	2.17	45
44	. 88	1.31	1.09	1.53	1.48	1.85	2.2\%	44
43	. 90	1.34	1.12	1.57	1.51	1.89	2.27	43
42	. 92	1.38	1.15	1.61	1.55	1.94	2.32	42
41	. 94	1.41	1.17	1.65	1.59	1.99	2.38	41
40	. 96	1.44	1.20	1.69	1.63	2.04	2.44	40
39	. 99	1.48	1.23	1.73	1.67	$\stackrel{2}{2} 09$	2.50	39
38	1.01	1.58	1. 2π	1.7\%	1. 11	2.14	2.57	38
37 36	1.04	1.56 1.61	1.30 1.34	1.88	1.76 1.81	2.20 2.26	$\stackrel{2.64}{9.71}$	37
35	1.10	1.65	1.38	1.92	1.86	2.32	$\underset{\sim}{2} 9$	35
34	1.13	1. 20	1.42	1.98	1.91	2.39	2.87	34
33	1.17	1.75	1.46	2.04	1.97	2.45	2.96	33
32	1.20	1.81	1.50	2.11	2.03	2.55	3.05	32
31	1.24	1.86	1.55	2.17	2.10	2.63	315	31
30	1.28	1.93	1.61	2.85	2.15	2.71	3.26	30
29	1.33	1.99	1.66	2.33	2.24	2.81	3.37	29
28	1.38	2.06	1.72	2.41	2.32	2.91	3.49	28
27	1.43 1.48	2.14 2.22	1.78	$\stackrel{2.50}{2.59}$	$\stackrel{2.41}{9.50}$	3.02 3.13	3.62	27
25	1.54	2.31	1.93	$2 . \%$	2.60	3.26	3.91	25
24	1.61	2.41	2.01	2.81	2.61	3.39	4.02	24
23	1.67	2.51	2.09	2.93	2.83	3.54	4.25	23
22	1.75	2.63	2.19	3.06	2.96i	3.70	4.44	22
21	1.83	2.75	3.29	3.21	3.10	3.88	4.65	21
20	1.93	2.89	2.41	3.37	3.26	4.0 i	4.88	20

SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES-TWIST TABLES.

(See page 131 for key to these tables)

Twist Comb.	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	Twist Comb.
Twist Constant	113.87	14\%.\%4	72.30	90.38	108.46	126.53	164.17	Twist Constant
Twist Gear	1 1 / " Front Roll Twist per Inch		1 1/8" Front Roll Twist per Inch					Twist Gear
7069686766656463636261605958575655545352515049484746454443424140393837	1.63	2.11	1.03	1.29	1.55	1.81	2.34	70
	1.65	2.14	1.05	1.31	1.57	1.88	2.38	69
	1.65	2.17	1.06	1.33	1.59	1.86	2.42	68
	1.70	2.21	1.08	1.35	1.62	1.89	2.45	67
	1.73	2.24	1.10	1.37	1.64	1.92	2.49	66
	1.75	2.27	1.11	1.39	1.fif	1.95	2.53	65
	1.78	2.31	1.13	1.41	1.69	1.98	2.57	64
	1.81	2.35	1.15	1.43	1.72	2.01	2.61	63
	1.84	2.39	1.1 亿	1.46	1.75	2.04	2.65	62
	1.87	2.43	1.19	1.48	1.78	2.07	2.69	61
	1.90	2.47	1.21	1.51	1.81	$\stackrel{2}{2} 11$	2.74	60
	1.93 1.96	2.51 2.55	1.23	1.53 1.56	1.84 1.87	2.14 2.18	2.79 2.83	58
	2.00	2.59	1.27	1.59	1.90	2.22	2.88	57
	2.03	2.64	1.29	1.61	1.94	2.26	2.93	56
	2.07	2.69	1.31	1.64	1.97	2.30	2.99	55
	2.11	2.74	1.34	1.67	2.01	2.34	3.04	54
	2.15	- 2.79	1.36	$1 . \% 0$	2.05	2.39	3.10	53
	2.19	$\stackrel{2.84}{ }$	1.39	1.74	$\stackrel{2}{2} 09$	$\underset{\sim}{2} .43$	3.16	52
	2.23	${ }^{2} .90$	1.42	1.7	$\stackrel{2}{2}$	$\stackrel{48}{48}$	3.22	51
	2.28	2.96	1.45	1.81	$\stackrel{3}{2}$	$\stackrel{2}{2} 53$	3.2 K	50
	${ }_{2}^{2.33}$	3.08	1.45	1.84	$\stackrel{2}{2} .21$	$\stackrel{\sim}{2} .58$	3.35	49
	2.38 2.43	3.08 3.14	1.51	1.88	2.26 2.31	2.64 2.69	3.42 3.49	48
	2.48	3.21	1.5%	1.96	2.36	2.75	3.57	46
	2.53	3.29	1.61	2.01	2.41	2.81	3.65	45
	$\stackrel{2}{29}$	3.36	1.64	$\stackrel{2.05}{2.05}$	2.46	2.87	3.73	44
	2.65	3.44	1.68	$\stackrel{2}{2.10}$	$\stackrel{2}{2} .52$	$\stackrel{2}{3} .94$	3.82	43
	2.71	3.5\%	1.72	2.15	2.58	3.01	3.91	42
	2.78	3.61	1. 76	2.20	2.64	3.09	4.00	41
	2.85	3.70	1.81	2.26	3.11	3.16	4.10	40
	2.92	3.79	1.85	2.32	2.78	3.24	4.21	39
	3.00	3.89	1.90	2.38	2.85	3.33	4.32	38
	3.08	4.00	1.95	2.44	$\stackrel{2.93}{3}$	3.42	4.44	37
	3.16	4.11	$\stackrel{3.01}{9}$	$\stackrel{2}{2} .51$	3.01	3.51	4.56	36
	${ }_{3}^{3.25}$	4.22	${ }^{2.07}$	$\stackrel{2.58}{2.66}$	3.10 3.19	3.61	4.69	35
	3.35 3.46	4.35 4.48	2.13 2.19	$\stackrel{2.66}{\text { a }}$	3.19 3.29	3.72 3.83	4.83 4.97	34
	3.46 3.56	4.48 4.62	2.19 2.26	2.it	3.29 3.39	3.83 3.95	4	32
	3.68	4.77	2.38	2.91	3.50	4.08	5.29	31
	3.80	4.92	$\stackrel{2}{2} 41$	3.01	3.61	4.22	5.47	30
	3.93	5.10	2.49	3.12	3.74	4.36	5.66	29
	4.07	5.28	2.58	3.23	3.87	4.52	5.86	28
	4.22	5.48	2.68	3.35	4.02	4.69	6.08	27
	4.38	5.69	2.78	3.48	4.17	4.80	6.31	26
	4.56	5.92	2.89	3.62	4.34	5.06	6.5%	25
	4.75	6.16	3.01	3.7	4.52	5.27	6.84	24
	4.95	6.43	3.14	3.93	4.71	5.50	7.14	23
	5.18	6.72	3.29	4.11	4.93	5.75	7.46	22
	5.42	7.05	3.44	4.30	5.16	6.02	7.82	21
	5.70	\%.39	3.61	4.53	5.42	6.33	8.21	20

SLUBBING, INTERMEDIATE, ROVING AND JACK FRAMES.
 LAY GEARING AND CONSTANTS.

Lay Combination	No.	$\begin{gathered} \text { No. } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{No} \\ 3 \end{gathered}$	$\underset{4}{\mathrm{No}} \mathrm{C}$	$\underset{5}{\text { No. }}$	$\underset{6}{\mathrm{No}} \mathrm{C}$	$\underset{7}{\mathrm{No}} \mathrm{C}$	$\begin{gathered} \text { No. } \\ 8 \end{gathered}$	$\begin{gathered} \text { No. } \\ 9 \end{gathered}$
* Z^{5} Lifting Shaft Gear	57	$5{ }^{\text {a }}$	57	5%	73	73	73	73	73
Z^{4} Lifting Shaft									
* ${ }^{3}$ Driving Gear	13	13	13	13	13	13	13	13	13
$\text { * } Z^{3} \text { Gear, driven by }$	68	68	68	80	68	80	80	68	80
* Z^{2} Reversing Shaft Change Gear									
Z^{1} (Reversing Bevel Z i Gears	70	70	70	70	70	70	70	70	70
* Y^{1} Bevel Gear driving Z^{1} and Z.	18	15	15	15	15	15	13	15	13
* Y Horizontal Bevel Gear	22	22	22	22	22	22	22	30	30
* X^{1} Bevel Gear driv-									
\% ing Y . .	22	22	22	22	22	22	22	15	15
X Spur Gear on	44	44	44	44	44	44	44	44	44
*W ${ }^{1}$ Lay Change									
W Swivel Bracket	31	31	31	31	31	31	31	31	31
Q Differential									
Q ${ }^{1}$ Differentiai	34	34	34	34	34	34	34	34	34
Q Bevel Gear.	18	18	18	18	18	18	18	18	18
R Jack Large	30	30	30	30	30	30	30	30	30
$\mathrm{R}^{1} \mathrm{Jack} \mathrm{m}^{\text {a mali }}$	30								
Bevel Gear .	16	16	16	16	16	16	16	16	16
S Bell Gear Bevel	48	48							
S^{1} Bell Gear .	50	50	50	$\stackrel{48}{50}$	$\stackrel{48}{50}$	50	$\stackrel{4}{50}$	50	$\stackrel{48}{50}$
$\text { * } \underset{\text { Bnbin }}{\text { Gear }} \text { Shft }$	42	12	37	37	37	37	37	37	37
U ${ }^{1}$ Bobbin Shaft									
*V1 Skew Bevel ${ }^{\text {S }}$	55	55	55	55	55	55	55	55	55
* V^{1} Bobbin Bevel	30	30	22	22	22	22	22	22	22

There are two change gears in the lay combination, the Reversing Shaft Change Gear Z^{2} and the Lay Change Gear W^{1}. Although we have given the full list of Lay Gearing in the above table, only the gears marked * are variable, the others being the same for all frames. The regular change gear is W^{1} and the table on the next page gives lay constants for a range of Reversing Shaft Change Gears Z ${ }^{2}$ from 14 to 22 inclusive. To find the correct lay constant select the proper

Lay Gearing Combination from the nine given above, note the number of teeth on the Reversing Shaft Change Gear Z² and take the constant which corresponds in the table below. For example, the lay constant for a frame with gearing like No. 4 combination and a 16 T. Reversing Shaft Change Gear is $43 \pi .9$. This divided by the number of teeth on the Lay Change Gear W^{1} will give the laps per inch on the bobbin.

Table of Lay Constants for Gearing Combinations No. 1, No. 9 and Reversing Shaft Change Gears 14 to 22 T.

Nos.	14	15	16	17	18	19	20	21	22
1	229.0	213.7	200.4	118.6	178.1	168.7	160.3	152.7	145.7
2	274.8	256.5	240.4	226.3	213.7	202.5	192.4	183.2	174.9
3	425.4	397.0	372.2	350.3	330.8	313.4	297.7	283.6	270.7
4	500.4	$46 \% .1$	437.9	412.1	389.2	368.7	350.3	333.6	318.5
5	544.8	508.4	476.7	448.6	423.7	401.4	381.3	363.2	346.7
6	640.9	598.2	560.8	527.8	498.5	472.2	448.6	427.3	407.8
7	739.5	690.2	$64 \% .1$	609.0	575.2	544.9	517.6	493.0	470.6
8	1059.5	1016.9	953.3	897.3	847.4	802.8	782.7	726.3	693.3
9	1479.0	1380.4	1294.1	12180	1150.3	1089.8	1035.3	986.0	941.2

ROVING TABLE.

FOR NUMBERING BY THE WEIGHT, IN GRAINS, OF 12 YARDS; AND SHOWING TWIST PER INCH.
(Square Root $\times 1.20$)

Grains Weight	Hank Roving	Square Root	Twist per Inch	Grains Weight	Hank Roving	Square Koot	Twist per Inch
400.00	. 25	. 500	. 60	147.06	. 68	.825	. 99
384.61	. 26	. 510	. 61	144.93	. 69	. 831	1.00
370.37	. 27	. 520	. 62	142.86	. 70	. 837	1.00
357.14	. 28	. 529	. 63	140.85	.71	. 843	1.01
344.83	. 29	. 539	. 65	138.89	. 72	. 849	1.02
333.33	. 30	. 548	. 66	135.99	. 73	. 854	1.02
322.58	. 31	. 55%	. 67	135.14	. 74	. 860	1.03
312.50	. 32	. 566	. 68	133.33	. $\%$. 866	1.04
303.03	. 33	. 574	. 69	131.58	. 66	. 872	1.05
294.12	. 34	. 583	. 70	129.87	.76	. 874	1.05
285.71	. 35	. 592	. 71	128.21	.78	. 88	1.06
277.78	. 36	. 600	. 70	126.58	. 79	. 889	1.07
270.27	. 37	608	. 73	125.00	. 80	. 894	1.07
263.16	. 38	. 616	.74	123.46	. 81	. 900	1.08
256.41	. 39	. 624	. 75	121.95	. 82	. 906	1.09
250.00	. 40	. 632	. 76	120.48	. 83	. 911	1.09
243.90	. 41	. 640	. 7	119.05	. 84	. 917	1.10
238.10	. 42	. 648	. 88	117.65	. 85	. 922	1.11
232.56	. 43	. 656	. 79	116.28	. 86	. 927	1.11
227.27	. 44	. 663	. 80	114.94	. 87	. 933	1.12
222.22	. 45	. 671	. 80	113.64	. 88	. 938	1.13
217.39	. 46	. 678	. 81	112.36	. 89	. 943	1.13
212.77	. 47	. 686	. 82	111.11	. 90	. 949	1.14
208.33	. 48	. 693	. 83	109.89	. 91	. 954	1.14
204.08	. 49	. 700	. 84	108.70	. 92	. 959	1.15
200.00	. 50	. 707	. 85	107.53	. 93	. 964	1.16
196.08	. 51	. 714	. 87	106.38	. 94	. 970	1.16
192.31	. 52	. 221	. 87	105.26	. 95	. 975	1.17
188.68	. 53	. 728	. 87	104.16	. 96	. 980	1.18
185.19	. 54	. 735	. 88	103.09	. 97	. 985	1.18
181.82	. 55	. 742	. 89	102.04	. 98	. 990	1.19
178.5\%	. 56	. 748	. 90	101.01	. 99	. 995	1.19
175.44	. 5%	. 755	. 91	100.00	1.00	1.000	1.20
172.41	. 58	. 762	. 91	98.04	1.02	1.010	1.21
169.49	. 59	. 768	. 92	96.15	1.04	1.020	1.22
166.67	. 60	. 775	. 93	94.34	1.06	1.030	1.24
163.93	. 61	. 781	. 94	92.59	1.08	1.039	1.25
161.29	. 62	. 88%	. 94	90.91	1.10	1.049	1.26
158.73	. 63	. 794	. 95	89.29	1.12	1.058	1.27
156.25	. 64	. 800	. 96	87.72	1.14	1.068	1.28
153.85	. 65	. 806	. 9 т	86.21	1.16	1.07%	1.29
151.52	. 66	. 812	. 97	84.75	1.18	1.086	1.30
149.25	. 67	. 819	. 98	83.33	1.20	1.095	1.31

ROVING TABLE-CONTINUED.

FOR NUMBERING BY THE WEIGHT, IN GRAINS, OF 12 YARDS; AND SHOWING TWIST PER INCH
(Square Root $\times 1.20$)

Grains Weight	Hank Roving	Square Root	Twist per Inch	Grains Weight	Hank Roving	Square Koot	$\begin{gathered} \text { Twist } \\ \text { per } \\ \text { Inch } \end{gathered}$
81.97	1.22	1.105	1.33	48.08	2.08	1.442	1.73
80.65	1.24	1.114	1.34	47.62	2.10	1.449	1.74
79.37	1.26	1.122	1.35	47.1%	2.12	1.456	1.75
78.12	1.28	1.131	1.36	46.73	2.14	1.463	1.76
76.92	1.30	1.140	1.37	46.30	2.16	1.470	1.76
75.76	1.32	1.149	1.38	45.8%	2.18	1.476	1.74
74.63	1.34	1.158	1.39	45.45	2.20	1.483	1.76
73.53	1.36	1.166	1.40	45.05	2.22	1.490	1.79
72.46	1.38	1.175	1.41	44.64	2.24	1.49 \%	1.80
\%1.43	1.40	1.183	1.42	44.25	2.26	1.503	1.80
70.42	1.42	1.192	1.43	43.86	2.28	1.510	1.81
69.44	1.44	1.200	1.44	43.48	2.30	1.51%	1.82
68.49	1.46	1.208	1.45	43.10	2.32	1.523	1.83
$67.5 \frac{1}{7}$	1.48	1.21\%	1.46	42.74	2.34	1.530	1.84
66.6%	1.50	1.225	1.47	42.37	2.36	1.536	1.84
65.79	1.52	1.233	1.48	42.02	2.38	1.543	1.85
64.94	1.54	1.241	1.49	41.67	2.40	1.549	1.86
64.10	1.56	1.249	1.50	41.32	2.42	1.556	1.87
63.29	1.58	1.25%	1.51	40.98	2.44	1.562	1.87
62.50	1.60	1.265	1.52	40.65	2.45	1.568	1.8s
61.73	1.62	1.273	1.53	40.32	2.48	1.575	1.89
60.98	1.64	1.281	1.54	40.00	2.50	1.581	1.90
60.24	1.66	1.288	1.55	39.68	2.52	1.58 \%	1.90
59.52	1.68	1.296	1.56	39.37	2.54	1.594	1.91
58.82	1.70	1.304	1.56	39.06	2.56	1.600	1.92
58.14	1.72	1.311	1.57	38.76	2.58	1.606	1.93
57.47	1.74	1.319	1.58	38.46	2.60	1.612	1.93
56.82	1.76	1.32\%	1.59	38.17	2.62	1.619	1.94
56.18	1.78	1.334	1.60	37.88	2.64	1.625	1.95
55.56	1.80	1.342	1.61	3\%.59	2.66	1.631	1.96
54.95	1.82	1.349	1.62	37.31	2.68	1.637	1.96
54.35	1.84	1.356	1.63	37.04	2.70	1.643	1.97
53.76	1.86	1.364	1.64	36.76	2.72	1.649	1.98
53.19	1.88	1.371	1.65	36.50	2.74	1.655	1.99
52.63	1.90	1.378	1.65	36.23	2.76	1.661	1.99
52.08	1.92	1.3×6	1.66	35.97	2.78	1.66%	2.00
51.55	1.94	1.393	$1.6 \frac{1}{}$	35.71	2.80	1.673	2.01
51.02	1.96	1.400	1.68	35.46	2.82	1.679	2.01
50.51	1.98	1.407	1.69	35.21	2.84	1.685	2.02
50.00	2.00	1.414	1. $\% 0$	34.97	2.86	1.691	2.03
49.50	2.02	1.421	1.71	34.72	2.88	1.697	2.04
49.02	2.04	1.428	1. 11	34.48	2.90	1703	2.04
48.54	2.06	1.435	1.72	34.25	2.92	1.709	2.05

ROVING TABLE-CONTINUED.

FOR NUMBERING BY THE WEIGHT, IN GRAINS, OF 12 YARDS; AND SHOWING TWIST PER INCH.
(Square Root $\times 1.20$)

Grains Weight	Hank Roving	Square Root	Twist per In.	Grains Weight	Hank Roving	Square Root	Twist per In.
34.01	2.94	1.715	2.06	14.29	7.00	2.646	3.17
33.78	2.96	1.721	2.07	14.08	7.10	2.665	3.20
33.56	2.98	1.726	2.07	13.89	7.20	2.683	3.22
33.33	3.00	1.732	2.08	13.70	7.30	2.702	3.24
32.26	3.10	1.761	2.11	13.51	7.40	2.720	3.26
31.25	3.20	1.789	2.15	1333	7.50	2.739	3.29
30.30	3.30	1.817	2.18	13.16	7.60	2.757	3.31
29.41	3.40	1.844	2.21	12.99	7.70	2.775	3.33
28.57	3.50	1.871	2.24	12.82	7.80	2.793	3.35
27.78	3.60	1.897	2.28	12.66	7.90	2.811	3.37
27.03	3.70	1.924	2.31	12.50	8.00	2.828	3.39
26.32	3.80	1.949	2.34	12.35	8.10	2.846	3.42
25.64	3.90	1.975	2.37	12.20	8.20	2.864	3.44
25.00	4.00	2.000	2.40	12.05	8.30	2.881	3.46
24.39	4.10	2.025	2.43	11.90	8.40	2.898	3.48
23.81	4.20	2.049	2.46	11.76	8.50	2.915	3.50
23.26	4.30	2.074	2.49	11.63	8.60	2.933	3.52
22.73	4.40	2.098	2.52	11.49	8.70	2.950	3.54
22.22	4.50	2.121	2.55	11.36	8.80	2.966	3.56
21.74	4.60	2.145	2.5%	11.24	8.90	2.983	3.58
21.28	4.70	2.168	2.60	11.11	9.00	3.000	3.60
20.83	4.80	2.191	2.63	10.99	9.10	3.017	3.62
20.41	4.90	2.214	2.66	10.87	9.20	3.033	3.64
20.00	5.00	2.236	2.68	10.75	9.30	3.050	3.66
19.61	5.10	2.258	2.71	10.64	9.40	3.066	3.68
19.23	5.20	2.280	2.74	10.53	9.50	3.082	3.70
18.87	5.30	2.302	2.76	10.42	9.60	3.098	3.72
18.52	5.40	2.324	2.79	10.31	9.70	3.114	3.74
18.18	5.50	2.345	2.81	10.20	9.80	3.130	3.76
17.86	5.60	2.366	2.84	10.10	9.90	3.146	3.78
17.54	5.70	2.387	2.86	10.00	10.00	3.162	3.79
17.24	5.80	2.408	2.89	9.09	11.00	3.317	3.98
16.95	5.90	2.429	2.91	8.33	12.00	3.464	4.16
16.67	6.00	2.449	2.94	7.69	13.00	3.606	4.33
16.39	6.10	2.470	2.96	7.14	14.00	3.742	4.49
16.13	6.20	2.490	2.99	6.67	15.00	3.873	4.65
15.87	6.30	2.510	3.01	6.25	16.00	4.000	4.80
15.62	6.40	2.530	3.04	5.88	17.00	4.123	4.95
15.38	6.50	2.550	3.06	5.56	18.00	4.243	5.09
15.15	6.60	2.569	3.08	5.26	19.00	4.359	5.23
14.93	6.70	2.588	3.11	5.00	20.00	4.472	5.37
14.71	6.80	2.603	3.13	4.76	21.00	4.582	5.50
14.49	6.90	2.627	3.15	4.27	22.00	4.690	5.63
					23.00	4.796	5.75
					24.00	4.899	5.88 6.00
					25.00	5.000	6.00

RING SPINNIN(i FRAME-HEAD END

RING SPINNING FRAMES.

The introduction of these machines was preceded by a careful study of what had already been done in Spinning Frame design.

Our Improved Ring Spinning Frames are made from entirely new patterns, and not only combine the best features previously brought out in such machines, but also many new ideas and improvements which have proved of great benefit to both manufacturers and spinners.

Although these frames were only introduced a few years ago, they are very extensively used, and the demand is steadily increasing. All parts are machined and most of them are made by specially designed tools.

We give below a description of the construction and chief points of advantage of these machines.
low framing and construction-The Frames are built very low, are extra heavy in all their principal parts, and are designed and constructed so as to stand high speeds without vibration, thus preserving the spindles, ensuring light running and reducing the cost of repairs.

SPINDLE RAILS-These are of the box pattern, specially heavy, and designed to prevent springing, t wisting and vibration.

LIFTING RODS-The Lifting Rods, as will be seen in the several illustrations, do not have any foot castings attached to them. They can therefore be easily taken out, cleaned and put back without the necessity of readjustment. These rods are accurately turned and finished by a special process to prevent sticking. The Wave Shaft Arms are designed so that the Ring Rails can be easily leveled by means of adjusting screws.
creels-The Creels are constructed with large diameter supporting rods so as to ensure rigidity, reduce vibration and prevent stretching the roving.

DOUBLE ADJUSTABLE RING IN PLATE HOLDER

DOUBLE RING IN CAST-IRON HOLDER, WITH PATENT CONCEALED TRAVELER CLEARER

FLUTED ROLLS-These steel rolls are carefully and accurately made from superior stock by special machinery. They have large Necks and Squares and are irregularly fluted so as not to cut the Top Rolls.

TOP ROLLS-These have taper ends or pivots, and the Cap Bar Nebs are milled to correspond, thus making it easy to pick the ends and keep them clean.

CAP BARS-These are made with steel fingers which do not break. The upper surface of each finger is flat. The Cap Bar Nebs, which slide on the fingers, are milled and are fastened in position by cap or frog screws so that they cannot twist or get out of place. This arrangement enables the Top Rolls to be accurately set, and makes it much more easy to see the necks of the Bottom Rolls and keep them properly lubricated without removing the Top Rolls or Cap Bars.

Re-LeVELLING-This is now an easy matter and quickly done. Packing up the feet is no longer necessary. The foot of each Spring Piece is provided with a shoe and jack screw, by which it can be raised or lowered to meet any unevenness in the floor.
traverse rods and guides-Iron Traverse Rods are applied, to which are attached adjustable Brass Trumpet Guides.
adjustable thread boards-Our Thread Boards are adjustable. They can be raised or lowered so as to give, within reasonable limits, any required distance between the Spindle points and Thread Guides.

RING SPINNING FRAME-FOOT END

RINGS-We furnish Single Flange Rings, Double Rings in cast iron Holders, with or without Patent Wire Traveler Clearers, or Double Adjustable Rings in Plate Holders with Traveler Clearers. All Rings are made and finished in the most accurate manner, from a special grade of steel and hardened by improved methods.

SPINDLES-We supply any of the latest improved types of Spindles.

SEPARATORS-We supply the Rhodes-Chandler, Sharples, Doyle or H. \& B. (our own). See description, page 153.

SADDLES-The Dixon ordinary, Dixon adjustable or common Saddles are applied as required.

Lever screws-The Speakman or Common are furnished as specified.

DRIVING PULLEYS are of our own improved design. The Loose Pulley runs on a cast iron sleeve, which is a part of the ring oiling box. Oil passes through holes in the bottom of this sleeve and lubricates the Loose Pulley. Our method of supporting the shaft and Loose Pulley together with the perfect lubrication of both prevents the wearing of the shaft, sleeve or Loose Pulley.

RING OILING OUTRIGGER BEARING AND SELF LUBRICATING LOOSE PULLEY

The Fast Pulley is usually made slightly larger in diameter than the Loose Pulley and is secured to the shaft by a Woodruff key and set screws.

THE OUTRIGGER for supporting the Driving Pulleys can be applied at either the head or foot end, as specified.

Our improved Cylinder Head is made with a wide surface for the tin and has a long hub split at the end for several inches.

The split portion of the hub is made to grip the shaft by means of a heary clamp ring and set screw. The shaft cannot be cut by this set screw as it bears on the split hub.

CYLINDER HEAD BEARING AND CAP
The shafts are steel, fitted with Woodruff Keys and Phosphor Bronze Bushes with Collars, which make the bearings self-oiling and practically free from wear. Heary tin is used in the construction of the Cylinders which are carefully balanced and thoroughly tested.

TWIST GEARING
Simplicity and convenience characterize our Ring Spinning Frame gearing. All gears are cut. They are of ample width, run quietly and are well boxed to prevent accidents.

DRAFT GEARING
The change gears are very conveniently located and a wide range of draft and twist can easily be obtained.

BUILDER FOR RING SPINNING FRAME

IMPROVED BUILDER.

When designing our improved Spinning Frame Builder, special attention was given to obtaining a wide range in form and build of bobbin combined with simplicity and durability. The changes necessary when altering the wind, pick or traverse have been reduced to a minimum.

The Builder is a combination type, and the change from warp to filling, or vice versa, can be easily and quickly made.

The illustration shows a filling cam only on the cam shaft, but when warp and filling wind are wanted, two cams are placed on this shaft.

The length of the traverse is determined by the adjustable Wave Shaft Stud, which can be easily and quickly raised or lowered, and the Ring Rail can be placed at the correct starting point by means of a thumb nut.

The Pick or Take-up Motion is very simple. The pawl is on a plate which has a gear at the back. This gear is driven by a Quadrant which is connected to the top of the Builder. The pawl shield is set so that any required number of teeth can be taken up and no change gears are used.

In the Builder Arm is an adjusting screw, which is used with warp wind to regulate the taper on the bobbin. The taper can be decreased at the bottom and increased at the top by turning in this screw.

When the foot lever is pressed, it throws the Worm out of gear and allows the rail to be dropped. After winding back the Pick Motion, the Frame is ready for doffing and starting a new set.

An eccentric device is applied to enable the "Socket Doff " to be used when desired.

The Worm Gear Shaft is driven by a sprocket chain in the head end. The speed of this shaft and consequently the speed of the traverse is increased or decreased by changing the Sprocket Gear.

The bevel gears are well protected from dust and fly by a cover, and the Builder screw itself is provided with a cleaner which prevents the collection of dirt in the threads.

HOWARD \& BULLOUGH PATENT AUTOMATIC SEPARATOR

HOWARD \& BULLOUGH PATENT AUTOMATIC SEPARATOR

It has been our aim to combine in this new Separator simplicity and lightness with effectiveness and rigidity. All Separators collect lint, but the Howard \& Bullough has so few parts and is so easily cleaned that this disadvantage is reduced to a minimum. The Separator rod holders, which allow the blades to be thrown back out of position for doffing, are neat and strong.

Vibration in a Separator means bad work, and we have given special attention to this point, as evidenced by the double bearings for the lifting rods, the stiffness of the Separator rod carrying the blades, and the general design. In case the operator neglects to return the blades to their working position after doffing, this is taken care of by a curved stop or bracket attached to the roller beam. Easy adjustment for both long and short traverse is a good feature of this Separator.

FLOOR SPACE OF RING SPINNING FRAMES.

We make 36 -in. or $39-\mathrm{in}$. framing as required. When extra large diameter roving bobbins are used and the creels are required to take double roving, the $39-\mathrm{in}$. framing is needed to obtain enough space in the creels.

To ascertain the length of Spinning Frames with any number of spindles: Multiply one-half the number of spindles by the gauge and add 2 ft .1 in . for head and off ends.

Although it is advantageous when possible to keep to the number of spindles given in the table on the opposite page, other lengths can be built, but even boxes are preferable.

DRIVING PULLEYS are 8 in . to 18 in . dia., $31 / 4 \mathrm{in}$. face.

LENGTHS OVER ALL OF RING SPINNING FRAMES.

Number of Spindles	$\begin{gathered} \text { (iauge } \\ 2^{1 / 21} \end{gathered}$	$\begin{gathered} \text { Gauge } \\ 2 \text { 㳊" } \end{gathered}$	Gange $23 / 4^{\prime \prime}$
160	$18^{\prime}-9^{\prime \prime}$	$19^{\prime}-7^{\prime \prime}$	$20^{\prime}-5^{\prime \prime}$
176	$20^{\prime}-5^{\prime \prime}$	$21^{\prime}-4^{\prime \prime}$	$22^{\prime}-3^{\prime \prime}$
192	$22^{\prime}-1^{\prime \prime}$	$23^{\prime}-1^{\prime \prime}$	24'-1"
208	$23^{\prime}-9^{\prime \prime}$	$24^{\prime}-10^{\prime \prime}$	$25^{\prime}-11^{\prime \prime}$
224	$25^{\prime \prime} 5^{\prime \prime}$	$26-7^{\prime \prime}$	$27^{\prime}-9^{\prime \prime}$
240	$27^{\prime}-1^{\prime \prime}$	$28^{\prime}-4^{\prime \prime}$	29 - ${ }^{\prime \prime}$
256	$28^{\prime}-9^{\prime \prime}$	$30^{\prime}-1^{\prime \prime}$	$31^{\prime}-5^{\prime \prime}$
272	$30^{\prime}-5^{\prime \prime}$	$31^{\prime}-10^{\prime \prime}$	$33^{\prime}-3^{\prime \prime}$
288	$32^{\prime}-1^{\prime \prime}$	$33-\boldsymbol{\tau}^{\prime \prime}$	$35-1$ "
304	$33^{\prime}-9^{\prime \prime}$	$35-4$ "	$36^{\prime}-11^{\prime \prime}$
320	$35^{\prime}-5^{\prime \prime}$	$3{ }^{\prime}-1{ }^{\prime \prime}$	$38^{\prime}-9^{\prime \prime}$
Number of Spindles	$\begin{gathered} \text { Gauge } \\ 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { Gauge } \\ & 31 / 41 " \end{aligned}$	Gauge $3^{1 / 2 "}$
156	21-7' ${ }^{\prime \prime}$	$23^{\prime}-21 / 2^{\prime \prime}$	$24^{\prime}-10^{\prime \prime}$
168	$23^{\prime}-1{ }^{\prime \prime}$	$24-10^{\prime \prime}$	26-\%"
180	$24-7{ }^{\prime \prime}$	$26^{\prime}-51 / 2^{\prime \prime}$	$28^{\prime}-4^{\prime \prime}$
192	$26^{\prime}-1^{\prime \prime}$	$28^{\prime}-1{ }^{\prime \prime}$	$30^{\prime}-1^{\prime \prime}$
204	$27^{\prime}-7^{\prime \prime}$	29 -81/2"	$31^{\prime}-10^{\prime \prime}$
216	$29^{\prime}-1^{\prime \prime}$	$31^{\prime}-4^{\prime \prime}$	$33^{\prime}-7^{\prime \prime}$
228	$30^{\prime}-7^{\prime \prime}$	$32^{\prime}-111 / 2{ }^{\prime \prime}$	$35^{\prime}-4^{\prime \prime}$
240	$32^{\prime}-1^{\prime \prime}$	$34^{\prime}-7^{\prime \prime}$	$37^{\prime}-1{ }^{\prime \prime}$
252	$33^{\prime}-7^{\prime \prime}$	$36^{\prime}-21 / 2^{\prime \prime}$	$38^{\prime}-10^{\prime \prime}$
264	$35^{\prime}-1^{\prime \prime}$	$37^{\prime}-10^{\prime \prime}$	$40^{\prime}-7^{\prime \prime}$
276	$36^{\prime}-7^{\prime \prime}$	$39^{\prime}-51 / 2^{\prime \prime}$	$42^{\prime}-4{ }^{\prime \prime}$

PRODUCTION TABLE OF RING WARP YARN.

FRONT ROLL, 1 IN. DIA.

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Yarn } \end{gathered}$	$\begin{gathered} \text { Twist } \\ \text { per } \\ \text { In. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Revs. } \\ \text { Front Roll } \\ \text { per } \\ \text { Minute } \end{gathered}\right.$	$\begin{gathered} \text { Revs. } \\ \text { Spindie } \\ \text { per } \\ \text { Minute } \end{gathered}$	Hanks per Spindle per day of 10 Hours	Lbs. per Spindle per week of 60 Hours	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Yarn } \end{gathered}$
4	9.50	166.0	4950	9.12	13.67	4
5	10.62	163.2	5450	8.96	10.75	5
6	11.63	161.4	5900	8.86	8.86	5
7	12.56	159.6	6300	8.76	7.51	7
8	13.43	157.6	6650	8.65	6.49	8
9	14.25	1563	7000	8.58	5.72	9
10	15.02	153.6	2250	8.53	5.12	10
11	15.75	151.5	7500	8.41	4.59	1
12	16.45	150.0	7750	8.33	4.16	12
13	17.12	147.8	7950	8.21	3.79	13
14	17.77	145.9	8150	8.10	3.47	14
15	18.39	143.6	8300	7.98	3.19	15
16	19.00	141.5	8450	7.86	2.98	16
17	19.58	139.7	8600	7.76	2.81	17
18	20.15	138.1	8750	7.67	2.5%	18
19	20.70	136.0	8850	7.55	2.39	19
20	21.24	134.0	8950	7.53	2.26	20
21	21.76	132.3	9050	7.43	2.12	21
22	22.27	130.0	9100	7.30	1.99	22
23	22.78	127.8	9150	7.18	1.87	23
24	23.27	125.8	9200	7.07	1.76	24
25	23.75	124.6	9300	7.00	1.68	25
26	24.22	123.7	9400	7.02	1.62	26
27	24.68	121.9	9450	6.92	1.54	27
28	25.13	120.2	9500	6.83	1.46	28
29	25.58	118.2	9500	6.71	1.39	29
30	26.02	116.2	9500	6.60	1.32	30
31	26.44	114.4	9500	6.50	1.26	31
32	26.87	112.5	9500	6.39	1.20	32
33	27.28	111.4	9550	6.33	1.15	33
34	27.69	110.3	9600	6.26	1.10	34
35	28.10	108.7	9600	6.24	1.07	35

Allowance has been made for doffing, etc. Standard Warp Twist used, $4.75 \times$ square root of number of yarn.

PRODUCTION TABLE OF RING WARP YARN.

FRONT ROLL, 1 IN. DIA.

$\xrightarrow[\substack{\text { No. of } \\ \text { Yarn }}]{ }$	Twist per In.	$\left.\begin{array}{\|c\|} \text { Revs. } \\ \text { Front Roll } \\ \text { per } \\ \text { Minute } \end{array} \right\rvert\,$	Revs. Spindie per Minute	Hanks per Spindle perday of 10 Hours		No. of
36	28.50	108.3	9700	6.22	1.04	36
37	28.89	106.8	9700	6.13	0.99	37
38	29.28	106.5	9800	6.11	0.97	38
39	29.66	105.2	9800	6.04	0.93	39
40	29.07	106.2	9700	6.10	0.91	40
41	29.44	104.9	9700	6.02	0.88	41
42	29.80	103.6	9700	5.95	0.85	42
43	30.13	102.5	9700	5.88	0.82	43
44	30.49	101.2	9700	5.81	0.79	44
45	30.82	100.2	9700	5.82	0.76	45
46	31.18	99.0	9700	5.75	0.75	46
47	31.51	98.0	9700	5.69	0.73	47
48	31.83	97.0	9700	5.63	0.70	48
49	32. 20	95.9	9700	5.57	0.68	49
50	32.52	94.9	9700	5.51	0.66	50
55	33.34	91.6	9600	5.37	0.59	55
60	34.83	87.7	9600	5.20	0.52	60
65	36.27	84.2	9600	4.99	0.46	65
70	37.62	81.2	9600	4.81	0.41	70
75	38.10	79.4	9500	4.71	0.38	75
80	39.33	76.9	9500	4.61	0.35	80
85	39.64	74.0	9100	4.43	0.31	85
90	40.76	71.0	9100	4.30	0.29	90
95	41.88	68.5	9000	4.15	0.26	95
100	42.00	65.9	8700	4.03	0.24	100
110	44.01	61.5	8500	3.76	0.20	110
120	44.89	58.1	8200	3.55	0.18	120
130	46.74	53.1	7800	3.28	0.15	130
140	47.32	47.1	\%000	2.91	0.13	140
150	48.96	42.9	6600	2.65	0.11	150
160	50.56	37.8	6000	2.34	0.09	160
170	52.12	33.6	5500	2.08	0.07	170

Allowance has been made for doffing, etc. Twist per inch, 4. $\% \mathrm{x}$ square root of number up to 40 s . For 40 s and finer the twist per inch is graduated from 4.60 to $4.00 \times$ square root of number.

PRODUCTION TABLE OF RING FILLING YARN.

FRONT ROLL, 1 IN. DIA.

No. of	Twist per In.	$\begin{aligned} & \text { Revs. } \\ & \text { Front } \\ & \text { Roll per } \\ & \text { Minute } \end{aligned}$	Revs. Spindle per Minute	Hanks per Spindle per day of 10 Hours	Lbs. per Spindle per week of 60 Hours	${ }_{\text {No. of }}^{\text {Yarn }}$
4	6.50	196	4000	9.66	14.48	4
5	7.27	194	4400	9.48	11.38	5
6	7.96	192	4800	9.57	9.56	6
7	8.60	190	5150	9.49	8.14	7
8	9.19	188	5450	9.41	7.06	8
9	9.75	186	5700	9.27	6.18	1
10	10.28	184	5950	9.28	5.57	10
11	10.78	182	6150	9.15	4.99	11
12	11.26	179	6350	9.15	4.58	12
13	11. i^{2}	175	6500	9.01	4.16	13
14	12.16	175	6700	8.93	3.83	14
15	12.59	173	6850	8.83	3.53	15
16	13.00	170	6950	8.68	3.25	16
17	13.40	163	7100	8.60	3.C4	17
18	13. 29	166	7200	8.47	2.83	18
19	14.17	164	7300	8.37	2.65	19
20	14.53	162	- 400	8.35	2.51	20
21	14.89	160	\%500	8.26	2.36	21
22	15.24	158	\%600	8.18	2.23	22
23	15.59	156	7700	810	2.11	23
24	15.92	154	7800	8.03	2.01	24
25	16.25	152	7850	7.93	1.90	25
26	16.57	150	7850	7.86	1.81	26
27	16.89	148	7850	7.95	1.75	27
28	17.20	146	7900	7.85	1.68	28
29	17.50	144	7900	7.72	1.60	29
30	17.80	141	7900	7.77	1.55	30
31	18.10	139	7900	7.67	1.49	31
32	18.38	$13 i$	7900	7.66	1.43	32
33	18.67	135	7900	7.57	1.37	33
34	18.95	133	7900	7.54	1.33	34
35	19.23	131	7900	7.50	1.28	35

Allowance has been made for doffing, etc. Filling Twist used, 3.D: x square root of number of yarn.

PRODUCTION TABLE OF RING FILLING YARN.

FRONT ROLL, 1 IN. DIA.

No. of Yarn	Twist per In.	Revs. Front Roll per Minute	Revs. Spindle per Minute	Hanks per Spindle per day of 10 Hours	Lbs. per Spindle per week of 60 Hours	No. of Yarn
36	19.50	129	7900	7.40	1.24	36
37	19.77	12%	7900	7.30	1.17	37
38	20.03	125	7900	7.21	1.14	38
39	20.30	124	7900	7.11	1.09	39
40	20.55	122	7900	7.10	1.06	40
41	20.81	121	\%900	7.01	1.03	41
42	21.06	119	7900	6.93	0.99	42
43	21.31	118	7900	6.84	0.95	43
44	21.56	117	7900	6.77	0.92	44
45	21.80	115	7900	6.69	0.89	45
46	22.04	114	7900	6.62	0.86	46
47	22.28	113	7900	6.5.)	0.83	47
48	22.52	112	7900	6.48	0.81	48
49	22. 75	111	7900	6.41	0.79	49
50	22.98	109	7900	6.42	0.77	50
55	24.10	104	7900	6.18	0.67	55
60	25.17	100	7900	5.99	0.60	60
65	26.20	95	7800	5. 76	0.53	65
70	27.19	91	7800	5.56	0.47	70
75	28.15	88	7800	5.37	0.43	75
80	29.07	84	7700	5.27	0.40	80
85	29.96	81	7600	5.04	0.35	85
90	30.83	75	7400	4.90	0.32	90
95	31.68	74	7400	4.77	0.30	95
100	32.50	\%1	7200	4.64	0.28	100
110	34.09	64	6900	4.31	0.23	110
120	35.60	58	6500	3.89	0.19	120
130	37.06	53	6200	3.56	0.16	130
140	38.45	49	5900	3.25	0.14	140
150	39.80	45	5600	3.00	0.12	150
160	41.11	41	5300	2.75	0.10	160
170	42.3\%	38	5000	2.52	0.09	170

Allowance has been made for dotfing, etc. Filling Twist used, 3.2: x square root of number of yarn.

HEAD END GEARING
RING SPINNING FRAME

SECTIONAL VIEW
RING SPINNING FRAME

SIDE VIEW
RING SPINNING FRAME

SPINNING FRAME.

ALPHABETICAL REFERENCES TO DRAWINGS.

A Driving Pulley, 8 in. to 18 in. dia., advancing by $1 / 2 \mathrm{in}$. increments ; $3 \frac{1}{4}$ in. face.
A ${ }^{1}$ Cylinder Gear, 17, 21, 29 and 39 T.
A* Cylinder, 7 in. dia.
B Jack Gear, $72,76,86,96$ and 106 T .
B 1 Twist Change Gear, $25-67$ T., advancing by one tooth.
C Intermediate Gear, 156 T . for 36 -in. frame ; 171 T . for 39 in. frame.
C^{1} Builder Motion Driving Sprocket Gear, 8 T.
D Front Roll Twist Gear, 84 T.
D ${ }^{1}$ Front Roll Draft Gear, 21 and 27 T.
D^{2} Front Roll, usually 1 in . dia.; sometimes $1_{\frac{1}{16}} \mathrm{in}$. dia. and $11 / 8 \mathrm{in}$. dia.
E Crown Gear, 72, 90 and 108 T.
E ${ }^{1}$ Draft Change Gear, $32-59$ T., advancing by one tooth.
F Large Back Roll Gear, 79 and 89 T.
F ${ }^{1}$ Small Back Roll Gear, 28 T . for $7 / \mathrm{in}$. dia. Middle and Back Rolls, 29 T. for $\frac{15}{15} \mathrm{in}$. dia. Middle Roll, $1 \frac{1}{16} \mathrm{in}$. dia. Back Rolls.
F2 Back Roll, usually $7 / 8 \mathrm{in}$. dia., sometimes $1 \frac{1}{16}$ in. dia. and $11 / 8$ in. dia.
G Broad Middle Roll Intermediate Gear, 48 T.
Middle Roll Gear, 26 T. for $7 / 8$ in. dia. Middle and Back Rolls, 24 T. for $\frac{15}{16} \mathrm{in}$. dia. Middle and $1_{16}^{\frac{1}{6}} \mathrm{in}$. dia. Back Rolls.
I Whorl, $3 / 4 \mathrm{in}$., $\frac{13}{13} \mathrm{in}$. and $7 / 8 \mathrm{in}$. dia.
J Carrier Sprocket Gear, 10 T.
K Builder Motion Worm Shaft Sprocket Gear, 12, 14, 16, $18,20,20$ and 21 T ., dependent upon the Number of Yarn.
L Carrier Sprocket Gear, 7 T.

SPINNING FRAMES.

DRAFT CALCULATIONS.
Rules:
$\frac{\mathrm{F} \times \mathrm{E} \times \text { dia. of Front Roll }}{\mathrm{D}^{1} \times \text { dia. of Back Roll }}=$ Draft Constant.
Draft Constant
$\left.\overline{\text { Draft Change Gear (E }}{ }^{1}\right)=$ Draft.
Draft Constant
$\overline{\text { Draft required }}=$ Draft Change Gear (E^{1}).
Examples:
If Front Roll Gear (${ }^{1}$) $=27$ T, Back Roll Gear $(\mathrm{F})=$ 89 T , Crown Gear $(\mathrm{E})=72 \mathrm{~T}$. Front Roll, 1 inch dia. Back Roll, $7 / 8$ inch dia.
$\frac{89 \times 72 \times 1}{27 \times 7 / 8}=271.24=$ Draft Constant.
If Draft Change Gear $\left(\mathrm{E}^{1}\right)=34 \mathrm{~T}$.
$\frac{271.24}{34}=7.98=$ Draft .
If Draft required $=6.00$
$\frac{271.24}{6.00}=45 \mathrm{~T} .=$ Draft Change Gear $\left(\mathrm{E}^{1}\right)$.

TWIST CALCULATIONS.
Rules:
$\frac{\text { D x B x Ratio of Whirl Speed to Cylinder Speed }}{\mathrm{A}^{1} \times \text { Circum. of Front Roll }}=\begin{gathered}\text { Twist } \\ \text { Constant. }\end{gathered}$
Twist Constant
$\overline{\text { Twist Change Gear }\left(\mathrm{B}^{1}\right)}=$ Twist per inch.
Twist Constant
$\overline{\text { Twist per inch required }}=$ Twist Change Gear (B^{1}).
When figuring the Ratio of Whirl Speed to Cylinder Speed we add $1 / 8$ inch to the diameters to allow for the band.

Examples:
If Cylinder Gear $\left(\mathrm{A}^{1}\right)=21 \mathrm{~T}$, Jack Gear $(\mathrm{B})=96 \mathrm{~T}$, Front Roll Gear $(\mathrm{D})=84 \mathrm{~T}$. Cylinder, 7 inch dia. Whirl, $3 / 4$ inch dia. Ratio of Whirl Speed to Cylinder Speed $=8.143$. Front Roll, 1 inch dia.
$\frac{84 \times 96 \times 8.143}{21 \times 3.1416}=995.31=$ Twist Constant.
If Twist Change Gear $\left(\mathrm{B}^{1}\right)=40 \mathrm{~T}$.
$\frac{995.31}{40}=24.88$ Turns Twist per inch.
If T wist per inch required $=18.10$.
$\frac{995.31}{18.10}=55 \mathrm{~T}=$ Twist Change Gear $\left(\mathrm{B}^{1}\right)$.

PRODUCTION CALCULATIONS.

Rule:

> R.P.M. of Front Roll x Circum. of $\frac{\text { Front Roll x } 3600 \text { (min. in } 60 \text { hours) }}{36 \text { (inches in } 1 \text { yd.) } \times 840(\text { yds. in }}=\begin{aligned} & \text { Lbs. Production per } \\ & 1 \text { hank) } \times \text { No. of Yarn }\end{aligned}$

Example:
If No. 20 Warp Yarn, 134.0 R. P. M. of Front Roll, Circum. of 1 inch Front Roll $=3.1416$ inches. 10 per cent. allowance for stops, etc.
$134.0 \times 3.1416 \times 3600 \times .90$
$36 \times 840 \times 20=2.26 \mathrm{lbs}$. in 60 hours.

In our production tables on pages 156 to 159 , the allowance for doffing, waste, etc., varies with the numbers of yarn, the percentage loss being greater for coarse than fine work.

RING SPINNING FRAME, DRAFT TABLE.

FRONT ROLL 1 IN. DIAM. BACK ROLL $7 / 8 \mathrm{IN}$. DIAM.

Front Roll Gear	27	27	27	21	27	21	21
Back Roll Gear	89	79	89	89	89	89	89
Crown Gear	72	90	90	72	108	90	108
Draft Constant	271.24	300.95	339.05	348.73	406.86	435.92	523.10
Draft Gear	Draft						
32	8.48	9.40	10.60	10.89	12.71	13.62	16.35
33	8.22	9.12	10.27	10.57	12.33	13.21	15.85
34	7.98	8.85	9.97	10.26	11.97	12.82	15.39
35	7.75	8.60	9.69	9.96	11.62	12.46	14.95
36	7.42	8.36	9.42	9.69	11.30	12.11	14.53
37	7.33	8.13	9.16	9.43	11.00	11.78	14.14
38	7.14	7.92	8.92	9.18	10.71	11.47	13.77
39	6.95	7.82	8.69	8.94	10.43	11.18	13.41
40	6.78	7.59	8.48	8.72	10.17	10.90	13.08
41	6.62	7.34	8.27	8.51	9.92	10.63	12.76
42	6.46	7.17	8.07	8.30	9.69	10.38	12.46
43	6.31	7.00	7.88	8.11	9.46	10.14	12.17
44	6.16	6.84	\%. 70	7.93	9.25	9.91	11.88
45	6.03	6.69	7.53	7.75	9.04	9.69	11.62
46	5.90	6.54	7.37	7.58	8.84	9.48	11.37
47	5.75	6.40	7.21	7. 42	8.66	9.27	11.13
48	5.65	6.27	7.06	7.27	8.48	9.08	10.90
49	5.54	6.14	6.92	\%.12	8.30	8.90	10.68
50	5.42	6.02	6.78	6.97	8.14	8.72	10.46
51	5.32	5.90	6.65	6.84	7.98	8.55	10.26
52	5.22	5.79	6.52	6.76	\%.82	8.38	10.06
53	5.12	5.68	6.40	6.58	7.68	8.22	9.87
54	5.02	5.57	6.28	6.46	\%.53	8.07	9.69
55	4.93	5.47	6.16	6.32	7.40	7.93	9.51
56	4.84	5.37	6.05	6.23	7.27	7.78	9.34
57	4.76	5.28	5.95	6.12	7.14	\%.65	9.18
58	4.68	5.19	5.85	6.01	7.01	7.52	9.02
59	4.60	5. 10	5.75	5.91	6.90	\%.39	8.87

RING SPINNING FRAME, DRAFT TABLE.

FRONT AND BACK ROLLS SAME DIAMETER.

Front Roll Gear	27	27	27	21	27	21	21
Back Roll Gear	89	79	89	89	89	89	89
Crown Gear	72	90	90	72	108	90	108
Draft Constant	237.33	263.33	296.67	305.14	356.00	381.43	$45 \% .71$
Draft Gear	Draft						
32	\%.42	8.23	9.27	9.54	11.13	11.92	14.30
33	\%.19	7.98	8.99	9.25	10.79	11.56	13.87
34	6.98	7.75	8.73	8.97	10.47	11.22	13.46
35	6.78	7.52	8.48	8.72	10.17	10.90	13.08
36	6.59	7.31	8.24	8.48	9.89	10.60	12.71
37	6.41	7.12	8.02	8.25	9.62	10.31	12.37
38	6.25	6.93	7.81	8.03	9.37	10.04	12.05
39	6.09	6.75	7.61	7.82	9.13	9.78	11.74
40	5.93	6.58	7.42	7.63	8.90	9.54	11.44
41	5.79	6.42	7.24	7.44	8.68	9.30	11.16
42	5.65	6.27	7.06	5.27	8.48	9.08	10.90
43	5.52	6.12	6.90	7.10	8.28	8.87	10.64
44	5.39	5.98	6.74	6.94	8.09	8.67	10.40
45	5.27	5.85	6.59	6.78	7.91	8.48	10.17
46	5.16	5.72	6.45	6.63	7.74	8.29	9.95
47	5.05	5.60	6.31	6.49	7.57	8.12	9.74
48	4.94	5.49	6.18	6.36	7.42	7.94	9.54
49	4.84	5.37	6.05	6.23	7.27	7.78	9.34
50	4.75	5.27	5.93	6.10	7.12	7.63	9.15
51	4.65	5.16	5.82	5.98	6.98	7.48	8.97
52	4.56	5.06	5.71	5.86	6.85	7.34	8.80
53	4.48	4.97	5.60	5.75	6.72	7.20	8.64
54	4.40	4.88	5.49	5.65	6.59	7.06	8.48
55	4.32	4.79	5.39	5.55	6.47	6.94	S.32
56	4.24	4.70	5.30	5.45	6.36	6.81	8.17
57	4.16	4.62	5.20	5.36	6.25	6.69	8.03
58	4.09	4.54	5.11	5. 26	6.14	$6 . .58$	7.89
59	4.02	4.46	5.03	5.17	6.03	6.45	7.76

RING SPINNING FRAME, TWIST CONSTANTS.

1 IN. DIA. FRONT ROLL.
7 IN. DIA. CYLINDER.
FRONT ROLL GEAR, 84 T.

Whirl on Spindle, $3 / 4 \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 8.143

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	$\begin{gathered} \text { Cylinder } \\ \text { Gear } \end{gathered}$	Twist Constant
\% 2	17	922.12	72	29	$540.55\}$
76	17	973.35	76	29	570.58
86	17	1101.43	86	29	645.66
96	17	1229.50	96	29	T20.74
106	17	1357.57	106	29	\%95.81 \|
72	21	746.48	72	39	401.95 :
76	21	787.95	76	39	424.28 ''
86	21	891.63	86	39	480.11
96	21	995.31	96	39	535.93
106	21	1098.98	106	39	591.76

Whirl on Spindle, $\frac{13}{16} \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 7.60

Jack Gear	Cylinder	Twist Constant	Jack Gear	Cylinder	Twist Constant
72	17	860.65	72	29	504.52
76	17	908.46	\%6	29	532.55
86	17	1028.00	86	29	602.62
96	1%	1147.53	96	29	672.69
106	1%	1267.07	106	29	742.76
72	21	696.71	72	39	375.15
76	21	735.42	\% 6	39	396.00
86	21	832.19	86	39	448.10
96	21	928.95	96	39	500.21
106	21	1025.\%2	106	39	552.31

Whirl on Spindle, 7/8 in. Dia. Ratio Whirl to Cylinder, 7.125

Jack Gear	$\underset{\text { Gear }}{\text { Cylinder }}$	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
72	17	806.86	72	29	472.99
76	17	851.68	76	29	499.26
86	17	963.75	86	29	564.96
96	17	1075.81	96	29	630.65
106	17	1187.88	106	29	696.34
72	21	653.17	72	39	351.71
\%6	21	689.46	76	39	371.25
86	21	780.18	86	39	420.10
96	21	870.90	${ }^{96}$	39 39	468.94
106	21	961.61	106	39	517.79

RING SPINNING FRAME, TWIST CONSTANTS.

$1 \frac{1}{10}$ IN. DIA. FRONT ROLL. 7 IN. DIA. CYLINDER.
 FRONT ROLL GEAR, 84 T.

Whirl on Spindle, 3/4 in. Dia. Ratio Whirl to Cylinder, 8.143

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
72	17	867.89	72	29	508.76
76	17	916.11	76	29	537.03
86	17	1036.65	86	29	607.69
96	17	1157.19	96	29	678.35
106	17	1277.73	106	29	749.01
72	21	\%02.58	72	39	378.31
\%6	21	741.61	\%6	39	399.33
86	21	839.19	86	39	451.8 \%
96	21	936.7	96	39	504.42
106	21	1034.35	106	39	556.96

Whirl on Spindle, $\frac{13}{16}$ in. Dia. Ratio Whirl to Cylinder, 7.60

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
72	17	810.03	72	29	474.85
76	1%	855.03	76	29	501.23
86	17	967.54	86	29	567.18
96	17	1080.04	96	29	633.13
106	1%	1192.55	106	29	699.08
72	21	655.74	72	39	353.09
76	21	692.17	76	39	372.71
86	21	783.25	86	39	421.75
96	21	874.32	96	39	$4 \% 0.79$
106	21	965.40	106	39	519.83

Whirl on Spindle, $7 / 8$ in. Dia. Ratio Whirl to Cylinder, 7.125

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
72	17	759.41	72	29	445.17
76	17	801.59	76	29	469.90
86	17	907.07	86	29	531.73
96	17	1012.54	96	29	593.56
106	17	1118.01	106	29	665.39
T2	21	614.76	\% 2	39	331.02
76	21	648.91	76	39	349.41
86	21	734.29	86	39	395.39
96	21	819.67	96	39	441.36
106	21	905.06	106	39	487.34

RING SPINNING FRAME, TWIST CONSTANTS.

$11 / 8$ IN. DIA. FRONT ROLL. 7 IN. DIA. CYLINDER.
FRONT ROLL GEAR, 84 T.

Whirl on Spindle, $3 / 4$ in. Dia. Ratio Whirl to Cylinder, 8,143

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
72	17	819.67	72	29	480.49
\%6	17	865.20	\% 6	29	507.19
86	1%	979.04	86	29	573.92
96	1%	1092.89	96	29	640.66
106	1%	1206.73	106	29	707.39
72	21	663.54	72	39	357.29
\%6	21	700.40	76	39	377.14
86	21	792.56	86	39	426.76
96	21	884.72	96	39	476.38
106	21	976.88	106	39	526.01

Whirl on Spindle, ${ }_{16}^{13}$ in. Dia. Ratio Whirl to Cylinder, 7.60

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
\%	1%	765.02	72	29	448.46
76	1%	807.52	76	29	473.37
86	17	913.77	86	29	535.66
96	1%	1020.02	96	29	597.95
106	17	1126.28	106	29	660.23
72	21	619.30	72	39	333.47
76	21	653.71	76	39	351.99
86	21	739.72	86	39	398.31
96	21	825.73	96	39	444.63
106.	21	911.75	106	39	490.94

Whirl on Spindle, $7 / 8 \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 7.125

Jack Gear	Cylinder Gear	Twist Constant	Jack Gear	Cylinder Gear	Twist Constant
\% 2	17	717.20	72	29	420.43
76	1%	$75 \% .05$	76	29	443.79
86	1%	856.66	86	29	502.18
96	1%	956.2%	96	29	560.5 \%
106	1τ	1055.89	106	29	618.96
\%	21	580.59	72	39	312.63
76	21	612.85	\%6	39	330.00
86	21	693.49	86	39	373.42
96	21	7\%4.13	96	39	416.84
106	21	854.76	106	39	460.26

RING SPINNING FRAME TWIST TABLE.
1 IN. DIA. FRONT ROLL.
7 IN. DIA. CYLINDER.
FRONT ROLL GEAR, 84 T.

Twist Change Gear	Whirl on Spindle, $3 / 4 \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 8.143								
	Jack	J							
	72	86	96	106	72	76	86		106
	Cyl.	Cyl.	Cyl.	Cyl_{17}	Cyl.	Cyl.	Cyl.	${ }_{21}{ }^{\text {Cyl }}$	Cyl.
	Twist								
25 26 27 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 5	36.89	44.06	49.18	54.30	29.86	31.12	35.6%	39.81	43.96
	35.47	42.36	47.28	52.21	28.71	30.31	34.29	38.28	12.27
	34.15	40.79	45.54	50.28	27.65	29.18	33.02	36.86	40.70
	32.93	39.34	43.84	48.48	26.66	28.14	31.84	35.55	39.25
	31.80	37.98	42.40	46.81	25.74	27.17	30.75	34.32	37.90
	30.74	36.71	40.98	45.25	24.55	26.27	29.72	33.18	36.63
	29.75	35.53	39.66	43.79	24.08	25.42	28.76	32.11	35.45
	28.82	34.42	38.42	42.42	23.32	24.62	27.86	31.10	34.34
	$2 \% .94$	33.38	37.26	41.14	22.62	23.88	27.02	30.16	33.24
	27.12	32.39	36.16	39.93	21.96	23.18	26.22	29.27	32.32
	26.35	31.47	35.13	38.79	21.33	22.51	25.48	28.43	31.40
	25.61	30.60	34.15	37.71	20.74	21.89	24.77	27.65	30.53
	24.92	29.77	33.23	36.69	20.18	21.30	24.10	26.90	29.70
	24.27	28.98	32.36	35.73	19.64	20.74	23.46	26.19	28.92
	23.64	28.24	31.53	34.81	19.14	20.20	22.86	25.52	28.18
	23.05	27.54	30. 74	33.94	18.66	19.70	22.29	24.88	$27.4{ }^{3}$
	22.49	26.86	29.99	33.11	18.21	19.22	21.75	24.28	26.80
	21.96	26.22	29.2̃	32.32	17 \% 17	18.76	21.23	23.70	26.26
	21.44	25.61	28.59	31.57	17.36	18.32	20.64	23.15	25.56
	20.96	25.03	27.94	30.85	16.97	17.91	20.26	22.62	24.98
	20.49	24.48	27.32	30.17	16.59	17.51	19.81	22.12	24.42
	20.05	23.94	26.73	29.51	16.83	17.13	19.60	21.64	23.89
	19.62	23.43	26.18	28.88	15.88	16.78	18.97	21.18	23.38
	19.21	22.97	25.61	28.28	15.55	16.42	18.58	20.76	22.90
	18.82	2254	25.09	27.70	15.23	16.08	18.20	20.31	22.43
	18.44	22.03	24.59	27.15	14.93	15.56	17.83	19.91	21.98
	18.08	21.60	24.11	26.62	14.64	15.45	17.48	19.52	21.55
	17.73	21.18	23.64	26.11	14.36	15.15	17.15	19.14	21.13
	17.40	20.78	23.20	25.43	14.05	14.87	16.88	18.78	20.74
	17.08	20.40	22.7!	25.14	13.82	14.59	16.51	18.43	20.35
	16.7\%	20.03	22.35	24.65	13.57	14.33	16.21	18.10	19.98
	16.47	19.70	21.96	24.24	13.33	$14.0{ }^{\text {c }}$	15.92	17.77	19.62
	16.18	19.32	21.57	23.82	13.10	13.82	15.64	17.46	19.28
	15.90	18.99	21.20	23.40	12.87	13.59	15.37	17.16	18.95
	15.61	18.67	20.84	2301	12.65	13.36	15.11	16.95	18.63
	15.37	18.36	20.49	22.63	12.27	13.13	14.86	16.59	18.32
	15.12	18.06	20.16	23.26	12.24	12.92	14.62	16.32	18.02
	14.87	17.76	19.83	21.90	12.04	12.71	14.38	16.05	17.73
	14.64	17.50	19.52	2155	11.85	12.51	14.15	15.80	17.44
	14.41	17.21	19.21	21.21	11.66	12.31	13.93	15.55	17.17
	14.19	16.95	18.90	${ }^{20} 0.89$	11.48	12.12	13.72	15.31	16.91
	13.97	16.69	18.63	20.57	11.31	11.94	13.51	15.08	16.62
	13.76	16.44	18.35	20.26	11.14	11.76	13.31	14.88	16.40

RING SPINNING FRAME TWIST TABLE.
1 IN. DIA. FRONT ROLL. 7 IN. DIA. CYLINDER. FRONT ROLL GEAR, 84 T .

Twist Change Gear	Whirl on Spindle, $\frac{13}{13} \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 7.60								
	Jack								
	\%2			106	72	76	86	J6	106
	Cyl.	Cyl. 17	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	${ }_{21}{ }_{\text {Cyl }}$
	Twist								
25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 49 50 52 53 5 54 55 56 57 58 59 60 61 62 64 65 66 67	34.43	41.12	45.90	50.68	27.87	29.42	33.29	37.16	41.03
	33.10	39.54	44.14	48.73	26.80	28.29	32.01	35.71	39.45
	31.88	38.0\%	42.50	46.93	25.80	27.24	30.82	34.41	37.99
	30.74	36.71	40.98	45.25	24.88	26.27	29.72	33.18	36.63
	29.68	35.45	39.57	43.69	24.02	25.36	28.70	32.03	35.37
	28.69	34.27	38.25	42.24	23.22	24.51	27.74	30.97	34.19
	27.76	33.16	37.02	40.87	22.47	23.72	26.84	29.97	33.09
	26.90	32.13	35.55	39.60	21.77	22.98	26.01	29.03	32.05
	26.08	31.15	34.77	38.40	21.11	22.29	25.22	28.15	31.08
	25.31	30.24	33.75	37.27	20.49	21.63	24.48	27.32	30.17
	24.59	29.37	32.79	36.20	19.91	21.01	23.78	26.54	29.31
	23.91	28.56	31.88	35.19	19.35	20.43	23.11	25.80	28.49
	23.26	$2 \pi .78$	31.01	34.25	18.83	19.88	22.49	25.11	27.72
	22.65	27.05	30.20	33.34	18.33	19.35	21.90	24.18	26.99
	22.07	26.36	29.42	32.49	17.86	18.86	21.34	23.82	26.30
	21.52	25.70	28.69	31.68	17.42	18.39	20.80	23.22	25.64
	20.99	25.07	27.99	30.90	16.99	17.94	20.30	22.66	25.02
	20.49	24.48	27.32	30.17	16.59	17.51	19.81	22.12	24.42
	20.02	23.91	26.69	29.47	16.20	17.10	19.35	21.60	23.85
	19.56	23.36	26.08	28.80	15.83	16.71	18.91	21.11	23.31
	19.13	22.84	25.50	28.16	15.48	16.34	18.49	20.64	22.79
	18.71	22.35	24.95	27.55	15.15	15.99	18.09	20.19	22.30
	18.31	21.87	24.42	26.96	14.82	15.65	17.71	19.76	21.82
	17.93	21.42	23.91	26.40	14.51	15.32	17.34	19.14	21.37
	17.56	20.98	23.42	25.86	14.22	15.01	16.98	18.96	20.93
	17.21	20.56	22.95	2.5. 34	13.93	14.71	16.64	18.58	20.51
	16.88	20.11	22.50	24.84	13.66	14.42	16.32	18.21	20.11
	16.55	19.7\%	22.07	24.36	13.40	14.14	16.60	17.86	19.72
	16.24	19.40	21.65	23.91	13.15	13.88	15.70	17.53	19.35
	15.94	19.04	21.25	23.46	12.90	13.62	15.41	17.20	19.00
	15.65	18.69	20.86	23.04	12.67	13.37	15.13	16.89	18.65
	15.37	18.36	20.49	22.63	12.44	13.13	14.86	16.59	18.32
	15.10	18.04	20.13	22.23	12.22	12.90	14.60	16.30	18.00
	14.84	17.82	19.79	21.85	12.01	12.68	14.35	16.02	17.68
	14.59	17.42	19.45	21.48	11.81	12.46	14.10	15.74	17.38
	14.34	$1 \% .13$	19.13	21.12	11.61	12.26	13.87	15.48	17.10
	14.11	16.85	18.81	20.7%	11.42	12.06	13.64	15.23	16.81
	13.88	16.58	18.51	20.44	11.24	11.86	13.42	14.98	16.54
	13.66	16.32	18.21	20.11	11.06	11.67	13.21	14.75	16.28
	13.48	16.06	17.93	19.80	10.89	11.49	13.00	14.51	16.03
	13.27	15.82	17.65	19.49	10.72	11.31	12.80	14.29	15.78
	13.04	15.58	17.54	19.20	10.56	11.14	12.61	14.08	15.54
	12.85	15.34	17.13	18.91	10.40	10.98	12.42	13.87	15.31

RING SPINNING FRAME TWIST TABLE.

1 IN. DIA. FRONT ROLL. 7 IN. DIA. CYLINDER.
FRONT ROLL GEAR, 84 T .

Twist Change Gear	Whirl on Spindle, ${ }_{16}^{13} \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 7.60								
	Jack								
	72	76	86	96	106	72	76	J	96
	Cyl.	Cy1.	$\begin{gathered} \mathrm{Cy} 1 . \\ 29 \end{gathered}$	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.
	Twist								
2526272829203031323334353637383940414243444546474849505152535455565758596061	20.18	21.30	24.10	26.91	29.71	15.01	15.84	17.92	20.01
	19.40	20.48	23.18	25.87	28.57	14.43	15.23	17.23	19.24
	18.69	19.\%2	22.32	24.91	27.51	13.89	14.67	16.60	18.53
	18.02	19.02	21.52	24.02	26.53	13.40	14.14	16.00	17.86
	17.40	18.36	20.78	23.20	25.61	12.94	13.66	15.45	17.25
	16.82	17.75	20.09	22.42	24.76	12.51	13.20	14.94	16.67
	16.27	17.18	19.44	21.70	23.96	12.10	12.77	14.45	16.14
	15.\%	16.64	18.83	21.02	23.21	11.72	12.37	14.00	15.63
	15.29	16.14	18.26	20.38	22.51	11.37	12.00	13.58	15.16
	14.84	15.66	17. 72	19.79	21.85	11.03	11.65	13.18	14.71
	14.41	15.22	17.22	19.22	21.22	10.72	11.31	12.80	14.29
	14.01	14.79	16.74	18.69	20.63	10.42	11.00	12.45	13.89
	13.64	14.39	16.28	18.18	20.07	10.14	10.70	12.11	13.52
	13.28	14.01	15.86	17.70	19.55	9.8 \%	10.42	11.79	13.16
	12.94	13.66	15.45	17.25	19.05	9.62	10.15	11.49	12.83
	12.61	13.31	15.07	16.82	18.57	9.38	9.90	11.20	12.51
	12.31	12.99	14.70	16.41	18.12	9.15	9.66	10.93	12.25
	12.01	12.68	14.35	16.02	17.68	8.93	9.43	10.67	11.91
	11.73	12.40	14.01	15.64	17.27	8.72	9.21	10.42	11.63
	11.46	12.10	13.70	15.29	16.88	8.53	9.00	10.18	11.37
	11.21	11.83	13.39	14.95	16.51	8.34	8.80	9.96	11.12
	10.97	11.58	13.10	14.62	16.15	8.16	8.61	9.74	10.8%
	10.73	11.33	12.82	14.31	15.80	7.98	8.43	9.53	10.64
	10.51	11.09	12.55	14.01	15.47	7.82	8.25	9.34	10.42
	10.29	10.87	12.30	13.73	15.16	7.66	8.08	9.12	10.21
	10.09	10.65	12.05	13.45	14.86	7.50	7.92	8.96	10.00
	9.89	10.44	11.82	13.19	14.56	7.35	7.76	8.79	9.81
	9.70	10.24	11.59	12.94	14.28	7.21	7.62	8.62	9.62
	9.52	10.05	11.37	12.69	14.01	7.08	7.47	8.45	9.44
	9.34	9.86	11.16	12.46	13.75	6.95	7.33	8.30	9.26
	9.17	9.68	10.96	12.23	13.50	6.82	\%. 20	8.15	9.09
	9.01	9.51	10.76	12.01	13.26	6.63	7.07	8.00	8.93
	8.85	9.34	10.57	11.80	13.03	6.58	6.95	\%. 86	8.78
	8.70	9.18	10.39	11.60	12.81	6.47	6.83	\%. 73	8.62
	8.55	9.03	10.21	11.40	12.59	6.36	6.71	7.59	8.48
	8.41	8.88	10.04	11.21	12.38	6.25	6.60	\%.47	8.34
	8.27	8.73	9.88	11.03	12.18	6.15	6.49	7.35	8.20
	8.14	8.59	9.72	10.85	11.98	6.05	6.39	7.23	8.06
	8.01	8.45	9.54	10.68	11.79	5.95	6.29	\%. 11	7.94
	\%.88	8.32	9.42	10.51	11.61	5.86	6.19	7.00	7.80
	7.76	8.19	9.24	10.35	11.43	5.74	6.09	6.89	\%.70
	\%.64	8.07	9.13	10.19	11.25	5.68	6.00	6.79	7.58
	7.53	7.95	8.99	10.04	11.09	5.60	5.91	6.69	7.47

RING SPINNING FRAME TWIST TABLE.

1 IN. DIA. FRONT ROLL. 7 IN. DIA. CYLINDER.
FRONT ROLL GEAR, 84 T.

Twist Change Gear	Whirl on Spindle, $7 / 8 \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 7.125								
	Jack	k	ck						
	96	72	76	86	96	72	86	72	86
	Cyl.								
	Twist								
25 26 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 60 61 62 64 65 67	43.03	26.13	27.58	31.21	34.44	18.92	22.60	14.0\%	16.80
	41.38	25.12	26.52	30.01	33.50	18.19	21.73	1353	16.16
	39.84	24.19	25.54	28.90	32.26	17.52	20.92	13.02	15.56
	38.42	23.33	24.62	27.86	31.10	16.89	20.18	12.56	15.00
	37.10	23.52	23.75	26.90	30.03	16.31	19.48	12.13	14.49
	35.86	21.7%	22.98	26.01	29.03	15.77	18.83	11.72	14.00
	34.70	21.07	22.24	25.17	28.09	15.26	18.22	11.35	13.55
	33.62	20.41	21.55	21.38	27.21	14.78	17.65	10.99	13.13
	32.60	19.79	20.89	23.64	26.39	14.33	17.12	10.66	12.73
	31.64	19.21	20.25	22.95	25.61	13.91	16.62	10.34	12.36
	30.74	18.66	19.70	22.29	24.68	13.51	16.14	10.05	12.00
	29.88	18.14	19.15	21.67	24.19	13.14	15.69	9.77	11.67
	29.08	17.65	18.63	21.09	23.54	12.78	15.27	9.51	11.38
	28.31	17.19	18.14	20.53	22.92	12.45	14.8π	9.26	11.06
	27.58	16.75	17.68	20.00	22.33	12.13	14.49	9.02	10.7%
	26.90	16.33	17.24	19.50	21.77	11.82	14.12	8.79	10.50
	26.24	15.93	16.8%	19.03	21.49	11.54	13.78	8.58	10.25
	25.61	15.55	16.42	18.58	20.71	11.26	13.40	8.37	10.00
	25.02	15.19	16.03	18.12	20.25	11.00	13.14	8.18	9.75
	24.45	14.84	15.67	17.73	19.79	10.75	12.84	7.99	9.55
	23.91	14.51	15.32	17.34	19.35	10.51	12.55	7.81	9.34
	23.39	14.20	14.99	16.96	18.93	10.28	12.28	7.65	9.13
	22.89	13.90	14.67	16.60	18.74	10.06	12.02	7.48	8.94
	22.41	13.61	14.36	16.25	18.14	9.85	$11 . \%$	7.33	8.75
	21.96	13.33	14.0 \%	15.92	17.77	9.65	11.53	7.18	8.57
	21.51	13.06	13.79	15.60	17.42	9.46	11.30	7.03	8.40
	21.09	12.81	13.52	15.30	17.08	9.27	11.08	6.90	8.24
	20.69	12.56	13.26	15.00	16.94	9.10	10.86	6.6	8.08
	20.30	12.32	13.01	14.72	16.43	8.92	10.66	664	7.93
	19.92	12.10	12.71	14.45	16.13	8.76	10.46	6.51	7.78
	19.56	11.88	12.54	14.19	15.83	8.60	10.2 \%	6.39	7.64
	19.39	11.66	12.31	13.93	15.55	8.44	10.09	6.28	7.50
	18.87	11.46	12.10	13.69	15.28	8.30	9.91	6.17	7.37
	18.55	11.26	11.89	13.45	15.02	8.15	9.74	6.06	7.24
	18.23	11.0%	11.69	13.22	14.76	8.02	9.58	5.96	7.12
	17.93	10.89	11.49	13.00	14.51	\%. 88	9.42	5.86	7.00
	17.64	10.71	11.30	12.79	14.28	\%. 5.5	9.26	5.77	6.89
	17.35	10.54	11.12	12.58	14.05	7.63	9.11	5.67	${ }_{6} 99$
	17.08	10.37	10.94	12.38	13.82	7.51	8.97	5.58	6.64
	16.81	10.21	10.76	12.19	13.61	7.39	8.83	5.50	6.56
	16.55	10.05	10.61	12.00	13.10	\%.2	8.69	5.41	6.46
	16.30	9.90	10.45	11.8\%	13.20	7.17	8.56	5.33	${ }_{6}^{6.36}$
	16.0%	9.75	10.29	11.64	13.00	\%.06	8.43	5.25	6.27

RING SPINNING FRAME TWIST TABLE.

$1_{1 \frac{1}{6}}^{\frac{1}{2}}$ IN. DIA. FRONT ROLL.
FRONT ROLL GEAR, 84 T.

Twist Change Gear	Whirl on Spindle, $3 / 4 \mathrm{in}$. Dia. Ratio Whirl to Cylinder, 8.143					Whirl on Spin., ${ }_{16}^{13} \mathrm{in}$. Dia. Ratio Whirl to Cyl., 7.60			
	Jack								
	76	${ }_{72}$	106	86	106	${ }_{76}$	${ }_{72}$	86	96
	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	Cy1.	Cyl.	Cyl.
	Twist								
25 26 27 28 30 31 32 34 35 36 37 38 39 40 41 43 44 45 47 48 50 51 52 53 5 54 55 56 57 58 59 60 61 62 63 64 65 65 66 67	29.66	34.72	41.37	41.46	51.11	27.69	32.40	38.70	43.22
	28.52	33.38	39.78	39.87	49.14	26.62	31.16	37.21	41.56
	27.47	32.14	38.31	38.39	47.32	25.64	30.00	35.83	40.02
	26.49	31.00	36.94	37.02	45.63	24.72	28.93	34.55	38.59
	25.57	29.93	35.67	35.75	44.06	23.8 \%	27.93	33.36	37.26
	24.72	28.93	34.48	34.55	42.59	23.07	27.00	32.25	36.01
	23.92	28.00	33.37	33.44	41.22	22.33	26.13	31.21	34.85
	23.18	27.12	32.32	32.39	39.93	21.63	25.31	30.24	33.76
	22.47	26.30	31.34	31.41	38. 72	20.97	24.55	29.32	32.74
	21.81	25.53	30.42	30.49	37.58	20.36	23.82	28.46	31.78
	21.19	24.80	29.55	29.62	36.51	19.78	23.14	27.64	30.87
	20.60	24.11	28.73	28.80	35.49	19.23	22.50	26.88	30.01
	20.04	23.46	27.96	28.02	34.53	18. 11	21.89	26.15	29.20
	19.52	22.84	27.22	27.28	33.62	18.21	21.32	25.46	28.43
	19.02	22.25	26.52	26.58	32.76	17.75	20.7%	24.81	27.70
	18.54	21.70	25.86	25.92	31.94	17.30	20.25	24.19	27.01
	18.09	21.17	25.23	25.28	31.16	16.88	19.76	23.60	26.35
	17.66	20.66	24.63	24.68	30.42	16.48	19.29	23.04	25.72
	17.25	20.18	24.05	24.11	29.71	16.10	18.84	22.50	25.13
	16.85	19.72	23.51	23.56	29.04	15.73	18.41	21.99	24.56
	16.48	19.29	22.99	23.04	28.39	15.38	18.00	21.50	24.01
	16.12	18.87	22.49	22.54	27.78	15.05	17.61	21.03	23.49
	15.78	18.47	22.01	22.06	27.19	14.73	17.23	20.59	22.99
	15.45	18.08	21.55	21.60	26.62	14.42	16.88	20.16	22.51
	15.13	17.71	21.11	21.16	26.08	14.13	16.53	19.75	22.05
	14.83	17.36	20.69	20.73	25.55	13.84	16.20	19.35	21.61
	14.54	17.02	20.28	20.33	25.05	13.57	15.88	18.97	21.18
	14.26	16.69	19.89	19.94	24.57	13.31	15.58	18.61	20.78
	13.99	16.38	19.52	19.56	24.11	13.06	15.28	18.26	20.39
	13.73	16.07	19.15	19.20	23.66	12.82	15.00	17.92	20.01
	13.48	15.78	18.81	18.85	23.23	12.58	14.73	17.59	19.64
	13.24	15.50	18.4%	18.51	22.82	12.36	14.46	17.28	19.29
	13.01	15.23	18.15	18.19	22.42	12.14	14.21	16.97	18.96
	12.79	14.96	17.83	17.87	22.03	11.93	13.97	16.68	18.63
	12.5\%	14.71	17.53	17.57	21.66	11.73	13.73	16.40	18.31
	12.36	14.46	17.24	17.28	21.30	11.54	13.50	16.13	18.01
	12.16	14.23	16.96	16.99	20.95	11.35	13.28	15.86	17. 71
	11.96	14.00	16.68	16.\%2	20.61	11.16	13.07	15.61	17.43
	11. 7.7	13.78	16.42	16.45	20.28	10.99	12.86	15.36	17.15
	11.59	13.56	16.16	16.20	19.96	10.81	12.66	15.12	16.88
	11.41	13.35	15.91	15.95	19.666	10.65	12.46	14.89	16.62
	11.24	13.15	15.67	15.71	19.36	10.49	12.2%	14.66	16.3%
	11.07	12.95	15.44	15.47	19.0%	10.33	12.09	14.44	16.13

YARN TWIST TABLES.

$\begin{aligned} & \text { Counts } \\ & \text { or } \\ & \text { Num- } \end{aligned}$	Square Root	Standard Warp Twist	Warp Twist	Extra Filling Twist	Filling or Hosiery Twist	Soft Hosiery Twist	Underwear Twist
1	1.0000	4.75	4.50	3.50	3.25	3.00	2.75
2	1.4142	6.72	6.36	4.95	4.60	4.24	3.89
3	1.7321	8.23	7.79	6.06	5.63	5.20	4.76
4	2.0000	9.50	9.00	7.00	6.50	6.00	5.50
5	2.2361	10.62	10.06	7.83	7.27	6.71	6.15
6	2.4495	11.63	11.02	8.57	7.96	7.35	6.74
7	2.6458	12.56	11.91	9.26	8.60	7.94	7.27
8	2.8284	13.43	12.73	9.90	9.19	8.48	7.78
9	3.0000	14.25	13.50	10.50	9.75	9.00	8.25
10	3.1623	15.02	14.23	11.07	10.28	9.49	8.69
11	3.3166	15.75	14.92	11.61	10.78	9.95	9.12
12	3.4641	16.45	15.59	12.12	11. 26	10.39	9.52
13	3.6056	17.12	16.22	12.62	11.72	10.82	9.91
14	3.7417	17.77	16.84	13.10	12.16	11.22	10.29
15	3.8730	18.39	17.43	13.56	12.59	11.62	10.65
16	4.0000	19.00	18.00	14.00	13.00	12.00	11.00
17	4.1231	19.58	18.55	14.43	13.40	12.37	11.34
18	4.2426	20.15	19.09	14.85	13.79	12.73	11.66
19	4.3559	20. 70	19.62	15.26	14.17	13.07	11.98
20	4.4721	21.24	20.12	15.65	14.53	13.41	12.30
21	4.5826	21.76	20.62	16.04	14.89	13.75	12.60
22	4.6904	22.27	21.11	16.42	15.24	14.0 \%	12.89
23	4.7958	22.78	21.58	16.79	15.59	14.39	13.19
24	4.8990	23.27	22.05	17.15	15.92	14. 70	13.47
25	5.0000	23.75	22.50	17.50	16.25	15.00	13.75
26	5.0990	24.22	22.95	17.85	16.57	15.30	14.02
27	5.1962	24.68	23.38	18.19	16.89	15.59	14.29
28	5.2915	25.13	23.81	18.52	17.20	15.87	14.55
29	5.3852	25.58	24.23	18.85	17.50	16.15	14.81
30	5.4772	26.02	24.65	19.17	17.80	16.43	15.06
31	5.56\%8	26.44	25.05	19.49	18.10	16.70	15.31
32	5.6569	26.87	25.46	19.80	18.38	16.97	15.55
33	5.7446	27.28	25.85	20.11	18.67	17.23	15.80
34	5.8310	27.69	26.24	20.41	18.95	17.49	16.03
35	5.9161	28.10	26.62	20.71	19.23	17.75	16.27
36	6.0000	28.50	27.00	21.00	19.50	18.00	16.50
37	6.0828	28.89	$2 \% .37$	21.29	19.77	18.25	16.72
38	6.1644	29.28	27.74	21.58	20.03	18.49	16.95
39	6.2450	29.66	28.10	21.86	20.30	18.73	17.17
40	6.3246	30.04	$\stackrel{28}{ }{ }^{\text {8 }}$. 46	22.14	20.55	18.9 \%	17.39
41	6.4031	30.41	28.81	22.41	20.81	19.21	17.61
42	6.4807	30.78	29.16	22.68	21.06	19.44	17.82
43	6.5574	31.15	$\stackrel{29.51}{ }$	22.95	21.31	19.67	18.03
44	6.6332	31.51	29.85	23.22	21.56	19.90	18.24
45	6. 7082	31.86	30.19	23.48	21.80	20.12	18.45
46	6.7823	32.22	30.52	23.74	22.04	20.35	18.65
47	6.855%	32.56	30.85	23.99	22.28	20.57	18.85
48	6.9282	32.91	31.18	24.25	22.52	20.78	19.05
49	\%.0000	33.25	31.50	24.50	22.75	21.00	19.25
50	\%.0\%11	33.59	31.82	24.75	22.98	21.21	19.44

YARN TWIST TABLES.

Counts or Numbers	Square Root	Standard Warp Twist	Warp Twist	Extra Filling Twist	$\begin{gathered} \text { Filling } \\ \text { or } \\ \text { Hosiery } \\ \text { Twist } \end{gathered}$	Soft Hosiery Twist	Underwear Twist
1	1.0000	4.75	4.50	3.50	3.25	3.00	2.75
51	7.1414	33.92	32.14	24.99	23.21	21.42	19.64
52	7.2111	34.25	32.45	25.24	23.44	21.63	19.83
53	7.2801	34.58	32.76	25.48	23.66	21.84	20.02
54	7.3485	34.91	$33.0{ }^{\circ}$	25.72	23.88	22.04	20.21
55	\%.4162	35.23	33.3%	25.96	24.10	22.25	20.39
56	7.4833	35.55	33.67	26.19	24.32	22.45	20.58
57	\%.5498	35.86	33.97	26.42	24.54	22.65	20.76
58	7.6158	36.17	34.27	26.66	24.75	22.85	20.94
59	7.6811	36.49	34.57	26.88	24.96	23.04	21.12
60	7.7460	36.79	34.86	27.11	25.17	23.24	21.30
61	7.8102	37.10	35.15	27.34	25.38	23.43	21.48
62	7.8740	37.40	35.43	27.56	25.59	23.62	21.65
63	7.9873	37.70	35.72	27.78	25.80	23.81	21.83
64	8.0000	38.00	36.00	28.00	26.00	24.00	22.00
65	8.0623	38.30	36.28	28.22	26.20	24.19	22.17
66	8.1240	38.59	36.56	28.43	26.40	24.3%	22.34
67	8.1854	38.88	36.83	28.65	26.60	24.55	22.51
68	8.2462	39.17	37.11	28.86	26.80	24.74	22.68
69	8.3066	39.46	37.38	29.07	$2 \% .00$	24.92	22.84
70	8.3666	39.74	37.65	29.28	27.19	25.10	23.01
71	8.4261	40.02	37.92	29.49	$2 \% .38$	25.28	23.17
72	8.4853	40.31	38.18	29.70	27.58	25.45	23.33
73	8.5440	40.58	38.45	29.90	27.77	25.63	23.50
74	8.6023	40.86	38.71	30.11	27.96	25.81	23.66
75	8.6603	41.14	38.97	30.31	28.15	25.98	23.82
76	8.7178	41.41	39.23	30.51	28.33	26.15	23.97
77	8.7150	41.68	39.49	30.71	28.52	26.32	24.13
78	8.8318	41.95	39.74	30.91	$28 . \% 0$	26.49	24.29
79	8.8882	42.22	40.00	31.11	28.89	26.66	24.44
80	8.9443	42.49	40.25	31.30	29.07	26.83	$\stackrel{2}{4.60}$
81	9.0000	42.75	40.50	31.50	29.25	27.00	24.75
82	9.0554	43.01	40.75	31.69	29.43	27.16	24.90
83	9.1104	43.27	41.00	31.89	29.61	27.33	25.05
84	9.1652	43.53	41.24	32.08	29.79	27.49	25.20
85	9.2195	43.79	41.49	32.27	29.96	27.66	25.35
86	9.2736	44.05	41.73	32.46	30.14	27.82	25.50
87	9.3274	44.31	41.97	32.65	30.31	27.98	25.65
88	9.3808	44.56	42.21	32.83	30.49	28.14	25.80
89	9.4340	44.81	42.45	33.02	30.66	28.30	25.94
90	9.4868	45.06	42.69	33.20	30.83	28.46	26.09
91	9.5394	45.31	42.93	33.39	31.00	28.69	26.23
92	9.591%	45.56	43.16	33.57	31.17	28.77	26.38
93	9.6437	45.81	43.40	33.75	31.34	28.93	26.52
94	9.6954	46.05	43.63	33.93	31.51	29.09	26.66
95	9.7468	46.30	43.86	34.11	31.68	29.24	26.80
96	9.7980	46.54	44.09	34.29	31.84	29.39	26.94
97	9.8489	46.78	44.32	34.47	32.01	29.55	27.08
98	9.8995	47.02	44.55	34.65	32.17	29.70	27.22
99	9.9499	47.26	44.78	34.82	32.34	29.85	27.36
100	10.0000	47.50	45.00	35.00	32.50	30.00	27.50

YARN TWIST TABLES.

Counts or Num- bers	Square Root	Standard Warp Twist	Warp Twist	Extra Filling Twist	$\begin{aligned} & \text { Filling } \\ & \text { or } \\ & \text { Hosiery } \\ & \text { Twist } \end{aligned}$	Soft Hosiery Twist	Underwear Twist
1	1.0000	4.75	4.50	3.50	3.25	3.00	2.75
101	10.0499	47.74	45.23	35.1%	32.66	30.15	27.64
102	10.0995	47.97	45.45	35.35	32.82	30.30	27.77
103	10.1489	48.21	45.67	35.52	32.98	30.45	27.91
104	10.1980	48.44	45.89	35.69	33.14	30.59	28.04
105	10.2470	48.67	46.11	35.86	33.30	30.74	28.18
106	10.2956	48.90	46.33	36.03	33.46	30.89	28.31
107	10.3441	49.13	46.55	36.20	33.62	31.03	28.44
108	10.3923	49.36	46.77	36.37	33.7%	31.19	2 R .58
109	10.4403	49.59	46.98	36.54	33.93	31.32	28.71
110	10.4881	49.82	47.20	36.71	34.09	31.46	28.84
111	10.5357	50.04	47.41	36.8%	34.24	31.61	28.97
112	10.5830	50.27	47.62	37.04	34.39	31.75	29.10
113	10.6301	50.49	47.84	$3 \% .21$	34.55	31.89	29.23
114	$10.6 \% 7$	50.72	48.05	37.37	34.70	32.03	29.36
115	10.7238	50.94	48.26	37.53	34.85	32.17	29.49
116	10.7603	51.16	48.47	37.70	35.00	32.31	29.68
117	10.8167	51.38	48.67	37.86	35.15	32.45	29.75
118	10.8628	51.60	48.88	38.02	35.30	32.59	29.87
119	10.9087	51.83	49.09	38.18	35.45	32.73	30.00
120	10.9545	52.03	49.30	38.34	35.60	32.86	30.12
121	11.0000	52.25	49.50	38.50	35.75	33.00	30.25
122	11.0454	52.47	49.70	38.66	35.90	33.14	30.37
123	11.0905	52.68	49.91	38.82	36.04	$33.2{ }^{\prime}$	30.50
124	11.1355	52.89	50.11	38.97	36.19	33.41	30.62
125	11.1803	53.11	50.31	39.13	36.34	33.54	30.75
126	11.2250	53.30	50.51	39.29	36.48	33.67	30.87
127	11.2694	53.53	50.71	39.44	36.63	33.81	30.99
128	11.3137	53.74	50.91	39.60	36.77	33.94	31.11
129	11.3578	53.95	51.12	39.75	36.91	34.07	31.23
130	11.4018	54.16	51.31	39.91	37.06	34.20	31.35
131	11.4455	54.37	51.50	40.06	37.20	34.34	31.48
132	11.4891	54.57	51.70	40.21	37.34	34.47	31.60
133	11.5326	54.78	51.90	40.36	37.48	34.60	31.71
134	11.5758	54.99	52.09	40.52	37.62	34.73	31.83
135	11.6190	55.19	52.29	40.67	37.76	34.86	31.95
136	11.6619	55.39	52.48	40.82	37.90	34.98	32.07
137	11.7047	55.60	52.67	40.97	38.04	35.11	32.19
138	11.7473	55.80	52.86	41.12	38.18	35.24	32.31
139	11.7898	56.00	53.05	41.26	38.32	35.37	32.42
140	11.8322	56.20	53.24	41.41	38.45	35.50	32.54
141	11.8743	56.40	53.43	41.56	38.59	35.68	32.65
142	11.9164	56.60	53.62	41.71	38.73	35.75	32.77
143	11.9583	56.80	53.81	41.85	38.86	35.87	32.89
144	12.0000	57.00	54.00	42.00	39.00	36.00	33.00
145	12.0416	57.20	54.19	42.15	39.14	36.12	33.11
146	12.0830	57.39	54.37	42.23	39.27	36.25	33.23
147	12.1244	57.59	54.56	42.44	39.40	36.37	33.34
148	12.1655	57.79	54.74	42.58	39.54	36.50	33.46
149	12.2065	57.98	54.93	42.72	39.67	36.62	33.57
150	12.24\%4	58.18	55.11	42.87	39.80	36.74	33.68

Note-The above tables are extended in some cases much beyond the actual requirements as indicated by their headings, but will prove useful for other yarns.

TABLE FOR NUMBERING COTTON YARN BY THE WEIGHT IN GRAINS OF 120 YARDS OR 1 SKEIN

$\begin{gathered} 120 \\ \text { Yds. } \\ \text { Weigh } \\ \text { Grains } \end{gathered}$	No. of Yarn	$\begin{array}{c\|} \hline 120 \\ \text { Yds } \\ \text { Weigh } \\ \text { Grains } \end{array}$	$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$		No. of Yarn		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$
	1000	${ }^{12} 8$	81.30	${ }^{17} .6$	56.82		43.67	${ }^{28} .2$	35.46
2	500	. 4	80.65	. 7	56.50	23	43.48	. 3	35.34
3	333.3	. 5	80.00	. 8	56.18	. 1	43.29	. 4	35.21
4	250.0	. 6	79.37	. 9	55.87	. 2	43.10	. 5	35.09
5	200.0	.7	78.74	18	55.56	. 3	42.92	. 6	34.97
5.5	181.8	. 8	78.12	. 1	55.25	. 4	42.74	. 7	34.84
6	166.7	. 9	77.53	. 2	54.95	. 5	42.55	. 8	34.72
6.5	153.8	13	76.92	. 3	54.64	. 6	42.37	. 9	34.60
\pm	142.9	. 1	76.34	. 4	54.35	. 7	42.19	29	34.48
7.5	133.3	. 2	\%5. 76	. 5	54.05	. 8	42.02	. 1	34.36
8	125.0	. 3	\%5.19	. 6	53.76	. 9	41.84	. 2	34.25
.1	123.5	. 4	74.63	. 7	53.48	24	41.67	. 3	34.13
. 2	122.0	. 5	\%4.07	. 8	53.19	. 1	41.49	. 4	34.01
. 3	120.5	. 6	73.53	. 9	52.91	. 2	41.32	. 5	33.90
. 4	119.0	. 7	72.99	19	52.63	. 3	41.15	. 6	33.78
. 5	117.6	. 8	72.46	. 1	52.36	. 4	40.98	.	33.67
. 6	116.3	. 9	\%1.94	. 2	52.08	. 5	40.82	. 8	33.56
. 7	114.9	14	71.43	. 3	51.81	. 6	40.65	. 9	33.44
. 8	113.6	. 1	\%0.92	. 4	51.55	. 7	40.49	30	33.33
. 9	112.4	. 2	70.42	. 5	51.28	. 8	40.32	. 1	33.24
9	111.1	. 3	69.93	. 6	51.02	. 9	40.16	. 2	33.11
. 1	109.9	. 4	69.44	. 7	50.76	25	40.00	. 3	33.00
\therefore	108.7	. 5	68.97	. 8	50.51	. 1	39.84	. 4	32.89
. 3	107.5	. 6	68.49	. 9	50.25	. 2	39.68	. 5	32.79
. 4	106.4	. 7	68.03	20	50.00	. 3	39.53	. 6	32.68
. 5	105.3	. 8	67.57	. 1	49.65	. 4	39.37	. 7	32.57
. 6	104.2	. 9	67.11	. 2	49.50	. 5	39.22	. 8	32.47
. 7	103.1	15	66.67	. 3	49.26	. 6	39.06	. 9	32.36
. 8	102.0	. 1	66.23	. 4	49.02	. 7	38.91	31	32.26
. 9	101.0	. 2	65.79	. 5	45.78	. 8	38.76	. 1	32. 16
10	100.0	. 3	65.36	. 6	48.54	. 9	38.61	. 2	32.05
. 1	99.01	. 4	64.94	. 7	48.31	26	38.46	. 3	31.95
.2	98.04	. 5	64.52	. 8	48.08	. 1	38.31	.4	31.85
. 3	97.09	. 6	64.10	. 9	47.85	. 2	38.17	. 5	31.75
. 4	96.15	. 7	63.69	21	47.62	. 3	38.02	. 6	31.65
. 5	95.24	. 8	63.29	. 1	47.39	. 4	37.88	. \uparrow	31.55
. 6	94.34	. 9	62.89	. 2	47.17	. 5	37. 74	. 8	31.45
. 7	93.46	16	62.50	. 3	46.95	. 6	37.59	. 9	31.35
. 8	92.59	. 1	62.11	. 4	46.73	. 7	37.45	32	31.25
. 9	91.74	.2	61.73	. 5	46.51	. 8	37.31	. 1	31.15
11	90.91	. 3	61.35	. 6	46.30	. 9	37.17	. 2	31.06
. 1	90.09	. 4	60.98	. 7	46.08	27	37.04	. 3	30.96
\therefore	89.29	. 5	60.61	. 8	45.87	. 1	36.90	. 4	30.86
. 3	88.50	. 6	60.24	. 9	45.66	. 2	36.77	. 5	30.77
. 4	87.72	. 7	59.88	22	45.45	. 3	36.63	. 6	30.67
. 5	86.96	. 8	59.52	. 1	45.25	. 4	36.50	.	30.58
. 6	86.21	. 9	59.17	. 2	45.05	. 5	36.36	. 8	30.49
. 7	85.47	17	58.82	. 3	44.84	. 6	36.23	. 9	30.40
. 8	84.75	. 1	58.48	. 4	44.64	. 7	36.10	33	30.30
12.9	84.03 83.33	. ${ }^{2}$	58.14 57 5	.5	44.44 44.25	. 8	${ }_{35} 35.94$.1	30.21 30.12
. 1	82.64	. 4	57.47	. 7	44.05	28	35.71	.3	30.03
. 2	81.97	. 5	5\%.14	. 8	43.86	. 1	35.59	. 4	29.94

TABLE FOR NUMBERING COTTON YARN-Cont'd.

	No. of Yarn		No. of		No. of Yards		No. of Yards	120 Yds. Weigh Grains	$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$
${ }^{33}{ }_{.5}$	29.85	39.	25.51	44	22.27	${ }^{50} .6$	19.76	${ }^{56} .3$	17.76
. 6	29.76	. 3	25.45	45	22.22	.7	19.\%2	. 4	17.73
. 7	29.67	. 4	25.38	. 1	22.17	. 8	19.69	. 5	17.70
. 8	29.59	. 5	25.32	. 2	22.12	. 9	19.65	. 6	17.67
. 9	29.50	. 6	25.25	. 3	22.08	51	19.61	. 7	17.64
34	29.41	. 7	25.19	. 4	22.03	. 1	19.5%	. 8	17.61
. 1	29.33	. 8	25.13	. 5	21.98	. 2	19.53	. 9	17.57
. 2	29.24	9	25.06	. 6	21.93	. 3	19.49	57	17.54
. 3	29.15	40	25.00	. 7	21.88	. 4	19.46	. 1	17.51
. 4	29.07	. 1	24.94	. 8	21.83	. 5	19.42	. 2	17.48
. 5	28.99	. 2	24.88	. 9	21.79	. 6	19.38	. 3	17.45
. 6	28.90	. 3	24.81	46	21.74	. 7	19.34	. 4	17.42
. 7	28.82	4	24.75	. 1	21.69	. 8	19.31	. 5	17.39
. 8	28.74	. 5	24.69	. 2	21.65	. 9	19.27	. 6	17.36
. 9	28.65	. 6	24.63	. 3	21.60	52	19.23	. 7	17.33
35	28.57	. 7	24.5%	. 4	21.55	. 1	19.19	. 8	17.30
. 1	28.49	. 8	24.51	. 5	21.51	. 2	19.16	. 9	17.2%
. 2	23.41	. 9	24.45	. 6	21.46	. 3	19.12	58	17.24
. 3	28.33	41	24.39	. 7	21.41	.4	19.08	. 1	17.21
. 4	28.25	.1	${ }^{24.33}$. 8	21.37	. 5	19.05	. 2	17.18
. 5	28.17	. 2	24.27	. 9	21.32	. 6	19.01	. 3	17.15
. 6	28.09	. 3	24.21	47	21.28	. 7	18.98	. 4	17.12
. 7	28.01	. 4	24.15	. 1	21.23	. 8	18.94	. 5	17.09
. 8	27.93	. 5	24.10	$\stackrel{1}{2}$	21.19	. 9	18.90	. 6	17.06
. 9	27.86	. 6	24.04	. 3	21.14	53	18.87	. 7	17.04
36	27.78	. 7	23.98	. 4	21.10	. 1	18.83	. 8	17.01
. 1	27.70	. 8	23.92	. 5	21.05	. 2	18.80	. 9	16.98
. 2	27.62	. 9	23.87	. 6	21.01	. 3	18.76	59	16.95
. 3	27.55	42	23.81	. 7	20.96	. 4	18.73	. 1	16.92
. 4	27.47	. 1	23.75	. 8	20.92	. 5	18.69	. 2	16.89
. 5	27.40	. 2	23.70	. 9	20.88	. 6	18.66	. 3	16.86
. 6	27.32	. 3	23.64	48	20.83	. 7	18.62	. 4	16.84
. 7	27.25	. 4	23.58	. 1	20.79	. 8	18.59	. 5	16.81
. 8	27.17	5	23.53	. 2	20.75	. 9	18.55	. 6	16.78
. 9	27.10	. 6	23.47	. 3	20.70	54	18.52	. 7	16.75
37	27.03	. 7	23.42	. 4	20.66	. 1	18.48	. 8	16.72
. 1	26.95	. 8	23.36	. 5	20.62	. 2	18.45	. 9	16.69
. 2	26.88	. 9	23.31	. 6	20.57	. 3	18.42	60	16.67
. 3	26.81	43	23.26	. 7	20.53	. 4	18.38	. 1	16.64
. 4	26.74	. 1	23.20	. 8	20.49	. 5	18.35	. 2	16.61
. 5	26.67	. 2	23.15	. 9	20.45	. 6	18.32	. 3	16.58
. 6	26.60	. 3	23.09	49	${ }_{20}^{20.41}$. 7	18.28	. 4	16.56
. 7	26.53	. 4	23.04	. 1	20.37	. 8	18.25	. 5	16.53
. 8	26.46	. 5	22.99	. 2	20.33	. 9	18.21	. 6	16.50
. 9	26.39	. 6	22.94	. 3	20.28	55	18.18	. 7	16.47
38	26.32	. 7	22.88	. 4	20.24	. 1	18.15	. 8	16.45
. 1	26.25	. 8	22.83	. 5	20.20	. 2	18.12	. 9	16.42
. 2	26.18	. 9	22.78	. 6	20.16	. 3	18.08	61	16.39
. 3	26.11	44	22.73	. 7	20.12	$\cdot 4$	18.05	. 1	16.37
. 4	26.01	. 1	22.68	. 8	20.08	. 5	18.02	. 2	16.34
. 5	25.97	. 2	22.62	. 9	20.04	. 6	17.99	. 3	16.31
. 6	25.91	. 3	22.57	50	20.00	. 7	17.95	. 4	16.29
.7	25.81	. 4	22.52	. 1	19.96	. 8	17.92	. 5	16.26
. ${ }^{\text {S }}$	25.61	. 5	22.47	. 2	19.92	.9	17.89	. 6	16.23
9	25.71	. 6	22.42	. 3	19.88	56	17.86	7	16.21
39	25.64	.7	22.37	4	19.84	. 1	${ }_{17}^{17.83}$. 8	16.19
. 1	25.58	. 8	22.32	5	19.80	. 2	17.79	. 9	16.16

TABLE FOR NUMBERING COTTON YARN-Cont'd.

	No. of Yarn		No. of		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$	$\begin{gathered} 120 \\ \text { Yds. } \\ \text { Weigh } \\ \text { Grains } \end{gathered}$	No. of Yarn
		67		73		79		84	
62	16.13	. 7	14.77	. 4	13.62	.1	12.64	. 8	11.79
. 1	16.10	. 8	14.75	. 5	13.61	. 2	12.63	. 9	11.78
.2	16.08	. 9	14.73	. 6	13.59	. 3	12.61	85	11.76
. 3	16.05	68	14.71	. 7	13.57	. 4	12.59	. 1	11.75
. 4	16.03	. 1	14.68	. 8	13.55	. 5	12.58	. 2	11.74
. 5	16.00	. 2	14.66	. 9	13.53	. 6	12.56	. 3	11.72
. 6	15.97	. 3	14.64	74	13.51	.7	12.55	4	11.71
. 7	15.95	. 4	14.62	. 1	13.50	. 8	12.53	. 5	11.70
. 8	15.92	. 5	14.60	.2	13.48	. 9	12.52	. 6	11.68
. 9	15.90	. 6	14.58	. 3	13.46	80	12.50	. 7	11.67
63	15.87	. 7	14.56	. 4	13.44	. 1	12.48	. 8	11.66
. 1	15.85	. 8	14.53	. 5	13.42	. 2	12.4i	. 9	11.64
. 2	15.83	. 9	14.51	. 6	13.40	. 3	12.45	86	11.63
. 3	15.80	69	14.49	.	13.39	. 4	12.44		11.61
. 4	15.77	. 1	14.47	. 8	13.37	. 5	12.42	. 2	11.60
. 5	15.75	. 2	14.45	. 9	13.35	. 6	12.41	. 3	11.59
. 6	15.72	. 3	14.43	75	13.33	.	12.39	. 4	11.57
. 7	15.70	. 4	14.41	. 1	13.32	. 8	12.38	. 5	11.56
. 8	15.67	. 5	14.39	.2	13.30	. 9	12.36	. 6	11.55
. 9	15.65	. 6	14.37	. 3	13.28	81	12.35	. 7	11.53
64	15.62	.7	14.35	. 4	13.26	. 1	12.33	. 8	11.58
. 1	15.60	. 8	14.33	. 5	13.25	. 2	12.32	. 9	11.51
. 2	15.58	. 9	14.31	. 6	13.23	. 3	12.30	87	11.49
. 3	15.55	70	14.29	. 7	13.21	4	12.29	. 1	11.48
. 4	15.53	.1	$14.2 \tilde{1}$. 8	13.19	. 5	12.27	. 2	11.47
. 5	15.50	. 2	14.25	. 9	13.18	. 6	12.25	. 3	11.45
. 6	15.48	. 3	14.22	76	13.16	. 7	12.24	. 4	11.44
. 7	15.46	. 4	14.20	. 1	13.14	. 8	12.22	. 5	11.43
. 8	15.43	. 5	14.18	. 2	13.12	. 9	12.21	. 6	11.42
. 9	15.41	. 6	14.16	. 3	13.11	82	12.20	. 8	11.40
65	15.38	.7	14.14	. 4	13.09	. 1	12.18	. 8	11.39
. 1	15.36	. 8	14.12	. 5	13.07	. 2	12.17	. 9	11.38
. 2	15.34	. 9	14.10	. 6	13.05	. 3	12.15	88	11.36
. 3	15.31	71	14.08	. 7	13.04	. 4	12.14	. 1	11.35
. 4	15.29	. 1	14.06	. 8	13.02	. 5	12.12	. 2	11.34
. 5	15.27	. 2	14.04	. 9	13.00	. 6	12.11	. 3	11.33
. 6	15.24	. 3	14.03	77	12.99	. 7	12.09	. 4	11.31
. 7	15.22	. 4	14.01	. 1	12.97	. 8	12.08	. 5	11.30
. 8	15.20	. 5	13.99	. 2	12.95	9	12.06	. 6	11.29
. 9	15.17	. 6	13.9 \%	. 3	12.94	83	12.05	. 7	11.27
66	15.15	. 7	13.95	. 4	12.92	. 1	12.03	. 8	11.26
. 1	15.13	. 8	13.93	. 5	12.90	. 2	12.02	. 9	11.25
. 2	15.11	. 9	13.91	. 6	12.89	. 3	12.00	89	11.24
. 3	15.08	72	13.89	.	12.87	.4	11.99	. 1	11.22
. 4	15.06	. 1	13.87	. 8	12.85	. 5	11.98	. 2	11.21
. 5	15.04	. 2	13.85	. 9	12.84	. 6	11.96	. 3	11.20
. 6	15.02	. 3	13.83	78	12.82	. 7	11.95	. 4	11.19
.7	14.99	. 4	13.81	. 1	12.80	. 8	11.93	. 5	11.17
8	14.97	. 5	13.79	. 2	12.79	. 9	11.92	. 6	11.16
. 9	14.95	. 6	13.77	. 3	12.77	84	11.90	. 7	11.15
67	14.93	. 7	13.76	. 4	12.76	.1	11.89	. 8	11.14
.1	14.90	. 8	13.74	. 5	12.74	${ }^{2}$	11.88	9	11.12
. 2	14.88	. 9	13.72	. 6	12.72	. 3	11.86	90	11.11
. 3	14.86	73	13.70	. 7	12.71	. 4	11.85	.1	11.10
. 4	14.84	.1	13.68	8	12.69	. 5	11.83	2	11.09
. 5	14.81	. 2	13.66	. 9	12.67	. 6	11.82	. 3	11.07
. 6	14.79	.3	13.64	79	12.66	. 7	11.81	4	11.06

TABLE FOR NUMBERING COTTON YARN-Cont'd.

	No. of		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$	120 Yds. Weigh Grains	No. of Yarn	$\begin{gathered} 120 \\ \text { Yds } \\ \text { Weigh } \\ \text { Grains } \end{gathered}$	No. of Yarn		$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \end{aligned}$
90		96				107		117	
. 5	11.05	.2	10.40	. .9	9.81	${ }^{6}$	9.29	. 6	8.50
. 6	11.04	. 3	10.38	102	9.80	7	9.29	. 8	8.49
. 8	11.03	4	10.34		9.79	. 8	9.28	118	8.47
. 8	11.01	. 5	10.36	. 2	9.78	. 9	9.27	. 2	8.46
. 9	11.00	. 6	10.35	. 3	9.78	108	9.26	4	8.45
91	10.99	. 7	10.34	. 4	9.77	. 1	9.25	. 6	8.43
. 1	10.98	. 8	10.33	. 5	9.76	. 2	9.24	. 8	8.42
. 2	10.96	. 9	10.32	. 6	9.75	. 3	9.23	119	8.40
. 3	10.95	97	10.31	. 7	9.74	4	9.23	. 2	8.39
. 4	10.94	. 1	10.30	. 8	9.73	. 5	9.22	4	8.38
. 5	10.93	.2	10.29	. 9	9.72	. 6	9.21	. 6	8.36
. 6	10.92	. 3	10.28	103	9.71	. 7	9.20	. 8	8.35
. 7	10.91	. 4	10.27	${ }^{103} 1$	9.70	. 8	9.19	120	8.33
. 8	10.89	. 5	10.26	. 2	9.69	. 9	9.18	2	8.32
. 9	10.88	. 6	10.25	. 3	9.68	109	9.17	4	8.31
92	10.87	7	10.24	4	9.67	. 2	9.16	. 6	8.29
${ }^{\text {. }} 1$	10.86	8	10.22	. 5	9.66	. 4	9.14	. 8	8.28
. 2	10.85	. 9	10.21	6	9.65	. 6	9.12	121	8.26
. 3	10.83	98	10.20	. 7	9.64	. 8	9.11	. 4	8.24
. 4	10.82	.1	10.19	8	9.63	110	9.09	. 6	8.22
. 5	10.81	. 2	10.18	. 9	9.62	. 2	9.07	. 8	8.21
. 6	10.80	.3	10.17	104	9.62	. 4	9.06	122	8.20
.	10.79	. 4	10.16	. 1	9.61	. 6	9.04	. 5	8.16
. 8	10.78	. 5	10.15	. 2	9.60	. 8	9.03	123	8.13
. 9	$10 . \% 6$. 6	10.14	3	9.59	111	9.01		8.10
93	10.75	.	10.13	4	9.58	. 2	8.99	124	8.06
. 1	10.54	8	10.12	. 5	9.57	. 4	8.98	125^{5}	8.03
.2	10.73	. 9	10.11	6	9.56	. 6	8.96		8.09
. 3	10.72	99	10.10	. 8	9.55	. 8	8.94	12.5	7.97
. 4	10.71	.1	10.09	8	9.54	112	8.93	126	$\stackrel{7}{7} .94$
. 5	10.70	. 2	10.08	9	9.53	.2	8.91		7.91
. 6	10.68	. 3	10.07	105	9.52	. 4	8.90	12%	7.8%
. 8	10.6%	. 4	10.06	. 1	9.51	. 6	8.88	10.5	7.84
. 8	10.66	. 5	10.05	. 2	9.51	. 8	8.87	128	7.81
94.9	10.65	. 6	10.04	. 3	9.50	113	8.85	129.5	8.88
. 1	10.64	. 8	10.03 10.02	. 5	9.48	.4	8.88		
. 2	10.62	. 9	10.01	. 6	9.47	. 6	8.80	130	7.69
. 3	10.60	100	10.00	. 7	9.46	. 8	8.79	. 5	7.66
. 4	10.59	. 1	9.99	8	9.45	114	8.74	181	7.63
. 5	10.58	. 2	9.98	. 9	9.44	. 2	8.76		7.60
. 6	10.58	. 3	9.97	106	9.43	4	8.74	132	$\stackrel{7}{6} .58$
. 8	10.56	. 4	9.96	. 1	9.43	. 6	8.73		7.55
. 8	10.55	. 5	9.95	.2	9.42		8.71	133	7.52
. 9	10.54	. 6	9.94	. 3	9.41	115	8.70		7.49
95	10.53	. 8	9.93	. 4	9.40	. 2	8.68	134	7.46
. 1	10.52	. 8	9.92	. 5	9.39	. 4	8.64		7.43
. 2	10.50	. 9	9.91	6	9.38	. 6	8.65	135	7.41
. 3	10.49	101	9.90	. 7	9.37	. 8	8.64	${ }^{\text {. } 5}$	7.38
. 4	10.48	. 1	9.89	.	9.36	116	8.62	136	7.35
. 5	10.47	$\stackrel{2}{2}$	9.88	107.9	9.35	. 2	8.61		7.33
. 6	10.46	. 3	9.87	107	9.35	. 4	8.59		7.30
. 7	10.45	. 4	9.86	. 1	9.34	. 6	8.58		\%.2\%
. 8	10.44	. 5	9.85	. 2	9.33		8.56	138	7.25
96.9	10.43	. 6	9.84	. 3	9.32	117	8.55	139.5	7.22
${ }^{96}$.	10.42	. 8	9.83 9.82	. 5	9.31 9.30	. 2	8.53 8.52	${ }^{139} .5$	7.19 7.17
	10.41	. 8	9.82						

TABLE FOR NUMBERING COTTON YARN-Cont'd.

120 Yds. Weigh Grains	$\mathrm{N} u$. of Yarn	$\begin{aligned} & 120 \\ & \text { Yds. } \end{aligned}$ Weigh Grains	No. of Y'arn	120 Yds. Weigh Grains	No. of Yarn	120) Yds. Weigh Grains	No. of Varn	120 Yds. Weigh Grains	No. of Yarn
140	7.14	169	5.95	2\%2	4.50	306	3.2%	480	2.13
	\%.12		5.93	203	4.48	308	3.25	4%	2.11
141	7.09	169	592	2.3	4.46	310	3.28	480	2.08
	7.07	. 5	5.90	225	4.44	312	3.21	485	2.06
142	7.04	170	5.88	226	4.42	314	3.18	490	2.04
	7.02	171	5.85	227	4.41	316	3.17	495	2.02
143	6.99	172	5.81	228	4.39	318	3.14	500	2.00
. 5	6.97	173	5.78	229	4.37	320	3.12	505	1.98
144	6.94	174	5.75	230	4.35	32%	3.11	510	1.96
	6.92	175	5. 71	231	4.33	324	3.09	515	1.94
145	6.90	176	5.68	$23:$	4.31	326	3.07	520	1.92
. 5	6.87	177	5.65	233	4.39	328	3.05	595	190
146	6.85	178	5.62	234	4.27	330	3.08	530	1.89
	6.83	179	5.59	235	4.26	33:	3.01	535	1.87
14%	6.80	180	5.56	236	4.24	334	2.99	540	1.85
	6.78	181	5.52	237	4.22	336	2.98	545	1.83
148	6.76	182	5.49	238	4.80	338	2.96	550	1.8%
	6.73	183	5.46	239	4.18	340	2.94	555	1.80
149	6.71	184	5.43	240	4.17	349	$\because .92$	560	1.79
. 5	6.69	185	5.41	241	4.15	3 ± 4	2.91	565	1.7%
150	6.67	186	5.38	242	4.13	346	2.89	5%	1.75
	6.64	187	5.35	213	4.12	348	2.87	575	1.74
151	6.62	188	5.32	244	4.10	350	2.86	580	1.72
. 5	6.60	189	5.29	245	4.08	35:	2.84	585	1.71
15:	6.58	190	5.26	246	4.07	354	2.82	590	1.69
. 5	6.56	191	5.24	247	4.05	356	2.81	595	1.68
153	6.54	19%	5.21	248	4.03	358	2.79	600	1.67
. 5	6.51	193	5.18	249	4.02	360	2.78	610	1.64
154	6.49	194	5.15	250	4.00	$36:$	2.76	680	1.61
$5^{.5}$	6.47	195	5.13	$25:$	3.97	364	2.75	630	1.59
155	6.45	196	5.10	254	3.94	366	2.73	640	1.56
. 5	6.43	197	5.08	256	3.91	368	2.72	650	1.54
156	6.41	198	5.05	258	3.88	370	2.70	660	1.52
. 5	6.39	199	5.03	260	3.85	372	2.69	680	1.49
15%	6.37	200	5.00	262	3.82	374	2.67	680	1.47
. 5	6.35	201	4.98	264	3.79	376	2.66	690	1.45
158	6.33	202	4.95	266	3.76	378	2.65	700	1.43
. 5	6.31	203	4.93	268	3.73	380	2.63	710	1.41
159	6.29	204	4.90	270	$3 . \% 0$	$38: 2$	2.62	720	1.39
. 5	6.27	205	4.88	278	3.68	385	2.60	730	1.37
160	6.25	\%06	4.85	274	3.65	390	2.56	740	1.35
. 5	6.83	207	4.83	276	3.62	395	2.53	750	1.33
161	6.21	208	4.81	278	3.60	400	2.50	760	1.32
. ${ }^{\text {a }}$	6.19	209	4.75	240	3.57	405	2.47	\%70	1.30
168	6.17	210	4.76	283	3.55	410	2.44	\%80	1.28
${ }_{163} .5$	6.15	211	4.74	$2 \mathrm{2H}$	3.58	415	2.41	790	1. 27
163	6.13	21%	4.72	286	3.50	420	2.38	800	1. 25
. 5	6.12	213	4.69	288	3.47	425	2.35	820	1.20
164	6.10	214	4.67	290	3.45	430	2.33	840	1.19
${ }^{.5}$	6.08	215	4.65	292	3.42	435	2.30	860	1.16
165	6.06	216	4.63	294	3.40	440		880	1.14
$160^{.5}$	6.04	217	4.61	896	3.39	44.5	2.25	900	1.11
166	6.02	218	4.59	298	3.36	450	2.20	925	1.08
$16 r^{.5}$	6.01	219	4.57	300	3.33	455	2.20	950	1.05
167	5.99	220	4.55	302	3.31	460	$\stackrel{2}{0} 17$	975	1.03
. 5	5.97	221	4.52	304	3.29	465	2.15	1000	1.00

DRAPER TABLES OF BREAKING WEIGHTS OF AMERICAN YARNS SPUN FROM AMERICAN COTTON.

AVERAGED FROM SAMPLE SKEIN TESTS FROM SEVERAL HUNDRED
AMERICAN MILLS.

$\begin{gathered} \text { Weight } \\ \text { in } \\ \text { Grains } \\ \text { of } \\ 120 \\ \text { Yards } \end{gathered}$	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Yarn } \end{gathered}$	Breaking Weight of Warp Yarn		Breaking Weight of		$\begin{array}{\|c} \text { Weight } \\ \text { in } \\ \text { Grains } \\ \text { of } \\ 120 \\ \text { Yards } \end{array}$	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Yarn } \end{gathered}$	Breaking Weight of	
		OLD	NEW	Combed Warp NEW	$\begin{aligned} & \text { Soft } \\ & \text { Twist } \\ & \text { Yarn } \\ & \text { NEW } \end{aligned}$			$\begin{aligned} & \text { Warp } \\ & \text { Yarn } \\ & \text { OLD } \end{aligned}$	$\begin{aligned} & \text { Combed } \\ & \text { Warp } \\ & \text { NEWW } \end{aligned}$
1000	1					19.6	51	36.6	47-
500	2					19.2	52	36.1	46
333.3	3	530	$634+$	863-	$620+$	18.9	53	35.5	$45+$
250	4	410	476-	646	462	18.5	54	34.9	44+
200	5	330	381	516	367	18.2	55	34.4	43
166.7	6	275	318-	429+	304-	17.9	56	33.8	$42+$
142.9	7	237.6	$272+$	$365+$	$258+$	17.5	57	33.4	42-
125	8	209	$238+$	321	224-	17.2	58	32.8	41-
111.1	9	186.5	$212+$	285-	198+	1%	59	32.3	$40+$
100	10	168.7	191	256	176	16.7	60	31.7	$39+$
90.9	11	154.1	174-	$232+$	160-	16.4	61	31.3	39-
83.3	12	142	159+	213-	$145+$	16.1	62	30.8	38-
76.9	13	131.5	$14 \%+$	196	133+	15.9	63	30.4	37+
71.4	14	122.8	137-	182-	123-	15.6	64	30	37-
66.7	15	115.1	128-	$169+$	114-	15.4	65	29.6	36
62.5	16	108.4	120-	$158+$	106-	15.2	66	29.2	$35+$
588	17	102.5	113-	149-	$99-$	14.9	67	28.8	35-
55.6	18	97.3	107-	$140+$	93-	14.7	68	28.5	34+
52.6	19	92.6	101	133-	87	14.5	69	28.2	34
50	20	88.3	96	126	82	14.3	70	27.8	${ }^{33}+$
47.6	21	83.8	91+	120-	$77+$	14.1	71	27.4	$33-$
45.5	22	79.7	$87+$	114+	$73+$	13.9	\%	27.1	$32+$
43.5	23	75.9	81	$109+$	$70-$	13.7	73	26.8	$32-$
41.7	24	72.4	$80+$	104+	$66+$	13.5	\% 4	26.5	31+
40	25	69.2	π	100	63	13.3	\%	26.2	31-
38.5	26	66.3	$74+$	96	$60+$	13.2	76	25.8	$30+$
37	27	63.6	$71+$	$92+$	$5 \pi+$	13	77	25.5	30-
35.7	28	61.3	$69-$	$89-$	55-	12.8	78	25.3	29+
34.5	29	59.2	$67-$	$86-$	$53-$	12.7	79	24.9	$29-$
33.3	30	57.3	$64+$	83-	$50+$	12.5	80	24.6	28+
32.3	31	55.6	$62+$	$80-$	$48+$	12.4	81	24.3	$\stackrel{28}{ }+$
31.3	32	54	$60+$	$77^{2}+$	$46+$	12.2	82	24	28
30.3	33	52.6	$59-$	75-	45-	12.1	83	23.7	$2 \hat{\sim}+$
29.4	34	51.2	$57-$	\%2+	43-	11.9	84	23.4	$2 \pi-$
28.6	35	50	$55+$	70	$41+$	11.8	85	23.2	$27-$
27.8	36	48.7	$54-$	$68+$	$40-$	11.6	86	22.8	$26+$
2%	37	47.6	$52+$	$66-$	$38+$	11.5	87	22.6	26
26.3	38	46.5	51	$64+$	37	11.4	88	22.4	26-
25.6	39	45.5	$50-$	63-	36-	11.2	89	22.2	$25+$
25	40	44.6	$48+$	${ }_{5}^{61}$	$34+$	11.1	90	22	$\stackrel{25}{25}$
24.4	41	43.8	$47+$	$59+$	$33+$	11	91	21.7	25-
23.8	42	43	$46+$	$58-$	$32+$	10.9	92	21.5	$24+$
23.3	43	42.2	$45+$	$56+$	$31+$	10.8	93	21.3	24-
22.7	44	41.4	$44+$	$55+$	$30+$	10.6	94	21.2	24-
23.2	45	40.7	$43+$	54	$29+$	10.5	95	21	23+
21.7	46	40	42+	53-	$28+$	10.4	96	20.7	$23+$
21.3	47	39.3	$41+$	$51+$	$2 \pi+$	10.3	97	20.5	23-
20.8	48	38.6	$41-$	$50-$	$27-$	10.2	98	20.4	23-
20.4	49	37.9	40-	$49+$	26-	10.1	99	20.2	$22+$
20	50	37.3	39	48	25	10	100	20	22

TRAVELLER TABLE FOR RING SPINNING FRAME.

No. of Yarn	Warp Yarn				Filling Yarn			
	$\begin{aligned} & \text { Revs. } \\ & \text { of } \\ & \text { Spin- } \\ & \text { dles } \end{aligned}$	Dia. of Ring	No. of Traveller	Weight of 10 Travellers in Grains	$\begin{aligned} & \text { Revs. } \\ & \text { of } \\ & \text { Spin- } \\ & \text { dles } \end{aligned}$	Dia. of Ring	No. of Traveller	Weight of 10 Travellers in Grains
4	4950		14	39	4000		16	44
6	5900	21/4	12	33	4800		13	36
8	6650		9	23	5450		10	26
10	72500		8	20	5950		8	20
11	7500		7	18	6150		7	18
12	7750	21/8	6	16	6350		6	16
13	7950	21/8	6	16	6500		5	14
14	8150		5	14	6700		4	13
15	8300		4	13	6850	to	3	12
16	8450		3	12	6950		$\stackrel{2}{1}$	11
17	8600		2	11	7100		1	10
18	8750		1	10	7200		1-0	${ }_{8}^{9}$
19	8850		1-0	9	7300		3-0	8
20	8950	2	2-0	$81 / 2$	7400		5-0	τ
21	9050		3-0	8	7500		5-0	7
22	9100		4-0	$7^{1 / 2}$	7600		6-0	$61 / 2$
23	9150		5-0	${ }^{5}$	7700		6-0	$61 / 2$
24	9200 9500	13/4	6-0	$6^{61 / 2}$	7800 7900		\%-0	5^{6}
32	$9500)$		8-0	$51 / 2$	7900		$9-0$	5
34	9600		9-0	5	7900	13/8	10-0	$4^{1 / 2}$
36	9700	15/8	10-0	$41 / 2$	7900		11-0	4
38	9800		11-0	4	7900 J		12-0	$33 / 4$
40	9700		12-0	$33 / 4$	7900		13-0	$31 / 2$
45	9700		13-0	$31 / 2$	7900		14-0	$31 / 4$
50	9700 9600	11/2	14-0	$31 / 4$	7900		15-0	3
55	9600	1/2	14-0	$31 / 4$	7900		15-0	${ }_{2}^{3}$
65	9600		15-0	3	\%800		16-0	$23 / 4$
70	9600		16-0	$23 / 4$	7800	11/4	17-0	$21 / 2$
75	9500 9500		16-0	$23 / 4$	7800	1/4	17-0	$21 / 2$
80	9500		17-0	$21 / 2$	7700		18-0	$\stackrel{81 / 4}{ }$
85	9100	13/8	17-0	$\stackrel{21}{1 / 2}$	7600		18-0	$2_{2}^{1 / 4}$
90 95	9100 9000		$18-0$ $19-0$	$2_{2}^{1 / 4}$	7400 7400		19-0	$\stackrel{2}{13 / 4}$
100	8700		20-0	13/4	7200		21-0	$11 / 2$
110	8500		21-0	$11 / 2$	6900 J		22-0	11/4

The speed, kind of cotton, etc., affect the weight of traveller, and consequently it is impossible to make up a table to cover all conditions, but the sizes given above will serve as a basis to select from. Lighter travellers should be used for higher speeds and vice versa. Each 1,000 revolutions of spindle makes a difference of one or two numbers in travellers.

SPOOLERS.

The following tables of dimensions and productions are given as information:

DIMENSIONS OF SPOOLERS.

Width, including bobbin boxes, four feet.
Weight, from thirty to forty pounds per spindle complete.
PRODUCTIONS.

Dimensions of Spool		$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Yarn } \end{gathered}$	Revs. per Minute of the			No. of Spinning Spindles to 1 Spooler Spindle, Running at 825 Revs. per Minute	
		Cylinder,	Cylinder,	Cylinder,			
$\begin{gathered} \text { Length } \\ \text { Be- } \\ \text { tween } \\ \text { Heads } \end{gathered}$	Dia. of Heads			$\underset{825}{220}$	$\begin{aligned} & 240 \\ & \text { Spindle, } \\ & 900 \end{aligned}$		
			Pounds per Spindle per Week				
${ }^{6}$	5		$\left\{\begin{array}{l} \left\{\begin{array}{l} 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \end{array}\right. \\ \left\{\begin{array}{l} 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 29 \\ 30 \\ 32 \\ 34 \end{array}\right. \\ \left\{\begin{array}{l} 36 \\ 38 \\ 40 \\ 44 \\ 50 \\ 60 \\ 70 \\ 80 \end{array}\right. \end{array}\right.$	64.3	70.7		
		51.4		56.6	${ }^{61.7}{ }^{\text {\% }}$	12	
		42.9		47.1	51.4)		
		36.7 32.1		40.4 35.3	${ }_{38.6}^{44.1}$	13	
		28.6		31.4	${ }_{34.3}$ ¢	13	
		25.7		28.3	30.91		
	4	23.4 21.4		23.7 23.6	${ }_{25.7}^{28.1}$	14	
		19.8		21.8	23.7,		
5		18.4		20.2	22.0 .	15	
		${ }_{17 .}^{17 .} 1$		19.5 18.9	21.31 20.61		
		17.1 16.1		${ }_{18.9}^{18.7}$	$20.6!$ 19.3 !	16	
		15.1		16.6	18.1 !	16	
		14.3 13.5 1.8		15.7		17	
$41 / 2$	$31 / 2$	13.5 12.9 12.8		14.9 14.1	${ }_{15.4}^{16.2}$,	18	
		11.7		12.9	14.0	19	
		10.3 8		11.3 9	12.3		
	31/4	8.6 7.8		9.4 8.1	10.3 8.8	$\stackrel{21}{23}$	
$31 / 2$		6.4		$\% .1$	7.8	25	

REELS.

Reels are usually made with 50 or 60 spindles each, but can be made either longer or shorter. The common gauge is $31 / 2 \mathrm{in}$., the length of which with 50 spindles is $16 \mathrm{ft} .81 / 2 \mathrm{in}$. and width 3 ft .9 in . Machines are made for $54-\mathrm{in}$., $60-\mathrm{in}$., 72in. and 90 -in. skeins, usually 54 in .

Driving pulleys are $12 \mathrm{in} . \mathrm{x} 2 \mathrm{in}$.
The usual speed with $54-\mathrm{in}$. swifts is 130 revs.
We give below production table for 54 -in. skeins.

Production per Spindle per Week of 60 Hours				
54-in. Reel-Revs. per Minute				
No. Yarn	120	130	140	150
2	192.60	208.80	225.00	241.20
4	96.30	104.40	112.20	120.30
6	64.20	69.60	75.00	80.40
8	48.00	52.20	56.10	60.30
10	38.55	41.76	45.00	48.21
12	32.10	34.80	37.50	40.17
14	27.51	29.82	32.13	34.41
16	24.09	26.10	28.14	30.12
18	21.42	23.22	25.02	26.79
20	19.26	20.88	22.50	24.12
25	15.42	16.71	18.00	19.29
30	12.84	13.92	15.00	16.05
40	9.63	10.44	11.20	12.03
50	7.71	8.34	9.00	9.63
60	6.42	6.96	7.50	8.04
70	5.49	5.97	6.42	6.87
80	4.80	5.22	5.61	6.03
90	4.26	4.65	5.01	5.34
100	3.84	4.17	4.50	4.80

50 per cent. allowance has been made in above table for doffing, etc.

DRY TWISTER
SINGLE LINE TOP AND BOTTOM ROLLS-NARROW GAUGE

RING TWISTERS.
 FOR DRY OR WET TWISTING.

Our Ring Twister resembles our Spinning Frame, both in construction and design, and the descriptive matter on pages 140 and 151 apply to this machine.

The marked success of our Spinning Frame led us to build a Twister embodying the same improvements and special features which have been so much appreciated. All parts are machined, and are interchangeable.

LOW FRAMING AND HEAVY RIGID CONSTRUCTIONThe frames are built very low, are extra heavy in all their principal parts and are designed and constructed so as to stand high speeds without vibration, thus preserving the spindles, insuring light running and reducing the cost of repairs.

DRY AND WET TWISTING-We build machines for either Dry or Wet Twisting. When for wet work the bottom and top rolls are covered with brass, and brass troughs are provided for the water. The yarn is submerged by means of glass rods which are easily raised or lowered.

ARRANGEMENT OF ROLLS-Machines are built with any of the following arrangements of Rolls:

Single Line Bottom Rolls, and Single Line Top Rolls..
Double Line Bottom Rolls, and Single Line Top Rolls.
Double Line Bottom Rolls, and Double Line Top Rolls.
SPINDLES-Any of the improved modern high-speed spindles are supplied as required. We do not make any Twisters with common or old style "Two Rail" spindles.

KNEE BRAKES are furnished when required.
GAUGES AND RINGS-We build machines from $21 / 2-\mathrm{in}$. gauge with $1 \frac{1}{2}$-in. rings up to $51 / 2-\mathrm{in}$. gauge with $41 / 2$-in. rings. Any desired form or style of ring will be furnished. All of these rings are made from high-grade steel of special analysis, hardended by improved methods and accurately finished.

VERTICAL TWISTER RINGS

NARROW OR WIDE BAND RINGS
WITH BRASS OR STEEL PLATE HOLDERS

SOLID SINGLE FLANGE RINGS

The following headings are taken up in detail under Ring Spinning Frames:

SPINDLE RAILS of box pattern to prevent springing or twisting.

LIFTING RODS specially finished to avoid sticking, and easily removed and cleaned without necessity of readjustment.

RE-LEVELLING easily taken care of by means of adjustable foot casting and jack screw on each Spring Piece.

ADJUSTABLE THREAD BOARD LIFTERS.
RING OILING BEARING ON OUTRIGGER.
SEL.F-LUBRICATING LOOSE PULLEY ON SLEEVE.
IMPROVED FORM OF CYLINDER HEAD.
PHOSPHOR BRONZE CYLINDER BEARINGS of selfoiling type.

GEARING, simple and enclosed in boxed end to prevent accident. All cut gears.

BUILDER of simple and effective design adjustable for Filling, Warp, Conant, Reverse Conant, or Straight Wind.

CREELS with rigid end and center supports, free from vibration.

OUT BEARING BOX (CUT OPEN) SHOWING RING OILER AND SLEEVE FOR LOOSE PULLEY

WE'T TWISTER WITH DRIVING PULLEYS AT FOOT END

FLOOR SPACE OF TWISTERS.

WIDTHS OF MACHINES.
$21 / 2-i n$. and $23 / 4$-in. Gauge $=3 \mathrm{ft} .11 / 8 \mathrm{in}$. over all $3-$ in. and $31 / 4$-in. Gauge $=3 \mathrm{ft} .15 / 8 \mathrm{in}$. over all $31 / 2$-in. and 4 -in. Gauge $=3 \mathrm{ft} .25 / 8 \mathrm{in}$. over all $41 / 2$-in. Gauge $=3 \mathrm{ft} .33 / 4$ in. over all
5 -in. Gauge $=3 \mathrm{ft} .41 / 4$ in. over all
$51 / 2$-in. Gauge $=3 \mathrm{ft} .5$ in. over all

To ascertain the length of Twisters with any number of spindles: Multiply one-half the number of spindles by the gauge and add 2 ft .1 in . for head and off ends.

Although it is advantageous when possible to keep to the numbers of spindles given in the table on page 195 , other lengths can be built if necessary. Even rolls and boxes are preferable.

DRIVING PUiLEYS are 8 in . to 18 in . dia., $31 / 4-\mathrm{in}$. face.

NGLE
WIDE GAUGE TWISTER WITH DOUBLE LINE BOTTOM AND

LENGTHS OVER ALL OF TWISTERS.

Gauge	$\begin{gathered} 23 / 4 \\ \text { In. } \end{gathered}$	$\begin{gathered} 3 \\ \text { In. } \end{gathered}$	$\begin{gathered} 31 / 4 \\ \text { ln. } \end{gathered}$	$\begin{aligned} & 3^{1 / 2} \\ & \text { In. } \end{aligned}$	$\begin{gathered} 4 \\ \ln . \end{gathered}$	$\begin{aligned} & 4^{1 / 2} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & 5 \\ & \text { In. } \end{aligned}$	$\begin{aligned} & 5^{1 / 2} \\ & \ln . \end{aligned}$
Ring	$13 / 4 \mathrm{In}$.	2 In .	$21 / 4 \mathrm{In}$.	$21 / 2 \mathrm{In}$.	3 In.	$31 / 2 \mathrm{In}$.	4 In .	$41 / 2 \mathrm{In}$.
Spindles per Roll	12	10	10	8	8	6	6	6
No. of Spindles	Ft. In.							
60		$13-4$	14-7	$15-10$
64		11-5	$12-9$			
72					$15-7$	17-1	18-7
80		12-1	$12-11$	13-9	$15-5$			
84				. . .		17-10	19-7	21-4
96	13-1			16-1	18-1	20-1	$\stackrel{2}{2}-1$	24-1
100	14-7	$15-71 / 2$					
108				22-4	$24-7$	26-10
112				18-5	20-9			
120	15-10	17-1	18-4			24-7	27-1	29-7
128				$20-9$	23-5			
132					26-10	$29-7$	32-4
140		19-7	21-01/2					
144	18-7	. . .		23-1	26-1	29-1	32-1	
156						$31-4$		
160		22-1	23-9	25-5	28-9			
168	21-4							
176				27-9	$31-5$			
180		24-7	$26-51 / 2$					
192	っ4-1	. .		30-1				
200		27-1	29-2					
216	26-10							
220		29-7	$31-101 / 2$					
240	29-7	$32-1$						

PLYS

SPEEDS

		$\begin{aligned} & Q_{0} \\ & \text { SI } \end{aligned}$	$\left\lvert\,\right.$		$\left\lvert\, \begin{aligned} & 80 \\ & 200 \\ & 90 \end{aligned}\right.$	$\begin{aligned} & 8 \\ & 20 \\ & 20 \\ & 020 \end{aligned}$
		$\begin{aligned} & \text { od } \\ & \text { of } \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 00 \\ & 00 \\ & 0 . \end{aligned}$	$\underset{\substack{8 \\ \infty \\ \infty}}{ }$	$\left\lvert\, \begin{gathered} 8 \\ 0.0 \\ 7 \end{gathered}\right.$	$\underset{10}{8}$
		ま	－	\cdots	∞	ล2
	${ }^{\frac{1}{W}}$	20	28	\cdots	7	\cdots
			2012 ゴす		ここここご侕	으응ㅇㅡㅡㄴ
$\frac{2}{a}$					$\left\lvert\, \begin{array}{ll}8 & 8 \\ 20 & 0\end{array}\right.$	
N				－i－∞	$\bigcirc \underset{\sim}{2}$	ご29
$\frac{2}{2}$				8\％	$\left\lvert\, \begin{array}{lll}80 \\ 80 & 8 & 0 \\ 20 & 0 & 0 \\ 0\end{array}\right.$	
\cdots	（		$\|-\infty\|$	－0，	$120 \sim$－	ज大亏大
$\frac{2}{0}$		$\xrightarrow{80}$			$\|$80 80 0.0 120 80	$\left\lvert\, \begin{array}{ll}80 \\ 80 \\ i-1 & 8 \\ 0\end{array}\right.$
＊			－0．0	ำ		ス® \％
$\frac{2}{2}$		COO\&		8～8898 	893898 $251020-60$	
15		cose	1027	20x	成	\mathfrak{n}
$\frac{2}{2}$		ユースーズー	8） 	8： $\therefore 0000$ ナーナ゙ー	8\％ $15<1000^{\circ}$	\％\％ こーシーか
co		－i－x＝c	$\stackrel{20}{2 \times 20}$	－\％\％でき\％	\％\％\％	

TABLE SHOWING GAUGES，RINGS AND SPINDLE SPEEDS－CONT＇D．

	家家				｜r		－
				8－	盛		\％
				－	\cdots		－
				－	∞		∞
		－000000				－0 $02025 \sim 20$	2010 28
늘		8.					$\begin{aligned} & 888 \\ & 080 \\ & 980 \end{aligned}$
N		$\stackrel{\sim}{\sim}$		श \％ぶ\％※ ¢ \％	が		
$\frac{2}{2}$				$888 \% 89 \% 8 \%$ \％ 		\％\％\％\％	
\cdots		¢\％心			18	8 \％	
入		$\begin{array}{lll}0 & 8 & 0 \\ \infty & 8 \\ \infty & 0 & 0 \\ 0\end{array}$			208		
\pm		ヱ \％¢			8		
닐		요888 $\infty \infty 0^{\circ} 0^{\circ}$		$$			
15				8188			
入		$\begin{array}{ll} \mathfrak{m} & 8 \\ \infty & 8 \\ \infty \end{array}$					
		요		8 90			

20 \vdots 		siciースーズーデ					
		12ーธ 					
			\cdots	ล20	$2{ }^{3}$	Q	－
			＊	\cdots	$\stackrel{+}{+}$	∞	के
		$\cos \alpha$		Leq		9	

Allowance has been made for doffing, waste, cleaning, etc.

$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twisted } \end{gathered}$	Gauge of Frame	Dia. of Ring	$\begin{array}{\|l\|} \text { Revs. of } \\ \text { Spindle per } \\ \text { Minute } \end{array}$	Multiplier 4		Multiplier 5		Multiplier 6		No. of larn to be Twisted
				$\begin{array}{\|c} \text { Rev. of } \\ 11 / 2 \text {-in. Roll } \\ \text { per Min. } \end{array}$	Pounds per Spindle	$\begin{gathered} \text { Rev. of } \\ 11 / 2-\text { in. Roll } \\ \text { per Min. } \end{gathered}$	Pounds per Spindle	Rev. of 11/2-in. Roll per Min.	Pounds per Spindle	
$6)$			3300	124	4.92	99	3.94	82	3.28	6
7 7	5	4	3300	115	3.90	92	3.12	76	2.60	7
8			3300 3800	107	3.23 3.15	86 93	${ }_{2}^{2.59}$	71	2.15	8
9 10			3800 3800	116 110	3.15 2.70	93 88	2.52 2.15	78	2.10 1.80	9
12	$41 / 2$	$31 / 2$	3800	101	2.07	81	1.66	67	1.38	12
14			3800	93	1.65	75	1.32	62	1.10	14
15			4500	107	1.78	85	1.42	\%1	1.18	15
16	4	3	4500	103	1.61	83	1.29	69	1.08	16
18	4	3	4500	97	1.35	78	1.08	65	. 90	18
20			4500	$\begin{array}{r}91 \\ \hline 106\end{array}$	1.13	74	. 92	6	. 77	20
22			5400 5400	106	1.21 1.07	85	. 87	${ }_{7} 18$. 81	22
24	$31 / 2$	$21 / 2$	5400 5400	101 97	1.07	81 78	.85	68 68	. 71	24 26
28			5400	94	. 85	75	. 68	63	. 57	28
30			6000	101	. 86	81	. 69	${ }^{67}$. 57	30
32			6000	97	.78	78	. 62	65	. 52	32
34			6000 6000	95	.72	76	. 57	63	. 48	34
36			6000 6000	89	. 66	74 72	.53	61 60	. 44	36
40	$31 / 4$	21/4	6000	87	. 56	70	. 45	58	. 37	40
42			6000	85	. 53	68	. 42	57	. 35	42
44			6000	83	. 49	66	. 39	55	. 33	44
46			6000	81	.46	65	. 37	54	. 31	46
48			${ }_{6}^{6000}$	80	.43	${ }_{6}^{64}$. 37	53	. 29	48
$\left.\begin{array}{l}50 \\ 60\end{array}\right\}$	3	2	6750 6750	88	. 46	${ }_{6} 6$. 37	58	. 31	50
70 \}	3		6750	74	. 28	59	. 23	49	. 19	70

No. of Yarn to be Twisted	Gauge of Frame	Dia. of Ring	$\left\lvert\, \begin{aligned} & \text { Revs. of } \\ & \text { Spindle per } \\ & \text { Minute } \end{aligned}\right.$	Multiplier 4		Multiplier 5		Multiplier 6		No. of Yarn to be Twisted
				Revs. of 11/2-in. Roll per Minute	Pounds per Spindle	Revs. of 11/2-in. Roll per Minute	Pounds per Spindle	Revs. of 11/2-in. Roll per Minute	Pounds per Spindle	
6)			2800	121	6.35	97	5.08	81	4.23	6
7 \%	$51 / 2$	41/2	2800	112	5.04	90	4.03	75	3.36	7
8			3300	124	4.92	99	3.94	82	3.28	8
9 \}	5	4	3300	117	4.12	93	3.31	78	2.75	9
10			3300	111	3.56	89	2.85	74	2.37	10
12			3800	116	3.15	93	2.52	78	2.10	12
14			3800	108	2.51	86	2.00	${ }_{7}^{7}$	1.67	14
15	$41 / 2$	$31 / 2$	3800	104	2.26	83	1.81	69 67	1.50	15
16			3800 3800	101 95	2.07 1.74	81 76	1.66 1.39	67 63	1.38 1.16	16 18
20			4500	107	1.78	85	1.42	71	1.18	20
22	4	3	4500	102	1.54	$\stackrel{81}{\sim}$	1.23	68	1.03	22
24	4	3	4500	97	1.35	78	1.08	65 62	. 90	24
26 28			4500 5400	$\begin{array}{r}94 \\ 108 \\ \hline\end{array}$	1.20 1.30	87	1.94	62 72	.80	26 28
30			5400	105	1.17	84	. 94	70	. 78	30
32	$31 / 2$	$21 / 2$	5400	101	1.07	81	. 85	68	. 71	32
34	$31 / 2$	21/2	5400	98	. 98	79	. 79	66	. 66	34
36			5400 5400	95	. 90	${ }_{7}^{76}$. 72	64 62	. 60	36
40			${ }_{6000}$	${ }^{93}$. 86	81	. 69	67	. 57	40
42			6000	98	. 80	79	. 64	65	. 53	42
44			6000	96	. 75	77	. 60	64	. 50	44
46 \}	31/4	21/4	6000	94	. 70	75	. 56	${ }_{61}^{63}$. 47	46
48			6000	92	. 66	74	. 50	61 60	. 41	58
60			6000	80	. 48	66	. 38	55	. 32	60
70	3	2	6750	86	. 43	68	. 34	57	. 29	70

Allowance has been made for doffing，waste，cleaning，etc．
BER OF POUNDS TWISTED YARN PRODUCED
IN 10 HOURS－5 PLY．

		\＆が心	に9	こt	18	\％	
		OOOL	8 8	880	为	\％	
		$8888 \% 888888888888888888888$ 					
		\＃	－		\bigcirc	ล゙	Ez
			10	$\ldots$$\pi$		ले	ले
		－					

	$$	

BER OF POUNDS TWISTED IN 10 HOURS- 6 PLY.

Allowance has been made for doffing, waste, cleaning, etc.

HEAD END GEARING
TWISTER

SINGLE LINE BOTTOM ROLL

DOUBLE LINE BOTTOM ROLLS
ARRANGEMENTS OF ROLLS
TWISTER

TWISTERS.

ALPHABETICAL REFERENCES TO DRAWINGS.
A Driving Pulley, 8 in. to 18 in. dia., advancing by $1 / 2 \mathrm{in}$. increments, $31 / 4 \mathrm{in}$. face.
A^{1} Cylinder Gear, 21, 25, 29, 30, 39 and 49 T .
A ${ }^{2}$ Cylinder, 7 in . and 8 in . dia.
B Jack Gear, $72,76,80,84,86,96$ and 106 T.
B ${ }^{1}$ Twist Change Gear, 95 to 67 T ., advancing by one tooth.
C Intermediate Gear, 171 T .
C^{1} Builder Motion Driving Sprocket Gear, 8 T. Front Roll Twist Gear, 108 and 92 T., Single Line Bottom Roll.
D Head End Stud Gear, 108 T., Double Line Bottom Rolls.
D^{1} Head End Stud Change Gear, 23, 27, 32 and 36 T.
E Front Roll Change Gear, 36, 32, 2% and 23 T.
E ${ }^{1}$ Front Roll Gear, 39 T.
E2 Front Roll, $11 / 2$ in. dia.
F Back Roll Intermediate Gear, 48 T.
G Back Roll Gear, 40 T.
G^{1} Back Roll, $11 / 2$ in. dia.
H Top Roll, $21 / 2$ in. dia.
I Whorl, $7 / 8 \mathrm{in}$., $11 / 8 \mathrm{in}$., $13 / 8 \mathrm{in}$., $15 / 8 \mathrm{in}$. and $21 / 2$ in. dia.
J Carrier Sprocket Gear, 10 T.
K Builder Motion Worm Shaft Sprocket Gear, 12, $14,16,18,20,22$ and 24 T., dependent upon the Number of Yarn.
L. Carrier Sprocket Gear, r T.

Note-For Letters A and I refer to Spinning Frame cut on page 161 .

TWISTERS.
 TWIST CALCULATIONS.

Rules:
Single Line Bottom Rolls, $11 / 2$-in. Dia.
D x B x Ratio of Whirl Speed to Cylinder Speed
$\mathrm{A}^{1} \mathrm{x}$ Circum. of Bottom Roll $=$ Twist Constant

Twist Constant
$\frac{\left.\text { Twist Change Gear (} \mathrm{B}^{1}\right)}{\text { Twist per inch. }}$
$\frac{\text { Twist Constant }}{\text { Twist per inch required }}=$ Twist Change Gear $\left(\mathrm{B}^{1}\right)$.
When figuring the Ratio of Whirl Speed to Cylinder Speed we add $1 / 8$ inch to the diameters to allow for the band.

Examples:
If Cylinder Gear $\left(\mathrm{A}^{1}\right)=29 \mathrm{~T}$. Jack Gear $(\mathrm{B})=76 \mathrm{~T}$. Front Roll Gear $(\mathrm{D})=108 \mathrm{~T}$. Cylinder, 8-in. dia. Whirl, $11 / 8$-in. dia. Ratio of Whirl Speed to Cylinder Speed $=6.50$. Circum. of $11 / 2-\mathrm{in}$. Bottom Roll $=4.7124$:
$\frac{108 \times 76 \times 6.50}{29 \times 4.7124}=390.40=$ Twist Constant.
If Twist Change Gear $\left(\mathrm{B}^{1}\right)=30 \mathrm{~T}$:
$\frac{390.40}{30}=13.01$ Turns Twist per inch.
If Twist per inch required $=8.50$:

$$
\frac{390.40}{8.50}=46 \mathrm{~T}=\text { Twist Change Gear }\left(\mathrm{B}^{1}\right)
$$

Rules:
Double Line Bottom Rolls, $11 / 2-\mathrm{in}$. dia.
D x B x E x Ratio of Whirl Speed to
Cylinder Speed
$\overline{\mathrm{A}^{1} \times \mathrm{D}^{1} \times \text { Circum. of Bottom Roll }}=$ Twist Constant.
$\frac{\text { Twist Constant }}{\left.\text { Twist Change Gear (} \mathrm{B}^{1}\right)}=$ Twist per inch.
$\frac{\text { Twist Constant }}{\text { Twist per inch required }}=$ 'Twist Change Gear (B^{1}).
Examples:
If Cylinder Gear $\left(\mathrm{A}^{1}\right)=49$ T. Jack Gear $(\mathrm{B})=76$ T. Head End Stud Gear (D) $=108$ T. Head End Stud Change Gear $\left(\mathrm{D}^{1}\right)=23$ T. Front Roll Change Gear $(\mathrm{E})=36 \mathrm{~T}$. Cylinder, 8 -in. dia. Whirl, $21 / 2-\mathrm{in}$. dia. Ratio of Whirl Speed to Cylinder Speed $=3.095$. Circum. of $11 / 2-\mathrm{in}$. Bottom Roll $=4.7124$.
$\frac{108 \times 76 \times 36 \times 3.095}{49 \times 23 \times 4.7124}=172.21=$ Twist Constant.
If Twist Change Gear $\left(\mathrm{B}^{1}\right)=50 \mathrm{~T}$.
$\frac{1 \pi 2.21}{50}=3.44$ Turns Twist per inch.
If Twist per inch required $=4.00$
$\frac{172.21}{4.00}=43 \mathrm{~T} .=$ Twist Change Gear (B^{1}).

PRODUCTION CALCULATIONS.

Rule:

$\frac{\text { R. P. M. of Bottom Roll x Circum. of }}{\text { Bottom Roll } x 600(\text { min. in } 10 \text { hours })}$
$\frac{36 \text { (in. in } 1 \text { yd. }) \times 840(\text { yds. in } 1 \text { hank) })}{\text { x No. of Twisted Yarn }}$
:---:
per Spindle in
10 hours.

Example:
If 2 ply 24 s Yarn. Twist per inch $5 \times$ Square Root of Twisted Yarn. R. P. M. of $1 \frac{1}{2}-\mathrm{in}$. Roll $=74$. Circum. of $11 / 2$-in. Roll $=4.7124$. 8 per cent. allowance for stops, etc.
$\frac{74 \times 4.7124 \times 600 \times .92}{36 \times 840 \times \frac{24}{2}}=.53 \mathrm{lbs}$ in 10 hours.
In our production tables on pages 198 to 202 the allowance for doffing, waste, etc., varies with the numbers of twisted yarn, the percentage loss being greater for coarse than fine work. See pages 196 and $1!\%$ for percentage deducted.
TWIST GEARING CONSTANTS FOR TWISTERS.
$11 / 2-I N$. SINGLE LINE BOTTOM ROLLS. $7-I N$. DIA. CYLINDER.

Dia. of Whirl	Ratio Whirl to Cylinder	$\underset{\text { Front Roll }}{\text { Gear }}$	Cylinder, 29T Jack, \quad 6T Constant	Cylinder, 29T Jack, 96 T Constant	Cylinder, 21T Jack, 96 T Constant	Cylinder, 21T Jack, 106T Constant	Cylinder, 17 T Jack, 106 T Constant	Cylinder, 15T Jack, 119T Constant
7/8	7.125	108	427.94	540.55	746.48	824.24	1018.18	1295.45
1	6.333	108	380.39	480.49	663.54	732.66	905.05	1151.51
$11 / 8$	5.700	108	342.35	432.44	597.18	659.39	814.54	1036.45
$11 / 4$	5.182	108	311.23	393.13	542.89	599.45	740.49	942.15
$13 / 8$	4.750	108	285.29	360.40	497.65	549.49	678.78	863.63
$11 / 2$	4.384	108	263.35	332.65	459.37	507.22	626.57	797.20
158	4.071	108	244.54	308.91	426.56	470.99	581.81	740.26
$11 / 2-I N$. SINGLE LINE BOTTOM ROLLS. 8-IN. DIA, CYLINDER.								
11/8	6.500	108	390.40	493.14	681.00	751.94	928.94	1181.92
$11 / 4$	5.909	108	354.91	448.31	619.14	683.58	844.42	1074.38
$13 / 8$	5.417	108	325.33	410.95	567.50	626.61	774.42	984.85
$11 / 2$	5.000	108	300.31	379.34	523.85	578.46	714.51	909.09
15/8	4.643	108	278.86	352.24	486.43	537.14	663.47	844.16
$21 / 2$	3.095	108	185.91	234.83	324.29	358.10	442.32	562.77
$21 / 2$	3.095	92	158.36	200.04	276.24	305.02	376.78	479.39

Rule to find change gear: Divide Constant by Twist per inch required.
Rule to find change gear: Divide Constant by Twist per inch required.
TWIST GEARING CONSTANTS FOR TWISTERS.
$11 / 2-1 N$. DOUBLE LINE BOTTOM ROLLS. 8-IN. DIA. CYLINDE

Dia. of Whirl	Ratio Whirl to Cylinder	Head End Stud Gear	Head End Stud Change Gear	Front Roll Change (iear	Cylinder, 49 T Jack, 76 T Constant	Cylinder, 39 T Jack, 86 T Constant	Cylinder, $29^{\prime} \mathrm{I}$ Jack, 96 T Constant	Cylinder, 25 T Jack, 96 'T Constant
$1 \overline{8}$	4.643	108	23	36	258.32	367.26	551.33	639.55
15 s	4.643	108	27	32	195.60	278.09	417.47	484.27
15/8	4.643	108	32	27	139.25	197.98	297.20	344.76
15%	4.643	108	36	23	105.44	149.91	225.04	261.05
$21 / 2$	3.095	108	23	36	172.21	244.84	367.56	426.36
$21 / 2$	3.095	108	27	32	130.40	185.39	278.31	322.84
$21 / 2$	3.095	108	32	27	92.83	131.98	198.14	229.84
$21 / 2$	3.095	108	36	23	70.29	99.94	150.03	174.03

TWIST TABLE FOR TWISTERS.

$11 / 2$ IN. SINGLE LINE BOTTOM ROLLS. FRONT ROLL GEAR, 108. $11 / 8$ IN. DIA. WHIRL ON SPINDLE.

Twist Change Gear	Cylinder, 7 in. Dia. Ratio Whirl to Cyl., 5.70				Cylinder, 8 in. Dia. Ratio Whirl to Cy1., 6.50				
	Jack	ck							
	96	96	106	119	96	96	106	106	119
	Cy1.	Cyl.	Cyl.	Cyl.	Cyl. 29	Cyl.	Cyl.	Cyl.	Cyl_{15}
	Twist								
25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 44 45 46 48 49 51 52 53 54 55 56 57 57 58 59 60 61 62 63 64 65 65 66 67	17.30	23.89	26.38	41.46	19.73	27.24	30.36	37.16	47.28
	16.63	22.97	25.36	39.86	18.97	26.19	28.92	35.73	45.46
	16.02	22.12	24.42	38.39	18.26	25.22	27.85	34.41	43.78
	15.44	21.33	23.55	37.02	17.61	24.32	26.85	33.18	42.21
	14.91	20.59	22.74	35.74	17.00	23.48	25.93	32.03	40.76
	14.41	19.91	21.98	34.55	16.44	22.70	25.06	30.96	39.40
	13.95	19.26	21.27	33.43	15.91	21.97	24.26	29.97	38.13
	13.51	18.66	20.61	32.39	15.41	21.28	23.50	29.03	36.93
	13.10	18.10	19.98	31.41	14.94	20.64	22.79	28.15	35.82
	12.72	17.56	19.39	30.48	14.50	20.03	22.12	27.32	34.76
	12.36	17.06	18.84	29.61	14.09	19.46	21.48	26.54	33.77
	12.01	16.59	18.32	25.79	13.70	18.92	20.89	25.80	32.83
	11.69	16.14	17.82	28.01	13.33	18.41	20.32	25.11	31.94
	11.38	15.72	17.35	27.28	12.98	17.92	19.79	24.45	31.10
	11.09	15.31	16.91	26.58	12.64	17.46	19.28	23.82	30.31
	10.81	14.93	16.48	25.91	12.33	17.03	18.80	23.22	29.55
	10.55	14.57	16.08	25.28	12.03	16.61	18.34	22.66	28.83
	10.30	14.22	15.70	24.68	11.74	16.21	17.90	22.12	28.14
	10.06	13.89	15.33	24.10	11.47	15.84	17.49	21.60	27.49
	9.83	13.57	14.99	23.56	11.21	15.48	17.09	21.11	26.86
	9.61	13.27	14.65	23.03	10.96	15.13	16.71	20.64	26.27
	9.40	12.98	14.33	22.53	10.72	14.80	16.35	20.19	25.69
	9.20	12.71	14.03	22.05	10.49	14.49	16.00	19.76	25.15
	9.01	12.44	13.74	21.59	10.27	14.19	15.67	19.35	24.62
	8.82	12.19	13.46	21.15	10.06	13.90	15.35	18.96	21.12
	8.65	11.94	13.19	20.73	9.86	13.62	15.04	18.58	23.64
	8.48	11.71	12.93	20.32	9.67	13.35	14.74	18.21	23.17
	8.32	11.48	12.68	19.93	9.48	13.10	14.46	17.86	22.73
	8.16	11.27	12.44	19.56	9.30	12.85	14.19	17.53	22.30
	8.01	11.06	12.21	19.19	9.13	12.61	13.92	17.20	21.89
	7.86	10.86	11.99	18.84	8.97	12.38	13.67	16.89	21.49
	7.72	10.66	11.77	18.51	8.81	12.16	13.43	16.59	21.11
	7.59	10.48	11.57	18.18	8.65	11.95	13.19	16.30	20.74
	7.46	10.30	11.37	17.87	8.50	11.74	12.96	16.02	20.38
	7.33	10.12	11.18	17.57	8.36	11.54	12.74	15.74	20.03
	7.21	9.95	10.99	17.2\%	8.22	11.35	12.53	15.48	19.70
	7.09	9.79	10.81	16.99	8.08	11.16	12.33	15.23	19.38
	6.97	9.63	10.64	16.72	7.95	10.98	12.13	14.98	19.06
	6.86	9.48	10.47	16.45	7.83	10.81	11.94	14.75	18.76
	6.76	9.33	10.30	16.19	7.70	10.64	11.75	14.51	18.47
	6.65	9.19	10.14	15.95	7.59	10.48	11.57	14.29	18.18
	6.55	9.05	9.99	15.70	7.47	10.32	11.39	14.08	17.91
	6.55	8.91	9.84	$15.4{ }^{\prime}$	7.36	10.16	11.22	13.86	17.64

TWIST TABLE FOR TWISTERS.

$11 / 2$ IN. SINGLE LINE BOTTOM ROLLS. FRONT ROLL GEAR, 108. $13 / 8 \mathrm{IN}$. DIA. WHIRL ON SPINDLE.

Twist Change Gear	Cylinder, τ in. Dia. Ratio Whirl to Cyl., 4.75				Cylinder, 8 in. Dia. Ratio Whirl to Cylinder, 5.41%				
	Jack								
	96		106	106	96	96	106	106	119
	Cyl. 29	Cyl.	Cyl.	${ }_{\text {Cyl }}$	Cyl.	Cyl.	Cy1.	$\mathrm{Cy}_{17}{ }^{\text {c }}$	${ }_{15}^{\text {Cyl. }}$
	Twist								
252627272829303132333435363738394041424344454647484950515253545556575758	14.42	19.91	21.98	27.15	16.44	22.70	25.06	30.98	39.39
	13.86	19.14	21.13	26.11	15.81	21.83	24.10	29.79	37.88
	13.35	18.43	20.35	25.14	15.22	21.02	23.21	28.68	36.48
	12.87	17.77	19.62	24.24	14.68	20.2π	22.38	27.66	35.17
	12.43	17.16	18.95	23.41	14.17	19.57	21.61	26.70	33.96
	12.01	16.59	18.32	22.63	13.70	18.92	20.89	25.81	32.83
	11.63	16.05	17.73	21.90	13.26	18.31	20.21	24.98	31.77
	11.26	15.55	17.17	21.21	12.84	17.73	19.58	24.20	30.78
	10.92	15.08	16.65	20.57	12.45	17.20	18.99	23.47	29.84
	10.60	14.64	16.16	19.96	12.09	16.69	18.43	22.78	28.97
	10.30	14.22	15.70	19.39	11.74	16.21	17.90	22.13	28.14
	10.01	13.82	15.26	18.86	11.42	15.76	17.41	21.51	27.36
	9.74	13.45	14.85	18.35	11.11	15.34	16.94	20.93	26.62
	9.48	13.10	14.46	17.86	10.82	14.93	16.49	20.38	25.92
	9.24	12.76	14.09	17.40	10.54	14.55	16.07	19.86	25.25
	${ }_{8} 9.01$	12.44	13.74	16.97	10.27	14.19	15.67	19.36	24.62
	8.79	12.14	13.40	16.56	10.02	13.84	15.28	18.89	24.02
	8.58	11.85	13.08	16.16	9.78	13.51	14.92	18.44	23.45
	8.38	11.57	12.78	15.79	9.56	13.20	14.57	18.01	22.90
	8.19	11.31	12.49	15.43	9.34	12.90	14.24	17.60	22.38
	8.01	11.06	12.21	15.08	9.13	12.61	13.92	17.21	21.89
	7.83	10.88	11.95	14.76	8.93	12.34	13.62	16.84	21.41
	7.67	10.59	11.69	14.44	8.74	12.07	13.33	16.48	20.95
	7.51	10.37	11.45	14.14	8.56	11.8\%	13.05	16.13	20.52
	7.35	10.16	11.21	13.85	8.39	11.58	12.79	15.80	20.10
	7.21	9.95	10.99	13.58	8.22	11.35	12.53	15.49	19.70
	7.07	9.76	10.7\%	13.31	8.06	11.13	12.29	15.18	19.31
	6.93	9.57	10.5 \%	13.05	7.90	10.91	12.05	14.89	18.94
	6.80	9.39	10.37	12.81	7.75	10.71	11.82	14.61	18.58
	6.67	9.22	10.18	12.57	7.61	10.51	11.60	14.34	18.24
	6.55	9.05	9.99	12.34	7.47	10.32	11.39	14.08	17.91
	6.44	8.89	9.81	12.12	7.34	10.13	11.19	13.83	17.59
	6.32	8.73	9.64	11.91	7.21	9.96	10.99	13.59	17.28
	6.21	8.58	9.47	11.70	7.08	9.78	10.80	13.35	16.98
	6.11	8.43	9.31	11.50	6.96	9.62	10.62	13.13	16.69
	6.01	8.29	9.16	11.31	6.85	9.46	10.44	12.91	16.41
	5.91	8.16	9.01	11.13	6.74	9.30	10.27	12.70	16.15
	5.81	8.03	8.86	10.95	6.63	9.15	10.11	12.49	15.88
	5.72	\%.90	8.72	10.77	6.52	9.01	9.95	12.29	15.63
	5.63	7.78	8.59	10.61	6.42	8.87	9.79	12.10	15.39
	5.54	\%. 66	8.45	10.44	6.32	8.73	9.64	11.91	15.15
	5.46	7.54	8.33	10.28	6.23	8.60	9.49	11.73	14.92
	5.38	7.43	8.20	10.13	6.13	8.47	9.35	11.56	14.70

TWIST TABLE FOR TWISTERS.

$11 / 2$ IN. SINGLE LINE BOTTOM ROLLS. FRONT ROLL GEAR, 108. $15 / 8 \mathrm{IN}$. DIA. WHIRL ON SPINDLE.

Twist Change Gear	Cylinder, 7 in. Dia. Ratio Whirl to Cyl., 4.071				Cylinder, 8 in. Dia. Ratio Whirl to Cyl., 4.643				
	Jack								
	96	96	106	106	96	96	106	106	119
	Cyl.	Cy1.	Cyl.						
	29	21	21	17.	¢ 1.	21.	,	17	15.
	Twist								
25	12.36	17.06	18.84	23.27	14.09	19.46	21.49	26.54	33.7%
26	11.88	16.41	18.11	22.38	13.55	18.71	20.66	25.52	33.47
27	11.44	15.80	17.44	21.55	13.05	18.02	19.89	24.57	31.27
28	11.03	15.23	16.82	20.78	12.58	17.37	19.18	23.69	30.15
29	10.65	14.71	16.24	20.06	12.15	16.77	18.52	22.88	29.11
30	10.30	14.22	15.70	19.39	11.74	16.21	17.90	22.12	28.14
31	9.96	13.76	15.19	18.77	11.36	15.69	17.33	21.40	27.23
	9.65	13.33	14.72	18.18	11.01	15.20	16.79	20.73	26.38
33	9.36	12.93	14.27	17.63	10.67	14.74	16.28	20.11	25.58
34	9.09	12.55	13.85	17.11	10.36	14.31	15.80	19.51	24.83
35	8.83	12.19	13.46	16.62	10.06	13.90	15.35	18.96	24.12
36	8.58	11.85	13.08	16.16	9.78	13.51	14.92	18.43	23.45
37	8.35	11.53	12.73	15.72	9.52	13.15	14.52	17.93	22.82
	8.13	11.23	12.39	15.31	9.27	12.80	14.14	17.46	22.22
39	7.92	10.94	12.08	14.92	9.03	12.47	13.77	17.01	21.65
40	$7 . \% 2$	10.66	11.76	14.55	8.81	12.16	13.43	16.59	21.10
41	\%. 53	10.40	11.49	14.19	8.59	11.86	13.10	16.18	20.59
42	\%. 35	10.16	11.21	13.85	8.39	11.58	12.79	15.80	20.10
	\%.18	9.92	10.95	13.53	8.19	11.31	12.49	15.43	19.63
44	T.02	9.69	10.70	13.22	8.00	11.06	12.21	15.08	19.19
45	6.86	9.48	10.47	12.93	7.83	10.81	11.94	14.74	18.76
46	6.72	9.27	10.24	12.65	7.66	10.57	11.68	14.42	18.35
47	6.57	9.08	10.02	12.38	7.49	10.35	11.43	14.12	17.96
48	6.44	8.89	9.81	12.12	7.34	10.13	11.19	13.82	17.59
	6.30	8.70	9.61	11.87	7.19	9.93	10.96	13.54	17.23
50	6.18	8.53	9.42	11.64	7.04	9.73	10.74	13.27	16.88
51	6.06	8.36	9.23	11.41	6.91	9.54	10.53	13.01	16.56
52	5.94	8.20	9.06	11.19	6.77	9.35	10.33	12.76	16.23
53	5.83	8.05	8.89	10.98	6.65	9.18	10.13	12.52	15.93
54	5.72	\%.90	8.72	10.75	6.52	9.01	9.95	12.29	15.63
55	5.62	\%. 66	8.56	10.58	6.40	8.84	9.77	12.06	15.35
56	5.52	7.62	8.41	10.39	6.29	8.69	9.59	11.85	15.07
57	5.42	7.48	8.26	10.21	6.18	8.53	9.42	11.64	14.81
58	5.33	\%. 35	8.12	10.03	6.07	8.39	9.26	11.44	14.55
59	5.24	\%. 23	7.98	9.86	5.97	8.24	9.10	11.25	14.31
60	5.15	7.11	7.85	9.70	5.87	8.11	8.95	11.06	14.04
61	5.06	6.99	\%.72	9.54	5.77	7.97	8.81	10.88	13.84
62	4.98	6.88	7.60	9.38	5.68	7.85	8.66	10.70	13.62
63	4.90	6.77	\%.48	9.23	5.59	7.72	8.53	10.53	13.40
64	4.88	6.66	7.36	9.09	5.50	7.60	8.39	10.37	13.19
65	4.75	6.56	7.25	8.95	5.42	7.18	8.26	10.21	12.99
66	4.68	6.46	7.14	8.82	5.34	7.32	8.14	10.05	12.79
67	4.61	6.37	7.03	8.68	5.26	7.26	8.02	9.90	12.60

TWIST TABLE FOR TWISTERS.

$11 / 2 \mathrm{IN}$. SINGLE LINE BOTTOM ROLLS. 8 IN . DIA. CYLINDER. $21 / 2$ IN. DIA. WHIRL ON SPINDLE.

Twist Change Gear	Front Roll Gear, 108 Ratio Whirl to Cylinder, 3.095					Front Roll Gear, 92 Ratio Whirl to Cyl., 3.095			
	Jack								
	76	96	96	106	106	76	96	106	106
	Cyl.	Cyl.	Cy1.	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.
	Twist								
25	7.44	9.39	12.97	14.32	17.69	6.33	11.05	12.20	15.07
26	7.15	9.03	12.47	13.77	17.01	6.09	10.62	11.73	14.49
27	6.89	8.70	12.01	13.26	16.38	5.86	10.23	11.30	13.95
28	6.64	8.39	11.58	12.79	15.80	5.66	$9.8{ }^{\text {i }}$	10.89	13.46
29	6.41	8.10	11.18	12.35	15.25	5.46	9.53	10.52	12.99
30	6.20	\%.83	10.81	11.94	14.74	5.28	9.21	10.17	12.56
31	6.00	7.58	10.46	11.95	14.2 \%	5.11	8.91	9.84	12.15
32	5.81	7.34	10.13	11.19	13.82	4.95	8.63	9.53	11.75
33	5.63	7.12	9.83	10.85	13.40	4.80	8.37	9.24	11.42
34	5.47	6.91	9.54	10.53	13.01	4.66	8.12	8.97	11.08
35	5.31	6.71	9.27	10.23	12.64	4.52	7.89	8.71	10.77
36	5.16	6.52	9.01	9.95	12.29	4.40	7.67	8.47	10.47
37	5.02	6.35	8.76	9.68	11.95	4.28	7.47	8.24	10.18
38	4.89	6.18	8.53	9.42	11.64	4.17	\%.27	8.03	9.92
39	4.77	6.02	8.32	9.18	11.34	4.06	7.08	7.82	9.66
40	4.65	5.87	8.11	8.95	11.06	3.96	6.91	7.63	9.42
41	4.53	5.73	$\tau .91$	8.13	10.79	3.86	6.74	7.44	9.19
42	4.43	5.59	7.72	8.53	10.53	3.77	6.58	\%. 26	8.97
43	4.32	5.46	\%.54	8.33	10.29	3.68	6.43	7.09	8.76
44	4.23	5.34	\%.37	8.14	10.05	3.60	6.28	6.93	8.56
45	4.13	5.22	7.21	7.96	9.83	3.52	6.14	6.78	8.37
46	4.04	5.10	¢.05	\%.78	9.62	3.44	6.01	6.63	8.19
47	3.96	5.00	6.90	\%.62	9.41	3.37	5.88	6.49	8.02
48	3.87	4.90	6.76	7.46	9.21	3.30	5.75	6.35	7.85
	3.79	4.79	6.62	$\uparrow .31$	9.03	3.23	5.64	6.22	7.69
50	3.72	4.70	6.49	7.16	8.85	3.17	5.52	6.10	7.54
51	3.65	4.60	6.36	7.02	8.67	3.10	5.42	5.98	7.39
52	3.58	4.52	6.24	6.89	8.51	3.05	5.31	5.87	7.25
53	3.51	4.43	6.12	6.76	8.35	2.99	5.21	5.75	7.11
54	3.44	4.35	6.01	6.63	8.19	2.93	5.12	5.65	6.98
	3.38	4.27	5.90	6.51	8.04	2.88	5.02	5.55	6.85
56	3.32	4.19	5.79	6.39	\%.90	2.83	4.93	5.45	6.73
57	3.26	4.12	5.69	6.28	\%.76	2.78	4.85	5.35	6.61
58	3.21	4.05	5.59	6.17	\%. 63	2.73	4.76	5.26	6.50
59	3.15	3.98	5.50	6.07	7.50	2.68	4.68	5.1%	6.39
	3.10	3.91	5.40	5.97	\%.37	2.64	4.60	5.08	6.28
61	3.05	3.85	5.32	5.87	\% 7.25	${ }_{2}^{2.60}$	4.53	5.00	6.18
62	3.00	3.79	5.23	5.78	7.13	2.55	4.46	4.92	6.08
63	2.95	3.73	5.15	5.68	\%. 02	2.51	4.38	4.84	5.98
64	2.90	3.67	5.07	5.60	6.91	2.47	4.32	4.77	5.89
65	2.86	3.61	4.99	5.51	6.80	2.44	4.25	4.69	5.80
66 67	$\underset{2.78}{2.82}$	3.56 3.50	4.91 4.84	5.43 5.34	6.70 6.60	2.40 2.36	4.19 4.12	4.62 4.55	5.71 5.62

TWIST TABLE FOR TWISTERS.

$1 \frac{1}{2}$ IN. DOUBLE LINE BOTTOM ROLLS. 8 IN. DIA. CYLINDER. $15 / 8$ IN. DIA. WHIRL ON SPINDLE.

HEAD END STUD GEAR, 108 T.

Twist Change Gear	$\mathrm{D}^{1}=36$	$\mathrm{D}^{1}=32$	$\mathrm{D}^{1}=27$	$\mathrm{D}^{1}=32$	$\mathrm{D}^{1}=2 \%$	$\mathrm{D}^{1}=36$	$\mathrm{D}^{1}=32$	$\mathrm{D}^{1}=2 \%$	$\mathrm{D}^{1}=23$
	$\mathrm{E}=23$	$\mathrm{E}=27$	$\mathrm{E}=32$	$\mathrm{E}=27$	$\mathrm{E}=32$	$E=23$	$\mathrm{E}=27$	$\mathrm{E}=32$	$\mathrm{E}=36$
	Cyl. 49	Cyl. 49	Cyl. 49	Cyl. 39	Cyl. 39	Cyl. 29	Cyl. 29	Cyl. 29	Cyl. 29
	$\underset{\sim 6}{\text { Jack }}$	$\underset{76}{\text { Jack }}$	$\underset{\% 6}{\text { Jack }}$	${ }_{86}^{\text {Jack }}$	Jack 86	Jack 96	Jack 96	Jack 96	Jack 96
	Twist								
25	4.22	5.5%	7.82	7.92	11.12	9.00	11.89	16.70	22.05
26	4.06	5.36	\%.52	7.61	10.70	8.66	11.43	16.06	21.20
27	3.91	5.16	7.24	\%.33	10.30	8.33	11.01	15.46	20.42
2829	3.77	4.97	6.99	7.07	9.93	8.04	10.61	14.91	19.69
	3.64	4.80	6.74	6.83	9.59	7.76	10.25	14.40	19.01
30	3.51	4.64	6.52	6.60	9.27	7.50	9.91	13.92	18.38
31	3.40	4.49	6.31	6.39	8.97	7.26	9.59	13.4%	17.78
32	3.29	4.35	6.11	6.19	8.69	7.03	9.29	13.05	17.23
33	3.20	4.22	5.93	6.00	8.43	6.82	9.01	12.65	16.71
34	3.10	4.10	5.75	5.82	8.18	6.62	8.74	12.28	16.21
35	3.01	3.98	5.59	5.66	7.95	6.43	8.49	11.93	15.75
36	2.93	3.8%	5.43	5.50	7.72	6.25	8.26	11.60	15.31
37	2.85	3.76	5.29	5.35	7.52	6.08	8.03	11.28	14.90
38	2.77	3.66	5.15	5.21	7.32	5.92	\%.82	10.99	14.51
39	2.79	3.57	5.02	5.08	7.13	5.77	7.62	$10 . \% 0$	14.14
40	2.64	3.48	4.89	4.95	6.95	5.63	7.43	10.44	13.78
41	2.57	3.40	4.77	4.83	6.78	5.49	7.25	10.18	13.45
42	2.51	3.32	4.66	4.71	6.62	5.36	7.08	9.94	13.13
43	2.45	3.24	4.55	4.60	6.4%	5.23	6.91	9.71	12.82
44	2.40	3.16	4.45	4.50	6.32	5.11	6.75	9.49	12.53
45	2.34	3.09	4.35	4.40	6.18	5.00	6.60	9.28	12.35
46	2.29	3.03	4.25	4.30	6.05	4.89	6.46	9.08	11.99
47	2.24	2.96	4.16	4.21	5.92	4.79	6.32	8.88	11.73
48	2.20	2.90	4.07	4.12	5.79	4.69	6.19	8.70	11.49
4950	2.15	2.84	3.99	4.04	5.68	4.59	6.07	8.52	11.25
	2.11	2.78	3.91	3.96	5.56	4.50	5.94	8.35	11.03
51	2.07	2.73	3.84	3.88	5.45	4.41	5.83	8.19	10.81
	2.03	2.67	3.76	3.81	5.35	4.33	5.72	8.03	10.60
53	1.99	2.63	3.69	3.74	5.25	4.25	5.61	7.88	10.40
	1.95	2.58	3.62	3.6%	5.15	4.17	5.50	7.73	10.21
55	1.92	2.53	3.56	3.60	5.06	4.09	5.40	7.59	10.02
56	1.88	2.49	3.49	3.54	4.97	4.02	5.31	7.45	9.84
	1.85	2.44	3.43	3.47	4.88	3.95	5.21	7.32	9.67
5859	1.88	2.40	3.37	3.41	4.79	3.88	5.12	7.20	9.51
	1.79	2.36	3.32	3.36	4.71	3.81	5.04	7.08	9.34
60	1.76	2.32	3.26	3.30	4.63	3.75	4.95	6.96	9.19
61	1.73	2.28	3.21	3.25	4.56	3.69	4.87	6.84	9.04
	1.70	2.25	3.15	3.19	4.49	3.63	4.79	6.73	8.89
63	1.67	2.21	3.10	3.14	4.41	3.57	4.72	6.63	8.75
	1.65	2.18	3.06	3.09	4.35	3.52	4.64	6.52	8.61
65	1.62	2.14	3.01	3.05	4.28	3.46	4.57	6.42	8.48
	1.59	2.11	2.96	3.00	4.21	3.41	4.50	6.33	8.35
67	1.57	2.08	2.92	2.95	4.15	3.36	4.44	6.23	8.23

Note- $\mathrm{D}^{1}=$ Head End Stud Change Gear.
$E=$ Front Roll Change Gear.
Ratio Whirl to Cylinder Speed, 4.643.

TWIST TABLE FOR TWISTERS.

$11 / 2$ IN. DOUBLE LINE BOTTOM ROLLS. 8 IN. DIA. CYLINDER. $21 / 2$ IN. DIA. WHIRL ON SPINDLE. HEAD END STUD GEAR, 108.

Note-D ${ }^{1}=$ Head End Stud Change Gear.
$\mathrm{E}=$ Front Roll Change Gear.
Ratio Whirl to Cylinder Speed, 3.095.

TWIST TABLES FOR 2 PLY.

No. of Yarn to be Twist ed	No. of TwistedYarn	SquareRootof No.Twist-edYarn	Square Root Multiplied by			$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twist- } \\ \text { ed } \end{gathered}$	No. of TwistYarn	$\left.\begin{gathered} \text { Square } \\ \text { Root } \\ \text { of No. } \\ \text { Twist- } \\ \text { ed } \\ \text { Yarn } \end{gathered} \right\rvert\,$	Square Root Multiplied by		
			4	5	6				4	5	6
1	. 5	. $\%$	2.83	3.54	4.24	51	25.5	5.0498	20.20	25.25	30.30
2	1					52	26	5.0990	20.40	25.50	30.59
3	1.5	1.2247	4.90	6.12	7.35	53	26.5	5.1478	2059	25.74	30.89
4	2	1.4142	5.66	7.07	8.49	54	2π	5.1962	20.78	25.98	31.18
5	2.5	1.5811	6.32	7.91	9.49	55	27.5	5.2440	20.98	26.22	31.46
5	3	1.7321	6.93	8.66	10.39	5	28	5.2915	21.17	26.46	31.75
7	3.5	1.8708	7.48	9.35	11.22	57	28.5	5.3385	21.35	26.69	32. 03
8			8	10	12		29	5.3852	21.54	26.93	32.31
10	4.5	2.1213	8.49	10.61	12.73	59	29.5	5.4314	21.73	27.16	32.59
10	5.	2.2361	8.94	11.18	13.42	60	30	5.4772	21.91	27.39	32.86
1	5.5	2.3452	9.38	11.73	14.07	61	30.5	5.5227	22.09	27.61	33.14
12	6	2.4495	9.80	12.25	14.70	62	31	5.5678	22.27	$2 \pi .84$	33.41
	6.5	25495	10.20	12.75	15.30	63	31.5	5.6125	22.45	28.06	33.67
15	\%	2.6458	10.58	13.23	15.87	64	32	5.6569	22.63	28.28	33.94
15	75	2.7386	10.95	13.69	16.43	65	32.5	5. 7009	22.80	28.50	34.21
1	8	2.8284	11.31	14.14	16.97	66	33	5.7446	22.98	28.72	34.47
17	8.5	2.9155	11.66	14.58	17.49	67	33.5	5.7879	23.15	28.94	34.73
18	9		12	15	18	68	34	5.8310	23.32	29.15	34.99
19	9.5	3.0822	12.33	15.41	18.49	6	34.5	5.8737	23.49	29.37	35.24
20	10	3.1623	12.65	15.81	18.97	70	35	5.9161	23.66	29.58	35.50
21	10.5	3.2404	12.96	16.20	19.44	71	35.5	5.9582	23.83	29.79	35.75
2	11	33166	13.27	16.58	19.90	72	36		24	30	
23	11.5	3.3912	13.56	16.96	20.35	73	36.5	60415	24.17	30.21	36.25
	12	3.4641	13.86	17.32	20.78	74	37	60828	24.33	30.41	36.50
	12.5	3.5355	14.14	17.68	21.21	75	37.5	6.1237	24.49	30.62	36.74
26	13	3.6056	14.42	18.03	21.63		38	6.1644		30.82	36.99
27	13.5	3.6742	14.70	18.37	22.05	77	38.5	6.2049		31.02	37.23
28	14	3.741	14.97	18.71	22.45	78	39	6.2450		31.22	3\%. 47
29	14.5	3.8079	15.23	19.04	22.85	79	39.5	6.2849		31.42	3\%.71
30	15	38730	15.49	19.37	23.24	80	40	6.3246		31.62	37.95
	15.5	3.9370	15.75	19.69	23.62	81	40.5	6.3640		31.82	38.18
	16			20	24	82	41	6.4031		32.02	38.42
	${ }_{17}^{16.5}$	4.0620	16.25	20.31	${ }_{21}^{24.37}$	83	41.5	6.4420		32.21	38.65
	17.5	4.123	16	20.	24.74	84	42	6.4807		32.40	38.88
	18	4.2426	16.97	1			48	6.5192		3.6	39.12
	18.5	4.3012	17.20	21.51			43	6.55)		${ }^{3} .98$	39.34
	19	4.3589	17.44	21.79	26.15	88	44	6.6332		33.17	39.80
39	19.5	4.4159	17.66	22.08	26.50	89	44.5	6.6708		33.35	40.02
40	20	4.4721	17.89	22.36	26.83	90	45	6. 7082		33.54	40.25
41	20.5	45277	18.11	22.64	27.17	91	45.5	6.7454		33.73	40.47
42	21	4.5826	18.33	22.91	${ }^{27.50}$	92	46	6.7823		33.91	40.69
43	21.5	4.6368	18.55	23.18	27.82	93	46.5	6.8191		34.10	40.91
44	22	4.6904	18.76	23.45	28.14	94	47	6.8557		34.28	41.13
45	22.5	4.7434	18.97	23.72	28.46	95	47.5	6.8920		34.46	41.35
46	$\stackrel{23}{23}$	4.7958	19.18	23.98	28.77	96	48	6.9282		34.64	41.57
47	23.5	4.8477	19.39	24.24	29.09	97	48.5	6.9642		34.82	41.79
48	$\stackrel{24}{24.5}$	4.8990 4.9497		$\begin{aligned} & 24.49 \\ & 0.1 \end{aligned}$		98 98	49				
49 50	24.5	$4^{4.9497}$	$\begin{aligned} & 19.80 \\ & 20 \end{aligned}$	$\underset{25}{24.75}$	$\left\lvert\, \begin{aligned} & 29.70 \\ & 30 \end{aligned}\right.$	99 100	49.5 50	7.0356 7.0711		35.18 35.36	42.21

TWIST TABLES FOR 3 PLY.

$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { To bist } \\ \text { ed } \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { Twist } \\ \text { ed } \\ \text { Yarn } \end{gathered}$	$\begin{gathered} \text { Square } \\ \text { Root } \\ \text { of No. } \\ \text { Twist- } \\ \text { ed } \\ \text { Yarn } \end{gathered}$	Square Root Multiplied by			$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twist } \\ \text { ed } \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { Twist } \\ \text { ed } \\ \text { Yarn } \end{gathered}$	$\left\|\begin{array}{c} \text { Square } \\ \text { Root } \\ \text { of No. } \\ \text { Twist- } \\ \text { edd } \\ \text { Yarn } \end{array}\right\|$	Square Root Multiplied by		
			4	5	6				4	5	6
1	. 33	.5774	2.31	2.89	3.46	51	17	4.1231	16.49	20.62	\%
3		. 8165	3.27	4.08	4.90		${ }_{17}^{17.33}$	4.1633	16.65	20.82	24.98
4	1.33	1.1547	4.62	5.77	$\stackrel{6}{6.93}$	53 54 54	${ }_{18}^{17.67}$	4.2032 4.2426	16.81 16.97	${ }_{21.21}^{21.02}$	
5	1.67	1.2910	5.16	6.45	\%. $\frac{1}{}$ \%	55	18.33	4.2817	17.13	21.41	25.69
6	$\stackrel{2}{2}$	1.4142	5.66	\%.07	8.19	56	18.67	4.3205	17.28	21.60	
8	${ }_{2}^{2.63}$	1.6330	${ }_{6}^{6.53}$	8.16	9.17 9.80		${ }_{19.33}^{19}$	4.3589 4.3970	17.54		${ }_{26.38}^{26.15}$
9	3	1.7321	6.93	8.66	10.39	9	19.67	4.434r̃	17.74	22.17	26.61
10	3.33	1.825%	7.30	9.13	10.95	60	20	4.4\%21	17.89	22.36	26.83
11	3.67	1.9149	${ }_{8}^{7.66}$	${ }_{10}^{9.57}$	${ }_{12}^{11.49}$	61	${ }_{20.67}^{20.33}$	4.5092 4.5461		${ }_{22.73}^{22.55}$	27.06
13	4.33	2.0817	8.33	10.41	12.49	63	21	4.5886	18.33	22.91	${ }_{27.50}^{27.18}$
14	4.67	2.1602	8.64	10.80	12.96		21.33	4.6188	18.48	23.09	27
15	5.33	\| 2.2361	8.94 9.24	${ }_{11.18}^{11.58}$	${ }_{13.86}^{13.42}$	65	${ }_{22}^{21.67}$	4.6547	${ }_{18.62}^{18.62}$	${ }_{23.45}^{23.27}$	27.93
17	5.67	2.3805	9.52	11.90	14.28	67	22.33	4.7258	18.90	${ }_{23.63}^{23.45}$	${ }_{28.35}^{28.14}$
18	6	2.4495	9.80	12.25	14.70	68	22.67	4.7610	19.04	23.	28.57
19	6.33 6.67	${ }_{2}^{2.5166}$	10.07 10 3	12.51	15.10 15.19	70	${ }_{23}^{23}$	4.7958	19.18	23.98	28.77
21	$\stackrel{6.64}{ }$	${ }_{2}^{2.6558}$	1	13.23	${ }_{15.87}^{15.49}$	71	${ }_{23.67}^{33.33}$	4.8305 4.8648	19.46	${ }_{24.32}^{24.15}$	28.98 29.19
22	7.33	2. 2080	10.83	13.54	16.25	72	24	4.8990	19.60	24.49	29.39
23 24	7.67	2.7689	${ }_{11.08}^{11.08}$	${ }_{14.14}^{13.84}$	16.61 16.97	73	${ }_{2}^{24.33}$	${ }_{4}^{4.9329}$	${ }_{19.87}^{19.73}$	24.66	${ }_{2980}^{29.60}$
25	8.33	2.8868	11.55	14.43	17.32	75	25	4.966	20		
	8.67	2.9439	11.76	14.72	17.66	76	25.33	5.0332		25.17	30.20
27	9.33		${ }_{12}^{12} 2$	15	18	77	${ }_{26}^{25.67}$	5.0662		25.33	30.40
29	${ }_{9.67} 9.3$	3.1091 3.0551	12.44	15.55	18.65	78	$\stackrel{26}{26}$	[$\begin{aligned} & 5.0990 \\ & 5.1316\end{aligned}$		${ }_{25.66}^{25.50}$	30.79
	10	3.1623	12.65	15.81	18.97	80	26.67	5.1640		25.82	30.98
	10.33	3.2145	12.86	16.07	19.29	81		5. 1982		25.98	31.18
	10.	3.2659	13.	${ }_{16.58}^{16.33}$	19.60	88	${ }_{2 \sim}^{27.67}$	5.2281		${ }_{26}^{26.14}$	${ }^{31.37}$
	11.33	${ }_{3.3665}^{3.315}$	13.47	16.83	20.20	84		${ }_{5}^{5.2915}$		26.46	31.75
	11.67	3.4157	13.66	17.08	20.49	85	28.33	5.3229		26.61	31.94
	12	3.4641	13.86	17.32	20.78		28.67	5.3541		26.77	32.12
37	12.33	3.5119	14.05	${ }_{17}^{17.56}$	${ }^{21.07}$	87	${ }_{29}^{29} 3$	5.3852		${ }^{26.93}$	32.31
	13	${ }_{3.6056}^{3.5190}$	14.42	18.03	21.63		${ }_{29.67}^{29.33}$	5.446и		${ }_{27.23}^{27.08}$	32.68
40	13.33	3.6515	14.61	18.26	21.91	90		5.4772		27.39	32.86
41	13.67	3.6969	14.79	18.48	22.18	91	${ }_{30}^{30.33}$	5.5076		27.5	33.05
	14.	3.7859	15.14	18.93	22.72	93		5.56\%8		${ }_{27}^{27.69}$	33.41
44	14.6	3.8297	15.32	19.15	22.98	94	31.33	5.5976		27.99	33.59
45	15	3.8730	15.49	19.36	23.24	95	31.67	5.6873		28.1	33.76
	${ }_{15}^{15.33}$	3.9158 3.958	${ }^{15.66}$	${ }_{19.79}^{19.58}$	${ }_{23.75}^{23.4}$	96 97	$\stackrel{32}{32 .} 33$	5.6862		${ }_{28.43}^{28.28}$	34.12
	16		16	20	24		32.67	5.7155		28.58	34.29
49	16.33	4.0415	16.17	20.21	24.25			5.7446		28.7	34.47
50	16.67	4.0825	16.33	20.41	24.49	100	33.33	5.7735		28.87	34.64

TWIST TABLES FOR 4 PLY.

No. of Yarn to be Twist ed	No. of TwistedYarn	Square Root of No. Twist ed Yarn	Square Root Multıplied by			$\begin{aligned} & \text { No. of } \\ & \text { Yarn } \\ & \text { to be } \\ & \text { Twist- } \\ & \text { ed } \end{aligned}$	No. of TwistedYarn	SquareRootof No.Twist-edYarn	Square Root Multiplied by		
			4	5	6				4	5	6
1	. 25	. 5	2	2.5	3	51	12.75	3.5707	14.28	17.85	21.42
2	. 50	. 7071	2.83	3.54	4.24	52	13	3.6056	14.42	18.03	21.63
3	. 75	. 8660	3.46	4.33	5.20	53	13.25	3.6401	14.56	18.20	21.84
4			4	5	6	54	13.50	3.6742	14.70	18.37	22.05
5	1.25	1.1180	4.47	5.59	6.71	5	13.75	3. 7081	14.83	18.54	22.25
6	1.50	1.2247	4.90	6.12	7.35	56	14	3.7417	14.97	18.71	22.45
7	1.75	1.3229	5.29	$\stackrel{6.61}{\sim}$	7.94	57	14.25	3.7749	15.10	18.87	22.65
8	2.25	1.4142	5.66	7.07	8.49	58	14.5	$3.80 \% 9$	15.	19.04	. 85
10	2.50	1.5811	6.32	7.91	9.49	60	15	3.8730	15.49	19	
	2.75	1.6583	6.63	8.29	9.95	61	15.25	3.9051	15.62	19.53	23.43
12	3	1.7321	6.93	8.66	10.39	62	15.50	3.9370	15.75	19.69	23.62
13	3.25	1.8028	7.21	9.01	10.82	63	15.75	3.9686	15.88	19.84	23.81
14	3.50	1.8708	748	9.35	11.22	64	16		16	20	24
15	3.75	1.9365	7.75	9.68	11.62	65	16.25	4.0311	16.12	20.16	24.19
16	4		8	10	12	66	16.50	4.0620	16.25	20.31	24.37
17	4.25	2.0616	8.25	10.31	12.37	67	16.75	40927	16.37	20.46	24.56
18	4.50	2.1213	8.49	10.61	12.73	68	17	4.1231	16.49	${ }^{20.62}$	2.74
19	4.75	2.1794	8.72	10.90	13.08	69	17.25	4.1533	16.61	20.77	24.92
20		2.2361	8.94	11.18	13.42	70	17.50	4.1833	16.73	20.92	25.10
21	5.25	22913	9.17	11.46	13.75	71	17.75	4.2130	16.85	21.07	25.28
22	5.50	2.3452	9.38	11.73	14.07	72	18	4.2126	16.97	21.21	25.46
23	5.75	2.3979	9.59	11.99	14.39	73	18.25	4.2720	17.09	21.36	${ }^{25.63}$
24	6	2.4495	9.80	12.25	14.70	74	18.50	4.3012	17.20	21.51	${ }^{2} 5.81$
25	6.25	2.5	10	12.5	15	75	18.75	4.3301	17.32	21.65	25.98
26	6.50	2.5495	10.20	12.75	15.30	76	19	4.3589		21.79	26.15
27	6.75	2.5981	10.39	12.99	15.59	77	19.25	4.3875		21.94	26.32
28		2.6458	10.58	13.23	15.87	78	19.50	4.4159		22.08	26.50
20	7.25	2.6926	10.77	13.46	16.16	79	19.75	4.4441		${ }_{29}^{22.22}$	26.66
31	7.50 -75	2. 7386	10.95	13.69	16.43	80	${ }_{20}^{20} 25$	4.4721		${ }_{22.5}^{22.36}$	26.83
32	8	2.8284	11.31	14.14	16.97	82	20.50	4.5277		2.64	${ }_{27}{ }^{2} 17$
3	8.25	2.8723	11.49	14.36	17.23	83	20.75	4.5552		22.68	27.33
34	8.50	2.9155	11.66	14.58	17.49	84	21	4.5826		22.91	27.50
35	8.75	2.9580	11.83	14.79	17.75	85	21.25	4.6098		23.95	27.66
36	9		12	15	18	86	21.50	4.6368		23.18	27.82
37	9.25	3.0414	12.17	15.21	18.25	87	21.75	4.6637		23.32	27.98
38	9.50	3.0822	12.33	15.41	18.49	88	22	4.6904		23.45	28.14
39	9.75	3.1225	12.49	15.61	18.73	89	22.25	4.7170		23.58	28.30
40	10	3.1623	12.65	15.81	18.97	90	22.50	4.7434		23.72	28.46
41	10.25	3.2016	12.81	16.01	19.21	91	22.75	4.7697		23.85	28.62
42	10.50	3.2404	12.96	16.20	19.44	92	23	4.7958		23.98	${ }^{28.77}$
43	10.75	3.2787	13.11	16.39	19.67	93	23.25	4.8218		24.11	28.93
44	11	3.3166	13.27	16.58	19.90	94	23.50	4.8477		24.24	29.09
45	11.25	3.3541	13.42	16.77	${ }_{20}^{20.12}$	95	23.75	4.8734			${ }_{29}^{29.24}$
46	11.50 11.75	3.3912 3.4278	13.56 13.71	16.96 17.14	20.35 20.57	96 97	$\stackrel{24}{24.25}$	4.8990		24.49 24.62	29.59
48	12	3.4641	13.86	17.32	20.78	98	24.50	4.9497		24.75	29.70
49	12.25	3.5	14	17.5	21	99	24.75	4.9749		$24.8 i$	29.85
50	12.50	3.5355	14.14	17.68	21.21	100	25			25	

TWIST TABLES FOR 5 PLY.

$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twist- } \\ \text { ed } \end{gathered}$	No. of Twisted Yarn	Square Koot of No. Twist Yarn	Square Root Multiplied by			$\begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twist- } \\ \text { ed } \end{gathered}$	No. ofTwist-edYarn	SquareRootof No.Twist-edYarn	Square Root Multiplied by		
			4	5	6				4	5	6
1	. 2	. 44	1.79	2.24	2.68	51	10.2	3.1937	12.77	15.97	19.16
	. 4	. 6325	2.53	3.16	3.79	52	10.4	32249	12.90	16.12	19.35
3	. 8	. 7746	3.10	3.87	4.65	53	10.6	3.2558	13.02	16.28	19.53
4	. 8	. 8944	3.58	4.47	5.37		10.8	3.2863 3.3166	13.15	16.43	19.72
6	1.2	1.0954	4.38	5.48	6.57	56	11.2	3.3466	13.39	16.73	20.08
7	1.4	1.1832	4.73	5.92	7.10	57	11.4	3.3764	13.51	16.88	20.26
8	1.6	1.2649	5.06	6.32	7.59	58	11.6	3.4059	13.62	17.03	20.44
9	1.8	13416	5.37	671	8.05	59	11.8	3.4351	13.74	17.18	20.61
10	2	1.4142	5.66	7.07	8.49	60	12	3.4641	13.86	17.32	20.78
11	2.2	1.4832	5.93	7.42	8.90	61	12.2	3.4928	13.97	17.46	20.96
12	2.4	1.5492	6.20	7.75	9.30	62	12.4	3.5214	14.09	17.61	21.13
13	2.6	1.6125	6.45	8.06	9.67	63	12.6	3.5496	14.20	17.75	21.30
14	2.8	1.6733	6.69	8.37	10.04	64	12.8	3.5777	14.31	17.89	21.47
15		1.7321	6.93	8.66	10.39	65	13	3.6056	14.42	18.03	21.63
16	3.2	1.7889	7.16	8.95	10.73	66	13.2	3.6332	14.53	18.17	21.80
18	3.4	1.8139	7.38	9.22	11.06	67	13.4	3.6606	14.64	18.30	21.96
18	3.6	1.8974	7.59	9.49	11.38	68	136	3.6878	14.75	18.44	22.13
19	3.8	1.9494	780	9.75	11.70	69	13.8	3.7148	14.86	18.56	22.29
20			8	10	12	70	14	3.7417	14.97	18.71	22.45
21	4.2	${ }_{2}^{2.0494}$	8.20	10.25	12.30	72	14.2	3.6783	15.07	18.84	22.61
$\stackrel{2}{23}$	4.4	2.0976 2.1448	8.39 8.58	10.49	12.59 12.87		14.4	3.7948 3.8210	15.18 15.28	18.97 19.10	22.77 22.93
2	4.8	2.1909	8.76	10.95	13.15	74	14.8	3.8471	15.38	19.24	23.08
25	5	2.2361	8.94	1118	13.42	75	15	3.8730	15.49	19.37	23.24
26	5.2	2.2804	9.12	11.40	13.68	76	15.2	3.8987		19.49	23.39
27	5.4	2.3238	9.30	11.62	13.94	77	15.4	3.9243		19.62	23.55
28	5.6	2.3664	9.47	11.83	14.20	78	15.6	39497		19.75	23.70
29	5.8	2.4083	9.63	12.04	14.45	79	15.8	3.9749		19.87	23.85
30	6	${ }^{2} .4495$	9.80	12.25	14.70	80	16			20	
31	6.2	2.4900	9.96	12.45	1494	81	16.2	4.0249		20.12	24.15
32	6.4	2.5298	10.12	12.65	15.18	82	16.4	4.0497		20.25	24.30
3	6.6	2.5690	10.28	12.85	15.41	83	16.6	4.0743		20.37	24.45
34	${ }_{7} .8$	2.6077	10.43	13.04	15.65		16.8	4.0988		20.49	24.59
35		2.6458	10.58	13.23	15.87	85	17	4.1231		20.62	24.74
36	7.2	2.6833	1073	13.42	16.10	87	17.2	4.1473		20.74	24.88
37	7.4	2.7203	10.88	13.60	16.32	87	17.4	41713		20.86	25.03
38	7.6	2.7568	11.03	13.78 13.96	16.54	88	17.6 17.8 18	4.1952 4.2190		20.98	25.17
40	8	2.8284	11.31	14.14	16.97	90	18	4.2426		21.21	25.46
41	8.2	2.8636	11.45	14.32	17.18	91	18.2	4.2661		21.33	25.60
42	8.4	2.8983	1159	14.49	17.39	92	18.4	4.2895		21.45	25.74
43	8.6	29326	11.73	14.66	17.60	93	18.6	4.3128		21.56	25.88
44	8.8	2.9665	11.87	14.83	17.80	94	18.8	4.3359		21.68	26.02
45	9		12	15	18	95	19	4.3589		21.79	26.15
46	9.2	3.0332	12.13	15.17	18.20	96	19.2	4.3818		21.91	26.29
47	9.4	3.0659	12.26	15.33	18.40	97	19.4	4.4045		22.02	26.43
48	9.6	3.0984	12.39	15.49	18.59	98	19.6	4.42\%2		22.14	26.50
49	9.8	3.1305	12.52	15.65	18.78	99	19.8	4.4497		22.25	26.70
50	10	3.1623	12.65	15.81	18.97	100	20	4.4721		22.36	26.83

TWIST TABLES FOR 6 PLY.

No. of Yarn to be Twisted	No. of TwistedYarn	Square Root of No. Twist Yarn	Square Root Multiplied by			$\left\lvert\, \begin{gathered} \text { No. of } \\ \text { Yarn } \\ \text { to be } \\ \text { Twist- } \\ \text { ed } \end{gathered}\right.$	No. of TwistedYarn	Square Root of No. Twist edYarn	Square Root Multiplied by		
			4	5	6				4	5	6
1	.17	. 4082	1.63	2.04	2.45	51	8.50	2.9155	11.66	14.58	17.49
2	. 33	. 5774	2.31	2.89	3.46	52	8.67	2.9439	11.78	14.72	17.66
3	. 50	. 7071	2.83	3.54	4.24	53	8.83	2.9721	11.89	14.86	17.83
4	. 67	. 8165	3.27	4.08	4.90	54	9		12	15	
5	. 83	. 9129	3.65	4.56	5.48	55	9.17	3.027	12.11	15.14	18.17
6						56	9.33	3.0551	12.22	15.28	18.33
7	1.17	1.0801	4.32	5.40	6.48	57	9.50	3.0822	12.33	15.41	18.49
8	1.33	1.154	4.62	5.77	6.93	58	9.67	3.1091	12.44	15.55	18.65
9	1.50	1.2247	4.90	6.12	735	59	9.83	3.1358	12.54	15.68	18.81
10	1.67	1.2910	5.16	6.45	7.75	60	10	3.1623	12.65	15.81	18.97
1	1.83	1.3540	5.42	6.77	8.12	61	10.17	3.1885	12.75	15.94	19.13
12	2	1.4142	5.66	7.07	8.49	62	10.33	3.2415	12.86	16.07	19.29
13	2.17	1.4\%20	5.89	7.36	8.83	63	10.50	3.2404	12.96	16.20	19.44
14	2.33	1.5275	6.11	7.64	9.17	64	10.67	3.2659	13.06	16.33	19.60
15	2.50	1.5811	6.32	7.91	9.49	65	10.83	3.2914	13.17	16.46	19.75
16	2.67	1.6330	6.53	8.16	9.80	66	11	33166	13.2\%	16.58	19.90
17	2.83	1.6833	6.73	8.42	10.10	68	11.17	3.3417	13.37	16. 11	20.05
18	3	1.7321	6.93	8.66	10.39	68	11.33	3.3665	13.47	16.83	20.20
19	3.17	1.7795	7.12	8.90	10.68	69	11.50	3.3912	13.56	16.96	20.35
20	3.33	1.825\%	7.30	9.13	10.95	70	11.67	3.4157	13.66	17.08	20.49
21	3.50	1.8708	7.48	9.35	11.22	71	11.83	3.4400	13.76	17.20	20.64
22	3.67	1.9149	7.66	9.57	11.49	72	12	3.4641	13.86	17.32	20.78
23	3.83	1.9579	7.83	9. 79	11.75	73	12.17	3.4881	13.95	17.44	20.93
24			8	10	12	74	12.33	3.5119	14.05	17.56	${ }_{21.07}^{21.07}$
25	4.17	2.0412	8.16	10.21	12.25	75	12.50	3.5355	14.14	17.68	21.21
26	4.33	2.0817	8.33	10.41	12.49	76	12.67	3.5590		17.80	21.35
	450	2.1213	8.49	10.61	12.73	77	12.83	3.5824		17.91	21.49
	4.6 \%	2.1602	8.64	10.80	12.96	78	13	3.6056		18.03	21.63
29	4.83	2.1985	8.79	10.99	13.19	79	13.17	3.6288		18.14	21.7\%
	${ }_{5}^{5} .17$	2.2361	8.94	11.18	13.42	80	13.33	3.6515		18.26	21.91
32	5.33	2.3094	9.24	11.55	13.86		13.67	3.6969		18.48	${ }_{22}^{22.18}$
	5.50	2.3452	9.38	11.73	14.07		13.83	3.7192		18.60	22.32
34	5.67	2.3805	9.52	11.90	14.28	8	14	3.7417		18.71	22.45
35	5.83	2.4152	9.66	12.08	14.49	85	14.17	3.7639		18.82	22.58
36	6	2.4495	9.80	12.25	14.70	86	14.33	3.7859		18.93	22.72
37	6.17	2.4833	9.9	12.42	14.90	87	14.50	3.8079		19.04	22.85
38	6.33	2.5166	10.07	12.58	15.10	88	14.67	3.8297		19.15	22.98
39	6.50	2.5495	10.20	12.75	15.30	89	14.83	3.8514		1926	23.11
40	6.67	2.5820	10.53	12.91	15.49	90	15	3.8730		19.36	23.24
41	6.83	2.6141	10.46	13.07	15.68	91	15.17	3.8944		19.47	23.37
42	$\stackrel{7}{\sim}$	2.6458	10.58	13.23	15.8 \%	92	15.33	3.9158		19.58	23.49
43	\%.17	$2.67 \% 1$	10.71	13.39	16.06	93	15.50	3.9370		19.69	23.62
44	7.33	2.7080	10.83	13.54	16.25	94	15.67	3.9582		19.79	23.75
45	7.50	2.7386	10.95	13.69	16.43	95	15.83	3.9791		19.90	23.8 r
46	7.67	2.7659	11.08	13.84	16.61	96	16			20	
47	7.83	2.7988	11.20	13.99	16.79	97	1617	4.0208		20.10	24.12
48	8	2.8284	11.31	14.14	16.97	98	16.33	4.0415		20.21	24.25
49	8.17	2.8577	11.43	14.29	17.15	99	16.50	4.0620		20.31	24.37
50	8.33	2.8868	11.55	14.43	17.32	100	16.67	4.0825		20.41	24.49

CONE AND TUBE WINDERS.

Although these machines are adapted to the winding of all kinds of yarns, they are especially good for soft hosiery and underwear yarns which should be handled so as to retain their full strength and elasticity.

OPEN WIND-This feature of our machine, together with its general improved construction, enables it to wind the most delicate yarns. The open wind with its irregular coils is of great advantage, as stretching of the yarn is avoided and it unwinds freely in the knitting process.

CONE AND PARALLEL WIND-These machines are built for winding either cones or parallel tubes, from cops, bobbins, spools or skeins.

STOP MOTIONS-These are applied to all machines. The Detector Holders and Drop Wires are supplied for one or more ply, as required. When a thread breaks, the individual drum stops, thus preventing waste or single. The Stop Motions are quick and positive, and the piecing up is very easily done.
framing and construction-The Winders are strong and durable. No wood is used in their construction, except for the top shelves and Friction Boards. All gearing is cut. The Casing-off Plates on each side are hinged, which facilitates cleaning.

UNIFORM TENSION-The conical and parallel Mandrels are driven by friction from the drums, and consequently the increase in diameter of the cones or tubes does not alter the tension on the yarn.

IMPROVED MANDRELS-These fit firmly in the paper cones at both ends. The cones are very easily removed, and although they may vary in size or shape, any irregularities are taken care of by the Mandrels.

IMPROVED REVERSING MOTION-The durability of Winders and the uniformity of the winding depends
to a great extent on the accuracy and wearing qualities of the Reversing Motion. The cam and bowl in this motion are of hardened steel, and the cam runs in oil.

Our Motion gives an instantaneous reversal, and prevents the throwing over of the yarn at the ends, ensuring a perfectly shaped cone or parallel Tube.
adjustable traverse-The length of the traverse can be adjusted from 4 in. to 6 in . by a very simple method.
available speed traverse-By means of a change gear on the Main Driving Shaft, the ratio of the speed of the traverse to the speed of the drum can be altered. A ratio which is best suited to coarse yarn is not the best for fine yarn. The work which these machines are called upon to do may vary from winding very coarse ply yarns to fine single yarns, and a variable speed traverse is of advantage.

DRIVING PULLEYS-These are 18 in . dia., $21 / 2 \mathrm{in}$. face, Tight and Loose, and usually make 100 to 125 revs., according to the class of work.
production-Based on 125 revs. of Driving Pulleys, with 20 per cent allowance for stops, the production per drum per week of 60 hours figures $\check{500}$ hanks (hanks \div number of yarn $=1 \mathrm{bs}$.)

FLOOR PLAN OF CONE WINDER

Machines are 42 in . wide and are usually built with 100 drums, $36 \mathrm{ft} .81 / 2 \mathrm{in}$. over all (including driving pulleys) but other lengths can be made. Deduct $81 / 4 \mathrm{in}$. for each two drums less than 100.

CONE WINDER

ALPHABETICAL REFERENCES TO DRAWING

A Driving Pulley, 18 in. dia. $\mathrm{x} 21 / 2$ in. face. Usual speed, 100 to 125 r. p. m.
A 1 Cone Driving Double Band Pulley.
B Cone.
Note--One rev. of Driving Shaft equals 2.76 revs. of Cone.

WARPERS.

One 54 -in. Cylinder Warper (with large dia. Cylinder) occupies a space of 7 ft . x 3 ft . 6 in . with $24-\mathrm{in}$. beam head.

The floor space of creels varies considerably. An ordinary Warper with creel requires a space of about 8 ft . x 13 to 14 ft .

Driving Pulleys 10 in . x 2 in.
Cylinders of Warpers are run from 30 to 40 revs. per minute, depending on the class of work.

We give below production table based on 36 revs. of Cylinder (Pulleys 196 revs.) per minute. In this table 33 per cent. has been deducted for stoppages.

No. of Ends	260	300	320	340	360	380	410	440
${ }_{\text {No. of }}^{\text {Yarn }}$	Pounds warped in sixty hours							
8	5,015	5, 785	6,171	6,557	6.943	7,329	7,907	8,485
10	4,011	4,629	4,937	5,246	5,555	5,863	6,325	6,789
12	3,343	3,857	4,181	4,3i2	4,629	4,885	5,271	5,65\%
14	2,865	3,305	3,527	3, 747	3,967	4,188	4,519	4,849
16	2,507	2,893	3,085	3,279	3,471	3,664	3,953	4,243
18	2,209	2,571	2,543	2,915	3,085	3,257	3,515	3,771
20	2,005	2.315	2,468	2,623	2,773	2,931	3,163	3,395
22	1,823	2,104	2,244	2,385	2,52.	2,665	2,875	3,085
24	1,671	1,925	2,057	2,185	2,315	2,443	2,636	2,829
26	1,543	1,780	1,899	2,017	2,136	2,255	2,433	2,611
28	1,433	1,653	1,763	1,873	1,983	2,094	2,259	2,425
29	1,383	1,596	1,703	1,809	1,915	2,021	2,181	2,341
30	1,337	1,543	1,64.5	1,749	1,851	1,955	2,109	2,263
32	1,253	1,447	1,543	1,639	1,736	1,832	1,975	$\stackrel{2}{2} 121$
34	1,180	1,361	1,452	1,543	1,633	1,725	1,861	1,997
36	1,115	1,285	1,371	1,457	1,543	1,629	1,757	1,885
38	1,056	1,219	1,299	1,380	1,461	1,543	1,665	1,787
40	1,003	1,15\%	1,235	1,311	1.389	1,465	1,581	1,697
44	912	1,052	1,123	1,192	1,262	1,332	1,437	1,543
50	806	925	987	1,049	1,111	1,171	1,265	1,35\%

CYLINIDER SIZING MACHINE OR SLASHER

SLASHERS.

The Slasher System of Sizing was invented by Mr. James Bullough, and Slashers were first made and put on the market by Howard \& Bullough, Ltd.

The advent of the Slasher, dispensing as it did with the old systems of Sizing, is recognized as one of the greatest inventions of the age. Probably no other invention was ever taken up and supplanted other systems with such rapidity as that of the Slasher, in every cotton manufacturing country. Although Slashers are now made by others, the Howard $\&$ Bullough machine still keeps the lead, and improvements are being continually added.

NEW PATTERNS-The machines are now made from new patterns with extra heavy framing, with broad flanges, planed edges, and milled doubled-flanged joints, giving great strength and solidity. All seatings, cross-rails, principal brackets and fixings are planed or milled.

HEADSTOCKS-These are made in three lengths, Short (8 ft .6 in .), Medium (10 ft .4 in .) and Long (12 ft. 2 in.), and are complete with Fan, Conducting Rollers, Polished Dividing Rods, quick and accurate Yarn Marker, Expanding and Contracting Comb, Spring Bearings for preventing the breaking of yarn when starting the machine, Triple Speed Change Gears, Slow Motion arrangement, Side Shaft, and Gearing to Copper Size Rollers, Patent Yarn Beam Friction and Patent Revolving Yarn Beam Presser.

PATENT YARN BEAM FRICTION-With four frictional surfaces. These Frictions have more than double the friction surface of the older styles, and give considerably more power and are proving the most efficient Frictions ever invented.

SLOW MOTION DRIVING-This enables the Slasher to be run at a very slow speed, instead of being entirely stopped whilst doffing, etc., thus preventing the burning or spoiling of yarn whilst under the squeezing rollers in the size box.

COPPER CYLINDERS—Made from best Copper Sheets well and evenly rolled by machinery, so as to give a perfectly smooth drying surface, with Ends or Heads made of Steel plates. Cylinder Shafts run on Anti-Friction Bowls, and are provided with Pressure Gauge, Safety and Reducing Valves, and Steam Traps.

SIZE BOX—With two Heavy Seamless Copper Rollers, with Brass Glands and Brass Bushes. The Ends of these Rollers run in Brass Steps in Pedestals supported by Tables which are cast to the outside of the Size Box.

Size Box also contains perforated Copper Boiling Pipe, Seamless Copper Immersion Roller, with adjustable Racks and Motion, Brass and Tin Conducting Rollers, and Brass Taps.

CREELS-'These are usually made for 6 Beams, but are made for more if required, and have Adjustable Bearings. Three sizes are made, $223 / 8 \mathrm{in}$., $251 / 2 \mathrm{in}$. and 27 in . between centers. The latter for Beam Heads up to 26 in . dia.

We also apply, when ordered, any of the following:
Patent Traversing Yarn Beam Presser.
Patent Expanding Double Yarn Beam Presser.
Patent Yarn Tension Arrangement to Size Box for enabling the size to better penetrate the Yarns.

Positive Driving Arrangement to Cylinders for Fine Yarns or small number of ends.

Extra Carrying Rolls and Stands.
PRODUCTION-One Slasher will supply from 150 to 600 Looms, according to the class of work; about 300 is the average.

DRIVING PULLEYS-Are on Right Hand side of Headstock (when facing same), 13 in . dia., 3 in . face, T. \& L. Slow Motion Pulley is 1 in . face, making 7 in . in width for the three Pulleys.

SPEEDS-170 to 210 R. P. M.

FLOOR SPACE-Dimensions of Standard machines with Short Headstock (8 ft .6 in .) and 6 -Beam Creel, $2.51 / 2 \mathrm{in}$. or 27 in. centers, the latter for Beam Heads up to 26 in. dia. ; $9 / 8$ wide, for Warper Beams 54 in. wide between Heads, Drying Surface of Cylinders, $561 / 2 \mathrm{in}$.
6 ft dia. Cylinder $31 \mathrm{ft} .0 \mathrm{in} . \times 8 \mathrm{ft}$.6 in .*
7 ft . dia. Cylinder $33 \mathrm{ft} .4 \mathrm{in} . \mathrm{x} 8 \mathrm{ft} .6 \mathrm{in}$.
66 in . and 40 in . dia. Cylinders . . 33 ft .4 in . x 8 ft .6 in .
6 ft . and 4 ft . dia. Cylinders . . $33 \mathrm{ft} .10 \mathrm{in}$.x 8 ft .6 in .
7 ft . and 4 ft . dia. Cylinders . . $34 \mathrm{ft} .10 \mathrm{in}$.x 8 ft .6 in .
7 ft . and 5 ft . dia. Cylinders . . $37 \mathrm{ft} .10 \mathrm{in} . \mathrm{x} 8 \mathrm{ft} .6 \mathrm{in}$.
Add for each additional two Beams in Creel, $3 \mathrm{ft} .4 \frac{1}{2} \mathrm{in}$.
Add for Medium Headstock 1 ft .10 in.
Add for Long Headstock 3 ft .8 in.
LOOM BEAMS-Slashers $9 / 8$ wide, as described above, will take Loom Beams up to 64 in . long over all, or up to 70 in . by using Cranked Cannon Shaft Brackets.

WIDER SLASHERS-These are made up to $12 / 4$ wide, for widths of yarn as follows:

| $9 / 8$ | $6 / 4$ | $7 / 4$ | $8 / 4$ | $9 / 4$ | $10 / 4$ | $11 / 4$ | $12 / 4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 54 in. 60 in. 66 in. 72 in. 78 in. 84 in. 90 in. 96 in. Add to the width of machines, as given above, 6 in . for each extra width over $9 / 8$.

SPECIAL MACHINES-Are made with Extra Wide or Extra Long Heads and many other attachments for Special Work, also with AIR DRIING instead of Cylinders.

[^1]
APPROXIMATE SHIPPING WEIGHTS OF MACHINES

Pounds
Hopper Bale Opener 5,000
Self-feeding Opener 6,000 to 6,500
Single Beater Breaker Lapper 8,500 to 9,500
Self-feeding Opener and Single Beater Breaker 15,000 to 16,000
Single Beater Intermediate or Finisher 8,500
Double Beater Intermediate or Finisher 13,000
Revolving Flat Card 7,000
Drawing Frame, per delivery 700
Slubbing Frame, 60 spdls., 12 in. $x 6$ in. 9,250
Intermediate Frame, 96 spdls., 10 in. x 5 in. 10,000
Roving Frame, 144 spdls., 8 in. $x 4$ in. 11,500
Roving Frame, 160 spdls., 7 in, x $31 / 2$ in. 11,250
Jack Frame, 184 spdls., 6 in. x 3 in. 11,250
Spinning Frame, 224 spdls., $23 / 4$ in. Ga. 6,250
Spinning Frame, 204 spdls., 3 in. Ga. 6,250
Spinning Frame, 192 spdls., $31 / 4 \mathrm{in} . \mathrm{Ga}$. 6,250
Twister, 220 spdls., 3 in. Ga. 7,000
Twister, 192 spdls., $31 / 2 \mathrm{in}$. Ga. 7,300
Twister, 160 spdls., 4 in. Ga. 6,800
Twister, 132 spdls., 5 in. Ga. 6,700
Cone Winder, 100 Drums 7,500

ENGLISH WEIGHTS AND MEASURES OF COTTON YARN.

24 Grains $=1$ Pennyweight (Dwt. Troy).
437.5 Grains $=1$ Ounce (Avoirdupois).
$16 \mathrm{oz} .=7,000$ Grains $=1$ Pound (Avoirdupois).
$11 / 2$ Yards $=54 \mathrm{in} .=1$ thread or circumference of Cotton Reel.

120 Yards $=80$ threads $=1$ Skein.
840 Yards $=560$ threads $=7$ skeins $=1$ Hank.
The number of Hanks in 1 lb . is the number of the yarn.
7,000 grains (1 lb .) divided by the weight in grains of 1 Hank (840 Yards) = the number of yarn.

It is unnecessary and inconvenient to measure and weigh a full hank, and a lesser number of yards are usually taken. 120 yards for yarn, and 12 yards for Roving are common, and the Dividends for these are given in the following table.

Dividend Table

Yards	Dividends	Yards	Dividends
		8.33	
	16.66	9	
2	25.00	10	85.00
3	33.33	12	100.33
4	41.66	30	250.00
5	50.00	60	500.00
6	58.33	120	1000.00
7	66.66		
8			

RULES—Divide 7,000 (Grains in 1 lb .) by 840 (yards in 1 Hank)=dividend for 1 yd., 8.33.

Dividend \div by weight in grains $=$ Hank.
Dividend \div by Hank $=$ Weight in Grains.
EXAMPLES-If 1 yard of Card Sliver weighs 55 Grains, what Hank is it? Divide the dividend for 1 yard (8.33) by $55=$ 151 Hank.

What should 120 yds. of No. 25s yarn weigh ? Divide the dividend for 120 yards $(1,000)$ by $25=40$ grains.

GENERAL RULES WITH EXAMPLES.
 TO FIND THE DRAFT BETWEEN TWO ROLLS.

Rule:
$\frac{\text { Dia. of Front Roll } \mathrm{x} \text { Teeth on Driving Gears }}{\text { Dia. of Back Roll } \mathrm{x} \text { Teeth on Driven Gears }}=$ Draft.
Example:
On a Spinning Frame the front roll is 1 inch dia. and the back roll $7 / 8$ inch dia. Back Roll Gear, 89 T. Draft Change Gear, 45 T. Crown Gear $7 \geq$ T and Front Roll Gear, 27 T.
$\frac{8\left(1 \mathrm{in} .=\frac{8}{8} \mathrm{in} .\right) \times 89 \times 72}{7\left(\frac{\tau}{x} \mathrm{in} .\right) \times 45 \times 27}=6.03$ Draft.

RULES FOR USE WHEN CHANGING FROM ONE HANK OR NUMBER TO ANOTHER.

DRAFT CALCULATIONS.
Rule when changing weight:
$\frac{\text { Present Draft Gear x Required Weight }}{\text { Present Weight }}=\begin{gathered}\text { Required Draft } \\ \text { Gear. }\end{gathered}$
Example:
On a Drawing Frame it is desired to change from 50 to 60 grain sliver, and the Draft Change Gear on the machine has 55 T .
$\frac{55 \times 60}{50}=66 \mathrm{~T} .=$ Required Draft Gear.
Rule when changing hank or number of yarn:
Present Draft Gear x Present Hank $=$ Required Draft Required Hank - Gear.
Example:
On a Speeder it is desired to change from 3.20 hank to 4.80 hank and the Draft Change Gear on the Frame has 5% T.

$$
\frac{57 \times 3.20}{4.80}=38 \text { T. on Required Draft Gear. }
$$

Rule when changing Draft:
$\frac{\text { Present Draft Gear x Present Draft }}{\text { Required Draft }}=\begin{gathered}\text { Required Draft } \\ \text { Gear. }\end{gathered}$
Example:
On a Spinning Frame it is desired to change from 8.00 to
11.00 Draft, and the Present Draft Change Gear has 55 T.
$\frac{55 \times 8.00}{11.00}=40 \mathrm{~T}$. on Required Draft Gear.

TWIST CALCULATIONS.

Rule when changing hank or number of yarn:
Present Twist Gear x sq. root of Present
\qquad Sq. root of Required Hank

Example:
On a Speeder it is desired to change from 4.00 to 5.60 hank and the Present Twist Change Gear has 38 T. Sq. root of $4.00=2.000$. Sq. root of $5.60=2.366$.
$\frac{38 \times 2.000}{2.366}=32 \mathrm{~T}$. on Required Twist Gear.
Rule when changing Twist per Inch:
$\frac{\text { Present Twist Gear x Present Twist }}{\text { Required Twist }}=\begin{gathered}\text { Required Twist } \\ \text { Gear. }\end{gathered}$
Example:
On a Twister it is desired to change from 10. 60 turns twist per inch to 15.70 and the present Twist Change Gear has 44 T.
$\frac{44 \times 10.70}{15.70}=30 \mathrm{~T}$. on Required Twist Gear.

RATCHET OR TENSION CALCULATIONS.

Rule when changing hank:

Example:
On a Speeder it is desired to change from 1.00 hank to 1.44 hank and the Present Ratchet Gear has 10 T. Sq. root of $1.44=1.20$. Sq. root of $1.00=1.00$.
$\frac{10 \times 1.20}{1.00}=12 \mathrm{~T}$. on Required Ratchet Gear.

LAY CALCULATIONS.

Rule when changing hank:
$\frac{\text { Present Lay Gear x sq. root of Present Hank }}{\text { Sq. root of Required Hank }}=\begin{gathered}\text { Required } \\ \text { Lay Gear. }\end{gathered}$
Example:
On a Speeder it is desired to change from 3.60 hank to
4.50 hank and the present Lay Change Gear has 25 T .

Sq. root of $3.60=1.897$. Sq. root of $4.50=2.121$.
$\frac{25 \times 1.897}{2.121}=22 \mathrm{~T}$. on Required Lay Gear

CLASSIFICATION OF COTTON ADOPTED BY THE NEW YORK COTTON EXCHANGE.

QUARTER GRADES IN USE AFTER MARCH 10, 1910.

Grades
Fair.
Strict Middling Fair.
Middling Fair.
Barely Middling Fair.
Strict Good Middling.
Fully Good Middling.
Good Middling.

> Barely Good Middling.

Strict Middling.
Barely Middling.
Middling (Basis).
Strict Low Middling.

> Fully Low Middling.

Low Middling.
Strict Good Ordinary.
Good Ordinary.
Strict Good Middling Tinged.
Good Middling Tinged.
Strict Middling Tinged.
Middling Tinged.
Strict Low Middling Tinged.
Low Middling Tinged.
Middling Stained.

APPROXIMATE POWER REQUIRED BY COTTON MACHINERY.

Horse-power
Hopper Bale Opener 3
Hopper Feeder $11 / 2$
Self-feeding Opener 3
Single Beater Breaker Lapper, with Cage Section 6
Single Beater Breaker Lapper, with Gauge Box and Condenser T1/2
Combined Self-feeding Opener and Single Beater Breaker Lapper 9
Single Beater Intermediate or Finisher Lapper 4
Two Beater Intermediate or Finisher Lapper $71 / 2$
Thread Extractor with Condenser $11 / 2$
No. 6 Fan 5
Revolving Flat Card-Production, 450 lbs. per week 34
Revolving Flat Card-Production, $\% 00 \mathrm{lbs}$. per week 1
Revolving Flat Card-Production, 1,000 lbs. per week $11 / 4$
Sliver Lap Machine 1/2
Ribbon Lap Machine 1
Comber-6-Head 1/2
Comber-8-Head $2 / 3$
Drawing Frames, Ordinary Rolls, 6 delvs. per 1
Drawing Frames, Metallic Rolls, 5 delvs. per 1
Slubbing Frame, 45 spdls. per 1
Intermediate Frame, 55 spdls. per 1
Roving Frame, 85 spdls. per 1
Jack or Fine Roving Frame, 100 spdls. per 1
Spinning Frame, Warp yarns
16 s and coarser, 70 spdls. per 1
22 s , \%5 spdls. per 1
40s, 80 spdls. per 1

APPROXIMATE POWER REQUIRED BY COTTON MACHINERY-Cont'd.

Horse-power

Spinning Frame, Warp Yarns.
60 s, 90 spdls. per 1
80 s, 100 spd1s. per 1
Spinning Frame, Filling Yarns.
16 s and coarser, 110 spdls. per 1
22s, 90 spdls. per 1
28 s , 85 spdls. per 1
40 s, 90 spdls. per 1
70s, 100 spdls. per 1
90 s , 110 spdls. per 1
Twister, 40 to 100 spdls. per 1
Cone Winder, 65 Drums per 1
Mule Spinning, 90 to 125 spdls. per 1
Spoolers, 150 to 250 spdls. per 1
Warper 1/4
Ball Warper 1/2
Slasher $11 / 2$
Plain Loom, 40 in. 1/4
Wide Loom, 92 in. 1
Reel, 50 spdls. $\frac{1}{3}$
Brusher and shearer 3
Cloth Folder $1 / 3$
Note-The above figures are only approximate, and give a fair average of the power taken to drive the various machines. The speed, production and many other conditions affect the power consumed.

BELTING REQUIRED FOR VARIOUS MACHINES.

For convenience in calculating the quantity of belting required when equipping a mill or ordering supplies, the following lists have been prepared. Actual lengths are stated, no allowance being made for lap of belts or for splicing bands. All widths shown are for single belts.

> Hopper Bale Opener.

Main Belt, 3 in. -8 ft .6 in. of 2 in . (for 1 Belt).
Self-feeding Opener with 18 -in. Rigid Beater for Trunking Connection.
Main Belt, $31 / 2 \mathrm{in}$. -29 ft .4 in . of 2 in . (for 3 Belts).
Self-feeding Opener with 30 -in. Cylinder Arranged for Trunking Connection.
Main Belt, $31 / 2 \mathrm{in}$. -30 ft .5 in . of 2 in . (for 3 Belts).
Self-feeding Opener (18-In. Rigid Beater) With One Beater Breaker Lapper.
Main Belt, $5 \mathrm{in} .-33 \mathrm{ft} .5 \mathrm{in}$. of $31 / 2 \mathrm{in}$. (for 2 Belts). 59 ft .5 in . of 2 in . (for 6 Belts).
Self-feeding Opener ($30-\mathrm{In}$. Cylinder) With One Beater Breaker Lapper.
Main Belt, 5 in. -33 ft .10 in . of $31 / 2 \mathrm{in}$. (for 2 Belts). 60 ft . 6 in. of 2 in . (for 6 Belts).
Self-feeding Opener (18 -in. Rigid Beater) With Two Beater Breaker Lapper.
Main Belt, 6 in. -56 ft .11 in . of $31 / 2 \mathrm{in}$. (for 3 Belts). 71 ft . 0 in . of 2 in . (for 7 Belts).
Self-feeding Opener (30-In. Cylinder) With Two Beater Breaker Lapper.
Main Belt, 6 in. -58 ft .3 in . of $31 / 2 \mathrm{in}$. (for 3 Belts). 72 ft .1 in . of 2 in . (for 7 Belts).
One Beater Breaker Lapper With Gauge Box and Condenser.
Main Belt, $5 \mathrm{in} .-15 \mathrm{ft} .3 \mathrm{in}$. of $31 / 2 \mathrm{in}$. (for 1 Belt). 32 ft .1 in . of 2 in . (for 3 Belts). 12 ft .8 in . of $1 \mathrm{t} / 2 \mathrm{in}$. (for 1 Belt).
Two Beater Breaker Lapper With Gauge Box and Condenser.
Main Belt, 6 in . -33 ft .5 in . of $31 / 2 \mathrm{in}$. (for 2 Belts). 40 ft .7 in . of 2 in . (for 4 Belts). 12 ft .8 in . of $1 \frac{1}{2} \mathrm{in}$. (for 1 Belt).

One Beater Breaker Lapper With Cage Section.
Main Belt, $5 \mathrm{in} .-15 \mathrm{ft} .3 \mathrm{in}$. of $31 / 2 \mathrm{in}$. (for 1 Belt). 33 ft .2 in . of 2 in . (for 3 Belts).

Two Beater Breaker Lapper With Cage Section.
Main Belt, 6 in. -33 ft .5 in . of $31 / 2 \mathrm{in}$. (for 2 Belts). 41 ft .8 in. of 2 in. (for 4 Belts).
(One Beater Intermediate or Finisher Lapper.
Main Belt, 4 in . -15 ft . 3 in. of $31 / 2 \mathrm{in}$. (for 1 Belt). 17 ft .10 in . of 2 in . (for 2 Belts). 4 ft .6 in . of 1 in . (for 1 Belt).

Two Beater Intermediate or Finisher Lapper.
Main Belt, 5 in. -33 ft .5 in. of $31 / 2 \mathrm{in}$. (for 2 Belts).
29 ft .5 in . of 2 in . (for 3 Belts).
4 ft .6 in . of 1 in. (for 1 Belt).
Revolving Flat Card.
Main Belt, 3 in.-Without Slow Motion.
14 ft . 7 in. of 2 in. (for 2 Belts).
13 ft . 2 in . of $11 / 2 \mathrm{in}$. (for 1 Belt).
22 ft .9 in . of $\frac{5}{16} \mathrm{in}$. dia. cotton Banding (for 3 Bands).
With Slow Motion.
14 ft .7 in . of 2 in. (for 2 Belts).
23 ft .4 in . of 1 in . (for 2 Belts).
22 ft .9 in . of $\frac{5}{16} \mathrm{in}$. dia. cotton Banding (for 3 Bands).
Drawing Frame.
Main Belt, 3 in . to $4 \mathrm{in} .-9 \mathrm{ft}$. 9 in . of $11 / 2-\mathrm{in}$. belt required for each Head.

Slubbing, Intermediate and Roving Frames.
Main Belt, 3 in. -11 -in. or $12-\mathrm{in}$. lift: 7 ft .3 in. of 2 -in. belt (for Cone Drums).
9 -in. or 10 -in. lift: 6 ft .8 in . of 2 -in. belt (for Cone Drums).
8 -in. lift: 5 ft . 11 in . of 2 -in. belt (for Cone Drums).
6 -in. or 7 -in. lift: 5 ft . 8 in . of 2 - in . belt (for Cone Drums).
Ring Sifining Frame and Twister.
Main Belt, 3 in.

> Cone Winder.

Main Belt, $21 / 2 \mathrm{in}$.

SHAFTING.

HORSE-POWER TRANSMITTED BY COLD ROLLED SHAFT-

ING. FIRST MOVERS OR HEAD SHAFTS WELL
SUPPORTED BY BEARINGS.

Dia. of Shaft	Revolutions per Minute								
	100	150	200	225	250	275	300	325	350
	Horse-power								
2	8	12	16	18	20	22	24	26	28
21/4	11	17	23	26	28	31	34	37	40
$21 / 2$	16	23	31	35	39	43	47	51	55
23/4	21	31	42	47	52	57	62	68	73
3	27	41	54	61	68	74	81	88	95
31/4	34	51	69	77	86	94	103	112	120
$31 / 2$	43	64	86	96	107	118	129	139	150
$33 / 4$	53	79	105	119	132	145	158	171	185
4	64	96	128	144	160	176	192	208	224
$41 / 4$	77	115	154	173	192	211	230	249	269
$41 / 2$	91	13%	182	205	228	251	273	296	319
43/4	107	161	214	241	268	295	322	348	375
5	125	187	250	281	312	344	375	406	438
51/4	145	217	289	326	362	398	434	470	506
$51 / 2$	166	250	333	374	416	458	499	541	582
53/4	190	285	380	428	475	523	570	618	665
6	216	324	432	486	540	594	648	702	756
$61 / 4$	244	366	488	549	610	671	T32	793	854
$61 / 2$	275	412	549	618	687	755	824	892	961
$63 / 4$	308	461	615	692	769	846	923	1000	1076
7	343	515	686	772	858	943	1029	1115	1201
$71 / 4$	381	572	762	857	953	1048	1143	1239	1335
$71 / 2$	422	633	844	949	1055	1160	1266	1371	1477
73/4	465	698	931	1047	1164	1280	1396	1513	1629
8	512	768	1024	1152	1280	1408	1536	1664	1792

The above table is figured by the following rule: Multiply the cube of the diameter of the shaft by the revolutions per minute and divide by 100 .

The table on the opposite page applies to head shafts supported by bearings close to each side of the main pulley so as to wholly guard against the transverse strain.

To find the diameter of shaft necessary to carry safely the main pulley at the center of a bay, use the table given below in connection with the one on the opposite page.

Dia. of Shaft	Dia. of Shaft necessary to carry the load at the Center of a Bay, which is from Center to Center of Bearings as below							
Formula	21/2 Ft.	3 Ft .	31/2 Ft.	4 Ft .	5 Ft .	6 Ft .	8 Ft .	10 Ft .
Shafts	In.							
2	$21 / 8$	21/4	$23 / 8$	$21 / 2$	25/8	23/4	$27 / 8$	3
$21 / 2$	$21 / 2$	25/8	23/4	27/8	3	$31 / 8$	$33 / 8$	35/8
3	3	$31 / 8$	31/4	$33 / 8$	$31 / 2$	33/4	4	41/4
$31 / 2$		$31 / 2$	358	$33 / 4$	4	41/4	$41 / 2$	43/4
4		4	41/s	41/4	$4^{1 / 2}$	43/4	$51 / 8$	$53 / 8$
$41 / 2$			$41 / 2$	45/8	47/8	$51 / 8$	$51 / 2$	57/8
5			5	51/3	$53 / 8$	5588	6	$61 / 2$
$51 / 2$				51/2	53/4	6	$61 / 2$	67/8
6				6	$63 / 8$	65/8	$71 / 8$	$71 / 2$

SHAFTING.

HORSE-POWER TRANSMITTED BY COLD ROLLED SHAFTING. SECOND MOVERS OR LINE SHAFTS WITH BEARINGS 8 FEET APART.

$\begin{array}{\|c} \text { Dia. } \\ \text { of } \\ \text { Shaft } \end{array}$	Revolutions per Minute								
	100	150	200	22.5	250	275	300	325	350
	Horse-power								
$1 \frac{1}{16}$	15	22	29	33	36	40	44	47	51
$\sim_{1}{ }_{1}{ }^{3}$	21	31	42	47	52	58	63	68	73
276	29	43	58	65	72	80	87	94	101
$211 \frac{1}{16}$	39	58	78	87	97	107	116	126	136
$2 \frac{15}{15}$	51	76	101	114	127	139	152	165	177
$3{ }_{1 / 8}{ }^{3}$	65	9%	130	146	162	178	194	210	227
$3{ }_{1}{ }^{\frac{7}{6}}$	81	122	162	183	203	223	244	264	284
$3_{1}^{11} 1$	100	150	201	226	251	276	301	326	351
315	122	183	244	275	305	336	366	397	42%
$4 \frac{3}{6}$	147	220	294	330	367	404	441	47%	514
$4 \frac{7}{16}$	175	262	350	393	437	481	524	568	612
$4 \frac{1}{1} \frac{1}{6}$	206	309	412	463	515	566	618	669	721
415	241	361	481	542	602	662	729	782	843
$5_{1 / 6}^{3}$	279	419	559	629	698	768	838	908	978
$5 \frac{7}{6}$	322	482	643	724	804	884	965	1045	1125
$5_{1}^{11} 6$	368	552	736	828	920	1012	1104	1196	1288
$5 \frac{1}{1} \frac{5}{6}$	419	628	837	942	1047	1151	1256	1361	1465
$6_{16}{ }^{\frac{3}{6}}$	474	711	948	1066	1185	1303	1421	1540	1658
$6^{\frac{7}{6}}$	534	800	106%	1201	1334	1467	1601	1734	1867
$6 \frac{1}{1} \frac{1}{6}$	598	897	1196	1346	1496	1645	1795	1944	2094
6_{1}^{15}	668	1002	1336	1503	1669	1836	2003	2170	2337
${ }^{7} \frac{3}{16}$	743	1114	1485	1671	185%	2042	2228	2414	2599
$7 \frac{7}{16}$	823	1234	1646	1851	205%	2263	$\underset{9}{2468}$	2674	2880
711 7 7 1 1$\frac{5}{6}$	909 1000	1363 1500	1817 2000	2045 2250	2272 2501	2499 \sim 751	2726 3001	2953 3251	3180 3501

The above table is figured by the following rule: Multiply the cube of the diameter of the shaft by the revolutions per minute and divide by 50 .

The table on the opposite page applies to Line Shafts with bearings 8 feet apart. To find the proper diameter for Line Shafts with bearings any other distance apart, multiply the diameter given in the table on the opposite page by the Constant Number corresponding to the distance between bearings in the table below.

Distance Between Bearings	Constant Number	Distance Between Bearings	Constant Number
$\begin{array}{cc} \text { Ft. } & \text { In. } \\ \underset{\sim}{2} & 0 \end{array}$.354	$\begin{array}{cc} \text { Ft. } & \text { In. } \\ 7 & 6 \end{array}$. 9527
$\geqslant 6$. 418	80	1.00
30	.479	86	1.0465
36	. 538	$9 \quad 0$	1.092
40	.595	$9 \quad 6$	1.137
46	.6495	100	1.182
50	. 7029	106	1.226
56	.755	109	1.248
60	. 806	110	1.269
66	. 856	116	1.315
70	. 905	120	1.355

HORSE-POWER OF SINGLE BELTS.

PULLEYS-100 R. P. M.-BELT CONTACT $1 / 2$ CIRCUM.

Dia. of Pulley	Width of Single Belt in Inches							
	3	4	5	6	8	10	12	14
6	. 59	. 78	. 98	1.2	1.6	2.0	2.4	2.7
7	. 69	. 92	1.2	1.4	1.8	2.3	2.8	32
8	. 78	1.0	1.3	1.6	2.1	2.6	3.1	3.7
9	. 88	1.2	1.5	1.8	2.3	2.9	3.5	4.1
10	. 98	1.3	1.6	2.0	2.6	3.3	39	4.6
11	1.1	1.4	1.8	2.2	2.9	3.6	4.3	5.0
12	1.2	1.6	2.0	2.4	3.1	3.9	4.7	5.5
13	1.3	1.7	2.1	2.5	3.4	4.2	5.1	5.9
14	1.4	1.8	2.3	2.8	3.7	4.6	5.5	6.4
15	1.5	2.0	2.5	3.0	3.9	4.9	5.9	6.9
16	1.6	2.1	2.6	3.1	4.2	5.2	6.3	7.3
17	1.7	2.2	2.8	3.3	4.5	5.6	6.7	\%.8
18	1.8	2.4	3.0	3.5	4.7	5.9	7.1	8.3
19	1.9	2.5	3.1	3.7	5.0	6.2	7.5	8.7
20	2.0	2.6	3.3	3.9	5.2	6.6	7.9	9.2
21	2.1	2.7	3.4	4.1	5.5	6.9	8.2	9.6
22	2.2	2.9	3.6	4.3	5.8	7.2	8.6	10.1
23	2.3	3.0	3.8	4.5	6.0	7.5	9.0	10.5
24	2.4	3.1	3.9	4.7	6.3	7.9	9.4	11.0
25	2.5	3.3	4.1	4.9	6.6	8.2	9.8	11.5
26	2.6	3.4	4.3	5.1	6.8	8.5	10.2	11.9
27	2.7	3.5	4.4	5.3	7.1	8.8	10.6	12.4
28	2.8	3.7	4.6	5.5	7.3	9.2	11.0	12.8
29	2.9	3.8	4.8	5.7	\%. 6	95	11.4	13.3
30	2.9	3.9	4.9	5.9	7.9	9.8	11.8	13.7
31	3.0	4.1	5.1	6.1	8.1	10.2	12.2	14.2
32	3.1	4.2	5.2	6.3	8.4	10.5	12.6	14.7
33	3.2	4.3	5.4	6.5	8.6	10.8	13.0	15.1
34	3.3	4.4	5.6	6.7	8.9	11.1	13.3	15.5
35	3.4	4.6	5.7	6.9	9.2	11.5	13.7	16.0
36	3.5	4.7	5.9	7.1	9.4	11.8	14.2	16.5
37	3.6	4.8	6.1	7.3	9.7	12.1	14.5	16.9
38	3.7	5.0	6.2	\%.4	9.9	12.4	14.9	17.4
39	3.8	5.1	6.4	7.7	10.2	12.8	15.3	17.9
40	3.9	5.2	6.6	7.9	10.5	13.1	15.7	18.3
42	4.1	5.5	6.9	8.2	11.0	13.7	16.4	19.2
44	4.3	5.8	7.2	8.6	11.5	14.4	17.3	20.2
46	4.5	6.0	7.5	9.0	12.0	15.0	180	21.0
48	4.7	6.3	7.9	9.4	126	15.7	18.8	22.0
50	4.9	6.5	8.2	9.8	13.0	16.3	19.6	22.8
52	5.1	6.8	8.5	10.2	13.6	17.0	20.4	23.8
54	5.3	7.1	8.8	10.6	14.2	17.7	21.2	24.7

Note-The above table is based on one Horse-power per inch of width for each 800 feet per minute belt speed. The horse-power for other pulley speeds in proportion.

HORSE-POWER OF DOUBLE BELTS.

PULLEYS-100 R. P. M.-BELT CONTACT 1/2 CIRCUM.

Dia. of Pulley	Width of Double Belt in Inches							
	3	4	5	6	7	8	9	10
18	2.8	3.8	4.7	5.7	6.6	\%. 6	8.5	9.4
19	3.0	4.0	5.0	6.0	7.0	8.0	9.0	9.9
20	3.1	4.2	5.2	6.3	7.3	84	9.4	10.5
21	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11.0
22	3.5	4.6	5.8	6.9	8.1	9.2	10.4	11.5
23	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0
24	3.8	5.0	6.3	7.6	8.8	10.1	11.3	12.6
25	3.9	5.2	6.5	7.8	9.2	10.4	11.8	13.1
26	4.1	5.4	6.8	8.2	9.5	10.9	12.2	13.6
27	4.2	5.7	7.1	8.5	9.9	11.3	12.7	14.1
28	4.4	5.9	7.3	8.8	10.3	11.7	13.2	14.7
29	4.6	6.1	7.6	9.1	10.6	12.1	13.\%	15.2
30	4.7	6.3	7.9	9.4	11.0	12.6	14.1	15.7
31	4.9	6.5	8.1	9.7	11.4	13.0	14.6	16.2
32	5.0	6.7	8.4	10.0	11.7	13.4	15.1	16.7
33	5.2	6.9	8.6	10.4	12.1	13.8	15.5	17.3
34	5.3	7.1	8.9	10.7	12.5	14.2	16.0	17.8
35	5.5	7.3	9.2	11.0	12.8	14.7	16.5	18.3
36	5.7	7.5	9.4	11.3	13.2	15.1	17.0	18.9
37	5.8	7.7	9.7	11.6	13.6	15.5	17.4	19.4
38	6.0	8.0	10.0	11.9	13.9	15.9	17.9	19.9
39	6.1	8.2	10.2	12.3	14.3	16.3	18.4	20.4
40	6.3	8.4	10.5	12.6	14.7	16.8	18.8	20.9
42	6.6	8.8	11.0	13.2	15.4	17.6	19.8	22.0
44	6.9	9.2	11.5	13.8	16.1	18.4	20.7	23.0
46	7.2	9.6	12.0	14.5	16.9	19.3	21.7	24.1
48	7.5	10.1	12.6	15.1	17.6	20.1	23.6	25.1
50	7.9	10.5	13.1	15.7	18.3	20.9	23.6	26.2
52	8.2	10.9	13.6	16.3	19.1	21.8	24.5	27.2
54	8.5	11.3	14.1	17.0	19.8	22.6	25.4	28.3
56	8.8	11.7	14.7	17.6	20.5	23.5	26.4	29.3
58	9.1	121	15.2	18.2	21.3	24.3	27.3	30.4
60	9.4	12.6	15.7	18.8	22.0	25.1	28.3	31.4
64	10.1	13.4	16.8	20.1	23.5	26.8	30.2	33.5
68	10.7	14.2	17.8	21.4	24.9	28.5	32.0	35.6
72	11.3	15.1	18.8	22.6	26.4	30.2	33.9	37.7
76	11.9	15.9	19.9	23.9	27.9	31.8	35.8	39.8
80	12.6	16.8	20.9	25.1	29.3	33.5	37.7	41.9
84	13.2	17.6	22.0	26.4	30.8	35.2	39.6	44.0
88	13.8	18.4	23.0	27.6	32.3	36.9	41.5	46.1
92	14.5	19.3	24.1	28.9	33.7	38.5	43.3	48.2
96	15.1	20.1	25.1	30.2	35.2	40.2	45.2	50.3

NOTE-The above table is based on one Horse-power per inch of width for each 500 feet per minute belt speed. The horse-power for other pulley speeds in proportion.

HORSE-POWER OF DOUBLE BELTS.

PULLEYS-100 R. P. M.-BELT CONTACT $1 / 2$ CIRCUM.

Dia. of Pulley	Width of Double Belt in Inches							
	12	14	16	18	20	22	24	26
18	11.3	13.2	15.1	17.0	18.9	20.7	22.6	24.5
19	11.9	13.9	15.9	17.9	19.9	21.9	23.9	25.9
20	12.6	14.7	16.8	18.8	20.9	23.0	25.1	27.2
21	13.2	15.4	17.6	19.8	22.0	24.2	26.4	28.6
22	13.8	16.1	18.4	20.7	23.0	25.3	27.6	29.9
23	14.4	16.8	19.3	21.7	24.1	26.5	28.9	31.3
24	15.1	17.6	20.1	23. 6	25.1	$2 \% .6$	30.2	32.7
25	$15 . \%$	18.3	20.9	83.5	26.2	28.7	31.3	34.0
26	16.3	19.1	21.8	24.5	27.2	29.9	32.7	35.4
27	$1 \% .0$	19.8	22.6	25.4	28.3	31.1	33.9	36.8
28	17.6	30.5	23.5	26.4	29.3	32.2	35.2	38.1
29	18.2	21.3	24.3	27.3	30.4	33.4	36.4	39.5
30	18.8	22.0	25.1	38.3	31.4	34.6	37.7	40.8
31	19.5	23.7	25.9	29.2	32.4	35.7	38.9	42.2
32	20.1	23.4	26.8	30.1	33.5	36.8	40.2	43.6
33	20.7	24.2	27.6	31.1	34.6	38.0	41.5	44.9
34	21.4	24.9	28.5	32.0	35.6	39.2	42.7	46.3
35	22.0	25.7	29.3	33.0	36.6	40.3	44.0	47.6
36	22.6	26.4	30.1	33.9	37.7	415	45.2	49.0
37	23.2	27.1	31.0	34.9	38.7	42.6	16.5	50.4
38	23.9	27.9	31.8	35.8	39.8	43.8	47.8	51.7
39	24.5	28.6	32.7	36.7	40.8	44.9	49.0	53.1
40	25.1	29.3	33.5	$3 \% .7$	41.9	46.1	50.3	54.5
42	26.4	30.8	35.2	39.6	44.0	48.4	52.8	57.2
44	27.6	32.2	36.8	41.4	46.1	50.7	55.3	59.9
46	28.9	38.7	38.5	43.4	48.2	53.0	$5 \% .8$	62.6
48	30.1	35.2	40.2	45.2	50.3	55.3	60.3	65.3
50	31.4	36.7	41.9	47.1	5\%.4	57.6	62.8	68.1
52	32.7	38.2	43.5	49.0	54.4	59.9	65.3	\%0.8
54	33.9	39.6	45.2	50.9	56.5	62.2	67.9	73.5
56	35.2	41.0	46.9	52.8	58.6	64.5	70.4	76.2
58	36.4	42.5	48.6	54.6	60.7	66.8	72.9	78.9
60	37.7	44.0	50.2	56.5	62.8	69.1	75.4	$81 . \%$
64	40.2	46.9	53.6	60.3	6\%.0	73.7	80.4	8 7 .1
68	42.7	49.8	57.0	64.1	71.2	78.3	85.4	92.6
72	45.2	52.8	60.3	67.9	75.4	82.9	90.5	98.0
76	47.7	55.7	63.7	¢1.6	79.6	$8 \% .5$	95.5	103.5
80	50.3	58.6	67.0	75.4	83.8	92.1	100.5	108.9
84	52.8	61.6	70.4	79.2	87.9	$96 . \%$ 亿	105.5	114.4
88	55.3	64.5	73.7	82.9	92.2	101.4	110.6	119.8
92	57.8	67.4	77.1	86.7	96.3	106.0	115.6	125.2
96	60.3	70.4	80.4	90.5	100.5	110.6	120.6	130.7

NOTE-The above table is based on one Horse-power per inch of width for each 500 feet per minute belt speed. The horse-power for other pulley speeds in proportion.

USEFUL CONSTANTS, ETC.

1 pint of water weighs a pound and a quarter.
1 gal . of water $=.1605 \mathrm{cu} . \mathrm{ft} .=10 \mathrm{lb}$. of water at $62^{\circ} \mathrm{F}$.
$1 \mathrm{knot}=6080 \mathrm{ft}$. $=1.15$ statute miles.
1 lb . (avoirdupois) $=7,000$ grains $=453.6$ grammes.
1 lb . (Troy) $=5,760$ grains.
1 English h.p. $=33,000 \mathrm{ft}$. lbs. of work done per min. $=746$ watts.
1 French h. p. or force de cheval $=4,500$ kilogrammetres per min. $=.9863$ English h. p.
1 English h. p. $=1.01385$ French force de cheval.
1 board of trade electrical unit $=1,000$ watts per hour.
Volts \times amperes $=$ watts.
The pressure of one atmosphere $=14.7 \mathrm{lbs}$. per sq. in. $=2,116$ lbs. per sq. ft. $=$ a column of mercury $760 \mathrm{~m} / \mathrm{m}$ high.
A column of water 2.3 ft . high corresponds to a pressure of 1 1 b . per sq. in.
Cubic inches of cast iron $\times 0.26=1 \mathrm{bs}$. avoirdupois.
Cubic inches of wrought iron $\times 0.28=\mathrm{lbs}$. avoirdupois.
Thickness of wrought iron plate in inches $\times 40=$ lbs. per sq. ft.
Sectional area of wrought iron in inches $\times 3.34=1 \mathrm{bs}$. per lineal ft .
Dia. of wrought iron in inches squared $\times 2.64=1 \mathrm{bs}$. per lineal ft .

CIRCUMFERENCES OF CIRCLES, ADVANCING BY 8THS.

Inches Dia.	Circumferences							
	0	1/8	1/4	3/8	1/2	5/8	$3 / 4$	7/8
0		0.392%	0.7854	1.178	$1.5 \% 0$	1.963	2.356	2.748
1	3.1416	3.534	3.927	4.319	4.712	5.105	5.49%	5.890
2	6.283	6.675	7.068	7.461	7.854	8.246	8.639	9.032
3	9.424	9.81%	10.21	10.60	10.99	11.38	11.78	12.17
4	12.56	12.95	13.35	13.74	14.13	14.52	14.92	15.31
5	15.70	16.10	16.49	16.88	17.2%	17.6\%	18.06	18:45
6	18.84	19.24	19.63	20.02	20.42	20.81	21.20	21.59

Circum. of a circle $=$ dia. $\times 3.1416$

MENSURATION OF SURFACES, SOLIDS, ETC.

Area of triangle $=$ base \times half the perpendicular height.
Area of circle $=$ dia. ${ }^{2} \times 0.7854$.
Circum. of circle $=$ dia. $\times 3.14159$.
Circum. of circle $\times .31831=$ the dia.
Dia. of circle $\times .886:=$ the side of an equal square.
Side of a square $\times 1.12837=$ the dia. of equal circle.
Square root of an area $\times 1.12837=$ the dia. of equal circle.
Surface of cylinder $=$ area of both ends + length \times circum.
Surface of cone $=$ area of base $+1 / 2$ (slant height \times circum. of base).
Surface of sphere $=$ dia. squared $\times 3.14159$.
Solidity of sphere $=$ dia. cubed $\times .5236$.
Solidity of cylinder $=$ area of one end \times length.

DATA ON MANILA TRANSMISSION ROPE.

(AMERICAN MFG. CO.)

Dia. of Rope	Square of Dia.	Ap-proximate Wgt. perFt.	Breaking Strgth	Maximum Allowable Tension	Length of Splice Feet			Smallest Dia. of Sheaves, In.	$\begin{gathered} \text { Maxi- } \\ \text { mum } \\ \text { No. of } \\ \text { Revs. } \\ \text { per } \\ \text { Minute } \end{gathered}$
					$\begin{gathered} 3 \\ \text { Strands } \end{gathered}$	$\stackrel{4}{\text { Strands }}$	$\begin{array}{\|c\|} 6 \\ \text { Strands } \end{array}$		
3/4	. 5625	. 20	3,950	112	6	8	.	28	760
7/8	.7656	. 26	5,400	153	6	8	.	32	650
1	1	. 34	7,000	200	7	10	14	36	570
11/8	1.2656	. 43	8,900	253	7	10	16	40	510
11/4	1.5625	. 53	10,900	312	7	10	16	46	460
$13 / 8$	1.8906	. 65	13,200	378	8	12	16	50	415
11/2	2.25	. 77	15,700	450	8	12	18	54	380
15/8	2.6406	. 90	18,500	528	8	12	18	60	344
13/4	3.0625	1.04	21,400	612	8	12	18	64	330
2	4	1.36	28,000	800	9	14	20	72	290
21/4	5.0625	1.73	35,400	1,012	9	14	20	82	255
21/2	6.25	2.13	43,700	1,250	10	16	22	90	230

Weight of transmission rope . . $=.34 \times$ dia. ${ }^{2}$
Breaking strength $=7,000 \times$ dia. ${ }^{2}$
Maximum allowable tension.$=200 \times$ dia. ${ }^{2}$
Dia. smallest practicable sheave $=36 \times$ dia.
Velocity of rope (assumed) . . $=5,400 \mathrm{ft}$. per minute.

HORSE-POWER TRANSMITTED BY MANILA ROPE.

Dia. of Rope	Velocity, Feet per Minute										
	1,000	1,500	2,000	2,500	3,000	3,500	4,000	4,500	5,000	5,500	6,000
$3 / 4$	2.3	3.3	4.3	5.2	6.0	6.6	7.2	7.3	7.4	7.3	6.9
7/8	3.0	4.5	5.9	7.0	8.2	9.0	9.6	9.8	10.0	9.6	9.0
1	4.0	5.9	7.7	9.2	10.6	11.8	12.7	12.9	13.0	12.7	12.0
11/8	5.0	7.5	9.7	11.6	13.5	14.9	16.0	16.3	16.7	16.5	15.3
$11 / 4$	6.3	9.1	12.0	14.3	16.7	18.5	20.0	20.2	20.7	20.1	18.9
$13 / 8$	7.5	10.8	14.4	17.4	20.0	22.1	23.7	24.5	24.6	24.0	22.3
11/2	9.0	13.5	17.4	20.7	23.0	26.3	28.7	29.0	29.5	28.6	26.7
15/8	10.5	15.5	20.1	24.3	27.9	30.8	32.9	34.1	34.3	33.3	31.0
$13 / 4$	12.3	18.0	23.6	28.2	32. 7	36.4	38.5	394	40.5	38.7	36.0
2	16.0	23.2	30.6	36.8	42.5	46.7	50.0	51.7	52.8	50.6	47.3
$21 / 4$	20.0	29.6	38.6	46.6	53.6	59.2	63.6	65.8	66.3	64.4	60.3
$21 / 2$	25.0	36.6	47.7	57.5	66.0	71.2	78.0	80.0	81.0	79.0	73.8

SAG OF MANILA ROPE ON DRIVING AND SLACK SIDES.

Distance Between Pulleys, Feet	Sag on Driving Side, All Speeds, Ft.	Sag on Slack Side				
		Velocity, Feet per Minute				
		3,000	4,000	4,500	5,000	5,500
30	. 19	. 45	. 39	. 36	. 33	. 30
40	. 34	. 80	. 69	. 64	. 59	. 53
50	. 53	1.2	1.1	1.0	. 92	. 84
60	. 76	1.8	1.7	1.4	1.3	1.2
70	1.0	2.4	2.1	1.9	1.7	1.6
80	1.4	3.2	2.9	2.5	2.3	2.1
90	1.7	4.0	3.5	3.2	3.0	2.7
100	2.1	5.0	4.3	4.0	3.7	3.3
120	3.0	7.2	6.2	5.7	5.3	4.8
140	4.1	9.9	8.5	7.8	7.2	6.6
160	5.4	12.9	11.1	10.2	9.5	8.6

NUMBER OF RING AND MULE SPINDLES IN UNITED STATES.

(DEPART. OF COMMERCE AND LABOR REPORT, 1908.)

WORLD'S COTTON SPINDLES.

(DEPART. OF COMMERCE AND LABOR REPORT, 1908.)

United States 27,964,387
Europe:
United Kingdom 52,817,582
Germany 9,882,505
Russia 7,855,210
France 6,731,316
Italy 4,181,000
Austria-Hungary 4,026,460
Spain 1,850,000
Switzerland 1,493,012
Belgium 1,162,041
Portugal 450,000
Netherlands 396,160
Sweden 390,000
Denmark 77,644
Norway -4,936
All other Europe 185,000
British India 5,699,898
Japan 1,550,929
China 750,000
Brazil 1,300,000
Mexico 730,000
Canada 〒95,293
Other countries 150,000
Total $130,513,373$

[^0]: Combinations Nos. 1, 2, 3 and 4 are for Slubbing and Intermediate Frames with $11 / 4$-inch dia. Front Roll.
 Combinations Nos. 5, 6, 7, 8 and 9 are for Roving and Jack Frames with $1 \frac{1}{4}$-inch dia. Front Roll.
 Combinations Nos. 10, 11, 12, 13 and 14 are for Roving and Jack Frames with $11 / 8$-inch dia. Front Roll.

[^1]: * Width is 8 ft .11 in . over extreme projections in Headstock when Cannon Shaft is extended.

