
 





A

TREATISE

on

ASTRONOMY

THEORETICAL and PRACTICAL.

BY

ROBERT WOODHOUSE, A.M. F.R.S.

FELLOW OF GONVILLE AND CAIUS COLLEGE, AND

PLUMIAN PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF CAMBRIDGE.

Part II. Vol. I.

CONTAINING THE

THEORIES OF THE SUN, PLANETS, AND MOON.

A NEW EDITION.

CAMBRIDGE:

PRINTED BY J. SMITH, PRINTER TO THE UNIVERSITY ;

FOR J. DEI6HTON & SONS,

AND G. & W. B. WHirrAKER, LONDON.

18 23

L



ASTRONOMY UBF



CHAP. XVII.

 

ON THE SOLAR THEORY.

Inequable Motions of the Sun in Right Ascension and Longi

tude.—The Obliquity of the Ecliptic determined from Ob

servations made near to the Solstices.—The Reduction of'

Zenith Distances near to the Solstices, to the Solstitial Zenith

Dista/ice.—Formula of such Reduction.—Its Application.—

Investigation of the Form of the Solar Orbit.—Kepler s

Discoveries.—The Computation of the relative Values of the

Sun's Distances and of the Angles described round the

Earth.—The Solar Orbit an Ellipse.—The Objects of the

Elliptical Theory.

In giving a denomination to the preceding part of this Volume,

we have stated it to contain the Theories of the fixed Stars ;

such theories are, indeed, its essential subjects ; but they are

not exclusively so. In several parts we have been obliged to

encroach on, or to borrow from, the Solar Theory ; and, in so

doing, have been obliged to establish certain points in that theory,

or to act as if they had been established.

Togo no farther than the terms Right Ascension, Latitude, and

Longitude. The right ascension of a star is measured from the

first point of Aries, which is the technical denomination of the

intersection of the equator and ecliptic, the latter term de

signating the plane of the Sun's orbit: the latitude of a star is

its angular distance from the last mentioned plane ; and the

longitude of a star is its distance from the first point of Aries

measured along the ecliptic.

The fact then is plain, that the theories of the fixed stars

have not been laid down independently of other theories : and it

is scarcely worth the while to consider whether or not, for the
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sake of a purer arrangement, it would have been better to have

postponed certain parts of their theories till the theory of the

Sun's orbit, and of his motion therein, should have been esta-

lished.

According to our present plan, indeed, ,(a plan almost always

adopted by Astronomical writers) we shall be obliged to go over

ground already trodden on. But we shall go over it more care

fully and particularly. In those parts of the solar theory which

it was necessary to introduce, either for the convenient or the

perspicuous treating of the sidereal, we went little beyond ap

proximate results and the description of general methods. For

instance, in pages 137, 138, it is directed, and rightly, to find

the obliquity of the ecliptic from the greatest northern and

southern declinations of the Sun. But the practical method of

finding such extreme declinations was not there laid down ; and

on that, as on other occasions, much detail, essentially necessary

indeed, but which would then have embarrassed the investigation,

was, for the time, suppressed.

Such detail is now to be given together with other methods,

that belong to the solar theory. But it may be right, pre

viously to enumerate some of the results already arrived at.

In Chapter VI, which was on the Sun's Motion and its Path,

.it was shewn that the Sun possessed a peculiar motion tending,

in its general description, from the west towards the east,

almost always oblique to the equator, and inequable in its

quantity. These results followed, almost immediately, from

certain meridional observations made with the transit instrument

and mural circle.

By such observations two motions or changes of the Sun's

place are determined ; one in the direction of the meridian,

the other in a direction perpendicular to the meridian. The

oblique motion of the Sun, therefore, is, in strictness, merely

an inference from the two former motions : or, if we suppose

the real to be an oblique motion, its two resolved parts will be

those which the transit instrument and mural circle discover to

us ; neither of which motions (see p. 126.) is an equable one.
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But although the two resolved motions are inequable, it does

not at once follow that the oblique or compounded motion must

be inequable. For, if it were equable, the resolved parts,

namely, the motion in right ascension, and the motion in decli

nation, would be inequable. Some computation, therefore, is

necessary to settle this point, and a very slight one is sufficient.

Thus, by observations made in 1817,

July 1, O'sil.... 6h 40m Is. 7 Decl. 23° 8' 44" N.

2, 6 44 9-7 23 4 35

Jan. 1, 18 17 2.2 23 1 26 S.

2, 18 51 27 .0 . 22 56 14

Compute the longitudes of the Sun by means of this formula,

1 X sin. O 's long. = cos. O 's dec. X cos. G 's JR.,

and we have

Difference.

July 1, O's long 3' 9° 11' 39") ft0 „, , .„

2, 3 10 8 50 J 7 '

Jan. 1, 9 10 48 38 ) , ^

9 11 49 48
^ • . . • -

The oblique daily motions then, instead of being equal, are

to one another as 3433 to 3670.

Besides the results relating to the Sun's path and motion,

there were obtained, in Chapter Yl, other results, such as the

obliquity of the ecliptic, and the times of the Sun entering the

equator and arriving at the solstitial points. But the methods

by which the results were obtained require revision, or rather we

should say, that these methods having answered their end, namely,

that of forwarding us in the investigation which we were then pur

suing, may now be dismissed, and make way for real practical

methods.

We will turn our attention, in the first place, to the determi

nation of the obliquity of the ecliptic.

If at an Observatory, the Sun arrived at the solstice exactly

when he was on the meridian, the observed declination would
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be the measure of the obliquity. But it is highly improbable

that such a case should happen : nor is it, indeed, on the grounds

of astronomical utility, much to be desired. A solitary obser

vation, under the above-mentioned predicament, would not be

sufficient to establish satisfactorily so important an element as

that of the obliquity. It would be necessary to combine with

it other observations of the Sun's declination, made on several

days before and after the day of the greatest declination, to

reduce, by computation, such less declinations to the greatest,

and then to take their mean to represent the value of the

obliquity. In such a procedure, it is clearly of little or no

consequence, whether the middle declination be itself exactly

the greatest, or whether, like the declinations on each side of it,

it requires to be similarly reduced to the greatest.

The reduction of declinations to the greatest, which is the

solstitial declination, is an operation of the same nature, and

founded on the same principles, as the reduction of zenith

distances observed out ' of the meridian to the meridional zenith

distance : the formulae of which latter reduction, together with

their demonstration, were given in pages 418, &c. It is con

venient, however, on the present occasion, to modify the result

of that demonstration, or to express it by a different formula :

which we will now proceed to do.

Let then,

d{=St) be the Sun's declination, d' ( = XY) the solstitial,

 

© ( = f S), O ' ( = 90°) the corresponding longitudes,

w, the obliquity of the ecliptic,
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then, by Naper's Rules, we have

sin. d = sin. © . sin. w,

sin. d' = sin. © '. sin. w ;

consequently,

sin. d' — sin. d = sin. w (sin. 90° — sin. G ),

or (see Trigonometry, pp. 32, 42),

. w — d w + d n

sin. . cos. = sin. w . sin. - , if u = 90" — O

2 2 2

Let w{— d1) =. d + S, then,

S / ^\ a «
l. - . cos. I to — - I = sin. w . sin. - ,

2 V 2/ 2

sin.

sin. - .

.of d' . d'l .

and, sin. - scos. ti> cos. - .+* sin. w sin. -> = sin. w .

2l 2 2j

5 8 $ & 8?

Substitute, instead of sin. - , cos. - , and , and 1 — -,

2 2 2 48 8

respectively, (suppressing for the present sin. l", sin.3 l", sin.1 l",

by which S, S3, aa, ought, respectively, to be multiplied), and we

shall have this approximate expression,

/$ . h . au

I — ){ cos. w — cos. w — + sin. w - > = sin. w .sin. - ,

V2 48/\ 8 2j 2

• 2 U

tan. w . sm. -

whence — = —— s •

2 48 S '

1 h - tan. w ;

S 2

or, nearly,

a . ,«/ ^ , i a a a a , ->

- = tan. w . sin. - -M tan. w + ~ . - —— .- tan. w >

2 2( 2 222 22 J

i a a a

+ 6 ' 2 ' 2 * 2 '

a

from which expression, approximate values of -, of sufficient

2
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exactness may be obtained : for instance, to obtain a first

approximation, neglect the terms on the right hand side of the

equation, that involve o, and

o . - u

(1st value) - = tan. w . sin. - .

2 2

Again, retain the terms involving 6 and neglect those involving

and

(2nd value)* - = tan.w . sin.* - j 1 — tan. w . sin.2 - . tan. w\

. . u „ . . u

= tan. w . sin. - — tan. to . sin. - .

2 2

Again, substitute this new value, and neglect those terms that

u

involve higher dimensions of sin. - than the 6th, and

^ . . . M „ . U

- = tan. w . sin. - — tan. w . sin. -

2 2 2

"i . fi U . 1 q a u

+ 2 tan. w . sin. - + - tan. w. sin. - .

2 6 2

„ . u u 1 u3 1 m5

But sin. - = r- . . — + &c.

2 2 2.3 8 2.3.4.5 32

From this value find sin.* - , sin.4 - , &c. and substitute

2 2

in the preceding expression,' and then

m2 1

+ § = tan. w . . tan. w (1 -+ 3 tan.8 w) m4

2 24

+ ~ . tan. w (1 +30 tan.* w +45 tan.4 w) u6,

720 .

which is sufficiently exact for all practical purposes, since u

rarely exceeds 10°.

* This is the expression which Biot uses in his Astronomie, pp. 31,

336.

. t This is the same expression as Delambre's, Tom. II. p. 244, but is

differently obtained.
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For the purpose of avoiding multiplicity of symbols, the

powers of sip. l" (see p. 5. 1. 12, &c.) were omitted in the preced

ing investigation. These, however, must be restored in order to

render the above expression for 8 fit for application. This is

easily effected : eS being very small, o1 has been written instead

of sin. S : whereas § . sin. l" should have been written; on the

right hand of the side, instead of u, m4, u , &c. w2 . sin.* l",

m4 . sin.4 l", u6 . sin.6 l", &c. should have been written : sup

plying then the omitted symbols, and dividing each side of the

equation by sin. l", we have

« tan. w , ,, tan. w 9 , . „

i = . «2 . sin. l" (1+3 tan.2 w) u* . sin.3 1"

2 24

tan. w j. I _j_ 9 + 45 t 4 w) M6. sin.5 i" .

720

u is the difference betwen 90° (the longitude of the Sun at the

solstice), and the Sun's longitude at the time of observation. If

the place of observation be Greenwich, u is known by the

Nautical Almanack, and from the value therein given, may easily

be computed for any other place of observation. Suppose, for

instance, the Sun's meridional distance either from the north

pole, or from the zenith to have been observed at Greenwich,

on June 18, 1812. By the Nautical Almanack,

O = 2s 27° 0' 4"; .\ u = 2° 59' 56" = 10796".

In this case the reduction to the solstice (5) will be expressed

with sufficient exactness by the first term, w, then, being taken

= 23° 27' 54", we have

S = i tan. 23° 27' 54" . sin. l" X (10796)1 =t 2' 2". 6 *.

2

* Computation.

Log; tan. 23° 27' 54" ...... = o.6'3757o'0

• arith. comp. of 2 =9.6989699

log. sin. 1" = 4.6855749

2 log. 10796 = 8.0665258

2.0886466 = log. 122".64.
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If, therefore, the observed meridional zenith distance of the

Sun's centre (after being corrected for refraction), were, on the

noon of June 18, equal to 28° 3' 2". 5 the reduced zenith

solstitial distance would be, nearly,

28° 3' 2".5 - 2' 2".6, or 28° 0' 59".9-

This is an application of the formula to one instance : and

like applications to other instances are easily made ; with greater

length of computation, indeed, if the Sun should be so far from

the solstice, as to render it necessary, by reason of the magni

tude of u, to compute the second and third terms of the value

of S. Now the obliquity of the ecliptic being an element of

great astronomical importance, the finding it by means of the

reduction is a frequent operation. It becomes worth the while,

then, to construct a Table from the preceding expression, and

for every ten minutes of the Sun's distance from the solstice.

To obtain this latter end, instead of u write 10' u = 600" m,

and

tan. to

sin, l". (600)2. «*

tan. w

24

(1+3 tan.8 w) sin.3 l". (600)4 u* + &c

or, the value of the obliquity being assumed equal to 23° 27' 54",

3 = 0".378812 ux -0".0000004 181 M4 + O".0000000000006217 u6.

From this expression a Table may be expeditiously con

structed. The values of most easily obtained, are those which

belong to u, when its values are, respectively, 1, 2, 3, 4, &c.

10, 20, 30, 100, &c. that is, since the value of the unit of

u is 10', when the distances from the solstice are 10', 20', 30',

40', &c. 1° 40', 3° 20', 5°, &c. 16° 40', &c.

For instance,

Distance Values

from Solst. of u.

0° 10' 1 S = 0(' 0' 0".3788

20 2 & = 0 .3788 x 0 1 .5*15

30 3 3 = 0 .3788 x 0 3 .409

&c.

1 40 10 y= 37".881 - .00418 0 0 37 . 876

3 20 20 $ = 1 5 1 . 524 - .0668. ... 0 2 31 . 457

16 40 100 $ = 378S . 12 - 41.81 +.6217 1 2 26 . 93
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*

This is a sample of a Table, to be constructed from the pre

ceding expression. M. Delambre has given such a Table in

p. 269, of the second Volume of his Astronomy. In that Table

the expressed numerical values of 5 belong to an obliquity

= 23° 28'.

Our values belong to an obliquity = 23° 27' 54", and,

therefore, are somewhat smaller, as they need must be, than '

Delambre's. But a very slight correction will reduce one set

of values to the other. And M. Delambre's Table furnishes

the means of effecting this : since it contains, in a separate

column, a series of corrections due to a variation of 100" in the

obliquity, and corresponding to the several values of u.

In order to obtain the algebraical expression of the correction

just mentioned we must resume the original value of <l, or,

which will be sufficient for the occasion, express it by its first

term : now, if

$ = - tan. w . sin. l". m2,

2

o = - . sm. 1 . sec. w . u , 1

2

I, w, expressing the corresponding variations of $ and w.

If w = 100",

h = .000000001396 u4, the unit of u being l".

If, as in the former case, we make the unit of u equal to 10',

§ - .000000001396 x (600)* u2 = 0".000502812 m8,

and from this expression the column of corrections, to which we

alluded at 1. 11, may be computed.

We will now give an example of the computation of the

obliquity of the ecliptic, from observations of the Sun's me

ridional zenith distances observed during several' days on each

side of the solstice.

3 K
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1812

June

Refrac

tion.

Zenith Distance b>

Instrument.

Sun's Semi-

diameter.

Zenith Distance

of Sun's Centre.

Reduc

tion.

Solstitial

Zen. Dist.

o ' /. « , «

28 18 16.4

o / //

12 30.3 28 1 58.9 U 15 47.2 17 15.5 28 1 0.9

14 29.4 27 55 14.4 U 15 47.2 28 11 3KO 10 32.4 28 0 58.6

18 29-6 27 46 46.1 U 15 46.8 28 3 2.5 2 2.6 28 0 59.9

19 29-7 28 17 13.4 L 15 46.8 23 1 56.3 0 57-0 28 0 59-3

20 29-2 27 45 0.2 U 15 46.8 28 1 16.2 0 16.3 28 0 59-7

23 30.4 28 16 58.74 L 15 46.6 28 1 42.56 0 42.7 28 0 59-8

24 29-8 27 46 26.56 U 15 46.6 28 2 42.96 1 41.1 28 1 1-9

25 30.4 28 19 20.76 L 15 46.6 28 4 4.56 3 4.2 28 1 0.4

27 29.7 27 51 58.76 V 15 46.6 28 8 5.06 7 4.7 28 1 0.7

28 30.7 28 25 56.76 L 15 46.6 28 10 40.86 9 41.4 28 0 59.4

29 30.1 27 57 26.66 U 15 46.6 28 13 43.36 12 43.0 28 1 0.4

30 30.7 28 32 24.76 L 15 46.6 28 17 8.86 16 8.9 28 1 0

The refractions in the second column are computed from the

heights of the barometer and thermometer, and the zenith

distances of the Sun's limb, according to the Rules of Chapter X,

(see pp. 247, &c.) The zenith distances of the Sun's centre

in the fifth column, are formed by adding the refractions to the

zenith distances of the observed limb, and by adding or sub

tracting (according as the observed limb is an upper or lower

limb) the Sun's semi-diameter. The reductions in the sixth

column are computed by the formulae of p. 436 *, or may be

taken from a Table constructed from such formula? : the

solstitial zenith distances of the Sun's cerrtre in the seventh

* In computing these reductions, the values of u are known by the

Nautical Almanack. Thus, we have from that book,

Q's long. June 12, being 2s 21° 16' 22", u = 8° 43' 38",

14 2 23 10 59, 6 49 1,

20 2 28 54 32, 1 5 28 ;

therefore on the 12th a = 8° 43' 38" = 52.3633, which being substitu

ted in the value of 8 (see p. 436, 1. 21,)

g = 17' 15".46,

on the 20th v = 1° 5' 28" = 6.54666, &c. and 8= l6".23.
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column are formed by subtracting the numbers in the sixth from

those in the fifth column : the decimals being expressed by the

figures that most nearly represent their values *.

The sum of the numbers in the last column, is

12 x 28° 12' l",

.the 12th of which, in the nearest numbers, is

28° l' 0".l,

which represents the mean solstitial zenith of the Sun's centre

deduced from twelve observations. But such zenith distance has

been corrected for refraction only. It is, therefore, for reasons

abundantly given in the preceding part, an apparent zenith

distance, and is affected with nutation, parallax, and another

inequality arising from the attraction of the planets, aiid ex

plained in Chapter XXII, of Physical Astronomy. With regard

to the first inequality, the nutation (the place of the Moon's node

being 5s 2° 9') equals (see pp. 375, &c.) - 8".4, the parallax

also equals — 4", and their sum, accordingly, equals — 12".4.

The value of the third inequality, the Sun's Latitude, as it is

called, caused by the Sun being drawn from the plane of the

ecliptic by the action of the planets, is — 0".63.

So that we have (from 1. 7,)

Sun's solstitial zenith distance 28° 1 0".l

nutation and parallax — 12. 4

Sun's mean solstitial zenith distance .... 28 0 47 • 7

if the co-latitude (ZP) be 38 31 21 . 5

ZP + Z 0 66 32 9-2

therefore, solstitial declination 23 27 50 . 8

subtract Sun's latitude • .63

mean obliquity of summer solstice 23 27 50 . 17

This is the determination of the obliquity from the summer

solstice, and is founded on a knowledge of the latitude of the

* For instance, decimals such as .86, .47, &c. would be represented

by -9, .5.
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place, which knowledge is founded on that of the quantity

and law of refraction (see Chapter X.) Now, with regard to

this latter point, there is something that remains still to be deter

mined by Astronomers. For, if we suppose the Sun, at the

winter solstice, equally distant from the equator as at the summer

solstice, the obliquity determined at the former season from

the expression,

ZP + Z ©'- 90°,

ought t6 equal the obliquity determined, as it just has been, from

90° - {ZP + Z Q};

if the theory of refractions were good, and the observations

accurately made. Now the fact is, as we have already stated

it at p. 138, the two values of the obliquity do not agree, when

the respective zenith distances of the Sun are corrected by that

formula of refraction which results from a comparison of the

observations of circumpolar stars, (see p.' 230.)

Let L be the latitude of the place, then, at the summer

solstice,

w = 90° - {90° - L + Z]

= L -Z;

at the winter solstice,

w = 90° — L + Z' - 90"

= Z' - L.

In the first case then, (supposing Z, Z', the solstitial zenith

distances to be correct)

dw = d L, in the second dw — — dL.

If we suppose then an error in the value of the latitude of

the place of observation, the obliquity, determined from the

summer solstitial distance, will be increased by it, and, if

determined from the winter, equally diminished. If, therefore,

we add the two values of the obliquity together, their half sum,

or mean, may, in a certain sense, be said to be free from the error

of latitude ; but the mean, thus determined, will not necessarily
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be the true value of the obliquity, since the zenith distances

(Z, Z') are corrected by the formula of refraction, and partake

of its uncertainties.

To illustrate the formula of the reduction to the solstice, and

the method of finding the obliquity of the ecliptic, an example

was taken of observations made at Greenwich with the mural

circle. Like observations made with a mural quadrant, would have

answered precisely the same end : and so, indeed, would ob

servations made, as they are made (see pp. 417, 8tc.) at the

Observatory of Trinity College, Dublin, with Ramsden's circle,

or by the repeating circle, according to the practice of the

French Astronomers. These latter observations, being made out

of the plane of the meridian, require, in order to be made to

bear on the point in question,' a previous reduction to the

meridian, founded, as we have already shewn, (see pp. 418, 432,)

on the same principle as the reduction to the solstice, and to

which the latter, as well as the observations made in the

meridian, are equally subject.

There is indeed a peculiarity, belonging to observations made

on the Sun with the repeating circle, and instruments so used,

which is this. In the interval between the observation and the

meridional transit of the Sun, the Sun changes his declination :

whereas, in the investigation of the formula of reduction to the

meridian, the declination of the observed body is supposed to

suffer no change. This change of condition, then, requires

some slight correction. Suppose the observations to be made

before the Sun has reached the solstice, then, in the interval (A),

between the observation and the Sun's meridional transit, the

Sun's north polar distance is diminished. The Sun's real

meridional zenith distance, then, is less than the reduced. Let

e be the change of declination answering to one minute of time,

then, if such change be uniform, the change in a time h equals

he. Consequently, if Z be the zenith distance observed out of

the meridian, R the computed reduction (see p. 418, &c.) the

meridional zenith distance equals

Z — R — he,

if Z', R', hi', &c. be other zenith distances corresponding re



442

ductions and hour angles, the corresponding meridional zenith

distances will be

Z> - R' — h'e,

Z"- R"-.h"e,

After the Sun has passed the meridian, the contrary effect,

with regard to the correction for the change of declination, will

take place. The reduced zenith distance will be less than the

real meridional zenith, because, after the passage of the meridian,

the Sun's north polar distance (the Sun not having attained the

solstice) has decreased. If, therefore, ZK, R^, A4, be the cor

responding zenith distances, reduction and hour-angles, the

corresponding meridional zenith distance will be

Zx~ R^ + hKe.

Hence, if n be the number of observations, the mean me

ridional zenith distance will be

l (Z!+ 2"+&c. - (R'+R"+ &c.)+ 2, + Z»+Sie. - (Ei +

« 1 - (h! + h" + &c.) + (A, + K + e, - J

and, consequently, the last correction of which we have been

treating, will be

- (W - E)e,

n

W being the sum of the hour-angles to the west of the meridian,

and E of angles to the east, and e being the change of decli

nation in one minute of time.

For instance, suppose the Sun's zenith distances to have

been observed on June 15, 1809, eleven times before it reached

the meridian, and seventeen times after it had passed, and

the sum of the hour-angles of the eleven observations to have

been 75m.6, of the seventeen, 187m . 12. Now, by the Tables,

or the Nautical Almanack, it appears that e very nearly equals

0". 1 : consequently,
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since, W = 187". 12

E = 75 . 60

W—E = 111 . 52

AW ~ E)e

and

71

In the preceding matter we have described the method,

such as is practised in Observatories, of finding the obliquity of

the ecliptic. The parts of that method are founded, all save

one, on observation, or, rather we should say, on results that can

be deduced from observation. Such a result, for instance, is

the quantity of nutation. The excepted part of the process of

page 439, is the correction for the Sun's latitude, which (see

Physical Astronomy , Chap. VI, and XXII.) is known from

Physical Astronomy.

But this is far from being a solitary instance of the aid of

this latter science. The solar theory is mainly founded on it :

at least it may be said that the solar Tables are indebted, for .

their accuracy, to the computed results of planetary perturba

tion.

Before, however, our attention is called to these results, there

are others of much less difficult enquiry, that must be considered.

The Sun, as we have seen (pp. 431, 8tc.) moves in some orbit, the

plane of which is inclined to that of the equator, and does not

move equably in that orbit. To find the laws of its inequable

motion, it would seem to be necessary, previously to investigate

its form, or the nature of its curvilinear path. And this, in fact,

is the enquiry which, two hundred years ago, Kepler instituted, and

after many years of incessant study brought to an happy issue.

The orbit of the planet Mars was the object of his researches :

their result was the planet Mars moves in an ellipse round the Sun

placed in the focus of the ellipse.

If this result be extended to the other planets, of which the

Earth is one, then the Earth moves round the Sun in an ellipse,

(W-E)e= 11". 15,

.

11". 15

28

= 0".3982.
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the Sun' being placed in its focus : or, to use the common

Astronomical language, the solar orbit is elliptical*.

The elliptical form of a planet's orbit was a truth not easily

arrived at. In endeavouring to reach it, Kepler had to strive

against, and to overcome, his own prejudices, which were also

those of the age. From some vague notions of simplicity the

antient Astronomers fancied that the motions of the heavenly

bodies must, of necessity, be performed in the most simple

curves, and that, for such a reason, a planet must move in a circle.

After Kepler had found, by his reasonings on observations, that

the orbit of Mars could not be a circle of which the Sun

occupied the centre, he did not altogether abandon his former

opinions, but tried whether the observations of the planet were

consistent with its movements in a circle, the Sun occupying

a point within the circle, but not in its centre. This conjecture,

like his former ones, proving fallacious, Kepler, at last, hit upon

the right one, or found the observed places of Mars consistent

with its description of an ellipse of certain dimensions.

This, like many other astronomical results, is now so familiar

to us, that we do not properly appreciate Kepler's merit in

discovering it. If we view, however, the state of Science, and

Kepler's means and the inherent difficulty of the investigation,

we must consider it to have been a great discovery. And even

now, availing ourselves of all the facilities of modern science,

it is not easy, briefly to shew, from a comparison of the obser

vations of the Sun, that the solar orbit is an ellipse.

The two kinds of observations, to be used for the above

purpose, are those of distances and angles : the former to be

known, as far as their relative values are concerned, from

observations of the Sun's diameter : the latter from the Sun's

longitudes to be computed from the observed right ascensions

of the Sun and the obliquity of the ecliptic.

* The Earth moves round the Sun, but an observer sees the Sun

to move, and to describe a curve similar to that which would be seen if

we imagine the observer transferred to the Sun.



445

With these data we might 'from a centre set off a series of

distances, Radii Vectores as they are called, and draw a curve

through their extremities, which, being of an oval form, might

be guessed to be an ellipse, and would, on trial, be verified

as such. This, in fact, was Kepler's way, and modern mathe

maticians have no other, except they ground their speculation

on Physical Astronomy, and shew, on mechanical principles, the

necessity of the description of an elliptical orbit.

It has just been said that the relative distances of the Sun

from the Earth may be known from the observed diameters

of the Sun : for, the Sun being supposed to remain unaltered,

the visual angle of his disk will be less, the greater his distance,

and in that proportion. But there exists a better method of

determining the same thing, founded on a discovery of Kepler's,

and which, in time, was antecedent to that of the elliptical form

of Mars' orbit. The discovery was, that at the aphelion of the

orbit, the area comprehended within the arc described, and two

radii vectores, drawn from the extremities of the arc to the Sun,

was equal to a similar area at the Perihelion, supposing the two

arcs to be described in equal times. A like fact has since been

proved to be generally true : that is, areas comprehended, re

spectively, within their arcs and two radii vectores, are equal,

provided the arcs are of such a magnitude as to be described in

equal times. Now this fact, or law, as it is now called, enables

us easily to compute the relative distances of the Sun from the

Earth. For by observing (see Chapter VII.) the transits of the

Sun and stars, the right ascension of the former may be determi

ned ; from which and the obliquity of the ecliptic the Sun's

longitude may be computed. The difference of the Sun's

longitudes on two successive noons is the angle described by the

Sun in twenty-four hours of apparent solar time, from which

(as we shall soon shew) the angle described in twenty-four hours

of mean solar time (which twenty-four hours represent an

invariable quantity) may be computed. Let v represent this

latter angle : then the small circular arc which, at the distance r,

measures the same angle, is rv, and the corresponding small area

r rs v

will be, nearly, rv x - , or — . Suppose one of the values
2 2 . . • -

3 L
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of r to be 1, and A to be the corresponding value of v : then the

area = I X ~: and from Kepler's Law of the equal description

of areas

r* v A

2  2 '

whence, r =

 

and consequently, in order to compute r, we must be able to

determine A and v.

A is the angle corresponding to the mean distance 1, and,

therefore, in an ellipse of very small eccentricity (and such an

ellipse is the solar orbit) is nearly, the mean oi the greatest and

least angular velocities, or has for its measure half the sum of

the angles respectively described, in twenty-four hours, at the

perigean and apogean distances : winch angles, as it has been

already explained, aie the daily increases of the Sun's longitudes.

Now, by examining the longitudes, it will be found that their

greatest daily difference takes place at the end of December:

their least at the beginning of July : the value of the former is

1° l' 9".94

of the latter 57 1 1 . 48

so that their mean is 59 10.7

and, if we take this latter angle to represent the value of A,

we have

In order to determine v for any particular day, we must first

take the difference of the Sun's longitudes on the noon of that

day, and on lhat of the day succeeding, and if (which will almost

ever be the case) the intei val between the two noons be greater or

less than twenty-four mean solar hours, we must, in < omputing

v, allow for such excess : for instance, let d represent the dif

ference of two longitudes of the Sun on two successive noons,

and let 24 + x represent the time elapsed, then, very nearly,
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d : v :: 24 + x : 24;

 24 d

' ' V ~ 24 ± x '

or, if we wish to express (and it is sometimes convenient so to

express it) the time in parts of sidereal time, <

24\0657 ,

v — . .cz,

24" .0657 ± x

and accordingly,

r ~ V Vp d * 24.0657 ) '

or, using mean solar time,

/ lrf'.7 24 + x\

r ~ V V 5 X 24 / '

It only remains to shew the method of exhibiting the nu

merical values of r : suppose, then, such values were required

on January 12, and April 1775. In order to find the values of

d and x on those days, we must have recourse to recorded

observations. In those of Greenwich we find, on January 12,

the transits of the Sun's first and second limb, and of the stars

a Ceti Rigel, /3 Tauri, o Ononis, a Lyrae : from which (see

pp. 102, 103, &c. Chap. VII.) the rigl t ascension of the Sun's

centre may be computed : if computed, it will be found to be

. 19h 36m 2s.7936, or, in degrees,

9s 24° 0'4l".9.

If then we take the obliquity, as it is expressed in the

Nautical Almanack, to be equal to 23'1 27' 58". 5, we shall from

this expression,

tan. © .cos. w = tan. JR,

(© being the Sun's longitude and w the obliquity),

find (©), the longitude equal to 9s 22° 13' 35".

Institute a like process for the next day, January 13, that

is, from the observed transits of the Sun and the fixed stars,

and the Catalogues and Tables belonging to the latter, deduce



448

(see pp. 102, 103,) the clock's error and rate, and then the Sun's

right ascension : which right ascension, in the case we are

treating of, would be 9s 25° 5r 29".9 : from which the longitude

deduced as before (see p. 447,) will be

9s 23° 14' 42",

the difference between which and the Sun's longitude on the

12th (see p. 447, 1. 26,) is 1° l' 7", which accordingly is the value

of d. Again, since the difference of the Sun's right ascensions

on the I3th and 12th

is 9s 25° 5' 29".9 - 9" 24° 0' 41 ".9,

or 1° 4' 48", or in time, 4m 19°.2 ;

consequently, the interval, in sidereal time, of the two transits on

the 12th and 13th is 24h 4m 19s.2 (= 24h.072) and, accordingly,

(see p. 447, 1. 7,)

V V 61' 7" 24.0657/

= .98418.

In like manner if we investigate the Sun's right ascensions

on April 28, and April 29, and thence compute his longitudes

and take their difference, it will be found to be equal to

58' 14". 34, whilst the interval between the transits, in sidereal

time, is only 24h 3m 47s.66(= 24h .06324), and therefore less

than a mean solar day. In this case then • >

 ' /✓ 59' 10".7 24.06324^

r ~ V W 14".34 *

= 1.00798.

24.0657

We might thus compute the distance for every pair of suc

cessive observations made during the year. The value of r that

results from the computation should be made to belong to the

mean of the two successive longitudes from which it is com

puted. Thus, the Sun's longitudes being

on January 12, 9s 22° 13' 35"

on January 13, 9 23 14 42

their mean is 9 22 44 8.5

. to which r = .98418 belongs ; and if we apply this rule, and

computations like to the preceding, to certain of the Sun's
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longitudes computed by M. Delambre from Maskelyne's Ob

servations (of 1775), and inserted by the former Astronomer in

the Berlin Acts for 1785, (pp. 206, Sac.) we shall have the

following results which may be arranged in a Table :

Times of Observation. Longitudes of Sun. Distances from the Earth.

Jan. 12 to 13
9s 22° 44' 8". 5

.98418

Feb. 17 to 18 10 29 13 59.7 .98950

March 14 to 15 11 24 15 37.5 .99622

April 28 to 29 1 8 26 20.7 • 1.00798

May 15 to 16 1 24 51 45.9 1.01234

June 17 to 18 2 26 27 43.4 1.01654

July . 1 to 3 3 10 17 38.7 1.01658

August 26 to 27 5 3 27 46.6 1.01042

Sept. 22 to 23 5 29 44 22.7 1.00283

Oct. 24 to 25 7 2 24 24.2 .99303

Nov. 18 to 20 7 28 2 46.4 .98746

Dec. 17 to 18 8 25 58 47.8 .98415

The above Table contains twelve longitudes and twelve

corresponding distances. Assume a centre C, and with a radius

= 1 describe a circle Bab. From a point B in this circle begin

 

b

to reckon the longitudes, and then, through the extremities of the
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arcs proportional to such longitudes draw radii and set them off

proportional to their values. Thus, if the angles BCA, BCM,

BCI be proportional to

1" 8° 26' 20", 1" 24° 51' 46", 2s 26° 27' 43",

CA, CM, CI must be made proportional to 1.00798, 1.01234,

1.01654, and accordingly the points A, M, J will fall a little

without the circle described with the radius CB.

If the remainder of the figure be formed in a like manner,

the points belonging to November, December, January, will fall

a little within the circle, so that a curve drawn through all the

points will be (very little differing, however from a circle) an

Oval, most drawn in about D, most going out near J : in other

words, in the oval representing the solar orbit, the apogean

distance will be near to J, the perigean near to D.

The distances (see the Table of p. 449,) for November 18,

December 17, January 12, biing .98746, .98415, .98418, the

least or perigean distance is evidently between the first and third

dates. So, the apogean distance is between June 17, and

August 26. In order to discover whether the perigean distance

is between June 17, and July 2, or between July 2, and

August 26, we must have recourse to the original observations

which have already been used in forming the preceding Table ;

and amongst these we find the following * :

Diff. of Long.

57' 6".2

June 30,

July 1,

Sun's Right Ascen.

6h 36° 32" .6

6 40 40.5

Sun's Longitude.

3s 8° 23' 29".3

3 9 20 35.5

Diff. of R. A.

4m 7'.9

* This is not strictly correct. The right ascensions and longitudes

of the text are not expressed in the Greenwich Observations, but are

deduced from them. We cannot do better, considering the object of this

Work, which is to teach the very methods of Astronomical Science, than

to subjoin the original observations, and the means of reducing them to

those forms under which they appear in the text.

1775.
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which are the Sun's right ascensions and longitudes reduced,

according to the processes of the subjoined note, from the

original observations.

1775. I. II. III. IV. V. Stars.

June 29, 0» 51" 4h 20" 22'.8 0° 54'.5 Aldebaran.

32 10.6

34 28

6 32 43.9

6 35 1.4

38 17

36 34.4

o u
June 30, 2 L

36 17.8 6 36 51

6 39 8.3

37 23.7

39 41.4

© 1 L

2LJuly 1, 38 35

16.5

16

0 48

0 46.8

4 20 20 0 51.5

0 48

23.3

19.1

Aldebaran.

a Ononis.July 2, 5 40 17.5

If the intervals of the wires were all equal we could immediately take

the means of the times, as. is done in pages 86, 87, &c. : which means

would denote the transits of the stars and Sun by the clocks. But we

find from Dr. Maskelyne's Introduction to these Observations (see p. iv,)

that in the year 1775, the eqvatoreal intervals (see p. pi, of this Work)

between the several wires of the Greenwich transit instrument were

30s. 40 | 30s. 54 | 30s. 36 | 30s. 55 |

consequently, (see p. 90,) the intervals of a star, the north polar distance

of which is A, would be the above intervals multiplied, respectively, into

cosec. A : and, if t were the time at the middle wire, t— a, t — b, t -f- c,

f-frf the times of an equatoreal star at the second, first, fourth, and fifth

wire, f, r — a. cosec. A, f — b. cosec. A, &c. would be the times of

a star distant from the pole by A : hence, the mean transit would be

* ~ $ (<? + ^ — c — d) cosec. A = m (suppose)

consequently, t = m -J- \ { (« — d) -f- (b — c) J cosec. A ;

or, the correction to be applied to m the mean of the times, is

i, (a — d -f- b — c) cosec. A .

In
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Hence, since 4m 7" .9 = Oh .06887, we have from the formula

of p. 447,

A //59' 10". 7 24.06887\

In the case before us a = 30.40 + 30.54 = 60.94

d = 30.36 + 30.55 = 6O.91

a — d= .03

b = 30.40

c = 30.36

b — c = .04

therefore the correction, or \ (a — d + 6 — c) =r .014.

In the case of Aldebaran A = 74° nearly, and cosec. 74 = 1 .04

of Orion A = 82 cosec. = 1.009

of © at solstice A = 6632 cosec. = 1.09,

and therefore the three corrections are + 0'.0145, 0'.014l, 0".0153.

Hence, the corrected transit of Aldebaran on June 30, is 4° 20' 22".8

but (pp. 351, 372,) its JR. by the Catalogue and Tables is 4 23 1.74

clock too slow 0 2 38.94

Again, transit of Aldebaran by the clock on July 2, is 4° 20' 19"-9

by the Catalogue 4 23 1.82

clock too slow 0 2 41.92

Again, transit of Orion by clock on July 2, is 5h 40m 17'.53

by Catalogue 5 42 59.36

clock too slow 0 2 41 . 83

Hence, by a mean of Aldebaran and Orion, the clock was too slow on

July 2, at five hours, by 2m 41".88

but on the June 30, it was too slow by 2 38 . 94

(see pp. 103, &c.) clock's loss in two days 23h 20m 0 2 . 94

and its daily rate was nearly — 0 . 98

Having now ascertained the error and rate of the clock we can de

termine the Sun's transit or right ascension.

June 30,
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Hence, since the distances June 17, June 30, July 3,

August 26, are

1.01654, 1.018, 1.01658, 1.01042,

it is plain that the Sun must arrive at his apogean distance

before July 2, and very nearly at that time. In like manner, if

we examine the observations and reduce them, we shall find

that the Sun's increase of longitude between December 30, and

December 31, is 1° l' 15".l and the difference, in sidereal time,

between the two transits, is 24h .07397, we have, therefore, (as

before, in pp. 447, &c.)

. //59' 10".7 24.07397X
r = V (witTi x ^oeiy) = -98309'

which is, very nearly, the least or perigean distance.

If we take the means of the longitudes of June 30, and

July 1, and of December 30, and December 31, we shall have

June 30, transit of Sun's centre by clock 6h 33"' 52s.6

Error of clock 0 2 40

Sun's right ascension by observation 6 36 32 .6

Again, July 1, transit of Sun ; 6h 37m 59s.5

Error of clock 0 2 40.99

Sun's right ascension by observation 6 40 40.5 nearly,

which right ascensions are those which are specified in page 450, at

the bottom line.

In order to compute the longitudes, we have the above right ascensions,

and an obliquity = 23° 27' 59".5, from which, and by means of the

equation tan. L. cos. u'=tan. right ascension, or by the formula or Table

of reduction to the ecliptic, the longitudes in the text (see p. 450,) may

be computed.

The above process may appear somewhat long ; but it is given, on the

grounds already assigned in p. 424, &c. because it is the real and practical

process by which original observations are reduced and made to become

results fit for the illustration or establishment of Astronomical Science.

3 M
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Mean Longitude. Distance from Eartli.

June 30,

July 1,

Dec. 30,

Dec. 31,

9' 9° 14' 11".3,

3' 8° 55' 2".4,

0.98309-

1.018

The difference of the longitudes is & 0° 19' 8".9, differing

from 6' by 19' 8".9, so that the two distances, which are, nearly,

the greatest and least, lie, very nearly, in the same straight line :

and consequently there arises a presumption, that the longitudes

of the apogean and perigean distances, if exactly found, would

exactly differ by 6".

Now this is a property of an ellipse. Two lines drawn,

respectively, from the focus of an ellipse, to the extremities of

the axis major are the greatest and least of all lines that can be

drawn from the focus to the curve. The solar orbit then having

a general resemblance to an ellipse, and one of its properties, may

have all : and, on such a presumption, an ellipse would be as

sumed and compared with the solar orbit.

The dimensions of the ellipse, so to be made trial of, would

be assigned by the preceding results. Its eccentricity, which is

half the difference of the greatest and least distances, would be

equal to £ (1.018 - .98309), or .01745. The next step would

be to compute, from the properties of the ellipse, or by means of

analytical* expressions expounding those properties, the relative

values of the Radii Vectores as they are called, and the angles

included between those radii and a fixed line, the axis major,

for example. If the relations between these angles and radii

should be found to be the same, as the relations which have just

been made (see p. 449.), there would be established a proof of

the Earth's orbit being an ellipse, the Sun occupying its focus.

Kepler's investigations were directed not towards the Earth's

but Mars' orbit. His proof of that orbit being an ellipse rests,

* The analytical expression between the angle (i>) and the radius (r)
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in fact, on the same principle as the preceding : which is, the

agreement of the computed places in an assumed ellipse with

the places computed from observations. The process by which

Kepler established this proof is very long, and no process, even .

taking the most simple case, namely, that of the solar orbit, can be

very short. Of which assertion, what has just preceded, is some

sort of proof.

The proof of the solar orbit being elliptical has been founded

on the equable description of areas : and, historically, this latter

fact, or Law, as it is called, (only partially established, however,

by Kepler,) preceded the former. To the equable description of

areas, and the elliptical forms of planetary orbits, Kepler added

a third law, according to which the cubes of the greater axes

varied as the squares of the periodic times.

We must now consider the astronomical uses of these dis

coveries. In the first place it is evident, that, since we know the

nature of the solar orbit, and one law regulating the motion in

that orbit, we have made some approach towards a knowledge

of the Sun's real motion in the ecliptic. If the latter motion

should be known, the Sun's right ascension and declination would

thence be determinable by the Rules of Spherical Trigonometry.

The law of a body's motion in an elliptical orbit is the first and

essential thing to be determined. Let the body begin to move

from one of the apsides of the ellipse, and let the time be

reckoned from the beginning of such motion, then, the problem

to be solved, is the assigning of the body's place in the ellipse

after a certain elapsed time. This, in fact, is Kepler's Problem,

as it has been called for distinction's sake. And, by its solu

tion, that great Astronomer, laid the first ground-work of Solar

Tables.

The enquiry, then, in the next Chapter, concerning the best

method of solving Kepler's problem, will be purely a mathe

matical enquiry. A result being attained, the next step will be

to apply it. If we begin our reckonings for an apside, we must

know where the apsides of the Sun's orbit (which, in other

words, are the apogee and perigee) are situated. That is,
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we must know the longitudes of those points. We indeed, by

what has preceded, already know them to a certain degree of

exactness, since in page 454, the longitude of the apogee

• was found to be nearly 3' 8° 55' 2".4. After we have discussed

Kepler's problem, we will devise more exact methods for

determining the place of the apogee. The place of the

apogee being determined, there will arise a question con

cerning the permanency of that place in the Heavens. In the

preceding instance (see p. 447.) the longitude of the apogee

was found for the year 1775. Will it be the same for any other

epoch? The obvious method of solving this question .will be to

find, for two different epochs, by the same process, the longi

tudes of the apogee. The results will shew whether the apogee

be stationary, progressive, or regressive.

The place of the apogee being known for any given epoch,

and the law of its translation, the place may be determined for

any other epoch ; and thence, since Kepler's problem determines

the body's place in the ellipse, we shall be able to determine the

Sun's place or longitude for any assigned epoch. This it is the

object of Solar Tables to effect. If their elements be correct,

they enable us to assign the Sun's longitude for years that are to

come. But the elements of the Tables stand in need of frequent

revision : for, the dimensions of the solar ellipse, from the action

of the planets, are continually varying, and, which is a reason

of a different sort, our means of determining the dimensions

become, from the advancement of science and art, progressively

better. If, therefore, the construction of solar and planetary

Tables be our first object, their correction will be the second.



CHAP. XVIII.

On the Solution of Kepler's Problem, by which a Body's Place is

found in an Elliptical Orbit.—Definition of the Anomalies.

Let APB be an ellipse, E the focus occupied by the Sun,

round which P the Earth or any other planet is supposed to

revolve. Let the time and planet's motion be dated from the

 

apside or aphelion A. The condition given, is the time elapsed

from the planet's quitting A ; the result sought is the place P ;

to be determined either by finding the value of the angle AEP,

or by cutting off, from the whole ellipse, an area AEP bearing

the same proportion to the area of the ellipse which the given

time bears to the periodic time.

There are some technical terms used in this problem which

we will now explain.

Let a circle AMB be described on AB as its diameter, and

suppose a point to describe this circle uniformly, and the whole

of it, in the same time, as the planet describes the ellipse in : let
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also t denote the time elapsed during P's motion from A to P : .

then if AM = —— x 2 AMB, M will be the place of the

period

point that moves uniformly, whilst P is that of the planet's ;

the angle ACM is called the Mean Anomaly, and the angle AEP

is called the True Anomaly.

Hence, since the time (t) being given, the angle ACM can

always be immediately found (see 1. 2.) we may vary the

enunciation of Kepler's problem, and state its object to be, the

finding of the true anomaly in terms of' the mean.

Besides the mean and true anomalies, there is a third called

the Eccentric Anomaly, which is expounded by the angle DCA,

and which is always to be found (geometrically) by producing the

ordinate NP of the ellipse to the circumference of the circle.

This eccentric anomaly has been devised by mathematicians for

the purposes of expediting calculation. It holds a mean place

between the two other anomalies, and mathematically connects

them. There is one equation by which the mean anomaly is

expressed in terms of the eccentric : and another equation by

which the true anomaly is expressed in terms of the eccentric.

We will now deduce the two equations by which the eccentric

is expressed, respectively, in terms of the true and mean anoma

lies.

Let t = time of describing AP,

P= periodic time in the ellipse,

a = CA,

ae= EC,

v = L PEA,

u - /. DCA ; (.• . ET, perpendicular to DT, = ECx sin. w),

p = PE,

tt = 3.14159, &c.;

then, by Kepler's law of the equable description of areas,

area PEA . area DEA P _

t = Px -r= 'Px = — (DEC+ DCA)

area of elhp. area O ir a

* Vince's Conks, p. 15. 4th Ed.
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P sET.DC , AD.DC^ Pa  _ 4

P . ' , p i

= — (e sin. « + «) : hence, if we put -— = - ,

2 ir It n

we have

nt — t . sin. m + m (a),

an equation connecting the mean anomaly n t, and the eccentric u.

In order to find the other equation, that subsists between the

true and eccentric anomaly, we must investigate, and equate, two

values of the radius vector p, or EP.

First value of p, in terms of v the true anomaly ;

,-i«=£_. <„. '

1 — e . cos. v

Second, in terms of u the eccentric anomaly,

p = a (1 + e . cos. u) (2).

For.p4 = EN* + PN2

= EN*+DN* X (1 - e*)

= (ae + a . cos. m)1 + as sin.8 m . (1 — e%)

= a2{e*+ 2e.cos. ?/ + cos.4m} +a3 .(1 — e*) sin.* w

= o8{l+2e. cos. u + es cos.4 «}.

Hence, extracting the square root,

p = a (1 + e . cos. w).

Equating the expressions (1), (2), we have

(1 — cs) = (1 — e.cos. v).(l + e cos. ?<), whence,

€ ~f' COS. M
cos. v = - , an expression for v in terms of

1 + e . cos. u

u ; but, in order to obtain a formula fitted to logarithmic compu-

v .
tation, we must find an expression for tan. - : now, (see Trig.

X

p. 40.)

* Ibid. p. 23. Bridge, p. 93.
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v . //I — cos. v\ / Al - e)(l - cos. u)\

(b) tan. - = \/ (i + cog-) = V C(1+c)(1+cos.tt);

These two expressions (a) and (&), that is,

nt = e . sin. u + u,

v . / sl — e\ u

tan. - = V ( —.— I . tan. - ,
2 v V 1 + t' 2

analytically resolve the problem, and, from such expressions, by

certain formulae belonging to the higher branches of analysis, may

v be expressed in the terms of a series involving nt*.

Instead, however, of this exact but operose and abstruse

method of solution, we shall now give an approximate method

of expressing the true anomaly in terms of the mean.

MO is drawn parallel to DC. (1.) Find the half difference

of the angles at the base of the triangle ECM, from this ex

pression,

tan. \ (CEM - CME) = tan. \ (CEM + CME) x ^—^ ,

3 2 1 + e

(see Trig. p. 27.) in which, CEM + CME = ACM, the mean

anomaly.

(2.) Find CEMbyadding ±(CEM+CME) and ±{CEM- CME)

and use this angle as an approximate value to the eccentric

anomaly DCA, from which, however, it really differs by / EMO.

* The following is the series for v in terms of nt ;

v = nt —

s\Z . 43 A . ' /103 451 A . . ,
— I — . t5 — tti . e' 1 . sin. 3 n t + f —rr . e* . e6 1 . sin. 4 n t

1097 1223
—960" ** ' sin' ^ n ' 960 Sin' ^ n t' m wnicn *ne approximation is

carried to quantities of the order e6.



461

(3.) Use this approximate value of / DCA — t ECT in

computing ET which equals the arc DM: for, since (see p. 458,)

p
t = X DEA, and (the body being supposed to revolve in the

area O

circle ADM) = X ACM; .: area AED = area ACM,

area 0

or, the area DEC + area ACD = area DCM + area ACD ;

consequently, the area DEC = the area DCM,

and, expressing their values,

ET x DC DM x DC

and .-. ET= DM.

2 2

Having then computed ET = DM, find the sine of the resulting

arc DM, which sine = OT : the difference of the arc and sine

(ET - OT) gives EO.

(4.) Lise EO in computing the angle EMO, the real difference,

between the eccentric anomaly DCA, and the / MEC : add

 

the computed / EMO to / MEC, in order to obtain / DCA.

The result, however, is not the exact value of L DCA, since

t EMO has been computed only approximately ; that is, by a

process which commenced by assuming Z MEC, for the value

of the L DCA.

For the purpose of finding the eccentric anomaly, this is the

entire description of the process ; which, if greater accuracy be

3 N



462

required, must be repeated ; that is, from the last found value of

z DCA = z ECT,ET,EO, and z EMOmust be again computed.

(5.) A sufficiently correct value of the eccentric anomaly (u)

being found, investigate the true (v), from the formula (6)

of p. 460, that is,

v . //I — ex m

tan. - = A/ I I . tan. - .
2 v Vl + e/ 2

Example I.

The Eccentricity of the Earth's Orbit being .01691, and the Mean

Anomaly = 30°, it is required to find the Eccentric and the

true Anomalies,

(1.) log. tan. 1.5 9.4280525

log. (1 — e), or log. .98309 . . . T.9925933

arith. comp. 1 +e,orof 1.01691 1.9927218

log. tan. \ (CEM- CME) . . 9-4 133676 = log. tan. 14° 3l'22".

(2.) ±(CEM - CME) = 14° 31' 22"

\ {CEM + CME) = 15 0 0

CEM = 29 31 22. 1st approxe. value of CDA.

(3.) log. sin. 29° 31' 22" .... 9.6926438

log. .01691 2.2281436

+ log. (arc = rads.) 5.3144251

log. DM in seconds .... 3.2352125 = log. 1718.7-

DM = 28' 38".7, and its sine expressed in seconds differs from

the arc DM by less than half a second.

(4.) The operation prescribed in this number(see p. 46l, 1. 19, &c.)

is, in this case, needless, since the correction for the angle EMC

is so small, that the first approximate value of the eccentric

anomaly may be stated at 29° 3i' 22".

(50 log. tan. - , or log. tan. 14° 45' 4l" 9.4207651

2 .

§log. (1 - e), or •§ log. .98309 4.9962966

£log.(l + e), or \ log. 1.01691 4.9963608

log. tan. 2 9.4134225
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= log. tan. 14° 31' 28";

.-. the true anomaly = 29° 2' 56".

The difference of the mean and true anomalies, or, as it is

called, the Equation of the Centre, equals 57' 4".

If the eccentricity had been assumed = .016813, or .016791,

the equation of the centre would have resulted = 56' 46".4, or

= 56 41 .4, respectively.

Example II.

Instead of .Ol691> suppose the Eccentricity of the Earth's Orbit be

taken at .016803*, and the Mean Anomaly, reckoning from

Perigee, according to the Plan in the new Solar Tables, be

10s 12° 22' 12".4.

Taking out 6 signs, we have the mean angular distance from

apogee = 4s 12° 22' 12".4.

(1.) log. tan. 66° ll' 6".2 10.3552029

log. .983197 7.9926406

arith. comp. .1016803 1.9927645

10.3406080 = log. tan. 65° 27' 56".4.

(2.) \ (CEM- CME) 65° 27' 56".4

(CEM+CME) 66 11 6.2

1 3 1 39 2.6 approx* . value of CDA («)

u
(3.) log. tan. - , or log. tan. 65° 49' 3l".3 10.3478640

2

\ log. .983197 4.9963203

\ arith. comp. 1.06803 4.9963816

log. tan. - , . 10.3405659;

3fi

.-. ~ = 65° 27' 49".2, and v = 4s 10° 55' 38".4 ;

2

* In 1750, the eccentricity was 0.016814, and, the secular variation

being .000045572, in 1800, it was 0.016791, and in 1810, (for which

epoch Delambre's Tables are constructed) .0167866.
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.'. the true anomaly, reckoning from perigee, = 10s 10° 55' 38".4,

and difference of the mean and true anomaly = 1° 26' 34".

This difference, or Equation ofthe Centre, is stated, for 1800,

in Lalande's Tables, Vol. I. Jstron. ed. 3. p. 23, at 1° 26' 38".6;

but, in the new Tables, Vince, Vol III. p. 38, at 1 Is 28" 32' 44".4-

Now the difference of this, and of 12 signs, is 1° 27' 15".6,

which is still greater than Lalande's result by 45". But, it is

purposely made greater ; for these 45" are the sum of the

maxima of several very small equations. (See the explanation in

Delambre's Introduction, and in Vince's, p. 6.)

In the two preceding Examples, it appears that, by reason of

the small eccentricity of the Earth's orbit, the true anomaly and

equation of the centre are found by an easy and short process ;

no second approximation being found necessary. It appears

also, by the results, that a small change in the eccentricity makes

a variation of several seconds in the equation of the centre. Thus,

arranging the results in the preceding Examples :

Mean Anomaly. Eccentricity. Equation of Centre.

30° 0' 0" .016910 0° 57' 4

3O 0 0 .016813 0 56 46.4

30 O 0 .016791 0 56 41.4

Now, by observation and theory, it appears, that the eccen

tricity of the Earth's orbit is diminishing. Hence, Tables of the

equation of the Earth's orbit, computed for one epoch, will not

immediately suit another : but, they may be made to suit, by

appropriating a column to the secular variation of the equation of

the centre. Thus, in Lalande's Tables, tom. I. ed. 3. p. 18,

the equation of the centre is stated to be 56'4l".2, and in a

column by the side, the corresponding secular diminution to be

9".36. Now Lalande's Tables were computed for 1800 * : (when

the eccentricity of the Earth's orbit was .016790 consequently,

for the preceding epochs of 1750, 1500, the equations of the

* Delambre states, that Lalande's Tables answer better to the

epoch ofl809, or 1810, than to 1800. See Introduction to his new-

Tables.
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centre would be 56' 4l".2 + 4".68, and 56' 4l".2 + 23".44, that

is, 56' 45".9, and 57' 4".6 respectively. These are nearly the

results previously obtained in p. 463, which they ought to be,

since, the secular diminution of the eccentricity being .000045572,

the eccentricities corresponding to 1750 and 1560 will be, nearly,

.016813 and .016910.

By this mode we may also reconcile the two results in Ex

ample 2, in p. 463 ; for, the equation of the orbit in Lalande's

Tables is 1° 26' 30", (that is, for an eccentricity, .016791) there

fore, for 1760, when the eccentricity was .016803, the equation

will be, the secular diminution being 13".9, equal to

1° 26' 30". 6 + 3".4, that is, 1° 26' 34".

Example III.

The Eccentricity of the Orbit {that of Pallas) being 0.259, the

Mean Anomaly = 45° : it is required tofind the Eccentric and

true Anomalies.

(1.) log. tan. 22° 3O' 9-6172243

log. tan. 741 1.8698182

arith. comp. 1.259- - • . 9-8999743

log. tan. §(C£M— CME) 9-3870168 = log. tan. 13° 42' S".3>

(2.) \ (CEM- CME) = 1 3° 42' 3".3

I(CEM+ CME)=22 30 0

.-. CEM =36 12 3 .3=lstapproxe.valueofz CDA,

and CME = 8 47 56.7

(3.) log. sin. 36° 12' 3".3 9-77 13071

log. .259 1.4132998

log. (arc = radius) 5.3144251

log. DM in seconds 4.4990320 = log. 31552.4 ;

.-. DM = 31552".4 = 8° 45'52":4;

. .log. sin 9-1829067

log. (arc = rad.) 5.3144251

4.4973318 = log. 31429;

.-. since DM = 31552.4

and sin. DM = 31429

EO = 123.4
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(4.) (a) log. .259 F.4132998

log. sin. 45° 9.8494850

9-2627848

log. sin. 8° 47' 56".7 9-1845968

.0781880

5.3144251

5.3926131

log. r 10

log. 123.4 . . 2.0913152

12.0913152

(a) log. (arc = radius) + log. EM 5.3926131

log. sin. EMO 6.6987021

.-. EMO = l' 43".l.

Hence, since CDA = 36° 12' 3".3

and EMO =0 1 43.1

corrected value of CDA = 36 13 46.4, the eccentric anomaly.

log. tan. 18° 6' 53".2 9-5147282

i log. .741 4.9349091

I arith. comp. 1.259 4.9499871

log. tan. - 9-3996244 = log. tan. 14° b' 19";

2

.•. the true anomaly is 28° 10' 38".

The eccentric and true anomalies being determined, the

radius vector p may be computed from either of the two ex

pressions, (1) (2) p. 459, but most conveniently from the latter.

Example IV.

Required the Earth's Distancefrom the Sun, the Mean Anomaly

(reckoning from Aphelion) being 4s 12° 22' 12".4, and the

Eccentricity = .016803. See Ex. 2. p. 463.

p = 1 + e . cos. n, if a = 1,

and u = 131° 39' 2".6.
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log. cos. 131° 39' 2".6 9.8225523

log. .016803 2.2253868

log. .011167 8.0479391

(since cos. is — ), p = 1 — .011167 = .988833.

Example V.

Required the Distance of Pallas from the Sun, in the conditions

of Ex. III.

log. cos. 36° 13' 46".4 9-9066881

log. 0.259 1.4132998

log. .208923 9.3199879

 

.*. distance = 1.208923

and log. distance = 0.823979-

The knowledge of these distances is useful *, as we shall

hereafter see, in computations of the heliocentric longitudes and

latitudes of planets. But, in such computations, the logarithms

of the distances are required. Those can, indeed, be immediately

found from the computed distances, by means of the common

Tables ; with more brevity and facility of computation, however,

by taking out, during the process of finding the true anomaly,

when the log. sine is taken out, the log. cosine of the eccentric

anomaly.

Assume then, e . cos. u = cos. 9, or, log. cos. 9 = log. e + log. cos. u ;

thence 9 is known : and, lastly,

log. p = log. (1 +e . cos. m) — 10 = log. (1 + cos. 6) — 10

= log 2- cos. - — 20. s 2

0 9

= log. 2+2 log. cos. -- 20 = 2 log. cos. 19-6989700.

2 2

The sole object of this latter method, is compendium of

calculation.

* The Nautical Almanack expresses the logarithm of the Sun's

distance for every 6th day of the year.
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By means of the preceding rule, (see pp. 460, 46 1,) the true

anomaly (as in the Examples) may always be computed from the

mean, which is known, by a single proportion from the time.

The difference of the true and mean anomalies, is the equation of

the centre, or the equation of the orbit. And, the Solar Tables

assign to the mean anomaly, as the argument, this latter quantity,

instead of the true anomaly. It serves then as a correction or

equation to the mean anomaly, by means of which the inequality

between the mean and true places of a planet, at any assigned

time, may be compensated. It is additive or subtractive, ac

cording as the mean is less or greater than the true anomaly :

subtractive, therefore, whilst the body P moves, from A the

aphelion to B the perihelion, or, through the first 6 signs of mean

anomaly, (reckoning anomaly from the aphelion) and additive,

whilst P moves, from B to A, or, through the last 6 signs of

mean anomaly.

These circumstances, Lalande's Tables (ed. 3.) used to ex

press, in the common way, by the algebraical signs — and + .

But the new Solar Tables, (see Delambre's Tables, and Vince's

Astronomy, Vol. III.) adapted to the operation of addition only,

when the mean anomaly exceeds the true, express not the equation

of tlie centre, but its supplement to 12 signs (360°). The

12 signs, therefore, must be subsequently struck out of the

result. This is not the sole difference in the construction of the

Tables. In Delambre's last*, the mean anomaly is reckoned

from the perihelion, and the equations of the centre are increased

by 45", the sum of several small inequalities : an arrangement

made for the same purpose as the former, 1. 20 ; that of avoiding

the operation of subtraction.

The greatest equation ofthe centre, it is plain, can mean nothing

else than the greatest difference between the true and mean ano

malies ; which must happen when the body P moves with its

mean angular velocity. For, if we conceive a body to move'

uniformly in a circle round E as a centre, with an angular velo

city, the mean between the least of P at A, and its greatest at B,

* Both Tables were constructed by Delambre.
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and such, that departing with P from All the line of the apsides,

it shall, in the same time, again arrive at it, together with P -

then, it is plain, at the commencement of the motion, the first

day, for instance, P moving with its least angular velocity,

describes round E a less angle than the fictitious body does : the

next day, a greater angle than on the first, but still less than the

angle described by the fictitious body : similarly for the third,

fourth day, &c. : so that, at the end of any assigned time, the two

angular distances of the two bodies from the aphelion, will differ

by the accumulation of the daily excesses, of the angular velocity

of the fictitious body, above that of the body P. And this accu

mulation must continue, until P, (always moving, till it reaches B,

with an increasing angular velocity), attain its mean angular

velocity, or, that velocity with which the body moves in the circle ;

then, this latter body can, in its daily rate, no longer gain on

P ; and, past this term, it must lose : exactly at that term, then,

the difference of its angular distance from A, or from the line of

the apsides, must be the greatest.

The difference of the mean and true anomalies is technically

called the Equation of the Centre. If we date the planet's motion

from the aphelion, then, at the beginning of that motion, the planet

moves with its least angular velocity, and consequently the

imaginary point, or body that describes the circle with a mean

uniform velocity, precedes the planet. The true anomaly then is

less than the mean, and consequently the true anomaly is equal

to the mean minus the equation of the centre. If the planet's

motion had been dated from the perihelion (as it is now the

custom in the construction of Tables), then, in a similar position

of P, we should have had the true anomaly equal to the mean

plus the equation of the centre.

In order to determine this term, or the point in the ellipse,

at which the body is moving with the mean velocity, conceive

a circle to be described round £ as a centre, and to cut the

ellipse in some point P, of the figure of p. 457, then such circle

will cut the line EA in some point between E and A. Con

sequently, if the angular velocities be inversely as the squares

of the distances from E, the angular velocity in the ellipse from

3 o
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A to P will be, in every intermediate point, less than the angular

velocity of the body in the circle, in all points between EA and

P. Now the angular velocities are inversely as the squares of

the distances, if the areas described, respectively , by the body in

the ellipse and the body in the circle, be equal*. This last

condition enables us to determine the value of TP, or the value

of the radius of the intersecting circle. For, if the small areas

be equal, the whole areas of the circle and ellipse must be equal,

, • . . area in a given time x period , ,

since the whole area = : : , and the

given time

period, by hypothesis is the same in the ellipse and circle.

• The angle LTp, which expounds the angular velocity, is measured

 

if pn.Tp, which is twice the small area LT'p, be given.
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If, then, x be the sought for value of SP, 2 a the axis major

and ae the eccentricity of the ellipse, we have, by equating the

values of the two areas,

3.14159.x* = 3.14159 x a X a V {l - es);

whence,

x - a . (1 - <?f

iu the solar orbit.

^C1- 4 - 3V * > nearly'

= a x .99992942, nearly,

From the above value of the radius vector, the true and ec

centric anomalies, at the time of the greatest equation, may be

computed, and by the expressions (1), (2), p. 459. viz.,

a.(l-es)

o = , o = a (1 + e . cos. u).

1 — e . cos. v

Hence, the mean anomaly is known by the expression

nt = u + e . sin. u,

and finally there results the greatest equation of the centre =

+ (u — nt,)

Example.

In the Earth's orbit, e being very small (= .016814),

since (1 — e2) = 1 + e .cos. w,

I , e

1 — = 1 + e . cos. u ; .'. cos. u — ,

4 4

e1 3

and 1 — — =(1 — «)(1 + e cos. v) ; cos. v = _ e:

4 4

.'. by the series for the arc in terms of the cosine, and by

neglecting the powers of e,

e

nt — quadrant + - + e,

v = quadrant — ~ e ;
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lit — v, (the greatest equation) = — = 1e, and consequently,

in the Earth's orbit, the eccentricity = i the greatest equation.

This is one method of computing the greatest equation ;

but it is usually determined from observations. For that pur

pose we must observe the longitude of )he body, when its

angular velocity is equal to its mean angular velocity ; thus, ac

cording to Lacaille,

1751. Oct. 7, 0's longitude 6s 13° 47' 13".7

1752. Mar. 28, 0 8 9 25 . 5

difference of the two longitudes 5 24 22 11.8

The mean motion proportional to the

interval of time was 5 20 31 43.2

the diff. or the double of the greatest equation 0 3 50 28 . 6

Hence, the greatest equation of the centre in the Earth's

orbit is 1° 55' 14".3 : and more nearly, by correcting the above

calculation, 1° 55' 33".

The difference of the longitudes of the two points in the

orbit, at which the real motion nearly equals the mean, is equal

to 5s 24° 22' 11", or 174° 22' 1 1". This is a very obtuse angle

formed by two lines drawn from the above two points to the focus

of the solar ellipse. The two points then are not very remote

from the extremities of the axis minor ; they would be exactly

there, if the angle were 178° 4' 28". Hence, the greatest equation

happens when the body is nearly as its mean distance.

In the Example that has preceded, the Sun's longitude was

taken on October 7, and March 28 ; because, at those times,

his daily motions or increases of longitude were equal to his

mean motion. That circumstance was ascertained by first taking

the Sun's longitudes on two successive days, and then their dif

ference, which is his angular motion. The mean angular motion

is nearly 59' 8".3 : the greatest, about the beginning of January,

being 1° l' 10" ; the least, about the beginning of Julv, being

57' 11".

 

J
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We shall perceive the use of the equation of the centre,

when we treat of the equation of time. Astronomers have used

its greatest value in determining the eccentricity of the orbit*.

.E

If E be the greatest equation, and — be put = K,
& H 57°. 2957795 V

then the eccentricity, or

K 1 1 K3 587 Kb

e = tt. — &c. t
2 3.2" 3.5.216

Hence in the case of the Earth's orbit, the eccentricity of which

is very small, we have, retaining only the first term of the series,

and taking E = 1° 55' 33",

* See Lacaille, Mem. Acad. 17 57, P- 123.

t This series was invented by Lambert. The reverse series for the

greatest equation is

11 5QQ

and according to M. Oriani, Ephes. de Milan. 1805.

E= - (2e-p «3 + + &c.^ sin. 2

+ (§* ^ ~ 2^3 C* + &° ) Sin- 2 Z'

- (5^3 63 - ^ fs + &c ) 8in- 3

sin,4z

1097 , . -

2" . 3 . 5

not extending the series beyond terms containing e*.

In a Note to page 460, we gave the series expressing the true

anomaly in terms of the mean and the eccentricity. The following is

Delambre's expression for the equation of the centre, for the year 1810,

in terms of the greatest equation and of the mean anomaly z reckoned

from the perigee :

1° 55' 26".352 sin. z + 1' 12".6'79 sin. 2 z+ 1".0575 sin. 3t

4- Q".018 sin. 4 s.
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K 1° 55' 33"

e-— = = .016807.

2 2 x 57° .2957795

If E be taken = 1° 55' 36".5, (the greatest equation in 1750),

e = .016814.

If £ be taken = 1° 55' 26".8, (the greatest equation in 1800),

e = .016791-

From these two Examples, the diminution of the greatest

equation for 50 years appears to be 9".7 : and, consequently the

secular diminution would be 19".4. Lalande, in his Tables, states

it to be 18".8. Delambre, 17".18.

In the case of the orbit of Saturn, E = 6° 26' 42"

fi 4.4. 1
= 6°.445 ; .'. K = —  .112486,

57.2957795

and e = .056243 - 000031 — .056212.

We have, in the preceding pages, given only one solution

of Kepler's Problem * : which solution is Cassini's, and is an

indirect one. But there are several other solutions of the same

kind, besides those which may be called direct solutions, and are

derived from the simple consideration of the equations of p. 460.

The learned Astronomer of the Dublin Observatory, has con

sidered, in a Memoir of the Irish Transactions, these solutions

and appreciated their exactness.

In this subject the first object of investigation was strictly

a mathematical one. When we apply the result of that investi

gation to the solar orbit, we find the Sun's place therein cor-

* The reverse problem, by the solution of which the mean anomaly

is found in terms of the true, being of little use, has not been introduced

into the text. In order to solve it, find u from v by this expression,

u / / 1 + e\ v '

and then the mean anomaly .(« t) from

nt = e sin. u + u.
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responding to a given time : and this, .as we have stated, is the

first step towards the construction of Solar Tables. But it may

be asked cannot the investigations of the Sun's elliptical place

(which are investigations of no slight intricacy) be superseded

by merely registering each day, his longitude. Will not, at the

same distance of time from the equinox, the Sun's' longitude be

the same in 1800 as it was in 1750? Undoubtedly it would be

so if the solar ellipse remained fixed in the heavens and of the

same dimensions : and in such a case we could dispense, in the

solar theory, at least, with Kepler's problem. But if the two

preceding circumstances should not take place, if, for instance,

the place of the apogee should not remain fixed, the intersection

of the equator and ecliptic would not take place in the same

point of the solar ellipse. The angular velocity, therefore, of the

Sun, in his real orbit, would be variable at that point. It would

not be the same in 1800 as in 1750 : and, consequently, the Sun's

longitude, after the elapsing of a certain time from his departure

from the equinox, would not solely depend on such elapsed time.

Predicaments similar to these would happen, if the dimensions of

the solar orbit (its eccentricity for instance) should be changed.

For the above reasons, then, we cannot rely solely on past

observations of the Sun's longitude in predicting his future

longitudes. Theoretical calculation must be combined with

observation. The former will enable us, as we have seen, to

assign a body's place in an ellipse when the time from the apside

(the mean anomaly, in fact) and the eccentricity of the orbit are

given. But, for the purpose of application, we must know the

situation of the axis major, or the longitude of one of the apsides.

For such knowledge we may have recourse to observation : not

indeed to mere observation, but to observation combined with its

appropriate method.

The methods then, of so using observations, that from them

we may conveniently and exactly deduce the place and motion of

the aphelion of a planet's orbit, and the quantity and variation of

its eccentricity, will form the subjects of the ensuing Chapters.



CHAP. XIX.

On the Place and Motion of the Aphelion of an Orbit.—Dura

tion of Seasons.—Application bf Kepler's Problem to the

determination of the Sun's Place.

It follows from what was remarked in p. 445, that the Sun in

his perigee being at his least distance, and in his apogee, at his

greatest, his apparent diameter in those positions would be re

spectively the greatest and least. If, therefore, we could, by

means of instruments, measure the Sun's apparent diameter with

sufficient nicety, so as to determine when it were the least, the

Sun's longitude computed for that time, would, in fact, be the

longitude of the apogee *.

Or if, computing, day by day, from the observed right ascen

sion and declination, the Sun's longitude, we could determine

when the increments of longitude were the least, the Sun's lon

gitude, computed for that time, would be that of the apogee :

for, the Sun's angular motion in that point is the least.

The difference of two longitudes thus observed, after an in

terval of time (O would be the angle described by the apogee in

that interval. .And if the longitudes were not accurately those

of the apogee, still, if they belonged to observations, distant from

each other by a considerable interval of time, the motion of the

apogee would be deduced with tolerable exactness ; since, in such

a case, the error would be diffused over a great number of years.

* Apogee, if the Sun be supposed to revolve, Aphelion, if the Earth ;

and, although, in reality, it is the latter body which revolves, yet, since

it affects not the mathematical theory, we speak sometimes of one revolv

ing, and sometimes of the other ; and, with a like disregard of precision,

we use the terms apogee and aphelion.
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Thus, by the observations of Waltherus,

1496. Longitude of the apogee 3s 3° 57' 57"

In 1749, (by Lacaille) 3 8 39 0

.'.progressive motion in 253 years 0 4 41 3

whence the mean annual progression* results equal to 1 6":

differing, however, from the result of better observations and

methods by more than l' 2".

Thus, in the Berlin Memoirs of 1785, M. Delambre, in treating

of the Solar Orbit, compares the places of the apogee given by

Waltherus (by Lacaille's Calculations) Cocheon King, La Hire,

and Flamstead, with Maskelyne's.

Astronomer. Year. Longitude of Apogee. Progression.

Waltherus .... 1496 3s 3° 57' 57" ... . 65".385

Cocheon King. .1279 3 0 8 0 ....64.606

La Hire 1684 .... 3 7 28 0 62 . 1 16

Flamstead .... 1690 3 7 35 0 61.584

4) 253 .691

Mean result 63 . 423

Hence, if the equinoctial year be estimated at 365 d5h 49m V.374,

the anomalistic year, since the time of describing 63".423

/ 63".423 \ . . „
V = 5Q' 8" 3 x 2V = 25m 42s-4' 18 365 6 7 24\307.

The more accurate method, however, of determining the pro

gression of the apogee rests upon a very simple principle. Let

SEr be a right line, and draw TEt making with the axis major

AB of the ellipse, an angle TEA = SEA : now, the time

through rBtS is less than the time through the remaining arc

* Progression is here meant to be used technically : a motion in

cotuequentia, or, according to the order of the signs.

3 P
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SATr : for, the equal and similar areas SEt, TEr, are described

in equal times, but the area rEt is < area SET ; therefore, by

 

Kepler's law (p. 445,) it is described in less time; therefore

rEt + SEt, which is equal to the area SErtS, is described in

less time than SET + TEr, which compose the area SErTS;

therefore the body moves through the arc rBts in less time than

through STr. And this property belongs to" every line drawn

through E, except the line AEB, the major axis, or, the line of

the apsides, that line which joins the aphelion and perihelion of

the orbit.

Hence it follows, if, on comparing two observations of the

Sun at S and at r, (that is, when the difference of the longitudes

is 6 signs or ] 80 degrees) it appears that the time elapsed is not

half a year, we may be sure, that the Sun has not been observed

in his perigee and apogee. If the interval should be exactly, or

nearly, half a year, then we may as certainly conclude, that the

Sun was, at the times of observation, exactly, or very nearly, in

the line of the apsides.

If the interval of time be nearly half a year, (which is the case

that will occur in practice,) then we must find the true position

of the apogee by a slight computation, which shall be first alge

braically stated, and then exemplified.

The time from'r to S — the time from r to B + the time

from B to A — the time from S to A ;
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.*. time from B to A — time from r to S = . . . . (a)

time from S to A — time from r to JB.

Now the first difference is known, being the difference between

half an anomalistic year * and the observed interval of obser

vation: and of the second difference, the second term may be

expressed by means of the first : thus, let the first term = t :

then by Kepler's law, (see p. 445,)

, arear-EB

time from r to o = t X

area SEA

rBx EB . ftl . , .. 'x

= t x —— — (r and o being near the apsides)

oA x JojA.

r B EA EE2

~tx EB* SA* EA3

angular velocity at A

= 1 x ~S 1 / ♦ R ^See P. 470->

angular velocity at B

Now, the angular velocities at A and B, or the increments of

the Sun's longitudes at the apogee and perigee, being known

from observation (see p. 431,) and the time from r to B being

expressed in terms of those velocities and of t, the quantity t is

the only unknown quantity in the equation (a) 1. 1, and ac

cordingly may be determined from it. But t being obtained, we

can thence determine the exact time when the Sun (S) is at the

apogee A : and his longitude, computed for that time, is the

longitude of the apogee.

Example.

1743. Dec. 30, 0h 3m 7s O 's longitude ... 9" 8° 29' 12".5

1744. June 30, 0 3 0 3 8 51 1.5

.*. difference of 2d and 1st longitudes 6 0 21 49

therefore at the 2d observation June 30th, the Sun was past S.

* The time from the Sun's leaving the apogee to his return to the same.



480

In order to find when he was exactly at S, that is, when the

difference of the longitudes was exactly 6' ; or (supposing the

perigee to have been progressive through 3l"), when the difference

of longitudes was 6' 0° 0' 3l", we must find the time of de

scribing the difference of 2l' 49", and 3l", that is, 2l' 18".

Now this time, since on June 30, the Sun's daily motion in

longitude was 57' 12", equals X 24h, or 8h 56m 13' : take

this from the time (June 30, Oh 3m) of the second observa

tion, and there results, June 29, 15h 6m 47s, for the time when

the difference of the longitudes of the Sun at r and near S was

180° Of 31".

The interval between this last time, and Dec. 30, 0h 3m 7',

the time of the first observation, is 182d 15h 3m 40s, nearly the

time from r to S : but, this time is less than half an anomalistic

year* which is 182d 15h 7m 1": and see (a) p. 479, I. I,

t — time from r to B = 3m 21".

But, see the same page, I. 12,

57' J2"

the time from r to B = t x

61' 12"'

4'
substituting, t x „ = 3m 21s, and consequently,

t = 47m 54s.

Add this to the time, June 29, 15h 6m 47", when the Sun was

at S, and we have, June 29, 15h 54m 41s for the time when the

Sun was in the apogee.

* In this method, which is to determine accurately the given place

of the apogee, the motion of the latter, and the length of the anomalistic

year are supposed to be known to some degree of accuracy. The one

is stated to be 62"; the other, 365d 6h 14m 2\ But, if both be sup

posed unknown, if we take the difference of the longitudes of r and <S to

be simply 6', and the elapsed time to be half the tropical year, still the

method will give the place of the apogee very nearly, which may serve

as a first approximation to the true place.
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The Sun's longitude at that time must be less than his

longitude (3' 8° 5l' l".5) on June 30, Oh 3m by the difference

due to the difference of the times, which is 8h 8m 19s : the former

difference then is equal (since the increase of longitude in 24 hours

was 57' 12") to

8" 8mh19' x 57' 12"= 19' 21";

hence the longitude of the apogee = 3s 8° 5l' l".5 — 19' 2l" =

3' 8° 31' AO".5, or 98° 3i' 40".5, or 8° 3l' 40".5, past the

summer solstice.

We will now add another Example, the materials of which

are drawn from Delambre's Memoir on the Solar Orbit, inserted

in the Berlin Memoirs for 1775.

June 30, 1776.

First Operation—Tofind the Error of the Sidereal Clock at the

Time of the Sun's passing the Meridian.

a Virginis. Art-turns.

M. by clock 13h 10m 9" .08 14h 2m lls.47

bycatalogue(seep. 352, &c.)13 13 25.83 14 5 27.88

v 0 3 16.75 0 3 16.41

clock slow 3 16.75 .... at ... . 13h 13m

ditto 3 16.41 14 5

.-. by a mean, clock slow 3 16.58 . ; 13 39

But the Sun passed seven hours previously.

Second Operation—Clock's Rate.

Now clock's rate in 24h - 1.7)6

/.in 6 — 0.42

in 1 07

in 7 - 0.49

O's transit by clock 6h 36m 23s.21

, , ( 0 3 16.58
clock s error i

I - 49

O 's right ascension 6 39 39 . 3
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Third Operation—Conversion of the Right Ascension in Time

into Space.

By Zach's Tables, Tab. XXIX, or Vince's, vol. II.,p. 297,

6h 3' 0° 0' 0"

39 0 9 45 0

39 . . 0 0 9 45

3 0 0 0 4.5

3 9 54 49.5 Sun's right ascension in space.

The obliquity was 23° 28' 4", from that and the right ascension

find the Sun's longitude by Naper's Rule, or thus, by the Tables

of Reduction to the ecliptic.

Fourth Operation—Reduction of Equator to the Ecliptic *.

See Zach's Table XXI, in his Tabula Motuum Solis, or

Vince's Table, Astronomy , vol. II, p. 352.

Add 3'.

Reduction. Difference for 1'.

6" 9° 50' 0".0 0' 0° 47' 57".45 4".703

0 0 4 49 . 5 0 0 0 22 . 69 4

(obliquity being 23° 28') 0 0 48 20.14

add for 4" 0 0 0 0.27

18.812 for 4' 0".0

3 .88 0 49 .5

22.69 4 49.50 0 48 20.41

Sun's right ascension . . 3 9 54 49 . 5

Sun's longitude 3 9 6 29 . 1

and this is the whole of the process for the actual finding of the

Sun's longitude from his observed right ascension.

By a similar process performed on Maskelyne's observation

of the Sun's transit on the December 31, we have

©'s longitude = 9" 10° 3i' 7".6.

Fifth Operation—Difference of Sun's Longitude found.

The above are the Sun's longitudes when his centre was on

* See Chapter XXI.
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the meridian : they belong, therefore, to apparent noon : if,

therefore, we add the equations of time (which are 3" 13",

3m 53', respectively) we shall have,

1776, June 30, & Sm 13% G 's longitude = 3' 9° 6' 29".l

Dec. 31, 0 3 53 = 9 10 31 7 .6

difference of Sun's longitudes 6 1 24 38 .5

If we take from this 33', the half yearly progression of the

apogee, we have the difference of the Sun's longitudes equal to

6s 1° 24' 5".5 ;

consequently, by reason of the excess 1° 24' 5".5 above 6", or

180°, the Sun at the times of the two mentioned observations

could not occupy, respectively, the extremities of a line drawn

through the focus of the orbit. If t were his position on Dec. 31,

at 3m 53", T could not have been his position on June 30,

at 0h 3m 13' : or, if s were his position at" the former time, S

could not have been his position at the latter.

Suppose a to be the place of the Sun at the former time,

then the difference between the longitudes of T and being 6',

a Twill be equal to 1° 24' 5".5 : in order to find the time of

describing it, we have from the Solar Tables, or Nautical Almanack,

or by the reduction of observations made on the noons of June 30,

and July 1,

June 30, Sun's longitude 3" 8° 23' 27"

July 1, 3 9 20 40

0 0 57 13

Hence, in 24 hours, nearly, the Sun moved through 57' 13",

consequently, he described

/ 1° 24' b" 5\
1° 24' 5".5 in 35h 18m Is ( = 24 —, ^ ) ;

and consequently, he was at Ton July 1, at 11h 21m 14'.

But, the two opposite positions of the Sun, instead of being,

as we have supposed them to be, at T and t, might have been at

A. and B, or at S and «. In order to ascertain this point, we

have the difference of the two times (Dec. 31, 0h 3m 53', and
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July 1, 11h21m 14")equal to 182d I2h 42m39'. Now (see p. 480,)

the half of an anomalistic year is 182d 15h 7m Is*: consequently,

the time from t to T is less than the time from A to B, which it

ought to be, since (as in p. 478,) the time from T to t = time

from A to B — time from A to T +. time from B to t = time

from .A to B — some quantity, whereas, if S and r had been the

points, we should have had the time from S to T = time from

A to B + time from S to A — time from r to B, = time from

A to B + some quantity.

The Sun, therefore, must have been at some such opposite

points as T and t, or, in other words, must, on July 1, 1 lh 21m 14',

have already passed the apogee.

What remains, then, to be done is the computation of the

times of describing AT, Bt.

Sixth Operation—Corrections of the Times of the Sun's passing

the Apsides.

Let t, t', be the times of describing them,

t' . area AET ,

then t = PTF— (see P- 479.)

area Bht

t'.AT.AE

Bt.BE

(the points T, t'} being near to the apsides)

AE* = , (1 + e)

~ BE" (1— e)4J

e being the eccentricity.

4 e 4 £

Hence, t — t' — t' . , or = t

consequently, t — (r — t')

t' = (t — t')

(1 -«)«'"■ '{1+eT

(1 + ef

4 e

(1 - e)2

4e '

and t — i = half the anomalistic year — the time from T to t

in the case before us = 2h 25m 3s.

* Or more exactly 182d 15h 6m 59sA.
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Hence, if e be the eccentricity for 1776,

log. 2h 25m 3" = 3.939669 3.939669

, (1 + ef (1 - eY

log. — = 1.187047 log. = 1.157859

4 e 4 e

(log. 133880.5) 5.126716 (log. 125718) 5.097528

Hence, since

time at Tis July 1, lih 2lm 14' at t Dec. 31, 0h 3m 53s

t = 37 11 20.5 .... and t' = 34 46 18

.•.timeat-4 June 29, 22 9 53.5 time at B Dec. 29, 13 17 35

which are, respectively, the times of the Sun's passing the apogee

and perigee.

The interval of these two times, or the half of an anomalistic

year is,

182*1 I5h 7™ 41'.5.

The above methods* of determining the place of the apogee

are due to Lacaille. That author, on the grounds of simplicity

and uniformity, suggested the propriety of reckoning the anoma

lies from the perihelia of orbits, since, in the case of Comets, fhey

are necessarily reckoned from those points. In the new Solar

Tables of Delambre this suggestion is adopted, (see Introduction :

also Vince's Astronomy, vol. III. Introduction, p. 2.)

In these new Tables the progression of the perigee, and conse

quently that of the apogee, is made to be about 6l".9 ; and the

mean longitudes of the perigee for 1750, 1800, 1810, are re

spectively stated at 9" 8° 37' 28"; 9" 9° 29' 3"; 9' 9° 39' 22".

The longitude of the winter solstice is 9"; therefore in 1810

the perigee was 9° 39' 22" beyond it; at this time, the daily

motion of the Sun was 6l 11"; therefore, the solstice happening

on December 22, the Sun would be in his perigee about nine

days after, or about December 31.

. * The method is explained, with singular clearness, by Dalembert,

in the historical part (L'Histoire) of the Memoirs of the Academy of

Sciences for 1742.

3 Q
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From the longitude for any given epoch, and its annual

progression, the position of the apogee and of the axis of the

solar ellipse, may, by simple proportions, be found for any other

epoch. Suppose, for instance, it were enquired when the axis of

the solar ellipse was perpendicular to the line of the equinoxes?

This, in other words, would be to enquire, when the longitude of

the perigee was 270°, or 9'- Now, its longitude, in 1750, was

9' 8° 37' 28": the number of years therefore requisite to describe

the difference, or 8° 37' 28", taking the annual progression at

8° 37' 28"

62", equals —u , or about 500 years ; that is, the major axis

was perpendicular to the line of the equinoxes in the year 1250.

The major axis coinciding with the line of the equinoxes the

longitude of the perigee was 180°, or 6s. Between that epoch,

therefore, and 1250, the whole quantity of the progression of the

perigee was 9" 8° 37' 28" — & = 3' 8° 37' 28": and the time of

3' 8° 37' 28" 1

describing it since = 5720 was 5720 years. The

epoch happened then about 4000 -years before the Christian iEra,

and is a remarkable one, inasmuch as chronologists consider it

to be that of the beginning of the world.

The knowledge of the place of the perigee is necessary to

determine the durations of seasons ; which are perpetually

 

varying from its progression. If W, S, in the Figure, represent
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the winter and summer solstices, V and 0 the vernal and autumnal

equinoxes, PEA the axis of the solar ellipse ; then, in the year 1250,

P coincided with W ; and, on that account, the time from the au

tumnal equinox O to the summer solstice W was equal to the time

from W to the vernal equinox V. Past that year, P, by reason

of its progressive motion, began to separate from W ; and in

1800, the separation, measured by the angle PEW, was 9° 29' 3".

By means of this separation, those parts of the elliptical orbit in

which the Earth's real motion is the quickest, being thrown

nearer to V and away from O, the time from the autumnal equinox

0 to the solstice W, became gradually greater than the time

from W to the vernal equinox : and the time from V to S became

less than the time from S to O. In 1800, the following were

nearly the lengths of the seasons :

VtoS 92* 21h 44m 28"

S to O 93 13 34 47

0 to W 89 16 47 20

W to V . 89 1 42 23

length of year 365 5 48 58

This motion of the perigee also, as will be shewn in a sub

sequent Chapter, continually causes to vary the equation of time.

What has been said concerning the duration, and change of

duration, of the Seasons, is, in some degree, digressive ; the

main object of the Chapter being to explain the method of finding

the place, that is, the longitude of the perigee, in order that

Kepler's problem might be applied to the determination of the

Sun's place.

By Kepler's problem, we are enabled, from the mean anomaly,

to assign the true anomaly, or true angular distance, reckoning

from perigee*. The mean anomaly of the Sun, is his mean

angular distance computed from perigee : in the Figure, if b be

the Sun's mean place, it is / PEb. Now,

* The mean anomaly is stated to be reckoned from perigee, since the

succeeding extracts are from Delambre's new Solar Tables.
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i PEb = z PEV - i VEh,

and, if V be the first point of Aries,

I PEV — 12' — mean long, perigee,

and L VE b = 12s - mean long. G .

Hence, the mean anomaly is the difference between the mean

longitudes of the Sun and of the perigee. And the Solar Tables

assign the mean anomaly by assigning these longitudes. And

then, in the same Tables, the mean anomaly is used as an argu

ment for finding the equation of the centre. The process may be

illustrated by specimens from the Tables, and their application to

an Example.

From Table I.

Years.
Mean Longitude

of the Sud.

Longitude of

Sun's Perigee.

1809- 9' 10° 42' 49". 8 9' 9° 38' 20"

1810. 9 10 28 30.2 9 9 39 22

181 1. 9 10 14 10.5 9 9 40 24

Years.

From Table IV.

Motion for Days. November.

Mean Longitude

of the Sun.
Perigee.

Com. Bissex.

Days.

12 1 1 10* 10° 28' 44" 53".5

13 12 10 11 27 52.3 53.6

14 13 10 12 27 0,7 53.8
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Motion of the Sun for Hours, Minutes, Seconds.

From Table V.

Hours. Minutes. Seconds.

H. Motion of Sun. M. Motion of Sun. S. Motion of Sun.

1 2' 27".8 1 2".5 1 o".o

2 4 55 . 7 2 4.9 2 0. 1

3 7 23.5 3 7.4 3 0.1

From Table VII.

Equation of the Sun's Centre for 1810, with

the Secular Variation. (S. V.)

Mean

Anomaly.
Equation.

Diff.

+
S. V.

10' 12° 0'

10 12 10

10 12 20

10 12 30

11* 28° 32' 14".7

11 28 32 28.2

11 28 32 41 . 7

11 28 32 55.2

13".5

13 .5

13.5

13.6

13". 13

13.09

13 .06

13.03

Suppose now the Sun's longitude were required for 1810,

November 13, 2h 3m 2*.

Table I. 1st, the mean longitude for the *

beginning of 1810, is 9' 10° 28' 30".2

Table IV. Nov. 13. 10 11 27 52 . 3

f 2h 0 0 4 55 . 7

Table V. < 3m 0 0 0 7.4

C 2' . . . 0 O 0 0.1

rejecting 12', mean long, at time required (a) 7 22 1 25.7
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The longitude of the perigee is to be had from the same

Tables ; thus :

Table I. Long, at beginning of ] 8 10 ... . 9' 9° 39' 22".0

Table IV. Nov. 13 0 0 0 53.6

longitude of perigee at the time required ... 9 9 40 15 .6

subtract this from (a) increased by 12 signs,'

there results the mean anomaly . . .

| 10 12 21 10. 1

With this mean anomaly enter Table VII, and there results

the equation to the centre 11' 28° 32' 42".2

add to this the mean longitude (a) 7-22 1 25 . 7

7 20 34 7-9

This result, 7' 20° 34' 7".9» is (if no other corrections are re

quired to be performed) the true longitude reckoned from the mean

equinox. But, as it has been shewn (pp. 353, &c.), the place of

the equinox varies from the inequalities of the Sun's action, and

of the Moon's action in causing the precession. Two equations,

therefore, must be applied to the above longitude, in order to

compensate the above inequalities, and so to correct the longitude,

that the result shall be the true longitude, reckoned from the true

place of the equinox. Now, it happens, by mere accident, that,

in the above instance, the lunar and solar nutations are equal to l",

but affected with contrary signs. These corrections, therefore,

affect not the preceding result. The correction for aberration

(see p. 307,) has, in fact, been applied ; for, since that, in the case

of the Sun, must be nearly constant, (and it would be exactly so,

if the Sun were always at the same distance from the Earth) the

Solar Tables are constructed so as to include, in assigning the

mean longitude, the constant aberration (20"). The variable part

of the aberration (variable on account of the eccentricity of the

orbit) is less than the 5th of a second. Let us see then, whether

the longitude that has been determined, from a knowledge of the

place of the perigee, and from Kepler's problem, expressed by

means of Tables, be a true result :
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By the Nautical Almanack for 1810; we have

Nov. 13, Sun's longitude

Nov. 14,

7' 20° 29' 8'

7 21 29 36

increase in 24 hours 0 1 ,0 28

Now the Sun's longitude is expressed in the Nautical Alma

nack for apparent time : and the equation of time being — 15m 33',

the mean time is I lh 44m 27*. Hence, we must find the increase

proportional to 2h 18™ 35', which is about 5' 47"; consequently

the Sun's longitude, on November 13, 2h 3m 2", (mean time) was

7" 20° 34' 55", which differs from the preceding result, p. 490, 1.11,

by about 47"; consequently, Kepler's problem is not alone suf

ficient to determine the Sun's place, but some other corrections

are requisite to compensate this error of 47 seconds.

Such corrections are to be derived from a new source of

inequality ; the perturbation of the Earth caused by the attracting

force of the Moon and planets ; the nature of which will be

briefly explained in the ensuing Chapter.



CHAP. XX.

On the Inequalities of the Earth's Orbit and Motion, caused by

the Disturbing Forces of the Moon and Planets. On the

Methods of determining the Coefficients- of the Arguments of

the several Equations of Perturbation.

The discovery of Kepler relative to the form of a Planet's Orbit

did not extend beyond the proof of its being an ellipse : and in

his problem he shewed the method of assigning the planet's

place in such an ellipse.

If M be the mean anomaly and E the equation of the centre,

then, the planet's elliptical place, or true anomaly is equal to

M + E.

Newton shewed, on certain conditions and a certain hypothesis,

that that must needs take place which Kepler had found to take

place. It appears from the third Section of his Principia, that

if a body, or particle projected, from A perpendicularly to EA,

 

(E being the place of a body attracting a particle at A, and
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elsewhere with a force inversely as the square of the distance

from E), would describe an ellipse, of which E would be the

focus.

The revolving particle or body A, is supposed to be attracted

towards E, or to be incessantly urged towards E, by a centripetal

force arising from a number of attracting particles, or from an

attractive mass, placed at E\ The centripetal force being the

greater, the greater such mass is, and in that proportion.

If in EA produced, we place, at an equal distance from A,

another body of equal mass, and of equal attractive force with

the body at E, and again suppose the body at A to be projected ;

then, since it is equally urged to describe an ellipse round the

new mass, as round that originally placed at E, it can describe

an ellipse round neither, but must proceed to move in a direction

perpendicular to EA.

In this extreme case, the elliptical orbit, and the law of

elliptical motion would be entirely destroyed.

If now we suppose the mass of the new body to be dimi

nished, or its distance from A to be increased ; or, if we suppose

both circumstances to take place, then, the derangement, or per

turbation, of the body that is to revolve round E, will still con

tinue, but in a less degree. An orbit, or curvilinear path, concave

towards E in the commencement of motion, will be described ;

but, neither elliptical, nor of any other class and denomination.

In this latter case, the new body, being supposed less than

the body placed at E, may be called the disturbing body ; disturb

ing, indeed, by no other force than that of attraction, with which

the body at E is supposed to be endowed ; but which latter,

from a difference of circumstance merely, is denominated a Cen

tripetal force. In the first supposition, of an inequality of mass

and distance in the two bodies, from the similarity of circum

stance, either body might be pronounced to be equally attracting

or equally disturbing.

The disturbing body, whatever be its mass and distance, will

always derange the laws of the equable description of areas, and

.3 R
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of elliptical motion. If its mass be considerable, and its distance

not very great, the derangement will be so much as to render the

knowledge of those laws useless in determining the real orbit, and

law of motion, of the disturbed body. In such case, Kepler's

problem would become one of mere curiosity ; and the place of

the body would be required to be determined by other means.

If, however, the mass of the disturbing body be, with refer

ence to that of the attracting body, inconsiderable, then the

derangements, or perturbations, may be so small, that the orbit

shall be nearly, though not strictly, elliptical ; and the equable

description of areas, nearly, though not exactly, true. Under

such circumstances) Kepler's problem will not be nugatory. It

may be applied to determine the place of the revolving body,

supposing it to revolve, which is not the case) but which is nearly

so, in an ellipse. The erroneous supposition, and consequently

erroneous results, being afterwards corrected by supplying certain

small equations, that shall compensate the inequalities arising

from the disturbing body.

In the predicaments just described, are the bodies of the

solar system. The mass of the Sun, round which the Earth

revolves, is amazingly greater than that of the Moon *, which

disturbs the Earth's motion : greater also, than the masses of the

planets, which, like the MoOn, must cause perturbations. The

Earth, therefore, describes very nearly an ellipse round the

Sun.

As a first approximation then, and a very near one, we may,

as in the last Chapter, determine the Sun's, or Earth's place, by

means of Kepler's problem : and subsequently correct such

place, by small equations due to the perturbations of the Moon,

and of the planets.

But, how are thess small corrections to be computed ? By

rinding, for an assigned time, an expression for the place of a

* The Sun is 1300000 times greater than the Earth, and the Earth

more than 68 times greater than the Moon.
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body, attracted by one body, and disturbed by another ; the

masses, distances, and positions, of the bodies being given ; that

is, by solving what, for distinction, has been called .the Problem

of the Three Bodies.

The consideration of three bodies is sufficient : for suppose,

by the solution of the problem, the equation, or correction, for

the Sun's longitude, to be expressed, by means of the Sun's and

Earth's masses, distances, &c, and of other terms denoting the

mass, distance, &c, of a third body ; then, substituting, for these

latter terms, the numbers that, in a specific instance, belong to the

Moon, the result will express the perturbation due to the Moon,

Instead of the Moon, let the third body be Jupiter: substitute, as

before, the proper quantities, and the result expresses the per

turbation due to Jupiter: and similarly for the other planets.

The sum of all these corrections, separately computed, will be

the correction of the lougitude arising from the action of alj the

planets.

The above corrections are what are necessary to complete the

process of finding the Sun's longitude, and to supply the de

ficiency of several seconds, from the true longitude. The number

of corrections which it is necessary to consider, and which the

latest Solar Tables enable us to assign, is five; arising from the

perturbations of the Moon, Venus, Mars, Jupiter, and Saturn.

Those of Mercury, the Georgium Sidus,. Ceres, Juno, and Pallas,

are disregarded.

The computation of these perturbations has been attempted

in another place (see vol. II. on Physical Astronomy), by the

approximate solution (all that the case admits of) of the problem

rf the three bodies. Even by the little explanation that has

already (see p. 494,) been given, it is plain that the results of that

solution are essential to the solar theory, and to the construction

of Solar Tables. They are equally essential to the planetary

theory. In fact, they are as much a part of Newton's System,

as the elliptical forms of planetary orbits, and the laws of the

periods of planets. The perturbation of the planetary system is

as direct a consequence of the principle of universal attraction,
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as the regularity of that system would be, on the hypothesis of the

abstraction of disturbing forces. The quantities of the pertur

bations are, indeed, small and not easily discerned : but they are

gradually detected as art continues to invent better instruments,

and science, better methods, and they so furnish not the most

simple proof, perhaps, but the most irrefragable proof of the

truth of Newton's Theory.

Observation, it is plain, must furnish numerous results, before

the formulae of perturbations can be numerically exhibited, or,

what is the same thing, be reduced into Tables. The positions

and distances of the planets must be known : for, without any

formal proof, we may perceive, that, according to the position

of a planet, the effect of its disturbing force may be to draw the

Earth either directly from, or towards, the Sun, or, in some

oblique and transverse direction. In fact, the heliocentric longi

tudes of the Earth and the planets form the arguments in the

Tables of perturbations.

Having thus explained, in a general way, the theory of per

turbations, we will complete the Example of p. 490, by adding

certain corrections, computed from that theory, to the Sun's

longitude.

By p. 490, 6 's longitude 7s 20° 34' 8"

correction due to 2) 0 0 0 5.5

to 9 0 0 0 17.49

to $ • 0 0 0 4 . 32

to 11 0 0 0 12.7

to J? 0 0 0 0.6o

.-.Nov. 13, 1810. 2h 3m 2"; O 's true long'. . 7 20 34 48.86*

* This determination of the Sun's longitude is less by about 7 seconds

than the longitude as stated in the Nautical Almanack. But, this latter

was computed, (see Preface to the Nautical Almanack) from Lalande's

Tables, inserted in the 3d Edition of his Astronomy : which differ by a

few seconds from Delambre's last Solar Tables (Vince's, vol. Ill,) and

from which the numbers in the text were taken.
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By computations like these carried on by the aid of Tables

(see pp. 490, &c.)> the Sun's longitude is computed for every day

in the year, and then registered ; in the Nautical Almanack of

Great Britain, the Connoissance des Terns of France, and in the

Ephemerides of Berlin, and of other cities. The use of registering

the Sun's longitude is explained in the Nautical Almanack, at

p. 163, &c.

In page 495, I. 5, it was said that the problem of the three

bodies was sufficient for the computation of all the inequalities.

But this is rather, if we may so express ourselves, practically

than metaphysically exact : it is founded on this, that, if v and i

should be the perturbations of the Sun's elliptical longitude (L)

by Venus and Jupiter, the resulting longitude will be

L + v + i,

whereas i ought, in strictness, to be computed for a longitude

L + v, and v for a longitude L + i. The differences in the two

cases are, however, insensible : v and i not exceeding 10".

We may add too, some farther limitation to the assertion, that

the perturbations of the solar orbit (the variations produced in

the Sun's elliptical longitude and distance) are to be computed,

by means of the problem of the three bodies. Theory alone is not

adequate to the above purpose. For, if the Earth be displaced

from its elliptical orbit (be made exorbitant) by the action of a

planet, the displacement, in a given position, will be the greater,

the greater the mass of the disturbing planet. We must, there

fore, know that mass, if we would, a priori, compute the displace

ment. Now, although the masses' of Jupiter and Saturn are

known from the periods of their satellites, the masses of Venus

and Mars and Mercury are not. We can, indeed, setting out

from certain effects of their action, indirectly approach, and ap

proximate to, their values (see vol. II, p. 477, &c). But the method

is not a sure one ; so that, in computing the perturbations of the

Earth's orbit (of which that due to Venus from her proximity to

the Earth is probably the greatest) we are obliged to look to

other aid than that of mere theory.
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The method to be pursued on this occasion is similar to that

by which the corrections of the epoch, of the greatest equation,

and of the longitude of the apogee, will be investigated in a fol

lowing Chapter. Thus the true longitude, or L is equal to

M + E + P,

P being the sum of the perturbations, due to the actions of

Mercury, Venus, the Moon, &c. : now the arguments of the per

turbations are the differences between the longitudes of the dis

turbing planet and the Earth, or multiples of those differences :

thus, if the symbols representing the Moon, Sun, Venus, 8tc.

be made to denote their longitudes, the argument for the Moon's

perturbation will be 5 — for Jupiter's 2£ — ©, 2(2£ — G);

for Venus's (J — © ), 2 ( ? — O), &c. : so that, assuming a, b,

c, &c. to be the coefficients of the arguments, the lunar pertur

bation will be denoted by a. sin. ( 3) — O); Jupiter's by 6. sin.

(11 — O ) + c . sin. (2U — 2 O ), &c. and accordingly, the whole

perturbation or

P= a. sin. (D - O) + A . sin. — ©) + c . sin. (22f - 2 O )

+ d. sin. ( ? — ©) + &c.

compute now the Sun's longitude from the elliptical theory, then,

(supposing the epoch, greatest equation, &c. to be exact) the

computed longitude will differ from the observed by an error C,

which error arises from the perturbations of the planets ; ac

cordingly,

C = a. sin. ( S — © ) + b. sin. ( % — © ) + &c.

-M.sin. ( J — ©) + &c.

in which 5 , © , If. , the longitudes of the Moon, Jupiter,

Venus, Sec. are known, since C is the difference between two

longitudes, one observed at a given time, the other computed for

the same time. Repeat the operation : or find C, C", C", &c. the

differences between certain observed and computed longitudes, and

there will arise equations similar to the one that has been just

deduced ; and, it is plain, we may form as many equations as there

are indeterminate coefficients a, b, c, &c. from which, by elimi

nation, the values of a, b, t; &c. may be deduced. Or, we may

form several groups or sets of equations, on the principle of forma

tion which with be hereafter explained, and obtain, by addition,
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equations that shall be, respectively, most favourable for the

deductions of the values of a, b, c, &c. *

If the Moon's equation consist of one term, Venus's of two,

Jupiter's of two, Mars of two, there will be required, at the least,

seven equations' for the determination of the seven coefficients.

Now the same method, which has been here described for determi

ning these coefficients, will be, in the next Chapter, used for deter

mining the corrections of the elements of the solar orbit : which

elements are here meant to be, the epoch of the mean longi

tude, the eccentricity, and the longitude of the apogee. Three

equations, therefore, will be required for such purpose : conse

quently, if, by one and the same operation, we seek to correct the

elements, and to determine the corrections dire to the perturbations

of the Moon and the above-mentioned three planets, we must

employ, at the least, ten equations. We shall, however, soon see

that it is more expedient to employ and to combine one hundred

equations, in order to obtain, by virtue of the principle of mean

results, exact results. No one of the coefficients of the equations

of perturbations exceeds nine seconds f.

* The priuciple is this : if a be the coefficient, select those equations

in which the values of the term (o sin. A) is the greatest, make them all

positive (by changing, if necessary, the signs of all the other terms of the

equation) and add them together for the purpose of forming a new

equation.

+ If * be the longitude and S v be the error or correction due to the

perturbations of the planets,

«» = 8".9sin.(J - ©)+ 7".059.sin.(-V.- ©)-2".51 . sin.2(V~ ©)

+ 5".29.sin. (? - ©)- 6".l sin. 2(9 - O)

+ 0".4 sin. ( 6 - © ) + 3".5 sin. 2 (<J - © ).

See Physical Astronomy, p. 311. M. Delambre, (Berlin Memoirs,

1785, p. 248), add one more equation for Jupiter, three for Venus, and

three for Mars.



CHAP. XXI.

On the Methods of Correcting the Solar Tables. The Formula

of the Reduction of the Ecliptic to the Equator, fyc.

We have, in the preceding Chapters, explained and illustrated

the method, of rinding a priori, or by theory and antecedent

calculations, the Sun's longitude. The steps of the method are

several. The first is to find, from a given epoch and elapsed

time, the Sun's mean longitude (L) : the next, to find, from the

position of the apogee, at a given epoch, and the quantity and

law of its progression, the longitude {A) of the apogee. The

difference of these two angles, or L — A is the mean anomaly

{M), which is the third step : the fourth consists in finding

(see p. 490,) the equation of the centre (E) corresponding to M.

The sixth and last step is to find, at the given time of the required

longitude, the sum (P) of the perturbations caused by the Moon

and planets : the resulting longitude (S) is equal to

L - A + E + P,

or M + E + P,

setting aside the effects of nutation, aberration and parallax.

The results of the preceding methods, (those by which the

equation of the centre and the perturbations of the planets are

computed,') are registered in Solar. Tables. From such Tables

the national Ephemerides, the Nautical Almanack of England,

the Cbnnoissance des Temps of France, are partly computed.

The immediate results from the Solar Tables are the Sun's longi

tudes. The Sun's right ascensions (which occupy the fourth

columns of the second page of each mouth) are deduced from the

longitudes and the obliquity; not, in practice, by Naper's Rules,

but, (because the thing can be so more conveniently effected) by
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the aid of a Table, entitled the Reduction of the Ecliptic to the

Equator. The construction of such a Table is effected by means

of a formula which it is now our business to investigate.

Let JR, and O denote the Sun's right ascension and longitude,

and let w be the obliquity of the ecliptic, then

tan. JR = cos. w . tan. G ,

tan. G — tan. JR tan. G (1 — cos. w)

and tan. (G — JR) =

1 + tan. Q . tan.iR 1 + cos. w. tan.2 Q '

2 tan.
2 2 1*

but, {Trig. p. 39.) 1 — cos. w(ri) =

9 w 1 + t*

1 + tan.3 -

2

, . w
making t = tan. - .

tt ' mv 1 ~ n sin. 2 G

Hence, tan. ( © — JR.) —

1 + n 1 - n

1 H cos. 2 G

1 + n

f* . sin. 2 G

and thence, sec.8 ( G — JR) =

1 + r2 cos. 2 G '

1+ 2 ? cos. 2 O + t4

(1 + r* cos. 2 ©)"

XT j f , :nv) <* cOS- 2 © + t* „ *

Now d {tan. (G - A)} = (1+^co,.aQ). « « © *

the symbol d denoting the differential,

d (tangent)

but, generally, d (arc) = — -j-j
(secant)

.*. rf ( G — JR) = 2 6 G ( : . ) .
Vl+2f1cos.2 0 -t-tV

Now, if we assume 2 cos. 2 G = x + - ,

t -

1 + 2<acos. 2 G + t* = (1 + f x) ( 1 +

3 s
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l
and —• r -: =

1 + 2 t cos. 2 G + t*

——r { 1 — 2 t% . cos. 2 O + 2 t4 cos. 4 O — &c.| ;

multiply each side of the equation by t1 cos. 2 0+ t*,

cos. 2© +('

and r .—s

1 + 2 cos. 2 0 + ('

= tl cos. 2 G — t* cos. 4 G + f6 cos. 6 G — &c.

.'. (see p. 501, 1. 16,)

/. t , ^ ir>^ i . „ f4 . sin 4 O t° . sin. 6 O

fd(Q - M)=t7 sin. 2 G + &c.

2 3

<r>% .•• « » .• £4sin. 4G . f6 sin. 6 Q

or(G - jit) sin. l" = f5sin. 2G 1 &c.

2 3

or, very nearly, since 2 sin. 1 = sin. 2", &c.

1, „ w sin. 2 Q . w sin. 4 G

Q — M = tan. - —: T. tan.4 - — ^~

2 sin. l" 2 sin. 2"

6 id sin. 6 G

+ tan. - —: T. &c.

2 sin. 3

In order to express the coefficients numerically, we have,

assuming the obliquity equal to 23° 28',

w

log. tan. -, or log. t = 9.3174299,

2

whence,

2 log. t = 18.6348598

and log. sin. l" = 4.6855749

log. c 3.9492849

4 log. t = 37.2697196

log sin. 2" = 4.9866049

log. c' 2.2831147

6 log. t = 55.9045794

log. sin. 3" = 5.1626961

log', c" 0.7418833
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we have thus the logarithms of the three coefficients c, c't c", by

means of which it is easy to compute O — JR., when G is given.

The logarithm of the fourth coefficient (log. c'") s= 9.24518043.

Hence, the reduction (R) = c . sin. 2 © — c . sin. 4 ©

+ c" sin. 60 - c'" sin. 8 © + &c.

If Q = 3", sin. 2 © , sin. 4 © , &c. = 0, and the reduction,

as it plainly must, is equal to 0.

If © = 45°, sin. 2 © = 1, sin. 4 © = 0, sin. 6 G = - 1 ;

.'. the reduction = 8897".85 - 5".519 = 8892".33

= 2° 28' 12".33,

and consequently, the rightascension(JR = Q — E)=42°3]'47".67,

or, expressed in time, M = 2h 5CT 7s. 17.

If Q = 10°, 2 G = 20°, 4 G = 40°, 6 © = 60°, and,

accordingly, we have the following computation,

log. sin. 20 . . 9.5340517

log. c 3.9492849

3.4833366, No 3043.24

log. sin. 40 . . 9.8080675

log. c' 2.2831147

2.09H822, No 12S".S6

log. sin. 60 . . 9-9375306

log.c" 7418333

.6793639, No 4.778 . .

log. sin. 80 . . 9.9933515

log.c'" 9-2518043

9-2451558, No 175

3048.018 123.535

0123.535

Reduction .... 2924.483



504

Hence, the reduction = 48' 44".483

and consequently, M = 9° 11' 15".517.

In the two former instances the terms of the reduction were

alternately positive and negative, and the reduction itself sub-

tractive, or the right ascension less than the longitude. The

contraries of these circumstances happen in the next instance.

Let G = 9' 5° 40', then

2 O
18s 11° 20', sin. 2 Q = — sin. 11°

207

4 G = 36 22 40, sin. 4 G = sin. 22 40

6 G = 57 4 0, sin. 6 G = — sin. 34 0

8 G = 73 15 20, sin. 8 G = sin. 45 20

Now,

sin. 1 1° 20' ... . 9.2933995

log. c 3.9492849

3.2426844 1748".55

sin. 22° 40' 9.5858771

log. c' 2.2831147

1.8689918 73.96

sin. 34° 0' 9-7475617

log. c" . . , 7418833

.4894450 3 . 86

sin. 45° 20' .... 9.8519970

log. c'" 9.2518043

9.1038013 .127

1826.497

Hence, the reduction ( G — M) — - 30' 26".497,

and consequently, = 9" 5° 40' + 30' 26".5, nearly,

= 9s 6° 10' 26".5

and, in time, = 18h 24" 4l'.7.
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In the Nautical Almanack for 1775, we have very nearly,

this result, since,

Dec. 27, O =9' 5° 39' 59",

M = 18h 24m 41'.6;

but besides the difference of l", between the above longitude and

the longitude used in our example, the obliquities are slightly

different. On December 27, 1775, the obliquity was 23° 27' 59".7,

whereas in the preceding instance it was assumed equal to 23° 28'.

The correction in the above, and in like instances, corres

ponding to any change in the obliquity is easily obtained : thus,

since

 ' , w sin. 2 O

O — M = tan.9 - . —: r. &c.

2 sin. l"

. to V) ' .

$ (0 — JR.) = $ w . tan. — sec. — . sin. 2 © — &c.

2 2

which first term will be sufficient.

The Tables of reduction (see Zach's Tab. XXI. of his

Tabula Motuum Solis, and Vince's Astronomy, Table XXXVII,

vol. II.) contain a column of variations for every ten seconds of

variation of obliquity.

A Table of reductions of the ecliptic to the equator is wanted,

when, in constructing a work like the Nautical Almanack, we

deduce from the Solar Tables the Sun's longitude, and from

such longitude his right ascension. In examining and correcting

Solar Tables, or the longitudes deduced from them, by the test of

observations, corrections or reductions of a contrary nature are

requisite. For, since the Sun's right ascension is observed, we

stand in need of an easy process for reducing it to the longitude,

or, we stand in need of a Table of the reduction of the equator

to the ecliptic. We will now explain, by what artifice and rule,

the preceding formula (see p. 502,) and a Table constructed

from it, maybe adapted to this latter purpose, since (see p. 501,)

tan. JR. = cos. to . tan. O ,

tan. (90° — O ) = cos. w . tan. (90° — JR.),
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which equation is precisely of the same form as the preceding one of

p. 501, 1. 6 : consequently, a similar formula must result from it,

on changing what ought to be changed ; that is, by writing

90° — 0 instead of JR., and 90° - JR, instead of © .

Hence

W-M)-W- G) = ,^-(i80°-giR)

sin. 1

t* . sin. (360° - 4JR) , o

+ &c.

sin. 2"

„ „ sin. 2 JR , sin. 4 JR. , „

or, 0 - Al = t3 — -jf- + t* . . + &c.

sin. 1 sin. 2

which is the formula required, and from which, as in the former

case, a Table might be constructed. But it is desirable to avail

ourselves of the former Table and to adapt it to this latter pur

pose. In order to find the means of so adapting it, make

JR. = a - 90°,

then,

o - a = e . sin- (2fl -,18tf) + <* . sin- (4fl - 360O) + &c.

sin. l" sin. 2"

„ sin. 2a. . sin. 4 a

sin. l" sin. 2"

s sin. 2 (^l+90°) j4 sin.4.(A+90")|g" x

~~ V sTnTF ' ' ^7¥' +*c-/'

but, in the former case, see p. 502,

„ . sin. 2 © . sin. 4 ©

© - JR. = f ~- - t* . — ~ + &c.

sin. l" sin. 2"

the two series then are similar. If two Tables then were con

structed, the numbers in each would be the same, in every case

in which JR. + 90° and © should be of equal values : for

instance, the number expounding the reduction to the equator when.

© = 1 1 3° 4', would expound the reduction to the ecliptic, when

JR = 23° 4'. One Table then, would do instead of two. If the

Table of the reduction to the equator be already computed, we
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may thence deduce the reduction to the ecliptic corresponding to

a given right ascension, by this simple rule. , Increase the JR.

by 3s and take out from the Table the reduction belonging to

the angle 3s + JR : which reduction, with its proper sign, is the

reduction to the ecliptic.

The above-mentioned Table of the reduction of the ecliptic to

the equator * is not, it is to be noted, necessary, nor, indeed, does

it abridge the work of computation. The Trigonometrical pro

cess (rating it by the number of figures,) is shorter. But the

Table is more convenient because it is inserted, in the same

volume, with other Solar Tables, and is alone sufficient to effect

its purpose.

If D be the declination of the Sun, then

1 x sin. D = sin. © . sin. w,

accordingly, from the Sun's longitude computed from Solar Tables,

and from the obliquity (the apparent) of the ecliptic, the declina

tion may be computed : and, in point of fact, the Sun's declination

inserted in the fifth column of the second page (every month) of

the Nautical Almanack is so computed: not necessarily, indeed,

by the Trigonometrical formula just given : since, as in the

former case of the deduction of the right ascension, the declination

may be expressed by a series, and, in practice, may be computed

by a Table entitled ' The Declination of the Points ofthe Ecliptic'.

(See Vince's Astronomy, Table XXXVIII, vol. II, and Zach's

Tab. XXIII, of his Tabula: Motuum Solis).

We will now return from this digression concerning the re

duction of the ecliptic to the equator, and similar formulae of

reduction, to the mam subject of the Chapter, and which indeed

* The reduction of the ecliptic to the equator has been computed from

the formula of page 502. But it is plain that reductions of like nature,

but of different denominations, may be deduced from the same formula.

For instance, the longitude of Venus in her orbit may be reduced to her

longitude in the ecliptic : in which case w (see p. 502,) will be expounded'

by the inclination of Venus's orbit (about 3° 23'), and the series will

rapidly converge.
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is first announced iu its title. The subject is the correction of

the Solar Tables : or the method of so applying observations,

made either before or after the epoch of the computation of the

Tables, or hereafter to be made, as to correct, or to make more

exact, the conditions or elements of such computation ; and, for

the more distinctly handling of the subject, we will recapitulate

the steps of the process by which the Sun's longitude is taken

from the Solar Tables.

(1.) The mean longitude (M) of the Sun is taken out of the

Tables.

(2.) The mean longitude of the perigee (tt) is also taken from

the Tables.

(3.) The difference of the mean longitude of the Sun, and of

the mean longitude of the perigee, is then taken, which gives the

mean anomaly {A).

(4.) To the mean anomaly thus obtained the corresponding

equation (£) of the centre is sought for in the Tables.

(5.) The equation of the centre thus obtained is, according to

the position of the Sun in its orbit, added to or subtracted from

the Sun's mean longitude, and the result is the Sun's elliptical

longitude.

(6.) To the last sum or difference is added the sum (P) of

the several perturbations of the Moon and planets.

(7.) Lastly, the preceding result must be corrected for ab-

berration, and the two nutations, if the true apparent longitude of

the Sun be required.

Any error or errors, therefore, in the steps of this process

must, according to their degrees, vitiate the exact determination

of the Sun's longitude.

The mean longitude, which is taken in the first step, is not

taken immediately from the Tables, but is found by adding to the

Epoch, as it is called, the mean motion during the interval between

the epoch and the assigned time of the required longitude.
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The epoch (O) is the Sun's mean longitude at a certain time.

For instance, the epoch, or the Sun's mean longitude, on the mean

noon of the first of January 1752, is

9s 10° 3,' 32".2,

the Sun's mean longitude, therefore, on April 3, 1752, is the

above longitude, or epoch, plus the Sun's mean daily motion

(59' 8".33) multiplied into 93 days, which latter product is

3s 1° 39' 54".69,

so that, the Sun's mean longitude is

12s 12° ll' 26".89,

that is, rejecting the 12 signs,

12° ll' 26".89,

and, if the longitude should be required at any time of the day of

April 3, other than its noon, we must add to, or subtract from, the

above longitude a proportional part of 59' 8".33. Thus, if the

time should be April 3, 3h 5m 25% we must add to the former

longitude

7' 35".9 ( = 3 ^4h25 x 59' 8".3s) ,

so that the Sun's mean longitude will be

12° 19' 2".79*.

We must now consider whether there is likely to be any error in

the terms that compose the Sun's mean longitude.

* The Tables from which the Sun's mean longitude, &c. are taken, are

constructed for the meridian of Greenwich, but are easily adapted to any

other meridian. Thus the epoch of the Sun's mean longitude for 1822,

in Viuce's Solar Tables, is 9s 10° 33' 59".6 : Dublin Observatory (to take

an instance) is 25m 20s west of Greenwich, and the Sun's motion in 25m 20s

25m 20s

is equal to — x 59' 8".33, or 1' 1".69 ; therefore the epoch for
24s

Dublin is 9s 10° 35' 1".29.

3 T
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The Sun's mean motion is, probably, known to a great degree

of accuracy. For, it is determined by comparing together distant

observations of the Sun's longitudes and by dividing the difference

of the longitudes by the interval of time between them. Any

small error, therefore, made in the Sun's longitude will, by reason

of the above division, very slightly affect the determination of the

Sun's mean motion.

Thus, supposing the mean motion is to be determined by com

paring the observations of 1752 and 1802, and the error of

Bradley's observations at the former period to have been 5", the

corresponding error in the difference of the longitudes would

b"

amount only to — , or 0". 1.
J 50

But the case is somewhat different with the epoch. There is

no part of the process in determining it that has an effect, like

that we have just described, in lessening its errors. The mean

longitude at any epoch, 1752 for example, must depend for its

accuracy on individual observations made at that epoch, or, at the

most, on the mean of such observations. The Sun's right ascen

sion must be determined (according to the method described in

Chapters VII and XVI,) and the Sun's longitude must be thence

deduced. The mean longitude, therefore, of the epoch is subject

to some uncertainty, and, consequently, the mean longitude of the

Sun at the proposed time will be alike subject to the same.

Hence, if t be the time elapsed since the epoch, and m be the

Sun's mean motion, since

M = O + mt,

dM =dO = r.

.Suppose, in the next step (see p. 508, 1. 9,) the longitude (*.) of

the perigee to be taken. Now, it is plain, if we revert to

pages 477, &c. that there is some uncertainty in that method, or

that there may be a probable error of several seconds in the

determination of its longitude : such error then will affect the

mean anomaly (A), and exactly by its quantity, since

A = M - tt;
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therefore, if + x be the error in tt, — x will be the corresponding

error in A: but (see p. 468,) the equation of the centre (E) depends

on A, and, according to the value of A, will be increased or de

creased by a given error in A. Now any error in the equation

of the centre, will affect, with its exact quantity, the true longitude,

since this latter equals M + E, the effects of planetary pertur

bation and of the inequalities not being considered.

This is one effect on the longitude produced by an error in the

equation of the centre : which error is derived, through the mean

anomaly, from the error of the longitude of the perigee. But

there is a second source of error of the equation of the centre

arising from an uncertainty or error in the determination of the

eccentricity, or [since (see p. 473,) the greatest equation of the

centre is expressed in terms of the eccentricity,] from an error in

the greatest equation of the centre. This error, according to, the-

value of the mean anomaly, that is, accordingly as the equation of

the centre is to be added to, or subtracted from the mean longi

tude in the finding of the true longitude, will cause a positive or

negative error in the resulting value of the true longitude.

Hence, since the true longitude, or

L = M ± E + P,

or = O + m t ± E + P,

dE , dE ,

dL = dO ± — dir + — de.

dir de

Supposing P the sum of the perturbations to be rightly deter-

dE

mined, and denoting by —— d tt the error in E, arising from an

error (d tt) in the longitude of the perigee, and by de the error

de

in E, arising from the error in the eccentricity.

What now remains to be done is to find the means of stating

these variations (dO, dir, dE) under a form fitted for arithmetical

computation. The error dO may be (see p. 510,) expressed by z,

since if z (5" for instance,) be the error in the mean longitude, z.
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(5") will be the corresponding error in the true longitude.

dE ,

Next, —— dir, or x,

a it

affects the longitude by altering, through the mean anomaly,

the equation of the centre. Since (see p. 473,) we have an ex

pression for the equation of the centre in terms of the mean

anomaly, we can find the error in the former corresponding to a

given error in the latter : but it is most convenient, for such pur

pose, to use the Tables already constructed. Suppose then [for

it is necessary (see p. 511,) to take an instance] the mean anomaly

to be ff 18°; we find in the Solar Tables,

anomaly 6" 18° 0', equation of centre 0° 35' 43".4

anomaly 6 18 10, equation 0 36 2.2

O 0 10 0 0 18.8

Hence, to a variation of l' in the anomaly, there corresponds

l".88 in the equation, and, accordingly,

60" : x :: l".88 : x x = .0313 X.

60

We may make a like use of the Solar Tables in finding the

dE

numerical value of -r— de. If the eccentricity be changed, the

de

greatest equation of the centre is changed. Now in the Solar

Tables the secular variation of the greatest equation (when the

anomaly is of a certain value) is supposed to be 17". 18, and cor

responding to such a variation, the proportional secular variation

of the equation of the centre, corresponding to a mean anomaly

= 6" 18°, is 5".15.

Hence, if y be the variation or error of the greatest equation,

17".18 : 5".15 :: y : x y = .2969 y,

which is the corresponding error in the equation of the centre

belonging to an anomaly of 6s 18° : we have now then, in this

instance,

dL =a x + .0313 x - .2969 y,

dE is an error of the computed longitude arising from errors in

the epoch, the place of the perigee and the value of the greatest
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equation. In order to find its value we must compare the com

puted with the observed longitude (or rather the longitude computed

from an observed right ascension and the obliquity of the eclip

tic) : the difference of the two longitudes, on the supposition of

the exactness of the latter, is dL or C, then

C = z + .0313 x — .2969 y,

and in order to determine z, x and y, there is need of two other

similar equations.

In page 482, from observations of the Sun's right ascension

and the obliquity of the ecliptic, the Sun's longitude was found

equal to

3s 9° 6' 29". 1 ;

whereas, in the Nautical Almanack, the computed longitude is

3« 90 6' 43"

the error of the Tables, then, or C is 13".9.

In the instance we have given, the anomaly was assumed equal

to 6s 18°, and the Solar Tables were, on grounds of convenience,

made use of to determine the coefficients of y and z. That was

effected by merely taking from the Tables the secular variation cor

responding to the given anomaly, or to the corresponding equation

of the centre, and the difference or variation of the equation of the

centre corresponding to a difference of ten minutes in the anomaly.

It is plain, then, the coefficient ofy will be the greater, the greater

is the secular variation, which is the greater the nearer the pro

posed anomaly is to that anomaly to which the greatest equation

of the centre corresponds. Now the greatest equation of the

centre happens (see p. 472,) in points near to those of the mean

distances. The Sun is at his mean distance in March and

September. Hence, if we select from observations those made

towards the latter ends of those months, and derive equations

similar to the above, the coefficients of y will be, nearly, as

great as they can be. The contrary will happen, in such obser

vations, to the coefficients of x : since these depend on the variation

of the equation of the centre corresponding to a given variation

of the mean anomaly, they must needs be the smallest when the
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former variation is at its least ; which happens near to the mean

distances, when the equation of the centre is at its maximum.

The reverse of this whole case will happen if we select observa

tions made near to the apogee and perigee, the secular variation *

of the equation of the centre is then the least : but the variation*of

the equation of the centre, corresponding to a given variation of

the anomaly, is the greatest. The coefficients, therefore, of x, in

this case, will be as great as they can be, and those of y as small.

Hence, if we possess a long series of observations, we have it in

our power so to use them, that in the derived equations (such as

that of p. 512,) the coefficients of x andy shall be, respectively,

as large as possible.

For instance, on March 24, 1775, the Sun's mean anomaly,

as it appears by the Tables, was

2s 22° 42' 44".7-

The secular variation is 17". 12, the difference 2".2 ; therefore

(see p. 512,) the coefficient of y = (= -9965), of x

2".2
= -— = .0366, consequently, if the error of the Tables (the dif

ference of the computed and observed longitude) were — l".7,

we should have

- i".7 = z + .9965 y - .0366 x.

Again, (about half a year afterwards, the Sun being again near

his mean distance) on September 23, we find

anomaly 8s 23° 4', secular variation = l6".95, difference =

* The secular variation of the greatest equation of the centre is its

variation, (arising from a change in the eccentricity of the orbit) in one

hundred years. Its present value is 17".18, and whenever- the greatest

equation is changed, every other equation of the ceutre is changed. If

15", or 17". 18 be the change in the former, there will be, in every case,

a proportional and calculable change in the latter. But it is convenient

to use the change 17". 18 (denominated for the reasons above specified

the secular) because, in the Solar Tables, we find the proportional change

affixed to every equation of the centre.
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therefore the coefficients of y and x are , —- , and, if the
J 17.18 6

error of the Tables were 5".4, we should have this equation

5".4 = z - .9866 y + .0483 x,

and if we selected fifty observations, half made near to the end of

March, the other half near to the end of September, the former

would all resemble the first equation, the latter the second ; in

each the coefficient of y must be large, but in the former the

coefficient must be positive, in the latter negative, since, when the

mean anomaly is about 2s 20°, the equation of the centre is addi

tive, when about 8" 20°, subtractive.

In like manner if w% select two observations made near the

apsides, on June 25, and December 28, 1 784, we have

June 25, anomaly 5s 25° l' 33", secular var". l".44. diff. 19".6

Dec. 28,' 11 28 20 51.6 0.5 .... 20.5

and accordingly, the coefficients of x and y are

l".44 0".5 , l".96 2.05

. and —~— , —— ,

17.18 17.18 6 6

and the two resulting equations, if the errors of the Tables be,

respectively, — 3".4, — l".5

- 3".4 = z + .0838 y + .3266 x

- l".5 = z — .02913^— .3416 x,

and, in all pairs of equations so derived (from observations made

near to the apsides and distant from each other by about six signs)

the coefficients of x will be as large, as they well can be, and the

coefficients of y, as in the former pairs of equations, will be

respectively positive and negative.

Suppose then, we had, in all, one hundred equations, fifty

derived from observations near the mean distances, fifty from

observations near. the apsides, .and that we added the one hundred

equations together : then the coefficient of z would be one hundred,

and the coefficients of y and x would be the excesses of the

positive coefficients, in the several equations, above the negative :

the equation divided by one hundred would be of this form,

A = z — ay + bx (l).
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In order to obtain a second equation, take the fifty equations

derived from observations near to the mean distances, then

twenty-five of these equations (see p. 515,) must be of the

form,

- l".7 = z + .9965 y - .0366 x,

twenty-five of the form 5"A = z — .9866 y + .0483 x,

change the signs in everyone of the latter twenty-five, then there

will be twenty-five equations such as

- l".7 = z + .9965 y - .0366 x,

twenty-five, such as — 5".4 = — z + .9866 y — .0483 x.

/ dd now the whole fifty together and tilt z's will disappear ; the

coefficient of y will be the sum of such quantities as .9965,

.9866, &c. the coefficient of x will be result of combining several

positive and negative quantities : the resulting equation divided by

the sum of .9965, .9866, &c. will be of the form

B = y — mx (2).

' Proceed in like manner with the fifty equations derived from

observations made near to the apsides : that is, since the object is

to make the coefficient of x, in the resulting equation, as large as

possible, make the coefficients of x, in all equations, such as the

one of p. 315, 1. 20, positive, by thus writing it,

l".5 = - z + .02913 y -f- .3416 x,

then, in all the fifty equations, the coefficients of x will be positive :

add together the fifty equations, and the coefficient of x will be the

sum of fifty quantities such as .3266, .3416, &c. and the co

efficients of y and z will be the differences of certain quantities :

divide by the coefficient of x, and the resulting equation will be of

the form

C =pz + qy + x (3).

And it is from these three equations {(1), (2), (3), } that the values

of x, y, z, are to be derived by elimination.

The principle in the above process of combining sets of equa

tions in order to produce a mean equation is obvious : if x, or y,



517

or z is to be determined, the larger its coefficient the more exact

will be its resulting mean value.

In what has preceded, we have, in substance, followed

Delambre's method in the Memoirs of the Academy of Berlin for

178(5. In these Memoirs, which are on the Elements of the Solar

Orbit, one hundred equations are used, fifty from observations of

the Sun near his mean distances, fifty from observations of the

Sun at his greatest and least distance. The results (see Mem.

Acad. Berlin, 1786, p. 243,) of M. Delambre, are

correction of the epoch = — 0".4092,

of the longitude of the apogee = — 24".71,

of the greatest equation of the centre . . + o".3227,

which corrections are to be applied to Mayer's Tables, with which

Delambre compared Maskelyne's Observations.

By means such as we have described, Mayer's Tables were

corrected. The errors of the corrected Tables were found not to

exceed 9". The sum of the hundred errors (of the positive

and negative together,) amounted to 3 18". 3, and, therefore, the

mean error was 3". 183, which, as the learned author remarks *, is,

considering all circumstances, a very small error.

The method of correcting at one operation all the elements is

what is now generally practised. But, in a preceding volume of

the Berlin Memoirs (for 1785,) Delambre corrects the elements

individually, by the comparison of particular observations with

the results obtained from the Solar Tables. Thus, suppose the

longitude of the apogee, or the longitude of the Sun occupying

tbe apogee, to be found, on June 29, at 22u 37m 37s to be

* " Et si Ton se rappele que ces erreurs si peu considerables sont

pourtant produites par trois ci quatre causes differentes, comme les erreurs

des observations, celles des reductions, celles des catalogues d'etoiles, enfin

les quantities negliges ou peu connues dans la theorie, on s'etonnera peut-

etre que les Geometres et les Astronomes aient pu les renfermer entre des

limites aussi etroites, et Ton ne pourra gueres se flatter d'ajouter beau-

coup a une parelle precision."

3 u
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3s 9° 3' 8". But, according to Mayer's Tables, the longitude of

the apogee was 3s 9* 6' 43", therefore — 3' 35" was the cor

rection of such longitude. The same observation corrects also

the mean longitude of the Tables : for, at the apogee, the mean

and (rue longitudes are the same. The mean longitude, therefore,

was 3' 9" 3' 8": but the Tables gave 3s 9° 3' 20". The correc

tion, therefore, for the epoch of the Tables, according to the

above observation, was — 12 .

But, whichever be the method employed, it is essential to

its accuracy that all the sources of inequality by which the Sun's

true longitude is made to differ from its mean, should be known :

for, otherwise, the longitude of the apogee, or the equation of the

centre, might be wrongly corrected. Before the discoveries of

Newton, for instance, those differences of the observed and

computed longitudes which are due to planetary perturbation,

would, from ignorance of their causes, have been attributed to

errors in the epoch, equation of the centre, and longitude of the

perigee; and, had such a method of correcting those errors been

used as has been already (see pp. 512, &c.) described, its results

would have given wrong corrections.

It needs scarcely be observed that the assigning of the laws and

quantities of the perturbations caused by the planets is a difficult

operation. The arguments (see Physical Astron. Chap. VII, &c.)

may be derived from theory, but their coefficients must be deter

mined from observations. M. Delambre has accomplished these

objects, by the comparison of 314 of Maskelyne's observations, and

by Laplace's Formula. The learned Astronomer in his first cor

rection of the Solar Tables reduced their errors within 1 5", whilst

the errors of Mayer's Tables sometimes exceeded 23". But, as

he found that the computed and observed longitudes could not be

brought nearer to each other, and as their differences did not

follow a regular course (in which case they might have been, in

part, attributable to the errors of observation) he suspected that

the solar theory was in fault, or rather, that part of it which assigns

the correction of the Sun's elliptical place on account of the per

turbations of the planets. In this emergency he had recourse to

Laplace, who, from his Theory, derived two equations due to
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Mars' action, the sum of which might amount to 6". 7 : the same

great mathematician also assigned 6' for the value of the principal

term of the lunar equation, and 9"-7 for the maximum of the

equation of Venus.

There are also some other points to be attended to in the

correction of the Solar Tables : for instance, the value of the

obliquity of the ecliptic. For the observed loiigiludes with which

the longitudes derived from the Solar Tables are compared, are,

in fact, (see p. 513,) computed from the observed right ascension

and the obliquity of the ecliptic, and, therefore, their accuracy

depends, in part, on that of the obliquity.

In the deduction of the equations of condition, the coefficients

of x and y (see pp. 512, &c.) were obtained by the aid of Solar

Tables : an operation, as we then stated, of mere convenience and

in nowise essential. If we had not been able to avail ourselves

of Tables, we should then have been obliged to have gone back

to the very formulae used in constructing the Tables. And this

indeed, but with some loss of expedition, would have been the

most scientific proceeding.

We subjoin these formulae, some of which have been already

given.

If e be the eccentricity, and E the greatest equation,

e = \ E sin. 1" - — E3 sin.3 l" - E5 sin.5 l"
2 768 983040

40583 . , „
h sin. 1 — etc.

2642411520

If E = 1° 55' 26".82 (its value in 1780) e = 0.016790543.

If Z = nt, be the mean anomaly, the equation of the centre

is equal to

- 1° 55' 26".352 sin. Z+ l' 12".679 sin. 2 2- l".0575 sin. 3 Z

+ 0".018 sin. 4 Z,

and the true anomaly (a) is equal to Z— 1° 55' 26".352 sin. Z+&c.

and the differential of the true anomaly, or da is equal to
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dZ - dZ . sin. l" x 1° 55' 26".352 . cos. Z

+ 2dZ. sin. l" x l' 12".679 cos 2 Z - &c.

\etdZ = —(59' 8".2) = 2' 27".84l6 the Sun's* mean horary

24

anomalistic motion : da is the Sun's elliptical horary motion, and

da = 2' 27".84l6 - 4"-9645 cos. 2-|-0". 1042 cos. 2 2- 0.002 cos. 3 Z.

In order to obtain the horary motion in longitude on the eclip

tic, we must, since — (59' 8".33) = 2' 27".8471, write in the

24

above value of da, this latter quantity instead of 2' 27".84l6.

If v be the Sun's true anomaly, Z — v is the equation of the

centre, and the greatest value of (Z — v)

\ 48 5120 229376 / sin. l"

and (»)

„ /3 21 , 3409 - 99875 . . \ 1

= 90°— (~e+ e3 + |-e5+ e7 + &c. )- T. ,

V4 128 40960 1835008 /sin. l"

and the sum of these two equations gives that value (Z) of the

mean anomaly to which the greatest equation belongs, and,

accordingly,

/*x ™o , /5 .25 . , 1383 5 39877 ,\ 1(2) = 900 + I - eH eJ H — e5 H — e7 ) T. .

\4 384 40960 256x 7168 / sin. l"

If we neglect the terms beyond the second, we have

(Z) = 90° + - -A~t, = 91° 12' 9".5t,

4 sin. 1

* The time and Sun's motion being dated from the perigee, and the

perigee being progressive (see p. 486,) at the annual rate of 62", the

horary motion is that same portion of 360° which 1 hour is of the time

of the Sun's leaving his perigee, to his return to the same : which time is

an anomalistic year.

t Log. 5e = 8.9240351

log. sin. 1"= 4.6855749

4.2384602 = log. 4329".5 = log. 1° 12' 9"-5.

Now,
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in the solar orbit, in which, at the epoch of 1780,

e = .016790543.

Since, in the Earth's orbit (e4, e5, &c. being extremely small),

(es\ 5 1 3 e3

2 e ; ) sin. Z + — e9 sin. 2 Z ^— sin. 3 Z,<£/ 2* 22.3

(13 \

(2 — .75 e2) sin. 2+2.5 e sin. 2 2 - —e2 sin. 3 Zj ;

therefore, if we make d E to represent the secular variation of the

greatest equation of the centre, we have

dE being = 17". 18,

1 7". 1 8
de= ■ - ,

2 sin. (Z) - 2 . 5 e sin. (2 Z) + — e5 sin. (3 Z)

4

(£) being the anomaly (91° 12' 9"-5) belonging to the greatest

equation.

From this equation the secular variation of the eccentricity may

be computed.

The variation of the equation of the centre is to be had from

the formula of 1. 5, and if, in that formula, we substitute for

de the secular variation of the eccentricity, the result will be the

secular variation t of the equation of the centre corresponding to

the anomaly Z. By such an expression, then, we are able to

dispense with the Solar Tables, or, which amounts to the same, to

compute what is therein computed.

In the preceding pages of this Chapter frequent mention has

been made of the secular variation of the eccentricity, and (which

Now,

log 360° = 2.5563025

anomalistic year = 365d.25971 log. = 2.5626017

9-9937008 = 00.9856

= 5^ 8". 16,

and j^th = 2 27.84.

* Expressed by 17".177 sin. Z-0".03606 sin. 2 Z-0".0078 sin. 3 Z,
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depends upon it) on the secular variation of the greatest equation

of the centre. Now these are, as the terms themselves import

them to be, the variations effected in one hundred years, and the

terms are never applied except to the changes that happen in

quantities nearly constant. The method of determining their

values, is, in fact, contained in that process (see pp. 511, &,c.)

by which the elements themselves are determined. Thus, with

regard to the greatest equation of the centre, its value ought

first to be corrected by comparing the observed longitudes of

1752, for instance, with the computed longitudes. In a second

operation, by comparing, for instance, the observed longitudes of

1802, with the computed. The result of each operation would

be a corrected value of the greatest equation of the centre. The

difference between such values would be the variation in fifty

years, or would be half the secular variation.

There is a method *, other than what has been given, for cor

recting the elements : it consists in making the sum of the squares

of equations like (l), (2), (3), (see p. 515,) a minimum : for instance,

using, for illustration, the equations obtained in pp. 515, 516,

we should have

( l".7 + z +.9965 y - .0366 xf+{ - 5".4+z— .9866 y + .0483 xf

+ (3".4 +Z + .0838 y + .3266 xf + &c. = a minimum,

and, accordingly, making y to vary,

.9965 (l".7 + z + .9965 y - .O366 *)

- .9866 ( - 5".4 + z - .9866 y + .0483 x)

+ &c. = 0.

In like manner, make x to vary, and z to vary, and obtain simi

lar equations : then, from the three resulting equations thus ob

tained, eliminate x, y and z.

We have explained what ought to be understood by the

( secular variation of an element: and there is, what is called, the

secular motion of the Sun, which is the excess of the Sun's

longitude above 36000° in 100 Julian years : a Julian year con-

* Laplace, Sur Us Probability, Chap. IV. Biot, Phys. Astron.

tom. II. Chap. X.
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sisting of 365 | days. Now, by comparing together the Sun's

mean longitudes at different epochs, it appears that, in 100 Julian

years, or in 36525 years, the Sun's motion = 36000° 45' 45",

accordingly, in one Julian year of 365d 61', the Sun's motion is

360° 0' 27".45, or 12s 0' 27".45 ; accordingly,

in 1 Julian year of 365* 6h the Sun's motion = 360° o' 27".45

and, in 1 common year of 365 = 359 45 40 . 37

in a Bissextile year of 366 = 360 44 48 . 697

and, accordingly, to find the epochs of the Sun's mean longitude

on years succeeding a given epoch, add, for common years, re

peatedly, to the epoch, 11" 29° 45' 40".37, and reject the 12",

or subtract 14' 19".63.

When a Bissextile year occurs, add

12" 44' 48".697, or 44' 48".697.

Thus, -1 78 1, epoch of Sun's mean longitude 9s 1 1° 29' 9".5

0 0 14 19.63

epoch for 1782 9 11 14 49.87

0 0 14 19.63

epoch for 1783 9 11 0 30.24

0 0 14 19.63

epoch for 1784 9 10 46 10.6

1784, is a Bissextile, therefore add 0 0 44 48.697

epoch in 1785 9 11 30 59 . 3

Thus the epochs are successively formed : but, if we wish to

deduce, at once, the epoch of 1821, for instance, from that of

1781, since in the interval of forty years* thirty-one are common,

* The year 1800 divisible by four, and, therefore, according to the

common rule, a Leap year, is, however not so, but, as a complementary

year, a common year of 365 days (see the Chapter on the Calendar).
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and nine Bissextile years, we must subtract from the epoch of

1781, the difference between

31 x 14' 19".63, and 9 x 44' 48".697, that is, 40' 50".23,

accordingly, since the epoch of 1781 is 9" 11° 29' 9". 5

epoch of 1821 9 10 48 19.27

Before we quit this subject we wish to say one word re

specting the difference between the French and English Tables

of the Sun. The epochs in the former are for the first of

January, mean midnight, and the meridian of the Paris Observa

tory : in the latter for the first of January, mean noon, and the

meridian of Greenwich. Now Paris is 2° 20' 15", or in time

9m 21s to the east of Greenwich : consequently, the interval of the

two epochs, is 12h 9m 21s, in which time, the mean increase of

the Sun's longitude (59' 8".33 being the increase in a mean

solar day,) is 29' 57".2 : consequently, the epochs of the Sun's

mean longitudes, for the same years, are greater, in- the English

Tables, by 29' 57".2.

The knowledge of the Sun's mean secular motion enables us,

most correctly, to assign the length of a tropical, or equinoctial

year. But this point and others connected with the subject of

solar time, will be reserved for the ensuing Chapter.



CHAP. XXII.

On Mean Solar and Apparent Solar Time.— The Methbds

of mutually converting into each other Solar and Sidereal

Time.— The Lengths of the several Kinds of Years deduced.

—On the Equation of Time.

It happens with mean solar time, as it does with sidereal time.

We cannot obtain their measures immediately from phenomena,

but are obliged from phenomena to compute them.

The constant part, the unit, if we may so call it, of sidereal

time, is the time of the Earth's rotation round its axis (see

pp. 106, &c.) : and such time, in our computations respecting

portions of sidereal time, or of right ascensions, is supposed to

remain unaltered. The phenomena made use of, are the transits

of fixed stars over the meridian : but the intervals between suc

cessive transits of the sume star, are not (as it has been already

explained in pp. 106, &c.) exactly equal : they are, therefore, not

sidereal days, if such terms be intended to signify equal portions

of absolute fime.

Besides the causes that equally affect the fixed stars and the

Sun, the proper motion of the latter, inequable from its proper

motion in the ecliptic, and inequable by reason of the obliquity

of the ecliptic, prevents the intervals between successive transits

of the Sun, over the meridian, from being equal portions of solar

time. We must consider then, by what means we are able to

compute mean solar time, and to know whether or not, a clock,

going equably, keeps mean solar time.

The Sun's motion (see p. 523,) in 365d.25, is 360° 0' 27".45 :

consequently,

3 x
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360° 0' 0,7".45 . „

365.25 = 59 8 -33'

is the increase of the Sun's mean longitude in one day, con

sisting of twenty-four mean solar hours. A mean solar day,

therefore, must exceed a sidereal day, by the portion of sidereal

time consumed in describing 59' 8".33. Now 360° are de

scribed in twenty-four sidereal hours;

.-. 360° : 24h :: 59' 8".33 : 24 x 59' 8"33

360

= 236".55$ = 3™ 56".555 of sidereal time :

hence, twenty-four mean solar hours are equal to 24h 3m 56'.555

of sidereal time : and a clock will be adjusted to mean solar

time, if its index hand makes a circuit, whilst that of the sidereal

clock makes one circuit and 3m 56' .555 over: or, if each clock

beats seconds, the solar clock ought to beat 86400 times whilst

the sidereal beats 86636 nearly.

In order to find the number of solar hours to which a sidereal

day of twenty-four hours is eqaal, we must use this proportion,

„„ 0 „ 86400

86636.555 : 24 :: 86400 : 24 x

86636.555

= 23\ 93447 = 23h 56m 4'.092 of mean solar time.

The difference between twenty-four hours and the last time, is

3m 55s .908. Hence, subtract from twenty-four hours of sidereal

time 3m 55s .908, and the remainder is the number of mean solar

hours, minutes, seconds, and decimals of seconds, to which twenty-

four hours of sidereal time are equal.

Hence, subtract lm 57s .954 from twelve sidereal hours, and

the remainder is their value in mean solar time ; subtract

0m 58s.977 from six sidereal hours, and the remainder is their

value in mean solar hours : and these subtracted quantities are

called the accelerations of the stars in mean solar time ; a table

of which accelerations might, as it is plain from what precedes,

be easily formed (see Zach's Table XXVI, in his Nouvelles

Tables d'Aberration, &c.)
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Si,

By means of these latter results and the Solar Tables, we

can now, from the sidereal time, find the mean solar time.

Thus, suppose it were required to find the mean solar time at

Greenwich, on August 20, 1821, when the corrected sidereal

time by the clock was 20h 42m 19s .4.

By the Solar Tables,

Sun's epoch for 1821 9" 10° 48' 19'.2

mean motion to August 20, .... 7 17 41 4.2

mean longitude of Sun on Aug. 20, 16 28 29 23.4

Reject 12", and convert the remainder into time, and

4" 28° 29' 23".4 = 9h 53m 57".54

now equation of equinoxes (see p. 376,) .... 0 0 0.47

'un's mean longitude on the meridian >

- „ . , . > 9 53 58.01

at Oreenwich on August 20, 1821, J

but true sidereal time 20 42 19.4

diff. of M. between Sun and the point 1

,. , , , ... \ 10 48 21 .39

of* the heavens on the meridian )

subtract (see p. 526,) the acceleration, or ... . 0 1 46 .216

mean solar time when the sidereal ") „

,, „ . \ 10 46 35.17
time was 20h 42m 19" .4 j

Now one use of this operation (the conversion of time shewn

by the transit of a star, or by the sidereal clock, into mean

solar time) is the correction, or the means of ascertaining the rate,

of chronometers. For instance, in the above case, if the chro

nometer, at the instant the sidereal time was noted, should mark

* The corrected time shewn by the sidereal clock, is technically .called

the Right Ascension of the Mid-Heaven. By means of the transits of

known stars, the error and rate of the clock (see pp. 104, 105, &c.) are

determined. The clock so corrected, must shew at every point of time,

during the sidereal day, the right ascension of a star, (should there be

»ny one) or of a point in the heavens then on the meridian.

u ~j ' ' .' i ' , -



528

1 lh lO* 1 1" of mean solar time, since

(seep.527,1. 19,) 10 46 35. 17 was the true mean solar time,

0 23 35. 83 would be the chronometer's error.

If, on the next day, by similar observations and computations,

llh 12m 13s should be the watch's time,

10 48 38.5 the true mean solar time,

0 23 34 . 5 the error.

Hence, the watch would be 23m 35s. 83 too fast the first

day, 23m 34'.5 too fast the second day, accordingly, in the

twenty-four mean solar hours the watch would have lost, nearly,

l'.33, or, as far as these two observations shewed, its daily rate

would be - 1".33.

In illustrating the use of finding, by the Solar Tables and

the sidereal clock, the mean solar time, we have supposed the

place of observation to be Greenwich, for which our present

Solar Tables (those inserted in the third Volume of Vince's

Astronomy) are constructed. For any other place of observation,

(Dublin Observatory, for instance) we must, in computing the

Sun's longitude from the Solar Tables, allow for the difference of

the longitudes of the two observations of Greenwich and Dublin,

That difference, in time, is 25m 20s, and the increase of the Sun's

longitude in that time is

25m 2(/

r— X 59' 8".33 ss 4s. 15 in time,

24h

consequently, we must add 4s. 15 to the Sun's mean longitude

expressed in p. 527, 1. 13, which will so become

9h 54m 2". 16.

The secular motion of the Sun affords, as it was hinted at

the end of the last Chapter, a good method of determining

the length of the equinoctial year. Thus, in 36500 days the

Sun describes 1200s 0° 45' 45" : but in one hundred equinoctial

years the Sun describes only 1200s : consequently,
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1 200'
100 equinoctial years = r— ;—;. x 365O0d

H J 1200s 0° 45' 45"

= 36524d.226396593684,

consequently,

a mean equinoctial year = 365d.242264, nearly,

= 365d 5h 48m 51'.6.

We may hence deduce a sidereal year. In this year a

complete circle of 360° is described, whereas, in the equinoctial

year, an angle equal to 360° — 50".l (supposing 50".l to be

the precession) is described.

Hence,

359° 59' 9"-9 : 360° :: 365d 5h 48m 5l'.6 : 365d 6h 9m W.5,

the length of a sidereal year exceeding the equinoctial by

SO"1 19'.9. This is the kind of year which Kepler's Law speaks

of (see p. 455.).

The anomalistic year is the period from apogee to apogee.

The progression of the apogee (its increase of longitude) being

ll".8, the anomalistic year is completed when the Sun has

described 360° 0' 1 1".8.

Hence, its length

= "!2lLiLlL± x 365d 6h 9m 11\5 = 365a 6h 13m 58'.8,

360

longer than the sidereal by 4m 47'.3 and longer than the equi

noctial by 25m 7'.2.

The use of the anomalistic year consists, as we have seen

in p. 477, in finding the exact place of the apogee. The horary

motion which we computed at p. 519, is a portion of the ano

malistic motion.

By means of the preceding results it is easy to convert one

species of time into another, and to assign the number of degrees,

minutes, &c. which the Sun and a star will respectively describe

in a specified portion of sidereal time, or in an equivalent portion

of mean solar time. For instance, the Sun describes an entire

revolution of 360° in 24h 3m 56'.5554 of sidereal time. In one
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mean solar day the motion of the sphere, or of a star, is

360° 59' 8".33, consequently, a star, in one mean solar hour,

describes

3600 59' 8"33 = 15° 4 27".84708.

24

' But hitherto no method has been given of converting either

sidereal, or mean solar time, into apparent time, or of com

puting, from the instants of apparent time, (which instants, as

we shall see, are marked by phenomena) the corresponding mean

solar times and sidereal times.

In apparent solar time, the term day means the interval be

tween two successive transits of the Sun over the meridian:

which interval (see pp. 431, &c.) is a variable quantity*. There

cannot, therefore, be any simple rule for converting apparent

solar time into mean : since there cannot be a constant proportion

between the two, as there is between sidereal and mean solar

time.

The correction then to be applied to apparent time, in order

to reduce it to mean time, is a variable correction : not to be

expressed by a simple term, but by several variable terms that

respectively expound the several causes that render inequable,

the Sun's motion in right ascension.

This correction, or equation, by which apparent time is made

equal to mean time, is technically called the Equation of Time :

and our present concern is with the method of computing it.

For the purpose of elucidating such method, and of guiding

us in it, let us feign mean solar time to be measured by a ficti

tious Sun, moving equably in the equator, with the real Sun's

mean motion in right ascension, and consequently, (see p. 526,)

at the rate of 59' 8".33, in twenty-four mean solar hours.

If this motion begin to be dated from the first point of Aries,

the right ascension of the fictitious Sun, after an interval of time

* Not only variable according to the time of the year, but, in strict

ness, variable on the same days of civil reckoning at different places.
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equal to t, will be equal to 59' 8".33 X t. The right ascension

of the real Sun depends upon, or may be computed from, his

true longitude, and the true obliquity of the ecliptic, of which

latter computation we have given instances in pp. 504, &c.

In each case, the reckoning is made from the first point of Aries,

and the equable regression of that point is taken account of,

when 59' 8".33 is assigned as the mean increase of the Sun's

right ascension in a mean solar day.

In the above case then (that of the equable retrogradation

of the equinoctial point), the difference between mean solar time

and apparent time, or the equation of time, is equal to the

difference between the true right ascension of the real Sun, and

the right ascension of the fictitious Sun, or, which is the same

thing, between the true right ascension of the Sun, and his mean

longitude.

But let us suppose, which indeed is the case, that the equable

retrogradation of the equinoctial point is disturbed by a dis

placement of the pole of the equator (and consequently of the

equator itself) such as is caused by nutation : then the longitude

of the real Sun, and the right ascension of the fictitious Sun

describing the equator will both be altered. The right ascension

of the latter will no longer be

59' 8".33 X t, but 59' 8".33 X t ± <p V ' X cos. obliquity,

(see the figure of p. 357, in which <y f ' represents the effect of

nutation) whilst the longitude of the Sun, no longer measured

from <y but from t ' will be affected with the whole quantity

<Y> <y '. But, wherever the point <y be, the true longitude is

always measured from it, and from such true longitude the right

ascension must be computed. In this latter case, then, the

equation of time is the difference of the Sun's right ascension,

and of his mean longitude (59' 8".33 X t) + «y v '• cos. obliquity.

But this last term ( <y <y ' cos. obliquity) is the nutation in right

ascension of a star in the equator, or, technically, is the equation

of the equinoxes in right ascension; if, therefore, we use this

latter term, The equation of time is the difference of the Sun's

true right ascension, and of his mean longitude corrected by the

equation of the equinoxes in right ascension.



532

The equation of the equinoxes in longitude (the effect of

nutation on the Sun's longitude) is (see p. 376,) = 18".034 . sin. Si :

the equation of the equinoxes in right ascension, (the effect of

nutation on the right ascension of the fictitious Sun, which is

supposed to describe the equator) is

18".034. sin. Q .sin. obliquity = (see p. 375,) l6".544.sin.

Hence, if

S represent the Sun's true longitude,

A his true right ascension,

M his mean longitude,

E the equation of the centre,

R (see p. 501,) the reduction to the ecliptic,

P (see p. 511,) the effect of the several planetary perturbations,

S = M+E+P + 18".034 . sin. Si ,

and, A=S+R=M+E+P+R+ 18".034 sin. Si ,

but the M {A') of the fictitious Sun = M + l6".544 sin. Si ;

.-. A —A' (the equation of time) = E + P + R + l".49.sin. Si ,

and, expressed in time,

E + P + R

the equation of time = H 0 .0993. sm. Si .

15

The cosine of the obliquity (cos. 23° 28') is, nearly, equal to

9173 11 . . , . .

Hence, since the equation of time is equal to

10000 12

the Sun's true right ascension, diminished by his mean longitude

and the equation of equinoxes in right ascension, we have

the equation of time = A — M + 18".034 . sin. Si x — ,

which, essentially, is the form under which Dr. Maskelyne

expressed the equation of time (see Phil. Trans. 1764).

Since, the right ascension is derived from the true longitude,

which itself depends, in part, on the effect of the planetary

perturbations, we cannot, without the aid of Physical Astronomy,
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compute the equation of time. For such a reason the Astrono

mers, who lived previously to Newton, were unable to compute

it. They could indeed nearly assign its value, since the Earth

is not considerably disturbed by the action of the planets.

The Solar Tables, of the present day, enable us to compute

the effect of the planetary perturbations. They, in fact, assign

the Sun's true longitude, when such perturbations are taken

account of. They enable us, then, (although this is not the

most convenient mode) to compute the equation of time.

Thus, on March 12, 1822,

Sun's mean longitude 11' 19° 33' 43".2

longitude of perigee 9 9 50 54 . 9

mean anomaly 2 9 42 48 . 3

(see p. 468,) ; .'. equation of centre {E) 0 1 48 18 .2

sum of perturbations (P) 0 0 0 22 . 18

(see pp. 501, &c.) reduction (R) 0 0 42 13.3

* The equation of time may be computed from an observed right

ascension of the Sun, and from the Sun's mean longitude known from the

Tables. For instance, by observations (reduced observations) at Green

wich, June 11, 1787,

E + P + R

Hence, the equation of time (see p. 532,)

0 2 30 53.68

but, Q = 10s 23° 54' and sin. Q = - .5891 ;

.'. the equation of time = 10m 3s. 57 — 0s.058

= 10m 3'.5, nearly *.

 

By Clock.

M of Sun's centre 5h 17=» 9' .6

of Procyon .... 7 27 15 .58

of /3 Pollux .... 7 31 22. 82

By Cat. (see pp. 371, &c.) Diff.

7h 28m 9J-820 ...

7 32 17.069 ...

54'.24

.54,249

daily
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In the above example, E, 8tc. were computed to a mean

anomaly belonging to the mean noon of March 12, whereas, in

strictness, the computations ought to have been for the apparent

noon of that day. In other words, since the equation of time is

nearly lOm 3', the Sun's true longitude ought to have been com

puted from the Solar Tables (which are constructed for mean

time) for March 1 1 , 23h 49m 57' of mean solar time ; since such

is nearly the time of apparent noon, on March 12 ; and the

equation of time, on the apparent noon of March 12, is the dif

ference of the Sun's true right ascension at that time and of his

mean longitude (corrected by the equation of equinoxes in right

ascension) at the same time. The result of the computation,

however, thus conducted, will differ, very slightly, from that

which has been just obtained.

The equations of time are set down in the Nautical Almanack,

and in the foreign Ephemerides, for every day of the year.

daily rate of clock 0'.84 ; therefore, at the time of the transit of the Sun's

centre, the error of the clock was

54.245 - 0.07 0h 0m 54M7

Sun's transit 5 17 9-6

therefore Sun's right ascension 5 18 3 . 77

Again, Sun's mean longitude 1787, 9s 11° 2' 20"

motion to June 11, 5 8 41 21.1

2 19 43 41.1 5h 18" 54'.74

equation of equinoxes in right ascension 0 0 1 .08

5 18 55.82

5 18 3.77

0 0 52 . 05

The difference then of the true right ascension of the Sun, and of the

Sun's mean longitude corrected by the equation of equinoxes in right

ascension, on the mean noon of June 11, 1787, (for the Tables are con

structed for mean time) was 52'.05, true or apparent time preceding mean.

The mean longitude then at the time of observation, or on true noon, was

less by the increase of the mean longitude during 52'.05, or by OM42 :

consequently, the equation of time was 52\05 — 0M42, or 51\91.
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They enable us to convert apparent solar time into mean and

sidereal time, and also, which is the reverse operation, sidereal

time into apparent solar time. We will give some instances

of these operations taken from M. Zach.

Example I.

Sidereal Time converted into Mean Solar Time, and true Time.

Place of Observation, Greenwich.

Jan. 18, 1787, beginning of a solar eclipse by sid. clock 18h 4' 59"

clock too slow OO 5

beginning of the eclipse by sidereal time 18 5 4

epoch of Sun's mean longitude for the begin- ) ., . „
r 5 . _ 6 > 18u 40' 5' .895

ning of 1 7S7, and the meridian of Gothe . . )

Sun's motion to January 18 1 10 57.996

Sun's motion in an interval of time representing )

the difference (42' 55") of the longitudes of> 0 0 7.049

Gothe and Greenwich, )

equation of equinoxes in right ascension 0 0 1 .06

Sun's mean right ascension 19 51 12

JR. of the mid-heaven or sidereal time ■ . 18 5 4

approximate mean solar time 22 I3 52

(see pp. 526, &c.) acceleration 0 3 38.52

mean time 22 10 13.48

equation of time — 11 15.08

true or apparent time of the .

21 oo 5o.4

1beginning of the eclipse.

Example II.

Mean Time converted into Sidereal.

Marseilles, 21m 29" east of Greenwich,

1787, mean time of Venus' transit over the meridian 0h 17m 25".5.
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By Vince's Tables, epoch of Sun'sl ^ ^ t ,o 2' q0«

mean longitude for 1787, . . . . )

motion to January 2, 0 0 59 8.33

for 17° 25'. 5 0 0 0 42.92

9 12 2 11.25

Sun's motion in 21m 29' 0 0 0 52.9

Sun's mean longitude, or JR of mean Sun 9 12 1 18.35

and in time IS* 48m o'.223

equation of equinoxes 0 0 1. 055

Sun's mean JR. from true equinox 18 48 6.278

culmination or transit of ? 0 17 25.5

sidereal time, or, apparent JR. of $ ... 19 5 31 .78

or, if we convert time into degrees,

JR. of ? 286° 22' 59". 1.

Example III.

Trite or Apparent Time converted into Sidereal.

Greenwich, June 11, 1787, Sun on meridian O*1 O1" 0'

equation of time 0 0 52.379

mean solar time of Sun's transit 23 59 7-621

Now, by Tab. I—III, Vince, vol. Ill, converting the de

grees, &c. into time, at the rate of 15° for lh,

Sun's mean longitude on June 11, 1787, . . 5h 18m 54'.74

equation of equinoxes in right ascension . . 0 0 1 . 08

5 18 55.82

correction on account of 52\379 0 0 0.14

distance of mean Sun from true equinox . . 5 18 55.68

distance of mean Sun from mid-heaven ... 0 0 52.379

JR. of mid-heaven or sidereal time 5 18 3.3
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In computing the equation of time by the methods in the

preceding page, we are obliged, in fact, to compute the Sun's

true longitude : which is a laborious computation. In order to

avoid or to lessen such labor, Tables and approximate methods

have been devised(see Delambre's Astronomy, vol. II, pp. 207, &c.

Vince's Astronomy, vol. Ill, pp. 20, &c.)

In the preceding reasonings, for the sake of simplicity, we

have supposed the noon of mean time to be determined, by the

aid of the noon of true or apparent time marked by the pheno

menon of the real Sun on the meridian. But, if by means of

the Sun's altitude observed out of the meridian, and a knowledge

of his declination and of the latitude of the place, or by other

means, we compute the hour angle measuring the time from ap

parent noon, we may, as easily as in the preceding case, compute

the equation of time for such time, and thence deduce the cor

responding mean solar time.

What has preceded contains the principle and the mode of

computing the equation of time ; all, therefore, that concerns the

practical Astronomer. But if, for the purpose of new and farther

illustration, we continue our speculations, we shall find that the

equation of time, relatively to its causes, depends on two cir

cumstances ; the obliquity of the ecliptic to the equator, and the

unequal angular motion of the Sun in its real orbit.

The Sun moves every day through a certain arc of the ecliptic :

which, in other words, is his daily increase of longitude. If we

suppose two meridians to pass through the extremities of this arc,

they will cut off, in the equator, an arc which is the daily

increase of the Sun's right ascension. This latter arc will not

remain of the same value, even if the former, that of the ecliptic,

be supposed constant. At the solstice it will be larger than at

the equinox : the reason is purely a geometrical one : let S t be

the ecliptic, and f y the equator, then by Naper's- rule, if / be

the obliquity, I the longitude, A the right ascension, D the decli-

nation, 1 x cos. 1 = cotan. <v> «S x tan. ft— 7 ,

tan. /

hence, tan. I X cos. J = tan. A, and, taking the differential,
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cos. I dA • i j n

dl . -„ = - —* } or, since cos. I = cos. A X cos. 1)

(cos. I) (cos. .4)

 

dl, cos. I = (cos. Z))8, or = dl. cos. J. (sec. D)J.

Hence, J being the same, dA varies, if dl be given, as (sec. Df;

.'. is least at the equinoxes and greatest at the solstices, and its

value is easily estimated at the former, for sinceD = 0, dA =

dl. cos. J; at the latter, since

dA= dl

COS. iJ COS. 1 COS. i

.'. dA (equinox) : dA (solstice) :: (cos. J)2 : 1

:: (cos. 23° 28')* : Is

:: 8414 : 10000.

Hence, even on the hypothesis of the Sun's equable motion

in the ecliptic, the true right ascension will not increase equably;

but since, by the very definition of the term, the mean longitude

does, the equation of time, which is the difference of the true right

ascension and the mean longitude (disregarding the equation of

the equinoxes) would be a quantity, throughout the year, con

tinually varying, and vanishing at the solstices.

The hypothesis, however, of the Sun's equable motion is con

trary to fact ; the Sun moves in an ellipse, and consequently, does

not move uniformly, or equably in it. If a fictitious Sun, moving

with the Sun's mean angular velocity, be supposed to leave, at

the same time with the real Sun, the apogee, they will again

come together at the perigee : but, in the interval, the fictitious

Sun would constantly precede the real Sun : the latter therefore,
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would be first brought on the meridian ; true noon, therefore,

would precede the noon of mean time, supposing, now, mean time

to be measured by the imaginary Sun moving uniformly in the

ecliptic.

If therefore, we hypothetically annul the first cause of the

equation of time, by supposing the ecliptic to coincide with the

equator, still from the second, (the elliptical motion of the Sun,)

there would exist a difference between true and mean time ; in

other words, an equation of time, continually varying ; vanishing,

however, at the apogee and perigee.

But, both causes in nature exist; the Sun moves unequably,

and not in the equator. From their combination then, the actual

equation of time must depend. It cannot be nothing at the

solstices, except the solstitial points coincide with those of the

apogee and perigee, but, (see p. 486,) in the solar orbit, there is

no such coincidence.

At what conjunctures then, will the equation of time be

nothing ? We have already, for the purposes of explanation,

introduced two fictitious Suns, one moving equably in the ecliptic,

the other in the equator ; let the former be represented by S", and

the latter by S'", and the true Sun, that which moves unequably

in the ecliptic, by S' ; then, true time depends on S1, and mean

time on S'"; and consequently, when the meridian, passing through

one, passes also through the other, then is mean time equal to

the true, therefore no equation is requisite, or the equation of

time is nothing. Let us suppose the two fictitious Suns S", S'"

to move from the autumnal equinox towards the perigee ; S1", in

this case, must constantly precede S", till they arrive .at the

solstice, where the meridian that passes through one will pass

through the other*. Hence, the real Sun S', which coincided

* We shall frequently use the expression of S' rejoining S'", or,

coinciding with it. Nothing farther, however, will be meant by such '

expression, than that the meridian, which passes through the former in

the ecliptic, passes through the latter in the equator; and when 5' is

said to precede S'", nothing more is meant, than that the point in the

equator in which a meridian through S' cuts it, is beyond the place

of S'", or, to the eastward of it.
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with S" at the apogee, being constantly behind it (see pp. 469,

&c.) (ill their arrival at the perigee, must certainly be behind

it, at and before the solstice, which is previous to the perigee

(see p. 485.). Hence, before the winter solstice, the order of

the Suns is

s1 s" s"':

{S" )

| ; for S" then ceases to be preceded by

S'". Immediately after the solstice, S" takes the lead of S"':

therefore, then, the order is

S' S'" S".

But, at the perigee, S1 must rejoin S": it cannot effect that, except

by previously passing S1": the moment of passing it is that in

which true time is equal to mean time, in which, in other words,

the equation of time is nothing.

The equation of time then is nothing, between the winter

solstice and the time of the Sun's entering the perigee : and, for the

year 1810, (when the longitude of the perigee was 9s 9° 39' 22")

between Dec. 21, and Dec. 30. By the Nautical Almanack the

exact time was Dec. 24, at midnight : since the equation for the

noon of that day is — 15s, and, for the noon of the succeeding

day, + 15s.

In the year 1250, when the perigee coincided with the winter

solstice (see p. 486,) the equation of time was nothing on the

shortest day.

Immediately after the passage of the perigee, S', the true

Sun, moving with its greatest angular velocity (see p. 469,) pre

cedes S"; therefore, since up to the vernal equinox S" precedes

S", the order is

. S'" S" S';

and this order must continue up to the equinox ; consequently,

S'" and S' cannot come together : and therefore between Dec. 24,

(for 1810,) and March 21, the equation of time cannot equal

nothing.

* The symbol most to the right of the page denotes the preceding Su?.
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After the vernal equinox, S7" precedes S", and the order is

S" S'" S',

S*, and S1 are then, (see p. 472,) near the point of their greatest

separation, but S" and S"' begin to separate and reach the point

of their greatest separation*, about 46° 14' from the equinox

that is, about the 8th of May. Now, this greatest separation, or,

technically, greatest equation, is 2° 28' 20", or in time 9m 52",

whereas the greatest equation of the centre, being only 1° 55' 33",

(pp. 473, &c.) the greatest corresponding separation in the equator

cannot exceed 2° 6' f, and that is already past. Hence, before S"

* 1 X cos. 1= tan. A . cot. /, by Naper, or cos. Ix tan. I — tan. A ;

.•. I 7 A; .•. if Y be supposed the place of S", so that, fY = yS,

Y is beyond t, and the separation is t Y (since on that the difference

solely depends.)

To find t Y, is a common problem, (see Simpson's Fluxions, vol. II,

p. 551. Vince's Fluxions, p. 27.) Since tY— yY— yt = l- A;

y  tan. I — tan. A  tan. A . (sec. I — 1)

~ 1 + tan. /.tan. A ~ 1 + (tan. A)1 . sec. / '

Hence, since d (t Y) =: d tan. t Y . (cos. t F)*, which must = 0 ; if we

take the differential of the quantity equal to it, make it = 0, and

reduce it, there results

tan. A = Vcos. I = V(cos. 23° 27' 58")

A = 43° 43' 50", and I (from equation, 1. 2 of Note) = 46° 14',

and I — A (in its greatest value) = 2° 28' 20".

t By p. 538, it appears that the arc of the equator, included between

two meridians passing through the extremities of a given arc in the

ecliptic, is greatest when the latter arc is at the solstice. The arc of

the equator measures the separation of the Suns 5", Hence, putting

in the formula of p. 230, dl= 1° 55' 33", and D = I, which it is at

the solstice, we have, very nearly,

dA = 1° 55' 33" x sec. 23° 27" 58" = 2° 5' 55".

The two common problems then of the maximum equation of time,

are not merely mathematical problems, exercises for the skill of the

student, or Examples to a fluxionary rule, but of use in the discussion

of the real problem of nature.

3 z
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is at its greatest separation from S'", it is impossible that the order

S" S'" s1

should not have been changed. S' must have come nearer to

S" than S'" is : consequently, S'" must have passed S' : but

at the moment of passage, mean and true time are equal, that

is, the equation of time is nothing : and this must happen between

March 21, and the end of April. In the year 1810, it happened,

according to the Nautical Almanack, on April 15, 11h 12m.

This second point, at which the equation of time is nothing,

being passed, the order of the Suns will become

S" S' s"'.

At the solstice, S" must rejoin S'": but, previously to the solstice,

it cannot effect that by passing S': since S" does not rejoin <S' till

their arrival at the apogee, which point is more distant than the

solstitial : the coincidence of S" and S'" then can only take place,

by S' previously passing S"': but, as before, the moment of

passage, is the time when the equation of time is nothing : that

circumstance therefore, must happen, before the summer solstice :

therefore, between the middle of April and June 22: and, in 1810,

according to the Nautical Almanack, it happened on June 15, 14h.

In the year 1250, the equation of time was nothing on the

longest day.

After this third evanescence of the equation of time, the order

of the Suns will become

S" S"' S'.

At the solstice on June 22, S" will rejoin S'": immediately

afterwards, the order becomes

S'" S" Sf,

which will continue to the time of the Sun's entering the apogee :

then, S rejoins & : and, immediately after, S" moving with

greater angular velocity than S' will precede it, and the order

becomes.

S"' S' S".

Now & cannot rejoin S" till their arrival at the perigee : but

S'will rejoin S " at the autumnal equinox, consequently, previously



543

to that time, S'" must pass & : but, as before, the moment of

passage is, when the equation of time is nothing. It must

happen theu, between the time of the apogee and the autumnal

equinox : between (for 1810) June 30, and September 24; and,

by the Nautical Almanack, it happened August 31, 20h.

It is plain, from the preceding explanation, that the days of

the year in which the equation of time is nothing depend on the

position, or the longitude of the perigee and apogee : and con

sequently, since those points are perpetually progressive, the

equation of time will not be nothing on the same days of any

specified year, as it was, of preceding years : nor, when not

nothing, the same in quantity, on the corresponding days of

different years.

The preceding statement (beginning at p. 537,) is to be re

garded merely as a mode of explaining the subject of the equation

of time. It is not essential, and might have been omitted ; for,

the two causes of inequality are considered and mathematically

estimated, in the processes of finding the true longitude and

true right ascension. But it has been inserted, since it serves to

illustrate more fully, and, under a different point of view, a

subject of considerable difficulty and importance.

With regard to results, very little is effected by the preceding

statement. Four points are determined, at which, mean time

is equal to apparent : in other words, four particular values

(evanescent values) of the equation of time. But, according to

the process in p. 533, we are enabled to assign its value for

every day in'the year : and accordingly, in constructing Tables of

the equation of time, the above four particular values would 6e

necessarily included amongst the 365 results.

If the question were, merely to determine when the equation

was nothing, it would certainly be an operose method of reso

lution, to deduce all the values of the equation of time, and

then, to select the evanescent ones. In such case, it would be

better to have recourse to considerations like the foregoing

(pp. 537, &c.). But, both these methods would be superseded,
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if, which is not the case*, the equation of time could be ex

pressed by a simple analytical formula.

The mere inspection of such formula, or some easy deduction

from it, would enable us to assign the times when the equation

of time vanished.

Instead of a formula, we must use a process consisting of

several distinct and unconnected steps, for computing the equa

tion of time. And, in point of fact, the process is quite as

convenient as a formula could be ; since the concern of the

Astronomical Computist is not with special, as such, but with

the general values of the equation of time.

If special values are sought after, it must be principally on the

grounds of curiosity. The method of ascertaining four such

values, independently of direct computation, has been already

exhibited. And, on like grounds, a similar method might be

used in the investigation of other special values : in determining,

for instance, when the equation of time is of a mean value ; or,

when minute, the two causes of inequality counteracting each

other ; or, when large, the two causes co-operating. We will

confine ourselves to two instances.

After the evanescence of the equation of time between the

winter solstice and the perigee, the order, as we have seen,

(p. 542,) is

S'" S' S",

but S' is gaining fast on S" in order to rejoin it at the perigee,

and S", after parting with S'" at the solstice, is 'preceding it, by

still greater and greater intervals. Consequently, both causes of

inequality conspire to make mean time differ from the true, and

the equation of time goes on increasing till the Sun is about 40°

distant from the vernal equinox, that is, past the point, at which

the equation arising from the obliquity is a maximum, (see p. 541,)

and before the point at which the equation from the Sun's ano-

* Lagrange, however, although by no direct process, has succeeded

in assigning a formula for the equation of time. See Mem. Berlin, 1772.

So also has M. Schulze, Mem. Berlin, 1778. p. 24J).
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malous motion is a maximum. For the year 1810, the time would

be about Feb. 10, and the maximum of the equation is 14m 36s.

About the Summer solstice, on the contrary, between that

and the apogee, the order is

s'" s" sr.

S1" is indeed separating from S", but S" is approaching S' to

reach it at the apogee : consequently, the two causes of in

equality, in some degree, counteract each other, and the equation

between the two periods at which it is successively nothing,

(June 15, and August 31, for 1810,) never attains to the value of

seven seconds.

In a similar way, we may form a tolerably just conjecture of

the limits of the quantity of the equation of time, for other parts

of the year. *

The greatest quantity of the real equation of time can never

reach the sum of the greatest equations arising from the separate

causes. It must therefore be less than

2° 28' 29" + 2° 6', or 4° 34' 29",

or in time less than 18m 15s of mean solar time.

The equation of time computed for every day in the year, ac

cording to the method given in p. 533, or, by some equivalent

method, is inserted in the Nautical Almanack ; and, for the purpose

of deducing mean solar, from apparent time. In order to regu

late its application, the words additive and subtractive are inter

posed into the column that contains its several values. And,

there will be no ambiguity belonging to that application, if we

consider, that the equation is to be applied to a certain time

marked by some phenomenon: which phenomenon is the real Sun

on the meridian : determined to be so, either by a transit tele

scope, or by a quadrant, or declination circle that enables us to

ascertain, when the Sun is at its greatest altitude. Apparent

time, then, is what is iustrumentally determined ; and to such

time, the equation, with its concomitant sign, must be applied,

in order to deduce mean time, which, it is plain, is indicated by

no phenomenon.
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Thus, Dec. 31, 1810, the equation of time in the Nautical

Almanack is stated to be 3m 12s. 7 additive; therefore, when the

Sun was on the meridian, at its greatest height, on that day the

mean solar time was 12h 3m 12s.7. Again, Nov. 13, 1810, the

equation is stated at 15m 33s .2 subtractive ; therefore, on that

day, the Sun was at its greatest height at 12h - 15m 33s.2, that

is, 1 lh 44m 26s.8, mean solar time.

Independently of computation, very simple considerations will

shew that this procedure is just. In the first instance, the true

Sun precedes the mean ; that is, is more to the east, or more

to the left hand of a spectator facing the south : consequently, by

the rotation of the Earth, from west to east, the meridian of

the spectator must first pass through the hinder Sun, which, in

this instance, is the mean Sun; 12h therefore of mean time

happens before the meridian has reached the true Sun, when it

does reach it, then, the time is, in mean time, 12h +the difference

of right ascensions, or 12h -f-the equation of time. In the second

instance, the true Sun is behind the fictitious : therefore the

meridian of the spectator first passes through the former : true

noon therefore, or 12 hours apparent time, happens before the

meridian has reached the fictitious mean Sun ; before therefore

the noon of mean solar time. The time consequently is not

12 hours, but 12 hours — some quantity, which quantity is the

equation of time.

What has been given in the latter pages, has been for the

purpose of illustration rather than for settling the grounds of, and

arranging the method of computing, the equation of time. It

may sujt some students : others, perhaps, will be satisfied with

the investigations that terminate at p. 537.



CHAP. XXIII.

THE PLANETARY THEORY.

On the general Phenomena of the Planets : their Phases, Points

of Stations, Retrogradations, fyc.

We have now passed, in our course of enquiry, through the

theories of the fixed stars and of the Sun, and are arrived at the

Planetary Theory. This latter theory has many points in common

with the preceding ones. The planet Venus, by reason of the

Earth's rotation, is transferred to the west, as Orion is and as the

Sun is. By reason of the same rotation, she rises and sets as

any fixed star is made to rise and set. But the points of the

horizon at which Venus rises and sets, do not remain the same,

which is a circumstance of distinction between that planet and

the fixed stars : and indicative of a peculiar motion in Venus,

whether such motion respects, as its centre, the Earth or the

Sun. '

The question, in truth, is not to be at once reduced to the

above alternative. We may conjecture, besides the Sun and

Earth, other points to be the centres of the planets' revolutions.

But we shall here, as we have done before, avail ourselves of the

results of previous investigations and restrict the range of our

conjectures. Indeed, the restriction will be so close, that we

purpose merely to enquire whether the phenomena of the planets

(the phenomena of change of place and law of motion) can be

explained on the hypothesis of the planets describing elliptical

orbits round the Sun as a centre, and of their mutual perturbation.

We at once get rid of the suggested possibility of a simple

revolution of the planets round the Earth, on this consideration :
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namely, that, in such a case, the motion would take place, and

seem to take place, in one and the same direction : whereas, as

observation shews, the planets are sometimes stationary and

sometimes retrograde.

These apparent quiescences and retrogradations, are some of

the phenomena which it will be the business of this, and of the

ensuing Chapters to explain, on the principle of the combination

of the motions of the planets and of the Earth. In the first place,

these phenomena will be explained in a popular way, on the

principles of the Earth's rotation round its axis, and of the

Earth's and planets' revolutions round the Sun. After this, the

phenomena will be more scientifically explained, or the times and

circumstances of their happening will be computed. But in

order to effect this we must know the elements, as they are called,

of the planetary orbits : such as their axes, the places of their

nodes and of their aphelia, and their inclinations to the plane of

the ecliptic. For this end we must have recourse to .observations,

and, according to modern practice, to observations of right as

censions and declinations. The elements being obtained, we may

combine them according to Kepler's principles, and by means

of his problem and other aids, compute the planet's longitude in

his orbit. From such longitude, and a knowledge of the incli

nation of the orbit, and of the place of the node, we may compute

the planet's ecliptical longitude and his latitude, and thence

compute, by a Trigonometrical process, or by a Table of re

ductions (see p. 501,) the planet's right ascension and declination.

The last step in this process, would be to compare these pre

viously computed longitudes and latitudes, with longitudes and

latitudes resulting immediately from observed right ascensions

and declinations : or, which is in fact the same, the previously

computed right ascensions and declinations, with the observed.

Such comparisons, as in the Solar Theory, (see pp. 508, &c.)

enable us to correct the elements of the orbit, from which the

planet's longitudes and latitudes are to be computed.

The order then, briefly stated, is this : the explanation of the

phenomena : extrication of the elements from observations : the

subsequent correction of those elements by a comparison with
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observations : and, in pursuance of the first of these objects, we

will begin with the planet Venus.

This brilliant star when seen in the west, at the time of the

setting of the Sun, is called the Evening Star *. It will be found,

by observing it on successive nights, to vary its distance from

the Sun : sometimes apparently moving away from the Sun, until

it reaches a certain term of elongation, at other times, having

passed such term, approaching the Sun. When the star begins,

it continues, to approach : and, at certain epochs, it approaches

so nearly to the Sun, as by reason of the Sun's effulgence, to be

no longer distinguishable by unassisted vision. There are other

epochs, rare, indeed, at which Venus passes over the Sun's disk,

and is seen, during such transit, as a black spot on the disk.

After either of these two sorts of epochs Venus ceases to be the

evening star and will soon become the morning start, and will

be seen rising just before the Sun.

On successive mornings, Venus will rise still sooner : will

continue to be separated from the Sun, till having reached an

angular distance of about 45°, she will again approach, and finally

rejoin the Sun. She then again becomes the evening star, and

the same appearances, in the same order, are renewed.

These appearances prove.^not decisively, that Venus describes

either an oval, or a circle about the Sun, but that, at least, she

oscillates about the Sun : they prove too, that her orbit can

neither be round the Earth, as its centre, nor inclusive of the

Earth ; for, she is never seen in opposition ; that is, in the pro

duction of a line drawn from the Sun through the Earth.

To the naked sight, or to unassisted vision, the disk of Venus

appears circular and nearly of the same magnitude. But, the

telescope and its micrometer J prove both appearances to be de

lusive. Viewed through the former, Venus, when the evening

* Eo-wepos, Hesperus, Vesper. t ^maipopm, Luciferv

% An instrument for measuring small angles, and commonly attached

to the telescope.

4 A
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star, at her greatest separation from the Sun, assumes the form of

a crescent, the convex illuminated part being towards the Sun,

or towards the west. As she approaches the Sun, the crescent

diminishes. Having passed the Sun, she appears as the morning

star, and the crescent is turned the other way, or towards the

east. Day after day, the crescent increases, till it is changed

into a full orb, just at the time when Venus is about to rejoin

the Sun.

In this last situation the disk of Venus, though most illumi

nated, is least in magnitude. It is greatest in magnitude, when

the disk is least illuminated, and Venus is about to rejoin the Sun.

These latter circumstances, relative to the magnitude of the disk,

are determined by the micrometer.

This last-mentioned instrument enables us to determine the

greatest and least apparent diameters of Venus to be about 60",

and 10".

If we now enumerate the circumstances relative to Venus, they

are as follow :

Venus, whatever be the Sun's place in the ecliptic, always

attends on him, and is never separated by a greater angle of

elongation, (technically so called) than 45°.

•

Venus is continually at different distances from the Earth : when

at her greatest, that is, when her apparent diameter is the least,

she shines with a full orb : when seen at her least distance, that

is, when her apparent diameter is the greatest, her crescent is very

small; and there are conjunctures, as we have noted, when Venus

eclipses part of the Sun's disk, and passes over it like a dark

spot.

Venus, when the evening star and separating from the Sun,

moves from west to east ; or according to the order of the signs,

or, as the phrase may still be varied, in consequentia. Returning

towards the Sun, from her greatest elongation, she moves towards

the west, that is, in antecedentia, contrary to the order of the

signs. And, in like manner, she moves, when the morning star,

alternately, according and contrary to, the order of the signs.
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These are the phenomena of observation, that are proposed

for explanation, on the grounds of two hypotheses : the first, that

Venus is an opaque spherical body illuminated by the Sun : the

second, that Venus revolves round the Sun in an orbit which is

interior to the Earth's orbit.

If Venus be a sphere, only half of it can be illuminated by the

Sun. And the illuminated hemisphere, called, for distinction,

the Hemisphere of Illumination, is thus to be determined. From

the centre of the Sun, to that of Venus, conceive a right line to

be drawn ; perpendicular to this line, and passing through the

centre of Venus, conceive also a plane to be drawn ; then, such

plane will divide the body of the planet into two hemispheres,

the one luminous, the other dark.

But, a spectator, whatever be his distance from a sphere, can

never See more than half of the same. The hemisphere which

he sees, called the Hemisphere of Vision, is thus to be deter

mined : conceive the eye of the spectator and the centre of the

planet to be joined by a right line ; a plane perpendicular to this

Hue, passing through the centre of the planet,, divides its body

into two hemispheres ; the one towards the spectator, is that of

vision.

The two hemispheres, and their boundaries, the circles of

illumination and of vision, do not necessarily coincide : indeed,

they can coincide only when the Sun, which illuminates the

planet, is between it and the spectator on the Earth's surface.

In every other situation, part of the planet's illuminated hemi

sphere is turned away from the spectator ; and, when the planet

is between the Sun and spectator, wholly turned away : in other

words, the planet's disk can either not be seen, or must appear

as a dark circle or spot on the Sun's face.

When the spectator, Sun, and Venus (for of that planet we

are now speaking) lie not in the same right line, the delineation

of the illuminated disk, or phase, is reduced to a very simple

proposition in orthographic projection. On the plane of projec

tion which is always perpendicular to a line joining the eye of the

spectator and the centre of the planet, it is required to delineate
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the ellipse into which the circular boundary of light and darkness

will be projected. The minor axis of the ellipse, will, as it is

well known, bear that proportion to the major, which the radius

bears to the cosine of the inclination of the planes. The incli

nation is equal to the angle formed by two lines, one drawn from

the Sun to the centre of Venus, the other, from that same centre

and directly from the spectator. Hence, if AFBA represent the

A

/ /

*i C

\ \

E

disk, and we take CF : CE :: rad. : cos. planet's inclination, then,

describing, with the semi-axes AC, CE, the semi-ellipse AEB,

we shall have the illuminated disk represented by AFBEA.

If KVuL be the orbit of Venus, S the Sun, E the Earth;

then, the angle of inclination of the planes of illumination, and

vision at V, is the angle SVF, and at u, the angle SuF. In the

latter, the angle is acute, in the former, obtuse ; consequently, if

CEin the above Figure be taken to represent the cosine of the acute

angle, to the right of the line AB, Ce must be taken to the left

of the same line, in order to represent the cosine of the obtuse

angle SVF. At K, when the planet is in superior conjunction t,

the angle SVF is equal to two right angles ; consequently, the

* ru is the half of the projection of the oircle of illumination, xu

of vision, and

/.rux= ifux- i Fur = 90°- /_ Fur = 90°-(i Sur— iSuF)

— go" - (90° - SuF) L = l SuF.

t An inferior planet is in superior conjunction, when it lies in the

direction of a line drawn from the Earth to the Sun, and produced

beyond the Sun.
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cosine (with a negative sign) becomes equal to radius, and the point

 

E

E, falls in^* (Fig. p. 552,) ; or the whole orb is illuminated. At

L, when the planet is in inferior conjunction* the angle, such as

Su F, becomes nothing ; therefore the cosine becomes equal tq

* We have, for simplicity's sake, supposed the ecliptic and the plane

of the orbit of Venus to be coincident. Such is not the case in nature.

It will happen, and commonly, that' the planet at the time of inferior

conjunction will be above the Sun, in which case its bright crescent will

be visible : and exactly at the time of conjunction, the line joining the

horns of the crescent, will be parallel to the ecliptic.
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radius, and the point £ falls in F: or the whole orb is dark.

From K to L, in the intermediate points, Venus exhibits all her

varieties of phases ; the full orb, near K ; the half illuminated

orb at N, where SNE = 90°, and then the crescent diminishing,

till its extinction at L*.

 

These phenomena that would happen if Venus an opaque

spherical body be illuminated by the Sun, and re.volve in an orbit

round him, are strictly conformable to the phenomena that are

observed, and have been described in the preceding pages.

Thus far then the hypothesis of Venus's revolution round the

Sun is probable, and seems to involve no contradiction ; it will be

* The phases which Venus at V, N, and u, exhibits to a spectator

at E, are represented by the small circular Figures that are, respectively,

to the left of the points V, N, and « (see p. 553.)
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still farther confirmed, if we can shew, that it affords an adequate

explanation of Yhe other phenomena which the planet exhibits.

Suppose emd to be the Earth, and two tangents dsk, es'l, to

the points d and e, to represent the respective horizons to a spec

tator at d and e*. If the Earth's rotation be according to the

order emd, when the horizon dsk of the spectator at d shall touch

the Sun's disk, the Sun will set to that spectator; the moment

after, by the rotation of the Earth, the point k will be transferred

to some point between k and V, the line dsk will no longer touch

the Sun's disk, or, the Sun will be below the horizon. But,

Venus, if at V, will be above the line of the horizon, and above

as an evening star, till the Earth, by its farther rotation, shall

have so transferred the line dsk, that its extremity k shall be in

some point between V and U. In the interval between this and

the next night, V will have moved forward in its orbit to some

point w ; therefore, the line dsk, after leaving the Sun's disk, must

revolve through a greater angle than it did the preceding evening,

before it reaches V at w. The planet therefore, is now separated

from the Sun by a greater angle of elongation : and the elonga

tion on succeeding nights will still continue, till V reaches a point

T, where a line drawn from E touches her orbit. Hence from

superior conjunction at k, to the greatest elongation at Ts Venus

is continually separating or elongating from the Sun ; and, if we

refer her place to the fixed stars, will seem to move amongst

them in a direction kVw T, that is, according to the order of the

signs.

From T to L the inferior conjunction, the line dsk, after quit

ting the Sun's disk, will reach the planet after the description of

angles still less and less, and the planet will be found approach

ing the Sun : but, referred to the fixed stars, will be found to

change its place amongst them in a direction from T towards L,

contrary to the direction of the former change of place, and

* In this explanation, of a popular nature, Venus's orbit and the

Earth's equator emd, are supposed to be projected on the plane of the

ecliptic, (represented by the plane of the paper,) and, the spectator is

supposed to be placed in the equator.
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contrary to the order of the signs. In other words, the planet is

now retrograde.

Suppose now the planet to have passed the inferior conjunc

tion at L. T)ay breaks to a spectator at e, when the line es'l,

representing his horizon, touches the Sun's disk. But, before this

has happened, the line es'i has passed the planet, or the planet is

above the horizon, and has risen as the morning star : on suc

ceeding mornings, the planet having moved forward in its orbit

from L towards t, will rise before the Sun by greater and greater

intervals ; will continue, to appearance, separating from him, till

its arrival at its greatest elongation t. From L to t, the planet

will, as from T to L, still continue retrograde. From t to /, it

will again approach the Sun, and move according to the order of

the signs.

These phenomena, then, that would happen if Venus revolve

either in a circular or elliptical orbit round the Sun, are in strict

conformity with the phenomena that are observed, and which

have been previously described.

In the preceding explanation of the phases and retrogradations

of Venus, we have, for the sake of simplicity, supposed the Earth

to be at rest at E. But, there is one phenomenon, that of the

seeming quiescence of Venus during several successive days,

which cannot be explained, except we depart from that suppo

sition, and combine, according to the actual state of things, the

motion of the Earth with that of Vetius.

If Venus be at L, and the Earth at e, and both describe in the

same time (24 hours for instance), two small arcs of their orbits,

such arcs will be nearly parallel to each other. If; then, they

were equal, during their description, Venus would be referred by

a spectator on the Earth, to the same point in the heavens. But,

Venus revolving round the Sun according to the laws of planetary

motion (see p. 557, 1. 16,) describes a greater arc than the Earth

does in the same time. She must, therefore, at the end of the

24 hours, be referred by a spectator on the Earth, to a point in

the heavens situated to the right of her former place. But, as

Venus advances from L towards t in her orbit, the arcs of her
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orbit (or tangents to them) will become more and more inclined

to the arcs of the Earth's orbit. There will then be somewhere

between L and t an arc pq (see Fig. p. 553,) such that, its obli

quity compensating its greater length, two lines. p a, qb, drawn

to the contemporaneously described arc a b of the Earth's orbit,

shall be parallel ; when that circumstance happens, Venus must

appear stationary.

We may determine the exact time of its happening by com

puting the angle bSq, which is, in the same time, the excess

of the angular motion, of Venus above that of the Earth*.

* bSq may be thus computed : (see Fig. p. 553,).

Draw from p and b; pn, bm perpendicular to the parallel lines qb,

fa, then pn = bm : call S b, r, and Sq, r ;

then pn = pq . sin, pqn = pq . cos. Sqb,

bm = ab . cos. mba = ab . cos. Sbq;

... cos- y = a2 = = ^ (Newton, Sect. II. Prop. 4. Cor. 6 ;)

cos. S b q pq vel. $ V

v
.•. cos.* S b q = cos* Sqb x .

But, sin.* Sbq = sin.* Sqb x tj- {Trigonometry, p. 16,)

.-. adding these two latter equations, and putting for cos.2 Sqb,

l-sin* Sqb,

1-= p (1 - sin,* Sqb) + ~ sin* Sqb,

/ sr3 — r* r'\ t

and sin. Sqb = \ / I —— ,; ) = .. x , y—.— .

Hence, sin. Sbq = —- - , j——^ .

The two angles Sqb, Sbq, being thus determined, bSq m 180° —

(Syi -f. Stj) is known; and thence the time from conjunction at L,

Thus, the mean daily motions of Venus and the Earth being 1° 36' 7''.8,

and 59' 8".33, the daily excess is 36' 59". 5 ; therefore, if the angle

13°
iSq be 13", the time from conjunction will be ggrgjp j» > or about 21

days.

4 B
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It is plain that Venus will be retrograde whilst moving through

an arc such as NLt, whether the Earth be supposed to be at rest,

or to be in motion. The case however, is different with a

superior planet*, which can only be shewn to be retrograde by

combining with its motion, the Earth's. Thus, let ab, be, cd,

be three equal arcs in the Earth's orbit, a'b', b'c1, c'd', three equal

arcs in Jupiter's (for instance,) contemporaneously described, but

less (see p. 557, 1. 16,) let also A, B, C, D, be four points in

the imaginary sphere of the fixed stars, to which a', b', c', d' are

successively referred by a spectator at a, b, c, d. Now, if ABC

be according to the order of the signs, the body in the orbit

a' b' c' d', is transferred in that direction or is progressive ; whilst

 

the spectator moves from c to d, and the planet from c' to d', the

latter, amongst the stars, is transferred from C to D towards B

and A, that isj contrary to the order of the signs. During the

* A superior planet includes within ' its orbit, the Earth's ; an in

ferior planet's orbit is included within that of the Earth's.
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description then of the intermediate arcs cb, c'b', the planet must

have been stationary. The retrogradation will continue from c

through opposition, where it will be the greatest, to a point f,

situated similarly to c ; that is, such that the angle made by two

lines joining f f, fS shall = the angle c'cS. From f through

conjunction to c, the planet will move according to the order of

the signs.

Here then is a material circumstance .of distinction, in this

part of their theory, between inferior and superior planets. In

the explanation of the quiescences and retrogradations of the

former, the Earth's motion is not an essential circumstance ;

it merely modifies their extent and duration. But, with superior

planets, the Earth's motion is an indispensable circumstance.

The very nature of the explanation depends on its combination

with that of the planets.

In speaking of the stations and retrogradations of the planets,

we have been obliged to use a language and phrases by no means

descriptive of the observations by which those phenomena are as-*

certained. But, the student must be reminded upon this, as upon

other occasions, to attend to the simple facts of observations.

When a planet is stationary, the fact of observation is, that the

right ascension continues the same : when retrograde,' that the

right ascension diminishes. The right ascension being determined

by the hour, minute, &c. at which the observed body comes on

the middle vertical wire of a transit telescope,

Jupiter, in treating of his retrogradations, has been assumed

to be a superior planet. One proof of his beiyg such, as well as

that Mars, Saturn, and the Georgium Sidus are, is to be derived

from their phases ; which have not as yet been described.

Now, Mars exhibits no such variation of phases as Venus

does ; he is seen, indeed, sometimes a little gibbous, but never in

the shape of a crescent, nor as a black spot on the Sun's disk.

If we add to these circumstances, that he is seen at all angles of

elongation from the Sun, we may presume that Mars revolves in

an orbit round the Sun inclusive of the Earth's ; that he is there

fore a superior planet. He certainly cannot revolve round the
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Earth, for then he would never be stationary, nor retrograde; nor

can his orbit pass between the Sun and Earth.

Jupiter, Saturn, and the Georgium Sidus do not appear

gibbous, but shine, almost constantly, with full orbs.

These phenomena can be accounted for, by supposing Mars,

Jupiter, Saturn, and the Georgium Sidus, to be opaque spherical

bodies illuminated by the Sun ; and Mars to be the least distant :

and, if not very distant (relatively to the Earth's distance), his

illuminated disk may, in some situations, be so much averted

from the spectator, as to give him the appearance of being a

little gibbous; and, he will be most gibbous in quadratures:

where, however, the breadth of the illuminated part will be to

that of the whole disk as 175 to 200.

If we were to increase the distance of Mars, the above pro

portion would approach more nearly to one of equality. Hence

the reason, why Jupiter, Saturn, and the Georgium Sidus, much

more distant from the Sun than Mars, do not appear gibbous,

even in quadratures.

From what has preceded, we may draw this conclusion ; that,

the adequate explanation of the phases, the stations, and the re-

trogradations of the planets, on the hypothesis of their revolution

round the Sun, renders, at least, that hypothesis probable. But,

since the explanation has been one, of obvious and general ap

pearances, and not of phenomena precisely ascertained by accurate

observations, the mere fact of a revolution has alone been rendered

probable, without any determination of the nature of the curve

of revolution. It may be either circular or elliptical. The

system of Copernicus, therefore, is rather proved to be true, than

Kepler's laws, or Newton's theory. Their truth, however, is

intended to be shewn, and, that the planets revolve round the

Sun in orbits very nearly elliptical : the deviations from the exact

elliptical forms being such, as would result from the mutual dis

turbances of the planets computed according to the law of gra

vitation. For this end, phenomena, of a different kind from the

preceding, must be selected and examined, and explanation, from

being general, must become particular, and proceed by calcula
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tion. The elements of the orbits and the motions of the planets

must be deduced from observations ; arranged in Tables ; again

compounded according to theory ; and, in this last state, as results,

subjected to the test of the nicest observations.

The elements of the orbits of planets depend on certain dis

tances, linear and angular, measured from the Sun. But, the ob

servations, from which these elements are to be deduced, are

made at the Earth. The first step then, in the succeeding inves

tigation, must be towards the invention of a method, for trans

muting observations made at the Earth, into observations that

would be made by a spectator supposed to be placed in the

Sun; in technical language, for converting geocentric into helio

centric angular distances.

This method is necessary for the extrication of the elements.

For the examination of the system founded on those elements,

the reverse method is required ; in other words, we must be

possessed of the means of converting heliocentric into geocentric

angular distances.



CHAP. XXIV.

On the Method of reducing Observations, made at the Earth, to

Observations that would, at the same time, be made by a

Spectator situated at the Sun : or, on the Methods of extri

cating,from the Geocentric Observations of a Planet's Place,

the Elements of the Orbit which it describes round the Sun.

In the theory of the fixed stars, the spectator is supposed to be

placed in the centre of that sphere, which revolving, in twenty-

four hours, round an axis passing through the poles of the Earth,

produces the common phenomena of the risings, settings, and

culminations of stars. In the solar system also, the spectator is

supposed to be, very nearly, the centre of the solar motions. In

both these cases, the observations are of right ascensions and

declinations convertible, by rules already laid down, into longi

tudes and latitudes ; in the case of the fixed stars, either geocentric,

or heliocentric longitudes and latitudes ; in the case of the Sun,

its longitudes, seen from the Earth, differ from the longitudes of

the Earth, seen from the Sun by the constant difference of

180 degrees.

The case is very different with the planets. These respect

the Sun as the centre of their motions, which motions can only

be observed at the Earth. It is necessary, then, if we would

trace the orbit of a planet described round the Suu, and lay down

the laws of its motion, that we should be able, from geocentric

observations of a planet's place, and change of place, to infer

what that place and change of place would be, were the spectator

at the centre of the planet's motions.

The first steps, in this process, would be the same as in the

sidereal and solar theories. The planet is to be observed on the
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meridian, with the transit instrument and declination quadrant or

circle, and, then, from such observed right ascension and decli

nation, the planet's geocentric longitude and latitude are to be

computed by the formulae of Chapter VII, (see pp. 160, &c).

We will give an instance in the computation of the geocentric

latitude and longitude of Venus,

March 13,

i M 22h 58m, declination 2° 43' N : obliquity 23° 27' 54",

M 344° 30'

M- 90 ... 254 30

i(jR-90).. 127 15 log. sin. 9.9009142

2

19.8008284

N. P. D/ 87° 17' 0" log. sin. 9-9995117

J 23 27 54 log. sin. 9.6000890

— 2 log. r — 20.

2) 19.4014291

M 30 7 59 . . (log. sin. M) 9-7007145

N.P. D. + /

2

N.P.D. + I

2

N.P.D. + I

2

55° 22' 27"

+ M 85 30 26 log. sin. 9-9986635

- M 25 14 28 log. sin. 9.6298461

2) 19-6285096

(log. sin 40° 41' 38") 9.8142548

.*. comp. of lat. = 81 23 16

and latitude . . . = 8 36 44
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To find the longitude,

A .... 81° 23' 16" log. sin. 9-9950753

I 23 27 54 log. sin. 9-6000890

$ 87 17 0 {d) 19-5951643

2) 192 8 10

\ sum .... 96 4- 5 log. sin. 9-9975598

isum — I. . 8 47 5 log. sin. 9-1839025

2 log. r 20

. - 39-1814623

(d) 19-5951643

2) 19-5862980

9-7931490

Now 9.7931490 is the log. sin. of 38° 23' 40", glc. aud of

360° + 38° 23' 40" = 398° 23' 40"

.-. 90 + L = 796 47 20

L = 706 47 20

= 360° + 346° 47' 20";

.'. rejecting 360*

the geocentric longitude of S , or L = 11" 16° 47' 20".

By these means, then, that is, by meridional observations of

the planet, and by computations, may its longitude and latitude

be determined. Amongst the resulting values of the latitude,

there must be some either nothing or very small. Now when the

geocentric latitude is nothing, the heliocentric. also is nothing,

or the planet is in the plane of the Earth's orbit : or, technically,

the planet is in its node: the node being the intersection of the

orbit of a planet, with the plane of the ecliptic. We are able

then, by examining the series of the values pf the geocentric

latitudes, (computed as above) to determine when a planet is in

its node, and we also know the geocentric longitude corresponding

to such a situation of the planet.
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Some values of the latitude will, it has been said, be either

nothing, or very small. The latter circumstance is likely to take

place : for, it is very improbable that the planet should be, at the

same time, on the meridian of the observer, and in the plane of

the ecliptic : in the same way, as it is very unlikely to happen

that the Sun should be, at once, in the solstice at noon, or in the

equinoctial at noon. But the same artifice, or method of com

putation, which makes amends for the want of coincidence of the

two events in the latter case, applies to the one now under con

sideration. Find, for instance, the longitude and latitude of the

planet when just above the ecliptic (to its north) and, the next

day, find the like quantities when the planet (supposing it to be

descending towards the ecliptic) is just below, or to the south of,

the ecliptic. The Rule of Three, or some equivalent rule of

proportion, will give the longitude corresponding to a latitude

that is nothing, or, in other words, will give the geocentric longi

tude of the descending node.

Before we proceed any farther we will just advert to a point

which will soon be more fully discussed. Since we are able to

compute the exact time of the planet's entering its node, we

are able to determine the interval elapsed in its passage from the

descending to the ascending node, and also the interval of time

between two successive returns to the same node. The latter

interval must be (supposing the places of the nodes, and the

dimensions and positions of the orbit, not to have changed) the

periodic time of the planet. The former interval, should it be

exactly the half of the latter, would be a proof either that the

orbit of the planet was circular, or, if elliptical, so placed as to

have its axis major coincident with the line of the nodes.

We will now consider, on what conditions the reduction of

geocentric longitudes and latitudes to heliocentric depends : or,

what points, relative to the place of a planet, the position and

dimensions of its orbit, are necessary to be settled previously to

the accomplishment of such reduction.

Let NP be part of the orbit of a planet (superior according

to the figure). Nir C part of the great circle of the ecliptic, E the

Earth, S the Sun. Conceive Pv (part of a great circle) to be

4 c
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drawn from P perpendicularly to the plane of the ecliptic.

Now a spectator at E sees P distant from the ecliptic by an

 

angle PEir, which is, therefore, the geocentric latitude (G), and

P, viewed from S, would appear to be distant from the ecliptic

by the angle PSv, which is, therefore, the heliocentric latitude

(H).

Suppose t to be, what is called, the first point of Aries :

then, since such a point is equally distant with the fixed stars,

or so distant that the diameter of the Earth's orbit subtends at it

an insensible angle, a line drawn from E to <y> is to be held to

be parallel to a line drawn from S to «y . From this point if

longitudes are computed, therefore,

the geocentric longitude of P (L) is /. irEf,

the heliocentric longitude of P (P) is ZtStj

the longitude of the Sun (©).... is Z. S E <y .

Henccj

L = o + ^ SEtt = q + E;

E representing the angle SEir, which is technically called the

angle of Elongation.

This is the denomination of one of the angles of the triangle

SEir. The angle ESir is called the Angle of Commutation (C),
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the angle SirE, or rather, the angle SPE (the angle under which

the planet sees the radius of the Earth's orbit) is called the

Annual Parallax.

The examination of the parts of the triangle SEir, will shew

us the conditions necessary for the deduction of heliocentric

longitudes and latitudes from geocentric.

In the first place

T Sir (P) = /. SE«r + 180° - ESir

= O + 180° - C.

Hence, we can determine P, the heliocentric longitude, if C

the angle of commutation be previously determined.

SE is known from the solar theory,

SEir, or E, = L. — O ,

is known since (see p. 564,) L the geocentric longitude can be

computed, and the Sun's longitude is known from the solar

theory: consequently, in order to determine the angle ESir- and

all the other parts of the triangle, \t is only necessary to know

Sir, which is denominated the Curtate Distance.

Now, Sir = SP . cos. /. PSir = r . cos. H,

consequently, m order to determine Sir, we must know the

rallies of r and H.

Let J (equal to the angle PNir) represent the inclination of

the plane of the orbit to the plane of the ecliptic, then, by

Naper's Rule for circular parts

1 x sin. Nir = cot. J.tan. Pit,

or sin. Nir . tan. J = tan. H.

In order then to determine H, we must previously know J,

the inclination, and Nir, the distance of the reduced place of the

planet from the node of its orbit, which distance is evidently

equal to the longitude of the planet minus the longitude of the

node.

With regard to r (SP), its value may be determined, nearly,

(on the supposition of a small eccentricity in the orbit) from
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Kepler's law (see p. 455.). It is, however, the mean distance

which is determined by such law. SP, therefore, is not exactly

determined, except P move (which we have no reason to suppose)

in a circle. If, therefore, we should be able to determine H

exactly, still there would be some uncertainty in determining

Sir = r . cos. H, from the uncertainty respecting r's value, and,

accordingly, there would be a corresponding uncertainty re

specting the value of the heliocentric longitude determined from

the angle ESir.

For the above reasons, since the heliocentric longitude (we

are speaking of the original processes for determining the ele

ments of a planet's orbit) cannot, generally, be exactly found,

Astronomers have selected those particular positions of a planet

in which its heliocentric longitude is known with certainty.

Now such a position, if the planet be an inferior planet, such as

Venus and Mercury are, is the superior, or inferior conjunction :

in the former the planet's heliocentric longitude is equal to ( 0 )

the Sun's longitude : in the latter, to 180° + O . In the case of

a superior planet (one whose orbit embraces that of the Earth) its

heliocentric longitude, in conjunction, is equal to O , and in

opposition, equal to 180° + O .

In such positions, then, the heliocentric longitude of a planet

is known independently of any computation of such a triangle as

SEir, and of a radius SP. It is necessary, indeed, to compute

its geocentric longitude by the method of p. 564. Suppose

Venus to be the planet, and near to her inferior conjunction, on

March 8, 1822. Compute from the passage over the meridian

(which will be near to noon) and the declination, the geocentric

longitude : it will be found to be greater than the Sun's longi

tude, which, by the Solar Tables, or the Nautical Almanack, is

11" 17° 23' 39" : on the 9th it will also be greater, on the 10th

less : so that, at some time on March 9, (when Venus is- on the

meridian of some other observer) which is easily found by simple

proportions, the geocentric longitude will have the same value

which the Sun's longitude has at the same time: and at such

a time, the geocentric longitude of the planet is the same as its

heliocentric.
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The diagram employed iq p. 566, belongs to a superior

plauet : but what has been shewn applies equally to an inferior

planet. The angle of elongation of the latter can never exceed

a certain quantity : thus, if NV represent its orbit, the angle

 

SEu is the angle of elongation, which is greatest at that point

at which a line drawn from E becomes a tangent to NAu.

This greatest elongation is called Digression : its value in the

case of Venus is about 45° 42': not always of the same value,

because both the orbits of the Earth and Venus are eccentric,

and inclined to each other.

The angle SVE, the annual parallax, may in the case of an

inferior planet, be of any value between 0 and 180.

When, however, the planet is Mars, or Jupiter, or Saturn,

the angle of elongation may be of any value between 0 and 180° :

but the annual parallax can never exceed a certain limit : which

limit in the case of Mars is 53°

of Jupiter 12

of Saturn . 6

of the Georgium Sidus . . 3.

In the preceding disquisition we have endeavoured to bare to

the view the real difficulties of the planetary theory^ for the pur
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pose of pointing out the way of overcoming them. They are, in

many cases, to be got rid of by being eluded : and, indeed, always

so to be got rid of when that is the easier way. We here allude

to what has been just said respecting the particular positions in

which a planet is to be observed, which are those of its con

junctions and oppositions. In such positions, the difficulties of

determining the heliocentric longitudes from the geocentric are

eluded ; or, all cause of uncertainty, respecting the exact values of

the former, rescinded. The principle of the method is to be

extended to other cases. In determining the inclination of the

orbit, its eccentricity, the place of the aphelion, observations of

the planet, when it occupies particular positions, are to be se

lected, or rather, particular positions of the planet and of its

orbit : for instance, such would be the observations of a planet

in conjunction, and, at the same time, near to the line of its

apsides.

But, in these, as in most astronomical processes, there can be

prescribed no general and absolute rules. The circumstances of

the case must point out the method to be pursued. We must

arrive at the end as we can. The simplest way is the best. It

is frequently the real triumph of science to elude difficulties that

are not easily grappled with.

If we revert to what has been said in pp. 567, &c. we shall

easily discern the traces of the route we must pursue. The nodes,

the inclination of the orbit, the period with the mean distance and

mean motion, are, in the first place, to be determined approxi

mately, and on the supposition of a circular orbit. In the next

place, the eccentricity and place of the aphelion, are to be deter

mined by a comparison of the mean, with the true longitudes, or,

which is the same, by a comparison of the mean with the true

motions : the true longitudes being (see p. 568,) what we can

obtain, independently of the knowledge of the elements of the

orbit, from observations of the planet in its conjunctions or op

positions : the mean longitudes being known from the period of

the planet and its longitude at a given epoch.

This, it is plain, is the description of a process which can only

give approximate results. But the approximate values of the
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eccentricity, and of the place of the aphelion being obtained, the

approximate value of the radius vector may be obtained, on which,

as we shall soon shew, the determination of the place, of the node

depends. The place of this latter element may, therefore, by

repeating the process for finding it, be more accurately found :

or the approximate value of the radius vector may be applied to

new or other observations for the same purpose. And it is after

this manner, and not by the absolute results of any geometrical,

or algebraical theorems, that the knowledge of the elements of

a planet's orbit are gradually to be arrived at.

We shall proceed to give, under their separate heads, the

methods of finding the elements of a planet's orbit.

Method offinding the Periodic Time, Mean Motion, and Mean

Distance of a Planet.

From observations of the right ascension, and declination of

the planet, compute (see p. 564,) its geocentric latitude and find

when its latitude is equal to nothing. The planet is then in its

node. Again, observe the planet and find when it next returns

to the same node. The interval of the two computed times, is

the periodic time of the planet ; which may be nearly determined

by one such process as has been just described, and exactly, by

the mean of several; exactly, if the retrogradation of the nodes

be not considerable.

The periodic time of Venus, found from the mean of several

passages between its nodes, is, nearly, 224d l6h 4lm.

The periods of Mars, Jupiter, and Saturn, may also be con

veniently found by this method. But if we possess only a limited

range of observations, the method loses some of its practical

exactness, from our not being able to take the mean of several

results. It is an excellent method for Venus, but nearly useless

in the case of the Georgium Sidus.

This method, if the entrance of the planet into each node be

observed, leads to something beyond the mere determination of

the periodic time. It shews, whether or not the orbit be eccen
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trie, and to what extent at least it must be eccentric : and this

will appear from the following detail, which Delambre has given

us for finding the period of Mars.

(1.) July £3, 1807. $ in his descending node ( S ) and his

southern latitude increased till December 16. If we assume this

latter time to be that of his greatest latitude, and the interval

(145 days) between this greatest latitude, and his being in the

node, to be £th of his period, the period will then be equal to

580 days.

(2.) May 21, 1808. $ in his ascending node (S3 ), and the

interval elapsed in the passage between node and node (between

i3 and £3 ) was 302 days. If that interval were half the period,

the period would equal 604 days.

(3.) March 7, 1809- North latitude of Mars was 2° 49,

and on June 8th, was 0 : at this latter time Mars had returned

to his orbit, after a period of 687 days, which must be, very

nearly, its true duration. The mean of several results, obtained

as above, makes the period equal to

686d 22h 18m 19s.

Now, since the interval between node and node is not half

the interval between two successive passages of the planet

through the same node, it follows that the orbit is not circular,

and, moreover, that the major axis is not coincident with the line

of the nodes. Neither can the major axis be perpendicular to

the line of the nodes : for, in that case, the planet when at the

extremity of the axis, would have been at its greatest latitude,

and the time from the node to the greatest latitude, would have

been half the interval between node and node : whereas, (see

above) the time from £S to the greatest latitude, was 145 days,

but the time from ?S to S3 was 302 days (= 2 x 151). This

same result, however, which proves the major axis not to be

perpendicular, shews also that it must be nearly so.

But we may draw farther inferences. The time from the de

scending to the ascending node, (from S to S3 ) being less than

the other half of the period by the quantity 83 ( = 3S5 — 302),

we have (supposing Nn to represent the line of the nodes),
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NAn - NBn  8£_

NAn ~ 385 1

 

since the areas are proportional to the times. Now when

Nn is perpendicular to AB, the difference between NAn aud

NBn is the greatest it can be. In such a position

AEN - NEB , 41

jjrfi would equal — , nearly,

or, the time from B to N would be nearly 152 days,

and the time from IV to A 193.

Now the period being, nearly, 687 days, in which the planet

describes 360°, the time of describing 90° would nearly equal

171 days, supposing the planet to depart from B, and to move

with its mean motion : but (see 1. 6,) the planet was really

at N nineteen days previously : in nineteen days, however,

the amount of the mean motion is equal to 360° x -— , or
4 687

nearly 10°.

At the time, therefore, the real planet was at N, the fictitious

planet or body would be, nearly, 10° behind. Now this dif

ference, or angular distance is no other (see Chapter XVIII.)

than the equation of the centre. Such equation, at the point N,

is not exactly, although it is nearly so, at its greatest value. The

4 D
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greatest equation of the centre, then, in Mars' orbit, cannot be

less than 10°. Jn fact, it must be greater, not only from the cause

just assigned, but because the difference of the times from B to

N, and from N to A, would be greater than observation shews it

to be, if Nn were (which it is not) perpendicular to AB the line

of the apsides.

The same process for finding the period, and like inferences,

relative to the degree of eccentricity, are applicable to Jupiter

and Saturn. For instance, we have, according to M. Delambre,

in Oct. 13, 1794, (286 days) U in i3 ,

May 18, 1800, (138 days) 2£ in & ;

therefore 5y 218d, or 2043 days is half a revolution.

Again,

1806, 239* n in 9, ,

1794, 286 % in 8,

1 ly 818*, or 4335 days is the period of Jupiter.

Hence, the difference between the two half revolutions, is

about 249 days: the fourth of which is 62 \, in which time

(62. 25\
= 360 x J . The greatest

equation, therefore, of the centre in Jupiter's orbit (see p. 575,)

cannot be less than 5° 4'. The axis major of Jupiter's orbit is

nearly perpendicular to the line of the nodes ; which circumstance,

as in the former case (see p. 575,) might be ascertained by an

observation of Jupiter, at the time of his greatest latitude.

In the case of Saturn, the two half revolutions from node to

node (from 8 to ffi and from Si to 25) are nearly equal. The

orbit of Saturn, therefore, is either nearly circular, or (which by

other methods is proved to be the case) the line of its nodes is

coincident with the axis major. We cannot in this case, from

observations of the passages of the nodes, determine the quantity,

than which the greatest equation cannot be less.

Since the periodic time is an important element, we will give

etlier methods of determining it.
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Second Method of determining the Periodic Time*.

Observe the planet in opposition, then its place, with regard

to longitude, is the same as if the observation were made at the

Sun. Amongst' succeeding oppositions, note that in which the

planet is in the same part of the heavens, as at the time of the

first opposition. The interval between the two similar oppo

sitions is nearly the periodic time of the planet, or a multiple of

the periodic time.

Since the planet, at the last of the two similar oppositions,

will not be exactly in the place in which it was at the time of

the first, the error, or deviation, must be corrected and accounted

for, by means of a slight computation, similar, in principle, to

several preceding computations, and the nature of which will be

sufficiently explained by an Example.

Sept. 16, 1701, 2h T/s 1(>ng- in 8 353° 21' 16"' S. lat. 2° 27' 45"

(2) Sept. 10, 1730, 12h27m Tj'slong.in <?34-7 53 57 S. lat. 2 19 6

Interv. 29? — 5d I3h 33m, diff. of long. 5° 27' 19".

Hence, it is plain, we must find the time of describing this

difference 5° 27' 19" ." and the means' of finding it may be drawn

from other observations of the planet made in September 1731.

(3) Sept. 23, 1731, 15h 51"> Tj's long, in £ 0° 30' 50" S. lat. 2° 36' 55"

Iuterval betw. (3) and (2) U 13d 3h 24m, diff. of long. = 12° 36' 53"

Hence,

12° 36' 53" : 5° 27' 19" :: ly 13d 3h 24m : time required,

which time = l63a 12h 41m.

Hence, adding this time to the former interval between op

position and opposition, we have

, 29y 7d 0h 0m (7 Bissex.)

. .. . S + 163 12 41
b 's periodic time = J

v \ — 5 13 33

' 29 164 23 8

* The periodic times of planets are important elements, and admit

of being very exactly determined; and when determined, become the

best means of determining the mean distances, which by parallax, or

other methods, are very inaccurately found.
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And consequently, Saturn's mean motion for one year, or mean

V

annual motion = 360° x -= , = 12° 13' 23" 50"'.
29y 164* 23u 8m

If the major axis of Saturn's orbit be, like that of the Earth's,

progressive, then the above determination of the periodic time

will not be very exact. And indeed, it ought rather to be re

garded as a first approximation, and as the means of obtaining

the true value of the periodic time more exactly. Using it

therefore as an approximation, we may, by comparing oppositions

of the planet, distant from each other by so large an interval of

time, that the inequalities of the several revolutions will be

mutually balanced and compensated, determine the periodic time

to much greater, and indeed, to very great exactness. Thus,

228 A. C. March 2, lh Tj's long, in £ 98» 23' 0" N. lat. 2" 50"

(2) Feb. 26, 1714, 8h 15* I7's long, in § 97 56 46 N. lat. 2 3

* Interval 1943* 105" 7h 15n>, diff. of long. 26 14.

In order to find the time of describing 26' 14", as before,

p, 575, &c.

(3) March 11, 1715, l6h 55m Tj's long, in § 111* 3' 14" N. lat. 2° 25'

Interval between (2) and (3) 378d 8h 40'" ; diff. of long. 13° 6' 28"

26' 4"
.'. time of describing 26' 4"= 378* 8h 40m x —7—7 7l= 13d 14\

6 13° 6 28"

Adding this to the former interval, we have 1943y 118d 21h 15m

for the interval, during which, Saturn must have made a complete

number of revolutions. Mow, if the periodic time (29y l64d 23h 8m)

previously determined, had been exactly determined, then, dividing

the interval by the periodic time, the result would have been an

integer, the exact number of revolutions. But, the period

having been only nearly determined, the result of the division

(the quotient) will be an integer and some small fraction : still

the number of revolutions which can only be denoted by an

integer, must be denoted by that same integer. And in the case

* 1 1 days are subtracted, in order to reduce it to the stile of the first

observation, and 485 days added on account of the Bissextiles.
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before us, it will be 66. The number of revolutions then being

exactly 66, the exact time of one revolution

1943y 118d 21h I5m

66

29y l62d 4h 27m.

Hence, according to this more correct value of the periodic

time, the mean annual motion is 12° I3' 35" 14"', and the mean

daily 2'.0097.

In the preceding method of determining the periodic time,

Saturn was reduced to the same longitude. And longitude is

measured from the first point of Aries, which point is continually

moving westward 50". 1 annually, and therefore, in 29y l62d 4h 27m

moves through 24' 35". The period, then, of Saturn, which has

been determined (29y l62d 4h 27m) belongs to his tropical revo

lution, and is shorter than that of his sidereal, by the time requisite

to describe 24' 35", that is, about 12d 7h. Hence, Saturn's

period of sidereal revolution will be 29y 174d 11h 27m.

It is equally easy to determine, directly from observations, the

period of the sidereal revolution. Since, instead of reducing

Saturn to the same longitude, we should have so to reduce his

place, that it should be at the same distance from a fixed star at

the end, as it was at the beginning of the period.

But suppose a new planet to be discovered more distant than

Saturn, must we be obliged to wait during a long term of years,

to observe the successive returns of the planet to its node, in order

to discover its mean period and distance, or, amongst the resources

of Astronomical Science, can we find some means of supplying

the defect of past observations, or of anticipating the results of

observations to be hereafter made? We shall find an answer to

this question by merely stating what has taken place with respect

to the Georgium Sidus (or Uranus as the French call it). The

planet was discovered in 1781, and in 1796 the Tables of its

motions were inserted in the Nautical Almanack : indeed, so near

the time of its discovery as the year 1782, the elements of its

orbit, (as we find by the Memoirs of the Academy of Paris for

that year) were computed by Lalaude, and, amongst such elements,

that of its period was stated to be 84 years.
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This then is a sort of practical answer to the question just

stated, and a proof that some method, other than has been de

scribed, was resorted to by Astronomers for discovering the

period, and other elements of a planet, endowed with so very

slow a motion.

The method of Lalande, one of trial and conjecture (of trial

indeed, which after a few times was sure of succeeding) will easily

be understood by adverting to what was said in pages 566, 8tc.

The angle of elongation (E) = L — O , L being the geo

centric longitude, and EttE the angle of parallax, (tt) is the

 

difference of the heliocentric and geocentric longitude, and, there

fore, is equal to P — L.

Now E is known from L and O (see p. 566.), and since

SE

sin. ir = sin. E . —— we can find tt, and thence P = L +- 7r,

if we can find Sir, or, which is the same thing, if we assume a

value (r) for Sir (Sir and SP are nearly equal) we shall have

from the above equation of a corresponding value of ir,

and thence of P : suppose its value to be P'. Use the same

process, with the same assumed radius Sir, with a second and
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third geocentric longitude, and let the two resulting heliocentric

longitudes be P" and P'", then we have

P" - P', P'" - P", and P'" - P',

and from knowing the three times of observations (£', t", t1") we

know

f _ t', t'" - t", and t'" - t'.

Take any one of these three differences, the last, for instance,

then

pm  p, . tw  t, .. a6Qo . period of the planet

But r is the assumed mean distance, accordingly, by Kepler's

law (see p. 455,)

1* : A :: 365.256384 : planet's period.

The agreement of this value with the former would be a proof

that r had been rightly assumed. The disagreement, by its

nature and degree, would point out to us the manner and extent

of correcting the first assumption of r.

This is a description of the method which Lalande employed.

He possessed three geocentric observations of the planet )

made in 1781, on April 25, July 31, and December 12, and he

found the period (according to the method just described) by

means of the first and third observation. The two values of the

period (as it was probable they would) were found to disagree.

Lalande, therefore, amended his first assumption : and assigned,

partly by conjecture, and partly by the guidance of his first trial,

a new value of the distance, and then examined it, as the former.

By a repetition of like trials and examinations a radius vector was

at lengthy obtained, which agreed with all observations *.

* This method of M. Lalande's, is a kind of sample and exemplar of

almost all astronomical processes. In these, at first, nothing is deter

mined exactly. Approximate quantities are assumed and substituted, the

results derived from them, examined and compared, and then other ap

proximations, probably nearer to the truth, suggested. Astronomy leans for

aid on Geometry ; but the precision of Geometry does not extend beyond

the
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We may state somewhat differently, but without any alteration

of principle, the above process of approximation.

Should the first, or any observations of the planet shew the

angle of elongation ( = L — © ) to be obtuse, the planet must

be a superior one : in which case, 1 being the mean distance of

the Earth, r must be > 1 .

Assume = 1 . 5, 2, 2.5, 3, 3 . 5, &c.

and form the corresponding values of w from

sin. E

siu. 7T = — :

r

thence, write down the corresponding values of

P = L + ir.

Repeat these operations on succeeding observations, and

then, by subtracting the heliocentric longitudes of one day, from

those of the preceding day, deduce the heliocentric motions of

the planet; suppose dP to represent this motion, and do the

Sun's daily motion, then, since the angular velocity

area described in a given time

~ (dist.f

whole area I
— .

^

period (dist.)4

and since the whole areas (if the orbits be circular) vary as the

squares of the radii, and the periods vary as (radii)*, we have

the limits of its theorems. In Astronomy scarcely one element is pre

sented simple and unmixed with others. Its value when first disengaged,

must partake of the uncertainty to which the other elements are subject ;

and can be supposed to be settled to a tolerable degree of correctness, only

after multiplied observations, and many revisions. There are no simple

theorems for determining at once the parallax of the Sun, the right as

cension of a star, or the heliocentric latitude of a planet.
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r* 1

dP : dO :: -3 X : 1 ;

'do(a O \*

df) '

from which expression, since d O is known from the Solar Tables,

or the Nautical Almanack, r may be computed, and its several

values corresponding to the several values of dP. Of the origi

nally assumed values of r (see p. 580, I. 7,) that which, most

nearly, approaches to one of these lastly deduced values of r, is

the value nearest to the truth. Thus suppose one of the values

from the expression

(do \ '

IF) '

should be 19-3, then, since 19.5 is, of the originally assumed

values, nearest to 19-3, we may conclude 19-5 to be nearly the

true value, and whether the true value is between 19 and 19.5, or

between 19-5 and 20, must be inferred from the two contiguous

values of r, namely, from

- - <&)*- d-iy

The periodic time of a planet (P) being found, its mean daily

motion (M) may be thence derived from this proportion,

360

P : 1 :: 360° : M = -y ,

P being expressed in days and parts of a day.

Thus, in the case of Venus, P being 225d l6h 41m, the mean

motion is

360 - 1°

225d 16" 41m .62415319
= 1°.6027 = 1° 36'9".7-

The mean distance (a) may be found by Kepler's law. Thus,

1 representing the Earth's mean distance from the Sun, and

365d.256384 being the value of the Earth's sidereal period,

4 e
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(365.256384)* : »* :: 1 : a = (—— V*.
r V365.2563847

But although this is the best, it is not the only way of finding

the distance of a planet. The distance of Venus may be found

from her greatest elongation (technically called her digression).

Thus, by examining a series of angles of elongation (E) formed

from the expression

E = ± (L - ©),

it is found, that the greatest value of E is about 45° 42', and

n

 

when E is the greatest, the angle SuE is a right angle, Eu being

a tangent to nuA. In this case, then,

tSm = S£.sin. 45° 42' = .7157, if SE = 1.

These digressions of Venus would all be of the sanje value, if

Venus and the Earth revolved in circular orbits. But, as we have

* This is not exactly true : let /m = Sun's mass + the planet's mass,

n' = Sun's mass + Earth's mass ;

is the exact equation from which a is to be deduced, (see Physical

Astronomy, p. 30.)

t Vu should have been more inclined to SV, and then Su would be

a line drawn from S to v.



58.'*

seen (p. 449,) SE is a variable distance. Still the differences in

the values of the digressions cannot be accounted for, by esti

mating the effects of the eccentricity of the Earth's orbit : the

inference from which circumstance is, that Venus's orbit is also

elliptical.

There are particular conjunctures from which, on the suppo

sition of the orbit of Venus being elliptical, we could determine

the value of its eccentricity. Suppose, for instance, we possessed,

amongst our observations, two digressions (E and E'), one made

when Venus was at the aphelion of her orbit, the other at the

perihelion ; in that case, if e were the eccentricity, R and R' the

distances of the Earth from the Sun, we should have (r being the

mean distance of Venus),

r + re = R . sin. E,

r — re = R' . sin. E',

R . sin. E - R' sin. E'

whence e =

2 r

R

= — (sin. E — sin. E'),

2 r

if we suppose -R = R.

We might also, (could we rely on the accuracy of the measure

ments) determine the relative values of the radii of the orbits of

Venus and the Earth, from the apparent diameters of the former

planet, at her greatest and least distances. Thus, should the

least and greatest apparent diameters be, respectively, 10" and 60",

we should have

60 " 1 + r , 5

— = , and r = - .

10 1 - r' 7

Method of' determining the Nodes of a Planet's Orbit.

The nodes of a planet's orbit, are those two points in it in

which it is cut by the ecliptic. The node which the planet quits

in ascending towards the north pole of the ecliptic, is called the,

Ascending Node, and its symbol is SI • The reverse or ?S , is the
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symbol of the descending node, or, of that node from which the

planet moves towards the south pole of the ecliptic.

Let N, n represent the nodes ; now by observations of the

planet's right ascension and north polar distance, we can com

pute its geocentric latitude (see p. 563,) and thence determine

71-

 

when the latitude is 0, or when the planet is in its node : let

E, E' be the two positions, when the planet is respectively at

n and N, then we have (see p. 582,)

* SEn = geocentric longitude of planet at n — © ,

SE'N= ©' — geocentric longitude of planet at N,

and from the last method we know Sn, or SN; thence we can

compute, in the triangles SEn, SE'N, the angles riSE, SnE,

and NSE', SNE': and thence

heliocentric long, of n = geocentric long, of » -f- A SnE,

or = 180° + © . - z nSE,

and helioc0. long, of N = geocentric long, of N — Z SNE',

or = ©' - 180° + / NSE',

© and © ' representing the Sun's longitudes at the two times of

observation.

The angle ESE' is proportional to the Earth's motion during

the planet's passage from n to N.

Conceive two lines drawn from E and E' to n and N, respectively.
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Venus, of which the period is less than 225 days, may, in the

space of a year, be observed three times in the ecliptic ; the

longitude of the node is, according to astronomical usage, to be

estimated from the mean of a great number of observations at

n and N.

In the above method, we have supposed the planet to be

successively at n and N : but one observation is sufficient, as far

as the principle of the method is concerned, to determine the

longitude of the node. For example, in May 14, 1747, Mars

was observed to be descending towards, and to be very near to,

his descending node. By continuing the observations, and by a

computation like that described in p. 575, Mars was found to be

in his node on May 14, at 14h 25m 13s, whilst his geocentric

longitude was computed to equal 7s 6° 13' 42".

Hence,

L = 7s 6" 13' 42"

by Solar Tables © = 1 23 46 47

(see p. 564, 1. 9,) L - Q or E = 5 12 26 55

SE

but sin. ir(SnE) = sin. E x -r— ;

Sn

Sn being taken equal to 1.5446, and SE to 1.008;

.-. w = Cf 11° 22' 55"

but (see p. 584, 1. 10,) L = 7 6 13 42

.-. heliocentric longitude of n, or ir + L = 7 17 36 37

which is the longitude of the descending node of Mars, at the

time of observation.

SE

The angle ir (see 1. 19,) depends on the value of —— .

o n

The numerator SE is known from the solar theory : but the

preceding method of pages 580, &c. determines solely the mean

distance of Mars. If, therefore, from original osbervations, we

were about to deduce the elements of that planet's orbit, we

could only, in the first steps of the deduction, approximate to the

longitude of the node : because we should, in such first steps, be
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obliged to consider the orbit of Mars as circular, or, which is the

same thing, we should be obliged to assume for Sn that value

of the mean distance, which would result from the expression

✓686.9796 19\*
Sn = ( — ) = 1.523694.

V365.256384/

In this case then (see p. 585, 1. 19,), we should have

log. sin. 7r = log. sin. 5s 12° 26' 55" + .00471 - .1828965

= 9.3011888 = log. sin. 11° 32' 28".

Hence, the first approximate value of the longitude of the

node would be greater than the one deduced by 9' 33": which is

the error caused by supposing Mars' orbit to be circular, for the

value of S?i in p. 585, was taken from the Tables of Mars.

When we determine, as above, the longitude of the node,

from computing the time of the planet's entering the ecliptic, we

do not require to be known the inclination of the planet's orbit.

In a scientific arrangement, the determination of that element

would be placed, after that of the node. But if we suppose the

inclination to be known, or (which is the real astronomical usage)

if, in performing the circuit of revision and correction, we wish,

from an approximate value of the inclination, to correct by means

of recorded observations, the elements of the orbit, we may com

pute the place of the node, by slightly modifying the above

method. Thus, in the instance given, the observations of Lacaille

were as follow :

May 14, 1749, 10h 50m 43s. geo. long. $ (L) 7s 6° 15' 20", lat. 25".5

Sun's long 1 23 38 10

E 5 12 37 10

(.  1.008 \

from sin. ir = sin. Jb . 1 ir .... 0 1 1 16 37

1.5446/

(heliocentric long. $ ); .'.ir + L ... . 7 17 31 57.

But this is the heliocentric longitude of Mars, when his

geocentric latitude was 25".5. If we could thence find the helio

centric latitude, and knew the inclination of the orbit to the

ecliptic, we could thence deduce (see Figure of p. 582,) mm.

With regard to the first point, the deduction of the heliocentric
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from the geocentric latitude, since Vu is a tangent to the angles

VSu, VEu to the respective radii Su, Eu*,

Su . tan. VSu = Eu . tan. VEu,

but 7~r— = ——— (C being ESu the angle of commutation)

tiu sin. L

and since E = 5s 12° 37' 10"

7T = 0 11 16 37

it is necessary that C = 0 6 6 13

Hence, tan. VS u = tan. 25".5 x

6 0 0 0

sin. 6° 6' 13"

sin. 17° 22' 50"

tan. 9".2 ; 9" is nearly the heliocentric latitude, which being

very small, we may consider the right-angled triangle n V u as right-

lined, and solve it accordingly : which we can do, if the angle

I'm m (the inclination) be known. Let it be 1° 51 , then kw = 4' 4l",

nearly, which being added to 7s 17° 3i' 57", (the heliocentric

longitude of $ decending towards and very near to, its node)

there results for the heliocentric longitude of the node

7s 17° 36' 38",

which, within one second, is the result of p. 585, 1. 23.

In these methods, the determination of the place of the node

is the more difficult the less is the inclination of the planet's orbit.

For that reason it is difficult to determine the nodes of the orbits

of Jupiter and the Georgium Sidus.

i

Method of determining the Inclination of the Orbit of a Planet

to the Plane of the Ecliptic.

The longitude of the node being known by the preceding

methods, compute the day on which the Sun's longitude will be

the same, or nearly the same. The Earth will then be in the

line of the nodes Nn, at some point e (fig. of p. 584,) : observe,

on that day, the planet's right ascension and north polar distance,

and deduce (see pp. 563, &c.) the geocentric latitude (G) ;

* The. lines SV, Vu should have been more bent to each other than

they are in the Figure. - ;
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 , „ sm. tSe

then tp — et . tan. G = Si . — :— . tan. G

sin. Sep

sin. Nt

— —. • ton-

sin.

but, in the right-angled triangle Ntp, we have by Naper's Rules,

sin. Nt = cot. tNp .tp, or tan. I . sin. Nt = tp,

I denoting the inclination,

,• . r • at SU1- n

accordingly, tan. 1 . sin. Nt = ——— .tan. G,

tan. G

and tan. 1 = — — .

sin. A

The diagram that has been referred to belongs to an inferior

planet : but, a like diagram, and the same process, will apply

to a superior planet.

As an instance of the method, suppose we possessd the fol

lowing observations, on Jan. 12, 1747, 6h Gm 33s:

long. V} (? 26° 12' 52", lat. N. 2° 29' 18"

on the above day, © ,| 9 21 47 0

or the Sun's long. J

.. E 2 25 34 8

'I ... 9 21 31 0

Now, by Lalande's Table,")

?S or long, of node

or the Earth was, then nearly, in a position such as e.

Hence, from the expression of 1. 7,

log. tan. 2° 29' 18" 8.6380591

log. sin. 85 34 8 9-9986999

8.6393592

and this result is the logarithmic tangent of 2° 29' 44".8, which,

accordingly, is the value of the inclination of Saturn's orbit from

the above observation, and which must be very nearly its true

value.

It is not its exact value, because the Sun's longitude being

greater than the longitude of the node by 15', the Sun at the time
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of observation, had passed the line of the nodes. About 6 hours

previously, the Sun was in the line. In order, therefore, to

correct the above result, we must correct, proportionally to such

time, the geocentric latitude, and the geocentric longitude, and,

consequently, (see p. 586, 1. 26,) the angle E. The corrected

place of the node is then to be deduced from the expression

tan. G

tan. I = - ,

sin. JE,

G and E being now the corrected values.

But it is plain that this last result will differ very little from

the former : for, the angle of elongation being 85° 34' 8", and the

angle of parallax about 6°, the remaining angle of the triangle

formed by the Earth, Sun, and Saturn, or the angle of commu

tation, will be 91° 34': consequently, Saturn will be nearly at the

same distance, both from the Sun and the Earth, and his helio

centric latitude will not differ much from his geocentric : but the

latter is 2° 29' 18"; therefore, since the inclination (which is

measured by the greatest heliocentric latitude) is 2° 29' 44".8,

the planet must be nearly at its greatest heliocentric latitude, and

quantities, at or near to their greatest values, change very slowly.

The angle of elongation will vary with the geocentric longi

tude, and accordingly, in the present case, very little : but the

inclination (see p. 588,) depends on the sine of the angle, which

angle is between 85° and 86°, and consequently not far from that

value at which the sine is a maximum. In this case then, as in

the former, scarcely any alteration will take place in the new

value of the sine of E. Hence, in the expression tan. 1= ——— ,

sin. h

the resulting value of I will be nearly the same whether we use

the original or the corrected values of G and E : or, which is

the same thing, the inclination was very nearly determined by the

first calculation.

* Log. sin. E 9-99870

log. fj'sdist 97949

9.01921 = log. sin. 6°.

4 F
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The inclination may also be determined from observing the

planet at a conjunction, when it has considerable latitude. Thus,

suppose the planet to be Venus, at a point w of her orbit, (see

fig. of p. 582,) such that A the reduced place in the ecliptic is

in the same straight line with E and S : then, as before, we have

EA . tan. AEw = SA . tan. ASw.

Let SE = 1, SA = p, Sw = r, ASw = H,

then (1 — p) . tan. G = p . tan. H.

But in the right-angled triangle Anw (right angled at A),

sin. nA . tan. I = p tan. H ;

v tan. G

. .• (1 ~ p) j = tan. I.

sin. nA

Now nA is the longitude of the planet minus the longitude of

the node. The latter quantity is supposed to be known by the

preceding methods, and, the planet being in conjunction, its

longitude is the same as the Sun's longitude : hence, if & denote

the longitude of the node n,

T . tan. G

tan. I = (1 — p) *,
r sin.(© -8)

T T / 1 \

but p = r . cos. 1= - = —t —— = r X { 1 tan.1 J)

* sec. I 1/(1+ tan.2/) V 2 /

* The inclination of the orbit of Venus is about 3° 23' : suppose such

an inferior conjunction to be observed, that the planet is 90° from its

node : then © — & = 90°, and

„ sin. 3° 23' „, , .
tan. G = —-—.— = 214, nearly, and

G = 12° 5'.

Again, suppose a like superior conjunction to be observed, then

„ tan. 7 tan. 3° 23' „„„„
tan. G = = = .0343,

1+p 1.723

and G = 1° 58', nearly.

Hence, as Delambre observes, it would be necessary, in order that

Venus should be always seen in the zodiac, that the breadth of the zodiac

should be, at the least, 24°.
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if (as is almost always the case) / be very small, hence,

/" t o T\ tan. G

tan. /a(l-r + - tan. I) -— ,

V 2 J sin. ( © - 8 )

from which I may be obtained by approximation, or the solution

of a quadratic equation, or, in the expression of p. 590, if we

make p = r, we may thence deduce an approximate value of I,

which approximate value being substituted in p = r cos. J, we

may, from the same equation, obtain a new value of tan. I.

We have now obtained the mean distance, the longitude of the

node, and the inclination of the orbit of a planet : but, hitherto,

nothing has been determined respecting the form of the orbit :

indeed, in some of the previous determinations, we have been

obliged to suppose the Orbit circular, or to assume for the radius

vector of the planet's orbit, its mean distance as it results from

Kepler's law. We must now consider whether the steps that

have been made good, will enable us to proceed farther, and to

find out, what probably, and by analogy, exists, the eccentricity

of the orbit ; and then the place of the aphelion.

We have already seen, in a particular instance, from certain

differences in the digressions of Venus, that her orbit is eccentric :

but our present concern is, with some general method, of ascer

taining and valuing the eccentricity and place of the aphelion

of the orbit of any planet. It will not be difficult to find out the

grounds of such method.

Suppose, for the sake of simplicity, the planet's orbit to lie in

the plane of the ecliptic. Since, (see pp. 571, &c.) we know the

mean motion, and, by observing the planet in conjunction, or op

position, the planet's true longitude (see p. 568,) we can, after any

elapsed time, compute the planet's mean longitude. Let the

elapsed time be the interval between two conjunctions : then, if

the orbit were circular, the computed mean longitude would agree

with the last observed longitude * ; but a difference between

them would be an indication of the orbit's eccentricity.

* Except, which is highly improbable to happen, the planet, at the

times of the two conjunctions, should be in the aphelion, or perihelion of

its orbit : for at those poiuts the mean and true anomalies are the same.
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This difference must depend both on the eccentricity, and the

place of the aphelion. It must depend upon the former, because

if, in a given position of the orbit, the eccentricity were increased,

the difference between the computed and observed longitudes

would also increase. It must depend on the place of the aphe

lion, because, if the planet be there at the time of the observed

conjunction, the true and computed places of the planet will

agree. The differences then of the computed and observed

longitudes depend on the eccentricity, and the position of the

axis major of the orbit, and it is a fit subject of mathematical

investigation, to deduce the eccentricity and the place of the

aphelion, from such differences.

We will now consider what effect on the preceding reasonings

will be produced by restoring to the orbit its inclination.

Let Nbe the nodeoftheorbit, then its Iongitude(see p. 583, &c.)

is known. The longitude of the planet, when in conjunction, is

 

known, since it equals 180°+ ©. Hence, deducting the longi

tude of the planet from the longitude of the node, there remains

Ntt. Now since the elliptical motion takes place in the orbit

NP, it is requisite to know NP, and like distances of the planet

in its orbit from the node. But Ntt being known, and the angle

PNir ; the distance NP may be determined, either by the solution

of the triangle PNtt (right angled at 7r) or (see pp. 505, &c.)
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by the formula of reduction : for, it is plain, the finding of NP,

from Nir and the angle PNir, is analogous to the finding of the

longitude, from the right ascension and obliquity. In the for

mula, therefore, of p. 506, 1. 8, write NP instead of © , and

Nir instead of JR., and let t be the tangent of inclination, then

__ „ sin. 2 Nir , . sin. 4 Nir , „

NP = Nir + t2 . —: — + t4 . —: jj~ + &c.

sin. l" sin. 2'

If we set off, on the orbit of the planet, an arc (A) = N°r the

longitude of the node, we shall have A + NP, which is called

the longitude of the planet on its orbit: and, accordingly, we

shall have as many such longitudes, or as many such distances

as NP, as there are observations of the planet in conjunction,

or opposition.

Now three such observations are sufficient to determine the

two elements of the eccentricity, and place of the aphelion : for,

if we have three longitudes on the orbit ( V, V, V") we have, by

taking the differences of the second and first, and of the third and

second, two differences of longitudes, and, since the planet's

period is known, we can compute two portions of its mean

motion, corresponding to the two noted intervals of time, between

the second and first observation, and between the third and second

observation. The two differences of real longitudes compared,

according to the elliptical theory, with the corresponding portions

of mean motion, will give us two equations for determining the

eccentricity and place of the aphelion.

Thus, suppose we have three observations of conjunctions

or oppositions, then we know the three corresponding longitudes

of the planet on the ecliptic, and, deducting from each the longi

tude of the node, we know three such arcs as Nir^ and by the

formula of reduction, three such arcs on the orbit as NP, and,

lastly, by adding to each the longitude (A) of the node, set off on

the orbit, we know three longitudes on the orbit, such as A + NP :

let these be, respectively, V, V, V", and let e be the eccen

tricity (supposed to be very small), (p the longitude of the

perihelion, the place of which, suppose to be at some point (B)
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between N and P : let M, M', M", be the mean anomalies

reckoned from B : then we have (see Chapter XVIII.)

BSP = M + 2 e . sin. 2 M, nearly,

or F — <p = M -\- 2e . sin. (V — (pi), nearly,

similarly V - 0 = M' + 2 e . sin. (F' - <p),

V- <p = M"+ 2e.sin. (F"- 0).

Hence, by subtraction

F*- F = M' - M + 2e. {sin. (F' - 0) - sin.(F - $)},

V"- V'= M" - M'+ 2e. {sin. (V" - <j>) - sin.(F-ft)},

or — •

(1) (V' — V)- (M' - M) ( = a) = 2 e { sin. (F' - <p) - sin. (F- <p) },

(2) ( F»- V)-(M" - M') ( = 6) = 2 e { sin. (F" - <J>) - sin. (V- <p) } .

Now V, V, V" are known (see p. 568,) and M'— M, M"—M'

are known from the period of the planet, and the times elapsed :

thus, if t be the interval between the observations of V and V',

planet's period : 360° :: t : M' - M=—*— x 360°.

period

Hence, since a and b are known, we have two equations for

determining e and (p.

Divide equation (1) by equation (2), then

a  sin. (V — ft) - sin. (V - ft)

b ~ sin. {V" — ft) - sin. (V - ft) '

the numerator of this fraction

= sin.(r-d».ri-sin-(F-^

V V V sin. (F'-ft)/

= sin. (V - ft) (l - ^ cos, ft- cos. F. sin. ftx

V sin. V . cos. <p — cos. V. sin. ft'

,rri / si"- F — cos. F.tan. <z>\
= sin. (V - ft) . I 1 : — J- )

v r V sin. V — cos. F'. tan. ft/

,tti ,v /siu. F'— sin. F— tan. ft (cos. F'— cos. V)\

= (F - *> • ( sin. r- cos. F. tan. <p )'

similarly, the denominator of the above fraction (1. 21,)
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=  sin (V'— di) /sin- V' ~ »n- *an. <t> (cos- V - cos. V")\

9 \ sin. V - cos. V . tan. 0 ) '

Hence,

a sin. V — sin. — tan. <f> . (cos. — cos. V)

b ~~ sin. V" - sin. F' - tan. <p (cos. 7" - cos. V)

and, accordingly,

 a . (sin. - sin. V) - b . (sin. F' - sin. V)

tan. 9 - fl (cQS F//  cog<  ^ (cog F^  cog F) >

which is an equation for determining <p, the longitude of the

perihelion.

In order to determine the eccentricity, we have, <j> being

determined by the preceding equation,

 a . sin, l"

6 ~ 2 . [sin. {V - <f>) - sin. (F - 0)]\ a . sin, l"

sin. ^ (F' - V) . cos. ( J 0)

By these means <J> and e * are approximately determined : and

if we use their approximate values, we may extend the series for

V — <j), &c. (see Physical Astronomy, p. 32,) and obtain nearer

values for (V - V) - (M' - M), &c. or for a and b, and

thence, by means of the equations of 1. 5, nearer values of 0

and e. %

The eccentricity (e), the longitude of the perihelion (<p), and

the axis major (2 a), being determined, we are able to compute

the radius vector (r) from the expression

T 1 -fe.cos. (V — <p) '

* The eccentricity and place of the aphelion are often mathematically

determined by the solution of a problem, of which the conditions are, three

given radii vectores, and three given longitudes : but it is plain, from the

preceding matter, that the first condition, (that of the given radii vectores,)

is not easily to be obtained. The knowledge of the period, leads only to

the knowledge of the mean distance.
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and, since the place of the node, and the inclination of the orbit

are determined, we are able to compute (see figure of p. 592,) the

curtate distance St, on the supposition that SP, from which it

is deduced, is the radius vector in an elliptical orbit. If, there

fore, in any of the processes for determining the elements, the

curtate distance Sn has been supposed to be derived from SP,

considered as a mean distance, or constant radius (see p. 567,)

we may now, with a truer value of Sir, repeat the processes

and correct their results.

The elements of a planet's orbit being now obtained, we will

proceed to consider - by what means those elements are to be

employed in forming Tables of the planets' motions ; and, then,

by what methods, either recorded or future geocentric observa

tions may be applied to the correction of existing Tables. These

subjects will be briefly considered in the ensuing Chapters.



CHAP. XXV.

On the Formation of Tables of the Planets.—-The Variations of

the Elements of their Motions.—The Processes for deducing

the Heliocentric Places of Planetsfrom Tables.

In the planetary theory, as in the solar, the described orbits are

supposed to be elliptical. The same process then, which, in the

latter theory, gave us the Sun's true anomaly and radius vector

from the mean anomaly, will give us (changing what ought to be

changed) a planet's true anomaly, whether the planet be Venus,

or Saturn.

This regards the elliptical place to be found by Kepler's

problem. But the Earth being, according to the doctrine of

universal gravitation, disturbed by the action of the Moon and the

planets, does not describe an orbit exactly elliptical. By parity

of reason, neither Venus nor Saturn can move in orbits exactly

elliptical. Each disturbs the other. Their places, therefore, like

the Sun's place, require a small correction, or rather several

small corrections due to the several planets.

But as in no case these corrections for planetary perturbation

are large, so in some they are too small to be worth taking

account of. Mercury and Venus are in the above predicament.

Their Tables are constructed solely by means of Kepler's problem,

and are, therefore, much more easily constructed than the Tables

of the other planets. The longitudes of Mercury and Venus are,

4 G
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accordingly, to be had very readily from their Tables. For

instance, suppose it were required to find Mercury's longitude in

his orbit.

Longitude. Aphelion.

Epoch for 1793,

Mean motion to June 3,

2s 28° 5' 16"

9 0 13 34

0 0 51 9

8s 14° 14' 17"

0 0 0 24

Equation of centre ....

11 29 9 59

— 23 39 58.5

8 14 14 41

U 29 9 50

Longitude on orbit .... 11 5 30 0.5 3 14 55 9

the mean anomaly.

This is a process precisely similar to that by which in pp. 489,

490, the Sun's longitude was found : and, to a certain extent,

all other processes for computing the longitude of a planet, be it

Mars, or Jupiter, or Saturn, must resemble it, iuasmuch as Kepler's

problem is, in all, the main instrument in procuring a result.

The result by Kepler's problem solely, is the planet's ellip

tical place : which, in the case of the Earth, Mars, Jupiter,

Saturn, and the Georgium Sidus, requires a correction. We will

give an instance of Mars' longitude taken from his Tables.
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Required the Heliocentric Longitude and Latitude of Mars,

Nov. I3, 1800, 11h 8m 20\

Longitude. Aphelion. Node.

Epoch for 1800

Nov. . . .

7' 22° 34' 2l".8

5 9 19 3.4

0 6 48 46.5

0 0 14 24.7

0 0 0 10.5

0 0 0 0.4

5s 2° 23' 17"

0 0 0 55.8

0 0 0 2.4

I- lgo jr I«

13d

0 0 0 22.8

0 0 0 1

11h

8m • . . •

20" ... .

Mean longitude

e) Sum ofequa.

1 8 56 47.3

0 10 13 26.9

5 2 24 15.2

1 8 56 47.3

1 18 1 24.8

1 19 10 14.2

Long, on orbil

Reduction ....

1 19 10 14.2

0 0 0-2.2

8 6 32 32.1

the mean anom.

0 1 8 49.4

argument of lat.

Heliocen. long. 1 19 10 12 Heliocen. lat.

= 0°2'13".4N.

In this process, e, the sum of the equations, contains, besides

the equation of the centre (= 10° 13' 13".5), three small equa

tions arising from the perturbations of Venus, the Earth, and

Jupiter. The sum of these three equations is 13".4, which added

to the equation of the centre make e.

The reduction — 2".2, applied to the longitude on the orbit,

gives the heliocentric longitude, measured along the ecliptic, and

from the mean equinox. If this result be corrected for the effect

of nutation, (by applying the equation of the equinoxes) there

will be obtained, the longitude measured from the apparent

equinox.

In the fourth column, the argument of latitude is the dif

ference of the longitude on the orbit (1' 19° 10' 14".2), and of the

longitude of the node (1' 18° l' 24".8). It is, in the annexed

figure, NP : and it is properly called the argument of latitude,
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because, the inclination of the orbit being given, the latitude

There are no direct corrections, from the theory of perturba

tion, of the longitudes of Mercury and VenuSj in the Tables of

those planets. Still the Tables are not entirely constructed

without the aid of such theory. If we revert to p. 598, 1. 6, we

shall see in the fourth column, under the head of Aphelion, 24"

to be added to the epoch of the aphelion, as a quantity due to

the change of the aphelion's place, in the interval between

January 1, 1793, and June 3, 1793.

Now such a change of place does not obtain in the elliptical

theory, but arises from the disturbing forces of the system.

Some, therefore, of the results of the theory of perturbation are

made use of in constructing the Tables of Mercury and Venus.

* If the inclination be taken equal to 1" 51' 4", we have

depends upon it ; for

 

1 . sin; lat. sin. NP.sin. NPtt*.

log. sin. 1" 51' 4" ....

log. sin. 1 8 49.4 .

8.5092343

8.3014327

6.8106670

which is the log. sin. of 2' 13"J.
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But the changes of the places of the aphelia are phenomena,

or laws common to the orbits of all planets. We have another

instance in the second Example. These changes are changes of

progression: and their computation, on the principles of gravita

tion, was the second great proof of the truth of Newton's System,

(see Physical Astronomy, Chapters IX, XXII.)

In the second Example there is a small quantity to be added

to the place of the node, and indicative of a change of its place

in the interval between January 1, and November 13 : (see the

Chapters above cited).

The accounting for the progressions of the aphelia, and the

regressions of the nodes (for such is the general statement of the

laws of their motions), on the principle and law of gravitation,

proves, to a certain extent, the truth of such law and principle.

But, in determining the exact quantities (and the quantities are

very minute) of such progressions and regressions, it is much

better to use observations, than computations from theory. And

observations are thus to be used : from those that are convenient

for the purpose, find for a certain epoch the place of the node :

repeat the process for another epoch : the difference of the two

places is the change of the node's place in the interval between

the two epochs : and the difference divided by the interval (if it be

expressed in years and parts of years) will be the mean annual

regression of the node. A like process will determine the pro

gression of the aphelion.

We have now described and illustrated methods of deriving,

from observations of right ascension and declination, the elements

of a planet's orbit, and the variations and annual changes of those

elements. The elliptical theory enables us, then, to form Tables

of the planet : from which, at any epoch, its-heliocentric longitude

and latitude may be computed. The formula or Table of reduc

tion to the ecliptic, gives the planet's longitude on the ecliptic.

But in order to know at what time, and in what part of the

heavens we ought to look for the planet, there is need of a

method of deducing the geocentric longitude and latitude from

the heliocentric. The geocentric longitude and latitude being

known, the right ascension and declination of the planet may be
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deduced : and, accordingly, if we use instruments placed in the

meridian, we know at what time, and at what distance from the

zenith, to look for the planet on the meridian. If the predicted,

or computed, right ascension and declination should agree with

the observed, a presumption would then arise of the Tables being

right : and if, in many and various instances, the observed and

computed places should be found to agree, a proof would be

established of their being right.

But even now, as formerly, there are to be noted some small

differences between the observed and Tabular places of the

planets : differences, however, too great to be imputed solely to

erroneous observation, and which must, therefore, arise, in part,

from the errors of the Tables. In order to render the Tables

more correct, the noted differences, just spoken of, must be used

(as like differences, or errors were used in pages 511, &c.) in

forming sets of equations, having indeterminate coefficients that

represent the errors of the several elements of the computation.

But this and the other matters, previously spoken of in this

Chapter, will form the subject of the ensuing.



CHAP XXVI.

On the Deduction of Geocentric Longitudes and Latitudes from

Heliocentric.—-Examples of the same: the Method of cor

recting the Tables of Planets.

In order to attain the objects, pointed out at the conclusion of

the last Chapter, it is necessary to be possessed of a formula, or

of rules for converting heliocentric longitudes and latitudes, fur

nished by the planetary Tables, into geocentric.

// is required to determine, from the Heliocentric, the Geocentric

Longitude and Latitude of a Planet.

The heliocentric longitude of the planet, and the longitude of

the Earth being known, (from the solar theory and Tables) that

is, the angles formed by ir S, ES, with Sf , -E <y being known,

the angle EStt, the angle of commutation, is known.

Again, from the heliocentric latitude Z PSir, and SP, given

by the planetary theory, (see p. 595,) the curtate distance Stt

may be computed, for

Sir = SP x cos. PS ir.

But, SE is also known by the solar theory (see p. 466,) there

fore to determine i SEir, the difference of the heliocentric and

geocentric longitudes, we have Z ESir, SE and Stt.

The angle SEtt may be thus determined :

Assume (see Trig. p. 28, &c.) an angle 9, such, that

Stt SP . cos. PSir ,

tan. 6 = rx — = rx — , then (see Irtg. p. 29, 30,)
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/SEir - SwE\ ESir

r x tan. ^ -J = tan. —— tan. (9 — 45°)

from which formula SEir — SirE may be computed, and

SEir + SirE being known, the separate angles SEir, SirE may

be determined.

The angle SEir, the angle of elongation, is the difference

(see p. 566,) of the geocentric, and of the Sun's longitude.

Hence,

geocentric long, planet = longitude of 0 + / elongation.

The geocentric latitude may be thus determined,

Pit Sit „0 sin. Z SEir

tan. PEir = —=-—. tan. PSir = tan. Z PSir,

Eir Ett sin. / LSir

or,

. . sin. t elong". ... . ,

tan. geocentric lat. = — X tan. heliocentric lat.

sin. Z commut .

Example. •

The Heliocentric Longitude and Latitude of Jupiter being, on

July 11, 5h 48m 39s, 1800, 6s 29° 9' 14".3, and 1° 13' 42"

respectively, required the corresponding Geocentric Longitude

and Latitude.

Heliocentric long. % 6s 29° 9' 14".3

(From Solar Tables) long. © 3 19 52 28 . 3

/ ESir 3 9 16 46

.-. ±ESir 1 19 38 23

n SP . cos. heli°. lat. . . .. .
9 computed from tan. 9 = r — (p. 603, last line)

From Tables of) , sp 7355821

the planet. J 6

log. cos. helioc. lat 9-9999001

arith. comp. SE 9-9928989

(log. tan. 79° 24' 48") 10.7283811 (reject*. 10)
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.-. 0 = 79" 24' 48"

0 - 45° = 34 24 48 ... . log. tan. .

IEStt = 49 38 23 log. tan. .

. 9.8357262

10.0706464

19-9063726

SEir — SirE

' 5therefore, rejecting 10, 9.9063726 = log. tan,

SEir — SirE n0 , ^
.-. = 38° 52' 16".

2

 SEir + SirE

But = 49 38 23 ;
2

.-. SEir = 88 30 39 = 2s 28° 30' 39"

But (p. 604, 1. 17,) long. © .... = 3 19 52 28.3

.-. (p. 604, 1. 8,) geocen. longitude = 6 18 23 7.3

To find the Latitude {from the expression, p. 604, I. 12,)

log. sin. Z elon. (S Eir = 88° 30' 39") 9-99985

ar. comp. sin. L com. (£Stt = 99 16 46) 0.00573

log. tan. heliocentric lat. (lat. = 1 13 42) 8.33126

log. tan. geocentric lat. = 8.33684 (reject. 10)

 

geocentric latitude = 1° 14' 39".

4 H
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Or, the computation may be effected by the aid of the fol

lowing formula,

i denotes the geocentric longitude,

P the heliocentric,

X the heliocentric latitude,

JE the angle of elongation,

7r the angle of parallax,

r the radius vector SP,

R the radius vector SE,

then, ir = P — L,

E = L - ©,

. . T, r . cos. X . r.cos. X TN
then, sin. L = , sin. tt = — sin. (Jr — L)

R R

r.cos. X „ • T^

= — (sin. P cos. L — cos. P sm. Li),

R

but also sin. E = sin. (L— © ) = sin. L cos. © — cos. L . sin. O •

Equate these two values of sin. E, and there results

r cos. X sin. P cos. L — r cos. X cos. P . sin: X

i= R sin. \L cos. © — Ji cos. L sin. © ,

and thence, (R cos. © + r cos. X cos. P) sin. L

= (P sin. O + r cos. X sin. P) cos. L,

R sin. © + r cos. X sin. P
and tan. L = — .— = ,

K cos. © + r cos. X cos. r

which is an expression for the geocentric longitude in terms of

quantities, given by, or capable of being computed from, the

planetary and Solar Tables.

But this expression is not adapted to logarithmic computation.

In order to adapt it, thus express the numerator and denominator, .

/sin. 0 r cos. X . sin. P\ v

the numerator = ( + — 1 K . cos. ©,

Vcos. © R cos. © /

the denominator = (l +-=, cos. X ^ P. cos. ©.

V R cos. © /
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r cos. X . sin. P sin. x

Let — = tan. x = ;

K cos. O cos. x

r cos. P cos. P sin. a: cos. P

.'. — cos. A = tan. x . — = — ;
R cos. O sin. P cos. x sin. P

sin. O cos. x 4- cos. O sin. x sin. P

.'. tan. L = : — : — .
cos. x sin. P + sin. x cos. Jr cos. O

sin. ( © + x) . sin. P

sin. (P + x) cos. O

We will apply this formula to the preceding instance, using,

the same numbers for r, R, &<c.

First Operation, x computed.

log. r 7355821

arith. comp. R 9-9928989

log. cos. X 9-9999001

log. sin. P 9-6876697

log. sec© 11.4685705

(rejecting 30) 10.8846213

Second Operation. L computed.

x = S2° 34' 8", nearly,

G = 109 52 28.3 log. sec . . 11 .4685705.

192 26 36.3 sin .9-3333974

P = 209 9 14.3 sin 9-6876697

P+ x = 291 43 22.3 arith. comp. 10.0319914

(rejecting 30) .... 10.5216290.

Now 10.5216290 is the log. tangent of 18p 23' 8", and of

9 18° 23' 8", which latter quantity is evidently the true one in

the present instance ; therefore

L = 6s 18° 23' 8",

nearly the same result as before.

By these means, then, the geocentric longitudes and latitudes

may be computed from the heliocentric, such as the planetary
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Tables afford : the next step is to compare the computed geo

centric longitudes and latitudes, with the observed, and from such

comparison to derive the corrections of the Tables,

Let C be the computed longitude,

L the observed,

O the epoch of the Tables,

m the mean motion,

t the time elapsed since the epoch,

E the equation of the centre, corresponding to a mean

anomaly A, then

C = O + nit + E;

.-. dC = dO + dm.t + dE,

but, as in p. 511, E varies both from the variation of the eccen

tricity, and from the variation (</tt) of the longitude of the peri

helion ;

dE dE

.'. dE = — de + —— .air ;

de air

dE dE

:. dC = dO + t .dm + — de + — dir.

de dir

Now dC the variation or error of the computed longitude, may be

considered as the difference between the computed and the

observed longitude : every comparison, therefore, of the two

kinds of longitudes affords an equation like the one of 1. 17, and

four such equations will be sufficient for the elimination and

determination of the errors of the eccentricity, epoch, &c. : but,

instead of confining ourselves to a barely sufficient number ot

equations, it will be expedient to make use of a great number,

and by their combination to obtain mean results, (see p. 511, 8tc.)

In the above method of correcting the elements of a planet's

orbit, the orbit is supposed to be strictly elliptical : but it must

deviate from such form, by the effect of perturbation. In order

to estimate the parts of such effect, or, in other words, the partial

effects of the several planets, it is necessary to assume a series

of terms with indeterminate coefficients, and arguments depending

on the angular distances of the disturbed and disturbing planets

(see pp. 498.. 519, &c.)
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In the next Chapter we will turn our attention to the synodical

revolutions of planets, and to the means of ascertaining, after what

intervals of time, we may expect those rare phenomena of the

i transits of Venus and Mercury, over the Sun's disk : which indeed

can only happen at peculiar conjunctions : such that the planet,

when it has the same longitude as the Sun, shall be near to the

node of its orbit : so near that its geocentric latitude shall either

be less than the Sun's semi-diameter, or, in the extreme case,

shall scarcely exceed it.



CHAP. XXVII.

On the Si/nodical Revolutions of Planets.—On the Metliod of

computing the Returns of Planets to the same Point of their

Orbit.—Tables of the Elements of the Orbits of the Planets.

In the preceding pages, the conjunctions and oppositions of

planets have been spoken of, but hitherto no method has been

given of computing the times between successive conjunctions, or

successive oppositions.

In the method also of determining the mean motions of planets

(see p. 375,) directions were given for observing the planet in the

same, or nearly the same point of its orbit, but no process or

formula given, of computing the time at which such event would

take place.

Towards these points then our attention will be now directed :

we shall find that they depend on the same principles, and require,

in the business of computation, nearly the same formulae.

The time between conjunction and conjunction, or between

opposition and opposition, is denominated, a. Synodical period.

Suppose we assume, at a given instant, the Sun, Mercury and the

Earth to be in the same right line : then, after any elapsed time

(a day for instance,) Mercury will have described an angle m, and

the Earth an angle M, round the Sun. Now, m is greater than

M (p. 581,) therefore at the end of a day, the separation of

Mercury from the Earth (measuring the separation by an angle

formed by two lines drawn from Mercury and the Earth to the

Sun) will be m — M : at the end of two days, (the mean daily

motions continuing the same,) the angle of separation will be

2 (to — M) ; at the end of three days, 3 (m — M) ; at the end of

s days, s (m— M).
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When the angle of separation then amounts to 360°, that is,,

when s (m— M) = 360°, the Sun, Mercury and the Earth must

be again in the same right line, and, in that case,

360°

* = ^ (1).

m — M

In which expression s denotes the time of a synodical revolu

tion, m and M being taken to denote the mean daily motions,

but, as it is plain, m and M may denote any portions, however

small, of the mean motions, and s will still be the corresponding

time, however reckoned, whether by days, or hours, or seconds.

Let P and p denote the sidereal periods of the Earth and the

planet; then, since ld : M° :: P : 360°,

and I : m :: p : 360,

„ 360 J 360° , . .
M = —— and m = —— ; .'. substituting

P p

360° Pp
s = = —ii- (2),

"(j-?) P

and from either of these expressions, (1), (2), the synodical

revolution of the planet may be computed.

We may differently express the synodic period ; thus, if 1 be

the Earth's mean distance, and r be the planet's mean distance,

we have, by Kepler's law

p

P : p :: 1 : r$ ; .'. — = r~ *,

and s =

or s =

P

P  365^256384

r-§  i — r—'i — i :

365d .256384

The first expression belonging to inferior, the second to

superior, planets : and from these or the former expressions of

1. 4, 14, the synodical periods may be computed.
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For instance, in the case of Mercury, p = 87d.969 ;

365.256 x 87-969 d h
.•. s — — = 115 21 , nearly.

277-287

In the case of the Moon, m jst 13°.1763, and M (the Earth's

mean daily motion) = 59' 8".3 ;

360° 360 j k ,.-. s — = = 29 I2h, nearly,

m - M 12.1906 7

and the following Table may be formed by substituting in the

expression of p. 6 11, 1. 20, the respective values of r.

Planets. Values of r. Values of ».

0.3871
115d.877

? .7233324 583.920

1 .5236927 779-936

? 2.6 479.672

n 5.202792 398 . 867

9.5387705 378.090

19.183305 369-656

It is upon this synodical revolution of the Moon, that its

phases depend.

Since s =

Pp sP

P - p' '' s + P '

therefore, from the Earth's period (P) known, and the synodic

(s) observed, we can determine the periodic time (P) of the planet.

This method will not be accurate, if only one synodic period be

observed, since that will be affected with all the deviations of the

planet's real from its mean motion. To obviate this, the return of

the planet to a conjunction nearly in the same part of its orbit,

at which a previous one was observed, must be noted ; the inter

val of time divided by the number of synodical revolutions will

give the time of a mean synodical period. For, in this case, there

will take place, very nearly, a mutual compensation of the ine

qualities arising from the elliptical form of the planet's orbit.
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By the above method, the sidereal periods of Mercury and

Venus may be accurately determined.

One reason already assigned for the necessity of knowing those

particular conjunctions at which the planet will be nearly in the

same part of its orbit, is the mutual compensation that will pro

bably take place of the inequalities (restively to mean motion)

arising from the planet's elliptical motion. Another reason is,

that, on such conjunctions, depend observations of great import

ance in Astronomy ; namely, the transits of Venus and Mercury

over the Sun's disk. This will be manifest, if we consider that

Venus, in order to be seen on the Sun's disk, must not only be in

conjunction, but near the node of her orbit : at the next con

junction, after one synodical revolution, she cannot be near her

node, and can only be again near, (supposing the motion of the

nodes not to be considerable,) when she returns to the same part

of her orbit as at the time of the first observation. The import

ance of knowing these particular conjunctions then is manifest,

and we shall be possessed of the means of knowing them, by

modifying the formulae of p. 611, by which the times between

successive conjunctions are computed.

Pp

The time (0 of a synodical revolution = — .

P -p

2Pp 3Pp 4Pw , nPp

At the several times ——— , ——- , — and — , there-

P—p P—p P—p P—p

fore, the planet is still in conjunction : it will, therefore, be for

the first time in conjunction, and, besides, the Earth and planet.

Tl Pt)

will be in the same part of their orbits, when — = P, or

P - P

P—P
when n = . Now, n must be a whole number, but

P *

P -p . .

may not be a whole number; in such a case, therefore,

P

after one revolution of the Earth, the planet cannot be in con

junction, or, if viewed, about that time, in conjunction, it cannot

be in the same part of its orbit.

4 i
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But, the conditions of the planet in conjunction, and in the

same part of its orbit, although they cannot take place in 1 or 2

or 3 years (P = 1 year), yet they may take place in m years : and

if such conditions take place, then must

»PP _mP

, m «

and — =

P-p>

and the question now is purely a mathematical one, namely, that

of determining two integer numbers m and n, such, that

m p

Ti ~ P — p'

Thus, in the case of Mercury, whose tropical revolution is

87d 23h 14m 32s (= 87.968),

m 87-968 87.968

m ~ 365.256 - 87.968 ~ 277.288 ;

consequently, in 87968 periods of the Earth, in which will happen

277288 synodic revolutions, Mercury will be observed in con

junction, and in the same part of his orbit. But, this result is,

on account of the length of the period, practically useless : we

87.968

must find then the lowest terms of the fraction -, and

277.288

if the lowest terms still give periods too large, we must investi

gate some integer numbers, which are -very nearly in the ratio of

87968 to 277288; so that we may know the periods at which

the' conditions required will nearly take place.

87968 1 1

J\ OW ' — ' SE -. .

' 277288 277288 13384'

87968 87968
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and, by continuing the operation, there is at last obtained a re

mainder equal nothing, the greatest common measure being 8,

10996
and the fraction in its lowest terms *, which result, for

34661

obvious reasons, is of no practical use : we must therefore find

two near integer numbers ; and this we are enabled to do by the

preceding operation, which, as we take more and more terms of the

continued fraction, affords fractions alternately less and greater than

the proposed \^~2BsJ ^Ut> contmua^v' aPPr0X'mating« nearer

and nearer, to its true value. Thus, the first approximation is

j : or, in one year, in which happen 3 synodical periods, the planet

will not be very distant from conjunction, nor from those parts

of its orbit in which it was first observed. Again, the second

approximation is = — , or in 6 years, in which happen

3 + 6

19 synodical revolutions, the planet will be less distant than it

was before, from conjunction, and from those parts of its orbit

in which it was in the former instance. The third approximation

• 1 7 .
is = — , or, in 7 years, in which happen 22

3 + 7. 22

6+1

synodical revolutions, the planet will be nearer to conjunction

than it was at either of the two preceding points of time, and so

on." This follows from the very nature of the process, by which

the successive approximations are formed from the continued

fraction (see Euler's Algebra, tom. II, p. 410, Ed. 1774); but it

nay be useful to exemplify its truth by means of the instance

* The operation in finding the continued fraction terminates, and gives

a greatest common measure, because, since great accuracy is not requisite,

87Qf)S
we took j to represent, which it does nearly, but not exactly, the

ratio of the mean motions of Mercury and the Earth. If we had taken

a fraction more exact to the true value, then the operation would not have

happened to terminate.
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before us. Thus, at the end of 1 year, since the diurnal tropical

motion of Mercury is 4° b' 32".5 = 4°.092, nearly, the angle

described by that planet is

365.25 x 4°.092 = 1494°.6, nearly,

= 4 x 360" + 54°.6, and consequently, Mercury at the end of

1 year, is elongated (reckoning from the Sun) from, the line

joining the Sun and Earth, and beyond that line, by an angle

= 54°.6 ; again, at the end of 6 years, the angle described by

the planet is equal, to

(4 x 360° + 54°.6) x 6 = (rejecting 24 circumferences) 327°.6 ;

or at the end of 6 years, Mercury is elongated from the line join

ing the Earth and Sun, by 327° .6, or, not up to that line, by an

angle = 32° .4.

At the end of 7 years, the angle described by Mercury is

(4 x 360 + 54°. 6) x 7 = (rejecting 29 circumferences) 22°.2 :

or Mercury is then (observing the analogy of the last expression,

1. 12,) beyond the line joining the Earth and Sun, by that angle.

At the end of 13 years, Mercury, (rejecting 54 circumferences)

is separated from the line joining the Earth and Sun, and not up

to that line, by an angle = 10°.2.

The series of fractions, formed as those in . p. 614, were

formed, is

1 6 7 13 33 46

3' 19' 22' 41' 104' 145' °'

The denominators denote the number of synodical revolutions,

corresponding to the number of years denoted by the numerators :

the number of periods of the planet must evidently be

3+1, 6 + 19, 7 + 22, I3 + 41, &c.

that is, 4, 25, 29, 54, &c.

and therefore the series of fractions, in which the denominators

are the number of periods of Mercury, will be

1 6 7 13

- , — , — , — , &c.

4 25 29 54
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We may, on like grounds, and by like computations, determine

the probable epochs, on which we ought to look out for the

transits of Venus over the Sun's disk: which are phenomena of

more practical importance than the transits of Mercury.

Thus, if Venus's period (p) = 224d. 7008240,

the Earth's (P) = 365.2563835,

Pp .

the synodical period, or s, = — , =583 .92, nearly*, conse-

. P

quently in one synodical period, the Earth describes an angle equal

to

583d Q2

360° X '— , or 575°.51, nearly,
365.25 J

consequently, in n synodical periods, the Earth describes an angle

equal to

575°.5l x 7i,

and when 575°.51 X n, shall first become a multiple of 360°,

then there will first happen a conjunction of the Earth and Venus,

in the same line from which they originally departed. If, there

fore, Venus in this original position, was so near to the node of

her orbit, that a transit took place, a transit will take place when

575°.51 x n - 360° X in,

and we must now find, as before (see p. 614,) the integer values

of n and m from the equation

m  57551

w 7 36000 '

The series of quotients found as before in p. 614, are

1, 1, 1, 2, 28, 1, 81,

and the series of fractions

* Log. P 2.5625977

log. p 2.3516046

4.9142023

log.-(P-p) 2.1478477

(log. 583.92) 2.7663545
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1 2 3 8 227 235 -

1 ' 1 ' 2' 5' 147'

from which series we are able to tell after what number of

synodical periods Venus and the Earth will be nearly in the same

g
parts of their orbits. Thus, taking the fourth fraction - , after

5

5 synodical periods, 8 circumferences will be nearly described,

and on trial we find 575s. 51 x 5 = 2877°.55 = 360° x8= 2°.45,

227

again, taking the next fraction, viz. , we infer that, after

142 synodical periods, 227 circumferences will be nearly de

scribed ; and more nearly described than the former 8 were in

5 synodical periods : or, which is the same thing, 142 synodical

periods are nearly equal to 227 years : on trial we find

575°.51 X 142 = 81722°.42 = 360° x 227 + 2°.42.

Again,

575°.51 x 147 =' 84599°-97 = 360° X 235 - 0°.03.

Hence, 235 years after a transit of Venus we may confidently

expect another ; and also after 235 + 8, or 243 years. In these

computations, the alteration in the place of the node, that will

happen in the interval of the transits, is not taken account of.

But, if we were guided merely by the preceding mathematical

results, we should be in danger of missing some transits : for those

results are founded on the probability of a transit's happening

when Venus and the Earth are nearly in the same parts of their

orbits, as they were at the time of a former transit. A transit,

however, may happen-when the planets are in parts of their orbits

diametrically opposite., or, in other words, a transit may happen

should there happen to be a conjunction when Venus is, or nearly,

in the node of her orbit, opposite to that in which a transit has

already happened. In order to find the probable periods at which

the transits in the opposite node may happen, we must, instead of

the equation of p. 617, write this

575°.51 x n = 180° X (2 s - 1),

since, it is plain, a transit must happen, whenever, after n synodi-
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cal periods, the angle described by the Earth shall be either 180°,

or, a multiple of 180°. Form then a series of fractions, as before

in p. 614, by dividing 57551 by 18000: which, since the suc

cessive quotients are

3, 5, 14, 2, 40,

will be

3 16 227 460 „

- , — , , , &c.

1 5 71 147

and consequently, beginning with the third, in 7 1 synodical periods,

227 angles of 1 80° are described by the Earth. : and on trial we

find

71 X 575\51 =4086l°.21 = 180° X 227 + 1°.21,

so that after 71 synodical periods the Earth has described a little

more than 227 half circumferences, and, consequently, must be

very nearly in the line drawn from the Sun, through the opposite

node of Venus's orbit.

Siuce the Earth describes 227 times 180°, in 113 years and an

half, it follows, if a transit happens at the beginning of 8 years,

and not at the end, or, happening at the end of 8 does not (from

the increase of Venus's latitude) happen at the end of 16 years,

that the next period for expecting a transit will be 113 years, and

that, agreeably to what has been before said, we ought to examine,

or compute the latitudes of Venus at the periods 113 + 8, that

is, 105 and 121 years, since transits may happen at these periods.

M. Delambre has calculated the transits of Venus, over the

Sun's disk, for 2000 years, some of which are subjoined.

Years. Months. Mean time of Conjunction. Node.

1631 Dec. 6, 17h 28m 49s S3

1639 Dec. 4, 6 9 40 Q

1761 June 5, 17 44 34 ??

1769 July 3, 10 7 54 ?S

1874 Dec. 8, 16 17 44 S3

1882 Dec. 6, 4 25 44 S3

3004 June 7, 21 0 4 S3
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We now subjoin Tables of the elements of the orbits of

planets, principally taken from Laplace, and reduced from the

new French measures which he has adopted.

Sidereal Periods of the Planets9.

Mercury 87d.969258

Venus 224.700824

The Earth 365.256384

Mars 686.079619

Vesta 1335.205

Juno 1590.998

Ceres 1681.539

Pallas 1681.709

Jupiter ' 4332.596308

Saturn 10758.969840

The Georgian Planet 30688 .712687

Movements in 100 Julian Years of 365d.25.

Mercury 415< 2s 14° 4' 20"

Venus 162 0 19 13 0

The Earth 100 0 0 45 45

Mars 53 2 1 42 10

Jupiter 8 5 6 17 33

Saturn 3 4 23 31 36

The Georgian Planet 1 2 9 51 20

* The tropical periods may be deduced from the sidereal, by de

ducting the times which the several planets require, respectively, for

the description of an arc of longitude equal to the precession.



Mean Distances, or Semi-Axes of the Orbits.

Mercury 0.387098

Venus 0.723332

The Earth 1 .000000 *

Mars 1.523694

Vesta 2.373000

Juno 2.667163

Ceres 2.767406

Pallas 2.767592

Jupiter 5.202791

Saturn . 9.538770

The Georgian Planet 19.183305

* The Earth's distance is here assumed as a standard and = 1 : its

distance from the Sun, in statute miles, is reckoned to be 93, 726, 900.

M. Bode of Berlin discovered the following curious law of the rela

tive distances of the Planets :

Mercury 4 =4

Venus 7 = 4 + 3.2°

Earth 10 =4 + 3.2

Mars 16 = 4 + 3.2*

Ceres 28 =4 + 3.2*

Jupiter 52 = 4 + 3.2*

Saturn 100 = 4 + 3.25

The Georgian planet 196 = 4 + 3.26.

The distances of the next planets (should there be any) according to

this law would be

388 = 4 + 3.2'

722 = 4 + 3.2" ,

&c. =

We need scarcely mention that this law is empirical. It is not easy

to see what led to the conjecturing of it.

4 K
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Ratio ofthe Eccentricities (a e) to the Semi-Axes at the beginning of

1801: with the Secular Variation of the Ratio, (see p. 464).

The sign — indicates a diminution.

Ratio of

the Eccentricity. Secular Variation.

Mercury 0.205514 0.000003867

Venus 0.006853 0.000062711

The Earth 0.016853 0.000041632

Mars 0.093134 0.000090176

Juno 0.254944 ....

Vesta 0.093220 ....

Ceres 0.078349 ....

Pallas 0.245384

Jupiter 0.048178 0.000159350

Saturn 0.056168 0.000312402

The Georgian Planet 0.046670 0.000025072

not ascertained

Mean Longitudes at the beginning of 1801 ; reckonedfrom the Mean

Equinox, at the Epoch of the Mean Noon ofJanuary I, 1801,

Greenwich. .. ..•>.

Mercury 166° 0' 48".2

Venus 11 33 16.1

The Earth 100 39 10

Mars 64 22 57.5

Vesta . 267 31 49

Juno 290 37 16

Ceres 264 51 34

Pallas 252 43 32

Jupiter 112 15 7

Saturn 135 21 32

The Georgian Planet 177 47 38
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Mean Longitudes of the Perihelia, for the same Epoch as the

above, with the Sidereal and Secular Variations.

Long. Perihelion. - Sec. Var.

Mercury 74° 2 1' 46" 9' 43".5

Venus 128 37 0.8 - 4 28

The Earth 99 30 5 19 39

Mars 332 24 24 26 22

Vesta 249 43 0

Juno 53 18 41

5

not ascertained.

Ceres 146 39 39 "

Pallas 121 14

Jupiter 11 8 35 11 4

Saturn 89 8 58 32 17

The Georgian Planet . 167 21 42 4

Inclinations of Orbits to the Ecliptic at the beginning of 1801,

with the Secular Variations of the Inclinations to the true

Ecliptic.

Inclination. Secular Variation.

Mercury 7° 0' l" 19".8

Venus 3 23 32 — 4.5

The Earth O 0 0

Mars 1 51 3.6 - 1.5

Vesta 7 8 46

Juno 13 3 28

Ceres 10 37 34

Pallas 34 37 7.6

Jupiter 1 18 51 — 23

Saturn 2 29 34.8 - 15.5

The Georgian Planet 0 46 26 3.7

1

not ascertained.
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Longitudes ofthe Ascending Nodes on the Ecliptic, at the beginning

of 1801, with the Sidereal and Secular Motions.

Longitude of SI. Secular and Sidereal

Variation.

Mercury •. , . 45° 57' 3i" 13' 2"

Venus 74 52 38.6 — 31 10

The Earth 0 0 O

Mars 48 14 38 ........ 38 48

Juno 103 0 6

Vesta

 

, not ascertained.

Ceres

Pallas

Jupiter 98 25 34 - 26 17

Saturn I11 55 46 - 37 54

The Georgian Planet 72 51 14 — 59 57

The use of the secular variation of the eccentricity has been

already explained (see p. 464.) The secular variations of the

longitudes of the perihelia and the nodes are sidereal: consequently,

they cannot be immediately applied to find a longitude at an epoch,

different from that of the Tables ; but, in the first place, the pre

cession of the equinoxes must be added, and then the result will

be a variation relatively to the equinoxes, or tropics. Thus, the

secular sidereal variation of the longitude of the perihelion of

Mercury's orbit is stated to be 9' 43".5 ; therefore, if we assume

the annual precession to be 50".l, and consequently the secular

to be 1° 23' 30 ', the secular variation, with regard to the equi

noxes, is 1° 33' 13".5 ; and, accordingly, the longitude of the

perihelion of Mercury's orbit, for the beginning of 1901, will be

74° 21' 46" + 1° 33' 13".5 sa 75° 54' 59".5.

For the beginning of 1821, it will be

74° 81' 46"+ 0° 18' 38".7 = 74° 40' 24".7.

Again, the sidereal secular variation of the perihelion of Venus is

stated to be — 4' 28" ( — indicating the motion of the perihelion
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to be contrary to the order of the signs) ; therefore the variation

with regard to the equinoxes, is

1° 23' 30" — 4' 28" = 1° 19' 2* ;

and accordingly the longitude of the perihelion for the beginning

of 1811, is

128° 37' 0".8 + 0° 7' 54".5 = 128° 44' 55".3 ;

and for the beginning of 1781,

128° 37' 0".8 - 0° 15' 49" = 128° 2l' 1 1".8.

It is easy to see that, both for the nodes and perihelia, a

column of the tropical secular variations might be immediately

formed from the sidereal by the simple addition of 1° 23' 30".

The motions of the aphelia and nodes in Lalande's (vol. I. p. 117,

&c.) and Mr. Vince's Tables, (vol. III. p. 17, &c.) are motions

relative to the equinoxes.



CHAP. XXVIII.

On the Satellites of the Planets.—On Saturn's Ring.

The planet Jupiter is always seen accompanied by four small

stars, which are denominated Satellites, and sometimes, Secondary

planets, Jupiter being called the primary.

The satellites of Jupiter were discovered in 1610, by Galileo :

they are discernible by the aid of moderate telescopes, and are

of some use in Practical Astronomy. Saturn also, and the

Georgian Planet, are accompanied by satellites, not however,

to be seen except through excellent telescopes, and of no practical

use to the observer. The number of Saturn's satellites is seven,

and of the Georgian's, six.

The satellites are to their primary planet, what the Moon is

with respect to the Earth : they revolve round him, cast a shadow

on his disk, and disappear on entering his shadow : phenomena

perfectly analogous to solar and lunar eclipses, and which render

it probable that the primary and their secondary planets are

opaque bodies illuminated by the Sun.

That the satellites when they disappear, are eclipsed by passing

into the shadow of their primary, is proved by this circumstance :

that the same satellite disappears at different distances from the

body of the primary, according to the relative positions of the

primary, the Sun, and the Earth, but always towards those parts,

and on that side of the disk, where the shadow of the primary

caused by the Sun ought, by computation, to be. When the

planet is near opposition the eclipses happen close to his disk.

There is an additional confirmation of this fact. The third

and the fourth of Jupiter's satellites disappear and again appear

on the same side of the disk ; and the durations of the eclipses are

found to correspond exactly to the computed times of passing

through the shadow.

The motions of Jupiter's satellites are according to the order

of the signs. The satellites are observed moving sometimes
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towards the east, and at other times towards the west : but when

they move in this latter direction they are never eclipsed ; when

the eclipses happen, the satellite is always moving eastward ;

when the transits over the disk happen, the satellite is always moving

westward : the motion therefore towards the east, or, according

to the order of the signs, must be the true motion.

By the same proof it is ascertained, that the satellites of

Saturn perforin their motions, round their primary, according to

the order of the signs. But the satellites of the Georgian Planet

may be thought to form an exception ; at least, the direction of

their motions is ambiguous ; for, motions performed in orbits

perpendicular to the ecliptic (and such, nearly, are the orbits of

the satellites of the Georgian) cannot be said to be either direct

or retrograde.

The mean motions and periodic times of the satellites are

determined by means of their eclipses, and, most accurately, by

those eclipses that happen near to opposition.

The middle point of time between the satellite entering and

emerging from the shadow of the primary, is the time when the

satellite is in the direction, or nearly so, of a line joining the

centres of the Sun and the primary. If the latter continued sta

tionary, then the interval between this and the succeeding central

eclipse would be the periodic time of the satellite. But, the

primary planet moving in its orbit, the interval between two suc

cessive eclipses is a synodic period (see p. 610.) This synodic

period, however, being observed, and the perjod of the primary

being known, the sidereal period of the satellite may be computed *.

Instead of two successive eclipses, two, separated from each other

by a large interval, and happening when the Earth, satellite, and

primary, are in the same position (in the direction of the same

nght line, for instance,) are chosen, and then the interval of time

divided by the number of sidereal periods, will give, to greater

accuracy, the mean time of one revolution.
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The mean motions of the satellites do not differ considerably

from their true motions. Hence, the forms of their orbits, must

be nearly circular. The orbit, however, of the third satellite of

Jupiter has a small eccentricity : that of the fourth, a larger.

The distances of the satellites from their primary are ascer

tained by measuring those distances, by means of a Micrometer,

at the times of the greatest elongations.

The distance of one satellite being determined, the distances

of others, whose periodic times should be known, might be deter

mined by means of Kepler's law, which states the squares of the

periodic times to vary as the cubes of the mean distances.

In order to obtain such results, we suppose Kepler's law to be

true. But we may adopt a contrary procedure, and, by ascertaining

the periodic times and distances of all the satellites according to

the preceding methods, determine the above-mentioned law of

Kepler to be true. See Principia Phil. Natur. lib. 3t,us p. 7, &c.

Ed. La Seur, &c.

The eclipses of Jupiter's satellites are used in determining the

longitudes of places, and, on account of this their practical use

fulness, have been studied with the greatest attention. Thence

has resulted the curious and important discovery of the Successive

Propagation of Light, which is the basis of the theory of aber

ration (see pp. 254, &c.) The phenomenon that led to the

discovery of the propagation of light was, that an eclipse of a

satellite did not always happen according to the computed time,

but later, in proportion as Jupiter was farther from the Earth.

If, for instance, an-eclipse happened, Jupiter being in opposition,

exactly according to the computed time, then about six months

afterwards, when the Earth was more distant from Jupiter by

a space nearly equal to the diameter of its orbit, an eclipse would

happen about 16 minutes later than the computed time. And by

similar observations it appeared, that the retardation of the time

of the eclipse was proportional to the increase of the Earth's

distance from Jupiter. This fact, the connexion of the retarded

eclipse with the Earth's increased distance from Jupiter, was first

noted by Roemer, a Danish Astronomer, in 1674 : who sug

gested as an hypothesis, and as an adequate cause of the retarda
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tion, the successive propagation of light*. Subsequent observations

accord so well with this hypothesis, that it is impossible to doubt

of its truth : and it receives an additional, although an indirect,

confirmation from Bradley's Theory of Aberration which is founded

thereon.

The following Table, exhibits the mean distances and sidereal

revolutions of the satellites of Jupiter, Saturn, and the Georgium

Sidus.

Mean Distances, According to Laplace According to
(the radios of the planet being = 1.) Sidereal Revolutions. Delambre.

Jupiter.
Day. d h m ■

1st. Satellite . . 5.81296 1.7691373 1 18 28 35.94537

. 9-24868 3.5511810 3 13 17 55.73010

14.75240 7.1545528 7 3 59 35.82511

25.94686 16.6887697 16 18 5 7.02098

Saturn.

i

d h m s

1st. Satellite . . 3.080 0.9427 1 0 22 37 32.9

3.952 1.37024 1 8 53 8.9

4.893 1.88780 1 21 18 26.2

6.268 3.73948 2 17 44 51.2

8.754 4.51749 4 12 25 11.1

20.295 15.94530 15 22 41 13.1

7 • • 59.154 79-32960 79 7 53 42.8

Georgium Sidus.

1st Satellite . .. 5.8926

a h m ■

13.120 5 21 21 0

17.022 8.7068 8 17 1 19

3 19.845 10.9611 10 23 4

22.752 13.4559 11 11 5 1.5

45.507 38.0750 38 1 49

6 91.008 107.6944 107 16 40

* Light is propagated through a space equal to the diameter of the

Earth's orbit in l6m 26s.

4 L
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On the Ring of Saturn.

Besides his seven satellites, Saturn is surrounded by a flat and

thin ring of coherent matter. Dr. Herschel has discovered that

the ring instead of being entire is divided into two parts, the two

parts lying in the same plane.

The ring is luminous, by reason of the reflected light of the

Sun ; it is visible to us, therefore, when the faces illuminated by the

Sun are turned towards us : invisible, when the opposite faces ;

invisible also, when the plane of the ring produced passes through

the centre of the Earth ; since then no light can be reflected to

us ; invisible also in a third case, when the plane of the ring pro

duced passes through the centre of the Sun, since, in that case, it

can receive no light from that luminary. The plane of the ring is

inclined to that of the ecliptic, in an angle of about 3 1° 24', and

revolves round an imaginary axis perpendicular to its plane in

10h 29m 16s : and, which is worthy of notice, this period is that

in which a satellite, having for its orbit the mean circumference of

the ring, would revolve according to Kepler's law *.

We have now gone through another great division of our sub

ject. The Lunar Theory will next occupy our attention, which

might, indeed, have taken its place before the Planetary.

* The fact of the squares of the periodic times varying as the cubes

of the mean distances, is frequently called, the Third law of Kepler.



CHAP. XXIX.

ON THE LUNAR THEORY.

On the Phases of the Moon.—Its Disk.—Its Librations, in

Longitude, in Latitude, and Diurnal.

Of all celestial bodies, the Moon is the most important, by reason

of its remarkable and obvious phenomena : the intricacy of the

theory of its motions ; and the usefulness of the practical results

derived from such theory.

Some of the phenomena admit of an easy explanation, and

require no great nicety of computation. Such are the phases of

the Moon. Others, with regard to their general cause, admit

also of an easy explanation ; but, with regard to the exact time

of their appearance and recurrence, require the most accurate

knowledge of the lunar motions. Of this latter description, are

the eclipses of the Moon.

If therefore with a view to simplicity, we arrange the subjects

of the ensuing Chapters, we ought first to place the phases of the

Moon, next, the elements and form of the orbit, then, the lunar

motions and their laws, and lastly, the lunar eclipses.

The explanation of the phases of Mercury and Venus was

founded on the hypothesis, of their being opaque bodies illumi

nated by the Sun, and, of their revolution round the Sun. A simi

lar explanation, on similar hypotheses, will apply to the Moon.

We shall perceive the cause of its phases, if we suppose the Moon

to shine by the reflected light of the Sun, and to revolve round

the Earth : and, as in the case of the two inferior planets, the

explanation does not require a knowledge of the exact curve in

which the revolution is performed.
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" The Moon moves through 12 signs, or 360° degrees of lon

gitude, in about 27 days. This fact is ascertained by observing,

each day, on the meridian, its right ascension and declination, and

thence deducing, by calculation, (see pp. 158, &c.) the corresponding

latitude and longitude. Hence, in a period somewhat more than

the preceding, the Moon is on the meridian at all hours of the day,

and the angle, formed by two lines drawn from the Moon to the

Earth and Sun respectively, passes through all degrees of magni

tude. The exterior angle therefore, (see p. 553,) on the magnitude

of which, the visible illuminated disk depends, passes also through

all degrees of magnitude : and the Moon accordingly, like Venus,

must exhibit all variety of phase ; the crescent near conjunction ;

the half Moon in quadratures ; and the entire orb illuminated, or

the full Moon in opposition.

Venus revolves round the Sun, and the Moon round the

Earth : but this difference of circumstance, in no wise affects the

principle on which the phases depend : they are regulated by the

inclination of the planes of the circles of illumination and vision :

and their magnitude depends, as it was shewn in p. 553, on the

versed sine of the exterior angle at the planet : that is, in Fig.

p. 553, on the versed sine of the angle SuF.

i

The angle, analogous to SuF, in the annexed Figure, will be

 

contained between a line Ss drawn to the centre of the Moon at

- M, and a line drawn from E and produced' through the same

centre. This angle, by reason of the parallelism of the lines drawn
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from E to the Sun, will equal the interior angle continued be

tween c E and a line drawn from E to the centre of the Moon ;

which angle, in other words, is the angle of elongation.

Hence, in delineating the Moon's phases, we may use a simpler

expression, and state the visible enlightened part to vary as the

versed sine of the Moon's elongation.

If we suppose the Earth to be illuminated by the Sun, and to

serve as a Moon to the Moon, the visible illuminated part of the

Earth, will to a spectator at the Moon vary as the versed sine of

the Earth's elongation. Let e be the latter angle, E the former :

then by what has just preceded,

E + e = 180°, nearly ;

.'. cos. E = cos. (180° — e) = — cos. e,

and 1 — cos. E = 1 + cos. e, 1 + cos. E = 1 — cos. e.

Hence, when the Moon's phase is 5> 's radius X (1 — cos. E),

the corresponding phase of the Earth

{©'s radius X (1 — cos. e)}, is ®'s radius X (1 + cos. E),

the larger, therefore, the Moon's phase is to us, the smaller, at

the. same time, is the Earth's phase to an inhabitant of the Moon.

Thus, near conjunction when E is nearly 0, the Moon's phase

is D 's radius x (1 — 1), nearly, whilst the Earth's phase is

®'s radius x 2, or the Earth is nearly at herfull, to an inhabitant

of the Moon, whilst the Moon is a new Moon to us. In such

a situation the Earth's light is reflected towards the Moon, falls

on its dark disk, and feebly illuminates it, producing the phe

nomenon called by the French lumilre cendre.

When the Moon is in opposition, E = 180°, the Moon's phase

is D 's radius x (1 + l), or the Moon is at her full, and the

corresponding phase of the Earth is expounded by, 0's radius X

(1 — 1), which being nothing, shews that the dark side of the

Earth is then towards the Moon.

When E = 90°, cos. E = 0 ; .'. 1 +- cos. E, and

1 — cos. E, are each ss 1 : consequently, in such a position,
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the Moon shews half of her illuminated disk to the Earth, while

the Earth shews half of her illuminated disk to the Moon.

If JE = 60°, cos. E = \ , therefore the Moon's phase is

3 -
5 's radius X g > or tne Moon is at her third quarter; the Earth's

, , is 2 ®'s radius ,  ,

phase is 0 s radius x (1 — j), or : or, the Earth,

viewed from the Moon, is at her first quarter.

The period of the Moon's phases, or the interval of time

which must elapse before the phases, having gone through all

their variety, begin to recur, must depend upon the return of the

Moon to a situation similar to that which it had, at the beginning

of the period. If we date then the beginning of the period from

the time of conjunction, (the time of new Moon,) the end of the

period must be when the longitudes of the Moon and Sun are

again the same. Now the longitude of the Sun is continually

increasing ; when the Moon therefore has made, from its first

position, the circuit of the heavens, it will be distant from the

Sun, by the angular space through which, during the Moon's

sidereal period, the Sun has moved. In order, then, to rejoin the

Sun and to be again in conjunction, it must move through this

space, and a little more ; and when it does rejoin the Sun, a

synodic revolution is completed. And the period therefore of the

Moon's phases is a synodic period. From the inequality of the

Moon's motion, this synodic period, or lunation, is not always of

the same length.

If we conceive a plane passing through the centre of the Moon

and perpendicular to a line drawn from the Earth to the Moon,

then on such a plane the Moon's face will appear to be projected.

This face, since the Moon has ever been an object of the attention

of Astronomers, has been delineated, and a map made of its

seeming Seas, Mountains, and Continents. But, one map of the

same hemisphere has always served to represent the Moon's face :

in other words, the same face of the Moon is always turned towards

us. This is a curious circumstance, and the immediate inference

from it is, that the Moon must revolve round its axis, with an

angular velocity equal to that with which it revolves round the
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Earth. For*, suppose in the position (1) a to be on the verge

of the disk, then, if in the position (2) we still see the point a,

in the verge, and in the same position, it must have been trans

ferred, by rotation, through an arc a a : since, in the case of

d

V

r

V

1 E

f m\

l1

fit

no rotation, b' a', parallel to ba, would have been the position

of ba. Now, a being seen on the verge of the Moon's disk,

l Em' a = a right angle = Z Em' a1 + Z a'm'a. But since

EPm' is a right angle, z Em'P + z PEm' is one also : conse

quently,

Z Em'a + Z a'm'a = L Em'P ( Z Em'a) + / PEm ;

/ a'm'a = z PEm',

and the angle a'm'a measures the rotation of the Moon round

its axis that has taken place since it occupied the position (1),

and the angle PEm', the angular motion of the Moon round E

from the same position.

If the angle PEm', the measure of the Moon's true angular

distance from one of the apsides of its orbit, increased uniformly,

and the Moon's rotation round her axis were uniform, the above

result would always take place ; that is, the same face of the Moon

ought always to be turned to the spectator : and such phenomenon

* In the Figure, a c b is supposed to represent the Moon's equator,

and (which is not strictly true) to lie in the plane of the orbit : the axis of

rotation, then, is perpendicular at m to that plane : perpendicular, for

instance, to the plane of the paper, if the latter be imagined to represent

that of the Moon's orbit.
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ought constantly to be observed. But since, which is the case,

the Moon's true motion differs from the mean, and the angle

PEm' does not increase uniformly, the preceding result will not

be precisely true, if we suppose, (which is a probable supposition,)

the Moon's rotation round her axis to be uniform. If after any

time, 3 days for instance, mEm' should measure the Moon's

angular distance from the position (1), then, by reason of the

Moon's elliptical motion, in 6 days twice the angle mEm' will cer

tainly not measure the Moon's angular distance : but, on the sup

position of the Moon's uniform rotation, twice the angle a'm'a

would measure the quantity of rotation in 6 days. Hence, if

the Moon's angular velocity should be diminishing from the

position at (1), at the end of 6 days the point a, previously seen

on the verge of the Moon's western limb, would have disappeared,

and some points towards the verge of the Moon's eastern limb

would be brought into view ; and such, by observation, appears

to be the case, and the phenomenon is called the Moon's Libra-

tion in Longitude.

Since this libration in longitude arises from the unequal angular

motion of the Moon in her orbit, it must depend on the difference

of the true and mean anomalies, in other words, on the equation

of the- centre, or equation of the orbit ; and would be proportional

to that equation, and its maximum value would be represented by

the greatest equation (6° 18' 32") in case the axis of the Moon's

rotation were perpendicular to the plane of its orbit.

In the preceding reasonings, we have supposed the section

be a, representing the Moon's equator, to be coincident with mm d

the plane of the orbit : in other words, we have supposed the axis

of rotation to be perpendicular to the same plane. Now, the axis

is not perpendicular but inclined to the plane at an angle of

5° 8' 49"; the preceding results therefore will be modified by this

circumstance. For, take the extreme case, and suppose the axis

of rotation to be parallel to the plane of the orbit, and in the

position (l) to be represented by ce* : then it is plain, we should

* e, omitted in the Figure, ought to have been where cm produced

cuts the circle eba.
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at the position (1), see the pole c, and the hemisphere, projected

upon a plane passing through ba perpendicular to the orbit; and,

half a month after, at d, we should see the opposite pole e, and

the opposite hemisphere, notwithstanding the equality between the

Moon's revolution round the Earth, and her rotation round her

axis. In intermediate inclinations then of the Moon's axis of

rotation, part of this effect must take, place, or must modify

the preceding results. If in the position (1), the Moon's

axis being inclined to the plane of her orbit, we perceive, for

instance, the Moon's north pole and not her south, we shall in

the opposite position at d, after the lapse of half a month, per

ceive the Moon's south, and not her north pole ; and, this effect

is precisely of the same nature, as that of the north pole being

turned towards the Sun at the summer, and of the south pole at

the winter solstice, (see p. 24.) The perpendicularity therefore

of the axis of rotation to the plane of the orbit is a condition

equally essential, with that of the equality of rotation and revolu

tion, in order that the same face of the Moon should be always

turned to the spectator.

This second cause, preventing the same face of the Moon from

being always seen, is called, with some violation of the propriety

of language, the Libration in Latitude. For, it is plain, from the

preceding explanation, that there are properly and physically no

librations, but librations only seemingly such.

There is a third libration, discovered by Galileo, and called the

Diurnal Libration. If the two former librations did not exist,

the same face of the Moon would be turned, not to a spectator

on the surface, but, to an imaginary spectator placed in the

centre of the Earth. Now, two lines drawn respectively from

the centre and the surface of the Earth to the centre of the Moon,

(the directions of two visual rays from the two spectators) form, at

that centre, an angle of some magnitude; and, when the Moon is

in the horizon, an angle equal to the Moon's horizontal parallax.

Hence, when the Moon rises, parts of her surface, situated towards

the boundary of her upper limb, are seen by a spectator, which

would not be seen from the Earth's centre. As the Moon rises,

these parts disappear : but as the Moon, having passed the

4 M
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meridian, declines, other parts, situated near that boundary, which,

whilst the Moon was rising, were the lower, are brought into view,

and which would not be seen by a spectator placed in the centre

of the Earth. The greatest effect of this diurnal libration will

be perceived, by observing the Moon first at her rising, and then

at her setting.

This last libration, like the two preceding, is purely optical.

The description of general and obvious phenomena requires

only popular explanation, which is easily afforded. But the next

steps, the accounting for, on principle and by calculation, minute

phenomena, (if we may apply that term to effects detected only

by the aid and comparison of numerous observations) are more

difficult, whether those steps are to be made in the solar, planetary,

or lunar theory : and we shall find them peculiarly so in the latter

theory.



CHAP. XXX.

On the Methods of deducing, from Observations, the Moon's

Parallax: the Moon's true Zenith Distance, <Sfc.

According to modern Astronomical usage, the same kind of

observations, namely, meridional observations, which are used in

determining the places of the fixed stars, and the elements of the

orbits of the Sun and the planets, serve also to determine the

position and dimensions of the lunar orbit. But, by reason of the

proximity of the Moon to. the Earth, and the irregularity (if we

may use such a term) of her motions, the reduction of the Moon's

observed right ascensions and declination requires more scientific

and longer computations. •

The orbits of planets round the Sun, and of secondary planets

round their primaries, would, if we abstract the mutual effects of

planets, be elliptical. Now the elliptical is a regular motion. It

is, therefore, the disturbing forces that render the motions of

planets irregular ; and, since the mutual influence of planets must

be universally felt, there is no planet nor secondary, the motions

of which are not, in some degree at least, irregular. The degree of

irregularity depends on what may be called the peculiar circum

stances of the planet, which are those of the vicinities and magni

tudes of other planets. For instance, Jupiter and Saturn, (see

Physical Astronomy, Chap. XIX.) bodies of great bulk, and, in

a certain sense, not very distant from each other, mutually and

powerfully disturb each other, or prevent what, according to our

theories, would otherwise take place, namely, elliptical motion.

In like manner the Earth's motion is rendered irregular, but not

considerably so (see Physical Astronomy, Chap. XVIII.) by the

actions of Venus and Jupiter, &c. The Moon is near to the

Earth, but then its mass, relatively to the Sun's mass, is very
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inconsiderable. It is, however, the Sun's mass which is almost

the sole cause of the Moon's not describing an ellipse round the

Earth, or, which, as we have explained it, prevents her motions

from being regular, and which, therefore, makes them by reason

of its largeness, very irregular.

The irregularities we are speaking of are real ones, and

would be observable in the daily changes of right ascensions, and

of north polar distances, even if the observer were placed in the

centre of the Earth. Or, if from the Moon's right ascensions

and north polar distances, her longitudes and latitudes were de

duced, and then, on a line such as MM ' representing the ecliptic,

ordinates ME, me, &c. proportional to the latitudes were erected,

S

E' k/ t

»

I

3i! r ]

the curve Eee', 8tc. passing through their extremities would be

a curve less regular than when (see p. 145,) under similar con

ditions, it represents the solar orbit. A consequence, or indica

tion of such irregularity would be this, that from me, me, &c.

representing latitudes, or declinations, computed or observed for

equal intervals Mm, mm', &c. an intermediate latitude or decli

nation interpolated, for an intermediate interval, would be less

exact in the lunar, than in the solar orbit.

It is plain, when observations are made by means of instru

ments placed in the meridian, that the north polar distances, and

right ascensions of planets can only be known, at times inter

mediate of their meridional passages, by a species of interpolation.

In the case of the Sun, its north polar distance at midnight, on

March 1, is nearly the mean of his north polar distances on the

noons of March I and 2 : and six hours past the noon of March I,



641

is, nearly, his north polar distance on the noon of March 1,

minus the decrease of north polar distance, proportional to

six hours. This mode of computation, however, not exact even

in the case of the Sun, is less exact when applied to the Moon.

In order to determine the inexactness of the computation, or

of any other mode of interpolation, we must observe the heavenly

body when it is out of the meridian. In the case of the Sun, for

instance, observe its zenith distance, and note the distance in time

from noon : then if the co-latitude (PZ) be known, we can from

PZ, the horary angle ZPS, and ZS compute PS, and then

compare PS, thus computed, with the interpolated value of PS.

But this brings us to the consideration of the second cause of

irregularity : that which arises from the proximity of the observed

body, and which proximity gives rise to the inequality of parallax.

In the case of the Sun, its north polar distances, computed ac

cording to the above methods, and compared, are found, very

nearly, to agree ; which agreement is a proof of the smallness

of the Sun's parallax. For parallax (see Chap. XII.) affects

the zenith distance, and is the larger the greater the zenith

distance. The north polar distances, therefore, found by adding

to the co-latitude of the place the observed meridional zenith

distances, would be incorrect, but would be less so than an

intermediate zenith distance, observed out of the meridian. Iu

the case, therefore, of a near heavenly body, it would be impos

sible that the north polar distances, found according to the above

methods, should, on comparison, agree : and this we shall find to

be the case with the Moon.

We shall give to this statement greater distinctness, by examin

ing some of the recorded observations of the Sun and Moon.

In the second Volume of the Greenwich Observations, we find

the following observations of the zenith distances of the upper

and lower limbs of the Sun.



1783.
Baro

meter.

Ther

mometer. Zenith Distance.

Corrected

Zenith Distance.

May 4, 29.95
48 i © L. L. 35° 43' 8".9 35° 43' 50".76

© U.L. 35 11 23.9 35 12 4.92

5, 29-84
49.J

0 L. L. 35 25 56 . 9 35 26 38 . 34

©U.L. 34 54 12.4 34 54 52.95

6, 29.81 51 ©L. L. 35 9 0.2 35 9 40 . 82

©U.L. 34 37 17. 3 34 37 57.16

7, 29.9 47 \ © L. L. 34 52 19-4 34 53 0.46

©U.L. 34 20 37. 17 34 21 17.96

The last column contains the zenith distances, corrected or reduced

according to the principles and formulae of Chapter X. If we

add together the respective corrected zenith distances of the

lower and upper limbs, and take their half sums, the results will

be the values of the zenith distances (Z) of the Sun's centre.

Values of Z. First Diffs. d'. Seed. Diffs. d". Third DifiXd'".

May 4, 35° 27' 57".89 — 17' 12".25 + 15".60 + l".27

5, 35 10 45.64 - 16 56.65 + 16. 87

6, 34 53 48.99 - 16 39 • 7S

7, 34 37 9-21

Here the several differences tend towards an equality, which is

a proof (should the several values be represented by the ordi-

nates me, m'e', &c. of a curve Eee', &c.) of the regularity of that

curve. The use of the Table of differences is to find an inter

mediate value of Z, and by meatis of what is called the Differential

Theorem, (see Appendix to Trigonometry .) Thus, the intermediate

value of Z corresponding to May 5, l8h, would be, making
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a = 35°10'45".64, cH = - 16' 56".65, d" = 16".87, d'"-.

8 1

' l".27,

24 3'

35° 10' 45".64 - 5' 48".88 — l".87 + 0".13 = 35° 4' 55".

This is not exactly the value of Z, since it has been obtained

on the ground, that the interval between two successive meridional

zenith distances, is exactly 24h : which, (see Chapter XXII, on

the Equation of Time) is not the case. In order to obtain an

exact result, we must refer to the Volume of Observations above

quoted, and examine the Sun's right ascensions at his transits on

the 4th and 5th of May,

1784. Sim's Right Ascension. d' d".

May 4,
2h 45m 53" .9 + 3m 51'

5, 2 49 44.9 + 3 51.4 + .4

6, 2 53 36.3 + 3 51.9 + .5

7, 2 57 28.2

Here the increase of the Sun's right ascension, between the

transits on the 5th and 6th, is 3m Si'A : if, therefore, the eight

hours should be eight hours of sidereal time, we should have

8

,T = = .33244,
24h 3m 51".4

from which value, as before, (see 1. 2, &c.) we may deduce the

value of Z, corresponding to eight hours of sidereal time, after

the Sun's transit on May 5.

The values of Z are, in fact, meridional zenith distances. But,

it is plain, an interpolated value cannot belong to the meridian of

the place of observation ; it may, however, be conceived to belong

to the meridian of some other place, having a different longitude,

but the same latitude. In point of fact, the result that has been

obtained by the differential theorem is merely a mathematical

result. We may, however, by slightly modifying the preceding
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process, obtain a mathematical result, which, at the same time,

shall represent a real quantity. Thus, if to the four values of Z,

in the first column of the Table of p. 642, we add the co-latitude

of the place, we shall obtain four north polar distances of the Sun,

on the noons of the 4th, 5th, 6th, and 7th of May. An interpo

lated north polar distance is independent of the place of obser

vation : and if we deduce it, as we deduced the value of Z, the

deduced north polar distance, must be the same as the co-latitude

(PZ) of the place added to that value of Z, because, in each

computation, the differences d!, d", d'", are the same : since

(PZ + Z) - (PZ + Z') = Z- Z' = d', &c.

If, therefore, in the above instance, the place of observation

be Greenwich, the co-latitude of which is 38° 3i' 20", the Sun's

north polar distance, on May 5 at eight hours of sidereal time, is

equal to 38° 3l' 20" + 35° 4' 53", that is, to 73° 36' 13".

But this determination supposes the observed zenith distance

to be the same, as if the observer were near to the Earth's centre :

in other words, it supposes the angle, subtended by the Earth's

radius at the Moon, to be inconsiderable. We shall hereafter, in

the Chapter on the Transit of Venus, see that the greatest angle

which can be subtended by the Earth's radius, or, the Sun's

horizontal parallax, does not exceed £)"•

A shorter and easier method of proving the smallness of the

Sun's parallax has been already described in pp. 326, &c.

If S represent the Sun, Z, the zenith, P the pole, the triangle

ZPS can be solved if ZP, PS, and the angle ZPS be given or

known. Thus, in the above instance,

ZP = 38° '31' 20",

PS = 73 36 13,

and in order to find the angle ZPS, we have

right ascension of mid-heaven 8h 0m 0s

Sun's right ascension at noon 2 49 44.9

5 10 15.1

acceleration (see p. 526,) 50.824

5 9 24.276
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ZS computed from these three values, aud compared with ZS,

found by observations made out of the meridian would shew, by

the agreement of the two values, the smallness of the Sun's

parallax.

•

But we shall find results of a different kind, if we examine and

compare the Moon's places determined from zenith observations.

In the Volume of the Greenwich Observations above referred to,

we find

17S4.
Baro

meter.

Ther

mometer.

Zenith Distance.

Moon's Limb.

Right Ascension.

Moon's First Limb.

Jan. 31, 30.35 32 L. L. 24° 48' 13".5
4h 35m 34s

Feb. 1, 30.08
31§

U. L. 23 12 13.3 5 51 35

2, 30.04 32 U. L. 23 33 43.2 6 27 28

3, 30.41 32 U. L. 25 19 0.9 7 22 0

4, 29-99 33 2 U. L. 28 19 27 8 14 20

Correct on account of refraction, as in the former instance, the

zenith distances of the upper and lower limbs, and add or subtract

the Moon's semi-diameter : the results will be the zeuith distances

(z) of the Moon's centre, from which zenith distances we may,

as before, form a Table of differences.

Values of z. d'. d". d'". div.

24° 33' 37"

23 27 35

23 49 1

25 34 19

28 34 52

-1° 6' 2"

-f-0 21 26

+ 1 45 18

+ 3 0 33

+ 1° 27' 28"

+ 1 23 52

+ 1 15 15

- 3' 36"

-8 37

-5' 1"

Here the differences exhibit considerable irregularities, which

arise from two causes : one real ; the other, as it may be called,

4 N
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optical, originating, mainly, from the Moon's proximity to the

Earth, but varying, in degree, with the Moon's' distance from the

zenith. But from whatever causes the irregular values of Z arise,

they are, as phenomena or results of observation, blended together,

and it is necessary to institute an investigation, in order to dis

tinguish the separate causes. Now, the first step in such investi

gation, is similar to the one made in p. 643, that is, we must find

by interpolation, an intermediate value of the Moon's north polar

distance, and from it and the horary angle ZPM, and the co-

latitude PZ, we must compute the Moon's zenith distance, which

is to be compared with the Moon's observed zenith distance;

In order to find the value of x, or the interval proportional

to eight hours of sidereal time on February 1, we must first

deduct the Moon's right ascension on February 1, from her right

ascension on January 31 : that is, we must take the difference of

5h 3lm 35', and 4h 35m 34% which is 56m Is. This 5dm Is is the

angle which the meridian, after having passed through the Moon's

centre, must describe, in addition to 24h, before it can again reach

the Moon's centre. Unity, therefore, denoting the interval be

tween two successive transits,

1 : x :: 24h 56m 1" : 8h ; .'. x = .3208.

Substitute this value for x, in the differential theorem, and the

value of Z corresponding to 8k (sidereal time) on February 1, is

23° 2?' 35" + (2l' 26") x .3208 +(1° 23' 52") x .3208 x - .3396

-8' 37" x .3208 x .3396 x .59304 + o I* x .3208 x .3396

x .69304 x .6697 = 23° 24' 59".033.

Hence the Moon's north polar distance is the above quantity

added to 38° 3i' 20", or, is nearly equal to 6l° 56' 19". It is,

however, the Moon's north polar distance, only on the supposition

of the non existence of parallax. For if the Moon be so near

to the Earth, that the radius of the latter subtends some measur

able angle at the former : then (see the Chapter on Parallax)

the . observed zenith distances are not, in a certain sense, the

true zenith distances : but every observed zenith distance will

require, proportionally to its sine, a correction to reduce it to

a true zenith distance.
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If from observations contemporaneously made (see p. 325,)

in different parts of the Earth, we knew the Moon's horizontal

parallax, we could, by means of such a series as is given in p. 324,

deduce such correction. But if, without quitting the place of

observation, we wish to ascertain the existence and quantity of

parallax, we must compute ZM (Z the zenith, M the Moon) from

the co-latitude (PZ) an interpolated value of PM, and the horary

angle ZPM. Now this horary angle, must, like PM, be obtained

by interpolation.

In the case of a fixed star, and only in that case, the horary

angle (the angle ZPs) is the difference of the right ascension of

the mid-heaven (in other words, the sidereal time) and of the star's

right ascension. In the case of the Sun, we must, as we have

seen in p. 643, allow for the change of the Sun's right ascension,

during his transit over the meridian, and the assigned instant of

sidereal time. The computation for a like allowance, in the case

of the Moon, is a little more operose. On the 1st of February

(see the Table of p. 645,) the Moon's right ascension, at the

instant of her transit, was 5h 3 lm 35s, and since her right ascension

increases by unequal steps, we must find it at any time, inter

mediate of her meridional transits, by the differential theorem.

If we form then a Table of differences, like the one of p. 645,

R. A. Moon's

First Limb. d'. . d". d'". d'v.

4h 35m 34'

+ 56' 1"

+ 55 53

+ 54 32

+ 52 20

5 31 35 -0' 8"

- 1' 13"

6 27 28 - 1 21 + 22"

— 0 51

7 22 0 - 2 12

8 14 20

we have a = 5h 51m 35", d' = 55' 53", d" = - l' 2l",

d'" = - 51", dw = 22" and (see p. 646,) x — .32088,

and, accordingly,

M of 5 *t 1st L. = 5h 49m 35'.48,
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which is the right ascension of the Moon's preceding limb, eight

hours after the Moon's transit of the meridian. But the sidereal

time, at the time of the Moon's transit (in other words, the right

ascension of the mid-heaven at that time, or the right ascension

of the Moon's first limb) was 5h 31m 35' ; eight hours, therefore,

after the sidereal time, or right ascension of the mid-heaven,

must be 13h 31m 35s, and accordingly, the horary angle must be

13h 31m 35" — 5h 49m 35s.48, or 7h 41m 59'.2 : from this must

be subtracted the angle at the pole, subtended by the Moon's

semi-diameter. Now the Moon's semi-diameter is 15' 4",

and the polar distance (see p. 646,) of the Moon's centre is

6l° 56' 19"; therefore the angle at the pole is

• if, L ,n» = 17' 4"4 = r 89-297 '

sin. ol 5o 19

consequently, the horary angle is 7h 40m 50s .9; we have then

ZPM = 7h 40m 50'.9 = H5h 12m 43».5

ZP = 38 31 20

PM = 61 56 19

whence, by the solution of a spherical triangle, according to the

formula of Trigonometry, p. 171, Edit. 3, there results,

* ZM = 82° 13' 6", nearly.

* See Trigonometry, pp. 171, &c.

I = 57° 36' 21".7 2 log. cos. 19-4599294

a = 38 31 20 log. sin. 9.7943612

* = 6l 56 19 log. sin. 9-9456872

I + 2 = 50 13 4^ " 5 19.1999778

M = 23 27 33.5 (log. sin. M) 9-5999889

|+5 +^ = 73 41 23 log. sin. 9-9821604

I + \ ~ M= 26 46 16 9-6536248

.% I = 41 6 32 . 8 1 2) 19.63578522

e = 82 13 5.6 (log. sin. Q 9-8178926
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L j r* « >, ,v .

Suppose now the observe^ zenith distance to be 82° 49'' 10",

then the difference between the two, namely, 36' 4", would be

an indication of parallax and partly its effect. It cannot represent

the whole effect, because on the supposition of the existence of

parallax, the meridional north polar distances, (obtained by adding

the co-latitude to the observed meridional zenith distances), from

which PM was obtained by interpolation, would be all wrong,

and consequently PM, one of the given quantities in the triangle

ZPM (see p. 648,) would be so also, and consequently, in the

last place, the result of the solution, or the value' of ZM would

be incorrect. The difference 36' 4" then being only in part

the effect, and not the measure of parallax, must be considered as

a first approximation towards the true value of parallax. Under

this point of view, if P (see pp. 323, &c.) should denote the

horizontal parallax, we should have (see p. 323,)
• *•

• r> sin- P ,

Sin-P = sin. CD+7)' °r' ^

P = E m 36' 4" = 36' 21»

sin. (D + p) sin. 82° 49' 10"

With this approximate value we may partly correct the observed

zenith distances, and obtain more correct values of the north

polar distances deduced from such zenith distances. Thus, since

P = 36' 2l", and since the observed zenith distances on Feb. 1,

(see p. 645,) was 23° 27' 35", we have (see p. 323,) the parallax

of the meridional zenith distance

= 36' 21". sin. 23° 27' 35" = 868".27 = 14' 28", nearly.

With this, as a correction, the series of zenith distances should be

reduced (see p. 645,) and a new series of meridional polar

distances, from which, as before, we may deduce by interpolation,

or the differential formula, a more correct value of PM cor

responding to 8h. It is plain that this value of PM must be

nearly the former value (6l° 56' 19") minus the parallax on the

meridian, that is, 61° 4l' 5l". Instead, therefore, of making

PM = 61° 56' 19", make it, in the formula of solution of p. 648,

61° 41' 51", and the resulting value of PM is 82° l' 16":

subtract this from 82° 49' 10", the observed zenith distance, and
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the difference, which is the second approximate value of the

parallax, is 47' 54", and, therefore, as before

47' 54"

P = , 47/ , - = 48' 16",

sin. 82° 49 10"

and the parallax on the meridian = 48' 16". sin. 23° 27' 35"

= 19' 13", and, as before, deducting this from 6l° 56' 19", the

new value of PM is equal to 6l° 37' 54", with which new value

the side ZM is again to be deduced from the formula of p. 648.

The resulting value of ZM, is again to be deducted from the

observed zenith distance, in order to obtain new values of p, and

P, and after three more approximations, we shall deduce a value

of P about 54' 10": which is nearly that of the Moon's horizontal

parallax. This is the description of the process for ascertaining,

at<the same place of observation, the existence and quantity of

the Moon's parallax. But if we knew by means of the method

described in pp. 325, &c. and by the result of such observations

as were made at the Cape of Good Hope and Berlin, the Moon's

horizontal parallax, we could, in the first instance, find the paral

laxes corresponding to the several zenith distances, '(see p. 645,)

correct such distances*, and then deduce a series of north polar

distances of the Moon, by adding the co-latitude of the place of

observation to the zenith distances so corrected.

In what has preceded, we have pointed out and described two

methods for determining the Moon's parallax, neither of which

can be very conveniently practised. It was a rare occurrence

that gave observations, contemporaneously made at places so far

distant as the Cape of Good Hope and Berlin, and there are

few Observatories provided, for observations out of the meridian,

with instruments equally good as their mural quadrants and circles.

The quantity and variation of the Moon'sparallax, now well

known, has not been so known by one set of observations : but,

like other astronomical elements, has been determined by the

comparison of numerous observations, and with some small aid

from theory.

The large quantity of the Moon's parallax, and its variations

arising from the situation of the observer, and the change of
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D =

distance between the Moon and Earth, render it a subject of

•considerable astronomical importance. We shall, therefore, con

tinue its discussion before we proceed to deduce the elements

of the lunar orbit.

The Moon's horizontal parallax (P), is the angle which the

Earth's radius subtends at the Moon. The Moon's apparent

semi-diameter (D), is the angle which the Moon's radius subtends

at the Earth. Hence,

p = rad- e

D 's dist. from 0 '

3) 's rad.

J) 's dist. from 0 '

P 0's rad.

'"" D = i 's rad. '

the ratio, therefore, between the Moon's horizontal parallax and

apparent semi-diameter, is a constant ratio, if the Moon and

Earth be spheres ; and, if the former be a sphere, is a constant

ratio at the same place, whatever be the figure of the Earth.

If P = 57' 4". 16844, and D = 15' 33".8652»,

D  15' 33".8652  

P _ 5/ 4". 16844 ~ •27293'

3

or, by the method of continued fractions, is nearly — . Hence,

from the observed apparent semi-diameter of the Moon, we may

* The ratio of the greatest and least apparent semi-diameters, is the

same as the ratio of the perigean and apogean distances of the Moon,

j the least apparent diameter  2.9' 30"  1 — e

the greatest apparent diameter 33' 30" ~~ 1 -f- e '

(if e be the eccentricity), whence e = .0635, whereas the eccentricity in the

solar orbit only = .0168. The equation of the centre then, in the lunar

orbit, must be about 7° 16'. If, therefore, we set off from a circular

motion, and call that the regular one, the Moon's motion, besides the

causes already assigned (see p. 639,) will be still more irregular than the

Sun's.
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always deduce the corresponding horizontal parallax by multi

plying the former by — : and vice versa.

The horizontal parallax of the Moon is the angle subtended

by the Earth's radius at the Moon. Hence, the Earth not being

spherical, the horizontal parallax is not the same *, at the same

instant of time, for all places on the Earth's surface. One proof

that the Earth is not spherical, is by reversing this inference,

namely, that the horizontal parallaxes computed for the same

time are found not to be the same. Hence, in speaking of the

horizontal parallax it is necessary to specify the place of obser

vation. The Moon's parallax computed for Greenwich is dif

ferent from the equatoreal parallax. Several corrections therefore,

must be applied to an observed parallax, in order to compute,

at the time of the observation, the Moon's distance from the

centre of the Earth. For, that distance, it is plain, ought to

result the same, whatever be the latitude of the place of obser

vation.

The greatest and least horizontal parallaxes of the Moon,

computed from observations at Paris, are, according to Lalande,

(Astron. tom. II, p. 197,) 1° l' 28".9992, and 53' 49".728, and

the corresponding perigean and apogean distances respectively,

63.8419, 55.9164. The corresponding apparent diameters are

33' 31", and 29' 22".

The mean diameter, that which is the arithmetical mean be

tween the greatest and least, is 3i' 26".5 ; but, the diameter at

the mean distance is smaller and equal to 3i' 7".

Whatever be the quantity, which is the subject of their inves

tigation, Astronomers are accustomed to seek for a constant and

mean value of it, from which the true and apparent values are

perpetually varying, or, about which they may be conceived to

oscillate. In the subjects of time and motion, the search is after

* At the same distance the parallax varies as the radius vector of

the spheroid. A Table, therefore, that gives the several values of the

radii in a spheroid of a given oblateness, enables us to correct the equa

toreal parallax. See Vince's Astronomy, vol. III. tab. XLV. p. 173.
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mean time and mean motion, and by applying corrections or equa

tions to deduce the true. The Moon's parallax not only varies

in one revolution, from its perigean to its apogean, but the

parallaxes which are the greatest and least in one revolution,

remain not of the same value, during successive revolutions : they

may not be the greatest and least, compared with other perigean

and apogean parallaxes. But all may be conceived to oscillate

about one fixed and mean parallax, which has been designated

by the title of Constant Parallax, {la Constante de la Parallaxe).

We should obtain no standard of its measure, if we assumed

it to be an arithmetical mean between its least and greatest values.

For, the eccentricity of the lunar orbit varying, and consequently,

the apogean and perigean distances, from the action of the Sun's

disturbing force, the greatest parallax, if increased, would not be

increased by exactly the quantity of the diminution of the least

parallax ; the mean of the parallaxes, therefore, would not always

be the same constant quantity.

The constant parallax is assumed to be that angle, under which

the Earth's radius would be seen by a spectator at the Moon, the

Moon being at her mean distance and mean place : such, as would

belong to her, when all causes of inequality are subtracted. But

then, even by this definition, the constant parallax would be

represented by the same quantity only at the same place ; for,

although the Moon's distance remains the same, the radius of the

Earth, supposing it spheroidical, would vary with the change of

latitude in the place of observation.

In order therefore, to rescind the occasion of ambiguity which

might be attached to the phrase of constant parallax, Astronomers,

in expressing its quantity, are accustomed to state the place for

which it was computed. Thus, the equatoreal diameter being

greater than the polar, the constant parallax under the equator

(as it is termed) is greater than the constant parallax under the

pole: the former, Lalande, by taking a mean of the results ob

tained by Mayer and Lacaille, states to be 57' 5", the latter

56' 53".2 ; the same author also states the constant parallaxes

for Paris, and for the radius of a sphere, equal in volume to the

Earth, to be respectively 56' 58".3, and 57' l" (see Astronomy,

torn. II. p. 315).

4 o
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M. Laplace, however, proposes to deduce the several constant

parallaxes from one alone : and to appropriate 'the term constant,

to that parallax, belonging to a latitude, the square of the sine of

which is y*. This parallax, by theory, he has determined to

be 57' 4". 16844, the corresponding apparent semi-diameter of

the Moon being 3l' 7".7304, (= 57' 4". 16844 X .27293.)

This parallax being reckoned the mean parallax, the true

parallax is to be deduced from it ; if analytically expressed, to be

so, by a series of terms : if arithmetically computed, by the appli

cation of certain equations; the terms and equations arising, partly,

from mere elliptical inequality, and partly, from the perturbation

of the Sun.

The terms due to the first source of inequality are easily com

puted : for, if we call P the horizontal parallax to the mean

distance (a), then since we have any distance (p) in an ellipse ex

pressed (see p. 459,) by this equation,

= ' «.(! - e')

f 1 ± e . cos. 0 '

and since, the parallax x p = P x a, we have the parallax =

 1 4- e . cos. 9

r x j—— , and expanding as far as the terms con

taining e3, &c. = P (1 + e . cos. 6 + e*).

The terms due to the theory of perturbation are not easily

computed. In the extent of mathematical science, there is no

computation of equal importance and greater difficulty f.

The formula for the parallax, in which the constant quantity is

57' 4". 16844, belongs to a latitude, the square of the sine of which

is y . The corresponding formula for any other latitude is to be

* Laplace chose this parallel, since the attraction of the Earth on

the corresponding points of its surface, is very nearly, as at the distance

of the Moon, equal to the mass of the Earth, divided by the square of

its distance from the centre of gravity. Laplace, Mec. Cel. Liv. II,

p. 118.

t The difficulty belongs equally to the formulae for the latitude and

longitude. See Lalande, toni. II, pp. 180. 1 93. 314.
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deduced by multiplying the former by j , or by applying a cor-

r

rection proportional to r — r'; r and r' being the radii cor

responding to two latitudes, and computed on the supposition

that the Earth is a spheroid with an eccentricity = —— . [See

Tables XLV, and XLVI ; in the collection (1806) of French

Tables, and the Introduction. See also Vince, vol. Ill, p. 50.]

The Moon's equatoreal horizontal parallax and apparent semi-

diameter, are inserted in the Nautical Almanack, and, for every

12 hours ; the former is computed by the formula that has been

mentioned (p. 654) : the latter, by multiplying the parallax by

.27293.

The Moon's distance may, as it has been already noted, be

determined from her parallax ; her greatest and least distances from

her least and greatest parallaxes ; and her mean distance from her

mean parallax ; and, taking for the value of the latter that de

termined by Laplace, we shall have

i 's distance = 57 . '^^J®5 x rad. © = 57»39j7795 x 0

57 4". 16844 0.9511579

= 60.23799 x rad.©; therefore, if we assume the Earth's

mean radius to be 3964 miles, the Moon's distance will be about

238783 miles.

The distances of the Sun and of the Moon from the Earth are

inversely as their parallaxes. Hence, if the parallax of the former

be considered equal to 8".7, the distances will be to each other,

nearly, as' 394 : 1.

Lacaille's method of determining the distance from the parallax

applies successfully to the Moon, on account of her proximity to

the Earth. It fails, with regard to the Sun, by reason of his

distance. That distance is more than 24090 radii of the Earth :

consequently, a radius of the Earth bears a very small proportion

to it. The Sun's apparent diameter then seen from the surface

of the Earth, is nearly the same, as if it were seen from the centre •

and his diameter on the meridian cannot be sensibly larger than.
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his horizontal diameter. But, with the Moon, the case is dif

ferent : since her distance is not much more than 60 radii of the

Earth, her apparent diameter at its surface will be one 60th part

greater than her diameter viewed from the centre : and as she

rises from the horizon, and approaches the spectator, her appa

rent diameter will increase and be greatest on the meridian.

It is easy to assign a formula for its augmentation.

Let s be the Moon, p the parallax represented by the angle

 

msn, D the 5 's apparent distance from the zenith, A the 5 's

diameter viewed from the Earth's centre, a the augmentation of

the diameter, then

5 's real diameter = A x Cs = ( A + a) X As;

A + a Cs . sin. CAs sin. D

Hence, a

A As sin. ACs sin. (D — p)

 A . sin. D — A . sin. (D — p)

sin. (D — p)

« A {sin. f. cos. (D-f)}

sin. (D — p)

(see Trig. p. 32.)

From this formula, in whichp = P . sin. D, (P the horizontal
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parallax) a may be computed ; but, in practice, more easily from

a formula, into which, by the known theorems of Trigonometry,

the preceding maybe expanded. See Table XLIV, in Delambre's

Tables ; and the Introduction : also Vince, vol. Ill, p. 49.)

When the Moon is in the horizon, p = P, and D = 90° ;

A (1 - cos. P) ,

.'. a = = A .(sec. P - 1).

cos. Jf

Hence, the I 's horizontal diameter is greater than the diameter

( A ) seen from the centre, in the proportion of the secant of P

to radius; that is, if we assume P = 1°, in the proportion of

1.0001523 : 1.

With the preceding value of the parallax (1°) the diameter ( A )

see p. 655, will = 2° X .27293 = 32' 49".9, nearly, and ac

cordingly the augmentation = 32' 49".9 X (sec. 1° — 1)

= 32' 49"-9 X .0001523

x= 0".3, nearly.

It is plain, independently of any computation, that the Moon's

horizontal diameter must appear larger than it would do, if seen

from the centre : since the visual ray, in the latter case, is the

hypothenuse, in the former, the side of a right-angled triangle.

In order to find how much the Moon must be depressed, so that,

if it could, it would be seen under the same angle, as when viewed

from the Earth's centre, draw a line from the bisection of the

radius joining the spectator and the Earth's centre, perpendicularly

towards the Moon's orbit: the intersection with the orbit is the

Moon's place, and the depression, below the horizon, is, as it is

plain, half the Moon's horizontal parallax.

The Moon's parallax is necessary to be known for the pur

pose of determining, from its observed, its true zenith distance :

from the true zenith distance, the Moon's north polar distance

is found by adding to it the co-latitude. Lastly, from the north

polar distance and right ascension, and the obliquity of the

ecliptic, the Moon's longitude and latitude may be computed :

and thence the elements of the orbit may be computed, or being

computed, may be examined and corrected. This subject of the

elements of the lunar orbit, will be briefly treated of in the

ensuing Chapter.



CHAP. XXXI.

On the Elements of the Lunar Orbit; Nodes; Inclination; Mean

Distance; Eccentricity ; Mean Motion; Apogee; Mean Lon

gitude at a given Epoch.

The longitudes of the nodes are determined, as in the case of

a planet. From the Moon's observed right ascensions and decli

nations, the corresponding latitudes and longitudes are computed :

when the latitude is equal nothing, the Moon is in the ecliptic ;

in the intersection therefore of the ecliptic and its orbit : or, in

other words, in its node : the longitude corresponding to such

latitude (= 0) is the longitude of the node.

It will rarely happen (see p. 565,) that the latitude deduced

from the meridional right ascensions, and polar distances, is

exactly equal nothing : we must then, by proportion, compute

the longitude corresponding to such latitude, if it may be called

such. The object may be easily arrived at by the following

method.

Let N be the place of the node, nNm a portion of the
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ecliptic, am, bn (X, A') two latitudes, one to the south, the other

to the north of the ecliptic : now by Naper's Rules
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sin. Nm tan. \

. ' ' sin. Nn tan. X' '

sin. Nm — sin. Nn tan. X — tan. X'

sin. Nm + sin. Nn tan. X + tan. X' '

Nm — Nn

or,

tan. _
2 sin. (X — X;

Nm + Nn sin. (X + X') '

tan.

TT Nm — Nn nm sin. (X — X')

Hence, tan. —— = tan. . r ,

2 2 sin. (X + X')

from which expression, Nm — Nn is known, since Nm -f- Nn,

the difference of the longitudes on the two succeeding days of

observation, is known : and, from the sum and difference of two

quantities, we can determine the quantities themselves : in fact

Nm + Nn . Nm — Nn

Nm = +

Nn =

2 2

Nm + Nn Nm — Nn

2 2 '

• This method is capable of determining, besides the longitude

of the node, the inclination of the orbit; for, since

sin. Nn tan. X'

-—Tf~ + 1 = 7 + 1,
sin. Nm tan. X

tan. X tan. X + tan. X'

sin. Nm sin. Nm + siu. Nn '

consequently,

tan. X tan. X + tan. X'
tan. IV =

Nm sin. Nm + sin. Nn

sin. (X + X')

. . . mn /Nm—Nn\

cos. X cos. X . 2 . sin. . cos. ( J

2 V 2 /

In which fraction, after the determination of the value of Nm— Nn,

every thing is known.
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In order to determine, whether the place of the node be fixed

or not, or, if moveable, the direction and degree of its motion,

repeat the above process for finding the longitude, and the

difference between the two results will be, during the interval of

the two observations, the motion of the node. Thus, if at the

end of a month, we make a second computation of the place of

the Moon's node, it will be found to have a longitude less than

what it had at the beginning, by 1° 28': at the end of two months,

a longitude less by 2° 55': and by like computations, or, rather

by the comparison of very distant observations, the annual regres

sion of the Moon's node, will be found to be 19° 19' 43", and

the period of the sidereal revolution of the node will be 6798

days *.

If we take the difference of two longitudes of the same node,

we shall have, corresponding to the interval of time, the regression

or motion of the node : if the interval be 100 years, the result

will be the secular motion of the node. But, the mere difference

of the two longitudes will not give the whole motion of the node,

since the node may have regressed through several entire circuits

of the heavens. For instance, in 100 years the mere difference

of two longitudes is 4s 14° ll' 15": but, since the revolution of

the Moon's nodes is performed in about 18y 7m, in 100 years,

besides this angle of 4s 14° 11' 15", five' circumferences must

have been described by the node : the proper exponent, therefore,

of the secular motion of the node is

* There are certain phenomena which very plainly indicate the re

gression and its quickness. For instance, the star Regulus situated nearly

in the ecliptic, (its latitude is about 27' 35",) was eclipsed by the Moon

in 1757: the Moon therefore, must have been nearly in the ecliptic, and

consequently, in its node. But, a few years after, the Moon, instead of

eclipsing Regulus, passed at the distance of 5 degrees from the star.

Again, if the Moon be observed at a certain time in conjunction with

a star, and passing very near it, after the interval of a month, it will pass

the star at a greater distance ; after two months, at a still greater dis

tance ; and having reached a certain point, it will, in its conjunctions with

the star, again approach it, and, at the end of about 19 years, pass it at

the same distance, as at the beginning.
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5 x 360°+ 134° 11' 15"= 1934° 11' 15", (= 1934°.1875.)

Hence, the tropical revolution of the node

36000°
= — = 6798d. 54019 = 6798d 12h 57m 52".4l6,

1934.1875

and since the equinoctial point in that time has regressed through

lo' 34", the sidereal period is less than the former by nearly five

days.

The annual regression of the node has been stated to be

19°.34187$. This, as is plain from the mode of deducing it,

is the mean regression. It will differ from the true annual re

gression, (that which belongs to any particular year, 1810, for

instance,) by reason of several inequalities to which it is subject.

And, as we shall hereafter see, the regression, besides its periodical

inequalities, is affected with a secular inequality, by which its

mean motion is, from century to century, retarded.

Inclination of the Moon's Orbit.

The inclination may be determined from the expression of

p. 659, 1* 17 : or thus:

Amongst the latitudes computed from the Moon's right as

censions and declinations, the greatest, at the distance of 90°

from the node, measures the inclination of the orbit. This,

sometimes, is found nearly equal to 5° : at other times> greater

than 5°. For instance, the greatest latitude of the new and full

Moon, when at 90° from the node, is found equal to 5° nearly :

but the greatest latitude when the Moon is in quadrature, and

also 90° from the node, is found equal to 5° 18;. Hence the

inclination of the Moon's orbit is variable : it is greatest in quad

ratures and least in syzygies.

Major Axis of the Moon's Orbit.

The Moon's distance is to be determined by her parallax.

The method of Lacaille, described in Chap, XII, p. 325,

(which is inapplicable, in the case of the Sun, on account of his

great distance,) applied to the Moon, affords practical results of

great exactness.

4 p
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The degree of exactness is known from the probable

error of observation, and the consequent error in the resulting

distance : now, a variation of l" in the parallax would cause

a difference of about 67 miles in the determination of the dis

tance * : therefore, as the Moon's parallax can certainly be de

termined within 4", the greatest error in the resulting distance

cannot exceed 280 miles, out of about 240,000 miles.

Since, generally, the Moon's distance can be determined, her

greatest and least may : and consequently, supposing her orbit to

be elliptical, the major axis of the ellipse, which is the sum of

the greatest and least distances, may be determined.

Eccentricity of the Moon's Orbit.

This is known from the greatest and least distances of the

Moon, the apogean and perigean. Or, it may be determined

from the greatest equation (see pp. 473, &c.) Its quantity, ac

cording to Lalande, {Astronomy, tom. II, p. 312,) is 0.055036:

which gives for the greatest equation 6° 18' 32".076, M. Laplace

however, states the eccentricity for 1800 to be 0.0548553, which

gives the greatest equation of the centre, 6° 1 1' 54".492.

The Moon's Mean Motion.

Pp

By p. 611, the time (t) of a synodic revolution equals

P —

* Let p= J's parallax, then, see p. 651, J 's dist. = — -.

P
Let e be the error ef parallax, then the corresponding errror in the Moon's

dlstance =  ®'S rad' = ®'s rad' f1 - _L_^

P P + e V V j , «/

P

0's rad. /, „ , e\ Cg's rad. /c\ ,
- V- 0 - 1 +?) = V~ 0> nearly'

(rejecting the terms involving e% &c.) Hence, if e = 1", and p = 1°,

flVs rad 1
and — . , or the T> 's dist. = -240,000 miles, the error = X

P 00.00

240,000 = 67 miles, nearly. In the case of Mars, an error of 1" in

cludes in the distance an error of 40,000 miles.
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Hence, if t be computed from observation, since P the Earth's

period is known, p, the Moon's, may be computed from the

expression

Pt

If the Moon and Earth revolved equably in circular orbits,

the above method would give accurately the Moon's period ; but,

siuce the Moon and Earth are subject to all' the inequalities of

a disturbed elliptical motion, the result obtained, by the above

process, from one observed synodic revolution, would differ con

siderably from the mean period. In order, therefore, to obtain a

mean period, we must observe and compute two conjunctions, or

two oppositions, separated from each other by a long interval of

time ; and then, the interval divided by the number of synodic re

volutions will give nearly the length of a mean synodic period, and

very nearly indeed, if the Moon's apogee at the time of the second

conjunction or opposition should be nearly in the same place in

which it was, at the time of the first conjunction or opposition.

From this mean value of the synodic period (r), the mean period

(p) may be computed from the above expression.

Now the phenomena of eclipses are very convenient for de

termining certain epochs of oppositions. And great certainty is

obtained by their means. For, the recorded time of an eclipse

by an antient Astronomer must be nearly the exact time of its

happening ; whereas, the assigned time of a conjunction or

opposition happening long since, might, from the imperfection

of instruments and methods, be erroneous, to a very considerable

degree.

If we use two oppositions indicated by two eclipses, separated

from each other by a short interval, we may deduce, but with

no great exactness, (as has been already observed in this page,)

the time of a synodic revolution. Thus^ according to Cassini,

a lunar eclipse happened in Sept. 9, 1718, 8h 4m ; another eclipse

in Aug. 29, 1719, 8h 32m. The interval between the two eclipses

was 354d 0h 28m : and in the interval, 12 synodical revolutions

had taken place ; consequently, the mean length of one of these
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354d Oh 28m

twelve, is equal to — , equal to 29d 2m.

This result cannot be exact : it is affected by the inequalities

of the Moon's elliptical motion : for, independently of other

causes,- the place of the apogee of the Moon's orbit at the time

of the second observation is distant from its place at the first by

about 40°.

In order to obtain a true mean result, we must employ eclipses

very distant, in time, from each other. Such are, an eclipse

recorded by Ptolemy to have been observed by the Chaldeans in

the year 720 before Christ, March 19, 6h 1 lm (mean time at Paris,

according to Lalande,) and an eclipse observed at Paris in 1771,

Oct. 23, 4h 28"1. The interval between the eclipses, is 910044

days minus lh 43m, and expressed in seconds, 78627795420s.

In this interval 30817 synodic revolutions had happened ; the

mean length of one of these, then,

78627795420s

= . - = 29d 12h 44m 2s .2. Substituting this

30817 f

value in the expression, p. 663, I. 4, we may obtain the value

of p.

The value of the synodic period, computed from different

observations, is not always of the, same magnitude. Its mean

length therefore is subject to a variation, arising from a cause

called the Acceleration of the Moon's Mean Motion, which will

be hereafter explained.

According to M. Laplace, the mean length of a synodic revo

lution of the Moon for the present time, is

29" 12h 44m 2'.8032( = 29d.530588).

The periodic revolution of the Moon computed from the

expression of p. 663,

365.242264 x 29.530588

365.25 + 29.530588

27d 7h 43m 4s.6848.

= 27d.321582
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This is the tropical revolution of the Moon, or the revolution

with respect to the equinoxes, since the number which was sub

stituted for P was 365.242264, which expresses the Earth's

tropical revolution.

The diurnal tropical movement of the Moon

360°

27.321582

= 13°. 17636 = 13° 10' 34".896.

The sidereal revolution of the Moon differs from the tropical,

for the same reasons, (see p. 198,) as the sidereal year differs from

the tropica] : and the difference must be computed on similar

principles : thus, the mean precession of the equinoxes being

50".l in a year, or about 4" in a month, the sidereal revolution

of the Moon will be longer than the tropical, by the time which

the Moon, with a mean diurnal motion of 13°. 17636, takes up in

describing 4": which time is nearly 7s. The exact length of a

sidereal revolution is 27d 7h 43m 11s. 510, (= 27d.32l66l)*.

* We may easily deduce a formula 'of computation: thus, let p be

the Moon's tropical revolution (= 27d.321582,) and x the sidereal period

to be investigated ; then, the arc of the precession described in the time

- 50"-1 X T

~ 3b'5.25 '

p 50". 1
and the time of the Moon's describing it = ^ x Ifi^p X x.

p 50". 1 , ,
Hence, * =p + X ^ x *, and thence

P

= (expanding)

< , , p 50".l ( p V /50".ly •>

p 50". 1
in which, since ^ ^ x ^ is a very small quantity, two terms

will be sufficient to give a value of x sufficiently near.

The same series may be used for determining the length of the

sidereal
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Since the equinoctial point (from which longitudes are mea

sured) regresses, the Moon departing from a point, where its

longitude is = 0, returns to a point at which its longitude is

again = 0, before it has completed a revolution amongst the

fixed stars. In like manner, the node of the Moon's orbit re

gressing, and faster than the equinoctial point, the Moon, quitting

a node, will return to the same before completing a revolution

amongst the fixed stars, and in a period less than the tropical.

This period may be thus found ; the diurnal tropical movement

of the Moon is 13° 10' 34".896, and that of the node (see p. 66 1 ,)

= —r- — = 3' 10".6386. Hence, the diurnal separation,
365.242264 v

which is the sum of the above quantities since the node regresses,

= 13° 13' 45".535*: and consequently,

13° 13' 45".535 : 360° :: ld : 27d 5h 5m 35s .6,

the resolution of the Moon with respect to its node.

This latter revolution may also be found by the aid of the

formula given in the Note to p. 665.

By like processes, from the ascertained quantity of the apogee

of the Moon's orbit, we may determine the anomalistic revolution

sidereal from the tropical year, by substituting for p, 363d. 25 : in that

case, the length of the sidereal year

5Q".l

and a like series would serve to determine the length of an anomalistic

year, substituting instead of 50". I , the quantity expressing the progression

of the apogee.

* The Moon's motion with regard to its node may be found from

eclipses ; for, when these are of the same magnitude, the Moon is at the

same distance from the node. Hipparchus, by comparing the eclipses

observed from the time of the Chaldeans to his own, found that in 5458

lunations, the Moon had passed 5923 times through the node of its orbit :

thence he deduced the daily motion of the Moon with regard to its node,

to be 13° 13' 45" 39"' f . See Lalande, tom. II, p. 189-
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of the Moon, M. Lalande (Astronomie, tom. II, p. 1S5,) states it

to be 9.1* 13h 18m 33'.9499, but M. Delambre, 27d 13h 18m 37s.44

(= 2?d.5546.)

There is another revolution, of some consequence in the lunar

theory, called the Synodic Revolution of the Node: this is com

pleted when the Sun departing from the Moon's node first returns

to the same. It is to be computed as the preceding periods have

been. Thus, since the mean daily increase of the Sun's longitude

is 59' 8".33, and the daily regression of the node is 3' 10".638,

the sum of these quantities, which is the separation of the Sun

from the node in a day, is 1° 2' 18".96. Hence, 1° 2' 18".96 :

360" :: ld : 346d 18h 28m' 16\032 (= 346d.6l963 *.)

We will now exhibit, under one point of view, the different

kinds of lunar periods and motions :

Synodic revolution ...... 29d 12h 44°' 2s.8032 = 29d.530588

Tropical 27 7 43 4.6848 .. 27 . 321582

Sidereal 27 7 43 11 .5101 . . 27 .321661

Anomalistic 27 13 18 37 .44 . . . . 27 . 5546

Revol". in respect of node 27 5 5 35.6 27.212217

Tropical revolu". of node 6798d l2h 57m 52s.4l6 6798.54019

Sidereal 6793 10 6 29 -952. .6793.421 18

D 's mean tropical daily motion 13° 10' 34".896

S 's sidereal daily motion 13 10 35 . 034

E 's daily motion in respect to the node .... 13 13 45 . 534

Place of the Apogee.

The Moon's diameter is least at the apogee, and greatest in

the perigee : and since the diameter can be measured by means

* This and the preceding periods are frequently found on like princi

ples, but by different expressions, from the values of the secular motions.

Thus, in 100 Julian years, each consisting of 365d.25, the secular motion

of the Sun is 36000° 45' 45" (36000o.7624oo8) and the secular motion

of the node (see p. 661,) 1934°. 1875 : and the sum of these is 37934°.95

. , 36000
nearly : thence 37934.95 : 360 :: 100 : period = —— — .
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of a micrometer, or can be computed from the time it takes up

in passing the vertical wires of a transit instrument, the times of

the least and greatest diameter, or the times when the Moon is

in her apogee and perigee, can be ascertained. Instead of endea

vouring to ascertain when the Moon's diameter is the least,

Lalande, Astron. tom. II, p. 162, says, that it is preferable to

observe the diameters towards the Moon's mean distances when

the diameter is about 3l'30". If two observations can be selected

when the diameter was of the same quantity, then we may be sure

that, at these two observations, the Moon was at equal distances

from the apsides of its orbit. The middle time then between the

two observations is that in which the Moon was in her apogee.

By finding the places of the apogee, according to the pre

ceding plan, and comparing them, it appears that the apogee of

the Moon's orbit is progressive * : completing a sidereal revolution

in 3232d 11h 11m 39s .4, and a tropical, in 3231d 8h 34m 57s. 1.

Laplace states the sidereal revolution of the apogee to be 3232d.579,

that is, 3232d 13h 53m 45'.6. (See Exposition du Systeme du

Monde, Edit. 2, p. 20.)

Mean Longitude of the Moon at an assigned Epoch.

By observations on the meridian, the right ascension and de

clination of the Moon are known ; thence may be computed, the

Moon's longitude. This resulting longitude is the true longitude,

differing from the mean by the effect of all the inequalities, ellip

tical, as well as those that arise from the perturbations of the Sun

and planets. The mean longitude therefore, is the difference of

the true longitude and of the sum (mathematically speaking) of

the equations due to the inequalities. In order, therefore, to de

termine the mean longitude, the lunar theory must be known

to some degree of exactness. Any new inequality discovered

will affect the previous determination of the mean motion : and

accordingly, keeping pace with the continual improvements in

the lunar theory, repeated alterations have been made in the

quantity of the mean longitude. In the last Lunar French Tables,

* See Physical Astronomy, Chap. XIII.



669

the epoch of the mean longitude for Jan. 1, 1801, midnight at

Paris, is 3s 21° 36' 30".6 : which for Greenwich, Jan. 1, at noon,

is 3s 28° 16' 56". 1.

In order to determine the eccentricity of the Moon's orbit,

considered as elliptical, and the deviations from the elliptical

form caused by the actions of the Sun and planets, it is necessary

to know the angular spaces described by the Moon, in her orbit.

Such spaces are not immediately given by observation. We must

make several steps to arrive at them. The first is the determi

nation of the Moon's parallax : the second, the observation of

the Moon's right ascension and zenith distance : the third, the

correction of the zenith distance on account of parallax, in order

to obtain the true declination. The fourth, the computation of

the Moon's latitude and longitude : the fifth, the reduction of the

Moon's longitude to a longitude on her orbit, to be effected by

the same formula (see pp. 501, &c.) as that of the reduction of

the ecliptic to the equator.

The comparison of the reduced longitudes, or the comparison

of the arcs of the Moon's orbit, described in certain times, will

shew us how much such arcs, with respect to their forms and

laws of description, differ from elliptical arcs. This point will

be considered in a subsequent Chapter. In the next we will

advert to certain secular inequalities (arising, indeed, from the

same source as the Moon's periodical inequalities) that affect

those elements of the orbit, which we have just considered.



CHAP. XXXII

On the Secular Equations that affect the Elements of the

Lunar Orbit.

The correction, which is called a Secular Equation, is strictly

speaking periodical, but requiring a very large period, in order to

pass through all its degrees of magnitude before it begins to recur.

Its quantity, in general, is very small, and usually expounded by

its aggregate in the space of 100 years.

The nodes, the apogee, the eccentricity, the inclination of the

Moon's orbit, the Moon's mean motion, are all subject to secular

inequalities. And the practical mode of detecting these ine

qualities is nearly the same in all.

If we subtract the longitude of the Moon's node now, from

what it was 500 years ago, the difference is the regression of the

node in that interval : the mean annual regression is the above

difference divided by 500. If we apply a similar process to an

observation of the Moon's node, made now, and to one made

1000 years ago, the result must be called, as before, the mean

annual regression of the node ; and this last result ought, if the

regression were always equable, to agree with the former : if not,

(as is the case in nature,) the difference indicates the existence of

a secular inequality, requiring for. its correction a secular equa

tion.

By a similar method the motion of the perigee of the Moon's

orbit does not appear to be a mean motion, but subject to a

secular inequality.

But the most remarkable inequality is that which has been

detected in the Moon's mean motion, and which is now known

by the title of the Acceleration of the Moon's mean Motion. The
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fact of such acceleration was first ascertained by Halley, from

the comparison of observations : the cause of the acceleration has

been assigned by Laplace*. Although the method of detecting

the existence of these inequalities does not differ, in principle,

from methods just described, yet, on account of its importance,

we will endeavour to explain it more fully.

As we have- before remarked, eclipses are a species of obser

vations on which we may 'rely with great certainty ; quite distinct

from merely registered longitudes which must partake of all the

imperfections of methods used at the times of their computation.

Now, in the year 721 before Christ, with a specified day and

hour, Ptolemy records a lunar eclipse to have happened. The

Sun's longitude then being known, the Moon's, which must at the

time of the eclipse differ from it by six signs, is known also. The

Moon's longitude however, computed for the time of the eclipse

and by means of the Lunar Tables, does not agree with the

former t. In some part or other, then, the Tables are defective,

or, without some modification, are not applicable to ages that

are past.

The Moon's place computed from the eclipse is advanced

beyond the place computed from the Tables by 1° 26' 24"; an

error too great to be attributed to any inaccuracies in the coeffi

cients of the equations belonging to the periodic inequalities, and

which would seem rather to be the aggregate, during many years,

of a small error in some reputed constant element, such, for

instance, as the Moon's mean motion.

On the hypothesis then of an acceleration in the Moon's

motion, or, in other words, if we suppose the Moon now to move

more rapidly than it did 2000 years ago, the error of 1° 26' 24"

can be accounted for. With a mean motion too large, we should

* See Laplace, Exposition dii Syst. du Monde, Edit. 2, pp. 20, 21 4, &c.

also Mec. Celeste, pp. 175, &c. Lalande, tom. U, p. 185: Halley, Phil.

Trans. Nos. 204, and 218, Newton, p. 481, Ed. 2. and Woodhouse's

Phys. Astron. Chap. XXII.

t The true longitudes are not compared, but the mean.
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throw the Moon too far back in its orbit. And, with the same

motion, but for a point of time less remote than the preceding,

we ought, if the hypothesis of the acceleration be true, to throw

the Moon less far back in her orbit: for that would produce

an error of the same kind as the one already stated, (p. 671).

Now this is the case, and has been ascertained to be so, by means

of an eclipse observed at Cairo by Ibn Junis, towards the close

of the tenth century.

The acceleration of the Moon's motion therefore, discovered

by Halley, may be assumed as established : or, in other words, in

the former estimates of the quantity of the Moon's motion, a

large secular inequality was included, which it is now neces

sary to deduct, in order that what remains may be truly a

mean motion.

The variation in the mean motion of the Moon, will, it is

plain, affect the durations of its synodic, tropical, and sidereal

revolutions.

With this secular equation in the Moon's mean motion, the

equations in the motions of the nodes and of the apogee are

connected. The latter are subtractive, whilst the former is posi

tive ; and, according to Laplace, Mec. Celeste, tom. Ill, p. 236,)

the secular motions of the perigee, of the nodes and mean motion,

are to each other, as the numbers 3.00052, 0.735452, and 1.

The mean anomaly of the Moon, which is the difference of

her mean longitude and the mean longitude of the apogee, must

be subject to a secular equation, which is the difference of the

secular equations affecting the longitudes of the Moon and of the

apogee.

All quantities, in fact, dependent on the Moon's mean motion,

the apogee and nodes, must be modified by their secular equa

tions.

The Moon's distance from the Earth, the eccentricity and in

clination of her orbit, are, according to M. Laplace, also affected

with secular equations connected with that of the mean motion.

But, the major axis is not. (See Physical Astron. Chap. XXIII.)
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We will, in the next Chapter, explain briefly the origins,

quantities, and variations of those inequalities, which during a

month, a year, and the periodical revolution of the nodes, render

the Moon's true place different from its elliptical, or, more

generally speaking, from its mean place.



CHAP. XXXIII

On the Inequalities affecting tine Moon's Orbit.—The Evection.—

Variation.—Annual Equation, fyc.— The Inequalities of

Latitude and Parallax.

By a comparison of the Moon's longitudes and of her distances

deduced from her parallaxes, it appears that the lunar orbit is

nearly an ellipse with the Earth in one of the foci. It appears

also, that the Moon not only wanders from the ellipse which may

be traced out as her mean orbit, and transgresses the laws of

elliptical motion, but, that the ellipse itself is subject, in its di

mensions, to continual variation : at one time, contracted within

its mean state, at another, dilated beyond it.

In strictness of speech, neither the Earth's orbit nor the Moon's

are to be called ellipses. If they are considered as such, it is

purely on the grounds of convenience. It is mathematically com

modious, or it may be viewed as an artifice of computation, first,

to find the approximate place of each body in an assumed ellip

tical orbit, and then to compensate the error of the assumptions,

and to find a truer place, by means of corrections, or, as they

are astronomically called, liquations.

In a system of two bodies, when forces, denominated cen

tripetal, only act, an accurate ellipse is described by the revolving

round the attracting body ; and, in such a system, the apsides, the

eccentricities, the mean motions, 8tc, would remain perpetually

unchanged. The introduction of a third, or of more bodies, and

the consequent introduction of disturbing forces, destroys at once

the beautiful simplicity of elliptical motion, and puts every

element of the system into a state of continual mutation. Yet,

the change and the departure from the laws of elliptical motion,

are less in some cases than in others. The Earth's orbit ap
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proaches much more nearly to the form of an ellipse than the

Moon's. The Sun's longitude, as we have seen in p. 496, com

puted by Kepler's Problem, did not differ from the true place by

more than seven seconds : and that quantity, in those circum

stances, represented the perturbations of the planets ; and, the

equations representing the perturbations were only four. But,

in the case of the Moon, one inequality alone will require an

equation nearly equal to two degrees, and the number of equa

tions amounts to 28.

The quantity of perturbation, and the difficulty of computing

it, depend less on the number than on the proximity of the dis

turbing bodies. ' In the case of the Sun, one equation suffices

for the perturbation of Venus, and another for that of Jupiter.

But, all the equations compensating the inequalities in the

Moon's place, arise from different modifications of the Sun's

disturbing force. It is not, however, solely the proximity, but

the mass of the disturbing body, that gives rise to equations.

The strictly mathematical solution of the problem of the three

bodies (see Chap. XX.) is equally difficult, whatever be the

mass of the disturbing body. The practical difficulty of merely

approximating to the true place of the disturbed body, is very

considerably lessened by supposing that mass to be small.

If we consider the subject merely in a mathematical point of

view, the Moon's place, at any assigned time, results from the

compound action of the Earth's centripetal force and the Sun's

disturbing force ; and the deviation from her place in the exact

ellipse, arises entirely from the latter. We are at liberty to call

the deviation, or error, one uncompounded effect : yet, since the

quantity of the deviation cannot be computed from one single

analytical expression, but must be so, by means of several terms,

we may separate and resolve the effect into several, (analogous

to the above-mentioned terms,) the causes of some of which we

may distinctly perceive and trace in certain simple resolutions

and obvious operations of the Sun's disturbing force.

Long before Newton's time and the rise of Physical Astro

nomy, this separation, or resolution of the error of the Moon's

place from her elliptical place was, in fact, made. And, the
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error was said to arise from three inequalities, distinguished by

the titles of Evection, Variation, and Annual Equation.

These three inequalities were noted because they rose, under

certain circumstances, to a conspicuous magnitude ; and, were

distinguished from each other, because they were found to have

an obvious connexion with certain positions of the Sun and Moon

and of the elements of their orbits. Although their real physical

cause was not discovered, yet the laws of their variation were

ascertained.

The other lunar inequalities have not, like the three pre

ceding, been distinguished by titles. This is owing principally to

their want of historical celebrity ; they were not detected like

the others, by reason of their minuteness and the imperfection

of antient instruments and methods.

Some explanation has already been given, (Chaps. XIV,

XV,) of the principles and modes of detecting and decom

pounding inequalities. The difference between an observed and

computed place^ indicates the operation of causes either not

taken account of, or not properly estimated in the previous

computation.

Take, for instance, the Moon : her mean place, computed

from her mean motion, differs from her observed place ; and

the difference, if we suppose her to move in an elliptical orbit,

is the equation of the centre, or, of the orbit, called the First

Lunar Inequality.

Compute the Moon's place from a knowledge of her mean

motion and of the equation of the centre, and then compare the

computed, with the observed, place. In certain situations, a

great difference will be noted between the places, ascending in

its greatest value to nearly lfl 18' 3". This difference is chiefly

owing to the Evection discovered by Ptolemy, and named the

Second Lunar Inequality.

In like manner, we may conceive the Third Lunar Inequality

to be discovered. But, we will now proceed to consider more

particularly the second inequality; the mode of ascertaining its
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maximum ; its general effect ; the formula expressing the law of

its variation ; and its cause, reckoning as such, some particular

modification of the Sun's disturbing force.

Evection. (See Physical Astronomy, pp. 236, &c.)

This inequality has a manifest dependence on the position

of the apogee of the Moon's orbit. Let us suppose the Moon

to quit the apogee, the line of the apsides to lie in syzygy, and

that we wish to compute the Moon's place 7 days after her

departure from syzygy, when, in fact, she will be nearly in

quadratures. The Moon's place, computed by deducting the

equation of the centre*, (then nearly at its greatest value and

= 6° 37' 54".492,) from the mean anomaly (see Chap. XVIII.)

will be found before the obsejrved place by more than 80 minutes ;

in other words, the computed longitude of the Moon is so much

greater than the observed longitude. But, if we suppose the

apsides to lie in quadratures, the Moon's place, 7 days after

quitting her apogee, computed, as before, by subducting the

equation of the centre from the mean anomaly, will be found

behind the observed place by more than 80 minutes; in other

words, the computed longitude of the Moon is so much less than

the observed.

It is an obvious inference, then, from these two instances,

that some inequality, besides that of the elliptic anomaly, and

having a marked connexion with the longitude of the lunar apogee,

affects the Moon's motion.

What,, from the two preceding instances, would be an obvious

inference to an Astronomer acquainted solely with the elliptic

theory of the Moon ? In the first case, the computed place being

before the observed, it would seem that the equation of the centre,

to be subducted from the mean anomaly, had not been taken of

sufficient magnitude ; in the latter case, it would seem that the

equation of the centre had been taken too large.

Let us take another case : suppose, instead of comparing the

computed with the observed place, that it was intended to deduce

* The anomlay is here supposed to be reckoned from apogee.

4 R
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the quantity of the equation of the centre from an observation

of the Moon in syzygy. In that case, the equation of the centre,

reckoned as the difference of the true and mean longitudes,

would result too small a quantity. And this circumstance has

really happened. For, the antient Astronomers who determined

the elements of the lunar orbit by means of eclipses, when the

Moon is in syzygy, have assigned too small a quantity to the

equation of the centre.

In the preceding instance, when the Moon is in syzygy and the

apsides in quadrature, the determination of the equation of the

centre would be too small by the maximum value of the Evection

(1° 20' 29".5). But, in other positions of the apsides, the effect

of the evection is to lessen, though not by its whole quantity, the

equation of the centre. '

Astronomers, having found that the augmentation and dimi

nution of the equation of the centre arose from an inequality,

soon ascertained the inequality to be periodical ; in other words,

that, after passing through all its degrees of magnitude, from O

to its maximum value, it would recur. Now, of such recurring

quantities the cosines and sines of angles are most convenient

representations ; for instance, + K . sin. E is competent to repre

sent the Erection : its maximum value is K, when E = 90° : and

it is nothing, when E is. If then, the value of K could be

assigned and the form for E, the numerical quantity of the

Evection could be always exhibited. After the comparison of

numerous observations, and after many trials, it was found that

K = 1° 20' 29".5, and E = 2 ( D - O ) - A,

A representing the mean anomaly of the Moon, and 3) — O

signifying the angular distance of the Sun and Moon, or, the

difference of their mean longitudes viewed from the Earth.

In the equation

1° 20' 29".5 . sin. [2 ( D - O ) — J],

1° 20' 29".5 is called the coefficient, and 2 ( I — O) - A the

argument.

If we represent the equation of the centre by

(6° 17' 54".49) sin. A,
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in which, the coefficient 6° 17' 54".49, is the greatest equation,

and A (the mean anomaly) the argument, the Moon's longitude

expressed by means of the two equations, that of the centre *,

and the evection, would stand thus :

i 's longitude =

D 's mean long. - (6° 17' 54".49) sin. A

- (1° 20' 29".5) sin. [2(1 - © ) — A] ;

now in syzygies D — © = 0; .". sin. [2(5 — © ) — A]= — sin. A ;

consequently, in this case, the former expression becomes

X> 's longitude =

i 's mean long. — (6° 17' 54".49) sin. A + (1° 20' 29".5) sin. A,

in which, the argument for the Evection assumes that form,

which is the general one of the equation of the centre; and on

this account, the former is sometimes said to confound itself with

the latter, in syzygies. It also seems to lessen it, since the pre

ceding expression may be put under this form,

3) 's longitude =

3> 's mean long. — (6° 17' 54".49 — 1° 20' 29".5) sin. A, in

which, the coefficient of sin. A would be the difference of the

two coefficients 6° 17' 54".49, and 1° 20' 29".5 ; and, accord

ingly, A being the argument of the Equation of the Centre, that

equation would appear to be lessened.

The Evection itself, and, very nearly, its exact quantity, were

discovered by Ptolemy in the first century after Christ, but the

cause of it remained unknown till the time of Newton. That

great Philosopher shewed that it arose from one kind of alteration

which the Moon's centripetal force towards the Earth receives

from the Sun's perturbation. Let us see how it may be ex

plained :

* If A be the mean anomaly, the equation of the centre cannot be

represented by a single term such as a sin. A, but by a series of terms,

such as a sin. A -J- b sin.. 2 A -f- c sin. 3 A -j- &c. in which, however,

the coefficients b, c, &c. decrease very fast.
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When the line of the apsides is in syzygies, the Equation of

the centre (p. 677,) is increased. The Equation of the centre

depends on the eccentricity ; (see pp. 662,) an increase there

fore in the former would indicate an increase in the latter.

Hence, if it can be shewn that the Moon's orbit must, when the

line of the apsides is in syzygies, be made more eccentric by the

action of the Sun's disturbing force, an adequate explanation

will be afforded of the increase of the equation of the centre

above its mean value ; which increase is styled the Evection.

Again, when the line of the apsides is in quadratures, the

Equation of the centre is lessened : the eccentricity therefore

(see expression, p. 473,) is lessened : and now, in order to afford

an explanation, it is necessary to shew that, in this position

of the line of the apsides, the Sun's disturbing force necessarily

renders the orbit less eccentric.

The Sun's disturbing force admits of two resolutions, one in

the direction of the radius vector of the Moon's orbit : the other

iu the direction of a tangent to the orbit. The former sometimes

augments, at other times, diminishes the gravity of the Moon to

wards the Earth, and always (see Newton, Sect XI, Prop. 66,)

proportionally to the Moon's distance from the Earth. When

the Moon is in syzygy, it diminishes ; consequently, in the first

case, when the line of the apsides is also in syzygy, the perigean

gravity, which is the greatest, (since it varies inversely as the

square of the distance) is diminished, and by the least quantity ;

the apogean gravity, the least, is also diminished, but by the

greatest quantity : the disproportion therefore between the two

gravities is augmented ; the ratio between them becomes greater

than that of the inverse square of the distance : the Moon, there

fore, if moving towards perigee, is brought to the line of the

apsides in a point between its former and mean place and the

Earth : or, if moving towards apogee, reaches the line of the

apsides in a point more remote from the Earth than its former and

mean place. The orbit then becomes more eccentric ; the equa

tion of the centre is increased ; and, the increase is the Evection.

Thus is the first case accounted for. In the second, the

Sun's resolved force increases the gravity of the Moon towards
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the Earth, and, as it has been said, proportionally to the distance.

The perigean gravity, therefore, which is the greatest, is increased

by the least quantity ; the apogean, the least, is also increased,

and by the greatest quantity. The disproportion, therefore, be

tween these two gravities is lessened ; the ratio between them is

less than that of the inverse square of the distance. The Moon,

therefore, if moving towards perigee, meets the line of the apsides,

in a point more remote from the Earth than the mean place of

the perigee : if moving towards the apogee, in a point between

the Earth and the mean place of the apogee. The orbit, by

these means, becomes less eccentric ; the Equation of the centre

is diminished, and, the diminution is the Erection.

We willt now proceed to consider the third inequality called

The Variation. (See Physical Astronomy, pp. 217, 8tc.)

By comparing the Moon's place computed, from her mean

motion, the equation of the centre, and the Evection, with her

observed place, Tycho Brahe, in the sixteenth century, discovered

that the two places did not always agree. They agreed only in

opposition and conjunction, and varied most, when the Moon

was half way between quadratures and syzygies, that is, in Octants.

At those points the new inequality seemed to be at its maximum

value (35' 4l".6).

It appeared clearly from the observations, that this new in

equality was connected with the angular distance of the Sun and

Moon : and that its argument must involve, or, be some function

of, that distance. At length, it was found, that the equation

due to the inequality, was

(35' 4l".6).sin. 2 ( D - O)

35' 4l".6 being the coefficient, and 2(3) — ©) the argument.

According to the above form, the variation is 0 in syzygies

and in quadratures, and at its maximum (35' 4l".6) in octants.

If now, by means of this new equation, we farther correct

the expression (p. 679,) for the Moon's place, we shall have
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5 's longitude =

D 's mean longitude — (6° 17' 54".49) sin. A

- (1 20 29.5) . sin. [2 ( D -O)-^]

+ (35' 4l".6) . sin. 2 ( D - O ).

We will now proceed to Newton's explanation of the cause

of this inequality.

One effect, from a resolved part of the Sun's disturbing

force, we have already perceived in the Evection. The Variation

is occasioned by the other resolved part, that which acts in the

direction of a tangent to the Moon's orbit. This latter force will

accelerate the Moon's velocity in every point of the quadrant

which the Moon describes, in moving from quadrature to con

junction. The force will be greatest in octants and nothing in

conjunction ; and, when the Moon is past conjunction, the tan

gential force will change its direction, and retard the Moon's

motion. The greatest acceleration, therefore, of the Moon's

velocity must happen in syzygy : exactly at the termination or

cessation of the accelerating force. At that point, therefore,

the Moon's velocity must differ most from her mean, or, rather,

from that velocity which she would have, if the effect of the

accelerating tangential force were abstracted. When the Moon

moves from that point, her place at the end of any portion of

time, a day, for instance, will be beyond her mean place, or

beyond the place of an imaginary Moon endowed with a motion

from which the effect of Variation is abstracted. At the end of

the second portion of time, the real Moon will have described a

space less, by reason of the retarding force (see 1. 15,) than the

space described in the first, but, still, greater than the space de

scribed by the imaginary Moon ; so that, at the end of the second

portion of time, the two Moons will be distant from each other,

by the effect of two separations ; and, for succeeding portions

of time, the real Moon will still continue describing greater

angular spaces than the imaginary Moon, and the separation of

the two Moons, which is the accumulation of the individual

excesses, will continue, till the retarding force, by the conti

nuance of its action, and the increase of its quantity, shall have

reduced the Moon's velocity to its mean state : at that term

which is the octant, the separation will cease to increase, and will
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be at its greatest. And this greatest separation, 35' 4l".6, is the

maximum effect of the Variation : and the separation, previously

described., in any point between conjunction and octants, is its

common effect.

The preceding reasoning is precisely similar to that which

was used in p. 469, on the subject of the greatest equation of

the centre. At the apogee, the mean velocity differs most from

the true, and then the two Suns are together ; and, they are

most separated, when the real Sun moves with its mean angular

velocity .

We will now proceed to a fourth inequality called,

The Annual Equation. (See Physical Astronomy, pp. 237, &c.)

The two former inequalities, of which the periods are short,

may be ascertained by observing the Moon during one revolution.

But, in order to detect this fourth inequality, it is necessary to

compare similar positions of the Moon, computed according to the

theory of the three preceding inequalities, in different months of

the year. If the computed place agreed with the observed place

in January, it would not in March, and it would most differ in

July. The inequality, was soon found to have a connexion with

the Earth's distance from the Sun, and its equation was at length

found to be

11' 11".97 x sin. G 's mean anomaly,

1 1' 1 1".97 being the coefficient, and O 's mean anomaly the

argument.

According to the preceding form, the maximum (11' 11".97)

of the annual equation happens when the Sun's mean anomaly

is = 90°, or 270°. The equation is nothing, either when the

Earth is in the aphelion or perihelion of its orbit.

If now, by means of this new equation, we farther correct

the expression for the Moon's longitude, we shall have

D 's longitude =

I 's mean longitude - (6° 17' 54".49) sin. A

- (1° 20' 29".5) sin. [2 ( I - O) - A]

+ (35' 4l".6) sin. 2 ( J - G )

+ (ll' 11".97) sin. Q 's mean anomaly,

(see Physical Astronomy, p. 239.)
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We will now proceed to an explanation of the cause of this

inequality.

The Variation has been explained from the effect of that

resolved part of the Sun's disturbing force which acts in the

direction of the tangent ; the Evection, from the effect of the

resolved part in the direction of the radius vector, and which

effect alters the ratio of the perigean and apogean gravities from

that of the inverse square of the distance. The present inequality

depends not, on any immediate effect, either of the one, or of the

other resolved part ; but on an alteration in the mean effect of the

disturbing force in the direction of radius ; and, which mean

effect lessens the gravity of the Moon towards the Earth.

By the mean effect, that is meant to be understood, which is

the result of the disturbing forces in the direction of the radius

in one revolution. The disturbing force does not always diminish

the Moon's gravity to the Earth ; it does in opposition and con

junction, but it augments the gravity in quadratures (see Newton

Sect. XI ; Prop. 66). The augmentation however, is only half

the diminution (Newton, Prop. 66, Cor. 7). In the course there

fore of a synodic revolution, there results, what may be called

a mean force tending to diminish the Moon's gravity to the Earth,

the measure of the mean force being equal to (see Newton,

Prop. 66.)

G 's mass x rad. 5 's orbit

cube ®'s dist. from O

By reason of this diminution, the Moon is enabled to preserve

a greater distance from the Earth than it could do, by the influence

of gravity alone. But, since the disturbing force acts in the direc

tion of the radius, the equal description of areas is not altered (see

Newton, Prop. 66). The area however varying as the product

of the radius vector and the arc (the measure of the real velocity)

and the former (see 1. 26.) being increased, the real velocity must

be diminished : so also must the angular, which varies inversely as

the square of the distance.

These results are derived from that effect of the disturbing

force of the Sun, which is a mean effect diminishing the Moon's

gravity. If this mean effect of diminution be increased, similar
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results will follow, but in an, enlarged degree; the Moon's

angular velocity will be still more diminished and her distance

from the Earth increased : now the measure of the mean effect is

© 's mass x rad. 3) 's orbit

(®'s distance from G )3

which will be increased, by diminishing the denominator: and is,

therefore, in nature, increased when the Earth approaches the

Sun. That circumstance happens in winter. In winter, there

fore, the Moon's gravity to the Earth is more diminished, by the

Sun's disturbing force, than in summer. Her angular velocity

therefore is more diminished. A greater time is requisite to the

description of a complete revolution round the Earth : in other

words, a periodic month is longer in winter than in summer.

Now, as the Earth approaches the Sun, its velocity increases.

An acceleration therefore of the Earth's motion is attended, by

reason of this new inequality, with a retardation of the Moon's,

and reversely. On this account it is that, the Annual Equation

is said to resemble the equation of the Sun's centre. For, sup

posing the Sun to be approaching his perigee, then his place

(reckoning from apogee and neglecting the perturbations of the

planets) is equal to the mean anomaly — the equation of the

centre (_E), E decreasing as the Sun approaches the perigee ; if

m be the Moon's place independently of the annual equation (e),

then her place, corrected by that, is m + e, e increasing (since it

varies as sin. Q 's mean anomaly,) and affected with a contrary sign.

When, the annual equation is + (11' 11".976) sin. G 's mean

anomaly, the corresponding Equation of the centre for the Sun

is (1° 55' 26".3748) sin. G 's mean anomaly.

We have now gone through the explanation of the three

principal lunar inequalities, which were discovered before the

time of. Newton and the rise of Physical Astronomy. These

inequalities were, by reason of their magnitude, fished out, (as

a late writer has significantly expressed it) from the rest. The

discovery of. the rest, in number 28 *, is entirely due to Physical

* Strictly speaking there are more than 28. But Astronomers have

confined themselves to this number, since other equations, that ana

lytically present themselves, never rise to a numerical value worth con

sidering.

4 s
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Astronomy. Without the aid of this latter science, it would

have been, perhaps, impossible, from mere observation and

conjecture, to have assigned the forms of the arguments. These

latter being ascertained, it is the proper business of observation

to assign the numerical value of their coefficients.

The three equations that have been explained are, with regard

to their magnitudes, eminent above the rest ; but, it must not be

forgotten, the other equations, on the footing of theory, are

of equal importance, and in practice, considering the use that is

now made of the Lunar Tables, of very essential importance.

The three equations, with all the others, are derived from

theory by the same process. .And, as we have seen, the causes

of the former may, independently of any formal calculation, be

discerned in certain modifications of the Sun's disturbing force.

The causes of the other equations are not so easily discernible :

yet, the sources of some of them may be pointed out in certain

changes, which the conditions or circumstances belonging to the

three principal equations must necessarily undergo.

For instance, suppose the Moon and the line of the nodes to

be in syzygies ; then, the Sun's disturbing force, represented by

part of a line joining the Sun and Moon, lies entirely in the plane

of the Moon's orbit ; and two resolutions of it, one in the direction

of the radius, the other of the tangent, are sufficient. But, the

nodes are regressive ; in a subsequent position of them, then,

the line representing the Sun's disturbing force, will be inclined

to the plane of the Moon's orbit : consequently, a threefold reso

lution of the force is requisite, the third being in a direction

perpendicular to the plane of the Moon's orbit; consequently,

if the line representing the absolute quantity of the disturbing

force be supposed to be the same, the resolved parts in the

directions of the radius and of the tangent must be less than

they were before. The inequalities caused by them must there

fore be less, and less, according to the position of the nodes.

Hence, if the equation of the evection

1° 20' 29".5 X sin. 2 [ ( D - © ) - A]

were adapted to the first position of the nodes, it could not
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suit the second, since the longitude of the nodes forms no part

of the argument [2 ( D — O) — A], For this reason, therefore,

a correction would be wanting for the Evection, that is a new

equation, the argument of which should depend on the position

of the nodes *. The same cause, the change in the Sun's dis

turbing force from its direction being more or less inclined to the

Moon's orbit, must introduce new corrections, that is, new equa

tions, belonging to the variation and annual equation.

Again, the annual equation arises from the change in that

mean effect of the Sun's disturbing force by which the Moon's

gravity is diminished. In adjusting therefore the value of the

coefficient of the annual equation, the Moon's gravity must be

supposed to be of a certain value : consequently, the Moon must

be assumed to be at a certain distance from the Earth. When

therefore the Moon is at a different distance, the Equation, if

adjusted for the previous distance, cannot suit this : a small cor

rection, therefore, or a new Equation will be necessary, the

argument of which must involve or contain, in its expression, the

Moon's distance, or her mean anomaly, or some term connected

with these quantities t. '

Again, the argument for the variation involves simply the

angular distance of the Sun and Moon ; and its coefficient must

be supposed to be settled for certain values of the Moon's gravity

and the Sun's disturbing force ; and, consequently, when the Sun

and Moon are at certain distances from the Earth. The changes

therefore in those distances, which are continually happening,

must render necessary two corrections, or two new equations : one

for the approach of the Sun to the Earth, the other for the elon

gation of the Moon from the Earth. Generally, any equation

* The equation in Lalande, p. 180, is

60"A x sin. 2 dist. J 's SI from O .

t The supplementary equation, according to Mayer, is

42" sin. ( J) 's mean anom. — Q's mean anom.)

which however is not the sole correcting equation due to this cause. See

Lalande, Astron. tom. II, p. 178.
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furnished with its numerical coefficient on the supposition of the

Sun and Moon revolving round the Earth in circular orbits, will

require new supplemental or subsidiary equations due to the real

and elliptical forms of the orbits*.

Again, the inclination of the Moon's orbit is variable ; there

fore any equations adjusted to a mean state of inclination will

require subsidiary equations, to correct the errors consequent on

changes in that state.

From considerations like the preceding, the existence of the

smaller inequalities is established : and, by an attentive consi

deration of the circumstances that occasion them, the forms of

their arguments may be detected; with much less certainty how

ever, than by the direct investigation of the disturbed place of

the Moon.

It is one thing to prove the existence of an inequality , and

another to establish the necessity of its corresponding equation.

Whether it is expedient to introduce the latter, is a matter of

mere numerical consideration. The correction of a correction,

the subsidiary equation to a principal equation, is, in the lunar

theory, very minute : and some equations, arising from the causes

that have been enumerated, are so minute, as to be disregarded

by the practical Astronomer.

We have at present considered only the inequalities that affect

the Moon's longitude : but the Sun's disturbing force causes also

inequalities in the Moon's latitude and in her parallax.

The inequalities of the latitude and of the parallax have

nothing peculiar in them, nor distinct, (whether we regard their

physical cause or the mode of ascertaining the laws of their vari

ation,) from the inequalities of longitude. It is not necessary

therefore to dwell on them, since the latter have been explained.

* The evection, for instance, is variable from the variation of the

distances of the Sun from the Moon and Earth : and for the purpose of

correcting the evection, there are 4 subsidiary, or, as Lalande calls them,

accessary equations, which in his Tables are the 5th, 6th, 7th, and 9th.

See Astron. torn. II, p. 177.
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We will only mention, that the principal inequality in latitude,

and its law, were discovered by Tycho Brahe, and by the com

parison of observations of the greatest latitudes of the Moon, at

different epochs, and when that planet was differently situated,

relatively to the nodes of its orbit. The equation is

(8' 47". 15) . cos. 2 © 's distance from D 's Si .

(See Lalande, tom. II, p. 193. Mayer, Theoria Luna, p. 57.

Laplace, Mec. Cel. Liv. VII, p. 283, &c. French Tables, Intro

duction.)

If the Moon's orbit coincided with the plane of the ecliptic,

the Sun's disturbing force, resolved into the directions of a tangent

to the Moon's orbit and of a radius vector, could only, by the

first resolution, alter the law of elliptical angular motion, and, by

the second, the length of the radius vector (such as it would be

in an ellipse) ; in other words, it could only produce inequalities

in longitude and in parallax, for the parallax varies inversely

as the radius vector. But, the Moon's orbit being inclined to the

ecliptic, the Sun's disturbing force (represented by a line drawn

from the Moon towards the Sun) cannot be entirely resolved into

the two former directions : a third resolved part will remain per

pendicular to the plane of the Moon's orbit, which will cause the

Moon to deviate from that plane ; in other words, will cause in

equalities in the Moon's latitude.

In order to correct these inequalities in the Moon's latitude,

eleven equations are necessary, according to Lalande, (see Astron.

tom. II. p. 193.) In the New French Tables an additional one

is inserted.

The Lunar Tables we now possess, and which present us,

under a commodious form, the results of the several preceding

Equations, and from which in fact the Moon's place is computed

in the Nautical Almanack, are of great extent and accuracy.

It is almost unnecessary to observe, that they are the fruit of

long and laborious research : of some conjectures, many revisions,

and new helps from theory. The computers of the Nautical

Almanack, have, within the space of forty years, used four dif

ferent sets of Tables: 1. Mayer's Tables corrected by Mason :
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2. Mason's Tables of 1780: 3. Mason's Tables, corrected by

Lalande from Laplace's Equations of the Acceleration of the

Moon's Motion, &c : 4. Burg's Tables edited by Delambre, and

published by Mr. Vince in the third Volume of his Astronomy.

The computers of the Connoisance des Terns, since 1817, have

used Burckhardt's Tables.

The Moon's place, at any given time, is found by the addition

of a great number of terms technically called Equations. An

equation consists of its coefficient and its argument. The latter,

although it may be found out by a species of orderly and regulated

conjecture, is yet most surely obtained from theory, (see Physical

Astronomy, Chap. XIV, p. 240.) The numerical value of its

coefficient is best determined from observations. Now the Tables

being once formed, a question arises concerning the means of

examining and correcting them : in the first place then we must

find their errors, and, in the second, from those errors find the

corrections. As this is a subject of some complication, and as

its development will afford an illustration of several of the pre

ceding principles and processes, we will consider it fully in the

ensuing Chapter.



CHAP. XXXIV.

On the Methods of fading the Errors and Corrections of the

Lunar Tables.

The Moon's places, that is, its longitudes, latitudes, &c. are

computed from the Lunar Tables, and then inserted in the

Nautical Almanack. To examine then the accuracy of the

longitudes and latitudes so inserted, is, in fact, to examine the

truth of the Tables from which they were computed.

The means of examining the truths of the results in the

Nautical Almanack, are, amongst other means, the observations

made at Greenwich. Those observations are of north polar

distances and right ascensions : but the immediate results of

computations, made from the Lunar Tables, are lunar latitudes

and longitudes : we must then, from the latter, derive the corres

ponding north polar distances and right ascensions, and compare

them with the observed, or, we must institute a comparison

between the latitudes and longitudes, computed from the obser

vations, and the latitudes and longitudes computed from the

Tables. We shall adopt the latter plan.

In the Greenwich Observations for 1812, p. 190, we find the

following results obtained by means of the mural circle :

North Polar Distances.

1812. Bar. Therm. In. N. P. D.

Nov. 18, 29.38 40 J) L. L. 75° 34' 9"-7

&c. &C.

29.58 38 Arcturus 69 49 25.6
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Transits over the Meridian.

*3h 57m 0".66 D 2L. 12h 5m 19".8 mean time.

4 25 24.3 Aldebaran.

13 15 31.98 Spica Virginis.

14 7 18.43 Arcturus.

The above observations are, if we may use such an expres

sion, in their rough state. In order to fit them for the compu

tations of the Moon's longitude and latitude, they require several

reductions.

(1.) In the first place the north polar distance must be cor

rected on account of the index error (see pp. 112, &c.)

(2.) According to the zenith distance of the lower limb, and

the states of the barometer and thermometer, the north polar

distance must be corrected for refraction, (see pp. 213, &c.)

(3.) The north polar distance, corrected as above, must be

farther corrected, on account of parallax, (see pp. 311, &c.)

(4.) The north polar distance of the Moon's centre must

be found by subtracting, from the distance of the lower limb,

the Moon's semi-diameter.

(5.) If the computation be made for the time of the transit

of the Moon's second limb, the above north polar distance, which

is a meridional north polar distance, must be corrected for its

change, during the Moon's passing over a space equal to its

semi-diameter.

* These transits were made with the mural circle : the old transit

instrument being thought defective. They are called, in the Observations,

Corrected Transits, being corrected on account of some small inequalities

found to obtain in the intervals of the wires.

The mural circle not being a good transit instrument, it would be

hardly fair, if the question were one of great accuracy, to examine the

results of Lunar Tables hy such an instrument. The observations, how

ever, made with it, are sufficiently accurate for the purpose of illustration.
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With regard to the reduction of the transit observations ;

In the first place the observed transit is to be corrected on

account of the error of the clock, (see pp. 104, &c.)

(6.) Secondly, the right ascension of the Moon's centre is

to be found by subtracting, from the above right ascension of

the second limb, the angle subtended at the pole of the equator

by the Moon's semi-diameter.

Moon's North Polar Distance found.

D 's L. L. N.P. D. • . • «••«•• 75 34' 9".7

+ 6.6

75 34 16.3

31 20

37 2 56.3

0 43.75

37 3 40.05

36 36.3

36 27 3 . 75

16 40

36 10 23 . 75

3I 20

N. P. D. 5 's centre 74 41 43.75

* The index error is derived by taking the mean of a great number of

differences between the tabulated or computed north polar distances,

and the instrumental distances, (see pp. 1 1 2, &c.). We will subjoin

instances of results afforded by two stars ; the process is precisely the

We for any other.

Nov. 18,

Bar.

29-59

29.58

Therm. In.

39

38

Star.

/3 Ursae Minoris

Areturns

last*. N. P. D.

15° 5' tf'.5

69 49 25.6

Jan. l,

4 T
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Refraction.

(See pp. 245, &c.) : also Tables of Refraction, in Vol. .1. of

Greenwich Observations, 1812,

Log. to 37° 3' 40" 1.63327

Corr. barometer and thermometer 10.00774

(Log. 43.75) 1.64101

Jan. 1, 1812, N. P. D. /3 Ursae Minoris 15° 4' 34".25

Corrections.

Refraction (p. 243.) -f- 25".419

Propor1. Annual Variation (p. 407.) + 12 '. 98

Aberration (p. 286.) + 4 . 24 \ 33 . 869

Lunar Nutationl XIV.)J-.8-33

Solar Nutation J v \— 0.44

15 5 8.119

Instrumental N. P. D 15 5 0.5

Index Error + 7.62

Again,

Jan. 1, 1812, N. P. D. Arcturus 69° 50' 0".ll

Corrections.

Refraction + 35".68 1

Aberration + 0.741

Lunar Nutation + 7 • 64 (

Solar Nutation + 0.46

Refraction — 35.68

Variation — 16.74

Instrumental N.P. D

-27 .78

69 49 32 33

.69 49 25 6

+ 6 73

. + 7 62

Index Error

From /3 Ursae Minoris

Mean / 7-17

This is the index error from two observations, one of each star : but '

the mean index error (6".6) which has been used (see p. 693, 1. 10,) in

reducing the observations, was obtained from 149 observations, made,

during 44 days, with 21 stars. Of such observations, 7 were made of

/3 Ursae Minoris, 10 of Arcturus. The mean of the 7 was 7".l6 : of the

lO, 6".3.
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Parallax

Horizontal equatoreal parallax = 6l' 7".7 * = 3667".7,

Log. 3667.7 3.5643938

Correction 8841

3.5635097

Log. sin. 36° 52' 28".4 9-7781972

(Log. 2196.3) 3.3417069

In order to make the correction (5), we must find the time

the Moon takes in describing its semi-diameter : now the angle

at the pole subtended by the semi-diameter is (see p. 90,)

16' 40" x sec. 15° 18' 26" = 1036".7 = 17' l6".7,

but whilst the meridian, by reason of the Earth's rotation, is

describing this angular space (17' l6".7) the Moon moves to the

eastward. We must find then the Moon's retardation. If we

assume 13° 3O' for the mean angular retardation, we have

346° 30' : 17' 16".7 :: 24h : 71s.811+.

Therefore the Moon is lm 1 1s.8 in describing its semi-diameter :

but it appears from the Nautical Almanack of 1812, (p. 126,)

that the Moon's change of declination in 12h was about 1° 29',

and consequently in lm 1 1s.8, about 8".7- Deducting, therefore,

this quantity from the above meridional north polar distance,

we have

N. P. D. 5 's centre = 74° 4l' 35".05.

* There are two corrections in deducing the parallax from the hori

zontal equatoreal parallax : one, on account of the diminution of the radius

of the Earth in an oblate spheroid : this in the latitude of Greenwich is

effected by subtracting the logarithm .0008841 from the logarithm of

tbe horizontal parallax. The second correction is on account of the

angle, which a line drawn from the centre of the Earth to the place of

observation, makes with the direction of the plumb-line at the same

place. This correction is effected by subtracting 11' 11".6 from the

zenith distance when its sine is to be multiplied into the parallax, in

order to deduce the parallax of altitude. -

t See a Table for this and like computations in Wollaston's Fasciculusj

P- 79-



Moon's Right Ascension found.

First, to find the error of the1 clock, (see pp. 101, &e.) On

Nov. 18, 1812, at the time of the Moon's transit.

Computed Right Ascension.

Aldebaran M, 1812, . .4h 25"1 8'.576

Aberr. prec". 4'.30

Nutation

c". 4'.30)

-0.&J--0

0 3.65

See Chaps. XI, XII, &c. 4 25 12.226

Spica Virginis 13h 15"

Aberr. prec". 1".71

Nutation

. prec". 1'.70 „ „

• -«f"° 0 1
ion ... — .oo)

18s. 1

IS

13 15 19.25

Arcturus 14u 7m 5'.28

Aberr. prec". Is. 12

Nutation

;c". Is. 12)

. .—.74i

0 0 0.38

14 7 5.66

Sum of times and errors

Mean time and error

Observed R. A.

4h 25m 24' .3

13 15 31.98

14 7 18.43

Clock too fast.

12' .07

12.73

12.77

31 48 14.71 I 37.57

10 36 4.9 12.52

gain of clock * in 10h = 0s.7, nearly.

Hence, at 3h 57m .66 the time of the Moon's passage, the

clock was 12'.04 too fast, and, accordingly,

Al s 's 2 L 3h 56m 48".63 = 59° 12m 9".45

(see p. 695,) angle subtended by D 's radius 0 17 16.7

M D 's centre 58 54 52 . 75

Hence, the elements and process for computing the longitude

and latitude of the Moon, at the time of the transit of its

second limb over the meridian of Greenwich, are as follow

(see pp. 158, Sic,)

* There is no rate of the clock igiven in the Greenwich Observations,

the clock having been taken down and adjusted to sidereal lime, on

the 18th.
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Latitude.

> *s JR 58° 54' 52".75 sin. f (90 — M) . . . . 9.4280638

2

18.8561276

If.P.D 74° 41' 35".05 «in. 9.9843137

/. . 23 .27 35 . 1 ...... «ia. 9.5999970

S 98 9 10.15 2) 18.4404383

§5 49 4 35.07 9-2202196

9 33 28.1 .-. M = 9* 33' 28".l

§ S + M, nearly, 58 38 3 sin. 9.9313873

f 5- M, nearly, 39 31 7 sm. 9.8036816

2) 19.7350689

(sin. 47° 29' 10") 9.8675345

.'. flic distance from the north pole of the ecliptic is 94° 58' 20"

and the latitude (south) ...... 4 58 20

Longitude.

A = 94° 58' 20" sin. 9-9983626

J = 23 27 35.1 sin. 9.5999970

3 = 74 41 35.05 19-5983596

2) 193 7 30.15

(nearly)\ sum..., 96 33 45 Bin. 9-9971450

isum-5..21 52 10 sin. 9-5711180

(20 added) 39-5682630

lQ.SQ835Qfi

2) 19-9699034

(sin. 75® O' 14") •9-9849517

.*. 90° + longitude = 150° 0' 26",

and longitude = 60 0 28.

Such are the values of the latitude and longitude of the Moon,

computed from immediate observations. In order to compare



698

such values, with the values of the latitude and longitude inserted

in the Nautical Almanack, we must reduce the latter, which are

computed for Greenwich at the apparent times of its noon and

midnight, to the observed time of the transit of the Moon's limb.

In the record of the observations (see p. 692,) the mean time of

such transit is expressed. As we wish, however, to explain every

part of the present investigation, we will qow deduce the mean

and apparent times of the transit.

On the 18th the Sun's transit was not observed at Greenwich :

we will, therefore, compute it after the manner of pp. 527, &c.

9s
9° 59' 50".9

10 17 22 42.2

19 27 22 33 . 1

15"
49m 30s. 2

- .64

15 49 29.56

Right ascension Moon's second limb. • « • 3 56 48.63

12 7 19-07

0 1 59.15

12 5 19-9

Value of the Moon's Latitude and Longitude, at 12h 5m 19s .9

computed from the Nautical Alma?iack. See the Nautical

Almanack for Nov. 18, 1812, &c.

Moon's Latitude. First Diff. d'. Second Diff. d". Third Diff. d"\

18th Noou 4° 59' 58"

Midnight 4 58 40

- 1'18"

- 5' 13"

19th Noon 4 52 9

Midnight 4 40 41

- 6 31

- 4 57

+ 16"

+ 20- 11 28

- 4 37

20th Noon 4 24 36

- 16 5
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Now the intervals between these latitudes are 12 hours of ap

parent time and, therefore, in applying the differential theorem,

we must find the value of x in such time. If, therefore, we

assume the latitude of the Moon, on the midnight of Nov. 18th

as the first term, we have

5m 19s-9 + 14m 27s. 1

x = = .027476 ;

12

.-. since d'= - 6' 3l", x<? = — 10".74,

and since d"= - 4' 57", x . d" = + 3.97,

d"'= + 20", x . X-~^ . ^—^ df" = + 0.17 ;

2 3 t

.'. latitude = 4° 53' 40" - 6".6 = 4° 58' 33".4,

nearly, but the latitude computed from') . „
r „. > 4 58 20

immediate observations was, see p. 097,)

the error of the Tables 0 0 13. 4

Longitude.

Moon's Longitude. d'. d". df".

18th Noon 1s 22° 12' 25"

Midnight 1 29 47 50

+ 7° 35' 25"

+ 7 32 31

+ 7 28 20

+ 7 23 4

- 2' 54"

-4 11

-5 16

- 1' 17"

19th Noon 2 7 20 21

Midnight 2 14 48 41

- 1 5

20th Noon 2 22 1 1 45

Here, the first term being 1s 29° 47' 50"

d' = 0 7 32 31 = 27151",

d" — 4 11= — 251,

df" _ i 5 =- 65,

and x = .027476,
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therefore we have, by substitution, from the differential theorem

D 'slong., on 18th at 12* 19m 47',= 1" 29° 47' 50* -\

+ 12 26 f „ , „

— 0 0.57*

but (see p. 697,) the longitude computed) 2- 0, Q, „

from immediate observations was. ... J

.". error of Lunar Tables — 9".22

We subjoin two other instances, in which the zenith distances

of the Moon were observed by the brass mural quadrant, and

the transits by the old transit instrument, (see pp. 33, 65, of

Greenwich Observations.)

1811. Transits reduced. Bate of Ctock. Stars, &c.

19h 37m 41'.50

19 41 58.78

+ 0.46

+ 0.48Sept. 27,

19 46 26.80

a > Aquilas

20 11 47.08 H L. 7h 48m 37' .4

mean time

21 56 39.96 a Aquarii.

19 37 42.26

19 41 59.56

+ 0.76

+ 0.78-

+ 0.90

Sept. 28,

19 46 27.70

« > Aquilae

20 35 25.36 0 Cygni

21 12 55.32 H L. 8h 45m 3cV.8

mean time

Sept. Bar. Therm. In. Refraction.
Zenith Distances.
Extr. Division.

27, 29.22 51 2' 23".3 D 's L. L. 68° 44' 18".2

28 29.36 53 2 4.7 3> 's L. L. 65 53 23.8
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Moon's North Polar Distance found.

27th, instrumental zenith dist. D 'sLL... 68° 44' 18".2

Error of Collim — 5

68 44 13.2

Refraction 0 2 23 . 2

68 46 36.4

Parallax 0 55 26 . 2

67 51 10.2

Moon's semi-diameter 0 16 15.7

67 34 54.5

Co-latitude 38 31 20

North polar distance ofMoon's centre on) „ , A ,
, r ... > 100 O 14.5

the meridian )

Change of north polar distance + 6.23

North polar distance of Moon's centre) . _„ _
u , t . >u m- K . .106 6 20.73

when 1 L. is on the meridian . . . J

The values of the parallax and change of north polar distance,

used in lines 5 and 9, are thus computed :

1st Parallax. Equatoreal horizontal parallax 59' 40",

Log. 3580 3.5538830

(Seep. 50, Vince, vol. III.) 8841

3.5529989

Log. sin (68° 46' 36".4 - 11' 1 1".6) 9-9689466

(Log. 3326.18) 3.5219455

2nd. Change of the Moon's North Polar Distance during the time

of the describing its Semi-diameter.

Time of describing Moon's radius (p. 695.) . . lm 10*. 5

Change of decl". S. (Naut. Aim1.) in 12 hours - 1° 4'

in 12m l' 4"

in Im 10'.5 ... - 6.23

Or, decrease of north polar distance ~ 6.23.

4 u
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Again on 28th, zenith distance L. L 65° 53' 23".8

Collim ~ 5

65 53 18.8

Refraction 0 2 4.7

65 55 23.5

Parallax, (see below 1. 11,) 0 54 58

65 0 25.5

Moon's semi-diameter 0 16 27

Zenith dist. of Moon's centre on meridian 64 43 58 . 5

Change of north polar distance (1. 17,) • . + 9-2

64 44 7.7

Co-latitude 38 31 20.

North polar distance of the Moon 103 15 27 .7

Parallax.

Horizontal equatoreal parallax 60' 25" = 3625"

Log. 3625 3.5593080

8841

3.5584239

Log. sin. 65° 44' 11".9 9-9598359

(Log. 3298) 3.5182598

Change in North Polar Distance.

Time of describing Moon's radius 1m 10'.9

By Nautical Almanack, change in 12h — 1° 34'

in 12m - l' 34"

In lm 10" .9 9-2

Moon's Right Ascension found.

First, error of clock found on the 27th,

R. A. from Theory and Tables. R. A. by Clock (p. 700,) Clock too fast.

18s.60 41".5 22".9

35.88 58.78 22.9

4.02 26 .8 22.78

7.2 29-96 22.76

4)91.34

mean error of clock 22 . 83

Moon's transit by clock, p. 700, 20h 1 lm 47".Q8

True M Moon's 1 L. on the 27th 20 11 24.25

 



703

Next, gain of clock in 24h from three ' ..

stars of the Eagle (see p. 700,) =

-i- (.76 + .78 + .9) =.82; .\ in 25h 0h 0m 0".83, nearly,

Clock too fast on 27th 0 0 22.83

too fast on 28th 0 0 23.66

Moon's transit by clock 21 12 55.32

True M Moon's 1 L. on the 28th 21 12 31 .66

Hence, expressed in space, \ ^qq? ^ 3« ^5

on 27th, right ascension Moon's 1 L.J "

Angle subtended by Moon's radius"^ 0 16 55 4

(975".58 x co-sec. 106° 6') J '

Right ascension of Moon's centre 303 7 59 . 15

On 28th, Right ascension Moon's 1 L. 318 7 54.9

Angle of Moon's radiusj 0 16 54.03

(987 . x co-sec. 103° 15')J " '

318 24 48 .9, nearly.

Computation of the Moon's latitude and longitude, (see

pp. 159, &c.)

Latitude. Sept. 27th.

Moon's M 303° l' 59". 15

_90

2) 213 7 59.15

106 33 59-57 sin. 9.9815873

2

19-9631746

North polar distance 106° 6' 20".73 sin. 9.9826106

I • • 23 27 42.5 sin. 9-6000333

2) 129 34 3.23 2) 19-5458185

jS 64 47 1 .61 9.7729092

36 21 21 .8 M = 36" 2l' 2l".8

%S+M 101 8 23.4 sin. 9-9917392

iS—M 28 25 39-8 9.6776523

2) 19.6693915

(43° 6' 45".8) 9-8346957

Hence, complement of the latitude = 86° 13' 3l".6

and latitude = 3 46 28 .4.
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Longitude. Sept. 27th.

A = 86° 13' 31". 6 . . . sin. 9-9990567

J = 23 27 42 . 5 . . . sin. 9-6000333

S = 106 6 20.73 19.5990900

2)215 47 34.84

£ sum 107 53 47-42 ... sin. 9.9784604

jsum — 5 1 47 26.69 - • - sin. 8.4948395

(20 added) 38.4732999

19-5990900

2) 18.8742099

9.4371049

which is the log. sine of 15° 52' 4l".4, and of 375° 52' 4l".4.

Hence, taking the last value, (which the value of the Moon's

right ascension points out as the right one),

90° + longitude = 0* 751° 45' 22".8

and longitude = 0 66 1 45 22 . 8

(rejecting 360°) = 0 301 45 22 . 8

= 10 1 45 22.8.

Latitude. Sept. 28th.

Moon's M 318° 24' 48".9

90

2)228 24 48.9

114 12 24.4 sin. 9-9600290

t 2

19-9200580

North polar distance 103° 15' 27".7 sin. 9.9882684

sin. 9-600033327 42..5

2) 126 43 10. a

f <S 63 21 35.

34 35 44

2) 19.5083597

?H +M.... 97 57 19. 1 sin. 9.9958003

2 5- M 28 45 51.1 sin. g.6823306

2) 19.6781309

(sin. 43° 39' 26".3) ...... 9-8390654

Hence, the complement of latitude is . . 87° 18' 52".6

a«d the latitude, nearly 2 41 7.3.
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Longitude. Sept. 28th.

A 87° 18' 52".6 sin. 9-9995168

J 23 27 42.5 sin. 9-6000333

5 103 15 27 .7 19-5995501

2) 214 2 2.8

k sum 107 1 1.4 9-9805574

j sum — I 3 45 33.7 8.8166798

(20 added) 38.7972372

19.5995501

2) 19.1976871

9-5988435

which is the logarithmic sine of 383° 23' 38".6 ; therefore

longitude + 90° = 766 47 17.2

and(rejects. 12 signs) the long. = 316 47 17-2=10s l6°47'l7"-2.

Latitudes and Longitudes deducedfrom the Nautical Almanack.

Since these latitudes and longitudes are expressed in the

Nautical Almanack, for apparent noon and midnight, it is

necessary to know the time of the passage of the Moon,

Sun's epoch for 1811, 9s 10° 14' 10".5

Mean motion to Sept. 27, 8 25 8 20 . 7

Mean longitude on 27, 18 5 22 31.2 in time 12h 21m 30s.08

Mean motion for 1 day 0 0 59 8 . 333

Mean longitude on 28, 18 6 21 39.5 in time 12 25 26.63

but equation of the equinoxes in right ascension is — .26.

Hence, on 27th sidereal time (see p. 702,) . . . . 20h 1 lm 249.25

Sun's mean longitude from true equinox 12 21 29-82

Approximate time 7 49 54 . 43

Acceleration, (see p. 526,) 0 1 16.98

Mean time of transit of Moon's first limb 7 48 37 . 45
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On the 28th, Sidereal time, (see p. 703,) 21h 12m 31 ' .66

Sun's mean longitude reckoned from true equinox 12 25 26 .37

Approximate time, nearly 8 47 5.3

Acceleration 0 1 26 . 35

Mean time of transit of Moon's first limb .8 45 38 .95

But these are the mean times : the apparent times may be obtained

by adding to them the equations of time. Now the equation of

time proportional to 7h 48m 37% on Sept. 27th, is 8' 54" subtractive

of apparent time, and Sept. 28th, 9' 14".6. Hence, the times are

on the 27th, 7h 57m 31s.45 ; x (see p. 699,) = .66322

on the 28th, 8 54 53 . 55, and x = .74298.

Moon's Latitudes. d: d". d'".

27th, Noon 4° 3' 36"

- 27' 0"

Midnight. .3 36 36 - 3' 46"

- 30 46 + 24"

28th, Noon 3 5 50 - 3 22

- 34 8 + 29

Midnight. .2 31 42 - 2 53

- 37 0 + 37

29th, Noon 1 54 41 — 2 16

- 39 17

Midnight. .1 15 24

Twenty-eighth.

3° 5' 50"

-34 8

- 2 53

+ 0 37

.7429

- .128547

- .419031.

Hence, for the

Twenty-seventh.

a = 4° 3' 36"

d' = - 27 0 •

d" m - 3 46 •

d"'= + 0 24 .

x = .66322 .

x - 1

= - .16839 .

2

x — 2

— =-.4456 ..,



707

Hence, the latitudes

4° 3' 36"

respectively,

3° 5' 50"4" 3 30 -\ 3" 5 50" -V

-17 54 t=3»4fi'8" ~25 21,47(

+ 0 25.24f +16 0.52 C

+ 0 1.19' + 1 0A8J

= 2° 40' 46".5

Moon's Longitudes. d>. d". d">.

27th, Noon 9s 27° 2' 32"

Midnight... 10 4 9 46

28th, Noon 10 11 22 30

Midnight.. .10 18 40 21

29th, Noon 10 26 2 51

Midnight. ..11 3 29 20

7° 7' 14"

7 12 44

7 17 51

7 22 30

7 26 29

5' 30"

5 7

4 39

3 59

-23"

— 28

— 40

Hence, for the

Twenty-seventh. Twenty-eighth.

a = 9s 27° 2' 32" 10s 11° 22' 30"

d' = 7 7 14 7 17 51

d" = 5 30 4 39

d"'= - 23 - 40

" and Moon's longitudes =

9s 27° 2' 32"

+ 4 43 21.2

— 36.855)

— 1.144.

10* 11° 22' 30"

+ 5 25 16.!

- 26.H:6.64 (

1.6 3

= 10s 1° 45' 15".2 on 27th,

= 10" 16° 47' 18".6 on 28th,

* In order to place the Whole of the detail under the eye of the

student, we subjoin the arithmetical computation. What is here effected

by
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If we now exhibit, under one point of view, the results ob

tained from observations, and those results that are computed

from the Nautical Almanack, we shall have

Transit of Moon's

Limb, Mean Time.

Moon's Latitude

from Observation.
Moon's Latitude

from Tables.

Error of

Table.

1811,

Sept. 27,

28,

7h 4Sm 37s.45

8 45 38.95

3° 46' 28".4

2 41 7.3

3° 46' 8"

2 40 46.5

- 20".4

1812,

Nov. 18,

- 20 . 8

12 5 19.9 4 58 20 4 58 33.2 + 13.2

1811,

Sept. 27,

28,

Moon's Longitude

from Observation.

Moon's Longitude

from Tables.
Error of

Table.

10s 1° 45' 22".8

10 16 47 17.2

10s 1° 45' 15".2
-7".6

+ 1 .4

1812,

Nov. 18, 2 0 0 28

10 16 47 18.6

2 0 0 18.8 -9.2*

by the differential theorem, might have been, and in practice is, effected,

but less accurately, by Tables of second differences,

L-* 9-8216628 9.8216628 |

L. 7° 7' 14".. .4.4088164 L.lZi 9.2263163 ' L x- 2 ^

4.2304792 L. 5' 30" 2.5185139 L. 23" 1.36173

1.5664930 0.05865

No. = 4° 43' 21".2 No. =- 36".855 No. - 1".1446

L. r 9-8709339 9.8709339 18.97999

L.7° if 51"... 4.419*766 L. ~ 9.1090629 > L *-2 62225

4.2904105 L, 4' 39" 2.4456042 L. 40" .... 1.60206

1.4256010 0.20430

No. = 5° 25' l6".9 No. =26".64 No. = l".6'

* See Note in opposite page.
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Results like those that have been just obtained serve, as we

have before observed, a double purpose : they become tests of

the accuracy of the Lunar Tables, and means of correcting them.

It is obvious how they perform the first office. The mode of

performing the second has also been already explained in

Chapter XXI. The Moon's place, previously to its insertion in the

Ephemerides of England, &c. is computed from the Lunar Tables

on certain conditions, as they may be called : that is, the mean

epoch, the mean motion, the equation of the centre, the longitude

of the apogee, aud the equations expounding the modifications ofthe

Sun's disturbing force, &c. are all assumed of certain magnitudes:

which magnitudes may be erroneous : all, perhaps, in slight degrees,

some certainly erroneous : since, otherwise, the Moon's computed

place ought to agree with the observed, the observations being sup

posed to be exact. Although, in correcting the Tables, we may

be more assured of the exactness of some of the elements than of

others, yet it is the safer and the more scientific plan to suppose

them all erroneous : and to form equations such as

a.dL + b.dm + c .dE + f.dp + &c. = C,

in which dL, dm, &c. shall represent the variations or errors of

the longitude, equation of the centre, &c. and C shall be such a

quantity as we have just deduced in p. 708, and there represented,

* The results do not exactly agree with the results obtained by the

computers of the Nautical Almanack, who, by order of the Board of

Longitude, and for the purpose of ascertaining the relative accuracy of the

several Lunar Tables, have compared the Greenwich Observations, from

1783 to 1819, with the Moon's longitudes and latitudes set down in the

Nautical Almanack, and in the Connoisance des Terns. The disagree

ments are found amongst the latitudes : which may arise from the Moon's

parallaxes being computed from different Tables, or from Tables con

structed on different oblatenesses of the Earth. Some differences must occur,

since in the comparisons, the Moon's places, at the times of the transits of

its limbs, were deduced by means, of the Tables of second differences, which'

cannot give results so exact, (we are speaking of arithmetical exactness)

as the differential theorem is able to give.

4 x
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according to the case by — 7".6, + l".4, — 9"-2, 8tc. In order

to deduce the values of the errors of the elements we must form,

at least, as many equations as there are supposed errors : but in

practice, for reasons already assigned in Chapter XXI, a great

number of equations are selected and combined together to form

one equation. If the variations of the elements are in number 10,

10 sets of equations must be formed, and then the values of the

variations or errors, or, under a different name, the corrections of

the elements of the Tables, must be deduced by the ordinary but

laborious process of elimination. By such means the present

Lunar Tables have been advanced to their present state of per

fection.

We must now pass on to other matters : and those will next

claim our attention, which are connected with, and depend on, the

lunar theory. Of siich sort are eclipses and the methods of

computing, at assigned times, the distances of the Moon from

the Sun and certain fixed stars. Both subjects are of consider

able extent, intricacy, and practical utility, since both, with dif

ferent degrees however of accuracy, may be made subservient to

the determination of the longitudes of places.

By the latter term we mean, in the most general sense, any

points on the Earth's surface, whether such are permanent land-

stations, or the temporary places of vessels at sea. For the

determination of the longitudes of places of the latter description,

lunar eclipses are of no use : and indeed, of but small use in

fixing the longitudes of land-stations : not, however, from any

defect in the lunar theory, but from the practical uncertainty of

marking the times when the phases of an eclipse commence and

terminate. Lunar eclipses might be excluded from a work, the

scope of which should be strictly limited to subjects of merely

practical utility. A wider range, however, has already been taken

in the present Treatise ; and, acting on a like plan, we will, in the

next Chapter, treat of Lunar Eclipses : which are certainly

phenomena of great interest, of celebrity in the History of
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Astronomy, and of importance in settling certain of the lunar

elements *.

* The uncertainty of the time of an eclipse, to the amount of a minute

of time, vitiates the determination of the longitudes of places. But an

error of that magnitude would be but of little consequence, when the

happenings of eclipses, distant from each other by several centuries, are

employed in fixing such an element of the lunar theory, as the Moon's

mean motion.



CHAP. XXXV.

On Eclipses of the Moon.

In Chapter IV, a lunar eclipse was shewn to arise from such an

interposition of the Earth between the Moon and Sun, as to

cause the shadow of the Earth to fall on part, or on the whole,

of the Moon's disk.

This prescription of circumstance is necessary : since an

opaque body, interposed at a certain distance between the Sun

and Moon, does not necessarily cause an eclipse : for instance, if

the diameter of the interposed body should be below a certain

magnitude, its shadow would not reach the Moon.

The existence, therefore, of eclipses depends on the relative

magnitudes of the Sun and Earth, supposing the mutual distances

of the Sun, Earth, and Moon, to be assigned.

The Moon being in opposition, and at her mean distance, the

apparent diameters of the Sun and Earth, seen from the Moon's

centre, are 3i' 59".08, and 1° 55' 8". Now, at the extremity, or

conical point of the Earth's shadow, the apparent diameters of the

Sun and Moon are the same. The Moon, therefore, must be

considerably nearer to the Earth than the extremity of the Earth's

shadow : or, what amounts to the same, the length of that shadow

must be greater than the Moon's distance from the Earth. By

computation, it is found to be four times as great.

The eccentricity of the Moon's orbit being very small, equal

only to 0.0548553, it would follow, if the above result, relative

to the length of the shadow, were established for any distance of
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the Moon from the Earth, that in all distances the shadow would

extend far beyond the Moon. In fact by an easy computation

we have the following results :

Length of Axes of Shadow.

© in perigee 212.896 rad. ©

at mean distance ......... 216.531

in apogee 220.238.

Hence, the least length of the shadow is more than 212 radii of

the Earth, whereas the Moon's distance from the Earth never

exceeds 64 radii.

Hence it appears a lunar eclipse must always happen

whenever the Earth is interposed between the Sun and Moon ;

understanding, by such expression, the Earth's centre to He in

a line Joining the centres of the Sun and Moon. In this latter

situation of the three bodies, the Moon is in opposition. In such

kind of opposition, an eclipse roust always happen, and there

would be only that kind, if the plane of the Moon's orbit coincided

with that of the ecliptic.

The Moon's orbit being inclined to the ecliptic, and, oppo

sition meaning nothing more, than the difference, in longitude, of

a semi-circle, or of 180°, the Moon may be in opposition, and

still either directly above or below the right linejoining the centres

of the Sun and Earth ; and, consequently, may either be above or

below the conical shadow, the axis of which lies in the direction

of the above-mentioned line.

Since the inclination of the Moon's orbit, (see p. 661,) is

about 5° 9', if the Moon in opposition should be either in its

greatest northern or southern latitude, that is, either 5° 9' above

or below the ecliptic, no eclipse cau take place, since the greatest

section of the Earth's shadow at the Moon never exceeds 64'.

But, in the next succeeding opposition, after the lapse of a

synodic period, the Moon cannot be again in her greatest latitude,

since, the synodic period being greater than the sidereal, the

Moon would, on that account, have approached the ecliptic, even

supposing the nodes to have been stationary. But the .nodes,

instead of being stationary, are, during a synodic period, regressive
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to the amount of Is 35'. For this reason, then, as well as for

the one just stated, the Moon approaches the ecliptic. In suc

ceeding oppositions, the Moon, by the operation of both causes,

would approach nearer and nearer to the ecliptic, till at length

an opposition would occur, in which the Moon would be either,

exactly, or very nearly, in its node : and if in its node, then it

would be in the ecliptic, and in such case, an eclipse must

happen.

An eclipse may happen, if the Moon be near to the node of her

orbit ; the least degrees of proximity are called the Lunar Ecliptic

Limits.

These limits are easily determined from the inclination of the

Moon's orbit, the Moon's apparent diameter, and the apparent

diameter of a section of the Earth's shadow at the Moon- The

two former conditions may be supposed to be known by previous

methods, (see pp. 66l, &c.) and it is the latter only that now

requires to be investigated.

Apparent Diameter of a. Section of the Earth's SJiadow at

the Moon.

Let S represent the Sun's centre, JE the Earth's, and let the

circles described round the centres S, E represent sections of

those bodies. Draw AtC, at'C, tangents to the circular sections

 

of the Sun and Earth, and the triangular space included within

tC, t'C, will represent the section of the conical shadow of the

Earth. Let mMm' be part of the Moon's orbit, then the section

of the Earth's shadow at the Moon is mMm', and its apparent
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semi-diameter at the Earth, which we have to estimate, is the

angle mEM*.

L mEM = z Emt — z ECtn,

= z Emt -( z AES- zEAt).

Let Z Emt, die angle subtended at the Moon by the Earth's

radius, or the Moon's horizontal parallax, be denoted by.. . . P,

Z AES, the Sun's apparent semi-diameter, by — ,

2

l EAt, the angle subtended by the Earth's radius at the Sun,

or the Sun's horizontal parallax, by .p.

Hence,

The apparent semi-diameter of ©'s shadow = p -f- P — — .

2

Hence, the distance of the centres of the Moon and of the

Earth's shadow, when the Moon's disk just touches the shadow,

will be the preceding expression plus the Moon's apparent semi-

diameter that is,

r 2 2

If we take P = 57' l", p = 8".8, and j = 16' l".3, we

shall have

The mean apparent semi-diameter of ®'s shadow = 4l' 8".5,

which is nearly three apparent semi-diameters of the Moon.

* We have, more than once, adverted to the necessary defect which

diagrams in Astronomy are subject to, in representing distances and

magnitudes according to their true proportion in nature. The Figure in the

preceding page is an instance of it. The Earth's radius is there made not less

than one-third of the Sun's, whereas it is about y^h Par'- But, ^

had been so drawn, we should have had a most inconvenient diagram, in

which it would have been difficult to discern the lines and angles, which

are the subjects of investigation.
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Hence, since the Moon in the space of an hour moves over a

space nearly equal to its diameter, the Moon may be entirely

within the shadow, about two hours, or a total eclipse may

endure that time.

In order to find the greatest value of the preceding expression,

we must take the greatest parallax of the Moon, and the least of

the Sun : for, since there is a constant ratio between the Sun's

horizontal parallax and his apparent semi-diameter, the latter will

be the least- when the former is : and although in the expression

the parallax is additive, yet its diminution below its mean or even

its greatest quantity is trifling, relatively to that of its apparent

diameter.

Hence, since the 5 's greatest horizontal parallax is 1° 1 29"

and the ©'s least semi-diameter 15 45.48

the corresponding parallax of the © 0 8.6

We have, nearly,

the greatest semi-diameter of the ®'s shadow ....=. 45' 52",

and the diameter = 1° 3l' 44".

Precisely after this manner, and by the same formula, namely,

(p + P —^ may the apparent diameters of the Earth's

shadow be computed, for other distances of the Sun and the Moon.

Thus,

Apparent Diameter of

©'s Shadow.

5 in apogee 1° 15' 24".3036

O in perigee. ^ at mean distance 1 23 2.31

in perigee 1 30 40.3164

^ t , 5 in apogee 1 15 56.8656

© at mean \

.. < at mean distance 1 23 34.872

distance. )

in perigee 1 31 12.8784

D in apogee 1 16 28.2936

© in apogee. ^ at mean distance 1 24 6.3

in perigee I 31 44.3064

I
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In p. 714, there is given an expression for the length of the

Earth's shadow, in terms of the Earth's radius obtained from the

value p, of the angle Ect ; thus

Ec =

Et rad. ©

sin. /. Ect

sin. (j-p)

Since there is a constant ratio (see p. 651,) between the Sun's

semi-diameter and horizontal parallax, (which ratio is that of the

radius of the Sun to the radius of the Earth, and in numbers,

as 1 10 : 1 nearly), the denominator of the preceding fraction may

be expressed either, in terms of the semi-diameter, or of the

parallax ; thus,

rad. ©

Length of shadow =

or

sin. (109 p)'

rad. 0

109 D '

sin.

220

But to return to the investigation of the extreme cases in which

eclipses can happen. To the greatest apparent semi-diameter

of the Earth's shadow (see p. 714,) add the greatest apparent

semi-diameter of the Moon, and the result will be the greatest

apparent distance of the Moon's centre from the ecliptic, at

 

which an eclipse can happen. Thus, in the Figure, if Ne be

part of the ecliptic, Nm part of the Moon's orbit, e the centre

4 Y
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of a section of the Earth's shadow ; if we take (see p. 7l6,) ea in

its greatest value, equal to 45 52', and ma, the greatest apparent

semi-diameter of the Moon, = 16' 45".5, then me, = 62' 37".5,

is the greatest distance of the Moon at which an eclipse can

happen. If the distance be greater, there can be no eclipse, if

less, and less within certain limits, there may or may not be an

eclipse ; its happening depending on the relative proximities of

the Earth to the Sun and Moon.

The ecliptic limit Ne, corresponding to the greatest value of

me, may be thus computed:

By Naper's Rules,

rad. x sin. me = sin. Ne X sin. teNm;

.*. taking me = 62' 38", and the inclination of the Moon's orbit,

(what it generally is, in these circumstances,) equal to 5° 17', we

have

10 + log. sin. 62' 38" 18.2605076

log. sin. 5° 17' . 8.9641697

.-. log. sin. Ne 9-2963379

.-. Ne = 1 1° 25' 40", nearly.

The species of eclipse represented in the above Figure, where

the two circular sections of the Moon and shadow are in contact,

is called an Appulse.

The opposition of the Moon must have happened soon before

this appulse, if the direction of the Moon's motion be supposed

from m towards N. For, the Moon moving more quickly * than

the Sun, and consequently, than the centre (e) of the shadow,

cannot long have quitted a point o, such that the corresponding

position of the centre of the shadow would be at c. And in these

positions of the Moon and shadow, the former is in opposi

tion.

* The diurnal motions of the Moon and Sun are respectively

13° 10' 35".027, and 59' 8".33,
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, In the computation of eclipses there are several expedients

employed for abridging its labour. Eclipses are to be expected

when the Moon is near her node, and in opposition. But the

labour of a direct and formal computation may frequently be

spared, by roughly ascertaining certain limits, beyond which, it is

useless to expect an eclipse. Thus, as we have seen in the pre

ceding page, if Ne be greater than 1 1° 26', no eclipse can

happen. But Ne is the difference of the true longitudes of the

centre of the ®'s shadow and of the J) 's Si at the time of the

appulse ; the time of appulse differs a little from the time of true

opposition, and therefore, for two causes, from the time of mean

opposition. The mean longitude of the centre of the Earth's

shadow differs from the true longitude, by reason of the equation

of the centre, and other small equations. If therefore, we com

pute the mean longitude of the Earth's shadow at the time of mean

opposition, it will differ from the longitude of e, (see Fig. p. 717,)

at the time of appulse for three causes ; the difference, of the

times of appulse and of true opposition, of the times of mean

and true opposition, and of the mean and true longitudes. But,

notwithstanding these sources of inequality, the consequent error

in the value of Ne computed, from the mean longitude of the

Earth, and for the time of mean opposition, is within certain

limits ; and accordingly M. Delambre states that, if Ne be

> 12° 36', there cannot be an eclipse, if < 9°, there must be

one. Between 9°, and 12° 36', the happening of the eclipse is

doubtful, and the doubt must be removed by a more exact cal

culation. The time of mean opposition may be computed from

the Tables of the Sun and Moon. But, the computation is

facilitated by means of a Table of Epacts. The Epactfor a year,

meaning the Moon's age at the beginning of the year, the age

commencing from the last mean conjunction ; and the Epdct for

any month, meaning the Moon's age at the beginning of the

month, supposing the age to have begun from the beginning of

the year. Delambre in his Astronomical Tables has given a new

method of computing the probable times of the happening of

eclipses. (See Vince, vol. III. Introduction, p. 56.)

In the preceding explanations we have supposed an eclipse to

begin when the Moon enters the Earth's shadow at ire'. A spec
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tator at the Moon in any point within m' and m, (see Fig. p. 714,)

would, by reason of the intervention of the Earth, be unable to

see any part of the Sun's disk. But, before and after this eclipse,

properly so called, the Moon's light would be obscured ; or, what

amounts to the same thing, the spectator, on the Moon's surface,

previously to being entirely deprived of the Sun's light, would

lose sight of portions of his disk. In order to determine, when

this obscuration first begins, and when it ends, draw two tangents

AC ql', aC'pl, to the Sun and Moon; then, the moment the

Moon enters I' I, part of the Sun's light is stopped ; or, a spectator

at the Moon situated any where between I'm' sees part only of

the Sun's disk. Entering mm, the spectator loses sight of the

Sun entirely ; emerging from m'm, he regains, in his progress

through m I, the sight of successively greater portions of the disk,

and finally, emerging from ml, he again sees the full orb of the

Sun.

The space included within the lines pi, q I', is the section of

what is, properly enough, denominated the Penumbra; and its

angle is IC'V.

Angle of the Penumbra.

£ AC'S = i. AES + l EAC,

= Q's apparent semi-diameter + © 's hor. parallax,

D

Hence, may be deduced,

The Apparent Semi-diameter ofa Section of the Penumbra at the

Moon's Orbit.

For, tlEC = z ElC + z ECU

D

= 5 's hor. par". + — + p

D

= P+P + -.

From this formula, as in the case of the umbra (p. 716,) the

several values of the apparent semi-diameter of the penumbra,
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corresponding to certain positions of the Sun and Moon, may be

computed.

Since the apparent semi-diameter of the Moon's penumbra is

the distance of the centres of the Moon and shadow, when the

Moon first enters the penumbra, is

D d

d representing the Moon's apparent diameter.

In the preceding investigations we have supposed the cones

of the umbra and penumbra to be formed by lines drawn from

the Sun and touching the Earth's surface. This, probably, is

not the exact case in nature ; for, the apparent diameter of the

Earth's shadow is founds by observation, to be somewhat greater

than what would result from the preceding formula. This cir

cumstance is, with great appearance of probability, accounted for,

by supposing those solar rays, that, from their direction, would

glance by and rase the Earth's surface, to be stopped and absorbed

by the lower strata of the atmosphere. In such a case, the

conical boundary of the Earth's shadow would be formed by

certain rays exterior to the former and would be larger.

This is not the sole effect of the atmosphere in eclipses; but,

another, totally of a different nature, results from it. Certain of

the Sun's rays, instead of being stopped and absorbed, are bent

from their rectilinear course, by the refracting power of the

atmosphere ; so as to form a cone of faint light interior to that

cone which has been mathematically described as the Earth's

shadow. The effect of this, or the phenomenon of which the

preceding statement is presumed to be the explanation, is a

reddish light visible on the Moon's disk, during an eclipse.

We will now proceed to shew how the time, duration and

magnitude, of a lunar eclipse, may be computed.

Let NqM represent part of the Moon's orbit, vEN the

ecliptic, N the node.



Suppose the Moon's place of opposition to be q, p being the

corresponding place of the centre of the Earth's shadow, and

i

9

M

the latter to describe Ep, whilst the Moon's centre describes Mq.

Let also

m = 5 's horary motion in longitude,

n = 5 's motion in latitude,

s = © 's (or, the shadow's centre's) motion in longitude,

X = J) 's latitude when in opposition at q,

t — time from q to M,

c = distance of M from E (ME) ;

then, in the time t, the D 's motion in longitude = m t (vp),

in latitude = nt (Mv ~pq)

the © 's motion in longitude = st (Ep);

consequently, Mv =pq + nt = X + nt, and Ev =pv — Ep — rnt — st;

cl (MI?) = Mv9 + Ev* = (X + nt? + (mt - st?,

which expression expanded produces a quadratic equation, of

•which t is the quantity to be determined, and the value of which

will depend on that of c ; or, if we assign to c such values as

belong to the .different phases of an eclipse, the results will be

intervals of time between the happening of such phases, and the

time of opposition, which latter time may be computed from the

Tables of the Sun and Moon.

If in the preceding expression for r2, we substitute, after

71

expansion tan. 8 instead of , there will result

m — s

«V + 2 Xn sin.* 6 . t = (c* - X1) sin.* 9,
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and if from this, by the Rule for the solution of a quadratic

equation, we deduce the value of t, we shall have

t = ~ [- X sin.* 9 ± sin. 9 V(c* - Xs cos.* 9)],

n

from which expression, as it has been stated, may be deduced

values of the time corresponding to any assigned values of c.

For instance, if we wish to determine the time from opposition,

at which the Moon first enters the Earth's penumbra, we must

assume (see p. 721,)

D d
c = P+p+ + _.

t has two values corresponding to the same value of c, the

second of which will denote the time at which the Moon quits

the penumbra. If we wish to determine the time at which the

Moon enters the umbra, we must assume, (see p. 721,)

d D

c = P +p + .
r 2 2

If we wish to determine the time when the whole disk has

just entered the shadow, we must subduct d from the preceding

value, and make

d D

and similarly for other phases.

The two values t") of t are

t' = - [- X sin.s 9 + sin. 9 \/{c% - \* cos.* 9)1

n

t" = [ - X sin.* 9 - sin. 9 VV - Xa cos.* 9)1

n

which values can never equal each other, except the quantity

under the radical sign, that is, c2 — Xs . cos.8 9 = 0 ;

X sin." 9 ,

m which case the value of t, namely , represents the

middle of the eclipse, the distance (c) of the centres being X cos. 9.



724

Tliis value (X cos. 9) of c corresponding to the middle of the

eclipse, is the least distance, or, the nearest approach of the

centres of the Moon and shadow. For, if by the rules for finding

the maxima and minima of quantities, we deduce from the expres

sion, p. 723, 1. 3, the value of t, it will be found equal to

X sin.a 9

The nearest approach of the centres being known, the magni

tude of the eclipse is easily ascertained. Thus, on the sup-

d IK

position that X cos. 9 is less than the distance yjr +p + -

at which the Moon's limb just touches the shadow, some part of

the Moon's disk is eclipsed ; and the portion of the diameter of

the eclipsed part is

d D

P+»H X cos. 9.

' 2 2

The portion of the diameter of the non-eclipsed part, is the

Moon's apparent diameter (d) minus the preceding expression,

and, therefore, is

n d D

X cos. 9 + - H P - p.
2 2 r

If this expression should be equal nothing, the eclipse would

be just a total one. If the expression should be negative, the

eclipse may be said to be more than a total one, since the upper

boundary of the Moon's disk would be below the upper boundary

of the section of the shadow : and the distance of the two boun

daries would be the preceding expression.

The preceding formulae for the parts eclipsed, which are parts

of the Moon's diameter, are usually expressed in twelfths of that

diameter ; which twelfths are, with no great propriety of language,

called Digits. Thus, if the part eclipsed should be 24' 52",

the Moon's diameter being 33' 18"; then, the part eclipsed

24' 52" Digits. Digits.

By p. 723, the second root of the quadratic, or
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t" s - ~ [X sin.* 9 + sin. 9 1/(c* - Xa cos.s 9)1

n

which is negative with respect to the other value t' ; that is, if

the first be previous to opposition, the latter is subsequent to it :

hence the whole duration of that part of the eclipse which takes

place between equal values of the distance of the centres is the

sum of the two times, and therefore =

1 + <—<") = - sin. 9 VV - X1 cos.1 9).

n

If in this expression we substitute that value of c, which is

P + p + ~ — — , (see p. 723,) the quantity

2 2

- sin. 9 VV — X* cos.1 Q),

n

denotes the time from the Moon's first entering, to her finally

quitting the shadow or umbra. And, if we substitute for c,

n d D ...

P + p -\ h , (see p. 723,) the resulting expression will

2 2

denote the whole time of an eclipse, from the Moon's first

entering till her finally quitting the penumbra.

Example.

Of the Eclipse, which happened on March 17, 1764, it is required

to calculate the beginning, middle, and the end; also the

number of Digits eclipsed.

By the Lunar and Solar Tables it appears that the epoch, or

the time of true opposition, happened on the 18th of March 1764,

at 011 6m 12s, mean solar time at Paris (reckoned from midnight).

By the above-mentioned Tables the following numerical

results were obtained.

I 's lat. at the time of opposition X = 38' 42" N.

3) 's horary motion in latitude . . . n = — 3 26 (lat. decreasing)

]> 's horary motion in longitude . . m = 37 23

© 's horary motion in longitude . . s = 2 29

i> 's apparent diameter d = 33 18

3) '8 corresponding hor1. parallax P = 61 0

O 's apparent diameter D = 32 10

G 's corresponding hor1. parallax p = 0 9.

4 z
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Hence, (see p. 722,)

n 3' 26" 206

tan. 9 —
m - s 34' 54" 2094 '

.-. 9 = -5° 37' 6".5.

Hence, (see p. 724,) the middle of the eclipse, or,

X sin.2 9 2322

206

x sin.* (5° 37' 6".5) = GT 29'.

This is the time reckoned from the epoch of opposition, which

is March 18, 0h 6m 12", consequently, the middle of the eclipse

was March 18, 0h 12m 41s. Now, in order to find the times

when the Moon first entered and when it finally quitted the

shadow, we must first compute (see p. 723,) the corresponding

values of c, and accordingly we have

c = -- - + »+ P = 6l' 43",

2 2

or, adding (see p. 721,) l'40" for the effect of the Earth's atmo

sphere,

c = 63' 23",

which value being substituted in

 X sin." 9 + sin. 9 V{c% - X" cos.3 9)

n

the two resulting values (<", t') of t are

(end of eclipse) t" = 6m 29" + lh 26™ S' = lh 32m 37s

(beginning) t' = 6 29 -1 26 8 = - 1 19 39

and consequently, the duration of the eclipse . . . 2h 52m 16'.

Since t' = — lh 19m 39s is negative, the commencement of

the eclipse happened before the time of opposition, therefore, at

Paris, it happened lh 19m 39s before March 18, 0h 6m 12s, that

is, on March 17, 22h 46m 33', and the eclipse terminated

lh 32m 37" after the time of opposition March 18, 0h 6m 12s, that

is, on March 18, lh 38m 49".

Since the preceding times are computed, according to the

usage of French Astronomers, from midnight, and since, at the

time of opposition, the Moon was nearly on the meridian, it is
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plain that the whole of this eclipse must have been seen at Paris,

and could not have been seen on the hemisphere opposite to that,

on which Paris is situated.

The distance of the centres corresponding to the middle of

the eclipse, and to the greatest phase, that is, to the greatest

quantity of eclipsed disk, or

X cos. 0 = 38' 3i".

The eclipsed part, or

- — — + p + P — \ cos. 9 = . .23' 12",

2 2

or (see p. 721,), accounting for the effect of atmosphere, 24' 52",

Digits. 24' 52" Digits.

and expressed in digits = 12 x —7 jt = 8.96.

33 1 8

In deducing the equation that involves the time (0 we sup

posed the Moon to describe the space Mq, whilst the centre of

the shadow described Ep : and, expressed by means of the horary

motions, the line pv was = mt*, and the line, which is the dif

ference of Mv and pq, was = nt. According to this notation,

therefore, the tangent of the inclination of the Moon's orbit

(which = ——^ = — = — . Now the Moon approaches the
Nv' mt m rr

shadow for two reasons, one of which is its motion in latitude,

(nt), the other the excess (mt — st) of its motion in longitude

above that of the shadow. Hence, its approach to the shadow

would evidently be the same, if we suppose the centre of the

shadow to be quiescent, the Moon to move with its proper motion

in latitude (nt), and besides with an imaginary proper motion, in

longitude, equal to the relative one, mt — st; with such an

hypothesis the equation (see p. 722,)

c" = (X + ntf + (m - s)* f*,

would equally result, and the same conclusions relative to t, &c.

* The Reader must observe that mt, nt, &c. are not lines like p q,

ice. but the products of two algebraical symbols, m, t and n, t.
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would also equally result. In this case, since we suppose the

shadow to be at rest and the two motions of the Moon to be n t,

and (m — s) t, the Moon must move towards the shadow along

an imaginary orbit, the tangent of whose inclination would be

——— , or —-— , an inclination greater therefore than that

(wi — s) t m — s

of the real orbit.

This imaginary orbit, (which originates by a species of trans

lation of the equation involving t,) has, for the purpose of gra

phically representing the phases of an eclipse, been invented by

Astronomers, and been termed the Moon's relative Orbit. If we

prolong the line pq below q, by a quantity equal to « x f, so

that the whole line, beginning from p, may be equal to X + nf

(X = pq) and then, from the extremity of the prolonged line,

draw a line parallel to pv, towards M, and equal to (m — *) t,

and lastly, join p and the extremity of the line parallel to pv ;

the joining line will represent a portion of the relative orbit, and

be equal to ME (c).

The relative orbit is a mere mathematical fiction, convenient

enough for representing the phases of an eclipse, but not essential

to their computation, as the very fact of the preceding computa

tions, made without reference to it, sufficiently proves. If, how

ever, by independent reasonings, it be established and laid down

as the basis of investigation, then may all the preceding results

relative to the duration and quantity of an eclipse be obtained.

It may not be improper to note, that the artifice of computation

which substitutes tan. 9 instead of —-— , when geometrically

m — s

exhibited, introduces the relative orbit.

In the preceding computations of the duration, &c. of a lunar

eclipse, we have supposed the motion of the Sun in longitude,

and the motions of the Moon in longitude and latitude to be

uniform. This, during the short continuance of an eclipse, is

nearly, but not exactly, true. The error of the supposition, how

ever, may be corrected by means of the Lunar and Solar Tables,

which give the true motions of the Sun and Moon for every
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instant of time, and then the eclipse may be computed to the

greatest exactness.

Since the computation of eclipses, (especially, of solar,) is

attended with considerable difficulties, it is natural to search for

expedients that may lessen them. Now, an eclipse depends on

two circumstances, the syzygy of the Moon, and the proximity

to the node of its orbit. The first circumstance, whether it be an op

position or a conjunction, recurs after a synodic period, or, 29 days.

But, at the end of this period, the proximity of the Moon to the

node of its orbit cannot be the same, in degree, as it was at the

beginning. It must, according as the Moon is approaching or

receding from the node, be less or greater. This arises from the

regression of the nodes. But, the nodes still regressing, before

they have performed a circuit of the heavens, an opposition or

conjunction must happen, in which the Moon would be either

exactly, or very nearly, at the same distance from the node, as it

was at the beginning of the period. If, for the sake of illustration,

we suppose the synodic period to be 30 days, and the Sun after

quitting the node of the Moon's orbit, to return to the same after

330 days, then at the end of this latter period, and after eleven

lunations, if the Sun and Moon should have been in conjunction,

or opposition, at the beginning, they would be again so, and

besides the Moon would be in the same degree of proximity to

the node. If, however, the return of the Sun to the node should

not be performed exactly in 330 days, but in 330 days 12 hours,

then at the end of 66 1 days, after two revolutions with respect to

the node and 60 lunations, the Moon would be in syzygy with

the Sun, and at the same distance from the node, as it was at the

beginning. Now, if the Moon, at different periods, be in syzygy

with the Sun, and at the same distance from the node, the same

phases of an eclipse must be always seen at those periods (sup

posing the mutual distances of the Moon, Sun, and Earth, not to

alter). Hence, an eclipse computed for one period would serve

for other periods, and, eclipses could be predicted ; since, after

the lapse of a certain number of days, they would recur.

A lunation, and the Sun's period with regard to the node of

the Moon's orbit, are not of the value*, which, in the preceding



730

illustration, we have supposed them to be. The former is

29d 12h 44nl 2s.8, (29.530588) the latter 346d 14h 52m 16s.032

(346.61963). But, with these true values, the period of the

recurrence of the Moon to the same position, relatively to the

Sun and the node of its orbit, is to be determined on the same

principles, which, indeed, are those which have been previously

used on the occasion of the transits of Venus and Mercury over

the Sun's disk, (see p. 613.). We must find two numbers in the

proportion of 29.530588 to 346.61963 : if not exactly, nearly

so, employing the method of continued fractions. Now two

numbers, nearly so, are 19 and 223 ; the Moon's node, there

fore, after 223 lunations has, relatively to the Sun, returned

19 times to the same position. And accordingly at the end of 223

lunations, that is, of 1 8 years 1 1 days *, there are the same con

ditions requisite for an eclipse, as at the beginning ; after such

interval, then eclipses, solar as well as lunar, will recur, and in

the same order. If we know, therefore, previous, we can predict

subsequent, eclipses.

This simple method of predicting eclipses was known to the

antient Astronomers. It, however, is not exact, since 19 to 223,

is only an approximate ratio : even were it exact, still the lunar

inequalities, the periodical and secular, would prevent the Moon

from being at the end of 18y lld, or of 36y 22d, &c. precisely at

the same distance from the node, as at the beginning.

The method, however, may, with advantage, be used for ascer

taining, very nearly, the happening of eclipses ; after which, the

exact times may be calculated by means of the Astronomical

Tables.

By means of the period of 223 lunations, called by the

Chaldean Astronomers, the Saros, eclipses may be predicted ;

but, independently of this, there is, for finding directly those

syzygies at which eclipses may happen, the method of Astronomical

Epacts, (see p. 719).

* More exactly, 18? 10d 7h 43m, or 18' lld 7h 43m, accordingly as

Four or five leap years happen in the interval of 223 lunations.



CHAP. XXXVI.

On Solar Eclipses.

An eclipse of the Sun, is caused by the interposition of the

Moon between the Sun and Earth ; in consequence thereof, the

whole, or part of the Sun's light is prevented from falling on

certain parts of the Earth's surface.

A spectator, deprived of the whole of the Sun's light, is in

volved in the Moon's shadow ; deprived of part, in the penumbra.

A material circumstance of distinction exists between lunar

and solar eclipses : the former are seen, at the same time, by

every spectator who sees the Moon above his horizon. The

latter may be seen by different spectators at different times -T or

may be seen by one spectator and not by another. The passage

of the Moon's shadow across the Earth's surface, during a solar

eclipse, has been properly likened to that of the shadow of a

cloud.

In the case of the Moon, it was shewn, that, if that body

were within certain limits of distance from the node of her orbit,

an eclipse must happen in opposition; because, (seep. 712,)

the shadow of the Earth, in all distances of the Moon and Sun,

extends far beyond the lunar orbit. The length of the Moon's

shadow must be determined as that of the Earth's has been, on

the same principles and by similar formulae. But, the result, in

certain respects, will be different. The Moon's shadow will never

extend far beyond the Earth, and sometimes will fall short of it.

Hence, the happening of a solar eclipse will depend not solely on

the ecliptic limits, but also on the relative distances of the Sun,

Moon, and Earth.
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In order to determine the length of the Moon's shadow, we

may use the Figure of page 714.

Now, by p. 717, CE = . f * ,

sin. Z ELt

Et

sin. ( t AES - L EAt)'

In this case E must represent the Moon, and accordingly

L AES, which is the apparent semi-diameter of the Sun seen

from the Moon, is equal to

'... ~ dist. © from 0

apparent semi-diameter © seen from ffl X — ,
,r dist. © from 5

and the angle EAt is the Sun's horizontal parallax belonging to

the Moon, and equal, therefore, to

]) 's rad. dist. Q from ®

G s horizontal parallax for w x — X — .
F 0's rad. dist. © from 5

Hence, calling the radii of the Moon and Earth, r, R, and

the distances of the Sun from the -Moon, and Earth, k, K

respectively, there results

r

length of Moon's shadow = — — ——

/D A rK\

sin. f — x p -=— I
V2 k * Rk/

-{(7 -5)1}

sin

sin- {(? - p 5) f^}

_, . JJ  JJ K . P

For, since p = — , and .r

K' K-k' k P-p-

By means of this formula, we have

© in apogee, I) in perigee 59-730

© in perigee, 5 in apogee 57.760

Length of

Shadow. J) 's Dist.

55.902

63.862
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And this latter case is one of those mentioned in p. 731, and

in which the Moon's shadow uever reaches the Earth.

The formula for the length of the Earth's shadow has been

adapted so as to express the length of the Moon's shadow.

Similar alterations may be applied to the other formulae. For

instance, (see p. 715,)

theappa'.semi-diam. of©'s shadow = /.Emt—{ L AES— z EAt).

Now we have already shewn (p. 732,) that

,AES- ,EAt=(^-pL)^--,

and Z Emt, (the Moon being at E, and the Earth at M,)

equals the D 's apparent semi-diameter •

Hence,

the appa'. semi-diamr. of 3) 's shadow = - — (— — p — ^\~-—

™ 2 \2 FR'P-p

( d d-D P

Hence, when the Moon's apparent diameter (d) equals the

Sun's (D), the apparent semi-diameter of the Moon's shadow is

equal nothing ; or, the vertex of the conical shadow just reaches

the Earth.

When the Moon's apparent diameter (rf) is less than the Sun's

(D), the expression for the apparent diameter of a section of the

Moon's shadow is negative ; in other words, the shadow never

reaches the Earth.

In a similar manner may the formulae for the penumbra of

the Earth be transformed, and adapted to the case of the Moon.

In order to find the distance of the centres of the Moon's

shadow and of the Earth, when the Earth's disk just touches the

section of the Moon's shadow, we must add to the expression,

1. 13, the apparent semi-diameter of the Earth, seen from the

Moon, which, in other words, is the Moon's horizontal parallax

(P). Hence

5 A
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distance = P +

 

From this expression the solar ecliptic limits may be computed,

precisely as the lunar were (see p. 718,) and they will be found

equal to 17° 2 1' 27".

The same diagram and formulae, as we have seen, apply

equally to solar as to lunar eclipses ; and, to a spectator placed

in the Moon, our solar eclipses must appear, precisely, as lunar

eclipses appear to us ; the fictitious spectator might also compute

the duration, and magnitude, of an eclipse caused by the shadow

of the globe on which he is placed, by processes like those which

have already been used, (p. 722,) in the case of lunar eclipses.

The forms of the resulting equations, and the steps of the process,

would be the same in each case. It would be only necessary to

make such slight alterations as we have already made. And,

under this point of view, there is no difference between lunar and

solar eclipses. The computation of the one is as easy as that of

the other. But, still the fact is, the subject of solar is much

more difficult than that of lunar eclipses. There is then some

material circumstance of difference between them, which it is

now necessary to point out.

In the preceding computations relative to lunar eclipses, no

consideration was had of any particular parts of the Moon's disk

which might either be covered by, or approach within a certain

distance of, the Earth's shadow. In the ingress, for instance,

merely the time of contact was determined, and nothing said con

cerning the position of the point of contact relatively to any fixed

point in the Moon's equator. The lunar latitude and longitude

of the point of contact is a matter of indifference to the observer

on the Earth's surface. But, to an observer at the Moon, the

case is quite different : to such an one, the eclipse does not begin

when the Earth's shadow comes in contact with the Moon's disk,

but when it begins to obscure his station. Now, in the predica

ment of this fictitious observer at the Moon, during what to us is

a lunar eclipse, is an observer at the Earth during a solar eclipse.

It is necessary for him to know when, and how long,, the shadow
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of the Moon will obscure a station of an assigned longitude and

latitude.

Solar eclipses then are more difficult of computation because

more is required to be done in them, than in lunar eclipses. If

in the investigation of the latter, there had been solved a problem,

in which it was required to determine the time when a particular

point on the Moon's surface was eclipsed, then from such solution

we should possess the means of determining, what it is essential

to determine, in solar eclipses.

The method^ however, of computing lunar eclipses (given in

pp. 722, &c.) may be adapted to solar; and in such a manner

as to determine the times of the happening of the latter at an

assigned place. This we will endeavour to explain.

First, that method may (making such substitutions as have

already been made in pp. 722, &c.) be employed in computing

the time and duration of a solar eclipse with reference to the

whole disk of the Earth ; that is, the eclipse being supposed to

begin at the first contact between the Moon's shadow and any

part of the Earth, and to end at the last contact.

At any time (f) included within the duration (T) of such an

eclipse, we are able to compute the apparent distance of the

centres of the Sun and Moon, supposing the spectator to be

placed in the centre of the Earth. The problem is precisely the

same as the one in p. 722, relative to a lunar eclipse. Corres

ponding to the time t, the Solar and Lunar Tables, will furnish

us with the longitude of the Sun, the longitude and latitude of

the Moon, &c. ; such quantities in fact, as X, m, p, &c. ; and,

involving these quantities precisely as they were in pp. 722, &c,

an equation exactly similar to the one of p. 722, would result :

and from its solution, since t is supposed to be given, c would

result ; but if c be assigned, then is t the resulting quantity.

If, instead of a spectator in the Earth's centre, we suppose

one on the surface, in what respects and degree ought the con

ditions of the preceding problem to be changed? The latitudes

and longitudes (/, X), computed for the former spectator, cannot

belong to the latter, because angular distances (and such are
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latitudes and longitudes) seen from the centre are not the same

as when seen from the surface. They differ however solely by

parallax. If therefore the true longitudes and latitudes at any

time be diminished by parallax, the resulting longitudes and lati

tudes (/', X') will belong to a spectator on the Earth's surface,

for the same time. These latter being substituted as in page 722,

the equation

»V + 2X'n sin.2 Q x t = (c2 - X'1) sin.2 9,

will express the relation between t and c.

In finding therefore the time, at which, the apparent distance

of the centres of the Sun and Moon should be of an assigned

magnitude, or in finding the magnitude for an assigned time, the

chief thing required to be done, is to diminish the angular

distances, which the Astronomical Tables furnish us with, by the

effects of parallax in the directions of those angular distances.

The angular distances, as we have seen (p. 735,) are measured

along the circles of latitude and longitude. What we require

then, are formulae for computing the parallaxes in longitude and

latitude. The investigation of such formulae is the chief object

of the ensuing Chapter.

That Chapter is on the Occupation offixed Stars by the Moon.

A subject which, equally with solar eclipses, requires the aid of

formulae for computing the parallax in longitude and latitude.

The investigation of those formulae might have been introduced

into the present Chapter, but it was judged right to defer it to

the next, because its subject may mathematically be viewed in

the light of the simplest case of a solar eclipse. For, if from this

last we make abstraction of all the ordinary phenomena, the two

cases are similar. In the one, we have to find the apparent

distance of the centres of the Sun and Moon ; in the other, the

apparent distance of the centre of the Moon and a fixed star.

In each we must take the latitudes and longitudes from the

Tables, and then correct such for parallax ; but the latter case is

somewhat the more simple, because it is necessary to compute

the parallax in latitude and longitude for one body only, namely,

the Moon ; the other, the fixed star, having no parallax.
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There is a third phenomenon, The Transit of an inferior

Planet over the Sun's Disk, which is nearly similar to an occul-

tation and a solar eclipse in its general circumstances, and is

exactly so in its mathematical conditions. In the two latter

phenomena, the Moon by its interposition obscures the light of

the Sun, or suddenly extinguishes that of the star : in the former,

the planet successively darkens parts of the Sun's disk ; this effect

then, like an occultation, is a species of eclipse. But, without

any forced analogies or violation of the proprieties of language,

it is a sufficient reason for classing these phenomena together,

that it is mathematically convenient so to do. To each, the same

equations and formulae apply ; and, as we shall hereafter perceive,

they may all be employed in attaining the same object, the de

termination of the longitudes of places.

The next Chapter will put us in possession of the means of

computing the apparent distance of the centres of the Sun and

Moon. If that distance be the sum of the semi-diameters of those

bodies, their disks will be just in contact, and the corresponding

time will be that of the beginning or the end of an eclipse. Such,

considering the practical use of solar eclipses in determining the

longitudes of places, is the essential problem ; and to that we

shall restrict ourselves : still, it must not be forgotten, it is only

one out of many that may be proposed on the same subject.

The times of the beginnings of solar eclipses can be exactly

noted : which is the circumstance which gives them utility and

distinguishes them from lunar. In order therefore that the ob

server may be prepared to note the times of the phases of an

eclipse, he ought to know them approximately at least, by previous

computation. This he may do by computing, for the several

times included within the whole duration of the eclipse, the

apparent distances of the centres of the Sun and Moon : and,

then, from such results he may determine nearly (which is all he

wants) the time when the distance shall be equal the sum of the

semi-diameters of those bodies.



CHAP. XXXVII.

On the Occultation offixed Stars by the Moon.

Parallax enters as a condition into almost all Astronomical

calculations ; because we agree to reckon, from the centre of the

Earth, observations which we must make on its surface. The

parallax in its greatest value (the horizontal,) being the greatest

angle under which the Earth's radius can be seen from an heavenly

body, is less, the more distant the body. Fixed stars are so

distant that they have no parallax, or, at the most, a very small

one. Were the Moon equally distant, her centre, or any point

of her disk, would be seen at the same angular distance from a

fixed star, whether the Earth's centre or its surface were the

spectator's place. If her disk therefore were in contact with a

fixed star, the contact would be seen, at the same instant of time,

by an imaginary spectator in the Earth's centre, and by all spec

tators (to whom the Moon should be visible) on its surface.

The same instant of time, however, would be differently reckoned

by different spectators, according to the situation of their meridians.

If 3h were the time of observation at Greenwich, the time might

be 7h at a place to its east, or might be noon at a place to its

west. And, in this case, the mere differences of the reckoned

times of the happening of the phenomenon would be the angular

distances of the several meridians, or the differences of the longi

tudes of the stations of the several observers.

The Moon, by reason of its great relative proximity, is more

affected by parallax than any other heavenly body. Suppose in

the Figure (which is intended subsequently to illustrate the transit
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of Venus) V'VOU, &c. to be the Moon's disk, We T the Earth*,

then a spectator at W would see a star * in apparent contact with

the point 0 in the Moon's disk, and (if the Moon's centre be

supposed moving towards WO) in the instant of time immediately

 

previous to an occultation. A spectator at T would see the

star * separated from the Moon's disk ; a spectator in e, the

Earth's centre would also see it separated but by a less angle.

To these latter spectators the instant of contact, immediately

preceding an occultation, would not have arrived. Hence, it is

plain, that the absolute time of an occultation would be different

to different observers ; and, accordingly, the mere difference of

the reckoned times of the happening of the phenomenon, would

not, in all cases, give the difference of the longitudes of the places

of observation. Account must also be made of that difference

in the absolute time, which would be nothing, were it not for the

effects of parallax.

The effects of parallax in longitude and latitude are usually

computed by a process of considerable length, involving several

subordinate ones. These latter, being distinct steps in the in

vestigation, may be proposed as independent problems. And,

on such occasions, authors have been accustomed so to treat a

complicated process. They resolve it into its parts, and propose

such for solution under the form of problems, and towards the

beginnings of their treatises. The object in view, in this arrange

ment, is the accommodation of the student, who, it is intended,

should thus separately subdue the parts of a formidable calcula-

* P and the lines VU, V'U', &c. are of no use in the present

illustration.
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tion. But, in this case, he must be content to learn the solutions

of problems, without discerning the objects of their application.

He must take them on trust, and consider that, although not of

independent and immediate, they may be of subsidiary and future,

use.

In the present instance it is intended to resolve the process

for computing the parallax in longitude and latitude into its several

parts ; previously to propose such parts as problems for solution ;

and then to proceed immediately to their use and application.

On this plan, therefore, we are required to find

The right ascension of the mid-heaven, or of the Medium Colli.

The altitude of the Nonagesimal.

The longitude of the Nonagesimal.

1st. The Right Ascension of the Mid-Heaven.

The right ascension of the mid-heaven has been already ex

plained (see p. 527.). It is, at any assigned time, the right

ascension of a point of the equator on the meridian at that time,

or, should a star be then on the meridian, it is the right ascension

of such star. In like manner should the Sun, either the true, or

the imaginary mean, Sun, then the true right ascension of the

former, or the mean longitude of the latter, would be the right

ascension of the mid-heaven. Suppose, the star, or the Sun, to

have passed the meridian and to be to the west of it, then the

right ascension of the Mid-heaven must be the right ascension of

the star, or of the Sun, plus the angular distance of the star or

Sun from the meridian, that is, plus the hour or horary angle

(see p. 10,) of the star or Sun. If the true Sun be used in the

computation, the right ascension of the mid-heaven will be the

© 's true right ascension + true time from meridian • . . . (A).

If the mean Sun, then the right ascension required is

O 's mean longitude + mean time.

The Altitude of the Nonagesimal.

The Nonagesimal is that point of the ecliptic, which, at any

assigned time, is the highest above the horizon. If Hh be the
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horizon, ONE a portion of the ecliptic, and if ON be taken

= 90°, the point N is the nonagesimal, and its height is Nn;

A. 

Nn being the continuation of a vertical circle passing through N

and the zenith Z.

Nn the height of the nonagesimal is (see Trig. p. 129,) the

measure of the spherical angle EOH, the inclination of the

ecliptic to the horizon.

pN ( = a quadrant) = p Z + ZN,

also Zn ( = a quadrant) = Nn + ZN;

.•. pZ = Nn,

or, pZ is equal to the height of the nonagesimal and measures

the inclination of the ecliptic to the horizon.

In order to find pZ, take P the pole of the equator, then,

in the triangle PpZ, we have

PZ the co-latitude of the place,

Pp the obliquity of the ecliptic,

i. pPZ = 270° — right ascension of the Mid-heaven.

Since the right ascension of E is the same as the right ascension

of the Mid-heaven.

This then is that case of oblique spherical triangles, in which,

from two sides and an included angle, it is required to find the

third side ; a problem of the same kind as that of the latitude of

a star to be determined from its right ascension and north polar

distance (see p. 159,) and which we shall similarly solve by the

aid of a subsidiary angle (9), (see Trig. p. 170).

5 B
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Assume then 9 such, that

tan.1 9 =

sin. obly. x cos. lat. x ver. sin. (90° + JR. of mid-heaven)

ver. sin. (co-latitude — obliquity)

then, ver. sin.pZ = ver. sin. (co-lat. — obliquity) x sec* 9*

pZ 1

or, sin. — = sin. - (co-lat. — obliquity) x sec. 9,

'and in logarithms,

pZ .1

log. sin. — = 10 + log. sin. - (co-lat. — obliquity) + log. sec. 9.

The complement of the altitude (pZ) of the nonagesimal is

ZN, and is sometimes called the Latitude of the Zenith.

Longitude of the Nonagesimal.

p, P being the poles of the ecliptic and the equator, the arc

p P, if continued, must pass through the solstitial point ; there

fore, the longitude of P is 90°; and the longitude of N (the

longitude of the nonagesimal) is

the longitude of P plus the angle Pp N ( = Pp Z).

Now,

sin. PpZ = cosec. height of nonagesimal x sin. pPZ x cos. lat.

or, (see Trig. p. 159.)

cos.* % pPZ . sin. p Z . sin. p P

= sin. i (pP + pZ + PZ) . sin. f (pP + pZ - PZ), .

from either of which expressions PpZ may be computed.

From the right ascension of the mid-heaven have been found

the height and longitude of the nonagesimal ; from these latter we

may proceed to, what indeed are the chief objects of search, the

parallaxes in longitude and latitude.

* Examples to these several methods will be given under that

belonging to the general problem of ' the distance of two bodies.'
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Parallax in Longitude.

Let M be the true place of an heavenly body, m its apparent

place depressed, in a vertical circle ZMm, by the effect of parallax.,

(see Chap. XII,) then the parallax in longitude is the angle

Mpm, the measure of which, since Mm is small, is very nearly

the fluxion, or the differential of the angle ZpM: and such we

shall assume it to be. Now, let

L, I, be the latitudes of M, m, ( = 90° — pM, £>00 — pm,)

K, k the angles ZpM, Zpm,

h> (pZ) the height of the Nonagesimal,

p, the common parallax, P ( =^ p . sec. alt.) the horizontal t

a, the parallax in longitude ; B' the parallax in latitude,

Z, z, the zenith distances ZM, Zm.

Then, by Trigonometry, p. 157, we have

cot. z . sin. h = cot. k . sin. LpZm + cos. h . cos. LpZm.

Of this equation take the differential or fluxion, and, since

tpZm is constant, and dk or k = a, and dz, or z = p, there

results

sin. h sin. Z pZm

P

But,

sin.

. , sin. pm . cos. /

sin. pZm = sin. k X —.—=— = sin. k X ;

sin. Zm sin. z

a, the parallax in longitude, =
p sin. h . sin. k

sin, z cos. /.

n sin. h . sin. A

= P cos./ (^ry nearly).

In this expression k = K +dk — K + a; .'.a, the quantity

sought, is contained in the formula that is meant to express its

value. This is a frequent case in which there is an appearance

of arguing in a circle. In order to evade such arguing we must

approximate to the value of a, by supposing, in the first case, k

to equal K : thus, first find a value (e) of a from this expression.

\ , x t, sin- h • sin-

a (e) = P f ,
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then investigate a nearer value of a, from

sin. h . sin. (K + e)

a = P . p ,

cos. L,

and, if this last value be not sufficiently accurate, the above

process must be repeated.

Parallax in Latitude.

By a formula similar to that which we have just used, and

which differs from it only, in the circumstance of the angle k

being used for pZm, I for z, &c, we have

in A Zpm, tan. / sin. h = cot. pZm . sin. Jc + cos. h . cos. k,

in A ZpM, tan. L sin. h = cot. p Zm sin. A- + cos. h . cos. K,

eliminate, from these two equations, cot. pZm, and there results

sin. A(tan.L.sin. k — tan. I . sin. A") = cos. h(sin.k cos. K — cos. k . sin. £)

= cos.A x sin. (A— if).

Now, k — K ~ a, and sin. (ft — K) = sin. a = a (nearly) =

D sin. A . sin. k . .

" -z : substituting .'. and dividing by sin. h x sin. k,

COS. Xj

T , sin. K  cos. A

tan. L — tan. / — = P ———;

sin. k cos.JL,

T , „ cos. h , / sin. X\

.-. tan. L - tan. / = P - tan. / I 1 :—r )

cos. Li V sin. k '

„ cos. A tan. / , . . . v.

= Jr - — . (sin. A — sin. A).

cos. h sin. k

-*t -r ' , sin. (L — 1)

Now, tan. jL-tan. / =

cos. L . cos. / '

k + K\ . ,k-K>

and sin. k — sin. K = 2 . cos. sm- —^

„ ft+ X  a

and since, A — A = a, — = A + - : substitute, and

sin. (L - Q cos, /t 2 tan. / / ^ a\ a)

cos. L. cos. / - 1 cos. L ~ IhTT * lCOS- KK + 2J 8ln- 2 J *
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But sin. (L — f) — sin. dl — sin. $ = S, nearly, and sin. - = -

P sin. h sin. &

~~ 2 cos. L '

.-. h, the par. inlat., = Pcos. A.cos./— P.sin. Asin. Z x cos.^/C-f-^)*

This expression, since / = L — 8, is under the same pre

dicament as the former one, (p. 743,) and must be treated in

the same manner ; that is, we must find a value of § by sup

posing I = L, and then a nearer value. Since the Moon's latitude

is never very large, and at the time of an eclipse (for computing

.which the above expressions are useful) is always very small,

(and consequently sin. I is very small) we may assume, as a first

step in the approximation,

5 = P cos. h cos. L (.—f suppose,)

and then the second step may be made by computing S, from

S — Pcos. h cos. (L —f) — P sin. h sin. (L —f). cos.

and the investigation continued will give more exact values of 5,

the parallax in latitude t-

The formulae for computing the parallaxes in longitude and

latitude have been deduced by, what has technically been called,

the Method of the Nonagesimal. This method, of no recent in

vention, naturally suggested itself, as Lalande observes, to the

mind of Kepler. For, parallax takes place in a vertical circle,

therefore, if the heavenly body were situated in a vertical circle,

such as pZNn passing through N the nonagesimal point, the

effect of parallax, in such a circle, would be nothing in longitude

but would take place, altogether, in latitude ; since ON, the

* See Mem. Gottingen, tom. II, p. l6S; where Mayer has given, very

nearly, the same expressions; also Lalande, tom. II, p. 305. Edit. 3.

t The expressions for the parallaxes in right ascension and decli

nation may easily be deduced from the preceding processes. We must

then consider p to be the pole of the equator.



746

ecliptic, is perpendicular to p ZN. Again, if the Moon, always

near to the ecliptic at the time of an eclipse, should also be near

to the nonagesimal, then the greater its altitude the less would

be the parallax in latitude, (see Lalande, tom. II, p. 291.)

Distance of the Moon and a Star at the time of an Occultation.

Computing by the preceding formulae the parallaxes, we must

apply them, with their proper signs, to the true longitudes and

latitudes furnished by the Tables, or by observation, and the

results will be the apparent longitudes and latitudes of the centre

of the Moon and of the star. Suppose these to be I, I', k, k',

respectively ; then, in order to find the distance (D), we have (in a

triangle such as Mpm, Fig. p. 741), the two sides 90° — /, 90° - 1

(analogous to Mp, mp), and the included angle, k — k' (analogous

to Mpm); and D is the side opposite to the angle k—k':

therefore, (Trig. pp. 139, 172, &c),

cos. D = cos. / .cos. I' cos. (k — k') + sin. Z.sin. V,

and substituting for cos. D, &c. 1 — 2 sin.s — , &c. there

2

results

. 2 D • t Sl — l\ . , ,/ • a /* ~ k\

sin. — = sin. ( 1 + cos. I . cos. I . sin. f 1 ,

2 V 2 / V2/

whence D may be deduced, and most conveniently, by means of a

subsidiary angle, (see the page just referred to).

The preceding method is not confined to the case of an oc

cultation, but is equally applicable to the finding of the distances

of the Sun and Moon during a solar eclipse, and of the Sun and

an inferior planet during a transit. And, in all the cases, since

the distances are small, a more simple formula for computing D

may be introduced. For, D may be considered as the hypo-

thenuse of a right-angled triangle, the sides of which are / —

and (A — k) cos. /*, in which case

* For k—k' is the arc on the great circle, (A— h!) . cos. on the

parallel ; for instance, in Fig. p. 9» if a b — L a P b (Jc — V)

as' — ab . cos. s b = (k—k') cos. s b.
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D1 = (/ - I'f + {k - A')1 . cos.4 /

.'. D = {I - I') . sec. 6,

k — k'

making tan. 0 = — ^7-. cos. /.

The latter expression for the value of D is easily deducible

. , . , • • • , , D l-V
from the former, by substituting in the former — , , &c.

2 2

instead of their sines, which may be done with inconsiderable

error, by reason of the smallness of those angles, during the

contiguity of the Moon and star, 8tc.

The first term of the expression for sin.* D , (see p. 746,)

is sin.a ^—-—^ . In which expression /, I', are the apparent

latitudes, therefore if were the parallaxes, and A the differ

ence of the true latitudes, we should have

I - I' = A + 2 -

Suppose now one of the bodies (that to which the latitude /'

belongs) to have no parallax in latitude, but the other to have a

parallax equal to § — then, still as before,

I - I' = A + (5 - &'),

k — k'
and a similar result will hold good with regard to sin.2 ~;

2

therefore, if the coefficient of this latter term, instead of being

cos. / . cos. /', were a constant quantity a, for instance, (or in

volved merely the difference of the parallaxes), the distance D

would result precisely of the same value sin.2 D from the expression

2 "^"^ • 2 ^ / « fc k

sin. — — sin. 4- a . sin. ,

2 2 2

if, instead of assigning to each body its proper parallax, we suppose

one to be entirely without, and attributed to the other an ima

ginary parallax in latitude and longitude, equal to the difference
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of the real parallaxes. And in this case, the ride given by Astro

nomers, (see Lalande, 434, tom. II, and Cagnoli, p. 463,) would

be proved to be true. Since, however, the coefficient cos. I. cos. I',

is not a constant quantity such as a, but [since it equals ^

cos. (J — V) + cos. (/ + involves, besides the difference, the

sum of the parallaxes, the rule is nbt perfectly exact. It, how-

k - k'

ever, is nearly so, since sin.* — , which is multiplied into

cos. I. cos. is a very small quantity. .

We have spoken of the general case of the Problem, when the

distance of the centres of two heavenly bodies is to be found.

But, if we speak of each particular case, then we must say, the

rule is slightly inaccurate in a solar eclipse and in a transit, but

exact in an occultation, since one of the bodies, the fixed star, is

devoid of parallax.

The Distance of the Centres is the last step in the mathematical

process belonging to the subject of the occultation of a fixed star

by the Moon ; and, since the process is somewhat complicated,

we will endeavour to illustrate it, and its subordinate methods,

by an Example.

Required the apparent Distance of Antaresfrom the Centre of the

Moon at the instant of Immersion, which was observed at Paris

in April 6, 1749, 13h lm 20", Apparent Time*.

(1.) Right Ascension of the Mid-Heaven.

Convert the time into degrees and take from the Tables the

Sun's longitude, and we have (see p. 740,)

JR of Mid-heaven (A) = 15° 5S' + 195° 29'

= 211° 18'

Since, 15° 58' = O 's M,

and 195 20 = 13h lm 20'.

Lalande, tom. II, pp. 437, &<".
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(2.) Altitude of the Nonagesimal, (see 1st Form, p. 742,)

log. sin. 23° 28' 22" (obliquity) 9.60022 *

cos. 48 38 50 (lat. cor. see p. 329,) 9-82000

ver. sin. 301 18 0 (90° + A) 9-68167

29.10189

ver. sin. 17 52 48 (co-hit. - obliquity) 8.68395 .... (a)

20.4 1794 = 2 log. tan. 9

2 sec. 58 16 54 (0) 20.55845

(a) 8.68395

20 + log. ver. s'xw.pZ = 29.24240

.'. pZ (A), the altitude of the nonagesimal, is 34° 23' 9".

(8) Longitude of the Nonagesimal, (see Form, p. 742.) f.

pZ(k) 34° 23' 9" log. sin. = 9-75186

Pp 23 28 22 sin. 9-60022

PZ 41 21 10 (A) 1935208

j.sum. .-. .49 36 20.5 log. sin. 9-88172

sum. . =99 12 41

.sum. . . .49 36 20.

^sum-P28 15 10.5.... sin. 9-15697

(20 added) 39-03869

(A) 19-35208

2 log. cos. PpZ = 19-68661

PpZ =91° 36' 30", and consequently, (see p. 742,)

the longitude of the nonagesimal sm 181° 36' 30".

* Five decimals are sufficient : more, such is the nature of the pro

fess, would not add to the accuracy of the result.

t The angle PpZ being nearly 90°, is the reason, why it is expedient

to use the second, (see p. 742,) of the formulae, which, in the first instance,

gives only half the angle PpZ. For a more full explanation of this

Point, consult Trig. Chap. V.

5 c
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llence, since by the Lunar Tables the longitude of the Moon

was 245° 3i' 42".4, A', or the Moon's distance from the nona-

gesimal, (see Fig. p. 741,)

is 245° 31' 42".4 — 181° 36' 30" = 63° 55' 12".

(4.) Parallax in Longitude, (see p. 743,)

log. 0° 57' 16".2 (P, from Tables) 3.53608")

log. sin. .34 23 9 (A) 9-75186V sum =

Ar.com. cos. 3 47 58.7 (L J) 's true hit.) 0.00096; 13.28890

sin. 64 10* (K + a) 9 95427

(rejecting 10)" 3.24317= log. 29' 10"

.". e, or the first approximate value of a, is 29' 10", and

X' + e = 64° 24' 22",

log. sin. 64° 24' 22" (K + e) 9-95515

Sum (see p. 744,) rejecting 10 3.28890

(rejecting 10) 3.24405 = log. 29' 14*1 ;

.*. a, the parallax in longitude, is 29' 14". 1.

(5.) Parallax in Latitude, (see p. 744.)

.Computation of the first part of the expression,

log. P 3.53608)

„ , « , r, i sum = 13.45267
log. cos. 34° 23' 9 (h) 9-91 659 J

«os. 3 47 58.7 (L) 9-99903

(rejecting 20) 3.45170= log. 47' 9"; .'. 47' 9"

is the first approximate value of S.

Again,

log. cos. 4° 35' 7".7 (L + $) 9-99861

log. P + log. cos. h . . . . 3.45267

(rejecting 10) 3.45 128 = log. 47' 6".7, 2d value ofI

* K (see 1. 4,) = 63° 55' 12", and, since a is some small quantity,

it is conjecturalhi taken, in the first trial, equal to 14' 48", which added

to A",1 makes K -\- a = 64° 10'.
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Computation of the second part of the expression,

log. P x sin.' A (see p. 745, 1. 3.) 3.28794

log. cos. 64° 9' 49" (li + |) 9-63929

sin. 4 35 8.7 ( D 's latitude) 8.90283

(rejecting 20) 1 .83006 = log. l' 9"

Since the Moon's latitude was south, this last part (l' 9") of the

parallax in latitude must be added; consequently, the whole

parallax in latitude (5) = 47' 6".7 + l' 9" = 48' 15", nearly.

Hence, applying the parallaxes thus found to the true longitude

and latitude,

1 's apparent long. = 245° 3 1' 42".4+ 29' 1 4". 1 = 246° 0' 56".5

D 's apparent lat. = 3 47 58.7 + 48 15 = 4 36 13.7.

(6.) Apparent Distance of the Moon and Antares, (see p. 747.)

Long, of Antares (k') . . 246° 16' 19".2 . . lat. (/') 4° 32' 10".5

D 's longitude (A) .... 246 0 56 . 5 . . lat. (/) 4 36 13 . 7

k' — k 0 15 22.7 ..I— I' ..0 4 3.2.

.-. log. cos. 4° 34' 12" (^~) * 9.9986171

log 0 15 22.7 2.9650605

Ar. comp. log.O 4 3.2 7.6140364

10.5777140= log. tan. B

log sec. 75 11 21 (6) 10.5923906

At. comp. log.O 4 3.2 7.6140364

log. 95l".38 = 2.9783542

therefore the distance required is 15' 5l".38.

By the preceding process the apparent distance of a fixed star

and of the Moon's centre has been found at the instant of occul-

* used instead of I.
2



75ri

tatiou. A process, almost entirely the same, will give .the

distance of the Sun and Moon in a solar eclipse, and the distance

of the Sun, and of an inferior planet, during the transit of the

latter across the Sun's disk. The difference in the processes is

pointed out in the Rule of p. 748 : which Rule directs us to

suppose one body to be devoid of parallax, and the other to be

invested with a parallax, equal to the difference of the parallaxes

of the two bodies.

The above process, as it stands, is rather long and would have

been much more so, had we deduced from Tables, the Moon's

real longitude and latitude. But we, in fact, know the latter

quantities from the Nautical Almanack, or may deduce them by

interpolation. The computers of occultatiom, are so enabled to

abridge their labours. The utility of such labours will be more

fully explained in a subsequent Chapter : but we will not dismiss

the present without giving to the students a slight idea of the

principle and manner of using the result of the preceding compu

tations.

The Moon's latitude and longitude (see p. 746,) are computed

for the instant of time, at which the star is on the Moon's disk.

When the time is given we can, from the Lunar Tables, or from the

results from those Tables registered in the Nautical Almanack,

compute directly, or by interpolation, the Moon's latitude, longi

tude, and semi-diamater. But, since the Nautical Almanack,

(confining our views to its results) is computed for Greenwich,

we cannot, should the occultation be observed at Cambridge,

determine the time at the former place, except we know how

much it is to the west of the latter place. For instance, an

occultation is observed at Cambridge, at 11h: the Moon's lati

tudes are expressed in the Nautical Almanack for Greenwich,

noon and midnight : we must not, therefore, by interpolation,

compute the latitude corresponding to 1 lh, but the latitude to

1 lh minus corresponding the time due to the difference of the

longitudes of Greenwich and Cambridge. The determination,

however, of such difference is one of the special uses of the

problem. The thing, therefore, requisite to be known in the

process of solution, is the result of such process. We must,



therefore, assume some quantity as the difference, and compute,

agreeably to such assumption, the Moon's latitude and longitude :

thence, as it is pointed out in the preceding pages, we compute

the distance of the Moon's centre, and of the star on its disk :

such distance is the Moon's semi-diameter. But we can also

determine the Moon's semi-diameter, by interpolating between

the values expressed in the Nautical Almanack, for noon and

midnight, its value corresponding to" 1 lh minus the assumed time

of the difference of the longitudes of Greenwich and Cambridge.

Should that difference be assumed, as it probably will be,

erroneously, the two values of the semi-diameter compared

together will not agree. The quantity of their disagreement will

become an index of the error of the original assumption, and the

means of amending it : and, by repetition of process, of com

pletely correcting it.

By computing the parallaxes in longitude and latitude, we

have, in the preceding pages, deduced the Moon's apparent

longitudes and latitudes from her true, and thence the apparent

distance of the Moon from the star. If we reverse the process,

we may deduce the true distance of the Moon and star : and

some authors make the same use of the true, as, according to the

above explanation, may be made of the apparent, (see Vince,

vol, I. pp. 334, &c.)



CHAP. XXXVIII

On the Transits of Venus and Mercury over the Sun's Disk.

We have already stated in p. 736, that the phenomena of

eclipses, occultations, and transits are very nearly alike in their

general circumstances, and exactly alike in their mathematical

theories. In those theories, the essential problem to be solved

is the apparent angular distance of two heavenly bodies, in ap

parent proximity to each other, when viewed by a spectator on

an assigned station on the Earth's surface.

In an eclipse and occultation, the Sun's parallax is supposed

to be known : were it supposed to be known in a transit, there

would be an additional circumstance of similarity between its

theory and the theories of the former phenomena : for, they would

have the same object, and would equally serve to the determination

of the longitudes of places. And, in point of fact, this is the

present state of the case. One transit of Venus has already

answered the special purpose -of determining the parallax of the

Sun, and future transits may be used, either to confirm the

accuracy of that determination, or for the general purposes

which eclipses, in their extended signification, (see p. 736,) are

made subservient to.

It is the object of the present Chapter to explain the use that

has been made of the transit of Venus; or, to shew the special use

of that phenomenon in determining the important element of the

Sun's parallax.

The Sun's parallax is the angle subtended at the Sun by the

Earth's radius ; which angle can be found, if another subtended
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,

by a chord, lying between two known places, can. And to find

this latter angle is the object of the method given in Chap, XII,

pp. 325, &c. If we refer to that Chapter we shall find the

angle ASB to be the object of investigation. Now, in its instru

mental measurement, an error of three or four seconds may be

committed ; which, in the case of the Moon, the parallax of which

 

is about 1°, is of little consequence, but a probable error of that

magnitude in the case of the Sun, the parallax of which is less than

nine seconds, would render the result of the method so uncertain,

as entirely to vitiate it.

Retaining the principle of the method, Astronomers have

sought to correct its error, by computing, instead of instrumentally

measuringj an angle such as ASB, or an angle from which it may

be immediately deduced.

Suppose, for the sake of illustration, S to be a point in Venus's

disk, and BS continued to be a tangent to the Sun's disk : then

the direction of a line AS would be to the left of the Sun's disk.

In other words, the moment of contact or ingress would have

arrived to a spectator at B, but not to a spectator at A. It would,
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how ever, arrive some minutes after, when by the retrograde motion

(see p. 556,) of Venus, the line AS, always a tangent to the disk

of Venus, should become one to that of the Sun. Suppose AS,

in this latter direction (to the right of its present position) to

intersect BS produced in some point S' situated in the Sun's

disk: then, the angle SAS' is proportional to the time elasped

between the contacts at B and A : which time is known from

observation and the ascertained difference of longitudes of the

places B and A : suppose it t, and let // be the horary approach

of Venus to the Sun (about 240"); then,

1 : t :: h : ht, which is equal to the angle SAS',

which is by these means computed.

SAS' being known, SS'A, or AS'B, may be determined from

the known ratio between SA and SS .

The preceding is a very imperfect description of the method

that was actually used in the problem of the transit of Venus. But

it shews the principle of the method and the reason of its superior

accuracy : for, since the time of contact can be observed to be

within three or four seconds, or since the limit of the error in time

is about three seconds, and since the excess of the horary motion

of Venus above the Sun's is 240", that is, 4" in lm, or — in 1s.

15
an error of 6s (3s at each place of observation) would only cause

6".
an error of — in the estimation of the angle SAS', and an error in

15

the estimation of SS'A, (on which the parallax depends) less in

the proportion of SA to SS', that is, in the case of Venus, of

one to two and a half nearly.

The imperfection of the method, as it has been described,

consists in this ; that it requires to be known, what it is very

difficult to determine, the difference of the longitudes of the

places A and B. For, t is the difference of actual or abso

lute time, which depends on the reckoned time at each place

of observation, and the difference of the longitudes of those

places. If the contact was observed at Greenwich at 3h 40m, and
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at a place 15° east of Greenwich, at 4h 41m, the difference

in absolute time would be only lm ; since 1 , in the reckoned time,

is entirely due to the difference of the meridians. We shall, how

ever, in the subsequent pages, see a method of getting rid of the

imperfection which we have just noted.

The longitude of the Cape of Good Hope, which had been

long the station of an European Colony, and where the transit of

1761 was observed, was known to a considerable degree of

accuracy. That of Otaheite, where it was expedient to observe

the transit of 1769, was not known. And, from the difficulty of

ascertaining with sufficient precision this nice condition of the

longitude, Astronomers, by modifying their process of calculation,

have got rid of it entirely. Instead of observing the ingress, they

observe the duration of the transit, and from the difference of

durations, at different places, deduce the difference of the paral

laxes of Venus and the Sun, and then the Sun's parallax.

The difference in the durations of transits does not amount

to many minutes. To make it as large as possible, it is ex

pedient so to select the places of observation, that, at one, the

duration should be accelerated, at another, retarded beyond the

true time of duration ; which true time is supposed to be that

which would be observed at the Earth's centre.

If P were Venus, e the Earth, W a place towards the north

pole (Wardhus for instance) and T (Otaheite) towards the south,

and V'V, &c. the Sun's disk, then the true line of transit, seen

from the centre e would be VU: from W, v u would be the line ;

from T, V'V. If T should be the true duration of the transit,

or the time of describing VU, then the time of describing v u

nearer to the Sun's centre than VU, would be T + t : of describ-

 

5 D
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ing V'V more remote than VU from the Sun's centre, T —

and, accordingly, the difference of the durations of the transits

seen from T and W, would be T+t r- (T- t')=it + t'. This, as

it is plain, is entirely the effect of parallax, and, as it is also plain,

the effect is compounded of the parallaxes of Venus and the Sun :

since changes in the distances of P and of the Sun will produce

changes in the dimensions of the lines V'V, vu.

We will now proceed to treat the subject mathematically, and

to deduce, by means of a simple equation, the difference of the

parallaxes of Venus and the Sun. That difference being deter

mined, the values of both the parallaxes may be deduced by

means of Kepler's law relative to the periods of planets, and their

distances from the Sun.

In the subsequent mathematical process we shall have a proof

of what we have more than once asserted, namely, the similarity

of the mathematical theories of eclipses, occultations, and transits.

For, T, T + t, T — t' will be computed by means of the formula

employed in Chap. XXXV. The only difference in the com

putation of T and of T + t consists in assuming in the former,

the angular distances seen from the Earth's centre and given by

the Astronomical Tables, and in the latter, those angular distances

corrected for the effects of parallax in longitude and latitude.

In the above-mentioned formula, the time and the apparent

angular distance of two heavenly bodies were involved. And the

diagram employed on that occasion will suit the present*. Instead

of E and M representing the centres of the Earth's shadow and

f ( B * /1

M

* The same diagram will serve for an occultation, M being the

Moon, and E the star.
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the Moon, let them represent the centres of the Sun and Venus ;

then, EM will represent the distance of their centres previous to

a transit, or after one : and, the Tables of the Sun and of the

planets, will, as in an eclipse (see p. 725,) furnish us with quantities

analogous to X, m, n, Sac. Suppose then, at the time ofconjunction,

5 's lat X horary motion in lat n

$? 's long / horary motion in long m

© 's horary motion in long s.

If we form an equation, precisely as the one in p. 722, was

formed, we shall have

.+- 2Xnt . siu.*0 = (c2 - Xs) . sin.8 0,

whence, t = - f - X sin.* 0 ± sin. 0 V(<?— Xs cos.* 0)1

n u

f being the time from conjunction, and c the distance of the

centres.

In this equation substitute, instead of c, the sum of the appa

rent semi-diameters of the Sun and Vants, and the resulting time

will be that of the first or last exterior contact : substitute the dif

ference, and the resulting time will be that of the first or last

interior contact. The duration of a transit is the difference between

the times of the last and first exterior contacts, and is to be found

exactly as the duration of an eclipse was in pp. 726, &c.

The times which we have mentioned, as resulting from the

preceding equation, would be noted by a spectator in the Earth's

centre : they belong to the points V, U, and the line VU. But

to a spectator at T, for instance, the contact instead of at V

would appear to take place at V ; and, it would appear to happen

at a time, different from (Tr) the computed time of its happening

at V, at I" + t', for instance, t' being a small quantity and

entirely the effect of parallax.

The latitudes and longitudes of Venus and the Sun continually

altering, those quantities at the time T' + t' from conjunction

would be different from what they were at the time T' : their

change would be proportional to t' . The time T' being computed

from the preceding equation, the corresponding latitudes and
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longitudes may be taken from the Tables, or may be easily com

puted from their values at the time of conjunction. At this latter

time, we have supposed the latitude of Venus to be X. It is

convenient for us to use that symbol (X) to denote the latitude at

the time T of contact; let also the corresponding longitudes of

Venus and the Sun be /, and the horary motions m, n, s:

then (see p. 722,) at the time t' from contact,

? 's long I + mt' .... S 's lat X + nt',

G 's long /' + st'.

And accordingly, the distance of the centres (such as EM) would

be the hypothenuse of a right-angled triangle, of which the sides,

are, respectively, (I + mt') — (/' + st'), and X + nt'.

These angular distances belong to the centre of the Earth ; but

when they are diminished, as in the case of an occultation, (see

p. 746,) by the parallaxes in longitude and latitude, they are made

to belong to a spectator on the Earth's surface. Let the paral

laxes in longitude be a, a'; in latitude ; then, the sides of

the right-angled triangle are

{I + mt' - a) - {V + st' — a'), and X + nt' - §+ S',

or I — V + {m - s) t' — (a - a'), and X + nt' — (S - $').

The hypothenuse is the distance of the centres. But, the

time is that at which a contact of the limbs of the Sun and Venus

is seen; if the contact therefore be an internal one, (when the

whole of Venus's disk is just within the Sun's), the distance will

be the difference of the semi-diameters of Venus and the Sun:

let it equal A , then,

A3= [Z - I' + (m - s)t' + a' - aj + (X + nt' 4- & - if.

In which expression, a — a', 5 — and t' are very small quan

tities; rejecting therefore their squares and products in the ex

pression expanded;

Aa = a-/')2 + 2 (/-/') x („, «)f' 2 (/-/') x (a -a')

(«) + X2 + 2Xni' — 2X(£ - 8').

But, since by hypothesis, (see 1. 6,) I, I', &c. are the longi

tudes, &c. at the time of contact seen from the centre, we have

A' = (/-/')2 + Xa,
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thence deducing t' from (a),

t> = (i ~ l>) (a ~ g,) + X(S ~ ^

(/ — /') {m — s) +\n

In this expression, /, V, A, m, s, n, are to be computed from the

Tables, and the parallaxes in longitude and latitude (a, a',

are to be computed from the expressions in pages 743, &c. that

is, if P, P represent the horizontal parallaxes of Venus and the

Sun,

P . sin. h . sin. k , P'. sin. h . sin. k'

a — , a — ,

cos. lat. ? 1

§ = P cos. h . cos. ? 's app. lat.

— P sin. h . sin. ? 's app. lat. X cos. ^—-—^ ,

S'= P' cos. h (since © 's apparent latitude is nearly = 0.)

At the time of a transit, Venus's latitude is very small, and her

longitude is nearly equal to that of the Sun, the coefficients of

P, P', therefore, in the expressions for a, a', and for 5, must

be nearly equal. Let these coefficients be a, a , b, b respec

tively, then

l')(aP-a'P') + X(6P -b'P')

* (l — l')(.m - s) + An 5

or, since a P - a' P' = a' (P - P') + (a - a) P, and (a - a) P,

as well as (Jb-b')P, are very small quantities and may be

neglected, we have

t, a'l-a'l' + \b' x (p_p,)<

(I — I') (m— s)+Xn

From this equation, if should be known from observation,

P — P', the excess of the parallax of Venus above that of the Sun,

(which is the object of investigation,) could be determined. We

must consider, therefore, by what means t' may be ascertained.

The Astronomical Tables, from which the quantities, /, I', &c.

are supposed to be taken, are computed for Greenwich. At
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such a place, let the time of the conjunction of Venus and the

Sun be T; then, at any place to the west of Greenwich and distant

by a longitude = M (expressed in time), the reckoned time, at

which the conjunction would be seen from the centre of the

Earth, would be T— M; the time of internal contact, seen also

from the centre, would be T— M-f T' ; and the time, at which

the contact would be seen from the place of observation (whose

longitude is M) would be

T-M+T'+ t'.

Now, the observer, by means of his regulated clock, is able

to note this time ; suppose it H', then

t' = H' — T+ M— T', and consequently,

H'-T+M~T = "'1-?1' x (P-P')(I- l)(m-s) +Xm v

=f(P — P ), f representing the coefficient of P—P'.

From this equation P—P' could be determined, if M, the

longitude of the place, were known. We must, however, for

the reasons alledged in p. 757, seek to dispense with that

condition. This is simply effected by observing the last interior

contact, that is, the one immediately preceding the egress of

Venus's disk from the Sun. Let the quantities analogous to T',

H', and belonging to this last contact be T", if", and the

coefficient of P — P' (analogous tof) bef ; then,

H' — T + M - T' =J\P - P')

H" -T+ M - T"=f'(P - P'),

consequently,

H' - H" - (I" - T") =.(/- f) (P - P') . . . '. (A)

andP-P-^^-^-T_^-

This expression is deduced by observing at the same place

the times of ingress and egress. If we take a second place of

observation, then there will result an equation similar to (A), such

as

if, - - <r - t") = (/ -/„) (p - n
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and subtracting this from the former (Ji),

(H'-H") - (H-HJ = Uf-f)-.(f~fj] x (P-P')(A')

whence, we have the value of P — P', obtained from the dif

ference of the durations of the transit*.

The parallax is inversely as the distance ; but, by observation

and the Planetary Theory, (see Chap. XVII,) the ratio of the

distances of the Earth from Venus and the Sun, is known, and

therefore the ratio of P to P'; let it be as g : 1 , and let the coeffi

cient of P — P' in (A') be q, the left hand side being = A ; then

(g- l)qP' = A,

and P> = .

? (g - 1)

This is the value of P' when the Sun is at some distance p

from the Earth. At the mean distance (1)

O 's horizontal parallax (nearly his mean) = pP'.

The preceding formula, applied to the transit of Venus which

happened in 1769, would give

P - P' = , 1416 x l" = 2l".5428.

65.72962

And the Astronomical Tables, at the epoch of the obser

vations, gave

©'s distance from © (p) 1.01515

? 's distance from © 72619

72619

and therefore g — 1 = , and
8 28896

P' the Sun's parallax = 2l".5428 x 28896 = 8".5721
F 72619

* This last operation, although unnecessary in the preceding simple

statement, is not so in practice : since, by means of it, the errors of the

Tables introduced into the calculation as arbitrary quantities are got rid

of.
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and(seep.763Jl. 14,) the © 'shor. par.=8".5721xl.01513= 8".7017*

tained from observations on the times of contact. If that nume

rator had been 1416 — 65.72962, the quotient, instead of

being 2l".5428, would have been 20".542S. In other words, a

difference of 65s.72962, made in noting the times of the transit,

* The equation (see p. 763,) for determining the difference of the

parallaxes of Venus and the Sun, was obtained by observing, at different

places, the differences of the durations of the transits. The transit of

1767, was observed at several places, and an exact result was endea

voured to be obtained, by taking the mean of several results. The

following are the results and their mean according to M. Delambre :

In the fraction

1416

( = P — P) the numerator is ob-

65.72962

Sun's

Parallax.

Difference of

Parallaxes.

Taiti, (Otaheite) Wardhus ..

Taiti, Kola

Taiti, Cajanebourg

Taiti, Hudson's Bay

Taiti, Paris and Petersburgh

8.7094

8.5503

8.3863

8.5036

8.7780

21".56l

21 .166

20 . 762

21.066

21 . 730

California, Wardhus

California, Kola

California, Cajanebourg

California, Hudson's Bay

California, Paris and Petersburgh ....

8.6160

8.3880

8.1636

8.1521

8.7155

21 . 330

20 . 765

20 . 208

20 . 284

21 .576

Hudson's Bay, Wardhus

Hudson's Bay, Kola

Hudson's Bay, Cajanebourg

Hudson's Bay, Paris and Petersburgh

9.1266

8.4589

8.1730

9.2491

22 . 592

20.941

20 . 233

22 . 897

Here the mean of the first 5 results is, nearly, S".59

8.41

8.75

8 .57.

of the next 5

of the next 4

of all
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would have produced an error of one second only in the difference

of the parallaxes, and consequently, an error in the Sun's parallax

less in the ratio of 28896 to 72619, or (of 2 to 5 nearly). Or,

what amounts to the same thing, it would have required an error

in time equal to 164s ^= 65.7 x to have produced an error

of l" in the value of the Sun's parallax.

The special Astronomical use of the transit of Venus is, as it

has been observed, the determination of the Sun's horizontal

parallax. But, that important element being once determined,

the transit of an inferior planet, even with regard to its use and

object, may be made to enter the class of eclipses and occul-

tations, and, like them, be made subservient to the determination

of the longitudes of places.

That a transit may be adapted to this latter purpose, is evident

from the equation of p. 762, namely,

H' - T + M - T' =/.(P - P'),

for in that, if P — P' be supposed to be known, M, the longi

tude of the place of observation, is the only unknown quantity.

Transits, however, are phenomena of such rare occurrence,

that their use, in this latter respect, is very inconsiderable *.

.The fixed stars, the Sun, the planets, and the Moon, with

their peculiar and connected theories, have already been treated

of. There is another class of heavenly bodies, called Comets,

* The transit of Mercury was used by M. Kohler to determine the

longitude of Dresden, see Phil. Trans. 1787, p. 47: and by Short to de

termine the difference of longitudes of Paris and Greenwich, (see Phil.

Trans. 1763, vol. LIII, p. 158.). M. Delambre, however, and properly,

says ' Le mouvement relatif est si lent et les observations de 1' entree et

de la soiree sont en consequence si peu susceptibles de precision qu'on ne

doit recourir a ce moyen que faute d'autres' (Mem. Inst. tom. II, p. 4+2,)

see also Phil. Trans, vol. LIII, pp. 30, and 300 : also vol. LII : Mem.

Acad. Paris, 176l : Phil. Trans. No. 348, p. 454, (Halley's account) and

Horrox's Venus in Sole visa.
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which ought not to be passed over. Yet their strictly mathe

matical theory is so difficult, that, instead of attempting to put

the Student in possession of it, we shall content ourselves with

acquainting him with some of its general circumstances, and with

referring him to ampler sources of information.



CHAP. XXXIX.

On Comets.

Comets are bodies occasionally seen in the heavens, with ill-,

defined and faint disks, and usually accompanied with a coma or

stream of faint light in the direction of a line drawn from the Sun

through the Comet.

Comets resemble the Moon and planets in their changes of

place amongst the fixed stars : but, they differ from them in

never having been observed to perform an entire circuit of the

heavens. There are also other points of difference ; the incli

nations of the planes of their orbits observe not the limits of the

Zodiac, as the planes of the orbits of the Moon and planets do ;

and, the . motions of some of them are not according to the order

of the signs.

Comets, like planets, move in ellipses, but, of such great

eccentricity, that thence has arisen a ground of distinction, and

Comets are said to differ from planets, because they move in

orbits so eccentric. The eccentricities of those that have been

observed have been found so great, that parabolas would nearly

represent them.

What are called the elements of a Comet's orbit are less in

number than those of a planet's , being only five. It is im

possible from the observations made, during one appearance of

a Comet, to compute the major axis of its orbit and its period,

and consequently the area described by it in a given time : what

Astronomers seek to compute, and what they with difficulty

compute, are the perihelion distance ; its place, or longitude ;

the epoch of that longitude ; the longitude of the ascending node,

and the inclination of the orbit.
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The elements of the orbits of planets are capable of being

determined by observations made on the meridian : by longitudes

and latitudes computed from right ascensions and declinations.

Comets, however, require observations of a different kind : by

the rotation of the Earth they are brought on the meridian, but,

(from their proximity to the Sun whilst they are visible,) not

during the night, when alone the faintness of their light does not

prevent them from being discerned. They must therefore be

observed out of the meridian; and, in that position, the dif

ferences between their right ascensions and declinations and those

of a known contiguous star must be determined.

It is difficult to make these latter observations with accuracy

by reason of the doubtful and ill-defined disk of the Comet ; and

a small error in the observations will materially affect the ele

ments of the orbit.

The rigorous solution of the problem of the elements of a

Comet's orbit requires three observations only. But then the

solution is attended with so many difficulties, that in this, as in

other like cases, Astronomers have sought, by the indirect methods

of trial and conjecture, to avoid them. If, (and this case always

happens) more than three observations are obtained, the redundant

ones are employed in correcting and confirming previous results.

The periodic time, as we have observed, cannot be determined

from observations during one appearance of a Comet. If known,

it can only be so, by recognising the Comet during its second

appearance. And the only mode of recognising a Comet, is by

the identity of the elements of its orbit with those of the orbit of

a Comet already observed. If the perihelion distance, the positions

of the perihelion and of the nodes, the inclination of the orbit,

are the same or nearly so, we may presume, with considerable

probability, that the Comet we are observing, has been previously

in the vicinity of the Suu ; and that, after moving round by the

aphelion of its oval orbit, it has again returned towards its peri

helion distances.

Comets not having been formerly observed with great accuracy,

it so happens, that the period of one alone, that of the Comet
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observed in 1682, 1607, and 1531, is known to any degree of

certainty. Its period is presumed to be about 76 years. As

suming the Earth's mean distance to be unity, the perihelion

distance of the Comet was 0.58, and the major axis of the orbit

35.9. The inequalities which are noted in its period are supposed

to arise from the influence of some disturbing forces*.

The chief business of the present Treatise, hitherto, has been

with calculations founded on observations made on the meridian.

But, there are many important processes dependent on angular

distances observed out of the meridian : such, for instance, as

those for ascertaining the latitude and longitude of a ship at sea.

The nature of the observations, in these cases, requires a peculiar

instrument ; which, besides being adapted to the measuring of

angular distances out of the meridian, may be held in the hand of

the observer, and used by him, even when he becomes unsteady

by the motion of the vessel. The description and use of such

an instrument will be explained in the ensuing Chapter.

* On the subject of Comets, see Laplace, Mec. Celeste, Liv. II, p. 20,

&c. Biot, tom. Ill, Add. p. 186, Englefield : Cagnoli, p. 429, Newton,

Arith. Univ. Sect. 4, Chap. II, Prob. 30.



CHAP. XL.

ON THE APPLICATION OF ASTRONOMICAL ELEMENTS AND

RESULTS, DEDUCED FROM MERIDIONAL OBSERVATIONS,

TO OBSERVATIONS MADE OUT OF THE MERIDIAN.

On Hadley's Quadrant and the Sextant.

The larger figure is intended to represent a Sextant, as it is

usually fitted up, with its handle H, the telescope T, the micro

 

scope M moveable about a centre, and capable of being adjusted

so as to read off the divisions on the graduated limb AB. The
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less Figure is intended as a sketch of the larger and for the pur

pose of explaining its properties.

LCG and N (in the large Figure) must be supposed to repre

sent the edges of two plane reflectors ; the planes of which are

perpendicular to the plane of the instrument in which the gra

duated limb and the connecting bars lie. The upper part of the

reflector N, which is fixed, and called the Horizon glass, is trans

parent and free from quicksilver, as in n (in the small Figure)

which is represented as N appears when viewed through the tube

of the telescope T. The other reflector LCG (the index glass)

is attached to the limb and index 1, and with them moveable

round a centre placed near C. Now, the instrument is so con

structed that, when the index J is moved up to A and points to o

on the graduated arc, the planes of the two reflectors LCG and

N are exactly parallel to each other. In the small Figure, Ig

represents this position of LG.

In this position of the index J and the reflector LG, if the eye

at E (small Figure) look through the upper part of the horizon

glass at N, and perceive a distant object such as a star (sk), it

will also perceive the image of the same star reflected from the

under and silvered part of N. For, by hypothesis, the reflectors

are parallel : and since the star is extremely distant, two rays

from it (a N, bg) falling on N and LG must be parallel ; there

fore the latter ray, after two reflections, the first at LG, the second

at N, must proceed towards the eye in the direction of a N

produced.

Suppose now, the eye still looking through the telescope at

the same object ( *), the index I, the limb G I, and with them

the reflector LCG, to be moved from A towards B (LGI is their

position in the small Figure) ; in this case the star sfc can no

longer be seen by two reflexions, but some other object such as

the 5 may : and if so, two objects, the * and 5 , would be

seen nearly in contact ; the former in the upper part of the horizon

glass N, the latter on the lower silvered part.

In consequence then of this translation of the index I from A,

where it was opposite o, to another position between A and B ;
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two objects and 1i ) inclined to each other at a certain angle

(bgc in small Figure) are brought into contact. If, therefore,

the arc moved through (AI in the small Figure) bore any relation

to the angular distance of the two objects, and we could ascertain

such relation, we should, in such case, be able by measuring

A I, or by reading off its graduations, to determine the angular

distances of the two observed objects. This relation we will

proceed to investigate.

2> '

. C

a- // •

NY

if

In the first position (LG) both the direct and the reflected rays

from ♦ are seen in the direction of the telescope (T); the direct

ray from * is always seen in the same direction. But, in the new

position, the reflected ray (in order that J) may be seen) must

also be seen in that direction ; therefore, the ray must come from

the under part of JV in the same direction : and therefore, since

N is fixed, the ray must always be incident on N in the same

direction, and consequently be always reflected from LCG in the

same direction. What we have then, to determine is reduced to

this. To find the inclination of two incident rays, such, that the

position ofthe reflector being changed {from LG to \ %for instance,)

each shall be reflected into the same direction.

Let the first incident ray (and consequently the reflected ray)

be inclined to the reflector at an angle = A : let the reflector be

moved through an angle = 6, and towards the reflected ray : (for

instance, from the position glto GL in the small Fig.), then the angle

between the reflected ray and the plane in its new position = A — 0

between the first incident ray and the plane =A+6.
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But, by the laws of reflection, the second incident ray must form

with the reflector, an angle equal to that which the reflected ray

does ; an angle, therefore, = A — 9. Now, the difference be

tween the angles which the incident rays form with the same

position of the plane, is no other than the inclination of the in

cident rays, equal, therefore, to

(A + 6) - U - 6), or, 20.

This is the important principle in the construction of the in

strument. For, suppose the arc A B to be one-sixth part of a

circle, and the index I, when the two objects are seen hi contact,

be one-third of the way between AB ; then, the inclination of the

two reflectors (for the reflector N is always parallel to the first

position Ig) would be one-third of one-sixth of 360° or 20° : and,

accordingly, the angular distances of the two objects would be 40°.

Instead of dividing AB into a number of degrees proportional to

its magnitude (60° for instance, if jlJB=gth circumference), it is

usual to divide it into twice that number. In such a graduation

the number of degrees, minutes, &c. intercepted between o and

the index will at once determine the angular distance of the two

objects.

The objects must be brought into contact : in the case of a

star and the Moon, the former must be made just to touch the

limb of the latter : in the case of the Sun and Moon, their two

limbs must be made to touch.

For the sake of illustration, we have supposed the two objects

to be a star and the Moon : and, in practice, those are fre

quently the observed bodies. But, the instrument is capable of

measuring the angular distance of any two objects lying in

any plane : the Sun and Moon, for instance, and in such cases

there are certain darkened glasses, near to N, and between N

and L (see Fig.) contrived for the purpose of lowering the Sun's

light to that of the Moon's, or the Moon's to that of a star's.

The uppermost and lowest points in the disks ofthe Sun, or ofthe

Moon, may be considered as two objects ; therefore, their distances,

which are the diameters of the Sun and the Moon, may be mea

sured by the described instrument. Instead of the points in the

direction of a vertical circle, we may observe two opposite points

5 r
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in an horizontal direction : and, accordingly, we can measure the

horizontal diameters of the Sun and Moon.

If we make a star, or the upper or the lower limb of the Sun

or Moon, to be one object, and the point in the horizon directly

beneath to be the other, we can measure their angular distance,

which, in these cases, is either the altitude of the star, or the

altitude either of the upper or the lower limb of the Sun and

Moon. In this observation, the horizon is viewed through the

upper part of the reflector N, which is the reason why that is

called the Aorizow-glass. At sea, where the horizon is usually

defined with sufficient accuracy, the altitude of the Sun or of a

star may be taken, by the above method ; but at land the in

equalities of the Earth's surface oblige us to have recourse to

a new expedient, in the contrivance of what is called an Artificial,

sometimes a False Horizon. This, in its simplest state, is a

basin either of water, or of quicksilver : to the image of the Sun

or other object seen therein we must direct the telescope T, and

view it directly through the upper part of N, and then move,

backwards, or forwards the limb and index, till by the double

reflexion, the upper or the under limb of the reflected Sun is

brought into contact, or exactly made to touch the under or the

upper limb of the image of the Sun seen in the Artificial Horizon.

The angle shewn by the instrument is double either of the alti

tude of the Sun's upper or under limb : subtract or add the Sun's

diameter, divide by two, and the result is the altitude of the Sun's

centre : all other proper corrections, instrumental as well as

theoretical, being supposed to be made.

It is evident from the preceding description, that the plane of

the instrument must be held in the plane of the two bodies, the

angular distance of which is required : in a vertical plane, there

fore, when altitudes are measured ; in an horizontal, when, for

instance, the horizontal diameters of the Sun and Moon are to be

taken. In the management of the instrument, this adjustment

of its plane, or the holding it in the plane of the two bodies, is

the most difficult part.

The instrument is to be held by the handle H, -and generally

is, in the left hand of the observer : his right being employed in
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moving and adjusting the index, its connected limb, and the re

flector LCG. Its great and eminent advantage is, that it does

not require to be fixed, nor that the observer using it should him

self be steady. It is the chief instrument in Nautical Astronomy :

since by its means alone, the position of a vessel at sea may be

determined.

The instrument represented and described in this Chapter is,

the sextant : which is an improvement on the quadrant, called,

from its inventor, Hadley's Quadrant*. Besides these, on the

same principle, but of better contrivance, is the reflecting circle t:

also, Borda's reflecting repeating circle, on the principle of

Mayer's. (See Mem. Gottingen, tom. II, also Tabulee Motuum,

&c. 1770).

We subjoin two instances of the uses of the sextant.

Angular Distance of the Sun's Centre, and of the Horizon (at

Sea,) or (see p. 774,) Altitude of the Sun's Centre.

Alt. Q 's lower limb 49° 10' 0"

(a) © 's semidiameter 0 15 51

49 25 51

t Refrac. (Chap. X.) 0 0 43

true alt. © 's centre 49 25 8

Distance of eastern and')

western limbs, or ©*s>3l'42"

horizontal diameter J

(a) © 's semi-diameter 15 51

Altitude of the Q's Centre, by means of the Artificial Horizon,

(see p. 774,)

By inst. © 's upper limb 100° 2' 47"

Apparent altitude 50 1 23.5

(b) © 's semi-diameter 0 15 50

49 45 33.5

Refraction 0 0 43

True alt. © 's centre 49 44 50.5

© 's horizontal diameter 3i' 40"

(b) © 's semi-diameter 15 50

• Described in the Phil. Trans. Year 1738, No. 420, p. 147.

t Invented by Mr. Troughton : for a description of it, see Rees'

'Encyclopedia, new edit. Art. Circle.

t The Nautical Tables of Refraction include within their results the

correction for the Sun's parallax.
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The sextant (using that as the generic name of like instru

ments) is, as it has appeared, a secondary instrument, but capable

of performing, in an imperfect degree indeed, several astronomical

operations. It measures, and generally, angular distance. It

affords us, therefore, the means of determining the latitude of a

place, from the meridional altitude of the Sun or a star, since such

meridional altitude is the angular distance of the horizon and star

when on the meridian. From two observed altitudes, one of which

is meridional, and the declination of the observed body, we are able,

by computation, to determine the time of the other observed altitude.

From the same data the azimuth of the observed body may be

determined. By means of the observed distance, between a star

and the Moon, we derive a method (a thing hereafter to be ex

plained) of determining the longitude of a place. So that, as it

has been said, the sextant is itself and alone a sort of portable

Observatory, capable of performing many astronomical operations,

but all imperfectly. This would naturally be expected on th t

ground, that an instrument of general uses cannot be excellent

when employed in special ones.

The succeeding Chapter will contain several methods adapted

to the uses of the sextant, and to the uses of instruments per

forming like operations.



CHAP. XLI.

On the Mode of computing Time and the Hour of the Day ; by

the Sun; by the Transit of Stars; by equal Altitudes; by the

Altitude of the Sun or of a Star.

We will preface the methods that ought to be considered, per

haps, as the special objects of this Chapter, with some that are

adapted to observations made on the meridian.

Transit of the Sun over the Meridian.

When the Sun's centre is on the meridian, it is true or appa

rent noon. It can be determined to be there, by means of a

transit instrument. With this, observing the contacts of the

Sun's western and eastern limbs with the middle vertical wire,

note, by means of the clock, the interval of time, and half that

interval added to the time of the contact of the western, or sub

tracted from that of the eastern, will give the time at which the

Sun's centre is on the meridian. For greater accuracy, the

times of contact of the Sun's limbs with the vertical wires to the

right and left of the middle one may be noted, (see pages 96, 8tc.)

The time thus determined is apparent noon; in order to

deduce the mean time, apply the Equation of time, (see Chap.

XXII.). For instance, the equation on Nov. 8, 1808, is stated

in the Nautical Almanack to be — 16m 3s. 7, therefore, when the

Sun's centre on that day was on the meridian, . the mean solar

time was 12h— l6m 3s. 7, or 11h 43m 56s.3; 12h being supposed

to denote the time when the centre of the mean Sun is on the

meridian.
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Transit of afixed Star; of the Moon; of a Planet over the

Meridian.

The mean Sun leaves a meridian and returns to the same in

24h, describing 360° 59' 8".3 ; 59' 8".3 being the increase of its

mean right ascension in that time. Since the mean Sun, by

its definition, moves equably, the time from mean noon must

be always proportional to the Sun's distance from the meridian.

If a star, then, were on the meridian, the time would be pro

portional to the Sun's angular distance from the star; it would

be proportional, therefore, to the difference of the right ascensions

of the star and the Sun, at the time when the star is on the

meridian.

The Sun's right ascension in the Nautical Almanack is expres

sed solely for noon, that is, when the Sun's centre shall be on the

meridian of Greenwich ; and such right ascension continually

increasing, will be greater when the star comes on the meridian,

and the Sun is more to the west, than it was at noon. In the

interval between the transits of the Sun and star, the former will

have moved to the east, and towards the latter, by an increase of

right ascension proportional to the interval. The angular distance

therefore of the star and Sun, or the difference of their right

ascensions, when the former is on the meridian, is

*'s JR — © 's JR (at preceding noon) — increase of © 's JR,

and to this angular distance is the time proportional.

The time from noon is nearly proportional to the right

ascension — © 's right ascension at noon ; therefore, the increase

of © 's right ascension is nearly proportional to that angle. If

a therefore denote the increase of the Sun's right ascension in

24h, we have the time —

*'s JR - © 's JR. — — x a,

24

(making D = ifc's JR — © 's JR.)
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Example.

A Star in Capricorn whose 1R = 20h 3Om T was on the Meridian

at Greenwich, Nov. 8, 1808. Required the time.

*'s M 20h 30m T

By Naut. Aim. © 's M (noon of Nov. 8.) . . 14 53 52 *

jf-'s M — O'sM(D) 5 36 15

Q's M Nov. 9 14 57 53.5

8 14 53 52

a = 0 4 1.5

* The Sun's right ascension is expressed in time, the Moon's in de

grees, and to be expressed in the hours, minutes, &c. of sidereal time,

24 1
must be converted into such at the rate of 15° for lh; for -rr- = — .

3oO 15

For facilitating this operation and its reverse, appropriate Tables are

provided ; but, it may be, nearly with as much ease, effected by dividing

and multiplying by 4. Thus, to convert 7h 2 lm 56s.2 1 = 7h 2 lm 56" 1 2"'

into degrees, &c. begin with the minutes, and take the fourth of them,

then, of the seconds, &c. reckoning the minutes of the quotient as

degrees, the seconds as minutes, &c. thus :

4)21m 56s 12'"

5° 3"

= 105

110 29 3

For the reverse operation, multiply by 4, reckoning the seconds of

the product as thirds, the minutes as seconds, &c.

Thus 36° 8' 34" 30"' (36° = 30 + 6 = 2h + 6")

4_

2h 24m 34» 18"' 0

or dividing 18"' by 6 to reduce it to a decimal, the product is

2h 24m 34s.3.

The reasons of the two operations are these ; in the first we ought

to multiply by 15, or, which is the same thing, by — ; therefore we

may divide by 4 and dispense with the multiplication by 60, by merely

raising the denomination of the quotient ; for 60 x 1" = 1'. In

the second _case, we ought to divide by 15, or which is the same

thing
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.'. apparent time =

5h 36° 15s s X 4m ls.5 = 5h 35m 19s.3,

24h '

and the mean time =

5h 35m 1gsi3 16m g. equation of time) = 5h lQ1" 17s.3.

Since the increase- of the Sun's mean JR. is 59' 8".3 in

24 hours, a meridian of the Earth describes, in that time,

360°
360° 59' 8". 3: therefore, it describes 360° in 24h X ^—r-77— ,

360° 59 8".3

or in 23h 56m 4s.09. This is the time of the Earth's rotation, or

the length of a sidereal day, expressed in mean solar time. If the

Sun, therefore, and a Star were together on the meridian on a

certain day, on the succeeding one, the Star would return sooner,

or more quickly, to the meridian by 3m 55*.9 of mean solar time.

On this account, stars are said to be accelerated. The acceleration

on mean solar time, therefore, when the Star and Sun are distant

by 360°, or by 24 of sidereal time, is 3** 55s.909 ; when distant

by 180°, or by 12h of sidereal time, it is lm 57".955 ; when distant

by 60°, or 4h, it is 39s.388, and generally the acceleration is

*'s M - © 's M
— V X 3m 55s.909*.

T 4
thing, we may multiply by — or ^ ; therefore, we may multiply

solely by 4, and dispense with the division by 60 by merely lowering

the denomination of the product ; for ~ = 1".

* Twenty-four sidereal hours = 23h 56™ 4s.092 of mean solar time,

and, 23h 56m 4s.092 (= 23h.93447) : 24 : 24 : 24h.065709,

in other words,

24 mean solar hours = 24h 3m 56s.55 of sidereal time.

Now acceleration for 24h is 3nl 55s.909

j. 3m 0 0.491

56s 0 0.153

.55 .0 0.15

, : '.. '. 3 56.558
and 3m 56s.55 deduced from 24* 3m 56.55 leaves 24!" of solar time, as it

ought to do.
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This is only another mode of expressing the rule given in

p. 778 ; instead of the increase of the Sun's mean right ascension,

iii 24 hours of mean solar time, we there took the real increase

between two apparent noons.

There are * Tables constructed for the Acceleration ofstars on

mean solar time, which render the computation of the hour, by

means of the transit of a fixed star, very easy ; the rule is,

the time = *'s M, — o's JR. — acceleration.

Thus, in the former instance,

30m

9

7"

57.3

5 20

0

9.7

52.3

19 17.4

The right ascensions of the Sun and of the stars, are always

expressed in sidereal time ; and care must be taken to distinguish

the hours, minutes, &c. of that time, from the hours, minutes, &c.

of mean solar time. If we subtract, from an angle expressed in

the symbols of sidereal time, the acceleration, the remainder is

expressed in mean solar time. Thus,

A star is to the east of the meridian 30° 30', or '2h 2' 0"

The acceleration, or the Sun's motion in 2h 2' . . 0 0 19-99

2 1 40.01

therefore in 2h lm 40s.01 of mean solar time, the star will be on

the meridian.

The time is proportional to a less angle than the difference

of the right ascension of the star and the Sun ; or, stars are

accelerated, because the Sun, in the interval between his transit

and that of the star, moves towards the latter. In the case of the

Moon then, the time must be proportional to a greater angle than

the difference of the Sun's right ascension on the preceding noon,

and the Moon's; or, the Moon must be retarded; because, in

* Zach's Tables cT Aberration, &c. Tab. XXVI.

5 s
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the interval between the transit of the Sun and that of the Moon,

the latter, by its greater motion in right ascension, has increased

its angular distance from the former. It would be easy, as in

the former case, to compute the hour from the Moon's transit

over the meridian, (or what is the same thing, to find the hour of

the Moon's transit), but instead of it, we will give a formula

applicable to all cases :

Let the increment of Q 's JR. in 24h be a

of a % , or of the 3) , or of a planet A.

Let also the difference between the right ascen- i

sion of the heavenly body and that of the Sun at>

the preceding noon, expressed in sidereal time, be)

then, if a = A, the hour of transit will be proportional to t

if a > A, to some less angle . . t — t

if a < to some greater . . . t + t.

Hence in the first case, which can only happen with a planet,

the time of transit is proportional to t ; that is, if the Sun's right

ascension when on the meridian be 30° 30', or 2h 2m, less than

that of the planet, the latter will be on the meridian at 2h 2m of

solar time.

In the second case, a > A

. a a — A
24 : a — A :: t - t : r : .\ t = t x .

24 + a — A

In the third case a < A

A - a

24 ; A — a :: t + t : t; .'. t = t x

Hence, in the second case, the time of transit = t — t x

24 + a - A

a- A

24 + a- A

i • , . A — a a — A

in the third, = t + t X , or, t — t x

24 + «- A 24 + a -A

therefore, in both cases,

the time of transit = t ( 1

V 24 + a - A/

(expanding) =t {l -^+Q^)* - (tZ±)*
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Hence in the case of a fixed star, when A = 0, the time of

• at / a \2

* s transit = t hi—) t — &c.

24 V24/

in which the two first terms (which are sufficient) give the rule

of computation used in p. 778, 1. 28.

In the case of the Moon, a = A ; therefore all the -terms

are additive, and

. A — a /A — «\2 , „

the time of I> 's transitj= t-H t + ( ) <+ &c.

24 V 24 /

In the case of a planet, a may be less or greater than A ; if

equal, then the time of transit = t, as before, p. 782, 1. 13.

There is one case which has not been mentioned, that in which

a planet is retrograde (see Chap. XXIII.)- In this case, the

approach of the Sun and planet is greater than that of the Sun

and a star, and the same approach, as if, instead of the Sun

having a motion in right ascension equal to a, we suppose it

endowed with a motion equal to a + A ; substituting therefore

in the form, p. 783, 1. 29, a + A instead of a time of the planet's

a + A /a + A\*

transit = t . t + I : ) . t - &c.

24 V 24 J

When the planet is stationary, its hour of passage is evidently

the same as that of a fixed star which has the same right ascen

sion.

Example.

Let it be required to find the time of the Moon's passing the

Meridian of Greenwich, June 13, 1791.

June 14, D 's M . . 15h 43m 32s © 's M . . 5h 30m 38"

13, ditto 14 42 32 ditto .... 5 26 29.1

June 13, D 's JR. . .

Q's M. .

1 1 0 = A 0 4 8.9= a

14 42 32 A . . ., . 1 I 0

5 26 29. 1 a . . .. . 0 4 8.9

9 16 2.9 = t 0 56 51.1 = 4—a
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• . r 9 10 y \of 3) 's transit.

A-a &>1Gr&.9 m „

t. , or- x56r5l\l 0 21 57

24 24

\ 24 /

(more cor-

9 37 59.9= {recttime.

0 0 49.8

24 '

9 38 49.7= ('fir"'

This last result (in apparent time) is sufficiently exact for

Astronomical purposes *.

9h ISm 29s

The second additional term2lm 54'.7= - s x 56m 5lM,

24h

is evidently the proportional part t of 56° 51s. 1, corresponding

to 9h Iff" 29"; the third additional term, 49". 8, =

/A-a\% A-a A-a 2lm 54'.7

I ) . t = x . t = r x (A — a)
V 24 / 24 24 24h

21m 54'.7

= — ' - x 56m 51".l is evidently the proportional part of

56m 51'. 1, corresponding to the time 21m 54". 7. This is the

explanation of the rule, as it is sometimes given by Astronomers,

which directs us to find a first, and a second proportional, and to

add them to the approximate time of the Moon's transit, in order

to find a more correct time. (See Nautical Almanack, 1811,

pp. 154, 155. Also Wollaston's Fasciculus, Appendix, p. 76.)

The hour, or the mean solar time, may be determined or

computed from the transit of a fixed star; and, much more exactly,

than from the transit of the Moon or of a planet. With regard

therefore to these two latter, the object of the preceding methods

* See in pp. 702, 705, &c. the time of the Moon's transit, found

from the observed sidereal time of the transit of its limb.

t Tables are computed for facilitating these operations.
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is to determine from Astronomical Tables, the times of their

transits, or passages over the meridian, rather than the hour of

the day from the transits.

Time determined by the Sidereal Clock.

If we can determine the time from the transit of a fixed star,

it is an immediate inference that we can determine it from the

sidereal clock. For, the clock is regulated by the observed

transits of stars, and when regulated, we may suppose it always

to indicate the right ascension of some imaginary star : Thus,

July 1, 1790, time by sidereal clock 13h 20m 15s

© 's mean longitude (by Tables) 6 54 35.86

6 25 39.14

* A cceleration (Maskelyne, Tab. XXI.) O 1 3.1

Mean solar time 6 24 36.04

The preceding computations of transits t> 8tc. have been made

for Greenwich, for which place our Astronomical Tables, and the

Nautical Almanack are constructed. For any other place, we

must account for the difference of longitude. Thus, to find, on

July 9, 1808, the Sun's right ascension at noon, at a place 35°

(2h 20m) east of Greenwich, we have only to find the Sun's right

ascension 2h 20m previous to noon time at Greenwich : which is

easily done by subtracting from the right ascension at noon the

proportional increase of right ascension in 2h 20m : thus,

July 10, • ©'s M 7h 17m 48s.5

9, ditto . 7 13 43.2

Increase of JR in 24h 4 5.3

Proportional increase in 2h 20m = . . . 0 33

.*. Sun's JR., at noon, at the required place, = 7h 17m 15s.5.

* The Acceleration is the Sun's mean motion in right ascension, and

by this latter title it is called by Maskelyne in the Table referred to. See

Wollaston's Fasciculus, Appendix, p 69.

t See another Example in pp. 705, 706, &c.
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A similar method must be used to find the Moon's right

ascension, or longitude, &c. at noon, at any given place, with

this difference, however, that the change of right ascension will

not be simply proportional to the time, but must be computed

more exactly by the differential method and series + x d!

+ x . d"-\- &c. ) See Trigonometry, p. 259, also pp. 70(5,

2 J

8tc. of this Work.

We now proceed to the methods of determining the time, by

observations made out of the meridian.

The Method of equal, or of corresponding, Altitudes.

The principle of the method is this : before noon, if the Sun be

the body to be observed, note its altitude and the time, and wait till

the Sun, in the afternoon, descends to an equal altitude ; half the

time elapsed between the two observations is, nearly, the distance

of each observation from noon.

The same process is to be used with a star or planet : half the

sum of the times between two equal altitudes observed, respectively,

in the east and west, is, in time, the star's passage of the meridian ;

exactly the passage of the star, very nearly that of the planet.

The sole condition respecting altitudes mentioned in the pre

ceding description is their equality. The corresponding altitudes,

therefore, may be taken at any distance from the meridian.

Hence, if we had ten altitudes in the east, and ten corresponding

ones in the west, half the sum of the times for each pair would be

the star's passage over the meridian : and, accordingly, one-

twentieth of the sum of the times would be the mean time of

it.

In this operation, as before when only one pair of altitudes is

employed, the result is only nearly true, if the observed body be

the Sun or a planet : since, in either case, the declination is chauged

during the interval of the observations.

With regard to the instruments necessary to the above opera
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tions, a sextant may be used, in default of better instruments, or

when, as would be the case at sea, fixed instruments cannot be used.

But the better instruments are astronomical quadrants, (see pp. 68,

&c.). declination circles, repeating circles, or any of that class

which are furnished with movements in azimuth, and will serve

as equal altitude instruments. With any instrument of such sort,

properly adjusted, clamp the telescope at a certain graduation of

the limb of the instrument, and a little above what, probably,

may then be the star's altitude, (the star being supposed to be in

the east). Turn the instrument towards the star, and note the

time when it passes through the middle point of the horizontal

wire, in the field of the telescope (the point a in the figure of

p. 58.). Note also the time when the star, after having passed

the meridian, descends to (a), the middle point of the horizontal

wire. Half the interval, as it has been already said, is the sidereal

time of the star's passing the meridian. But in order to procure

a mean result (see p. 786,) repeat the first operation (1. 6, 8tc.) after

the telescope shall have been elevated through a certain number

of graduations, 20 for instance. The second observation being

made, make a third, fourth, &c. the telescope, at each, being

raised through 20'. When the star shall have passed the meri

dian, go through the same operations, but in an inverse order.

For instance, Lacaille who constantly deduced his time from

corresponding altitudes, made the following observations of the

star Arcturus.

Altitudes. Times East and West. Sum of Times. Times of Transit.

 
 

14h 3m 51s.25

43

 

57

45.5

28 7 42.5 51.25

 

0

7 35

7.5
28 7 42.5 51 .25

44

 

2

5

18.5

24.5

28 7 43 51.5

112 3O 50.5

14 3 51.31
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Here the least hour-angle from one pair of observations is

14h 3m 51s.25, the greatest 14h 3m 51s.5, and the mean of 4 pairs

of observations is 14h 3m 51s.31.

If the telescope of the instrument be furnished with a micro

meter, having a wire moveable but always preserving its parallelism

to the horizontal wire (to hf in the figure of p. 58,) two obser

vations may be made at each position of the telescope, one when

the star is bisected by the moveable wire, the other when it is

bisected by the horizontal. The object of this is to procure a

greater number of results, in order to deduce a truer mean result.

The following Table, from Lacaille, contains the observations

made with the horizontal wire, and the subsidiary observations

made with the moveable one.

Altitudes.

Star's Time in

the East.

Star's Time in

the West. Sums of Times.

43° 10'|

10h 55m 47s

51.5

17h Hm
55s.5

50.5

28h 7m 42s.5

42

30 |
57

58

57 9 45.5

40.5

42.5

42.52

50 |
11 0 7.5.

12

7 35

30

42.5

42

44 30 |
2 18.5

23

5 24.5

20

43

43

7m 42s.5

sidereal time of star's passing the meridian 14 3 51.25.

Here the mean time of the star's passage over the meridian, is

14" 3m 51s.25, instead of 14h 3m 51s.31 as it was in p. 787.

If we examine the preceding Table, the greatest time of transit

from a single pair of observations is, (regarding only the seconds,)

51s.5, the least 51s.0. Lacaille, therefore, could rely on deter

mining, by his method and with his instrument, the time of the

star's transit to within a quarter of a second.

In the preceding illustration the star Arcturus was the body

observed. Should the Sun or a planet be the object, then instead
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of noting the time of bisection, as it is called, we must note the

time of contact of the upper or lower lirrfb with the horizontal

wire. But this is not the only circumstance of difference. The

Rule itself (see p. 786.) must be altered, since, from the change

of declination during the observations of two corresponding

altitudes, half the sum of times cannot be exactly the sidereal

time of the Sun's, or planet's passage of the meridian.

This point is easily explained. Suppose the Sun's noTth

declination to be increasing. In such a case the Sun, after

passing the meridian, will be longer in descending to the corres

ponding altitude in the west, than it was in ascending from the

eastern altitude to the meridian. Half the interval, therefore,

would have the effect of throwing the meridian too much to the

west, or, of retarding the time of transit. What remains then is

to investigate a correction of the time dependent on the change of

declination.

In a triangle ZPS, where Z is the zenith, P the pole, S the

Sun, the angle ZPS measures the time from noon, and by

Trigonometry, p. 139,

cos. - x sin. ZP*. sin. PS — cos. ZS — cos. ZP x cos. PS.

2

Now, - being the exact time from noon, if PS remain constant,

we have to ascertain the variation in - , from the variation in PS :

2

for that purpose, it will be sufficient to deduce the proportion

between the differentials or fluxions of these quantities; ac

cordingly, taking the differential of the above equation,

dt t t

.sin. - . sin. ZP sin. PS + d (PS) cos. PS cos. - .sin. ZP =
2 2 v 2

d . (PS) . sin, PS cos. ZP,

dt

or putting — = e, d{PS) = c, and reducing,

«=-5 (tan. decl". x cot. - — tan. lat. x cosec.
V 2 2'

5 a
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i

or

5 / fx

= ( tau. decl". x cos. tan. lat. J

sin. -

2

I / t\

= I tan. lat. — tan. decl". X cos. - ),

. t V 2/

sin. -

2

if the declination, during the observations, should decrease.

As this operation of corresponding altitudes is an useful one,

and of frequent occurrence, M. Zach has enabled us (see Nouvelles

Tables d" Aberration, &c. pp. 29, &c.) to compute the correction

e by means of two Tables. The two Tables are constructed

from the above formula thus modified. Let H be the latitude,

D the Sun's declination, and let instead of denoting the change

of declination during half the interval of the observations, denote

• « .St

the daily change s instead of o, therefore, we must write — x - .

24 2

If also - is to be expressed in hours and parts of an hour, we

a t . t

must write sin 15 X - , instead of sin. - , &c. So that e, expressed

2 2

in time, becomes

t

3 2

e =

360° .

sin. 15° X -

2

- ^tan. H - tan. D . cos. 15° . ' )

sin. 15° t

. tan. H
360" . sin. 15° . „ t 2

sin. 15° .»

2

$ tan. D tan. 150° t

36 . tan. 150° „ t 2

10. tan. 15°. ~

2

make a =

360° . sin. 15°
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tan. a

b

tan. /3

sin. 15° t

sin. 15° . -

2

jj tan. D

~ 36 . tan. 150° '

tan. 150° f

7"*
10. tan. 15°.-

aud

e = a tan. a tan. H b . tan. /3.

Here a, /3 depending on - (half the interval of the observations)

2

are taken from the same Table (Tab. XVIII.) the argument of

t . . .

which Table is and a and b depending on the Sun's declination

2

(and, therefore, on the Sun's longitude) are taken from a second

Table (Tab. XIX.) the argument of which is the Sun's true

longitude.

Thus, suppose with a sextant we took a double altitude

(76° 50') at 9h 47m 50s A. M.

and 3 0 14.5 P. M.

then since 2 12 10

is the distance of the first observation from noon,

f (5h 12m 14s.5)

or 2 36 7.25

is half the interval (~ ^ of the observations ; entering then

Tab. XVIII. with the argument 2h 36m 7s.25, we obtain

a = 46° 55' 16",

/3 = 10 30 5,

and entering Tab. XIX. with 5s 4° 33' 55", which, nearly, is

the Sun's longitude for August 28th, 1822, we have

a = 13".726,

b = 10 . 295.
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Hence, Falmouth being the place of observation (the latitude

of which is 50° 8'), we have

log. tan. 46° 55' 1 6" 10.0292440

log. tan. 50 8 10.0782398

log. 13".726 1.1375440

1.245027S . . No. + 17".58

log. tan. 10° 30' b" 9-2679669

log. 10".295 1.0126264

1 .2805933 .. No. — 1.908

15.67

This ( -f 15".67) then is the correction to be added to

^(9h 47m 50'+15h 0m 4s.o), or 12h 23m 57".25, in order to have

the time of apparent noon, which accordingly is

12h 24m 12s .92.

This is the result from one pair of corresponding altitudes :

but, as soon as one observation is made, preparation is made for

another by advancing (see p. 787,) the limb of the telescope on

the limb of the instrument, 10 or 20 minutes : for instance, in the

example from which the above times were taken, the second

double altitude was 77°, and the times before and after noon were,

respectively,

(see p. 791.) 9h48m3l'.5

and (adding 12h) 14 59 24.5

the half, or time from noon 12 23 58

the correction computed as above . . + 15.67

.*. the time from noon 12 24 13 . 67-

As in the case of the observed times of the corresponding

altitudes of a star, the mean of all the results is to be taken as

the true result. All the observations are subjoined.
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Place, Falmouth: Time, August 28, 1822.

Double

Altitudes.
Times A. M. Times P. M. Corrections. Times of Apparent

Noon.

76° 56'
9h 47*" 50s 3h 0m 4\5

2 59 24.5

58 45.5

58 5.5

57 26

56 47

56 6.5

55 25

55 6

54 46.5

47 16

46 34

45 51

44 30

43 47

43 4.6

15".67

.67

.65

.64

.62

.60

.58

.56

.55

.54

.40

.39

.38

.33

.31

.32

12" 24m 12s .93

13.67

13.65

13.09

13.92

14.50

13.93

13.56

13.55

14.29

14.0

13.99

13.08

14.73

14.06

13.72

77 0

10

20

30

40

50

48 31.5

49 10.5

49 49.4

50 30.6

51 10.5

51 50.2

78 0

5

52 31

52 50

10 53 11

10 0 41.280 0

10

20

40

50

1 23.2

2 4.4

3 28.8

81 0

4 10.5

4 52.8

We have given instances of a star and the Sun : the method

will also apply, with equal facility, to a planet. The second

Table (XIX.) of M. Zach cannot indeed be used because its

argument is the Sun's longitude, but it is easy to dispense with

it by computing the change of the planet's declination in 24 hours.

Thus,

tan. a . tan. H „ tan. D . tan. 8,

360°. sin. 15° 36. tan. 150°

in which c can be computed, if 5 be known
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Example.

April 8, 1809. Mars was observed at Florence, and the fol

lowing were the conditions :

latitude of Florence, or H = 43° 46' 40"

south declination of Mars, or , D — 5 9 40

diurnal change of declination, or 5 + 6 38

half the interval of observation, or - 4h 10m .

2

Hence,

log. 398" (= 6' 38") = 2.5998831

log-~? " o 8.0307013

8 360. sin. 15°

log. tan. 50° 33' 40" (a) 0.0848395

log. tan. 43 46 40 (if) 9-9814658

0.6968897 No. 4".97-

Again,

log. 398" 2.5998831

lQg- 36.Un.30- 8-6822581

log. tan. 7° 8' 16" (/3) 9.0976954

log. tan. 5 9 40 (D) 8.9557974

9.3356340 No.-o".22

the correction 4 . 75.

Since the change of the Sun's declination may be had from

the Nautical Almanack, a calculation, exactly similar to the pre

ceding, will apply to the corresponding altitudes of the Sun, and

be equally simple with the one of p. 791, from which, indeed, it

does not much differ.

The above method of determining the time from corresponding

altitudes is the best of all methods, when we are not provided

with a fixed and adjusted transit instrument. It is, as M. Zach

observes, capable of great exactness, and is independent of the
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rectification of the instrument. It requires the aid solely of a

chronometer, sufficiently good to mark the times during an interval

of 5 or 6 hours. Those astronomical elements, such as the lati

tude of the place, the altitude of a star, its right ascension, &c.

which are requisite to be known in the following methods,

need not be known in this.

Time determinedfrom an observed Altitude of the Sun.

The altitude of the Sun is to be observed and corrected as it

'was in page 775; then, we have to find the angle ZPS (h), from

ZS (90° — A) thus determined, from the Sun's north polar distance

(p) given by the Tables, and from the latitude (L) of the place,

known or previously determined by observation. Then by Trig.

pp. 139, &c. making h = ZPS, we have cos. h

cos. ZS — cos. ZP x cos. PS sin. A — sin. L . cos./)

sin. ZP . sin. PS cos. L . sin. p '

. ,A cos. jL.sin. p + sin. L. cos. p — sin. A

.'. 2. sin. - = 1 ~ cos. h = r :

2 cos. Li . sin. p

sin. (p + L) — sin. A

cos. L . sin. p

= [cos. Up + L+A) sin. £ (p + L- A)l

cos. h. sm.p

. h

and, in logarithms, 2 log. sin. - = 20 +

log. cos. j(p-r-L-M) + log. sin. |-(/>+.L — A)- log. cos. L - log. sm.p.

Example.

The Sun's Altitude being 39° 5' 28"; his North Polar Distance,

from Nautical Almanack, 74° 5l' 50", and the Latitude of

Place, 52° 12' 42"; it is required to deduce the Time.
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L = 52° 12' 42" cos. = 9-7872806

p - 74 -41 50 sin. = 9-9846660

A = 39 5 28 19-77)9466 . . (a)

sum 166 10 20

isuin 83 5 . . . . cos. = 9-0807189

isum- J 43 59 32.. sin. =9-8417102

38.9224291

(a) 19-7719466

2) 19-1504825

log. sin. - = 9-5752412 = log. sin. 22° 5' 20"f

.'. h = 44° 10' 40" % = (in time) 2h 56m 43', nearly.

This is the time for Greenwich ; for any other place, we must

correct p, taken from the Nautical Almanack, by adding to it,

or subtracting from it, the change in the Sun's north polar distance,

proportional to the difference of longitude between Greenwich,

and the place of the observed altitude.

Time determinedfrom an observed Altitude of a fixed Star.

The altitude is to be observed as in the former instance : the

latitude is supposed to be known from previous observation, and,

the star's north polar distance from his mean north polar distance

(contained in Tables) corrected for the several inequalities of

precession, aberration, and nutation ; (see Chapters XI, 8tc.)

Then, the computation of the angle ZPS, or of h, will be exactly

the same as in the preceding case. That angle will be the star's

angular distance from the meridian ; therefore, since the star's

right ascension is known, the right ascension of a point of an

imaginary star, at that time supposed to be on the meridian, is

known. But, the right ascension of a star on the meridian being

known, the hour of the day is (see pp. 779. §Cc.)

All stars on the meridian at the same time have the same right

ascension ; therefore, we may place the imaginary star on the
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equator, and then (see p. 748,) its right ascension will be that of

the Mid-Heaven ; consequently we may give the rule for finding

the time under the following form :

*'s JR + h = JR of mid-heaven,

JR. of mid-heaven — © 's JR — acceleration = time (see p. 780.)

Example.

April 1 4, 1 780. In Latitude 48° 56', Longitude W = 66° (4h 24m)

the Altitude ofAldebaran in the West was observed =22° 20' 8".

Hequired the Time.

L — 48° 56' 0" cos. = 9-8175235

p = 73 56 59 sin. 9-9827322

A = 22 17 50 (refrac. =2' 18") 19.8002557

2) 145 10 49 20

\ sum = 72 35 24 cos. 9-4759722

^sum - A = 50 17 34 sin. 9.8861065

39.3620787

19.8002557

2) 19.5618230

. h

log. sin. - = 9-7809115
6 2 —

[ = I sin. 37° 8' 39"-75 ;

.*. A= 74° 17' 19"-5

*'s vR = 65 49 49-5 (by Tables)

*'s JR + h= 140 7 9 - M of mid-heaven.

But, April 14, o's JR. = lh 31m 1s

April 15 = 1 34 42

Increase in 24" = 0 3 41 .*. prop1.inc'.in4h 24m = 40".

Hence, JR of mid-heaven ( 140° 7' 9") = 9" 20m 28 .6

0'8jR(= lh 31'" l* + 40s) = 1 31 41

7 48 47.6

Acceleration (see p. 780,) 0 1 16.8

.'. apparent time = 7 47 30.8

5 i
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This method, as a practical one, is inferior to the former,

partly from the greater length of its computations, and partly

from the difficulty of exactly noting the altitude of a star with a

sextant. The errors of the Solar Tables affect both methods.

In order to lessen the errors of observation, several successive

altitudes, distant from each other by nearly equal intervals of time,

are noted, and the mean altitude deduced corresponding to a

mean time.

In the sextant there is always some difficulty (and consequent

ly some chance of error) in reading off the graduations at the end

of each observation. This kind of error is avoided, at least much

lessened, in repeating circles. Since, with such instruments the

reading off \s not made till after all the observations. The read

ing off then is the sum of all the several altitudes (if they are alti

tudes which are observed), and the mean altitude is to be had by

dividing the above sum by the number of observations.

In an Observatory, that has its instruments fixed in the plane

of the meridian, the time of apparent noon is easily determined.

It may be also ascertained by a sextant, which (see p. 774,) is

adapted to measure altitudes : by means of it we can determine

when the Sun is at its greatest altitude, or in the meridian. But

the altitude of the Sun, when near to the meridian, varying very

little, it is difficult to ascertain by a sextant the precise time of

the greatest altitude, and consequently, that of apparent noon.

Out of the meridian, the variations of altitude are quicker : where

they are iuost quick, then, an error in the altitude (and such there

will always be in an observation with a sextant) must be of the

least consequence, since it least affects the time ; which time

would be truly computed by the preceding method, if the altitude

were rightly observed.

Since the altitude changes most slowly, when the star is near

the meridian, either towards the south or the north, it seems pro

bable, that it would change most rapidly, half way between the

north and south ; and this is the case, as we shall prove in the

solution of a problem, which is usually thus announced.
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Given the Error in Altitude ; it is required tofind where the corres

ponding Error in Time will be the least.

By p. 795,

sin. A — sin. L . cos- p

cos h

cos. L . sin. p

take the differential or fluxion of this equatiou, and put dh *= e,

dA=a, then

cos. A

sin. h — a

cos. L . sin. p'

but by Trigonometry, sin. h x sin. p = sin. PZS X cos. A;

a

sin. PZS x cos. L '

consequent!}', if L and a, the error in altitude, be given, e is least,

when sin. PZS is the greatest, that is, when PZS = 90* , or the

azimuth, is 90°, or the body is on the Prime Vertical: which

is that vertical circle which passes through the east and west

points.

The above is the reason of the precept given by Dr. Maskelyne

at p. 152, Nautical Almanack, in which he directs the altitude to

be observed near the west and east points. To this precept may

be added another; that those stars should be selected for obser

vation, which move most quickly j those, therefore, which are

situated near the equator.

Besides the error of altitude, there may be an error in the

assumed latitude. For, between the observation which determines

the latter from the Sun's meridian altitude, and the observation of

the altitude, the observer, if on board a ship, may have changed

his place, and, if so, has probably changed his latitude. The re

lation between its error and that of the time may be determined

exactly as the relation between e and $ was in p. 789- Iustead

of making PS to vary, we must make ZS, (90 — L); let \ be the

variation of L, then,

e = \ ftan. dec. X coscc. - — tan. lat. X cot. - ^ .
V 2 2/
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There are several methods and instruments used to ascertain,

in the interval between observations, the situation of the ship.

Dating from a latitude and longitude astronomically determined,

navigators carry on a latitude and longitude by account. This

they are enabled to do, by the chronometer, by the Log (by which

instrument they ascertain the ship's velocity,) and by an instrument

of which we shall now give a short account, and called

The Magnetic Compass.

The Needle of the Magnetic compass, is a thin bar of steel,

made to move about a centre, in a plane nearly horizontal ; which

needle in different parts of the Earth points to different parts

of the horizon- In scarcely any place, is its direction true north

and south. The Magnetic North, almost always, differs from

the true. And the difference is, technically, called the Variation

of the compass, differing in degree at different places, and not

remaining the same at the same place. Navigators are provided

with charts of this Variation. Therefore, by observing the varia

tion they are to form some probable conjecture of the situation

of the ship : and if, by independent means, they know the latter

condition, they will be able to examine and to correct the

charts.

We must now then consider by what astronomical methods the

deviation of the Magnetical from the true north may be ascer

tained.

The Magnetic north is always known from the direction of

the Magnetic needle. The true north may be computed from the

Sun's azimuth, at the time of his rising, or from his observed

altitude at any other time. The azimuth is the angle PZS; the

computation of which is exactly similar to that of the hour angle

ZPS (A) in p. 795.

Let the declination and zenith distance of the Sun be d, z,

then,

cos. PS — cos. ZP . cos. ZS sin. d — sin.L cos.z

cos. PZS = : — : — = :

sin. Zr . sin. Zb cos. Ju . sin. z

when the Sun rises, or is on the horizon, z = 90°;
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.'. cos. s — 0, and sin. z — f ,

and cos. PZS, or sin. amplitude* = ——— .

cos. L

PZS

In other situations, deducing 2 log. sin. —-— , exactly as

. h

2 log. sin. - was, in p. 795, we have

2 log. sin. azimuth = 20 + log. cos. § (L + z + d) +

log. sin. | (L + z — d) — log. cos. L — log. sin. z.

Example to the First Method.

In Lat. 51° 52' JV. the Sun's Declination being 23° 28' N.

Required the amplitude, in the Morning.

d = 23° 28' sin. 9.6001181

L = 51- 52 cos. 9-7906325

9.8094856 = log. sin. 40° 9' 26'

... the Sun's distance from the east point = 40° 9' 26".

Or the computed true amplitude is 40° 9' 26" N. E.

.'. if the amplitude by the compass be. . . .52 12 28 N. E.

the variation of the compass 12 3 2

This operation cannot be a very exact one, since the computed

amplitude is the amplitude of the Sun when its centre is on the

true horizon. The observation with the compass can only be

made when the Sun is on the visible horizon.

Some precautions, therefore, must be taketi: and the writers

on Nautical Astronomy direct us to take, with the compass, the

amplitude of the Sun's centre when the lower limb appears

elevated above the horizon by a space somewhat greater than the

Sun's semi-diameter. This, however, must needs be an im

perfect and rude operation.

* The amplitude is frequently appropriated to signify the complement

of the azimuth, when the star rises or sets.
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Example to the Second Method.

In Lot. 51" 32', the Sun's Declination being 23° 28', and his

Altitude correctedfor Refraction 46° 2<>'. Required the Azimuth.

L= 5l°32' cos. =9-7938317

z= 43 40 sin. =9.839139(5

d= 23 28 19.6329713 («)

sum = 118 40 20

\ sum = 59 20 cos. =9-7076064

\ sum - d= 35 52 sin. 9-7678242

39-4754306

(o) 19.6329713

2)19-8424593

9.9212296 = log. sin. 56°3l' 28"

"

.-. the Sun's azimuth = 56° 3i' 28".

We will now briefly explain the

Methods of regulating Chronometers.

We have already in pp. 100, &c. explained the method of

regulating an Astronomical Clock by means of a fixed transit in

strument. But it is necessary, in geodesical operations, for

instance, to employ portable instruments and chronometers, anil

we have now to explain by what means the latter may be regulated,

or, rather, their irregularities detected and valued.

The error of a chronometer at any time is the difference be

tween the time deduced from astronomical phenomena, and

the time its index denotes. The rate of a chronometer is

the difference between two successive errors: it is called the

daily rate when it is the difference between two errors that

happen at the interval of twenty-four hours ; or, the daily rate

may be made to mean the quotient arising from dividing the

difference of two more distant errors by the number of intei-

vening days. In order to know, from astronomical phenomena,
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the time when we are not possessed of a transit instrument, there

is no better method than that of corresponding altitudes taken by

means of an equal altitude instrument, or sextant. In the Example

of p. 793, the mean of sixteen observations gave

12h 24m 13s.792,

as the apparent time by the chronometer of the Sun's transit over

the meridian. Now on the day of observation (August 28, 1822.)

the equation of time was lm 9'.3 additive of apparent time;

consequently, the chronometer, if it had been properly adjusted

to mean solar time, ought to have denoted

12h Im q- 3>

as the time of the Sun's transit.

The error, therefore, of the chronometer on that day (the

difference between 12h 24m 13s. 792, and 12" lm gf.3) was

23m 4'. 492, and hence, as a general rule, correct the chrono

meter's time of the Sun's transit (determined as above, or by like

methods) by the equation of time with a contrary sign, and the

result is the time of mean noon by the chronometer.

We have been speaking of portable chronometers to be

examined or regulated at different stations. Now the equation of

time, of which we have just spoken, is the equation when the Sun

is on the meridian of the place of observation, and, consequently,

not (except in particular cases,) the equation inserted in the

Nautical Almanack ; which latter equation is the correction of

the apparent time of the Suns transit over the meridian of Green

wich. In practice, therefore, it will be, almost always, necessary

to compute the equation of time for the noon of the place of

observation. This is easily done : for instance, if the place of

observation were Cadiz, the longitude of which is 2.5m 8" west of

Greenwich, it would be necessary to compute the equation of

time, for a time 25m 8s after the noon of Greenwich. Suppose

the observation made on September 8, 1S08: in the Nautical

Almanack, p. 98, we have

equation of time subtractivc 2m 29'. 4, difference 20". 4,
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and, therefore, the difference, corresponding to 25m 8',

25m 8s

= 20s.4 X g— = 0s.36 nearly ;

consequently, the equation of time when the Sun was on the

meridian at Cadiz, is equal to

2m 29s.76,

or nearly, 2m 29s. 8.

This, and the previous explanation are sufficient for the following

example, and the mode of solving it.

Example.

In September 1808, at Cadiz (longitude 25m 8s, latitude

36° 3i' N.) by means of corresponding altitudes (see p. 786,) the

following times of noon were obtained * :

Times of Noon.
Equation

of Time

for Cadiz.

Times of Mean

Noon.

Chronome

ter too

slow.

Differ

ences.

Sept. 8,
11h 51m48\38 2m 29s. 8 IIh 54m

18M8
5m 41s.82

- 12s.64

11, 50 59-22 3 31.6 54 30.82 5 29-18

- 16. 11

15, 49 51.83 4 55.1 54 46.93 5 13.07

— 12.53

18, 49 1.46 5 58 54 59-46 5 0.54

— 12 .51

21, 48 11.27 7 0.7 55 11.97 4 48.03

— 1 1 . 85

24, 47 21.22 8 2.6 55 23.82 4 36.18

65.64

Here the sum of differences in 16 days is 65s.64, and, ac

cordingly, the mean daily rate, estimated by dividing the sum by

the number of days, is — 4s. 1025.

* The column of equations of time for Cadiz is formed by adding .4

(nearly the proportional difference, see above) to the equations of time

expressed in the Nautical Almanack.
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If we estimate the daily rates, by dividing the numbers in the

last column, by the numbers of intervening days (3, 4, &c.) we

shall have the mean daily rates

from Sept. 8 to 11 -4\21

11 to 15 -4.03

15 to 18 —4.18

18 to 21 —4.17

21 to 24 —3.95

which differ slightly from the preceding mean daily rate of p. 804.

This is, iu effect, the method of determining the errors and

daily rates of chronometers, by whatever operation or process the

time of apparent noon be determined : whether such time be

determined by a transit instrument* or be computed (see pp. 795,

&c.) from the observed altitude of the Sun or a star, and the lati

tude of the place of observation.

The present Chapter, unlike the preceding ones, is not con

fined to the same subject. It contains several methods unconnect

ed as to their nature, and capable of being classed together only

because they are useful, or subsidiary to the same astronomical

instrument, such as the sextant. We shall soon speak of other

uses of that instrument, and of its principal one in determining

the longitude of a vessel at sea. That subject, however, claims

• The rate of a chronometer may be determined by a telescope even

if it should not be fixed in the plane of the meridian. It is only necessary

to take care that the wires of the telescope be at right angles to the star's

motion. The interval between two successive returns of the same star to

one of these wires is a sidereal day, which differs from a mean solar day

by the acceleration : so that a chronometer, exactly adjusted to mean solar

time, ought to note 2ih — acceleration during two successive transits of

the star over the same wire of the telescope. Thus, May 3, a Libra;

passed the vertical wire of a fixed telescope at 10k 44m 41s

acceleration 0 3 55..0

10 40 45.1

but chronometer at the >(cV transit on May 3, noted 16 40 47

.-. rate + 6 2.1

' 5 k ' '



a separate Chapter : the present we will conclude with the solution

of a few astronomical problems, as they may be called, flowing

easily from the Trigonometrical formula, of which, such frequent

use has already been made.

If A be the hour angle, z the zenith distance, L the latitude

of the place, p the polar distance of the star or Sun, then

cos. z — sin. L . cos. p

cos. h = ————, .

cos. L . sin. p

When the Sun rises or sets, z = 90°, cos. z = 0;

sin. L . cos. p

.'. cos. // = : = — tan. L . cot. p,

cos. L . sin. p

the negative sign indicating that, if p be < 90°, A is > 90". ib

other words, that, if the Sun have north declination, A will be

greater than 6 hours, or that the length of the day will exceed

12 hours.

Again, if A = 0,

cos. z = cos. L sin. p sin. L . cos. p

= sin. (p + L)

= cos. [p - (,90° - L)].

If P, Z, S, be the places of the pole, zenith. Sun (or star),

cos. ZS = cos. (PS - ZP),

and ZS — PS — ZP, the body being on the meridian. In this

case, then, ZS the meridional zenith distance, is the least zenith

distance, since in every other position of S, there is formed a

triangle ZPS, in which PS - ZP is < ZS.

Twilight is the light of the Sun, when below the horizon, faintly

reflected by the atmosphere ; and, by computation, it is found to

be just sensible when the Sun is within 18° of the horizon; or,

when z— 118°. We may find the time, therefore, of twilight's

beginning or ending, by substituting in the preceding expression,

or in that which is immediately deduced from it, (see p. 795,)

instead of A (=90°- z), - 18°.

The duration of twilight is the interval of time due to the

Sun's ascending or descending through I8a, it is, therefore, equal
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to the difference of the last, and that expression (p. 806, 1. 9,)

which expresses the time of the Sun's rising or setting.

The boundary of twilight, a small circle, parallel to the

horizon and 18° from it, is called the Almacanter.

The length of a day, in its common acceptation, is the interval

of time between the rising and setting of the Sun ; it is, therefore,

equal to twice the angle h, estimated from that expression of

cos, h, in which A = 0, that is, it is equal to 2 . tan. L . co-tan. p.

At the equinoxes, p the O '» N. P. D. = 90°;

.'. cot. p = 0 ; cos. h = 0; .*. h = 90° = (in time) 6h ;

.'. the length of the day = 12h.

At the solstices, p, either, = 90° — 23° 28', or 90" + 23° 28';

therefore, the lengths of the longest and shortest day at Green

wich are to be computed from this expression,

cos. h= + 2 tan. 51° 28' 39".5 X tan. 23° 28',

the upper sign — , for the longest day, denoting h to be > 90°,

and the lower sign-f-, for the shortest, denoting h to be < 90°, and

equal to the supplement of the former.

If we wish to investigate the latitude in which the Sun's

centre, in its greatest depression, just reaches, but does not

descend below, the horizon, we must make h = 180°,

then cos. 180 = — 1 = — tan. L . cot. p = ;

tan. p

.'. tan. L = tan. p, and L=z p = 90° — declination,

or, the co-latitude of the place equals the Sun's declination.

In a similar way, and still using the expression for cos. h, we

may express the relation between the latitude and the Sun's de

clination, when there is just twilight all night ; thus, z being the

zenith distance, since

, cos. z — sin. L . cos. p

cos. h — : ,

cos. 1j . sin. p

cos. 11S°— sin. L . cos. p

cos. 180° = t :
cos. L . sin. p ♦
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.*. sin.Leos.p — eos. Lain.p, orsin.(L — p), — cos. 1 18° = — sin.lS";

.-. L-p= - 18°, or L — (90°— 0's dec.)= — 18°;

.-. © 's declination = ©0°- L)- 18°.

If L therefore be given, search in the Nautical Almanack for

that declination, which equals the difference of the co-latitude

and 18°.

Since, L = p— 18°, and the least value of p, is 66° 32':

therefore the least value of L is 48° 32'; or in latitudes less than

48° Si', there never can be twilight all night.



CHAP XLIL

On Geographical Latitude.

Latitude of places at land, (see p. 11, &c.)

1st. Method by the Altitudes of Circumpolar Stars.

This method has been already described in pp. 129, &C.

Another instance of it is subjoined, in which, the circumpolar star

is that particular one, which, for distinction, is called the Pole

Star, (the a Polaris of Astronomical Catalogues.)

By means of an Astronomical Circle, (see Chap. V,) the

following zenith distances (2. D.) were observed at Dublin

Observatory on August 23, 1808 :

Refraction (barom. 29-97, thermom. 67.) .
. . 0

18'59".l

0 44.01

19 43.11

Refraction, (barom. 29, 99, thermom. 58,) .< 0

53' 10". 1

0 39 . 45

1 <? An k s

38 19 43 . 1 1

2) 73 13 32.66

.*. co-latitude of Observatory, . .. . . 36 36 46 . 33

and latitude is 53° 23' 13".67-

2dly, Method by the Zenith distances of Stars near the Zenith.

This method determines merely the difference of latitude by

means of an instrument, (the zenith sector) capable of measuring
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small zenith distances with great exactness. We have had already

(pp. 12, ficc.) specimens of it, and we here subjoin another.

Example.

By observation, at the College of Mazarin, Mem. Acad. 1755.)

Z. D. of y Draconis reduced (see p. 380,) to Jan. 1730, 2° 4<y 15"

At Greenwich Z. D. reduced to the same epoch . . . . 0 3 4.5

(The star is to the north of both zeniths) diff. lat. . . .2 37 10.5

51 £8 39.5

Latitude of Observatory, at College of Mazarin. . . . 48 51 29

It is essential, as it has been fully explained in pp. 306, &c. that,

for finding the difference of latitudes, by this operation, the

zenith distances of the star observed at different epochs, should

be reduced to the same. If, however, we should be possessed

of two observations of the same star, made on the same day, of

the same year, then, since the corrections of aberration, pre

cession, and nutation, (see Chap. XI, XIII, XIV,) would be the

same in each observation, it would be necessary merely to apply

the corrections for refraction, before we subtracted or added the

zenith distances.

This method of determining the latitude, and capable of great

accuracy, was employed in the Trigonometrical Survey of England.

See PA/7. Trans. 1803, pp. 483, &c.

Method of determining the Latitude, by reducing to the Meridian

the observed Zenith Distances of the Sun, or a Star when near

to the Meridian.

The principle and peculiar processes of this method have

already, in substance, been explained in pp. 417, 418, &c. The

illustrations there given, were, with observations, made with the

circle of the Dublin Observatory. It now remains to adapt the

method to observations made with small portable instruments :

for with such observations and instruments is our present con

cern.
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By observing the zenith distance of a star out of the meridian,

and by reducing it to the meridian, we obtain a result which is

equal to the star's meridional zenith distance. When, therefore,

as in the instance of the star Arcturus, (see pp. 422, Sic.) we

observe four zenith distances, two before, two after, the star's

transit over the meridian, we obtain four meridional zenith

distances : one-fourth of the sum of which, the mean meridional

zenith distance, is to be held, according to astronomical usage,

and as it probably is, a more true value than any individual zenith

distance.

It follows from this, that if we could multiply our observations

near to the meridian, we should obtain a truer value of the star's

meridional zenith distance. But, with an instrument, such as

that of the Dublin Circle, there are limits to such multiplication.

From the size of the instrument, the readings off-At the three verniers

cannot be very quickly effected : add to this, the instrument must

be adjusted at each observation : so that, at the distance of ten or

twelve minutes of time from the meridian, more than two obser

vations cannot be conveniently made ; and if we begin to observe

the star at greater distances from the meridian, the computations

of the corrections (see pp. 420, Sic.) become more operose and

less exact.

With instruments, however, of less magnitude which the ob

server can adjust and read off, without hardly shifting his position,

a greater number of observations may be made ; and no instrument

is so fitted to the rapid multiplication of observations as the

repeating circle, because, in that, the readings off are not made till

the termination of the observations.

We shall soon give an instance. of a meridional zenith distance,

deduced from twenty-six observations made out of the meridian.

But the advantage of so many observations, is not solely that of

giving, by their number, a more exact mean result. Jt is easy to

see, by referring to pp. 420, Sic. that the corrections c, c , c"

become less, the nearer the star is to the meridian : it will, there

fore, frequently happen (it will always so happen with those stars

which are selected for the use of repeating circles) that, in com

puting the reduction, we may confine our computation to that of
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the first correction ; since the second and third corrections, which

must be inconsiderable, except in the extreme observations (those

which are most to the east and west) will have scarcely any effect

on the mean result.

Thus, if there should be twenty-six results, and the values of

the second and third corrections should amount to one-fourth of

a second, the mean result could only be affected by them to the

amount of th of a second. -

104

Let us suppose, however, that we are able, either by com

puting the three corrections or only one, to determine the star's

meridional zenith distance : such distance, if corrected solely on

account of refraction, and not on account of the inequalities of

precession, aberration and nutation, is an apparent zenith distance.

If, therefore, the star be to the south of the pole and zenith, the

co-latitude (ZP) is to be obtained by subtracting the above ap

parent zenith distance, from the star's apparent north polar distance.

If the star be south of the pole, but between the pole and zenith,

the co-latitude is the sum of the above two apparent zenith

distances. If, however, we choose to correct the observed zenith

distance by the equations due to precession, &.c. we must then

instead of the above-mentioned apparent polar distance, use the

mean polar distance. The result in each case, as it has been

abundantly explained in the preceding pages, must be the same.

The formulae of reduction which we shall use in the succeeding

Examples, are those which are given at p. 420, in which A depends

on the latitude of the place, and C on A and the star that is ob

served. In two of the Examples that follow, the places of ob

servation are Dunkirk and Leith : at the former the pole star was

observed, at the latter the Sun.

Hence, for these two places, the latitudes of which are respec

tively 51° 2' b" and 55° 58' 4", we have (see pp. 420, 421,) the

following computations of log. A,

Dunkirk. Leith.

log. sin. l" 4.68557

2 log... 15 2.35218

ar. com. 2 Q 69896

 

16.73672

. 9.74781

log. cos. 51° 2' b" 9.70854

26.53526

86.48463
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Hence, for Dunkirk, (see p. 421,)

log. C = 6.53526 + log. sin. D + log. cosec. Z — 20 4-2 log. H.

For Leith,

log. C = 6.48453 +log. sin. D + log. cosec. z — 20+ 2 log. A'.

We will now, in the case of Dunkirk, farther reduce the value

of log. C ; for which end it is necessary to take account of the other

conditions of the observations.

The observed star was Polaris : the time Dec. 19, 1808;

therefore, since co-lat =38° 57' 55"

and (from Tables) *'sN. P. D.= 1 42 18.5 .... sin. 8.47357

(ZP- PS) 37 15 36.5 . . cosec. 10.21793

(from 1. 2,) 6.53526

25.22676

Accordingly,

log. C = 5.22676 + 2 log. ti,

which is the formula of computation, from which the correction

C is to be computed, when h! the horary angle is given.

Suppose, for instance, a value of h' to be 27m 42s,

*log. 27m 42s = 3.22063

2

6.44126

5.22676

1.66803 = log. 46".56l,

and so for other values. The following Table contains the values

of A', according to the observations (made in the instance we are

quoting) and the corresponding values of the corrections.

* These logarithms may be had very conveniently from Mendoza's

Tables, (Tab. XV.)
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Values of h'. Logarithms of C. Values of C.

27m 42s
1 .66802 46".56l

26 26 1.62736 42 .400

25 38 1.60068 39.875

24 57 1.57720 37 . 775

24 17 1.55368 35 . 783

23 39 1.53072 33 . 940

22 58 1.50526 32 . 008

15 18 1.15244 14.205

14 34 1.10978 12.877

5 47 0.30742 2.030

2 21 9.52520 0.335

1 45 9.26914 0. 185

1 1 8.79742 0.063

4 35 0.10542 1 .274

17 15 1.25664 18.057

21 10 1 .43436 27. 187

21 52 1.46262 29.015

22 28 1.48614 30 . 630

23 8 1.51 154 32 . 475

23 47 1.53560 32 . 324

24 19 1.55488 35 . 883

25 37 1.60010 39 . 820

26 20 1 .62408 42 . 080

28 3 1.67892 47 . 744

29 56 1.73538 54. 373

35 34 1.88514 76.761

Mean value of C

26) 767 . 66

29.52

The values of h' are thus to be obtained. Note by the chro

nometer the hour of the passage of Polaris over the meridian,

using a transit instrument, or, in default thereof, a sextant or

repeating circle, or any instrument that enables us to take (see

pp. 786, &c.) corresponding altitudes. Note, also, by the same
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chronometer the times of the several observed zenith distances :

the differences of the hours of transit, and of the hours of obser

vation are, the chronometer going sidereal time, the hour angles.

Thus, in the instance we are considering, the hour of the transit

of Polaris was 0h 24m 44s, and the times of the first and second

observations were, respectively, 23h 57m 2s, 23h 58m 18s, conse

quently the two corresponding values of h' are

2m 58s + 24m 44s

and 1 42 + 24 44,

or, respectively, 27m 42s, 26m 26s, (see the Table of p. 814).

The values of the preceding hour angles depend on the chro

nometer or clock going exactly sidereal time. This may not be

the case. The pendulum may be retarded. The consequence

of which would be that the number of beats between each obser

vation, and the star's passage over the meridian, would be too

small. The corrections, or reductions, therefore, which depend

on such hour angles would be all too small, and, by consequence,

the whole reduction. It will be necessary, therefore, should the

retardation be considerable, to apply a corresponding correction.

But should the clock be nearly adjusted to sidereal time, the last-

mentioned correction will be inconsiderable, since the observations

are seldom made at a greater distance of time from the meridian,

than 20 minutes.

It may happen that the chronometer of the observer is ad

justed to mean solar time. Such chronometer, therefore, may be

immediately used in obtaining the values of the horary angles, or

the times from noon, when the Sun is the body observed : but

should, which usually happens, a star be the observed body, the

hour angles, for the reasons just stated, will be all too small.

They must, therefore, be all increased in the proportion (see

p. 780,) of 24h 3m 56s.55 to 24h, or be corrected for retardation.

Since we may consider a clock adjusted to mean solar time as

a retarded sidereal clock.

We will now deduce a formula of correction for the retardation

(or should it so happen the acceleration) of a pendulum, applica

ble to any small degrees of retardation.
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Formula of Correction for the Retardation of the Pendulum.

If a seconds' pendulum loses, in 24 hours, r seconds, it must

beat 86400 - r times, instead of 86400.

The true value, therefore, of an hour angle h! noted by such

a pendulum is

86400 ,, rh'

a . — , or h H ;

86400 - r 86400 — r

h'
if, therefore, we substitute this true value instead of h', in sin.* — ,

we have

. - h' ' / . h' UK r \2

sin. — equal to ( sin. — + cos. — . — . — J ,

2 ^ V 2 2 2 86400 — r/

h! h!

nearly, since h' is a small quantity ; but — = sin. — ,

h' . h' . . .hi

nearly, and 2 cos. — . sin. — = sin. h = 2 sin. ~ , nearly.
J 2 2 2 3

Hence, the above formula becomes

. J' / 2 r \

sin. - . ( 1 + —; ).
2 V 86400 - rJ

If we refer to p. 419, the first term of the expression for 6 is

. „ h' cos. L . cos. D _

2 sin.8 - . — -j;—. (C);

2 sin. 1 . sin. z

which, by increasing h' on account of the retardation of the

pendulum, will be increased by

. , A' cos. L . cos. D 2 r

2 sin. -

2 ' sin. l". sin. z * 86400 — r '

so that C representing the first correction on the supposition that

the values of h' are exact, or that the pendulum is accurately ad

justed to sidereal time, (supposing a star to be observed) the

additional correction for the retardation of the pendulum will be

2Cr

86400 - r '

What now remains to be done with regard to the instance

before us, is the deduction of the numerical value of the latitude,
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according to the actual circumstances (the zenith distances,

barometer, thermometer, &c.) of the observation

Mean of 26 zenith distances 37° 15' 20".89

Refraction O 0 46.41

Apparent mean instrumental zenith distance .... 37 16 7.3

Reduction, (see p. 814,) '. - 29-52

Retardation [the daily rate (r) of clock being 69s.5] — -05

37 15 37 .73

North Polar Distance, (p. 813,) 1 42 18.5

Co-latitude 38 57 50.23

Latitude of Dunkirk 51 2 3.77

This is the value of the latitude of Dunkirk from 26 observa

tions, or, from one series of that number, made with a repeating

circle. It differs, however, considerably (by several seconds) from

the mean value deduced by Mechain and Delambre, from several

hundreds of observations, and which are detailed in the second

Volume of the Base du Systeme Metrique, p. 273 to p. 293.

The latitude of Dunkirk from the mean of these observations is

concluded to be about 51° 2' 8".7, using a certain formula of re

fractions : for, as we have shewn in pp. 220, Sac, the latitude of

a place is no absolute value (we speak of our means of deter

mining values) but depeuds on the assumed law of refraction, (see

also on this subject, tom. II, du Systfme Metrique, pp.640, &c.)

We subjoin as a second Example, one taken from the above-

mentioned Work {Base du Systeme Metrique).

Example II.

Paris, Rue de Paradis, 17 Decr. 1798. .

Approximate latitude 48° 5l'38". . cos. = 9. 81815

N. P. D. of Polaris (the star observed).. 1 45 40. 16. .sin. = 8.48760

2 (ZP - PS) cosec. 10.19767

const, log. or sum of log. sin. l", 2 log. 15, arith. comp. 2. .6.73671

5.24007

therefore, see p. 421, the formula of computation for Paris with

the pole star, at the time of observation, is

log. C = 5.24007 + 2 log. ti.
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52m 4s sidereal time of pole star on the meridian.

42 clock too slow,

51 22 hour of %'s passage by the clock,

Values of A'. Values of C.

24m37s 26m 45s
44".77

26 51 24 3I 37 .62

28 3 23 19 34 . 10

29 20 22 2 31 .21

30 58 20 24 26.04

32 0 19 22 23.47

33 3 18 19 20.99

33 55 17 27 19.05

35 12 16 10 16.35

36 24 14 58 14.02

37 55 13 27 1 1 . 32

39 39 11 43 8 .59

12) 287 • 53

23 . 96

Mean of 12 zenith distances 39* 22' 18".93

Meridional Z. D 39 21 54 . 97

Refraction < 0 0 46 . 42

True Z. D 39 22 41 .39

*'s N. P. D 1 45 40. 16

Height of equator 41 8 21.55

Latitude 58 51 38.45

The numbers in the first column are the times of observation by

the clock ; the numbers in the second are formed by deducting

the former numbers from 51m 22s, the star's time of transit. The

numbers representing the values of C in the third column, do not

exactly agree with those in the Base du Systeme, 8ic. p. 31 1, &c.

which latter were taken from a Table (p. 250,) constructed for

the latitude of Dunkirk and the pole star. The sum of the cor

rections instead of being, as we obtained it, 287".53, is stated to

be 288". 14.
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The corrections of third column, p. 818, are merely the first

corrections computed, as we have shewn, from

log. C = 5.24007 4- 2 log. ti,

the formulae for computing the other two corrections are (see

pp. 421 , &c.)

log. C' = 7.19899 + 4 log. ti,

log. C" = 4.95046 + 4 log. ti,

the greatest value of log. C', therefore, in the preceding instance,

when ti =- 26m 45s, is

4 log. 26m45'' + 7.19899 = 0.02091,

and, accordingly, C = l".05.

In the following observations which were made at Barcelona,

and for the purpose of determining its latitude, the clock was

adjusted to mean Solar time, and consequently, according to what

was said in p. 815, in computing the reduction it is necessary

either to increase the hour angles marked by the clock, or to correct

the reduction computed on the supposition of the hour angles

expressing sidereal time.

Example III.

Barcelona the place of observation, Capella the Star observed,

the Time, March 16, 1794.

Approximate latitude 41° 22' 43" cos. = 9-87527

*'sN. P.D 44 13 50 sin. 9-84344

z 4 23 27 cosec. 11.11600

Sum of log. sin. l", 2 log. 15, arith. comp. 2 6-73671

(See p. 421,) constant logarithm in log. C 7.57142

(See p. 421,) sum of 2 log. sin. l") 0.64413

2 log. 15, arith. comp. 12 J !

Constant logarithm in log. C 8.21555

Again, (see p. 421.) 4.38454

2 constant logarithm in log. C 5.14284

Log. cot. z 11.11472

Constant logarithm in log. C" 0.64210

Hence, the three formulae of computation are

log. C = 7-57142 + 2 log. ti,

log. C' = 8.21555 + 4. log. ti,

log. C" = 0.642 10 + 4 log. ti.
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The three formulae are given, since Capella passing near to the

zenith of Barcelona, renders the third correction of some moment,

when the star is observed at more than five minutes of time from

the meridian.

*'sl

clock too slow

time of *'s transit 5 10 56

5h 23"

0 12

32s. 1

36. 1

Values of hf. Values of C.

5h 7m 45s 3m 11s
135".98

8 55 2 1 54.57

10 27 0 29 3. 13

11 20 0 24 2.15

12 42 1 46 41 .88

13 51 2 55 114. 15

6) 351.86

mean reduction 58.64

r = 3m 55\9, and log.

Now log.5 8.64

471.8

86164.1

1.76823

7.73843

(log. 321). . 9.50666

Hence, allowing for the retardation of the clock on sidereal

time, (see p. 815,) the value of C, the first of the corrections, is

58".64 + 0" 32, that is, 58".96.

If we compute C', C", from the formulae of p. 819, we have

Horary angle. Values of C. Values of C".

3m 11s 002 584

1 0942

0

0

1

2

24

46.

55.

.055

.410

1.143

.002

6) 1 . 145

.19



821

•

The values corresponding to the horary angles 29s., 24s, &c.

are too inconsiderable to be made account of. But, as it appears,

the reduction obtained solely from C, is affected by the values

of C, C, only to the amount of 0".19.

We have now given examples of different stars, and different

rates of the chronometer. In the fourth Example, which is sub

joined, the zenith distances of the Sun's upper limb are observed,

and the times of observation noted by a chronometer adjusted to

mean solar time.

Example IV.

(From the Philosophical Transactions, 1819.) Leith Fort.

Approximate Latitude 55° 58' 4l". Longitude 12m 46s.7 West.

Sept. 17, 1818. Barometer 30.05 Inches. Thermometer 66°.

Time of Apparent Noon

by the Chronometer.

*0h 3m 15s

Times from Apparent Noon. Values of C.

23h 52m 28s 10m 47s 2' 38".6

23 54 21 8 54 1 48.05

0 10 6 6 51 1 4

0 11 26 8 11 1 31.34

0 13 6 9 51 2 12.34

0 14 19 11 4 2 47.02

6) 12 1 .35

2 0.22

* Chronometer 8m 42M8 too fast.

For, equation of time at Greenwich (subtractive) 0h 5m 27s diff. 2".2

Proportional difference for 12m 46s (longitude) 0 0 0.2

.•• equation at Leith 0 5 27-2

Or, time of apparent noon 23 54 32.8

Add 0 8 42.2 nearly.

Time by chronometer 24 3 15

5 M
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From preceding page 2 0.22

~ Sum (319°57'38".4) of the corrected angles | 53h19m36s 4

read off on the repeating circle J

53 17 36.18

Refraction l' 15".85, parallax 7".03, difference 0 1 8.82

© 's semi-diameter 0 15 57-26

53 34 42.26

Change of declination, (see pp. 442, &c.) 0 0 2.62

Z. D. 0 's centre 53 34 39.64

• © 's apparent declination on the meridian at Leith . . 2 24 1 .6

Latitude at Leith 55 58 41.24

In the above case, the chronometer was not exactly regulated

to sidereal time. Its retardation, however, was too small to

affect the preceding results.

For a like cause, that of minuteness, the corrections C7, C",

are not taken account of in the above computation t •

* September 17, © 's declination by N. A... 2° 24' 14"

18 2 1 0

0 23 14 in 24k

.-. 0 0 11.62 in 12™

0 .0 0.74 in 46»

0 0 12.36 inl2»46'

.-. © 's declination on the meridian at Leith .... 2 24 1.64.

t C", C", computed from their formulae, are as follows

10m 47s 8m 54s 6m 51» 8m 11s 9" 51s 1 lm 4s

<7=.045 .0136 .00476 .0079 .0203 .0324

C'=.029 .0209 .00732 .0149 .0312 .0498

the whole value, therefore, of the corrections, or their sum computed from

the formula, (see pp. 420, &c.)

c-c- c,

will be 12' 0".972, one-sixth of which is 2' 0".l62, instead of 2' 0".22,

as was deduced in page 821. The difference, then, in the two results is

only 0".06.
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A great part of the Second Volume of the Base du Systime

Metrique, is occupied with computations, like the preceding, for

determining the latitudes of Dunkirk, Barcelona, Paris, &c. The

Observer's instruments were, as it has been already mentioned, small

repeating circles, their chief star of observation, Polaris; but, be

sides, other stars, Capella, /3 Ursae Minoris, £ Ursae Majoris,

/3 Pollucis, /3 Tauri, &c. were observed, and as, with each of these

stars, a vast number of observations were made, it was found to be

most commodious to construct separate Tables of reduction, (see

pp. 302, &c. Base Metrique}) for each star and place: for, it is

evident from the formulae of computation given in pp. 421, 819,

that the reduction depends on the star, the time of its observation,

and the latitude of the place.

The preceding methods cannot be practised at sea, where the

motion of the vessel renders the level and plumb line useless.

In order, then, to determine the latitude of a ship at sea, recourse

must be had to the sextant. By means of that the necessary

observations are to be made. The results obtained from them,

with the aid of Solar and other Tables, give (under skilful manage

ment) the latitude to within half a mile : an accuracy sufficient

for the navigator, but quite inferior to that which may be obtained

from the repeating circle, and its appropriate methods.

LATITUDE OF A VESSEL AT SEA.

Method by the Meridional Altitude of the Sun.

If the latitude and the declination be of the same denomina

tion, that is, either both north, or both south, then, the latitude

= Z. D. © + decl. ©

or = decl. © — Z. D. © , if decl. > lat.

If the latitude and declination be of different denominations

then, the latitude = Z. D. © — decl. © .
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Example.

July 24, 1783. Longitude 54° (3h 36m) West of Greenwich, the

Altitude of the Sun's Lower Limb was observed by the Sextant

to be 59° 16'. Required the Latitude.

Altitude of the Sun's lower limb 59° 16' 0"

Refraction (Chap. X.) 0 — 34

Parallax (Chap. XII.) O + 4

Sun's semi-diameter 0 15 48

True altitude of Sun's centre 59 31 18

Z. D 30 28 42

Sun's decl. (found as in p. 822,) 19 51 0

.'. latitude (IV) 50 19 42

By the Meridional Altitude of a fixed Star.

March 29, 1783. South Latitude, the Meridional Altitude of

Procyon was 77° 27' 15": the Height of the Observer's Eye,

22 Feet above the Surface of the Sea. Required the Latitude.

Meridional alt. of Procyon 77° 27' 15"

Refraction O 0—13

Dip of the horizon 0-4 28

True alt. of * 77 22 34

true zen. dist 12 37 26 S.

Decl. of Procyon (from Tables) 5 46 17 N.

.-. latitude 6 51 9 S.

In this Example, a correction called the Dip, and not before

mentioned, is made. That correction arises from the increase of

the apparent altitude occasioned by the elevation of the observer

above the surface of the sea *.

* See Tables for computing the Dip : Mendoza's Tables I, II.

Lax's Tables VIII, IX.
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By the Meridional Altitude of the Moon.

March 26, 1810. Longitude 40° 47' West of Greenwich, the

Altitude ofthe Moon''s Upper Limb was observed to be 46° 14'l9".

Required the Latitude.

Alt. of Moon's upper limb 46° 14' 19"

Horiz. | diam 16' 6"

Augmentation (see p. 656

. 16' &'}

,) 0 12 j

46° 14' 19"

0 16 18

45 58 1

0 41 0

0 — 55

46*38 6

17 42 0

64 20 6

25 39 54 :

The difference of the parallax and refraction is given as one*

result in Astronomical Tables, (See Tab. VIII. of the Requisite

Tables : also Tab. VIII. of Mr. Mendoza's.)

Of these three methods, the first, in which the altitude of the

Sun is observed, is most commonly used : the second, very rarely,

by reason of the difficulty of observing the star's altitude with

a sextant : the third, as it is plain, can only be used in certain

parts of the month ; and, since in all the observed body must be

on the meridian, clouds may prevent any of the three from being

used. A subsidiary method, therefore, is provided, in which the

latitude may be computed from two observed altitudes of the Sun,

and the interval of time between the observations.

Method offinding the Latitude by two Altitudes of the Sun and

the Time between.

We have already used a triangle ZPS, and we will now intro

duce another, ZPs, exactly similar to it : in which s is a position

of the Sun, separated from that of S, by the angle SPs, and, in

time, by the interval t. Conceive the places S, s (S being nearest
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to the meridian) to be joined by the arc Ss of a great circle ; then

we have given

ZS, Zs (90 — a, 90 — a') the observed zenith distances,

PS, Ps (p, p,) equal N. P. D. of the Sun,

and t SPs (f) measuring the interval between the observations.

Now the investigation will consist of several steps, which all

tend to the finding of the angle ZsP ; for, that being found, we

have given Zs, Ps, and the included angle ZsP, to find ZP the

co-latitude. The steps for finding ZsP are according to the fol

lowing order. First,

Ss is found; then t PsS; next LZsS, and last,

/ ZsP = z PsS - i ZsS.

S s found.

Cos. Ss — cos. SPs . sin. SP . sin. s P + cos. SP . cos. * P

{Trigonometry, p. 139-)

.'. 1 — cos. Ss, or, 2 sin.2 — = 1 — cos.'p — cos. t sin.*j>

= sin.8 p . 2 . sin.* - ; and in logs.

. Ss . , , . t

log. sin. — = log. sin. p + log. sin. 10.

2 2

jingle SsP found.

. sin. p . sin. t

Sin. SsP = — *,

sin. Ss

„ _ cos. p (1 — cos. Ss)

cos. SsP = r : ;

sid. p . sin. >Ss

* The angle might be deduced from this expression ; but the last in

practice, is more convenient, since, by taking out the log. sin. ^ , we can,

without turning over the leaves, take out the log. cot. - .



sin. t . sin.' p sin, t . sin.* p

tan. SsP = = -,
cos. » (1 — cos. as) „ . o . .(

2. cos. p. sin. p.sin. -
r 2

cot. -

2

cOS. J)

In logarithms,

log. tan. SsP = 10 + log. cot. - — log. cos. p.

2

Angle ZsS found.

v _ cos. ZS — cos. Ss . cos. 2s sin. a — sin. a'. cos. Ss

COS. ZsS = : : : jj = j : 5 ;
sin. As . sin. Zs cos. a .sin. os

ZsS

.'. 1 + cos. ZsS, or 2 cos.* ——
2

/Ss + a + a' ,\ /Ss + a + a' x

= 2.sin. ( _ aJcoS. ^ _ Ss)

x cosec. Ss . sec. a'.

In logarithms,

ZsS /Ss + a + a' ,\

2 log. cos. = log. sin. f a J

/Ss + a + a' \

+ log. cOS. ^ — bsj

+ log. cosec. Ss + log. sec. a' — 20.

Now Z ZsS being found, ^ZsP= /.SsP — z ZsS is known.

ZP the Co-latitude found.

In the triangle ZsP we have Zs, Ps and the angle ZsP

given^ and the side ZP is required. This side will be found by

the formula of p. 171, Trigonometry.

Thus,

log. sin. M=~ ^2 log. cos. —— log. sin. p + log. cos. a'— 20^
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and log. sin. = ^

-

*)!

+ log. sin. (| +

90 - a'

This method, although it may be called a direct one, cannot

give an exact result, because, in the first operation (see p. 826,)

the Sun's declination is supposed not to alter during the obser

vations. It will be necessary, therefore, to introduce a correction

dependent on the change of declination.

Example.

a = 42° 14' 0", p = 81° 43' 30"

a' = 16 5 47 p' = 81 45 0

P + P- (mean N.P.D.) 81 44 15,

t, the interval between the observations, 3h, or in space 45°.

St

10 10

sin. 81° 44' 15" . . 9-9954800

sin. 22 30 9-5828397

i SsP

10 10

cot. 22° 30' 0". . 10.3827757

cos. 81 44 15. . . 9.1574825

(sin. 22° 15' 16") 9-5783197

.-. Ss = 44° 30' 32"

(tan. 86° 35' 36".3) 1 1.2252932

.-. SsP = 86° 35' 36".3

ZsS.

— 20 =

a = 42° 14' 0"

a'= 16 5 47 sec. =

Ss= 44 30 32 cosec. =

sum . . 102 50 19

| sum . . 51 25 9-5

isum- Ss 6 54 37-5 cos. =

20

10.0173684

10.1542695

i
i
sum - -a' 35 19 22.5 sin. =

9-9968337

9.7620664

2) 19-9305380

(cos. 22° 36' 36") 9-9652690
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.-. ZsS = 45° 13' 12"

but SsP = 86 35 36.3

.-. ZsP = 41 22 24.3

ZP.

2 log. cos. 20° 41' 12* ..... . 19.9421120

log. sin. 81 44 15 9-9954800

log. cos. 16 5 47 9-9826315

2) 19.9202235

9-9601 117 ; .\ M= 65° 49' 3".

-Again,

p = 81° 44' 15"

90- a' — 73 54 13

2) 155 38 28

jsum 77 49 14

., M 65 49 3

|sum+itfl43 38 17 sin. as 9-7729698

f sum - M 12 0 11 sin. 9.3179879

2) 19.0909577

sin. (20° 33' 25") 9.5454788

.-. ZP = 41° 6' 50"

latitude = 48 53 10.

The formula of correction, for a change in the Sun's declina

tion, which happens between the two observations, is

a 4- a' . a — a'

cos. . sin.

2 2

± (D - d) =

cos. D . cos. L . sin." —

2

D being the Sun's declination, at the mean time between the

observations, and d being the less declination.

5 N
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Now if the whole change of declination be l' 30",

D-d =
i (!' 30") = 0".75 . . log. = 98751

a + a'

29 9 53 9-941 1
2

a -a'

2

— 9-3548

D = 10.0045

L = 48 53 10. . »ec. 10.1820

t

i

= 20.8343

(60 taken away) .1918 (log. l'.55.>

Hence, the correction is + l'.55, or + l' 33",

and since the value of L is 48° 53' 10",

the corrected latitude is 48 54 43.

This method founded on the false supposition of the constancy

of the Sun's declination during the observations, with the sub

sequent correction for the change of declination, form a process

as long as that would have been in which no change should have

been supposed. It is scarcely worth the while to set down all

the logarithmic operations in the latter method, but we subjoin

the formulae and their several arithmetical results.

In the triangle PSs, S belongs to the greater altitude, and

Ps is the greater N. P. D, and we have to determine, from

the two sides and the included angle, the third side and the

other angles.

Given Quantities.

Ps = 81° 45' 0"

PS = 81 43 30

/. SPs = 45 0 0.
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Formula, (Trig. p. 1 67-)

PSs + PsS SPs Ps-PS Ps 4- PS

tan. : = cot. . cos. . sec. ,

2 2 2 2

PSs-PsS SPs . Ps-PS Ps + PS

tan. = cot. .sin. . cosec. ,

2 2 2 2

sin. SPs

sin. is = sin. Ps . — Trrr--
sin. jros

Results.

PSs = 86° 37' 26"

PsS = 86 33 46.5

5 s = 44 30 28.

,2s S is to be determined from the formula of 828, by sub

stituting the present values of S s, instead of the value therein

used : if this be done,

Zs S = 45° 13' 1O", ZSs = 1 12° 54' 54",

but, PsS = 86 33 46.5

.-. ZsP = 41 20 36.5

In order to determine ZP, we must also use the same formulae

as were used in p. 829- The results of those formula? (substituting

instead of their former values, the new values of ZsP and Ps,

namely, 41° 20' 36".5, and 81° 45',) will be

M= 65° 49' 49".7

| ZP = 20 32 46.25

and therefore latitude = 48 54 27.5

differing from the former result by 15.5 seconds.

We may derive from this method the following mode of

correcting the approximate latitude obtained by the first process

of pp. 826, &c, and dispense with the correction of page 829.

Thus, the value of PsS, deduced in this page, is an exact value:

so is Ss; therefore, ZSs, deduced from ZS, Zs (given quantities,)

and Ss, is also an exact value. Compute, then, the angle ZSP,

from ZS, PS, and that value of ZP which results from the
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approximate method of pp. 826, &c. If such be a true value of

ZP, ZSs — ZSP ought to equal PSs: or, not being equal,

their difference will indicate how much, and which way, the value

of ZP ought to be changed, in order to procure a more exact

agreement. For instance, from

£ =48° 53' 10" first approximate value, p. 829-

p = 8 1 43 30 least N. P. D. corresponding to greatest altitude,

a =42 14 0 greatest altitude,

and this formula, to wit

.ZSP /L + p-a\ /L + a — p\

cos. = sin. I } cos. I 1 sec. a . cosec. p,

2 V 2 / V 2 / '

may be derived

ZSP

~ = 13° 10' 2", and ZSP= 26* 20' 4*

2

but (see p. 831,) ZSs = 112 54 54

.". PSs= 86 34 50

but the true value (see p. 831,) of PSs = 86 37 26

difference O 2 36

consequently, since ZSs is an exact value, this difference can

only arise from ZSP being too large. In order to discover how

much we must either augment or diminish the latitude, for the

purpose of properly diminishing ZSP, we have this equation,

sin. L — sin. a . cos. p

COS. ZSP = : ,

cos. a . sin. p

cos. L
whence - d {ZSP) . sin. ZSP = dL

cos. a . sin. p'

we must, therefore, in order to diminish ZSP, augment the lati

tude, and by the result from the preceding differential formula -

thus,

log. 2' 36", or log. 2".6 = 0.41497

log. cos. a = 9.86947

log. sin. p = 9.99550

log. cos. ZSP = 9-64700

log. sec. L = 10.18190

0.10884 =. log. l".284.



833

dL .-. = 0° i' 17"

and, since L = 48 53 10

corrected latitude = 48 54 27.

These latter observations and processes have been introduced

because they fully explain the method which Dr. Brinkley has

given in the Nautical Almanack of 1825, for finding the latitude

from the observed altitudes of two known stars. Instead of S, s

being two different positions of the Sun, suppose those points to

denote two different stars : then the angle SPs will be the dif

ference of the right ascensions of the two stars, and since Ps,

PS, the north polar distances of the two stars, and SPs the

difference of their right ascensions is known, their distance <Ss, and

the angle PsS can be computed: which latter quantities, for

certain pairs of stars are, in the Nautical Almanack, already com

puted for the use of the Observer. For instance, the first pair of

stars in Table I. (see Nautical Almanack 1825, p. 5, of Appendix,)

are Capella and Sinus. Now, for 1822, taking

N. P. D. of Capella = 44° 11' 42" M 5h 3n 33*

of Sirius 106 28 40 il 6 37 18

difference 1 33 45

we may, as in page 831, and by the same formula, find Ss (D)

and the angles PSs, PsS, one of which like PSs is the angle of

comparison (C) and answers the same end. Their values will be,

according to the above data, .

Ss (D = ) 65° 47' 48"

PSs (C) = 17 41 50

PsS = 155 16 51,

and these values (very nearly the same) are expressed in Tab. I.

to save the Observer, as we have said, the trouble and difficulty

of computation. The parts of the Rule for finding the latitude

are, in substance, precisely the same as those we have already

used in pages 831, 832, for finding the latitude from two altitudes

of the Sun, and the time between. Dr. Brinkley, indeed, instead

of a process wholly logarithmic, uses one partly so, and partly

constructed by the aid of natural cosines.
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The latitude in the first method (see p. 827,) before correction,

was supposed to be approximately found, on the supposition of

the Sun's declination remaining constant. But we may suppose

it approximately known by account, as Dr. Brinkley supposes it

in his method of two stars, and correct as before.

These methods, whether the Sun be twice observed after a

short interval, or two stars be observed at the same time, have

been invented for the use of the mariner; and when they are

practised whilst the vessel is in motion, the latter has, in one

respect, a considerable advantage over the former : which is, that

it is not necessary to make in it any allowance for a change of

latitude, which it is almost always necessary to do in the other

method*.

Instead of the direct method (if such it may be called) of

finding the latitude from two altitudes, and the intervening time,

several indirect and approximate methods, and made easy by

proper Tables, have been invented (see Nautical Almanack 1797,

1798, 1799, 1800, 1822 : Mendoza's and Lax's Tables on Nauti

cal Astronomy. Delambre, tom. Ill, pp. 641, &c. Phil. Mag.

1821, pp. 81, &c.)

It is evident, the preceding methods (pp. 823, &c.) which are

the only ones that can be practised at sea, may be practised at

land, when the sextant is used with an artificial horizon, (see

p. 774.). But then, they are to be used only when no great ac

curacy is required, and in default of better instruments. The

errors of observation with the sextant, and those of the Solar

Tables, must always be presumed to be of some magnitude ; and,

of both of these errors, the above-mentioned methods necessarily

partake.

* The inconvenience of the latter method is the difficulty of observing,

with accuracy, the altitudes of stars.
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Oh Geographical Longitude.

The Earth revolves round its axis in 23h 56m 4s.091 of mean

solar time ; but, a meridian passing through the Sun returns to it

after the lapse of a greater time, viz. 24h, and consequently, after

describing a greater angle than 360°. This arises from the in

crease of the Sun's right ascension in the time of the Earth's

rotation ; the mean value of which increase is 59' 8".3 : conse

quently, the angle, through which a meridian revolves in a mean

solar day of 24 hours, is 360° 59' 8".3.

If we suppose a number of meridians to be drawn at equal in

tervals, that is, to form successively with each other, equal angles

at the poles, then, in the course of 24 hours, each of these meri

dians (supposing their planes produced) will pass through the

Sun and, since both the Earth's rotation, and the Sun's mean

motion in right ascension, are supposed to be uniform, at equal

intervals of time. If the meridian of a given place passed through

the Sun at the beginning of the 24 hours, it would again pass

through it at the end ; 24 hours then of mean solar time would

correspond to 360 degrees of longitude ; for, the whole scale of

longitude must be comprehended between the eastern and western

sides of the meridian of the same place. At places situated on

the meridian opposite that on which the Sun was at 0*1, or, in

civil reckoning, at 12 at noon, the time would be 12h, or 12 at

night ; and 12h would correspond to 180 degrees of longitude.

At places situated on the meridian, at right angles to the former,

the time would be 6h or 18h ; or, in civil reckoning, 6 in the

morning, or 6 in the evening; and accordingly, 6 and 18 hours

of mean solar time, would correspond to 90°, or 270° of longi

tude ; and similarly for intermediate meridians.
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The selection of a meridian, from which the longitudes of all

other places are to be reckoned, is entirely arbitrary. The English

have selected that which passes through the Royal Observatory at

Greenwich : it is called the First Meridian, and its longitude is

called 0h. The French use a different one : their Premier Meridien

passes through the Observatory at Paris, and is 9m 2 1s east of the

former.

If then at Greenwich, (and consequently at all places through

which its meridian passes) the Sun were 7° 30 to the west of the

meridian, or the time were 0h 30m, at other places, the meridians

of which should be 15°, 30°, 45°, &c. distant from that of Green

wich and to the east, or which should have, respectively, 15°, 30°,

45°, &c. of east longitude, the times, or the reckoned hours of

the day, would be, respectively, lh 30m, 2h 30m, 3h 30m, &c.

At places, 10°, 20°, 30°, &c. of west longitude, the times would

be respectively, 23h 50m, 23h 10m, 22h 30m, &c. or in civil

reckoning, 1 1" 50m, 11" 10m, 10h 30m, &c. in the morning.

Now, some of the methods of determining the longitude, depend

solely on the reverse of this; that is, they find the differences

between the reckoned time at a given place and at Greenwich,

and thence deduce the difference of longitude, or, (since that of

Greenwich is 0), the real longitude, converting the time into

degrees at the rate of 15 for each hour.

The methods that depend solely on the difference of the reck

oned times, are those which are connected with phenomena that

happen and are observed at the same point of absolute time.

Such phenomena- are the eclipses of the Moon and of the satellites

of Jupiter. There are other methods, however, which depend

partly on the difference of the reckoned, and partly on that of

the absolute times. Such are founded on the phenomena of solar

eclipses, of occultations, and of transits, which are not observed,

at the same point of absolute time, at all parts of the Earth's

surface. (See p. 738.)

This maybe illustrated by an instance. Berlin is 44m 10s east

of Paris ; therefore, if an eclipse of one of Jupiter's satellites were

observed to happen at the latter place at 13h 1m 20s, it would be

reckoned to happen at the former at 13h 45m 30": for, since the
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phenomenon takes place by the actual falling of the shadow on the

satellite, the observer at Berlin must see it at the same point of ab

solute time, as the observer at Paris. But, the occultation of

Antares by the Moon, (see p. 748,) was observed at Paris at

13h lm 20", and at Berlin at 14h 6m 19". The difference (lh 4m 59")

of the reckoned times, then, is not entirely due to the difference of

meridians (44m 10s), but partly to that, and partly to the difference

in the absolute times of the observations of the phenomena : which

latter difference, equal to 20m 49s, is entirely the effect of parallax.

In the former case, the satellite was obscured by the shadow of

Jupiter, in this latter, the star is concealed by the interposition

of the Moon.

The methods of finding the longitude, then, naturally arrange

themselves into two classes : one belonging to phenomena of the

first description, the other, to phenomena of the second. The

methods of the former being very simple in their application, but

not very accurate in their results ; the latter requiring tedious

computations, but capable of great exactness. We will, however,

first shew how to determine

The Longitude by a Chronometer or Time-keeper.

From the error of a chronometer at the beginning of a period

and its daily rate, we can, supposing the latter constant, deter

mine the error at the end of the period. If the chronometer onJune 1,

be 2m 13s too slow, and its daily rate be — 05.5, on June 10, its

error will be 2m 18s. This is an arithmetical operation : but we

can also determine the error from astronomical phenomena : by

means of the- Sun's transit observed by a transit instrument, by

equal altitudes, or by calculations from absolute altitudes, (see

pp. 104, 786, 796.) Should the two errors, thus differently

found, not agree, the inference would be that the rate of the

chronometer had, during the interval, varied.

In this we suppose the observer to have remaitied at the same

station, at Greenwich, for instance. But should he, in the

interval of the two observations, have journeyed to a station west

of Greenwich, to Edinburgh, for instance, he would have to

5 o
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account for the difference of the longitudes of the two stations,

before he could rightly estimate the equability of the chronometer's

rate.

We may illustrate this point by an instance taken from the

Philosophical Transactions, 18 19. Part III, p. 384.

Thus, June 15, 1818, the equation of time at Greenwich being

- 5'.6, the Sun's centre was on the meridian at 11h 59m 54s.4 of

mean time, but the chronometer noted llh 58m 38s .6, it was,

therefore, slow by lm 15s .8, and its daily rate being — 0s .2, on

Sept. 17, it ought, on the supposed constancy of the daily rate, to

have been slow by lm 34s.6 : in other words, it ought to have noted

the time of noon by 1 lh 52m 58s .4, since — 5m 27s being the equa

tion of time at Greenwich, the mean time of apparent noon was

1 lh 54m 33s. Now the chronometer was carried to Edinburgh, and

there examined on Sept. 17> by one of the methods mentioned

in pp. 786, 802. The longitude of Edinburgh, known by previous

methods, is 12m 46s.7 west, and the equation of time for that

place on the noon of September 17, being — 5m 27s .2, the time

of apparent noon was 1 lh 54m 32s. 8, but the chronometer denoted

12h 3m 14s.4; it was, therefore, too fast by 8m 4ls.6, but if —0".2

had been its rate, it ought to have been fast by 12m 46\7

- lm 34s.6, or 11m 12s. 1 : instead then of having lost in 94 days

18".8, the chronometer had really lost 11m 12\l — 8" 4l\6, or

2m 50s.5, and its dailv rate instead of— 0s.2, appeared to be

- 1\8.

By methods, then, like this it is ascertained that chronometers

by being transported from one place to another change their daily

rate, or, widely depart from that mean rate, which, if their

construction be good, they preserve at a fixed station. A chro

nometer, therefore, cannot be relied on for determining the

longitudes of places, especially if it be conveyed over land. Their

rates are less subject to variation at sea, from the less jolting

mode of transport. But the uncertainty attendant on one chro

nometer is almost entirely got rid of, by the use of several. In

the present year, the longitude of Funchal in the island of

Madeira has been so determined. Ten or twelve chronometers
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were taken from Greenwich to Falmouth, and their errors and

rates examined at that latter place, by the method of correspond

ing altitudes. They were then taken to Madeira, and subjected

to a like examination, and the longitude determined by a mean

of results.

Longitude by an Eclipse of the Moon.

By means of a perfect chronometer we could always, and

in all places, determine the longitude. By lunar eclipses which

are rare, we can determine the longitude, only occasionally and at

particular conjunctures ; but, when such occur, by the following

method. The times at which eclipses happen, at the place of ob

servation, are to be computed, by one of the methods given in

pp. 396, &c, or, which is commonly the case, may be known by

a chronometer previously regulated by observation. The times at

Greenwich, previously computed, are inserted in the Nautical

Almanack, or may be computed by the observer from the Lunar

Tables. The difference of these times is the longitude.

Since the Lunar Tables are not exact, the comparison of

the same eclipse, actually observed at two different places, will

give the difference of their longitudes much more accurately than

the comparison of the eclipse .observed at one place, and com

putedfor another.

Example.

1 729, Aug. 28. By observations of Cassini at Paris (Mem. Acad.

1779.) and of Mr. Stevenson at Barbados (Phil. Trans.

N°. 416. p. 441.)

At Paris, Imm. J> 12h 19m 13s Emer. 5 13h 59™

At Barbados, Imm 8 11 0 Emer 9 51

~4 8 13 _4 8

By the mean of the two, the difference of longitude is, 4h 8m

6\5 or 62° l' 30": that is, Barbados is 62s l' 30" west of

Paris.

This method of determining the longitude is rarely used,

since, by reason of a penumbra, it is difficult to ascertain the
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exact time of contact of the Earth's shadow with the Moon's

limb. The time is uncertain, to the extent of 2m, or 30'. It has

been proposed to amend the method, by observing the contact

of the Earth's shadow with some remarkable spots in the Moon's

disk. (See Phil. Trans. 1786, pp. 415, &c.)

Longitude by the Eclipses of Jupiter's Satellites.

This method, although an inexact one, is yet better than the

preceding, and for two reasons ; the first is, the more frequent

recurrence of the eclipses of Jupiter's satellites than of lunar

eclipses. The first satellite, for instance, is regularly eclipsed

at intervals of forty-two hours. The second reason is, that

the times of the immersion and emersion of the satellites, can be

more exactly noted than the times of the contacts of the Earth's

shadow with the Moon's limb.

This is, however, only a relative excellence. In noting the

eclipses of the first satellite, the time must be considered as un

certain to the amount of 20 or 30 seconds. Two observers, in

the same room, observing with different telescopes, the same

eclipse, will frequently disagree in noting its time, to the amount

of 15 or 20 seconds ; and the difference will not be always the

same way : that is, the telescope by which an emersion is the

soonest seen on one occasion, will not always maintain its

superiority. As a general fact, however, the telescope of the

greatest power will cause immersions to appear later, and

emersions sooner : and this is the reason why observers are

directed in the Nautical Almanack, (p. 151,) to use telescopes

of a certain power.

The eclipses of the first satellite cannot, as it has been re

marked, be observed very exactly. But there is much greater

uncertainty in noting the times of the eclipses of the other satel*

lites. M. Delambre thinks that the time of an eclipse of the

fourth satellite, may be doubtful to the amount of 4'. Still the

method of determining the longitude by the eclipses is much

practised, because it can be frequently and conveniently practised.

A good telescope, an adjusted chronometer, and the Nautical

Almanack, are all the apparatus wanted. We subjoin an Example,



841

Example.

At the Cape of Good Hope, May 9, 1 769,

Emer. 1st Satellite 10h 46m 45*

At Greenwich, by computation (Naut. Aim.) 9 33 12

Difference of meridians t . . 1 13 33t

or the Cape is 18° 23' 15" to the east of Greenwich. The

remark which was applied to the former case, applies to this. If

•we use the emersion observed at Greenwich, instead of the

emersion computed for Greenwich, we shall avoid the errors of

the Tables of Jupiter's satellites, and obtain a more exact value

of the longitude.

We now proceed to the methods of determining the longitude

by means of phenomena of the second class ; those, which are

not seen by all spectators at the same point of absolute time.

The Longitude determined by an occultation of a fixed Star by

the Moon.

In pp. 748, 8tc. the apparent distance of Antares, from the

Moon was computed, for the instant previous to its occultation,

and found equal to 15' 5l".38. The place of observation was

Paris : the hour or apparent time 13*1 lm 20s (the mean time

13h 3m 32".8): and the formula for the computation of the

distance, was

D2 = (f- tf + (fc - k'f. cos.* I (a).

In this formula, I, k, are the apparent latitude and longitude

of the Moon, obtained, by adding to the true, (see p. 744,)

the computed parallaxes in longitude and latitude.

The true longitude and latitude of the Moon were taken,

from Lunar Tables computedfor the meridian of Paris, and for

13h 3m 32s.8 mean solar time at Paris: and were found,

respectively, equal to 9s 5° 3l' 42".4 and 3° 47' 58".7.

<See p. 749.)

If then the Lunar Tables be correct, D would result from the

preceding formula (a) exactly of its proper value, such as the
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Tables would assign, or (since D is, in this case, the Moon's

semi-diameter) such as might easily be ascertained by observation.

But, if D computed from the formula (a) should differ from the

value of the Moon's semi-diameter assigned by the Tables, such

circumstance would be a proof of, the existence of errors in the

Tables. And, the difference between the two values of D, would

enable us to deduce an equation between the corresponding

errors in the Moon's latitude and longitude. In this case, an

occultation would serve to correct the errors of the Lunar Tables.

But, as it has been already explained in Chap. XXXIV, there

is another method of correcting the Lunar Tables. On the day

of observation, the Moon's declination and right ascension are

observed, and thence, her latitude and longitude are computed.

The respective differences between these, and her latitude and

longitude computed from the Lunar Tables, will give, for that

day, their errors.

Since we have the means then of ascertaining the errors, we

will suppose the Lunar Tables to be perfectly correct. Let us

now see, by what means, D is to be computed, in a place of

observation, for the Meridian of which, there are no Tables

constructed.

In such a place, the observer must use Tables computed for

another meridian : either, for the meridian of Greenwich, or for

that of Paris : either the Nautical Almanack, or the Connois-

sance des Terns*. By these, he must compute /, and k, and

accordingly, previously must compute the Moon's true latitude

and longitude, that is, the latitude and longitude that belong to

the centre of the Earth. The values of these latter depend on

the time for which they are computed, and, on the time as it is

reckoned either at Greenwich or Paris. Now, although (see

* These Ephemerides may be considered a species of lunar and

solar Tables, in which certain results, most commonly wanted in

practice, and computed from the general Tables, are inserted. Such

results are the Moon's right ascension, declination, longitude, latitude,

parallax, and semi-diameter, for noon and midnight.
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Chap. XL1.) the time, at the place of observation, can be ex

actly known, that, at the place for which the Tables are computed,

cannot, except by a knowledge of the longitude of the former

place.

This is easily illustrated : the occultation of Antares was

observed at Berlin at 14h 7m 3i', mean solar time. The Observer

at that place in order to compute, by the French Tables, the Moon's

true longitude, must know the corresponding time at Paris. If

he assume Berlin to be 44m east of Paris, the corresponding mean

time, at the latter place would be, 13h 23m 31": and the Moon's

true longitude computed for 13h 23m 31", would be 8" .5° 43' 16".

But, if he assume the difference of longitude to be 39m 49", the

corresponding time at Paris will be 14h 27m 42s: and the

Moon's true longitude computed for 14h 27m 42s, will be

8' 5° 45' So". The computations for the Moon's true latitude

will be similarly affected by a change in the hypothesis of the

longitude of Berlin.

A small error in that hypothesis will very little affect the

computation * of the parallaxes in longitude and latitude, which

depend chiefly on the hour angle; consequently, since the apparent

differ from the true longitudes and latitudes, solely by the

parallaxes, the change, or error in the hypothesis of the difference

of meridians, will produce the same difference in the apparent, as

in the true longitudes and latitudes of the Moon.

Hence it follows, that an error in the assumed longitude

of Berlin (that being still the place used for illustration) will

produce errors in the computation of /, k ; and consequently, in

the computation of D from,

Di = (I - 1') + (A - k'f cos.2 1 (a),

there must be an error in the resulting value of D.

* If we examine the formulae of computation, (1), (2), (3), &c. in

p. 748, &c. we shall perceive that the parallaxes depend principally

on the hour angle which is not changed by altering the hypothesis of

the longitude.
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Now, the principle of finding the longitude of Berlin, consists

in correcting the assumed longitude, by means of the error in D.

The correction is thus made.

The Moon's latitude and longitude (/, A,) being supposed

to be erroneous, let their true value be / + nt, k + mt, n,m beiug

the Moon's horary motions in latitude and longitude, and t, as an

unknown quantity, representing the time, or the error of the

hypothesis of the difference of the meridians; then, if A be the

Moon's true semi-diameter, we have

A 8 = (/ + nt - ?f+ (A + mt- hlf. cos.1 1 (A),

and from this and the preceding equation (a), t is to be determined.

If we suppose, what will always be the case in practice,

the longitude of the place of observation to be nearly known,

and, consequently, the hypothesis of its value to differ but little

from the true value, t will be a small quantity ; and, if we

neglect its square in the expansion of (b), we shall have

A*=a-ry + <znt.(i-t) + [(a-at + 2 m* (A- a')] cos.*/.

Subtracting (a) from this,

A2-D2 = 2f{>(/-/') + (A -A') cos.*/]

and, consequently,

' ~ 8 [«(/-/) + m(A-/fc').cos.YT''(c)'

This value of t, (an approximate one) is the correction to the

assumed longitude : suppose, the longitude = T, then its corrected

value is T + t ; and, if a still more correct value be required,

compute again by means of this correctedhypothesis ofthe difference

of the meridians (T+t), the true latitudes and longitudes of the

Moon ; thence deduce correcter values of /, k, and find a new

approximation (<') from the expression (t). The longitude, after

this second correction, will be T + t + t'.

This method, from an assumed approximate value, is capable

of determining the true value of the longitude, to the greatest

exactness. And, we need not be solicitous concerning the nearness

of the first approximation to the truth. An eclipse of one of
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Jupiter's satellites, which is easily observed, will afford us a first

value of the longitude, we might almost say, more than sufficiently

near. For, we may even take as a first value, the difference of

the reckoned times of the occultation at the two places which in the

preceding illustration was 1 5m, and which (see pp. 837, Sic.) is

considerably different from the true value.

We have already illustrated the method, by supposing the

occultation to have been observed at Berlin, aud the Moon's

longitude and latitude to have been computed by Paris Tables.

We will now attempt to exemplify the mode of computing the

correction (t), by supposing the occultation to have been observed

at Paris, and the Moon's longitude and latitude to be computed

by Tables adapted to the Meridian of Greenwich.

The immersion (see p. 748,) was observed at Paris at 13h lm

20s. In order to find the corresponding time at Greenwich,

suppose the latter place to be 9m west of the former ; then, the

reckoned time would be 13h lm 20s - 9'", or 12h 52°" 20s; for this

time, compute the Moon's longitude ; the simplest mode of

effecting which, now, would be, to take from the Nautical

Almanack the Moon's longitudes on April 6th at midnight, and

April 7th at noon ; to find their difference, and then to add to the

former that part of the difference which is proportional to 52m 20'.

The result would be the Moon's true longitude at 12h 52m 20s.

(See pp. 784, &c.) Compute in the same way the Moon's

latitude : suppose the above quantities to be exactly of those

values which are assigned to them in the Example of pp. 748, &c;

then, the parallaxes, &c, being computed exactly as in that

Example, the Moon's semi-diameter will.be found (see p. 751,)

equal to 15' 51 ".3. If the Tables be perfectly correct, and the

longitude be rightly assumed, such computed value of the semi-

diameter ought to be equal to the semi-diameter assigned by the

same Tables. But, the latter is found to be 15' 37".7. The

difference or error 13". 6, assuming the Tables to be correct,

must arise then solely from an error in the hypothesis of the

longitude : computing that error from

. /' A2-D* . . .

' ~ 2 [« (/- /') +- m (A -k') cos.* /] '

5 p
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in which A = 15' 37".7 l — l'= 4' 3".2

D = 15 51 .3, k -k' = 15 22.7

/ = 4° 36', and n and m are the hourly motions * ; t will be found

nearly = 25s. The corrected longitude of Paris then is 9m 25s,

and a repetition of the process will give a value still more correct.

Since the illustration of the method of correcting the assumed

longitude was our chief object, we have supposed the Lunar

Tables to be correct. But, in practice, their errors, which are

frequently considerable, must be always attended to.

If the occultation be observed under a known meridian, such

as that of Greenwich or of Paris, then, it may be made subservient

to the correction of the Lunar Tables. For such an end, Mayer

has employed the immersion and emersion of Aldebaran\. And,

it is easy to see, since the errors in the computation of the

Moon's distance from the star, can be only three J (those of the

lunar longitude and latitude and of the assumed longitude of the

place of observation,) that three observations, to wit, of an immer

sion, at a place of an ascertained longitude, and of an immersion

and an emersion at a place whose longitude is required, will furnish

three equations sufficient to correct the three errors above-

mentioned. (See Cagnoli, Trig. pp. 470, &c.)

In page 753, allusion was made to a method, of deducing

the longitude from an occultation, in some respects the reverse of

the preceding. In the method alluded to, the true latitude and

longitude of the point of occultation are deduced by correcting

the apparent latitude and longitude of the star on account

* To obtain n, m, the hourly motions, compute the Moon's apparent

latitudes and longitudes, for 12h 51m 40s, and for I3h 51m 40': and the

respective differences of these quantities will be the hourly motions in

latitude and longitude. In the computation they were assumed to be

X' 54" and 36' 31"; which are not, however, their exact values.

t Mayer's Lunar Tables, 1 770, pp. 39, 40.

J The Moon's semi-diameter, on the day of the occultation, may be

measured or computed by means of an observation, and accordingly,

any error, in it's value assigned by the Tables, corrected.



847

of parallax. The true latitude of the Moon is taken from the

Nautical Almanack. The true distance D, or the semi-diameter

of the Moon may be taken from the same source, or may be

determined by observation : and thence may the Moon's longitude

be determined : for, supposing in the equation (p. 747,)

D% = (Z - Vf + (A - A')1 . cos.1 /,

that, I, k, &c. represent the true latitudes and longitudes : if D,

I, I', are known, k — k' may be determined ; and, since k', or the

true longitude of the point of occultation is known, k the longitude

of the Moon's centre is.

Suppose, then, that by these means, and separate calculations*,

we obtained, from an occultation, at two different places, the

following results :

Greenwich, long. J 's centre 67° 22' 26". 1 hour = 8h 37m 36". 8

Dublin 67 18 43.3 8 4 51.5.

0 3 42.8 0 32 45.3

then, 3' 42".8, is the difference between the Moon's true longi

tudes at the absolute times of the observed occultation : and if the

Moon's horary motion be 30' the difference would corres

pond to 7m 23'. 3, in time. The occultation therefore at Green

wich really happened later than the occultation at Dublin by

7m 23s.3 : but, it is reckoned to happen later at the former by

32m 45s.3 : consequently part of this, or that part which remains

after 7m 23'.3 is subducted, is solely due to the difference of the

longitudes of the two places : Dublin therefore is east of Green

wich, 25m 22s.

The Longitude determined by means of a Solar Eclipse.

This method, in all its parts, is like the preceding. The

distance (D) which is to be computed, instead of being the Moon's

semi-diameter, will be the sum of the semi-diameters of the Sun

and Moon. The immersion of the star will correspond to the

first exterior contact of the limbs of the Sun and Moon, the

emersion to the last. Thence will result, two equations for

correcting, if the Lunar and Solar Tables be correct, the hypo
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thesis (see p. 846,) of the assumed longitude. But, since we

can also observe other Phases of the eclipse, that, for instance, of

the nearest approach of the centres (see pp. 724, 732,) we may

deduce equations sufficient to correct both the errors of the Tables

and the error of the assumed longitude of the place of observa

tion.

We will now proceed to the description of an excellent method

of finding the longitude, which cannot be ranged under either of

the two preceding classes.

Method of determining the Longitude by means of the Passage

of the Moon over the Meridian.

Let us suppose the meridian of a given place, produced to the

heavens, to pass through the Moon, the Sun, and a fixed star.

In the next instant, the Sun by its motion in right ascension will

separate itself from the star ; the Moon, by her greater motion in

right ascension, both from the star and Sun, and the meridian, by

the rotation of the Earth, from the star, Sun and Moon. In other

words, in the instant of time (whatever be its magnitude) after

that on which the three bodies were on the meridian, the star will

be most to the west of the meridian, the Moon least, and the Sun

will be in an intermediate position.

The meridian after quitting these bodies, will approach to

wards them with different degrees of velocity, and will reach them

after different intervals of time. It will again pass through the .

star, after describing 360°, in 23h 56m 4s.09; through the Sun,

after describing 360° 59' 8".3, in 24h ; and, through the Moon,

after describing an angle equal to the sum of 360° and the increase

of the Moon's right ascension in 24h, and in a time equal to

the sum of 24 hours, and of the Moon's retardation (see p. 783,)

in 24 hours.

This takes place in the interval between two successive transits

of the Moon over the same meridian. A spectator on a different

meridian must note similar effects; but less in degree, and less,

proportionally to the distance of his, from the first, meridiau.

He will note an increase in the Sun's right ascension, (or a
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separation of the Sun from the fixed star) but less than 59' 8".3 :

an increase in the Moon's right ascension (or a separation of the

Moon from the star), but less than its increase between two suc

cessive transits : and, consequently, an excess of the increase of

the Moon's right ascension above that of the Sun's, but less than

the excess that takes place between two successive transits of the

Moon over the first meridian.

Hence, if the spectator, on this second meridian, knows, or is

able to compute, the respective increases in right ascension of the

Moon and Sun that take place between two successive passages

of the Moon over the first meridian, then, since he is able, by

actual observation, to ascertain, at the times of their passages, the

right ascension of the Sun and Moon, he may, by simple pro

portion, determine his longitude ; and in fact, he has three ways

of effecting it : either with the Sun and star ; or with the Moon

and star; or with the Moon and Sun. Since, however, the first

method by reason of the slow motion of the Sun, is not convenient

and practically useful, we shall not notice it, but consider only

the two latter.

Let E be the increase of the Moon's right ascension during

two successive transits over the first meridian, e the difference be

tween the Moon's right ascension at the Moon's first passage over

the first meridian, and her right ascension at the passage over the

second meridian, then, ,

E : e :: 360 0 : 360 X — = difference of the meridians.

This is the case with the Moon and star : and, with the Moon

and Sun, there is this only difference, that E (£') must denote the

excess of the increase of the Moon's right ascension above that of

the Sun between two successive transits of the Moon ; and e (e )

the difference between the hours of Moon's passages over the

second and first meridian : for, the hour of the Moon's passage

is proportional to the angular distance which then exists between

the Sun and Moon.

We must now endeavour to render the above formula more

convenient for computation, so that (which ought in practical
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Astronomy to be our constant aim) we may avail ourselves of the

facilities of the Nautical Almanack.

E is the increase of right ascension between two successive

transits of the Moon over the first meridian ; it is, therefore, equal

to the increase of right ascension in twenty-four hours, plus the

increase of right ascension due or proportional to, the Moon's re

tardation (see p. 783,) in twenty-four hours. We have therefore

this rule in the case of the Moon and star :

Find from the Nautical Almanack, (see p. 786,) the increase

of the Moon's right ascension in twenty-four hours.

Compute also by the rule in p. 155 of the Nautical Almanack,

(or from the expression in this Treatise, p. 782,) the Moon's re

tardation in twenty-four hours.

To the increase (jf) of the Moon's right ascension in 24* add

the increase proportional to the retardation : call the sum E.

Then, substituting in p. 849, 1. 25, 24h instead of 360°, we have

log. longitude = log. 24 + log. e — log. E.

In the case of the Moon and Sun, the rule is somewhat more

simple : for E' converted into time in the case of the Moon, is the

Moon's retardation, and e' is the proportional retardation between

the transits at the first and second meridian. The third step,

therefore, in the preceding rule, in this case, need not be made.

The above rule is adapted to the Nautical Almanack. But,

it is easy to substitute, instead of it, a general formula of compu

tation expressed in symbols. Thus, let A, a, be the respective

increases of the right ascensions of the Moon and Sun in twenty-

four hours ; then, since the interval between two successive

passages of the Moon over the meridian is

24h + 24 x d-Zl + 24 (*-2*)% + 24 (—V + &c.

24 V 24 / V 24 /

(since in this case t = 24h, see p. 782,) the retardation in 24h

must equal

A — a + - h &c.

24 (24)*
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and the increase of A, due to the retardation, must equal

24 V 24 (24)' J

and consequently, (see p. 783,)

and the longitude =

24 x e

. f , A - a , /A — ar\ /A — <z\3 „ ) "

In the case of the Sun,

w t , U - a? (A - of

Ef = A - a + ——— + j-1 + &c.

24 24

and e' = e — e, where e expresses the star's acceleration, (see

p. 780,) proportional to the time corresponding to the difference

of meridians. Hence, the longitude =

24 * (e ~ c) ft)

„ f .i - a /-A — a\* . /-A — «\° "I *

I1 + + (-«-) + (-sr) +&cj

Since e — e : A — a :: e : A, it is plain, the two expressions

are, as they ought to be, equal.

The Moon's right ascension is expressed in the Nautical

Almanack for every 12h. Instead therefore of the difference of the

increases of right ascension (A — a) in 24 hours, we may employ

the difference ^— - in 12 hours : and accordingly in the

Rule, (p. 850, 1. 9, &c.) and in the two expressions (1), (2),

we must use 12h instead of 24h.

The denominators of the expressions, (l), (2), are, strictly

speaking, infinite series ; but, in practice it will be sufficiently

accurate to take the sums of three of their terms.
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The application of the Rule of p. 850, to Examples will now

be much more easy than it was some years ago : since the

Nautical Almanack, will, in future, express the Moon's right

ascensions for noon and midnight in degrees, minutes, and seconds.

We may, therefore, either compute the retardation by the formula

of p. 783, or by the Rule given by Dr. Maskelyne in the Nautical

Almanack, his explanation of its use, &c. : or by computing by

the method given in pp. 698, &c. the time of the Moon's passage

over the meridian : since the difference of two successive passages

will immediately give us the Moon's retardation in 24 hours. If

the passages of the Moon over the meridian of Greenwich were

expressed as far as seconds of sidereal, or other, time, the appli

cation of the Rule would be still more simple.

Example.

April 8, 1800.

M of Moon's centre observed at Greenwich. ... 12h 36m 26s.6

On a meridian to the west, 12 47 56.7

e = 0 11 30 . 1

By computation from Nautical Almanack

Increase of 5 's right ascension in 24h, or A 52m 6'

of O 's, or a 3 39.3

A — a = 48 26.7

Moon's retardation in 24h, or time proportional")

to the description of A — a (see p. 782,) also > .... 50 7.8

Nautical Almanack, Explanation of Rules )

Proportional increase of 52m 6", in 50re 7'.8 1 48.8

/. E ( = 52m 6s + lm 48". 8). 53 54.8

Hence, by the Rule, p. 850,

log. 24 1.3802112

log. 11m 30M 2.8389120

4.2191232

log. 53 54.8 3.5098474

0.7092758 = log. 5.12007 ;

therefore the longitude = 5h. 12007 = 5h 7m 12'.25.
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We will now solve the same Example, by the second method,

which is founded on the difference between the hours of the

Moon's passages over the meridian, instead of the difference of her

right ascensions at those passages. We will also use 12 instead

of 24 hours (see p. 852.)

Example.

Moon's passage at Greenwich 1 lh 26m 47".82

at the place of observation 11 37 29 . 5

e' or, e — e = O 10 41 .68

Moon's retardation, or E ... 25 3.9

Hence, log. 12 1.0791812

log. lOm 41\68 2.8073185

3.8864997

log. 25 3.9 3.1772190

.7092807 = log. 5.1201

.-. longitude = 5h.1201 = 51* 7n 12'.36.

The results are expressed as far as decimals of a second,

merely for arithmetical exactness, and with no view of signifying

that, in practice, any such exactness is attainable. The method

is an excellent one, if it will determine the longitude within

10 seconds : and its original author Mr. Pigott, does not think

it capable of a greater degree of accuracy. (See Phil. Trails.

1786, p. 419.)

The method, indeed, in a point of view strictly theoretical,

cannot be minutely accurate. For the Moon's motion is conti

nually variable, and the increase of its right ascension in 24 hours,

will not be 24 times the increase in one hour. But if, from the

strict laws of the lunar motions, we corrected the method, we

should probably obtain an exactness of no practical value ; since,

we might only get rid of errors much less than the almost un->

avoidable errors of observation.

5 a
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Any means, however, of rendering the method more accurate

and simple, are not to be neglected. And, on the ground of

accuracy, we shall probably gain something, by employing, instead

of the sidereal clock, one of the stars that regulate it : and, that

star, which shall happen to be nearest the Moon in right ascension

and declination. Let both Observers note the right ascensions of

this star and of the Moon, at the times of their transits over their

meridians ; then since, in a short interval, the clocks will not

err much, the difference of the differences in right ascension, on

which the method depends, will be given with sufficient accuracy

for its successful application.

Again, the method will be rendered more simple, if instead of

computing the transit of the Moon's centre, we are content to note

merely the transit of one of her limbs. This we may do, with

little error, if the required longitude be not great. For, the error,

if there be any, can arise, solely from a change in the Moon's

semi-diameter during the interval between the transits over the

two meridians.

Example. (See Vince's Astronomy, p. 583.)

June 13, 1791. At Greenwich, difference of') ^m ^

JR. of 5 's first limb, and of a Serpetitis /

Difference, at Dublin 27 24 . 74

1 6.44 = e

By Nautical Almanack, — 30 30

2

a

- 2 4.4

2

A — a

28 25. G

2

Retardation, (see p. 782.) 29 35 . 2

;rease of — proportional to retardation 1 15.2

£( = 30B1 30s + lm 15s.2) 31 45.2
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Hence, log. 12 1.0791812

log. lm (7.44 1.8224296

2.9016108

log. 31m 45s.2 2.2799406

0.6216702 = log. .418475

.-. the longitude = 25m 6s. 5*.

The method of finding the longitude, by an occultation and

the eclipses of the Sun and Moon, would, even if they could be

practised, be of no use at sea, by reason of the rare occurrence of

the phenomena on which they depend. A voyage might be

completed before any eclipse happened. The mariner, who

continually changes his place, requires a constant method of

determining the change of longitude ; a method, accordingly,

depending on phenomena, continually occurring. Now, the

passages of the Moon over the meridian, and the eclipses of

Jupiter's Satellites, are phenomena of such character. But, of

neither of these can he avail himself : for, the method founded

on the former requires a nice observation with a telescope adjusted

to move in the plane of the meridian : which is an operation

evidently impracticable on board a ship. And the other method,

on trial, has been found to be equally impracticable. Yet all

that is wanted, for its success is, a contrivance that shall enable

the Observer to direct, with steadiness, a telescope of sufficient

power, towards Jupiter. (See Naut. Aim. p. 151.)

* The principle of the preceding method is to be found, in a

letter from Mr. Pigott, to Dr. Maskelyne, inserted in the Philosophical

Transactions for 1786, pp. 417, &c.; and the method was used by the

former in determining the longitude of York. The rule, however,

p. 417, given by its author, is inaccurate: immaterially so, with

regard to a place of so small a longitude as York, but to the extent,

nearly, of 3 degrees, if we should seek to determine, by it, the longitude

of a place that exceeds 5h. This inaccuracy, as well as those of

other authors, (see Vince's Practical Astronomy, p. 91. Wollaston's

Fasciculus, Appendix, p. j6) who have adopted Mr. Pigott's method,

was first pointed out in the Phil. Mag. vol. XV.
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From the defect, however, of the preceding methods, has

arisen one of singular simplicity and ingenuity, in which the sole

instrument employed is the Sextant. This we shall now proceed

to describe and illustrate.

Method of determining the Longitude by the Distance of the Moon

from afixed Star, or from the Sun.

1 . By means of the sextant (see Chap. XL.) observe the distance

between a star and one of the limbs of the Moon ; or between

the limbs of the Sun and Moon ; then, by adding or subtracting,

in the former case, the Moon's semi-diameter, and in the latter,

the sum of the semi-diameters of the Sun and Moon, there will

result either the distance between the Moon's centre and the

star, or between the centres of the Sun and Moon.

2. If there be two Observers besides the one, who takes the

above distance, let them, at the instant that distance is taken,

observe the altitudes of the Moon and Star, or of the Moon and

Sun. If there be only one Observer, he must take the altitudes

immediately before and after the observation of the distance, and

endeavour to allow for the changes of altitude, that may have

taken place in the intervals between their observations and that of

the distance.

$. These observations being made, the true altitudes must be

deduced from the apparent and observed, by correcting the latter

for parallax and refraction, (see Chap. XI, XII.). Which

correction, in practice, is effected by means of Tables.

4. The observed distance being an apparent one, must be

reduced to a true distance, or, (as it is technically expressed,)

must be cleared of the effects of parallax and refraction. This

must be effected in every case, by a distinct computation from

a proper formula.

5. The true distance being obtained, find the hour, minute, &c.

of Greenwich time corresponding to it. This is effected by

appropriate Tables, previously computed and inserted in the

Nautical Almanack. In these Tables the Moon's distances from
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certain stars are inserted for every Shi and thence, by an easy

calculation, the time corresponding to an intermediate distance

may be found.

6. Compute the time at the place of observation from the

corrected altitude of the Sun or star, the Sun's or star's north

polar distance (furnished by Tables), and the latitude.

7. The difference between this latter time and the time at

Greenwich, is the longitude.

The first thing in the preceding statement that requires our

attention, is the

Formulafor deducing the Truefrom the observed Distance.

Conceive S, M to be the true places of the star and Moon in

two vertical circles SZ, MZ, forming at the zenith Z, the angle

MZS ; then, since (see Chap. XI, XII.) both parallax and re

fraction take place entirely in the directions of vertical circles, some

point s above S, in the circle ZS, will be the apparent place of

. the star, and m below M, (since, in the case of the Moon, the

depression by parallax is greater than the elevation by refraction)

will be the apparent place of the Moon : let

D (SM) be the true, d (sm) the apparent distance,

A, a (90° — ZM, 90° — ZS) the true altitudes,

H, h (90° — Ztn, 90°- Zs) the apparent altitudes;

then,

ofv*T cos- D — sin. A . sin. a

in A SZM, cos. SZM =

cos. A . cos. a

M « . o«i*v cos. d — sin. ff . sin. A

in A sZm, cos. sZm{= f>ZM) = . — : ,

cos. ti . cos. n

and D is to be deduced by equating these two expressions.

Hence,

r» / j zj is cos. A • cos. a

cos. IJ = {cos. a — sin. H . sin. K) — -p sin. A.sm. a,

cos. ti . cos. h,
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r ,, TT , , COS. A . COS. fl . , .

= [cos.a-|-cos.(/3-|-A)— cos. r/.cos.AJ — + sin.A .sin. a

cos. rl . cos. A

,,„.,, i ,Tr , , » „ cos. ^ . cos. a
= 2 . cos. \ (H+ h + d) . cos. ±(H+ h - d)* ,

cos. H.cos. h

— (cos. A cos. a— sin. A sin. a.)

But the last term = cos. (A + a); subtract both sides of the

equation from 1 ; then, since

.ri -o-D ,. . . 2 A-\-a

1 — cos. D = 2 . sin. — , and 1 + cos. (A +a) = 2 . cos. .

2 2

 cos. A . cos. a

we have, dividing by 2, and making r to represent — -.

cos. H . cos. A

sin.1— = cos.8 ^ {A + a) - cos. \ (H+h+d) cos. £ (H-tfi -d)x F

= J.' I {A + (!) (l - coM(W^).coM (W-.) x v

V cos. (A + a) '

and, if we make the fraction, on the right-hand side of the equa

tion, = sin.5 6, we shall have

sin.2 — = cos.* J (A + a) . cos.2 9,

2

D

and sin. — = cos. ^ (Jl +a) . cos. 0.

Hence, by logarithms, the rule of computation is

1st, 2.log. sin. 0 = log. cos. | (H+h+d)+\og. cos. { ± (H+h-d)

+ log. cos. A + log. cos. a + ar. com. log. cos. H

+ ar. com. log. cos. A — 2 log. cos. %(A + a),

and 2ndly, log. sin. — = log. cos. \ (A + a) + log. cos. 9 — 10+.

2

* Cos. | (d - # - A) if d be > if + h.

+ This formula of computation is Borda's. If in p. 857, bottom line,

instead of substituting for sin. H sin. h, cos. H . cos. h, — cos. (H + k),

we substitute cos. (H— h) — cos. if . cos. h, we may deduce the formula,

which is the basis of Dr. Maskelyne's Rule inserted in the Introduction

to Taylor's Logarithms, pp. 60, &c.
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The other parts (1), (2), &c. p. 856, of the statement* have

either already received explanation, in the preceding pages of

this Treatise, or are so plain as to need none. We proceed

therefore to an Example.

Example.

June 5, 1793, about an hour and an half after noon, in

10° 46' 40" south latitude, and 149° longitude, by account (see

p. 800), by means of several observations, it appeared, that

Distance of nearest limbs of © and J) .... 83° 26' 46"

Altitude of lowest limb of G 48 16 10

Altitude of upper limb of D 27 53 30

Here, see (1) p. 856, we must add to the distance, the semi-

diameters of the Sun and Moon, taking them from the Nautical

Almanack.

The apparent distance of limbs of 5 and O 83° 26' 46"

semi-diameter of © 0 15 46

of D 0 14 54

Augmentation propor1. to altitude, (see p. 657,) 0 0 7

Apparent distance (d) of centres 83 57 33

* The distance (see p. 856, bottom line,) between the Moon and a

fixed star is easily computed from their latitudes and the difference of

their longitudes, the proper formula is

. -D . %fl-t\ , „ . .k-k-
sin.* — = sin.* ( ) + cos. / . cos. I . sin. ,

2 \ 2 / 2 '

(see p. 746: also Trig. pp. 170, &c.) /, /', k, k', representing, in this

case, the true latitudes and longitudes.

The Moon's latitude and longitude being computed and inserted in

the Nautical Almanack, for noon and midnight, the Moon's distances

from certain stars are computed, by the above formula, for those times ;

and, the distances for the intermediate times, at 3h, 6h, &c. are deter

mined by interpolation, or by the aid of the differential formula.

The latitudes and longitudes of the stars, are either to be computed,

(see pp. 158, &c.) from their right ascensions and declinations, or to be

immediately taken from certain Tables. (See Lalande's Tables, Nautical

Almanack 1773, Connois. ties' Terns, an. 12.)
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Reduction of the Apparent to the True Altitude. (See [3] p. 856.)

Altitude of Sun's lower limb 48° 16' 10"

Dip (see p. 824.) — 0 4 24

48 11 46

Semi-diameter 0 15 46

Apparent altitude of Sun's centre (A) 48 27 32

Refr. — Par. - correct, for Therm -O O 43

True alt. of Sun's centre (a) 48 26 49

Altitude of Moon's upper limb 27° 53' 30"

Dip - 0 4 24

27 49 6

Semi-diameter 0 15 1

Apparent altitude of Moon's centre (H) 27 34 5

Par. - Refr. + corr. for Therm O 46 43

True altitude of Moon's centre (A) 28 20 48

Reduction of' the Apparent to the True Distance.

(See [5] p. 856, and Formula, p. 858.)

d 83° 57' 33"

h 48 27 32 ar. co. cos. = .1783835

H 27 34 5 ar. co. cos. = .0523390

sum 159 59 10

| sum 79 59 35 cos. = 9.2399686

d-^sum 3 57 58 cos. = 9-9939587

a 48 26 49 cos. = 9-8217 187

A 28 20 48 cos. =9-9445275

A+a= 76 47 37 39-2358960

j(J+ a)=38 23 48 2 log. cos. 19-7883324

2) 19-4475636

log. sin. 0 = 9.72378 18 = log, sin. 3 1° 57'33"

Hence, log. cos. 31 57 53 9-9285875

log. cos. 38 23 48 9-8941662

(10 taken away) 9.8227537 = log. sin. 41° 40' 27"i
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D

8

and, D = 83 20 55, nearly.

- = 41° 40' 27"f,

Time at Greenwich computed. [See (5) p. 856.]

By Nautical Almanack, (p. 70.)

tv . * c ^ fat 15h 83° 6' l" L> = 83°20' 55"

Dist. 5 from © < „ h „Ut 18 84 28 26. . . at 15h 83 6 1

Increase of dist. in 3h = 1 22 25 0 1 4 54

Hence,

1° 22' 25": 14' 54" :: 3h : time corresg. to the increase of 14' 54"

*Hence, log. 3 = .4771213

log. 894" = 2.9513375

3.4284588

log. 4945" = 3.6941663

1.7342925 = log. 0h.5425 = log. 32m 33s.

Hence, the time at Greenwich = 15h 32m 33s.

Time at the Place of Observation computed. [See (6) p. 857,

also, pp. 795, 8tc]

L (bat.) 10° 16' 40". . cos. 9.9929749

p 113 22 48 . . sin. 9-9627922

a 48 26 49 19.9557671

sum . . 172 6 17

\ sum.. 86 3 8.5 cos. 8.8378712

^-sum — a 37 36 19.5 sin. 9-7854864

(20 added) 38.6233576

19.9557671

2) 18.6675905

9-3337902= log. sin. 12° 27' Yf\

» As this is a frequent operation in Nautical Astronomy, it is facili

tated by means of Tables of Proportional Logarithms, in which log. 3h = 1.

See Requisite Tables, Tab. XV. also Mendoza's Tables, Tab. XIV.

5 R
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.-. hour angle (see p. 793, &c.) = 24* 54' 35"

(and in time, by Rule, p. 779,) = 1* 39m 38s.3.

Hence, see (7) p. 857,

Time at Greenwich, 15h 32m 33s

at place of observation 1 39 38.3

Long, from Greenwich reckoning by the west 13 52 54.7

longitude east of Greenwich 10h 7m 4s.3.

We will give a second Example, in which the lunar distance

is the Moon's distance from a known star.

Example II.

Dec. 14, 1818, at 12h 10m, nearly: latitude 36° 7' N., longi

tude by account 11h 52m, the following observations were made;

the eye of the Observer being about 19 feet above the surface of

the sea,

Observed Alt. Observed Alt. of Observed Dist. of Moon's

of Regulus. Moon's L. L. nearest Limb and Star.

28° 29' 17" 61° 26' 12" 33° 15' 25"

— 4 18 — 4 18 dip of the horizon

+ 14 56 + 14 56 T) 's semi-diameter.

(A) 28° 24' 59" (H) 61° 36' 50" (d) 33° 30' 2l"

Ref\- 1 45 - 0 31.1

Parallax [see below (p)] + 25 40.5

(«) 28 23 14 (J) 62 2 0, nearly.

(p) Horizontal Parallax 53' 59",

log. 53' 59" =3.51041

log. 61° 36' 9.67726

3.18767

.-. parallax = 1540".5

= 25' 40".5.
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Hence, see p. 858,

d = 33° 30' 2l"

h = 28 24 59 • • • sec. 0.0557579 •

H = 61 36 50 . . . sec. 0.3229307

isum = 61 46 5 . . . cos. 9.6748997

|sum- d = 28 15 44 . . . cos. 9-9448723

a = 28 23 14 . . . cos. 9-9443616

4 62 2 0 . . . cos. 9-6711338

39-6139560

±(A + a) 45 12 37 2 cos. 19-6957706

2) 19-9181854

9-9590927 (log. sin. 65° 3 1' i3")

again, cos. 65° 3l' 18"= 9-6173895

cos. 45 12 37 9.8478853

9.4652748 = log. sin. 16° 58' 24".2 ;

.-. D = 33° 56' 48".4.

Time at Greenwich (see Nautical Almanack for 1818, p. 140.)

~. fOh. • 33° 58' 7" 33° 58' 7"

Dist. D from # I n
(3 . . 32 30 3 33 56 48.4 (D)

1 28 4 0 1 18.6.

l' 18" 6Hence, the time at Greenwich = 0h 4- 0 , ' j, X 3h = 2m40s.6.

1 28 4

Time of Observation, at the Place of Observation,

a - 28° 23' 14"

L = 36 7 0 . . , sec. 0.0926862

p = 77 9 66 ..cosec. 0.0110020

|-sum = 70 49 40.3 . . cos. 9-5164147

§sum — a = 42 26 26.3 .. sin. 9-8291911

2) 19-4492940

9-7246470 log. sin. 32° 2' 10";
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.-. the horarv angle = 64° 4' 20" = 4h 16" lT-3

But star's right ascension = 9 58 43.3

Right Ascension of mid-heaven = 5 42 26

From N. A., the Sun's JR on the)  I_ 0_ IQ

meridian of the place of observation)

-Approximate time 12 15 14

Acceleration 0 2 0.4

Time at ship 12 13 13.6

11 46 46.4

Time at Greenwich 0 2 40.6

Longitude 11 49 27 W.

Instead of computing the time from the altitude of the star,

we might have computed it from the Moon's altitude, which can

be more exactly observed. The computation will be as follows :

5 's true alt. (J) 62° 2' 0"

5 's N. P. D. p 63 37 20 cosec. 0.0477480

L 36 7 0.. sec. 0.0926862

| sum 80 53 10 . . cos. 9-1997481

| sum— A 18 51 10.. sin. 9.5093874

2) 18.8495697

9-4247848 sin.150 25/22".2Ii.

.-. 5 's horary angle = 30° 50' 44".5 = 2h 3m 23s, nearly,

5 's right ascension 7 45 51

Right Ascension of mid-heaven 5 42 28

Sun's right ascension 17 27 12

12 15 16

Acceleration 0 2 0.5

Time at Greenwich

Longitude

12 13 15.5

11 46 44.5

0 2 40.5, nearly,

11 49 25
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The process for finding the longitude from the distance of the

Moon from a star, similar to the preceding, is, in deducing

the true from the observed altitude, somewhat more simple ; but,

more tedious in the computation of the time from the altitude.

The computation of deriving the time from the star's altitude,

it is desirable to supersede, by reason, of the probable errors

that will be made in observing the star's altitude*. And it

may be superseded, by finding the time and regulating the chro

nometer by a previous or a subsequent observation of the Sun's

altitude : by allowing for the change in longitude (see p. 802, &c.)

during the two observations ; and then by computing the star's

altitude, from its north polar distance, the latitude, and the

estimated time.

The proper formula of computation for this occasion is one

that has repeatedly occurred, (see pp. 795, &c.) If L be the

latitude, p the north polar distance, h the estimated hour angle

and a the altitude, then,

sin. a = sin. L . cos. p + cos. L sin. p . cos. h,

whence, a may be computed by means of a subsidiary angle.

(See Trig. pp. 169, &c.)

Hence, the process for finding the longitude, although it

does not essentially require the chronometer, is rendered more

easy and accurate by its aid.

This is not the sole use of the chronometer. It enables the

Observer to use the mean of several observed distances of the

Moon from a star, or the Sun, instead of a single one. For, he

cannot, without error, take the mean, except he know the several

intervals of time that separate the successive observations. The

chronometer enables him to ascertain these intervals.

* The practical inconvenience of this method, is of the same kind as

that which occurs in Dr. Brinkley's method of finding the latitude from

the observed altitudes of two known stars : except in the twilight, or by

Moonlight, it is very difficult to see the horizon distinctly, when you can

see the star. Lacaille was accustomed to use precautions in order to be

able to see the horizon.
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Thus, in the following observations :

Time by Watch. Star's Altitude.
Altitude Moon's

Upper Limb.

Dist. Moon's

L. from Star.

13h lm 50s
43° 0' 30"

7 0

14 0

20 30

29 0

38 0

67° 28' 0"

67 1 1 0

66 59 0

66 51 0

66 36 0

66 32 0

45° 19' 45"

19 15

18 45

18 30

18 15

18 0

2 25

3 21

4 14

5 11

6 8

Sums

5th or means

23 9

13 3 52

109

43 18 10

401 37 0

66 56 10

112 30

45 18 45

And, generally, the elements of the computation in the lunar

method are the means of several observations, not the results of

individual ones.

Since, in Nautical Astronomy, the finding of the longitude is

the most important and most difficult operation, several expedients

have been devised for facilitating it. The distance has been

cleared*, (see p. 857,) by a formula different, from that which

has been given in p. 857, although derived from the same funda-

* M. Delambre has given in Chap. XXXVI. (and there is no great

difficulty in the deduction) about 20 different formulae. The leisure of

scientific men cannot be more innocently employed. It is profitably

employed when, after comparison, it selects that formula which, suffi

ciently exact, is the least liable, in its application, to the mistakes of

merely practical men : such, as in general, mariners are. But a proper

formula once adopted, and invested with its Rules and Tables, ought not

hastily to be got rid of. It is no sufficient reason to get rid of it, to be able

to supply a method a little more simple, and a little less long. There is

no great harm, indeed, in perplexing a mere mathematician. But it is

a very mischievous innovation to disturb the technical memory of an old

seaman, and to unsettle his familiar rules of computation. Every one,

man of science or not, knows, from his own experience, the great value of

fixtd rules, in conducting arithmetical operations.
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mental expression. Instead of a logarithmic computation, one

proceeding solely by addition, and furnished with appropriate

Tables, has been substituted. But, for a satisfactory explanation

of the means and artifices, by which, on this occasion, the labour

of computation is abridged and expedited, we must refer to the

treatises that contain them. (See Requisite Tables : their expla

nation and use. Mendoza's Treatise on Nautical Astronomy :

Brinkley, Irish Transactions, 1808 : Connoissance des Terns for

1808, and for years 12 and 14: Mackay, On the Longitude,

Lax's Tables.)

If we wish to reduce, to one of the classes (see p. 837,) the

preceding method of finding the longitude, we shall find that it

belongs to the second. The principle on which it rests, is, indeed,

precisely the same as that which forms the basis of the second

method (see p. 841,) of finding the longitude from an occultation ;

for,

Analogous to the distance D 83° 20' 55" , at lh 39m 38s

is the 5 's longitude at Dublin, 67 18 43.3, at 8 4 51.5

Analogous to the distance .... 84 28 26, at 18 {Greenwich)

is the Moon's longitude 67 22 26.1, at 8 37 36.8

(for the Moon's longitude is a species of distance, being the

distance of her place referred to the ecliptic from <y ). And

the reduction of 84° 28' 26" to 83° 20' 55" by taking away

1° 7' 3i", corresponding to 2h 27m 27s, is analogous to the

reduction of 67° 22' 26". 1 to 67° 18' 43".3, by taking away

3' 42".8, corresponding to 7m 23\3; 1° 22' 25", being, in the

former case, the change of the Moon's distance in 3h and 30' 9"-2,

in the latter, the change of the Moon's longitude in lh : that is, in

other words, the Moon's horary motion in longitude.

The problems then of deducing the longitude from an occul

tation, and from the distance of the Moon from a star, are the

same in principle ; but the former is more difficult in its process,

because, in clearing the observation of parallax, it is necessary to

compute its resolved parts in the directions of longitude and

latitude; whereas, in the latter, the entire effects of parallax,

which take place in altitude, are alone considered.
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The former, as a practical method of determining the longitude,

is exceedingly more accurate than the latter * ; because, we are

enabled to mark the distance, which is the Moon's semi-diameter,

and the corresponding time, which is that either of the immersion

or emersion, with much greater precision, than we can measure

the distance by means of a sextant, and compute the time from

an observed altitude. But, as it has been observed in p. 855, the

degree of accuracy does not alone determine the adoption of a

method; we are obliged, in finding the longitude at sea, by the

exigencies of the case, to rely solely on, what is called technically,

the Lunar Method.

In finding the longitudes of places at land, circumstances also

must determine which of the preceding methods must be adopted.

Several have been proposed, not as if they might be indifferently

used, but that Observers may select from them, what are suited to

their several wants, means, and opportunities. If the Observer,

furnished with a telescope and chronometer, wishes readily and

speedily to determine the longitude of the place where he is, he

may use the method of the eclipses of Jupiter's satellites, (see

p. 840,) and obtain a result probably within 30 or 40 seconds of

the truth. If he has the means of adjusting a telescope to move

nearly in the plane of the meridian, the method of the transits of

the Moon and of a fixed star, (see p. 856,) will afford a more

accurate result, and with an error, perhaps, not exceeding ten

seconds. But, if great accuracy be required, and expedition be

not, then the Observer must wait for the opportunity of a solar

* " For the present, I infer, we may take the difference of meridians

(Greenwich and Paris) 9m 20s, as being within a few seconds of the truth,

till some occultations of fixed stars by the Moon, already observed, or

hereafter to be observed, in favourable circumstances, and carefully calcu

lated, shall enable us to establish it with the last exactness." Maskelyne,

On the Latitude and Longitude of Greenwich, &c. Phil. Trans. 1787,

p. 186. See also Phil. Trans. 1790, p. 230.
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eclipse, or, what is better, of an occultation*, and thence com

pute the longitude f.

The several methods have their peculiar advantages and dis

advantages : the last, which is the most accurate, requires com

putations of considerable length and nicety ; the first, probably

inaccurate to the extent of £th of a degree, requires scarcely any.

The second is more accurate, and may constantly be used, and

therefore, on the whole, it is perhaps the readiest and best prac

tical method.

The Lunar method, which is the least exact, is yet founded

on the most refined theory, and the most complicated calculations.

It depends, for its accuracy, entirely on previous computations.

We cannot, in applying it, compare, as in the case of an occul

tation, (pp. 841, &c.) actual observations of the same phenome

non, or give accuracy to the result, by correcting (see p. 842,) the

errors of the Tables. But, the mariner must be guided by the

result, such as it comes out at the time of the observation, and

which, a few hours after, will have lost all its utility.

In page 849, it was mentioned, that, in a merely theoretical

point of view, the longitude ought to be afforded as a result, from

* An occultation affords a more exact practical result than a solar

eclipse, because, in the former, the instant of immersion can be marked

with greater precision, than the instant of contact in the latter.

The recurrence of occultations may be found as those of eclipses were,

p. 730. We must find two numbers in the proportion, or nearly so, of

27d.32l66l (the Moon's sidereal period) to 6793d.42118 (the sidereal

revolution of the nodes) : which numbers are 17, and 4227 : and the

period of recurrence is 316* 72d.l (=4227 x 27d.32l66l).

t In speaking of the errors in the determination of the longitude, we

have supposed the mean, of several observations accurately made with

excellent instruments, to be taken. The errors of single observations will

be much greater than what have been assigned to them. With the first

satellite of Jupiter it may amount to 3m 443 according to Mr. Short. (See

his Paper in the Phil. Trans. 1763, p. 167, for determining the difference

of longitude between Greenwich and Paris, from the transits of Mercury

over the Sun's disk).

5 s
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the separation, during a given interval, of the Sun from a star ; but

that the slow motion of the former, deprived the method of all

practical utility. Now, the material circumstance that confers,

what accuracy it possesses, on the Lunar method, is the Moon's

quick change of place. Were the change greater, the method

would be more accurate. For instance, the Moon now moves

through 1° in about 2 hours, and therefore, an error of l', in ob

serving and computing her distance, causes an error of 2 minutes

of time, or of 30' of longitude. But, if she moved through the

same space (1°) in ^ hour, then the error of l' would cause only an

error of 3(f of time, and of 7 « of longitude.

Hence it follows, that the first satellite which moves round

Jupiter in less than two days, (see p. 629,) must enable an Ob

server on that planet to determine, very exactly, the longitude of

his station : as exactly, as we can determine the latitude of a

place.



CHAP. XLIV.

On the Calendar.

The Sun naturally regulates the beginnings, ends, and dura

tions of the seasons ; and, the calendar is constructed to distribute

and arrange the smaller portions of the year.

The calendar divides the year into 12 months, containing, in

all, 365 days ; now, it is desirable that it should always denote the

same parts of the same season by the same days of the same

months, that, for instance, the summer and winter solstices, if

once happening on the 21st of June and 21st of December, should,

ever after, be reckoned to happen on the same days ; that, the

date of the Sun's entering the equinox, the natural commencement

of spring, should, if once, be always on the 20th of March.

For thus, the labours of agriculture, which really depend on the

situation of the Sun in the heavens, would be simply and truly

regulated by the calendar.

This would happen, if the civil year of 365 days were equal

to the astronomical ; but, (see p. 529, 8tc.) the latter is greater;

therefore, if the calendar should invariably distribute the year into

365 days, it would fall into this kind of confusion ; that, in

progress of time, and successively, the vernal equinox would

happen on every day of the civil year. Let us examine this

more nearly.

Suppose the excess of the astronomical year above the civil to

be exactly 6 hours, and, on the noon of March 20th of a certain

year, the Sun to be in the equinoctial point ; then, after the lapse

of a civil year of 365 days, the Sun would be on the meridian,

but not in the equinoctial point ; it would be to the west of that
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point ; and would have to move 6 hours in order to reach it,

and to complete (see pp. 197, &c.) the astronomical or tropical

year.

At the completions of a second, and a third civil year, the

Sun would be still more and more remote from the equinoctial

point: and would be obliged to move, respectively, for 12 and

18 hours, before he could rejoin it, and complete the astronomical

year.

At the completion of a fourth civil year, the Sun would be

more distant, than on the two preceding ones, from the equi

noctial point. In order to rejoin it, and to complete the astro

nomical year, he must move for 24 hours, that is, for one whole

day. In other words, the astronomical year would not be com

pleted till the beginning of the next astronomical day ; till, in

civil reckoning, the noon of March 21st.

At the end of four more common civil years, the Sun would

be in the equinox on the noon of March 22. At the ends of 8

and 64 years, on March 23, and April 6, respectively ; at the

end of 736 years, the Sun would be in the vernal equinox on

September 20. And, in a period of about 1508 years, the

Sun would have been in every sign of the Zodiac on the same

day of the calendar, and in the same sign on every day.

If the excess of the astronomical above the civil year, were

really, what we have supposed it to be, 6 hours, this confusion of

the calendar might be, most easily, avoided. It would be neces

sary merely to make every fourth civil year to consist of 366 days ;

and, for that purpose, to interpose, or to intercalate a day in a

month previous to March. By this intercalation what would have

been March 21st is called March 20th; and, accordingly, the

Sun would be still in the equinox on the same day of the month.

This mode of correcting the calendar was adopted by Julius

Caesar. The fourth year into which the intercalary day is intro

duced was called Bissextile* : it is now frequently called the Leap

* The Bissextus dies ante Calendas, being the intercalated day in the

Julian Calendar.
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year. The correction is called the Julian correction, and the length

of a mean Julian year is equal to 365d.25.

If the astronomical year (see p. 529,) be equal to 365d.242264,

it is less than the mean Julian by (r.007736. The Julian correction,

therefore, itself needs a correction. The calendar, regulated by

it, would, in progress of time, become erroneous, and would

require reformation.

The intercalation of the Julian correction being too great,

its effect would be to antedate the happening of the equinox.

Thus, (to return to the old illustration) the Sun, at the completion

of the fourth civil year, now the Bissextile, would have passed

the equinoctial point, by a time equal to four times 0d .007736:

at the end of the next Bissextile, by eight times Od.007736 : at

the end of 129 years, nearly by one day. In other words, the

Sun would have been in the equinoctial point 24 hours previously,

or on the noon of March 19th.

In the lapse of ages, this error would continue and be increased.

Its accumulation in 1292 years would amount, nearly, to 10 days,

and then, the vernal equinox would be reckoned to happen on

March 10th.

The error into which the calendar had fallen, and would

continue to fall, was noticed by Pope Gregory in 1582. At

his time, the length of the year was known to greater precision,

than at the time of Julius Caesar. It was supposed equal to

365d 5h 49m l6s.23. Gregory, desirous that the vernal equinox

should be reckoned on or near March 21st, (on which day it

happened in the year 325, when the Council of Nice was held,)

ordered that the day succeeding the 4th of October 1582, instead

of being called the 5th, Should be called the 15th; thus,

suppressing 10 days, which, in the interval between the years

325 and 1582, represented, nearly, the accumulation of error

arising from the excessive intercalation of the Julian correction.

This act reformed the calendar : in order to correct it in

future ages, it was prescribed that, at certain convenient periods,

the intercalary day of the Julian correction should be omitted.

Thus, the centenary years, 1700, 1800, 1900, are (as every
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year divisible by 4 is) according to the Julian correction,

Bissextiles, but on these it was ordered that the intercalary

day should not be inserted: inserted again in 2000, but not inserted

in 2100, 2200, 2300; and so on for succeeding centuries *.

This is a most simple mode of regulating the calendar. It

corrects the insufficiency of the Julian correction by omitting,

in the space of 400 years, 3 intercalary days. And, it is easy to

estimate the degree of its accuracy. For, the real error of the

Julian correction is 0d.007736 in 1 year, consequently, 4xOd.7736,

or 3d .0944 in 400 years. Consequently, 0d0944, or, 2h 15m 5&.16

in 400 years, or 1 day in 4237 years is the measure of the degree

of inaccuracy in the Gregorian correction. Against such, it

perhaps, is not worth the while to make any formal provision in

the mode of regulating the calendar.

The calendar may be thus examined and regulated, without

the aid of mathematical processes and formulge. Yet, on

this subject, the method of continued Fractions f is frequently

* M. Delambre proposed to keep the calendar correct on this principle.

Assuming the length of the year to be equal to 36od.24-§-, in 9 years the

excess above the common civil year would be 24x9+2, or2d.18

in 450 years 1 09

in 900 218

in 3600 872

According to the Julian correction there would be in 3600 years (3600

divided by 4 gives 900,) 900 intercalations, or 900 Bissextiles, too many

by 28.

The Gregorian calendar casts out 27 ; in order, then, to cast out the

28th, and to keep the calendar right, it is merely necessary to make the

year 3600 and its multiples common years.

f Since the excess of the tropical year above the civil is

0d. 242264, the exact intercalation is that of 242264 days, in

1000000 years. But, since this intercalation would be of no

practical use, we must find numbers nearly in the ratio of 242264 to

1000000 : which may be effected by the method of continued fractions,

as in pages 279j 280, &c. See on this subject, Euler's Algebra.

Addition, pp.426, &c. edit. 1774.
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employed. This, however, is to use an instrument too fine for

the occasion. The results have a degree of exactness, beyond

what we require, or can practically avail ourselves of. The only

thing, in the correction of the calendar, that requires a high

degree of mathematical science, is the determination of the length

of the astronomical year. Had this been known, to a greater

exactness, by the Astronomers of the time of Julius Cajsar, the

Julian correction would, probably, have superseded the necessity

of the Gregorian.





ERRATA et ADDENDA.

P. 7. 1. 13. for 'greater,' read 'greatest.'

P. 9. 1. 15. for 'more,' read 'move.'

P. 10. 1. 3. for bPb, read bPa.

P. 16. last line, read k WE' and ESk.

P. 17. 1.8. from bottom, for 'notions,' read 'nations.'

P. 18. 1. 4. for 'is first,' read ' it is first.'

P. 30. 1. 2. for ' night,' read « day.'

, 360° , 360"
P. 40. 1. 14. f°r-jQ~> read—pp.

P. 194. 1. 6. for ' exacted,' read ' exact.'

P. 344. 1. 19. instead of £(50".l)*, &c, read ± sin. l"(50".l)*.

P. 697. the value of the obliquity i,=23° 27' 35". 1, was taken from

the N. A. of 1812, but all the values of I therein expressed are wrong to

the amount of 8 seconds and upwards. The value of Jon Nov. 12, 1812,

ought to have been 23° 27' 43".6 : -in which case, the resulting latitude

would have been 4° 58' 27"-6 : the value of the longitude will be very

slightly affected by the change in the value of the obliquity.

P. 703. the two last figures in the logarithmic value of 106° & 20".73,

instead of 06 ought to have been 10. If these and the following figures

be corrected, the complement of the latitude will be 86° 13' 29".2. But

the longitude in p. 704, is derived from the latitude : and if, in the calcu

lation of the longitude, the above altered value of the computed latitude

be substituted, the resulting value of the longitude will be 1 0s 1° 45' 13".3.

The observation of Nov. 12, 1812, was made with the new mural circle:

but those of Sept. 27, and 28, 1811, with the brass quadrant, which,

it is now known, has, since it was first put up, changed its figure. The

changes have not been accounted for in pp. 701, &c. these amount to

+7".3, +6".6, corrections additive to the north polar distance of the 27th

and 28th, and, if the calculations be made with the north polar distances

so corrected, the resulting latitudes and longitudes on the 27th and- 28th,

will be respectively,

3° 46' 23".4, 2° 41' 1",

10' 1° 45' 11".7, 10> 16" 47' 12",

and the errors of the Tables in latitude - 15".4,  14".5,

in longitude + 3.5, + 6.



ERRATA ET ADDENDA.

The results now agree much more nearly with those printed by order

of the Board of Longitude. The elements of the latter results are now,

by the kindness of the Astronomer Royal, in the Author's possession :

they differ, however, in some small respects, from what he has used.

The above Errata are few in number, and not of much moment :

others, no doubt, will be detected : the Author, however, does not antici

pate the detection of many, relying on the careful and intelligent super

intendence which the Work, during its progress, has received from the

Rev. Dr. French, Master of Jesus College.





 




