Clarnon 7 Press Serics

FLGURES MADE EASY

A FIRST ARITHMETIC BOOK

```
INTRODUCTORY TO 'THE SCHOLAR'S ARITHMETIC'
BY THE SAME AUTHOR
```

By

LEWIS HENSLEY, M. A.

Formerly Fellow and Assastant Tutor of Tranity College, Cambradge

7LOMDOn
MACMILLAN AND CO.

PUBLISHERS TO THE UNIVERSITY OF

Brfort

$$
\begin{gathered}
\text { Gol } \\
\text { HenlFig } \\
52200 \\
\text { wg.r. }
\end{gathered}
$$

PREFATORY REMARKS.

[These early lessons are addressed to young scholars partly in the manner of oral teaching, with the inevitable omission however of many repetitions and illustrations which an intelligent teacher would naturally use.

Those parts of the lessons which are marked \dagger may be passed over on first coming to them, but after the next lesson or two the former lessons should be reviewed and these parts brought in.

Passages enclosed in brackets are addressed to the Teacher.

These lessons 'have been specially prepared as an introduction to the larger work of the author, entitled ' The Scholar's Arithmetic,' which belongs to the same series.]

CONTENTS.

LESSON Page

1. First Notions of Counting I
2. Counting Mentally 3
3. Counting up to Ten 5
4. Counting to Twenty 6
5. Counting beyond Twenty 7
6. Counting by Twos 8
7. On Addition 9
8. On Subtraction 11
9. On Learning the Figures 12
10. On the Word Unit 12
11. On Two-Figure Numbers 13
12. On Addition and Subtraction Tables 14
13. On Writing the Figures 15
14. Oral Exercises 16
15. On Numeration I 8
16. On Numeration-continued 20
17. On the Noughts 22
18. Reckoning in Tens, \&c. 25
19. Addition, with Examples 26
20. On Subtraction 32
21. On Multiplication 37
22. Multiplication by a Single Figure 39
23. Multiplication by Tens 4^{2}
24. Mútitiplication by Composite Numbers 43
LESSON PAGE
25. On Division 44
26. Short Division 45
27. Continued Short Division 48
28. Multiplication (General) 49
29. Long Division 52
30. On English Money, 1872 55
31. Adding Shillings and Pounds 56
32. On Farthings 58
33. Subtraction of Money 60
34. Multiplication of Money 62
35. Division of Money 63
36. Flrst Notions of Fractions 65
37. On Quarters 66
38. Addition and Subtraction of Fractions . . . 67
39. Multiplication of Fractions 68
40. Division of Fractions 68
TABLES.
Addition Table 14
Multiplication Table 38
Pence Table 55
Exercise Table A 16
Exercise Table B 54
Exercise Table C 6_{4}
Numeration Frame

FIGURES MADE EASY.

LESSON ONE.

FIRST NOTIONS OF COUNTING.

I am sure that my young scholars know the difference between several oranges or nuts or marbles, and only one orange or nut or marble.

They will know what is meant by holding up only one finger, or more than one.

I dare say that they can count up to five or six at least, but as it is better to take nothing for granted, let me see.
[I hold up one finger.]
How many fingers am I holding up? One finger.
[I add another.]
How many now? Two fingers.
[Putting the fingers down.]
Then one finger and one more makes how many? Two.
[Again showing two fingers, and then adding another.]
How many fingers now? Three fingers.
Two fingers and one more are how many? Thrce. [Such questions must be repeated, first with and then without the fingers, as often as is found necessary.]
Let me see you hold up one finger.
Now two. Now three.

Look at these strokes: how many are there? II Two.
And these? III Three strokes.
Count these dots: how many? - Two dots.
And these? ••• Three dots.
Two fingers and one are? Three fingers.
Two strokes and one are? Three strokes.
Two dots and one are? Thiree dots.
Very well. [Showing four fingers.]
Now how many fingers? Four fingers.
Now the whole hand: how many? Five fingers.
These strokes: how many? IIII Four strokes.
These? Illll Five strokes.
These dots: how many? •-.- Four dots.
And these? ••••• Five dots.
Then three strokes and one are? Four.
And four strokes and one? Five.
Yes, and the same for dots, or fingers. Now look at these strokes carefully, for I want you to know the look of each number of strokes or dots directly you see them.
1 II III III IIII
Now name them as I point to them.
[I point to them in order, then in backward order, then at random. When there is any difficulty, I go back again to counting. Then handing a box of any common things, as marbles, balls, peas, nuts, or beads, I go on,]
Count out three marbles, and put them on the table. Count out four nuts: now five: now four marbles: now three beads: now five: and so on.
[Repeat and vary the questions in many ways. The Nume-ration-frame may also be employed, using only at present the balls on the units-wire.].

LESSON. TWO.

COUNTING MENTALLY.

[Showing the different objects named, I ask,]
Three marbles and one are? Four marbles.
Three nuts and one are? Four nuts.
Three balls and one are? Four balls.
Three things of any other kind and one would make? Four.

Yes: you see that it does not matter what objects we. are counting, so long as they are all of the same kind. We use the same words, one, two, and so on in each case. For instance, let me hear you count these pens :-

One, two, three, four-pens.
These farthings:-
One, two, three, four, five-farthings.
These beads:-
One, two, three, four, five-beads.
Very well: then we can say how many one and one are, without knowing what things they belong to. For instance, if you heard some one say to me, I give you this one, and one more, you would be able to say how many were given me, would you not, even without knowing what the speaker was talking of?

Yes; there would be two.
Very well : then you can say universally, one and one are two.

And one more would make? Three.
And one more? Four.
And one more? Fize.
Yes :-these names, one, two, three, four, five, and B 2
others, by which we can say how many things we mean of a particular kind, are called numbers.

Four apples and one are? Five apples.
But four apples and one pear would not make five apples, or five pears. They would only be four apples and one pear, because they are not of the same kind. In counting we only count things of the same kind, or which can be called by the same name. Thus four daisies and one butter-cup would not make five daisies, but we might call them five flowers.

What might we call-four little boys and one little girl? Five children.

Exercises.

Let us go over our results:-
One and one are two, two and one are three, three and one are four, four and one are five.

Count up to five aloud as quick as you can :-one, two, three, four, five.

Again: again:-quicker. Now backwards, forwards, backwards, forwards.

Show me three fingers:-five: two: four.
Now as quick as possible:-four, one, five, two.
What three things do you see in the room?
How many legs has my chair?
Make four strokes on the slate: now three: now five.

LESSON THREE.

COUNTING UP TO TEN.

We must now count a little further. We have counted the fingers on one hand-how many were there? Five fingers.

One more finger makes six fingers-five and one are? Six.

How many strokes are here? III\| Five strokes. Now one more, how many? IIIII Six strokes.
Let me hear you count these dots. $\bullet \bullet \bullet \bullet \bullet$ One, two, three, four, five, six-dots.

Six strokes and one are seven. IIIIIII Count them.
Seven strokes and one are eight. IIIIIII Count them.
Eight strokes and one are nine. IIIIIIII Count them.
Nine strokes and one are ten. IIIIIIIII Count them.
Count the fingers on your two hands.
Show me five fingers : now seven : three: eight.
Count me out eight marbles: now six nuts: now ten.
Sum up results:-
One and one are two, two and one are three, three and one are four, four and one are five, five and one are six, six and one are seven, seven and one are eight, eight and one are nine, nine and one are ten.

Count up to ten aloud as quickly as you can:-One, two, three, four, five, six, seven, eight, nine, ten. Again : again : now backwards, forwards, backwards.
[When a lesson is not mastered, it must be repeated again, and fresh illustrations brought in. And even after a lesson seems to be mastered, it should occasionally be reviewed briefly and rapidly.]

LESSON FOUR.

COUNTING TO TWENTY.

Ten and one are eleven. IIIIIIIIIII Count them. Eleven and one are twelve. HIIIIIII II Count them. Eleven and one is the same as ten and two, or twelve. The numbers which follow do not get names which are quite new : they are made up from those which we know already.
Thirteen is three and ten. IIIIIIIIII III Count them.
Fourteen is four and ten. IIIIIIIIIIIIII Count them.
Fifteen is five and ten. IIIIIIIIIIIIII Count them.
Sixteen is six and ten. IIIIIIIIIIIIIII Count them.
Seventeen is seven and ten. IIIIIIIIIIIIIIIII Count them.
Eighteen is eight and ten. IIIIIIIIIIIIIIIII Count them.
Nineteen is nine and ten. IIIIIIIIIIIIIIIIII Count them.
Twenty is two tens. IIIIIIIIIIIIIIIIIII Count them.
What else is thirteen besides three and ten? Twelve and one.
And fourteen? Thirteen and one.
[And so on.]
All these words (except eleven and twelve) end in the syllable tecn, which means that the number named in the first syllable is increased by ten. Seventeen is seven and ten. These numbers (beginning with ten) may be called the teen-numbers, or teens.

Exercises.

What is fifteen and one? twelve and one?
Count up to twenty aloud: again, beginning at eight. Count out twelve, fifteen, nineteen, marbles, beads.
Count backwards from twenty to one.

LESSON FIVE.

COUNTING BEYOND TWENTY.

We call two tens twenty, two tens and one more twenty-one; one more, twenty-two; one more, twentythree; one more, twenty-four; and so on, until we come to three tens, which is thirty; one more, thirty-one, then thirty-two, up to four tens, or forty ; so again to five tens, fifty; six tens, sixty; seven tens, seventy; eight tens, eighty; nine tens, ninety; ten tens, a hundred.

Suppose you have to count out a number of beads. Count out a set of ten, and put it apart; then another set of ten, and put it apart : and so on, until there are no more tens; then find how many remain over.

Suppose there are two tens, and five over: it is twenty-five.

If three tens, and two over: it is thirty-two.
If seven tens, and six over: it is seventy-six.
In each case, except in the teen-numbers, the last syllable expresses the over, and the first word the number of tens.

Almost all nations reckon by tens in this way, and the reason is that people began to count with their ten fingers.

Sum up results in tens:- Ten and ten are twenty; twenty and ten are thirty ; and so on.

Count the tens quickly : ten, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, a hundred.

Now count from one to a hundred.
How many tens are there in forty-seven, and how many over? In fifty-two? Thirty-three? Sixty-nine?

LESSON SIX.

COUNTING BY twos.

Counting a large number of objects is very tedious, if we count only one at a time. You must now learn to count two at a time.

Count this row of strokes, || || || || || || || || || ||
[Point to each set in succession, until the scholar can say two, four, and so on along the line. When he fails he must count by ones and begin again.]
Count this row of strokes, | || || || || || || || || ||
Next, count by threes, III |II ||| ||I ||I |II Do the same with these, I III III III III III III And with these, II III III III III III III

Now count these strokes, first by twos, then by threes:

IIIIIIIIIIIIIII

Do the same with a set of objects in a row, or with marbles, or beads.

Do the same aloud, without any objects to count.
Begin at one, and count on by twos.
Begin at four, and count on by twos.
Begin at five, and count on by twos.
The same from eight, from eleven, from three.
Begin at four, and count on by threes; at seven; at six.
† Count these sets of strokes, IIII IIII IIII IIII IIII I IIII IIII IIII IIII and II IIII |III IIII IIII III IIII IIII IIII II! and IIIII IIII IIIII IIIII
Count up to twenty aloud, by fours, and by fives.

Lesson seven.

ON ADDITION.

If I have two nuts in one hand and two in the other, how many have I? Four nuts.

That is called adding, or Addition.
Addition or adding is putting two or more numbers together and finding what number they make. That number is called their sum. Counting is adding, but the difficulty of adding does not begin till we add more than one. Counting is like walking, step by step: in adding we have to make a spring from one number to another, passing over one or more. Counting by twos and counting by threes are the first steps in adding.

Remark. We can only add together things of a like kind. If some are marbles, all must be marbles, or we cannot put them together in one number.

Two marbles and two more, how many? Four marbles.
Two of any sort, and two more, how many? Four.
-Two and two then are? Four.
Three and two, how many?
Three marbles and one would be? Four marbles.
Well, three marbles and two must be one more than three and one, must they not? Yes.

But, three and one are? Four. •
Then three and two are? Five.
Count out five marbles and show me that they are the same as three and two. Show me on your fingers that three and two are five.

Four marbles and two are?
[All additions of two may be made to depend on the first number and one, with one more. But the scholar should also be sent back to count by twos.]
Two marbles and three are?
Why, it is the same as three and two. It is five. Repeat several times, Two and three are five.
Three and three are? Four and three are?
[All additions of three may be made to depend on the first number and two, with one more. But the scholar should also be sent back to count by threes.]
Two marbles and four? The same as four and two. Six. And so on.

Any numbers to be added, such as seven and five, may be separated into seven and four and one, or like numbers, but they must be seen at last as seven and five, or the power of adding has not been acquired.

For some time little collections of beads or peas may be counted out to correspond with the sum, and placed upon separate squares of the Chequer-board, to be looked at as seven and five, and then thrown together and counted, or ranged in a row, as twelve.

Twenty is the limit of adding for the present.

ExERCISES.

Count these strokes by sets, beginning at any point :| |I| || || |I| || ||| ||I || ||I| || |I| |III IIII III || || |IIII || |III |IIII ||I |IIII

Two marbles and three and five are?
Six marbles and four and nine are?
Three apples and five and six are?

LESSON EIGHT.

ON SUBTRACTION.

Two marbles and two more are? Four marbles.
If I take two away again, how many are left. Two.
Then two marbles taken from four leave? Two.
Five nuts and three are? Eight.
Then if I took back three nuts from the eight, there would be? Five.

Taking away in this manner is called Subtraction.
Subtraction is taking away a part of a number, and finding what number remains.

Two and one are? Three. Then three, less one? Two.
Three and one are? Four, less one?
And so on.
Two and two are? Four, less two?
Three and two are? Five, less two?
And so on.
Recapitulate the additions, turning all additions into subtractions, so that learning addition and subtraction may go on together.

Remark. We cannot take a larger number from a smaller. If there are five marbles on the table, we can only take five away, or some smaller number.

Subtraction always supposes the numbers to mean things of the same kind.

Exercises.

Count backwards from twenty by twos; by threes; by fours.

Run up to twenty from any number by twos, threes, and so on, and back again as fast as possible.

LESSON NINE.

ON LEARNING THE FIGURES.

The figures may now be learnt, as here set down.
One. Two. Three. Four. Five. Six. Seven. Eight. Nine. Ten.
$\begin{array}{llllllllll}\text { I } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { IO }\end{array}$

Ten is made up of a I and a o, called nought.
Exercises.
Read the following figures: and also the figures in Exercise Table A, Lesson 14.

$$
\begin{array}{lllllllllllll}
2 & 4 & 1 & 3 & 5 & \circ & 2 & 6 & 8 & 7 & 5 & 6 & 9
\end{array}
$$

† LESSON 10.

ON THE WORD UNIT.
We count marbles, nuts, apples, or any other things, in just the same way, always saying,

One, two, three, four, five, six, seven . . . marbles ;
One, two, three, four, five, six, seven . . . nuts; or the same for apples, or any other things.

There is one word which will suit all these different things. We call one a unit, whatever may be the kind of things which we are counting. 1 is one unit, 2 is two units, 3 is three units, 4 is four units, 5 is five units, 6 is six units, 7 seven units, 8 eight units, 9 nine units.

LESSON 11.

ON TWO-FIGURE NUMBERS.

[Begin by repeating Lessons Four and Five.]
Ten is written 10 , the 1 meaning that there is I set of ten, and the o that there is no over.

Eleven is written $I I$, the 1 on the left-hand meaning 1 ten, and the other I that there is I over.

1 ten and 2 over, or twelve, is written 12;
1 ten and 3 over, or thirteen, is written 13 ;
I ten and 4 over, or fourteen, is written 14, and so on, $15,16,17,18,19$.

Twenty is 2 tens and o over, so it is written 20 ;
Twenty-one is 2 tens and 1 over, so it is written 21; and so on, $22,23,24,25,26,27,28,29$.

Thirty is 3 tens and o over, so it is written 30 ;
Thirty-one is 3 tens and 1 over, so it is written 31; and so on, $32,33,34,35,36,37,38,39$.

So also forty, 40 ; forty-one, $4 \mathrm{I} ; 42,43,44,45$, up to fifty, 50 ; sixty, 60 ; seventy, 70 ; eighty, 80 ; ninety, 90 ; and after ninety-nine, 99 , a hundred, 100 ; which last may be considered either as 10 tens, or as 1 hundred, with no over.

Exercises.

How must we express in figures-twenty-three? thirtyfive? forty-six? fifty-nine? seventy-one? eighty-two? ninety-nine?

How many tens are there in 71, 32, 65, 43 ? and how many over in each case?

Write in figures the numbers from twenty to forty.

LESSON 12.

ON ADDITION AND SUBTRACTION. TABLES.

If we were to run along the row of figures 12345 6789 , adding I to each, thus, I and $\mathrm{I}, 2 ; 1$ and 2 , 3 ; and so on, and then adding 2 to each, thus, 2 and 1,$3 ; 2$ and 2,4 ; and so on, and afterwards with 3,4 , up to 9 , we should have gone through all the additions of the single figures. These results are all written down in the Table below.

Read the first column, as you go down it:-One and one, two ; one and two, three; one and three, four.

and	$\left.\right\|_{\text {and }} ^{2}$	$\left.\right\|_{\text {and }} ^{3}$	$\left.\right\|_{\text {and }} ^{4}$	${ }_{\text {and }}^{5}$	$\left.\right\|_{\text {and }} ^{6}$	$\left.\right\|_{\text {and }} ^{7}$	$\left\lvert\, \begin{aligned} & 8 \\ & \text { and } \end{aligned}\right.$	$\left.\right\|_{\text {and }} ^{9}$
		2, 5			2,8	2, 9	2, 10	2, 11
3,	3.	3, 6	3,	3,	3, 9	3, 10	11	12
4,	4 ,	4, 7	4, 8	4, 9	4, 10	4,	4, 12	4, 13
5, 6		5,	5, 9	5, 10		5, 12	5, 13	5, 14
		6, 9	6, io	16, 11	6, 12	6, 13	6, 14	6, 15
7, 8		7, 10	7, iI	7,12	7, 13	7, 14	7, 15	
	8, 10	8, II	8, 12	8, I3	8, 14	8, 15	8, 16	
9	- II		9, 13	9, 1		, 16		9, 18

If instead of ' 1 and,' ' 2 and,' at the heads of these columns, we write or imagine ' 1 from,' ' 2 from,' meaning 1 or 2 from the second figure in each case, the Table becomes a Table of Subtractions, and may be read 1 from 2, I; I from 3, 2 ; and so on throughout.

The Table having been run through for units, the same should be done for tens:-ten and ten, twenty; ten and twenty, thirty; and so on.

LESSON 13:

ON WRITING THE FIGURES.

The scholars may now begin to write figures. This is to be done by going back to Lesson Nine, and copying down the figures as there given.*

Exercises.

Write down in figures the numbers from 10 to 20 ;
Write down in figures the numbers from 20 to 30 ;
Write down in figures the numbers from 30 to 40 , and so on. Finally, all the numbers from 1 to 100.

Write down the first column of the Addition Table;
Write down the second column of the Addition Table;
Write down the third column of the Addition Table, and so on.

Write down all the even numbers up to 20 .
Write down all the odd numbers up to 20.
Write down all the numbers made by adding to 1 the number 3 over and over again.

The same, beginning from 2.
Write down all the numbers made by adding to 1 the number 4 over and over again.

The same, beginning from 2 , and from 3.
Write down all the numbers made by adding to 1 the number 5 over and over again.

The same, beginning from $2,3,4$.
So for 6,7 , and so on.

[^0]
LESSON 14.

ORAI EXERCISES.

The Table given below will be found to be useful in many ways.

Let the scholar take any column or row of which the guide-letters are named to him, and add a part, or the whole, orally. If he begins at the bottom of the first column, marked (a), he should say, at first, 3 and 1 , four, and 2 , six, and 3 , nine, and so on. As soon as possible he should be taught to say nothing aloud except the results, namely, three, four, six, nine, and so on. He should have a little practice of this kind every day, adding up or down, backwards or forwards.

Exercise Table. A.

Begin at 2 , or other number, and keep on adding 3 continually.

Do the same, adding continually 4 ; then the same with 5 , then with $6,7,8,9$.

Begin at 2 (or other number), and add $4,3,5 ; 4,3,5$; over again and again.

Begin at 2 (or other number), and add 9, 2, 8, 7, 5 ; and over again and again.

In all cases say nothing except the results; for example, in the first exercise, say two, five, eight, eleven, and so on.*

Begin at 19 (or other number), and continually subtract 3.

Begin at 51 (or other number), and continually subtract 7 .
[A few minutes should be given occasionally to exercises of this, nature for some years.]

To be worked mentally:-
What is 10 and 12 ? 10 and 10 and 2 : or 22 .
Add 25 and 32. 25 and 30 and 2 ; 55 and 2 : or 57.
Add 12 and $13 ; 15$ and $14 ; 16$ and $22 ; 21$ and 23 ; 22 and $13 ; 23$ and $19 ; 24$ and $23 ; 26$ and 21 .

Add 15 and $33 ; 41$ and $19 ; 73$ and $22 ; 46$ and 29 ; 65 and 27 ; 39 and 42.
[In adding mentally it is easiest to begin with the tens; on paper we begin with the units.]

[^1]
LESSON 15.

ON NUMERATION.

We have seen that there are two ways of expressing numbers, first by words, and secondly by figures, and you have learnt how to write numbers in figures up to 100.

By the same method of dividing every number into sets of 10 we can write any number in figures. We call
Ten units one ten, which we write IO
Ten tens one hundred, which we write 100
Ten hundreds one thousand, which we write ioco

As the extreme importance of the subject requires repetition and varied illustrations, the following general explanation of the method of reckoning large numbers is now added.

Suppose that you were counting, with some of your companions, a flock of sheep as they passed you, and that you had begun to count them on your fingers. When you came to ten you would have to begin again, and to remember that you had counted ten once. When you came to ten again, you would have to remember that you had counted ter twice. After a time you would be very likely to make a mistake as to the number of tens you had already reckoned. Let one of your companions now stand on your left hand and hold up a finger for every time you have counted ten, and let another stand on his left hand and hold up a finger for every time that he has counted ten, and so on; you
would then be able to keep account of all without a mistake.

Now look at the way of writing ten with the figures. We write ro. What is this left-hand figure? One. Yes, it here means One ten. The other figure is called a - nought, that is, nothing. It has this use. We agreed, you remember, that in counting the sheep when you came to ten you should put down your hands, and your lefthand companion should put up one finger to signify One ten. Exactly in the same way the o means nothing in itself, but it shows that the 1 standing to the left of it signifies I ten, and if you watch the figures in counting higher, you will see that they follow exactly the same course as was described for counting the sheep.

After ten comes eleven, or ten and one; in figures 1 I. After eleven comes twelve, or ten and two; in figures 12. After twelve comes thirteen, or ten and three; in figures 13 . After thirteen comes fourteen, or ten and four; in figures $\mathbf{1 4} 4$. After fourteen comes fifteen, or ten and five; in figures 15. After fifteen comes sixteen, or ten and six; in figures 16. After sixteen comes seventeen, or ten and seven; in figures 1.7 . After seventeen comes eighteen, or ten and eight; in figures 18. After eighteen comes nineteen, or ten and nine; in figures 19. After nineteen comes twenty, or two tens; in figures 20.
[Show each step of the Lessons on Numeration upon the Numeration-frame (see Appendix), carefully keeping each wire to its proper value.]

LESSON 16.

ON NUMERATION-Continued.
After twenty we have
$\begin{array}{lllll}2 \mathrm{I} & 22 & 23 & 24 & 25\end{array}$ twenty-one, twenty-two, twenty-three, twenty-four, twenty-five,

$$
\begin{array}{lllll}
26 & 27 & 28 & 29 & 30
\end{array}
$$

twenty-six, twenty-seven, twenty-eight, twenty-nine, thirty,
or three tens; then $3 \mathrm{I}, 32,33,34,35,36,37,38,39,40$, forty, or four tens ; 4I, 42, 43, 44, 45, 46, 47, 48, 49, 50, fifty, or five tens ; and so again to 60 , sixty; 70 , seventy ; 80 , eighty ; 90 , ninety; nine more makes 99 , and then one more 100; which is called a hundred, being 10 tens.

The figures for one hundred answer to the time when the second companion to the left held up one finger, to show there were ten tens.

The.second hundred begins again, exactly like the first, IOI, 102, only that the 1 remains to show that one hundred has been already reckoned, and the o must be carefully written in to keep it in its proper place. If the o were left out, we should only have in, or eleven.

After another hundred, we come to two hundred, 200.
After another hundred, we come to three hundred, 300.
After another hundred, we come to four hundred, 400 , and so to $500,600,700,800,900$, till we get to 999 , after which one more makes a thousand, or ten hundreds, which is written 1000 ; and then the counting goes on again on the same plan.

It thus appears that by an ingenious device (that of giving a meaning to the place which a figure occupies with respect to others), the first nine figures and a nought enable us to express any number whatever. Figures standing alone, or on the right hand of other figures, have their simple value of so many units, and are said to be in the units-place. One grade, that is,. one step to the left, and they mean so many sets of ten; another grade to the left, and they mean so many sets of a hundred; one more, and they mean so many sets of a thousand. Thus a figure becomes ten times as valuable for every move to the left, and we know the value of a figure by looking to see how many figures there are to the right of it.

Examples.	
Three hundred and five,	305
Three thousand two hundred and ten,	3,210
Three thousand three hundred and thirty-three,	3,333
One thousand one hundred and eleven,	1,III
Nine thousand and ninety,	9,090
here are always two figures and no more a dreds, and three figures and no more usands, but some of them may be noughts.	r the the

LESSON 17.

ON THE NOUGHTS.

It is about the noughts that beginners mostly make mistakes.

A nought keeps a vacant place, and disappears if a figure comes to occupy it. Thus two thousand is 2,000 , and two thousand two hundred and twenty-two is 2,222, so that the 2 's come in and thrust out the noughts, and there are still three figures, and only three, following the thousands.

The thousands are often (but not always) separated from the three right-hand figures by leaving a little space, or by a comma.

When you first begin to write down numbers from dictation, you may put down some dots under which each figure is to come, thus

$$
\begin{array}{r}
31,01 \\
23,456 \\
315,614
\end{array}
$$

These dots show the place for the units-figure, for the tens-figure, for the hundreds-figure, and for the thousandsfigure: just as I have written 3,101, and 23,456, and 3.5,614 below the dots.

You should be able to point to these dots, and say,
This is where I shall put the units-figure;
The tens-figure here;
The hundreds-figure here;
And so on.
If for any of these you have no other figure, put a 0 .
But you must never write such a number as this: 0356, or 0025 . They ought to be 356 , and 25 , because o's never stand without some other figure to the left of them.

Exercises in Numeration.

A. Write down in figures:-
I. Ten, fifteen, twenty, twenty-seven, thirteen, thirty.
2. Thirty-six, fourteen, forty, forty-five, fifty, fifteen.
3. Sixty, sixteen, sixty-one, sixty-five, fifty-six, fify-eight.
4. Seventy, seventeen, seventy-two, eighty, eighteen.
5. Ninety, nineteen, ninety-one, ninety-three, a hundred.
B. Write down in words:-

1. $21,91,13,3 \mathrm{I}, 72,16,5 \mathrm{I}, 7 \mathrm{I}, 63,85,72$.
2. $45,15,94,36,17,99,37,61$.
C. Write down in figures :-
I. A hundred and four, a hundred and ten, a hundred and fifteen, a hundred and twenty, a hundred and twenty-three.
3. A hundred and thirty-five, a hundred and thirty-seven, a hundred and thirty-nine, a hundred and forty-two, a. hundred and fifty-seven.
4. A hundred and sixty-eight, a hundred and four, a hundred and seventy-three, a hundred and eighty-five, a hundred and ninety-seven, thirty, forty-three, a hundred and six.
5. Two hundred and five, two hundred and twenty-six, two hundred and thirty-five, two hundred and eightyseven, three hundred and fifty-four, three hundred and nine.
6. Three hundred and ninety-seven, four hundred and fortysix, five hundred and six, five hundred and eighty, six hundred and seventy-four, eight hundred and nine, nine hundred and ninety, six hundred and eight, seven hundred and seventy.
D. Write down in words:-103, 116, 195, 203, 225, 37, 237 , 309, 359, 460, 507, 691, 700, 801, 834, 902, 909, 954, 999, 301, $710,40,5^{13}, 601,73$.
E. Write down in figures:-
r. A thousaind and six; a thousand and five; a thousand and ten; a thousand and twenty; a thousand and twenty-three; a thousand and twenty-five; a thousand and twenty-nine; a thousand and thirty.
-2. A thousand and forty-nine; a thousand and fifty-eight; a thousand and eighty-nine; a thousand nine hundred and ninety-nine; a thousand one hundred and sixty-five; two thousand and four; two thousand three hundred and seven.
7. Two thousand eight hundred and fifty-six ; three thousand and seventy-three; four thousand and ninety-six; eight thousand and forty-six; nine thousand and fifty-nine; seven thousand and three.
8. Ten thousand and seventy-two; eleven thousand and fify-three; twelve thousand and forty-four; thirteen thousand and one; nineteen thousand and five.
9. Thirty thousand; forty thousand and six; fifty thousand and eighty ; sixty thousand and seventy-four; ninety thousand and ninety.
F. Write down in words:-6003, $7102,8156,1026,1113,1562$, 108 ${ }_{3}, 6056,7070,9019,10000,8888$.
G. Write down in figures:-

- 1. Thirteen thousand and thirty; five hundred and two; seventy-six ; a hundred thousand and seven; twenty thousand and two hundred; sixteen thousand.

2. Three hundred and sixteen; seven hundred and fifty; five hundred and ninety-four; eighteen thousand and two; nineteen thousand nine hundred.
H. Write down in words:-19090, 6r53, 7126, 80031, 916, 999, 8098, 6273, 41000, 82001, $213,61,315,31500,501$, 50101, 60060, 10101, 310, 700.

\dagger LESSON 18.

RECKONING IN TENS，\＆c．

We may ask，respecting any number，such as 3815 ，
How many tens does it contain？Answer， 38 I ； or，How many hundreds does it contain？Answer， 38 ； or，How many thousands does it contain？Answer， 3. We get the answers to these questions by cutting off the figures which follow the tens，or the hundreds，or the thousands．The numbers so cut off are－those which remain over．

The number may be thought of in these five ways：－

总 弚 晏		空	号	
3815	3815	3815	3815	3815

It is three thousands，eight hundreds，one ten，and five units；or，three thousand，eight hundred，and fifteen units； or，three hundred and eighty－one tens，and five over；
or，thirty－eight hundreds，and fifteen over；
or，three thousands，and eight hundred and fifteen over．
［Point out that the teen－numbers of hundreds are almost always used，as in 1872．］

Exercises．

How many tens are there in $48,508,615,7316$ ？
How many hundreds in $305,7619,8900,216$ ？
How many thousands in 9763,15617 ？
Read the figures $1154,1666,1688,1752$.
Write in figures：－forty thousand and five；eighteen hundred and seventy－three；thirteen hundred and six．

LESSON 19.

ADDITION, WITH EXAMPLES.

All the additions which were carried on before with words, mentally, may now be repeated with figures, beginning at first with the lower figures.

Write the numbers to be added under one another, and draw a line. After writing the sum of the figures, draw a double line.

							I	I	1	I	I	3
㫛	5				I	2	2	I	3	I	2	I
2	3	3	2	3	2	2	2	2	I_{7}	2	3	3
3	4	5	4	4	3	3	2	3	3	4	4	4
5	7	8	-	-	-	-	-	-	-	-	-	-
$\stackrel{5}{=}$	$\underline{=}$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$

3	2	1	3	I	1	3	1	5	5	4	5	5
4	4	5	2	5	5	2	5	2	3	5	5	5
6	5	5	5	2	3	4	4	4	3	3	2	3
-	-	-	-	-	-	-						

Tens are added in the same way as units: two tens and three tens are five tens; or, in other words, twenty and thirty ore fifty.

If there are units as well as tens，the units are care－ fully placed under units，and the tens under ten！：then the units are added to units，and the tens to tens．The units are added up first，and the sum（if less than ten） written under the units，and then we add up the tens．

管管言					11	32	33	33	31
32	41	22	23	42	22	23	32	42	22
43	54	32	41	43	33	43	34.	42	45
75	95								
12	31	32	50	30	20	33	41	60	63
21	21	51	42.	25	51	62	46	53	50
43	64	53	62	43	65	50	30	61	65

But it often happens that the sum of the units is more than ten．In that case the units－figure of the sum goes under the units，and the tens－figure of the sum must be added（or carried，as it is called）to the other tens．We do not write it down（except for a little while at first beginning），but carry it in mind to the tens，and start from it in beginning to add the tens．In the first ex－ ample below，we have to add 25,34 ，and $44 . \quad 13$ is the sum of the units．I write 3 under the units and carry I ten to the tens，adding thus，－one，five，eight，ten．I set down ro．The sum is one hundred and three．

			34	32	44	53	12	34	35
25	42	64	42	34	52	44	34	45	20
34	34	33	33	43	43	54	52	40	34
44	45	25	24	55	32	62	66	53	65
103									

Examples. Figures below Sejen.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
21	32	33	32	24	31	43	30	24	41	24
3^{2}	33	20	31	43	24	30	14	40	14	32
23	23	31	4^{2}	44	31	44	4	3	43	25
-	-	-	-	-	-	-	-	-	-	-
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
12	23	34	35	54	45	43	24	33	32	21
31	33	53	24	40	32	52	52	20	51	30
45	43	55	50	32	50	51	35	54	45	50
53	45	23	30	40	54	61	16	66	56	66
-	-		-			-	-	-	-	-
(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
52	40	40	23	26	25	65	26	42	46	52
43	6	6	16	65	66	62	55	36	41	63
6	21	21	42	34	45	34	35	20	51	34
21	50	61	51	55	53	46	64	65	34	41
-	-	-	-	-	-	-	-	-	-	-

Examples with the Higher Figures.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

22	21	34	47	72	73	76	65	68	21	62
37	72	57	53	3^{6}	57	28	8_{3}	34	37	$7 \mathbf{1}$
-	-	-	-	-						

(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)

65	27	4^{6}	56	18	81	3^{6}	13	65	31	41
56	34	35	3^{8}	23	3^{2}	80	26	87	21	3^{2}
3^{8}	75	87	72	77	76	57	73	47	60	69
-	-	-	-	-	-	-	-	-		

(23) (24) (25) (28) (27) (28) (29) (30) (31) (32) (33)

34	41	54	23	92	23	52	61	56	73	90
76	31	36	91	3^{1}	61	41	91	96	22	37
53	98	87	34	3^{2}	39	93	70	78	41	43
92	97	9^{8}	63	49	71	87	85	41	60	26
-	-	-	-	-	-	-	-	-		

\dagger Next, to add higher numbers, as three thousand five hundred and sixty-one, four thousand six hundred and twenty-two, three hundred and seventy-five; seven thousand, and one thousand eight hundred and nine.

I write down the numbers, units under units, tens under tens, hundreds under hundreds. I add up the units, only using these words, niné, fourteen, sixteen, seventeen. Thus I find the total of units 17 : I write 7 in the units place and carry I ten, from which \downarrow begin to add tens; one, eight, ten, sixteen: I put down 6 and carry 1 to the hundreds; one, nine, twelve, eighteen, twenty-three: I set down 3 and carry 2 to the thousands; two, three, ten, fourteen, seventeen: I write down 17. The sum is seventeen thousand three hundred and sixty-seven.

					$\begin{array}{r} 3,561 \\ 4,622 \\ 375 \\ 7,000 \\ 1,809 \end{array}$	
3,561	3	5	6	I		
4,622	4	6	2	2	17	Sum of units.
375	0	3	7	5	150	Sum of tens.
7,000	7	O	0	0	2,200	Sum of hundreds.
1,809	I	8	0	9	15,000	Sum of thousands.
17,367	I 5	22	15	17	17,367	All together.

Reason of the process. 3561 is 3 thousands and 5 hundreds and 6 tens and 1 ; and all the other numbers can be separated into parts in the same way. We add up the parts separately, as if they were separate sums (as shown above, and then put their sums together to get the complete sum.

Examples in Addition.

(1)	(2)	(3)	(4)	(5)	(8)	(7)	(8)
211	441	113	612	131	162	351	401
401	55^{2}	314	514	261	643	633	243
652	432	162	223	354	540	225	535
143	203	142	635	266	366	864	222
(9)	(10)	(11)) (12)	(13		14)	(15)
6135	6654	3652	$2 \quad 6765$	1738		43^{2}	6437 I
6246	6165	4327	7 432	81		628	71628
(16)			(18)	(19)			(21)
854612		165	309651	654800			761549
316549		99	281980	79883 I			213650
(22)	(23)	(24)	(25)	(28)	(27)	(28)	(29)
747	243	672	444	829	916	316	558
131	619	231	315	6 I 5	734	815	416
212	817	627	613	899	612	782	615
812	320	170	7 J 2	382	817	61	713
(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)
713	608	316	755	307	7103	6500	8432
216	510	825	43	29	217	716	719
504	43	436	2	8	3^{61}	32	8006
876	723	99	618	54	5432	765	320
${ }^{612}$	61	84	27	62	6154	4163	5461
(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)
843	54 I	7163	6354	5167	7132	7163	6543
612	800	216	6169	317	216	9542	372 I
718	631	512	8006	814	5134	9716	8341
83	716	316	5140	316	6126	8541	9654
514	315	85	3206	8111	7113	8361	3126
62	82	712	8121	2654	8054	8271	7154
712	910	615	316	3099	6091	7654	9132

Examples in Addition.

(46)	(47)	(48)	(49)	(50)	(51)	(52)
86541	73826	65482	81433	71654	88365	216
71321	99981	10093	21650	61326	412	51412
6150	78843	25600	19872	35406	30603	21
235	61720	27310	35418	2000	21	13
8146	3054	51412	21605	31705	6541	6
5190	76312	71609	51400	216	8	5
78840	315.	3146	4161	92	17	4013

1. Find the sum of the even numbers up to 10 .
2. Find the sum of the odd numbers up to 11 .
3. How many strokes does the clock strike between noon and five minutes past five? How many in 12 hours?
4. How many letters are there in the names, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday?
5. Add together all the numbers less than 23 which have in them a 3 or a 2.
6. From Leeds to Pannel is 15 miles, 6 more to Nidd Bridge, thence to Topcliffe 15, 8 more to Northallerton; how many miles in all?
7. Each of the boys, George, Thomas, William, Henry, Edward, and Frederick, had as many marbles as the letters in his name. How many had they all together?

Add together-

8. Sixty-one, thirty-three, forty-seven, eighteen, and fifty.
9. Twenty-six, twenty-one, nine, thirteen, sixty-one.
10. Thirty-one, forty-five, sixty-seven, eighty-four, nine.
11. Eleven, fourteen, thirty-seven, forty-six, seventy-nine.
12. Thirty, three twenties, forty-five, seventy-five, and six.
13. One hundred and two, thirty-nine, eighty, $7 \mathrm{I}, 62,43,105$.
14. Two hundred and three, six hundred and five, seven hundred and nine, five hundred and four, three hundred.

Turn to the Exercises in Numeration in pages 23, 24, and add together the numbers in the examples marked C, E, G.

LESSON 20.

ON SUBTRACTION.

If from a number of units of any kind (say marbles) I take away some, and I wish to find how many are left, I can find out by actual counting. But just as Addition is a shorter way of putting together numbers than counting, so Subtraction, is a shorter way of finding the difference of numbers than counting would be.

The number to be taken away cannot be greater than that from which it is to be taken.

To take two from six.
We have learnt to know at once that four and two are six. Therefore two from six must leave four.

If this were set as a sum,' we should write down the 2 (as shown below) beneath the 6 ; we should then draw a line, then write the difference 4 , and draw a double line.

6	5	4	5	6	6	5	6		7	7	8	9	9
2	2	3		3		4	1	2	3	5	2	I	3
4													

We have learnt that five and eight are thirteen: 5
therefore five from thirteen must leave eight, as 8 set down.

But remark, that if we began at the units-place, and tried to take 5 from 3, we should find that it could not be done, because 5 is more than 3 ; but by taking into account the whole number thirteen, we can see that 5 from 13 is 8 . Hence we learn that whenever we cannot
-take the lower figure from the upper, on account of the lower being the greater, we should proceed to take the lower figure from the teen-number of the upper figure, by which I mean the upper figure increased by ten. This can always be done.

11	13	15	13	11	12	12	11	12	10	12	16	14
2	3	3	6	5	, 4	5	6	6	7	8	8	9

Exercise.

Name the teen-numbers of $\mathbf{1}, 5,6,3,2,8,7,4,9,0$.
Run along the numbers in the Exercise Table, Lesson 14, and name their teen-numbers.

Take five from all these numbers in succession, or else from their teen-numbers, according as they are more or less than 5 . Then instead of taking 5 from them, take $6,4,3,8$.

To take 37 from 62.
We cannot take 7 from 2, but we can from its部恶 teen-number 12 , leaving 5 . This supposes that $62 \quad 62$ is separated into 50 and 12 ; so that we should 37 first take 7 units from 12, leaving 5: and then 325 tens from 5, leaving 2 tens: on the whole 25 .
But it is found to be an easier rule, instead of diminish ing the upper figure of the next grade, after making a teen-number, to increase the lower figure of the next grade by I. .For the difference between the two numbers is not altered, if we increase them both by the same number. And this is what we do when we add ten units to the upper number (by making a teen-number), at the same time adding one ten to the lower number.

We can now state the General Rule of Subtraction.

Place the smaller number beneath the larger, so that units are under units, and tens under tens, and so on. Take the lower units-figure from that above it, and write the difference below. If the figures are equal, write o. If the lower figure be the greater, subtract from the teennumber of the upper, and increase the next lower figure by I before you use it. Work with that figure, or with that figure so increased exactly as with the first, and so on to the end.

Example. Subtract 3615 from 8712.
Writing 3615 under 8712 , so that all the grades correspond, I begin as if I were going to take 5 from 2, but I see at a glance that this cannot be done; so I call in the teen-number 12. I say, 8712 therefore, five from twelve, seven, and I write 3615 down 7 in the units-place. Then, remembering 5097 the rule, I increase I into 2, and say, two from. (not one, but) eleven, nine. I write down 9, and as I have again used a teen-number, I say, seven from seven, nought : I write down 0 . Then, three from eight, five: I write down 5.

Reason. The upper number has to give up 5 units, but has only 2 to do it with, till the lower number (as if giving change for a higher coin) gives the upper io units for 1 ten : then 5 taken from 12 leaves 7. The lower number has now 2 tens, and we proceed as before.

Examples.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
33	59	48	33	46	86	72	84	91	89
22	37	19	24	27	29	59	37	76	27
	-	-	-	-	-				

Examples of Subtraction.

1. What is the excess of 67354 over 21732 ?
2. Find the difference of 81326 and 719315 .
3. What must be added to 9815 to make 10657 ?
4. From 68357 take 19989.
5. Subtract 314670 from 873254 .
6. Thomas Parr was born in 1483 and died in 1635 ; Henry Jenkins was born in 1501 and died in 1670 . Find the difference of their ages at death, supposing the years complete in each case.
7. A boy had 59 marbles in a bag, which had a hole in it. On giving away 12, he found he had 33 only. How many must he have lost?
8. A boy had 41 plums, he gave 9 to one companion and 14 to another, and when he had given some to a third he found he had 7 left. How many did he give to the last?
9. A is 13 years of age, and B is 23 , how old will B be when A is 23 ?
10. Take four thousand and thirty-five from six thousand eight hundred and ninety-six.
1r. Find the difference between seven thousand six hundred and fifty-five and nine thousand eight hundred and sixtyfour.
11. What number must be added to eighty thousand seven hundred and ninety-five to make up ninety thousand and seventy-one?

LESSON 21.

ON MULTIPLICATION.

How many do three twos make? 2 and 2 and 2. Six.
Three tens? Thirty.
Those are answers to questions in Multiplication. To multiply a number by another is to find the result of repeating it so many times. Twice 6 means 6 and 6 . Three times 6 means 6 and 6 and 6 , and in the first case 6 is said to be multiplicd by 2 , in the second by 3 . Or we say that 2 (or 3) is the multiplier. The multiplier shows the number of times which the given number is to be repeated; and the result of the multiplication is called the product.

We can find the product by Addition, for Multiplication is only a short way of doing an Addition sum, in which the numbers to be added are all alike.

Multiply 6 by 2. 6 and 6 are 12. Product, 12.
Multiply 6 by 3. 6 and 6 and $6-18$.
Multiply 6 by 5 .
I put down 6 five times as an addition sum 6 in the ordinary way and add up. The sum is 6 30. Therefore 30 is the product of 6 multiplied 6 by 5 .

The products of all numbers up to 12 times 30 12 can be found in this way, and they are given $=$ in a Table called the Multiplication Table, which must now be learnt by heart, a little at a time.

The Multiplication Table.

times	$\stackrel{3}{\text { times }}$	$\left.\right\|_{\text {times }} ^{4}$	5	6	7 times	$\begin{gathered} 8 \\ \text { times } \end{gathered}$	$\begin{gathered} 9 \\ \text { times } \end{gathered}$	$\left\lvert\, \begin{gathered} 10 \\ . \text { times } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathbf{1 I} 1 \\ \text { times } \end{gathered}\right.$	$\begin{gathered} 12 \\ \text { tines } \end{gathered}$
			5	6						112
			10		214	216	218			224
		312	5	318	321	3	$3 \quad 27$	30	33	36
48	412	416	420	424	428	4	36	40	44	48
510	515	520	525	530	535	540	545	$5 \quad 50$	$5 \quad 55$	60
6	618	62	630	63^{6}	642	648	$6 \quad 54$		66	$6 \quad 72$
4	721	728	735	742	749	756	763	770	77	4
8	824	832	840	4848	856	864	$8 \quad 72$		88	96
	927	936	45	954	963	972	981	$9 \quad 90$	99	9108
020	O	104	1050	1060	1070		90	10	10110	10120
	1	1	1155	II 66	1177		1199	11	11121	11132
124	1236	12	1260	1272	1284	1296	12108	12120	12132	44

Read the first column:-Twice 1, 2; twice 2, 4; twice 3,6 ; and so on, which is the FIRST ORDER of saying the Multiplication Table. It should also be said thus, which is the SECOND ORDER : once 2,2 ; twice 2,4 ; 3 times 2,$6 ; 4$ times 2,8 ; and so on: once 3,3 ; twice 3, 6; 3 times 3,9; 4 times 3, 12 ; and so on.

The Multiplication Table being thoroughly known for units (or part of it), let it be said for tens, thus: Twice ten, twenty; twice twenty, forty; and so on. Afterwards it may be said for hundreds.

Exercises.

Take a row of figures, as in Exercise Table, Lesson 14, and making any number (as the first in the row) a multiplier, run along the row as fast as possible, saying only the products. No other word should be uttered. Then take another multiplier.
[For a class use figures on cards.]

LESSON 22.

MULTIPLICATION BY A SINGLE FIGURE.

What is twice twenty-two? It is twice twenty and twice two, that is, it is forty and four. Forty-four.

Twice twenty-six? Twice twenty and twice six; or, forty and twelve. Fifty-two.

What is 3 times 23? 4.times 3I? 5 times 29?
[In multiplying such numbers mentally it will be found best to begin at the tens.]

To multiply 364 by 3 .
We may call to mind that we can always
perform Multiplication by Addition, if the 364 number of repetitions be not very large. 364

Placing the numbers as for an Addition sum, 364 we should first add up the units; this would 1092 give us three 4 's, or 12 , just the same result as we should get by multiplying 4 by 3 . We put down 2 according to the rule, and carry I to the tens. We have now to add up the three 6 's, or we might get the result from the Multiplication Table, 3 times 6, 18, and I (the number carried) 19. Set down 9 , and carry 1 . We get 9 by adding up the three 3 's, or at once by the Multiplication Table, 3 times 3,9 , and 1 , 10 , which we set down.

Thus we can find each step by Multiplication, 364
without making a long Addition : and we carry 3 exactly as in Addition.

1092

Multiply 3412 by 4.
3412 Write down 3412, and the multiplier 4 under 4 the units. Draw a line. Begin at the units. 4 times 2, 8 . Write down 8 in the units-place. Now multiply the tens. 4 times I, 4 . Set down 4 in the tens-place. 4 times 4 , 16 : set down 6 in the hundreds-place, and carry I to the thousands : 4 times 3, 12, and 1, 13. Set down 13. Read the product:Thirteen thousand, șix hundred, and forty-eight.

Examples.

(1)	(2)	(3)	(4)	(5)	(6)
314	343	4123	42403	31324	43034
2	2	2	2	2	2
-	-		-		

Multiply (7) (8) (9) (10) (11) (12) (13) Вy $2-43405,44^{235}, 34254,45306,43565,46537,46735$, (14) (15) (18) (17) (18) (10) (20) 56738, 65778, 67809, 65389, 73899, 83791, 509809. (21)(22) (23) (24) (25) (26) (27) (28) (29)

By 3-22, 32, $413,514,605,3127,4108,3527,4378$, (30) (31) (32) (33) (34) (35) (36) 5679, 5789, 67293, 79365, 89365, 87006, 80913, (37) (38) (39) (40) 91835, $98705,95432,9543$ 1.
(41) (42) (43) (44) (45) (46) (47) (48) (49)
'By 4-221, 323, 234, 341, 432, 44I, 445, 436, 463,
(50) (51) (52) (53) (54) (55) (56) $3^{645}, 3^{6} 57,573^{2}, 5638,5748,5408,57089$,
(57) (58) (59) (60)

57869, 58963, 50995, 89876.
(81) (82) (63) (64) (65) (86) (67) (68) (60)

By 5-213, 314, 416, 625, 706, 826, 936, 846, 517,
(70) (71) (72) (73) (74) (75) (76) (77) 627, 672, 781, 579, 6779, 979, 48932, 53894,
(78) (79) (80)

60906, 70984, 819323.

\dagger Numeration. A thousand thousands is called a million.

One million is. written $1,000,000$.
Two millions are written $2,000,000$.
Six figures always follow the millions.
Multiply 324225 by $2,3,4,5$.
Multiply 2132123 by $2,3,4,5,6,7$.
Multiply 3241245 by $2,3,4,5,6,7$.
Multiply 1324526 by $2,3,4,5,6,7$.
Multiply 1452367 by $2,3,4,5,6,7,8$.
Multiply 2435768 by 2, 3, 4, 5, 6, 7, 8, 9, 10.
Multiply 35769 by $3,4,5,6,7,8,9,11,12$.
Multiply 46829 by $4,5,6,7,8,9,11,12$.
Multiply 5893276 by $4,5,6,7,8,9,11,12$.
Multiply 8937023 by $4,5,6,7,8,9,1 \mathrm{I}, \mathrm{I} 2$.
Multiply 9807236 by $4,5,6,7,8,9,11,12$.
[Often prove the results by Addition.]

LESSON 23:

MULTIPLICATION BY TENS.

What is 10 times 3 ? 30.
10 times 9? 90.
io times 11? 110?
Then to multiply a number by io you need only write a o after the units-figure.

What is 10 times 33 ? 330.
What is ro times 275? 2750.
Reason. By adding o we make the units-figure stand for tens, the tens for hundreds, and so on; each figure being increased in value 10 times.

To multiply by $20,30,40$, multiply by $2,3,4$, and write o after the units-figure.

To multiply by $200,300,400$, multiply by $2,3,4$, and write two o's after the units-figure.

To multiply by $2000,3000,4000$, multiply by $2,3,4$, and write three o's after the units-figure. And so on.

Multiply $3614,4135,21782$, by 10.
Multiply 263, 312, 413, 514, 642, 715, 689, by 20.
Multiply 4638 by $20,30,40,60,70,80,90$.
Multiply 5643 by 20, 30, 40, 50, 60, 70, 80, 90.
Multiply 64938 by $40,50,60,70,80,90$.
Multiply 783 by $200,300,400,600$.
Multiply 81469 by 200, 300, $500,700,800,900$.
Multiply 7136 by 100, $1100,1200$.
Multiply 81643 by 300, $1100,1200$.
Multiply 7546 by 1000, $3000,5000,6000$.

.LESSON 24.

MULTIPLICATION BY COMPOSITE NUMBERS.

To multiply by any number which is found in the Multiplication Table.

Every number above 12 which is found in the Multiplication Table is the product of two numbers. Multiply by one of these, and the product so found by the other. The result will be the desired product.

Thus to multiply by 8 is the same as to multiply by 4 and again by 2 ; to multiply by 12 is the same as to multiply by 3 and again by 4. Try this-

87	87	87	87
4	8	4	12
348	696	348	1044
2		3	
696		1044	

[To make the reason of this clear, place 3 counters or beads on each of 4 squares of the Chequer-board in a row and below them another similar row. Since there are two rows of 4 squares, the whole number of squares is twice four, and there are three times twice four counters; since there are three on every square. But if we take all the squares in one line, we have eight, and the whole number is clearly 3 times 8 . Illustrate some other instances in the same way.]

Multiply 3651° by 24, also by 35, 81, 36, 27, 45.
Multiply 7123 by 63 , also $84,72,21,18,42,27,56$.
Multiply 24163 by $84,96,28,32,66,54,108$.
Multiply 36543 by $33,48,96,21,16,84,132$.

LESSON 25.

ON DIVISION.

How many twos are there in 4? Two. In 6? Three. How many tens in 20? Two.
These are answers to questions in Division.
Division is the method of finding how often one number is contained in another.

We learn from the Multiplication Table how often the earlier numbers are contained in certain others.

Repeat the first column of the Multiplication Table.
What did you say last? Twice what number is 24 ? Twice twelve.

How often then is two contained in 24? Twelve times.
And in 22? Eleven times.
How often in 23? Eleven times and one over.
Two is here said to be the divisor. If the number itself does not occur in the Table, we must consider what is the number next below it which does.

How often is two contained in 21? Ten times and one over. In 20? Ten times.

The number to be divided is called 'the dividend.' The number which expresses how often the divisor is contained in it is called 'the quotient.' Dividing 22 by 2, what is the quotient? 1 I .

Dividing 8? 4. Dividing 7? 3 and I over.
Dividing 2? 1. Dividing I? Nought and I over.
Now go down the column again, and afterwards the three-column, and so on in the same way, turning all the multiplications into divisions.

LESSON 26.

SHORT DIVISION.

Let it be required to divide 324 by 4 .
We place the divisor 4 in the same line as the number (or dividend), marking it off by a curved line and drawing a straight line beneath the number. We then proceed as follows.

The first or leading figure is 3 , meaning
 3 hundreds. 4 is not contained in 3 ; we go on therefore to the tens, considering the two first figures 32 as 32 tens; 4 in 32 is contained 8 times, which will mean 8 tens, because they are tens which we are dividing. We write it therefore in the tens-p'ace. Next, 4 in 4 units, once. We place a 1 under the units, and draw a double line. 8 I is the quotient. It shows how many times 4 is contained in 324. If now we multiply 8 I by 4 , we shall reproduce the number 324 , and so prove the work correct.

EXAMPLES.

2) 482
3) 126
4) 126
5) 55
6) 1869
7) 2469
4)824 6) 366
8) 9639
9) 2515
10) 2107
8) 1688

Hitherto there has been no over, or remainder in dividing. More frequently we shall have an over at every step.

To divide 3654 by 7 .

Here 7 is contained in 36 hundreds 5 times and I over: the 5 means 5 hundreds, which we therefore set down in the hundreds-place: we now consider the I hundred over as io tens, and take it with the next figure, making I 5 tens, in which 7 is contained twice, with 1 over: we write down 2 , and taking the I ten with the next figure, we have 14 units, in which 7 is contained twice. We write down 2, and draw a double line. The quotient is five hundred and twenty-two.

Beads.	5
) $74315-2$ ove	Here 9 is contained in 7
57	8 times, with 2 over: in 23 hu
	2 times, with

4) 36132 If at any time the divisor is not contained 9033 even once, place a 0 , and carry forward the 9033 over. See Example.

Examples.

2) 34
3) 46
4) 532
5) 678
6) $3^{6} 42$
7) 639
8) 612

Divide
(1) (2)
(3)
(4) (5) (6)

By 2—3462, 41532, 51674, 81268, 94364, 21670.
(7) (8) (8) (10) (11) (12) (13)

By 3-31671, 54363, 7iror2, 81492, 37650, 20001, 10002 .
(14) (15) (16) (17) (18) (18) (20)

By 4-624, 7128, 8900, 30064, 70032, 181 I6, 36728.
(21) (22) (23) (24) (25) (28) (27)

By $5-365, \quad 7125,8435, \quad 90005, \quad 36055,71235,81255$.
(28) (29) (30) (31) (32) (33)

By 6-4632, 87126, 33006, 86472, 54696, 71334.
(34) (35) (36) (37) (38) (39)

By 7-6545, 8435, 7679, $56273,416143, \quad 51114$.
(40) (41) (42) (43) (44)

By 8—7168, $3^{664,} 7!360, \quad 71792, \quad 999888$.
(45) (48) (47) (48) (49)

By 9-369, 2133, 233622, 118134, 4313709.
(50) (51) (52) (53) (54)

By ir- $3^{6} 5^{2}, \quad 2134, \quad 6$ I545, $793^{6} 5, \quad 213654 \mathrm{I}$.
(55) (56) (57) (58) (59)

Вy 12—888, 3768, 54072, 33336, 100044.
How do you divide by ro?
Divide 270 by 3, 4, 5, 6, 7, 8, 9, 10.
Divide 384 by $4,6,7,8,9,10,11,12$.
Divide 4626 by $9,3,12,7,8,11,10$.
Divide 732 I by 9, 7, 8, 11, 12 .
Divide 6143 by $2,3,4,5, \dot{6}, 7,8,9,11,12$.
Divide 867163 by $2,3,4,5,6,7,8,9,11,12$.
Divide 81 $_{543}$ by 2, 3, 4, 6, 7, 8, 9, 1 1, 12.
In all cases showing the remainder or over, when there is one.

LESSON 27.

CONTINUED SHORT DIVISION.

To divide by any number which is found in the Multiplication Table.

The number (if above 12) will be a product of two numbers. Divide by one of them, and then divide the - quotient by the other. Thus, to divide by 25 , we may divide by 5 , and then divide the quotient by 5 .

Reason. We have seen that to multiply by the two numbers separately is the same as to multiply by their product. By dividing by the two numbers separately we simply undo the work of Multiplication.

Divide the following numbers by the divisors named.

220860 by 36.	I ¢. 14561856 by 16.
2. 156882 by 22.	12. 1500625 by 49.
3. 197316 by 54.	13. 2371600 by 12 I .
4. 5921 l by 8 I .	14. 450240 by 35.
5. 31948 by 49.	15. 4122272 by 56.
6. 8713260 by 90.	16. 2663424 by 144.
7. 3236373 by 63.	17. 1871424 by 72.
8. 2325625 by 25 .	18. 1999382 by 77.
9. 2985984 by 32.	19. 1602756 by 36.
10. 2143296 by 36 .	20. 1723887 by

Oral Exercise.
A number of figures being placed in a row, as 3124365 , practise Division by taking any number (say 7) and running along the row, as if dividing the number, naming the quotients aloud. Say only four, four, six, and so on. Use Exercise Table, Lesson 14, or figure cards.

LESSON 28.

MULTIPLICATION (GENERAL).

Rule. Write the multiplier under the number to be multiplied (which is called the multiplicand), so that units are under units, tens under tens, and draw a line beneath. Multiply by the figure in the units-place as if it were the only figure. Multiply by the next figure as if it were the only figure, only that in writing down the result beneath the other you are to begin to set down the result directly under the figure by which you are multiplying, and so on throughout. When you have multiplied by all the figures of the multiplier, draw a line and add up as in Addition. The sum will be the required product.

Example. Multiply 307 by 89 . I place 89 under 307 so that 9 is under 7 and 8 under the o of the tens-place. I multiply by 9 as usual and then by 8 , beginning, 8 times 7,56 ; I write the 6 under the 8 of the multiplier. I then add up, and find the product 27,323 . 89

Reason. It is the same thing to take 3072763 nine times and then.eighty times, and then put 2456 the results together as to take 307 eighty-nine 27323 times.

Now the first line of multiplication is 9 times, and the second line is 80 times, for that is the same as 8 times followed by a 0 ; the o serves to keep the figures in their right place, and if we are careful to place the figures according to the rule the o may be left out.

Examples.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
224	312	423	514	613	635	656
22	23	14	34	13	35	46
	-	-	-	-	-	-
(8)	(9)	(10)	(11)	(12)	(13)	(14)
316	615	723	814	953	873	632
51	17	19	29	39	28	38
	-	-	-	-		
(15)	(16)	(17)	(18)	(19)	(20)	
514	2116	6150	8162	6067	3987	
31	73	34	49	89	91	

Special case. Case of a multiplier containing noughts between other figures.

Rule. Pass over the noughts, and go on to the next figure of the multiplier, only taking care to write

654 107

$$
-
$$

the right-hand figure of the product under that figure.
Example. To multiply 654 by 107. After multiplying by 7 I pass over the nought, and multiply by I , taking care to place the 4 under the I.

Reason. The o only serves to keep the I in the hundreds-place, and its proper effect is given to it by writing down the 4 underneath the 1 , wherever it is.

Caution. If any product ends in a nought, take care to set that nought down, just as if it were any other figure, under the figure by which you are multiplying.

Example. Multiply 365 by 43.

Examples.

Multiply the following numbers by the multipliers named.

1. 2111 by 23 . 25 . 31213 by 97 . 49. 46543 by 218 .
2. 3134 by 34 . 26. 40134 by 27 . 50. 71030 by 37 .
3. 4126 by 43 . 27 . 51362 by 25 . 5 I. 6543 I by 701 .
4. 6135 by 3I. 28.61407 by 31. 52. 78 iox by 326 .
5. 6234 by 26 . 29. 70035 by 29 . 53.80036 by 809.
6. 3426 by 4 I . 30 . 61432 by 56 . 54. 91560 by 713 .
7. 5135 by 53 . 31. 71384 by 49 . 55 . 10113 by 999.
8. 6127 by 43 . 32. 61543 by 54 . 56. 85407 by 809.
9. 7163 by $44 . \quad 33.71349$ by 69 . 57. 91132 by 916.
10. 8179 by 55 . 34. 65412 by 87 . 58. 8407 I by 625 .
11. 7 I 89 by $46 . \quad 35.71384$ by $46 . \quad 59.54317$ by 815 .
12. 843^{2} by 85 . 36.81432 by 45 . 60. 91514 by 209.
13. 4578 by 37 . 37.43656 by 47 . 6r. 10037 by 978.
14. 7385 by 73. $3^{8 .} 58909$ by 69 . 62. 84102 by 854 .
15. 6543 by $68 . \quad$ 39. 73404 by $89 . \quad 63.76304$ by 278.
16. 5084 by 77. 40.5943 I by 78 . 64. 81436 by IIII.
17. 7340 by 36 . 4 I. 65401 by 66 . 65.72345 by 1236.
18. 6054 by 92 . 42.73182 by 27 . 66. 8 roi2 by 1301 .
19. 7154 by 75 . 43. 84316 by 47 . 67. 84160 by 1210 .
20. 843^{2} by 99 . 44. 71342 by 53 . 68. 3654 I by 3140 .
21. 7008 by 76 . 45 . 61501 by 69 . 69. 71230 by 2121 .
22. 6504 by 93 . 46. 8123 I by 76 . 70. 8040 by 3 10r:
23. 543 I by $37 . \quad 47.36542$ by 36 . 71. 2163 I by 217 I .
24. 9080 by $84 . \quad 48.81011$ by $77 . \quad 72.81201$ by 3007.

Multiply the numbers in E and G , Lesson $\mathbf{1 7}^{7}$, by twenty-three, and by seven hundred and ninety-six.
[The examples must constantly be dictated in words, not by figures, and the scholar must be required to read off the results in words.]

$$
\text { E } 2
$$

52200

LESSON 29.

LONG DIVISION.

To divide by any number.
Division is the process of undoing a Multiplication, so as to discover what the figures are which would multiply the divisor so as to give the dividend. Multiply 89 by 317 and make the product 28213 a dividend, placing 89 for divisor before the dividend, and marking it off by a curved line, and placing another curved line after the dividend to receive the quotient.

We find the first figure 3 by trying how often 8 , the first figure of the divisor, is contained in the first figures of the dividend. 8 is contained in 28 three times. Place 3 in the quotient and multiply 89 by 3 , placing 267 the product beneath the leading figures of
the dividend. Subtract and write down the difference 15: bring down the next figure 1 from the dividend. For the next. figure of the quotient use 8 again as a trial figure- 8 in 15,1 . Write I in the quotient and multiply the divisor by 1 , placing the product 89 under 151 . Subtract and bring down the next figure 3 of the dividend. 8 in 62, 7. Write 7 in the quotient-the product is 623 , which leaves no remainder, and the quotient is complete and exact.

We have thus withdrawn step by step $267,89,623$, exactly the numbers which appear in the process of

Multiplication. The 267 is in reality 26700 , but the place of the figures being preserved, it is not necessary to supply the o's.

It is to be observed that in using the first figure of the divisor for a trial divisor we may get a figure for the quotient figure which is too large. We often do so. If we find on Multiplication that the product is greater than the number from which it is to be subtracted, we must take a smaller quotient-figure.

Examples.

Divide the following numbers by the divisors named.

1. 676 by 13. 21.4394 by 13. 4 I. 612730 by 710.
2. 867 by $17 . \quad$ 22. 3969 by 63 . 42. 6346590 by 890 .
3. 1058 by 23 . ${ }^{23}$. 3293 by 89 . 43. 5963370 by 730 .
4. 1444 by 19. 24. 2607 by 79. 44. 512616 by 312.
5. 135^{2} by 26 . 25.85184 by 88 . 45. 2005216 by 28 r.
6. 235^{2} by 28 . 26. 6173^{1} by 57 . 46. 954513 by 973 .
7. ro73 by 29
8. 103823 by 47 .
9. 221516 by 316.
10. 1092 by 28 . 28. 50653 by 37 .
g. 1178 by 3 r.
11. 1053 by 39 .
12. 33^{62} by 4 r.
13. 78608 by 68.
14. 797847 by 7×3.
15. $2979{ }^{1}$ by 3 r.
16. 143007 by 219.
17. 715822 by 71 .
18. 580992 by 816 .
19. 1892 by 43
20. 275684 by 82

5r. 146985 by 615.
13. 2256 by 47
14. 2964 by 38.
15. 3876 by 5 r.
16. 8586 by 53 .
33. 65219 by 77 .
53. 293095 by 365.
34. 35721 by 63 . 54.4755^{24} by 612 .
35. 195112 by $116 . \quad 55.38313$ by 387 .
36. 614×25 by 85 . 56. 7520600 by 620 .
17. 10816 by 52. 37. 148877 by 53. 57. 431649 by 657.
18. 9519 by $57 . \quad 3^{8 .} 3^{2805} 0$ by 8 r. $\quad 58$. 547058 by 523 .
19. 18585 by $59 . \quad$ 39. 5717^{87} by 83 . 59.93896 r by 969.
20. 99 II by 53 . $\quad 40.397^{620}$ by 14 I. 60. 301467 by 317 .

Exercise Table. B.

* 5643	206	${ }^{\text {b }} 317$	218	${ }^{\text {c } 7164}$	300	${ }^{\text {d }} 712$
816	-2178	501	${ }^{1} 26$	856	${ }^{8} 413 \mathrm{I}$	216I
${ }^{\mathbf{b}} 2006$	659	${ }^{\text {i }} 899$	3641	219	817	${ }^{1} 655$
719	${ }^{1} 9999$	261	m 877	4114	${ }^{\square} 7316$	8111
4658	8332	716	7581	222	1884	1009
${ }^{\circ} 305$	9006	${ }^{\text {P }} 25$	4	q 8318	374	r 62
472	3339	7181	5545	210	6000	75
5641	8 2365	6417	3254	613	8712	2988
71	365	8119	${ }^{\text {t }} 27$	5716	342	20
4041	9I	265	8462	317	- 6540	811
${ }^{\text {v }} 99$	8888	55	7060	2080	3650	7130
6005	317	${ }^{\text {w }} 488$	777	7064	951	3811

$4327 \times 22325 \quad 661503 \quad 271600 \quad 321 \quad 814625 \quad 821665$

| 5401 | 641202 | y 72341 | 812346 | 570 | 123203 | 501201 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

This Table is intended to be used thus. Direct the scholar to begin at the number marked (b) or (e), and to take down six or ten numbers in succession and add them together. In a class every scholar should begin at adifferent letter. By varying the directions many hundred sums way thus be set. It will serve, of course, also for Multiplication, \&c.
I. Find the difference between the sum of the numbers in the top row and those in the second row.
2. Multiply together the numbers marked a and b, e and h, q and u, x and z.

LESSON 30.

ON ENGLISH MONEY, 1872.

The commonest names in reckoning money are Pounds, Shillings, and Pence. Learn by heart:-

Twelve pence one shilling: twenty shillings one pound. Written-I2d: $1 s$. $2 \rho s$. I .

Say the twelves-column of the Multiplication Table, in the second order of saying it, as below, and the Pollowing Tables, derived from it.

Once 2 times	$\begin{array}{ll} 12, & 12 \\ 12, & 24 \end{array}$	One shilling 2 shillings	12 pence. 24 "		$\begin{array}{llll} d . & s . & d . \\ \mathrm{I} & \mathrm{I} & \text { and } & \mathrm{I} \\ \mathrm{I} & \mathrm{I} & & \\ \hline \end{array}$
3 "	12, 36	3 "	36	36	15 r $\quad 3$
4	12, 48	4	48 "	$48 \quad 4$	and so on.
5	12, 60	5	60	605	252 and
6	12, 72	6	72	726	262 , 2
7	12, 84	7	84	847	and so on up
8	12, 96	8	96	968	to 150 d.
9 "	12, 108	9 "	108	1089	
10 "	12, 120	10	120	12010	
11	12, $13{ }^{2}$	11	132	$13^{2} 11$	
12 "	12, 144	12	144	14412	

These are to help you to say quickly how many times 12 is contained in any number you are likely to meet with, and what is the over: but in order to do this easily you must practise it. Turn to Exercise Table A, Lesson 14, and take any two figures in succession to stand for a number of pence. Run along the line as fast as you can, saying how many shillings and pence they make. Say only-4 and 5:3:5 and 5, and so on.

Add up the following :-

Measure 12 $s . \quad d$	$\begin{array}{cc} & 12 \\ s . & d . \end{array}$	$\begin{gathered} \\ \\ s . \\ { }^{12} \\ d . \end{gathered}$	$\begin{aligned} & \quad \begin{array}{c} 12 \\ s . \end{array}{ }^{2} . \end{aligned}$	s. $\begin{array}{r}12 \\ \hline\end{array}$	
7	5	9	7	4	11
6	4	1 I	6	3	11
5	9	11	5	11	10
4	7	10	9	10	9
3	6	6	II	9	8
2 I					

Write the measure (12) above the pence-column, to remind you that instead of carrying I for every ten, you now carry I for every 12 to the next name, shillings. In the first Example I add up and find the sum 25 ; which is 2 twelves and 1 over; or $2 s$. Id. I write I in the pence column and 2 in the shillings.

LESSON 31.

ADDING SHILLINGS AND POUNDS.

Say how many twos there are in the following numbers and how many over:-In 2,3,4,5, up to 24 .

Next, to say how many twenties there are in any number, as in 37 , we divide the tens-figure by 2 , and join the 1 over, when there is one, with the units-figure. Thus, twenties in 37,1 and 17 over; since 3 divided by 2 gives 1 , and 1 over, which we join with the 7 , making 17 over. For practice, see Exercise Table A.

How many 20's in the following, and how many over?
In 37, 57, 43, 60, 75, 36, 72, 81, 93, 115, 120.
Say only-One, seventeen ; two, seventeen ; and so on, but think of them as pounds and shillings.

It is necessary to be able to turn shillings into pounds thus, but in actually adding up shillings, if there are two columns, add up the first column first, set down the units, and carry as in common addition, then add up the second column: ask yourself how many two's there are in the sum, and carry them to the pounds: if there is I over, put it down in the tens-place of shillings.

If there are shillings and pence, remember to add in the shillings carried from the pence-column.

Add up the following :-

Measure 20 $£$ s.	$£^{20}$	$£ \begin{array}{ll} 20 & 12 \\ s . & d . \end{array}$	$\mathcal{L} \begin{array}{ll} 20 & 12 \\ s . & d . \end{array}$	$£^{20} \begin{array}{cc} 12 \\ s . & d . \end{array}$
I 5	14	126	133	32
11	13	135	63	18 II
9	6	$\begin{array}{ll}11 & 8\end{array}$	27	9 10
3	15	173	85	195
8	13	165	97	173
5	1 I	103	196	124
211		416		

In the first Example, adding up the units-place of shillings, I find 3I; I put down 1, and carry 3; adding I find 5 (tens), which divided by 2 (for twenties) gives 2 and I over: I put down the 1 in the tens-place of shillings and carry 2 to the pounds. Pounds are added up like any common numbers.

LESSON 32.

ON FARTHINGS.

[If there is any difficulty felt about the farthings, as fractions, Lessons $3^{6,37}$ must be brought in here.]
There are four farthings in one penny: they are written thus:-

1 farthing, $\frac{1}{4} d$. 2 farthings, $\frac{1}{2} d . \quad 3$ farthings, $\frac{3}{4} d$.
$\frac{1}{2} d$. is called a halfpenny, but must be thought of in sums as two farthings.

Read the following row of farthings: $\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{2}$, $\frac{3}{4}, \frac{1}{4}, \frac{3}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{1}{2}$.

Again, read them thus, omitting the word farthings: I, 2, 2, 3, and so on; and now their sums, thus, one, three, five, eight, ... in all 27 farthings. Dividing by 4 we get 6 pence and 3 over, or $6 \frac{3}{4} d$.

Practise dividing by 4 and naming the overs. Exercise Table A, Lesson 14.

Examples.

(1)	(2)	(3)	(4)		
Measure 4	20124	20124		20	124
d.	f s. d.	$f . s . d$.	\ldots	s.	d.
$\frac{1}{4}$	$36 \frac{1}{4}$	$13 \quad 2 \quad \frac{1}{4}$	16	2	$9 \frac{1}{4}$
$\frac{1}{2}$	$53 \frac{1}{4}$	1651	71	3	$2 \frac{1}{2}$
$\frac{3}{4}$	$46 \frac{1}{2}$	2381	54	1	$6 \frac{3}{4}$
$\frac{1}{2}$	$129 \frac{1}{4}$	$\begin{array}{llll}1 & 6 & 3 & \frac{1}{2}\end{array}$	90	0	$10 \frac{1}{4}$
$\frac{1}{2}$	$38 \frac{1}{2}$	$2885 \frac{3}{4}$	17	11	- $\frac{3}{4}$
$2 \frac{1}{2}$	I $9 \quad 9 \quad 9 \quad 3$	$\begin{array}{llll}8 & 8 & 1\end{array}$	248	19	$5 \frac{1}{2}$

(30)			(31)			(32)		(33)	
E	s.	d.	¢	.	d.	\ldots	s. d.	\ldots	s. d.
71	3	$6 \frac{3}{4}$	81	0	- ${ }^{1}$	310	6 51 ${ }^{\frac{1}{4}}$	416	$3 \quad 2 \frac{3}{4}$
41	2	83	6	5	4	406	32	516	$48 \frac{1}{4}$
9	8	$5 \frac{1}{2}$	3	5	21	27	$6 \quad 5^{\frac{1}{3}}$	3 I	$93^{\frac{1}{2}}$
23	6	$4 \frac{3}{4}$	7	-	3	84	I $7 \frac{3}{4}$	26	$74^{\frac{1}{2}}$
37	5	$4{ }_{4}^{\text {T }}$	8	4	6	191	62	185	36
	$34)$			35			$36)$		(37)
\ldots	s.	d.	E	s.	d.	\ldots	s. d.	\ldots	s. d.
713	8	$6 \frac{1}{4}$	156	3	$2 \frac{1}{2}$	718	211	4163	$27{ }^{\frac{1}{3}}$
410	6	0	413	6	5	999	3 11	2003	6
735	18	$4^{\frac{3}{4}}$	718	9		803	$6 \quad 0 \frac{3}{4}$	498	$7 \quad 5{ }^{\frac{1}{4}}$
86	0	- $\frac{1}{2}$	901	6	5	915	2	513	17 21
714	1	I	31	4		604	410	4167	38

LESSON 33.

SUBTRACTION OF MONEY.

Subtraction of Money differs from Common Subtraction in respect of the manner in which we pass from one 'name' or denomination to another, since the measures are no longer ten for every grade, but 4 for farthings, 12 for pence, and 20 for shillings.

The difference will be best explained by an example.

I cannot take $\frac{3}{4}$ from $\frac{1}{4}$; I must therefore increase $\frac{1}{4}$ by adding to it a unit of the next higher name (in the form of four farthings), adding at the same time the same value (as 1 d.) to the pence of the lower
number, which will not affect the difference between the two numbers. It is in fact exactly what happens, when one man has to give another change, 4 farthings for $1 d$., in order to help him to settle an account. There are now 5 farthings, from which when 3 are taken 2 farthings remain. Set down $\frac{1}{2}$.

Passing to the pence, we remember that 9 has been increased to 10 ; 10 from 5 we cannot take, but 10 from 5 increased by 1 measure, that is, from 17 , leaves 7 d . Set it down. Having brought in a masure, in must be increased to 12 ; 12 from 6 we cannot, but taken from 6 and 20 , or from 26 , it leaves 14 : the pounds must be increased by I , leaving 68.

(1)	(2)	(3)	(4)
12		20124	$20 \quad 124$
s. \quad d.	$\ldots \quad s . \quad d$.	\ldots s. d.	f s. d.
56	1026	213093	$85 \quad 19 \quad 7 \frac{1}{2}$
34	314	$1127 \frac{1}{3}$	$76 \quad 1388 \frac{3}{4}$
(5)	(6)	(7)	(8)
£ s. d.	f s. d.	\ldots s. d.	\ddagger s. d.
80 - $6 \frac{1}{4}$	$71211 \frac{3}{4}$	$35 \quad 6 \quad 2 \frac{1}{2}$	2 l 3
$59 \quad 19 \quad 7 \frac{3}{4}$	$1654 \frac{1}{2}$	$21 \quad 3 \quad 6$	6 I $5^{\frac{3}{4}}$
(9)	(10)	(11)	(12)
\mathcal{L} s. d.	E s. d.	E s. d.	£ s. d.
$713 \quad 26$	81462	$517 \quad 2 \quad 6 \frac{1}{4}$	$416 \quad 7 \quad 2 \frac{1}{4}$
12969	$293711 \frac{1}{4}$	$28 \quad 3$ 10 ${ }^{1}$	388 ○ 8
(13)	(14)	(15)	(16)
E s. d.	f s. d.	χ s. d.	\ldots s. d.
$1615 \quad 26$	713265	ir $4363{ }^{\frac{1}{4}}$	71391158
3143	81424	104939	$4166 \times 6 \frac{3}{4}$

LESSON 34.

MULTIPLICATION OF MONEY.

Multiplication of Money only differs from Common Multiplication in the manner in which you carry from one name (or denomination) to another, and this you have already learnt in Addition of Money.
It is usual to write the multiplier $\notin s . d . \quad$ under the pence.
$3162 \frac{3}{2} \frac{1}{2}$ Six times 2 farthings, 12 farthings, or $3 d$. Six times 3,18 , and $3,21 d$. or $189613 \quad 9 \quad 1 s .9 d$. : set down 9 and carry i to the shillings. Six times 2, I2, and I, ISs.: set it down and multiply the pounds as any common number.

Multiply the following amounts by $2,3,4$, up to 12 :-
(1)
(2)
(3)
$\left\{_{\pi} 36 \quad 13 s . \quad 2 \frac{1}{4} d . \quad £ 28 \quad 14 s . \quad 6 \frac{1}{2} d . \quad £ 46 \quad 3 s . \quad 5 \frac{1}{4} \mathrm{~d}\right.$.
(4) (5) (8)
$£ 46$ 14s. $6 \frac{1}{2} \mathrm{~d} . \quad £ 87$ es. $2 \frac{1}{2} d . \quad £ 26$ 19s. $8 \frac{1}{4} d$.
(7) (8) (θ)
£ $116 \quad 5 s .4 \frac{1}{2} d$. £315 os. $6 \frac{1}{2} d$. £416 Ts. $2 \frac{1}{4} d$. (10) (11) (12)
$£ 615$ 3s. $2 \frac{3}{4} d$. £319 Bs. $11 \frac{1}{4} d$. £518 Ks. $2 d$.
Multiply $£ 8136 s .9 \frac{1}{2} d$. by $24,25,30$, $100,132$.
Multiply $£^{6} 14$ Ss. $2 \frac{1}{4} d$. by $36,42,81,110,120$.

LESSON 35.

DIVISION OF MONEY.

To share 5 shillings equally among 12 men requires Division of Money. We have to ask, What sum of money multiplied by 12 will amount to 5 shillings?

- This differs from Common Division by the manner in which we have to manage the overs (or remainders) in passing to a lower name. An over in the pounds is so many twenties, when turned into shillings: so we multiply it by 20 , and add the shillings, and then divide that number by the divisor. The shillings over must be multiplied by 12 , to turn it into pence, and then bringing in the pence, divide as before. Any over from the pence must be multiplied by 4 , in order to turn it into farthings, and any other farthings added: then divide as before: any farthings over must be shown as an over, after a dash. .

Example. 4 in 3r, 7 and 3 over: 4 in 33, 8 and 1 over. Multiply the 1 over by 20 and add the 10's, $30: 4$ in 30,7 and 2 over: multiply the 2 by 12,24 and 6,30 ; 4 in 30,7 and 2 over : multiply the 2 by
 4, 8; 4 in 8, 2 farthings.

Divide $£ 9$ I8s. $4 d$. by $2,4,7,8$.
Divide $£ 7$ 5s. $3 d$. by 2, $3,4,6,7,12$.
Divide the following amounts by $2,3,4,5,6,8,9$, 10, $12: £ 759$ 7s. 6d.; £3262 10s.; £9103 2s. 6d.; £9140 12s. $6 \mathrm{~d} . ; \mathrm{E}_{121} 17 \mathrm{~s} .6 \mathrm{~d} . ; £ 9206$ 5s.; £815 12s. $6 \mathrm{~d} . ;$ $£ 3712$ Ios.; $£ 6637$ ios.

A large number of sums may be set from the following Table; for Addition commence at any letter and take down 6,8 , or 10 amounts.

Exercise Table. C.

I. Add up the amounts marked abcde, klmno.
2. Subtract a from d, b from d, \mathbf{c} from d.
3. Multiply h by $5,6,7,8,9,10,1 \mathrm{I}, 12$.
4. Divide a by 4 : b by 2 ; c by 3 ; i by 6 .

LESSON 36.

FIRST NOTIONS OF FRACTIONS.

Whenever any whole thing is divided into two equal parts, each part is said to be one half, and the two parts are called the two halves. If anything is divided into three equal parts, each is called a third; if into four equal parts, each is called a fourth part, or a quarter.

We call halves, thirds, and fourths or quarters fractions. We shall only speak now of halves and quarters.

On Halves.

How many halves are there in an apple? in a piece of string? in any one thing? Two, in every case.

On this account we say that there are two halves in 1 . One half is written $\frac{1}{2}$ (or $1 / 2$).
The figure below the line is called the denominator, it shows how many parts the apple (or other unit) has been divided into. The figure above the line is called the numerator: it shows how many of these parts we intend. In one-half we suppose the unit divided into two parts; and one-half is one of them.

How many half-pence are there in a penny?
How many in two-pence? In three-pence?
How many pence are there in two half-pence? One.
How many in four? Two.
How do you get that? By dividing by two.
In three half-pence? One, and one half-penny over.
How do you write one half-penny? ${ }_{2} d$.
What does the I mean?

What would $\frac{2}{2} d$. mean? Two half-pence.
Yes, but if we take the two halves we get the whole, so we may write that $1 d$.

So also we may write three-halves $\frac{3}{2}$ or $\frac{1}{2}$; four-halves. as $\frac{4}{2}$, or 2 ; five-halves as $\frac{5}{2}$, or $2 \frac{1}{2}$.

How do you get the half of a number? By diziding it by two.

What is the half of two? of four? of six?
Of three? One and one over. Yes, the over is one half, so it is one and a half.

Let me see you write it. $1 \frac{1}{3}$. Yes, or $\frac{3}{2}$
Of five? of six? of seven? of nine?
Write down the halves of $\cdot 21,29,30,33,72,65$.
What is the half of a shilling? of a pound?

LESSON 37.

ON QUARTERS.

How many quarters are there in an apple? Four.
In any unit? Four. How many in a half? Two.
What part of a penny is a farthing? A fourth part.
How do you write one fourth in figures? $\frac{1}{4}$.
Yes, we write one quarter, or one fourth, $\frac{1}{4}$; two quarters, $\frac{2}{1}$, which is the same as $\frac{1}{2}$; three quarters, $\frac{3}{4}$; and four quarters, or $\frac{4}{4}$, which is the same as I .

Thus you see that when we can divide both the numerator and denominator by the same number, we may do so, and it does not affect the value of the fraction; $\frac{2}{4}$ is the same as $\frac{1}{2}, \frac{4}{4}$ as I .

How many quarters are there in $2 ?$ in $3 ?$ in 4 ?
How many wholes do 8 quarters make?
How many do 5 make? 6? 7? 8? 9? 10?
How do you write 2 farthings? 3 farthings?
What is 5 farthings? $\frac{1}{4} d$.
How many farthings do 4 pence make? 5, 6, \&c. up to 12 ?

How many pence in 6 farthings? in $7,8, \& c$. up to 50 ?
What is the fourth of a shilling? ${ }^{\circ}$ of a pound?

LESSON 38.

ADDITION AND SUBTRACTION OF FRACTIONS.

What is a halfpenny and a farthing? 3 farthings; bccause a halfpenny is two farthings, and one more makes 3 farthings.

What is a half and a quarter? Three quarters; because one half is two quarters, and one more makes three.

That is Addition of Fractions. If the fractions are all halves, or all quarters, if they have, that is, the same denominator, they are of the same kind, and we can add them together at once (or subtract them); but if they are, some halves, and some quarters, we must bring them all to the same denominator, before we can add them or subtract them.

Thus $\frac{5}{2}$ and $\frac{1}{2}$ are $\frac{6}{2}$ or 3 ; and $\frac{5}{2}$ less $\frac{3}{2}$ makes $\frac{2}{2}$ or I.
What is $\frac{1}{2}$ and $\frac{3}{4}$? What is $\frac{1}{2}$ a shilling and $\frac{1}{4}$ of a shilling? $\frac{1}{2}$ a shilling and $\frac{3}{4}$ of a shilling? $\frac{1}{2}$ a pound and $\frac{3}{2}$ of a pound?

LESSON 39.

MULTIPLICATION OF FRACTIONS.

What is $\frac{1}{2}$ of a halfpenny? A farthing. That is, $\frac{1}{4} d$., one fourth of a penny.

What is half the half of an apple? One quarter.
How do you get the half of a number? By dividing it by two.

Yes, when we divide 1 by two, we do it by writing 2 for a denominator, which expresses that we reckon in halves: taking $\frac{1}{y}$ of $\frac{1}{2}$ is done by multiplying together the two denominators, making $\frac{1}{4}$. This is called multiplying by a fraction, and the rule is:-Multiply together the numerators for a new numerator and the denominators for a new denominator.

LESSON 40.

DIVISION OF FRACTIONS.

What is I divided by $\frac{1}{2}$? This means, how many halves would it take to make i? Two, of course.

Again, how many quarters would it take to make one? Four. And to make $\frac{1}{2}$? Two.

Thus, 1 divided by $\frac{1}{2}$ is 2 : I divided by $\frac{1}{4}$ is 4 ; and $\frac{1}{2}$ divided by $\frac{1}{4}$ is 2 . So you see that you have to invert or turn over the fractional divisor and multiply by it. $\frac{1}{4}$ inverted becomes 2 : and dividing by $\frac{1}{2}$ is the same as multiplying by $2 . \frac{1}{4}$ inverted becomes 4 , and dividing by $\frac{1}{4}$ is the same as multiplying by 4 .
[Thirds may be treated similarly.]

APPENDIX.

The Teacher should have a Numeration Frame, which he may procure at the National Society's Depository.

The Numeration Frame has twelve wires, on each of which are ten balls, one of them, called a Teen-ball, being separated from the rest by a bar called the Counting Bar. Each wire has a local value, on the principle of the Numeration Table, and a Teen-ball counts for ten. The wire marked o is the units-wire, that marked I is the tenswire, and so on. The three below the Cross (or decimal) Bar are decimals, for later use. Balls are only counted when moved up to the Counting Bar, and are out of
 the counting when in contact with the Frame on either side The classes Units, Thousands, Millions, have the same colour throughout. To assist the eye the fifth ball on each wire is coloured differently. The Teen-ball enables the Teacher to show a teen-number on a single wire, to illustrate Subtraction. The number represented in the figure is $13,227.613$. The Numeration Frame is a modification of the Chinese Swanpan. It is made with a Chequer Board on the back, which will often be found useful in teaching.

ANSWERS TO THE EXAMPLES

IN

'FIGURES MADE EASY

TOGETHER WITH
TWO THOUSAND ADDITIONAL EXAMPLES
FORMED FROM THE TABLES IN THE SAME, WITH ANSWERS

LEWIS HENSLEY, M.A.
Formerly Fellow and Assistant Tutor of Trinity College, Cambriage

(9xfort
at THE CLARENDON PRESS

M DCCC LXXII
[All rigbts reserved]

ainonon

MACMILLAN AND CO.

PUBLISHERS TO THE UNIVERSITY OF

Baforo

CONTENTS.

PART I.

A N S WERS

TO THE

EXAMPLES IN 'FIGURES MADE EASY.'

\qquad
N.B. The pages refer to those in 'Figures made Easy.'

LESSON 19. Page 28.

ADDITION.

Figures below Seven.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
76	88	84	105	111	86	117	48	67	98	81
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
143	144	165	139	166	181	207	127	173	184	167
(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
122	117	128	132	180	189	207	180	163	172	190

Examples with the Higher Figures.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
59	93	91	100	108	130	104	148	102	58	133
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
159	136	168	166	118	189	173	112	199	112	142
(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
255	267	275	211	204	194	273	307	271	196	196

Pages 30, 3I.

(I)	(2)	(3)	(4)		(5)		(6)	(7)	(8)
1407	1628	731	1984		1012		1711	2073	1401
(9)	(10)	(11)		(12)		(13)		(14)	(15)
12381	12819	7979		1086		25512		127060	135999
(16)	(17)		(18)		(19)	9)		(20)	(21)
117116I	905	064	591631		1453	3631		915920	975199
(22)	(23)	(24)	(25)		(26)		(27)) (28)	(29)
1902	1999	1700	2084		2725		3079	91974	2302
(30)	(31)	(32)	(33)	((34)		35)	(36)	(37)
2621	1945	1760	1445		460		267	12176	22938
(38)	(39)	(40)	(41)		(42)		(43)	(44)	(45)
3544	3995	9619	37312		20478		39866	59248	47671
(46)	(47)	(48)		(49)	9)	(50)	0)	(51)	(52)
256423	$394{ }^{\circ} 5$	I 2546	652	2355	539	2023	399	125967	55686
1. 30.		4. 44.	7.	- 39.		10	c. 236		502.
2. 36.		5. 93.		8. 209			1. 18		2321.
3. 15,7		6. 44.		9. 130			2. 216		

Pages 23, 24.
C. I. 572. 2. 710 3. roo6. 4. $1616 . \quad$ 5. 5780.
E. 1. 8148 . 2. 1067 I . 3. 34133 . 4. 65175 . 5. 270250.
G. 1. 149815 .
2. 39562.

LESSON 20. Pages 34, 35.
SUBTRACTION.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
11	22	29	9	19	57	13	47	15	62
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	
67	104	189	514	256	384	515	367	363	

(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)
2561	5858	542	763	886	263	949	4064
(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)
3155	2667	3784	2127	3998	5222	548	4465
(36)	(37)	(38)	(39)	(40)	(41)	(42)	
21755	10155	1505	18544	38265	22678	18238	
(43)	(44)	(45)	(46)	(47)	(48)	(49)	
16332	21267	20722	1874	6278	56881	26458	
(50)	(51)	(52)	(53)	(54)	(55)		
406834	92233	1776952	14554	2042409	64613		
(56)	(57)	(58)	(59)	(60)	(61)		
625310	31555	424327	63012	62569	9973		
(62)	(63)	(64)	(65)	(66)	(67)		
235677	18670	133313	18711	817248	470205		

Page 36.

1. 45622 .
2. 637989 .
3. 842 .
4. 48368 .
5. 558584 .
6. 17.
1. 14.
1. 11 .
2. 33.
1. 286 r .
2. 2209.
1. 9276.

LESSON 22. Pages 40, 4 I .

MULTIPLICATION.

(1) (2) (3) (4) (5) (6) (7) (8) (9) 628, 686, 8246, 84806, 62648, 86068, 86810, 88470, 68508, (10) (11) (12) (13) (14) (15) (16) (17) 90612, 87130, 93074, 93470, 113476, 131556, 135618, 130778,
(18) (19) (20) (21) (22) (23) (24) (25) (26) 147798, 167582, 1019618; 66, 96, 1239, 1542, 1815, 9381,
(27) (28) (29) (30) (31) (32) (33) (34)
12324, 10581, 13134, 17037, 17367, 201879, 238095, 268095,

	(114)	(115)	(116)	(117)) (118)) (119)	(120)
By 8	2744	3624	4048	4128	- 4856	5816	456
" 9	3087	4077	4554	4644	5463	6543	1638
\% 11	3773	4983	5566	5676	6677	7997	2002
" 12	4116	5436	6072	6192	7284	8724	218
'	(121)	(122)	(123)		(124)	(125)	(126)
By 8	30624	38552	43136		50344	58352	71389
" 9	34452	43371	48528		566370	65646	80313
, 11	42108	53009	59312		69223	80234	98.60
" 12	45936	57828	64704		75516	87528	0708
	(127)	(128)	(129)		(130)	(131)	(132)
By 8	639496	712824	2775264		399456	2921192	372074
" 9	. 719433	801927	3122172		449388	328634 I	418583
" 11	879307	980133	3815988		549252	4016639	511602
\% 12	959244	1069236	4162896		599184	4381788	5581

Page 4 I .

Mult ${ }^{\text {nd }}$. . ${ }^{324225}$	2132123		3241245	1324526	1452367
By $2 \ldots . .648450$	4264246		6482490	2649052	2904734
972675	6396369		9723735	3973578	4357 Ior
4 ... 1296900	8528492		12964980	5298104	5809468
5... 1621125	10660615		16206225	6622630	7261835
6 ... 1945350	12792738		19447470	7947156	8714202
7 . . 2269575	14924861		22688715	9271682	10166569
8 ... 2593800	17056984		25929960	10596208	1618936
" $9 . . .2918025$	19189107		29171205	11920734	13071303
" $10 . . .3242250$	21321230		32412450	13245260	14523670
" $11 . . .3566475$	23453353		35653695	14569786	15976037
" $12 . . .3890700$	25585476		38894940	15894312	17428404
Mult ${ }^{\text {nd }}$. 2435768	35769	46829	5893276	8937023	9807236
By 2.. 4871536	71538	93658	11786552	17874046	19614472
" 3 .. 7307304	107307	140487	17679828	26811069	29421708
" $4 . \cdot 9743072^{\circ}$	143076	187316	23573104	33748092	39228944
" 5.. 12178840	178845	234145	29466380	44685115	49036180
" 6..14614608	214614	280974	35359656	53622138	588434!6
" $7 . .17050376$	250383	327803	41252932	62559161	68650652
" 8..19486r44	286152	374632	47146208	71496184	78457888
" 9..21921912	321921	421461	53039484	80433207	88265124
\% $10 . .24357680$	357690	468290	58932760	89370230	98072360
" II.. 2679344^{8}	393459	515119	64826036	98307253	107879596
\% $12 . .29229216$	429228	561948	70719312	107244276	117686832

LESSON 23. Page 42.

MULTIPLICATION BY TENS.

By $10 \ldots 36140,41350,217820$.
" 20 ... 5260, 6240, 8260, 10280, 12840 , 14300, 13780.

Mult ${ }^{\text {nd }} \ldots . .4638$	5643	64938	783	81469
By 10 . . ${ }^{\text {a }} 4380$	56430	649380	* 7830	* 814690
" $20 . . .92760$	112860	1298760	15660	1629380
" $30 . . .139140$	169290	1948140	23490	2444070
\% $40 . . .1855^{20}$	225720	2597520	31320	3258760
" $50 \ldots 231900$	282150	3246900	39150	4073450
, $60 . . .278280$	338580	3896280	46980	4888140
" 70 ... 324660	395010	4545660	54810	5702830
" $80 . . .371040$	451440	5195040	62640	6517520
" $90 . .417420$	507870	5844420	70470	7332210
Multipliers.	Mulipliers.		Multipliers.	
1... 7136	1	81643	1	7546
100... 713600	300	24492900	1000.	7546000
$1100 . .7849600$	I 100.	89807300	3000.	22638000
1200 ... 8563200	1200.	97971600	5000 ..	37730000
			6000 ..	45276000

LESSON 24. Page 43.

MULTIPLICATION BY COMPOSITE NUMBERS.

Multipliers. $1 \ldots 3^{6} 51$	Mumpliers. I ...	7123	Multipliers. $1 \ldots 24163$	Multipliers. $\text { I ... } 36543$
$24 \ldots 87624$	63	448749	$84 \ldots 2029692$	$33 . .1205919$
$35 . .127785$	84 ...	598332	$96 \ldots 2319648$	$48 . .1754064$
81 . . 295731	72 .	5128,6	$28 \ldots 676564$	96...3508128
36 ... 131436	$21 .$.	49583	$32 \ldots 773216$	$21 . .767403$
$27 \ldots 98577$	$18 \ldots$	I282I4	66 ... 1594758	I6... 584688
$45 \cdots 164295$	$42 \ldots$	299166	54 ... 1304802	84 ... 3069612
	27 ...	192321	$108 . .2609604$	$132 \ldots 4823676$
	$56 \ldots$	398888		

LESSON 26. Page 47.

SHORT DIVISION.

By	(1)		(2)	(3)	(4)	(5)	(6)	
	2	1731,	20766,	25837,	40634,	47182,	108	
		(7)	(8)	(9)	(10)	(11)	(12)	(13)
"	3	10557,	18121,	237004,	27164,	I2550,	6667,	333

* Acd the requisite ciphers, according to the multiplier.

		(14)	(15)	(16)	(17)	(18)	(19)	(20)
By		. 156,	1782,	2225,	7516,	17508,	4529,	9182.
		(21)	(22)	(23)	(24)	(25)	(26)	(27)
"		- 73,	1425	1687,	18001,	7211 ,	14247,	16251.
		(28)	(29)	(30)	(31)	(32)	(33)	
"	6	. 772 ,	14521,	5501,	14412,	, 9116,	11889.	
		(34)	(35)	(36)	(37)	(38)	(39)	
$"$	7	. 935,	1205,	1097,	8039,	59449,	7302.	
		(40)	(41)	(42)	(43)	(44)		
"	8	. 896,	458,	8920,	8974,	124986.		
		(45)	(46)	(47)	(48)	(49)		
"	9	- 41,	237,	25958,	13126,	479301.		
		(50)	(51) -		(53)	(54)		
"	II	. . 332,	194,	5595,	7215,	19423 I .		
		(55)	(56)	(57)	(58)	(59)		
"	12	... 74,	314,	4506,	2778, 8	8337.		

Divids . . 270	384	4626	7321	43	86	81543
By $2 . .135$	192	2313	3660-I	3071-1	433581-1	4077
$3 . .90$	128	1542	2440-1	2047-2	289054-1	27181
" $4 . .6$ 67-2	96	1156-2	1830-1	1535-3	216790-3	20385-3
" 5 .. 54	76-4	925-1	1464-1	1228-3	173432-3	1630
" 6 d. 45	64	771	1220-1	1023 -5	144527-1	13590
" 7 .. 38-4	54-6	660-6	1045-6	877-4	123880-3	11649
\% $8 .$.	48	578-2	915-1	767-7	108395-3	10192-7
" 9.. 30	42-6	514	813-4	682-5	96351-4	060-3
\%10.. 27	38-4	462-6	732-1	614-3	86716-3	8154-3
" $11 . . .24-6$	34-10	420-6	665-60	558-5	78833	7413°
, $12 .$. 22-6	32	385-6	6ro-r	$511-1$	$72263 \% 7$	6795

LESSON 27. Page 48.

CONTINUED SHORT DIVISION.

1. 6r 35 .
2. 968 I 4 .
3. 713 I .
4. 51371.
1. $3^{6} 54$.
2. 93025 .
3. 731.
1. 93312.
1. 652.
1. 59536.

II. 910116.
16. 18496.
12. 30625.
17. 25992.
13. 19600.
18. 25966.
14. 12864 .
19. 4452 I .
15. 73612.
20. 14247 .

LESSON 28. Page 50.

MULTIPLICATION (GENLRAL).

(1)	(2)	(3)	(4)	(5)	(6)	(7)
4928	7176	5922	17476	7969	22225	30176
(8)	(9)	(10)	(11)	(12)	(13)	(14)
16116	10455	13737	23606	37167	24444	24016
(15)	(16)	(17)	(18)	(19)	(20)	
15934	154468	299100	399938	539963	362817	

Page 51.

1. 48,553 .
2. 106,556 .
3. $177,418$.
4. 190,185 .
5. 162,084 .
6. 140,466 .
7. 272,155.
8. $263,46 \mathrm{r}$.
9. 315,172.
10. 449,845 .
II. 330,694 .
11. 716,720.

1 3. 169,386.
14. 539,105.
15. 444,924.
16. 391,468 .
17. 264,240.
18. 556,968 .
19. 536,550.
20. 834,768 .
21. 532,608.
22. 604,872 .
23. 200,947 .
24. 762,720.
25. 3,027,661.
26. $1,083,618$.
27. $1,284,050$.
28. 1,903,6I7.
29. 2,03I,OI5.
30. 3,440,192.
31. 3,497,816.
32. 3,323,322.
33. 4,923,081.
34. 5,690,844.
35. 3,283,664.
36. $3,664,440$.
37. 2,051,832.
38. $4,064,72 \mathrm{I}$.
39. 6,532,956.
40. 4,635,618.
41. $4,316,466$.
42. $1,975,914$.
43. 3,962,852.
44. 3,78 r, 126.
45. 4,243,569.
46. 6,173,556.
47. 1,315,512.
48. 6,237,847.
49. $10,146,374$.
50. 26,352,130.
51. 45,867,131.
52. 25,460,926.
53. 64,749, 124 .
54. 65,282,280.
55. $10,102,887$.
56. 69,094,263.
57. 83,476,912.
58. 52,544,375.
59. $44,268,355$.
60. 19,126,426.
61. $9,8 \times 6,186$.
62. 71,823,108.
63. 21,212,512.
64. $90,475,396$.
65. 89,418,420.
66. 105,396,6I2.
67. 101,833,600.
68. I $14,738,740$.
69. $151,078,830$.
70. 249,323,501.
71. 46,960,901.
72. 244, 7 1,407.

Page 51.

E. 1. Mult ${ }^{\text {ds }}$... 1006,	1005,	roio,	1020,	1023,	1025,
$\begin{aligned} & \hline \text { By } 23 \ldots 2313^{8}, \\ & " 796 \ldots 800776, \end{aligned}$	$\begin{array}{r} 23 \text { II5 } \\ 799980, \end{array}$	$\begin{array}{r} 23230, \\ 803960, \end{array}$	$\begin{array}{r} 23460, \\ 811920, \end{array}$	$\begin{array}{r} 23529, \\ 814308, \end{array}$	$\begin{array}{r} 23575, \\ 815900, \end{array}$
Mult ${ }^{\text {ds }}$. . 1029,	1030.				
$\begin{aligned} & \text { By } 23 \ldots 23667, \\ & \text { " } 796 \ldots 819084, \end{aligned}$	$\begin{array}{r} 23690 . \\ 819880 . \end{array}$				

2. Multds \ldots	1049,	1058,	1089,	1999,	1165,
By $23 \ldots 24127$,	24334,	25047,	45977,	26795,	
" $796 \ldots 835004$,	842168,	866844,	1591204,	927340,	

Mult ${ }^{\text {ds }} .$. 2004, 2307.

By 23.. 46092, 53061 . " 796 .. 1595184, 1836372.
3. Mult $\begin{array}{rlrrrrrr}\text { ds } & \cdot & 2856, & 3073, & 4096, & 8946, & 9059, & 7003 .\end{array}$ Вy $23 . .65688,70679,94208,185058$, 208357, 161069. " 796 ..2273376, 2446108, 3260416, 6404616, 72 10964, 5574388.
4. Mult ${ }^{\text {ds }} \ldots$ 10072, 11053 12044, 13001 , 19005. By 23.. 231656, 254219, 277012, 299023, 437115. „ 796 .. 8017312, 8798188 , 9587024, 10348796, 15127980.
5. Mult ${ }^{\text {ds } \ldots} \quad 30000$, 40006, 50080, 60074, 90090. By 23.. 690000, 920138, 1151840, 1381702, 2072070. " 796..23880000, 31844776, 39863680, 47818904, 78711640.
G. 1. Multds .. 13030, 502, 76, 100007, 20200, 16000. By $23 . .299690$, 11546, 1748, $2300161,464600,368000$. " 796.. 10371880, 399592, 60496, 79605572, 16079200, 12736000.

2. Mult | ds \ldots | 316, | 750, | 594, | 18002, | 19900. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| By $23 \ldots$ | 7268, | 17250, | 13662, | 414046, | 457700. | " 796..251536, 597000, 472824, 14329592, 15840400.

LESSON 29. Page 53.

LONG DIVISION.

J. 52.	16. 162.	31. 10082.	46.
2. 51.	17. 208.	32. 3362.	47.
3. 46.	18. 167.	33. 847.	48.
4. 76.	19. 315.	34. 567.	49.
5. 52.	20. 187.	35. 1682.	50.
6. 84.	21. 338.	36. 7225.	51.
7. 37.	22. 63.	37. 2809.	52.
8. 39.	23. 37.	38. 4050.	53.
9. 38.	24. 33.	39. 6889.	54.
10. 27.	25. 968.	40. 2820.	55.
11. 82.	26. 1083.	41. 863.	56.
12. 44.	27. 2209.	42. 713 I .	57.
13. 48.	28. ${ }^{1369 .}$	43. 8169.	58.
14. 78.	29. 1156.	44. 1643.	59.
15.76.	30. 961.	45. 7136.	60.

Exercise Table B. Page 54.

1. 389 I .
2. $\mathrm{a} \times \mathrm{b}=1788831, \mathrm{e} \times \mathrm{h}=4369068, \mathrm{q} \times \mathrm{u}=54399720, \mathrm{x} \times \mathrm{z}=$ 69319125.

LESSON 32. Pages 59, 60.

ADDITION OF MONEY.

(1)	(2)	2)			(4)			5)							(8)
d.		d.	s.			d.	s.	d		s.	d.	s.	d.		. d.
6	1	2	1		1	8	2	2		6	5	13	9		$\bigcirc 3$
(9)					(ii))						14)
s. d.		\ldots	d.		s.			E	s.	d.	\ldots				s.
196		2	9	1	13				2						110

LESSON 33. Page 6i.

SUBTRACTION OF MONEY.

(1)	(2)	(3)	(4)
s. d.	f. s. d.	f s. d.	\ldots s. d.
2.2	7 1	10 I 21	$9 \quad 5 \quad 10 \frac{3}{4}$
(5)	(6)	(7)	(8)
\ldots s. d.	\ldots s. d.	¢ s. d.	f. s. d.
20 - 10, $\frac{1}{2}$	$\begin{array}{lll}54 & 17 & 7 \frac{7}{4}\end{array}$	14288	15 1 18 8
(9)	(10)	(11)	(12)
\ldots s. d.	f s. d.	\ldots s. d.	f s. d.
$\begin{array}{llll}583 & 15 & 9\end{array}$	$520 \quad 18 \quad 2 \begin{aligned} & \text { 2 }\end{aligned}$	$488 \quad 18 \quad 78$	$28 \quad 6 \quad 64$
(13)	(14)	(15)	(16)
E s. d.	\ldots s. d.	\ldots s. d.	\star s. d.
1300194	$631840 \frac{3}{4}$	5094264	29\%2 $14 \begin{aligned} & \text { 7 }\end{aligned}$

LESSON 34. Page 62.

MULTIPLICATION OF MONEY.

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)

（9）

（io）
（iI）
（12）

$\begin{gathered} \text { Multr } \\ \text { I. } \end{gathered}$	$\begin{gathered} £ \\ 416 \end{gathered}$			$\underset{\mathbf{6 I F}^{f}}{ }$	$\begin{gathered} s . \\ 3 \end{gathered}$			$\begin{gathered} \text { s. } \\ \hline \end{gathered}$		$\begin{gathered} £ \\ 518 \end{gathered}$		
2.	832	14.	4 $\frac{1}{2}$	1230	6	5 ${ }^{\frac{1}{2}}$	638	1	10％	1036	12	
3	1249	1	63	1845	9	84	957	2	94	1554	18	6
4	1665	8	9	2460	12	11	1276	3	9	2073		8
5	2081		113	3075	16	$1 \frac{3}{4}$	1595	4	84	2591		10
6	2498	3	1 $\frac{1}{2}$	3690	19	4 $\frac{1}{2}$	1914	5	$7 \frac{1}{2}$	3109	17	
7	2914		$3 \frac{3}{4}$	4306	2	7年	2233	6	63	3628	3	
8	3330	17	6	4921	5	10	2552	7	6	4146	9	
9	3747	4	84	5536	9	$0 \frac{3}{4}$	2871	8	5 ${ }^{\frac{1}{4}}$	4664	15	6
10	4163		10，$\frac{1}{2}$	6151	12	3 $\frac{1}{2}$	3190	9		5183		
11	4579		$0 \frac{3}{4}$	6766	15	64	3509	10	3 $\frac{3}{4}$	5701	7	
12	4996	6	3	7381	18	9	3828			6219	14	

Multrs							
1.	813	6			614		
24	19520	3	－	36	22109	14	9
25	20333	9	9 ${ }^{\frac{1}{2}}$	42	25794	13	$10 \frac{1}{2}$
	24400	3	9		49746	18	2妾
100	81333	19	2	110	67557	10	7否
132	07360	16	6	120	73699	2	6

LESSON 35．Page 64.
DIVISION OF MONEY．

Divrs	\ldots	s．	d.			
1.	9	18	4		5	3
2	4	19	2	3	12	7 ${ }^{\frac{1}{2}}$
3				2	8	5
4	2	9	7	1	16	$3 \frac{3}{4}$
5						
6				1	4	2 $\frac{1}{2}$
7	I	8	． 4	1	－	9
8	I	4	$9 \frac{5}{2}$			
12				\bigcirc	12	1 ${ }^{\frac{1}{4}}$

18 ANSWERS TO THE EXAMPLES IN 'FIGURES MADE EASY.'

Divrs	\ldots	s.	d.	\ldots	s.	d.	\ldots			f	s.	
1	759	7	6	3262	10	0	9103	2		9140		6
2	379	13	9	1631	5	-	4551	II	3	4570	6	3
3.	253	2	6	1087	10	0	3034	7	6	3046	17	6
4	189	16	$10 \frac{1}{2}$	815	12	6	2275	15	$7{ }^{\frac{1}{2}}$	2285	3	1
5.	151	17	6	652	10	\bigcirc	1820	12	6	1828	2	6
6	126	11	3	543	15	-	1517	3	9	1523	8	9
8	94	18	54	407	16	3	1137	17	934	$\mathrm{II}_{4}{ }^{2}$	11	6
9	84	7	6	362	10	\bigcirc	1011	9	2	1015	12	6
10		18	9	326	5	\bigcirc	910	6	3	914	1	
12	63	5	$7{ }^{\frac{1}{2}}$	271	17	6	758	11		761	14	4

$\begin{array}{ccccc} \text { Divrs } & £ & s . & d . \\ \mathbf{I} & \ldots & 121 & 17 & 6 \end{array}$	$\begin{array}{ccc} f & s . & d . \\ 206 & 5 & 0 \end{array}$	$\begin{array}{ccc} \neq & \text { s. } & d . \\ 815 & 12 & 6 \end{array}$	$\begin{array}{ccc} f & s . & d . \\ 12 & 10 & 0 \end{array}$	$\underset{5637}{f_{37}} \stackrel{s}{10}$
18	032	0716	18565	33
$3 . .40126$	6815	7117	1237	221210
$3094 \frac{1}{2}$	2301113	20318 1 $\frac{1}{2}$	928	659
24	1841	163	742 10 0	327
06	1534	13518	61815	1106
15484	$115015 \quad 7 \frac{1}{2}$	$1011900 \frac{3}{4}$	464	82913
\bigcirc	102218	12	1210	737
0.. 1239	92012	8111	371	663
$1031 \frac{1}{2}$	7673	$67194 \frac{1}{2}$	3097	55

Exercise Table C. Page 64.

1. £I 392 3s. 7 d.; £1775 12s. 4 d.
2. £250 7s. 3 d.; £2406s. 6d.; $£ 129$ 17s. 8d.

$$
\begin{aligned}
& \text { 3. Multrs } \text { ® }^{\text {rs }} \text { s. } d \text {. } \\
& \text { 1... } 315 \quad 6 \quad 2 \\
& 5 \ldots 15761010 \\
& 6 \ldots 1891 \quad 17 \text { o } \\
& 7 \ldots 220732 \\
& 8 \ldots 252294 \\
& 9 \ldots 2837 \text { I5 } 6 \\
& 10 . . .3153 \text { I } 8 \\
& 11 . . .3468 \quad 7 \quad 10 \\
& 12 \ldots 378314 \quad 0
\end{aligned}
$$

PART II.

ANSWERS

то

ADDITIONAL EXAMPLES FORMED FROM
 THE TABLES.

Examples in Addition. Exercise Table B. Page 54.

Write down as many of the top rows as are indicated and add up. No. of rows.

$3 \ldots$	8465	3043	1717	3885	8239	5248
$4 \ldots$	9184	13042	1978	4762	12353	12564
$5 \ldots 13842$	21374	2694	12343	12575	14448	12648
$6 \ldots 14147$	30380	2719	12347	20893	14822	12710
$7 \ldots 14619$	33719	9900	17892	21103	20822	12785
$8 \ldots 20260$	36084	16317	21146	21716	29534	15773
$9 \ldots 20331$	36449	24436	21173	27432	29876	15793
$10 . .24372$	36540	24701	29635	27749	36416	16604
$11 \ldots 24471$	45428	24756	36695	29829	40066	23734
$12 \ldots 30476$	45745	25244	37472	36893	41017	27545

Write down as many of the bottom rows as are indicated and add up. No. of rows.

$3 \ldots 12833$	800068	940385	1238058	1510	1238442	2142980	
$4 \ldots 18838$	800385	940873	1238835	8574	1239393	2146791	
$5 \ldots$	18937	809273	940928	1245895	10654	1243043	2153921
6	$\ldots 2978$	809364	941193	1254357	10971	1249583	2154732
$7 \ldots 23049$	809729	949312	1254384	16687	1249925	2154752	
$8 \ldots 28690$	812094	955729	1257638	17300	1258637	2157740	
$9 \ldots 29162$	815433	962910	1263183	17510	1264637	2157815	
$10 \ldots 29467$	824439	962935	1263187	25828	1265011	2157877	
$11 \ldots$	$\ldots 4125$	832771	963651	1270768	26050	1266895	2158886
$12 \ldots 34844$	842770	963912	1271645	30164	1274211	2166997	

(200 Answers.) Number of Addenda (taken in columns).

$\begin{gathered} \text { Beg } \\ \text { not } \\ \text { fro } \end{gathered}$	6	7	8	9	10	11	12	13
a	14147	14619	20260	20331	72	24471	76	34803
b	2719	9900	16317	24436	701	475	5244	686747
c	20893	21103	217	27432	749	829	36893	72
d	12710	12785	15773	15793	1660	23734	545	849210
e	33513	35878	36243	36334	45222	45539	67864	709066
f	17674	20928	20955	29417	36477	37254	308854	1121200
g	20522	29234	2957	16	39766	40717	855342	545
h	13801	13872	17913	18012	24017	28344	33745	36850
i	15499	23618	2.3883	23938	24426	685929	758270	964811
k	12900	12920	13731	20861	24672	846337	1347538	2167652
1	33406	33497	42385	42702	65027	706229	842770	843087
m	17288	25750	32810	33587	305187	1117533	1271645	27
n	24628	3116	34818	35769	850394	973597	1274211	23
0	10629	1663	20961	26362	29467	29673	31851	5 10
p	22062	-	684053	756394	962935	963153	963179	966820
q	54	24318	24639	25209	- 25828	26128	30259	31076
r	11086	14897	836562	1337763	2157877	2163520	2164336	2166342
s	34351	675553	812094	812415	812912	81381I	814072	814788
t.	00272	1254384	1261548	1262404	1262623	1266737	1266959	275
u	1249583	1250295	1252456	1253111	1261222	1262231	1262293	1262368
v	19143	$2 \times 32 \mathrm{I}$	21980	31979	40311	49317	52656	5502 I
w	941117	944758	945635	953216	953220	958765	962019	962046
X	801785	802046	802762	802787	809968	816385	824504	824769
y	283644	291225	291229	296774	300028	300055	308517	315577
z.	24479	33485	36824	39189	39554	39645	48533	4885°

(200 Answers.) Number of Addenda (taken in rows).

$\begin{aligned} & \text { Berin- } \\ & \text { ning } \\ & \text { frona } \end{aligned}$	6	7	8	9	10	11	12	13
a	13848	14560	15376	17554	18055	18081	18937	23068
b	9527	11705	12206	12232	13088	17219	19380	21386
c	11671	11697	12553	16684	I 8845	20851	21510	22409
d	5089	9220	11381	13387	14046	14945	18586	18805
e	9853	11859	12518	13417	17058	17277	18094	18749
f	9839	10738	14379	14598	15415	16070	16789	26788
g°.	13497	13716	14533	15188	15907	25906	26167	27044
h	8241	8896	9615	19614	19875	20752	24866	32182
i	6950	16949	17210	18087	22201	29517	37628	42286

k	16625	23941	32052	36710	45042	45758	53339	53561
1	30678	35336	43668	44384	51	52187	54071	55080
m	33408	34124	41705	41927	43811	44820	45125	54131
n	36714	36936	38820	39829	40134	49140	49165	49169
O	18032	18094	185	21905	29086	3463 L	34845	40841
p	9255	125	1977	25320	25530	31530	31605	37246
q	19746	2529	255	31501	315	37217	39582	45999
r	6809	22809	22884	285	30890	37307	40561	74
s	24349	24420	24785	32904	32931	38647	38989	09
t	10237	10502	18964	19281	2582 I	26632	26731	35619
u	23453	25533	29183	36313	42318	42635	43123	43900
v	21832	2896	34967	35284	3577	36549	43613	44
w	17418	39743	701246	972846	973167	1787792	2609457	2614858
x	2592039	2597440	3238642	3310983	4123329	4123899	4247102	4748303
y	. 1512766	1649307	1855848	2009960	2010579	2311193	3131307	136950
z	801532	1621646	1627289	1627495	1627812	1628030	163519	94

Answers to 66 Subtraction Examples derived from Table A, page 16.

Take down 9 figures (those marked a to i) from each of the rows named, and find the difference of the two numbers.

314710580	C E . . 88875306	EL . . . 613251250
A C . . . 302484253	C F . . . 165199588	F G . . . 158392243
A D ... 215876145	C G . . . 323591831	F H . . . 249500461
A E . . . 391359559	C H . . 414700049	F I . . . 341511435
A F . . . 137284665	C I . . . 506711023	F J . . . 442430696
A G . . . 21107578	C J . . . 607630284	F K . . 551345194
A H . . 112215796	C K . . 716544782	F L . . 359176356
A I . . . 204226770	C L . . . 524375944	G H . . 91108218
-A J . . . 30514603 I	D E . . . 175483414	G I ... 183119192
A K . . . 414060529	D F . . 78591480	G J . . 284038453
A L . . 221891691	D G . . . 236983723	G K . . $39295295{ }^{\text {r }}$
B C ... 617194833	D H... 32809194 I	G L . . . 20078415
B D . . 530586725	D I . . . 420102915	H I . . 92010974
B E . . . 706070139	D J . . . 52ł022176	H J . . . 192930235
B F . . . 451995245	D K . . . 629936674	H K . . 301844733
B G . . . 293603002	D L . . . 437767836	H L 109675895
B H . . $20249+784$	EF . . 254074894	'I J . . . 10091926 I
B I ... 110483810	EG ...412467137	I K . . 209833759
B J . . 9564549	E H . . . 503575355	IL . . 1766492 I
B K . . 99349949	EI ... 595586329	J K . . . ro8914498
B L . . . 92818889	E J . . . 696505590	J L . . . $83254340{ }^{\circ}$
C D . . . 86608ı88	E K . . . 805420088	K L . . . 192168838

Similarly the two first columns might be covered, or numbers of more or fewer figures taken out.

Multiply the numbers in the top row of Table B (page 54)

 by the numbers indicated.

Multiply the five last numbers in the last row (Table B) by the numbers indicated.

t \ldots	5576607	4161024	16713	8116578	22143078
$\mathrm{r} \ldots$	12805542	9554944	38378	18638068	50847068
$\mathrm{v} \ldots$	20447559	15257088	6128 I	29760786	81191286
$\mathrm{o} \ldots$	62995005	47004160	188795	91687270	250134770
$\mathrm{~h} \ldots$	414321246	309148672	1241714	603031684	1645148684
$\mathrm{w} \ldots$	100792008	75206656	302072	146699632	400215632
a \ldots	1165510863	869654016	3493017	1696364802	4627903302

Examples in Multiplication founded on Table B, page 54.

Multiply by (a) all the numbers in the rows named.

```
Row'
    I .. 31843449 1162458 1788831 1230174 40426452 1692900 4017816
    2.. 4604688 12290454 282714} 146718 4830408 23311233 12194523
    3..11319858 3718737 5073057 20546163 1235817 461033I 3696165
```


Multiply by (b) all the numbers in the rows named.
Row

Multiply by (c) all the numbers in the rows named.
Riv
I . . 40426452 1475784
$2 \ldots 584582415^{603192}$
$3 \ldots 14370984 \quad 4721076$
4.. 5150916 71632836
$5 \cdots 333^{69912} \quad 5969044^{8}$
6 .. 2185020 64518984

7 .. $33^{81408} 239^{2059} \quad 5144468439724380 \quad 150444042984000 \quad 537300$
$8 \ldots 404121241694^{2860} 45971388 \quad 23311656$
$9 \ldots 508644 \quad 26 \times 4860 \quad 5816_{4516} \quad 193428 \quad 40949424 \quad 2450088 \quad 143280$
10.. $28949724 \quad 651924 \quad 189846060621768 \quad 2270988 \quad 46852560 \quad 5810004$

II . . 70923663673^{632}
$12 \ldots 43019820 \quad 2270988 \quad 3496032 \quad 5566_{428} \quad 50606_{496} \quad 681296_{4} 27302004$

Multiply by (d) all the numbers in the rows named.

Row							
I $\ldots 4017816$	146672	225704	155216	5100768	213600	506944	
$2 \ldots$	580992	1550736	356712	18512	609472	2941272	1538632
$3 \ldots$	1428272	469208	640088	2592392	155928	581704	466360
$4 \ldots$	511928	7119288	185832	624424	2929168	5208992	5775032
$5 \ldots$	3316496	5932384	509792	5397672	158064	1341408	718408
$6 \ldots$	217160	6412272	17800	2848	5922416	266288	44144
$7 \ldots$	336064	2377368	5112872	3948040	149520	4272000	53400
$8 \ldots$	4016392	1683880	4568904	2316848	436456	6202944	2127456
$9 \ldots$	50552	259880	5780728	19224	4069792	243504	14240
$10 \ldots$	2877192	64792	188680	6024944	225704	4656480	577432
11	70488	6328256	39160	5026720	1480960	2598800	5076560
12.	4275560	225704	347456	553224	5029568	677112	2713432

Examples in Short Division.

Divide the three last rows of Table B (page 54) by the Divisors named.

$2 . .216$	11162-I	330751	135800	160-1	407312-1	
. 2700	320601	361	406173	285	61601-x	250600
1552-	6827	103	77056	309	150	410057
$3 . .144^{2-1}$	$744^{\text {1-2 }}$	220501	90533	10	2715	888
1800-1	213734	4113	270782	190	41067	067
3..1035	45513-	68847	51370-	206-	020	273371 -
$4 . .108 \mathrm{I}$	5581-1	165375	67.900	80	3036	
$4 . .1350-1$	160300-2	8085	203086-2	142-2	30800-3	
. 776-1	34135	51635-1	38528	154-3	5153-2	205028-2
5., 865-2	4465	13230	54320	64	162925	33
$5 . .1080-1$	128240-2	14468-1	162469	114	4640	100240-1
5	27308-	41308 -1	30822-2	123	601	
$6 . .721-1$	3720-5	110250	45266-	53-3	135770-	136
$6 . .9900$	106867	12056-5	135391	95	20533-5	835
$6 . .517-3$	22756-5	34423	25685-	103-1	50102-2	136
7	3189-	94500	38800	45-6	116375	117
7.. 771-4	91600-2	10334-3	116049-3	$8 \mathrm{x}-3$	17600-3	71600-1
7 .. 443-4	19505-6	29505-6	22016	88	42944-6	117159-1
$8 . .540-7$	2790-5	82687-7	33950	40	101828-1	102708-1
8.. 675-1	80150-2	9042-5	101543-2	71-2	15400-3	62650-I
8.. 388-1	17067-5	25817-5	19264	77-3	37576-6	10251

$9 . .4880-7$	2480-5	73500-3	30177-7	35-6	90513-8	91296-1
600-	71244-6	8037	90260-6	63-3	13689-2	55689
345	15171-2	22949	17123-5	68-7	33401-5	91123-7
393-4	2029-6	60136-7	24690-10	29-2	74056	74696-9
II.. 491	58291-1	6576-5	73849-7	51-9	00	45563-8
282-3	12412-9	18776-5	4010-2	56-3	27328-6	74555-9
12.. 360-7	1860-5	5125-3	22633-4	26-9	67885-5	68472-I
4	53433-6	O28	67695-6	47-6	0266-II	41766-9
258-9	11378-5	17211-9	12842-8	51	25051-2	83

Examples in Division derived from Table A, page 16.

Take for Divisor the first two figures of each line, and for Dividends write down six figures commencing at $\mathrm{a}, \mathrm{b}, \mathrm{c}, \& \mathrm{c}$., in succession.

A .. 10124-9 6902-6 12417-22 10966-36 15327-11 \quad 2328-42 $\quad 4420-5$
B .. 10085 9941-4 $\quad 8502-21 \quad 39575-4 \quad 32115-13 \quad 2974-2 \quad 2974 \mathrm{x}-6$
$\begin{array}{llllllll}\text { C .. 10109-18 } & \text { 4706-56 } & \text { 10922-22 } & 789 & 7890-7 & 6611-63 & 5876-52\end{array}$
D . . 10032-57 \quad 6994-23 $\quad 3276-37 \quad 6098-29 \quad 7650-46$
$\begin{array}{llllllll}\text { E .. 10086-28 } & 3037-3 & 8631-27 & 10226-\mathrm{I} & 4434-9 & 862-68 & 8627-42\end{array}$
F .. 10057-46 11024-50 $5769-66 \quad 12923-58 \quad 9835-48 \quad 8804-64 \quad 13422-50$
$\begin{array}{lllllllllll}\text { G . . 10107-16 } & \text { 3034-2 } & 10732-33 & 9287-19 & 14442-20 & 7169-8 & 12868-10\end{array}$
H .. 10103-39 $5801-12$ 10393-37 $\quad 8700-38 \quad 15580-29$ 12949-40 $10452-3$

$\begin{array}{llllllllll}\text { J .. 10062-9 13667-11 } & 6240 & 18921-20 & 15305-15 & 22621-19 & 8827\end{array}$ K .. 10210 $\quad 18767$-3 $\quad 21005-10 \quad 43392-1 \quad 17254-6 \quad 5878-7 \quad 58786-4$

For Dividends write down eight figures beginning at a, b, c, \&c., successively, and for Divisor take the first three figures of the line beneath.

A . . 242796-207	165525-209	297793-89	263001-205	367575-190
B . . 26444-549	26067-441	22296-199	103772-722	84212-440
C . . irrs77-644	51948-591	120551-525	8708-360	87084-592
D.. 81171-220	56588-303	26508-880	49339-712	61898-211
E . . $13788 \mathrm{x-1} 66$	41516-525	117990-667	$139790-702$	60614-504
F .. 130847-384	143428-479	75066-3	168135-407	127959-439
G . . $121573-413$	36494-200	129095-282	111711-163	173717-270
H. . $127820-303$	73389-290	131489-41	110071-326	197105-127

Examples in Addition of Money derived from Table C, page 64.
Write down as many of the top rows as are indicated by the figures in the margin and add up.

${ }_{\text {Now }}^{\text {Nows }}$ of	\ldots	s.	d.	\ldots	s.	d.	\ldots	s.	d.
3	494	10	4	845	10	6	2318	6	63
4	866	4	,	1061	15	1018	2349	13	9年
5	1392	3	7	1775	12	4	2354	14	2
6	1856	17	5	2491	16	1 ${ }^{\frac{1}{2}}$	2355	13	8年
7	2130	12	9	2808	1	64	2358	16	$7{ }^{\frac{1}{4}}$
8	2445	18	11	3607	2	2 $\frac{1}{2}$	2359	13	102
9	3159	3	5	4407	15	9	2368	1	$4{ }^{\frac{3}{4}}$
10	3249	6	10	4824	6	11	2375	16	83
11	3556	2	2	5567	15	23	2379	2	10%

Write down as many of the bottom rows as are indicated by the figures in the margin and add up.

Addition of Money (derived from Table C).

Write down the number of Addenda named (taken in columns), beginning at the letter named.

	. 3562	5	3	3978		5	4722	4	$8 \frac{3}{4}$	5425	10	9 ${ }^{\frac{1}{2}}$
	. 3762	11	$\bigcirc \frac{1}{2}$	4505	19	4 ${ }^{3}$	5209	5		6064		11
	p . . 3792	2	$10 \frac{3}{4}$	4495	8	$11 \frac{1}{2}$	5350	8	53	6110	9	5
q	q . . . 3779	5	2	4634	4	84	5394	5		5425	12	$10 \frac{1}{2}$
\mathbf{r}	.. 4317	19	3 ${ }^{\frac{1}{2}}$	5078	-	3	5109	7	53	5114	7	10줄
s	. 4278	19	7	4310	6	9 ${ }^{\frac{1}{2}}$	4315	7	2年	4316	6	$8 \frac{1}{2}$
t	2355	13	8	2358	16	7	2359	13	$10 \frac{1}{2}$	2368	1	4
u	1655	10	6 $\frac{1}{2}$	+1656	7	9 ${ }^{\frac{3}{4}}$	1664	15	4	1672	10	8
v	. 801	8	3 ${ }^{\frac{1}{2}}$	809	15	93	817	11	$1 \frac{3}{4}$	820	17	3
	... 49	14	10	57	10	2	60	16	$3{ }^{\frac{1}{2}}$	182		11
	24	8	83	145	15	$4^{\frac{1}{4}}$	277	2	94	518	19	
	... 273	\bigcirc	4	514	16	7	888	10	6	1412	9	10
	... 877	5	81	1403	5	- ${ }^{\frac{1}{2}}$	1867	18	$10 \frac{1}{2}$	2141	14	

Addition of Money (derived from Table C).

Write down the number of Addenda named (taken in rows), beginning at the letter named.

Subtraction of Money derived from Table C, page 64.

Find the difference between the amounts indicated in the margin. This method would furnish 300 Subtractions, of which 96 are here given.

$\begin{array}{lcc} f & s . & d . \\ \text { IO } & 0 & 9 \end{array}$		
97	bm... $180 \quad 910 \frac{3}{4}$	cw... 210
7	bn... $841711 \frac{1}{2}$	C x . . . 24016
12	bo... $582 \quad 9 \quad 0 \frac{1}{2}$	cy ... 24^{401811}
4372	b p ... $5^{884} 16{ }^{16}$	cz ... 234 O 11
88	b q . . . $184{ }_{4} 17 \times 11 \frac{3}{4}$	de... 1545
19	br ... 66713 3i	df... 9219 11
1710	b s ... $669 \quad 6 \quad 1 \frac{1}{2}$	dg ... 9718
$9533{ }^{3 \frac{3}{4}}$	71187	dh... $5^{6} 7$
$9516 \quad 6 \frac{1}{2}$	231214	di ... 34110
$190107 \frac{3}{4}$	bv ... 62813 63	dk... 55
9418 81	bw... 100 o $2 \frac{1}{2}$	d I ... $154{ }^{10}$
$59299 \frac{1}{2}$	bx ... $130 \quad 710 \frac{3}{4}$	dm... 5916
17 12	by ... 13010 10	dn... 155
9418 83	12312	do... 342
67714 - ${ }^{\text {F }}$	12917	dp... 344910
$679610 \frac{1}{2}$	284	dq... 55
19 43	cf ... ${ }^{222} 177$	dr ... 4276
$331210 \frac{1}{4}$	g ... 3119	d s ... 4^{28819}
$638143 \frac{3}{4}$	ch ... 73911	dt ... 33 I
8919 52	cie...471 8 3	du ... 4^{83}
20713	ck ... $74 \begin{array}{lllll} \\ \text { c }\end{array}$	dv... 388
$0{ }^{9} \quad 4 \frac{3}{4}$	cl ... 2413 O ${ }^{1}$	dw... 3406
II 4	cm... 70 I 0 O $\frac{3}{4}$	dx ... $370{ }^{14}$
to	cn... $251010 \frac{1}{2}$	dy ... 370
6	co... 472 - $2 \frac{1}{2}$	dz $\ldots \ldots 36318$
11	c p ... $474{ }^{\text {l }}$ 7 ${ }^{\frac{1}{2}}$	ef ... 6ı
33		eg . . . 252
42711	cr $\begin{array}{lllll}\text { c. } & 557 & 4 & 54\end{array}$	eh... 21013
18	c s ... $5588 \quad 17 \quad 3 \frac{1}{2}$	ei ... 1878
581 17	ct ... $4610989{ }^{4 \frac{3}{4}}$	ek... 2099
$185 \quad 263$	ciu ...613 3 3 ${ }^{\text {a }}$	el ... 30816

Multiplication of Money, derived from Table C, page 64.
Multiply the first row by the numbers named.

By	\ldots	s.	d.	f	s.		$£$	s.	d.
3	364	0	-	949	9	112 ${ }^{\frac{1}{4}}$	2109	18	$2{ }^{\frac{1}{4}}$
4	485	6	8	1265	19	II	2813	4	3
5	606	13	4	1582	9	$10 \frac{3}{4}$	3516	10	$3 \frac{3}{4}$
6	728	-	-	1898	19	$10 \frac{1}{2}$	4219	16	$4^{\frac{1}{2}}$
7	849	6	8	2215	9	$10 \frac{1}{4}$	4923	2	54
8	970	13	4	2531	19	10	5626	8	6
9	1092	\bigcirc	-	2848	9	$9^{\frac{3}{4}}$	6329	14	$6 \frac{3}{4}$
10	1213	6	8	3164	19	9 ${ }^{\text {晨 }}$	7033	-	7 ${ }^{\frac{1}{2}}$
	1334	13	4	3481	9		7736	6	8 ${ }^{\frac{1}{4}}$
12	1456	-	-	3797	19	9	8439	12	9

Multiply the second row by the numbers named.

By	\ldots		d.	\ldots	s.		1	s.	d.
3	394	2	3	651	9	73	2564	18	63
4		9	8	868	12	10	3419	18	I
5	656	17	I	1085	16	- ${ }^{\frac{1}{2}}$	4274	17	$7^{\frac{1}{4}}$
6	788	4	6	1302	19	3	5129	17	$1{ }^{\frac{1}{2}}$
7	919		II	1520	2	5 ${ }^{\frac{1}{2}}$	5984	16	$7 \frac{3}{4}$
8	1050	19	4	1737	5	8	6839	16	2
	1182	6	9	1954	8	10Tㅡㄹ	7694	15	8 ${ }^{\frac{1}{4}}$
10	1313	14	2	2171	12	1	8549	15	$2 \frac{1}{2}$
11	1445	1	7	2388	15	3 ${ }^{\frac{1}{2}}$	9404	14	$8 \frac{3}{4}$
12	1576	9	-	2605	18	6	10259	14	3

Multiply the third row by the numbers named.

By	\ldots	s.	d.	f			f		d.
3	725	8	9	935			2280	2	114
4	967	5	0	1247	9	3	3040	3	11
5	1209	1	3	1559	6	63	3800	4	$10 \frac{3}{4}$
6	1450	17	6	1871	3	$10 \frac{1}{2}$	4560	5	10%
7	1692	13	9	2183	1	24	5320	6	10%
8	1934	10	-	2494	18	6	6080	7	10
9	2176	6	3	2806	15	$9{ }^{\frac{3}{4}}$	6840	8	$9 \frac{3}{4}$
	2418	2	6	3118	13		7600	9	9 ${ }^{\frac{1}{2}}$
11	2659	18	9	3430	10	5 ${ }^{\text {a }}$	8360	10	9 9
12	2901	15	-	3742	7	9	9120	II	9

Multiply the fourth row by the numbers named.

By	\ldots	s.	d.	\ldots	s.	d.	\ldots	s.	
	1115	1	9	648	16	I ${ }^{\frac{1}{2}}$	94	I	
4	1486	15	8	865	1	6	125	8	10
5	1858	9	7	108I	6	10 ${ }^{\frac{1}{2}}$	156	16	
6	2230	3	6	1297	12	3	188	3	3
7	2601	17	5	1513	17	$7 \frac{1}{2}$	219	10	5 ${ }^{\frac{1}{2}}$
8	2973	11	4	1730	3	-	250	17	8
9	3345	5	3	1946	8	4 ${ }^{\frac{1}{2}}$	282	4	102
10	3716	19	2	2162	13	9	313	12	1
11	4088	13	I	2378	19	$1 \frac{1}{2}$	344	19	$3^{\frac{1}{2}}$
12	4460	7	\bigcirc	2595	4	6	376	6	- 6

Multiply the fifth row by the numbers named.

By	\ldots	s.	d.	\ldots	s.		f	s.	d.
3	1577	18	-	2141	9	$4^{\frac{1}{2}}$	15	1	2 ${ }^{\frac{1}{4}}$
4	2103	17	4	2855	5	10	20	1	7
5	2629	16	8	3569	2	$3{ }^{\frac{1}{2}}$	25	1	$11 \frac{3}{4}$
6	3155	16	\bigcirc	4282	18	9	30	2	4 ${ }^{\frac{3}{2}}$
7	3681	15	4	4996	15	2 ${ }^{\frac{1}{2}}$	35	2	9 ${ }^{\frac{1}{4}}$
8	4207	14	8	5710	II	8	40	3	2
9	4733	14	\bigcirc	6424	8	$1 \frac{1}{2}$	45	3	$6 \frac{3}{4}$
10	5259	13	4	7138	4	7	50	3	112
11	5785	12	8	7852	I	- $\frac{1}{2}$	55	4	4 ${ }^{\frac{1}{4}}$
	6311	12	-	8563	17	6	60	4	9

Multiply the sixth row by the numbers named.

By	\ldots		d.	E			\ldots	s.	d.
	1394	1	6	2148			2	18	63
	1858	15	4	2864		2	3	18	1
5	2323	9	2	3580			4	17	7 ${ }^{\frac{1}{4}}$
6	2788	3	0	4297	2	9	5	17	I ${ }^{\frac{1}{2}}$
7	3252	16	10	5013	6	$6 \frac{1}{2}$	6	16	$7{ }^{\frac{3}{4}}$
8	3717	10	8	5729	10	4	7	16	2
9	4182	4	6	6445	14	$1 \frac{1}{2}$	8	15	84
10	4646	18	4	7161	17	11	9	15	212
11	5111	12	2	7878	1	$8 \frac{1}{2}$	10	14	$8 \frac{3}{4}$
12	5576	6	0	8594	5	6	11	14	3

Multiply the seventh row by the numbers named.

Multiply the eighth row by the numbers named.

By	y \quad L	s.	d.	\ldots	s.		E	s.	
	5... 4729		6	11985		3 ${ }^{\frac{3}{4}}$	12	19	$0 \frac{3}{4}$
21	1 ... 6621	9	6	16779		54	18	2	8
35	5 ... 11035	15	10	27966		- $\frac{3}{4}$	30	4	$5 \frac{3}{4}$
45	$5 \ldots 14188$	17	6	35956		114	38	17	$2 \frac{1}{4}$
56	$6 \ldots 17657$	5	4	44745	18	6	48	7	2
63	$3 . . .19864$	8	6	50339	3	33	54	8	$0 \frac{3}{4}$
64	4 . . 20179	14.	8	51138	4	\bigcirc	55	5	4
81	1 . . . 25539	19	6	64721	15	87	69	18	114
88	8 . . . 27747	2	8	70315	0	6	75	19	0
90	0... 28377	15	0	71913	1	$10 \frac{1}{2}$	77	${ }^{1}$	$4 \frac{1}{2}$
96	6 . . 30269	12	-	76707	6	-	82	18	\bigcirc
99	9 ... 31215	10	6	79104	8	$0 \frac{3}{4}$	85	9	93
100	O . . . 31530	16	8	79903	8	9	86	7	I
108	8 ... 34053	6	\bigcirc	86295	14	3	93	5	3
	O . . . 37837	0	-	95884	2	6	103	12	6

32 ANSWERS TO EXAMPLES FORMED FROM THE TABLES．

Division of Money．Table C，page 64.

Divide the first row by the Divisors named（showing any remainders）．

By	¢	s．d．$\quad q$ ．	\ldots		d．q ．	\ldots	s．	d．q ．
2	． 60	13	158		$11 \frac{3}{4}-1$	351	13	－ 0 － 1
3	． 40	8． $10 \frac{1}{2}-2$	105	9	113－2	234	8	8 ${ }^{\text {¢ }}$
4	．． 30	68	79	2	54－3	175	16	6－3
5	．． 24	54.	63	5	113－4	140	13	2 2 －I
6	20	$45^{\frac{7}{4}-2}$	52	14	113－5	117	4	4－3
7	．． 17	68	45	4	34－4	100	9	$5^{\frac{1}{4}}$
8	15	34	39	11	23－7	87	18	3－3
9	． 13	$97 \frac{7}{2}-2$	35	3	3年－8	78	2	$10 \frac{3}{4}$
10	12	28	31	12	113，${ }^{4} 9$	70	6	7年－1
11	．．． 11	－7年－1	28	15	54－8	63	18	84－2
12	．．． 10	2 2 $\frac{1}{2}-8$	26	＇7	54－11	58	${ }_{0} 1$	2－3

Divide the second row by the Divisors named（showing any re－ mainders）．

f	ε.	d.	q.
108	11	$7 \frac{1}{4}$	
72	7	$8 \frac{3}{4}-1$	
54	5	$9 \frac{1}{2}-2$	
43	8.	$74-4$	
36	3	$10 \frac{1}{4}-4$	
31	0	$5 \frac{1}{2}$	
27	2	$10 \frac{3}{4}-2$	
24	2	$6 \frac{3}{4}-7$	
21	14	$3 \frac{3}{4}-4$	
19	14	10	-2
18	1	11	-10

f	s．	d.	q.
427	9	9	-1
284	19	10	-1
213	14	$10 \frac{1}{2}-1$	
170	19.	$10 \frac{3}{4}-2$	
142	9	11	-1
122	2	$9 \frac{1}{4}-6$	
106	17	$5 \frac{1}{4}-1$	
94	19	$11 \frac{1}{4}-4$	
85	9	$11 \frac{1}{4}-7$	
77	14	6	-1
71	4	$11 \frac{1}{2}-3$	

[^0]: * Note, that in writing the figure 4, the strokes are not made to meet at the top.

[^1]: * For these exercises, a few good sized cards with single figures printed upon them are very useful. Place them in a row and shift them often.

