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Preface

The broad acceptance of the expansion of the universe as a physically real
phenomenon has been rooted in part in the apparent lack of an alternative
explanation of the redshift. Since its discovery more than a half-century
ago, many new observational phenomena have been uncovered, of which
quasars and microwave background radiation appear to be particularly
fundamental and striking. Nevertheless, there seem to have been few attempts
to rework the foundations of cosmology in a way that might tie these phe-
nomena together in a scientifically more economical way. This is probably
due more to the momentum of the theoretical studies based on the expansion
theory than to its agreement with observation, which has been quite limited
and increasingly equivocal.

In this book I present a new theory that is very different from the ex-
pansion theory, though equally rooted in the ideas of relativity going back to
Einstein, Minkowski, Robb, Veblen, and others. The specific germinal point of
the theory was the observation I made 25 years ago that a more natural oper-
ator to represent the physical energy than the conventional generator of
temporal translation in Minkowski space was a certain generator of the
conformal group that physically closely approximates the conventional
energy. It has taken a long time to realize that the redness of the observed
shift follows from a law of conservation of the new, essentially curved,
energy, which necessarily involves a depletion in the old, essentially flat,
energy, which is all that can locally be measured and directly observed.

This book is however not merely, or even basically, the presentation of a

vii




viii Preface

new model. It is in large part an attempt to lay rational foundations for
cosmology on the basis of the most elementary types of causality and related
symmetry considerations. It is extraordinary how incisive these qualitative
desiderata turn out to be, when integrated with the modern theory of trans-
formation groups. On the purely physical side, the key concepts of time and of
its dual energy are given a new precision of definition and treatment that re-
moves much apparent mystery and, in particular, partially mechanizes the
murky but important matter of the correlation of mathematical with obser-
vational quantities. The title of my original abstract, Covariant chrono-
geometry and extreme distances, summarizes this natural philosophic stand-
point, but a corresponding treatment of very small distances (i.e., elementary
particles) will require much further exploration.

The new “‘ chronometric ”’ theory emerges in a unique way from this stand-
point. It has been interesting to test it against virtually all available relevant
astronomical data and to find that, despite its lack of adjustable parameters
(other than the unit of distance), it is accepted, in the sense of the theory of
statistical hypotheses, by all large or objectively defined samples of galaxies
or quasars, indeed at notably high probability levels. In the cases of samples
less amenable to rigorous statistical treatment, it typically provides a dis-
dinctly better fit to the data than does the expansion theory, with its free pa-
rameter g,, With one equivocal exception. From an overall scientific point of
view, it has been reassuring to find that a fully rational approach to cosmology
can lead to physical predictions that conform to observation, and that modern
statistical theory is a vital aid in comparing theory with observation, rather
than, as appears to be the outlook of some astronomers, an annoying hind-
rance.

One reason for the delay in promulgating the new theory was that initially
one of its predictions appeared in flat contradiction with observation. It
implied a square-law redshift-distance dependence for sufficiently small
distances, whereas it was ‘well known” that the relation was observed to
be linear. But the mathematical unicity and simplicity of the model, together
with its immediate success in dealing with quasars, gave grounds for further
exploration of the theory. It has been quite reassuring to find confirmation
for the square law in a number of observational studies at moderate red-
shifts, and overwhelming evidence for a phenomenological square law in the
case of low-redshift galaxies. (Of course, actual distances are not directly
observable, but the implications of the respective laws for the relations be-
tween the redshift, number, apparent luminosity, and angular diameter of
luminous objects may be compared with actual observations.) Hubble’s
original (1929) derivation of the linear law was based on 22 of the more than
700 galaxies included in the low-redshift analysis, and it now appears that the
linear law was of a much more tentative character than has been generally
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realized. The later observations by his associates and successors must be seen
in the context of a natural tendency to seek the validation and development
of a previously indicated hypothesis, rather than to explore possible alter-
natives.

I'have had useful discussions with many astronomers and mathematicians,
and some physicists and statisticians. Particularly valuable assistance was
provided by J. F. Nicoll who contributed many corrections to the entire
manuscript, assisted in several computations, and kindly permitted the
inclusion here of jointly developed material, as noted below. I am also spe-
cially indebted to N. S. Poulsen for many corrections to Chapter II and to
L. Hérmander, B. Kostant, J. W. Milnor, S. Sternberg, and J. L. Tits for
stimulating mathematical comment. I am grateful for the astronomical
criticism and information conscientiously given by E. Holmberg, C. C. Lin,
D. Lynden-Bell, P. Morrison, G. Setti, B. Stremgren, and others. More
formal thanks are due the Universities of Copenhagen and Lund,
where the present study was drafted in 1971-1972, the Scudla Normale of
Pisa, the I.LH.E.S. of Bures-sur-Yvette, and the University of Warwick,
England, where it was continued, and the National Science Foundation
where my research was partially supported.







I

General introduction

1. Standpoint and purpose

As mathematical science has evolved, the natural tendency toward the
differentiation of labor led to the separation of mathematics and physics,
and to the organization of the whole subject along craft and technical lines,
rather than along integrated and externally motivated ones. This has
resulted in the development of relatively objective and uniform standards of
professional work, and its more effective and precise communicability, in
mathematics, experimental physics, observational astronomy, and else-
where. On the other hand, this very useful and natural technical clarification,
proliferation, and standardization increases significantly the difficulty of
appropriately treating and exposing any single coherent idea or problem of
both mathematical and empirical relevance. The present book attempts to
steer a sound course between the Scylla of wishful speculation, which may
result from attempts to bypass the rigors of conformity to the fundamental
scientific disciplines, in the interest of dealing with issues of large relevance,
and the Charybdis of elaborate technical refinement, which may result from
the determination to ignore questions of relevance, in the interest of achiev- ‘
ing an ultimate technical perfection.

This work treats a single coherent conception of space, time, causality,
and related notions, and so is presented as an entity, although it depends on
the utilization of highly developed areas in the fields of mathematics, phys-
ics, and astronomy. Following the present general introduction, it will be

1



2 1. General introduction

treated seriatim from the standpoints of these respective fields; however, a
certain underlying terminological and notational uniformity will be
employed. The work is primarily a synthesis of foundational developments
in each of the fields, coupled with the observation of the existence of a
remarkable new space-time model. It involves few special features of un-
usual technical difficulty; rather, it leads to important and interesting techni-
cal problems, by virtue of its crystallization of a new scientific outlook, and
its proposal of new notions of time, space, and energy applicable both to
cosmology and to microphysics.

Our present notions of these matters are inevitably based on and
colored by anthropomorphic perceptions and experiences of them. On the
other hand, it is neither inevitable nor desirable that purely theoretical
notions of these physically crucial matters should, on the basis of their
apparent cogency in anthropomorphic or limited professional realms, be
judged binding on theories attempting to deal with the physics of extreme
distances. Of course, the subject is inherently very difficult, in that significant
observation or experimentation seems possible only on the basis of a sub-
stantial theoretical framework, in view of the highly indirect accessibility of
objects at these distances; yet any such framework is necessarily rather
tentative. A priori, it might well appear doubtful whether a physically con-
servative and mathematically well-founded treatment of the concepts of
time, space, energy, causality, etc. could be sufficiently incisive to attain
verifiable quantitative conclusions, and be thereby subject to empirical vali-
dation. A methodologically interesting aspect of this book is the demonstra-
tion that this is the case.

2. Causality and geometry—historical

When Einstein questioned the absolute nature of simultaneity, and
developed a theory of time and communication based on the propagation of
light signals, causality considerations were implicitly introduced into the
theory of space and time. These emerge more clearly in the work of Minkow-
ski. However, causality was treated in a largely philosophical and intuitive
way, as a marginal feature of quantitatively more central matters, e.g., the
addition of large velocities. Indeed, the latter feature is identified by Bridg-
man as the main one in relativity, and one that is logically unrelated to
causality. None of these authors, nor their immediate successors, attempted
an axiomatic treatment; nor made a consistent explicit separation between
mathematical and physical considerations; and to this day (with the excep-
tions noted below), the notions of “causality,” “observer,” “clock,” and
“rod,” are commonly used in quite intuitive, if not subjective, senses in work
in relativity theory.
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The explicit and cogent significance of causality for relativity theory
was first recognized and emphasized by Robb (191 1-1936) and developed by
him into a deductive mathematical theory in which special relativity is effec-
tively derived without any use of such notions as “clock ” or simultaneity »
(at different points of space). As recognized by Fokker (1965), Robb thereby
founded the subject of chronogeometry, in which considerations of temporal
order are merged with geometry in a mathematical way, but with a presump-
tion of applicability to physical space-time. A central notion in Robb’s
theory was a partial ordering in a given space, representing physically the
relation of temporal precedence, in the world’s space-time medium. Many
mathematical axioms, in significant part motivated by optical considera-
tions, with relatively objective physical interpretations (not requiring no-
tions such as observer, clock, or rod at different points of space-time) lead
after extensive analysis in this theory to the conclusion that the given
causality-endowed space is isomorphic to Minkowski space-time, the par-
tial ordering being the usual notion of temporal precedence in this manifold.
By modern standards, while Robb’s work was quite original and exhibits a
high order of mathematical clarity and coherence, it was isolated, unsophis-
ticated, and apparently terminal in intent. Its main significance seems to lie in
its formulation of the causality point of view, and demonstration of its power
to lead to a more objective and at the same time philosophically satisfying
treatment of relativity.

Since the war, the subject of chronogeometry has attracted the attention
of a number of mathematicians, including notably A. D. Alexandrov and
E. C. Zeeman, and in a modified form, J. L. Tits. In work beginning in the
early 1950’s, Alexandrov developed a school of work on mathematical relativ-
ity, very much from the chronogeometric outlook (explicitly so in Alexan-
drov, 1967, a key work), which has been contributed to by Busemann (1967)
and Pimenov (1970), among others. In 1964 Zeeman rediscovered and
exposed cogently the theorem (due originally to Alexandrov and Ovchinni-
kova, 1953, a work which seems not to have been widely disseminated
outside the Soviet Union), that a causality-preserving transformation on
Minkowski space is necessarily a Lorentz transformation, within a scale
factor. In 1960 Tits, in a key work, published a summary of a classification of
all four-dimensional Lorentzian manifolds enjoying certain physically nat-
ural transitivity properties. '

Chronogeometry has also emerged, in quite a different although related
way, from the needs of the general theory of hyperbolic partial differential
equations, and our initial acquaintance with the subject was derived from
the fundamental work of Leray (1952), which correlated in a very general
way the infinitesimal and finite notions of causality. A given hyperbolic
equation defines an infinitesimal notion of temporal order, in the form of a
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proper convex cone in the tangent space at each point of the space-time
manifold. Prewar work by Zaremba and Marchaud was completed and
applied with cogency in Leray’s work. His work, and particularly its chrono-
geometric side, has been further developed by Choquet-Bruhat (1971), who
has made applications to general relativity ; somewhat related work is due to
Lichnerowicz (1971). Partially similar but more intricate and specialized
ideas have been applied to the problem of the structure of space-time in
general relativity by Hawking, Penrose, and a number of collaborators (cf.
Ellis and Hawking, 1973), as well as by other recent writers on the problem
of singularities in general relativity.

The subject of hyperbolic partial differential equations in the large can
be considered in large part as falling under the general heading of causality
and evolutionary considerations in functional analysis. This is not a
question of pure geometry, of course, but rather of function spaces built on
the space-time manifold ; nevertheless there are some essential geometrical
aspects, and causality plays a crucial role. This is the case, for example, for
the key notions of domain of dependence, region of influence, and of causal
propagation. Indeed, hyperbolicity may well be necessary as well as
sufficient for causal propagation, as evidenced in part by recent work of
Berman (1974). This shows in particular that in the Klein-Gordon equation
u, = Au + cu (c = constant), it is impossible to replace A + ¢ by any other
semibounded self-adjoint operator in L, over space if propagation is to
remain both causal and Euclidean-invariant in Minkowski space.

The latter work continues an extensive line of work on the implications
of causality for temporally invariant linear operators. The treatment of the
dispersion of light by Kramers and Kronig was among the earliest and most
influential in this general direction. The work of Bode on the design of wave
filters applied a similar idea in a nonrelativistic context, that of linear
network theory. Mathematically, the work of Paley and Wiener on complex
Fourier analysis, and of Kolmogoroff, and later Wiener, and many others on
linear prediction theory, in part relate to causality considerations in a con-
text of temporal development and invariance. The Paley-Wiener theory was
extended to a more general setting, applicable to relativistic cases, by Boch-
ner. This was used in the postwar development of the general theory of linear
hyperbolic equations due to Garding and Leray, and thereby connected with
causality features.

A partial synthesis of the causality ideas involved in this line of work is
involved in the abstract study of linear systems by Foures and Segal (1955).
A general conclusion which is relevant to the present considerations and
which emerges from this work is that the “ future ” may be represented by an
essentially arbitrary nontrivial closed convex cone in the underlying linear
manifold, without any fundamental loss of scientific cogency in the treat-
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ment of global questions. Furthermore, the convexity of the cone is both
physically natural and technically crucial.

3. Conformality, groups, and particles—historical

Several different lines of physical mathematics, in addition to the chrono-
geometric and hyperbolic partial differential equation ones are involved in
the present work. Indeed, the model proposed here originated in a study
from the vantage points of group deformations and particle classification of
the conformal space proposed as a cosmos forty years ago by O. Veblen.
Chronogeometry supplied only the decisive final clue and a perspicuous and
natural framework.

The rough idea bringing in the deformation of transformation groups
was clearly enunciated by Minkowski, who pointed out—admittedly, ex
post facto—that the displacement of Galilean relativity by special relativity
amounted to a change from one group of transformations to a more sophis-
ticated (and in his view, more attractive) one, of which the first is in a sense a
limiting case. This is the limit as the velocity of light becomes effectively
infinite, for the phenomena under consideration.t Twenty years later it was
found that classical (unquantized) mechanics was similarly a limiting case of
a more accurate theory, quantum mechanics. Actually, Planck’s constant h,
which is involved here, and the velocity of light c, involved in the deforma-
tion of the Lorentz into the Galilean group, are fixed constants, unvarying in
Nature; but a precise mathematical meaning for the notion of limiting case
corresponding to the intuitive physical idea was given in Segal (1951). This
concept of group deformation has since been explored in slightly different
settings in both the physics and the mathematical literature.

In the light of Minkowski’s idea and persistent foundational difficulties
in relativistic quantum mechanics, it was natural to raise the question of
whether this theory is not in itself a limiting case of a more accurate theory.
A model with a discrete space and an associated fundamental microscopic

1 Minkowski wrote: “If we now allow ¢ to increase to infinity, and 1/c therefore to
converge toward zero, we see . . . that the group G, (the Lorentz group) in the limit when
¢ = oo, ie. the group G, , becomes no other than that complete group which is appropriate to
Newtonian mechanics (i.e. the Galilean group). This being so, and since G, is mathematically
more intelligible than G, , it looks as though the thought might have struck some mathemati-
cian, fancy-free, that after all, as a matter of fact, natural phenomena do not possess an invari-
ance with the group G, but rather with a group G,, ¢ being finite and determinate, but in
ordinary units of measure extremely great.” (“Space and Time,” H. Minkowski, translation of
address delivered at 80th assembly of German Natural Scientists and Physicists, Cologne, 21
September 1908; in “The Principle of Relativity,” H. A. Lorentz, A. Einstein, H. Minkowski,
and H. Weyl, 1923, pp. 78-79; reprinted Dover, New York.)
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length, involving a species of approximation of the Lorentz by the de Sitter
group, was proposed by Snyder (1947); the set of fundamental dynamical
variables did not form a Lie algebra. It was noted by Segal (1951) that the
Lie algebras of certain pseudo-orthogonal groups, namely O(S, 1), O(4, 2),
and O(3, 3) were deformable into that of the fundamental dynamical vari-
ables (momenta, boosts, and space-time coordinates) in relativistic quan-
tum mechanics; a parallel heuristic observation had been independently
made by Yang (1947). These Lie algebras were themselves terminal, in the
sense that, unlike the Lie algebras of Galilean and special relativity, or of
classical mechanics, they were not limiting cases of any other (nonisomor-
phic) Lie algebras. In physical terms, this indicated a relatively terminal
property for a corresponding physical theory, for such a theory based on
commutation relations (ie., a Lie algebra) could be a limiting case of
another such theory only if the latter was of higher dimension. While a slight
increase in dimension is always a possibility, any large increase would pro-
duce many more invariants (“constants of the motion,” or mathematically,
number of generators of a maximal Abelian subalgebra of Lie algebra, in the
relevant representations) than appear compatible with the limited number of
states and selection rules observed in elementary particle experiments.
Furthermore, groups of larger finite dimension rarely operate effectively on
a four-dimensional space-time.

Of the cited pseudo-orthogonal groups O(5, 1) and O(4, 2), the groups
of de Sitter and conformal space respectively, have been the most studied. As
indicated by Segal (1967a) and Philips and Wigner (1968), O(5, 1) is difficult
to reconcile with the fundamental principle of positivity of the energy in
quantum mechanics; more specifically, in no nontrivial unitary representa-
tion of O(5, 1) does any self-adjoint generator correspond to a nonnegative
self-adjoint operator. The group O(4, 2) is free of this failing, and a variety of
physical desiderata have pointed to it as a likely candidate for a more
accurate higher symmetry group. As essentially the conformal group, it
contains the Lorentz group as a subgroup; as shown by Bateman and Cun-
ningham sixty years ago and extended by L. Gross (1964), it is the invariance
group of the Maxwell equations—a statement which is mathematically fully
meaningful only when Minkowski space is extended to the conformal space
treated by Veblen. More recently, experimental indications of scale invari-
ance in elementary particle interactions have led to renewed studies toward
the utilization of the conformal group (cf, e.g., Carruthers, 1971).

There have been two major obstacles to the use of the conformal group
in foundational theoretical physics, which are roughly macro- and micro-
scopic in nature, respectively. Macroscopically, conformal space is acausal
in the sense that at a fixed point x, the limit of the space-time point (x, t) as
t = +o0 is identical with its limit as t > — o0 ; these limits exist, the space
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being closed (i.c., “compact ™). This is contrary to physical intuition, leads to
serious difficulties of physical interpretation, makes it impossible to distin-
guish between the advanced and retarded elementary solutions of Maxwell’s
equations in conformal space, etc. From an elementary particle viewpoint,
the fundamental symmetry group is probably more important than the
geometrical space serving as particle medium, but the conformal group
suffers from a corresponding lack of invariant temporal orientation.

Microscopically, relevance to physical elementary particle observations
requires an explicit correlation of representations, and a set of generators of
a maximal abelian subalgebra of the enveloping algebra, with observed
particles and their quantum numbers. This is a highly vertical and complex
process; relatively small differences in the initial aspects of this correlation
may ramify and produce gross differences in the implications subject to
empirical validation. For example, it is not clear a priori whether the energy
and other conventional dynamical variables should remain unchanged, as is
possible because of the inclusion of the Lorentz group in the conformal
group, and is assumed implicitly in most of the theoretical physical literature
(but which leads to difficulties because of the lack of conformally invariant
wave equations for massive particles, among other reasons); or whether the
energy, etc. require modification so as to involve the full conformal group in
a more essential way, as originally proposed by Segal (1951). In Segal
(1967a), qualitative evidence for such a new generator was adduced: (a)
unlike the conventional generator P,, which cannot lead to mass splitting,
according to a theorem due in infinitesimal form to O’Raifeartaigh (1965)
and in global form to Segal (1967b), the new energy operator P, (which
corresponds to a generator of the conformal group which is essentially
different from, ie., nonconjugate to, §/0t) may have a discrete spectrum; (b)
the idea that temporal displacement, as dynamically fundamental, should be
definable in a mathematically unique and natural way is substantiated by P;,
which has such definitions, in terms of O(4, 2) as the generator of the corre-
sponding O(2) subgroup, and in terms of the twofold covering group
SU(2, 2) as the correspondent to its simplest generator. However, a quanti-
tative check on the validity of this definition via microscopic observation
appears difficult except in conjunction with a number of additional assign-
ments or correspondences between apparent quantum numbers and theor-
etical operators, required to identify the particles whose energy spectrum
should be correlated with an appropriate representation of P,.

In Segal (1971) it was observed that the acausality of conformal space—
time could be remedied in the present connection through its replacement by
its locally identical universal covering space; this covering has an infinite
number of sheets, and is thereby suggestive of large-scale macroscopic phe-
nomena, e.g., those of large-distance astronomy. Theoretical exploration of
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this infinite-sheeted covering space from the standpoint of more objective
notions of observer, clock, and rod, in the conservative spirit of the founda-
tions of geometry, leaves little doubt that the appropriate notion of time is
different in the large from the special relativistic one, although microscop-
ically nearly identical to it. This new time 7 is identical with that with
the new energy P, just mentioned is associated (ie., P; = —i(0/07) essen-
tially); it leads directly to physical implications which can be checked
against observation—in astronomy, rather than in microphysics. This book
details the basic theory involved; the astronomical implications; and their
successful and interesting confrontation with observation.

4. Natural philosophy of chronogeometric cosmology

As earlier indicated, when the underlying space-time is linear (ie., a
linear vector space), it is rather well established, in a variety of ways, that an
appropriate general starting point for a notion of causality is a given closed
convex cone in the space-time manifold, representing physically the
“future.”

The general process of nonlinearization of a theory, that is, the transfer-
ence to an arbitrary sufficiently regular n-dimensional manifold of a theory
established for n-dimensional vector spaces, then suggests as a starting point
for causality considerations in a (nonlinear) manifold a structure consisting
in the assignment to each point of a closed convex cone in the tangent space
at the point.

In physical terms, this is the specification of infinitesimal future, i.e., the
set of all future directions at the point.t A given linear hyperbolic partial
differential equation provides a particular such assignment, which we shall
call a causal orientation. However, from foundational and philosophical
viewpoints, there is no particular reason to assume that the causal structure
of space-time arises in this way from a hyperbolic equation; rather, hyperbo-
licity should be an expression of compatibility of propagation with the given
causal orientation.

It thus appears—from other standpoints as well—that a natural start-
ing point for the study of temporal order and associated developments
consists of a smooth manifold together with a causal orientation, in the sense

+ This specification can be regarded as a mathematical formulation of “time in its most
primitive form,” in the sense of Maxwell, who wrote: “The idea of Time in its most primitive
form is probably the recognition of an order of sequence in our states of consciousness.”
(“Matter and Motion,” London, 1877, reprinted Dover, New York.) One of our aims will be to
show that in space-time manifolds with realistic features, this apparently minimal physical
structure already suffices to determine much of the physical interpretation—the notions of
clock, rod, energy, momentum, etc.
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of a smooth assignment to each point of the manifold of a nontrivial closed
convex cone in the tangent space at the point. Initially, such a causal orienta-
tion might appear too qualitative for technical cogency, in comparison with
the familiar differential-geometric structures. However, the notion of
causally oriented manifold appears to be one of considerable economy and
naturalness for the analysis of temporal order, both from a philosophical
and a mathematical standpoint.t

All this is not to say that it would not be interesting or possible to have
a treatment of causally structured spaces which did not depend on the local
smoothness of the space. (For example, there is no essential difficulty in
extending the notion of causal orientation to the genre of arbitrary topolog-
ical spaces.) But until one has a better understanding of causality matters in
the more accessible context of smooth manifolds, it might well be mathema-
tically foolhardy as well as physically irrelevant to attempt to obtain results
for such general spaces comparable to what may be expected to be available
in the smooth manifold case.

Indeed, even the concept of causally oriented manifold is highly qualita-
tive, from a physical standpoint. Although timelike and spacelike directions
in the manifold are determined, the notions of time and space, in the precise
senses associated with the ideas of “clock ” and “rod” are elusive in this
context. It is difficult to see how physically cogent results can be obtained
without a “clock,” or an equivalent structure. For in physics one observes,
largely, the change in the state of a system from one time to another. To give
meaning to a statement concerning the change of state, one needs an objec-
tive parametrization of states which is time-independent, in addition to an
objective notion of time itself. Moreover, the key physical notions of energy
and scattering appear uniquely and effectively definable only when there is a
notion of temporal invariance.

In an arbitrary causally oriented manifold, there may well be many
different types of “world lines” (mathematically, maximal chains relative to
temporal precedence as order relation); and different, possibly topologically
distinct or causally inequivalent spacelike surfaces (i.e., submanifolds such
that neither of any two of its points precedes the other, and which are
maximal with respect to this property). The notion of a clock as an additive
functional on intervals of world lines is conceptually acceptable, but is much

t One rough indication of the cogency of a causal orientation is the existence of evidence
for, and the lack of evidence against, the conjecture that the automorphism group of a causally
oriented manifold is finite dimensional (ie., a Lie group in the classical sense), provided the
cones in question are proper. Another is evidence that an analogue to the Alexandrov—
Ovchinnikova-Zeeman theorem holds; any one-to-one transformation of a globally causal
manifold of the indicated type is automatically smooth, and so a causal automorphism (cf.
Choquet-Bruhat, 1971).
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too limited to provide an adequate basis for correlation of the theory with
empirical physics. The stronger assumption, that a hyperbolic pseudo-
Riemannian structure is given in the space-time manifold, is likewise
insufficient, e.g., to determine a fully viable notion of energy, whose precise
definition and nature is still controversial in general relativity.

A conceptually natural way to introduce notions such as observer,
clock, and rod, a way which generalizes special relativity and is closely
related to elementary particle considerations, is to assume and exploit group
invariance properties. The plausible and widespread if partially implicit idea
that a certain temporal stability underlies the possibility of describing the
dynamics of real physical systems is appropriately formalized by the
assumption that the causal manifold in question admits a nontrivial class of
“temporal displacements,” these being automorphisms of the manifold (qua
causal manifold) which carry each point into one which is either later or
earlier than the given point. Clock may correspondingly be defined, essen-
tially as a continuous one-parameter group of such temporal displacements.
Time is then uniquely determined, within a scale factor, as the additive
parameter t of this group, normalized (partially) so that t > 0 corresponds
to a forward displacement (i.e., one carrying each point into a later point).
Given any such clock, one may of course construct other clocks by conjugat-
ing the given one by other automorphisms of the causal manifold; phys-
ically, any such automorphism leaving a point fixed can be interpreted as a
change in the frame of reference of an observer at the point. In a similar way
the important although less fundamental notion of rod can be associated
with the assumed homogeneity and isotropy of space. Observer then corre-
sponds, in operational terms, to a splitting of the space-time manifold into
respective space and time components, in such a way that the groups of the
“clock” and “rod ” act only on the corresponding component, the temporal
action T; being simply the transformation T — 1 + t. Quantum mechanics
relative to a given causally oriented manifold is naturally taken to involve a
representation of the fundamental symmetry group of all causal automor-
phisms, ie., causality-preserving transformations on the manifold. The
energy for a given observer is then definable as the infinitesimal generator of
the corresponding one-parameter group representing his clock. The spatial
momenta, generalizing the usual linear and angular momenta, are corre-
spondingly describable in terms of the generators of the “spatial displace-
ment” group, consisting of those causal automorphisms that affect only the
space component of the observer. Spatial homogeneity means that this
group acts transitively; spatial isotropy means that the group acts transi-
tively on the directions at any point. The assumptions of temporal and
spatial homogeneity, and of spatial isotropy, are tantamount to the conser-
vation of energy, of linear and angular momentum, respectively. Without
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these laws, the correlation of theoretical and empirical physics as they exist
today would appear impossible.

The physical validity of these notions is confirmed by the observation
that in special relativity the usual notions of observer, clock, etc. are in
essential conformity with the general ones indicated here, Moreover, it fol-
lows from the structure of the causal automorphism group of Minkowski
space earlier indicated that there are no other observers or clocks; thus, all
observers are conjugate within the Lorentz group augmented by the group
of scale transformations. Physically, it seems clear that the Cosmos is four
dimensional, and that absolute simultaneity does not exist, i.e., no mode of
communication or interaction has infinite velocity. Mathematically, these
are readily formulated, the first assumption without change, the second as
the assumption that the future cones contain no full straight lines (as they do
in primitive Newtonian mechanics). Together with the existence of an observ-
er, these seem to form a physically conservative and intuitive set of axioms
for the Cosmos.

It should be interesting to determine all mathematical cosmos in this
sense, particularly those which approximate locally, in the vicinity of a point,
the Minkowski cosmos. But already a certain ambiguity in the Minkowski
cosmos itself appears. While globally all observers are equivalent, locally
this is not the case; the concepts of local observer, time, space, etc. can be
introduced in entirely parallel fashion to the global concepts, by replacing
the global transformation groups involved by local ones. The theoretical
concept of local observer seems physically quite relevant since direct meas-
urement of the entire Cosmos is impossible. Indeed, in Minkowski space,
considered as a causal space-time continuum, there exist invariant local
observers that are nonconjugate to special relativistic ones; and these local
observers are applicable to regions which when scaled in accordance with
physical parameters are far larger than those accessible to direct observa-
tion. The question of which of the local observers is physically correct is a
real one; it cannot be eliminated by a mathematical transformation; while
subject to various theoretical considerations, it must ultimately be weighed
against observation, as we shall do later.

The question arises in particular of whether the same clocks are appro-
priate, in the sense of yielding a convenient notion of energy, including
energy conservation, etc., at all distance levels of physics (or for all types of
interactions). The conventional standard relativistic model is very well
established at the middle distance levels, but its applicability at the extremes
(ie., extragalactic and fundamental particle physics) is largely a matter of
extrapolation in the absence of any other established theory. Since dynam-
ical theories primarily describe transitions from one approximate stationary
state to another, such states at the middle distance level may appear complex
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in terms of inequivalent observers, and in particular nonstationary; con-
versely, simple descriptions of systems at the extreme distance levels may
depend on the analysis of their dynamics in terms of states that are approxi-
mately stationary relative to clocks nonconjugate to any Minkowski clock.
This abstract possibility is exemplified in the treatment of cosmology later
in this book, in terms of the model briefly indicated in the next section.
All of the foregoing has been independent of dynamical assumptions,
apart from the implicit one that observed fields and particles are appro-
priately described by functions defined on the Cosmos, with values in a
suitable spin space; and that the equations determining temporal develop-
ment should imply compatibility with the causal orientation in the Cosmos
(in particular, finite propagation velocity), as well as enjoy invariance with
respect to the causal automorphism group (or at least the subgroups earlier
indicated). These requirements probably essentially imply that the dynam-
ical equations should be partial differential equations which are hyperbolic
relative to the given causal orientation (cf. the related discussion earlier).

5. The universal cosmos—sketch

There exists a cosmos that is locally identical to the Minkowski cosmos,
and has a certain theoretical universality, in being apparently applicable in a
fundamental sense at all distance levels. It may be described as the universal
covering space of the conformal compactification of Minkowski space. For
these reasons, and by virtue of applications made below to large-distance
astronomy, it seems appropriate to designate this model as the universal
cosmos. Its essential ideas were summarized in a preliminary account in
Segal (1972).

The mathematical origin of this cosmos may be briefly indicated as
follows. As earlier indicated, conformal space M, obtained from Minkowski
space M roughly by the adjunction of a light cone at infinity, is highly
symmetrical, but is acausal. Being non-simply-connected, it admits nontri-
vial coverings, which are locally identical to M, and hence locally Minkow-
skian. The finite coverings of M are likewise acausal, but the universal
covering manifold M, is globally causal with respect to its inherited causal
orientation, and defines an admissible mathematical cosmos. The space-
time conformal group G acts only locally on M, but its universal covering
group G operates globally on M. Both the covermg of M by M and that of G
by G are infinite-sheeted, and indeed the group G is not a linear group. The
center of G is Z, x Z_; and the Z_ component precludes a faithful finite-
dimensional linear representation; however G/Z, acts faithfully, as a group
of conformal transformations, on M.

The universal cosmos M is locally identical chronogeometrically to
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Minkowski space, and is essentially} the only other cosmos with this
property enjoying physically natural symmetry and causality properties. Its
validation as a realistic model is discussed below in terms of quantitative
applications at the extragalactic level of distance. The physical interpreta-
tion is fixed by the distance scale, which may be determined from redshift
measurements; a convenient equivalent physical constant may be described
informally as the radius R of the universe. Three fundamental physical units
are determined in a geometrical way; this is impossible in Minkowski space.
M is invariant not only under the 11-parameter Lorentz group extended by
scale transformations which acts on Minkowski space, but the full 15-
parameter conformal group (more precisely, universal covering group ther-
eof); and any two global physical observers are conjugate with respect to
this group. The one-parameter subgroup of this group representing tem-
poral evolution—again unique within conjugacy—is essentially distinct
from, i.e., nonconjugate to (within the causal automorphism group) that in
special relativity. However, as R — oo, the universal cosmos deforms locally
into Minkowski space, and the universal covering group of the conformal
group deforms correspondingly into the Lorentz group together with scale
transformations, four of the generators deforming into zero; and arbitrarily
large bounded regions in Minkowski space can be approximated arbitrarily
closely by the universal cosmos, by taking R sufficiently large. In particular,
the universal energy deforms into the special relativistic energy as R — oo.
One thus obtains a particularly concrete form of deformation of one Lie
group into another, involving in addition a type of deformation of certain
representations of one group into representations of the other.

For any given global observer O on the universal cosmos, and any point
P in the cosmos, there is a unique local relativistic observer O} (and corre-
sponding Lorentz frame) which is tangential to O at P; and O and O}, agree
near P within terms of third and higher order in the distance from P. Thus
Op is locally nearly P-independent; however, if Q is remote from P, O’ and
Op are physically quite different; their Lorentz frames are related by the
product of a scale transformation with a Lorentz transformation. In particu-
lar, the Lorentz frame of Q is in motion relative to that of P, which may be
regarded as a virtual Doppler effect; however, from the standpoint of the
globally more fundamental universal time, the situation is static.

* An open orbit in M under the action of SO(2, 3) enjoys the most crucial properties; but
the regions of influence of compact regions in space may ultimately become noncompact. In any
event, the predicted relations between the primary observable quantities (redshifts, magnitudes,
number counts, etc.) would not differ from those for A. The orbit decomposition of M under
SO(2, 3) was determined by B. Kostant, who noted also the existence of invariant Lorentz
metrics in each of the two open orbits. The global causality of this space was noted by
Wigner (1950), and it is naturally included in the list of Tits (1960).
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The natural energy operator —i(d/07) for the universal cosmos is how-
ever not scale covariantt; built into its structure is a fundamental length, the
radius of the universe. On the other hand, measurements of microscopic
phenomena taking place wholly within a laboratory (i.e., excluding gravita-
tion and redshifting phenomena) are so far as is now known, and may well
be in fundamental principle, scale covariant, i.e., based on units of time and
distance that are wholly conventional. This would suggest that the observ-
able representing local measurement of frequency is not —i(é/0t), but rather
the conventional, scale-covariant operator —i(0/dt), which as it develops is
precisely the scale-covariant component of —i(d/dt), and locally unob-
servably different from it (in natural units). Despite the very small local
difference between these operators, their noncommutativity in the large im-
plies that the relativistic energy operator is not at all conserved under
universal propagation over a lengthy period of time. It is in fact a purely
mathematical deduction that the apparent frequency of light, propagated in
accordance with Maxwell’s equations by universal-time displacements, is
shifted to the red.

6. The chronometric redshift theory

More specifically, the redshift z is found to vary with the distance r from
the point of emission in accordance with the law: z = tan?(r/2R), where R is
the “radius of the universe.” This is in itself not a relation between observ-
able quantities; but a variety of relations between observed quantities, such
as redshifts, apparent luminosities, number counts, and apparent angular
diameters, are readily deduced from this law. These predictions from the
theory have been found to be in much better agreement with actual raw
observational data than would a priori have been expected for an astro-
nomical theory. Some of the outstanding predictions, and their relations to
observation, are as follows:

(1) For small r, z varies as r? in accordance with the observational
analyses of Hawkins (1962) and G. de Vaucouleurs (1972), and as preferen-
tially indicated by the complete sample of radio galaxies due to Schmidt
(1972c), the list by Arakelyan et al. (1972) of Markarian galaxies at substan-
tial redshifts, a sample of Seyfert-like Markarian galaxies studied by Sargent
(1972), a small sample of N-galaxies treated by Sandage (1967), and rather
definitely, the large sample of G. and A. de Vaucouleurs (1964). The very
good fit of the chronometric theory to the m—z data for the de Vaucouleurs

+ Analytically, a generator X of the fundamental symmetry group is scale-covariant if
[X, K] = X, where K is the infinitesimal generator of scale transformations, K = ¥, x/(6/¢x)).
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Figure I  The redshift-absolute magnitude relations Jor the tenth brightest galaxies in bins
of size 20 galaxies, ordered by redshift, included in the de Vaucouleurs tape.

All galaxies having m-z-0 data, 742 in all, were used. The absolute magnitudes for a
square-law redshift-distance dependence, shown on the left, differ negligibly from those based
on: (a) the maximum-likelihood power law fitted to the data; (b) the chronometric theory.
Those shown on the right for the linear redshift-distance law have a trend that differs imper-
ceptibly from that predicted by the chronometric theory, of slope 2.5, which is shown here as a
solid line.

galaxies, together with the strong trend of the deviations from the
expanding-universe hypothesis, is shown by F igure 1.

The apparent deviation from the law of the sample of bright cluster
galaxies studied by Sandage is probably primarily a selection effect. This is
evidenced by the extremely irregular N(< z) distribution of this sample;; this
distribution is moreover highly deviant, even for z < 0.04, both from that to
be expected in an expanding universe and the observational relation for all
such galaxies with published redshifts, as compiled by Noonan (1973). Some
of these circumstances are shown in Figure 2. It is evidenced also by an
apparently very large dispersion in the intrinsic sizes of the galaxies. No
objective statistical criterion for the sample has been published, and in fact
its origin appears to be lost in early decisions of Humason. In addition, the
deviation is augmented by the model-dependency of the apertures of obser-
vation which introduces a z-dependent trend, and possibly by the inherent
tendency of an established theory to influence difficult observations.

(2) The apparent magnitude V depends on redshift z according to the
relation

V =25logz— 252 —a)log(l + z) + ¢,

where o is the spectral index and c is a parameter representing the intrinsic
luminosity of the source; corrections for absorption, aperture, intrinsic
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Figure 2 The N-z relation for two samples of brightest cluster galaxies, in the range
z < 0.04.

Shown are 56 galaxies from Noonan (1973) and 13 galaxies from Sandage (1972b),
Table 2. The N(< z) curve for the Sandage sample differs even more from the expansion
prediction than from the Noonan curve, even for very small redshifts. The respective values of
0 log N(< z)/0 log z|,—,, which should be unaffected by observational magnitude cutoff by
virtue of the evaluation at z = 0, are ~ 1 for the Sandage sample, 1.45 for the Noonan sample,
1.5 for the chronometric prediction, and 3.0 for the expansion prediction.

motion of the source, if any, are not included. In particular, as z inCreases
from 0.4 to 4.0, V should increase by -~ 1.1 mag (for « = 1;for « = 0.7 the
increase is ~ 0.7 mag), as contrasted with the increase of ~ 5 mag on a
typical expansion-theoretic hypothesis.

Quasar observations are in excellent agreement with the new law, with
an overall dispersion for all quasars of less than 1 mag, and of 0.3 mag for
the “locally brightest” fifth of the quasars, where “local brightness” is a
model-independent measure defined as the difference of the magnitude of the
object and the average magnitude of the six quasars at the nearest redshifts
(three at greater and three at lower redshifts than that of the object). These
dispersions are much less than those from the Hubble law (by more than a
factor of 3 in the case of the last sample, of 32 quasars). In all substantial
previously identified samples of quasars, including complete samples of
radio sources due to Schmidt (1968) and Lynds and Wills (1972) and of
optically selected quasars due to Braccesi et al. (1970), the chronometric
dispersion is less than the Hubble-law dispersion, generally by factors of the




6. The chronometric redshift theory 17

log z

l_ L 7/ | | l ]
15 16 17 18 19

my

Figure 3 The smoothed redshift-magnitude relation for quasars.

O, average magnitude of seven quasars at approximately the same redshift. The bar
indicates the unbiased probable error of the group. Chronometric (—) and expansion (---)
(g0 = 1) predictions, with zero points fitted to the average magnitude of the sample, include all
quasars in the list of DeVeny et al. (1971) having unquestioned data. The three quasars of
maximal presently published redshifts are denoted as (a), (b), and (c). On the expansion theory,
(c) (at redshift 3.53) is ~ 50,000 times as bright as the average nearby galaxy, and is moving with
> 0.9 times the velocity of light. On the chronometric theory, (c) has about the same intrinsic
brightness as nearby bright galaxies, and need not be moving at all.

order of 2. This is true also of radio and infrared luminosities, when avail-
able. For the Einstein-de Sitter model, the disparity in dispersion is
typically ~ 109; greater. The nearly optimal fit of the chronometric theory
to the uncorrected quasar data, together with the pronounced deviation of
the Hubble law, is shown by Figure 3.
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(3) The redshift distribution of quasars that would be expected from a
spatially uniform distribution in the present model conforms extremely well
to observed redshift distributions, whether for the complete list of known
quasars given by DeVeny et al. (1971), for complete samples limited in
various magnitudes, or over specified redshift intervals. In contrast, in the
expansion theory, strong evolutionary effects are required to explain the
distribution, as documented by Schmidt (1968, 1972b), Lynds and Wills
(1972), and others, and further strongly confirmed in the present analysis
employing systematically the Kolmogorov-Smirnov test for a variety of
substantial quasar samples, as well as Schmidt’s ¥/V,, test when applicable.
The latter test rejects the hypothesis of spatial homogeneity for the Peterson
and de Vaucouleurs lists of galaxies on the expansion hypothesis, but
accepts the chronometric hypothesis at substantial probability levels.}

(4) Perhaps the major anomaly in quasar phenomena from the
expansion-theoretic standpoint, their apparent unprecedently large energy
output, is fully resolved by the change in the relative luminosities of quasars
and galaxies implied by the chronometric theory. When analyzed on this
basis, observations indicate that the average quasar is ~ 0-1 mag fainter
than the average brightest cluster galaxy, and quite comparable to an aver-
age N-galaxy, or average Seyfert galaxy. The hypothesis that quasars are the
cores of certain bright galaxies whose outer regions are not seen at larger
redshifts is somewhat supported by this and other consequences of
the chronometric hypothesis.

(5) A second major anomaly regarding quasars, the apparent relative
cutoff in quasars above z ~ 2.5, is well resolved without the use of fairly
drastic hypotheses, hardly subject to independent verification, required to
this end in the expansion theory. Specifically, the theory predicts that for any
object uniformly distributed in space, the expected number in the redshift
range 2.25 < z < 3 will be ~ 8% of that in the redshift range 0 < z < 2.25.
In the light of probable and partially documented changes in the spectra of
quasars at higher frequencies and spectroscopic selection effects making
their identification more difficult at higher redshifts, this is quite compatible
with quasar observations; the corresponding figure of 2 407 on the unem-
bellished expansion theory is not.

(6) Apparent superluminal velocities of large redshift objects are elim-
inated on the chronometric hypothesis by the reduction in the theoretical
distance to large redshift objects, typically by an order of magnitude.

+ The Peterson galaxies were observed at given expansion-theoretic apertures, and their
magnitudes consequently require correction to chronometric apertures for a valid test of the
chronometric hypothesis, just as they must be used as given for a test of the expansion hypoth-
esis. The de Vaucouleurs galaxies were measured at apertures determined by observational
rather than theoretical criteria, and were used in the statistical analysis without correction for
both hypotheses.
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(7) The N(m)relation for quasars is very well fitted by the chronomet-
ric curve for a single luminosity class, convolved with a normal law lumino-
sity function of dispersion equal to that observed. This explains the apparent
cutoff in quasar identifications at faint magnitudes ~ 20.5 noted by Bolton
(1969), Braccesi et al. (1970b), and others, a phenomenon that appears anom-
alous from the expansion-theoretic standpoint. The expansion-theoretic
N(m) relation for a complete sample is in fact in disagreement with the
observational relation for quasars in the DeVeny list even when limited to
relatively bright magnitudes such as 18.0.

(8) Theindex —4 log N/ log S for a single luminosity class and spec-
tral index « < 1 is ~ 1.5 for very bright sources but eventually becomes
infinite as § decreases, according to the chronometric theory, following
which it drops to zero. When convolved with a luminosity function of about
one decade width, the theoretical curve rises quite moderately above 1.5 for
fairly bright sources and eventually declines to a value < 1, in qualitative
agreement with observations of Pooley and Ryle ( 1968) and Kellermann et
al. (1971).

(9) Predictions regarding the angular diameter in relation to redshift
are in satisfactory agreement with the data on double radio source quasars
as given by Miley (1971). The angular diameter measured here is properly
identifiable with the metric diameter treated theoretically, and all dispersion
in the observations attributable to variation in the redshift, as measured in a
model-independent fashion, is removed by the chronometric relation. The
situation is similar as regards double radio galaxies listed by Legg (1970).

The theoretical deductions involved here are obtained in a quite direct
and objective manner, and involve no free parameters, other than the dis-
tance scale, which is determined by R. Further observational confirmation
and predictions, standard statistical significance tests, and a discussion of
corrections and selection effects, are given in detail in Chapter IV.

7. Theoretical ramifications; the cosmic background radiation

We close this section with comments on theoretical aspects which seem
likely to be raised in the minds of certain groups of readers. First, on the
general mathematical side, the question arises of whether the methods in-
volved here are ad hoc and entirely particular, or whether the theory can be
understood as an individual instance of a general type of theory. Indeed, the
latter is the case. There is an analogous theory for general classes of causally
oriented manifolds, in relation to corresponding flat manifold tangential to
them. The Cayley transform being causal, there is no chronogeometric local
distinction between the two different manifolds, but in the large there are
topological and other differences. Our basic physical assumption is that
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local measurement (e.g., of frequency) is in terms of the flat tangential
causally oriented manifold—roughly that microscopic observation is based
on a Minkowski clock; but that true free temporal evolution is as given on
the global curved manifold, ie., runs on the universal clock. Thus, the
universal energy of a free wave or particle is conserved, but the apparent
frequency of a photon emitted from an atom changes noticeably after a long
time because it is stationary with respect to the Minkowski rather than
universal clock. Such a limitation on local phenomena and measurement is a
priori plausible because of the absence of any absolute distance scale for
measurements of entirely microscopic phenomena. Normalization of the
commutation relations of quantum mechanics fixes the values of # and ¢ as
unity but leaves unspecified one of the fundamental units. In the universal
cosmos the natural convention R = 1 fixes the distance scale and completes
the specification of units. .

The causal manifolds involved are all globally hyperbolic and have
defined on them analogues of Maxwell’s and Dirac’s equations. In addition
they are extremely symmetrical, being universal covering manifolds of
Shilov boundaries of classical Siegel domains, whose automorphism groups
are closely connected with the presently relevant physical symmetry groups.
In the case of dimension 4, however, there is essentially only one known
instance of the general theory, viz. the universal covering manifold of the
conformal compactification of Minkowski space in relation to Minkowski
space (or equivalently, the universal covering group of U(2) in relation via
the Cayley transform to the Lie algebra of U(2) as identified with the 2 x 2
Hermitian matrices with their usual ordering). This seemingly purely math-
ematical aspect has in our view a certain physical relevance, in diminishing
the selection effect involved in formulating any theory designed to explain
previously observed phenomena, and thereby enhancing the significance of
whatever agreement is found between theory and experiment. Indeed this is
in essence no more than the broadly recognized distinction between correlat-
ing data by curve-fitting and the like, and the formulation of a true theory
based on general ideas and principles.

Second, the relation to dynamical theories—general relativity, the
question of the origin and “age” of the universe, elementary particle
dynamics—is likely to be raised. Since conformal space is conformally
locally identical to Minkowski space, the present model for space-time
stands in essentially the same relation to general relativity as does special
relativity. As a variant of special relativity, it is essentially a purely kinemati-
cal structure, on which one is free to impose interactions as in the case of
Minkowski space. In particular, the ideas of general relativity carry over
bodily and its applications to local gravitational phenomena (e.g., within a
galactic cluster) appear unaffected.
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On the other hand, material dynamical content resides in the postulate
concerning local observations of dynamical quantities, to the effect that
these are represented not necessarily by generators of true, global symme-
tries, but rather by generators of corresponding symmetries in the tangential
flat model. While angular momenta, for example, are unchanged, the energy
and linear momenta are altered in essential ways. The true energy is no
longer represented by — i(0/0t), but by an operator which while extremely
simple and natural from the standpoint of universal space, appears com-
plicated in terms of Minkowski space. It may be put in the form —i 8/dr,
where 7 is the universal time. This differs from —i 0/0t by an operator that is
virtually negligible up to galactic distances, and so as an interaction Hamil-
tonian should not be responsible for any readily observable microscopic
processes. Moreover, as the radius of the universe becomes infinite, this
interaction operator i(9/6t — 0/dt) tends to zero, in accordance with Min-
kowski’s concept of limiting case. It is relevant to note that the difference
between the universal and special relativistic energies, the “superrelativistic
energy,” is represented by a positive Hermitian operator in all physical
(hence positive-energy) representations of the fundamental symmetry group
(for example, in the representation defined by Maxwell’s equations).

The redshifting process may be regarded in the chronometric theory as
a conversion of relativistic into superrelativistic energy, which inevitably
accompanies the delocalization of a photon wave function, the superrelati-
vistic energy being negligible for a localized photon. The conversion be-
comes in classical theory total at redshift z = oo, but at low frequencies and
high redshifts the quantum-theoretic dispersion in frequency (which arises
from the noncommutativity of the operators representing the relativistic and
superrelativistic energies) will significantly broaden the spectrum of the
radiation. It should then appear as background radiation, the totality of
which would be in a state of equilibrium, assuming that the temporal homo-
geneity of the universal cosmos is dynamically as well as kinematically
valid. By conservation of energy and maximization of entropy, this radiation
should have a blackbody spectrum, as is consistent with observations of the
microwave background, which is thereby theoretically predicted.
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Mathematical development

1. Causal orientations

Unless otherwise specified, all manifolds will be taken as real, finite
dimensional, and of class C®; and all groups as finite-dimensional Lie
groups; there is, however, no essential difficulty in being considerably more
general.

Definition 1 A convex cone in a real linear space L is a subset C with the
property that if x, ye C, and if a, b Z 0, then ax + by € C. Such a cone is
trivial if either C = L or C = {0}; otherwise it is nontrivial. It is proper if it
contains no full straight lines and is not a direct product of a ray and a cone
of codimension one. It is C* (respectively analytic) if there exists a finite set
® of C* (respectively analytic) functions on L such that x € C if and only if
f(x)= 0 for all fe ®@.

Definition 2 An infinitesimal causal orientation in a manifold M is an
assignment p — C(p) to each point p of M of a nontrivial closed convex cone
C(p) in the tangent space at p, which is locally definable by a finite number of
inequalities on continuous functions of p and the components of tangent
vectors. Specifically, this means that each point p has a neighborhood N in
which there exist local coordinates x;, ..., x, and a finite set ® of continuous
functions on N x R” such that if g € N and 4 € T, (the tangent space at g),
then [ € C(q) if and only if I = ), a,(9/0x,)|,, and f(q, a;, ..., a,) = O for all

22
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fe ®.1f Mis C* (respectively analytic or algebraic), the causal orientation is
called C* (respectively analytic or algebraic) if it is similarly defined by a
finite number of C* (respectively analytic or algebraic) functions.

Example 1 Let G be a Lie group, let G denote the Lie algebra of all
right-invariant vector fields on G, and let C be a nontrivial closed convex
cone in G. Defining C(p) = [X,: X € C] is easily seen to give a causal
orientation in G, which is C* (respectively analytic) if the cone C is such.

Definition 3 An infinitesimal causal orientation in a group G is said to be
right-invariant if of the form given in Example 1; lefi-invariant if the same
except that left-invariant vector fields are employed; and simply invariant if
both right and left invariant.

Example 2 Let G = U(n), ie., the group of all unitary n x n complex
matrices. Then G can be identified with the linear space H(n) of all n x n
complex Hermitian matrices, via the isomorphism: if X € G, then X — H,
where H e H(n), if for all C* fon U(n), Xf = (d/dt) f(e""x)|,~ o (Where xis a
bound variable); and to avoid undue circumlocution, we shall use this
identification. Let C denote the subset of G consisting of those H in H(n) for
which H > 0, in the usual sense that {Hx, x> = 0 for all vectors x, <y
denoting the usual complex Hermitian positive definite inner product in C.
Then Cis a closed convex algebraic cone in G. It is evidently invariant under
the action (induced) on G of inner automorphisms of G, and so defines an
invariant infinitesimal causal orientation. It is not difficult to verify that if
n = 2, this is the only quadratic such structure, apart from those defined by
—C, and by the one-dimensional cones [II : | > 0] and [II:1< 0]

Definition 4 A finite globally causal orientation in a Hausdorff topological
space M is a transitive relation x < y defined for suitable pairs x, y € M, and
called “precedence,” having the properties that the set of all pairs (x, y) in
M x M such that x <y is closed, and that x < x for all x. A finite (not
necessarily globally) causal orientation in M is an assignment to each point
p € M of a neighborhood N » and a finite globally causal orientation in N »
such thatif g € N, then in a sufficiently small neighborhood of g, the given
causal orientations in N » and N, coincide. If M is a C™ (respectively ana-
lytic) manifold, such a causal orientation is called C*® (respectively analytic) if
it is locally definable by a finite set of C* (respectively analytic) functions of
x and y, in a fashion similar to that earlier indicated.

Example 3 Let C be a closed convex nontrivial cone in the real finite-
dimensional linear space L, and define x < y tomean that ye x + C; L is
thereby given a finite, globally causal orientation.
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More generally, let G be an arbitrary topological (Hausdorff) group. A
finite causal orientation in G is right-invariant in case x <y if and only if
xa < ya for all a € G; similarly for lefi-invariant and simply invariant. Let a
conoid in G be defined as a closed subset K containing e such that K < K.
It is easily verified that for any conoid K, the relation x <y if and only if
yx~! e K defines a finite globally causal right-invariant orientation in G;
and that conversely every such orientation arises in this manner from the
conoid [x € G : e < x]; moreover such an orientation is fully invariant if and
only f aKa™! <« Kfor alla e G.

More specifically, let (L, Q) be a pseudo-Euclidean space, defined as a
pair consisting of a real linear space L of finite dimension together with a
given nondegenerate symmetric bilinear form Q on L;and suppose that Q is
of type (1, n), n + 1 being the dimension of L, i.., can be expressed in the
form x3 — x? — --- — x? in terms of suitable coordinates x,, X;, ..., X, on
L; such a pair (L, Q) will be called a linear Lorentzian manifold. The function
&(X) = sgn x, defined on the closed subset [X € L: (X, X) > 0] is invari-
ant under the component of the identity Oy(L, Q) of the automorphism
group of (L, Q); and the subset in turn, C=[XeL:Q(X, X) =0,
&(X) = 0}, is a closed convex nontrivial algebraic cone in L, which is invar-
iant under Oy(L, Q). With the finite globally causal orientation determined
by this cone, (L, Q) becomes the Minkowski space determined by (L, Q). It
is also called the (n + 1)-dimensional Minkowski space.

The Minkowski spaces determined by two linear Lorentzian manifolds
are isomorphic if and only if they have the same dimension. Here isomor-
phism means a one-to-one transformation preserving linearity, the form Q,
and the precedence relation just defined; however, by the work of Alexan-
drov and Ovchinnikova, and Zeeman, cited earlier, the assumption of linear-
ity is superfluous, if n > 1.

In case n = 3, the Minkowski space (of dimension 4) is isomorphic, in
the same sense, to the space H(2) causally oriented by the cone C defined in
Example 2. The isomorphism may be expressed in terms of the coordinates
= Xg,X =X, V= X5, Z= X3, as follows:

t—x y+iz)

X =(@xy H= .
( xyz)—+ (y——zz t+Xx

Since X? = det H and 2t = tr H, the causal cone in L (i.e. that defining in
the indicated way the causal orientation, and definable as [(t, x, y, z) : t* —
x? —y*—z*20, t 2 0]) is mapped onto the set of all H such that
det H=0and tr H > 0, ie, the set [H: H = 0].

Definition 5 In a manifold M with an infinitesimal causal orientation, the
set of all tangent vectors [ at the point p such that I € C(p) A —C(p) is called
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the instantaneous present at p, and denoted as N »- The causal orientation is
called Newtonian if dim N, (which is independent of p by continuity) is
dim M — 1; partially Newtonian if dim N, > 0; Einsteinian if dim N, =0;
Bergsonian if dim C(p) = 1.

Similarly, in a manifold M with a finite globally causal orientation, the
finite present P, at a point x is defined as [ye M:x<yand y <x]. The
orientation is called Newtonian, partially Newtonian, or Einsteinian near x,,
according as the equivalence classes relative to the relation x ~ x' if x < x’
and x’ < x are totally ordered by the partial ordering canonically induced
on them from that in M (for all x in some neighborhood of Xo) or P, + {x}
(for some x in all sufficiently small neighborhoods) or P, = {x} (for all x in
some neighborhood). It is Bergsonian if the union of the future and past of x
is totally ordered. (We shall make little use of these definitions; they are
included to suggest the conceptual basis and general scope of the theory.)

A (causal) isomorphism between causally oriented manifolds (of either
the infinitesimal or finite type) is a manifold-isomorphism that carries the
one causal orientation into the other. Similarly for the notion of (causal)
automorphism of a causally oriented manifold ; the group of all such, in the
compact-open topology, will be called the (causal) automorphism group of
the (causally structured) manifold. When the manifold is also a group, the
term causal morphism may be used to avoid confusion with the notion of
group automorphism.

Example 4 (a) Any left translation on a group with a left-invariant causal
orientation (infinitesimal or finite) is a causal automorphism; but is not a
group automorphism, except in the case of translation by the unit element. If
the causal orientation is fully invariant, inner automorphisms are causal as
well as group automorphisms.

(b) If in the first paragraph of Example 3 the cone C is proper, then
according to a theorem of Alexandrov (1967), every causal automorphism is
an affine transformation, whose homogeneous part leaves C invariant. In an
arbitrary topological group G with invariant conoid K, any right or left
translation is a causal-morphism, as is any group-automorphism of G which
carries K into K; but in general, for a Lie group, the converse (i.e., the
analogue of Alexandrov’s theorem) is not valid.

(c) Note that the set of all “forward ” vector fields (ie., vector fields X
such that X, € C(p) for all p) is a convex cone in the space of all vector fields,
M being taken here to be C*. Moreover, every tangent vector | € C(p) at
some point p is the value at p of some forward vector field on M. Thus a
causal orientation on a C® manifold may equally well be defined by
specification of the forward vector fields; and our axioms can be changed to
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the assumption that there is given a convex cone C in the space of all vector
fields, which is closed in the topology of convergence on compact sets.

(d) Let S be an arbitrary C*® manifold, and set M = R' x S. Define
the vector field a(8/0t) x Is+ Ig: x X, where X is any vector field on §, to
be forward if and only ifa = 0. This defines a causal orientation on M which
is evidently Newtonian. Note that the group of all causal automorphisms is
infinite dimensional, for it includes all the transformations [ z, x T, for T an
arbitrary diffefomorphism on S. (Here I denotes the identity operator on the
space S.)

Scholium 2.1 A C*® manifold admits an infinitesimal causal orientation if
and only if it admits a nonvanishing vector field.

If the C® manifold M admits the nonvanishing vector field X, then
defining C(p) as [aX,:a = 0] defines a causal orientation. To prove the
“only if ” part of the scholium, take a Riemannian metric on the manifold,
thus obtaining in each tangent space a corresponding euclidean structure.
Now note

Lemma 2.1.1 Let E denote a finite-dimensional Euclidean space, and K the
set of all nontrivial closed convex cones in E. Then there exists a continuous
Euclidean-invariant function defined on K, which maps each cone in K into
a nonvanishing vector in the cone.

The topology on the space of cones is here the usual one, definable as
that obtained from the Hausdorff metric applied to the intersections of the
cones in question with the unit ball, the cones all being taken as having
vertex at the origin. [ am indebted to Professor W. Fenchel for the observa-
tion that this lemma is deducible from a result of Shepard (1966). To com-
plete the proof of the scholium, assign to each point p the vector in C(p)
which is given by a map having the properties given in the conclusion of the
lemma, the tangent space being taken as Euclidean in the indicated way.
This shows the existence of a continuous nonvanishing vector field on M,
whence a smooth such field also exists.

Remark 1 The variant of this result in which “causal orientation” is
replaced by “Lorentzian structure” (i.e., hyperbolic pseudo-Riemannian
metric) is well known; cf. Lichnerowicz (1971) for further developments in
this direction. It is also well known that a compact manifold admits a
nonvanishing vector field if and only if its Euler characteristic vanishes
(Hopf-Samelson).

Example 5 Any covering manifold of a causally oriented manifold is natur-
ally causally oriented itself, by virtue of the pullback from the local homeo-
morphisms into the covered manifold. It is easily seen that any covering mani-
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fold of a globally causal manifold is itself globally causal; but the covering
manifold may be globally causal when the covered manifold is not, as e.g. in
the case of U(n), oriented as in Example 2. U(1) is not globally causal, for the
timelike arc t —» 2™ ¢ ¢ [0, 1], is closed; but evidently the universal cover-
ing group U(1) = R! is globally causal, and the same is true for [ (n) (cf.
below).

Definition 6 A timelike arc in a manifold with an infinitesimal causal orien-
tation is a continuous, piecewise C., oriented arc whose forward tangent at
each point p of the arc lies in C(p); if in an extreme direction of the boundary
of C(p) for all p, the arc is called lightlike. Thus, if the arc is parametrized by
the mapping s — p(s), s € [0, 1], then the tangent vector at p(so),

f=tim e [ f(p(so + €)) — f(p(so))),

=0

S being an arbitrary C* function near p(so), is in C(p), in the case of a timelike
arc. The arc is strictly timelike if at each point the forward tangent lies in the
interior of C(p).

If p and g are points in the manifold M with infinitesimal causal orienta-
tion, we say “p precedes ¢” and write p < q if there exists a timelike arc
whose initial point is p and terminal point is q. It is evident that this relation
is transitive: if p < g and ¢ < r, then p <r.If it has the property thatp < ¢
and g < p implies that p = g—alternatively, if every closed timelike curve is
trivial, i.e. a single point—the causal orientation is said to be semiglobal. In
such a manifold, the future F, of any point x (respectively the past P, or
finite present N.,) is defined as the union of all points preceded by x (respec-
tively which precede x, or both precede and are preceded by x).

Two points p and g in 2 manifold with infinitesimal causal orientation
are called (relatively) spacelike if neither p < g nor q < p. A spacelike sub-
manifold is one any two points of which are relatively spacelike.

Example 6 (a) A compact manifold may admit a semiglobal causal
orientation, an example being the n-dimensional torus, n > 1, oriented by
taking C in its Lie algebra as displacement in the positive direction along an
irrational one-parameter subgroup.

(b) On the other hand, 4 compact C® manifold with an infinitesimal
causal orientation cannot be semiglobal if the causal cone at each point
has nonvanishing interior. For by the lemma cited earlier, there then
exists a vector field X on the manifold M such that for each p, X, is an
interior point of C(p). (Compare the proof of Scholium 2.1.) Let p, be a
nonwandering point relative to the flow on M defined by X; by com-
pactness, such a point exists. According to a version of the “ closing lemma”
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due to Pugh, there is a vector field X’ on M which is arbitrarily close to X,
(in the C! topology) and has a closed orbit. Such a vector field is however
again timelike, in the sense that X'(p) is interior to C(p) for all p, i.e., M is not
semiglobal.

(c) In Example 4c, the (finite) present at any point (t, g) consists of all
points (¢, ¢') with ¢’ € S.

(d) Any Einsteinian infinitesimal causal orientation whose cones C(p)
have nonvanishing interiors determines a finite causal orientation, by virtue
of the relation x <y earlier defined. This is a consequence basically of work
of Zaremba and Marchaud as developed by Leray (1952); cf. also Choquet-
Bruhat (1971). The concept of “global hyperbolicity” due to Leray and
further developed by Choquet-Bruhat is a strengthening of the condition of
global causality leading to global existence theorems of associated linear
hyperbolic equations.

2. Causality in groups

A causal group is defined as a Lie group with an invariant causal orien-
tation. Although in a vector group there are continuum many invariant
causal orientations, in general Lie groups do not admit invariant causal
orientations. We shall be particularly interested in cases in which they do
admit such, but shall first discuss the general existence question.

Scholium 2.2 An open simple Lie group G admits an invariant causal
orientation if and only if there exists an element X € G such thatifa,,...,a,
are arbitrary in G and ¢, ..., c, are arbitrary nonnegative numbers, and if
Yic;ad(a =0, then all ¢; = 0.

Proof Note first that the instantaneous present of a simple group with
invariant causal orientation necessarily vanishes. For it determines a linear
subspace of the Lie algebra which is invariant under all inner automor-
phisms, and hence an ideal.

Now to show the “if ” part of the scholium, define C as the closure of
the set of all } ; ¢; ad(a;)(X), X being the fixed element of G which is given,
and the a; and c; being as described in the scholium, and otherwise arbitrary.
Then C is a closed convex invariant subset of the Lie algebra G. It is
nontrivial because if a convex set is dense in a finite-dimensional linear
space, it must be all of the space. Thus if C is all of G, every vector in G has
the form )’; ¢; ad(a;)(X) for some nonnegative c,, ..., ¢, and suitable a,, ...,
a, in G. But if — X has this form, a contradiction to the hypothesis regarding
X follows.

t Pugh (1967). It is possible to avoid the use of this result by a direct elementary argument
due to L. Hérmander.
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To prove the “only if ” part of the scholium, let C be a nontrivial cone
in G defining an invariant causal orientation, and let X be an arbitrary
nonzero element of C. If }; ¢; ad(a;)(X) = 0 and not all ¢; = 0, it follows
that — X = ), ¢; ad(a;)(X) for suitable nonnegative ¢ and elements g}, of G,
showing that — X is in the instantaneous present. By the initial observation,
this is in contradiction with the assumed simplicity of G.

Corollary 2.2.1 The group O(n, 1) admits no invariant causal orientation if
nz 3.

Lemma Every element of the Lie algebra of O(n, 1), n = 3, is contained in
the Lie algebra of some O(3, 1) subgroup.

This follows by infinitesimalization of results of Wigner (1939) (cf. also
Philips and Wigner, 1968).

Proof of corollary 1In view of the lemma, it suffices to show that every
nonzero element of the Lie algebra of O(3, 1) violates the condition of the
scholium. Indeed, for every such element X there exists an element a of
04(3, 1) (where here and henceforth the subscript 0 to a group indicates the
connected component containing e) such that ad(a)(X) = —X. For as a Lie
group, O(3, 1) is locally isomorphic to SL(2, C), and its Lie algebra corre-
spondingly to that constituted by the 2 x 2 matrices of zero trace. Any such
matrix is similar either to one of the form

I 0 ¢ 01
0 —j or to o ol

It is easily seen that any such matrix is similar to its negative. But a similarity
transformation on such a matrix corresponds precisely to the action of ad(a)
on the Lie algebra, for suitable a.

After this chapter was written, a general criterion for the case of semi-
simple groups was obtained by B. Kostant. With his permission, a slight
modification of his treatment is given here.

Theorem (Kostant) Let G be a semisimple Lie group, and let R be a
representation of G on the real finite-dimensional linear vector space V. Let
K be a Lie subgroup of G such that R(K) is maximal compact in R(G). Then
there exists an R(G)-invariant closed convex cone C in V such that
Cn —C={0} if and only if there exists a nonvanishing R(K)-invariant
vector in V.

Proof 1t is evidently no essential loss of generality to assume that R is
faithful, and to take R as the representation A — 4. Now suppose that Cis a
given cone with the indicated properties. Then there exists a linear func-
tional 4 on V such that A(x) = Ofor all x € C and AMxo) > 0 for some x, € C.
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Let w = frx) Ax dA; then w is K-invariant, and A(w)> 0, showing that
w#0.

Conversely, suppose there exists a nonvanishing K-invariant vector w
in V. For the proof, a positive definite bilinear from 8 on V with the property
that f(Aw, w) 2 0 for all 4 € G will be constructed. Toward this end, let
G = K + P be the Cartan decomposition of G, the Lie algebra of G, so that
G = PK is the polar decomposition of G, where P = exp P. Then
K + iP = G, is a compact form of the complexification G + iG, and hence
the complexification V, =V + iV of V can be given a complex Hilbert
space structure in such a way that the elements of G, are skew-Hermitian.
Let B denote the restriction to V x V of the Hilbert space inner product.
Then all X € P are Hermitian, which implies that A is positive definite for
Ae P, ie, (Aw,w)> = 0 for all A€ P and we V. But any B e G is of the
form B = AU, where A € P and U € K. Since Bw = Aw, B(Bw, w) = 0 for
all Be G.

Now let C, denote the set of all finite linear combinations with positive
coefficients of the Aw with 4 € G. Then C, is a G-invariant convex cone, and
B(v, w) = 0 for all v € C,; it follows that B(v, v') = 0 for all v and v/ in C,,.
The closure C of C, has the same properties. Finally, if z is both in C and
—C, then f(z,z) and B(z, —z) are both nonnegative, implying that
B(z, z) = 0, and hence that z = 0.

Corollary If G is simple, then there exists a closed convex cone C in G such
that C n —C = 0, and which is invariant under the adjoint representation,
if and only if G/K is Hermitian symmetric, or equivalently, if the center of K
has dimension 1.

Proof It is known that when V is irreducible, there exists at most one
R(K)-invariant vector (within a scalar factor). The theorem then implies that
the indicated cone C exists if and only if the dimension of the centralizer of K
in G is 1. But according to a result of E. Cartan, as a real space P is
irreducibly invariant under ad K, and so contains no nonzero elements
which commute with K. It follows that C exists if and only if the center of K
is one-dimensional, which, by another result of Cartan, is equivalent to G/K
being Hermitian symmetric.

Discussion The maximal compact subgroup of SO(p, g) is SO(p) x SO(q)
implying that the Lie algebra of SO(p, q) contains a cone C of the indicated
type if and only if either p or g is two. On the other hand, it follows that
SU(p, q) (whose maximal compact subgroup is SU(p) x SU(q) x U(1) for
pq # 0), and Sp(2n, R) (whose maximal compact subgroup is U(n)), and
exceptional cases corresponding to E¢ and E, always admit such a cone.
In the case of a simple group, if there exists any nontrivial invariant
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convex cone C, it is necessarily of the indicated type, since C » —C is an
ideal. In all probability, if C exists at all, it is unique (the integration argu-
ment given earlier shows it to be minimal), contains interior points, and
coincides with the positive-energy cone for suitable unitary representations,
i.e., the subset C = [X : iU(X) = 0] for the representation U. In general, the
conoid C in G generated by C, i.e., the closure of | J,-,(exp C)"in G lacks the
important property that C n C~' = {e}, i.e., G lacks a nontrivial finite sense
of future displacement corresponding to the infinitesimal one defined by C;
but this is conjecturally the case if G is simply connected.

Scholium 2.3 In a causal group, the exponential map is locally causality-
preserving (the Lie algebra being linearly causally oriented by its given
cone): if X <Y, then e* <e' and if e* < e for all small ¢ > 0, then
X<Y.

Proof Since this is a local question, it is no essential loss of generality to
take the group G to be a group of matrices (by Ado’s theorem); the Lie
algebra may then be identified with a Lie algebra of matrices. It is evidently
sufficient (since dT is a linear isomorphism at each point in a sufficiently
small neighborhood) to show that if T denotes the map X — e*, then dT
carries any vector in the cone at X, X + C (identified by virtue of linearity
with a subset of the tangent space at X) into a vector in the forward cone
C(eY).

Consider the ray [X + eZ: ¢ = 0], where Z is a fixed element of G. This
ray maps into the arc e **4, ¢ > 0, in G. To say that this arc is in a forward
direction at & = 0 is to say that (9/0e)e* **?e~X|,_, lies in C. In fact, by
Duhamel’s principle,

XHeZ = X jle(l—s)X(az)es(X+£Z) ds.
0
From this it follows that (6/0¢)e* "*2e™* = [§ e Ze™** ds. Since C is invari-
ant and closed, the last integral has its value in C.
To show that ¢ < ¢ for all small ¢ implies that X < Y; it suffices,
noting that e ¥e'Y = ¢ =% + O(t?), to treat the case X = 0, which follows
from the Leray (1952) theory.

Corollary 2.3.1 The unicover U(n) of U(n) (in the causal orientation earlier
indicated) is globally causal.

Proof The unicover U(n) is isomorphic to R' x SU(n), the covering trans-
formation being (¢, u) » e**"u. To show that U(n) is globally causal it
suffices to show that if (¢;, u;), j = 1,2, are any two points such that
(¢4, uy) < (23, uy), then ¢ty < t,, for there can then exist no nontrivial closed

timelike arc. By compactness, it suffices to show this when the two points are
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arbitrarily close; they may then be taken to be in U(n) rather than in the
unicover, and by invariance it is no essential loss of generality to take one of
the points as the group unit I. The result then reduces to showing that if w is
sufficiently near e in U(n) and if e <w, then 0 < t(w), where t(w) =
(27ni)~! log det w; this is again a consequence of the Leray theory.

To show that the future and past of any point is closed, it suffices to use
a criterion of Choquet-Bruhat (1971) for global hyperbolicity, according to
which this is implied by the existence of a complete Riemannian metric on
the manifold such that the timelike arcs from one point to another have
bounded length. Using the direct product metric on R x SU({n) (the usual
one on R', any on SU(n)), this follows from the compactness of SU(n) and
what has been shown above.

Definition 7 A forward displacement in a causally oriented manifold M is a
causal automorphism T such that x < Tx for all x e M.

Scholium 2.4 Let M be a manifold with infinitesimal causal orientation,
whose corresponding finite relation p < g defines a finite globally causal
orientation (respectively, manifold with finite causal orientation). Let G
be any C! Lie transformation group on M, which is represented by
causal automorphisms of M. Let C denote the set of all elements
X in G such that exp(tX) is a forward displacement for all ¢ >0
(respectively, near each point p is a forward displacement for all sufficiently
small ¢t 2 0). If C # 0, then G is invariantly causally oriented by the designa-
tion of C as causal cone; and is globally causal if M is such.

Proof If X, YeC, then exp[t(X + Y)] = lim,(exp(¢tX/n) exp(¢Y/n))",
which represents exp[t(X + Y)] as a limit of products of forward displace-
ments; by the results just cited, any such product is again a forward displace-
ment, as is any limit of such. Since C is invariant under multiplication by
positive scalars by its definition, it follows that C is convex. Another applica-
tion of the fact that the future of a point is a closed set shows that C is closed.

The elements of G act as causal automorphisms, and so transform by
conjugation any forward displacement into another forward displacement.
It follows that C is invariant under ad(G). Now if g is a function from [0, 1]
to G defining a timelike arc, and if x is arbitrary in M, then gx defines a
timelike arc in M. If M is globally causal and if g is closed, it follows that gx
is constant on [0, 1], ie,, g is constant on [0, 1], which means that G is
globally causal.

Example 7 The causal automorphism group of Minkowski space M is the
11-parameter group consisting of the inhomogeneous Lorentz transforma-
tions augmented by scale transformations. This is a Lie group, which acts
analytically, and so is globally causally oriented by the designation of C as
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those Lie algebra elements that generate forward displacements. This orien-
tation is invariant, and consists of the sums of infinitesimal scale trans-
formations with forward vector displacements.

Scholium 2.5 Let M be a C* causal manifold admitting a connected Lie
group G of causal automorphisms, of which M is a homogeneous space ; and
suppose that the subgroup H of G leaving fixed one point of M has finitely
many components.

Then the universal covering space M of M is G/H’, where H' is the
connected subgroup of G whose Lie algebra is (locally) the same as that of
H, and G acts causally on M.

Lemma 2.5.1 If G is a connected and simply connected Lie group and H is
a closed connected subgroup, then M = G/H is simply connected.

Proof Let t —m(t), t € [0, 1], be a continuous arc in M, with m(0) =
m(1) = ¢, where ¢’ = ¢(e), ¢ being the canonical map of G onto G/H; it
must be shown that m(-) is homotopic to a trivial map. From the known
local form of G/H, for any s € [0, 1] and for t sufficiently near to s, there
exists a smooth arc t — g(t) in G such that m(t) = ¢(g(t)). Combining this
with the simple connectivity of G, it follows that there exists a continuous
arc t — g(t) defined for all ¢ € [0, 1], such that m(t) = ¢(g(t)), ¢ € [0, 1]. Since
the exponential map from the Lie algebra G to G has dense range, it is no
essential loss of generality, for the purpose of showing that the arc m(-) is
homotopically trivial, to assume that g(1) lies on a one-parameter subgroup
of H; otherwise, m(1) and g(1) may be displaced by arbitrarily little to
achieve this situation, without affecting the homotopic character of the arcs
in question. Now let g'(t) = exp(tX), where X is an element of the Lie
algebra of H of H such that exp(X) = g(1). Then g(-) and ¢'(-) are homo-
topic in G it follows that ¢ - g(- ) and ¢ - g'(- ) are homotopic in M ; but the
latter path is trivial.

Proof of scholium Let D be the discrete central subgroup of G such that
G/D is isomorphic to G, and let 6 denote the canonical homomorphism of G
onto G. Then 0(H') = H,, for §(H') is a connected subgroup of G with the
same Lie algebra as H,, where H, is the component of the identity of H. It
follows that the map gH' — 6(g)H is well defined from G/H’ onto G/H, . By
general Lie theory and the fact that 6 is a local isomorphism near the group
unit, the indicated map is also a local homeomorphism, and hence is a
covering transformation of G/H' onto G/H,, which in turn covers M finitely.
Since G/H' is simply connected by the lemma, it is the unicover of M.

In order to establish the causality of the action of G on M, it suffices to
show that every one-parameter subgroup of G acts causally on M, for G is
generated by these, and any product of causality-preserving transformations
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is again such. Consider first the case in which H = H,. Let ¢ denote the
indicated covering transformation of M onto M: ¢(gH') = 6(§)H. Then it
follows that ¢(g, g, H') = 6(3,)¢(G, H'). Now observe the

Lemma 252 Define a diffeomorphism T at a point p of a causal manifold
M as being causal at p in case dT, carries C, into Cy,. Now let T, be a
one-parameter C* group of diffeomorphisms of M, and suppose that for
each point p e M, there exists an ¢(p) > 0 such that T, is causal at p if
{t| < &(p). Then T, is causality-preserving, for every t.

Proof Let t denote the supremum of the values ¢ > 0 such that T is causal
at p for all se [0, t]; if £ = o0, the conclusion of the lemma is valid, so
suppose f < co. Now T, is causal at T;p if |s| < ¢ for some ¢ > 0. But this
means that T;,  is causal at p, contradicting the assumption that £ < oo, and
completing the proof.

To conclude the proof for the case H = H, it now suffices to show

Lemma 2.5.3 Every transformation on M corresponding to an element of a
one-parameter subgroup of G is causality-preserving.

Proof Let p = o H' be an arbitrary point of M, and let X be arbitrary in
G. Then ¢ is locally a dlffeomorphlsm near p, say ¢ is a dlﬂ"eomorphlsm of
the open set R having p in its interior onto the open subset R in M having
p = ¢(p) in its interior. Specializing the relation indicated above, for any real
t, d(exp(tX)joH') = exp(tX)p(go H'), where X = df(X). Let & > 0 be so

-small that exp(zx)p € R and exp(tX)p € R for |t| < & The two local one-

parameter groups involved here then have equivalent action near p and p, as
1mp1emented by ¢; since exp(tX) is causality-preserving on M, this shows
that exp(¢X) is causal at p, for sufﬁcwntly small t. It follows from the im-
mediately preceding lemma that T, is causality-preserving on M for all t.

The general case reduces to the case in which H = H, once it is shown
that the action of G on G/H, is causal; but the local action of G on G/H,, is
identical with its focal action on M.

3. Causal morphisms of groups

We now consider groups of causality-preserving transformations on
specific classes of causal groups. These transformations are not necessarily
group automorphisms (e.g., vector translations on Minkowski space
preserve causality but are not automorphisms of the vector group by which
the space may be represented as a causal group); to avoid confusion, we
shall use the term causal morphism rather than causal automorphisms to
refer briefly to a causality-preserving analytic homeomorphism on a causal

group.
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The notation H(n) will refer to the real linear space ofalln x n complex
Hermitian matrices, as a causal linear manifold, the cone C(n) being taken as
the matrices H which are > 0. When indicated by the context, H(n) will be
identified in the usual way with the Lie algebra of the n x n unitary group
U(n), whose causal orientation will be taken as that defined by the indicated
cone.

Scholium 2.6 If n > 2, every one-to-one transformation. T' of H(n) onto
itself leaving 0 fixed and such that T(H ) < T(H')if and only if H < H' is of
the form T(H) = G*F(H)G, where G is an arbitrary nonsingular matrix and
F is either the map F(H) = H or F(H) = H.

Proof According to a theorem of Alexandrov (1967), any such transforma-
tion T is necessarily affine, in the real linear space H(n). The proof is
concluded by reference to the result that any linear transformation on H(n)
which is an isomorphism for the order relation has the indicated form.

Scholium 2.7 For any transformation T = (¢ 5) in SU(n, n), let p(T)
denote the transformation U — (AU + B)CU + D)~! on U(n). The map
T - p(T) is a homomorphism of SU (m, n) into the group of all causal mor-
phisms of U(n).

It is well known that the indicated transformation p(T) does indeed act
on U(n), and that p is a homomorphism. To show that p(T) is a causal
morphism it suffices to show that for arbitrary U € U(n) and arbitrary Her-
mitian H > 0, then

—i(0/0e)T(e* U)T(U)™'|,_4 = 0,
where T(U) denotes (AU + B)(CU + D)~ 1. By straightforward differentia-
tion, the indicated derivative is

AHU(AU + B)™! — (AU + B)(CU + D) 'CHU(AU + B)~!
=[A4 - (AU + B)(CU + D)"'CJHU(AU + B)™'.
To show that the last expression is nonnegative, it suffices to show that
A — (AU + B)(CU + D)~! — C = [U(AU + B)~ %,

This putative equality transforms by simple reversible operations into the
putative equalities
A = (AU + B)(CU + D)™!'C = (U*4* + B*)~1U*;

AU — (AU + B)(CU + D)™'CU = (U*4* + B*)~1;
(U*A% + B*)7![(U*A* + B*)AU ~ (U*C* + D¥)CU] = (U*A* + B*)"1;
(U*4* + B*)AU — (U*C* + D*)CU = I,

and this last equation follows from the relations A*A — C*C =1,
B*A — D*C = 0, which are implied by the assumption that T € SU(n, n).
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Scholium 2.8 The Lie algebra of U(n), as identified with H(n), is causally
isomorphic to the open dense subset

U,(n) = [U € Uln): det(I — U) # 0},
via the Cayley transform H — (H — il)(H + il)™*.

Proof 1t suffices to show that if H and F are any fixed Hermitian matrices,
and if H(¢) = H + ¢F, then setting
U(H) = (H — il)(H + i)~ " lim (is)" '[U(H(e))UH)" ' ~ 1] 2 0
e—0
if and only if F = 0, for the indicated limit relation means that the arc
¢ —» U(H(e)) (¢ 2 0) has a timelike forward direction at ¢ = 0. Now

(ie)- [U(HE)UH)"" — 1] = —2is) [iH + il)"*
— i(H(e) + i) "JUH)"?
= 2e"YH(e) + i) '[(H + iI)
—~ (H(e) + il)](H + il)"'U(H)™*
— 2(H + i)~ F(H — i),

The last expression is of the form G*FG where G is nonsingular, and so
is nonnegative if and only if F is such.

Remark 2 1t is very likely that all causal morphisms of U(n) are of the form
treated in Scholium 2.7. It is also likely that, within conjugacy, the Cayley
transform is the most general open causal transformation from a linear
causal manifold (i.e., one admitting a linear structure in such a way that the
future of any point x has the form x + C for some closed convex cone C)
into U(n), provided n > 1 . (It is easily seen that this is not the case when
n = 1.) This would follow directly if the Alexandrov theorem were true as a
local theorem, but it is not: local conformal transformations in Minkowski
space are local causal automorphisms, without necessarily being locally
affine.

In a different but related vein, it is probable that any one-to-one trans-
formation which preserves the causal structure in a smooth causal manifold
is necessarily smooth, provided the defining causal cones are proper. (This
means they should contain no full lines and should not be the direct product
of a ray and a cone of lower dimension.) A partial result in this direction has
been given by Choquet-Bruhat (1971); for manifolds which are globally
hyperbolic in the sense of Leray, automorphisms in the indicated sense are
necessarily continuous. It also seems probable that the group of all such
automorphisms is finite-dimensional, again in the proper case. That some
such restriction is necessary is shown by the case of two-dimensional Min-
kowski space; see Zeeman (1964).
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Corollary 2.8.1 For any transformation T € §U(n, n), let p(T) denote the
action on the unicover U(n) earlier indicated. Then P is a homomorphism of
§U(n, n) into the group of all causal automorphisms of the globally causal
space U(n); and §U(n, n) is itself globally causal with respect to the causal
orientation naturally induced on it.

Proof This follows directly from earlier scholia, together with the results
concerning U(n) just obtained.

4. Causality and conformality

As already seen, Minkowski space is closely related to the space U(2) in
the series U(n) of causal groups. It may also be represented in terms of
projective quadrics in a way that brings out the relations between Min-
kowski spaces of different dimensions. Instead of the series SU (n, n) of groups,
the series O(n, 2) intervenes. Considerations of conformality play a general
role for this series.

Definition 8 A conformal linear space is a pair (L, §), where (L, Q) is a
pseudo-Euclidean space (ie., L is a real finite-dimensional linear vector
space; @ is a nondegenerate symmetric bilinear form on L), and § denotes
the equivalence class of symmetric forms containing the given form Q, equiv-
alence being defined as proportionality via a nonzero constant. For any
given pseudo-Euclidean space (L, Q), the conformal linear space (L, Q) is
called the induced (or associated, or corresponding) conformal linear space;
and @ is called a linear conformal structure on L.

A pseudo-Riemannian space is a pair (S, g) where § is a real C® mani-
fold and g assigns to each point x of S a nondegenerate symmetric bilinear
form g, on the tangent space S, to S at x, in a C* manner (i.e. in terms of
local coordinates, the coefficients of g are C*). A conformal transformation
from one pseudo-Riemannian space (S, g) into another (S, g)isacC™
homeomorphism T from S into S’ such that for every point x € S, the
differential dT, of T at x is a linear conformal isomorphism of (S,, §,) into
(STx> §7x)- When such a transformation T exists, the pseudo-Riemannian
spaces (S, g) and (S', g') are said to be conformally equivalent.

A conformal space is a pair (S, q) consisting of a C*® manifold S
together with a mapping g from each point x of S to a linear conformal
structure on S, which near each point x, has the form ¢, = g, for some
pseudo-Riemannian structure g near x,. Conformal transformations be-
tween conformal spaces, conformal equivalence of conformal spaces, etc. are
defined correspondingly.

(The foregoing definitions are basically very well known ; but because of
slight variations in the literature, it has seemed desirable to make them
explicit here; this serves also to indicate some notations.)



38 Il. Mathematical development

Now let (L, Q) be an arbitrary pseudo-Euclidean space. Let 6 denote
the mapping x — X from L onto the corresponding projective space L of all
lines of L. The manifold Q = [% & L.: Q(x, x) = 0] is called the projective
quadric determined by Q.

The orthogonal group O(Q) is defined to consist of all linear transfor-
mations T on L leavmg invariant the form Q If Tis any nonsmgular linear
transformation on L, the transformation T : X% — T is the projectivity
induced by T. If T € O(Q), then T leaves M invariant, and the map
T — T'| M is a homomorphism of O(Q) into the group of all projectivities of
L which leave M invariant. The image of O(Q) will be called the projective
group on M, and denoted P(Q); locally, it is isomorphic with O(Q) via the
indicated mapping.

Scholium 2.9 For any given real nondegenerate quadratic form on a finite-
dimensional linear space L, there exists a unique C* conformal structure on
the associated projective quadric which is invariant under the projective
group of the quadric.

Specifically, this structure is given as follows in the notation just
indicated:

Every tangent vector A to Q at a point % has the form d6(1’) for some
tangent vector 4’ to L at x such that Q(4, x) = 0 (making the canonical
identification of the tangent space at x with L), and conversely every vector
of the form d6(2’) is tangent to Q at X; and the linear conformal structure in
the tangent space T is determined by the quadratic form g(4,, 4,) =

(41, A3), where A; = dO(l’) =12).

Proof That a unique conformal structure on Q is obtained in the indicated
fashion is a matter of elementary calculus on manifolds, with the use of
Euler’s theorem on homogeneous functions. That this structure is invariant
under the projective group follows from its invariant form. To show it is the
unique such structure, it suffices to show that at each point % of Q, there
exists a unique linear conformal structure in T: which is invariant under the
induced action of the group of projectivities of Q which leave % fixed. Taking
the point at infinity (as is no essential restriction, the projective group being
transitive on Q), this is a matter of showing that the pseudo-Euclidean group
on R¥ extended by magnifications, relative to a nondegenerate quadratic
form Q' on R¥, leaves invariant no linear conformal structure other than that
determined by @'. This is elementary.

Definition 9 A real nondegenerate quadratic form is said to be of type (a b)
if it may be expressed in terms of suitable linear coordinates as x2 ;, + -+ +
x%, — x} —--- — x2. Types of pseudo-Riemannian and conformal struc-

tures are similarly defined.
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Scholium 2.10 With the same notation as in the preceding scholium, if Q is
of type (a, b), with 0 < a < b, then Q is analytically conformal with the
direct product of two spheres S~ x $*~! modulo the direct product of the
corresponding antipodal maps.

Proof Taking Q to have the form given in the preceding definition, every
point of Q is of the form % with x such that

o+ x=xi 4 x2=1

With $%70 = [(x_y, ..., x_,):x2, + - + x2, = 1], the mapping from
5471 x §*~1into Q,

Ix =[x g, vy X2 g) (X1 co0s Xp)] = %,

is therefore onto M. Evidently, X = § with x and yin §¢7! x §b-1 if and
only if x = +y, so that IT is a twofold covering of Q by $47! x §*7! The
antipodal map A4: x —» —x is thus such that S~ ! x $~! modulo the two-
element group {1, 4} is analytically isomorphic to Q via the indicated
mapping.

Using the fact that a tangent vector to §°~ ! at (x1, ..., x,) has the form
2i=1 u(0/0x;) with coefficients u, such that i1 ux; =0, the u; being
unique, and that the length of this tangent vector according to the standard
Riemannian structure on $°~ ' is Y, w2, it is straightforward to compute
the conformal structure given by the preceding scholium in terms of the x; as
coordinates, and verify that it agrees locally with that on the direct product
571 x 8§71 (and so is the same as that at the quotient of this product
modulo A4).

Definition 10 A conformal space (S, g) is said to be conformally [globally)
causal in case g is of type (1, c) (c = 1), and if S admits a [global] causal
orientation whose cone at any point x consists of one of the two cones in the
tangent space at x on which g(4, 1) = 0, where g is any pseudo-Riemannian
structure defined near x which induces the conformal structure q.

Remark 3 Any covering space of a conformal manifold is again a confor-
mal manifold, in a unique way so that the defining covering local homeo-
morphism is locally conformal; and is conformally [globally] causal if the
original manifold is such. Compare the earlier remark on the lifting of causal
structures to covering manifolds.

Scholium 2.11 Let (L, Q) be a given pseudo-Euclidean space such that Q is
of type (2, n + 1), n > 1. Then the projective quadric Q defined above is
conformally causal; and its unicover ) is globally so.
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Proof Taking Q to be of the form x? ; + x5 — Y 7! x7 relative to suitable
coordinates x; on L, and setting Q' = S* x S", then Q' has a natural confor-
mal structure, i.e., the direct product of the structures on its factors, and as
shown earlier, covers Q twice via a local homeomorphism which is also
conformal. This conformal structure on Q' is also causal, as may be seen in
the following way. The tangent space T, at any point x € Q' is a linear
subspace of the set of all tangent vectors to R"*3, where Q' is imbedded in
R™*3 via the mapping

(=15 Xo) (%15 +vvs Xus1)] = (X— 15 Xo 5 vvvs Xps1):

This subspace consists of all tangent vectors to R"*® of the form
A =311 uf0/ox;) such that u_; x_; + ugXe = Y121 u;x; = 0. The con-
formal structure on Q' at x may be correspondingly determined by the
pseudo-Riemannian structure g given by the equation

n+1

gl A)=ur, +uj— > ul
i=1

Now let C'(x) denote the set of all vectors 4 tangent to Q' at x, such that
g(A, A) = 0and u_, xq — ugx_; 2 0. It is easily seen that C'(x) is a closed
convex cone, and that it is C*® as a function of x in the sense earlier indicated.
Thus Q' is conformally causal. The conformal structure on Q' is invariant
under A4, and the same is true of its causal structure. For the tangent vector
A=Y, ul0/0x;) at any point x € Q' is carried by (the induced action of) 4
into the tangent vector u = —Y; u(0/0x;) at —x. Evidently

gt 1) = g.(%, A)

and

U1 Xg —UgX_q = (—u_g)( = x0) = (— up)(—x-1),

showing that u € C'(—x) if and only if 1 € C'(x).

The quotient manifold Q = Q'/{1, A} therefore acquires both the con-
formal and causal structure of M, by taking C(y) for y € M as dn(C'(x)),
where 5 denotes the canonical map from Q' onto Q. (Note that a conformal-
causal structure is determined by its causal structure alone.)

The universal covering manifold M is evidently R' x S?~!, the projec-
tion map from M to Q' being

(& (15 --5 Xp)) = (cOS t, 8IN £, Xy, ...\ Xp).

To show that no timelike arc in Q is closed, let s — y(s), s € [0, 1] be an
arbitrary such arc, and let u(s) and v(s) denote the components of y(s) in R?
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and S*~! respectively. It suffices to show that either u(1) > u(0), or y(s) =
¥(0) for all s, for it then follows that the timelike arc is closed only if it is
trivial. To this end it will suffice in turn to show that u'(s) = 0, and u'(s) = 0
for all s € [0, 1] only if y(s) = y(0) for all such s.

Observe in this connection that the transformations on R' x S” of the
form'T, x T,, where T, is a translation in R' and T, is a rotation on §", are
causal morphisms. In the case of T;, translation through s is for sufficiently
small s an action which locally is a causal morphism on Q, i.e., its differential
maps the defining cones C(p) appropriately; it follows by continuity that this
is true globally on M, for all s. In the case of T, the argument is similar.
Thus in order to show that #'(s) = 0 and that «'(s) = 0 only if y'(s) = 0, it
suffices to consider the case in which y(s) = 0 x (1,0, ..., 0). Further, since
the question is a local one, it may equally be determined in Q' rather than Q,
with y(s) taken as the point of Q' covered by 0 x (1,0,...,0),ie., (1, 0) x (1,
0, ..., 0). (Note that the covering of Q by Q may be factored into the
covering of Q' by Q, followed by 1.) Now writing

Y(t) = (x—l(t)’ xO(t)’ ’)

near t = s, where y(s) = (1,0, 1, 0, ..., 0), then x,(t) = sin u(t), showing that
w'(t) = (cos u(t))"'x5(t) near this point. Observing that cos u(t) =
x_(t) > O near s = t, and that for a timelike arc from y(s), xo(t) = O by the
requirement that ugx_, —u_,; xo = 0 for a tangent vector in the cone
C(y(t)), it results that u'(t) = 0. Further, u(s) = 0 only if xy(s) = 0; but then
x_,(s) = —sin u(s)u'(s) showing that x_(s) = 0; and the requirement that
w2 + uj = Y"_, u? for a tangent vector ), u;(8/0x;) in C(y(s)) then implies
that x(s) = 0 for all j, ie., y'(s) = 0.

Corollary 2.11.1 Q is globally hyperbolic in the sense of Leray.

By a theorem of Choquet-Bruhat, it suffices to show that for every fixed
pair of points, the set of all timelike arcs from one to the other is bounded
relative to a complete Riemannian metric on M. The direct product of the
usual (translation-invariant) metrics on R* and $" is such. The argument just
given shows that a timelike arc from (¢, p;) to (¢,, p,) is such that the
component is monotone increasing, while the " component describes an arc
whose length over any interval is bounded by the length of the R' compo-
nent. Thus the total length is bounded by 2|¢, — t,].

5. Relation to Minkowski space

We next show that the quadric Q just considered has imbedded in it
(algebraically, conformally, and chronogeometrically) Minkowski space as
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an open dense subset. The imbedding transformation is an analogue to the
Cayley transformf in its chronogeometric properties.

The concept of “lightlike point” has chronogeometric significance but
we give here the following purely algebraic

Definition 11 Let x, y € L be nonzero and such that Q(x, x) = Q(y, y) = 0.

Then “J is lightlike relative to X ” means that Q(x, y) = 0.

In order to describe the cited imbedding quite explicitly it is helpful to
recall some aspects of spherical geometry. A sphere in the pseudo-Euclidean
space (M, F) is defined as a subset of the form [X e M: F(X — X,,
X — X,) = k, where X, and k are fixed in M and R!, respectively; a null-
sphere is one for which k = 0. Note that the equation defining a sphere can
be put in the form

aF(X, X) — 2F(X, X,) + ¢ = 0,

where a + 0, and that conversely all such equations define spheres; null-
spheres are characterized by the condition that ac — F(X,, X,) = 0.

A conformal sphere in M is a subset of the form
[X e M:aF(X, X) — 2F(X, X,) + ¢ = 0], where a and c are fixed in R?,
X, is fixed in M, and not all of a4, ¢, and X, vanish (in other words, a
conformal sphere is either a sphere in the usual sense, relative to the Min-
kowski metric, or a hyperplane); a conformal null-sphere is one for which
ac — F(X,, X,)=0. Denoting as L the vector space of dimension
dim M + 2 whose components are a, the vector X, and ¢; and as Q the
form

Qa, ¢, Xo; d, ¢, Xy) = F(Xo, Xy) — (ac’ + d'c)/2,

it follows that the set of all conformal null-spheres in M is in one-to-one
correspondence with the projective quadric Q. The canonical mapping from
L onto the projective space of all its rays will be denoted as 6. X? will signify
F(X, X).

Scholium 2.12 The mapping j: X — 0((1, X, X?)) from M into Q is confor-
mal, and has range equal to the set of all points of Q that are not lightlike
relative to the point 6((0, 0, 1)).

Proof To say that 6((a, X, c))is lightlike with respect to P, = 6((0, 0, 1)) is
to say that a = 0. Thus 0((1, X, X?)) is never lightlike with respect to P, .

t From an abstract standpoint the present treatment may in part be regarded as a
chronogeometrical interpretation of the generalized Cayley transform known for symmetric
spaces, applicable to certain Siegel domains.
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Conversely, if 0((a, X, c)) is not lightlike with respect to P, then it is no
essential loss of generality to take a = 1, and then ¢ = X2

To show conformality of the mapping j, note first that for any fixed
vector A in M, the mapping T: X — X + A, is conformal. Observe next that
there exists a transformation T” on Q, in the conformal group treated earlier,
such that jT = T’j. Indeed, T” is the transformation

(@ X,c)»(d, X, )

whered = a, X' = X + ad,c = ¢ + 2X - A + aA?; this transformation is
easily seen to be a projectivity which is in the group defined earlier, leaving
Q invariant, for any value of 4. Now since the totality of transformations of
the form X — X + A is transitive on M, it follows that it is sufficient to show
conformality at one point, say the point X = 0.

At this point, the differential of the mapping j: X — 6(1, X, X?)) is the
mapping dj: Y — d6((0, Y, 0)), by a simple computation, with the usual
identification of tangent vectors in M with vectors in M ; and reference to an
earlier scholium shows this to be conformal.

Scholium 2.13 A conformal transformation of a conformally causal mani-
fold into a conformal manifold that admits a causal orientation is causal if
the latter manifold is suitably oriented.

Proof Observe first that a conformal transformation from one conformal-
causal manifold into another is either causal or anticausal (the latter mean-
ing that the precedence relation is reversed). For if T denotes the
transformation and C*(x) the infinitesimal future and past cones at x, then
dT, carries C*(x) into either C*(Tx) or C~(Tx). The set of all points x such
that the former eventuality holds is open and closed by continuity, and the
same is true of the latter eventuality; and “manifold ” is always connected in
the present usage.

Corollary 2.13.1 If F is of type (1, n), then @ is of type (2, n + 1), and j is
causal if Q is suitably oriented causally.

Proof Choosing coordinates x4, Xy, ..., X, such that F(X, X) = x} —
x} — -+ — xZ, and introducing variables x_, and x,., by the equations
a=X_;+ X,41, €= X,y — X_y, then Q takes the form

Q@@ B,c;a, Bc)=x%; +x3—x}— " — X1

where B = (xo, ..., x,). Thus Q admits a causal orientation, and j is causal
by the preceding scholium, for a suitable choice of one of the two possible
orientations.
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Definition 12 When endowed with the conformal-causal orientation such
that j is causal, Q will be called n-dimensional conformal space-time, or the
conformal compactification of n-dimensional Minkowski space—time.

6. Observers and clocks

We now analyze mathematically the concept of observer, at increasing
levels of specificity. In this connection one is naturally led to treat such
concomitants of observers as “clocks” and “rods.” The concepts developed
coincide with mathematical forms of the usual physical notions in the case of
Minkowski space; further examples are given in the cases of the two series of
causal manifolds earlier considered.

Definition 13 Let M be a given globally causal manifold. A spatio-temporal
factorization of M (for brevity, simply factorization) is an equivalence class of
prefactorizations, where a prefactorization is a pair (S, ¢) consisting ofa C*
manifold S and a diffeomorphism ¢ of T x S onto M, where T is a real
interval having the properties that:

(i) For any fixed x € S, the map ¢ — ¢(¢, x) is a timelike arc in M ;
(i) For any fixed ¢t € T, the map x — ¢(t, x) defines a spacelike sub-
manifold of M.

Two such prefactorizations (S, ¢) and (S, ¢') are equivalent if there exist
diffeomorphisms f and g of R' onto R' and S onto § such that f is
orientation-preserving, and

¢(fxg) ' =¢.

(Thus, corresponding to any factorization there are trivial fiberings of
M by timelike arcs on the one hand, and by spacelike submanifolds (auto-
matically maximal, as such), on the other. Conversely, two factorizations are
the same if and only if the corresponding fiberings of M are the same.)

If a is any causal morphism of M, the transform of any prefactorization
(S, ¢) (respectively factorization represented by this prefactorization) is
defined as the prefactorization (S, ¢') (respectively factorization represented
by this prefactorization), where ¢'(t, x) = a(¢(t, x)); and the prefactoriza-
tions (respectively corresponding factorizations) are said to be conjugate.

Example 8 1f M is (n + 1)-dimensional Minkowski space, and if x¢, x5, ...,
x, are linear coordinates such that the fundamental quadratic form

F(X, X) = x3 — x3 — -+ — x2, a prefactorization may be defined by taking
S = R" and defining ¢(t, x) for arbitrary t € R and x € R” as the point of M
having coordinates (z, x5, ..., X,), where x = (x5, ..., x,). A scale transforma-

tion on M (i.e., similarity transformation), or a Euclidean transformation of
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the space component (x,, ..., x,) (as a causal transformation on M) carries
this prefactorization into a different one, which is, however, equivalent.
Further, if t » ¢ and x — X’ are diffeomorphisms of R! onto R! and R" onto
R", the former being orientation-preserving, then defining ¢'(¢, x) = ¢(¢', X'),
the pair (R", ¢') is equivalent to the pair (R", ¢).

Definition 14 If S is a C* manifold, and if R' and S have given Finsler
structures (in the sense of norms in each tangent space, the norms being only
positive-homogeneous), the causal product of R' and S (with the given struc-
tures) is the manifold R' x S with the causal structure which assigns to the
point (¢, x) the cone consisting of all tangent vectors a(0/0t) + X (X beinga
tangent vector to S at x) for which a = 0 and | X||, < a)@/dt|, (the sub-
scripts indicating evaluation of the norms in the corresponding tangent
spaces). A metric prefactorization of a causal manifold consists of a prefactor-
ization (S, ¢) together with given Finsler structures on R* and S such that ¢
is a causal morphism of R! x S onto M. A metric observer is an equivalence
class of such, where (S, ¢') with given Finsler structures on R! and §' is
equivalent to the preceding one if and only if there exist maps f and g as
earlier, with the additional property that f and g are Finslerian isometries.

Example 9 With the usual metrics on R! and R", the preceding factoriza-
tion of Minkowski space is metric. As another example, consider the univer-
sal covering group U(n) of U(n), with the causal structure earlier indicated.
The representation U(n) = R x SU(n) determines a metric factorization,
which is relative to the usual metric on R!, and the following Finslerian
metric on SU(n) (which is Riemannian only for n = 2): with the
identification of the Lie algebra of SU(n) with Hy(n) earlier indicated,
|H|| = inf[z:¢] + H = 0]. It is easily verified that this defines a norm (posi-
tively, although not fully homogeneous, in general). Now if H 2 0 and
H =1+ H, where H, is of zero trace, then necessarily t =0 and
|Ho|| < t. Conversely, if t =20 and |H,|| < ¢, then ¢tI + Hy = 0 by the
definition of || H, ||. Note that 0 is an interior point of the closed convex set in
H (n) consisting of elements of norm < 1, although this set is not symmetric
about the origin.

Definition 15 For any metric observer (S, ¢) on a causal manifold M, the
mapping from M into R' endowed with the given Finsler structuye, defined
by the equation X — ¢t if X = ¢(t, x) for some x, is called the clock of the
observer and a clock on M is a mapping of the indicated type which is
the clock of some observer. The mapping from M into S endowed with
the given Finsler structure, defined by the equation X — xif X = ¢(t, x) for
some ¢, is called the chart of the observer; and a chart on M is a mapping
from M to a C* manifold endowed with a given Finsler structure, which is
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the chart of some observer. A chart and a clock are said to match if they are
the chart and clock of one observer.

A causal morphism A is forward if x < Ax for x € M; backward if
Ax < x for all x € M; temporal if either forward or backward; and spatial if
x and Ax are relatively spacelike for all x. A group of causal morphisms of M
is called temporal if it consists entirely of temporal transformations, and
spatial if it consists entirely of spatial transformations.

A prefactorization (respectively factorization) is said to be temporally
homogeneous if the map ¢(t, x) » ¢(t + ¢, x) is a temporal morphism, for
all ¥ € R'; spatially homogeneous (respectively, and isotropic) if there exists a
group G, of causal morphisms of M (necessarily spatial) and an isomor-
phism y of G, into the group of all diffeomorphisms of S, such that ifg € G,
g: ¢(t, x) = &(t, ¥(g)x), and if the group ¥(G,) is transitive (respectively
transitive and isotropic, or transitive on directions at any fixed point) on S;
homogeneous if both temporally homogeneous and spatially homogeneous
and isotropic; (respectively if a representative prefactorization is such). A
homogeneous observer is an equivalence class of homogeneous prefactoriza-
tions, equivalence being defined as earlier. A metric and homogeneous
observer whose prefactorization is homogeneous, and whose temporal and
spatial groups (i.e., respectively the group T,: @(t, x) = ¢(¢ + ¢, x), or the
group of all causal morphisms g such that for some difffomorphism ¢ of
S, g: ¢(t, x) > ¢(t, ¥x), for all ¢ and x) leave invariant the respective Finsler
structures, is called physical.

A causal manifold is covariant if it admits a homogeneous factorization
and in addition, the subgroup leaving one point p fixed is transitive on the
strictly timelike directions (i.e., those in the interior of C(p)) at p. A covariant
observer is a physical observer whose factorization is of this type.

If G, is a given continuous one-parameter group of temporal transfor-
mations on M, with normalized parameter, a G,-clock on M (where G, is
short for the transformation group (G,, M)) is a function F from M to R!
such that F(T,y) = F(y) + t for all t € R* and y € M. Similarly, if G, is a
given continuous group of spatial transformations on M, a G.-chart consists
of a C* transformation group (G,, S), the action of G, on the C* manifold S,
being faithful, together with a map F from M to S such that F(gx) = g(F(x)).

Example 10 (a) Minkowskispace A physical observer on this space M is
defined by the earlier factorization, together with the unique invariant
Riemannian metric on R" invariant under the Euclidean group, which acts
on M as a group of spatial transformations through its action on the com-
ponent x, and the unique translation-invariant metric on R, scaled so that
causal cones C(p) have the requisite form. Any two such observers, defined
by coordinate systems of the indicated types, are conjugate within the causal
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morphism group. No other physical observers are known. As is well known,
M is covariant, as are the indicated physical observers.

(b) The spaces U(n) Taking S = SU(n) and defining é(z, u) = (t, u)
for t € R! and u € R! and u € SU(n), then with the usual metric on R! and
the Finsler metric on SU(n) earlier indicated, and with the temporal group
T,: (t, u) - (t + ', u); and spatial group (z, u) - (t, vuw) (v, w € SU(n)), we
have a physical observer. In addition to the Finsler metric on SU(n) there is
a unique invariant Riemannian metric on SU(n), but this cannot in general
be used to describe the causal structure on U(n) in the way familiar in the
case n = 2. U(n) is covariant, for the causal morphism group is evidently
transitive, so that it suffices to show that this group is appropriately transi-
tive on the directions at a fixed point, say at the identity. This causal mor-
phism group includes the action of SU(n, n) earlier indicated, which is
locally identical to the action of SU(n, n) on U(n). Locally the Cayley trans-
form is causal, so that this action can be transferred to the Lie algebra H(n),
and then includes the transformations H - K*HK + L, where K is an arbi-
trary nonsingular matrix, and L is arbitrary in H(n). Those transformations
for which L = 0 leave 0 invariant, and the strictly timelike directions are
those of a nonsingular H € H(n) such that H > 0. It is evident that if H’ is
another such direction, then there exists a nonsingular K such that
H' = K*HK. The spatial isotropy follows similarly and more readily.

(c) The spaces O, This also is covariant and admits a physical obser-
ver; the Finsler metric on the space component is in this case Riemannian.
With § = §" and ¢(t, u) = (¢, u) in our earlier notation, we have a prefactor-
ization; with the usual metric on R' and the unique orthogonally invariant
one on S, we have an observer. The temporal group ¢ — ¢ + 1’ acts appro-
priately to establish temporal homogeneity. The spatial group includes the
action of the orthogonal group on S, lifted up to Q,, and this is evidently
transitive and isotropic. Covariance follows from the facts that: (a) locally
0, is causally identical to Minkowski space; (b) the global causal morphisms
of Minkowski space may all be lifted up to Q,; (c) the Lorentz group acts
transitively on the strictly timelike directions at any point of Minkowski
space.

(d) It should be noted that if F is any finite central subgroup of SU(n),
then R' x SU(n)/F is locally isomorphic to U(n), and thereby defines a
chronogeometry having locally all of its key symmetry properties; but that
these properties may fail to be valid globally. For example, as pointed out
by J. W.Milnor,ifn = 2and F = {1+ 1}, the corresponding factor space admits
only a 7-dimensional causal morphism group, in contrast to the 15-
dimensional group admitted by U(2) itself. In particular, the factor space
lacks global temporal isotropy. The proof reduces by general considerations
to the determination of the causal vector fields on U(2), which commute
with F and thereby to a simple matrix computation.
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Remark 4 (a) No other known (nonconjugate) covariant observers on
the foregoing causal manifolds exist.

(b) It is likely that similar results hold for the Shilov boundaries of
arbitrary Hermitian symmetric spaces, with suitable causal orientations;
more precisely, for the unicovers of such manifolds. In all likelihood, the
component of the identity of the causal morphism group is the induced
action on the boundary of the group of the Hermitian space ; and the chron-
ogeometric features of the Cayley transform, which has already been ex-
tended to the general setting of such spaces, carry over.

7. Local observers

It is essentially straightforward to extend the foregoing considerations
to local, rather than global, observers, using the usual concepts of the theory
of local transformation groups. One may arrive in this way at a mathemati-
cal counterpart to the familiar physical concept of “local Lorentz frame.”

If (S, ¢) is a prefactorization on M, and if T and U are connected open
subsets of R and S, then with ¢, = ¢ | T x U, (U, ¢,) is an observer on
T x U, except that T is only difffomorphic to R'. We call this prefactoriza-
tion on ¢(T x U) the restriction to this region of the given prefactorization
on M. A local prefactorization at a point p in a manifold M is defined as
prefactorization on some neighborhood N, of p; two such are (locally)
equivalent if their restrictions to some common neighborhood are (globally)
equivalent; a local factorization at p is finally an equivalence class of such
local prefactorizations.

Local observers may also be metric, homogeneous, physical, or covar-
iant, the definitions being straightforward adaptations of the corresponding
global ones. Conjugacy of local observers is defined as conjugacy via a local
rather than global causal morphism, the causal morphism in question being
one which preserves the relevant structure (metric, physical, or covariant).

Example 11 U(n) is locally causally isomorphic to H(n), and Minkowski
space M, is locally causally isomorphic to §,. Hence, restricting to a suit-
able neighborhood the global observers on M, and H(n) previously given,
and then transferring these observers via the aforementioned local causal
isomorphisms to U(n) and §,, one obtains certain local observers on these
latter manifolds. In no case are these locally conjugate to the earlier given
global observers, even as observers.

Remark 5 It is interesting to note that Haantjes (1937) has shown that any
smooth local conformal transformation on a pseudo-Euclidean space can be
extended to a global conformal transformation on its conformal
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compagctification. In particular, any local smooth one-parameter group of
local causality-preserving transformations on M can be extended to a global
such group acting globally on M. Conjecturally, this is valid for other
cosmos associated with simple Lie groups, such as the series SU(n, n), but
this appears not to be known.
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Physical theory

1. The Cosmos

Ultimately, any assertion about time, energy, and physical states must
be transcribed into objective, experimentally verifiable statements, on whose
validity the original assertion primarily depends for its own validation.
However, it is often not possible, or desirable, to proceed in a purely logical-
positivistic style, in which a physical theory is described solely in terms of
predictions of the results of fully specified experiments. It is widely accepted
that a general theoretical superstructure may be needed, or at any rate
desirable, for a variety of reasons. Among these are economy and clarity of
formulation, simplification of the means of correlation of the given physical
theory with others, better adaptability to modifications which may prove
desirable in other physical contexts, etc.

For these reasons, it seems desirable, and indeed perhaps necessary, to
present our theory of the Cosmos from a viewpoint which is so fundamental
and conceptually elementary that it may appear unfamiliar, and possibly
overmeticulous. It seems especially important to approach the matter con-
servatively, because we attempt at the same time both to extend the direction
in which special relativity departs from classical mechanics, and also to
change the energy operator in quantum mechanics. It might appear desir-
able to separate these two developments, but they are logically very closely
related, as will be seen later.

50
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2. Postulational development

We now consider what may be deduced about the Cosmos on the basis
of the following very general and broadly accepted assumptions.

Assumption 1 The Cosmos is a four-dimensional manifold.

Comment This means that in the vicinity of any point p of the Cosmos M,
there is a four-dimensional coordinate system. It is of course a matter of the
most elementary physical experience that in the vicinity of any observer,
space-time events have a linear temporal order, and a three-dimensional
position.

It might be objected that this assumption may eliminate singularities
which could be significant from a general relativistic standpoint. The basic
answer to this is that if these singularities be deleted, then the remaining
region of space time is a regular manifold to which our considerations
should then apply. Having settled the nature of this underlying regular
manifold, one could then examine the adjunction of hypothetical
singularities.

The second answer is that we wish to operate on as direct a level of
experience as possible. Singularities in the space-time structure are theoreti-
cal possibilities of a definitely idealistic nature; their concrete analytical
description involves delicate questions of the separation of physically essen-
tial aspects from matters of parametrization; until these have been
materially clarified, it will be impossible to give operational meaning to an
assertion as to the physical existence or nonexistence of space-time
singularities.

Assumption 2 The Cosmos is endowed with a notion of causality.

Specifically: (a) at each point of the Cosmos there is given a convex
cone of infinitesimal future directions, in the tangent space to the manifold at
each point; (b) the future can never merge into the past, i.e., no curve that
always points into the future can be closed.

Comment The existence of a sense of the infinitesimal future is a psycholog-
ical fact; the physical meaning and implications of the notion of future are
well developed in special relativity theory, and need not be repeated here.
Bridgman has emphasized the logical independence of causality and the law
for the addition of velocities in special relativity. This independence is indeed
substantiated by the existence of space-time models that are globally
acausal, while locally Minkowskian (cf. below). In such a model, the velocity
of light would appear constant in all frames in the immediate vicinity of any
observer, and the usual addition formula would hold, etc., but time would
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“wind back ” on itself in the long run. This is counter to intuition, thermody-
namics, and general physicalideas ; while certain microscopic physical pheno-
mena may well be cyclical in time, cyclicity of the Cosmos as a whole is
generally implausible. We shall assume—without prejudice to future
possibilities—that this is not the case.

The assumption of the convexity of the future cone in the tangent space
at each point is not a matter of mere technical convenience, but is indicated
by general conceptual considerations. One such consideration is that any
displacement of the Cosmos which is the resultant of a succession of
displacements into the future should itself be a displacement into the future.
In particular, if X and Y are any two infinitesimal generators of one-
parameter displacement groups into the future, in the sense that the group,
denoted e'*, generated by X carries each point p of the Cosmos M into a
point g = ¢'*(p) which is temporally preceded by p when t > 0—in the sense
that there is an arc from p to g whose forward tangent at every point is in the
future direction—then (e'*e¥/")" should be a displacement of M into the
future. But as n — oo, this displacement tends to ¢‘®** ¥, a one-parameter
group whose generator is X + Y. Thus, if X and Y are in the future direc-
tion, so also is X + Y, which means that the set of infinitesimal future
directions at each point is closed under addition. Together with the evident
fact that tX is always in the future direction if X is such and ¢ > 0, this
means that the set of all infinitesimal future directions at each point is
convex.

Implicitly employed here is the extremely rudimentary assumption that
a limit of points in the Cosmos which are preceded (or simultaneous with) a
given point, is again such. This also means that the infinitesimal future at
cach point should be a closed set, in the mathematical sense. (For the most
part in Chapter III we take for granted, unless otherwise indicated, such
elementary points of mathematical regularity, and refer to Chapter II for
formulations which are mathematically fully detailed.)

Assumption 3 The Cosmos admits stationary observers.

Comment It is difficult to see how any physical laws of the usual sort could
be effectively discussed or verified without stationarity. For the dynamics,
which form the crucial content of a complete physical theory, describe the
change in state from one instant to another. Without a time-independent
notion of state, such a description is evidently vacuous. Finally, in order to
have a physical time-independent description of states, it seems necessary to
have a stationary observer or equivalent operational means of labeling
states.

Let us be quite explicit about the meaning of stationarity and of
Assumption 3. We introduce the notions of “timelike” and “spacelike” in
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the fashion made possible by Assumptions 1 and 2, along customary physi-
cal lines.t Having done this, we can define a “forward displacement” as an
admissible motion—i.e. a transformation of M onto itself which preserves
causality, i.e., carries the totality of future directions at one point into those
at the corresponding point—with the property that it carries each point into
one that it (strictly) precedes (i.e., is the terminus of a strictly timelike arc
originating at the original point). The concept of stationarity is then a rela-
tive notion; specifically, it is with respect to a one-parameter group of for-
ward and backward displacements, or temporal group. The latter is defined
as a family T, of admissible motions of M, t being an arbitrary real
parameter, such that

TT =T., (¢, ¢ arbitrary real numbers),

T, is a forward displacement for ¢ > 0.

For example, in Minkowski space, if a denotes any fixed vector in the future
cone, the family T;: x — x + ta s of this nature. Conversely, in a Minkowski
space of dimension greater than two, every temporal group has this form.
Thus, in order to have an effective notion of stationarity, it seems neces-
sary that such an underlying temporal group of transformations be defined
on the Cosmos. In general, however, a theoretical cosmos satisfying
Assumptions 1 and 2 will admit no such group; indeed, in general there will
be no admissible displacements. Assumption 3 thus carries first of all the
implication that a temporal group exists. Beyond this, however, the usual
notion of observer carries with it the implication that a space-time event is
split by the observer into “space ” and “ time ” components in a definite way.
An observer stationary with respect to the given temporal group can be defined
consonantly with this notion as one for whom this splitting into space and
time components is unaffected by temporal evolution, as defined by the
given group. More specifically, to each point p of the Cosmos, the observer
assigns two components, ¢t and x, where the time component ¢ is a real
number, while the space component x ranges over a three-dimensional man-
ifold S. A stationary observer, with respect to the given temporal group, can
now be defined as one such that the associated group T, carries the point
(¢, x) of the Cosmos into the point (t' + ¢, x) (more precisely, carries the
point of the Cosmos with time and space components (¢, x) according to his
observation into the point with components (¢’ + ¢, x)). It can be shown that
in Minkowski space this concept of stationary observer is equivalent to that
of Lorentz frame, as one would expect. That is, there is a mutual correspon-
dence between stationary observers and Lorentz frames, every such observer
being associated with a Lorentz frame in the fashion earlier indicated.

t For further material on these notions and/or mathematical details, see Chapters I and
1L
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From an operational point of view, the “observer” is, in large part, in
the present context simply this splitting of the Cosmos into time and space
components; apart from such objective features, his existence is largely
metaphysical. The splitting of space-time into space and time components
relative to a complete local observational framework is partly a theoretical
analysis and partly an empirical deduction from experience at a fun-
damentally more rudimentary level than a global theory of space-time. It is
not merely a matter of anthropomorphic psychology, which as evidenced by
the theory of relativity interacts nontrivially with theoretical ideas on the
nature of space and time, but has a close relation to the concept of “ station-
ary state ” which is crucial in modern physics. Virtually all dynamics can be
formulated as a description of transformations from one (at least approxi-
mately) stationary state to another; in particular, a temporal evolution
group is required for an objective means of parametrization of states which
can be correlated with experience. The parameters employed effectively
define “space,” particularly at extreme distances, the connection with the
anthropomorphic notion of space being physically explicit only at the
moderate-macroscopic level. In other words, “space” is defined by the con-
dition that stationary state labels are (primarily) quantities (functions,
vector fields, or operators) defined on space, together with the boundary
condition that at middle distances, it coincides with the anthropomorphic
notion. It is also limited by the conception that fundamental interactions are
local, when expressed in spatial terms. The existence of degrees of freedom
for elementary particles, which have not yet been correlated with geometri-
cal space-time features (e.g., isotopic spin) does not essentially change these
matters, since the only effect is to adjoin an “ internal space ” to space-time,
which does not affect the physical space-time splitting.

The physically crucial notions time and energy are essentially im-
mediate deductions from the formalism; they are defined relative to a given
observer. The first component ¢ in the space-time splitting is the observer’s
time; equivalently, it is the parameter of the one-parameter group T;. The
relation between the time of a space-time event, and time as the parameter
of a temporal evolution group is simply that if F(p) denotes the time of the
space-time point p, relative to the given observer, for any t, F(T,p) =
F(p) + t, where T, is the temporal evolution group associated with the obser-
ver. The temporal group invariance thus permits the correlation of time as
an index of serial order with time as duration, an identification which is
essential for real physics. At the same time, it uniquely specifies, apart from
the choice of scale and zero point, the time parameter. The energy, on the
other hand, is simply the conjugate or dual variable to time, ie., the
infinitesimal generator of temporal evolution. The situation thus is fun-
damentally more structured than in theories in which time appears primarily
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as an index of serial order—as, e.g., in general relativity as usually presented.
This additional structure is of course not a technical burden, but rather an
essential requirement for concrete physical interpretation, Without temporal
invariance there is no conservation of energy—indeed, the very concept of
energy becomes ambiguous; thus, despite intensive study, the precise formu-
lation and properties of energy in general relativity appear to remain some-
what ambiguous.

Classically, Hamiltonian dynamics apply as readily to the space S as to
the usual Euclidean configuration space. Quantum mechanically, the
development likewise proceeds in entirely analogous fashion to the usual
one. The dynamical variables are operators; the temporal evolution is
defined, in, e.g., the case of a finite number of degrees of freedom, by a
one-parameter group of unitary operators U(¢), the infinitesimal self-adjoint
generator of which is the energy operator. This operator represents — i(6/0t),
which thereby defines the “energy” for the observer in question. Different
observers will of course have different energy operators; depending on the
geometry of their respective space-time splittings, these different energies
may or may not be conjugate (in which case the eigenvalues are identical) or
nonconjugate (in which case the eigenvalues are in general distinct; this
theoretical possibility will be exemplified below).

Assumption 4 Space is homogeneous and isotropic.

It is entirely possible to conceive physical, and to give mathematical,
examples of cosmos not satisfying this condition. However, it is intuitive,
and substantiated at both macroscopic and microscopic levels. Moreover, as
already suggested, it is physically essential to have some objective means of
labeling particle states. The usual notions of angular and linear momenta,
which have been found effective for this purpose, derive from the existence of
just those symmetries which are here postulated. In all events, this postulate
has been implicit in theoretical astronomy since the time of Cusanus.

Let us be quite explicit about what it means. Relative to any admissible
observer, there is a splitting of space-time M into time and space compo-
nents T and S; symbolically, M = T x S, signifying that each point p in M
corresponds to a pair (¢, u), where the “time” t is in T, the range of time
values (normally the real line), and the “spatial position” u is in S, the
“space” of the observer. This splitting of space-time into one-dimensional
time and three-dimensional space components is far from arbitrary; it is
subject to the restrictions:

(a) For each fixed position in space u,, the curve (t, u,), where ¢ varies
over T, should be timelike. Indeed, this should be a maximal timelike curve,
in the sense that any point which is timelike relative to (before or after) each
point of the curve must already be on the curve.
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(b) For each fixed time t,, the submanifold (t,, u), where u ranges
over S, should be spacelike. Indeed, this should be a maximal spacelike
submanifold, in the sense that any point which is spacelike relative to every
point of the submanifold is already in the submanifold.t

These restrictions (a) and (b) are quite rudimentary and are totally
independent of symmetry considerations. But as already noted, the correla-
tions of the notion of observer with realistic physics leads naturally to the
requirement of temporal homogeneity, without which one lacks a well-
determined notion of energy. The requirement of spatial homogeneity is
similar; it is not as fundamental as that of temporal homogeneity, but is
tantamount to the intuitively plausible assumption that the laws of physics
are independent of the physical location and orientation of axes. Philosoph-
ically speaking, it is undoubtedly possible to pursue physical theory with-
out this assumption, but it would be extremely difficult to arrive at laws that
were both nontrivial and definite.

Recently, difficulties in reconciling extragalactic astronomical observa-
tions with the expanding-universe model have led to proposals for limiting
this postulate as regards the distribution of galaxies, if not for “empty”
space itself. The work of G. de Vaucouleurs (1972) is representative of the
observational background for such proposals, but can also (although not so
construed by de Vaucouleurs) be interpreted as evidence against the
expanding-universe model. In our view, the latter interpretation is more
natural, and in fact, it will later be shown that the discrepancies studied by
de Vaucouleurs may be resolved with a spatially homogeneous nonexpand-
ing model (cf. also Sandage et al., 1972).

In addition, the conventional theoretical microscopic picture—
elementary particle analysis—is based on spatial homogeneity. The use of
“linear momenta” as quantum numbers for particles is precisely tanta-
mount to the assumption that spatial homogeneity is valid at the micro-
scopic level.

For all these reasons, spatial homogeneity appears to be a quite reason-
able postulate, in the simple form analogous to that of temporal
homogeneity:

For any two points P and Q of “space ” §, there exists a spatial transfor-
mation of the Cosmos, i.e., a smooth transformation P — P’ of the cosmos
M into itself, which preserves causality (i.e., carries relatively timelike and/or
spacelike points into the same), and is spatial in the sense that any point P

1 It would be just about as natural to define maximality in slightly different ways, e.g., in
the spatial case as the absence of any spacelike submanifold of which the given one is a proper
subset. However, all of the examples and applications of these notions treated here are maximal
in both senses.
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and its transform P’ are relatively spacelike; and, for any time ¢, the point P
corresponding to (z, p) is carried into the point P' corresponding to (¢, p'),
which carries P into Q.

Having dealt with spatial homogeneity, it is now a simple matter to deal
with the similar notion of spatial isotropy, for which there are both ultra-
macroscopic and microscopic forms of evidence at least as strong as those for
spatial homogeneity. In mathematical terms, spatial isotropy means that
given any two spatial directions at a point of the Cosmos, there exists a
physically admissible transformation on the Cosmos (ic., a causality-
preserving smooth transformation) which carries one direction into the
other. More precisely, if 2 and 4’ are any two tangent vectors at the point p of
the space S, and if ¢ is any time, then there exists a spatial transformation of
the Cosmos which leaves the point P corresponding to the pair (¢, p) fixed,
and whose action on the tangent space at P carries 4 into a nonzero multiple
of A. ‘

Applied to Minkowski space, these concepts naturally reproduce the
usual ones. The only admissible (more specifically, “covariant ) observers
in the foregoing sense which are applicable to all of Minkowski space are
obtained by a representation of the space in terms of pairs (t, x), where tis a
real number and x is a real vector, ¢t being the temporal and x the spatial
component, in the usual way. However, although this is the only global
covariant observer, there are quite different local covariant observers. These
cannot in general be extended to all of Minkowski space without encounter-
ing singularities; cf. below.

The concept of Lorentz frame is, in the case of Minkowski space, equiv-
alent to that of observer in the present sense, except that the latter notion
leaves unspecified a distance scale. Later, it will be shown how a
specification of the distance scale may be accomplished on the basis of the
present assumptions, without the presupposition of a given metric.

Example Let S be any three-dimensional Riemannian manifold, admitting
an isotransitive group of isometries. (Here isotransitive means transitive
both on points and directions at points; ie., given any two points and
directions at the*points, there is a transformation in the group mapping the
one point into the other, and the first given direction into the second.) Take
as cosmos M = R! x S, and define as the cone C(t, g) at any point (¢, g) of
M the set of all tangent vectors of the form a(6/0t) + A, where a = 0,and Ais
any tangent vector to S at g of length at most a. One then obtains an
admissible cosmos, i.e., the foregoing assumptions are satisfied.

Spaces S of the indicated type have been completely classified by Tits
(1957). Likewise classified are the four-dimensional Lorentzian manifolds
(i.e., having a given pseudo-Riemannian structure whose fundamental form
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is of type (1, 3)) admitting certain types of transitivity, in an important work
by Tits (1960). Physically speaking, the desiderata employed by Tits are of a
qualitative relativistic nature. The physical process of observation, and the
relation to symmetries defining the energy, etc., as considered here, supple-
ment Tits” desiderata, and are materially restrictive. Thus, de Sitter space
satisfies the cited qualitative relativistic desiderata, but admits no temporal
translation group of the type earlier indicated (and thereby no natural
definition of energy which results in a positive energy). Indeed, there are only
three Lorentzian manifolds which satisfy Assumptions 1-5 on the Cosmos.
The “universal space” M, consisting of the universal covering manifold of
the conformal compactification M of Minkowski space M, has for its group
of causality-preserving symmetries, one which is locally identical to SO(2, 4)
and so of dimension 15. Minkowski space can be regarded as an open dense
submanifold of M which is covered infinitely often by M. Finally, the (two-
fold) covering space S* x S of M, consisting of the direct product of a circle
and the surface of a sphere in four-dimensional space, contains an open
submanifold M” whose causal symmetry group corresponds to the subgroup
S0(2, 3) of SO(2, 4). Thus, M is universal also in the sense that the other two
cosmos are simply derivable from it, and their causal symmetry groups are
essentially subgroups of that of M. The cosmos represented by M’ has only
locally, not globally, the property that the region of influence of compact
regions in space are compact; and the theoretical redshift-distance relation
is unaffected if M’ is used in place of M below; it thus appears as a slightly
complicated variant of M and will not be further considered here. It should
perhaps be mentioned, however, that the causal structures in M and M’ may
be defined by metrics admitting ten-parameter isometry groups, while that
in M admits, at most, a seven-parameter group. Since Maxwell’s equations
are well-defined and invariant under the full causal symmetry group on all of
the manifolds, the isometry groups of special metrics play no apparent phys-
ical role in the analysis of photon propagation; and the deviation from
isometry in the case of M is of order R™!, where R is describable as the
radius of the universe (cf. below) and so surely unobservable, even if phys-
ically meaningful in a local macroscopic theory.

The causal cones in the Lorentzian manifold case are defined by equa-
tions of second order. This is natural from the standpoint of general relativ-
ity, but there appears otherwise to be no inherent observational or physical
reason why the causal cones should be of this special type. There exist simple
models for which they are not quadratic, but satisfy all of the assumptions
except that of four-dimensionality. The models R' x SU(n) discussed in
Chapter II admit a quite satisfactory unique notion of causality, and Gard-
ing (1947) has given an effective treatment of analogues to the Maxwell and
Dirac equations in closely related spaces. Of course, the groups SU(n) admit
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invariant Riemannian metrics, which thereby determine causal orientations
on R!' x SU(n) in the manner earlier indicated; however, this Lorentzian
structure is much less invariant than the non-Lorentzian one (for n > 2),
and in particular, unlike the latter, there is in general no symmetry in the
theory which will transform one given timelike direction into another (cf.
Assumptions 5 and 6). It is not yet determined whether any such nonquadra-
tic models exist in dimension 4, but it appears unlikely.

To indicate how such models fit into the present scheme, it is appro-
priate to generalize the example just given by permitting the space S to be
essentially Finslerian, rather than Riemannian. More specifically, we assume
that there is given in the tangent space to S at each point g a closed convex
body K(g), containing O in its interior. Let n(4) denote the corresponding
norm function for tangent vectors, ie., n(d) is the largest nonnegative
number s such that sA is in K(g). One may then define the causal structure in
M in the same way, except that n(4) is used in place of the length of A. Thus,
given any three-dimensional isotransitive Finsler manifold, there is a corre-
sponding cosmos. Conversely, every admissible cosmos arises in. this way
from such a manifold, as indicated in Chapter IL

3. Physical observers

From the standpoint of rudimentary causality and homogeneity con-
siderations, all of the foregoing models for the Cosmos thus appear equally
good. We might now further refine these considerations and obtain addi-
tional plausible physical restrictions. For example, there are some further
features of Minkowski space which might reasonably be postulated:

Assumption 5 Any given timelike direction at a point p is tangential to the
forward direction of some admissible observer. '

That is, the Cosmos M can be split into time and space, M = R! x §,in
such a way that p is represented by the point (0, ug), ue in S, and that the
given timelike direction is represented by 9/0t, t being the component in R™.
This assumption corresponds to the intuitive idea that there is no preferred
direction in space-time, of temporal evolution, from which to observe the
universe.

In a related vein, it would also be reasonable to postulate:

Assumption 6 Two different observers at the same point see the Cosmos in
causally compatible ways, i.e., the transformation between their respective
maps of the Cosmos should be causality-preserving.

It would be interesting to explore the consequences of these further
assumptions, but we shall only remark here that both Minkowski space and
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universal space satisfy both of these assumptions. Rather than proceed in an
increasingly abstract and somewhat philosophical line, it seems preferable to
analyze in physical terms the process of measurement by which these models
may be differentiated, and to which they are relevant. The space-time
geometry itself is not necessarily directly observed; no apparent departures
from a Euclidean model have been found by classical measurements. Rather,
the geometry influences the analysis of microscopic (notably, elementary
particle) and ultramacroscopic (notably, extragalactic) phenomena. It there-
fore seems physically more appropriate to correlate the geometry with what
is observed in these extreme-distance realms. We shall begin with an analysis
of the concept of “observer,” and especially that of “local observer.”

Since this may appear somewhat lengthy, we first summarize the salient
points. Briefly, it will be found that:

(1) Minkowski and universal space are locally identical as causal
manifolds.

(2) However, the natural clocks and physical observers in these two
models are not equivalent; this means that there are two essentially distinct
types of local clocks.

(3) If processes run and/or are observed by these inequivalent clocks,
the lack of synchronization will be unobservable for times of the order of
1 yr, if the clocks are instantaneously synchronous. The asynchronization
for times up to the order of 107 yr increases approximately quadratically
with the time, and attains an observable level, in the form of the alteration
it produces in the apparent frequency of a freely propagated photon. The
relative shift Av/v is frequency independent.

One analytically simple means to represent the relation between Mink-
owski and universal spaces M and M, and particularly their admissible
observers, is to utilize the well-known formulation of Minkowski space as
the set of all 2 x 2 Hermitian matrices, and the relation of these matrices to
the unitary 2 x 2 group, denoted U(2). If Minkowski space M is coordin-
atized in the usual way by time and space coordinates (f, x, y, z), we may
map M onto the space H(2) of all 2 x 2 complex Hermitian matrices by the
transformation

¢ .
F:(t,x,y,z)ﬂ[ + x y+lzJ.

y—iz t—x

The crucial point here is that this mapping preserves causality, if a notion of
temporal precedence is introduced into H(2) by the definition: H is “ before ”
H' if H — H is a positive semidefinite matrix. (Any matrix, or point of
Minkowski space, is considered to be both before and after itself, to simplify
the terminology.)
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Now the universal space M = R! x S$3 can be usefully related to the
special unitary group SU(2) of all 2 x 2 unitary matrices of unit determinant
in the following way. The most general matrix of SU(2) has the form

a+ib c+id
—c+id a—ib)’

with a2 + b 4+ ¢® 4+ d*® = 1, ie, with (a, b, ¢, d) on the three-dimensional
sphere in 4-space defined by the equation x? + x3 + x3 + x5 = 1. Thisis a
one-to-one correspondence between S* and SU(2), in which the unit matrix
I corresponds to the point (1, 0, 0, 0) on the sphere, and rotations of the
sphere leaving this point fixed correspond to the transformations
U - VUV, V being a fixed unitary matrix, on SU(2). Note also that the
usual invariant Riemannian metric on S* corresponds to the unique metric
on the group SU(2) which is invariant under both right and left translations
on this group, i.e., the transformations U — VU and U —» UV, where V isa
fixed element of the group SU(2).

Locally, M = R' x $* may be made to correspond to the 2 x 2 unitary
group U(2) by the mapping (¢, p) — ¢"u, where p — u is the mapping from S>
into SU(2) just indicated. Sufficiently near to the point ¢ = 0,p = (1,0,0,0),
this mapping is one-to-one and smooth. A crucial point is that it is also
causality-preserving, if a local notion of temporal precedence is introduced
into U(2) by taking as the set of future directions at the unit matrix I, all
those that are represented by positive semidefinite Hermitian matrices; and
at any other point defining the future directions by translating in the group
U(2) from I to the point in question. (Because of the invariance of the set of
positive semidefinite matrices under the transformations H - UHU ™!, U
unitary, it is immaterial whether right or left translations are used.)

To set up a local causality-preserving transformation between Min-
kowski and universal space, it therefore suffices to set up such a mapping
between H(2) and U(2), which carries H = 0 into U = I. The simplest is the
Cayley transform:

21 + iH
2 —iH'
(For the proof that this is causality-preserving, see Chapter II; here 2 may be
replaced by an arbitrary nonvanishing constant, but the present normaliza-
tion will be convenient later.) These mappings are also conformal, in as
much as a causality-preserving transformation on a pseudo-Riemannian
causal manifold whose future cone is defined by the given metric is always
conformal.

Consider how a given Lorentz transformation in Minkowski space M

A:H -
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appears from the standpoint of a locally equivalent observer on unispace M.
Temporal evolution in M is

H-> H + sl

Under the correspondence A, this transforms into a complex mapping in M
which mixes up the space and time components. The same is true of the
space translations in a fixed direction,

H—-H+ sK, Kfixedin H2), tr K =0.

Thus time and space displacement in Minkowski space do not at all corre-
spond via the causal mapping A to natural time and space displacements in
M.

The natural space displacements in M are given by the six-parameter
group of rotations of the sphere S°. Equivalently, this group consists of left
and right translations on SU(2), i.e., the transformations V — WVW’, where
V ranges over SU(2) and W and W’ are arbitrary fixed elements of SU(2).
Only the rotations, say those leaving the identity matrix I fixed, which are
the transformations V — U*V U, where U is a fixed element of SU(2), corre-
spond precisely to conventional spatial displacements, i.e., the normal space
rotations about the origin in R3,

It is indeed impossible to set up between these spaces a conformal
equivalence that does not mix space and time components in one space or
the other. Actually, the space M occurs in this discussion primarily as a
means of exposing the central fact that Minkowski space admits two concep-
tually equally valid types of local physical observers, which are essentially
distinct. Each observer sees space-time as split into space and time compo-
nents in accordance with the underlying causal structure ; each of them admits
local temporal and spatial symmetries, acting on the time and space com-
ponents separately, and being tantamount to the usual hypotheses of conser-
vation of energy, linear momentum, and angular momentum; each has a
unique notion of temporal duration and spatial distance (within scaling);
each admits transformation to accelerated observers (i.e., there is no
preferred strictly timelike direction). As far as general physical considera-
tions go, there is no significant basis to prefer the one type of local observer
to the other.

It might be argued that the conventional splitting into space and time
components is “simpler ”; it is “ flat,” while the other is “ curved ” (as regards
space); it is traditional. On the other hand, there is no direct observational
basis for asserting that the Cosmos is Minkowskian for very large times and
distances. If indeed it should conform to the global extension of the uncon-
ventional splitting, the latter splitting would have the advantage of being
much more symmetrical than the conventional Minkowskian one; it admits
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a 15-parameter group of admissible transformations on local frames of refer-
ence, while in the case of Minkowski space this group is only 11-
dimensional. It will be seen that M is in a natural way, associated with any
given observer, essentially contained in M, denumerably often, and one
could argue thereby that M may be more appropriate for the description of
very long-range phenomena.

However this may be, it appears that a conclusive physical preference
for one type of observer over the other can only be based on quantitative
observation. A priori, both types could be valid, in the sense that different
phenomena require different types of observers for their simple description.
Indeed, it is instructive to compute how the frequency as measured by the
one type of observer appears relative to one of the other type, so chosen as to
be locally (more precisely, infinitesimally) at rest relative to the first one.

In order to make this computation, it is convenient to use the formalism
of conformal space developed by Veblen and others. This formalism is fun-
damental in the present theory and we pause in our physical discussion to
develop simple aspects of it in a somewhat rounded way.

4. Conformal geometry and the unitary formalism

It will be just as easy to take an (n + 1)-dimensional Minkowski space
M with coordinates ¢, x,, ..., x, (in fact, the case n = 1 will be relevant and
illuminating). Our first step is to define a closed (compact) space M, the
so-called conformal space, in which M is imbedded naturally. Roughly
speaking, M is obtained from M by adding a light cone at infinity. This does
not disturb the underlying symmetry of the space; the Lorentz group and
scale transformations continue to act conformally on M. Indeed, one gains
in symmetry, in that conformal inversion is a nonsingular operation on M,
and together with the Lorentz and scale transformations, generates a 13-
dimensional Lie group which acts in an entirely regular and conformal
manner on M. (This is only a preliminary step; the space M is acausal;
however, the remedy will be conceptually simple, and M will remain as a
fundamental object for many computations.)

Specifically, M is the space of all (projective) conformal spheres in M of
zero radius, endowed with the natural Lorentzian structure (cf. Chapter II).
Analytically, let

X=(t,Xp..0n X t=X, X>=1-x2
f_lzl—%ij én+1=1+%X2’ éjzxj'
SetE‘ = (é—la éO:"‘)éna 6n+1)’ EZ = 5'2—1 + 6(2) - é% - é}% - r%+1 for

arbitrary &;; let A denote the transformation A: X —» & (given in terms of X
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by the foregoing equations); then E* = 0 if E = A(X) for some X. Set
€= (6_1, 805 --os Enr1) = (L, 1, —1, —1), so that 2 = Y ;&2 Let W
denote the (n + 3)-dimensional vector space of all E (with arbitrary real
values for the ¢;). Let W denote the (n + 2)-dimensional projective space of
rays in W (i.e., vectors E when proportional vectors are 1dent1ﬁed) Let Q
denote the quadric in W defined by the equation Z2 = 0, and let J denote
the corresponding quadric in W. Let 1 denote the map

X >E,

where £ denotes the ray through =. Then our earlier observation is to the
effect:

7 is a one-to-one mapping of M into 0.

More specifically, one can recover the ¢, x4, ..., x, from a point of
(other than the exceptional points which do not correspond to points of M)
as follows. For any nonzero Z in W, let u denote the vector (M-, ug, g, ...,
Uy 1) With u; = & /(&2 + EF)/%; we set u = u(E), and note that u is the
same for all vectors on the same ray as Z; the definition #(Z) = u(E) is
therefore unique, and = — i is a well-defined mapping from @ into an
(n + 2)-dimensional space R"*2. It is clear from the definition that

2
M31+M0=1=u3+"’+u3+1.

Thus this mapping from  into R"*2, to be denoted T, actually maps § into
the direct product of a circle !, coordinatized by u_, and u,, and a sphere
S$", coordinatized by uy, ..., u,, ;. Conversely, any point of this direct prod-
uct ' x S", w=(u_y, ..., u,,), corresponds to a point of Q via the
mapping y: u —» =, where = = (-1, o5 Upy ) The mappmg y is precisely
two-to-one, for both +u correspond to the same point of J; we say 7 is a
twofold covering of Q by S x S".

Now suppose one is given the coordinates (u_, ..., u,, ;) of one of the
two points of S* x S” corresponding to a given point X in M. Then the u;
are given by the equations

uop = kML= 3X2), e = kT 3X2),
u; = k—lxj’ k = i[(l _ %XZ)Z + t2]1/2.

The mapping X — u is one-to-two, but is locally one-to-one. In the vicinity
of the point X = 0, then, with k chosen to be positive (so that the point
corresponding to X =0 isu = (1, 0;0, ..., 0, 1), we may recover X by the
equations

X;=2uu_y 4+ upyq) = 288+ &) !
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Now S' x S has a natural Lorentzian structure, defined by the form
du? | + dud — du? — du} — --- — du?,|; or, introducing the new time
1 = tan~ ! u, /u_, near the point indicated, dt> — ds?, where ds denotes the
usual element of length on the sphere S". This Lorentzian structure is not
invariant under the action of the Lorentz group in M, after transference to

.S' x S" by the foregoing correspondences ; however, it remains conformally

invariant. More generally, any of the classical conformal transformations on
M (which apart from the Lorentz transformations and the scale transforma-
tions are not everywhere defined on M, and develop singularities if an
attempt is made to extend their domains of definition in M) act without
singularities on S x S* and also on Q; and are conformal on these spaces,
in each of which M is in a certain sense contained.

Moreover, the space S* x S* admits a local notion of causality, accord-
ing to which the one of the two convex cones defined by the Lorentzian form
dr? — ds%, which is in the direction of increasing , defines the future direc-
tion in space-time. Of course, it is always possible in a Lorentzian manifold
to introduce a local notion of causality by a choice of one of the two cones
near a point as the future; but it is not always possible, as it is here, to do so
in a manner which varies continuously from point to point, throughout the
global space-time manifold. Despite the latter feature, however, S Lx S%is
not causal in the large; indeed, the curve

U_, = Cos T, Ug = sin 1, u; =c; (const), 1<i€n+1,

is in the forward timelike direction (as a function of 7), but is cyclic.

Thus, locally at any point in Minkowski space, we have the two distinct
type of coordinates: t, x, y, z on the one hand, and the spherical coordinates

u; (=1 < j < 4) on the other. There are many other parametrizations, of

course what is distinctive about the foregoing ones (or variants thereof) is
their extensive covariance. To make this explicit, consider the actions of
fundamental symmetries in terms of these parametrizations.

On the (n + 3)-dimensional vector space Z, let Li; denote the vector
field

L =¢g&D; —e;¢;D;,  where D;=0/0¢;.

These generate the group O(n + 1, 2) of linear transformations in 2
leaving invariant the quadratic form =2, Consequently, they determine cor-
responding vector fields L;; on the projective quadric . As shown in Chap-
ter 11, the conformal structure on @ is invariant under the transformations
generated by the L,;, i.e., they are all infinitesimally conformal. Conversely,
all globally defined infinitesimally conformal transformations on Q are
linear combinations of the L;;. It is important to note that the full group of
symmetries of Minkowski space including all Lorentz transformations and
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changes of scale, extend from the space M to the larger space §, and to its
twofold covering S' x §°, remaining all the while causality-preserving (in
particular, conformal); and no singularities are involved in this extended
action.

It is useful and of interest to calculate the form of the generators L;;
when expressed in terms of the usual Minkowski coordinates; and on the
other hand, to calculate the form of the Lorentz transformations in terms of
the &; or spherical coordinates on S' x S3. In addition, the natural symme-
tries of ' x S° relative to the given splitting (i.c., transformations acting on
S! alone, respectively acting on S alone) will be of interest. These matters
are more readily achieved and better understood if further parametrizations
of space-time closely related to the given ones are developed. We shall
therefore treat parametrizations in terms of U(2) and the space of conformal
null spheres in Minkowski space.

In Minkowski space M, a Lorentz sphere is a locus in M consisting of all
vectors X such that

(X — Xo)? =const (X, a fixed vector);

if the constant = 0, one has a null sphere. Now a Lorentz sphere has an
equation of the form

aX* -2B- X +¢=0

with a # 0 and B and c arbitrary; this sphere is a null sphere if and only if
ac — B? = 0 (here B is a vector in Minkowski space). Evidently, there is a
one-to-one correspondence between points of M and null spheres (a, B, c),
where (a, B, c) is considered as a point of projective (n + 2)-dimensional
space, and (a, B, c) is restricted to lie on the quadric ac — B*> = 0. (More
specifically, (a, B, ¢) and (da, B/, ') are identified if there exists a nonzero
constant 4 such that i(a, B, ¢) = (@, B/, ¢').)

In addition to the normal null spheres just indicated, there exist “ideal ”
null spheres given in the same way except that a = 0. That is, an ideal null
sphere is a point (a, B, ) in projective (n + 2) space, lying on the quadric
ac — B* = 0, but not corresponding to a normal Lorentz null sphere. The
totality of all normal and ideal null spheres is then in one-to-one correspon-
dence with the indicated quadric. It is convenient on occasion to take this
quadric in the alternative form

ac—B*=¢, + ¢ - - &2,

as is possible in view of the signature of the quadratic form ac — B? for
suitable real linear combinations ¢; of a, B, c; these will be chosen to lead to
new coordinates that are infinitesimally synchronous with the Minkowski
coordinates.
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Specifically, we shall choose

a=%(€—1+€n+l)’ c=2(_é~l+én+l)’ B=(€o,...,f,);
equivalently, the £; may be expressed in terms of a, B = (b,,..., b,),and cas
C—1=a—71tc’ €n+1=a+%c’ €j=bj for 0<sj=n
Proceeding now as earlier, we introduce the sphere coordinates u; by the
equation
(U_ys Ug s Ugsvens tngy) = (E2 1 + E8) V21, &0 s Eurn):
Here we could use either sign on the indicated square root, but normalize to
make the point X = 0 correspond to the point (1,0;0,...,0, 1)in §* x §"
This gives the earlier indicated equations (Where X = (xo, ..., X,)):
u_y = p(l —4X?)
u; = px; O0=jsn)
tnsy = p(1 +4X3),
where
p =11 — 34X + X3

We could now introduce angular coordinates on the space S* x S", but
will define only the most important two, v and p, by the equations
U_, =COST, Up=sint; T=tan '(uo/u_,), which leave 7 undefined
modulo 2%; and

4 sin? p
2 2
COS P = Upiys X+ Xt =3, 0Lp=snmn
= thes ! " (cos T + cos p)? p

In the particular case n = 3 which is physically crucial, it is possible to
give a useful representation of the present space-time splitting in terms of
the unitary group. Recall the representation

: .
H=( +J‘c y+1z)
y—iz -—-x+1

for the Hermitian matrix X corresponding to the given point (¢, x, y, z) of M,
and define
U = (1 + 4iH)/(1 — 4iH).
Then U is in the unitary group U(2), and the point 0 in M corresponds to the
unit matrix I in U. More specifically, U has the form
T+ix+4d iy +iz)
U=(1-it—3d)! ¢ ,
(1= it —3d) ( ily—iz) l—ix+zd
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where d = t* — x> — y? — z2 In terms of U, t may be recovered in the
natural way as
1 1
T = jilog det U = R det U,
which is equivalent to the equation
T = tan” [¢/(1 — 4d)]

given earlier. In addition, the u; (j = 1, 2, 3) are essentially tangential near I
to the x;; more exactly,

uy=x/[(1 ~ 4P + PTE (=1,2,3)
with U in the form

. uy + iu —uz + iu
U= (up + m_l)( 4 ! 3 2).

Uy — Uy U, — iuy

These u; are identical to the spherical coordinates previously indicated, for
S' x 8§ It follows that near the origin in Minkowski space,

u; = x; + terms of third or higher order (j=0,1,23)

We now turn to the consideration of how the various basic symmetries
act or are represented in terms of these parametrizations—these are notably
the L;,, Lorentz transformations, conformal inversion, etc. To indicate the
method employed, consider the question of the action on U(2) of conven-
tional temporal translation ¢t — ¢ + s in Minkowski space. We note first that
the indicated mapping of M into U(2), while it does not cover all of U(2),
omits just those elements of U(2) corresponding to ideal null spheres, or in
terms of U(2) itself, precisely those unitaries U for which —1 is an eigen-
value. As far as the correspondence between M and U(2) is concerned,
this is a well-known fact about the Cayley transform H — (1 + iH) x
(1 —3iH)™'. That the omitted points in U(2) correspond in one-to-one
fashion to the ideal points in § follows from the precisely two-to-one re-
presentation of points in § in terms of the u ;» in terms of which the general
element in U(2) may also be represented in a matching two-to-one fashion.

5. Causal symmetries and the energy

We turn now to the consideration of the symmetries acting on the two
cosmos.t We aim to give explicit expressions for the relevant symmetries, in

t We use the term unispace (short for universal covering space) for the universal space
with the foregoing physical interpretation. Thus unispace is conformally an infinite-sheeted
covering of Minkowski space augmented by a light cone at infinity. Similarly, unitime refers to
the natural time 7 in this space.
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terms of the various parametrizations. These are useful in computations, and
in clarifying special relativistic formalism. Before going into the matter of
explicit formulas, we enumerate the key qualitative results regarding
symmetries.

(1) Every causal automorphism of Minkowski space M, ie., every
Lorentz transformation or scale transformation, or product of such, extends
uniquely and without singularities to a corresponding transformation on
conformal space M. That is, the restricted conformal group does indeed act
on M, where “restricted conformal group” is defined as the 11-parameter
group of transformations on Minkowski space consisting of products of
Lorentz with scale transformations. The reversal operations
(time/space/total) also continue to act, on all of M, without singularities.

(2) In addition, conformal inversion, formally the transformation
Q: X — 4X/X?, although singular on M, becomes an analytic everywhere-
defined transformation on all of M. Together with the action on M of the
restricted conformal group, Q generates a 15-parameter Lie group of trans-
formations on M this is the action of O(n, 2) earlier derived.

(3) Space rotations around an observer in Minkowski space corre-
spond to space rotations in S! x S" around the corresponding point—i..,
the space rotations are essentially the same in the two models. However, the
temporal generators (i.c., energies) are basically different. The unispace gen-
erator is strictly greater than the Minkowski energy, and differs from it essen-
tially by eQEQ, where ¢ is a small constant and E is the Minkowski energy
operator.

Consider now the two temporal evolution groups. The transformation
T:t—t+ s in Minkowski space can be represented as a transformation
either on S! x §", or in the case n = 3, as a transformation on U(2). Taking
the latter representation first, with the correspondence

' ,
H=( +x y+lz)5
y—iz t—X

T carries H > H + sI. The corresponding element U in U(2) to H is

1+ iiH U-1
U=—+-fl,—; whence H = —2i .
1—71H U+1

Representing T as a transformation on U(2), it follows by a simple computa-
tion that its action is
(1 + 4is)U + gis

U .
T TLisU + (1 — Lis)

This is a transformation in the standard action of the group SU(2, 2) on
U(2). Any element of SU(2, 2) can be represented in natural fashion in the
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form (¢ f) where A, B, C, D are suitable 2 x 2 matrices; in these terms the
standard action is

U - (AU + B)(CU + D)™ ..

Denoting the Lie algebra of this group as su(2, 2), this can be identified with
the 4 x 4 skew Hermitian matrices relative to the Hermitian form z, z; +
2323 — 2323 — 24Z4. With this identification, the generator of Minkowski
temporal translation is then represented by the matrix (where I denotes the

2 x 2 identity matrix)
d 1{ 1 I
Rad )
dt  4\—-1 -1
On the other hand, the unitime group is the group U — U , having the

generator
d 11 0
et )
dv  2\0 -1

These one-parameter groups are not only distinct, but nonconjugate, within
the group SU(2, 2), as shown by the difference between the spectra of the
two generators, which are respectively continuous and discrete, in relevant
representations (cf. Segal, 1967a). This is evident also from the fact that one
of the matrices is singular and the other nonsingular. However, their local
actions at a fixed point of space are very close, differing only by terms of order
s> and higher, where s is the elapsed time. To show this, it is by homogeneity
no essential loss of generality to choose the fixed point of space as the origin
in Minkowski space, or as the unit I in U(2). (The correspondence between
M and U(2) depends on the point of reference; however, that may be arbi-
trarily designated as the origin in Minkowski space, in view of the Lorengz
invariance of M, M, and their relation.) The unitime group sends I — *I;
the special relativistic temporal group sends

1+ is
1 — s

=

I;

these differ by O(s?).

It is thus evident that the special relativistic energy appears relatively
complicated in the U(2) formalism; this is also the case in the S! x S3
formalism. On the other hand, the unienergy appears relatively complicated
in the Minkowski space formalism. To compute the action of unitemporal
evolution in the Minkowski picture, we must transfer the action U — U to
an action on the corresponding H, and hence to an action on (% x, y, 2).
Now, unitemporal evolution sends ‘

U - eU.
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Since

U~-1 esU — 1
, H-o -2i———;

U+1 T

now, expressing U in terms of H again, it results that

H + 2 tan(s/2)
1 — 1H tan(s/2)’

H=-2i

H-H =

We now relate the Minkowski energy to conformal inversion and the
unienergy, and compute the latter in this way. We define conformal inver-
sion, to be designated Q, as the transformation

0: X - 4X/X?;

this is not everywhere defined on M, but extends naturally to an everywhere-
defined transformation on the larger space M, as follows. In terms of the
coordinates (a, B, ¢), Q is the map (a, B, ¢) -~ (c, 4B, 16a), as follows on
substitution in the equation for a Lorentz sphere. It results that on the £;, Q
acts as

0:& ., =-¢ 0 &= (j z0),
and on the u;,

U_{ > —U_y; u; > u

;o (z20)

Thus, in unispace, conformal inversion affects only the time, not the space
component. It is only the identification of antipodal points in S* x S” which
gives the transformation its spatial character on M or U(2). For example, the

transformation
(1,0;0,...,1) > (-1,0;0,..., 1)

effected by conformal inversion on the origin (observational location) is
purely temporal; but (—1, 0; 0, ..., 1) represents the same point of confor-
mal space as does its multiple by —1, ie., (1,0;0, ..., — 1), which can be
considered to be the image under purely spatial inversion of the origin.
We should distinguish between proper unispace and the locally identi-
cal but acausal space §' x S", which becomes conformal space upon iden-
tifying antipodal points. In contrast, the former space is R* x S" and is
mapped upon S' x S" by the transformation (t, u) > (e”, u), and thence
upon conformal space, in which Minkowski space is properly contained. It is
important to note that Q extends naturally not only from an improper
transformation in M to a proper one in M, but also corresponds to proper
transformations in both S! x $” and R! x §" In the case of St x S", the
transformation is Q®: (4, u) » (— 1™, u) where 4 is a complex number of
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absolute value 1 representing the S! component. The temporal character of
conformal inversion as a transformation on R' x $" is particularly clear: it
is Q) (t, u) » (m — t, u). Here we have adopted the notational device of
adding a superscript to designate the space, whether conformal space, its
twofold covering space S' x S", or its co-fold covering R! x S". (There are
similar coverings for each subgroup of the center Z of the group SO(2, 4)/Z,
of all causality-preserving transformations on M; Z is an infinite cyclic
group which is generated by the transformation (¢, u) — (t + @, —u). These
additional coverings may be relevant to elementary particle considerations,
but not directly to the astrophysical considerations of present concern.
Hence they will be ignored in the following.)

It thus appears that conformal inversion differs from time reversal in
unispace by the transformation on R' x S (t, u) > (t + =, u). The latter
transformation is evidently contained in the one-parameter group ¢ — t + s,
and so is continuously connected to the identity transformation. Since time
reversal is represented by an antiunitary transformation in any positive
energy particle model, it follows that conformal inversion is represented by an
antiunitary operator in any positive-energy particle model.

In the case n = 3, it follows from the correspondence between $* x §3
and U(2) that conformal inversion acts as follows on U(2):

Q:U_)_.L_

det(U)

Let us now consider the transformation properties of the energies,
Minkowski and universal, under Q. It is evident that the Minkowski tem-
poral evolution generator d/0t does not commute with Q. A straightforward
computation gives

o 1., 2 2 N0 tf @0 0 0
On the other hand, if 7 denotes time in unispace, then /87, the generator of
unispace temporal evolution, is carried by Q into —&/dt. Indeed, 8/0t =
u_1(6/0uy) — ug(@/0u_,); on sending u_, —» —u_, and uy — ug, this is evi-
dently reversed. This shows explicitly that in any particle model in which the
unienergy is positive, conformal inversion must be represented by an antiun-
itary operator.

Let us now compute how /8t appears in terms of Minkowski coordin-
ates ¢, x, y, z. To do this, note that since exp(a 6/0t) sends U — U, for
U e U(2), the corresponding action on H is as earlier computed,

H + 2 tan(a/2)

H T2 1amde)
1 — 3H tan(a/2)

= H + al + (3a)H? + O(s?).
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Thus, 8/0t carries H into I + 1H?. Recalling now that

, :
H=( +>.c y+lZ),
y—iz t—x

it follows that

6 o 1 ., PN A A 0 0
> =513 (E+x*+y +Z)E+2 0+y6 z5-)-
Comparing the latter equation with that for Q(0/0)Q, it results that
0
Pl Q e

Corollary In any particle or field model that is (a) invariant under the
group O(n, 2) (or any locally identical group), (b) such that the special
relativistic energy is positive, the unienergy is also positive, and exceeds (in
all states) the special relativistic energy.

Proof Let U be any unitary—antiunitary representation in Hilbert space of
the group O(n, 2), and conformal inversion Q, which in particular is repre-
sented by an antiunitary operator Q, as earlier noted. By the foregoing

equation,
0 0
[z = o(a) - vlewe)

where we denote also by U the natural extension of U to infinitesimal
operators of the group. Now

U(Q%Q) - U(Q)U(%)U(Q)

The assumption that the special relativistic energy is positive means that
i~1U(0/ét) is a positive (as well as automatically Hermitian) operator. Since
U(Q) is antiunitary, it carries any one-parameter unitary group with positive
generator into one with a negative generator;ie., i~ *U(Q)U(0/0t)U(Q) is a
negative Hermitian operator. Thus the unienergy —iU(d/dt) is the sum of
the relativistic energy and the positive operator iU(Q 6/6t Q).

As a further example, let us compute some of the generators L;; of the
conformal group in terms of space-time coordinates X, y, z, t. The general
procedure is as follows. For k =0, 1, 2, 3,

2
Lijxk ”(2_1%5—;) = 2(6—1 + 64)—1Lijék - sz(f—l + 54)_2Lij(é—1)’

whence in terms of the x;,

by = 2; (ot + €)'yl — (-1 + &) 28 Ly + 54)]51_
k
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Evidently, L;;& =g 03¢ ;¢ 0,¢&;. Thus, eg, setting e =2 + x* +
¥+ 27,

L = 1_,.5 a+£ _6__,_ i+ 3
1o = 4o T2\ "ax T Ve T Paz)

eNd tf{ & & 8
L°»4_(1_Z)a7"§(xb§+y@”£)’

Loyo=—(t24x24,2.,2
ST T T Y T Ve T e

It should now begin to be visible how a theoretical analysis could be
conducted by an observer, based on either the curved (unispace, R! x S 3or
flat (Minkowski, R' x R3) local decompositions of space-time into space
and time components. In both cases, all the fundamental physical laws on
which conventional reduction and analysis of observation are based remain
valid. Specifically, in either case:

(a) there is a proper global notion of causality in the Cosmos; and
locally the notions are identical in the two models;

(b) conservation of energy, angular momentum, etc. are valid;

(c) Lorentz invariance holds; given any two future directions of a
point, corresponding to relatively accelerated observers, they are related by
a global causality-preserving transformation;

(d) the energy is positive;

(¢) there are essentially unique measures of temporal duration and of
spatial distance, which are invariant under the respective underlying sym-
metry groups (unicity within a scale factor);

(f) there is finite propagation velocity for the causal structure relative
to the time and distance measures in (e).

Physically, only one of these analyses can be globally valid, however.
For example, if global conservation of energy is valid in one analysis, it
cannot be valid in the other, for the respective energy operators do not
commute. At first glance, it might appear that empirical confirmation of
special relativity precluded the empirical validity of the curved formulation
of the local space-time splitting. It develops, however, that as regards direct
measurements the local unispatial analysis differs negligibly from the special
relativistic analysis; it is only at extreme distances that significant differences
emerge. This arises basically from two circumstances: (a) the unispatial
space-time splitting is not only tangent to the special relativistic space-time
splitting at the observer’s location, but has the remarkable feature of
agreeing with it within terms of third or higher order; (b) the basic distance
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scale, set in the unispace theory by the radius of the universe, is such that the
times and distances involved in classical local measurements are
ultramicroscopic.

In order to determine the distance scale, we must evaluate in conven-
tional units the “radius of the universe” R, i.e., the radius of the §* compo-
nent of unispace. At the present time, this can be deduced only from redshift
measurements; this is natural since no other measurements are known to
involve very great distances. It will be seen that the two time scales differ
only by at most ~ 1 part in 10'° in the course of a year (or less), and
similarly for distance scales (scaled by the velocity of light); the difference is
thus well beyond the limits of present experimental capabilities. It is only by
indirect measurements at extreme distances that the difference between the
two models of an observer is empirically perceivable.

6. The redshift

Let us then provisionally adopt the unispace cosmos, and seek to
analyze free propagation over very long times, and its effect on the measure-
ment of frequency of light. The determination of the wavelength of light is
very much of a local matter in practice. Conventionally the frequency is
represented by the operator i~ ! 6/0t. We now have at hand an alternative
possibility i~ ! 6/dt, where 1 is the time in unispace. In the absence of any
observed phenomenon such as the redshift, it might perhaps seem equally
natural to represent the frequency by this alternative ; there would, however,
then be no apparent means of determining the distance scale, i.e., of measur-
ing 7 in natural units. In addition, the whole procedure of local measurement
in the vicinity of a fixed observer is based on flat geometry. These considera-
tions give a certain preferential basis for the flat energy i~ ! 9/0t, indepen-
dently of the results of observational extragalactic astronomy; but what is
really strongly indicative, indeed conclusive, is the fact of the observed red-
shift, which could not exist in the unispace cosmos if the alternative re-
presentation for the observed frequency were valid. We are led thereby to
postulate that anthropomorphically possible local measurements are repre-
sented theoretically by the flar rather than curved dynamical variables; while
on the other hand, the “true” nonanthropomorphic dynamics and analysis
is curved (in the fashion appropriate to the unispace cosmos) rather than
flat. That is, we measure the flat dynamical variables; but the Universe in the
large runs on the curved basis, which agrees only instantaneously with the
flat one. This postulate is provisional, pending the derivation of an effective
treatment of redshift laws, etc,, from it. We now begin this treatment, which
will be found to agree with observation.
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Among the dynamical variables that are chiefly involved in measure-
ments are the space and time coordinates: the energy, angular momentum,
and other particle quantum numbers. Since there is no direct means of
observation of extragalactic distances, and the effect on galactic distances
and coordinates is negligible, there is no apparent present possibility of
distinguishing the theory by measurements of the coordinates. The angular
momentum is the same in both the flat and curved cosmos, as it develops.
However, the most basic of the dynamical variables, the energy, is affected in
an observable fashion.

Let H, denote the dynamical variable —i(d/0t) which has been post-
ulated to represent theoretically the result of a local measurement of fre-
quency. We are particularly interested in the case of light, its frequency being
measured by the usual optical methods. According to the unispace theory,
this dynamical variable is not the true energy, but only appears to be so
infinitesimally at the location of an observer. (However, there is a scale
factor between the two energies, and if synchronous at one location the scale
factor will differ from unity at other locations.) The special relativistic energy
is, therefore, not conserved, just as the energy relative to one Lorentz frame
is not conserved relative to the temporal development in another frame. In
the latter case, the difference in energy is relatively gross, being for small
times s of the order of const x s, and so should be readily observable. In the
present case, however, the unispatial frame is tangent to the flat frame, and
defines an identical Lorentz frame at the observer’s location; it is only the
nonlinearity of the relation between the two cosmos and their respective
groups of temporal displacement which causes a discrepancy in the energies.
As a result, the extent of nonconservation of H,, is proportional to s, rather
than to s, for small values of s, within terms of higher order.

In order to obtain an exact expression, it is necessary to compute ex-
plicitly the dynamical variable representing the frequency after passage of a
time s, ie., the operator Ho(s) = e”*¥H, ", where H is the true (con-
served) energy, given in the unispace cosmos as —i(6/dt) = —iL_ o. Thus

1 .
Ho(s) = e‘SL_l‘Oz—i(L_lyo + LO, 4)elSL_1’0

1 1
=2’iL‘1,0+£e SL_1'0L0!4BSL_1’O.

Now L_; ¢, Lo, 4, and L_, , generate a three-dimensional subgroup of
0(4, 2); in particular

[L—1,0aLo,4]=L-1,4a [L-1,0aL—1,4]=_L0,4-
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It follows that
e SL-1. OLO, 4eSL-1v 0 = A(S)L_ 1,4 + B(S)LO, 4>

where A(0) = 0, B(0) = 1. To evaluate A(s) and B(s), we take first and
second derivatives in the foregoing equation. It results that

—e oLy o, Lo, pJetr 0 = A(s)L-1, 4 + B(5)Lo, 45

evaluating the commutator, it follows that

—e T roL et tho = ()L, 4 + B'(s)L, 4,
whence 4'(0) = —1, B'(0) = 1. Differentiating again, it follows similarly that

—e 0Ly ettt = AY(s)L_; 4 + B'(s)Lo,
which implies that 4"(s) + A(s) = 0 = B"(s) + B(s). It results that

A(s) = —sins,  B(s) = cos s,

whence

1 .
Hy(s) = Ei[L_l’o —sinsL_y 4 + cos sLg 4]

14+cossd 1 —coss &
T2 ot 2 259
sin s

+ TK’ (K= —L_y 4)

Now consider how this change in the operator i~! 9/ot representing
frequency measurement, over the time interval of duration s, is reflected in a
measurement of frequency of a light wave, initially of a fixed frequency v. The
wave function W has then the feature that

1(1}, =WwW, ie, Hy00)¥ =¥,

i ot
at the point of emission, which may be taken as the origin. At the later point
P at which the frequency is measured, say of coordinates (s, u), where s is the
unitime and u the position in space S3, the observed frequency v’ will be
given by the equation

Hy(s)¥ = v'P.
However, while v will be an exact value for the frequency H,(0), i.e., ¥ is a

stationary state for H,,, there is no a priori reason for v to be an exact value
for Ho(s); ¥ need not be an exact stationary state for Ho(s). Thus the
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frequency will be shifted from v to v, while at the same time a certain
dispersion, effecting a corresponding line broadening, may be introduced
into the frequency measurement. In order to compute v’ and its dispersion,
we must know explicitly the wave function W. The simplest reasonable
postulate is that it is a plane wave of frequency v. Neglecting polarization,
which is presently irrelevant, it has then the form
!ﬁ(t, x) = Mtx K

k being fixed. Strictly speaking, this representation for the wave function is
incomplete, in that it is given as a function of the special relativistic coordin-
ates, which are not globally applicable throughout unispace. It will be seen
later that it nevertheless extends in a natural and unique way to a wave
function throughout the region accessible from the point of emission by a
light ray. In the meantime, we shall ignore apparent questions as to behavior
of the wave function at extremely remote points of the Cosmos, e.g., our
antipode.

We wish first to determine H(z)y, at the point of observation, which
we take to have the form (t, u), where u is the spatial position in S3. Since
Maxwell’s equations and the wave equation are conformally invariant, the
properties of solutions are basically independent of whether they are
analyzed from a flat or curved standpoint. In particular, light continues to be
propagated along light rays of the conventional type, which however appear
in unispace to have the form (o, u(0)), 0 £ 6 < g, where u(c) describes a
great circle on §° with constant velocity, normalized to be 1. In particular, at
the point of observation, T > 0 and the distance of u from the point in S* of
emission, taken here as (0, 0, 0, 1), is precisely 7. It is essentially the same to
say that, in terms of flat coordinates, t> = x? + y2 + z2, except that this
parametrization is valid only on part of unispace.

Consider first KW evaluated at P. Evidently

KY = (x(%+ y(j—y+ za% + t%)‘l’ = iv(t — x - k)¥.
However, t = x - k along the ray of propagation, in particular at the point
P. Thus K¥|p = 0. Next, consider Q(0/t)Q evaluated at P. As earlier
determined, Q(0/01)Q is a linear combination with constant coefficients of
the operators (1 — x* — y? — z2) 9/0t and tK. Evidently, the first of these
operators on application to ¥ yields zero along any light ray. The second
vanishes at P on application to W by the preceding paragraph.

Thus

1 oY 1 .
Hy(x)¥|p = FoosTo) _Lrcost g ie., at P,

2i ot |p 2 P
1+cost

Hyx)¥ =v¥Y  with v = 3
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This means there is an expected frequency-independent redshift in the
amount
1 —cost N
z=———=tan"{:}.
1+4+cost 2

However, for such a redshift of a discrete frequency level to be observ-
able, it is necessary that the dispersion in the expected frequency be rela-
tively small (of the order of no more than some angstroms). A bound on the
dispersion indicating that this is the case can be obtained without detailed
computation in the following manner.

By general quantum phenomenological principles, the variance o of a
dynamical variable X in a given state may be expressed as follows. Let E
denote the expectation value functional for the state;ie., for a given dynami-
cal variable Y, E(Y) is the expectation of Y in the state. Then

o? = E(X?) - E(X)%.

Let us apply this to the state y and the dynamical variable H' = H(x). We
have seen that near the point P of observation

Hy ~ vy
The variance 2 may then be computed from the equation
HY ~ (v + gy

near P. Now H'Y = ays, where a is a certain function on space-time; it
follows that

H?Y = aH'Y + (Ha)y = a®y + (H'a)y,

inasmuch as H' is a homogeneous first-order linear differential operator. It
follows that

02 = H'a = v[Ho(a)(t — x - k)], .

This shows that ¢ is of the order of v'/2, and hence negligible relative to v for
large v.

The frequencies involved here (e.g., for an observed wavelength of
21 cm or less) are indeed quite large, especially in the units here in question.
In these units, 7 units of time are required for light to traverse the distance
from any point of space S* to its antipode. Assuming this distance to
2 10° ly (cf. Chapter IV) and the frequency v to correspond to an emitted
wavelength < 20 cm, this gives v!/2/y < 107 !2, an entirely negligible (unob-
servable) dispersion. This applies in fact to an arbitrary stationary state.
Within the plane wave approximation, the dispersion vanishes, ie., { is
effectively a stationary state of H' near the point of observation. But it is not
at all an eigenvector for H' throughout the Cosmos.



80 II1. Physical theory

In fundamental principle, expectation values and dispersions are
defined by integration over the entire Cosmos  in practice, one analyzes only
the behavior of the wave function in the vicinity of the points of interest. To
within the approximation represented by the use of plane waves rather than
normalizable photon wave functions, this accurately reflects the observa-
tional situation. In effect, one cuts off the defining integrals at a distance, say
of the order of 1 ly, which is far beyond the limits of direct observation, but
sufficiently small that Ho(x)"y ~ v™ (n = 1, 2) out to this distance, within
observational accuracy. Without such a cutoff, the defining integrals over
the entire Cosmos would, in the case of plane wave, be divergent.

This cut-off may be made rigorous and the entire redshift computation
carried out within the Hilbert space of normalizable photon wave functions
at the cost of some analytical complication. Since the Hilbert space analysis
is the basis of the correlation of the Heisenberg picture just adopted with
the Schrodinger picture, it seems useful to develop it. To do so, the photon
Hilbert space must be set up explicitly. Within the scalar approximation
already adopted, a photon may be represented by a solution ¢ of the wave
equation, of the form

o) =[ X HK)du(K),

where X = (xo, X1, .., X, K =(ko, ky, ...y k), X - K = xoky — x1k,
—'"—=X,k,, n is the number of space dimensions, and du(K)=
dky --- dk,/|ko|. The inner product between two such wave functions is
given by the equation

Pr92> =]  filK)(K) di(K).
K*=0
This inner product is invariant under all orthochronous conformal trans-
formations and is uniquely determined, within a constant factor, by this
property.

According to the Heisenberg form of quantum mechanics, the operator
Ho(s) = e”""H,e"! representing the relativistic energy at time s has
expectation value (H(s)p, ) and variance {Ho(s)?p, > — (Ho(s)p, ¢>2
if the photon is in the state @, normalized by the condition that
{p, o> =1

In the Schrédinger picture in which the state changes but the dynamical
variables remain unchanged, the photon state after time s is @, = e"Hp, and
the expectation value and variance of the relativistic energy H, in this state
are given by the expressions (H, ¢,, ¢,> and {Hy2@,, ¢,> — {(Hy0,, ¢.>2,
which are equal to those earlier given by virtue of the unitarity of the
operators ¢*%. Thus, as is well known, the two pictures give physically
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equivalent results. The computation of the redshift and its dispersion
evidently depends on the evaluation of the inner products {Ho¢, ¢,
CHyo, @), <Ko, 93, <Ho*@, @), CHo o, Hy9), etc.

Real photons may equivalently be represented by positive frequency
wave functions, i.e., complex-valued wave functions ¢ that satisfy the wave
equation and have vanishing negative frequency components, instead of
wave functions ¢ that are real in physical space. Since the Fourier
transform F(K) of the latter type of wave function is hermitian,
F(—K) =TF(K), it is determined by its positive frequency component, on
which the orthochronous conformal group acts in the same way. A positive
frequency wave function can not be localized in physical space, since it
consists of boundary values of an analytic function; consequently the
most direct form of representation of a recently emitted (and therefore
localized) photon is in terms of a real wave function. The simplest such
function that seems physically relevant is a cutoff plane wave in two space-
time dimensions, the one-dimensional space being defined by the direction
of motion of the photon. This is of the form

I14cosx |x|<
oo 0) = s —xa) ()= [ TESF =
where p is of the form p = (2r + 1)m, r being an integer; this is simply a
plane wave of frequency v, which is cut off smoothly beyond 2r+ 1
oscillations.

Without explicit computation, it follows that the v-dependence of the
relevant integrals is as follows, after normalization of the wave function by
division by <@, >'/*:

(Hy@, @) oV (Hyp, @) ocv™? (Ko, ¢y ocv°
(Hot, @) cv? (H?p, 0> ocv 2 (K2, @) oc v’

By virtue of the scale on which v is measured, according to which a
typical value is 2 102¢ (the value for the 21 cm line, assuming the
radius R of the universe is =100 Mpc, the figure resulting from con-
ventional estimates of the distance and redshift of Virgo galaxies), together
with the Schwarz inequalities: |(Ho o, H,0)| < [Hoo| |H @], etc., the
only possible nontrivial contribution to a dispersion in redshift (ie., a
contribution of order v) can come from the terms involving H,.

Explicit computation of these terms gives the results: (Hy, @) =
v(1 + O(log p/p); <Ho@, @) = v*(1 + O(log p/p). Thus the redshift disper-
sion is vO(log p/p) and vanishes for an infinite plane wave. For a cutoff
plane wave which is 2 1 light-second in extent, and <21 cm in wavelength,
the dispersion is <1 part in 10'7, and hence quite remote from
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observation. It follows also that the superrelativistic component of
recently emitted radiation within the galaxy is negligable. But old,
delocalized radiation, no longer approximately an cigenstate of Hj—al-
though necessarily resoluble into such—can be highly energetic, particularly
the very low frequency components, since {H ¢, ¢ varies inversely with v.
Explicit computation shows that the proportionality factor has the form
kp*(1 + O(log p/p)), where k is an absolute constant of order 1; ie., the
superrelativistic energy varies approximately directly with the square of the
diameter of the region of support. This result is naturally to be compared
with the approximately quadratic rate at which the superrelativistic com-
ponent of the energy of a freely propagated photon builds up according
to the redshift law earlier derived.

7. Local Lorentz frames

Having thus derived an apparent redshift, let us now elucidate the
physical connection between the flat and curved dynamical observables.
This is necessary in order to predict results of other types of measurement. A
central hypothesis used in the derivation is that an anthropomorphically
measurable local observable is represented theoretically by a flar dynamical
variable at the point of observation P,. These flat dynamical variables are
mathematically definable in a large region of the Cosmos, far from the point
Py, but at other points they are mathematically distinct from the corre-
sponding flat dynamical variables, expressible in constant coefficients in
terms of the local anthropomorphic Lorentz frame. At any point P, the latter
frame is the unique Lorentz frame—unicity only within a scale factor, an
important point to be further discussed—which is tangential to the globally
given curved unispatial frame. This is the unique such unispatial frame
which at the point of observation P, is tangential to the Lorentz frame of
measurement at P, .

A stationary anthropomorphic observer at a point P’ should then see
events as taking place in this tangential Lorentz frame. These frames vary in
a well-defined way with the point P, and from a conventional Minkowskian
point of view are in relative motion. The latter motion is entirely virtual; the
Cosmos is stationary from the curved observational standpoint, which is,
however, anthropomorphically indirect (ie., accessible via redshift—
magnitude observations, etc., and their theoretical interpretation). In other
terms, the true driving physics is cosmologically stationary, but the Cosmos
may appear in motion due in part to the theoretical analysis employed and
in part to inherent restrictions on the mode of observation enforced by
anthropomorphic and/or microscopic limitations.
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It is instructive to compute explicitly the relation between the anthro-
pomorphic Lorentz frames at two different points of the Cosmos. Setting
h= c = 1 leaves open the distance scale in Minkowski space. In unispace,
we employ the natural distance scale, that in which the radius R of space $°
is unity. It will be convenient to define the anthropomorphic distance scale
by a constant R which expresses the ratio between a local distance as
measured in Minkowski space and as measured in unispace; this scale R(P)
may, for the present, vary with the point P of the Cosmos. Taking the point
P, of observation as the origin in Minkowski space, as is no essential loss of
generality, and setting R, for the local distance scale, the Minkowski coor-
dinates x; are related to the unispatial coordinates u, as follows:

x; = 2u;Ro(u-y + us)7%,

in the vicinity of the point P, . In the vicinity of a different point P, the local
Minkowski coordinates x; which are tangential to the unispatial coordinates
at P'—i.., the x| vanish at Py, and dxj = R du; (j = 0, 1, 2, 3) at P,—are
nonlinearly related to the Minkowski coordinates x;. Of particular interest
is the case in which P, and P, are relatively lightlike, e.g., P, is the point of
emission of light and P, is the point at which it is observed. By making a
suitable Lorentz transformation, it can be assumed that the x5 and x, coor-
dinates of P, vanish, so that one is in an essentially two-dimensional spatio-
temporal situation. This simplifies the discussion, and serves to illustrate the
useful simple form of the general theory in which space-time is two
dimensional.

In the two-dimensional case, unispace may be fully parametrized by the
angles 7 and p, defined by the equations

U_4 = COS T, Uy = sin 1, u, = sin p, u, = COS p.

The tangential Minkowski coordinates at the origin are (t, x) where
2Ry sint 2R, sin p
Tcosttcosp’ - cost+cosp’

A point P, that is lightlike relative to the origin has unispace coordinates of

the form © = p = a. Near this point, tangential Minkowski coordinates

(¢, x') are given by the equations

L 2R, sin(t — a) 2R, sin(t — a)
"~ cos(t — a) + cos(p — )’ X = cos(t — a) + cos(p — &)

’

From these equations it is evident that (¢, x) are well-defined functions of
(t, x); it will suffice here to give the Jacobian matrix (0x]/0x,), evaluated at
the point (0, 0). A simple computation shows that this has the form
Ry\sec® a1 + cos? a sin? a
Ry 2 sin? a 1 + cos? a)’
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This is the product of a scale transformation, via the factor (R; /R,) sec «
with the Lorentz transformation

1 1 + cos? o sin? o
—~sec . 5 5 )
sin” o 1+ cos” a

This can be interpreted as a virtual motion of velocity dependent upon «,
accompanied by a virtual expansion with factor (R, /R,) sec a.

A natural means of determining the distance scale R is, in the present
theory, based on the assumption that the redshift is entirely due to the
indicated chronometric effect, apart from possible small deviations due to
intrinsic velocities, local gravitational effects, etc. ; the main assumption here
is that the fundamental properties of matter are the same in all parts of the
universe. This is a provisional assumption; conceivably these properties vary
with time, and even in a stationary universe, variations in the ages of emit-
ting objects could introduce thereby an effect on the observed redshift. It will
be found, however, that there appears to be no observational evidence for a
significant effect of this nature, in the sense that all of the observations
discussed in Chapter IV are consistent with the simple hypothesis of a
chronometric redshift. The distance scale is constant throughout the
Cosmos, on the present assumption.

The relation between the canonical Lorentz frames at different points
is then unique and indicates the usual rate of time dilation by the
factor 1 + z. For if the local relativistic coordinates x; near the point O of
observation are normalized so that they vanish at O, the equation

t = tan” (xo(1 — x3/4))

gives the relation between the unitime ¢ and the observational time x,
at 0. The unitimes near any other point at rest relative to the point of
observation differs only in zero point from ¢; this is true in particular of
the unitime ¢ at the point E of emission; it follows that x, =
2 tan[(t' — 14)/2], where ¢, is the zero-point difference. Now the unitime ¢
was synchronous with the observational time x, at E at the time of
emission; noting that

dxo=(1+x3/4)dtr;  x%/4 = tan®(t/2),

it follows that dx, = (1 + z)dxj is the relation between emitted and ob-
served rates. The result just derived may plausibly be applied also to the
dilation of the interval between wave crests; this provides a heuristic
classical derivation of the chronometric redshift-distance law which is due
to H. P. Jakobsen.

Actually, the wave function of the emitted light is not known with
sufficient accuracy to warrant definitive conclusions at this time regarding
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time dilation. Strictly speaking, it can not be an exact stationary state of
either relativistic or unitemporal time displacement, since such states can
not vanish outside of bounded spatial regions. Locally, it is within observa-
tional limits, a stationary state of both energy operators. The earlier deriva-
tion of the redshift-distance law for localized states of the form
o(x, t) = f(t — x) applies equally well to states of the form f(z — p). It is
essential for the argument that the function f vanish outside of a small
local region; if f is a complex exponential, there is no redshift, since the
state is stationary for the total energy H, and the wave function is in
fact normalizable, unlike the usual relativistic plane wave. Moreover the
temporal characteristics of the emission process are relevant in the
determination of higher-order time dilation effects, which are not necessarily
small in view of the apparent extreme nonlinearity of some of the fluctua-
tion processes strong enough to be observed at great distances. Thus, the
1 + z time dilation factor should be regarded as a rough overall indication,
and each particular type of process should be examined on its own merits.
Rust (1974) has given some theoretical and observational evidence, suggest-
ing that the factor may be different for supernovae time lapses. A totally
different case is that of short-period quasar variability; its qualitative
increase with z does not as yet appear to differ markedly from a
1+ z law.

8. Cosmic background radiation

From the equation z = tan®(p/2), it is evident that z —» co as p — m, i.e,,
formally the redshift approaches totality as the propagation interval
approaches a half-circuit of space. However, within the Minkowski frame-
work, the antipode is infinitely distant, so that this total redshifting requires
an infinite time relative to the local flat clock at the point of emission. In
addition, there are physical circumstances which quite significantly modify
the formal indication for an infinite redshift.

First, the photon wave function near the antipode of the point of emis-
sion will be almost entirely delocalized, as well as highly redshifted. It will
then interact appreciably with the effective plasma formed of all galaxies and
possible intergalactic matter throughout all of space. The photon will no
longer be freely propagated, but may be scattered or absorbed.

Second, quantum dispersion, of the order of v~ /%, becomes significant
when v becomes very small, and the description of the freely propagated
wave function as “redshifted ” becomes oversimplified. The frequency of the
photon is no longer approximately sharp. From a flat local point of view, it
is low in (relativistic) energy, and relatively high in superrelativistic energy,
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the total unienergy being conserved. Similarly, the linear momentum is not
conserved, although an analogous unimomentum is conserved. This lack of
conservation of momentum applies to the direction, as well as to the magni-
tude, of the momentum vector. While the expected momentum vector has
the same as the original direction of propagation, there is a stochastic com-
ponent to the direction representing the quantum dispersion, with nonvan-
ishing contributions orthogonal to the line of sight. The effect of free
propagation on the linear momentum is in fact computable by the same
analysis as in the case of the relativistic energy.

For all of these reasons, the analysis of highly redshifted radiation as if
it were an effectively localized plane wave packet is quite inappropriate. For
sufficiently high redshifts, it should not be at all observable as radiation from
a discrete source, even if originating in one, but only as background radia-
tion. Its propagation from this point onward is probably not accurately
represented by the free unitemporal evolution of a solution of Maxwell’s
equations in Minkowski space.

While the local dynamics of all contributions to this background radia-
tion must be extremely complex, the general considerations of equilibrium
statistical mechanics lead to a conveniently simple conclusion. All radiation
may be divided into two classes: (a) the “ pristine,” which has made less than
a half-circuit of the universe since emission; (b) “residual,” the remainder.
The origin of this radiation is not important for general considerations, but
in the chronometric theory there is no special reason not to postulate that it
arises primarily from discrete objects, and for concreteness, this may be
assumed. In view of the apparent transparency of intergalactic space, the
residual radiation should typically make many circuits of space before ulti-
mately interacting with matter. The infinite time available for this low-
frequency, high-dispersion radiation to accumulate implies quantitatively
that it may be highly energetic, but in any event qualitatively that it is
distributed in accordance with Planck’s law, i.e., having a blackbody spec-
trum. For this law follows directly from the conservation of energy and
maximization of entropy. The conservation of the unienergy is the starting
point in the chronometric redshift analysis of the propagation of free pho-
tons, and its extension to all dynamical processes in the universe is tanta-
mount to temporal homogeneity and causality.t It is a very natural and
almost inevitable postulate. The maximization of entropy is implied by ergo-

t It should perhaps be emphasized that the so-called steady state theory is not at all
temporally homogeneous from the present standpoint since energy in this theory is essentially
ad hoc and not intrinsically definable in terms of the geometrical structure of the Cosmos. It is
only for a theory of this atter type, in the presence of suitable noncyclical diffusion of energy
yielding the requisite ergodicity, that the Planck law follows.
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dicity, or nondeterministic mixing, which should be amply fulfilled by virtue
of the stochastic character of the emissions from and motions of galaxies.

Thus the residual radiation should appear in the form of an energetic
background blackbody radiation. The largely unknown absorptive charac-
teristics of the various aggregations of matter in space, as well as of the
extent of this matter itself, preclude a direct estimate of the energy density of
this radiation. However, an approximate upper bound on its temperature
may be estimated in terms of the energy density of starlight, and certain
galaxy parameters, by neglecting all absorption except that by bright gal-
axies. Unless there exist large amounts of matter in presently unknown form,
this upper bound may reasonably be expected to give the correct order of
magnitude of the temperature of the radiation.

For such order-of-magnitude estimates, it suffices to approximate the
galaxies by completely absorbing spheres of a fixed radius r. The extinction
in a short time t of propagation is the quotient of the total solid angle Q
subtended by all the galaxies in the spherical region of radius 7 subtended
from the center, by 4n. Again, Q is sufficiently accurately estimated by plac-
ing all the galaxies at the expected distance, on the basis of spatial homogene-
ity, of (3)r from the point of emission, and neglecting overlapping solid
angles. If u denotes the number density of bright galaxies, the resulting
extinction is consequently

[4n(3t/4)2]" [u(4/3)ncInr® = (167/27)ur?t,

implying an extinction of exp[ — (16m/27)nur*] in the course of n half-circuits
of space.

The flat (special relativistic) component of the pristine radiation is the
space average of (1 + z)~ ! times the total pristine radiation, say S. Assum-
ing spatial homogeneity, the distribution of z is (2/n)z(1 + z)~ 2 dz, which
when averaged over space gives a factor of 4. On the other hand, summing
over all possible numbers of circuits, the total residual radiation amounts to

P 21 exp| — (16n/27)ur?] ~ [(16m/27)ur?]~ ' P.

Thus the ratio of the energy of the residual to that of the special relativistic
pristine radiation is ~ 0.4u~'r~2.

In making a comparison with observation, it would be natural to iden-
tify the observed microwave background radiation with the theoretical resi-
dual radiation, and, to an adequate approximation, the starlight background
with the special relativistic pristine radiation. Although quantitative astro-
nomical discussion is being left for Chapter IV, it may here be remarked that
the results concerning the background radiation are in satisfactory agree-
ment with observation.
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One of the most striking features of the observed cosmic background
radiation is its apparent strong isotropy. While unexpected from a Fried-
mann model standpoint, there is no reason for any local anisotropy within
the universal cosmos framework, apart from peculiar motions. These are
probably quite small for galaxies, indeed appear of an order <60 km/sec
(see Chapter IV). Even on a classical basis for analysis of radiation, such
slight motions should not produce presently observable anisotropy. Taking
into account the quantum dispersion additionally involved in a more exact
treatment could only increase the threshold of peculiar motions which
would produce observable anisotropy, quite possibly to a level well above
that of the Sun. On the chronometric hypothesis, anisotropy in the back-
ground radiation appears unlikely to be observed until considerably greater
precision of measurement is obtainable, if ever.

9. Special relativity as a limiting case of unispatial theory

Special relativity can be regarded as a limiting case of unispatial theory,
as the radius R of the universe becomes infinity, in a sense indicated by
Einstein, Minkowski, and Weyl. The radius R is actually a physical constant,
and the mathematical content of the formation of the limit as R — oo re-
quires some clarification. It can, however, be defined by analogy with the
familiar cases ¢ — oo, which leads to Galilean relativity from special relati-
vity, and & — 0 which leads to classical from quantum mechanics. We shall
be relatively explicit and show how the fundamental dynamical variables of
the unispace theory converge to those of special relativity.

Consider first the space-time coordinates. The physically observed
coordinates are not the x; (0 < j < 3) of the first part of this chapter, but
rather the x; = Rx;, R being the radius of the universe. These x; are to be
compared with the Ru;. We have

Ru; — x;=0(1/R) as R - .
For
Ru; — x; = Rx;[(1 — 4y + 2] -

d\2 p2]-1e
s
= x;0(R™?).
An even sharper and uniform estimate holds when t'2 4+ x'2 + y'2 + /2 = ¢/

is sufficiently small, as would be the case out to classical macroscopic dis-
tances, according to the estimates of R in Chapter IV. Thus the suitably
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scaled Minkowski and universal space-time coordinates agree to within a
close approximation, for moderate ¢'.

Consider next the dynamical variables corresponding to generators of
space-time symmetries. These are specifically the energy-momentum vector,
the angular momenta, the boosts, and the infinitesimal scale transformation
K. There are 11 generators here in all; seven of them are the same (i.e., have
the same expression in terms of the x; and 6/0x}) in both theories; the
energy-momentum vector is the quartet which are distinct between the two
theories. There are, in addition, four linearly independent infinitesimal sym-
metries of unispace, whose action in Minkowski space as R — oo remains to
be explored.

We have the

Theorem The suitably scaled 15 linearly independent generators L;; of
symmetries of unispace, when formulated as expressions in the x;and 6/0x],
differ from the 11 generators of the group of global conformal transforma-
tions in Minkowski space by terms of order 1/R?, as R — 0.

Remark 1 1t might appear anomalous that 15 vector fields converge to 11
vector fields. What happens is that two ordered sets, each consisting of four
of the L;;, converge to the same conformal vector fields in Minkowski space.
Remark 2 This result is independent, as are many in this chapter, of the
dimensionality of space-time.

Proof We take the Minkowski energy-momentum vector in the usual form

LR )
o ox oy tar)
and define ‘the (physically scaled) uni-energy-momentum vector to have the
form

(=iR™'L_, ¢, ~iR"'L_y ,iR"'L_y 5, iR7'L_; 3).
From earlier obtained expressions for the L;;, it follows that:
(the univector) — (the special relativistic vector)
= (inverted relativistic vector),

where the latter is defined as the transform of the special relativistic energy-
momentum vector through conformal inversion. That is, the vector

{0 0 0 0
_lQ(é?, T ax’ '—0—)/, _é?)Q
_ —L_jo+LoarL_y1—Ly4sL_y2—Lya, Loy 3—L3,4
—i(2R)
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The jth component of this vector is
i £ — x? — yrz — 72 4 X}Sj ¢ 0 4y 7} Ty J 47 J
4R? ax;, 2R\'ar T Y ow TV oy TPe) |

which is O(R™2).
The angular momenta L;; (i, j = 1, 2, 3) have the form

TP P AUV
ox, ™ Mox,) T T\ Max, T Yiax)

which is independent of R, and has the same expression both in Minkowski
and unispace. The same is true of the boosts

t

a) (=1,273),

0
—iLy ; = _i(x;)é;} + x;'(?x’o
and the infinitesimal scale transformation K = )'; x; 0/0x;.

In particular, R"'L_; ; and R™'L; , both differ from g; 0/0x; by
O(R™2), and agree in the limit R — oo with the conventional energy—
momentum component ¢;d/0x;. The differences L_, ;- L; , thus are
locally approximate absolute constants of the motion. As such they
are locally approximately representable by a slowly-varying vector field,
which physically would appear most naturally as potentially related
to gravitational phenomena as in the Weyl-Veblen theory, but possibly
related also to microscopic processes as internal quantum numbers. There
is no clear connection with extragalactic observation, and these generators
will not be treated further here.

The philosophy of the chronometric approach to elementary particle
theory may be briefly indicated here, as a means of clarifying its coherence
with both macro- and microphysics. Its basic premise is that while the
cosmos as a whole is covariant with respect to SU(2, 2), or more precisely its
universal covering group, say G, s, the observable microcosmos is covariant
only with respect to the scale-covariant subgroup, say G,,. The scale
generator —L_, , is, like the superrelativistic energy-momentum vector,
locally an approximate absolute constant of the motion and thus determines
a slowly-varying scalar field. This again is most naturally interpreted from
a gravitational standpoint, in terms, for example, of the Nordstrom-like
theory or, in combination with the vector field just indicated, the Weyl-
Veblen theory. From an elementary particle standpoint, what may be
important is the restriction of the G,,; to the usual G,, Lorentz group
brought about by the elimination of the scale generator; thereby conformal
invariance is not at all inconsistent with the existence of massive particles.
The G,, is invariantly specified as the subgroup of SU(2, 2) leaving
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invariant the “infinite” points relative to the observer in question. These
are the points that are carried by the covering transformation from
unispace M to the conformal compactification M of Minkowski space M
into points that are in M but not in M ie., the antipodal point, all points
lightlike relative to it, and all transforms of these points by the center of
G,5. An alternative mechanism for the introduction of massive particles
is the restriction to the SO(2, 3) subgroup, which includes time development,
space rotations, etc, ie. that consisting of transformations leaving un-
altered the last coordinate £,. This mechanism would probably lead to a
countably infinite series of theoretical particles of discrete masses without
the interventation of adjustment for scaling, which could conceivably prove
to be unobservably small.

While these ideas are qualitative, they are nevertheless suggestive of
relatively concrete models for the basic elementary particles. The leptons, for
example, may most simply and naturally be correlated with the solution
space of the Dirac equation in $* x $3, or in U(2). The Z, central subgroup
of SU(2, 2) provides a quantum number that can naturally be expected to
distinguish neutral from charged leptons. The vanishing of the parameter m
in the Dirac equation does not imply the vanishing of the physical masses of
all the elementary particles involved here (i.e., irreducible constituents of the
indicated representation of SU(2,2) on its restriction to the extended
Poincaré subgroup), due to the curvature of space and to the role of scaling.

Similarly the baryons are quite conceivably represented by the totality
of spinor fields on M, or one of its locally isomorphic versions, having “real
mass,” i.e., the square of the Dirac operator has a nonnegative spectrum in
the state corresponding to the field (more exactly, semibounded spectrum,
since the curvature of space displaces the zero-point). On restriction to G, 4,
the representation of the G, 5 defined by these fields may well split into only
a finite number of irreducible constituents. (I am indebted to B. Kostant for
citations of analogous known group-representation-theoretic phenomena.)
The scale then becomes an experimental constant, but the ratios of the
masses of the constituents would be mathematically computable.

These computations are technically fairly advanced, but appear entirely
feasible as a program for immediate development. Of course, it is always
possible that nonlinear interaction effects are so large as to dominate com-
pletely the spectrum of apparent elementary particles and to reduce the
implications of the present group-theoretic approach to a qualitative level.
This is, e.g., the present position of the Heisenberg school, among others.
However, the discreteness and unicity of the leptons and baryons are
strongly suggestive that elementarity of particles is at least partially real
rather than relative; and the mechanisms here proposed for the classification
of these particles are considerably more unique analytically and definitively
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accessible quantitatively than those which depend on proposed nonlinear
quantized fields. In addition, the—possibly surprising—usefulness in cosmol-
ogy of rational methods, based on general considerations of causality and
symmetry, etc., evidenced by the good agreement with observation of the
chronometric theory, must be taken into consideration, however different
physically the situations in elementary particle physics and extragalactic
astronomy may appear to be.




IV

Astronomical applications

1. Introduction

There are logically two parts to the astronomical applications: (A) the
elucidation of the theoretical implications for observable quantities; (B) the
comparison of the theoretical predictions with actual observations.

Part A is contained in the following three sections of this chapter ; these
explore the following theoretical relationships, from the standpoint of the
present theory and its comparison with the expanding-universe theory:

(1) the redshift-magnitude relation for a single luminosity class;

(2) the redshift distribution for a single luminosity class of uniform
spatial distribution;

(3) the Schmidt luminosity-volume ratio for apparent-luminosity-
limited samples of uniform spatial distribution;

(4) the magnitude-aperture relation for galaxies, and its implications
for cosmological tests based on (1) and (2) above;

(5) the log N — log S relation for radio sources of given luminosity
function and spectral index;

(6) the metric angular diameter—redshift relation for a uniform class of
objects uniformly distributed in space.

While some further independent tests may be envisaged, the data pres-
ently available are for the most part totally inadequate for statistically
significant studies.

93
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The theoretical treatment is illustrated in Part A by reference to actual
observations; however, the detailed description of the comparison between
the best available data and the predictions of Part A is given in Sections 5-20
constituting Part B. There are separate sections on galaxies and quasars.
Emphasis is on statistically controlled data and the utilization of standard
statistical tests; however, extensive runs of data, even when of uncertain
statistical homogeneity, are also discussed. In the last section, predictions
and observations are compared for cases in which statistical levels of
significance are uncertain and theoretical values, such as intrinsic simplicity,
or economy in the use of parameters or energy, are involved in the compari-
sons. Examples of such cases include: the apparent near cutoff in the number
of quasars above redshift 3; the energy output of quasars in comparison with
that of galaxies; apparent superlight velocities; apparent rarity of quasars in
identifications of optically very faint radio sources.

2. The redshift-magnitude relation

With the notation of Chapter III, consider a luminous object at a
distance p in natural units from the point O of observation, which we take as
origin. The redshift z is then tan?(p/2), according to Chapter III. By the
inverse square law of luminosity decrease with distance, and spherical
geometry, the luminosity 1, as a function of p, varies as (sin p)~ 2, apart from
redshift effects. If at the source the spectral function is f (v) and if observation
is made in a frequency range v, < v < v,, then the energy at the source
contributing to this range is [}%] 12} f(v) dv. This energy is not only diffused
according to the inverse square law but also redshifted, or diminished by the
factor 1 4 z as observed. Consequently the observed luminosity L, varies
as

obs

1 1 va(l +2)

— dv.

sin? pl +z fml”) S) dv

Assuming that f(v) oc 1v% it follows from this equation and trigonometry
that

(1+z)>* e

bs OC
obs P ’

L

or in term of magnitudes,
m=25logz— 252 — a)log(l + z) + C.

For « = 1, m is then a monotone increasing function of z, which if o = 1
attains the finite limiting value C as z — oo. It attains this limiting value
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relatively rapidly; at z = 4, the brightness is within one magnitude of the
limiting value. The finiteness of this limit is of course purely theoretical ; any
actual physical source, having finite energy, cannot have a constant spatial
index a < 1, since otherwise the integral j°° f(v) dv representing the total
energy would be divergent; indeed, in actuality f(v) = O for sufficiently large
v. However, at present, there is little evidence to suggest that variation in the
spectral index is a significant factor over the presently observable redshift
range, as regards the m—z relation for quasars, and as in most treatments of
the m-z relation it will be neglected.

In any event, over a redshift range such as 0.4 < z < 2.5, the chronome-
tric theory predicts a dimming in apparent magnitude of < 1 mag for
objects such as quasars of spectral index ~ 1, while the Hubble model} (or
Friedmann models having reasonable parameters) predicts a dimming of
~ 4 mag. Thus, barring extreme observational difficulties with the larger
redshift ranges, the difference between the chronometric and expansion
theories redshift predictions should not be difficult to detect. It will be found
that, indeed, quasar observations are in quite satisfactory agreement with
the chronometric prediction, but reject the Hubble law, at a high level of
certainty. The latter result may be regarded as a form of demonstration
of very strong evolutionary effects, within the expansion theory framework,
as will be discussed later.

The theories also differ markedly for small z; according to the chron-
ometric theory,

m ~ 2.5 log z + const, 0<zZ£0.1.

There is thus a difference of 2.5 mag between the chronometric and expan-
sion theories’ predictions over either of the ranges, 0.001 £ z < 0.01 and
0.01 < z < 0.1. Unfortunately, there are observational difficulties in these
ranges, which may be less significant for quasar observations; these have
been stressed for a long time by workers in the field. They are primarily:
(a) the relatively greater difficulty of observing “standard candles” (in
particular, “selection effects”); (b) the aperture effect; (c) the intrinsic
velocities of the luminous objects; and, secondarily, (d) the “K-effect,” and
(e) galactic absorption, which is relatively small for the magnitude differences

+ For brevity and in conformity with general usage, the term Hubble model (or theory) is
used in the present work to indicate the Doppler model in which space is Euclidean and the
redshift is proportional to distance. Historically, however, the term is a considerable
oversimplification. On several occasions, partly with collaborators, Hubble expressed clear
reservations about the Doppler theory of the redshift, but stated the opinion that the only likely
theoretical alternative was a new fundamental physical development. Moreover, the redshift—
distance relation was initially reported as “roughly linear ” and later as involving additionally a
definitely positive quadratic term; see Hubble (1936a).
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involved. (Correction for galactic evolution is required only in the expansion
theory.) As emphasized by Humason et al. (1956), the aperture effect is
strongly z-dependent, and must be properly corrected for, in order to have a
valid basis for comparison between theory and observation. On the other
hand, as is clear from recent work of Sandage (1972a), the aperture correction
is in practice model-dependent. As a consequence, for objects and redshift
ranges in which the aperture effect is significant, the redshift-magnitude
relation must be of a quite detailed nature as regards the surface brightness
profile of galaxies, etc, in order to be testable. The data on bright
cluster galaxies are such that each theory fits part of it well and part of it
equivocally.t

Intrinsic (“peculiar”) velocities are a conceivable difficulty in dealing
with very small redshifts. In principle, the difficulty could be overcome if
sufficient randomized data are available. However, there is no model-
independent indication that the problem is a serious one, apart from the
motion of the Sun and Galaxy. The catalog of the de Vaucouleurs (1964)
includes only 14 blue-shifted objects, with an average blue shift
< 100 km/sec, among more than 740 for which redshifts and magnitudes are
given.

In any event, the existing galaxy data at low redshifts are in poor
agreement with the Hubble law. A lengthy study by G. de Vaucouleurs
(1972) led him to postulate a local spatial anisotropy. This has been disputed
by Sandage et al. (1972). The chronometric theory is in excellent agreement
with the data, its prediction for the m-z relation being substantially the
empirical law m = 2.5 log z + const found by de Vaucouleurs. This law is
confirmed by maximum-likelihood estimation, whether for the totality of
742 redshifted galaxies with m-z-0 data listed on the de Vaucouleurs tape
(updated to 1972) of their guide (1964), or for subsamples selected on
morphology, field of the sky, or both. It is in addition in distinctly better
agreement with the classic data of Humason, Mayall, and Sandage than is
the Hubble Law, as first indicated by Hawkins (1962), in the case of field
galaxies.

Closely related to the redshift-magnitude relation is the redshift distribu-
tion law. Assuming a uniform spatial distribution of luminous objects, ie.,
that the number of objects of a given type in a given region of space is
proportional to the volume of the region, the fraction of objects out to a

+ Quasi-phenomenologically (see below), the data of Sandage on the m-z relation (for a
sample derived from 41 clusters) is in considerably better agreement with the Hubble law than
the chronometric prediction; but the latter does effect a 459 reduction in dispersion. On the
other hand, the compilation by Noonan of all published redshifts for clusters (146 in all) is in
much better agreement with the chronometric than the Hubble prediction regarding the N(< z)
relation.
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given redshift z is well determined in both theories, and well known in the
expansion theory; for small z, this fraction F(z) varies approximately as z°,
independently of the precise parameters of the theory (or exactly as z* in the
original Hubble theory based on Euclidean space), and increases rapidly
with increasing z in the observational range. To treat the matter in the
chronometric theory, let V(p) denoted the volume of space up to distance p
from the origin O; then dV varies as sin? p dp. Integrating, it follows that

V(p) = 4(p — sin p cos p) = [tan™1 z}/2 — 212(1 — z)(1 + z)2],

expressing p in terms of z. This implies that F(z) varies as z*/? for small z, in
the chronometric theory, as was to be expected from the approximate qua-
dratic dependence of z on distance for small distances. This represents a
considerable difference from the behavior indicated by the expansion theory.
The existing samples which are or may be free from serious selection effects
are limited in number and size, but they favor the 3 power law over the
third-power law, whether galaxies or quasars are used.

When selection by luminosity is an important factor, the V/V, test
treated by Schmidt (1968) may still be used, provided the sample is complete
out to a definite limiting magnitude. If this limiting magnitude is 7, then the
ratio of the volumes V(z)/V(Z), where Z is the maximum redshift for which
the object would remain in the sample (if located at the distance indicated by
the redshift), and V(z) denotes the volume of the region in space in which the
redshift is bounded by z, is uniformly distributed in the interval [0, 1], on the
hypothesis that the luminous objects in question are uniformly distributed in
space. In the Hubble theory, eg, in its simplest form,
m—m=>51logz— 5 log z, whence V/V,, (setting V(z) = Vand V(z) = V,,
to conform with the notation of Schmidt) takes the value 10~ %6~

In the chronometric theory, for objects of spectral index ~ 1

m—m=2.5log[z/(z + 1)] — 2.5 log[z/(z + 1)];
a simple computation leads to the result
Z=y/(L=7v)  v=[z/z + HIO*H="™;

if y > 1, then the luminosity is so great that the object would be included in
the sample anywhere in the space under consideration. Setting

p = 2arctan z!/2,  p = 2 arctan z!/2,

Vo sin 2p _ sin2p
v (=57 -5

The given expression for V/V,, differs by little from the ratio (z/z)*? in the
indicated redshift range, being typically of the order of 1% greater. As z — 0,
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this expression converges to 107%6~m je to the expansion-theoretic
value, but for moderate values of z, the difference between the respective
values of V/V,, may be significant. Even for small values of z, the test is
potentially discriminatory on the basis of the model dependence of the
magnitudes, via the corresponding dependence of the appropriate aperture.

The distribution laws differ markedly for large z, in as much as V;,.n.(2)
attains a finite limiting value which is approached for much lower z than in
the case of realistic closed Friedmann models. For example, N(2.25 <
z < 3)/N(z < 2.25) has the value 1.37 in the (nonevolutionary) Hubble
theory, > 0.33 for the Friedmann models with g, < 1, and the value 0.09 in
the chronometric theory (in which the region 2.25 < z < 3 corresponds to
the zone in space where the polar angle p lies in the narrow range 112.6° <
p < 120°). The latter value is greater than, but in the light of the observa-
tional situation agrees within an acceptable level of random fluctuations,
with the value observed for quasars; however (indeed, virtually as a
consequence), the former do not, even allowing for various effects which may
modify the value (absorption, K-effect, etc.).

To summarize, the redshift-magnitude relation, and the related redshift
distribution, provide several quite disparate theoretical predictions of a -
direct and straightforward nature. Their confrontation with observation
may therefore reasonably be expected to furnish counterindications for at
least one of the theories, although not necessarily positive indications for the
other.

3. Further cosmological tests

We attempt no exhaustive analysis, but treat only two additional tests
which may fairly soon become statistically applicable as data improve.

a. The redshift-angular diameter relation

It must be emphasized that the theory treats the metric angular, rather
than isophotal angular diameter. For the relation of the latter diameter to
the redshift is quite complex and dependent on a variety of uncertain func-
tions. On the other hand, the metric diameter is in general not directly
observed, so that the relation derived is not readily checked against
observation.

In the chronometric theory, an object of metric diameter d has at dis-
tance p the angular diameter 6 = d/sin p + O(d?*), employing the same nat-
ural units as earlier. For galaxies, d*> is negligible, and employing the
redshift-diameter relation, it follows that

= d(1 + z)/2z"2.
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The chronometric 6~z relation appears quite different from the Hubble rela-
tion Bocz™!, and from the relation treated by Sandage (1972a)
6 o (1 + z)*/z. Unfortunately, in the z range in which there are measure-
ments that can reasonably be construed as metric diameters, the various
theoretical diameters differ by far less than the intrinsic dispersion in the
angular diameters. The main difficulty in the use of the 8-z relation is indeed
that of determining the angular diameter of a more-or-less constant metric
diameter. The isophotal and metric diameters in general may behave dif-
ferently as functions of redshift.

The very large sample represented by the de Vaucouleurs tape gives
6 oc z~*/? to a much better approximation than 6 oc z~!. As in the case of
the m~z relation, the dispersion from the expansion prediction is always of
the same order of magnitude as the dispersion in the apparent quantities,
while the dispersion from the chronometric prediction is materially less,
being generally of the same order of magnitude as that from the least-
squares fit. Again, this is true for the entire sample with appropriate data, or
for subsamples selected on morphology, field of sky, redshift interval, etc.
Also, here, as in the case of the m-z relation, proper analytical allowance for
the observational cutoff in apparent magnitude, ie., for the conceivable
material z-dependence of the sample arising from the possible existence of
significant numbers of intrinsically bright but apparently faint galaxies
which have been excluded from the sample, merely slightly improves the fit
of the chronometric relation.

The much smaller sample of brightest cluster galaxies treated by Sandage
(1972a) is represented by him as following an approximate Hubble law,
6 o z~ 1. However, quite apart from the apparent selection effects previously
noted in connection with this sample, the results in the 6-z analysis are
quite sensitive to the inclusion or exclusion of the objects at extreme and
isolated redshift ranges. For example, when the local region ¢z < 4000 is
excluded, and also those beyond the gap of >2000 in the sample values of
¢z near ¢z = 18,000, in the sample of galaxies whose isophotal diameters
were estimated from 48-inch Schmidt plates, there is little difference between
the fits of the # oc z7* and 0 oc z71/? curves. This subsample of thirty-five
galaxies, defined by restriction to the range 4000 < cz < 18,000, constitutes
the major and most coherent portion of the cited sample. The dispersions
in the deviations of log 6 from the —log z + const and —0.5 log z + const
lines are, respectively, 0.115 and 0.119. The sample of nineteen galaxies
measured from 200-inch plates is quite irregular in its redshift distribution
and devoid of published statistically viable selection criteria; its statistical
weight compared to the vastly larger BGC sample and the various subsamples
indicated appears consequently to be quite small.

The systematic observations by Baum (1972) of galaxy diameters are
nevertheless statistically too limited, as well perhaps as too complex in
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theoretical interpretation, to differentiate between the relevant 8-z relations.
The compilations of double radio source angular diameters by Legg (1970)
provide diameters which are probably substantially metric, but include quite
heterogeneous data, and are too limited in sample size for definite statistical
conclusions to be drawn. If one computes the discriminatory variance of the
linear diameters in Legg’s data, say in kiloparsecs (kpc), it is found that it
is substantially smaller in the chronometric theory than in a typical
expanding-universe theory. However, this is a result of the smaller overall
distance scale of the chronometric model, based on the value H ~ 80 at
10 Mpc; the logarithms of the linear diameters in the two theories have
variances of the same order of magnitude. The compilation of radio angular
diameter data by Miley (1971) is likewise too heterogeneous and/or limited
in sample size to be statistically discriminatory. The variation of apparent
angular diameter with frequency, and its dependence on spectral index, are
further obstructions to the use of radio angular diameters without much
more data and analysis. But the 6-z observations are effective in indicating a
nontrivial dependence of 8 on z for larger z, and the corollary correlation of
z with distance.

b. The log N-log S relation

At the present time, uncertainties as to luminosity and spectral func-
tions, as well as observational ambiguities involving faint sources, limit the
precision of this test. However, there appears to be a substantial qualitative
difference in this respect also between the chronometric theory and nonevo-
lutionary expansion theories. In the latter theories, it seems quite difficult to
obtain values of the index f = —3d log N/0 log S which are greater than the
Euclidean value 1.5, with what appear as a priori reasonable choices for
spectral and luminosity functions; cf. e.g., Longair and Rees (1972). In the
chronometric theory, such larger values are readily attained. Moreover, with
simple reasonable models for the luminosity function and choice of spectral
index, a N(S)/No(S) curve is obtained which shows the key observed qualita-
tive features of the observational N-S relation (cf. Longair and Rees (1972);
here N(S) denotes the corresponding function in an Euclidean universe, i.e.,
No(S) oc §73/2).

Consider, to begin, with a uniformly distributed class of objects of fixed
luminosity L, and having spectral index «. Let z denote the redshift of a
source and p the corresponding distance in natural units: p = 2 tan™! z!/2,
In the chronometric theory, the observed luminosity is proportional to
(1 + z)>7%z! as earlier derived; the expected number N,(S) of sources
apparently brighter than S, within the luminosity class under consideration,
is then proportional to the volume of space within which the indicated
function of z (or equivalently, function of p) is greater than S.
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It follows that

N(S) f sin? p dp,
Lobs(P)=S
where L (p) = L(1 + z)* %z~ !, expressed as a function of p. The behavior
of N(S) and the corresponding population-brightness index
B = —0 log N/o log S depends significantly on o, and especially on whether
a2 lora < 1.Ifa 2 1, L(p) is a monotone decreasing function of p, and,
for o = 1, it follows that

N(S)oc (p —sin p cos p),  p =cos™ *(1 — 2(L/S));

g = 2 sin p(1 — cos p)

p — sin p cos p

If o < 1, Ly, (p) decreases down to a certain minimum at z = 1/(1 — ), and
then increases again as p (or z) continues to increase. It follows that

P1 n
N(S) ocf sin® p dp + f sin? p dp,

0 P2

where p; and p, are determined by the equation
LS™' =2*"2(1— cos p)(1 + cos p)' ™7,
and the inequalities
O<pys=p<m

Here L is a parameter proportional to the intrinsic luminosity of the source.
It results from a simple computation that

=

sin® p, sin® p,
a+(2—a)cos p; o+ (2 —a)cos p,

-1
X (p1 —sin p; cos p, + T — p, + sin p, cos p2) .

It follows that 8 becomes infinite as the source strength decreases to that for
which p, = p,, ie., for which the source is observable anywhere in the
universe. For smaller S, § = 0, since N can become no larger. The situation
is well represented by the simple case « = 0, which gives

B = sin® p(cos p)”(p — sin p cos p)~';  p =sin”}L/S)2

The situation for 0 < a < 1 is qualitatively obtainable by interpolation be-
tween the values « = O and « = 1. Typically, as S decreases from high values,
B begins eventually to increase perceptibly and rises eventually to co; but for
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TABLE 1

The population-brightness index § = —d log N/@ log S for
sources of fixed intrinsic luminosity and spectral index « in the
chronometric theory

B

log S =20 o =107 a=1
2.0 1.503 1.501 1.499
1.8 1.505 1.501 1.498
1.6 1.508 1.502 1.496
14 1.512 1.503 1.494
1.2 1.520 1.505 1490
1.0 1.533 1.508 1.485
0.8 1.554 1.515 1.475
0.6 1.594 1.528 1.459
0.4 1.675 1.563 1432
0.2 1.895 1.698 1.379
0.0 o) © 1.275
<0 0 0 0

fainter values of § it is identically zero. Table 1 shows the values of g for the
cases « = 0, 0.7, and 1, and can be used to estimate B roughly for other
values of « by interpolation.

The discontinuous behavior near S = L for 0 £ a < 1 is smoothed out
by a smooth luminosity function, but the same qualitative behavior is other-
wise manifested. If P(L) is the relative number of sources of intrinsic lumin-
osity less than L, the resultant N(S) takes the form | G,(S) dP(L); if the
spectral index is permitted to vary, there will in addition be a corresponding
integral over its range. In presenting quantitative results, it is convenient to
follow the practice of dealing with the ratio N(S)/N(S), where N(S) de-
notes the corresponding Euclidean quantity, and so is proportional to S~ 3/2;
the proportionality factor may conveniently be chosen so that N/N, ~ 1 for
large S. The resulting expression is

N/N, = %( j G.(S) dP(L)) / j B2 dP(L)S?>.

The luminosity function for radio sources is not well determined, but is
thought (expansion theoretically) to be rather broad. In Figure 4 the N/N,
curve for a single luminosity class having spectral index 0 has been plotted,
together with the smoothed-out curve resulting from a hypothetical lumino-
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Figure 4 The chronometric N-S relation.

Curve (a), ~ 1 decade range in luminosity; curve (b), single luminosity class. Assump-
tions: (1) spatially uniform distribution of sources; (2) spectral index = 0. The rise above the
horizontal axis corresponds to values of —d log N/0 log S in excess of the Euclidean value 1.5,
and takes place for all values of the spectral index < 1.

sity function corresponding to a range of 0.9 in log L, log L being uniformly
distributed in this range. A change in the L-scale merely translates the curve
horizontally. The curve is qualitatively similar to observational curves (cf.,
e.g, Longair and Rees, 1972), showing the key features of a rise in
population-luminosity index above 3 as the source strength declines from
very strong to strong, followed by a decline, eventually falling well below the
Euclidean value for faint sources. Averaging over the spectral index,
typically ~ 0.3 for flat sources or 0.7 for steep ones, but fairly broadly
dispersed, will reduce the qualitative effects indicated, while the use of a less
broad luminosity function would increase them. For o = 1, the curve differs
by little over the physically relevant range from the constant value unity; for
very low flux levels, g falls to ~ 1.275, before vanishing identically.

Besides the surely relevant and poorly known luminosity function and
distribution of spectral indices, further factors may be relevant. Definitive
statistically testing on the basis of the N-S relation will not be highly discrim-
inatory until such matters are settled, and difficulties and discrepancies in
the reported observations of faint sources are resolved. However, there is no
apparent reason to anticipate that the various effects involved are of magni-
tudes sufficient to alter the disagreement of the observed N-S relation with a
nonevolutionary Friedmann cosmology, or its agreement within statistical
fluctuation with the present theory (cf. below).
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4. The aperture correction for galaxies

It has long been recognized that the aperture correction to galaxy mag-
nitudes is a matter of difficulty and delicacy, and yet at the same time of
considerable importance to the redshift-magnitude relation. In particular,
Humason et al. (1956) in their classic paper emphasized the highly material
z-dependence of the aperture correction, and the necessity of compensating
for it if valid results were to be obtained. In recent work Sandage (1972a) has
again treated the aperture correction, and discussed within the framework of
general relativistic models the practical problem of estimating the lumino-
sity of portions of galaxies of fixed metric, rather than isophotal, diameter.

Unfortunately, no model-independent means of obtaining galaxy mag-
nitudes for central portions of a fixed metric diameter is established. Within
the limits of Friedmann models, a complex recursive procedure is indicated
by Sandage, but demonstrations of the convergence of the method and the
unicity of its results are lacking. Within the much broader limits encompas-
sing general relativistic models, the present chronometric model, and others
of comparable nature, it seems hopeless to seek a unique result.

This suggests that the magnitude-redshift relation for galaxies should
primarily be employed as a means of testing hypotheses. In particular a
Om/0 log z = S apparent slope for large-aperture measurements of “stan-
dard candles” is not entirely a simple observational fact, but in significant
part a theoretical inference which is in agreement with observations, when
the observations are made and reduced in accordance with the theory in
question. In principle, it is possible that a different value for dm/d log z may
be equally valid, from the standpoint of essentially the same observations,
but a different theory. Indeed, this possibility is well exemplified by consider-
ation of a conceivable attempt to avoid aperture corrections by observing
only very narrow central portions of galaxies. Quite apart from the rapid
decrease in surface brightness just beyond the center which might well
obviate such an approach, it is demonstrable on theoretical grounds that
such measurements would be incapable of discriminating at low redshifts
(say less than 0.1) between the redshift laws z oc d* for a wide range of
exponents o.

It will suffice to contrast the Hubble law z oc d (say z = ¢ d) and the
Lundmark law z oc d* (say z = ¢, d?; Lundmark (1925) fitted a quadratic
polynomial, but his name may serve appropriately). These are here to be
regarded as hypotheses, to be tested by observations on the same galaxies,
forming “standard candles,” of substantially constant absolute luminosity
and surface brightness characteristics. The apertures must be adjusted in
accordance with the respective hypotheses, to obtain the luminosity of cen-
tral portions of each galaxy of constant metric diameter characteristics.
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Consequently the apertures must be adjusted in accordance with the respec-
tive hypotheses, to obtain the luminosity of the central portion of each
galaxy of a fixed metric diameter. If a portion of metric radius r is to be
observed, the respective apertures then vary as a/z and a/z'/?, respectively.
The resulting situation can then be summarized as the

Theorem If either one of the Hubble or Lundmark laws is valid, then both
sets of observations—at the respective appropriate apertures—will be in
agreement with both corresponding laws.

Proof Let L(f) denote the luminosity of a given galaxy as observed with
aperture 0; let I(r) denote the surface brightness of the galaxy as a function
of the distance r from the center. Then L(0) cc a= 2 [§ I(r)r dr, but for small
apertures, {5 I(r)r dr ~ I(0)(6a)?/2. It results that L(6) o« §?, implying that
the corresponding magnitude m(f) = —5 log 6 + k, k being a constant.
Agreement between observations and the Hubble law means that if 6,(z)
denotes the appropriate aperture on the basis of the Hubble theory, then
m(6(z)) = 5 log z + k', k" also being a constant. Agreement between obser-
vations and the Lundmark law similarly means that m(6,(z)) =
2.5 log z + k", where 0,(z) is the appropriate aperture on the basis of the
Lundmark law. Since 6,(z) oc z~! on the basis of the Hubble law, and
0,(z) oc z~ Y2 for the Lundmark law, m(0,(z)) — m(0,(z)) = 2.5 log z, which
is precisely the difference in magnitudes which would be observed.

Thus there is not even a theoretical possibility of using observations at
small apertures to discriminate between the Hubble and Lundmark
redshift-magnitude laws for galaxies. On the other hand, at large apertures,
contamination from stars, the brightness of the night sky, etc. become ser-
ious limitations. There remains a possibility that observations at inter-
mediate apertures may sufficiently avoid both problems; but the only
published data that appear to be statistically applicable to the question do
not substantiate the possibility.

The bright cluster galaxy observations of Peterson (1970a), taken at
apertures 6,(z), can be corrected by a standard curve to the apertures 0,(z);
these corrections are relatively crude in that there is quite considerable
variation between the surface-brightness curves I(r) for such galaxies. Never-
theless, no statistically significant difference between the fits to these data of
the Hubble and Lundmark laws is apparent. It should be of interest to make
direct measurements of the magnitude of the Peterson galaxies at the aper-
tures indicated by the chronometric theory, and to make measurements of
additional galaxies, chosen in a statistically controlled manner, at both aper-
tures 6,(z) and 6,(z). It should be borne in mind, however, that these aper-
tures depend also on the Hubble parameter (itself z-dependent in the
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chronometric theory); therefore, measurements at several corresponding
apertures should be taken.

The apparent limitations on the redshift-magnitude relation for gal-
axies in discriminating between the two laws means neither that galaxy
observations as a whole are without discriminatory potential, nor that the
redshift-magnitude relation is inherently ineffective. Indeed, the Schmidt
V/V, test is applicable to samples of galaxies which are complete to fixed
apparent magnitudes, and has significant results for the Peterson sample: it
is spatially extremely nonuniform according to this test, within the
expanding-universe framework, but does not deviate significantly from spa-
tial uniformity according to the chronometric theory. This suggests that
apparent local superclustering emphasized by G. de Vaucouleurs (1970),
following relevant observations of Holmberg, may not necessarily be phys-
ically real, but quite possibly largely a consequence of the theoretical
framework within which the observations are analyzed. Observations in
other fields which are complete out to fixed apparent magnitudes, or selected
from complete lists in a statistically random fashion, could be used both for
a definitive check on the redshift-magnitude relation, as indicated, and to
test overall spatial uniformity. In any event, the redshift-magnitude relation
for quasars is useful for discriminating between the expansion and chron-
ometric theories; not only are aperture corrections not required, but their
qualitative implications at larger redshifts are entirely different.

Consider now the practical problem of estimating the observed magni-
tude of a given galaxy at aperture &, given the observed magnitude at
aperture 8. Most applicable methods take the surface brightness at distance r
from the center of the galaxy, normal to the line of sight, to have the form
I(r/a), where a is a parameter dependent on the galaxy in question; ad-
mittedly the notion of “center,” and especially of distance in other than EQ
galaxies must be suitably interpreted. The function I has been variously
graphically presented, or taken specific analytical form. For computational
purposes, the latter is more convenient; the simplest form is the Reynolds-
Hubble law: I(r) oc (1 + r)~ 2, except for large r; we shall follow Abell’s form
for large r, ie., (1 + r)~3, joining it continuously to the earlier form at
r = 21.4 as indicated by Abell and Mihalas (1966). It would make no essen-
tial difference in the following (i.e., for cosmological testing) if we used
instead the form given by de Vaucouleurs, or even the Hubble form for large
r as well. If the distance of the galaxy is d, then the aperture correction Am is
given by the equation

Am = 2.5 log[J(0'd/a)/J (0d/a)],
where J(r) = 5 sI(s) ds. For the Abell standard form,

Jx)=In(1 +x)+ (1 +x)"t -1 when x < 214,
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1 1
(1+xP 1+x

Jix) = 22.4(2 ) +3.131  when x> 214

Thus the correction is determined when d and ¢ are known, in addition to
the aperture angles.

The determination of d must be made within the theoretical framework
being tested, and will vary with the assumed value of the Hubble parameter.
Taking, e.g., H as 100 at 15 Mpc, the chronometric and expansionary
theories will give distances for the Peterson galaxies, having redshifts in the
range 0.01-0.06, which differ by a factor which varies from about 0.3 to 0.7,
the chronometric distance being the smaller. In Peterson’s work the aper-
tures are determined to yield in the expansionary framework fixed metric
diameters of 20 kpc. Within the chronometric framework the actual metric
diameters corresponding to the apertures employed are 6d,, where d_ de-
notes the chronometric-theoretical distance, which takes the form d, (in
kiloparsecs) = 6(arc tan z/2)° x 0.017979 if 0 is measured in seconds,
and H is as indicated (and so agrees with the value used by Peterson). Thus
on the chronometric hypothesis, the observed magnitudes must be di-
minished by 2.5 log[J(10/a)/J(d, /2a)], to obtain the true magnitude of the
central 20-kpc-diameter portion.

One thereby obtains a well-determined aperture correction, once the
parameter q is specified. The determination of a again depends, however, on
the theoretical model, for this determines distances, on which the conversion
from angular to linear diameters depends. The chronometric a, for exam-
ple, could in principle be determined as follows. Let m, and m, be the
observed magnitudes of a galaxy at redshift z, with apertures 6, and 0,,
where, say, 8; < 6,. Then

my — m, = —2.5 log[J(6,d/a)/J(8,d/a)),
where in natural units d = 2 tan~! z'/% the 0, being here in radians and a in
natural units. The value a = a, determined from this equation evidently
depends on the assumed value of the Hubble parameter, and will differ from
the value obtained by using the expansion-theoretic distance. It is therefore
convenient that the aperture correction is not highly sensitive to the precise
value of a, apart from a zero point correction which is irrelevant in cosmolog-
ical tests. The values of a obtained in the indicated fashion actually show
considerable dispersion, even within the limited class of apparent bright
cluster galaxies. In the absence of systematic published work on the subject,
we shall simply take a = 1 kpc; this may interpolate between a modal value
(perhaps 0.7) and a value perhaps more likely to minimize the root mean
square deviation from the true correction (perhaps 2.0), as inferred from
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analysis along the foregoing lines of data given by Fish (1964) and Sandage
(1972b). The results of the analysis of the Peterson galaxies would not
change materially if any value of a in the range 0.5-2 were employed instead.
However, due to variation in g, and to the approximation for any individual
galaxy involved in using a fixed surface brightness curve, an additional
dispersion is introduced into the magnitudes which should eventually
appear as a slightly increased dispersion in the absolute magnitudes of the
galaxies, as determined from the best-fitting theoretical redshift-magnitude
curve.

Since J(10/a) is independent of the particular galaxy, it would suffice for
cosmological testing to replace the Peterson magnitudes m by the corrected
magnitudes m' = m + 2.5 log J(d, /2). It should now be evident how the
procedure may be applied to an arbitrary sample of galaxies of a specified
type. These specifications must, however, be compatible with the considera-
tions of the following section.

5. Statistical effect of the selection of the brightest objects

If one deletes from a heterogeneous list of luminous objects, quasars or
galaxies, all objects fainter than a certain theoretical absolute magnitude—
chronometric, expansionary, or otherwise—it has in general the effect of
reducing the variance in absolute magnitude of those that are left, for all
physically reasonable luminosity functions. This is the case irrespective of
the validity of the theory in question, for in effect one is simply truncating a
distribution beyond a certain point. The consequent reduction in variance is
a statistical verity, and in no wise indicates that bright objects of the
category in question form an intrinsically more homogeneous class, observa-
tion of which confirms the theory, unless the reduction is significantly
greater than would arise on a statistical basis. The latter reduction is
considerable, as the following analysis of a normal distribution shows. A
similar analysis would apply to a mixture of normal distributions of different
means; it seems unlikely that the overall figures will change greatly, for
plausible types of mixtures, and we here limit the treatment to the simple
cited case.

Given a zero-mean, unit-variance normal variate x, suppose the popu-
lation above a value a is deleted, corresponding to the “faintest” 100p%, of
the population. Thus the equation

(2m)~ 112 ja exp(—x*2)dx=1-p

gives a in relation to p. We then consider the new probability law P,:
(2m)~12(1 — p)~ ! exp(—x?/2) dx when x < g,

dPa = { 0 when x> a.
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The mean m, of this new distribution is readily computed as (2r)™ /2 x
(1 — p)~ ! exp(—a?/2), as is the variance in terms of the incomplete gamma
function.

Table 2 gives the corresponding numerical results. Roughly speaking,
deleting two-thirds of the faintest objects decreases the variance by about
two-thirds. The table should be applied at each fixed redshift, as the fraction
p deleted will generally vary with the redshift. The increase in dispersion for
p > 0.7 can be understood as the effect of removing almost all of the distri-
bution except the comparatively flat and hence widely dispersed tail.

TABLE 2
Statistical effects of selection of brightest objects

Fraction of Reduction Variance of
objects deleted in mean remaining objects g,
0.1 0.1960 0.6499 0.8061
02 0.3450 0.5463 0.7391
0.3 0.4967 0.4723 0.6873
0.4 0.6439 0.4194 0.6476
0.5 0.7979 0.3633 0.6208
0.6 0.9656 0.3162 0.5623
0.7 1.1590 0.3121 0.5587
0.8 1.4000 0.4185 0.6469
0.9 1.7545 0.7307 0.8548

The statistical theory has been compared with the results of selection on
the absolute (theoretical) magnitudes for the Peterson sample. Deleting the
faintest half of the galaxies on these bases leads to reductions in the variance
of the absolute magnitudes, and in average absolute magnitudes, in quite
good agreement with the statistical theory. This is equally the case whether
the chronometric or the Hubble theory is employed.

6. The Peterson galaxies

Among the best data from the standpoint of statistical control are those
of Peterson (1970a). These provide a complete sample of 44 bright cluster
galaxies complete in a specified field to a limiting apparent magnitude of 15.
The major portion of the present section is concerned with the analysis of
these data along the general lines earlier indicated.

We shall later treat galaxy observations in specified categories reported
by Arakelyan, de Vaucouleurs, and Sargent, among others, and discuss
briefly the recently published data of Sandage. The work of de Vaucouleurs
concerns nearby galaxies, and appears comprehensive and objective within
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reasonable statistical limits. Sargent’s work contains a study of 24 Seyfert-
like Markarian galaxies, characterized and observed in an apparently objec-
tive and uniform fashion. Together with the Peterson galaxies, these provide
three quite different groups of galaxies. The Sandage observations overlap
significantly with those of Peterson; unlike the latter, the sample that they
form is not delineated in a statistically explicit fashion; for this and other
reasons it does not appear possible to use them for a statistically rigorous
test of the chronometric hypothesis.

Before giving the details of the analysis of the Peterson data, the central
conclusions will be summarized briefly.

(a) The dispersion of the Peterson magnitudes from the best-fitting
Hubble line is 0.33 mag; that from the best-fitting constant-intrinsic-
luminosity chronometric curve is 0.36. The slightly greater dispersion of the
chronometric theory is not statistically significant, and may well be due to
the utilization of data gathered basically on the expansion hypothesis, aper-
ture corrections being made on the basis of a fixed curve, whereas the surface
brightness profiles of the galaxies do in fact vary considerably (see below
regarding this question).

(b) Because of the completeness of the sample, the Schmidt
luminosity-volume test is applicable. Assuming a spatially uniform popula-
tion of galaxies, the ratios V/V,, defined by Schmidt should be uniformly
distributed in the interval from 0 to 1. It is found that in actuality, they are
highly skewed, and their deviation from spatial uniformity, as measured by
the Kolmogorov-Smirnov statistic, is so large as to correspond to a probabi-
lity of 5 x 10™* of obtaining such a skew sample, assuming that the popula-
tion is in fact spatially uniform.

(c) Itis well known that it is extremely difficult to obtain a rigorously
complete sample out to a given magnitude, and it is therefore conceivable
that the Peterson sample is not entirely complete out to a limiting magni-
tude of 15, but is such to a lower magnitude, such as 14. However, a test of
spatial uniformity of the subsample of 23 galaxies brighter than this magni-
tude still shows considerable skewness; the probability level, due largely to
the relative smallness of the sample, rises to 0.025, and so is still significant
by conventional standards, although not strongly so.

(d) Because the galaxy apparent magnitudes are model-dependent, in
particular the measuring aperture was determined by Peterson in accor-
dance with the expansion hypothesis, completeness out to a prescribed limit-
ing magnitude is likewise model-dependent. Consequently, the Peterson
sample is not necessarily complete out to a fixed limiting magnitude under
the chronometric hypothesis; the aperture corrections may significantly
affect the relative apparent brightness of galaxies near the limiting magni-
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tude. These effects are, however, unlikely to exceed 0.5 mag, and it seems
quite safe to suppose that a sample which is complete out to a given limiting
magnitude m under the expansion hypothesis is also complete out to a
brighter magnitude m — 1 under the chronometric hypothesis, with the
same metric diameter and a fixed zero-point adjustment of the magnitude
scale, so that similar numbers of galaxies are involved in samples complete
out to given limits. A limiting magnitude of 13.2 on the chronometric scale
was therefore adopted, as comparable to the limiting magnitude of 14 in the
expansion hypothesis; this, in fact, selected the identical subsample of 23
galaxies.

The application of the Schmidt V/V, test within the chronometric
framework to this subsample accepts the hypothesis of spatial uniformity, at
a highly satisfactory probability level.

(¢) The results indicated in (b)-(d) suggest that apparent inhomoge-
neities in the radial component of the spatial distributions of galaxies may be
due to the mode of analysis, and specifically to the employment of the
expansion hypothesis, rather than to actual spatial nonuniformity.

The main quantitative results are given in Table 3, whose columns are
as follows: (1) is the Abell cluster number. (2) is the measured visual magni-
tude m at an aperture appropriate to a fixed metric diameter of 20 kpc, on
the basis of the Friedman model with g, = 3, as reported by Peterson. (3) is
the actual semidiameter (radius) of the observed region on the basis of the
chronometric hypothesis, with the assumption that

H = 100 kmsec™ ! Mpc™*!

at 15 Mpc. (4) is the visual magnitude m + Am, corrected on the chrono-
metric hypothesis to a fixed metric diameter of 20 kpc, with the use of the
Reynolds-Hubble-Abell surface brightness law earlier indicated. (5) is the
mean net aperture correction Am — Am. (6) is the V/V, implied by
the Hubble model (m = 5 log z + const, Euclidean space). (7) is the ratio of
the number of galaxies in the sample whose V/V,, does not exceed the value
in column (7), to the total sample number (spatial uniformity means
precisely that (6) — (7) tends to zero as the sample size increases
indefinitely). (8) is the actual difference (6) — (7), whose maximum absolute
value is the Kolmogorov—Smirnov statistic D. (9), (10), and (11) are the same
as (6), (7), and (8), for the subsample of 23 galaxies with the expansion-
theoretic apparent magnitude (column (2)) brighter than 14. (12), (13), and
(14) are the same within the chronometric hypothesis, for the subsample
whose chronometric-theoretic magnitude (column (4)) is brighter than 13.2
(approximately corresponding to the cutoff at magnitude 14 for the
expansion-theoretic magnitude, and leading to the identical subsample).
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TABLE 3
Analysis of spatial uniformity for Peterson galaxies
1 2 3 4 5 6 7 8 9 10 11 12 13 14
76 13.83 3.84 1310 006 020 048 -028 079 091 —0.12 087 0.89 -0.02
119 1428 3.57 1352  0.12 037 068 -031
147 1474 358 1398 0.12 070 095 -0.25
151 1429 332 1346 0.19 038 070 -032
194 1234 545 1193 -023 003 007 -004 010 013 -003 0.16 013 003
262 1254 559 1215 -0.25 004 018 -0.14 013 017 -004 022 017 005
347 1261 545 1220 —-023 004 0.18 -0.14 015 026 -0.11 024 026 -0.02
376 1472 343 1392 016 0.68 091 —023
400 1321 501 1273 -0.16 009 034 -025 034 057 -023 051 057 -0.06
407 1470 347 1391 0.15 0.66 089 -—0.23
426 1213 538 1171 -022 002 005 -003 008 009 —-001 0.12 009 003
505 1443 327 1359 020 046 082 -0.36
539 1374 441 1316 -006 023 052 -029 070 0.87 -0.17 095 096 —0.01
548 14.13 3.77 1342 007 030 059 —-0.29
569 1271 527 1227 -020 004 0.18 -0.14 0.17 035 -0.18 027 030 -003
576 1437 372 1365 006 042 077 —-035
634 1361 450 1305 -008 015 041 -026 058 078 —020 08! 0.78 0.03
671 1423 340 1342 0.17 035 066 -031
754 1434 329 1350 020 040 0.75 -0.35
719 1322 513 1276 —0.18 0.09 034 -—-025 034 061 -027 053 061 -0.08
993 1448 330 13.65 019 049 084 -035
1060 1160 6.70 1134 —038 001 002 -001 004 0.04 0 007 004 003
1139 1420 384 1350 006 033 061 -—028
1185 1358 397 1291 003 0.14 039 -025 056 074 -0.18 067 070 -0.03
1213 1424 434 1365 005 035 0.66 -031
1228 1410 400 1344 002 029 057 —-028
1257 1452 402 1386 002 0.52 086 -034
1314 1365 404 1300 001 0.6 043 -—027 062 083 -021 076 074 002
1318 1275 528 1231 -020 005 020 -015 0.8 039 -021 028 035 -007
1367 1256 509 1210 -—0.18 004 0.18 -0.14 014 022 -0.18 087 089 0
1377 1473 335 1390 0.18 069 093 -024
1656 1269 484 1219 -0.14 004 018 -014 016 030 -0.14 024 026 -0.02
1736 1433 3.62 1358 0.11 040 075 -0.35
2052 1383 396 1316 003 020 048 —028 079 096 —0.17 095 096 -—-001
2147 1386 396 1319 003 021 050 -029 082 100 -0.18 099 100 -0.01
2151 1404 397 1337 003 027 055 -0.28
2152 1440 358 1364 0.12 044 080 —-0.26
2162 1348 4.15 1285 -001 012 036 —-024 049 0.70 -021 0.62 0.65 —0.03
2197 1320 4.12 12.56 0 009 034 -025 033 052 -0.19 040 048 —0.08
2199 1302 414 1239 —-001 007 025 —0.18 026 0438 —022 031 043 —0.12
2319 1478 325 1393 021 074 100 -026
2634 1322 418 1260 —002 009 034 -025 034 065 -031 043 052 -0.09
2657 1477 3.64 1403 010 073 098 -025
2666 1295 445 1236 -—-005 006 023 -0.17 023 043 -020 030 039 -0.09




6. The Peterson galaxies 113

N(sV/V}/N(s1)

Figure 5 The V/V,, test for the Peterson sample.

O, individual galaxies, values computed on the following bases: (a) Hubble theory,
limiting magnitude 15 (all 44 galaxies); (b) Hubble theory, limiting magnitude 14 (23 galaxies)
(d) chronometric theory, limiting magnitude 14.2 (same 23 galaxies as in (b)). {c) Theoretical
line for radial spatial uniformity. Thus apparent radial spatial uniformity is materially a func-
tion of the theory employed.

The only part of the aperture correction that is relevant to cosmological
testing is the deviation from the mean correction given in column (5); this is
small, having a root mean square of 0.15 mag. The respective Kolmogorov-
Smirnov statistics D for the three cases (i.e., the maxima of the absolute
values of the entries in columns (8), (11), and (14), respectively) are 0.36, 0.31,
and 0.12. Assuming a spatially uniform population, the respective probabil-
ities P of obtaining values of D this large are 2 x 1077, 0.024, and >0.5,
employing here the asymptotic law P ~ 2 exp(—2nD?), where n is the
sample size. This formula is asymptotic as n — o ; however, it is considered
to give a good approximation for relatively small values of n; the results are
consistent with the confidence intervals given in Pearson and Hartley (1972).

Some of the results are summarized in Figure 5, in which the fraction
observed having V/V,, less than a given value A is compared with 4, in each
of the three statistical situations under consideration here. The abscissa is
then V/V,,, or the volume out to the redshift of the object is the theory in
question, divided by the maximum volume within which the object would
remain in the sample, according to the theory. The ordinate is the cumula-
tive frequency, expressed as a fraction of the total number of objects in the
sample, of objects whose V/V,, is not exceeded by the abscissa. The straight
line segment between (0, 0) and (1, 1) is the theoretical line expected for an
infinitely large sample of objects uniformly distributed in space; above this
line, in order, come the observed line for the subsample of 23 galaxies
limiting magnitude 13.2 according to the chronometric theory; the sub-
sample of limiting magnitude 14 according to the Hubble theory (actually
the same as just indicated), and the entire sample (44 galaxies) according to
the Hubble theory.
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7. Markarian galaxies and N-galaxies

A relatively objectively defined sample of galaxies of the former type has
been observed by Sargent (1972). These galaxies resemble Seyfert galaxies,
and aperture effects for them should be relatively marginal. It is therefore of
interest to compare the (m, z) pairs observed by Sargent with the theoretical
m-z relation for a single type of luminous object, for which the present
galaxies appear to be a relatively good candidate. In any event, it seems
appropriate to begin with the hypothesis that they form a single luminosity
class as the simplest tenable one. It is found that the chronometric curve,
adjusted to the average absolute magnitude of the galaxies as given by the
chronometric theory, fits within a dispersion of 0.77 mag the Sargent obser-
vations. The corresponding dispersion as given by the Hubble theory is 1.12;
the sample dispersion is 0.87. The qualitative point here is not so much that
the chronometric dispersion is less than the expansion-theoretic dispersion;
the sample is too small for statistical significance, although in conjunction
with other samples presented here it is statistically relevant. Rather it is the
surprising excess of the expansion-theoretic over the sample dispersion; an
excess of the magnitude here found seems quite unlikely, on the expansion-
theoretic hypothesis, but to make a formal statistical analysis would seem
supererogatory, in view of the weight of other evidence and the always
possible defense of unknown selection effects. Not only does the chrono-
metric theory supply a reasonable model, and one distinctly better than the
expansionary one in this instance, but it also alters in a reassuring way the
absolute luminosity of these objects vis-d-vis quasars, as well as vis-a-vis
the classical Seyferts. In many important respects, other than their absolute
luminosities as given by the expansionary theory, these objects appear very
closely related, and possibly substantially identical. However, on the expan-
sion theory, quasars are several magnitudes brighter than the present Mar-
karian galaxies, and these in turn are according to Sargent (1971) brighter
than the classical Seyfert galaxies. These apparent differences in luminosity
are seen to result from the theoretical analysis, and to be not necessarily real,
by an analysis from the chronometric standpoint, according to which there
is little difference between the intrinsic luminosities of these three groups of
objects. See also Rees and Sargent (1972).

Figure 6 exemplifies some of these points. The DeVeny quasar lines are
based on the sample of 158 quasars described later ; the magnitude-redshift
theoretical curves for these have been corrected (in accordance with an oral
communication from W. L. W. Sargent) to represent photographic magni-
tudes comparable to those reported in Sargent (1972) by taking
m, ~ m, + 0.4 for the present galaxies.
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Figure 6 The redshift-magnitude relation for Seyfert-like Markarian galaxies studied by
Sargent (1972).

(a) Best-fitting Hubble line to present galaxies (o = 1.12); (b) best-fitting Hubble line to
quasars studied by DeVeny et al. (1971); (c) best-fitting chronometric curve to present galaxies
(6 = 0.77); (d) best-fitting chronometric curve to DeVeny quasars. In particular, quasars and
Seyfert-like galaxies have little difference in intrinsic luminosity on the chronometric hypo-
thesis, although the difference is quite large on the expansion hypothesis.

An analogous situation is presented by the N-galaxies. Their close rela-
tionship to quasars has been remarked by many authors, and Lynden-Bell
{(1971) has proposed that they constitute “ miniquasars,” similar to but less
luminous than quasars. On the expansion hypothesis, N-galaxies average
~ 3 magnitudes fainter than the average quasar (as represented by the
DeVeny list), but in other important respects they resemble quasars. The fact
is that on the chronometric hypothesis, the N-galaxies have average intrinsic
luminosity within 0.5 mag of the average quasar. Moreover, the chrono-
metric m-z curve fits the N-galaxy data with a distinctly smaller dispersion
than does the Hubble line.

Admittedly, the number of N-galaxies having reliable magnitudes and
redshifts is too small for the difference in dispersion to be statistically
significant, but in conjunction with the other considerations of this section,
the data for N-galaxies provide a measure of support for the chronometric
hypothesis. Figure 7 shows the redshifts and magnitudes for the N-galaxies
considered by Sandage (1967). The corrected magnitudes given by Sandage
have been used, and the optically highly variable galaxy 3C 391, as reported
by Sandage (1967), has been excluded. The standard deviations of the resi-
duals of the observed magnitudes from the best-fitting theoretical lines are
0.49 for the chronometric theory and 0.68 for the expansion theory.
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Figure 7 The redshift-magnitude relation for N-galaxies listed by Sandage {1967).

(a) Best-fitting Hubble line to present galaxies (¢ = 0.68); (b) best-fitting Hubble line to
quasars studied by DeVeny et al. (1971); (c) best-fitting chronometric curve to present galaxies
(6 = 0.51); (d) best-fitting chronometric curve to DeVeny quasars. Again, these galaxies differ
little from quasars in intrinsic luminosity on the chronometric hypothesis, but differ substan-
tially on the expansion hypothesis.

The interpretation of these results within the chronometric theory, as
regards the relation between quasars on the one hand and Seyfert-like or
N-galaxies on the other is necessarily rather speculative, and of a different
nature from the considerations involved in systematic hypothesis testing,
Nevertheless it may not be amiss and indeed is probably peripherally
relevant to note the indication that such galaxies are not only similar to but
are perhaps identical with a certain category of quasar of average intrinsic
luminosity. That is, if at larger redshifts, many of these galaxies might well
appear to be quasars. Observations on spectral functions required for mater-
ial confirmation may not be available for some time, but it may be noted
parenthetically that the analysis of quasar observations (cf. below) provides
some circumstantial evidence: (a) chronometrically there is a statistically
insignificant but nevertheless noticeable deficiency of quasars in the redshift
range 0.0-0.3, which could be removed by hypothesizing the identity of N-
and certain Seyfert-like galaxies with certain classes of quasars; (b) the
model-independent distribution of luminosities of quasars (cf. below) does
not deviate in a statistically significant way from a normal distribution, but
there are nevertheless some clearly marked groupings suggesting that it is
more precisely a superposition of normal distributions, of effectively non-
overlapping ranges. The brightest fifth of the quasars in the DeVeny list
(“brightest ” in a model-independent sense detailed below) have an optical
luminosity ~ 1.2 mag brighter than the average quasar in the list; and there
is a noticeable gap in luminosity between these bright quasars and the
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average ones. The latter quasars thereby appear to constitute “ miniquasars ”
relative to the bright ones, in a sense analogous to that employed by
Lynden-Bell (1971), whose theoretical proposal, expanded and modified in
the fashion just suggested, appears to be in agreement with present observa-
tions. The recent observations of Sandage (1973) on N-galaxies lend further
support to the conjecture that N-galaxies at higher redshifts may appear as
guasars.

That these results are not reflections of small sample size or of coin-
cidental selections is confirmed by the study of a substantial sample of
Markarian galaxies listed by Arakelyan et al. (1972). These are largely at the
higher redshifts thought to be beyond the local supercluster postulated by
some in order to reconcile the apparent square-law dependence of redshift
on distance for low-redshift galaxies with the expanding-universe theory. No
special selection effects relatively favorable to a square law are known for
these data. However, the square law decreases the dispersion in apparent
magnitude, while the linear law increases it. Specifically, the dispersions in
apparent magnitude (a) and in absolute magnitude based respectively on the
(b) chronometric prediction (differing trivially from the square law in this
redshift range) and (c) Hubble law, are as follows. For the 60 galaxies with
cz > 3000 km sec™ ! (average value, 8000), (a) 0.89, (b) 0.84, (c) 1.04. For the
full sample of 69 galaxies, (a) 1.09, (b) 1.01, (c) 1.51. The results are qualita-
tively unaltered if the galaxies are arranged in order of increasing redshift,
and divided into bins containing equal numbers of galaxies, the brightest,
second brightest, etc., in each bin being selected; or if the observations at
extreme redshifts are deleted from the sample.

8. The redshift-magnitude relation for nearby galaxies

The major study by G. de Vaucouleurs (1972) of the redshift-magnitude
relation for about 100 nearby groups of galaxies confirms the apparent
quadratic dependence of redshift on distance, which was noted by Hawkins
(1962) on the basis of the observations of Humason et al. (1956) (regarding
historical origins, cf. also Lundmark, 1920, 1925). This is consistent with the
chronometric theory, but deviates from the law of Hubble (1929).

It has been proposed by de Vaucouleurs that the expansion theory is
basically correct, but that a local spatial anisotropy distorts the redshift—
magnitude relation. The hierarchical model proposed by de Vaucouleurs is
related in direction to that originally proposed by Charlier, as well as more
recent ideas of Holmberg; it appears to be in satisfactory agreement with
low-redshift observations for the m-z relation of galaxies. It is, however,
scientifically less economical that the chronometric theory, in that the latter
involves no sacrifice of spatial homogeneity or additional parameters.
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As discussed by G. de Vaucouleurs (1972), there is a persistent anomaly
in the determination of Hubble’s parameter by different observations, and
specifically between the lower values obtained from observations of Virgo
cluster objects and the higher values obtained from observations including
the present redshift-magnitude data. A further advantage of the chronome-
tric over the expansion-theoretic model is that it reconciles the different
values on the basis of the different distances to the objects under observa-
tion. Thus the velocity/distance relation of these groups is apparently non-
linear for A < 30 Mpc. The velocity/distance ratio increases from H =~ 50 to
150 km sec™! Mpc~! when A increases from A = 5to A = 25 Mpc, accord-
ing to de Vaucouleurs (1972). On the chronometric hypothesis, the value
H = 50 at a distance A = 5 is equivalent to the value H = 86 at A = 15;
similarly the value H = 150 is equivalent to the value H = 116 at A = 15;
they are thus within 169 of the value H = 100 at A = 15 Mpc which has
been adopted in the present work. This is a level of accuracy comparable
with optimistic informed estimates of the attainable accuracy (cf. Sandage,
1970). It is relevant to note also that one of the most scrupulous estimates of
the Hubble parameter, that due to Holmberg (1964), of 80 km sec™ ! Mpc ™1,
while not specifically based on a particular value for the distance A, may
reasonably be considered to correspond to A ~ 10; it is then equivalent to
the value H =98 at A = 15. This differs insignificantly from the value
H = 100 at A = 15 employed here, as does the eclectically based estimate
H = 95 by van den Bergh (1970). From the chronometric standpoint, there
is thus no significant anomaly in the differing values of the Hubble pa-
rameter as determined by most leading investigators. The only exception, the
recent determination H ~ 50 by Sandage, is based on quite different obser-
vations and new distance scales, and seems explicable on this basis. The
work of Abell (1972) emphasized primarily the uncertainty in the Hubble
parameter; a possible low value for H is cited basically as an illustration of
the dependence of its determination on the assumption made regarding the
comparative luminosity function of the Virgo cluster; and the difficulty of
resolution of the fundamental question of an operational and model-
independent selection procedure for “cluster” tends seriously to moot
statistically cosmological cluster samples.

The foregoing indications regarding the phenomenology of low-redshift
galaxies suggest a comprehensive statistical analysis of the de Vaucouleurs
tape, representing an updating to 1972 of the material in G. de Vaucouleurs
and A. de Vaucouleurs (1964). Included here are many more galaxies than
those on which the Hubble law was originally based. Such an analysis was
conducted jointly with J. F. Nicoll, employing all of the data of objectively
delineated subsamples, entirely without corrections or other uncertain
emendations, and standard contemporary principles of statistical estimation




8. The redshift-magnitude relation for nearby galaxies 119

and hypothesis testing. The results are extremely favorable to the square
redshift-distance law, both at the model-building and hypothesis-testing
levels. They are quite unfavorable to the Hubble law at the model-building
level, but at the hypothesis testing level the law may be marginally accept-
able, with some emendations.

Making the purely phenomenological assumption that z oc r?, where z
is the redshift and r the distance, apart from peculiar motions, for some
constant exponent p, and sufficiently small distances r, simply embodies the
observed facts that redshifts generalily increase with distance and vanish near
the Galaxy. Statistically, it is assumed that bright galaxies form a true statis-
tical population, at least for redshifts <0.03, i.e., there is no evolution in this
range. Where relevant it is assumed further that the spatial distribution of
the galaxies is radially homogeneous; no assumption as to isotropy is
required. It then follows that the probability density for r varies as 2 dr,
whence that for z varies as 2397 ! dz, where ¢ = p~ .

The exponent p may be estimated from observed relations between the
magnitudes, redshifts, and angular diameters of galaxies, in accordance with
the maximum-likelihood procedure. For any value of p, the apparent lumin-
osity will vary with the absolute luminosity in accordance with the inverse
square law, the redshift factor (1 + z)™?, and possible theory-dependent
factors which may be presumed negligible for z < 0.03, as they surely are for
all theories considered realistic. The apparent angular diameter ¢ will sim-
ilarly vary with the absolute diameter A, and inversely with r. It follows
that m = 5q log z + M and log 0 = —q log z + A, where A = log A, apart
from terms of order z or less, which are here negligible. Absolute magnitudes
M and logarithmic diameters 4 may be defined by these equations.

The joint probability distribution of z, M, and A takes the form
P(z)P(M, A), in view of the stochastic independence of M and A4 from z,
where P(z) = Cz%*~ ! with C = 3¢[z37 — 23]~ ! if the redshift interval under
consideration is z; < z < z,, and P(M, A) takes the form in terms of ob-
served quantities: P(m — 5q log z — M, log 6 + q log z — A), where M and
A are the population means. The unknown function P(M, 4) will be
assumed otherwise to depend only on the standard deviations o, and o , of
M and A, and their correlation p, by the normal law. This is standard
phenomenological procedure; serves to ensure the coincidence of maximum-
likelihood and least-square estimation for the parameter involved in
P(M, A); and may be confirmed by statistical testing of the resulting sample
distributions of absolute quantities.

"The various bi- and univariate distributions then follow by integration,
and depend on parameters that are functions of the foregoing. The
maximum-likelihood procedure consists in choosing the parameters to max-
imize the corresponding probability density for the observed sample. With
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an imposed cutoff in apparent magnitude of m; , the new probability density
P(z, M, A) is derived by multiplication of P(z)P(M, A) by
(§§fm<m; P(z)P(M, A) dz dM dA)~! for m < m,, and by O for m > m,. The
corresponding maximum-likelihood estimates cannot be given in analyt-
ically explicit form, but are determinable by successive approximation
procedures.

In addition to the familiar m-z, 8-z, and N(z) relations, it is interesting
to consider the N(V/V,) relation. The original Schmidt V/V,, test (see
Schmidt, 1968) involved no a priori limitations on the redshifts involved, but
it is essential for observational reasons (incompleteness in redshift determin-
ations for larger z), as well as to enhance its discriminatory capacity, to
adapt it to the case in which it is a priori required that z, < z < z,, where z,
and z, are given. The V' (= V(z)) then excludes the region up to the redshift
zy, 80 V(z) oc 27 — 239, while the V,, is V(z,,), where z,, is given by the
equation m;, — m = (5q) log(z,, /z) provided z,, is determined from this
equation is < z,; otherwise z,, = z, and V,, = V(z,) — V(z,). Thus

ViV = (2% = 239(z30 - 23977,

where z,, is the indicated p-dependent function of m, z, m;, and z,. The
principle of the Schmidt test, i.e., the uniform distribution in [0, 1] of V/V,,,
on the assumption of radial spatial homogeneity, applies equally well to this
generalized situation; and, unlike the original case (z, = 0, z, = o0), the test
is in practice effectively discriminatory between different redshift-distance
relations, even when applied to low-redshift objects.

The deviation of an observed from the theoretical uniform distribution
can be measured by the Kolmogorov-Smirnov statistic D, which is the
maximum absolute difference between the cumulative observed and theor-
etical distributions. Alternatively, an approximately normal statistic X simi-
lar to that employed by Schmidt (1968) is given by the mean of the V/V,,,
centered to zero mean and normalized to unit variance, i.e.,

X = (12/NY2 Y. (v/V,, — $);

however, X may vanish although the distributions are different. In either
case, the value of p that minimizes the deviation (and so maximizes the
corresponding probability) provides an analogue to the maximum-
likelihood estimate, and the corresponding confidence intervals for p effec-
tively substitute for dispersions in the estimates.

The de Vaucouleurs catalog includes galaxies having redshifts up to
~ ¢z = 10,000 and magnitudes up to ~ 15, and is estimated to be overall
~ 509, complete out to a magnitude of 13. Completeness is probably much
greater in limited redshift regions, and its approximate validity out to
cz ~ 2000 is suggested by the observed N(< z) relation shown in Figure 8.
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Figure 8 The log N-log z relation for all galaxies included in the de Vaucouleurs tape,
having m-z-0 data (742 galaxies).

O, observational points; — and ---, the lines log N (< cz) — log N (= 2000) =
(3/p) log(cz/2000), for the values p = 2 and p = 1, respectively. These represent the theoretical
intrinsic number of galaxies in the indicated redshift regions, on the assumption of a uniform
spatial distribution of galaxies. Progressive incompleteness in redshift determinations is anti-
cipated for z > 0, and is indicated by the strong deviation in this range of the observational
relation from the very nearly linear one found for ¢z < 2000.

For greater conservatism, the test has also been carried out with a limiting
magnitude of 12.5. It seems likely that the sample is nearly complete to this
limit; indeed results with brighter limits are similar but less definitive be-
cause of smaller sample size. For statistical validity, actual completeness is
not required, but only randomness within the complete population, in a
radial direction, out to the distance corresponding to ¢z = 2000. There is no
special reason to doubt that this holds.

a. Estimates of p

In addition to the m-z and m-0 relations, the m—z—6 relation for all 742
galaxies having these data in the de Vaucouleurs catalog were employed for

maximum-likelihood estimation. The results regarding p are shown in
Table 4.
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TABLE 4
Maximum-likelihood estimates of the redshift-distance exponent

Subsample with

Full catalog 500 < cz < 2000, B(0) = 13
Sample (742 galaxies) (350 galaxies)
Dispersion Dispersion
Relation Exponent in exponent Exponent in exponent
m-z 2.05 0.07 2.39 0.28
0-z 1.96 0.08 1.92 0.26
m-0-z 2.04 0.07 2.39 0.29
N-z 2.57 0.31
m-N-z 2.48 0.21
6-N-z 2.32 022
m-6-N-z 248 0.21

In order to assay the sensitivity of the results to conceivable selection
effects, estimates were also made for a number of subsamples, selected on
redshift range, apparent magnitude, morphological type, and field of obser-
vation. No evidence for significant sensitivity was found (cf. the discussion
below). A subsample which is representative and reasonable on a priori
grounds as well as on the basis of internal indications, is that defined by the
limits 500 < cz < 2000 and B(0) < 13. The higher cutoff in cz eliminates a
region in which there is a clear phenomenological break in the N-z relation,
as shown in Figure 8, and anticipated as a result of incompleteness in red-
shift determinations for higher redshifts. The results regarding p for this
subsample of 350 galaxies, including those based on relations involving N,
which would be inappropriate for the full catalog, are shown on the right in
Table 4.

The median value of p is 2.39 (the mean is 2.36); the difference from the
value p = 2 is not statistically significant, in view of the median dispersion of
0.26 (mean of 0.25). However, the excess over 2, as compared with the results
from the full sample, is in the direction of a magnitude truncation effect, and
indeed the explicit incorporation of an a priori magnitude cutoff into the
maximum-likelihood procedure leads to estimates closer to p = 2. The rela-
tively lengthy computations for the modified procedure have been carried
out for several cutoffs and two redshift intervals on the basis of the observed
m-z relation, and are given in Table 5.

In view of the indication from the original maximum-likelihood esti-
mates (in particular, the z-independence of the distribution of residuals from
the corresponding theoretical m-z law; cf. Figure 1) that m = 13 should be
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TABLE §
Estimates incorporating an a priori magnitude cutoff

Redshift
range: 500 £ ¢z £ 2000 500 £ ¢z £ 1800
Limiting Sample Sample
magnitude size p o, size P o,
13.00 350 1.86 0.18 303 1.86 0.20
12.90 339 1.86 0.19 293 1.92 022
12.85 330 1.95 022 288 1.96 0.24
12.80 325 1.94 0.23 286 1.90 0.25

beyond the faintness necessary in the range cz < 2000 to include all but a
small fraction of the relevant population, the marginal effect of allowance for
the magnitude cutoff on the estimates was to be expected.

b. Estimates of galaxy parameters

The maximum-likelihood estimates of the basic parameters of the joint
absolute magnitude-diameter distribution are shown in Table 6. For com-
parison purposes, the same parameters as estimated from the data on the
basis of the prior hypotheses that p = 1 or 2 are also shown.

For each sample, the estimated parameters are rather insensitive to the
relation employed, particularly in the case of the dispersions, which do not

TABLE 6
Maximum-likelihood estimates of galaxy parameters

Sample: Full catalog (742 galaxies) Subsample (350 galaxies)
Relation M oy A g, p M oy A a, P
m-z 1792 093 — — — 1679 0.72 — —- -
0-z — — 014 023 — — — 016 021 —
m-6-z 1794 093 0.18 023 0.76 1678 0.72 041 021 0.70
m-N-z — — — —  — 1660 0.72 — - -
0-N-z — — — - - — — 038 021 —
m—0-N-z — — — — — 1660 072 044 021 0.70
p=2° 18.05 0.93 0.16 023 0.76 17.77 0.72 021 021 0.70
p =1 2372 136 097 030 087 2376 085 -—-099 022 0.74

¢ Here a value of p is assumed a priori, and the maximum-likelihood procedure is applied
to the other parameters (least-square estimation in these cases).
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differ within the accuracy quoted between their values for p = 2 and the
maximum-likelihood estimates of p. As anticipated from the cutoff on appar-
ent magnitude in the subsample, it has generally smaller dispersions and
brighter mean magnitudes than the full catalog. For p = 1, the dispersions
are distinctly larger than for p = 2, and are in fact generally larger than
corresponding ones in the raw data. Specifically, the latter are, for the full
sample, 7,, = 1.33 and ¢,,,, = 0.30; for the subsample, o,, = 0.79 and
O10g0 = 0.22. This negative predictive power for the p = 1 assumption is
equally the case for the N-z relation for the subsample, where D = 0.27 for
p = 1 and D = 0.04 for the deviation of the observed relation from a law of
uniform distribution in redshift.

The allowance for the observational cutoff in magnitude has naturally
the effect of increasing the estimated dispersion in absolute magnitude as
well as the estimated mean magnitude. The results of this more refined
analysis are ¢ ~ 0.92 and M ~ 18.1, for all of the samples in Table 6. It is
interesting that these values do not differ significantly from those estimated
for the full sample without allowance for the observational magnitude
truncation.

¢.  The Schmidt V|V, test

As earlier indicated, this test is independent of magnitude truncation,
whether in all of space or in a fixed redshift interval, as is here appropriate.
The influence of peculiar velocities may be largely suppressed by elimination
of sufficiently low redshifts. In view of the earlier-cited dispersion of
< 100 km sec™ ! among blueshifted galaxies in the catalog, the elimination
of galaxies with redshifts < 500 km sec™! appears likely to achieve this end.
At the same time it should serve to avoid ultralocal irregularities.

At the other extreme, the dependency on redshift of incompleteness in
redshift determinations requires the elimination of correspondingly high
redshifts. The close approximation to linearity of the phenomenological
log N(< z)-log z relation up to but not beyond the limit cz = 2000 km
sec” ! (cf. Figure 8), provides objective indications for the appropriateness of
this redshift as an upper limit. Consequently the redshift limits 500 < ¢z <
2000 have been adopted in the tests detailed here. Computations for slightly
different ranges bounded by cz = 300 at the lower range and ¢z = 1800 at
the upper, have shown insensitivity to the precise limits employed.

As earlier indicated, it is problematical whether the catalog galaxies
brighter than 13" in the redshift range < 2000 form a random subsample of
all such galaxies. However, this seems likely to be effectively the case with a
limiting magnitude of 12.5. The results for both limiting magnitudes are
given in Table 7.
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TABLE 7

Maximum-probability estimates of the redshift-distance exponent from the
N — V/V,, relation

Redshift interval Limiting magnitude D estimate X estimate

500-2000 13.0 (350 galaxies) 2.24 2.25
12.5 (286 galaxies) 217 205

500-1800 13.0 (303 galaxies) 220 221
12.5 (254 galaxies) 201 1.92

300-2000 13.0 (379 galaxies) 2.08 2.09
12.5 (312 galaxies) 1.82 1.84

300-1800 13.0 (332 galaxies) 2.05 205
12.5 (280 galaxies) 175 175

0-2000 13.0 (409 galaxies) 1.93 2.00
12.5 (340 galaxies) 1.77 1.81

Confidence intervals for these estimates may be determined, and the
V/V,, procedure clarified, by reference to Table 8, which gives for each
limiting magnitude and a range of values of p the corresponding values of D,
the probability P(D) of obtaining a deviation as large as D, and X. In
particular, with the more conservative limiting magnitude of 12.5, the
hypothesis that p = 1 leads to probabilities of deviations as large as those

TABLE 8
Deviations from spatial uniformity as indicated by the N — V/¥,, relation for
galaxies with 500 < cz < 2000

Limiting magnitude 13 Limiting magnitude 12.5
P D P(D) b'¢ D P(D) X
100 0.165 0.00000001 6.15 0.134 0.00007 4217
5.0 0.114 0.0002 4.09 0.099 0.008 295
3.0 0.064 0.110 1.83 0.057 0.304 1.52
2.5 0.042 0.570 0.72 0.041 0.726 0.84
2.3 0.029 0.928 0.16 0.032 0.924 0.50
22 0.029 0931 —0.15 0.026 0.989 0.31
21 0.030 0.904 —0.47 0.025 0.995 0.11
20 0.038 0.684 —-0.83 0.030 0.960 —-0.11
1.8 0.049 0.363 —1.58 0.041 0.734 —0.58
1.6 0.075 0.036 —2.43 0.058 0.296 —1.12
1.4 0.091 0.006 —343 0.071 0.115 —1.70
1.2 0.119 0.0001 —4.60 0.078 0.061 -2.37

1.0 0.149 0.0000004 -5.92 0.104 0.004 -3in
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Figure 9 The N{< V/V,) relation for the subsample of the galaxies included in the de
Vaucouleurs tape in the redshift range 500 < cz < 2000, and not fainter than 13™, on the basis of
the p = 1 and 2 hypotheses (O and x, respectively).

The deviation from spatial uniformity (—) for a hypothetical linear redshift-distance law
is highly significant for a sample of the present size (350 galaxies); in the case of a hypothetical
square law, the agreement is quite satisfactory.

observed in D and X of 0.004 and 0.001, respectively; for p = 2, the corre-
sponding probabilities are 0.96 and 0.83. Figure 9 shows the sample N(V/V,,)
relation for p = 1 (open circles) and p = 2 (crosses) together with the line
representing theoretical spatial uniformily in the radial direction.

d. Discussion

On a straightforward phenomenological basis, the results strongly sup-
port a value of p ~ 2, and reject the value p = 1. As in virtually any situation
in which controlled random sampling is inherently difficult, some
refinements in procedure might be contemplated. The major ones, and the
only ones that appear to have nontrivial potential for alteration of the main
conclusion are: (a) selection on morphological type; (b) limitation of the
region of the sky in order to reduce the possible effects of different telescope
locations and parameters.
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Comprehensive quantitative examination of the possible effect (a)
shows that it is not real. The relative strength of the indications for the value
p = 2 as against the value p = 1 is quite unaffected by selection on morpho-
logical type. For the most refined estimates, i.e., those that allow explicitly
for an a priori magnitude cutoff, a substantial sample is necessary to ensure
proper convergence of the successive approximations procedure; con-
sequently, the subsample of galaxies that are either elliptical or spiral was
studied in this connection. The results, summarized in Table 9, which is
comparable to Table 5 treating all types of galaxies, yield an average esti-
mate of p = 1.88 + 0.21, based as earlier on the subsample in the restricted
redshift range 500 < ¢z < 2000.

TABLE 9

Maximum-likelihood estimates incorporating an a priori magnitude cutoff,
for the subsample of all galaxies with data which are either elliptical or
spiral, and have 500 < cz < 2000

Limiting Sample Estimate Dispersion
magnitude size of p inp
13.00 271 1.89 0.20
12.95 268 1.87 0.20
12.90 264 1.85 020
12.85 259 1.89 0.22
12.80 255 1.89 0.24

Results for morphologically selected subsamples of the full sample
having m-z-0 data, are generally quite similar. The results are summarized
in Table 10, which is comparable to Table 4, some of whose results are
repeated for ready comparison. For the classic m-z relation, which in the
present analysis appears the most stable, the estimate of p, averaged with
equal weight over the subsamples of ellipticals, spirals, and lenticulars, is
2.03 + 0.26. No less compelling is the scrutiny of the resulting dispersions.
Those from the p = 1 law are larger than those in the apparent quantity
observed, whether magnitudes or logarithmic diameters, for most of the
samples, and appear never to be significantly less than those in the raw data.
On the other hand, the dispersions from the p = 2 law are quite materially
less than those in the apparent quantities, and do not differ appreciably if at
all from the dispersions from the optimal value of p.

Similarly, potential effect (b) is not quantitatively visible on separate
analysis of the northern and southern hemispheres, galactic or celestial. The
results are summarized in Table 11, which is statistically comparable to
Tables 4 and 10, all galaxies with m-z-6 data in the indicated portion of the



128

TABLE 10

Effect of selection on morphological type

IV. Astronomical applications

Estimates of p

Dispersions in magnitude

Dispersions in log A

Type m-z 8-z m-0-z On Oy, Oy, Oy,., O O4  Ouy O,
All (742) 204 + 007 197 + 008 204 +007 133 136 093 093 0304 0300 0231 0231
Elliptical 215+ 0.18 369+ 045 327+041 124 133 090 090 0.184 0309 0.176 0.155

(163)

Spirals 201 +£0.11 1844010 198 +0.10 129 129 093 093 0285 0265 0209 0.208

{396)

Lenticulars 194 + 0.13 251 £ 023 2134016 121 117 079 079 0218 0271 0170 0.166

(158)

Ellipiticals 195 + 008 1.80 + 008 194 + 080 134 131 094 094 0312 0286 0232 0231

+ spirals

(559)

sky being included in the sample. Averaging over the four possibilities yields
p = 206 £+ 0.12. Again, scrutiny of the resulting dispersions in magnitude
and logarithmic diameter unequivocally reinforces the phenomenological
indications that p ~ 2. As earlier, dispersions of deviations from the p = 1
law are generally larger than those in the apparent quantities, and are in

TABLE 11

Effect of selection by region of sky

Portion of
sky

Estimates of p

Dispersions in magnitude

Dispersions in log A

m-z

0-z

m-0-z

[

aMI

“MZ

Mo

a‘q-:

Whole sky
(742)

North
celestial
(525)

North
galactic
(480)

South

celestial
(217)

South
galactic
(262)

2.04 + 007

208 + 0.09

2.19 + 0.11

2.04 +0.14

1.90 + 0.10

1.97 + 0.08

2.13 + 0.11

215+ 0.14

167 + 0.12

1.80 + 0.10

2.04 + 0.07

209 £+ 0.09

2.19 + 0.11

203 +0.14

1.89 + 0.10

133

1.30

L19

134

1.36

1.35

1.29

1.36

144

0.93

0.90

0.89

0.99

0.93

0.90

0.89

0.94

0.99

0.304

0.290

0.278

0.333

0.342

0.300

0.306

0.292

0.285

0.231

0.226

0.227

0.243

0.238

0.231

0.226

0.227

0.240

0.237
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hardly any cases materially less than the latter. On the other hand, those
from the p = 2 law are again quite materially less than those in the apparent
quantities, and as earlier, in all cases less than those from the p = 1 law.
Indeed, the raw comparison of dispersions of the residuals from the respec-
tive laws tends actually to overestimate the quality of the fit of the linear law,
since for any theory of the form m=f(z) + M, o} = o7 + 6%, ie,
oy = 6} — 6%, the anticipated reduction in variance of the apparent magni-
tudes is thus a}, which is four times greater for the p = 1 law than for the
p =2 law.

Selection on both morphology and field of observation leads to further
reduction in sample size, beyond which statistical investigation would
appear likely to be moot. The results of this consequently virtually definitive
refinement in sample selection, shown in Table 12, strikingly confirm the
earlier conclusions. The average value of p for the three morphological
types—elliptical, spiral, and lenticular—in the four indicated hemispheres of
the sky, and as derived from the m-z relation, is 2.07 + 0.24. In all cases the
estimate is well within two standard deviations of the value p = 2. In the
majority of cases, the dispersion in magnitude from the p = 1 line exceeds
that in apparent magnitude and in no cases is it materially less, while in all
cases the dispersion from the p = 2 line is considerably less than that in the
apparent magnitudes, and within one percent of the minimal dispersion
obtainable by a least-squares fit. The situation is generally quite similar for
the -z and m-0-z relations, except that the standard errors of estimate are
greater and the results are consequently not quite as striking, although in
precisely the same direction.

Due to the relatively small sample sizes, it would be inappropriate to
make statistical analyses based on the postulate of radial spatial homogene-
ity, as is the V/V,_ test described earlier, until a theoretical statistical
procedure is available to deal with large local clusters such as Virgo and
Fornax. These inevitably bias the spatial distribution of sufficiently small
samples, and it would be improper, or at least statistically moot, simply to
delete a priori local clusters designated in other than a functorial statistical
fashion, i.e., by an objective procedure devoid of preconceived hypotheses as
to the form of putative clusters.

On the other hand, the phenomenological viewpoint is primarily that of
model-building, which is logically quite distinct from that of hypothesis
testing. The lack of indication for the law p = 1 in the m-z-0 relation for
low-redshift galaxies does not in itself imply that this law is statistically
definitely unacceptable, for the degree of apparent magnitude truncation is
considerable on the hypothesis that p = 1. However, the de Vaucouleurs
data give a variety of further indications for the p = 2 law and counterindi-
cations for the p = 1 law.
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First, as is expected for a correct law, there is no significant trend with z
in the absolute magnitudes based on the p = 2 law, while there is a pro-
nounced trend for those based on the p = 1 law (cf. Figure 1). Second, the m-z
relations of the galaxies in fixed redshift ranges, whether selected on
brightness in bins containing fixed number of galaxies, or formed into a
sample in their totality, are in very good agreement with the p = 2 law, but
on the whole are no closer to the p = 1 law than they are to constancy.
Representative results of this nature are given in Table 13, for all galaxies in

TABLE 13

Dispersions and mean magnitudes of bright low-redshift galaxies over assorted redshift
ranges

Number of Range in Mean Mean Mean
galaxies cz O O, On, m M, M,
NA 500-1100 0.99 1.00 097 11.57 24.44 18.01
251 500-1500 095 098 091 11.76 24.18 17.98
384 500-2000 090 098 085 1191 23.89 17.91
159 600-1200 092 0.93 0.90 11.67 2427 17.97
257 600-1600 093 096 090 11.82 24.06 17.95
368 600-2000  0.88 094 084 11.95 23.86 1791

fixed redshift ranges, and Table 14, for relatively bright galaxies in bins. It is
interesting to note that the spread in mean magnitude over different redshift
ranges, for the same type of object, is much less for the p = 2 law than for the
p = 1 law, the latter spread being on the whole no less than that in the
apparent magnitudes. Thus in Table 13, the spread is 0.10 for the p = 2
absolute magnitudes, 0.38 for the apparent magnitudes, and 0.58 for the
p = 1 absolute magnitudes. Similarly, for the fourth brightest galaxies in
bins containing 10 galaxies each, these spreads are respectively 0.11, 0.61,
and 0.50, over the redshift ranges considered in Table 14. Again, for the tenth
brightest galaxies in bins containing 20 galaxies each, the ranges are 0.03,
0.33, and 0.34. The narrow spread of the p = 2 absolute magnitudes, and the
generally undiminished spread of the p = 1 absolute magnitudes relative to
that in the apparent magnitudes, is what would be expected on the p = 2
hypothesis, but is surprising on the p = 1 hypothesis. In particular, it is
difficult to see how observational apparent magnitude truncation, ad-
mittedly a priori a conceivably significant factor, could result in such close
agreement with the p = 2 law for such a variety of redshift ranges, bin sizes,
and choices of relative galaxy brightness within each bin, if in fact p were
equal to 1.

In any event, on the p = 1 hypothesis, any catalog complete out to a
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TABLE 14
Dispersions and mean magnitudes of ranked galaxies in bins®

Mean
Sample Number of Range in approximate Mean Mean
criterion galaxies cz G, Oy, Oy, magnitude M, M,
First brightest, 50 500-3000 0.70 0.62 0.46 10.81 2245 1664
in groups of 10
Second brightest, 50 500-3000 0.68 0.54 0.39 11.28 2291 17.10
in groups of 10
Third brightest, 50 500-3000 0.63 0.55 037 11.57 2321 1740
in groups of 10
Fourth brightest, 38 500-2000 0.50 049 0.30 1161 2361 1761
in groups of 10
Fourth brightest, 50 500-3000 0.55 0.56 029 11.78 2342 1761
in groups of 10
Fourth brightest, 61 500-5000 0.74 0.61 029 12.04 2326 17.66
in groups of 10
Fourth brightest, 67 500~-c0c 093 0.63 0.34 12.22 2319 17.72
in groups of 10
Fifth brightest, 50 500-3000 049 0.62 030 11.98 2361 17.80
in groups of 10
Tenth brightest, 20 500-2000 0.39 055 025 1192 2388 1791
in groups of 20
Tenth brightest 25 500-3000 043 0.61 024 12.05 2370 17.88
in groups of 20
Tenth brightest, 30 500-5000 061 0.67 0.24 12.25 23.54 17.90

in groups of 20

Brightest of 11
at middle redshift 33 500-2000 0.63 0.54 044 10.62 2260 16.61
of group of 11?

¢ The term “ rth brightest object in groups of s refers to the procedure of arranging the source
data in order of redshift, followed by subdivision into disjoint groups of size s (proceeding in the same
order), followed finally by selection of the rth brightest object from each group.

® Again arranging objects in order of increasing redshift, those groups of 11 successive objects
whose middle object is as bright as any in the group were picked out, and the sample formed from
their middle objects.

limiting apparent magnitude ,,, yields a fair sample in the range
zy < z < z, if all objects intrinsically fainter than M,_, = m,,, — 5 log z,
are deleted. The absolute magnitudes M, for the resulting subsample
should then exhibit a significant trend with z only if there is a corresponding
luminosity evolution. The trend may be appropriately tested by comparing
the mean of the subsample in the range z; < z < z; with that of the sub-
sample in the range z; < z < z, by a t-test, z; being chosen so that the two
subsamples have approximately the same size. (This test is “robust™ for
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fairly large samples, meaning that no assumption of normality of the lumin-
osity function is involved.) In fact, with the data of the de Vaucouleurs
(1964), and the values cz; = 500 and ¢z, = 2000, and m in the range 12.5 <
f < 13, the normal test statistic ¢ is ~ 2.8, corresponding to a probability
~ 0.0025, indicative of a rapidity of evolution for nearby galaxies quite
beyond normal expansion-theoretic conceptions. On the chronometric
hypothesis, the corresponding t-value is 0.99, as is quite consistent with
z-independence of the mean luminosity of bright galaxies. Additionally, if
there is serious selection on luminosity for cz < 2000 in the de Vaucouleurs
catalog, the population of deviations from mean magnitude of the sub-
sample of galaxies in the vicinity of a fixed redshift should be noticeably
redshift-dependent. A Smirnov two-sample test of these local model-
independent luminosity functions in the vicinity of the redshifts cz = 500,
1000, 1500, 2000, and 2500, based on the groups of 20 galaxies nearest each
redshift, reveals no significant differences between the distributions at the
5% level.

Continuing with the model-building discussion, a conceivable explana-
tion for the phenomenological quadratic redshift-distance law within the
expansion framework is the local superclustering proposed by G. de Vau-
couleurs (1972). On the other hand, local superclustering would appear to
involve significant radial spatial inhomogeneity. This is not at all confirmed
by the Kolmogorov-Smirnov V/V,_ test.

There is some evidence that the square redshift-distance law may per-
sist at higher redshifts. The anomaly in the range 14 < m < 15 reported by
Rubin et al. (1973) is reduced from the significant level of five standard
deviations to the insignificant one of two standard deviations if the linear
law is replaced by a square one. The galaxies studied by Arakelyan et al.
(1972) and described earlier are largely at higher redshifts and involve no
known selection effects relatively favorable to a square law. However, the
latter law decreases the dispersion in apparent magnitude, while the linear
law increases it. The compilation of published redshifts of clusters of galaxies
by Noonan (1973) exhibits a roughly linear log N-log z relation for the 56
clusters in the range z < 0.04, of slope 1.46, which deviates only marginally
from the square-law slope of 1.5 but considerably from the linear law slope
of 3. The strong linearity shown by the Sandage sample of brightest cluster
galaxies is, for reasons of small sample size, material model-dependence of
the appropriate apertures of measurement for very large galaxies and unpub-
lished selection criteria, not entirely conclusive as regards galaxies as a
whole. In any event, the mean slope of ~1 for the (rather irregular)
log N-log z relation of the subsample in the range z <004 is in better
agreement with the square than with the linear law; and the former law does
effect a significant (~509;) reduction in the dispersion of apparent mag-
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nitudes, in contrast with the absence of any reduction typically shown by
the latter law for samples of other objects. It is interesting also that the
N(<z) relation of the Sandage sample, although highly irregular, varies
roughly linearly with z rather than as z%? for small redshifts, and even in
the redshift interval z < 0.04 deviates considerably from the N( < z) relation
of the Noonan list of all galaxy clusters with published redshifts. Further
analysis of the Sandage samples is given in the next section.

In summary, the data given on the de Vaucouleurs tape indicate that
the hypothesis that p = 1 may be acceptable, with substantial emendations
in the nature of superclustering, extreme breadth of the luminosity function,
and the like. However, it is not phenomenologically indicated by the obser-
vations on low-redshift galaxies, which suggest rather the hypothesis that
p = 2. This hypothesis leads to a narrow luminosity function, of breadth
< 1 mag, and appears to be acceptable on the basis of all observable rela-
tions within the sample thus far examined.

9. The redshift-magnitude relation for Sandage’s brightest cluster galaxies

In assessing the implications of this relation, it is necessary to bear the
following circumstances in mind:

(a) The brightest cluster galaxy evolved in the work of Hubble,
Humason, Mayall, and Sandage, as a means of confirmation and elabora-
tion of the Hubble theory. Its independent status as a “standard candle ” has
not been established, and there is opposing evidence (cf. Abell, 1972; Peter-
son, 1970b; Zwicky, 1970).

(b) A sample sometimes cited as one of the main observational bases
for the Hubble relation, given as Table 2 by Sandage (1972b), while un-
doubtedly of outstanding accuracy, appears to be of uncertain statistical
uniformity. No objective criterion for a galaxy to be included in the sample
has been published, nor indeed is it expressly claimed in the cited source that
it is an appropriate sample for testing the redshift-magnitude relation. A
superficial examination of the redshifts’ ranges and numbers of galaxies
indicates so clearly that it is in no sense an approximation to a complete
sample out to a fixed limiting apparent magnitude, that a test of this via, e.g.,
the Schmidt V/V,, test may appear supererogatory. Rather the sample seems
suitable for determination of the value of the deceleration parameter, on the
basis of the prior hypothesis that a Friedmann model is valid. A sample well
suited to this purpose may however be totally inappropriate for a test of this
prior hypothesis.

(c) The statistical theory of the apparent uniformity of luminosity of
the brightest galaxies in rich clusters, first clearly enunciated by Scott (1957),




9. Redshift-magnitude for Sandage’s brightest cluster galaxies 135

remains quite tenable (cf. Peterson, 1970b). If valid, the appropriateness of
observations on bright cluster galaxies as a means of validating a theoretical
hypothesis is further reduced.

(d) The small dispersion in absolute magnitude from the expansion-
theoretic standpoint of the 41 galaxies studied by Sandage (1972b), of the
order of 0.3, is in itself not at all a statistical verification of uniformity of their
actual physical intrinsic luminosities, in view of the not necessarily random
character of the sample involved, as well as neglect of evolutionary correc-
tions. A concrete illustration of the ease with which such small dispersions
may be attained by selection is afforded by the case of quasars, which in their
totality are well known to fit expansion-theoretic redshift-magnitude curves
with large dispersion, of the order of 1.7 mag in the case of the comprehen-
sive list due to DeVeny et al. (1971). It is easy to select a subsample of 41
quasars which fit the curve with a dispersion of less than 0.3 mag, as is
evident from a plot of the data (cf. below). Needless to write, no serious
investigator would consider such a procedure valid; but the result of selec-
tion by a sufficiently refined physical criterion, or for a different statistical
purpose such as the minimization of the variance of an estimate of a pa-
rameter (such as q,) may be de facto virtually identical with this.

Finally, the Sandage (m, z) pairs cannot be corrected in any clear-cut
fashion to obtain the magnitudes that should have been obtained if aper-
tures appropriate to the chronometric theory had been used. In the case of
the Peterson data, the precise apertures pertinent to the recorded magni-
tudes are given; such data are not available for the Sandage pairs. Indeed,
the actual procedures employed in obtaining the final magnitudes from the
observations are quite complex, and in particular: (a) the procedure
employed is galaxy-dependent (in some cases a standard curve was used to
correct to a presumed aperture, in others interpolation, etc.); (b) the stan-
dard aperture correction curve is presented in a fashion that implicitly
assumes a certain relation between metric and isophotal diameters, which
arises in the theory of Friedmann models, and is not valid in the chronome-
tric theory; (c) the eye-fits used in processing data are difficult to treat in a
statistically controlled fashion within the framework of an alternative
theory.

The regrettable conclusion emerges that there is no entirely correct
means to utilize the data presented in Table 2 of Sandage (1972b) in a
statistically valid test of the chronometric hypothesis. More generally, it is
doubtful whether data gathered for the efficient determination of g, on the
hypothesis that a Friedmann model holds can legitimately and practically
serve at the same time to test the latter, or an alternative, cosmological
hypothesis. The actual dispersion from the chronometric theory for
constant-luminosity objects of the Sandage (m, z) pairs necessarily differs by
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very little from the standard deviation of the difference between the theoret-
ical curves

(5log z) — [2.5 log z — 2.5 log(1 + z)]

over the range of redshifts represented by the sample. With a formal correc-
tion for aperture based on the assumption that the correction procedure
employed for the Peterson galaxies is somehow de facto valid for the San-
dage galaxies, the actual dispersion of the 79 aperture-corrected (m, z) pairs
in the redshift range 0.01 < z < 0.21 from the chronometric curve is
0.74 mag. (In order to obtain a maximally homogeneous subsample it
seemed appropriate to exclude five galaxies which are widely separated in
redshift from the others in Sandage’s total list of 84 brightest cluster gal-
axies.) The considerably smaller dispersion of 0.30 mag given by Sandage for
the dispersion in expansion-theoretic absolute magnitude is explicable in
terms of a variety of effects: an underestimate of the aperture correction, the
Scott effect, inherent variability in the intrinsic luminosity of brightest
cluster galaxies as indicated by Abell (1972), etc. The gross deviation from
radial spatial uniformity in the sample is suggestive of a strong selection
effect, which is borne out by the following analysis, and which alone is of
magnitude quite sufficient to explain a chronometric dispersion of the value
reported.

The cited data themselves indicate quite significant differences between
the sample galaxies, exhibiting much variability and tending to support the
statistical theory of the nature of the brightest cluster galaxy, as opposed to
the theory that it is physically distinctive. For 22 of the galaxies, magnitudes
are given at two or more apertures; from such data it is possible to estimate
the Hubble radius of the galaxy according to the equation

ry rs
my —my = —2.5 log U rl(r/a) dr/'[ rl(r/a) er,
o 0
where m; and m, are the magnitudes, r, and r, are the radii at the galaxy
corresponding to the given apertures ¢, and 6,, and [ is the function earlier
defined. The determination of radii r; from the apertures 6; together with the
redshift z depends on the Hubble parameter H and also on the model
Taking as in Sandage’s work H = 50 and using the simple Friedmann model
with g, = 1 (the values of a are quite insensitive to the value of g,) gives a
fully specified equation for a which is readily solvable by successive approxi-
mations, using the largest and smallest values of the aperture listed by
Sandage (1972b). The values of a which are thereby obtained are quite
variable, ranging from below 0.05 kpc to above 45 kpc. While these ex-
tremes may well result from errors in magnitude observations, a large part of
the variation must arise from other sources. The standard deviation of log a
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Figure 10 The Hubble core radius-redshift relation for the brightest cluster galaxies with
suitable data studied by Sandage (1972b).

The error bars for individual galaxies are small relative to the differences in core radius
between the galaxies, indicating nonuniformity in intrinsic size.

is 0.57; if four relatively extreme values of a are deleted, a quite connected
group of values is obtained of dispersion 0.28 in log a. The actual (z, log a)
pairs are shown in Figure 10. A change in the Hubble parameter would
affect all values of a equally, and hence not alter the dispersion in log a. The
change in the model from the chronometric to the Hubble one has the effect
of multiplying the value of a determined on the basis of the chronometric
theory by the ratio of the distances according to the respective models. For
the redshift range involved here, this ratio does not differ effectively from
const x z'/2. This factor does not, however, produce a significant reduction
in the dispersion in a.

Such dispersion should arise in major part from that in magnitude
measurements, although this can be expected to be quite small in view of the
accuracy of these measurements as described by Sandage (1972b). However,
when the two apertures of measurements 0,,;, and 0,,,, are relatively close,
the dispersion in magnitude measurement is particularly likely to be
reflected in an apparent dispersion in log a. As a final means of estimating a
conservative lower bound for o,,,,, a subsample has been formed consisting
of only those galaxies for which 0., /0., > 1.75, and for which there is
unambiguous data. For the resulting sample of seven galaxies, the dispersion
in log a’, where a’ denotes the Hubble radius as determined on the basis of
Hubble-law distances, is 0.18, which in view of the accuracy of the magni-
tudes can reasonably be attributed primarily to substantial variation in the
size of the galaxies.
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Such dispersion in log a therefore indicates considerable variability in
an aspect which is strongly correlated with intrinsic luminosity. The relation
between angular diameter and absolute luminosity has been treated in a
comprehensive and precise study by Holmberg (1969), who finds (p. 326)
that M = —6.00 log A + const, within a dispersion of 0.40 mag. It follows
that gy, ~ 60, 4, for any group of, e.g., elliptical galaxies (the constant is
slightly type-dependent). Making the plausible assumption that the Hubble
radius is sufficiently closely related to the diameter that a similar relation
holds with A4 replaced by a, it follows that the order of magnitude estimate
oy ~ 60y, , is likely to be valid. For the purpose of estimating the expected
sample variance in absolute magnitude, the largest of the quoted standard
deviations in log a may be the most relevant, but again, using the smallest
figure, 0.18, for conservatism, it follows that a dispersion of the order of
~ 1.14 mag in absolute magnitude is to be expected for the galaxies in the
group in question. This dispersion is of the same order as the actual disper-
sion of the data from the chronometric curve. There is no published basis for
estimating the dispersion in log a for the entire group of 84 galaxies, but
there is no apparent reason to doubt that the group for which data are given
are representative at least of the correct order of magnitude. The smallness
of the dispersion in expansion-theoretic absolute magnitude reported by
Sandage suggests either an implicit selection effect, for which there are other
indications, or an extraordinary physical uniqueness for brightest cluster
galaxies which exempts them from even rough obedience to Holmberg’s law.
In the absence of any independent evidence for this exceptional behavior, the
order of magnitude of the dispersion from the chronometric curve of the
Sandage (m, z) pairs is no greater and indeed less than was to be expected
from the dispersion in the Hubble radii a of that subsample for which
Sandage has given data sufficient for its estimation.

Since the foregoing was written, Gunn and Oke (1975) have questioned
procedures apparently involved in the earlier treatment of bright cluster
galaxy samples. These include the attempted deletion of cD (supergiant)
galaxies from the sample, despite the difficulty of recognizing them at large
redshifts, and the subtraction of the background cluster luminosity, despite
the difficulty of isolating that part of the luminosity due to the subject
galaxy itself. It is evident that systematic deletion of particularly bright
galaxies at larger redshifts would tend to bias the observational redshift—
magnitude relation in the direction of increasing slope for the m — log z
relation. It could also affect the distribution of intrinsic diameters of the
sample. The ambiguity in the subtraction of the cluster background
luminosity would not have this effect, but could simulate it in its impact
on the dispersion in log a. It is evident that these considerations only
enhance the general conclusions reached regarding the statistical admissi-
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bility of the Sandage sample, even if the second one may contribute
significantly to the surprisingly large apparent dispersion in the absolute
diameters of the sample galaxies. Finally, the difficult problem of a statistic-
ally sound definition of “cluster,” earlier alluded to, is a further point to
consider in assessing the significance of the bright cluster galaxy samples.

More recently, Sandage and Tammann (1975) have treated the m-z
relation for Scl galaxies, again primarily for the estimation of g, and of
intrinsic luminosities. Their reported result that ém/d log z ~ 5 for these
galaxies is obtained by combining two distinct samples, one consisting of
classic Scl galaxies, and another of faint galaxies at generally much higher
redshifts, whose identification as Scl galaxies is of quite another character
and uncertain. The large difference between the average redshifts of the two
samples results in an extreme sensitivity of the slope in the m-z relationto a
possible substantial difference in average intrinsic luminosity between the
two samples.

Indeed, the m-z relation of each of the separate samples is much better
fitted by a line of slope 2.5 than one of slope 5. The respective dispersions in
(a) apparent magnitude, (b) expansion-theoretic absolute magnitude
(4o = 1), (c) chronometric absolute magnitude, are as follows. For the clas-
sic Scl galaxies (all unexceptionable data in Table 6 of Sandage and Tam-
mann (1975), with ¢z > 500, a group of 22 galaxies), (a) 0.80, (b) 0.78, (c)
0.57. For the Sandage-Tammann sample of 60 galaxies among those in the
list of 69 galaxies given as their Table 1: (a) 0.66, (b) 0.62, (c) 0.49. For the
combined sample of 82 galaxies, the results are: (a) 1.55, (b) 0.67, (c) 0.90.
These results imply that for the combined sample, the distribution of
expansion-theoretic absolute magnitudes will show a pronounced cyclical
trend. Since in addition to a major uncertainty as to the propriety of the
classification of the faint galaxies as supergiants, the distribution of redshifts
for the overall sample appears strongly nonrandom, the two samples of
Sandage and Tammann are hardly consistent with the expansion hypothesis.
Indeed, each sample itself deviates by =4 standard deviations from expecta-
tion, if the sample is assumed fair and the Hubble law is valid, as measured
by the normalized reduced variance statistic introduced in Segal (1975). Each
sample, however, is separately quite consistent with the chronometric
hypothesis within <1 standard deviation.

To summarize, the data for large or objectively designated galaxy
samples are not at all phenomenologically indicative of a nonevolutionary ex-
pansion of the universe, but rather of the m — z — 6§ — N relations predicted
by the chronometric redshift hypothesis. The data for samples that are small
or may otherwise be less cogent statistically is generally similar, except for
that on brightest cluster galaxies, which appears exceptional and equivocal.
Greater definitiveness in the testing of the two hypotheses could probably
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best be achieved by additional observations or samples—randomized if
necessary in specified fields—that are complete in redshift and out to specified
limiting magnitudes. There is no model-independent reason to anticipate
that such samples will be relatively more favorable to the expansion
hypothesis, and indeed the sample of Colla et al. (1975) of this nature,
published too recently to be detailed here, appears to be in satisfactory
agreement with the chronometric m — z and N(<z) predictions, but poor
agreement with the expansion-theoretic ones. In particular, the X-statistics
earlier referred to (these are approximately normally distributed with zero
mean and unit variance for a fair sample and correct theory), based on the
raw data for the fifty-four radio ellipticals in the sample, are, respectively,
—2.1 and 4.7; for the subsample of forty-four with z < 0.05, especially
unlikely to be strongly affected by the observational magnitude cutoff, the
values are —1.9 and 3.5. These represent formal probability ratios in favor
of the chronometric theory of >10° and 102, respectively.

10. Preliminary discussion of quasars

It has sometimes been asserted that quasar data have been disap-
pointingly inapplicable to cosmological testing, by virtue of the large disper-
sion in their characteristics indicated by the data. The actual data, however,
do not bear out this negative point of view regarding quasars, to the extent
that model-independent analysis is possible. Moreover, from the standpoint
of the chronometric hypothesis, their dispersion is quite moderate.

A priori one might expect that quasars would form an intrinsically
more homogeneous class than galaxies. The cases in which there is some
question as to whether a given object is a quasar are relatively few; the
well-known variability in brightness is limited to a small fraction of the
quasars, and introduces a dispersion in the magnitude too small to be of any
significance in cosmological testing. Further, while relatively few quasars
have been found as the result of statistically controlled observation, there are
several important samples of this type, and the very heterogeneity of selec-
tion and of the telescopes involved in observation of the totality of known
quasars should tend to prevent any strong bias from affecting the observa-
tions as a whole. Certainly, any selection effect on quasars has been fairly
constant in the past six to seven years, for the m—z—N(z) relation based on
the ~ 70 quasars for which reliable data were available circa 1966 does not
appear to differ appreciably from that based on the & 200 quasars known
today.

Actually, quasar data are in quite good agreement with the chronome-
tric hypothesis, on the simplest possible model-independent hypotheses:
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(1) spatial and temporal homogeneity (the latter meaning “no evolu-
tion,” in particular);

(2) the quasars form a single luminosity class apart from a moderate
roughly Gaussian random fluctuation. On the other hand, they are consist-
ent with the expansion hypothesis only with the adjunction of model-
dependent assumptions: (a) strong temporal evolution and spatial
inhomogeneity; (b) a broad luminosity function, involving the existence of
relatively large numbers of faint quasars for which there is little direct obser-
vational evidence.

Both assumptions (a) and (b) require the use of the observations them-
selves to determine the many parameters needed to specify fully the assump-
tions. The predictive power of the expansion hypothesis is thereby quite
limited in regard to quasars, and its verification in the indicated sense would
be possible with relatively arbitrary data. The recent work of Schmidt
(1972a) details from the standpoint of the expansion hypothesis the par-
ameters of the quasar population (cf. also the references to earlier work
given there). The testing of the expansion hypothesis which is undertaken
here is designed to parallel as closely as possible the tests applied to the
chronometric hypothesis, in order to afford a fair and objective comparison,
and so differ in format and, in part, in detail and in the quasar samples
employed. The qualitative conclusions obtained are in no respect in dis-
agreement with those of Schmidt (1972a), but his work stresses the determina-
tion of the quasar parameters on the assumption of the expansion
hypothesis, while the present work is concerned rather with the comparison
between the expansion hypothesis and the chronometric hypothesis. See also
Longair and Scheuer (1967) for an analysis of the quasar m-z relation from a
largely expansion-theoretic standpoint.

The major statistically controlled data regarding quasars are the lists by
Schmidt (1968) of 3C quasars ; that of Lynds and Wills (1972) of 4C quasars;
of Braccesi et al. (1970) of radio-quiet quasars ; and the summary material by
Schmidt (1970) regarding radio-quiet quasars. Possibly subject to relevant
selection effects, but so much larger in sample size as well as heterogeneous
in selection as quite possibly to possess comparable statistical power, is the
compilation by De Veny et al. (1971) of published data on quasars up to
1971. In addition there are recent lists of radio and radio-quiet quasars due
to Sandage (1972c), of unspecified statistical applicability, and older lists
such as that given by Burbridge (1967), the latter being of interest in relation
to the question of the temporal stability of conclusions drawn from com-
prehensive heterogeneous lists.

These data have been treated in a systematic but simple statistical
fashion. First, the redshift-magnitude relation has been compared with
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those predicted by the respective theories, on the assumption that the objects
under consideration form essentially a single luminosity class with moderate
dispersion. This assumption is confirmed by quantitative analysis, apart
from the possibility of “ temporal evolution” in the expansion model. In the
vicinity of a fixed redshift, the dispersion in quasar apparent visual magni-
tudes as given by DeVeny et al. averages 0.8 mag, for redshifts z > 0.2 (for
z < 0.2 the dispersion is ~ 1.3 if 3C 273 is excluded, the increase possibly
being due to a slight degree of selection on luminosity, and/or the difficulty
of distinguishing quasars from similar luminous objects, such as Seyfert
galaxies). The precise situation as regards the DeVeny list and other quasar
samples will be treated later, but an overall view of the situation is provided
by Figures 11-13.

Figure 11 gives the standard deviation as a function of redshift for the
apparent magnitudes of the quasars in the DeVeny list, at an approximately
fixed redshift. Excluding quasars whose magnitudes are qualified as U, E, or
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Figure 11 Dispersion a(m,) in quasar apparent magnitudes as a function of redshift.

All quasars in the list by DeVeny et al. (1971) having unqualified data, 158 in all, were
divided into 16 groups of 10 quasars (8 in the last) of approximately equal redshift. The
dispersion in each group of 10 quasars is plotted against the median redshift of the group
(median taken as average of fifth and sixth largest redshifts in the group). For z > 0.2, the
dispersion is comparable with that for bright galaxies on the same basis, and is not indicative of
a material observational cutoff in apparent magnitude.
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Figure 12 Redshift-magnitude relations for quasars from 16 groups of ~ 10 quasars
ordered by redshift.

O, means of each group; A, second brightest quasar in each group; x, first-brightest
quasar in each group. The curves are theoretical constant intrinsic luminosity lines, with con-
stant adjusted from the second-brightest quasar observations, on the following hypotheses: —,
chronometric theory, 6 = 0.26; - - -, expansion theory (g, = 1), 6 = 1.32. For the first-brightest
and mean quasars in each group, the respective theoretical curves must be correspondingly
lowered and raised, and again provide an excellent fit in the case of the chronometric theory and
a poor one in the case of the Hubble line.

P in this list, there are 158 quasars having measured redshifts and apparent
magnitudes. These were divided into groups of size 10 in order of increasing
redshift, the last group comprising eight quasars. The quantity a(m, ) plotted
against redshift in Figure 11is [n™! ) (m — m)?]%%, where n is the number
of quasars in the group, m denotes the apparent magnitude, and /m the mean
of the magnitudes in the group. The quasars in each group have slightly
different redshifts, but on either the expansion or the chronometric hypoth-
esis, these differences should contribute entirely marginal amounts to the
dispersion of the group. Thus for example the widest redshift range is the
last, which is 2.07 < z < 2.72; the expansion-theoretical dispersion in
apparent magnitude for the quasars in question, assuming they have the
same intrinsic luminosity, is 0.19, and is still less on the chronometric
hypothesis. The effect on the computed dispersion is likely to be much less; if
the theoretical deviations are uncorrelated with the variations in intrinsic
luminosity, the effect on the computed dispersion of 0.96 would be to reduce
it to 0.94. Thus Figure 11 gives an effectively model-independent indication
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Figure 13 The redshifi-magnitude relation for quasars.

O, All quasars with unqualified data in the list of DeVeny et al. (1971). Curves are the
constant intrinsic luminosity curves for (a) the Friedmann model with g, = 1 and (b) the
chronometric theory, with respective average luminosities fitted to the data. The chronometric
curve closely approximates the mean position of the quasars at any given redshift; the Hubble
curve is clearly systematically below the data for lower redshifts and above for higher redshifts.

of the observed dispersion in apparent magnitude for quasars at fixed red-
shift. (It would not be correct for a model in which magnitude varied rapidly
with redshift, but any such model would be in gross contradiction with
quasar observation, and need not be considered here.)

The lack of any pronounced downward trend in dispersion as a func-
tion of redshift, for redshifts > 0.2, is an indication of the absence of serious
selection effects, as regards selection on luminosity. This indication is rein-
forced by Figure 12, which shows the redshift-magnitude relations for (a)
the brightest quasar in each group; (b) the second brightest quasar in each
group; (c) the mean quasar in each group (i.e., the mean magnitude plotted
at the median redshift, which differs insignificantly from the geometric or
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arithmetic mean redshift here). If there were serious sclection effects, the
differences in magnitude between these respective observational curves
would be likely to decrease with increasing redshift. In fact, these differences
show no significant trend with redshift.

We shall treat in detail statistically controlled samples as well as the
DeVeny list; but in view of the latter’s model-independent apparent freedom
from serious selection effects, it may reasonably be expected to afford a solid
indication of the acceptability of the respective theoretical hypotheses,
and/or their relative discrimination. In Figure 12, the best-fitting single-
luminosity-class theoretical curves on either hypothesis, for the second-
brightest quasar sample, are also plotted. It is evident that the
expansion-hypothesis relation has a much greater dispersion from the obser-
vations than the chronometric relation; this is actually the case for the other
two samples, as well. Figure 13 shows the totality of 158 quasars in
the DeVeny list (having unquestioned magnitudes and redshifts), together
with the theoretical chronometric and Hubble-theoretic curves of constant
intrinsic luminosity, adjusted to the samples. The chronometric line appears
virtually an optimal fit for a monotone increasing m-z relation (cf. also
below).

The quantitative situation regarding this approach to the redshift-
magnitude analysis of the DeVeny quasars is summarized in the following
tables. Table 15 lists: (1) the redshift rank of groups of quasars, each having

TABLE 15
Redshift-magnitude observational and theoretical data for quasars in groups ordered by
redshift

1 2 3 4 5 6 7 8 9 10 11
1 011 1638 1.76 Mk 205 0.070 1450 -3.16 0.06 0.158 1280
2 024 1679 098 PKS2135-14 0200 1553 -—191 0.08 0240 15.15
3 032 1747 114 PKS2251+ 11 0323 1582 -116 -005 0311 1572
4 037 1660 073 Ton 202 0366 1568 —0.75 —029 0371 1528
5 044 1746 0.89 PHL 658 0450 1640 —-1.02 027 0.501 1599
6 056 17.25 093 3C 345 0.594 1596 002 -037 0530 1578
7 064 1705 077 MSHO03 -19 0614 1622 -017 —-0.13 0677 1597
8§ 072 1743 0380 3C 175 0.768 16.60 —0.06 0.11 0720 16.02
9 0.87 1725 0.72 4C —-03.79 0.901 16.38 050 —-021 0859 1610
10 095 1749 058 3C 94 0962 16.49 054 —0.14 0980 1647
11 107 1755 072 PKS 1127 - 14 1187 1690 0.58 0.16 1070 16.70
12 1.33 1792 063 BSO 1 1.241 1698 0.60 022 1375 16.79
13 151 1799 091 3C 298 1.439 1679 1.11 —-004 1434 1646

14 182 1818 048 PHL 1222 1910 17.63 0.89 0.69 1750 1743
15 199 1761 0.55 PHL 1305 2064 16.96 172 —001 1955 16.88
16 210 1800 0.96 PHL 8462 2224 16.63 222 -037 2720 16.60
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10 members except group 16, having eight; (2) the median redshift of the
group; (3) the arithmetic mean of the magnitudes of the group; (4) the
standard deviation of these magnitudes about their mean (this is the conven-
tional, and hence biased statistic; the figures should be increased by 5% for
an unbiased estimate); (5) a conventional name for the second brightest
object in each group; (6) the redshift z of this object; (7) the magnitude m of
the object; (8) the Hubble deviation, i.e., the difference m ~ 5 log z + ¢, the
constant ¢ being chosen so that the average difference vanishes; (9) the
chronometric deviation, i.e., the difference

m—25logz+25log(l +z) + ¢,

the constant ¢’ being chosen so that the average of these differences vanishes;
(10) the redshift of the brightest object in each group; (11) the magnitude of
this object. No essential improvement in the dispersion of the expansion
theory would be expected from the use of a Friedmann model in place of the
simple Euclidean version; explicit computations were made with the
Einstein-de-Sitter model, which actually produced an increase in dispersion.
The main conclusion to emerge, that the dispersion of the expansion theory
is of the order of 3 or more times greater than that of the chronometric
theory, as regards the m-z relation for the indicated model-independent
objects, should be unaffected by the use of another Friedmann model with a
value of g, in the range generally considered realistic.

The actual dispersions are summarized in Table 16. Under “sample ” is

TABLE 16
Dispersions and means for redshift-magnitude relations of quasars in
groups ordered by redshift

Theory

Data Chronometric Expansion® Sample
Second o =071

brightest ¢ =026 o= 132

in group m= 16.34
Group o = 0.49

means o =029 o =134

m= 1740

First o = 0.60% 1.01

brightest g = 0.29% 0.60 g = 1.02% 099

in group m = 1601

¢ Excluding 3C 273.
* Expansion theory: Friedmann model, g, = 1.
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given the dispersion in the apparent magnitudes of the objects selected from
each group, and also the mean apparent magnitude. There is clearly no
qualitative difference between the results of using the second, first, or mean
quasar in each group.

11. The N-z relation for quasars

The foregoing analysis has been primarily in the nature of model forma-
tion. It does not precisely constitute testing of hypotheses as to the correct
model. It indicates that the chronometric hypothesis is quite satisfactory as
regards the m-z relation for quasars, but that the expansion hypothesis
appears to require emendation to be consistent with this relation. However,
it remains to check out both hypotheses on other, statistically more con-
trolled quasar samples; to test both hypotheses against other observational
relations; to examine the modifications of these tests when the original
hypotheses are augmented by auxiliary ones. In particular, the auxiliary
hypotheses of strong temporal evolution in the properties of quasars, and
the related one that they form a quite broad rather than roughly single
mntrinsic luminosity class, have been proposed in connection with the expan-
sion hypothesis, and should be considered.

We continue now with our description of the statistical procedure for
tests based on quasars. The next relation considered is that between N(z) =
N(< z), the number of quasars at redshifts < z, and z. In order to arrive at a
definite relation, our earlier assumption to the effect that the objects form a
single luminosity class with moderate dispersion must be augmented by an
assumption as to their spatial distribution; it will be assumed that this is
approximately uniform, i.e., the number of quasars in a given volume of
space is generally proportional to the volume. This assumption will again be
confirmed by the quantitative analysis of the quasar observations on the
chronometric hypothesis, but in any event it is the physically most reason-
able and mathematically simplest a priori distribution from which to com-
mence model building or preliminary testing (as in the work of Schmidt,
1968, based on the expansion hypothesis). As a means of obtaining a prelim-
inary overall indication, we again turn to comprehensive, independently
compiled data.

As is well known, there are few quasars known of redshift > 2.5, and it
is reasonable to anticipate that selection effects are present at somewhat
lower redshift. Thus it would be surprising if the DeVeny quasar list approx-
imated a random sample of quasars out to redshift 2.9, nearly the largest
known redshift; but as z decreases, it becomes increasingly likely that those
at lower redshifts approximate a random sample out to redshift z. We shall
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apply the Kolmogorov-Smirnov test for the comparison of the observed
with the theoretical redshift distributions to various redshift intervals of this
type. In addition, the redshift intervals (0.5, 1.0) and (1, 2) will be considered,
as a check on the possible influence of lower redshifts, where anomalies may
arise from classification difficulties. The results are that the chronometric
hypothesis is accepted, at notably high levels of probability in most cases,
while the expansion hypothesis is rejected in virtually all cases, at conven-
tional significance levels.
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Figure 14 The N-z relation for quasars in the redshift range 0 < z < 2.

O, cumulative fraction of quasars in the list by DeVeny et al. (1971) having unquestioned
data, in the cited redshift range (146 quasars in all); —, expected distribution on the chronome-
tric hypothesis; - - -, expected distribution on the Hubble theory for a random sample. Theoret-
ical assumptions: spatial and temporal homogeneity. The quite satisfactory agreement of the
chronometric prediction with the observations serves to confirm both the chronometric
hypothesis and the assumption that the sample is fair. On the expansion hypothesis, this
assumption is open to question due to the faintness expected for objects at larger redshift, but
Figures 15 and 16 do not reveal any material improvement in the fit of the expansion prediction
to the observations when consideration is limited to quasars in restricted redshift ranges.

Figures 14 and 15 show the observed and theoretical fractions of
quasars of redshift bounded by a given value z. This form of presentation, as
opposed to that of the differential fractions, has the advantage of being
readily subject to statistical analysis. The Kolmogorov—Smirnov statistic,
which is the maximum of the (absolute values of the) deviations of the
observed and theoretical fractions, has a distribution which is independent
of the true redshift distribution (this is strictly true only for continuous
distributions, but in all events it yields an upper bound on the probabilities,
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Figure 15 The N-z relation for quasars in the redshift range 0 < z < 1.

O, cumulative fraction of quasars in the list by DeVeny et al. (1971) having unquestioned
data (98 quasars in the cited range); —, expected distribution on the chronometric hypothesis ;
---, expected distribution on the Hubble theory for a random sample. Theoretical assumptions:
spatial and temporal homogeneity. See the comment on Figure 14.

and there is no reason to anticipate a discontinuous distribution in the
present case). It is clear visually that the observed distribution is well fitted,
in all redshift intervals (0, a), for a < 2, by the theoretical chronometric
distribution, while its deviation from the expansion-theoretical distribution
is even greater than that between the two theoretical distributions.
The situation is the same when the lower redshifts are excluded as in
the intervals (0.5, 1) and (1, 2).

These results do not signalize rejection of the expansion hypothesis as
such, but only its conjunction with the auxiliary hypothesis indicated. Spa-
tial uniformity of the distribution may be in question, and in Schmidt (1968)
and numerous analyses of quasar distributions technically along different
lines from the present one, although related in general idea, the conclusion
has been reached that it does not hold, if the expansion-theoretic hypothesis
is correct. A fuller comparison with these earlier developments will be given
later in connection with the chronometric results for the quasar samples
treated by Schmidt et al., but a preliminary indication of the extent to which
the general hypothesis of z-dependence of the spatial distribution of quasars
(mathematically equivalent to temporal evolution in the Friecdmann model
framework) may be accepted by the data may be obtained as follows.

Accepting provisionally this hypothesis, it would be anticipated that
over relatively small redshift intervals the redshift distribution should con-
form to a nonevolutionary model. In fact, over very few intervals beginning
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at z = 0 is this the case; apart from the decrease in sample size involved,
which limits the statistical significance of the conclusions, and considering
the decrease in z-range, the expansion hypothesis fits about as poorly over
the intervals (0, a) for small a as for large values of a. This result might be
explained on the basis of local anomalies, in particular the difficulty of
discriminating between quasars and Seyfert and N-galaxies, and other large
redshift emissionline objects. Virtually all such known galaxies having quas-
arlike features are at redshifts < 0.3. The redshift intervals (0.3, a) for values
of a somewhat greater than 0.3 should therefore be substantially free from
local anomalies and contaminations by nonquasars, and at the same time
represent regions of space sufficiently close (on the expansion hypothesis)
that selection effects on luminosity should be minimal. These intervals
would therefore appear a priori as probably the most favorable ones for
showing the approximate spatial uniformity of quasars over small redshift
intervals, say ~ 0.2, on the basis of the expansion hypothesis.

In fact, the exclusion of the initial redshift interval (0, 0.3) does not
significantly improve the fit of the expansion-theoretical distribution to the
observations, over shorter redshift intervals, as shown by Table 17 for the
intervals (0.3, 0.3 + b) for b = 0.2, 0.3, 04. In all cases, the chronometric
curve agrees with the observational line within quite probable random
fluctuations, while in most cases the deviation of the expansion curve from
the observational line is significant at conservative statistical levels.

TABLE 17
Kolmogoroff-Smirnov tests of the N(z) relation for quasars

Redshift Number in Chronometric Chronometric Hubble Hubble
interval sample De probability® D* probability
0-2.0 146 0.09 0.19 0.42 10-22

0-1.0 98 0.05 ~ 1.00 0.38 2 x 10712

0-0.5 48 0.10 0.76 0.32 2 x 1074
0.5-1.0 50 0.12 047 0.29 5x 1074
1.0-2.0 48 0.11 0.36 0.22 0.02

0-0.3 21 0.12 ~ 1.00 0.28 0.07
0.3-0.5 27 0.28 0.09 0.35 0.003
0.3-0.6 40 0.16 0.26 0.30 0.002
0.3-0.7 52 0.12 045 027 0.001

4D, the Kolmogoroff~Smirnov statistic, is the maximum of absolute value of difference
between observed and theoretical cumulative frequency functions.

® Probability is that of a D as large as that observed. Data from DeVeny et al. (1971), and
comprise all quasars listed of unquestioned redshift and magnitude.
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Figure 16 The N~z relation for quasars in the redshift range 0.3 < z < 0.7.
The basis here is the same as in Figures 14 and 15. Compare the comment on Figure 14.

The entire interval 0.3 < z < 0.7 is shown in Figure 16. The tentative indica-
tion seems virtually inescapable that on the expansion hypothesis, the tem-
poral evolution must be so rapid that even over redshift intervals of
the order of 0.2, the expansion cannot be regarded as approximately station-
ary. This indication naturally recalls the related indication provided by
the apparent spatial distribution of the Peterson galaxies described earlier.
At the same time, the chronometric hypothesis fits the data remarkably well;
even on a correct hypothesis, there might well be some nontrivial interval for
the variate in question within which the sample distribution differs
significantly from the population distribution, but no such interval of order
> 0.1 is apparent for the present observations in relation to the chronome-
tric hypothesis.

Table 17 summarizes the results of Kolmogorov—Smirnov tests in the
indicated redshift intervals. In order of magnitude, the probabilities on the
expansion hypothesis that the observed deviations could arise by chance
seem much smaller than might have been anticipated prior to the present
analysis. Those for the chronometric hypothesis are, however, corre-
spondingly remarkably large; it would be improbable for them to be much
larger, even granting the validity of the theory. The indication from this
latter circumstance is that the DeVeny list is rather more representative out
to redshifts ~ 2 than one had any right to expect. The speed and thor-
oughness of observational quasar work during the past decade has perhaps
been underestimated.
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12, The apparent magnitude distribution for quasars

There is one final distribution of quasar statistics which is generally
taken account of and logical to treat in the present context, that of apparent
magnitudes. Ideally, the joint z-N(< z)-N(< m) relation should be con-
sidered ; however, the present state of the available statistics and also of the
statistical art is such that it is unlikely to yield any definite useful informa-
tion beyond that obtainable from analyses of single variates. We consider
here therefore only the N(< m) distribution, and shall neglect secondary
effects such as deviation of the spectral index from unity (cf. the earlier
treatment of the N-S relation for radio sources), and possible intergalactic
absorption.

For a theory with an m-z relation of the form

m=f(z) + ¢,

and for a single luminosity class (i.e., fixed c), the apparent magnitude cumu-
lative probability P(< m) can be derived from the form of the function f;
together with the distribution of z implied by the underlying geometry. If ¢
itself is statistically distributed, then m becomes the sum of the variates
u = f(z) and v = c. Assuming that the luminosity function is independent of
z, the distribution of m is then the convolution of the respective distribution
functions for u and v.

There is no compelling reason to anticipate a normal distribution for
the quasar intrinsic luminosities, but the chronometric luminosities are rea-
sonably well approximated by this distribution; cf. Table 18, based on the 158
quasars in the DeVeny list. This is not the case for the expansion-theoretic
luminosities, but the well-known law N(m) oc 10~ °%®=" for the distribu-
tion of apparent magnitudes below a fixed limiting magnitude is indepen-
dent of the luminosity function (cf. Longair and Rees, 1972). Since in fact the
normal distribution is approximated for computational purposes by a linear
combination of delta-functions, and the theoretical N(m) relation is not very

TABLE 18
Distribution of chronometric intrinsic luminosities

Deviation m from Observed Normal law frequency,
mean magnitude frequency o = 0.9 mag
1.5 < Am 0.06 0.05
05<Amz= 15 0.21 0.24
—-05=<Am=05 043 0.42
-15<Am< —05 0.28 0.24

Am < —15 0.02 0.05
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Figure 17 The N(< m) relation for quasars up to a limiting magnitude of 19.5.

O, observational points; -—, theoretical line for the chronometric theory, which depends
on the observational luminosity function derived from the list of DeVeny et al.; - - -, theoretical
line for the Hubble theory and is independent of the luminosity function. In either case it is
postulated that the sample is a random subsample of a complete sample. From an expansion-
theoretic standpoint this may be questioned, but the restriction to the fairly conservative
limiting magnitude of 18 in Figure 18 still does not bring the expansion prediction into agree-
ment with observation.

sensitive to the precise form of the luminosity function, the use of the normal
law in the chronometric case does not differ significantly from the use of the
empirical distribution function.

Accordingly, the convolution of the chronometric-theoretical constant
luminosity curve with a Gaussian of dispersion 0.9 mag, approximately that
found for the DeVeny list, has been computed and is compared in Figures 17
and 18 with the Hubble-theoretical curve and the observational apparent
magnitude distribution for the same list, out to prescribed limiting magni-
tudes. The limiting magnitude of 19.5 in Figure 17 includes virtually all
quasars on the list. It is evident that the chronometric curve and the observa-
tions are in extremely good agreement. On the other hand, the fit of the
expansion-theoretic curve from the observations is quite poor; there is a
notable deficiency of faint quasars, from the expansion-theoretic standpoint.
In defense of the expansion theory, it might be argued that the sample is not
known to be random, and that selection on luminosity might well be an
important factor. That this is not very significantly the case is indicated by
Figure 18, in which the limiting magnitude is 18, only slightly fainter than
the modal quasar magnitude for a variety of samples. On the other hand,
while the data clearly supply confirmation of the chronometric hypothesis,
in the absence of model-independent methods of estimating selection effects
this apparent rejection of the (nonevolutionary) expansion hypothesis
should be regarded as tentative. Definitive tests should be sought through
the use of statistically controlled data, samples of which are later discussed.
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N{<m)/N (<I8)

Figure 18 The N(< m) relation for quasars up to a limiting magnitude of 18.
The basis here is the same as in Figure 17. Compare the comment regarding that figure.

13. The redshift-luminosity relation for quasars

In addition to comprehensive lists such as the DeVeny list used earlier,
there are the following selective lists: (1) Schmidt (1968), 3C sources; (2)
Lynds and Wills (1972), 4C sources; (3) Braccesi et al. (1970), optically
selected quasars. The Schmidt and Lynds-Wills lists include radio luminosi-
ties, and the Braccesi list includes infrared luminosities. The results of testing
the m~z relation are indicated in Table 19. It is evident that the chronometric
hypothesis is generally much more satisfactory in relation to the cited data.
The chronometric dispersions are reassuringly uniform, ranging from

< 1 mag for unselected quasars down as brighter quasars are selected. The
Schmidt (1968) and Lynds and Wills (1972) lists being primarily radio-
selected, it was to be expected that for a correct theory, the dispersions in the
apparent radio luminosities should be relatively small, as they are relative to
the dispersions in optical magnitudes. The Braccesi list being optically
selected, it was similarly to be expected that it would show relatively small
dispersions in apparent optical luminosities, as is the case. These appear to
be the statistically best controlled data available, and are consistent in yield-
ing dispersions of the order of 0.8 for samples which are complete, but
include quasars of fairly low luminosities, in the model-independent sense of
luminosity relative to other sample members of approximately equal
redshift.

On the other hand, the expansion-theoretic dispersions are quite
variable; in all cases higher than the chronometric and sample dispersions,
for the most part quite substantially so. In model-independent terms, 3C 273
is exceptional in that it is more than 4 mag brighter than the average of the
six quasars having the most similar redshifts (three greater, and three less
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TABLE 19
The redshift-magnitude relation for quasar samples

Dispersions (magnitudes)

Sample
Sample Size Chronometric  Hubble  Sample

DeVeny, all objects having 158 0.95 1.67 1.02

unquestioned z and V
DeVeny, replacing magnitude by

average magnitude of seven quasars

of nearest redshift (three above,

three below) 152 0.32 1.23 0.52
DeVeny, locally brightest®

209 (“local brightness ”

measured by excess of magnitude

above average of those of the

six quasars of nearest redshift) 32 0.31 1.08 0.65
DeVeny, locally brightest® 109, 16 0.28 1.08 0.54
Schmidt, complete 3C sample 324 0.80° 1.12¢ 0.88¢

33 0.97 1.12 1.16

Lynds-Wills, complete 4C sample 30 0.89 1.32 0.99
Braccesi, all with unquestioned

redshifts 27 0.79 228 0.58
Schmidt, complete 3C sample, 32¢ 0.72¢ 1.27° 0.67°

radio magnitudes® 33 0.73 1.27 0.75
Lynds-Wills, complete 4C sample, 30 0.80 1.54 0.72

radio magnitudes®
Braccesi, infrared magnitudes 27 0.88 2.32 0.64

4 Excluding 3C 273.
b Reported values as corrected were converted to the Pogson scale.

than that of 3C 273; cf. below); for no other quasar is this difference as much
as 2 mag. Consequently, it may be excluded on a rational statistical basis,
and it seems more illuminating to do so. The overall indication from Table
19 is that the chronometric theory generally provides a distinctly and uni-
formly better fit.

Equally statistically significant with the comparison between the disper-
sions of the respective theories is the comparison between their dispersions
and that from the sample mean. In all cases except the complete samples, the
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deviations from the chronometric theory have a lesser dispersion than those
from the sample mean, as would be expected from a correct theory. In the
event of a large dispersion in intrinsic luminosity, chance fluctuations
could produce a slightly larger dispersion from a correct theory than
from the sample mean, particularly when there is strong selection on
apparent luminosity, as in the case of a complete sample, but it is extremely
unlikely to produce a substantially larger dispersion. This applies to the
much greater dispersion from the expansion theory than from the sample
mean, in all cases except that of the Schmidt sample. This dispersion from
the Hubble line is too large to be consistent at any acceptable probability
level with a small dispersion in the intrinsic luminosities. On the other hand,
if the latter dispersion is large, the relatively small dispersion of the magni-
tudes from the constant sample mean is then extremely improbable, in view
of the considerable variation in 5 log z over the redshift range in question.

The conclusion seems inescapable that these data are in conflict with
the expansion hypothesis, unless it be assumed that the intrinsic luminosities
do not form a z-independent population. The need for this assumption,
which from the standpoint of the expansion-theoretic hypothesis is naturally
regarded as luminosity evolution, seems not seriously disputed by propon-
ents of the expansion hypothesis, and need not be belabored here. It seems
necessary to stress, however, that the assumption virtually eliminates the
predictive power of the expansion theory as regards the luminosities of
large-redshift objects. No such assumption is required for the chronometric
hypothesis, which has quite significant predictive power. For example, the
expansion hypothesis carries no implication regarding the probable magni-
tude of quasars which may be observed at redshifts ~ 3.5, which is essen-
tially different in principle from that obtainable by simple extrapolation of
the empirical m-z relation. According to the chronometric hypothesis in
totally uncorrected form (with & = 1), m = 2.5 log z — 2.5 log(1 + z) + ¢,
then fitting the mean intrinsic luminosity index c to the DeVeny data,
¢ ~ 18.4, yields the results m ~ 18.1. Interestingly, the quasar OH 471
reported by Carswell and Strittmatter (1973) of redshift 3.4 and the quasar
0OQ 172 reported by Wampler et al. (1973) of redshift 3.5 are approximately
of this apparent magnitude, although their intrinsic luminosities are quite
unprecedented from the expansion-theoretic standpoint, and would further
exacerbate the problem of the quasar energy mechanism in this theory.

As a final aspect of the quasar m-z relation, we shall essay a test of the
hypothesis that the bright quasars follow the chronometric and/or the
expansion-theoretic law, employing an entirely model-independent
definition of “bright,” which also avoids the necessity for grouping quasars
as has done earlier. This at the same time affords a model-independent
estimate of the quasar dispersion in intrinsic luminosity. We shall define
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“bright” as bright relative to quasars at approximately equal redshift; more
specifically, for any quasar we shall define the “excess brightness” Am as
the excess of the average magnitude of the six quasars obtained by selecting
from the DeVeny list the three of nearest larger redshift and the three of
nearest smaller redshift, over the magnitude of the quasar in question. We
shall then consider the redshift-magnitude relation for the 10 and 209, of the
sample for which this relative brightness is greatest. As earlier noted, the
quasar 3C 273 is clearly exceptional in its relation to the distribution of
excess brightnesses, having Am > 4, while for all other quasars Am < 2;
accordingly, it will be excluded from these samples, which will be called for
brevity the brightest tenth and fifth.

The results are included in Table 19 and shown in part in Figure 19. The
brightest tenth of the DeVeny list has a chronometric dispersion of
0.28 mag, entirely without correction, less than that of the best samples of
bright cluster galaxies. The dispersion of the same quasars from the Hubble

log Z

{
18 20

Figure 19 The redshift-magnitude relation for the locally brightest fifth of the quasars in
the list of DeVeny et al.

O, quasars in the locally brightest tenth; A, quasars in the second-brightest tenth. Curves
are best-fitting theoretical constant-intrinsic-luminosity curves for: {a) chronometric theory; (b)
Hubble theory. As is representative for brighter quasars, selected in any fashion not making
explicit use of a particular model, the dispersion from the Hubble line is more than three times
that from the chronometric curve.
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line is, however, 1.08 mag, ie., even these bright quasars bear virtually no
significant relation to the Hubble line. For the brightest fifth, consisting of 32
quasars, the dispersions are respectively 0.31 and 1.08 mag. (It should be
noted that the sample dispersion is 0.65, less than that from the Hubble line.)
These dispersions are fully comparable with those obtained for most
samples of bright cluster galaxies after correction for color and galactic
absorption. This suggests that the relatively bright quasars form a “standard
candle” at least to the same extent as brightest cluster galaxies may do so;
the standardization is further augmentable by selection on radio spectral
indices, as proposed by Setti and Woltjer (1973) (cf. below).

It should perhaps be noted that work of Bahcall and Hills (1973), which
appeared after this manuscript was largely complete, is directed toward
establishing that the “brightest” quasars follow the Hubble law. The
definition of “brightest ” is in part model-dependent, and only seven quasars
are included in the final sample found to have a dispersion of 0.3 from the
Hubble line. This dispersion is no less than that from the chronometric
prediction of the present model-independent samples of size 16 and 32.

Finally, we mention that various quasar samples of undesignated selec-
tion criteria show the same m—z relation behavior as the ones just discussed.
The largest such list, apart from the DeVeny list, is that of Sandage (1972c).
The chronometric dispersion is markedly less than the Hubble line disper-
sion for the complete Sandage list, the subsample of 15 radio-quiet quasars,
and also for radio luminosities. The analysis of the latter involves transfor-
mation of the model-dependent data listed by Sandage back to their
presumed empirical form; this has been carried out by J. F. Nicoll. Nicoll’s
results also show that the evident trend in the Hubble absolute radio lumin-
osity with z, remarked by Sandage and ascribed by him to selection, is
entirely accounted for by the chronometric theory; see also Section 17.

14. The redshift-number relation for quasar subsamples

We next examine the quasar samples treated in the last section from the
standpoint of the theoretical versus observed N(< z) function. The observed
and theoretical fractions, obtained by dividing respectively by the total
number of quasars in the sample, or by the total volume of space out to the
maximum redshift in the sample, are given in Figures 20-23. It is clear at a
glance that the chronometric curve fits on the whole very well, but that the
expansion-theoretic curve is in gross disagreement. This impression is fully
confirmed by Kolmogorov-Smirnov tests, as indicated in Table 20. The
indications given by the DeVeny heterogeneous list are fully supported by
the more homogeneous samples.
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Figure 20 The N-z relation for the quasar sample of Braccesi et al. (1970).
Theoretical lines, assuming spatial and temporal homogeneity and approximate ran-
domness of sample, are: —, chronometric theory; - - -, Hubble theory. Of the samples of quasars
treated here, this sample of relatively faint quasars probably involves the maximal selection on
luminosity and spectrum. Nevertheless it is in satisfactory statistical agreement with the chron-
ometric prediction on the basis of a Kolmogorov-Smirnov test.

As earlier, it might be argued that due to luminosity selection, these
samples are not adequately random, and that this circumstance is the origin
of the apparent gross deviation from the expansion theory. However, in this
event the agreement between observation and theory should improve sub-
stantially if the sample is cut off at a lower redshift. Such a cutoff diminishes
the sample size and thereby the significance level of any given deviation, but
it can otherwise not produce satisfactory agreement between the observed
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Figure 21 The same as Figure 20 for the complete sample of 4C quasars given by Lynds
and Wills (1972).

O, individual quasar. The noticeable but not statistically significant apparent deficiency
in the number of quasars at lower redshifts in this and the next sample may plausibly arise from
the exclusion of quasarlike galaxies (notable Seyferts and N) which are found at these redshifts.
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Figure 22 The same as Figure 21 for the complete sample of 3C quasars given by Schmidt
(1968).

Compare the comment on Figure 21. Again the chronometric prediction for a random
sample is in satisfactory statistical agreement with the observations.

N(< z) and expansion-theoretic curves. For it is apparent that the slope of
the observational curve is generally decreasing, in all cases, while the slope of
the expansion-theoretic curve is materially increasing, at all redshifts.
Adjustment by the scale factor involved in a cutoff at a lower redshift cannot
change the sign of the second derivative of the N(< z) curve, and so cannot
eliminate this fundamental difference between the observations and the ex-
pansion theory.

In order to limit as much as possible extraneous sources of dispersion,
to which deviations from the Hubble theory could conceivably be ascribed,
two further tests were made. First, the samples were considered over a
shorter redshift interval, 0.2 < z < 1, in which one might anticipate some
evolution, but much less than for the full redshift intervals of the samples.
The deletion of the redshift range z > 1 should serve to diminish greatly any
selection on luminosity which might be present in the samples. The deletion
of the range z < 0.2 should serve to eliminate local anomalies. Nevertheless,
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Figure 23 The same as Figure 21, for the Schmidt adopted distribution (1972a) of optical
quasars of approximate magnitude 18.

Note: The plotted points represent summary data (observations on individual quasars
not reported).
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TABLE 20
Kolmogoroff-Smirnov test of the N(z) relation for complete quasar samples

Number in  Chronometric  Chronometric Hubble Hubble

Sample sample D probability D probability
Schmidt 3C (1968) 33 0.19 0.16 0.58 < 1071t
Schmidt optically selected® 19 0.24 0.21 0.49 <3 x107%
(1970)
Braccesi (1970) 27 0.22 0.14 0.58 <1078
Lynds-Wills 4C (1972) 30 0.19 0.23 0.61 <10°°
Schmidt adopted redshift number > 0.05 <1074
distribution of quasars N not 0.14 if 0.50 if
of approximate magnitude given N <90 N>20
187 (1972a)

“ Individual quasars were not listed, but only subtotals in specified redshift intervals. The
D statistic used is the maximum over those z values for which data were given; and is therefore
probably a slight underestimate of the true value.

as shown by Figure 24, the Hubble curve remains in gross disagreement with
the observations, while the chronometric line fits very well, considering the
limited sample sizes. The quantitative probabilities based on Kolmogorov-
Smirnov tests are given in Table 21, in which, in addition, the DeVeny
sample considered earlier and a sample of unspecified selection but substan-
tial size given by Sandage (1972c) are included.

Second, the DeVeny sample was taken over the restricted redshift inter-
val 0.25 < z < 225 as a means of removing local effects and minimizing
possible confusions between quasars, N-galaxies, and Seyfert galaxies at the
lower end, and of avoiding the apparently anomalous cutoff at the other end,
which may reflect changes in the spectral functions of quasars at higher
frequencies, or other relevant but largely unexplored effects. The results
shown in Figure 25 are again in excellent agreement with the chronometric
theory and in gross disagreement with the Hubble theory. Results for the
Sandage sample over the complete redshift range of the sample are shown in
Figure 26, and show agreement similar to that of the results in Figure 25. All
available evidence, including the list of Burbridge and Burbridge (1969),
indicates that all reasonably comprehensive or complete samples are likely
to show the same behavior as the samples earlier treated (cf. Figure 33).

A still more conclusive acceptance of the chronometric and rejection of
the expansion hypotheses (both on a nonevolutionary basis and the assump-
tion of approximately uniform spatial distributions for quasars) can be ob-
tained from the Schmidt V/V,, test, treated next.
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Figure 24 The N-z relation in the redshift range 0.2 < z < 1 for quasar samples.

(2) O, Schmidt 3C sample; (b) @, Lynds-Wills 4C sample; (c) A, DeVeny list; (d) A,
Sandage (1972b}; (e} x, Braccesi list. Otherwise on the same basis as Figures 20 and 21. The
elimination of redshifts > 1 and the avoidance of possible local irregularities and classification
difficulties by eliminating the region z < 0.2 do not materially improve the agreement of the
expansion prediction with the observations. However, the chronometric prediction is in satis-
factory agreement with the observations for all of the samples.

TABLE 21
The N-z relation for quasars in the range 0.2 < z < 1 for diverse samples

Probability of observed maximum deviation
as given by Kolmogoroff-Smirnov test

Sample Sample size Chronometric theory Hubble theory
DeVeny 1 ~05 <10°15
Sandage 77 ~0.5 <5x107°
Braccesi i1 >02 < 0.01
Lynds-Wills 14 >04 ~0.03

Schmidt 22 > 0.2 ~ 0.08
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Figure 25 The Nz relation for quasars in the redshift range 025 < z < 2.25.

Data: all quasars in DeVeny list with unquestioned redshifts and magnitudes. The cutoff
above z = 2.25 used here corresponds to an observational one, and if removed would accentu-
ate the discrepancy between the Hubble curve and the observations. A hypothetical extraor-
dinarily broad luminosity function for quasars might serve to render the Hubble curve
acceptable in relation to the observations, but would not explain the excellent agreement with
the chronometric prediction. The deletion of quasars with z < 0.25 serves to remove from the
comparison possible extraneous influences which cannot be resolved at this time. Compare the
comment on Figure 24.
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Figure 26 The N-z relation for the quasar list of Sandage (1972b).
The basis here is the same as earlier, except that the z values are limited to multiples of 0.1.
Although no explicit selection criterion is given for the sample, it would appear on the chron-
ometric hypothesis to be random in its redshift distribution.

15. The Schmidt V/V,, test for quasars in the chronometric theory

When samples of a specified type of luminous object are available which
are complete down to specified limits of apparent luminosity, this provides a
relatively universal and simple test for spatial uniformity. The availability of
the Schmidt 3C quasar sample, the Lynds-Wills 4C quasar sample, and the
Peterson galaxy sample—these are among the statistically most objective
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and substantial data on hand—indicates the importance of adapting the test
to the chronometric theory. It is not difficult to do so, and the tests provide a
significant measure of assurance as to the validity of the chronometric
theory. It should be recalled that on a nonevolutionary expanding-universe
theory, all three samples show quite strong and statistically quite significant
deviations from spatial uniformity.

In principle, the procedure of Schmidt, further expounded by Lynds
and Wills, applies to any geometry. The basic statistical principle of the
V/V, test is as follows. Let a space S be given, together with a volume
element in S such that the total volume is finite; this total volume may then
be normalized to the value 1. This volume element may be entirely arbitrary
apart from the requirement that individual points have zero volume. Let
{S(¢)} be a one-parameter family of subsets of S, which are continuously
increasing with S, and such that every point of S is contained in some S(z),
while no point is contained in all S(¢). For an object uniformly distributed in
S, let £ denote the least (or greatest lower bound) of the values of ¢ for which
the object is contained in S(¢). The volume of S(¢) is then a random variable
V which takes on all values between 0 and 1. Furthermore, uniformity of the
distribution of the object in S means precisely that the probability that the
object will be in S(t) is the volume of S(t). This means that V is uniformly
distributed in the interval [0, 1]. The choice of the one-parameter family S(¢)
is in practice dictated by the theory under consideration; it is not mathema-
tically unique, but there is generally a simplest reasonable choice.

The theoretical procedure for dealing specifically with the Schmidt
V/V,, test will now be described, in the more general situation in which one
considers only a fixed redshift region, z < z,,,,, With z,,, not necessarily
equal to oo, but large. The fundamental assumptions involved in the analysis
are then somewhat more conservative, for it is postulated only that the
objects in question are uniformly distributed in the region z < z,,, , and not
necessarily in all of space; and that the observational sample(s) on which the
analysis is based are complete (or constitute a random selection from a
complete sample) only within the same region. Observationally, there is
doubt as to the degree of accessibility of large redshift regions; as noted, e.g.,
by Burbridge (1971), the spectral function of quasars for large frequencies
may fall off increasingly rapidly, making their observation more difficult (cf.
in fact the last point in the observation of 4C 05.34 reported by Oke, 1970);
spectroscopic selection may well be a factor in establishing redshifts and
thus establishing that suspected quasars are indeed such (cf, e.g., Basu,
1973); intergalactic absorption, if present, would further limit the statistical
validity of the inclusion of large redshift regions in the analysis.

+ This appears to originate in part in work of P. Kafka (1967).
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Consider, then, the region S of space in the chronometric theory in
which z < Z, where Z is a fixed arbitrary value, taken for relevance and
simplicity to be > 1. For the most part, the regions S(¢) can be defined in the
same way as in the expansion theory, as those out to a given redshift. There
is, however, one case in which this is not possible. For an object in a com-
plete sample at a redshift z, > 1, which is only slightly brighter than a
limiting luminosity, and has a sufficiently flat spectrum, the region in which
the object would be included in the sample is not the region of space outto a
certain redshift, but consists rather of two disconnected pieces, of the form
z < z, and z, < z < Z. In this case, it would be incorrect to use the region
below a given redshift. There is a natural choice of the one-parameter family
of regions which is correct according to statistical theory, namely those of
the form z < t and t' < z < %, where t < ¢ and the redshifts ¢ and ¢’ repre-
sent equal apparent luminosities for the spectral index in question. (Com-
pare the earlier treatment of the chronotheoretic N-S relation.)

In the cases of the Lynds-Wills 4C and Schmidt 3C samples, most
objects are sufficiently bright relative to the limiting magnitudes to be
included in the sample wherever located in the redshift region z < z,,, on
the basis of the chronometric theory. Of the remaining objects none actually
involve the pair of disconnected regions just described, in the redshift region
z < 3. In, e.g.,, the Schmidt sample only one object (3C 323.1, of spectral
index 0.66) is radio-limited and its spectrum is too steep to lead to the
disconnected regions just described, in the relevant redshift regions. Chron-
ometrically, only two objects in the Schmidt sample, 3C 191 and 3C 9, are
optically limited ; in the Lynds-Wills sample, one object (4C 18.34) is radio-
limited and one (4C 12.39) is optically limited. In all these cases, the spectra
are too steep to lead to disconnected regions.

The results are shown in Figures 27 and 28. The horizontal axis is the
V/V,, for the individual quasar; this is naturally theory-dependent, so there
are two sets of points for the same observational datum. The value z,,,, = 3
has been used, expressing the possibility that completeness in the region
z > 3 is best not assumed. This has substantially no effect on the expansion
value of V/V,,, which have consequently been taken unchanged from the
cited authors.

As was to be expected from the near independence of the apparent
luminosity of quasars from their redshift on the chronometric theory, the
corresponding V/V,, test gives results which differ by relatively little from the
N(z) comparison. In most cases the V,, for a quasar will be unity.
The uniformity of the distribution of the V/V,, for quasars is then largely
tantamount to the N(< z) for quasars being proportional to the ¥(z), and
the Kolmogorov-Smirnov test for the uniformity of the V/V,, distribution is
correspondingly related to the Kolmogorov-Smirnov test detailed earlier
for the observed versus theoretical N(< z) relation.
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Figure 27 The Schmidt V[V, test for the 30 quasars in the complete sample of Lynds and
Wills.

O, chronometric analysis; @, values given by Lynds and Wills for the Friedmann model
with g4 = 1; —, theoretical spatial uniformity. The chronometric values accept the hypothesis
of spatial uniformity without any indication of luminosity and/or number evolution, unlike the
expansion values.

For the expansion hypothesis this is not the case since the theoretical
luminosity varies strongly with redshift in all redshift ranges. There is indeed
a difference between the V/V,, test and the N(< z) and also N(m) test (the
latter being discussed by Longair and Scheuer, 1970b, and by Lynds and
Petrosian, 1972). However, as shown by Schmidt (1968) and also Lynds and
Wills (1972) on the basis of this test, the expansion hypothesis is in poor
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Figure 28 The Schmidt V[V, test for the 33 quasars in the complete 3C sample of Schmidt.
The basis here is the same as in Figure 27. The comment regarding that figure applies.
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agreement with their data. Only with additional assumptions of luminosity
and density evolution, as indicated by Schmidt (1972a,b,c), does the agree-
ment become satisfactory, but this agreement is then virtually a matter of
definition.

16. The angular diameter redshift relation for double radio sources

Given two theories regarding a variable y of the form:
y=fix)+¢ (=1L2),

where ¢ is postulated to be an x-independent random variable of dispersion
o, it is evident that one can discriminate between the theories observa-
tionally with a moderate amount of data only if this dispersion o is not too
large compared to the average dispersion between the theories, i.e., the root
mean square f;(x) — fa(x) over the relevant range of x. In the case of the 6-z
relation, this signifies that one can discriminate effectively between the
relations

Bapp ¢ (1 + 2)/z**  (chronometric),
Bapp o (1 + 2)*/z (standard cosmology),

or variants thereof, only if the intrinsic dispersion in log 6 is not large
relative to the average difference between the respective theoretical laws.

The intrinsic, model-independent dispersion in log 6 can be estimated
from data which includes sufficiently many objects that many pairs at ap-
proximately equal redshift occur. Taking the largest and most thoroughly
documented data, those compiled by Miley (1971), one finds 22 pairs of
quasars which are double radio sources at approximately equal redshifts
(the largest logarithm in the ratio of the pairs being 0.047, most being much
less). If 6 and @ denote the angular diameters for such pairs, the quantity
[(2n)"1 Y (log 6 — log 6)*]°-%, where n is the number of pairs, is a statis-
tically consistent estimate of the dispersion in log 6, assuming that the dis-
tribution of 6, is z-independent. This estimate is found to be 0.44. On the
other hand, the root mean square of log(1 + z)/z'/* — log(1 + z)?/z over the
redshifts included in the sample is 0.03; and this would not be significantly
altered by using a slightly different expansion-theoretic form, e.g,
the Einstein-de Sitter angular diameter, or the Euclidean one. Thus
the dispersion in the data is of the order of more than 10 times the theoret-
ical difference to be probed, and no statistically significant comparison can
be obtained. The Legg samples are smaller in size, and otherwise similar;
hence they are likewise unable to discriminate between different theoretical
0-z relations of the type considered here.
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The actual dispersions computed with the use of the Miley data are 0.36
and 0.37 respectively for the deviations of the observed log 6 from the
expansion-theoretic and chronometric predictions, respectively. It was im-
possible for the two dispersions to differ by more than 0.03, so the closeness
of these values was to be anticipated. It is somewhat unusual that the disper-
sions are less than the intrinsic dispersion, but the diminution in variance
below the intrinsic level is not nearly at a significant level. The Miley data
include 50 quasars which are double radio sources whose angular diameters
are not indicated as questionable, and the dispersion of log 6 for these data
is 0.79; thus the reduction of dispersion in log @ itself via either theory is
substantial.

For galaxies, the Legg data give dispersions of 0.56 and 0.52 respectively
for the deviations of log 6 from the Hubble and chronometric theories re-
spectively. Qualitatively the results are similar to those for the Miley data,
and serve to confirm the conclusions just reached.

17.  Observation versus theory for radio sources

There seems to be agreement among major surveys on two qualitative
features of the N-S relation: (a) the elevation of the index
B = —0dlog N/0 log S above the Hubble “Euclidean” value 1.5 (and a for-
tiori larger than attainable Friedmann values); (b) the decrease of N with
increasing S, with § = 1. In view of the uncertainty in the intrinsic lumin-
osity function for radio sources, and the lack of published tabular data
required for statistical analysis, it would be quite difficult to effect a
Kolmogorov-Smirnov test of the data vis-a-vis the chronometric and expan-
sion hypotheses, nor would any such test be conclusive at this time. It
appears that little more can be said than that features (a) and (b) are difficult
to reconcile with a nonevolutionary Friedmann cosmology, but are
predicted by the chronometric theory, as earlier indicated.

The value of f may become infinite for a single luminosity class in the
chronometric theory, but decreases rapidly as the breadth of the luminosity
function increases. The values given in Figure 4 for a one-decade breadth in
luminosity function agree reasonably well with the observations of Keller-
mann et al. (1971) and those of Pooley and Ryle (1968), when the latter are
corrected for spectral index (cf. Kellermann et al., 1971); the N/N, curve for
the totality of radio sources should approximate the average of that in
Figure 4 and the constant value 1, assuming an average spectral index ~ 0.6.
Roughly this order of magnitude for the breadth, on the basis of the chron-
ometric theory, is indicated by an analysis of the data presented by Schmidt
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(1972b), Table 1, giving a list of 41 3CR sources complete in a given field up
to a given limit and including redshifts for all but six sources. On the expan-
sion theory, the intrinsic luminosity F,,, is given by the relation

log F,,q = log f,.q + 2 log z + const;

a computation of the dispersion of the log F,,; computed from this relation
for the 29 galaxies having precise redshifts in the sample gives ¢ = 1.02; for
all the objects having precise redshifts, consisting in addition of six quasars,
the dispersion is much higher. On the chronometric theory, the dispersion is
o = 0.55 for the 29 galaxies of the 35 objects having precise redshifts, and
somewhat greater if all 35 objects are included.

The relation between the dispersions on the two theories is consistent
with that found earlier, and cannot be regarded as a coincidence. It indicates
that bright radio sources are more nearly standard objects than had been
thought, and suggests that observations down to fainter limits and of addi-
tional redshifts may yield quite discriminatory cosmological information.
However, on the chronometric hypothesis there is presently no significant
evidence whatever that radio sources have been evolving either in luminosity
or space density. In addition to the cited data of Schmidt on radio luminosi-
ties, the following recent lists of redshifts versus radio luminosities are
extant: 4C quasars (Lynds and Wills, 1972); 3C quasars (Schmidt, 1968);
radio galaxies and quasars (Sandage, 1972c). The Lynds-Wills and Schmidt
lists have explicitly designated completeness features; the Sandage lists are
larger but the criteria for inclusion are not given explicitly. It is interesting
that in all cases (which are not entirely independent, the quasar lists being
overlapping), the chronometric dispersion in the luminosity-redshift rela-
tion is less than or approximately of the same size as the dispersion in
apparent luminosity, while the dispersion from the expansion-theoretic line
(go = 1) is 50 to 100% greater. The specific values are given in the following
table. Radio magnitudes are uncorrected and have been converted to the
Pogson scale to facilitate comparison with the visual magnitudes. The
apparent radio luminosities were not given in Sandage (1972c), but were
reconstituted by J. F. Nicoll (unpublished course paper, MIT), in accor-
dance with the equation my = 5logz — 2.5 log Ly, where L denotes
the absolute expansion luminosity tabulated by Sandage; see Table 22.

Thus the phenomenological superiority of the chronometric
luminosity-redshift relation extends to radio luminosities. Concomitantly,
the breadth of the radio luminosity function is highly model-dependent.
From the chronometric standpoint, the breadth is quite moderate; indeed,
substantially the full radio luminosity function for the quasars and galaxies
may well be observationally accessible in the next few years.
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TABLE 22
Dispersions in
Chronometric Expansion
Number and Apparent absolute absolute
nature of radio radio radio
Data source objects magnitude magnitude magnitude
Lynds and 30 quasars 0.79 0.84 1.5
Wills (1972) (4C list)
Schmidt (1968) 33 quasars 0.75 0.73 1.27
(3C list)
Sandage (1972c) 68 radio 124 1.36 2.38
galaxies
Sandage (1972c) 132 quasars 1.23 1.26 1.79

18. The Setti-Woltjer quasar classes

Setti and Woltjer (1973) have proposed that the m-z relation for
sufficiently pure classes of quasars may be in rough agreement with the
Hubble line. They have identified three classes, selected on their radio spec-
tra, and found that the first class (those with steep spectra) show a definite
trend with redshift, described as “a clear Hubble relation.” The lack of such
behavior for the relations of the other two classes is ascribed to a broad
luminosity function.

It is interesting that the chronometric theory provides a considerably
better fit for the m-z relation of all three quasar classes than does the Hubble
line. In addition, the observational N(< z) relations may be compared with
those theoretically predicted on the assumption of spatial homogeneity of
the quasar distribution. The chronometric prediction provides a very good
fit, but the Friedmann model predictions for values of g, generally thought
realistic are in gross disparity with the observations. ’

In particular, the important corollary to the Setti-Woltjer study that
quasars are at essentially cosmological distances, and their redshifts are
increasing functions of distance, is unaffected; but if the much better-fitting
chronometric theory is correct, the distances are probably an order of mag-
nitude less than those given by realistic Friedmann models, and
(0 log z/0 log r) = 2r/sin r, measuring r in units of R, ie. z increases very
rapidly with distance in much of the quasar redshift range.
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a. The m-z relations

The dispersions in apparent magnitudes, and of the residuals of these
magnitudes from the respective theoretical predictions are given in Table 23.
All data satisfying the Setti-Woltjer criteria, and having unquestioned
values of z, have been included in each sample. ¢ stands for the standard
deviation of the indicated quantity ; M represents an absolute magnitude, the
subscripts ¢ and e referring to the chronometric and expansion theories
respectively, the latter being represented by the Friedmann model with
go=1

TABLE 23
The m-z relation for the Setti-Woltjer quasar classes

Expected Expected
Sample Size  a(m) o(M,) a(M,) a(M.,) a(M,)
Qs (~ steep spectrum) 38 1.03 0.81 0.96 0.91 0.72i
Qr (~ flat spectrum) 22 1.15 0.89 1.08 1.00 0.69i
0, (radio quiet) 53 096 105 0.50 2.35 2.23i
Q,,2=05 25 098 0.89 0.73 1.36 1.16i

In any theory of the form m = f(z) + M, where f(z) is an analytically
prescribed function of z, while M is an intrinsic magnitude, it is to be
expected on an elementary statistical basis that a(m)? = o(f)* + a(M)? or
o(M) ~ [a(m)* — a(f)?]"/>. The latter quantity has been computed and
entered in the table as “expected dispersion.” Pure imaginary values signify
that the dispersion in apparent magnitudes is less than would be expected on
the hypothesis that the m-z relation has the form indicated; the absolute
value of the expected dispersion is then an indication of the extent to which
the hypothesis deviates from expectation, on the basis of the sample in
question.

The subsample of the optical quasars for which z < 0.5 has been
included because it is large enough to be meaningful, and in order to mini-
mize possible selection on luminosity, which is in all likelihood greatest for
this particular type of quasar. It serves also to test, and actually to confirm,
the a priori reasonable idea that the excess of a(M_) over a(m) for the total
optical sample is a consequence of the effective cutoff in apparent magni-
tudes for the optical quasars.

For each sample, the a(M,) is substantially less than the 6(M.); for all
samples except one, the g(M_) is less than the g(m), and is in reasonably
good agreement with the expected o(M.). The a(M.) is less than the o(m) for



172 IV. Astronomical applications

the first two samples, but much greater than it for the optical sample; and in
all cases the expected a(M.) is quite different from the actual o(M.).

The Qs and Q samples are the purer subgroups identified by Setti and
Woltjer. For Qg this means « = 0.7 and a suitable double radio structure.
The Qr have a < 0.6 and are of relatively small angular diameter in a sense
specified by Setti and Woltjer (designated P in their preprint).

b. The N(< z) relations

On the assumption of spatial homogeneity, the N(< z) for each type
should vary approximately with the volume out to redshift z. The extent to
which this is the case is shown by Figure 29. The chronometric prediction is
in visibly good agreement with the observations; the Friedmann model with
go = 1, and the Hubble model, are respectively in poor and very poor
agreement with observation. In all cases the redshift range has been limited
to 0 < z < 2, for uniformity and to minimize probable selection effects at
higher redshifts; the sample sizes are thereby slightly reduced.

A quantitative measure of the deviations of the N(< z) counts from
theory is afforded by the Kolmogorov-Smirnov statistic D. This is the maxi-
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Figure 29  The redshift distributions of the Setti-Woltjer quasar classes in comparison with
theoretical predictions.

—, chronometric theory; - -, Friedmann model with g, = 1; ---, Hubble theory. @, Qg;
A, Qp; O, Qq. Despite the observational selection which may be present, the chronometric
prediction is statistically acceptable on the basis of Kolmogorov-Smirnov tests for all classes.
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TABLE 24
Radial spatial homogeneity of the Setti-Woltjer quasars as measured by
Smirnov deviations and probabilities

Sample Size D, P(D,) D, P(D,)
Qs,z<2 37 0.11 Z 0.5 0.31 14 x 1073
Qr,z<2 20 0.12 2 0.5 0.22 0.29
00, 2<2 46 025 76 x 107> 043 60 x 10°®
Qp,2<05 25 0.07 z 0.5 0.34 62 x 1073

mum absolute difference between the fractions observed and predicted up to
redshift z. It is given together with the corresponding probabilities in Table
24, the D, referring to the Friedmann model with g, = 1.

Schmidt V/V,, tests, based on an assumption of effective randomness of
the samples in the totalities of quasars of each type with z < 2 and reason-
able prescribed limiting luminosities, can be expected to give similar
although less definitive results, in view of the analytic similarities between
the tests, and experience with other quasar groups.

The chronometric predictions fit extremely well, if the reasonable
assumption is made that the optical sample suffers quite materially from
luminosity selection when taken out to redshift 2; this assumption is in-
dicated by the good fit for the subsample out to redshift 0.5. As in a number
of earlier samples, the strong degree of spatial homogeneity the results indi-
cate, on the chronometric hypothesis, naturally raises a question, if the
hypothesis is accepted, as to the possible existence of gravitational or other
dynamical effects which tend to enhance spatial homogeneity, or at least to
maintain it. On the other hand, the Friedmann model predictions are
rejected at conservative probability levels, indicating once again that the
spatial distribution of quasars can be reconciled with the expanding-
universe theory only on the assumption of very strong evolution.

The Qf data are accepted by both the chronometric and expanding-
universe theories, but they are less appropriate than the other data as a
check on theoretical predictions. This is due to the relatively small Qg
sample size, and to the possible model-dependence of the type, whose criter-
ion involves a restriction on angular diameter in fixed angular measure, of
which the metric implications are theory and z-dependent.

¢. Discussion

The results are similar to those earlier presented for less homogeneous
quasar samples. It is also possible to analyze in a similar way the 0-z
relations, but again as earlier the large dispersion in log 6 in the vicinity of
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fixed z precludes any strongly indicative comparison between the chrono-
metric and expansion theories on this basis.

The hypothesis that the quasar m~z and 6z relations are purely stoch-
astic is a specific form of the “local” hypothesis which can be rejected on a
definitive statistical basis by tests of trend in the m—z and 8-z relations of the
Qs , confirming earlier more informal analyses by Miley (1971) and Setti and
Woltjer. In particular, the Spearman rank-correlation test gives a probabil-
ity ~ 10~ ° of obtaining a value of the Spearman coefficient as large as that
observed, between m and z, if these variates are stochastically independent.
This test is entirely independent of any assumption as to the distribution of
m or z; it is also model-independent. The same test can be conducted with
the Qg sample replaced by the DeVeny sample of 158 quasars earlier
described; it is interesting that the results are of the same order of
definitiveness, due to the lesser homogeneity of the sample. The Qg thus
appear as one of the purest and statistically useful classes of quasars yet
identified.

19. Other observational considerations

Finally we turn to a number of phenomena, or anomalies from the
expansion-theoretic standpoint, which do not primarily involve statistical
testing.

a. The energy requirements of quasars vis-a-vis bright galaxies

Many authors have cited the unprecedented energy requirements of
quasars on the expansion-theoretic hypothesis as the major anomaly asso-
ciated with them. Many new, largely quite speculative, hypotheses have been
proposed to explain the mechanism of the energy output. Most of these
hypotheses are of a partial or qualitative nature which renders them immune
from direct statistical testing,

There is no difficulty whatever regarding the energy production of
quasars on the chronometric hypothesis. A straightforward analysis indi-
cates that they are within ~ 1 mag of nearby bright galaxies, brightest
cluster galaxies, Seyfert or Seyfert-like Markarian galaxies, and N-galaxies;
cf. Table 25. Possible intergalactic absorption is too small to be important in
the present connection, as shown by the consistently small chronometric
dispersion for the bright quasar m-z relation. More concretely, the relative
intrinsic luminosities of galaxies and quasars are compatible with the
hypothesis that quasars are the nuclei of certain relatively luminous galaxies,
whose outer portions are invisible at larger redshifts. There is other evidence



19. Other observational considerations 175

TABLE 25
Luminosities of bright extragalactic objects: averages + standard errors

Absolute Absolute
chronometric Apparent expansion
Data source Sample and size magnitude magnitude (g, = 1) magnitude
de Vaucouleurs 15 galaxies of redshift nearest 18.72 + 1.21 11.02 + 1.18 2643 + 1.26
tape (1964) 250 km sec™!
de Vaucouleurs 15 galaxies of redshift nearest 18.55 + 1.09 11.60 + 1.06 2551 + 1.13
500 km sec™!
de Vaucouleurs 15 galaxies of redshift nearest 17.86 + 0.87 11.66 + 0.86 2405 + 0.87
1000 km sec™!
de Vaucouleurs 15 galaxies of redshift nearest 18.04 + 0.60  12.59 + 0.60 2347 + 0.60
2000 km sec™?
de Vaucouleurs 15 galaxies of redshift nearest 1820 + 0.80  13.49 + 0.80 22.87 + 0.81
4000 km sec™!
Peterson® (1970a) 44 bright cluster galaxies, 17.47 + 048 13.71 + 0.82 21.16 + 0.33
complete to 15™
Sandage® (1972b) 41 bright cluster galaxies 17.78 + 1.37  14.75 + 2.50 20.58 + 0.31
Sargent (1972) 24 Seyfert-like Markarian galaxies  19.01 + 0.77 1543 + 0.89
Burbridge and All 74 galaxies with data in 1827 £ 091  17.32 4+ 1.09 17.83 + 1.29
Burbridge (1967) list
Lynds and Wills All 30 quasars with data in 18.69 + 0.89 17.84 + 0.99 18.03 + 1.32
(1972) list
Sandage (1972b) All 109 radio-noisy uasars with 1820 + 0.89 17.26 + 1.03 17.75 + 1.30
data in list
DeVeny et al. All 157 with unexceptionable 1842 + 093 1739 + 1.02 18.11 + 1.59
(1971) data
Wampler et al. OQ 172 (redshift 3.53) 17.77 17.5 14.76
(1973)
Sandage (1972b) 15 radio-quiet quasars 19.20 + 1.08 17.74 £+ 0.98 19.56 + 2.52

4 Magnitudes uncorrected for difference between expansion-theoretic apertures reported and
chronometrically correct apertures.

for this hypothesis, and no significant evidence from the chronometric stand-
point against it; thus from this standpoint, quasars are not significantly
more exotic than galactic nuclei in which apparently violent activity is
present. It is the qualitative nature of these activities, rather than the average
energy output of the galaxies in question, which may suggest an unconven-
tional explanation of their energy source.

More specifically, the best-fitting chronometric redshift-magnitude
curve to the quasars listed by DeVeny et al. takes the form (assuming spec-
tral index ~ 1)

m=25logz—251log(l + z) + 184.

We define the “chronometric intrinsic magnitude” of an object of magni-
tude m and redshift z as the number ¢ such that

m=25logz—25log(l + z) + c.
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This number is not necessarily independent of the location of the object due
to possible deviation of the spectral index from 1, possible intergalactic
absorption, etc. The advantage of this measure of intrinsic luminosity is that
it is independent of the assumed value of the Hubble parameter ; it should be
borne in mind that only relative intrinsic luminosities are meaningful in the
present sense. Table 25 details the relative intrinsic luminosities of various
types of quasars and galaxies.

b. The sharp decrease in the number of quasars in the range
2.2-29 and apparent near cutoff beyond 2.9

This phenomenon is too well known observationally to require descrip-
tion. A variety of explanations has been proposed from the expansion-
theoretic standpoint, all involving a greater or lesser degree of ad hoc
assumption, and the introduction of one or more new parameters. There
seems no reason to doubt that spectroscopic selection effects play a partial
role; also, it becomes progressively more difficult to establish the larger
redshifts, and it is reasonable to anticipate that intergalactic absorption or
obscuration will increase with distance, and so with redshift in either the
chronometric or the expansion theory. While these effects may largely ex-
plain the near cutoff above redshift 2.9, the order of magnitude of the attri-
tion in the region 2.2-2.9 of demonstrated accessibility is more difficult to
understand on the expansion-theoretic hypothesis.

To make a simple order-of-magnitude estimate, suppose to begin with
that the quasars are approximately of the same intrinsic luminosity, and are
uniformly distributed in space. The ratio N(2.2 < z < 2.9)/N(z < 2.2) for
quasars is then 1.29 on the Hubble theory, = 0.33 for a Friedmann model
with |go | £ 1, and 0.09 on the chronometric theory. In the DeVeny list
there are 200 quasars in the range z < 2.2 and 5 in the range 2.2 < z < 2.9.
The expansion-theoretic expected number in the latter range is 66-258, on
the basis of the 200 observed in the former range. This is a discrepancy too
great to be eliminated by reasonable modification of the luminosity function,
or the spatial distribution, or to be explicable by spectroscopic selection of
any known type. It is also perhaps beyond the need for formal statistical
analysis; but on the hypothesis of approximately random selection of 205
quasars from all those of redshift < 2.9, and those indicated regarding the
luminosity function and spatial distribution, the equivalent Gaussian variate
represented by the standard approximation to the Bernoulli distribution is
15.5 on the Hubble theory, and = 9.9 for a Friedmann model with
0 < g = 1, corresponding to probabilities < 10~ %3 and 10~ 23, respectively.
Clearly drastic supplementary hypotheses are required to explain the cutoff
on the expansion theory, and the proposed explanations are of this nature.

In the chronometric theory, the expected number of quasars is 17.6. The
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discrepancy from the observed value of 5 is 12.6, a number of quasars which
might well arise from random fluctuations combined with possible sharp
drops in the spectral function of quasars shortward of the Lyman « line,
tendencies toward spectroscopic selection, and intergalactic absorption
and/or obscuration. The formal Gaussian variate is here 3.1, just beyond the
conventional significance level, the corresponding probability being 0.002.
The discovery of just five additional quasars in the range 2.2 <z < 2.9
would render the deviation insignificant by conventional standards (probab-
ility > 0.05). As indicated by the subtlety of the identification of 4C 05.34 as
a quasar by Lynds and Wills (1972), confirmation that suspected quasars in
this range are indeed such is relatively difficult to supply, and is in part
anticipated on the chronometric theory according to which there should be
relatively few other quasars at nearby redshifts available for comparison
purposes. The difficulty of supplying this confirmation may well be partly
responsible for the apparent slight deficiency in the number of quasars ob-
served in the range in question on the chronometric hypothesis.

It may be noted finally that the preceding section was written prior to
the discoveries of two quasars at redshifts ~ 3.5. These discoveries and the
attendant circumstances regarding colors are consistent with and indeed
support the foregoing, but they exacerbate the discrepancy between a priori
expansion-theoretic indications and actual observation.

¢. Superlight velocities

It is evident that these apparent velocities are highly sensitive to the
estimate of distance, and so to the redshift-distance relation. With the
chronometric relation, all published apparent superluminal velocities are
reduced to well below the velocity of light. Even if H were as low as 40 km
sec”! Mpc™! at Virgo, instead of the larger value taken in the bulk of this
paper, the largest apparent superluminal velocity, that of 3C 279 would be
reduced to less than ¢. With H = 80 at 10 Mpec, its velocity would appear as
(0.57 £ 0.17)c. On the basis of the conventional expansion theory, its appar-
ent velocity is ~ (10 + 3)c; see Whitney et al. (1971). While other explana-
tions of superluminal velocities have been given (cf. Cavaliere et al., 1971),
the present one appears to be the scientifically most economical, in requiring
no assumptions beyond the fundamental one of the chronometric model
itself.

d. The relative absence of quasar identification for radio
sources at faint magnitudes

Bolton (1969), Braccesi et al. (1970), and Fanti et al. (1973) have in-
dependently found that quasar identifications are relatively rare for radio
sources on plates which are sufficiently sensitive to record objects of visual
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magnitude in the vicinity of ~ 20.5. Galaxy identifications have been made
in this way, and on the expansion-theoretic hypothesis, there is no apparent
reason why significant numbers of quasars should not appear on such plates.
Such relative lack of quasars is, however, predicted by the chronometric
theory, augmented by the earlier validated hypothesis that quasars form
approximately a single luminosity class on which is superimposed a Gaus-
sian variate of dispersion < 1 mag. Compare Figure 17, in which the small
and decreasing slope of the chronometric N(m) curve at m = 19.5 is indica-
tive of the cutoff.

e. Apparent distance~dependence of and variation in the
Hubble parameter

The persistent anomaly in the determination of the Hubble parameter
by different observations is largely removed by the chronometric theory, as
detailed in Section 8 of this chapter.

JS.  The cosmic microwave background radiation

As earlier noted, virtually any strictly temporally homogeneous theory
of the cosmos will predict a blackbody background radiation, as the equilib-
rium photon gas formed by the free radiation in the universe. Conservation
of energy and maximization of the entropy dictate the blackbody form, in
the presence of ergodicity (cf, e.g., Mayer 1968). The latter is implied by any
significant degree of overall stochastic perturbation, which in the real
Cosmos arises from the evolution and motions of galaxies, scattering,
absorption, and reemission by intergalactic matter, possible gravitational
deflections, etc.

Turning now to comparison with observation, it is natural to inquire
how well the observed relative energy of the background radiation and
starlight of ~ 10° conforms to the theoretical analysis earlier given, which
yielded an upper bound and putative order-of-magnitude estimate for the
background energy. This was based on the assumption that emission and
absorption by bright galaxies are major factors in the establishment of the
background equilibrium radiation. Defining “bright ” as of magnitude < 13
at a redshift cz = 2000 km sec™!, the catalog of de Vaucouleurs (1964)
indicates ~ 250 bright spiral galaxies in this redshift region, indicating
# ~ 14 x 10° (using now units with R = ¢ = 1). The angular diameters
given in the catalog correspond to a metric diameter of ~ 10 kpc on the
chronometric hypothesis, assuming z = 0.005 at a distance of 15 Mpc
(which incidentally limits the age of pristine radiation to < 10° ly). The
value r=5kpc= 12 x 107 then is indicated if the absorption in
the Galaxy, ~ 0.3 csc b, is reasonably typical. The resulting theoretical
prediction for the ratio of the energy of the microwave background to that of
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starlight is 1.7 x 10°, an excess over observation corresponding to a black-
body temperature of ~ 2 times that observed. This seems fully comparable
in precision to the accuracy of the prediction based on the “big-bang”
hypothesis in view of the hypothetical parameters, such as the entropy den-
sity of the original universe, involved in the latter prediction. Faint galaxies
and/or unknown forms of intergalactic matter could account for the
discrepancy, as could also in part the probable underestimation of r result-
ing from the existence of significant dust exterior to the observed optical
diameters of the galaxies.

g. Cosmic time scales

The universal and relativistic scales are nonlinearly related, indeed an
infinite relativistic time corresponds to a finite universal time. The ages
derived by radioactive dating and other microscopic considerations are rela-
tivistic, on the chronometric assumption that local elementary particle inter-
actions are effectively observed by a relativistic clock. This position represents
the minimal departure from conventional theoretical practice, and follows
from the unicity of this clock implied by Lorentz and scale covariance.

The coincidence of the orders of magnitude of the apparent ages of the
earth, sun, galaxy, etc., is understandable on this basis in the following way.
At a fixed point taken as the origin in space, the relation between the
universal and relativistic time is tan t = x, /(1 — x5 /4), in units of R, earlier
estimated as ~ 106 Mpc. All observed ages correspond to values of ¢ in
the range —zm <t <0, since x, =0 when t =0 and xy = —o0 when
t = —m. If the universal age of discrete objects in the universe is uniformly
distributed in this range (to which attention may be confined, since older
discrete objects would not be observable as such, light from them going
through an infinite redshift), the corresponding relativistic age will follow a
nonuniform but calculable distribution in the range —o0 < x, < 0.

Specifically, the uniform distribution law for ¢ in the range —n/2 <
t < /2 is found (by calculus) to correspond to the Cauchy distribution law
whose element over the range —oo < x4 < 00 is (27)” (1 + 4x3) ! dx,.
Restricting consideration to the observable range x, <0, the integral
7! & x(1 + §x?)” ! dx expressing the expected age of a random object of
any specified type is divergent. It follows that the arithmetic means of the
ages of a sample of such objects (e.g., galaxies) should fluctuate widely.
However, the percentile points should converge to the corresponding per-
centile points in the overall population. The 50, 95, 97.5, and 99 percentile
ages (i.e., the ages such that the given percentage has a lesser age) are 2, 25.4,
50.9, and 127.3, in units of the time for light to travel a distance equal to the
radius of the universe. With R = 106 Mpc as earlier, this means that half of
the galaxies should have ages in the range ~ 0.7 x 10° to 10!° yr. This value
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of R corresponds to the value H = 100 at 15 Mpc; with the larger value
R ~ 150 Mpc corresponding to the parameter H = 50 at 15 Mpc the corre-
sponding range is simply ~ 10°-10*° yr. The result obtained here appears to
be in good agreement with the limited number of independent estimates or
bounds on galaxy ages, and serves to explain within the chronometric
framework the coincidence of the order of magnitude of the apparently older
astronomical objects.

h. Holmberg’s systematic effect in galaxy clusters

One of the striking features of extragalactic redshifts which appears at
variance with theoretical anticipation is the “extremely high internal red-
shift dispersion found for clusters of nebulae,” in the words of Holmberg
(1961), who first noted and analyzed this effect, most notably by a precise
and detailed treatment of the Virgo cluster. Holmberg shows that relatively
conventional explanations such as “short lifetimes or tremendous gas con-
tents” are unrealistic, and that the results found would be implied by a
systematic effect of magnitudes on redshifts. While such an effect is phys-
ically different from a nonlinear redshift-distance relation, it is mathemat-
ically closely related, in that a suitable such relation will lead to effects
such as those analyzed by Holmberg.

Indeed, the chronometric prediction is in satisfactory agreement with
the data listed by Holmberg. His principal data are for the Virgo cluster, and
are given as his Table 1. The dispersion in intrinsic velocities varies as the
dispersion in absolute magnitude. For the expansion theory, this is quite
large, indeed significantly greater than that in apparent magnitude; but for
the chronometric absolute magnitudes, the dispersion is only slightly greater
than that in apparent magnitude. The quantitative results vary with the
particular subsample involved, but the qualitative results do not. The respec-
tive dispersions are: (a) in apparent magnitude, (b) in deviations from the
Hubble line, (c) in chronometric absolute magnitude: (1) for all 84 nonblue-
shifted galaxies which are listed, (a) 1.15, (b) 1.69, (c) 1.29; (2) for all 46
nonblueshifted So or E galaxies (which as indicated by Holmberg are of
particular interest in relation to the question of estimation of the mass of the
cluster), (a) 1.30, (b) 1.71, (c) 1.39.

Another apparent effect of a generally similar nature has been detailed
for the Coma cluster by Tifft (1972). As in the case of the Virgo cluster,
analysis of the data precisely as listed, but on the basis of the chronometric
rather than expansion theory, leads to an acceptably small apparent cluster
redshift dispersion. Again the qualitative results are independent of the par-
ticular morphological type. The respective dispersions are (1) for all 70
galaxies with data, (a) 0.57, (b) 0.67, (c) 0.59; (2) for all 28 ellipticals, (a) 0.56,
(b) 0.72, (c) 0.61; (c) for the 42 nonellipticals, (a) 0.51, (b) 0.63, and (c) 0.54.
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Discussion

1. General conclusions

Substantially all potentially relevant published systematic data on ex-
tragalactic objects have played a part in the foregoing parallel tests of the
chronometric and expansion hypotheses. The satisfactory, and for the most
part strikingly good, agreement of the chronometric predictions with the
raw observations is in clear contrast with the only rarely really good agree-
ment of the direct expansion-theoretic predictions with corrected observa-
tions. When consideration is confined to samples that are complete out to
specified limiting magnitudes, the comparison is still more one-sided in favor
of the chronometric theory; there is no such sample, either of galaxies or
quasars, which is at all well fitted by the unembellished expansion theory.
Furthermore there is no present indication that more refined studies are at
all likely to alter the basic fact that the chronometric theory, with essentially
no free parameter, provides a much better overall fit to extragalactic data
than do straightforward general relativistic models with the free parameters
go and A. Indeed the trend of recent work has largely been in the opposite
direction.

This is not to say that the expansion theory has been disproved. Its
generally idealistic, nonoperational nature is readily compounded by the
introduction of ad hoc mechanisms—superclustering for nearby galaxies,
number-luminosity evolution for quasars, and other features reminiscent of
epicycles—which may serve to render moot its apparent disagreement with
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the observations. But saving the theory in this way largely elminates its
predictive power, and by virtue of the effective increase in the number of
adjustable parameters, renders it scientifically highly uneconomical in com-
parison with the chronometric theory.

In any event, the remarkable degree of observational confirmation of
the chronometric theory naturally raises the question of whether there is any
sound scientific reason not to employ this hypothesis in theoretical
astrophysics in preference to the expansion hypotheses. The expansion
theory has for many years enjoyed the status of a preferred theory, with its
concomitant influence on both the direction of observational research and
its quantitative results. Inevitably questionable observations tend to be
resolved in conformity with an established theory, while conversely observa-
tion in apparent conformity with the theory tend to be regarded as relatively
unexceptionable. This general feature of experimental science is particularly
important in an area in which facilities have been extremely limited, in which
observations are not readily repeated by independent observers, and in
which there is inherently little control or capacity for more intensive examin-
ation of the objects under study. The highly limited telescope time suitable
for extragalactic work, and the intrinsic restriction to the information
obtainable from the observation of their electromagnetic emission, imply
that astrophysics falls into this category to the nth degree. The inability of
the expansion theory to make useful fundamental observable predictions,
despite its dominance over the past 40 years, is in striking contrast with the
capacity of the chronometric theory to predict accurately a broad variety of
theory-independent relations derived from observations published prior to
its existence. This suggests that the chronometric theory is, at the least, likely
to be relatively useful as a framework for the organization and study of
observations on extragalactic objects.

Figure 30 is an illustration of the coherence which the use of the chron-
ometric theory can introduce into the study of the nature of different types of
extragalactic objects. The generally highly satisfactory fit of the theory to the
samples on which Figure 30 is based, as well as a number of other samples, is
shown in Figures 31 and 32. No substantial or otherwise cogent published
samples of galaxies or quasars are unrepresented in these figures, except
that due to Colla et al. (1975), which was published too late to be
included in these figures, but which as earlier noted has the same
qualitative implications as the large or otherwise statistically cogent galaxy
samples.

It has to be admitted that the square redshift-distance law predicted for
low-redshift objects is in striking variance with a generation of instruction in
cosmological astrophysics, and at first glance appears to be contradicted by
Sandage’s observations on brightest cluster galaxies. While referring to
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Figure 30  Redshift-magnitude relations of bright extragalactic objects.

Sources: de Vaucouleurs and de Vaucouleurs (1964), Gunn and Oke (1975), DeVeny et al.
(1971), Sargent (1972), Vorontsov-Vel'yaminov and Ivanisevic (1974), Sandage (1967), Setti and
Woltjer (1973), and Stannard (1973). Thanks are due the authors of the last two cited sources
for communicating the data on which their graphs and other reduced results were based.

Chapter IV for a detailed analysis of the latter point, a decent regard for the
natural prejudices and conservative proclivities of those brought up
scientifically on the expanding universe seems to require an attempt to
explain how so fundamentally misleading an apparent observational result
could become so firmly imbedded in astrophysical thinking. There are socio-
logical and biographical matters here which while probably quite interesting
are beyond the scope of this book, and of the author’s competence, and
require additional information which is not readily available. But some
nontrivial illumination is derivable from material in the scientific literature.

The boldness of Hubble’s first paper (1929), which was in all probability
influenced in part by theoretical considerations, as emphasized by Hether-
ington (1971), was one factor. The small sample of galaxies studied in this
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QUALITY OF THE FIT OF THEORIES TO OBSERVED REDSHIFT-MAGNITUDE RELATIONS OF LARGE OR
STATISTICALLY PRECISELY DELINEATED SAMPLES. :
DELINEATED SAMPLE APPARENT MAGNITUDE [ cHRONOMETRIC THeoRY [ HuBsLe

Figure 31  The quality of the fit of theories to observed redshift-magnitude relations of large
or statistically precisely delineated samples.

The quantity X shown is the negative of the normalized reduction in variance brought
about by the theory and is asymptotically normally distributed with zero mean and unit
variance, for a fair sample and a correct theory. The variances o2 are in the apparent magnitude
and in the residuals from the chronometric and Hubble law predictions. (In each case, the zero
points of the predictions are adjusted to the mean luminosity of each sample.) The tendency
toward order-of-magnitude equality of the variances in apparent magnitude and in residuals
from the Hubble law for galaxy samples (or others at z < 0.5) is predicted by the chronometric
theory, as is the larger variance in these residuals for larger-redshift samples. The subsamples
specified by supergalactic coordinates were defined ex post facto (by G. de Vauccouleurs) in
accordance with a theory indicating different redshift-distance exponents in the respective
regions of the sky; the X values are correspondingly equivocal, but favor the square law over
the linear one even in the region |B| > 30 hypothetically maximally favorable to the linear
law. See also Tables 11 and 12. Data sources, in addition to those for F igure 30: Lynds and
Wills (1972) and Schmidt (1968).

paper had an observed m-z relation which is distinctly better fitted by a
square redshift-distance law than by a linear one. Nevertheless Hubble
described the law as “roughly linear,” on the explicit basis of uncertain and
surely rough estimates of distance to only 10 of the galaxies; and the implicit
basis of the prior theoretical prediction of a roughly linear law by a suitable
development of general relativity. Later the estimates of distances to galaxies
was refined by a study of the “brightest stars” in low-redshift galaxies, leading
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THE SAME AS THE PRECEDING FIGURE FOR SAMPLES WHICH ARE SMALLER OR MAY QTHERWISE BE LESS
COGENT. APPARENT MAGNITUDE [ ] cHRONOMETRIC THEORY [ HusaLe Law
Figure 32 The same as Figure 31 for samples which are smaller or may otherwise be less
cogent than those in Figure 31.

Data sources, in addition to those cited in Figures 30 and 31: Arakelyan et al. (1972),
Sandage and Tammann (1975), Hubble (1929, 1936), and Burbridge and Burbridge (1967).

to Hubble’s conclusion that these were suitable distance indicators. But the
observed m—z relation of these “stars” is again in distinctly better agreement
with a square redshift-distance law than with a linear one; and again, there
is no indication in Hubble’s work of this fact, or that he was at all cognizant
of it.

In collaboration with Humason, Hubble (1931, 1936b) made additional
observations, more than 100 field galaxies being included in their sample
published in 1936. Again, this sample is in much better agreement with a
square than a linear law, but mention or cognizance of this is not in
evidence. Of course, the lack of agreement with a linear law could always be
ascribed to an extreme breadth of the luminosity function for the galaxies
observed; but such conceivable agreement with a linear law is very different
from a positive indication for it. Moreover, if one attempts to suppress or
limit the effect of the breadth of the luminosity function by utilizing only the
brightest galaxies in bins ordered by redshift, the results are equally favor-
able to the square law vis-a-vis the linear law. But in these papers appeared
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for the first time the class of galaxies which were later to form the foundation
for the linear redshift-distance law which had been proposed by Hubble in
1929. It consisted of bright cluster galaxies, and was a relatively much small-
er sample than those previously considered by Hubble; however, its m-z
relation was in extremely close agreement with the linear law prediction. The
papers included no definite indication of how the ten clusters in this sample
were chosen, and with the passage of time and the deaths of the authors, it
appears that this may never be known.

It was difficult to make similar observations on other telescopes. Over
the next two decades Hubble’s original program was developed by Huma-
son, Mayall, and Sandage, culminating in their classic paper giving redshifts
and magnitudes for a large number of field and cluster galaxies. Again, the
field galaxies formed a large sample whose m-z relation was in considerably
better agreement with the prediction of a square rather than a linear law;
and the brightest cluster galaxies formed a relatively small sample in some-
what better agreement with a linear law. This sample of bright cluster gal-
axies was intensively studied and extended by Sandage over the next decade
and a half, during which time preliminary results were reported by him,
generally in graphical form, and fairly widely accepted as definite proof for
the linear redshift-distance law. The superiority, indeed unicity, of the
200-in. Mt. Palomar facility, and the decades of intensive study initiated by
Hubble, made difficult the performance of comparable work elsewhere. With
the publication of numerical observational results by Sandage in 1972, the
basic case for the linear law seemed to be finally documented by the ob-
served m-z relation for the sample of 41 brightest cluster galaxies which he
treated. But as detailed earlier, analysis of the N(z) relation and the apparent
Hubble core radii for galaxies in the sample naturally raises a question of
apparent selection effects, which cannot be dispelled on the basis of pub-
lished information. The very satisfactory agreement of the phenomenologi-
cal m-z relation for other types of galaxies with the prediction from a square
law naturally reinforces the apparent anomaly of the Sandage sample.

The main moral is perhaps the importance of taking effective cogni-
zance of the distinction between model-building on the one hand, and
hypothesis-testing on the other. Another is the need for the exploration of
foundational observable relations by several independent groups of obser-
vers. Finally, the great difficulty and expense of the observations do not
supersede the need for utilizing the best available robust statistical analysis,
but on the contrary, strongly enhance the marginal utility of the extraction
of all relevant information from the samples. This need is closely related to
that for statistically unexceptionable sampling procedures, involving
notably the designation of explicit objective criteria for the inclusion or
exclusion of objects from the sample.
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In work published since the original manuscript of this book was
completed, Rust (1974) has given a precise study of data for 36 supernovae,
including particularly time-delay estimates. Here it can only be com-
mented that the objects treated by Rust appear to be among the best
“standard candles ” available, but that the sample is too small for definitive
analysis, and that the time-delay effect is theoretically less clear-cut than
those treated in Chapter IV (cf. the discussion of observed versus theoretical
times in Chapter III). The peak magnitude-redshift relation for all non-
blueshifted objects (with or without removal of unrepresentatively large
redshift objects) is in quite satisfactory agreement with the chronometric
prediction, but poor agreement with the expansion prediction. The N (<2)
relation in the redshift region cz < 1000, which is unlikely to be greatly
affected by an observational magnitude cutoff, is also in closer agreement
with the chronometric prediction, the observational estimate of d log N/
0 log z at z = 0 being fairly close to the chronometric value, 3

2. Theoretical aspects

Although the present theory in principle alters only physical kinema-
tics, and so is vastly more limited than any complete dynamical theory, the
alteration is of a fundamental character, which may in consequence cause
some reflection by specialists. It remains to reconsider, if necessary, a variety
of developments in astrophysical theory in terms of the chronometric theory.
Most fundamentally, the questions arise: (a) what is the relation to the
theory of Friedmann models; more broadly, how does it relate to general
relativity, or to gravitation as a purely physical process? (b) what observable
consequences, if any, does it have as regards elementary particle phe-
nomena? A brief discussion of these and some related questions follows.

a. Slow expansion?

In principle, there is no difficulty in combining the chronometric red-
shift theory with some degree of expansion in accordance with a closed
Friedmann model. As long as the rate of expansion is kept sufficiently low,
the excellent agreement of the chronometric theory with observation is
sufficient to ensure a statistically acceptable fit of the combined theories in
standard cosmological tests. Moreover, the basic features of the Friedmann
theory and its correlation with cosmology, apart from the redshift itself,
would be retained.

Such a mixed theory cannot be excluded on a purely statistical basis,
and would permit conventional ideas concerning the evolution and age of
galaxies to persist in the combined theory without essential change.
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However, the remarkable quality of the fit of the theory to observation is
impaired noticeably as the rate of expansion increases. This is particularly
the case for some of the key nonstatistical matters: the problem of the energy
output of quasars, the apparent near cutoff in quasars circa z = 2.5, and the
apparent existence of superlight (or near superlight) velocities. In addition, it
would generally diminish the economy and predictive power of the theory. It
would therefore seem more interesting and promising to seek to reexamine
conventional ideas on the age, evolution, and colors of galaxies, in the light
of the pure chronometric theory, than to develop a combined theory at this
time. There is no apparent reason to anticipate any greater difficulties in so
doing than exist already at present.

As noted by Segal (1972), and discussed in Chapter I1I, the chronomet-
ric theory can be regarded as defining (and is largely defined by) a virtual
motion of the canonical local Lorentz frame at each point of the Cosmos
with respect to the same frame at any other point. This canonical frame is
that tangential to the universal (chronometric) frame at the point in
question, and has natural units specified by setting # = ¢ = R. Thus a vir-
tual Doppler redshift is implicit in the chronometric theory. However, the
virtual point of view has no physical advantages, but only the theoretical one
of possibly facilitating the correlation with the formalism of general relativ-
ity. The canonical local Lorentz frames at different points differ in scale as
well as by a conventional Lorentz transformation. This variation in scale can
be removed only by making the radius of the universe time-dependent, since
the distance scale is fixed chronometrically by setting R = 1. Having made
this change in scale, one has a pure Doppler relation between the corre-
spondingly rescaled local Lorentz frames, and a formally expanding
universe. The velocity of this initial recession varies approximately as the
square of the distance for small distances, but for larger distances is not the
Doppler velocity in formal correspondence with the chronometric redshift.

b. Gravitation

In mathematical respects, there is no significant difference between the
chronometric and the Minkowski models from the standpoint of general
relativity as a local theory of gravitation. The chronometric model is con-
formally flat, indeed the physically relevant local correspondence between
local chronometric space-time and Minkowski space—time is given in explic-
it analytic form in Chapter III.

The increasing but still not yet totally definitive validation of general
relativity as a local theory of gravitation does not imply its physical applic-
ability in the form of the theory of Friedmann or similar models. As a local
theory of gravitation, it is one in a hierarchy of local dynamical theories,
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none taking precedence over the others; as a cosmological theory, it has a
more fundamental and different status from the others. Being inherently
lacking in temporal homogeneity, the conservation of energy in our earlier
group-theoretic sense is violated, and indeed there does not yet exist a
broadly accepted and fully viable definition of energy in classical (un-
quantized) general relativity. The time itself is defined in terms of the forma-
lism, rather than observable physical processes. In these respects it differs
greatly from elementary particle and quantum field theories, in which there
are formally well-defined positive definite energies, and in which the time
may be characterized uniquely, apart from choice of scale, by the constraint
of temporal invariance, and observed directly in terms of a theoretically
precise frequency standard.

It would seem distinctly metaphysical to extrapolate the mathematical
formalism of general relativity from a theory valid on the galactic scale as
one of a hierarchy of theories of different interactions, to a theory on which
the dynamics of the entire universe must be based, and to which the clocks of
elementary particle processes must conform. Probably still less justified phys-
ically is the application of general relativistic hydrodynamics to extragalac-
tic questions such as the mass density and the stability of the entire Cosmos.
The approximation of the distribution of galaxies by a fluid is quite uncon-
trolled and open-ended; at best, conclusions drawn in this way are merely
suggestive. The astrophysically fundamental fact that much, if not most, of
the mass of the universe is in the form of the discrete bound states called
galaxies, is completely lost sight of in the process of this approximation, and
may represent a more crucial physical point of departure than the study of
overall mass density of the Cosmos.

Admittedly, as a nondynamical theory, the chronometric model is in-
capable of predicting the average density of the universe. But this separation
between kinematics and dynamics is quite possibly the way it should be. The
circumstance that there is basically no such separation in global general
relativity, while philosophically striking and unique, can be regarded as a
major source of the ambiguities in the elucidation of its precise physical
meaning. The clear-cut separation between kinematics and dynamics in
elementary particle theory has made for empirical lucidity of the theory, and
has on the whole been very satisfying. Indeed, a strong current trend in
general relativity has been toward its recasting in terms analogous to those
employed in the theory of elementary particles and their associated quantum
fields. Work by Faddeev (1971) on the correlation of general relativistic and
quantum concepts, leading in particular to a possible appropriate notion of
energy, represents fundamental progress in this direction. The chronometric
model could serve equally well with Minkowski space in Faddeev’s work;; its
use in place of Minkowski space would actually lead to simplifications, in
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that the delicate question of the appropriate boundary conditions at infinity
in space is superseded by the closure of space.

Likewise adaptable to the chronometric framework is the important
foundational work of Lichnerowicz (1961) on the quantization of general
relativity.

As pointed out to us by C. C. Lin, the mass density given by the
standard closed Friedmann model with fixed radius is, with the radius of the
universe given by the chronometric theory of the order of 10”27 gm c¢m ™3,
This is quite high, but perhaps not unacceptably so, particularly in the light
of comparable difficulties with missing mass in conventional theory. It re-
mains to be explored to what extent observational estimates of the mass
density of the universe may be affected by employment of the chronometric
rather than the expansion model as the theoretical substructure.

In a more theoretical vein, it is interesting to note possibilities for
correlating the chronometric model with general relativistic local gravita-
tional theory through the scalar field provided by the presently unspecified
scale of the conformally flat metric involved in the model together with the
vector that vanishes in the special relativistic limit, as in Section 9 of Chapter
I In this connection, mention should be made of Weyl’s conformally
oriented theory (1921) and of his projective tensor, having the feature that it
vanishes if and only if the metric is conformally flat. It is interesting
that in the very natural form of the theory presented by Veblen (1933)
there intervene both a scalar and a vector field, such as are provided
locally by the chronometric theory in the R — oo limit. Moreover, the mere
modification of a Minkowskian metric by the introduction of these two
fields in the indicated fashion is sufficient to imply all the observational
consequences of general relativity (cf., e.g., Hawking and Ellis, 1973). Finally,
the frequently-conjectured elimination of singularities in general relativity
by the introduction of quantum considerations seems closer in that the
strict form of the theory, for finite R, involves the five hermitian operators
whose approximately scalar form for large R gives rise to the indicated
scalar and vector fields.

In summary, the chronometric theory, although based on a physically
entirely different redshift mechanism from expansion or gravitation, is in
both observational and mathematical respects otherwise compatible with
much of general relativity, including all of its local (~ galactic) features.

c. Elementary particles

As indicated in Chapter III, the fundamental local dynamical variables
of the chronometric theory, energy, momenta, etc., differ from those of
special relativistic field theory by terms of order R™, or less, where R is the
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radius of the universe in conventional laboratory units. These dynamical
variables are here regarded as generators of local symmetries. The difference
is therefore too small to affect observationally any known elementary par-
ticle processes, apart from possible selection rules and classification features,
assuming the state spaces to be the same in both cases. For particles of zero
mass, the wave functions are locally essentially unchanged, but for massive
particles the chronotheoretic structure remains to be developed. The exist-
ence of mass is not compatible with the transformation of elementary par-
ticles under the full conformal group; current ideas of broken symmetry and
the like indicate, however, that a group of related massive elementary par-
ticles may well arise from restriction of this group (more precisely, of its
universal covering group) to an appropriate mass-conserving subgroup.

The most obvious choice for this subgroup is that leaving fixed an
observer’s infinity and local distance scale; this is the conventional inho-
mogeneous Lorentz group. The square of the mass is then represented by the
image under the relevant representation of the D’Alembertian [J]. When
combined with conventional representations for .internal symmetries or
quantum numbers, it would leave the theory of elementary particles and
their local interactions basically unchanged. A physically more natural choice
for the subgroup is however O(2, 3). This also facilitates mass splitting, which
is forbidden for the Lorentz subgroup by the O’Raifeartaigh theorem. The
role of [] would be taken over by the Casimir operator for O(2, 3), which
differs essentially from [] only by terms of order R~ 1.

d. The mechanism of energy production in galactic nuclei and quasars

Obviously any hypothesis regarding this matter can be validated only
in a quite indirect fashion. From the chronometric standpoint there is,
however, an extremely simple and natural supposition regarding the nature
of the mechanism: it consists basically of the transformation of the excess of
the unienergy i~ '(0/07) over the special relativistic energy i~ !(3/dt), i.e., of
the new form of energy corresponding to the difference between the two
times involved in the theory (earlier shown to be positive) into elementary
particle processes. As earlier noted, the excess unienergy appears with red-
shifting, and is then diffused in space in a fashion which causes no observable
local particle production. The amount of energy involved is, however, quite
substantial, and over very large distances and times should be responsible
for significant interactions. The formation, dissolution, and early intensive
development of galaxies would appear on the one hand to involve interac-
tions of this nature, and on the other to be the most likely known physical
process not clearly explicable by elementary particle combined with gravita-
tional interactions.
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If the conversion of the unienergy excess over the special relativistic
energy into local particle processes is indeed a significant feature of galactic
development, it should be one of the main mechanisms by means of which
the unienergy excess energy density in the universe is kept stationary, as it
would be natural to assume it is in the chronometric theory. White dwarfs
and other elderly, metal-rich objects may provide fuel which can be ignited
with sufficient unienergy excess to yield elementary particles and hydrogen.
Such “burning” of moribund objects in galaxies could provide very large
amounts of energy in quite small regions, and plausibly take place on a short
time scale, as in the case of supernovae, giving rise to variability such as is
observed in active galactic nuclei. At the same time it would serve to main-
tain the population of moribund objects at an approximately stationary
level.

Highly speculative as these considerations are, they are perhaps less so
than those treating the origin and early dynamics of the universe, which
involve much larger regions of space and much longer reaches of time. The
group-theoretic nature of the chronometric hypothesis implies a variety of
conservation laws which are relatively stringent, physically meaningful, and
to a considerable extent serve to define the theory. It is therefore opera-
tionally much more subject to definitive validation than is the “big-bang”
theory and similar hypotheses.

In any event, because of the temporal homogeneity of the universal
cosmos, there must be processes that convert the superrelativistic into the
relativistic energy. This is effected in part by free propagation, which while
leaving the total energy unchanged alters its partition between ihe delo-
calized superrelativistic energy and the microscopically observable relativ-
istic energy. However, the energetics of the microwave background
indicates that other processes must be more important.

Consider, for example, what may be the basic cycle involving the bulk
of matter and radiation in the universe: gas + microwave background +
dust + local radiation + old stars — galaxies — gas + microwave back-
ground + dust + local radiation + old stars. The local radiation density
over regions of the order of 10 parseconds is naturally subject to large
random fluctuations in the course of cosmic time, especially if enhanced
by cosmic turbulence along the lines of von Weizsicker (1951). These
fluctuations should eventually reach the flash point required to “ignite” the
other ingredients of a generic galaxy core. Of course, this does not exclude
other possible mechanisms, such as collisions involving cores of old galaxies
or old stars within the cores, which collisions necessarily take place because
of the infinitude of time and the finiteness of space. A particularly
interesting feature of the chronometric outlook for the evolution of
galaxies is the availability of ample energy from the superrelativistic
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radiation for making up the mass loss from galaxies with active nuclei.
This mechanism would both explain the otherwise persistently puzzling
large mass loss, of the order of one solar mass per year (cf. Oort, 1974), and
provide for additional large-scale conversion of the superrelativistic radiation
into conventional forms. In particular, it would lower the estimated cosmic
background radiation temperature from the correct order-of-magnitude but
slightly high figure earlier derived.

e. Intergalactic matter and the microwave background

The precise equilibrium attained by radiation in space, following
possibly many complete circuits in space, will naturally depend on the extent
and character of intergalactic matter which may be present. The existence of
such matter proposed by Holmberg (1958) and indicated by some later
studies (Takase, 1972, among others) is difficult to substantiate directly. A
small rate of extinction, of the order of < 10~° mag/kpc if H ~ 80 at
10 Mpc is consistent with the redshift-magnitude relations for quasars and
galaxies, in the chronometric theory. Because of the smaller size of the
chronometric than the expansion-theoretic universe, relatively little dust
would be required to produce this rate of extinction, but on the other hand
relatively little would be necessary to play a significant role in the possible
thermalization of intergalactic radiation. The very general analysis by Pur-
cell (1969) (based on the Kramers-Kronig relation) indicates a density of
matter > 10733 g cm™ 3, assuming transmission characteristics not grossly
dissimilar from those of interstellar dust and the indicated extinction rate,
but there are no other known restrictions on the dust. Compare in this
connection, the mechanism for production of the background radiation
proposed by Layzer and Hively (1973).

A detailed analysis of how the spectrum of emitted radiation is trans-
formed depends also on the absorption and emission characteristics of gal-
axies and intergalactic matter, as well as on having globally more precise
wave functions for the emitted radiation than are afforded by simple plane
wave. The chronometric theory predicts quite directly the existence of very
nearly isotropic and highly energetic blackbody radiation diffused ho-
mogeneously throughout the universe. The temperature of this radiation is a
dynamical quantity which the theory can only correlate with other dynami-
cal quantities. This is effectively the case also with the primeval fireball
concept. Indeed, the latter development involves more parameters than the
chronometric prediction, and these parameters must be ‘quite specially
chosen in order to lead to an observationally correct prediction (cf. the
careful account by Weinberg, 1972). On the whole, the observed cosmic
background radiation is predicted by the chronometric theory in at least as
definitive a fashion as the primeval fireball complex of hypotheses.
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f.  The Friedmann model with q, =

To take g, as o would exacerbate the missing mass problem in general
relativistic cosmology, and otherwise appear at first glance not to be obser-
vationally sustainable. It has however been observed by J. F. Nicoll that the
value g, = oo is in many ways the best-fitting of the Friedmann models to
the general run of cosmological data, on galaxies and quasars. Its redshift—
distance law is identical with that of the chronometric theory, and it thereby
gives an equally good account of the N(< z) relations for galaxies and
quasars. Its m-z and N-S relations are however different by virtue of the
“number effect” due to the recession. This results in a distinctly poorer fit to
the quasar m-z relation than the chronometric relation. In the case of the
N-S§ relation, there is the same difficulty as in other Friedmann models, that
without evolution the values of the index —& log N/ log S fall below the
Euclidean value 1.5, in disparity with the radio source observations earlier
described. From a purely theoretical viewpoint, the g, = oo case is one of
the most interesting Friedmann models by virtue of its exceptional
symmetry.

3. Further observational work

In view of the historical observational basis for the expansion theory in
the data on low-redshift galaxies, the question arises of the existence of
statistically rigorously appropriate data which are actually favorable to, and
not merely perhaps marginally consistent with, this model. Its relation to the
cosmic microwave background, coincidence of order of magnitudes of time
scales, and the apparent helium abundance are dependent on stringent
dynamical assumptions supplementary to the expansion hypothesis itself.
Consequently, these relations only indicate the possibility, and not an
objective or definitive likelihood, that the model is correct. The only clear
possibility for the vindication of the predictive cogency of the expansion
hypothesis appears to lie in systematic galaxy observations in randomized
fields out to a limiting magnitude of ~ 15. But it is evident that what is to be
anticipated on the basis of the present work is rather a reductio ad absurdum
of the model.

In any event, the observations on each galaxy should include magni-
tudes over a range of apertures, in order to form an appropriate basis for
testing several theories. The sample should either be complete in a
designated field to specific limits, or constitute a randomized subsample
from such a complete list. Radio observations might additionally be quite
useful in this connection. Although there is no special reason to doubt that
the results would be generally similar to those earlier obtained, such obser-
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vations would then lead to more precise estimates of the radius of the
universe, the number density and size of bright galaxies, and other important
cosmological parameters.

The fact that increased accuracy and numbers of observations, over the
years, has not appreciably altered the phenomenological situation as regards
the m—z-N relations of galaxies, except strongly to confirm earlier indica-
tions appears equally true of quasars. The m—z and N-z relations of the ~ 70
quasars known approximately eight years ago are similar to those for the
=200 quasars known today. For example, for the 74 quasars with un-
questioned data listed by Burbridge and Burbridge (1967), the respective
dispersions in apparent magnitude, deviation from the Hubble line, and in
chronometric absolute magnitude are: (a) 1.09, (b) 1.29, (c) 0.92, which is
qualitatively similar to the results from the later DeVeny and other samples,
in the reduction and increase in dispersion associated, respectively, with the
chronometric and expansion theories. As was to be expected, the average
magnitudes are fainter for the later sample, but only by slight amounts: (a)
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Figure 33 The redshift distribution of the quasarlike objects with redshifts published as of
1969.

All quasars, N and Seyfert galaxies listed by Burbridge and Burbridge (1969} for the
redshift range 0.02 < z < 2.40 were included. The redshift distribution is similar to that for the
later list published by DeVeny et al. (1971) and the earlier list of Burbridge (1967), except that
the inclusion of N and Seyfert galaxies removes the apparent deficiency in the number of
quasars at redshifts < 0.3. The m-z relations are also similar, and there is no apparent reason to
expect that additional quasar observations over the next few years will materially affect their
overall m—z-N relation.
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0.07, (b) 0.32, (c) 0.15. The same is true of the N(z) relation, which is qualita-
tively similar on the basis of today’s observations to that of several years
ago. Figure 33 shows in fact the excellent fit of the direct chronometric
prediction to the redshift distribution of quasarlike objects listed by Bur-
bridge and Burbridge (1969). Here “quasarlike” means that the object is
listed either as a QSO, a Seyfert, or an N galaxy. As earlier indicated,
inclusion of the latter removes an apparent if statistically not significant
deficiency of quasars at redshifts < 0.3 from the chronometric outlook.
Whether these objects are included or not, the observational relation is
generally similar to that shown in Figure 25, based on the DeVeny sample.
From the expansion-theoretic standpoint, quasars are murky, variable
objects, among the least likely to provide an observational foundation for
the theory. But larger samples of quasars which are complete out to fainter
limits, or random subsamples of such, could lend additional confirmation to
the chronometric theory; and in any event would help to clarify the nature of
quasars, even if, as is to be anticipated, their basic redshift-luminosity—
number relation is not substantially altered.
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